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1.1 Introduction 
 

L’exploitation des bases de données médico administratives est récemment devenue un sujet 

d’importance en épidémiologie et santé publique. Ces recueils massifs de données de santé ont en 

effet le potentiel d’être source de quantité d’informations innovantes pouvant aider à l’élaboration de 

nouvelles politiques de santé publique. Cependant, l’analyse de ces jeux de données à la 

dimensionnalité souvent particulièrement élevée présente de nombreuses contraintes, autant au 

niveau de leur incompatibilité avec les méthodes statistiques traditionnellement utilisées en santé 

publique, que pour des raisons purement computationnelles. Parallèlement au gain d’intérêt croissant 

que portent les praticiens de santé publique à ces bases de données, la dernière décade a été témoin 

de la démocratisation des méthodes dites d’apprentissage machine, et tout particulièrement 

d’apprentissage profond, qui propose toute une famille de puissants modèles prédictifs tout 

particulièrement adaptés à l’analyse de complexes interactions non linéaires dans des jeux de données 

autant massif que non structurés, et dont certaines ont déjà été appliquées avec succès sur des bases 

médico administratives par le passé. En revanche, et ce de par leur différence fondamentale de culture, 

la communication entre épidémiologistes et biostatisticien d’un côté, et scientifique de la donnée de 

l’autre, a entrainé des complexités de communications et de coopérations entre les deux domaines. 

L’objectif de cette thèse est double. En premier lieu, cette thèse se veut être une introduction pour les 

épidémiologistes et biostatisticiens aux méthodes modernes d’apprentissage profond, à travers un 

travail de reformulation de ces méthodes dans une optique purement statistique, par opposition au 

langage cognitiviste auquel elles sont souvent associées. On exposera notamment que l’intégralité des 

méthodes modernes d’apprentissage profond, ce jusqu’aux modèles de séquence typiquement utilisés 

en traitement du langage naturel, peuvent s’exprimer en termes de modèles prédictifs, et notamment 

comme des extensions du concept de modèle linéaire généralisé. Un exemple innovant d’application 

de ces méthodes au problème de modélisation de variable ordinale sera également introduit pour 

montrer l’adaptabilité de ces méthodes à tout un spectre de problèmes régulièrement rencontrés dans 

des contextes de science des données médicales. Dans un second temps, ces concepts d’apprentissage 

profond seront directement appliqués à une base de données médico-administrative, la base du 

Centre d’Epidémiologie sur les Causes de Décès (CépiDc) pour illustrer leur potentiel, autant d’un point 

de vue purement méthodique que pratique, avec des résultats variant d’une accélération de la 

production des données de mortalité par cause ayant notamment permis la production en temps réel 
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de statistiques de comorbidités relatives aux décès liés à covid-19 pendant le premier confinement, à 

l’élaboration d’une étude sur la question de la comparabilité des statistiques de mortalité à l’échelle 

internationale. 

 

1.2 Apprentissage profond et modèles prédictifs 
 

L’apprentissage machine est un domaine d’étude qui se consacre à donner à un ordinateur la capacité 

d’effectuer une tache prédéfinie, mais sans instructions explicite pour ce faire. Plus formellement, on 

dit d’un programme informatique qu’il apprend d’une expérience E vis-à-vis d’une tache T et d’une 

mesure de performance P, si ses performances sur T, mesurées par P, s’améliore avec l’expérience E ». 

Cette définition particulièrement générale donne lieu à plusieurs interprétations mathématiques, mais 

peut tout particulièrement être rapprochée du concept de modèle prédictif en analyse statistique. 

Les modèles de régression linéaires ou logistiques, par exemples, peuvent tout à fait être considérés 

comme des algorithmes d’apprentissage machine dits supervisés, un sous genre d’apprentissage 

machine focalisé sur la modélisation, à partir d’un jeu de données de la relation entre une ou plusieurs 

variables explicatives, et une variable à expliquer. On distingue au sein du domaine de l’apprentissage 

supervisé deux exercices distincts, en fonction de la nature des variables à expliquer : 

 L’exercice de classification, où la variable à expliquer est qualitative. Dans ce cadre, le but de 

l’algorithme d’apprentissage est de trouver une surface fonctionnelle dépendant des variables 

explicatives qui sépare le mieux les états distincts de la variable à expliquer. Les méthodes de 

régressions logistiques et d’analyse linéaire discriminante peuvent être considérées comme 

des exemples d’algorithme de classification. 

 L’exercice de régression, où la variable à expliquer est quantitative. Dans ce contexte, le but 

de l’algorithme d’apprentissage est de trouver une fonction dépendant des variables 

explicatives qui approxime le mieux la variable à expliquer. L’analyse de régression linéaire 

peut être considérée comme un exemple d’algorithme de régression. 

 

 

1.2.1 Apprentissage profond 
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1.2.1.1 Régression linéaire 

 

Un modèle de régression linéaire est un modèle destiné à modéliser la relation entre une variable à 

expliquer quantitative et une ou plusieurs variables explicatives par le biais d’une combinaison linéaire 

de ses dernières. Les coefficients de cette combinaison, appelés paramètres du modèle, sont obtenus 

par la minimisation d’une fonction objectif construite à partir d’un ensemble de pair d’observations 

des variables explicatives et de la variable à expliquer. La fonction objectif des moindres carrés 

constitue un exemple de fonction objectif couramment utilisé dans ce contexte, et son minimum peut 

s’écrire sous forme explicite.  

 

1.2.1.2 Perceptron multicouche 

 

Le perceptron multicouche, forme la plus élémentaire de modèle d’apprentissage profond, peut être 

considéré comme une évolution des modèles de régression logistique ou linéaire permettant de 

modaliser des relations non-linéaires complexes entre une variable à expliquer et un ensemble de 

variables explicatives. Ces modèles sont construits à partir d’une brique élémentaire appelée neurone 

artificiel, largement inspiré des neurones observés en biologie dans les cerveaux animaux, et dont la 

forme fonctionnelle est définie de manière similaire à celle d’un modèle généralisé, à savoir une 

combinaison linéaire de variables d’entrées injectée dans une fonction non linéaire (historiquement 

une sigmoïde dans les modèles d’apprentissage profond des années 90, par exemple). L’idée principale 

du perceptron multicouche consiste à définir la forme fonctionnelle du modèle prédictif utilisé pour la 

modélisation comme un réseau dirigé acyclique de ces neurones artificiels, comme peut être observé 

en figure 1.1.  
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Fig. 1.1 Exemple de perceptron multicouche. Chaque « neurone », brique 

élémentaire du modèle, partage sa forme fonctionnelle avec celle des 

modèles linéaires généralisés   

 

Le processus d’ajustement du modèle, en revanche, ne diffère pas fondamentalement de ceux 

observés dans les modèles statistiques standards, et passe par la minimisation d’une fonction objectif 

(typiquement un objectif de moindre carré ou d’entropie croisée dans le cas d’une variable à expliquer 

quantitative ou qualitative, respectivement), généralement par l’utilisation d’un algorithme 

d’optimisation différentielle. En revanche, certaine s0propriétés de la fonction objectif (explosion ou 

évaporation de gradient, non-convexité) rendent l’ajustement de ces modèles impossible sans un 

ensemble de techniques additionnelles, qui peuvent être résumées comme suit : 

 Faciliter l’ajustement du modèle en modifiant la surface fonctionnelle à optimiser : 

o Choix de la non-linéarité (exemple : Utiliser des unités linéaires rectifiées en lieu des 

sigmoïdes historiquement utilisées) 

o Méthodes de normalisations (exemple : normalisation des variables d’entrées, 

normalisation par fournées ou normalisation par couches) 

 Modifier l’algorithme de descente de gradient (exemple : algorithme d’optimisation Adam) 



11 
 
 

 Affiner les méthodes d’initialisation de l’algorithme de descente (exemple : méthode 

d’initialisation de Xavier) 

 Utiliser des méthodes de régularisation pour éviter le sur-ajustement (exemple : régularisation 

par drop-out) 

Le perceptron multicouche peut par la suite être modifié par le biais de deux idées fondamentales, 

celles de partage de paramètres et de neurone à connexions restreintes, pour s’adapter à différents 

cadres de modélisation où les modèles vectoriels classiques apparaissent souvent comme inadaptés, 

comme en analyse d’image ou de texte. Les deux variantes du perceptron les plus répandues dans la 

littérature sont obtenues comme suit : 

 Adapter le perceptron multicouche à l’analyse de matrices ou tenseurs tridimensionnels, et 

tout particulièrement d’images, en imposant au modèle des contraintes de localités et 

d’invariance par translation. La localité est exprimée en limitant l’accès pour chaque neurone 

à seulement des sous matrices de tailles prédéterminées des variables d’entrées. L’invariance 

par translation est exprimée en copiant un neurone (au sens de ses paramètres) donné sur 

toutes les sous matrices des variables d’entrées. Cette famille de modèle est connue sous le 

nom de réseau de neurones à convolution. 

 

 Adapter le perceptron multicouche à l’analyse de séquences vectorielles, en imposant au 

perceptron de prendre une observation de la séquence d’entrée à chacun de ces étages, de 

manière successive, et en partageant à chaque étage les mêmes paramètres. Cette famille de 

modèles est connue sous le nom de réseau de neurones récurrents. 
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1.2.2 Apprendre une recherche dichotomique avec un réseau de neurones récurrent, une 

approche originale à l’exercice de régression ordinale 
 

L’exercice de régression ordinale est un problème d’analyse statistique qui consiste à modéliser une 

variable à expliquer qualitative mais dont les états présentent un caractère ordonné, et qui peut à ce 

titre être considérée comme une hybridation entre une variable qualitative et quantitative. Cette 

nature unique implique que les méthodes de régressions de variables quantitatives ou qualitatives ne 

lui sont pas parfaitement adaptées, en conséquence de quoi plusieurs méthodes spécialisées dans cet 

exercice ont été proposées au fil des années, typiquement inspirées soit des méthodes de régression 

de variables quantitatives, soit des méthodes de régression de variables qualitatives. Cependant, ces 

méthodes impliquent généralement des hypothèses sensiblement plus fortes que le simple caractère 

ordonné de la variable à expliquer. Dans cette partie, nous regarderons comment l’on peut s’inspirer 

d’un simple algorithme de recherche en table ordonnée, la recherche dichotomique, pour créer une 

nouvelle méthode de régression ordinale à base de réseaux de neurones récurrents potentiellement 

plus performante que les méthodes préexistantes. 

 

1.2.2.1 Méthode 

 

 

L’algorithme de recherche dichotomique est un algorithme de recherche dont la fonction est de 

retrouver au sein d’une table ordonnée une valeur donnée. Le fonctionnement de cet algorithme 

récursif est illustré en figure 1.2. L’idée fondamentale de la méthode proposée est de projeter la 

variable ordinale à expliquer sur un arbre binaire dichotomique, et de s’intéresser à l’adresse de 

chaque état sur cet arbre plutôt qu’à l’état même, cette adresse étant constituée d’une séquence de 

décision binaire (« au point où je me trouve dans l’arbre, dois-je aller à droite ou à gauche pour 

retrouver l’état de la variable que je recherche »). 
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Fig. 1.2 Arbre de recherche dichotomique. Chaque état de la variable 

ordinale est associé à une suite de variables binaires représentant sa 

position dans l’arbre, autrement dit le résultat de la recherche 

dichotomique équivalente. On remarque que ces suites de variables 

binaires correspondent exactement à la décomposition binaire de l’état de 

la variable ordinale 

 

Le problème de modélisation ordinale a donc ici été converti en un problème de modélisation d’une 

série de variables binaires, avec cependant une complexité additionnelle résidant dans 

l’interdépendance cumulative des variables à expliquer. Ce genre de problème, rarement rencontré 

en statistiques classique, et toutefois régulièrement rencontré en apprentissage profond, tout 

particulièrement en traduction automatique. A partir de cette constatation, sera proposé dans cette 

thèse pour régler ce problème de s’appuyer sur une architecture de traduction automatique appelée 

« architecture encodeur-décodeur basée sur des réseaux de neurones récurrents » pour développer 

une nouvelle méthode de régression ordinale. Ses performances prédictives seront évaluées sur un 

ensemble de jeu de données benchmark et comparées aux résultats obtenus par des méthodes plus 

traditionnelles proposées dans le package python mord. 

Les performances de ces diverses méthodes seront évaluées par le biais de trois métriques distinctes, 

l’exactitude, le Cohen Kappa quadratique et l’erreur quadratique. La figure 1.3 présente un bref 
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résumé des résultats obtenus, où l’on peut constater que la méthode proposée semble se comporter 

de manière similaire ou significativement mieux que les méthodes traditionnelles. 

 

 

 

 

Fig. 1.3 Comparaison des résultats entre la méthode proposée et les 

méthodes baseline sur tous les jeux de données. Les cases jaunes, bleues et 

violettes correspondent à des méthodes baseline dont les performances 

sont significativement plus faibles, sans différence significative, ou 

significativement meilleures que la méthode proposée, respectivement 
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1.3 Méthodes d’apprentissages profond en épidémiologie et leurs applications en 

statistiques de mortalité 
 

Les statistiques de mortalité par cause, publiée en France par le CépiDc, sont un outil précieux qui 

accompagne régulièrement la prise de décision dans les politiques de santé publique. Leur production 

est en revanche un procédé particulièrement long et couteux, pouvant parfois aller jusqu’à amoindrir 

leur pertinence, typiquement dans des cas où les délais de production deviennent prohibitivement 

longs. La production de ces statistiques commence par le renseignement par un praticien médical de 

l’enchainement d’évènements entraînant le décès du sujet sur un certificat, ceci en langage naturel 

(donc en français au CépiDc). Après réception du certificat par le CépiDc, celui-ci se voit appliqué deux 

étapes de traitement pour en extraire une cause initiale de décès, qui sera la statistique rapportée par 

le service annuellement : 

 Convertir la chaine causale d’évènements menant au décès du sujet, renseignée par le 

médecin constatant le décès du langage naturel à une séquence de codes d’une classification 

médicale, la Classification statistique Internationale des Maladies (classification CIM-10) 

 Identifier la cause initiale de décès, à partir de la chaine causale d’évènements menant au 

décès du sujet, exprimée en codes CIM-10 

 

 Chaîne causale du décès du sujet (format textuel) Format CIM-10 CI 

Ligne 1 Cancer indifférencié de la glande thyroïde ayant 
entraîné une compression complète locale (sténose 
œsophagienne et paralysie bilatérale des cordes 
vocales) 

C73 K222 J380 C73 

Ligne 2 NA  

Ligne 3 NA  

Ligne 4 NA  

Partie 2 Diabète insulino-requérant, HTA, Dénutrition, 
Antécédent d’AVC, AOMI 

E119 I10 E46 
I696 I702 

Tableau 1.1: Exemple d’extraction de la cause initiale de décès à partir d’un certificat.  

Dans un premier temps, la chaine causale du décès du sujet est convertie en séquences 

de codes CIM-10. Dans un second temps, la cause initiale de décès est identifiée à 

partir de ces séquences de codes CIM-10 en appliquant un ensemble de règles définies 

par l’OMS  
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Les statistiques de mortalité étant exhaustives, il est nécessaire en France d’évaluer individuellement 

plus de 600 000 certificats par ans. Au fil des ans, des tentatives d’automatisation de ce procédé ont 

été proposées, la plupart basées sur des systèmes experts. Cependant, leurs performances ne 

permettent pas leur utilisation en autonomie complète, et ils sont donc utilisés en tant qu’outil 

d’assistance au codeur humain, rendant le processus de production de ces données long et onéreux. 

Les méthodes d’apprentissage profond étant réputées comme significativement plus performantes 

que les systèmes experts, on peut cependant se demander si leur application à ce problème ne pourrait 

pas mener à des gains de performance intéressants. Deux méthodes seront présentées pour adresser 

les deux tâches nécessaires à la production des statistiques de mortalité par cause. La première étape, 

d’identification des codes CIM-10 à partir du langage naturel, sera traitée comme une variante d’un 

exercice de traduction automatique qu’on choisira d’adresser avec un modèle de type Transformer. La 

seconde sera traitée comme un problème de classification classique et sera adressée par le biais d’un 

réseau de neurones à convolution.  

 

1.3.1 Traduction neuronale et identification des entités médicales CIM-10 à partir du 

langage naturel 
 

1.3.1.1 Matériel et méthode 

 

Le jeu de données utilisé pour développer un modèle permettant de prédire les entités médicales CIM-

10 à partir du langage naturel présent sur le certificat consiste en tous les certificats de décès présents 

dans les bases de données du CépiDc de 2011 à 2016, pour un total d’environ 3 millions de certificats. 

On dispose pour ces 3 millions de certificats de la chaine d’évènements menant au décès du sujet, à la 

fois en format textuel et encodée en CIM-10, ainsi que de diverses variables qui seront également 

inclues dans le modèle, à savoir l’année de décès, l’âge du sujet, son genre et la provenance du 

certificat (qui indique si le certificat a été remplis sous format papier, ce qui nécessite par la suite une 
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saisie par un sous-traitant, ou si le certificat a été rempli sous format électronique et directement 

envoyé au CépiDc). La variable à prédire étant une séquence de codes CIM-10, on considérera ce 

problème comme un exercice de traduction neuronale, auquel on appliquera le modèle le plus 

performant dans ce domaine connu à ce jour, l’architecture Transformer. 

 

 

1.3.1.2 Résultats 

 

Après une recherche d’hyper-paramètres et la constitution d’un ensemble, les performances du 

modèle ont été évaluées sur un jeu de données de test préalablement exclu de l’ajustement du modèle 

et réservé à cet effet. Ces performances peuvent être observées en table 1.2 et comparées à l’état de 

l’art actuel, obtenu par le LIMSI à partir d’une approche hybride entre un système expert et un modèle 

de type machine à vecteur de support. Le LIMSI n’ayant évalué leurs performances que sur les 

certificats électroniques, les performances du modèle sont rapportées à la fois pour les certificats 

électroniques uniquement, pour les certificats papier, et pour tout certificat. On constate une nette 

amélioration en termes de pouvoir prédictif du modèle. 

 

 

 

Méthode F-mesure Précision Rappel 

Etat de l’art (LIMSI) .825 .872 .784 

Approche proposée (certificats 
électroniques) 

.952 [.946, .957] .955 [.95, .96] .948 [.943, .954] 

Approche proposée (certificats papier) .942 [.941, .944] .949 [.947, .95] .936 [.934, .937] 

Approche proposée (tous certificats) .943 [.941, .944] .949 [.948, .951] .937 [.935, .938] 

Tableau 1.2 F-mesure de l’état de l’art et de la méthode proposée, avec leurs 

intervalles de confiance à 95% obtenus par bootstrap.  
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1.3.2 Apprentissage profond et identification de la cause initiale de décès à partir du 

certificat de décès 
 

1.3.2.1 Matériel et méthode 

 

Le jeu de données utilisé pour développer un modèle permettant de prédire les entités médicales CIM-

10 à partir du langage naturel présent sur le certificat consiste en tous les certificats de décès présents 

dans les bases de données du CépiDc de 2000 à 2016, pour un total d’environ 9 millions de certificats. 

On dispose pour ces 9 millions de certificats de la chaine d’évènements menant au décès du sujet, 

encodée en entités CIM-10, de la cause initiale de décès retenue soit par un codeur humain soit par le 

logiciel Iris, logiciel international de choix de la cause initiale dont l’utilisation est préconisée par l’OMS, 

et de diverses variables qui seront également inclues dans le modèle, à savoir l’année de décès, l’âge 

du sujet et son genre. La variable à prédire dans cet exercice, la cause initiale de décès, est considérée 

comme une variable qualitative munie d’autant d’états qu’il existe de codes CIM-10 correspondant à 

une cause initiale dans le jeu de données, à savoir environ 8000. Ce problème peut donc être considéré 

comme un problème de classification multinomiale, qu’on choisira d’adresser par le biais d’un réseau 

de neurones à convolution inspiré de l’architecture Inception v2. 

 

1.3.2.2 Résultats 

 

Après une recherche d’hyper-paramètres et la constitution d’un ensemble, les performances du 

modèle ont été évaluées sur un jeu de données de test préalablement exclu de l’ajustement du modèle 

et réservé à cet effet. Ces performances peuvent être observées en table 1.3 et comparées à l’état de 

l’art actuel, obtenu par le biais du logiciel Iris sur le même jeu de données. On constate une 

amélioration significative des performances en utilisant la méthode proposée. 
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Méthode Exactitude 

Etat de l’art (Iris) 0.925 [0.921, 0.928] 

Approche proposée 𝟎. 𝟗𝟕𝟖 [𝟎. 𝟗𝟕𝟕, 𝟎. 𝟗𝟕𝟗] 

Tableau 1.3: Exactitude du logiciel Iris et du meilleur modèle prédictif obtenu, avec 

leurs intervalles de confiances à 95% obtenus par bootstrap 

 

1.3.3 Sur la comparabilité des statistiques de mortalité par cause à l’international 
 

1.3.3.1 Matériel et méthode 

 

Dans une démarche de vérification de la comparabilité des statistiques de mortalité par cause à 

l’international, le modèle de la partie précédente a été réajusté sur un jeu de données international 

incluant 4 pays : 

 L’Angleterre et le pays de Galles, dont tous les certificats de décès de 2005 à 2018 ont été 

inclus dans l’expérience, à l’exception des décès certifiés par un médecin légiste, totalisant 5,1 

millions d’observations 

 L’Italie, dont tous les certificats de décès de 2014 à 2016 ont été inclus dans l’expérience, à 

l’exception des certificats liés à des causes externes de décès, totalisant 1,8 millions 

d’observations 

 Les U.S.A. dont tous les certificats de décès de 2000 à 2017 ont été inclus dans l’expérience, 

totalisant 45,5 millions d’observations 

 La France, avec l’exact même jeu de données que dans l’expérience précédente 

L’architecture du modèle et les modalités d’ajustement sont les mêmes que pour l’expérience de la 

partie précédente, avec toutefois l’inclusion d’une variable explicative en plus, le pays d’appartenance 

du certificat, considérée comme une variable qualitative à quatre états (un par pays). L’inclusion de 

cette variable constitue la clé de l’expérience, en postulant que si les statistiques de mortalités étaient 



20 
 
 

comparables à l’international, elle n’aurait aucun pouvoir prédictif. En particulier, il serait dans ce cas 

raisonnable de s’attendre à ce que changer la valeur de cette variable pour un certificat donné ne 

change pas la prédiction du modèle. On peut donc après ajustement du modèle obtenir différents jeux 

de prédictions pour un pays donné, interprétés comme s’ils étaient « codés comme un autre pays ». 

Observer les variations de pouvoir prédictif entre ces différentes prédictions permet de donner un 

aperçu exploratoire de la comparabilité des statistiques entre chaque pays. 

1.3.3.2 Résultats 

 

Après ajustement, le modèle fut appliqué aux jeux de tests de chaque pays en faisant varier l’état de 

la variable de pays d’origine, et les performances du modèle obtenu, par pays et par variation, peuvent 

être observées en table 1.4. 

 

 Comme en France Comme en Italie Comme aux U.S.A. Comme en Angleterre  

France 97.3 [97.2, 97.4] 90.6 [90.4, 90.7] 94.1 [94.0, 94.2] 94.4 [94.3, 94.5] 

Italie 90.0 [89.8, 90.3] 97.6 [97.5, 97.7] 91.1 [90.9, 91.3] 89.7 [89.4, 90.0] 

U.S.A. 94.8 [94.7, 94.9] 90.5 [90.4, 90.6] 98.6 [98.6, 98.6] 96.8 [96.7, 96.8] 

Angleterre 96.9 [96.8, 97.0] 96.3 [96.2, 96.4] 97.0 [96.9, 97.1] 99.1 [99.1, 99.2] 

Tableau 1.4: Performances par pays (en ligne), en terme d’exactitude, en fonction de 

l’état de la variable “pays de codage”  (en colonne). Les diagonales correspondent à la 

vraie exactitude du modèle pour chaque pays  

 

On constate dans l’ensemble que la méthode utilisée pour prédire les certificats français s’exporte bien 

sur les jeux de données d’autres pays (avec des performances encore supérieures pour les pays anglo-

saxons) et que les pertes en pouvoir prédictif du modèle en perturbant l’état de la variable origine du 

pays, quoique présentes, sont relativement faibles, le seul pays présentant une différence prédictive 

non négligeable étant l’Italie. En revanche, ce comportement anormal peut être expliqué par l’absence 

de cause externes de décès dans les certificats italiens, et présents dans tous les autres, ce que 
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semblent confirmer les variations de pouvoir prédictif du modèle évaluées en excluant les certificats 

liés à des causes externes de décès, qui sont beaucoup plus homogènes. 

1.4 Conclusion 
 

Au cours de cette thèse ont été présentés plusieurs exemples d’applications de méthodes 

d’apprentissage profond sur des bases de données médico-administratives, avec des résultats 

présentant un gain de performance significatif sur les précédents états de l’art. Ces modèles 

présentent d’immédiates applications réelles, de l’accélération de la production de données (avec par 

exemple l’automatisation du codage médical d’acte), dont l’intérêt a déjà été démontré avec 

notamment l’utilisation d’un modèle de Transformer dédié à la reconnaissance d’entités médicales à 

partir du langage naturel pour produire en temps réel des statistiques de comorbidités sur les décès 

COVID-19 pendant le premier confinement. De plus, les méthodes proposées dans cette thèse n’étant 

pas spécifiques aux données de mortalités ni aux problèmes de modélisations sur lesquelles elles ont 

été appliquées, elles constituent des pistes prometteuses pour des applications sur d’autres bases de 

données administratives, tout comme par exemple le Système National des Données de Santé. 
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2 Introduction 
 

The exploitation of electronic health databases has gained a significant amount of interest in fields 

such as epidemiology or public health. Indeed, as repositories of numerous, oftentimes almost 

exhaustive, detailed patient’s medical histories, they have the potential to provide public health 

decision makers with powerful insights on population health. However, the sheer size and complexity 

of these databases introduces specific difficulties, both technical and methodological, for their proper 

exploitation. On another side, the raise of machine learning, and most specifically deep learning in the 

past decade has led to the development of entire families of powerful models fit to analyse complex, 

non-linear interactions on massive and unstructured datasets, some of whom have already been 

successfully applied to electronic health database analysis. However, the difference in language 

between epidemiologists and biostatisticians on one side, and the newly arrived data scientist on the 

other, has made cooperation between these two complementary fields difficult4. The objective of this 

thesis is dual. First, this thesis is meant as an introduction to modern deep artificial neural network 

based models to epidemiologists and biostatisticians, by showing how these methods sometimes 

denoted as “algorithms” actually share a profound relationship with more traditional statistical 

predictive models commonly used in health sciences, such a linear or logistic regression. Finally, this 

thesis will showcase two practical applications of these methods on electronic health databases, with 

a focus on mortality statistics and epidemiology. 
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3 Predictive modelling and deep artificial neural networks 

3.1 Predictive modelling and machine learning 

 

Machine learning is a field of study focusing on giving computers the ability to perform predefined 

tasks without giving them explicit instructions on how to do so 5. Formally, in a well-defined machine 

learning problem, “A computer program is said to learn from experience E with respect to some task 

T and some performance measurement P, if its experience on T, as measured by P, improves with 

experience E” 6. 

This broad definition leads to several possible mathematical interpretations, and, consequently, to an 

equal number of subfields of machine learning, usually overlapping with several other disciplines from 

computer sciences, artificial intelligence, mathematics, and specifically statistical analysis. Indeed, a 

profound relationship seems to link the concepts of experience as defined from a machine learning 

point of view, and of data analysis, which is ubiquitous in statistics. 

The statistical analysis of real dataset being at the core of modern biomedical sciences, it only seems 

natural to focus on machine learning subfamilies that blend elements of statistical analysis. Some of 

the most advanced deep neural networks can for instance be thought of as advanced expansion of 

fairly classical tools used in statistical analysis7. 

Supervised learning is among the most common machine learning disciplines. It shares deep roots 

with statistical analysis. For instance, linear regression and linear discriminant analysis, two widely 

known statistical modelling techniques, can be considered as supervised machine learning 

techniques. The goal of supervised learning techniques is to, given a dataset, model the relationship 

between one or several independent variables (the input or endogenous variables) and a predefined 

dependent variable 8 (the output or exogenous variables). 
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Two main distinct types of supervised machine learning can be identified, namely given the output’s 

variable nature: 

 Classification for categorical output variables: The learning algorithm is asked to find a surface 

function of the input variables that best separates the output variable’s different states. 

 Regression for quantitative variables: The learning algorithm is asked to find a function of the 

input variables that best fits the output variables 

 

 

 

Fig. 3.1.1 Example of supervised learning method: Margin classifier 9. The 
learning algorithm determines the straight line that separates the black 

and white dots that maximize the distance from the lines to the data points  

 

 

These methods can easily be linked to the previously seen definition of machine learning: 

 Experience E: The gathered dataset 

 Task T: Correctly estimate the output variable given the input variables 

 Performance P: model accuracy on the data  
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3.2 Neural networks 

Artificial neural networks are a family of machine learning algorithms loosely inspired by biological 

neural networks. They are nowadays crucial components in most artificial intelligence related 

technologies such as speech or image recognition, self-driving cars or machine translation 10. Their 

current popularity comes from their unprecedented ability to learn highly complex and nonlinear 

concepts by composing together a multitude of much simpler functions 7. 

Artificial neural networks are quite versatile and can be adapted to a number of learning paradigm. 

Indeed, although they are mostly used for supervised learning, where they share a number of common 

characteristics with well-known statistical methods such as linear or logistic regression, they can be 

adapted to perform in supervised or unsupervised settings. 

3.2.1 Linear regression 

Linear regression is a widely used modelling technique consisting of modelling datasets with a linear, 

multivariate approximation of the real, studied phenomenon 11. This simple approach also shares 

similarities with regressive feedforward neural networks and make as such a good introduction to 

understand them. 

Let {(𝑋𝑖, 𝑦𝑖)}0<𝑖<𝑁+1 be a set of 𝑛 observations (typically a multivariate dataset collected for an 

experimental study), with 𝑋𝑖  and 𝑦𝑖  being the ith sample’s input and output variables, respectively. 

The objective of linear regression modelling is to find �̂�, a linear function of the input variable 

parameterized in (𝑊, 𝑏) that best predicts the output variables, the concept of best predictive 

approximation being formalized by a cost function 𝐿, that quantifies how close to the observed dataset 

the approximation is (for instance the least square function in the case of linear regression).  

 �̂�𝑊,𝑏(𝑋) = (𝑊)𝑇 ∙ 𝑋 + 𝑏  (3.2.1), 
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𝐿(𝑊, 𝑏) =   

1

2𝑁
 ∙  ∑(�̂�𝑊,𝑏(𝑋𝑖) −  𝑦𝑖)

2
) 

𝑁

𝑖=1

=    
1

2𝑁
 ∙  ∑((𝑊)𝑇 ∙ 𝑋𝑖 + 𝑏 −  𝑦𝑖)2) 

𝑁

𝑖=1

 
(3.2.2). 

The regression model is extracted by the data by finding �̂�𝑒 such that:  

 �̂�𝑒(𝑋) =  (𝑊𝑒)𝑇 ∙ 𝑋 + 𝑏𝑒  (3.2.3), 

 𝑤𝑖𝑡ℎ   (𝑊𝑒  , 𝑏𝑒) = argmin
(𝑊,𝑏)

( 𝐿(𝑊, 𝑏)) (3.2.4). 

 

In the case of linear regression, the parametric solution (𝑊𝑒  , 𝑏𝑒) can be determined either analytically, 

or through the use of an optimization algorithm such as gradient descent. Finding the parameters that 

minimize a specific cost function is common to a number of machine learning algorithms, for which it 

is called the training process. Linear models are known both for being be easy to fit, as well as for their 

good generalization behavior. As is, however, they fail to capture any non-linearity relationship 

between input and target variables, as well as input variables interactions that would typically require 

additional treatment such as nonlinear basis expansion, for instance. 

 

3.2.2 Logistic and softmax regressions 

Logistic and softmax regression models are regressive models dedicated to the analysis of a binary, 

categorical output variables (two states variables such as 0/1, ill/healthy, pass/fail) and multimodal 

categorical variables (number of states >2), respectively 12. They are widely used in statistical analysis 

as part of the family of generalized linear models and can be used from a machine learning perspective 

to perform binary linear classification.  

The process of extracting a logistic regression model from a dataset is fairly similar to what is done in 

linear regression models. The objective of a linear regression model is to find a parametric function 

linking the input and output variables by minimizing a cost function of the model’s parameters. 

However, the output variable’s categorical nature in logistic regression requires a subtle change in the 
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problem’s formalization. The objective is to link the input variables to the probability of the output 

variable being in one state or another, implicitly obtaining the output variable by taking the most 

probable option.  

Let {(𝑋𝑖, 𝑦𝑖)}0<𝑖<𝑁+1 be a set of 𝑛 observations (typically a multivariate dataset collected for an 

experimental study), with 𝑋𝑖  and 𝑦𝑖  being the ith sample’s input and categorical output variables, 

respectively. 

The objective of logistic regression is to find a parametric function of the input variables that outputs 

an estimation function ℎ of the output variable’s probability to be in one state or the other, such that 

the output variable is best predicted, the concept being quantified through the formalization of a cost 

function 𝐿 called cross entropy. 

 
ℎ𝑊,𝑏(𝑋) =  

1

1 +  𝑒− ((𝑊)𝑇 ∙𝑋+𝑏)
 

(3.2.5), 

 
�̂�𝑊,𝑏(𝑋) =  {

1              𝑖𝑓  ℎ𝑊,𝑏(𝑋) > 0.5

0              𝑖𝑓  ℎ𝑊,𝑏(𝑋) < 0.5
 

(3.2.6), 

 
𝐿(𝑊, 𝑏) =  − 

1

𝑁
 ∑[ 𝑦𝑖 log(�̂�𝑖)  +  (1 −  𝑦𝑖) log(1 − �̂�𝑖) ] 

𝑁

𝑖=1

 
(3.2.7). 

 

The regression model is extracted by the data by finding ℎ𝑒, and consequently �̂�𝑒, such that:  

 
ℎ𝑒(𝑋) =  

1

1 +  𝑒− ((𝑊𝑒)𝑇 ∙𝑋+𝑏𝑒)
 

(3.2.8) 

 𝑤𝑖𝑡ℎ   (𝑊𝑒 , 𝑏𝑒) = argmin
(𝑊,𝑏)

( 𝐿(𝑊, 𝑏)) (3.2.9) 

 

The model’s parameters (𝑊𝑒 , 𝑏𝑒) can be determined through the use of an optimization algorithm 

such as gradient descent.  
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The process of fitting a softmax regression to a dataset with a 𝑀-states multimodal categorical variable 

is essentially the same as for a logistic regression, with a slight adaptation of the parametric function 

to account for the different variable states: 

 
∀ 𝑗 ∈ ⟦1;  𝑀⟧, ℎ𝑊𝑗,𝑏𝑗

(𝑋) =  
𝑒− ((𝑊𝑗)𝑇 ∙𝑋+𝑏𝑗)

∑ 𝑒− ((𝑊𝑖)𝑇 ∙𝑋+𝑏𝑖)𝐾
𝑖=1

 
(3.2.10), 

 �̂�𝑊,𝑏(𝑋) =  argmax
𝑗∈⟦1; 𝑀⟧

( ℎ𝑊𝑗,𝑏𝑗
(𝑋)) (3.2.11). 

 

Similar to linear regression, logistic and softmax regressions are considered linear classification 

algorithms and cannot take account of potential non-linearity and variable interactions in the dataset. 

3.2.3 Optimization and Gradient descent 

In both linear and logistic regression, model fitting requires to find the minimum of a function of the 

model’s parameters, called the cost function. The problem of finding the minimum of the least square 

cost function in a linear regression model is relatively straightforward, as it can be explicated 

analytically. This is not necessarily the case when using logistic regression. As a consequence, the use 

of optimization algorithms is usually necessary to obtain an approximate, computational solution. 

A number of optimization algorithm are available to the practitioner, who chooses from them 

according to the problem at hand in a case by case manner. Gradient descent is a well-known 

optimization algorithm that is consistently used in machine learning to minimize cost functions. 

Gradient descent is an iterative optimization algorithm that explores functions in a search for a local 

minimum by making use of its first-order derivatives in the form of the function’s gradient. The 

gradient of a function 𝑓 from ℝ𝑛 to ℝ is defined such that ∀(𝑥1, −, 𝑥𝑛) ∈ ℝ𝑛: 

 
𝛻(𝑓(𝑥1, −, 𝑥𝑛)) = (

𝜕𝑓

𝜕𝑥1
 , − ,

𝜕𝑓

𝜕𝑥𝑛
)  

(3.2.11). 
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The general idea behind gradient descent is to first evaluate the function and its gradient at a random 

location, identify the direction in which the function is “going down the most”, and take a step in that 

direction. After a number of steps, the gradient will evaluate close to 0, meaning that the location in 

which the function is being evaluated is “flat”, meaning that there is no immediate local neighborhood 

to explore providing lower values of the investigated function. As a consequence, the final position is 

a local minimum. More formally, for a function 𝑓 from ℝ𝑛 to ℝ  , 𝑎0 ∈ ℝ𝑛 a random vector and two 

real number 𝛾 and 𝑆, a gradient descent algorithm is based on iterating: 

 ∀𝑛 ∈ ℕ,    𝑎𝑛+1 =  𝑎𝑛 − 𝛾 𝛻𝑓(𝑎𝑛)     𝑎𝑠 𝑙𝑜𝑛𝑔 𝑎𝑠  𝛻𝑓(𝑎𝑛) >  𝑆 (3.2.12). 

 

With sufficiently low values for 𝑆, (𝑎𝑛) progressively converges toward a function’s local minimum. 

During the practical implementation of a machine learning algorithm, the step size (or learning rate in 

machine learning terminology) 𝛾 needs to be fine-tuned by the machine learning practitioner. Its value 

has a significant impact on the optimization process, as it sets the size of the steps taken by the 

algorithm at each descent iteration. As a consequence, it needs to be chosen carefully. Indeed: 

 Too big a learning rate value will lead to an unstable gradient descent. The steps taken at each 

iteration are too large to make use of the local information given by the gradient computation. 

A gradient descent with too big a learning rate might not converge, and can sometime, 

especially with deep neural network, diverge 

 Too small of a learning rate will lead to an exceedingly slow optimization process. Each step 

will be taken in the right direction, but the new point will be located right next to the previous 

one, thus making close to no progress in finding a minimum. 
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Fig 3.2.1 Example of gradient descent on a convex function. The gradient 
descent’s steps (in purple) begins at a random point on the function’s 

surface. Each step iteratively brings it closer to the function’s minimum, 
where the gradient become null. 

 

Finding a function’s minimum using gradient descent requires certain hypothesis from the investigated 

function. Mainly: 

 The investigated function needs to be defined and differentiable to perform gradient descent 

(these hypotheses can be weakened, but neural network all present those properties) 

 The investigated function needs to be convex for the algorithm to find the function’s global 

optimum. In other cases, gradient descent cannot provide any warranty regarding the 

identified local optimum’s quality 
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Fig 3.2.2 Example of non-convex function presenting two local minima. The 
left-hand minimum is the global optimum. However, a gradient descent 

algorithm initialized with a positive value will fall into the right-hand 
minimum, which is suboptimal 

 

3.2.4 Multilayer perceptron 

Multilayer perceptron are among the most widespread deep learning models 7. They can be used in a 

variety of modelling tasks, such as regression or classification, where then can be seen as nonlinear 

expansions to respectfully traditional mean square linear regression and logistic regression. 

The idea behind feedforward neural networks is to fit a linear model to a transformed set of 

observations {(𝜙(𝑋𝑖), 𝑦𝑖)}0<𝑖<𝑁+1 where not only the model’s parameters, but also 𝜙, are learnt from 

the data. 

The traditional approach to enable a neural network model to learn non-linear interaction from the 

data is to inject linear combination of the investigated parameters into simple, nonlinear functions, 

whose outputs are then either used to perform a linear modelling task, or as inputs to be injected in 

another set of nonlinearities. 

The toy network presented in figure 3.2.3 is an example of a feedforward neural network with one 

hidden layer, used in a regression setting. As in linear regression, the objective is to fit a set of N 

observations {(𝑋𝑖, 𝑦𝑖)}0<𝑖<𝑁+1 with a parametric, non-linear approximation: 
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 �̂� =  𝑤11
3 ∙ 𝑓1(𝑤11

2 ∙ 𝑥1 + 𝑤12
2 ∙ 𝑥2 +  𝑏1

2) + 𝑤12
3

∙ 𝑓2(𝑤21
2 ∙ 𝑥1 + 𝑤22

2 ∙ 𝑥2 +  𝑏2
2) + 𝑏1

3 

(3.2.13). 

 

 

 

Fig. 3.2.3: Top: simple example of a feedforward neural network in 

regressive settings. Bottom: The same network in its traditional, simplified 

representation. The biases are omitted and the linear combinations and 

injections in nonlinearities are done implicitly for ease of notation 

 

While the parameters are typically obtained from the minimization of the square loss function, two 

differences arise from the introduction of parametric non linearities in the model: 

 The parametric solution that minimizes the cost function cannot be expressed in 

closed form, and must be estimated through gradient based optimization 

 The cost function’s gradient is not straightforward to compute 



33 
 
 

 The resulting optimization problem loses its convexity, and the warranty of finding the 

global minimum 

The entire family of feedforward neural network can then be derived from this toy example, mainly 

through the variation of the cost function and three properties of the network: 

 Cross entropy or least square cost function for classification and regression 

respectively 

 Number of composed function in chain (number of layer) 

 Number of newly build feature per layer (number of neurons) 

 Type of nonlinearity applied to the neurons output (i.e. choice of functions f1 and f2) 

 

 

Fig. 3.2.4 Neural network model with three hidden layers (in orange). The 

green and red nodes are respectively the model’s input (endogenous 

variables) and output (exogenous variables 

 

These network properties, however, define the functional family across which the optimization 

algorithm will perform its search, and as such cannot be learnt during the training process. As such, 

they constitute what are called model hyper-parameters, and require additional fine-tuning that can 
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be critical to the model’s performance, and which is typically done through a simple search process on 

a dedicated validation dataset, as will be described further down in part 3.3.5. 

Increasingly complex models can be built by tuning these hyper-parameters, thus designing a model 

most fitted to the problem’s complexity. 

Theoretically, any type of nonlinearity f can be applied to the neurons’ outputs. In real life applications, 

however, practitioners usually choose between a limited number of options that have been empirically 

proven to perform well, with the most notable example being the linear rectified unit 13 defined for 

𝑥 ∈ ℝ as: 

 
𝑅𝑒𝐿𝑈(𝑥) =  {

𝑥                𝑖𝑓 𝑥 > 0
0            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(3.2.14). 

 

 

 

Fig 3.2.5 Plot of the ReLU non linearity 

 

While the linear rectified unit is currently one of the most widely used nonlinearity in the deep learning 

academic literature, a lot of work has been done toward trying to improve on its design, and has given 
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birth to a family of linear rectifier type units, as for instance the leaky rectified linear unit (LReLU) 14 

defined for 𝑥 ∈ ℝ as: 

 
𝐿𝑅𝑒𝐿𝑈(𝑥) =  {

𝑥                𝑖𝑓 𝑥 > 0
0.1𝑥            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(3.2.15). 

 

The LReLU only differs from the traditional ReLU for a negative 𝑥, where it is given a strictly negative 

slope. The rationale behind this subtle change is related to the optimization process and more 

specifically the network’s gradient shape. Indeed, a traditional ReLU displays a null derivative for any 

negative 𝑥, which can potentially hurt the gradient descent process. The LReLU prevents this problem 

by giving the nonlinearity a relatively small (but nonzero nonetheless) slope on the ℝ− domain. The 

subsequently obtained nonlinearity displays a closely similar behavior as the ReLU, but offers a 

nonzero derivative, potentially improving the gradient based optimization procedure used during the 

learning process 14. 

In addition to the nature of the output variable, the only difference between a deep neural network in 

regressive or classification setting is its associated cost function, which does not in itself have any 

impact on a neural network’s architecture. As a consequence, and for simplicity of writing, every neural 

network further described will be so in regressive settings. Its classifier counterpart can systematically 

be derived by changing the least square objective function by the cross-entropy cost function.  

 

3.2.5 Backpropagation algorithm 

In a similar fashion to statistical parametric models, the extraction of a neural network-based model 

from an investigated dataset is done through the computation of the solution minimizing a predefined 

cost function across the entire family of investigated parametric model (such as for instance the set of 

all straight line in univariate linear regression models). Although simple models such as linear 
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regressive models allow for a closed form expression of these optimal solutions, they are significantly 

more complex to derive when it comes to artificial neural networks such as the multilayer perceptron. 

A number of approaches have been devised over the years to automatically tune the model’s 

parameter to best fit the observed data, typically through gradient based optimization methods. 

As mentioned before, finding a given function’s minimum through a descent-based optimization 

algorithm relies on an iterative process involving the computation of the function’s gradient at each 

step. The strongly composed nature of the multi-layer perceptron’s parametric form, especially when 

given a large number of layers, can make the computation of its gradient’s manual implementation 

cumbersome. In addition, the network’s architecture, which can significantly vary during the practical 

implementation of a neural network, has a direct influence on the gradient’s shape. As a consequence, 

manual implementation of the gradient’s computation is time-consuming and prone to errors. The 

backpropagation algorithm 15 was developed as a general method allowing for efficient cost function’s 

gradient computation in any kind of feedforward neural network such as the multilayer perceptron.  

Whether for classification or regression analysis, a machine learning’s objective function is built to 

quantify the difference between the investigated dataset’s output variable and its proposed 

approximation obtained through the model, for every available subject independently 

Conceptually, this cost function defines the idea of distance between the observed data samples and 

the model by observing the difference between every single sampled example and their associated 

predictions, to then average over the whole dataset. As a consequence, both the cross entropy and 

least square cost function are written as a sum over a sample-wise error function applied to every 

example present in the dataset (and potentially a multiplicative factor): 

 
𝐿(𝑊, 𝑏) =  𝛼 ∑ 𝐿𝑖𝑛𝑑(𝑊, 𝑏, 𝑋𝑖, 𝑦𝑖)

𝑁

𝑖=1

 
(3.2.16). 
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The cost function’s gradient can thus be written, because of the gradient’s linear properties: 

 
∇(𝐿(𝑊, 𝑏)) =  ∇ (𝛼 ∑ 𝐿𝑖𝑛𝑑(𝑊, 𝑏, 𝑋𝑖, 𝑦𝑖)

𝑁

𝑖=1

) 
(3.2.17), 

 
=  𝛼 ∑ ∇(𝐿𝑖𝑛𝑑(𝑊, 𝑏, 𝑋𝑖, 𝑦𝑖))

𝑁

𝑖=1

 
(3.2.18). 

 

As a consequence, computing the entire cost function’s gradient can be directly obtained by computing 

the individual error function’s gradient for every candidate present in the dataset. This interesting 

property shared by many of the traditionally used cost functions is used in the backpropagation 

algorithm to provide an efficient procedure to compute their gradients by evaluating gradient 

contributions from every sample and combining them into the global gradient. The interest of this 

approach is dual: 

 The sub gradients can be evaluated in a fairly straightforward approach using derivative chain 

rules  

 As the computation of gradient contribution by every sample is completely independent, they 

allow for a powerful parallel implementation that significantly reduce the required 

computation time 

For any observation (𝑋𝑖, 𝑦𝑖) from the investigated dataset, given a multi-layer perceptron with n 

hidden layers of (𝑚[1], −, 𝑚[𝑛] ) neurons respectively, parameterized with weights and biases real-

valued vectors (𝑊[1], −, 𝑊[𝑛], 𝑏[1], −, 𝑏[𝑛] ) and non-linearities (𝑔[1], −, 𝑔[𝑛]) and a cost function 𝐿 

adapted to the investigated modelling problem, the computation of the gradient of L with respect to 

the weight and biases (
𝜕𝐿

𝜕𝑊[1] , −,
𝜕𝐿

𝜕𝑊[𝑛] ,
𝜕𝐿

𝜕𝑏[1] , −,
𝜕𝐿

𝜕𝑏[𝑛] ) can be obtained with the following procedure: 
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1. Use the current parameter values to compute the model’s approximation of the current data 

sample’s output variable (forward propagation), while keeping track of every layer’s pre-

activation vector (the neurons’ outputs before injection in a nonlinearity) (𝑍[1], −, 𝑍[𝑛]) 

2. Use the approximated values to compute the cost function’s value 

3. Directly compute 
𝜕𝐿

𝜕𝐴[𝑛], the cost function’s derivatives with respect to the network’s last layers 

activations.  

4. Starting with the nth layer and proceeding in a backward fashion, compute the cost function’s 

derivatives with respect to the lth layer’s parameter using 𝑍[𝑙], 
𝜕𝐿

𝜕𝐴[𝑙] and the following set of 

equations 15: 

 𝜕𝐿

𝜕𝑍[𝑙]
=  

𝜕𝐿

𝜕𝐴[𝑙]
 ⨀ 𝑔[𝑙]′(𝑍[𝑙]) 

(3.2.19), 

 𝜕𝐿

𝜕𝑊[𝑙]
=  

1

𝑚[𝑙]
 

𝜕𝐿

𝜕𝑍[𝑙]
 ⋅ (𝐴[𝑙−1])𝑇 

(3.2.20), 

 
𝜕𝐿

𝜕𝑏[𝑙]
=  

1

𝑚[𝑙]
 ∑(

𝜕𝐿

𝜕𝑍[𝑙]
)𝑖

𝑚[𝑙]

𝑖=1

 

(3.2.21), 

 𝜕𝐿

𝜕𝐴[𝑙−1]
= 𝑊[𝑙]𝑇

⋅
𝜕𝐿

𝜕𝑍[𝑙]
 

(3.2.22). 

 

An interesting property of this procedure, that gives it its name, lies in the fact that at each gradient 

descent iteration, the neural network currently trained is used twice: 

 Explanatory variables are injected in the network’s inputs and are propagated through the 

entire network to obtain output estimations. This step is called forward propagation 

 The cost function’s gradient is injected at the end of the network and is propagated in 

backward manner through the network to obtain derivative with respect to every parameter. 

This step is called backward propagation. 
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In present times, most deep learning programming libraries incorporate automated procedures to 

compute a neural network’s gradient using the backpropagation procedure and allow for parallel 

implementations given appropriate hardware (typically high-end Graphics Processing Units). 

 

3.2.6 Recurrent neural networks 

 

3.2.6.1 Naïve (or vanilla) recurrent neural networks 

 

 

Recurrent neural networks were the first implementation example of an idea that would end up 

creating most of the powerful neural architectures that have led to the dawn of the deep learning era, 

which is exploiting a modelling problem’s symmetries by utilizing weight sharing. 

Recurrent neural networks are a family of neural network that specialize in the analysis of sequential 

data16. The main idea behind the elaboration of a recurrent neural network is to devise a model that 

shares its parameter across all time steps within the data sequence. Instead of feeding the whole 

sequence to a standard perceptron, each time step in the data is sequentially fed to the network, which 

also takes as input its previous output in order to allow the model to condition both on the present 

and past observations as can be seen on figure 3.2.6. As a recurrent neural network requires this past 

connection for each time steps, an additional input is given to the model when evaluating the first 

sequential observation. This vectorial input is called an initial state and is typically either set to 0 or 

considered as learnable parameters for the model17.  
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Fig. 3.2.6: A recurrent neural network architecture outputs a vector for each 

sequential observation that depends on both the current and all previously observed 

time-steps  

 

This family of neural network can be used in a variety of settings that can be broadly gathered into 3 

main categories that can be seen on figure 3.2.7: 

 Modelling a non-sequential response variable from sequential explanatory variables (e.g. Text 

classification) 

 Modelling a sequential response variable from sequential explanatory variables (e.g. Optical 

character recognition) 

 Autoregressive modelling of a sequential variable (e.g. Language models) 

 

These architectures can be fitted just as traditional feedforward neural networks using an adaptation 

of backpropagation called backpropagation through time. However, this naïve approach to recurrent 

neural networks is notorious for its poor behaviour during model fitting. As a consequence, several 

better behaved architectures have been devised as a replacement, such as the Gated Recurrent Unit 

or the Long Short Term Memory cell, the latter being the most wildly used. 



41 
 
 

 

Fig. 3.2.7: Top: Recurrent neural network in regression setting. The RNN sweeps 

the entire input sequence, and its last output is used as inputs in a regression 

model conditioned on the entire sequence. Middle: RNN in sequential regression 

setting. The RNN sweeps the entire input sequence, and all of its outputs are used 

to fit a sequence of regression models conditioned on all previous observations. 

Bottom: RNN in autoregressive setting. The model sweeps the entire input 

sequence, and all of its outputs are used to fit a regression model to predict the 

next input from all previous observations 
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3.2.6.2 Long-Short-Term-Memory Cell 

 

The Long-Short-Term-Memory cell 18 is a variation of a traditional recurrent network, and defines the 

parametric function f defined for the proposed approach to regression on sequential data as: 

 𝑓𝑡 =  𝜎𝑔(𝑊𝑓 ⋅  𝑥𝑡 + 𝑈𝑓  ⋅  ℎ𝑡−1 + 𝑏𝑓) (3.2.23), 

 𝑖𝑡 =  𝜎𝑔(𝑊𝑖 ⋅  𝑥𝑡 +  𝑈𝑖  ⋅  ℎ𝑡−1 + 𝑏𝑖) (3.2.24), 

 𝑜𝑡 =  𝜎𝑔(𝑊𝑜 ⋅  𝑥𝑡 + 𝑈𝑜  ⋅  ℎ𝑡−1 +  𝑏𝑜) (3.2.25), 

 𝑐𝑡 =  𝑓𝑡  ∘  𝑐𝑡−1 + 𝑖𝑡  ∘  𝜎𝑔(𝑊𝑓 ⋅  𝑥𝑡 +  𝑈𝑓  ⋅  ℎ𝑡−1 +  𝑏𝑓) (3.2.26), 

 ℎ𝑡 =  𝑜𝑡  ∘  𝜎ℎ(𝑐𝑡) (3.2.27), 

 

with : 

 𝑥𝑡  as the input vector 

 ℎ𝑡  as the output vector 

 ct as the cell state vector 

 𝑊, 𝑈, 𝑎𝑛𝑑 𝑏 the cell’s parameter matrices and vector 

 𝜎𝑔 the logistic function 

 𝜎𝑐  𝑎𝑛𝑑 𝜎ℎ the hyperbolic tangent function 

 ⋅  the dot product   

 ∘  the Hadamard product 

 

 

 

 



43 
 
 

3.2.6.3 Gated Recurrent Unit 

 

Gated recurrent units constitute another example of a variation on the naïve recurrent neural network. 

Although the LSTM cell has been shown to have a better modelling capability than the GRU, the latter 

was selected in the proposed approach for both its lesser amount of parameter and ability to handle 

smaller datasets. For a sequence of real valued vectorial input (𝑥1, … , 𝑥𝑛) the output ℎ𝑡 at time step t 

of a GRU is defined from both ℎ𝑡−1, 𝑥𝑡 as follows19: 

 𝑧𝑡 = 𝜎(𝑊𝑧𝑥𝑡 +  𝑈𝑧ℎ𝑡−1 + 𝑏𝑧) (3.2.28), 

 𝑟𝑡 = 𝜎(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟) (3.2.29), 

 ℎ̂𝑡 = 𝜙ℎ(𝑊ℎ𝑥𝑡 + 𝑈ℎ(𝑟𝑡  ⊙  ℎ𝑡−1) +  𝑏ℎ) (3.2.30), 

 ℎ𝑡 = (1 − 𝑧𝑡) ⊙ ℎ̂𝑡 +  𝑧𝑡  ⊙ ℎ𝑡−1 (3.2.31), 

 

with: 

 𝑥𝑡 the input vector 

 ℎ𝑡 the output vector 

 ℎ̂𝑡 the candidate activation vector  

 𝑧𝑡 the update gate vector 

 𝑟𝑡 the reset gate vector 

 {𝑊𝑖, 𝑈𝑖 , 𝑏𝑖 ∀ 𝑖 ∈ (𝑧, 𝑟, ℎ )} learnable parameter matrices and vectors 

 

3.2.7 Convolutional neural networks 

Recurrent neural networks allow for the modelling of sequential datasets by sharing their neurons’ 

parameters across all time-steps and the addition of a “memory” to the network. The idea of several 

neurons sharing the same parameters is a powerful concept that can be adapted to a number of model 

architectures, in order to extract powerful predictive models from structured datasets. Convolutional 
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neural networks offer a different approach to parameter sharing that was developed for computer 

vision task and the analysis of images as real valued 2-dimensional grids 20. Indeed, multilayer 

perceptron-based models could be fit to such a data type, but similar to sequence datasets, the high 

number of variables contained in an image make for a combinatory explosion which usually prevent 

their use.  

To prevent this problem, convolution based neural networks focus on the modelling of local 

information, by limiting the neurons’ access to the input variables to small sub-grids (typically 2*2 to 

5*5 areas) of the entire matrix. Each neuron is then copied across the entire image, to output not only 

one scalar activation, but a 2-dimensional array called an activation map. Similar to multilayer 

perceptrons, every neuron’s activation map can then be injected into additional, neural layers.    

 

Fig. 3.2.8 Example of a convolution neuron applied to a 3x3 matrix. The 

neuron has access to limited 2x2 sub grids but sweeps the entire input grid. 

As a consequence, the neuron outputs several real values, instead of a 

single one  
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Although copying a neuron with limited connections to its input data presents a powerful way to make 

use of the idea of parameter sharing for the analysis of grid-like objects, its practical implementation 

as is can quickly become quite cumbersome. Indeed, naively copying the same neuron across the entire 

input data structure makes for a substantial amount of memory used to store redundant information. 

However, the transformation linking the input grid and the resulting activation map depending on one 

neuron’s parameter is actually equivalent to a well-known signal processing tool, called cross-

correlation. Through a slight modification of the traditional representation of an artificial neuron, this 

transformation can be used to implement a computationally efficient version of the aforedescribed 

neural architecture. In the deep learning academic literature, the cross-correlation operation is 

wrongly called a convolution operation. Although different transformations, the two share similarities 

and symmetries that make them yield similar results when used in neural network. As a consequence, 

the neural networks making use of this sub grid approach are called convolutional neural networks, in 

spite of using a cross-correlation operation. In order to prioritize consistency with the deep artificial 

neural network literature, the following formal description of convolutional neural network will make 

use of this designation, and the convolution operation defined further will be equivalent to the signal 

processing’s cross correlation. 

Even though convolutional neural networks were specifically designed for the analysis of image-based 

datasets as 2-dimensional grids, it can easily be adapted for use on sequential datasets 21, by 

considering a sequence of a variable as a grid of length the sequence’s length and unitary width. Its 

applications in fields such as text or vocal analysis-based classification is actually a growing area of 

research 22.  

3.2.7.1 Convolution operation 

The convolution operation is a function that takes two grid objects as entries, with one usually smaller 

than the other and outputs another grid that gathers the results of the sum of the element wise 

products of the smaller grid and every similar sized sub-grid from the bigger grid. Formally, for 𝑨 ∈
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ℝ𝑛×𝑛, 𝑩 ∈ ℝ𝑚×𝑚 with (𝑛, 𝑚) ∈ ℕ2 such that 𝑛 > 𝑚, the convolution of 𝑨 and 𝑩 noted 𝑨 ∗ 𝑩 is a 

matrix of size (𝑛 − 𝑚 + 1) × (𝑛 − 𝑚 + 1) defined as: 

 
∀𝑖, 𝑗 ∈ ⟦1, 𝑛 − 𝑚 + 1⟧,   (𝑨 ∗ 𝑩)𝑖,𝑗 =  ∑ ∑(𝑨)𝑖+𝑘−1,𝑗+𝑙−1(𝑩)𝑘,𝑙

𝑚

𝑙=1

𝑚

𝑘=1

  
(3.2.32). 

 

To better understand the properties of this operation, as well as its relationship with the neural 

architecture of the convolutional neural network, the same example used previously can be 

considered. Let 𝑋 and 𝑊 be 3 by 3 and 2 by 2 real valued matrices, respectively. The convolution of 𝑋 

and 𝑊 can then be written as a 2 by 2 matrix such that: 

 
∀𝑖, 𝑗 ∈ ⟦1, 2⟧, (𝑋 ∗ 𝑊)𝑖,𝑗 = ∑ ∑(𝑋)𝑖+𝑘−1,𝑗+𝑙−1(𝑊)𝑘,𝑙

2

𝑙=1

2

𝑘=1

 

 

(3.2.33), 

 (𝑋 ∗ 𝑊)𝑖,𝑗 =  (𝑋)𝑖,𝑗(𝑊)1,1 + (𝑋)𝑖,𝑗+1(𝑊)1,2 + (𝑋)𝑖+1,𝑗(𝑊)2,1

+ (𝑋)𝑖+1,𝑗+1(𝑊)2,2 

(3.2.34). 
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Fig 3.2.9 Visualization of the convolution of 3 by 3 and 2 by 2 matrices 𝑿 

and 𝑾, and its similarity to the convolution neuron architecture 

  

On another hand, when considering a 3 by 3 grid matrix input variable 𝑿 and a neuron given limited 

access to 2 by 2 sub grids from it (and as such having a 4-dimensional weight vector), the neuron’s pre-

activation map can be written as a 2 by 2 matrix such that: 

 ∀𝑖, 𝑗 ∈ ⟦1, 2⟧ 

(𝑿 ∗ 𝑾)𝑖,𝑗 =  (𝑿)𝑖,𝑗(𝑾)1 + (𝑿)𝑖,𝑗+1(𝑾)2 + (𝑿)𝑖+1,𝑗(𝑊)3 + (𝑿)𝑖+1,𝑗+1(𝑾)4 

(3.2.35). 

 

By comparing the two previous equations, the neuron’s pre-activation map can easily be identified as 

being the convolution of the input grid by a grid composed of the neuron’s weight parameters, and as 

a consequence can be computed as such. 
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Fig 3.2.10 Same neuron as in figure 3.2.9, written as a convolution product 

 

When applied in artificial neural networks, the convolution operation is usually extended in two 

distinct ways in order to provide the practitioner with more flexibility: 

 Stride variations allow for the reduction of the output’s dimensionality, by allowing more space 

between each copied neuron. As a consequence, some of the input matrixes sub grids are not 

observed by neurons. Formally, for 𝑨 ∈ ℝ𝑛×𝑛, 𝑩 ∈ ℝ𝑚×𝑚 with (𝑛, 𝑚) ∈ ℕ2 such that 𝑛 > 𝑚, 

the convolution of 𝐴 and 𝐵 with stride 𝑠 noted 𝑨 ∗ 𝑩(𝑠) is a matrix of size ⌊
𝑛−𝑚+1

𝑠
⌋ × ⌊

𝑛−𝑚+1

𝑠
⌋ 

defined as 23: 

 
∀𝑖, 𝑗 ∈ ⟦1, ⌊

𝑛 − 𝑚 + 1

𝑠
⌋⟧,   (𝑨 ∗ 𝑩(𝑠))𝑖,𝑗 =  ∑ ∑(𝑨)𝑖∗𝑠+𝑘−1,𝑗∗𝑠+𝑙−1(𝑩)𝑘,𝑙

𝑚

𝑙=1

𝑚

𝑘=1

  
(3.2.36). 

 

 0 padding can be added to the input matrix, in order to artificially raise its dimension, thus 

raising the convolution’s output dimensionality. In practice, padding is typically used to set the 

convolution’s output to be of same size as the input matrix. 
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Fig. 3.2.11 Top: Convolution with padding. The result of the padded 

convolution of A and B has the same dimension as A. Bottom: Convolution 

with stride of 2. As a consequence of the increased translation step, each 

element of the input grid is accessed once 

 

 

Finally, the concept of convolution can easily be expanded to 1-dimensional, 3-dimensional or n 

dimensional grid (with n any positive integer) structures, by adapting the parameter vector to a similar 

structure. As an example, the convolution of two 3-dimensional grid structures 𝑨 ∈ ℝ𝑛×𝑛, 𝑩 ∈ ℝ𝑚×𝑚 

with (𝑛, 𝑚) ∈ ℕ2 such that 𝑛 > 𝑚, can be defined as: 

 
∀𝑖, 𝑗, 𝑘 ∈ ⟦1, 𝑛 − 𝑚 + 1⟧,   (𝑨 ∗ 𝑩)𝑖,𝑗,𝑘 =  ∑ ∑ ∑(𝑨)𝑖+𝑙−1,𝑗+𝑞−1,𝑘+𝑠−1(𝑩)𝑘,𝑙,𝑠

𝑚

𝑠=1

𝑚

𝑞=1

𝑚

𝑙=1

 
(3.2.37). 

 

Its behavior can easily be linked to the aforedefined concept of neuron by the same identification 

argument used for their 2-dimensional counterparts. 
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3.2.7.2 Convolution layer 

A convolution layer is essentially similar to the concept of neural layer in the multilayer perceptron, 

with the neurons previously defined as input variables linear combinations replaced with convolutional 

neurons. Opposite to traditionally defined neurons, their convolutional counterparts present some 

hyper-parameters (namely their number of connections, stride and padding). Although some advanced 

neural architecture allows for the joint use of neurons with different hyper-parameters in the same 

neural layer, a traditional convolution layer typically uses a set of neurons tuned with the same hyper-

parameters, for both simplicity of implementation and limitation of the number of hyper-parameters. 

As a consequence, a convolutional neural layer can be implemented through the following steps: 

 Define a set of neurons (as a set of small real valued matrices) 

 Compute the convolution of the input variable and each neuron, resulting in as many pre-

activation maps as there is neurons in the layer 

 Inject each pre-activation map in an element-wise nonlinear function (typically a ReLU 

nonlinearity) 

 Concatenate every activation map into a 3-dimensional grid. 

 

Fig 3.2.12 Example of a convolution layer with two neurons applied to a 3 

by 3 matrix. The layers final output is a 2 by 2 by 2 grid (first and second 

axes represent the location of the pattern, the final axis resulting from the 

concatenation of each neuron’s convolution output) 
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In a similar fashion to the multilayer perceptron, convolution layers are typically applied back to back 

to allow for the modelling of powerful nonlinear relationships characterizing the investigated dataset. 

However, they present a peculiarity that does not make the implementation of a sequence of layer as 

straightforward. Indeed, the output of a traditional neural layer is sensibly similar to its input, in the 

sense that both of them are simple real valued vectors. Convolutional layers, however, due to the final 

concatenation step, typically output data structures of dimensionality bigger than their input (N+1-

dimensional grids for N-dimensional grid inputs). To prevent for this undesirable phenomenon 

potentially leading to an unreasonable number of unnecessary parameters, convolutional layers 

receiving the output of previous ones will typically apply to their input a 3-dimensional neuron of depth 

(last dimension) equal to their input’s ones, resulting in a stabilization of the grids’ dimensionality 

across layers. 

 

3.2.7.3 Maximum pooling 

Successive convolutional layers can be used to progressively decrease the local information contained 

in grid-like data structures by including it in the neurons’ representation of the investigated dataset. 

Essentially, each layer combines local information from the previous activation maps, and so on until 

the input grid variable. The use of convolutional layers alone in convolutional neural network can end 

up being considerably expensive, specifically with same padding types. Indeed, in these conditions, the 

size of each activation map does not decrease across layers and make for a considerable amount of 

computations to perform at each step. Similarly, with a valid type of padding the size of activation 

decreases relatively slowly across layers (it follows an arithmetic progression). Max-pooling layers 

were designed in order to efficiently increase the decreasing rate of activation map sizes across layers, 

in order to speed up computations, typically by outputting the maximum value of its input matrix’s 

each adjacent sub grid 24. Similar to convolutional layers, several sizes of filter and stride can be used, 
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but most max-pool implementations pool maximum values from 2 by 2 sub grids with a stride of 2 in 

both directions, essentially taking the maximum value from every adjacent and disjoint 2 by 2 sub grid 

from its input matrix, as can be seen in figure 3.2.13. 

 

Fig 3.2.13 Example of max-pool layer of filter size 2x2 and stride 2 applied 

to a 4 by 4 matrix. The resulting 2x2 grid contains the maximum values 

from every disjoint 2 by 2 sub grid from the input matrix. 

 

Although the theoretical justification of maximum pooling layers is still not fully understood, a heuristic 

explanation of their behavior is quite well received in the academic community. Typically, a 

convolutional neuron is expected to output high values when it detected the pattern it has been 

trained to recognize. As a consequence, the max pooling transformation allows for a significant 

decrease of representation sizes (following a geometric progression) while keeping for each neuron’s 

activation map the most important information, as well as its location in the input grid.  

3.2.7.4 Convolutional neural network 

The concepts of convolutional and maximum pooling layer are typically used together to build what 

are caller convolutional neural networks, which are a family of parametric models that currently hold 

state of the art performances on a variety of tasks ranging from machine vision to voice detection. 
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Convolutional neural networks typically incorporate the concepts of convolution and maximum 

pooling layers into a multilayer perceptron, allowing for the implementation of powerful models of 

grid like data structures by in the following way: 

 Inject the input data into a succession of convolution and maximum pooling layers 

 Once the model’s representation sizes have sufficiently decreased, inject the last layer’s 

activation map into a standard, multilayer perceptron linking it to the output variable 

 Fit the model through cost function optimization with gradient descent and backpropagation, 

similar to a traditional multilayer perceptron 

 

 

Fig 3.2.14 Example of a typical convolutional neural architecture. The grid 

shaped input variable is injected into a succession of convolutional and 

maximum pooling layers whose final output is injected directly into a 

multilayer perceptron 

 

The main rationale for using a multilayer perceptron as the last part of a convolutional neural networks 

is related to the way convolutional neural layers build dense, hierarchical representations of the 

investigated dataset’s input variables. Essentially, each network’s layer converts the local information 

it is injected with into independent, increasingly complex concepts describing growing sub grids of the 

input variable. As a consequence, successive layer’s activation maps slowly reduce in size until reaching 

a threshold where internal representation become non-local and dense enough for the use of 

standard, multilayer perceptrons.  
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This phenomenon was actually illustrated for better understanding in 25, which essentially introduced 

a method for visualizing the type of input grids maximizing a given neuron in a deep convolutional 

neural network trained for image classification. Figure 3.2.15 shows examples of such visualization for 

neurons selected from different layers, which exhibit the concept of successive, hierarchical 

representations inherent to deep neural networks:  

 The first layer’s neurons (top) typically respond to simple, unspecific patterns (colored blobs, 

linear patterns) 

 The intermediate layers (middle) use the simple representations established in previous layer 

to respond to more complicated concepts 

 The final layers (bottom), through successive refinements of representations, manage to 

encapsulate highly advanced concepts (such as a dog’s face) into a single neuron 
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Fig. 3.2.15 Visualization of maximum activation inputs for several layer 
depths 25 
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3.2.7.5 Dilated causal convolutions for sequence analysis 

 

Although convolutional neural networks were typically created for computer vision and the analysis of 

grid-like structures, they can also be used for sequence analysis. After all, a sequence is nothing but a 

grid with one dimension reduced to 1. However, their use as is might not be perfectly adequate to the 

analysis of long sequence. Indeed, convolutional neural network in computer vision rely on the strong 

locality hypothesis inherent to pictures, which is not necessarily as verified in sequence analysis 

(specifically in natural language processing, for instance). As a consequence, specific convolutional 

architectures were designed specifically for sequence analysis, such as temporal convolutional 

networks, which were shown to outperform all recurrent neural network based approaches in a 

number of sequence modelling benchmark datasets 26. Temporal convolutional networks, are 

essentially convolutional neural networks with two major modifications. First, in order to provide the 

user with sequential outputs of same length as the model’s inputs, down sampling methods 

traditionally used in convolutional neural networks such as striding are discarded, and zero padding is 

used. Finally, the traditional convolution operation at the basis of the convolution is modified into what 

is called a dilated causal convolution, which differs twofold from its traditional definition: 

 In order to respect causality, filters used to define the output at time-step 𝑡 should not have 

access to inputs for times 𝑡′ > 𝑡 

 A dilation factor 𝑑 is introduced to the convolution operation. This dilation factor allows the 

convolution to access non-adjacent part of the input grid structure, thus expanding the length 

of the corresponding neuron’s receptive field without using more parameters. Formally, for 

𝐴 ∈ ℝ𝑛, 𝐵 ∈ ℝ𝑚 with (𝑛, 𝑚) ∈ ℕ2 such that 𝑛 > 𝑚, the dilated convolution of 𝐴 and 𝐵 noted 

𝐴 ∗ 𝐵(𝑑) is a vector defined as: 

 
∀𝑖, 𝑗 ∈ ⟦1, 𝑛 − 𝑚 + 1⟧,   (𝐴 ∗ 𝐵(𝑑))𝑖 =  ∑ (𝐴) 𝑖+𝑘.𝑑(𝐵)𝑘

𝑚−1

𝑘=0

  
(3.2.38). 
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Fig. 3.2.16 shows an example of a temporal convolutional network. By applying successive 

convolutions with exponentially increasing dilation factors, these convolutional networks are able to 

model long sequences of data while requiring a surprisingly low number of parameters (the number 

of parameters evolves logarithmically with the maximal sequence length the network is able to fully 

model). In addition, temporal convolution still benefits from the powerful parallel implementation of 

convolution layers which makes them significantly faster than traditional recurrent neural networks.  

 

 

 

Fig. 3.2.16 temporal convolution network with 2 hidden layers. The dilation 

factors of the neural layers are in growing depth order 1, 2 and 4. With 

sufficient depth, the network’s output at a given time-step has access to 

the input’s every time-step before it. 

 

 

 



58 
 
 

3.3 Practical aspects of neural networks 

Although the theoretical basis of artificial neural network-based learning algorithms is fairly simple, 

their practical implementation often results in catastrophic failures (such as, for instance, gradient 

explosion) without careful considerations 27. As a consequence, a set of practical rules were derived 

from experiments as well as practitioner insight to improve their overall performances. 

3.3.1 Model evaluation 

The evaluation of a supervised model’s performance is paramount to the practical implementation of 

a deep neural network. Indeed, machine learning based models are typically used for their predictive 

capabilities and are consequently expected to not only correctly model the dataset, but also any 

additional example. However, as the model can only learn from the gathered dataset during the 

training process, its ability to generalize to never before seen cases cannot be guaranteed from its 

performance on the sole training data. In practice, because of their ability to model close to any 

relationship between input and output variables, deep neural networks have a tendency to derive 

models that are too specific to the investigated dataset. As a consequence, they require a careful 

analysis of their performance.  

3.3.1.1 Training, development and testing sets 

The learning process of an artificial network typically consists of minimizing its prediction error on the 

investigated dataset. As a consequence, the estimation of the model’s performance on the data used 

for training is inherently biased. Indeed, on this specific set of examples, the model usually shows good 

predictive capabilities, because it was actually chosen in a highly dimensional space models as the one 

with best predictive capabilities. It is consequently standard practice to divide the investigated dataset 

into two distinct, independent subgroups. One group will be used for optimizing the model’s 

parameters, and the second one will be used to assess the model’s performance 28.  As the algorithm 

does not have access to the second group during training, its derived model is not optimized to 

properly model them and allow for the extraction of an unbiased estimation of the model’s predictive 
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power. The group of subjects used for the parameter’s optimization is usually called the training set. 

Its counterpart used for model evaluation is called the testing set. 

Although the training and testing sets are sufficient to obtain an unbiased estimate of a given model’s 

performance, the practical implementation of a machine learning based model is usually done by 

fitting an important number of different models to the investigated dataset in the search for the best 

one. For instance, a practitioner could try a lot of different multilayer perceptrons on a given dataset, 

by varying the number of layers in the networks, or the number of neurons per layers. This search for 

the best available model can also be seen as an optimization process that biases the model’s 

evaluation. Indeed: 

 Trying to compare the performance of two models on the training set is not reliable, as a bigger 

network will typically (but not necessarily) yield better training accuracies than a smaller one, 

without any indication on the actual gain in performance 

 Trying to compare the performance of a set of models on the test set adds bias to the 

estimation. Indeed, once again, the final model will be chosen as the one with best accuracy 

on the test set, and as a consequence the argument used to illustrate the biased aspect of the 

training accuracy can yet be used on the test set; the model’s performance on the test set is 

“good” because it was defined as the best among every proposed solution 

To counter this additional undesirable bias, an additional group is made from the dataset, called the 

validation set or development set, and is used to choose the best model, before using the test set to 

obtain an unbiased estimation of the latter’s performances.  

To conclude, the standard methodology to derive a good model from a machine learning algorithm is 

the following 29: 

 Divide the investigated dataset into three distinct parts, the training set, the development set 

and the test set 
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 Use the training set to optimize the learning algorithms used during the investigation 

 Use the development set to choose the best model among the different ones considered 

during the investigation 

 Use the test set to obtain an unbiased estimation of the final model’s performance 

An important question during the separation of the investigated dataset into training, development 

and test set is the percentage of data samples to allocate to each of the sets. Indeed, the model’s 

parameters optimization usually requires a substantial amount of examples to behave properly. 

However, the computation of the models’ performances, whether for model selection of final 

estimation, needs also be reliable, especially to be able to evaluate performances on rare 

subcategories. 

A standard practice for datasets presenting a sample size less than a ten thousand is to allocate 60% 

of the samples to the training set, and an equal 20% for both the development and test sets. 

3.3.1.2 Bias variance dilemma 

During the practical implementation of a machine learning algorithm, two typical unwanted 

phenomena can arise 30: 

 The model’s training error is low, but its test error is significantly higher, 

 Both the model’s training and test error are significantly higher than expected by the 

practitioner. 

These two phenomena are respectively called over and underfitting. Underfitting is typically observed 

when trying to model complex relationships with simple models. The model then does not have 

enough expressive power to identify the investigated dataset’s patterns properly, and consequently 

shows poor predictive ability on both the training and testing set. Overfitting, on the other hand, is a 

result of using a family of algorithms with so much explanatory power, that they yield unstable models, 

meaning that two separate datasets gathered from the same phenomenon will be explained by 
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significantly different models. Indeed, the algorithm is powerful enough to account for the random 

noise typical of statistical dataset, usually to the detriment of the test error.  

Figure 3.3.1 shows a simple example of these concepts in the context of a univariate polynomial 

regression problem. The left-hand plot shows an attempt to fit the dataset with a linear regression 

model (polynomial regression of degree 1) and is consequently unable to account for the data’s non-

linear nature. In contrast, the right-hand figure consists of a polynomial regression model of degree 

15. The model has enough explanatory power to obtain a fit close to perfect to the noisy training 

dataset but yielding an unstable approximation function that equally fails to understand the true 

underlying function. The centered image shows the polynomial regression best suited for the 

investigated dataset and could be obtained for instance from a model selection scheme using training, 

development and test sets. 

 

Fig. 3.3.1 Examples of under and overfitting of a non-linear regression 
problem. Right: Overfitting model Left: Underfitting model, Center: Fine-

tuned model 

This phenomenon relying on the difference of explanatory power between different types of models 

is called the bias variance dilemma. Typically: 

 An algorithm with high bias will typically make too much assumption on the relationship it is 

trying to model, as in the linear regression example, where a straight line is fitted to a curve 
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 An algorithm with high variance, however, will be able to model a large number of 

relationships, but with that gained explanatory power comes the potential to be data-specific, 

and as a consequence to overfit the dataset 

The model selection scheme discussed previously, and for which the development set is paramount, is 

typically used to fine tune this tradeoff to the investigated dataset. 

In practice, deep neural network only underfit the dataset in exceptional circumstances but have a 

strong tendency toward overfitting that usually requires the use of additional techniques to reduce 

their variance, such as regularization. 

3.3.2 Regularization 

Deep artificial neural networks are universal approximators, meaning that they can essentially 

approximate any continuous function. As a consequence, the neural network’s family of models’ are 

sensibly prone to overfitting, even on very large datasets. Regularization schemes are a variety of 

techniques used in practical applications to limit this variance, and as such overfitting, typically by 

preventing the network from learning too complex of a function. Regularization techniques for neural 

networks are typically divided into two distinct approaches: 

 The addition of a penalty term in the cost function 31 

 The drop out method, which is specific to artificial neural networks 32 

3.3.2.1 Penalization methods 

The concept of regularization through the addition of a penalty term in the cost function is widely used 

in both machine learning and data driven statistical modelling. A typical example of such an approach 

can typically be observed when performing Ridge or Lasso regression 33,34. The rationale behind 

penalization regularization scheme is to limit the explanatory power of the learning algorithm, by 

preventing it of outputting artificially too complex of a function. For instance, one can notice from 

empirical observations that overfitting functions are typically not “smooth”. They instead tend to 
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oscillate rapidly between observations to fit the dataset as well as possible. As a consequence, the 

practitioner might want to constrain the learning algorithm into prioritizing “smooth” function against 

“non-smooth” ones, even if the latter makes a better job at approximating the training data. 

Although quite ambiguous, the concept of a model’s “smoothness” can be formally expressed in a 

relatively straightforward manner. Indeed, for a given parametric model, “non-smooth” functions will 

typically present with higher parameter values than “smooth” function. As a consequence, 

constraining the model’s parameter values to remain low can limit how “non-smooth” the model can 

eventually become during the learning process. This can typically be achieved by the addition of a 

constraint on the model’s parameters in the cost function. Considering a ridge linear regression model 

on a dataset {(𝑋𝑖 , 𝑦𝑖)}0<𝑖<𝑁+1 of 𝑁 observations, the new, regularized cost function can be defined 

as: 

 
𝐿(𝑊, 𝑏) =    

1

2𝑁
 ∙  ∑((𝑊)𝑇 ∙ 𝑋𝑖 + 𝑏 −  𝑦𝑖)2)   

𝑁

𝑖=1

+  𝜆 (‖𝑊‖2
2 +  𝑏2)     𝑤𝑖𝑡ℎ 𝜆 ∈ ℝ+ 

(3.3.1). 

 

The cost function’s first term is identical to that of the standard linear regression one. The second term 

constitutes the regularization constraint. Where a standard linear regression’s model parameters are 

optimized in order to best fit the data, a ridge regression’s objective is to jointly minimize the model’s 

fit to the data as well as its squared parameter weights. As a consequence, the model will prioritize 

parametric solutions that might not best fit the data, but that keep its parameters to low values, 

typically leading to “smooth” solutions. 

The 𝜆 value is to be considered a model hyper-parameter and denotes the regularization scheme’s 

importance during the model fitting process. It allows for the practitioner to choose how much 

importance is to be allowed to the “smoothness” constraint. Typically: 
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 High values of 𝜆 will guide the model toward emphasizing its smoothness requirement. In such 

conditions, the model’s fitness to the data might be overlooked, which can lead to underfitting 

 Low values of 𝜆 will result in a cost function close to its unregularized counterpart, and result 

in overfitting 

As a consequence, the fine-tuning of the 𝜆 value is paramount to a successful regularization, and its 

best value is typically determined from testing on the development set. 

3.3.2.2 Drop out method 

Although penalty-based regularization methods constitute a reasonably simple approach to preventing 

overfitting which can be applied in a wide variety of situations, its rationale fails to encapsulate the 

inherent reason for overfitting in neural networks. By using its highly connectionist structure, a big 

enough artificial neural networks can explain any observed dataset, simply by organizing its neurons 

and their high number of connections to each other into highly complex data representations. As the 

network grows bigger, the number of connections between neurons substantially increases, which 

often lead to overfitting by the conception of features specific to the dataset, thus failing to generalize 

to new examples. The drop out method is a regularization method that was created in order to prevent 

neurons to build their features by relying on highly specific combinations of connections, by 

stochastically shutting down some of the network’s neurons during training 32. Essentially, for each 

training step during the network optimization process, the modelled output variable inference process 

will be performed by a random subnetwork of the actual implemented neural network. Each neuron 

builds its representation to become robust to the random absence of input features coming from the 

previous layer, which prevents them from building artificially too complex and observation specific 

representations. 
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Fig. 3.3.2 Three layers perceptron with drop out regularization, in its 

complete version and during two distinct training operations. Neurons are 

shut down randomly in each layer for each iteration, and the output 

variable is inferred from the obtained subnetwork 

 

Several implementations of the drop out method have been devised over the years, the traditional 

approach being: 

1. Define a neural network for the investigated modelling problem 

2. During every training iteration, randomly choose several neurons to shut down (each neuron 

has a shutdown probability of 𝑝) 

3. Mute the selected neurons’ outputs to 0 

4. Use the partial network to infer the output variable 

5. Backpropagate the gradient through the subnetwork 

6. Perform the gradient optimization step 
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7. After descent convergence, use the entire network for model evaluation, with every neuron’s 

output multiplied by its drop out probability distribution’s expectation 

 

Fig. 3.3.3 Same neural network as in Figure 3.3.2 at test time of for true 

model inference. The neurons’ outputs are all used (no drop out) but are 

multiplied by the drop out probability distribution’s expectation 

 

3.3.3 Practical aspects of neural network optimization 

The process of optimizing an artificial neural network’s parameters is typically difficult 35. Not only does 

it require the use of gradient based methods on non-convex cost functions which, as mentioned 

previously, can behave sub-optimally, but neural network’s natural properties tend to make said cost 

function quite unfit to be explored with gradient based methods. Typically, a naïve implementation of 

an artificial neural network optimized by an equally simple gradient descent algorithm will fail to find 

a correct parametric model for the investigated dataset. Instead, two different undesirable 

phenomena will usually arise during optimization: 

 The cost function’s gradient will become significantly larger than its previous values, causing 

the gradient descent algorithm to diverge 
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 The cost function’s gradient will become so low that the gradient procedure will stop making 

any progress, without having reached a local minimum 

These two complications are known together as the vanishing and exploding gradient problem 27 and 

are the reason artificial neural network were discarded by the majority of the academic community as 

interesting machine learning models until the 2010s. Even though this problem is inherent to deep 

neural networks, it can in practical cases be overcome enough to obtain really powerful predictive 

models, typically by using careful parameter initialization schemes and subtler versions of the gradient 

descent algorithm. 

 

3.3.3.1 Parameter initialization 

 

The first step required during the optimization of a parametric model with a gradient descent 

procedure is to initialize the model’s parameter, typically randomly. The algorithm typically uses this 

initialization as a starting point and begins its search for a minimum from it.  

When it comes to convex optimizations problems, this starting point does not have any effect on the 

obtained solution. Indeed, assuming that the algorithm’s step rate is correctly tuned, the algorithm is 

guaranteed to converge toward the function’s global minimum. However, this desirable property does 

not remain true when gradient methods are applied to non-convex functions such as deep neural 

network’s cost functions. Indeed, as can be seen in figure 3.3.4, two gradient descent procedures 

initialized slightly differently can converge toward significantly different solutions. As a consequence, 

properly initializing a gradient descent in non-convex optimization problems, and as such, in the 

process of training a deep neural network, has a tremendous impact on its results. In fact, the new 

artificial neural network parameter initialization procedures introduced in the late 2000s and early 

2010s are considered a major factor in the first successful practical implementations of deep learning 

algorithms.  
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Fig 3.3.4 Two gradient descent procedures on a non-convex function, with 

different initialization (starting point). Even though the two procedures are 

initialized closely, the resulting local optima are sensibly different 

 

Historically, the first parameter initialization scheme resulting in the successful training of deep neural 

networks was obtained through the use of unsupervised layer-wise pre-training 36. However, recent 

work has led to the creation of initialization schemes that outperform such pre-training both in 

performance and computational costs, such as, for instance, the Xavier initialization procedure 35.  

The Xavier initialization scheme is a probabilistic parameter initialization method that relies on 

heuristic considerations on information flows within a deep neural network using hyperbolic tangent 

nonlinearities. For an L-layered neural network, the ith layer’s parameters are sampled from a random 

normal distribution with 0 mean and variance 𝜎2 such as: 

 

𝜎2 =  √
1

𝑛𝑖−1
       

𝑤𝑖𝑡ℎ 𝑛𝑖−1 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑛𝑒𝑡𝑤𝑜𝑟𝑘′𝑠 𝑖 − 1𝑡ℎ 𝑙𝑎𝑦𝑒𝑟 

(3.3.2). 
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In a similar fashion, the ith layer of a deep neural network using ReLU nonlinearities is to be initialized 

by sampling parameters from a random normal distribution with 0 mean and variance 𝜎2 such as:   

 

𝜎2 =  √
2

𝑛𝑖−1
       

𝑤𝑖𝑡ℎ 𝑛𝑖−1 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑛𝑒𝑡𝑤𝑜𝑟𝑘′𝑠 𝑖 − 1𝑡ℎ 𝑙𝑎𝑦𝑒𝑟 

(3.3.3). 

 

3.3.3.2 Advanced gradient-based optimization method: Adagrad 

While a proper parameter initialization can significantly improve the quality of a neural network 

parametric model solution extracted from a given dataset, using the classical implementation of a 

gradient descent procedure during the learning process can result in substantial practical difficulties: 

 As the dataset and the neural network get bigger, the gradient gets increasingly more 

expensive to compute, both in time and memory, and rapidly becomes practically intractable 

on machines with limited computing power 

 Even with proper parameter initialization, the cost function’s surface remains difficult to 

explore. The gradient descent can end up “stuck” on a function’s neighborhood with a gradient 

close to 0 that is not a local optimum (degenerate critical point or saddle points), as is shown 

in figure 3.3.5 

Two major concepts have been introduced to adapt gradient descent methods to these difficulties:   

 Stochastic (or mini-batch) gradient descent 

 Gradient descent with adaptive learning rates (Adam optimization) 

For the practical optimization of a deep neural network’s cost function, these two improvements on 

the traditional gradient based procedure are usually combined into powerful optimization algorithms. 
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Fig 3.3.5 Two standard gradient descent procedures with different initialization. Left: 

one procedure has converged toward a minimum, the other is stuck on a saddle point. 

Right: The second descent algorithm “got out” of its saddle point, and converged to 

the same local optima as the first version, but t ook a significantly larger amount of 

time 

 

 

Mini-batch gradient descent 

 

Theoretically, the gradient of any given neural network’s associated cost function can be obtained 

through the use of the backpropagation algorithm. By making use of the cost functions’ inherent 

additive nature, its gradient computation is divided into sub gradient computations at the sampled 

individual level. Although an efficient method to automatize the computation of the gradient process, 

this method presents a significant drawback when applied to dataset with large sample sizes. Indeed, 

it requires the capacity to store and compute as many gradients as there are examples in the dataset, 

usually resulting in memory overflow and unreasonably long computation times. 

Mini-batch gradient descent offers a solution to this physical problem by approximating the cost 

function’s gradient through the use of probabilistic sampling 37. For a given iteration of the descent 

procedure, the model’s cost function is estimated from a small number of subject (a mini-batch) 

randomly sampled from the dataset. As a consequence, this approximation of the cost function’s 

gradient can be computed through backpropagation on a limited subsample of examples, significantly 
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diminishing its computational cost. By successive random sampling at each step, the gradient descent 

algorithm can then be approximated with limited computational costs.  

A typical implementation of a mini batch gradient descent with mini-batch size m during the fitting of 

a linear regression model on a dataset {(𝑋𝑖, 𝑦𝑖)}0<𝑖<𝑁+1 of N observations, can be described as follows: 

1. Define a random permutation 𝜎 of ⟦1, 𝑁⟧ that will be used to shuffle the dataset 

2. For each gradient descent iteration step s, compute an approximation of the cost function 

 

𝐿𝑠(𝑊, 𝑏) =    
1

2𝑁
 ∙  ∑ ((𝑊)𝑡 ∙ 𝑋𝜎(𝑖) + 𝑏 − 𝑦𝜎(𝑖))

2
)   

𝑚∗(𝑠+1)

𝑖=𝑚∗𝑠

 

(3.3.4). 

 

3. Compute the approximated cost function’s gradient (through the backpropagation algorithm 

in the case of artificial neural network based models), and use it to update the parameters 

(standard descent step)  

4. Once every subject from the investigated dataset has been used for cost function 

approximation (in other words when 𝑚 ∗ 𝑠 > 𝑁), reiterate the process with a new random 

permutation 

5. Continue steps 1 through 4 until convergence 

The number of individuals to sample for cost function estimation is considered a model hyper-

parameter and has a significant impact on both the method’s computational efficiency and the 

outputted minimum’s quality. Indeed, low mini-batch size will require lower computational 

requirements when computing the objective’s gradient, but in the other hand typically make for a 

more unstable optimization algorithm, as the statistical estimation of the cost function gets poorer 

with few sampled examples. In practice, typical mini batch size values lie between 50 and 200 

examples.  
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Adaptative Moment estimation optimisation (Adam) 

 

Although mini-batch gradient descent allows for the approximation of a usually prohibitively expensive 

gradient for the optimization of artificial neural networks, it is not enough alone to allow for 

optimization of the difficult functional surfaces typically observed in deep artificial neural network 

learning processes. As aforementioned, the gradient descent’s ability to converge towards a local 

minimum is strongly conditioned on the proper tuning of its hyper-parameter, the learning rate. 

Indeed, as it quantifies the size of the step to be taken in the direction defined by the gradient, strong 

learning rate values yield an unstable optimization algorithm that fails to stop when arriving close to 

the found local optima, and weak values result in an unreasonably slow optimization algorithm. 

Unfortunately, the fine tuning of this hyper-parameter is sometimes not efficient on its own to obtain 

a good optimization algorithm. Indeed, using the same step size value to update every parameter 

implicitly makes the assumption that the investigated functional surface has roughly the same 

properties in every direction, which might not be the case, especially when it comes to neural network 

cost functions. The Adam optimization method 38 was introduced specifically to address this issue and 

provides a gradient based descent algorithm which adapts its learning rate to each parameter 

individually. Its definition is substantially similar to the traditional gradient descent’s one, with for only 

difference a modified update rule and consists, for a function f from ℝ𝑛 to ℝ  and four real number 𝜂, 

𝜀, 𝛽1 and 𝛽2, of the following: 

1. Initialize 𝑎0 ∈ ℝ𝑛 randomly and [𝑚0, 𝑣0] ∈ ℝ𝑛 × ℝ𝑛 to [0, 0]  

2. Iterate through the parameter update rule at step 𝑡 ∈ ℕ: 
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 𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝛻𝑓(𝑎𝑡−1) (3.3.5), 

 𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)( 𝛻𝑓(𝑎𝑡−1)  ⊙ 𝛻𝑓(𝑎𝑡−1)) (3.3.6), 

 �̂�𝑡 =  
𝑚𝑡

(1 − 𝛽1)𝑡
 (3.3.7), 

 𝑣𝑡 =  
𝑣𝑡

(1 − 𝛽2)𝑡
 (3.3.8), 

 ∀𝑖 ∈ ⟦1, 𝑛⟧, (𝑎𝑡)𝑖 = (𝑎𝑡−1)𝑖 −
𝜂

√(𝑣𝑡)𝑖 +  𝜀
(�̂�𝑡)𝑖 

𝑤𝑖𝑡ℎ (𝑥)𝑖 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟 𝑥 

(3.3.9). 

 

 

3. Stop iterating steps 1 and 2 when 𝑎𝑡 has converged toward a local minimum 

Once again 𝜂, 𝜀, 𝛽1 and 𝛽2are to be considered model parameters. Although the tuning of 𝜂 has a 

significant impact on the optimization procedure’s quality, 𝜀, 𝛽1 and 𝛽2 are typically chosen to be 

respectively 10−8, 0.999 and 0.9 38. 

 

3.3.3.3 Normalization 

 

As aforementioned, improving on the gradient descent algorithm used during the training of deep 

neural networks, through careful initialization and refined update rule, can significantly improve the 

quality of the obtained parametric model, as well as speed up convergence time. However, using a 

better optimization algorithm is not the only way possible to improve the process of searching for the 

minimum of a non-convex function. Indeed, despite the substantial advances introduced in gradient 

based optimization procedures, a deep neural network’s cost function remains substantially difficult 

to optimize. A different approach to overcome this inherent complication is, instead of improving on 

the optimization algorithm, to try to modify the cost function itself into a simpler, but equivalent one 



74 
 
 

that can then be optimized in a more straightforward manner. This idea has led to two main methods 

that significantly improve the quality of deep neural network models, input and batch normalization. 

Input normalization 

 

The cost function of a deep neural network being built upon samples from the investigated dataset, its 

shape and nature highly depend on the latter. As a consequence, applying simple transformation to 

the dataset can potentially have a positive effect on the model’s cost function, by for instance 

improving its compatibility with gradient based optimization methods. Although many options are 

available to the practitioner to preprocess a dataset, the most widely used method of data preparation 

for the implementation of deep neural network is input normalization.  

As aforementioned, one major difficulty with optimizing neural network models comes from the 

heterogeneity of their cost function across directions, which lead to the implementation of adaptive 

learning rates gradient methods. Input normalization works toward an additional improvement on the 

optimization process, this time by modifying the cost function itself to be more homogenous across 

directions 39. 

The process in itself is fairly straightforward and consist of normalizing every input variable from the 

investigated dataset to be of mean 0 and variance 1 by applying to them both an offset and a linear 

scaling estimated from the dataset. For a dataset with m input variables (𝑥𝑖)0<𝑖<𝑚+1 , input 

normalization can be performed by applying the following affine transformation to each input variable: 

 
∀𝑖 ∈ ⟦1, 𝑚⟧, 𝑓(𝑥𝑖) =  

𝑥𝑖 − 𝜇(𝑥𝑖)

𝜎2(𝑥𝑖)
        

(3.3.10). 

𝑤𝑖𝑡ℎ 𝜇(𝑥𝑖) 𝑎𝑛𝑑 𝜎2(𝑥𝑖) 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛 𝑎𝑛𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑥𝑖, 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 
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Fig. 3.3.6 Standard gradient descent on a linear regression model’s cost 

function before and after input normalization. Top: un-normalized function 

with learning rate of 0.0098. Convergence is reached in 280 iterations, and 

higher learning rate lead to divergence. Bottom: normalized function with 

learning rate of 0.3. Convergence is reached in <10 steps 

 

 

The positive effect of input normalization on the optimization of a model’s cost function through 

gradient based methods can be visualized in figure 3.3.6, which illustrates an example of linear 

regression model’s cost function and its dedicated optimization process both before and after input 

normalization. Before normalization, the cost function presents a strong slope heterogeneity across 

directions. As a consequence, the maximal allowed value for the descent procedure’s learning rate is 

strongly limited to small values, to prevent gradient instability and divergence. The same cost function 

after input normalization presents a functional surface with a slope that is more homogenous across 

directions, which allows for much higher learning rates, and converges much faster to a local optimum.  
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Although this phenomenon is also typically addressed by the implementation of adaptive learning rate 

descent methods such as the Adam optimization algorithm, a joint use of both methods typically 

increases the convergence speed of the training process in artificial neural network-based models. 

Batch normalization 

 

Although Batch normalization shares some conceptual and practical similarities to input normalization, 

its main rational is quite different.  

The power of deep neural network models comes from its ability to use its layers to build increasingly 

complex representations of the investigated dataset, by letting each layer build on its predecessor. 

During the learning process, each layer adapts itself to the previous layer’s outputs in order to build 

the best representation at its level, thus contributing in improving the model’s overall quality. 

However, the previous neural layer is also modifying itself, for the exact same reasons. As a 

consequence, for a given layer, the parameter update fulfills two purposes: 

 Adapting the layer to the changes made in the previous layer’s representation, 

 Adapting the layer to improve the model’s performance on the training set. 

Batch normalization was introduced to reduce the need for each layer to adapt to changes in its 

predecessors and “focus” on the modelling task at hand, by fixing each layer output’s mean and 

variance to 0 and 1, respectively, typically with an affine transformation similar to input normalization 

39. However, unlike input normalization, which is a rather straightforward procedure, batch 

normalization requires more thoughts in its practical implementation. Indeed, as the learning process 

progresses, the network’s layer outputs are continually changing, and with them their first order 

statistics. As a consequence, the normalization step is updated at every mini-batch gradient descent 

iteration, and the mean and variance are estimated for every layer from the currently used batch of 

training examples.  
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Although this normalization procedure allows the model to learn on a more stable version of its 

internal representations, fixing the mean and variance of each layer’s outputs might actually hurt the 

model in itself, by preventing each layer to make use of its nonlinearities correctly. As a consequence, 

a final affine transformation is typically applied to the normalized outputs, with its offset and scaling 

factors considered model parameters that are trained by the model through the gradient process.  

   

Fig 3.3.7 Example of a two layers’ perceptron with batch normalization 

between the first and second layers, with a batch of 3 examples (E1, E2, E3) 

 

 

For a given model’s layer l with m output neurons (𝑎𝑖)0<𝑖<𝑚+1 ∈ ℝ𝑚 and two scalars 𝛾, 𝛽 ∈ ℝ , the 

batch normalization process during an iteration of the mini-batch gradient descent process can be 

formally defined the following way 39: 

 Estimate mean and variance for the layer’s every output neuron from the current iteration’s 

batch 

 Normalize the batch outputs to null mean and unitary variance in a similar fashion as input 

normalization 

 Rescale the outputs by applying the following parametric affine transformation: 

 ∀𝑖 ∈ ⟦1, 𝑚⟧, 𝑓(𝑎𝑖) =  𝛾 (𝑎𝑖 + 𝛽)     (3.3.11). 
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Layer normalization 

 

 

Although the idea of batch normalization constitutes a powerful mean of improving very deep neural 

networks’ behavior during model fitting, it suffers from a significant issue that arises once the model 

is fully trained and ready to make predictions. Indeed, batch-normalization relies on having a batch of 

examples on which to compute all the layer outputs’ mean and standard deviation. However, one 

might want to make predictions on single examples at a time, where these concepts are not defined. 

Even in the case of predicting on several examples at a time, for a given example, predictions would 

depend on other values present in the batch, leading to non-deterministic predictions if those were to 

be randomly sampled. This issue is typically overcome by storing a moving average of the mean and 

variance of each layer during training, and use these when predicting. This fix comes however with 

great computational cost. As a consequence, the use of batch normalization is usually discarded in 

modern neural architectures in favor of layer normalization. Layer normalization also focuses on 

freezing a perceptron’s outputs mean and variance. However, instead of normalizing one given layer’s 

outputs across all candidates in a batch, it focuses on normalizing each individual’s layer’s vectorial 

output. As a consequence, the mean and standard deviation can be computed for each individual 

separately, which overcomes the necessity of keeping moving average updates of the batch statistics 

proper to batch normalization. In a similar fashion to what is done in batch normalization, the neural 

layers’ normalized outputs can afterwards be rescaled. For a given model’ layer l with 𝑚 output 

neurons (𝑎𝑖)0<𝑖<𝑚+1 ∈ ℝ𝑚 and two scalars 𝛾,  ∈ ℝ , the layer normalization process during an 

iteration of the mini-batch gradient descent process can be formally defined the following way: 

 Estimate mean and variance of (𝑎𝑖)0<𝑖<𝑚+1  

 Normalize the layer’s outputs with these derived values so that 𝑚𝑒𝑎𝑛((𝑎𝑖)0<𝑖<𝑚+1) = 0 

and 𝑠𝑡𝑑((𝑎𝑖)0<𝑖<𝑚+1) = 1 

 Rescale the outputs by applying the following parametric affine transformation: 
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 ∀𝑖 ∈ ⟦1, 𝑚⟧, 𝑓(𝑎𝑖) =  𝛾 (𝑎𝑖 + 𝛽)     (3.3.12). 

   

3.3.3.4 Hyper-parameter tuning 

 

Deep artificial neural network models present a substantial number of hyper-parameters: 

 The learning rate 

 The batch size 

 The number of hidden layers 

 The number of neurons per layer 

 The regularization hyper-parameters 

 Other model specific hyper-parameters (stride parameter in convolutional layers for instance) 

Finding appropriate values for this set of hyper-parameter is paramount to the successful practical 

implementation of a deep learning based algorithm to a given modelling problem. As mentioned 

before, the estimation of the hyper-parameter values needs to follow a specific methodology, to avoid 

overfitting and biased estimation of model accuracy: 

 One model with a given set of hyper-parameters is extracted from the training dataset, 

 The best set of hyper-parameters is inferred by testing several combinations on the 

development set, 

 The best model’s accuracy is estimated on the test set. 

Although most hyper-parameter tuning in deep artificial neural network follows this methodology, the 

question of how to come up with potentially good sets of hyper-parameters to try on the modelling 

task, has yet to be defined. 
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Several procedures have been devised over the year to explore the hyper-parameter space to discover 

proper model settings, varying from powerful, but computationally expansive solutions to simpler 

search procedures, with the two most widely used approaches being grid and random search. 

 

Grid search 

 

The grid search approach to hyper-parameter optimization is one of the most widely used method in 

machine learning. It consists of limiting the space exploration to a subset of values for every hyper-

parameter. The resulting value space forming an approximation of the original in the shape of a grid-

like structure. More formally, for a given model with n hyper-parameters (𝜆𝑖)0<𝑖<𝑛+1 ∈ ℝ𝑛 a grid 

search can be implemented as following: 

1. For each hyper-parameter 𝜆𝑖, define a number of candidates to sample 𝑚𝑖 and a bounded 

interval to sample them from 

2. For each hyper-parameter 𝜆𝑖 , divide the selected interval into 𝑚𝑖 − 1 regular intervals 

([(𝜆𝑖)1, (𝜆𝑖)2], −, [(𝜆𝑖)𝑚𝑖−1, (𝜆𝑖)𝑚𝑖
] )  and select 𝑆𝑖,𝑚𝑖

=  ((𝜆𝑖)𝑗)0<𝑗<𝑚𝑖+1 as the subset of 

𝜆𝑖 values to explore 

3. Train a model with the training set for every hyper-parameter combination (𝜆𝑐1, −, 𝜆𝑐𝑛) ∈

𝑆1,𝑚1
× − × 𝑆𝑛,𝑚𝑛

 

4. Select the best set of hyper-parameters as maximizing the model’s accuracy on the 

development set 

5. Test the model’s accuracy on the test set 
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Fig 3.3.8 Grid search-based exploration of [-0.03, 0.03]2 with 7 samples per 

axis  

 

The grid search process can be refined by iterating several grid searches on increasingly smaller areas 

of the hyper-parameter space, each one identified as a promising hyper-parameter region from the 

previous grid search. 

Although grid search methods can easily be implemented in parallel, significantly speeding the hyper-

parameter tuning process, the computational cost of deep artificial neural networks typically prevent 

it on reasonably sized machines. In addition, the quality of grid-based exploration approaches tends to 

substantially decrease in high dimensional spaces that can typically be observed in deep neural 

network hyper-parameters. 

Random search 

 

Grid search methods methodically explore the entire bounded subspace that it is provided. As a 

consequence, and specifically in deep artificial neural network which present a high number of hyper-

parameter, these processes are substantially computationally expansive. In addition, grid search 

methods are specifically adapted to tuning hyper-parameters with comparable impact on the model’s 
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performances. However, it has been found that the influence of hyper-parameters on the quality of 

the final algorithm is substantially heterogeneous; oftentimes, some hyper-parameters have close to 

no influence on the model. As a consequence, random searches-based exploration methods have been 

found to significantly outperform their grid-based counterparts in the fine-tuning of hyper-parameters 

in deep artificial network-based models. 

The optimization of a given model’s hyper-parameter through random search is fairly straightforward 

to implement, and consists simply in sampling random combination of hyper-parameters, assessing 

their quality on the development set and selecting the combination yielding best model performances. 

More formally, for a given model with n hyper-parameters (𝜆𝑖)0<𝑖<𝑛+1 ∈ ℝ𝑛 a grid search can be 

implemented as following: 

1. Define a number of hyper-parameters set to sample m, 

2. For each hyper-parameter 𝜆𝑖 , define a bounded interval to sample from, 

3. Sample m hyper-parameter set from their respective sampling intervals, typically through a 

uniform random distribution, 

4. Train a model with the training set for every hyper-parameter combination, 

5. Select the best set of hyper-parameters as maximizing the model’s accuracy on the 

development set, 

6. Test the model’s accuracy on the test set. 
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Fig 3.3.9 Random search based exploration of [-0.03, 0.03]2 with candidates 

sampled from a bivariate uniform random distribution. The same number 

of candidates were sampled as in the previous grid search visualization 

example 

 

In a similar manner to grid search methods, a random search process can be refined by iterative 

random searches in increasingly smaller areas of the hyper-parameter space identified from the 

previous search result as promising. Several approaches are available to identify such areas of the 

hyper-parameter space, from simple exploratory analysis of the hyper-parameter space relationship 

to the validation error to the use of an additional neural network in a reinforcement learning setting, 

the latter being extremely computationally intensive. 
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Fig. 3.3.10 Refined random search. A first random search (in red) is 

performed. An area within the search is selected as promising (for instance 

because hyper-parameter sampled from it all yielded good model 

performance), and a new random search (in blue) is performed on selected 

area 

The superiority of random search based hyper-parameter tuning compared to grid-based approaches 

mostly can be explained from a combination of two phenomena: 

 Random search investigates a significantly higher number of different values for each 

parameter than grid search 

 Some hyper-parameters might not have any significant effect on the model’s performance 

A simple example can be considered in order to better visualize the impact of these two properties 

on the resulting obtained set of hyper-parameters. Let (𝜆1, 𝜆2, 𝜆3) be a set of three hyperparameters 

with 𝜆3 having close to no significant impact on the model’s predictive quality. 

A grid search hyper-parameter optimization procedure with 𝑛 values sampled for each 

hyperparameter will require to fit 𝑛3 distinct models. However, due to 𝜆3’s absence of effect on the 

model’s performances, only 𝑛2 efficient hyper-parameter (𝜆1 and 𝜆2) settings will have been tested. 
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A random search process with 𝑛3 random sampled hyperparameter sets, however, will have tested 

𝑛3 distinct combination of 𝜆1 and 𝜆2, thus resulting in a finer space exploration and, usually, better 

model performances. 

 

3.4 Neural sequence models and machine translation 

 

The neural architectures defined so far allow for the implementation of powerful predictive models, 

from either vectorial or structured input data, whether sequential or grid-like. However, as non-linear 

extensions to more traditional models such as linear, logistic or multinomial regression, they share 

their limitations. In particular, the modelling of sequential, interdependent outcome variables using 

these methods is not straightforward, while this type of data is ubiquitous in epidemiology, for instance 

in cohort studies. Neural sequence models constitute a family of models that extend the traditional 

feedforward architectures to allow for the implementation of predictive models with sequential 

outcome variables, whether with fixed or variable sequence lengths. In practical applications, these 

models are essentially used in natural language processing, specifically in machine translation, where 

they have been representing the state of the art for a number of years. The first powerful neural 

sequence models were based on recurrent neural networks and their variants, such as Long Short Term 

Memory units40 and Gated Recurrent Units. Although the deep learning academic community have 

found empirical evidence that now discourages their use in natural language processing tasks in favour 

of attention41 or dilated convolutions42 based models, for instance. However, these modern 

approaches stay far from traditional statistical predictive models typically seen in epidemiology or 

biostatistics, and can appear quite opaque at first sight. The older, simpler architectures, however, 

constitute a perfect entry point to state of the art machine translation models, and can still be used to 

derive original tools for biostatistics, such as the novel recurrent neural network based ordinal 
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regression method described below, which constitutes an original work produced within the context 

of this thesis.  

3.4.1 Learning a binary search with a recurrent neural network for ordinal regression 
 

Ordinal regression is a well-known predictive modelling problem used in fields as diverse as 

psychometry43 to deep neural network based voice modelling. Their specificity lies in the properties of 

their outcome variable, typically considered as a categorical variable with natural ordering properties, 

typically allowing comparisons between different states44 (“a little” is less than “somewhat” which is 

itself less than “a lot”, with transitivity allowed). Although this additional prior knowledge should be 

incorporated into the modelling process, this state comparability property ends up being surprisingly 

hard to integrate to pre-existing qualitative or quantitative approaches.  

Indeed, most traditional ordinal regression methods (typically based on thresholding or least-square 

like modelling objectives) make additional assumptions on the outcome variable that might not always 

be verified45. As an example, the ordered logits model relies on the proportional odds assumption and 

the hypothesis that the observed ordered dependent variable constitutes an imperfect observation of 

a latent quantitative variable. 

In computer science, the manipulation of ordered table is a well-known problem for which simple yet 

powerful algorithms have been known for decades. Binary search, for instance, allows for the 

localization of a given value in an ordered table of predefined size N using at most Log2(N) 

comparisons.  

The following section proposes to make use of this simple algorithm’s essence by encoding an ordered 

variable as a binary tree. The resulting modelling problem is then shown to be reminiscent of 

sequential models traditionally seen in the deep learning academic literature, and a recurrent neural 

network variant, the Gated Recurrent Unit19 (GRU) is proposed to solve it. The predictive power of the 

investigated method is then assessed on a dozen openly available benchmark datasets. Comparison 



87 
 
 

with traditional methods show a significant improvement in predictive power on a number of datasets, 

in term of both average error rate, squared Cohen Kappa score and squared error metrics. 

3.4.1.1 Method 

 

Ordinal variable encoding on a probabilistic binary search tree 

 

A binary search is as simple yet powerful recursive algorithm that, from a sorted array, determines 

the position of one of its given element, by computing a logarithmic amount of comparison46 

between the investigated value and the table’s elements as can be seen in figure 3.4.1: 

1. Select the median element of the table, and compare it to the investigated value 

2. If the median element is bigger than the investigated value, apply steps 1 to 4 on the table’s 

lower half 

3. If the median element is lower than the investigated value, apply steps 1 to 4 on the table’s 

upper half 

4. If the median element is equal to the investigated value, stop the algorithm and return the 

median element’s position 

 

Fig. 3.4.1 Example of a binary search algorithm (source: Wikipedia). The 

algorithm needs only 4 comparisons to find the position of an element in a 

table of 16 elements 
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As a powerful approach to ordered sets manipulation relying solely on comparison operations, which 

are by definition perfectly acceptable in ordinal variable analysis, the binary search algorithm might 

constitute an interesting basis for the design of an ordinal regression method. For instance, directly 

applying the algorithm to an ordinal variable allows for its encoding on a binary tree. Figure 3.4.2 shows 

an example of such a decomposition, with an 8 states ordinal variable. Each path on the tree 

corresponds to a sequence of binary random variables defined as comparisons. 

 

 

 

Fig. 3.4.2 Binary search tree. Each state of the ordinal variable is associated 

with a vector of binary variables representing its location on the tree, and 

the result of the equivalent binary search process. Note that binary vectors 

correspond exactly to the binary decomposition of the ordinal variable’s 

state 

 

By considering this binary search tree as a standard conditional tree diagram, and identifying the 

decision path leading to a given value corresponds to its decomposition in binary, ordinal regression 

can be formulated as a sequential modelling problem of binary variables as follows: 
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𝑃(𝑦 | 𝑋, 𝜃) = 𝑃 ({⌊
𝑦

2𝑛−𝑖
⌋  𝑚𝑜𝑑 2, 𝑖 𝜖 ⟦1, 𝑛⟧} | 𝑋, 𝜃) (3.4.1), 

= 𝑃 (⌊
𝑦

2𝑛−1⌋  𝑚𝑜𝑑 2 | 𝑋, 𝜃) ∏ 𝑃 (⌊
𝑦

2𝑛−𝑖
⌋  𝑚𝑜𝑑 2 | {⌊

𝑦

2𝑛−𝑗
⌋  𝑚𝑜𝑑 2, 𝑗 𝜖 ⟦1, 𝑖⟧} , 𝑋, 𝜃)

𝑛

𝑖=2

 
(3.4.2), 

= 𝑃(𝐵1,𝑛 | 𝑋, 𝜃) ∏ 𝑃(𝐵𝑖,𝑛 | {𝐵𝑗,𝑛, 𝑗 𝜖 ⟦1, 𝑖⟧}, 𝑋, 𝜃)

𝑛

𝑖=1

 𝑤𝑖𝑡ℎ 𝐵𝑖,𝑛 = ⌊
𝑦

2𝑛−𝑖
⌋  𝑚𝑜𝑑 2 ∀(𝑖, 𝑛)

∈ ℕ2  

(3.4.3). 

  

Where: 

 𝑦 ∈ ℕ the ordinal dependent variable with 2𝑛 , 𝑛 ∈ ℕ states 

 𝑋 ∈ ℝ𝑑 , 𝑑 ∈ ℕ, the explanatory variables (in vectorial form) 

 𝜃 ∈ ℝ𝑒 , 𝑒 ∈ ℕ, the model’s parameters 

Note that so far, and for simplicity, the modelling problem is only defined for ordinal variable with a 

number of states that is a power of two (in other words where the ordinal variable’s corresponding 

binary search graph is full). Extending the model to the general case of any given number of states is 

however quite straightforward and can be achieved as follows (and is shown in figure 3.4.3): 

1. Model the 𝑛 ∈ ℕ states ordinal variable as having ⌈2𝑙𝑜𝑔2(𝑛)⌉ states, 

2. Force all the unnecessary states to 0 after model inference and renormalize the resulting 

probability distribution. 
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Fig. 3.4.3: Example of truncation and renormalization trick for an ordinal 

variable with 6 different states. The variable is projected into a binary 

search tree of depth 3 (on the left). The resulting probability distribution is 

then renormalized such that the two higher (and impossible) states are 

associated to 0 probability (on the right) 

 

Model definition 

 

Amongst the basic recurrent neural network based architecture described in 3.2.6, the autoregressive 

setting seems like a good candidate to model the joint probability of observing a sequence of event. 

Indeed, sequentially modelling all the output variables conditioned on all previous ones almost allows 

for the computation of the joint modelling by simple product of all derived probabilities. However, a 

problem arises with simple autoregressive models that prevents their use as is in the investigated 

modelling problem. Autoregressive models expect the first sequence element as a given, which is not 

the case in the investigated modelling problem, where 𝑃(𝐵0,𝑛) requires an estimate as well. The neural 

machine translation literature, which encounters the same problem, introduced the idea of adding a 

“neutral” state to the categorical variable (typically denoted as “<START>” in the machine translation 

academic literature) from which the network starts its auto-regression process47. This additional value 

is given to the recurrent network as its first input element, from which the model learns to predict the 

sequence’s actual first element, as can be seen in figure 3.4.4. 



91 
 
 

 

 

 

Fig. 3.4.4 Left: A GRU recurrent neural network during the first step of the 

joint modelling autoregressive process. Its input is an additional, artificial 

state given to the target variable that never changes from one individual to 

another, that is used to estimate target sequence’s first element’s discrete 

probability density. Right: After the first recurrent neural network 

iteration, the actual sequence is given to the model, apart from the last 

element, which is never conditioned upon  

 

Although this neural architecture allows for efficient sequence joint probability modelling, it is not by 

itself sufficient in order to solve the modelling problem investigated here, which, as defined in 2.1, 

consists in estimating the joint probability of binary decision sequence conditioned on some 

explanatory variables. The machine translation literature academic also had the same problem (e.g. 
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estimating the probability of a sentence in French given a sentence in English) and came up with several 

solutions. The simplest, found in early RNN based encoder-decoder architectures, was to make the 

recurrent neural network’s initial state a function of the input variables, as can be seen in figure 3.4.5 

which is the solution that was chosen for the here defined architecture.  

 

Figure 3.4.5: A GRU neural network able to estimate the joint probability of 

a sequential output variable conditioned on some explanatory variables. h 

linear combinations of the explanatory variables are used as the initial 

state of a GRU that sweeps through the padded target sequence in an 

autoregressive fashion 

 

In summary, for an ordinal variable 𝑌 with 2𝑛, 𝑛 ∈ ℕ  and explanatory variables 𝑋 ∈ ℝ𝑑 , 𝑑 ∈ ℕ, the 

entire model can be defined as follows, and its schematic representation can be seen in figure 3.4.6: 

 The aforedefined random variables 𝐵𝑖,𝑛, 𝑖 𝜖 ⟦1, 𝑛⟧ are encoded as two valued one hot vectors 

((0, 1) for 𝐵𝑖,𝑛 = 0, (1, 0) for 𝐵𝑖,𝑛 = 1) 

 The neutral state used as a “<START>” token for the autoregressive token is defined as (0, 0) 

 A GRU recurrent neural network with dimensionality ℎ is defined to sweep through the binary 

variable sequences (padded with the neutral state). ℎ constitutes the model’s only hyper 

parameter (the authors advise to set this value to 𝑛, although without any theoretical nor 

empirical evidence to back it up) 
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 ℎ linear combination of the input variables are defined to build a vector 𝐸 that is to be used as 

the GRU’s initial state 

 A logistic regression is then applied to all of the GRU’s outputs (the same logistic regression is 

applied at each time-step) in order to estimate the probability of each 𝐵𝑖,𝑛, 𝑖 𝜖 ⟦1, 𝑛⟧ in an 

autoregressive fashion 

 By feeding all possible binary decomposition sequences to the GRU (for the same individual), 

the ordinal variable probability can be retrieved from the logistic regression output’s products 

 The entire model (logistic regression, GRU and linear combination parameters) is jointly fit 

though maximum likelihood with gradient descent and backpropagation 

 

 

Fig. 3.4.6 The proposed neural architecture. From the explanatory variable, 

h linear combinations are used to initialize a GRU that sweeps through all 

of the ordinal variable state’s binary decompositions. The latter’s actual 

distribution is then retrieved through product of all of the GRU’s outputs  

 

Teacher forcing 

 

The necessity of evaluating the recurrent neural network on every possible sequence in order to build 

the final probability distribution can result in significant computational needs, especially during model 
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fitting, where model inference and gradient computation through backpropagation is required at each 

gradient descent iteration step. In order to speed up computation times, neural translation model are 

typically trained nowadays using a technique called teacher forcing48. Instead of fitting the model 

through maximum likelihood on the final joint distribution, model parameters are inferred by 

maximum likelihood on the sequential variables, and only the correct sequence is given to the model 

for each observation, as can be seen in figure 3.4.7. As a consequence, each optimization step requires 

the recurrent neural network to only assess one sequence per observation, thus significantly improving 

computation times.  

All experiments reported here were derived using this model fitting approach. The final predictions 

used for performance estimations were however derived from the more traditional approach of 

building the entire ordinal probability distribution. 

 

Fig. 3.4.7 Example of model training using teacher forcing. The GRU’s initial 

state is derived from linear combination of the input variables as before. 

However, to improve computation time, only the correct output sequence is 

fed to the recurrent neural network. The model is then jointly fit through 

maximum likelihood on each individual 𝐵𝑖,𝑛, 𝑖 𝜖 ⟦1, 𝑛⟧  
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3.4.1.2 Linear dimensionality reduction and visualization 

 

The method proposed here was primarily intended as a purely discriminant model. However, its 

inherent architecture can be exploited (at least in a majority of use cases) to use it as a linear 

dimensionality reduction and visualization tool as well, with no additional work required. Indeed, the 

GRU-cell’s initial state, a vector based on linear combinations of the explanatory variable whose 

dimensionality constitutes the model’s only hyper parameter, contains all the information the trained 

model uses to predict the target ordinal variable. Consequently, as long as this initial state’s 

dimensionality is set to a value lower than the number of explanatory variables, it constitutes a 

compressed representation of the explanatory variables built to preserve as much discriminative 

information regarding the target variable as possible. This approach shares some similarity (at least 

conceptually) with partial least square regression methods, but is here specific to ordinal valued target 

variables. 

In addition, when setting the model’s hyper-parameter to values 2 or 3, the subsequent linear 

projection of the explanatory variables can be plotted, which allows for the visualization of potentially 

insightful patterns regarding the relationship between explanatory variables and the ordinal target.  

In short, these linear projections of the explanatory variables can be obtained as follows: 

 Set the model’s hyper-parameter to a value lower than the explanatory variables cardinality 

 Train the model 

 Discard the GRU cell from the model and only compute the linear projections used to build its 

initial state 

Finally, as this projection is purely linear, the authors have some hope that they can retain some 

interpretability, which is quite rare in neural network models. However, additional work is required to 

properly assess how these linear combinations can be interpreted. 
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3.4.1.3 Experiments 

 

Description 

 

To assess its predictive performances, the aforementioned method was applied on a set of readily 

available benchmark datasets for ordinal prediction, and compared to results obtained from more 

traditional approaches. All the ordinal regression methods used in the following experiment (except 

for the one introduced in this chapter) were taken from the mord Python package, and all roughly 

follow two different approaches: 

 Threshold based methods, comprised of three variants of the ordinal logistic model, the all-

threshold ordinal logistic model, the immediate-threshold ordinal logistic model and the 

squared error ordinal logistic model, which are referred to as “AT”, “IT” and “SE” in the 

experiment’s results 

 The regression based methods, comprised of the ordinal ridge regression model, and the least 

absolute deviation ordinal regression model, which are referred to as “Ridge” and “LAD” in 

the experiment’s results 

 

In order to assess the proposed method’s performances in comparison to the state of the art, all these 

methods were used on 17 real-life datasets traditionally used for benchmarking ordinal regression 

methods. A summary of these datasets can be found in table 3.1. The following methodology was used 

for the experiment: 

 Each input variable in all dataset was standardized to zero mean and unitary standard variance 

 Every model (the proposed approach, and the mord package’s model) was fit to each dataset 

and three performance metrics were assessed using 10-fold cross validation: Model accuracy, 

squared Cohen Kappa score and squared error. Confidence intervals were estimated through 

bootstrap 
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Dataset Number of ordinal 
states in the output 

variable 

Number of input 
variables 

Sample 
size 

Abalone 8 7 4177 
Abalone_ord 10 10 4177 
Affairs 6 17 265 
Ailerons 9 39 7154 
Auto_ord 10 8 398 
Auto_riskness 6 15 160 
Bostonhousing_ord 5 13 506 
Boston_housing 6 13 506 
California_housing 6 8 20640 
Cement_strength 5 8 998 
Fireman_example 16 10 40768 
Glass 6 9 213 
Kinematics 8 8 8192 
Machine_ord 10 6 199 
Skill 7 18 3337 
Stock_ord 5 9 950 
Winequality_red 6 11 1359 
Winequality_white 7 11 3961 

Table 3.1: Datasets summary 

 

The “Wisconsin_breast_ord” dataset, also readily available in the same source for ordinal regression 

method benchmarking, was discarded for the experiments due to its low observation to sample size 

ratio (only 194 observations for 33 variables). Indeed, as it stands now, the ordinal regression method 

presented in this dataset is not meant as a tool for scarce datasets as Ridge or Lasso regressions are. 

However, the application of such penalty based regularization methods will be the object of future 

work.  

An additional experiment was designed in order to assess the model’s visualization capability. A 

supplementary model with hyper-parameter value set to two was adjusted to each of the 

aforedescribed dataset. The resulting bi-dimensional embedding were then plotted against the 

ordinal target value in order to qualitatively assess whether these linear projections can indeed 

capture interesting patterns in the data. 
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Results 

 

Predictive performances 

 

The predictive performance experiment’s results are displayed in tables 3.2, 3.3 and 3.4 for accuracy, 

squared Cohen Kappa and mean squared error metrics respectively. For readability, only the best 

baseline method’s performance metrics are reported for each dataset, and scores showing a 

significantly better performance are highlighted in bold. The interested reader can however find the 

experiment’s complete results in the annex. For 7 datasets (namely “Auto_riskness”, 

“Boston_housing”, “Bostonhousing_ord”, “Glass”, “Machine_ord”, “Skill” and “Winequality_red”), no 

significant difference in predictive performance could be found between the proposed approach and 

the best baseline method in all investigated metrics. For the 10 remaining datasets, significant 

differences in predictive power were found, and can be summed up as follows: 

 For four datasets, namely “Cement_strength”, “Fireman_Example”, “Kinematics” and 

“Stock_ord”), the proposed approach significantly outperformed the best baseline method on 

all metrics 

 For one dataset, namely “Affairs”, the proposed approach was significantly outperformed by 

at least one baseline method on all assessed metrics. However, the best baseline approach for 

this dataset differs for all metrics (Logistic IT for accuracy, logistic AT for Cohen Kappa, and 

Ridge for the mean squared error) 

 When focusing only on accuracy, the proposed approach outperforms all baseline methods on 

an additional three datasets (“Abalone”, “Abalone_ord” and “California_housing”), and is not 

outperformed by any of them on any additional dataset beside “Affairs” 

 When focusing only on squared Cohen Kappa score, the proposed approach outperforms all 

baseline methods on an additional two datasets (“California_housing” and 
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“Winequality_white”), and is only outperformed by any of them on any additional dataset 

beside “Affairs” 

 When focusing only on mean squared error, the proposed approach does not significantly 

outperform all baseline methods on any additional dataset. It is however outperformed by an 

additional dataset, namely “Abalone” 

 

 

Dataset Proposed Best other Method 

abalone 37.6 [36.1, 39.1] 32.8 [31.4, 34.1] IT 

abalone_ord 58.7 [57.2, 60.1] 55.2 [53.7, 56.7] LAD 

affairs 25.0 [20.0, 30.4] 48.1 [41.9, 54.2] IT 

ailerons 45.5 [44.3, 46.7] 43.2 [42.0, 44.3] IT 

auto_ord 51.0 [46.2, 55.9] 55.4 [50.5, 60.3] SE 

auto_riskness 66.9 [59.4, 73.8] 63.1 [55.6, 70.0] LAD 

bostonhousing_ord 73.6 [69.6, 77.4] 72.0 [68.0, 75.8] AT 

boston_housing 56.6 [52.2, 61.0] 61.6 [57.4, 65.8] IT 

california_housing 57.9 [57.3, 58.6] 54.0 [53.3, 54.7] AT 

cement_strength 69.1 [66.2, 71.9] 49.4 [46.2, 52.5] LAD 

fireman_example 39.9 [39.4, 40.4] 23.0 [22.6, 23.5] IT 

glass 57.1 [50.5, 63.8] 56.2 [49.5, 62.9] IT 

kinematics 42.7 [41.6, 43.8] 27.4 [26.5, 28.4] IT 

machine_ord 57.4 [50.5, 64.2] 66.3 [59.5, 73.2] AT 

skill 41.6 [39.9, 43.3] 40.5 [38.7, 42.1] AT 

stock_ord 85.7 [83.5, 87.8] 69.8 [66.8, 72.6] IT 

winequality_red 57.9 [55.2, 60.6] 58.0 [55.3, 60.6] LAD 

winequality_white 53.9 [52.4, 55.5] 52.9 [51.3, 54.4] LAD 

 

Table 3.2: Accuracy results (in %) 
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Dataset Proposed Best other Method 

abalone 74.6 [73.0, 76.1] 72.9 [71.4, 74.4] AT 

abalone_ord 62.5 [60.5, 64.5] 63.6 [61.6, 65.5] Ridge 

affairs -11.1 [-23.0, 1.3] 23.0 [12.2, 33.7] AT 

ailerons 89.5 [89.0, 90.1] 89.6 [89.1, 90.1] AT 

auto_ord 88.5 [86.0, 90.6] 91.1 [89.3, 92.6] SE 

auto_riskness 61.3 [44.2, 75.6] 66.2 [56.3, 74.7] AT 

bostonhousing_ord 82.3 [77.6, 86.3] 82.5 [78.4, 85.9] SE 

boston_housing 85.9 [82.7, 88.6] 87.3 [84.4, 90.0] IT 

california_housing 79.1 [78.4, 79.8] 77.7 [77.0, 78.4] AT 

cement_strength 88.0 [86.4, 89.5] 71.3 [68.0, 74.2] IT 

fireman_example 96.3 [96.2, 96.4] 84.3 [84.0, 84.7] AT 

glass 71.3 [60.5, 80.1] 80.4 [73.4, 85.7] LAD 

kinematics 84.5 [83.7, 85.3] 62.0 [60.6, 63.4] IT 

machine_ord 80.7 [67.8, 89.9] 92.4 [87.0, 95.7] SE 

skill 73.0 [71.4, 74.6] 70.6 [68.9, 72.2] IT 

stock_ord 95.1 [94.2, 95.9] 88.6 [87.0, 90.1] IT 

winequality_red 50.4 [46.1, 54.5] 49.5 [45.8, 53.2] LAD 

winequality_white 49.0 [46.8, 51.2] 43.2 [40.9, 45.6] LAD 

 

Table 3.3: Quadratic Cohen Kappa results (in %) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.4: Mean squared error results 

 Proposed Best other Method 

abalone 2.46 [2.33, 2.59] 2.13 [2.03, 2.22] SE 

abalone_ord 0.77 [0.72, 0.83] 0.76 [0.71, 0.81] Ridge 

affairs 7.90 [6.83, 9.01] 3.45 [2.99, 3.93] Ridge 

ailerons 1.45 [1.38, 1.52] 1.35 [1.30, 1.41] SE 

auto_ord 0.98 [0.78, 1.20] 0.73 [0.60, 0.87] SE 

auto_riskness 1.14 [0.69, 1.71] 0.81 [0.62, 1.03] AT 

bostonhousing_ord 0.38 [0.29, 0.47] 0.34 [0.28, 0.40] SE 

boston_housing 0.73 [0.61, 0.88] 0.64 [0.52, 0.78] IT 

california_housing 0.76 [0.74, 0.78] 0.77 [0.75, 0.79] SE 

cement_strength 0.35 [0.31, 0.39] 0.74 [0.68, 0.81] SE 

fireman_example 1.58 [1.55, 1.61] 6.09 [5.99, 6.19] SE 

glass 1.67 [1.18, 2.24] 1.01 [0.77, 1.29] Ridge 

kinematics 1.66 [1.59, 1.74] 3.22 [3.13, 3.31] SE 

machine_ord 1.92 [1.02, 3.18] 0.79 [0.44, 1.25] SE 

skill 1.02 [0.96, 1.07] 1.03 [0.98, 1.08] SE 

stock_ord 0.14 [0.12, 0.17] 0.32 [0.29, 0.36] IT 

winequality_red 0.56 [0.51, 0.61] 0.53 [0.48, 0.57] LAD 

winequality_white 0.61 [0.58, 0.65] 0.65 [0.62, 0.69] LAD 



101 
 
 

In order to provide better insight on the proposed approach’s performances against all baseline 

methods, figure 3.4.8 displays for each dataset which of the baseline methods either significantly 

outperform, is outperformed, or does not perform significantly differently than the proposed 

approach, for all chosen metrics. 

 

 

 

Fig. 3.4.8 Results comparisons between the proposed approach and all 

baseline methods on all datasets. Yellow, blue and purple cases denote 

baseline methods that respectively perform significantly worse, not 

significantly better or worse and significantly better than the proposed 

approach on the given dataset  
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As can be seen on figure 3.4.8, the proposed approach significantly outperforms any baseline approach 

on any given dataset for a total number of 106 times, and is significantly outperformed 13 times. 

Moreover, the binary search based method is never significantly beaten by all baseline methods on 

any of the investigated datasets, this for all chosen metrics.  

As was already shown in table 3.4, the proposed approach’s performances in term of mean squared 

error are a bit weaker. Indeed, it is outperformed by all baseline methods besides the “LogisticIT” on 

both the “Abalone” and the “Affairs” datasets. These poorer performances might be explained by the 

fact that the proposed method’s approach does not rely on any mean squared (or mean squared 

surrogates) objective for model fitting. In any cases, additional analysis of these datasets to better 

understand these poorer performances will be treated in the discussion.  

Linear dimensionality reduction for ordinal visualization 

 

As previously described, in order to assess the proposed approach’ potential for data visualization, a 

set of additional models were fit to each dataset, with hyper-parameter set to 2 to allow for efficient 

scatterplot.  

Some of the resulting bi-dimensional projections of the input data can be seen in figure 3.4.9, with 

each point colour-mapped according to its ordinal target variable value. The remaining visualizations 

can be found in the annex, with varying results. For instance, as the “affairs” dataset suffered from 

extremely poor prediction performances, it is reasonable to expect its resulting projection to yield few 

to no insight about the relationship between target and explanatory variables.  

Insights gathered from the visualizations displayed in figure 3.4.9 can be summed up in two major 

points: 

 When it comes to the “Fireman example” and “Ailerons” datasets, the relationship between 

the target variable and the explanatory variable linear combinations is quite smooth and 
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progressive. The “Fireman example” dataset however appears to have non-linear decision 

boundaries 

 For the “Boustonhousing ord” and “Stock ord” datasets, however, the relationship between 

explanatory and target variables is not as straightforward. Indeed, the visualizations show 

clusters of data points that each keep an ordered relationship with the target variable. 

However, the decisions boundaries are not the same for all clusters, indicating that 

stratification might be of interest in the analysis of these datasets. 

 

 

Fig. 3.4.9 Examples of bi-dimensional projections obtained by fitting the proposed 

model (with number of neurons in the recurrent network parameter fixed to 2) to a 

selected sample of datasets used in the experiment. For each dataset, the linear 

projections lead to highly readable visualization of the explanato ry variables’ 

relationship to the ordinal target variable  
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3.4.1.4 Discussion 

 

As previously seen in the result part, the proposed approach tends to yield better or similar predictive 

performances to all baseline approach on most datasets, with the exception of the « affairs » and 

« abalone » datasets. Consequently, developing a better understanding of these datasets might be 

helpful in order to assess cases where the approach for ordinal regression presented in this chapter 

might not be advisable. In addition, it might also lead to empirically derived conjectures regarding 

hypotheses the model requires in order to perform well, or provide elements that might lead to further 

improvements.  

“Affairs” dataset 

 

The “affairs” dataset constitutes the dataset on which the proposed approach’ overall performances 

are the lowers. Indeed, it is the only investigated dataset where recurrent neural network based 

ordinal regression is outperformed by at least one baseline method for all selected performance 

metrics. 

The first thing that can be noticed about the “affairs” dataset is its low sample size compared to its 

high number of explanatory variables. Indeed, this dataset is comprised of 265 observations each 

comprised of 17 explanatory variables. In addition, its ordinal target variable is made of 6 different 

states. Such a poor dimensionality to sample ratio typically requires regularization methods. In 

addition, neural network based methods for predictive modelling are known to easily overfit. However, 

no regularization methods were used during model training in the experiments presented in this 

chapter, which might explain the model’s poor performance. This hypothesis is further confirmed by 

assessing the model’s differences in performance between the training and validation dataset that are 

displayed in table 3.5. Indeed, a significant gap can be observed between training and validation 

metrics, and constitutes strong evidence indicating the model is overfitting the dataset. 
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Dataset Accuracy (%) Cohen Kappa Mean Squared Error 

Training 54 .42 4.1 

Validation 27 -.53 7.9 

Table 3.5: Training and validation performance metrics for the “affairs” dataset. The 

significant decrease in performance from training to validation suggests that the 

model is strongly overfitting the dataset  

 

As a consequence, incorporating regularization methods in the proposed approach should be the 

object of future work. A promising candidate to do so can be found in the dropout method, 

traditionally used in deep learning models (see paragraph 3.3.2.2), which could be applied to the 

recurrent neural network part of the presented architecture. Another solution that might be of interest 

lies in penalized methods. Indeed, one could add a lasso, ridge or elastic-net penalization to the 

objective function. This penalization could typically be applied to the linear combination weights that 

are used to build the recurrent neural network’s initial state. For a lasso penalization applied on these 

weights, for instance, the feature selection interpretation of lasso regression methods would remain 

heuristically valid. 

Another remarkable property of the “affairs” dataset is that in addition to having considerably low 

sample size, it is considerably unbalanced. Indeed, as can be seen in figure 3.4.10, more than half of 

the dataset’s observations are associated with a target value of 1, with some target values only 

observed as few as 15 times. Consequently, sampling or loss weighting techniques should be 

considered necessary in order to properly solve this modelling problem.  
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Fig. 3.4.10 Distribution of the ordinal target variable in the dataset. The dataset is 

extremely unbalanced. Approximately 50% of observations correspond to the first 

target value. All other values have less than 35 observations  

 

Although sampling techniques can perfectly adapt to the proposed approach without any additional 

work, loss re-weighting techniques are not as straightforward, especially when training with teacher 

forcing. Indeed, in teacher forcing, the actual labels used to fit the model are the binary decomposition 

of the target values. As such, weighting methods should be adapted in order for weighting to apply for 

this sequence of target variable. 

“Abalone” dataset 

 

Although not as concerning in terms of predictive performance, compared to the “affairs” dataset, the 

model’s behaviour on the “abalone” dataset is more complicated to explain. Indeed, the model is only 

significantly outperformed on mean squared error metrics, and significantly outperforms almost all 

baseline approaches on the two other selected metrics (apart from the “LogisticAT” model with regard 

to the quadratic Cohen Kappa score). However, the authors could not find any satisfactory explanation 

for this unique behaviour. Indeed, the dataset’s dimensionality (7 explanatory variables for 

approximately 4 thousands data points) seems quite sufficient, which is further confirmed when 
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estimating performance metrics on the training set, which are essentially identical to those evaluated 

through cross validation. In addition, the distribution of the ordinal target variable does not suffer from 

severe unbalance such as could be observed with the “affairs” dataset.   

However, the visualization capability of the proposed model can constitute a way to further analyse 

this dataset in order to build hypotheses that might explain this phenomenon, at least qualitatively. 

Figure 3.4.11 shows the two dimensional projection of the “abalone” dataset’s explanatory variables, 

with each point colour coded in three different manners: 

 Each point colour coded according to the ordinal variable’s true value, 

 Each point colour coded according to the proposed approach’ prediction, 

 Each point colour coded according to the “LogisticSE”’s (best model in term of mean squared 

error) prediction. 

Qualitatively, the proposed approach seems to derive decision surfaces that better fit the true ordinal 

values than the “LogisticSE” does (which is further confirmed by its significantly better performance in 

terms of accuracy). However, these boundaries are not entirely ordinal. Although decision boundaries 

for states 0 through 6 are organized in a fairly sequential, ordered approach, state 7’s decision surface 

appears to be adjacent to states 3, 4 and 6’s boundaries. This adjacency property is lost when using 

the baseline models, that all have as a hypothesis either a mean squared property or a proportional 

odds assumption (guaranteeing parallel decision surfaces). As such, the baseline approaches on this 

dataset might be biased towards maximizing the mean squared error at the detriment of finding true 

decision surfaces. As a consequence, one could emit the hypothesis that the ordinal properties of the 

“abalone” dataset’s target variables are not as clear cut as would be expected, and that mean squared 

error metrics are not quite perfectly fit to evaluate model performances on this particular dataset. 

To conclude, figure 3.4.11 shows a potential use of the visualization for qualitative exploration of 

datasets in relation to an ordinal variable. Indeed, it allowed us to propose a hypothesis to explain the 
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model’s behaviour on the “abalone” dataset by investigating the decision boundaries derived by 

different models. In addition, the reader can notice that the decision surfaces of the “LogisticSE” model 

are remarkably preserved by the projection, showing that these linear combination of the explanatory 

variables do capture efficient representations of the explanatory variables. 

 

 

Fig. 3.4.11 Top: Bi-dimensional projection of the input variables color -coded according 

to the ordinal target values. Bottom-left: Same projections color-coded according to 

the proposed approach’ predictions of the target variable. Bottom -left: Same 

projections color-coded according to the Logistic SE’ predictions of the target variable.  
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3.4.2 Modern neural machine translation and Transformer architecture 
 

Machine translation is a classical natural language processing thematic. Its main purpose is to design 

artificial intelligence based algorithms that are able to automatically translate one sentence from a 

given input language into another target language (e.g. Translating sentences from French to English). 

Countless approaches have been derived over the years to address this task, from expert system to 

modern deep learning approaches, and is still an active area of research.  

At first glance, the use of deep neural networks in solving such a task can appear surprising. Indeed, as 

predictive models, deep artificial neural networks can only solve statistical modelling problems, and 

formulating a machine translation task as such is not so straightforward. A naïve, yet simple approach 

to do so, would be to consider both the input and output sentences as two categorical random 

variables, with as many states as there are possible sentences in their respective languages. One could 

then use a dataset of paired sentences in the two languages to estimate the target sentence’s 

probability distribution conditioned on the input sentence’s observation. The resulting modelling 

problem can be written as follows: 

 𝑃(𝑇|𝐼) =  𝑓𝜃(𝐼) (3.4.4). 
With: 

 𝑇 ∈ ⟦0, 1⟧𝐶1 the target sentence, 

 𝐼 ∈ ⟦0, 1⟧𝐶2 the input sentence, 

 𝐶1 ∈  ℕ the number of existing sentences in the target language, 

 𝐶2 ∈  ℕ the number of existing sentences in the input language, 

 𝑓𝜃 a mapping from the problem’s input space to its output space, parameterized in 𝜃 ∈ ℝ𝑛 a 

real-valued vector (typically a neural network) of dimensionality 𝑛 ∈  ℕ the model’s 

dimensionality. 
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An immediate problem arises when estimating the number of potential sentences in a natural 

language. Indeed, considering a natural language sentence as a sequence of 10 words, drawn from a 

vocabulary of 20 000 potential words, results in values of 𝑁 and 𝑀 of around 1040, which renders the 

modelling problem grossly intractable. For instance, using a simple multinomial logistic regression 

would result in a model of dimensionality 1080. 

This naïve approach, however, does not make use of the sequential nature of natural language, where 

sentences are usually built as variable lengths sequences of words. It only feels natural then to rewrite 

the aforedefined modelling problem, this time considering both the input and outcome variables as 

two sequential observations of a random variable each, the existing words in both languages. These 

variables can typically be expressed as categorical variables with as many states as there are words in 

each languages’ vocabularies. The resulting modelling problem can then be defined by estimating the 

following probability distribution:  

 𝑃(𝑇1 … 𝑇𝑁|𝐼1 … 𝐼𝑀) =  𝑓𝜃(𝐼1 … 𝐼𝑀) (3.4.5). 
  

With: 

 𝑇𝑖 ∈ ⟦0, 1⟧𝑉1 , 𝑖 ∈ ⟦1, 𝑁⟧ the 𝑖𝑡ℎword present in the target sentence of length 𝑁 ∈  ℕ, 

 𝐼𝑖 ∈ ⟦0, 1⟧𝑉2 , 𝑖 ∈ ⟦1, 𝑀⟧ the 𝑖𝑡ℎword present in the input sentence of length 𝑀 ∈  ℕ, 

 𝑉1 ∈  ℕ the target language vocabulary’s cardinal, 

 𝑉2 ∈  ℕ the target language vocabulary’s cardinal, 

 𝑓𝜃 a mapping from the problem’s input space to its output space, parameterized in 𝜃 ∈ ℝ𝑛 a 

real-valued vector (typically a neural network) of dimensionality 𝑛 ∈  ℕ the model’s 

dimensionality. 

Compared to the naïve formulation of the machine translation task as a statistical modelling problem, 

this sequential approach has both advantages and drawbacks: 
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 The dimensionality of both the input and categorical variables are significantly reduced. 

Indeed, the cardinal of natural languages vocabulary is typically counted in the tens of 

thousands of words, which remains significant. However, this can be made tractable, especially 

when using methods such as word embeddings, 

 The parametric function 𝑓𝜃 now takes as input a vectorial sequence whose length varies, which 

is not typical of traditional statistical models. However, artificial neural networks are known to 

be perfectly able to handle such inputs, for instance with recurrent or convolutional neural 

networks, 

 Even though the outcome variables’ dimensionality is sensibly lower than that of the previous 

formulation, their joint density probability still remains intractable. However, this problem can 

be addressed using exactly the same method used previously, when modelling a conditional 

binary tree. Following the same rational, the investigated probability distribution can be 

written as follows: 

 
𝑃(𝑇1 … 𝑇𝑁|𝐼1 … 𝐼𝑀) =  𝑃(𝑇1|𝐼1 … 𝐼𝑀) ∏ 𝑃(𝑇𝑛|𝑇1 … 𝑇𝑛−1, 𝐼1 … 𝐼𝑀)

𝑁

𝑛=2

 
(3.4.6). 

 

 This decomposition allows to train the model in a teacher-forcing manner, and by extension 

allows practitioners, following model fitting, to estimate the probability of a sentence in the 

target language to be a likely translation candidate for a given sentence in the input language. 

The entire distribution across all potential sentences, however, still remains intractable. As a 

consequence, finding the target distribution’s maximal argument remains impossible. “Good” 

translation candidates (in the sense of candidates associated with high conditional 

probabilities), however, can still be derived from this approach using approximate methods 

such as greedy or beam search approaches that will be introduced in the following chapter. 
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3.4.3 Predicting sentences in neural machine translation 
 

Although recurrent neural networks allow for sequential random variables joint probability 

distribution estimation, as seen in the previous example investigating ordinal regression, this method 

cannot be applied as is to the problem of machine translation due to its outcome’s extreme 

dimensionality. However, given a trained model, estimating the probability of a given sentence being 

a good target language translation candidate to an input language sentence remains possible using the 

same approach. The ordinal regression method introduced above initialized a recurrent neural 

network’s initial state as a function of its input variables, and would then build each of the outcome’s 

state’s probability in an autoregressive fashion. At no point, however, is it compulsory to build the 

entire distribution to estimate the probability of a given outcome’s state (and, by extension, sequence). 

One could indeed simply choose a random sequence, and estimate its probability following the same 

method, as can be seen in figure 3.4.12. 

 

 

 

Fig. 3.4.12 Even though the entire probability distribution across sequences is 

intractable, estimating the probability of one predefined target sequence conditioned 

on an input sequence is still feasible  

 

 



113 
 
 

Exploiting this simple idea allows for guided exploration of the target sentence space in order to look 

for potential translation candidates, for instance by generating sentences in a purely autoregressive 

approach, beginning with the <START> token and predicting the sentence, one word at a time, by 

selecting the recurrent neural network’s last output’s maximal argument as the sentence’s next word. 

This approach, however, presents a significant drawback when naively implemented. Indeed, contrary 

to the ordinal regression example, the target sequences in machine translation have undetermined 

length, implying that the model, as is, does not have any adequate stopping criterion when generating 

sentences, and could potentially get stuck in an endless loop. This problem is simply addressed by 

adding another token to the target language’s vocabulary, called the <STOP> token. The stop token is 

appended to every target sentence during training, and the model learns to predict it just as any other 

word in the vocabulary, thus yielding a stopping criterion while predicting in an autoregressive fashion. 

To sum up, a “good” target sentence can be predicted in this autoregressive fashion, called greedy 

prediction (because the sentence is built from locally optimal predictions), as follows:  

 Use the encoded initial state and the <START> token to estimate the target sentence’s first 

word’s distribution using the decoder recurrent neural network 

 Select the sentence’s first word as this distribution’s maximal argument 

 Estimate the second word’s distribution using this word as the sentence’s first word 

 Repeat the process in an iterative fashion until a <STOP> token is predicted (a global limit on 

target sentence size can be set in order to prevent potential endless loops) 
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Fig. 3.4.13 Model in greedy prediction setting. The model predicts only one word at a 

time, starting from the initial state and the token < START>, and taking the resulting 

word distribution’s maximal argument as the output sentence’s first word. The token 

<START> and this word are then concatenated and reinjected into the recurrent neural 

network to obtain the sentence’s next word. The senten ce is then built incrementally 

following this method and stops once a token <STOP> has been predicted. The first 

recurrent neural network used to build the initial state is not displayed to help 

readability.  
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Although greedy search based prediction constitutes a simple way of performing machine translation 

using neural networks, it can be improved upon to better explore the space of potential target 

sentences, potentially leading to better predictions. Neural translation models nowadays typically use 

a beam search approach to sentence prediction, which constitutes an expansion of greedy search. The 

main idea behind beam search based predictions, is to not only select the most likely sentence at each 

autoregressive step, but rather a fixed number of them, thus leading to predictions more robust to 

early mistakes in the prediction process. The advantages of this method compared to greedy search 

can be visualize with a simple example. Consider a hypothetical input sentence leading to a first 

probability distribution in the prediction process that would be bimodal (for instance, with one word 

𝑊1 associated with probability .45, and 𝑊2 with .44). The greedy search process would dictate to select 

the first word, associated with maximum probability, and to keep expanding from it. However, nothing 

guarantees that the sentence obtained following a greedy process after selecting 𝑊2 as the first 

sentence word would end up yielding a lower joint probability distribution. As an example, if the 

second probability distribution obtained after injecting 𝑊1 into the recurrent neural network were to 

yield a maximum value of .5 while the one obtained after injecting 𝑊2 were to yield a maximum value 

of .9, the joint probabilities after selecting 𝑊1 or 𝑊2 would respectively be .225 and .396, strongly 

suggesting that sentences beginning with 𝑊2 are better translations than those beginning with 𝑊1. As 

a consequence, keeping several sentences in memory, and not only the most likely at all time, might 

lead to better overall predictions, in term of joint probability, which is in the end the value that the 

sentence search process is designed to maximize. Strictly speaking, a beam search based prediction 

from a neural sequence model can be obtained as follows: 

1. Use the initial state and the <START> token to predict the target sentence’s 𝑘 ∈ ℕ most likely 

words 

2. Similar to greedy decoding, compute the second word’s probability density, using each of the 

𝑘 likeliest first words, resulting in 𝑘 distinct probability distributions 
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3. Compute all available 2-grams probability distributions 

4. Retain the 𝑘 most likely 2-grams candidates 

5. Repeat steps 1 through 4 in an iterative fashion until all 𝑘 sentence candidates contain a 

<STOP> token 

6. Select the sentence candidates associated with highest probability 

 

3.4.4 RNN based encoder-decoder architecture 
 

3.4.4.1 Word embedding 

 

One major difference between the sequential learning problem previously defined for ordinal 

regression and machine translation lies in the sequential variable’s dimensionality. Indeed, although 

the former modelled sequences of binary variables, which are fairly straightforward to handle from 

both a statistical and computational perspective, the latter focuses of sequences of words variables, 

which are notoriously complex to handle and incorporate into traditional statistical models. 

Considering words as a categorical variable with as many states are there are words in the language’s 

vocabulary, for instance, presents several drawbacks. First, natural language vocabularies are typically 

comprised several thousands, to several tens of thousands of words, thus leading to highly dimensional 

vector encoding. In addition, this type of approach does not translate well the actual nature of the 

data. Indeed, such an approach implies that all the categorical variable’s states are perfectly 

independent, which is far from being the case with words, where typically a representation where the 

word “cat” is considered closer to the word “dog” than the word “supernova” under a predefined 

similarity measure might be desirable. 

This problem is typically addressed in NLP by using learnable linear projections of one-hot encoded 

variables as inputs for neural network. This embedding typically ends up capturing meaningful 

representations of the concepts it represents, as can be seen in figure 3.4.14. These linear projections 
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are typically called “word embeddings” in the deep learning academic community, and can be derived 

as follows: 

 Convert words into one-hot vectors: 

o  Associate each word present in the vocabulary with one unique index, an integer 

between 0 and the vocabulary’s cardinal, 

o Associate each word present in the vocabulary with a vector of dimensionality the 

vocabulary’s cardinal, with every vector’s coordinate set to 0 except for the one 

corresponding to the word’s previously defined index. 

 Feed these vectors to a one-layered perceptron, without any non-linearity applied to it (which 

essentially equates to a simple linear transformation) 

 Fit the embedding jointly with the model in a purely supervised fashion. This practice is most 

efficient in supervised tasks but requires a significant amount of observations, 

 In cases with limited sample sizes, pre-trained, out of the box word embeddings are readily 

available online for use 
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Fig. 3.4.14 Visualization of a word model used in natural language processing. The 

model here shows its ability to understand the relationship between countries and 

their capital cities. No information besides text data (typically Wikipedia) is given to 

the model during training  

 

3.4.4.2 Model architecture 

 

The ordinal regression method introduced before presented a fairly straightforward manner of 

modelling correlated sequential output variables, by using linear combinations of input variables to 

build a recurrent neural network’s initial state, which was then used to build the output variable’s 

probability distribution in an autoregressive fashion. As such, this approach constitutes a promising 

candidate for a machine translation statistical model. However, as aforementioned, transitioning from 

the simple, binary search based ordinal regression to a neural translation still present one major issue. 

Indeed, the ordinal method’s inputs were typically assumed to be vectorial. However, machine 

translation algorithms take as inputs sentences which are variable length sequences of inputs. As a 

consequence, the sequential nature of the model’s input variables will have to be taken into account 

when building the vector serving as an initial state to the recurrent neural network used to predict the 



119 
 
 

target sentence. One straightforward approach to do so can be found in using an additional recurrent 

neural network, in a regressive setting this time, in order to build the autoregressive neural network’s 

initial state. This type of architecture is called an encoder-decoder architecture, where a first recurrent 

neural network is used to encode the input sentence into a fixed sized, vectorial representation, that 

another recurrent neural network then uses as an initial state to predict the sentence in the target 

language. These two recurrent neural networks are usually referred to as encoder and decoder, as the 

first reads through the source sentence in order to encode it into a quantitative, vectorial 

representation that the second recurrent neural network decodes into another language. This type of 

architecture is called an encoder-decoder architecture, and was the first historical neural network 

based predictive model able to learn to perform machine translation in an end-to-end fashion. This 

model’s architecture, and its training methodology can be seen in figure 3.4.15 and summed up as 

follows: 

1. Create word embeddings for both languages and two recurrent neural network (typically all 

sharing the same dimensionality), 

2. Convert the input and target sentences into two vectorial sequences using their respective 

embeddings, 

3. Sweep through the input sequence with the first recurrent neural network (its initial state can 

typically be set to 0 or considered as an additional set of model learnable parameters), 

4. Use the first neural network’s last output as an initial state for the second neural network, 

5. Sweep through the target sequence (with a <START> token appended to its beginning) with 

the second recurrent neural network (initialized with the previously obtained initial state), 

6. Fit a logistic multinomial regression on the second RNN’s outputs to predict each element of 

the target sequence (including the <STOP> token appended to its end) using teacher forcing 

(as described in 3.4.1.1), updating all model parameters using gradient descent and 

backpropagation, 
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In modern approaches, the final multinomial logistic regression’s parameter matrix is replaced by 

the transposed of the second language’s word embedding matrix. The rationale behind this idea 

lies in the fact that the second recurrent neural network’s output variables share the same essence 

as their input (e.g. they both represent words in the target language). Technically, the word 

embedding converts a density distribution across all possible words in the target language into a 

dense vectorial space, while the last multinomial logistic regression layer converts dense vectorial 

output into a density distribution across all possible words in the same language. As a 

consequence, at least heuristically, having these two linear transformations share their 

parameters could potentially improve model performance, which is verified empirically49. 

 

Fig. 3.4.15 RNN based encoder decoder architecture for neural machine translation. A 

first recurrent neural network sweeps through th e input sentence’s sequence of word 

embeddings. Its last output is used as the initial state for a second recurrent neural 

network that predicts the output sentence in an autoregressive fashion, in a similar 

approach to what was introduced in binary search  based ordinal regression.  
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The encoder-decoder architecture was the first approach to machine translation that offered an 

entirely end-to-end, fully differentiable solution. However, when introduced, this approach to machine 

translation was still outperformed by the best expert systems, until progressive improvement made it 

the historical state of the art in the field. The most notable concept introduced in RNN based machine 

translation being the attention mechanism. 

 

3.4.5 Attention mechanism 
 

Attention mechanisms were one of the most impactful innovation in the field of neural machine 

translation since the advent of the encoder-decoder recurrent architecture. As aforementioned, 

although the latter constitutes the first fully differentiable, end-to-end trainable neural network able 

to output variable length sentences conditioned on a source sentence, they were not able to 

outperform the best expert system available at the time of their creation. Attention mechanisms were 

created in order to improve upon this concept, by trying to answer to major issues inherent to the 

encoder-decoder architecture as presented above: First, the encoder-decoder architecture relies on 

its ability to encode any given sentence in a fixed size vector (the initial state first fed to the decoder 

to start the autoregressive prediction process). However, a sentence’s length, and amount of 

information (in the informal sense) can significantly vary. Fine-tuning the initial state’s dimensionality 

thus becomes an ill-defined task. Too low a value would yield to poor behaviour on longer sentences, 

and too high would result in potential overfitting, and inefficiency for shorter sentences. Finally, using 

the same context vector to predict every word can feel a bit cumbersome as well. Indeed, cases where 

translating a given word from a sentence requires to know the entire sentence should be relatively 

rare, at least when it comes to technical translation (as opposed to philosophical or poetic translation, 

for instance). An example of this idea can be found in figure 3.4.16, showing a sentence in English and 
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its translation in French. Were it not for the French conjugation, the sentence could almost be 

translated word for word.  

 

  

Fig. 3.4.16 Example of English to French translation, and the importance of each word 

in the source sentence to obtain the translation (in increasing order from white to 

black). Not all words in the source sentence matter to translate the input sentence . 

The second word, however, requires  information from the input sentence’s  two last 

words, in order to choose the proper conjugation  

 

The concept of attention mechanism was introduced by Bahdanau et al. in 2015 to address both these 

problems by introducing one fundamental idea, that instead of building only one context vector (the 

decoder’s initial state) to predict the translated sentence, specific context vectors should be derived 

for each word predicted in the target sentence. This idea might appear quite counterintuitive, in regard 

of the encoder decoder architecture presented so far. Indeed, the entire connexion between encoder 

and decoder was based on a single context vector, the encoder’s last output, that was used as an initial 

state for the decoder. The idea of attention thus raises two questions: 
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 How to build these distinct context vectors? 

 How to incorporate them in the decoder? 

In order to create these new context vector, the encoder-decoder architecture can offer some insights. 

Indeed, the encoder’s last output was used as an overall context vector because, having swept through 

the entire source sequence, it encapsulated a representation of all the required information present 

in the sentence to perform the translation task. However, a recurrent neural network not only gives 

one unique vector, but one for each of the sequence element it goes through, as can be seen in figure 

3.4.17. In the context of neural translation, the encoder’s output vector can be interpreted as a 

quantitative representation of the last word the encoder just received, contextualised on every word 

before it in the sentence.  

 

 

Fig. 3.4.17 A recurrent neural network outputs a vector for each of the input sequence 

element it receives 

 

These vectorial outputs, when considered in parallel to the idea of word importance expressed in figure 

3.4.16, constitute a promising set of candidates as building blocks for the specific context vectors at 

hand in attention models. One could for instance define the context vectors as weighted means of the 

encoder’s outputs, which is exactly what attention models do. The question of obtaining these weights, 

however, still remain unanswered. A desirable property for these weights would be to depend on both 

the input word on which they are applied, and the word in the target sentence they are supposed to 

contextualise. This can typically be done by injecting both the decoder’s last state and the encoder’s 
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output into a one-layer perceptron in a regressive setting, as can be seen in figure 3.4.18. This 

perceptron’s parameters can be fit through gradient descent and backpropagation alongside the 

encoder and decoder’s parameters. Formally, the context vector for target word 𝑖 ∈ ℕ as: 

 
𝐶𝑖 = ∑ 𝛼𝑖𝑗𝐻𝑗

𝑚

𝑗=0

 
(3.4.7), 

with: 

 𝐶𝑖 ∈ ℝ𝑑 , 𝑖 ∈ ⟦0, 𝑛⟧ the context vector for the target word 𝑖 ∈ ℕ and 𝑑 ∈ ℕ the decoder’s 

hidden size 

 𝛼𝑖𝑗 ∈ ℝ, 𝑖, 𝑗 ∈ ⟦0, 𝑛⟧ × ⟦0, 𝑚⟧ the attention weight to be attributed to the output of the 

encoder at source word 𝑗 in order to build the context vector for decoding target word 𝑖 

 𝐻𝑗 ∈ ℝ𝑑, 𝑗 ∈ ⟦0, 𝑚⟧ the encoder’s output from source word 𝑗 

 
𝛼𝑖𝑗 =

exp (𝑒𝑖𝑗)

∑ exp(𝑒𝑖𝑘)𝑚
𝑘=0

 
(3.4.8), 

 

where :  

 𝑒𝑖𝑗 = 𝑎(𝑆𝑖−1, 𝐻𝑗) (3.4.9), 

 

with: 

 𝑒𝑖𝑗 ∈ ℝ, 𝑖, 𝑗 ∈ ⟦0, 𝑛⟧ × ⟦0, 𝑚⟧  

 𝑎 a parametric function taking as input the decoder’s state at time step 𝑖 − 1 and the encoder’s 

output at time step 𝑗. 𝑎 is typically chosen as a simple one-layer perceptron 

 𝑆𝑖−1 ∈ ℝ𝑑 the decoder’s state at time step 𝑖 − 1 

 𝐻𝑗 ∈ ℝ𝑝 the encoder’s output at time step 𝑗 with 𝑝 ∈ ℕ the decoder’s hidden size 
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Fig. 3.4.18: Definition of the target sentence’s second word’s attention vector. The 

decoder’s previous state is combined with every encoder outputs in a perceptron to 

compute attention weights, which are then normalized using a softmax function. These 

weights are then used as coefficients for a linear combination of all the encoder’s 

outputs, thus creating a specific context vector for a given word in the target sentence  

 

Finally, now that a way of creating these individual context vectors, remains the question of actually 

injecting them into the recurrent neural network that decodes the sentence. Several ways of doing so 

have been proposed over the year, as for instance by adding the context vector to the decoder’s last 

recurrent state. This is directly possible if the encoder and decoder have the same dimensionality, and 

can be adapted in case they differ by simply injecting the context vector into a one-layer perceptron 

prior to vector addition. To sum up, an encoder decoder architecture with attention mechanism can 

be used to perform neural machine translation as displayed in figure 3.4.19 by following the following 

steps: 
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 Have an encoder recurrent neural network sweep through the source sentence’s sequence of 

word embeddings, 

 Start the autoregressive process with an unconnected initial state for the decoder (which can 

be either fixed to 0 or considered as additional model parameters), use this state and the 

encoder’s representations to compute attention weights and the first context vector 

 Add the context vector to the initial state, and use it as state input to the decoder recurrent 

neural network to estimate the target sentence’s first word’s probability distribution 

 Repeat the process until the token <STOP> is reached 
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Fig. 3.4.19 Encoder-decoder architecture with attention mechanism. At each 

autoregressive step, the RNN’s previous state is combined with a context vector built 

as a linear combination of each of the encoder’s outputs whose coefficient are learnt 

from the data 
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One interesting property of attention mechanisms lies in the fact that they allow for some 

interpretability of the overall model, which is still a rare thing in modern deep learning based 

architectures. Indeed, by collecting the attention weights derived to translate a given sentence, one 

can observe which source words had more attention weights in order to predict a given word in the 

target sentence and by extension which source words had an impact in the decision process of 

predicting every word in the target sentence, as can be seen in figure 3.4.20.  

 

 

Fig. 3.4.20 Collecting the attention vectors for each of the target sentence’s words 

allows for some interpretability of the encoder -decoder architecture 5 0. Notice how the 

attention matrix is mainly diagonal, except for an inverted submatrix denoting how the 

English and French languages invert word order for “European economic area”, that 

translates to “Zone économique éuropeenne”  

 

Finally, the architecture mechanism presented in this section is only one among many other introduced 

over the years. There are potentially countless manners of creating these context vectors and 
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incorporating them into the decoder’s state. The additive attention introduced here was chosen for its 

historical significance (being the first attention mechanism ever proposed) as well as for its 

interpretability. 

 

3.4.6 Transformer architecture 
 

The incorporation of attention mechanisms in encoder decoder architectures led to the rise of neural 

networks as the state of the art in the field of machine translation. However, these encoder-decoder 

architectures still suffered from some significant issues cause by their recurrent neural network base: 

 Even with attention mechanisms, they tend to suffer from the vanishing gradient problem 

arising with longer sentences 

 They are notoriously slow to train and infer with, due to the RNN’s poor parallelism 

In fact, it was shown as early as 2016 that recurrent neural network were typically outperformed by 

carefully chosen convolutional architectures (such as causal dilated convolutional networks, for 

instance) on most Natural Language Processing tasks51, which led to their downfall in the field. This 

empirical observation was verified as well in machine translation, where recurrent neural networks in 

the encoder and decoder architecture can simply be replaced by convolutional networks to yield better 

and more efficient neural translation models. However, this approach was quickly outperformed by an 

idea that, at least at first sight, might appear surprising. The idea of self-attention, and more broadly 

speaking purely attentional models. Looking back at the attention mechanism introduced above, its 

main purpose was to build for each word predicted in the target sentence a specific vectorial 

representation of the source sentence’s context, derived from weighted means of each of the encoder 

recurrent neural network’s outputs. These outputs were themselves considered as representations of 

the source sentence’s word, conditioned on each of the sentence’s past words. From this line of 

thinking, a question arises. Why not use attention to build representations of the source sentence’s 
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words, contextualized on itself? This idea, called self-attention, led to the introduction of the 

Transformer architecture, which is the current state of the art in neural machine translation, and 

proposes to replace recurrent neural networks in both the encoder and decoder by self-attention 

mechanisms, (while of course retaining the encoder-to-decoder attention). 

 

3.4.6.1 Overview 

 

The transformer architecture shares some fundamental similarities with its recurrent neural network 

based counterpart. They both make use of word embeddings, for both the source and target language. 

They are both composed of an encoder that learns a representation of the source sentence, and a 

decoder that learns to predict the target sentence using the encoder’s outputs through teacher forcing, 

and make predictions through beam search. The word level probability distributions the decoder 

outputs are both obtained by using the word embeddings’ transpose as an invert transformation 

whose output are injected into a softmax function. To sum up, they both follow the exact same 

approach to learn to find good translation candidate of a source sentence in a given target language. 

They mainly differ in the functional form that take both the encoder and the decoder. Where they 

were defined as simple, recurrent neural network so far, their definition in the transformer is a bit 

more complex, and constituted of stacks of several elements, as can be seen on figure 3.4.21, that can 

be summed up as follows: 

 Positional encodings added to both the source and target sentence’s word embeddings prior 

to their injection into the encoder and decoder, respectively 

 A form of attention called Multi-head dot product attention used in a self-attention setting for 

both the encoder and decoder (with a masking option for the decoder, that will be explained 

further below) 

 The same attention mechanism used in a traditional encoder to decoder attention setting in 

the decoder 
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 An element-wise feedforward network for both the encoder and decoder 

 Residual connections, layer normalization and drop-out elements in order to improve training 

and reduce overfitting 

These stacks are cumulated sequentially, in a similar fashion to layers in a traditional feedforward 

neural network, to further expand the model’s predictive power. The number of stacks per encoder 

and decoder can be considered a model hyper-parameter, but is typically kept to the default value of 

6 (as recommended in the model’s seminal paper). 

The transformer architecture has as a peculiarity to keep its representation dimension constants 

(meaning the dimensionality of each of the network’s part remain constant), from word embeddings 

to encoder and decoder outputs. It also relies on having either one shared embedding for both the 

source and target language (to make use of potential similarities between languages, such as can be 

observed in French to English translation, for instance), or requires the distinct word embeddings to 

have same dimensionality. This constant dimensionality value is usually denoted as 𝑑𝑚𝑜𝑑𝑒𝑙, the model’s 

dimensionality, and can be considered as one of the model’s major hyper-parameter (with typical 

values ranging from 64 to 1024 in Natural Language Processing settings). 
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Fig. 3.4.21 Overall Transformer architecture 5 2.  The encoder and decoder are only built 

upon attention and element-wise perceptron, no recurrent or convolutional neural 

networks are used 

 

 

3.4.6.2 Positional encoding 

 

 

Although the deletion of recurrent neural networks within the encoder-decoder architecture comes 

with all the aforementioned advantages, it leaves one significant drawback that requires to be 

addressed. Indeed, the attention mechanism, as is, is perfectly invariant to word placements in the 

sentence. This phenomenon becomes clear when remarking, in the recurrent neural network version 

of the encoder-decoder architecture, that the function computing the attention weight only looks at 

one word in the source and target sentence at a time. This did not constitute any problem, as the 
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recurrent neural network could implicitly account for the word’s position in its representation. In a 

fully attentional architecture, however, this information will need to be explicitly expressed, which is 

done through addition of a predefined position encoding vector to each of the sentences’ word 

embeddings (for both the source and target sentences). These position encoding vectors can be 

visualized in figure 3.4.22 and were defined arbitrarily as: 

 𝑃𝐸(𝑝𝑜𝑠,2𝑖) = sin (
𝑝𝑜𝑠

10000
2𝑖

𝑑𝑚𝑜𝑑𝑒𝑙

) (3.4.10), 

 𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = cos (
𝑝𝑜𝑠

10000
2𝑖

𝑑𝑚𝑜𝑑𝑒𝑙

) (3.4.11), 

 

with: 

 𝑑𝑚𝑜𝑑𝑒𝑙 ∈ ℕ the model’s dimensionality 

 𝑃𝐸 ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙 position embedding vector’s value for the sentence’s word at position 𝑝𝑜𝑠 

 𝑝𝑜𝑠 ∈ ℕ the given word’s position in the sentence 

 𝑖 ∈ ℕ an index denoting the positional embedding vector’s coordinate 

 

Fig. 3.4.22: Visualization of the transformer’s positional encoding for an input 

sentence of length 200 and a model’s hidden size of 512  
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3.4.6.3 Scaled dot product attention 

 

 

The attention mechanism used in the Transformer, called scaled dot product attention differs slightly 

from the additive concept presented before, mostly in the way attention weights are derived. First, for 

a given target word to be predicted at time step 𝑡, each attention weight was computed as a function 

of the encoder’s corresponding output and the decoder’s state at time step 𝑡 − 1. This cannot apply 

here, as recurrent neural network are absent from the decoder. This vector can however simply be 

replaced by the vectorial representation of the target word at time step 𝑡 − 1. Secondly, the attention 

function was defined as a one-layer perceptron that took as input the encoder’s output and the 

previous state. Scaled dot product attention replaces that one-layer perceptron by a much simpler 

function, being a dot product. This however constrains the encoder’s output and the decoder’s target 

words to share their dimensionality (which, as was mentioned previously, is always the case in the 

transformer architecture). Finally, going back to the original definition of the attention mechanism, the 

main rationale was to build weighted means of the encoder’s outputs, whose weights would depend 

on these exact same vectorial representations of the source sentence. However, there is absolutely no 

guarantee that representations fit to yield good context vectors from a weighted sum can also be used 

as input to the attention function and provide good attention weights, and reciprocally. In other words, 

the vectorial representations of the source sentence derived by the encoder might, in a sense, be 

“overloaded”. Consequently, building two distinct representations of the input sequence, one 

specialized in building attention weights, and the other dedicated to building context vectors, might 

be desirable to ensure this “representation overloading” phenomenon does not impair the attention 

mechanism’s performance. This is exactly the idea behind the Transformer’s attention mechanism, 

which takes as inputs three distinct sequences called queries, keys and values, of which keys and values 

share the same sequence length (thus typically being distinct representations of the same sequence) 

and can be written as follows (in matrix notation) 
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𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(

𝑄 𝐾𝑇

√𝑑𝑘

) 𝑉 
(3.4.12), 

 

with: 

 𝑄 ∈ ℝ𝑛×𝑑𝑘  with 𝑛, 𝑚 ∈ ℕ the queries sequence 

 𝐾 ∈ ℝ𝑚×𝑑𝑘 with 𝑛, 𝑚 ∈ ℕ the keys sequence 

 𝑉 ∈ ℝ𝑚×𝑑𝑣 with 𝑛, 𝑚 ∈ ℕ the values sequence 

 𝑛 ∈ ℕ the length of the queries sequence 

 𝑚 ∈ ℕ the length of the keys and values sequences 

 𝑑𝑘 ∈ ℕ the dimensionality of the queries and keys sequences’ elements, used as a 

normalization constant within the dot product attention mechanisms as a heuristic to improve 

gradient behavior 

 𝑑𝑣 ∈ ℕ the dimensionality of the values sequences’ elements 

 

 

Fig. 3.4.23 visualization of the scaled dot product attention mechanism 

 

The reader might notice that this attention mechanism’s definition introduces three distinct sequences 

(two sharing their dimensionality and two sharing their sequence length), which might at first appear 

surprising. Indeed, the attention mechanism defined so far focused on building one context vector 

from the encoder sequence. One of these additional sequences obviously comes from the fact that 
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this attention mechanism is defined from matrix multiplications (instead of dot product in traditional 

multiplicative attention mechanisms) to allow for all attention vectors to be derived in parallel during 

teacher forcing based training. This however leaves an additional sequence that requires some 

explaining. Going back to the original definition of the attention mechanism, the main rationale was 

to build weighted means of the encoder’s outputs, whose weights would depend on these exact same 

vectorial representations of the source sentence. The idea of using three distinct sequences comes 

from noticing that the encoder’s outputs have this dual purpose that might overload them. This is 

exactly why these three sequences are introduced in the matrix formulation of this scaled dot product 

attention mechanism, which is why it allows the constraint of having the sequences Q and V of same 

length. These will typically be taken as distinct representations of the same sequence, as will be seen 

in the following part.  

 

3.4.6.4 Multi-head scaled dot product attention 

 

For computational efficiency, the transformer doesn’t make use of the dot product directly as is. 

Instead, each of the attention element in the model are composed of several distinct attention 

mechanisms that are all ran in parallel, the results being concatenated afterwards. This idea is called 

multi-head attention and follows the following steps: 

1. Each of the three sequences is injected element wise into ℎ element-wise learnable linear 

transformation (ℎ ∈ ℕ is considered a model hyperparameter, and is typically set to 8) 

2. The three sequences’ projections are all injected into a dot-product attention mechanism in 

parallel 

3. The resulting sequences’ elements are all concatenated in an element-wise fashion (the 

elements are concatenated alongside the vector’s depth, not as a longer sequence of vectors) 

4. The resulting sequence is then injected into a final linear transformation 
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Formally, for three vectorial sequences (𝑄, 𝐾, 𝑉) ∈ ℝ𝑛×𝑑𝑚𝑜𝑑𝑒𝑙 × ℝ𝑚×𝑑𝑚𝑜𝑑𝑒𝑙 × ℝ𝑚×𝑑𝑚𝑜𝑑𝑒𝑙  with 𝑛, 𝑚 ∈

ℕ the length of sequences 𝑄 and 𝐾, 𝑉 respectively, the multi-head scaled dot product attention 

mechanism can be written as follows: 

 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ)𝑊𝑂 (3.4.13), 
 ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖

𝑄
, 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉) (3.4.14), 

 

with : 

 𝑊𝑂 ∈ ℝℎ𝑑𝑣×𝑑𝑚𝑜𝑑𝑒𝑙  a linear transformation that brings the concatenated output sequence 

back to the model’s dimensionality 

 𝑊𝑖
𝑄

∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘  , 𝑖 ∈ ⟦1, ℎ⟧ the queries’ linear transformations 

 𝑊𝑖
𝐾 ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 , 𝑖 ∈ ⟦1, ℎ⟧ the keys’ linear transformations 

 𝑊𝑖
𝑉 ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑣 , 𝑖 ∈ ⟦1, ℎ⟧ the values’ linear transformations 

The values of ℎ, 𝑑𝑣 and 𝑑𝑘 can be considered as model hyper-parameter as well, but are typically 

chosen so that ℎ = 8 and 𝑑𝑣 =  𝑑𝑘 =
𝑑𝑚𝑜𝑑𝑒𝑙

ℎ
. 

Now that the transformer’s attention mechanism has been fully defined, remains the task of applying 

it to the context of neural translation:  

 For encoder to decoder attention, the keys are chosen as the previous decoder layer’s output 

and queries and values as the encoder’s output sequence, as can be seen at the top of figure 

3.4.24 

 For self-attention, all sequences are chosen as the block’s previous layer’s output, as can be 

seen at the bottom of figure 3.4.24 

 Note that although some of the three input sequences are chosen as identical, the linear 

transformations applied to each of these versions of the same sequence are not. 
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Consequently, the three sequences injected into the actual attention mechanisms have no 

reasons to be identical 

 

 

Fig. 3.4.24: Top: Multi-head attention in an encoder-to-decoder setting, where the 

queries and values in the attention mechanisms are linear transformations of the 

encoder’s  output and the attention mechanisms’ keys are linear transformations of the 

decoder’s previous layer’s output . Bottom: Multi-head attention in a self -attention 

setting, where all the input sequences in the attention mechanisms are linear 

transformations of the same sequence, the attention block’s input  

 

A problem immediately arises with the decoder’s self-attention mechanism, at least in a training 

setting. Indeed, in teacher forcing setting, the entire target sentence is usually fed to the model in 

order to speed up the training process. This did not cause any issue when the decoder was a recurrent 

neural network, as they prevent any conditioning on any word located after the one currently injected 

into the model. Attention mechanisms, however, can condition any token in their input sequence with 

any other present in the sequence. As a consequence, at a given time-step during training, the decoder 

has for input variable the exact target variable it is supposed to predict, as can be seen in figure 3.4.25. 
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Fig. 3.4.25 Visualization of the problem of decoder self -attention during the training 

process (with teacher forcing). Even without any encoder information, the decoder can 

perfectly predict every word in the target sentence, as all words are now considered 

as input variables (instead of only previous words for a given time step in recurrent 

neural networks) 

 

In order to counteract this undesirable phenomenon a simple mask process similar to what was done 

in the ordinal regression example is applied to the attention weights obtained in the decoder’s self-

attention block: 

 The derived attention weights corresponding to future words are set to 0, 

 The entire attention vector is renormalized prior to the attention final matrix multiplication. 

 

3.4.6.5 Element-wise multilayer perceptron 

 

Finally, in order to increase the model’s depth and non-linear explanatory power, each of the 

encoder’s stack ends with an element-wise two-layer perceptron, element-wise meaning the 

perceptron takes as input only one vectorial element of the input sequence, and is applied to all of 

them simultaneously. Such a neural network can be interpreted as a kind of convolutional neural 

network whose kernel size would be set to 1, and is defined as follows: 
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 𝐹𝐹𝑁(𝑥) = max(0, 𝑥𝑊1 +  𝑏1) 𝑊2 +  𝑏2 (3.4.15), 

 

with: 

 𝑥 ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙  one element of the input sequence 

 𝑊1 ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑓𝑓  the layer’s first weight matrix, with 𝑑𝑓𝑓 ∈ ℕ it’s dimensionality 

 𝑏1 ∈ ℝ𝑑𝑓𝑓 the layer’s first bias vector 

 𝑊2 ∈ ℝ𝑑𝑓𝑓×𝑑𝑚𝑜𝑑𝑒𝑙  the layer’s second weight matrix 

 𝑏1 ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙 the layer’s second bias vector 

  

3.4.6.6 Overall architecture 

 

Now that all the Transformer architecture’s basic blocks have been formally described, the definition 

of both the encoder and decoder is quite straightforward. The encoder’s output is obtained applying 

the following steps: 

1. Create the vectorial source sequence using word embeddings, 

2. Add the positional encoding to the vectorial source sentence, 

3. Inject the resulting sequence into a multi-head dot product self-attention layer with a residual 

connection, 

4. Normalize its output following the layer normalization methodology, 

5. Inject the resulting sequence into an element-wise multilayer perceptron with a residual 

connection, 

6. Normalize its output following the layer normalization methodology, 

7. Repeat steps 3 to 6 𝑁 times 
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Once the encoder’s outputs have been obtained, model prediction (either while training or 

predicting) can be derived as follows: 

1. Create the vectorial target sequence using word embeddings (the target sequence being either 

just the <START> token when predicting or the actual target sequence with <START> and 

<STOP> tokens appended at its beginning and end respectively when training with teacher 

forcing), 

2. Add the positional encoding to the vectorial target sentence, 

3. Inject the resulting sequence into a masked multi-head dot product self-attention layer with a 

residual connection, 

4. Normalize its output following the layer normalization methodology, 

5. Inject the resulting sequence and the encoder’s final output into a multi-head dot product 

attention layer with a residual connection, 

6. Normalize its output following the layer normalization methodology, 

7. Inject the resulting sequence into an element-wise multilayer perceptron with a residual 

connection, 

8. Normalize its output following the layer normalization methodology, 

9. Repeat steps 3 through 8 𝑁 times. 

 

3.5 Conclusion 
 

In this first section, we introduced the concept of artificial neural network, starting from its most 

primitive form, the multilayer perceptron, which shares many similarities with generalized linear 

models. We showed how to adapt this simple, yet fairly anecdotal family of models to perform analysis 

on non-structured data, using for instance recurrent or convolutional neural networks. In particular, 

we demonstrated that these models can perfectly handle the modelling of variable sequence length 

target variables, for instance using an encoder-decoder based architecture using either recurrent 
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neural networks or attention mechanisms. Although this technique is primarily used in machine 

translation, we showed that its potential in other problematics is quite promising as well, as it can be 

applied to any modelling problem that can be decomposed in a series of simpler decision, such as was 

presented in the ordinal regression method introduced in this thesis. 

Now that we defined a spectrum of deep artificial neural network based predictive models, and 

showcased how they can be applied to a wide variety of problems, a question remains: can these 

methods be applied in the context of electronic health database analysis?  

 

4 Deep neural network for epidemiology and their applications in 

cause of death statistics 
 

 

4.1 Introduction 
 

 

The availability of up-to-date, reliable data on causes of death is a matter of significant importance in 

public health related disciplines. As an example, the monitoring of leading causes of deaths is an 

important tool for public health practitioner and has a considerable impact on health policy related 

decision making processes53–58. The collection of said data, however, is a complex, time consuming 

process that usually involves the coordination of many different actors, starting from medical 

practitioners writing death certificates, to the final statistics’ diffusion by public institutions. One 

example of non-trivial task involved in this process is the identification of the underlying cause of death 

from the chain of event reported by the medical practitioner in the death certificate59. According to 

the International Statistical Classification of Diseases and Related Health Problems, the underlying 

cause of death is defined as “(a) the disease or injury which initiated the train of morbid events leading 

directly to death, or (b) the circumstances of the accident or violence which produced the fatal injury” 
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60. Since the underlying cause of death is adopted for tabulation of mortality statistics, extracting it 

from death certificates is of paramount importance. The process of identifying the underlying cause of 

death from a death certificate can be summed up into two major steps, an example of which can be 

seen in table 4.1.1: 

 Converting the causal chain of death written by the medical practitioner that observed the 

subject’s passing from natural language to a medical classification, the International Statistical 

Classification of Diseases and Related Health Problems (ICD-10 classification), 

 Identifying from the causal chain of death, expressed as ICD-10 entities, the subject’s 

underlying cause of death. 

 

 Textual causal chain of death ICD-10 
formatting 

UC 

Line 1 Cancer indifférencié de la glande thyroide ayant 
entraîné une compression complète locale (sténose 
oesophagienne et paralysie bilatérale des cordes 
vocales) 

C73 K222 J380 C73 

Line 2 NA  

Line 3 NA  

Line 4 NA  

Part 2 Diabète insulino-requérant, HTA, Dénutrition, 
Antécédent d’AVC, AOMI 

E119 I10 E46 
I696 I702 

Table 4.1.1: Example of the underlying cause of death extraction process from a death 

certificate. First the causal chain of death is converted into sequences of ICD -10 

entities, on which are applied of set of WHO defined rules to derive the underlying 

cause of death used in official mortality statistics  

 

Fast production of these statistics is of paramount importance for their use in epidemiology and public 

health. Namely because using them as a tool for public health decision making requires fairly up to 

date data. At the very least, producing one year of mortality statistics should take at most a year, 

anything slower result on cumulating delays that would in long term make them unusable.  

As a consequence, a number of tools have been derived over time to accelerate the production process 

of these statistics, mostly based on expert system or classical natural language processing approaches. 
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Unfortunately, these systems fail to handle a significant amount of complex death scenarios, in which 

human evaluation is required, leading to a time consuming coding process. However, as 

aforementioned, deep artificial neural network based models are known to outperform significantly 

expert systems in a variety of settings, including natural language processing. As a consequence, 

investigating the application of deep learning based predictive models on both predefined tasks 

necessary to the derive mortality statistics might yield some interesting, improved tool to accelerate 

and help coders with the production process. 

 

4.2 Neural translation and automated recognition of ICD-10 medical entities from 

natural language 
 

 

As aforementioned, death certificates are filled out by the medical practitioner that observes the 

subject’s passing. When it comes to the production of mortality statistics, the most important piece of 

information present on certificates is the chain of events leading to the subject’s passing, written in 

natural language. Although natural language is extensively present in some health related databases, 

it is notoriously difficult to handle with traditional statistical methods, and prevents most international 

comparisons due to language barrier. In order to counter these undesirable properties, several 

approaches have been devised. For instance, encapsulating most medical entities in a standardized 

hierarchical tree structure, the ICD-10 classification61 offers a powerful and expressive way of 

organizing “analytics friendly” health databases. On the other hand, ICD-10 entities are significantly 

less intuitive for human users than natural language, and identifying ICD-10 entities from natural 

language fluently requires years of training and practice. As a consequence, the data production of 

classification based medical data is usually handmade, expansive and time consuming. Several 

attempts have been made to design artificial intelligence based systems able to automatically derive 

medical entities from natural languages, some with quite promising performance62–64. However, all of 
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them fall short in automating the complex production schemes inherent to medical databases, 

specifically in regard to their high data quality standards.  

However, recent innovation in deep artificial neural networks have achieved significant progress in 

natural language processing65,66. In particular, their applications in the field of machine 

translation19,41,42, fuelled by increases in both data and computing power, repeatedly bring automated 

systems closer and closer to human level performances. Several attempts have been made to apply 

these powerful techniques in an electronic health database setting, most of them with mitigated 

success. As an example, the current state of the art in ICD-10 entity recognition from natural language 

in death certificates still remains a combination of expert system and SVM based classical machine 

learning62. Several explanations exist for this discrepancy between traditional machine translation and 

medical entity recognition. First, deep artificial neural network based methods are known to require 

huge amount of data for optimal performances. However, most experiment were either performed 

with slightly out-of-date neural architectures, or with dataset sizes at least an order of magnitude 

under what would be typically required67. On the other hand, the “Centre for Epidemiology on Medical 

Causes of Death” (CépiDc) has been storing French death certificates at the national scale since 2011 

in both natural language and ICD-10 converted format. The entire database amounts to just under 3 

million death examples, thus providing with sensibly better settings to investigate the potential 

applications of deep neural networks in medical entities recognition. 

The following chapter formulates the process of ICD-10 entity recognition from natural language as a 

sequence to sequence statistical modelling problem (better known as seq2seq models in the academic 

literature) and proposes to solve it with a variation one of the state of the art machine translation 

neural architecture, the Transformer. The following section focuses on describing the aforementioned 

statistical modelling problem and overall methodology. Section 4.2.2 reports the result of experiments 

done on the French CépiDc dataset as well as a comparison with the current state of the art. Section 
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4.2.3 presents a discussion on the model’s potential limitation through an error analysis and describes 

potential leads for improvement.  

 

4.2.1 Material and methods 
 

4.2.1.1 Related work 

 

The task of identifying ICD-10 medical entities from natural language, whether in French or in any other 

language, is a well investigated problem, where several promising approaches have already been 

proposed. Most of this solution were published at the CLEF (Conference and Labs of the Evaluation 

Forums) eHealth62,63,67, a competition held annually where teams compete to solve natural language 

processing tasks on medical textual data. For instance, the task of recognizing ICD-10 entities from 

death certificates (in several languages including French) have been addressed several times over the 

years in this competition. So far, when it comes to the task of extracting ICD-10 entities from French 

death certificates, the state of the art is held by the “Laboratoire d’Informatique et de Mécanique pour 

les Sciences de l’Ingénieur” (LIMSI)lab, that used a hybrid approach that combined data-based 

dictionaries for feature engineering and linear support vector machines. However, most natural 

language processing tasks are nowadays typically better handled by neural network based 

architectures, provided that the learning corpus is of sufficient size. These deep learning based 

approaches have been applied to the problem at hand in this chapter, mainly through a range of 

sequence to sequence architectures: 

 RNN based encoder decoder architectures (either with or without attention) 68, 

 Convolutional based encoder-decoder architectures 69,70, 

 Fully attentional (although pre-trained) architectures using a BERT model and transfer learning 

71,72. 
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However, all those techniques, at least when applied to French data, fail to outperform the LIMSI’s 

feature engineering based approach. A possible explanation for this observation might lie in the 

dataset the teams are given. Indeed, their sample sizes fall usually shy of 200K observations52, which 

is usually far from enough for advanced deep learning models to train properly, as modern neural 

architectures in the neural translation academic literature usually train on datasets with up to tens of 

millions of observations41. This might as well explain why teams using fully attentional models (which 

are the state of the art nowadays in neural translation) used pre-trained architectures and transfer 

learning with BERT instead of training a full neural architecture end to end in a purely supervised 

fashion. The latter is exactly what this chapter sets out to investigate, and constitutes, at least to the 

author’s knowledge, the first attempt at training a modern fully attentional, end-to-end trained model 

on a dataset with a sample size coherent with the requirements of modern deep learning methods. 

 

4.2.1.2 Material 

 

The dataset used during this study consists of every available death certificate found in the CépiDc 

database for the years 2011 to 2016, representing just under 3 million training examples. These 

documents record various information about their subjects, including the chain of events leading to 

the subject’s death, written by a medical practitioner.  

 

Causal chain of death 

 

The causal chain of death constitutes the main source of information available on a death certificate 

in order to devise mortality statistics. It typically sums up the sequence of events that led to the 

subject’s death, starting from immediate causes (such as cardiac arrest) and progressively expanding 

into the individual’s past to the underlying causes of death. WHO provides countries with a 

standardized causal chain of events format, which France follows, alongside most developed countries. 
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This WHO standard asks of the medical practitioner in charge of reporting the events leading to the 

subject’s passing to fill out a two-part form in natural language. The first part is comprised of 4 lines, 

in which the practitioner is asked to report the chain of events, from immediate to underlying cause, 

in inverse causal order (immediate causes are reported on the first lines, and underlying causes on the 

last lines). Although 4 lines are available for reporting, they need not all be filled. In fact, the last 

available lines are rarely used by the practitioner. The second part is comprised of two lines in which 

the practitioner is asked to report “any other significant conditions contributing to death but not 

related to the disease or condition causing it” 73 that the subject may have been suffering from.  

In order to counter the language dependent variability of death certificates across countries, a pre-

processing step is typically applied to the causal chain of events leading to the individual’s death, where 

each natural language based line on the certificate is converted into a sequence of codes defined by 

the 10th revision of the International Statistical Classification of Diseases and Related Health Problems 

(ICD-10)61. ICD-10 is a medical classification created by WHO defining 14199 medical entities (e.g. 

diseases, signs and symptoms…) distributed over 22 chapters and encoded with 3 or 4 alpha decimal 

symbols (one letter and 2 or 3 digits), 5615 of which are present in the investigated dataset. Table 4.2.1 

shows an example of a causal chain of events taken from an American death certificate, in both natural 

language and ICD-10 formats. 

Line Natural language ICD-10 encoding 

1 STROKE IN SEPTEMBER LEFT HEMIPARESIS I64 G819 

2 FALL SCALP LACERATION FRACTURE HUMERUS S010 W19 S423 

3 CORONARY ARTERY DISEASE I251 

4 ACUTE INTRACRANIAL HEMORRHAGE I629 

Part 2 DEMENTIA DEPRESSION HYPERTENSION F03 F329 I10 
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 Table 4.2.1: Example of cause chain of death, in natural language and as 

ICD-10 codes. Some natural language lines correspond to several ICD-10 

codes, whose orders matter in the overall coding process 

 

As aforementioned, the process of converting the natural language based causal chain of events 

leading to death in an ICD-10 format is the main focus of this chapter. Consequently, the latter will be 

selected as target variable and the former as the main explanatory variable for the neural network 

based predictive model defined further. 

For reasons related to the underlying cause of death production process, the natural language based 

chain of events and its ICD-10 encoded counterpart suffer from alignment errors at the line level, as 

shown in table 4.2.2. Although qualitatively deemed quite rare, this misalignment phenomenon brings 

sufficient noise in the dataset to prevent model convergence while fitting models with line level 

sentence pairs.  

 

Line Natural language ICD-10 encoding 

1 STROKE IN SEPTEMBER LEFT HEMIPARESIS I64 G819 

2 FALL SCALP LACERATION FRACTURE HUMERUS S010 W19 S423 

3 CORONARY ARTERY DISEASE I629 I251 

4 ACUTE INTRACRANIAL HEMORRHAGE  

Part 2 DEMENTIA DEPRESSION HYPERTENSION F03 F329 I10 

 Table 4.2.2: Same certificate as displayed in table 4.1.1 showcasing 

the misalignment phenomenon. The ICD-10 code related to line 4 (both in 

red) has been moved to line 3 by a human coder. Concatenating lines in a 

backward fashion restores alignment while preserving ordering  
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In order to bypass this critical flaw in the investigated dataset, a decision was chosen to consider as 

input and target variables the certificates lines concatenated in a backward fashion (from line 6 to 

line 1), as can be seen in figure 4.2.1. This slight change in data format does not significantly alter the 

problematic at hand, as the investigated model is still trained to recognize ICD-10 encoded medical 

entities from natural language. If anything, the modified modelling problem can be expected to be 

more difficult, as both the variance and dimensionality of both input and target variables have 

increased. Several methods are available to retrieve line level aligned predictions from a model 

trained in such a configuration, for instance using a combination of transfer learning and pruned tree 

search. 

 

 

Fig. 4.2.1 Left: the original modelling problem. Each certificate line is taken as an input 

variable to predict its corresponding ICD10 code line. Right: The modified inve stigated 

problem. All certificate lines are concatenated and taken as an input variable to 

predict the corresponding concatenated ICD10 code line  

 

Miscellaneous variables 

 

From gender to place of birth, a death certificate contains various additional information on its subject 

besides the chain of events leading to death. As some of these items are typically used by both expert 

systems and human coders to detect ICD-10 entities in the chain of events, they present an interest as 
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explanatory variable for the investigated predictive model. After consultation with expert coders, the 

following items available on French death certificate were selected as additional exogenous variables:  

 gender (2 states categorical variables), 

 year of death (6 states categorical variables), 

 age, factorized into 5 years’ intervals with the exception of subject less than one-year-old, 

which were divided into two classes following whether they were more than 28-day-old, 

 origin of the death certificate (2 states categorical variables, either from the electronic or 

paper based death certification pipeline). 

Strictly speaking, the subject’s year of passing should only have a limited effect on the relationship 

between natural language and its contained medical entities. However, the WHO defined coding rules, 

as well as their interpretations by human coders slightly evolve over the years. As a consequence, the 

model should benefit, in term of predictive performance, from being able to differentiate between 

different years. 

Similarly, the impact of the certificate’s origin on the model’s predictive power is not entirely obvious 

at first sight. However, the paper based certificates data entry process is handled by human through 

speech recognition technology. In addition, the entry clerks are asked to apply a small set of 

normalization rules to the natural language. Electronic death certificates, however, are received 

directly from the medical practitioner as is. As a consequence, distribution shifts are to be expected 

from paper to electronic based chain of events, and including this information as an explanatory 

variable might be beneficial to the model’s predictive power. 
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4.2.1.3 Method 

 

With both the explanatory and target variables well defined, the investigated modelling problem can 

be defined as follows: 

 𝑃(𝐼𝐶𝐷|𝑁𝐿, 𝐴, 𝐺, 𝑌, 𝐸, 𝜃) =  𝑓𝜃(𝑁𝐿, 𝐴, 𝑌, 𝐺, 𝐸) (4.2.1), 
 

with: 

 

 𝑃(𝑋) the probability density of discrete random variable 𝑋  

 𝐼𝐶𝐷 ∈ ⟦0, 1⟧5616𝐼
 the sequence of ICD-10 codes present on the death certificate concatenated 

on a single line of sequence length 𝐼  

 𝑁𝐿 ∈ ⟦0, 1⟧𝑉𝐿
 the line in natural language, tokenized with a vocabulary 𝑉 and of sequence 

length 𝐿 

 𝐴 ∈ ⟦0, 1⟧25 the categorized age 

 𝑌 ∈ ⟦0, 1⟧6 the year of death 

 𝐺 ∈ ⟦0, 1⟧ the gender 

 𝐸 ∈ ⟦0, 1⟧ the death certificate’s origin 

 𝑓𝜃 a mapping from the problem’s input space to its output space, parameterized in 𝜃 ∈ ℝ𝑛 a 

real-valued vector (typically a neural network) of dimensionality 𝑛 ∈  ℕ the model’s 

dimensionality 

Theoretically, the derived modelling problem is typical of traditional statistical modelling problems, 

and could be solved using multinomial logistic regression. In practice, however, this approach presents 

a significant drawback. In this setting, the investigated target variable constitutes a categorical variable 

with 561620 (death certificates in the dataset have at most 20 ICD-10 codes in them, each of which can 

take 5616 distinct values) distinct states, thus rendering the analysis untractable both in term of 

computational expanses and sample size requirements. This type of approach, however, makes no use 
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of the data’s inherent sequential nature, which allows to rewrite the investigated modelling problem 

as follows: 

 

 𝑃(𝐼𝐶𝐷|𝑁𝐿, 𝐴, 𝐺, 𝑌, 𝐸, 𝜃) = 𝑃((𝐼𝐶𝐷1, −, 𝐼𝐶𝐷𝑛)|𝑁𝐿, 𝐴, 𝐺, 𝑌, 𝐸, 𝜃) , 𝑛 ∈ ⟦1, 20⟧ (4.2.2), 

 
= ∏ 𝑃(𝐼𝐶𝐷𝑖|(𝐼𝐶𝐷1, −, 𝐼𝐶𝐷𝑖−1), 𝑁𝐿, 𝐴, 𝐺, 𝑌, 𝐸, 𝜃), 𝑛 ∈ ⟦1, 20⟧

𝑛

𝑖=1

 (4.2.3), 

 

 

with: 

 𝐼𝐶𝐷𝑖 ∈ ⟦0, 1⟧5616 , 𝑖 ∈ ⟦1, 𝑛⟧ the 𝑖𝑡ℎcode present on the code line, 

 𝑛 ∈ ⟦1, 20⟧  The total number of ICD codes on the death certificate 

 

Factors in the right hand side of equation 2 can be interpreted as distinct predictive modelling problem, 

all with an output variable distributed across all ICD-10 codes. Although still highly dimensional, 

predicting output variables of such dimensionality is typically tractable with modern machine learning 

techniques19. They present however two significant drawbacks for traditional modelling techniques: 

 The number n of output variables to predict varies across observations in the dataset (not all 

death certificates have 20 ICD-10 codes), 

 The output variables’ distributions are conditioned on previous ones. 

This particular formulation is known in the deep artificial neural network community as a sequence to 

sequence modelling problem19, and has been an active area of research for the past few years. As one 

of the state of the art neural architecture devised in the field, the Transformer (see chapter 2.4.6) was 

chosen as the predictive model investigated in the following experiments. It was recently 

outperformed by the Evolved Transformer74, a variation on the former. However, both approaches 

were investigated and yielded similar results. The Transformer architecture was retained due to its 

availability of official and maintained implementations, and the final results further displayed were 
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obtained using an ensemble of 7 such models, with a detailed description of the ensembling method 

used being available in the annex. 

Several specificities in the aforedefined modelling problem required small adaptations to the 

Transformer architecture. However, the authors feel their technicity fall outside the scope of this 

chapter. The interested reader will however find a complete description of these modifications in the 

annex documents. 

Finally, the authors are aware that many other approaches to sequential learning architectures are 

available (and already been used) in order to address the problem investigated in this chapter. The 

current state of the art on French death certificates, for instance uses a multi-label classification 

approach.  However, these methods were deemed unsuited for the task, and this for several reasons: 

 The task of extracting ICD10 codes from natural language on death certificates is only a 

preliminary step in the production of mortality statistics pipeline. The final task in this process 

is to derive the underlying cause of death from these ICD10 codes, following a set of rules 

defined by the World Health Organization. The choice of the underlying cause of death from 

this set of rules heavily depends on the codes’ order in the certificate. As a consequence, it is 

of paramount importance that the model is able to output these codes in the proper order, 

which is simply unachievable with a multiclass classification approach, and makes the problem 

a sequential learning problem (as our output is indeed a sequence of variable length tags taken 

from a set of well-defined class). However, several approaches other than seq2seq are still 

available to solve such problems (such as connectionist temporal classification, typically used 

in Optical Character Recognition tasks), 

 The ICD10 codes that the model needs to output are not necessarily independent. For 

instance, the presence of a given code in the outputted sequence can significantly alter other 

codes present in the sequence. As an example, given by our expert coder, hematoma related 

codes can be found in several ICD10 chapters. First, in chapter 9 of the ICD10 classification 
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(codes related to circulatory diseases, beginning by an “I”) and also in chapter 19 (codes 

related to injury, poisoning and certain other consequences of external causes, beginning with 

an “S” or a “T”). The choice of attributing the entity “hematoma” present on a death certificate 

to the first or second possible chapter depends on whether an external cause (meaning an 

ICD10 code from chapter 20) has already been outputted previously while converting the 

death certificate into codes. In order to account for such dependencies, we are compelled to 

model the joint distribution of the output sequence conditioned on the input variables. Which 

is exactly what seq2seq is about. So the choice of using seq2seq approaches to solving the 

modelling problem investigated in this chapter becomes not only natural, but almost 

compulsory. In addition, due to the data-driven tokenization used in order to make use of the 

ICD-10 classification’s hierarchical nature, some token that the model is allowed to predict are 

not valid ICD-10 codes. For instance, the code “I659” could be decomposed into a sequence of 

two codes, [“I65”, “9-“] (with the “-“ character at the end used to keep track of spaces between 

codes). It appears clear here that when the model needs to output a “I659” code, predicting 

“9-“ in itself is not possible without any conditioning on “I65” appearing before. 

 

4.2.1.4 Training and evaluation methodology 

 

The investigated model was trained using all French death certificates from years 2011 to 2016. 5000 

certificates were randomly excluded from each year and distributed into a validation set for hyper-

parameter fine-tuning, and a test dataset for unbiased prediction performance estimation (2500 each), 

resulting in three datasets with following sample sizes: 

 Training dataset: 3 240 109 records 

 Validation and test dataset: 30 000 records each 



156 
 
 

The model was adapted from Tensorflow’s (a python-based distributed machine learning framework) 

official Transformer implementation. Training was performed on three NVidia RTX 2070 GPUs 

simultaneously using a mirrored distribution strategy using a variant of stochastic gradient descent, 

the Adam optimization algorithm (see chapter 3.3.3.2). 

Hyper-parameters were first initialized following the Transformer’s authors in their base setting. 

Further fine tuning of a selected number of hyper-parameters was performed using a random search 

guided on the validation set. The interested reader will find a complete description of the training 

process and hyper-parameter values defining this model in annex. 

After training, the model’s predictive performance was assessed on the test dataset (excluded prior to 

training, as mentioned earlier), and compared to the current state of the art, obtained by the LIMSI 

during the 2017 CLEF eHealth challenge62. As the CLEF eHealth challenge only provided electronic 

certificates to the contestants, and in order to ensure comparability, the model’s performances were 

assessed on paper and electronic certificates separately. For the same reason, the performance 

metrics used for model evaluation were selected as follows: 

 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

(4.2.4), 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

(4.2.5), 

 
𝐹-𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =  

2 ∙  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 

(4.2.6), 

 

with : 

 True positives the number of codes predicted by the model that are present in the test set’s 

true output target, 
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 False positives the number of codes predicted by the model that are not present in the test 

set’s true output target, 

 False negatives the number of codes not predicted by the model that are present in the test 

set’s true output. 

Note that predictions are considered as true positives only for exact code matches, up to the fourth 

character. Table 4.2.3 shows an example of how this can affect the reported performances, by focusing 

on a line of the causal chain of death reported in table 4.2.1 and fictional examples of predictions: 

 The first prediction example outputs two incorrect codes. The number of true positives is thus 

0, leading to all metrics being evaluated to 0. 

 The second prediction example correctly outputs the first code (I64 – “Stroke”) but fails to 

correctly outputs the second character’s fourth character (G81 – “Hemiplegia” is predicted 

instead of the ground truth value G819 – “Hemiplegia, unspecified”). Although the prediction 

and ground truth are quite similar (they share the three first characters), this code is 

considered incorrect, which leads to counts of both one false positive (the code was predicted 

incorrectly) and one false negative (the correct G819 code was not predicted) leading to all 

metrics being evaluated to .5 

 The third prediction example correctly outputs the first code but fails to recognize any 

additional code from the textual input, leading to a precision of 1 (all predicted codes are 

indeed true positives) and a recall of .5 (one code present in the ground truth was not 

predicted), leading to an F-measure of .66. Note that in this context, the F-measure is higher 

than in example 2 

 The fourth prediction example correctly outputs both codes, but also outputs two additional 

and completely unrelated codes, leading to a precision of .5 (only half of the predicted codes 

are present in the ground truth), and a recall of 1. (all codes present in the ground truth were 

correctly predicted), leading to an F-measure of .66. 
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 The fifth prediction example correctly outputs both codes, and doesn’t predict any additional 

codes (perfect prediction), leading to all metrics being evaluated to 1. 

 The sixth prediction example correctly outputs both codes, and doesn’t predict any additional 

codes. The codes are however in the wrong order, but this isn’t penalized in any way in the 

metrics definitions, so this prediction is associated with metrics being all evaluated to 1. 

 

 Value Precision Recall F-measure 

Input Text STROKE IN SEPTEMBER LEFT 
HEMIPARESIS 

- - - 

True ICD-10 encoding I64 G819 - - - 

Prediction example 1 B189 H155 .0 .0 .0 

Prediction example 2 I64 G81 .5 .5 .5 

Prediction example 3 I64  1. .5 .66 

Prediction example 4 I64 G819 A338 B87 .5 1. .66 

Prediction example 5 I64 G819 1. 1. 1. 

Prediction example 6 G819 I64 1. 1. 1. 

Table 4.2.3: Examples of how the selected performance metrics behave for different 

predictions.  

 

The informed reader might find these metrics stray away from common machine translation system 

benchmarking metrics such as BLEU or negative log perplexity scores19,41,42,75, but the former were the 

only ones used in comparable work. As BLEU and negative log perplexity have close to no absolute 

interpretability without comparisons to alternative methods, their use was discarded from the 

experiment. In order to present the reader with a more comprehensive view of the proposed 

approaches’ performances, these accuracy metrics were also derived on a per chapter basis, again on 

the same test set, and confidence intervals were computed using bootstrap. 
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4.2.2 Results 
 

Performance evaluation 

 

The ensemble of transformer models was trained as aforedescribed for approximately 3 weeks, and 

the final ensemble’s predictive performance as well as the current state of the arts’ are reported in 

Table 4.2.4. As previously mentioned, the current state of the arts’ performances was assessed on 

electronic certificates only, and should as a consequence be compared to the proposed approach 

performance on a similar situation. Because paper based certificates are still sensibly more common 

than their electronic counterparts in France (approximately 90% of certificates in the dataset are paper 

based), overall and paper specific performances are also displayed.   

Approach F-measure Precision Recall 

Current state of the art (LIMSI) .825 .872 .784 

Proposed approach (electronic 
certificates) 

.952 [.946, .957] .955 [.95, .96] .948 [.943, .954] 

Proposed approach (paper certificates) .942 [.941, .944] .949 [.947, .95] .936 [.934, .937] 

Proposed approach (all certificates) .943 [.941, .944] .949 [.948, .951] .937 [.935, .938] 

Table 4.2.4: F-measure of the current state of the art and the proposed approach, with 

their corresponding 95% confidence intervals, derived by bootstrap. Confidence 

intervals were not provided in the LIMSI’s publication and are therefore not  displayed. 

 

The proposed approach shows an F measure 73% closer to a perfect score when compared to the 

current state of the art. In addition to its substantial improvement in F-measure, the proposed 

approach displays significantly more balanced precision and recall scores than the LIMSI’s method 

(from 5% relative difference to less than 1%). 

A surprising result, however, lies in the model’s lower performances on paper certificates. Indeed, the 

standardization they receive due to their voice based data collecting process considerably reduces 

variance and prevents any misspelling of words in the data potentially present in electronic based 

certificates. As a consequence, model performance on the former should be expected to be higher. A 

potential explanation for this phenomenon lies in the potential for missing data in paper based 



160 
 
 

certificates. Indeed, when confronted to poorly written words, data clerks are allowed to replace them 

with a “!” symbol when the word is estimated unreadable (present in approximately 10% of paper 

based certificates). Medical coders, however, are usually more efficient in guessing the words from the 

written certificates (typically with the addition of contextual clues). A purely text based approach 

however, is then limited to pure guess on those observations with missing data, logically leading to 

poorer performance. This phenomenon being absent from electronic based certificates; it constitutes 

a promising candidate in explaining this unexpected difference of performance. In addition, model 

performances on paper certificates not containing any “!” symbol in the test set led to 96.2% F-

measure, thus providing strong evidence to support this hypothesis. 

 

Per-chapter quantitative analysis 

 

Although the proposed approach significantly outperforms the current state of the art, neural network 

based methods are known to present several drawbacks that can significantly limit their application in 

some situations. Typically, the current lack of systematic methods to interpret and understand neural 

network based model and their decision processes can lead the former to perform catastrophically on 

mispredicted cases, independently from their high predictive performances. As a consequence, the 

proposed model behaviour in mispredicted cases require careful analysis. In addition, such an 

investigation can lead to significant insights potentially relevant when applying the derived model in 

practical applications.  

One simple, straightforward approach to understanding the model’s weakness, lies in assessing its 

performance on a finer grain level, for instance by identifying false positives and negatives not only at 

the global level, but per ICD-10 chapters, as can be seen in table 4.2.5.  

It appears from these graphs that although the most prevalent medical entities are associated with 

low false positive and negative rates, some rarer chapters are associated with unreasonably high error 
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rates. Depending on their prevalence and accuracies, these chapters can be classified into two distinct 

categories: 

 Chapters associated with unreasonably high error rates but extremely low prevalence such as 

“diseases for the ear and mastoid process” or “pregnancy, childbirth and the puerperium”. 

However, these entity groups remain rare enough within the dataset to allow for alternative 

treatments, like manual evaluation, for instance. 

 Chapters associated with high error rates (although lower than the former) but with significant 

prevalence such as “External causes of morbidity and mortality” or “Injury, poisoning and 

certain other consequences of external causes”.  

The task of identifying these potential mistakes, however, is not entirely trivial depending on whether 

mistakes are of false positive or false negative types. Indeed, potential false positives errors are directly 

identifiable within the predicted ICD-10 code sequences. As a consequence, coding quality control for 

this mistake type should be fairly straightforward to implement (one could for instance manually 

review all code sequences containing codes related to “Pregnancy, childbirth and the puerperium” 

systematically. Potential false negative errors, however, are inherently significantly harder to identify, 

and require further investigation, for instance through association rules analysis.  

A number of promising leads are already available and should reasonably improve upon the proposed 

approach: 

 Training methods adapted to imbalanced datasets such as up sampling or loss weighting, 

 Data augmentation for rare medical entities, 

 Addition of information to the model (prenatal related death, for instance, are explicitly 

defined as such on certificates), 

 Hybrid approach with traditional NLP approaches, typically less expensive in term of sample 

size requirements. 
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ICD-10 chapter False 
positives (%)  

False 
negatives (%) 

Prevalence 
(%) 

Diseases of the circulatory system 3.75 4.98 22.4 

Symptoms, signs and abnormal clinical and 
laboratory findings, not elsewhere classified 

3.87 4.12 21.8 

Neoplasms 4.07 5.07 15.9 

Diseases of the respiratory system 3.02 4.00 8.76 

Endocrine, nutritional and metabolic diseases 2.17 3.44 4.83 

Diseases of the nervous system 2.70 4.12 3.89 

Mental and behavioural disorders 2.88 4.14 3.58 

Diseases of the digestive system 5.72 8.10 3.53 

Factors influencing health status and contact with 
health services 

19.2 19.6 3.08 

Diseases of the genitourinary system 5.45 7.59 2.71 

External causes of morbidity and mortality 16.6 23.5 2.57 

Certain infectious and parasitic diseases 7.98 9.23 2.55 

Injury, poisoning and certain other consequences of 
external causes 

14.0 19.8 2.07 

Diseases of the blood and blood-forming organs and 
certain disorders involving the immune mechanism 

6.72 12.2 0.77 

Diseases of the musculoskeletal system and 
connective tissue 

12.2 17.3 0.62 

Diseases of the skin and subcutaneous tissue 8.72 8.16 0.51 

Certain conditions originating in the perinatal period 14.5 20.5 0.16 

Congenital malformations, deformations and 
chromosomal abnormalities 

22.4 25.6 0.15 

Diseases of the eye and adnexa 4.93 13.6 0.076 

Codes for special purposes 24.0 34.0 0.047 

Diseases of the ear and mastoid process 5.6 33.3 0.017 

Pregnancy, childbirth and the puerperium 50 33.3 0.0056 

 

Table 4.2.5: Prevalence, false positives and negatives rates for each ICD -10 chapter, 

sorted in descending order by prevalence  

Score calibration fitness assessment 

 

The model being fit in a similar fashion to multinomial logistic regression, it not only yields a prediction, 

but an associated score similar to a confidence probability. If properly calibrated, this score can offer 

powerful insights regarding the prediction’s quality at the individual level. Typically, a “good” score 

would be expected to show higher values in cases where the predicted ICD-10 sequence is correctly 

predicted and a low one when mispredicting. Such a well calibrated score could for instance allow for 

real-world applications of semi-autonomous systems where: 
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 A threshold value for the model’s score is defined, 

 All certificates whose predictions are associated with confidence scores above the threshold 

level are accepted without any additional human supervision, 

 All certificates whose predictions are associated with confidence scores below the threshold 

level are systematically reviewed by a human expert, and modified manually if required. 

 

Fig. 4.2.2 Percentage of rejected predictions versus F-measure on accepted ones. The 

score threshold value defining the accepted predictions are displayed as point colours  

 

Being able to properly filter the model’s predictions according to a well calibrated confidence score 

would thus allow to get the best of both worlds. Most of the certificates would be automatically coded 

by the autonomous system, leaving for human coders only the most complex cases.  

Efficient assessment of such scores in traditional machine learning problems is typically done through 

visualization of ROC curves. However, the sequential, multinomial nature of the investigated problem 

renders this approach ill defined. The plot found in figure 4.2.2, while conceptually similar to a ROC 

curve, was derived following a slightly different approach in order to efficiently appreciate the model 

score’s quality: 
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 A grid of score threshold values was defined (uniform grid with 0.01 intervals), corresponding 

to the threshold defined above, filtering between model predictions that would require human 

examination or not, 

 For every given threshold value were computed the percentage of predictions with inferior or 

equal scores (considered as rejected requiring human examination due to poor score), as well 

as the F-measure performance on the predictions with high enough scores (that would be 

accepted without any human intervention following the above example), 

 Percentage of accepted certificates and F-measurement were scatter plotted against each 

other, with threshold value displayed as points’ colour  

By showing a clean, increasing relationship between the number of rejected predictions and the F-

measure evaluated on the remaining certificates, figure 4.2.2 strongly indicates good score calibration. 

As an example, by considering that only predictions associated with a confidence score lower than .5 

as not requiring any additional human supervision, the system is able to code approximately 80% of all 

certificates present in the test set with a F-measure of .98, significantly higher than the .94 obtained 

on all test certificates. 

 

4.2.3 Discussion 
 

The error analysis carried on so far allowed for the assessment of the model’s strength and weaknesses 

on the global level. They however fail to yield any interesting insight regarding potential model biases, 

for instance towards specific coding rules. Indeed, the coding of medical entity from natural language, 

especially with regard to mortality statistics, is subject to a number of coding rules depending on 

context or pathology, with a level of specificity oftentimes reaching casuistry61.  

In addition, all results presented so far with a model error defined as a disagreement between the 

model’s output and the information contained in the database. However, building a medical database 
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is a complex, mostly human-based process. As such, an inevitable amount of noise is to be expected in 

the ICD-10 codes presents in the database, in two main forms: 

 Simple human errors in the ICD-10, 

 The presence of unreadable text in paper certificates. Unreadable words on paper certificates 

are denoted as an exclamation point in the textual data fed to the model. However, human 

coders usually take additional time in order to infer these words, for instance from contextual 

cues. This leads to death certificates in the database where the ICD-10 sequences contain 

additional codes compared to the textual data available. As such, not predicting these codes 

would result in a drop in performance metrics, while the model has no way of predicting them. 

An example of such a death certificate can be found in table 7.3 of the annex. 

These phenomena have the potential to negatively bias the proposed model’s performance 

estimations, and should be the object of further investigation.  

One straightforward, although fairly time-consuming approach to address these two considerations 

can be obtained by having a ICD-10 coding expert manually examine some of the death certificates 

where the model’s predictions do not match the ICD-10 codes present in the database. Two 

experiments were conducted following this idea.  

In a first experiment, 99 certificates where the model’s predictions did not exactly match with the 

database’s ICD-10 variables (meaning that the ICD10 sequences differed by at least one code) were 

selected at random from the test set and shown to the medical practitioner referent and final decision-

maker on ICD-10 mortality coding in France, who was asked for each certificates to: 

 Manually recode all the ICD-10 medical entities present on each death certificates by herself, 

from the information the proposed model had access to, without access to the dataset and 

model’s ICD-10 sequences proposal, 
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 Give a qualitative comment on the investigated model and database’s outputs compared to 

hers. 

The ICD-10 sequences derived from the medical expert and national referent for ICD-10 coding in 

France being significantly more reliable than the ones coming from the traditional data production 

process (using a combination of expert system and human coders), they can be considered as exempt 

of any potential human error. As a consequence, comparing them to both the proposed model’s output 

and the ICD-10 values contained in the dataset would allow for an estimation of the potential negative 

biases described above. This can be done for instance by estimating the performance metrics selected 

for the previous experiments, considering both the model’s predictions and the database’s values as 

predictions, and the medical expert’s outputs as the ground truth. Depending on the resulting values, 

several interpretations can be made ranging from two extreme cases: 

 If perfect agreement (meaning an F-measure of 1.) is reached between the database’s ICD-10 

sequences and the medical expert, suggesting that the database does not have coding 

mistakes, then the performance metrics reported in the results section can safely be 

considered unbiased 

 If perfect agreement is reached between the model’s prediction’s ICD-10 sequences and the 

medical expert, suggesting that the model does not do any mistakes, then the performance 

metrics reported in the results section should be considered significantly underestimated  

Before estimating the performance metrics following this methodology, a slight pre-processing step is 

however required. Indeed, on the death certificates sampled for the experiment, F-measure 

estimation between the model’s prediction and the database’s ICD-10 sequences yields a value of .81. 

This is explained by the sampling process that selects death certificates where at least one code differs 

in both ICD-10 sequences. As a consequence, and because of the model’s performances, most ICD-10 

codes present on both sequences are identical, as can be seen on error examples presented in the 

annex’ tables 7.3, 7.4 and 7.5. The authors felt that this might lead to artificially high values of the 
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estimated metrics in the experiment, and consequently decided to delete all common codes on both 

the model’s outputs and database’s values, prior to metrics estimation, as can be shown in table 4.2.6. 

 

 Before pre-processing After pre-processing 

Predicted ICD-10 I259 Z951 I719 C679 I10 R092 Z951 

Database ICD-10 I259 I251 I719 C679 I10 R092 I251 

Medical expert ICD-10 I259 I251 I719 C679 I10 R092 I251 

Table 4.2.6: Example of preprocessing used for the experiment on a real error 

example. The predicted and database ICD -10 sequences only differ by one code, while 

they share 5 codes. All these shared codes are deleted from all ICD -10 sequences prior 

to performance metrics estimation 

 

For better comparability, these statistics are reported both on: 

 Certificates without missing data in the natural language based causal chain of death (by 

excluding certificates containing a “!” symbol) in table 4.2.7, 

 All certificates in table 4.2.8. 

 

Database or prediction F-measure Precision Recall 

Database against 
medical expert 

.483 [.383, .589]  .443 [.341, .555] .531 [.425, .636] 

Prediction against 
medical expert 

.431 [.316, .542] .458 [.338, .580] .407 [.295, .519] 

Table 4.2.7: F-measure, precision and recall (with their 95% confidence intervals) of 

both the database and the model’s predictions against the medical expert for sampled 

certificates without missing data  

 

 

 

 

 

 

 



168 
 
 

Database or prediction F-measure Precision Recall 

Database against 
medical expert 

.613 [.486, .733]  .630 [.492, .761]  .596 [.471, .721] 

Prediction against 
medical expert 

.370 [.237, .504] .392 [.250, .54] .351 [.222, .482] 

Table 4.2.8: F-measure, precision and recall (with their 95% confidence intervals) of 

both the database and the model’s predictions against the medical expert for all 

sampled certificates  

 

Tables 4.2.7 and 4.2.8, show no significant difference in prediction performance between the proposed 

approach and the current data production process (based on a combination of expert system and 

human coders), although the database’s ICD-10 values have better performance metrics on both cases. 

When including certificates containing missing text, the proposed model agreement with the medical 

expert increases considerably to an F-measure of above .96, further confirming the hypothesis that 

the performance metrics reported in the result section are negatively biased. 

From the qualitative comments made by the medical experts, three major types of model errors could 

be defined: 

 In 16% of cases, disagreement between the current data production process and the proposed 

approach was due to missing information in the input text. On these specific cases, the F-

measure between model output and medical expert decision was measured at .974 (an 

example of such error case can be seen in the annex, in table 7.3), 

 In 14% of cases, the correct ICD-10 sequence is dependent on highly contextual clues or 

external knowledge of world behaviour (e.g. someone found dead at the bottom of stairs is 

quite likely to have suffered a fall. An example of such error case can be seen in the annex, in 

table 7.4), 

 In 12% of cases, the correct ICD-10 sequence is dependent on highly nonlinear, almost casuistic 

rules and are typical examples of scenarios where a hybridized deep learning and expert-based 
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system should be beneficial (an example of such error case can be seen in the annex, in table 

7.5) 

 The remaining cases did not elicit any comment from the medical expert. 

Finally, in a second experiment, the medical expert’s ability to discriminate between human coding 

and the proposed approach was assessed, in a Turing test-like approach. To do so, a hundred additional 

certificates where the model’s output differed from the database’s ICD-10 sequences were sampled 

at random from the test set. The medical expert was shown their corresponding input features (text 

and auxiliary variables), as well as the two ICD-10 sequences (with their provenance, either from the 

model or the database, masked) as can be seen in table 4.2.9. 

 

Sex Year Age Text Proposition 1 Proposition 2 

2 2013 90 90 ans, péritonite, perforation grêle, 
occlusion, chirurgie digestive, infection 
pulmonaire, arrêt respiratoire 

R54, K566, K659, 
K631, Y839, J958, 
R092 

R54, K659, K631, 
K566, Y839, J189, 
R092 

Table 4.2.9: Example of death certificate format given to the medical expert for the 

second experiment. The medical expert is asked from the information available in the 

line to guess which of proposition 1 or pro position 2 was produced by a human coder, 

the other being the proposed model’s output  

 

After exclusion of certificates containing missing text data (where the human coder was easily 

identifiable due to the apparently out of context additional codes as seen in table 7.3), the medical 

expert was able to correctly identify the human in 62.0% [50.7, 73.2] of cases, which is significantly 

better than random guessing (although barely). 

 

4.2.4 Conclusion 
 

In this section, the task of automatic recognition of ICD-10 medical entities from natural language in 

French was presented as a seq2seq modelling problem, well known in the deep artificial neural 
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network academic literature. From this consideration, the performances of a well-known approach in 

the field, consisting of an ensemble of Tranformer models, was investigated using the CépiDc database 

and shown to obtain a new state of the art. The derived model’s behaviour was thoroughly assessed 

following different approaches in order to identify potential weaknesses and leads for improvements. 

Although the proposed approach significantly outperforms any other existing automated ICD-10 

recognition systems on French free-text, the question of method transferability to other languages 

require more investigations.  

The substantial performances reported in this chapter open an entire range of promising applications 

in various medical related fields, from medical act automated coding to advanced natural language 

based analysis for epidemiology. However, these interesting opportunities are oftentimes prohibited 

by these methods’ massive drawbacks, mostly their requirement for millions of annotated 

observations to perform well. Mortality datasets, in spite of their specificity, provide researchers with 

huge, clean and multilingual medical text data perfectly fit for the application of deep neural networks. 

As a consequence, and keeping in mind neural network’s strong transfer learning capability, the 

authors firmly believe that mortality data constitutes one of the most promising point of entry into 

modern natural language processing methods applications in the biomedical sciences.   

   

4.3 A deep artificial neural network based model for underlying cause of death 

prediction from death certificates 
 

As aforementioned, the process of deriving the underlying cause of death from raw death certificates 

is divided into two main steps, the first one being the identification of pathologies from the textual 

death certificate, which was addressed in the previous chapter, and the final one being the 

identification of the actual underlying cause of death from the ICD-10 encoded causal chain of death. 
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Nowadays, in order to preserve spatial and temporal comparability, the underlying cause of death is 

usually identified from an expert system76 (such as the Iris software77), a form of artificial intelligence 

that encodes a series of WHO-defined coding rules. Unfortunately, these decision systems fail to 

handle a significant amount of more complex death scenarios, typically including multiple morbidities 

or disease interactions. These cases then require human evaluation, consequently leading to a time 

consuming coding process potentially subject to distributional shift across both countries and years, 

sensibly impairing the statistics’ comparability.  

The following chapter formulates the process of extracting the underlying cause of death from death 

certificate as a statistical predictive modelling problem, and proposes to solve it with a deep artificial 

neural network. The following section focuses on describing the structured information contained in a 

death certificate. Section 3 introduces the neural network architecture used for the task of predicting 

the underlying cause of death. Section 4 reports the results obtained from training the neural network 

on French death certificate from the years 2000 to 2015 (about 8 million training examples) as well as 

a comparison with prediction performances obtained using the Iris software, current state of the art 

for this predictive task and solution used in numerous countries for underlying cause of death coding. 

Finally, section 5 shows an application of the derived model on opioid overdose related deaths in 

France. 

4.3.1 Material and method 
 

4.3.1.1 Dataset 

 

The dataset used during this study consists of every available death certificate found in the CépiDc 

database for the years 2000 to 2015, and their associated cause of death, representing over 8 million 

training examples. These documents record various information about their subjects, with varying 

predictive power with regard to the underlying cause of death. The following chapter aims to derive a 
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deep neural network based predictive model explaining the underlying cause of death from the 

information contained within death certificates: 

 𝑃(𝑈𝐶𝐷|𝐷𝐶) = 𝑓(𝐷𝐶) (4.3.1), 

 

with: 

 𝐷𝐶 the information contained in a French death certificate 

 𝑈𝐶𝐷 its corresponding underlying cause of death 

 𝑓 a neural network based predictive function 

In order to model the underlying cause of death from these information, the following items were 

selected as explanatory variables: 

 The causal chain of events leading death 

 Age 

 Gender 

 Year of death 

Causal chain of death 

 

As aforementioned, the causal chain of death constitutes the main source of information available on 

a death certificate in order to devise its corresponding underlying cause of death. The latter being the 

target of the investigated predictive model, the information contained in the causal chain of death is 

of paramount importance to decision process leading to the underlying cause of death’s 

establishment. In order to enforce death statistics comparability across countries, the coding of the 

underlying cause of death from the causal chain of events is defined from a number of WHO issued 

rules bases, oftentimes reaching casuistry on more complex situations78. 
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As seen in the previous chapter, and this to counter language dependent variability of death 

certificates across countries, the decision rules governing the underlying cause of death process are 

actually defined from this ICD-10 converted causal chain, and the former is to be reported as a unique 

ICD-10 code. 

The processed causal chain of death, in its encoded format, can be assimilated as a sequence of 6 

varying length sequences of ICD-10 codes. In order to simplify both the model and computations, this 

hierarchical data structure will hereon be assimilated, as seen in figure 4.3.1, as a padded 6 by 20 grid 

of ICD-10 codes, with rows and columns denoting a code’s line and rank in line, respectively, 20 being 

the maximal number of ICD-10 codes found on a causal chain line in all certificates present in the 

investigated dataset. Several, subtler approaches to this grid like assimilation were explored prior to 

the experiment reported in this chapter, but all yielded models with significantly inferior predictive 

power. Although this encoding scheme apparently prevents the encoding to handle death certificates 

with at least one line containing more than 20 codes, the model introduced further itself sees no such 

limitation. Bigger certificates can be processed without trouble with an appropriately larger code 

matrix encoding, with theoretically no significant loss in performance, since the model is translation 

invariant79.  

The question of encoding ICD-10 codes in a statistically exploitable format is another challenge in itself. 

A straightforward approach would be to factor each ICD-10 code as a 7404 dimensional dummy 

variable. This simple encoding scheme might however be improved upon, typically by exploiting the 

ICD-10 hierarchical structure by considering codes as sequences of character. This approach was 

investigated, but yielded significantly lower results. As a consequence, the results reported in this 

chapter only concern the dummy variable encoding scheme.  

 



174 
 
 

 

Fig. 4.3.1 Causal chain of death encoded as a 3 dimensional tensor. Each node 

represents an ICD-10 code as a 7404 dimensional dummy variable. Its row and column 

position respectively denotes the corresponding code’s line  and rank in the 

corresponding certificate 

 

Miscellaneous variables 

 

From gender to birth town, a death certificate contains various additional information on its subject 

besides the chain of events leading to death. As some of these items are typically used by both Iris and 

human coders to decide the underlying cause of death, they present an interest as explanatory variable 

for the investigated predictive model. After consultation with expert coders, the following items 

available on French death certificate were selected as additional exogenous variables: 

 gender (2 states categorical variables), 

 year of death (16 states categorical variables), 

 age, factorized into 5 years’ intervals from subject less than one year old, which were divided 

into two classes. 
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Strictly speaking, the subject’s year of passing should only have a limited effect on the underlying cause 

of death However, the WHO defined coding rules, as well as their interpretations by human coders 

slightly evolve over the years. As a consequence, the model should benefit, in term of predictive 

performance, from being able to differentiate between different years.  

4.3.1.2 Neural architecture 

 

With the death certificate and its selected variables converted into a format enabling analysis, the 

underlying cause of death extraction task can be solved by estimating its corresponding ICD-10 code’s 

probability density, conditioned on the aforedefined explanatory variables: 

 𝑃(𝑈𝐶𝐷|𝐶𝐶𝐷, 𝐴, 𝑌, 𝐺, 𝜃) = 𝑓𝜃(𝐶𝐶𝐷, 𝐴, 𝑌, 𝐺) (4.3.2), 

 

with: 

 𝑈𝐶𝐷 ∈ ℝ7404 the underlying cause of death 

 𝐶𝐶𝐷 ∈ ℝ6  × ℝ20 × ℝ7404 the ICD-10 grid encoded causal chain of death 

 𝐴 ∈ ℝ25 the categorized age 

 𝑌 ∈ ℝ16 the year of death 

 𝐺 ∈ ℝ2 the gender 

 𝑓𝜃 a mapping from the problem’s input space to its output space, parameterized in 𝜃 a real-

valued vector (typically a neural network) 

This approach can be yet improved upon by stacking several neural layer between the input variable 

and the final linear model output, progressively increasing the model’s number of degrees of freedom 

and non-linear explanatory power80 and leading to the creation of a wide family of predictive model, 

with state of the art performance in a wide variety of tasks, typically in computer vision and natural 

language processing. Although the currently investigated modelling problem does not fall into one of 
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these categories, recent advances in both deeply inspired the neural architecture presented in this 

chapter, which can be seen in figure 4.3.2 and can be decomposed as follows: 

 Linear projections are applied to each one-hot encoded categorical variable65 (one linear 

projection is shared for all ICD-10 codes present in the causal chain of death), with all linear 

projections sharing the same output space dimension, 

 The miscellaneous variables’ projections are added to all of the projected grid’s elements, 

 The resulting grid is used as input to a convolutional neural network81, 

 A multinomial logistic regression (softmax regression) targeting the underlying cause of death 

is performed on the convolutional neural network’s output82, 

 All model parameters (from both the linear projections and the convolutional network) are 

adjusted by minimizing a cross-entropy objective using gradient based optimization. The 

model’s gradients are computed using the backpropagation method83. 

 

 

Fig. 4.3.2 Overall model architecture  
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4.3.1.3 Training and evaluation methodology 

 

The investigated model was trained using all French death certificates from years 2000 to 2015. 10,000 

certificates were excluded from each year and spread into a validation set for hyper-parameter fine-

tuning, and a test dataset for unbiased prediction performance estimation (5000 each), resulting in 

three datasets with following sample sizes: 

 Training dataset: 8553705 records, 

 Validation and test dataset: 80000 records each. 

The model was implemented with Tensorflow, a python-based distributed machine learning 

framework, on two NVidia RTX 2070 GPUs simultaneously using a mirrored distribution strategy. 

Training was performed using a variant of stochastic gradient descent, the Adam optimization 

algorithm.  

The numerous hyper-parameters involved in the model and optimization process definition were 

tuned using a random search process. However, due to the significant amount of time required to 

reach convergence on the different versions of the model trained for the experiment (around 1 week 

per model) only three models were trained, the results displayed below being reported from the best 

of them, in term of prediction accuracy on the validation set. The interested reader will find a complete 

list of the hyper-parameters defining this model in annex. Given the considerably small hyper-

parameter exploration performed for the experiment reported in this chapter, the authors expect that 

better settings might provide with a slight increase in prediction performance. However, given the 

successful results obtained and the computational cost of a finer tuning, a decision was taken to not 

further the exploration.  

After training, the model’s predictive performance was assessed on the test dataset (excluded prior to 

training, as mentioned earlier), and compared to the Iris software’s, nowadays considered as the state 
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of the art in automated coding and internationally used. In order to ensure a fair comparison between 

the two systems, Iris’ performances were assessed on the test set as well and given the same 

explanatory variables. As is done traditionally in the machine learning academic literature, the 

predictive performance is reported in term of prediction accuracy, namely the fraction of correctly 

predicted codes in the entire test dataset. 

The Iris software’ automatic coding accuracy was assessed with two distinct values resulting from the 

software’s ability to automatically reject cases considered as too complex to be handled by the decision 

system. As a consequence, a first accuracy measurement (the lowest one) was assessed considering 

rejects as ill-predicted cases, while the second one excluded these rejects from the accuracy 

computation, thus yielding an improved estimate. In order to present the reader with a more 

comprehensive view of both approaches’ performances these accuracy metrics were also derived on 

a per chapter basis, again on the same test set. 

 

 

4.3.2 Results 
 

The neural network based model was trained as aforedescribed for approximately 5 days and 18 hours, 

and its predictive performance as well as Iris’ are reported in table 4.3.1. 

The neural network based approach to underlying cause of death automated coding significantly 

outperforms both metrics. Indeed, even when compared to Iris’ performance on non-rejected cases, 

the error rate offered by the proposed approach is 3.4 times lower. This performance difference 

increases to an eleven-fold decrease when including rejected cases in Iris performance.  
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Selected approach Prediction accuracy 

Iris overall accuracy 0.745 [0.740, 0.750] 

Iris on non-rejected certificates 0.925 [0.921, 0.928] 

Proposed approach 𝟎. 𝟗𝟕𝟖 [𝟎. 𝟗𝟕𝟕, 𝟎. 𝟗𝟕𝟗] 

Table 4.3.1 Prediction accuracy of Iris and the best derived predictive m odel, with 

their corresponding 95% confidence intervals, derived by bootstrap  

 

In addition, Figure 4.3.3 shows the model’s error rates per ICD-10 chapter, alongside the latter’s 

prevalence. In this plot chapter VII, diseases of the eye and adnexa, appears as a strong outlier in term 

of error rate. Also not statistically significant (only 3 death certificates among the 80 thousand sampled 

for the test set have a chapter VII related underlying cause of death), this observation might indicate 

that the training set does not have a big enough sample size to allow the model to handle extremely 

rare cases such as chapter VII related death certificates, which might better be handled by a hand 

crafted, rule based decision system. 

 

Fig. 4.3.3 Left: Prevalence of underlying causes (by ICD-10 chapter) against ICD-10 

chapter level model error rate. Right: Zoom on the previous plot’s bottom left hand 

corner 

 

Finally, figure 4.3.4 shows the per chapter difference in error rate between the proposed neural 

network approach and the Iris software (on non-rejected certificates). As previously hypothesized, the 

Iris software outperforms the deep learning approach on diseases of the eyes and adnexa related 
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death certificates (chapter VII), although still not significantly. Even if the Iris software is beaten in 

every other chapter, a case should be made from never appearing chapters. Indeed, a number of 

chapters (namely chapters XIX, XXI and XXII) are not observed as underlying causes in the test dataset, 

strongly indicating that they might benefit from a set of hand crafted rules as do chapter VII related 

certificates, if they were to appear in extremely rare cases. 

  

Fig. 4.3.4 Left: Difference in error rate between the proposed model and the Iris 

software versus chapter prevalence as underlying cause. Right: Zoom on the previous 

plot’s bottom left hand corner  

4.3.3 Error analysis 
 

Although the proposed approach significantly outperforms the current state of the art that is the Iris 

software, neural network based methods are known to present several drawbacks that can 

significantly limit their application in some situations. Typically, the current lack of systematic methods 

to interpret and understand neural network based model and their decision processes can lead the 

former to perform catastrophically on ill predicted cases, independently from their high predictive 

performances.  

As a consequence, the proposed model behaviour in ill predicted cases require careful analysis. In 

addition, the system’s performance can potentially benefit from such an investigation. For instance, 

although the model outperforms Iris on average, there might some highly non-linear exceptions that 
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are better fit to rule-based decision systems, in which case a hybrid approach could, by using the best 

of both world, again yield performance gains.  

Although assessing per chapter error rates, as previously shown, constitutes a simple, straightforward 

approach to understanding the model’s weakness, much more can be done to gain insight into the 

model’s behaviour. As an example, it only feels natural, after identifying cases incorrectly predicted by 

the investigated model, to assess the nature of errors made by the latter. As aforementioned, neural 

network based classifiers tend to, in misprediction cases, output answer unreasonably far from the 

ground truth. One should however expect from a good predictive model to, in error cases, output 

predictions as close as possible to the correct answer. Figure 4.3.5 displays an ICD-10 chapter level 

confusion matrix built from ill predicted test cases, and shows that beside chapter VII, most of the 

errors remain in the same chapter as the ground truth, indicating some degree of model robustness. 

 

 

Fig. 4.3.5 Left: distribution of wrong predictions per ICD -10 chapter versus their 

ground truth (the lighter the rarer). Right: Same distribution’s modes. Apparent 

missing values in both figure correspond to chapters either not represented in the test 

dataset or on which no mistakes were made 
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The model’s error behaviour can also be investigated from a calibration fitness perspective. As 

aforementioned, some artificial neural network based models have been known to behave quite 

poorly in ill predicted cases, which could constitute a highly undesirable phenomenon when handling 

health data. The model being fit in a similar fashion to multinomial logistic regression, it not only yields 

a prediction, but an entire probability distribution over all possible ICD-10 codes. Assessing this 

distribution can offer powerful insight for such considerations. Typically, a “good” predictive model 

would be expected to show high confidence in cases where the prediction is correct, and a low one 

when mispredicting. Bar plots of said prediction confidences can be found in figure 4.3.6, and clearly 

show a strong tendency for the model to be more confident in its prediction in correctly predicted 

cases.  

 

Fig. 4.3.6 Histograms of prediction confidence in correct (blue) and incorrect (orange) 

predictions. The model typically predicts correct values with high c onfidence, and 

incorrect values with lower confidence  

 

If predicting incorrect values with low confidence is a desirable behaviour for a predictive model, 

associating the ground truth with high probabilities, even in misprediction cases, should be of equal 

importance. This is typically assessed by evaluating whether each test set subject’s corresponding 

ground truth is contained in the 𝑘 ∈ ℕ∗ most probable values present in the model’s corresponding 
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outputted distribution. This type of metric is typically denoted as the model’s top-𝑘 accuracy, and helps 

assessing a model’s ability to give high confidence to correct values, even when mispredicting. 

Although the academic machine learning literature typically makes use of the top-5 accuracy in such 

cases, the investigated model was investigated with a top-2 accuracy only. Indeed, most death 

certificates present in the dataset display causal chains of events with 5 or less ICD-10 codes, with the 

underlying cause of death being one of them. It is consequently reasonable to expect the model to 

output these 5 codes as most probable, thus leading to a high but meaningless top-5 accuracy. The 

assessed top-2 accuracy can be found in table 4.3.2, and strongly indicates that the model consistently 

associates correct underlying causes of death with higher probabilities, even in ill predicted cases. 

 

Second most probable code prediction accuracy 
on ill predicted certificates 

0.663 [0.641, 0.685] 

Proposed model Top-2 accuracy 0.993 [0.992, 0.993] 
Table 4.3.2 Accuracies on codes wrongly predicted by the proposed model, and model 

top-2 accuracy 

 

A richer, although more time consuming, error analysis can be derived from human observation of 

each error cases by an underlying cause of death coding specialist. To do so, 96 of the 1777 ill predicted 

death certificates in the test set were selected at random and shown to the medical practitioner 

referent and final decision-maker on underlying cause of death coding in France, who gave for each of 

the selected certificates: 

 Her personal opinion of what each certificate’s corresponding underlying cause should be, 

 A qualitative comment on the investigated model’s error. 

The aforementioned underlying causes obtained were then confronted with both the actual values 

contained in the dataset and those predicted by the derived model, leading to the following 

observations: 
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 In 41% of cases, the referent agreed with the model’s predictions, 

 In 37% of cases, the referent agreed with the underlying cause present in the dataset, 

 In 22% of cases, the referent agreed with neither of them. 

Consequently, the derived predictive model’s coding can be considered as comparable in quality to 

the actual process responsible for the production of the investigated dataset’s. In addition, a 

qualitative analysis of the medical practitioner’s comments on the model’s mistakes showed that 30% 

of errors committed by the predictive model are related to casuistic exceptions in coding rules, such 

as non-acceptable codes as underlying cause of death. Such an observation strongly reinforces the 

hypothesis that a hybrid, expert system deep learning approach should improve the presented 

system’s coding accuracy. 

4.3.4 Practical application: Recoding the 2012 French overdose anomaly 
 

The topic of overdose related death monitoring has recently drawn attention of public health agencies 

around the world, specifically in light of the opioid related sanitary crisis recently witnessed in the US. 

Causes of death data constitutes an information source of choice to investigate such topics. In France, 

the CépiDc database was used to assess the evolution of overdose related deaths from 2000 to 2015, 

by counting for each year the number of deaths associated with the following underlying causes:   

 Opioid and Cannabis related disorders (ICD-10 codes beginning with F11 and F12), 

 Cocaine, hallucinogen and other stimulant related disorders (F14 to F16), 

 Other psychoactive substance related disorders (F19), 

 Accidental poisoning by and exposure to narcotics and psychodysleptics, not elsewhere 

classified (X42), 

 Intentional self-poisoning by and exposure to narcotics and psychodysleptics, not elsewhere 

classified (X62), 
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 Poisoning by and exposure to narcotics and psychodysleptics, not elsewhere classified, 

undetermined intent (Y12). 

The resulting trajectory can be found in figure 4.3.8, and shows a significant decline in overdose related 

deaths in 2011 and 2012. Some explanations were found for this punctual reduction, such as decrease 

in heroin purity84 and heroin overdose related deaths85, in the same time period. 

Although this punctual reduction can be at least partially explained by observed decreases in both 

heroin purity84 and heroin overdose related deaths85 in the same time period, confrontation with 

results obtained from an independent source, the DRAMES dataset, suggests another hypothesis. The 

DRAMES study constitutes a non-exhaustive inventory of overdose related deaths detected in French 

Legal Medicine Institutes. As a non-exhaustive database, its death count should not exceed the value 

obtained from the CépiDc database. As can be seen in figure 4.3.7, this logical assertion is true for all 

years from 2009 to 2013 but the notable exception of 2012. This discrepancy might be explained by a 

coding process deficiency, a hypothesis that can easily be verified by recoding every certificate from 

2012, and comparing the number of overdose related deaths in both situations.  

 

Fig. 4.3.7 Left: Evolution of overdose related deaths from 2000 to 2015 in France. The sudden 

decrease in 2012 appears anomalous. Right: Comparison with DRAMES data, a non-exhaustive, 

independent data source, which finds more deaths in 2012 than the exhaustive CépiDc database 

 

The model derived in the previous experiment was used to recode every French death certificate from 

2000 to 2015, with the year of coding set to 2015 to prevent any discrepancy related to coding rule 
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variation. The overdose related death were then selected from the predicted underlying cause of 

deaths following the aforementioned methodology.  

The resulting curve can be seen in figure 4.3.8, alongside the official curve, and clearly shows a 

smoother decrease in opioid related deaths. The discrepancy with the DRAMES database, in addition, 

disappears when considering the recoded underlying causes of deaths. 

 

 

Fig. 4.3.8 Left: Evolution of opioid overdose related deaths from 2000 to 2015 in 

France either coded with Iris and human coders (orange) or with the p roposed 

approach (blue). The 2012 gap, although still present, is much smoother when using 

predicted underlying causes. Right: Comparison with DRAMES  data. The contradiction 

with the CépiDc database is entirely corrected with the predicted causes.  

 

 

4.3.5 Conclusion 
 

In this section was presented a formulation of the underlying cause of death coding from death 

certificate as a statistical modelling problem, who was then addressed with a deep artificial neural 

network, setting a new state of the art. The derived model’s behaviour was thoroughly assessed 

following different approaches in order to identify potentially harmful biases and assess the potential 

of a hybrid approach mixing rule based decision system and statistical modelling. Although the 

proposed solution significantly outperforms any other existing automated coding approaches on 

French death certificates, the question of model transferability to other countries requires more 
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investigation. Indeed, the problem of distribution shift is well known in the machine learning 

community, and can significantly impair the model’s quality86.  

The authors feel confident the model should perform with similar predictive power on other countries’ 

death certificate with little to no supplementary effort necessary, even though this claim requires some 

experimental validation, unrealisable without international cooperation. To conclude, this chapter 

shows that deep artificial neural networks are perfectly suited to the analysis of electronic health 

records, and can learn directly from voluminous dataset a complex set of medical rules, without any 

explicit prior knowledge. Although not entirely free from mistakes, the derived algorithm constitutes 

a powerful decision making tool able to handled structured, medical data with unprecedented 

performances, and we strongly believe that the methods developed in this chapter are highly reusable 

in a variety of settings related to epidemiology, biostatistics, and the medical sciences in general. 

 

4.4 On the comparability of international cause of death statistics: A deep artificial 

neural network based study 
 

4.4.1 Introduction 
 

As aforementioned, the current need for human contribution in the production of mortality statistics 

can lead them to be subject to distributional shift across both countries and years, which in turn raises 

the question of whether, and how much, are cause of death statistics comparable at the international 

level. However, the predictive model introduced in the previous chapter leads to an autonomous 

coding system with performances comparable to human coders in term of performance. Although they 

still require further investigation to be proposed as part of the data production process included or in 

interaction with the well-established Iris software, their predictive power might be able to provide 

some insight on this comparability question. This is exactly what this chapter investigates, by fitting 

one deep learning based model for the prediction of underlying cause of death from death certificates 
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on a massive and multi-country set of records, and trying to isolate coding patterns specific to each 

country included in the experiment from the derived model. 

4.4.2 Material and method 
 

4.4.2.1 Material 

 

The dataset used for the experiments presented in this part consists of death certificates from 4 

countries, namely England, the United States of America (U.S.A.), France and Italy, and their associated 

causes of death, representing over 60 million training examples. As the availability and number of 

these documents varies across countries, each of the datasets at the national scale level have some 

specificities: 

 The English dataset consists of all English and Welsh death certificates from years 2005 to 

2018, with the exception of certificates that were certified by a coroner, for a total of 5.1 

million observations, 280 000 of which were reserved for the creation of a validation and test 

dataset for hyper-parameter searching and performance evaluation, respectively, 

 The Italian dataset consists of all Italy’s death certificates from years 2014 to 2016, with the 

exception of certificates related to external causes of deaths (chapter XX of the ICD-10 

classification, related to violent or accidental death among other things), for a total of 1.8 

million observations, 120 000 of which were reserved for the creation of a validation and test 

dataset, 

 The American dataset consists of all U.S. death certificates from years 2000 to 2017, for a total 

of 45.5 million observations, 900 000 of which were reserved for the creation of a validation 

and test dataset, 

 The French dataset consists of all French death certificates from years 2000 to 2016, for a total 

of 9.3 million observations, 340 000 of which were reserved for the creation of a validation 

and test dataset. 
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These documents record various information about their subjects, with varying predictive power with 

regard to the underlying cause of death. The following part aims to derive a deep neural network based 

predictive model explaining the underlying cause of death from the information contained within 

death certificates: 

 𝑃(𝑈𝐶𝐷|𝐷𝐶) = 𝑓(𝐷𝐶) (4.4.1), 

 

with: 

 𝐷𝐶 the information contained in a death certificate 

 𝑈𝐶𝐷 its corresponding underlying cause of death 

 𝑓 a neural network based predictive function 

 

In order to model the underlying cause of death from these information, the following items were 

selected as explanatory variables: 

 The causal chain of events leading death 

 age 

 gender 

 year of death 

 country of origin 

 

4.4.2.2 Method 

 

The variables’ formatting and model definition follow the exact same methodology as was done in our 

previous study with the addition of one variable in the model, the certificate’s country of origin. This 
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variable will be considered as a qualitative variable with 4 distinct states (one for each country included 

in the study), which will be treated in the same exact manner as all other miscellaneous variables, 

meaning all these categorical variables are projected into a dense highly dimensional space, mean 

aggregated, and then added element wise to all ICD-10 codes present in the certificate’s causal chain 

of death’s own embeddings. 

This additional variable constitutes the cornerstone of the experiment presented in this chapter, the 

main rationale behind its inclusion being that if mortality statistics were to be perfectly comparable 

across countries, this variable should not impact the model’s predictions. As an example, for a given 

certificate, setting this variable’s state to “Italy” or “France” should result in the exact same model 

prediction. Consequently, making this variable state vary for all certificates included in the test set and 

investigating whether they lead to variation in the model’s prediction might yield some leads as to 

whether death statistics are actually comparable across countries, at least in an exploratory fashion. 

This can be interpreted as an experiment where human coders from a given country were given 

certificates from another country, for an inter-rater agreement study. Due to the time consuming 

nature of the coding process, this approach would be unrealistic for human coders, but can be done 

fairly simply using a neural network that learnt each country’s way of coding. 

As a consequence, after model fitting, test sets from all countries were predicted with the country of 

origin’s information being set to both the proper one, and all other countries included in the 

experiment, resulting in 4 distinct predictions for each death certificate. The model’s performances 

were then evaluated for all these different predictions separately, in order to assess whether variation 

in the country of origin variable results in a variation in predictive performances. To sum up, for a given 

country, after model fitting: 

 The model predicted the country’s test dataset its country of origin variable set to its correct 

value, 
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 The model predicted the country’s test dataset its country of origin variable set to all other 

countries, 

 All the resulting predictions’ performances were estimated in term of accuracy at the 4 

characters ICD-10 code level (with 95% confidence intervals being computed using bootstrap), 

leading to 4 distinct performance evaluations that would be expected to be equal, were 

mortality statistics perfectly comparable at the international scale. 

In order to provide the reader with a finer grained picture of country of origin variable’s impact on 

the model’s predictive power, its accuracy was also assessed at the Eurostat causes of death shortlist 

level in two distinct approaches: 

 Exact code match (at the 4 characters ICD-10 code level, as was done for the model’s overall 

accuracy)  

 Eurostat shortlist level match (were an incorrect prediction at the ICD-10 level might become 

correct, if both the certificate’s actual cause of death and the model’s prediction lie in the 

same Eurostat item). This estimation is performed in order to assess whether prediction errors 

are mostly due to subtle, 4th character changes (for instance predicting E106, “Type 1 diabetes 

mellitus with other specified complications” instead of E108 “Type 1 diabetes mellitus with 

unspecified complications”), or to bigger, more systemic differences in coding  

 

4.4.2.3 Model fitting 

 

The model was fit on the entire dataset following the same method as was presented in part 4.3, with 

one notable difference. As the significant unbalance in dataset sample size between the countries 

included in the experiment (ranging from 1.8 million certificates for Italy to 45 million certificates 

emanating from the United States of America) might lead to a risk of potential under-fitting for 

countries associated to smaller sample sized, a simple random up-sampling strategy was applied to the 
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dataset in order to ensure balance between different country classes. In addition, a hyper-parameter 

search was conducted using random searching guided by the model’s accuracy on a preliminary 

excluded validation set dedicated to this task. 

4.4.3 Results 
 

The experiment results can be found in table 4.4.1. In term of overall accuracy, the English and Welsh 

dataset is best predicted, followed by the American, Italian and French datasets. The reader might 

notice that the performances obtained for France are significantly lower than what was reported in 

chapter 4.3. This might be explained by the fact that the model cannot only focus its predictive power 

on French certificates solely, and might be solved by using a bigger model. This was unfortunately not 

practical due to a lack of computational resources. 

 

 Coded as France Coded as Italy Coded as U.S.A. Coded as England 

From France 97.3 [97.2, 97.4] 90.6 [90.4, 90.7] 94.1 [94.0, 94.2] 94.4 [94.3, 94.5] 

From Italy 90.0 [89.8, 90.3] 97.6 [97.5, 97.7] 91.1 [90.9, 91.3] 89.7 [89.4, 90.0] 

From the U.S.A. 94.8 [94.7, 94.9] 90.5 [90.4, 90.6] 98.6 [98.6, 98.6] 96.8 [96.7, 96.8] 

From England 96.9 [96.8, 97.0] 96.3 [96.2, 96.4] 97.0 [96.9, 97.1] 99.1 [99.1, 99.2] 

Table 4.4.1: Model performances for each country, in term of accuracy, with the 

country of origin country set to all included countries. The diagonal gives the actual 

model performances for each country  

 

In term of sensibility to changes in the state of the country of origin variable, a decrease in predictive 

performances can be observed for all countries, the biggest ones being observed for Italian certificates, 

with observed decreases of up to 8% when they are coded with the country of origin variable set to 

England. For every country apart from Italy, the biggest drop in predictive power can be observed when 

their death certificates are fed to the model as if they were originating from Italy.  
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The Eurostat level performance evaluation can be seen in figures 1, 2, 3 and 4 for French, English, 

American and Italian certificates, respectively. For better readability, only Eurostat items where at least 

one of the four prediction set yielded an accuracy measurement lesser than 90% are displayed. The 

entire Eurostat level accuracy results can however be found in the annex. 
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Fig. 4.4.1 French certificates, Top: Code level accuracy per Eurostat items, Bottom: 

Eurostat shortlist level accuracy per Eurostat items  
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Fig. 4.4.2 English certificates, Top: Code level accuracy per Euros tat items, Bottom: 

Eurostat shortlist level accuracy per Eurostat items  
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Fig. 4.4.3 U.S. Certificates, Top: Code level accuracy per Eurostat items, Bottom: 

Eurostat shortlist level accuracy per Eurostat items  
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Fig. 4.4.4 Italian Certificates, Top: Code level accuracy per Eurostat items, Bottom: 

Eurostat shortlist level accuracy per Eurostat items  
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Several point of interest can be observed from these figures, the main ones being: 

 Alcohol abuse related death for English and Welsh certificates, both at the code and Eurostat 

shortlist level. Curiously, the gap in prediction power only concerns Italian and American 

predictions, with the French remaining consistent with the English ones 

 AIDS related deaths at the code level for all countries, and at the Eurostat level for Italian 

certificates, where a decrease of accuracy from 93.2% to 64.4% can be observed from Italian 

to English predictions. Curiously, for this particular Eurostat chapter, the accuracy on Italian 

chapter is higher for American predictions 

  External causes of death for all countries where they were made available 

 Diabetes at the code level for French certificates, although this disagreement disappears at 

the Eurostat level (the worst accuracy then measured being of 95.8% for Italian predictions, as 

can be seen in the annex) 

4.4.4 Discussion 
 

As mentioned before, the biggest drop in predictive power was obtained when recoding certificates as 

if they were originating from Italy. However, this might have been at least partially explained due to 

the fact that the Italian dataset was only comprised of certificates from years 2014 to 2016. As a 

consequence, the model has technically never seen any Italian certificates coded in 2005, while it is 

artificially given such certificates when predicting France as Italy, for instance. However, when 

assessing the model’s accuracy on death certificates from years to 2014 to 2016 coded as if they were 

originating from Italy, the accuracy only drops lower (96.1%, 87.8% and 89.2% for English, French and 

American certificates, respectively), strongly suggesting that this hypothesis does not suffice to explain 

this phenomenon. Another explanation might lie in the fact that the Italian dataset did not contain any 

certificates related to external causes of death, which is strongly supported by the fact that when 

excluding external causes of death related certificates from the English, American and French datasets 
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and recoding them as if they were originating from Italy, the model’s accuracy raises to 96.6%, 96.9% 

and 94.3% respectively. 

The fact that the lowest actual model accuracy is observed for French certificates rather than Italian 

ones can be explained by this fact too. Indeed, as shown in figure 4.4.1, certificates related to external 

causes of death are associated with poor accuracy, potentially resulting in artificially higher results for 

Italian certificates. 

Finally, the actual meaning of these variations in predictive power needs to be interpreted carefully. 

Indeed, even though the model strongly suggests that as the country of origin variable has an impact 

on predictions, at least to some extent, differences in the coding process exists, the explanation of 

these differences remains unclear. One could for instance ask whether they come from an actual 

difference in coding practices, or from model artefacts such as sensibility to a distribution shift. As an 

example, firearm related deaths being fairly rarer in France than in the US, it might be reasonable to 

hypothesize that French predictions of US firearm related death certificates are more often 

mispredicted, due to the sheer rarity of the phenomenon in France. In addition, even in cases where 

this variation in prediction were to be related to actual differences in the coding process, further 

investigation would be required in order to properly identify their nature. 

4.4.5 Conclusion 
 

In this chapter was introduced a novel, deep artificial neural network based approach to investigate 

the comparability of cause of death statistics at the national scale. Its application on the 4 countries 

included in the experiment shows that these statistics are globally fairly comparable, although some 

cases of potential differences between international coding processes were identified. These results 

offer interesting leads, but remains exploratory by design, and require further investigation in order to 

be better understood.  
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Finally, we would like to invite any other country that would be interested in assessing their own 

mortality statistics’ comparability at the international scale to share a dataset of their own. Indeed, 

the results exposed in this chapter are but a mere snapshot of the rich complexity of mortality 

statistics. As aforementioned, the comparability of these statistics is one of their most crucial aspect, 

and the method presented in this chapter is among the first approaches that enables to formally assess 

it in a unified manner. Considering the usefulness of reproducing and generalize that kind of treatment, 

an international body (WHO, Eurostat…) would seem adapted to set an infrastructure to manage 

international data collection and treatment. 

 

5 Conclusion 
 

During this thesis have been introduced several examples of how deep artificial neural network based 

models can be applied to electronic health databases, oftentimes with results showing a significant 

improvement upon the previous state of the art. This models have immediate real world applications, 

typically in accelerating the production of electronic medical databases (for instance with automated 

coding of medical acts), whose interest has already been shown with the use of the transformer based 

medical entity recognition from natural language model, which was used during the first lock down in 

France to produce real time comorbidity statistics for COVID-19 related deaths, and more indirect 

ones, as seen with the underlying cause of death predictive model’s use to check for potential coding 

anomalies, or to assess the comparability of mortality statistics at the international level. In addition, 

these methods in themselves are not specific to the dataset they were used on, nor the predictive 

modelling problem they were applied to. As such, they make promising leads for application in other 

electronic medical databases, such as the French “Système National des Données de Santé”. On the 

other hand, the fact that artificial neural network need not be the massive, “black box” type models 

they have the reputation to be, was partially demonstrated with the introduction of an ordinal 
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regression method based on recurrent neural networks. Even though a substantial amount of work is 

still required to better understand the theory behind it, this type of hybrid, linear/neural model might 

constitute a promising lead toward efficient neural networks models with interpretable parameters, 

which is still one of their major drawback when applied to fields such as biostatistics and epidemiology. 

In addition to this lack of interpretability, several challenges still remain in order to see a more 

widespread use of deep learning methods in electronic health databases. First, although the CépiDc 

database constitutes a perfectly valid example of such a database, its volumetry remains small in 

comparison with databases such as the SNDS, which is several orders of magnitude bigger. This 

phenomenon constitutes a double edged sword. The sample size and sheer complexity of these 

massive database should allow for the implementation of huge neural network models on a rich variety 

of different problematics, but with a significant increase of complexity, in terms of logistics, data 

management, and computational infrastructures. All the experiment presented in this thesis were 

performed with a single multi-GPU machine, with the entire investigated datasets on disk. Such a feat 

is unthinkable on a database such as the SNDS, where even the task of shaping the data into a 

“machine-learning friendly” format constitutes a major technological achievement that ought to 

require entire teams of specialists from several fields. Besides, the data’s quality itself is of paramount 

importance in itself, and can vary from case to case, as was showcased with the opioid overdose 

anomaly example. As a consequence, brutally applying modern machine learning techniques to such 

complex databases, without extensive understanding of their potential biases’ and limits, can result in 

either poor results, or, in the worst case, in erroneous conclusions, without much means of validation.  

 

Focusing on the sole task of pattern analysis, which, in its most basic essence, is what deep learning is, 

allows practitioner to build outstandingly powerful models with superhuman complexity. However, 

this is, at least from my observations, done at the price of reducing all the inherent complexity of the 

latent world to negligible noise. This is perfectly fine in most fields in artificial intelligence, where most 
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tasks are dedicated to reproducing human cognition. As an example, evaluating that all the information 

necessary to predict whether a dog is present in a picture is contained in a dataset of pictures of cats 

and dogs is trivial for the average human being. On the contrary, I find that epidemiology is usually all 

about understanding what the data means in the context of everything that’s already known outside 

the dataset (what Bayesian statisticians would call the prior, in a sense), whether it applies to the data’s 

quality and reliability to external biases. In my opinion, the fundamental root of the current conflict 

between modern data scientists and epidemiologists lies in a lack of dialogue between the two sides 

concerning this issue. I’ve seen machine learning practitioners feed a dataset to a random forest 

without taking a second to think about its limits and potential biases, only to be quietly laughed at by 

epidemiologists, amused by the contrast between the tool’s sophistications and the relatively poor 

interest of their results. On the other hand, I’ve seen public health practitioner dismiss entire protocols 

that might have led to interesting results, just based on an (sometimes) underserved mistrust of 

“blackboxy” tools. However, I strongly believe having specialists of both fields working together while 

understanding each other could lead to some outstanding results, and hope that this thesis can be a 

building block toward that goal. 
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7 Annex 
 

7.1 Learning a binary search with recurrent neural networks, a novel approach to 

ordinal regression 
 

 

Fig. 7.1 Abalone dataset visualization derived from the proposed method  

 

Fig. 7.2 Abalone ord dataset visualization derived from the proposed method  
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Fig. 7.3 Affairs dataset visualization derived from the propos ed method 

 

Fig. 7.4 Ailerons dataset visualization derived from the proposed method  

 

Fig. 7.5 Boston housing dataset visualization derived from the proposed method  
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Fig. 7.6 Bostonhousing ord dataset visualization derived from the proposed method  

 

Fig. 7.7 California housing dataset visualization derived from the proposed method  

 

Fig. 7.8 Cement strength dataset visualization derived from the proposed method  
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Fig. 7.9 Fireman example dataset visualization derived from the proposed method  

 

Fig. 7.10 Glass dataset visualization derived from the proposed method  

 

Fig. 7.11 Kinematics dataset visualization derived from the proposed method  
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Fig. 7.12 Machine ord dataset visualization derived from the proposed method  

 

Fig. 7.13 Skill dataset visualization derived from the proposed method 

 

Fig. 7.14 Stock ord dataset visualization derived from the proposed method  
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Fig. 7.15 Winequality white dataset visualization derived from the proposed method  

 

 

7.2 Neural translation and automated recognition of ICD10 medical entities from 

natural language 
 

7.2.1 Pre-processing 
 

7.2.1.1 Text standardization 

 

Minimal standardization was applied to the text data. The 6 lines present on the death certificates 

were concatenated with a “, ” separator, and the two following steps were applied as the only text 

cleaning treatments: 

 All letters were put to lower case, 

 All space based separator were collapsed to “ “. 

7.2.1.2 Tokenization for rare words 

 

In order to reduce the problem’s dimensionality and handle rare words in the dataset, Byte pair 

encoding87, the standard methodology used in the recent machine translation academic literature, was 
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used. Its implementation used for the experiments reported in this article can be found in the official 

Tensorflow Transformer repository88. 

The algorithm was applied on the entire training dataset and the derived tokenization were of cardinal 

500 and 2033 for the ICD10 and French corpora, respectively. In standard machine translation 

problems, it is usually standard procedure to tokenize both corpora with one given tokenization, in 

order for instance to make use of potential similar prefixes and suffixes in both languages. However, 

since the ICD-10 and French vocabulary are so different (the ICD-10 classification not being a natural 

language), the authors decided to use a distinct tokenization for each. Not that the two derived 

concatenation could be concatenated to get a similar result. 

 

7.2.2 Model definition 
 

The model itself follows the traditional transformer architecture89. The model’s official Tensorflow 

implementation was used for the experiments88. However, the traditional Transformer model doesn’t 

allow for the treatment of additional conditional variables. In order to include the latter in the model, 

a similar methodology than that followed in 90 was chosen: 

 Each element in both the ICD10 target sequence and the French input sentences (so either an 

ICD-10 code or a French word) are tokenized following the tokenizations obtained using byte 

pair encoding. The derived tokens are then fed to a linear embedding (of dimensionality 

“hidden_size”, a model hyperparameter) similar to word2vec, whose parameters are 

randomly initialized and learned during training. A distinct embedding is created for the ICD-

10 tokens and the French tokens 

 Each conditional variable are also fed to a linear embedding of same dimensionality that the 

ICD-10 and French tokens) that are learnt by the model during training. One distinct 
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embedding is learnt per categorical variable (leading to 4 linear additional embeddings, for the 

gender, year, age, and origin of certificate variables) 

 The mean vector of these linear projections is added in an element-wise fashion to the French 

embedded token sequence.  

 The transformer model is used as defined in its original article on the resulting embedded 

sequence  

 

Fig. 7.16 Transformer adaptation for the handling of conditional variables  

 

Several approaches are available in order to incorporate the categorical variable into the Transformer 

architecture. The authors chose this one for several reasons: 
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 Element-wise addition of categorical variables into the embedded input sequence has already 

been performed in the past (both in independent work or by work produced by the 

authors90,91) 

 The idea of element-wise addition of categorical variables to the embedded input sequence is 

already implicitly present in the Transformer architecture, in its positional encoding. Indeed, 

as the model doesn’t use any convolutional or recurrent neural architecture, the position of 

each word in the sentence needs to be explicitely expressed in the input values. To do so, the 

authors decide to consider the position of each word in the sentence as an auxiliary categorical 

variable, to embed it into a “hidden_size” vector, and to add it in an element-wise fashion to 

each of the sentence token. They investigate whether a learnable embedding or one pre-

defined is better, and end up choosing the predefined one for simplicity (this being possible 

because position of a token in a sentence is something reasonably easy to model using only 

prior knowledge). The authors followed the exact same methodology to incorporate the 

auxiliary conditional variables in the model, but opted for a learnable embedding, as no clear 

prior knowledge can be used to manually define the impact these variables have on the 

decision process leading to the identification of ICD-10 entities. 

 

 

7.2.3 Hyperparameter search 
 

 

Hyperparameter tuning was done with a random search guided by validation set’s F-measure results. 

The following variable were randomly sampled from the further specified probability distributions: 

 Model’s hidden size: sampled from a uniform random distribution between 256 and 512 

 Batch size: For computational reasons, the batch size was defined as (100 * 512 / hidden_size) 
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 Learning rate: Uniformly sampled from discrete values 1. or 2. (note that this value doesn’t 

constitute the actual learning rate, which is modified by the function “get_learning_rate” 

 Layer_postprocess_dropout: sampled from a uniform random distribution between 0 and 0.2 

 Attention_dropout: sampled from a uniform random distribution between 0 and 0.2 

 Relu_dropout: sampled from a uniform random distribution between 0 and 0.2 

 

All other parameters were fixed as recommended by the BASE_MULTI_GPU settings provided in the 

tensorflow transformer official implementation. 

40 models were trained with different hyperparameters sampled from these distributions, the best set 

of hyperparameter was then used to train a new set of model for ensembling. 

 

7.2.4 Ensembling method 
 

Due to computational reasons, the traditional method for ensembling neural translation model (logits 

averaging during the beam search process) could not be used. The following alternative was used 

instead: 

 Get the prediction from each model 

 Compute F-measurements between all prediction candidates 

 Select the prediction that shows highest F-measurements with other candidates on average 

The ensemble of models was selected by a greedy search on all the models trained for the experiment 

(40 models trained during the hyperparameters search and additional models trained with the best 

hyperparameter set) guided by the F-measurement on the validation set 

The derived score was taken as the prediction scores’ average. 
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7.2.5 Final ensemble hyperparameters 
 

 

The final ensemble found by greedy exploration consisted of 7 different models, 5 of which were 

trained with the best set of hyperparameters revealed by the random hyperparameter searchs. The 

three distinct sets of hyperparameters can be found in table 7.1, and the individual performances of 

each model can be found in table 7.2 

 

Hyperparameter Set 1 (best set) Set 2 Set 3 

Batch size  172 152 164 

Hidden size 296 336 312 

Learning rate 2. 2. 2. 

Layer postprocess dropout .073 .12 .005 

Attention dropout .105 .030 .017 

Relu dropout .173 .030 .20 

Table 7.1 Sets of hyperparameters for the different models used in the final ensemble  

Model Precision Recall F-measure 

Model 1 (hyperparameter set 2) 94.6 93.3 93.9 

Model 2 (hyperparameter set 3) 94.5 93.1 93.8 

Model 3 (hyperparameter set 1) 94.4 93.4 93.9 

Model 4 (hyperparameter set 1) 94.6 93.4 94.0 

Model 5 (hyperparameter set 1) 94.6 93.4 94.0 

Model 6 (hyperparameter set 1) 94.6 93.5 94.0 

Model 7 (hyperparameter set 1) 94.5 93.4 94.0 
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Overall ensemble 94.9 93.7 94.3 

Table 7.2 Performance metrics on the test set for each individual model from the 

ensemble (on both paper and electronic certificates). The ensemble value reported in 

the main article is also reported to allow comparison  

 

 

 

7.2.6 Error examples 
 

Text hta, insuffisance cardiaque, anévrisme aorte !, !, asystolie ! 

Predicted ICD10 I10 I509 I714 I500 

Database ICD10 I10 I509 I714 H570 I500 R068 

Expert ICD10 I10 I509 I714 I500 

Table 7.3 Example of “missing data” type error. The database shows two  additional 

codes that are not present in the text according to the medical expert. These codes 

are probably associated with the “!” present in the text, and were derived from a 

human coder reading the handwritten death certificate.  

 

 

 

Text acfa, hta, connu vertige, retrouvé terre bas escalier 

Predicted ICD10 I48 I10 R42 R98 

Database ICD10 I48 I10 R42 W10 

Expert ICD10 I48 I10 R42 W10 

Table 7.4 Example of contextual error. The proposed approach converts “retrouvé 

terre bas escalier” (which roughly translates to “found at the bottom of the stairs”) to 

R98 “unattended death”. Both human coders are able to deduce that the subject 

probably fell down the stairs and use the ICD10 code W10 “Fall on and from steps”  

 

Text cardiopathie ischemique avec triple pontage, anevrisme aortique, 
cancer de la vessie, hta, arret cardio - respiratoire 

Predicted ICD10 I259 Z951 I719 C679 I10 R092 

Database ICD10 I259 I251 I719 C679 I10 R092 

Expert ICD10 I259 I251 I719 C679 I10 R092 

Table 7.5 Example of error caused by a coding rule. I251 and Z951 are both suitable for 

“triple pontage” (Coronary artery bypass surgery). However, the M4 mortality coding 

rule (Special instructions on surgery and other medical procedures) dictates the code 

choice 

 



225 
 
 

 

7.3 A deep artificial neural network based model for underlying cause of death 

prediction from death certificates 
 

7.3.1 Model architecture 
 

The model architecture is mostly inspired from the Inception v2 network 92, with the following 

modifications: 

 The Inception v2 network’s first stage has been replaced with two temporal blocks 51 with 

successive dilation rates of 1 and 2 

 Drop-out 93 , layer normalization 94 and residual connections 95 were applied to each block as 

can be seen on Figures 7.17, 7.18 and 7.19  

 The Inception maximum pooling operation was limited to the grid’s width dimension as can 

be seen on Figure 7.20 

 The final softmax operation is tied to the linear embedding as described in 49 

The model’s full structure is described in Table 7.6 and Figures 7.17 through 7.20 

 

Type Layer size Dilation rate, stride or 

remarks 

Input size 

Linear embedding 512 _ 6 × 20 × 7404 

Temporal block 51 512 1 6 × 20 × 512 

Temporal block  512 2 6 × 20 × 512 

 3 x Inception block 1 92 512 As in Figure 7.17 6 × 20 × 512 

Inception pooling 92 1024 As in Figure 7.20 6 × 20 × 512 

5 x Inception block 2 92 1024 As in Figure 7.18 6 × 9 × 1024 

Inception pooling  1536 As in Figure 7.20 6 × 9 × 1024 
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2 x Inception block 3 92 1536 As in Figure 7.19 6 × 4 × 1536 

Full maximum pooling 1536 6 × 4 6 × 4 × 1536 

Linear layer  512 _ 1 × 1 × 1536 

Tied linear embedding 49 7404 Transpose of the first 

linear embedding 

matrix 

1 × 1 × 512 

 

Table 7.6 Model architecture and corresponding hyperparameters  

  

Fig. 7.17 Inception block 1 as described in 9 2 with additional drop-out, layer 

normalization and residual connection mechanisms  
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Fig. 7.18 Inception block 2 as described in 9 2 with additional drop-out, layer 

normalization and residual connection mechanisms  
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Fig. 7.19 Inception block 3 as described in 9 2 with additional drop-out, layer 

normalization and residual connection mechanisms 
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Fig. 7.20 Inception pooling as described in 9 2. All grid-reducing operations are limited 

to the width dimension  

 

 

 

7.3.2 Training methodology 
 

The model was implemented with Tensorflow, a python-based distributed machine learning 

framework, on two NVidia RTX 2070 GPUs simultaneously using a mirrored distribution strategy. 

Training was performed using a variant of stochastic gradient descent, the Adam optimization 

algorithm.  
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The descent’s step size (also called learning rate in the machine learning academic literature) was 

updated in real time during training according a rule defined in 89, that can be seen in figure 7.21 and 

is defined according to the formula: 

𝑆𝑡𝑒𝑝_𝑠𝑖𝑧𝑒(𝑡) =  𝛼 ∙ min(𝑡−0.5, 𝑡 ∙ 𝑤𝑎𝑟𝑚𝑢𝑝_𝑠𝑡𝑒𝑝𝑠−1.5)        ∀𝑡 ∈ ℝ+ 

With: 

 𝛼 ∈ ℝ a constant considered as a model hyperparameter and defining the learning rate’s 

overall amplitude 

 𝑤𝑎𝑟𝑚𝑢𝑝_𝑠𝑡𝑒𝑝𝑠 ∈ ℕ another hyperparameter defining the learning rate’s linear warmup 

phase length 

 

Fig. 7.21 learning rate evolution with gradient descent iterations. The learning rate 

follows a first linear increase warmup phase followed by an inverse root square decay  

 

In order to limit gradient explosion phenomena typically encountered in deep neural network, the 

optimization was in addition controlled using gradient clipping. Essentially, the norm of all gradients 

computed during the descent were normalized to be of global norm equal or less than 0.1.  

In addition, label smoothing was applied to the cross entropy loss to further regularize the model. 
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The final hyper parameters were chosen from a random search selection process with the following 

values: 

 Batch size: 250 

 Drop-out selection rate: 0.1 for all layers 

 Label smoothing parameter: 0.1 

 Initial learning rate constant: 
2

√512
≈ 0.088 

 Learning rate warmup steps: 16000 

 Trainable variable initialization: Uniform variance scaling initializing 

 

7.3.3 Example of mispredicted certificates 
 

 

Line Content 

1 I501 Left ventricular failure 

2 J690 Acute respiratory failure 

6 I509 Heart failure, unspecified 
 

Source Medical expert Prediction Dataset 

UCD I501 J690 I501 

Table 7.7 Example of death certificate where the prediction differs from the 

underlying cause of death presented in the dataset. The medical expert agreed with 

the code present in the dataset, and commented that J690 is not a valid underlying 

cause of death code 
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Line Content 

1 R688 Other specified general symptoms and signs 

2 N19 Unspecified kidney failure 
E148 Unspecified diabetes mellitus with unspecified complications 

3 I499 Cardiac arrhythmia, unspecified 
I519 Heart disease, unspecified 
I501 Left ventricular failure 
E46 Unspecific protein-energy malnutrition 

4 Z896 Acquired absence of leg above knee 

5 I702 Atherosclerosis of arteries of extremities 

6 Z740 Need for assistance due to reduced mobility 
I694 Sequelae of stroke, not specified as haemorrhage or infarction 

 

Source Medical expert Prediction Dataset 

UCD I501 I702 I501 

Table 7.8 Example of death certificate where the prediction differs from the 

underlying cause of death presented in the dataset. The medical expert agreed with 

the code present in the dataset, and commented that this certificate is subject to 

“linked causes” a set of casuistic exceptions  

 

Line Content 

1 Q300 Choanal atresia 

2 Q878 Other congenital malformation syndromes, not elsewhere classified 

3 Q213 Tetralogy of Fallot 
Q165 Congenital malformation of inner ear 
I678 Other specified cerebrovascular diseases 

6 P013 Fetus and newborn affected by polyhydramnios 
 

Source Medical expert Prediction Dataset 

UCD Q897 Multiple congenital malformations,  
not elsewhere classified 

Q878 Q300 

Table 7.9 Example of death certificate where the prediction differs from the 

underlying cause of death presented in the dataset. The medical expert disagreed with 

both values, and commented that this certificate constitutes a “rare case requiring the 

medical referent’s expertise”  

 

Line Content 

1 I509 Heart failure, unspecified 

2 I259 Chronic ischaemic heart disease, unspecified 

3 E109 Type 1 Diabetes mellitus without complications 
 

Source Medical expert Prediction Dataset 

UCD E108 Type 1 diabetes mellitus with 
unspecified complications 

E106 Type 1 diabetes mellitus with 
other specified complications 

E109 

Table 7.10 Example of death certificate where the prediction differs from the 

underlying cause of death presented in the dataset. The medical expert disagreed  with 
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both values, and commented that, when coding diabetes related certificates, the 

underlying cause of death’s fourth character is often subject to interpretati on 

7.4 On the comparability of international cause of death statistics: A deep artificial 

neural network based study 
 

 

7.4.1 Tables of predictive power variation at the Eurostat level 
 

 

 

Fig. 7.22 Agreement at the Eurostat scale, per Eurostat chapter, for French certificates  
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Fig. 7.23 Agreement at the Eurostat scale, per Eurostat chapter, for English cer tificates 
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Fig. 7.24 Agreement at the Eurostat scale, per Eurostat chapter, for Italian certificates  
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Fig. 7.25 Agreement at the Eurostat scale, per Eurostat chapter, for American 

certificates 
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Résumé : L’exploitation des bases de données médico 
administratives est récemment devenue un sujet 
d’importance en épidémiologie et santé publique. 
Parallèlement, la dernière décade a été témoin de la 
démocratisation des méthodes dites d’apprentissage 
machine, et tout particulièrement d’apprentissage profond, 
qui propose toute une famille de puissants modèles 
prédictifs tout particulièrement adaptés à l’analyse de 
complexes interactions non linéaires dans des jeux de 
données autant massif que non structurés, et dont 
certaines ont déjà été appliquées avec succès sur des bases 
médico administratives par le passé. L’objectif de cette 
thèse est double. En premier lieu, cette thèse se veut être 
une introduction pour les épidémiologistes et 
biostatisticiens aux méthodes modernes d’apprentissage 
profond, à travers un travail de reformulation de ces 
méthodes dans une optique purement statistique, par 
opposition au langage cognitiviste ou computationnel 
auquel elles sont souvent associées. On exposera 
notamment que l’intégralité des méthodes modernes 
d’apprentissage profond, ce jusqu’aux modèles de 
séquence typiquement utilisés en traitement du langage  
 

naturel, peuvent s’exprimer en termes de modèles 
prédictifs, et notamment comme des extensions du 
concept de modèle linéaire généralisé. Un exemple 
innovant d’application de ces méthodes au problème de 
modélisation de variable ordinale sera également 
introduit pour montrer l’adaptabilité de ces méthodes à 
tout un spectre de problèmes régulièrement rencontrés 
dans des contextes de science des données médicales. 
Dans un second temps, ces concepts d’apprentissage 
profond seront directement appliqués à une base de 
données médico-administrative, la base du Centre 
d’Epidémiologie sur les Causes médicales de Décès 
(CépiDc) pour illustrer leur potentiel, autant d’un point 
de vue purement méthodique que pratique, avec des 
résultats variant d’une accélération de la production des 
données de mortalité par cause ayant notamment 
permis la production en temps réel de statistiques de 
comorbidités relatives aux décès liés à la covid-19 
pendant le premier confinement, à l’élaboration d’une 
étude sur la question de la comparabilité des statistiques 
de mortalité à l’échelle internationale. 
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Abstract : The exploitation of electronic health databases 
has gained a significant amount of interest in fields such as 
epidemiology or public health. On another side, the raise 
of machine learning, and most specifically deep learning in 
the past decade has led to the development of entire 
families of powerful models fit to analyse complex, non-
linear interactions on massive and unstructured datasets, 
some of whom have already been successfully applied to 
electronic health database analysis. The purpose of this 
thesis is twofold. First, this thesis is meant as an 
introduction to modern deep artificial neural network 
based models to epidemiologists and biostatisticians, by 
showing how these methods sometimes denoted as  
 

“algorithms” actually share a profound relationship with 
more traditional statistical predictive models commonly 
used in health sciences, such a linear or logistic 
regression. Finally, this thesis will showcase some 
practical applications of these methods on an example of 
real electronic health database, the Centre for 
Epidemiology on medical causes of death (CépiDc) 
database, with results ranging from the acceleration of 
cause of death statistics production leading to the real 
time production of comorbidity statistics on covid-19 
related deaths during the first lockdown, to the design of 
a study investigating the comparability of mortality 
statistics at the international scale. 

 


