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Preface: 
 

 The brain is composed of electrically excitable cells, called neurons, which communicate with 

each other at specialized points of contacts, called synapses. They organize into circuits which mediate 

specific functional operations. By studying gene expression, neuronal development, synapse formation 

and plasticity, and transmission of signals between and within neurons, neurophysiologists aim to 

unravel these operations, to understand how they ultimately guide behaviour. At the single cell level, 

excitatory and inhibitory synaptic potentials combine in time and space to determine whether or not an 

Action Potential (AP) - the hallmark electrical signal of neurons - will be emitted, and further relay 

information to downstream neurons. Therefore, describing how neurons are connected to each other, 

and whether these connections convey excitation or inhibition is of critical importance to understand 

circuits' computation. 

 GABAergic inhibitory interneurons are frequently interconnected by electrical synapses, and 

form cell-type specific networks controlling the excitability of principal cells. Electrical synapses help 

in synchronizing interneurons activity, by equalizing membrane potentials of connected cells, and 

enabling spikelet transmission (i.e., filtered version of presynaptic AP). Additionally, being opened at 

rest, they fundamentally alter the passive properties of the cells in which they are expressed. Their role 

in neural circuits is therefore far from being clear. 

 In this thesis, I propose that spikelet transmission in cerebellar basket cells (inhibitory 

interneurons of the cerebellar cortex) mediate a form of Feed-Forward Inhibition (FFI), albeit with a 

short-lasting excitation prior to inhibition onset, which results in temporal contrast enhancement and 

coincidence detection mechanisms.  

 Chapter I is the introduction of my thesis, where I will summarize the current state of the 

knowledge regarding biophysical properties of electrical signalling in neurons, as well as synaptic 

transmission, with a particular focus on electrical synapses and dendritic integration. I will also describe 

the cerebellum, and more specifically the cerebellar cortex, with a particular focus on basket cells. 

Chapter II will describe the methods I employed during my PhD, namely whole-cell patch-clamp 

electrophysiology in vitro, and 2-photon laser scanning microscopy. Chapter III is the draft of a 

manuscript describing the prevalence, biophysical determinants and the functional implication of 

spikelet transmission between cerebellar basket cells. Chapter IV is a summary of preliminary data 

concerning neuronal communication through electrical synapses in general, and further details 

concerning spikelet signalling. Chapter V is a summary of preliminary morphological and 

electrophysiological data suggesting that somatic-targeting basket cells and dendritic-targeting stellate 

cells have different dendritic integration of their common excitatory inputs, the parallel fibers. 
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 My PhD thesis has mainly consisted in examining the role of electrical synapses in 

dendritic integration properties of cerebellar basket cells. Therefore, in this introduction, I 

would like to first summarize how neurons were historically identified as independent nerve 

cells, endowed with ions channels rendering them electrically excitable and able to generate 

action potentials, and communicating with each other at specialized points of contacts called 

synapses. Then, I will describe how chemical transmission was long thought to be the exclusive 

and only meaningful form of neuronal communication in mammals, to later introduce synaptic 

communication through electrical synapses. I will present how both modes of communication 

differ, and emphasize the most documented physiological roles of electrical synapses.  

 

 I will then describe cases of interactions between chemical and electrical inputs, and 

how electrical synapses can shape the dendritic integration properties of single neurons. There, 

I will present general features of dendritic integration properties in neurons, and how they 

depend on passive and active properties of individual cell types, and further describe 

documented cases of the unique impact of electrical synapses on dendritic integration 

properties. Indeed, electrical synapses are simultaneously a source of current inputs (i.e., 

synapses), and able to shape the electrotonic structure of neurons (i.e., influence dendritic 

integration properties). 

 

 Finally, I will present the cerebellar cortex, the model microcircuit in which cerebellar 

basket cells are found. I will describe its architecture and proposed functional role in sensory-

motor coordination. In order to present how the cell-type diversity and connectivity combine to 

perform specific circuit operations, I will briefly describe cerebellum-like structures, in which 

non-motor roles have been described, and cease this opportunity to suggest what may be a 

unifying cerebellar computation. As I will summarize, the role of cerebellum in motor control 

has been largely documented for decades, but despite a wealth of anatomical and functional 

evidence that it receives connections from many non-motor areas of the brain, only recently 

have theories been proposed for a unifying cerebellar computations, beyond sensorimotor 

control. 
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I) Neurons as individual, electrically excitable, nerve cells, 

communicating through synapses: 

 Historical overview of the neuron hypothesis: 

 Until the end of the 19th century, most physiologists thought that the nervous system 

was a continuous tissue, and not a network of connected cells, as we know nowadays. The 

reticular theory, as it was called, declined progressively between 1870s and 1890s, and the 

neuron theory (that is, the theory according to which the brain is made of individual cells - 

called neurons - connected to each other) emerged gradually. This was mostly due to the 

discovery of a novel technique at that time - called Golgi staining, or Golgi method - which 

allowed a random and relatively sparse staining of brain preparation, by a chemical reaction 

between potassium dichromate and silver nitrate. The crystals of silver chromate were opaque 

to light, and thus allowed to observe discrete cells (sometimes including their dendritic and 

axonal processes) under a light microscope. Using this method, numerous physiologists 

reported observations of individual cells in brain tissues, and the most notable ones are Camillo 

Golgi and Ramon y Cajal. Interestingly, the two scientists drew opposite conclusions from their 

observations: Camillo Golgi reported a continuous network (in support of the reticular theory), 

but Ramon y Cajal described individual cells (in support of the neuron theory). They were 

finally jointly awarded the Nobel Prize of Physiology and medicine in 1906, in recognition of 

their work concerning the structure of the nervous system, but a long-lasting dispute kept 

opposing them for many years. 

 Nowadays, it is clearly established that individual nerve cells do exist, and the reticular 

theory has been falsified. Only the discovery of direct electrical communication in the second 

half of the 20th century (which I will describe later) has been used to reinstate the reticular 

theory, but since this mode of communication between nerve cells was not observed in most 

instances, the "neuron doctrine" is not debated any longer. Knowledge about the physiology of 

neurons has been impressively refined during the 20th century. From a histological point of 

view, we now know that neurons possess not only a cell body, but also neurites (i.e., extensions 

of the cell membrane) which can be classified in two general categories: dendrites, where most 

synaptic inputs are received; and axons, where output electrical signals are sent to downstream 

neurons. A large variety of neuronal morphology has been described, ranging from "adendritic" 

dorsal root ganglion cells to "fan radiation" Purkinje cells (Stuart, Spruston and Häusser, 2008). 

We also know that brain circuits are composed of large principal cells, with very long dendrites, 
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small local interneurons with short neurites, and even relay neurons whose somata are small, 

but their axons can be up to one meter-long. 

 Therefore, the brain is not only made of individual nerve cells, but these cells display 

an extraordinary diversity of morphologies. As suggested by the famous quote from Francis 

Crick, "If you want to understand function, study structure", diversity of morphology of the 

dendritic trees and axonal projections of neurons are thought to be of key importance in 

understanding how information is processed by neurons and neural circuits. I will come back 

to this point, and in particular the role of the morphology of dendrites in dendritic integration 

properties, in a later section of this introduction. 

 

 Electrical excitability, and action potential generation: 

 Neurons, as we know now, are electrically excitable cells, communicating with each 

other (or with other cells) by points of contact called synapses. Classically, neurons are 

composed of a soma (also called cell-body), a dendritic arbour - where most synaptic inputs are 

received - and an axon - the structure along which output electrical signals are sent out to 

downstream neurons. A significant part of the information within neurons is carried by electrical 

currents originating from synaptic contacts, which propagate along the dendritic branches down 

to the cell-body where they are integrated. If these electrical currents (unitary or compound) are 

sufficiently high in amplitude, they depolarize the cell-body and the Axon Initial Segment (AIS) 

above a threshold value, giving birth to an all-or-none event called Action Potential (AP), the 

hallmark electrical signal of nerve cells required for chemical communication. APs are high 

amplitude, short-lasting depolarizing electrical signals, usually followed by a lower amplitude 

and longer-lasting hyperpolarizing signal called After Hyperpolarisation (AHP). 

  The precise nature of this key electrical signal, and its relationship with ionic gradients 

(notably sodium and potassium) across the cell's membrane, was established in (Hodgkin and 

Huxley, 1952). Along with John Eccles, they received the Nobel Prize in Physiology and 

Medicine in 1963 for their discovery. Their work notably revealed that the initial depolarizing 

peak of APs was mediated by sodium ions, and that the AHP was mostly mediated by potassium 

ions. The mathematical models they proposed to explain AP generation and waveform were 

based on the hypothesis that "ion channels" should be present inside the membrane of nerve 

cells (1); that each type of channel would be differentially permeable to each ion species (2); 

and that the gating properties (closed or opened) of these channels depend on the voltage 

difference across the cell's membrane (3).  
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 It was between the 1970s and 1980s that the demonstration of the ion channels was 

established, when Erwin Neher and Bert Sakmann developed the patch-clamp technique (Neher 

and Sakmann, 1976), which allowed the resolution of ionic currents caused by single channels. 

Their electrical recordings confirmed that the amplitude of these currents depended on the ionic 

gradients on either side of the membrane (1); that single channels could be in different states 

(closed, opened, inactivated, ... - 2); and that the likelihood of observing a given state depended 

on the voltage across the membrane of the cell (3). For their discovery, they received the Nobel 

Prize in Physiology and Medicine in 1991. 

 Therefore, neurons are discrete cells displaying a remarkable diversity of morphologies, 

and they all share the fundamental property to be electrically excitable and generate action 

potentials. This remarkable electrical phenomenon is necessary for most cases of synaptic 

communication, and thus for processing of information in forms of electrical signals. 

 

 Historical overview on the mode of communication between neurons: 

 Most of the uncited references in the following section are reported in (Cowan et al., 

2001). 

 The demonstration that neurons were individual, excitable cells, naturally raised the 

question as to how they would be able to share "electrical information" with each other. 

Synapses are, nowadays, defined as "specialized junctions at which a neuron communicates 

with a target cell" (from the Medical Subject Headings - MeSH). But such a definition as a long 

history, like all definitions of terms we think of on a daily basis without really wondering what 

their definition may be. The meaning of some words just appears so obvious that a definition 

would seem pointless. But it appears, more often than not, that most of the words do have a 

definition which does not necessarily relate to the exact idea one has in mind. Such used to be 

the case for "synapse", at a time where synaptic transmission was thought to be purely and 

exclusively mediated by what we name nowadays "chemical synapses". In the next paragraph, 

I briefly review the long-lasting debate about how neurons communicate with each other. 

  In 1897, before the acceptance of the neuron doctrine by the scientific community, Sir 

Charles Scott Sherrington proposed the word "synapse" to name the points of contact between 

(putative) individual neurons. Sherrington was lead to coin the term "synapse" after having met 

Cajal, who had already collected sufficient histological evidence that nerve cells were 

individual cells. Two different (although non-exclusive) hypotheses were proposed for synaptic 

transmission: "synaptic transmission is electrical" or "synaptic transmission is chemical". It was 
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during the 20th century that improvement in recording apparatus, and preparation of brain 

tissues, combined together to resolve this conundrum.  

 Back in the 18th century, works from Luigi Galvani (Galvani, 1791) and Alessandro 

Volta (Volta, 1792) had revealed that organic tissues could not only behave as conductors (i.e., 

currents injected at one point can spread to another point, at least partly), but also react to 

electrical impulses (e.g., with high current loads, muscle cells contract), suggesting that 

electrical communication was a plausible phenomenon. However, owing to the lack of the 

neuron theory, it was not possible to make any claim at that time about electrical communication 

as a mean for two separate neurons to communicate. In the second part of the 19th century, Carl 

Friedrich Wilhelm Ludwig developed techniques to study isolated organs, which required an 

appropriate medium to survive for a time; later, Sidney Ringer improved these "perfusion" 

techniques by testing new compounds in the solution. He notably found that an isolated heart 

would beat at different frequencies, depending on the content of the perfusion solution. This 

observation suggested that chemical agents (ions, molecules, or proteins) in the bathing solution 

could alter the rhythmic beating (i.e., an electrical response) of the heart. These observations 

were fully consistent with Nernst equation (developed in 1897), which gave the relationship 

between the ionic flux and gradient across a biological membrane. In the meantime, Claude 

Bernard had observed that in a nerve-muscle preparation, electrical impulse to the nerve could 

force the muscle to contract, but this response was abolished in presence of curare (a poison). 

The muscle, however, could still be forced to contract by direct electrical stimulation. Synaptic 

transmission (from nerve to muscle, at least), could therefore be impaired by a chemical agent 

(curare). Earlier experiments from Langley published in 1905 had already revealed that 

chemical agents (such as curare, nicotine or atropine) could alter the excitability of neurons 

and/or muscles. 

  It was in 1921 that Otto Loewi published the results of a historical experiment. He 

prepared two isolated frog hearts in a similar Ringer solution, one with its afferent nerve (the 

vagus nerve); and the other one without. Each heart was put into a different recipient, containing 

the same Ringer solution. He first stimulated the vagus nerve in the first preparation, and 

observed a decrease in the frequency of beating of the heart. He then replaced the first heart 

with the second one, and observed that the second heart, in the first Ringer solution, would also 

beat more slowly. He therefore concluded that a chemical substance, released by the vagus 

nerve in the first preparation, had remained in the Ringer solution. This experiment was key in 

testing the hypotheses of "chemical versus electrical communication", as it demonstrated an 

effect of a chemical agent (undefined, but present in the bathing solution) on the rhythmic 
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beating of the heart, in absence of electrical stimulation. Otto Loewi and Henry Dale were 

awarded the Nobel Prize in Physiology and Medicine in 1936 "for their discoveries relating to 

chemical transmission of nerve impulses".  

 Later on, in the middle of the 20th century, Bernard Katz (along with John Eccles) 

established that between motor neurons and muscles, a very specific molecule (called 

acetylcholine) was required for the proper transmission of an electrical impulse in the motor 

neuron to a contraction of the muscle. Along with Ulf van Euler and Julius Axelrod, they were 

awarded the Nobel Prize of Physiology and Medicine in 1970 for their discoveries concerning 

"the humoral transmitters in the nerve terminals and the mechanism for their storage, release 

and inactivation". Of note, works from J. del Castillo and Bernard Katz (del Castillo and Katz, 

1954) revealed that neurotransmitter release is quantal (i.e., chemical signals can be released 

from a presynaptic element by packets, and any recorded post-synaptic current caused by this 

release is an integral number of the smallest one). During the early 50s, John Eccles (a student 

of Sherrington, and one of Katz's main collaborator), who had long been in favour of electrical 

communication, observed Inhibitory Post-Synaptic Potentials (IPSPs) in motoneurons (Brock 

et al., 1952). He reckoned that electrical communication would have been unable to display 

such hyperpolarizing responses, and thus admitted that if inhibition could be explained by 

chemical transmission, then by analogy, excitation should also be explainable by chemical 

transmission (even though different molecules would likely be involved in each instance). 

 

 Nowadays, our knowledge about chemical synaptic transmission has increased 

extensively. We now know that neurotransmitters (the chemical signals) are filled in synaptic 

vesicles (usually found in axon terminals), and that presynaptic APs trigger a cascade of events 

causing the opening of calcium channels, diffusion of calcium to the release machinery, fusion 

of docked vesicles, and release of neurotransmitters in the synaptic cleft. These signalling 

molecules diffuse rapidly in this restricted space, and rapidly bind to post-synaptic receptors to 

trigger their opening. During the open time of the receptors, a passive flow of ions between the 

extra- and intra-cellular spaces causes a current entry in the post-synaptic neuron, of positive 

(inhibitory) or negative (excitatory) polarity, depending on the type of receptors opened and 

their ionic selectivity. Neurotransmitters are very diverse, and can be classified in different 

groups, such as amino acids (L-glutamate, D-serine) monoamines (Dopamine, Serotonin) or 

peptides (somatostatin, oxytocin). Further details about chemical synaptic transmission will be 

provided in the next section, for a comparison with electrical synaptic transmission. 
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II) Electrical synaptic communication:  

 History of electrical communication: 

 Paul Fatt (who had mainly worked on chemical communication), wisely recognized that 

the hypothesis of electrical communication had not been disproved by the works conducted up 

to the years 1950s. According to him, it was totally possible to observe an electrical (i.e., "NOT 

chemical") form of communication between neurons. It simply remained to be demonstrated.  

 Historical experiment revealing electrical coupling: 

 Between the years 1957 and 1959, Edwin Furshpan and David Potter observed three 

phenomena of synaptic transmission between the giant axon and the motor axon of the crayfish 

nerve cord that could not be accounted for by the hypothesis of chemical transmission: post-

synaptic responses and pre-synaptic impulses appeared concomitant (e.g., no delay in synaptic 

transmission), albeit with different rates of rise (1); subthreshold events in the pre-synaptic 

element could be passed to the post-synaptic one, in a graded manner (2); and communication 

at this synapse was systematically bidirectional, albeit stronger in one direction than the other 

depending on the polarity of the input signal (3) - Figure I-1, from Furshpan and Potter, 1959).  

 

 Later on, during the 1960s, Bennett confirmed that in most cases, electrical synapses 

could pass current in either direction, sometimes associated with a rectification - a differential 

ability to transmit current in one direction or the other. He also found the structural correlates 

of these "electrotonic coupling" (one of the early names of electrical synapses) using light and 

electron microscopy in the spinal electromotor neurons of the mormyrid fish (Bennett et al., 

1967). 

Figure I - 1: Ortho- and anti-dromic 

communication between the giant 

axon (Pre) and the motor axon (Post) 

of the crayfish nerve cord:  

Currents are injected either in the pre-

synaptic element (top left), or the post-

synaptic one (top right), and 

corresponding membrane potentials 

are recorded in the post-synaptic 

(bottom left) and pre-synaptic element 

(bottom right), respectively.  

 

 

From Furshpan and Potter, 1959 

 

 

 

 

 

 

From Furshpan and Potter, 1959 
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 Slow acceptance of electrical coupling by the scientific community: 

 It was initially thought that these early observations about electrical communication, 

albeit novel, could be ignored to some extent, because fish are "lower invertebrates" (a term I 

wish to write with quotes, since the terminology of "higher" and "lower" is highly 

anthropomorphic and unwise). Such a result would start to deserve some more attention if it 

was observed in the brain of "higher vertebrates". It is explicitly reported by Hormudzi et al., 

2004 that: 

 

 "Electrical communication has been regarded for a long time as a property of the 

invertebrate brain where faster transmission is needed to accomplish simple, reactive tasks. 

[...] electrical synaptic transmission - it was argued - would not be well-suited for the more 

complex integrative processes of higher organisms, which would benefit from the higher 

diversity and fine-tuning provided by chemical synapses." 

 

 With regard to expression of electrical synapses in the CNS of vertebrates, Shepherd 

(Shepherd, 1994) proposed that their apparent absence in "higher vertebrates" could, I quote: 

 

 "... reflect a mechanism to increase the metabolic and functional independence of 

neurons, in order to permit more complex information processing." 

  

 It appears that the debate on the mechanisms of synaptic communication had favoured 

chemical transmission, simply because it had been demonstrated first (Loewi and Dale received 

a Nobel prize in 1936 for discovering the existence of chemical substances mediating 

communication between neurons). It then led the neuroscientific community to investigate and 

document chemical synapses, which were thought to be "synapses" without the preceding 

adjective of chemical, reflecting the generally accepted idea that all synapses were of chemical 

nature. And if not all synapses, maybe only the relevant ones. A historically interesting case is 

related by Bennett (Bennett, 2000), where he reports the definition of synapse in the Medical 

Subjects Headings (MeSH) of the PubMed data base (in year 2000, I insist): 

 

 "SYNAPSES: Specialized junctions at which a neuron communicates with a target 

cell. At classical synapses, a neuron’s presynaptic terminal releases a chemical transmitter 
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stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates 

receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, 

cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. 

Neurons may also communicate through direct electrical connections which are sometimes 

called electrical synapses; these are not included here but rather in GAP JUNCTIONS." 

 

 A careful reader would have noted in this definition that there might exist "non-classical 

synapses", and that the term "electrical synapses" was, at that time, not generally accepted. The 

current definition of synapse proposed by the MeSH, added in 2008, is: 

 

 "Specialized junctions at which a neuron communicates with a target cell. At classical 

synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic 

vesicles which diffuses across a narrow synaptic cleft and activates receptors on the 

postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of 

another neuron, or a specialized region of a muscle or secretory cell. Neurons may also 

communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-

synaptic chemical or electric signal transmitting processes occur via extracellular mediated 

interactions" 

 

 This definition is not ideal, because it mainly describes features of chemical 

transmission only (which, again, are described as "classical"); and ends up with a consideration 

on "non-synaptic signal". Nevertheless, the first sentence does capture common features of 

synaptic transmission through both chemical and electrical synapses. 

 

 The point of these first paragraphs was to indicate that the very concept of "electrical 

synapse" was not obvious and generally accepted in the neuroscientific community not even 

twenty years ago. Once again, interesting cases and discussions on that matter are related in 

Bennett, 2000. 

 Electrical synapses as the molecular basis of electrical coupling: 

 In Nagy et al., 2018, similar comments as those from Bennett are drawn, but the review 

then expands onto the reasons of why electrical synapses have gradually started to gather more 

attention in the last twenty years. The main reasons were the discovery of Cx-36 in 1998 (the 

first gap junction protein exclusively expressed in neurons - Condorelli et al., 1998); the 
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generation of Cx-36 -/- genetic lines and revelation of corresponding functional deficits (Frisch 

et al., 2005); and correlation between dye-coupling, spikelet transmission and long current 

pulses propagation in paired recordings of neighbouring interneurons expressing Cx-36, which 

I will comment in more details in the next sections 

 

 Definition of electrical synapses: 

 In this thesis, I will use the term electrical synapses to refer to "specialized junctions 

between neurons which [directly] connect the cytoplasm of one neuron to another, allowing a 

direct passage of an ion current". This is the definition from the MeSH, introduced in 2008, 

where I only took the liberty to add the term indicated in brackets. The reason for that will be 

explicitly presented in this thesis, and the reader will be invited to debate on this point. I shall 

however give a hint about my idea: if three neurons are connected by such synapses in a chain 

configuration, is there an electrical synapse between the first and the third neuron? Is the neuron 

in the middle a "specialized junction between the two others, connecting their cytoplasms, and 

allowing a direct passage of an ion current"? I will later examine, in Chapter III, how this almost 

trivial nuance may be of key importance in examining the electrical connectivity within a 

network of interneurons. 

 

 Molecular composition of electrical synapses, and plasticity: 

 Molecular composition of gap junctions: 

 Electrical synapses are comprised of gap junction proteins that conduct ions between 

neurons. Gap junctions are formed by the apposition of two structures called connexons, each 

from two adjacent cells. Connexons, in turn, are hemichannels made of six connexin proteins. 

A functional gap junction therefore requires twelve connexin molecules. Twenty-one different 

connexin genes have been identified so far in the human genome, and twenty in mice (Nagy et 

al., 2018). Since gap junctions are expressed almost ubiquitously in solid tissues in multicellular 

organisms, different isoforms can be co-expressed in a given cell-type to form homomeric or 

heteromeric channels (reviewed in Nielsen et al., 2012). However, in neurons, connexin-36 

(Cx36) is the most prevalent one (Nielsen et al., 2012), and is preferentially expressed in 

population of interneurons rather than principal cells (reviewed in Nagy et al., 2018; see also 

Mercer et al., 2007 for electrical coupling between hippocampal pyramidal cells, and 

Apostollides and Trussel, 2013 and 2014 for electrical coupling between interneurons and 
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principal cells in the dorsal cochlear nucleus). It should be noted, nonetheless, that mRNA 

expression for Cx45, Cx50 and Cx57 have also been reported in neurons, and that elimination 

of Cx-36 protein by genetic knock-out is not always sufficient to eliminate electrical coupling 

between neurons (Curti et al., 2012; Zolnik and Connors, 2016), suggesting that other isoforms 

of connexins can support electrical transmission in some populations of neurons.  

 I wish to mention here that molecular layers interneurons (MLIs) of the cerebellar cortex 

do not form electrical synapses with their closest neighbours in Cx-36-/- mice (Figure I-2, from 

Alcami and Marty, 2013). This was shown by the inability to observe passive current flow 

between two neighbouring cells, and suggests that only Cx-36 can form functional electrical 

synapses, as is the case in Wild-Type (WT) animals. This point is emphasized here because this 

thesis is about electrical communication between cerebellar basket cells, one of the two types 

of MLIs.  

 

 

 Plasticity of electrical synapses: 

 It is generally thought that the brain can store memories by adjusting the weights of 

synapses between neurons (Hebb, 1949; Kandel and Spencer, 1968; Takeuchi et al., 2014). In 

contrast, it was initially assumed that electrical synapses were static and rigid, and incapable of 

undergoing synaptic plasticity in vertebrates. Most of the early evidence on plasticity of 

electrical synapses came from work at the club endings on the goldfish Mauthner cell, where 

synaptic communication is enabled by adjacent chemical and electrical synapses (Furshpan, 

1964; Lin and Faber, 1988), and electrical synapses are strengthened by glutamatergic 

transmission from the neighbouring chemical synapses (Pereda and Faber, 1996; Smith and 

Pereda, 2003), suggesting that electrical synaptic plasticity is supported by chemical 

transmission, and therefore that electrical synapses are not intrinsically plastic. 

Figure I-2: Connexin-36 is required 

for functional electrical synapses in 

Molecular Layer Interneurons in 

the cerebellar cortex: 

a) Paired recordings between 

neighbouring MLIs reveal direct 

coupling between an injected neuron 

(black traces) and its neighbour (red 

traces) in Wild-Type animals; b) No 

direct coupling is observed in Cx36 -/- 

animals. Note the differences in 

membrane polarizations of the 

injected cell in each condition. 

From Alcami and Marty, 2013 

 

 

 

 

 

 

From Furshpan and Potter, 1959 
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  However, studies have later shown in vertebrates that electrical synapses are linked to 

scaffolding proteins (Flores et al., 2008) or plasticity-inducing proteins (such as CaMKII - see 

Alev et al., 2008), and that the strength of electrical synapses (relating to the number of gap 

junction channels located in one given plaque, their unitary conductance, and their open 

probability) can be increased or decreased, depending on: the electrical activity in the two 

connected cells (Haas et al., 2011; Mathy et al., 2014); metabotropic receptors activation 

(Landismann and Connors, 2005; Patel et al., 2006; Wang et al., 2015); or NMDA receptors 

activation (Turecek et al., 2014). Furthermore, intracellular domains of connexin-36 display 

different phosphorylated states due to synaptically-induced activation of Protein Kinase A, 

which affect their unitary conductance (Urschel et al., 2006).  

 Therefore, there is now a large amount of scientific evidence that electrical synapses are 

also capable of undergoing plasticity as chemical synapses. Consequently, there's no objective 

reason to disregard the role of electrical synapses in normal physiology of the nervous system 

in that regard. 

 

 Structural and functional differences between electrical and chemical synapses: 

 Chemical and electrical synapses are the most prevalent forms of communication 

between neurons, in the current state of our knowledge. Other forms of communication, such 

as ephaptic transmission (Blot and Barbour, 2014), or spillover-mediated volumic transmission 

(DiGregorio et al., 2002; Szapiro and Barbour, 2007) do exist, but they are quite rare. I wish to 

compare in this section some of the key aspects in which electrical and chemical synapses differ. 

My intention is not to describe which of the two is "better" than the other (such terminology 

can be found in some reviews - see Pereda, 2014), but rather to show, trait by trait, how both 

types of synapses radically differ in their structure, while still enabling communication between 

nerve cells (Figure I-3, from Pereda, 2014). 
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 First of all, chemical transmission relies on a very specific suprathreshold pre-synaptic 

signal, the action potential, to bring the presynaptic neuron to a high enough membrane 

potential, which triggers opening of calcium channels, necessary for the release of synaptic 

vesicles. These vesicles will then allow the transient opening of post-synaptic receptors. Cx-36 

based electrical synapses, on the other hand, are opened at rest, with very little voltage-

dependent gating mechanism (supposedly irrelevant in the range of physiological values; 

Srivinas et al., 1999), and even subthreshold currents can cross them (first described in 

Furshpan and Potter, 1959 for long current pulses; but see Zsiros et al., 2007 for the passive 

flow of GABAergic IPSCs; and Vervaeke et al., 2012 for the passive flow of AMPAergic 

EPSCs across electrical synapses). As I will discuss later, this unique property of electrical 

synapses to be opened at all times can be of critical importance in shaping passive properties of 

neurons expressing them. 

  

Figure I-3: Structural and functional differences between chemical and electrical synapses: 

a) Chemical transmission relies on a Pre-synaptic AP to open Voltage-Gated Calcium Channels (VGCCs). 

Calcium diffuses in the presynaptic terminal and triggers the fusion of synaptic vesicles with the plasma 

membrane, which release neurotransmitters in the synaptic cleft. These chemical signals bind to post-synaptic 

receptors, provoking their opening and (among others things) the passive flow of current between the extra- 

and intra- cellular spaces. b) Electrical synapses are made of plaques of Gap Junctions (GJs), which allow a 

direct, passive flow of current between the two connected cells. Note here the absence of pre- and post-synaptic 

elements, reflecting the notion that electrical synapses are bidirectional. 

Adapted from Pereda, 2014 
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 Secondly, chemical synapses allow signal transmission between neurons by a cascade 

of mechanisms which only work in one direction, as a causal chain. That is, an action potential 

is required to allow calcium entry in the presynaptic element, and the consequence is the release 

of neurotransmitters in the synaptic cleft (the extracellular space in between the pre- and the 

post-synaptic elements). These neurotransmitters bind to post-synaptic receptors, finally 

resulting in current entry in the post-synaptic cell (in the case of ionotropic receptors) or 

downstream activation of intracellular mechanisms (in the case of metabotropic receptors). But 

this chain reaction cannot be reverted: should a post-synaptic receptor stochastically open, it 

will not end up generating an action potential in a causal manner in the presynaptic element. 

Therefore, chemical transmission is unidirectional. On the other hand, electrical synapses are 

made of intercellular hemichannels, which by apposition create a pore in between two 

neighbouring cells, physically linking their cytoplasms. The symmetrical nature of this 

molecular construction therefore makes electrical transmission bidirectional.  

 It should be noted, however, that bidirectional communication through electrical 

synapses doesn't imply symmetrical current flow. Indeed, rectifying properties of electrical 

synapses themselves (Harris et al., 1981; Phelan et al., 2008) or differences in electronic 

structure of connected cells (Fortier and Bagna, 2006, Apostollides and Trussel, 2013), can 

cause an asymmetry in the ability of electrical currents to flow in one direction versus the other. 

 

 Thirdly, chemical synapses are often associated with a time delay (up to a 1 ms) 

between the presynaptic AP and the post synaptic potential, because the cascade of mechanisms 

for release of synaptic vesicles is not instantaneous. In contrast, electrical communication is 

considered instantaneous, because the electrical impulse in a pre-synaptic neuron does not 

need to be converted into a chemical signal to produce a post-synaptic electrical response. 

Moreover, chemical communication is stochastic in nature (i.e., post-synaptic responses to a 

given AP in the presynaptic cell can be different, due to the variability in the number of vesicles 

released, along with their neurotransmitter content), whereas electrical communication is 

considered reliable, because the post-synaptic potential is merely a filtered version of the 

presynaptic one. 

 

 Fourthly, chemical transmission relies on specific ion entry in the post-synaptic 

element, dictated by the structure and the permeability of post-synaptic receptors (for example, 

Cl-/HCO3
- through GABAAR, or Na+/Ca2+ through AMPAR). Electrical synapses, on the other 

hand, do not display charge restriction features, and therefore allow positive and negative ions 
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to cross them. The size of ions is even less of a concern, as the single channels of electrical 

synapses are so large that they allow small metabolites (a few hundreds of Da) to flow from 

one cell to another (Srivinas et al., 1999; Meier and Dermietzel, 2006). Therefore, electrical 

synapses are, in principle, permeable to all ions (reviewed in Spray and Bennett, 1985). 

 One important consequence of the specificity of ion flowing through either type of 

synapses is the polarity of the post-synaptic currents. Chemical synapses, because of the 

selective nature of the post-synaptic receptors, allow only some specific ions to flow inside the 

post-synaptic cells. As a consequence, the polarity of the current is dictated by the reversal 

potential of the ions involved, and the membrane potential of the cell (Ichem(t) = gchem(t) 

(Vmpost(t)-Erev) - see Table I-1). For example, AMPARs cause inward currents, because of the 

net entry of Na+/Ca2+ ions at a resting membrane potential of -70mV. Electrical synapses, 

however, allow equilibration of membrane potentials by passive flow of ionic currents. The 

direction of current flow is therefore dictated by the difference in membrane potentials between 

the two connected cells (I(t)=ggap.(Vmpost(t) - Vmpre(t)) - see Table I-1). Notably, when an 

action potential is triggered in a presynaptic cell, the postsynaptic one will experience a 

sequence of a fast inward current (the filtered version of the sodium current causing the peak 

of the AP) followed by a slow outward current (the filtered version of the After Hyper-

Polarization (AHP)). This synaptic response is often referred to as a "spikelet".  

 One last consequence of this particular feature of electrical transmission is that, a priori, 

it is not possible to say if spikelet transmission has a net excitatory or inhibitory effect in a 

given cell-type. Figure I-4 shows that spikelet transmission can produce a net inhibition in 

cerebellar Golgi cells (inhibitory interneurons found in the granular layer of the cerebellar 

cortex), or net excitation in somatostatin-expressing interneurons of layers 2 and 3 of the 

cerebral cortex (Dugué et al., 2009; Hu and Agmon, 2015).  
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  It is sometimes reported that the differential effect of spikelet transmission is cell-type 

dependent, but some studies have also reported different spikelet waveforms within the same 

cell-type (see Otsuka and Kawaguchi, 2013 for fast-spiking cortical interneurons; and compare 

spikelet waveforms between (Alcami and Marty, 2013; Rieubland et al., 2014) and (Alcami; 

2018) for cerebellar interneurons). During my PhD, I addressed explicitly what could be some 

biophysical determinants underlying these qualitative differences, in cerebellar basket cells.  

 In different sections of this thesis, I will employ the word "spikelet", which has been 

used in different contexts, to reflect different phenomena (e.g., dendritic spikes - Spencer and 

Kandel, 1961 - or ectopic axonal spikes - Stasheff et al., 1993). For my purpose, I will define a 

spikelet as the "filtered version of an action potential, transmitted through an electrical 

synapse". Spikelets can be recorded as synaptic currents, or synaptic potentials using either 

voltage or current clamp, respectively. 

 

 Table I-1 summarizes some of the key differences between electrical and chemical 

synapses that I mentioned above. Highlighted are the features that will be exploited in my 

analysis, later on in this thesis. 

Figure I-4: Spikelet transmission causes 

either net inhibition or net excitation: 

A) Paired recordings of cerebellar Golgi cells 

showing that spike initiation in one cell (blue) 

causes a spikelet in the second cell (red), with a 

prominent inhibition. B) Hyperpolarizing 

Junction Currents (HJC) carry more charge than 

their depolarizing counterparts (DJC).  

 

From Dugué et al., 2009 

 

C and D) L2/3 somatostatin-positive 

interneurons of the cerebral cortex also form 

electrical synapses, but spikelets here appear 

mostly excitatory. 

 

From Hu and Agmon, 2015 
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Table I-1 Electrical synapses Chemical synapses 

Ionic 

selectivity 

 

 

neither size, nor charge 

 

size AND charge 

Gating 

 

always opened (at least for a 

fraction of the channels) 

neurotransmitter-dependent 

Direction 

of current 

flow 

 

bidirectional 

 

unidirectional 

Post 

synaptic 

current 

positive AND/OR negative 

(time dependent) 

positive OR negative 

(ion dependent) 

Small 

molecule 

exchange 

 

possible 

 

not possible 

Current 

flow 

equation 

 

Ielec(t) = ggap (Vmpost(t)-Vmpre(t)) 

 

Ichem(t) = gchem(t) (Vmpost(t)-Erev) 

 

 Physiological roles of gap junctions and electrical synapses: 

 Physiological roles of gap junctions: 

 Because of the relatively large diameter of their inner pore, gap junctions allow a unique 

mode of communication between connected cells, by enabling the transfer of ions, metabolites 

and second messengers having a molecular weight up to 1kDa. Connected cells therefore tend 

to equilibrate their membrane potentials, and their cytoplasmic composition. These properties 

combine in different systems to synchronize and homogenize cells' activity.  

 For example, the heart expresses a very large number of gap junctions of different 

isoforms (mostly Cx40, Cx43 and Cx45 - Davis et al., 1994; Davis et al., 1995), and these gap 

junctions are required for the synchronous contraction of cardiomyocytes. In the vascular 

system, homogeneous metabolic state between smooth muscles, enabled by gap junctions, 

ensures a homogeneous resistance of the tissue, ultimately participating in the regulation of 

blood pressure. Numerous reports indicate changes in connexin regulation and expression in 

this tissue, in pathological conditions such as diabetes or hypertension (Zhang and Hill, 2005; 

Hamelin et al., 2009). I would also like to mention the interesting case of gap junctions in the 

lens, an avascular organ within the eye. In this case, gap junctions between the exterior 

epithelium and the inner fibers create a syncytium-like tissue, and allow the epithelial cells to 

literally feed the fibers with nutrients (reviewed in Mathias et al., 2007). 

 In the next section, I will focus on the physiological roles of electrical synapses, which 

are gap junctions expressed in neurons. 
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 Physiological role of electrical synapses: 

 Since electrical synapses allow a passive spread of current between two connected 

neurons, one of their first attributed physiological role was to mediate synchrony (i.e., 

correlated spiking) in population of neurons (Beirlein et al., 2000; Landisman et al., 2002; Long 

et al., 2004), either because of subthreshold membrane potentials equilibration or spikelet 

transmission. The role of electrical synapses in synchrony was first demonstrated in 

hippocampal slices in vitro (Draguhn et al., 1998 - Figure I-5), when extracellular recordings 

in the dentate gyrus, CA1 and CA3, revealed brief bursts of spontaneous high-frequency 

oscillations (150-200Hz) which were not abolished in presence of gabazine (blocker of GABAA 

receptors), NBQX (blocker of AMPA receptors), or in absence of extracellular Ca2+ (aiming to 

block all forms of chemical synaptic transmission). However, the use of gap junction 

antagonists (either Octanol, halothane or carbenoxolone) was sufficient to reversibly block 

these correlated discharges.  

 

 It was later shown by Deans et al., 2001 that Low-Threshold Spiking (LTS) neurons of 

the cerebral cortex (already known at that time to generate synchronous activity), displayed 

impaired synchronicity (in time, but also in space) in Cx36-/- mice. Similar observations as those 

from (Draguhn et al., 1998) were drawn from Mann-Metzer and Yarom, in 1999: in Molecular 

Layer Interneurons (MLIs) of the cerebellar cortex, spike synchrony between two interneurons 

was observed in Ca2+-free ACSF, and positively correlated with the presence of an electrical 

synapse between them.  

Figure I-5: High-frequency oscillations in hippocampal slices are mediated by electrical synapses: 

Left panels: a) stimulation of the perforant path in CA1 region of hippocampus in Ca2+-free medium confirms 

the block of chemical transmission. Yet, in b), high-frequency oscillations are still detected. Right panels: 

application of Halothane (a blocker of electrical synapses) blocks high-frequency oscillations, in a reversible 

manner. 

Adapted from Draguhn et al., 1998 
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 Finally, to conclude on the link between neuronal synchrony and presence of electrical 

synapses, I wish to highlight recent works in electrically-connected Golgi cells, found in the 

cerebellar cortex. It was first demonstrated by Dugué et al., 2009 that electrical synapses 

promote synchrony in Golgi cells (GoCs), in vitro and in silico, during homogeneous input 

activation, with evidence that they also underlie low-frequency oscillations (~50Hz) in vivo. 

However, it was later demonstrated by Vervaeke et al., 2010 that asynchronous excitatory 

inputs onto synchronized Golgi cells can cause rapid and prominent desynchronization of the 

network, due to spikelet-mediated surround inhibition and heterogeneity in electrical couplings. 

Finally, in Van Welie et al., in 2016, the authors investigated with in vivo recordings and 

modelling approaches how spikelets influence spike synchrony between electrically-connected 

GoCs. They found that the spikelet-mediated depolarizations led to correlated spiking on short 

time scales (1-2ms), while spikelet-mediated hyperpolarization led to anti-correlated spiking on 

longer time scales (few tens of milliseconds). Correlated spiking was shown to be further 

enhanced by slow depolarizations of connected cells, prior to spike initiation.  

 Altogether, these studies reveal that correlated spiking at the network level depends on 

the spikelets waveform, the spatial distribution and dynamics of incoming excitatory inputs 

onto electrically-connected cells, and slow membrane fluctuations mediated by electrical 

synapses. 

 Before concluding on the link between electrical synapses and synchrony, it should also 

be noted that spike synchrony between neurons does not necessarily require electrical synapses: 

shared common presynaptic excitatory inputs (Otsuka and Kawaguchi, 2013) or GABAergic 

communication between interneurons (Gibson et al., 2005; Hu and Agmon, 2011), are two 

potent mechanisms which can be sufficient to generate synchrony. 

 

 In the previous paragraphs, I presented some cases showing the involvement of 

electrical synapses in synchronization of cell assemblies. However, electrical synapses have 

been shown to confer other properties in neural networks. In the next paragraphs, I will present 

two studies in some details, because they highlight other roles of electrical synapses in neural 

networks, and start to address their contribution to dendritic integration properties, which I will 

examine more deeply in the next section of this introduction. 

 

 In 2016, Kuo et al. investigated in vitro, with flat retina preparations, how ON retinal 

ganglion cells (RGCs) are recruited by their excitatory afferents, the ON bipolar cells (Figure 

I-6, from Kuo et al., 2016). They found that light inputs, initially processed by rod bipolar cells, 
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relayed to AII amacrine cells, and further relayed to ON bipolar cells by electrical synapses, are 

integrated in a non-linear fashion by ON ganglion cells. This non-linearity is shown on panel 

C, D and E: the currents recorded in ON RGCs, in response to two coincident stimuli (1 and 2) 

is different from the algebraic sum of responses to stimulus 1 and 2, presented separately. The 

authors showed that the stage of non-linear integration was downstream of AII amacrine cells 

(and of course, upstream of ON RGCs), and the conclusion of their article is as follows: 

electrical synapses between AII amacrine cells and ON cone bipolar cells allow a lateral spread 

of excitatory electrical currents in the ON cone bipolar cells (that is, ON cone bipolar cells not 

lying in the region were light stimuli are presented still receive excitatory currents by electrical 

synapses from their laterally-positioned neighbours). These excitatory currents then help in 

engaging a non-linear mechanism between presynaptic resting membrane potential of ON cone 

bipolar cells and vesicular release of glutamate onto ON RGCs (see Jarsky et al., 2011). 

  This study therefore presents an interesting case of an interplay between the spread of 

subthreshold electrical currents through electrical synapses, and a non-linear mechanism in 

chemical synaptic transmission, which ultimately increases ON RGCs sensitivity to 

spatiotemporally correlated inputs. 

 

Figure I-6: Nonlinear spatiotemporal 

integration by electrical and chemical 

synapses in the retina: 

A) Simplified circuit diagram of the retina; 

B) ON ganglion cell (black cell) lying over a 

mosaic of cone bipolar cells (yellow cells), 

with white rectangles representing paired 

light stimuli; C) Individual responses of the 

ON-ganglion cell to presentation of either of 

the two bars (pink and blue traces), or when 

both bars are presented simultaneously 

(black); D) same as in C, but for negative 

contrast stimuli. In both cases, the responses 

recorded during presentation of paired bars 

is different from the linear sum of the 

individual responses (significant differences 

were shown in another figure of the article). 

 

 

 

Adapted from Kuo et al., 2016 



28 

 

 Vervaeke et al. (2012) described how GoGs display a distance-dependent sublinear 

integration behaviour for excitatory chemical synaptic inputs (i.e., for distal synapses, the 

relationship between the amount of glutamate released from the presynaptic excitatory afferents 

and the postsynaptic currents amplitude is sublinear, because the local dendritic depolarization 

reduces the driving force for synaptic currents - I will further detail this point in a later section 

of my introduction). However, GoCs express electrical synapses, and thanks to experimentally-

constrained network modelling, the authors showed that, at the network level, these synapses 

compensate for the sublinear dendritic integration behaviour at the network level (Figure I-7, 

from Vervaeke et al., 2012), by allowing a passive spread of excitatory currents from innervated 

to non-innervated GoCs. This phenomenon was more prominent in distal dendritic 

compartments, because of the large local depolarization of the dendritic branches caused by the 

incoming EPSCs. 

Figure I-7: Gap junctions compensate for sublinear integration in an inhibitory network: 

A) Effect of mefloquine (GJ blocker), dendrotomy, knock-out of Cx36 and GJ removal from the modelled 

network (described in C to F), on the input resistance of Golgi cells. B) Immunostaining revealing the dendritic 

location of GJs. C) Network model of 45 GoCs, 15 of which receive mossy and parallel fibers excitatory 

inputs; D) GoC firing frequency in the network, when driven by PF inputs (blue) or MF inputs (red), with GJs 

(solid lines) or without GJs (dashed lines). E) and F) reveal the differential effect of excitatory inputs, with 

and without GJs, in innervated and non-innervated GoCs, respectively. 

From Vervaeke et al., 2012 
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 One important note has to be made here: in an article published in 2009 by Dugué et al. 

(and later confirmed in Vervaeke et al., 2010), it was shown that in GoCs, the net effect of 

spikelet transmission is inhibitory (Figure I-4, from Dugué et al., 2009). When this result is put 

in relationship with the study of Vervaeke et al., 2012, it indicates that a given network of GoCs 

fires more APs on average when "inhibitory synapses" connect them. It therefore appears that 

the passive spread of EPSCs enabled by electrical synapses is more important than the 

additional inhibitory action conveyed by spikelet transmission. This further exemplifies the 

unique ability of electrical synapses to mediate electrical currents from different sources, of 

either positive or negative polarities. 

 In both studies mentioned in the last paragraphs, it can be observed that electrical 

synapses allow the spread of subthreshold synaptic currents from innervated to non-innervated 

cells. This already indicates that electrical synapses can expand the receptive field of 

electrically-connected cells, which may be of high importance in dendritic integration, because 

indirect inputs have to be considered in the Input/output relationship. 

 

 To conclude on this section, electrical synapses are expressed mostly (but not 

exclusively) in specific populations of inhibitory interneurons of the CNS (reviewed in Nagy et 

al., 2018), and they play a role not only in synchronizing population assemblies to create 

oscillations, but also in more elaborated functions in dendritic integration of single cells, or 

network computations. However, their contribution to the latter mechanisms have been less 

investigated, which raises the possibility that they could serve as a basis for other type of 

neuronal and network computations which have not been elucidated yet. 
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III) Dendritic and synaptic integration: 

 As neuroscientists, we are interested in understanding how computations performed by 

the brain can guide behaviour. The neural substrates for these operations have been probed and 

investigated in great details over the last decades. It was initially thought that neurons would 

behave as "simple" devices, linearly summing excitation and inhibition from synaptic inputs, 

and compare this sum to a threshold value to generate an AP, or not. In that view, most of the 

"interesting" computations performed by the brain would be due to how these simple elements 

are connected in a complex manner, and how synaptic weights can be adjusted by learning 

through different plasticity mechanisms. Here, I would like to quote (London and Häusser, 

2005):  

 

 "Brains compute. This means that they process information, creating abstract 

representations of physical entities and performing operations on this information in order to 

execute tasks. One of the main goals of computational neuroscience is to describe these 

transformations as a sequence of simple elementary steps organized in an algorithmic way. The 

mechanistic substrate for these computations has long been debated. Traditionally, relatively 

simple computational properties have been attributed to the individual neuron, with the 

complex computations that are the hallmark of brains being performed by the network of these 

simple elements. In this framework, the neuron (often called a “Perceptron,” “Spin,” or 

“Unit”) sums up the synaptic input and, by comparing this sum against a threshold, “decides” 

whether to initiate an action potential. In computational terms this process includes only one 

nonlinear term (thresholding), which is usually counted as a single operation. Thus, the neuron 

operates as a device where analog computations are at some decision point transformed into a 

digital output signal. Such a design forms the backbone of many artificial neuronal networks, 

starting from the original work of McCullough & Pitts (1943) to the present day. In this review 

we argue that this model is oversimplified in view of the properties of real neurons and the 

computations they perform. Rather, additional linear and nonlinear mechanisms in the 

dendritic tree are likely to serve as computational building blocks, which combined together 

play a key role in the overall computation performed by the neuron." 

 

 In this section, I will describe how morphological features and electrophysiological 

properties can shape how individual neurons transform a set of presynaptic inputs into certain 

outputs, what is called the input/output relationship. These mechanisms relate to an interplay 
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between elementary features of nerve cells which I have described in the first two sections of 

this introduction: individual nerve cells have a wide variety of morphologies, and are also 

known to express voltage-gated channels which render them excitable.  

 

 Dendritic integration: 

Dendritic integration is the process by which excitatory/inhibitory post-synaptic 

potentials (E/IPSPs), activated over time and space, are summed in order for the axo-somatic 

membrane potential to depolarize above threshold for action potential generation. It is therefore 

a compound effect of dendritic cable filtering - the differential attenuation of amplitude and 

speed of electrical events arising in different cellular locations (Rall, 1989); and recruitment of 

active mechanisms, which can amplify (through synaptic scaling, subthreshold boosting, and 

dendritic spiking) or compress synaptic inputs (London and Häusser, 2005).  

Classically, cable filtering and active mechanisms are presented sequentially, for 

multiple reasons: 

- cable filtering is caused by passive electrical properties of the cell membrane (i.e., 

properties which do not vary in time, and do not depend on the transmembrane voltage), and 

for this reason, it is a phenomenon present in all neurons, at least qualitatively.  

- active mechanisms rely on the recruitment of ion channels during synaptic activation. 

These mechanisms are neuron-type specific, because all of them do not display the same 

diversity, density, and subcellular localization of voltage-gated channels. 

A good starting point, for didactic reasons, is therefore to understand how passive 

properties are shaped by morphological features and non-voltage-gated ion channels; and then 

consider how this passive neuronal system can be enriched with a variety of active properties - 

and notably, voltage-gated channels - which are the hallmark of neuronal diversity. 

 

 Passive properties and cable filtering: 

Cable filtering can be understood intuitively because of the analogy of the cell 

membrane with a low-pass filter (i.e., the cell membrane having both channels responsible for 

its resistivity (R), and lipids arranged in a bilayer fashion acting like capacitors (C), their 

combination in parallel of each other constitutes an RC filter in electrical terms). As a 

consequence, a passive membrane is expected to dampen high frequency signals. This means 

that any electrical current flowing between two points in a neuron will experience a decrease in 
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its peak amplitude, and a slowdown of its kinetics. This phenomenon will be more pronounced 

for rapid signals (e.g., AMPAergic currents in interneurons), and for signals travelling over 

long distances in the neuron (e.g., a synaptic event in a remote dendritic compartment spreading 

to the soma). 

This qualitative behaviour has been extensively described in mathematical forms, 

notably by Wilfrid Rall (tens of articles published between 1953 and 1968), and Guy Major. I 

also wish to mention two excellent text books (Jack, Noble and Tsien, 1975; Johnston and Wu, 

1995), which provide not only an extensive and comprehensive understanding of these 

phenomena, but also rich repertoires of references for scientific articles related to this topic. 

 

The starting point is usually to consider the analogy of the cell membrane with electrical 

circuits. In this framework, a single neuron is represented as a "ball" (representing the somatic 

compartment), onto which are attached "sticks" (representing the dendritic branches). These 

branches are modelled as cylinders displaying three electrical components:  

- an internal resistance (ri), representing how the voltage drops along branches when 

electrical currents flow; 

- a membrane resistance (rm), representing how electrical currents “leak out” of the cell 

through ion channels opened at rest, without voltage- or ligand-gating mechanisms; 

- and a membrane capacitance (cm), representing how charge accumulate on both sides 

of the cell membrane. 

Each of these parameters is expressed in units of impedance, with units of length of 

dendritic cables (ri in Ω/cm, rm in Ω.cm, and cm in F/cm). These parameters are referred to as 

"passive", because none of them varies with the voltage drop across the membrane. The general 

equation describing membrane potential evolution along such cylindrical structures is known 

as “the cable equation”, generally expressed as follows: 

 

𝜆𝐷𝐶
2 𝜕2𝑉

𝜕𝑥2 =  𝜏𝑚
𝜕𝑉

𝜕𝑡
+ 𝑉 (1), 

 

where V is the voltage difference across the cell membrane, and varies in time and space; 

λDC is the steady-state length constant; and τm the membrane time constant. The last two 

parameters are of key importance in neurophysiology, and may be described as follows: 

- the steady-state length constant refers to the distance a constant (i.e., infinitely long) 

pulse of current has to travel in a dendritic process to experience a 63% decrease in its initial 
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amplitude. The higher this value, the less electrical currents are filtered along a dendritic process 

of a given length. 

- the membrane time constant refers to the time taken by a uniform current input (i.e., 

with an ideal device allowing to inject current, simultaneously and homogeneously, in a neuron) 

to charge a neuron to 63% of the steady-state response. The higher this value, the longer it takes 

for a neuron to "convert" a current input into a membrane potential difference with the 

extracellular space. 

These two parameters are related to the resistances and capacitance described above by: 

𝜆𝐷𝐶 =  √
𝑟𝑚

𝑟𝑖
 (2)   and  𝜏𝑚 =  𝑟𝑚𝑐𝑚 (3). 

 

A final set of equation has to be introduced to link morphological parameters (such as 

cable diameter, denoted d hereafter) and specific cable parameters: 

𝑟𝑚 =  
𝑅𝑚

𝜋𝑑
 (4)   𝑐𝑚 =  𝐶𝑚𝜋𝑑 (5)  and 𝑟𝑖 =  

4𝑅𝑖

𝜋𝑑2 (6) 

  

 where, Rm, Cm and Ri are the specific membrane resistance, capacitance, and internal 

resistivity, respectively. They are expressed in impedance units (that is, Ohms and Farads). By 

combining equations (2), (4) and (6), it is possible to write a second equation for 𝜆𝐷𝐶: 

𝜆𝐷𝐶 =  √
𝑅𝑚𝑑

4𝑅𝑙
 (7) 

 

Equation (7) shows that passive equilibration of voltage along a dendritic branch 

depends on the diameter of this very branch. Complete mathematical development of these 

equations and their interpretations can be found in Jack, Noble and Tsien (1975). Figure I-8, 

from Johnston and Wu (1995), shows qualitatively how a constant current input applied at one 

point along a dendritic branch charges the cell membrane at different levels, and with different 

kinetics and delays.  
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With this scheme and the above equations, I wish to show that the passive spread of 

current along dendritic branches depends on the diameter of the branch (morphological 

parameter), and resistances along the branch (Ri) and across the membrane of the branch (Rm), 

and that virtually all neurons will have their own length constant (so long as they have dendritic 

processes).  

 

 Active conductances: 

 Nerve cells express a remarkable diversity of transmembrane ion channels. They have 

evolved simultaneously with the formation of lipid bilayers to constitute the membrane of living 

organisms, presumably to allow a specific control of metabolites and ions exchanges between 

the intracellular and extracellular spaces, along with specific ion transporters which are critical 

to create ionic gradients across the cell's membrane (Hille, 2001). While the latter mostly rely 

on the consumption of ATP to set-up chemical gradients for ion species, ion channels only 

allow a passive diffusion of ions when they are opened. Therefore, when we talk about active 

Figure I-8: Membrane polarisation during a constant current input along a cylindrical cable (e.g., a 

dendritic branch): 

The blue axis represents the temporal evolution of the charging of the cell membrane, in units of time constants 

(τ), while the red axis represents the spatial evolution of the charging, in units of steady-state length constants 

(λ). 

Adapted from Johnston and Wu, 1995 

Time 

Distance 
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conductances, we only refer to ion channels, even though they require ion gradients to be set 

by transporters (or "pumps") to carry any significant ion currents across the cell's membrane.  

 In the next paragraphs, I will focus on how specific types of voltage-gated channels 

usually operate to mediate ion currents, and later on explain how the expression of such 

channels in neurons can further expand the ability of nerve cells to process information in the 

form of electrical currents. The specific examples presented below were chosen because they 

will be referred to explicitly, later on in this thesis. 

 

- Na+ and K+ channels: 

In most neurons (and cells in general), there are gradients of ion species across the 

membrane. For example, there is a high concentration of sodium outside, and a low 

concentration inside. For potassium, it is the opposite. These gradients are notably set by the 

Na+/K+ exchanger, which consumes ATP to take sodium from inside and potassium from 

outside, and pump them in the opposite compartment. Once a gradient has been established, 

ions can flow across the cell's membrane mainly through ion channels of the proper kind. 

Hence, sodium can flow inside the cell if Na+-channels are opened, while potassium can flow 

outside only if K+-channels are opened. Relevant to neurophysiology is the observation that the 

ability of channels to open or close relies on many factors (time, regulation by metabolites, 

voltage), and transmembrane voltage may be considered the most important in this context, 

because nerve cells experience a lot of voltage changes, notably during synaptic activity.  

The relative contribution of Na+ and K+ in the excitability of nerve cells was notably 

examined in (Hodgkin and Huxley, 1952 - Figure I-9). Their work revealed that gNa and gK 

varied with v, and their model could reproduce the voltage trajectory of an AP in the giant squid 

axon (numerical simulations). Importantly, they proposed that the initial positive peak of APs 

is caused by the rapid opening of Na+ channels (which provide a depolarizing current), while 

the secondary, longer-lasting negative peak of the AP (i.e., the AHP) is caused the opening of 

K+ channels (which provide a hyperpolarizing current), along with a rapid closing of Na+ 

channels. Remember that, at their time, ion channels had not been discovered yet, so the word 

"channel" carried the meaning of "proposed gating mechanism" 
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- Hyperpolarisation-activated cation channels: 

These channels are quite unique, because they are permeable to both Na+ and K+. Their 

opening causes a net inward current called Ih (associated to a reversal potential between -20 and 

0mV), and this opening is enhanced by hyperpolarization (Yanagihara and Irisawa, 1980). They 

can therefore cause rebound activity after strong inhibition (Lüthi and McCormick, 1998). They 

also display a cytoplasmic domain typical of cyclic-nucleotide-bindind domains. Binding of 

cytoplasmic cAMP to this domain shifts the voltage-dependent activation curve of HCN 

channels towards more depolarized values, which can ultimately lead to a significant steady-

state Ih current in nerve cells when they are at rest (Maccaferri et al., 1993). 

 

- NMDA receptors: 

NMDA (N-methyl-D-Aspartate) receptors are ligand- and voltage-gated channels. At 

rest, they are closed, and require two concomittant phenomena to open: binding of 

neurotransmitters (usually, glutamate and glycine/D-serine) onto their extracellular domains;  

and local depolarization of the cell membrane, to remove Mg2+ and/or Zn2+ ions which obstruct 

the inside of the pore and block the passage of cations (Na+, K+ and Ca2+). Futher information 

about NMDA receptors can be found in (Vyklicky et al., 2014) 

 

Figure I-9: Voltage-dependent gating of Na+- and K+-channels: 

A) The transmembrane voltage between the inside and outside of a neuron (E) is set at all time by the current 

I flowing in the circuit. CM is the membrane capacitance, Ii, Ri and Ei are the current, channel conductance and 

reversal potential of the ith ion species (L stands for "leakage"); B) Time evolution of gNa (=1/RNa), gK (=1/RK), 

g (gNa + gK) and v, the transmembrane voltage during an AP. 

Adapted from Hodgkin and Huxley, 1952 



37 

 

Having briefly reviewed how different types of channels can be activated or inactivated 

by changes in membrane potential, I will now described how they can shape the dendritic 

integration properties of neurons.  

 

 Non-linear dendritic integration: 

In contrast to cable filtering, dendritic integration can be a non-linear process far more 

delicate to apprehend. Indeed, if one considers only EPSPs and disregards IPSPs (for the time 

being), the amplitude and shape of two or more EPSPs occurring within a small time window 

(compound EPSP), and in proximity of each other (same electrical compartment) may be 

different from their expected arithmetic sum (Tran-Van-Minh et al., 2015). Dendritic 

integration can therefore be classified in three groups: linear, supralinear or sublinear, 

depending on if the compound EPSP is equal to, larger than or smaller than, respectively, the 

arithmetic sum of the individual EPSPs (Figure I-10, from Tran-Van-Minh et al., 2015). 

Common dendritic features which endow neurons with non-linear dendritic integration 

properties are passive cable properties (Abrahamsson et al., 2012) and ligand or voltage-gated 

ion channel expression (reviewed in Tran-Van-Minh et al., 2015). Non-linear dendritic 

integration can increase the computational power of neurons (i.e., increase the number of 

implementable functions which would transform a given number of inputs into different outputs 

- Cazé et al., 2013), and confer pattern separation properties (Poirazi and Mel, 2001).  
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A critical consequence of these potential non-linear summations of post-synaptic 

potentials is that dendrites are inherently a stage of information processing within neurons, and 

do not simply serve as extensions of the cell membrane to increase the surface area over which 

synapses can be built (Poirazi et al., 2003; London and Häusser, 2005). Consequently, some 

neurons are best represented by “two-layer models” (Figure I-11, from Poirazi et al., 2003), 

where synaptic inputs are first (non-linearly) summed in quasi-independent sub-units 

representing different dendrites, and their outputs are then (linearly) summed in the somatic 

compartment, which ultimately determines action potential firing or not. 

Figure I-10: Supra- and sub-linearity in dendritic integration: 

A) Schematic diagrams of a pyramidal cell (left) endowed with a linear compartment (soma, in black) and 

supralinear compartments (dendritic branches, in green) or a stellate cell endowed with a linear compartment 

(soma, in black) and sublinear compartments (dendritic branches, in blue). Red dots represent the site of 

synaptic activation; B) Somatic voltage responses evoked by an increasing amount of co-activated synapses 

(same color code as in A); C) Arithmetic sum of individual responses recorded during synaptic activation; D) 

Input-output relationships of either type of dendritic integration, showing how the compound somatic EPSP 

amplitude (Observed EPSP - Y-axis) can differ from the expected sum of individual EPSPs (arithmetic sum - 

X-axis). Adjustment of the spike initiation threshold (θ1 and θ2) can switch a given neuron from a linear 

behaviour (θ2) to a non-linear behaviour (θ1). 

Adapted from Tran-Van-Minh et al., 2015 
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 It should be noted that the two-layer model is conceptually very interesting, as it raises 

the possibility that some neurons could actually be best modelled by an "n-layer model". 

Notably, Häusser and Mel, in 2003, proposed a 3-layer model to describe CA1 pyramidal cells 

(Häusser and Mel, 2003). As is always the case with modelling approaches, the right balance 

to employ is to capture the most salient features of a given system with a minimal description 

(Major et al., 2013).  

 

In the next sections, I will present some examples of non-linear dendritic integration 

properties, and for this purpose, I will consider some documented cases from the literature. 

 

 Active conductances can counteract electrical filtering: 

 In a first example (Magee, 2000 - Figure I-12), CA1 pyramidal cells were shown to 

display two specific features counterbalancing the effects of electrical filtering. While passive 

properties of dendrites filter high frequency signals out, causing a decrease in amplitude and 

kinetics of electrical currents as they propagate to the soma, it was shown that, in CA1 

pyramidal cells, local EPSPs in dendrites have increasingly higher amplitudes as they are more 

and more distal, which compensates for the decrease in amplitude they will experience while 

propagating to the soma. The process of increasing the number of post-synaptic receptors to 

increase the amplitude of the post-synaptic current seems to serve the purpose (such phrasing 

has to be written, and therefore read, with high caution: observing a correlation between two 

parameters A and B is not sufficient to prove any form of causality between them) of 

normalizing the peak amplitude of synaptic currents arriving in the soma, no matter where they 

originate from in the dendritic tree. It should be noted, however, that this phenomenon is not, 

strictly speaking, an active process: the fact that more current is delivered in distal dendritic 

Figure I-11: Pyramidal neuron as two-layer 

neural networks: 

A schematic pyramidal neurons (y) receives 

synaptic inputs distributed over n dendritic 

branches, each of them associated with a non-

linear function (s(ni)) and a functional weight 

over the cell body (ai), itself associated with a 

threshold function g. 

 

 

From Poirazi et al., 2003 
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compartments is due to the fact that the synapses of distal compartments display more receptors, 

and not because a voltage-dependent phenomenon causes these receptors to deliver more 

current. 

 Additionally, there exists a gradient of HCN channels along these dendrites, which are 

opened at rest and deactivated by local changes in membrane potential. The “virtual” outward 

currents (and local changes in input resistance) produced by their closure leads to a faster 

repolarization of the cell membrane, which counterbalances temporal widening of distal inputs 

due to electrical filtering. Ultimately, this phenomenon makes distal input as equal as proximal 

ones to summate over time.  

 

 The main conclusion of this particular review is that CA1 pyramidal cells are endowed 

with specific mechanisms, which normalize the amplitude of somatic EPSPs (through increase 

in local synaptic conductance) and their ability to summate temporally (through an Ih gradient 

along their dendrites), no matter the distance between the synaptic site and the soma. Here, the 

active component is the gradient of HCN channels. 

 

A B 

C 

D 

E 

Figure I-12: Dendritic integration of excitatory inputs in CA1 pyramidal cells: 

A) Scheme of a CA1 pyramidal cell, receiving excitatory inputs onto proximal of distal compartments of the 

dendritic tree; B) Due to passive properties, distal inputs are expected to have smaller amplitude and slower 

kinetics than proximal inputs, when recorded at the soma; C) Slower kinetics of distal inputs should in turn 

lead to stronger temporal summation, compared to proximal inputs; D) Surprisingly, proximal and distal inputs 

have similar amplitude at the soma (left panel). This is caused by stronger local depolarisations caused by 

distal inputs (right panel); E) Temporal summation is also comparable for both type of inputs (left panel), due 

to a compensation mechanism produced by a gradient of HCN channels along the dendrites (right panel). 

Adapted from Magee, 2000 
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 Active conductances in non-linear dendritic integration: 

In this paragraph, I will show one example, among many, where synaptic inputs were 

shown to summate non-linearly. In layer 2/3 CA3 pyramidal cells of the somatosensory cortex, 

it was demonstrated that co-activation of clustered synaptic sites in the basal dendrites leads to 

compound EPSPs having a peak amplitude systematically higher than the peak amplitude of 

the arithmetic sum of the individual responses (Branco and Haüsser, 2011 - Figure I-12), a 

phenomenon known as supralinearity. By performing glutamate uncaging experiments in 

diffraction limited spots onto dendritic spines (an experimental manipulation which aims at 

mimicking synaptic transmission with high spatial and temporal resolution), the authors 

recorded synaptic responses when a single synapse was photo-stimulated at a time, or when 

multiple synapses were co-activated, and found that the non-linearity observed in control 

conditions was dampened by blocking L-type Voltage-Gated Calcium Channels (VGCCs), and 

abolished by blocking NMDA receptors with D-AP5. Their results indicate that photo-uncaging 

onto single synaptic sites mostly triggers the opening of AMPA receptors, and little activation 

of VGCCs and NMDA receptors; however, co-activation of multiples synaptic sites causes a 

local depolarization sufficiently strong to remove Mg2+ ions from the interior of NMDA 

receptors in individual spines, which then become available for opening by photo-released 

glutamate. Consequently, synaptic currents in the co-activation regime are now a sum of 

individual AMPA currents already present in single stimulation responses, along with NMDA- 

and VGCC-mediated currents recruited exclusively in the co-activation regime. The 

supralinearity observed is then due to the fact that NMDA/VGCC currents and AMPA currents 

are all inward currents (i.e., if they had an opposite polarity, a sublinearity would be observed 

instead).  
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 Put in a more general context, a non-linearity is observed in CA3 pyramidal cells 

because of the additional recruitment of an active mechanism (voltage- and ligand-gated 

NMDA receptors + VGCCs) in a specific regime of activation (clustered activation). 

 

 Role of neuronal morphology in non-linear dendritic integration: 

In another article (Abrahamsson et al., 2012), it was shown that inhibitory stellate cells 

in the cerebellar cortex display a gradient of Paired-Pulse Ratio (PPR) along the somato-

dendritic axis (i.e., at 50Hz, PPR = 2 in the soma and 1.4 in the dendrites). The origin of this 

difference was shown not to lie in the pre-synaptic element, but rather in the post-synaptic one. 

Indeed, the dendrites of SCs are very thin, and represent small electrical compartments. As a 

A B 

C D 

Figure I-13: Supralinear integration of clustered excitatory inputs in L2/3 pyramidal cells: 

A) Image of a pyramidal cell filled with a fluorescent dye. Inset shows a specific dendritic branch with its 

spines, onto which glutamate uncaging was performed to mimic synaptic activation (orange dots); B) 

Comparison between the linear sum of the 7 individual responses (top) and the recorded responses during 

simultaneous activation (bottom). The corresponding I/O function is characteristic of supralinearity; C) Similar 

as in B, but before (black) and after (green) blockade of L-type VGCCs; D) Same as in B, but before (black) 

and after (red) blockade of NMDA receptors. 

Adapted from Branco and Häusser, 2011 
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consequence, EPSCs cause a significant local decrease in driving force (even if SCs are 

recorded from in the voltage-clamp configuration), which leads to smaller subsequent entry of 

current. This dynamic phenomenon (excitatory currents decreasing the driving force during the 

entry of current) causes a local saturation, where the release of more and more synaptic vesicles 

from the pre-synaptic element doesn’t lead to a linear increase in EPSC amplitude (as 

hypothesized in Rall et al., 1967). Consequently, while the PPR is close to 2 in the somatic 

(linear) compartment, this ratio is smaller in dendrites because the second facilitated pulse 

enters a sublinear, saturating regime. Here again, the demonstration of sublinearity was done 

by photo-releasing glutamate onto clustered synaptic sites, and comparing the arithmetic sum 

of individual responses to the compound response when the same number of inputs are co-

activated (Figure I-14, from Abrahamsson et al., 2012).  

The important conclusion of this third study is that passive morphological features alone 

(thin dendrites) can cause non-linear interaction of post-synaptic potentials. Here again, the 

non-linearity is observed in case of clustered activation of synaptic events.  

 

 

A B C 

Figure I-14: Sublinear integration of clustered excitatory inputs in cerebellar stellate cells: 

A) Image of a stellate cell filled with a fluorescent dye. Inset shows a specific dendritic branch onto which 

glutamate uncaging was performed to mimic synaptic activation (red dots); B) Comparison between the 

recorded sum of the 5 individual responses (grey traces - top), the compound synaptic responses (black traces), 

and the algebraic sum of the individual responses (bottom). C) The corresponding I/O function is characteristic 

of sublinearity; 

Adapted from Abrahamsson et al., 2012 
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 Integration of excitatory and inhibitory inputs: 

 Subcellular compartment targeting, and input/output relationship: 

 Since this thesis is about somatic-targeting interneurons of the cerebellar cortex, I would 

like to show here one example of the differential influence of dendritic- versus somatic-targeted 

inhibition onto principal cells in neural networks. In CA1 pyramidal cells it was shown that if 

inhibition is delivered to the dendrites, more excitation in the dendrites is required to reach a 

given firing rate (Figure I-15, from Pouille et al., 2013). However, when inhibition is delivered 

to the soma, increasing excitation in the dendrites is not sufficient to reach similar firing 

frequencies. Therefore, dendritic inhibition acts as a rightward shift (subtractive operation) in 

the injected current/ firing rate curve of these neurons, while somatic inhibition causes a 

rightward shift and a decrease of maximal firing rate (subtractive and divisive operation).  

 

 The explanation is that in dendrites, a given sum of excitatory and inhibitory currents 

flows down to the soma and axon initial segment, and the relative amplitude of this sum 

compared to the membrane resistance of the soma dictates the direction and magnitude of the 

voltage deflection, which ultimately underlies the generation of one or multiple AP(s). 

However, providing inhibition to the soma not only leads to an inhibitory current, but also to a 

reduction of somatic membrane resistance because of the opening of GABAA receptors. 

Therefore, if more excitation is delivered to the soma, it may overcome the amplitude of 

inhibitory currents to provide a net depolarizing current, but the sum of currents has now to 

polarize the local membrane resistance (rendered low by opening of GABAAR). The somatic 

compartment is now “leaky”, and the maximal firing rate which can be reached is lowered. In 

Figure I-15: Differential impact of 

somatic and dendritic inhibition: 

A) Single cell patch-clamp recordings of 

CA1 pyramidal cells. The patch pipette is 

located in the dendrites, and dynamic clamp 

is employed to mimic excitatory inputs, 

while muscimol (agonist of GABAA 

receptors) is applied at the dendrites, or at 

the soma; B) firing rate is determined by the 

net balance between inhibitory and 

excitatory inputs received in the dendritic 

compartment; C) increasing dendritic 

excitation doesn't overcome somatic 

inhibition, and maximal firing rate is 

reduced. 

Adapted from Pouille et al., 2013 

A 

B C 
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terms of electrical circuit, excitation and inhibition dictate the polarity of current reaching the 

soma (I), and delivering inhibition into dendrites only affects the net current I, while somatic 

application of inhibition affects both I and R, the membrane resistance. Ohm’s law U = RI is 

therefore differentially affected whether inhibition is applied in dendrites (I only) or onto the 

soma (I and R).  

This single example, among many, is indicative that dendritic-targeting stellate cells and 

somatic-targeting basket cells might play a different role in inhibiting their common post-

synaptic targets, the Purkinje cells. Understanding the differential role of the two types of 

interneurons in shaping Purkinje cells output is a goal in itself, and would require a dense 

amount of work, but it would give powerful insights as to why many other brain circuits rely 

on different interneuron subtypes to deliver inhibition to the dendrites or the soma of the 

targeted cells.  

 

 Temporal integration of excitatory and inhibitory inputs: example of feed-

forward inhibition: 

In this thesis, I examined how the feed-forward recruitment of spikelets transmission in 

cerebellar basket cells could shape their spiking output. The mechanism, as I will show in 

Chapter III, is reminiscent of classical feed-forward inhibition (FFI) mediated by GABAergic 

synapses. In this section, I would like to present what is known about FFI as a general 

mechanism for information processing in the brain, with an emphasis on the FFI mediated by 

interneurons in the cerebellar cortex. 

Feed-forward inhibition is a connectivity motif where a given set of excitatory synapses 

directly targets a principal cell, but also an inhibitory interneuron which also targets the 

principal cell. First demonstrated in the hippocampus, FFI was shown to be critical to minimize 

temporal summation of excitatory inputs (1), and increase temporal precision of spike output 

(2) in pyramidal cells (Figure I-16, from Pouille and Scanziani, 2001). 
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 A similar connectivity motif was later shown to promote a qualitatively similar effect 

on neuronal processing within the cerebellar cortex. In the latter case, FFI was not only 

demonstrated on the principal cells of the circuit (the Purkinje Cells), but also between the 

interneurons themselves (Figure I-17, from Mittman et al., 2005). 

Figure I-16: Feed-forward inhibition in the hippocampus: 

A) top panels: Stimulation of two independent Schaeffer Collaterals (SC - the excitatory inputs) with 

different time delays (arrows) produces different spike output probabilities in Pyramidal Cells (PC - the 

principal cell), in control conditions (grey bars) or absence of GABAergic inhibition (white bars). Lower 

panel: Blocking inhibition dramatically increases the time window for EPSP summation and spiking; B) 

During coincident stimulation of the two set of SCs, spike precision is lowered when inhibition is blocked; 

C) Schematic circuit diagram showing how SCs directly excite PC, but also interneurons (IN) which 

inhibit the PC; D) Voltage-clamp recordings in PC reveal that single SC stimulation produces a sequence 

of direct excitatory current, followed by a GABAergic current (blocked by bicuculline), recruited within 

a time delay of ~2ms; E) NBQX application (which blocks excitatory transmission from SC), blocks both 

the direct inward current and the secondary outward current, revealing that the latter is recruited by SC 

inputs and not direct electrical stimulation from the electrode. 

Adapted from Pouille and Scanziani, 2001 

A 

B 

C 

D 

E 
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Therefore, FFI is a canonical connectivity motif which limits temporal summation of 

excitatory inputs by the disynaptic recruitment of inhibitory interneurons which "cut" the tail 

of the direct EPSPs. FFI thus allows neurons to process excitatory inputs faster than what their 

membrane time constant would suggest. These examples highlight the importance of temporal 

recruitment of multiple inputs in the dendritic integration behaviour to understand their 

input/output relationship in the time domain. 

 

 Electrical synapses in the context of dendritic integration: 

I wish to present here one article describing the role of electrical synapses in dendritic 

integration. The reason for this particular focus is two-fold. Firstly, because a large portion of 

the work presented in this thesis will deal explicitly with electrical synapses; and secondly, 

because electrical synapses are quite unique in the context of dendritic integration, in the sense 

that they are both a source of inputs for a given neuron (hence their name "synapse"), but also 

a key determinant of passive properties. Indeed, being always opened at rest, they 

fundamentally alter the electrotonic behaviour of neurons expressing them (Hjorth et al., 2009; 

Vervaeke et al., 2012; Maex and Gutkin, 2017). 

 

Figure I-17: Feed-forward inhibition in the 

cerebellar cortex: 

A) Voltage-clamp recordings of a Purkinje cell after 

stimulation of Parallel Fibers (PFs), in control condition 

(black trace), and when GABAergic inhibition is 

blocked (green trace); B) Similar as in A), but for 

inhibitory interneurons patch-clamp recordings; C) 

Blocking excitatory transmission from PFs blocks both 

inward and outward currents in Purkinje cells; D) Same 

as in C), but for interneurons; E) Schematic FFI diagram 

explaining the recordings from A) to D): PFs synapse 

onto interneurons and PCs, so that recordings in PC 

show direct inward currents from PFs, and indirect 

outward current from disynaptically recruited 

interneurons; similarly, interneurons display direct 

inward currents from PF, and indirect outward currents 

from other interneurons. 

 

 

 

Adapted from Mittman et al., 2005 
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The group of Idan Segev recently published an article (Amsalem et al., 2016) where 

they quantitatively examined the passive role of electrical synapses in dendritic integration of 

L2/3 Large Basket Cells (LBCs). Here, passive role means "without contribution of 

suprathreshold event", such as AP-generated spikelets. They combined electrophysiological 

recordings of single cells and network modelling of electrically-connected cells, to 

systematically examine the influence of electrical synapses on passive parameters such as input 

resistance and membrane time constant. 

First of all, they performed in vitro recordings of LBCs along with 3D morphological 

reconstruction and modelling of passive parameters in the NEURON environment (Hines and 

Carnevale, 1997). They used templates of morphologically-reconstructed cells to create a 

network of electrically-connected cells, and systematically varied the electrical synaptic 

conductance and the number of electrical partners for each cell, in a range of values consistent 

with previous findings. The key point of their method is to model a network of electrically-

connected cells, and provide them with intrinsic passive properties (i.e., Rm, Cm and Ri) so that, 

in the end, the modelled cells display an electrophysiological response coherent with in vitro 

observations (that is, when modelled data match a set of recordings obtained when the cells 

were connected to their electrical partners). And once the modelled cells reproduce single cell 

in vitro observations, it is possible to set, in the model, a null synaptic conductance for electrical 

synapses, and directly examine the electrophysiological behaviour of both the individual cells 

and the network when electrical synapses are virtually absent. 

Their analysis reveals how much electrical synapses (unitary strength and mean number) 

influence estimates of passive properties such as input resistance and membrane time-constant. 

They notably showed that, depending on the different modelling parameters, L2/3 LBCs can 

have, in reality, input resistance and membrane time constants between two and four times 

higher than what would be estimated when neglecting the influence of electrical synapses. 

However, most of the errors they describe are, in reality, related to semantics and ill-defined 

concepts, and their main conclusion is to show how big can be the errors in estimating passive 

properties in a cell-type forming electrical synapses. The very problem in studying passive 

properties in electrically-connected cells is that models employed to fit the data are mostly 

inadequate by nature: they are usually designed with inherent assumptions, and one of them is 

that "dendritic branches can be regarded as cylindrical cables". However, the very presence of 

electrical synapses allows electrical currents to spread into electrical neighbours, and not only 

down or across the dendrites of the cell under study. The model employed to fit the experimental 

data is therefore ill-suited by essence, as one of its assumptions is not supported by the system 
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under study. Nevertheless, in such a scenario, the authors did provide an excellent method and 

modelling approach to correctly treat cell-types forming electrical synapses. 

Finally, in the context of dendritic integration, and the passive role of electrical 

synapses, this study provided further evidence that these synapses, being opened at rest, can 

passively shape synaptic responses. The authors notably showed that, by a mechanism closely 

mimicking GABAergic tonic inhibition, postsynaptic potentials have smaller amplitude and 

shorter time constants when electrical synapses are present, due to a reduction in apparent input 

resistance and membrane time constant (Figure I-18, from Amsalem et al., 2016).  

 

Figure I-18: Passive role of electrical synapses in intrinsic properties of neurons: 

A) Scheme of a network of point neurons, where the neuron in the centre (neuron 0) is connected by electrical 

synapses to 4 partners; B) Corresponding electrical circuit, where the number of electrical partners varies from 

1 to n; Rg denotes the (uniform) resistance associated to electrical synapses, while R0, R1, R2, ... Rn are all 

considered equal, and refer to the intrinsic input resistance of the cells; C) In order to obtain an apparent input 

resistance of Rin = 100MΩ for a given cell, the number of electrical partners (n=10, 30 or 60), and the 

conductance of the GJs (GJc) allow to estimate the intrinsic input resistance of the cell (R0); D) Addition of 

electrical synapses reduces the peak amplitude of excitatory inputs, and shorten their half-width, either through 

direct (E) or indirect coupling (F). 

Adapted from Amsalem et al., 2016 

D E F 

A B C 
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IV) The cerebellum as a canonical microcircuit: 

My PhD project aimed to examine how cerebellar basket cells process their excitatory 

inputs, with the long-term goal of comparing how their dendritic integration behaviour could 

be different from stellate cells, the second type of interneurons found in the cerebellar cortex 

which the host laboratory has already studied (Abrahamsson et al., 2012; Tran-Van-Minh et 

al., 2016). In order to set the context for the comparison between both cell-types, and their role 

in physiology, I will now describe the cerebellum in general, and more specifically the 

cerebellar cortex. I will later present models and experimental evidence of the nature of 

cerebellar computations, and how learning takes place in the cerebellar cortex. Some insights 

on the link between cyto-architecture (structure) and physiological role (function) will be 

brought by examining cerebellum-like structures, where such links have already been 

established, at least partially. 

 

 Anatomy of the cerebellum: 

The cerebellum is a specific part of the brain, located in the dorsal part of the nervous 

system, in vertebrates. Its name derives as a diminutive of the Latin word cerebrum, and can 

therefore be translated as "small cerebrum". It is divided into two anatomically-defined regions 

(Figure I-19, from D'Angelo and Casali, 2013): the cerebellar nuclei, located in the centre; and 

the cerebellar cortex, located on the outer surface. Mossy Fibers (MFs), originating from many 

brain regions, enter the cerebellum via three peduncles (called inferior, middle, and superior 

peduncles), and make excitatory connections with up to four types of post-synaptic targets: deep 

cerebellar nuclei neurons; Golgi Cells; unipolar brush cells (which are mainly found in the 

vestibular cerebellum); and granule cells, which constitute the input layer of the cerebellar 

cortex. The inferior olive (a structure found in the medulla) also provides an important set of 

excitatory inputs (called the climbing fibers) to the deep cerebellar nuclei neurons, as well as to 

the Purkinje cells located in the cerebellar cortex. 
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From a functional point of view, the MFs which project to a specific microzone of the 

cerebellar cortex also project to output cells in the deep cerebellar nuclei which receive 

inhibitory inputs from Purkinje cells of the same microzone. Neurons from the inferior olive 

project onto the Purkinje cells which inhibit the same subset of neurons in the deep cerebellar 

nuclei. Altogether, MFs, specific Purkinje cells in the cerebellar cortex, neurons from the 

inferior olive and deep cerebellar neurons are strongly interconnected, and form a functional 

module. Multiple modules are spread along the coronal axis, and show very little intrinsic 

variability between each other. However, they mostly differ by the set of afferent inputs they 

receive, and their main projection sites. I will now focus on the cerebellar cortex, as it is the 

main component of these modules. 

Figure I-19: Modular organization of the cerebellum: 

A) flattened view of the cerebellum, with highlighted regions representing four ideal zones, further divided 

into microzones aligned along the parasagittal axis; B) Each microzone is composed of mossy fiber inputs 

(mf), going to the cerebellar cortex (in red), and also to the deep cerebellar nuclei (DCN). DCN neurons 

communicate with neurons from the inferior olive (IO). Purkinje cells from the cerebellar cortex receive 

climbing fiber inputs from the IO, and send inhibitory projections to the DCN neurons. 

Adapted from D'Angelo and Casali, 2013 

A 

B 
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 The cerebellar cortex: 

The cerebellar cortex, displaying very few different cell-types organized in a quasi-

crystalline structure, has long been regarded as a canonical microcircuit. It can be decomposed 

into three layers: the granular layer (1); the molecular layer (2); and the Purkinje Cells layer 

(3), as shown on Figure I-20 (from Apps and Garwicz; 2005), and described in the next sections. 

 Cell-type diversity and cytoarchitecture: 

- The granular layer: 

The Granule Cells (GCs), which represent one of two types of excitatory inputs of the 

cerebellar cortex, represent at least half of the neurons in the whole CNS (Ito, 1984). They 

receive excitatory inputs from mossy fibers (MFs), which convey information from numerous 

brain regions (spinal cord, peripheral nerves, and the brainstem - Shepherd and Grillner, 2010). 

GCs relay this information through their axons, classically decomposed into two different 

sections: an initial ascending axon – which goes through the Purkinje cells layer to the 

Figure I-20: Cell-type diversity and connectivity of the cerebellar cortex: 

A detailed description of the circuit is provided in the main text. Unfortunately, this scheme represents basket 

cells in the Purkinje cell layer (PCL), but in reality, these cells are located in the molecular layer, close to the 

PCL 

Adapted from Apps and Garwicz, 2005 

Parasagital 

plane 
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molecular layer - and the subsequent Parallel Fibre (PFs), running through the molecular layer 

in the coronal plane after a “T-shaped” bifurcation from the ascending axon. These parallel 

fibers are extremely numerous (it is estimated that ~175,000 PF synapses onto a single PC, 

although most of them are silent - Napper and Harvey, 1988; Isope and Barbour, 2002), and 

they can extend up to 2.5 mm in the coronal plane (Harvey and Napper, 1991). Therefore, they 

constitute (potential) functional bridges between different modules of the cerebellar cortex, in 

the sense that a Purkinje cell from a given microzone can receive excitatory inputs from GCs 

from a different microzone.  

The second type of neurons found in the granular layer are the inhibitory Golgi Cells 

(GoCs). Their soma and proximal dendrites lie in the granular layer, and their main dendritic 

tree extends in the molecular layer, while their axonal projections target GCs. Therefore, they 

receive excitatory inputs from MFs as well as PFs, and consequently, they can deliver both 

feed-forward and feed-back inhibition onto GCs, through MF and PF recruitment, respectively. 

Additionally, they express electrical synapses with neighbouring GoCs, which tend to 

synchronize (Dugué et al., 2009; Van Welie et al., 2016) or desynchronize (Vervaeke et al., 

2010) their activity, depending on the dynamics of the incoming excitatory inputs.  

It should also be noted that, in the vestibulo-cerebellum, there exists another cell-type 

called the unipolar brush cells (UBCs), which is not found in all parts of the cerebellar cortex. 

However, some cerebellum-like structures (which I will present later) present UBC-like cells. 

UBCs are excitatory interneurons, excited by MFs, and projecting onto GCs. 

 

- The molecular layer: 

In the molecular layer, PFs contact the dendritic trees of Purkinje cells (PCs), Golgi 

Cells (GoCs), as well as basket cells (BCs) and stellate cells (SCs). Altogether, BCs and SCs 

form the population of molecular layer interneurons (MLIs). PCs, GoCs, and MLIs are all 

inhibitory neurons. The second type of excitatory inputs found in the molecular layer are the 

CFs (originating from the inferior olive). During development, multiple CFs synapses onto one 

given PC, but during maturation of the circuit, most of these connections are pruned, and in 

adulthood, each PCs is contacted by a single CF (Crepel et al., 1981), which wraps around the 

main trunk of its dendritic tree. It is reported that the CF-PC synapse is among the strongest 

excitatory synapse found all throughout the CNS (Eccles et al., 1966; Harting, 1997). CFs also 

provide a potent excitatory action onto MLIs by spillover of glutamate, which notably allows 

multiple CFs to excite a given MLI (Szapiro and Barbour, 2007).  
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Finally, MLIs are connected via GABAergic and electrical synapses to each other 

(Rieubland et al., 2014), and deliver GABAergic FFI onto PCs (Mittman et al., 2005). I will 

further detail the connectivity between interneurons in the next section of this introduction. 

 

- The Purkinje cell layer: 

The cell bodies of PCs are located in the Purkinje cell layer. They constitute the sole 

output of the cerebellar cortex, by sending their axons to neurons in the deep cerebellar nuclei. 

In contrast to what is shown in Figure I-20, BCs somata do not lie in the Purkinje cell layer, but 

rather in the molecular layer. 

 

 Differences between stellate cells and basket cells: 

Investigation of MLIs has revealed that they are connected by both GABAergic and 

electrical synapses (Mann-Metzer and Yarom, 1999, Alcami and Marty, 2013, Rieubland et al., 

2014). Multiple studies have now shown that stellate-type cells and basket-type cells are not 

randomly distributed inside the molecular layer, and that each cell type features specific 

properties. The general idea is as follows: stellate-type cells are close to the pia (outer third of 

the molecular layer), have a thin axon projecting onto other MLIs or dendritic compartments of 

Purkinje cells; rather short dendrites, radiating in all directions around the soma; with few and 

relatively weak electrical synapses. On the other hand, basket-type cells have their somata 

usually lying close the Purkinje cell layer (inner third of the molecular layer); display long 

axons forming the so-called “basket” and “pinceau” structures wrapping around Purkinje cell’s 

somata; their dendrites are very long, often reach the pia, and are arranged in a “fan” shape; 

finally, they form frequent and relatively strong electrical synapses with each other (Sultan and 

Bower 1998, Rieubland et al., 2014). Moreover, one study has revealed differential mRNA 

expression levels (notably for genes coding for ion channels) in MLIs, according to their 

position along the molecular layer (Schilling and Oberdick, 2009), suggesting that SCs and BCs 

may have different electrophysiological properties on top of different morphological properties 

and patterns of synaptic connections. There exists in vitro and in vivo evidence that SCs have a 

weaker inhibitory impact on PCs than BCs (Vincent and Marty 1996; Chu et al., 2012), but 

these differences may be due to a differential recruitment of each type of MLIs along the coronal 

extension of PFs (Santamaria et al., 2007). Furthermore, SCs are more likely to only produce a 

local clamp of the membrane voltage in the dendritic tree of PCs (Jaegger et al., 1999), 

suggesting that the weak inhibitory action of SCs recorded at the soma of PCs may 
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underestimate their role in circuit function. It should also be noted that ephaptic transmission 

has been demonstrated at the BC-PC synapse specifically (Blot and Barbour, 2014). The authors 

showed that the presynaptic AP in BC produces a significant voltage change of the local 

extracellular space, which influences PC spike output. This significant influence is primarily 

caused by the very morphology of the synapse, where the characteristic pinceau structure of BC 

terminals wraps around the Axon Initial Segment (AIS) of the PC. BCs, through ephaptic 

transmission, can therefore mediate near-instantaneous inhibition of PCs, and virtually create a 

"negative weight GC-PC synapse", functionally different from a GC-MLI-PC synapse 

recruiting classical inhibition with a 1-2ms time delay associated to the disynaptic recruitment 

of the MLI (Mittman et al., 2005). 

Finally, it should be noted that studies conducted on MLIs usually agree on one 

particular point: the distinction between “stellate-type” and “basket-type” cells is not always 

clear, as the features described above more likely represent extreme cases and idealized 

properties of either type, but a gradient of morphological and electrophysiological properties 

along the molecular layer is closer to the reality (Figure I-21, from Rieubland et al., 2014).  

Figure I-21: Gradients of morphological, electrophysiological, and connectivity features of MLIs, along 

the molecular layer: 

A) Diagram of the cerebellar cortex, showing that BCs are more numerous in the lower part of the molecular 

layer ("0" normalized ML position), while SCs are more numerous in the upper part ("1" normalized position); 

B) Input resistance increases with somatic position of the MLI along the ML; C) Maximal dendritic length 

decreases with ML position; D) For a given MLI, the likelihood that it forms an electrical synapse with a 

neighbouring MLI decreases with its position along the ML; E) When an electrical synapses is found between 

two MLIs, the coupling coefficient (a proxy for electrical synaptic strength) decreases with ML position. 

Adapted from Rieubland et al., 2014 

A B C 

D E 
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 Because electrical connectivity is more prevalent and stronger between BCs than SCs, 

it suggests that BCs are a better model to investigate the biophysical properties of spikelet 

transmission in the MLI population. Moreover, differences between dendritic length, input 

resistance, and electrical connectivity strongly suggest that BCs and SCs may have different 

passive properties, which would be critical in influencing their dendritic integration properties. 

 

 Synaptic plasticity in the cerebellar cortex: 

One way for the brain to keep track of the passage of time, or store memories about past 

experiences, is to induce synaptic plasticity at the appropriate connections between neurons. In 

the cerebellar cortex, multiple forms of synaptic plasticity have been demonstrated. For 

example, repetitive activation of PFs on short time scales (tens of millisecond) leads to a gradual 

increase in post-synaptic potential peak amplitude in MLIs (Bao et al., 2010; Abrahamsson et 

al., 2012), a phenomenon called short-term potentiation (STP). In contrast, most MF-GCs 

synapses in lobule X of the cerebellar vermis display a gradual decrease of post-synaptic 

responses on short time scales (short-term depression, STD - Chabrol et al., 2015). Synaptic 

facilitation and depression (i.e., increase or decrease in synaptic weights, respectively) can also 

be observed on longer time scales (hours, days), under certain conditions. For example, repeated 

stimulation of PFs alone classically induces long-term potentiation (LTP) of PF-PCs synapses, 

and long-term depression (LTD) of PF-MLI synapses (Lev-Ram et al., 2002; Jörntell and 

Ekerot, 2002), while pairing PFs stimulation with CFs stimulation induces LTD at the PF-PC 

synapse and LTP at the PF-MLI synapses (Ito and Kano, 1982; Sakurai, 1987; Jörntell and 

Ekerot, 2002; but see Bouvier et al., 2018). PCs display a potentiation of MLI-PC GABAergic 

synapses when these inputs are paired with CF stimulation (Kano et al., 1992; He et al., 2014), 

and PF-MLIs synapses can further experience LTP or LTD depending on the frequency of PF 

activation (Soler-Llavina and Sabatini, 2006; Bender et al., 2009). 

In a future section of this introduction, I will present how these different forms of 

synaptic plasticity underlie different aspects of cerebellar learning. 
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 Cerebellum-like structures: 

In terms of cell-types diversity, and connections between them, the cerebellum as a lot 

in common with other brain regions found in vertebrates, such as the auditory and electro-

sensory systems. The similarities are so salient that these structures are often referred to as 

"cerebellum-like structures". The common cell-types are the granule cells (and their associated 

parallel fibers), stellate-like inhibitory interneurons, principal cells resembling Purkinje cells, 

DCN-like neurons and IO-like neurons (Warren and Sawtell, 2016; Roberts and Portfors, 2008 

- Figure I-22). The connectivity between these cells is remarkably similar to that found in the 

cerebellum, and some plasticity rules seem to be shared by homologous synapses in each 

structure. Notably, co-activation of PFs and Purkinje-like cells induces Long-Term Depression 

(LTD) of PF-PCs synapses (Bell et al., 1993; Tzounopoulos et al., 2004).  

These similarities further support the idea that the cerebellum - and more particularly, 

the cerebellar cortex - is a canonical microcircuit, and studying cerebellum-like structures can 

provide valuable insights about the internal computation performed by the cerebellum itself (a 

point I will address in a future section). 

 

 Role of the cerebellum in physiology: 

Given its repeated and stereotyped organization, the cerebellar cortex has long been 

regarded as a canonical microcircuit (Eccles, Ito and Szentagothai, 1967). The low diversity of 

Figure I-22: Cerebellum-like structures: 

A) simplified circuit diagram of the cerebellum; st: stellate cells; CF: Climbing Fibers B) Electrosensory lateral 

line lobe (ELL) of the mormyrid electric fish; EGp: eminentia granularis posterior; MG: medium ganglion cells; 

LG: large ganglion; C) Dorsal Cochlear Nucleus (DCN); g: granule cells; CW: cartwheel cell; Fu: fusiform cell; 

IC: Inferior Colliculus. 

Adapted from Roberts and Portfors, 2008 
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the cell types it contains, along with their precise geometrical arrangements, and the stereotyped 

connections between them, has set a biological ground to make testable predictions about the 

computation it performs. It was initially thought that the cerebellum is key in motor 

coordination and learning, but experimental and medical observations over the last decades 

have sufficiently accumulated to indicate that the cerebellum plays a role in very diverse 

cognitive functions.  

In the next section, I will review models and experimental observations of cerebellar 

computations. Given that most of these computations have been considered in the context of 

sensory motor learning, I will also try to describe how they can be thought of in more abstract 

terms, in order to present higher order functions of the cerebellar cortex. 

 

 Early models of pattern separation in the cerebellar cortex: 

In 1969, David Marr proposed a theory of the cerebellar cortex (Marr, 1969), where CF 

signalling in PC would induce changes at PF-PC synapses in order to learn specific movements. 

In his theory, after repetitive training by CF inputs, PCs could "learn" to fire when activated by 

a certain set of coactive PF inputs, those which were active at the time of CF input during the 

training. His theory, however, proposed that co-activation of CF and PFs would cause LTP at 

PF-PC synapses (this hypothesis has been largely falsified since then; but again, see Bouvier et 

al., 2018), and that molecular layer interneurons would mainly serve as threshold adjusters for 

spike initiation in PCs.  

In 1971, James Albus proposed a second theory of the cerebellar cortex, where he 

postulated that co-activation of CF and PFs would rather induce LTD of PF-PCs synapses. He 

also proposed two different computational roles for stellate and basket cells: basket cells could 

serve to assign a "virtual negative weight of PF-PC", by being recruited by PFs and projecting 

rapid inhibition onto PCs, while stellate cells could serve to speed up membrane repolarization 

after PF inputs in PCs (i.e., provide FFI in local dendritic compartments). 

 

Despite a few points of disagreement, both theories converged on some key aspects:  

1) expansion recoding at MF-GC synapses helps in transforming similar MF input 

patterns into highly different GC output patterns, owing to the massive divergence of inputs at 

MF-GC synapses (tens of millions of MFs mapping onto tens of billions of GCs); 

2) sparse activity in the GC layer is a fundamental requirement to avoid saturation of PF 

activity in the molecular layer (as it would otherwise impair pattern separation in downstream 
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PCs), and feed-forward and/or feed-back inhibition from GoCs to GCs could provide a 

threshold adjustment of GCs' recruitment, depending on the global level of activity in MFs. 

3) CFs signalling onto PCs acts as a teaching signal to guide PF-PC synaptic weight 

adjustment, so that after repeated pairing of contextual information (relayed through the MF-

PF pathway) with a teaching signal (relayed through the CF pathway), the sensory context is 

sufficient to induce an adequate PC firing, and does not require the "teaching signal" from CF 

any longer. 

4) Combination of expansion recoding at MF-GC and sparse activity in GCs amplify PF 

pattern diversity, and the main role of PCs is to learn the appropriate PF patterns when an error 

is signalled. 

 

Although these models were proposed in the 70s, and further refined since then, 

experimental evidence that the cerebellum performs pattern separation is still lacking, notably 

because of technical difficulties in recording the activity of small, densely packed GCs in vivo 

(reviewed in Cayco-Gajic and Silver, 2019).  

 

Therefore, whether or not the cerebellum performs pattern separation is still 

undemonstrated. However, as I will briefly describe in the next section, the cerebellum has been 

shown to be of critical importance in other aspects of learning, and notably temporally specific 

learning. Whereas pattern separation was shown to be implementable by the very circuitry of 

the cerebellar cortex with modelling approaches, temporal specific learning has been 

experimentally demonstrated, but the underlying mechanisms are still not clear, and multiple 

models have been proposed to explain it. 

 

 Eye-blink conditioning - a classical example of cerebellar temporal learning: 

Historically, delayed eye-blink conditioning (a temporally controlled Pavlovian 

conditioning task) has been used to investigate certain forms of cerebellar learning. When an 

aversive unconditioned stimulus (US - like an air puff to the eye) is presented to a rabbit, the 

animal blinks instinctively to protect its eye (the unconditioned response, UR). If a neutral tone 

(serving as a conditioned stimulus, CS) is consistently presented shortly (hundreds of 

milliseconds to a few seconds - Schneiderman and Gormezano, 1964) before the air puff, then 

the animal learns to blink in anticipation of the air puff, thus acquiring a conditioned response 
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(CR). In 1984, McCormick and Thompson reported that lesion of the cerebellum abolishes the 

CR, while sparing the UR (Figure I-23; Medina et al., 2000; Bracha, 2004). 

It was later shown that information about the CS (e.g., the tone) is relayed along the 

MF-GC pathway, while information about the US (e.g., the air puff) is relayed through the CF 

pathway (Steinmetz et al., 1989; Thompson and Steinmetz, 2009; Rasmussen et al., 2014).  

 

Therefore, as a preliminary conclusion on this part, we can say that the cerebellum is at 

least known to be involved in introducing an adapted time-delay between the initiation of a 

motor command and a given sensory context.  

 

 Implication of the cerebellum in sensory motor control: 

 From a historical point of view, the cerebellum has mainly been investigated in the 

context of motor learning. This focus may have been caused by different factors, such as the 

early report that cerebellar dysfunction is only manifested in motor deficits (Flourens, 1824); 

the influential models developed by Marr and Albus, which were concerned with optimizing 

motor control; the observation that acute cerebellar injuries in adult humans, more often than 

Figure I-23: Role of the cerebellum in 

eye-blink conditioning: 

A) Scheme of the experimental 

paradigm; B) Timing onsets of air puff 

(US), tone (CS), and eye-blink response 

(CR), before and after training (naive 

and trained animal, respectively).  

 

From Bracha, 2004 

 

a) After training (i.e., consistent pairing 

of contextual information relayed by MF 

and teaching signal relayed by CF), PC 

reduce their firing prior to the air puff, 

and relieve the cerebellar nuclei from 

inhibition, thus allowing the initiation of 

a motor command. 

 

b) After cerebellar cortex lesion, the 

motor command is initiated at the time 

of tone onset, and the temporal match 

with puff onset is lost 

 

From Medina et al., 2000 
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not, cause motor deficits (reported in Wang et al., 2014); or the fact that, by conducting 

experiments on animal models, probing involvement of the cerebellum in motor control is easier 

than probing its function in more cognitive aspects. Notably, among the most documented 

cerebellar functions in basic research, one can find: adaptation in vestibulo-ocular and 

optokinetic reflexes, and ocular saccades (see Ito, 1984), posture maintenance and balance 

(Crawley et al., 2007); and eyeblink conditioning (described above). 

 

 Therefore, the involvement of the cerebellum in controlling movement precision and 

timing is largely accepted. However, this doesn't exclude that the cerebellum may be involved 

in non-motor functions. 

 

 Implication of the cerebellum in non-motor tasks: 

Towards the end of the 20th century, a growing amount of evidence has started to reveal 

cerebellar implication in non-motor behaviours, such has "mental skills" in general (Leiner et 

al., 1986); attention, working memory, pain perception and addiction (reviewed in Strick et al., 

2009), or even Autism Spectrum Disorders (ASD - Wang et al., 2014). There are also indirect 

evidence that the cerebellum is involved in spatial map elaboration in the hippocampus 

(Shiroma et al., 2016).  

This list could be further extended, but my intention here was to emphasize that the 

cerebellum is not exclusively involved in motor control. As reported in Moberget and Ivry, 

2016: 

 "Meta-analyses of the neuroimaging literature reveal consistent cerebellar activation 

patterns related to working memory, executive function, emotional processing, and across a 

range of linguistic tasks. Of note, these reviews likely underestimate the extent of cerebellar 

"cognitive" activations since cerebellar coverage is often incomplete in functional imaging 

studies." 

 

It not should not be surprising to observe activation of the cerebellum in so diverse 

functions of the brain. Indeed, the cerebellum receives information from motor as well as non-

motor areas (Bostan et al., 2013). One of the main question in cerebellar research nowadays is 

therefore to identify what could be the common internal computation performed in this 

structure. Because of its stereotyped structure, it is thought that the computation performed 

within the cerebellar cortex would be uniform. Its diversity of functions would however be 
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related to the diversity of input sources and output regions to which each module of the 

cerebellum is connected (Medina and Mauk, 2000).  

 

In trying to address what could be the uniform computations of the cerebellum 

(D'Angelo and Casali, 2013), one should therefore think in terms of general computations (i.e., 

"multi-sensory integration" should be replaced by "multi-modal integration", so that it doesn't 

convey the idea that only sensory inputs are integrated, but more generally, any "type" of 

inputs). The next section aims to present some candidates for these unifying cerebellar 

computations.  

 

 Proposed unifying theories of the role of cerebellum and cerebellar-like 

structures: 

Recent theories about the cerebellum propose that it encodes forward or inverse internal 

models (Ito, 2008; Medina, 2011; Moberget and Ivry, 2016). Basically, microzones in the 

cerebellar cortex would learn over time the dynamics of a controlled object (e.g., moving one 

arm in one direction) in a certain sensory context, and therefore store its expected behaviour in 

the AP firing profiles of PCs (the "expectation" is obtained thanks to learning, and doesn't imply 

a conscious process, but rather a "learnt habit to pair a sensory context with a motor command, 

separated by a fixed time delay"). In that case, the firing profile of PCs would correlate with 

movement kinematics, and instruct downstream motor neurons with information as to when the 

command should be executed. Such models (applied to motor control) offer the benefit to be 

able to manipulate objects and coordinate movements without the need of sensory feedback, 

with immediate gain on the ability to execute rapidly and accurately a motor command 

(Ohyama et al., 2003). The cost would however be that (very) long, repeated training, may be 

required to optimize circuit output. 

A wealth of experimental data support this type of models. First of all, PC activity 

correlates with movement parameters, such as direction, speed and acceleration (reviewed in 

Medina, 2011 - see Figure I-24, from Medina and Lisberger, 2007). Secondly, it is well-

established that PC activity changes in parallel with motor output reponses in sensori-motor 

learning tasks, only in presence of CF activity (Medina and Lisberger, 2007). Different bottom-

up models are now proposing that the proper temporal pairing of sensory inputs (relayed by 

MFs) and a teaching signal (relayed by CFs) rely on the ability of the cerebellar cortex to 

establish a "temporal basis", where GCs activity could change over time during a constant MF 
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input, so that different subsets of GC-PC synapses can be up- or down-regulated over learning 

by CF activity. 

 

 Temporal specific learning: 

 A uniform network computation performed by the cerebellar cortex could be to lower 

(or suppress) PCs firing during constant MFs input trains (representing contextual information), 

precisely at the time of CFs activation (representing an error), and this computation could be 

learnt by repeated trials and errors. Modelling approaches have suggested different mechanisms 

by which PCs could achieve this learning (reviewed in Medina and Mauk, 2000). Most of them 

require that a constant set of MF input induces temporally-spread activity in the GC population 

(Yamazaki and Tanaka, 2007; Rössert et al., 2015; Südhakar et al., 2015). PCs receiving 

excitatory inputs from GCs would then learn to decrease the weight of GC-PC synapses, only 

for those which are active at the time of CF activity (Figure I-25, from Medina et al., 2000)). 

After learning, the sensory context (provided by MFs, and relayed by GCs) would be sufficient 

to produce the appropriate decrease in PCs activity, without the requirement of a CF input 

(because, when the appropriate response is achieved, no error signal appears any longer in PCs). 

Figure I-24: PC activity in the flocullus 

correlates with eye movement 

parameters: 

A) Raster plot of a PC to 200 repetitions 

of eye pursuit trials with a moving target; 

i: initiation of movement, s: steady state 

movement; B) Position, velocity and 

acceleration of the eye (top three plots) 

with PC firing rate (bottom plot); C) 

Time course of a representative PC 

recording, showing complex spike (*) 

activity. 

From Medina and Lisberger, 2007 
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 Multisensory integration: 

The content of the "sensory context" relayed by the MF-GC pathway  introduced above 

could, at least in principle, be a combination of any type of unimodal sensory stimulus, so long 

as GCs integrating MF inputs from different sensory modalities can be found in the appropriate 

lobule of the cerebellum. Recent in vitro work of the host laboratory (Chabrol et al., 2015) has 

revealed that single GCs in lobule X of the cerebellum integrate inputs from different sensory 

modalities, while other groups have reported multimodal integration at the single cell level in 

GCs in vivo (Huang et al., 2013; Ishikawa et al., 2015). 

 

 Multisensory integration and temporal specific learning in cerebellum-like 

structures: 

In the electrosensory lobe of the mormyrid fish, it has been shown that GCs also 

integrate inputs from MFs conveying proprioceptive and self-generated electrical stimuli 

information (Sawtell, 2010). Moreover, individual GCs respond with a wide variety of firing 

profiles, notably due to the time delays introduced by unipolar brush cells (Kenedy et al., 2014). 

This phenomenon has been coined "temporal basis", and closely mimics theoretical work 

proposing a delay-line model to account for temporal diversity in the GC population of the 

cerebellum during constant MF activation (Medina and Mauk, 2000).  

Figure I-25: Cerebellar cortex mechanisms 

involved in temporal specific learning: 

Consider a tone presented to an animal, 

producing a constant MF input. A "temporal 

basis" is proposed to be set-up between MF 

and GC, producing temporally-diverse 

activity in the GC population, with different 

time-delays for first AP generation, and 

temporal window for AP firing.  During 

training, climbing fiber activity induces 

plasticity at GC-PC synapses, only for those 

synapses which are active at the time of CF 

input. After learning, PCs don't fire at the time 

where an error signal used to be present, 

because the sensory context, relayed by GC, 

has been learnt. 

Adapted from Medina et al., 2000 
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Therefore, at least in the ELL, two important transformations happen between MFs and 

GCs: multimodal integration, and establishment of a temporal basis 

 

Similarly, in the DCN, parallel fibers relay information from different sensory 

modalities and brain regions (Kanold and Young, 2001; Widgerson et al., 2016; Kanold et al., 

2011; Koehler et al., 2011), which are able to modulate the average firing frequency, spike 

timing and temporal representation of sound in the principal cells (Kanold et al., 2011; Koehler 

et al., 2013). However, no study so far seems to have explicitly demonstrated the existence of 

a temporal basis in the input layer of the DCN.  

 

 Long- and short-term plasticity as bases for temporal learning: 

In the cerebellum, long-term forms of plasticity at MF-GC are thought to act in a 

synergistic way with GoC-mediated feed-back inhibition, and intrinsic properties of GCs, to 

improve expansion recoding of MFs inputs onto GCs (reviewed in D'Angelo and De Zeeuw, 

2009). Additional forms of long-term plasticity in the molecular layer further optimize the 

storage capacity of PF input patterns in PCs and MLIs (reviewed in Gao et al., 2012; Mapelli 

et al., 2015).  

Short-term forms of plasticity in the granular layer, on the other hand, is one of the 

proposed mechanism by which constant MF firing rates can be translated into dynamic GC 

firing rates (Medina and Mauk, 2000), and in vitro evidence of this mechanism have recently 

been reported (Chabrol et al., 2015).  

 

 Inhibitory interneurons and time processing: 

The hypothesis that a temporal basis is set-up in the cerebellar cortex at MF-GC 

synapses is currently being tested in the laboratory, and preliminary evidence of its existence 

can be found in (Chabrol et al., 2015). The current model examines how STP rules between 

MF-GC synapses, along with long-term adjustment of GC-PC synaptic weights induced by CF 

activity, combine to induce changes in PC firing output with different time delays after MF 

activation onset. For simplicity, the role of STP at GC-MLI and MLI-PC synapses is not 

examined. However, experimental and theoretical studies (reviewed in Motanis et al., 2018) 

suggest that such additional sites of STP can enrich the repertoire of time processing functions 

in feed-forward circuits, notably by creating interval- or frequency-specific filters. These filters, 
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which include inhibitory interneurons, could ultimately expand and refine the temporal basis 

set-up in the input layer (i.e., the GCs in the cerebellar cortex - see Figure I-26, from Motanis 

et al., 2018). 

 

  

In the cerebellar cortex, recent in vitro studies (Grangeray-Vilmint et al., 2018; Dorgans 

et al., 2019) have notably revealed that the firing profile of PCs is highly sensitive to the firing 

frequency and number of APs emitted by presynaptic GCs. The authors showed that different 

STP rules at GC-MLI synapses underlie differences in mean firing rate and first spike latency 

of MLIs, which can then translate into a net gain or loss in emitted spikes, at the single PC level.  

 

Figure I-26: Interval selectivity simulated in a simple feed-forward circuit with STP: 

A) Simple feed-forward circuit composed of an excitatory input, an inhibitory interneuron (Red) and a principal 

cell (green). Each synapse is endowed with an initial release probability (U), and time constants of facilitation 

(τF) and depression (τD); B) Modelled behaviours of input-> principal cell and input-> inhibitory interneurons 

synapses, depending on the time interval between Input activation: C) Varying the initial synaptic weights 

makes the excitatory neuron fire an AP only for certain time delays between the two input stimulations; D) the 

excitatory neuron fires an AP only for 100ms time delays, for initial weights indicated by the dashed box in 

C). Changing the weight of Inp->Inh and/or Inp->Exc changes the interval selctivity of the Exc neuron. 

Adapted from Motanis et al., 2018 
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General question, and summary of results: 

The initial purpose of this thesis was to investigate how basket cells (somatic-targeting 

interneurons) process their excitatory inputs coming from parallel fibers, and establish their 

input-output relationship. We had the long-term goal of comparing basket cells to dendritic-

targeting stellate cells, which have already been studied in details by the laboratory 

(Abrahamsson et al., 2012; Tran-Van-Minh et al., 2016). Furthermore, because the cerebellar 

cortex is a canonical microcircuit, we aimed to provide some more general insights as to how 

somatic-targeting interneurons found in the CNS could share common features in their 

input/output relationships. 

I discovered that, in vitro, parallel fiber stimulation produces a sequence of fast inward 

current and slow outward current in BCs, reminiscent of classical GABAergic FFI, and despite 

the presence of supramaximal concentration of gabazine in the ACSF. I later found that the 

secondary outward current was the inhibitory component of spikelets delivered by electrical 

neighbours, brought to threshold by parallel fibers stimulation. Therefore, I examined what 

could be the biophysical determinants of the excitation/inhibition balance of spikelet signalling, 

and how prevalent this mode of communication was in mature animals, compared to the well-

known and documented GABAergic inhibition that interneurons project onto each other. 

Finally, I examined how spikelet recruitment could shape information processing of PF-

mediated direct EPSPs, and influence EPSP-spike coupling. These results are summarized in 

Chapter III, presented in the format of a manuscript in preparation. 

Later, I examined in more details electrical communication within the basket cell 

population, first by examining if subthreshold EPSCs could be transferred through electrical 

synapses; then if HCN channels expressed in basket terminals could shape presynaptic APs and 

transmitted spikelets; and finally how temporal summation of spikelet signalling depends on 

the firing frequency of the presynaptic cell. These results are summarized in Chapter IV. 

Finally, I examined how different morphological features and electrophysiological 

properties between stellate and basket cells indicate that they have different dendritic 

integration rules of PF-mediated inputs. These results are summarized in Chapter V. 
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Chapter II - Materials and Methods: 
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 Slice preparation:  

 Animal experiments were performed in accordance with the guidelines of Institut 

Pasteur, France, and all protocols were approved by the ethics committee CEEA-Ile de France-

Paris 1. Acute parasagittal slices (200 μm) of cerebellar vermis were prepared from postnatal 

day 30-60 (~44 days on average) mice (F1 cross of BalbC and C57Bl/6J). Mice were rapidly 

killed by decapitation, after which the brains were removed and placed in an ice-cold solution 

containing (in mM): 2.5 KCl, 0.5 CaCl2, 4 MgCl2, 1.25 NaH2PO4, 24 NaHCO3, 25 glucose, 230 

sucrose, and 0.5 ascorbic acid. The solution was bubbled with 95% O2 and 5% CO2. Slices were 

cut from the dissected cerebellar vermis using a vibratome (Leica VT1200S), and incubated at 

32°C for 30 minutes in an solution containing (in mM): 85 NaCl, 2.5 KCl, 0.5 CaCl2, 4 MgCl2, 

1.25 NaH2PO4, 24 NaHCO3, 25 glucose, 75 sucrose and 0.5 ascorbic acid. Slices were then 

transferred to an external recording solution containing (in mM): 125 NaCl, 2.5 KCl, 1.5 CaCl2, 

1.5 MgCl2, 1.25 NaH2PO4, 24 NaHCO3, 25 glucose and 0.5 ascorbic acid, and maintained at 

room temperature for up to 6 hours. 

 

 Electrophysiology: 

 Whole-cell patch-clamp recordings were performed from basket cells (BCs), located in 

the inner-third of the molecular layer of acute parasagittal slices (200µm thick) of cerebellar 

vermis. Unless otherwise stated (Figures 3 and 4), 10 µM of SR-95531 was added to the 

Artificial Cerebrol-Spinal Fluid (ACSF), to block GABAA receptors. Recordings were 

performed at holding membrane potentials as indicated in the text, and near physiological 

temperature (32°C) using a Multiclamp 700B amplifier (Molecular Devices). To achieve 

whole-cell recordings, we used fire-polished thick-walled glass patch-electrodes (tip resistances 

of 4-6 MΩ). Patch pipettes were backfilled with the following internal solution (in mM): 115 

KMeSO3, 40 HEPES, 1 EGTA, 6 NaOH, 4.5MgCl2, 0.49 CaCl2, 0.3 NaGTP, 4 NaATP, 1 K2-

phospocreatine and 0.02 Alexa-594 or 0.04 Alexa-488 (adjusted to 300-305 mOsm, pH = 7.3, 

referred to as K+-based internal solution); 115 CsMeSO3, 40 HEPES, 1 EGTA, 6 NaOH, 

4.5MgCl2, 0.49 CaCl2, 0.3 NaGTP, 4 NaATP, 1 Tris-phospocreatine and 0.02 Alexa-594 

(adjusted to 300-305 mOsm, pH = 7.3, referred to as Cs+-based internal solution). Series 

resistance was 14.0 ± 5.8 (mean ± SD, estimated from n=160 cells) and always under 30 MΩ. 

For current-clamp recordings, a bias current was injected to maintain the membrane potential 

at values reported in the text, and series resistance was compensated by balancing the bridge 

and compensating pipette capacitance. All values of membrane potential were corrected for 
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liquid junction potential, estimated to be -8mV for K+-based internal solution and -11mV for 

Cs+-based internal solutions (Abrahamsson et al., 2012). 

 In experiments described in Figure 1 and 5, internal solutions were further 

complemented with 1mM QX-314 to prevent AP generation after entry of PF-mediated EPSCs. 

 

 Transmitted light and fluorescence imaging: 

 BC somata in the inner third of the molecular layer were identified and whole-cell 

patched using infrared Dodt contrast (Luigs and Neumann, Germany) and a Q1Click digital 

CCD camera (QImaging, Surrey, BC, Canada) mounted on an Ultima multiphoton microscopy 

system (Prairie Technologies, USA) based on an Olympus BX61W1 microscope, equipped 

with a water-immersion objective (60X, 1.1 NA, Olympus Optical, Tokyo, Japan). Two-photon 

excitation of Alexa-488 and Alexa-594 was performed at 780 for pairs of BCs. When Alexa-

594 alone was used (single-cell patch-clamp), it was excited at 840nm. A transmitted light PMT 

after the Dodt tube was used to acquire a laser-illuminated contrast image simultaneously with 

the 2P-LSM image. 

 

 Image analysis: 

 All images were analysed using ImageJ and Fiji. To stitch images for BCs, the pairwise 

stitching plugin (Preibisch et al., 2009) was used. To assess the distance dependency of PPR 

and rise time along BC dendritic tree, the freehand line drawing function of the software was 

used to measure distances between stimulated dendritic sites and somata, and Z differences 

between dendrites and soma locations were accounted for. To measure maximal radial 

extension of dendrites in BCs and SCs, the straight line function of the Fiji software was used 

on Z-projection images. 

 

 Pharmacological agents: 

 D-AP5 (D-(-)-2-Amino-5-phosphopentanoic acid) and SR 95531 (2-3-Carboxyprobyl)-

3-amino-6(4-methoxyphenyl)pyridazinium bromide) were purchased from Abcam, UK. 

NBQX (2,3-Dioxo-6nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide) was 

purchased from Tocris Bioscience, UK. Alexa Fluor 488 and 594 were purchased from Life 

Technologies, USA. Mefloquine hydrochloride was bought from Sigma Aldrich, France. 
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 Parallel fibre-mediated responses: 

 Stable EPSC responses from parallel fibers (On-beam stimulation) was performed by 

positioning the stimulation electrode (filled with ACSF, and visualized by Dodt contrast) on 

top of the slices, above the dendrites of the patched MLIs (visualized by 2PLSM fluorescence 

of Alexa 594, introduced through the patch pipette). Stimulus intensities were set to 5-10 V 

above threshold for detecting an EPSC (Abrahamsson et al. 2012), referred to as low 

stimulation. To trigger spikelet responses (Off-beam stimulation and direct stimulation), the 

stimulation pipette was positioned intentionally outside of the dendritic tree, and the 

relationship between electrical stimulation intensity and spikelet recruitment was systematically 

examined (Figure 2). In the experiments shown in Figure 1, the external ACSF contained 2mM 

CaCl2, 1mM MgCl2, 10µM gabazine (SR-95531) and 50µM D-AP5 to block GABAAR and 

NMDAR, respectively. In our attempt to block the PF-mediated outward current (Figure 1), we 

also added in the ACSF either 20µM mefloquine + 0.1% DMSO, or simply 0.1% DMSO. In all 

other experiments, we used 1.5 mM CaCl2 and 1.5 mM MgCl2, values, which are closer to the 

physiological ones (Silver and Erecinska, 1990; Bouvier et al., 2018). 

 

 Detecting electrical and/or chemical synapses in paired recordings: 

 The presence of an electrical synapse was assessed by analysing CCs, and post-synaptic 

inward currents after pre-synaptic AP firing. Inward currents following presynaptic AP 

stimulation can only be due to spikelets, while outward currents can be caused by either 

spikelets and/or GABAergic currents. If inward currents are not detected (i.e., distribution of 

peak amplitude not significantly different from baseline distribution), then outward currents in 

the postsynaptic responses are used to infer the presence of a GABAergic synapse. However, 

when an electrical synapse is detected, the outward current in post-synaptic responses can be 

caused by a mix of electrical and chemical inputs. In that case, peak amplitude of post-synaptic 

outward currents were compared at different holding membrane potentials of the post-synaptic 

cell (to change the electromotive force for GABAergic inputs), and/or before and after 

application of gabazine. The presence of a GABAergic synapse was inferred when the peak 

amplitude distribution of outward current in these different conditions were significantly 

different from each other. When an electrical connection was present, bias current in the pre-

synaptic cell was manually adjusted, to compensate for passive flow of different holding 

currents from the post-synaptic cell. 
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 Data analysis and statistics: 

 Electrophysiological data were analysed in the Neuromatic analysis package 

(www.neuromatic.thinkrandom.com) written within the Igor Pro environment (Wavemetrics, 

USA). Peak amplitude of synaptic responses recorded in voltage-clamp or current-clamp were 

measured as the difference between the baseline level immediately preceding the stimulation 

artifact, and the mean amplitude over 200 µs window centred around the peak of the mean 

response. Due to the long-lasting nature of the fAHP component of spikelets, the peak 

amplitude of the inhibitory component was averaged in a time widow of 3ms, centred on the 

peak amplitude of the mean response. When electrical artefact of the stimulating pipette did not 

reach baseline before synaptic responses occurrence (Direct stimulation, Figure 2), single or 

double exponential fits of the decay were subtracted from the recordings. All traces displayed 

are averages of 20 to 30 sweeps, filtered off-line using a binomial smoothing equivalent to 4 

kHz filtering. 

 Measurement of distances between synaptic activation and soma (Figure 1) or between 

the somata of two neighbouring cells (Figure 4) was performed on 2P-LSM images in ImageJ 

with a freehand line in maximal intensity projection images, and compensated for differences 

in z offsets. 

 Data are expressed as averages ± SEM, unless otherwise indicated. Statistical tests were 

performed using a non-parametric Mann-Whitney two-sample rank test routine for unpaired 

comparisons, or Wicoxon matched-pairs signed rank test for paired comparisons. Kruskal-

Wallis tests, followed by Dunn's multiple comparison tests, were employed to compare multiple 

groups inside a single experiment. For one-way multiple groups comparison with pairing 

information, we employed Friedman tests, and regular one-way ANOVA when samples size 

were above n = 30.  Linear correlations were determined using a Pearson test. Statistical 

significance was defined as p < 0.05. All statistical tests were two-sided, and performed in 

GraphPad Prism 6. 
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Chapter III: Electrical synapses within a feed-

forward electrical circuit generate temporal 

contrast enhancement: 
 

 This chapter is the current state of a manuscript summarizing most of the work of my 

PhD. It will be presented in the classical format of a manuscript, exception made for the 

materials and methods section, which has already been presented in Chapter II; and the 

reference section, which will be incorporated in the general reference section of this thesis. 
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I) Abstract: 

 In the cerebellar cortex, molecular layer interneurons are connected by both chemical 

and electrical synapses, with the precise control of postsynaptic spiking being driven by the 

ratio of excitatory and inhibitory chemical transmission. While electrical synapses have been 

proposed to be important in entraining neuronal firing to be synchronized, whether they can be 

used to fine-tune information flow, particularly within feed-forward circuits, is less well 

explored. By combining whole-cell patch-clamp and 2-Photon laser scanning microscopy of 

basket cells, we found that classical EPSCs are followed by a GABAergic-independent outward 

current. These hyperpolarizing currents are due to passive propagation of an EPSP-evoked 

action potential from gap junction coupled neighbour(s). The depolarized resting membrane 

potential of basket cells ensures that spikelets result in a net inhibition, which curtails the time 

window and dampens the temporal summation of concomitant EPSPs. But during coincident 

arrival with an EPSP, basket cells experience higher amplitude synaptic responses, due to the 

transient depolarizing component of the spikelets, ultimately enhancing AP firing for a few 

millisecond. Therefore, spikelet transmission contributes to a temporal contrast enhancement 

of excitatory inputs, and provides a precise coincidence mechanism for temporally coded 

information without any loss in excitatory drive. 
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II) Introduction: 

GABAergic interneurons play important, but diverse, roles in gating, routing and 

modulating excitatory information flow within neural circuits, through inhibitory chemical 

synapses. These different computational functions are classified according to canonical wiring 

motifs (Isaacson and Scanziani, 2011; Feldmeyer et al., 2018). Feed-back inhibition supports 

rate-based modulation of excitation through gain modulation and increased dynamic range of 

the levels of excitatory input that can be encoded within a circuit, while feed-forward (FF) 

inhibition permits precise regulation of post-synaptic spike-timing by sharpening EPSP-spike 

coupling (Pouille and Scanziani, 2001; Mittman et al., 2005; Blot, 2016). FF motifs can also 

expand the dynamic range of inputs which can be represented by principal cells (Pouille et al., 

2009). However, how FF inhibitory motifs can be used to regulate interneuron firing is less well 

studied. 

 Interneurons communicate with each other through both chemical and electrical 

synapses. While chemical synapses can regulate interneuron firing in the same way as for 

principal neurons (Mittman et al., 2005), the presence of gap junctions that couple neurons 

directly as resistive elements, are thought to generate emergent properties such as oscillations 

and synchronized firing within neuronal assemblies (Draguhn et al., 1998; Beierlein et al., 

2000; Bennett and Zukin, 2004; Maex and De Schutter, 2007; Ostojic et al., 2009; Van Welie 

et al., 2016; Gutierrez et al.,. 2013). Electrical synapses between molecular layer interneurons 

within the cerebellum have been shown to mediate synchronized firing (Mann-Metzer and 

Yarom, 1999) and coincidence detection (Alcami, 2018), while those between Golgi cells act 

to synchronize or desynchronize cerebellar cortical network activity (Dugué et al., 2009; 

Vervaeke, 2010; Van Welie et al., 2016). Finally, electrical synapses modulate passive 

properties in interneurons (Hjorth et al., 2009; Amsalem et al., 2016; Alcami, 2018). However, 

despite theoretical studies showing the influence of electrical synapses in information 

processing within FF circuits (Pham and Haas, 2019), experimental demonstration that 

electrical synapses modify temporally coded information within FF neural circuits has not been 

examined. 

 Owing to the low-pass filtering properties of the cell membrane, presynaptic APs are 

heavily filtered, and consequently detected as "spikelets" in post-synaptic cells (Dugué et al., 

2009; Pereda et al., 2013). However, whether the spikelet conveys mostly the depolarizing 

component of the AP (Hu and Agmon, 2015; Mann-Metzer and Yarom, 1999), or the after-

hyperpolarization component (Dugué et al., 2009; Vervaeke et al. 2010) can vary, and thus 
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determines whether the electrical synapses can mediate a net excitation or inhibition. 

Alterations in the spikelet waveform can arise from alterations in presynaptic AP waveforms, 

which are modulated by differences in the resting membrane potential (Mann-Metzer and 

Yarom, 1999; Dugué et al., 2009; Russo et al., 2013). Theoretical studies show that net 

depolarizing spikelets will drive synchronization within neuronal networks, while 

hyperpolarizing spikelets will generate bistable networks either oscillate synchronously or 

remain in asynchronous states (Ostojic et al., 2009). Thus, the contribution of electrical 

synapses network computations depends on the precise polarity of the spikelet. 

 In the cerebellar cortex, molecular layer interneurons (MLIs) are known to mediate feed-

forward inhibition (FFI) onto each other and Purkinje Cells (PCs) by the means of GABAergic 

synapses (Mittman et al., 2005; Blot et al., 2016). MLIs have also been shown to be electrically 

coupled via the gap-junction protein, Cx36, likely located in the dendrites (Alcami, 2013). 

Given the gradients of both prevalence and strength of electrical connectivity along the 

molecular layer in favour of lower-third MLIs (Rieubland et al., 2014), which are usually basket 

cells (Sultan and Bower, 1998), we investigated if electrical connectivity could be recruited in 

a feed-forward manner in the BC population, and how it could modulate EPSP-spike coupling. 

We found that electrical stimulation of parallel fibre (PFs) excitatory inputs reliably elicited 

EPSCs, followed rapidly by an outward current that was blocked by gap junction antagonists, 

consistent with suprathreshold synaptic recruitment of an electrically coupled neuron. Paired 

whole-cell recordings from electrically coupled BCs showed that the spikelets were 

predominantly inhibitory due to the depolarized presynaptic resting potential. Thus, the 

synaptic recruitment of an electrically coupled MLI neighbour displays some of the 

characteristic features of FFI: temporal shortening of single EPSPs, and dampening of temporal 

summation. However, unlike chemical FFI, we demonstrate that EPSP-evoked spikelets can 

amplify synchronous compound synaptic responses, and consequently increase the probability 

of AP firing over a brief time window. Thus, synapse-evoked spikelet recruitment in a feed 

forward motif can act as a mechanism for temporal contrast enhancement of information flow 

within neural circuits. 
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III) Results: 

 PF-triggered outward current mediated by electrical synapses in cerebellar 

basket cells: 

 Molecular layer interneurons (MLIs) found in the inner third of the molecular layer of 

the cerebellar cortex are more likely to be basket cells, defined by their basket-like axonal 

projection targeting Purkinje cell (PC) somata and axon initial segment (Sultan and Bower, 

1998). Because inner MLIs have been shown to form stronger and more frequent electrical 

synapses (Rieubland et al., 2014), we examined whether electrical synapses could be recruited 

in a feed-forward manner between electrically coupled basket cells. Two photon laser scanning  

microscopy (2P-LSM) of whole-cell patch clamped inner MLIs revealed that more than 95% 

of cells with basket collaterals also presented a dendritic that traversed nearly the entire 

molecular layer (174±4.9 µm, n=30 cells - Figure 1A). All subsequent recordings were made 

from inner MLIs with either a characteristic dendritic or axonal morphologies of basket cells 

(Sultan and Bower, 1998). 

 Simultaneous Dodt contrast imaging and 2P-LSM was used to target stimulation of PFs 

at different locations along the dendritic tree (Figure 1A-C). Stimulation intensity was adjusted 

to obtain stable EPSCs and 50Hz PPR (generally 5-10 V above threshold; Abrahamsson et al., 

2012) in the presence of saturating concentrations of the GABAA receptor blocker, gabazine 

(10 µM - Ueno et al., 1997). All stimulus locations in this cell evoked currents with a 

conventional fast EPSC component and outward component, except when targeting the soma.  

The gabazine-insensitive outward current was detected in approximately 60% of stimulation 

locations (Figure 1G, red circles) across 24 cells. Twenty-one cells displayed significant 

outward currents in at least one stimulation site (see Methods). The outward current was 

detected all along the dendritic tree, with an amplitude independent of the distance from 

stimulation site to the soma (Figure 1D). Bath application of 10µM of the AMPA receptor 

(AMPAR) antagonist, NBQX, eliminated both the EPSC and the subsequent outward current 

(Figure 1E, n=6/6 experiments). Increasing the stimulation voltage increased the amplitude of 

the inward current, but EPSC amplitude did not correlate with the outward current amplitude 

(Supplementary Figure 1), which suggested that voltage-dependent potassium conductance 

recruitment by unclamped dendritic EPSCs (Tran-Van-Minh et al., 2016) did not contribute to 

the outward current. Replacement of internal potassium by cesium to block potassium 

conductances, did not alter the frequency or amplitude of outward currents (Figure 1F-I). 

However, 20 µM mefloquine, a potent blocker of gap junctions (Cruikshank et al., 2004) 
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reduced the prevalence of observing an outward current to 22±2% (Ordinary one-way ANOVA, 

F = 57.13, P-value < 0.0001; followed by Tukey's multiple comparisons tests), with those 

detected currents being 2.8 fold smaller (Figure 1I - Kruskal-Wallis test, p < 0.0001, followed 

by Dunn's multiple comparison tests). In conditions where only 0.1% DMSO was added to the 

ACSF, neither the prevalence nor the amplitude of the outward current was significantly 

different to control conditions (Figure 1H and I, pink group; ordinary one-way ANOVA 

followed by Tukey's multiple comparison's test). In all groups, EPSC amplitude was 

comparable (Figure 1G, Ordinary one-way ANOVA, F = 0.5676, P-value = 0.6368), indicating 

that PF synaptic transmission was not impaired by any of the pharmacological agents. These 

observations are consistent with feed-forward AMPAR-mediated recruitment of an inhibitory 

current via electrical synapses, analogous to classical, GABAergic-mediated, FFI (Scanziani et 

al., 2001; Mitmann et al., 2005). 
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Figure III-1: PF-induced inhibitory current mediated by electrical synapses in cerebellar basket cells: 

A) 2P-LSM image (maximal intensity projection) of a BC loaded with 20µM Alexa-594. Color arrows indicate the positions of the 

stimulating pipette. B) Block diagram of parasagittal slices showing the stimulation pipette (black triangle), parallel fibers (PFs - red lines), 
and the patched cell loaded with Alexa-594 (purple). C) Averaged EPSCs in response to a single stimulation of PFs in 10µM gabazine 

(same color code as in A). D) Average peak amplitude of the outward current versus distance between synaptic current entry and somatic 

compartment. E) Representative experiment of application of 10µM NBQX, revealing the disappearance of both inward and outward 
currents (n=6/6 experiments). F) Representative traces of PF-mediated synaptic responses recorded in four different pharmacological 

conditions. Two traces, recorded within the same cell for each group, reveal either the presence (color) or the absence (black) of the 

outward current. G) EPSC amplitude following PF stimulation is not significantly different in any of the four groups. H) Frequency of 

detection of the outward current in each group. I) Outward current peak amplitude (in cases where it can be detected) in each group. 
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 PF-evoked and direct recruitment of MLI's spikelets 

 Spikelets transmission through electrical synapses has been shown to exhibit a long-

lasting inhibitory current (Mann-Metzer and Yarom, 1999; Alcami and Marty, 2013; Rieubland 

et al., 2014). We therefore hypothesized that the outward current reflects the filtered after-

hyperpolarisation (fAHP) of presynaptic AP of electrically coupled neighbours, generated by 

PF-evoked AMPAR mediated EPSPs. To test this hypothesis we reasoned that stimulation of 

PF beams, in the presence of gabazine, outside the dendritic tree of the recorded BC (Figure 

2A, 2B; off-beam stimulation) would depolarize a coupled neighbour to threshold, thereby 

generating a spikelet-only waveform, without the direct EPSC observed previously. Indeed, 

rapid and small inward currents were invariably observed prior to large relative outward 

currents (Figure 2C, 2D). Both current components increased with increasing extracellular 

stimulus intensity (from 20-50V), consistent with recruitment of at least one additional 

electrically coupled MLI (Figure 2E). In 12/12 locations from 9 cells, we never observed an 

outward current exceeding 2*SD of the baseline noise without being preceded by an inward 

current, as one would expect for exclusive spikelet transmission.   

 Our hypothesis that BCs exhibit FF recruitment of spikelets also predicts that in the 

presence of AMPAR antagonists, direct stimulation of a neighbouring MLI soma should also 

elicit a single spikelet (Figure 2F and G). Figure 2H shows a representative example where, at 

10V, no post-synaptic response is detected, but at 20V, some trials elicited small inward 

currents concomitant with outward current. Increasing the stimulation intensity increased the 

number of successes, but did not alter the amplitudes (p-value > 0.05 for two-by-two 

comparisons of inward and outward currents - Figure 2I and 2J).  In n=12/12 experiments from 

11 cells, we found that each time an outward current was detected, it was preceded by a 

detectable inward current. 

 Taken together, these experiments confirmed that all outward currents detected were 

systematically preceded by an inward current, which is the electrophysiological signature of 

spikelet signalling in MLIs, and provide further evidence that inhibitory currents described in 

Figure 1 are the fAHP associated with FF recruitment of spikelet signalling. 
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Figure III- 2: Recruitment of spikelet through PF recruitment or direct stimulation A) 2P-LSM image (maximal intensity projection) 

of a BC loaded with Alexa-594. Dashed white lines indicate the position of the stimulating pipette on top of the slice (off-beam 

stimulation). B) Block diagram of parasagittal slices showing stimulating pipette (Black triangle), parallel fibers (PFs - red lines), a 
neighbouring MLI (dashed grey lines) forming an electrical synapse (green dots) with the patched cell (purple). C) Post-synaptic responses 

recorded in the patched cell, with respect to the stimulation intensity. Dark lines represent averages of 15-20 single sweeps, shown in 

lighter colors. D) Superimposition of average responses, shown for visual comparison of the differences in mean peak amplitude of inward 
and outward currents. E) Summary plot of peak amplitudes of inward and outward currents shown in C, with corresponding averages +/- 

SD represented by larger dots. F-J) Similar as in A-E, but for a direct stimulation protocol, with 10µM NBQX in the bath. 
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 Modulation of spikelet polarity by presynaptic membrane potential: 

 Spikelets recorded from different cell-types throughout the brain have been shown to 

differ in their waveforms, and notably in the balance between excitation and inhibition 

(Galaretta and Hestrin, 2002; Dugué et al., 2009; Hu and Agmon, 2015). In immature BCs, a 

predominant depolarizing components was reported (Alcami and Marty, 2013; Alcami, 2018). 

Because we showed above that outward current component of the spikelet was prominent as 

well, we more closely investigated the net polarity of spikelets and the influence of membrane 

potential. Pairs of BCs were whole-cell patch clamped and a hyperpolarizing current pulse (400 

ms duration) was used to confirm the presence of electrical synapses and estimate unidirectional 

coupling coefficients (CCs). In order to examine spikelet transmission in isolation, GABAergic 

inhibition was blocked with gabazine, which did not affect CCs (Figure 3B and 3C - n=16 cells 

from 8 pairs, Wilcoxon matched-pairs signed rank test, p > 0.05). APs were then triggered when 

varying the membrane potential of either the transmitting or receiving neuron (Figure 3D-G). 

The peak amplitude of the inward and outward currents, as well as the charge transfer of the 

spikelet response, were unaffected when altering the holding membrane potential of the post-

synaptic neuron (Figure 3E, n=12 cells from 6 pairs, 3 independent Friedman tests, with p-

values > 0.05 for each of them). When adjusting the holding current to alter the membrane 

potential of the presynaptic neuron between approximately -80, -70 or -60 mV, the inward 

current reduced in amplitude and the outward current increased (Figure 3F and 3G; n=12 cells 

from 6 pairs,  3 independent Friedman tests, with all p-values < 0.001). Because of the slower 

outward component, the compound effect of inward and outward current changes led to an 

inversion of charge transfer from net excitation to net inhibition as the presynaptic neuron was 

depolarized. These results imply that net polarity of spikelets changes significantly with the 

presynaptic membrane potential, and that spikelet waveforms can be used to estimate resting 

membrane potential of unperturbed (i.e., no whole-cell dialysis) presynaptic neurons.  

 In order to estimate the membrane potential of unperturbed electrical partners, we 

compared peak inward and outward current amplitudes of spikelets from paired recordings to 

those of spikelets evoked by off-beam stimulation and direct stimulation (from Fig. 2). Linear 

regression analysis of each of the five groups showed a similarity between direct and OFF-

beam stimulations data (Figure 3H). These two regression lines were significantly different 

from those of -80mV and -70mV, but not significantly different from the -60mV group. These 

data indicate that unpatched MLIs have a resting membrane potential of at least -60mV (and 

perhaps greater). Figure 3G shows that spikelet responses from -60 mV holding potentials 
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should carry a net inhibition, as the total charge integral was positive. Because we were not 

certain to have only single neuron spikelet responses by direct or off-beam stimulation, we first 

normalized spikelets to the peak of the inward current before integration (over 50 ms), and then 

compared the net relative charge to that from spikelets from paired recordings when holding 

the presynaptic neuron at -60 mV. Consistent with a net inhibitory effect, the charge integral 

for directly stimulated and off-beam recruited spikelets were positive (Figure 3I). Off-beam 

spikelets were similar in the net relative charge transfer as those arising from presynaptic 

neurons held a -60 mV, but directly recruited spikelets displayed a significantly higher 

normalized charge transfer, possibly because of dialysis effect in paired recordings (ordinary 

one-way ANOVA followed by Dunn's multiple comparisons test).  The difference between the 

off-beam elicited and direct spikelets could be due to the passage of subthreshold EPSP 

transmitted from the presynaptic neuron that contribute an additional inward current. 

 Altogether, these results indicate that the resting membrane potential of MLIs forming 

electrical synapses is critical in setting the net excitatory/inhibitory impact of spikelet 

transmission. Moreover, we determined that MLIs from mature mice have a depolarized resting 

membrane potential (-60mV) in agreement with previous estimates (Chavas and Marty, 2003; 

Kim et al., 2014). This depolarized membrane potential ensures that spikelets deliver a net 

inhibition and thus could act to provide FFI. 

Figure III-3: Modulation of spikelet polarity by presynaptic membrane potential: A) 2P-LSM image of two BCs loaded with 20µM 

Alexa 594 (red), or 20µM Alexa 488 (green). B) Membrane potential of both cells (same color code as in A), when either of them is 

injected with a long hyperpolarizing current pulse. Solid lines indicate responses in control conditions, while dashed lines correspond to 
responses recorded in 10µM gabazine. C) Unidirectional coupling coefficients are not significantly changed by gabazine addition. D) 

Action potential from one cell of the pair, maintained in current-clamp around -70mV (upper panel), with corresponding spikelets received 

in the post-synaptic cell, held in voltage-clamp at different membrane potentials (lower panel). E) Inward current peak amplitude (left 
panel), outward current peak amplitude (middle panel) and charge transfer (right panel) do not vary with post-synaptic membrane potential. 

F) Action potential from the same cell, maintained in current-clamp at three different resting membrane potential (upper panel), with 

corresponding spikelets recorded in the post-synaptic cell, held at -70mV in voltage-clamp (lower panel). G) Inward current peak 
amplitude (left panel), outward current peak amplitude (middle panel) and charge transfer (right panel) are all significantly altered by 

changing the resting membrane potential of the pre-synaptic cell. H) X-Y plot of outward versus inward current peak amplitudes of 

spikelets recorded in pairs (-60, -70, -80mV) and in the conditions described in Figure 2 (Direct stimulation and Off-beam stimulation). 

I) Spikelet charge transfer, normalized to the peak amplitude of the inward currents 
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 Electrical synapses form the majority of inhibitory connections between BCs in 

adult animals: 

 In young rats, electrical synapses have been shown to be more prevalent than chemical 

ones in the inner-third MLI population (Rieubland et al., 2014). Here, we re-examined the 

relative impact of electrical synapse-mediated FFI and classical chemical FFI in mature mice, 

as developmental changes have been described in other circuits (Peinado et al., 1994; Hormuzdi 

et al., 2001). Previous studies used multi-electrode whole cell recordings to establish the 

fraction of synapses that were chemical and electrical, albeit using long current step injections 

and a coupling coefficient >1% for electrical coupling (Rieubland et al., 2014). Here electrical 

coupling was examined using both long hyperpolarizing current pulses (Figure 4B; see 

Methods) and brief current injections to elicit APs in the presynaptic neuron and monitor the 

post-synaptic currents. Electrical connectivity was estimated based on CCs, and detection of 

inward current peak amplitude of spikelets significantly different from baseline (Figure 4C). 

To probe chemical connectivity, we compared the post-synaptic responses to presynaptic AP 

generation, before and after application of gabazine; or at different holding membrane potential 

of the post-synaptic cells (held at -70mV or -60mV, Figure 4C), in order to increase the driving 

force for GABAergic currents. As shown above, this manipulation does not influence the 

waveform of potential superimposed spikelets (Figure 3D and E).   

 Figures 4A to C show an example paired recording in which bidirectional voltage 

deflections were observed in the unstimulated neuron (Figure 4B) and post-synaptic inward 

currents were observed after generating a presynaptic AP (Figure 4C, left), together indicating 

the presence of an electrical synapse. Comparison of post-synaptic responses before and after 

gabazine addition, or at two holding membrane potentials of the post-synaptic cells, revealed 

significantly different outward currents in each condition, indicating the presence of two 

unidirectional GABAergic synapses, with a stronger one going from cell 1 to cell 2. Examples 

of recordings from two other pairs, where a pure chemical synapse or a pure electrical synapse 

were observed, are shown in Figure 4D and 4E, respectively. 

 In order to compare the prevalence of chemical and electrical synapses, we only 

considered AP-triggered post-synaptic responses, as coupling coefficients below 5% are not 

systematically correlated with detection of spikelets (Supplementary Figure 2), suggesting 

indirect coupling. For CCs above 5% however, peak amplitude of inward and outward currents 

of spikelets are linearly correlated with CC (Supplementary Figure 2). Consistently, a coupling 

coefficient of 5% more accurately predicts spikelet detection (Figure 4F). Bidirectional spikelet 

transmission was significantly higher than unidirectional GABAergic connection (p(spikelet) = 
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51±3.4% vs p(GABA) = 40±2.7%, p < 0.05, Unpaired t-test with Welch's correction). Our data 

therefore indicate that, within the BC population of adult animals, inhibition is more often 

carried by electrical synapses than chemical synapses. 
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Figure III-4: Electrical synapses form the majority of inhibitory connections between BCs in mature animals.  A) 2P-LSM image 

of two BCs loaded with 20µM Alexa 594 (red), or 20µM Alexa 488 (green). B) Membrane potential of both cells (same color code as in 

A), when the red cell is injected with a hyperpolarizing current pulse (left panel), or when the green cell is injected with the same current 
pulse (right panel), in absence of gabazine. C) Examples of dual electrical/chemical connections; left panels: AP waveforms from cell 1 

(red cell), and corresponding post-synaptic responses in cell 2 (green cell), when cell 2 is held at different potentials, or in presence of 

gabazine (left panels). Right panels: similar recordings when the same protocols are applied in the reverse direction (AP triggered in cell 
2, and post-synaptic responses recorded in cell 1). D and E) Example of a chemical synapse only, and of an electrical synapse only, 

recorded in two different cells. F) Frequency of electrical synapses (in n = 53 bidirectional connections) based on bidirectional CCs above 

1%, 2%, 5%, or significant spikelet-induced inward current (red bars), compared to frequency of chemical synapses (in n = 78 
unidirectional connections – green bar). 
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 Feed-forward recruitment of spikelets narrows single EPSP time-window, and 

dampens temporal summation: 

 Having observed that electrical synapses are a prominent source of inhibitory inputs in 

BCs, we investigated if the FF recruitment of spikelets could influence EPSP kinetics and 

temporal summation as for classical chemical FFI. Because mefloquine is known to alter input 

resistance by blocking electrical synapses (Vervaeke et al., 2012), and displays the side-effect 

to increase membrane capacitance (Szoboszlay et al. 2016), we took advantage of the fact that 

some stimulation locations along the dendrite did not recruit a spikelet when stimulating 5-10 

V above threshold (θ) for eliciting an EPSC (Low stimulation - Figure 1). We then increased 

the stimulus intensity another 15V (High stimulation), which in some cases only increased the 

EPSC amplitude (Figure 5A), and in others recruited AP firing of a neighbour, and thus a 

spikelet in the recorded cell (Figure 5B). For those cases where an outward current was not 

recruited, current clamp recordings of the same cells showed no differences in the half width of 

the EPSPs, despite an increase in the amplitude (Figure 5A - n=15 EPSPs, Wilcoxon matched-

pairs signed rank test, p = 0.1876). For the cases where additional stimulation intensity elicited 

a detectable outward current, the half-width in current clamp conditions was decreased by 19.6 

± 1.2 % (n=10, p = 0.002; Figure 5B).  These results support the notion that FF recruitment of 

spikelets sharpen the temporal precision of EPSPs, as is the case for classical chemical FFI. 

 To examine the influence of FF recruitment of spikelets on the temporal summation of 

EPSPs, we applied high frequency train stimuli at dendritic locations, with or without detectable 

outward currents. Example EPSPs show that spikelets produce rapid compound EPSPs 

followed by a hyperpolarizing component, as compared to the case without spikelets (Figure 

5C). Temporal summation of EPSPs in response to five stimuli at 50Hz was significantly 

reduced at stimulus locations that recruited spikelets (Figure 5C; Two-way repeated measure 

ANOVA). This difference could not be attributed to differences in peak amplitude of the first 

EPSP, nor to uneven sampling of PF-mediated responses along the dendritic tree 

(Supplementary Figure 3A and B). Together, these data indicate that spikelets can act like 

chemical FFI by reducing the half-width and dampening temporal summation of EPSPs. 
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Figure III-5: Feed-forward recruitment of spikelets narrows single EPSP time-window, and dampens temporal summation. A) 
Voltage-clamp recordings of PF-mediated synaptic responses in low (LS – blue traces) and high stimulation intensity (HS – red traces). 
Recordings here show no outward current in either stimulation regime. CC recordings show no change in EPSP half-width when 

stimulation intensity is increased B) same as in A, but for cases where stimulation intensity increase caused a significant outward current 

after the EPSC. Here, a significant decrease in EPSP half-width is observed in HS. C) Superimposed post-synaptic responses from two 
different cells, recorded in LS, when the direct EPSP is followed by a spikelet-induced hyperpolarisation (red), or when it is not (black) - 

upper panel. Post-synaptic responses to a train of five stimulations at 50Hz (middle panel), corresponding to the traces shown in upper 

panel. Normalized peak amplitudes of EPSPs in the train reveal a significant decrease in temporal summation in the group where a spikelet-

induced hyperpolarisation was present. 



90 

 

 Spikelet signalling enables temporal contrast enhancement of temporally coded 

excitation:  

 Because spikelets are also comprised of a brief depolarization component, we 

considered the possibility that spikelets could contribute to enhanced firing rates over a brief 

window, in contrast to classical chemical FFI where peak firing rates are reduced.  We therefore 

performed patch-clamp recordings of single BCs, but stimulated two independent sets of PFs: 

one location within the dendritic tree (on-beam) to recruit EPSPs, and another positioned to 

stimulate off-beam, so as only to recruit spikelets in the recorded cell (Figure 6A-C). 

Stimulation intensity was adjusted independently for each location: low stimulation for on-

beam stimulation (see Figure 5), and high stimulation intensity for off-beam responses (Figure 

2). Stimulation pipette positions were always displaced by at least 100µm, to ensure the 

recruitment of two different beams of PFs. BCs were initially held between -75 and -70mV, in 

order to examine the amplitude of the compound subthreshold synaptic response with respect 

to the time delay between the two stimulations (Figure 6D). Coincident stimulation of spikelets 

and on-beam stimulation over a 4-6 ms window significantly increased the EPSP depolarization 

by 21.6 ± 2.6 % (n=12, p = 0.0005, Wilcoxon matched-pairs - Figure 6D and 6E). However, if 

spikelet recruitment preceded the EPSP (by 5 to 75 ms), the peak amplitude of the EPSP was 

significantly reduced, with a peak reduction of 20 ± 2.7% occurring for a time delay of 20ms 

(n=12, p = 0.0005, Wilcoxon matched-pairs - Figure 6D and 6E). We also confirmed that 

spikelet concomitant with EPSP reduced their half-width by 16.7 ± 1.8 %, consistent with 

previous results (Figure 5B). 

 Finally, we examined if these changes in peak amplitude of compound synaptic 

responses could translate into differences in spike probability. We maintained the patched cells 

between -65 and -60mV, to achieve EPSP-induced AP firing in around 50% of the trials (Figure 

6F). We then examined AP firing probability versus time delay between on- and off-beam 

stimulations (Figure 6G). We found that the relative spike probability was significantly 

increased by 52 ± 8.5 % for coincidental arrival of both inputs (n=11 cells, p = 0.002), and 

significantly decreased by 55.4 ± 6.7 % if EPSPs were triggered 20 ms after the spikelets (p = 

0.001). We also observed an improvement in spike timing initiation, which was reduced by 12.2 

± 1.2 % during the brief window of increased spike probability (Figure 6H). Thus, a unique 

property of spikelet-mediated FF modulation is the ability to enhance spike probability and 

accelerate spike-timing, a form of temporal contrast enhancement. Moreover, for independent 

PF beams, the BC network can detect coincident excitation that will in turn generate a global 

precise inhibition of downstream Purkinje cells.  
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Figure III-6: Spikelet signalling enables temporal contrast enhancement of temporally coded excitation. A) 2P-LSM image of a BC 

loaded with Alexa 594. Dashed lines indicate the position of the stimulating pipettes on top of the slice (Off-beam stimulation in red, On-

beam stimulation in blue). B) Block diagram of the experiment. C) Superimposed voltage-clamp recordings (upper panel) and corresponding 
current-clamp recordings (lower panel) of post-synaptic responses to On-beam stimulation (blue) or Off-beam stimulation (red). D) 

Superimposed compound synaptic responses, with different time delays between On- and Off-beam stimulations, aligned on On-beam 

stimulation time. For clarity, positive time-delays (i.e., Off-beam stimulation prior to On-beam stimulation) are shown in blue shades; 
Coincident stimulations are shown in dark colors; and negative time-delays in red shades. E) Peak amplitude of the compound synaptic 

responses (normalized to the mean amplitude of the single EPSPs alone) versus the time-delay between EPSP and spikelet recruitment. F) 

Single-sweep responses of On-beam-induced AP firing, depending on the onset of Off-beam stimulation, for three representative cases: 
spikelet recruited 20ms after EPSPs (top panel), coincidentally with EPSPs (middle panel), or 10ms before the EPSP (lower panel). In each 

instance, 30 sweeps are shown. G) Probability that an AP is fired after On-beam stimulation (normalized to the mean probability of AP firing 

by On-beam stimulation alone), versus the time-delay between On- and Off-beam stimulation (n=11 cells). H) Same as in G, but for spike 

time-delay. 
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IV) Discussion: 

MLIs within the cerebellar cortex have been shown to provide FFI onto Purkinje cells 

in vitro (Mittman et al. 2005; Dizon and Khodakhah, 2011; Valera et al., 2016) and in vivo 

(Blot et al., 2016). Interneurons of the cerebellar cortex are known to communicate through 

both chemical and electrical synapses (Kondo and Marty, 1998; Mann-Metzer and Yarom, 

1999, Rieubland et al., 2014). GABAergic chemical synapses have been shown to mediate 

inhibition between MLIs (Mittman et al., 2005) and has been suggested to mediate a 

disinhibition of PCs (Blot et al., 2016), but whether or not electrical connectivity could be 

recruited in a similar manner, and influence EPSP-spike coupling, had not been studied.  

Here, we demonstrate and describe the functional implication of feed-forward 

recruitment of spikelet signalling in cerebellar basket cells, an MLI subtype that has strong bias 

towards electrical synapses (Alcami and Mary 2013; Rieubland et al., 2014). Our results 

indicate that low stimulation intensity of small PF beams lead to the recruitment of APs in 

electrical neighbours that generate spikelets in the postsynaptic cell (Figures 1 and 2). We show 

that the polarity of spikelet responses, a parameter regulating excitation and inhibition balance, 

is net inhibition and can be influenced by the presynaptic neuron membrane potential (Figure 

3). This form of inhibition is more prominent than cFFI (Figure 4). Nevertheless, the brief 

depolarizing component of the spikelet provides a distinct advantage over cFFI, because 

postsynaptic output firing is briefly enhanced, providing a temporal contrast enhancement 

mechanism (Figure 6). Such a mechanism could provide strong synchronized inhibition that 

temporally entrains PCs, an efficient strategy for driving deep cerebellar nuclei (Person and 

Raman 2012; Brown and Raman; 2018).  

 

 Spikelets dynamically modulate BC EPSP-spike coupling 

 cFFI is characterized by its ability to shorten EPSPs and thus narrow the time window 

for spike generation, generally at the cost of decreasing the spike probability. Spikelet 

transmission via gap-junctions can regulate spike probability bi-directionally, depending on the 

time integral of depolarization and hyperpolarization. Depolarizing spikelets would tend to 

provide FF excitation and thus synchronize electrically coupled interneurons (Alcami 2018; 

Mann-Metzer and Yarom, 1999), whereas hyperpolarization favouring spikelets could generate 

low frequency resonance in a resting state of the network (Dugué et al., 2009) and/or 

desynchronize network activity upon synaptic stimulation (Vervaeke et al., 2010).  
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 Spikelet waveforms have been shown to depend on a variety of physiological 

parameters across different cell-types, including resting membrane potential (Mann-Metzer and 

Yarom, 1999; Otsuka and Kawaguchi, 2013), active conductances in the pre-synaptic (Curti 

and Pereda, 2004; Russo et al., 2013) or the post-synaptic cell (Mann-Metzer and Yarom, 1999; 

Dugué et al., 2009). By systematically examining the role of both the pre- and post-synaptic 

resting membrane potentials, we found that the latter had no detectable influence on spikelet 

waveform (Figure 3). However, the presynaptic membrane potential critical in shaping the 

triggered AP, and therefore the corresponding spikelet. A hyperpolarized resting state leads to 

a net excitatory spikelet, while a depolarized resting state revealed a prominent AHP, causing 

the corresponding spikelets to carry a net inhibition. We used these experiments to calibrate 

spikelets from unperturbed electrically coupled neighbours, and determined the resting 

membrane potential to be > -60 mV, favouring net inhibition. It is likely that differences in 

holding potential accounted for the mostly depolarizing spikelets recorded previously in MLIs 

(Alcami, 2018).  

 By stimulating single beams of PFs, we were able to examine the influence of spikelets 

on kinetics and temporal summation of PF-mediated EPSPs. We found that spikelets narrow 

the half-width of concomitant EPSPs, and dampen their temporal summation, consistent with 

their net inhibitory action identified earlier. These first results indicated that feed-forward 

recruitment of spikelet shows a functional equivalence with classical GABA-mediated FFI. 

However, because the spikelets comprised a significant depolarizing component, perhaps due 

to the strong average coupling coefficient (11.3 +/- 1%; n=33 pairs displaying a mean CC > 

5%), we also considered the temporal influence of the spikelet. When stimulating PFs within 

the dendritic tree of BCs, recruited we were not able to reliably detect the inward component, 

suggesting it was masked by the peak of EPSC (Figure 1). This led to the notion that perhaps 

FF modulation by spikelets could provide a brief excitation (Figure 6). We found that the 

transient excitatory drive of spikelets significantly increased the peak amplitude of the 

compound synaptic response, when both signals were coincident (within a 4-6 ms window). 

Thus, unlike cFFI, electrical feed-forward modulation (eFFM) can both shorten the temporal 

window for EPSP-spike coupling, thus improving spike precision, while simultaneously 

enhancing spike probability. The degree of such temporal contrast enhancement could be 

regulated by factors that adjust presynaptic spike shape, in particular the relative size of the 

AHP, and thus regulate temporal balance of excitation and inhibition. 

 

 



94 

 

 Electrical connectivity of cerebellar cortex is tuned for rapid output synchrony 

 We observed that 60% of PF stimulus pipette locations within the BC dendritic tree 

produced sufficient excitatory drive in electrically coupled neighbours to produce an AP, and 

thus generating a spikelet in the postsynaptic cell. This robust recruitment can be accounted for 

by 3 factors: 1) overlap of MLI dendritic trees in order to more likely receive common synaptic 

input (See Figure 3A); 2) resting membrane potential close to threshold, which we established 

(Figure 3H); and 3) a strong coupling coefficient sufficient to transmit detectable spikelets 

(>5% - Figure 4F). Strong coupling coefficient are most certainly mediated by Cx36 (Alcami 

et al. 2013), and could be due to a large number of gap junctions formed between dendrites of 

MLIs, as shown for Golgi cells (mean CCGolgi = 12% - Szoboszlay et al., 2016). 

 This high degree of connectivity can provide global network mechanism  spanning > 

100 µm in the sagittal plane (Rieubland et al., 2014) for generating simultaneous FF modulation 

of PC spiking patterns through synchronous inhibition (i.e., excitation of MLIs) followed by a 

rapid disinhibition (i.e., MLI self-inhibition). In support of this sagittal extension we find no 

correlation in CC over soma displacements up to 60 µm (Supplementary Figure 2A).   

Moreover, in vitro experiments have revealed that electrical connectivity in the MLI population 

increases convergence from MLI to PCs (Kim et al., 2014). Finally, the lateral spread of PF 

activity through electrical synapses (as observed in Vervaeke et al., 2012), along with spikelet 

transmission, would also contribute to increasing the effective convergence between MLI and 

PC. 

 Within this extended plane of coupled MLIs any PF activity pattern impinging on PCs 

would receive a network amplified, highly synchronous inhibition. Whereas the relative amount 

of excitation and inhibition depends on the intersectional overlap between the active PF pattern 

recruiting the MLI network and that exciting a particular Purkinje cell, which could in part 

account for the diversity of PC responses to sensory stimuli in vivo (Bosman et al., 2010; Brown 

and Raman. 2018), in addition to module-specific mechanisms (Valera et al., 2016). In one of 

the few studies examining activity of BCs and Purkinje cells, a biphasic correlogram suggested 

an initial excitation of PCs followed by a brief 8 ms inhibition PC firing (Blot et al., 2016). This 

very narrow and powerful inhibition could indeed be the result of precisely synchronized BC 

activity followed by self-inhibition, both mediated by eFFM. Such a network-wide 

synchronization would be less efficient, via chemical inhibition, which does not propagate 

beyond one synapse. Interestingly, voltage clamped recordings of BCs in vivo in response to 

whisker pad air puffs (Chu et al., 2012) showed that BC EPSCs are much faster than the PC 
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EPSCs, consistent with cases of predominant inhibition of PC firing in response to sensory 

stimuli (Bosman et al., 2010; Chen et al., 2016; Brown and Raman, 2018).  Thus eFFM could 

ensure a rapid and brief BC network recruitment necessary for precise refinement of PC firing 

patterns.  

 

 Electrical synapses reinforce coincidence detection in electrically connected 

interneurons 

 PV+-interneurons in hippocampal and cortical circuits display a wide variety of features 

which minimizes temporal summation of excitatory inputs. These include AMPAR with rapid 

kinetics (Geiger et al., 1997); Kv3 channels recruited during synaptic activation (Nörenberg et 

al., 2010), which ensure minimal temporal summation of EPSPs (Hu et al., 2010); and electrical 

synapses, which passively alter the electrotonic structure of neurons, and notably reduce their 

apparent membrane time constant (Amsalem et al., 2016). Altogether, these features contribute 

to a precise EPSP-spike coupling, in line with a proposed role of interneurons to behave as 

coincidence detectors (McBain and Fisahn, 2001). Cerebellar basket cells share some of these 

features, like fast AMPAR (Carter and Regehr, 2002) and electrical synapses to passively shape 

their electrotonic structure (Alcami and Marty, 2013; Maex and Gutkin, 2017), but also display 

specific properties supporting the same general property: axonal speeding (Mejia-Gervacio et 

al., 2007), and classical FFI (Mittman et al., 2005). Rapid eFFM is yet another mechanism 

sharpening EPSP-spike coupling, and may thus be regarded as a feature generalizable to other 

types of GABAergic interneurons throughout the CNS. 

 

 Implications of eFFM in fine-tuning cerebellar-dependent motor behaviours 

 Whisker movement kinematics can be both encoded (Chen et al., 2016) and driven by 

precise PC firing patterns (Heiney 2014). Moreover, millisecond synchrony of PC firing is 

critical for synchronized inhibition in order to precisely gate deep cerebellar nuclear drive of 

movement (Brown and Raman, 2018). The authors propose that at initial millisecond inhibition 

of PC firing by sensory stimuli might disinhibit cerebellar nuclei, thus initiating motor 

responses. Finally in vivo evidence that BCs play an important role in refining PC firing on the 

millisecond scale (< 8 ms) supports their important role timing cerebellar cortical output (Blot 

et al., 2016).  We therefore propose that eFFM could be an important mechanism to achieve 

such robust and precisely timed control of PC firing.  
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V) Supplementary figures:  

 

Supplementary figure 1: the amplitude of direct EPSCs and secondary outward currents are not correlated. A) Average compound 
synaptic responses recorded at different stimulation intensities reveal an increase in the amplitude of the direct EPSC (upper panel) and 

of the secondary outward current (lower panel). B) Outward current peak amplitude versus inward current peak amplitude of the 4 average 

responses shown in A (large dots), along with their underlying single sweeps (small dots). Linear regression analysis reveals that, for each 
stimulation intensity between 10 and 40V, no significant relationship is observed between the peak amplitude of both components of the 

compound synaptic response, on a single-sweep basis. C) P-value distribution of the analysis shown in B) (n = 27 stimulations from 9 

cells, 2 to 4 stimulation intensities per cell) reveals that no significant correlation is ever observed between EPSC and outward current 
peak amplitudes. 

Supplementary Figure 2: Features of electrical connectivity in the BC population: A) Mean coupling coefficient versus intersomatic 

distance between simultaneously patched BCs. Linear regression analysis reveals that for strongly coupled pairs (CC>5%, white dots), 
CC doesn't significantly decrease with intersomatic distance (dashed line). However, if all pairs are considered (black + white dots), CC 

significantly drop down with intersomatic distance (p < 0.05). B) Expectedly, we find a significant relationship between spikelet inward 

currents (depolarizing junction current, DJC, red), fAHPs (hyperpolarizing junction current, HJC, blue) and coupling coefficient in paired 
recordings (n=27 spikelets). Note that in these recordings, the presynaptic cell was maintained around -70mV. C) Similar to B, but for 

spikelets recorded in current clamp in the post-synaptic cell (n=17 spikelets); DJP: depolarizing junction potential; HJP: hyperpolarizing 

junction potential. 

Supplementary Figure 3: controls for temporal 

summation. A) The amplitude of the first EPSP is not 

significantly different between the group where and 

outward current could be detected (OC, red group, n 
= 27 cells) and the one lacking a detectable outward 

current after the initial EPSP (no OC, black group, n 

= 24 cells - Mann-Whitney test, p = 0.4150). B) HW 
of EPSPs or compound synaptic responses is 

independent of distance, but EPSP with spikelets have 

smaller HW than pure EPSPs. 
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Chapter IV - Integration and modulation of 

electrical synapses-mediated inputs in cerebellar 

basket cells: 



98 

 

I) Evidence for transmission of subthreshold EPSCs across 

electrical synapses: 

 Experimental results: 

 In Chapter III, I have mostly investigated how electrical synapses allow the transmission 

of spikelets, which are the filtered version of suprathreshold APs from electrical neighbours. 

However, as I have mentioned in the introduction, electrical synapses also allow the 

transmission of subthreshold EPSCs/IPSCs. Without a priori knowledge of these events 

(amplitude, kinetics, relative abundance etc...), it is not possible to tell whether or not they may 

have a functional and/or relevant impact on the I/O relationship of the cells receiving them. 

Here, I will briefly comment some preliminary results that I obtained to characterize these 

signals. 

 

 When I performed experiments aiming to force electrical neighbours to fire an AP, 

through indirect recruitment by PFs stimulation ("OFF-beam stimulation", Chapter III, Figure 

2), I observed cases where only small amplitude, long-lasting inward currents could be recorded 

in the patched cell. Figure IV-1 shows a better example of this phenomenon than the one shown 

in Chapter III. 

Figure IV-1: Evidence for transmission of subthreshold EPSCs through electrical synapses: A) Z-

projection of a basket cell loaded with Alexa-594; B) Scheme of the experiment, aiming to force the 

recruitment of (an) electrical neighbour(s) through stimulation of afferent PFs; C) Average and single sweep 

responses, recorded in the patched cell, depending on the stimulation intensity; D) Average responses from C, 

superimposed to compare their inward and outward current peak amplitudes; E) Outward current versus 

inward current peak amplitude of all responses shown in C. Small dots represent the single sweep, and bigger 

dots with brackets represent average responses +/- SD. 
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 As it can be clearly seen in this example, spikelets can be recorded on each sweep at 

40V, and no response is observed a 10V. The responses observed at 20V and 30V are, however, 

not all spikelets. On panels C and E, it can be observed that responses recorded at 20V show, 

on average, a significantly higher inward current peak amplitude compared to baseline. 

However, their outward current peak amplitude is not significantly different from baseline. 

Therefore, the signal recorded in this condition is only made of an inward current. Given that 

these signals are not recorded when the stimulation intensity is increased to 40V, I hypothesize 

that they represent EPSCs experienced by the presynaptic electrical neighbour(s), but these 

EPSCs are not strong enough to trigger AP firing. In that case, no spikelet response is expected, 

and it is conceivable that a fraction of the EPSC crosses the electrical synapse.  

 The small amplitudes and slow kinetics of these signals is fully consistent with a heavily 

filtered EPSCs, and inconsistent with spikelets coming from hyperpolarized neighbours (Figure 

IV-2). Indeed, even though I could easily resolve only two of these cases in my data, it appears 

that their kinetics are slower than the most distally-triggered direct EPSCs, and their amplitude 

is also consistently smaller. It can also be seen that they are unlikely to be spikelets coming 

from hyperpolarized electrical neighbours (i.e., those displaying almost none, if any, outward 

currents), because their half-width is dramatically higher than those of spikelets coming from 

neighbours held at -80mV, recorded in pair configuration (Chapter III, Figure 3). 

 

  

Figure IV-2: Consistent with heavily filtered EPSCs, the recorded signals have a small amplitude and 

slow kinetics: A and B) Relationship between inward current peak amplitudes and half-widths of seven types 

of responses: spikelets recorded in pairs from -80, -70 or -60mV; spikelets recorded by OFF-beam stimulation; 

EPSCs recorded after direct stimulation (see Figure 1 of Chapter III). Distal EPSCs come from synaptic sites 

at least 150µm away from the soma, while proximal EPSCs come from synaptic sites within a radius of 50µm 

around the soma. 
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 Discussion: 

 These preliminary data support the previous observations (and the known ability of 

electrical synapses) to transmit subthreshold events (Zsiros et al., 2007; Apostollides and 

Trussel, 2014; Kuo et al., 2016), which is likely to further extend the receptive field of BCs to 

their presynaptic inputs. Their relatively small amplitude could imply that they are unlikely to 

significantly influence AP firing in the post-synaptic cell, but on the other hand, their kinetics 

are very slow, which suggest that the charge carried by these indirect EPSCs are more likely to 

efficiently polarize the cell membrane. In Vervaeke et al., 2012, it was notably shown that 

indirect EPSCs from either parallel fibers or mossy fibers can significantly influence the spiking 

output of electrically-connected GoCs (See Introduction). 

 

 The signals recorded in my experiments (which I will now name indirect EPSCs) should 

be more thoroughly examined and analysed, but this was not the main point of this thesis. In 

the next section, I propose an experimental paradigm better suited to study them, and propose 

some hypotheses as to why they could be recorded only in a subset of my recordings (1), and 

what could determine, at least partly, their peak amplitude and kinetics (2). 

 

 The reason why these putative filtered EPSCs were not observed in all instances when 

I performed OFF-beam stimulation might be that a particular arrangement of PF-MLI synapses 

and electrical synapses in the dendritic tree is required to record them faithfully. Figure IV-3 

suggests, with schematics, that indirect EPSCs may be recorded only when the electrical 

synapse lies between the site of the PF-MLI synapse and the soma.  
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Figure IV-3: Proposed dendritic arrangements of PF-MLI synaptic inputs and electrical synapses 

explaining why putative filtered EPSCs are not necessarily always observed: top left) when EPSCs are 

subthreshold, and propagate along a branch where the electrical synapse is not located, no response is observed 

in the patched cell (purple); bottom left) by increasing stimulation intensity, EPSCs finally become strong 

enough to trigger an AP, and the AP back propagates in the dendritic tree, crosses the electrical synapse, and 

a spikelet is observed; top right) here, subthreshold EPSCs propagate down to the soma and don't trigger an 

AP, but since the electrical synapse is located along the dendritic branch where the EPSC travels, a fraction of 

the current crosses the electrical synapse, and an indirect EPSC would be observed; bottom right) in the case 

where the EPSC triggers an AP, it is unclear what is the exact nature of the recorded signal is: a fraction of the 

indirect EPSC might superimpose onto the spikelet. 
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 It is only in the case where a fraction of the EPSC crosses the electrical synapse when 

travelling from PF-MLI synapse to the soma, and then triggers an AP which back-propagates 

in the dendritic tree, that the exact nature of the recorded signal is not clear to me, as it depends 

on the ability of APs to "reset" the membrane potential in the dendritic arbour of the patched 

cell, especially at the site where the electrical synapse is located. Indeed, it is known that the 

ability of APs to shunt EPSPs is cell-type dependent, and that faster EPSPs are better shunted 

by APs than slower EPSPs (Häusser, 2001). 

 In our recordings, when we examined spikelet responses between direct and off-beam 

stimulation (Chapter III, Figure 3H), we found a striking similarity in correlation between 

positive and negative peak amplitudes, suggesting that such EPSCs do not contaminate the 

spikelet-mediated outward current. However, we found evidence that time integral of 

normalized spikelet responses are significantly higher in direct stimulation compared to off-

beam stimulation (Chapter III, Figure 3I), which suggests that indirect EPSCs may contaminate 

spikelet responses at later times, but we cannot tell if these indirect EPSCs originate from the 

spiking cell, or from other cells experiencing subthreshold EPSCs. 

  

  In order to directly examine the relationship between presynaptic EPSCs (sub- or supra-

threshold) and post-synaptic responses across an electrical synapse, I imagined that combining 

dual patch-clamp recordings of electrically-connected BCs with electrical stimulation of a 

single set of PFs would be the ideal experiment to perform. By systematically examining the 

response recorded in each cell after PF stimulation onto either of their dendrites, or in a region 

where their dendrites cross, it might be possible to obtain the experimental results supporting 

or disproving the hypotheses formulated in Figure IV-3. 

 The results of this experiment would give valuable insights about the role of electrical 

synapses between basket cells, or electrically-connected cells in general. Indeed, it would allow 

to examine how potent indirect EPSCs/IPSCs experienced by an electrical neighbour would be 

in influencing AP firing in one cell. The ability of subthreshold events to cross electrical 

synapses and influence AP firing in a post-synaptic cell has notably been demonstrated between 

fusiform cells and stellate cells in the dorsal cochlear nucleus (Apostolides and Trussell, 2014) 

and between hippocampal interneurons (Zsiros et al., 2007). Most studies of electrical 

communication examine how steady-state changes (e.g., long current pulses) or rapid signals 

(e.g., APs) are transmitted. However, owing to their inherent differences in kinetics, either type 

of signal is differentially filtered by the membrane of the connected cells. The kinetics of direct 

EPSCs and IPSCs fall between these two extremes, suggesting that they are likely to contribute 
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a significant proportion of the receptive fields of electrically connected cells. Additionally, the 

exact location of electrical synapses and direct chemical synaptic inputs (e.g., EPSCs from PFs) 

onto one cell may underlie differences in magnitude and kinetics of the filtered current, due to 

end effect of sealed cables (Rall 1969, Tran-Van-Minh et al., 2016 - Figure IV-4).  

 The schematics shown in Figure IV-5, representing two different configurations of PF-

BC synapse, electrical synapse, and somatic compartment ordering, may further help in 

clarifying this idea. 

  

 

 

Figure IV-4: Temporal and spatial extent of PF-induced EPSP in the dendritic tree of a cylindrical 

branch: left) Schematic diagram of a "ball and stick" modelled cell, with a single dendritic branch. The black 

arrow indicates the site of synaptic location; Top right) Time course of the local EPSP (i.e., at the site of 

synaptic current entry); Bottom right) spatio-temporal dynamics of voltage deflections induced by the EPSP 

in the cable. Note the difference in amplitude and dynamics between the distal and the proximal 

compartments, due to the end effect and the somatic current sink, respectively. 

 

From Tran-Van Minh et al., 2016. 
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 It could be argued that indirect EPSCs, by being so heavily filtered, are unlikely to 

significantly influence the I/O relationship of basket cells. However, two features can actually 

be proposed to counter this argument. Firstly, the number of PFs causing indirect EPSCs is 

likely to be higher than the number of PFs providing direct EPSCs (i.e., higher receptive field 

for indirect EPSCs), due to the tendancy of BCs to form electrical clusters (Alcami and Marty, 

2013; Kim et al., 2014; Rieubland et al., 2014). For example, if one cell is electrically connected 

to N numbers, then N/(N+1) (upper limit) of the EPSCs received are indirect EPSCs. This 

estimate could be further refined by considering the equivalent number of neighbours 

(introduced in Alcami and Marty, 2013). Briefly, this metric compensates the physical number 

of electrical neighbours by the electronic coupling associated to each of them. Secondly, direct 

currents are very fast, and thus not fully converted to synaptic potentials, while indrect EPSCs, 

thanks to their much slower kinetics, are likely to be more (or fully) converted to efficient 

Figure IV-5: the exact relative position of synaptic inputs and electrical synapses may impact amplitude 

and kinetics of the filtered, subthreshold events. 
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synaptic potentials. The relatively small amplitude of indirect EPSCs alone should therefore 

not be considered as a good proxy for their ability to influence spiking. 

 



106 

 

II) Role of HCN channels in shaping AP waveform, and 

transmitted spikelets: 

 Experimental results: 

 In Chapter III, I described how the presynaptic state critically influences the waveform 

of the transmitted spikelet, notably by altering the waveform of the presynaptic AP. From this 

observation, I hypothesized that in principle, any active conductance able to shape the 

presynaptic AP waveform would be able to change the transmitted spikelet. This phenomenon 

has already between demonstrated in electrically connected, fast-spiking, striatal neurons 

(Russo et al., 2013). I therefore examined the literature of cerebellar basket cells, with a 

particular focus on the type of channels which they have been shown to express, especially in 

adult animals. HCN channels appeared to be a plausible candidate to test this hypothesis. 

Indeed, they are densely expressed in the pinceau structure of BCs in adulthood (Lujan et al., 

2005), and are opened at a resting membrane potential of -70mV, mediating an inward cationic 

current when the BCs are hyperpolarized (Southan et al., 2000). By combining these 

observations, I reasoned that HCN channels could shape the AHP of cerebellar basket cells, and 

speed up the membrane repolarization by providing a depolarizing current triggered during the 

transient hyperpolarization caused by the AHP.  

 

 I first set out to compare spikelet waveforms recorded during OFF-beam stimulation, 

and later AP waveforms, before and after application of a blocker of HCN channels. This 

experimental approach proved to be ill-advised, because: 

 - even if spikelet waveforms were found different in some cases, it was not possible to 

conclude that the presynaptic AP had changed after drug application (with single-cell patch 

clamp, the recorded spikelets came from one electrical neighbour, whereas recorded APs 

originated from the patched cell). 

 - strong fluctuations in holding currents or resting membrane potentials were observed 

after drug application, for an unclear reason. A representative case of these experiments in 

shown in Appendices, along with the corresponding discussion on these experiments. 

  

 In order to better test the hypothesis that HCN channels shape APs and transmitted 

spikelets, I performed paired recordings of BCs, and applied 5-10µM of ZD-7288 when the 

connected cells displayed a relatively strong coupling coefficient, in order to examine the 
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changes in presynaptic AP waveform and post-synaptic spikelets. A representative example, 

along with population average, is shown in Figure IV-6.   

 

Figure IV-6: Evidence for a role of HCN channels in shaping AP waveform and their corresponding 

spikelets: A) Membrane hyperpolarization is different after application of ZD, even for the non-injected cell; 

B) 10s recordings of spontaneous activity between two electrically-connected cells display signs of 

correlations on long time scale; C) AP waveform in one cell of a pair, before (black) and after (green) 

application of 10µM ZD-7288 (left), with the corresponding spikelets recorded in the second cell of the pair 

(right); D) same as in A, but the red cell now emits APs, and the green cell receives the spikelets; E) The 

resting membrane potential is comparable in the two conditions; F) AP time integral is more negative after 

ZD-7288 application; G) Spikelets are more hyperpolarizing after drug application; H) Charge transfer of 

spikelets recorded in post-synaptic cells correlate with the AP time integral in the presynaptic cells; I) The 

changes in AP and spikelets waveforms before and after drug application correlate with each other. 
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 First, I observed that during a hyperpolarizing current pulse, injected cells displayed the 

caracteristic feature of a "sag" response at the early phase of the pulse, which is known to be a 

strong indicator of HCN recruitment. This sag disappeared after application of ZD, and the 

same current pulses caused more pronounced hyperpolarizations than in control conditions 

(Figure IV-6A). This result is consistent with an increase in input resistance and blockade of 

feedback recruitment of inward currents, caused by HCN channels. Then, it was possible to 

observe correlations in holding currents of electrically connected cells on long time scales after 

ZD application (Figure IV-6B). These fluctuations were not present before application of ZD 

(not shown, but see Appendices). Furthermore, AP waveform changed after bath application of 

ZD, either because of a misadjustement of the bias current after drug application to keep a 

similar resting membrane potential, or because of changes in AHP kinetics. These changes 

translated into different waveforms of the post-synaptic spikelets, and changes in AP waveform 

and spikelets mirrored each other (Figure IV-6C and D). 

  

 In a population of n=14 cells from 7 pairs, I first confirmed that the resting membrane 

potential was comparable after ZD application, to ensure that further changes in AP waveforms 

and transmitted spikelets were not caused by a misadjustment of the resting membrane 

potentials. Indeed, lower resting membrane potentials will tend to decrease the time integral of 

the presynaptic AHP and the transmitted spikelets (Chapter III-Figure 3). I later found that the 

time integrals of APs (Figure IV-6F) and spikelets (Figure IV-6G) were both significantly 

higher in ZD condition (in terms of absolute amplitude). In most cases, the effects were minor 

(see Discussion). Finally, I found that the time integral of APs, and their corresponding 

spikelets, were correlated in control conditions and after drug application (Figure IV-6H), and 

more importantly, that the differences in AP time integral and charge transfer of spikelets before 

and after drug application were also significanly correlated (Figure IV-6I). Altogether, these 

results suggest that blockade of HCN channels lengthens presynaptic AHPs, and that 

consequently, the corresponding spikelets convey more inhibition. 

 

 Discussion: 

 In Chapter III, I have shown how modulating the presynaptic membrane potential 

changes the AP waveform in BCs, and consequently the spikelets transmitted to their electrical 

neighbours. From this observation, I imagined that in principle, any ion channel able to shape 
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the presynaptic AP waveform should be equally capable to change the waveform of the 

transmitted spikelet. I therefore set out to examine if HCN channels blockade could change the 

presynaptic AP waveform, and consequently the transmitted spikelets. 

 I first focused on examining if the (partial) blockade of HCN channels could change AP 

waveform and transmitted spikelets between electrically-connected cells. Initially, I performed 

single-cell patch-clamp recordings, paired with OFF-beam electrical stimulation of PFs, to 

force electrical neighbours to fire an AP. Application of ZD-7288 caused large fluctuations in 

holding currents and resting membrane potentials of the patched cells, and appeared to cause 

longer-lasting spikelet responses. However, this second observation may have simply reflected 

a non-specific effect of HCN blockade in the whole slice, and these experiments appeared ill-

suited to address my hypothesis (see Appendices).  

 

 The results obtained from paired recordings provide some evidence that HCN channels 

can indeed shape the presynaptic AP waveform, and the corresponding spikelets. However, I 

would suggest to interpret these results with high caution, because the effects detected are 

overall minor, and the two cells shown in Figure IV-6 are actually those displaying perhaps the 

most striking differences (both in AP and spikelet waveforms) before and after application of 

ZD-7288. For a reason which I have not had the time to investigate more deeply, most of the 

cells did not display any obvious changes in either AP or spikelet waveform after blockade of 

HCN channels. Moreover, some of the effects observed in spikelets may also be caused by 

differential ZD-induced changes in inputs resistances of each cell of a pair (See Appendices, 

for considerations about the link between input resistances and coupling coefficients in between 

two cells), and not necessarily to the block of the HCN-mediated cationic current which would 

repolarize the cell membranes faster during the AHP.  

 In the next paragraph, I propose hypotheses for the different unexplained observations 

encountered during these experiments, and notably the mismatch between the striking spikelet 

changes observed after ZD application in OFF-beam stimulation, and the minor ones observed 

in pairs. 

 First of all, HCN blockade always caused a significant change in voltage response 

during a long current pulse, and always made the sag disappear. This indicates that ZD-7288 

did cause a blockade of HCN channels in the BCs I patched, without necessarily indicating 

where these channels are located (e.g., axon, soma, dendrites). Then, large holding currents 

fluctuations were not necessarily observed in all instances after drug application: here again, 

sometimes they did, and sometimes they did not. This may relate to the fact that MLIs can form 
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electrical network, clustering on average four to five cells (Alcami and Marty, 2013; Kim et al., 

2014). In large clusters, we may expect large holding current fluctuations because many 

electrical partners have an erratic spiking behaviour in ZD-7288 (assuming HCN does play a 

major role in shortening the AHPs), while in smaller clusters, if two cells (i.e., those from the 

pair) are prevented from AP generation, then the few others left in the network do not spike 

sufficiently to impair the recordings. The bias currents introduced by the amplifier to maintain 

the patched cells in a slightly hyperpolarized state may have further hyperpolarized the 

electrical neighbours in the network, and prevented them from spiking.  

 Another possibility is that the behaviour of HCN channels is significantly altered by the 

patching procedure itself, possibly because of dialysis. This argument is proposed because I 

postulated that the large holding current fluctuations which I observed could be caused by 

erratically spiking electrical neighbours with very long AHPs (on the order hundreds of 

milliseconds to seconds) after drug application, while in paired recordings, only minor effects 

were observed. The sole difference between spikelets from the network and those from the 

patched cells is, as far as I can tell, that the latter come from a dialyzed cell. Further support for 

this hypothesis is revealed by examination of the large changes in spikelet waveforms during 

OFF-beam PF stimulation, before and after drug application (See Appendices). This hypothesis 

is also consistent with the fact that HCN channels have a wealth of internal regulators, such as 

[cAMP] (Chen et al., 2001), and [PIP2] (Pian et al., 2006), which are dialyzed during the 

patching procedure. 

 Finally, there's also the genuine possibility that HCN channels have a weak effect on 

AHP and corresponding spikelets, implying that the effect I detected in my paired recordings 

is real, but the effect size is weak, or even irrelevant. In that case, however, one would be left 

with only speculations as to why ZD-7288 addition tended to cause large fluctuations in holding 

currents in the patched cells. 

 To conclude on this section, the statistical analysis of paired recordings indicates that 

HCN channels accelerate AHPs and decrease the inhibitory component of spikelets. However, 

my personal opinion is that a deeper analysis is required to publish these data. We should ideally 

first characterize HCN channels in BCs, and resolve the problem of the large holding currents 

fluctuations; then examine how they could be regulated by internal molecules; and finally 

address their ability to regulate AHPs and transmitted spikelets. Moreover, when coming to the 

ability to shape transmitted spikelets, a proper analysis of the changes in input resistance 

induced by blockade of HCN channels should be performed, in order to address if the putative 



111 

 

changes would be caused by changes in AHP waveforms, or simply changes in input resistance 

in the post-synaptic cell (Fortier and Bagna, 2006). 
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III) Frequency-dependent temporal summation of spikelets: 

 Experimental results: 

 In Chapter III, I showed that compound synaptic responses mixing an EPSP and a 

spikelet summate less than pure EPSPs, at a stimulation frequency of 50Hz (Chapter III, Figure 

5). Since this value was quite arbitrary (for example, in vivo recordings of granule have shown 

that they can fire in burst, up to a few hundreds of Hz, during sensory stimulation - Chadderton 

et al., 2004), I was interrested to examine systematically how spikelets alone (i.e., without 

confounding EPSPs) would summate over time, depending on the frequency of stimulation of 

the presynaptic cell, and adress the temporal summation properties of spikelet transmission in 

cerebellar basket cells. 

 Before doing so, I changed the temperature of recordings from 32°C to 36°C, to examine 

if increasing the temperature to approach more physiological conditions would change spikelet 

signalling in cerebellar basket cells, notably by accelerating the kinetics of the potassium 

channels mediating the AHP. I found that the difference of 4 degrees didn't change significantly 

the half-width of AHPs, from APs fired at Vm= -60mV (p=0.6673, Mann-Whitney test; n=12 

AHPs recorded at 32°C vs. n=14 AHPs at 36°C - data not shown). 

  Later, in order to examine the temporal summation of spikelets, I performed paired 

recordings of electrically connected BCs, and triggered 10 APs at different frequencies (10, 20, 

50 and 100Hz) in the presynaptic cell, while monitoring the post-synaptic responses. These 

experiments were conducted with 10µM gabazine in the ACSF, to block GABAergic inhibition. 

A representative experiment, along with statistical analysis of n=10 cells from 5 pairs is shown 

in Figure IV-7.  
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 It can be seen that at low stimulation frequency (10Hz), the voltage trajectory of the pre-

synaptic cell corresponds to the voltage trajectory of 10 independent APs, repeated accross 

Figure IV-7: Frequency-dependent temporal summation of spikelets in cerebellar basket cells: A) 

representative examples of 10 APs fired at different frequencies (black traces), and the corresponding spikelets 

recorded in the post-synaptic cells (color); B) Color traces from A are superimposed to reveal the differences 

in temporal summation; C) Spikelet peak amplitude (from baseline before the first AP), depending on the 

frequency of the presynaptic APs (same color code as in A). Two-way repeated measure ANOVA test reveals 

a significant effect of both pulse number and frequency of AP firing (n=10 cells, from 5 pairs); D) Spike 

adaptation at 100Hz stimulation, showing that only the first spike (red trace) is different from the subsequent 

ones (black traces); E) Peak amplitude of AP and AHP are significantly different between the first and the 

10th AP fired. 
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time. Consequently, the spikelet responses recorded in the post-synaptic cell are independent 

of each other, and display no detectable temporal summation, as assessed by measuring the 

positive peak amplitude of each spikelet response along the train (p-value > 0.05). Increasing 

the firing frequency to 20Hz caused a minor but significant decrease of the spikelet peak 

amplitude along the trains (as compared to 10Hz responses, p-value < 0.05), most likely because 

the resting membrane potential of the post-synaptic cell has not fully returned to baseline before 

each subsequent spikelets. The effect seems to be present for some cells, and absent in others 

(data not shown). Finally, increasing the firing frequency to 50 and later 100Hz further 

decreases the peak amplitude of the spikelets (compared to baseline), although this effect is 

again cell-dependent at 50Hz, but present in all cells at 100Hz. Two-way repeated measure 

ANOVA detected a significant effect of both the frequency of AP firing (1), and the pulse 

number (2) on temporal summation, with no interaction between the two factors. This result 

suggests that spikelet reponses, in each regime, reach a different steady-state behaviour, with a 

different number of APs. Overall, increasing the frequency of AP firing causes an increase the 

absolute amplitude of inhibition.  

 Finally, up to 50Hz firing frequency, no AP waveform adaptation occurs (data not 

shown), and changes in post-synaptic responses are therefore due to a difference in voltage 

trajectory per se, and do not indicate a dynamic change of gating properties of sodium and 

potassium channels underlying the presynaptic APs. However, at 100Hz firing frequency, small 

but significant decreases in peak amplitude of APs and AHPs are detected (Figure IV-7D and 

E), suggesting that at high frequencies, temporal summation of spikelets is a compound effect 

of changes in presynaptic AP waveforms, and cable filtering of the presynaptic voltage 

trajectory. 

 

 Discussion: 

 In Chapter III, the ability of spikelets to reduce temporal summation of EPSPs was tested 

at an arbitrary frequency of 50Hz. However, I was interested to examine if this effect could be 

frequency-dependent. A priori, owing to the different gating properties of Na+- and K+-

channels, along with their dependency on presynaptic voltage, it was unclear how the overall 

spikelet-mediated post-synaptic response could vary with the presynaptic firing frequency.  

 My experiments confirmed that APs show no adaptation up to 50Hz. At 100Hz, 

however, significant signs of spike adaptation became apparent (AP and AHP peak amplitudes 

decreased by ~10% between the first and the last APs). These experiments also revealed that 



115 

 

the amount of inhibition delivered increases with the AP firing frequency of the pre-synaptic 

cell. It appears that the increase in inhibition received in the post-synaptic cell is caused by a 

recurrent recruitment of AHP in the pre-synaptic one, which increases with firing frequency. 

Overall, and as to be expected from electrical transmission, the post-synaptic cell receives a 

filtered version of the pre-synaptic voltage trajectory. At high frequencies, the global readout 

in the post-synaptic compartment virtually matches what would be expected from a long 

hyperpolarizing current pulse (mimicking the recurrent recruitment of slow AHPs), onto which 

brief depolarizing currents (mimicking the rapid sodium peaks) would be superimposed. 

 

 I hypothesize that this behaviour of electrical transmission could become even more 

interesting if AP firing frequency is further increased. Indeed, at low stimulation intensity, 

spikelet responses show no adaptation, because APs are independent of each other and repeat 

their waveform over time. If AP firing frequency is progressively increased to 100Hz, a build-

up of inhibition starts to be observed because of a recurrent recruitment of the AHPs in the pre-

synaptic cell. This behaviour would likely be observed at higher rates, up to a certain point. My 

intuition is that at much higher firing frequencies (let's say, 500Hz and above), then an AP train 

will become a barrage of sodium peaks, with little (if any) AHP.  

 From a strictly physical point of view, and assuming an ideal case of no spike adaptation 

up to such high frequencies (or even in the case of adaptation, AHPs would certainly suffer 

from increased firing faster than the sodium peaks of the APs) I suppose that the temporal 

summation of the spikelets could then display a net excitatory behaviour: if a cell emits an AP 

every 2ms, and the sodium peak lasts ~0.5/1 ms, then half of the time between two APs is spent 

in the sodium peak, while the other half is spent in the lower amplitude potassium peak. Over 

repeated stimulation, the read-out in the post-synaptic cell may thus very well match a long 

depolarizing current step with a saw-toothed envelope (See Figure IV-8). 
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 Whether or not this behaviour could be observed in basket cells is a totally open question 

which I did not address. Nevertheless, in 2016, Wang et al. reported firing frequencies of fast-

spiking cortical neurons in human, monkey and mice up to 600Hz. Given that these neurons 

show minimal spike adaptation up to a few hundreds of Hz (Azouz et al., 1997), and can form 

electrical synapses (Hu et al., 2014), they may be a candidate system to test the hypothesis that 

electrical transmission can non-monotonically change their net impact on post-synaptic targets, 

depending on the frequency of AP firing. If such a behaviour could be demonstrated, it would 

elegantly show how electrical synapses can, in certain conditions, support neuronal 

computations that chemical synapses cannot. Indeed, chemical synapses are well-known to 

display short-term plasticity features, where the peak amplitude of post-synaptic currents 

changes according to the frequency of stimulation of the pre-synaptic site. But in these cases, 

the polarity of these currents cannot change. From an epistemological point of view, if electrical 

synapses could be shown to have a behaviour which chemical synapses cannot display, it would 

further help in demonstrating that electrical synapses are genuinely important in physiology. 

Figure IV-8: Speculative relationship between AP firing frequency and net effect of spikelet summation: 
As firing frequency increases, spikelet summation could change from no temporal summation to net inhibitory 

summation, and later on to net excitatory summation. These changes should match the filtering properties of 

the cell membranes (passive properties) and sodium/potassium channels kinetics (input currents) 
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Once again, I don't wish to raise the idea that electrical synapses are "any better" than chemical 

ones, but simply that they provide another mechanism for neurons to share electrical 

information. Rather than opposing chemical and electrical synapses in neuronal computation 

and circuit function, it appears wiser to me to consider them in a synergistic way: they can 

cooperate to further enrich the repertoire of neuronal computations, especially (but not 

exclusively) in interneuron populations. Stated in other words, claiming that any type of 

synapses is better than the other one would be as simple-minded as saying that words are better 

than numbers to communicate information. 
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IV) Conclusion: 

 In this Chapter, I have shown evidence that subthreshold EPSCs can cross electrical 

synapses, which suggests that they could influence the I/O relationship of cerebellar basket 

cells. Moreover, I showed that spikelet signalling (which I mostly characterized in Chapter III) 

can genuinely be regarded as any synaptic signal in a neuron: it can be modulated. Here, I only 

showed two different ways in which the presynaptic element could influence its waveform 

(potential role of HCN, and robust evidence of presynaptic firing frequency), but it is 

conceivable that other experimental manipulations, typical of chemical synaptic transmission, 

could be employed to test more hypotheses. For example, one fundamental question which I 

did not address in this thesis is how the strength of electrical synapses could be modulated in 

BCs. 



119 

 

  

 

 

 

 

 

 

 

 

 

 

 

Chapter V - Evidence for differential dendritic 

integration properties between SCs and BCs: 
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I) Differences in dendritic morphology between stellate and 

basket cells: 

As reported in (Chu et al., 2012), PF-mediated synaptic currents recorded in vivo during 

sensory stimulation tend to display faster kinetics and higher amplitudes in BCs than in SCs. 

Such differences could be due to differential feed-forward recruitment of spikelets (Chapter 

III); GABAergic FFI (Mittman et al., 2005); differences in cable filtering; or differential 

recruitment of active conductances. In any case, these differences suggest that BCs and SCs 

may be differentially recruited by their common presynaptic afferents. We therefore set out to 

compare dendritic integration properties between the two cell-types. To do so, I reproduced in 

BCs a part of the experimental work and analysis which had been performed in SCs 

(Abrahamsson et al., 2012). I started by comparing morphological features, and later examined 

cable filtering of PF-mediated EPSCs. 

 

I first focused onto morphological features for three reasons: firstly, because 

morphological parameters constitute the backbone of passive properties, and establishing these 

properties is the first step in addressing the dendritic integration properties of a cell-type; 

secondly, because thin dendritic branches (~400nm) is the critical morphological factor 

responsible for a sublinear dendritic integration behaviour in SCs; thirdly, classical analytical 

solutions to the cable equation are derived from an ideal case of an infinitely long cylinder, but 

it is obvious that no real dendritic branch can satisfy this criterion. The relevance of this ideal 

consideration can be assessed by comparing the calculated steady-state length constant to the 

length of the dendrites (i.e., if the dendrites are "much" longer than the steady-state length 

constant, then the calculation of the latter by assuming an "infinitely long cable" is justified). 

Additionally, the ratio of frequency-dependent length constant (λAC) over dendritic length is 

indicative of how cable filtering will impact synaptic events and cause space-clamp errors, 

depending on where they originate from in the dendritic tree (Williams and Mitchell, 2008). 

The equation for the frequency-dependent length constant can be approximated by: 

 

𝜆𝐴𝐶= √
𝑑

4𝜋𝑓𝑅𝑖𝐶𝑚
 (8), (for f > 100Hz) 
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 where f is the characteristic frequency of the electrical signal examined; here, we 

considered an excitatory current mediated by AMPA receptors, and we chose f = 1kHz, as in 

Abrahamsson et al., 2012 (the equation is taken from Johnston and Wu, 1995). 

 

 In my investigation of BCs, I first examined two of their dendritic morphological 

features: their diameter, and maximal radial length. I focused on these two for the following 

reasons: 

 - comparing how synaptic events could be differentially filtered by BCs and SCs 

(dendritic diameter values for SCs were taken from Abrahmsson et al., 2012);  

 - considering dendritic diameter as a first indicator of sublinear readout of synaptic 

inputs in BCs (i.e., diameters inferior/superior to those found in SCs would indicate 

stronger/weaker sublinear dendritic integrative behaviour, respectively - Tran-Van-Minh et al., 

2015); 

 

At this step, I wish to remind the reader that the equations for calculating length 

constants are drawn from the assumption that dendritic branches can effectively be modelled 

by simple cylinders, even though I (and previous studies) have shown the presence of electrical 

synapses in BCs, which make such assumptions invalid. However, as it is usually the case in 

estimating passive properties of any cell-type, a good starting point is to derive a simple model 

which can be updated later on. Additionally, in the case where experimental results would not 

match the predictions from the simple model, one obvious candidate to explain the 

discrepancies will be the electrical synapses. 

 

 BCs display longer dendritic branches than SCs: 

Morphological features of MLIs have already been investigated in previous studies in 

young mice (Rieubland et al., 2014) or adult rats (Sultan and Bower, 1998). However, none of 

these studies clearly distinguished between basket cells and stellate cells, but rather relied on 

the position of MLIs along the molecular layer. Basket cells are classically defined as displaying 

characteristic "pinceau" or "basket nets" axonal structures, wrapping around the Purkinje cells' 

somata, while stellate cells lack such structures, and their axons mainly target the dendritic trees 

of Purkinje cells. Moreover, inner-third MLIs (lying close to the PCL) tend to make basket 

collaterals, while outer third MLIs tend to be stellate cells (Palay and Chan-Palay, 1974). 

 



122 

 

To compare dendritic lengths in BCs and SCs, I patched inner-third MLIs with an 

internal solution containing 20 µM of Alexa-594. After a period of 20-30 minutes of loading, 

MLIs were imaged with a 2-Photon Laser Scanning Microscope (2-P LSM). An initial 

acquisition was performed to obtain the coarse morphology of each cell (512x512 pixels, pixel 

size of (0.43 µm)2) by scanning in X, Y and Z, and classify cells as being BCs or not, according 

to the presence or absence of their characteristic feature, the basket collaterals. Only cells 

displaying basket collaterals were retained for further morphological analysis.  

SCs images, recorded in similar conditions (although patched in the outer third of the 

molecular layer, close the pia), were provided by Alexandra Tran-Van-Minh, former post-

doctorate in the laboratory, for comparison of maximal radial length. Figure V-1 shows three 

representative cells: an outer-third MLI, lacking the basket collaterals - classified as a SC 

(Figure V-1A); an inner-third MLI lacking the basket collaterals - rejected form further analysis 

(Figure V-1B); and a second inner-third MLI presenting clear basket collaterals - classified as 

a BC (Figure V-1C).  
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Comparison between 30 BCs and 16 SCs revealed that BCs have significantly longer 

dendrites (174 ± 4.9 µm vs 81.1 ± 3.47; p < 0.05, Mann-Whitney test). This result suggests that 

EPSCs in BCs may be more affected by electrical filtering compared to SCs, because distal 

inputs in this population would have a longer distance to travel to reach the somatic 

compartment.  However, as indicated in equations (2), (6) and (7) (see Introduction), dendritic 

diameter affects internal resistivity and therefore length constants. It was therefore necessary to 

measure dendritic diameters in BCs to make a proper comparison with SCs.  

 

Figure V-1: Basket cells' dendrites are significantly longer than those of stellate cells: 

A) Representative example of a stellate cell, patched close to the pia (image provided by Alexandra Tran-Van-

Minh); B) Representative example of a MLI patched close to the Purkinje Cell Layer, but in which no clear 

basket collateral was identified, and was rejected from further analysis; C) Representative example of a MLI 

classified as a basket cell, where basket collaterals can clearly be observed; in A-B-C) ML : Molecular Layer, 

PCL: Purkinje Cell Layer, GCL : Granule Cells Layer D) dendrites in basket cells (n=30) are significantly 

longer than in stellate cells (n=16); 
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 BCs have larger dendrites than SCs: 

To estimate the diameter of dendritic branches in BCs, I imaged BCs with a finer spatial 

resolution (see below). Dendrites were defined as structures extending towards the pia, without 

substructures extending toward the PCL (to avoid axons and basket collaterals), starting beyond 

a 25-30µm radius from the centre of the cell bodies. These proximal compartments were 

excluded from analysis for two reasons: firstly, because dendritic trees in BCs usually start from 

a rather large trunk, from which it is known that axons can emerge (Palay and Chan-Palay, 

1974); secondly, the trunks could quite often be delicate to separate visually from the soma. To 

avoid confounding effects of axonal branches or slightly ambiguous shapes of the somata, all 

these structures were discarded from further analysis.  If any bias was introduced by rejecting 

such structures, it would only have lowered the estimate of the mean diameter of dendritic 

branches in BCs, because trunks were invariably way larger than dendrites, and most dendrites 

tended to display an apparent tapering from soma to distal dendrites (not shown). 

Averages of eight in focus images were recorded all along dendritic trees, by using a 

10X digital zoom (pixel size of (0.043µm)2). Figure V-2 shows a representative example of this 

experiment: in this case, the 6th structure was rejected from analysis because of the proximity 

with the cell body. On each of the five remaining images, light intensity line profiles were 

drawn perpendicularly to each dendritic branch, and were fitted to a Gaussian function. 

Dendritic diameters were finally estimated by the Full-Width Half-Maximum (FWHM) of the 

Gaussian fits, and a histogram of FWHM distribution was obtained, yielding an average 

dendritic diameter in BCs of 0.58±0.09 µm (Figure V-2D). In the case of SCs, a similar protocol 

had yielded a value of 0.40±0.05 µm (Abrahamsson et al., 2012). 
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Given the small values obtained for the estimates of dendritic diameters (hundreds of 

nanometres), it was necessary to confirm that these measurements were not limited by 

diffraction. To determine the resolution limit of the 2-photon excitation system, I employed 

Abbe’s criterion, which is defined as the minimal distance between two infinitely small objects 

Figure IV-2: Estimating the diameter of dendritic branches in BCs: A) Z-projection of 2P-LSM images 

of a BC loaded with Alexa Fluor-594, superimposed onto a Dodt infrared contrast image. White dashed boxes 

indicate where images were taken along the dendritic tree; A-1 to A-6) Averages of 8 images from A), using 

a 10X digital zoom; yellow lines indicate where line profiles were taken. B) Average of 8 images of a 100 nm 

fluorescent bead. Insets A-1 to A-6 and B are displayed with an enhanced contrast. C) Normalized light 

intensities of line profiles in A-1 and B (dark purple and green solid lines, respectively) and corresponding 

Gaussian fits [light pink (FWHM = 0.53 μm) and green (FWHM = 0.30 μm) dashed lines, respectively]; D) 

Histogram showing the distribution of FWHM from 100 nm fluorescent beads (green bars) and BC dendritic 

branch diameters (purple bars), showing no overlap in the distributions. Lines indicate Gaussian fits to each 

distribution. 
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necessary to resolve each of them. The formula, in case of a 2-photon excitation system, is 

given by: 

𝐹𝑊𝐻𝑀 = 0.37
𝜆

𝑁𝐴
 (9), 

 

where λ is the wavelength of excitation, and NA is the numerical aperture of the 

objective. In our system, this equation yields a theoretical value of 273nm (λ=810 nm, NA = 

1.1). By imaging 100nm large fluorescent beads, and employing the same protocol and analysis 

as those employed for dendritic branches in BCs, I found FWHMX and FWHMY to be 285±26 

and 275±27nm (n=20 beads), respectively. These values were reasonably close to the 

theoretical one, meaning that the imaging system was close to its optimal state. Furthermore, 

as it can be seen in Figure V-2D, there was no overlap between the distributions of FWHM for 

fluorescent beads and BCs' dendrites. This means that the imaging system was capable of 

estimating the dimensions of smaller objects than the dendritic branches, and therefore that the 

estimated values of dendritic diameters were accurate, and not limited by diffraction.  

 

 

So far, I have estimated maximal dendritic length in BCs and SCs (Figure V-1), and 

measured BCs dendritic diameter (Figure V-2). From (Abrahamsson et al., 2012), we also know 

the diameter of dendritic branches in SCs. These values were employed to calculate the steady-

state length constants (λDC, Equation (7)) and the frequency-dependent length constants (λAC, 

Equation (8)), which are summarized for each cell-type in Table V-1 (values for Ri and Rm were 

assumed to be equal between SCs and BCs): 

Table V-1 λDC (µm) λAC (µm) Maximal dendritic length (µm) 

Basket Cells 447 59 174 

Stellate Cells 365 47 81 

 

It is now possible to compare the two length constants relative to the maximal dendritic 

length, in each cell-type. The ratio between dendritic lengths and λDC yields values of 4.5 (SCs) 

and 2.6 (BCs). This first result reveals that, at steady-state, under voltage-clamp conditions, 

mature SCs are electronically compact, but for BCs, a slight voltage decay exists between the 

soma and the very tip of the longest dendritic branches. To a first approximation, we can say 

that imposing a 10mV voltage command at the soma of a BC will only lead to polarization of 

9.2mV (10*e-2.56 = 0.8) at the tip of the longest dendrites. As a comparison, a similar calculation 



127 

 

in SCs gives a polarization of the cell membrane at the tip of the longest dendrites of 9.99 mV 

(10*e-4.5= 0.01). 

The higher λAC in BCs suggests that non-linearities should be harder to engage, because 

an EPSC of a given amplitude will distribute its charge on longer electrotonic distances. Stated 

in other words, the increased diameter of dendritic branches in BCs will reduce the local 

impedance. Therefore, for a similar distance between synaptic site and the somatic 

compartment, an EPSC of a given amplitude will produce a smaller EPSP in BCs than in SCs. 

On the other hand, the longer dendrites in BCs may cause an enhancement of non-linearity 

recruitment, because of end effect of dendritic cables and longer electrotonic distance between 

the synaptic site and the somatic current sink (Tran-Van-Minh et al., 2015).  

Finally, the ratio between maximal dendritic length and λAC in each cell types yields 

values of 34% (BCs) and 58% (SCs). This second result reveals that distal inputs have to travel 

approximately 3 λAC in BC before reaching the soma, while they only need to travel slightly 

less than 2 λAC in SCs, suggesting that cable filtering is more impactful in BCs than in SCs. 

 

 Differences of cable filtering influence between theoretical predications and in 

vivo data: 

I have performed imaging experiments aiming to extract morphological parameters of 

BCs (dendritic length and diameter), which I used to make two predictions: higher relative 

impact of cable filtering on synaptic events, and a potential gradient of non-linearity recruitment 

along BCs dendrites: non-linearities should be small (or inexistent) in proximal compartments, 

and gradually increase towards distal compartments, as observed in SCs (Abrahamsson et al., 

2012). 

The prediction that cable filtering is more impactful in BCs is at odds with the results 

from (Chu et al., 2012), where EPSCs recorded in vivo displayed faster kinetics and higher 

amplitudes in BCs during sensory stimulation. However, the discrepancy between our 

predictions and these results could be explained by: 

- differential recruitment of GABAergic FFI between the two cell-types, associated with 

different amplitude of local EPSCs; 

- differential targeting of sensory-evoked PF activity along the somato-dendritic axes of 

each cell-type (for example, proximal branches in BCs, and distal ones in SCs). 

- differential feed-forward recruitment of spikelet-signalling (Chapter III of this thesis);  

- differential passive impact of electrical synapses (Amsalem et al., 2016). 
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Importantly, the last two points are related to one another, because they both rely on the 

ability of MLIs to form electrical synapses, which we know is higher in BCs than in SCs 

(Alcami and Marty, 2013; Rieubland et al., 2014). 

 

In order to examine the relative contribution of each point mentioned above, I performed 

in vitro electrophysiological recordings of PF-mediated synaptic responses in BCs to examine 

their kinetics, and later compare them to those found in SCs. This allowed us to compare de 

distance dependency of cable filtering between the two cell-type, and avoid the confounding 

effect of chemical FFI by performing recordings in presence of gabazine. 
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II) Impact of cable filtering on PF-mediated EPSCs in BCs and 

SCs: 

 Longer dendrites in BCs causes stronger cable filtering of distal events: 

In the study from (Abrahamsson et al., 2012), it was found that paired stimulations of 

PF inputs at 50Hz shows a differential facilitation between the somatic and dendritic 

compartments. On average, the PPR is close to 2 in the somatic compartment, and 1.4 in the 

dendritic tree. It was further shown that the PPR decrement along SCs' dendrites was significant 

(i.e., as PF stimulations are triggered further and further away from the soma, the PPR decreases 

linearly). These differences are due to a saturation of the second facilitated pulse in the 

dendrites, which behave as a sublinear compartment. Therefore, the PPR can be used as an 

indicator of sublinear dendritic integration behaviour in MLIs. In order to start examining the 

dendritic integration properties in BCs, I reproduced the same experiment as in Abrahamsson 

et al., 2012. 

 

I systematically recorded PF-mediated synaptic responses as the stimulation pipette was 

placed in 3 to 4 different positions along the somato-dendritic axis. The internal solution 

contained 1mM of QX-314 to block EPSC-induced action potential generation, and the ACSF 

employed to perfuse slices during the experiments was complemented with 10µM Gabazine 

and 50µM D-APV, to block GABAAR and NMDAR, respectively. These receptors were 

blocked to maximize chances of recording pure AMPAergic responses, and extract their 

kinetics and amplitudes with no confounding effects (exception made for unavoidable 

spikelets). For a fair comparison with results obtained in SCs, these experiments were 

performed in 2mM extracellular Ca2+, and not 1.5 mM, as in Chapter III. Figure V-3 shows a 

representative example of such an experiment. 
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Figure V-3: Significant cable filtering and PPR decrement of PF-mediated EPSCs in BCs: 

A) Z-project of 2P-LSM images of a BC loaded with Alexa Fluor-594 superimposed onto a Dodt infrared 

contrast image. Color lines indicate sites of electrical stimulation. B) Paired pulse responses to 50Hz 

stimulation of PF fibers along the somato-dendritic axis (same color code as in A). C) Initial EPSC responses 

normalized to their peak amplitude, revealing differences in kinetics. D) Population plot revealing the 

relationship between 10-90% rise-time of EPSCs and the distance between stimulation site and the soma. E) 

PPR responses normalized to the amplitude to the first response, revealing the differences in PPR. F) Plot of 

PPR versus distance from the soma, revealing a significant decrement of PPR along the somato-dendritic axis. 
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Synaptic responses were recorded from 4 locations of the stimulation pipette. Single 

EPSCs displayed increasingly higher 10-90% rise-times as they originated from more and more 

distal locations, while their corresponding PPRs decreased (Figure V-3C and E). These results 

manifested similarly at the population level (n=21 cells, 3 to 4 locations per cell): 10-90% rise-

times significantly increased with distance (Figure V-3D - p < 0.05, linear regression analysis), 

while corresponding PPRs significantly decreased with increasing distance of synaptic 

stimulation from the soma (Figure V-3F - p < 0.05, linear regression analysis).  

These results confirm that electrical filtering is a prominent phenomenon in BCs, as they 

are qualitatively similar to those observed in SCs. Additionally, the decrease in PPR as synaptic 

location is more and more distal from the soma suggest that BCs, similarly to SCs, experience 

synaptic saturation along the somato-dendritic axis. This may underlie a sublinear dendritic 

integration behaviour, but numerous control experiments are missing to make such a statement. 

Electrical filtering affects amplitude kinetics of synaptic responses. For the latter, only 

10-90% rise-times were examined, because the outward current due to spiking electrical 

neighbours could have influenced the falling phase of the EPSCs, and therefore their half-width. 

Furthermore, as it can be seen in the representative cell shown in figure V-3, stimulation of PF 

synapsing onto the soma often caused delayed release, which would have further complicated 

the analysis of half-width measurements. 

 

A more elaborated protocol to demonstrate cable filtering on amplitude consists in 

examining the correlation between peak amplitude of the synaptic responses, and distance of 

the synaptic site to the soma. The stronger the cable filtering, the smaller becomes the amplitude 

of the responses with distance. However, in the case of electrical stimulation of PFs, it is 

difficult to control how many PFs are recruited at each location (1); how many of them 

effectively synapse onto the patched cell (2); and what is the quantal size of each of them (3). 

These limitations impair the classical analysis of amplitude versus distance along the somato-

dendritic axis. 

The most reliable way to address this question is to record synaptic responses following 

electrical stimulation in low concentration of external Ca2+, in order to decreases the probability 

of vesicular release. Then, the average EPSC size (calculated from successes only, and if the 

failure rate is higher than 90%) well-approximates the amplitude and time course of a quantal 

EPSC (qEPSC; Silver, 2003). This experiment was performed in SCs, and provided another 

proof that electrical filtering is a prominent phenomenon in this cell-type (Abrahamsson et al., 

2012). 
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Nevertheless, in order to compare directly the impact of cable filtering on EPSCs' rise-

times, and the PPR gradient along dendritic branches, we incorporated the values from 

(Abrahamsson et al., 2012) to the graphs shown in Figure V-3. The results can be observed in 

Figure V-4. 

Statistical analysis reveals that rise-times gradients are not significantly different 

between the two cell-types. This indicates that for similar distances, and despite a large 

difference in dendritic diameters, cable filtering affects similarly the kinetics of synaptic 

currents. Paired-pulse ratio gradients, on the other hand, are significantly different between the 

two cell-types, with SCs presenting the steepest gradient, consistent with the smaller diameter 

of their dendritic branches. PPR of somatic EPSCs are not significantly different however, 

suggesting that the somatic compartments behave linearly in both cell types. These results are 

also consistent with previous suggestions that electrical synapses in BCs provide extra path for 

current flow during synaptic activation in the dendritic tree, meaning that local saturation of 

dendritic branches requires more current than in SCs. As a consequence, the PPR gradient is 

flatter in BCs, and further suggests that their dendritic integration behaviour is more linear than 

in SCs. 

 

 Synaptic currents and potentials are unevenly affected by electrical filtering: 

 In this section, I would like to present some relatively ambiguous results concerning 

cable filtering of PF-mediated inputs in BCs. In Chapter III (Supplementary Figure 3), I showed 

that synaptic potentials recorded at the soma have a half-width independent of their dendritic 

Figure V-4: Comparison of rise-time and PPR between BCs and SCs: A) Rise-time differences between 

EPSCs recorded at the soma in BCs and SCs. Slopes of regression lines are not significantly different; B) 

Paired-pulse ratio is significantly different along the somato-dendritic axis of each cell-type; C) PPR of 

somatic EPSCs are not significantly different 
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origin. However, in the last section, I showed that synaptic currents have an increasingly higher 

10-90% rise times as their dendritic origin becomes more and more distal. The two results 

therefore suggest a different influence of cable filtering on the kinetics of synaptic events, 

depending if these events are considered as currents or potentials. 

 

 In order to make a clearer picture of these observations, I re-analysed VC and CC 

recordings of the dataset shown in Chapter III (Figure 5 and Supplementary Figure 3), and 

plotted the HW of both EPSCs and EPSPs against the dendritic location. This time, data 

recorded in each configuration were not sorted according to the presence or absence of a 

secondary spikelet response. Results are summarized in Figure V-5. 

 It can be seen that, consistent with previous observations, HW of EPSCs increases with 

their synaptic origin in the dendritic tree, while the corresponding EPSPs still display no 

correlation between the same two parameters. Compared to previous observations reflected in 

different figures of this thesis, Figure V-5 has the advantage that the same kinetic parameter is 

considered (half-width), and for the same responses (each point on panel A has its match on 

panel B). Therefore, the ambiguity raised before about the effect of cable filtering remains: 

kinetics of EPSCs suggest cable filtering, while those of EPSPs do not. 

 

 The most plausible and parsimonious hypothesis to explain this discrepancy is that the 

kinetics of synaptic currents record at the soma are a due to a convolution between the time-

Figure V-5: Half-width of synaptic currents and their corresponding synaptic potentials: A) Half-width 

of EPSCs increases significantly with dendritic location; B) However, the corresponding EPSPs display a half-

width independent of the synaptic location. Dotted lines represent a half-width of 4ms in each case. 
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course of receptor opening, and the cable filtering of the current travelling down to the soma, 

while synaptic potentials are the convolution between synaptic currents arriving at the soma 

and the impulse response function of the cell (i.e., the function converting a time-varying 

current (input) into a time-varying potential (output)). Because the impulse response function 

behaves as a RC filter in the case of a biological membrane, synaptic potentials have a finite 

lower limit for their half-width, which is indirectly related to the membrane time-constant of 

the cell. Consequently, synaptic currents displaying kinetics faster than this limit will occasion 

synaptic potentials displaying a HW of at least this value (all other parameters considered equal, 

and under the assumption that the cell-type under study behaves passively). This is why I 

represented on each panels of Figure V-5 a dotted line for a similar half-width (I decided to 

draw the lines at Y=4ms in each case, so that most of the EPSCs' HW values fall below this 

line, while all EPSPs' HW lie above it). 

 According to this logic, it should not be surprising that EPSPs display a HW unrelated 

to their dendritic origin, while EPSCs do: all EPSCs, even the longest ones, are too rapid 

compared to the transfer function of the cell membrane.  

 

 An analogy can be drawn here with the resolution power of a microscope: the impulse 

response function of an imaging system is set by the Point-Spread Function (PSF). If one aims 

to resolve an object having spatial dimensions smaller than the PSF, then these objects will 

produce a diffraction-limited image, where the objects are seen as large as the PSF. However, 

if the objects are much larger than the PSF, then their image is not limited by diffraction, and 

their original spatial dimensions can be retrieved from the image (see Figure V-3). The analogy 

would therefore be that EPSCs are equivalent to the real objects, and the EPSPs are equivalent 

to the image. The PSF would then be equivalent to the impulse response of the cell membrane. 

 

 The different influence of electrical filtering onto EPSCs and EPSPs may also be caused 

by active conductances in BCs dendrites, which would help to normalize the half-width of 

EPSPs regardless of their dendritic origin. Such examples have been described in CA1 

pyramidal cells (Magee, 2000 - See Introduction), and in hippocampal basket cells (Hu et al., 

2010), where K+-channels in the dendrites are recruited during synaptic activation, and sharpen 

the kinetics of the corresponding EPSPs. The passive role of electrical synapses in the dendritic 

compartment may also contribute to this non trivial link between somatically-recorded EPSCs 

and EPSPs 
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 Indirect evidence of the passive role of electrical synapses in sharpening EPSP 

kinetics: 

 Another point which can be addressed now is the potential passive role of electrical 

synapses in narrowing the half-width of EPSPs, as presented in the Introduction with the study 

from (Amsalem et al., 2016). As a reminder, electrical synapses are permanently opened, and 

therefore, they change the electronic structure of neurons expressing them. In first 

approximation, this influence on passive properties is quite similar to tonic inhibition, in that it 

reduces the apparent input resistance and the apparent membrane time constant. The main 

difference is that this GJ-mediated tonic inhibition links the cell under observation to other cells 

in the network, and not to the extracellular space as is the case with tonic, GABAergic 

inhibition.  

 It is not trivial to examine the passive influence of electrical synapses without a 

mathematical model. Only indirect evidence can be drawn from electrophysiological recordings 

exclusively. Nevertheless, when I performed single-cell patch-clamp recordings of basket cells 

paired with dual stimulation of their PF afferent inputs (as shown in Chapter III - Figure 6), I 

recorded synaptic responses of different sorts: pure EPSPs, and EPSP-spikelets compound 

synaptic responses (Chapter III - Figure 6). However, in the category of pure EPSP, synaptic 

responses could be further split into two groups, according to another criterion: was it possible 

to find a pure spikelet response, in that cell? Indeed, I experienced cases where, within 30 to 45 

minutes during an experiment, I was unable to find a spikelet response by OFF-beam 

stimulation (or even ON-beam stimulation), which is highly suggestive that the patched cells 

were, in such instances, not connected to any electrical neighbour. An interesting correlation 

could appear between EPSPs' HW and this additional sorting criterion (that is "can one find a 

spikelet response, or not?"), as shown on Figure V-6. 
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 It can be clearly observed that EPSPs have strikingly different kinetics in each group. 

They have much faster kinetics when a spikelet response can be found, consistent with the 

indication that there exists at least one electrical neighbour to accelerate the kinetics. Note that 

in the first group (shown in red), the EPSPs considered for analysis were not followed by a 

significant hyperpolarisation indicative of a disynaptic recruitment of a spikelet response 

(examined on voltage-clamp recordings - data not shown).  

 Therefore, these data suggest that a strong correlation exists between the kinetics of pure 

EPSPs recorded in a basket cell, and the presence or absence of at least one electrical neighbour. 

This observation is merely a correlation, but it supports the idea that electrical synapses have a 

passive effect on EPSP kinetics. More thorough analysis is required to make any definitive 

conclusion on that matter, because a genuine possibility is that there may exist a link between 

the presence of an electrical synapse and the expression of voltage-gated channels (like 

potassium ones), and the latter only could underlie the differences indicated in Figure V-6. 

Performing similar experiments in Cx36-/-, or after blockade  of electrical synapses with an 

appropriate blocker, along with modelling approaches, appear to be the most direct ways to 

quantify the passive role of electrical synapses in shaping the passive properties of basket cells, 

and their influence on dendritic integration of EPSPs. 

 

Figure V-6: Kinetics of EPSPs 

correlate with the ability to find 

at least one electrical 

neighbour: A) Representative 

EPSP from a BC where a spikelet 

response (indicative of the 

presence of an electrical 

neighbour) could be found; B) 

EPSP from a BC in which no 

spikelet response could be found 

after sampling both sides of its 

dendritic tree; C) EPSPs are 

significantly shorter-lasting when 

at least one electrical neighbour 

can be found. 
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III) Discussion: 

 After examination of spikelet recruitment and signalling in the BC population, I 

investigated if these interneurons displayed morphological features different from those of SCs, 

with the long-term goal of addressing if and how each type of MLI could differentially process 

excitatory inputs from PFs. 

 

 Morphological differences of the dendritic branches in the MLI population: 

 First, I confirmed that in adult mice, the dendrites of BCs are significantly longer 

(around 2.5 times) than those of SCs. I also showed that their dendrites were thicker (around 

50%). These results are qualitatively similar to those obtained in adult rats (Sultan and Bower, 

1998), and provide further evidence that the differences observed in their study can be related 

to differences between stellate-type and basket-type cells.  

 Under the assumption that SCs and BCs' dendrites can be modelled by cylinders (and 

thus, neglecting the presence of electrical synapses), the combination of these two 

morphological differences resulted in a striking difference in cable filtering between the two 

cell-types. For a given 1kHz characteristic frequency of an excitatory input (mimicking the 

entry of a PF-mediated EPSC), I found that BCs' dendrites were around 3 times longer than 

their frequency-dependent length constant, while a similar calculation applied to SCs yielded 

the value of 1.5. These results suggests that cable filtering would be more pronounced in BCs 

than in SCs; however, the higher frequency-dependent length constant in BCs suggests that, for 

a similar PF-mediated current entry, local polarization of the cell's membrane would be smaller 

in BCs than in SCs. Consequently, engaging a non-linear mechanism in basket cells would 

require stronger EPSCs, compared to SCs. 

 

 Differential dendritic integration behaviour of EPSCs in MLIs: 

 I later found that 50Hz paired stimulation of PFs in BCs displayed a significant decrease 

of the PPR along BCs dendrites, a result qualitatively similar to what had been reported in SCs 

(Abrahamsson et al., 2012). However, the gradient was significantly steeper in SCs, consistent 

with thinner dendritic branches. An important note is that somatic PPR were comparable in 

both cases. 

 In Abrahamsson et al., 2012, a systematic analysis of the relationship between 

sublinearity, dendritic diameter, and dendritic length in SCs was performed. It revealed that 
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sublinearity increased systematically with distance from dendrite to soma, and with 

increasingly smaller dendritic diameters. Given that BCs have relatively larger dendrites, but 

much longer dendrites, it is also conceivable that a gradient of sublinear summation exists along 

their dendritic branches. Longer dendritic branches would tend to extend this gradient, while 

larger diameters would tend to flatten it (Tran-Van-Minh et al., 2015). Consistent with this 

predictions, my electrophysiological recordings confirmed that the gradient of PPR was flatter 

in BCs. 

  

 Passive effect of electrical synapses: 

 The presence of electrical synapses in BCs' dendrites provides an extra path for passive 

current flow, which decreases the apparent membrane time constant (Alcami and Marty, 2013), 

and sharpens the kinetics of synaptic events (Amsalem et al., 2016). Regarding the dendritic 

integration behaviour, addition of electrical synapses in the dendritic tree should counteract 

sublinear integration, because EPSCs would significantly flow across them to charge electrical 

partners (Vervaeke et al., 2012). In first approximation, electrical synapses in this context 

behave as branching points in a dendritic tree, and increased branching in the dendrites tend to 

minimize non-linear dendritic integration behaviours (Tran-Van-Minh et al., 2015). 

Consequently, a higher amount of synaptic currents would be required to drive local voltage 

deflections in the dendritic tree, compared to a case where electrical synapses are absent. The 

dendritic location of electrical synapses might also explain why synaptic potentials recorded at 

the soma have similar kinetics, regardless of where they originate from (Chapter III- 

Supplementary Figure 3), because electrical synapses would virtually act as a local current sink. 
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Chapter VI - Discussion, and perspectives 
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I) Electrical connectivity and spikelet transmission in BCs:  

 In this section, I will extend the discussion of the manuscript shown in Chapter III, 

mainly because of the lack of space imposed by the publication procedure, which doesn't allow 

a discussion of methodological details, or epistemological considerations. 

 

 Feed-forward recruitment of spikelet signalling: 

 To my knowledge, the work presented in Chapter III is the first one to reveal the 

recruitment of spikelet transmission in a feed-forward manner. In our study, this recruitment 

was achieved by stimulating a single set of PFs, which are the main source of excitatory inputs 

to BCs (and MLIs in general). However, it is known that electrical stimulation recruits PFs in 

a beam pattern, and that this behaviour may not be a proper approximation of PF activity evoked 

by natural stimuli (Marcaggi and Atwell, 2005 and 2007). Moreover, it is unlikely that a single 

PF would activate two neighbouring, electrically connected BCs, since a single PF, extending 

in the coronal plane, would have to cross simultaneously the dendritic trees of two BCs, which 

are confined within a relatively narrow (~20µm) single parasagittal plane (Palay and Chan-

Palay, 1974; Rieubland et al., 2014). Consistent with this hypothesis, work in the Dorsal 

Cochlear Nucleus - a cerebellum-like structure - has notably shown that a single PF in this 

circuit is unlikely to recruit simultaneously two neighbouring MLIs (Roberts and Trussell, 

2010). Furthermore, in my experiments, I found that when an EPSC and an outward current 

could be detected on a single sweep basis, their amplitude were uncorrelated (Chapter III, 

Supplementary figure 1). This suggests that, at a given stimulation site and intensity, the very 

PFs directly synapsing onto the patched cell were not the same as the ones causing its electrical 

neighbour(s) to spike. Therefore, in our case, feed-forward recruitment has to be understood in 

the sense that multiple parallel fibres in one beam are required: some of them directly synapse 

onto one MLI of interest, and others recruit at least one of its electrical neighbours. 

 Nevertheless, a recent in vivo study showed that PFs in the cerebellar cortex tend to be 

co-activated in clustered patterns (Wilms and Häusser, 2015), which suggest that activation of 

PFs in beam is not unrealistic. Furthermore, in vitro work using the same stimulation paradigm 

has concluded that MLIs deliver a form of feed-forward inhibition, mediated by GABAergic 

synapses, onto PCs and each other (Mittman et al., 2005).  

 Knowing the relationship between spatio-temporal activation of PFs, and the very 

synaptic contacts they make with their post-synaptic targets in the molecular layer, would 

certainly help in addressing the physiological relevance of the in vitro work presented here. The 
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laboratory is currently recording the spatio-temporal activity from PFs in vivo, by imaging 

GCamp-reported calcium transients in PFs, or iGluSnFR-reported glutamate release from PF 

boutons. 

 

 Spikelets can be used to retrieve the resting membrane potential of unperturbed, 

electrically-connected cells: 

 Spikelets have been shown to vary in waveforms and net excitatory/inhibitory balance 

in different cell-types. It has been shown that these differences could be due to different active 

conductances expressed in the post-synaptic (Mann-Metzer and Yarom, 1999; Dugué et al., 

2009) or presynaptic cells (Russo et al., 2013); the frequency of AP firing in the pre-synaptic 

cell (Galaretta and Hestrin, 2001; Russo et al., 2013) or by the resting membrane potential of 

the pre-synaptic cell (Mann-Metzer and Yarom, 1999; Dugué et al., 2009; Otsuka and 

Kawaguchi, 2013). Consequently, spikelet transmission was reported to mediate a net 

excitation in some conditions (Mercer et al., 2007; Hu and Agmon, 2015, Alcami 2018) and a 

net inhibition in others (Galaretta and Hestrin, 2001; Dugué et al., 2009).  

 In order to address the biophysical determinants of spikelet transmission in BCs, I 

performed paired recordings to control simultaneously the resting membrane potential of two 

electrically connected cells. I found that the state of the pre-synaptic cell was critical in shaping 

the pre-synaptic AP waveform, and consequently the transmitted spikelets, while the state of 

the post-synaptic cell did not have any detectable influence. 

 By combining these two observations, I hypothesized that spikelet waveform could 

carry the information of the presynaptic membrane potential, and designed a novel method 

aiming to retrieve its value in electrically connected, unperturbed cells. First, I used paired 

recordings where the presynaptic membrane potential was known, and employed spikelet 

waveforms as "calibrators" for estimating the resting membrane potential. I later used the 

spikelets recruited by direct stimulation or OFF-beam stimulation, and ultimately retrieved the 

resting membrane potential of unpatched electrical neighbour, by comparing the waveform of 

these spikelets to those obtained in pairs. I found that spikelets from unperturbed MLIs indicate 

a depolarized state of at least -60mV, and perhaps slightly above this value. Additionally, 

because the patched cells were held at -70mV, a bias current was flowing across the electrical 

synapses, and therefore slightly hyperpolarized the presynaptic electrical neighbours. These 

results are consistent with previous findings where the resting membrane potential of MLIs in 

young rats was estimated to be around -58mV (Chavas and Marty, 2003). It has even been 
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proposed that MLIs have a resting membrane potential very close to threshold, where the 

spikelet-induced depolarization would be sufficient to trigger AP firing in cell(s) receiving them 

(Kim et al., 2014). 

 

 Technical considerations on the new method: 

 I propose that the method shown in (Chapter III - Figure 3G) can be applied to retrieve 

the resting membrane potential of any type of neurons forming electrical synapses. For this 

method to provide the most accurate (i.e., precise and unbiased) result, I propose that the 

relationship between post-synaptic state and spikelets waveform is first established (by 

performing paired recordings), in order to ensure that in subsequent experiments, the holding 

membrane potential of the cell receiving the spikelets (i.e., the "probe") doesn't influence the 

waveform of the recorded signal. Indeed, without prior knowledge of a particular cell-type, one 

cannot tell if spikelets can recruit active conductances in the post-synaptic cells. Secondly, the 

"probe" should ideally be held close to the value towards which the estimate of the resting 

membrane potential of unperturbed neighbours converges, in order to minimize the bias current 

flowing across the electrical synapse. Thirdly, I hypothesize that additional knowledge about 

the location of the electrical synapse in the dendritic tree could be used to estimate the extent 

to which the fast depolarizing component and the slower hyperpolarizing component would be 

differentially filtered by the two electrically-connected cells. Owing to the low-pass filtering 

properties of the cellular membrane, I expect that for a given coupling coefficient (which only 

provides an information for steady-state currents to cross the synapse - like the filtered AHP), 

the variability of the fast depolarizing component will be higher than that of the slow 

hyperpolarizing component. Fourthly, a "proper" range of coupling coefficients would be best 

to retrieve the resting membrane potential of unperturbed cells. Indeed, if the CC is too small, 

a negligible bias current is introduced to the unperturbed electrical neighbour, but the 

corresponding spikelet might be too small to be reliably detected. In line with this idea, I 

provided evidence that small CCs can be due to indirect couplings, as they correlate with an 

inability to observe a spikelet after AP firing in the presynaptic element. On the other hand, if 

the CC is too high, then a large bias current will be injected in the unpatched cell, and 

significantly alter its resting membrane potential. In first approximation, the "best spikelets" 

should ideally indicate a coupling coefficient lying between 5 and 10%, but this intuition may 

be further refined by considering how differences in input resistances between two connected 

cells differentially influences the ability of currents to cross them in either direction (Fortier 
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and Bagna, 2006). Finally, when aiming to trigger APs in electrically connected cells by 

stimulating their presynaptic afferents, being able to distinguish if a spikelets-like response 

comes from one, two, or even more electrical neighbours would be ideal; and one should ensure 

that the recorded "spikelet-like" signals are not a mixture of "pure spikelets" and indirect 

EPSCs/IPSCs concomitantly experienced by the presynaptic electrical partner, by using 

appropriate blockers. 

 

 Electrical synapses are more frequent than chemical synapses in adult mice: 

 In order to start addressing the physiological relevancy of spikelet transmission in 

cerebellar basket cells, I performed paired recordings of neighbouring BCs, and tested how 

frequent electrical and GABAergic synapses would be between them. I could have relied on the 

estimates of (Rieubland et al., 2014), but the progressive developmental decline of connexin-

36 has been established in multiple brain regions, such as the thalamus, the cerebral cortex, or 

the CA3 region of the hippocampus (Belluardo et al., 2000), and the retina (Söhl et al., 1998). 

Recent findings even suggests that electrical synapses could serve as an early-developmental 

substrate to guide the formation of GABAergic synapses (Todd et al., 2010; Yao et al., 2016). 

Therefore, I found more prudent to estimate the prevalence of both electrical and chemical 

synapses formed by MLIs in adult animals. Moreover, it was shown in Rieubland et al., 2014 

that the likelihood for an MLI to make an electrical or a chemical synapse is differentially 

affected by the intersomatic distance between the two neurons, in both the parasagittal and 

coronal planes. I highly relied on their experimental procedures, and took advantage of their 

protocols to establish mine. It is notably thanks to their work that I restricted my paired 

recordings to intersomatic distances of maximum of ~70µm in the parasagittal plane, and 

~15µm in the coronal plane, to maximize the probability of finding electrical and chemical 

connections. Finally, electrical connectivity in their study was estimated only by coupling 

coefficients, and such estimates can be misleading (see below). 

 By performing dual patch-clamp recordings of BCs, I found that electrical synapses are 

still highly prevalent in adult animals. I systematically compared how the amplitude of spikelets 

and coupling coefficients varied with one another, and observed that for low coupling 

coefficients (i.e., a few percent), no detectable spikelet was found in the post-synaptic cell. This 

could be due to a difficulty in resolving small spikelets (compared to baseline noise), or to the 

differential ability of long current pulses to cross at least one intermediate electrical neighbour 

before causing a small hyperpolarization in the second cell of the pair (this indirect coupling 
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would cause a small CC), while spikelets would not be transmitted through this type of indirect 

coupling (See Appendices). My estimates for electrical connectivity therefore decreased as I 

increased the threshold value of CCs. This particular point is important to consider, because a 

lot of studies about electrical connectivity employ a threshold for CC, sometimes with relatively 

low values (for example, CC > 1% in Rieubland et al., 2014). This implies that electrical 

synapses might be overestimated by simply considering CCs. 

 

  To remind the reader, I raised the question in my introduction of whether or not "if three 

neurons are connected by electrical synapses in a chain configuration (A-B-C), should the 

neuron in the middle (B) be considered an electrical synapse, by virtue of the definition of 

"specialized junctions between neurons which connect the cytoplasm of one neuron to another 

allowing direct passage of an ion current"? I suppose the correct answer is "no", because a 

whole neuron should not be considered a "specialized junction". However, such indirect 

couplings will be retained as "electrical synapses" in connectivity studies based solely CCs. 

 Ultimately, since I was interested in the ability to mediate excitation/inhibition through 

spikelet transmission in the BC population, I found more reasonable to base my estimates on 

the ability to transmit a spikelet, rather than an arbitrary threshold value for CCs. This method 

appeared the least bias to establish a comparison with the prevalence of GABAergic synapses, 

given that this chemical connectivity can only be probed by forcing AP in the presynaptic cell. 

Ultimately, even when I considered the most stringent criterion to estimate the prevalence of 

electrical synapses (i.e., detectability of a reciprocal spikelet transmission after AP initiation), 

I still found that electrical synapses were present between 51% of the recorded cells. This 

estimate was significantly higher than the estimate for the prevalence of unidirectional 

GABAergic synapses, which was close to 42%.  

 

 Spikelet transmission displays characteristic features of FFI: 

 Narrowing EPSP time window: 

 Classically, GABAergic-mediated FFI has been investigated by comparing EPSPs 

before and after blockade of GABA receptors, usually by application of picrotoxin or gabazine 

(Pouille and Scanziani, 2001; Mittman et al., 2005; Marek et al., 2018). However, in my case, 

the use of pharmacological agents appeared ill-suited to block spikelets. Firstly, because of their 

known side effects, and long-time to act (e.g., 20µM mefloquine takes tens of minutes to block 

electrical synapses; and at this dose, the block of electrical synapses is incomplete (~70% block 
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- Cruikshank et al., 2004), and membrane capacitance is increase 2-fold (Szoboszlay et al., 

2016)); secondly, I aimed to address the contribution of feed-forward recruitment of spikelets, 

but blocking electrical synapses with pharmacological agents would have caused two effects: 

1) blocking spikelet transmission, and 2) changing the passive properties of the recorded cells, 

due to the influence of electrical synapses on passive properties. 

  

 In order to examine if spikelet recruitment was a potent mechanism to provide FFI in 

the BC population, I performed patch-clamp recordings of BCs paired with single or dual 

electrical stimulation of PF inputs. Multiple lines of evidence shown in this thesis converge 

towards the conclusion that spikelets narrow the time-window of EPSPs. 

  Firstly, changing the stimulation intensity at one given site of PF stimulation allowed to 

recruit the same set of PF inputs, and revealed that the recruitment of spikelets in high 

stimulation conditions does narrow the half-width of the EPSPs, while the sole increase in 

stimulation intensity doesn't cause any significant change in EPSP kinetics (Chapter III, Figure 

5). The advantage of this method is that the same set of PF inputs (experiencing the same 

amount of electrical filtering when propagating to the soma) is compared between the two 

stimulation regimes, thus increasing the statistical power of downstream analysis (see 

Appendices for the importance of this particular point), but its drawback is that spikelets 

recruited in high stimulation intensity regime have to counter higher amplitude EPSPs 

(compared to minimal stimulation condition), which may underestimate their effect. 

Nevertheless, this protocol proved to be sufficiently efficient in narrowing the half-width of 

EPSPs. Secondly, I found that, surprisingly, EPSPs have a half-width virtually independent of 

their synaptic origin along the somato-dendritic axis (Chapter III, Supplementary figure 3). This 

observation allowed to compare the half-width of EPSPs alone, versus EPSPs followed by a 

spikelet (all of them in minimal stimulation condition), from two sets of PF-induced synaptic 

responses, sampled all throughout the dendritic tree. I found that EPSPs followed by a spikelet 

have a significantly shorter half-width than the EPSPs alone, which provide further evidence 

that spikelets narrows EPSPs' half-width. However, the differential impact of electrical 

synapses' influence on passive properties could cause confusion in interpreting these results 

(see Chapter VI-II-3). Finally, when I performed paired electrical stimulation of PFs to recruit 

independently EPSPs and spikelets, I also found that their coincident recruitment significantly 

reduces the half-width of the EPSPs, compared to baseline (see Appendices). 
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 Dampening temporal summation: 

 To test the hypothesis that spikelets can also dampen temporal summation, I resolved to 

compare post-synaptic responses to a train of 50Hz stimulations, between two different 

populations (Chapter III, Figure 5). Indeed, in this case, the very change in stimulation intensity 

had a profound effect on temporal summation, regardless of the presence or absence of a 

spikelet response (see Appendices). At the cost of pairing information (again, see Appendices), 

I still found that spikelets reduce temporal summation through this approach. This required to 

evenly sample the dendritic tree in each group, as otherwise, it could have been argued that 

differences in temporal summation were due to differences in the ability of distal compartments 

to summate more than proximal compartments, and that paired-pulse facilitation was biased in 

either group for this reason (see Figure 1 in Abrahamsson et al., 2012). Nevertheless, I showed 

that the sampling of PF stimulation sites along the somato-dendritic axes of the two populations 

of cells was comparable, just like the peak amplitude of the individual responses (Chapter III, 

Supplementary Figure 4), which provided evidence that differences in temporal summation 

between the two groups of recordings was not due to such biases. 

 

 Frequency-dependent inhibitory action of spikelets: 

 I found that single spikelets mediate a net inhibition in resting conditions. However, I 

was genuinely interested to examine if this behaviour could depend on the firing frequency of 

the presynaptic cell, especially to dissect out by which mechanism spikelet could alter temporal 

summation of concomitant EPSPs (Chapter III - Figure 5). By performing paired recordings of 

electrically connected cells, I found that spikelet-mediated inhibition was enhanced when firing 

frequency was increased from 10 to 100Hz. Spike waveform adaptation started to appear 

between 50 and 100Hz of firing frequency, and decreased the peak amplitudes of both the 

sodium and the potassium peaks. Nevertheless, changes in presynaptic spike waveform, along 

with cable filtering of dendritic branches where electrical synapses are located (Alcami and 

Marty, 2013), caused an increase in net inhibition with increasing firing frequency. A similar 

behaviour has been reported in fast-spiking striatal neurons (Russo et al., 2013). 

 

 At the microcircuit level, one functional consequence of this behaviour could be to 

endow MLIs with another mechanism to mediate reliable inhibition to their neighbours (the 

first one being the classical GABAergic inhibition), regardless of their firing frequency. Indeed, 

MLI-MLI GABAergic synapses display a relatively high probability of vesicular release (Arai 
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and Jonas, 2014; Pulido et al., 2015), suggesting a depressing behaviour during high frequency 

AP firing. Short-term depression would therefore impair synaptic inhibition during burst 

activity. However, inhibition conveyed by electrical synapses would become highly potent in 

such regimes. 

 

 Spikelets mediate temporal contrast enhancement and coincidence detection: 

 Transient excitation followed by long-lasting inhibition: 

 In the last experiments described in Chapter III, I paired stimulation of two independent 

sets of PFs to induce direct EPSPs in the patched cells (ON-beam stimulation) and the 

recruitment of spikelet(s) from their electrical neighbour(s) (OFF-beam stimulation). I 

confirmed that spikelets arriving before the EPSPs reduce their amplitude, because of the long-

lasting hyperpolarizing component. I could also finally reveal that their transient depolarizing 

component significantly increases the peak amplitude of concomitant EPSPs. This observation 

is in marked contrast to classical GABAergic mediated FFI, where the disynaptic recruitment 

of inhibitory interneurons can only reduce the peak amplitude of the direct EPSPs, assuming 

they are recruited sufficiently rapidly (Mittman et al., 2005; Pouille et al., 2009).  

 The ability of spikelets to induce a short-lasting depolarization, followed by a longer-

lasting hyperpolarization, therefore acts as if a single signal causes a sequence of feed-forward 

excitation/inhibition, a phenomenon which has not been reported in the literature, to my 

knowledge. Consequently, I argue that spikelet transmission in the MLI network enhances 

temporal contrast enhancement of a given set of PF input, and coincidence detection of 

independent sets of PF inputs.  
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 Comparison with previous studies of spikelet transmission in cerebellar basket 

cells: 

 My results contrast with those of Alcami, 2018. In his study of electrical transmission 

between cerebellar basket cells, spikelets only displayed a depolarizing component, and Pepe 

Alcami postulated that these signals may serve as a basis for sequence detection in BCs (Figure 

D-1).  

 

 However, as the author noted himself in the discussion of his article:  

 

 "Since intrinsic properties determine the waveform of action potentials, spikelets and 

coupling potentials, they are likely to determine the time-window for coincidence and sequence 

detection. Likewise, the value of the membrane potential of coupled cells receiving coincident 

inputs is expected to modulate the time-window for enhanced firing. It would be interesting to 

explore in detail the modulation of the time-window for enhanced interneuron recruitment as a 

function of the membrane potential and the intrinsic properties of coupled cells." 

 

 Indeed, in his paired recordings of BCs, Pepe Alcami injected a bias current maintaining 

basket cells around -70/75mV. Consequently, as it can be seen in his figures, no AHP is present 

after the sodium peak of APs. It is even possible that the potassium currents, at this resting 

potential, are slightly depolarizing, suggesting that the long time constant for sequence 

Figure D-1: Electrical synapses between 

cerebellar basket cells mediate a sequence 

detection mechanism: A) Dual-cell patch-

clamp recordings of electrically connected 

basket cells. Each of them is injected with a 

short current pulse to force AP generation with 

an average probability of ~40% on each trial. 

Different delays are introduced between the 

two pulses; B) Average AP waveforms 

recorded in each cell, depending on the time 

delay between the two current pulses. Increase 

in average peak amplitude of APs indicate an 

increased likelihood of AP firing on each 

sweep; C1) AP probability versus time delay 

between the two current pulses; C2) Population 

averages for two sets of recordings, performed 

at 21°C (dark red) and 34°C (light red), 

showing that the temperature of the recordings 

doesn't change the general behaviour of 

sequence detection. 

 

From Alcami, 2018 
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detection (Figure D-1, Panel C2) could partly be mediated by potassium currents and not 

sodium currents.  

 Given that I proposed a method to retrieve the resting membrane potential of BCs, and 

that my estimates converged towards an average value of at least -60mV, where AHPs are 

prominent, and that spikelets from unpatched electrical neighbours deliver a net inhibition 

(Chapter III, Figure 3), I think that my conclusion is better supported by scientific evidence. 

Moreover, in my study, coincidence detection was mediated by the recruitment of spikelets 

emitted by unpatched electrical neighbours. Any bias of injected current or dialysis due to the 

patching procedure itself was therefore avoided, and I can argue that the effect I observed was 

mediated by largely unperturbed cells emitting the spikelets, which should make my conclusion 

more robust, at least in vitro. 

 

 Implication for cerebellar processing: 

 As previously mentioned, a detailed information of spatio-temporal activity of PFs, 

along with the connectivity between PFs and the MLI network is required to make any strong 

hypothesis about the physiological implication(s) of these findings. 

  Nevertheless, connectivity studies in the cerebellar cortex indicate that electrically 

connected cells tend to form clusters (Alcami and Marty, 2013; Rieubland et al., 2014); 

electrically connected MLIs increase convergence of GABAergic inhibition onto PCs (Kim et 

al., 2014); neighbouring MLIs tend to receive excitatory inputs from the same patches of GCs 

(Valera et al., 2016). Furthermore, in vitro work in the visual cortex indicates that electrical 

synapses may serve as a signal to orchestrate co-innervation by presynaptic excitatory inputs 

(Otsuka and Kawaguchi, 2013). Finally, it was recently confirmed in vivo that BCs deliver 

classical FFI onto PCs in anaesthetized animals, and the amount of FFI delivered is proportional 

to the strength of excitatory inputs common to BCs and PCs onto which they project (Blot et 

al., 2016). Altogether, these observations suggest that electrical connectivity in BCs could 

sharpen the temporal recruitment of inhibition delivered to PCs, and also allow a proportional 

increase of inhibition during enhanced PF synaptic activity in the molecular layer, which may 

be critical for the proper functioning of the cerebellar microcircuit. 

 

  



150 

 

II) Addressing the dendritic integration properties of cerebellar 

basket cells: 

 Now that we have understood the importance of electrical synapses in this population 

of interneurons, both in their ability to transmit sub- and supra-thresold events, and their impact 

on passive properties, performing glutamate uncaging experiments onto BCs, along with 

realistic model simulation in the NEURON environment (Hines and Carnevale, 1997) would 

be very interesting to examine how electrical synapses impact dendritic integration properties. 

I hypothesize that BCs behave more linearly than SCs in general, since their larger dendrites 

and the presence of electrical synapses should make these compartments harder to saturate by 

PF inputs. One should also examine if the quantal size between PF-SC and PF-BC synapses is 

comparable, as it would be the first indication that they do receive similar inputs (on average) 

from PFs. If that was the case, then their differential dendritic integration properties would 

certainly translate into a differential recruitment of somatic- and dendritic-targeted inhibition 

onto PCs. 

 Given that the cerebellar cortex is a canonical microcircuit, conducting these 

experiments would provide some more insight as to the differential computational roles played 

by somatic- or dendritic-targeting interneurons population in the CNS. Additionally, a toy 

model of an MLI endowed with electrical synapses could serve as a model system to examine 

the role of these synapses in dendritic integration per se, and more specifically on the 

input/output relationship. To my knowledge, such an analysis has not been conducted yet, but 

given the large number of cell-types expressing electrical synapses, it would start to address 

more directly their role in information processing within the brain, outside of the "synchrony 

and oscillations" fields within which they have been studied the most. 

 Finally, although I could not examine the I/O relationship of cerebellar basket cells per 

se, I still found direct evidence that electrical synapses extend the input sources which are likely 

to influence their firing, as previously suggested in (Alcami and Marty, 2013). In the case of 

stellate cells, the main excitatory input comes from direct PFs contacts; however, basket cells, 

by forming electrical synapses, not only receive direct synaptic contacts from PFs, but also 

indirect excitation from their electrical neighbours (filtered EPSCs), and spikelets. Analysis of 

electrical transmission within the BC population was therefore important to reveal other types 

of inputs which would have to be considered in their I/O relationship. 
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III) Large scale implications: 

 Implication for information processing in interneurons: 

 Altogether, my results indicate that feed-forward recruitment of spikelet signalling 

within the MLI network shows two characteristic features of GABAergic-mediated FFI 

(narrowing of EPSPs' time-widow, and dampening of temporal summation), along with a novel 

form of feed-forward or lateral excitation, mediated by the short-lasting depolarizing 

component of spikelets. 

 Put in a more general context, these results provide further evidence that BC behave as 

coincident detectors (McBain and Fisahn, 2001), a general role attributed to inhibitory 

interneurons, which tends to minimize interactions between temporally-close events. BCs 

display a high number of features which tend to narrow the time-window of PF-mediated 

EPSPs: 1) AMPA receptors in interneurons have rapid kinetics (Geiger et al., 1997), and 

cerebellar BCs are no exception to this observation (Carter and Regehr, 2002; 2) The axon of 

cerebellar BCs acts as a current sink, draining the synaptic currents experienced in the dendritic 

tree, which further accelerates the kinetics of EPSPs (Mejia-Gervacio et al., 2007); 3) they 

receive modest GABAergic-mediated FFI from their neighbours (Mittman et al., 2005), but 

these results may need to be reconsidered in the light of the resting membrane potential used in 

this study (-70mV), which tended to overestimate the size of PF-mediated EPSPs and 

underestimate the impact of the disynaptic recruitment of GABAergic inhibition; 4) electrical 

synapses decrease the apparent membrane time-constant, due to their impact on passive 

properties (Alcami and Marty, 2013; Maex and Gutkin, 2017), which further accelerates 

kinetics of EPSPs. All these features appear to combine to ensure a precise EPSP-spike coupling 

in the BC population resulting in a rapid and efficient inhibition onto PCs, either by GABAergic 

or ephaptic inhibition (Chu et al., 2012; Blot and Barbour, 2014; Blot et al., 2016). 

 It is interesting to note that BCs in the hippocampus and the neocortex are also 

parvalbumin-positive interneurons, targeting the somatic compartment of principal cells, and 

delivering feed-forward inhibition (along with feedback inhibition - reviewed in Hu et al., 

2014). They also express a high density of K+ channels in their dendrites, which are recruited 

during synaptic activation, and shorten the time-window for EPSP summation (Hu et al., 2010), 

and similarly to cerebellar basket cells, they are subject to axonal speeding (Nörenberg et al.. 

2010). Interestingly, they also form electrical and GABAergic synapses with each other 

(Galaretta and Hestrin, 2001; Tamas et al., 2000), which promote network oscillations. It 

therefore appears that somatic-targeting interneurons share a high amount of features across 
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different brain regions, with a convergent role towards delivering rapid and efficient inhibition 

to their post-synaptic targets, and minimizing temporal summation of their excitatory inputs. 

 

 Implication for cerebellar computation: 

 In rodents, whisker movement kinematics can be both encoded (Chen et al., 2016) and 

driven by precise PC firing patterns (Heiney, 2014). Moreover, millisecond synchrony of PC 

firing is critical for synchronized inhibition in order to precisely gate deep cerebellar nuclear 

drive of movement (Brown and Raman, 2018). The authors propose that at initial millisecond 

inhibition of PC firing by sensory stimuli might disinhibit cerebellar nuclei, thus initiating 

motor responses. Finally in vivo evidence that BCs play an important role in refining PC firing 

on the millisecond scale (< 8 ms) supports their important role timing cerebellar cortical output 

(Blot et al., 2016).  We therefore propose that eFFM could be an important mechanism to 

achieve such robust and precisely timed control of PC firing. 
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 Conclusion: 
 

 During my PhD, I aimed to examine how excitatory inputs are processed by somatic-

targeting interneurons in the cerebellar cortex, the basket cells. I found that this cell-type has a 

distinct dendritic morphology from their dendritic-targeting counterparts, the stellate cells, and 

that short-term facilitation was more linear throughout the dendritic tree of BCs than SCs. 

Moreover, BCs form relatively strong and frequent electrical synapses with each other, which 

plays a critical role in shaping their passive properties, and also provide another source of inputs 

as compared to stellate cells.  

 Owing to the geometrical organization of the cerebellar cortex, I was able to show with 

in vitro electrophysiological experiments that electrical connectivity can be recruited in a feed-

forward manner in BCs, similarly to classical, GABAergic-mediated feed-forward inhibition. 

My work was focused on spikelet signalling, and revealed that in unperturbed BCs, spikelets 

indicate a relatively depolarized state, and deliver a net inhibition. I provided evidence that 

feed-forward recruitment of spikelet signalling displays some characteristic features of 

GABAergic FFI, albeit with a key difference: spikelets coming in coincidence with PF-

mediated EPSPs increase the peak amplitude of these EPSPs, while GABAergic FFI would 

only be able, at best, to decrease it. Spikelet signalling in the BC population therefore appears 

to mediate coincidence detection and temporal contrast enhancement mechanisms, which is 

fully in line with the proposed role of interneurons found throughout the brain to have a sharp 

EPSP-spike coupling. 

 The results provided in this thesis could now serve as a building block from which a 

systematic analysis of the influence of electrical synapses in the dendritic input/output 

relationship could be performed, which may reveal another major role for these synapses in 

brain computation, aside from a generally well-accepted role in mediating synchrony and brain 

oscillations. The role of electrical synapses in passive properties further supports the notion that 

interneurons behave as coincidence detectors, and may also relate to a general different 

computational role in dendritic integration properties between electrical synapse-expressing or 

non-expressing interneurons subtypes found throughout the brain. 
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 Appendices:  
 Coupling Coefficients and input resistances: 

 In the main text, I referred to this parameter as if it was unique, in the sense that it would 

have the same value if it was calculated from cell A to cell B, or the other way around. However, 

when an electrical circuit is drawn to model two electrically connected cells, it is possible to 

derive the equations of steady-state currents and voltages which are relevant for calculating the 

coupling coefficients. A description of these method can be found in (Fortier and Bagna, 2006). 

I will show here the simplified model, and the solutions of steady-state voltages in the two cells, 

to reveal that coupling coefficient calculations, when performed in one direction or the other, 

usually return two different values, and that this result is expected from a simple model (Figure 

A-1). 

 

 

 The steady-state responses are given by: 

𝑉11 = 𝐼1 ∗ 𝑅1
(𝑅2+𝑅𝑗)

(𝑅1+𝑅𝑗+𝑅2)
 , the voltage response in cell 1 when current I1 is injected in cell 1; 

𝑉12 = 𝐼1 ∗ 𝑅1
𝑅2

(𝑅1+𝑅𝑗+𝑅2)
  , the voltage response in cell 2 when current I1 is injected in cell 1; 

𝑉22 = 𝐼2 ∗ 𝑅2
(𝑅1+𝑅𝑗)

(𝑅1+𝑅𝑗+𝑅2)
  , the voltage response in cell 2 when current I2 is injected in cell 2; 

𝑉21 = 𝐼2 ∗ 𝑅2
𝑅1

(𝑅1+𝑅𝑗+𝑅2)
 , the voltage response in cell 1 when current I2 is injected in cell 2; 

 

Figure A-1: Simplified model of two cells connected by an electrical synapse: V1 and V2 represent the 

holding membrane potential of cell 1 and 2, respectively; I1 and I2 represent the two current sources introduced 

by the patch pipettes in current-clamp configuration - one for each cell. R1 and R2 are the intrinsic input 

resistances of cell 1 and 2, respectively, while Rj denotes the resistance due to the electrical synapse connecting 

them. 

 

From Fortier and Bagna, 2006 
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 These equations are terribly annoying to read, but the key point is to relate them to 

coupling coefficients, which I will do now: 

𝐶12 =
𝑉12

𝑉11
=

𝑅2

(𝑅2+𝑅𝑗)
 and 𝐶21 =

𝑉21

𝑉22
=

𝑅1

(𝑅1+𝑅𝑗)
 

 And now, one can observe that the calculation of the coupling coefficient does depend 

on the cell in which current is injected: if the two cells have different input resistances, then 

there is a difference in the coupling coefficients, despite the unique value of the junctional 

resistance. This explains why coupling coefficients can sometimes provide quite different 

values when calculated in one direction or the other. More importantly, these calculations reveal 

that the asymmetry of coupling goes along with the asymmetry in input resistance. As a 

consequence, although we usually think of electrical synapses as linking two different cells of 

a similar population of neurons, it is known that they can be made between different subtypes 

of neurons. In the extreme case, they can also be found between interneurons and principal 

cells, as it is the case in the Dorsal Cochlear Nucleus (DCN) (Apostolides and Trussel, 2013): 

in this cerebellum-like structure, fusiform cells (principal cells) make electrical synapses with 

stellate cells (interneurons), and the coupling coefficients are systematically higher in the 

fusiform -> stellate direction, because interneurons have higher input resistances than principal 

cells. 
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 Evidence for indirect coupling in paired recordings: 

 In this short section I merely wish to reveal one representative recording indicating an 

indirect coupling between two BCs patched simultaneously (Figure A-2). 

 Here, long current pulse injection caused a significant hyperpolarisation of the non-

injected cell, and this phenomenon was bidirectional (Figure A-2A), indicative of electrical 

coupling. However, AP firing from one cell to the other doesn't lead to a significant post-

synaptic response, regardless of the shape of the pre-synaptic AP, suggesting that the coupling 

is not direct. 

 

Figure A-2: Evidence for indirect coupling in paired recordings: A) Long current pulse injection in one 

cell (blue) causes a small but detectable hyperpolarization of the second cell (red). This behaviour is observed 

in the reversed direction; B) AP firing in cell blue doesn't cause a spikelet response, no matter the presynaptic 

AP waveform. 
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 Simultaneous recruitment of EPSP and spikelets narrows half-width of EPSPs: 

 In this section, I simply provide more results obtained when performing double-

stimulation (ON-beam + OFF-beam, as in Chapter 3 - Figure 6). Here, we demonstrate that 

spikelets do narrow EPSPs' half-width when the two types of signals are coincident, as it would 

happen when EPSP and spikelet are recruited with a single stimulation pipette. The results 

shown here may be later incorporated in the manuscript as a supplementary figure, but for now, 

we have not found necessary to do so. 

 These results show that when EPSP and spikelets are recruited simultaneously, the half-

width of the compound synaptic response is minimal (83 ± 2%). Note that the increase in half 

width for short negative time delays (-10 to -5ms) are caused by the depolarizing peaks of the 

spikelets arriving during the falling phase of the EPSP. 

Figure A-2: Spikelet reduce the half-width of coincident EPSP: A) block diagram representing the 

experimental paradigm B) Compound synaptic responses (EPSP + spikelet), depending on the time delay 

between the two stimulations, aligned on EPSP onset C) Population averages of the half-width of synaptic 

responses versus time-delay. 
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 Impact of stimulation intensity of PFs on the temporal summation of EPSPs: 

 Here, I will briefly show the results I obtained when comparing recordings of 50Hz train 

of five PF stimulations, in minimal stimulation intensity and high stimulation intensity, for the 

same set of PFs. These data were recorded from n = 13 cells, and the statistical test employed 

to quantify the influence of the pulse and the stimulation intensity factors was a two-way 

repeated measure ANOVA, with pairing for both factors. Indeed, in a given train, the EPSP 

amplitudes are matched in time (because the same synapses are stimulated all throughout the 

train) and more importantly, each point in the train of minimal stimulation can be matched to 

the same point in the train of high stimulation. Figure A-3 shows a representative example, 

along with the corresponding statistical analysis at the population level. It can be seen that the 

stimulation regime has a significant impact on the temporal summation of EPSPs. These results 

therefore show that changing the stimulation intensity is ill-suited to examine the contribution 

of spikelets on temporal summation, because the experimental manipulation alone already 

impacts temporal summation. 

 

 These results are consistent with a sublinear dendritic integration regime, because an 

increase in AMPAR conductance (caused by increasing the stimulation intensity) would lead 

to smaller and smaller EPSP amplitudes, when normalized to the first peak amplitude (Figure 

A-4).  

Figure A-3: Impact of stimulation intensity on temporal summation of PF-mediated EPSPs: A) 50 train 

stimulation of PFs, in minimal stimulation intensity (black) and high stimulation intensity (red) regimes. Both 

recordings come from the same stimulation site, in the same cell; B) Same as in A, but traces have been 

normalized to the peak amplitude of the first responses, to clearly reveal the differences in temporal summation; 

C) Population averages of EPSP peak amplitude throughout the train (two-way repeated measure ANOVA, 

with pairing information for both factors. 
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 If we assume a sublinear behaviour in dendritic integration because of local saturation, 

then the relationship between AMPAR conductance and the corresponding EPSPs falls below 

the linearity line. Consequently, if stimulation of PFs causes an average increase in AMPAR 

twice as large in the second pulse compared to the first one, the PPR will invariably be smaller 

than 2. Moreover, if more and more AMPAR are opened by increasing stimulation intensity, 

then the PPR will fall closer to 1, because the sublinearity is more pronounced. 

 

Figure A-4: Indirect indication of sublinear dendritic integration behaviour by increasing stimulation 

intensity of PFs: left) Sublinear I/O relationship predicts that increasing AMPAR conductance (X-axis), leads 

to sublinear EPSP amplitude (Y-axis). Schematic up-right arrows represent EPSP amplitude in minimal (black) 

or high (red) stimulation regime. For each color, the small arrow represents the peak amplitude of the 1st EPSP 

in a train, and the high one the fifth EPSP. When stimulation intensity is increased, both black arrows are 

moved by a similar percentage along the X-axis; right) In the end, the ratio of arrows' amplitudes indicates a 

PPR, and the black one is higher than the red one as a consequence of sublinearity. 
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 Testing the hypothesis that HCN channels can shape transmitted spikelets: 

inconclusive but insightful experiments: 

 In an initial set of experiment, I performed OFF-beam stimulation of PFs to force 

electrical neighbours to fire an AP, and examine the difference in spikelet waveforms before 

and after application of ZD-7288, a potent blocker of HCN channels. For reasons which will be 

explained in the next paragraph, and exemplified by the representative case shown in Figure A-

5, I did not perform many experiments of this type, and later moved to another strategy to test 

my hypothesis. 

Figure A-5: Blockade of HCN channels causes large fluctuations of membrane potentials and holding 

currents: A) Representative experiment (left) and  its corresponding diagram (right); B) 10s recording of 

spontaneous activity, before (black) and after (blue) application of 10 µM ZD-7288). Note the large 

fluctuations in holding current after ZD application; C) AP waveform of the patched cell, before and after 

application of ZD-7288; D) Same as in C, but for the steady-state resting membrane potential around the AP. 

Note here the larger range within which Vm fluctuates after drug application; E) Spikelets recorded in voltage-

clamp in the patched cell, before and after application of ZD; F) Same as in E, but for spikelets recorded in 

current-clamp. 
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 As it can be seen clearly in this example, application of ZD-7288 in the whole tissue 

causes erratic and large fluctuations of the holding current (in VC) or resting membrane 

potential (in CC). This is best revealed in panel B, where I show the holding current for 10s in 

the patched cell, between the two conditions. This first observation is very important to keep in 

mind, as it indicates that the resting state of the patched cell is highly "impaired" after 

application of the drug. This is further confirmed in subsequent protocols: when APs are fired 

in the patched cell, the resting membrane potential fluctuates within a range of at least 5mV 

after application of the drug (Panel B). As I have already shown, the resting membrane potential 

of the patched cell is critical in shaping the AP waveform (Chapter III, Figure 3). Therefore, it 

is unwise to make any claim about the specific effect of ZD on shaping AP waveform, because 

it already has a striking impact on the resting state of the cell. Furthermore, when I aimed to 

force electrical neighbours to spike, and record the corresponding spikelets in voltage-clamp 

(panel E) or current-clamp (panel F), I observed that the peak amplitude of the depolarizing 

current was reduced (in this experiment, at least), and that the hyperpolarizing component could 

become so long that the recording time of the protocol was not long enough to capture its full 

return to baseline. However, here again, one can note the high fluctuations in voltage 

trajectories of the spikelet responses, especially when they are recorded in current-clamp.  

 I did not perform many experiments of this type for the following reasons: 1) application 

of ZD causes strong fluctuations of the resting state of the patched cells. Consequently, further 

analysis of signal-to-noise ratio of any type of signal (AP or AHP peaks, inward or outward 

currents of spikelets, etc...) is highly impaired; 2) since I was interested in examining the role 

of HCN channels in shaping AP waveform along with the transmitted spikelet, I reasoned that 

this question was better answered in paired recordings configuration, where it is possible to 

examine AP waveform changes in a pre-synaptic cell, along with the corresponding changes of 

spikelet waveforms in the post-synaptic cell.  

 These preliminary experiments (for which only a representative case is shown) still 

provided some evidence for the role of HCN channels in BCs. First, it can be observed on panels 

C and D that, on average, the resting membrane potential of the patched cell is lower after 

application of ZD, for a similar injected current from the amplifier. This indicates that, at rest, 

HCN channels are open and reduce the input resistance of the cells, thus providing a 

depolarizing current. After their blockade, input resistance is higher, and the depolarizing 

current is gone, so it is not surprising to observe a decrease in the resting membrane potential 

of the cell. Secondly, it appears that my hypothesis was "correct" (or at the very least, it was 

supported by the observations I could draw so far): when electrical neighbours are forced to fire 
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an AP, they seem to deliver spikelets which have longer-lasting outward currents, indicating 

that the presynaptic AHP has indeed been made longer-lasting after blockade of HCN channels. 

Finally, if one applies this reasoning to the whole MLI circuit (remember that HCN blockade 

is applied to the whole slice), then the large fluctuations in holding current observed in panel B 

may be caused by spontaneously spiking MLIs forming electrical synapses with the patched 

cell, which would fire APs with strikingly long AHPs, requiring hundreds of milliseconds to 

return to baseline. It is indeed known that in vitro, MLIs are spontaneously active (Häusser and 

Clark, 1997), and throughout my PhD, I often encountered cases where whole-cell patch-clamp 

recordings of BCs displayed regular "spikelets". 
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 Testing the hypothesis that spikelets influence EPSPs' kinetics - inconclusive but 

insightful experiments: 

 In Chapter III, I showed that additional spikelet recruitment in high stimulation intensity 

regime of ON-beam stimulations narrows the half-width of EPSPs, while the sole increase in 

stimulation intensity doesn't display any significant effect (Chapter III, Figure 5). This 

experiment was the updated version of a prior protocol which I will briefly describe here, and 

which did not produce any conclusive results because of an unwanted off-side effect of the 

experimental manipulation I employed at the beginning. I still wish to present this original 

protocol, as it gave some insights as to the general method to be employed in testing spikelets' 

ability to change the kinetics of concomitant EPSPs. 

 At the beginning of my PhD, I had performed electrophysiological experiments aiming 

to see how the spikelet-mediated outward current was sensitive to the holding membrane 

potential of the patched cell. I systematically examined the outward current peak amplitude of 

PF-mediated synaptic responses (EPSC + spikelets), as the holding membrane potential was 

varied from -90mV to 0mV, in 10mV increments. These experiments were conducted with a 

Cs+-based internal solution, as otherwise, depolarisation of the patched cells beyond -50mV 

would have caused deleterious effects due to the opening of K+ channels (Figure IV-6).  
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 First of all, one can observe that the seal test responses reveal an expected decrease in 

input resistance of the cell, beyond -50mV (Figure IV-6B). This means that any spikelet current 

recorded in these conditions will display a lesser amplitude than in control conditions (-50mV 

and below), due to changes in coupling strength (Fortier and Bagna, 2006 - see Appendices for 

a discussion on how changes in input resistances of two electrically connected cells changes 

their coupling coefficients). I found that the peak amplitude of the spikelet-mediated outward 

current was maximal at -50mV holding membrane potential, and negligible (if detectable) at -

90mV.  

 This result can be explained by two (non-exclusive) possibilities: when the patched cell 

is hyperpolarized, a bias current flows across the electrical synapse(s) and hyperpolarizes the 

electrical neighbour(s) delivering the spikelet(s), which can: 

 - decrease its/their likelihood to fire an AP because of "tonic hyperpolarisation";  

 - decrease the amplitude of the recorded outward current when (an) AP(s) is/are fired, 

because the AHP(s) in the presynaptic cell(s) is/are now smaller than in baseline conditions 

(Chapter III, Figure 3). 

 

Figure IV-6: Voltage-dependence of the spikelet-mediated outward current: A) Schematic of the 

experimental configuration; B) Seal-test responses versus holding membrane potential of the patched cell; C) 

Compound synaptic responses versus holding membrane potential; D) Outward current peak amplitude versus 

holding membrane potential (n= 9 cells) 
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 I therefore reasoned at that time that changing the holding membrane potential of the 

patched cell (between -70 and -90mV) was one way to test the hypothesis that spikelet can 

reduce the half-width of PF-induced EPSPs. I therefore performed experiments where BCs were 

patched with a K+-based internal solution, and compared PF-mediated synaptic responses 

recorded at -70 and -90mV, between two groups: one where an outward current could be 

detected at -70mV, and one where no outward current could be detected at -70mV. Two 

representative examples (one from each group), along with population averages, are shown in 

Figure IV-7.  

 

 It can be seen here that recruitment of spikelets at -70mV in the first group correlates 

with a signficant decrease in the half-width of the EPSPs (Figure IV-7C,  -1.67± 0.41 ms; mean 

± SEM, p < 0.05, Wilcoxon matched pairs). However, we cannot conclude that spikelet 

recruitment is responsible for this phenomenon, because the sole experimental manipulation of 

changing the holding membrane potential of the patched cell is sufficient to cause a significant 

decrease in the EPSP half-width (Figure IV-7F, -1.51 ± 0.37 ms; mean ± SEM, Wilcoxon 

matched pairs). Importantly, the latter change is detected thanks to pairing information of 

compairing the same synaptic responses, at two holding membrane potentials. If the statistical 

Figure IV-7: EPSPs half-width is 

increased by spikelet recruitment, 

but also by sole hyperpolarisation of 

the patched cell : A) Representative 

traces of one cell, where a significant 

hyperpolarisation is detected after the 

EPSP; B) Same as in A, but responses 

are normalized to the EPSP peak 

amplitude - the traces look very similar 

to A, because they originally had very 

comparable amplitudes; C) EPSP half-

width is smaller at -70mV (n=20 cells, 

Wilcoxon matched-pairs); D) Same as 

in A, but when no significant 

hyperpolarisation is detected after the 

initial EPSP; E) Same as in D, but the 

traces are here again normalized to their 

peak amplitudes; F) EPSP half-width is 

also significantly reduced at -70mV (n 

= 17 cells, Wilcoxon matched-pairs), 

and this effect is readily detected even 

though no spikelet is recorded at -

70mV. 
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test employed is only a Mann-Whitney test (i.e., equivalent of the Wilcoxon matched-pairs, 

without the pairing information), then no significant effect is detected (p = 0.32). This particular 

point is emphasized here, and explains why in Chapter III, I performed experiments of changing 

the stimulation intensity to keep the pairing information. I was indeed affraid to miss a real a 

non-specific effect of changing the stimulation intensity on the half-width of EPSPs, and be 

potentially left with only a correlation and not a causal relationship between "additional spikelet 

recruitment" and "decrease in EPSP half-width". 

 To conclude here, it was important to observe that the significant effect observed in 

Figure IV-10-C was merely a correlation, and not a causality. Therefore, these results were 

inconclusive with regard to testing the hypothesis that spikelet recruitment has any effect on 

EPSP kinetics, let alone on temporal summation. However, they were important to set up the 

protocol presented in Chapter III on two key aspects: examining the influence of the 

experimental manipulation on the kinetics of the synaptic responses (1); and establishing a 

protocol where pairing information could be employed for statistical analysis (2). 
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  Supplementary methods: 
 

 This section summarizes methodological procedures which I employed during this PhD. 

Some of the content presented here may be later incorporated in the supplementary methods 

section of our manuscript. 

 

 Testing electrical and chemical connectivity: 

 When recordings are performed in presence of blockers of chemical synapses, any post-

synaptic response following AP firing in a pre-synaptic cell can only be due to electrical 

synapses, and the recorded spikelet waveform will qualitatively match the waveform of the pre-

synaptic "action current". It is then possible to correlate the peak amplitudes of these responses 

with coupling coefficients.  

 Alternatively, when the coupling coefficients are below a few percent, it is almost 

impossible to record a significant spikelet-mediated inward current in the post-synaptic cell. 

Therefore, any detectable post-synaptic response consequent to AP firing indicates the presence 

of a GABAergic synapse. Comparing post-synaptic responses at different holding membrane 

potentials of the post-synaptic cell (in order to change the electromotive force for Cl- ions), or 

before and after application of gabazine, can provide further confirmation that the post-synaptic 

current is indeed due to a GABAergic synapse.  

 However, the most delicate cases to treat are of course the mixed presence of chemical 

and electrical synapses within the same pair, especially when electrical synapses are strong 

(e.g., CC > 10%) and the chemical synapses are relatively weak. In this case, the post-synaptic 

response is a mixture of a spikelet and a GABAergic current. In order to disentangle the relative 

contribution of each input, and uncover a putative chemical synapse, one should ideally perform 

recordings were presynaptic APs do not display any AHP (e.g., -80mV in my case), so that 

spikelet responses only cause an inward current, and no outward current. If the post-synaptic 

cell is held at -60 mV, then GABAergic inputs will display an outward current. Therefore, an 

electrical synapse can be reliably detected by the presence of a post-synaptic inward current, 

while a chemical synapse can be reliably detected based on the presence of an outward current. 

It is important to note that when applying the method proposed here, care must be taken in 

keeping a similar presynaptic AP waveform before comparing post-synaptic responses and infer 

the presence of a chemical synapse, if an electrical synapse is already detected (based on CC). 

Indeed, if the AHP of the presynaptic neuron decreases significantly (for example, before and 
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after application of gabazine) due to a non-specific effect (e.g., slow drift of access resistance 

or holding currents during drug application), then a decrease in outward current peak amplitude 

will be observed in the post-synaptic cell. However, this change cannot be attributed to a 

blockade of a GABAergic synapse, but simply to a non-specific change in presynaptic AP 

waveform. 

 The protocol suggested above should be well-suited to estimate the presence or absence 

of either type of synaptic connections, but one potential drawback is that the relative weight of 

chemical input may be underestimated, due to pre-synaptic mechanisms influencing vesicular 

release (Christie et al., 2011; Jarsky et al., 2011). However, if the resting membrane potential 

of the MLIs is known, then a subsequent set of recordings can be performed to estimate 

parameters for chemical transmission: both the pre- and post-synaptic cells should be held at 

their resting membrane potential (e.g., -60mV), and post-synaptic responses should be 

compared before and after application of gabazine, in order to subtract the spikelet component 

of the post-synaptic response. 

 

 Retrieving the resting membrane potential of electrically connected cells: 

 I propose that the method shown in Figure 3 of Chapter III can be applied to retrieve the 

resting membrane potential of any type of neurons forming electrical synapses. For this method 

to provide the most accurate (i.e., precise and unbiased) result, I propose that the relationship 

between post-synaptic state and spikelets waveform is first established (by performing paired 

recordings), in order to ensure that in subsequent experiments, the holding membrane potential 

of the cell receiving the spikelets (i.e., the "probe") doesn't influence the waveform of the 

recorded signal. Indeed, without prior knowledge of a particular cell-type, one cannot tell if 

spikelets can recruit active conductances in the post-synaptic cells. Secondly, the "probe" 

should ideally be held close to the value towards which the estimate of the resting membrane 

potential of unperturbed neighbours converges, in order to minimize the bias current flowing 

across the electrical synapse. Thirdly, I hypothesize that additional knowledge about the 

location of the electrical synapse in the dendritic tree could be used to estimate the extent to 

which the fast depolarizing component and the slower hyperpolarizing component would be 

differentially filtered by the two electrically-connected cells. Owing to the low-pass filtering 

properties of the cellular membrane, I expect that for a given coupling coefficient (which only 

provides an information for steady-state currents to cross the synapse - like the filtered AHP), 

the variability of the fast depolarizing component will be higher than that of the slow 
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hyperpolarizing component. Fourthly, a "proper" range of coupling coefficients would be best 

to retrieve the resting membrane potential of unperturbed cells. Indeed, if the CC is too small, 

a negligible bias current is introduced to the unperturbed electrical neighbour, but the 

corresponding spikelet might be too small to be reliably detected. In line with this idea, I 

provided evidence that small CCs can be due to indirect couplings, as they correlate with an 

inability to observe a spikelet after AP firing in the presynaptic element. On the other hand, if 

the CC is too high, then a large bias current will be injected in the unpatched cell, and 

significantly alter its resting membrane potential. In first approximation, the "best spikelets" 

should ideally indicate a coupling coefficient lying between 5 and 10%, but this intuition may 

be further refined by considering how differences in input resistances between two connected 

cells differentially influences the ability of currents to cross them in either direction (Fortier 

and Bagna, 2006; Yihe and Timofeeva, 2016). Finally, when aiming to trigger APs in 

electrically connected cells by stimulating their presynaptic afferents, being able to distinguish 

if a spikelets-like response comes from one, two, or even more electrical neighbours would be 

ideal; and one should ensure that the recorded "spikelet-like" signals are not a mixture of "pure 

spikelets" and indirect EPSCs/IPSCs concomitantly experienced by the presynaptic electrical 

partner, by using appropriate blockers. 

 

 


