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membres permanents et non permanents du laboratoire Heudiasyc ainsi que
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Chapter 1

Introduction

1.1 General context

According to a recent National Highway Traffic Safety Administration study

(Singh, 2015), 94% of road accidents are caused by human errors which makes

safety the main reason for the pursuit of autonomous vehicles. However, self-

driving vehicles also bring the promise of reducing emissions, helping disabled

persons and even helping less-privileged people as a study revealed that they

are 4.3 times more prone to get involved in a car accident as they possess

older vehicles with less driving assistance technology. This dream of self-

driving or so called autonomous vehicles has captured human imagination

for nearly a century with early engineers and futurists from General Motors

imagining a radio-controlled vehicle propelled by magnetic fields induced by

devices embedded in the road itself. Among the first serious attempts to create

a self-driving car was the European project Eureka PROMETHEUS that was

carried-out in the late 80s through the mid 90s and led to the development of

the VITA II by Daimler-Benz. While the VITA II only showcased self-driving

abilities in highways (Ulmer, 1994), the DARPA urban challenge (Buehler

et al., 2009) in 2007 brought together research teams from both academia and

industry and was first to pose the problem of self-driving in a pseudo-urban

environment with 6 teams managing to complete the challenge (Bacha et al.,

2008, Montemerlo et al., 2008, Urmson et al., 2007).

1
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The series of DARPA challenges was also the theater of a major turning

point in self-driving vehicles research when the winning team of the 2005

challenge used machine learning to successfully navigate in the off-road cir-

cuit in the least amount of time without any human intervention. Since

then, machine learning has become an essential component in all modern au-

tonomous vehicles. The rebirth of deep convolutional neural networks in 2012

(Krizhevsky et al., 2012a) along with the release of large-scale datasets allowed

major breakthroughs in computer vision that cascaded to many applications,

among them autonomous mobile platforms for which the perception task is of

paramount importance. Indeed, self-driving vehicles pipelines are composed

of different modular building blocks with the perception block being the one

that processes the raw information coming from the vehicles’ sensors. Per-

ception is then arguably the most critical task as every following one heavily

depends on its ability to detect the key elements of the driving scene such as

the drivable space, the other vehicles and the vulnerable road users such as

pedestrians or cyclists.

The sensors also play an essential role in the self-driving vehicles perception

abilities with the main sensors being cameras and range sensors such as Li-

DARs or Radars. Cameras mimic the way animals perceive their environment.

They provide information about the shape and color of the elements in the

observed scene whereas range sensors rely on the emission/reception of a ra-

dio wave or infrared light pulses to very precisely estimate the distance of

surrounding objects. The debate about the supremacy of a sensor over the

other ones is an endless discussion with the great majority of industry and

academia actors relying on sensor fusion to ensure redundancy and combine

the qualities of each type of sensor. However, Elon Musk, the eccentric CEO

of Tesla, which is a major actor in the efforts to develop a fully autonomous

vehicle, has a different view than his pairs. He has been advocating for a sys-

tem that relies mostly on cameras and went to the extreme of qualifying the

LiDAR as being “lame”. While we do not agree with this statement, we do try

in this work to develop fully monocular based perception solution and bridge

the gap between camera-based and LiDAR-based solutions. Even though we

do not consider any sensor as being better than another and we consider that
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sensor fusion is the way to go at the time of writing, it is hard to argue against

the fact that cameras are by far the cheapest and most discrete sensors when

compared with LiDARs.

Cameras are not intrinsically able to estimate depth but CNN-based depth

estimation is achieving more and more impressive results with the availability

of large-scale datasets. Having access to a depth estimate for the elements

of a driving scene is highly important, because ultimately the information

extracted by the different sensors in different geometric spaces needs to be

projected to a common space, which is usually the 3D space, in order to

be processed by the planning and navigation building block. This space is

preferred to the camera projective space for example because the size of objects

in this space does not depend on the distance to the sensor. In this thesis,

we argue that the fact that closer objects appear bigger in the camera-view

actually contains a valuable information. In camera-view, bigger means closer

and the closest objects to the vehicle are in most cases those that are the most

critical as they are in the immediate environment of the vehicle and are more

susceptible to cause a collision. It has even been shown that the difference

in performance in 3D tasks between camera-based methods and LiDAR-based

ones is not only due to the intrinsic nature of each sensor but also to the choice

of representation (Wang et al., 2019a) which is confirmed in our findings.

The modular approach to self-driving vehicles pipelines is the most popu-

lar but researchers have also been trying to replace part of the pipeline or

even the whole pipeline with a single neural network with the objective to

avoid laborious hand-engineering and error accumulation along the pipeline.

Camera-based end-to-end approaches for example take raw sensor informa-

tion as input and output directly driving commands which induces a lack of

interpretability. Therefore, intermediate representation were then the natu-

ral addition to end-to-end networks in order to be able to delve their driving

decisions. This also led to mid-to-mid or mid-to-end networks that take as in-

put Bird-Eye-View representations of the scene obtained from the perception

building block output and rasterized HD map portions.
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1.2 Framework and objectives

During this thesis, some perception approaches for self-driving vehicles were

developed using deep convolutional neural networks applied to monocular

camera images and High-Definition map (HD-map) rasterized images. HD-

maps are centimeter-level precise maps that give information about the road

layout and features. They often come in a vectorial format and are then ras-

terized into images in order to be efficiently processed by CNNs. We focused

on camera-only solutions instead of leveraging sensor fusion with range sen-

sors because cameras are the most cost-effective and discrete sensors. The

objective was also to show that camera-based approaches can perform at par

with LiDAR-based solutions on certain 3D vision tasks. Real-world data was

used for training and evaluation of the developed approaches but simulation

was also leveraged when annotated data was lacking or for safety reasons when

evaluating driving capabilities.

HD-map are very often used to help the localization of self-driving vehicles in

their environment. We have tried to leverage these in the form of rasterized

images in order to provide a spatial context to perception-oriented neural

networks. Instead of only using these HD-map rasterized images as a prior

knowledge, we have also developed an approach that allows to output these

maps from a monocular camera. The HD-maps are a snapshot of an area at

a given time so changes to the road layout would make these maps obsolete,

hence having a neural network able to output the road layout based on a

camera image is an appealing asset.

Cameras provide visual information in a projective space where the perspective

effect does not preserve the distances homogeneity. Scene understanding tasks

such as semantic segmentation are then often operated in the camera-view

space and then projected to 3D using a precise depth sensor such as a LiDAR.

Having this scene understanding in the 3D space is useful because the vehicles

evolve in the 3D world and the navigation algorithms reason in this space.

Our focus was then to leverage the geometric knowledge about the camera

parameters and its position in the 3D world to develop an approach that
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allows scene understanding in the 3D space using only a monocular image as

input.

Neural networks have also proven to be useful for more than just perception

and are more and more used for the navigation and planning tasks that build

on the perception outputs. Being able to output 3D scene understanding infor-

mation from a monocular camera has also allowed us to explore the possibility

of having an end-to-end holistic neural network that takes a camera image as

input, extracts intermediate semantic information in the 3D space and then

plans the vehicle’s trajectory.

This thesis was developed within SIVAlab (LABoratoire des Systèmes Intègres

pour le Véhicule Autonome), a joint laboratory between Renault SAS and the

Heudiasyc Laboratory, UMR UTC/CNRS 7253. It was funded by a CIFRE

fellowship, that was granted from Renault SAS and the ANRT (Agence Na-

tionale de la Recherche et de la Technologie).

1.3 Organization and contributions of the the-

sis

The rest of this manuscript is organized as follows:

Chapter 2 presents briefly the current state-of-the-art algorithms that are

used to solve the subset of perception and motion prediction tasks that we

study in this thesis, namely: semantic segmentation, depth estimation and

imitation learning for ego-motion prediction. For scene understanding and

depth estimation, we focus on monocular camera based approaches, while for

motion prediction, we focus on ego-motion prediction approaches as it is more

related to our work.

Chapter 3 covers our work on enhancing semantic segmentation with a spa-

tial context information. We explore 3 different ways of incorporating depth

and cartographic information into an encoder-decoder semantic segmentation

CNN. We have chosen to work on simulated data because no real-world dataset
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with both semantic segmentation and cartographic annotation was available

then. Our experiments have shown that the approach with the best results

consists in adding additional encoders that take the spatial context as input

but this approach is limited by the fact that precise depth and cartographic

information need to be available at any moment which is an expensive option.

Chapter 4 presents a new weighing scheme for lightweight semantic segmenta-

tion neural networks. The most commonly adopted weighing scheme is based

on the frequency on the classes, with the rarest classes having the higher

weights. However, we argue that this weighing scheme does not necessarily

suit autonomous driving as a rare object located far from the ego-vehicle is

not more important than a more common one located just in front. For this

reason, we propose a disparity-weighing scheme that gives more importance to

closer objects, which makes sense for autonomous vehicles as closer objects are

more prone to cause a collision. To avoid an additional annotation burden, we

propose to estimate disparity maps with an off-the-shelf self-supervised CNN.

Chapter 5 also pertains to scene understanding with a monocular camera, but

with the challenge of outputting a semantic mask in bird-eye-view instead of

the usual camera-view space. Given that state-of-the-art semantic segmenta-

tion networks are fully convolutional encoder-decoders, a geometric transform

is necessary to preserve the receptive field when the output mask is not in the

same space as the input. Our choice of transform is the homography which

also poses a new challenge. Indeed, homographies are planar transforms so

3D objects such as vehicles that lie above the ground plane and cannot be

successfully warped to the bird-eye-view. To circumvent this issue, we pro-

pose footprint segmentation that consist in segmenting only the footprint of

3D objects in order to respect the planar world assumption implied by the

homography transform.

Chapter 6 builds on the previous chapter to propose a holistic end-to-end

trajectory planning network. It takes monocular images as input, outputs in-

termediate semantic masks in bird-eye-view, using the previously introduced

footprint segmentation, and finally plans the trajectory of the ego-vehicle



Chapter 1. Introduction 7

based on these semantic masks. Previous monocular based works have in-

troduced end-to-end driving networks that have intermediate representation

in camera-view, whereas we leverage our footprint segmentation method to

obtain an intermediate representation in the 3D space. This is arguably prefer-

able because distances in 3D are invariant to the distance to the sensor. In a

traditional modular self-driving vehicle pipeline, the different perception out-

puts are merged in a 3D common representation and then digested by the

planning building block which we mimic in our approach but in an end-to-end

fashion. This intermediate representation also provides interpretable results

that can help understand the driving decisions.

Chapter 7 concludes this thesis, summarizes its contributions and opens per-

spectives for future works.

This thesis is based on the following scientific publications:

• Loukkal, A., Grandvalet, Y., Frémont, V. & Li, Y. Improving semantic

segmentation in urban scenes with a cartographic information. In 2018

15th International Conference on Control, Automation, Robotics and

Vision (ICARCV) (pp. 400-406). IEEE.

• Loukkal, A., Grandvalet, Y. & Li, Y. Disparity weighted loss for seman-

tic segmentation of driving scenes. In 2019 Intelligent Transportation

Systems Conference (ITSC) (pp. 3427-3432). IEEE.

• Loukkal, A., Grandvalet, Y., Drummond, T. & Li, Y. Driving Among

Flatmobiles: Bird-Eye-View Occupancy Grids From a Monocular Cam-

era for Holistic Trajectory Planning. In 2021 Winter Conference on

Applications of Computer Vision (WACV) (pp. 51-60). CVF/IEEE.

• Loukkal, A., Grandvalet, Y. & Drummond, T. A mixture of view experts

approach to bird-eye-view semantic maps from a monocular camera.

Under submission to Pattern Recognition Journal.
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Background and related work

2.1 Introduction

In this chapter, we present how robotic perception and ego-motion predic-

tion evolved with the resurgence of neural networks in 2012 when Krizhevsky

et al. (2012b) won the ImageNet challenge with Convolutional Neural Net-

works (CNN). Neural networks have become an essential component of all

modern autonomous robots and more specifically autonomous ground vehi-

cles. This has been made possible by improved computing resources, the

availability of task-specific datasets and more expressive neural network ar-

chitectures.

We first present the datasets that allowed to scale up machine learning-based

approaches for real-world applications. Second, we present the architecture

designs of modern semantic segmentation neural networks, as this task is

paramount for scene understanding. Then, we briefly present state-of-the-art

networks for another important task, which is depth estimation from monoc-

ular cameras. Finally, we present how neural networks can go beyond percep-

tion and be used for ego-motion forecasting by imitating expert demonstra-

tions.

8
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Table 2.1: Perception datasets for autonomous driving. BB refers to
Bounding Boxes, SS to Semantic Segmentation, and DD for Dense Depth.

Dataset RGB Stereo LiDAR # frames BB SS DD HD map
Camvid (Brostow et al., 2008) Yes No No 701 No Yes No No
KITTI (Geiger et al., 2012) Yes Yes Yes 15K 3D No Yes No
Cityscapes (Cordts et al., 2016) Yes Yes No 5K No Yes Yes No
Mapillary (Neuhold et al., 2017) Yes No No 25K No Yes No No
BDD100K (Yu et al., 2020) Yes No No 100K1 2D Yes No No
Apolloscape (Huang et al., 2018) Yes Yes Yes 147K 3D Yes Yes No
A2D2 (Geyer et al., 2020) Yes No Yes 41K2 3D Yes No No
Waymo (Sun et al., 2020) Yes No Yes 230K 3D No No No
Lyft L5 (Kesten et al., 2019) Yes No Yes 46K 3D No No Yes
Argoverse (Chang et al., 2019) Yes Yes Yes 22K 3D No No Yes
Nuscenes (Caesar et al., 2019) Yes No Yes 40K 3D No No Yes

1100K with bounding boxes and 10K with semantic segmentation
241K with semantic segmentation and 12K with bounding boxes

2.2 Autonomous driving perception datasets

Machine learning algorithms are data-driven approaches and their perfor-

mance depend heavily on the availability of high quality and large datasets. In

this section we present the main perception datasets for autonomous driving.

An overview of the available datasets is provided in Table 2.1.

High Definition (HD) maps are an essential component of the works devel-

oped in this thesis so we first present the datasets that do not contain this

information, and then we present those that do.

2.2.1 Datasets with no HD maps

Among the first semantic segmentation datasets for autonomous driving,

CamVid (Brostow et al., 2008) is a road scene dataset composed of 5 video

sequences captured with a 960× 720 resolution camera mounted on a car giv-

ing a total of 701 frames. The images were manually annotated according to

32 labels. However, given its very limited size, this dataset does not allow to

train neural networks that can generalize well to new environments.
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Cityscapes (Cordts et al., 2016) is a more recent urban street scene seman-

tic segmentation dataset that comprises 5000 finely annotated images, 20000

coarsely annotated images (with the 5000 finely annotated images coarsely

annotated in order to enable research on densifying coarse labels). Images are

annotated according to 30 classes regrouped in 8 meta-classes: flat surfaces,

humans, vehicles, constructions, objects, nature, sky, and void. Images are

pixel-level annotated with instance level annotation available for the “car” and

“person” classes. Data was captured in 50 cities during several months, dur-

ing daytime and good weather conditions. This dataset has been essential in

the development of state-of-the-art semantic segmentation networks and the

Cityscapes benchmarks are still relevant for the evaluation of these networks.

KITTI (Geiger et al., 2012) is a larger dataset comprising 6h of driving with 3D

bounding box annotations for 7481 training images and 7518 test images. It

contains data captured with various sensors such as high resolution RGB and

gray-scale stereo cameras, and a LiDAR. The KITTI dataset helped greatly

in the development of LiDAR-based perception approaches such as road de-

tection or object detection as it was among the first large datasets to provide

LiDAR point clouds along with camera images. Semantic segmentation labels

in the camera space are not originally provided but several researchers in the

field of computer vision have provided small sets (few hundred samples) of

semantic segmentation ground truth data. Semantic segmentation annotation

is particularly challenging to obtain as it requires to label every pixel in an

image which makes large semantic segmentation datasets quite valuable.

One of the first datasets to provide a large collection of semantic segmentation

annotations is Mapillary Vistas (Neuhold et al., 2017) with 25000 annotated

high-resolution image, 100 object categories and a high variability in weather

conditions and capturing times. The BDD100K (Yu et al., 2020) dataset

followed with 100K raw driving video sequences with more than 100 million

images. It provides 100K ground-truth 2D bounding-boxes annotations and

10K ground-truth semantic segmentation mask annotations. The largest to

date semantic segmentation dataset is Apolloscapes (Huang et al., 2018). Ac-

quired with 4 cameras and 1 LiDAR in Chinese cities, providing semantic

segmentation annotation as depth maps regarding the static background for a
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staggering number of 146 997 frames. More recently, acquired with 6 cameras

and 5 LiDARs in 3 German cities, the Audi Autonomous Driving Dataset

(A2D2) (Geyer et al., 2020) provides 41 277 frames with semantic segmenta-

tion annotation with 12 497 frames also having 3D bounding box annotations

for objects located in the field of view of the front camera. The Waymo open

dataset (Sun et al., 2020) is another large-scale perception dataset acquired

with 5 LiDARs and 5 cameras and containing 230K frames with 3D bounding

boxes.

2.2.2 Datasets with available HD maps

HD maps are a key component in the autonomous driving pipeline and are

vastly used in modern self-driving cars projects. NuScenes (Caesar et al.,

2019) was a pioneer dataset that comprises highly accurate HD map rasters.

The dataset records the measurements of a complete suite of sensors: 6 cam-

eras, 32-channels LIDAR, long-range radars. The whole dataset comprises

40 000 annotated frames in different regions of Boston and Singapore. Each

driving sequence lasts around 20s and images are acquired at a framerate of

2Hz. The two most important feature of nuScenes when compared to previous

datasets are the joint availability of (i) 3D bounding boxes, (ii) 11 Bird-Eye-

View semantic layers provided as binary semantic masks, where each pixel

corresponds to 0.1× 0.1 square meters.

Lyft level 5 perception dataset (Kesten et al., 2019) is very similar to nuScenes

and can even be explored with the same devkit. It contains data from 7

cameras, 3 LiDARs and provides 46 000 3D annotated frames as well as a

7-layers HD Bird-Eye-View semantic map.

The Argoverse 3D tracking dataset (Chang et al., 2019) also provides raster-

ized HD map annotations along with 22K frames annotated with 3D bounding

boxes. This dataset stands out from the others by being the only one to pro-

vide stereo front-facing cameras images in addition to LiDAR points clouds

and surrounding cameras images. Having access to stereo cameras allows to
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obtain a disparity map and opens up more opportunities for purely monocular

approaches.

2.3 Autonomous driving simulators

Simulators are an alternative option for training autonomous driving models

as they allow to evaluate them in scenarios that are dangerous in the real

world. In this section we briefly present open-source simulators that provide

the necessary inputs and labels for training perception models. Even though

open-source simulators are not as realistic and diverse as industrial level sim-

ulators, they are still suitable to evaluate or pre-train neural networks. Carla

simulator (Dosovitskiy et al., 2017a) is built over Unreal Engine 4 with a

Python client API and offers a complete suite of sensors with virtual RGB,

depth and semantic segmentation cameras along with 3D bounding boxes an-

notations and virtual LiDAR point clouds. Several towns, weathers, vehicles

and traffic densities are available to evaluate deep neural networks on a wide

set of scenarios. LGSVL (Rong et al., 2020) and AirSim (Shah et al., 2018)

also provide a complete set of perception inputs and labels with AirSim being

able to simulate both ground vehicles and drones.

2.4 Semantic segmentation with CNNs

The success of deep CNNs for image classification (Krizhevsky et al., 2012a)

has encouraged researchers to explore the effectiveness of these networks for

dense predictions tasks like semantic segmentation or depth estimation. Se-

mantic segmentation has been drawing a lot of attention from the computer

vision and autonomous driving communities for many years because in addi-

tion to detecting key elements in the scene, it adds semantic information to

the global scene understanding problem. Semantic segmentation is usually ap-

plied in the Camera Projective View (CPV) and annotation is also supplied in

the same space for most datasets. However, for applications like autonomous
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Figure 2.1: Fully convolutional networks replace fully connected layers
with convolutional ones hence preserving the spatial information. Image

originally by Shelhamer et al. (2017).

vehicles, the perception module processes data coming from sensors that oper-

ate in different geometric spaces and then fuses the extracted information in a

unified view, generally Bird-Eye-View (BEV). Semantic segmentation masks

are then usually projected to BEV using the LiDAR depth information but

recent works have tackled the problem of outputting directly BEV semantic

masks from monocular images.

2.4.1 Semantic segmentation in camera view

2.4.1.1 Evolution of the architectures

The current state of the art approaches in semantic segmentation take advan-

tage of Fully Convolutional neural Networks (FCN) (Shelhamer et al., 2017)

keeping the spatial information, that is usually lost in regular CNNs, by avoid-

ing fully connected layers, see Figure 2.1. These networks usually come in two

parts: the encoder or backbone network extracts features from the input im-

age and the decoder up-samples the encoded feature maps to match the size

of the input image (the most naive decoder being bilinear sampling). Seg-

Net (Badrinarayanan et al., 2017a) was among the first fully convolutional

encoder-decoder architectures.
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Figure 2.2: Atrous Spatial Pyramid Pooling uses dilated convolutions
with increasing dilation rates to extract multi-scale contextual information.

Image originally by Chen et al. (2018a)

Skip connections between the input and output of convolution layers were

introduced as part of the ResNet architecture by He et al. (2016) helping

the gradient flow in deep architectures and are often used in the backbone

network.

Enlarging the receptive field was key in the success of modern semantic seg-

mentation as it allows to capture a larger contextual information. DeepLab

(Chen et al., 2015b) takes advantage of Atrous or dilated convolution to en-

large the receptive field without any additional computational burden. In Yu

and Koltun (2016), a series of dilated convolutions with increasing dilation

rates are aggregated to obtain multi-scale contextual information. DeepLab

V2 (Chen et al., 2018a) also extracts multi-scale contextual information us-

ing Atrous Spatial Pyramid Pooling (ASPP), see Figure 2.2. Unlike Yu and

Koltun (2016) which operates in serial, the ASPP applies the dilated convo-

lutions with different dilation rates in parallel, hence obtaining a pyramid of

multiscale features from the same input.

Pyramid Scene Parsing (PSPNet) (Zhao et al., 2017) introduced the pyramid

pooling module to extract richer contextual information as well. This module

applies spatial pooling at different scales, upsamples then concatenates the ob-

tained pyramid of features. DeepLab v3 enhances the ASPP with image-level

features (Liu et al., 2015, Zhao et al., 2017) and batch normalization (Ioffe and
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Szegedy, 2015). DeepLab V3+ combines DeepLab V3 encoder with a convolu-

tional decoder improving the boundaries delineation. (Takikawa et al., 2019)

introduced a two-streams architecture with Gated-SCNN: the first stream is

referred to as regular stream as it is similar to commonly used network; the

second stream takes as input the gradient of the input image and features

extracted by the first convolutional layer of the regular stream and and out-

puts semantic boundaries thanks to gated layers that filter information that

is irrelevant for the boundary tasks; ASPP is used to fuse the output of the

two streams.

Attention mechanisms are widely used for various computer vision tasks and

have been successfully adopted in semantic segmentation networks (Chen

et al., 2016, Li et al., 2018a). At the time of writing, state-of-the-art per-

formance has been achieved by a hierarchical multi-scale attention network

(Tao et al., 2020) that learns relative attention masks between adjacent scales

instead of learning a mask for each scale.

2.4.1.2 Conditional random fields as a post-processing step

Conditional Random Fields (CRF) are graphical models that were commonly

used for semantic segmentation. Their energy function is composed of unary

potentials and pairwise potentials on neighbors (pixels or blocks of pixels).

Originally, the main limitation of this model was its inability to capture long

range dependencies, for pixels that are in different regions of the image. Region

based approaches that incorporate hierarchical connectivity and higher-order

potentials tried to improve on the original CRFs but lacked accuracy due to

the unsupervised segmentation that produces regions. Fully connected CRFs

are more expressive models, which present the advantage to have pairwise po-

tentials between all pixels in an image, but the difficulty of inference hindered

their use. A mean field algorithm was proposed to learn efficiently fully con-

nected CRFs (Krähenbühl and Koltun, 2011). These fully connected CRFs

were the state of the art approach in semantic segmentation but with the

resurgence and the jump in performance allowed by neural networks, CRFs

have then been successfully applied as a post processing or refinement step in
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CNNs (Chen et al., 2015b) in order to improve boundaries delineation for seg-

mentation tasks. Joint training procedures are further introduced in (Schwing

and Urtasun, 2015) and (Lin et al., 2016). Proposed in (Zheng et al., 2015),

this approach includes the CRF in an end-to-end CNN-CRF where the Mean

Field approximate inference is formulated as a recurrent neural network and

the Mean Field algorithm steps reformulated as convolution operations. More

recently, Teichmann and Cipolla (2019) consider a locality assumption where

the pair-wise potential of two pixels separated by a Manhattan distance in-

ferior to a certain filter size is considered null which allows to reformulate

the inference as convolution operations. Using CRFs does not seem to be a

reasonable option at the time of writing given that CRFs slow down train-

ing and inference and state-of-the-art segmentation networks have achieved a

performance that would hardly be improved using CRFs. An example of that

is the DeepLab architectures that first used CRFs as a post-processing step

before abandoning it in further iterations.

2.4.1.3 Lightweight CNNs for low-computing power platforms

Another important aspect for CNNs, especially for mobile robotics, is their

resource consumption. Paszke et al. (2016) introduced ENET, an efficient

CNN for semantic segmentation that is 18 times faster than SegNet (Badri-

narayanan et al., 2017b), while obtaining better results on the mean Intersec-

tion over Union (mIoU) metric. Real-time computation is achieved with early

downsampling that heavily reduces the size of the input. A consequence of the

aggressive downsampling is the loss of information that incurs in much lower

performance than state of the art networks. Introduced in (Romera et al.,

2018), ERFNET is another efficient network based on the skip connections

(He et al., 2016) and 1D convolutions to reduce resource usage. ERFNET

is twice as slow as ENET but achieves much better mIoU. Image Cascade

Network (ICNet) (Zhao et al., 2018), as its name suggests, uses a cascade

of different resolutions images as input, with most of the network’s weights

processing the low resolution input hence reducing the computation burden.

BiSeNet (Yu et al., 2018) is composed of two parts or “paths” that increase



Chapter 2. Background and related work 17

the without degrading too much the accuracy: the spatial path that is a shal-

low network that outputs a large size feature map; the context path that

is lightweight network with global average pooling at its end to extract rich

contextual information. DFANet (Li et al., 2019) achieves a better speed/ac-

curacy trade-off by aggregating sub-networks and aggregating corresponding

stages between the sub-networks. More recently, Multiple Spatial Fusion Net-

work (MSFNet) (Si et al., 2019) uses spatial aware pooling that enlarges the

receptive field while maintaining the spatial information and class boundary

supervision in the form of another decoder branch supervised by the bound-

ary of the ground truth masks. In SwiftNetRN-18, a regular encoder-decoder

architecture with lateral-skip connections and spatial pyramid pooling, the

authors advocate for the use of ImageNet-pretraining to benefit from the reg-

ularization effect of transfer learning and achieve state-of-the-art performance

on Cityscapes (Brostow et al., 2009). Lightweight networks used to present

the sole advantage of being fast and were not usable for real applications but

recent advances have dramatically increased their performance.

2.4.2 Semantic segmentation in Bird-Eye-View

Occupancy grid maps (OGM) (Elfes, 2013) represent the spatial environment

of a robot and reflect its occupancy as a fine-grained metric grid. These grid

maps have been widely used to model the environment of indoor and outdoor

mobile robots as well as automotive systems. Once acquired, they can be used

for various tasks such as path planning. OGMs can be acquired with range

sensors like LiDAR or RADAR, but also from RGB-D cameras (Himstedt

and Maehle, 2017), stereo cameras (Li and Ruichek, 2014), or from the fusion

of multiple sensors (Oh and Kang, 2016). For example, semantic OGMs are

predicted from a LiDAR and a monocular camera thanks to deep learning and

Bayesian filtering in (Erkent et al., 2018).

As OGMs are usually binary masks indicating the presence of a static or

dynamic object, Bird-Eye-View (BEV) semantic maps and OGMs will be

used interchangeably. In this section, we will focus on approaches that take

only RGB images as input. As OGMs are in the BEV space, two different
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Figure 2.3: Two examples of purely-data driven approaches for obtaining
BEV semantic maps from a monocular image. Monolayout (Mani et al.,
2020) (top image) resizes the input to match the output OGM shape and
uses an encoder-decoder network and Lu et al. (2018) (bottom image) en-
codes the image in a vector then reshapes this vector to match the desired

OGM shape.

strategies can be adopted to output them from a Camera Projective View

(CPV) space: a fully data-driven approach that ignores the geometric prior

information contained in the camera’s parameters or an approach that takes

these parameters into consideration, see respectively Figure 2.3 and Figure 2.4.

2.4.2.1 Purely-data driven approaches

The papers presented is this section adopt a purely data-driven approach to

the transformation from CPV to BEV. Taking only monocular images as in-

put, Variational Encoder-Decoder (Lu et al., 2018) aims to predict semantic

BEV maps. The first component of this architecture is an encoder network

that extracts feature maps from the input image. These feature maps are
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flattened to obtain a latent space vector that is then reshaped to the desired

BEV aspect ratio and fed to a decoder network. The learning processes is

supervised by two losses: a semantic segmentation loss on the output of the

decoder and a KL-divergence loss between the latent space vector and the

normal distribution N(0,1). This approach leverages weak ground-truth se-

mantic BEV masks obtained by warping CPV semantic segmentation masks

using depth un-projection with the associated depth maps.

The geometric prior knowledge are also ignored in the View Parsing Network

(VPN) (Pan et al., 2020) that transforms feature maps from the camera view

to Bird-Eye View using a module named the view transformer module. The

feature maps in camera-view are flattened while the channel dimension re-

mains the same. An MLP is then applied to the flattened features keeping the

same vector size for the output with the idea to learn the dependencies be-

tween each pixel position in the camera view with all pixel positions in BEV.

The output vector is then reshaped to match the size of the feature map before

applying the transformer module, hence supposing that the camera-view map

and the BEV one have the same shape ratio which is not necessarily true.

Lu et al. (2018) flattens the features obtained in the camera projective space

to obtain a latent space vector then reshapes it in the BEV grids’ dimensions,

in a process that does not preserve spatial information. VPN also flattens the

CPV feature maps and applies a MLP to the obtained vector which also does

not preserve spatial information.

MonoLayout (Mani et al., 2020) introduces another encoder-decoder network

for BEV semantic maps prediction. An encoder network extracts features

from the camera images and feeds its output feature maps to two decoders:

one that outputs a semantic mask for the dynamic objects in the scene such

as vehicles or pedestrians, and another decoder that outputs a semantic mask

for the static elements of the scene such as the road or the sidewalk. The

learning of these masks is supervised by segmentation loss coupled with an

adversarial loss that helps the network hallucinate occluded regions of the

image. Monolayout reshapes the input image into the BEV OGMs shape and

then applies an encoder-decoder architecture. Spatial information is partially
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preserved, but the receptive fields in input space (CPV) and output space

(BEV) are not homogeneous, and no geometric transformation is applied.

Here again weak ground-truth is obtained by projecting semantic segmentation

masks (ground-truth or obtained with off-the-shelf network) to BEV using the

associated depth maps (obtained from LiDAR or from off-the-self network).

FISHING-NET (Hendy et al., 2020) aggregates the features obtained with

three different networks operating on RGB images, BEV-LiDAR images, and

BEV-RADAR images and finally predicts semantic maps in the BEV space.

A MLP based transform inspired by (Pan et al., 2020) is leveraged to project

to the BEV space the feature maps obtained with the network that operates

on the RGB images, hence making these features homogeneous with those

obtained with the LIDAR and the RADAR.

2.4.2.2 Geometry driven approaches

The Orthographic Feature Transform (OFT) network (Roddick et al., 2019),

whose original purpose is to output 3D bounding boxes, consists in project-

ing the features extracted in camera view to an orthographic space. To do

so, voxel-based features are generated by accumulating camera-view features;

then these features are collapsed along the vertical dimension to obtain fea-

tures in an orthographic plane. In addition to bounding boxes coordinates

and dimensions, this network also outputs a confidence map in BEV which

can be assimilated to an occupancy grid map.

Pyramid Occupancy network (PyrOccNet) (Roddick and Cipolla, 2020) intro-

duces a new dense transformer layer that converts features of shape H×W×C
in the perspective image space to features of shape X × Z × C in an ortho-

graphic BEV space. The first step consists in a 1D convolution layer that

encodes each column of the perspective image space features (along the H

axis) to a fixed length feature vector and a second convolution layer decodes

this vector along the depth axis Z. The second step resamples features ob-

tained in the first step to Cartesian coordinates using the camera intrinsic

matrix. A backbone network extracts feature from the camera images and a
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Figure 2.4: Two examples of approaches that leverage geometric insights
to obtain BEV semantic maps from a monocular camera. Images originally
by Roddick et al. (2019) (top) and Roddick and Cipolla (2020) (bottom).

Feature Pyramid Network (FPN) (Lin et al., 2017) extracts multiscale fea-

tures. Each of the feature map in the pyramid is processed by an individual

transformer layer on a subset of depth values. The final BEV feature map is

obtained by concatenating the outputs of these transformer layers along the

depth axis.

Lift, Splat and Shoot (LSS) (Philion and Fidler, 2020) also predicts BEV

semantic maps from monocular cameras in two steps referred to as “lift” and

“splat”. The camera image is first processed by a neural network that extract

feature maps. For each pixel position of these feature maps in the perspective

camera space, a distribution over discretized depth values is predicted and
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then used to “lift” the feature maps into a 3D point cloud using the camera

intrinsic and extrinsic matrices. This 3D point cloud is then converted to

a point-pillars like voxel grid (Lang et al., 2019). Each point is assigned to

its closest “pillar” and the Z axis is collapsed to obtain a BEV tensor in the

“splat” step.

Footprints (Watson et al., 2020) predicts the footprints of dynamic and static

objects and both visible and occluded ground surfaces. An encoder-decoder

network predicts 4 single channel output masks for the visible ground seg-

mentation, the occluded ground segmentation, the depth map of visible pixels

and the depth map of the occluded ground surface. Off-the-shelf segmenta-

tion and depth estimation networks are used to obtain weak ground truth for

the the visible ground segmentation and visible depth maps of a sequences of

stereo camera frames. A frame in the sequence is selected as target frame and

the other frames are used as source frames. The visible ground segmentation

and visible depth maps of each of the source frames are used to obtain the

3D coordinates of the traversable pixels which are then back projected in the

target frame, the camera poses being obtained with ORB-SLAM2 (Mur-Artal

and Tardós, 2017). The back projected noisy depth maps and semantic masks

of all source frames are aggregated and filtered to obtain a single more robust

weak ground truth corresponding to the target frame. The obtained weak

ground truth segmentation masks and depth maps are used as training signal

for the occluded ground segmentation and depth map. Moving objects are

identified by comparing the optical flow with the induced optical flow in the

target frame and ignored during training.

Schulter et al. (2018) focused on predicting a semantic road layout for visible

and occluded ground surfaces. The trick introduced in the paper to “look

around objects” consists in hallucinating the regions of the image occluded by

foreground objects (vehicles, pedestrians, etc.) in the semantic segmentation

space instead of the RGB space. First an off-the-shelf semantic segmenta-

tion network is used to obtain labels. The pixels corresponding to foreground

objects are masked in the RGB image and the masked RGB image and the

mask itself are fed to an encoder-decoder CNN that predicts the semantic

segmentation mask and the depth of all pixels in the image, occluded pixels
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included. As it would be very costly to manually annotate the semantics and

depth behind foreground object pixels (occluded pixels), these pixels are ig-

nored during training and blocks of visible pixels are masked during training

and the model is optimized to hallucinate these regions of the image where

ground-truth is available, with the objective of being able to do the same on

occluded regions during test time. The semantic mask is projected to the 3D

space using the associated depth map and the camera intrinsic matrix obtain-

ing a BEV road layout. The depth and semantics being noisy, the BEV road

layout is refined using another CNN (trained separately) and simulated data

and/or maps obtained with Open Street Map. Simulated data are leveraged

with an adversarial loss that learns to discriminate BEV layout produced by

the refinement CNN and the layouts from the simulator. The OSM maps are

used as a reconstruction training signal. The authors also briefly propose to

include foreground objects by using off-the-shelf 2D object detectors to obtain

bounding boxes, project them onto the BEV semantic road layout before the

refinement step and use the same strategy that couples an adversarial loss

with simulated data. Only two qualitative examples are provided as evidence

for the BEV foreground objects segmentation which is not enough to evaluate

the performance of the network for this task.

Wang et al. (2019b) also outputs road layouts but in a parametric form and

ignores the dynamic objects in the scene like the vehicles and the pedestrians.

First, given an RGB image of the scene, an off-the-shelf network precomputes

a semantic segmentation mask that is projected to BEV using ground-truth

depth obtained with LiDAR. The obtained BEV mask is fed as input to a

CNN with a final fully connected layer that encodes the features in a vector.

A similar architecture with shared weights operates on simulated BEV masks

and an adversarial loss forces domain-agnostic predictions for the features

vector. An MLP architecture digests the feature vectors and outputs the

layout parameters for both simulated and real data. The parameters are

learned with a supervised loss, balanced between real data simulated ones,

and refined with a CRF. This approach cannot be used for detecting dynamic

objects and using only information about the road layout is not enough for

trajectory planning as other agents’ positions is of paramount importance.
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Figure 2.5: Self-supervision strategies for generating disparity maps with-
out ground-truth depth. The training signal is either a stereo pair of images
(Godard et al., 2019) or a sequence of monocular images with pose estima-

tion (Garg et al., 2016).

2.5 Monocular depth estimation with CNNs

Depth maps can be acquired with a stereo setup but the acquired maps are

sparse and contain few measurements at far distance. Traditional monocu-

lar depth estimation methods required handcrafted features such as low-level

segmentation or contours. Supervised CNNs can be used to estimate dense

depth maps from raw pixels but require a large amount of labeled data which

is very costly to acquire especially for outdoor environments. Epipolar geom-

etry have then been leveraged to circumvent the need for a large amount of

labelled data and depth maps would be learned using self-supervised learning,

see Figure 2.5.

2.5.1 Supervised depth estimation

Among the first works to use CNN for monocular depth estimation, Eigen

and Fergus (2015) introduced a two-scale convolutional network that outputs

depth maps, surface normals and semantic masks. CRFs were also used for

depth prediction networks to refine the output map (Bo Li et al., 2015). Depth
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prediction is usually treated as a regression problem but recent convolutional

networks have successfully changed the problem to a classification one (Cao

et al., 2018) or quantized ordinal regression (Fu et al., 2018). Residual learn-

ing has been successfully used for image classification (He et al., 2016) which

inspired the work of Laina et al. (2016) that takes advantage of residual con-

nections to build a deeper and more accurate network. The reverse Huber

loss or BerHu loss for depth supervision have also been introduced in this

work and improves the results when compared to regular L2 loss. Networks

trained on a certain dataset obtained with a certain camera to estimate depth

tend to not generalize well when applied on images shot from another cam-

era. To cope with this issue, Facil et al. (2019) have introduced a new type

of convolution referred to as Cam-Convs that takes the camera intrinsics into

account by concatenating them the feature maps. Achieving state-of-the-art

performance on the KITTI eigen-split benchmark, BTS (Lee et al., 2019) is an

encoder-decoder network that takes advantage of recent advances in semantic

segmentation and leverages ASPP for depth prediction and and uses a new

local planar guidance layer. During the decoding phase and based on a local

planar assumption, this new layer defines an explicit relation between each

internal output and the final output depth map. Efforts have also been made

to make the depth estimation networks more suitable for mobile platform ap-

plications with limited computation resources. FastDepth (Wofk, Diana and

Ma, Fangchang and Yang, Tien-Ju and Karaman, Sertac and Sze, Vivienne,

2019) is a lightweight network with mobilenet (Howard et al., 2017) as the en-

coder, separable depth-wise convolution in the decoder and a network pruning

strategy.

2.5.2 Self-supervised depth estimation

Building on Xie et al. (2016), epipolar geometry constraints were leveraged in

Monodepth (Godard et al., 2017) to estimate disparity maps as an interme-

diate output in an image reconstruction network. It consists in a CNN that

takes the left image as input, estimates the disparity map and performs a

reconstruction of the right image using the predicted disparity and a bilinear
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sampler. Two disparity maps are produced, left to right and right to left, and

a left-right consistency term is added to the SSIM (Zhou Wang et al., 2004)

reconstruction loss function. A similar approach is adopted by Garg et al.

(2016) with the difference that the image reconstruction is not done end-to-

end making the optimisation of the network’s parameters more challenging.

While these networks require only monocular images for testing, they still rely

on stereo pairs of images during training. Among the first works to alleviate

this burden, Zhou et al. (2017) introduced a self-supervised depth estimation

network trained on monocular videos. Instead of reconstructing the target

frame from the second view of a stereo pair, here the network reconstructs it

from the previous and next frame in the video sequence. In a stereo training

setup, the relative pose between the source and target image is known which

is not the case in the monocular case. A separate pose estimation network is

then trained to estimate the poses between the consecutive frames and con-

strains the depth estimation network. The view synthesis formulation implies

that there is no dynamic objects in the scene and no occlusion/disocclusion

between the source and target frames. To enforce these conditions, another

network is trained to output an explainability mask that indicates the pix-

els where the view reconstruction should be operated. Monodepth2 (Godard

et al., 2019) introduced a binary mask that filters out the pixels that do not

change appearance between consecutive frames. They also introduce a loss

that deals with the occlusions/disocclusions in the sequence of consecutive

frames by taking the minimum instead of the average of the reprojection er-

rors between the target frame and the previous/next frames which matches

objects that are visible in both views. Training on monocular videos allows to

estimate the depth and pose up to a scale and require a ground-truth LiDAR

to scale the predicted disparity maps. More recently, Guizilini et al. (2020)

introduced a new loss that considers the velocity of the camera during training

which allows to output scale-aware depth maps.
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Figure 2.6: The autonomous driving pipeline is generally divided in differ-
ent modular components. End-to-end and mid-to-mid driving approaches
are popular alternative approaches that propose to bypass all or some of

the modules and replace them with a single neural network.

2.6 Driving with imitation learning

Autonomous robots systems are usually composed of carefully designed mod-

ules or building blocks between the raw sensors data and the final decisions

provided to the actuators. These modules can either be data-driven algo-

rithms like deep neural network or hand-engineered rule-based algorithms.

This pipeline design has the benefit of being highly interpretable and modular

but can also lead to an accumulation of errors along the pipeline and requires

substantial human effort. In this section, we present approaches that replace

several or all modules using imitation learning and neural networks, Figure

2.6. Imitation learning consists in reproducing a desired behavior based on

expert demonstrations and can be divided in two main branches: behavior

cloning and Inverse Reinforcement Learning.

2.6.1 Behavior cloning

Behavior cloning is a branch of imitation learning that consists in learning a

policy that reproduces the desired behavior by learning a direct mapping from

states to actions.
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2.6.1.1 Direct perception end-to-end driving

End-to-end driving neural networks match the behavior cloning definition and

are a fully data-driven approach that takes raw sensor data as input and out-

puts steering wheel angles for example. Autonomous Land Vehicle In a Neural

Network (ALVINN) (Pomerleau, 1988) was a pioneering work on end-to-end

driving that used behavior cloning and a neural network to accomplish lane

following. More recently, Bojarski et al. (2016) introduced an end-to-end

driving network that maps camera images to steering commands. A similar

approach was adopted by Codevilla et al. (2017) with the difference that the

steering commands were conditioned with high-level commands, e.g., turn left.

Also adopting conditional imitation learning, Xiao et al. (2019) used multi-

modal inputs and explored different fusion schemes. These direct-perception

approaches are promising but lack interpretability and pose a safety prob-

lem. An inspectable intermediate representation would alleviate the security

problem and provide an understanding of the outputs of the network.

2.6.1.2 Mediated-perception end-to-end driving

Another body of work incorporates an intermediate representation in the form

of affordances (Chen et al., 2015a, Sauer et al., 2018), attention maps (Kim and

Canny, 2017) or semantic segmentation masks (Li et al., 2018b, Mueller et al.,

2018). These approaches address the main flaw of the end-to-end approach by

making the results interpretable by a human examinator. Instead of learning

an intermediate representation and learning motion from this representation,

Xu et al. (2016) learned to forecast motion from a sequence of input images

and learned the semantic segmentation of these input images as a side task

invoking privileged learning. However, all these camera-based solutions reason

in camera view whereas it seems to be more suitable to forecast motion in

BEV where the size of objects does not depend on their position in the image.

Alleviating the burden of manually designed planning cost functions (Paden

et al., 2016), Zeng et al. (2019) introduced an end-to-end motion planner that

takes a 3D point cloud and a HD map as input and predicts an intermediate

interpretable representation in the form of 3D detections and their predicted
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Watch This: Scalable Cost-Function Learning
for Path Planning in Urban Environments

Markus Wulfmeier1, Dominic Zeng Wang1 and Ingmar Posner1

Abstract— In this work, we present an approach to learn
cost maps for driving in complex urban environments from
a very large number of demonstrations of driving behaviour
by human experts. The learned cost maps are constructed
directly from raw sensor measurements, bypassing the effort
of manually designing cost maps as well as features. When
deploying the learned cost maps, the trajectories generated
not only replicate human-like driving behaviour but are also
demonstrably robust against systematic errors in putative robot
configuration. To achieve this we deploy a Maximum Entropy
based, non-linear IRL framework which uses Fully Convolu-
tional Neural Networks (FCNs) to represent the cost model
underlying expert driving behaviour. Using a deep, parametric
approach enables us to scale efficiently to large datasets and
complex behaviours by being run-time independent of dataset
extent during deployment. We demonstrate the scalability and
the performance of the proposed approach on an ambitious
dataset collected over the course of one year including more
than 25k demonstration trajectories extracted from over 120km
of driving around pedestrianised areas in the city of Milton
Keynes, UK. We evaluate the resulting cost representations by
showing the advantages over a carefully manually designed cost
map and, in addition, demonstrate its robustness to systematic
errors by learning precise cost-maps even in the presence of
system calibration perturbations.

I. INTRODUCTION

The majority of state-of-the-art motion planning systems
for autonomous driving applications rely on manually de-
signed cost-functions [1], with recent successful examples
given by the competing teams in the DARPA Grand [2] and
Urban Challenges [3], [4]. When designing a cost-function,
obstacles typically are inflated as a function of the vehicle
size. The weighting of costs from different sensing modalities
relies on extremely detailed domain knowledge. In addition,
designing good features to extract from raw input data for
computing the cost maps is often a non-trivial task relying
heavily on a well-understood hardware setup.

The requirement for high-capacity models for cost-
functions arises when one considers the application of plan-
ning frameworks in urban environments that are of significant
complexity. For example, consider a light-weight electric
vehicle designed to transport people in a city between pop-
ular locations such as the train station and shopping centres.
Because of the proximity to people and the low speed of
the vehicle, it mainly operates on pedestrian walkways and
cycle paths. This scenario introduces new challenges to the
planning framework. In addition to coping with conventional
obstacles in usual urban driving scenarios, such as trees, cars

1The authors are with the Mobile Robotics Group, Department of
Engineering Science, University of Oxford, United Kingdom;
markus, dominic, ingmar@robots.ox.ac.uk

Fig. 1: Schema for training neural networks in the Maximum
Entropy paradigm for IRL.

and pedestrians, the planner is faced with additional, un-
conventional obstacles, such as bollards, narrow underpasses
and steep ramps that are easily navigated by pedestrians, but
challenging for a robot.

Manually designing cost-functions that robustly han-
dle these added complexities is a challenging and time-
consuming task. This motivates our approach to learn end-
to-end cost-mappings sensory perception based on large
amounts of expert demonstrations. Furthermore, this ap-
proach provides significant robustness towards systematic
inaccuracies that can be found e.g. in system calibration,
consequently rendering it more independent of exact knowl-
edge of vehicle configuration.

In this work, we formulate cost-function learning from
expert demonstrations as an Inverse Reinforcement Learning
(IRL) problem [5]. Recently, Wulfmeier et al. [6] proposed
a framework that introduced training of deep neural net-
works into the paradigm of Maximum Entropy IRL [7].
The method is based on iterative refinement of the cost-
model interwoven with the solution of the planning problem
formulated as a Markov Decision Process (see Figure 1 for
an illustration of the process). Representing the cost-function
with a deep architecture is attractive to us because it opens
up the possibility of learning high-capacity, highly non-linear
models that are necessary for describing complex, real-world
urban environments. However, while the original proof-of-
concept work targeted the feasibility as well as performance
on toy scenarios, the proposed network architecture as it
stands does not have enough capacity for our application
at hand. In this work, we scale up the framework proposed
in [6] to cope with the full complexity of real-world urban
driving. To capture this complexity, we need to deploy high-
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Figure 2.7: Inverse reinforcement learning can be used for trajectory
planning where the planning cost map is replaced by the inferred reward

map. Illustration originally from (Wulfmeier et al., 2016).

trajectories. Also leveraging 3D detections as intermediate representation for

a driving policy, Wang et al. (2019) used an off-the-shelf network to predict 2D

bounding boxes from a monocular image then trains a network to reproject

the 2D detections into a 3D space.

2.6.1.3 Mid-to-end driving

ChauffeurNet (Bansal et al., 2019) adopts a mid-to-mid driving model that

takes as input the BEV output of a perception module as input to predict

a trajectory. Using a mid-level representation as input allows to augment

the training data with synthetic worst case scenarios hence improving the

performance of the network in a real-world scenario. Mid-to-mid driving is also

adopted by the privileged learner of Chen et al. (2019), and by Srikanth et al.

(2019) whose BEV semantic masks are computed using off-the-shelf networks

and then used as inputs for a recurrent convolutional network to predict the

trajectories of other agents in the scene. A mid-level representation is also

adopted in other works that predict the motion of other traffic agents (Cui

et al., 2019, Djuric et al., 2020).
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2.6.2 Inverse reinforcement learning

A Markov decision process (MDP) is defined by M = {S,A, T , γ,R} where

S is the set of possible states, A the set of actions, T the transitions, γ

a discount factor and R the reward function. Reinforcement Learning con-

sists in finding the optimal policy by mixing a strategy of exploration and

exploitation while querying a reward function and having a feedback signal

from the environment. When instead of having access to the reward function,

a set of expert demonstrations are available, Inverse Reinforcement Learning

consists in trying to recover the reward function from these demonstrations.

Initially developed in the paradigm of maximum entropy (Ziebart et al., 2008),

the deep implementation of inverse reinforcement learning was introduced by

Wulfmeier et al. (2016) for path planning where the planning cost function

corresponds to the inferred reward map outputted by a deep neural network,

see Figure 2.7. Similar approaches were adopted by Zhang et al. (2018) and

Deo and Trivedi (2020).

2.7 Conclusion

The technological breakthroughs made possible by deep convolutional neu-

ral networks have revolutionized computer vision, in doing so, the perception

systems of mobile robotic platforms. Self-driving vehicles have specifically

benefited from this revolution as their perception capabilities have reached a

level of performance that can support the high expectations of the market.

Specifically, the accuracy of semantic segmentation has been significantly im-

proved thanks to deeper fully convolutional networks and methods to enlarge

the spatial context used for processing the input images and extracts semantic

information from them. This has also been made possible by the availability

of public annotated datasets that ave grown steadily over the years, allow-

ing a more thorough evaluation of the neural networks developed. Efforts

have also been made to bridge the gap between camera-based approaches and

LiDAR-based ones on 3D perception tasks such as 3D object detection and

more recently semantic segmentation in Bird-Eye-View (BEV).
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Early monocular approaches to scene understanding in BEV suffered from the

lack of annotated data in BEV, but the release of datasets with raster images

of HD maps and 3D bounding boxes has enabled the development of promis-

ing approaches. However, it should be noted that at the time of writing, there

is not public benchmark for this task, making it difficult to compare perfor-

mance. Monocular depth estimation is another 3D perception task that has

greatly benefited from the advent of deep learning. Supervised learning pro-

vides impressive results, but ground truth remains relatively quite expensive

to acquire. To alleviate this burden, self-supervised learning approaches have

been successfully used, first using epipolar geometry and stereo image pairs as

the learning signal and then extended to use only monocular image sequences.

Deep learning not only benefited perception, but also provided fertile ground

for other robotic fields such as motion prediction and planning. As a result,

end-to-end driving networks have also been explored, but the lack of inter-

pretability has hampered their use. This has led to approaches that adopt

the end-to-end driving paradigm but with an intermediate semantic represen-

tation of the world. Although these approaches are still reserved for research

demonstrators, the availability of increasingly realistic driving simulators fa-

cilitates the evaluation of the driving capabilities of these networks.
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Improving semantic

segmentation in urban scenes

using cartographic and depth

information

3.1 Introduction

Urban scenes are very challenging environments for autonomous driving be-

cause of their complex dynamics. However, the location of certain objects in

these scenes is quite predictable: for example it is impossible to have a building

in the middle of a road and cars are more likely to be found on the road rather

than the sidewalk. The intuition of using location information in the form of

a high definition digital map in perception modules seems reasonable. In this

chapter, we argue that adding spatial context in the form of cartographic and

depth information to a semantic segmentation neural network can improve

its accuracy for some important class of objects like vehicles, pedestrians or

traffic signs.

In order for a neural network to take advantage of some cartographic or

depth information, a dataset containing semantic segmentation labels with

32
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their corresponding cartographic information is necessary. In publicly avail-

able datasets for semantic segmentation, GPS data is available but we lack

accurate cartographic information. For this reason, we chose to work on syn-

thetic data produced by CARLA autonomous driving simulator (Dosovitskiy

et al., 2017b) which provides a complete platform with semantic segmentation,

depth, LIDAR and an accurate map of a virtual city. For each frame obtained

from the simulator, we extract the part of the map that corresponds to a

hundred meters ahead of the vehicle. The communication and computation

overheads for dealing with such a limited area remain light while providing an

almost exhaustive labeling of the road segments visible in the camera frame.

These extracted portions of the map are presented in bird-eye-view . We ap-

ply an inverse perspective mapping to project the map portion in the camera

plane, in order to ease matching with camera frames.

Incorporating a spatial context information into a semantic segmentation CNN

can be done in several ways, either as an input or as a learning signal. We

propose three neural networks designs for injecting cartographic and depth

information in a Convolutional Neural Network (CNN):

• As a smoothness cost in a post-processing algorithm on top of the CNN

• As an additional learning signal along with the semantic segmentation

ground-truth

• As an additional input to the CNN along with a monocular image

The three methods are evaluated and compared with a state-of-the-art CNN

with respect to pixel-wise accuracy, mean intersection over union and inter-

section over union of some important classes.

3.2 Synthetic dataset

Real world semantic segmentation datasets are very expensive to annotate and

large-scale public datasets do not provide precise cartographic information.
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(a) The car is located on the map of the
virtual town

(b) Extracted portion of the map corre-
sponding to 100m ahead

(c) The map portion is projected in the
camera plane

(d) Camera image

Figure 3.1: Inverse perspective mapping pipeline

Therefore, simulation was the designated solution for our problem. Among the

available autonomous driving simulators (Best et al., 2017, Dosovitskiy et al.,

2017b, Shah et al., 2018), we chose CARLA as image, depth, semantic and

cartographic map are easy to access. The map of the virtual town is provided

as a PNG image encoded in three layers with one layer giving information

about roads, another one about intersections and the last one about lanes.

The car can be positioned in the 2D image map through its world location,

using the transformation (provided by the authors) from world coordinates to

pixel coordinates in the 2D image map. All the methods investigated in this

chapter rely on the fact that the cartographic map is projected in the camera

plane. So first, for each camera frame extracted from the simulator, using

the coordinates of the vehicle, a portion of the image map corresponding

to one hundred meters ahead of the vehicle is extracted. Then, using the

transformation between the bird-eye-view plane and the camera plane, the

points of the bird’s-eye view map are projected in the camera plane with

inverse perspective mapping, see Figure 3.1. The transformation between the

two planes is the following:
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p ∼ K[R|T ]w , (3.1)

where K is the intrinsic matrix of the camera, R the rotation matrix, T the

translation matrix, p = (u, v, 1)T the coordinates in the camera plane and

w = (x, y, 1)T the coordinates in the bird-eye-view plane. This projected map

is homogeneous to a segmentation label. We assign labels to road, intersection

and “other” pixels. Alignment of the projected map and the road in images

is not perfect because of the vehicle dynamics that change the rotation and

translation matrices that define the inverse perspective mapping. This could

be compensated using the vehicle’s inertial sensors but we chose not to do it

to be more realistic.

3.3 Proposed methods

Our approach is based on the idea that the cartographic image is consid-

ered as a prior to inject in a CNN. Here we use Deeplab V2 (Chen et al.,

2018a), a state-of-the-art network for pixel-wise semantic segmentation. We

have explored three ways of incorporating the cartographic information in the

network:

• The first method consists in adding the ground truth cartographic and

depth maps as additional entries in the pairwise potentials of the CRF-

RNN layer (Zheng et al., 2015) on top of a CNN (see Figure 3.2).

• The second method is similar to the previous one regarding the CRF ex-

cept that the depth and cartographic maps that are used for the CRF are

predicted by a multi-task network instead of being the ground truth (see

Figure 3.3).

• The last method is a CNN with three encoder streams: image, depth

and cartographic maps. The features extracted from the three streams

are fused by element-wise operations and fed to a decoder that outputs

a semantic segmentation map (see Figure 3.4).
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Figure 3.2: Method 1: Different combinations of pairwise potentials for
improving semantic segmentation

3.3.1 Deeplab with CRF-RNN layer

We design our network using Deeplab V2 as our basis. This network takes

advantage of dilated convolution to enlarge the size of the feature maps and

the receptive field without increasing the number of parameters and a trous

spatial pyramid pooling to aggregate multi scale information. We add an

additional CRF-RNN layer at the output of the network to allow end-to-end

training of the CRF with the CNN. The Gibbs energy of the fully connected

CRF is the following:

E(x) =
N∑
i=1

ψu(xi) +
∑
i<j

ψp(xi, xj) . (3.2)

The unary potential ψu(xi) is computed for each pixel by the CNN that pro-

duces a distribution over the label assignment xi. The pairwise potentials are
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a linear combination of Gaussian kernels:

ψp(xi, xj) = µp(xi, xj)
K∑
m=1

w(m)k(m)(fi, fj)︸ ︷︷ ︸
k(fi,fj)

, (3.3)

where k(m) is a Gaussian kernel, w(m) a weight, fi a feature vector and µ a

compatibility function that can be given by a simple Potts model µp(xi, xj) =

[xi 6= xj].

The original paper on fully connected CRFs (Krähenbühl and Koltun, 2011)

defines the following pairwise potentials that have been successfully applied

since:

k(fi, fj) = w(1) exp(−|pi − pj|
2

2θ2α
− |ci − cj|

2

2θ2β
)︸ ︷︷ ︸

k(1)(fi,fj)

+w(2) exp(−|pi − pj|
2

2θ2γ
)︸ ︷︷ ︸

k(2)(fi,fj)

(3.4)

where ci and pi are respectively the vector of RGB values for pixel i and

its position in the image, and k(1) and k(2) are the two kernels respectively

measuring similarity with regard to appearance (pixels values and positions)

and smoothness (pixels positions only).

We explore here different combinations of potentials. We consider adding the

cartographic map and the depth map as separate appearance kernels and we

also evaluate adding a kernel based on the aggregation of both depth and

cartographic maps that we call focus map:

kfocus(fi, fj) = exp(−|pi − pj|
2

2θ2α
− |Fi − Fj|

2

2θ2β
) , (3.5)

where:

F = M ◦D◦−1 , (3.6)

and F is the obtained 2D focus map, D the 2D depth map, M the 2D carto-

graphic map (analogous to a segmentation map with label 3 for intersections,

label 2 for the road and label 1 everywhere else) and ◦−1 and ◦ respectively
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Figure 3.3: Method 2: Multi-task network for semantic segmentation,
cartographic map and depth. The output of the semantic segmentation
branch is used as a unary potential in the CRF layer and depth and map

outputs are used as pairwise potentials in the CRF.

the Hadamard inverse and the Hadamard product. The weights w(m) of the

different Gaussian kernels are learned end to end through back-propagation

of the gradients in the network.

3.3.2 Multi-task network

To design the multi-task network, we built it on Deeplab to which we add two

decoder branches, one for the depth estimation and one for the map estima-

tion. The Deeplab network outputs feature maps eight times smaller than the

original input image, so bilinear sampling is used for up-sampling. The map

estimation being considered as another segmentation task, the decoder we use
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is similar to the one used in the original Deeplab. For the depth estimation

task, we added three up-convolution layers to resize the output to the input

size and obtain a smoother depth estimation. To weight the different losses,

we did manual tuning of the weights. The best results were obtained with the

following configuration:

Losstotal = 10 ∗ LossS + 0.1 ∗ LossD + LossM , (3.7)

where LossS, LossD and LossM are respectively the loss functions for seman-

tic segmentation, depth estimation and map segmentation. This particular

weighting was obtained empirically. The loss function for the semantic seg-

mentation and cartographic map estimation tasks is the cross entropy loss. For

the depth estimation task, we have chosen the BerHu loss which was shown to

yield better results than the L1 loss (Laina et al., 2016). The reverse Huber

loss is defined as:

B(x) =

{
|x| if |x| ≤ c
x2+c2

2c
if |x| > c

. (3.8)

Following Laina et al. (2016), for every gradient descent step where we com-

pute B(y − ŷ), c is defined as c = 1
5

maxi(|ŷi − yi|), where yi and ŷi are

respectively the ground truth depth and predicted depth.

We add the CRF-RNN layer at the end of the semantic segmentation branch.

The output of the depth estimation and cartographic map estimation branches

are then used as additional pairwise potentials in the CRF, as in the (3.3).

3.3.3 Multi-encoder streams network

In this section, we use a neural network with multiple encoder streams. We

build on Deeplab to which we add two encoder streams, one for the depth and

another one for the map. The feature maps extracted from the three streams

are fused to obtain a single feature map that is processed by the semantic

segmentation decoder. The aggregation strategy that achieved the best results

first uses element-wise multiplication of the image and map features, whose

result is added, still element-wise, to the depth features.
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Figure 3.4: Method 3: Multi-encoder stream network. The features ex-
tracted from the depth and map encoders are fused with the features ex-
tracted from the RGB image, by element-wise multiplication for the map,

and element-wise addition for the depth.

3.4 Experiments

We run the experiments on a set of two NVIDIA Titan X. We use ADAM

optimizer (Kingma and Ba, 2014) with an initial learning rate of 10−4 and

exponential decay. We compare the three networks with the original Deeplab

without CRF. We compare with different CRF pairwise potentials and encoder

streams to highlight the impact of the cartographic map. All networks are fine-

tuned from the pretrained solution fitted on Cityscapes and Pascal VOC. All

the networks containing the CRF-RNN layer were trained with a batch size

of one because of implementation limits of the custom CRF-RNN layer, other

networks were trained with a batch size of three, due to limited computing

resources. In this work, Tensorflow has been used to design and train the
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CNNs. For the CRF part of the code, the keras/tensorflow code given by

Zheng et al. (2015) was used. The metric used to evaluate the performance of

the network is the IoU, intersection over union, defined as:

IoU =
TP

TP + FP + FN
,

where TP , FP and FN are respectively the true positive, false positive, and

false negative pixel counts on the set of test images. This metric is evaluated

for each class and the mean over all classes is computed as a general summary.

3.4.1 Dataset

We generated 4700 labeled images using the CARLA autonomous driving

simulator. We ran 10 episodes of 470 frames each, each episode starting from

a different position in the virtual world. We used virtual town number one

for all our experiments. The number of vehicles in the world was fixed to

140 and the number of pedestrians to 120. For each episode, the weather

was randomly selected among 4 possibilities: Clear noon, cloudy noon, clear

morning, cloudy morning. During the simulation, the vehicle was controlled

by the autopilot included in CARLA simulator code. The dataset was split

in a training set composed of 4230 images and a test set of 470 images (one

episode).

3.4.2 Deeplab with CRF-RNN layer

We have first fine-tuned a pretrained Deeplab V2 network on our dataset

for 10 epochs. We train a Deeplab network with an additional CRF-RNN

layer and compare the results with those of the regular Deeplab network that

was fine-tuned on the training data. We tested different additional pairwise

potentials. The results are shown in Table 3.1. We observe that the CRF with

the cartographic map and depth map as separate additional potentials has the

best results regarding the fences and traffic signs IoU improving the IoU by

respectively 2.2% and 3.3% compared to the regular Deeplab and the focus
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Table 3.1: IoUs (in %) of the first method with CRF processing, with
different kernels, and compared to the raw Deeplab V2 without CRF pro-
cessing. Best results are shown in bold. All networks are trained on 10

epochs.

Deeplab Deeplab + CRF
pos pos + depth pos + depth + map pos + focus

mIoU 50.2 52.4 48.2 50.5 51.1
Pixel accuracy 88.3 88.8 86.5 87.8 88.6
Vehicle IoU 86.3 87.0 86.3 86.5 87.2
Pedestrians IoU 18.0 20.7 16.6 19.8 21.9
Traffic sign IoU 57.0 60.2 57.2 60.3 60.0
Fences IoU 37.1 38.7 34.7 39.3 39.3
Poles IoU 29.7 30.2 28.0 30.1 30.2
Road IoU 89.7 90.7 88.6 89.2 89.7
Road lines IoU 22.6 39.4 35.2 36.5 24.9

map additional potential has the best results for the vehicles, pedestrians and

poles IoU improving the IoU by respectively 0.9%, 3.9% and 0.5%. This gives

a hint on the fact that adding the cartographic information in the CRF adds

an information on the location of some important classes like pedestrians,

vehicles or traffic signs that are more likely to be found respectively on or

outside the road. The Deeplab network with CRF and no additional potential

has the best overall performance regarding the classes of interest and achieves

the best mIoU and pixel wise accuracy and the best road and road lines IoUs.

3.4.3 Multi-task model

For the multi-task model, we have used the pretrained weights for the encoder

and trained the network for ten epochs first. Once the network has learned to

predict depth and cartographic map, the outputs of these two branches have

been injected in a CRF-RNN layer at the end of the semantic segmentation

branch and the network was trained for ten more epochs. Therefore, results

with the different CRF pairwise additional potentials are compared with the

regular Deeplab and the multi-task network without CRF both trained during

20 epochs. The results are shown in Table 3.2. The focus map, which is

obtained by fusing the output of the depth and map branches of the network,
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Table 3.2: IoUs (in %) of the second method. The multi-task net-
works, without CRF (trained on 20 epochs), the multi-task with CRFs
(first trained on 10 epochs without CRF then on another 10 epochs with
CRF), are compared to raw Deeplab V2. Best results are shown in bold

Deeplab Multi-Task network
raw Multi-Task + CRF

pos pos + depth pos + depth + map pos + focus

mIoU 52.1 52.3 53.2 52.4 51.9 53.3
Pixel accuracy 88.8 88.8 88.5 88.2 88.4 88.7
Vehicle IoU 87.4 87.3 87.2 87.0 87.1 86.9
Pedestrians IoU 20.8 18.9 19.0 20.0 19.3 18.9
Traffic sign IoU 61.7 63.3 62.2 64.2 63.4 63.5
Fences IoU 39.4 38.4 37.7 38.5 38.2 38.5
Poles IoU 30.6 30.1 30.4 29.7 30.0 30.2
Road IoU 89.9 89.9 90.8 89.5 89.8 89.3
Road lines IoU 22.4 23.4 39.0 29.6 22.5 35.4

Table 3.3: IoUs (in %) of the third method. The Multi-encoder networks
evaluated in this table were trained on 10 epochs. Best results are shown

in bold

Deeplab Multi-encoder networks
Image + depth Image + focus Image×map Image×map + depth

mIoU 50.2 51.6 50.7 49.6 50.7
Pixel accuracy 88.3 88.5 88.6 88.55 88.6
Vehicle IoU 86.3 87.5 87.5 87.6 87.9
Pedestrians IoU 18.0 19.7 20.9 20.6 22.0
Traffic sign IoU 57.0 63.5 62.8 62.6 66.0
Fences IoU 37.1 40.4 39.8 38.3 39.9
Poles IoU 29.7 30.2 30.1 30.1 30.6
Road IoU 89.7 89.8 89.93 90.0 90.0
Road lines IoU 22.6 23.1 21.7 22.1 23.5

results in the highest mean IoU, outperforming the regular Deeplab by 1.2%.

However, regarding the classes of interest, the regular Deeplab has the highest

IoUs. When comparing the multi-task network with and without CRF, we

don’t observe improvements in the main classes of interest.
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3.4.4 Multi-encoder model

For this approach, we have used the pretrained weights for the image branch

and trained from scratch the depth and map branches. We have tested differ-

ent aggregation strategies. The best results were obtained by multiplying the

image features by the cartographic map features and then adding the depth

features. The results are shown in Table 3.3. This method achieves the best

results among the three tested ones and, in only ten epochs, it has better re-

sults for the important classes than the CRF, regular Deeplab and multi-task

approaches in respectively ten, twenty and twenty epochs. The multi encoder

network where we multiply by the map and add the depth improves the IoU of

the pedestrians, vehicles and traffic signs classes by respectively 4%, 1.6% and

9%. Multiplying by the features of the cartographic map insures a stronger

relationship with the features of the image and enforces the relation between

the classes and their location in the map.

3.4.5 Discussion

This chapter shows some evidence that the predictability of some objects’

location in a road scene can help improving the semantic segmentation and

presents encouraging results regarding the use of a cartographic information

as an image in CNNs. We hope that this line of works will encourage the

release of publicly available real world datasets with synchronous semantic

segmentation labels and precise cartographic information. The maps would

need to have a high precision at centimeter-level. This kind of map is already

popular for autonomous driving and is called High Definition (HD) map. In

this chapter, the only pieces of information conveyed by the map are road

boundaries and intersections. HD maps contain richer information, which can

potentially improve the accuracy of the segmentation further, especially road

lines IoU. Whatever format these HD maps come in, it would be possible to

rasterize them to use them as proposed in this work.
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3.5 Conclusion

Location provides important information about a vehicle’s surroundings. In

this work, we investigated how to inject location information into a CNN

pipeline, considering it as another image input into the network. We studied

the possibility of adding the map image as a pairwise potential in a CRF,

as an additional task in a multi-task model, and as an additional encoding

branch. After comparison with the regular Deeplab network, we conclude that

adding a map-based pairwise potential in the CRF can slightly improve the

intersection over union of important classes but the regular CRF still has a

better overall performance. Training a multi-task network with a cartographic

map prediction branch fails to improve the performance regarding the most

important classes. Finally, adding map information as an additional encod-

ing branch of a segmentation network provides the best results, significantly

improving the intersection over union of important classes such as vehicles,

pedestrians or traffic signs.



Chapter 4

Disparity weighted loss for

semantic segmentation of

driving scenes

4.1 Introduction

Semantic segmentation has been drawing a lot of attention from computer

vision and autonomous driving communities for many years because in ad-

dition to detecting key elements in the scene, it adds semantic information

to the global scene understanding problem. Convolutional neural networks

(CNN) have achieved impressive semantic segmentation results and replaced

the classic computer vision methods. However, state-of-the-art CNNs rely

on a very important number of parameters and this comes with the price of

an important resource consumption that hinders their usability for real-time

mobile robotics applications. Indeed, this computational burden makes these

networks less convenient for an autonomous mobile robot where multiple cam-

eras are often needed and resources and data bandwidth are limited. Recent

works have focused on designing very efficient lightweight networks that can

run with a sufficient frame rate on modern GPUs dedicated to autonomous

driving. These networks have fewer parameters than their state-of-the-art

counterparts and the direct consequence is an important drop in performance.

46
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One of the issues in driving scene datasets is the imbalance between the la-

beled classes: pixel-wise, critical classes like pedestrians or cyclists are under-

represented compared to the sky or buildings. In order to compensate this

imbalance, the loss function of the CNNs is often weighted according to the

frequency of the classes, under-represented classes having the biggest weights.

However, class imbalance is not the only issue. Finely segmenting an object

located far from the ego vehicle does not seem to be a necessary asset for an

autonomous pilot system. A coarse segmentation or a bounding box in this

situation could be sufficient, whereas having access to a fine semantic segmen-

tation of close objects can be useful to have a better free space estimation.

In this chapter, a new weighting scheme, depicted in Figure 4.1, is proposed.

Based on the assumption that objects that are close to the vehicle are more im-

portant than those located far away, this weighting scheme gives more weight

to close objects in the training objective. This is accomplished by pixel-wise

multiplying the cross-entropy loss by the disparity map for each training im-

age. This weighting is applied to two lightweight networks, with different ef-

ficiency/performance trade-offs, that were designed for real-time autonomous

driving. These networks are trained on CamVid and Cityscapes datasets and

the disparity maps are obtained with an off-the-shelf unsupervised depth es-

timation network. Our weighting scheme does not increase the number of

parameters of the network nor implies any additional manual labeling. It

is evaluated on both the regular mean intersection over union (mIoU) and

a close-range mIoU. Compared to the standard frequency weighting scheme,

this new loss weighting improves the mIoU and the IoU of pertinent classes

for autonomous driving, especially at close range.

Figure 4.1: Disparity weighting: Each pixel in the cross-entropy loss
function is weighted by its value in the disparity map.
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4.2 Disparity weighting for semantic segmen-

tation

4.2.1 Acquiring disparity maps

(a) CamVid image (b) CamVid image disparity

(c) Cityscapes image (d) Cityscapes image disparity

Figure 4.2: Disparity estimation with an off-the-shelf unsupervised CNN

Disparity maps can be acquired with a stereo setup but the acquired maps

are sparse and contain few measurements at far distance. Given enough depth

labels, supervised CNNs (Laina et al., 2016) can also be used to estimate dense

depth maps but require a large amount of labeled data. Godard et al. (2017)

have leveraged epipolar geometry constraints to estimate disparity maps as

an intermediate output in an image reconstruction network. It consists in

taking the left image as input, estimating the disparity map and performing a

reconstruction of the right image using the disparity and a bi-linear sampler.

Two disparity maps are produced, left to right and right to left, and a left-right

consistency term is added to the reconstruction loss function. This CNN is not

suitable for an application where a precise depth information is required but

for our new disparity-based weighting scheme, only a magnitude estimation is
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required. The disparity maps are precomputed for the whole dataset before

training, thus not requiring any additional labelling efforts.

4.2.2 Loss weighting

The usual cross entropy loss is the following:

−
h∑
i=1

w∑
j=1

c∑
k=1

tijk log(oijk) ,

where h, w are the dimensions of input images, c is the number of classes, and o

and t are the (h,w, c) tensors corresponding respectively to the softmax output

of the CNN and to the one-hot encoded segmentation labels. To remedy class

imbalance, the widely used technique is median class frequency balancing

(Eigen and Fergus, 2015), that consists in weighting each pixel of class k by

αk = median({p1, ..., pc})/pk where pk is the proportion of pixels of class k in

the dataset. Another weighting, also based on the frequency of the classes in

the dataset, is:

αk = 1/ log(β + pk) , (4.1)

where β is a hyper-parameter (Paszke et al., 2016). This weighting is also

used in Romera et al. (2018). The former weighting is referred to as FW and

compared to disparity weighting in the experiments section. The disparity

weighted cross-entropy is straightforward:

−
h∑
i=1

w∑
j=1

dij

c∑
k=1

tijk log(oijk) ,

where d is the (h,w) matrix of disparity map. Frequency based weightings

put more weight on classes that are globally underrepresented in terms of

surface. These weightings are not especially relevant for autonomous pilot

systems, in the sense that a big truck located far from the vehicle may not

be as important as a pedestrian close to the vehicle. Disparity weighting

encourages the network to focus on the close-range objects.
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Table 4.1: Class proportions (in %) in the Cityscapes train set. Most
represented classes are shown in bold.

road sidewalk building wall fence pole traffic light traffic sign vegetation terrain
25.3 5.8 25.3 0.7 1.0 1.4 0.2 0.6 17.6 1.1

sky person rider car truck bus train motorcycle bicycle unlabeled
4.4 1.3 0.1 7.6 0.3 0.3 0.3 0.1 0.5 6.1

Table 4.2: Class proportions (in %) in the CamVid train set.

building sky road tree car pavement
29.1 21.1 17.0 12.1 7.0 4.4

unlabeled traffic sign fence pole pedestrian bicycle
4.2 1.5 1.4 1.2 0.8 0.3

4.3 Experiments

The disparity weighting is tested on the Pytorch implementations of ENET

and ERFNET. These networks are trained using a single NVIDIA TITAN X

with ADAM optimizer, momentum 0.9, a batch size of 4, initial learning rate

of 5e−4 and weight decay of 2e−4. Pretrained weights on Cityscapes dataset

are used for all networks.

These networks are trained on two semantic segmentation datasets, CamVid

and Cityscapes. CamVid contains 367 training samples and 233 validation

samples. Cityscapes contains 2975 training samples and 500 validation sam-

ples. For both datasets, the additional disparity labels are obtained with an

unsupervised disparity CNN trained on Cityscapes. Tables 4.1 and 4.2 report

the raw proportions of pixels belonging to each class.

The evaluation metric for each class is the intersection over union IoU defined

as following:

IoU =
TP

TP + FP + FN
,

where TP, FP and FN are respectively the true positive, false positive, and

false negative pixel counts on the set of test images. The mIoU is the mean

of the individual classes IoUs. A close-range IoU is introduced: it consists in
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filtering both the ground truth segmentation and the predicted segmentation

with regard to the disparity. All pixels with a disparity value inferior to a

defined threshold are ignored. The unsupervised depth estimation network

outputs disparity values that are normalised by the image width: the depth

values on each pixel can be retrieved by rescaling acccording to the image

width. To obtain the value of the depth in meter, we use this relation relation

between B, f and d respectively the baseline, the focal length of the camera

and the disparity: Depth = B·f
d

. We arbitrarily consider a depth of 30 meters

as being our close-range limit and use the corresponding disparity value as

our threshold to filter the pixels. For each dataset and each efficient network,

three weighting schemes are compared: No Weighting, Frequency Weighting

and Disparity Weighting respectively referred to as NW, FW and DW. Here,

frequency weighting corresponds to the weighting introduced in Paszke et al.

(2016), see equ. 4.1, with β = 1.02.

The values in the result tables are averaged on 3 runs for each configuration.

4.3.1 Results on CamVid

Results for CamVid are presented in Table 4.3.

ENET ENET network with DW outperforms its FW counterpart on the

mIoU by 1.1% but more importantly on important classes like pedestrians,

cyclists, vehicles and traffic signs by respectively 6.4%, 2.7%, 0.4% and 3%.

The network trained without any weighting has the worst mIoU and the worst

IoU on most of the important classes. Another important effect of the disparity

weighting is the decrease in the sky IoU: this class has always the smallest

disparity value and has in consequence the smallest weight in the learning loss

function.

ERFNET The same effects are observed with ERFNET DW topping the

FW by 1.5% on the mIoU and respectively 4.4%, 1.4%, 1.3% and 1.4% on the
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Table 4.3: Results on CamVid validation set. Best results are shown in
bold. All networks are trained on 150 epochs.

ENET ERFNET

NW FW DW (ours) NW FW DW (ours)

mIoU 51.6 52.6 53.7 66.6 68.1 69.6

Pedestrians 30.2 29.0 35.4 55.4 56.4 60.8

Cyclist 4.8 20.0 22.7 52.8 59.2 60.6

Vehicle 65.1 67.2 67.6 77.8 79.4 80.7

Traffic sign 25.6 25.1 28.1 44.6 44.7 46.1

Road 89.5 89.7 89.5 92.9 94.2 93.3

Fence 27.7 28.2 31.9 42.0 46.7 51.4

Pole 19.1 18.9 19.6 35.4 38.4 38.0

Building 76.5 73.6 75.7 82.3 81.7 84.2

Sky 89.1 89.4 82.5 91.8 91.4 89.4

Pavement 71.8 71.4 72.2 80.4 81.9 82.0

Tree 67.8 66.6 65.5 75.9 76.2 77.1

IoUs of pedestrians, cyclists, vehicles and traffic signs. We also observe the

decrease on the sky IoU by a lesser margin.

4.3.2 Results on Cityscapes

Results for Cityscapes dataset are presented in Table 4.4. Both ENET and

ERFNET networks with disparity weighting improve on the mIoU by respec-

tively 0.5% and 0.3%. However, the disparity weighting does not improve the

IoU of all important classes.

ENET We observe the effect of the disparity weighting on the road, side-

walk, bicycle and pedestrians IoUs with respective improvements of 1.7%,

4.7%, 3.5% and 4.2% compared to FW. However FW outperforms DW on

important classes like rider, car, bus, train and motorcycle.
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Table 4.4: Results on Cityscapes validation set. Best results are shown
in bold. All networks are trained on 150 epochs.

ENET ERFNET

NW FW DW (ours) NW FW DW (ours)

mIoU 50.4 51.2 51.7 66.6 70.5 70.8

Road 93.7 93.1 94.8 96.5 96.6 97.1

Sidewalk 68.7 67.1 71.8 80.3 80.6 82.3

Building 84.6 83.4 84.7 89.9 90.1 90.6

Wall 26.3 24.0 24.7 44.4 51.5 52.8

Fence 29.5 30.8 33.3 50.2 54.4 55.2

Pole 39.2 38.0 39.2 57.5 59.1 59.2

Traffic light 20.7 23.9 20.5 57.1 60.4 59.3

Traffic sign 38.5 33.8 37.3 68.1 71.4 71.2

Vegetation 81.1 85.5 86.8 90.7 91.0 91.1

Terrain 42.7 37.6 44.1 58.4 60.4 61.9

Sky 87.1 86.2 86.6 93.3 91.8 93.2

Pedestrians 56.3 53.6 57.8 72.5 75.1 76.1

Rider 21.7 27.3 25.4 46.9 53.3 53.1

Car 86.0 86.5 86.4 91.5 92.5 92.9

Bus 45.8 54.2 51.1 57.1 74.5 74.3

Train 23.0 29.2 27.8 46.5 58.0 60.9

Motorcycle 10.0 21.6 13.8 35.5 44.3 43.5

Bicycle 53.5 51.5 55.0 66.2 69.7 70.2

ERFNET DW obtains the best IoUs for road, pedestrians, trains, bicycle,

and cars with respective improvements of 0.5%, 1% , 2.9% , 0.5% and 0.4%.

Overall, ERFNET achieves better results than ENET when weighted with the

disparity map.

Close range evaluation Given that DW puts more weight on closer ob-

jects, these two networks are evaluated with the close range IoU to verify their

emphasis on close objects, see Table 4.5. ENET DW obtains the best IoU on

most of the important classes with the exception of bus, train and motorcycle.
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ERFNET obtains also the best IoU results except for motorcycle and traffic

light. In close range, both networks perform better with our DW than with

other weighting schemes on the regular IoU.

Figures 4.3, 4.4, and 4.5 show the evolution of the IoU with respect to the

depth threshold for some important classes. The presented results are for

ERFNET trained on Cityscapes for both frequency and disparity weightings

(best of the 3 runs for each for each weighting). In this experiment, all pix-

els with a depth value above the specified thresholds are ignored in the IoU

computation. The depth values are rough estimations as the unsupervised

network is not precise. In these figures, we first observe that for some classes

IoUs improve as the depth threshold decreases and for other classes IoUs in-

crease then decrease when getting too close to the vehicle. This decrease can

be explained by the fact that some classes are not very well represented in

close range during training: road or cars are represented at all ranges but this

is not the case for the bus class for example. We also clearly observe the effect

of disparity weighting when getting closer to the ego vehicle. The IoUs with

a 60 meters threshold are equivalent for both weightings or slightly better for

frequency weighting but when the threshold is at 30 meters or less, disparity

weighting has consistently a better IoU (by a significant margin for bus class,

20%).



Chapter 4. Disparity weighted loss for semantic segmentation 55

Table 4.5: Close-range results on Cityscapes validation set. Best results
are shown in bold. All networks are trained on 150 epochs.

ENET ERFNET

NW FW DW (ours) NW FW DW (ours)

mIoU CR 52.2 52.4 53.9 67.6 71.2 72.5

Road 95.3 94.1 96.3 98.8 98.8 99.0

Sidewalk 72.7 70.8 76.4 81 81.3 83.1

Fence 36.7 39.3 42.3 50.1 54.8 52.5

Pole 48.7 47.3 49.5 66.6 67.2 68.3

Traffic light 25.4 23.8 26.8 67.0 69.2 68.9

Traffic sign 49.1 40.0 50.1 75.9 78.2 78.2

Pedestrians 59.7 59.7 61.7 76.6 79.0 80.3

Rider 28.9 33.0 33.2 48.6 53.6 54.2

Car 90.3 89.9 91.3 93.7 94.2 94.7

Bus 49.0 52.3 51.9 61.1 75.3 77.7

Train 25.9 24.9 19.2 50.9 63.3 71.6

Motorcycle 9.7 26 11.7 37.8 47.1 46.5

Bicycle 61.0 57.6 63.7 70.1 73.5 74.2

Figure 4.3: IoU of pedestrians and riders classes for different depth
thresholds. All pixels whose depth is above the threshold are ignored in

the IoU computation.
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Figure 4.4: IoU of motorcycle and bus classes with different depth thresh-
olds. All pixels whose depth is above the threshold are ignored in the IoU

computation.

Figure 4.5: IoU of road and car classes with different depth thresholds.
All pixels whose depth is above the threshold are ignored in the IoU com-

putation.

4.3.3 Qualitative results

Figure 4.6 presents different situations where the close range effect of the

disparity weighting is observed. On these figures we observe that DW produces

better road segmentation in close range which can avoid dangerous situations

like in the sixth image where a portion of sidewalk is detected in the middle

of the road. We also observe that DW ensures better pedestrian delineation
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and sometimes detects objects that are not detected by FW: on the first, the

second and the sixth image the rider in front of the vehicle is detected by FW

but not the bicycle he rides. On image 3 and 5 we observe that DW assigns

the correct class to the truck and the bus but FW mistakes some part of these

objects with other similar classes. A better segmentation in close range avoids

dangerous situations where the vehicle could brake because of a false alarm

or hit an obstacle that was not detected.

4.3.4 Discussion

Experiments show improving but varying results depending on the dataset,

the range of the metric and the chosen network. A first explanation of these

variations is given in Tables 4.1 and 4.2. The proportion of pixels correspond-

ing to the class sky in CamVid dataset is roughly 5 times greater than in

Cityscapes, which can explain why disparity weighting works better on the

former. A large part of the images in CamVid corresponds to the sky and this

part is ignored in the loss function which helps the network focus on the other

more important classes. The performance increase is not very important be-

cause these efficient networks naturally segment better closer objects because

close objects are big in camera view. Nevertheless, the disparity weighting

still has interesting properties and clearly observable effects on close-range

segmentation.

4.4 Conclusion

In this chapter, a new loss weighting scheme is introduced for semantic seg-

mentation of driving scene with lightweight CNNs. This weighting consists in

multiplying each of the pixels of the training images by their disparity value.

The disparity maps for each image are precomputed prior to training with an

off-the-shelf unsupervised CNN. Intersection over union metric is improved

on CamVid and Cityscapes datasets with better results on the former. This

is partly explained by the proportion of classes in both datasets. CamVid
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Figure 4.6: Qualitative results on Cityscapes with ERFNET: disparity
weighing (DW) behaves better than frequency weighing (FW) in close range

sky class being over-represented, it is ignored because of its very low dis-

parity, hence putting more emphasis on other classes. Further investigation

on Cityscapes dataset show even more improvements when evaluating with a

close range IoU.
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Without any additional labelling effort nor computation burden, disparity

weighting improves semantic segmentation performance. A similar approach

with dense optical flow could be tested with an unsupervised flow estimation

network. Instead of focusing on nearby objects, it could do so on moving

objects, which would also make sense for autonomous driving.



Chapter 5

FlatMobileNet: Bird-Eye-View

semantic masks from a

monocular camera

5.1 Introduction

Perception systems in autonomous mobile platforms are composed of mod-

ular computer vision tasks such as semantic segmentation, depth estimation

or object detection. These different outputs are often merged in a common

Bird-Eye-View (BEV) semantic representation of the driving scene to be used

as input by the navigation and planning building blocks. The BEV represen-

tation space is preferred to the Camera-Projective-View (CPV) space because

the scale in this space is homogeneous, in the sense that the size of the repre-

sented objects is invariant to their position, in particular to their distance to

the sensors. LiDAR has been vastly adopted in autonomous mobile platforms

because it is a 3D sensor and it inherently allows to precisely detect objects

in the 3D space. However, cameras still have a better resolution, a better

framerate, provide colour information while being by far cheaper sensors. Re-

cent approaches have then tackled the challenging problem of estimating this

top-down semantic representation of the driving scene from a monocular im-

age only with the most successful ones applying a geometric transform to

60
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Figure 5.1: Camera pinhole model

project the learned features from the camera-projective-view to the bird-eye

view and then processing the features in this coordinate system. In this sec-

tion, we argue that reasoning directly in the camera coordinate system can

still be beneficial for close-range BEV scene understanding as closer objects

appear bigger hence having more impact on a pixel-wise learning loss. To

cope with the inherent poor far-range performance of such an approach, a

mixture of experts framework is then adopted to combine the prediction of

a short-sighted network that learns in camera-view with one with better far-

range performance that learns in the BEV. We demonstrate state-of-the-art

BEV semantic segmentation performance on nuScenes dataset and Carla sim-

ulator.

5.2 Theoretical framework

Before diving into the details of our approach, we first briefly introduce the

camera pinhole framework on which our model is defined. We also give theo-

retical detail about the homography warping that is a key component in our

approach to project feature maps from CPV to BEV.
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5.2.1 Camera Pinhole model

A pinhole camera is a simple box with no lens and a small aperture called

pinhole. The light rays from the exterior scene go through the pinhole and

project an inverted image on the opposite side of the hole, see Figure 5.1 left

side. The camera pinhole model is a mathematical formulation of this simple

camera that allows to project 3D points in a world coordinate system to 2D

points in a pixel coordinate system, see Figure 5.1 right side. This projective

transform can be defined by the extrinsic and intrinsic parameters of the

camera. The extrinsic parameters refer to the rotation matrix and translation

vector of the camera coordinate system with regard to the world coordinate

system. Therefore, given a point (x, y, z, 1)T in the world coordinate system,

we can form its pixel coordinates (u, v, 1)T as follows:

s
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where:

• K is the 3× 3 intrinsic camera matrix.

• f the focal length.

• (u0, v0) the principal point at the center of the image plane.

• R is the 3× 3 rotation matrix.

• T is the translation vector.
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5.2.2 Homographies

A homography is a projective transform that maps points from one plane to

another and can be derived from Equ. (5.1):
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P = HP ′ (5.6)

where:

• P and P ′ are two points on different planes.

• H is an invertible 3 × 3 matrix formed by the intrinsic and extrinsic

parameters that relate the two planes.
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Figure 5.2: From camera images to BEV semantic masks. For each
camera frame (a), a BEV road layout is extracted from a HD map raster
as a binary semantic mask. A vehicle binary mask with the same scale and
size is generated from the ground-truth 3D bounding boxes (c), where the
red dot indicates the ego vehicle. These two masks are projected in camera

view (b) using the homography between the two planes.

5.3 FlatMobile network: footprint segmenta-

tion

5.3.1 Data

Our method relies on the availability of 3D bounding box annotations and

rasterized HD maps that come in the form of binary semantic masks and

inform about the road layout. These two different annotations constitute the

learning signal for our monocular BEV semantic segmentation neural network.

5.3.1.1 Ground truth Bird-Eye-View semantic maps

For each of the considered frames, a map portion of the available HD map

raster is extracted with the ego vehicle being positioned at the bottom center

of this map portion. This map portion is rotated according to the ego vehicle

heading angle such that it always faces forward. Given the 3D position of

each vehicle in the scene, it is possible to draw its ground-truth bounding

boxes on a blank canvas aligned with the map portion, with the correct size

and position. These two binary semantic masks, depicted in the right-hand

side of Figure 5.2, can also be viewed as occupancy grid maps. These binary

semantic masks are then projected to the camera-view using the homography
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Figure 5.3: Homography estimation. For training images with enough
matching points, the homography is computed with the matching method.
These samples become training data for a neural network that learns to
estimate the homography from RGB input images. This trained network
is then used to pre-compute the homographies of all the samples in the

dataset.

between the HD-map BEV plane and the CPV plane hence obtaining learning

signals in both views.

5.3.1.2 Homography estimation

A key input of our end-to-end network is the homography matrix that maps

a point in the camera plane (u, v, 1)T to a point in the HD-map BEV plane

(u′, v′, 1)T as described in Section 5.2.2. Our framework relies on the avail-

ability of this homography matrix at each frame. We take advantage of the

annotated 3D bounding boxes to get corresponding points in BEV and the

camera planes. The pixel positions of the 3D bounding boxes “ground” face

corners in the camera image are matched with their 3D position in the BEV

plane and the homography matrix is obtained using the Direct Linear Trans-

formation algorithm (Hartley and Zisserman, 2003). This algorithm requires

at least 4 correspondences, and some samples don’t contain enough matching
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points, so we rely on a neural network to learn a mapping between the camera

images and their corresponding homography matrices. This network is fitted

on the subset of the training set that contain enough matching points, see Fig-

ure 5.3. The homography network is composed of a ResNet-18 encoder and 4

fully connected layers with the fourth layer outputting 9 values corresponding

to the elements of the homography matrix. The homography matrix contains

4 rotational terms and 2 translation terms. The difference in magnitude be-

tween these terms must be taken into account during training. DeTone et al.

(2016) circumvent this issue by predicting 4 matching points instead of the

homography matrix elements as there is a one-to-one correspondence between

the two representations; we simply rescale the rotational and translation terms

with a constant factor such that all the elements of the homography have the

same magnitude. The L2 loss function is then used as the training criterion.

5.3.2 Model formulation

The model presented in this chapter generates BEV Occupancy Grid Maps

(OGMs) from monocular images. These OGMs’ cells can take two states,

occupied or free. Two OGMs are considered: one that gives an information

about the road layout, and the other one about the vehicles in the observed

scene. The considered OGMs being homologous to binary semantic masks,

their estimation is formulated as the semantic segmentation of the road layout

and the vehicles in the scene.

State of the art semantic segmentation CNNs come in an encoder-decoder

configuration where the input and the output of the network have the same

aspect ratio and are in the same geometric plane. The ultimate goal of our

model is to output BEV semantic masks from a camera image. However, it

is not straightforward to directly output BEV masks from a camera plane

input as the receptive field of a pixel in the BEV output would not match the

region of the image that is responsible for its processing. Hence, the semantic

masks are first outputted in the CPV. ResNet-101 (He et al., 2016) is used as

the encoder and Deeplab v3+ (Chen et al., 2018b) as the decoder. ResNet-

101 encoder extracts rich features maps from the input image and Deeplab
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Figure 5.4: Footprint segmentation vs. object segmentation. Applying a
planar homography to a full segmentation mask causes the pixels located
above the ground plane to be stretched in BEV. Our footprint segmenta-
tion respects the flat world hypothesis implied by the homography hence

avoiding the deformation caused by above the ground pixels.

v3+ decoder combines A trou Spatial Pyramid Pooling (He et al., 2014) and

a convolutional decoder module to benefit from rich contextual information

and better object boundaries delineation. Two decoding heads output the

road layout and vehicles semantic masks in CPV. The final step of our model

is to warp the semantic masks that were predicted in CPV to BEV using

a perspective warping layer (Riba et al., 2018) along with the homography

matrix between the CPV plane and the BEV plane.

However, vehicles are 3D objects and projecting regular semantic masks in

BEV leads to the “stretching” effect observed in Figure 5.4. To cope with this

deformation, we introduce the FlatMobile representation to warp the vehicles

from CPV to BEV. It consists in segmenting the footprint of the vehicles,

i.e., the “ground” face of their 3D bounding boxes in camera view. By doing

so, only pixels located on the ground surface (assumed to be locally flat) are

segmented and warped in BEV which respects the planar world hypothesis

required by the homography. The homography for each sample is obtained
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with the homography estimation network trained separately from the end-to-

end network but on samples from the same training set. The output size of

the decoding heads is s times smaller than the original camera image so the

homography needs to be re-scaled as following:

Hs = S ·H · S−1 , with S =


s 0 0

0 s 0

0 1 0

 , (5.7)

where Hs is the re-scaled homography, H the original homography and s is

the (fixed) scaling factor accounting for the ratio of image to decoder output

size.

The overall architecture of the network is depicted in Figure 5.5.

5.3.3 Cost function and learning

We chose to predict separately a binary OGM for the vehicles and another

one for the road layout, since our problem is best formalized as a multi-label

classification problem rather than a multiclass classification problem. Indeed,

each cell can belong to one of the four classes: {vehicle, drivable, vehicle and

drivable, none}. The overall loss of the network, denoted Lperception, is defined

as the sum of two losses:

Lperception = L(Oroad,Yroad) + L(Ovehicle,Yvehicle) , (5.8)

where L(Oroad,Yroad) is the loss for the road layout, and L(Ovehicle,Yvehicle) is

the loss for the vehicle occupancy, more precisely:

• L is the binary cross-entropy loss,

• Oroad and Ovehicle the predicted road layout and vehicles masks,

• Yroad and Yvehicle the ground-truth road layout and vehicles masks.
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Figure 5.5: Overview of FlatMobile network. An encoder-decoder archi-
tecture takes a camera image as input and segments the road layout and
the vehicles’ footprints in the CPV. A homography warping layer along
with the homography between the CPV and BEV are then leveraged to

warp these masks to BEV.

5.3.4 Mixture Of View Experts (MOVE) model

5.3.4.1 Mixture of experts background

Mixture of experts is a divide-and-conquer strategy introduced by Jacobs et al.

(1991), in which the input space is divided into regions which are each governed

by an “expert” model that drives the decision in that region. The final decision

is taken by combining the decisions made by the experts f1, . . . , fi, . . . , fN ,

weighted by the convex combination computed by a gating network. The

outputs of the gating network g1, . . . , gi, . . . , gN are positive and sum up to 1,

so that the final prediction F for the input x is:

F (x) =
N∑
i=1

gi(x) · fi(x) (5.9)
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The experts and the gating function are learned simultaneously. The strategy

for combining experts will determine the behavior of the different experts.

Comparing the average of the experts’ predictions with the target will encour-

age cooperation while comparing individually each expert with the target will

encourage competition:

Losscoop = ||y −
N∑
i=1

gi(x) · fi(x)||2 (5.10)

Losscomp =
N∑
i=1

gi(x) · ||y − fi(x)||2 (5.11)

Learning with a cooperation loss function will update the weights of each

expert network based on the ensemble error rather than the error of each

expert which makes the experts learn on the entire problem space. On the

contrary, learning with a competition loss makes the experts specialize in their

preferred sub-space with the gating network selecting which expert is more

“suitable” for a specific input. In our experiments we empirically compare

different combinations of cooperation and competition losses and chose the

one that gives the best result.

5.3.4.2 Mixture of experts for OGM estimation

Learning the semantic masks in CPV and BEV can be seen as learning these

masks with two experts, with each expert learning both the vehicles and road

layout masks. In CPV, closer objects appear bigger hence having more impact

on the learning loss so we can expect the CPV expert to have better close-

range accuracy. On the other hand, in BEV the size of objects is invariant to

their distance to the sensor so we can expect the BEV expert to have a better

far-range performance than the CPV one. To make the most of the available

ground truth in both CPV and BEV and allow each view expert to specialize in

its preferred range, a Mixture Of View Experts (MOVE) approach is adopted,

see Figure 5.6. The MOVE architecture is built on the FlatMobile network

described in Figure 5.5 with an additional shallower OGM estimation network
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Figure 5.6: Mixture Of View Experts (MOVE) network

whose purpose is to learn the BEV masks directly in the BEV. The shallower

OGM network is composed a ResNet-18 as encoder and two DeepLab-v3+

decoders for the road layout and vehicles masks prediction. In an end-to-end

fashion, it takes the BEV output of the FlatMobile network and produces

new masks in BEV. The gating network is composed of a single convolution

layer with a softmax activation function. The BEV outputs (both road layout

and vehicles) of the FlatMobile network and the shallow OGM network are

concatenated along the channel dimension and fed to the gating network that

produces a weight map W ; the CPV expert is weighted by W and the BEV

expert by 1−W . The weight maps are obtained in the BEV space so the CPV

weight map has to be warped back to CPV. The competition and cooperation

losses for the vehicles and the road layout are defined as:

Losscomp = Ψ(W , H−1) · L(Ocpv,Ycpv) + (1−W) · L(Obev,Ybev) (5.12)
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Losscoop = L(W ·Ψ(Ocpv, H) + (1−W) · Obev,Ybev) (5.13)

where:

• L is the softmax cross-entropy loss function

• Ψ the homography warping function and H the homography from CPV

to BEV

• Ocpv and Obev the output masks in CPV and BEV

• Ycpv and Ybev the ground-truth masks in CPV and BEV

The final loss is empirically defined as the following combination of the com-

petition and cooperation losses:

Lossfinal = 0.8 · Losscomp + 0.2 · Losscoop (5.14)

5.3.5 Experimental evaluation

5.3.5.1 Training setup

Real-world experiments are conducted on the nuScenes dataset (Caesar et al.,

2019). The dataset is split into 30002 training frames and 4146 testing frames

from held-out sequences. The HD map raster and 3D bounding boxes are

processed like explained in Section 5.3.1.1 to obtain the ground-truth semantic

masks first in BEV. These masks of size 1 000× 550 (that is, 100m×55m) are

then homography warped to obtain the ground-truth semantic masks of size

450 × 800 in the CPV. The specific size of the semantic masks in BEV was

chosen such that after warping the obtained masks roughly match the limits

of the camera field-of-view.

The BEV simulated-world experiments are run on the CARLA simulator

(Dosovitskiy et al., 2017b) version 0.9.6, as implemented by Chen et al. (2019).
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21426 frames are collected at 10 fps for training in Town 1 under 4 training

weather conditions with 100 vehicles and 250 pedestrians. Each frame contains

a 576 × 240 RGB camera image, a dense depth map of the same shape, the

3D bounding boxes coordinates of the vehicles in the scene and a road layout

raster image. Here again semantic masks of size 600×300 (that is, 60m×30m)

are generated in BEV and warped in CPV. 3659 frames are collected in Town

2 under 2 testing weathers for testing.

All networks are trained over 100 epochs with Stochastic Gradient Descent

(SGD) and a batch size of 8 for real-world experiments and 14 for simulated

data, with learning rate of 10−3.

5.3.5.2 Evaluation baselines

Monocular camera based networks The performance of our FlatMobile

network (FMNet) is evaluated against the following other monocular baselines:

• VED (Lu et al., 2018), MonoLayout (Mani et al., 2020): Multi-task

training led to poor results so two separate models were trained, one for

the vehicles OGM and another for the road layout OGM.

• VPN (Pan et al., 2020): trained in a multi-task way with two decoders,

one for the vehicles OGM and another for the road layout OGM.

• OFT-DeepLab v3+ (Roddick et al., 2019): A multi-task DeepLab v3+

is augmented with an OFT module at the end of the network to project

the CPV features to BEV. This baseline is similar to our FMNet with

the difference that it uses OFT instead of homography warping and it

learns directly in the BEV space.

Point cloud based networks LiDAR provides a very accurate depth es-

timation in the form of 3D point clouds and is almost always preferred to

camera-based depth estimation for 3D perception tasks such as 3D object

detection. It has been argued by Wang et al. (2019a) that the superior per-

formance of LiDARs is not only due to their inherent 3D nature but also to
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the choice of representation adopted in camera-based approaches. Their main

idea consists in converting a dense depth map D estimated in CPV to a 3D

point cloud such as:

z = D(u, v) (5.15)

x =
(u− CU) · z

f
(5.16)

y =
(u− CV ) · z

f
(5.17)

where z is the depth, x the width, y the height, f the focal length and (CU , CV )

the coordinates of the optical center.

The obtained point cloud can then be processed with any LiDAR-based ap-

proach. The pseudo-LiDAR approach was initially a two-step approach with

first a depth estimation network and then a 3D object detection network. This

approach was further extended to be fully end-to-end by Qian et al. (2020)

that introduced a differentiable soft quantization method to convert the point

cloud to a 3D occupation tensor.

Based on these works, we introduce the following new baselines for OGM

estimation:

• The available LiDAR point clouds were processed to obtain BEV 3-

channels images that encode the distance to the LiDAR, the height and

the intensity. A Deeplab v3+ was then trained to take these images as

input and with two decoders output the vehicles and road layout OGMs.

• A similar network was trained with Pseudo-LiDAR instead as input

(intensity set to 1). Dense depth maps are available in Carla simulator so

the Pseudo-LiDAR baseline is trained end-to-end as described in (Qian

et al., 2020) for the simulation experiments. For NuScenes, the dense

depth maps are not readily available and were obtained using off-the-

shelf depth estimation network (Lee et al., 2019) and the Pseudo-LiDAR

baseline was obtained in two steps as described in Wang et al. (2019a).
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• Similar to FishingNet (Hendy et al., 2020), we design a baseline that

fuses the predictions of a network that takes LiDAR BEV snapshots as

input and another that takes an image as input and uses VPN as a view

transformer module.

5.3.5.3 Evaluation metrics

As the OGM prediction amounts to semantic segmentation, the classical In-

tersection over Union (IoU) metric is also adopted.

IoU =
TP

TP + FP + FN
, (5.18)

where TP , FP and FN are respectively the true positive, false positive, and

false negative pixel counts on the set of test images. We report the IoU values

for the whole semantic masks but also for a close range and far range section

of the masks. Close range is defined as the region 50m ahead of the ego vehicle

and 10m on each side for real world data, and 30m ahead of the ego vehicle

and 10m on each side for simulated data. Far range is defined as the region

farther than 50m ahead of the ego vehicle for real world data and 30m ahead

for simulated data.

5.3.5.4 Quantitative results

Comparative results with monocular and point cloud based baselines are pre-

sented in Tables 5.1 and 5.2. Two versions of our footprint segmentation

model, referred to as FlatMobile Network (FMNet), are presented: FMNet

which is the model described in Figure 5.5 and FMNet-MOVE the Mixture

Of View Experts variation described in Figure 5.6. For each network, re-

sults are provided for the road layout and vehicles IoUs at different ranges as

explained in Section 5.3.5.3.

Comparison with monocular baselines When comparing the results ob-

tained by the baselines and our networks on real world data in Figure 5.1, the
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Table 5.1: OGMs evaluation by IoU (in %) on real data (Caesar et al.,
2019). Full refers to the whole OGMs, close focuses on a region of 50m
ahead of the ego vehicle and 10m on each side, far on the region farther

than 50m ahead of the ego vehicle.

IoU static IoU dynamic

Range Full Close Far Full Close Far

VED (Lu et al., 2018) 60.2 61.4 55.0 44.7 42.5 44.7
OFT-DeepLab v3+ (Roddick et al., 2019) 65.9 64.4 66.8 54.2 52.5 54.4
VPN (Pan et al., 2020) 61.8 68.9 56.7 52.9 58.2 49.9
MonoLayout (Mani et al., 2020) 63.5 68.2 57.1 49.9 47.8 49.9
FMNet 66.1 78.0 56.7 54.4 59.7 51.7
FMNet-MOVE 68.4 80.5 59.7 58.8 66.6 52.8

Fishing (Hendy et al., 2020) 71.4 82.3 62.1 60.5 68.1 54.2
BEV Pseudo-LiDAR 63.0 72.0 54.7 54.1 58.4 50.3
BEV LiDAR 70.7 82.2 61.4 59.0 67.1 52.4

Table 5.2: OGMs evaluation by IoU (in %) on simulated data (Dosovit-
skiy et al., 2017a). Full refers to the whole OGMs, close focuses on a region
of 30m ahead of the ego vehicle and 10m on each side, far on the region

farther than 30m ahead of the ego vehicle.

IoU static IoU dynamic

Range Full Close Far Full Close Far

VED (Lu et al., 2018) 79.3 81.3 78.6 51.4 48.1 51.0
BEV Pseudo-LiDAR End-to-End 75.8 80.0 73.0 50.9 59.6 50.8
OFT-DeepLab v3+ (Roddick et al., 2019) 85.3 83.8 85.5 53.8 50.1 54.8
VPN (Pan et al., 2020) 82.1 80.2 81.9 50.5 50.2 50.7
MonoLayout (Mani et al., 2020) 83.3 81.1 83.3 51.7 50.5 52.4
FMNet 87.2 89.0 84.3 59.3 65.4 56.8
FMNet-MOVE 90.2 90.0 89.6 62.2 68.9 59.2

Fishing (Hendy et al., 2020) 92.2 91.4 91.1 66.1 69.7 63.3
BEV LiDAR 92.1 91.8 90.1 65.3 69.4 62.5
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first observation is the superior performance achieved by the networks that

use a geometric information to warp the feature maps from BEV to CPV in-

stead of a purely data-driven approach. FMNet has the best IoU in full range

and close range evaluation while our OFT-DeepLab v3+ baseline is second

best in full range and close range and obtains the best far range performance

among all the tested networks including LiDAR-based ones. FMNet is on par

with OFT-DeepLab (Roddick et al., 2019) on the road layout OGM and the

vehicles OGM in full range but outperforms it in close-range by 13.6 % for the

road layout OGM and 7.2 % for the vehicles OGM. The gain in performance

in close range is due to our CPV training criterion that gives a higher relative

weight to closer objects. Indeed, since our network learns in camera view,

where closer objects appear bigger, it has an incentive to being more accurate

in close range. OGMs are often used as input for motion planning algorithms

and better performance in close range seems to be appropriate when planning

a short-term trajectory. For the same reason, OFT has a better performance

in long range: since it predicts directly in BEV, it does not suffer from the

increase in error due to the imprecision in warping. The MOVE variation

of the FMNet architecture improves the IoU of the road layout OGM in full

range by 2.3%, 2.5% in close range and 3% in far-range. It also improves the

vehicles OGM IoU by 4.4% in full range, 7.9 % in close range and 1.1% in far

range.

Experiments made on simulated data in Figure 5.2 confirm the superiority of

the FMNet approach when compared to other monocular baselines with the

MOVE variation obtaining the best IoU results at all ranges and on both road

layout and vehicles tasks. We also observe that the road layout IoUs for simu-

lated data are much higher for all networks and the difference between tested

networks is less important: this is because the Carla environment graphics

are very simplistic (only T-junctions) compared to real life images and also

because in simulation we consider a smaller BEV portion.

Comparison with point cloud based baselines In the real world or

simulation, the BEV LiDAR baseline obtains slightly better results than the
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FMNet-MOVE network on nearly all metrics while fusing outputs of a LiDAR-

based and monocular network increases the computation burden without a

significant improvement in performance. In close-range, the LiDAR baseline

is 1.7% better than the MOVE network on the road layout IoU and 0.5% on

the vehicles IoU. In far range, it is 1.7% better on the road layout IoU and

the MOVE network is better on the vehicles IoU by 0.4 %. This comparison

shows that our monocular camera-based network is very competitive with the

LiDAR baseline on this task and one could argue that the slightly better

performance of the LiDAR-based network would not justify its usage in a

real-world application in place of a much cheaper camera-based solution. The

Pseudo-LiDAR network has a reasonable performance on NuScenes dataset

and is second best for close-range prediction when compared to monocular

baselines. In simulation, it has the worst performance of all tested networks.

It is important to remind that the network is learned end-to-end in simulation

as opposed to real world experiments where the depth is first learned using

an off-the-shelf depth estimation network.

5.3.5.5 Qualitative results

Qualitative results for the FMNet network are shown in Figure 5.7. The upper

part of the figure shows the output OGMs of the FMNet network in CPV and

the lower part shows the same OGMs in Bird-Eye-view after the homography

warping. As our network operates only on planar surfaces, warping the ve-

hicle masks from camera view to BEV does not cause the “stretching” that

is observed in Figure 5.4 when warping regular semantic masks without the

knowledge of depth. Hence, our approach can distinguish two vehicles in front

of each other by simply applying the connected components algorithm to the

binary masks for example. As indicated by the IoUs results, we observe that

our network is more accurate in the lower part of the OGMs, which corre-

sponds to the first meters in front of the camera which is a direct consequence

of learning the grids in CPV. For the same reason, we also observe that the

grids are not accurate enough in far-range as minor errors on far away ob-

jects in CPV are amplified when warping to BEV because of perspective. The

FMNet-MOVE variation described in Figure 5.6 combines OGMs predicted
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Figure 5.7: Qualitative results of our OGM estimation network without
mixture of experts. The gray part of the predicted masks corresponds to
the limits of the camera’s field of view. GT stands for Ground Truth and

Pred for predicted.
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Figure 5.8: Qualitative results of our OGM estimation network with
mixture of experts. The gray part of the predicted masks corresponds to
the limits of the camera’s field of view. GT stands for Ground Truth and

Pred for predicted.
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with a CPV learning loss by the close-range expert and OGMs predicted with

a BEV learning loss by the far-range expert to generate an OGM that benefits

from the ”best of the two worlds”. The MOVE architecture not only improves

the far-range performance but also improves the close-range performance as

the close-range expert can specialize even more. Sample OGMs obtained with

the MOVE network along with the intermediate predictions of the CPV and

BEV experts are shown in Figure 5.8. BEV refers to the predictions of the

BEV expert, CPV2BEV refers to the prediction of the CPV expert that are

then warped to BEV and MOVE refers to the final output of the FMNet-

MOVE architecture. We observe that some vehicles are detected by the BEV

expert but not by the CPV expert. The same goes for portions of the road

layout. We also observe that the predictions of the CPV expert are much finer

in close-range than those of the BEV expert: for example multiple close vehi-

cles are predicted as a single ”blob” by the BEV expert when the CPV expert

is able to distinguish them. The final prediction of the MOVE network is able

to take advantage of both experts capabilities and obtain a refined prediction

for the full range of the OGMs. The figure also shows the two weighting maps

used by the MOVE architecture: we observe that as expected the CPV map

focuses on close-range prediction and inversely for the BEV one.

5.4 Conclusion

In this chapter, we introduce a novel method to output bird-eye-view occu-

pancy grid maps from a monocular camera using homography warping. Ho-

mography warping being a planar transformation, vehicles are successfully

warped to Bird-Eye-View by considering only their footprints. This simple

trick allows us to outperform in terms of IoU all other publicly available base-

lines both on the vehicles and road layout occupancy grid maps especially

when considering the close range area ahead of the ego-vehicle. Given that

ground-truth is available in both Camera-Projective-View and Bird-Eye-View,

we introduce a mixture of views approach that allows us to learn in both views

thus further improving the performance of our network.



Chapter 6

Driving among flatmobiles: An

application of footprint

segmentation

6.1 Introduction

Camera-based end-to-end driving neural networks bring the promise of a low-

cost system that maps camera images to driving control commands. These

networks are appealing because they replace laborious hand-engineered build-

ing blocks but their black-box nature makes them difficult to delve in case of

failure. Recent works have shown the importance of using an explicit interme-

diate representation that has the benefits of increasing both the interpretabil-

ity and the accuracy of networks’ decisions. Nonetheless, these camera-based

networks reason in camera view where scale is not homogeneous and hence

may not be directly suitable for motion forecasting. In this chapter, we intro-

duce a novel monocular camera-only holistic end-to-end trajectory planning

network with a Bird-Eye-View (BEV) intermediate representation that comes

in the form of binary Occupancy Grid Maps (OGMs). To ease the predic-

tion of OGMs in BEV from camera images, the previously described footprint

segmentation approach is adopted. The gain in performance is demonstrated

82
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Figure 6.1: Two-stage network for end-to-end trajectory planning from
a monocular camera with intermediate BEV OGM outputs.

off-line and on-line on respectively the nuScenes dataset (Caesar et al., 2019)

and Carla simulator (Dosovitskiy et al., 2017b).

6.2 Encoder-decoder LSTM for trajectory

planning

6.2.1 Model formulation

In this section, we introduce a two-stage holistic end-to-end trajectory plan-

ning network that takes a sequence of 5 monocular images as input, leverages

a BEV mediated perception strategy and plans the trajectory of the ego ve-

hicle knowing its destination position at a 5s horizon, see Figure 6.1. The

intermediate representation of this network is generated by the first stage and

comes in the form of two binary Occupancy Grid Maps (OGMs) in BEV, one

giving the road layout and the other one the occupancy of the vehicles in the

scene. As it is not straightforward to directly obtain BEV outputs from a

camera plane input while preserving the receptive field, the footprint segmen-

tation FMNet-MOVE described in Figure 5.6 is adopted for the first stage of

the network and is applied to each of the 5 input images. The second stage of

the network implements mid-to-end trajectory planning. The two sequences

of road layout and vehicle BEV masks are concatenated along the channel
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dimension at each time step and flattened to obtain a sequence of feature

vectors f−τ , ..., f0. These feature vectors become input to an encoder-decoder

LSTM (Cho et al., 2014). The encoder embeds the sequence of feature vectors

of length τ + 1 and processes it introducing the following recurrence:

et = φe(ft;We)

at = φa((xt, yt);Wa)

ht = LSTM(ht−1, concat(et, at);Wl) ,

(6.1)

where (xt, yt) is the position of the ego vehicle at time t ∈ [−τ, ..., 0], φe and φa

are the embedding functions, We and Wa are the embedding weights, ht and

Wl are respectively the hidden state and the weights of the encoder LSTM.

The final cell state c0 and hidden state h0 of the encoder that summarizes

the input OGM sequence are fed to the decoder as its initial cell and hidden

states. The decoder then recursively outputs the sequence of future positions:

a′t = φ′a(st−1;W
′
a)

h′t = LSTM(h′t−1, a
′
t;W

′
l )

st = φs(concat(h
′
t, (r, α));Ws) ,

(6.2)

where φ′a and φs are the embedding functions, W ′
a and Ws are the embedding

weights, (c′t, h
′
t) and W ′

l are respectively the cell/hidden states and the weights

of the decoder LSTM, st the estimated future position at time t ∈ [1, ..., T ]

and (r, α) the polar coordinates of the destination point. The prediction of

the future positions s1:T is expressed in Cartesian coordinates, whereas the

destination point is expressed in polar coordinates, for encouraging solutions

that depart from a simple direct interpolation, thereby enhancing the impact

of different design choices.

6.2.2 Cost function and learning

At decoding (i.e., planning) time, the LSTM predicts the distribution of the

future position of the ego vehicle at each time-step, as developed in (6.2).

Similar to Alahi et al. (2016), the output st of the encoder-decoder LSTM
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Figure 6.2: Encoder-decoder LSTM for trajectory planning.

module predicts the parameters of a bi-variate Gaussian distribution charac-

terized by its mean µt = (µxt , µ
y
t ) and its covariance matrix parameterized by

the standard deviations σt = (σxt , σ
y
t ) and the correlation ρt.

The predicted position of the ego vehicle at time t is given by (xt, yt) ∼
N (µt, σt, ρt). The parameters of the encoder-decoder LSTM module are

learned by minimizing the negative log-likelihood of the Gaussian distribu-

tion:

Lmotion = −
T∑
t=1

log(P(xt, yt|µt, σt, ρt)) . (6.3)

For the holistic end-to-end network, the final loss function is a linear combi-

nation of the perception loss and the motion loss:

Ltotal = αLperception + Lmotion , (6.4)

where Lperception is defined in (5.8) and α is empirically set to 0.1.
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6.3 Experimental evaluation

6.3.1 Evaluation metrics

The Average Displacement Error (ADE) corresponds to the average Euclidean

distance between the predicted trajectory and the ground-truth one: ADE =
1
N T

∑N
i=1

∑T
t=1

∥∥Ẑt
i−Zt

i

∥∥
2
, where N is the number of samples, T is the number

of prediction timesteps, Zt
i are the ith ground-truth coordinates at time step

t and Ẑt
i are their predictions.

6.3.2 Evaluation baselines

The performance of the holistic two-stage end-to-end model with intermediate

OGM outputs is compared against the following baseline models:

• LSTM E-D: Same architecture than the LSTM encoder-decoder de-

scribed in Figure 6.2, except that it takes only the past trajectory as

input.

• End-to-end: This model takes a sequence of camera images as input,

encodes it with a ResNet-101, flattens the feature maps and feeds the

obtained sequence of feature vectors to the same encoder-decoder LSTM

described in Figure 6.2. This model is comparable to direct perception

approaches (see, e.g. Bojarski et al., 2016, Codevilla et al., 2017, Pomer-

leau, 1988), with the difference that it takes a sequence of images as

input and leverages a LSTM model to process this temporal informa-

tion.

• Mid-to-end: Similar to the end-to-end model, except that it takes as

input a sequence of concatenated ground-truth drivable area and vehicle

semantic masks. This model is comparable to mid-to-mid approaches

(Bansal et al., 2019, Srikanth et al., 2019) or the privileged learner of

Chen et al. (2019).
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6.3.3 Training setup

All networks are trained using SGD with a batch size of 10 for 200 epochs.

All results are obtained with a momentum of 0.9 and a learning rate of 10−3.

After removing the frames that do not have 5s of history and 5s of future (10

previous and 10 future frames), nuScenes dataset (used for off-line evaluation)

is split in 13982 training samples and 3167 testing samples from held-out

sequences.

6.3.4 Off-line experiments

6.3.4.1 Quantitative results

The results for motion planning are presented in Table 6.1. The L1 norm of

lateral and longitudinal displacements are presented in addition to the Aver-

age Displacement error (ADE) metric. The two-stage holistic network shows

improvements on the three metrics over its regular end-to-end counterpart,

with an improved accuracy in both directions with more important impact on

the lateral direction and the performance discrepancy increasing over time.

Overall, the regular end-to-end network has the worst performance among

the tested networks, which confirms the intuition that the intermediate BEV

representation is an asset for motion forecasting. The mid-to-end network out-

performs the end-to-end network but falls behind the holistic network on all

metrics. This was not expected as the mid-to-end network takes ground-truth

masks as input. A possible explanation for this surprising fact is that, our net-

work learning the OGMs from camera images in an end-to-end fashion, it may

benefit from pieces of information contained in the natural images which help

disambiguate some driving scenarios. In other frameworks, accurate smooth

estimates of discrete quantities have already been shown to be more efficiently

processed than the ground truths themselves (Hinton et al., 2015). Our con-

tinuous masks, which are quite accurate in close range, may thus convey more

information for fitting the second stage of the network in critical areas. The

importance of having access to a scene context is highlighted by the inferior

results obtained by the LSTM E-D model.
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Table 6.1: Average displacement errors and L1 norm (in meters) for
lateral and longitudinal displacements. Our model is referred to as Driving
Among Flatmobiles (DAF). The mid-to-end and end-to-end are respectively
referred to as MTE and ETE. NP (No Past) refers to models that do not
take the past trajectory as input; CV (Camera View) refers to a model
where the predicted OGMs are not warped in BEV. Best results are shown

in bold.

ADE L1 longitudinal L1 lateral

0.5s 2.5s 4.5s 0.5s 2.5s 4.5s 0.5s 2.5s 4.5s

LSTM 1.78 2.38 3.57 1.69 2.07 3.10 0.07 0.30 0.68

MTE 0.47 0.90 1.11 0.47 0.79 0.74 0.01 0.18 0.49
ETE 0.49 0.92 1.17 0.46 0.80 0.78 0.02 0.22 0.54
DAF 0.40 0.86 1.02 0.40 0.77 0.74 0.01 0.17 0.40

DAF CV 0.48 0.92 1.13 0.45 0.81 0.77 0.02 0.20 0.51

MTE NP 0.39 0.96 1.11 0.39 0.77 0.72 0.01 0.19 0.51
ETE NP 0.43 0.96 1.27 0.43 0.80 0.76 0.02 0.24 0.68
DAF NP 0.46 0.90 1.10 0.46 0.79 0.73 0.01 0.19 0.48

6.3.4.2 Ablation study

We show the importance of some components of the approach introduced here

with the degraded results that are presented in Table 6.1. Removing the past

trajectory input shows the usefulness of BEV when there is no prior about

the past motion. An important gap in performance is observed between the

holistic network that leverages BEV information to forecast motion and the

end-to-end network, with up to 20cm difference in long-term lateral forecast,

but the two networks have similar performance on the other metrics. The

performance of the mid-to-mid network is similar to that of our network in

the lateral direction and is slightly better in the longitudinal direction, espe-

cially in short-term prediction. The importance of BEV is also highlighted

by removing the perspective warping and feeding directly the Camera-View

(CV) features as input to the second stage. The BEV version of the holistic

network achieves a better overall performance than its CV counterpart with

an average lateral gain of 11cm at a horizon of 4.5s.
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6.3.4.3 Qualitative results

Qualitative results of our network on nuScenes dataset (on offline trajectory

planning) are provided in Figure 6.3. We observe that our approach handles

different road layouts and different times of the day. As expected, situations

where the vehicle is turning are more challenging to predict on the lateral

direction and are most responsible for the error in this direction. We also

observe that in most cases the longitudinal error increases with time, which is

also expected as the trajectory prediction network has only access to the past

scene representations and recursively outputs the future positions which can

lead to an accumulation of errors over time. The results presented in Figure

6.4 show examples of situations where our model fails to accurately predict

the future trajectory. For example, in scenarios where the vehicle is moving

rapidly on highways, our model often fails to accurately predict the trajectory

and outputs future positions at a much slower pace, showing that our network

is biased towards urban situations where the vehicle is moving more slowly,

see the top image. The bottom image shows another recurring scenario where

our model fails on the long-term prediction when the vehicle is turning and

predicts a turn in the opposite direction. We also attribute this weakness to a

bias induced by the learning samples, augmenting the dataset with randomly

rotated coordinates and masks could solve this issue (Bansal et al., 2019).

6.3.5 On-line experiments

6.3.5.1 Quantitative results

Having a better performance on off-line metrics is not necessarily correlated

with proper driving (Codevilla et al., 2018). The on-line performance of our

model is evaluated in testing town 2 on the Carla simulator NoCrash bench-

mark. This benchmark consists of 3 driving scenarios with a varying number

of vehicles and pedestrians in the simulated town: empty (no traffic), reg-

ular traffic and dense traffic. The vehicle drives 25 predefined routes with

different starting points and an episode is counted as successful if the vehicle

reaches its goal within a certain time limit without colliding with a static or
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Figure 6.3: Qualitative results of our holistic trajectory planning network
on nuScenes; blue dots are for ground truth, red dots for prediction.
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Figure 6.4: Two examples where our model fails to plan the trajectory
on nuScenes; blue dots are for ground truth, red dots for prediction.

a dynamic object. The training weathers are “Clear noon”, “Clear noon after

rain”, “Heavy raining noon”, and “Clear sunset” and the test-only weathers

are “After rain sunset” and “Soft raining sunset”.

Our DAF network and the baselines are adapted to the task and a one-hot

encoded high-level command (“follow lane”, “turn left”, “turn right”, “go

straight”) is provided instead of a goal position. Similar to Codevilla et al.

(2017), the high-level command guides the vehicle through predefined routes.

We also modify the trajectory part of the networks and adopt the architecture

and loss function of Chen et al. (2019) relying on a single image used as in-

put. Instead of the encoder-decoder LSTM version that takes several images

as input, the modified DAF takes only a monocular image as input, predicts

the intermediate BEV semantic maps and finally outputs heatmaps for each

predicted time-step. The heatmaps are then converted to waypoints using a

soft-argmax function. The set of waypoints is then converted to driving com-

mands using a low-level controller as described in Chen et al. (2019). The
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Table 6.2: Carla NoCrash benchmark success rates in closed-loop. Mid-
to-mid relies on ground-truth OGMs.

Weather Traffic End-to-End Mid-to-Mid Ours

Seen
Empty 43 91 89
Regular 30 80 76
Dense 11 43 39

Unseen
Empty 37 88 64
Regular 23 85 55
Dense 8 44 32

mid-to-mid baseline input is also changed to a 7 channels grid map similar to

Chen et al. (2019) containing information about the road layout, the vehicles,

the pedestrians and the traffic lights. Pedestrians in Carla simulator have

a very erratic behavior as they cross frequently the road. This required ac-

cess to pedestrian information in the mid-to-mid network. Information about

traffic lights is also necessary for navigation, because the model is fed with

a high-level command instead of a goal position. We use the same heatmap-

based trajectory prediction sub-network for the MTE and ETE baselines. For

the ETE network, the heatmaps and the waypoints are predicted in the cam-

era space and then the waypoints are projected to 3D knowing the intrinsic

parameters of the camera.

Table 6.2 displays the results. Our model significantly outperforms the end-to-

end baseline in all conditions, and it is at par with the mid-to-mid baseline in

weather conditions seen during training. The mid-to-mid baseline performance

is not affected by weather conditions that were unseen during training as it

relies on ground truth OGMs instead of OGMs inferred from camera images.

6.3.5.2 Qualitative results

Figure 6.5 displays qualitative results of our network in Carla simulator, with

the intermediate OGMs ground-truth and predicted masks in both camera-

view and bird-eye-view along with the input camera image. It also shows

the ground-truth and predicted trajectories on top of the ground-truth OGM

mask. A video of our network driving in closed-loop in Carla simulator can
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Figure 6.5: Qualitative results of our holistic trajectory planning network
on Carla simulator; blue dots are for ground truth, red dots for prediction.
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be found on the following link: Closed loop driving in Carla simulator. This

video shows 4 different scenarios of the vehicle driving in: train town with

train weather, train town with test weather, test town with train weather and

finally test town with test weather. Although the intermediate representation

of our network does not inform about pedestrians, our model manages to

stop in front of pedestrians and avoids collisions. Looking at the intermediate

representation, we see that pedestrians are detected as vehicles when they

are in the drivable area. The vehicles class in the simulator includes cars and

trucks, but also cyclists that look very much like pedestrians. This observation

highlights the importance of having an intermediate representation to delve

the decisions made by the model.

6.4 Conclusion

In this chapter, a novel camera-based holistic end-to-end motion planning

network is introduced. It takes as input a sequence of camera images and first

leverages the Driving Among Flatmobiles approach to obtain bird-eye-view

occupancy grid maps. These intermediate grid maps are then used to plan

the ego-vehicle trajectory in an end-to-end fashion. The performance of our

end-to-end trajectory planning approach is evaluated both off-line and on-line

and compared to its regular end-to-end counterpart, our method is better at

imitation driving and provides interpretable intermediate results. The benefit

of embedding computer vision tools for the transformation from the camera

view to the bird-eye-view intermediate representation is also highlighted in

our ablation study. End-to-end driving may not be reliable enough to be used

as a primary solution in autonomous vehicles, but such a cheap camera-based

component could prove useful for redundancy in a more complex system.

https://www.youtube.com/watch?v=ZW_-iXFTOR8&feature=youtu.be


Chapter 7

Conclusion

In this chapter, we first summarize the contributions of this thesis that cover

scene understanding in both the camera-view and the Bird-Eye-View. In the

second part, we discuss the possible research axis that can sprout from the

work done in this thesis.

7.1 Contributions

7.1.1 Leveraging spatial context to enhance scene un-

derstanding in the camera-view space

The first approaches developed during this thesis focused on injecting a car-

tographic information and more broadly a spatial context into a semantic

segmentation convolutional neural network (CNN). We have first explored 3

different ways of injecting a cartographic and depth information into these

CNNs: as a smoothness cost in a post-processing algorithm, as an auxiliary

task in a multi-task network and as additional input to a multi-encoder net-

work. Our experiments have shown that the first two methods did not improve

significantly the performance whereas the third one improved the semantic

segmentation accuracy with the cost of increased computational burden and

annotation efforts.

95
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In semantic segmentation or object detection, learning losses are often weighed

according to the frequency of classes in the dataset with the less-represented

classes having the highest weights. However, weighing classes according to

their frequency in the dataset may not be the most appropriate way for au-

tonomous driving as an object from an under-represented class located at a

100m from the ego-vehicle is arguably less important than an object from

an over-represented class located 3m in front as closer objects are presum-

ably the ones that are more susceptible to cause a collision. Still with the

objective of leveraging spatial context to improve the accuracy of semantic

segmentation networks, we have introduced a new disparity-based learning

loss weighing scheme. This pixel-wise disparity weighting scheme multiplies

each pixel in the loss function by its disparity value hence giving more impor-

tance to closer-objects. We verify the effect of this weighting on two different

lightweight network architectures on two datasets and observed an overall im-

provement with a even more improved performance in close range. Given that

the disparity maps are obtained with an off-the-shelf self-supervised network,

our method does not increase the annotation burden.

7.1.2 Bird-Eye-View scene understanding from a

monocular camera with an application to end-to-

end trajectory planning

The objective of this body of work was to show another example of how cam-

eras can be used for 3D perception. Even though LiDAR-based semantic

segmentation is getting more and more traction, annotated LiDAR datasets

are still scarce when compared to camera-based ones. Therefore, we have

designed a network that takes camera images as input and outputs semantic

masks in Bird-Eye-View (BEV). This task poses several challenges with the

first one being how to preserve the receptive field of the CNN between the

input and the output of the network when they are not in the same geometric

space. Usually, semantic masks obtained in the camera-view are projected

to BEV using inverse perspective mapping which is the homography trans-

form that relates BEV plane and the camera plane. However, homographies
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are planar transforms and warping 3D objects like vehicles that lie above the

ground plane causes a stretching effect that makes these warped masks non-

usable. Our network processes the cameras images, extracts feature maps in

the camera-view space and then uses a homography warping layer to obtain

the masks in BEV. To avoid the stretching effect mentioned earlier, we in-

troduce footprint segmentation that consists in segmenting the footprint of

the vehicles. This simple yet effective trick allows us to outperform all the

works in the literature and even achieve a performance on-par with a LiDAR

baseline that we have designed. A consequence of learning in camera-view

and warping to bird-eye-view is that our network has a superior performance

in close-range but suffers in far-range. To deal with the poor far-range perfor-

mance, we improve our network with what we call a mixture of view experts

which is a variation of our footprint segmentation network that learns in both

camera-view and bird-eye-view and leverages a mixture of experts approach.

These BEV semantic masks are comparable to Occupancy Grid Maps (OGMs)

which are usually used for trajectory planning in traditional self-driving

pipelines. Being able to output these masks from a camera input opened

up the possibility to have a holistic end-to-end trajectory planning that has

these OGMs as an intermediate representation which allows allows to inter-

pret the network’s decisions. We first evaluate the driving capabilities of our

network offline and show that our network has superior performance when

compared to a regular end-to-end network. However having a better off-line

performance does not necessarily translate to better driving in a closed-loop

setting so we evaluate the on-line driving capabilities of our network on Carla

simulator (Dosovitskiy et al., 2017a) and show that our network still outper-

forms its regular end-to-end counterpart and has even a similar performance

to a baseline network that takes ground truth OGMs as input.
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7.2 Perspectives

We believe that the following avenues of research can take advantage of the

works developed during this thesis:

• Being able to output accurate semantic masks in the bird-eye-view from

a monocular camera can be used for several perception or motion estima-

tion tasks. In our experiments we present a baseline based on OFTNet

(Roddick et al., 2019) whose original purpose is to output 3D bounding-

boxes. A semantic map similar to our Vehicles mask is used in OFTNet

as a confidence map (x, y) which indicates the probability of an object

having a 3D bounding-box centered at (x, y, z). OFTNet does not use

the cartographic information in its confidence map and we have shown

in Chapter 3 that it contains a valuable information to locate vehicles.

A possible monocular 3D object detection architecture would be our

footprint segmentation network augmented with the top-down network

as described in OFTNet taking as input the concatenated road layout

and vehicles semantic masks.

• Visual Odometry (VO) is an important image-based approach for mobile

robotics as it allows to localize the robot in its environment and is often

used jointly with localization sensors such as GPS and IMU. Traditional

pipelines for VO imply several hand-engineered atomic tasks such as fea-

ture matching, motion estimation or scale estimation. Similar to many

other computers tasks, deep neural networks have been able to eliminate

hand-engineering and achieve impressive results in VO. DeepVO (Wang

et al., 2017) was first to introduce a monocular camera-based CNN that

uses convolutional layers to extract features from a sequence of images

and a recurrent neural network to process the sequence of features maps

and output the poses in the real world scale. Similar to trajectory plan-

ning, VO is a sequential motion estimation task so we could leverage

a similar CNN/RNN combination and use our footprint segmentation

approach to output intermediate BEV semantic maps. We could expect

that having these BEV masks between the CNN and the RNN part of
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the network would improve the accuracy of the prediction as it did for

the trajectory planning. Indeed the objects size in these BEV semantic

masks does not vary with the distance to the camera as they do not suf-

fer from the perspective effect and thus may be better candidate input

for the motion estimation RNN.

• An important asset to plan the future ego-motion of a self-driving vehicle

is the predicted behavior of the other road users. Our current trajectory

planning lacks this asset which could hinder its performance in a real-

world application. Usually the trajectory of each road user needs to be

tracked and predicted but with these intermediate BEV semantic masks

an alternative approach can be adopted: it is possible to predict the

position of all road actors by predicting the future semantic masks using

ConvLSTM (Shi et al., 2015) layers. Previous works have explored this

research direction (Mohajerin and Rohani, 2019, Schreiber et al., 2019)

but to the best of our knowledge none of these works do it end-to-end

from a monocular camera. Being able to predict the future configuration

of the scene can be used in our current trajectory planning network to

penalise the predicted positions according to the other vehicles and the

road layout, similar to the collision and on-road losses in ChauffeurNet

(Bansal et al., 2019).

• In our work on trajectory planning, we have only explored behavior

cloning but Inverse Reinforcement Learning (IRL) also allows to imitate

an expert’s demonstrations for this task (Abbeel et al., 2008, Deo and

Trivedi, 2020, Wulfmeier et al., 2016, Ziebart et al., 2009). Instead of

learning a direct mapping between the environment state and the agent’s

actions by supervised learning, IRL learns the unknown reward function

that explains the expert’s behavior and optimizes a policy based on this

reward. According to these previous works, IRL allows for a better gen-

eralization to new environments as it is a more parsimonious description

of the expert’s behavior (Abbeel and Ng, 2004), better conforms to the

scene configuration and also has a better long-horizon performance. The

deep IRL approaches introduced previously take as input a BEV repre-

sentation of the environment so we believe that our monocular approach
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to estimate BEV semantic masks can be re-purposed for an end-to-end

IRL trajectory planning network. One could even argue that estimat-

ing the BEV semantic masks beforehand could ease the reward function

estimation as it would already provide the navigable space.
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