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Abstract

The second quantum revolution is underway with the promise of harnessing the full
potential of quantum mechanics to develop new technologies. Among these innovations,
the field of quantum information theory proposes a new paradigm to perform computation,
outside of the classical computing framework based on 0/1 bit of information. Quantum
computing offers a way to solve physics and computational problems that cannot be
solved in reasonable time by classical computers by introducing quantum-bits (qubits) and
quantum logic gates. However, quantum computers are prone to errors, requiring them to
encode information from a single logical into multiple physical qubits. Thus, a universal
quantum computer outperforming today’s supercomputers involves the control of millions
of qubits, far from the dozens of qubits in current systems. In this context, spin qubits in
quantum-dot (QD) arrays are a good candidate thanks to their compatibility with standard
semiconductor manufacturing.

In this thesis, we focus on the charge control of electrons inside arrays of quantum-dots.
On the one hand, we demonstrate remote charge sensing in a CMOS nanowire, using an
embedded single-lead quantum-dot (SLQD) electrometer. A unique electrode operates
each QD, and the device is fabricated on a silicon-on-insulator 300-mm industry-standard
fabrication line. We develop different detection schemes to compensate for the device’s
strong capacitive couplings due to its dense packing. Consequently, we control the different
double quantum-dots in a 2x2 QD array and probe the Coulomb disorder inside the
structure.

On the other hand, we demonstrate a scalable QD array formed by shared control gates
with row/column addressing in a GaAs/AlGaAs heterostructure. Like classical integrated
circuits, large-scale quantum-dot arrays must rely on shared controls to reduce the number
of interconnects to ∝

√
𝑁 , with 𝑁 the number of QDs. Here, we show the charge control

of electrons in a scalable 2x2 QD array isolated from the reservoirs. We characterize the
array using the constant interaction model and assess its scalability. To conclude, these
two experiments path the way towards charge controls in large-scale semiconductor QD
arrays.
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Introduction

At the beginning of the twentieth century, quantum mechanics transformed our under-
standing of physics by introducing the concept of quantification of energies, momentums,
positions, etc. In fact, most classical physics theories can be derived from quantum me-
chanics. The classical physics seems to be only an approximation of our world, valid in
the limits of large systems. However, some exotic phenomena exist in the quantum realm,
without classical counterparts, such as quantum superpositions and entanglements.

The first quantum revolution and the Information Age.
Over the past century, quantum theories led to leaps in understanding the periodic table,
chemical interactions, and semiconductor physics. This first quantum revolution brought
many of the devices present in our daily lives like MRI imagers, lasers, and more generally
semiconductor devices. Among these examples, the most emblematic is the development
of the transistor. Following the first functional transistors in 1947 at Bell Labs, the
transistor number in integrated circuits had followed an exponential growth given by
Moore’s law [Moo75].

After decades of research and engineering, billions of transistors can now be integrated
into one silicon chip. Such achievements have been possible thanks to the shrinking of
the industrial transistors’ size from one centimeter to a few tens of nanometers [Joh16].
Moreover, the random variations from transistors to transistors are kept small enough that
almost every chip produced will work [Cha09]. In particular, transistors can be combined
to build logic gates with ON and OFF values, then assembled to build digital circuits. The
digital nature of such circuits tends to relax the constraints on the transistors’ variability,
allowing to increase the circuits’ size drastically. So, all this scaling potential has been
harnessed to develop classical computing, with improvements in computing power following
the same trend as Moore’s law. Consequently, today we are living in an information society
where information computing units (computers) play an increasingly central role [Ben86].

However, the race towards faster computers is slowing down as the density of transistors
hits a plateau. The increasingly smaller dimensions of transistors give rise to new quantum
phenomena, not suitable for classical logic computation. Thus, we can no longer consider a
transistor as a sizable quantum device ruled by band-gap engineering, but as a collection
of interacting quantum objects. Actually, the fine control of nanostructures and the
manipulation of individual quantum objects spur a second quantum revolution.

A new computing paradigm brought by a second quantum revolution.
Nowadays, after more than a century of success for quantum theories, a second revolution
is underway [Mac03]. First, technological innovations in miniaturization pushed first-
revolution devices, such as transistors, directly into the quantum realm at the nanoscale.
Then, the principles of quantum mechanics offer the promise of vastly improved performance
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2 Introduction

for quantum devices over what can be achieved within the classical framework. As a result,
the second quantum revolution concerns many different technologies such as quantum
sensors, spintronics, quantum materials, but also quantum information science.

Indeed, while transistors’ miniaturization has driven classical computing, this has reached
a limit. Quantum mechanics offers a new way of processing information, other than the
conventional paradigm using classic computer logic. In particular, it introduces a new unit
of information : the quantum-bit, or qubit, a bit of information exploiting the potential
of quantum mechanics. A qubit is a quantum two-level system, which can be in a 0 or 1
state as a classical bit. However, the qubit can also be set in any linear superposition of
the 0 and 1 states, a characteristic without classic counterparts. Such entity is written
𝛼 |0⟩ + 𝛽 |1⟩ with |𝛼|2 + |𝛽|2 = 1. The qubit state can be seen as a unitary vector describing
a so-called Bloch sphere with south and north poles corresponding to the classical state 0
and 1 [Blo46]. Moreover, multiple qubits may exhibit quantum entanglement, in which case
the number of states available grows exponentially with the number of qubits. For example,
a 64-qubit system represents 264 states. Thus, by combining quantum superposition and
entanglement, these 64 qubits can be placed in any superposition of all the 264 states. In
comparison, a typical 64-bit machine can only be set in one of these states at a time.

The development of quantum information systems concerns communications (e.g. quan-
tum cryptography), but also calculations such as simulators and computers. On the one
hand, a quantum simulator is designed to map a specific physics problem, either tricky
to probe in the laboratory or to simulate on a classical computer, on a well-controlled
experimental system. This kind of problem is particularly difficult to emulate on a tra-
ditional computer because of the exponentially increasing computational space size, as
discussed previously. To illustrate, today’s supercomputers can emulate up to 48 qubits in
interactions [DR19]. Increasing the number of qubits to 49 requires a supercomputer twice
as powerful, while the size of the quantum simulator only increases linearly. Quantum
simulators are well suited to simulate quantum problems of all sizes because they obey the
same laws.

On the other hand, an ensemble of qubits can function as a programmable universal
quantum computer, as originally proposed by Yuri Manin and Richard Feynman in the
eighties [Fey82; Man80]. Among the several models of quantum computing, the most
common is the quantum circuits representation. It is a model similar to classical computing
but with qubits and quantum gates instead of bits and logic gates. Single-qubit gates
rotate a qubit inside the Bloch sphere and two-qubit gates entangle qubits. Other models
exist but are not necessarily universal and may be limited to specific tasks only. A
famous example is the D-Wave implementation of a quantum annealer for minimization
problems [Har18; Kin18]. In contrast, an universal quantum computer can simulate any
quantum problem [Llo96], with applications in materials science, chemistry, pharmaceuticals,
among others [Pre18].

Such quantum computers can also solve computer science problems using dedicated quan-
tum algorithms. Well-known protocols like Grover or Shor algorithms allow, respectively,
searching in a database, and carrying out integer factorization [Gro96; Sho94]. These two
examples are algorithms faster to run on a quantum computer than their non-quantum
counterparts on a classical computer with similar resources. Indeed, they both benefit from
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a quantum acceleration reducing the problems’ complexity to polynomial time instead
of non-polynomial for the classical algorithms. In other words, the time required to find
an entry in an unsorted database increases linearly with the database size for a quantum
computer but exponentially for a classical one. In the information age, it makes a huge
difference in many computing problems, and it explains why high-performance computing
companies like Atos are investigating quantum computing [ATO20]. Evidence points out
that ideal quantum computers should be either as good or faster than an equivalent classical
computer to solve any problem [Nie10].

Up to now, there is no such thing as a universal quantum computer powerful enough to
solve any quantum problem faster than supercomputers. Efforts are being made to find a
quantum system that will be somewhat the equivalent of the transistor but for quantum
computing. Many approaches are explored, as we will discuss now.

The challenges of quantum computers
In 2000, David P.DiVincenzo introduced the five conditions necessary to build a quantum
computer [DiV00] :

• Limited decoherence over the typical gate duration.
• A scalable system with well characterized qubits.
• The ability to initialize the system in a known state.
• A universal set of single-qubit and two-qubit gates.
• The ability to measure only a specific qubit.

In the next two decades, many platforms were studied to meet these criteria, such as
trapped ions [Cir95; Hem18], photonic crystals [EB20; Ige88], superconducting electronic
circuits [Aru19; Nak99], dopants [Kan00], and electron-spin trapped in semiconductor
quantum-dots [Los98; Yan20]. All these different implementations somewhat fulfill the
DiVincenzo criteria. One of the most advanced realizations is Google’s 54-qubit supercon-
ducting quantum processor called Sycamore. Recently, a quantum algorithm designed to
be hard to emulate classically was run on this device to demonstrate a quantum advantage
for the first time. It took about three minutes to find the problem solution on Sycamore,
whereas today’s best supercomputer would require two and a half days [Aru19; Ped19].
However, Sycamore is not equivalent to an ideal 54-qubit computer.

In reality, the experimental realizations of qubits are not perfectly isolated two-level
quantum systems. Each qubit interacts with its entire environment and with many degrees
of freedom, especially for condensed-matter qubits. For example, the experimentalist
must interact with the qubit to apply quantum gates. As a result, a realistic qubit has
two decoherence channels : relaxation (decay from state |1⟩ to state |0⟩) and dephasing
(accidental rotation along the equatorial axis on the Bloch sphere).

Decoherence has a detrimental effect on the performance of a quantum computer. Indeed,
even if a quantum processor works like a digital-machine (the algorithm’s solution is coded
in the form of a binary word in the qubits classical states), its execution is definitely analog.
Quantum gates are used to continuously change the coefficients in the system’s linear
superposition of states. Thus, each gate must be as precise as possible to give the correct
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result, but also short compared to the coherence time to have enough time to apply the
various gates in an algorithm. On Sycamore, only 20 cycles could be performed using all
the qubits in the quantum processor, where a cycle consists of applying one single-qubit and
one two-qubit gate on each qubit. In the short term, we can accept the error rates of current
qubit implementations and benefit from a quantum advantage for specific applications only
(e.g., algorithms with only a few quantum gates). In this context, Google’s device paths
the way towards Noisy Intermediate-Scale Quantum (NISQ) computers with 50 to 100
qubits, as described in [Pre18].

In the long run, one way to build a universal quantum computer is to create sufficient
layers of redundancy by encoding the information of a single qubit over many so-called
logical qubits. The number of physical qubits required to build a single error-resistant logical
qubit depends on the characteristics of the physical qubits (decoherence time, connectivity,
etc.) [Dev13; Jon12]. For the qubit implementations described previously, such quantum
error correction protocols imply as much as 103 to 104 physical qubits per logical one [Fow12;
Mar15]. So, scalability is one of the main challenges of quantum computers since millions
of qubits have to be controlled to compensate for the decoherence mechanisms.

Semiconductor electron-spin qubits for large-scale quantum computers.
A potential candidate for a large-scale quantum computer is the electron-spin qubit trapped
in semiconductor quantum-dots (QDs).

First, as a spin-1
2 particle, a single electron experiencing a static magnetic field is a

natural two-level quantum system. It is only coupled to direct magnetic noise within the
nanostructure, and indirectly coupled to charge noise via phenomena such as spin-orbit.
As we will discuss, strategies aimed at considerably reducing the magnetic noise lead to
coherence times of the order of the microsecond for electron-spin qubits [Blu10; Vel15].
Spin states can be manipulated via addressable microwave excitations [Kop06] or magnetic
field gradients [PL08], and coupled by tuning the exchange coupling between two adjacent
dots [Pet05]. In addition, spin-qubits using more than one electron have been proposed or
demonstrated, such as singlet-triplet with two electrons in two dots [Mau12], exchange-only
(three electrons in three dots) [Rus17], and exchange-only singlet-only (six electrons in
three dots) [Sal20]. These different implementations benefit from additional features like
facilitated readout, single-qubit rotations, and decoherence-free subspaces.

Second, semiconductor quantum-dots are nanoscale devices capable of trapping and
controlling single charges employing electrostatic fields created with metal electrodes. They
have a small footprint ∼ (100 × 100) nm2 and benefit from semiconductor nanofabrication
techniques developed for integrated circuits. The electron’s charge nature allows us to load
and displace the qubit in a network of tunnel-coupled QDs while keeping the spin degree of
freedom protected from the environment. Local electrometers probe the charges’ dynamics
in the different QDs. They can be located close to the QDs or directly embedded in the
QD network [Elz03; Ibb20].

High-fidelity one- and two-qubit gates have been demonstrated [Sal20; Yon18], along
with rapid spin readout using spin-to-charge conversion methods [Urd19; Zhe19]. However,
these demonstrations were done in devices with only a few quantum-dots, up to a 3x3
QD array [Mor18]. We are far from the requirements to achieve NISQ or large-scale
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quantum computing. So, the next milestones are (i) scaling-up the number of controlled
quantum-dots, and (ii) developing a scalable architecture capable of hosting millions of
QDs. In this thesis, we study and compare two semiconductor platforms for large-scale
QD networks: silicon nanowires and GaAs/AlGaAs heterostructures.

On the one hand, silicon nanowires have the advantage of being produced on industry-
standard fabrication lines. Indeed, while the advanced miniaturization of transistors
gives rise to quantum effects like tunneling, dooming conventional transistors, it can be
exploited to trap and manipulate single electrons. The silicon QD devices are directly
integrated into transistor fabrication lines and benefit from all the technologies developed
for microelectronics over the past decades. In addition, the nuclear spin noise coming
from 29Si nuclei in the silicon crystal can be reduced to negligible levels via isotopic
purification to 28Si to enhance the qubit coherence time [Vel15]. However, the electrons’
effective mass in bulk silicon 𝑚*

𝑆𝑖 = 0.26𝑚e is rather large (with 𝑚e the electron rest mass).
Therefore, the size of the electron wave function is on the order of ∼ 10 nm, which is
similar to state-of-the-art gate patterning resolution [Des12]. It limits the electrostatic
control over the quantum-dots’ properties and particularly on the coupling between dots.
Consequently, only double quantum-dots have been demonstrated so far in foundries’ silicon
nanowires [Mau16; Urd19]. Moreover, the study of single nanowire devices excludes the
use of proximal electrometers, and we must rely on integrated detection schemes.

On the other hand, the GaAs platform relaxes the constraints on gate patterning, thanks
to an effective mass three times smaller than in silicon. Quantum-dots are patterned with
multiple gate electrodes allowing fine-control of the dots’ energies and tunnel-couplings with
simple fabrication recipes available in laboratories’ cleanrooms [Des12]. Thanks to its ease
of implementation, the GaAs platform is a formidable testbed for proof of principles, such
as small scale ferromagnetic simulators [Deh20] and coherent qubit shuttling over several
micrometers [Jad20]. The main drawback of this platform is the inevitable presence of
nuclei-spins in the crystal. So, spin-qubit operations require active manipulation methods
to mitigate this magnetic noise and extend the short coherence times of a few tens of
nanoseconds [Blu10]. Moreover, this quantum-dots technology is currently restricted to a
single QD layer without proposals to connect multiple layers. This could be a limitation
towards large-scale implementations.

Thesis outline
The experiments described in this thesis aim at the study of charge control in semiconductor
quantum-dot arrays and the prospects towards large-scale integration.

In Chapter 1, we introduce the theoretical background for the confinement and control
of electrons in semiconductor nanostructure. We detail an electrostatic model for quantum-
dots and the physics of the two semiconductor plateforms. Then, we describe the charge
detection methods to probe the QD devices along the thesis with either proximal or
embedded local electrometers. Finally, we focus on the development of QD networks, from
simple double-dots to complex two-dimensional arrays. We develop on the tuning methods
to control such devices and conclude on the requirements for a large-scale QD network.

Chapter 2 describes the experimental setup. We start by the cryogenic refrigerator
cooling down the devices at ∼ 70 mK. Next, the samples’ fabrication methods are presented,
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including simulations of the potential landscape induced by the devices’ gate electrodes.
We detail the electronics with the wiring of the electrical connections, the control and
acquisition apparatus, and a radiofrequency setup. To conclude, the measurement software
developed in my thesis to control the experiments is presented.

In Chapter 3, we explore the charge detection and control of next-neighbor dots in a
silicon nanowire. A single-lead quantum-dot electrometer is characterized and the energy
spectrum of a single-QD is extracted. Then, we focus on the detection of multi-dots
within the nanowire. Different detection schemes are elaborated to compensate for the
strong capacitive couplings between the detector and the probed dots due to the device
dense packing. We discuss and compare the quantum-dots homogeneity in the few- and
many-electron regimes.

Finally, Chapter 4 describes a scalable 2x2 QD array with shared control gates in a
GaAs heterostructure. We start with the isolation of one to five electrons into a single
quantum-dot uncoupled to the electron reservoir. We develop a numerical simulation to
emulate the charge distribution inside the array as function of the gate voltages. Finally,
we demonstrate the control of the charge distribution in the 2x2 QD array, isolated from
the reservoir. In particular, we discuss the scalability of the array by extracting the device
parameters with the numerical simulations.



CHAPTER 1
Confinement and control of electrons in semiconductor nanostructures

1.1 Introduction
Work on the manipulation of individual electrons in semiconductor nanostructures began
in 1988 with the first demonstration of single-electron tunneling [Smi88]. These early
quantum-dots (QDs) contained a large and uncertain number of electrons, and it took
eight more years to reach the single electron occupation [Tar96]. Shortly afterward, it was
proposed to use electron spin as qubits trapped in a network of electrically controlled QDs
as a quantum computing unit [Los98].

In this context, we present here a brief state of the art of electron confinement and control
in semiconductor QD arrays. We start by examining the basic properties of quantum-
dots. A capacitive model of a single quantum-dot is developed, and its properties are
described. We highlight the contributions resulting from purely electrostatic effects such as
the charging energy, and quantum phenomena created by zero-dimensional confinement of
electrons. Then, we describe the properties of the two semiconductor platforms employed
in this thesis: a GaAs heterostructure and a silicon nanowire.

On the one hand, the GaAs platform benefits from simple electronic properties with a
single conduction band valley and a small effective mass. Consequently, GaAs devices can
be fabricated in research facilities with limited lithographic constraints. However, all the
atoms in the crystal carry a non-zero nuclear spin, limiting electron-spin qubits’ coherence
time to a few nanoseconds. On the other hand, the silicon platform can eliminate nuclear
spins through an isotopically purified 28Si substrate, achieving milliseconds of coherence
time. Furthermore, the fabrication of the silicon quantum devices is compatible with CMOS
industry-standard fabrication lines, which paths the way towards large-scale integration of
QD arrays. Despite these attractive properties, the silicon platform raises some challenges
such as a large electron effective mass and multiple conduction band valleys, as we will
discuss in the following.

Next, we explain the techniques applied to perform remote charge sensing of the quantum-
dot charge dynamics. Remote electrometers have the advantage of being a non-invasive
method compared to direct transport measurements in the system to probe. We detail
how the unique characteristics of quantum dot contact and single-electron transistors can
serve as sensitive electrometers. We continue by explaining the gate rf-reflectometry charge
sensing. This technique has the benefit of reducing the number of electron reservoirs to one
or zero, and several electrometers can be packed together by multiplexed measurements.

Finally, we study the formation of quantum-dot arrays, starting with a simple double
quantum-dot structure. Then, linear and two-dimensional QD arrays are explored, and

7
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their tunability is discussed. Moreover, we present the isolated regime as a solution to the
device operations’ complexity while increasing the number of QDs under control. In the end,
the requirements for quantum computing using large-scale two-dimensional quantum-dot
arrays are given.

1.2 Basics of quantum-dots
A quantum-dot is a three-dimensional confinement potential that can trap charged particles
like electrons or holes. The confinement potential size is designed to be of the same order of
magnitude as the Fermi wavelength of the trapped objects. Therefore, the charges cannot
be considered as purely classical particles but have to be treated as quantum objects. The
quantum-dots are referred to as artificial atoms since they exhibit bound and discrete
electronic states similar to naturally occurring atoms or molecules.

Due to this simple definition, it exists a complete zoology of quantum-dot systems such as
self-assembled quantum-dots [Kle96], single molecules trapped between electrodes [Urd11],
carbon nanotubes [Dek99], and finally vertically [Kou01] or laterally [Kou97] defined
quantum-dots.

In this thesis, we are interested in laterally defined quantum-dots realized either in
a GaAs/AlGaAs heterostructure or a silicon nanowire. With both platforms, we apply
voltages on metallic gates to electrostatically define the dot shapes and positions. In this
section, we first discuss the basic properties of quantum-dots by using an electrostatic
model. Then, we examine how is created the three-dimensional confinement and the specific
contributions in the energy spectrum for each platform.

1.2.1 Constant interaction model
In this section, we develop a simple model for a quantum-dot embedded into an electrical
circuit, as pictured in Fig. 1.1(a). We use the constant interaction model [Kou97] to describe
the quantum-dot QD1 coupled via tunnel barriers to two reservoirs, source (voltage 𝑉S)
and drain (𝑉D), and capacitively coupled to a gate electrode (𝑉G). The tunnel-barriers
are treated as leaking capacitors between two nodes and parametrized by a capacitor in
parallel to a resistor, the later giving the tunnel-rate from one node to the other.

Model description
In this model, we assume that the Coulomb interactions among electrons in the dot, and
between electrons in the dot and the environnement, can be parametrized by a unique
capacitance 𝐶1. This capacitance must be constant and is the sum of all the capacitances
between the dot and its environnement : 𝐶1 = 𝐶S1 + 𝐶D1 + 𝐶G1 with 𝐶S1 the source-QD1
capacitance, 𝐶D1 the drain-dot, and 𝐶G1 the gate-dot. Then, the total amount of charges
in QD1, 𝑄1, is the sum of all the charges induces by the different nodes connected to the
dot

𝑄1 = 𝐶S1 (𝑉1 − 𝑉S) + 𝐶D1 (𝑉1 − 𝑉D) + 𝐶G1 (𝑉1 − 𝑉G) (1.1)

Using this equation, we compute the electrostatic energy of QD1 as a function of the
number 𝑁 of electrons in the dot as 𝑈C = 1

2𝐶1𝑉 2
1 . By introducing 𝑄1 = −|𝑒| (𝑁 − 𝑁0)

with −|𝑒| the electron charge and 𝑁0|𝑒| the dot charges compensating the background
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Figure 1.1: Quantum-dot in the constant interaction model. (a) Schematic of a
quantum-dot embedded into an electrical circuit in the constant interaction model. The
quantum-dot QD1 has a potential V1 and contains 𝑄1 charges. It is capacitively coupled to
a gate electrode VG through a capacitor 𝐶G1. Electrons can be exchanged with the source
and drain reservoirs through tunnel barriers represented by a capacitor parallel to a resistor.
(b) Electrostatic energy of QD1 for 𝑁 = 0 → 1 as a function of the gate voltage VG. The
quantum-dot ground-state occupation increases by step as the value of VG is swept.

charges from the donors in the quantum-dots’ structure, we obtain

𝑈C(𝑁) = 1
2𝐶1

[−|𝑒| (𝑁 − 𝑁0) + 𝐶S1𝑉S + 𝐶D1𝑉D + 𝐶G1𝑉G]2 . (1.2)

The electrostatic potential of QD1 can be changed continuously through the different
gate voltage contributions with the format 𝐶i1𝑉i, for 𝑖 = {S,D,G}. Consequently, the dot
occupation 𝑁 can be controlled by applying a gate potential as pictured in Fig. 1.1(b)
where electrons are loaded into the dot from the reservoirs by increasing the gate voltage
𝑉G. Of course, it is true only if the system stays in the ground-state during the operations.

In addition to this purely classical energy contribution, we can add the single-particle
energy-level spectrum to take into account contributions like the quantum effects of the
confinement potential. Considering the energy of all the occupied single-particle energy
levels 𝐸𝑛, the total energy of the system is

𝑈(𝑁) = 𝑈C(𝑁) +
𝑁∑︁

𝑛=1
𝐸𝑛. (1.3)

Then, we define the electrochemical potential 𝜇(𝑁) of QD1 as the change of total energy
between the states with 𝑁 and 𝑁 − 1 electrons :

𝜇(𝑁) def= 𝑈(𝑁) − 𝑈(𝑁 − 1)

=
(︂

𝑁 − 𝑁0 − 1
2

)︂
𝐸C1 − 𝐸C1

|𝑒|
(𝐶S1𝑉S + 𝐶D1𝑉D + 𝐶G1𝑉G) + 𝐸𝑁 ,

(1.4)

where we have introduced the charging energy 𝐸C1 = 𝑒2/𝐶1. This energy corresponds to
the purely electrostatic energy cost of adding one electron into QD1. We remark that the
electrochemical potential has a linear dependence on the gate voltages, while the energy
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depends quadratically on the gate potentials. So, the electrochemical potentials of the
different occupation numbers are moved altogether by preserving the level spacing when
a gate voltage is swept. We use this property to discuss electron transport through the
system in Sec. 1.3.1.

Finally, we define the addition energy 𝐸add as the difference in electrochemical potential
between two successive charge states :

𝐸add(𝑁) = 𝜇(𝑁 + 1) − 𝜇(𝑁) = 𝐸C1 + (𝐸𝑁+1 − 𝐸𝑁 ) . (1.5)

The addition energy is also split in two terms with on the one hand the charging energy,
and on the other hand the energy spacing between two discrete quantum levels that takes
into account the confinement potential and the properties of the substrate.

Gate lever-arms
In general, the second term of Eq. 1.4 is rewritten as 𝛼S

1𝑉S + 𝛼D
1 𝑉D + 𝛼G

1 𝑉G, where we have
introduced the lever-arm of gate K on dot i :

𝛼K
i = 𝑒

𝐶Ki
𝐶i

. (1.6)

This so-called alpha-factor translates the effect of a gate voltage into the physical energy of
a dot. As we will discuss in the following sections, the gate lever-arms vary extremely within
a quantum-dot system and from one system to another. Thus, this quantity is critical to
extract physical parameters of the system from experimental data, as the charging energy
in Fig. 1.1(b).

However, measuring the different capacitances is challenging. It is preferred to cali-
brate the gate voltage effects with respect to a reference energy scale. Different energy
references are available as the bias window VS − VD by performing a Coulomb diamond
experiment [Kou01], photon assisted tunneling with an RF excitation at a known fre-
quency [Oos98], or a magnetic field sweep in a spin-funnel experiment [Pet05].

To conclude, we have defined a basic model to understand quantum-dots properties. In
particular, the constant interaction model allows us to deal with the classic electrostatic
of a charged island, with the addition of quantum contributions like the orbital spacing
originating from the trapping potential. In the next sections, two different quantum-dot
platforms are detailed, and we explicit each contribution to the addition energy spectrum.

1.2.2 Gallium-Arsenide heterostructure
The first platform used in this thesis is laterally defined quantum-dots in a Gallium-Arsenide
heterostructure. It is an ideal testbed for quantum-dot structures and has been home to
the pioneer experiments demonstrating coherent control of individual electrons [Kop06;
Pet05]. The dots are defined by applying negative voltages on metallic gates on the sample
surface to pattern a two-dimensional gas (2DEG) located underneath, allowing a good
control over the different quantum-dot parameters.

Here, we describe how to produce the 2DEG and how quantum-dots are formed. Finally,
we detail the energy spectrum of a characteristic GaAs quantum-dot by highlighting the
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different contributions to the addition energy.

Two-dimensional electron gas
A heterojunction is an interface between two semiconductors with a different band-gap. By
band-gap engineering, the heterostructure can be designed to satisfy various applications
like solar cells [And99], lasers [Alf02], and high mobility transistors (HEMTs) [Mim02]. Here,
a GaAs/AlGaAs heterostructure is combined with a silicon modulation doping to form a
quantum well 110 nm below the surface, in which electrons are trapped (see Fig. 1.2(a)).
The confinement along the growth axis is typically about 16 meV ∼ 186 K [Ste84]. So, at
dilution temperature, the motion of the electrons is quantized in this direction with only
the ground state occupied, and the system is considered a two-dimensional electron gas.
(a) (b)
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Figure 1.2: Gallium-Arsenide heterostructure and two-dimensional electron gas.
(a) Schematic of the GaAs/AlGaAs heterostructure with the material composition and the
thickness specified for each layer. (b) Band structure along the growth direction. The 2DEG
is located 110 nm below the surface, at the GaAs/AlGaAs interface. The GaAs/AlGaAs layer
is split into two parts. The first part is silicon-doped to bend the bands, create the 2DEG
confinement, and provide electrons for the 2DEG. A second part acts as a spacer to spatially
separate the high-mobility 2DEG from the doping layer. On top of the sample surface, an
unwanted Schottky barrier is formed if a metallic gate is deposited.

The fabrication of these heterostructure relies on molecular beam epitaxy (MBE). MBE
is a fundamental tool of the nanotechnologies where structures are grown epitaxially
one atomic layer at a time. It results in great control over the layer composition and
atomically flat interfaces. Thus, it is possible to spatially separates the doping layer
(required to form the 2DEG) from the actual 2DEG, as pictured in Fig. 1.2(b). Putting
these ionized impurities far from the electron gas results in better electronic properties,
with less scattering and less potential irregularities. Consequently, the electron mobility of
2DEGs defined by MBE is typically three orders of magnitude greater than grown oxide
interfaces like Si/SiO2[Li13; Uma09].

The group of Andreas Wieck from the Ruhr-University (Germany) made the heterostruc-
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tures used in this thesis . In the context of this collaboration, we have received 2 inch wafers
split among the different projects in the group. These crystals hold a 2-dimensional electron
gas 110 nm below the wafer surface with a mobility 𝜇𝑒 = 1.5 × 106 cm2 V−1 s−1 and an
electron density 𝑛𝑒 = 2.6 × 1015 m−2. To demonstrate the 2DEG quality, we compute the
mean free path of an electron within the gas as

𝑙e = 𝑣F𝜏e =
√

2𝜋𝑛e
~𝜇e
𝑒

≃ 13 µm (1.7)

using the parabolic band approximation, with 𝑣F the electrons speed at the Fermi energy
and 𝜏e the momentum relaxation time. This large mean free path means that defect-less
structures can be patterned with nanofabrication techniques, as we will discuss now.

Lateral confinement
We have seen that the heterostructure gives rise to strong confinement along the growth
direction and defines a high mobility two-dimensional electron gas. To perform the confine-
ment along the two remaining dimensions, we deposit metallic gates on the heterostructure’s
surface. Applying a negative voltage on a gate modulates the charge density of the electron
gas underneath. Thus, the gate geometry is critical to pattern the 2DEG in constric-
tions and quantum-dots, as pictured in Fig. 1.3. In particular, multi-dot systems can be
imprinted with voltage-controlled inter-dot tunnel barriers. Moreover, the characteristic
gate-dot lever-arm in this type of structure is on the order of 50 meV/V [Mar14].

Based on the 2DEG properties, we can compute the characteristic confinement potential
length at which quantum-dots are formed with the Fermi wavelength :

𝜆F =
√︂

2𝜋

𝑛e
≃ 49 nm. (1.8)

This is compatible with the typical resolution of electron-beam lithography, around 20 nm,
mainly limited by the lift-off process. Thus, nanofabrication techniques can be used to
imprint quantum-dots structures into the 2DEG.

However, the metallic gates deposited directly on top of the GaAs cap exhibit a Schottky
behavior that limits the voltage range applicable without current leakage to [−3 V, 0.1 V].
Nevertheless, in Section 2.3.1, we develop a structure with two superimposed metallic
layers. So, an insulating layer in-between the metallic patterns is required to avoid contacts
and currents between each gate. We chose to benefit from this technology to prevent the
formation of Schottky barriers and add an additional insulating layer between the first
metallic layer and the substrate. Consequently, a wider voltage range can be applied to
tune the device, from −7 V to 7 V without any leakage current.

Energy spectrum
As discussed in Sec. 1.2.1, a quantum-dot’s energy spectrum can be split between two
contributions.

First, a purely electrostatic part is summarized by the charging energy 𝐸C. To estimate
this quantity, we approximate the dot as a charged disk of diameter 𝐷 = 100 nm and
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Figure 1.3: 2DEG patterns controlled by voltage gates. (a) Schematic of the electro-
static effect on the 2DEG of a metallic gate deposited on the surface of the sample. Applying a
negative voltage on the gate depletes the electrons underneath. (b) Schematic top view of the
sample. By engineering the geometry of the gates, the 2DEG can be patterned into arbitrary
shapes. A quantum-point contact is formed on the lower side and a quantum-dot on the upper
side.

consider only its self-capacitance :

𝐶self = 4𝜀0𝜀r𝐷 ≃ 46 aF, (1.9)

with 𝜀0 the vacuum permittivity and 𝜀𝑟 the relative permittivity of the heterostruc-
ture [Kou91]. This capacitance is an upper-bound of the total capacitance since we neglect
the surrounding gates and 2DEGs existence . Nevertheless, it gives a charging energy
𝐸C = 𝑒2/𝐶self ≃ 3.5 meV.

This charging energy must then be compared with the second contribution in the addition
energy, which is the single-particle energy level 𝐸N. Since the electrons are confined in the
2DEG within a region comparable to the Fermi wavelength, their motion is quantized into
discrete orbitals and form an artificial atom. In particular, electrons are spin-1

2 particles
and must respect the Pauli principle. Two electrons can occupy the same orbital only if
they possess a different spin orientation. For a 2D harmonic potential of characteristic size
𝐷, the energy spacing 𝐸O between two orbitals is given in [Kou97] as

𝐸𝑛 = 𝐸O = 𝜋~2

𝑚*𝐷2 ≃ 0.4 meV, (1.10)

with 𝑚* = 0.067𝑚0 the electron effective mass in the system, and accounting for the spin
degeneracy without magnetic field.

We remark that the charging energy is the dominant term in the quantum-dot addition
energy 𝐸add. So, the chemical potential of the quantum-dots is mostly determined by the
classical Coulomb repulsion. Finally, these different energy scales are several orders of
magnitude smaller than the base temperature of a dilution refrigerator 𝑇 = 70 mK ≈ 6 µeV.
Consequently, we can resolve and control the electronic quantum states of GaAs quantum-
dots, as we will discuss in Part 4.
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1.2.3 Silicon nanowire
The second quantum-dot platform explored in this thesis relies on silicon nanowires. In
the last fifty years, the development of silicon nanostructures has been tightly linked with
microelectronics’ exponential progress. In particular, intense efforts have been devoted to
reducing the size of metal-oxide-semiconductor field-effect transistors (MOSFETs) with a
yearly increase in the number of transistors per chip given by the Moore’s Law [Moo75].
Moreover, it has been estimated that a total of 13 sextillion

(︀
1.3 × 1022)︀ MOSFETs have

been produced worldwide between 1960 and 2018, making the transistors the most widely
manufactured device in humankind history [Law18].

At the same time, silicon has been revealed as an excellent host material for quantum ap-
plications relying on charge and spin degree of freedom. For example, bulk silicon has a weak
spin-orbit coupling and can be cleared of nuclear spins by 28Si-isotope purification [Tyr11],
which favors long coherence time for electron-spin qubits.

Thus, the prospect of combining the advanced nanofabrication technologies already
available with its quantum properties make silicon a promising candidate for large scale
semiconductor quantum-bit array. Furthermore, the fabrication of quantum devices on
industry-standard fabrication lines permits co-integrating quantum functionalities within
classical logic-circuits [Bot19; Vin18a].

In this section, we detail how a MOSFET can be used at cryogenic temperatures to host
quantum-dots and highlight the host material’s specificities compared to GaAs QDs.

Corner states
The devices used in this thesis are nanowire CMOS transistors, as shown in Fig. 1.4. An
undoped silicon channel with a rectangular cross-section is chemically etched. The nanowire
is connected at both ends with source and drain metallic contacts and is covered with gate
electrodes to modulate the electron density within the channel.

Gate efficiency is optimized by adopting a so-called tri-gate geometry where the electrodes
cover all but the nanowire bottom facet (see Fig. 1.4(b)) [Voi14a]. These devices differ
from the traditional MOSFET in the number and the geometry of the gate electrodes.
While a typical MOSFET has a single electrode wrapping the intrinsic nanowire, here
we explore different gate geometries. For example, multiple gates can be added in series
along the nanowire, and gates can be split in two perpendicularly to the nanowire axis
to independently control each side of the nanowire electron density, as in Fig. 1.4(a). In
addition, large spacers are implemented to protect the silicon nanowire from unwanted
doping and have a reservoir-dot tunnel barrier opaque enough to form quantum-dots.

Nevertheless, applying electrode voltages above a so-called threshold voltage turns on
the MOSFET at room temperature and a current flows between the source and drain
reservoirs as expected. The current-voltage characteristics of our CMOS transistors are
available in Appendix A, and will be discussed in Sec. 2.3.2.

However, the way conduction gets activated is not straightforward. In Sellier et al. [Sel06],
the study of a similar MOSFET’s conductance at cryogenic temperature shows that
conduction channels start at the two upper edges of the silicon nanowire for sub-threshold
voltages. This effect is due to the focusing of the gate field lines in the corners of the
nanowire. These results are supported by numerical simulations, from [Voi14b], of the
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Figure 1.4: Nanowire CMOS transistor for quantum electronics.
(a) Electron-microscope top-view of a nanowire CMOS transistor. An intrinsic silicon nanowire
is etched on top of a thick buried-oxide layer (BOX). Source and drain contacts act like electron
reservoirs. Applying a voltage on the pair of split-gates deposited on top of the nanowire
modulates the electron’s density inside the nanowire. (b) TEM cross-view of a similar device
along the electrode, perpendicular to the silicon nanowire. The intrinsic nanowire at the center
of the picture is deposited on an insulating layer and is wrapped by a gate to maximize its
effect.

carrier concentration inside the nanowire for gate voltages with one electron trapped into
the nanowire (see Fig. 1.5(a) and (b)). The electron density indicates the formation of
symmetric localized one-dimensional conduction modes parallel to the channel axis in the
nanowire’s corners.

Yet, this simulation deals with an ideal MOSFET and does not take into account
disorder. Adding roughness at the nanowire surface and remote charges trapped into the
gate dielectric break the one-dimensional mode along the nanowire and the symmetry
between both edges.

Consequently, we see in Fig. 1.5(b) that ∼ 10 nm small quantum-dots are formed in
the corners of the nanowire. We label corner-dots these potential wells along the top
edges of the silicon channel. While the first electron occupies the quantum-dot with the
lowest energy, the following charges will not necessarily be added to the same quantum-dot.
It is expected that for a large number of electrons trapped in these corner-dots, their
sizes increase, and the potential landscape is smoothed by screening. So, the different
quantum-dots merge to form a unique corner-dot for each side of the nanowire.

Moreover, the random distribution of remote charges and the unique surface roughness at
each edges of the nanowire break the symmetry between the corner-dots. For two neighbor
corner-dots on each side of the nanowire, each edge’s electron filling will be different. Thus,
the split-gate geometry controls more independently each side of the silicon channel.

Finally, the reservoir-dot and the inter-dots tunnel barriers are predominantly fixed by
the spacer sizes and the gate separations. However, the corner-dots’ position is tunable
by applying a voltage directly on the back surface of the device [Fra16], or with a global
top-gate deposited above the electrodes [Ans20]. It has been reported that the inter-dot
tunnel coupling between corner-dots on each side of the nanowire could be tuned over three
order of magnitudes using a global top-gate [Ans20].

To summarize, the formation of quantum-dots in the silicon nanowire is given by (i) a
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Figure 1.5: Electron density in the silicon nanowire. Simulation of the carrier concen-
tration in a nanowire CMOS transistor from [Voi13]. The carrier concentration is computed
for a temperature 𝑇 = 77 K and normalized so the total carrier concentration is equal to one
electron in the nanowire. The top panel corresponds to a simulation without any disorder,
while the bottom panel takes into account remote charge traps and surface disorder. For both
panels, the left figure is a top view of the horizontal silicon nanowire, and the right one is a
cross-section along the dashed axis. (a and b) Nondisordered case. The accumulation begins
in two extended symmetric channels in the corners of the nanowire. (c and d) With disorder.
The presence of remote charge traps and the surface roughness produce a confinement potential
for the electrons in the edge states and form quantum-dots.

two-dimensional confinement rising from the accumulation of a 2DEG in the corner of the
nanowire by applying a gate positive voltage and (ii) an additional localization coming
from both remote positive charges and surface roughness at the nanowire/gate interface.
The different tunnel barriers in the system are mostly fixed by the device geometry but
can be tuned to some extent using global top or back gates.

Charging energy and orbital spacing
We can now consider the energy properties of the silicon nanowire corner-dots.

First, a consequence of the compact CMOS nanowire geometry is the direct proximity
between the gate electrode and the controlled quantum-dot. Thus, these devices have large
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lever-arms compare to GaAs heterostructure where the 2DEG is located 100 nm below the
surface. In the case of corner dots in a split-gate geometry, typical lever-arms of 0.4 eV/V
are obtained [Ans20; Bet15; Ibb20]. These important lever-arms greatly enhances the
charge sensing fidelity of gate RF-reflectometry, as discussed in Sec. 1.3.2.

Concerning the corner-dots energy spectrum, it has been measured experimentally that
these dots have a charging energy 𝐸C ≃ a few tens of milli-electron-volts [Bet15; Ibb18;
Voi14b], in the few-electron regime. As discussed previously, we expect the charging energy
to reduce as the number of trapped electrons increases, since the strong localization induced
by disorder will be progressively screened and smoothed. This significant charging energy
is due to the large electron effective-mass in silicon, three times larger than in the GaAs
devices. Consequently, the electronic wavefunctions are smaller and more sensitive to
the crystal disorder, as discussed previously. Finally, by taking into account the small
corner-dot size in Eq. 1.10, we estimate an energy spacing between two orbitals within the
same quantum-dot 𝐸O ≃ 1.5 meV, as reported with spectroscopy measurements in [Voi14b].
So, the charging energy is also dominant over the orbital spacing in the dot energy spectrum
for silicon QDs.

However, in addition to the orbital levels, the crystalline silicon structure gives rise to
multiple conduction band valleys that must be considered to understand the corner dots’
energy spectrum, as we will discuss now.

Valley physics
Crystallized silicon is a diamond lattice formed by covalent bonds. It is a well-studied
semiconductor with an indirect band-gap. Indeed, electron state energies in the conduction
band are minimized for a non-null value of the crystal momentum #«

𝑘 . Furthermore, this
minimum is 6-fold degenerated due to the bulk silicon cubic symmetry and forms 6 different
valleys. The valley-degeneracy is not a problem for regular electronic devices since it
does not affect strongly their transport properties, but it is detrimental for quantum
electronics due to interferences between valleys during quantum coherent manipulations.
The degeneracy must be lifted, so the electrons occupy only the lowest-energy valley states,
similar to the orbits.

In our silicon nanowire, the confinement in the nanowire and the interfaces reduce the
crystal’s symmetries and lift the 6-fold degeneracy. First, the electron effective-mass is
anisotropic and consequently the stronger confinement along the z-axis moves the four # «

𝑘𝑥

and #«

𝑘𝑦 valleys approximately 10 meV above the two #«

𝑘𝑧 valleys (see Fig. 1.6) [Bou18]. Then,
the two remaining #«

𝑘𝑧 valleys can be coupled by inter-valley scattering potentials [Sar11;
Sar09]. Potentials that vary rapidly along the z-axis at the scale of few nanometers will lift
the remaining degeneracy by forming bonding and anti-bonding combinations of the + #«

𝑘𝑧

and the − #«

𝑘𝑧 valley states. We call valley splitting 𝐸V the energy splitting between these
two states.

For our CMOS devices, the interface between the silicon nanowire and the gates’ dielectric
acts like an abrupt change in the potential. Characteristic values for the valley splitting
range from 𝐸V ≃ 10 µeV to 1 meV depending on the interface surfaces of the device.
Nevertheless, the valley splitting can be tuned experimentally by controlling how much the
quantum-dot is squeezed to the gate electrode interface. In [Ibb18], applying a negative
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Figure 1.6: Valley splitting in silicon corner-dots. Schematic of how the 6-fold valleys
degeneracy is lifted in silicon corner-dots. Starting from bulk silicon, the system symmetry is
broken by the confinement potential in the corner of the nanowire. The two #«

𝑘𝑧 valleys stay
degenerate ∼ 10 meV below the four remaining valleys. The presence of a sharp potential at
the nanowire-dielectric interface couples the two valleys, and gives a valley splitting which
value depends on the interface details.

voltage on the back-gate continuously increases the valley splitting up to a factor two. To
summarize, we have seen that silicon’s 6-fold valleys degeneracy can be completely lifted
inside the CMOS devices.

To understand the corner-dot’s addition energy spectrum, we need to compare the valley
splitting to the other contributions. Since the dot charging energy remains the dominant
energy, the valley splitting must be weighed against the orbital spacing 𝐸O.

If the orbital level spacing is much smaller than the valley splitting (𝐸O ≪ 𝐸V), electrons
start by occupying well defined single-particle levels with increasing orbital numbers inside
a unique valley. In this case, we get rid of the valley physics in the few-electron regime.
Reciprocally, if 𝐸O ≫ 𝐸V, the first electrons fill the different valleys, each time in the
lowest orbit. Finally, if 𝐸O ≃ 𝐸V, orbits and valleys hybridize [Fri10]. Due to this mixing,
it is no more appropriate to talk about defined valley or orbital quantum numbers. The
new eigenstates are called valley-orbit levels, and their spacing is not necessarily regular.

For the devices studied here, the valley splitting is expected to be smaller than the
orbital spacing. Nonetheless, valley splitting, then valley-orbit coupling, depends a lot on
interface details. Thus, 𝐸V is device-dependent, and it is nontrivial to predict the structure
of our artificial atoms. We discuss the measured addition energy spectrum of four different
devices in Part 3.

1.2.4 Conclusion
In this first section, we have discussed the basics of semiconductor quantum-dots. We have
started by detailing the constant interaction model. This simple model described how we
could operate quantum-dots by considering the devices as nodes capacitively coupled. We
have defined the quantum-dot charging energy 𝐸C that considers the electrostatic cost of
adding an electron to a dot. Moreover, the lever-arm factors 𝛼 are introduced to translate
the operator voltage knobs into the system’s relevant energy scales.
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Then, we have presented the two semiconductor quantum-dots platform used in this
thesis. The first platform is a GaAs/AlGaAs heterostructure with metallic gates at the
sample surface used to locally deplete a 2DEG located 100 nm underneath. We have used
two-dimensional models to predict such quantum-dots’ addition energy spectrum, showing
that the charge energy is dominant over the orbital spacing. The second platform relies on
nanowire CMOS transistors. Corner-dots are accumulated at the top edges of the nanowire
by using both the electrostatic confinement generated by the gate electrodes and the strong
localization induced by remote charge traps and the nanowire/dielectric surface roughness.
We have highlighted the additional contributions in the energy spectrum coming from the
valley physics in the silicon nano-crystal.

In the next section, we use this knowledge to discuss how to probe quantum-dots’ charge
dynamics.

1.3 Remote charge sensing
In this thesis, we aim to characterize the charge distributions and dynamics inside quantum-
dot arrays. This task implies to detect individual charges as small as 1.6 × 10−19 C inside
semiconductor structures.

A basic approach consists of performing transport measurements through the quantum-
dot device. In 1988, Smith et al. have performed the first realization of a single quantum-
dot sensing with transport measurements, in the many-electron regime, with a GaAs
heterostructure [Smi88]. However, this technique requires large coupling to the reservoirs to
generate a measurable current, which is particularly difficult to sustain in the few-electron
regime with laterally defined quantum-dots as the reservoir-dot coupling tends to decrease
with the dot size. In consequence, it took another 12 years from the first quantum-dot
sensing to detect single-electron occupation with transport measurements, by engineering
the gate electrodes [Cio00; Wau95]. Transport measurements have also been used to probe
double quantum-dots structures, with the additional requirement of a large tunnel-coupling
between the two dots [Wie02]. Moreover, transport measurements are limited to structures
in which current can flow.

For our work, we rely exclusively on so-called remote charge sensing where a local
electrometer is defined close, or within the probed structures. Thus, the electrometer can
be arbitrary independent from the quantum-dot tuning and detect the probed system
charge dynamics even for low tunnel couplings. Compared with transport measurements,
the remote charge sensing is non-invasive and will affect only marginally the probed
system’s charge and spin dynamics. In this section, we detail the two different techniques
to probe quantum-dot arrays. First, we describe how transport measurements can be used
to perform remote charge sensing. We highlight the transport features of quantum point
contacts (QPC), a narrow constriction in a 2DEG. Then, we use the constant-interaction
model developed in Sec. 1.2.1 to understand the transport properties of a quantum-dot and
build a single-electron transistor (SET) electrometer operated in the many-electron regime.
Finally, we develop a model for gate-based dispersive RF-reflectometry. This method
embeds a quantum-dot electrode in an LC-resonant circuit to probe the so-called quantum
capacitance between the gate and the dot. Gate reflectometry has several advantages over
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transport measurements in the context of large-scale quantum-dot arrays. For example, it
dramatically reduces the sensors’ footprint by removing the need for one or all reservoirs
in the detection protocol.

1.3.1 Transport measurements
Quantum point contact
Quantum point contacts are local constrictions of a 2DEG so that the electrons flow though
a one-dimensional channel [Hou05]. If the channel width is comparable to the electron
Fermi wavelength, then the confinement induces quantization of ballistic conductance.

In Figure 1.7(a), a QPC is realized in a GaAs heterostructure using two metallic gates.
The IV-characteristic of the QPC shows that for 𝑉QPC < −550 mV, the channel is completely
pinched, and no current flows through the system. When the gate voltage increases, the
conduction jumps abruptly and stays constants until the next plateau is reached. Here,
the conductance through the QPC is quantized in integer values of 2𝑒2/ℎ, the conductance
quantum taking into account the electron spin degeneracy.
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Figure 1.7: Quantum point contact and single electron transistor.
(a) Reproduced from [Ber15a]. QPC IV-characteristic measured for a bias of 30 µV. When
the QPC voltage 𝑉QPC < −550 mV, the channel is completely pinched and no current 𝑖QPC
is measured. When the QPC voltage is increased, we observe two conductance plateaus. By
polarizing the QPC at a transition, any change 𝛥𝑉 in the QPC electrostatic environment will
produce a change of current 𝛥𝑖QPC. (inset) SEM micrograph of the sample.
(b, c and d) Schematics of SET transport properties. (b) and (c): diagrams of the discrete
electrochemical potential levels compare to the source and drain reservoirs. (b) No level falls
into the bias window (𝜇S − 𝜇D). Thus, the dot occupancy is fixed at 𝑁 − 1, and no transport
is possible due to the Coulomb blockade. (c) The 𝜇(𝑁) level fits into the bias window, and the
electrons tunnel one by one from source to drain at a timescale fixed by the tunnel barriers.
(d) Current 𝐼dot through the device as a function of the gate voltage 𝑉G.

A QPC can be used to perform remote sensing by designing the electrometer close to
the probed quantum-dot structures. Then, the QPC is polarized between two conduction
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plateaus, where the derivative of the QPC current with respect to any voltage variation is
the largest. At these spots, small changes in the electrostatic environment produce a large
current response. We remark that it is preferred to work with the first conductance plateau
since additional conduction channels will screen the electrostatic effect that we want to
probe. Thus, the addition of a single electron into the quantum-dot can be detected.
The sensitivity of the QPC electrometer depends (i) on its capacitive coupling to the
quantum-dot, and (ii) to the device electronic temperature. Indeed, the Coulomb potential
of the electron trapped in the quantum-dot diminishes with the distance ∝ 1/𝑟, so the
QPC must be positioned as close as possible to the quantum-dot. In addition, the width of
each step in the QPC characteristic is inversely proportional to the temperature [Wee88].
So, the electrometer sensitivity increases when the device temperature decreases.

Such detection schemes are routinely used to probe single-charge displacement inside
quantum-dot systems [Elz03]. In the next section, we introduce the single-electron transistor,
a more complex alternative enhancing the electrometer sensitivity furthermore.

Single electron transistor
A single-electron transistor is the most basic quantum-dot structure. It consists of a single
quantum-dot connected to source and drain metallic reservoirs, and a control gate electrode
as pictured in Fig. 1.1(a). Here, we explore the transport characteristics of this structure
when the charging energy 𝐸C is dominating the addition energy spectrum and with a
device temperature 𝑘B𝑇 ≪ 𝐸C.

For electrical transport to occur through the system, we need to align one of the available
quantum levels within a bias window. The bias window is the difference in electrochemical
potential between the source and the drain reservoirs and is tuned by applying a bias
voltage 𝑉SD = 𝑉S − 𝑉D so that 𝜇S − 𝜇D = −|𝑒|𝑉SD. To meet the transport condition
𝜇S ≥ 𝜇(𝑁) ≥ 𝜇D, one can adjust the local gate electrode value 𝑉G to shift the whole
electrochemical ladder as pictured in Fig. 1.7(b) and (c).

To have a better understanding of the transport phenomenon, we schematize the measured
current through the device when the gate voltage is swept (Fig. 1.7(d)). If none of the
QD levels sit within the bias window as depicted in Fig. 1.7(a), the number of electrons
inside the dot remains constant, and no current flows through the device. When the
charging energy is the dominating term in the addition energy, this phenomenon is called
Coulomb blockade. It has been achieved in all sort of system and only requires charge
quantification [VH92].

The Coulomb blockade is lifted by changing the gate voltage so that the next QD
chemical potential level is located below one of the two reservoirs. Then, one extra electron
can tunnel into the dot, increasing the occupation number from 𝑁 − 1 to 𝑁 . If the QD is
located within the bias windows as in Fig. 1.7(c), then the extra electron will tunnel to
the drain and a new one will be injected from the source and reproduce the same scheme.
This sequence is called single-electron tunneling and is responsible for the Coulomb peaks
in the detected current. We note that these transport measurements can be used to probe
the dot energy spectrum since the distance between two peaks is given by the addition
energy 𝐸add.

Like for a quantum point contact, the SET can be used as a sensitive electrometer by
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polarizing the gate electrode on the edge of a Coulomb peak, where the current derivative
is maximized.

To conclude, the quantum point contact and the single-electron transistor can both be
used as remote electrometer to probe a quantum-dots system. However, their measurement
bandwidth is usually limited around 10 kHz due to the RC-constant arising from the device
resistance (∼ 10 kΩ) and the capacitance of the cables used to connect the device to a room-
temperature electronics (∼ 100 pF). The bandwidth and the sensitivity can be enhanced
by integrating a resonant circuit within the electrometer and probe its resonance amplitude,
a circuit known as RF-QPC or RF-SET [Sch98]. The high-frequency operations of these
detectors (& 100 MHz) are not prone to 1/𝑓 noise as DC measurements. Sensitivities as
small as ∼ 2 × 10−4 𝑒/

√
Hz has been reported for single charge detection with a 20 MHz

bandwidth [Cas07]. Nevertheless, footprints of the QPCs and the SETs are still substantial
due to their own local reservoirs. In the next section, we will discuss how gate-reflectometry
can integrate a charge sensor directly into the probed structure.

1.3.2 Single lead quantum-dot with RF-reflectometry
Electrometers based on transport measurements with QPCs and SETs have been used to
demonstrate many milestones towards large-scale spin-qubit quantum computers [Pet05;
Wat18]. When these structures are combined with RF-reflectometry, one can engineer
a radio-frequency circuit to multiplex the readout of all these electrometers and greatly
reduce the impact of the charge sensors wiring. It is an important requirement to build a
functional quantum machine with millions of qubits and at least as many quantum-dots
to probe. However, transport measurements induce a huge overhead in terms of design
footprint with the necessity to add the full control of a quantum-dot, two ohmic contacts,
and the corresponding control electronics. Consequently, it is difficult to envision their use
as local electrometers in large-scale QD arrays.

A promising candidate to perform such operation is gate-based dispersive readout. This
technique consists of probing the so-called quantum capacitance between a gate electrode
and a quantum-dot. The quantum capacitance is a quantum-dot state dependant quantity
related to the electric susceptibility of the dot. It is monitored by looking at changes in a
radio-frequency tone applied on the electrode and reflected at the dot-electrode interface.
Using this principle, single lead quantum-dot (SLQDs) electrometers have been developed
to probe the charge dynamics of linear QD arrays [Ans20; Cha20b]. In this section, we
detail the working principle of these SLQD electrometers in the context of Part 3. More
complete explanations can be found in [Cot11] and [Miz17].

Model circuit

To understand how the quantum capacitance arises, we model our SLQD as shown in
Fig. 1.8(a). The dot is capacitively coupled to its electrode via a capacitance 𝐶G1, tunnel-
coupled to a metallic reservoir (𝑅S1, 𝐶S1) and has a charging energy 𝐸C = 𝑒2/𝐶1 with
𝐶1 = 𝐶G1 + 𝐶S1 the dot total capacitance. The source node is used to inject charges into
the dot, and its voltage is considered as grounded. The dot-gate effective capacitance 𝐶eff
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is defined as the variation of induced charges with respect to the apply voltage, namely

𝐶eff = 𝜕 ⟨𝑄G1⟩
𝜕𝑉G1

. (1.11)

Here, we have introduced the gate injected charge 𝑄G1 within brackets to denote a quantum
expectation value. Indeed, the quantum capacitance cannot be caught by a purely classical
model, and we have to consider quantum corrections.

Similarly to Sec. 1.2.1, we can compute the induced charges from the electrostatic
constant interaction model as 𝑄G1 = 𝐶G1 (𝑉G1 − 𝑉1) and 𝑉1 = (𝐶G1𝑉G1 − 𝑒𝑁) with 𝑁 the
number of electrons inside the dot. So, we can express the number of charges induced by
the gate electrode as

⟨𝑄G1⟩ = 𝐶S1𝐶G1
𝐶1

𝑉G1 + 𝑒
𝐶G1
𝐶1

⟨𝑁⟩ . (1.12)

In our classical electrostatic model, the dot occupation 𝑁 depends on the dot chemical
potential, as described in Fig. 1.8(b). At zero temperature, the dot population describes
periodic sharp steps located at the charge degeneracy points, where a dot chemical potential
is aligned with the reservoir. To obtain the quantum-dot occupation ⟨𝑁⟩, we introduce
the following Hamiltonian to model our quantum-dot circuit :

̂︀𝐻 =
∑︁
𝑁∈Z

[︂
𝐸C (𝑁 − 𝑁G1)2 |𝑁⟩ ⟨𝑁 | − 𝑡𝑐

2 (|𝑁⟩ ⟨𝑁 + 1| + |𝑁 + 1⟩ ⟨𝑁 |)
]︂

. (1.13)

It corresponds to the charge limit of the well studied cooper-pair box [Büt87], adjusted
for single electron tunneling. The first term gives the electrostatic energy of the dot for
each occupation state |𝑁⟩, with 𝑁G1 = 𝐶G1𝑉G1/𝑒 the number of charges induced by the
𝑉G1 gate voltage. Then, the second term is responsible for the tunneling of single electron
charges into the quantum-dot from the reservoir with a characteristic tunnel coupling 𝑡𝑐.
This Hamiltonian is associated with a discrete and periodic energy spectrum with a period
given by the charging energy 𝐸C as the dot energy is continuously tuned by 𝑁G1.

Simplified Hamiltonian

We limit ourselves to a regime where the temperature is small compare to the tunnel
coupling, and the tunnel coupling is small compare to the charging energy (𝑘B𝑇 ≪ 𝑡𝑐 ≪ 𝐸C).
Thus, the interactions between charge states have to be considered only for two successive
states, |𝑁⟩ and |𝑁 + 1⟩, close to the charge degeneracy points. When the reservoir is
not aligned with a dot level, the quantum-dot can be defined by a pure charge state |𝑁⟩.
Consequently, we can focus our study on a two-level system by dealing only with two
charge occupancies |0⟩ and |1⟩ close to their charge degeneracy point. This sub-system is
representative of the global Hamiltonian for any consecutive charge states.

From the simplified Hamiltonian

̂︀𝐻 =

⎛⎝𝐸C (1 − 2𝑁G1) 𝑡𝑐

𝑡𝑐 −𝐸C (1 − 2𝑁G1)

⎞⎠ , (1.14)
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Figure 1.8: Quantum capacitance of a single-lead quantum-dot.
(a) Electrostatic model of a quantum-dot connected to a single metallic reservoir. The dot
occupation is controlled by the voltage gate 𝑉G1 through the capacitance 𝐶G1. (b) Schematic
of the dot electrochemical potential for different gate voltage 𝑉G1 in the constant interaction
model. Three cases are considered, from left to right : (i) the gate voltage is too small for the
𝜇 (𝑁) level to be populated. (ii) the gate voltage bias the dot at the charge degeneracy point.
An electron tunnel back and forth from the reservoir into the dot and spend, in average, the
same time in the dot than in the reservoir. (iii) the gate voltage is large enough to ensure that
the dot is populated 100% of the time. (c) Energy diagram of the two eigenstates |+⟩ (lower
branch) and |−⟩ (upper branch) from the simplified Hamiltonian in a configuration where
𝑡𝑐 = 𝐸C/100. In dashed lines, we represent the limit with no tunnel coupling, 𝑡𝑐 = 0. For low
gate voltage 𝑉G1, the dot is in a pure |0⟩ ground-state. As 𝑉G1 increases, the eigenstate is
described by a superposition of the two pure charge states. At the charge degeneracy point,
the dot polarizability is maximized with |+⟩ = 1√

2 (|0⟩ + |1⟩). At this point, the spacing
between the two branches is given by the tunnel coupling 𝑡𝑐. Similarly, the dot is in a pure |1⟩
ground-state for large gate voltage. (d) Plot of the quantum capacitance with respect to the
gate voltage value. The quantum capacitance is proportional to the band curvature of the |+⟩
state, as plotted in (c). Its value is non-zero only close to the charge degeneracy point where it
is maximized. The quantum capacitance is plotted for three different values of tunnel coupling
𝑡𝑐/2, 𝑡𝑐, 2𝑡𝑐, with 𝑡𝑐 = 𝐸C/100. As the tunnel coupling decreases, the quantum capacitance’s
maximum value increases while the peak becomes narrower.
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we easily compute the two eigenstates and their eigenenergies

|+⟩ = cos (𝜃/2) |0⟩ +sin (𝜃/2) |1⟩
|−⟩ = −sin (𝜃/2) |0⟩ +cos (𝜃/2) |1⟩

(1.15)

𝐸± = ∓
√︁

𝐸2
C (1 − 2𝑁G1)2 + 𝑡2

𝑐 , (1.16)

where we have introduced the angle 𝜃 = arctan [𝑡𝑐/ {𝐸C (1 − 2𝑁G1)}]. We plot on Fig. 1.8(c)
the energy associated with the two eigenstate branches with respect to 𝑁G1, the number
of charges induced by the gate voltage . For a number of induced charges far from the
degeneracy point 𝑁G1 = 0.5, the eigenenergies depend linearly on 𝑁G1, and the associated
states are comparable to the pure charge states |0⟩ and |1⟩. However, close to the charge
degeneracy point, the two states are coupled via the tunnel-coupling 𝑡𝑐, and the actual
quantum state is a superposition as described in Eq. 1.15. In particular, at the degeneracy
point, one electron spends 50% of the time in the reservoir and 50% of the time in the dot.
The spacing between the two bands at this point is directly equal to the tunnel coupling 𝑡𝑐.

Quantum capacitance
Now that we understand how the system energy evolves with the gate voltage 𝑁G1 =
𝐶G1𝑉G1/𝑒, we can compute the dot occupation’s expectation value near a degeneracy point.
By using the derivative of the former Hamiltonian 𝜕 ̂︀𝐻

𝜕𝑁G1
= 2𝐸C (𝑁G1 − 𝑁) and considering

only the groundstate branch |+⟩, we obtain

⟨𝑁⟩ = 𝑁G1 − 1
2𝐸C

𝜕𝐸+
𝜕𝑁G1

. (1.17)

Thus, by injecting this result in the induced charges ⟨𝑄G1⟩ (see Eq. 1.12), we compute
the dot-gate effective capacitance as

𝐶eff = 𝐶G1 −
𝐶2

G1
𝑒2

𝜕2𝐸+
𝜕𝑁2

G1
. (1.18)

In this equation, the first term is the constant geometrical capacitance arising from the
classic electrostatic. The second term corresponds to the so-called quantum capacitance
𝐶Q and depends on the dot polarization. Its amplitude is maximum when the curvature of
the dot energy band is the largest. In our case, it coincides with the charge degeneracy
point, due to the band opening proportional to the tunnel coupling. Using Equation 1.16,
we derive the expression of the quantum capacitance in the lower branch as

𝐶Q = 𝐶2
G1

𝐶1
𝐸C𝑡2

𝑐

[︁
𝐸2

C (1 − 2𝑁G1)2 + 𝑡2
𝑐

]︁− 3
2

. (1.19)

In Figure 1.8(d), we plot the quantum capacitance for different values of the tunnel
coupling. We remark that the quantum capacitance maximum value increases when the
tunnel coupling decreases, but the region of 𝑁G1 where it is non zero becomes increasingly
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small.
We add an inductor in series with the gate electrode to build an electrometer out

of this single-lead quantum dot. Then, the circuit behaves as an LC resonant circuit
with a resonance position that depends on the quantum-dot state through the quantum
capacitance. By biasing the SLQD at a degeneracy point, any change in its electrostatic
environment will slightly modify the dot alignment and consequently reduce the quantum
capacitance. In T. Duty et al. [Dut05], the maximum phase change of a reflected wave on
the resonator due to the quantum capacitance is estimated to be

𝛥𝛷 ≃ 2𝑄 × 𝐶Q/𝐶p, (1.20)

with 𝑄 the quality factor of the LC circuit and 𝐶p the total parasitic capacitance to ground.
We describe the experimental setup used to probe such SLQD electrometer in Sec. 2.4.3.
This expression is obtained by considering the parasitic capacitance to ground much larger
than the dot capacitance 𝐶1, as we will confirm in Sec. 3.2. Furthermore, we can compute
the maximum phase change of the SLQD resonator at a charge degeneracy point

𝛥𝛷max ≃ 2𝑄 ×
(︀
𝛼G1

1
)︀2

𝑡c𝐶p
. (1.21)

Thus, one way to improve the SLQD signal is to use a device with a large lever-arm 𝛼G1
1 .

In this context, the gate-reflectometry is well suited for our silicon nanowires with large
gate lever-arms compared to the GaAs devices.

Besides, we note that the radio-frequency sent to perform the dispersive readout has an
additional requirement. In the present analysis, we have assumed that the quantum-dot
state remains all the time in the ground-state branch |+⟩, which is valid only for RF tone
frequencies and amplitudes small compared to the dot tunnel coupling so that the excited
branch is not populated through non-adiabatic crossing [Zen32].

In summary, we have demonstrated how to build an electrometer from a quantum-dot
connected to a single lead by harvesting the possibility offered by the quantum capacitance.
Sensitivities as low as ∼ 67 µ𝑒/

√
Hz have been achieved for single charge detection with an

SLQD in a silicon CMOS device, outperforming the RF-SET discussed previously [Ibb20].
Also, the quantum capacitance peaks when the charge polarizability is maximum for the
quantum-dot. It is not sensitive to the dot absolute occupancy number but to tunneling
events only. Nevertheless, this phenomenon is quite general and goes beyond the SLQD
studied here. For example, the reservoir-free dispersive readout of an electron-spin state
has been shown in a double quantum-dot [Cri19]. We note that in this case, it is not an
electrometer since the sensor is blind to certain charge transitions.

1.3.3 Conclusion
In this section, we have developed different charge electrometers for semiconductor quantum-
dots. We have focused our study on remote charge sensing techniques where the detector
back-action is limited compared to transport measurements through the quantum-dot
system to probe.
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First, we have considered electrometers with the use of quantum point contacts and single-
electron transistors. The former is a two-dimensional constriction where the conductance
is quantized with integer numbers of channels available. It features sharp steps in the QPC
IV characteristic used as polarization points to increase the electrometer sensitivity. In
general, SETs offer more tuning possibilities and permit to adjust for potential impurities.
They rely on the Coulomb blockade to demonstrate steep peaks in the measured current.
However, these two methods have a limited bandwidth due to the RC constant arising from
both the device resistance and the wiring capacitance. This disadvantage is overcome by
radio-frequency reflectometry with high-bandwidth, multiplexable readout. Nevertheless,
the main limitation of these electrometers based on transport properties is their significant
footprint using two ohmic contacts.

Consequently, we have developed the working principles of a single-lead quantum-dot
probed by gate reflectometry. In addition to a classical geometrical capacitance, we have
demonstrated that a quantum-dot gives rise to a state-dependent quantum capacitance.
This quantum capacitance depends on the polarizability of the dot, and is maximum at
the charge degeneracy points, where an electron is oscillating back and forth between the
quantum-dot and the reservoir.

In the next section, we investigate the control of quantum-dot arrays, while we have
focused only on single quantum-dot so far. In particular, we will highlight the charge
sensing methods used in different examples from the literature.

1.4 Control of quantum-dot arrays
So far, we have considered how to build a quantum-dot in a semiconductor nanostructure
and how to probe the charge dynamics of such structures using a remote electrometer.

Here, we start by looking at the properties of two quantum-dots tunnel-coupled. This
system is called a double quantum-dot (DQD) and is the fundamental building block to
develop QD arrays. We expand the constant interaction model developed previously to
this system and show how the quantum-dots exchange electrons. Also, we summarize the
automatic tuning procedures developed in the literature to get the desired occupation
numbers and couplings.

Then, we go beyond the double quantum-dot and consider quantum-dot arrays. We
distinguish the linear QD chains where dots are connected to only two neighbors, from the
two-dimensional arrays with at least four neighbors per dot. As we will discuss, arbitrarily
long linear arrays have been developed by successfully reproducing the device geometry
proven in DQD experiments. Now, 2D arrays have been limited to small 2x2 QD devices,
with the exception of a single 3x3 QD array. We explore the reasons and the difficulties
linked to such structures.

Next, we detail the so-called isolated regime. This operation protocol consists of coupling
the QD array to the electron reservoirs not all the time, as usually, but only when it is
necessary. As we will describe, this simple scheme greatly simplifies the array operation by
forcing the total number of electrons in the system constant during an experiment.

Finally, the development of large-scale quantum-dot arrays is considered. In particular,
we demonstrate that the number of gate electrodes per quantum-dot must be reduced
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to increase the number of QDs. Large scale 2D arrays are presented along the use of
row/column addressing.

1.4.1 Double quantum-dot
We start by describing a structure made out of two quantum-dots in series. This system,
depicted in Fig. 1.9, is built similarly to the single-dot circuit (see Fig. 1.1). We denote
QD1 the left quantum-dot, and QD2 the right one. Each dot is coupled to the system gate
electrodes 𝑉A and 𝑉B via the capacitances (𝐶1A, 𝐶1B) for QD1 and (𝐶2A, 𝐶2B) for QD2.
QD1 is tunnel-coupled to the source reservoir, and QD2 to the drain. Finally, QD1 and
QD2 are capacitively coupled, and tunnel coupled to exchange electrons so current can
flow through the device.

If a single quantum-dot is an artificial atom, then this structure behaves like an artificial
molecule. Here, the inter-atomic coupling is given by the tunnel coupling between the two
dots. Assuming that it can be experimentally tuned, the system can be shifted from an
ionic-like character with localized electrons on each dot to a covalent-like behavior where
electrons are delocalized over both dots.

In the following, we start by looking at how evolves the quantum-dot occupations with
respect to the gate voltages for different inter-dot tunnel coupling regimes. We will then
show how such devices are tuned experimentally and explore the charge control protocols
discussed in the literature.

VA

C1A
C2A

VB

C2BC1B

Q1,V1 Q2,V2 VD

R2D,C2D

VS

R1S,C1S Rm,Cm

Figure 1.9: Schematic circuit of a double quantum-dot. Two quantum dots QD1, and
QD2 are embedded in an electric circuit. The gate electrodes 𝑉A and 𝑉B tune the dots chemical
potential through the capacitances 𝐶iK for each dot i and gate K. Source and drain reservoirs
bring electrons into the quantum-dot system and allow current measurements through the
device.

Charge stability diagram
To understand how the charges occupy the two quantum-dots, we have to compute each
dot’s electrochemical potential in the constant interaction model. In particular, we need to
take into account the cross-capacitance couplings 𝐶1B and 𝐶2A, the inter-dot capacitance
𝐶Cm, and the presence of the source and drain reservoirs. Here, we directly give the result
for the electrochemical potential of QD1. The full derivation of a DQD circuit can be
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found in Sec. 4.3 in the isolated regime, with no coupling to the reservoirs. We found for
QD1 the chemical potential with respect to the dot occupation numbers 𝑁1 and 𝑁2

𝜇1(𝑁1, 𝑁2) def= 𝑈(𝑁1, 𝑁2) − 𝑈(𝑁1 − 1, 𝑁2) (1.22)

=
(︂

𝑁1 − 1
2

)︂
𝐸C1 − 𝐸C1

|𝑒|
(𝐶1S𝑉S + 𝐶1A𝑉A + 𝐶1B𝑉B)

+ 𝑁2𝐸Cm + 𝐸Cm
|𝑒|

(𝐶2D𝑉D + 𝐶2B𝑉B + 𝐶2A𝑉A) .

The first two terms are equivalent to what we have found in the single quantum-dot
expression, with the addition to the cross-capacitance couplings. Then, the last terms
contain the inter-dot capacitive coupling. In this picture, the mutual charging energies
𝐸Cm is the change in energy of one dot when an electron is added to the other one (see
Eq. 4.5).

Now, we can figure out how the different electrochemical levels arrange themselves in our
quantum-dot system. In particular, we want to determine the equilibrium electron numbers
in each dot, labelled (𝑁1, 𝑁2), as a function of the gate voltages 𝑉A, 𝑉B, and the inter-dot
coupling. These charge states are summarized on so-called stability diagrams shown in
Fig. 1.10. In these schematics, equilibrium occupancy number areas are delimited by solid
lines. While remote charge sensors map each of these transitions up to the electrometer
sensitivity, transport through the device occurs only for the specific conditions detailed
below.
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Figure 1.10: Charge stability diagrams of a double quantum-dot
Schematic stability diagram of a DQD in the (a) weak, (b) intermediate, and (c) strong
coupling regimes (see main text).

For uncoupled double quantum-dots 𝐶m → 0, we plot the corresponding stability diagram
in Fig. 1.10(a). We see that starting from an empty double dot (0,0) at the bottom-left of
the diagram, each dot population increases as the associated gate voltage becomes more
positive and that a charge degeneracy line is crossed. However, we note that the charge
degeneracy lines are not purely horizontals nor verticals. This is due to the cross-capacitive
coupling, which for example reduces QD1 electrochemical potential when 𝑉B is increased.
Electrons can be transferred from the source to the drain reservoir at each crosspoint
between two degeneracy lines in this regime. Indeed, at these points, tunneling sequences
like (𝑁, 𝑀) → (𝑁 + 1, 𝑀) → (𝑁 + 1, 𝑀 + 1) → (𝑁, 𝑀 + 1) → (𝑁, 𝑀) are possible within
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the bias window.
When we turn on the mutual capacitance, the 4-fold degeneracy at each crosspoint

is lifted, as pictured in Fig. 1.10(b). Each crosspoint is split into two so-called triple
points that reveal the characteristic honeycomb lattice of two coupled quantum-dots.
The distance between the triple points is set by the inter-dot capacitance 𝐶m. Electronic
transport is allowed only at these triple-point through typical sequence similar to (𝑁, 𝑀) →
(𝑁 + 1, 𝑀) → (𝑁, 𝑀 + 1) → (𝑁, 𝑀) The inter-dot tunnel coupling 𝑡𝑐 is responsible for
bending the honeycomb lines near the triple points and blurred the single-particle picture.

Finally, for strongly coupled dots 𝐶m ≃ 𝐶1, 𝐶2, the inter-dot capacitive coupling is
dominant compare to the gate couplings (Fig. 1.10(c)). Consequently, the honeycomb
features disappear, and the system behaves like a single bigger dot. We can no longer
distinguish the position of one electron located either in QD1 or QD2 from the charge
degeneracy lines.

Tuning of double quantum-dots
Semiconductor double quantum-dots are a fundamental building block towards realizing
QD arrays in the perspective of charge or spin-based quantum computing units. They
exist in various platforms, including the GaAs heterostructures, and the silicon nanowires
described previously. However, the tuning of a double quantum-dot is a non-trivial task in
all of these platforms.

A DQD like in Figure 1.9 requires controlling each dot’s occupation number, the tunnel
couplings to the reservoirs, and the inter-dot tunnel coupling. The experimental knobs to
accomplish this task are the gate electrode voltages available on the device. Due to the
cross-capacitive couplings, each change on a gate electrode might affects all the different
physical parameters. Also, device variability, induced by local charge traps and other
defects, makes the gate tuning device-dependent and even susceptible to thermal cycles for
the same device.

The tuning of semiconductor double quantum-dots is usually separated into two consecu-
tive steps. The first procedure is the coarse tuning of the device, consisting of forming the
quantum-dots and their depletion into the few-electron regime, as in Fig. 1.10. Current
experiments still configure the device heuristically and adjust the gate voltages based
on a human operator’s experience and intuition. Finding the set of voltages yielding
the desired confinement at the intended positions is a time-consuming iterative process.
Each experiment produces results to interpret, followed by the parameter adjustments’
decision. The interpretation of the results is usually the limiting factor for automated
tuning algorithms, since a non-tuned device can produce complex features that cannot be
fitted with the simple models developed previously.

However, machine learning algorithms have recently emerged as a "plug-and-play" tech-
nique for automated image classification [Kri12]. These algorithms are starting to be
used to recognize quantum-dots states and guide the tuning process, instead of a trained
operator [Kal19; Zwo20]. We detail in Fig. 1.11 the algorithm used by Zwolak et al. to
autotune a QD system to a single or a double quantum-dot [Zwo20]. First, the raw data of
a stability diagram is resized and normalized to feed into the machine learning algorithm.
Then, the convolution neural network assigns a probability vector to the device’s state as
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Figure 1.11: Machine learning algorithm for the coarse tuning of a double
quantum-dot. Reproduced from [Zwo20]. In Step 1, a stability diagram experiment is
runned on the device. The results are processed in Step 2 to remove the noise, and normalize
the data sent to the machine learning algorithm in Step 3. The algorithm produces a probability
vector that describes the device state as being in a single-dot, double quantum-dot, or no dot
regime. Based on this result, an optimization protocol either adjusts the gate voltages and
executes a new stability diagram, or terminates the tuning algorithm.

being in a single-dot, double quantum-dot, or no dot regime. Based on this vector and the
desired final state, an optimization protocol either adjusts the gate voltages and starts a
new experiment, or terminates the tuning procedure.

In particular, a machine learning-based algorithm has performed the coarse tuning of
a quantum device "faster than human experts" [Moo20]. Nevertheless, such algorithms
are still prone to errors, notably due to biased or incomplete training sets. So, the coarse
tuning of a DQD remains an open debate. New propositions solve an increasing part of
the tuning problem by successfully fitting the data with specific models instead of relying
on machine learning state recognition [LM19].

The second tuning step consists of fine-tuning the dot parameters towards given occupa-
tion numbers and specific tunnel-coupling values, once the few-electron regime has been
reached. Here, the physical models allow us to predict the system response to a voltage
adjustment, and the results can be automatically fitted to extract the DQD physical
parameters. Consequently, automated tuning algorithms have already been proposed
several years before the coarse tuning approaches’ progress [Bot18; Die18].

To conclude, we have discussed in this section the properties of semiconductor double
quantum-dots. We have highlighted how the gate electrode voltages and tunnel couplings
affect the dot occupancies with the appearance of honeycomb patterns in charge stability
diagrams. Next, the experimental tuning of such structures has been investigated. While the
most significant part of this tuning remains heuristic, automatic approaches are investigated
to optimize the tuning time. In the next section, we discuss semiconductor arrays beyond
the double quantum-dot that incorporate an increasing number of QDs. In this context,
automatic tuning is an essential step since the tuning space grows with the array size,
making human heuristic control more and more difficult.
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1.4.2 Open quantum-dot arrays
In this section, we explore more complex quantum-dot structures than previously and go
beyond the double-quantum dots. First, we look at linear arrays of quantum-dots and
show how they benefit from the robust DQD platform. Then, we discuss the development
of two-dimensional arrays.

Linear arrays
Linear arrays of quantum-dots are the natural step after the double-quantum dots discussed
previously. They consist of linear chains of quantum-dots where each dot is only tunnel-
coupled to its two neighbors. Linear arrays have been developed by many research groups on
different platforms like GaAs heterostructures [Fuj17; Ito18; Qia20], and planar-geometries
Silicon [Cha20a], or Si/SiGe [Law20; Mil19]. In the context of large-scale two-dimensional
arrays, linear chains are a perfect sandbox to develop charge transfers between sub-parts of
the array. As example for spin qubits, the physical transfer of electrons across the device
can preserve the spin state and connect coherently remote quantum-dots [Fuj17; Qia20],
while direct spin-spin coupling has a too short range [Baa17; Mal19], and indirect coupling
mediated by photons has an important footprint [Sca19].

Concerning the control of such arrays, their tuning time increases linearly with the chain
length. The tuning procedure’s overhead due to the different cross-capacitance couplings is
mitigated by the QD’s small connectivity. An additional complexity of larger quantum-dot
systems is the dimensionality of their charge stability diagram. Indeed, a comprehensive
DQD stability diagram simply consists of a two-dimensional plot where each dot’s charge
is manipulated independently on the two axes. A conventional stability diagram is only a
2D cut of a higher dimensionality charge stability volume for larger linear arrays.

In Figure 1.12(a), a quadrupole QD linear array in a AsGa heterostructure is displayed
(from [Fuj17]). In the QD chain, gate electrodes are designed to address either a specific
tunnel coupling or the chemical potential of a dot. Each end of the array is tunnel-coupled
to metallic reservoirs in order to load electrons into the structure. A remote single-electron
transistor probes the charge dynamics inside the array. A stability diagram of the four-dots
is plotted in Fig. 1.12(b). This diagram has been optimized to show the charge transfer of
a single-electron from the array’s left side, where two electrons have been loaded to the
right end. It uses the two most external plungers P1 and P4 to perform the charge transfer
through the points (I, A, B and C), as depicted in Fig. 1.12(b).

In this stability diagram, the different dot-to-dot and dot-to-lead transitions have different
slopes and differ greatly from the honeycomb pattern of a DQD. In particular, as the dot
number increases, it becomes more difficult to distinguish the transitions by their slopes
due to the cross-talk. Besides, the spacing between each line varies as the addition energy
spectrum is non-uniform across the array. We see that the four charge states of interest
exhibit a complex geometry with the requirement to use each time the two gate electrodes
in order to cross a transition.

Furthermore, this region of the charge stability volume clusters the charge states close
to transitions that do not conserve the total number of electrons inside the system, which
renders more complex its operation. Finally, the loading of a linear array is performed
with the electron reservoirs located at each array’s end. It means that each dot on the
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Figure 1.12: Charge stability diagram of a linear array of quantum-dots.
Reproduced from [Fuj17]. (a) Scanning electron microscope of the linear array. Metallic gates
deposited on top of a GaAs heterostructure can shape the 2DEG underneath. The dotted
circles indicate the linear chain’s quantum-dot positions and for the single-electron transistor
used as a remote electrometer. (b) Charge stability diagram for the shuttling of one electron
from the left side to the array to the right end. The array is initialized with two electrons in
the left-most dot at the position I. A single electron is then transferred sequentially to the
right end through the point A, B, and C.

chain has a different tunnel rate to the reservoirs and that the loading of dot inside the
array is achieved through co-tunneling. In consequence, the stability diagrams can show
latching of electron loading or missing charge transitions for failed loading, as indicated by
dashed black lines in Fig. 1.12(b).

To avoid these issues and facilitate QD chains’ formation, a tuning protocol has been
proposed for linear arrays of quantum-dots [Vol19]. The first ingredient of this proposal
relies on the use of so-called virtual gates. Virtual gates are linear combinations of multiple
gate electrode voltages [Hen17; Med13; Mor18]. For example, they can be used to perform
any two-dimensional cut in a charge stability volume. Here, they compensate the crosstalk
and the background disorder potential.

In Figure 1.13, the stability diagram of a DQD is plotted with respect to the associated
plunger gates. The device corresponds to an extended version of the device in Fig. 1.12(a)
with eight QD in series. As expected, the cross-capacitive coupling between each plunger
and the neighbor dots causes the charge transition lines to have a slope and depends on the
whole array’s voltage configuration. It means that, as previously, the global charge stability
diagram of the QD chain is complex and that the voltages apply to displace one electron
in a part of the array would affect the whole structure. To avoid this phenomenon, the
cross-capacitive coupling of all the gates with respect to the different dots is characterized.
These values are used to build a set of virtual gates with dedicated effects on either a specific
dot’s chemical potential or a specific tunnel coupling. The result on a DQD is depicted in
Fig. 1.13(b). We recover the stability diagram of a DQD with no cross-capacitive coupling
in the few-electron regime.
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Figure 1.13: Cross-coupling compensation with virtual gates. Reproduced
from [Vol19]. (a) Charge stability diagram of a DQD in the single electron regime. The
cross-capacitive couplings between the electrodes P2 and P3 with the two quantum-dots cause
the charge transitions lines to have a slope. (b) Same stability diagram than (a) but using the
virtual gates 𝛥P2 and 𝛥P3 which compensate for the cross-capacitive couplings. The charge
transition lines of the two dots are orthogonal. It greatly facilitates the tuning of the linear
array since additional QD can be added without disturbing the rest of the chain.

The second ingredient of the tuning protocol for linear arrays is to add the QDs one by
one, starting from a simple DQD. Each QD added to the chain is directly connected to a
reservoir, and the cross-capacitances are evaluated and corrected to leave the rest of the
array untouched. These techniques have been used to control an eight QDs long linear
array and constitute a recipe for arbitrary long QD chain in GaAs heterostructures.

To conclude, linear arrays are well-studied QD structures with proven design. Their
limited connectivity, where each QD is connected to only two neighbors, facilitates the charge
control by dealing with independent DQDs, one at a time. Linear chains have been proposed
to develop logical qubit with particular functionalities like the fully electronic-controllable
exchange-only qubit [Rus17], and a fault-tolerant qubit using error correction [Jon18]. In the
next part, we will increase the quantum-dots connectivity and investigate two-dimensional
QD arrays.

Two-dimensionnal arrays
The development of linear QD arrays has relied on the complex gate structures of DQDs.
Comparatively, the exploration of two-dimensional arrays has been relatively limited due
to different challenges.

First, it took decades to find reliable DQD architectures with the possibility to tune
both the dot occupations and their tunnel coupling in a wide enough window. These
gate geometries scale well for linear chains like Fig. 1.12(a) but not towards 2D arrays.
Consequently, new device structures must be explored, notably by using multiple electrode
layers.

Second, the charge sensing of linear arrays is facilitated by using remote SETs along the
chain. For 2D arrays, the charge sensors have to be pushed to the array’s periphery and fit
between the array electrodes. Otherwise, they have to rely on in-situ electrometers like
gate reflectometry (see Sec. 1.3.2).

Nevertheless, small 2D arrays have been established in different platforms including



1.4 Control of quantum-dot arrays 35

AsGa heterostructures [Muk18; Tha12], planar-geometry Si/SiGe [Law20; Rig20], and
silicon nanowires [Ans20; Gil20]. The most advanced realization is a 2x2 spin qubits array
in a Si/SiGe heterostructure, with independent control of each qubit and the ability to
entangle all of them [Hen20]. Another 2x2 QD array has been used as a quantum simulator
to study Nagaoka ferromagnetism, a ferromagnetic phase predicted in the 1960s [Deh20].
Furthermore, we remark that only charge control has been demonstrated in silicon nanowires.
The lack of tunable tunnel couplings complicates the spin operations. Besides, all these
structures have been limited to 2x2 arrays except for a 3x3 device that we highlight in the
next section.
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Figure 1.14: Operation of a 2x2 QD array. Reproduced from [Muk18]. (a) Scanning
electron microscope image of the 2x2 QD array. Two metallic layers of electrode gates pattern
the 2DEG located underneath the heterostructure surface. The overlaid blue circles indicate
the quantum-dots position. (b) Charge stability diagram in the few-electron regime with
respect to the plungers associated with two diagonally opposed QDs. The symmetries in the
cross-capacitance couplings make it challenging to distinguish a QD charge transition by the
degeneracy line’s slope. Moreover, it is complicated to navigate through the charge stability
volume while keeping a constant number of electrons in the system due to the couplings to the
reservoirs.

To understand why, we look at a realization of a 2x2 QD array in a AsGa heterostructure
from [Muk18]. If we look at the device geometry in Fig. 1.14(a), we see that the structure
hosting each QD is similar to the one used in linear arrays with the addition to a single
electrode, deposited after the other gates, that act as the tunnel-barrier at the intersection
of all dots. In particular, local electron reservoirs are located to the side of each quantum-
dot. As discussed, the SET remote charge sensors are delocalized further away due to their
footprint incompatible with the array size. So, this structure benefits from the advantage
of the well-proven DQD structure but it is difficult to scale-up.

We now consider the charge control of this array with the stability diagram reported in
Fig. 1.14(b). This diagram corresponds to the few-electron regime and uses the plungers
associated with diagonally opposed QDs. By looking at the different charge states labeled,
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we see that different charge transitions have a similar slope. Indeed, the cross-capacitance
couplings’ symmetries imply that the two electrodes swept have a similar effect on their
two neighbor dots. Besides, the coupling to the reservoirs complicates the array’s operation
with a fixed number of electrons within the array. It is more difficult to explore this
sub-space in the charge stability volume than the linear chain since each dot is coupled to
a reservoir.

To conclude, we note that the arrays explored so far have the same dot connectivity as
linear chains, with two neighbors per dot. Nevertheless, the tunability, charge control, and
device functionalities are enhanced with each device generation. The recent presentation
of a fully programmable 2x2 hole spin-qubit in a Si/SiGe heterostructures demonstrate
this high level of control [Hen20]. A bigger 2D array has been realized in our group, with a
3x3 QD device and a central dot with four neighbors. To tune this device, the isolated
regime has significantly reduced the charge stability volume complexity and enhanced the
array tunability, as we will discuss in the next section.

1.4.3 Isolated regime
The operation of quantum-dot arrays requires electron reservoirs to fill the different QDs
with the desired occupations and reset the array by releasing the electrons. However,
once these loading and unloading procedures have been carried out, the manipulations
are limited to operations within the structure, relying on the inter-dot tunnel couplings.
It is true even for computation based on spin-qubits, where reservoirs are only used to
initiate the qubits and sometimes to read their states using spin-to-charge conversion
techniques [Elz04]. Maintaining the tunnel coupling to the reservoirs during the array
operations leads to charge stability diagrams challenging to interpret. In particular, this
complicates the array operation because it requires carefully exploring the charge stability
volumes, avoiding areas where additional electrons may be injected, or accidental unloadings
occur. Moreover, it can limit the tunability of the array with for example the impossibility
of reducing an inter-dot tunnel coupling without accidentally charging an excess electron.

Here, we introduce a protocol to disentangle the array’s operation from the different
loading/unloading sequences requiring a coupling to the reservoir. The idea is to close the
reservoirs’ tunnel barriers when these couplings are not desired and place the array in the
so-called isolated regime. Experimentally, the concept is to push the tunnel barriers in a
regime where the characteristic tunneling time is much greater than the time required to
perform the experiment. Notably, it has been demonstrated that electrons can be conserved
for times longer than hours in semiconductor quantum-dots [Han07].

First, this method has a considerable impact on the complexity of the charge stability
diagrams. In Figure 1.15(a), we recall the stability diagram of a simple DQD. The charge
states describe a characteristic honeycomb pattern. Operating this structure at a fixed
number of electrons involves going through the inter-dot transitions depicted in blue and
avoiding the dot-to-lead transitions in red. Next, we load 𝑁load = 1 electron inside the
DQD before going into the isolated regime. In Figure 1.15(b), we see the resulting stability
diagram with a single line associated with the inter-dot transition of one electron going from
one dot to the other. Thus, the gate voltages applied to control the dots’ chemical potentials
can be extended over a wider voltage window, which enhances the DQD tunability for this
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Figure 1.15: Charge stability diagrams of an isolated double quantum-dot. (a)
Schematic stability diagram of a DQD in the intermediate regime coupling (similar to
Fig. 1.10(b)). (b) Schematic stability diagram of a DQD with 𝑁load = 1 electron loaded.
Only one charge transition line remains and is associated with the inter-dot exchange of one
electron from one dot to the other. The dashed red lines in the background corresponds to
the open-array stability diagram, for reference. (c) Same than (b) with 𝑁load = 2 electrons
loaded. Only three charge states exist to map all the configurations of two electrons in two
quantum-dots.

particular total number of electrons. Similarly, we show the expected stability diagram for
𝑁load = 2 electrons loaded in the double quantum-dot (see Fig. 1.15)(c). In this case, only
two inter-dot charge transition lines are visible.

We can measure the complexity of an isolated stability diagram by calculating its number
of charge states 𝑘 as

𝑘 =

⎛⎝𝑁dot + 𝑁load − 1

𝑁load

⎞⎠ , (1.23)

with 𝑁dot the number of coupled quantum-dots, and
(︀

𝑖
𝑗

)︀
the binomial coefficient of 𝑖 choose

𝑗. For a simple DQD, the formula simplifies as 𝑘 = 𝑁load + 1 with 𝑁load charge transition
lines.

To illustrate the benefits of the isolated regime, we introduce the 3x3 two-dimensional
array realized in our group by Mortemousque et al. [Mor18]. It consists of a GaAs
heterostructure with a single metallic layer defining the potential landscape of nine QDs, as
pictured in Fig. 1.16(a). Here, we limit ourselves to the five QDs in the cross configuration
(T, C, B, L, R) (see figure for corresponding dot labels). In Figure 1.16(b), we show the
stability diagram of the isolated array with 𝑁load = 5 electrons loaded. This configuration
corresponds to a total of 𝑘 = 126 charge states in the complete stability volume, and
only 45 of them are visible in this particular stability diagram. The isolated regime made
it possible to tune the device in a five electrons in five QDs regime and access only a
useful sub-space of this volume, with notably one electron in each dot (indicated by the
black arrow). Furthermore, the control of 𝑁load = 9 electrons in nine dots have been
demonstrated in the same structure, with a total of 𝑘 = 24310 charge states in the charge
stability volume. These states would have been difficult to explore in an open array with
the presence of different total electron number areas.
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Figure 1.16: Stability diagrams of five isolated quantum-dots. Reproduced
from [Mor18]. (a) Electron micrograph of the 3x3 QD array. A unique metallic layer defines
the potential landscape of the quantum-dots indicated by dashed circles. Four QPCs sense the
charge dynamics inside the array. (b) Isolated stability diagram with five electrons trapped
in a cross-configuration within the quantum-dots (T, C, B, L, R). A linear combination of
the QPCs’ derivative is plotted as a function of two virtual-gates 𝛿𝑉𝑋 and 𝛿𝑉𝑌 . The black
arrow points to the one-electron-per-dot state. The electrometers are not sensitive to all
charge transition. The white dashed lines are guides for the eye to replace missing lines. (c)
Simulation of the same stability diagram using the model developed in Sec. 4.3.

To conclude, the isolated regime greatly simplifies QD arrays’ charge control and permits
a better tunability of the dots’ parameters. It has been successfully employed to control
QD systems more extensive than a DQD, like a four-QDs linear chain [Bay17] and a 3x3
two-dimensional array [Mor18]. In the latter case, the control of 𝑁load = 9 electrons in
nine dots have been demonstrated. Also, the coherent displacement of individual electron
spins has been showed in three QDs in a loop configuration [Fle17]. Finally, the isolation of
electrons from the reservoir improves spin-qubits’ relaxation time, as reported in [Ber15b].

1.4.4 Scalability
So far, we have explored quantum-dot arrays with a limited number of dots 𝑁 . 10. A
universal quantum computing unit capable of surpassing today’s supercomputers would
require the control of over 64 qubits [Che18]. However, realistic qubit realizations are prone
to computation errors due to the decoherence of the qubits. To avoid these errors, quantum
error correction schemes have been proposed with the idea of redundantly encoding
the qubit information in so-called logical qubits. The redundancy factor is set by the
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physical qubits performances [Dev13; Jon12]. Considering state of the art qubit fidelities in
semiconductor quantum dots, the overhead induced by quantum error correction implies
103 to 104 physical qubits to build a logical one [Fow12; Mar15]. Thus, it is believed that
a semiconductor quantum computing unit would require at least 𝑁 ≃ 106 quantum-dots
to perform computation beyond the reach of the best classical supercomputers. Here, we
discuss the various challenges to overcome to increase the QD arrays’ size to this limit.

In the last few years, several large-scale quantum-dot array proposals have been developed
by different groups [Lee20; Li18; Vel17; Vin18b]. The first step is to control each dot’s
chemical potential and tunnel couplings individually, while limiting the number of external
controls. Indeed, current semiconductor QD arrays are defined on-chip, operated at
cryogenic temperatures. So, suppose we scale the QD array discussed in the previous
sections to a million quantum-dots where each QD has few gate electrodes. In that case,
we obtain a quantum chip with several million terminals that need to be wire-bonded and
connected to a room-temperature electronics. This scenario is unrealistic considering the
space required for all these connectors and the associated thermal budget. However, a
quick review of electronic developments teaches us that classical circuits have already dealt
with a similar fate. In the late 1950s, as the number of components increased in electrical
circuits, they have necessitated more and more soldering and inter-connections. Ultimately,
integrated circuits have solved this issue by building the inter-connects directly on-chip.
With the evolution of microelectronics, more and more functionality could be added to a
single integrated circuit at the cost of keeping the maximum number of connections to the
outside world to a few dozens. This phenomenon is known as Rent’s rule and still applies
to current integrated circuits such as microprocessors [Chr00]. Notably, a quantum circuit
equivalent of the Rent’s rule has been derived in [Fra19].

(b)(a)
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coupling

Sensors 
Sensors

Qubits

QD Layers Control gates

Figure 1.17: A scalable silicon QD array for quantum computing. Reproduced
from [Vin18a]. (a) Schematic of a three-dimensional architecture for scalable QD arrays
in silicon. A set of shared control gates controls a qubit layer consisting of QDs hosting
electron-spin qubits. An additional active layer is designed to build local electrometers and
reservoirs for the qubit array. The third control mesh turns ON the coupling between the
qubits and the sensors during the initialization and the readout steps. (b) Schematic of the
qubit unit cell. Each cell consists of four QDs in a cross configuration to apply quantum error
correction protocols on measurement (labeled as M) and data (D) quantum-dots.

Consequently, the different proposals for large-scale QD arrays have in common address-
ing of each quantum-dot through word and bit lines, a concept borrowed directly from
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conventional integrated circuits. The idea is to design control gates shared between the
different quantum-dots, in a row/column manner. Thus, the number of gate electrodes only
scales as

√
𝑁 , which is compatible with large-scale integration schemes. In Figure 1.17,

we show the scalable QDs architecture proposed by Vinet et al. [Vin18a]. In this three-
dimensional device, the top two metallic layers form a network of shared control gates. Vias
connect the gates to the active layer hosting the qubits’ QDs. A qubit cell consists of five
QDs in a cross configuration to apply quantum error correction protocols on measurement
and data quantum-dots (see Fig. 1.17(b)).

However, row/column addressing adds requirements on the quantum-dots’ homogeneity
across the device and on the parallel array operations. For example, in an ideal array with
perfectly equal QDs, if one row is selected, then any QD along the row can be actuated
by applying a voltage to its associated column. According to this principle, different
operations can be carried out in parallel in this ideal array. It is good considering that
corrections of errors, and more generally quantum algorithms, require operating several
QDs in parallel. On the other hand, inhomogeneities between the different quantum-dots
impact the parallel operations. In the worst case, only one operation can be executed at a
time on the whole array. One way to attenuate these inhomogeneities could be to build
local memory gates around each quantum-dot [Vel17]. These memories would save each
dot’s specific tuning parameters, but would complicate their unit cells.

Next, the charge readout of large arrays should benefit from gate RF-reflectometry
and multiplexing. Different RF-reflectometry tones could be sent to each row, with a
modulation of the column voltages applied to distinguish each dot’s contribution. Otherwise,
the proposal by Vinet et al. integrates local electrometer underneath each qubit cell. In
Figure 1.17, an additional active layer is present to build SLQD sensors just beneath each
qubit cell. This second layer of QDs is controlled by its own set of shared gate electrodes.
A third control layer with row/column addressing tunes the coupling between the sensors
and the qubits. Also, the additional levels permit to directly load electrons inside of the
qubit array with these local reservoirs. Other QD array implementations must rely on
charge shuttling from reservoirs located at the array’s edges to fill each dot.

Finally, an additional challenge is to overcome the crosstalk between each shared electrode
and its neighboring dots. We notice that the use of electrodes in a straight line, repeated
for each row/column, makes the device’s tuning highly symmetric. Thus, the crosstalk
should be homogenous along an electrode and compensable using the neighboring lines.

To conclude, we have summarized the large scale quantum-dot array proposals from
different research groups. In these structures, the critical ingredient to increase the number
of controlled QD is the design of a two-dimensional array with a row/column addressing,
similar to integrated circuits. It reduces the total number of gate electrodes as ∝

√
𝑁 ,

and enable dense QD packaging. However, the qubits’ tolerance levels are small, so the
inhomogeneity of the quantum-dots across the array must be quantified. A compromise
exists between the homogeneities of the QDs and the parallelizability of operations, due
to the row/column addressing. Furthermore, the charge sensing of large arrays has been
discussed using multiplexed gate RF-reflectometry or the development of local SLQD
remote electrometers using an additional active layer.
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1.4.5 Conclusion
In this section, we have detailed the control of quantum-dot arrays.

We have started by developing a model to understand the interactions between two dots.
The charge stability diagram of such systems described a characteristic honeycomb pattern
as the total number of charges inside the system is increased. We have discussed tuning
procedures for DQD to reach specific occupation numbers and inter-dot tunnel rates. In
particular, most automated tuning relies on pattern recognition based on machine learning
algorithms.

Then, we have presented linear, and two-dimensional quantum-dot arrays. Linear
arrays have a limited connectivity with only two neighbors per dots. However, their gate
architectures are close to the one used for DQD and permit to build long chains. An
8-QDs-long linear chain is described with its associated tuning protocol. On the other
hand, two-dimensional arrays have limited size due to the difficulty of designing an efficient
electrode lattice.

To simplify the array operation, we have introduced the isolated regime. Instead of
having the array-leads coupling always turned on, it uses on-demand coupling to the
reservoirs to fix the number of electrons in the system during an experiment. As the
number of electron states in the charge stability volume increases exponentially with the
number of dots, this regime is particularly helpful to focus only on a particular subspace.

Finally, we consider a quantum computing unit’s specifications based on QD arrays to
compete with conventional supercomputers. We show that more than 𝑁 = 1 million of
QDs would be required to outperform the latter and necessitate developing large-scale
two-dimensional QD arrays. A key ingredient to increase the number of QDs is to use
shared gate electrodes with a row/column addressing which reduces the number of electrode
to ∝

√
𝑁 .

1.5 Conclusion
In this first chapter, we have discussed how to construct and control quantum-dots in
semiconductor nanostructures.

We started by detailing the basics of quantum-dot systems in Sec. 1.2. By introducing
the constant interaction model, we modeled quantum-dot circuits and extracted interesting
quantities like the charging energy 𝐸C and the lever-arm parameter 𝛼. Then, we pre-
sented the two semiconductor platforms used in this thesis. The first platform is a GaAs
heterostructure with a two-dimensional electron gas located 100 nm below the surface of
the sample. By applying negative voltages to the gate electrodes deposited on top of the
sample, it is possible to pattern the 2DEG arbitrarily. This platform is a good testbed
for prototype quantum-dot architecture, as the devices can be manufactured in a few
steps within research facilities. The second system is a good candidate for large scale
quantum-dots and uses industrial processes to create silicon nanowires. The devices are
similar to conventional transistors and feature quantum-dots in the nanowire corners when
operating at cryogenic temperatures. Additionally, the silicon lattice is a good host for
electron-spin qubits with the ability to get rid of background spin nuclei, which is not
possible in GaAs heterostructures.
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Next, we explored how to build remote electrometers to probe charge dynamics inside QD
systems in Sec. 1.3. A first approach consists of realizing transport measurements through
a structure close to the probed system, as performed in Sec. 4.2.1. A quantum-point
contact, a local constriction in a 2DEG, induces a quantification of ballistic conductance,
and its IV-characteristic is made of sharp steps between conduction plateaus. By biasing
the QPC at one of these steps, the measured current is very sensitive to any change in the
electrostatic environment, including the charge dynamics within a close-by system to be
probed. Similarly, single-electron transistors rely on the narrow Coulomb peaks induced by
charge quantization in the dot island to construct sensitive electrometers. Then, a second
approach probes the quantum capacitance between a gate electrode and a quantum-dot
to perform gate-based dispersive readouts. In particular, we have detailed the operating
principle of a single-lead quantum-dot embedded in an LC resonator, as it is realized to
probe the charge dynamics inside a silicon nanowire in Chapter 3. This technique has
the advantage of using radiofrequency circuits, and several detectors can be multiplexed
together (see Sec. 2.4.3).

Finally, we have considered the control of quantum-dot arrays (see Sec. 1.4). We have
introduced the basics of double quantum-dots and discussed how to tune such a system.
Next, we discussed the realization of QD arrays in the literature. The architecture used to
operate linear chains of up to eight QDs was presented, in addition to a tuning procedure
compatible with an arbitrary long 1D chain. On the other hand, the realization of two-
dimensional quantum-dot arrays has been limited to small lattices with the upper limit of
a 3x3 QDs structure. It is due to the complexity of building reproducible and tunable 2D
arrays. Plus, 2D arrays raise new challenges in the tuning procedure due to the dots’ high
connectivity. To simplify their operations, we have described the properties of the isolated
regime. The idea is to cut the couplings between the array and the reservoirs when this
coupling is unnecessary. The isolated regime greatly simplifies the operation of QD arrays
by working with a fixed number of electrons. Ultimately, we discussed the perspective of
large-scale quantum-dot arrays. We have defined the requirements of such architectures,
induced in particular by a row/column addressing of QDs. Following these prerequisites,
we will operate the prototype of a scalable 2D array in Chapter 4.



CHAPTER 2
Experimental setup

2.1 Introduction
As discussed in Section 1.2.1, the typical energy scale in our quantum dot systems is given
by the charging energy 𝐸𝐶 , which depends on the dot size and ranges from ∼ 1 meV to
∼ 16 meV. Concerning the temperature, the lower-limit of the charging energy corresponds
to a temperature of 10 K. Thus, the sample’s electronic temperature must be kept at a much
lower value if one wants to resolve single electron loading phenomena. In consequences, the
first part of this chapter focuses on the dilution refrigerator used to cool down a sample at
70 mK.

Then, we discuss the two platforms employed in this thesis: a GaAs heterostructure,
and a Si nanowire. In particular, we need to pattern structures on these materials at
the nanoscale in order to obtain large-enough charging energies. It requires the use of
advanced nano-fabrication facilities such as the Neel’s Institute cleanroom or the CEA-
LETI industry-standard manufacturing line. In this context, we detail how we fabricated
the samples and the numerical simulations run to help design samples and facilitate their
tuning.

Finally, we need to connect the sample at dilution temperature to room-temperature
electronics to form and control quantum dots. To this end, the refrigerator is wired to
provide signals at the sample stage without bringing in excessive noise and heat from the
control electronics. Additionally, the room-temperature electronics allow DC bias, pulse
sequences, and charge sensing via current measurements or a gate-reflectometry setup.
Thus, we explain the wiring of the refrigerator and the associated electronics.

We conclude this chapter by introducing the measurement software developed to handle
our quantum experiments.

2.2 Cryogenics
The different experiments in this thesis have been hold in a Kelvinox®MX 3He/4He dilution
refrigerator from Oxford Instruments©. The refrigerator has a base temperature of 70 mK
with a cooling power at 100 mK of the order of 100 µW. During operation, the refrigerator
is inserted into a dewar filled with liquid 4He at 4 K. We detail here briefly the basic
principle of a dilution refrigerator.

The first proposal of a cryogenic 3He/4He dilution refrigerator dates back to 1951 by H.
London, and its first experimental demonstration occurred 13 years later [Das65]. It relies
on the mixture of the two stable isotopes of helium (3He and 4He) cooled below a critical
temperature 𝑇𝑐 ∼ 870 mK. At this temperature, the mixture undergo a phase transition

43
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and split into two phases : a lighter 3He "pure" phase (3He concentration > 99%) and an
heavier "dilute" phase (concentration < 10%). Since the enthalpy of 3He is different in
the two phases, we can obtain cooling by pumping the 3He from the dilute phase back
into the pure phase. The cooling power is generated at the phase interface and is directly
proportional to the forced 3He flow.

The experimental operation scheme of our dilution refrigerator is described in Fig. 2.1.
It consists of a dilution unit in a vacuum flask thermally isolated from the 4 K helium bath.
The unit is connected to the inlet and outlet of a pump located at room temperature. The
different stages of the refrigerator are :

1. First, the 3He gas from the pump exhaust is pre-cooled thanks to the 4 K liquid
helium bath.

2. The 3He flow is further cooled at 1.5 K by thermal contact with the 1K-pot. It
consists of a chamber, filled by the 4He bath, continuously pump at a few mbar by
an additional pump located at room temperature.

3. To reach the dilution temperature, the hot 3He inlet is now cooled by the cold outlet,
exiting the mixing chamber, by the continuous counterflow heat exchangers (efficient
for temperatures 𝑇 & 50 mK) and step exchangers.

4. The 3He inlet finally reach the mixing chamber where the dilution process takes
place.

5. The dilute phase is then pumped out of the mixing chamber, and pre-cool the inlet.
This cycle is completed by extracting pure 3He from the dilute phase using the still.
This chamber is kept at ∼ 800 mK and ∼ 1 mbar, conditions under which only the
3He evaporates.

The sample under test is thermally anchored to the mixing interface at the end of a cold
finger, which embedded the electrical connections required by the experiments.
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Figure 2.1: Schematic of a dilution refrigerator From [Ber15a]. A 3He inlet is cooled
to 4 K with a 4He bath before entering the isolated refrigerator chamber. Then, the inlet
is further cooled to 1.5 K by thermal anchoring to the 1 K-pot. It consists of an additional
chamber that continuously pump 4He from the helium bath. The dilution process occurs in
the mixing chamber, at the bottom of the fridge, for temperatures below 870 mK. In order to
reach these temperatures, the 3He inlet is pre-cooled by the outlet through continuous and
step exchangers.
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2.3 Sample fabrication
As discussed in the introduction, quantum dots can be formed in a multitude of host
materials. In this thesis, we explore quantum dot arrays in a silicon nanowire and a gallium-
arsenide heterostructure. First, GaAs heterostructure quantum dots benefit from long
expertise in fabrication from research facilities. A 2-dimensional electron gas engineered
by molecular beam epitaxy can be patterned with metallic depletion gates deposited at
the sample surface. However, the quantum dot layer is limited to one 2DEG, which can
be a limiting factor for a large-scale architecture, along with a reduced coherence time
for spin qubits due to an intrinsic nuclear spin bath. In this context, silicon appears as a
better candidate for large quantum dot arrays. Indeed, thanks to the industrial processes
developed with the microelectronics, we can envision silicon quantum dot in 3-dimensional
architectures.

In this part, we describe how we fabricated quantum dot arrays using both platforms
by means of nano-fabrication facilities. Additionally, we show numerical simulations of
the electrical potential landscape close to the regime where quantum dots are formed and
controlled.

2.3.1 GaAs heterostructure
The first platform used in this thesis is a GaAs/AlGaAs heterostructure with nm-wide
metallic gates deposited at the surface, as discussed in Sec. 1.2.2. The group of Andreas
Wieck makes the heterostructures by molecular beam epitaxy at the Ruhr-University in
Germany. In the context of this collaboration, we receive 2 inch wafers that are then split
among the different projects in the group. These crystals hold a 2-dimensional electron gas
90 nm below the wafer surface with a mobility 𝜇𝑒 = 1.5 × 106 cm2 V−1 s−1 and an electron
density 𝑛𝑒 = 1.35 × 1015 m−2.

Once the wafers are received, our device fabrication has been made in the Neel Institute
cleanroom facilities. The device’s fine structures, depicted in Fig. 2.2(b), need the deposition
of two layers of 20 to 40 nm wide metallic gates overlapping each other. The central part
of the device holds a 4x4 quantum dot array with line/column addressing control gates. It
consists of two sets of long metallic fingers with the vertical gates deposited on top of the
horizontal ones. For each set, one gate out of two is a shared tunnel barrier control, and
the other ones control the chemical potential of rows/columns. The structures surrounding
the array define single-electron transistors probing the array charge dynamics, and belong
to the first metallic layer.

Here, we start by detailing the fabrication process of the device. Afterward, we discuss
the potential simulations used first to design the device, and then help its tuning during
the experiment.

Fabrication process
The device fabrication relies extensively on the ability to imprint user-defined patterns
into the substrate. In our case, the realization of resist masks with laser or electron beam
lithography allows creating arbitrary patterns. For laser-lithography, we start by spin-coat
a uniform layer of photosensitive resist on the sample surface. Next, we load the sample
into a laser writing system that can expose patterns on the resist with a µm-resolution. The
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(a) (b)
200 nm10 µm

Figure 2.2: SEM pictures of the GaAs sample. (a) False color SEM picture of the
device central part before the deposition of metallic connections between the fine structure and
the bonding pads. The heterostructure structure surface has been etched to remove the 2DEG
everywhere except where needed (light red areas). The first fine structure layer (red gates) is
aligned with respect to local alignment marks (cyan). Then, a hafnium oxide patch is deposited
(brown) to insulate the second metallic layer (blue gates) electrically. (b) SEM picture of
the central part of (a). Two sets of horizontal and vertical gates define a 4x4 quantum dot
array (green dashed circles). One gate out of two is a tunnel barrier between rows/columns
of QD, and the other one tunes the QD chemical potentials. Surrounding structures define
single-electron-transistors used to sense the QD array charge dynamics.

sample is then plunged in a dedicated developer solution that will remove only the exposed
resist. It results in a resist mask that mimics the desired pattern, and we can either etch
the substrate or depose material through the resist trenches. In electron beam lithography,
we apply the same procedure but with an electro-sensitive resist and an electron beam
writer that uses electromagnetic lenses and deflectors to irradiate the sample with high
energy electrons.

We present here briefly the different fabrication steps before going into the details :

1. Mesa patterning, removing the 2DEG outside of the area defined in Fig. 2.2(a).
2. Creation of ohmic contacts, allowing to measure the current flowing through the

2DEG.
3. Patterning of alignment marks for laser and electron beam lithography.
4. Deposition of a hafnium oxide insulating layer by atomic layer deposition in order to

prevent the formation of Schottky barriers.
5. Definition and evaporation of the first layer of fine gate structures.
6. Covers part of the first metallic layer with a hafnium oxide patch to avoid short

circuits with the second metallic layer.
7. Definition and evaporation of the second layer of fine gates.
8. Patterning of metallic connections between the fine structure and the bonding pads.
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First, we get rid of the 2DEG everywhere on the wafer except where it is needed : in
the central part of the device where the quantum dots are formed, and current paths from
one ohmic contact to another to perform transport measurements. The mesa’s patterning
isolates each device on the wafer electrically and limits the amount of cross-capacitance via
the 2DEG. In order to etch only outside of the mesa defined in Fig. 2.2(a), we pattern a
400 nm thick resist mask (photosensitive resist S1805) at the surface of the heterostructure
via laser lithography. The surface of the sample is etched with a solution of H2O2/H3PO4

whose etching rate has been calibrated beforehand. The resist mask is removed using
acetone and the sample surface is rinsed and dried.

The next step is to create ohmic contacts to connect the 2DEG 90 nm below the sample
surface to bonding pads. The pads are imprinted on a resist mask with laser lithography
before deposing a 300 nm stack of Ni/Ge/Au/Ni/Au. The metals are deposited in one trip
inside an ultra-high vacuum chamber with the different crucibles heated by an electron
beam. The metal is uniformly deposited on the resist surface and on the crystal surface
inside the resist trenches. The excess metal is removed by lift-off, and leaves only the
ohmic contacts. This step consists of removing the resist with an acetone bath so that only
the metal in direct contact with the crystal stays on the sample surface. Next, the sample
is annealed 1 min at 450 ∘C to diffuse the Germanium and Nickel into the crystal and form
an alloy. Thus, we obtain ohmic contacts with low contact resistance 𝑅𝑐 =∼ 400 Ω. It is
important to perform sensitive electrical transport experiments [Iqb20].

Then, we depose a layer of 15 nm thick hafnium oxide HfO2 with atomic-layer deposition
(ALD) on all the sample surface. The hafnium oxide is a high-𝜅 dielectric that will prevent
the formation of Schottky barrier between the 2DEG and the metallic gates, allowing for
positive and negative polarizations. This layer has been benchmarked for electric field up
to 𝐸 ∼ 4.7 × 108 V m−1 using additional test structures. It corresponds to a difference of
±7 V applied between the bottom and upper fine structure layers.

Next, two kinds of alignment marks are deposited in a single step, using the same laser
lithography - metal deposition - liftoff cycle process. The first set of marks permits a
sub-micron alignment of the different laser lithographies and to perform rough localization
on the sample. A second set is deposited directly on the mesa, near the fine pattern. These
additional marks are used to align the two electron-lithography layers with a precision
below 10 nm. The alignment marks consist of a 20 nm thick titanium sticking layer, topped
with 100 nm of gold.

A first fine structure layer made of 4 nm Ti / 11 nm Au is deposited using an electron
beam lithography defined resist mask. For each electron beam lithography, we use a 70 nm
thick poly(methyl methacrylate) (PMMA) resist layer. Once the liftoff is performed, we
pattern a ∼ 100 × 100 µm patch of 15 nm-thick hafnium oxide on top of the fine central
part to depose the second metallic gate layers without short circuits. It does not completely
recover the first electron beam layer, so we will be able to contact it to the bonding pads
later on. The upper metallic gate layer is deposited using the same method than the
bottom one.

Finally, we connect all the fine gates to bonding pads with a laser lithography cycle
and cut the sample into smaller 3 mm × 3 mm pieces that contain one device each with a
diamond-tip scriber.
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Potential simulations

In order to guide the device design, we use Comsol© as a Poisson solver to compute the
electric potential at the 2DEG level. In the simulation, we import the device gate geometry
including the two metal layers, the hafnium oxide and the GaAs/AlGaAs heterostructure.
We assume the 2DEG depleted. This hypothesis gives a good approximation of the dots’
electrostatic potential far from the electron reservoirs where electron-electron interactions
would smooth the barriers’ potential. Such calculations do not predict the dot occupancies
and their tunnel couplings for specific gate voltages. Nevertheless, they give the position of
the dots qualitatively and help to tune the device by giving a rough idea of the potential
landscape.
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Figure 2.3: (a) Comsol© simulation of the electrostatic energy landscape induced by the
gate electrodes. All the gate electrodes are biased at −700 mV, except the plungers which are
grounded. We observe a minima in the landscape at the crossing of each plunger gates. (b)
Horizontal and (c) vertical cuts in the electrostatic energy along the different rows/columns of
quantum-dots. As expected, the potential is uniform for each QD at the center of the array, but
it is not true at the array boundaries due to finite size effects. In order to align the chemical
potential of each dot, the gate voltages must compensate for the differences.

In Figure 2.3, we confirm that this structure has the potential to form an array of 4x4
potential minimums that will hold quantum-dots. The array is biased with the same
voltage applied on each barrier gates. We see that the outer dots, close to the array’s
boundaries, have a higher potential than the 4 central dots. The thicker outer gates used
to isolate the array from the rest of the 2DEG explain this asymmetry. It could have been
corrected by increasing the size of the dot located on the edges but we choose to preserve
a uniform dot spacing. Consequently, due to the finite size of the array, the tuning of the
gate voltages must compensate for the higher potential at the array boundaries.
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2.3.2 Silicon nanowire
This thesis’s second platform consists of silicon transistor-like nanostructures, as depicted
in Fig. 2.4. An intrinsic silicon channel is connected at both ends with metallic reservoirs
and accumulation gates are deposited on top of the nanowire to create and control an array
of quantum dots. The devices are fabricated at the CEA-LETI on an industry-standard
fabrication line.

In this part, we detail the fabrication process developed at the CEA-LETI and the
potential simulations used to understand the sample dynamics.

Fabrication process
The devices are fabricated on 300 mm Silicon-On-Insulator (SOI) substrates with a buried
oxide thickness of 145 nm (Fig. 2.4(b)). The top 11 nm-thick silicon layer is patterned with
a electron-beam lithography - etching cycle to form the nanowire (width 𝑊 = 70 nm to
110 nm). Next, the gate stack is made of 6 nm thermally grown SiO2, 5 nm ALD-deposited
TiN, 50 nm of Poly-Si, and topped by a bilayer hard mask 30 nm SiN and 25 nm SiO2

(Fig. 2.4(c)). The gates are defined by multiple lithography-etch cycles, using both deep-UV
and electron-beam lithography. The hard mask role is to cover the gates during the etch
cycles and is removed at the end.

The resulting structure consists of 4 pairs of split gates along a silicon nanowire channel
of rectangular cross-section, each overlapping opposite edges of the mesa (labeled from
1 to 8 in Fig. 2.4(e)). The gate pitch along the nanowire direction is 80 nm (gate width
𝑊 = 40 nm, spaced by 𝑆H = 40 nm), and the split width is 𝑆V = 40 nm. The n-doped
areas are defined in a self-aligned way, outside regions covered by the gates and an offset
spacer. Thus, a particularly wide (35 nm) Si3N4 offset spacer was deposited, completely
covering the inter-gate spacings (Fig. 2.4(b)), to protect the intrinsic silicon nanowire
from accidental doping. The Si areas still exposed were regrown employing epitaxy, before
undergoing ion implantation of n-type dopants activated by a N2 spike anneal. These
regions form the electron reservoirs, labeled S and D (source and drain) in the figures by
analogy with classical MOS devices. Following these steps, the wafers are then sent to a
back-end process that encapsulates the devices and defines bonding pads.

At room temperature, the 4 split-gate silicon devices act like field-effect transistors, and
source-drain current is turned ON when we apply gate voltages above a given threshold
(see Appendix A). Thus, pre-screening is achieved by discarding the devices exhibiting
abnormal characteristics (e.g. voltage thresholds, saturation currents) or leaking gates
directly from room temperature characterizations.

Potential simulations
In Section 1.2.3, we discussed the formation of quantum dots at dilution temperatures in
the corner of the nanowire when a positive voltage is applied on a single split-gate. To
understand the operation of our 4 split-gate devices, Yann-Michel Niquet (CEA-IRIG in
Grenoble) developed numerical simulations to compute the carrier density in the nanowire.

The simulations rely on a self-consistent Thomas-Fermi approximation to take into
account the electron-electron interactions on the carrier density. Compare to the GaAs
potential landscape simulations, we are dealing with a rapidly varying accumulation
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Figure 2.4: Silicon split-gate device. (a) Schematic of the 2x4 QD array silicon device.
The silicon nanowire (blue) is covered with top gates (red), which are separated by spacers
(green). The non-covered regions of the nanowire are highly doped to form electron reservoirs.
(b) Cross-section along the nanowire. (c) Cross-section perpendicular to the nanowire, along
one top gate. (d)(Left panel) SEM micrograph of a device similar to the one used in the
present thesis. The source (S) and drain (D) contacts are labeled, as well as the quantum-dots
(QD1 to QD8) and their associated electrodes (𝑉1 to 𝑉8). (Right panel) Zoom into the central
part of the device with the split-gates deposited on top of the horizontal silicon nanowire. The
nanowire width is labelled 𝑊 , the gate width 𝐿G, the gate horizontal spacing 𝑆H and vertical
𝑆V.

potential, notably due to the limited distance between the dots and the gate electrodes.
Thus, the potential landscape does not catch properly the size and shape of the dots. The
source and drain contacts are assumed doped with 𝑁d = 1020 phosphorous per cm3, whose
ionization probabilities are calculated with an incomplete ionization model valid at low
temperature [Alt06]. The density of electrons at a position 𝑟 in the nanowire is given by

𝑛(𝑟) = 𝑁c𝐹1/2[(𝐸c − 𝑒𝑉 (𝑟) − 𝜇)/(𝑘𝑇 )], (2.1)

where 𝑉 (𝑟) is the local potential, which includes the mean-field contribution from the
ionized impurities and electrons themselves. Additionally, 𝐹1/2 is the Fermi integral, 𝑁c
and 𝐸c are the effective density of states and conduction band energy in bulk silicon, and 𝜇
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is the chemical potential. The calculations are run at temperature 𝑇 = 20 K for numerical
convenience. Although the Thomas-Fermi approximation does not consider quantum effects
such as confinement and tunneling, it is expected to give a fair account of the position of
the dots and transport channels in the system.

1 2

SLQD 6 B B

B B
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Figure 2.5: Electron density simulations. The density of electrons inside the nanowire
is computed for 𝑉1 = 1.2 V and 𝑉1 = 𝑉2 = 𝑉6 = 300 mV. The color code corresponds to 3
different iso-density of arbitrary values. The simulation is used to give an insight into the QD
localizations for a given voltage configuration.

Nevertheless, we can compute the electron density inside the channel for polarization
conditions similar to these studied in chapter 3. In figure 2.5, a large positive voltage
(> 1 V) is applied on gate 5 to form a single-lead quantum dot electrometer and gate 1, 2,
and 6 are biased in the few-electron regime at ∼ 300 mV. A large dot is formed under the
SLQD gate and affects the QD potential of QD1, 2 and 6. Additionally, we see that the
electron density does not vanish along the nanowire for both sides. At the opposite, in the
transverse direction, the dot remains fairly localized under each gate. In consequence, we
expect qualitatively from this simulation that the inter-dot coupling is stronger for a double
quantum dot located along the nanowire (e.g: QD1 and QD2) than in a configuration
across the channel (e.g.: QD2 and QD6).

2.4 Electronics
Using the dilution refrigerator detailed previously, we can cooldown a sample at 70 mK,
but we still need to detail the electronics used to control and measure such a device.

At this end, the sample under test is glued to a printed circuit board (PCB). Once
the sample is wire-bonded to the board, we place the PCB at the end of the cold finger
connecting all the device’s pads to the refrigerator DC wiring. Also, the PCB embed
mini-SMP connectors and surface-mounted-devices that we use to build a LC resonant
circuit for gate reflectometry sensing, which is probed through a dedicated high-bandwidth
AC wiring.

We first discuss the different refrigerator wirings installed to connect the sample to
room-temperature electronics. Then, we focus on these electronics used to create and
control quantum dots. Finally, we detail the whole setup performing gate reflectometry.
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2.4.1 Wiring of electrical connections
The first step is to connect all the device pads to room-temperature electronics. In
particular, the different samples studied in this thesis required from 10 to 40 electrical
connections from room temperature down to the sample at 70 mK. These connections
have different requirements in terms of bandwidth and features. Additionally, the heat
brought by this wiring must be kept as low as possible. Indeed, the sample’s electron
temperature can significantly exceed the mixing chamber temperature due to the wiring
heat and insufficient thermal contact. Thus, different wires and materials are used to
satisfy both bandwidth and heat budget, depending on the line.

Here, we detail the different solutions used for the DC wiring, before discussing the large
bandwidth AC wiring.

DC wiring
One way to connect a wire from room-temperature to the sample at 70 mK is to thermally
anchor the wire at the different refrigerator stages that act as heat sinks, and to filter the
wire’s noise spectrum continuously . Indeed, the amount of heat brought by the wire’s
white noise is limited by its bandwidth and temperature. We discuss two implementations
of this strategy: a first one consisting of limiting the wire’s bandwidth, and the second one
in attenuating regularly the wire’s signal.

First, the ohmic contacts and some gates required only to be operated on a ms-timescale.
These lines are Constantan wires, a copper-nickel alloy known for the low variation of its
resistivity with temperature. We packed 30 Constantan lines altogether in a CuNi capillary
with a diameter of 3 mm. The capillary is then filled with Ecosorb®, a powder containing
magnetic particles, that acts as a low-pass filter. Once installed in the dilution refrigerator,
the capillary is thermally anchored to the different fridge stages. It results in 30 lines from
room temperature to the PCB with a DC to 10 MHz bandwidth, contained in a small
capillary. Such a dense packaging implies non-negligible crosstalk between the Constanan
wires that we can neglect for sub-MHz manipulation like constant voltage generation and
recovering current from the mesa.

However, most of the gates have to be addressed at microsecond timescales with limited
crosstalk. For example, in Sec. 4.2, we detail an electron loading pulse sequence where
important crosstalk would affect the number of electrons loaded. For these lines, we
installed 20 individual Thermocoax® coaxial wires. They exhibit a low-pass filter behavior
with a ∼ 100 MHz cut-off frequency. In order to maximize both filtering and thermal
resistance, we maximize the wire length in the fridge by winding the wires around Teflon
tubes. At the opposite, the thermal resistance needs to be as low as possible between the
mixing chamber and the PCB. This is achieved by the use of copper/stainless steel coaxial
wires. The interfaces between these wires are 3.5 mm diameter mini-SMP connectors. In
consequence, the important footprint and number of critical welds make this solution
impracticable for all the 40 fridge lines.

AC wiring
In Section 1.3.2, we discussed the principles of gate-reflectometry charge sensing. This
technique relies on the ability to probe a resonant circuit located at 70 mK whose central
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frequency can range from few tens of MHz to 1 GHz. It appears that the previous DC-wiring
cannot fit this bandwidth requirement without bringing excessive heat and noise directly
to the sample.

To conserve a large bandwidth with reduced noise, the solution adopted here consists of
using large-band attenuators to reduce the signal amplitude as we go down in temperature.
Indeed, the attenuators reduce signal and noise level and thermally anchor the inner
conductor efficiently . Therefore, while the signal amplitude decreases, the noise level is
kept at the noise temperature of the associated stage. In our setup, attenuators located
at the 4 K and 70 mK-stages interrupt high-bandwidth lines. The RF-wires are made of
silver-plated stainless steel, and we use attenuators from XMA corporation® working at
dilution temperatures. Thus, the attenuation levels balance the tradeoff between the noise
and the maximum signal amplitude brought to the sample.

2.4.2 Control and acquisition electronics
In addition to the well isolated and filtered wiring detailed previously, we also need a room
temperature control electronics and a data acquisition scheme. We detail here the apparatus
used to apply arbitrary voltages, perform data acquisition, and transport measurements.
The reflectometry setup to perform gate-reflectometry is investigated in the next section.

Digital-to-Analog converters
First of all, our experiments rely extensively on the generation of voltages to form and
manipulate quantum dots. To this end, we use homemade 16-bit digital-to-analog converter
boards (DACs) that exhibits a fast slew rate SR ≃ 2.5 V µs−1, while keeping a low noise
level figure of 25 nV/

√
Hz. The DAC output full voltage range is ±5 V, which results in

a voltage resolution of 153 µV. Each DAC board embeds 8 different outputs and we use
an assembly of 4 DAC boards in this thesis. These boards are controlled by a sbRIO-
9208 field-programmable gate array (FPGA) from National Instruments©. The different
waveforms to apply on each DAC output are programmed in the FPGA memory before an
experiment in a ∼ ms timescale. Up to approximately 3000 instructions can be encoded
in the FPGA memory with a minimum setting time of 16 µs when a voltage order is set.
Thanks to the flexibility and the low noise figure of this instrument, we can easily perform
experiments where both fast (e.g. µs electron loading) and slow timescales (e.g. ms charge
readout) are needed.

Acquisition board
In order to acquire the signal generated by the experiment, we use an AlazarTech© ATS460
digitizer. The card has 2 input channels sampled at 125 MHz with a 14-bit resolution. We
developed a driver that benefits from the board dual-port memory to stream the data
acquired to the host computer. Moreover, the acquisition can be triggered externally by
the same FPGA used to control the DACs.

Transport measurements
Finally, the ability to measure the current flowing through two ohmic contacts is an essential
tool to characterize our devices and to form SET detectors (see Sec. 1.3.1). This is achieved
with the use of homemade IV converters with variable gain from 106 to 109 V A−1. For an
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amplification of 107 V A−1, they have a rise time of 100 µs, which is compatible with the
Constantan bandwidth.

2.4.3 Reflectometry setup
In addition to the previous voltage control and data-acquisition that rely on the DC
wiring, the AC wiring allows us to build an electrometer out of a single-lead quantum
dot by probing the electrode-dot quantum capacitance with the use of a resonant circuit
(see Sec. 1.3.2). One advantage of this scheme is the possibility to probe many SLQDs
using only one input and one output AC line wired into the dilution refrigerator. The
frequency multiplexing applies as long as the resonances from the different resonant circuits
/ SLQDs are resolved individually. We detail here the reflectometry setup used to probe
up to 2 resonant circuits LCa and LCb simultaneously, as shown in Fig 2.6. Since the
room-temperature apparatus is identical for both SLQDs and that the refrigerator part is
common, we focus on LCa and highlight only the differences with LCb.
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Figure 2.6: Gate RF-reflectometry setup. Diagram of the reflectometry setup to probe
the resonator LCa on the PCB. A RF tone is generated and sent to a homemade splitter/adder
at the setup’s IN-port. One half of the RF power goes to the resonator located in the dilution
refrigerator at the 70 mK stage. First, it goes through a voltage-controlled attenuator at
room-temperature and a fixed one at the 4 K plate, before being injected into the directional
coupler. The coupler has two ports, one for each resonant circuit. The resonant circuit is
connected via a bias-tee with a capacitance 𝐶T for the AC port, and an inductor 𝐿T for the
DC port. The signal reflected at the LCa resonator passes through the directional coupler and
is amplified before a demodulation step by comparison with the second half of the original
RF tone. The demodulator codes either the amplitude or the phase difference between these
two signals, and a filter in addition to a final amplification stage makes it possible to measure
the 𝑉Meas voltage at the OUT-port of the setup. An additional resonant circuit LCb can be
probed at the same time using the multiplexed part of the circuit (splitter, fridge wiring).

First, we generate a RF tone around the circuit resonant frequency 𝑓a
0 ≃ 286.1 MHz

(𝑓b
0 ≃ 236.0 MHz) using a Rhode&Schwarz© SMB100A signal generator with a 10 dBm

power output. This signal is split into one reference signal going to the mixer, and the
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carrier injected into the refrigerator AC input. To do so, we use a homemade splitter to
sum the two carriers 𝑓a

0 and 𝑓b
0 for the AC input, and generate the two mixer reference

signals. Furthermore, a voltage-controlled attenuator IDT® F2250NLGK allows tuning the
summed signal power at the AC input, without affecting the mixers reference amplitude.
The signal is further attenuated by 30 dB at the refrigerator 4 K-stage.

The input signal channel is then connected to the −30 dB input of a homemade directional
coupler anchored at the mixing chamber. The directional coupler’s output is split into two
channels, one wire from the directional coupler to the PCB for each resonant circuit. A
typical value of the power sent to the device is estimated to be around −100 dBm. It is
worth noting that this additional splitting can be achieved on-chip directly in lithographed
resonant circuits [Hor14].

The resonant circuits consist of surface-mounted inductors 𝐿a
0 = 470 nH and 𝐿b

0 = 820 nH
soldered directly on the PCB and wire-bonded to a gate. It forms LC-circuits with the
gate-dot capacitance 𝐶0 ≃ 0.02 pF (typical value) and the parasitic capacitance to ground
𝐶p ≃ 0.6 pF. The parasitic capacitance arises from the PCB and the bonding pads on the
sample. Further developments, including the developments of on-chip inductors, are needed
to reduce as much as possible the parasitic capacitance in order to maximize the SLQD
phase response 𝛥𝛷 ∝ 𝐶Q/𝐶p (Eq. 1.20). To allows DC biasing of the gate, we connect the
tank circuit to a bias-T composed of a 𝐶T = 1 µF capacitor (AC branch), and an inductor
𝐿T = 820 nH (DC branch). Then, SMP connectors connect the resonant circuits to the
AC wires.

Finally, the signal reflected on each resonant circuit goes back through the directional
coupler. It is amplified by 30 dB with a low-noise amplifier CITLF1 from the Caltech
Radiometer Group, anchored at the 4K-stage. Then, it is again amplified by 36 dB at
room temperature using two MiniCircuits® ZX60-33LN-S+. Afterward, the signal is split
between the two mixers AD8302 whom, with the reference signal, allows to obtain both
the gain and phase difference. The phase output is filtered and amplified by an additional
18 dB homemade amplifier before digitalization.

The full reflectometry setup is resumed in Fig. 2.6. It allows us to probe the phase
response of 2 resonant circuits down to 70 mK. In this context, we show in Fig. 2.7 the
amplitude response of both resonant circuits before the mixers. We obtain two resonances
with central frequencies 𝑓a

0 ≃ 286.1 MHz and 𝑓b
0 ≃ 236.0 MHz and quality factors 𝑄a ≃ 49

and 𝑄b ≃ 11. In Chapter 3, we use LCa to build a SLQD detector and measure the charge
occupancy of its next neighbor QDs.
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Figure 2.7: VNA response of the LC resonant circuits at 70 mK. The amplitude
response of a Vector-Network-Analyser (VNA) is plotted as a function of the probe frequency.
We see two peaks, each associated with a resonant circuit. For LCa (blue dashed line), we get
a center frequency 𝑓a

0 = 286.1 MHz and a quality factor 𝑄a = 49. For LCb (red dashed line),
we obtain a center frequency 𝑓b

0 = 236.0 MHz and a quality factor 𝑄a = 11.

2.5 Measurement software
The electronics described in the previous section are the hardware side of our quantum
experiments. Here, we present the measurement software programming the electronics,
retrieving the experimental data, and analyzing the results. The control of an experiment
is summed up in three stages : (i) definition, (ii) execution, and (iii) analysis. To carry out
these tasks, every laboratory relies either on homemade software or on commercial solutions.
The softwares offers a high-level programming language to configure the hardware for an
experiment. One of the advantages of these programming languages is their hardware
agnosticism. For example, an experimentalist can use different instruments without knowing
the contents of the packets sent via TCP/IP to program them. Additional features can be
incorporated, such as customizable software limits on the instrument outputs to match
the physical limitations of the device under test. However, the programming language
limits the type of experiments possible to that built into its functionalities. In this context,
measurement frameworks dedicated to quantum experiments have been developed in the
last few years like Labber [Lab20] and QCoDeS [QCo20].

In this section, we first discuss the measurement software used in the group at the start
of my thesis. We will focus on the specifics of this software, the experiments it enables, and
our hardware’s functionalities. Then, we describe the application redesign with the addition
of new features such as a slow feedback loop, that I have performed with Pierre-André
Mortemousque, a research engineer at CEA-LETI.

2.5.1 Software requirements
At the beginning of my thesis, the group’s measurement software was an in-house suite of
three different applications, as depicted in Fig. 2.8(a).

First, the experiments are defined using a graphical user interface (GUI) programmed in
Python. This interface permits the user to select which instruments to be used and their
configurations. The experiment consists of an N-dimensional map where any instrument
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Figure 2.8: Software architecture. (a) Schematic of the previous measurement software
architecture. First, an experiment is defined via a Python graphical user interface. Then,
the experiment is sent to a measurement engine developed in LabVIEW. Finally, once the
experiment has been completed, the user manually look at the results and perform advanced
analysis with a Matlab program. (b) Updated schematic. The measurement software is
developed with a unique programming language, Python. The different stages of an experiment
are better interconnected. In particular, a feedback loop is possible from one experiment to
another. Moreover, a database stores all the information about experiments: this is the starting
point for long-term analysis, such as monitoring device aging.

parameter can be swept along the different axis.
Next, the recipe is sent to the measurement engine in charge of executing the experiments

and communicating with the instruments. It is a complicated monolithic LabVIEW object
that includes smaller components for the different hardware drivers. A batch list is present
in the engine so that the user can program several experiments in advance. Now, the
typical communication time between the computer hosting the measurement engine and a
remote instrument is of the order of a few milliseconds. It means that we cannot refresh
the voltages applied on a device at a higher rate. To overcome this problem, we need to
program the compatible instruments beforehand and then trigger their executions at the
start of the experiment. It is usually the case for arbitrary waveform generators such as
our homemade DACs, or data acquisition systems. Instruments without internal memory
are reprogrammed after each shot if necessary.

Finally, once the experiment is complete and the raw data saved, the measurement
engine stops and starts the next experiment in the queue. The results are analyzed using
another software, this time programmed with Matlab. The role of the analysis software is
to transform the raw data into relevant quantities defined with personalized user scripts
and facilitate the generation of plots. However, the analysis is not automatically triggered
after the end of an experiment but is opened manually by the experimenter. Moreover,
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there is no connection between the analysis and the definition of a new experiment. Each
run is independent, and it is up to the user to apply feedback based on previous analysis.

2.5.2 Application overhaul
During my thesis, I worked on a complete overhaul of the measurement software, motivated
by several aspects.

To begin with, the plethora of programming languages (Python, Matlab, LabVIEW)
makes the entire software extremely difficult to maintain. In particular, LabVIEW applica-
tions are not compatible with compulsory version control systems as git, and laborious to
integrate into a collaborative development environment. Furthermore, adding new features
takes time and requires modifying each sub-part with its own language and specificities.
Finally, the three sub-software are not fully interconnected with each other, and several
operations are performed manually (start of analysis, feedback). Overall, the software
suite relies extensively on graphical interfaces, which limit the range of capabilities and are
time-consuming.

The new measurement software takes these drawbacks into account in the application’s
architecture, as shown on the block diagram in Fig. 2.8(b). It is wholly programmed with
Python and recreates the previous applications in a unified framework with additional
functionalities.

First, a new experimentation programming language has been developed. Compare to the
previous one, it is a script-based language, not limited to the realization of N-dimensional
maps but adapted to arbitrary schemes. It is tightly linked to a database storing all
information from the experiments in their current states (defined, running, executed,
analysis details). We can access information about a previous experiment such as retrieving
a set of gate voltage values or any experiment results. So, this system makes it possible to
have feedback from one experiment to another, with for example the automated tuning of
an electrometer (see Sec. 4.2.1). It can also monitor the characteristics of a sample in the
long-term by a survey of the physical parameters contained in the experiments over time.

Next, a measurement engine was developed to pre-program the instruments and handle
their executions. The drivers controlling the different instruments follow simple templates
developed in Python, depending on the type of instrument (actuator, acquisition, ...). Once
an experiment is complete, all of its data are stored in the database, and an order is sent
to the analyser.

Finally, the analyzer has the same functionalities as the previous one developed in
Matlab, but is directly integrated into the application flow. The results of an analysis can
be immediately injected as inputs for a new experiment. We note that the time required
to perform a feedback ((i) analyse experiment A, (ii) inject values from A into a new
experiment B, (iii) start B execution) is of the order of ∼ 1 second. We qualify this feedback
as slow since it is slower than our measurement bandwidth of ∼ 1 kHz and does not enable
real-time feedback.

To summarize, we have developed a measurement software to perform the quantum
experiments described in this thesis. The improvements of this application, compared
to what existed at the start of my work, have been beneficial in the following chapters’
experiments . In particular, the feedback loop allowed measurements that would not have
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been possible with the previous application. Now, the development of the program has been
performed in parallel with the experimental work. Especially, all the functionalities were not
available during the silicon nanowire operation in Chapter 3. Nevertheless, developments
continue with integrating new homemade instruments, new features, and an improved
experiment programming language.



CHAPTER 3
Charge detection of next-neighbor dots in a silicon nanowire

3.1 Introduction
The silicon platform has been identified as a good candidate for large scale quantum
computing using single electron spins in lithographically defined quantum dots. The
long coherence time of electron spins in isotopically enriched silicon associated with
improved control of coherent manipulation has resulted in high-fidelity single and two-qubit
gates [Hua19; Wat18; Yon18; Zaj18]. Additionally, spin readout with high-fidelity in short
timescale has been achieved using embedded detectors [Urd19; Wes19; Zhe19]. Following
that progress, the next milestone is the coherent operation and readout of these spin qubits
in nearest-neighbor tunnel-coupled 2D arrays, while preserving the same performances.
Here, we use devices produced on industrial lines to improve the yield and permit large-scale
control.

Towards this goal, we study here an array of 2x2 MOS quantum dots where each QD
is operated with a single gate electrode. First, we demonstrate an SLQD electrometer’s
operation by probing with radiofrequency reflectometry a QD at one end of the array. This
method allows us to get rid of a proximal charge sensor whose footprint can be similar
to the qubits array itself and is compatible with a large-scale architecture [Hou16]. We
use this detector to probe single QDs and record single-shot charge tunneling events to
benchmark its charge sensitivity.

In a second time, we probe the charge stability and dynamics of the different double
quantum dot configurations of the QD array and its Coulomb disorder. However, due
to the device’s tight geometry, the detector is strongly capacitively coupled to all the
different gates used to control the array. In consequence, the detection range of the SLQD
is limited to only a few charge transitions. We quantify this capacitive coupling and develop
different schemes to probe the QD array electron occupancy from the many-electron to the
few-electron regime.

3.2 Single-dot measurements
In this part, we use a single-lead quantum dot electrometer to probe the properties of the
next neighbor quantum dots located along or across the nanowire. We begin by studying
the electron filling of a single dot and its coupling to a reservoir. Then, we focus on a given
charge transition and extract the charge sensitivity of our SLQD detector.

61
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3.2.1 Single-lead quantum dot
In the following, we use the QD5 to form a single-lead quantum dot electrometer at the left
end of the array, as discussed in section 2.4.3. However, the detector sensitivity is limited
at its next-neighbor quantum dots due to the metallic gates screening. Thus, we focus on
the 2x2 sub-array depicted in Fig. 3.1(a) inset, and we set the remaining gates to 0 V to
decouple the array from the drain reservoir. We re-label QD5 as SLQD to distinguish it
from the probed QDs (QD1, QD2, and QD6).

Detection protocol
In Figure 3.1(a), we plot the phase response of the reflectometry setup as a function of the
voltage 𝑉SLQD applied to the SLQD (QD1) to sweep its chemical potential. A constant
phase response is observed except when a quantum capacitance’s contribution occurs due
to an SLQD chemical level’s alignment with the source lead. We extract a peak linewidth
𝑙𝑤 = 1.7 mV and a maximum phase shift on the top of the coulomb peak 𝛥𝛷 ∼ 1.1 mrad.
Using Eq. 1.20, we obtain a maximum quantum capacitance 𝐶Q = 6.7 aF for the peak
shown. As we will discuss in Section 3.3, there is a tradeoff between the detection range
given by the SLQD linewidth and the signal strength with the peak height. Here, the
peak linewidth is deliberately broadened to increase the SLQD range by applying a strong
reflectometry tone power.
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Figure 3.1: SLQD stability diagram. (a) Phase response of the reflectometry setup versus
SLQD voltage 𝑉SLQD (solid blue line). The phase response peaks when a SLQD energy level
is aligned with the source lead. We extract the peak’s linewidth 𝑙𝑤 = 1.7 mV and height
𝛥𝛷 ∼ 1.1 mrad from a Gaussian fit (red dotted line). (inset) False color SEM micrograph of
the corresponding QDs configuration. B stands for barrier gates where the voltage is set to
0 V. (b) The phase change of the resonant circuit is plotted as a function of 𝑉SLQD and 𝑉1.
The signal line corresponds to the electrometer dot’s charge degeneracy, which experiences a
shift in voltage for one electron added to QD1. The voltage shift corresponds to 𝛥𝑉 = 1.9 lw.

The phase response of the reflectometry setup for different values of 𝑉SLQD and 𝑉1 is
shown in a so-called stability diagram in Fig. 3.1(b). Recording the peak position for
different electrostatic environments, here stepping 𝑉1 along the x-axis, allows us to highlight
two phenomena. First, there is a cross-capacitive coupling between all the metallic gates
(𝑉SLQD, 𝑉1, 𝑉2, 𝑉6) and all the quantum dots (SLQD, QD1, QD2, QD6). We will study
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this coupling quantitatively for different detector-dot configurations in the next section.
Second, for a specific value 𝑉1 ≈ 118 mV, the detector peak position undergo an abrupt
voltage shift 𝛥𝑉 = 1.9 lw. Such a shift is associated with adding one charge into QD1,
while its charge occupancy remains constant between two shifts.

Dot filling
Figure 3.2(a) shows an extended charge stability diagram where the filling of QD1 up to 6
electrons is observed. Several coulomb peaks from the SLQD are used to monitor the QD1
charge occupancy. As discussed in Section 1.2, increasing the number of electrons in a
QD leads to higher-energy orbitals’ occupation and thus to a QD wavefunction of greater
extent. Consequently, the QD tunnel-coupling with its environment can change drastically
with the QD occupation. This effect is visible on the bottom left of the diagram, where a
fainted coulomb peak (black dashed line) is associated with a reduction of the SLQD-lead
coupling leading the SLQD to leave the regime described in Sec. 1.3.2. Since we cannot
control the SLQD-lead coupling independently of the SLQD chemical potential, we cannot
count the absolute number of electrons inside the SLQD. However, it is not the case for
the neighbor dots where we can use the SLQD peak shifts as an electrometer to count the
dot occupation.
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Figure 3.2: Extended stability diagram. Several SLQD peaks are used as electrometers
to probe the QD1 occupation. The lack of phase shift below 𝑉1 . 0.1 V, while the electrometer
remains sensitive, indicates that the QD1 is empty. So, we can count the QD1 occupation
(white labels) after each SLQD jump (dashed lines). It is not the case for the SLQD occupation:
the detector response vanishes when we decrease the SLQD chemical potential like for the
dotted black line (see main text).

From this extended stability diagram, we can extract the addition energy spectrum of
QD1 introduced in Sec. 1.2.1. To do so, we measure the voltage separation 𝛥𝑉1 between
two charge jumps along an SLQD peak, as depicted in Fig. 3.3(a). The addition energy of
a charge state is then computed as

𝐸add = 𝛼𝑉1
1 𝛥𝑉1. (3.1)

We measured the 𝑉1-QD1 gate lever-arm 𝛼𝑉1
1 ≃ 0.3 eV/V via transport measurements in
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the many-electron regime.
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Figure 3.3: Addition energy spectrum. (a) Zoom from Fig. 3.2. In order to compute the
addition energy 𝐸add(𝑁), we measure the voltage separation 𝛥𝑉1 between the N and the N + 1
charge transitions. (b) Addition energy spectrum of four different QDs across three devices (A,
B and C), see Appendix B. To compute the spectrum from the transition voltage separation, we
have assumed a constant lever-arm parameter 𝛼𝑉1

1 for each device. For all curves, we observe a
decay inversely proportional to the number of electrons 𝑁 due to a decrease of the charging
energy. However, no reproducible peaks associated with filled shells can be distinguished in
the addition energy spectrum.

We show in Fig. 3.3(b) the resulting spectrum for the current sample (device A) and 3
additional devices with similar geometries. For all devices, the addition energy 𝐸add(𝑁) =
𝐸𝐶 + 𝛥𝐸 is roughly inversely proportional to the number of electrons 𝑁 . Indeed, it is
expected that as the dot fills up, the electrons are occupying higher QD orbitals. In
consequence, the dot size is increasing, and therefore the charging energy 𝐸𝐶 decreases.

Additionally, the orbital spacing 𝛥𝐸 allows us to study the structure of our artificial
atom. In particular, the internal spin (↑, ↓) and valley (𝑣+, 𝑣−) quantum numbers give
the number of electrons per orbits (see Sec. 1.2.3). For a 2D harmonic potential with 2
valleys, we have a complete filling of orbital shells for 𝑁 = 4,12,24,... [Leo20; Tar96]. Thus,
we expect an increase of the addition energy for the transitions following those specific
occupation numbers to overcome the orbital level splitting.

However, no regular pattern appears in the addition energy spectrum of QD1 for the
four devices. It supports the simulations shown in Fig. 2.5, where the first electrons are
spread among few QDs pinned by surface disorder and remote charge traps. Nevertheless,
we have demonstrated the electron filling of a single dot sensed by an SLQD detector. In
the following, we benchmark this detection scheme by monitoring single shot tunneling
events.

3.2.2 Charge sensitivity
A requirement for quantum computation using spin qubits is the ability to perform high-
fidelity single-shot readout of a dot occupancy up to the single electron level [HC18]. In
this part, we demonstrate this single-shot readout and measure the charge sensitivity of the
SLQD detector quantitatively. First, we discuss the strategy used to lower the dot-to-lead
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tunnel coupling of QD2, down to the measurement bandwidth of the SLQD. Then, we show
the measurement of a single tunneling event and extract the detector’s charge sensitivity.

Low tunnel coupling
In order to observe a single charge tunneling event, we need a transition (dot-to-lead, or
dot-to-dot) in the measurement bandwidth of the SLQD (1 kHz). However, there are no
dedicated gates to tune the tunnel couplings in our device. The strategy used here is to
focus on QD2 while 𝑉1 and 𝑉6 are kept to 0 V. In this configuration, the QD2 wavefunction
does not spread along the nanowire anymore (see Fig. 2.5 for a similar potential landscape).
Thus, the tunnel coupling between QD2 and the source lead is greatly reduced.
(a)

V2 (mV)

0.4-1.2Φ (mrad)

V
SL

Q
D

(m
V

)

260 280 290

740

760

780

270 300

N=4N=3

Sweep axis

U
L

(b)

(c)

-1.0 0.0

100

200

300

0

Φ (mrad)

C
ou

nt
s

N=3 N=4

(m
ra

d)
Δ
Φ

Time (ms)
0 50 75

-1.0

-0.5

0.0

25 100

Γt = 146 Hz

UL

Figure 3.4: Single tunneling events. (a) Stability diagram of the stochastic QD2-to-lead
transition 𝑁 = 3 → 4. Along the sweep axis, QD2 is brought into the 𝑁 = 4 ground-state
on a timescale faster than the QD2-to-lead tunnel rate, occasioning stochastic charge jumps.
(b) Average of 150 time-traces of the SLQD response while the QD2 is pulsed from the loading
position L (red square) to the unloading position U (blue triangle) after 50 ms. We observe a
constant SLQD response at the loading and far in the unloading position. From the exponential
decay, we extract a QD2-to-lead tunnel rate 𝛤𝑡 ≃ 146 Hz. (insert) Single-shot time trace with
a stochastic charge jump. (c) Histogram built from the previous time-traces. We distinguish
in the SLQD phase response two peaks (gaussian fit in solid lines), each associated with a
specific charge state. We measure a SNR ≃ 6.5 at 1 kHz.
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In this regime, we increase the QD2 chemical potential at a rate of 1 kHz for each value
of the detector polarization 𝑉SLQD in Fig. 3.4. In particular, while the QD2 chemical
potential is swept, we move from the N = 3 to the N = 4 ground-state at a speed superior
than the QD2-lead tunnel-coupling. As a consequence, the delineation between those two
charge states is not straight, as seen in Fig. 3.1, but exhibit stochastic charge jumps. Thus,
for each shot, we visualize the time at which an additional electron enters QD2. We can
now design a dedicated experiment to measure QD2-lead tunneling events in a single-shot
manner.

Single-shot charge tunneling event
We set an experiment where starting with N+1 electrons (loading position L), we pulse
QD2 chemical potential above the Fermi-sea (unloading position U ) on a µs timescale. For
every shot, we spent 50 ms per position while recording the phase response of the SLQD
at 1 kHz. A single shot trace is shown in Fig. 3.4(b) insert as an example. The SLQD
response remains constant up to the noise level either in the loading position or far in the
unloading position. In between, the dot chemical potential is above the Fermi-sea, and the
dot is still occupied. In this position, there is a fixed probability that, at each time, the
last electron leaves the dot. This tunneling event happens on a time scale several orders of
magnitude faster than our acquisition time. Thus, we obtain an abrupt jump on the time
trace, at a random time.

If we repeat this experiment 150 times and average all the different shots, we obtain the
decay shown in Fig. 3.4(b). By fitting this exponential decay in time 𝑡 as 𝛥𝛷 ∝ exp−𝛤𝑡(𝑡−𝑡0),
with 𝑡0 the time at which the system is pulsed at the U position, we extract the dot-to-lead
tunnel rate 𝛤𝑡 ≈ 146 Hz.

Signal-to-noise ratio
From the 150 shots, we construct an histogram of the different values of the detector
(Fig. 3.4(c)). This histogram consists of two peaks each associated with a charge state (left
: 3, right : 4 electrons). We fit those peaks with two gaussians of variance 𝜎3 ≈ 0.13 mrad,
𝜎4 ≈ 0.15 mrad and a peak-to-peak separation 𝛥𝜎 ≈ 0.92 mrad.

We define our measurement signal-to-noise ratio (SNR) as the ratio between the peak-to-
peak separation and the sum of half the peak widths. Thus, for the data shown in Fig. 3.4,
we obtain a SNR ≈ 6.5 for a bandwidth BW = 1 kHz. From the Gaussian fits, we compute
an error rate in discriminating between the two charge states of 10−3. We get rid of the
bandwidth dependence by extracting the charge sensitivity 1𝑒

SNR*
√

BW = 4.9 × 10−3 𝑒/
√

Hz.
This value is comparable to what has been reported in literature [Col13; Zaj16] but could
be improved, as we will discuss now.

On the one hand, we can reduce the noise with a better amplification chain. Indeed,
the noise level, obtained from the Gaussian width, is estimated to be around 0.11 nV/

√
Hz.

This value is equivalent to a noise temperature of 4.5 K, which corresponds to the noise of
the cryogenic amplifier used, as already reported in a previous experiment with the same
amplifier [Urd19]. Thus, the SNR could be improved by using a Josephson parametric
amplifier [Sch20], decreasing the noise temperature by more than one order of magnitude.

On the other hand, we can improve the maximum phase shift given by 𝛥𝛷 ≃ 2𝑄×𝐶Q/𝐶p
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(see Sec. 1.3.2). For example, on-chip inductors are developed to improve drastically the
SLQD quality factor up to 𝑄 ≃ 1000 [Jar19] (𝑄 ≃ 50 for this experiment), and decrease
the parasitic capacitance 𝐶𝑝.

3.3 Multi-dot measurements
In the last part, we demonstrated that the SLQD could be used to probe its next-neighbor
dots, one-by-one, by realizing 2D-maps SLQD/probed dot. Here, we show different detection
schemes in order to extend its detection range to multi-dot systems. First, the detector
is biased at a fixed value, and we highlight the strong capacitive couplings between the
dot-gates and the SLQD. It results in the detector’s detuning while scanning the double-dot
system and thus to a small detection window. Then, we correct the cross-capacitive
coupling gate-SLQD a priori and discuss the requirement for an active feedback loop.
Finally, we develop a detection scheme that overcomes the need for a feedback loop at the
cost of increased experiment time. We use this method to probe a double quantum-dot on
a broad voltage range, allowing us to assert the Coulomb disorder inside our device.

3.3.1 Fixed detector probe
In Figure 3.1(b), we have monitored the SLQD peak position for different values of 𝑉1.
However, we need to explore the voltage space in both 𝑉1 and 𝑉2 in order to probe a
double-dot system like QD1-QD2. To get rid of the 𝑉SLQD dependence, we bias the detector
at a fixed value.
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Figure 3.5: Interdot transition of the QD1-QD2 and QD2-QD6 DQD at fixed
SLQD bias. (a) The detector phase response is plotted as a function of (𝑉1,𝑉2) while the
SLQD bias is kept fixed. The SLQD position is tuned to have a maximal sensitivity at the
inter-dot transition. In particular, the SLQD is completely turned off across the inter-dot
transition due to an important SLQD-dots coupling. Additionally, the SLQD sensitivity
vanishes rapidly around the inter-dot due to the cross-capacitive coupling SLQD-gates. (b)
Same than (a) for the QD2-QD6 DQD and the gates (𝑉6, 𝑉2).

On the Figure 3.5(a), the SLQD is biased at 𝑉SLQD = 849 mV and the voltages 𝑉1
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and 𝑉2 are swept over few millivolts. On this stability diagram, a QD1-QD2 inter-dot
transition with a positive slope can be observed, in contrast with the QD1-lead and QD2-
lead transitions of negative slopes. For clarity, we label the number of charges in each dot
as (𝑁1, 𝑁2), and omit a fixed charge offset estimated to be (3,1). The QD2-lead transition
shows stochastic events along the fast sweep axis, similar to what has been obtained in
Fig. 3.4.

However, this stability diagram is the final result of tedious manual tuning. Indeed, at
fixed bias, the SLQD sensitivity quickly vanishes when we change the surrounding gate
voltages by only a dozen millivolts. This behavior is also visible in Fig. 3.5(b), where a QD2-
QD6 inter-dot transition is explored on a broader range. Back on Figure 3.5(a), the addition
of one charge in QD1 (transition (0,0) → (0,1)) induces a voltage shift 𝛥𝑉 ≃ 3.0 mV on
the position of the SLQD peak (see Fig. 3.1(b) for a direct observation). This shift is
bigger than the SLQD linewidth 𝑙𝑤 = 1.7 mV. Thus, we see that the detector switch from
a ON-value on the left of the transition to a OFF-value on the right. Furthermore, the
cross-capacitive coupling between the applied gate voltages 𝑉2 and 𝑉6 with the SLQD
potential slowly detune the detector. This effect is visible on the left of the transition,
where the SLQD signal vanishes after ∼ 2 mV. We note that both effects are weaker for
QD2 and its associated gate 𝑉2 due to the device geometry. In this case, the voltage shift
induced by charge addition 𝛥𝑉 ′ ≃ 2.1 mV is still larger than the SLQD linewidth, but the
limited 𝑉2-SLQD coupling allows to probe more than one charge transition as it can be
seen in Fig. 3.5(b).

Fixing the detector’s bias allows probing the charge occupation and dynamics of a double-
dot system locally. However, the cross-capacitive coupling between the next-neighbor gates
(𝑉1, 𝑉6) and the single-lead QD quickly detunes the detector over a few millivolts only.
Additionally, the capacitive coupling between the next-neighbor dots and the SLQD
completely detunes the detector when a charge is added in the probed double-dot. In
consequence, this method is inefficient to explore a multi-dot system where we need to
sweep dot gates over 1 V like in Fig. 3.2 .

3.3.2 Capacitive-coupling compensation
In this part, we study the different capacitive couplings quantitatively. We show that we
can correct a priori the gate-SLQD cross-capacitive coupling but not the shifts induced by
added charges. Finally, we set the requirements for a feedback-loop capable of correcting
both gate-SLQD and dot-SLQD couplings.

A priori compensation

From the single-dot stability diagram in Fig. 3.1, we measure a lever-arm ratio 𝛼V1
SLQD/𝛼

VSLQD
SLQD

= 0.36 between the SLQD gate and the gate 𝑉1 on the detector dot. This lever-arm ratio
corresponds to the slope of the SLQD peak between two charge jumps. It quantifies the
cross-capacitance coupling between the gate 𝑉1 and the single-lead quantum dot, normalized
by the dedicated SLQD gate’s effect. Taking into account the detector linewidth 𝑙𝑤, we
can directly compute the maximum detection range for which a fixed bias SLQD remains
sensitive, 𝑟𝑚𝑎𝑥

𝑉 1 = 𝑙𝑤/𝛼V1
SLQD ≃ 5 mV. This value is consistent with the limited detection

range in Fig. 3.5(a).
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Knowing the 𝑉1-SLQD cross-capacitive coupling, we can set an experiment compensating
the detector drift induced by 𝑉1 on the detector during a stability diagram. With this
compensation, the SLQD is insensitive to the 𝑉1-SLQD coupling, and we record only
charge jumps. The Figure 3.6 shows a stability diagram of QD1 and QD2 where the
capacitive coupling due to 𝑉1 is compensated by applying a correction on the SLQD bias
: 𝑉 𝑐

SLQD = 𝑉 𝑑
SLQD − 𝛼V1

SLQD
(︀
𝑉1 − 𝑉 𝑑

1
)︀

at each step. The default bias 𝑉 𝑑
SLQD is chosen to

match the best detector sensitivity at a voltage set
(︀
𝑉 𝑑

1 , 𝑉 𝑑
2
)︀

given by the black triangle on
Fig. 3.6. In this stability diagram, the SLQD response remains constant on the 𝑉1-axis
except when the QD1 occupancy changes (white dashed line). In contrast, this is not the
case for the uncompensated 𝑉2-axis where the signal vanishes due to the SLQD-𝑉2 coupling,
like Fig. 3.5. We note that, since the detector linewidth is smaller than the detector shift
induced by the addition of a single electron, it is not possible to picture more than one
charge state on a compensated axis.
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Figure 3.6: Stability diagram with a priori compensation. The detector phase is
plotted in function of (𝑉1, 𝑉2), while the SLQD bias position is corrected to compensate for the
𝑉1-SLQD capacitive coupling. The initial SLQD bias is tuned at the black triangle position.
The SLQD response remains constant in the +(0,0) charge state along the 𝑉1 axis, and vanishes
along the uncompensated 𝑉2 axis. The SLQD is abruptly detuned at a charge transition
allowing to access a particular charge state boundary (white dashed line).

Generalizing this method to both axes allows us to probe the boundaries of a given
charge state and explore a multi-dot system by highlighting the charge configurations
one by one. However, we considered so far that the lever-arm ratios are constant. For
example, this is not true when a dot grows in size by increasing its electron number.
Additionally, Coulomb disorder can locally drastically affect the SLQD-gates couplings by
the intermediate of spurious QD transitions, as we will discuss in section 3.3.3. So, instead
of building a knowledge of the cross-capacitive couplings a priori and then mapping each
charge configurations individually, we look for a protocol that automatically corrects the
detector drift during an experiment, and retunes the SLQD when a charge jump occurs.
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Requirements for automatic feedback-loop compensation
In the last part, we have identified the need for a detection scheme to correct the bias
applied on the SLQD detector in real-time, accounting for both the gate-SLQD coupling
and the significant detector shifts induced by the addition of charges in the probed QDs.
This apparatus is required to explore the charge configurations of a multi-dot system
efficiently.

The simplest solution to adjust the SLQD bias along a gate sweep consists of using a
proportional–integral–derivative (PID) feedback loop. The PID corrector takes as input
the SLQD phase response 𝛷 and its output 𝑉PID is added to the SLQD DC bias as
𝑉 𝐶

SLQD = 𝑉SLQD + 𝑉PID. For each point of an experiment, the correction bias 𝑉PID is
adjusted so that the SLQD response 𝛷 is constant. This apparatus works well to correct
the SLQD detector when the signal slightly increases or decreases, like the effect of the
gate-SLQD coupling. However, this simple PID corrector is not reliable for events where
the SLQD is abruptly turned OFF by the addition of one charge in a probed dot.

In consequence, a FPGA-controlled feedback loop has been developed by Yang et
al. [Yan11]. Here, the voltage correction applied to the SLQD detector is the solution of a
user-defined algorithm. In [Yan11], they develop a set of equations based on the detector
response to maintain the sensor sensitivity even when large charge jumps occur.

Developments are made in our group to integrate an analog-to-digital converter wired
directly to the same FPGA that controlled our DACs. Once achieved, we could imple-
ment the previous solution and efficiently explore an unknown multi-dot system’s charge
configurations without a priori knowledge. In the mean-time, feedbacks based on our
measurement software need a few seconds per loop, which is three order of magnitudes
slower than the lower-bound given by the 1 kHz detector bandwidth. Consequently, in the
next part, we develop a detection scheme to perform large voltage range scans without
relying on a feedback-loop.

3.3.3 Full detection scheme
In the previous section, we have highlighted that the tight device geometry implies a strong
capacitive coupling. We identified an FPGA based solution to maintain a high SLQD
sensitivity continuously. In this part, we discuss a scheme that allows us to achieve similar
results without further hardware developments. This method relies on the acquisition of
the entire voltage space, including both the probed dots (e.g., 𝑉2, 𝑉6) and the SLQD peak
(𝑉SLQD).

First, we detail the operating principle of this full detection scheme. Then, we use this
technique to probe double quantum-dots in the many-electron regime and emphasize the
regular honeycomb pattern. Finally, we focus on the few-electron regime and underline the
Coulomb disorder present in our devices.

Detection scheme
As we have seen, the sensitivity of the detector is limited from one to few charge transitions
before the signal vanishes due to the small detector linewidth and the strong capacitive
coupling. Thus, a fixed sensing position can only be hold for voltage ranges 𝑟𝑚𝑎𝑥 ∼ 5 mV
while the coarse tuning of a double-dot like (QD1, QD2) implied to explore a voltage
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space (𝑉2, 𝑉6) as large than (500 mV × 500 mV). Since we cannot follow the SLQD peak
displacements, we develop here a new scheme where we take a full trace along the SLQD
axis for each value of (𝑉2, 𝑉6) and then extract the peak position. In Figure 3.7(a), we
show detector traces for two different gate sets 𝑉6 = 675 mV and 𝑉6 = 800 mV, with 𝑉2
fixed at 460 mV.
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Figure 3.7: Full detection scheme. (a) An SLQD phase peak is plotted for 𝑉6 = 675 mV
and 800 mV and fitted as a gaussian peak (black dashed lines). Due to the capacitive couplings,
the peak position is shifted by about 50 times the SLQD linewidth between these two positions.
For our new detection scheme, we measure and fit the SLQD peak position for each QD gate
set and extract the SLQD peak position. (b) Fitted SLQD peak position plotted against QD6
gate voltage. The peak position encodes its electrostatic environment, notably the 𝑉6-SLQD
coupling (slow drift) and the addition of electrons into QD6 (abrupt jumps).

As expected, the SLQD peak position moves on a voltage scale larger than its linewidth,
and it exists no detector fixed bias 𝑉SLQD that can maintain charge sensitivity for both
voltage configurations. So, we fit the SLQD response with a gaussian function and extract
the peak position 𝑉peak for each set (𝑉2, 𝑉6). In Figure 3.7(b), we plot the detector position
over a range of 200 mV. We see that the detector shift encodes both the cross-capacitive
coupling (slow drift) and the charge transitions (large jumps). In particular, we note that
the cross-capacitive coupling is not constant over many charge transitions, as discussed
previously. Finally, this detection scheme’s sensitivity is constant over large voltage ranges,
as long as we can measure the SLQD peak position.

Nevertheless, a drawback of this method is the time spent in taking a trace of the
detector for each point of the voltage space. We minimize the experiment time by focusing
only on a small voltage window around the detector peak, and we calibrate beforehand
the window to follow roughly the peak shift. Thus, with a detector trace limited to 100
points acquired at 1 kHz, the acquisition time for the Fig. 3.8 and 3.9 is in the range of 2-3
hours. In return, the time spent for each set (𝑉2, 𝑉6), ∼ 100 ms, allows to probe charge
transitions with low tunnel rate.
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In conclusion, we have demonstrated a method to probe multi-dot systems using the
SLQD. This scheme overcomes the large capacitive couplings SLQD-gates and SLQD-probed
dots, inherent of our split-gate nanowire devices, at the cost of increased measurement
time.

Many-electron regime
In Figure 3.8, we use this detection method to probe the many-electron regime of QD2
and QD6. For clarity, we removed a linear drift of the detector corresponding to the
mean SLQD-gate capacitance coupling, for both gates 𝑉2 and 𝑉6. This extended stability
diagram shows a regular honeycomb pattern, characteristic of a double quantum dots (see
Sec. 1.4.1). We label each charge state (𝑁2, 𝑁6) omitting a fixed charge offset estimated to
(12, 18). From this diagram, we can learn about the dot sizes and positions.

First, the addition energy spectrum is here almost constant and we measure a charging
energy 𝐸𝑐 = 𝑒2/𝐶 ≃ 6 meV for both dots. We can estimate an upper bound of the dot size
by considering a circular quantum dot in a 2-dimensional harmonic potential. Moreover,
we only consider the circular dot self-capacitance 𝐶 = 8𝜀0𝜀𝑟𝑅 [Kou91], with 𝜀0 the vacuum
permittivity and 𝜀𝑟 the relative permittivity of intrinsic silicon. We obtain a dot radius
𝑅 ≃ 30 nm, whom accounting for the gate width 𝑊 = 50 nm, is compatible with the corner
dot picture.

Furthermore, we extract the different dot-gate couplings given by
𝛼V2

SLQD

𝛼
VSLQD
SLQD

≃ 0.2 (3.2a) , 𝛼V6
SLQD

𝛼
VSLQD
SLQD

≃ 0.5 (3.2b) ,

𝛼V6
2

𝛼V2
2

≃ 0.2 (3.2c) , and 𝛼V2
6

𝛼V6
6

≃ 0.5 (3.2d) .

On one hand, equation 3.2a (respectively 3.2b) refers to the gate 𝑉2-SLQD coupling (resp.
𝑉6), normalized by the 𝑉SLQD-SLQD lever-arm. Those lever-arm ratios are extracted from
the detector peak position drift along both axis on Fig. 3.8 raw data. And as expected,
the 𝑉6 gate is more coupled to the SLQD than 𝑉2, due to the device geometry.

On the other hand, equation 3.2c (respectively 3.2d) deals with the 𝑉6-QD2 coupling
(resp. 𝑉2-QD6) and is obtained through the dot-to-lead transition slopes. Surprisingly,
both couplings have a strong asymmetry with a much stronger effect of 𝑉2 on QD6 than
the opposite. Two phenomena explain this asymmetry. First, we are operating in a
regime where 𝑉6 ≃ 2𝑉2, plus a strong SLQD bias 𝑉SLQD ≃ 750 mV while 𝑉1 is kept at 0 V.
Consequently, the potential landscape is asymmetric. We expect QD6 to be bigger than
QD2, spread more out of the nanowire corner, and be more sensitive to its electrostatic
environment. In addition, the device itself is asymmetric due to an imperfect alignment of
the split-gates with respect to the nanowire. The misalignment is already visible on the
room-temperature characterization of the device (see Appendix A), with an increase of
the threshold voltage for the upper side of the transistor (𝑉5, 𝑉6, 𝑉7, 𝑉8) compare to the
lower side (𝑉1, 𝑉2, 𝑉3, 𝑉4). However, we have measured for both sides similar lever-arms
𝛼

VSLQD
SLQD ≃ 𝛼V1

1 in the many-electron regime, which indicates that the dots are strongly



3.3 Multi-dot measurements 73

V6 (mV)

770ΔVpeak (mV)
V

2
(m

V
)

725 775

380

400

+(0,0)

750 800

420

440

460

825

+(1,0)

+(2,0)

+(0,1)

+(1,1)
+(1,2)

+(2,1) +(2,2)

+(3,1) +(3,2) +(3,3)

Figure 3.8: SLQD peak position in the many-electron regime. The SLQD peak
position is plotted against (𝑉2, 𝑉6). It describes a clear honeycomb pattern, characteristic of a
DQD. We label each charge state (𝑁2, 𝑁6) , omitting a fixed offset (12, 18).

localized in the corners of the nanowire.

Few-electron regime
We have demonstrated that our measurement scheme can be used to explore charge
transitions in the many-electron regime of the QD2-QD6 double quantum-dot. However,
for the operation of a QD array, we are interested in filling each dot with a single electron.
In Fig. 3.9, we have monitored the SLQD peak position while exploring the (𝑉2,𝑉6) voltage
space in the few-electron regime.

First, when 𝑉2 > 400 mV, we obtain a regular honeycomb pattern, similar at Fig. 3.8.
Same thing for 𝑉2 < 325 mV, where we see the inter-dot transition QD2-QD6 associated
with the first electron in the double-dot system. In particular, the transition line 0 → 1 of
QD2 is almost vertical due to a sub-Hertz QD2-lead tunnel rate.

Then, we focus on the central part of the diagram. We see that, in addition to the
quasi-vertical lines associated with QD2 and the quasi-horizontal lines with QD6, there is
an oblique line crossing the diagram (black line in Fig. 3.9 insert). This line corresponds
to an accidental dot that we label D, which is tunnel-coupled to QD2 and QD6. Thus, the
stability diagram does not picture a honeycomb pattern but a more complex structure.

In order to investigate the localization of the quantum dot D, we measure the lever-arm
ratios of the different dots given by
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Figure 3.9: SLQD peak position in the few-electron regime. The SLQD peak position
is plotted against (𝑉2, 𝑉6). While a clear honeycomb pattern is visible for 𝑉2 < 325 mV and
𝑉2 > 400 mV, the center part of the diagram despites a more complex figure with the presence
of a third dot transition. Additional transitions (black arrows) are linked to spurious dots
in the gate stack. (insert) Dot-to-lead transitions are associated to a unique color for each
dot (QD2:red, QD6:blue, D:black). The left-most red (respectively lowest blue) transition
corresponds to the first electron in QD2 (resp. QD6).
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The lever-arm ratios are extracted from the slope of the corresponding dot-lead transitions.
For reference, we measured the lever-arm ratios for QD2 (Eq. 3.3a) and QD6 (Eq. 3.3b).
We retrieve the same results than in the many-electron regime, with an asymmetry between
𝑉2 and 𝑉6 due to a misalignment of the gates. However, we measure a lever-arm ratio close
to unity for the oblique transition, indicating that both gates have a similar effect on the
quantum dot D. Thus, we infer that the dot D is not confined under a specific gate, in a
nanowire’s corner, but lies inside the channel, in-between the gate 𝑉2 and 𝑉6. This dot is
attributed to unintentional doping of the channel during the formation of the source and
drain reservoirs.

In addition, we highlight the triple-dot formed by QD2, QD6 and D by focusing on the
central part of the diagram in Fig. 3.9. We label each dot’s absolute charge occupancy and
distinguish dot-to-lead transitions (solid lines) from inter-dot transitions (dashed lines).
It is worth noting that among this triple-dot, the mutual capacitance of each inter-dot
transition is larger than the typical values reached in the QD2-QD6 double-dot with the
regular honeycomb pattern at 𝑉2 > 400 mV. This is coherent with the hypothesis of a
donor trapped in-between QD2 and QD6 that leads to closer dots and larger inter-dot
coupling.

Back in Fig. 3.9, we can see an additional set of lines coupled to gate 𝑉2 (black arrows)
that belong to other accidental quantum dots. Nevertheless, those dots are only capacitively
coupled to QD2, QD6, and D. It has been previously reported that such defects could be
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Figure 3.10: Triple-dot configuration. Zoom in the central part of Fig. 3.9. We label each
charge state (𝑁2, 𝑁6, 𝑁𝐷) and distinguish dot-to-lead (solid lines) from inter-dot transitions
(dashed lines).

located in the device gate stack [Ibb18].
In conclusion, we have been able to measure a double-dot occupation up to the last

electron. However, we have highlighted the presence of fixed charges, whether defects in
the channel or charge trapped in the gate stack, that can be detrimental for the large-scale
control of QD arrays. Indeed, the presence of static disorder modifies the electrostatic
environment of the QD locally and affects the dot-to-dot variability. As discussed in
section 1.4.4, a scalable architecture necessarily relies on shared control gates. It implies
some requirements to match between the variability of the dot and the versatility of the
architecture. Consequently, to avoid accidental dots as the dopant in the channel, different
fabrication routes are currently under investigation, such as the epitaxial formation of the
reservoirs.

3.4 Conclusion
This chapter has demonstrated the charge control of a 2x2 quantum dot array in a silicon
nanowire. To this end, we develop and benchmark a single-lead quantum dot electrometer
embedded in the array. We have highlighted the strong cross-capacitive couplings due to
the tight geometry architecture. Different detection schemes are elaborated to mitigate
those effects and probe double quantum-dots over large voltage ranges. These methods led
us to investigate the Coulomb disorder inside the silicon device.

Following this work, several paths are under investigation. First, developing a robust
silicon QD platform with low dot-to-dot variability requires an efficient way to explore
each device’s charge stability and dynamics. Thus, efforts are made to systematize the
measurement protocols developed here and improve them, such as using feedback loops.
We could then operate the array as a quantum information processor, using one side of
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the nanowire as an qubit register and the other as readout sites [Fra16]. Toward this
goal, a first demonstration consists of using SLQD detectors to monitor the shuttling of
an electron-spin qubit from one end of the array to the other [Fuj17; Mor18]. Also, the
SLQD detection allows probing electron-spin qubits isolated from the reservoirs that should
benefit from improved coherence times, as demonstrated in GaAs quantum dots [Ber15b].



CHAPTER 4
Charge control of a 2x2 Gallium-Arsenide quantum-dot array

4.1 Introduction
In the previous chapter, we have operated a QD array in a silicon nanowire and probed
different double quantum-dot configurations. However, it is not possible yet to tune the
tunnel couplings in-between quantum-dots and with the reservoirs in our current Silicon
platform. Moreover, the nanowire geometry that has been explored has limited scalability
(see Sec. 1.4.4).

In this chapter, we use the Gallium-Arsenide platform as a test-bed for a scalable
quantum-dot architecture. The device is pictured in Fig. 4.1(a) and was manufactured
with the recipe detailed in Sec. 2.3.1. The architecture uses control gates shared between
complete row and column of quantum-dots to define a 2x2 quantum-dot array. Each gate
controls either a tunnel-barrier or a chemical potential along the array. Thanks to this
geometry, only ten gates are required for a 2x2 QD array. For the complete 4x4 QDs device,
we multiply by four the number of quantum-dots but only by approximately

√
4 = 2 the

total number of gates. Then, two challenges need to be resolved : (i) Does the device
have enough tunability to control up to 4 electrons into a 2x2 QD array ? (ii) How do we
tune a scalable array of quantum-dots ? Indeed, we have to demonstrate that the device
architecture with shared control gates has enough versatility to control the QDs chemical
potentials and inter-dot couplings. In addition to a scalable array, we have to develop a
scalable tuning protocol following the increase in the size of the QD arrays.

We start by investigating how to trap electrons inside the QD array in Sec. 4.2. As
discussed in Section 1.4.3, the isolated regime significantly reduces the tuning complexity
by working at a fixed number of electrons. Thus, we develop a loading procedure to trap
up to 5 electrons into a single QD and close its connection to the reservoir. Next, the
simulations of stability diagrams in the isolated regime are detailed in Sec. 4.3. These
simulations use the constant interaction model to reproduce the experimental data and
characterize the device and its architecture. Finally, in Section 4.4, we explore the control
of the QD array in the isolated regime by controlling first a double quantum-dot, then the
complete 2x2 QD array. Through the simulations, estimates of the system parameters are
extracted.

4.2 From an open system to the isolated regime
In the following, we demonstrate how to trap a fixed number of charges inside the quantum-
dot array. To do this, we first use a QPC detector to sense the electron filling of a dot from
the reservoir (see Section 4.2.1). Then, in Section 4.2.2, we develop the loading procedure
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used to trap the electrons inside the array. Finally, we study in Section 4.2.3 different
open DQDs configurations to get insight on how to tune the 2x2 QD array in the isolated
regime.

4.2.1 Charge detection
Single-dot regime
In order to detect the charge dynamics inside the QD array, we use the detector controlled by
the SR, SP, and SL gates as illustrated in Fig. 4.1(a). These gates form a QPC sensor, close
to the array entrance, which is biased to its position of maximum sensitivity (Fig. 4.1(b)).
We monitor the current 𝑖QPC flowing through the sensor to detect nearby charge events.

In Figure 4.1(c), a stability diagram of the upper-right quantum dot (QD2) is performed
by sweeping the gate potential VB1 for different values of HP1, while the rest of the array
is polarized. The derivative of the sensor current along the sweep axis gives the color
code. As in the case of the silicon device (Fig. 3.2), we distinguish two contributions in the
sensor’s response. First, the cross-capacitive coupling between the sensor and the array
gates causes a slow drift of the detector response, corresponding to the gradient background
on the stability diagram. Second, the sensor response experiences sharp jumps for specific
voltages, forming lines. The diagonal lines are each associated with adding one electron
into QD2. In contrast, the additional white dashed line coincides with a QD4 transition,
as we will discuss in the next part.

If we focus on the QD2 transitions, we notice that the set of lines is evenly spaced, and
the detector response remains constant as we decrease the number of electrons (lower HP1
values). In addition, no similar transitions are detected for HP1 < −100 mV. Thus, we can
count the absolute number of electrons inside QD2 starting from 𝑁2 = 0 on the left of the
diagram to 𝑁2 = 10 on the right.

Furthermore, while the gate HP1 mainly affects the chemical potential of QD2, the gate
VB1 adjusts the tunnel barrier between the dot and the reservoir due to the geometry of
the device. For low negative values of VB1 (upper half of the diagram), there is a large
coupling between QD2 and the reservoir. So, we see clear charge degeneracy lines, and the
number of electrons inside QD2 is well controlled by the gate HP1. Applying a negative
voltage VB1 ≃ −750 mV (lower part of the diagram) reduces the tunnelling rate below the
measurement time (1 ms/pt), as demonstrated by the stochastic charge jumps along the
sweep direction. In section 4.2.2, we use this capability to demonstrate the isolation of an
arbitrary number of charges within QD2.

Sensor tuning automation
To obtain the previous stability diagram, we have to tune the QPC at its best sensitivity.
However, this position depends on the array gate voltage configuration due to the capacitive
couplings. Hence, we have implemented two routines to facilitate the acquisition of stability
diagrams. Using our homemade software (see Sec. 2.5), these methods automatically
calibrate the QPC according to the desired stability diagrams.

The first calibration scheme consists in taking a QPC trace, similar to Fig. 4.1(b), carried
out for a polarization of the array which corresponds to the middle point of the aimed
stability diagram (for Fig. 4.1(c), HP1 = 0 mV and VB1 = −750 mV). Next, the detector
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Figure 4.1: Detector tuning and single-dot stability diagram. (a) False color SEM
micrograph of the device with the gate labels, the QDs configuration (QD1 → QD4), and the
ohmic contacts used (black cross box). (b) Example of QPC characterization. The current
𝑖QPC flowing through the QPC (see inset) is measured for different values of SR (black solid
line). We extract the bias that maximizes the QPC sensitivity by looking at the maximum
of the current derivative (solid red line). For this particular polarization of the device, it
corresponds to SR ≈ −839 mV (dashed black line). (c) Stability diagram of QD2 as a function
of the plunger HP1 and the barrier to the reservoir VB1. We control the occupation of QD2
from 𝑁2 = 0 to 10 electrons (white labels). For VB1 . −750 mV, the QD2-lead tunneling time
is smaller than the measurement time (1 ms/pt) as demonstrated by the stochastic charge
jumps along the sweep direction VB1. An additional charge transition associated to QD4 is
highlighted (white dashed line). Inset: device configuration.



80 4 Charge control of a 2x2 Gallium-Arsenide quantum-dot array

bias is automatically extracted by finding the voltage that maximized the detector’s current
gradient and applied it to the stability diagram’s array bias. This technique allows us
to freely explore the gate voltage space without the overhead of manual detector tuning.
However, inside a stability diagram, the QPC sensitivity decreases as we move from the
diagram’s center due to the QPC-gates capacitive coupling.

To overcome this issue, we implement a second automation routine based on a priori
compensation. As for Section 3.3.2, the idea is to calibrate the detector at the edges of the
stability diagram axes. Then, we guess the best QPC bias for each point of the diagram
by linear interpolation and get rid of the detector-gates capacitive coupling. The main
difference with the silicon device is that, here, the detector peak shifts induced by the
addition of electrons are small compared to the detector peak linewidth. Thus, it is possible
to observe many transitions along a compensated axis before detuning the QPC, while
only one transition was observable in the silicon nanowire. For example, this automated
calibration was performed along the x-axis (HP1) on Figure 4.1(c). For each value of HP1,
the QPC bias is compensated so that the detector sensitivity remains constant. At the
opposite, the uncompensated gate VB1 detunes the detector along the y-axis.

Finally, these methods were generalized to all the experiments to such an extent that the
manual tuning of the sensor is no longer carried out. In particular, we use this automated
tuning in the loading map experiments, which we discuss in the next section.

To conclude, we have demonstrated the control of a single-dot (QD2) chemical potential
down to the single electron occupation and its tunnel-coupling to the reservoir. To achieve
the charge sensing of QD2, we have used a proximal QPC as a local electrometer. We have
introduced simple automatic procedures to tune the electrometer at its best sensitivity
before any experiments. In the next section, we develop a pulse sequence to trap an
arbitrary number of electrons in QD2 and reach the so-called isolated regime.

4.2.2 Loading procedure
In the stability diagram Fig. 4.1(c), we have seen that a negative pulse on VB1 turns off the
QD2 tunnel coupling to the reservoir. Furthermore, applying a more negative voltage on
VB1 also raises the QD2 potential. Thus, this pulse can bring the system into a metastable
state where an arbitrary number of electrons inside QD2 is trapped above the Fermi sea
level. As discussed in Sec. 1.4.3, the isolated regime where the QD array is uncoupled from
the electron reservoirs is a key ingredient to facilitate the tuning of multiple quantum-dots
devices. Here, we use this feature to perform the loading and isolation of up to 5 electrons
in QD2. We will particularly highlight the loading of electrons inside QD2, in a metastable
position, by comparing it to the emptied dot case. This demonstration is the basis of the
control of the 2x2 QD array in Sec. 4.4.

Pulse sequence
To demonstrate the isolation of the electrons, we use the pulse sequence described in
Fig. 4.2(a) to navigate through the stability diagram (Fig. 4.1(c)). First of all, starting
from a reference point R with 0 electron inside QD2, we pulse gate VB1 down to −900 mV to
cut the coupling to the reservoir. Then, we pulse QD2 chemical potential to HP1 = 100 mV
to reach the measurement point M where we take a first reference value. This value encodes
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the sensor response for this particular gate configuration while QD2 is empty. Next, the
system is pulsed back and forth to a probed point P within the stability diagram for a few
milliseconds. On the way back, as for the first reference pulse, we first cut the coupling to
the reservoir using VB1, and only then we change the QD2 potential to reach the point M
with HP1. At the end of this path, a signal value is acquired.

In Figure 4.2(b), we show the detector response during the entire R → M → P → M
pulse sequence. We are interested in the current difference 𝛥𝑖QPC between the signal
and the reference measurements. This quantity only describes the difference in electron
occupation between the two states since the two measurements are performed for the same
gate configuration (HP1, VB1), after different loading pulses.

Loading map
We repeat this pulse sequence so that the probed point P maps the stability diagram’s full
range. We obtain a so-called loading map (Fig. 4.2(c)) where, for each coordinate of P, we
plot the value of 𝛥𝑖QPC.

On the one hand, the upper half of the diagram shows areas whose boundaries match
the charge degeneracy lines for 𝑁2 = 0 → 5 (see Fig. 4.1 (c)). Indeed, in this regime,
the QD2-lead tunneling time is short compared to the time waited at the probed point
P, so the QD2 occupation reaches equilibrium. Next, the system is pulsed back to the
measurement point M, and a number of charges are isolated, fixed by the position of P.

On the other hand, in the lower part of the diagram, the QD2-lead tunnel coupling is
too small to permit the loading of electrons inside QD2. So, in the isolated regime, we can
manipulate a fixed number of loaded electrons independently of the reservoir. Furthermore,
it facilitates the readout by freezing a charge configuration for a duration greater than the
acquisition time.

We note that we have used here the 𝑁2 = 0 state as a reference point R, but any state
can be chosen. For example, selecting a reference state at 𝑁2 = 2 displays the voltage
range (HP1, VB1) that preserves this number of electrons (Fig. 4.2(d)).

To conclude, we have demonstrated the loading and isolation of up to 5 electrons inside
QD2. In Section 4.4, we use this loading scheme to charge 4 electrons inside QD2 and
then operate a 2x2 QD isolated array. In the next section, to facilitate the tuning of the
isolated array, we take a step back and study the gate configurations that exhibit open
double quantum-dots.

4.2.3 Open double quantum-dots regimes
As discussed previously, we aim to load an arbitrary number of electrons inside a single
dot and close the reservoir’s connection to manipulate those electrons inside an isolated
2x2 QD array. To this end, we have tuned QD2 as a loading dot where the dot occupation
number can be selected at a location where its coupling to the reservoir is closed.

However, tuning the array from this loading position to a 2x2 QD array can be tedious
for several reasons. First, we do not know so far if the three other QDs (QD1, QD3, QD4)
exist, and if so their detunings and tunnel barriers with respect to QD2. Indeed, the array
geometry is a regular matrix of metallic gates, but we focus here on the top-right part of the
sample at the array’s boundaries. There, the gate voltage configuration must compensate
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Figure 4.2: Loading scheme. (a) Loading pulse sequence. (1) The electron occupation
of QD2 is set to 𝑁2 = 0 at the reference point R by waiting 4 ms. (2) Then, the system is
brought to the isolated regime, and the reference signal is recorded for 5 ms at the measurement
point M. (3,4) This operation is repeated for all probed point P in the stability diagram. (b)
Example of the detector response during the pulse sequence for a particular probed point. The
difference 𝛥𝑖QPC between the signal and reference acquisitions (respectively second and first
measurements) codes the difference in QD2 occupation. The observed RC time constant is
only due to the IV-converter. (c and d) Loading map for 𝑁2 = 0 → 5e. The value of 𝛥𝑖QPC
is plotted as a function of HP1 and VB1 for the same range as the stability diagram (a). For
VB1 & 750 mV, the QD2-lead tunneling time at the probed position P is short enough to allow
the loading of QD2. Consequently, when the system is brought back to the measurement point,
a number of charges fixed by the P position are isolated. The reference point R is set either
to 𝑁2 = 0e (c), or 𝑁2 = 2e (d). In both cases, we do not measure any occupation number
above 𝑁2 = 5e. Possible explanations include loss of sensitivity of the detector and the loss of
electrons when the dot is pulsed into isolation.
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for the finite size of the device to achieve a symmetrical potential of 4 quantum wells.
Second, we need to define a sequence of pulses to bring the device from an isolated QD2 to
an isolated 2x2 QD array while preserving the number of loaded electrons. For example, if
the reservoir barrier gate VB1 is pulsed too negatively, electrons could be pushed back to
the reservoir by leaking via another part of the array.

In this section, we demonstrate the operation of two different open double-dots configura-
tions, illustrated in Fig. 4.3(a) and (b) insets. From the known QD2 single-dot regime, the
strategy consists of finding a polarization of the array, which allows other quantum-dots.
Hence, we get an overview of how to set up the complete 2x2 QDs isolated array (see
Section 4.4).
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Figure 4.3: Double quantum-dots stability diagrams. (a) Stability diagram of the
QD2-QD4 DQDs. Horizontal transitions (respectively vertical) are associated with QD4 (resp.
QD2). A regular honeycomb pattern demonstrates that both dots exist and can exchange
electrons. Stochastic charge jumps are visible for QD2 only. It indicates that the tunneling
rate to the lead is stronger for QD4 than for QD2. (b) Stability diagram of the QD1-QD2
DQDs. Horizontal transitions (respectively vertical) are associated with QD2 (resp. QD1).
While a honeycomb pattern is visible at the bottom left of the diagram, we see that for large
values of VP1 and VP2 both dots merge into a bigger single dot. Insets: device configurations.

In Figure 4.3(a), we show a stability diagram representing a regular honeycomb pattern,
characteristic of a double quantum-dots (see Sec. 1.4.1). Here, the vertical degeneracy
lines are associated with the addition of electrons in QD2, while the horizontal ones are
related to QD4. In the lower left part of the diagram, we see stochastic charge jumps
linked to the QD2-lead transitions. It indicates that, surprisingly, the QD2-lead tunnel
coupling is weaker than the QD4-lead tunnel coupling in this regime. It is due to the
strong QPC polarization of SR, which depletes the 2DEG nearby QD2. Therefore, in the
stability diagram Fig. 4.1, QD4 has been carefully tuned to be empty to inject electrons
into QD2 only in the loading procedure.

Similarly, we find a voltage configuration where the array hosts a QD1-QD2 double
quantum-dots (Fig. 4.3(b)). Yet, while the QD1-QD2 stability diagram shows a honeycomb
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pattern at the lower-left half, we can see in the upper-right corner that both dots merge
into a bigger single-dot (see Fig. 1.10 for a similar transition). So, in this regime, the
polarization of the vertical plungers VP1 and VP2 affects not only the QD1-QD2 detuning,
but also the position of the dots and their coupling.

Finally, we compare the voltages applied to the different gates controlling the DQDs.
First, we see that, despite featuring honeycomb patterns with similar aspect-ratios, the gate
HP1, HP2, VP1 and VP2 are swept on completely different voltage ranges. Indeed, we have
to compensate for the uneven potential landscape due to the small size of the QD array,
and the asymmetric gate geometry. For example, we apply a large voltage HB1 = −1.3 V
on the wide horizontal top gate HB1 to form the QD array, while only VB1 = −0.8 V are
applied on the rightest vertical gate VB1 to control the electron loading of the DQDs.
Second, the voltage span applied to the horizontal gates (Fig. 4.3(a)) is two times smaller
than that applied on the vertical gates (Fig. 4.3(b)). This difference is explained by the
fact that the vertical gates belong to a metallic layer deposited on top of the horizontal
gates. So, they have a reduced gate lever-arm because of the increased distance from the
2DEG and the screening by the first metallic layer. It is not possible to give a direct
comparison of horizontal versus vertical gate lever-arms since the two stability diagrams
are taken for rather different potential landscapes. A thorough comparison of the different
gate lever-arms is presented in Sec. 4.4.2 by biasing the array in the 2x2 QD array regime.

To summarize, we have demonstrated open array configurations which exhibit double-dot
behaviors (QD1-QD2 and QD2-QD4). In Section 4.4, we use this knowledge to tune the
device into a 2x2 QD array in the isolated regime.

4.2.4 Conclusion

In this first section, we have introduced a quantum-dot architecture to control a 2x2 QD
array in a GaAs heterostructure.

We have demonstrated the control of QD2 in a regime where it is only coupled to the
reservoir. Its occupation can be changed on a wide range 𝑁2 = 0 → 10, as its tunnel
coupling to the reservoir (from sub-Hz to a few tens of GHz). The charge sensing of the
array has been performed via a local electrometer sensed with transport measurements.
An automatic tuning scheme is implemented to ensure the sensor sensitivity and removes
manual sensor operations.

Then, we develop a procedure to set QD2 in the isolated regime by closing its coupling
to the reservoir. We show that we can selectively trap between 0 and 5 charges in a
meta-stable position with the electrons of QD2 located above the Fermi sea.

Finally, double quantum-dots connected to the reservoir have been demonstrated with
QD2-QD4, and QD1-QD2. These experiments will be particularly useful to tune the 2x2
QD array in the isolated regime.

To prepare the operation of the isolated 2x2 QD array in Sec. 4.4, we develop in the next
section a simulator for stability diagrams in the isolated regime and detail the operation
scheme of the array.
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4.3 Simulation of isolated stability diagrams using the constant
interaction model

In the previous section, we have used the QD array to form (i) a single-dot capable of
trapping electrons into the isolated regime, and (ii) different double quantum-dots open to
the reservoir. The isolated regime greatly reduces the array tuning complexity and produce
simpler stability diagrams than the open regime. We use this technique to operate a 2x2
QD array in Section 4.4. Nevertheless, we need a model to validate the measured data
analysis and extract physical quantities.

In this section, we develop a simulation for stability diagrams using the constant
interaction model introduced in Sec. 1.2.1 for a single-dot. First, we define a model for a
double quantum-dots in the isolated regime and show how to extract meaningful properties
of the system, directly from the stability diagrams. Second, we detail the simulation entries
for the full 2x2 QD array.

4.3.1 Stability diagram of DQDs in the isolated regime
Here, we seek to calculate stability diagrams for a double quantum-dot and deduce
interesting quantities from them. A scheme of a such DQD toy model, in the constant
interaction picture, is presented in Fig. 4.4(a). We remind that the constant interaction
model is a purely classical model that only considers the electrostatic interactions of the
system. Here, two quantum dots, labelled 1 and 2, are capacitively coupled to two gates
VA and VB through the capacitors (𝐶A1, 𝐶A2) and (𝐶B1, 𝐶B2). We consider the case where
𝐶A1 > 𝐶A2 and 𝐶B1 < 𝐶B2. In other words, the gate potential VA has a stronger effect on
dot 1 than dot 2 (respectively the opposite for VB). In addition, both dots are capacitively
and tunnel coupled by a mutual capacitance 𝐶m, and a tunnel resistance 𝑅m. We do not
include any reservoirs and consider that a fixed number of electrons 𝑁load has been loaded
beforehand.

Simulation of stability diagrams
To produce artificial stability diagrams of this DQD system, like in Sec. 1.2.1, we start by
defining the total charge 𝑄1(2) on dot 1(2) with respect to the potential of the surrounding
nodes,

𝑄1 = 𝐶A1 (𝑉1 − VA) + 𝐶B1 (𝑉1 − VB) + 𝐶m (𝑉1 − 𝑉2)
𝑄2 = 𝐶A2 (𝑉2 − VA) + 𝐶B2 (𝑉2 − VB) + 𝐶m (𝑉2 − 𝑉1) .

(4.1)

We can write this system in the form #«

𝑄 = 𝐶
#«

𝑉 as⎛⎝𝑄1 + 𝐶A1VA + 𝐶B1VB

𝑄2 + 𝐶A2VA + 𝐶B2VB

⎞⎠ =

⎛⎝ 𝐶1 −𝐶m

−𝐶m 𝐶2

⎞⎠⎛⎝V1

V2

⎞⎠ , (4.2)

with 𝐶1 = 𝐶A1 + 𝐶B1 + 𝐶m and 𝐶2 = 𝐶A2 + 𝐶B2 + 𝐶m, the sum of all the capacitances
attached to each dot. Knowing the charge vector #«

𝑄 and the capacitance matrix 𝐶, we can
now compute the total electrostatic energy of the double-dot 𝑈 = 1

2
#«

𝑄𝐶−1 #«

𝑄 for a given
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charge configuration (like in [Wie02]). Using 𝑄1(2) = −𝑁1(2)|𝑒|, we have

𝑈(𝑁1,𝑁2) (VA, VB) =1
2𝑁2

1 𝐸C1 + 1
2𝑁2

2 𝐸C2 + 𝑁1𝑁2𝐸Cm + 𝑓(VA, VB), (4.3)

𝑓(VA, VB) = − 1
|𝑒|

{︂
𝐶A1VA (𝑁1𝐸C1 + 𝑁2𝐸Cm) + 𝐶A2VA (𝑁1𝐸Cm + 𝑁2𝐸C2)

+ 𝐶B1VB (𝑁1𝐸Cm + 𝑁2𝐸C2) + 𝐶B2VB (𝑁1𝐸C1 + 𝑁2𝐸Cm)
}︂

+ 1
𝑒2

{︂
𝐸C1

(︂
1
2𝐶2

A1V2
A + 1

2𝐶2
B1V2

B + 𝐶A1VA𝐶B1VB

)︂
+ 𝐸C2

(︂
1
2𝐶2

A2V2
A + 1

2𝐶2
B2V2

B + 𝐶A2VA𝐶B2VB

)︂
+ 𝐸Cm

(︂
𝐶A1VA𝐶B2VB + 𝐶A2VA𝐶B1VB + 𝐶A1𝐶A2V2

A + 𝐶B1𝐶B2V2
B

)︂}︂
,

(4.4)
and

𝐸C1 = 𝑒2

𝐶1

⎛⎜⎜⎝ 1

1 − 𝐶2
m

𝐶1𝐶2

⎞⎟⎟⎠ , 𝐸C2 = 𝑒2

𝐶2

⎛⎜⎜⎝ 1

1 − 𝐶2
m

𝐶1𝐶2

⎞⎟⎟⎠ , and 𝐸Cm = 𝑒2

𝐶m

⎛⎜⎜⎝ 1
𝐶1𝐶2
𝐶2

m
− 1

⎞⎟⎟⎠ .

(4.5)
With this definition, 𝐸C1 and 𝐸C2 are the charging energy of each dot. We remark that

they correspond to the uncoupled dots’ charging energy multiplied by a correction factor
accounting the inter-dot coupling. In addition, 𝐸Cm is the electrostatic coupling energy
that corresponds to the change in energy of one dot when an electron is added to the other.

To produce a stability diagram like Fig. 4.4(b), we find, for different values of (VA, VB),
the electron configuration with fixed total number of electrons (here 𝑁load = 2) which
minimizes the total electrostatic energy.

Charging energies and lever-arm ratios
In the previous model, we have computed the energy of the system as a function of the
charging energies 𝐸Ci, the gate capacitances 𝐶Ki, and the mutual capacitance 𝐶m for each
dot i and gate K. However, on a regular stability diagram experiment, we cannot directly
access the energy of the system but only the charge state transitions locations. Likewise,
we cannot directly measure the different capacitances of the system. A convenient way to
describe the electrostatic properties of a quantum-dot is to know its charging energy and
its gate lever-arms 𝛼K

i . Indeed, the lever-arms allow a direct conversion from the distances
measured in a stability diagram’s voltage space to an energy scale like the charging energy.

Here, we formally derive the relationships between these quantities and a stability
diagram. To reduce the complexity of the system, we consider the case of uncoupled dots
𝐶m = 0. Indeed, we can show that the effect of the mutual capacitance on the isolated
DQD is only to increase the total electrostatic energy, which does not affect the positions
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Figure 4.4: System scheme and simulated stability diagram. (a) Scheme of a double
quantum-dots in the constant interaction model. Each dot (1 and 2) is coupled capacitively to
gates VA and VB though the capacitors (𝐶A1, 𝐶A2) and (𝐶B1, 𝐶B2). Both dots are coupled
by a mutual capacitance 𝐶m. (b) Simulated stability diagram of the DQDs with 𝑁load = 2
electrons loaded. The color codes the ground-state electron configuration labelled as (𝑁1, 𝑁2).
Three coordinates are highlighted and used in the main text to compute (1-2) the lever-arm
ratio, and (1-3) the quantum dots charging energy.

and slopes of the charge transitions. Then, the total electrostatic energy can be simply
expressed as

𝑈(𝑁1,𝑁2) (VA, VB) = 1
2
∑︁

𝑖=1,2
𝐸Ci

⎛⎝−𝑁1 + 1
𝐸Ci

∑︁
𝑋=𝐴,𝐵

𝛼X
i VX

⎞⎠2

. (4.6)

First, we compute the lever-arm ratios using two points along a transition, like depicted
in Fig. 4.4(b) (points 1 and 2). For each point along a charge transition, the electrostatic
energy of both configurations is equal. So, for the points 1 and 2, we can write the following
system {︃

𝑈(0,2) (𝑉𝐴1, 𝑉𝐵1) = 𝑈(1,1) (𝑉𝐴1, 𝑉𝐵1)
𝑈(0,2) (𝑉𝐴2, 𝑉𝐵2) = 𝑈(1,1) (𝑉𝐴2, 𝑉𝐵2) .

(4.7)

The difference of the two equations gives, with 𝛥𝑉𝐴 = 𝑉𝐴2 − 𝑉𝐴1 and 𝛥𝑉𝐵 = 𝑉𝐵2 − 𝑉𝐵1,

𝛥𝑉𝐵

𝛥𝑉𝐴
= 𝛼A

1 − 𝛼A
2

𝛼B
2 − 𝛼B

1
. (4.8)

Thus, the slope of a charge transition gives a ratio of lever-arms. In most of our system,
each plunger gate is designed to have a strong influence on only specific dots. If we consider
the limit 𝐶A1 ≫ 𝐶A2 and 𝐶B1 ≪ 𝐶B2, then the slope is a direct measure of the lever-arm
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ratio 𝛼A
1 /𝛼B

2 .
Next, we measure the charging energies by looking at the voltage required to move

electrons inside the DQD system. In Fig. 4.4(b), the points 1 and 3 correspond to the
voltage cost 𝑉𝐴3 − 𝑉𝐴1 to transfer two electrons from dot 2 to dot 1. In the same way as
for Eq. 4.7, we define the system{︃

𝑈(0,2) (𝑉𝐴1, 𝑉𝐵1) = 𝑈(1,1) (𝑉𝐴1, 𝑉𝐵1)
𝑈(2,0) (𝑉𝐴3, 𝑉𝐵1) = 𝑈(1,1) (𝑉𝐴3, 𝑉𝐵1) .

(4.9)

The difference of these two equations gives directly

𝑉𝐴3 − 𝑉𝐴1 = 𝐸C1 + 𝐸C2
𝛼A

1 − 𝛼A
2

. (4.10)

We remark that the voltage cost depends on the two charging energies. Indeed, in an
isolated system, the total number of electrons is fixed and they can only be exchanged
between the dots. In addition, we see that the stability diagram features like the transition
slope and the distance between transitions are defined by ratios of either charging energies
or lever-arms. For example, the diagram in Fig. 4.4(b) remains the same if we multiply by 2
the different charging energies and divide by the same amount the lever-arms. Consequently,
stability diagrams can be used to extract only relative quantities and have to be paired
with an energy reference scale (see Sec. 1.2.1 for possible methods).

4.3.2 Model and control protocol for the 2x2 QD array
We have developed a simulation that generalizes these calculations to any user-defined
quantum-dot system. In this context, a system of 𝑚 dots and 𝑛 gates is parametrized by
a capacitance matrix 𝐶 of size (𝑚 × 𝑚) and a (𝑚 × 𝑛) lever-arm matrix 𝛼𝛼𝛼 of elements
𝛼𝐾

𝑖 . In the capacitance matrix, the off-diagonal elements 𝐶𝑖𝑗 are the opposite of the
mutual capacitances between dot i and j, 𝐶𝑖𝑗 = 𝐶𝑗𝑖 = −𝐶m,𝑖↔𝑗 . The diagonal elements 𝐶𝑖𝑖

correspond to the total capacitance of the dot i with respect to all the system gates and
dots. They are computed using the lever-arms and mutual capacitances. In addition, a
𝑚 × 1 charge vector #  «

𝑁0 takes into account the inhomogeneities in the background potential.
Finally, the simulation takes as input the number of loaded electrons 𝑁load and the voltages
applied on each of the 𝑛 gates. In the next section, we control the 2x2 QD array with the
13 gates shown in Fig. 4.1 and up to 5 loaded electrons.

Now, we have detailed in Sec. 1.4 that the control of multiple quantum-dots is complicated
by the dimensionality of the charge stability volume. Here, to control the four dots’
occupation in a single stability diagram experiment, we introduce a set of two virtual
gates described in Fig. 4.5. We only use the plungers in pairs, (HP1, HP2) and (VP1, VP2),
to tilt the voltage potential landscape of the array by applying opposite voltage offsets
(+𝛥𝑉, −𝛥𝑉 ). We note that if the plungers do not have a symmetrical effect on the different
dots, for example 𝛼HP1

1 ̸= 𝛼HP2
3 , then the tilt axis is no longer along the tunnel barrier, and

asymmetries in the potential landscape are introduced. As we will see in the following,
this method allows us to explore 25 of the 35 possible charge configurations of 4 electrons
in 4 dots. The missing configurations are when the 4 electrons are shared in the double
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Figure 4.5: Voltage potential tilt axis. To control the 2x2 QD array occupation in a
simple manner, plunger gates are associated by pair. (a) We apply an opposite voltage offset on
HP1 and HP2 to tilt the voltage potential along HB2. If the plungers do not have a symmetric
effect on the different dots (e.g: 𝛼HP1

1 ̸= 𝛼HP2
3 ), then the tilt axis is no longer along HB2 and

a global potential offset can also be added. (b) Similarly, VP1 and VP2 are used to tilt the
voltage potential along VB2.

quantum-dots along a diagonal (QD1 ↔ QD4), or (QD2 ↔ QD3) and the corresponding
potential landscape cannot be defined by the combination of our two virtual gates.

4.3.3 Conclusion
In this section, we have developed a numerical model based on the constant interaction
model to generate stability diagrams in the isolated regime. We have detailed the example
of a double quantum-dot, and demonstrate that stability diagrams cannot extract directly
charging energies and lever-arms but only ratios of these quantities. Nevertheless, we will
use the ratios extracted in this simple DQD case as input parameters for the simulation of
the 2x2 QD array. Indeed, we have set up the model adapted to the complete array and it
contains 62 physical parameters to determine. Finally, we have defined two virtual gates
to operate the array and explore its charge state volume.

4.4 Control of an isolated 2x2 quantum-dot array
In Section 4.2, we show how to trap a fixed number of electrons in QD2 within the QD
array. Using this technique, we demonstrate here the control of a multi-dot system in
the isolated regime. In particular, we use the model developed in the previous part to
understand the experimental results and extract physical quantities along this section.

First, we load up to four electrons in the array and demonstrate the full control of a
double quantum-dot by accessing the dot occupations and the inter-dot tunnel rate. Then,
we move on to four electrons in the 2x2 QD array. Using the constant interaction model,
we are able to reproduce and understand the intricate pattern obtained in the stability
diagram. To confirm our analysis, we conclude this section by studying the isolated stability
diagrams for different numbers of loaded electrons 𝑁load = 1 → 5.

4.4.1 Control of a double quantum-dot in the isolated regime
Here, we demonstrate the control of a double quantum-dot in the isolated regime. To form
this DQD system, we introduce the dots U and B as pictured in Fig. 4.6(a) inset. Dot U
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roughly corresponds to the merging of the upper dots QD1 and QD2, and dot B to QD3
and QD4. The reason is that during the sample tuning, it has been easier to start from
bigger dots like dot U and B and then iteratively split them to form the 2x2 QD array
developed in the next section. One possible explanation relies on the fact that, at any time,
the loaded electrons must be prevented from escaping the array. In particular, the whole
array gate voltage configuration must be adjusted between the loading position and the
starting position of an isolated stability diagram. Thus, during these adjustments, we may
unknowingly lose electrons to the reservoir. Consequently, we lower the barrier potential
VB2 = 0 V to lower the chemical potential of the QD array and prevent this phenomenon.

One electron in an isolated double quantum-dot
In Figure 4.6(a), we perform a stability diagram experiment of the DQD U-B, in the isolated
regime, with 𝑁load = 1 electron loaded. Along the y-axis, we sweep at the same time HP1
and HP2 in opposite directions to tilt the potential landscape, and change the detuning
potential between dots U and B, as described in Fig. 4.5. For each sweep, we reset the array
and re-load one electron in dot U, and then we move to an isolated position where we have
further increased the barriers at the array boundaries. For (HP1 ≃ 0 mV, HB2 ≃ 600 mV),
we see a transition line associated to the transfer of the loaded electron from dot U to B.

Now, the different values of the inter-dot tunnel barrier HB2 along the diagram x-axis
have two effects on the transition. First, the transition remains almost horizontal. So, HB2
has a weak effect on the DQD detuning and mainly acts as an inter-dot tunnel barrier.
Indeed, we see that as HB2 gets more positive, the inter-dot tunnel coupling increases and
consequently the transition get wider and wider. At the opposite side, for HB2 ≃ −1.6 V,
we observe stochastic events along the sweep axis, indicating that the inter-dot tunneling
time between dot U and B is reduced close to the measurement time (2ms/pt). For even
more negative values HB2 ≃ −1.7 V, the inter-dot transition disappears but a replica of
the transition line at higher detuning is measured. It corresponds to a resonant tunneling
(1,0) → (0,1′), through an orbital excited state of dot B (1′). The excited orbital has a
greater spatial extent, so the inter-dot tunneling rate is larger and electrons can tunnel
faster than the measurement time. Nevertheless, we estimate that the inter-dot tunnel
coupling is tunable from sub-Hz to a few tens of GHz within a 600 mV voltage range on
HB2.

Secondly, the transition moves not in a straight line but with a slight bending. The
curvature of the charge degeneracy lines denotes a change of the gate-to-dots capacitive
couplings and is a signature of dot deformations and displacements while scanning HB2.
This behavior cannot be grasped by the constant interaction model, where we have assumed
fixed charging energies and capacitive couplings.

Finally, at the lower-right corner of Fig. 4.6(a), the voltage applied to HP2 is too high to
keep the array isolated. For the corresponding tunnel barrier values HB2, the transition is
no longer visible if we reverse the sweep axis.

Four electrons in an isolated double quantum-dot
Now, we repeat the same stability diagram experiment but with 𝑁load = 4 electrons, in
Fig. 4.6(b). As expected, we probe the five different charge configurations of four electrons
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Figure 4.6: Double quantum-dot stability diagrams in the isolated regime.
(a) Isolated stability diagram of the U-B DQDs with 𝑁load = 1 electron loaded. Along the
y-axis, HP1 and HP2 are swept together to detune the DQD potential so that the dots can
exchange one electron. The charge configurations are labelled as (𝑁𝑈 , 𝑁𝐵). On the x-axis,
HB2 is used to tune the tunnel barrier between the two dots. For HB2 < −1.6 V, the tunnel
rate is reduced below the measurement time (2 ms/pt). Inset: device configuration.
(b) Same experiment than (a), with 𝑁load = 4.

inside a DQD along the detuning axis, and HB2 tunes the inter-dot tunnel barrier to
the same range as before with one electron. However, we note that the (2,2) charge
configuration becomes wider as HB2 gets more positive. It might be explained by an
increase of the DQD mutual capacitance in this charge state, as the two dots get closer to
each other. Anyway, the (1,0) → (0,1) charge transition is centered with respect to the
(2,2) states. It shows that the positions of the dots do not depend on the number of loaded
electrons.

To summarize, we have demonstrated the control of a double quantum-dot in the isolated
regime. We start by loading a fixed number of electrons inside the array, using the technique
developed in Section 4.2. Then, we adjust the gate voltages to form a DQD with the dot
U and B, while preserving the number of electrons in the system. Through an isolated
stability diagram experiment, we demonstrate the control of the electron distribution and
the inter-dot tunnel coupling of the DQD. In particular, we show the possibility of closing
the inter-dot tunnel coupling.

4.4.2 Control of 4 electrons in a 2x2 QD array
In the previous part, we have developed a double quantum-dot with 4 electrons trapped in
the isolated regime. Likewise, we show in this section the control over the dot occupation of
the 2x2 QD array. First, we perform an isolated stability diagram that exhibits the control
of the array with 4 electrons. Then, we analyze experimental results with the constant
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interaction model developed in Section 4.3.

Experimental results
To reach the 2x2 QD array regime, we start by iteratively applying a more negative voltage
on the vertical inter-dot tunnel barrier, starting from the previous stability diagram with
VB2 = 0 V. Consequently, we gradually split the quantum-dots U and B until we reach
a regime with 4 dots. This process is done in several steps, so that we can adjust the
complete array voltage configuration.

For VB2 = −1.7 V, we reach the situation where the four dots are populated and can
exchange electrons, as depicted in Fig. 4.7(a). On this diagram, we tilt the voltage potential
along the y-axis sweep so that electrons can be exchanged between the top (QD1, QD2)
and the bottom (QD3, QD4) quantum-dots. For each sweep, we reset the array, re-load 4
electrons, and change the detuning between the left (QD1, QD3) and right (QD2, QD4)
part of the array. This is achieved by applying an opposite voltage offset between VP1 and
VP2, as pictured in Fig. 4.5(b).

On this diagram, we see different kinds of charge transitions, with different slopes
and line intensities. We note that we cannot access the leftmost part of the diagram at
VP2 > 1025 mV. For these voltage configurations, the QD array is no more isolated from
the reservoir. Nevertheless, we can sort the different charge transitions by slope and line
intensity.

On the one hand, the transition slope gives us information on the type of inter-dot
transition concerned. Indeed, we link vertical transition lines to electron exchange between
the left and the right part of the array, and respectively horizontal transitions to exchanges
between the upper and lower part. However, due to the symmetries of the device, an
electron jumping from QD3 to QD1 would have a transition slope similar to an electron
exchanged between QD4 and QD2. This is also the case for "horizontal" jumps between
QD1 and QD2, or QD3 and QD4.

On the other hand, the transition line intensity allows us to distinguish which specific
inter-dot is concerned since it is related to the detector sensitivity for this particular
exchange of electrons. In our case, the detector is not symmetrically coupled to each dot,
thus the line intensity gives an additional information. For example, an electron exchanged
between QD2 and QD4 gives a much stronger signal than between QD1 and QD3, since
these two last dots are 200 nm further away from the sensor.

Using both methods, we summarize in Fig. 4.7(b) the different inter-dot transitions
among the stability diagram and associate one color to each. Then, we need to deduce
the charge distribution of each charge state. To do this, we start from the rightest part of
the diagram where the potential is completely tilted toward the right part of the array.
In this regime, the system can be summarized to a simple double quantum-dot QD2-
QD4, as studied in Section 4.4.1. Consequently, we can easily identify these charge states
starting from the bottom-right corner

(︀ 0 0
0 4

)︀
, where we label the dot occupations as

(︀
𝑁1 𝑁2
𝑁3 𝑁4

)︀
.

Likewise, we label the charge states consistent with a double quantum-dot QD3-QD4 in
the lower part of the stability diagram. Finally, we can map the complete stability diagram
by propagating the known charge states through already identified charge transitions, see
Fig. 4.7(b).
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Figure 4.7: 2x2 quantum-dot array with 4 electrons in the isolated regime.
(a) Isolated stability diagram of the 2x2 quantum-dot array with 𝑁load = 4 electrons loaded.
HP1, and HP2 are swept along the y-axis to exchange electrons between the top (QD1, QD2)
and the bottom quantum-dots (QD3, QD4). Similarly, VP1 and VP2 are stepped along the
x-axis to transfer electrons from the left (QD1, QD3) to the right (QD2, QD4) part of the
array. Inset: device configuration. (b) Schematic of the stability diagram (a). A color is
associated with each transition based on its slope and intensity. Each color corresponds to a
given inter-dot transition as depicted in figure inset. The charge state labels are deducted by
starting from the right part of the diagram, in the limit where the array is reduced to a double
quantum-dot QD2-QD4.

Among the different charge configurations, we are particularly interested in the
(︀ 1 1

1 1
)︀

state. The 1-electron in each dot state is located at the center of the whole stability
diagram and is a center of symmetry for the charge transitions pattern. Now, we can
discuss how the charges are re-distributed inside the array when we move away from this
state. First, if we move up on the y-axis, we notice that we cannot jump directly from(︀ 1 1

1 1
)︀

to
(︀ 2 2

0 0
)︀
. Instead, only one electron jumps from QD3 to QD1 when the voltage

potential is titled. Indeed, due to the mutual capacitance between QD1 and QD2, once
we have added an electron to QD1, the QD2 chemical potential rises. We need to push
further along the y-axis to pay for the additional mutual charging energy. In addition, the(︀ 2 1

0 1
)︀

state is preferred due to a slight asymmetry in the tilt axis. Symmetrically, we now
move down the y-axis from the 1-electron state, and the first transition corresponds to the(︀ 1 0

1 2
)︀

state. Finally, the QD array behave similarly along the x-axis with the transitions(︀ 1 1
1 1

)︀
→

(︀ 1 1
0 2

)︀
→

(︀ 0 2
0 2

)︀
. In all of these cases, we should be able to tune the charge states

surrounding the 1-electron state by adjusting the tilt of the potential landscape (as it has
been demonstrated using the simulations developed in the next section).
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To summarize, we have demonstrated the control of four electrons inside a 2x2 quantum-
dot array. Even if we couldn’t access all the possible charge configurations, we have
reached the

(︀ 1 1
1 1

)︀
state. From this state, we have identified charge transitions to push

selected electrons into already occupied dots. Such a protocol can be used in the context of
experiments related to electron spins. Nevertheless, the use of the isolated regime and the
device geometry give clear stability diagrams. We are able to catalog the different charge
states thanks to specific features like horizontal, vertical, and oblique transition lines with
different sensor sensitivities.

Analysis using the constant-interaction model
In this part, we push further our investigations on the isolated stability diagram with 4
electrons distributed in 4 quantum-dots using the simulation developed in Sec. 4.3 to model
the 2x2 QD array.

The simulation takes as input a model of the QD array and generates a stability diagram
with the same voltage ranges than Fig. 4.7, with 𝑁load = 4. To fix the starting values for the
different model parameters, we make reasonable estimations based on (i) the symmetries of
the system, (ii) the constrains on the lever-arm matrix and dot charging energies obtained
by using Eq. 4.8 and 4.10 on the DQD limits of the experimental stability diagram (lower
and right part of the diagram). Then, we manually adjust all the model parameters
iteratively to reproduce as closely as possible the measured stability diagram.

At the end of this procedure, we find a model of the 2x2 QD array that simulates a
stability diagram in qualitative agreement with the experimental data, as pictured in
Fig. 4.8(a). We see that the constant interaction model matches the overall shape of the
stability diagram. Also, we confirm the labeling of the different charge states in Fig. 4.7(b),
using the simulation outputs. Moreover, we can use the simulation to probe a larger voltage
window. It results that the two tilted potentials used to explore the stability diagram can
access 25 charge states out of the 35 possible ways of distributing four electrons into four
dots. The 10 missing charge states correspond to the case where the array is limited to
diagonal DQDs like QD1-QD4, and QD2-QD4. They fit to the configurations

(︀
𝑥 0
0 4−𝑥

)︀
, and(︀ 0 𝑥

4−𝑥 0
)︀

with 𝑥 ∈ {0; 1; 2; 3; 4}.
Now, we analyze the lever-arm matrix used in the QD array model and represented in

Fig. 4.8(b) (the complete list of parameters can be found in Appendix C). Since we do
not have an energy reference scale, we normalize each lever-arm by 𝛼HP2

4 ≃ 53 meV/V, the
estimation of the HP2 lever-arm on QD4.

On the one hand, it was necessary to assign a lever-arm about twice as strong for the
horizontal gates than the vertical gates to reproduce the experimental data (as already
mentioned in Sec. 4.2.3). It results from the vertical plunger potentials screening by
the horizontal set of gates located in-between the vertical gates and the two-dimensional
electron gas. Moreover, the vertical gates are positioned 15 nm further from the 2DEG,
resulting in an additional reduction of their lever-arms. It confirms the need to apply
significant positive voltages to VP1 and VP2, made possible by the isolating layers of
hafnium oxide.

On the other hand, we can compare the different plungers’ effect on the dots directly
below with their effects on the dots on a different row/column. For example, if we look
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Figure 4.8: Constant interaction model of the 2x2 quantum-dot array.
(a) Simulated stability diagram of the 2x2 QD array with 4 electrons loaded (dashed black lines),
superimposed on the experimental data. The constant interaction model allows reproducing
the experimental data qualitatively. (b) Representation of the lever-arm matrix used in the
simulation model. In the absence of absolute energy reference, each lever-arm is normalized by
𝛼HP2

4 , the HP2 lever-arm on QD4.

at the HP1 lever-arms, it has roughly a twice more significant effect on QD1 and QD2,
compared to QD3 and QD4. It is also the case for the other three gates studied. We
note that this discussion is only valid for the current polarization of the inter-dot tunnel
barrier HB2, and VB2, because a decrease in their gate voltages might move the dots further
apart, and therefore reduce these cross-capacitive couplings. Moreover, such crosstalk
between the shared control gates and their surrounding dots is not necessarily a problem
for large scale QD arrays, as discussed in Sec. 1.4.4 and in [Mor18]. Indeed, the structure’s
symmetries facilitate the compensation of the crosstalk, so the requirements concern more
the uniformity of the crosstalk along one gate. Here, our device has shown enough tunability
to explore the stability diagram.

To conclude, we have developed a model of the 2x2 QD array in the regime where we
have trapped and controlled 𝑁load = 4 electrons. We use this model to characterize the
array and quantify the effects of the different plunger gates. Our structure with two layers
of control gates shows that the bottom layer has a effect twice stronger than the upper one.
It can be explained by screening of the upper layer by the bottom one and the increased
distance of the upper layer from the 2DEG. Finally, we examined the crosstalk between
a shared control gate and the neighboring dots. In our small array, this crosstalk has
been homogenous enough to explore all the different charge states. In the next section,
we confirm our analysis by studying the charge stability volume associated with different
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loading numbers 𝑁load = 1 → 5.

4.4.3 Arbitrary number of electrons in a 2x2 QD array
To confirm the model of the 2x2 QD array that we have developed in the previous section,
we perform the same stability diagrams than before, but for different numbers of loaded
electrons in Fig. 4.9. Then, we compare the experimental data with the results of our
simulations. Only the 𝑁load parameter is changed in the simulation parameters, and all
other quantities (lever-arms, charging energies, ...) are the same than for the diagram in
Fig. 4.8.

For 𝑁load = 1, we explore the four charge states of the stability volume with the electron
in any of the four dots (see Fig. 4.9(a)). We expect the four charge states to form a unique
4-fold degenerated crosspoint, for a perfectly symmetric array. Here, we observe that
this degeneracy is lifted due to the diagonal transition

(︀ 0 0
0 1

)︀
↔

(︀ 1 0
0 0

)︀
. The asymmetries

in the lever-arm matrix and charging energies explain why the QD1-QD4 transition is
promoted instead of QD2-QD3 for this particular cut in the stability diagram volume.
This behavior was already observed in the isolated stability diagram with 4 electrons by
looking for example to the

(︀ 0 2
0 2

)︀
state. For this symmetric state (𝑁1 = 𝑁3, and 𝑁2 = 𝑁4),

it is much easier to transfer one electron from QD4 to QD1 than from QD3 to QD2. The
numerical simulations agree with the experimental results and replicate the promoted
diagonal transition properly. Moreover, this stability diagram gives the path to make the
electron travels in the four QDs in a loop. A similar path has been used in Flentje et
al. [Fle17] to displace coherently individual electron spins in three QDs.

In Figure 4.9(b), this particular cut of the stability diagram volume contains 9 of the 10
charge states of 𝑁load = 2 electrons into 4 dots. The state

(︀ 0 1
1 0

)︀
is missing here also because

of the asymmetries between the DQDs QD1-QD4 and QD2-QD3. The configuration with
two electrons in four dots corresponds to the scalable QD array described in [Li18], where
only one in two QDs is occupied. The sparse occupation of the QDs has several advantages
over the full array occupation (four electrons in four dots) detailed in the previous section.
First, it increases the number of electrodes per QD for the same gate density. Furthermore,
the crosstalk between each gate and the surrounding QDs is reduced since their distance
increases. Finally, the empty sites permit new functionalities like shuttling electrons from
one QD to another without interacting with another occupied QD.

Next, we investigate the stability diagram with 𝑁load = 3 electrons loaded. Out of the
20 charge states in the stability volume, only 16 are represented in the stability diagram in
Fig. 4.9(c). In Dehollain et al. [Deh20], Nagaoka ferromagnetism has been observed in a
2x2 QD array with 3 electrons. It requires to set resonant the four 1-electron per dot states
to observe the Nagaoka ferromagnetism. However, the QD array is operated in the open
regime, and its stability diagrams are complicated by the unwanted addition of electrons
from the reservoir (see Fig. 1.14). Here, the tuning capability of the array is increased by
the isolated regime.

Finally, we show the charge stability diagram of 𝑁load = 5 electrons in an isolated 2x2
QD array. The number of states in the full stability volume grows to 56. Our cut in the
stability volume contains 36 of these states, and only 22 are visible in the stability diagram
in Fig. 4.9(d).
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Figure 4.9: 2x2 isolated quantum-dot array with 𝑁load = 1 → 5.
Isolated stability diagram of the 2x2 quantum-dot array with 𝑁load = 1 → 5 electrons loaded,
using the same experimental parameters than in Fig. 4.7(a). The charge transitions observed
(simulated) are highlighted with white (black) dashed lines, and the different charge states
are labeled. The simulated stability diagrams are all using the same model of the QD array,
developed in Fig. 4.8.
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To summarize, we have demonstrated that any electron number 𝑁load = 1 → 5 can
be loaded into our isolated QD array and manipulated. The model of the 2x2 QD array
developed in Sec. 4.4.2 remains valid for these different electron numbers and reproduce
the observed stability diagrams correctly.

4.5 Conclusion
In this chapter, we demonstrate the charge control of a 2x2 quantum-dot array. First,
we study the link between the array and the electron reservoir. A loading procedure
is detailed to trap electrons inside the array and reach the isolated regime. Different
double quantum-dot configurations are explored to better understand the tuning of the
full QD array. Then, we develop a numerical simulation to compute stability diagrams
in the isolated regime with as input a representation of the QD array in the constant
interaction model. Based on limited approximations, we show how to extract some of the
model parameters directly from the experimental data. Finally, multi-dot experiments are
performed in the isolated regime. The control of a double-quantum dot is achieved with
the tuning of the dot occupations and its inter-dot tunnel barrier. Moreover, we perform
an isolated stability diagram experiment with a 2x2 QD array and 4 electrons loaded, and
a model of the array is obtained by comparison with the simulations. We show that the
scalable architecture of the device is capable of reaching the desired charge states. Our
model’s robustness is demonstrated by looking at the same stability diagrams for different
numbers of loaded electrons.

Following this work, further investigations are required to take control of larger quantum-
dot arrays. In particular, a new generation of devices based on the same architecture are
being fabricated. These devices will benefit from experience feedback from the current
thesis. They will optimize, for example, the sensitivity of the sensor and the screening of
the top metallic layer (vertical gates) by the bottom one (horizontal gates). Moreover, the
tuning protocols of quantum-dot arrays are still an open question, and the new devices will
allow to test control paradigms on large arrays. Finally, a project in the group aims to add
micro-magnets on top of an array to operate it as a spin-qubit quantum processing unit.



Conclusion and perspectives

The goal of my thesis was the development of charge control in quantum-dot arrays and
the exploration of architectures compatible with large-scale integration. Indeed, quantum
computers are prone to errors and require encoding information from a single logical
quantum-bit into many physical qubits. Electron-spin qubits in quantum-dot arrays
are a promising platform thanks to their compatibility with standard semiconductor
manufacturing. So, scalable QD arrays are one of the pre-requisites for building a universal
quantum computing unit, fitting millions of QDs inside a single chip, to outperform any
conventional computer on specific tasks.

Towards this objective, we first demonstrated the operation of double quantum-dots
in a silicon nanowire. Each QD is operated by a unique electrode, and the device is
fabricated on a silicon-on-insulator 300-mm wafer using an industry-standard fabrication
line. We have developed a structure-integrated electrometer by probing the quantum
capacitance of a single-lead quantum-dot. The SLQD detector reduces the footprint for
charge readout by requiring only one reservoir. Its charge sensitivity has been characterized
to 4.9 × 10−3 𝑒/

√
Hz. In addition, we evaluated the energy spectrum of the QDs and

showed that they are highly sensitive to the surface disorder at the interface between the
electrode and the dot. Then, we developed different detection protocols to compensate for
the device’s strong capacitive couplings due to its dense packing. We have achieved the
control of the different double quantum-dots in a 2x2 QD array and probed the Coulomb
disorder inside the structure. In particular, the Coulomb disorder strongly affects the
quantum-dots homogeneity in the few-electron regime but is smoothed as we increase the
dot sizes.

Then, we demonstrated a scalable QD array formed by shared control gates with
row/column addressing, in a GaAs/AlGaAs heterostructure. Similar to classical integrated
circuits, large-scale quantum-dot arrays must drastically reduce the number of interconnects.
Here, the crossbar network limits the number of electrodes for a 𝑁x𝑁 QD array to only
4𝑁 . We have observed the loading and trapping of one to five electrons inside a single-dot.
Then, a double quantum-dot was studied in the isolated mode with the control of the
electrons distribution and the inter-dot tunnel coupling. In particular, we have shown the
ability to reduce the inter-dot tunneling rate from the GHz to the sub-kHz regime. Finally,
despite the limited number of electrodes, we have controlled the electrons’ distribution in
the isolated 2x2 QD array for different numbers of charge loaded. The constant interaction
model was used to characterize the QD array and reproduce the isolated stability diagrams.

To conclude, further developments are needed for the control of large-scale quantum-dot
arrays. On the one hand, a robust silicon platform requires low dot-to-dot variability, and
a means to control the inter-dot tunnel barriers. The optimization and automation of
the measurement protocols developed in this thesis make it possible to efficiently evaluate
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silicon nanowire’s properties at cryogenic temperature.
On the other hand, progress is required concerning the control of large arrays using

the GaAs platform for proof of concept row/column addressing. An in-depth study of
the dots’ charging energies and couplings to electrodes is necessary to assess the QD
network’s homogeneity precisely. Furthermore, we could not demonstrate the tunability of
tunnel-barriers in the 2x2 QD array during this thesis. Moreover, increasing the array’s
size would permit to confirm the scaling potential of this architecture and demonstrate
parallel operations of QDs.

Besides, the coarse tuning of large-scale arrays remains an open problem. Here, we have
manually explored the ten dimensions of the charge stability volume to find the regime with
four electrons in four dots. Next, we have identified the different charge states in the final
stability diagram using the transitions’ slopes and the diagram’s symmetries. However,
this strategy cannot scale with the size of the array, as the diagram’s complexity grows
exponentially. Therefore, we must rely on automatic procedures. While the automatic
tuning of simple DQDs is based on recognizing honeycomb patterns, this solution may not
be effective for performing coarse tuning of large systems with a colossal number of charge
states to identify. Consequently, new control paradigms must be developed.

Finally, the charge control inside a scalable QD array is only one facet of our quantum
computer proposal. In addition, the control of electron-spin qubits in a 3x3 QD array
has been shown [Mor18]. The two electrons were moved coherently across the lattice, and
exchange oscillations performed in the different DQD configurations. Also, the realization
of a quantum coherent link between two distant DQDs has been recently demonstrated
with electron-spins transported with surface acoustic waves [Jad20]. Instead of considering
a unique large QD array, such links could be used to connect multiple smaller arrays, as
proposed in [Van17].
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APPENDIX A
Silicon nanowire room-temperature characterization

This appendix details the room-temperature characterization of the 4 split-gates silicon
nanowire used in Chapter 3.

In Figure A.1(a), we show the current measured between the source and drain contacts
while sweeping all the gates on one side at the same time. The gates from the other side
are kept blocked by applying −1 V. For example, the red curve corresponds to sweeping
the gate voltages (𝑉5,𝑉6,𝑉7,𝑉8) from −1 to 1 V (upper-side), while (𝑉1,𝑉2,𝑉3,𝑉4) prevent
the current from flowing through the bottom-side of the device (see Figure A.1(a) inset).
As expected, the split-gate device acts like a field-effect transistor at room-temperature
and is turned ON when we apply a common gate voltage above a given threshold 𝑉 th.
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Figure A.1: Room-temperature characterization. Current measured between the source
and drain reservoirs of the 4 split-gates silicon nanowire for different gate configurations at
room-temperature (𝑇 ≃ 300 K). The source-drain bias is fixed at 𝑉SD = 5 mV. (a) Transport
current through the nanowire as a function of the gate voltage applied simultaneously on all
the gates on one side of the nanowire, while the other side is held blocked (B) by applying
−1 V. The blue trace corresponds to the lower-side (𝑉5,𝑉6,𝑉7,𝑉8), and the red to the upper-
side (𝑉1,𝑉2,𝑉3,𝑉4). (inset) Device configuration to measure current through the nanowire
upper-side. (b) Current through the nanowire as a function of the voltage applied to each of
the gates. To allow current to flow through the nanowire while only one gate is swept, all the
other gates from the same side act like reservoirs (R) by applying 1 V. The other side remains
blocked. (inset) Device configuration to characterize the gate voltage 𝑉6.

121



122 A Silicon nanowire room-temperature characterization

We see that the upper-side is activated for a lower voltage 𝑉 th
U = 310 mV compared to

the lower-side 𝑉 th
L = 510 mV. Moreover, we extract the resistance value of the transistor in

the linear-regime from the slope of the IV characteristics. The resistance of the lower-side
𝑅L = 660 MΩ is twice that of the upper-side 𝑅U = 340 MΩ. It indicates that the lower-
side gates are less effective than the upper-side in modulating the carrier density in the
nanowire. This asymmetry is explained by a misalignment of the split-gates with respect
to the nanowire axis during the fabrication process. It was measured on similar devices and
observed using scanning electron microscopy, as depicted in Fig. A.2 where the electrodes
offset 𝛥 ≃ 20 nm is relatively large compared to the nanowire width 𝑊 = 70 nm.

From these measurements, we expect lower lever-arms for the lower side electrodes on the
silicon nanowire QDs, at cryogenic temperatures. In Chapter 3, we measure the lever-arms
in different configurations and see that the misalignment of the electrodes does not affect
the dot-gate lever-arm if the QD is pinned to the corner of the nanowire.
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Figure A.2: Split-gates misalignment on the silicon nanowire. (left panel) SEM
micrograph of a 4 split-gates device similar to the one used in Chapter 3. (right panel)
Zoom into the central part of the device with the split-gates deposited on top of the horizontal
silicon nanowire. The split-gates are misaligned by 𝛥 ≃ 20 nm with respect to the axis of the
nanowire. This offset is not-negligible compared to the nanowire width 𝑊 = 70 nm.

Next, we check that each gate is working correctly in Fig. A.1(b). To allow current to
flow through the device while a single gate is swept, we accumulate electrons under the
electrodes on the same side that the gate under test. For example, the inset in Fig. A.1(b)
depicts the device configuration to test the gate 𝑉6. The gate 𝑉6 is swept as electrons are
accumulated below 𝑉5, 𝑉7 and 𝑉8 by applying 1 V. The lower-side is biased at −1 V to
prevent accumulation in the bottom branch. We note that the asymmetry between the
lower and upper gates is reproduced in this configuration, as in Fig. A.1(a). In addition,
we see that the gates on the edges have a higher threshold voltage than the gates in the
middle of the device : 𝑉 th

1 , 𝑉 th
4 > 𝑉 th

2 , 𝑉 th
3 ; and 𝑉 th

5 , 𝑉 th
8 > 𝑉 th

6 , 𝑉 th
7 . Indeed, due to the

cross-capacitive couplings, the inner gates are assisted by two electrodes, and the edge
gates only by one.

To conclude, this characterization is easy to implement at room-temperature for the
pre-screening of silicon nanowire devices worthy of investigations at 70 mK. For the device
used in Chapter 3, we have measured an asymmetry between the upper and the lower gates.
It is explained by an offset of the electrodes with respect to the axis of the nanowire.



APPENDIX B
Addition energy spectrum of silicon nanowires quantum-dots

Here, we show the stability diagrams used to measure the addition energy spectrum of
four silicon QDs spanned in three different devices. The addition energy spectrums are
summarized in Fig. 3.3. The three devices parameters are :

Device A : 𝑊 = 80 nm , 𝐿G = 40 nm, 𝑆H = 40 nm, 𝑆V = 40 nm.
Device B : 𝑊 = 90 nm , 𝐿G = 50 nm, 𝑆H = 50 nm, 𝑆V = 50 nm.
Device C : 𝑊 = 100 nm, 𝐿G = 60 nm, 𝑆H = 60 nm, 𝑆V = 60 nm.

Figure B.1: Stability diagrams for addition energy spectrums. List of the stability
diagrams from which the addition energy spectrum has been measured. (a) Device A. The
QD5 is used as an SLQD to probe QD1. (b) Device B. The QD4 is used as an SLQD to probe
QD1 (c) Device C. QD3 is used as a SET sensor to probe QD1. The QD4 acts like a local
reservoir by applying 1 V to permit the current to flow between the source and drain contacts.
(d) Device C. Same than (c), but QD2 is probed by QD4.
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APPENDIX C
Constant interaction model of the 2x2 QD array

In this appendix, we show the parameters used in the simulations of the 2x2 QD array (see
Sec. 4.4). First of all, we implement in our model only the electrodes swept in the different
stability diagram experiments : HP1, HP2, VP1, and VP2. The other gates (HB1, VB1, ...)
were not swept in the 2x2 QD array regime, and therefore we can not evaluate their
lever-arms with respect to the quantum-dots. Thus, we limit the lever-arm matrix to just
four gates with four dots. In our experiments, the static gates have the effect of shifting
the chemical potential of each dot. These offsets are included in the simulations within the
charge vector #  «

𝑁0, which is accounting for the background potential.
Secondly, we discard the mutual capacitance terms, namely ∀𝑖 ̸= 𝑗, 𝐶m,𝑖↔𝑗 = 0. Indeed,

we assume that the QDs are in the weak-coupling regime, which is consistent with the
experimental data. So, the contributions of the mutual terms in the dot capacitance are
small : 𝑒2/𝐸C,𝑖 ≫ 𝐶m,𝑖↔𝑗 , and 𝐸C,𝑖 ≃ 𝑒2/𝐶𝑖. In this regime, the mutual capacitances have
almost no effect on the simulated diagrams, and therefore we neglect them to simplify the
model.

We summarize the parameters that best match the experimental data in Table C.1.
We recall that the simulations do not give an energy reference scale, so any combination
that keeps 𝛼𝛼𝛼

#   «

𝐸C constant produces the same stability diagram. Here, we chose to set the
lever-arms of the horizontal gates (e.g. HP1) on their associated dots (e.g. QD1 and QD2)
to 50 meV/V, the characteristic lever-arm in such structure [Mar14]. The charging energies
obtained are of the order of ∼ 1 mV, and are compatible with the expected values for the
device (see Sec. 1.2.2).

Table C.1: Constant interaction model parameters of the 2x2 QD array.

𝛼K
𝑖 (meV/V)

𝐸C,𝑖 (meV) 𝑁0,𝑖
HP1 HP2 VP1 VP2

QD1 49.5 25.7 11.4 25.2 1.63 2.73

QD2 51.3 26.4 24.9 12.2 1.70 4.28

QD3 21.3 52.2 11.9 24.8 1.63 −4.88

QD4 28.2 52.6 25.6 12.1 1.75 −2.28
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