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Monte Carlo simulations are the numerical method of choice for the study of lattice field theories in a non-perturbative framework. Over the years, Monte Carlo methods in Lattice Field Theories have reached a level of maturity such that in several QCD applications they provide the most reliable predictions for the low-energy behaviour of the theory. However, for many interesting theories, a complex-valued action prevents the use of standard sampling techniques. This is generally known as the sign problem and is present if the Boltzmann weight associated with the field configurations is either non-positive or non-real. A class of models exhibiting this property are finite density theories. These are going to be our primary interest.

In this work, we shall focus on the density of states approach to the sign problem. This is a numerical technique that enables us to use standard Monte Carlo techniques to evaluate the density of states relating to the imaginary part of the action. By doing this, the sign problem is reduced to a simpler one-dimensional oscillatory integral, amenable to standard deterministic quadrature methods.

At the core of our implementation of the density of states method is the LLR algorithm. We will present the general implementation and recent developments regarding on the control of possible sources of bias. Then we will extend the current formulation to allow for the evaluation of generic observables. Both these topics will be supported by results from numerical studies of the relativistic Bose gas at finite density.

Lastly, we will discuss the problem of applying this approach to fermionic models where the sign problem is generated by the complex-valued fermionic determinant. As a specific application, we will study the Thirring model in two different representations discussing the related challenges. i

Résumé

Les simulations de Monte Carlo sont la méthode numérique de choix pour l'étude des théories des champs sur réseau dans un système non perturbatif. Au fil des ans, les méthodes de Monte Carlo dans les théories de champ sur réseau ont atteint un niveau de maturité tel que dans plusieurs applications QCD, elles fournissent les prédictions les plus fiables pour le comportement à basse énergie de la théorie. Cependant, pour de nombreuses théories intéressantes, une action à valeurs complexes empêche l'utilisation de techniques d'échantillonnage standard. Ceci est généralement connu sous le nom de problème de signe et est présent si le poids de Boltzmann associé aux configurations de champ est non positif ou non réel. Une classe de modèles présentant cette propriété sont les théories de densité finie. Celles-ci seront notre principal intérêt.

Dans ce travail, nous nous concentrerons sur l'approche de la densité d'états au problème de signe. Il s'agit d'une technique numérique qui permet d'utiliser les techniques standards de Monte Carlo pour évaluer la densité d'états relatifs à la partie imaginaire de l'action. En faisant cela, le problème du signe est réduit à une intégrale oscillatoire unidimensionnelle plus simple, qui se prête aux méthodes de quadrature déterministes standard.

Au coeur de notre implémentation de la méthode de la densité des états se trouve l'algorithme LLR. Nous présenterons la mise en oeuvre générale et les développements récents concernant le contrôle des sources possibles de biais. Ensuite, nous étendrons la formulation actuelle pour permettre l'évaluation d'observables génériques. Ces deux sujets seront étayés par les résultats d'études numériques du gaz de Bose relativiste à densité finie.

Enfin, nous discuterons du problème de l'application de cette approche aux modèles fermioniques où le problème des signes est généré par le déterminant fermionique à valeurs complexes. En tant qu'application spécifique, nous étudierons le modèle Thirring dans deux représentations différentes abordant les défis associés.
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Introduction

Over the last forty years, one of the most successful tools used to study nonperturbative phenomena in Quantum Field Theory (QFT) has been the lattice field theory approach. This method provides a mapping of the standard quantum field theories to statistical mechanic ensembles living on a regularized Euclidean spacetime lattice, allowing for all the numerical techniques developed for the latter to be used to make predictions in QFT.

The most efficient method to extract quantitative information from these regularized theories comes in the form of Monte Carlo simulations. The general idea of the latter consists in generating field configurations according to the Boltzmann weight W (S) = e -S , with S the Euclidean action of the system, and then compute the expectation values of observables as ensemble averages. A requirement for this procedure to work is the definition of the system's action as a real-valued quantity. Instead, when the action is complex-valued, the Euclidean path integral is no more positive-definite, giving rise to large numerical cancellations in the evaluation of the observables. This, in general, generate noise that is several orders of magnitude larger than the signal one would like to observe. This phenomenon, commonly referred to as the sign problem [START_REF] Gattringer | Approaches to the sign problem in lattice field theory[END_REF], is a common occurrence in finite density systems in Quantum Field Theory and strongly correlated electron systems in condensed matter physics.

One of the most relevant theories affected by the sign problem is QCD at finite density [START_REF] Aarts | Developments in lattice quantum chromodynamics for matter at high temperature and density[END_REF][START_REF] De Forcrand | Simulating QCD at finite density[END_REF]. This system is described by the partition function

Z = DU e -S Y M det D(µ) (1) 
where U are the pure gauge degrees of freedom and det D(µ) is the fermionic determinant coming from a Grassman integration over the fermionic part of the action. It is possible to show that (det D(µ)) * = det D(-µ * ) [START_REF] Aarts | Developments in lattice quantum chromodynamics for matter at high temperature and density[END_REF] meaning that the determinant can be real only for vanishing or purely imaginary chemical potentials. At finite values of the chemical potential the determinant is therefore complex-valued leading to the cancellations mentioned above, hence generating a sign problem.

As shown in Fig. 1, where we draw the phase diagram of QCD as a function of temperature and net baryon density, the landscape of QCD phenomena depending on the density of baryonic matter is extremely wide, while the region that can be studied numerically with current techniques is instead limited to the low density region (dashed green region in the plot).

Since QCD is the reference theory for the study of high energy physics, the impossibility of studying it in conditions of finite density has led to the development of multiple techniques that aim at the complete elimination or amelioration of the sign problem. Amongst these, one of the best known is reweighting [5]. In this method, the sampling probability of the Monte Carlo procedure is taken to be |e -S |, thus sampling the so-called phase-quenched theory. The expectation values for an observable O in the original system can then be recovered as

O = O e iϕ pq e iϕ pq . (3) 
While formally exact, this method is reliable only for small values of the chemical potential as the oscillations will quickly spoil the evaluation of the phase factor in the phase-quenched system. Similarly, other methods based on Taylor expansions [START_REF] Allton | The QCD thermal phase transition in the presence of a small chemical potential[END_REF] in the chemical poten-tial around the theory at µ = 0 or analytic continuation from imaginary chemical potential [START_REF] De Forcrand | The QCD phase diagram for small densities from imaginary chemical potential[END_REF] have shown to be able to explore the phase diagram only for small values of the chemical potential.

In recent years several additional techniques have been developed to avoid the limitation of the above mentioned methods. While the scope of application of these does not always encompasses QCD, their ability to access directly theories affected by the sign problem is a great advantage. Amongst these some of the most relevant are:

• Complex Langevin simulations: the complexified field variables are evolved via a stochastic process, the Langevin equation, obtaining an equilibrium distribution equivalent to the original one [START_REF] Aarts | Stochastic quantization at finite chemical potential[END_REF];

• Lefschetz thimble: by complexifying the field variables, it is possible to define new integration manifolds equivalent to the original domain of integration on which the imaginary part of the action is constant, therefore, getting rid of the sign problem [START_REF]New approach to the sign problem in quantum field theories: High density QCD on a Lefschetz thimble[END_REF];

• Dualization: the introduction of dual variables in the theory sometimes allows for the mapping of the system to another with milder or absent sign problem [START_REF] Gattringer | Lattice study of the Silver Blaze phenomenon for a charged scalar φ 4 field[END_REF].

While this latter group of methods has shown encouraging results in recent years, the main focus of this work will be the density of states approach. This method, originally proposed in [START_REF] Gocksch | Simulating Lattice QCD at finite density[END_REF][START_REF] Anagnostopoulos | New approach to the complex action problem and its application to a nonperturbative study of superstring theory[END_REF][START_REF] Fodor | The Density of states method at non-zero chemical potential[END_REF], has been recently revisited in [START_REF] Langfeld | The density of states in gauge theories[END_REF][START_REF] Langfeld | Density of states approach to dense quantum systems[END_REF][START_REF] Gattringer | Density of states method for the Z 3 spin model[END_REF] and differs from the others in the simplicity with which theories can be adapted to it. Its main feature is an accurate evaluation of the logarithm of the density of states enabling an exponential error reduction when compared to standard techniques. The application of this procedure to systems affected by the sign problem [START_REF] Langfeld | Density of states approach to dense quantum systems[END_REF][START_REF] Gattringer | Density of states method for the Z 3 spin model[END_REF][START_REF] Francesconi | Free energy of the self-interacting relativistic lattice Bose gas at finite density[END_REF] has found that the method is in fact able to overcome the cancellations problem.

The present work consists of five chapters. In the first one, we shall review the well-known discretization of QFTs on the lattice, focusing on free fermionic and scalar theories.

The second chapter is dedicated to the study of QFTs at finite density and to the different techniques currently used to deal with the sign problem.

The third chapter will be dedicated entirely to the density of states approach to the sign problem. We will review the numerical techniques used to evaluate the density function and discuss the recent developments concerning control of the method over systematic bias. Moreover, we will present the results obtained in a numerical study of the relativistic Bose gas at finite density.

In the fourth chapter, we will present a novel method to measure the expectation values of observables in the density of states formalism. Once more, this chapter will be supported by the presence of a numerical study on the relativistic Bose gas.

The fifth and last chapter will be instead dedicated to the study of fermionic theories at finite chemical potential with the density of states approach. We will study the Thirring model at finite density with two methods: the first, a naive application of the density of states formalism, and the second, a more involved approach using the worldline representation of the model.

All the results shown in this work up until the first part of the fifth chapter come from my own work, while the results on the worldline formulation have been obtained by Jarno Rantaharju as part of an ongoing collaboration. The latter are reported here for completeness, to highlight potential future directions.

Lastly, I would like to renew my thanks to Jarno Rantaharju for sharing the base code that I have developed to obtain the results in the first part of the fifth chapter, and to Antonio Rago for his collaboration throughout this entire work.

Chapter 1 Lattice discretization of Quantum Field Theories

The aim of this chapter is to introduce the basic concepts and techniques that are going to be used in the rest of this work. The most important of these methods is the lattice regularization of quantum field theories, introduced by Wilson in 1974 [START_REF] Wilson | Confinement of Quarks[END_REF] as a non perturbative approach to the study of QFTs.

Furthermore, we will describe in detail the lattice discretization of scalar and fermionic QFTs as they will be our main focus for the rest of this work. For completeness, we will also briefly describe the discretization of gauge fields. Lastly, we will review the main aspects of Monte Carlo simulations.

Path integral formulation

Proposed by Feynman in 1948 [START_REF] Feynman | Space-time approach to nonrelativistic quantum mechanics[END_REF], the path integral formulation of quantum field theories is one of the most successful approaches to the study of non-classical phenomena. As we shall see, thanks to this approach we will be able to map a QFT to a statistical mechanic system in an intrinsically non-perturbative fashion.

To start, let us consider a one-dimensional non-relativistic quantum system described by the Hamiltonian H(x, p). In the standard quantum mechanical approach, the evolution of the system from the initial point x i (t i ) to the final point x f (t f ) is given by the element of the transfer matrix

T x i ,x f = x i |e -i H (t f -t i ) |x f .
(1.1)

One can then insert the identity operator I = dx |x (t ) x (t )| at some point in the evolution of the system between t i and t f obtaining the equivalent transition probability

T x i ,x f = dx x i |e -i H (t -t i ) |x x |e -i H (t f -t ) |x f . (1.2)
The physical meaning of the last equation being that the evolution of the system from the state |x i (t i ) to the stare |x f (t f ) can be decomposed in two different evolutions (one from |x i (t i ) to |x (t ) and the second from |x (t ) to |x f (t f ) ). The original transition probability is then recovered by integrating over all the possible values of x . One can then iterate this process N times dividing the time evolution in infinitesimal evolutions from time t to time t + dt, while integrating over all the possible values of the field x(t) for each identity insertion, obtaining

T x i ,x f = dx 1 . . . dx N x i |e -i H (dt) |x 1 . . . x N |e -i H (dt) |x f . (1.3)
Now, if we assume the Hamiltonian to be quadratic in the momenta H(x, p) = 1 2 p 2 + V (x), it is possible to carry out the Gaussian integral over the momenta p. By taking the limit for N → ∞, we can express (1.1) in the path integral formalism as

T x i ,x f = C x f x i Dx(t) e i t f t i L( ẋ,x) dt , (1.4) 
where we have introduced the Lagrangian L( ẋ, x) of the system as L( ẋ, x) = 1 2 ẋ2 + V (x).

(1.5)

Therefore, in the path integral formalism, the probability of a system to transition from a state to another is given by the sum over all the possible paths connecting the two states weighted by an oscillatory phase given by the integral of the Lagrangian over the path. We can identify the integral of the Lagrangian as the action S(x(t)) of the system obtaining a final writing for the transition probability

T x i ,x f = C x f x i Dx(t) e i S(x(t)) , (1.6) 
From this equation it is possible to see that the largest contributions to the integral come from the paths that makes the action stationary, while the others have lower weight due to quantum oscillations around the semi-classical paths.

The most interesting feature of the path integral formulation is its connection with statistical mechanics [START_REF] Parisi | Perturbation Theory Without Gauge Fixing[END_REF]. To explore this, let us consider a canonical system described by the Hamiltonian H in thermal equilibrium with a thermal reservoir at temperature T . Given a set of eigenstates |n of the Hamiltonian we can write the partition function as

Z(β) = Tr e -βH = n n|e -βH |n = n e -βEn , (1.7) 
where β = 1/kT and E n is the eigenvalue of the eigenstate |n , thus being the energy associated to |n . As the trace of an operator is basis independent we can write the partition function as the trace over the position basis Z(β) = Tr e -βH = dx x|e -βH |x .

(1.8)

Now, the similarity with (1.1) is fairly evident. In particular, we can identify

β = t f -t i (1.9)
and implement a rotation into Euclidean time, also known as a Wick rotation, by defining the Euclidean time variable τ = it. Moreover, by restricting the integral over only periodic paths, we can rewrite (1.6) as the partition function

Z(β) = N x(β )=x(0)
x(0)

Dx(τ )e -S E (x(τ )) .

(1.10)

where we have defined the Euclidean action as the integral over the Euclidean time of the Lagrangian written in terms of τ .11) where ẋ is dx/dτ . Therefore, the mapping of a quantum theory to a statistical system is of great importance as it allows for the use of all the well developed techniques of statistical mechanics to the study of QFTs. In particular, we have that to any path x(t) in a real-time quantum mechanic system we can associate an Euclidean path x(τ ) with an associated weight given by the Euclidean action evaluated over that path W (x(τ )) = e -S E (x(τ )) Z .

S E = β 0 L E ( ẋ, x) dτ . ( 1 
(1.12)

However, the path integral formulation of a general QFT does not ensure that the path integral can be evaluated analytically. When dealing with theories in one or higher dimensions, this formulation is often affected by the presence of ultraviolet divergences. Therefore, to evaluate physically relevant quantities, a regularization of the theory must be imposed. While multiple regularization schemes have been proposed, most of them rely on a perturbative approach. This prevents them from being usable in investigations of some non-perturbative physical phenomena, such as the study of the strong nuclear interaction. The need for a non perturbative regularization scheme is what drove physicists to the formulation of the lattice discretization of the spacetime.

Lattice discretization

As the name suggests, the lattice discretization scheme consists in the discretization of the spacetime fabric over a lattice. Considering a QFT living in a (d + 1) dimensional spacetime we can define the lattice by replacing each continuous direction with a collection of equally spaced points separated by a set distance defined as the lattice spacing a x = {t, x 1 , . . . , x d } → n = {a n t , a n x 1 , . . . , a n x d }.

(1.13)

Here, we have introduced the lattice indices {n t , n x 1 , . . . , n x d } as the (d + 1)-tuple identifying each node in the grid. Each lattice index will then run from 0 to N t or N xn , and the lattice will thus represent a space-time volume of size V = a d+1 N t N x 1 . . . N x d . This definition takes the name of hyper-cubic lattice and is by far the most commonly used in the study of QFTs.

The discretization of the space-time has consequences also on the momentum space. As we have introduced a minimum distance between neighbour lattice nodes, the shortest possible wavelength on the lattice cannot be smaller than the lattice spacing a, thus the maximum momentum on the lattice is limited by k max = π/a. This will introduce a cut-off to all the integrals over the momenta. For instance, in a one-dimensional case,

+∞ -∞ dk 2π f (k)e ikx → + π a -π a dk 2π f (k)e ikna . (1.14)
The restricted integration inside the first Brillouin zone [-π/a, +π/a] means that all the diverging loop integrals of the continuous theory are now automatically regularized. As in any other regularization scheme the regulator must be removed to recover the physics we are interested in. In the lattice discretization scheme this translates to taking the so-called continuum limit by carefully sending the lattice spacing to zero. This procedure ensures that once the continuum limit is achieved the lattice definition of the theory does not play a role in the physics of the system as all the physical length scales are much larger than the lattice spacing.

In the next few sections, we are going to give a brief review of the discretization procedure for some of the most relevant categories of fields regularly studied in quantum field theory.

Scalar theory

An instructive example, we are going to describe in detail is the lattice discretization of a scalar theory. Moreover, the model that we are going to introduce here, generally referred to as the relativistic Bose gas, is going to be the main focus for most of the rest of this work. From now on we will always work in Euclidean time, thus we will omit the subscript E from the following definitions. We will also use Planck units ( = k B = c = 1) as it is customary in quantum field theory.

In 4 dimensions, the relativistic Bose gas is generally defined in the continuum by the action

S = β 0 dτ V d 3 x (∂ µ ϕ)(∂ µ ϕ * ) + m 2 ϕ * ϕ + λ|ϕ| 4 , (1.15) 
where ϕ is the complex scalar field, m is the mass, λ is the coupling of the interaction term, and the time direction is compact so that the theory for T = 0 is recovered for β → ∞. In this section we are interested in comparing the lattice discretized theory with the continuum one, thus we will avoid the complications that arise when considering the interacting theory and we will limit ourself to the study of the free theory

S = β 0 dτ V d 3 x (∂ µ ϕ)(∂ µ ϕ * ) + m 2 ϕ * ϕ). (1.16)
To give a discretized representation of this theory we start by defining, on the lattice, the discretized version of the field

ϕ( x) → ϕ( n) (1.17)
living on each node of the lattice. It is preferred to rescale the discretized quantities to make them adimensional, leaving the only dimensional parameter of the lattice discretized theory to be the lattice spacing a. In our case, the only quantities that need to be rescaled are the mass m and the field ϕ. Both have the dimension of an energy, thus are rescaled as follows

m → m a , ϕ(x) = φ(x) a . (1.18)
The integral over the continuous space will be replaced by the sum over all the lattice sites rescaled by the fundamental lattice volume

d 4 x → n a 4 (1.19)
The second notable element that appears in the definition of the action is the derivative of the field. In this case, we are going to define the derivative as the finite differences of the field over neighbouring sites. In particular we can define the derivative as the • Forward derivative:

∂ µ φ(n) = φ(n + µ) -φ(n) a + O(a) (1.20) 
• Backward derivative:

∂ µ φ(n) = φ(n) -φ(n -µ) a + O(a) (1.21)
• Symmetric derivative:

∂ µ φ(n) = φ(n + µ) -φ(n -µ) 2a + O a 2 . (1.22) 
Here we have defined φ(n + µ) as the value of the field in the neighbour site of n in direction µ. As the lattice spacing is taken to zero all three definitions will recover the correct continuum version of the field derivative. However, at finite a the symmetric derivative is a better approximation of the continuum one and is the only one that preserves the anti-Hermiticity property.

The last aspect we have to discuss is the definition of the path integral on the lattice. The continuum integration over all the possible paths is mapped to the integral of the product of the field differential over all the points of the lattice, i.e all the possible field configurations,

Dϕ(x) → n n dφ n . (1.23)
With all this machinery we can write the lattice discretized version of the action of the scalar field as

S = n ( m + 2d)φ * (n)φ(n) - 4 µ=1 φ * (n)φ(n + µ) = φ * n M nm φ m (1.24)
where d is the number of dimensions, 4 in our case, and M nm can be expressed by symmetrizing the hopping term as

M nm = ( m + 2d)δ n,m - 1 2 4 µ=1 (δ n+ µ,m + δ m,n-µ ). (1.25)
To demonstrate that this action describes the same physics as the initial action (1.16) we can evaluate the two point function

φ n φ m = M -1 nm . (1.26)
To do so we start by evaluating the Fourier transform of

M nm Mnm = +π -π d 4 k (2π) 4 M nm e i(n-m)k = m2 + 4 4 µ=1 sin 2 k µ 2 (1.27)
where with k µ we represent the lattice adimensional momenta related to the physical ones by the relation k µ = p µ a. Then by using the relation l M nl M -1 lm = δ nm we can recover the lattice two point function as

M -1 nm = +π -π d 4 k (2π) 4 e i(n-m)k m2 + 4 4 µ=1 sin 2 kµ 2 (1.28)
To compare this with the well known relation for the continuum formulation of the theory,

φ(x)φ(y) = +∞ -∞ d 4 p (2π) 4 e i(x-y)p m 2 + p 2 , (1.29) 
we firstly rewrite (1.28) in terms of the dimensional quantities as

M -1 (x -y) = +π/a -π/a d 4 p (2π) 4 e i(n-m)p m2 + 4 4 µ=1 sin 2 ( pµa 2 ) a 2 , (1.30) 
where we have x = na, y = ma. Then by naively sending a → 0 we see that only when sin 2 (p µ a/2) → (p µ a/2) 2 the integrand is non zero and finite, thus recovering exactly the continuum definition of the two point function (1.29).

Fermions on the lattice

In the continuum, the Euclidean action of a free fermion in 4 dimensional space-time is given by the expression

S F [ψ, ψ] = d 4 x ψ(x)(γ µ ∂ µ + m)ψ(x), (1.31) 
where ψ(x) and ψ(x) are the continuum spinor fields for which we are suppressing any color or flavour index. To discretize this action we follow the same procedure we have used for the case of the scalar field. We start by defining the spinor ψ(n) and ψ(n) at each node in the lattice. Then by taking the symmetric definition of the field derivative (1.22)

∂ µ ψ(n) = 1 2a (ψ(n + µ) -ψ(n -µ)) (1.32)
we can introduce the lattice discretized version of the fermion action as

S F [ψ, ψ] = a 4 n ψ(n) 4 µ=1 γ µ ψ(n + µ) -ψ(n -µ) 2a + mψ(n) . (1.33) 
This definition is commonly referred to as the naive discretization of the fermion action. In this formulation in the limit of a → 0 the correct action is recovered, however the physics described is far from the physics of the continuum, exhibiting the notorious fermion doubling problem that will be discussed shortly. Before doing that, let us derive some important definitions regarding the fermionic partition function. In particular, to recover the correct Fermionic statistic in the path integral formalism the fermionic degrees of freedom must be introduced as Grassmann numbers, formally defined by the anticommutation relation of the algebra generators {η i , η j } = η i η j + η j η i = 0.

(1.34)

Of greater interest are, however, the integration rules of the Grassman algebra:

dη i = 0, dη i η i = 1. (1.35)
In fact, as the fermionic action is bilinear in ψ and ψ we can rewrite it in the form

S F [ψ, ψ] = a 4 n,m ψ(n) D(n|m)ψ(m), (1.36) 
where we have introduced a discretized version of ( / ∂ +m) . Finally, by expanding the path integration over all the fermionic degrees of freedom and using the integration rules (1.35) we can write the fermionic partition function as

Z F = dη 1 dη 1 . . . dη N dη N exp N i,j=1 ηi D i,j η j = det[D] (1.37)
where we have used the Matthews-Salam formula to carry out the Grassman integration. Thus, the partition function of free fermions on the lattice is given by the determinant of the Dirac operator.

Fermion doubling

In the naive discretization of fermions we have introduced the Dirac operator as

D(n|m) = 4 µ=1 γ µ δ n+ µ,m -δ n-µ,m 2a + mδ n,m . (1.38) 
With some machinery, it is possible to obtain the Fourier transform of the Dirac operator as

D(p) = mI + i a 4 µ=1 γ µ sin(p µ a). (1.39) 
Then, to understand the doubling problem, we consider the fermion propagator in the case of massless fermions, obtaining

D-1 (p) = -ia -1 µ γ µ sin(p µ a) a -2 µ γ µ sin(p µ a) 2 .
(1.40)

While at fixed values of p the lattice propagator is able to recover the correct behaviour of the continuum one (-i µ γ µ p µ /p 2 ) in the naive continuum limit, the poles of the two propagators are quite different. The continuum has only one pole in p = (0, 0, 0, 0), corresponding to the correct free fermion described by the Dirac operator. The lattice discretized propagator has instead multiple non-physical poles, whenever one of the components of p µ is either 0 or π/a. This leaves the lattice propagator with 16 poles of which 15 are the so-called doublers.

Staggered fermions

One of the possible solutions to the problem of the fermion doubling are the so-called staggered fermions or Kogut-Susskind fermions [START_REF] Kogut | Hamiltonian Formulation of Wilson's Lattice Gauge Theories[END_REF]. In this formulation the fermion degeneracy is reduced to only 4 fermions, while a remnant of the chiral symmetry is maintained.

The staggered action is obtained by transforming the fermion fields ψ(n) and ψ(n) according to the transformation

ψ(n) = γ n 1 1 γ n 2 2 γ n 3 3 γ n 4 4 ψ(n) , ψ(n) = ψ(n) γ n 4 4 γ n 3 3 γ n 2 2 γ n 1 1 (1.41)
where the exponent of the gamma matrices is given by the value of the µ component of the lattice index n = (n 1 , n 2 , n 3 , n 4 ). With this transformation it is easy to see that the mass term in the fermion action remains invariant as γ 2 µ = I, while the gamma matrix combination in the kinetic terms gives rise to an additional sign factor, for example the transformation for the µ = 2 direction reads

ψ(n)γ 2 ψ(n ± 2) = (-1) n 1 ψ γ 2 ψ(n ± 2) .
(1.42)

Thus the action transform as

S F [ψ, ψ] → S F [ψ , ψ ] = a 4 n ψ(n) 4 µ=1 η µ (n) ψ(n + µ) -ψ(n -µ) 2a + mψ(n) (1.
43) where we have introduced the staggered phase factor defined as

η 1 (n) = 1, η 2 (n) = (-1) n 1 , η 3 (n) = (-1) n 1 +n 2 , η 4 (n) = (-1) n 1 +n 2 +n 3 . (1.44)
As the staggered phases depend only on the lattice indices this definition has the same form for all four Dirac components. The staggered action is then obtained by taking only one on the identical Dirac component, obtaining the definition of the staggered action for free fermions as

S F [χ, χ] = a 4 n χ(n) 4 µ=1 η µ (n) χ(n + µ) -χ(n -µ) 2a + mχ(n) . (1.45) 
With this procedure we have therefore reduced to 4 the number of fermions described by the fermion action. Although the doubling problem has not been cured completely, we can see that the chiral symmetry for the surviving sector remains intact. To do so we evaluate the corresponding η 5 staggered phase factor by transforming the pseudoscalar bilinear

ψ(n)γ 5 ψ(n) = (-1) n 1 +n 2 +n 3 +n 4 ψ(n) ψ(n) = η 5 ψ(n) ψ(n) . (1.46)
The staggered action (1.45) for vanishing m is therefore invariant under continuous transformation of the staggered fermion variables n) .

χ(n) → e iαη 5 (n) χ(n), χ(n) → χ(n)e iαη 5 (
(1.47)

Gauge fields

Lastly, to complete our discussion on the lattice discretization of common field theories we report briefly the implementation of the gauge fields on the lattice. As in the continuum, gauge theories arise from the requirement of invariance under the action of a local symmetry group. Here we implement the same transformation on the lattice by choosing an element Ω(n) in the fundamental representation of SU(N ) for each lattice node n and transforming a matter field according to

ψ(n) → ψ(n) = Ω(n)ψ(n) ψ(n) → ψ(n) = ψ(n)Ω † (n). (1.48)
It is trivial to see that any bilinear term in the lattice action, with both fields defined on the same point, will be invariant under this transformation, while terms coming from a derivative of the field will have a non invariant transformation

ψ(n)ψ(n + µ) → ψ(n)Ω † (n)Ω(n + µ)ψ(n + µ). (1.49) 
Invariance can be obtained by introducing a discretized gauge field U µ (n), whose role is to parallel transport the transformation Ω from ψ(n) to ψ(n + µ). On the lattice this would be a straight connection between neighbouring sites, a link. By requiring the gauge field to transform as

U µ (n) → Ω(n)U µ (n)Ω † (n + µ) (1.50)
also the derivative part of the action is gauge invariant if U µ (n) is taken as an element of the same symmetry group that defines the transformation of the matter field. In particular, the link with the continuum theory is evident by defining the discretized gauge field as

U µ (n) = e iaAµ(n) , (1.51) 
where a is the lattice spacing and A µ (n) = A i µ λ i is an element of the Lie algebra of SU(N ) with generators λ i that defined the gauge theory in the continuum. Therefore, the lattice discretized field encodes the transformation due to the average continuum gauge field between the nodes n and n + µ.

Since pure gauge theories will not be taken into consideration in the continuation of this work, we will not describe them in detail. Instead, we will move on to illustrate the main numerical technique used in the study of lattice field theories, the Monte Carlo sampling.

Monte Carlo simulations

In this chapter, we have shown how we can map a continuum QFT to a statistical mechanic system composed of a discrete set of variables living on the lattice nodes (scalar fields and fermions) or on the links (gauge fields).

Continuing the analogy with statistical mechanics we can express the vacuum expectation value of some observable O as

O = 1 Z Dφ O[φ]e -S[φ] (1.52)
where the path integral is intended, as in (1.23), as the integration over all the possible configurations of the field φ and the term e -S [φ] is the weight of each configuration as in (1.12). While formally the integration over all the field configurations could be achieved either analytically or numerically, it is easy to see that the volume of the configuration phase-space grows exponentially with the size of the lattice. For example let us consider a 2D spin system on a L × L lattice where each spin can take the values +1 or -1. The number of possible configurations is then 2 L 2 , meaning that for a lattice with L = 32 the number of configurations that needs to be evaluated is 2 1024 10 308 . Clearly, summing over all the possible configurations would prove to be an impossible task.

The solution to this problem comes in the form of Monte Carlo sampling, where (1.52) is approximated by a sum over a finite number of configurations assumed to be a representative set of the entire ensemble

O 1 N N i O[{φ i }]. (1.53) 
To obtain this representative set of configurations φ i the so-called importance sampling Monte Carlo method is used. Here the configurations are sampled according to the probability distribution density dP = e -S[φ] Dφ Dφe -S [φ] (1.54) so that the configurations with smaller action are visited more often.

The number of sampled configurations has consequences on the accuracy of the evaluation of O . In particular, one can show that the statistical error of the result will be proportional to 1/ √ N and in the limit of N → ∞ the exact result is recovered.

It is crucial to observe that the success of the Monte Carlo method resides in the interpretation of e -S[φ] as a probability weight. This can happen only if S[φ] is real-valued, otherwise the entire Monte Carlo procedure would fail as we are going to explore in detail in the next chapter.

Chapter 2

QFTs at finite density and the Sign Problem

The sign problem is one of the unsettled questions hindering the scientific progress in a multitude of areas in physics. While the source of the sign problem can be different based on the system at hand (e.g the wave function sign flip due to the interchange of two fermionic particles or a complex valued action) the numerical challenge commonly involves the integration of a highly oscillating function. The quadrature of such functions is a known numerically intensive task, and has been argued over the possibility for the fermionic sign problem to be an NP-hard problem [START_REF] Troyer | Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations[END_REF]. Facing this enormous hassle, in this work we will focus on a specific formulation of the sign problem without the ambition to formulate a general solution for the sign problem.

The first part of this chapter will be dedicated to the lattice discretization of QFTs at finite density. We will start by discussing the concept of chemical potential in the continuum. Then, we will introduce the naïve discretization and discuss its critical aspects. Finally, we will describe the lattice implementation of the chemical potential as a constant vector potential in the temporal direction.

Having introduced the proper lattice discretization strategy, we will then review some of the numerical techniques used to deal with the sign problem in numerical studies such as reweighting, complex Langevin, thimble integration and dualization among others. We will give a brief summary and discuss the strengths and weaknesses for each.

Chemical potential on the lattice

In standard statistical mechanics the study of phenomena in a finite density setting is achieved by introducing the grand canonical ensemble. In this approach, the particle number N , a conserved quantity, is coupled to a chemical potential µ leading to the definition of the partition function as

Z = e -(H-µN )/T = e -F/T . (2.1)
Here, H is the standard Hamiltonian of the system in the canonical ensemble and F is the free energy of the system in the gran canonical one. With this definition, the thermodynamic quantities are recovered, as usual, as partial derivatives of the partition function with respect to the couplings. For example the particle density is given by

n = T V ∂ ∂µ ln Z. (2.2)
To translate this in the quantum path integral approach one has to identify as the conserved quantity N one of the conserved charges of the field theory. These can be derived straightforwardly in terms of the conserved Noether currents. In the following we will report the derivation of the gran canonical partition function in both continuum spacetime and on the lattice for a free fermionic field and for the relativistic Bose gas.

Free fermions

We start by recalling from (1.31) the definition of the Lagrangian energy of a free fermion field in the Euclidean continuum

L = ψ(x)(γ µ ∂ µ + m)ψ(x).
(2.

3)

The global U (1) invariance of this theory is easy to check as (2.3) remains invariant under the transformation

ψ → e iα ψ, ψ → ψe -iα . (2.4) 
The Noether current associated to this symmetry is thus obtained as

j µ = ∂L ∂(∂ µ ψ) δψ δα = ψγ µ ψ, (2.5) 
and the conserved charge is expressed as the space integral of the fourth (time) component of the current

N = d 3 x ψγ 4 ψ (2.6)
This can now be included into the partition function following (2.1). In particular, as we are interested in recovering the path integral formulation of the partition function, we write the conserved charge term as

µN T = T 0 dτ d 3 x ψγ 4 ψ, (2.7) 
from which the partition function in the path integral formalism reads

Z = DψD ψ e -S(µ) = DψD ψ exp T 0 dτ d 3 x ψ(γ µ ∂ µ + µγ 4 + m)ψ .
(2.8)

Having obtained a formulation of the action that correctly takes into account the presence of the chemical potential one would think to follow the procedure described in Chapter 1 to obtain the lattice discretized version of the theory. However, simply adding the term µ ψγ 4 ψ to the action would give rise to ultraviolet divergences not present in the continuum theory [START_REF] Hasenfratz | Chemical Potential on the Lattice[END_REF].

The correct lattice discretization is obtained by noticing that in the continuum the additive term enters the action as the fourth component of an imaginary gauge field would. Therefore, a proper lattice discretization would require the introduction of a constant gauge field in the time direction given by e aµ for forward links and e -aµ for the backwards ones. With this prescription the time hopping terms in the lattice action (1.33) are modified according to ψ(n)γ 4 ψ(n + 4) → e aµ ψ(n)γ 4 ψ(n + 4) ψ(n + 4)γ 4 ψ(n) → e -aµ ψ(n + 4)γ 4 ψ(n),

(2.9)

and the divergences are eliminated from the propagators.

On the lattice the introduction of the chemical potential in the action has, however, another important effect. It can be shown that

(det D(µ)) * = det D(-µ * ) (2.10)
meaning that for any finite value of the chemical potential the fermion determinant (1.37) will be complex-valued. This will prevent the definition of a probability weight and the impossibility of applying the standard Monte Carlo numerical techniques, generating the well-known sign problem.

Relativistic Bose gas

The connection between the sign problem and the chemical potential is even clearer if we consider the bosonic action (1.15), that we recall reads

S = d 4 x (∂ µ φ)(∂ µ φ * ) + m 2 |φ| 2 + λ|φ| 4 . (2.11)
As in the previous case this action is invariant under global U(1) symmetry φ → e iα φ.

And the conserved charge now reads

N = d 3 x i(φ * ∂ 4 φ -φ∂ 4 φ * ) (2.12)
Without going into the details of the calculations, which involves the definition of the conjugate momenta, their integration and some basic Hamiltonian-Lagrangian relations, we can obtain the action of the relativistic Bose gas at finite density as

S = d 4 x (∂ µ φ)(∂ µ φ * ) + (m 2 -µ 2 )|φ| 2 + µ(φ * ∂ 4 φ -φ∂ 4 φ * ) + λ|φ| 4 , (2.13)
where other than the expected µN term we have also a quadratic term in µ which arose from the integration of the conjugate momenta. However, of more relevance for the evaluation of the sign problem is the term linear in µ, that is a purely imaginary combination of the field and its derivatives. This shows that the presence of a complex-valued action is not a unique feature of the fermionic theories, but instead a general feature once the chemical potential is introduced. Before moving our attention to the sign problem, let us define the lattice discretized action also for this bosonic system, as it will be the main subject of study for the techniques that we will introduced in the next two chapters. From a reorganization of the terms of (2.13) it is possible to isolate the µ dependence in the term

|(∂ 4 -iµ)φ| 2 , (2.14) 
where is evident that also in this instance the chemical potential looks like the temporal component of a constant gauge field. Therefore, the lattice discretized version of (2.13) follows from the discretization rules discussed in Chapter 1 as 

S = x 2d + m 2 φ * x φ x +λ (φ * x φ x ) 2 - 4 ν=1 φ * x e -µδ
S I = x ε ab φ a,x φ b,x+ 4, (2.16) 
recovering the full one as the the combination S = S R + i sinh(µ)S I .

Sign problem

As shown above, the standard definition of a quantum field theory at finite chemical potential will result in a complex action. Therefore, in the following definitions, we will consider a generic action S given as

S[φ] = S R [φ] + iµS I [φ], (2.17) 
where we have explicitly separated the real and imaginary parts and, for convenience, we have assumed an explicit leading linear coupling of the latter through the chemical potential. We have also suppressed any parameter dependence of S R and S I , which, in particular, may also depend on µ.

The partition function of such system is then recovered as usual as

Z(µ) = Dφ e -S R [φ]-iµS I [φ] . (2.18) 
Here, we can clearly see where the sign problem comes from. The probability distribution defined in (1.54) is proportional to exp(-S[φ]), thus the presence of the imaginary term breaks the interpretation of such quantity as a probability altogether.

One could then think to ignore the imaginary part of the action and sample the configurations according to exp S R [φ] . This would allow for the use of standard Monte Carlo techniques in the generally called phase-quenched model, defined by the partition function

Z pq = Dφ e -S R [φ] . (2.19)
Unsurprisingly, the phase-quenched system will often be just a remote relative of the original system, quite often describing wildly different physics. To measure the hardness of the sign problem it is possible to evaluate the overlap factor between the full and phase quenched theory defined as the ratio of the two partition functions

Z Z pq = Dφ e -S R [φ]-iµS I [φ] Dφ e -S R [φ] . (2.20)
We can interpret this quantity as the expectation value of the phase in the phasequenched theory, from here on defined as e iϕ pq . We can relate this to some physically relevant quantity by recalling the thermodynamic relations

Z = e -F V , Z pq = e -FpqV . (2.21) 
Where we have that F and F pq are the free energy densities respectively of the full and phase-quenched system. We can therefore define the free energy difference between the two systems as

∆F = 1 V log e iϕ pq .
(2.22)

In the thermodynamic limit ∆F is expected to be finite, hence e iϕ pq has to be exponentially suppressed by the volume. Because of this, the phase-factor is generally taken to be the measure of the hardness of the sign problem. In this context, values close to one represent an "easy" scenario where the full and phase quenched theory almost coincide and values close to zero represent a "hard" scenario, where the sign problem is severe.

Over the years multiple methods have been proposed to tackle numerically the sign problem, and by now multiple reviews of the different approaches are available in literature [START_REF] Gattringer | Approaches to the sign problem in lattice field theory[END_REF][START_REF] De Forcrand | Simulating QCD at finite density[END_REF][START_REF] Aarts | Introductory lectures on lattice QCD at nonzero baryon number[END_REF][START_REF] Berger | Complex Langevin and other approaches to the sign problem in quantum many-body physics[END_REF]. In the following sections of this chapter, we will describe some of the most relevant techniques that have been developed, with the exception of the density of states approach, that will the main topic for the rest of this work.

Reweighting

The reweighting procedure [START_REF] Ferrenberg | New monte carlo technique for studying phase transitions[END_REF], originally developed for the study of phase transitions in standard Monte Carlo simulations, has been one of the first to be proposed to solve the sign problem. Its implementation follows directly from the definition of the expectation value of an observable O in a system defined by the partition function (2.18) Both phase-quenched expectation values are measurable via standard Monte Carlo methods. However, for the reasons stated above we predict the expectation value for the phase-factor to be exponentially suppressed while most of the configurations generated in the phase-quenched ensemble have e iϕ ∼ 1. In other words, the exponentially suppressed signal will be the result of cancellations in the average of the phase factor samples. Hence, we can see that as the error of the phase factor will be suppressed just by the number of Monte Carlo samples the scaling of the SNR of the phase factor as a function of the number of samples N will scale as

O[φ] = Dφ O[φ] e -S R [φ]-iµS I [φ] Dφ e -S R [φ]-iµS I [φ] . ( 2 
e iϕ pq σ e iϕ pq ∝ √ N exp{-∆F V } (2.25)
requiring an exponentially increasing number of samples to allow for the evaluation of the observable with constant statistical uncertainty. An example of the shortcomings of this method is displayed in Figure 2.1. Here, we are showing the results of a reweighting simulation of the relativistic Bose gas at finite density on a 6 4 lattice. For each value of the chemical potential we have generated, via a standard Monte Carlo simulation, 2 × 10 5 configurations and measured in each the average value of φ 2 and the phase factor e -iµS I [φ] . As it is clearly visible from the image the expectation values for the phase-quenched observable φ 2 pq and the phase factor have a stable level of statistical uncertainty over the en-tire range, with the latter rapidly approaching zero at increasing chemical potential. However, once we take into consideration the reweighted observable we can clearly see that as the phase factor is suppressed the error of our estimate increases rapidly making the method effective for only a small interval of positive chemical potential values. Above zero, this behaviour will worsen if we take into consideration larger lattice volumes as the phase factor will approach zero at lower values of the chemical potential restricting even more the applicability range of the method. However, following similar reasoning some notable results have been obtained in the field of lattice QCD in the form of the Glasgow reweighting [START_REF] Barbour | Results on finite density QCD[END_REF] and multiparameter reweighting [START_REF] Fodor | Lattice determination of the critical point of QCD at finite T and mu[END_REF]. In the former, the simulations are performed at fixed temperature T (equivalent to fixed lattice coupling β) and the sampled observables are reweighted according to the ratio of the fermionic determinants det D(µ)/ det D(0) that takes the role of the phase-factor. As in our example also in the Glasgow reweighting the overlap between the sampled ensemble and the target one decreases rapidly, limiting its applicability. The second method, instead, expands the ideas of the standard reweighing approaches by adapting the simulation to multiple parameters simultaneously (chemical potential and temperature), this allows the sampled ensemble to better resemble the target one ameliorating the influence of the sign problem. With this method an estimate for the QCD critical endpoint has been obtained [START_REF] Fodor | Critical point of QCD at finite T and mu, lattice results for physical quark masses[END_REF]. However, like the other reweighting methods, also the multi-parameter reweighting becomes extremely expensive once large lattices are take into consideration.

Taylor series expansion

Another method [START_REF] Allton | The QCD thermal phase transition in the presence of a small chemical potential[END_REF] developed to avoid the burden of the sing problem relies on the Taylor expansion in µ/T of physical quantities around µ = 0. As the sign problem is absent for µ = 0, the evaluation of the Taylor coefficients will not be affected by it and standard Monte Carlo techniques can be used. To give a practical example of how this method works, let us consider the pressure defined in the grand-canonical ensemble as

p(T, µ) = T V log Z(T, µ) (2.26)
Time reversal ensures that the partition function is an even function of the chemical potential, allowing for the expansion of the pressure in terms of only even powers of µ,

∆p(T, µ) = p(T, µ) -p(T, 0) = µ 2 2! ∂ 2 p ∂µ 2 µ=0 + µ 4 4! ∂ 4 p ∂µ 4 µ=0 + . . . (2.27) 
A common compact writing of this expansion reads

∆p(T, µ) T 4 = ∞ n=1 χ 2n µ T 2n .
(2.28)

Here the coefficients χ 2n are defined as

χ 2n = T V T 2n-4 ∂ 2n log Z(T, µ) ∂µ 2n µ=0 . (2.29) 
Crucially these coefficients are all that needs to be calculated in order to extrapolate the µ = 0 results into the finite µ region. As usual, given the explicit definition of the pressure other thermodynamic quantities will follow straightforwardly. For example the density will read

n(T, µ) = ∂p ∂µ = 2T 3 ∞ n=1 nχ 2n µ T 2n-1
.

(2.30)

As the reweighing, also the Taylor expansion has been used successfully in lattice QCD with multiple works investigating the phase diagram at low chemical potential [START_REF] Allton | Thermodynamics of two flavor QCD to sixth order in quark chemical potential[END_REF][START_REF] Gavai | The Critical end point of QCD[END_REF][START_REF] Kaczmarek | Phase boundary for the chiral transition in (2+1) -flavor QCD at small values of the chemical potential[END_REF][START_REF] Endrodi | The QCD phase diagram at nonzero quark density[END_REF][START_REF] Borsanyi | QCD equation of state at nonzero chemical potential: continuum results with physical quark masses at order mu 2[END_REF][START_REF] Bazavov | The QCD Equation of State to O(µ 6 B ) from Lattice QCD[END_REF][START_REF] Borsanyi | Higher order fluctuations and correlations of conserved charges from lattice QCD[END_REF]. The most recent works manage to reliably estimate the first 6-8 coefficients. However, due to complex cancellations between the higher order coefficients and the inherently difficult evaluation of the high order derivatives of log Z, it is impossible to estimate a priori the reliability region for the expansion. Moreover, if the theory has a critical point at a certain critical value of µ = µ c the extrapolation from µ = 0 cannot be used to describe the behaviour past µ c even if we assume to be able to evaluate exactly all the χ 2n coefficients. Therefore, in our pursuit of a general and powerful method able to sample efficiently all the phase space, even in region where the sign problem is extremely strong, we are forced to look at other methods.

Imaginary chemical potential

Another method that relies on simulations in a region where the sign problem is absent to then extrapolate the results in the sing problem affected region is the imaginary chemical potential method. Like the previous two methods, its development is directly linked to the study of lattice QCD. In particular, the starting point is the relation

(det D(µ)) * = det D(-µ * ). ( 2 

.31)

As we have seen previously this can be used to show that the determinant is complex valued for finite values of the chemical potential, however an inverse statement is also present in this relation as it also shows that for purely imaginary chemical potentials the determinant is a real number. Therefore, a simulation at imaginary chemical potential will not be afflicted by the sign problem. However, the physics described by the system with imaginary chemical potential is not be the physical one that needs to be recovered via analytical continuation towards the real values of the chemical potential.

In practice the imaginary chemical potential will be regarded as an external parameter in simulations and once the results are plotted as a function of µ 2 (where negative values represent the imaginary chemical potential and positive ones the physical region) the extrapolation to real chemical potential can be achieved with a simple parametric fit of the data in the imaginary chemical potential region. This approach has been used extensively to assess the phase structure of QCD for small values of chemical potential with particular attention to the determination of the critical line between the confined and deconfined phases [START_REF] De Forcrand | The QCD phase diagram for small densities from imaginary chemical potential[END_REF][START_REF] Elia | Finite density QCD via imaginary chemical potential[END_REF][START_REF] De Forcrand | The QCD phase diagram for three degenerate flavors and small baryon density[END_REF][START_REF] Bonati | Chiral phase transition in two-flavor QCD from an imaginary chemical potential[END_REF][START_REF] Borsanyi | The QCD crossover at finite chemical potential from lattice simulations[END_REF]. Moreover, this technique has also been used to study the thermal phase transitions sensitive to the relative mass variations of the three lighter quarks at non zero chemical potential, resulting in the well-known three-dimensional Columbia plot. Here, the implications of the behaviour of the critical surface are of physical interest, but the question remains to be settled with methods able to access directly the real chemical potential theory.

As for the previous two methods, having to rely on an extrapolation to recover the real physics limits the method to the small chemical potential region.

Thimbles integration

If the previous methods have relied heavily on simulating a close relative of the model of interest not afflicted by the sign problem to then extend the results in the sign problem affected region, we start now to investigate procedures that aim at solving the sign problem in a more general way allowing for simulations in the entire spectrum of values for the chemical potential.

Whenever a model presents a sign problem it is possible to deform the integration contour of the field variables in the path integral formalism into the complex plane. This is can be achieved by complexifying the field with the transformation φ → z = φ R + iφ I and by defining an integration contour in the complex plane. As the choice of the contour is arbitrary (provided that the contour is defined via an holomorphism) and will not change the theory nor the observable, it is possible to integrate along a curve that makes the phase of the action stationary, solving or at least mitigating the sign problem. Such approach is known as Lefschetz thimble integration, taking its name from the Picard-Lefschetz theory, and its application can be traced back to the contour auxiliary-field Monte Carlo method [START_REF] Rom | Shifted-contour auxiliary-field monte carlo: circumventing the sign difficulty for electronic-structure calculations[END_REF] for electronic systems. More recently there has been a renewed interest in this method giving rise to its more recent formulation [START_REF]New approach to the sign problem in quantum field theories: High density QCD on a Lefschetz thimble[END_REF][START_REF] Cristoforetti | The sign problem and the Lefschetz thimble[END_REF][START_REF] Cristoforetti | Monte Carlo simulations on the Lefschetz thimble: Taming the sign problem[END_REF][START_REF] Cristoforetti | An efficient method to compute the residual phase on a Lefschetz thimble[END_REF] and multiple studies in a wide range of systems affected by the sign problem [START_REF] Mukherjee | Metropolis Monte Carlo integration on the Lefschetz thimble: Application to a one-plaquette model[END_REF][START_REF] Aarts | Lefschetz thimbles and stochastic quantization: Complex actions in the complex plane[END_REF][START_REF] Kanazawa | Structure of Lefschetz thimbles in simple fermionic systems[END_REF][START_REF] Alexandru | Monte Carlo calculations of the finite density Thirring model[END_REF][START_REF] Alexandru | Finite Density QED 1+1 Near Lefschetz Thimbles[END_REF][START_REF] Fujii | Hybrid Monte Carlo on Lefschetz thimbles -A study of the residual sign problem[END_REF][START_REF] Hayata | Complex saddle points and the sign problem in complex Langevin simulation[END_REF][START_REF] Bluecher | Reweighting Lefschetz Thimbles[END_REF].

To give a practical example we consider the case of a single thimble J 0 in a system with only one degree of freedom x and a complex action S(x). By complexifying the variable x → z = x + iy and assuming that the associated Boltzmann weight exp(-S(z)) is holomorphic we can identify the stationary points for which ∂ z S = 0 and define the thimbles as the lines of constant phase that passes through the critical point, more precisely the thimble is defined as the solution of ż = -∂ z S(z).

(2.32)

Once the thimble has been identified the partition function evaluated along the modified contour can be expressed as

Z 0 = e -Im S J 0 J 0 dz e -Re S(z) , (2.33) 
where the phase of the action appears only as a constant complex prefactor. This allows for the equivalent evaluation of the observables [START_REF] Witten | Analytic Continuation Of Chern-Simons Theory[END_REF] along the thimble as

O = J 0 dz O e -Re S(z) J 0 dz e -Re S(z) .
(2.34)

Here, the usual sign problem, that manifests itself as a complex-valued Boltzmann weight, has been completely solved. However, a generally milder sign problem can be present due to the complex nature of the Jacobian that defines the contour integration in the complex plane

J 0 dz = +∞ -∞ ds J(s). (2.35) 
We have assumed a parametrization of the thimble in terms of the parameter s from which the Jacobian is defined as J(s) = z (s). This phase fluctuation is generally referred to as the residual sign problem, and has been found to be very mild.

In the case in which more than one thimble are present the partition function becomes the sum over all the relevant thimbles of the single thimble partition functions

Z = k e -Im S J k J k dz e -Re S(z) . (2.36)
With multiple thimbles the constant phase factor does not cancel in (2.34) generating a global sign problem that is more difficult to treat than the residual one.

Another difficult aspect of this method is the numerical evaluation of the Jacobian factor during the simulation [START_REF] Alexandru | Fast estimator of Jacobians in the Monte Carlo integration on Lefschetz thimbles[END_REF]. Although the numerical complexity of this approach is tractable, a possible alternative has been proposed in the form of an integration over the tangent space of the thimble [START_REF] Pawlowski | Simulating gauge theories on Lefschetz thimbles[END_REF] allowing for a less computationally expensive evaluation of the Jacobian. However, by leaving the thimble, some action phase fluctuation are reintroduced in the integration and are taken care off by computing the average phase during the simulation and, if the tangent space is close enough to the thimble, can be reabsorbed with a simple reweighting.

Complex Langevin

A second method that is able to solve the numerical sign problem revolves around the concept of stochastic quantization. At the core of this approach is the evaluation of the path integrals via using the formalism of the Langevin equation, introduced in 1983 independently by Klauser and Parisi [START_REF] Klauder | [END_REF][START_REF] Klauder | A Langevin Approach to Fermion and Quantum Spin Correlation Functions[END_REF][58], instead of the common Monte Carlo sampling. The possibility of applying the stochastic quantization to systems with complex action was explored in the eighties but with mixed results and no proof of convergence was found when dealing with complex weights. However, in the early 2000s the interest for the method resurfaced and it was found that it could be used to avoid the sign problem in models of finite density QCD [START_REF] Aarts | Stochastic quantization at finite chemical potential[END_REF] as well as for the relativistic Bose gas at finite chemical potential [START_REF] Aarts | Can stochastic quantization evade the sign problem? The relativistic Bose gas at finite chemical potential[END_REF][START_REF] Aarts | Complex Langevin dynamics at finite chemical potential: Mean field analysis in the relativistic Bose gas[END_REF]. These successful applications of the Langevin method led to the publication of works focused on the optimization of the method and the study of its stability using techniques such as adaptive step size algorithms [START_REF] Aarts | Adaptive stepsize and instabilities in complex Langevin dynamics[END_REF] and the development of the gauge cooling technique [START_REF] Seiler | Gauge cooling in complex Langevin for QCD with heavy quarks[END_REF][START_REF] Aarts | Controlling complex Langevin dynamics at finite density[END_REF] as well as the definition of criteria for the a posteriori validation of the results [START_REF] Aarts | Complex Langevin: Etiology and Diagnostics of its Main Problem[END_REF][START_REF] Nagata | Argument for justification of the complex Langevin method and the condition for correct convergence[END_REF].

Without going into the details of the method, that are outside the scope of the present work, to illustrate the basic principles of the complex Langevin approach let us take as an example a simple system often used as a toy model [START_REF] Aarts | Localised distributions and criteria for correctness in complex Langevin dynamics[END_REF] 

Z = +∞ -∞ dxe -S(x) , S(x) = 1 2 σx 2 + 1 4 λx 4 .
(2.37)

Here, we take λ real and positive and σ complex. To evaluate the expectation values numerically via a complex Langevin process we start by complexifying the variable x → z = x + iy, then we consider the complex Langevin equation for the complexified variable ż = -∂ z S(z) + η.

(2.38)

Here the dot represents the derivative with respect to the Langevin time t and η is a Gaussian noise term with no time correlation (white noise) satisfying η(t)η(t ) = 2δ(t -t ). One of the allowed parametrizations of the noise is a completely real noise leading to the complex Langevin equations

ẋ = -Re ∂ z S(z) + η ẏ = -Im ∂ z S(z). (2.39)
By averaging over the noise, the expectation values evolve according to

O P (t) = dxdy P (x, y; t) O(x + iy). (2.40)
And the evolution of the real probability distribution P (x, y; t) is given by the Fokker-Planck equation Ṗ (x, y; t) = L T P (x, y; t),

where the Fokker-Planck operator is in our example

L T = ∂ x (η∂ x + Re ∂ z S(z)) + ∂ y Im ∂ z S(z). (2.42) 
The procedure is then said to produce correct results if the expectation value (2.40) taken at an asymptotically long Langevin time ( O P (∞) ) corresponds to the one calculated with the original complex measure ρ(x)

O ρ(t) = dxρ(x; t) O(x).
(2.43)

This complex measure will then respect its own complex Fokker-Planck equation that has a simple stationary solution ρ(t) ∼ e -S(x) , i.e. the desired weight in (2.37). Solving the Fokker-Planck equation is a known problem and no general solution are available even for zero-dimensional systems. However, in [START_REF] Aarts | Complex Langevin: Etiology and Diagnostics of its Main Problem[END_REF][START_REF] Aarts | The Complex Langevin method: When can it be trusted?[END_REF] it has been proven that the relation

O P (t) = O ρ(t) (2.44)
holds, at least in the limit of large t, for holomorphic observables as long as the action and the associated drift (∂ z S(z)) are holomorphic functions as well. In particular, the "fast decay" criterion has been identified, and later refined in [START_REF] Nagata | Argument for justification of the complex Langevin method and the condition for correct convergence[END_REF], showing that if the decay of the drift term distribution falls faster than any power for large values of the drift (2.44) holds. Therefore, even though in the general case it is impossible to prove a priori that the Langevin expectation values will represent the correct ones, it is possible to verify a posteriori the results by verifying the exponential decay of the drift term distribution.

Dual approaches

The dual approach consists in mapping the original complex action of the theory to new variables so that the resulting partition function will consists only of real weights, allowing for the use of Monte Carlo techniques. When a dual representation is available this approach provides an elegant solution to the sign problem, however it is still unclear for which class of models it is possible to write real valued dual representations.

One of the classes that allows for a complete dualization are pure bosonic theories at finite density, which includes the relativistic Bose gas introduced earlier in this chapter. The first dual formulation of this theory was introduced in [START_REF] Endres | Method for simulating O(N) lattice models at finite density[END_REF] and studied extensively in later studies [START_REF] Gattringer | Lattice study of the Silver Blaze phenomenon for a charged scalar φ 4 field[END_REF][START_REF] Gattringer | Spectroscopy in finite density lattice field theory: An exploratory study in the relativistic Bose gas[END_REF]. In the following we will repropose the main steps needed to eliminate the sign problem in the relativistic Bose gas by introducing a representation of the action in terms of dual variables. We follow the notation of [START_REF] Gattringer | Lattice study of the Silver Blaze phenomenon for a charged scalar φ 4 field[END_REF].

As we have already discussed, the action that defines this model (Eq.(2.15)) is complex-valued for µ > 0 when defined in terms of the standard field variables. However, by exponentiating the action,

e -S = x e -η|φx| 2 -λ|φx| 2 x,ν exp e µδ ν,4 φ * x φ x+ν exp e -µδ ν,4 φ x φ * x+ν , (2.45) 
we can see that only the second product is responsible for the sign problem. To introduce the dual variables we now expand both exponential of the nearest neighbors term in a Taylor series

x,ν exp e µδ ν,4 φ * x φ x+ν exp e -µδ ν,4 φ x φ * x+ν = n,n x,ν 1 n x,ν ! nx,ν ! x e µ[n x,4 -n x,4 ] φ * x ν [nx,ν +n x-ν,ν ] φ x ν [nx,ν +n x-ν,ν ] , (2.46)
where n,n represents the sum over all the configurations of the Taylor indexes n x,ν and nx,ν . We can now write the field variables in polar form as φ x = r x e iθx separating the radial degrees of freedom from the angular ones responsible for the global U (1) symmetry of the theory. The partition function at this point will become

Z = n,n x,ν 1 n x,ν ! nx,ν ! x +π -π dθ x 2π e -iθx ν [nx,ν -nx,ν -(n x-ν,ν -n x-ν,ν )] × x e µ[n x,4 -n x,4 ] ∞ 0 dr x r x 1+ ν [nx,ν +n x-ν,ν +nx,ν +n x-ν,ν ] e -ηr 2
x e -λr 4

x .

(2.47)

The evaluation of the integral over the phase will get rid of all the non real terms in the definition of the partition function and give rise to Kronecker deltas imposing constrains on the configurations. In this regard, we can introduce the dual variables k ∈ Z and l ∈ N 0 defined as

k x,ν = n x,ν -n x-ν,ν , n x,ν + n x-ν,ν = |k x,ν | + 2l x,ν . (2.48)
with respect to which the partition function reads

Z = k,l x,ν 1 (|k x,ν | + l x,ν )! l x,ν ! x W (s x ) e µ x k x,4 x δ(∇ ν k x,ν ). (2.49)
Here, we have introduced the positive valued functions

W (n) = ∞ 0 dr r n+1 e -ηr 2 -λr 4 of the variable s x = ν [|k x,ν | + |k x-ν,ν | + 2(l x,ν + l x-ν,ν ]. Moreover, ∇ ν k x,
ν = 0 denotes the constraint on the dual variable k, giving weight only to flux-conserving configurations. The partition function is then composed only of positive contributions and, once the relevant observables are expressed in terms of the dual variables, it can be explored via efficient worm algorithms [START_REF] Prokof | Worm algorithms for classical statistical models[END_REF] solving the sign problem.

When a dual representation is available and the resulting partition function is composed of real and positive contributions the dual approach is by far the most efficient way of simulating such system. Successful applications of the dualization technique have been obtained for several scalar models [START_REF] Banerjee | Finite size effects in the presence of a chemical potential: A study in the classical non-linear O(2) sigma-model[END_REF][START_REF] Bruckmann | Grand Canonical Ensembles, Multiparticle Wave Functions, Scattering Data, and Lattice Field Theories[END_REF][START_REF] Rindlisbacher | Lattice simulation of the SU(2) chiral model at zero and non-zero pion density[END_REF] as well as Abelian gauge models [START_REF] Gattringer | Dual simulation of the two-dimensional lattice U(1) gauge-Higgs model with a topological term[END_REF][START_REF] Sulejmanpasic | Abelian gauge theories on the lattice: θ-terms and compact gauge theory with(out) monopoles[END_REF]. The extension to non-Abelian gauge theories and fermionic theories is, however, still an open question preventing the dualization approach to be applied to some of the most relevant models in high energy physics, such as QCD.

Chapter 3

Density of States approach to the sign problem

In the previous chapter we have briefly described some of the methods used to study lattice field theories with complex actions. Most of these methods use adhoc solutions to avoid the sign problem. Instead, in this chapter we are going to describe the density of states (DoS) approach, originally proposed in [START_REF] Gocksch | Simulating Lattice QCD at finite density[END_REF], that provides a general and efficient way to deal with theories described by complexvalued actions. The idea at the base of the DoS approach, following its more recent formulation [START_REF] Anagnostopoulos | New approach to the complex action problem and its application to a nonperturbative study of superstring theory[END_REF][START_REF] Fodor | The Density of states method at non-zero chemical potential[END_REF][START_REF] Langfeld | Density of states approach to dense quantum systems[END_REF][START_REF] Gattringer | Density of states method for the Z 3 spin model[END_REF], is to estimate the density of states function of the system by measuring the logarithmic derivative of the DoS via specialized Monte Carlo techniques [START_REF] Langfeld | The density of states in gauge theories[END_REF]. As we shall see, the definition of the DoS function reduces the sign problem of the full quantum field theory to a simpler one-dimensional oscillatory integration allowing for the extraction of physically relevant quantities in regions unapproachable with standard techniques, as done in multiple studies in recent years [START_REF] Langfeld | Density of states approach to dense quantum systems[END_REF][START_REF] Gattringer | Density of states method for the Z 3 spin model[END_REF][START_REF] Lucini | A novel density of state method for complex action systems[END_REF][START_REF] Langfeld | From the density-of-states method to finite density quantum field theory[END_REF][START_REF] Langfeld | Density-of-states[END_REF][START_REF] Garron | Anatomy of the sign-problem in heavy-dense QCD[END_REF][START_REF] Garron | Controlling the Sign Problem in Finite Density Quantum Field Theory[END_REF][START_REF] Mercado | The Z 3 model with the density of states method[END_REF][START_REF] Giuliani | Developing and testing the density of states FFA method in the SU(3) spin model[END_REF][START_REF] Giuliani | Density of States FFA analysis of SU(3) lattice gauge theory at a finite density of color sources[END_REF][START_REF] Gattringer | New density of states approaches to finite density lattice QCD[END_REF][START_REF] Gattringer | New Canonical and Grand Canonical Density of States Techniques for Finite Density Lattice QCD[END_REF][START_REF] Gattringer | Density of states approach for lattice QCD with a θ-term[END_REF][START_REF] Körner | A density of states approach to the hexagonal Hubbard model at finite density[END_REF].

In the following we will discuss the general aspects of the method, focusing on recent developments [START_REF] Francesconi | Free energy of the self-interacting relativistic lattice Bose gas at finite density[END_REF] concerning the control of the systematic errors. At the end of the chapter we will present the results of a study on the relativistic Bose gas providing a concrete frame of application for our method while at the same time benchmarking its efficiency in regions where the sign problem is severe.

Generalized Density of States

Recalling the definitions of the last chapter the starting point for the introduction of the generalized density of states formalism is the definition of the partition function for a complex valued action S

[φ] = S R [φ] + iµS I [φ] as Z(µ) = Dφ e -S R [φ]-iµS I [φ] . (3.1)
As discussed in the previous chapter a direct numerical evaluation of this partition function would be plagued by the presence of the imaginary term. To avoid this, we proceed by defining a generalised density of states (DoS) function as

ρ(s) = 1 N Dφ δ(s -S I [φ]) e -S R [φ] . (3.2)
Where the δ(s -S I [φ]) is the Dirac delta function whose role here is to select only the field configurations with a value of the complex part of the action equal to s, and N is the normalization factor that ensures the correct normalization of the density of states function ρ(s) ds = 1. It follows that we can express the other quantities that we have introduced in Chapter 2 in terms of one-dimensional integrals of the density of states function. In particular, the partition function of the phase-quenched system simply reads

Z pq = Dφ e -S R (φ) = ρ(s) ds, (3.6) 
and the phase-factor, which provides a quantitative value for the hardness of the sign problem, becomes

e iϕ pq = Z Z pq = Dφ e -S R [φ] e -iµS I [φ] Dφ e -S R [φ] = ρ(s) cos(µs)ds ρ(s)ds . (3.7)
Lastly, we remind also the definition of the free energy difference between the full and phase-quenched systems as ∆F = F -F pq = -1 V log e iϕ pq , as we will focus on this quantity when discussing the results of the relativistic Bose gas at the end of this chapter. This formulation suggests to split up the problem of evaluating the partition function of systems with complex action in two separate steps: first, one evaluates ρ(s) numerically to a high level of precision; second, one then tackles the influence of the imaginary part of the action separately by performing the remaining onedimensional integral. This is the approach we are going to investigate for the rest of the chapter. We shall start by showing that the evaluation of the one-dimensional oscillatory integrals via multi-precision numerical integration leads to robust and accurate results. Then, we will discuss the numerical techniques we are going to use to estimate the DoS function. Although we still expect a sign problem (to provide the expected finite ∆F in the thermodynamic limit, | log e iϕ pq | ∝ V , hence e iϕ pq has to be exponentially small in V , implying that the oscillatory integral (3.7) that defines it must provide cancellations over many orders of magnitude) we have transformed a multidimensional oscillatory integration to a softer variant where, crucially, the resulting one-dimensional Fourier transform is separated from the Monte Carlo integration.

Numerical integration of highly oscillating functions

The numerical integration of highly oscillating function is a well known problem in the literature (see [START_REF] Iserles | Highly oscillatory quadrature: The story so far[END_REF]). In this section we will show that for integrals of the form (3.5) a simple and efficient implementation of a integration scheme is available. We start by assuming to know the exact analytical formulation of the DoS and explore whether or not the numerical evaluation of the oscillatory integral is a feasible task. As we want to compare the results of the numerical calculation with some analytical results the choice of the test density function is greatly reduced and, with no surprise, it falls on the Gaussian distribution

ρ(s) = 1 √ 2π σ exp - s 2 2σ 2 . (3.8)
Moreover, we want to test the behaviour of the numerical integration in regions where the sign problem becomes harder. This happens either when the chemical potential grows, resulting in an increase of the frequency of the oscillatory function, or at increasing volumes, where the oscillation frequency remains constant but the DoS scales due to the extensive nature of S I . It is this second scenario that we are going to take into consideration, in particular as the DoS is defined as the exponential of an extensive quantity we have that σ ∝ √ V . Hence, we can separate the volume scaling from σ to obtain a definition of the DoS that behaves like a realistic DoS function would,

ρ(s, V ) = 1 √ 2πV σ 0 exp - s 2 2V σ 2 0 .
(3.9)

With this definition we can evaluate the phase-factor as a function of both the chemical potential and the volume. Being interested in the scaling behaviour of the phase-factor with respect to the volume we can set σ 0 = 1. This leads to the analytical result

e iϕ (V, µ) = +∞ -∞ 1 √ 2πV exp - x 2 2V cos(µs) ds = exp - µ 2 V 2 . (3.10)
In this work the numerical evaluation of (3.10) will be carried out using the multiprecision computational capabilities and numerical integration functions built into the Wolfram Mathematica suite. We found that the general "GlobalAdaptive" method and "UnitCubeRescaling" preprocessing strategy yield the most reliable and efficient evaluation of the integral using either the LevinRule [START_REF] Levin | Fast integration of rapidly oscillatory functions[END_REF] or the modified Clenshaw-Curtis quadrature [START_REF] Krommer | Computational integration[END_REF]. Moreover, Mathematica provides the Set-Precision function and the WorkingPrecision option that respectively allow for the extension of any function to a set precision level and force the internal arithmetic to be performed with a defined number of precision digits, thus making the evaluation of multi-precision calculations straightforward. As shown in Table 3.1 the numerical results are undistinguishable from the analytical ones for at least the first 10 significant digits even in regions where the sign problem is extremely harsh.

The numerical integration strategy that we have described here is straightforward and easy to implement; however, with the required increase in the working precision, the performance of the numerical integration will worsen. From Table 3.1 it is possible to guess a linear dependence between the required working precision and the volume, which could make this integration strategy ineffective for extremely large volumes or values of the chemical potential. Regardless, it is worth noting that the numerical evaluation of the last entry in the table took less than a minute to compute on a desktop running a consumer-grade CPU in a single thread evaluation Table 3.1 -Results of the integration of (3.10) with σ 0 = 1 and µ = 2 for a wide range of volumes. We report the analytical results as well as the numerical ones and the precision (in decimal digits) used in the calculation.

and that in the following the computational resources used to evaluate these oscillatory integrals will amount to just a small fraction of the total even in regions where the sign problem is severe.

Having discussed the details of the numerical integration let us now focus on the other fundamental aspect of the DoS method, the numerical evaluation of the DoS function.

Wang-Landau algorithm

The first method that we are going to discuss is the Wang-Landau (WL) algorithm [START_REF] Wang | Efficient, Multiple-Range Random Walk Algorithm to Calculate the Density of States[END_REF]. This method provides an efficient way to estimate the DoS for systems with discrete and finite energy levels. Here, we are going to describe the method for systems with real and positive energy levels, but the generalization to systems with complex action is trivial.

Following the original formulation, we consider a system with a finite number of discrete energy levels E i with an associated density of states ρ(E i ), the WL method allows for the estimate of ρ though the following steps:

1. Initialize the DoS of the system as a uniform distribution ρ(E i ) = 1, ∀i, and the histogram as H(E i ) = 0, ∀i.

2. Modify the Monte Carlo accept/reject step of the algorithm used with the extra transition probability

P (E i → E j ) = min ρ(E i ) ρ(E j ) , 1 . (3.11) 3.
Each time an energy level E i is visited multiply by a factor f 0 > 1 the asso-

ciated density value ρ(E i ) → ρ(E i ) × f 0 and update the histogram H(E i ) → H(E i )+1
. This holds for both outcomes of the accept/reject step of the Monte Carlo procedure, updating respectively the new energy interval or the original.

4. Continue the Monte Carlo simulation until the histogram is "flat" (e.g. the maximum discrepancy in the number of visit for each sector is within a certain threshold ), then reduce the f factor according to f k+1 = √ f k and reset the histogram.

5. The procedure stops when the modification parameter f k gets smaller than some predefined value (the DoS of the system has an accuracy proportional to ln(f k )).

The original formulation has been reviewed extensively over the years, the most significant update comes into the form of the 1/t method [START_REF] Belardinelli | Fast algorithm to calculate density of states[END_REF][START_REF] Belardinelli | Wang-landau algorithm: A theoretical analysis of the saturation of the error[END_REF]. Here, the modification factor f is modified according to f (t) = t -1 with t being the simulation time. With this, the calculated density of states approaches asymptotically the correct one with t -1/2 .

The extension of the WL algorithm to continuous systems is achieved by building a discrete histogram over the continuous energy landscape. This can be implemented by binning the values of the energy in intervals of width ∆; each interval is then treated as a unique energy level and the WL method proceeds as described above. However, the resulting function remains discrete, therefore unsuitable to accurately describe the DoS in our generalized density of states approach. Consequently, we move to the discussion of the primary numerical method that will be our focus for the rest of this chapter.

Extracting continuous density of states: the LLR and the FFA algorithms

Drawing inspiration from the Wang-Landau method the Linear Logarithmic Relaxation [START_REF] Langfeld | The density of states in gauge theories[END_REF][START_REF] Langfeld | An efficient algorithm for numerical computations of continuous densities of states[END_REF] (LLR from here on), utilizes a similar strategy to estimate the DoS of the system. However, in the LLR method instead of trying to achieve a global flattening of the histogram we try to achieve a localized flattening by estimating the slope of the density of states via a stochastic root finding procedure.

To do so, we start by dividing the imaginary action domain in intervals of width ∆, with the k-th interval centred in S I k :

I k = [S I k -∆/2, S I k + ∆/2]
. Then, we define the so-called restricted and reweighted expectation values of a generic operator O as

O k (a) = 1 N S I k +∆/2 S I k -∆/2 ρ(s) O(s) e -a(s-S I k ) ds (3.12)
where ρ(s) is defined as in (3.2), a is a given reweighting parameter and the normalization factor N is given by

N = S I k +∆/2 S I k -∆/2
ρ(s) e -a(s-S I k ) ds.

(3.13)

The core of the LLR algorithm is the dynamical evolution of this reweighting parameter a so that the reweighting factor e -a(s-S I k ) counterbalances the intrinsic density of states distribution of the system resulting in a uniform sampling in the interval around S I k . To achieve such a result we consider a specific observable O = ∆S I = s -S I k . The expectation value of this observable has in fact a monotonous behaviour with respect to a and, notably, it vanishes only for the value of a that coincides with the derivative of the logarithm of the density of states

∆S I k (a) = 0 ⇐⇒ a = a k = d ln(ρ(s)) ds s=S I k + O ∆ 2 . (3.14)
Following the original description of the LLR approach, to solve this implicit equation for a we use two different root-finding procedures. First, we use the Newton-Raphson method generating a chain of reweighting factors a

(n) k according to a (n+1) k = a (n) k + ∆S I k (a (n) k ) σ 2 (∆S I , a (n) k ) . (3.15) 
The variance of the distribution, corresponding to the gradient of the implicit function, can be approximated as

σ 2 (∆S I , a (n) k ) ∆ 2 12 + O ∆ 4 , (3.16) 
leading to the actual update procedure

a (n+1) k = a (n) k + 12 ∆S I k (a (n) k ) ∆ 2 . (3.17)
As shown in the upper plot of Fig. 3.1, this procedure approaches the root of (3.14) with remarkable speed (only 2 steps). However, once a (n) is close to the root it will oscillate around it with an amplitude proportional to the statistical uncertainty of the Monte Carlo estimate of ∆S I k preventing the Newton-Raphson method from converging to high level of precision.

The convergence of the root finding procedure can be increased by employing the Robbins-Monro [START_REF] Robbins | A stochastic approximation method[END_REF] method once the determination of a k starts to oscillate around the solution. The Robbins-Monro method is implemented with the following iterative procedure

a (n+1) k = a (n) k + c n ∆S I k (a (n) k ) σ 2 (∆S I , a (n) k ) ∞ n=0 c n = ∞ , ∞ n=0 c 2 n < ∞, (3.18) 
where the conditions on the c n parameter ensures the convergence to the correct solution in the limit of n → ∞. To maximize the speed of convergence we choose c n = 1/(n + 1), this choice ensures that both conditions in (3.18) are satisfied whilst maximizing the damping of the statistical noise. This choice leads to the update strategy

a (n+1) k = a (n) k + 1 n + 1 12 ∆S I k (a (n) k ) ∆ 2 . (3.19)
This procedure converges in probability to the exact values, meaning that the es-timator a

(n)

k will be normally distributed around the root of (3.14) with a variance scaling asymptotically as 1/N RM , where N RM is the number of Robbins-Monro steps taken. In Figs. 3.1 and 3.2 we report a study of the convergence properties of the root finding procedures described here. In the first picture we show the evolution of the reweighting parameter, while in the second we show that the standard deviation (we plot the standard deviation normalized to its mean value during the Newton-Raphson procedure) is roughly constant during the Newton-Raphson procedure and instead scales as 1/ √ N RM during the Robbins-Monro iterations maximizing the theoretical best scaling behaviour. In the following we will employ this combined root finding procedure to obtain However, other techniques can be employed to evaluate the a k parameters. Worth noting is the FFA (Functional Fit Approach) method, introduced in [START_REF] Gattringer | Density of states method for the Z 3 spin model[END_REF] and used successfully in multiple studies in recent years [START_REF] Giuliani | Density of States FFA analysis of SU(3) lattice gauge theory at a finite density of color sources[END_REF][START_REF] Gattringer | New density of states approaches to finite density lattice QCD[END_REF][START_REF] Gattringer | Density of states approach for lattice QCD with a θ-term[END_REF]. In this approach the root finding procedure is avoided by noting that the definition of the restricted and reweighted expectation values (3.12) allows for an analytical integration when the linear exponential approximation is taken for ρ and all the corrections are dropped. In particular, considering again the observable ∆S I = s -S I k in a interval of width ∆ centred in S I k the expectation values reads

∆S I k (a) = 1 N S I k +∆/2 S I k -∆/2 e a k (s-S I k ) (s -S I k ) e -a(s-S I k ) ds = ∆ 1 -e (a+a k )∆ - 1 (a + a k ) . (3.20) 
As for the LLR method this expectation value vanishes only for a = a k . Knowing the exact analytical behaviour for any values of a allows for the use of a standard one parameter fitting to obtain the desired a k values. The procedure to follow is straightforward: evaluate ∆S I k (a) for a range of values of a in each interval via standard Monte Carlo techniques; for each subdivision fit the measurements to (3.20) obtaining an estimate of a k .

In Fig. 3.3 we show an example of this procedure on the relativistic Bose gas at µ = 0.8 for 5 different intervals. In each interval we measure the expectation values for 100 values of a and 4 × 10 4 samples for each measurements. This gives us a total of 4 × 10 6 samples for each intervals, we can then compare this with the LLR estimate obtained with 2000 root finding steps and 2000 samples for each step, thus with the same amount of Monte Carlo samples. As shown in Table 3.2 the two approach give compatible results and comparable statistical uncertainty. Even though the two methods perform very similarly we found that the systematics are more easily traceable using the LLR algorithm rather than the FFA. In the latter one has to rely on the χ 2 distribution of the fit residual to reject or not the fitting ansatz, thus validating the statistical significance of the extracted a k . Instead in the LLR method we can systematically analyze how the various parameters influence the behaviour of the root finding procedure. This is what we are going to explore in the following sections.

Intrinsic Bias

The LLR procedure described in the previous section is able to evaluate the slopes of the density of states with a remarkable level of precision. However, the a k parameter obtained by solving (3.14) will correspond to the correct one only in the limit of ∆ → 0. Numerical simulations in this regime would have a long convergence time, as the step size of the Robbins-Monro procedure scales as ∆ -2 , requiring a large increase of computational resources. For this reason we are interested in studying the behaviour of the LLR algorithm when the interval width is large enough to allow the higher order correction to the DoS to play a role in the dynamical evaluation of a k . To do so, we evaluate the corrections to ∆S I k (a) for a = a k = d log ρ/ds that arise when we also include in the calculation the higher order terms in the expansion of log ρ. For ease of notation we write ρ(s) = exp(f (s)), leading to In the above equation we have that: the term in the first derivative of log ρ cancels out as a = a k ; the term in the second derivative (and all the other even-order derivatives) vanishes due to the symmetry of the integrand; the term proportional to the third derivative is non vanishing making it the leading correction in our expansion. Moreover, this leading contribution does not depend on the reweighting factor a, hence it will influence the dynamics of the Robbins-Monro procedure even close to the root of the stochastic equation. We can treat this as an additional term to the rhs of (3.14),

∆S I k (a = a k ) = 1 N S I k +∆/2 S I k -∆/2 s e f (s) e -a k (s-S I k ) ds = f (3) (S I k ) 3! ∆ 4 80 + O(∆ 6 ).
∆S I k (a ∼ a k ) = ∆ 2 12 (a -a k ) + f (3) (S I k ) 3! ∆ 4 80 + O ∆ 6 . (3.22)
By solving this equation with the lhs set to zero we can estimate the entity of the bias due to the interval width on the evaluation of the reweighting parameter a bias = a biased -

a k = f (3) (S I k ) 40 ∆ 2 + O ∆ 4 . (3.23)
It is evident that the bias depends on two parameters: ∆, the interval width that is the parameter that we can tune, and, f (3) (S I k ), the third derivative of the logarithm of the DoS that is instead system specific and unknown a priori. In Fig. 3.4, we show the results of simulations run at fixed S I k and different interval widths. In the plot is possible to observe the effect of the bias, in the form of a parabolic shift as well as the increase in the statistical uncertainty for simulation run with small ∆.

Having a precise formulation of the intrinsic bias of the LLR algorithm, we can design a scheme that ensures a bias-free and performance-optimized simulation:

1. Run a low precision simulation (fewer Monte Carlo samplings (N M C ) as well as Robbins-Monro steps (N RM )) with a small and constant ∆ for each interval extracting the values of the a k . With these evaluate the third derivative of log ρ numerically to estimate the intrinsic bias over the entire range of the complex action taken into consideration.

2. Scale the simulation parameters (N M C , N RM , ∆) so that bias σ a k . We use the known scaling relations bias ∝ ∆ 2 and σ

a k ∝ (∆ • √ N M C • N RM ) -1
, and the fact that the simulation runtime is proportional to N M C •N RM to minimize the bias and evaluate the performance impact.

3. With the scaled parameters run a high precision simulation, the results of which will be used to rebuild the DoS.

4. Lastly, using the high precision results double check that the bias is negligible in comparison to the statistical noise of the results.

DoS reconstruction techniques

Having obtained the precise estimate for the slopes of the DoS, the LLR algorithm provides the data for a DoS reconstruction procedure. The first technique comes naturally from the formulation of the LLR method. By assuming the logarithmic derivative constant inside each interval we can give a piecewise definition of the DoS ρ pw (s) = k ρk (s), with

ρk (s) = C k exp a k (s -S I k ) , s ∈ S I k -∆/2, S I k + ∆/2 . (3.24)
and ρk (s) = 0 for s outside the corresponding k-th interval. To ensure the continuity of the DoS the C k parameters are defined as

C k = exp{a k ∆/2} k-1 i=0 exp{a i ∆}. (3.25)
This simple definition can describe with incredible precision the DoS of the system. If the a k parameters are normally distributed around the exact values, it is possible to show that the relative error of ρ pw (s) stays constant throughout the entire range taken into consideration, thus achieving exponential error suppression. However, this simple approximation introduces a series of second-order discontinuities at the boundaries of the intervals where two successive linear exponents are linked together. The presence of this discontinuities will hinder the evaluation of (3.4) as a m-th To overcome this issue, we introduce the polynomial fitting technique [START_REF] Langfeld | Density of states approach to dense quantum systems[END_REF] that is able to improve significantly over the piecewise reconstruction. In the polynomial fit approach the LLR results are fitted to a polynomial p l (s) = l i=1 c (2i-1) s (2i-1) , where we are considering only the odd powers due to the already discussed symmetry properties of the DoS. The density function is then reconstructed as the exponential of the integral of the fitting polynomial:

ρ fit(l) (s) = exp s 0 p l (x) dx = exp l i=1 c (2i-1) 2i s 2i . (3.26)
With this definition the DoS is then completely defined by just a set of l coefficients obtained via the fitting procedure. Note also that this definition is naturally normalized as ρ fit (0) = 1 as p l (0) = 0. In Fig. 3.5 we show the relative deviation between the two reconstruction techniques described here. The fitting approach provides a smoother behaviour than the piecewise, with the latter showing periodic artefacts coming from the corrections to the linear approximation neglected in the piecewise approximation.

To give a quantitative comparison between the two techniques we compare the value of the phase-factor obtained with both approximations. In particular we define the quantity,

I(S I max ) = S I max 0 ds ρ(s) cos(sinh(µ)s) ds ρ(s) . ( 3 

.27)

This quantity can be evaluated with the numerical method described in the first section of this chapter for both reconstruction techniques, moreover it is related to ), as a function of the upper integration limit for volumes V = 6 4 and 10 4 at µ = 0.8. Here, we plot the absolute value of the partially integrated phase factor on a logarithmic scale for ease of visualisation we are plotting the abs() of the phase factor, such a choice affects only the region for which the integral has not yet converged. These plot are obtained using polynomial order l = 5 chosen according to the procedure described in Sec. 3.4.2.

the expectation value of the phase-factor by lim

M →∞ 1 M M m=1 lim S I max →∞ I m (S I max ) = e iϕ pq , (3.28) 
where M is the size of an ensemble of Gaussianly distributed realizations of the a k . In Fig. 3.6 we compare the numerical evaluation of (3.27) for the piecewise and fitted methods as a function of S I max . We show the same analysis for two simulations of the relativistic Bose gas for V = 6 4 and 10 4 at µ = 0.8. For both volumes the two reconstruction of the DoS are obtained from the same realization of the a k values. Comparing our numerical approach with the mean field approximation obtained with the procedure described in [START_REF] Aarts | Complex Langevin dynamics at finite chemical potential: Mean field analysis in the relativistic Bose gas[END_REF], we can conclude that the fitting reconstruction is able to recover the physical information even when the sign problem is hard, while the piecewise reconstruction generates much larger fluctuations due to the noise and (red) and those of the piecewise one (blue). The inset shows the remarkable level of precision obtainable with the fitted approach.

does not achieve the required level of accuracy. In particular, the piecewise method generate an intrinsic error of O(∆ 2 ) for each interval (due to the higher order corrections neglected in this approach). To obtain reliable results with this method when the sign problem gets exponentially hard we would have to increase exponentially the number of intervals (while decreasing the width) making the numerical evaluation of the a k values challenging. The fitted approach instead shows no difficulty in recreating results compatibles with the mean-field approximation even in the larger volume where the signal comes from cancellations over 45 orders of magnitudes.

To further analyse the different precision of the two methods we compute the phase-average over multiple independent realizations of the a k . We also check the convergence of the results with the sampling density of the a k values by computing the phase-average over reconstructions of the DoS obtained via different subsamplings of our initial set of data (i.e. we consider one every n values, maintaining even spacing between the values in the new sample). In Fig. 3.7 we compare the level of precision of e iϕ obtained with the two methods while varying the sub-sampling ratio of the a k parameters. We see that for our most precise determinations (obtained while using all the a k values in the sample, corresponding to a sub-sampling ratio equals to one), the data converges to an asymptotic value. However, while the polynomial fitting approach provides an accurate determination of the phase-factor, the piecewise method returns values statistically compatible with zero.

Lastly, in Fig. 3.8 we show the precision level in the determination of the free energy difference ∆F for the polynomial fit method from the data sown in Fig. 3.7. 

Fit Validation

As we have shown the polynomial fitting method shows noticeable advantages over the piecewise reconstruction. However, to ensure the stability of the results we propose a scheme to choose the polynomial order l so that the selected functional form avoids the two most likely sources of systematic errors (under -fitting and overfitting). As an added benefit this method will also be able to highlight possible biased results.

Under-fitting

The systematic error we start our discussion with occurs when the proposed functional form is too simple to represent all the features of the data. In our specific case this happens when the polynomial order is too low. A simple χ 2 analysis of the fit residuals is able to pin down the minimum number of polynomial coefficients required to describe the behaviour of the a k values. As shown in Fig. 3.9, the χ 2 decreases quickly for the smaller values of the polynomial order, but stabilizes for values grater than 7. Therefore we can divide the range of polynomial orders in two regions: for l < 7, the polynomial reconstruction in this region will not incorporate all the features of the data, thus we expect highly biased results; l 7 the polynomial reconstructions in this region have compatible statistical significance, however we expect the higher order polynomial to incorporate some of the statistical noise in the polynomial instead of improving the approximation. One would then be tempted to simply chose the smallest polynomial order in the plateau. However, in order to understand the predictivity of our method, we we will compute the phase-factor for all the polynomial orders in the plateau. If we obtain statistically compatible results we will accept the results, if instead the result in the plateau are not compatible we conclude that the LLR data is too noisy and proceed to increase the precision of the simulations.

Over-fitting

The second source of systematic error is the opposite of the previous one; overfitting happens when the proposed functional form has too many parameters, thus it starts to incorporate unwanted oscillations into the model. To give a quantitative measure of over-fitting we are going to compare the second order derivative of log ρ obtained via a direct measurements during the Monte Carlo simulations with the derivative of the fitted polynomial.

The direct numerical determination can be evaluated by studying the restricted and reweighted expectation value of (∆S I ) 2 with a = a k . If we write again log ρ as f (s), we obtain

(∆S I ) 2 k (a = a k ) = ∆ 2 12 + f (S I k ) 360 ∆ 4 + O ∆ 6 (3.29)
From which we can obtain an estimate of the second order derivative up to O(∆ 2 ) as

f (S I k ) = 360 ∆ 4 (∆S I ) 2 k - ∆ 2 12 + O(∆ 2 ). (3.30)
The numerical evaluation of this quantity leads to statistically relevant estimates, as shown in Fig. 3.10. This data is then compared to the derivative of the fitting polynomial (p l ) with the intent of performing an a posteriori validation of the functional form of the fit. To this intent we define the χ 2 -like function

χ 2 f = 1 N N i=1 (p l (s i ) -f (s i )) 2 σ 2 f (s i ) , (3.31) 
from whose definition is easy to interpret this as the weighted "distance" between the two approximations for the second derivative, thus a lower value of this quantity correspond to similar approximations, and conversely higher values correspond to approximations not in agreement.

To illustrate this principle we take a sub-sampling of our data (lowering the number of points makes the fitting procedure more susceptible to over-fitting) and we evaluate this quantity over the sub-sampled data. The results of this analysis are shown in Fig. 3.11, where we can isolate three regions where the two approximations have different behaviours: for l 5, the two approximations are not in agreement, this is however the same region in which the polynomial approximation does not describe well the LLR data leading to big discrepancies also in this analysis; for 7 l 11, a plateau forms with the lower values overall for this analysis, indicating that in this region the two approximations are in good agreement; lastly for l 13 we see again an increase in the value of χ 2 f , this time, however, due to the overfitting of the polynomial approximations. This kind of analysis is able to measure the entity of the over-fitting of the polynomial approximation giving us also a quantitative indication. It is worth noting, however, that in the following when the entire set of data is used no sign of overfitting is present. This is mostly due to the dense sampling that we are able to obtain in the systems that we are going to study. 

Other techniques and general guidelines

Before moving on to present the results obtained on the relativistic Bose gas with all the machinery described here, we are going to briefly describe a handful of other possible DoS reconstruction techniques. Even though the methods that we are going to describe here will not manage to achieve the same level of precision and reliability of the polynomial fit, this will help us to define some generic guidelines that could lead to system-specific alternatives to our method of choice.

L 2 basis expansion

As the density of states is a function in L 2 , an expansion over a basis of L 2 seems like a reasonable guess. Moreover, as the information regarding the full system is recovered via a Fourier transform of the DoS, the choice of the basis naturally falls on the Hermite functions, defined as

ψ n (s) = (2 n n! √ π) -1 2 e -s 2 2 H n (s), (3.32) 
where H n is the n-th Hermite polynomial. In fact, these functions form an orthonormal basis of L 2 that diagonalize the Fourier transform operator. Therefore, if the complete expansion is known the phase-factor could be obtained analytically without the need to carry out the oscillatory integration. However, we found that the expansion converges slowly, requiring a large number of expansion coefficients making this approach inefficient.

Local regression

In this implementation the results of the root finding procedure are fitted to a low order polynomial convoluted with a localized weight function. This approach generally known as LOESS/LOWESS [START_REF] Cleveland | Robust locally weighted regression and smoothing scatterplots[END_REF][START_REF] Cleveland | Lowess: A program for smoothing scatterplots by robust locally weighted regression[END_REF][START_REF] Cleveland | Locally weighted regression: An approach to regression analysis by local fitting[END_REF], is able to describe the data using a lower number of locally defined polynomial coefficients. However, this introduces noise at a frequency that is roughly the inverse of the amplitude of the weight function preventing this method to achieve the same level of precision of the fitting approach.

Gaussian processes

Gaussian processes are a method used to model the distribution of correlations among n-tuples of observation via a Gaussian a priori ansatz. This method can produce a continuous regression function that however presents localised high-frequency oscillations that results in noisy measurements for the Fourier transform.

Padé approximant

The Padé approximant are generally expected to converge faster than polynomial interpolations. They are obtained by fitting a set of observations to the functional form

R m,n (s) = m i=0 a i x i 1 + n j=1 b i s i . (3.33)
This fitting procedure proved to be less stable than that for a simple polynomial fit, making the entire procedure prone to failure. Notably, however, when the Padé fitting succeeds the oscillatory integration achieves levels of precision similar to those of the polynomial reconstruction.

With these observations in mind, it is possible to conclude that an accurate reconstruction technique must describe the DoS function using a small number of constant parameters over the entire spectrum of imaginary action taken into consideration. In our implementation, we have found the polynomial fit to be the most effective functional ansatz. Possibly implying that the behaviour of the a k parameters with S I is described by a (near-)polynomial function. Regardless, the fit approval techniques discussed above can be easily extended to any other functional ansatz; for example, if periodic oscillations are present in the results of the LLR algorithm one could employ a linear convolution of polynomial and oscillatory functions as an ansatz and still be able to define a minimal set of parameters needed to describe the data and validate the integration results.

Free energy of the relativistic Bose gas

Following the numerical procedure described above we have been able to obtain the a k estimates for a wide range of values of the chemical potential, from µ = 0 to 2.0, lattice volumes ranging from V = 4 4 to 16 4 and using the bare lattice parameters m = λ = 1. The typical simulation parameters are reported in Tab 3.3, showing that only a moderate increase in the statistic is needed to achieve relevant results even for larger volumes where the sign problem becomes exponentially hard. In Fig. 3.12, we show a representative set for the evaluation of the a k . We plot the results of our simulation for three values of the chemical potential µ = 0.4, 1.0, 1.8 and volumes 4 4 , 6 4 , 8 4 , 10 4 . The figures show that for values of the chemical potential close to the critical value (we expect a phase transition at µ c ∼ 1.15) the a k develops a sharp change in behaviour for large S I at larger volumes, while for values of the chemical potential far from µ c and smaller volumes the change in behaviour is less prominent. If the inflection point is within the range of values of S I that are taken into consideration while evaluating the oscillatory integration we found that our polynomial fitting procedure fails to converge. As a results we are not able to estimate the free energy for larger volumes around µ c . For the combination of volume and chemical potentials for which the fitting procedure converges we then perform a bootstrap analysis to estimate the statistical uncertainty of our results. Our bootstrap procedure follows the usual steps of a bootstrap analysis. We start with a sample of N S I K different N rep -tuples of realization of the a k parameters coming from the root finding procedure. Considering that each values of the set associated with the k-th value of S I is independent from the others, we can obtain a new estimate for the mean of the set by considering a re-sampling of the set assuming an identically distributed population. With this new set of bootstrapped values we proceed with the fitting procedure and by repeating this procedure we are able to generate a set of fitting functions correctly distributed according to the statistical uncertainty of our initial data. We then evaluate the oscillatory integral for each polynomial fit in the set obtaining an estimate of the phase-factor and its statistical uncertainty. The results of this bootstrap procedure are shown in Table 3.5 at the end of this chapter.
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In the following pages we will make frequent comparison to results obtained with a mean field approximation, details regarding this calculation are included in Appendix A. 

Phase structure away from criticality

We start by describing the results obtained over the entire range of the chemical potential for volumes up to 10 4 . In this region we have no trouble to obtain reliable results for volumes 4 4 and 6 4 , while for 8 4 and 10 4 the values around the phase transition are not stable enough and will be neglected in the following.

In Fig. 3.13 we plot the free energy difference ∆F . This observable shows the presence of a phase transition around µ = 1.15. The two phases are clearly identifiable for volume 4 4 and 6 4 , while for 8 4 and 10 4 the different behaviour is still visible, even though the lack of data close to the phase transition.

V µ c

Error 4 4 1.165 0.007 6 4 1.155 0.004 8 4 1.152 0.014 10 4 1.141 0.044 Table 3.4 -Results for µ c as a function of V .

In the region µ > µ c a linear fit is able to describe well the data, while for µ < µ c the behaviour of the data is well represented by the functional form ∆F (µ) = aµ 2 + bµ 4 + cµ 6 . By intersecting the fits obtained in the two regions we have been able to estimate the value of the critical µ as well as its error. The results of this analysis are reported in Table 3.4 and plotted in Fig. 3.14. For the two smaller volumes this analysis gives good levels of precision, resulting in relative errors of .6% for 4 4 and .4% for 6 4 , while the two larger volumes suffer from the lack of points close to the phase transition rising the relative errors to 1% for the 8 4 case and 4% for 10 4 . Due to the lack of points close to the phase transition for larger volumes we are not able to perform an extrapolation to the thermodynamic limit for the critical chemical potential. However, the results that we have obtained are reasonably compatible with the mean field calculation [START_REF] Aarts | Complex Langevin dynamics at finite chemical potential: Mean field analysis in the relativistic Bose gas[END_REF] (µ c 1.15), that has been found to be a good approximation at least for our choice of couplings (m = 1, λ = 1), as well as with the value obtained in [START_REF] Gattringer | Lattice study of the Silver Blaze phenomenon for a charged scalar φ 4 field[END_REF] (µ c = 1.146 ± 0.001) via a dual formulation of the theory.

Low density region

When the chemical potential is sufficiently distant from the critical value our integration strategy is robust and allows for the precise evaluation of ∆F even for larger volumes. Here, we focus on the low density region (µ = 0 ∼ 0.9) extending our results to the largest volume studied here (V = 16 4 ). In this region the minimum polynomial order required to describe the a k ranges from 5 to 9, and we have been able to obtain consistent results for at least three consecutive polynomial orders for each point.

With this data we have been able to perform a precise extrapolation to the infinite volume. The results of this analysis are plotted in Fig. 3.15 for four representative examples. For all values of µ we have fitted the values of ∆F versus 1/V using the functional form 4 , with λ = m = 1.0 at values of the chemical potential in the range µ = {0.1 ∼ 0.9}; also shown is their extrapolation to the infinite volume limit. Bottom: Comparison between the infinite volume extrapolation obtained with the data on the top plot and the same analysis made with meanfield calculations.

∆F (V ) = ∆F (∞) + a V + b V 2 , ( 3 
that gave a good description of the data. In Fig. 3.16 we show the extrapolation incorporating all the values of µ and all the volumes (top), and the behaviour of the extrapolated ∆F as a function of µ in the low density region (bottom). Moreover, in this region it is possible to compare the DoS results with the mean field ones directly, as shown in Fig. 3.17. Here we plot the relative difference between the two estimates

∆F rel = ∆F DoS -∆F M F ∆F M F × 100. (3.35)
From the plot we can see that the two approaches produce results with roughly the 0.3% of difference for most of the chemical values taken into consideration. However, as we get closer to the phase transition the statistical uncertainty of the DoS results grows making it indistinguishable from the mean field ones. 

Summary

In this chapter, we have discussed the density of states approach to the sign problem. We have further refined the LLR method by studying the primary sources of systematic errors, namely the intrinsic bias and the DoS reconstruction technique. For these quantities, we have been able to study the scaling of the bias with the size of the imaginary action interval and provided methods to evaluate the accuracy of the necessary polynomial interpolation. We have also discussed other possible reconstruction techniques and their shortcomings. With all this machinery we have then performed a numerical study on the relativistic Bose gas at finite density. we have investigated the free energy difference ∆F between the full and the phase-quenched system for lattices up to 16 4 . Being able to accurately integrate phase-factors, coming from the one dimensional oscillatory integration, down to O(10 -480 ) we have precisely determined ∆F even in region where the sign problem is severe. The results obtained are comparable with those obtained via complex Langevin, mean-field approximations or dual methods. Our methods allowed for the evaluation of ∆F in a wide range of values of the chemical potential. However, it showed clear difficulties to obtain reliable results close to the critical value of µ for larger volumes due to the inability of the fit approach to describe the behaviour of log ρ.

In its current formulation the density of states method is able to evaluate the phase-factor of a complex-valued action, and, as a consequence, the observables directly related to it to a remarkable level of precision. In the next chapter we are going to extend the method to encompass also the evaluation of virtually any observable defined as a function of the field variables. ----Table 3.5 -Free energy difference for volumes V = 4 4 , 6 4 , 8 4 , 10 4 , 16 4 and for the infinite volume extrapolation for a wide range of values for the chemical potential. The --identify values of the parameters for which our interpolation method did not produce a robust result.

Chapter 4

Observables in the DoS formalism

In the previous chapter, we have introduced the DoS approach to the sign problem as a method to deal with the sign problem resulting from the study of finite density lattice field theories. We have shown how the evaluation of extensive quantities, such as the free energy and partition functions, comes naturally in this approach, as opposed to standard Monte Carlo methods, where the evaluation of such objects is not possible even in theories with a real and positive Boltzmann weight. However, the measurement of generic observables (i.e. expectation values of operators defined as functions of the field variables) that is easily implemented in standard Monte Carlo algorithms is an aspect of the DoS method that has not yet been fully explored.

In this chapter, we are going to propose a new method [START_REF] Francesconi | Computing general observables in lattice models with complex actions[END_REF] that allows for the extension of the DoS formalism to the measurements of virtually any observable in a lattice quantum field theory, thus making of the DoS approach a versatile and complete method.

Generic observables

The starting point for our discussion is the definition of the expectation value for an observable

X[φ] X = Dφ X[φ] exp{-S[φ]} Dφ exp{-S[φ]} . (4.1)
We already discussed how a direct evaluation of this expression via direct Monte Carlo sampling would fail when a complex action is considered. Here instead, we are going to focus on the evaluation of (4.1) in the DoS formalism with the action defined as

S[φ] = S R [φ] + iµS I [φ].
The first instructive case we are going to consider is when the observable is defined as a function of the imaginary part of the action (X = f (X) (S I [φ])). In this case it is easy to see that Eq. (4.1) can be rewritten as

X = 1 Z Dφ f (X) (S I [φ]) e -S R [φ] e -iµS I [φ] . (4.2) 
Now, by inserting the definition of the generalized DoS introduced in the previous chapter the integral becomes

X = ds f (X) (s) ρ(s) e -iµs ds ρ(s) e -iµs . (4.3) 
Notably, by knowing the analytical form of f (X) (s) the expectation value of the observable is recovered directly from the approximation of the ρ as the ratio between two oscillatory integrals. As we have seen in the previous chapter via our polynomial ansatz for ρ we can compute those with extraordinary precision, thus making the evaluation of (4.3) not more difficult than the evaluation of the phase-factor. In practice, also the statistical analysis will proceed in the same way: via a bootstrap procedure we obtain a set of density of states functions; for each we compute the integrals in (4.3) obtaining an estimate for X ; lastly we compare the results obtained at different polynomial orders to verify the stability of the results. However, the observables that can be expressed as analytic functions of the imaginary part of the action are only a small subset of all possible observables. Nonetheless this most simple case will motivate the novel approach that we are going to discuss in the following. We are in fact interested to give the most general possible method to measure any observable in the DoS formalism. For this reason we now return to consider an observable X[φ] defined as a function of the field variables.

In previous works [START_REF] Gattringer | New density of states approaches to finite density lattice QCD[END_REF][START_REF] Gattringer | New Canonical and Grand Canonical Density of States Techniques for Finite Density Lattice QCD[END_REF] a possible solution has been mentioned. There, Eq. (4.1) is modified by splitting the action into its real and imaginary parts

X = Dφ X[φ] e -S R [φ] e -iµS I [φ] Dφ e -S R [φ] e -iµS I [φ] (4.4) 
and by introducing a further generalization of the density of states

ρ (X) (s) = Dφ X[φ] e -S R [φ] δ s -S I [φ] . (4.5) 
With this definition it is easy to see that ρ (I) is the DoS function as defined in the previous chapter, while ρ (X) represents the generalization of the DoS relative to the observable X[φ]. Therefore the vacuum expectation value for the generic observable

X[φ] is obtained as X = 1 Z ds ρ (X) (s) e -iµs , Z = ds ρ (I) e -iµs . (4.6) 
As in the earlier example, the expectation value is obtained as the ratio of two oscillatory integrals. However, while previously the only information needed was the DoS function (ρ = ρ (I) ), here we need also the estimate for the generalization relative to the observable taken into consideration. While formally this requirement does not seems to hinder our capability to measure the expectation values, it does introduce some technical challenges.

In fact, the computational cost of this implementation increases linearly with the number of observable considered; as for each observable the relative ρ (X) must be reconstructed with an independent simulation. Moreover, as we have in mind to utilize the LLR algorithm to estimate these observable-related density of states (where we reiterate that the DoS is rebuilt by evaluating numerically the a k parameters, representing the slope of the density of states logarithm) let us discuss this implementation within the LLR formalism based on an effective action.

Firstly, by rewriting (4.5) as

ρ (X) (s) = Dφ e -S R [φ]+log(X[φ]) δ s -S I [φ] , (4.7) 
we can define an effective action S eff = S R [φ] -log(X[φ]) that will regulate the evolution of the Monte Carlo sampling in the LLR procedure. The presence of the logarithmic term could influence strongly the ability of the method to obtain reliable results as in general the effective action would not be bounded from below (for positive definite observables we could redefine the operator as X[φ] = 1+X[φ] to obtain a bounded effective action, but we would loose the generality of the method). Moreover, it is the value of the a k parameters that will ultimately determine whether or not the method will be able to obtain reliable results. To inspect this we assume the following relation between the ρ (X) and ρ (I) holds in the imaginary action domain,

ρ (X) (s) = X(s) ρ (I) (s), (4.8) 
where X(s) is the expectation value of X[φ] on field configurations with S I = s (this definition will be clarified and justified later in this chapter). We can now relate the definition of the LLR reweighting parameter for the observable-related DoS (a

(X) k )
with those of the regular DoS (a I k ):

a (X) k =   d log(ρ) ds + d log X ds   s=S I k = a I k + O(1/V ). (4.9) 
The correction term due to the presence of the observables logarithmic derivative is suppressed as 1/V (in our choice of parameters s is an extensive quantity), making it hard to evaluate to a reasonable level of precision. In our simulations on the relativistic Bose gas we have estimated that already for lattice volumes of 8 4 the deviation between the a

(I)
k and a

(φ 2 ) k
( φ 2 is going to be one of the observables that we are going to evaluate) is of the order of the standard deviation of the estimate of a (I) k . This would lead to virtually indistinguishable DoS reconstructions making the evaluation of (4.6) dominated by statistical noise.

Motivated by the simplicity of the first case and the intent to avoid the technical issue of the second one, we are going to illustrate a method that manages to do both while being efficiently and effortlessly implemented in the LLR framework.

Let us start again from the definition of the expectation value for a generic observable X (4.4). Then we use the property of the Dirac delta to wrap the path integral in a one dimensional integral over s

X = 1 Z ds D[φ] X[φ] e -S R [φ] e -iµS I [φ] δ (s -S I [φ]) . (4.10) 
We now let the e -iµS I [φ] term filter through the integral thanks to the Delta function and multiply by the identity 1 = ρ(s) /ρ(s), where ρ(s) = ρ (I) (s)

X = 1 Z ds e -iµs D[φ] X[φ] e -S R [φ] δ (s -S I [φ]) × ρ(s) ρ(s) . (4.11) 
Thus by rearranging the terms we obtain

X = 1 Z ds e -iµs ρ(s) D[φ] X[φ] e -S R [φ] δ (s -S I [φ]) D[φ]e -S R [φ] δ (s -S I [φ]) . (4.12) 
In this last expression the remaining path integral can be interpreted as the expectation value of the X[φ] observable over the field configurations that satisfy the condition of the Dirac delta, thus those with an imaginary part of the action S I [φ] equal to s. We then define this object as X(s), obtaining the final result

X = 1 Z ds e -iµs ρ(s) X(s). (4.13)
The expectation value X is thus retrieved as the ratio between two oscillatory integrals. We only need to evaluate ρ(s) and a function that describes the behaviour of the observable along the imaginary axis. However, the definition of X(s) deserves attention as the direct evaluation of such quantity is numerically very hard. To estimate this quantity, we will in fact relax the condition S I [φ] = s.

But first, it is important to check if the behaviour of X(s) is under control in the imaginary action domain. To do so, we run a phase quenched simulation with a reweight factor given by ρ -1 (S I [φ]) in order to achieve uniform sampling in the S I domain. As shown in Fig. 4.1, where we show the density plot of all the sampled values. With X[φ] plotted versus the value of S I [φ] of the corresponding field configuration. The observables appear to be well behaved over the entire range of S I [φ] taken into consideration, meaning that the sampling does not show any roughness or jump and that the width of the distribution around the mean values appears to be constant.

In the next two sections we will describe how we achieved an efficient evaluation of X(s) and provide a robust integration strategy.

Efficient evaluation of X(s)

Starting from the definition of X(s)

X(s) = D[φ] X[φ] e -S R [φ] δ (s -S I [φ]) D[φ]e -S R [φ] δ (s -S I [φ]) (4.14) 
we can easily see that the numerical impracticality comes from the presence of the Dirac deltas. The generation of field configurations with a specific value of the imaginary action is effectively an impossible task. To overcome this issue we relax the condition on the Dirac deltas by evaluating the integral over a small interval of width ∆ in the imaginary action domain in exact analogy with the LLR approach. Therefore, the best way to evaluate X(s) is to measure interval restricted and reweighted expectation values (3.12) inside each interval as defined in the LLR method. Moreover, the reweighting factor to be used is exp -a k (s -S I K ) where the a k parameter is the parameter obtained via the root finding procedure in the LLR algorithm. By doing this the possible sources of bias are reduced to the higher order corrections to the density of states and the second derivative of the observable (the first derivative will not influence the result of the integration as we are considering a symmetric interval around S I k ). In particular by writing the DoS as e f (s) the correction terms can be evaluated as:

X(S I k ) = S I k +∆/2 S I k -∆/2 X(s) e f (s) e (-a k (s-S I K )) ds S I k +∆/2 S I k -∆/2 e f (s) e (-a k (s-S I K )) ds = X(S I k ) + 1 24 X (S I k )∆ 2 + O(∆ 4 ). (4.15) 
Where the leading correction term is of order ∆ 2 and depends only on the second derivative of the observable evaluated in the center of the interval. Note that if in the previous expression we do not reweight according to exp -a k (s being of order ∆ 2 , this term shows a linear scaling with the volume (X(s) ∝ 1,

-S I K ) an extra term 1 12 f (S I k )X (S I k )∆ 2 = a k 12 X (S I k )∆ 2 will
X (s) ∝ 1/V , f (s) ∝ V , f (s) = a k ∝ 1, ∆ ∝ V
), which will lead to biased results as the volume increases. In Fig. 4.2 we compare the results obtained with and without the reweighting term. Even at V = 8 4 the results of the non reweighted simulation become quickly biased and non compatible with the reweighted ones as soon as the reweighting factor a k deviates from zero. Another way to see this is to consider the sampling imbalance between the boundaries of the interval. Assuming that the intervals are small enough we can assume a linear dependence of log ρ inside the intervals (as in LLR), which allows us to estimate the imbalance as:

ρ(S I k -∆/2) ρ(S I k + ∆/2) exp{a k ∆}. (4.16)
Because of the imbalance we could have an highly skewed sampling distribution inside each interval leading to a biased evaluation of the tilde operators. In the extreme case, when all the sampling happens close to one of the borders, the observable that we would be measuring would resemble more X(S I k ± ∆/2) rather than of X(S I k ). With this method the implementation of the evaluation of observable in the LLR algorithm is straightforward. Once the standard LLR root finding procedure is terminated we stop the updating of the reweighting factors a k and we start to measure the observables of interest in a standard Monte Carlo simulation restricted into the interval. This allows us to evaluate any number of observables with a fixed numerical overhead due to the extra Monte Carlo steps required to evaluate the observables.

Integration strategies and statistical analysis details

The last obstacle to the evaluation of the observables is the numerical integration of Eq.(4.13), that, by expanding both integrals, reads

X = ρ(s) X(s) cos{µ s} ds ρ(s) cos{µ s} ds . (4.17) 
These integrals pose the same threads as the one already discussed in the previous chapter, with the denominator being exactly the same. Therefore, we know that to obtain reliable results for the integration, we have to write the integrand as a continuous function described by the smallest possible amount of parameters. Here, we consider a polynomial ansatz for the observable function in the form X(s) = i c i s 2i , where the odd powers are not considered, again due to symmetry reasons. The DoS is instead taken according to the procedure described in the previous chapter. With this assumptions we can write the expectation value as

X = i c i ρ(s) s i cos{µ s} ds ρ(s) cos{µ s} ds = i c i M i (4.18) 
where we have expressed it as a sum over the oscillatory moments M i multiplied by the best fit parameters of the tilde operator. It is important to note that by writing the expectation values in this form we can obtain all the oscillatory moments directly from the definition of the DoS while the best fit parameters are obtained independently from the fit of the observables.

To estimate the statistical variance of the observables we employ the following bootstrapping scheme. 3 -Results for the momentum expansion of the oscillatory integral of φ 2 for a 6 4 lattice at µ = 0.8. In the top plot we show the results of the bootstrap procedure for each individual momentum, while on bottom plot we show the sum of the momenta (i.e. the reconstructed expectation value for the observable) and in black the extrapolated expectation value φ 2 = 0.11910 [START_REF] Aarts | Stochastic quantization at finite chemical potential[END_REF]. For both plots the differently coloured series of points represents the expectation values obtained from different polynomial ansatz for the reconstruction of the DoS function, the polynomial orders taken into consideration in this plot range from 1 to 13 (only the odd ones).

In Fig. 4.3 we show an example of this procedure for φ 2 in the relativistic Bose gas. Having obtained a sample of the a k parameters and of the X(s) we have first obtained an estimate for the oscillatory moments by integrating the DoS reconstructions. Then we have obtained each term of Eq. (4.18) by multiplying the oscillatory moments with the best fit parameters of the polynomial ansatz for the tilde operators. In the plots we show the results for i from 1 to 5 and for each we have performed the analysis for seven different polynomial orders for the density rebuilding (l from 3 to 15). As shown the c i M i terms decay quickly to zero, and their sum converges rapidly to a stable result. Moreover we can appreciate also a good level of stability with regards to the polynomial order of the density reconstruction.

With this approach the evaluation of observables for the phase-quenched system comes naturally and avoids most of the technical problems present when evaluating the observables in the full system. In particular given the definition of the phase quenched expectation values

X pq = Dφ X[φ] e -S R [φ] Dφ e -S R [φ] (4.19)
we can give an estimate of the phase-quenched expectation values in terms of one dimensional integral of the DoS and the X(s) functions as

X pq = X(s) ρ(s) ds ρ(s) ds . (4.20) 
The evaluation of these observables thus follows the one of the full system ones. However, by avoiding the multiprecision oscillatory integration the evaluation of the phase quenched ones results easier and numerically more stable.

Silver Blaze phenomenon in the relativistic Bose gas

With this technique we now proceed to study the expectation values of two relevant operators in the relativistic Bose gas. The numerical simulations will use the same statistics for the LLR part as the simulations in the previous chapter, on top of that restricted Monte Carlo evaluation will sample an additional 10 5 configurations in each interval. Following the integration strategy described above we have obtained reliable results in both phases of the relativistic Bose gas and in particular in region where the sign problem is strong. However, in the following we will focus on the low density region (µ < µ c ) with the intent to assess the Silver Blaze phenomenon.

|φ 2 |

The first observable that we are going to examine is the square of the field modulus, defined as:

|φ 2 | = -T V ∂ ln Z ∂η . (4.21) 
Where η = m 2 + 2d, the lattice coupling of the φ 2 term in the action (2.15). On the lattice this simply becomes In Fig. 4.4 we report the results relative to lattice volumes V = 4 4 , 6 4 and 8 4 and for chemical potentials ranging from zero to µ = 1.2. In the upper plot we show the expectation values for the phase-quenched system where we can appreciate a clear change in behaviour in proximity of the phase transition (µ c 1.15) but also a non trivial dependence of the field square over the chemical potential in the low density phase. This dependence is virtually absent once we consider the results for the full system (bottom graph) where the value of the observable remains constant for a wide range of values in the chemical potential, a clear indication of the presence of the Silver Blaze phenomenon.

|φ 2 | = 1 N 3 s N t x (|φ x |) 2 , ( 4 

Particle density

The second observable we are going to study is the particle density, defined as

n = T V ∂ ln Z ∂µ = 1 N 3 s N t x n x . (4.24) 
Where we have already written the lattice discretized observable in terms of the local density operator n x is defined as

n x = (δ ab sinh(µ) -i ab cosh(µ)) φ a,x φ b,x+ 4. (4.25) 
Here. the field φ is written as φ = (φ 1,x + iφ 2,x ) separating the real and imaginary components, δ ab is the Kronecker delta and ab is the totally antisymmetric tensor.

It is easy to see that when summed over all the lattice indexes the second term is nothing but the imaginary part of the action S I = x ab φ a,x φ b,x+ 4, leading to the

definition n = 1 N 3 s N t n R [φ] -i cosh(µ)S I [φ] . (4.26) 
Where with n R [φ] we have identified the real part of the local density operator.

We can now write this expectation value in our DoS formalism as

n = 1 Z ds (sinh(µ)n R (s) -i cosh(µ)s) ρ(s) e -i sinh(µ)s = 1 Z ds ρ(s) sinh(µ) n R (s) cos(sinh(µ)s) + ρ(s) sinh(µ) s cos(sinh(µ)s) (4.27)
Where we have identified the imaginary part of the action S I [φ] with s and used some basic trigonometry relations to manipulate the oscillatory functions. It is important to note that in this formulation only the first term requires the evaluation of the tilde expectation values (ñN R (s)) and the subsequent oscillatory moment integration, the second term is defined as the first case that has been discussed in this chapter, thus it can be evaluated directly from the definition of the DoS. Regardless of this more convoluted formulation the results that we have obtained (shown in Fig. 4.5) showed a remarkable level of precision. As for the field square we see that for the phase-quenched results the density varies with the chemical potential in the region µ ≤ µ c while when the full system observable is taken into consideration we observe that the density stays close to zero for a wide range in the chemical potential. It is also possible to observe that for increasing volumes the density starts to differ distinctly from zero closer to the phase transition hinting that in the thermodynamic limit the density stays at zero until the chemical potential reaches the critical value.

The technique introduced in this chapter is a substantial step forward for the density of states approach to the sign problem. It enables an efficient and totally general way to measure the expectation value of observables in the DoS formalism, making this method one of the most versatile.

With the results obtained in this chapter we conclude our study on the relativistic Bose gas. This model has served as a good benchmark for the development of the numerical techniques described in the previous two chapters and we have been able to investigate some of the most common features shared by lattice field theories affected by the sign problem. In the next chapter we will move on to describe the challenges that arise when instead a fermionic system is taken into consideration.

Chapter 5

DoS approach to fermionic systems

In this last chapter we are going to discuss the challenges arising from the simulation of fermionic theories at finite density. We are going to study the Thirring model [START_REF] Thirring | A Soluble relativistic field theory?[END_REF], an interacting fermionic theory that shares common properties with QCD, such as the presence of continuous chiral symmetry breaking that has been the subject of multiple studies [START_REF] Del Debbio | Monte Carlo simulation of the three-dimensional Thirring model[END_REF][START_REF]The Three-dimensional Thirring model for small N(f )[END_REF][START_REF] Hands | The Phase diagram of the three dimensional Thirring model[END_REF][START_REF] Hands | Critical flavor number in the 2+1D Thirring model[END_REF] in the 2 + 1 dimensional formulation of the theory. Moreover, the finite density theory has been recently studied via Lefschetz thimble simulations [START_REF] Alexandru | Monte Carlo calculations of the finite density Thirring model[END_REF][START_REF] Alexandru | Sign problem and Monte Carlo calculations beyond Lefschetz thimbles[END_REF], proving to be a useful toy model for testing numerical techniques suitable for studying the sign problem when fermionic matter is present.

In the following we are going to describe two strategies to tackle the sign problem of the Thirring model in 1 + 1 dimensions at finite density. In the first one we are going to study the theory in the commonly used auxiliary field formulation using the density of states techniques studied in the previous chapters. In the second we are instead going to adapt the density of states formalism to a recently developed formulation of the Thirring model [START_REF] Chandrasekharan | The Fermion bag approach to lattice field theories[END_REF][START_REF] Chandrasekharan | Fermion bags, duality and the three dimensional massless lattice Thirring model[END_REF][START_REF] Ayyar | Benchmark results in the 2D lattice Thirring model with a chemical potential[END_REF] that allows for efficient simulation of large lattices.

Thirring Model

The model we are going to study in this chapter is defined in the continuum by the Euclidean action

S = d 2 x ψα / ∂ + µγ 0 + m ψ α + g 2 2N F ψα γ µ ψ α ψβ γ µ ψ β , (5.1) 
where µ is the chemical potential, α, β = 1, . . . , N F are the flavour indices and the Dirac spinors have two components.

A common way to treat the four fermion interaction is to introduce an auxiliary field A µ . This reduces the continuum action to the form

S = d 2 x N F 2g 2 A µ A µ + ψα / ∂ + µγ 0 + i / A + m ψ α . (5.2)
A possible discretization of this action on the lattice then reads

S = x,ν N F 2g 2 (1 -cos A ν (x)) +
x,y χα (x)(M x,y (A, µ) + mδ x,y )χ α (y) (5.3) where χ(x) are Grassmann numbers with no spinor indices and M is the massless staggered fermion matrix modified by the presence of the chemical potential and the auxiliary field

M x,y (A, µ) = ν η x,ν 2 
e iAx,ν +µδ ν,0 δ x+ν,y -e -iAy,ν -µδ ν,0 δ x,y+ν .

(5.4)

In this last equation η x,ν are the common staggered matrix phase factors defined as η x,0 = 1 and η x,1 = (-1) x 1 . Note that in the following we will consider one species of staggered lattice fermions describing effectively two physical fermions. With this formulation the fermionic part of the action is reduced to a simple bilinear in the Grassmann variables, thus the partition function of the theory can be recovered via a standard Gaussian integration as Z = D χDχ DA e -S = DA det(M (A, µ)) e x,ν N F g 2 (1-cos Aν (x)) .

(5.5) For µ = 0 the determinant det(M (A, µ)) is not real. The presence of a complexvalued path integral measure will prevent standard Monte Carlo techniques from providing robust numerical results for this model. In the next section, we will discuss the possibility of using the numerical techniques introduced in Chapter 3 for the auxiliary field formulation of the Thirring model.

Naive DoS approach

Given the partition function (5.5), the definition of a DoS for the model comes almost naturally. We start by rewriting the complex-valued determinant in polar form det(M (A, µ)) = | det(M (A, µ))| e i Im(ln det(M (A,µ)) .

(5.6)

With this definition we can write an effective action in a form similar to what we have studied in the previous chapters

S ef f = x,ν N F 2g 2 (1 -cos A ν (x))) -ln(| det(M (A, µ))|) -i Im(ln det(M (A, µ)). (5.7)
In particular we split it in its real and imaginary parts

S R = x,ν N F 2g 2 (1 -cos A ν (x))) -(ln(| det(M (A, µ))|)) S I = θ M = Im(ln det(M (A, µ))) (5.8)
where, for the time being, the imaginary part is defined in the compact interval [-π, π) and, unlike the relativistic Bose gas, the chemical potential cannot be treated as a simple coupling, but will have a more intricate effect to the action entering trough the fermion determinant. Nevertheless, we can define the density of states, in complete analogy with what we have done in Chapter 3, as

ρ(θ) = 1 N DA δ(θ -Im(ln det(M (A, µ))
)) e -S R .

(5.9)

The partition functions for the full and phase quenched systems are then recovered as the one-dimensional integrals

Z = π -π
dθ ρ(θ) cos(θ)

Z pq = π -π
dθ ρ(θ).

(5.10)

Even though these definitions are straightforward and exact, having the phase of the fermion determinant defined in the interval [-π, π) will pose some insurmountable challenges if the sign problem becomes strong. To analyze this aspect, we introduce the unwrapped distribution. If we assume the leading contribution to the distribution of the fermion determinant phase being a Gaussian, the DoS in our approach would become a so-called wrapped Gaussian distribution, defined in the interval [-π, π) as interval [-π, π). This will quickly make our LLR approach unsuitable as the logarithmic derivatives of the DoS would rapidly approach zero throughout the entire interval preventing the algorithm from obtaining non-zero estimates with enough statistical significance.

ρ W G (θ, σ) = 1 σ √ 2π +∞ k=-∞ exp -(θ + 2πk) 2 2σ 2 . ( 5 
To overcome this issue we are going to obtain the un-wrapped phase defined in the interval (-∞, +∞) by integrating the derivative of ln det M (A, µ) with respect to µ according to

θ unw = µ 0 dµ Im ∂ ln det M (A, µ ) ∂µ ) .
(5.12)

Moreover, the integrand of (5.12) can be written as

∂ log det M (A, µ) ∂µ = Tr M -1 (µ) ∂M (µ) ∂µ , (5.13) 
thus being directly evaluable numerically. With this, we have traded the evaluation of the determinant with the inversion of the fermionic matrix, an equivalently expensive numerical task. To reduce the numerical overhead necessary to compute this integration we are going to employ an adaptive numerical integration scheme with a relatively low error threshold. The integration will then give us just a rough estimate of the phase from which we will obtain the wrapping number k (i.e. the number of times the final phase "wraps" around the 2π interval). Then with just one evaluation of the determinant we can obtain a precise evaluation of the un-wrapped phase as θ unw = Im(ln det(M (A, µ))) + 2πk.

(5.14)

In the bottom plot of Fig. 5.1 we show a comparison between the wrapped and unwrapped phase of the fermionic determinant in a phase quenched simulation. Although the phase unwrapping will add a considerable numerical overhead to the simulations the advantages arising from the definition of the DoS in the entire real axis are already evident for the small lattice volume that we are considering.

With this last trick we have all the elements needed to apply our LLR method to the Thirring model. The simulation will follow the scheme discussed in the previous chapters. In particular, we will focus on the region 0 < θ < 2π dividing it in 80 intervals of width ∆ θ = π/40 with the k-th interval centred in θ k = (k + 0. with this implementation is quite small, the evaluation of the phase factor gave consistent results for both methods. From Fig. 5.3 we see that the phase factor decreases with increasing chemical potential, but no particular change in behaviour is observed. This comes in contrast to what is observed in [START_REF] Ayyar | Benchmark results in the 2D lattice Thirring model with a chemical potential[END_REF], where by simulating a much larger lattice a steep change in behaviour happens at µ ∼ 0.4. However this discrepancy is potentially due to the size of the lattice examined.

The precise evaluation of the phase of the fermionic determinant is the limiting factor of this method. Therefore, while the results discussed so far are a proof of concept for this procedure, a direct application of this technique to larger volumes or other fermionic theories in higher dimension (QCD in the first place) would suffer from an important slowing down due to the matrix inversions needed.

With regard to this we would like to report a recent study [START_REF] Gattringer | New density of states approaches to finite density lattice QCD[END_REF] in which a possible solution has been proposed in the context of lattice QCD. Without going into the details of the method, this new proposal suggests a clever rewriting of the fermionic determinant enabling the use of standard pseudo-fermion techniques while ensuring a definition of the action appropriate for the DoS approach.

Worldline formulation

In this last section we are going to describe a possible alternative to the direct application of the DoS formalism. Specifically we are going to use the so-called worldline formulation [START_REF] Ayyar | Benchmark results in the 2D lattice Thirring model with a chemical potential[END_REF] of the Thirring model in 1+1 dimension at finite density. The results we shall show here represent a preliminary study. In the following we are going to follow the derivation provided in [START_REF] Chandrasekharan | The Fermion bag approach to lattice field theories[END_REF][START_REF] Ayyar | Benchmark results in the 2D lattice Thirring model with a chemical potential[END_REF] as it will be the base for our numerical approach.

We start by defining the action of the lattice Thirring model as S =

x,y χx (D x,y (µ) -mδ x,y ) χ y -U

x,ν χx χ x χx+ν χ x+ν .

(5.15)

Here D(µ) is the staggered Dirac matrix

D x,y (µ) = ν η x,ν 2 
e µδ ν,0 δ x+ν,y -e -µδ ν,0 δ x,y+ν ,

where again η x,ν are the staggered phase factors and µ the chemical potential. The other two parameters appearing in the action are instead the four fermion interaction coupling U and the bare lattice mass m. These are related to the parameters in (5.1) by the relations:

U = 0.25 I 0 ( N f /g 2 ) I 1 ( N f /g 2 ) 2 -0.25, m = I 0 ( N f /g 2 ) I 1 ( N f /g 2 ) m aux , (5.17) 
with I 0 and I 1 being the modified Bessel function of order 0 and 1 respectively. The first step to obtain the worldline representation is to enforce the fermion bag representation [START_REF] Chandrasekharan | The Fermion bag approach to lattice field theories[END_REF]. This is achieved by expanding the Grassmann exponential of the mass and interaction terms in the definition of the partition function Z = d χdχe -S = d χdχ e -x,y χxDx,y(µ)χy e m x χxχx e U x,ν χxχx χx+ν χ x+ν .

(5.18) Focusing on the mass term we have that

e m x χxχx = x (1 + m χx χ x ), (5.19) 
where, due to the Grassmann integration properties, only the terms of order 0 and 1 in the exponential expansion survive. We can now rewrite this term by introducing a monomer field n x on each lattice site as

(1 + m χx χ x ) = nx=0,1 (m χx χ x ) nx , (5.20) 
with n x taking the values 0 and 1 depending on whether or not a monomer is present at the lattice site x. With this we can see that a configuration of monomers [n] with N m monomers will contribute to the partition function with a factor m Nm .

Likewise the interaction term can be rewritten by introducing a dimer field d x,ν

(1 + U χx χ x χx+ν χ x+ν ) = dx,ν =0,1 (U χx χ x χx+ν χ x+ν ) dx,ν . (5.21) 
Where again d x,ν takes the values 0 and 1 according to whether or not a dimer is present on the sites x and x + ν. The total contribution to the partition function due to the dimers in a configuration [d] with N d dimers is then U N d . We can now recover the partition function as the sum over all the configurations of the monomer and dimer fields considering that, due to the Grassmann nature of the fermion field, configurations with overlapping monomers and dimers are not allowed. The remaining Grassmann integral can then be obtained as the determinant of the free fermion matrix defined on the sites not occupied by either a monomer or a dimer,

Z = [d],[n] m Nm U N d d χdχe -x,y∈[f ] χxDx,yχy = [d],[n] m Nm U N d det (W ([f ], µ)) , (5.22) 
where with W ([f ], µ) we have defined the fermion matrix D(µ) on the free sites [f ]. For µ = 0 the remaining fermionic matrix W ([f ], µ) is anti-symmetric, and its determinant real and positive, however, for µ = 0 this no longer holds and the determinant can become negative, giving rise to the sign problem.

With this formulation it is now possible to introduce the worldline representation by expressing the determinant of W (

[f ], µ) in the Grassmann integral form det (W ([f ], µ)) = x∈[f ] d χx dχ x e -x,y∈[f ] χxD KS x,y (µ)χy = x∈[f ] d χx dχ x x,x+ν∈[f ] 1 - 1 2 η x,ν e µδ ν,0 χx χ x+ν + 1 2 η †
x,ν e -µδ ν,0 χx+ν χ x .

(5.23)

Where again we have considered only the terms of order 0 and 1 in the exponential expansion and the two products run on all the free sites (x ∈ [f ]) and all the neighbouring sites within the free sites (x, x + ν ∈ [f ]). This writing can be further simplified by introducing some oriented fermion link variables l x,ν = 0, ±1, with 1 representing the term χx χ x+ν and -1 the term χx+ν χ x . As the Grassmann integration gives non-zero contributions only when there is exactly one χ and one χ for each site x, the newly defined link variables must form closed and non-overlapping loops over the remaining free sites. Hence, the weight of a configuration of fermion world lines is given by the product of the expansion coefficients in (5.23) and a factor -1 for each closed loop to account for the reordering of χ x and χx to match the ordering of the measure.

The remaining determinant can be written as the sum over all the configurations of links [l] of the aforementioned weights as

det (W ([f ], µ)) = [l] (-1) N loops x,ν e -µlx,ν δ ν,0 l x,ν η x,ν 2 |lx,ν | , (5.24) 
where N loops is the number of closed loops of oriented link variables.

In general, the weight of a configuration of link variables can be negative. This would lead to an ill defined measure for the path integral and the onset of the sign problem. To better investigate the source of the negative weights we can rewrite (5.24) as

det (W ([f ], µ)) = [l] loop∈l - x,ν∈loop e -µlx,ν δ ν,0 l x,ν η x,ν 2 , (5.25) 
where we have rearranged the product of the weights as the product of the cumulative weights of each closed loop in the configuration [l]. This allows us to track the source of the overall negative weight to each loop, a feature that will become useful in the following.

To evaluate the rules that make a loop positive or negative weighted let us start by considering the smallest possible closed loop composed by two link variables creating a closed loop between to two adjacent sites. From (5.25) is easy to see that any two-link closed loop will have a positive weight given by where we have used that for any direction η 2

-exp(-µ(l x,ν -l x+ν,-ν )δ ν,0 ) l x,ν l x+ν,-ν η 2 x,ν 4 = 1 4 . ( 5 
x,ν = 1 and l x,ν = -l x+ν,-ν . From this simple definition we can start to build every possible loop that does not wrap around the lattice via two deformations, as showed in Fig. 5.5. The first consists in replacing a link with a staple or the other way around, this modification does not change the sign of the loop and does not change the number of sites included inside the loop. The second deformation instead inverts a corner of the loop, this time the sign of the loop will change and the number of sites enclosed by the loop will increase or decrease by one. By combining these two deformations we can create any non-wrapping loop in the lattice and, in particular, we can see that any closed loop that encloses an even number of sites will have a positive weight while loops enclosing an odd number of sites will have negative weight. The case of wrapping loop is instead more complicated as it is not possible to give a general rule to define the sign of the loops, that must be evaluated case by case.

The overall weight of a configuratioin will then be the product of the monomer and dimer contribution m Nm U N d and the weight of the closed fermion loops on the free sites. The sign of each configuration will instead depend on the number of negatively weighted loops.

In regimes where the configurations have only positive weights (massless with open boundary conditions [START_REF] Rantaharju | Accurate simulation of the finite density lattice Thirring model[END_REF]), this worldline formulation provides an efficient way of generating configurations. It is in fact possible to use a worm algorithm to update the link variables as well as the dimer configurations.

The procedure to update the links starts by randomly selecting a link in the lattice l x,ν and changing its direction to l x,ν with probability P (l x,ν → l x,ν ) = min(1, e µl x,ν δ ν ,0 -µlx,ν δ ν,0 ).

(5.27)

If the move is accepted the new link configuration will contain some non closed loops. In particular, there will be two defects in the lattice, a site with two links pointing to it (the head of the worm) and one with no links pointing to it(the tail of the worm). The procedure then suggest a new direction for the original link pointing to the head site. The newly changed link will then point to a new site that will have two links pointing to it, thus moving the head of the worm to where the procedure will be repeated. The update is finished when the newly proposed link points to the tail site of the worm curing all the anomalies in the links variables and generating a new valid configuration made only of closed loops. Moreover, also the dimer configuration can be updated during the worm update. For example we can exchange two links creating a minimal loop into a dimer with a probability min(1, 4U ), as the weight of a dimer is U and the weight of a minimal loop (5.26) is 1/4. The same procedure can be applied in the massive case and with any type of boundary condition, where we also have the possibility to update and move the monomer field alongside the links and dimers. However, due to the possibility of having negative weighted configurations, the update procedure is performed in the sign-quenched approximation, where the weight of each configuration is given by the absolute value of (5.24). This approximation is equivalent to the phase-quenched approximation as it allows for the use of standard Monte Carlo techniques, but makes the results for the full theory harder to recover via direct measurements due to the cancellations typical of the sign problem.

DoS evaluation

In the following we are going to employ the DoS approach [START_REF] Francesconi | Computing general observables in lattice models with complex actions[END_REF] to try to tackle the sign problem arising from the presence of negative valued fermionic loops. However, due to the intrinsic discrete nature of the sign in the worldline formulation we won't be able to apply the LLR algorithm, we will in fact use the Wang-Landau algorithm. Nevertheless, as the sign in this formulation is either +1 or -1, we will define the density function over a related quantity, the number of negative-weighted loops, which we expect to approach a continuous quantity in the infinite volume limit.

Therefore we set up our Wang-Landau simulation by defining the density function as ρ(s) = e -Fs , s ∈ R + (5.28)

where s is the sector number, identifying the configurations having s negative loops and F s is the free energy associated to the s sector. We then proceed to implement the Wang-Landau method with the following steps:

1. We start by initializing the free energy F s with a standard sign-quenched simulation of N updates. By defining the number of visits to a certain sector with N s we thus define the free energy of each sector as

F s = log( + N s N ).
(5.29)

This will result in a rough estimate of the free energy landscape, but will save time in the starting phase of the Wang-Landau procedure as the most frequent sectors will be already heavily suppressed.

2. The simulation then proceeds as a standard sign-quenched simulation would, but with an extra accept/reject step. As the worm algorithm updates the configuration jumping from sector s to sector s , therefore changing the number of negative loops, the move is accepted with probability P = max 1, e Fs-F s .

(5.30)

3. After a set number of updates (generally 1), the free energy landscape is updated. After N s visits to the s sector the relative free energy will be updated according to

F s (n) = F s (n -1) + δ N s + 1 (5.31)
where δ is a tunable parameter that defines the base step size of the update.

A large δ will result in a quickly converging procedure, but larger fluctuations in the asymptotic behaviour; for small δ the opposite will occur.

In this procedure the most common sectors are visited more frequently, thus their free energies will increase faster than those of the less visited ones. This, in the limit of infinite update steps, will lead to a definition of F s that fully compensate the sampling probability of the sector s. The simulation would then freely move from sector to sector.

In practice we will run one instance of the Wang Landau method to obtain a rough estimate of the F s landscape, reaching quickly an almost uniform sampling. Then we perform a standard Monte Carlo simulation where we measure the refinement to F s directly by counting hits to each sector avoiding the known criticality of the Wang Landau convergence. In Fig. 5.6 we show the results of this procedure for a V = 128 × 128 lattice and chemical potential ranging from 0 to 0.8. Apart from the evident change in the behaviour of F s for the different values of the chemical potentials it is worth noting that the definition of the density (F s = log ρ(s)) over the number of negative loops is remarkably smooth regardless of the apparently arbitrary choice of the support variable.

Moreover, in Fig. 5.7 we show the volume scaling of the sector free energy for lattices of size V = L × L with L ranging from 64 to 320. Here, the values of the free energy are shifted by log(L) to increase the readability of the plots and are displayed as a function of the negative loop density (s/ √ V ). From the plot is possible to see how at µ = 0 (Left plot) the increase of the lattice volume would produce a finer approximation of the DoS, while at µ = 0.3 (Right plot) we observe also a non-trivial scaling behaviour. In both case we can appreciate how the DoS function tends to accumulate to a limiting function, hinting to the presence of a continuous function describing this quantity in the infinite volume limit.

Average sign

In analogy with the continuous variant of the DoS we can define the average sign factor, evaluating the strength of the sign problem, as the average value of the sign of the fermionic determinant. Having expanded the definition of the density function on s (the number of negative loops) we have that the average sign can be recovered (5.32)

Where the free energy of the configurations with s even will give a positive contribution and the opposite will occur for odd s. However, even with our accurate measure of the free energy of each sector a direct evaluation of this quantity would prove to be roughly as accurate as that of a standard phase-quenched simulation as the statistical error on the most common sectors will dominate the noise of the sum. The apparent accumulation of the density to a continuous function in the infinite limit can suggest us a method to increase the accuracy of the determination of the sign factor. In particular we can use continuity to constrain the data in a similar way as in the continuous definition of the DoS approach.

To this end, we employ a local polynomial regression to smooth our discrete data. For each sector we find a second order polynomial fit P (s) to F s that minimizes the deviation

χ s = x (P (x) -F x ) 2 σ 2
x e (|x-s|/w) 2 /2 .

(5.33)

Here, σ s is the statistical error for the measurement F s and w is a free parameter describing the width of the fitting window. This local regression forces the continuity and allows for the information of neighbouring points to be used to determine the smoothed value at a given s. At w = 0 the direct sum is recovered, while at large values of w the statistical error of the final result is reduced but some bias will be inevitably added. With the scaling behaviour shown in Fig. 5 bias at fixed w. Alternatively, we also tried a global fitting approach very much similar to the one discussed extensively in Chapter 3. However, this time the data showed greater variations (most set had two maximum) that prevented the fitting procedure to obtain reliable results in most instances. Only at µ = 0, where the sign problem comes from the mass, we were able to employ the global fitting reliably. In Tab. 5.1 we report the preliminary results obtained with this analysis technique on lattices of size V = 64 2 , 128 2 and 256 2 with µ = 0 and no interaction. In the table the entries with numerical values for the parameter w are obtained with the local regression, while the entries listed with P olynomial n are obtained with a global fit of optimal order n. Furthermore we also give an estimate of the bias as the maximum deviation max(δ s /σ s ) with δ s as the difference between the raw values of F s and the smoothed ones.

Although we were not able to obtain an estimate of the average sign statistically different from zero for any of the volumes taken into consideration, the values obtained with the smoothing techniques showed a relevant increase in precision, highlighted by a smaller standard deviation of the results. While for the smaller volume this goes with an increase of the bias for both the local regression and the fitting approach, once large volumes are considered, thus a higher number of sectors come into play, the bias introduced is minimal and we could achieve an increase in the precision of around ten orders of magnitude compared to the direct sum of the sector weights. The lack of a known easy sign problem region for the Thirring model in this representation is another issue as we could not test this method in an easy scenario.

In conclusion, in this chapter we have explored two possible application of the density of states formalism for fermionic theories affected by the sign problem. In our naive implementation we showed how the definition of a density function employing the LLR algorithm allows for the precise evaluation of the phase factor. Our implementation is however limited by the numerical cost associated with the evaluation of the full determinant, but recent developments in the field have made this formulation of the DoS appealing for future studies.

Lastly we have investigated the possibility to apply the DoS formalism to tackle the discrete sign problem arising from the worldline formulation of the Thirring model. This approach allows for and efficient evaluation of the discretized density of states function with great precision, but at present we were not able to obtain statistically relevant results for the average sign.

Conclusions

In this thesis, we have explored in details the density of states approach to the sign problem. In particular, we have reviewed and developed the LLR method extending its domain of applicability to the evaluation of expectation values of generic observables.

In Chapter 3, we have given particular importance to the control of the bias in the LLR algorithm in two essential aspects: the evaluation of the intrinsic bias, and the fidelity of the DoS rebuilding technique. Regarding the former, we have shown that, while the LLR algorithm is exact in the limit of ∆ → 0, the necessity of having finite intervals widths in numerical studies introduces an intrinsic bias to the stochastic root-finding procedure. We have then characterized this bias showing that it exhibits a quadratic scaling dependence on the interval width ∆ and a linear one on the third derivative of log ρ. With this, we have been able to produce a simple scheme that ensures bias-free results by a rescaling of the relevant simulation parameters. We have then discussed possible rebuilding techniques for the DoS function, with the polynomial fitting technique being by far the most reliable. Once again, we have devised a methodology to avoid the introduction of unwanted biases by comparing the fit polynomial with some independently measured observables, thus avoiding under-fitting and over-fitting errors.

Equipped with all these techniques, we have studied the relativistic Bose gas at finite density. We have obtained reliable results for volumes up to 16 4 and a wide range of chemical potentials. In particular, we have been able to evaluate the phase factor down to O(10 -480 ) testing the capabilities of the method to explore regions where the sign problem is severe. By considering the free energy difference ∆F = 1/V log e iϕ we have also been able to identify the two different phases of the system and estimate the value of the critical chemical potential, albeit trough a phenomenological procedure, in agreement with the values already known in the literature.

After that, we focused our attention on the evaluation of general observables (i.e. any operator that can be written as a function of the field variables) in the DoS formalism. We have reviewed some ideas and defined a method that could be efficiently implemented within the existing LLR procedure. In particular, we showed that the vacuum expectation values of an observable X[φ] can be expressed as the ratio of two oscillatory integrals. Moreover, the expansion of such integral in terms of the oscillatory moments allows for the separate evaluation of the oscillatory quantities (depending only on the density of states ρ) and some observable-related polynomial coefficients. We then explored the Silver Blaze phenomenon of the relativistic Bose gas with this technique for lattices up to 8 4 showing again that the procedure is able to obtain reliable results in agreement with other methods.

Lastly, in Chapter 5 we have presented two exploratory studies that employ the density of states formalism to study the Thirring model at finite density. The first one is a naive implementation involving the evaluation of the full determinant. Although the use of the DoS techniques posed no problem the computational overhead due to the computation of the fermionic determinant prevented the applicability of this method on large lattices. In the second case, the Thirring model is studied in its worldline formalism allowing for efficient simulations even on large lattices. Here, the sign problem appears as a sum of positive and negative contribution rather than an oscillatory integral. Nevertheless, we have been able to estimate the DoS on the basis of the number of fermionic loops that showed some interesting scaling properties. The evaluation of the sign-factor, however, did not lead to any value statistically different from zero even when smoothing techniques have been used.

With the results obtained in this thesis the DoS approach is now a more complete method to study systems affected by the sign problem. In particular, the results obtained in Chapter 3 represent currently the most precise evaluation of a phasefactor in literature, and the evaluation of generic observables is again a first for the density of states approach.

With some recent interest from other members of the lattice community and thanks to the present work we think that the first results coming from a study of QCD at finite density with the DoS approach could come in a relatively short time.

Moreover, possible applications of the presented methodology also include non relativistic matter, notably ultracold atomic gases [START_REF] Berger | Complex langevin and other approaches to the sign problem in quantum many-body physics[END_REF]. Besides fermionic models, the experimental possibility of coupling neutral atoms to artificial gauge potentials [START_REF] Dalibard | Colloquium: Artificial gauge potentials for neutral atoms[END_REF] also challenges simulations of pure bosonic systems, e.g. bosons in a rotating frame [START_REF] Hayata | Complex langevin simulation of quantum vortices in a bose-einstein condensate[END_REF] or spin-orbit coupled bosons [START_REF] Kawasaki | Finite-temperature phases of two-dimensional spin-orbit-coupled bosons[END_REF][START_REF] Attanasio | Thermodynamics of spin-orbit-coupled bosons in two dimensions from the complex langevin method[END_REF] which are strongly affected by a sign problem rather similar to the relativistic Bosons studied in this thesis. It would be interested to address these problems to obtain reliable studies of the corresponding phase diagram beyond the mean-field approximation. as a function of the upper integration limit for volumes V = 6 4 and 10 4 at µ = 0.8. Here, we plot the absolute value of the partially integrated phase factor on a logarithmic scale for ease of visualisation we are plotting the abs() of the phase factor, such a choice affects only the region for which the integral has not yet converged. These plot are obtained using polynomial order l = 5 chosen according to the procedure described in Sec. 
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 1 Figure 1 -Sketch of the QCD phase diagram [4].
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 221 Figure 2.1 -Results of a reweighting simulation of the relativistic Bose gas on a 6 4 lattice with m = λ = 1 and chemical potential ranging from 0 to 2.0.
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 3 This definition of the DoS function leads to its interpretation as not only the number of states having S I [φ] = s but instead as the cumulative Boltzmann weight of those field configurations.By inserting this definition of ρ(s) in (3.1), the partition function of the full system can then be recovered as the Fourier transform of the DoS functionZ(µ) = F(ρ, µ) =ρ(s) e -iµs ds.(3.4) This expression can be further simplified if we take into account the fact that the DoS function defined in (3.2) is in general an even function (ρ(s) = ρ(-s)) reducing the integral to its most simple form Z(µ) = ρ(s) cos(µs) ds.(3.5) 
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 31 Figure 3.1 -Top: evolution of the Newton-Raphson method for 10 independent simulations (replicas). A very rapid initial convergence towards the root of (3.14) and a subsequent non-converging oscillatory regime are clearly visible. Bottom: evolution of the Robbins-Monro stochastic root finding procedure for 10 independent simulations (replicas).
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 32 Figure 3.2 -The plots show the standard deviation during the two different root finding procedures: Top Newton-Raphson, Bottom Robbins-Monro. Values of the standard deviation of independent simulations normalised to the mean value during the Newton-Raphson procedure ( σ N R ) are plotted against the number of root finding steps. Each thin coloured line represent a set of 10 independent simulations centred at the same value of S k , while the red line is the mean of such values for different S k . Plotted in grey, we show the ±1σ region and the dashed black line represent the theoretical best scaling of the standard deviation (1/ √ N RM ) for the Robbins-Monro procedure.
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 33 Figure 3.3 -Results of a FFA simulation of the relativistic Bose gas on a 8 4 lattice at µ = 0.8. In the figure are plotted the values of the normalized restricted and reweighted expectation values ∆S /∆ versus the reweighting parameter a over the entire range of values taken into account (left) and a focus in the region where the data crosses zero (right), here the corresponding LLR estimates are plotted as vertical lines.
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 34 Figure 3.4 -Simulation results (red points) performed at different values of ∆ compared to the predicted bias obtained by using the best fitting polynomial to estimate the third derivative of log ρ. Both the bias effect and the increase in precision are clearly visible in the plot.
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 435 Figure 3.5 -Comparison between the piecewise approximation of the DoS and the fitted approximation
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 836 Figure 3.6 -Partially integrated phase factor of the relativistic Bose gas, Eq.(3.27), as a function of the upper integration limit for volumes V = 64 and 10 4 at µ = 0.8. Here, we plot the absolute value of the partially integrated phase factor on a logarithmic scale for ease of visualisation we are plotting the abs() of the phase factor, such a choice affects only the region for which the integral has not yet converged. These plot are obtained using polynomial order l = 5 chosen according to the procedure described in Sec. 3.4.2.
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 837 Figure3.7 -Results of the integration of the phase factor of the relativistic Bose gas for different values of the subsampling ratio for a V = 6 4 lattice at µ = 0.8. In the figure are plotted the results of the fitted approach integration (red) and those of the piecewise one (blue). The inset shows the remarkable level of precision obtainable with the fitted approach.
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 838 Figure 3.8 -Values of the free energy difference of the relativistic Bose gas obtained with the data shown in Fig. 3.7 only for the fitted approach.
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 239 Figure 3.9 -χ 2 values resulting from a bootstrap analysis vs. the order of the fit, with a clear plateau is visible starting from l = 7.
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 310 Figure 3.10 -Second logarithmic derivative f (S I k ) obtained from the evaluation of (∆S I ) 2 from a simulation at lattice volume of 10 4 at µ = 0.8.
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 8311 Figure 3.11 -Top: f (s) values obtained as result of our simulation (dots) and as the derivative of the fitted polynomials (lines). The highlighted red dots are those used in the χ 2 analysis. Bottom: χ 2 analysis for the second derivative.
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 312 Figure 3.12 -Estimates of the a k for the relativistic Bose gas for different values of the imaginary part of the action at chemical potential µ = 0.4 (top), µ = 1.0 (middle) and µ = 1.8 (bottom) for different volumes.
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 313 Figure 3.13 -Values of the free energy difference, obtained through the integration of the phase factor, as a function of the chemical potential for volumes V = 4 4 , 6 4 , 8 4 , 10 4 and for the infinite volume extrapolation. The vertical line represent the critical value of the chemical potential obtained via mean-field calculations (µ c 1.15). The dashed lines are fit to the data meant to guide the eyes.

Figure 3 . 14 -

 314 Figure3.14 -Critical chemical potential estimates plotted against 1/V for volumes V = 4 4 , 6 4 , 8 4 and 10 4 . The dotted line indicates the mean-field calculation, while the dashed line is the value obtained in[START_REF] Gattringer | Lattice study of the Silver Blaze phenomenon for a charged scalar φ 4 field[END_REF] (the error band is also indicated, but it is barely visible on the scale of the plot).
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 317 Figure3.17 -Relative difference between the free energy estimates obtained via Mean Field calculations (∆F M F ) and our DoS approach (∆F DoS )
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 41 Figure 4.1 -Density plot for the phase quenched observables (top: φ 2 , bottom: density) as a function of the imaginary part of the action for the relativistic Bose gas. The results are for V = 8 4 and µ = 0.8 and are obtained in simulations where the statistical weight of each configuration is reweighted by ρ -1 (S I [φ]) leading to a uniform sampling in the complex action domain. The red line represent a polynomial fit of all the sampled points.
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 42 Figure 4.2 -Top: plot of the estimate of φ 2 (s) obtained as double bracket expectation values via reweighted (red points) and non reweighted (blue points) simulations. Bottom: Difference between the expectation values plotted on the upper plot.
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 14 Figure 4.3 -Results for the momentum expansion of the oscillatory integral of φ 2 for a 6 4 lattice at µ = 0.8. In the top plot we show the results of the bootstrap procedure for each individual momentum, while on bottom plot we show the sum of the momenta (i.e. the reconstructed expectation value for the observable) and in black the extrapolated expectation value φ 2 = 0.11910[START_REF] Aarts | Stochastic quantization at finite chemical potential[END_REF]. For both plots the differently coloured series of points represents the expectation values obtained from different polynomial ansatz for the reconstruction of the DoS function, the polynomial orders taken into consideration in this plot range from 1 to 13 (only the odd ones).
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 44 Figure 4.4 -Expectation value for the phase-quenched (top) and full (bottom) expectation values for φ 2 for values of the chemical potential ranging from 0.1 to 1.2 and for lattice volumes of 4 4 , 6 4 and 8 4 .
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 45 Figure 4.5 -Expectation value for the phase-quenched (left) and full (right) expectation values of the density for values of the chemical potential ranging from 0.1 to 1.2 and for lattice volumes of 4 4 , 6 4 and 8 4 .
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 1151 Figure 5.1 -Top: Wrapped Gaussian for various values of the distribution width, higher σ correspond to a stronger sign problem. Bottom: Comparison between the wrapped (orange) and un-wrapped (blue) distribution of the fermion determinant phase for a 4 × 4 lattice at µ = 0.8.
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 5253 Figure 5.2 -Results of the LLR procedure for a 4 × 4 lattice and chemical potential ranging from µ = 0 to 1.0.described in Chapter 3 the density of states of the full system has been rebuilt using both the piecewise and fitting approach. As the lattice volume investigated
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 54 Figure 5.4 -Two possible worldline configurations showing monomers (blue dots), dimers (red bars) and worldlines (link arrows). Image courtesy of the authors of [108].
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 2655 Figure 5.5 -Examples of worldline modification: staple(left), corner inversion (right). Image courtesy of the authors of [108].
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 56 Figure 5.6 -The free energy F s as a function of the negative loop count with U = 0, m = 0.1, V = 128 × 128 and µ ranging from 0 to 0.8 in steps of 0.1 from right to left and top to bottom.
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 57 Figure 5.7 -Volume scaling of the sector density at U = 0, m = 0.1 and µ = 0 (Left) and 0.3(Right). The x axis shows the negative loop density, or the sector scaled by L while the y axis is shifted by log(L) for each volume to increase legibility.
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Appendix A Relativistic Bose gas -Mean field approximation

In this section we are going to briefly illustrate the procedure used to obtain the relativistic Bose gas mean field results used as comparison throughout this work following the steps illustrated in [START_REF] Aarts | Complex Langevin dynamics at finite chemical potential: Mean field analysis in the relativistic Bose gas[END_REF].

Let's start by considering the lattice discretized action as defined in (2.16)

φ a,x φ a,x+ î -cosh(µ) φ a,x φ a,x+ 4 + i sinh(µ) ε ab φ a,x φ b,x+ 4 , (A. [START_REF] Gattringer | Approaches to the sign problem in lattice field theory[END_REF] with no interaction (λ = 0), as the interacting term contains φ 4 powers that are not integrable analytically and will be treated later.

For this free case we can make use of the standard field theory approach. We first go to momentum space transforming the fields according to

where the sum over the momenta p runs over all the allowed momenta in a N τ × N 3 s lattice:

The action thus reads

where the coefficients A p and B p are defined as

and M p is instead

With this, we can recover the logarithm of the partition function, up to an irrelevant constant, as

The observables studied in this work can then be recovered via the standard thermodynamic relations

and,

where A p = ∂A p /∂µ and B p = ∂B p /∂µ and V is the lattice volume N τ × N 3 s . Comparing equations (A.3) and (A.1) we can see that in moment space taking the phase quenched theory corresponds to setting B p = 0. This allows us to express also the free energy difference between the full and phase quenched theories in terms of A p and B p as

Lastly, we can evaluate the critical chemical potential of the theory by evaluating the eigenvalues of M p , that reads A p ±iB p . The free theory exists only when A p > 0, leading to the stability criterium

The critical value is then taken for A p = 0, therefore for m 2 = 4 sinh 2 µc 2 .

To extend this results to include the interaction term we then employ the standard mean field approximation technique. This requires to expand the field around its static infrared part ξ, equivalent to the thermal average of the field ξ = |φ| , so that the field is defined as φ = ξ + χ. With this definition is possible to ignore most of the terms coming from the interaction term, assuming that λ and ξλ are small. The resulting theory is then equivalent to the free one with the exception of a shift in the mass parameter equivalent to a tadpole approximation of the four field interaction,

As in the mean field approximation all the remaining terms are quadratic we can use the same machinery used in the free case, with the substitution

The only difference being in the definition of the mean field mass that, when written with the language used in this section, reads

As both A p and M 2 depends on each other, the starting point of the evaluation of the mean field averages is the recursive evaluation of |φ| 2 and M 2 taking the bare lattice mass as a starting point. Once those are evaluated with enough precision the other quantities can be evaluated straightforwardly as the sum over the momenta. 
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