
HAL Id: tel-03402490
https://theses.hal.science/tel-03402490

Submitted on 25 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Feature Extraction and Pattern Recognition with
Neuromorphic Vision Sensors

Jean-Matthieu Maro

To cite this version:
Jean-Matthieu Maro. Feature Extraction and Pattern Recognition with Neuromorphic Vision Sensors.
Neurons and Cognition [q-bio.NC]. Sorbonne Université, 2020. English. �NNT : 2020SORUS155�. �tel-
03402490�

https://theses.hal.science/tel-03402490
https://hal.archives-ouvertes.fr

Sorbonne Université

École Doctorale
Sciences mécaniques, acoustique, électronique et robotique de Paris

ED 391 - SMAER

Institut de la Vision, Équipe Vision et Calcul Naturel

Feature Extraction and Pattern Recognition with
Neuromorphic Vision Sensors

par

Jean-Matthieu Maro

Thèse de Doctorat de Robotique

sous la direction de Ryad Benosman et Sio-Hoï Ieng

Présentée et soutenue publiquement le 30 septembre 2020

Devant un jury composé de :

Prof. Elisabetta Chicca Rapporteur
CR Timothée Masquelier Rapporteur
Prof. Bruno Gas Examinateur
Prof. Ryad Benosman Directeur de thèse
MC Sio-Hoï Ieng Directeur de thèse

R É S U M É

Les caméras événementielles ou neuromorphiques sont des capteurs s’ins-
pirant de l’oeil humain dans leur fonctionnement. Chaque pixel est indé-
pendant, asynchrone et réagit aux changements de luminosité se produi-
sant dans son propre champ de vision ; ces changements se traduisent par
l’émission d’un événement. Le flot d’évènements émis par la caméra est une
représentation éparse et non redondante de la scène visuelle. Dans cette
thèse, nous introduisons des méthodes événementielles, c’est-à-dire asyn-
chrones et déclenchées par des événements, qui ont pour but l’extraction de
caractéristiques et la reconnaissance de formes. Nous introduisons une pre-
mière primitive basée sur le flot optique. Celle-ci est ensuite utilisée pour des
tâches de reconnaissance de gestes et de détection de coins. Nous introdui-
sons ensuite un système complet de reconnaissance de gestes basé sur HOTS
(Hierarchy Of Time-Surfaces, Lagorce 2016) avec suppression dynamique de
l’arrière-plan. L’ensemble se contente de la puissance de calcul offerte par un
smartphone standard. Nous présentons ensuite une proposition d’architec-
ture de mémoire adaptée aux algorithmes événementiels semi-accumulatifs.
Celle-ci se fonde sur le principe des mémoires associatives. Elle présente
deux avantages : un stockage plus efficace des événements et la possibilité
d’effectuer des calculs à l’intérieur même du bloc mémoire. Ce dernier point
est un pas supplémentaire vers un calcul distribué dans les systèmes événe-
mentiels. Nous discutons également au long de ce travail des bénéfices et
désavantages des méthodes semi-accumulatives.

iii

A B S T R A C T

Event-based cameras – also known as neuromorphic – are sensors that
mimic the mammalian eye in the way they acquire the visual scene. Each
pixel is independent and asynchronous, and reacts to changes in its own
field-of-view by emitting events that signal these changes. The stream of
events output by the camera is a sparse and non-redundant representation
of the visual scene. In this thesis, we introduce event-based – asynchronous,
triggered by new events – methods for feature extraction and pattern recog-
nition. The first feature is a motion-based feature that accumulate optical-
flows, that can serve for pattern recognition and corner detection. We then
introduce a gesture recognition pipeline that is embarked on a smartphone,
that includes a dynamic background suppression, and runs without any
off-board requirements. We then present a new time-adaptive memory ar-
chitecture for event-based algorithms, focusing on semi-accumulative meth-
ods. This memory is based on an associative memory, and while allow-
ing for a more efficient storage of events, enables "in-memory" computa-
tion, pushing forward the philosophy of distributed computation in event-
based systems. We finally discuss the benefits and disadvantages of semi-
accumulative methods.

A C K N O W L E D G E M E N T S

Maman, merci. Je suis lancé.
Papa, merci pour ton aide précieuse qui veut dire beaucoup.
Valbi, merci pour ce fameux traité.
Je veux également remercier ceux avec qui j’ai travaillé et ceux qui travail-

laient à mes côtés : Laurent Dardelet, pour avoir partagé son second bureau
avec moi. Quentin Sabatier & Laure Caruso, qui ont été là. Gregor Lenz,
pour sa grenouille, et Christopher Reeves, pour son aide dans l’acquisition
de NavGesture : sans vous deux, pas de démonstrateur à FG’2019 ! Ricardo
Tapiador-Morales, pour nos collaborations fructueuses ! Xavier Clady, pour
mes premiers pas dans l’event-based. Anne Marie, pour ta gentillesse. Merci !
Merci à tous les partenaires du projet ECOMODE, particulièrement Chris
(encore lui !) du Streetlab, Nadia de FBK et l’équipe d’Experis : Antonio,
Andrew et Gema. Les doctorants et post-docs du labo, qui m’ont beaucoup
apporté par les discussions et l’entraide, et surtout pour les bons moments
partagés : ils sont nombreux et se reconnaîtront.

Merci à Ta Soeur pour avoir payé leurs impôts année après année.

I would also like to thank my supervisors for giving me the opportunity
to work in this field.

v

C O N T E N T S

1 introduction 3

2 a motion-based feature for event-based pattern recognition 13

2.1 Introduction . 13

2.2 Motion-based Feature . 15

2.2.1 Extracting normal visual motion 16

2.2.2 Computing and updating the feature 17

2.2.3 Speed-tuned vs. fixed decreasing strategies 19

2.3 Application to corner detection 22

2.3.1 Feature-based approaches 23

2.3.2 Evaluations . 26

2.4 Application to gesture recognition 30

2.4.1 A more compact and invariant representation 31

2.4.2 Classification Architecture 31

2.4.3 Results . 35

2.5 Conclusion and Discussion . 38

3 event-based gesture recognition with dynamic background
suppression using smartphone computational capabilities 41

3.1 Introduction . 41

3.1.1 Gesture Recognition on Mobile Devices 42

3.1.2 Gesture Recognition using Event-based Cameras 43

3.2 Methods . 45

3.2.1 Dynamic Background Suppression 45

3.2.2 Time-surfaces as spatio-temporal descriptors 47

3.2.3 Event-based Hierarchical Pattern Matching 47

3.3 A new neuromorphic dataset: NavGesture 49

3.4 Experiments and Results . 51

3.4.1 Static properties: Experiments on the Faces dataset . . . 52

3.4.2 Dynamic properties: Experiments on the NavGesture
datasets . 53

3.4.3 Experiments on the DvsGesture dataset 54

3.5 Implementation on a Smartphone 56

3.6 Discussion and Conclusion . 58

4 the need of incremental computation and time adaptive re-
sources management for event-based sensors 61

4.1 Introduction . 61

4.2 The Need of Incremental Processing of Events 62

4.3 The use of frames in neuromorphic event-based visual pro-
cessing . 64

4.4 CNNs in Event based visual processing 64

4.5 Temporal Dynamics and Data load in existing Event-based
Databases . 66

4.6 Computational costs . 71

4.7 Generic Time Adaptive Memory Architecture for Event based
Processing . 73

1

2 contents

4.7.1 Temporal Machine learning using Time-surfaces 73

4.7.2 A Generic Memory Architecture 75

4.7.3 "In-memory" partial computation of Time-surfaces . . . 78

4.7.4 Hardware Implementation Study 78

4.8 Discussion and Conclusion . 82

5 discussion & conclusion 85

bibliography 89

1 I N T R O D U C T I O N

Despite the tremendous progress of Computer Vision during the last decades,
efficient automated visual understanding of dynamic scenes still remains a
challenge. This contrasts with the available interpretation of static images
that has recently reached numerous milestones, thanks to the invention of
GPU and their wide use in modern hardware and consumer market devices.
It has now become "normal" to see every smartphone commonly equipped
with built-in features such as face detection and many other advanced func-
tionalities such as automated tagging of pictures. Until few years ago, such
functionalities were only available in research laboratories and required pow-
erful desktop computers to operate.

Unfortunately (or fortunately to us), all these developments could not be
extended to efficiently handle dynamic visual scene processing that remains
the next challenge of machine vision.

Visual representations of the real world have always been based on bidi-
mensional static images, a relic from painting and early photography. In-
deed, the first device designed to capture visual scenes was the camera ob-
scura, a mechanism shown in Figure.1. This invention can be seen as the
"mother" of all cameras. Its evolution over time followed the technologies
available at each century: hand drawn canvas, photographic plates, then pa-
per followed by celluloid film and more recently photo-diodes and pixels.
Another linked extension has been the invention of motion pictures that re-
lies on a "rapid" acquisition and display of a set of static pictures, leading to
the invention of the cinematograph and the motion-picture industry, the tele-
vision... Modern frame-based cameras widely used in computer vision are a
relic of this acquisition principle and historic stream.

Figure 1: The camera obscura principle, also known as the pinhole camera. The
visual scene is projected in a reversed and inverted manner on the wall
opposing the hole. Illustration from James Ayscough’s A short account
of the eye and nature of vision (1755, 4

th edition, public domain)

This quick historical perspective emphasizes the point that the dominant
acquisition method [1] for dynamic visual scenes was originally designed

3

4 introduction

to acquire and display static scenes. The adaptation of this acquisition prin-
ciple to dynamic scenes (initiated by Muybridge and Stanford, to solve the
question about whether a galloping horse had always at least a foot on the
ground) consisted in understanding that such scenes could be represented
as a sequence of static subsequent images. By displaying such a sequence at
a high enough framerate, one could obtain an illusion of fluent movement.

This invention although sufficient for display purposes, is unfortunately
not the most efficient when applied to modern technologies. Its acquisition
relies on updating the whole pixel array at a predefined rate, regardless to
the scene’s dynamic content. This has the vicious tendency to introduce both
under- and over-sampling problems into the same acquisition. These two is-
sues usually occur simultaneously, as the dynamical content of parts of the
visual scene are usually different, as illustrated in Fig. 2-A. If the framer-
ate is too low in regards to the dynamics of the scene, it will likely result
in motion-blur or missed information as shown in Fig. 2-B. If the framer-
ate is high enough, it will nonetheless results in over-sampling of the static
background. Frames are dense representation, unnecessary information will
then have to be wastefully processed at each frame. It is then very unlikely
that such an inadequate acquisition method can lead to efficient algorithms
as by construction it has been designed initially to acquire one static scene
for display purposes.

Nevertheless, before the advent of neuromorphic engineering, the use of
frames dominated (and still does) modern Computer Vision. As cameras’
framerate and resolution were increasing over the years, more and more
processing power, bandwidth for transmission and memory storage were
required. To make things even worst, new techniques emerged, such as Con-
volutional Neural Networks (CNNs), requiring even more resources-hungry
hardware such as Graphics Processing Unit (GPUs).

On the opposite side of the power requirement spectrum, the human brain
outperforms existing modern computers in a variety of tasks such as gen-
eral AI, visual scene understanding, language processing and many others.
When considering the power consumption of brains of around 20-40 watts
compared to the thousands of Watts required by modern computers, the
difference is even more striking. The low energy requirements and func-
tionalities of biological systems remain unmatched by artificial processing
systems.

Neuromorphic – bio-inspired – sensing and processing, being also the
scope of this Ph.D., aims at reproducing insights gained from neurobiolog-
ical systems into artificial ones. Neuromorphic event-based vision sensors
are part of an effort to provide more advanced, biologically plausible, func-
tionalities to artificial systems, such as a more efficient visual processing
and understanding of dynamic scenes. Unlike conventional cameras, these
sensors perform local updates using a relative change acquisition paradigm
that auto-adapts to the scene’s dynamic contents (Fig. 3-A, 3-B). Further-
more, this acquisition method enforces that changes in the visual scenes are
acquired only once at an adaptive frequency. This novel approach to visual
acquisition requires to rethink computer vision algorithms to comply with
the sparseness, the high temporal precision and the low latency of these
sensors.

introduction 5

Figure 2: (A) Images from a conventional camera usually contain over- and under-
sampled areas in the same frame because of the synchronous and full
frame acquisition principle. If increasing the framerate allows for a clearer
acquisition of the throw, it also results in increasing redundant informa-
tion from the static background. (B) A pendulum is observed by a conven-
tional camera (right), but the acquisition principle leads to motion-blur
(left).

Figure 3: (A) The pendulum is observed by a conventional camera (red) and an
event-based camera (blue). (B) in red the image from the conventional
sensor shows motion blur due to the high velocity movement, while in
(blue) there is no such effect (for display purposes we generated frames
from events, as event-based cameras do not output images). Also, while
the conventional camera is busy integrating pixels and transmitting the
whole frame, the event based sensor allows a "continuous" acquisition of
the dynamics of the pendulum’s motion in the meantime.

event-based cameras

Event-based cameras differ from conventional cameras because each pixel
is a relative change detector that operates individually and asynchronously,
detecting luminance changes in its own field-of-view [2, 3, 4]. Pixels emit

6 introduction

events that signal these changes as soon as a relative luminance threshold is
crossed as illustrated in Fig. 4-A, 4-B. The output of a simulated color ver-
sion of such an event-based camera is represented in Fig. 4-C, 4-D). In these
examples it becomes clear that using this acquisition paradigm, only changes
are transmitted, and static backgrounds are not over-sampled. This results
in the suppression of spatial redundancy, and a sparse and asynchronous en-
coding of the visual scene. The particular sensor shown in Fig. 4-B features
an individual exposure measurement circuit in each pixel. Triggered by its
associated change detector, this circuit encodes the absolute luminance as an
inter-event interval [3]. However, in all this work we will only rely on events
output by the change detector, never taking into consideration absolute lu-
minance measurement events.

Figure 4: Event-based sensors operation principles: (A) The ATIS sensors used in
this work [3]. (B) When a given pixel’s luminosity change reaches a given
threshold, it produces a visual event with an x,y address, a timestamp
and a polarity, which is either ON or OFF depending on the relative lumi-
nosity change. (C) shows the stream of events generated by a simulation
of three rotating colored shapes [5].

Formally, an event e can be defined as a triplet: e = (x, t, p), where x
represents its spatial position in the sensor array, t its timestamp and p its
polarity. This representation is referred as Address Event Representation
(AER). For events output by the camera, the polarity encodes whether the
detected change in luminance is positive or negative. But events can also be
used as a mean to carry information as they start flowing into algorithms,
and the polarity can then be used to encode other properties.

processing events

This new way of acquiring visual scenes has lead to several new options
to process the incoming data. If frames are dense and global representations
of the visual scene that are generally processed synchronously, the stream of
events is on the contrary a sparse representation where events signal local
changes, and these individual events can be processed asynchronously as
they happen. This results in several dichotomies to be considered when
proposing a nomenclature for algorithms that operate on event-based data:

• dense vs. sparse

• synchronous vs. asynchronous

• global vs. local

introduction 7

These dichotomies lead to a wide spectrum of algorithms, from synchronous
and global frame-based techniques to asynchronous event-triggered and
event-wise algorithms. An attempt of a nomenclature inspired from [6] is to
consider 3 major trends in event-based data processing:

• accumulative methods are techniques that aim at creating a frame from
received events, in order to take advantage of conventional computer
vision techniques. They are synchronous and process dense represen-
tations;

• non-accumulative methods are asynchronous algorithms, triggered by
each new incoming event, in order to update one or several internal
models incrementally. Only the current event is considered by the
algorithm, never taking into account older events: in these algorithms,
events are processed only once, as soon as they are received, never to
be considered again;

• semi-accumulative methods are also asynchronous and triggered by in-
coming events. However, they allow to consider spatio-temporal neigh-
borhoods of events, instead of only one event. These methods are
used in tasks ranging from local descriptors like time-surfaces [7] to
local optical-flow computation [8]. They lie in-between accumulative
and non-accumulative techniques and are prone to partial- and over-
processing, that we further elaborate in the dedicated section.

Accumulative methods: the use of frames

Full-frame image and video reconstruction from events has quickly be-
come an active trend in event-based vision [9, 10, 11, 12] in order to apply
frame-based techniques such as CNNs [13, 14], optical flow computation [15,
16], object recognition [17, 18, 19, 20, 14] or image denoising [21].

However, if converting events into frames is an easy way to take advantage
of five decades of research in frame-based computer vision, it completely
neglects the fundamental shift in the acquisition principle [22] between con-
ventional cameras and neuromorphic sensors, that requires to rethink how to
process visual data [23]. Using frame-based algorithms on event-based data
can hardly result into efficient processing and misses out on the properties
of sparse event-based representations:

• the sparse stream of events is replaced by a dense representation, lead-
ing to additional computation as the whole frame must be processed;

• increased memory consumption footprint because of the dense repre-
sentation. Data transmission of the whole frame at once can also be an
issue;

• the precise timing of events is usually lost in the process;

• latency is likely to increase, because frames are usually integrated over
time, and can require more processing time than single or small groups
of events that can be processed as soon as they are received.

8 introduction

Non-accumulative methods: pure event-wise computation

The principle is to perform a quick calculation, triggered at each new
incoming event [24, 25], in order to update a model. These methods make
the assumption that each single event carries a small bit of information that
can be used to incrementally update a model or a representation. The "blob"
tracker [26] is a simple example: event-wise computations are used to update
the characteristics of the distribution that defines the tracker. The Dynamic
Background Suppressor presented in this work is another illustration of such
an algorithm, in which each incoming event updates an activity score that
is used to discriminate the background clutter from the useful foreground
signal.

Besides reducing latency to a minimum, these methods have major ad-
vantages: as each event is processed only once, these algorithms make sure
that no redundancy is introduced during the processing phase. However, it
seems that certain algorithms can not be written in a non-accumulative form,
especially when local spatio-temporal neighborhoods are required.

Semi-accumulative methods: the best of both worlds?

Semi-accumulative methods are asynchronously triggered algorithms, like
the non-accumulative ones. However, instead of considering only the in-
coming event, these methods make also use of older events in the spatio-
temporal neighbor of this event. Semi-accumulative methods are used in nu-
merous tasks that require to consider local contexts such as optical-flow or
feature extraction [7, 8, 27, 28, 29, 30, 31]. Behind these methods lay the idea
that the whole is greater than the sum of its parts, and that events grouped
into a spatio-temporal neighborhood can yield more information than it is
possible to obtain using the incremental updates of non-accumulative meth-
ods. Hence, semi-accumulative methods lie in-between the two previously
presented techniques. They allow for small local computations because trig-
gered by new incoming events. If well-designed, they preserve most of the
sparseness of the data and avoid dense representations, meaning that com-
putation happens when and where a change is detected in the visual scene.
This contrast with frame-based algorithms that must process the complete
frame in order to detect changes in the visual scene.

However, one must be careful when designing semi-accumulative algo-
rithms as older events can be processed several times, as newer events hap-
pen in their spatial neighborhood. Due to the fact that events are received
and processed in a sequential order, it can lead to both over-processing, and
its antagonist problem, partial-processing:

• at first, when a neighborhood contains few events, there is the risk to
process partial incomplete information in regard to the stimulus that
is being acquired;

• then, as events accumulate in the neighborhood, there is the risk to
process older events again and again, leading to over-processing of
redundant information.

introduction 9

It must be noted that partial- and over-processing can not happen in non-
accumulative algorithms as events are processed only once and then forgot-
ten. This could also be enforced for accumulative algorithms if the binning
of events is non-overlapping from frame to frame.

A first attempt to address this partial- and over-processing issue in semi-
accumulative algorithms is proposed in Chapter 3 as a simple heuristic that
prevents some of the spatio-temporal neighborhoods of incoming events
from being processed.

However it must be noted that asynchronous processing of event-based
data using semi-accumulative methods still lacks a theoretical background
or an empirical framework, and should in the meanwhile be designed tak-
ing this issue into account, as it can lead to unexpected partial- and over-
processing.

ph.d. work

As introduced previously, event-based sensing and processing define a
new promising paradigm that does not resemble the conventional one rely-
ing on frames and that leads inevitably to poorly managed resources. The
objective of this thesis is to tackle the problem of developing efficient on-the-
edge methodology and processing methods, in the form of non-accumulative
or semi-accumulative algorithms.

This thesis also aims to contribute to the state-of-the-art of machine learn-
ing by developing alternative techniques that deal directly with the bottle-
necks of modern machine learning: the requirements of large amounts of
data for training, and the processing of dense frames. If events signal local
updates in the visual scene, the absence of events signals that no processing
is needed.

This work starts with the development of a motion-based feature that
makes use of local optical-flow (Article 1). Then we proceed with the use
and adaptation of a low level feature and event based machine learning al-
gorithm using time-surfaces introduced in [7] (Article 2). This work on low
level information extraction is the first building block required by the higher
objective of solving a gesture recognition task for mobile phone applications.

This Ph.D. work was partially funded by the European project of ECO-
MODE (Event-Driven Compressive Vision for Multimodal Interaction with
Mobile Devices), that defined a constrained framework that aims at using
the resources of a mobile phone connected to an event-based camera. The
aim of ECOMODE is to facilitate the use of modern smartphones and tablets
by the elderly and the visually-impaired, by enabling their operation using
air gestures through an event-based camera. Since the gesture recognition
pipeline must run in real time on a smartphone, it imposes several con-
straints, such as memory consumption and available processing power. This
is an ideal test-bed for event-based sensing and processing. Furthermore,
considering more practical aspects, several methods had to be developed for
non-controlled environments. Their scope is to enable to cope with back-
ground clutter or jerky movements as smartphones are used on the go. We

10 introduction

also had to develop new datasets that would match as closely as possible
real world use-cases.

The tight power, memory and processing budget imposed by the smart-
phone required the optimization of event processing. This opened a deeper
thought on the semi-accumulative approach that we chose to use. The ges-
ture recognition module has been ported on FPGA to study the power con-
sumption of a future chip and provide a comparison with existing state-
of-the-art implementation on neuromorphic chips such as TrueNorth [13]
(Article 3).

The insight gained in the course of ECOMODE also revealed that current
computers and software architectures are not designed for efficient event-
based computation and storage. Storing events in image-like representations
proved itself inefficient when applied to the sparse properties of event-based
cameras, often requiring much more memory allocation than needed when
considering only the sufficient events to perform gesture recognition. Semi-
accumulative methods such as the event-based mechanism recommends, re-
quire the retrieval of a spatio-temporal neighborhood around each incoming
event. This further emphasizes the inadequacy of standard memory archi-
tecture. To improve the processing of events, we introduce a new hardware
alternative, based on in-memory computation using associative memories.
These reduce considerably the context retrieval around incoming events (Ar-
ticle 4). This approach is a new step towards distributed, parallel computa-
tion instead of relying on CPU-centred computation.

outline of this work

This document is organized as follows:

• Chapter 2:

A Motion-Based Feature (MBF) is presented. The MBF is a self-decaying
accumulation of the discretization of the optical-flow, velocity-wise and
direction-wise. Although the MBF is based on dynamic properties, it
allows for the detection of static properties, such as corners. This fea-
ture is used in a first gesture recognition pipeline. Results on a compact
preliminary dataset are presented;

• Chapter 3:

This chapter introduces a gesture recognition pipeline that operates in
real time on the ECOMODE smartphone prototype. We adapted the
learning mechanism and time-surface computation introduced in [7] to
better match available and limited mobile phones computation capabil-
ities. We also introduce a non-accumulative background suppression
as part of the pipeline. Two novel datasets are introduced. The chapter
also provides accuracy results on the widely used DvsGesture dataset;

• Chapter 4:

In this chapter, we introduce the time adaptive resource architecture,
suited for semi-accumulative methods, with the objective to push fur-
ther the optimization and efficiency of the gesture pipeline, and more

introduction 11

generally event-based processing. We analyze several widely-used
datasets to assess the reduction in memory footprint. We then show
that by using time adaptive Content-Addressable Memories, it is pos-
sible to perform "in-memory" computation in order to compute time-
surfaces and HOTS prototype matching.

• Chapter 5:

Finally, this chapter concludes this work based on the main contribu-
tions of this thesis.

12 introduction

list of publications

1. Clady, X., Maro, J. M., Barré, S., & Benosman, R. B. (2017). A motion-
based feature for event-based pattern recognition. Frontiers in neuro-
science, 10, 594.

2. Maro, J. M., Ieng, S. H., & Benosman, R. (2020). Event-based gesture
recognition with dynamic background suppression using smartphone
computational capabilities. Frontiers in Neuroscience, 14, 275.

3. Tapiador-Morales, R., Maro, J. M., Jimenez-Fernandez, A., Jimenez-
Moreno, G., Benosman, R., & Linares-Barranco, A. (2020). Event-Based
Gesture Recognition through a Hierarchy of Time-Surfaces for FPGA.
Sensors, 20(12), 3404.

4. Maro, J. M., Tapiador-Morales, R., Ieng, S. H., Linares-Barranco, A.
& Benosman, R. (2020) Why Generating Frames from Neuromorphic
Event-based Cameras is Wrong: The Need of Incremental Computa-
tion and Time Adaptive Resources Management. (In Preparation)

5. Mana, N, Reeves, C, Lenz, G, Maro, J.M., Linares-Barranco, B, Serrano-
Gotarredona, T, Camuñas-Mesa, L, Bartolozzi, C & Benosman, R. ECO-
MODE Review: Mid-air Gesture and Voice Interaction with Mobile
Devices by Elderly and Visually Impaired Users. (In Preparation)

conferences

1. Maro, J. M., & Benosman R. (2017). Mid-air Gesture Recognition Using
an Event-based Vision Sensor. Workshop on Designing, Implement-
ing and Evaluating Mid-Air Gestures and Speech-Based Interaction.
Computer-Human Interaction Italy (CHItaly 2017).

2. Maro, J. M., Lenz, G., Reeves, C., & Benosman, R. (2019, May). Event-
based Visual Gesture Recognition with Background Suppression run-
ning on a smart-phone. In 2019 14th IEEE International Conference on
Automatic Face & Gesture Recognition (FG 2019) (pp. 1-1). IEEE.

3. Best Demo Award, 2019 14th IEEE International Conference on Auto-
matic Face & Gesture Recognition (FG 2019).

2 A M OT I O N - B A S E D F E AT U R E F O R
E V E N T- B A S E D PAT T E R N
R E C O G N I T I O N

This chapter introduces an event-based luminance-free feature from the
output of asynchronous event-based neuromorphic retinas. The feature con-
sists in mapping the distribution of the optical flow along the contours of the
moving objects in the visual scene into a matrix. Asynchronous event-based
neuromorphic retinas are composed of autonomous pixels, each of them
asynchronously generating ”spiking” events that encode relative changes in
pixels’ illumination at high temporal resolutions. The optical flow is com-
puted at each event, and is integrated locally or globally in a speed and
direction coordinate frame based grid, using speed-tuned temporal kernels.
The latter ensures that the resulting feature equitably represents the distribu-
tion of the normal motion along the current moving edges, whatever their
respective dynamics. The usefulness and the generality of the proposed
feature are demonstrated in pattern recognition applications: local corner
detection and global gesture recognition.

2.1 introduction

In computer vision, a feature is a more or less compact representation of
visual information that is relevant to solve a task related to a given applica-
tion (see [32, 33, 34, 35, 36, 37, 38]). Building a feature consists in encoding
information contained in the visual scene (global approach) or in a neigh-
borhood of a point (local approach). It can represent static information (e.g.
shape of an object, contour, etc.), dynamic information (e.g. speed and direc-
tion at the point, dynamic deformations, etc.) or both simultaneously.

We propose a motion-based feature computed on visual information pro-
vided by asynchronous image sensors known as neuromorphic retinas (see
[39, 40]). These cameras provide visual information as asynchronous event-
based streams while conventional cameras output it as synchronous frame-
based streams. The ATIS ("Asynchronous Time-based Image Sensor", [41,
40]), one of the neuromorphic visual sensors used in this work, is a time-
domain encoding image sensor with QVGA resolution. It contains an array
of fully autonomous pixels that combine an illuminance change detector
circuit, associated to the PD1 photodiode, see Fig. 5.a) and a conditional ex-
posure measurement block, associated to the PD2 photodiode. The change
detector individually and asynchronously initiates the measurement of an
exposure/gray scale value only if a brightness change of a certain magni-
tude has been detected in the field-of-view of the respective pixel, as shown
in the functional diagram of the ATIS pixel in Fig. 5.b and in Fig. 6. The
exposure measurement circuit encodes the absolute instantaneous pixel illu-

13

14 a motion-based feature for event-based pattern recognition

N
O
T

F
O
R

D
I
S
T
R
I
B
U
T
I
O
N

J
I
N
S
T
_
0
5
0
P
_
1
1
1
1

v
1

! 7 !

3.3 The A T IS sensor

Besides limited temporal resolution, data redundancy is another major drawback of

conventional frame-based image sensors where each frame carries the information from all

pixels, regardless of whether or not this information has changed since the last frame had been

acquired. This approach obviously results, depending on the dynamic contents of the scene, in a

more or less high degree of redundancy in the recorded image data, unnecessarily inflating data

rate and volume. The adverse effects of this data redundancy, common to all frame-based image

acquisition techniques, can be tackled in several different ways. The biggest conceivable gain

however is achieved by simply not recording the redundant data in the first place, thus reducing

energy, bandwidth/memory requirements, and computing power in data acquisition,

transmission and processing.

Again biology is leading the way to a more efficient style of image acquisition. In addition

to a 3-layer model of the Magno-cellular pathway like in the DVS, a simplified functional

Parvo-cellular pathway model is built into the pixel circuit. ATIS (Asynchronous, Time-based

Image Sensor) is the first image and vision sensor that combines several functionalities of the

biological "where" and "what" systems with multiple bio-inspired approaches such as event-

based time-domain imaging, temporal contrast dynamic vision and asynchronous, event-based

information encoding and data communication [27]-[29].

F ig. 3 Functional diagram of an AT"#$%&'()*$+,-$./%(0$-1$20/3456-3-70$80%&9(:$(;(3.0<$(34-=&3>$4523>($

and brightness information, are generated and transmitted individually by each pixel in the imaging array.

The sensor is based on an array of fully autonomous pixels that combine a change detector
and a conditional exposure measurement device. The change detector individually and

asynchronously initiates the measurement of a new exposure/grayscale value only if ! and

immediately after ! a brightness change of a certain magnitude has been detected in the field-of-

view of the respective pixel. The exposure measurement circuit in each pixel encodes the

absolute instantaneous pixel illuminance into the timing of asynchronous spike pulses, more

precisely into inter-spike intervals (Fig. 3). This principle, sometimes referred to as

asynchronous pulse-width-modulation (PWM) imaging [32], is based on direct photocurrent

integration and employs a newly developed time-domain correlated double sampling technique

for noise and offset suppression [33]. The pixel does not rely on external timing signals and

autonomously requests access to an asynchronous and arbitrated output channel only when it

(a) (b)

(c)

Figure 5: ATIS, Asynchronous Time-based Image Sensor: (a) The ATIS and its
pixel array, made of 304x240 pixels (QVGA). PD1 is the change detec-
tor, PD2 is the grayscale measurement unit. (b) When a contrast change
occurs in the visual scene, the ATIS outputs a change event (ON or OFF)
and a grayscale event. (c) The spatio-temporal space of imaging events:
static objects and scene background are acquired first. Then, dynamic ob-
jects trigger pixel-individual, asynchronous gray-level events after each
change. Frames are absent from this acquisition process. Samples of gen-
erated images from the presented spatio-temporal space are shown in the
upper part of the figure.

minance into the timing of asynchronous event pulses, more precisely into
inter-event intervals. The DVS ("Dynamic Visual Sensor", [42, 43]), another
neuromorphic camera used in this work, works in a similar manner but only
the illuminance change detector is implemented and retina’s spatial resolu-
tion is limited to 128× 128 pixels.

Despite the recent introduction of neuromorphic cameras, numerous ap-
plications have already emerged in robotics (see [45, 46, 47, 48, 49, 50]), shape
tracking (see [51, 52, 24]), stereovision (cf. [53, 54, 55, 56]), corner detection
([57]) or shape recognition (see [58, 59, 60, 61, 62]). This strong interest in
such a sensor is essentially due to its ability to provide visual information as
a high temporal resolution, luminance-free and non-redundant stream. This
makes it a fitting for high-speed applications (e.g. gesture recognition as in
[63], high-speed object tracking as in [64, 65]).

2.2 motion-based feature 15

field of view
of the pixel

moving
object

luminance change
measured by the photodiode

retina's
plane

event emitted in
response to

this luminance
change

t

X

Y

p

x

y

electronic board
associated to luminance

change detector

p

coordinate system
related to event space

camera center

moving edge

from a viewed moving edge to a visual event

3D world space

Figure 6: Illustration of the luminance change measured by a neuromorphic pixel,
modeled as a cone-pixel ([44]), viewing an moving edge. p are the coor-
dinates of the center of the pixel, in the coordinate system related to the
retina’s plane. The emitted event in response to this luminance change
is represented as a black dot in the coordinate system XYt related to the
event space (in the lower-left part of the figure).

The proposed feature consists in mapping the distribution of the optical
flow along the contours of the objects in the visual scene into a matrix (see
Section 2.2). It can be computed locally or more globally according to the
targeted applications. Indeed, in the experimental evaluations, we propose
to demonstrate its usefulness and generality in various applications. It is
used to locally detect corners (see Section 2.3) or to summarize global motion
observed in a scene in order to recognize actions, here hand gestures for an
application in human-machine interaction (see Section 2.4).

2.2 motion-based feature

Visual event streams are generated asynchronously at a high temporal
resolution, essentially by moving edges. They are thus especially suitable
for visual motion flow or optical flow (OF) computation ([66, 67, 68]) along
contours of objects. In the following sections, methods and mechanisms are
proposed to estimate normal motion flows computed around events and to
map them into a matrix in order to incrementally estimate scene motion dis-
tribution (locally or globally). This matrix will be considered as a feature.
Its computation requires only the visual events provided by the change de-
tectors of the retina (associated to photodiodes PD1 in Fig. 5.a), that can be

16 a motion-based feature for event-based pattern recognition

defined as four components vectors:

e = (p, t, pol)T , (1)

where p = (x, y)T is the spatial coordinate of each event, t, its timestamp
and pol ∈ {−1, 1} is the polarity, which is equal to -1/1 when the measured
luminance decrease/increase is significant enough (see upper part of Fig.
5.b).

2.2.1 Extracting normal visual motion

We use the event-based OF computation method proposed in [66] which
is known for its robustness and its algorithmic efficiency (see [48, 57, 69]).
More bio-inspired event-based OF computation methods such as [68] and
[67] can be used but they are computationally more expensive.

A function Σe that maps to each p the time t is defined locally:

Σe :
N2 → R

p 7→ t

Applying the inverse function theorem of calculus, the vector ∇Σe mea-
sures the rate and the direction of change of time with respect to space: it is
the normal optical flow, noted v = (vx, vy)

T , such as:

∇Σe =
(
1

vx
,
1

vy

)>
This equation could be defined assuming that the surface described by the

visual events (generated by a moving edge) in the space-time reference frame
(XYt)T is continuous. This assumption is validated through a regularization
process proposed in order to locally estimate this surface as a spatiotemporal
plane (fitted directly on the local event stream). In this work the implemen-
tation proposed in [57] has been chosen because it proposes mechanisms
to automatically adapt the temporal dimension of the local neighborhood
to the edge’s dynamics, and to reject estimations of optical flow probably
wrong and due to noise. This algorithm allows us to consider a function
that associates for each valid visual event e ∈ E, a so-called visual motion
event, noted ve, such as:

E→ V

e = (p, t, pol)T 7→ ve = (p, t, v, θ)T
(2)

where (v, θ)T corresponds to the intensity (i.e. speed) and the direction of
the normal visual flow.

Remark 1 Note that the polarity of visual events is not conserved by the function
(Eq. 2). Indeed, in the applications proposed in this article, it is not useful to "mem-
orize" if the visual flow has been computed on a positive or negative event stream. If
required, the feature can be augmented in order to distinguish the distribution along
"positive contours" from the one along "negative contours".

2.2 motion-based feature 17

2.2.2 Computing and updating the feature

As we said, the feature corresponds to the estimated distribution of the
optical flow along the (local or global) contours in the visual scene. This
distribution is evaluated on a grid-based sampling in the polar reference
frame of the visual flow, such as it is subdivided into an interval set

{
vl
}
l
={

(θl, vl)T
}
l

where θl is an angle based interval and vl is an intensity based
interval. Such a discretization of the velocity subspace is consistent with
biologic observations about orientation (cf. [70, 71]) and speed (cf. [72])
selectivity in V1 cells and human psychophysical experiments about speed
discrimination as in [73, 74, 75]. Here we parametrize the grid sampling
mostly according to these biologic observations and human psychophysi-
cal experiments. However its ranges and precisions could be set in rela-
tion with targeted tasks, optimizing them according to given performance
criteria. We define the centers {θl}l of the angle intervals such as: θl ∈
[0, ..., 2π i

Nθ
, ..., 2πNθ−1Nθ

], with i ∈ [0,Nθ − 1]; 2πNθ is the length of the interval
and thus the angular precision of the grid. With Nθ = 36, we barely reach
the precision (approximatively 10◦) observed for V1 simple cells (see [70, 71]).
For the velocity intensity, we propose a non-regular speed-based sampling,
where {vl} are the centers of the speed based intervals on a logarithmic scale.
The sampling is then operated such that vl ∈ [vmin, ..., vminγi, ..., vminγNv−1],
with i ∈ [0,Nv − 1] and γ = 1+ εv (εv > 0). This discretization strategy en-
sures an a priori constant relative precision in speed estimation: ∆v

l

vl
≈ εv.

Setting εv to 0.1 will barely correspond to the relative speed-discrimination
threshold (10%) observed in human psychophysical experiments (see [73,
74, 75]). vmin has been fixed to 1pixel.s−1 and Nv to 73 in order that
vmax = vminγ

Nv−1 is close to 1000pixels.s−1, i.e. inversely close to the
temporal precision of the visual events, estimated over 1ms (cf. [60]). Mo-
tions with intensities less than vmin are then discarded: they are assumed
as belonging to static or faraway objects in the background visual scene.
Motions with intensities higher than vmax are also discarded because noise
associated to their computation can a priori be considered as too high.

Finally, the feature, noted F ∈ F, is defined as a matrix corresponding to
this grid, and associated to a spatiotemporal point (p, t)T of the retina (or to
the entire visual scene for a global approach), and computed as:

V→ F

{vj}j=1,...,N 7→ Fp,t(v
l, θl) =

∑
jwv(vj − v

l, θj − θ
l)ws(p − pj)wlt(t− tj)

(3)
where:

• wt is a temporal exponentially decay function (or kernel), inspired by
the synchrony measure of spike trains proposed in [76], such that:

wlt(t− tj) = H(t− tj) exp
(
−αvl(t− tj)

)
(4)

whereH(·) is the Heaviside step function and α parametrizes the global
decreasing dynamic. In our experiments (see Sections 2.3 and 2.4), we

18 a motion-based feature for event-based pattern recognition

fixed α to 0.8, i.e. close to 1 in order to mostly take into account the
current edges while slightly smoothing them in order to make F less
sensitive to both noise and missing data. This kernel gives indeed more
weight (or a higher probability value) to events generated by current
edges, i.e. the events with timings close to t, while also respecting an
isoprobabilistic representation of the edges whatever their dynamics,
as we will discuss below (see Section 2.2.3). Of course, other temporal
kernels (Gaussian-based in [77],...) can be envisioned, but this one has
the advantage of being causal and of leading to an incremental compu-
tation of the feature (see Eq. 7).

• ws is a spatial bivariate function, which can be defined as:

1. in a global approach, ws(p − pj) = 1, which gives an equitable
representation to the edges whatever their spatial locations, or

2. in a local approach:

ws(p − pj) =
1

2πσ2s
exp

(
−
||p − pj||2

2σ2s

)
, (5)

where σs implicitly parametrizes the spatial scale of a region of
interest or neighborhood around the spatial location p; Fp,t then
represents the local distribution of the normal velocities around
the spatiotemporal location (p, t)T ;

• wv is the multiplication of two univariate Gaussian-like functions used
to take into account potential imprecisions in the computation of the
optical flow, defined as:

wv(vj − v
l, θj − θ

l) = exp
(
−
(vj − v

l)2

V2

)
exp

(
−
(θj − θ

l)2

Θ2

)
(6)

with V2 = vjv
l in order to consider a relative speed imprecision, and

Θ set to 20◦. So, even if an estimated motion belongs to a wrong
interval because of noise, it will still contribute to the right element of
the matrix, probably close.

As we said previously, the feature can be incrementally updated at each
occurring visual motion event vi, considering that Fp,0(v

l, θl) = 1
NθNv

for all
(vl, θl)T (in order to consider, at time t = 0, an uniform distribution for the
considered velocity-space), such as:

Fp,ti(v
l, θl) = Fp,ti−1(v

l, θl) exp
(
−αvl(ti − ti−1)

)
+ws(p−pi)wv(vi−v

l, θi−θ
l)

(7)

Remark 2 The feature works like a voting matrix, i.e. each visual motion event
votes for the speed and direction interval it belongs (and its neighboring intervals
through the weighting kernel wv, Eq. 6). More visual events there are, more robust

2.2 motion-based feature 19

the feature will be. Conversely, the feature will be more sensitive to noise in low
light or low contrast situations.

In addition the feature F can be related to a probabilistic distribution while nor-
malizing it to sum up to 1, i.e. to divide it with

∑
l F(vl, θl).

In the global approach, Fp,t is independent of p; it can then be noted Ft. Note
that the feature is noted F (without sub-index) in this article when the application
context (local or global approach) is not relevant or obvious.

2.2.3 Speed-tuned vs. fixed decreasing strategies

Another important point to highlight is that the temporal decreasing func-
tion wt (Eq. 4) is related to the speed vl. Indeed, τl = 1

vl
is the time during

which an edge travels through a pixel, or, in other words, the estimated life-
time of its observation at a given location p, as already remarked in [57, 69].
Including it as decay factor in the temporal kernel (Eq. 4 and 7) provides a
more isoprobabilistic representation of the moving edges in F, i.e. depend-
ing only of their contrasts whatever their respective dynamics.

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(a) Iτ=cst with a fixed (b) Iτ= 1
v

with a speed-tuned (c) comparison
decreasing factor decreasing factor Iτ=cst − Iτ= 1

v

Figure 7: Illustration of different strategies for the exponential decay function; com-
parison between synchrony images I built applying exponential tempo-
ral kernels with a constant decreasing factor (a) and with a speed-tuned
decreasing factor (b) to an event stream (acquired from a visual scene
containing a walking person). The comparison Iτ=cst − Iτ= 1

v
(c) of both

images shows that the second strategy provides a more isoprobabilistic
representation of the edges (taking into account the observation lifetime
of the moving edges as in [57, 69]) than the first one; the high-velocity
edges (resulting from the moving and forward leg) are over-represented
and the low-velocity edges (resulting from the backward leg) are under-
represented in the left synchrony image.

In order to concretely illustrate this point, Figure 7 represents two syn-
chrony images I built integrating a visual event stream and with two differ-
ent strategies for decay factor τ (related to the speed or not), such as, for each
occurring visual event ei, I(p, ti) = I(p, ti−1) exp

(
−ti−ti−1τ

)
+ δ(||p − pi||)

20 a motion-based feature for event-based pattern recognition

where δ(·) is the Dirac function. The left image (Fig. 7.a) results from this
equation with a constant τ = cst (whatever the dynamics of the edges), and
the middle image (Fig. 7.b) with a speed-tuned τ = 1

v . As shown in the right
image (Fig. 7.c), which is the subtraction of both previous images without a
speed-tuned factor the high-velocity edges (resulting from the moving and
forward leg) are over-represented and the low-velocity edges (resulting from
the backward leg) are under-represented in the corresponding synchrony
image (Fig. 7.a). The moving edges are more equitably represented in the
second synchrony image (Fig. 7.b) with a speed-tuned temporal kernel and,
by extension, in feature F. Results in Section 2.3.2 show this equitable repre-
sentation is very important to obtain accurate results.

The proposed strategy is also consistent with biological observations. In-
deed [78] showed that the effective integration time of the computations in
direction-selective cells changes with stimulus speed; the integration time
for slow motions is longer than that for fast motions. This is modeled in
Eq. 4 as a decay factor inversely proportional to the speed intensity.

Algorithm 1 Computation of the local feature

1: for all pixel’s location p ∈ Retina do
2: Set Fp,0(v

l, θl) = 1
NθNv

for all (vl, θl)T

3: end for
4: for all event e = (p, t, pol)T do
5: Compute the current optical flow ve = (p, t, v, θ)T (see Section 2.2.1).
6: for all pi ∈ Ωp, where Ωpi is a spatial neighborhood such as || p −

pi ||< 2σs, do
7: Update Fpi,ti : Fpi,t(v

l, θl) = Fpi,ti(v
l, θl) exp

(
−αvl(t− ti)

)
+

ws(p − pi)wv(v− vl, θ− θl), where ti is the timing of the previous
update of Fpi,t (see Eq. 7)

8: end for
9: end for

10: Output Fp,t

The organization of the feature in a polar coordinate frame based grid,
greatly facilitates its computation and its update. The representation of the
visual motion information into speed and direction coordinates grants that
each speed-tuned decay factor can be associated to an element of the grid,
and not directly to the velocity associated to the occurring visual motion
event. The latter indicates only which elements in the grid have to be in-
cremented. A bio-inspired implementation can be envisioned where visual
motion events are conveyed by selective lines (each line conveying only the
motion events ve included in its associated interval, (v, θ)T ∈ (vl, θl)T) from
a neuron layer computing the optical flow to a leaky integrate-and-fire (LIF)
neural layer (cf. [79]), in which each neuron could be assimilated with an el-
ement of the feature; this selectivity of lines could result from the selectivity
of neurons in the first neuron layer.

Indeed the following model (notations are inspired by [62]) can be used to
update the membrane potential of a LIF neuron for a given input event (or
spike):

2.2 motion-based feature 21

Vmp(ti) = Vmp(ti−1) exp(−
ti − ti−1
τmp

) +wkwdyn (8)

where τmp is the membrane time constant, wk is the synaptic weight of
the k-th synapse (through which the input event or spike arrives) and wdyn
is a dynamic weight controlling a refractory period (see [79, 62] for more
details). This model is very similar to the incremental updating equation
of our feature, Eq. 7. The only things missing are the dynamic weight
wdyn and a firing threshold Vth in order to output approximatively the
value of the corresponding feature’s element as an event stream (or spike
train), and then approximatively following a rate-coding model. Here, the
refractory period should be set close to 0 (probably as a small fraction of
the integration time τl = 1

vl
), in order to allow (quasi-)simultaneous visual

events in the neighborhood (i.e. the events generate by the same contour
moving across several pixels in the neighborhood) to contribute equitably
to the neuron’s potential, i.e. the value of the corresponding element of the
feature.

For the local approach, a leaky integrate-and-fire neural layer has to be im-
plemented for each pixel; this neural layer collects the visual motion events
from the receptive field, Ωpi (defined as || p − pi ||< 2σs) defined by the
corresponding bi-variate spatial kernel (Eq. 5). This local computation is
detailed in Algorithm 1. For the global approach, only one neural layer is
required, collecting the visual motion events estimated over the entire retina.

✓

✓

v

v

(a) snapshot of
the Events Stream

(b) extracted
Optical Flow

(c) Distribution
of Optical Flow

(d) Histogram of Oriented
Optical Flow (HOOF)

Figure 8: Illustration of the global motion-based feature for event-based vision:
from the stream of events (a), the optical flow (b) is extracted. The feature
corresponds to the distribution of this optical flow (c) in a polar coordi-
nate frame, and can be reduced into a more compact and scale-invariant
representation, called Histogram of Oriented Optical Flow (d) (see Sec-
tion 2.4.1). As we can see in Figures (b) and (c), the motions generated by
the forward leg (magenta boxes), the backward leg (green boxes) and the
rest of body (red boxes) corresponds to three distinct and representative
modes in the proposed feature.

Finally, Figure 8 shows that the distribution of optical flow representation
in the global approach (Fig. 8.c) summarizes the principal motions observed
in the visual scene. This property will allow us to propose a machine learn-
ing based approach to recognize gestures in Section 2.4. In the next Section,
we will demonstrate that the local version can be also used to detect partic-

22 a motion-based feature for event-based pattern recognition

ular interest points, i.e. corners.

Remark 3 If the photodiode of the retina’s pixel is not square as for the ATIS’s one
(see [41] and Fig. 5.a), the frequency of a set of events emitted by a pixel will be
not the same when a contour moves horizontally or vertically in the pixel’s field of
view (contour’s speed and contrast are considered equal in both cases), because the
contour travels the same surface of the photodiode during different time periods. In
this case, keeping a decay factor invariant whatever the direction of the motion will
introduce a bias, favoring one direction over another, in F. To avoid this bias, a
cone-pixel with an ellipse-based basis (and not a disk-based basis as illustrated in
Figure 6) can be implicitly considered in a correcting function αθ(·) introduced in
Eq. 4 and 7 (instead of the constant smoothing parameter α); it is depending on the
direction θl of the visual motion and defined as:

αθ(θ
l) = α

√
1

1− e2 cos(θl)2
(9)

where α ∈]0, 1] and e =
√
1−

(
a
b

)2 is the eccentricity of the ellipse, with a and
b the width and the length of the photodiode, respectively. The second term of this
equation increases the decay factor in the direction of the principal axis of the ellipse,
rebalancing the representation of the moving edges in F.

2.3 application to corner detection

In conventional frame-based vision, several techniques have been pro-
posed that consist in determining points for which a measurement is lo-
cally optimal with respect to a criteria; in particular specific to corners.
This measure can be computed by a cumulative process ([80]), using a self-
similarity measure ([81]) derived from mathematical analysis (e.g. contour’s
local curvature ([82]), relying on an eigenvalue decomposition of a second-
moment matrix ([83])) or selected as the output from a machine learning
process ([84]).

In asynchronous event-based vision, [57] have proposed an algorithm
based on the intersection of constraints principle (see [85]); which considers
corners as locations where the aperture problem can be solved locally. Since
cameras have a finite aperture size, motion estimation is possible only for
directions orthogonal to edges. Fig. 9 shows the ambiguity due to the finite
aperture. This can be written as follows: if vn is the normal component of
the velocity vector to an edge at time t at a location p, then the real velocity
vector is an element of the R2 subspace spanned by the unit vector vt, tan-
gent to the edge at p. This subspace is defined as V1 = {v = vn + αvt} with
α ∈ R. For a regular edge point, α can usually not be estimated. When two
moving crossed gratings are superimposed to produce a coherent moving
pattern, the velocity can be unambiguously estimated.

The geometry-based approach proposed in [57] consists in collecting planes,
fitted directly on the event stream (as in [66] and Section 2.2.1) and consid-
ered as local observations of normal visual motions, around each visual

2.3 application to corner detection 23

v1
n

v1
t

V1 = {v1
n + ↵v1

t }↵2R

Figure 9: The aperture problem allows estimating only the normal component vn1
of the velocity of events generated by an edge. The tangential component
v1t is not recoverable. Any motion with the same component v1n induces
the same stimulus. These motions define the real plane subspace V1.
(extracted from [57])

event. This event is considered as a corner event (i.e. event generates at the
spatiotemporal location of a corner) if most of the collected planes intersect
as a straight line in (XYT)T reference frame, at a location temporally close to
the event (see Fig. 10).

Y
⇧2

⇧1

T

x

y

X

t

X

Y

v2
n

v1
n

y

x

v

V1 V2

(a) (b)

e = (p, t, pol)T

e = (p, t, pol)T

Figure 10: (a) An event e occurs at spatial location p at time t where two edges
intersect. This configuration provides sufficient constraints to estimate
the velocity v at p from the normal velocity vector v1n and v2n provided
by the two edges. The velocity subspaces V1 and V2 are derived from the
normal vectors. (b) Vectors v1n and v2n are computed by locally fitting
two planes ˝1 and ˝2 on the events forming each edge over a space-time
neighborhood. v1n and v2n are extracted from the slope of (respectively)
˝1 and ˝2 at (p, t). (extracted from [57])

2.3.1 Feature-based approaches

In the local approach, normalized Fp,t is the distribution of the normal
velocities along the contours around the spatiotemporal location (p, t)T . In
an ideal case illustrated in Figure 11, if this location corresponds to a corner
location, Fp,t is null execpt around two velocity coordinates, (vn, θn)T and

24 a motion-based feature for event-based pattern recognition

�s

(p, t)T

vn

✓n

✓m

vm

vm

vn

v

✓

✓m✓n

Fp,t

Figure 11: Illustration of the feature Fp,t (right figure) computed at the spatiotem-
poral location (p, t)T of a corner (left figure) in an ideal case.

(vm, θm)T , corresponding to both normal visual motions of the intersecting
edges.

2-maxima based decision

As we can see in this Figure, detecting corners (or junctions) will consist in
determining if at least two local maxima in Fp,t are present. We first propose
an algorithm in order to find the two first maxima i n Fp,t consisting in:

1. finding the maximum Fmax and its velocity coordinates (vmax, θmax)T

in Fp,t,

2. inhibiting (set to zeros) all values in F for which the coordinates verify
|θl − θmax| < thθ, with thθ = 20◦, and

3. finding the maximum (second maximum) F2ndmax and its coordinates
(v2ndmax, θ2ndmax)

T in Fp,t previously modified in step 2.

Finally, as an isoprobabilistic representation of the intersecting edges is
assumed, both values of maxima, Fmax and F2ndmax, should be close at
the location of a corner (the difference would be essentially due to noise).
Then we propose as selection criterion (noted C2max) to decide if a corner is
present at (p, t)T :

C2max =
F2ndmax
Fmax

> thC2max (10)

with the threshold thC2max ∈]0, 1].

Velocity-constraint based decision

A second approach consists in considering each (vl, θl)T (or noted (vlx, v
l
y)
T

in a cartesian reference frame) as a velocity constraint Vl weighted by the

2.3 application to corner detection 25

value Fp,t(v
l, θl); verifying (vl)Tv = ||vl||2, where v = (vx, vy)

T is the veloc-
ity of the corner.

A corner is present at location (p, t)T if Fp,t gives rise to a real solution to
the equation:

WAv =WB (11)

where:

• A =

v1x v1y
...

...
vlx vly
...

...
vNv
x vNv

y

, with Nv = NvNθ the size of Fp,t, i.e. the number

of constraints,

• B =

||v1||2
...

||vl||2
...

||vNv ||2

 andW = diag
(
Fp,t(v

1, θ1), . . . , Fp,t(v
l, θl), . . . , Fp,t(v

Nv , θNv)
)
.

Then the over-determined system can be solved if M = (WA)TWA has
a full rank, meaning that its two eigenvalues have to be significantly large.
This significance is determined with the selection criterion established in [86]:

Cconst =
det(M)

trace(M)
> thCconst (12)

with the threshold thCconst > 0.

Equation 11 is also solved with a least square minimization technique
and solutions are considered as valid if Cconst is greater than the threshold
thCconst usually set experimentally. Finally, a stream Sc of corner events (in-
cluding features), noted c = (p, v, t, F)T , is outputted.

Remark 4 In order to be robust to noise, weak values in Fp,t are inhibited (asso-
ciated equations are filtered out of the system): if Fp,t(v

l, θl) < thFFmax (with
thF ∈]0, 1]), then Fp,t(v

l, θl) = 0.

Remark 5 With the 2-maxima based decision approach, a corner event stream can
also be obtained; the velocities of the detected corners can be estimated in a similar
manner using only both maxima’s coordinates, without weighting them. Further-
more, while the second approach is based on a (unnatural) mathematical analysis,
the first decision method is closer to a time-based neural implementation; it could be
implemented as a coincidence detector between two (or more) events, denoting the

26 a motion-based feature for event-based pattern recognition

two-first (or more) maxima, outputted by the leaky integrate-and-fire neural layer
assimilated to the feature F (see discussion at the end of Section 2.2.3).

Note that neural networks have also been proposed in the literature ([87]) in
order to solve similar systems of linear equations that are required in the velocity-
constraint decision based method; VLSI implementations have even been proposed.

Remark 6 Note that the computation principle is quite similar to the one proposed
in [57]; most mechanisms involved (kernels, filters, selection criteria) have been
designed and set in a similar manner, in order to allow comparison in the fairest
way possible (see next Section). The methods differ from each other essentially by the
selection process of the velocity constraints. Through a time-based weighting process,
[57] considers only constraints along edges intersecting the evaluated event. The
methods proposed in this article consider all the edges in a spatial neighborhood even
if they are not perfectly intersecting themselves at the evaluated location; however
the spatial Gaussian-based weights ws(·) implicitly perform a heuristic selection
of the spatially closer edges, i.e. the most probable intersecting edges. So even if
the location of their detected corner events should be consequently less precise, they
should be close to a real corner; this is verified in the results presented in the next
Section.

2.3.2 Evaluations

In order to evaluate the detectors, we reproduced one of the experiments
proposed in [57], the one with the most quantitative evaluations. It consists
into a swinging wired 3D cube shown to a neuromorphic camera (DVS, see
Fig. 12).

164128

1

64

128

9

1
4

5

3

6

2
7

8

10

11

Figure 12: Illustration of the experiment: a swinging 3D cube is shown to a neuro-
morphic camera.

A complete accuracy evaluation, comparing the results obtained with the
geometric-based method given in [57] and the methods proposed in this
article, is provided in Fig. 13. The corner events parameters (spatial location
and velocity) and the 11 corners’ ones (obtained with the ground-truth) are
compared using different measures of errors. Each corner event is associated
to the spatially closest ground-truth corner’s trajectory.

In order to propose a fair evaluation, the thresholds used in the different
methods have been set in order to detect the same number of corner events
(1500) and other algorithms’ parameters have been set as the ones proposed
in [57] (see Remark 6). The distribution of the corner events per corner’s tra-
jectory is shown in Fig. 15.a. We can observe that the distributions using the

2.3 application to corner detection 27

0 2 4 6
0

20

40

60

80

100

a) Distance Error (pixels) c) Direction Error (°)b) Velocity Relative Error (%)

Pe
rc

en
t o

f C
or

ne
r E

ve
nt

s

0 10 20 30 40
0

20

40

60

80

100

0 50 100 150
0

20

40

60

80

100

0 50 100 150
0

20

40

60

80

100

velocity-constraint
geometric
2-maxima
velocity-constraint (w/o speed-tuning)
2-maxima (w/o speed-tuning)

Figure 13: Precision Evaluation of the Corner Detectors; the green plain curves cor-
respond to the results obtained with the algorithm proposed in [57]; the
blue dash-dotted blue curves to the velocity-constraint based decision
proposed in Section 2.3.1 and the red dashed curves to the 2-maxima
based decision proposed in the Section 2.3.1. The blue and red dot-
ted curves correspond to the respective feature-based approaches but
without speed-tuned temporal kernels. The left figure (a) represents the
spatial location errors of the corner events compared to the manually-
obtained ground-truth trajectories of the corners; the middle one (b) the
relative error about the intensity of the estimated speed and the right
one (c) its error in direction. Accuracies (X-axis for the Figures) are
given related to the considered percent (Y-axis) of the population of cor-
ner events detected with the different methods; e.g. with the method in
[57], 80% of the corner events have a distance error in corner location
less than 2pixels compared to the ground truth, see plain green curve
in Fig. a).

Clady et al. A Motion-based Feature for Event-based Vision

Clady et al. A Motion-based Feature for Event-based Vision

(a) geometric-based (b) 2-maxima (c) velocity-constraints
approach Clady et al. (2015) based decision based decision

Figure 11: Snapshots of the results obtained for the 3 compared detectors, projecting in a frame the visual
events (black dots) and corner events (circles, associated to vectors representing the estimated speeds)
over two short time periods (1ms).

not (or weakly) biased by these differences in distributions.357
358

Furthermore, we can observe that the detectors proposed in this article are influenced by the359
quantification of the grid; especially in the Fig. 10.c representing the angular precision of the estimated360
speed direction. Indeed a lot of corner events has a direction-related precision close to 5, the half of the361
direction-related interval length. The velocity-constrainst based decision method is less clearly influenced362
because it takes into account more elements in the feature (not only the elements with the maximal values,363
but too their neighboring elements) to estimate the speed.364

Finally, if we consider that a corner event detection is valid if the distance error is less than 3pixels,365
the geometric-based method generates only 2% of false alarms (with a median velocity error around 10%366
and a median direction error around 3 for the positive detections), while this rate rises to 8% and to 18%367
for the velocity-constraint decision and 2-maxima decision based methods, respectively (with a median368
velocity error around 10% and a median direction error around 8, for both).369

370

Then we have demonstrated that the proposed feature can be used (in its local approach) to detect corners371
in event streams. Even if the detectors are slightly less precise and more sensitive to the quality of the event372
streams than the other method proposed in the literature, our feature-based approaches are however more373
efficient in terms of memory and computation loads.374

Indeed the method in Clady et al. (2015) requires to memorize the stream of the visual motion events375
(see Eq. 2) and spatiotemporal extrapolations of them (called ”normal events”) and operates quite complex376
computations between them. In the approach presented in this article, the visual motion events are377

Frontiers in Neuromorphic Engineering 16

Figure 11: Snapshots of the results obtained for the 3 compared detectors, projecting in a frame the visual
events (black dots) and corner events (circles, associated to vectors representing the estimated speeds)
over two short time periods (1ms).

not (or weakly) biased by these differences in distributions.357
358

Frontiers in Neuromorphic Engineering 16

Figure 14: Snapshots of the results obtained for the 3 compared detectors, project-
ing in a frame the visual events (black dots) and corner events (circles,
associated to vectors representing the estimated speeds) over two short
time periods (1ms).

geometric-based and the 2-maxima decision based methods are closely sim-
ilar. However the one obtained with the velocity-constraint decision based
method is unbalanced, with a great number (close to the third of the corner
events) of detections around a particular corner, corner number 5. This can

28 a motion-based feature for event-based pattern recognition

be explained by the fact that the proposed method is less spatially precise
than the geometric-based one (cf. the curves in Fig. 13.a and Remark 6)
and, as we can see in Fig. 14, the edges around this corner generated more
events than the others because they are generated by "clean" intersecting
edges, see Fig. 12, and then verifying well the ideal conditions for the opti-
cal flow estimation, and because it is a X-junction. It is not the case for the
corners number 1, 7 and 11, for example; the high speed of the cube (close
to 500pix.s−1, i.e. inversely close to the precision of the event timings) and
their badly shaped structures (they correspond to connections between the
different wires constituting the cube) make their detection very hard due to
the local bad quality of the event streams (in particular, there are numerous
missing events as we can see in Fig. 15).

Remark 7 Note that accuracy results in Fig. 13 concern median evaluations over
the 11 ground-truth corners. Each corner is associated to the spatially closest
ground-truth corner’s trajectory. Each set of corner events (associated to a ground-
truth corner) is sorted according to one of the evaluation criteria (type of errors).
The Y%-most accurate corner events are then selected. Finally, the accuracy median
value for this evaluation criterion is computed over all ground-truth’s corners. So
these evaluations are a priori not (or weakly) biased by these differences in distribu-
tions.

1 2 3 4 5 6 7 8 9 10 11
0

50

100

150

200

250

300

350

400

450

500
2-maxima
velocity-constraint
geometric

164128

1

64

128

9

1
4

5

3

6

2
7

8

10

11

1 2 3 4 5 6 7 8 9 10 11
0

50

100

150

200

250

300

350

400

450

500
2-maxima
2-maxima (w/o speed-tuning)
velocity-constraint
velocity-constraint (w/o speed-tuning)

(a) Comparison between the (b) Comparison with or without (w/o)
three evaluated detectors speed-tuned temporal kernels

Figure 15: Distributions of the detected event corners related to the labelled cor-
ners.

We can observe that the detectors proposed in this article are influenced
by the quantification of the grid; especially in the Fig. 13.c representing the
angular precision of the estimated speed direction. Indeed a lot of corner
events have a direction-related precision close to 5◦, the half of the direction-
related interval length. The velocity-constrainst based decision method is
less clearly influenced because it takes into account more elements in the
feature (not only the elements with the maximal values, but also their neigh-
boring elements) to estimate the speed.

In addition, Fig. 15.b shows the detections distribution for both feature-
based methods, with or without speed-tuned temporal kernels. In the ap-
proaches without speed-tuning, the temporal decreasing factor τ has been

2.3 application to corner detection 29

fixed as τ = 1
vmean

, where vmean is the mean velocity computed over all cor-
ners and the stream duration (150ms). Without speed-tuning, some corners
are not or not often detected, in particular corners number 6 and 8. They
correspond to X-junctions between two intersecting edges with quite differ-
ent dynamics, because generated by front and back wires. Furthermore, the
accuracy performances for the approaches without speed-tuned temporal
kernels are significantly lower than the ones with speed-tuned kernels, as
shown in Fig. 13.

Finally, if we consider that a corner event detection is valid if the distance
error is less than 3pixels, the geometric-based method generates only 2%
of false alarms (with a median velocity error around 10% and a median di-
rection error around 3◦ for the positive detections), while this rate rises to
8% and to 18% for the velocity-constraint decision and 2-maxima decision
based methods, respectively (with a median velocity error around 10% and
a median direction error around 8◦, for both).

We have demonstrated that the proposed feature can be used (in its lo-
cal approach) to detect corners in event streams. Even if the detectors are
slightly less precise and more sensitive to the quality of the event streams
than the other method proposed in the literature, our feature-based ap-
proaches are more efficient in terms of memory and computation loads.

Indeed the method in [57] requires to memorize the stream of the visual
motion events (see Eq. 2) and spatiotemporal extrapolations of them (called
"normal events") and operates quite complex computations between them.
In the approach presented in this article, the visual motion events are in-
tegrated directly in the neighboring features, and corner detection related
computations are operated only using the feature at the spatiotemporal loca-
tion of the current event. We have measured important differences in terms
of computation time between their different implementations; e.g. for the
event stream used for the above evaluations, the feature-based approaches
are approximatively 10 times faster. Table 1 presents the distribution of
mean computation times obtained with the different approaches and over
10 repetitions (for 1500 detections). But as the method in [57] has been only
implemented on Matlab (Matlab2015b), they should be taken with caution;
it is indeed known that memory can be poorly managed on Matlab. Measur-
ing the computation time without code lines dedicated to memory manage-
ment (which is a crucial part of the method in [57]), the gain is still around
40%. While the geometric-based method is only envisioned in [57] for a
real time implementation on massively parallel computers such as the SpiN-
Naker board (see [88, 61]), the feature-based approaches run in real-time on
a standard computer (in C++ on a Intel Core i7-4790K @ 4GHz, using only
one core and without any optimization such as integer arithmetic instead of
floating point based computations, e.g. [89, 90]) for weakly complex visual
scenes such as the one presented in this study.

Beyond this operational asset, the greatest strength of the proposed feature-
based approaches lies in fact that they lead to a solution of the corner detec-
tion issue on event streams based on classical event-based neural network
models (leaky integrate-and-fire neural network, coincidence detectors, etc.)

30 a motion-based feature for event-based pattern recognition

Methods Total CT % of CT % of CT % of CT
OF estimation feature computation corner detection

velocity-constraint 76s. 16% 83% 1%
2-maxima 75s. 16% 83% 1%
geometric 828s. 1% - 99%
geometric 132s. 9% - 91%

(w/o memory management)

Table 1: Distribution of mean computation times (CT) with the different ap-
proaches (estimated on Matlab2015b).

as it is highlighted in Section 2.2.3 and Remark 5.

2.4 application to gesture recognition

Human movement analysis is an area of study that has been quickly ex-
panding since the 1990’s (see [91, 92, 93]). The evolution and miniaturization
of both computers and motion capturing sensors have made motion analysis
possible in a growing set of environments. They have enabled numerous ap-
plications in robotics, control, surveillance, medical purposes ([94]) or even
in video-games with the Microsoft’s Kinect ([95]). However, the available
technologies and methods still present numerous limitations, discouraging
their use in embedded systems. Conventional time-sampled acquisition is
very problematic when implemented in mobile devices because the embed-
ded cameras usually operate at a frame-rate of 30 to 60 Hz: normal speed
gesture movements can not be properly captured. Increasing the frame rate
would result in the overload of the recognition algorithm, only displacing the
bottleneck from acquisition to post-processing. Furthermore, conventional
cameras and infrared-based methods are perturbed by dynamic lighting and
infra-red radiations emitted by the sun (cf. [96]). Because they both require
light-controlled environments, those technologies are unsuitable for outdoor
use.

Asynchronous event-based sensing technology is expected to overcome
several limitations encountered by state-of-the-art gesture recognition sys-
tems, in particular for battery-powered, mobile devices. These vision sen-
sors, due to their near continuous-time operation, allow capturing the com-
plete and true dynamics of human motion during the whole gesture dura-
tion. Due to the pixel-individual style of acquisition and pre-processing of
the visual information, and in contrast to practically all existing technolo-
gies, they will be also able to support device operation under uncontrolled
lighting conditions, particularly in outdoor scenarios (cf. [97]). Native re-
dundancy suppression performed in event-based sensing and processing
will ensure that computation can be performed in real time, while at the
same time saving energy, decreasing system complexity.

Gesture recognition using neuromorphic camera has already been inves-
tigated by [63]. A stereo pair of DVS allows them to compute disparity in
order to cluster the hand. Then, they use a tracking algorithm to extract

2.4 application to gesture recognition 31

the 2D trajectory of the movement. Finally the trajectory is sampled into
directions, and the obtained sequence of directions is fed to a HMM classi-
fier. This approach uses event-based information only during the first step
(extraction of the location of the hand). In addition, with this type of multi-
steps architecture, a failure in a step could result in the failure of the whole
system.

Here we propose to demonstrate that our feature can be used to detect
and recognize more directly gestures. Hoof-like features (see Section 2.4.1)
are derived from the feature matrix and provided to a classification archi-
tecture that performs simultaneously detection and recognition. It is based
on hybrid generative/discriminative classifiers ([98]) in order to associate at
each feature its probabilities to belong to the considered (hand) gestures or
not, and these probabilities are integrated over time through a network of
Bayes filters ([99]).

2.4.1 A more compact and invariant representation

In order to reduce the dimensionality of the feature (it is often required
in machine learning, in order to address the "curse of dimensionality" issue)
and to provide (global speed- and) scale-invariance property to the gesture
representation, F can be transformed into a more compact representation,
noted h (hp,t or ht, in local or global approaches, respectively) and named
hoof-like in reference to the Histogram of Oriented Optical Flow (HOOF)
introduced by [100] in frame-based vision. This transformation consists in
summing the intensities of the optical flow vectors with respect to their di-
rections.

From the feature F, hp,t =
[
hp,t;1,, hp,t;Nθ

]T can be easily obtained:

hp,t;i =
∑
k

vkFp,t(v
k, θi) (13)

In the global approach, normalization (to sum to 1) makes the hoof-like
feature globally speed- and scale-invariant. Figure 8.d represents the his-
togram of oriented optical flows computed globally on an event stream cap-
turing a walking human (Fig. 8.a).

2.4.2 Classification Architecture

We propose a classification architecture where the problem is framed as
a Bayes filter, that is estimating the probabilities of gestures recursively
over time using incoming measurements, given as the hoof-like features
ht0:tk ∈ H computed globally from every visual events [e0, ek].

Then we note the state gi ∈ G, the gesture (numerated i, i ∈ [1, K]) that the
user is currently performing. A state g0 is added in G, in order to consider
the not-considered gestures or the instants while the user is not performing
a hand gesture.

32 a motion-based feature for event-based pattern recognition

The camera observes the user’s action and at each occurring feature esti-
mates a distribution over the current state gitk :

p(gitk | ht0:tk) (14)

where htk ∈ H is the observation of the gesture occurring at time tk.

To estimate this probability, a time update and a measurement update are
performed alternately. The time update updates the belief that the user is
performing a specific gesture given previous information:

p(gitk | ht0:tk−1) =
∑

g
j
k−1∈G

p(gitk | g
j
tk−1

)p(gjtk−1 | ht0:tk−1) (15)

The time update includes a transition probability from the previous state
to the current state. As no-contextual information is available here, we as-
sume that an user is likely to perform the same gesture, and at each times-
tamp has a large probability of transitioning to the same state:

p(gitk | g
j
tk−1

) =

1
|G|

+
|G|−1
|G|

exp
(
−tk−tk−1τg

)
if i = j

1
|G|

− 1
|G|

exp
(
−tk−tk−1τg

)
otherwise

(16)

with τg set to 150ms, less than the half duration of shorter gestures. This
assumption means that the gesture’s certainty slowly decays over time, in
the absence of corroborating information, converging to a uniform distribu-
tion (even if no event is observed).

The measurements update combines the previous belief with the newest
observation to update each belief state, such as:

p(gitk | ht0:tk) =
p(htk |g

i
tk

)p(gitk
|ht0:tk−1)

p(htk |ht0:tk−1)

∝ p(htk | gitk)p(gitk | ht0:tk−1)
(17)

In order to estimate p(htk | gitk), we propose a machine learning based
approach to compute and select generative models for gesture. It is decom-
posed into two steps:

• For the first step, we collect hoof-like features computed while the
users (included in the training database, see Section 2.4.3) performed
a gesture gi, i ∈ [1, K]. Then a k-means algorithm is applied on them
in order to compute N candidate models, noted mg

i
.

• The second step consists in selecting from these candidate models, the
ones that are the most discriminative against hoof-like features col-
lected from the rest of the training event streams; these last features
have been computed during other considered gestures (gj with i 6= j)
or during other period times when users were not performing gestures.
This selection is processed through a discrete Adaboost classifier.

2.4 application to gesture recognition 33

weak classifier
based model

p(gtk
| ht0:tk

)

hoof- like feature
computation

htkek

gesture models

gi

gK

g1

p(htk
| gtk

)
gi

gK

g1

g0

Bayes filter

Figure 16: Gesture Recognition Architecture: for each occurring hoof-like feature
htk , the distribution of probabilities noted p(htk | gtk), is estimated
comparing the features to models computed and selected through an
Adaboost-based learning process. Then the probabilities of gestures,
noted p(gtk | ht0:tk−1), are estimated recursively over time.

Adaboost ([101]) is an iterative algorithm that finds, from a feature set,
some weak but discriminative classification functions and combines them in
a strong classification function:

B =

 1,
S∑
s=1

λsbs > 1
2

S∑
s=1

λs,

−1, otherwise,
(18)

where B and b are the strong and weak classification functions, respec-
tively, and λ is a weight coefficient for each b. T is the threshold of the
strong classifier B. The principle of the Adaboost algorithm is to select, at
each iteration, a new weak classifier in favor of the instances (or features)
misclassified by previous classifiers, through a weighting process attribut-
ing more influence to misclassified instances.

Note that a threshold value, noted thB, can be defined (such as the con-

dition in Eq. 18 can be written: 2
S∑
s=1
λs

S∑
s=1

λsbs > thB) in order to optimize

a particular classification performance. During the learning step, its default
value is 1; this means a classification frontier at the middle of the margin
(see [102]). Increasing or reducing its value correspond to moving the fron-
tier closer or further to the positive class, respectively.

In literature, discriminative training of generative models, as we propose
here, has been shown as efficient learning methods in numerous applications
as object or human detection ([103, 104, 105]), face or character recognition
([106, 107]) or for medical purposes ([108, 109]). The proposed classifier
based on the training and the selection of generative models in a discrimi-
native way, combines indeed the main characteristics of discriminative and

34 a motion-based feature for event-based pattern recognition

generative approaches: discriminative power and generalization ability, re-
spectively. The latter is in particular very important in our application, when
a weak amount of labelled training data is available, see Section 2.4.3.

Following the framework described in [110], we propose to design weak
classifiers as generative ones, associated to each candidate models mg

i

s (s ∈
[1,N]):

bis =

 1, if f(h,mg
i

s) = exp
(
−
d(h,mg

i

s)2

θ
gi
s

)
> 1
2

−1, otherwise,
(19)

where d(·, ·) is the Euclidean distance and θg
i

s parametrizes the likelihood
function f and is computed at each iteration of the algorithm through a
maximum-likelihood estimation (taking into account the weights attributed
to features).

During training, Adaboost based algorithm tends to select iteratively the
most discriminative and complementary models for each gesture. We limit
the number of selected models, such as the relative difference between F-measure
(computed on training database, see Section 2.4.3) obtained at the corre-
sponding iteration is superior or equal to 95% of its maximum (obtained
with a greater number of iterations of Adaboost algorithm). Let us remind
that F-measure is defined as 2 × precision×recall

precision+recall . Optimizing it means also
to determine a number of models for which an acceptable compromise be-
tween precision (the ratio of positive detections to instances belonging to per-
formed gestures) and recall (the ratio of positive detections to all instances
detected as belonging to gestures) is reached.

The probability p(htk | gitk) is then estimated as proportional to a mea-
sure (∈ [0, 1]) operated between the hoof-like feature and the set of selected
models (applying a sigmoidal function to the output of the strong classifier):

p(htk | g
i
tk
) ∝ L(htk , g

i) =
1

1+ exp

 2
Si∑
s=1
λis

Si∑
s=1

λisb
i
s − th

i
B

(20)

with i ∈ [1, K] and thiB is the threshold obtained optimizing the F-measure.
The probability associated to not-considered gesture (or no-gesture), noted
g0, is then defined as:

p(htk | g
0
tk
) ∝ 1− maxi∈[1,K]

(
L(htk , g

i)
)

(21)

Figure 16 presents the obtained classification architecture. Finally a ges-
ture’s class Gtk at each time is attributed from the distribution of probabili-
ties, defined as:

Gtk = argmaxi∈[0,K]
(
p(gitk | ht0:tk)

)
(22)

2.4 application to gesture recognition 35

Remark 8 Even if our implementation is based on a learning process not directly
related to neural approaches (essentially due to the limited size of the database), we
can observe that the resulting classification architecture could be fully implemented
in an event-based framework. Through a rate-coding model, hoof-like features could
be computed and transmitted from the leaky integrate-and-fire neural network, corre-
sponding to the feature computation, as evoked in Section 2.2.3, to neural networks
performing their comparison with gesture models (considering maybe another dis-
tance than the Euclidean one used here) and outputting positive events when they
match; these positive events corresponding to the weak classifier responses (bis). The
coefficients λis would be then assimilated to synaptic weights. The other operations,
in particular involved in Bayes filters, would correspond to feedback lines and basic
mathematical operations that can be modeled using precise timing and event-based
paradigms as demonstrated in [111].

2.4.3 Results

Experimental Protocol

The protocol assumes that the users performed gestures in front of the
camera. Event streams (using the ATIS camera) have been collected with 9

users (young and middle-aged people working in the laboratory). All users
are right-handed but the database could be extended to left-handed users by
mirroring the sequences horizontally.

(a) Example of a hand gesture (b) ATIS camera
performed in front of the camera embedded on a smartphone

Figure 17: Illustration of the targeted human-machine interaction.

The hand is moving at a distance around 30cm from the camera, approx-
imatively. Note that this distance has been determined to ensure that the
hand is fully viewed by the camera (see Figure 17.a) considering the current
optic lens (this distance should be reduced when a wider-angle lens will be
implemented). Each gesture is repeated five times by each user, varying the
hand speed.

Six gestures have been defined and correspond to a dictionary of coarse
gestures; the gesture is defined by the global motion of the hand (hand mov-
ing to the left, to the right, upward, downward, opening or closing). These

36 a motion-based feature for event-based pattern recognition

gestures could match with the main controls we could intend to execute
interacting with a smartphone or a tablet (navigating in a menu or a list, se-
lecting/unselecting an object or an application), i.e. the targeted application
(see Fig. 17.b). Furthermore they constitute a dictionary for more complex
gestures, successively combining these movements. In Fig. 18, an iconic
representation of these coarse gestures is presented in the second column.

The training database is composed of the event streams collected with five
users and the test database with the four other ones. During the evaluations
(see next Section), a cross-validation is performed ten times (presented eval-
uations are the obtained mean values), putting randomly the users in the
training or test databases. 30, 000 hoof-like features, computed on the train-
ing streams, are collected randomly and equitably in the time periods when
gestures are performed (including the not-considered gestures or no gesture
class) to train the Adaboost classifiers with a one-vs.-all strategy. An equal
quantity is again randomly selected for the F-measure based optimization
process and the selection of the number of models. 600 candidate models
per gesture have been computed using k-means algorithm. The character-
istics of the hoof-like features are the same as described in Section 2.2.2
(Nθ = 36, etc).

A gesture is considered as detected when the duration of a time period
with classified gestures (Gtk 6= 0 in Eq. 22) is over 300ms. This detection is
counted as positive if this time period overlaps the manually labelled ground
truth (with an overlap ratio superior to 0.5) .

Evaluations

Figure 18 represents the considered gestures and the models selected by
Adaboost during a learning process (see Section 2.4.2). We can observe that
the number of selected models is relatively weak (3 or 4). This means that the
hoof-like features are able to represent well the gestures despite their (speed-
and user-related) variability, mostly thanks to its speed- and scale-invariance
property.

Another observation concerns the "shape" of the feature models. For most
of them, they match well to the iconic representation of the corresponding
motion; for example, for the motions to the left and to the right, most speed
vectors are oriented to these respective directions, etc. However, some singu-
larities have to be explained considering not only the global motion but also
the directions of the principal contours of the human parts (hand, finger
and arm) involved in the hand movement. For the opening hand motion,
models obtained at iterations 1 and 2 highlight the motion of the thumb,
for which the moving contours are prevalent in the feature. For the down-
ward motion, the contours of the arm are too prevalent (see models obtained
at iterations 2 and 3) because the camera viewed the user’s bust (see Fig. 17).

In terms of detection performance, we obtained a mean precision of 91%
and a mean recall of 83% (F-measure = 0.85) which confirm the great dis-
crimination power of the proposed feature. Note that the F-measures ob-
tained during the optimization (to determine thB and the number of models)

2.4 application to gesture recognition 37
Clady et al. A Motion-based Feature for Event-based Vision

Gesture Iconic Model at Model at Model at Model at
Type Representation Iteration 1 Iteration 2 Iteration 3 Iteration 4

Upward

Downward

To Right

To Left

Open

Close

Figure 15: Iconic representations (second column) of the gestures (first column) and corresponding
models selected by the Adaboost-based machine learning process.

The training database is composed of the event streams collected with 5 users and the test database with534
the four other ones.535

During the evaluations (see next Section), a cross-validation is performed ten times (presented536
evaluations are the obtained mean values), putting randomly the users in the training or test databases.537
30, 000 hoof-like features, computed on the training streams, are collected randomly and equitably in the538
time periods when gestures are performed (including the not-considered gestures or no gesture class) to539
train the Adaboost classifiers with a one-vs.-all strategy. An equal quantity is again randomly selected540
for the F-measure based optimization process and the selection of the number of models. 600 candidate541
models per gesture have been computed using k-means algorithm. The characteristics of the hoof-like542
features are the same as described in Section 3.2 (N✓ = 36, etc).543

A gesture is considered as detected when the duration of a time period with classified gestures (Gtk 6= 0544
in Eq. 21) is over 300ms. This detection is counted as positive if this time period is overlapping the545
manually labelled ground truth (with an overlap ratio superior to 0.5) .546

5.2.2 Evaluations The Figure 15 represents the considered gestures and the models selected by547
Adaboost during a learning process (see Section 5.1). We can observe that the number of selected models548
is relatively weak (3 or 4). This means that the hoof-like features are able to represent well the gestures549
despite their (speed- and user-related) variability, mostly thanks to its speed- and scale-invariance property.550

Another observation concerns the ”shape” of the feature models. For most of them, they match well to551
the iconic representation of the corresponding motion; for example, for the motions to the left and to the552

Frontiers in Neuromorphic Engineering 23

Figure 18: Iconic representations (second column) of the gestures (first column)
and corresponding models selected by the Adaboost-based machine
learning process.

are around 0.75. The greater value obtained at the final output highlights the
filtering action of the Bayes filters.

Figure 19: Confusion matrix (expressed in percent) showing the recognized ges-
tures (columns) related to the performed gestures (lines), among the
positive detections.

Finally the confusion matrix given in Fig. 19 shows us the recognized
gestures among the positive detections. The downward and closing hand
gestures are obviously a little confused because the similarity of the hand’s

38 a motion-based feature for event-based pattern recognition

and the fingers’ motions, respectively. The confusion of other gestures with
the opening hand is probably due to the fact that the gesture is hard to
detect, probably because the larger proportion of the movement involved
the other fingers than the thumb and their moving contours generated few
visual events (because in folded positions; the finger-skin vs. palm-skin con-
trast changes are weakly captured, see Remark 2). Indeed, in order to op-
timize the F-measure, the proposed process tends to select a low threshold
compared to others (3 or 4 times lower); this means that classification fron-
tier defined for this gesture tends to include other gestures. Hence, these
gestures are sometimes misclassified as opening hand.

In further developments, we expect to improve these performances com-
bining this global feature with locally computed ones, taking into account
their relative spatio-temporal relationships. This should help us to better
distinct the global motion of the hand and the local motions of the fingers,
and hence better detect and categorize gestures.

2.5 conclusion and discussion

In this article, we have proposed a motion-based feature for event-based
vision. It consists in encoding the local or global visual information provided
by a neuromorphic camera, in a grid-sampled map of optical flow. Collecting
optical flow (or visual motion events) computed around each visual event in
a neighborhood or in the entire retina, this map represents their current
probabilistic distribution in a speed- and direction-coordinates frame.

Two event-based pattern recognition frameworks have been developed in
order to demonstrate its usefulness for such tasks. The first one is ded-
icated to detection of specific interest points, corners. Two feature-based
approaches have been developed and evaluated. Formulated as an inter-
section of constraints issue, this fundamental task in computer vision can
be resolved operating with the information encoded in the proposed local
feature. The second one consists in a hand gesture recognition system for
human-machine interaction, in particular with mobile devices. More com-
pact and scale-invariant representations (called hoof-like features) of the mo-
tion observed in the visual scene, are extracted directly from the global ver-
sion of the proposed feature, and feed a classification architecture, based on
a discriminative learning schema of gestures’ generative models and framed
as a Bayes filter. Evaluations show that this feature has sufficient descrip-
tive power to solve such pattern recognition problems. Other extensions or
derivations of the proposed feature can be also envisioned in further devel-
opments, in order to address other pattern recognition issues. For example,
summing the elements of the feature, with respect to their directions and
without weighting them by corresponding speed, will result into another
compact form, similar to the hog (histogram of oriented gradients) feature
proposed by [112]. This feature and its derivations have been demonstrated
as very efficient for many pattern recognition tasks in frame-based vision.
To evaluate it in event-based vision would require to design event-based
and dedicated classification architecture(s).

2.5 conclusion and discussion 39

It is interesting to notice that our motion-based feature allows us to detect
features defined by "static" properties, i.e. corners, and recognize dynamic
actions, i.e. gestures, in visual scenes. All required information for both
tasks are provided by a local computation of optical flow; this information
is precisely encoded in the primary area (V1) of the visual cortex via the
selectivity of V1 neurons. We underline also that the proposed frameworks
are fully incremental and could be implemented as event-based neural net-
works, in particular thanks to speed and direction coordinates frame based
representation of the visual motion information.

Such polar coordinate frame based representations have been already in-
vestigated for computer vision; e.g. based on bank of Gabor filters, using
whether synchronous frame-based ([113, 114, 115], etc.) or asynchronous
event-based ([60]) visual information. Works about natural image statistics
([116]) showed that similar decompositions of visual information emerge nat-
urally from independent component analysis applied on patches collected
on natural images. Recently, a work in [117] encoding more directly local
event streams as local spatiotemporal surfaces ([7]), showed that an unsu-
pervised learning process applied on a relatively large database acquired
with a neuromorphic camera, leads to a similar result: basic and local fea-
ture extractors coding contours’ speed and direction. Moreover, other works
([118, 100, 119], etc.) in frame-based vision have shown that optical flow is a
valuable information to encode in features for pattern recognition tasks.

In addition, the work presented in this article supports the proposition
that optical flow’s speed and direction based grid is not only a powerful
manner for encoding visual information in pattern recognition tasks, but
it plays also a key role at a computational level when dealing with asyn-
chronous event-based streams. Indeed we have shown that, to compute the
distribution of optical flow along current edges, we need to take into account
their respective dynamics, in order to ensure that the moving edges are eq-
uitably represented in the feature (whatever their own dynamics). The dis-
cretization of the visual motion information into the proposed speed- and
direction-based grid allows us to incorporate directly the required speed-
tuned temporal kernels in the structure of the computational architecture
computing the feature. We have in addition proposed that this architec-
ture can be implemented as a leaky integrate-and-fire neural layer, wherein
neurons have then speed-tuned integration times; so it could be further inte-
grated as the first layer in a spiking neural network using back-propagation
based deep learning technique, as the one recently proposed by [62] wherein
LIF neurons are also used.

Finally, in the asynchronous event-based multilayer architectures proposed
recently in [117, 7], the integration times are tuned as increasing at higher
layers. In addition, in our gesture recognition architecture, we have set the
integration time in Bayes filters regarding the gesture durations, not the dy-
namics of the visual information. Further investigations could address the
following issue: when (or at what level in hierarchical models) the integra-
tion times should be tuned not regarding the dynamics of the perceived
information, but other temporal considerations or dynamics, maybe related

40 a motion-based feature for event-based pattern recognition

to a targeted task or action, or maybe related to other perceptive, learning or
memory functions.

3 E V E N T- B A S E D G E S T U R E
R E C O G N I T I O N W I T H DY N A M I C
B A C KG R O U N D S U P P R E S S I O N
U S I N G S M A R T P H O N E
C O M P U TAT I O N A L C A PA B I L I T I E S

In this chapter, we introduce a framework for dynamic gesture recognition
with background suppression operating on the output of a moving event-
based camera. The system is developed to operate in real-time using only
the computational capabilities of a mobile phone. It introduces a new devel-
opment around the concept of time-surfaces. It also presents a novel event-
based methodology to dynamically remove backgrounds that uses the high
temporal resolution properties of event-based cameras. To our knowledge,
this is the first Android event-based framework for vision-based recognition
of dynamic gestures running on a smartphone without off-board process-
ing. We assess the performance by considering several scenarios in both
indoors and outdoors, for static and dynamic conditions, in uncontrolled
lighting conditions. We also introduce a new event-based dataset for ges-
ture recognition with static and dynamic backgrounds (made publicly avail-
able). The set of gestures has been selected following a clinical trial to allow
human-machine interaction for the visually impaired and older adults. We
finally report comparisons with prior work that addressed event-based ges-
ture recognition reporting comparable results, without the use of advanced
classification techniques nor power greedy hardware.

3.1 introduction

We focuse on the problem of gesture recognition and dynamic background
suppression using the output of a neuromorphic asynchronous event-based
camera (Fig.20) connected to a mobile phone [120]. The system does not
rely on off-board resources. Event-based cameras are scene driven, and their
power consumption depends on the amount of recorded data (typically 1-
10mW). They hold the promise of low computational costs while operating
at high temporal scales. However, there has been no development of a proof
of concept using these properties in the context of edge computation. In this
chapter, we introduce a working prototype of a smartphone event-based ap-
plication. We chose the popular task of vision-based gesture recognition
and dynamic background suppression. These are good targets to make use
of the dynamic properties of event-based sensors. We chose to use a scalable
machine learning architecture relying on the concept of time-surfaces intro-
duced in [7] and extended it to operate on the limited available computa-
tional resources. The system has been designed to operate on each incoming

41

42 event-based gesture recognition with dynamic background suppression

event rather than creating frames from the output of the sensor to then send
them to a GPU.
Compared to previous event-based approaches that tackled the problem of
gesture recognition, we emphasize the importance of using the information
carried out by the timing of past events to obtain a robust low-level feature
representation to avoid binning events into frames. We also address the dif-
ficult problem of dynamic background suppression by introducing a novel
low power event-based technique operating in the temporal domain. This
technique goes beyond existing background suppression methodologies. It
uses the properties of data-driven acquisition and its high temporal reso-
lution to segment a scene by setting a relation between depth and relative
activity, thus allowing the foreground and background to be differentiated.
We also introduce a new dataset of gestures (NavGesture) recorded using an
event-based camera and available for public download. The neuromorphic
field still lacks datasets that take full advantage of the precise timing of event-
based cameras. Available datasets such as N-MNIST and N-Caltech101 [121]
are recording scenes where dynamics are artificially introduced. Even true
neuromorphic datasets such as Poker-DVS [122] or N-Cars [123] contain lim-
ited intrinsic dynamic properties that could be used for classification. We
intend to observe objects that can be classified using only their dynamic
properties (or motion) and not from their spatial distribution. As an ex-
ample, if one considers the N-Cars [123] database, most objects appear as
"flashes" that provide a snapshot of the object to be recognized. The Dvs-
Gesture dataset [13] fulfills the requirement of having dynamic properties,
however the camera is set static with the same centring for all samples with
no activity in the background. The American Sign Language dataset, ASL-
DVS [124] offers various centring and scales but aims to recognizing hand
postures and also lacks dynamic properties. The proposed dataset (NavGes-
ture) is a new step towards bridging the gap between laboratory-recorded
datasets and everyday real situations. It features a set of six dynamic ges-
tures, with heterogeneous centring and scaling, and was recorded a moving
event-based camera, both in indoor and outdoor environments.

3.1.1 Gesture Recognition on Mobile Devices

Gesture recognition on mobile devices is a quickly expanding field of re-
search that uses a variety of sensors and methods [125, 126, 127]. While
resource-constrained devices such as smartphones disallow the use of cer-
tain technologies requiring high energy consumption such as vision-based
depth (RGB-D) sensors, current mobile phones have a wide variety of built-
in sensors. Several techniques use: phone speakers [128], inertial sensors
[129, 130, 131] or proximity sensors [132, 133]. It is worth noticing that Won
et al. [134] propose to use a neuromorphic camera as a proximity sensor in-
stead of the conventional infra-red sensitive photo-diode. Other techniques
use external components such as: e-gloves [135], radio-frequency chips [136]
and even an IMU for teeth "clicks" recognition [137].
Smartphones also use standard RGB cameras, allowing vision-based recog-

3.1 introduction 43

Figure 20: A neuromorphic camera (an ATIS) (B) is plugged into a smartphone
(A) using an USB link (C), allowing mid-air gesture navigation on the
smartphone.

nition. As pointed in [138], dynamic gestures must be captured at high
frame rates in order to avoid motion blur and in some cases even missing
a gesture. However, processing high frame rates video data in real time on
a smartphone is computationally challenging if not impossible. This might
explain why most if not all of the vision-based gesture recognition methods
running on smartphones without off-board processing are only applied to
static gestures (hand poses) [139, 140]. The only vision-based dynamic ges-
ture recognition method for smartphone we found is proposed by Rao et al.
[141]. However, no proof of concept operating on a smartphone has been
developed as the system has only been simulated on a resource-capped stan-
dard computer. Furthermore vision-based methods require to segment the
hand from the background. This is often solved either by background pre-
sampling [142] or by using skin color calibration [143, 144]. We will shortly
show that this can be performed differently if one considers the high tempo-
ral resolution of event-based cameras.

3.1.2 Gesture Recognition using Event-based Cameras

Neuromorphic cameras coupled with event-based processing open new
perspectives for resource management as both computation and memory
can be allocated only to active parts of a visual scene. In the past few years

44 event-based gesture recognition with dynamic background suppression

a large number of works tackled computer vision problems using event-
based cameras while keeping in mind the necessity of avoiding at all costs
the temptation to generate frames from the sensor’s output, to cite a few:
optical flow estimation [145], high-speed tracking [146, 147, 148], object clas-
sification [149, 150, 151], 3D reconstruction [152] or pose estimation [153].
Generating images from the output of event-based cameras to take advan-
tage of decades of standard computer vision research is becoming a popular
stream of research [154, 155, 156, 157]. This has lead to the development of
pipelines that convert conventional frame-based datasets into events either
using hardware [121, 158, 159] or software [160]. These data are then often
converted back into frames in order to use frame-based techniques such as
CNNs. There is currently a need to carry out research on event-by-event pro-
cessing to take full advantage of all the properties of neuromorphic vision
sensors [161, 162]. These sensors cannot only be used to generate high frame
rates or high dynamic range images as one loses all advantages of the sparse-
ness and low computation power associated to event-based acquisition.
To our knowledge, the first gesture recognition system using a Dynamic Vi-
sion Sensors (DVS) is the Rock-Scissor-Paper game from Ahn et al. [163],
which detected the final static hand pose using event activity. Samsung has
developed several gesture recognition systems. In early experiments, they
proposed to use Leaky Integrate-and-Fire (LIF) neurons to correlate space-
time events in order to extract the trajectory of gestures, using a stereo-pair
of DVS in [164, 63]. This method is also adapted to track a finger tip using
a single DVS [165], and event activity rate is also used to discriminate fin-
ger tip movements from hand swipes. Samsung also proposed to use the
Adaptive Resonance Theory (ART) for continuous gesture recognition, first
with HMM [166], then with CNN [167]. In parallel to the trajectory extrac-
tion approaches, global motion-based features were proposed. Kohn et al.
[168] proposed a motion-based analysis of body movements using the rel-
ative event activity accumulated into 40 ms frames, while Lee et al. [169]
used pseudo optical-flow. To cope with varying speeds, Clady et al. [170]
proposed a motion-based feature that decays depending on the speed of the
optical flow. Two end-to-end neuromorphic systems for gesture recognition
have been proposed in recent years. The first one used the SpiNNaker neuro-
morphic board [171] and the second was implemented by IBM Research on
the TrueNorth neuromorphic chip [13]. However, both systems bin events
into frames at some point in order to use a CNN for classification. Along
with their implementation IBM has also released the DvsGesture dataset,
which has become widely used in the neuromorphic community. It has
been used in multiple papers: spatio-temporal filters that feed a CNN [14],
SNN [172, 173] and a PointNet adaptation [174].
Sign Language recognition has also been investigated but with a focus on
static hand postures using events-to-frame techniques [175] or a graph-based
CNN [124]. Chen et al. [162] proposed a new representation called Fixed
Length Gist Representation (FLGR), mapping events to a higher dimensional
feature. All presented methods used data from a static neuromorphic cam-
era, with no background clutter. Furthermore, centring and scaling is in
general the same except for [124]. The only work to our knowledge that ad-
dresses cluttered and dynamic backgrounds is the hand detection method

3.2 methods 45

proposed by Samsung [176]. Unfortunately, they did not release their dataset
that also include one to several subjects per clips. Also, it is worth mention-
ing that almost all presented works use at some point an events-to-frame
conversion such as temporal or index binning, pixel spike rate or global
memory surfaces. The only methods that process events in an event-based
manner are scarce: [165, 169], Clady et al. [170], SLAYER [172] and FLGR
[6].
In this work, we will consider more general scenarios offered by a moving
camera that induces numerous new issues to solve such as: a higher number
of emitted events, heterogeneous centring and scaling, unwanted shaking
and important background clutter. Eliminating the background is an im-
portant step for event by event processing. Kyung et al. [177] proposed a
background suppression method for neuromorphic cameras, but converted
events to frames. Our approach is purely event-based and drastically con-
trasts from any existing background removal algorithm as it uses only the
timing of events and it does not rely on conventional approaches such as:
code-books [178], probabilistic approaches [179], sample-based methods [180],
subspace-based techniques [181] or even deep learning [182].

3.2 methods

3.2.1 Dynamic Background Suppression

The Dynamic Background Suppression (DBS) uses the simple idea that the
closer an object is to the camera, the more events it will generate as its appar-
ent motion will be more important than a farther object. From this property
it is possible to link the relative local activity within the focal plane to depth.
A low event relative activity can be associated to the background and hence
dismissed, whereas relative high activity regions could correspond to the
foreground. Although the technique could be applied to each pixel, we will
estimate the relative activity considering portions of the focal plane that will
be divided into a grid of cells.

Let each cell c be composed of a set of pixels where activity is expressed by
Ac. For each incoming event ek = (xk, tk, pk) emitted by a pixel belonging
to a cell c, we can apply the following update of its activity Ac as:

Ac ← Ac · exp(−
tk − tc
τb

) + 1 (23)

where tk is the time-stamp of the current event ek, tc the last time c has
been updated, and τb is a decaying time-constant.

We can then compute the average activity A of a all cells. An incoming
event ek = (xk, tk, pk) belonging to c is sent to the machine learning module
only if:

Ac > max(αA,AT) (24)

46 event-based gesture recognition with dynamic background suppression

Figure 21: Operating principle of the Dynamic Background Suppression (DBS). (A)
A gesture is performed in front of the camera, which pixel array is di-
vided into cells. (B) Each cell has its own activity counter that decays
over time. (C) Only cells with their activity greater than the mean activ-
ity (black dashes) of all cells can spike.

where α is a scalar to set the aggressiveness of the filter, and AT is a thresh-
old for minimum foreground activity. The activity of a cell and the threshold
A are computed for each incoming event, which enables or disables a given
cell at the temporal resolution of incoming events. Cells with a low activity
are considered as background and are prevented from emitting events. In
principle each time a cell is updated the general mean activity has to be up-
dated. Events are timed at the µs and are orders of magnitude faster than
any conventional urban real scene dynamics. The mean activity can then
be updated at much lower temporal scales set experimentally according to
the computation power available and perhaps the situation (one can infer
acceleration from the built-in IMU). The proof of principle of the technique
is shown in Fig. 22.

3.2 methods 47

Figure 22: Denoising example of a gesture clip from the NavGesture-walk data-set.
The presented gesture is a "swipe down". Top row is the raw stream of
visual events, and the bottom row is the denoised stream, at the output
of the 3rd stage of the cascade presented here. Each snapshot from the
top row is made of 10,000 events, and bottom row contains only the
kept events of those 10,000. "ON" events are orange, "OFF" events are
black. The filtering lead to the removal of 83.8% of all events. Even after
removing this many events each gesture is still easily recognizable by
the human eye.

3.2.2 Time-surfaces as spatio-temporal descriptors

A time-surface [7] is a descriptor of the spatio-temporal neighborhood
around an incoming event ek. We define the time-context Tk(u, p) of the
event ek as a map of time differences between the time-stamp of the current
event and the time-stamps of the most recent events in its spatial neighbor-
hood. This (2R+ 1)× (2R+ 1) map is centered on ek, of spatial coordinates
xk. The time-context can be expressed as:

Tk(u, p) = {tk − t | t = max
j6k

{tj | xj = (xk +u), pj = p}} (25)

where u = [ux, uy]
T is such that ux ∈ J−R, RK and uy ∈ J−R, RK.

Finally, we obtain the time-surface Sk(u, p) associated with the event ek,
by applying a linear decay kernel of time-constant τ to the time-context Tk:

Sk(u, p) =

{
1−

Tk(u,p)
τ , if Tk(u, p) < τ

0, otherwise
(26)

Sk is a low-level representation of the local spatio-temporal neighborhood
of the event ek.

Discarding time-surfaces. A time-surface can be computed for each new
incoming event, but would generate overlapping time-surfaces and intro-
duce redundancy. As the event-based camera performs native edge extrac-
tion, we must ensure that a sufficient number of events to form a full con-
tour are taken into account. Therefore, time-surfaces must be kept only if
they contain enough information, which can be ensured using the following
heuristic:

card({(u, p), Tk(u, p) < τ}) > 2R (27)

3.2.3 Event-based Hierarchical Pattern Matching

Following the principle of using deep multiple temporal and spatial scales
introduced in HOTS [7], incoming visual events are fed to a network com-

48 event-based gesture recognition with dynamic background suppression

Figure 23: (A) A moving vertical bar is presented to the event-based camera, which
output a stream of visual events. The edges of the bar are ON (white)
and OFF (black) events. A ROI is defined around the current event (blue
square). (B) The time-stamps of visual events contained the ROI are de-
cayed using a linear kernel. (C) The resulting extracted time-surface,
that encodes both the contour orientation and the dynamic of the mo-
tion.

posed of several layers. As events flow into the network, only their polar-
ities are updated on successive "feature planes". Polarities in the network
correspond to learned patterns or elementary features at that temporal and
spatial scale. However, as time-surfaces can be discarded, the network out-
put stream contains less events than the input stream, which is an important
property that builds on the native low output of the event-based camera to
lower the computational cost.

Creating a Layer and Learning Prototypes

An iterative online clustering method is used to learn the base patterns
(hereinafter called prototypes), as it allows to process events as they are
received, in an event-based manner. A layer is composed of a set of N proto-
types, which all share the same radius R (which corresponds to the neuron’s
receptive field) and the same time-constant τ. The triplet (N,R, τ) defines
a layer. First, a set of N time-surface prototypes Ci, with i ∈ J0,N− 1K, is
created. The Ci are initialized by using random time-surfaces obtained from
the stream of events. For each incoming event ek we compute its associated
time-surface Sk of radius R and time-constant τ. Using the L2 Euclidean
distance, we compute the closest matching prototype Ci in the layer, which
we update with Sk using the following rule, improved from [7]:

Ci ← Ci +αi
Sk ·Ci
‖Sk‖ ‖Ci‖

(Sk −Ci) (28)

3.3 a new neuromorphic dataset: navgesture 49

with αi the current learning rate of Ci defined as:

αi =
1

1+Ai

where Ai is the number of time-surfaces which have already been assigned
to Ci. If a prototype Ci is poorly triggered, it is re-initialized and forced
to learn a new pattern. This prevents badly initialized prototypes to stay
unused, and helps them converge to meaningful representations.

Building the Hierarchy

One can then stack layers in a hierarchical manner, in order to form a net-
work (see Fig. 24). First, the visual stimulus is presented to the event-based
camera (Fig. 24A), which outputs a stream of visual events. A given event
em of the stream must go through all the layers before the next event em+1

is processed. At each layer (N,R, τ), if the time-context Tm of the event em
satisfies Eq. (27), the corresponding time-surface Sm is computed (see Fig.
24B). Then, the best matching prototype Cc is updated using Eq. (28) (see
Fig. 24B). At this point, the polarity pm of em is modified so that pm = c,
c being the ID of the best matching prototype. Event em is then sent to the
next layer to be processed in a similar manner. We must emphasize that the
first layer, which receives visual events from the camera does not take the po-
larity (that corresponds to the increase or decrease in contrast) into account
for the reason exposed in section ??. All visual events have their polarity p
set to zero. In the subsequent layers, however, the polarity now encodes a
pattern, and we refer to them as pattern events instead of visual events for
which the polarity corresponds to a luminance change. Pattern events are
then fed to the next layer, and processed in a similar manner. As we go
higher in the hierarchy of layers, subsequent layers combine patterns from
previous layers, thus their prototypes (and so the corresponding polarities)
encode more and more sophisticated patterns. As an illustration, the first
layer can only encode the shape and the direction of the motion. The second
layer however, because it is working with the first layer output can encode
changes of direction in the motion. Once the full hierarchy has been trained,
meaning that its time-surface prototypes have converged, the learning is dis-
abled: prototypes are no longer updated using Eq. (28).

The network can now serve as a feature extractor: the polarities of events
output by the network will be used as features for classification. Because
this algorithm is truly event-based and data-driven the computation time
directly depends on the number of events transmitted by the camera.

3.3 a new neuromorphic dataset: navgesture

As mentioned in the previous section, existing gesture and action recogni-
tion datasets are recorded using a non-moving camera set in front of a static
background [13, 124, 162, 14, 159]. In some other popular neuromorphic
datasets such as N-MNIST and N-Caltech101 [121], the event-based camera

50 event-based gesture recognition with dynamic background suppression

Figure 24: (A) A stimulus is presented in front of a neuromorphic camera, which
encodes it as a stream of event. (B) A time-surface can be extracted
from this stream. (C) This time-surface is matched against known pat-
tern, which are also time-surfaces, and that can be used as features for
classification.

is set up on a pan-tilt in front of a computer screen, hence the dynamics of
recorded objects correspond to the pan-tilt movement. The same issue arises
in N-Cars [123] because of the very short duration of each clip. Furthermore
cars are cropped, removing most of the background.
The proposed dataset offers a challenging gesture recognition task because
of its dynamic and changing backgrounds. All gestures were recorded in
selfie mode, with the users holding the camera with one hand and perform-
ing the gesture with their free hand. The fact that users where holding
the device leads to a wide variety of centring and gesture distance to the
camera. The dataset features both right-handed and left-handed users. The
users were either sitting or walking, indoors and outdoors, in uncontrolled
lighting conditions. The neuromorphic camera used is an ATIS [23] with a
lens VM-6.5-IR-CCD from Universe Optics. This choice was made in order
to facilitate the "auto"-centring by the end-users, by allowing a larger field
of view.

The NavGesture dataset has originally been designed to facilitate the use
of a smartphone by the elderly and the visually impaired. The gesture dic-
tionary has 6 gestures in order to be easily memorized. They have been
selected to be the most compact set able to operate a mobile phone. Four of
them are "sweeping" gestures: Right, Left, Up, Down. These are designed to
navigate through the items in a menu. The Home gesture, a "hello"-waving
hand, can be used to go back to the main menu, or to obtain help. Lastly, the
select gesture, executed only using fingers, closing them as a claw in front of

3.4 experiments and results 51

the device, and then reopening them, is used to select an item.
The NavGesture dataset is split into two subsets, depending on whether
users were sitting or walking: NavGesture-sit and NavGesture-walk. The
NavGesture-sit dataset features 28 subjects, 12 being visually impaired sub-
jects, with a condition ranging from 1 to 4/5 on the WHO blindness scale
and 16 being people from the laboratory. The gestures were recorded in real
use condition, with the subject sitting and holding the smartphone in one
hand while performing the gesture with their other hand. Some of the sub-
jects were shown video-clips of the gestures to perform, while others had
only an audio description of the gesture. This inferred some very notice-
able differences in the way each subject performed the proposed gestures,
in terms of hand shape, trajectory, motion and angle but also in terms of
the camera pose. Each subject performed 10 repetitions of the 6 gestures.
In a second stage, all the acquired clips were manually labelled and seg-
mented. We removed problematic clips, such as wrongly executed gestures
or gestures executed too close to the camera. The manually curated dataset
contains a total of 1, 342 clips.
In the NavGesture-walk the users walked through an urban environment,
both indoors in the laboratory, and outdoors in the nearby crowded streets
in the center of Paris. Users recorded the gestures while walking, holding
the smartphone with one hand and performing the gestures with the other.
This uncontrolled setting leads to much more variation in pose, unwanted
camera movements, dynamic backgrounds and lighting conditions. This
dataset features 10 people from the laboratory that performed 5 times each
of the 6 gestures. The dataset contains a total of 339 clips. An overview is
presented in table 2. An example of the the "Swipe Up" gesture is shown
in Fig. 22. The NavGesture dataset is publicly available at https://www.

neuromorphic-vision.com/public/downloads/navgesture/.

Dataset #users #classes #clips Camera Background Centring
DvsGesture 29 10 + 1 1,342 + 122 Static None Upper body

NavGesture-sit 28 6 1,342 Handheld Moderate Selfie, sitting
NavGesture-walk 10 6 339 Handheld Important Selfie, walking

Table 2: Characteristics of the three Gesture Datasets used in this work.

3.4 experiments and results

The first experiment on the Faces dataset focuses on extracting static prop-
erties. We show that a single layer is sufficient in this case. The second part
is focused on gesture recognition tasks. In these experiments, the dynamic
properties of gestures are paramount, and more layers allowed for better
recognition scores.

Because the neuromorphic camera detects change in contrast, these can ei-
ther be ON or OFF events depending on the contrast between the foreground
and the background. Indeed, the same moving object could generate ON
events in front of a dark background, and OFF events in front of a lighter
background. This is the reason why in all the following experiments we did
not take the ON/OFF polarity of visual events into account, as the polarity

https://www.neuromorphic-vision.com/public/downloads/navgesture/
https://www.neuromorphic-vision.com/public/downloads/navgesture/

52 event-based gesture recognition with dynamic background suppression

is context-dependent. An example of this phenomena is a moving hand in
front of a black and white stripped background, that would generate both
ON and OFF events depending on the background strip. More generally,
this shows that the polarity is context-dependant and can not be taken into
account as valuable information per se except in the case of a controlled en-
vironment and stimulus. An example of such a controlled stimulus where
the polarity can be useful is an eye-tracking task, as the pupil is darker than
the iris, which is also darker than the white of the eyeball.

For all classification tasks, the output of end-layers (larger time scale) is
integrated over time to generate a histogram of activity per feature as in [7].
This histogram is then used as a dynamic signature of the observed stimulus.
This signature is fed to a classifier, in this case a nearest neighbor. More
sophisticated classifiers could be used, but this demonstrates that extracted
features are discriminative enough for classification.

3.4.1 Static properties: Experiments on the Faces dataset

This dataset contains clips of the faces of 7 subjects. Each subject was
recorded 24 times, resulting in 168 clips. The subjects had to move their head
in a square-shaped trajectory, by following a dot on a computer screen. The
dynamic is therefore the same for all subjects, and does not carry any mean-
ingful information for the classification task. Experiments were performed
on a standard desktop computer. We performed 10-fold cross-validation
with 5 examples in the train subset, and 19 in the test subset. We used a
single-layer with N = 32 prototypes, receptive fields of radius R = 6 and τ =
5 ms, we obtained 96.6% recognition score on this dataset. By increasing the
number of prototypes to N = 64, we achieved 98.5% in average recognition
rate. We noticed that increasing τ higher than 5 ms was not beneficial and
even decreased our classification accuracy. This is because time-surfaces en-
code both static properties such as shape and dynamic properties such as
optical flow. A small τ will mainly encode static properties whereas a larger
τ will also encode dynamic properties such as pseudo optical-flow. When
we added a second layer, the recognition rate dropped. A single layer is
therefore sufficient to encode static properties such as shape. The classifica-
tion was made using a 1-nearest neighbor, and does not rely on advanced
classification techniques.
In comparison, the HOTS model in [7] performed at 79% using a three-layer
architecture, with its end-layer having N = 32 of prototypes. It must be noted
that this improvement in recognition rate also comes with a faster compu-
tation because of the reduction in the size of used time-surfaces, from size
4624 in HOTS to size 169 in our work.
Classification scores depend on the number of prototypes: the more proto-
types, the higher the recognition rate.

3.4 experiments and results 53

3.4.2 Dynamic properties: Experiments on the NavGesture datasets

In both NavGesture-sit and NavGesture-walk datasets, subjects hold the
smartphone in their hand, which results in camera movements and un-
wanted jitters that generate background activity. In the case of the NavGesture-
walk the visual background is even more present as subjects are walking
while performing the gestures. The experiments were performed on a stan-
dard desktop computer, and we used k-fold cross-validation, with k the
number of subjects.
In order to remove events generated by the background we used the Dy-
namic Background Suppression method introduced in Section 3.2.1. The
DBS uses the following parameters, set experimentally:

• τb = 300µs

• α = 2

• AT = 5

• grid size : 3× 3

Figure 22 illustrates the effect of the DBS. Table 3 reports the mean per-
centage of remaining events for each gesture after removing the background.
The DBS allows to remove around 40% of events before the feature extrac-
tion. This has a direct impact on processing time as we compute event by
event.

Gesture
Mean

number of event
Mean percentage
left after the DBS

Down 988,901 41%
Home 2,398,850 48%
Left 969,014 42%

Right 962,501 43%
Select 1,212,222 30%

Up 1,110,652 44%
Table 3: Mean percentage of events left after each the Dynamic Background Sup-

pression for each gesture class.

In our experiments we used networks composed of 1 to 3 layers. We
observed that two-layers networks perform better. Some gestures such as
"Select" or "Home" have changes in direction, which can be encoded by net-
works with two or more layers. However, we suspect that three-layers net-
works encode features that are too complex for the stimulus, resulting in less
discriminative features and a lower recognition rate.
Because events are decayed over time, the value of τ must correspond to the
dynamic of the stimulus [170]. If τ is too small, the extracted time-surface
will encode only spatial information. If τ is too large, the trail of older events
will blur the shape, encoding only direction of movement. In more extreme
cases with τ going to larger and larger values, the resulting time-surface will
carry less and less information, as all past events will have the same weight.
Of course this has also a close relation with the radius of the time-surface as

54 event-based gesture recognition with dynamic background suppression

larger radii can encode longer trails of events.
This observation leads to the fact that τ should be set in regard to the radius
R of the time-surface and the velocity v of the apparent motion in pixel per
second:

τ ≈ R
v

(29)

We observed that a first layer with a τ value in the order of 10 ms allowed
to encode both shape and direction of motion (only direction, not changes
in direction). The second and end-layer has a τ value of 100 ms, in order to
encode changes in the direction of motion.
A direct difficulty comes from the almost fish-eye field of view of the camera:
if the mobile device is not held vertically or if the gesture is a bit off-axis, it
becomes very difficult at the edges of the field of view to determine if the
motion is vertical or horizontal.
Ablation study In order to assess the benefits of the DBS in obtaining better
recognition rates, we compared the performance achieved with and without
the DBS. Results show that DBS does improve recognition rates, increasing
the score from 81.3% to 92.6% when using the NavGesture-walk dataset, as
shown in table 4.

ID Dataset
Layer 1 Layer 2

DBS Classifier Results
N R τ N R τ

E1 NavGesture-sit 8 2 10 ms 8 2 100 ms X k-NN 95.9%
E2 NavGesture-walk 8 2 10 ms 8 2 100 ms X k-NN 92.6%
E3 NavGesture-walk 8 2 10 ms 8 2 100 ms k-NN 81.3%
E4 NavGesture-walk 8 2 10 ms X k-NN 88.7%

Table 4: Summary of obtained results on the NavGesture dataset. The use of the
Dynamic Background Suppression in E2 allows to drastically improve the
recognition rate by over 10% compared to E3. Also, the addition of a
second layer is beneficial, as shown by the improvement in E2 compared
to E4

3.4.3 Experiments on the DvsGesture dataset

Amir et al. [13] released a 10-class (plus a rejection class with random
gestures) dataset of hand and arm gestures, performed by 29 subjects under
3 different lighting conditions. The camera is mounted on a stand while
the subjects stood still in front of it. This dataset has no background so the
DBS was not used. Authors split the dataset into a training set of 23 subjects
and a testing set of 6 subjects, preventing cross-validation for comparison
purposes. We used the same 2-layer network architecture as the one used
for NavGesture. The only difference is that we increased the number of pro-
totypes in the last layer because the gestures are more complex. In order to
take into account the spatial component of gestures, we split the pixel array
into sub-regions, using a 3× 3 grid. This is possible because the centring is
very similar for all clips in the dataset. Hence, the final feature is a histogram
of size 3× 3× 64 = 576. We achieved a classification accuracy of 96.59% for
the 10-class subset and 90.62% for the 10 classes plus the rejection class. One
can observe in the confusion matrix (Fig. 25) that "Hand clap”, ”Arm roll”,

3.4 experiments and results 55

”Air guitar” and ”Air drum” are the only gestures that are mistaken. These
gestures all share very similar hand movements at the same spatial location,
located in front of the torso. "Arm roll" and "Air drum" are also very similar.
Their difference lie in the fact that hands in "Arm roll" move along the same
vertical line, and we suspect that the receptive field is too small to capture
this information.

Figure 25: Confusion matrix for DvsGesture using 10 classes. Global accuracy is
96.59%. "Hand clap", "Arm roll", "Air guitar" and "Air drum" are the
only gestures that get confused. The reason might be that they generate
similar motion in the same spatial location.

When adding the rejection class, the same gestures get confused (Fig. 26).
Indeed, only one clip of "Left hand wave" gets mistaken for "Air guitar",
which is understandable as the left hand in these two classes performs the
same movement at the same location. The global accuracy decreases mostly
because of the "Hand clap" that gets misclassified more often and because
of the "Other gestures" that also are harder to classify.

One can observe in Table 5 that for the 10-class classification task our
system performs in the same range of accuracy using a k-NN as other very
elaborate systems using state-of-the-art neural networks.

It must be noted that the same time constants gave best results for both
NavGesture and DvsGesture, which shows that decay must be chosen in
accordance with the stimulus, in both case gestures. Indeed, previous works
such as HOTS [7] and HATS [123] used decay times that were three orders

56 event-based gesture recognition with dynamic background suppression

Figure 26: Introducing the rejection class "Other gestures" amplifies the mismatch
between the four precedent gestures, leading to a global accuracy of
90.62%. However, it has almost no impact on other gestures (4.2% in the
"Other gestures" row corresponds to only one clip).

of magnitude higher than the duration of the stimulus. This resulted in
time-surfaces that acted as binary frames instead of encoding the dynamics
of the scene. Furthermore, such high decay values resulted in the incapacity
of forgetting past events.

3.5 implementation on a smartphone

The proposed gesture recognition pipeline has been implemented on a
smartphone [120], a Samsung Galaxy S6 (model GM-920F), with a custom
Android application allowing easy navigation through basic smartphone
functions, such as making a call or sending a pre-defined text message (see
Fig. 27). The event-based camera was directly plugged into the micro-USB
port of the smartphone (see Fig. 20). The gesture recognition module is
implemented in native C++ using JNI to communicate with the Android
application.

The gesture recognition module consists of basic noise filtering (a refrac-
tory period followed by a spatio-temporal denoiser, known as the background
activity filter, that removes pixel electrical noise), the Dynamic Background
Suppression, a 1-layer Feature Extractor (N = 8, R = 2, τ = 10 ms,) and a

3.5 implementation on a smartphone 57

Method
DvsGesture
(10 classes)

DvsGesture
(10 classes + 1)

Amir et al. [13] CNN (avg 192ms) 91.77% (96.49%) 91.77% (94.59%)
Shrestha et al. [172] SLAYER 93.64%
Kaiser et al. [173] DECOLLE 94.18%
Ghosh et al. [14] ST filter + CNN (avg 200ms) 94.85% (95.94%)
Kaiser et al. [183] SNN eRBP 92.7%
Wang et al. [174] PointNet++ (avg 118ms) 96.34% (97.08%) 94.10% (95.32%)

This work Time-surfaces + k-NN 96.59% 90.62%
Table 5: Comparison in accuracy of state-of-the-art methods for the DvsGesture

dataset. When noted (avg) an averaging scheme was proposed to improve
the system accuracy. Our method, although using a simple k-NN classifier
performs in the same range for the 10-class classification. However, the
k-NN lacks the discriminative power to handle the rejection class on the
contrary of more sophisticated classifiers.

Figure 27: Interface of the Android application that was developped in order to
operate the phone using the proposed gestures. Right is the main menu,
left illustrates the pre-defined messages the user could send.

k-NN classifier.
We used two strategies to segment gestures, the first one is an "auto-start"
based on the global visual scene activity. This option works when users are
seated but is inadequate for walking cases. The second strategy relied on
pressing a button before a gesture to start the recording. The duration of the
recording was tuned experimentally to 2 seconds which seems to be the ex-
perimental upper bound of the duration of a gesture. This two-second batch
of events at once to the gesture recognition module, that returns the gesture
class to the Android application to be converted to an Android command.
An overview of the system is presented in Fig. 28.

To assess processing time, we ran five trials for each gesture in two dif-
ferent settings. The input event stream having a duration of 2 seconds, a
real-time processing is reached when the processing time is below 2 seconds.
In the first scenario, the smartphone was set on a table. In the second sce-
nario the smartphone was handheld in selfie mode, with the user walking
around. All results are compiled in Table 6. When looking at the first sce-
nario, we can see that all gestures are under the 2 seconds barrier, except
for the "Home" gesture (a "Hello-waving" gesture). This is because this ges-

58 event-based gesture recognition with dynamic background suppression

Figure 28: Overview of the Android smartphone system.

ture produces 3 times more events than all other gestures (see Table 3). The
algorithm being truly event-based, the processing time directly depends on
the number of events to process. Also during trials 3 and 4, the user waved
his hand 5-6 times, while in trials 1, 2, and 5 waved only 3-4 times. The sec-
ond scenario is the handheld selfie mode scenario, where the background
generates a high number of events, hence necessitating longer processing
time. However, all gestures except for the gesture "Home" that could be
computed in real-time. This gesture should be replaced by another more
event-based friendly gesture that would generate less events, or should be
more constrained by forcing users to only wave 1 or 2 times.

This prototype was tested by untrained visually impaired end-users, in
real use conditions. The subjects were asked to perform certain tasks to
operate the smartphone. These preliminary tests lead to a global accuracy
of 78%, which is below the 88.7% accuracy we obtained using the same
single layer on the NavGesture-walk dataset. We suspect this is partly due
to framing and off-axis handling of the smartphone.

3.6 discussion and conclusion

We introduced in this chapter a proof of concept for an event-based An-
droid application for gesture recognition using the computing power of a
mobile phone. The main idea was to show that it is possible to make full
use of the high temporal resolution of event-based cameras on a power-
constrained device. The system used a camera designed to operate with
Android using the USB link to stream events. This is by far a very inef-
ficient way to input data to the mobile platform as USB is often too slow
and implies time stamping events that adds more bits of information to the
acquired events. It is expected that if this type of camera is one day intro-
duced in a mobile device it will use better connectivity such as MIPI buses
which are designed for low-power applications and eventually an associated
processor. This will remove the need for time stamping and allow both di-
rect routing to the processor and direct computation on the time of arrival
of events with no delays. Due to the limitations of the developed software
we used 2-second packets of events to optimize communication within the
smartphone. However, we showed that processing required in most cases

3.6 discussion and conclusion 59

Processing time in ms for 2000 ms of input
Setting: fixed position (no background)

trial Up Home Right Left Select Down
1 132 2343 54 127 40 54

2 57 2798 60 56 57 45

3 74 3047 44 275 61 42

4 254 3833 32 42 29 54

5 48 2107 28 45 47 51

Processing time in ms for 2000 ms of input
Setting: outdoor – moving

trial Up Home Right Left Select Down
1 320 4119 154 641 138 115

2 614 3669 704 282 265 451

3 468 4305 854 421 551 342

4 569 3681 575 548 956 371

5 899 3890 722 354 892 620

Table 6: Processing time in milliseconds for five trials of each gesture on the mobile
phone, depending on two conditions. ”Fixed position” corresponds to a
mobile phone set on a table, which means no background. ”Outdoor, mov-
ing” corresponds to handheld selfie mode, while walking around. Each
gesture corresponds to 2000 ms of events, meaning that except for the
”Home” gesture, all proposed gestures can be processed on real-time. The
event-based camera is data-driven so a gesture like ”Home” which corre-
sponds to several ”swipe” gestures will generate more events (see Table 2).
Our algorithm being truly event-based it is also dependent on the number
of events, and takes more processing time the more events it receives.

60 event-based gesture recognition with dynamic background suppression

less than 2 seconds per batch, which implies that real time performance can
be reached if transmission delays are solved. We are confident that a way can
be found within Android to transmit events from the camera to the process-
ing stage with no latency. We have also shown that it is possible to handle
the stream of events in an asynchronous manner. This allows the temporal
machine learning algorithm to be efficient while using only a single core
of the smartphone. The hierarchical temporal network has been optimized
for the set of defined gestures showing that robust recognition levels can be
reached without requiring the use of GPU or using the non event-based con-
cept of generating frames from an event-based sensor. Experimental results
show that as expected the computation is scene dependent and therefore
tightly linked to the amount of events generated by the observed object.

We have also shown that the temporal precision of event-based cameras
can tackle different tasks, where it would have been too computationally
expensive or even impossible to compute with frames. As an example, the
background suppression algorithm that for the first time considers outdoor,
hand-held scenarios relies on the simple idea that the foreground being
closer to the camera will on average generate more events than the back-
ground. The idea of using the relative mean activity for background suppres-
sion shows that high temporal precision is a valuable feature as it implies
that velocity is linked to the amount of data produced, and can be estimated
precisely. Moreover, the use of well designed temporal filters can reduce
even more the already sparse stream of events, leading to faster event-by-
event computation. There is still much to develop around the concept of
using time as a computational feature. As an example the use of scene dy-
namics allows to derive techniques such as the one in [184] that uses the
temporal signature of eye blinks to detect the presence of a face in a scene.
This approach introduces an alternative to the current stream of thought that
believes everything has to be learned using large databases.

All data collected and used in this work has been made available to the
community. The introduction of this new database will set the groundwork
for further work on dynamic background suppression.

4 T H E N E E D O F I N C R E M E N TA L
C O M P U TAT I O N A N D T I M E A DA P T I V E
R E S O U R C E S M A N A G E M E N T F O R
E V E N T- B A S E D S E N S O R S

The properties of event-based sensing provide a powerful way to over-
come classical limitations of traditional image-based perception such as mo-
tion blur and the trade-off in selecting frame rates: losing dynamic informa-
tion at lower frame rates, or setting a high frequency acquisition rate leading
to prohibitive computational costs. As event-based sensing has revolution-
ized the way visual signals are acquired, the algorithms and techniques to
process events are also expected to undergo the same changes. In this chap-
ter, we show why applying conventional image processing techniques to
events - i.e. transforming them into frames - is a fundamentally wrong ap-
proach, as it eliminates the essential properties, and therefore advantages,
of using event-based cameras in machine vision. This work provides a new
generic architecture that allows for incremental processing and a time adap-
tive resource management relying on associative in-memory computation
that are consistent with the data driven flow of events. Although shown
in an event-based machine learning context, the approach applies to all ma-
chine vision applications. We also provide a study of a practical hardware
implementation of the proposed architecture showing the advantages of pro-
cessing event-by-event as they are output by the sensor rather than recycling
inadequate techniques from conventional image-based methodology.

4.1 introduction

Neuromorphic event-based sensing and computing are parts of an effort
undertaken thirty years ago in a quest to move towards computation in-
spired by biological systems. As phrased by C. Mead in [185]: "Biological
information-processing systems operate on completely different principles
from those with which most engineers are familiar. For many problems,
particularly those in which the input data are ill-conditioned and the com-
putation can be specified in a relative manner [...]." Relative information ac-
quisition allows neuromorphic event-based sensors to retrieve information
"continuously" so that what has been already sensed, transmitted, and pro-
cessed does not need to undergo the same process again, saving energy and
computational resources on behalf of the system [186]. This paradigm dif-
fers from conventional computer vision that relies on the use of stroboscopic
frames where information is recorded regardless of the dynamic content
present in the scene.

The use of frames is at the core of all developments in computer vi-
sion since its inception and has led to numerous techniques based on these

61

62 incremental computation and time adaptive resources management

dense, redundant, and synchronous representations including recent ma-
chine learning hype such as Convolutional Neural Networks (CNNs) which
have become very successful for image classification since the seminal work
in [187]. It is therefore tempting to reuse concepts from conventional ma-
chine vision when considering event-based data because of the wide avail-
ability of methods and dedicated hardware like the GPU. However, as we
will show, these are inadequate when dealing with the high temporal res-
olution data output by event-based cameras. Recycling methods that have
been designed to operate on images where time is generally disregarded can
hardly make full use of these sensors and will lead to a large waste of re-
sources in terms of both memory and computation. Generating images from
events is not necessary because it is possible to approach the same problems
by considering the timing of events and developing incremental techniques
where each event adds to what has been computed [188].

Another major limitation of using frame based techniques on event based
data is the memory bottleneck, which is the main limitation in current CNNs
and spiking neural networks accelerators [189][190]. The large number of
memory accesses needed to deploy image based algorithms tends to increase
the system latency. In addition, implemented memories in these accelerators
usually store all the spatial resolution of the sensor as for image-like repre-
sentations. A large portion of the allocated memory when considering the
sparsity of the output of neuromorphic vision sensors is not used and hence
wasted while requiring memory access. Existing work such as [191] tries to
reduce the memory access limitations by updating the rows and columns of
the memory for each incoming event. In [192], sparsity is taken into account
to save memory on normalized frames constructed from DVS events to exe-
cute frame-based CNNs thereby reducing the memory bottleneck. Perhaps
with the advancements in memristor technology, there will be an improve-
ment in memory accesses but the technology hasn’t currently matured [193].

In the following sections, we show that when considering the native sparse-
ness properties of event based acquisition and the adequate processing by
operating incrementally on each incoming event, it is possible to develop
a more adapted and efficient processing while being efficient in both mem-
ory and computation requirements. We review existing and widely used
available event-based dataset, and show that a dynamic memory allocation
requires a much smaller memory footprint than image-like representation
while being as efficient. We also introduce the concept of a generic memory
architecture that allows for improved memory access and latency (tested
on FPGA). Although the ideas and concepts can be applied to any form of
event based computation, we considered, as a test-bed, deep temporal learn-
ing networks as introduced in [194] specifically in the context of a gesture
recognition task to comparison with frame-based neuromophic architectures
[13].

4.2 the need of incremental processing of events

Data acquisition by the event-based sensor is driven by the scene’s dy-
namics. Fig.29 shows the number of events generated by an event-based

4.2 the need of incremental processing of events 63CCAM sensors provide frame-free visual information

CCAM is generating 70 times
less events than a resolution
equivalent 1000 fps frame-
based camera

the number of events depends on the
dynamics of the scene. For standard
cameras this amount is constant.

time (s)

Ev
en

t/m
s

Figure 29: The "amount of data" acquired by an event-based camera mounted on
a moving vehicle and its frame-based equivalent in order to achieve
similar temporal precision while keeping the same spatial resolution.
(BLUE) Number of events generated by the event-based camera with a
temporal precision of around 1 ms. Because the acquisition is scene-
driven, the number of events fluctuates over time. (RED) Number of
acquired pixels for the corresponding (simulated) conventional camera
that would run at 1 kHz.

camera mounted on a moving vehicle (shown in blue) versus the number of
acquired pixels using a simulated conventional camera that would offer the
same temporal precision, while keeping the same spatial resolution. Because
the event-based camera has a temporal precision of around 1 ms, its frame-
based equivalent should run at 1 kHz. Even in the case of a moving camera,
which can be seen as an adverse situation for event-based cameras, the event-
based sensor outputs around 90% less "data" than its frame-based equivalent
for the same visual scene. However it must be noted that event-based sensors
output the precise timing of changes in the visual scene through timestamps,
while conventional cameras output absolute light intensity.

Because frame-based cameras perform a global update of the visual scene,
current vision algorithms operate on dense image-like representation, as the
complete spatial resolution is stored. This guarantees that all the informa-
tion for all pixels is available, but this also makes the assumption that the
information in every pixel is valuable. Furthermore, it means that all pixels
must be processed at each clock tick, even if their values have not changed.

On the contrary, event-based sensors output sparse streams of events, each
event being a local update of the visual scene. It is hence more logical to
operate directly on each new incoming event, in order to update a model or
a representation. Therefore, to make full use of these sensors, it is important

64 incremental computation and time adaptive resources management

to design local and iterative algorithms. An event-based algorithm must
operate directly on each incoming event to update what is being computed
rather than creating frames by accumulating events. Generating frames by
accumulating events will not only increase latency, thus losing the advantage
of these sensors, but also cause a massive waste of resources both in memory
and computation as most generated frames from the event-based frames will
be redundant since changes happen only for a small population of pixels.

In numerous event-based algorithms [195, 27, 28, 25, 29], only an event’s
spatio-temporal neighborhood is needed to compute a local feature and/or
update a model. Some algorithms also make the assumption that informa-
tion carried by events loses importance over time [13, 196, 31], by applying
temporal decays. Hence, only the most recent events are to be stored instead
of storing the last value at each and every spatial location like in images. It is
then common sense to only store recent events that carry valuable informa-
tion as a dynamic list. This will prevent older events from being re-processed
and more importantly, allows for a smaller memory footprint. This memory
requirement is similar to the conventional cache memory in a general pur-
pose computer, as it stores only recently accessed data.

4.3 the use of frames in neuromorphic event-
based visual processing

In order to take advantage of decades of frame-based computer vision,
numerous methods were proposed to convert events into frames [9, 10, 156],
sometimes with the help of a CNN [11, 12]. In order to cope with blurred
frames obtained with conventional cameras, some authors proposed meth-
ods to use events in order to de-blur these frames [197, 198]. Once frames are
obtained from events, or frames are de-blurred using events, one can easily
use a CNN for different tasks, such as optical flow computation [15, 16], ob-
ject recognition [17, 18, 19, 20, 14], SNN training [199] or even denoising [21].
Video and image reconstruction is a very active topic in event-based machine
vision. Several techniques are being used to generate images from events. In
[200] an Extended Kalman Filter (EKF) is used to reconstruct images using
events. While in [201], a sliding spatiotemporal window of events is used to
estimate grey levels and optical flow. In [202], the authors generated video
streams from events using high-pass convolutions. In [203] a manifold regu-
larization of events integrated over time into a surface of active events [196]
to reconstruct video from events. In [204] greedy CNNs are applied to gen-
erate grey levels from events. Maqueda et al [205] use accumulated events
over 50ms time windows as input to a CNN running on a GPU to estimate
the steering angle of the wheel of a car.

4.4 cnns in event based visual processing

Convolutional Neural Networks (CNNs) are a widespread approach in im-
age classification. They represent perhaps the most inefficient approach for

4.4 cnns in event based visual processing 65

Figure 30: (A) Storing events into dense image-like representations like features
maps, like in CNNs. (B) Instead it is possible to store events into a list
in order to preserve the sparseness of the stream of events.

reconditioning events into frames due to their large memory requirements.
Despite having been designed to operate on images, CNNs are now widely
used to process the sparse and asynchronous stream of events output by
event-based sensors [206][13]. This approach has led to events-to-frame-to-
events conversions such as in [155]. Using CNNs or any other frame-based
method to process stream of events is indeed taking advantage of decades of
research in frame-based computer vision, but it comes at the cost of loosing
the sparseness and low-redundancy of event-based sensor. Indeed taking
the best of both worlds and using a combination of frames and events has
resulted in interesting research, seen in [207][208][192]. A convolutional neu-
ral network consists of an input and an output layer, as well as multiple hid-
den layers. The hidden layers consist of a series of convolutional layers that
convolve the input with a kernel using multiplications or other dot products.
The convolution layers create more abstract feature maps and require more
and more memory allocation as the network gets deeper as shown in Fig.
30(A). Incoming events from an event based sensor shown in green and red
in the first layer of the CNN in Fig.30(A).1 are sparse, therefore most of the
allocated feature planes are under-used. As the network gets deeper and the
number of kernels increases, (Fig.30(A).2-4) the number of unused memory
allocations will also dramatically increase.
Beyond memory loss, using frame-based algorithms on purely event-based
data for machine learning results in several drawbacks:

• it re-introduces redundancy when frames are built from temporally
overlapping batches of events;

• generating frames from events is computationally expensive and con-
tradicts the founding principles of energy efficiency of neuromorphic
hardware;

• the increase of latency and/or the loss of temporal accuracy by binning
batches of events;

• the spatially dense representation that is traded for when events are
turned into frames, resulting in more convolutions than needed as will
be shown;

66 incremental computation and time adaptive resources management

• the memory use is increased as the dense image matrix representation
must be stored instead of a sparse stream of events, as we will also
show.

A sensible approach is to store incoming events in compact dynamic struc-
tures as shown in Fig. 30(B). List based storage is surely the most adequate
method to store this type of sparse information. This matches the require-
ments of numerous event-based algorithms [195, 27, 28, 25, 29] where only
an event’s spatio-temporal neighborhood is needed to compute a local fea-
ture and/or update a model. It also matches another class of algorithms that
rely on the assumption that information carried by events loose importance
over time [13, 196, 31] by applying temporal decays.
A chained list memory type allows to adapt the constant changing number
of valuable events as it has no predefined size. Instead, two criteria can be
used to remove older events:

• a temporal criterion, noted T , used to remove older events. Events with
a timestamp t | t 6 tnow − T are purged from the memory;

• event uniqueness: if two events have the same address x and polarity
p, only the most recent event is kept.

Events can be stored as they are received, with ascending timestamps. To
remove older events that do not meet the required temporal criteria, the
memory simply needs to be shifted, by updating the memory pointer to
the next available memory address. This is an iterative process where older
events are removed until the oldest event meets the temporal criteria. Per-
haps the most adequate practical approach is to both dynamically allocate
resources and access fast local memory using content-addressable memory
(CAM) also known as associative memory or associative storage [209]. These
are particularly adapted to the Address Event Representation format used
by event based sensors [210]. Local neighborhoods can be extracted in one
or two clock cycles by comparing input search data against a table of stored
data, that then returns the address of matching data. This approach not
only matches the requirements of event-based high temporal precision and
fast processing requirements but it also solves for time consuming memory
search specially when dealing with sparse data.

4.5 temporal dynamics and data load in existing
event-based databases

We analyse the content of four event-based datasets that provide differ-
ent stimuli and spatial resolutions. The scope is to compare the memory
footprint based on the content of these databases when considering a static
frame based allocation vs a dynamic scene-driven approach. Three of the
used databases (PokerDVS [211], N-MNIST [121], and DvsGesture [13]) are
widely used as benchmark references by the neuromorphic community. The
fourth, NavGesture, was recently introduced in [194].
The details of each database are:

4.5 temporal dynamics and data load in existing event-based databases 67

• ‘PokerDVS’ features cropped poker card pips displayed at very high-
speed in front of the camera. Each clip is 5 to 10 ms long. Pips are
cropped to a 35× 35 pixel array. The Mean Event Rate (MER) is 170.4
kev/s (kilo-events per second), which results in an Individual Pixel
Mean Firing Rate (IPMFR) of 138 kev/s, the highest of all presented
datasets, two orders of magnitude higher than non-cropped datasets;

• ‘N-MNIST’ features 0-9 digits with a sensor size of 28× 28. Digits are
acquired using a moving event-based camera in front of a computer
screen displaying the original MNIST dataset as explained in [121]. N-
MNIST performs 3 small displacements of 2-3 pixels, with a pause of
100 ms between each movement. Each clip has a duration of around
300 ms. The dataset has a MER of 13.6 kev/s, the lowest of all four
datasets. The IPMFR is 17 kev/s;

• ‘DvsGesture’ features hand gestures recorded using a fixed DVS, cen-
tered at the upper body in front of a static background. Hence, it
features no background. The sensor array size is 128× 128. In most se-
quences, the upper body is almost static and generates very few events;
only the arms and hands are usually moving and therefore visible. It
means that most pixels at the periphery of the sensor are mostly inac-
tive. Gestures include hand claps, arm rolls, air guitar etc. Its MER is
56.9 kev/s, and the IPMFR is 3.4 kev/s;

• ‘NavGestures-walk’ features hand gestures designed to control a smart-
phone embedding an event-based sensor. Gestures are recorded in
selfie-mode, while walking in an urban environment. Hence, the database
contains significant background clutter and pixel activity when com-
pared to DvsGesture. Gestures include sweeps, hand waving etc. The
pixel array is the larger of all datasets, with a size of 304× 240. Its MER
is 188.6 kev/s, and the IPMFR is 2.6 kev/s.

For each of these datasets, we compute the number of events in a given
time-window T . The values of T are set to 1 ms, 10 ms and 100 ms. The
values of 1 and 10 ms represent widely used integration times to extract
meaningful features from incoming events for fast and conventional scene
dynamics. The 100 ms integration time is related to extreme cases to show
what can be encountered when considering deep temporal networks layers,
it can be seen as the extreme upper bound of memory use.

Each events is encoded using 64 bits of dynamic memory: 32 bits for
timestamp, 31 bits for spatial location and 1 bit for polarity. However, it
must be noted that the spatial location could be encoded with less bits for
all 4 datasets as the spatial resolution ranges from 28× 28 to 304× 240, mean-
ing that only 12 to 17 bits would be needed to encode the spatial location
instead of 31 bits used here. This choice has been made to ease comparison
between different spatial resolution of the datasets and provide a compari-
son in the worst case scenarios for scene-driven dynamic allocation.

The dynamic memory allocation is compared to an image-like representa-
tion of events. We compute the amount of allocated memory needed to store

68 incremental computation and time adaptive resources management

32-bit timestamps of events, as the spatial location is implicitly stored in the
allocated array. Since we store both events’ polarities (ON and OFF), the
total amount of allocated memory required for these 2 arrays (for OFF and
ON events) is then given by: SR × 2× 32 bits, with SR being the resolution
(number of pixels) of the recording sensor in the dataset.

Results are shown in Table 7 for time-windows ranging from 1 ms to
100 ms (Line 1). The mean number of events (Line 2) is computed over the
whole dataset. We also indicate the maximum number of events (Line 3) en-
countered over the dataset. This maximum number is hence the worst-case
scenario for the complete dataset.

Fig. 31 shows the distribution of the size of the dynamic memory required
for all time-windows of 3 datasets: PokerDVS, N-MNIST and NavGesture-
walk. These distributions show that extreme cases happen very rarely. It also
shows that the dynamic memory stays below the memory capacity needed
for the image-like representation by several orders of magnitude. For Pok-
erDVS, as clips have a duration from 5 to 10 ms, using a 100 ms time-window
is almost similar to counting all incoming events. This explains its asymmet-
ric shape compared to other durations. In short, the 100 ms time-window
is not adapted to the dynamics of PokerDVS and should not be taken into
account given its characteristics. However it should be noted that even in
this case, the dynamic allocation is still below in terms of memory footprint
than the static frame representation.

As shown in Table 7, the worst case for databases like NavGesture-walk
(which have the highest MERs of all datasets), for a 100 ms time-window
in terms of pixel activity are respectively 86% and 93% (Line 2). In these
extreme cases, the memory footprint is comparable but still inferior to the
image-like representation. It is important to emphasize that since sequences
from PokerDVS are 5 ms long in duration, and only sometimes reach 10 ms.
It hence makes no sense to integrate events for periods over 10 ms. This
dataset contains cropped pips recorded during card shuffling. The density
of events is the highest among all datasets. When the time-window is set
in accordance with the timescale of this dataset, which is at the millisecond
point, the memory footprint requirement can drop by 90% in the average
case. In the worst case, it drops by 70%.

In the case of NavGesture-walk, as gestures are executed closer to the cam-
era, they have a higher "apparent" focal plane speed. Integrating events over
100 ms (equivalent to 10 FPS) would result in the equivalent of frame-based
motion blur. As shown in the previous Chapter, the proper integration time
for this dataset is around 10 ms. At this timescale, the proposed dynamic
memory uses 4% of the capacity needed for the image-like representation in
the average case. Even in the extremely rare worst cases, it requires half of
the image-like memory footprint.

The same conclusions apply to DvsGesture that exhibits similar statistics,
even though it contains no background activity. N-MNIST features dig-
its recorded using 3 quick and brief camera movements, mimicking micro-

4.5 temporal dynamics and data load in existing event-based databases 69

Figure 31: Distribution of the memory needed to store all events in 1, 10 and
100 milliseconds time-windows for 3 datasets: PokerDVS, N-MNIST
and NavGesture-walk. The blue histogram is the distribution of time-
windows in regards to their memory footprint. The red vertical line
represents the allocated memory needed for one image-like representa-
tion, which is never reached when using the dynamic memory.

saccades, separated by 100 ms breaks. This means that events are generated
during the camera movement, then almost no events are generated for 100

ms, before the next movement. The information needed for the classification
of the digit is purely static (shape), as the dynamics are the same for all digits.
This should be the perfect use-case for long integration time and image-like
representation. However, the dynamic memory offers again a much reduced
memory footprint than image-like static allocation for all integration times
in the range of 3-11 % for most regimes at respectively 1 ms and 10 ms inte-
gration time and around 29% for upper bound cases.

These results show that for all the considered datasets -that cover a wide
range of scenarios- allocating the whole sensor array in memory results in
a massive waste of resources. This difference between static vs dynamic is
orders of magnitudes enhanced when considering high temporal precision
(1-10 ms) that correspond to the natural use-case for event-based cameras.

Figure 32 shows a practical case of previous results from the NavGesture-
walk [194] dataset. It represents the memory needed to store the events over
time during a hand gesture. When using an image-like representation where
pixels encode timestamps, one must allocate the whole pixel array. On the
other hand, using a dynamic memory with a fixed time-window leads to
a memory size that adapts itself to the visual scene. In this example, the

70 incremental computation and time adaptive resources management

D
ataset

(M
ean

Event
R

ate
&

Sensor
Size)

PokerD
V

S
1
7
0.

4
ev/m

s
3
5x

3
5

N
-M

N
IST

1
3.

6
ev/m

s
2
8x

2
8

D
vsG

esture
5
6.

9
ev/m

s
1
2
8x

1
2
8

N
avG

esture-w
alk

1
8
8.

6
ev/m

s
3
0
4x

2
4
0

1.Tim
e

W
indow

(m
s)

1
10

100
1

10
100

1
10

100
1

10
100

2.M
ean

N
um

ber
of

events
in

TW
(percentage

of
active

pixels)
1
0
1

(
8%

)
3
9
0

(
3
2%

)
4
8
6

(
4
0%

)
2
2

(
3%

)
8
4

(
1
1%

)
2
2
9

(
2
9%

)
5
3

(<
1%

)
3
4
0

(
2%

)
1
7
5
1

(
1
1%

)
2
8
5

(<
1%

)
2
8
1
8

(
4%

)
1
3
2
7
9

(
1
8%

)
3.M

ax
N

um
ber

of
events

in
TW

(percentage
of

active
pixels)

3
5
6

(
2
9%

)
8
4
8

(
6
9%

)
1
0
5
2

(
8
6%

)
2
2
3

(
2
8%

)
3
1
2

(
4
0%

)
5
9
7

(
7
6%

)
4
6
7

(
3%

)
2
0
5
6

(
1
3%

)
9
1
9
1

(
5
6%

)
2
5
9
9

(
4%

)
1
8
2
9
6

(
2
5%

)
6
8
1
2
8

(
9
3%

)
4.W

orking
M

em
ory

Size
(kB)

D
ynam

ic
-

A
verage

case
0.

8
3.

1
3.

9
0.

2
0.

7
1.

8
0.

4
2.

7
1
4.

0
2.

3
2
2.

5
1
0
6.

2

5.W
orking

M
em

ory
Size

(kB)
D

ynam
ic

-
W

orst
case

2.
8

6.
8

8.
4

1.
8

2.
5

4.
8

3.
7

1
6.

4
7
3.

5
2
0.

8
1
4
6.

3
5
4
5.

0

6.A
llocated

M
em

ory
Size

(kB)
9.

8
9.

8
9.

8
6.

3
6.

3
6.

3
1
3
1

1
3
1

1
3
1

5
8
4

5
8
4

5
8
4

7.M
em

ory
ratio

dynam
ic/static

(A
verage

C
ase)

8%
3
2%

4
0%

3%
1
1%

2
9%

1%
2%

1
1%

1%
4%

1
8%

8.M
em

ory
ratio

dynam
ic/static

(W
orst

C
ase)

2
9%

6
9%

8
6%

2
8%

4
0%

7
6%

3%
1
3%

5
6%

4%
2
5%

9
3%

Table
7:

T
his

table
show

s,
for

4
event-based

datasets,
and

for
3

different
tim

e-w
indow

sizes
(Line

1),
ranging

from
1

to
1

0
0

m
s,

the
m

ean
(Line

2)
and

m
axim

um
(Line

3)
num

ber
of

events.
U

sing
events

of
size

6
4

bits
(
3

2
bits

for
tim

estam
p

+
3

2
bits

for
spatial

location
and

polarity),
it

show
s

the
needed

m
em

ory
for

the
dynam

ic
m

em
ory

(Lines
4-

5)
and

the
corresponding

allocated
m

em
ory

needed
for

the
im

age-like
representation

(Line
6).

Static
m

em
ory

usage
is

increased
relatively

to
dynam

ic
m

em
ory

usage
by

factors
ranging

from
2

to
1

0
0

w
hen

considering
shorttim

e-w
indow

s
(<

1
0

m
s,resp.high

fram
e-rates

>
1

0
0

FPS).For
tim

e-w
indow

s
of

1
0

0
m

s
(
1

0
FPS

equivalent),this
m

em
ory

need
is,on

average,halfthe
capacity

ofa
static

m
em

ory,but
w

orst-cases
can

go
up

to
sim

ilar
levels.

(Lines
7-

8).
H

ow
ever

the
use

of
event-based

sensor
at

such
low

tem
poralresolutions

is
in

any
case

questionable.
M

em
ory

usage
factors

are
closely

linked
to

the
tim

e-w
indow

size,w
hich

can
be

linked
to

the
fram

e-rate
for

conventional
fram

e-based
cam

eras.
It

is
also

dependent
on

the
sensor

array
size.

It
show

s
that

in
order

to
achieve

a
tem

poral
precision

of
1

to
1

0
m

s
(w

hich
corresponds

to
fram

e-rates
of

1
0

0
to

1
0

0
0

H
z),

the
im

age-like
representation

requires
2

5
to

1
0

0
tim

es
m

ore
m

em
ory

capacity.
This

m
eans

that
it

also
requires

faster
m

em
ory

bandw
idth

to
transm

it
the

data.

4.6 computational costs 71

memory consumption is over one order of magnitude higher when using
the image-like representation instead of the dynamic list.

Figure 32: Comparison of memory usage when using a dynamic list memory in-
stead of a static matrix memory when extracting time-surfaces. The
red line represents the total allocated memory when using a image-like
frame-based representation while the orange line represents the actual
memory used. The blue line represents the memory consumption when
using a dynamic, time-windowed memory. The dynamic memory has a
temporal window of 10 ms. Note that memory use is computed for 64-
bit events, with 32 bits for the timestamp. The clip is a "home" gesture (a
hello-waving hand) from the NavGesture-walk database with a duration
of around 1300 ms. It can be observed that image-like representations
lead to memory footprint up one order of magnitude in this example.

4.6 computational costs

Operations that can be easily decomposed into a fixed number of equally
sized components requiring the same type of computation are in principle
portable to parallel processing [212]. However, algorithms where the work-
load is highly irregular, sparse and data-dependent, are substantially more
challenging to port on clocked parallel processing environments, such as
GPUs.

Because of the wide availability of GPUs and deep neural network pro-
gramming languages, a large portion of existing work that generates frames
from events (as introduced in sections 4.3 and 4.4) rely on the combined use
of machine learning algorithms based on conventional deep neural networks
and graphical processing units (GPUs). This comes at significant energy and
computation costs that increase the gap between the mW energy and power
efficiency of bioinspired neuromorphic hardware when compared to the

72 incremental computation and time adaptive resources management

power consumption of available graphics cards with top performing mod-
els requiring anywhere between 110 and 270 Watts.

Comparing the use of event-based generated frames against pure incre-
mental event-based computation can therefore only end up increasing the
divide between the two approaches that is introduced at the memory level.
In [192] authors exploited the sparsity on frames and inter-layer activation
maps for CNNs execution for embedded systems by avoiding the multiply-
accumulate (MAC) operation for null values, thus calling the method Null-
Hop. The proposed hardware accelerator is used with normalized frames
generated from an event-based camera by accumulating events at all spa-
tial locations for a fixed number of events. Hence, the obtained frame has
non-zero pixels only at locations where events were emitted. Nevertheless,
because of frame-based computation the bottleneck of the system is the
memory interface, making the performance of the method dependent on
the memory hardware used. NullHop was tested with the VGG16 on Ima-
geNet with a 67.5% top-1 accuracy using quantized weights and activations
to 16 bits. It was also tested with a relative small CNN trained to classify
hand symbols for the RoShamBo game, beating human opponents by recog-
nizing the player’s symbol with over 99% accuracy in less than 10 ms and a
peak performance of 203 Gop/s/W using LPDDR3 memory. Perhaps a fair
comparison of this method would be to consider a recent work from IBM
research that introduced a fully neuromorphic pipeline made of an IBM
TrueNorth chip and a DVS [13] to perform real-time gesture recognition.
The system has been evaluated on the DvsGesture 10-class dataset, which
was recorded using the DVS. However, even though the hardware is fully
neuromorphic, the processing is frame-based, as they introduced a stochas-
tic events-to-frame conversion to feed a CNN. This CNN performs around 1

billion convolutions per second (1 million convolution per tick, 1000 ticks per
second). This results in one classification per tick, which are then averaged
using a majority vote with a sliding window, for a final classification score
of 96.49%. On the other hand, the 2-layer event-based architecture we pre-
sented in the previous Chapter performs around 250 millions convolutions
for the whole clip (clips have a duration of 6-8 seconds), while achieving
similar results in accuracy at 96.59% over the 10-class dataset with a single
classification at the end of the clip. Moreover, IBM’s stochastic frames are
generated using a cascade of six temporal filters delaying events. The re-
sulting output frame is the concatenation of all six filters outputs, which is
nothing more than a stochastic integration of events over a duration of 81

ms. These frames are generated every millisecond. This automatically intro-
duces a delay that corresponds to the integration time needed to generate a
frame, plus the need to store an image-like representation for each filter. On
the other hand, if one processes events in an event-based manner, the delay
can be minimal, and the memory needed to dynamically store events greatly
reduced, as shown in section 4.5.

4.7 generic time adaptive memory architecture for event based processing 73

4.7 generic time adaptive memory architecture
for event based processing

An optimal architecture for event-based computation must address two
main intertwined requirements:

1. the retrieval of relevant local information around incoming events must
match the high temporal precision of event-based cameras and ensure
that computation can be carried out at the native temporal step of
event-based cameras (1µs);

2. sparse and adaptive memory allocation following the scene-driven prop-
erties of event-based cameras and the temporal requirements of the
used incremental algorithms.

The ideal memory structure that addresses these requirements is the Content-
Addressable Memory (CAM), also known as Associative Memory. This type
of memory structure allows for entire high-speed memory searches in a sin-
gle clock cycle. CAM has been used extensively for several applications
[213] including neural networks [214], and are particularly adapted for event-
based processing. Unlike Random Access Memory (RAM), associative mem-
ory is content based, meaning events stored as content addressable can be
accessed by performing a query for the content itself, and the memory re-
trieves the addresses where that data can be found. This query is parallel
in nature by construction, and therefore orders of magnitude faster than
conventional RAM. They are however more expensive to build because of
the necessity of internal comparators and registers that require larger power
consumption and more space. However, in the case of event-based sensing,
because the required memory footprint is significantly reduced and because
fast memory access is an absolute requirement, this make CAM particularly
adapted to event-based processing.

We will introduce in this section a generic architecture for event-based
processing in the context of machine learning with a classification task using
temporal networks. These networks process events incrementally as they
are output by the sensor. We will first introduce the concept of temporal
networks, and in a second stage we will present the generic architecture
followed by an implementation study of its hardware costs on FPGA.

4.7.1 Temporal Machine learning using Time-surfaces

Time-surfaces were first introduced in [196] and are local descriptors of
the temporal activity in the spatial neighbourhood of an event. They allow
a compact representation of both spatial and temporal information. They
have been used in a variety of tasks and have been recently revisited and
studied in several works such as [29, 215, 123]. We use the model presented
in Chapter 3 that extends [196] to operate on low power processors in the
context of mobile phones. We use this temporal convolution network relying
on time surfaces to study how event-based algorithms could benefit from a
dynamic, adaptive and sparse memory structure.

74 incremental computation and time adaptive resources management

Figure 33: Principle of Temporal Context Representation. Five lines of information
conveyed temporal events at different time ta, tb, tc and td. A time-
vector T is computed for each new incoming event (here the last event
is in purple at time t) as a vector expressing temporal delays between
events as normalized values. In this example, we use an exponential
decay.

The general principle of a time-surface is shown in Fig.33 in the context of
1D input (thus generating a time-vector instead of a time-surface). Five tem-
poral events are shown, each appearing at a particular time. The notion of
an event here is generic, to simply introduce the basic concept behind time-
surfaces. An event signals the presence of a particular activity at a precise
location in time. The principle behind the method is to convert the relative
timing between events occurring at different lines of information into nor-
malized features that are invariant to the actual timing and emphasize only
the temporal interval between past events and the last event that happens at
the current time t, shown in purple in Fig.33. This method is event driven
in the sense that if no event happens, nothing is computed. However, if an
event occurs on a line of information at the current time, its time becomes
the reference time from which we compute a temporal context, namely, how
far in the past something happened on the other lines.

It is possible to convert the delay between the current event time t and
other events shown with different colors and appearing at times ta, tb, tc
and td into normalized values. Here we use an exponentially decaying func-
tion with a time-constant τ, in order to map delays between 0 and 1, such
that the timing of the events that are closer to the reference spike give val-
ues close to 1 while those occurring earlier tend closer to 0, as shown in
Fig. 33. Thus, for each incoming event, we can define a time-vector T of
dimension n, where n is the current number of temporal information lines
(5 for the example shown in the Figure), computed as : j = exp(

−|t−tj|
τ). An-

other kernel could be used to map timestamps into a chosen interval. In the
following, we use the linear decay kernel used in the previous chapter. We
first present the general formulation for time-surfaces when working directly
with the stream of event, and then how we can take advantage of the newly
introduced memory to ease their computation, as some of the processing is
already done at the memory level.

4.7 generic time adaptive memory architecture for event based processing 75

General Computation of Time-surfaces

The time-surface related to the event ek, can be computed from the stream
of events e0, ..., ek received from the event-based camera. First we define
the Time-context Tk(u, p) of the event ek as the difference between ek time
of arrival and the timestamps of its most recent neighbours. The square
neighbourhood Σk has a dimension of (2R + 1) x (2R + 1). It is centered on
ek, of spatial coordinate uk = [xk, yk]. Mathematically the Time-context can
be expressed as:

Tk(u, p) = {tk − t|t = max{tj|uj ∈ Σk, pj = p}} (30)

The Time-surface Sk(u, p) associated to the event ek, is obtained by apply-
ing a linear decay kernel of time-constant τ to the Time-context Tk:

Sk(u, p) =

{
1−

Ti(u,p))
τ , if Ti(u, p) < τ

0, otherwise
(31)

This construction makes time-surfaces a compact description of the spatio-
temporal neighborhood of an event ek. Canonical time-surfaces can be
learned and used as features in a pattern recognition task.

Learning Time-surfaces

The Hierarchy of Time Surface is an event-driven algorithm that operates
on each incoming event introduced in [196] and extended in Chapter 3. The
general idea is shown in Fig. 34. For each incoming event, it is possible
to compute a time-surface that is matched against a bank of learnt proto-
types. A new pattern event with the same x address and timestamp t is
generated, but its polarity p is updated to become the ID of the matched
prototype. This pattern event encodes a pattern instead of the ON/OFF po-
larity of visual events. Pattern events at the output of a layer can be fed
to the subsequent layer to be processed in a similar way. A higher layer
however combines patterns from the previous layer, leading to more sophis-
ticated patterns being encoded. The pattern of output events can be used as
a feature for classification.

The first layer will encode only basic spatio-temporal patterns such as
optical-flow and shape of the edge. Adding a second layer will increase
the pattern complexity as it will be able to create new features as spatio-
temporal combinations of patterns from the first layer. Subsequent layers
operating at increasingly higher timescales allow for more and more sophis-
ticated patterns.

4.7.2 A Generic Memory Architecture

Fig.35 introduces the general architecture for implementing an event based
deep network using time-surfaces. The general idea is to parallelize and
speed up computation specifically when fetching previous events in the
neighborhood of the incoming event.

An event-based camera (A) outputs an event (B) stored at the top the
list of an associative memory containing past events (C). The associative

76 incremental computation and time adaptive resources management

Figure 34: (A) The principle of deep temporal networks: an incoming event trig-
gers the computation of a temporal feature, that will be compared to
existing learnt features Sτ1 . The closest learnt feature will emit an event
that will trigger the computation of a new temporal feature on a larger
integration time τ2. New events generated at layer one can be used to
compute a new feature using a larger integration time τ2. The same
process is performed at layer 2 that will generate new events that can be
sent to a next layer with a larger integration time (τ3). The system can
be scaled up for an increasing number of layers with increasing integra-
tion times. Learning is carried out at each layer using online clustering
to extract the most representative features.

memory is conventionally based on three modules: the memory controller,
the memory core and the streamer. The memory controller is in charge of
two functions, it receives the input event and stores it in the memory core,
organizing the memory content according to the timestamps. This controller
uses the timestamps to remove events from memory that are too old and not
relevant anymore. The second module is the memory core, where events
data is stored. This memory is implemented using a bank of cells, so data
can be accessed in parallel in an associative way, reducing the latency. Most
of digital architectures use CAM which are accessed cycle-by-cycle. Finally,
the streamer organizes the data in a square neighbourhood (or row) to be
processed as shown in (D-E).

The proposed architecture requires 1-2 clock cycles to stream (or output)
the data. Since the memory controller sends neighbours’ data to the streamer
at the same time as it reads from the memory core in one clock cycle (thanks
to the parallel comparator-architecture of CAM), the streamer module needs
another clock cycle to organize the data format. The neighborhood events’
around the incoming event are shown in cyan. In this work, memory cells
have been implemented as registers that can be read/write in 1 clock cycle.
It then becomes possible to compute the time-surface from the temporal

4.7 generic time adaptive memory architecture for event based processing 77

Fi
gu

re
35

:
Fr

om
th

e
vi

su
al

st
im

ul
us

to
th

e
cl

as
si

fic
at

io
n

us
in

g
a

la
ye

r
of

H
O

TS
as

a
fe

at
ur

e
ex

tr
ac

to
r.

(A
)T

he
se

ns
or

re
ac

ts
to

th
e

st
im

ul
us

,a
nd

em
it

s
a

st
re

am
of

vi
su

al
ev

en
ts

.
(B

)
Th

e
in

co
m

in
g

ev
en

t
e
k

is
st

or
ed

in
to

th
e

as
so

ci
at

iv
e

m
em

or
y.

(C
-D

-E
)

N
ei

gh
bo

ri
ng

ev
en

ts
ar

e
re

tr
ie

ve
d

fr
om

th
e

m
em

or
y

in
or

de
r

to
ob

ta
in

th
e

te
m

po
ra

lc
on

te
xt

.(
F-

G
)T

he
ti

m
e-

su
rf

ac
e

is
co

m
pu

te
d

fr
om

th
is

co
nt

ex
tb

y
no

rm
al

iz
in

g
de

la
ys

be
tw

ee
n

ev
en

ts
us

in
g

a
te

m
po

ra
l

ke
rn

el
.

(H
)

Th
e

ti
m

e-
su

rf
ac

e
is

m
at

ch
ed

ag
ai

ns
t

a
ba

nk
of

kn
ow

n
pa

tt
er

ns
,c

al
le

d
pr

ot
ot

yp
es

.
(I

)
Th

e
po

la
ri

ty
of

th
e

ev
en

t
is

up
da

te
d

to
re

pr
es

en
t

th
e

m
at

ch
ed

pr
ot

ot
yp

e.
T

he
ev

en
t

ca
n

be
ei

th
er

pa
ss

ed
on

to
th

e
ne

xt
la

ye
r

w
or

ki
ng

at
an

ot
he

r
sp

at
io

-t
em

po
ra

ls
ca

le
or

ca
n

be
us

ed
as

a
fe

at
ur

e
by

a
cl

as
si

fie
r.

78 incremental computation and time adaptive resources management

context, by applying a decaying kernel (linear or non linear) shown in (E-F-
G).

The computed time-surfaces needs then to be compared with the stored
prototypes time-surfaces. The prototypes could also be stored in a CAM
as shown in (H). It would allow to fetch the most representative ones, thus
generating a new event tagged by the polarity of the matched prototype
time-surfaces as shown in (I). The same process can be scaled up to higher
layers. The architecture and the use of associative memory solves greedy
computation issues that usually require incremental high complexity algo-
rithms. Using CAM is highly beneficial from a latency perspective because
of its parallelization improvement on data searching. Nevertheless, these
memories cannot be oversized despite the increment on resources for a vi-
able implementation. Like cache memories for processors, CAM sizes must
be adjusted for the best compromise.

4.7.3 "In-memory" partial computation of Time-surfaces

The new dynamic memory proposed in this Chapter offers the advan-
tage of handling some of the needed computation in order to obtain a
time-surface. If this memory is used, it eases the time-surface computa-
tion process as some operations are already performed "in-memory". The
following equations represent particular cases of the above formulation of
time-surfaces presented in Eq. 30 and Eq. 33.

Once again, we define the spatial neighborhood Σk as a square of dimen-
sion (2R + 1) x (2R + 1), centered on uk. Because the dynamic memory keeps
only the most recent event at each spatial location, the max operation in Eq.
30 can be carried out at the memory level. This allows for the simplification
of Eq.30to :

Tk(ej) = {tk − tj|uj ∈ Σk, pj = pk} (32)

Furthermore, because the dynamic memory uses a time-window T , by
matching τ to T , the time-surface Sk(ei) associated with the event ek, is
obtained by directly applying the decay kernel of time-constant τ to the
Time-context Tk as only the events younger than (tk− τ) are available in the
memory:

Sk(u, p) = 1−
Tk(u, p))

τ
(33)

This results in some operations needed to compute the time-surface to be
processed "in-memory" instead of using additional processor resources.

4.7.4 Hardware Implementation Study

We implement the proposed memory model to be used with the event-
based algorithm from Chapter 3 to recognize gestures from the NavGestures
datasets. The aim behind these experiments is to provide an overview of the
viability of the proposed memory model in terms of latency and memory
usage. We will consider an FPGA implementation, the memory requirement

4.7 generic time adaptive memory architecture for event based processing 79

per events being 64-bit, where 32-bit stores the timestamp and 32-bit stores
the address (x,y) and the pattern.

We performed two experiments, the first one using a single layer on a
FPGA, and second using two layers. These experiments have been per-
formed in simulation on an FPGA after the implementation phase.

For the singe layer implementation, the memory model parameters are:

• τ = 10ms (integration time)

• R = 2 (radius)

• N = 8 (number of prototypes)

The classification output using the dynamic memory was compared to the
results obtained using the static memory. It must be noted that a memory
that stores all pixel states should give more precision than storing only most
recent events. The accuracy error was measured for different values of the
time-window T and the memory size cap.

Large values of T implies that more events will be stored in memory, thus
increasing the memory size. On the other hand, smaller T values store only
the most recent events, meaning less information, leading to a worse clas-
sification accuracy. Fig.36 shows how the memory size and the accuracy
error evolves when the time-window T increases. As an example, for the
NavGesture dataset used in this experiment, a T value of 15 ms with a mem-
ory of 756 Kb gives an error of less than 2% compared with the original
implementation that uses 2.280 Kb.

Figure 36: NavGesture dataset: Percent of Error (blue) and Memory Size (orange)
as function of the time-window T

The DAVIS 240C event-based sensor [216] requires 16 bits to encode the
spatial location and 1 bit for the polarity. On the other hand, the ATIS
requires 18 bits (9 for x address, 8 for y address and 1 for the polarity bit). We
have considered that both sensors use a resolution of 32 bits for timestamps.

Taking into consideration that the worst case is a 756 Kb memory, for
a single layer implementation the memory model of this work manage to
reduce the memory space by 77% and 44% for ATIS and DAVIS 240C sensors
respectively.

80 incremental computation and time adaptive resources management

Compared to the previous experiment, a 2-layer network implementation
requires larger memory cells, as apart from the input memory for the sensor,
it also needs to store the output pattern events of the first layer which are
fed to the second layer. The purpose is to determine the minimum required
dynamic memory in order to obtain the same surfaces as with standard static
memory, therefore, there is no accuracy loss. Table 8 shows a summary of
the 2-layers networks used in this experiment.

Network
1 Layer 2

N1 R1 τ1 N2 R2 τ2
A 8 2 10ms 8 2 100ms
B 8 2 10ms 8 2 200ms
C 8 2 10ms 8 2 400ms
D 8 2 10ms 8 2 800ms

Table 8: Characteristics of the 2-layers networks used in this experiment.

Larger values of T implies longer integration time, and thus larger memo-
ries are needed to avoid the loss of significant events. In the 1-layer network,
only one memory is needed to store the timestamps of the input events com-
ing from the sensor. On the other hand, in 2-layers networks the pattern
events between each layer must also be stored in memories, grouping the
events by patterns (polarity). Therefore, as well as the required memory for
input events, it also needs as many supplementary memories as there are
prototypes on the first layer. The T value of these memories are set to match
the τ2 value of the second layer.

The size of each memory used in these networks to avoid losing accu-
racy was set to 1024Kb, assuming 32 bits for events addresses and 32 bits
for timestamps. Since in A and B layers the memory is never full. In lay-
ers C and D, due the τ2 value is higher (400ms and 800ms). These values
have been chosen to set an upper boundary and show how the architecture
would deal with extreme cases of deep layers where the integration time
can be large. The total memory of 9,216Kb (one 1,024kb memory for the
first layer, and eight 1,024 memories for the second layer) is sufficient to run
this network without losing precision. Fig. 37 shows the memory needed to
implement this network using dynamic memory for the ATIS and the Davis
240C sensor compared with an implementation using static memory.

Regarding latency, one can plot a roof-line diagram, which corresponds
to the number of operations versus the memory access. First it is important
to highlight the number of operation performed by the feature extraction
algorithm. Following Eq 32 and 31 a division and two subtraction operations
are needed to compute the time-surface. In addition, the Euclidean distance
requires one addition, two subtractions, two multiplications and the square
root per cycle and prototype. Eq. 34 gives the total number of operations
needed for one layer.

Op = (

Square neighbourhood︷ ︸︸ ︷
(2R+ 1 ∗ 2R+ 1) ∗(

TS︷︸︸︷
3) + (

ED︷︸︸︷
6 ∗N)) (34)

Figure 38 shows the roofline diagram for the whole processing. The peak
of performance is reached when all neighbours have been read from the

4.7 generic time adaptive memory architecture for event based processing 81

Figure 37: Memory consumption of event-based memory with memory consumed
by RAM memory for DAVIS 240c and ATIS sensors.

memory, generating the time surfaces and compared them with the proto-
types of both layers. The slope of the original static-memory implementation
depends on the number of access to obtain all the neighboring events. In this
original implementation, memory is read sequentially. Therefore, latency to
start the computation increase with the radius R of the patch. On the other
hand, the memory model presented in this work requires only two clock
cycles. Since data is ready for computation in two clock cycles, it can reach
its maximum performance fast.

Figure 38: Roofline of HOTS algorithms using both memory models.

82 incremental computation and time adaptive resources management

4.8 discussion and conclusion

This chapter focused on studying the limitations of the current trend of
converting events to frames. Although critical of this approach, this is how-
ever an expected stage for this field. Although neuromorphic engineering is
growing exponentially since the last couple of years with event-based cam-
eras commercially available to laymen, there is currently no off-the-shelves
hardware able to process events incrementally at their native temporal reso-
lution. Beyond the difficulty of diving into the novelty of temporal process-
ing and breaking free from frames, and although several work have shown
that incremental algorithms are superior in numerous ways to those using
frames from events even using conventional processors, the current availabil-
ity, low cost and ease of use of hardware such as GPU tend to emphasize
even more the easy and narrow path of recycling techniques from conven-
tional frame-based computer vision.

Perhaps the solution is to derive a new generation of hardware such as
the associative memory introduced in this work. The event-based dynamic
architecture based on associative memory allows to reduce memory load
and computation time for event-based algorithms. It is adapted to make full
use of their native sparseness properties while allowing incremental compu-
tation with no unnecessary memory payload. The use of in-memory compu-
tation allows for an optimized memory access while addressing heavy com-
putation required for pattern matching and neighborhood fetching around
incoming events.

This architecture can be applied to any event based algorithm. The specific
application to machine learning using deep temporal networks has been cho-
sen as a study case as it represents the most unfavourable scheme to gener-
ating frames from events because of the heavy requirement of conventional
machine learning from a resource perspective. The presented architecture
used two associative memory, the second being specific to pattern match-
ing for deep temporal networks using time surfaces. It could however be
replaced for more general event-based incremental computations by a low
power conventional processor to perform conventional computations around
incoming events. There are several available incremental event-based algo-
rithms such as optical flow, tracking, etc that are already operating efficiently
on conventional CPU that would greatly benefit from this approach where
accessing past event and fetching spatio-temporal contexts is their major lim-
itation.

It is expected that similar architectures will become essential in the near
future as the spatial resolution of event-based sensors is increasing rapidly
as more traditional industrial players are becoming involved in their devel-
opment and production [4]. The technique of generating frames and recy-
cling frame-based algorithms as shown by this work will result in even more
dramatic waste of resources for higher spatial resolution and/or and lower
latency sensors. Recent sensors such as the one developed by Samsung [4]
have a huge throughput compared to older neuromorphic sensors such as
the academically developed prototypes - DVS or ATIS - that can reach 300

MEvents/Second.

4.8 discussion and conclusion 83

As shown by the hardware FPGA study, the architecture would benefit
from a parallel memory access. One possible solution is to implement each
position of the memory as a register, which can be accessed in parallel, and
integrate a bank of comparators to efficiently select the desired content(s).
However, registers require more power and physical area to implement than
RAM cells. An alternative solution could be found in the emerging mem-
ristor technology, which are currently demonstrated to be a good approach
to parallel processing systems [217]. This property makes memristors ideal
for neuromorphic systems spikes grid where neurons have to communicate
with their neighbours in parallel [218]. Memristors technology would allow
to implement the presented memory model using fewer resources, reducing
the memory bottlenecks, thus improving the latency and boosting neuromor-
phic incremental computation.

5 D I S C U S S I O N & C O N C L U S I O N

The objective of this thesis was to develop efficient event-based methods
using the precise timing of events in feature extraction and pattern recogni-
tion. We started from extracting low-level event-based features and went up
to building a full pattern recognition pipeline, and we also pushed further
the event-based computation paradigm, by providing a dedicated hardware
proposal in the form of a "dynamic" associative memory architecture. This
memory offers both a more efficient storage and faster retrieval of events
but moreover, allows for "in-memory" computation. This thesis benefited
from the ECOMODE project, that provided an interesting test-bed for ef-
ficient event-based acquisition and processing, as it aimed for a gesture
recognition pipeline embarked on a standard smartphone. This resulted in
a pioneering step in mobile vision-based dynamic gesture recognition. All
methods and concepts presented in this thesis are event-driven, being either
semi-accumulative or non-accumulative. They constitute a demonstration
that it is possible to develop efficient computer vision and machine learning
techniques that are event-based and do not rely on the typical frame-based
paradigm when considering dynamic data. The ECOMODE smartphone
is a blatant example: along with the gesture recognition, the system allows
dynamic background suppression. This could not be carried out using a con-
ventional frame-based approach – at least not with the available resources –
even with OpenCV libraries optimized for Android. This thesis must not be
mistaken as a pamphlet against frame-based processing, that has achieved
significant milestones, even surpassing human performance in some tasks.
But frame-based techniques are suited for static data. As for machine learn-
ing, we showed that when using features that truly encode the dynamics,
it is possible to outperform very sophisticated architectures that rely on un-
suited "static" features and require an extravagant number of examples to
be trained. Also, we demonstrated with the Motion-based Feature that it
was possible to detect static properties, in our case corners, using dynamical
information.

Event-based sensing and processing is antagonistic to the frame-based ap-
proach in several ways, and the idea to distribute computing task along
the different components of the system is primordial. The proposed mem-
ory allows to perform computation on the stream of events. In a first step,
this memory could be added to standard PCs as an improvement for run-
ning event-based algorithms. But then, if the philosophy behind event-based
processing is that the computation should be distributed across the system,
why should such systems be implemented on a von Neumann architecture,
which is not known for being very efficient at massively parallel process-
ing? A fully distributed approach, where each unit of the system performs
an incremental part of the total computation, is a promising path for over-
coming memory and processing bottlenecks. This would require a highly

85

86 discussion & conclusion

parallel computational architecture, able to preserve the precise timing of
events as they flow through small processing units. Our laboratory devel-
oped a parallel and non-von Neumman computational architecture: the Spike
Time Interval Computational Kernel (STICK) [111], that encodes values as
the time interval between two events. It is a radical proposal for neuromor-
phic computation as it totally intertwines memory and computation in this
fully time-based approach, making no distinct partitioning between the two.
Since this architecture makes full use of the precise timing of events, while
operating in an asynchronous manner, making it a possible candidate for a
yet-to-build general purpose event-based computer.

The design of non-accumulative methods and semi-accumulative algo-
rithms, is at the core of numerous recent event-based methods, including
those presented in this work. But as for now, most event-based algorithms do
run on standard PCs, and events are received from the camera through USB-
like buses. In order to prove the superiority of the event-based paradigm
in tasks involving dynamic data, and in the absence of widely accessible
neuromorphic hardware, event-based algorithms must be designed to run
as efficiently as possible on standard computers. In this context, events
are received and processed in a sequential and ordered manner and this
is the reason why semi-accumulative methods are prone to partial- and over-
processing. More explicitly, as semi-accumulative methods are triggered by
each new incoming event, they will process a local neighborhood, and they
will be triggered again when another event happens in this neighborhood.
The local neighborhood will hence be processed again, with only one more
event. This asks if that neighborhood should have been processed at the
first event: if not, it resulted in partial-processing as the available informa-
tion was still "incomplete". The same can be asked at the second event, and
if the answer is no, then over-processing occurred, resulting in redundant
information. This is why some algorithmic aspects of semi-accumulative
methods have to be further investigated. In fact, this current issue in semi-
accumulative methods can be seen as a sampling problem: the algorithm
"samples" the stream of events, which asks the question whether each new
event should trigger the full processing pipeline? Such asynchronous sam-
pling lacks a theoretical background, and is still looking for its equivalents
of Shannon and Nyquist theorems. There is hence a need for a framework
that would, in a first step, allow to systematically assess partial- and over-
processing that can occur in semi-accumulative methods, and would be an
interesting basis to improve these techniques.

Time-surfaces and HOTS-like hierarchical models have been an important
part of this Ph.D. work. In these models, higher layers in the hierarchy
encode more and more sophisticated patterns. This means that one event
can represent multiple events from the previous layer. Partial- and over-
processing are currently major limitations. Because of over-processing, the
model outputs several similar events to encode the same stimulus. This
translate in redundant information at the input of the next layer. Because
of partial-processing, the model outputs several events that encode "incom-
plete" information (which is also an issue during learning, as it makes the
model learn "incomplete" patterns). These two issues prevent layers to out-
put a sparser stream of events, preventing a more and more compressed

discussion & conclusion 87

representation of the visual scene in higher-level layers. We proposed a first
heuristic based on the "completeness" of time-surfaces. A coarser approach
could be the deletion of older events that have already been processed and
used in a time-surface. Further solutions could include an inhibitory mecha-
nism that would prevent the immediate extraction of a second time-surface.

Maybe some of these issues will be inherently solved by future highly
parallel event-based hardware, as events that happen will be all transmitted
and processed in parallel, instead of sequentially as it is currently the case.
All events’ information would be merged at some higher level in the system,
and it would dismiss the need for the construction of an artificial neighbor-
hood at each new event like in semi-accumulative methods. The next chal-
lenge for event-based processing will be to fundamentally transform these
algorithms, which are adapted for sequential processing, to dedicated fully
parallel neuromorphic hardware, making sure to remove the bricks that be-
long to the old paradigm. As more and more neuromorphic chips are being
developed by big industrial players, such as IBM’s TrueNorth or Intel’s Loihi,
dedicated neuromorphic hardware could become widely available in a fore-
seeable future. This also sends a clear signal that neuromorphic computing
is a promising path.

Lastly, the ECOMODE project punctuated this Ph.D. work, and I am
pleased that we could deliver a working smartphone prototype with its ges-
ture recognition module. This prototype still need improvement, notably
in areas such as the gesture segmentation. This is currently done by using
an activity threshold, but by adding information received from the Inertial
Measurement Unit (IMU) of the smartphone, the robustness could be greatly
increased, especially against jerky movements. However, the prototype was
well received by its targeted end-users, and more specifically the elderly.

B I B L I O G R A P H Y

[1] Thomas P Hughes. “Technological momentum”. In: The social con-
struction of technological systems: New directions in the sociology and his-
tory of technology (1987).

[2] P Lichtsteiner, C Posch, and T Delbrück. “A 128 x 128 120 dB 15 us
Latency Asynchronous Temporal Contrast Vision Sensor”. In: IEEE
Journal of Solid-State Circuits 43.2 (Feb. 2008), pp. 566–576. issn: 0018-
9200. doi: 10.1109/JSSC.2007.914337.

[3] C Posch, D Matolin, and R Wohlgenannt. “A QVGA 143 dB Dy-
namic Range Frame-Free PWM Image Sensor With Lossless Pixel-
Level Video Compression and Time-Domain CDS”. In: IEEE Journal
of Solid-State Circuits 46.1 (2011), pp. 259–275. issn: 0018-9200. doi:
10.1109/JSSC.2010.2085952.

[4] B. Son et al. “A 640x480 dynamic vision sensor with a 9µm pixel and
300Meps address-event representation”. In: 2017 IEEE International
Solid-State Circuits Conference (ISSCC). Feb. 2017, pp. 66–67. doi: 10.
1109/ISSCC.2017.7870263.

[5] Alexandre Marcireau et al. “Event-Based Color Segmentation With
a High Dynamic Range Sensor”. In: Frontiers in Neuroscience 12 (Feb.
2018). doi: 10.3389/fnins.2018.00135.

[6] Guang Chen et al. “FLGR: Fixed length GISTS representation learn-
ing for RNN-HMM hybrid-based neuromorphic continuous gesture
recognition”. In: Frontiers in neuroscience 13 (2019), p. 73.

[7] Xavier Lagorce et al. “Hots: a hierarchy of event-based time-surfaces
for pattern recognition”. In: IEEE transactions on pattern analysis and
machine intelligence 39.7 (2016), pp. 1346–1359.

[8] R. Benosman et al. “Event-Based Visual Flow”. In: IEEE Transactions
on Neural Networks and Learning Systems 25.2 (Feb. 2014), pp. 407–417.
issn: 2162-237X. doi: 10.1109/TNNLS.2013.2273537.

[9] Yijing Watkins et al. “Sparse coding enables the reconstruction of
high-fidelity images and video from retinal spike trains”. In: Proceed-
ings of the International Conference on Neuromorphic Systems. 2018, pp. 1–
5.

[10] Lin Wang, Yo-Sung Ho, Kuk-Jin Yoon, et al. “Event-based high dy-
namic range image and very high frame rate video generation us-
ing conditional generative adversarial networks”. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. 2019,
pp. 10081–10090.

[11] Cedric Scheerlinck et al. “Fast image reconstruction with an event
camera”. In: The IEEE Winter Conference on Applications of Computer
Vision. 2020, pp. 156–163.

89

https://doi.org/10.1109/JSSC.2007.914337
https://doi.org/10.1109/JSSC.2010.2085952
https://doi.org/10.1109/ISSCC.2017.7870263
https://doi.org/10.1109/ISSCC.2017.7870263
https://doi.org/10.3389/fnins.2018.00135
https://doi.org/10.1109/TNNLS.2013.2273537

90 bibliography

[12] Timo Stoffregen et al. “How to Train Your Event Camera Neural Net-
work”. In: arXiv preprint arXiv:2003.09078 (2020).

[13] Arnon Amir et al. “A low power, fully event-based gesture recogni-
tion system”. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 2017, pp. 7243–7252.

[14] Rohan Ghosh et al. “Spatiotemporal Filtering for Event-Based Action
Recognition”. In: arXiv preprint arXiv:1903.07067 (2019).

[15] Alex Zihao Zhu et al. “EV-FlowNet: Self-supervised optical flow esti-
mation for event-based cameras”. In: arXiv preprint arXiv:1802.06898
(2018).

[16] Chengxi Ye et al. “Unsupervised learning of dense optical flow, depth
and egomotion from sparse event data”. In: arXiv preprint arXiv:1809.08625
(2018).

[17] R. Ghosh et al. “Real-time object recognition and orientation estima-
tion using an event-based camera and CNN”. In: 2014 IEEE Biomedi-
cal Circuits and Systems Conference (BioCAS) Proceedings. 2014, pp. 544–
547.

[18] Aaron Chadha et al. “Neuromorphic Vision Sensing for CNN-based
Action Recognition”. In: ICASSP 2019-2019 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2019,
pp. 7968–7972.

[19] Diederik Paul Moeys et al. “Steering a predator robot using a mixed
frame/event-driven convolutional neural network”. In: 2016 Second
International Conference on Event-based Control, Communication, and Sig-
nal Processing (EBCCSP). IEEE. 2016, pp. 1–8.

[20] Joubert Damien, Konik Hubert, and Chausse Frederic. “Convolutional
Neural Network for Detection and Classification with Event-based
Data”. In: (2019).

[21] R Baldwin et al. “Event Probability Mask (EPM) and Event Denoising
Convolutional Neural Network (EDnCNN) for Neuromorphic Cam-
eras”. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 2020, pp. 1701–1710.

[22] Thomas S Kuhn. The structure of scientific revolutions. University of
Chicago press, 1962.

[23] Christoph Posch, Daniel Matolin, and Rainer Wohlgenannt. “A QVGA
143 dB dynamic range frame-free PWM image sensor with lossless
pixel-level video compression and time-domain CDS”. In: IEEE Jour-
nal of Solid-State Circuits 46.1 (2011), pp. 259–275.

[24] David Reverter Valeiras et al. “An asynchronous neuromorphic event-
driven visual part-based shape tracking”. In: IEEE transactions on neu-
ral networks and learning systems 26.12 (2015), pp. 3045–3059.

[25] David Reverter Valeiras et al. “Event-Based Line Fitting and Segment
Detection Using a Neuromorphic Visual Sensor”. In: IEEE transactions
on neural networks and learning systems 30.4 (2018), pp. 1218–1230.

bibliography 91

[26] Xavier Lagorce et al. “Asynchronous event-based multikernel algo-
rithm for high-speed visual features tracking”. In: IEEE transactions
on neural networks and learning systems 26.8 (2014), pp. 1710–1720.

[27] Elias Mueggler, Basil Huber, and Davide Scaramuzza. “Event-based,
6-DOF pose tracking for high-speed maneuvers”. In: 2014 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE. 2014,
pp. 2761–2768.

[28] Xavier Clady et al. “A Motion-Based Feature for Event-Based Pattern
Recognition”. In: Frontiers in neuroscience 10 (2017), p. 594.

[29] Jacques Manderscheid et al. “Speed invariant time surface for learn-
ing to detect corner points with event-based cameras”. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. 2019,
pp. 10245–10254.

[30] Bharath Ramesh et al. “Dart: distribution aware retinal transform for
event-based cameras”. In: IEEE transactions on pattern analysis and ma-
chine intelligence (2019).

[31] Saeed Afshar et al. “Investigation of event-based surfaces for high-
speed detection, unsupervised feature extraction, and object recogni-
tion”. In: Frontiers in neuroscience 12 (2019), p. 1047.

[32] K. Mikolajczyk and C. Schmid. “A performance evaluation of local
descriptors”. In: IEEE Transactions on Pattern Analysis and Machine In-
telligence 27.10 (2005), 1615–Ð1630.

[33] I. Laptev. “On Space-Time Interest Points”. In: International Journal of
Computer Vision 64.2/3 (2005), pp. 107–123.

[34] F. Mokhtarian and F. Mohanna. “Performance evaluation of corner
detectors using consistency and accuracy measureness”. In: Comput.
Vis. Image Understand. 102.1 (2006), 81–Ð94.

[35] P. Moreels and P. Perona. “Evaluation of features detectors and de-
scriptors based on 3D objects”. In: International Journal of Computer
Vision 73.3 (2007), pp. 263–284.

[36] Arturo Gil et al. “A comparative evaluation of interest point detec-
tors and local descriptors for visual SLAM”. In: Machine Vision and
Applications 21.6 (2010), pp. 905–920.

[37] Steffen Gauglitz, Tobias Höllerer, and Matthew Turk. “Evaluation of
Interest Point Detectors and Feature Descriptors for Visual Tracking”.
In: International Journal of Computer Vision 94 (2011), pp. 335–360.

[38] Timo Dickscheid, Falko Schindler, and Wolfgang Förstner. “Coding
Images with Local Features”. In: International Journal of Computer Vi-
sion 94.2 (2011), pp. 154–174.

[39] Tobi Delbrück et al. “Activity-driven, event-based vision sensors”. In:
Proceedings of 2010 IEEE International Symposium on Circuits and Sys-
tems. IEEE. 2010, pp. 2426–2429.

[40] Christoph Posch. “Bioinspired vision sensing”. In: Biologically Inspired
Computer Vision. Wiley Online Library, 2015, pp. 11–28.

92 bibliography

[41] C. Posch, D. Matolin, and R. Wohlgenannt. “High-DR frame-free PWM
imaging with asynchronous AER intensity encoding and focal-plane
temporal redundancy suppression”. In: Proceedings of 2010 IEEE Inter-
national Symposium on Circuits and Systems (ISCAS). May 2010, pp. 2430–
2433. doi: 10.1109/ISCAS.2010.5537150.

[42] P. Lichtsteiner, C. Posch, and T. Delbruck. “A 128*128 120dB 15us la-
tency asynchronous temporal contrast vision sensor”. In: IEEE Journal
of Solid State Circuits 43.2 (2008), pp. 566–576.

[43] T. Serrano-Gotarredona and B. Linares-Barranco. “A 128x128 1.5% 20

Contrast Sensitivity 0.9% 20 FPN 3 μs Latency 4 mW Asynchronous
Frame-Free Dynamic Vision Sensor Using Transimpedance Preampli-
fiers”. In: IEEE Journal of Solid-State Circuits 48.3 (Mar. 2013), pp. 827–
838. issn: 0018-9200. doi: 10.1109/JSSC.2012.2230553.

[44] Thibaud Debaecker, Ryad Benosman, and Sio H Ieng. “Image Sensor
Model Using Geometric Algebra: From Calibration to Motion Estima-
tion”. In: Geometric Algebra Computing (2010), pp. 277–297.

[45] Andrea Censi et al. “Low-latency localization by Active LED Markers
tracking using a Dynamic Vision Sensor”. In: Intelligent Robots and
Systems (IROS), 2013 IEEE/RSJ International Conference on. IEEE. 2013,
pp. 891–898.

[46] Tobi Delbruck and Manuel Lang. “Robotic goalie with 3 ms reaction
time at 4% CPU load using event-based dynamic vision sensor”. In:
Frontiers in neuroscience 7 (2013), p. 223.

[47] Xavier Lagorce, Sio-Hoi Ieng, and Ryad Benosman. “Event-based fea-
tures for robotic vision”. In: Intelligent Robots and Systems (IROS), 2013
IEEE/RSJ International Conference on. IEEE. 2013, pp. 4214–4219.

[48] Xavier Clady et al. “Asynchronous visual event-based time-to-contact”.
In: Frontiers in neuroscience 8 (2014).

[49] Zhenjiang Ni et al. Haptic Feedback Teleoperation of Optical Tweezers.
John Wiley and Sons, 2014.

[50] Moritz Milde et al. “Bioinspired event-driven collision avoidance al-
gorithm based on optic flow”. In: Event-based Control, Communication,
and Signal Processing (EBCCSP). Krakow, June 2015. doi: 10.1109/
EBCCSP.2015.7300673.

[51] David Drazen et al. “Toward real-time particle tracking using an
event-based dynamic vision sensor”. In: Experiments in Fluids 51.5
(2011), pp. 1465–1469.

[52] Zhenjiang Ni et al. “Visual Tracking Using Neuromorphic Asynchronous
Event-Based Cameras”. In: Neural Computation 20.4 (2015), pp. 1–29.

[53] Paul Rogister et al. “Asynchronous Event-Based Binocular Stereo Match-
ing”. In: Neural Networks and Learning Systems, IEEE Transactions on
23.2 (2012), pp. 347–353.

[54] Joao Carneiro et al. “Event-based 3D reconstruction from neuromor-
phic retinas”. In: Neural Networks 45 (Sept. 2013), pp. 27–38.

https://doi.org/10.1109/ISCAS.2010.5537150
https://doi.org/10.1109/JSSC.2012.2230553
https://doi.org/10.1109/EBCCSP.2015.7300673
https://doi.org/10.1109/EBCCSP.2015.7300673

bibliography 93

[55] L. A. Camuas-Mesa et al. “On the use of orientation filters for 3D
reconstruction in event-driven stereo vision”. In: Frontiers in neuro-
science 8 (2014).

[56] M. Firouzi and J. Conradt. “Asynchronous Event-based Cooperative
Stereo Matching Using Neuromorphic Silicon Retinas”. In: Neural Pro-
cessing Letters (2015), pp. 1–16.

[57] Xavier Clady, Sio-Hoi Ieng, and Ryad Benosman. “Asynchronous
event-based corner detection and matching”. In: Neural Networks 66

(2015), pp. 91–106.

[58] J. Perez-Carrasco et al. “Mapping from frame-driven to frame-free
event-driven vision systems by low-rate rate coding and coincidence
processing - application to feedforward convnets”. In: Pattern Analysis
and Machine Intelligence, IEEE Transactions on 35.11 (2013), pp. 2706–
2719.

[59] Garrick Orchard et al. “HFirst: A Temporal Approach to Object Recog-
nition”. In: Pattern Analysis and Machine Intelligence, IEEE Transactions
on 37.10 (2015).

[60] Himanshu Akolkar et al. “What can neuromorphic event-driven pre-
cise timing add to spike-based pattern recognition?” In: Neural com-
putation 27.3 (2015), pp. 561–93.

[61] Garrick Orchard et al. “Real-time event-driven spiking neural net-
work object recognition on the SpiNNaker platform”. In: Circuits and
Systems (ISCAS), 2015 IEEE International Symposium on. IEEE. 2015,
pp. 2413–2416.

[62] Jun Haeng Lee, Tobi Delbruck, and Michael Pfeiffer. “Training Deep
Spiking Neural Networks using Backpropagation”. In: Frontiers in
Neuroscience; Neuromorphic Engineering (Nov. 2016).

[63] Jun Haeng Lee et al. “Real-time gesture interface based on event-
driven processing from stereo silicon retinas”. In: Neural Networks and
Learning Systems, IEEE Transactions on 25.12 (2014), pp. 2250–2263.

[64] Xavier Lagorce et al. “Asynchronous event-based multikernel algo-
rithm for high-speed visual features tracking”. In: Transactions on Neu-
ral Networks and Learning Systems (2014).

[65] Elias Mueggler et al. “Towards evasive maneuvers with quadrotors
using dynamic vision sensors”. In: Mobile Robots (ECMR), 2015 Euro-
pean Conference on. IEEE. 2015, pp. 1–8.

[66] Ryad Benosman et al. “Event-based visual flow”. In: Neural Networks
and Learning Systems, IEEE Transactions on 25.2 (2014), pp. 407–417.

[67] Garrick Orchard and Ralph Etienne-Cummings. “Bioinspired Visual
Motion Estimation”. In: Proceedings of the IEEE 102.10 (2014), pp. 1520–
1536.

[68] Tobias Brosch, Stephan Tschechne, and Heiko Neumann. “On event-
based optical flow detection”. In: Frontiers in neuroscience 9 (2015).

94 bibliography

[69] Elias Mueggler et al. “Lifetime estimation of events from Dynamic
Vision Sensors”. In: 2015 IEEE International Conference on Robotics and
Automation (ICRA). IEEE. 2015, pp. 4874–4881.

[70] David H Hubel and Torsten N Wiesel. “Receptive fields, binocular
interaction and functional architecture in the cat’s visual cortex”. In:
The Journal of physiology 160.1 (1962), pp. 106–154.

[71] David H Hubel and Torsten N Wiesel. “Receptive fields and func-
tional architecture of monkey striate cortex”. In: The Journal of physiol-
ogy 195.1 (1968), pp. 215–243.

[72] NJ Priebe, SG Lisberger, and JA Movshon. “Tuning for spatiotempo-
ral frequency and speed in directionally selective neurons of macaque
striate cortex”. In: J Neurosci 26 (2006), pp. 2941–2950.

[73] G. A. Orban, J. de Wolf, and H. Maes. “Factors influencing velocity
coding in the human visual system”. In: Vision research 24.1 (1984),
pp. 33–39.

[74] S. Kime et al. “Exploring speed discrimination of visual stimuli at a
high frame rate”. In: Annual Meeting of the Society For Neuroscience(SFN).
2014.

[75] Sihem Kime et al. “Psychophysical assessment of perceptual perfor-
mance with varying display frame rates”. In: Journal of Display Tech-
nology 12.11 (2016), pp. 1372–1382.

[76] MCW. van Rossum. “A novel spike distance”. In: Neural Comput 13

(2001), pp. 751–763.

[77] S. Schreiber et al. “A new correlation based measure of spike timing
reliability”. In: Neurocomputing 52 (2003), pp. 925–931.

[78] Wyeth Bair and J. Anthony Movshon. “Adaptive Temporal Integra-
tion of Motion in Direction-Selective Neurons in Macaque Visual Cor-
tex”. In: The Journal of Neuroscience 24.33 (2004), pp. 7305–7323.

[79] Wulfram Gerstner and Werner M Kistler. Spiking neuron models: Single
neurons, populations, plasticity. Cambridge university press, 2002.

[80] Seung Park et al. “Image Corner Detection Using Radon Transform”.
In: Computational Science and Its Applications. Ed. by Antonio Lagano
et al. Vol. 3046. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2004, pp. 948–955. isbn: 978-3-540-22060-2.

[81] H. Moravec. Obstacle avoidance and navigation in the real world by a see-
ing robot rover. Tech. rep. CMU-RI-TR-80-03, Robotics Institute, Carnegie
Mellon University and doctoral dissertation, Stanford University, 1980.

[82] F. Mokhtarian and R. Suomela. “Robust image corner detection through
curvature scale space”. In: IEEE Trans on Pattern Analysis and Machine
Intelligence 20.12 (1998), pp. 1376–1381.

[83] C. Harris and M. Stephens. “A combined corner and edge detection”.
In: IEEE Trans. Pattern Anal. Mach. Intell. (1988), pp. 147–151.

[84] E. Rosten and T. Drummond. “Machine learning for high-speed cor-
ner detection”. In: European Conference on Computer Vision. Vol. 1. 2006,
430–Ð443.

bibliography 95

[85] E. Adelson and J. Movshon. “Phenomenal coherence of moving vi-
sual patterns”. In: Nature 200.5892 (Dec. 1982), pp. 523–525.

[86] J.A. Noble. “Finding corners”. In: Image Vision Computing 6.2 (1988),
pp. 121–128.

[87] Andrzej Cichocki and Rolf Unbehauen. “Neural networks for solving
systems of linear equations and related problems”. In: IEEE Transac-
tions on Circuits and Systems I: Fundamental Theory and Applications 39.2
(1992), pp. 124–138.

[88] Steve Furber et al. “Overview of the spinnaker system architecture”.
In: IEEE Transactions on Computers 62.12 (Dec. 2013), pp. 2454–2467.

[89] Nicol N Schraudolph. “A fast, compact approximation of the expo-
nential function”. In: Neural Computation 11.4 (1999), pp. 853–862.

[90] Gavin C Cawley. “On a fast, compact approximation of the exponen-
tial function”. In: Neural computation 12.9 (2000), pp. 2009–2012.

[91] Thomas B. Moeslund, Adrian Hilton, and Volker Kruger. “A survey
of advances in vision-based human motion capture and analysis”.
In: Computer Vision and Image Understanding. Special Issue on Mod-
eling People: Vision-based understanding of a person’ s shape, ap-
pearance, movement and behaviour 104.2–3 (Nov. 2006), pp. 90–126.
issn: 1077-3142. doi: 10.1016/j.cviu.2006.08.002. url: http://
www.sciencedirect.com/science/article/pii/S1077314206001263

(visited on 05/11/2015).

[92] Ronald Poppe. “Vision-based Human Motion Analysis: An Overview”.
In: Comput. Vis. Image Underst. 108.1–2 (Oct. 2007), pp. 4–18. issn:
1077-3142. doi: 10.1016/j.cviu.2006.10.016. url: http://dx.
doi.org/10.1016/j.cviu.2006.10.016 (visited on 05/11/2015).

[93] Ronald Poppe. “A survey on vision-based human action recognition”.
In: Image and vision computing 28.6 (2010), pp. 976–990.

[94] Huiyu Zhou and Huosheng Hu. “Human motion tracking for rehabil-
itation’s survey”. In: Biomedical Signal Processing and Control 3.1 (2008),
pp. 1–18.

[95] Jungong Han et al. “Enhanced Computer Vision with Microsoft Kinect
Sensor: A Review”. In: IEEE Transactions on cybernetics 43.5 (2013),
pp. 1318–1334.

[96] J Panaıté et al. “An experimental study of the Kinect’s depth sensor”.
In: IEEE International Symposium on Robotic and Sensors Environment.
2011.

[97] Camille Simon-Chane et al. “Event-based tone mapping for Asyn-
chronous Time-based Image Sensor”. In: Frontiers in Neuroscience; Neu-
romorphic Engineering (2016).

[98] Julia A Lasserre, Christopher M Bishop, and Thomas P Minka. “Prin-
cipled hybrids of generative and discriminative models”. In: 2006
IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition (CVPR’06). Vol. 1. IEEE. 2006, pp. 87–94.

https://doi.org/10.1016/j.cviu.2006.08.002
http://www.sciencedirect.com/science/article/pii/S1077314206001263
http://www.sciencedirect.com/science/article/pii/S1077314206001263
https://doi.org/10.1016/j.cviu.2006.10.016
http://dx.doi.org/10.1016/j.cviu.2006.10.016
http://dx.doi.org/10.1016/j.cviu.2006.10.016

96 bibliography

[99] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic robotics.
MIT Press, 2008.

[100] Rizwan Chaudhry et al. “Histograms of oriented optical flow and
binet-cauchy kernels on nonlinear dynamical systems for the recog-
nition of human actions”. In: Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on. IEEE. 2009, pp. 1932–1939.

[101] Yoav Freund, Robert E Schapire, et al. “Experiments with a new
boosting algorithm”. In: Icml. Vol. 96. 1996, pp. 148–156.

[102] Robert E Schapire et al. “Boosting the margin: A new explanation
for the effectiveness of voting methods”. In: Annals of statistics (1998),
pp. 1651–1686.

[103] Alex D Holub, Max Welling, and Pietro Perona. “Combining genera-
tive models and fisher kernels for object recognition”. In: Tenth IEEE
International Conference on Computer Vision (ICCV’05) Volume 1. Vol. 1.
IEEE. 2005, pp. 136–143.

[104] Pablo Negri et al. “A cascade of boosted generative and discrimina-
tive classifiers for vehicle detection”. In: EURASIP Journal on Advances
in Signal Processing 2008 (2008), p. 136.

[105] Xiao Wang, Xavier Clady, and Consuelo Granata. “A human detec-
tion system for proxemics interaction”. In: Proceedings of the 6th in-
ternational conference on Human-robot interaction. ACM. 2011, pp. 285–
286.

[106] Lionel Prevost et al. “Hybrid generative/discriminative classifier for
unconstrained character recognition”. In: Pattern Recognition Letters
26.12 (2005), pp. 1840–1848.

[107] Helmut Grabner, Peter M Roth, and Horst Bischof. “Eigenboosting:
Combining discriminative and generative information”. In: 2007 IEEE
Conference on Computer Vision and Pattern Recognition. IEEE. 2007, pp. 1–
8.

[108] Thomas Deselaers, Georg Heigold, and Hermann Ney. “SVMs, Gaus-
sian mixtures, and their generative/discriminative fusion”. In: Pat-
tern Recognition, 2008. ICPR 2008. 19th International Conference on. IEEE.
2008, pp. 1–4.

[109] Jinjun Wang et al. “Discriminative and generative vocabulary tree:
With application to vein image authentication and recognition”. In:
Image and Vision Computing 34 (2015), pp. 51–62.

[110] Yushi Jing, Vladimir Pavlović, and James M Rehg. “Boosted Bayesian
network classifiers”. In: Machine Learning 73.2 (2008), pp. 155–184.

[111] Xavier Lagorce and Ryad Benosman. “Stick: Spike time interval com-
putational kernel, a framework for general purpose computation us-
ing neurons, precise timing, delays, and synchrony”. In: Neural com-
putation 27.11 (2015), pp. 2261–2317.

[112] Navneet Dalal and Bill Triggs. “Histograms of oriented gradients
for human detection”. In: 2005 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’05). Vol. 1. IEEE. 2005,
pp. 886–893.

bibliography 97

[113] Martin Lades et al. “Distortion invariant object recognition in the dy-
namic link architecture”. In: IEEE Transactions on computers 42.3 (1993),
pp. 300–311.

[114] Anil K Jain, Nalini K Ratha, and Sridhar Lakshmanan. “Object detec-
tion using Gabor filters”. In: Pattern Recognition 30.2 (1997), pp. 295–
309.

[115] Michael Lyons et al. “Coding facial expressions with gabor wavelets”.
In: Automatic Face and Gesture Recognition, 1998. Proceedings. Third IEEE
International Conference on. IEEE. 1998, pp. 200–205.

[116] Aapo Hyvarinen, Jarmo Hurri, and Patrick O. Hoyer. Natural Image
Statistics: a probabilistic approach to early computational vision. Springer,
2009.

[117] Thusitha N Chandrapala and Bertram E Shi. “Invariant feature ex-
traction from event based stimuli”. In: arXiv preprint arXiv:1604.04327
(2016).

[118] Claudette Cedras and Mubarak Shah. “Motion-based recognition: a
survey”. In: Image and Vision Computing 13.2 (1995), pp. 129–155.

[119] Md. Atique Rahman Abad et al. “Motion history image: its variants
and applications”. In: Machine Vision and Applications (2010).

[120] Jean-Matthieu Maro et al. “Event-based Visual Gesture Recognition
with Background Suppression running on a smart-phone”. In: 2019
14th IEEE International Conference on Automatic Face & Gesture Recogni-
tion (FG 2019). IEEE. 2019, pp. 1–1.

[121] Garrick Orchard et al. “Converting static image datasets to spiking
neuromorphic datasets using saccades”. In: Frontiers in neuroscience 9

(2015), p. 437.

[122] Teresa Serrano-Gotarredona and Bernabé Linares-Barranco. “Poker-
DVS and MNIST-DVS. Their history, how they were made, and other
details”. In: Frontiers in neuroscience 9 (2015), p. 481.

[123] Amos Sironi et al. “HATS: Histograms of averaged time surfaces for
robust event-based object classification”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2018, pp. 1731–
1740.

[124] Yin Bi et al. “Graph-Based Object Classification for Neuromorphic
Vision Sensing”. In: Proceedings of the IEEE International Conference on
Computer Vision. 2019, pp. 491–501.

[125] Pramod Kumar Pisharady and Martin Saerbeck. “Recent methods
and databases in vision-based hand gesture recognition: A review”.
In: Computer Vision and Image Understanding 141 (2015), pp. 152–165.

[126] Maryam Asadi-Aghbolaghi et al. “A survey on deep learning based
approaches for action and gesture recognition in image sequences”.
In: 2017 12th IEEE international conference on automatic face & gesture
recognition (FG 2017). IEEE. 2017, pp. 476–483.

98 bibliography

[127] Kunwar Aditya et al. “Recent Trends in HCI: A survey on Data Glove,
LEAP Motion and Microsoft Kinect”. In: 2018 IEEE International Con-
ference on System, Computation, Automation and Networking, ICSCA 2018
(2018), pp. 1–5. doi: 10.1109/ICSCAN.2018.8541163.

[128] Zhengjie Wang et al. “Hand Gesture Recognition Based on Active Ul-
trasonic Sensing of Smartphone: A Survey”. In: IEEE Access 7 (2019),
pp. 111897–111922.

[129] Thomas Deselaers et al. “GyroPen: Gyroscopes for pen-input with
mobile phones”. In: IEEE Transactions on Human-Machine Systems 45.2
(2015), pp. 263–271. issn: 21682291. doi: 10.1109/THMS.2014.2365723.
url: https://ieeexplore.ieee.org/abstract/document/6975206/.

[130] Hari Prabhat Gupta et al. “A Continuous Hand Gestures Recognition
Technique for Human-Machine Interaction Using Accelerometer and
Gyroscope Sensors”. In: IEEE Sensors Journal (2016). issn: 1530437X.
doi: 10.1109/JSEN.2016.2581023.

[131] Chunyu Xie et al. Deep Fisher Discriminant Learning for Mobile Hand
Gesture Recognition. Tech. rep. 2017. arXiv: 1707.03692v1.

[132] Heng-Tze Cheng et al. “Contactless gesture recognition system using
proximity sensors”. In: Consumer Electronics (ICCE), 2011 IEEE Inter-
national Conference on. IEEE. 2011, pp. 149–150.

[133] Eun Ji Kim and Tae Ho Kang. Mobile device having proximity sensor and
gesture based user interface method thereof. US Patent App. 12/814,809.
June 2010.

[134] Jae Yeon Won et al. “Proximity sensing based on a dynamic vision
sensor for mobile devices”. In: IEEE Transactions on Industrial Electron-
ics 62.1 (2015), pp. 536–544. issn: 02780046. doi: 10.1109/TIE.2014.
2334667.

[135] Lih Jen Kau et al. “A real-time portable sign language translation
system”. In: Midwest Symposium on Circuits and Systems. 2015. isbn:
9781467365574. doi: 10.1109/MWSCAS.2015.7282137.

[136] Bryce Kellogg, Vamsi Talla, and Shyamnath Gollakota. “Bringing Ges-
ture Recognition to All Devices.” In: NSDI. Vol. 14. 2014, pp. 303–316.

[137] Tomás Vega Gálvez et al. “Byte.it: Discreet teeth gestures for mobile
device interaction”. In: Conference on Human Factors in Computing Sys-
tems - Proceedings (2019), pp. 1–6. doi: 10.1145/3290607.3312925.

[138] Biplab Ketan Chakraborty et al. Review of constraints on vision-based
gesture recognition for human-computer interaction. 2018. doi: 10.1049/
iet-cvi.2017.0052. url: https://doi.org/10.1049/iet-cvi.2017.
0052.

[139] Houssem Lahiani, Monji Kherallah, and Mahmoud Neji. “Vision based
hand gesture recognition for mobile devices: A review”. In: Advances
in Intelligent Systems and Computing 552.His (2017), pp. 308–318. issn:
21945357. doi: 10.1007/978-3-319-52941-7_31.

https://doi.org/10.1109/ICSCAN.2018.8541163
https://doi.org/10.1109/THMS.2014.2365723
https://ieeexplore.ieee.org/abstract/document/6975206/
https://doi.org/10.1109/JSEN.2016.2581023
https://arxiv.org/abs/1707.03692v1
https://doi.org/10.1109/TIE.2014.2334667
https://doi.org/10.1109/TIE.2014.2334667
https://doi.org/10.1109/MWSCAS.2015.7282137
https://doi.org/10.1145/3290607.3312925
https://doi.org/10.1049/iet-cvi.2017.0052
https://doi.org/10.1049/iet-cvi.2017.0052
https://doi.org/10.1049/iet-cvi.2017.0052
https://doi.org/10.1049/iet-cvi.2017.0052
https://doi.org/10.1007/978-3-319-52941-7_31

bibliography 99

[140] Sakher Ghanem, Christopher Conly, and Vassilis Athitsos. “A sur-
vey on sign language recognition using smartphones”. In: ACM In-
ternational Conference Proceeding Series. 2017. isbn: 9781450352277. doi:
10.1145/3056540.3056549. url: http://dx.doi.org/10.1145/
3056540.3056549.

[141] G. Ananth Rao and P. V.V. Kishore. “Sign language recognition sys-
tem simulated for video captured with smart phone front camera”.
In: International Journal of Electrical and Computer Engineering (2016).
issn: 20888708. doi: 10.11591/ijece.v6i5.11384.

[142] Bryan G. Dadiz, John Michael B. Abrasia, and Jeezelle L. Jimenez.
In: 2017 IEEE 2nd International Conference on Signal and Image Process-
ing, ICSIP 2017. Vol. 2017-Janua. Institute of Electrical and Electron-
ics Engineers Inc., Nov. 2017, pp. 30–34. isbn: 9781538609682. doi:
10.1109/SIPROCESS.2017.8124500.

[143] Cheok Ming Jin, Zaid Omar, and Mohamed Hisham Jaward. “A mo-
bile application of American sign language translation via image
processing algorithms”. In: Proceedings - 2016 IEEE Region 10 Sym-
posium, TENSYMP 2016. 2016. isbn: 9781509009312. doi: 10.1109/
TENCONSpring.2016.7519386.

[144] Houssem Lahiani, Mohamed Elleuch, and Monji Kherallah. “Real
time hand gesture recognition system for android devices”. In: Inter-
national Conference on Intelligent Systems Design and Applications, ISDA.
2016. isbn: 9781467387095. doi: 10.1109/ISDA.2015.7489184.

[145] Ryad Benosman et al. “Event-Based Visual Flow”. In: IEEE Trans. Neu-
ral Netw. Learning Syst. (2014).

[146] Rafael Serrano-Gotarredona et al. “CAVIAR: A 45k neuron, 5M synapse,
12G connects/s AER hardware sensory–processing–learning–actuating
system for high-speed visual object recognition and tracking”. In:
IEEE Transactions on Neural Networks (2009).

[147] Z. Ni et al. “Asynchronous Event-based Visual Shape Tracking for
Stable Haptic Feedback in Microrobotics”. In: IEEE Transactions on
Robotics (2012).

[148] David Reverter Valeiras et al. “An Asynchronous Neuromorphic Event-
Driven Visual Part-Based Shape Tracking”. In: IEEE transactions on
neural networks and learning systems (2015).

[149] Sadique Sheik et al. “Spatio-temporal spike pattern classification in
neuromorphic systems”. In: Biomimetic and Biohybrid Systems. Springer,
2013.

[150] Xavier Lagorce et al. “Spatiotemporal features for asynchronous event-
based data”. In: Frontiers in neuroscience (2015).

[151] Garrick Orchard et al. “HFirst: A Temporal Approach to Object Recog-
nition”. In: TPAMI (2015).

[152] Sio-Hoi Ieng et al. “Neuromorphic Event-Based Generalized Time-
Based Stereovision”. In: Frontiers in Neuroscience 12 (2018), p. 442. issn:
1662-453X. doi: 10 . 3389 / fnins . 2018 . 00442. url: https : / / www .

frontiersin.org/article/10.3389/fnins.2018.00442.

https://doi.org/10.1145/3056540.3056549
http://dx.doi.org/10.1145/3056540.3056549
http://dx.doi.org/10.1145/3056540.3056549
https://doi.org/10.11591/ijece.v6i5.11384
https://doi.org/10.1109/SIPROCESS.2017.8124500
https://doi.org/10.1109/TENCONSpring.2016.7519386
https://doi.org/10.1109/TENCONSpring.2016.7519386
https://doi.org/10.1109/ISDA.2015.7489184
https://doi.org/10.3389/fnins.2018.00442
https://www.frontiersin.org/article/10.3389/fnins.2018.00442
https://www.frontiersin.org/article/10.3389/fnins.2018.00442

100 bibliography

[153] David Reverter Valeiras et al. “Neuromorphic event-based 3d pose
estimation”. In: Frontiers in neuroscience 9 (2016), p. 522.

[154] Jürgen Kogler, Christoph Sulzbachner, and Wilfried Kubinger. “Bio-
inspired stereo vision system with silicon retina imagers”. In: Interna-
tional Conference on Computer Vision Systems. Springer. 2009, pp. 174–
183.

[155] Elias Mueggler et al. “Lifetime estimation of events from dynamic
vision sensors”. In: 2015 IEEE international conference on Robotics and
Automation (ICRA). IEEE. 2015, pp. 4874–4881.

[156] Henri Rebecq et al. “Events-to-video: Bringing modern computer vi-
sion to event cameras”. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition. 2019, pp. 3857–3866.

[157] Bibrat Ranjan Pradhan et al. “N-HAR: A neuromorphic event-based
human activity recognition system using memory surfaces”. In: Pro-
ceedings - IEEE International Symposium on Circuits and Systems 2019-
May (2019). issn: 02714310. doi: 10.1109/ISCAS.2019.8702581.

[158] Yuhuang Hu et al. “DVS benchmark datasets for object tracking, ac-
tion recognition, and object recognition”. In: Frontiers in neuroscience
10 (2016), p. 405.

[159] Yanxiang Wang et al. “EV-Gait : Event-based Robust Gait Recognition
using Dynamic Vision Sensors”. In: Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (2019), pp. 6358–6367.

[160] A. Chadha et al. “Neuromorphic Vision Sensing for CNN-based Ac-
tion Recognition”. In: ICASSP, IEEE International Conference on Acous-
tics, Speech and Signal Processing - Proceedings (2019), pp. 7968–7972.
issn: 15206149. doi: 10.1109/ICASSP.2019.8683606.

[161] C. Cadena et al. “Past, Present, and Future of Simultaneous Localiza-
tion And Mapping: Towards the Robust-Perception Age”. In: IEEE
Transactions on Robotics 32.6 (2016), pp. 1309–1332.

[162] Guang Chen et al. “FLGR: Fixed Length Gists Representation Learn-
ing for RNN-HMM Hybrid-Based Neuromorphic Continuous Ges-
ture Recognition”. In: Frontiers in neuroscience 13 (2019).

[163] Eun Yeong Ahn et al. “Dynamic vision sensor camera based bare
hand gesture recognition”. In: 2011 IEEE Symposium On Computational
Intelligence For Multimedia, Signal And Vision Processing. IEEE. 2011,
pp. 52–59.

[164] Junhaeng Lee et al. “Live demonstration: Gesture-based remote con-
trol using stereo pair of dynamic vision sensors”. In: ISCAS 2012 -
2012 IEEE International Symposium on Circuits and Systems. 2012. doi:
10.1109/ISCAS.2012.6272144.

[165] Jun Haeng Lee et al. “Touchless hand gesture UI with instantaneous
responses”. In: Proceedings - International Conference on Image Process-
ing, ICIP (2012), pp. 1957–1960. issn: 15224880. doi: 10.1109/ICIP.
2012.6467270.

https://doi.org/10.1109/ISCAS.2019.8702581
https://doi.org/10.1109/ICASSP.2019.8683606
https://doi.org/10.1109/ISCAS.2012.6272144
https://doi.org/10.1109/ICIP.2012.6467270
https://doi.org/10.1109/ICIP.2012.6467270

bibliography 101

[166] Paul K.J. Park et al. “Gesture recognition system based on Adaptive
Resonance Theory”. In: Proceedings - International Conference on Pattern
Recognition. 2012. isbn: 9784990644109.

[167] Paul K.J. Park et al. “Computationally efficient, real-time motion recog-
nition based on bio-inspired visual and cognitive processing”. In:
Proceedings - International Conference on Image Processing, ICIP 2015-
Decem (2015), pp. 932–935. issn: 15224880. doi: 10.1109/ICIP.2015.
7350936.

[168] Bernhard Kohn et al. “Event-driven body motion analysis for real-
time gesture recognition”. In: ISCAS 2012 - 2012 IEEE International
Symposium on Circuits and Systems (2012), pp. 703–706. doi: 10.1109/
ISCAS.2012.6272132.

[169] Kyoobin Lee et al. “Four DoF gesture recognition with an event-based
image sensor”. In: 1st IEEE Global Conference on Consumer Electron-
ics 2012, GCCE 2012 (2012), pp. 293–294. doi: 10.1109/GCCE.2012.
6379606.

[170] Xavier Clady et al. “A Motion-Based Feature for Event-Based Pattern
Recognition”. In: Frontiers in neuroscience 10 (2016).

[171] Qian Liu and Steve Furber. “Real-time recognition of dynamic hand
postures on a neuromorphic system”. In: Artificial Neural Networks
(2015).

[172] Sumit Bam Shrestha and Garrick Orchard. “Slayer: Spike layer er-
ror reassignment in time”. In: Advances in Neural Information Process-
ing Systems 2018-Decem (2018), pp. 1412–1421. issn: 10495258. arXiv:
1810.08646.

[173] Jacques Kaiser, Hesham Mostafa, and Emre Neftci. “Synaptic Plastic-
ity Dynamics for Deep Continuous Local Learning (DECOLLE)”. In:
(2018). arXiv: 1811.10766. url: http://arxiv.org/abs/1811.10766.

[174] Qinyi Wang et al. “Space-time event clouds for gesture recognition:
From rgb cameras to event cameras”. In: 2019 IEEE Winter Conference
on Applications of Computer Vision (WACV). IEEE. 2019, pp. 1826–1835.

[175] Miguel Rivera-Acosta et al. “American Sign Language Alphabet Recog-
nition Using a Neuromorphic Sensor and an Artificial Neural Net-
work”. In: Sensors 17.10 (2017), p. 2176.

[176] Jia Li et al. “Adaptive temporal pooling for object detection using
dynamic vision sensor”. In: British Machine Vision Conference 2017,
BMVC 2017. 2017. isbn: 190172560X. doi: 10.5244/c.31.40.

[177] Kyu Min Kyung et al. “Background elimination method in the event
based vision sensor for dynamic environment”. In: Digest of Technical
Papers - IEEE International Conference on Consumer Electronics (2014),
pp. 119–120. issn: 0747668X. doi: 10.1109/ICCE.2014.6775934.

[178] A. Elgammal, D. Harwood, and L. Davis. “Non-parametric model for
background subtraction.” In: European conference on computer vision
(2000), pp. 751–767.

https://doi.org/10.1109/ICIP.2015.7350936
https://doi.org/10.1109/ICIP.2015.7350936
https://doi.org/10.1109/ISCAS.2012.6272132
https://doi.org/10.1109/ISCAS.2012.6272132
https://doi.org/10.1109/GCCE.2012.6379606
https://doi.org/10.1109/GCCE.2012.6379606
https://arxiv.org/abs/1810.08646
https://arxiv.org/abs/1811.10766
http://arxiv.org/abs/1811.10766
https://doi.org/10.5244/c.31.40
https://doi.org/10.1109/ICCE.2014.6775934

102 bibliography

[179] C. Stauffer and W. E. L. Grimson. “Adaptive background mixture
models for real-time tracking.” In: IEEE Transactions on Image process-
ing 2 (1999).

[180] O. Barnich and M. Van Droogenbroeck. “Vibe: A universal background
subtraction algorithm for video sequences.” In: IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition 20.6 (2011),
pp. 1709–1724.

[181] N. M. Oliver, B. Rosario, and A. P. Pentland. “A bayesian computer
vision system for modeling human interactions.” In: IEEE transactions
on pattern analysis and machine intelligence 22.8 (2000), pp. 831–843.

[182] Mohammadreza Babaee, Duc Tung Dinh, and Gerhard Rigoll. “A
Deep Convolutional Neural Network for Video Sequence Background
Subtraction”. In: Pattern Recogn. 76.C (Apr. 2018), pp. 635–649. issn:
0031-3203. doi: 10.1016/j.patcog.2017.09.040. url: https://doi.
org/10.1016/j.patcog.2017.09.040.

[183] Jacques Kaiser et al. “Embodied Neuromorphic Vision with Event-
Driven Random Backpropagation”. In: (2019), pp. 1–8. arXiv: 1904.
04805. url: http://arxiv.org/abs/1904.04805.

[184] Gregor Lenz, Sio-Hoi Ieng, and Ryad Benosman. “Event-based Dy-
namic Face Detection and Tracking Based on Activity”. In: CoRR
abs/1803.10106 (2018). arXiv: 1803.10106. url: http://arxiv.org/
abs/1803.10106.

[185] Carver Mead. “Neuromorphic electronic systems”. In: Proceedings of
the IEEE 78 (Oct. 1990).

[186] Christoph Posch, Ryad Benosman, and Ralph Etienne-Cummings. “Giv-
ing Machines Humanlike eyes”. In: IEEE Spectrum 52 (Dec. 2015),
pp. 44–49. doi: 10.1109/MSPEC.2015.7335800.

[187] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “Imagenet
classification with deep convolutional neural networks”. In: Proceed-
ings of NIPS, IEEE, Neural Information Processing System Foundation
(Jan. 2012), pp. 1097–1105.

[188] Clément Farabet et al. “Comparison between frame-constrained fix-
pixel-value and frame-free spiking-dynamic-pixel ConvNets for vi-
sual processing”. In: Frontiers in neuroscience 6 (2012), p. 32.

[189] R. Tapiador-Morales et al. “Neuromorphic LIF Row-by-Row Multi-
convolution Processor for FPGA”. In: IEEE Transactions on Biomedical
Circuits and Systems 13.1 (2019), pp. 159–169.

[190] S. Moradi et al. “A Scalable Multicore Architecture With Heteroge-
neous Memory Structures for Dynamic Neuromorphic Asynchronous
Processors (DYNAPs)”. In: IEEE Transactions on Biomedical Circuits and
Systems 12.1 (2018), pp. 106–122.

[191] A. Khodamoradi and R. Kastner. “O(N)-Space Spatiotemporal Filter
for Reducing Noise in Neuromorphic Vision Sensors”. In: IEEE Trans-
actions on Emerging Topics in Computing (2018), pp. 1–1. issn: 2168-6750.
doi: 10.1109/TETC.2017.2788865.

https://doi.org/10.1016/j.patcog.2017.09.040
https://doi.org/10.1016/j.patcog.2017.09.040
https://doi.org/10.1016/j.patcog.2017.09.040
https://arxiv.org/abs/1904.04805
https://arxiv.org/abs/1904.04805
http://arxiv.org/abs/1904.04805
https://arxiv.org/abs/1803.10106
http://arxiv.org/abs/1803.10106
http://arxiv.org/abs/1803.10106
https://doi.org/10.1109/MSPEC.2015.7335800
https://doi.org/10.1109/TETC.2017.2788865

bibliography 103

[192] Alessandro Aimar et al. “NullHop:A Flexible Convolutional Neu-
ral Network Accelerator Based on Sparse Representations of Feature
Maps”. In: CoRR abs/1706.0 (2017).

[193] Leon Chua. The Chua Lectures: From Memristors and Cellular Nonlinear
Networks to the Edge of Chaos: Volume I Memristors: New Circuit Element
with Memory. Apr. 2020. isbn: 978-981-12-1538-4. doi: 10.1142/11693-
vol1.

[194] Jean-Matthieu Maro and Ryad Benosman. “Event-based Gesture Recog-
nition with Dynamic Background Suppression using Smartphone Com-
putational Capabilities”. In: arXiv preprint arXiv:1811.07802 (2018).

[195] Ryad Benosman et al. “Event-based visual flow”. In: IEEE transactions
on neural networks and learning systems 25.2 (2013), pp. 407–417.

[196] Xavier Lagorce et al. “Hots: a hierarchy of event-based time-surfaces
for pattern recognition”. In: IEEE transactions on pattern analysis and
machine intelligence 39.7 (2017), pp. 1346–1359.

[197] Chen Haoyu et al. “Learning to Deblur and Generate High Frame
Rate Video with an Event Camera”. In: arXiv preprint arXiv:2003.00847
(2020).

[198] Zhe Jiang et al. “Learning Event-Based Motion Deblurring”. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2020, pp. 3320–3329.

[199] Bodo Rückauer et al. “Closing the Accuracy Gap in an Event-Based
Visual Recognition Task”. In: arXiv preprint arXiv:1906.08859 (2019).

[200] Hanme Kim et al. “Simultaneous Mosaicing and Tracking with an
Event Camera”. In: Jan. 2014, pp. 1–12.

[201] Patrick Bardow, Andrew Davison, and Stefan Leutenegger. “Simulta-
neous Optical Flow and Intensity Estimation from an Event Camera”.
In: June 2016, pp. 884–892. doi: 10.1109/CVPR.2016.102.

[202] Cedric Scheerlinck, Nick Barnes, and Robert Mahony. “Asynchronous
Spatial Image Convolutions for Event Cameras”. In: IEEERobot.Autom.Lett.,
4 (Jan. 2019), pp. 816–822. doi: 10.1109/LRA.2019.2893427.

[203] Christian Reinbacher, Gottfried Munda, and Thomas Pock. “Real-
Time Intensity-Image Reconstruction for Event Cameras Using Man-
ifold Regularisation”. In: International Journal of Computer Vision (July
2016). doi: 10.1007/s11263-018-1106-2.

[204] Henri Rebecq et al. “Events-To-Video: Bringing Modern Computer
Vision to Event Cameras”. In: June 2019, pp. 3852–3861. doi: 10.1109/
CVPR.2019.00398.

[205] Ana Maqueda et al. “Event-based Vision meets Deep Learning on
Steering Prediction for Self-driving Cars”. In: Proceedings / CVPR,
IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition. IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (June 2018).

https://doi.org/10.1142/11693-vol1
https://doi.org/10.1142/11693-vol1
https://doi.org/10.1109/CVPR.2016.102
https://doi.org/10.1109/LRA.2019.2893427
https://doi.org/10.1007/s11263-018-1106-2
https://doi.org/10.1109/CVPR.2019.00398
https://doi.org/10.1109/CVPR.2019.00398

104 bibliography

[206] Rohan Ghosh et al. “Real-time object recognition and orientation
estimation using an event-based camera and CNN”. In: 2014 IEEE
Biomedical Circuits and Systems Conference (BioCAS) Proceedings. IEEE.
2014, pp. 544–547.

[207] Hongjie Liu et al. “Combined frame-and event-based detection and
tracking”. In: 2016 IEEE International Symposium on Circuits and Sys-
tems (ISCAS). IEEE. 2016, pp. 2511–2514.

[208] Antoni Rosinol Vidal et al. “Ultimate SLAM? Combining events, im-
ages, and IMU for robust visual SLAM in HDR and high-speed sce-
narios”. In: IEEE Robotics and Automation Letters 3.2 (2018), pp. 994–
1001.

[209] A. Krikelis and C. C. Weems (editors). Associative Processing and Pro-
cessors. 1997. isbn: 978-981-12-1538-4. doi: 10.1142/11693-vol1.

[210] Eugenio Culurciello, Ralph Etienne-Cummings, and Kwabena Boa-
hen. “Arbitrated address-event representation digital image sensor”.
In: Electronics Letters 37 (Dec. 2001), pp. 1443–1445. doi: 10.1049/el:
20010969.

[211] Teresa Serrano-Gotarredona and Bernabé Linares-Barranco. “Poker-
DVS and MNIST-DVS. Their History, How They Were Made, and
Other Details”. In: Frontiers in Neuroscience 9 (2015), p. 481. issn: 1662-
453X. doi: 10.3389/fnins.2015.00481. url: https://www.frontiersin.
org/article/10.3389/fnins.2015.00481.

[212] Steven Dalton et al. “Optimizing Sparse Matrix Operations on GPUs
Using Merge Path”. In: May 2015, pp. 407–416. doi: 10.1109/IPDPS.
2015.98.

[213] Kostas Pagiamtzis and A. Sheikholeslami. “Content-Addressable Mem-
ory (CAM) Circuits and Architectures: A Tutorial and Survey”. In:
Solid-State Circuits, IEEE Journal of 41 (Apr. 2006), pp. 712–727. doi:
10.1109/JSSC.2005.864128.

[214] Zhe Yao, Vincent Gripon, and Michael Rabbat. “A Massively Par-
allel Associative Memory Based on Sparse Neural Networks”. In:
arXiv:1303.7032 (Mar. 2013).

[215] Saeed Afshar et al. “Investigation of event-based memory surfaces
for high-speed tracking, unsupervised feature extraction and object
recognition”. In: Frontiers in Neuroscience 12 (Mar. 2016). doi: 10.3389/
fnins.2018.01047.

[216] C. Brandli et al. “A 240 180 130 dB 3 s Latency Global Shutter
Spatiotemporal Vision Sensor”. In: IEEE Journal of Solid-State Circuits
49.10 (2014), pp. 2333–2341.

[217] A. Haron et al. “Parallel matrix multiplication on memristor-based
computation-in-memory architecture”. In: 2016 International Confer-
ence on High Performance Computing Simulation (HPCS). July 2016, pp. 759–
766. doi: 10.1109/HPCSim.2016.7568411.

https://doi.org/10.1142/11693-vol1
https://doi.org/10.1049/el:20010969
https://doi.org/10.1049/el:20010969
https://doi.org/10.3389/fnins.2015.00481
https://www.frontiersin.org/article/10.3389/fnins.2015.00481
https://www.frontiersin.org/article/10.3389/fnins.2015.00481
https://doi.org/10.1109/IPDPS.2015.98
https://doi.org/10.1109/IPDPS.2015.98
https://doi.org/10.1109/JSSC.2005.864128
https://doi.org/10.3389/fnins.2018.01047
https://doi.org/10.3389/fnins.2018.01047
https://doi.org/10.1109/HPCSim.2016.7568411

bibliography 105

[218] and Y. Kim and P. Li. “Architectural design exploration for neuro-
morphic processors with memristive synapses”. In: 14th IEEE Inter-
national Conference on Nanotechnology. Aug. 2014, pp. 962–966. doi:
10.1109/NANO.2014.6967962.

https://doi.org/10.1109/NANO.2014.6967962

L I S T O F F I G U R E S

Figure 1 The Camera Obscura Principle 3

Figure 2 Acquisition with Full-frame Cameras 5

Figure 3 Frame-based and Event-based Acquisition 5

Figure 4 Event-based sensors operation principles 6

Figure 5 Principles of the ATIS . 14

Figure 6 A Pixel’s Field of View 15

Figure 7 Strategies for Decays . 19

Figure 8 The Global Motion-based Feature 21

Figure 9 Estimating the Flow . 23

Figure 10 Corner Detector . 23

Figure 11 How the Feature encodes Corners 24

Figure 12 Cube Experiment . 26

Figure 13 Evaluation of the Precision of Corner Detectors 27

Figure 14 Comparison of 3 Detectors: Snaphots 27

Figure 15 Distribution of Detected Corners 28

Figure 16 Gesture Recognition Architecture 33

Figure 17 Human-Machine Interaction 35

Figure 18 Iconic Representations of Gestures 37

Figure 19 Confusion Matrix . 37

Figure 20 An ATIS plugged into a Smartphone 43

Figure 21 Principle of the Dynamic Background Suppression . . 46

Figure 22 Denoising Example with the DBS 47

Figure 23 Principle of Time-surfaces 48

Figure 24 HOTS Network . 50

Figure 25 Confusion Matrix for the DvsGesture - 10 cl 55

Figure 26 Confusion Matrix for the DvsGesture - 11 cl 56

Figure 27 Interface of the Android application 57

Figure 28 Overview of the Android smartphone system. 58

Figure 29 Comparison of amount of acquired data between an
event-based sensor and a conventional camera 63

Figure 30 Storing events in image-like representation or lists . . . 65

Figure 31 Distribution of needed memory for different time-windows 69

Figure 32 Comparison of memory usage for an example clip . . . 71

Figure 33 Principle of the temporal context 74

Figure 34 Temporal Network Principle 76

Figure 35 From visual stimuli to pattern events 77

Figure 36 Percent of error and memory size depending on the
time-window . 79

Figure 37 Memory consumption for DAVIS and ATIS 81

Figure 38 Roofline of HOTS with both memory models 81

107

L I S T O F TA B L E S

Table 1 Mean Computation Times 30

Table 2 Characteristics of Gesture Datasets 51

Table 3 Mean percentage of events left after each the Dynamic
Background Suppression for each gesture class. 53

Table 4 Results on the NavGesture dataset 54

Table 5 Comparison in accuracy of state-of-the-art methods
for the DvsGesture dataset 57

Table 6 Processing Time for all Gestures on the Smartphone . . 59

Table 7 Memory Usage for Image-like and Dynamic represen-
tations . 70

Table 8 2-layers networks characteristics 80

109

	Abstract
	Résumé

	Acknowledgements
	Contents
	1 Introduction
	2 A Motion-Based Feature for Event-Based Pattern Recognition
	2.1 Introduction
	2.2 Motion-based Feature
	2.2.1 Extracting normal visual motion
	2.2.2 Computing and updating the feature
	2.2.3 Speed-tuned vs. fixed decreasing strategies

	2.3 Application to corner detection
	2.3.1 Feature-based approaches
	2.3.2 Evaluations

	2.4 Application to gesture recognition
	2.4.1 A more compact and invariant representation
	2.4.2 Classification Architecture
	2.4.3 Results

	2.5 Conclusion and Discussion

	3 Event-based Gesture Recognition with Dynamic Background Suppression using Smartphone Computational Capabilities
	3.1 Introduction
	3.1.1 Gesture Recognition on Mobile Devices
	3.1.2 Gesture Recognition using Event-based Cameras

	3.2 Methods
	3.2.1 Dynamic Background Suppression
	3.2.2 Time-surfaces as spatio-temporal descriptors
	3.2.3 Event-based Hierarchical Pattern Matching

	3.3 A new neuromorphic dataset: NavGesture
	3.4 Experiments and Results
	3.4.1 Static properties: Experiments on the Faces dataset
	3.4.2 Dynamic properties: Experiments on the NavGesture datasets
	3.4.3 Experiments on the DvsGesture dataset

	3.5 Implementation on a Smartphone
	3.6 Discussion and Conclusion

	4 The need of Incremental Computation and Time Adaptive Resources Management for Event-based Sensors
	4.1 Introduction
	4.2 The Need of Incremental Processing of Events
	4.3 The use of frames in neuromorphic event-based visual processing
	4.4 CNNs in Event based visual processing
	4.5 Temporal Dynamics and Data load in existing Event-based Databases
	4.6 Computational costs
	4.7 Generic Time Adaptive Memory Architecture for Event based Processing
	4.7.1 Temporal Machine learning using Time-surfaces
	4.7.2 A Generic Memory Architecture
	4.7.3 "In-memory" partial computation of Time-surfaces
	4.7.4 Hardware Implementation Study

	4.8 Discussion and Conclusion

	5 Discussion & Conclusion
	 Bibliography

