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Résumé

L’utilisation de plus en plus répandu des processeurs multicœurs dans les systèmes
cyber-physiques (CPS) offre des capacités de calcul plus élevées. Il encourage
également le développement d’applications plus lourde avec des fonctionnalités
interactives et probablement avec des exécutions en parallèles. Souvent, ces
applications doivent respecter des contraintes de précédences et d’autres temporelles
afin de garantir la validité fonctionnelle et temporelle.

Bien que les architectures multicœurs améliorent en moyenne les performances
d’un système, elles introduisent plusieurs incertitudes sur le comportement tem-
porelle. Ces incertitudes sont causées par des communications et des interférences
supplémentaires entre les différents cœurs. La plupart des techniques d’analyse en
temps réel des systèmes critiques sont basées sur le raisonnement au pire cas. Ils ne
prennent en compte que les valeurs au pire cas des paramètres temporelles même si
celles-ci se produisent rarement. Par conséquent, l’application de telles techniques
pour vérifier le respect des contraintes temporelles conduit à un surdimensionnement
des ressources de calcul nécessaires et à un surcoût.

Cependant, les approches d’analyse basées sur le modèle probabiliste pren-
nent en compte toutes les valeurs possibles avec leurs probabilités d’occurrences
correspondantes et fournissent la probabilité de dépasser une échéance qui doit
rester en dessous d’un seuil donné (par exemple 10−7 or 10−9) dépendant de
la criticité du système. Le respect de ce seuil permet d’assurer la faisabilité
du système avec un niveau de confiance suffisamment élevé tout en évitant le
surdimensionnement des ressources.

Dans cette thèse, nous nous intéressons au problème d’ordonnancement des
tâches temps réel dures représentées par un graphe orienté acyclique (DAG) chacune
et exécutées sur un processeur multicœur. Ces tâches DAG sont indépendantes
les unes des autres mais elles présentent des dépendances internes (contraintes de
précédence) entre les sous-tâches qui les composent. Nous nous concentrons sur des
algorithmes d’ordonnancement partitionnés, à priorité fixe et préemptifs caractérisés
par leur comportement statique afin de réduire la variabilité et les interférences entre
les différents cœurs. Nous étudions un modèle de tâche qui représente un paramètre
temporel avec une seule valeur déterministe égale à sa valeur au pire cas. En outre,
nous considérons un modèle de tâche probabiliste qui décrit les différentes valeurs
possibles d’un paramètre temporel en utilisant une distribution de probabilité.



Tout d’abord, nous étudions l’ordonnançabilité d’un ensemble de tâches DAG
avec des paramètres temporels déterministes. Nous proposons une analyse du temps
de réponse (RTA) inspirée d’une analyse existante pour un ensemble de tâches où
chacune est composées de sous-tâches liée en chaîne . Ensuite, nous affinons nos
équations de temps de réponse en supprimant les quantités qui pourraient être
calculés plusieurs fois et les préemptions successives et irréalisables causées par des
tâches plus prioritaires. Ainsi, nous réduisons le pessimisme et la surestimation
du temps de réponse d’une tâche.

En suite, nous abordons l’analyse d’ordonnançabilité dans le cas de paramètres
temporels probabilistes. Nous étendons nos équations de temps de réponse proposées
pour les tâches déterministes à l’aide d’opérateurs probabilistes. Ainsi, nous
obtenons la distribution du temps de réponse et nous calculons la probabilité de
dépassement d’échéance. De plus, nous utilisons un réseau Bayésien pour modéliser
les dépendances possibles entre les différentes distributions de probabilité. Nous
appliquons également un test d’ordonnançabilité déterministe combiné avec une
représentation en C -espace et un classificateur SVM pour estimer la probabilité
d’ordonnançabilité.

Enfin, nous proposons des techniques de d’ordonnançement pour définir les
priorités aux niveaux des tâches et des sous-tâches afin de réduire le temps de
réponse du système. De plus, nous présentons une heuristique de partitionnement
qui attribue chaque sous-tâche à un cœur donné d’une façon à promouvoir les
exécutions parallèle et à réduire les communications entre les différents cœurs.
Puisque la complexité d’une analyse d’ordonnançabilité dépend du nombre de
sous-tâches dans un graphe, nous proposons un algorithme qui réduit la taille d’un
DAG en fusionnant certains sous-tâches ensemble sans modifier la structure des
contraintes de précédence.

Mots clés : Ordonnancement multicœur, Contraintes de précédence, Probabilité
de dépassement d’échéance, Analyse du temps de réponse, Classification SVM,
Réseaux bayésiens.



Abstract

The use prevalence of multi-core processors in Cyber-Physical Systems (CPSs)
provides greater computation capacities. It also encourages the development of
more resource-demanding applications with interactive functionalities and, in most
cases, parallel executions. Often, these applications must respect precedence and
timing constraints in order to ensure functional and temporal correctness.

Although multi-core architectures enhance the system’s performance on average,
they introduce some uncertainties about the timing behavior. These uncertainties
are caused by additional communications and interferences between different cores.
Most real-time analysis techniques for safety-critical systems are based on worst-
case reasoning: they consider only worst-case values of timing parameters, even
if they occur rarely. Therefore, applying such techniques to verify that timing
constraints are respected leads to an over-sizing of computational resources required
and to an extra-cost.

However, analysis approaches based on a probabilistic model takes into account
all possible values with their corresponding probabilities of occurrences and they
provide the probability of missing a deadline that should not exceed a given threshold
(e.g. 10−7 or 10−9) depending on the criticality of the system. Respecting this
threshold makes it possible to ensure the feasibility of the system with a sufficiently
high confidence level while avoiding the over-sizing of the resources required.

In this thesis, we are interested in the scheduling problem of hard real-time tasks,
each of which is represented by a Directed Acyclic Graph (DAG) and executed
on a multi-core processor. These DAG tasks are independent of each other but
they present internal dependencies (precedence constraints) between the sub-tasks
composing them. We focus on partitioned, fixed-priority and preemptive scheduling
algorithms characterized by their static behavior in order to reduce variability and
interference between different cores. We study a task model that represents a
timing parameter with a single deterministic value equal to its worst-case value.
Furthermore, we consider a probabilistic task model that describes different possible
values of a timing parameter using a probability distribution.

First, we study the schedulability of DAG task model with deterministic timing
parameters. We propose a Response Time Analysis (RTA) inspired by an existing
analysis for a task model composed of chains of sub-tasks. Then, we refine our



response time equations by removing delays that could be computed several times
and unrealistic successive preemptions of higher priority tasks. Thus, we reduce the
pessimism and the over-estimation of the response time of a DAG task.

Second, we address schedulability analysis in the case of probabilistic timing
parameters. We extend our response time equations proposed for deterministic tasks
using probabilistic operators. Thus, we obtain the response time distribution and
we compute the deadline miss probability. Moreover, we use a Bayesian network to
model possible existing dependencies between different probability distributions. We
also apply a deterministic schedulability test combined with a C-space representation
and an SVM classifier to estimate the schedulability probability.

Third, we provide some scheduling techniques to define priority at the task and
sub-task levels in order to enhance the reactivity of the system. We also present
a partitioning heuristic that assigns each sub-task to a given core in such a way
to promote parallel executions and reduce communications between different cores.
Since the complexity of a schedulability analysis depends on the number of nodes,
we propose an algorithm that reduces the size of a DAG by merging some nodes
together without altering the structure of precedence constraints.

Keywords: Multi-core scheduling, Precedence constraints, Deadline miss
probability, Response time analysis, SVM classification, Bayesian networks.
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1.2 Problem Description and Objectives . . . . . . . . . . . 4
1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1 Context and Motivation
The increasingly widespread deployment of intelligent devices has led designers of
embedded and real-time systems to integrate additional functionalities, thereby
rising the complexity of the design and the validation process. Often, a functionality
is accomplished by a set of programs (or tasks), related by precedence constraints.
These constraints must be satisfied in order to ensure the functional correctness.
For example, the internal combustion engines of vehicles manufactured during the
last decade are no longer controlled by mechanical systems. In fact, a specific
software executed on the Engine Control Module (ECM) manages and triggers each
cycle of the engine using different sensors and actuators [4] such as a crankshaft
position sensor, fuel injectors and valves. This controller enforces the precedence
constraints like valve closing or ignition, which are defined between different parts
of the software drivers to achieve the desired functioning and optimal performance.
These precedence constraints are often modeled by Directed Acyclic Graphs (DAGs).

On the other hand, chip manufacturers are constantly seeking to improve
the performance of their chips while reducing power consumption. Since the clock

1
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frequency is physically limited by the heat release, these companies have incorporated
several cores on the same processor to allow simultaneous processing, which offers
a speedup for executing programs. For instance, Intel® has proposed the Xeon
Phi™ 7920 processor with more than 70 cores [5]. Meanwhile, programming
paradigms are also evolving, in order to follow the development of hardware
architectures. New parallel programming models have been introduced such as
OpenMP [6] and Intel Threading Building Blocks [7]. These models exploit the
possible intra-task parallelism by dividing large tasks into smaller sub-tasks and
running them in parallel. Then, they synchronize and merge their results. Such an
approach creates precedence constraints between several sub-tasks (threads) inside
the same task (program). Thus, a DAG task model is adopted to describe different
independent programs (or tasks) as well as the dependent threads composing them.

Although in many advanced applications, real-time systems require intensive
computation resources, they do not take full advantage of the parallel processing
provided by multi-core processors. To the best of our knowledge, current timing
analysis techniques do not allow parallel processed systems to be validated and
certified. In fact, these techniques are designed to analyze simple software running
on simple and predictable architectures. However, multi-core processors constitute
complex and unpredictable architectures. They cause additional interference and
communication delays between the different tasks executed on different cores,
which introduces an important variability on the execution times of tasks [8].
This variability results from the gap between the average and the worst-case
execution time.

In general, schedulability analysis deployed for hard real-time systems are based
on the study of worst-case scenarios. Hence, they tend to reject the schedulability
of tasks with a high variability in the execution time. Actually, such a system
is likely to violate timing constraints in the worst case even if it meets them in
most cases, which increases the pessimism of the analysis and induces an extra
cost for manufacturing and validating the system. For example, if a program
invokes an error recovery routine when errors occur, then it will have two values of
execution times: a high value when the recovery routine is triggered and a lower
value otherwise. A worst-case based reasoning considers only the high value of
the execution time. This leads to a pessimistic estimation of the actual response
time, especially if errors appear rarely (e.g. failure rate lower than 10−7 per hour
of operation) and the difference between the two execution time values is large.
Based on this analysis, additional computational resources are required in order
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to reduce the estimated response time and to pass the schedulability test. But in
most cases, this causes a poor utilization of the system resources.

Moreover, the over-sizing of the hardware resources affects not only their cost but
also other non-functional constraints like their power consumption, size, weight and
heat. These constraints are crucial for some embedded and real-time systems like
Unmanned Aerial Vehicles (UAVs) and Autonomous Underwater Vehicles (AUVs).
In order to reduce hardware over-sizing while ensuring timing requirements and other
non-functional constraints, our work is based on a recent schedulability approach
that takes into account the variability of timing parameters like the execution
and communication times. We represent these parameters by discrete probability
distributions with different possible values. The probabilistic analysis consists in
estimating a Deadline Miss Probability (DMP) for each task. If the execution times
have large values that are not frequent, then the DMP will not be significantly
increased. Hence, the system becomes schedulable with high confidence, i.e. low
DMP, instead of being evaluated as non feasible by the worst-case reasoning because
of the non frequent large values. We deduce that the probabilistic approach allows
us to reduce the pessimism of the schedulability analysis.

Probabilistic analysis is applicable on soft real-time systems to guarantee a
high quality of service when the DMP is small. It is also useful for industrial
systems following safety standards that require a low probability of failure, such
as IEC-61508 [9] and ISO-26262 [10]. Furthermore, we can extend this approach
to be applied to safety-critical fields such as avionics. Indeed, we note that the
mechanical components of an aircraft are designed with a given small failure
rate that must be respected (e.g. lower than 10−9 failure per hour of operation).
Similarly, software with a very low failure rate (i.e. DMP) could be reasonable
for such critical systems [11].

As mentioned previously, interference in multi-core processors increases the
variability of tasks’ execution times. Moreover, using global and dynamic priority
scheduling amplifies this phenomenon because of the continuous modifications of
the priority level and the executing core for each sub-task. Hence, the schedulability
analysis of hard real-time systems becomes overly pessimistic. However, applying
partitioned and fixed-priority scheduling reduces the interference and variability
due to their static execution behavior. In this sense, we believe that considering
partitioned and fixed-priority represents a more promising approach for hard real-
time systems scheduling of DAG tasks on multi-core processors.
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1.2 Problem Description and Objectives
In this thesis, we focus on the problem of hard real-time scheduling of DAG tasks
on identical multi-core processors using a partitioned, fixed-priority and preemptive
scheduling policy. We use DAG tasks to model programs with precedence constraints
(data dependencies) and parallel applications with intensive computations. Moreover,
we acknowledge the existence of possible communication delays between different
related sub-tasks. These delays are caused by data transfers or any other kind
of communications. We also recognize the variability of timing parameters like
execution times and communication delays. Therefore, we consider a task model
characterized by deterministic or even by probabilistic timing parameters.

There are two main research focuses in this thesis:

• the proposition of a safe and sufficient schedulability test that ensures meeting
the timing requirements with a high confidence level of schedulability for
systems with probabilistic parameters.

• the proposition of scheduling techniques that allow us to reduce the response
time and enhance the reactivity of the system.

By using these scheduling and schedulability techniques, we reduce the pessimism
and the resources over-sizing while satisfying timing requirements as well as non-
functional constraints like cost, power consumption, size and weight.

The work presented in this dissertation is partially funded by the FR FUI22
CEOS project1 that has ADCIS, RTaW, THALES, DGAC, EDF, ENEDIS and
Aéroport de Caen Carpiquet as partners. This project develops a reliable and
secure system for automatic inspections of equipment and infrastructure elements
using professional mini-drones.

1.3 Thesis Outline
The organization and contents of the chapters of this thesis are presented below.

• In Chapter 2, we present an overview of the state-of-the-art and recent research
on the scheduling and schedulability of real-time systems with deterministic
and probabilistic timing parameters. First, give definitions of main concepts
and terms related to real-time systems. Second, we describe different categories
of multi-core and multiprocessor scheduling. Third, we present scheduling

1https://www.ceos-systems.com

https://www.ceos-systems.com
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techniques for a parallel task model with precedence constraints. Finally,
we specify how probabilistic timing parameters, like execution time, are
deployed in real-time scheduling and how they are estimated. We also present
several schedulability results for a probabilistic task model for single core and
multi-core processors.

• In Chapter 3, we study the schedulability of a DAG task model with de-
terministic timing parameters using response time analysis. We consider a
partitioned, fixed-priority and preemptive scheduling policy on multi-core
processors. First, we extend existing response time equations for distributed
systems to deal with a DAG task model through three steps. For each step,
we provide theoretical proofs to guarantee the safety of our response time
estimation. Second, we provide two different methods to characterize worst-
case arrival patterns for higher priority tasks in order to reduce the pessimism
in the response time estimation.

• In Chapter 4, we tackle the DAG task model with probabilistic timing
parameters. We start by proposing a probabilistic maximum operator and
we extend the response time equations proposed in Chapter 3 to deal with
discrete probability distributions that represent timing parameters and we
estimate response time distributions. Then, we use a Bayesian network
to model the dependency between different random variables involved in
response time equations, which enables us to compute the actual response
time distributions. In the last section, we represent probabilistic timing
parameters and schedulability condition as regions in the C-space and we
combine the deterministic schedulability test (proposed in Chapter 3) and
a classification technique from machine learning domain (Support Vector
Machine) in order to estimate the schedulability probability.

• In Chapter 5, we provide scheduling techniques that reduce the response times
of DAG tasks scheduled with a partitioned, fixed-priority and preemptive
policy. In the first section, we provide several methods to define priorities
for a DAG task model at the task and at the sub-task levels. In the second
section, we propose a partitioning heuristic that assigns each sub-task to a
given core while balancing the load between cores. In the third section we
describe two graph reduction approaches that reduce the size of a DAG task
by merging some nodes together while preserving the original structure of
precedence constraints. The last section is dedicated to the presentation of an
integrated methodology of applying different scheduling techniques together
in order to reduce the response time and enhance the reactivity of the system.
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• In Chapter 6, we present the evaluation results of the different scheduling
and schedulability techniques proposed in this thesis. First, we apply these
techniques on randomly generated task sets with different parameters and
we compare these results with results obtained from simulating the task set
on a study interval equal to the hyperperiod. Second, we assess probabilistic
schedulability techniques on a real use case of a PX4 autopilot used for
controlling different types of UAVs and mobile robots.

• In Chapter 7, we summarize our contributions and we present future research
perspectives.
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In this chapter, we present related work with respect to the contribution of
this thesis. We start by defining terminology and main concepts used in real-time
domain. Then, we present the main existing results and categories of multi-
core scheduling problems. After that, we focus on scheduling techniques and
schedulability of dependent tasks with precedence constraints on both single core
and multi-core processors. We dedicate, also, a section to the presentation of existing
relevant work with respect to the probabilistic real-time analyses. We illustrate
some techniques of probabilistic timing analysis. We also differentiate between
probabilistic schedulability analyses on single core and multi-core processors.

7
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2.1 Real-time Domain and Terms Definitions
A real-time system is a reactive system that must respond to an external input or
event within a specified time constraint. The correctness of an output delivered by
such a system depends not only on the logical or functional correctness but also
on the time instant at which the output is produced, i.e. a correct calculation but
out of time is an invalid calculation. Real-time systems are present in many
applications nowadays such as transportation, industrial automation, medical
systems, multimedia, and communications. According to the criticality of timing
constraints and the usefulness of the results after the deadline (cf. Figure 2.1),
real-time systems can be classified as follows:

• Hard real-time systems: The usefulness of the results after the deadline
becomes negative or minus infinity according to the criticality of the system.
These system experience a failure after a deadline miss. For safety-critical
system, missing deadline can lead to a disastrous consequences like life loss
and huge economic damage. For instance, avionics, aerospace, nuclear plants
are safety-critical systems.

• Soft real-time systems: The usefulness of the results decreases after the
deadline but remains positive for a given interval of time. This decrease of
usefulness represents the tolerance for deadline misses. These systems do not
fail immediately after a deadline miss as hard real-time systems and they are
often related to a quality-of-service such as multimedia and telecommunication

• Firm real-time systems: The usefulness of the results after the deadline
becomes equal to 0. These systems are similar to soft real-time systems. They
do not fail after a deadline miss but they do not benefit from late delivery
of service. We cite financial forecast systems and robotic assembly lines as
examples.

2.1.1 Real-time Task Model

The most used task models in real-time system domain is the periodic task
model proposed by Liu and Layland [12] in 1973. This model defines a real-time
application as a set of n independent sequential tasks τ = {τ1, τ2, . . . , τn}. Each
task τi releases an infinite sequence of identical instances, which are called “jobs”.
τi is characterized by the following parameters:
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Figure 2.1: Usefulness of results in function of time for different real-time systems.

• Worst-Case Execution Time (WCET): Ci an upper bound of the time
required by a processor to execute a job of the task τi without interruption.

• Period: Ti the exact delay between consecutive jobs releases of the task τi.

• Relative deadline: Di the delay from the release of a job of the task τi

before which the job should finish its execution.

These parameters are illustrated in Figure 2.2

Figure 2.2: The parameters of the real-time task τi according to the periodic task
model [12].

According to the relation between the period and the deadline, a real-time
task τi is said to be:
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• Implicit deadline: if the deadline of τi is equal to its period (i.e. Di = Ti).

• Constrained deadline: if the deadline of τi is less than or equal to its period
(i.e. Di ≤ Ti).

• Arbitrary deadline: if the deadline of τi can be less, equal or greater than
its period (i.e. there are no constraints between Di and Ti).

Besides the periodic task model, there is the sporadic task model that is
similar the periodic one. The only difference is that the delay between consecutive
job releases of a task τi is greater than or equal to Ti and not exactly equal to Ti as for
periodic task model. In a such case, Ti is known as the minimum inter-arrival time.

A task set is referred to as synchronous or asynchronous based on the first
activation scenario of its tasks. A synchronous task set is defined as the task set
whose first job of its tasks are activated at the same time. While the first jobs of
an asynchronous task set are activated at different times.

The utilization factor Ui of a task τi is the fraction of the processor’s capacity
occupied by the jobs of τi. It is given as follows:

Ui = Ci
Ti

Similarly, the utilization of task set τ is defined as the sum of utilization of
its tasks, i.e. Usum =

n∑
i=1

Ui.
For a task τi, we also define the density δi with respect to its deadline as follows:

δi = Ci
min(Di, Ti)

.
For a constrained deadline task τi, we note that the density is equal to δi = Ci

Di
.

In the case of an implicit deadline task, the density and utilization are equal δi = Ui

since period and deadline are equal (Ti = Di).

2.1.2 Real-time Scheduling

The role of a real-time scheduler consists in selecting, from the set of active jobs,
the job to execute on each available core at each time instant. The strategy used
for selecting jobs and assigning cores is determined by a real-time scheduling
algorithm. This algorithm should take scheduling decisions that allow every
task in the system to respect their timing constraints. Real-time schedulers are
commonly divided in two categories:
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• Off-line schedulers: take scheduling decisions based on a scheduling table
pre-computed at the design time. In order to construct a scheduling table,
release times and deadlines of all tasks must be known a priori. An example
of systems using static scheduling tables are Time-Triggered systems. These
approaches make the scheduling completely deterministic and easier to certify.
However, off-line schedulers require to generate a new scheduling table after
each modification of the system. In addition, they do not deal with sporadic
arrivals.

• On-line schedulers: take scheduling decisions at the run-time according to
the scheduling algorithm used. Most of these algorithms are called priority-
driven because a priority level is defined for each job. These priorities are
updated at each invocation of the scheduler and the scheduling decisions are
taken to promote the execution of higher priority jobs and tasks. On-line
schedulers are used usually in dynamic et Event-Triggered systems such as
sporadic arrival where jobs may arrive at an unknown time.

Remark. In this thesis, we are interested in systems with an on-line scheduler that
executes the scheduling algorithm and makes the scheduling decisions at run-time,
which offers more flexibility and tolerance to dynamic behaviors and external events.

Priority-driven Scheduling

Furthermore, priority-driven scheduling algorithms can also be categorized according
to how the job priorities may vary over time as follows:

• Task-Level Fixed Priority: each task is assigned a fixed priority based
on its timing parameters. All jobs of the same task inherit the same fixed-
priority. Thus, the scheduling decisions are not affected by the elapsed time.
Examples of such algorithms is the Rate Monotonic [12] (RM) and the Deadline
Monotonic [13] (DM) scheduling algorithms.

• Job-Level Fixed Priority: each job is assigned a fixed priority, according
to its timing parameters at its activation. Hence, different jobs of the same
task may have different priorities. An example of this category is the Earliest
Deadline First (EDF) algorithm.

• Job-Level Dynamic Priority: each job is assigned a priority that may
change during its execution. An example of this category is the Least Laxity
First (LLF) scheduling algorithm.
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Preemptive/non-Preemptive Scheduling

Real-time scheduling algorithms are also classified based on the execution behavior
of high priority tasks with respect to lower priority tasks as follows:

• Preemptive scheduling: the execution of a running job can be interrupted
(preempted) by higher priority jobs. Its execution is resumed only after all
the active higher priority jobs are terminated or suspended.

• Non-preemptive scheduling: the execution of a running job cannot be
interrupted until its completion. The execution of a higher priority job may
be delayed by at most one lower priority job. This effect is known as blocking.

• Cooperative scheduling: the execution of a running job may only be
preempted at defined scheduling points within its execution. Effectively,
the execution of each job is composed of a series of preemptable and non-
preemptable sections.

Migration for Multi-core Scheduling

Multi-core scheduling algorithms are categorized according to when the change
of the core allocation for jobs can be made:

• No migration: Each task is allocated statically to a core and no migration
is permitted.

• Task-level migration: The jobs of the same task may execute on different
cores. However, each job can only execute or resume execution (after a
preemption) on the same core, on which it starts its execution.

• Job-level migration: A single job can execute or resume execution on
different cores. However, parallel execution of the same job on different cores
at the same time is not permitted.

Remark. No migration scheduling algorithm category is also known as Parti-
tioned scheduling. While, Global scheduling refers to permitted migration
categories whether on the task or job levels. Results regarding to these two categories
are presented in the next Section 2.2.
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A work-conserving scheduling algorithm is a scheduling algorithm that sched-
ules active jobs on available cores and does not delay them if there are any idle
cores. Partitioned scheduling algorithms are not work-conserving, because an active
job could be waiting for its assigned core to be free while other cores are idle
but cannot execute it.

A scheduling algorithm is said to be clairvoyant if it makes use of information
about future events that are not generally known until they happen, such as the
precise arrival times of sporadic tasks or actual execution times.

2.1.3 Real-time Schedulability Analysis

Before defining schedulability analysis, we should define some related terms and no-
tions:

A valid schedule for a task set τ is a schedule in which all jobs of each task
τi ∈ τ respect their deadlines.

A feasible task set τ is a task set for which a valid schedule could be found.
A task set τ is said to be schedulable by a scheduling algorithm A, if a

valid schedule could be found using algorithm A. In this case, we say that τ
is A-schedulable.

An scheduling algorithm A is said to be optimal if it succeed to find a valid
schedule for any feasible task set (i.e. any feasible task set is A-schedulable).

Comparing Scheduling Algorithms

The relations between two real-time scheduling algorithms A and B could be
determined as follows:

• Dominant: A is dominant compared to B, if all task sets that are B-
schedulable, are also A-schedulable and there is at least a task set that
is schedulable by A but not by B.

• Equivalent: A and B are equivalent, if all task sets that are schedulable by
one of the two algorithms are also schedulable by the other. This also means
that all task sets that are non-schedulable by one of the two algorithms are
also non-schedulable by the other.

• Incomparable: A and B are incomparable, if there are some task sets that
are schedulable by A but not by B. Meanwhile, it exists some task sets that
are schedulable by B but not by A.
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In order to compare the efficiency of scheduling algorithms and schedulability
analyses, performance metrics are used in literature [14]. Below, we recall some
of these metrics:

Definition 2.1. The utilization bound of a scheduling algorithm A, denoted
by UA, is defined as the greatest positive number such that: all task sets with
implicit deadlines that have a total utilization less than or equal to Usum ≤ UA, are
schedulable by the scheduling algorithm A.

For example, the utilization bound for RM scheduling [12] on a single core
processor is equal to n × (2 1

n − 1), where n is the number of tasks. This bound
converges to ln(2) ≈ 0.69 when n → ∞. This means that any periodic task set
with implicit deadlines that have a total utilization Usum ≤ 0.69 is schedulable
by RM on a single core processor.

Definition 2.2. The resource augmentation bound of a scheduling algorithm
A is defined as the minimum speedup factor b such that: if a task set τ is feasible
on m unit-speed cores (i.e. schedulable by an optimal scheduling algorithm), then τ
is schedulable by scheduling algorithm A on m cores that have a speed greater than
or equal to b.

Schedulability Analysis and Schedulability Test

Real-time scheduling algorithms are used to assign jobs to cores at each time
instant. In general, they cannot determine whether a task set is schedulable or
not. Therefore, schedulability analyses are defined and applied at design time
to determine if task set τ is schedulable or not by a given scheduling algorithm
A. A schedulability analysis corresponding to a scheduling algorithm A, could
be based on one of the following approaches:

• Analytical approach: it starts by identifying the worst-case scenario of
execution (i.e. critical instant) like synchronous arrivals for periodic task sets
with constrained deadlines. Then, it determines an analytical schedulability
test corresponding to the worst-case scenario identified. This analytical test
could be based on a threshold of the utilization factor or density, fixed point
of the demand bound function [15] or Response Time Analysis (RTA).

• Model-checking approach: it consists in enumerating all reachable states
by the system that is composed by the task set τ and the scheduling algorithm
A. Then, it analyzes each of these states [16]. This approach have a high
complexity and faces a combinatorial state explosion problem but it could be
scalable for some cases by using some specific techniques.
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• Simulation-based approach: it applies the corresponding scheduling algo-
rithm A on the task set τ in order to build the schedule over a study interval.
Then, it checks if all deadlines in this interval are met. In general, a task
set releases an infinite sequence of jobs, which means that the study interval
should be arbitrarily large to ensure schedulability of τ . However, the study
interval could be reduced in some cases while guaranteeing schedulability [17,
18]. For instance, the scheduling scheme of a synchronous and periodic task
set is repeated after each hyperperiod.

There are three types of schedulability test corresponding to a scheduling
algorithm A described as follows:

• Sufficient test: if the test is passed then the task set τ is schedulable by the
algorithm A. Otherwise, we cannot conclude: τ can be schedulable or not.

• Necessary test: if the test fails then the task set τ is non-schedulable by
the algorithm A. Otherwise, we cannot conclude: τ can be schedulable or
not.

• Exact test: it is both sufficient and necessary schedulability test. Hence, it
classifies correctly the task set as schedulable or not.

Remark. Often, identifying the exact worst-case scenario in order to derive
an analytical schedulability test is a difficult problem. Therefore, we add some
assumptions to simplify it, but this introduces some pessimism and makes the
schedulability test only sufficient and not exact.

Sustainability and Scheduling Anomalies

A Schedulability analysis allows to determine if a task set is schedulable with a
given algorithm. This analysis is done at the design time with theoretical timing
parameters such that the worst-case execution time and the minimum inter-arrival
time. However, in practice, a real-time system may have slightly different parameter
values because tasks do not always run for their whole WCETs and sporadic arrivals
occur at the maximum frequency rarely.

Therefore, we should ensure that the deployed system remains schedulable if
some parameter changes that reduce the workload happen. This property is known
as sustainability [19] and it is defined as follows:
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Definition 2.3. A scheduling algorithm is said to be sustainable if a schedulable
task set remains schedulable when some of its timing parameters are modified by
(i) decreasing execution times, (ii) increasing periods or inter-arrival times, and
(iii) increasing deadlines.

Similarly, a schedulability test is referred to as sustainable if these changes
cannot result in a non-schedulable task set that was previously deemed schedulable
by the test.

In case of non-sustainable scheduling algorithm, a scheduling anomaly occurs
when a modification of timing parameters (described above) results in a counter-
intuitive effect on schedulability.

2.2 Multi-core Scheduling
Due to an important number of cell phones sells, the silicon vendors have followed
this industry by dedicating their development effort to the proposition of multi-core
processors or boards. Indeed, after reaching the physical limitation of clock speed
due to power consumption and excessive heat dissipation, silicon vendors moved
to multi-core processors in order to increase processor performance. Multi-core
processors offer a speedup for executing programs by allowing parallel execution of
several programs at the same time. This speedup is highly needed in the design of
many embedded systems like cell phone industry as it ensures an improved average
execution time. However, taking advantage of these performances makes more
difficult the worst-case execution time problem by increasing the variability of the
execution times. Moreover, more cores requires more complex scheduling algorithms
and associated schedulability analyses. Indeed, for a multi-core processor, the
scheduling problem consists not only on choosing which task to execute at any given
point in time, but also on which core to execute it. Last, but not least, the real-time
designers still face difficult problems left open from the single core processors case
like taking into account hardware accelerators like pipelines or branch predictors.

Since we present results on homogeneous cores, we restrict our presentation of
state of the art to this category of cores. An interested reader may find similar
state of the art results for heterogeneous and uniform cores in [14]. We understand
here by homogeneous cores, cores that are identical, thus they execute the tasks
according to the same rate of execution. The heterogeneous cores are all different,
the rate of executing a task is defined for each pair (task, core). The uniform cores
have their rate of execution defined with respect to a speed of the core.
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Regarding the mapping between tasks and cores, two main categories of schedul-
ing algorithms [20] are defined: the global scheduling and partitioned scheduling
policies. A global scheduling policy allows jobs of any task to be scheduled on any
core and they may migrate from one core to another core during their execution, if
the scheduling policy is preemptive. A partitioned scheduling policy imposes to a
task to have all its jobs scheduled on the same core. A third category known as
hybrid scheduling integrates properties from both global and partitioned categories.

2.2.1 Global Scheduling
Multi-core processors real-time scheduling theory has it origins in the late 1960’s and
early 1970’s. The seminal paper describing the Dhall effect [21] has an important
impact on the research on global scheduling policies during the 1980’s and 1990’s, as
the migration is suffering from such effect. Finally, in 1997, the Dhall effect is proved
to be associated to a problem of heavy tasks (important utilization of a core), more
than to the migration problem and the real-time community has a regain of interest
for the global scheduling policies [22]. This regain allows the appearance of a new
thread of results with respect to the optimality of global scheduling algorithms like
[23] where Fisher et al. prove that there is no optimal online algorithm for sporadic
tasks with constrained or arbitrary deadlines, by showing that such an algorithm
would require clairvoyance (i.e. information about future events). Nevertheless,
optimal algorithms are proposed. For instance, the Proportionate Fair algorithm
allows to each task to execute proportionally to its utilization and this algorithm is
proved optimal for periodic tasks with implicit deadlines on identical cores. Different
versions of the Proportionate Fair algorithm have been proposed in order to improve
its limitations like ERFair which is a work conserving version [24].

Another class of global scheduling policies is related to the introduction of the
LLREF algorithm, which is proved optimal for periodic tasks with implicit deadlines
on identical cores [25]. The timeline of a schedule is divided in sections and a task is
allowed to execute based on the largest local remaining execution time first choice.
One noticeable improvement is done for the LRE-TL algorithm that is proved
optimal for sporadic tasks with implicit deadlines [26].

Another optimal multiprocessor real-time scheduling algorithm is RUN and it
is the first algorithm achieving such optimality without using a fairness or fluid
scheduling principle [27], but a dualization technique to transform the multi-core
problem in a set of single core problems.

The algorithms presented previously belong to the larger class of job-level priority
assignment algorithms. The task-level priority assignment algorithms are, also, well
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studied by the real-time community in the context of multi-core processors. Their
main detected limitation is presented within the Dhall effect with respect to the
lack of the optimality of Rate Monotonic. Answers to these limitation appear as
soon as 2001 by showing that any set of implicit deadlines periodic tasks can be
scheduled using global RM scheduling if maxi(Ui) ≤ m

3m−2 and Usum ≤ m2

3m−1 [28],
where m is here the number of cores. This condition is improved by showing that
the algorithm RM −US[0.375] has 0.375 as maximum utilization bound [29]. More
general utilization bounds are later provided by [30].

2.2.2 Partitioned Scheduling
The partitioned scheduling has the main advantage of breaking the scheduling
problem into m single core scheduling problems if we consider m identical cores.
Most of the time, bin packing techniques, e.g., First-Fit, Best-Fit or Next-Fit, are
combined with scheduling algorithms like Rate Monotonic, Deadline Monotonic
or EDF that have remarkable optimality properties for given single core processor
scheduling problems.

We present here partially the table presented in [14] to underline the ad-
vantages and disadvantages of combining such approaches by comparing their
approximation ratio.

Algorithm Approximation Ratio
RMBF 2.33
RMFF 2.33

RRM-FF 2
EDF-FF 1.7
EDF-FF 1.7

Table 2.1: Comparison of approximation ratio when algorithms like RM or EDF are
combined with FF or BF techniques

The main disadvantage of partitioned scheduling consists in the NP-hardness
of deciding the optimal number of cores for a set of tasks. utilization bounds are
used to overcome this limitation. For instance, the largest worst-case utilization
bound for any partitioning algorithm on a set of periodic implicit deadline tasks
is equal UOPT = m+1

2 [28], that is later improved by splitting the tasks in two sets
according to their utilization that is larger or smaller than 1

3 [31]. In [23], more
general results on partitioned task-level priority assignment policies are provided
for constrained and arbitrary deadline periodic tasks.

We present the existing results on the partitioned scheduling of tasks with
precedence constraints is Section 2.3.2 that is dedicated to the scheduling of
dependent tasks.
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2.2.3 Hybrid Scheduling

Hybrid approaches are proposed, recently, to overcome the disadvantages of global
and partitioned scheduling algorithms or to answer specific hardware constraints.

Two main classes of algorithms are considered as hybrid: the semi-partitioned
approaches and the clustering approaches.

Within the semi-partitioned scheduling algorithms, a limited set of tasks is
allowed to migrate while the others are fixed to a core. The most known semi-
partitioned scheduling algorithms are EKG [32] with a known utilization bound,
EDDP [33], DM-PM [34] and PDMS_HPTS [35]. These algorithms are, mainly
proposed by two research groups, indicating limited interest of the community
for such approaches.

Within the clustering scheduling algorithms, the cores are grouped in clusters,
most of the time those that are the fastest belong to the same cluster. These
algorithms have been recently proposed in our community since 2008 by the
authors of [36, 37].

2.3 Scheduling of Tasks with Precedence Con-
straints

2.3.1 Single Core Scheduling

Originally proposed within the operations research community, the scheduling
problem of tasks with precedence constraints is considered while a maximum
lateness is minimized and the first-to-last-rule is proved optimal [38]. Moreover for
the preemptive case Blazewicz gives a polynomial solution [39]. Nevertheless the
equivalent real-time problem with different periods and deadlines is a harder problem.
For the problem of scheduling dependent periodic tasks on single core processors,
Harbour et al. consider a solution based on a definition of a canonical form for the
tasks composed of sub-tasks sharing the dependencies [40]. In [41] authors present
a first seminal result that is extending a previous paper from the same authors
[42] to solve the scheduling problem of sporadic tasks with precedence constraints
defined by a direct acyclic graph (DAG). The general idea is the modification of
the temporal parameters to ensure the respect of the precedence constraints.

Richard et al.[43] analyze the scheduling problem of graph tasks on single core
processor systems where each task consists of a set of dependent fixed-priority
sub-tasks with precedence constraints. In order to remove the parallelism within
sub-tasks, the authors provided a graph- to-chain transformation that is proved
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not to impact the schedulability of the system. Cucu et Sorel consider the non-
preemptive version of the same problem as [43] while the schedulability is proved
by proving the existence of schedulability intervals [44].

Recently, Stigge et al. [45] consider releases of jobs described by directed
graphs and the authors prove that the feasibility problem is decidable in pseudo-
polynomial time.

2.3.2 Multi-core scheduling
The scheduling and schedulability problem of real-time systems on multicore proces-
sors have been extensively studied [14] after the widespread of these architectures.
Besides of sequential task models, the problem of scheduling parallel tasks has been
tackled in the literature using different task models.

The fork-join model represents a task as an alternating sequence of sequential and
parallel segments. The number of sub-tasks in parallel segments should be the same
on all segments and it should not exceed the number of processors. Lakshmanan et
al. [46] have proposed a stretch transformation for the fork-join model to execute
the parallel segments as sequential when possible.

The synchronous parallel model is considered in [47]. In the latter work, authors
present a task decomposition algorithm that transforms implicit deadline tasks
into constrained deadline tasks. They also provide a resource augmentation bound
for G-EDF and partitioned DM scheduling. This model removes some restrictions
of the fork-join model. It allows different numbers of sub-tasks in each segment
and these numbers could be greater than the number of processors. However, the
synchronization is still required after each parallel segment.

In addition, partitioned scheduling of dependent tasks is studied in the context of
distributed systems. Tindell and Clark [48] propose an end-to-end RTA (also known
as holistic schedulability analysis) of several independent tasks each composed of a
chain of sub-tasks instead of a DAG. This holistic approach was refined later by
Palencia et al. [1]. It is used in the MAST tool [49] to analyze multi-path end-to-end
flows. This approach is pessimistic since it assumes that higher-priority tasks are
always released at each activation of a sub-task from the chain.

A more general parallel task structure is the DAG task model where each
task is represented by a direct acyclic graph. Nodes refer to sub-tasks while
edges describe precedence between them. A sub-task becomes ready for execution
after the satisfaction of all its precedence constraints. This model was studied
in the case of global scheduling [50–53]. Indeed, Qamhieh et al. [51] study the
schedulability of DAG task model on multiprocessor platform using global EDF



2. State Of The Art 21

scheduling. They propose to modify the release time and deadline of each sub-task
in order to estimate more accurately the workload of a given job. Then, they use
the schedulability test proposed in [54]. Fonseca et al. [52] estimate the response
time of sporadic DAG tasks under global and fixed-priority scheduling. They use
nested fork-join structured DAGs to propose both accurate and efficient solution.
In addition, He et al. [53] study the global scheduling of multiple DAG tasks on
multi-core processors. They also define sub-tasks execution order inside the same
graph to reduce the response time.

DAG task model is also explored under partitioned scheduling system. Fonseca
et al. [55] study the response time for sub-tasks scheduled on identical processors
according to a partitioned policy. They use self-suspending task [56] to model a
DAG task. Then, they estimate the response time of each task by resolving a
Mixed Integer Linear Problem (MILP) problem. This approach provides a good
estimation of response time compared to existing works but it is not scalable for a
relatively large number of tasks because of the complexity of the MILP to solve.
Casini et al. [57] focus their work on partitioned, fixed-priority and non-preemptive
scheduling of parallel tasks. They propose an approach similar to [55] based on
response time analysis of self-suspending tasks [56].

Rihani et al. [58] also study partitioned DAG scheduling on multi-core processors.
They suggest to operate offline on a single DAG of multi-rate tasks to generate
scheduling table. They also propose to extend their approach to multiple DAG
with different period each by unfolding the execution to the hyper-period (the least
common multiple of the tasks’ periods) which makes the analysis more complex
Indeed, the hyperperiod could be potentially large which may explode the number
of nodes and increase the complexity. Recently, in [59] the scheduling problem of
DAG tasks is formulated as an Integer Linear Program (ILP), when the processor
assignments are specified. Hence, an optimal scheduling could be found but it
solving a such problem remains NP-hard [60] with high complexity.

2.4 Probabilistic Scheduling
2.4.1 Estimation of Probabilistic Real-time Parameters
The estimation of distributions of probabilistic parameters (pWCET, pWCCT) is
tackled in the literature using different techniques. These techniques are divided
mainly into two categories; Static Probabilistic Timing Analysis (SPTA) and
Measurement-Based Probabilistic Timing Analysis (MBPTA).
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Static Probabilistic Timing Analysis (SPTA): In order to build an upper
bound of the pWCET distribution of a program, SPTA methods do not execute the
program on the target hardware. In fact, they analyze the code and information
about input values, along with an abstract model of the hardware behavior. First,
they derive information about feasible paths and loop bound by analyzing the code
and possible input values. Then, they upper bound the execution time distribution
for every path by considering the behavior of hardware features such as pipelines
and caches. Finally, they combine these execution time distributions to derive an
upper bound on the pWCET distribution of the entire program.

SPTA methods do not explore explicitly different valid scenarios of operation
(sequence of input states and hardware states), instead they consider that any
scenario could occur. Hence, they yield a valid upper bound on the pWCET
distribution for a future scenario of operation. However, this upper bound is
obtained after several over-approximations of dynamic behaviors of the program
that cannot be precisely determined due to issues of tractability (e.g. cache states in
a random replacement cache). Consequently, the estimated pWCET may introduce
a significant pessimism.

Measurement-Based Probabilistic Timing Analysis (MBPTA): On the
other hand, MBPTA methods execute the program multiple times, on the target
hardware, according to several scenarios of operation (i.e. according to a set of
feasible input states and initial hardware states) and they measure its execution
times under each of these scenarios. Then, they use Extreme Value Theory (EVT) to
make a statistical estimate of the pWCET distribution of the program by evaluating
the extreme value distribution of measured execution times (samples).

In the literature, there are two main methods to estimate the extreme value
distribution [61, 62]; The Block Maxima method is based on the Fisher-Tippett-
Gnedenko theorem. It splits samples into blocks and selects the maximum value
inside each block. These values are used to fit a Generalized Extreme Value
(GEV) distribution that estimates the pWCET of the program. Alternatively, the
Peaks-over-Threshold (PoT) method, which is based on Pickands-Balkema-de Haan
theorem, selects values that exceed a suitable threshold. Then, using these values,
it fits a Generalized Pareto Distribution (GPD) that estimates the pWCET.

We note that MBPTA methods have lower complexity than SPTA ones when
computing an estimate of pWCET since they do not consider all possible paths of the
program and all possible inputs and hardware states. However, to guarantee a valid
pWCET estimate by MBPTA methods, the chosen scenarios of operation, when
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measuring execution time, must be representative of those that will occur during
the lifetime of the system. Otherwise, the derived pWCET could under-estimate
the actual one and then it could be not a safe upper bound.

Hybrid Probabilistic Timing Analysis (HyPTA): According to the criti-
cality of the application and the available means, one of these two presented methods
or both (SPTA and MBPTA) are used to estimate the pWCET. Another category
of techniques, called Hybrid Probabilistic Timing Analysis (HyPTA), are used to
estimate pWCET. This category combines elements of both static and measurement-
based analyses. It may take measurements at the level of sub-paths and then it
uses pWCETs of different sub-paths to derive the pWCET of the program by using
structural information obtained from static analysis of the code.

Similarly to pWCET estimation, MBPTA techniques are used to estimate the
pWCCT distribution of communication time between two programs (sub-tasks). In
addition, a similar approach to static analysis is used to estimate communication
time via the LIN protocol between ECUs on a vehicle in the work of Byhlin et al. [63].

In [64], the authors statistically estimate the WCET regarding to a given
confidence level. This estimate assumes that the collected traces of execution time
are independent and it uses the extreme values theory (EVT) in order to approach the
distribution of the execution times measured by the Gumbel distribution [65]. The
conditioning of this probability by a threshold gives the distribution of WCET. From
this distribution, the authors manage to give the level of confidence for each estimate.
In addition, they try to determine the WCET estimate at a given confidence level
and answer the question if the system is schedulable at that level of confidence.

Other improvements are proposed later, as in [66] which pre-process the collected
data, by maximizing the blocks, before applying EVT. Other works have used EVT
theory with some improvement on this problem [67–69].

An other approach used for estimating the probabilistic WCET by composition
is presented by Bernat et al. in [3]. They use copulas to describe dependencies
between different random variables representing WCET of different program. Then
they use copulas to compose these programs and compute the overall pWCET
and compare it to convolution results.
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2.4.2 Single core scheduling
The real-time queueing theory: In [70], Lehoczky presents an analysis based
on queueing theory. This analysis operates on tasks with an arrival that follows
a Poisson distribution of parameter λ and an execution time that follows an
exponential law of means 1/µ. Actually, these hypotheses are restrictive, but at
this time, the paper was one of the first that propose an analysis for a system with
probabilistic arrivals and execution times. The author tries to characterize the
remaining margin (lead-time) for each task. The problem has a theoretical solution
in the case of dense arrivals. This estimate follows the same shape of the empirical
distribution of the margin in different cases but it presents a significant difference.

Probabilistic guarantee of schedulability: In the work of Tia and others
[71], a performance analysis for a set of semi-periodic tasks is proposed. This
model describes tasks with a periodic arrivals but with a variable execution time
described by a probability distribution. This analysis provides a probabilistic
guarantee by two methods.

The first method is called Probabilistic time demand analysis (PTDA) and
it calculates the probability of meeting the deadline by any instance of a Ti task.
This method is based on the classical demand time analysis and it finds a bound on
the computation time required by the task Ti and all higher priority tasks. Then,
authors estimate the probability that the bound at time t is less than t before the
deadline Di. This probability is derived from the Cumulative Distribution Function
(CDF) of the studied bound. Thus, an algorithm is implemented to determine this
distribution. Indeed, the algorithm proceeds with a convolution if the number of
execution time distributions to sum is less than 10. Otherwise, it uses the central
limit theorem to estimate the sum of the probabilistic execution times.

The second method consists on transforming semi-periodic tasks into periodic
tasks with constant execution times and sporadic tasks with the remaining execution
time (if any). Then, two scheduling approaches are used. The first is to schedule
the periodic tasks by the algorithm RM [12] while the other tasks are scheduled
by a sporadic server. An analytic calculation, based on generating functions, is
used to evaluate the probability that a sporadic task misses its deadline.

The second approach schedules the periodic tasks by EDF algorithm [12] while
the sporadic tasks are scheduled by the Slack Stealing [72] algorithm. This
approach is similar to the one used by Chetto and Chetto [42] to schedule periodic
tasks with sporadic others by EDF. However, this approach has a linear complexity
compared to a polynomial complexity for the solution proposed in [42].
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The PTDA analysis proposed in this paper is based on the calculation of a
bound of the required computation time, so it is more pessimistic than other recent
works. One of these works is Diaz work [73] which is discussed later in this section.

Probabilistic execution time: In the paper [73], the authors propose an
analysis to calculate the distribution of response time for a system of tasks with a
probabilistic execution time. The scheduling used may have a fixed-priority at the
task level (like Rate Monotic - RM) or at the job level (like EDF).

First, the authors try evaluate the cost of interruptions using several operations
such as convolution, shrink and split. Thus, they evaluate the response time by
assuming that the initial backlog of each hyper-period is known.

Second, the authors show that the distribution of the initial backlog follows a
Markov chain that is stable when the average utilization rate is less than 1 and
even if the maximum utilization exceeds 1. Although the size of Markov transition
matrix is infinite, it has a repeating structure. Subsequently, an exact solution is
proposed. This solution is expensive in terms of computation, so the authors propose
approximations based on iterative calculus or matrix truncation. Finally, they show
that the approximate solution to a reasonable order is very close to the exact solution.

Probabilistic inter-arrival time and execution time: In the same context,
Maxim and Cucu [74] propose a method for calculating response time for probabilistic
real-time systems with fixed-priorities. The used model allows tasks to have
probabilistic minimum inter-arrival time and execution time. This analysis is
based on the convolution and coalescence operations. In addition, authors propose
a technique to improve the performance of their analysis. Indeed, after some
iterations of the algorithm the size of the distributions explodes because of the
successive convolutions. Thus, a resampling technique is proposed to reduce the size
of distributions while keeping the distribution shape very close to the original one.

The proposed response time calculation method can be used to construct an
optimal fixed-priority probabilistic scheduling algorithm. Indeed, by using the
principle of Audsley [75, 76] and this analysis one can assign priorities to these
tasks in an optimal way. That means, if the system is feasible then it will meet its
deadlines if it is ordered according to these assigned priorities. But this approach
is still expensive in terms of computation despite the improvements made by the
resampling technique.

Probabilistic execution time with precedence constraints: In [77] we
consider multiple values for execution times through probabilistic descriptions and
it is dedicated to uniprocessor EDF schedulability of DAGs.
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2.4.3 Multi-core scheduling

Probabilistic execution time with precedence constraints: had two main
periods of development. The first one is related to the early 2000’s regain of interest
for probabilistic and statistical approaches, answering an increased pressure from
the industrial partners to propose more complex models. During this period, one
thread of results is dedicated to the scheduling analysis of DAG task models [78,
79], where a stochastic modelling for the execution times is proposed.

This thesis belongs to the second period started after 2010. Federated scheduling
for DAG task model with probabilistic execution time [80] is another such recent
work. The difficulties in advancing towards a more general solution does not come
from a lack of interest from the real-time community. The difficulties are explained
by the fact that the DAG task model is placing the scheduling closer to the modeling
stage within the design of a real-time system, while expressing an increased need
of describing the functional constraints between tasks.
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3.1 Task Model
We consider a real-time system of n sporadic tasks scheduled according to a
partitioned, fixed-priority and preemptive scheduling policy on m identical cores.
We denote by τ the set of n tasks τ1, τ2, . . . , τn and by π the processor that has m
identical and unit-speed cores π1, π2, . . . , πm. Each task τi is specified by a 3-tuple
(Gi, Di, Ti), where Gi is a directed acyclic graph (DAG) describing the internal
structure of τi, Di is its deadline and Ti the minimum inter-arrival time between
two consecutive arrivals. The task τi is releasing an infinite sequence of “jobs”
separated by at least Ti time units. In the real-time literature these jobs are also
known as instances and in the remainder of this thesis we use the term “jobs” to
refer to instances. Every job released by τi must complete its execution before Di

time units from its release time otherwise we assume that the job is dropped. In
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the real-time literature, authors may also consider that these jobs are kept and a
backlog is calculated. In this thesis we consider that all jobs that miss their deadline
are dropped, thus, there is no backlog accumulation. We consider also constrained
deadline tasks (i.e. Di ≤ Ti, ∀i ∈ {1, 2, . . . , n}). Thus, any two jobs of the same
task cannot be executed at the same time on different cores.

For a task τi, the associated DAGGi is defined by (Vi, Ei), where Vi = {τi,j}1≤j≤ni

is a set of ni sub-tasks (vertices) of τi. Each sub-task τi,j ∈ Vi represents a
computational unit that must be executed sequentially. Ei ⊆ (Vi × Vi) is the
set of the precedence constraints (edges) between the sub-tasks. These sub-tasks
could be executed concurrently if they are not related by precedence constraints.
However, each sub-task represents a computational unit that must be executed
sequentially. A sub-task τi,j is characterized by (Ci,j, Di, Ti), where Ci,j is its Worst-
Case Execution Time (WCET), while Di and Ti are respectively the deadline and
minimum inter-arrival time of τi,j, which are the same as for the DAG task τi.

τ1,1 τ1,2 τ2,1

τ2,2

τ2,3

τ2,4

τ2,5

τ2,6

π1

π2

e1(1, 2)

e2(1, 2)

e2(1, 3)

e2(1, 5)

e2(2, 4)

e2(3, 4) e2(4, 5)

e2(5, 6)

Figure 3.1: Example of DAG tasks describing partitioning and precedence constraints
between sub-tasks.

Each sub-task τi,j is assigned to only one core and all jobs of that sub-task are
scheduled on the same core denoted π(τi,j). For instance, in Figure 3.1, the sub-tasks
colored in the same color are scheduled on the same core. Thus, τ1,1, τ2,1, τ2,2 and
τ2,5 are scheduled on core π1, while the other sub-tasks are scheduled on core π2.

For a task τp with a higher priority than a task τi, all sub-tasks from τp have
a higher priority than all sub-tasks of τi. For the sake of simplicity, if p < i, then
τp has a higher priority than τi. We denote by hep(τi,j) the set of sub-tasks τp,q
belonging to other DAGs with higher or equal priority to τi. More formally, we have
hep(τi,j) = {τp,q ∈ Vp | ∀p < i, ∀q ∈ {1, 2, . . . , np}}. For instance, in Figure 3.1,
hep(τ2,3) = {τ1,1, τ1,2}. For sub-tasks belonging to the same DAG as sub-task τi,j,
we consider that they could all have the same priority or each has an individual
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priority. Thus, we also define hepi(τi,j) as the set of sub-tasks τi,k belonging to
DAG task τi and that have higher or equal priority to τi,j.

Each directed edge (τi,k, τi,j) ∈ Ei denotes a precedence constraint between
sub-tasks τi,k and τi,j, meaning that sub-task τi,j cannot start executing until sub-
task τi,k has completed its execution. In this case, τi,j is called a “successor” of
τi,k, whereas τi,k is called a “predecessor” of τi,j. Since a sub-task τi,j could have
multiple predecessors and successors, τi,j is said to be “active” if and only if all
its predecessors have finished their execution. We call a sub-task without any
predecessors or successors, respectively, “source” or “sink” sub-task. A direct acyclic
graph could have multiple source and sink sub-tasks. For the sake of simplicity,
when computing the response time of the whole DAG, we assume that it has a
single sink sub-task. Whenever this assumption does not hold, we add an extra
sink sub-task, with an execution time equal to zero, that gathers all sink sub-tasks.

Remark. We distinguish between “release” and “activation” of a sub-task. When a
DAG task is released all its sub-tasks are also released but they are not activated
unless all their predecessors have finished their executions.

Definition 3.1. We denote the set of the immediate successors of sub-task τi,j
by isucc(τi,j) = {τi,k | ∃ (τi,j, τi,k) ∈ Ei}. We also denote the set of the sub-tasks
reachable from τi,j by directed paths:

succ(τi,j) = {τi,k | ∃ at least one path from τi,j to τi,k}

We also define succ∗(τi,j) as the set of all successors of sub-task τi,j including
itself, i.e. succ∗(τi,j) = succ(τi,j) ∪ {τi,j}. We note that isucc(τi,j) ⊆ succ(τi,j) ⊂
succ∗(τi,j).

Similarly, we denote the set of immediate predecessors of sub-task τi,j by
ipred(τi,j) = {τi,k | ∃(τi,k, τi,j) ∈ Ei}. The set of all predecessors of τi,j is pred(τi,j) =
{τi,k | τi,j ∈ succ(τi,k)}. We also define pred?(τi,j) = pred(τi,j) ∪ {τi,j} and we note
that ipred(τi,j) ⊆ pred(τi,j) ⊂ pred?(τi,j). For instance, in Figure 3.1, immediate
predecessors of τ2,4 are ipred(τ2,4) = {τ2,2, τ2,3} while pred(τ2,4) = {τ2,1, τ2,2, τ2,3}
and pred?(τ1,4) = {τ2,1, τ2,2, τ2,3, τ2,4}.

Definition 3.2. If two sub-tasks in the same graph are not reachable one from the
other, they are called independent and they may be executed concurrently whenever
they are mapped to different cores. We denote by parallel(τi,j) the set of sub-tasks
independent of sub-task τi,j. More precisely,

parallel(τi,j) = {τi,k | τi,k /∈ pred?(τi,j) ∪ succ∗(τi,j)}
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For example, in Figure 3.1, sub-tasks τ2,4 and τ2,5 are parallel and they could be
executed concurrently since they are assigned to two different cores. We note that
parallel(τ2,5) = {τ2,2, τ2,3, τ2,4} but τ2,2 and τ2,5 cannot be executed concurrently
because they are mapped to the same core.

A weight ei(k, j) is associated to each precedence constraint (τi,k, τi,j) ∈ Ei,∀i ∈
{1, 2, . . . , n}. This weight accounts for communication costs between τi,k and τi,j and
it is described by a Worst-Case Communication Time (WCCT). The communication
cost is included in the RTA when the sub-tasks are mapped to different cores
(π(τi,k) 6= π(τi,j)). Otherwise, if sub-tasks run on the same core, we assume that the
communication delay is reduced and it is included in the WCET of each sub-task.
Thus, the communication cost becomes equal to zero. For instance, in Figure 3.1,
the communication cost e2(3, 4) = 0 because it relates sub-tasks τ2,3 and τ2,4 that are
mapped to the same core, while e2(1, 3) ≥ 0 since τ2,1 and τ2,3 run on different cores.

3.2 Deterministic Response Time Analysis
In this section, we propose a response time analysis of the DAG task model
defined previously. Our RTA reduces pessimism when estimating Worst-Case
Response Time (WCRT) without increasing computational complexity. Indeed,
Palencia et al. [1] use fixed point equations to derive an estimation of WCRT.
These equations are based on a pessimistic assumption about worst-case arrival
patterns that simplifies the analysis but causes an over-estimation of WCRT. On
the other hand, Fonseca et al. [55] propose a response time analysis based on solving
a MILP optimization problem. Their solution outperforms the work of Palencia
et al. [1] and it reduces pessimism in the WCRT estimate. However, it increases
the computational complexity and the run-time.

Our proposed response time analysis is based on iterative equations that reduce
pessimism compared to Palencia et al. [1]. They reduce also the complexity of the
method compared to Fonseca et al. work [55]. In order to present our response
time equations, we start by explaining the equations proposed by Palencia et al.
in [1]. Then, we describe how we derive our analysis by modifying these equations.

3.2.1 Holistic analysis for sub-task chains on distributed
systems

Palencia et al. [1] compute an upper-bound on the response time of a chain of
sub-tasks executed on a distributed system (several processors). They proceed
sub-task by sub-task from the beginning of the chain. First, they compute the
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local response time, denoted wi,j, of the studied sub-task τi,j when executed on its
processor with all higher priority sub-tasks. They assume that these higher priority
sub-tasks are activated synchronously with τi,j (at the critical instant). Then, they
add to the local response wi,j, the global response time of the predecessor sub-task
of τi,j and the communication delay between the two sub-tasks in order to obtain
the global response time Rglobal

i,j of sub-task τi,j.
In Equation 3.1, we compute recursively the local response time. It updates

monotonically wi,j until reaching a fixed point. This equation is guaranteed to
converge if the total utilization of the task set is less than system resources (U ≤ m).

w
(n+1)
i,j = Ci,j +

∑
τp,q∈hep(τi,j)
π(τp,q)=π(τi,j)

Jp,q + w
(n)
i,j

Tp

Cp,q (3.1)

We denote by Jp,q the release jitter of sub-task τp,q in the sub-task chain (task) τp.
This jitter represents the variation of the release time of τp,q caused by the variation
of response time of the predecessor of sub-task τp,q. Thus, the jitter is equal to the
difference between the worst-case and the best-case global response times of the
predecessor sub-task. We assume that the best-case response time is equal to zero
because it could be arbitrarily small when predecessor sub-tasks do not execute for
their entire budget (WCET). Then, we consider that the release jitter is equal to the
sum of the worst-case global response time of the predecessor and the communication
time between the studied sub-task and its predecessor (see Equation 3.2).

Ji,j =
{

0 if ipred(τi,j) = ∅
Rglobal
i,k + ei(k, j) otherwise (ipred(τi,j) = τi,k)

(3.2)

We note that the jitter of the first sub-task (source sub-task) in a sub-task
chain is equal to zero because it has no predecessor and no variation in release
time. We also notice that a sub-task τi,j in the chain has only one immediate
predecessor ipred(τi,j) if it is not a source sub-task.

Remark. The task model studied by Palencia et al. [1] assumes that individual
priority is defined for each sub-task in the same sub-task chain. Nevertheless, we
could still use such an analysis on our task model by assigning the same priority to
all sub-tasks in the same task.

The global response time of sub-task τi,j (Equation 3.3) is the sum of its worst-
case release time and its local response time wi,j (Equation 3.1). The worst-case



32 3.2. Deterministic Response Time Analysis

release time of sub-task τi,j is equal to the response time of the predecessor sub-task
(τi,k = ipred(τi,j)) with the communication delay ei(k, j).

Rglobal
i,j = Rglobal

i,k + ei(k, j) + wi,j (3.3)

The global response time of a task τi is equal to the global response time of
the last sub-task in the chain (the sink sub-task):

Rglobal
i = Rglobal

i,sink (3.4)

Example 3.1. Through the following task set example (Figure 3.2 and Table 3.1),
we explain the importance of including the jitter of preempting sub-tasks in the
local response time wi,j. If we remove jitter term Jp,q from local response time
(Equation 3.1) it becomes equal to w′i,j (Equation 3.5):

w′i,j = Ci,j +
∑

τp,q∈hep(τi,j)
π(τp,q)=π(τi,j)

⌈
w′i,j
Tp

⌉
Cp,q (3.5)

τ1,1 τ2,2

τ2,1 τ3,1

CPU 1 CPU 2

e2(1, 2)

Figure 3.2: Example of a sub-task chains model scheduled on distributed systems and
illustrating the importance of jitter

Table 3.1: Parameters of task set example in Figure 3.2

Sub-task Ci,j Ti Priority
τ1,1 5 10 high
τ2,1 1 15 medium
τ2,2 7 15 medium
τ3,1 4 19 low

e2(1, 2) 1 − −

In Table 3.2, we present the evaluation of the local response time using two
formulations, one with the jitter and a second one without the jitter (Equations 3.1
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Table 3.2: Evaluating local and global response time of the task set example in Figure 3.2

Sub-task w′i,j R′ global
i,j Ji,j wi,j Rglobal

i,j
τ1,1 5 5 0 5 5
τ2,1 6 6 0 6 6
τ2,2 7 14 7 7 14
τ3,1 11 11 0 18 18

and 3.5 respectively). We also compute the global response times Rglobal
i,j and R′ globali,j

corresponding to each local response time (wi,j and w′i,j).
We note that the global response time including the jitter Rglobal

3,1 is larger than
the one that does not include it R′ global3,1 for sub-task τ3,1 because its preempting
sub-task τ2,2 has non-zero jitter (J2,2 = 7). In contrast, global response times are
equal for other sub-tasks because their preempting sub-tasks have zero jitter. We
note also, for sub-task τ3,1, that the local response time is equal to its corresponding
global response time because it has no predecessor and no release jitter (J3,1 = 0).

From the scheduling graph in Figure 3.3, we note that the actual response time of
the third activation of sub-task τ3,1 is equal to Rglobal

3,1 = 55− 38 = 17. Unexpectedly,
it exceeds the calculated upper bound of the global response time without including
jitter R′ global3,1 = w′3,1 = 11 (Table 3.2). Indeed, τ3,1 could be preempted by sub-task
τ2,2 since it has higher priority and is executed on the same processor. Besides,
τ2,2 could actually have two successive activations separated by 10 time units
(Figure 3.3) instead of 15 its minimum inter-arrival time and this is due to the
release jitter. However, in the iterative Equation 3.5 for w′3,1 computation, the
ceiling term is equal to 1 for an interval of length w′3,1 = 11 when the fixed point
is reached. Then, the activation of τ2,2 is considered only once in the response
time of the sub-task τ3,1 which explains the under-estimation. Hence, excluding the
release jitter from the local response time (Equation 3.1) may lead to erroneous and
non-safe estimation of the worst-case response time.

3.2.2 Extension of holistic analysis for a DAG task model

The holistic analysis for distributed systems (Section 3.2.1), implemented through
Equations 3.1, 3.2 and 3.3, operates only on tasks composed of a single path without
any parallel sub-tasks. Moreover, priorities are defined at task level because at
sub-task level there is only one order of execution; it is the one that respects
precedence constraints in the sub-task chain. However, in a DAG task model,
several orders among sub-tasks could exist because there are parallel sub-tasks
and multiple paths within a single task.
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Figure 3.3: The impact of the release jitter of τ2,2 on the scheduling of task set defined
in Figure 3.2 and Table 3.1.

In this part, we present three methods to extend holistic analysis from a sub-task
chains model (Section 3.2.1) to a DAG task model with parallel sub-tasks. First,
we add to the equations analyzing the sub-task chains model, the effect of parallel
sub-tasks from the same graph that are executed on the same core. Next, we identify
and avoid counting the same sub-task several times because it is parallel to different
sub-tasks. Thus, we reduce the pessimism and the over-estimation of the worst-case
response time. Moreover, in the proposed extensions, we consider the two cases
when priorities are defined at task level and at sub-task level. We provide a generic
formulation for all equations by using the set hepi(τi,j) of higher or equal priority
sub-tasks inside the same graph. Depending on the definition of this set hepi(τi,j),
the equations are adapted to the desired definition of the level of priority .

In addition, the holistic analysis is applied only on periodic task sets. Thus,
the derived extensions also operate on periodic task sets. However, we could use
them to study the schedulability of sporadic task sets on a partitioned multi-core
processor. Indeed, the multi-core partitioned scheduling problem could be seen as
several single core processor scheduling problems once the allocation is done [14].
On the other hand, Baruah and Burns [19] show that response time analysis of
fixed-priority and preemptive scheduling on a single core processor incorporating
release jitter and blocking time is sustainable with respect to the period. Hence, if
a periodic task set is schedulable with minimum inter-arrival time as the period
for all tasks then it is schedulable with higher period and thus the sporadic system
is schedulable. We conclude that the resulting sporadic systems on each core are
all schedulable and so the whole partitioned task set is also schedulable.
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3.2.2.1 First method: Including parallel execution in local response
time

Unlike the sub-task chains model, the same DAG task may have several parallel
sub-tasks that contend to run on the same core at the same time. However, the
expression of the local response time wi,j (Equation 3.1) does not consider these
parallel computations inside the same DAG task.

Lemma 3.1. The local response time of sub-task τi,j belonging to a DAG task model
is given by the following equation:

wi,j = Ci,j +
∑

τi,k∈Pi,j

Ci,k +
∑

τp,q∈hep(τi,j)
π(τp,q)=π(τi,j)

⌈
Jp,q + wi,j

Tp

⌉
Cp,q (3.6)

Proof. In order to obtain the local response time of a sub-task in a DAG task model,
we add to the formulation of wi,j (Equation 3.1) the effect of concurrent sub-tasks
executed on the same core (bold term in Equation 3.6). Indeed, we upper bound
this effect by the sum of execution times of sub-tasks in Pi,j.

We denote by Pi,j the set of sub-tasks from the same DAG that could preempt
τi,j. For a sub-task τi,k to be able to preempt a sub-task τi,j, it should be:

• Parallel to τi,j.

• Run on the same core as τi,j.

• Have higher or equal priority to τi,j.

More formally, we obtain:

Pi,j = {τi,k ∈ Vi \ {τi,j} | τi,k ∈ parallel(τi,j), π(τi,k) = π(τi,j), τi,k ∈ hepi(τi,j)}

�

Remark. In the case where priorities are defined at sub-task level, we assume
that the set hepi(τi,j) is given for all sub-task τi,j. If priorities are defined only at
task level, then the set hepi(τi,j) is composed of all sub-tasks in τi except τi,j. The
condition τi,k ∈ hepi(τi,l) becomes equivalent to τi,k ∈ Vi \ {τi,j}. Therefore, the
formulation of Pi,j could be simplified as below but the previous formulation remains
more generic and correct for the two cases of defining the level of priority.

Pi,j = {τi,k ∈ Vi \ {τi,j} | τi,k ∈ parallel(τi,j), π(τi,k) = π(τi,j)}
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In addition, within the DAG task model, a sub-task could have several immediate
predecessors. Since the release jitter is the worst-case response time of predecessor
sub-tasks, then it becomes equal to the maximum, over all immediate predecessors,
of the global response time added to the corresponding communication delay
(Equation 3.7).

Ji,j = max
τi,k∈ipred(τi,j)

{
Rglobal
i,k + ei(k, j)

}
(3.7)

Theorem 3.1. The global response time of sub-task τi,j belonging to a DAG task
model is given by the following equation:

Rglobal
i,j = max

τi,k∈ipred(τi,j)

{
Rglobal
i,k + ei(k, j)

}
+ wi,j (3.8)

Proof. The local response time of a sub-task τi,j takes into consideration all possible
preemptions caused by higher priority DAGs and by parallel sub-tasks on other
paths. Then, from its activation, τi,j requires in the worst-case its local response
time wi,j to finish its execution .

The maximum term in Equation 3.8 includes the worst-case communication delay
with the global response time that takes into account the effect of parallel sub-tasks.
Thus, this term provides sufficient time for all predecessors even on different paths
to be executed. After that, τi,j is activated and it could start executing.

Therefore the global response time of τi,j is equal to the sum of its activation
date (the maximum term) and its local response time wi,j.

�

The previous equations, used for calculating an upper-bound of the response
time, could be written in a more explicit manner. Therefore, we define the internal
interference and the external interference.

Definition 3.3. Let the internal interference I inti (τi,j) be the maximum cumulative
time during which sub-task τi,j is active but cannot execute because its assigned
core π(τi,j) is executing other sub-tasks belonging to the same DAG task τi. This
intra-task interference I inti (τi,j) is caused by parallel sub-tasks from τi on sub-task
τi,j and it is equal to the sum of parallel sub-tasks that executed on the same core
and have a priority that is higher or equal to τi,j:

I inti (τi,j) =
∑

τi,k∈Pi,j

Ci,k (3.9)
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Remark. We consider that the deadline of a DAG task τi is constrained (i.e.
Di ≤ Ti). We also assume that if a job of τi miss its deadline, then it is dropped.
Hence, two jobs of the same DAG task τi cannot be active at the same time.

Let τi,k be a sub-task that belongs to the DAG task τi. We assume that τi,k is
assigned to the same core and have a higher priority than another sub-task τi,j. If
τi,k could preempt τi,j, then the two sub-tasks should belong to the same job of the
DAG task τi and they should be parallel to each other. Consequently, τi,k could
preempt τi,j only once during each period and it is considered only once in the
internal interference I inti (τi,j).

Definition 3.4. Let the external interference Iext(τi,j) be the maximum cumulative
time during which sub-task τi,j is active to execute but cannot because its assigned
core π(τi,j) is executing sub-tasks from other DAGs. This inter-task interference is
caused by sub-tasks belonging to any higher priority DAG task.

Lemma 3.2. The local response time could be expressed using the internal and
external interference as follows:

wi,j = Ci,j + I inti (τi,j) + Iext(τi,j) (3.10)

Proof. By definition, in the work of Palencia et al. [1], the local response time wi,j
is an upper bound of the time required by sub-task τi,j to finish its execution from
its activation. Thus, wi,j is equal to the sum of the execution time Ci,j and of the
delay during which sub-task τi,j is active but cannot execute because its assigned
core π(τi,j) is executing other sub-tasks. This delay is composed of the internal
interference I inti (τi,j) and the external interference Iext(τi,j). �

The local response time wi,j (Equation 3.6) could be written:

wi,j = Ci,j + I inti (τi,j) +
∑

τp,q∈hep(τi,j)
π(τp,q)=π(τi,j)

⌈
Jp,q + wi,j

Tp

⌉
Cp,q

wi,j − Ci,j − I inti (τi,j) =
∑

τp,q∈hep(τi,j)
π(τp,q)=π(τi,j)

⌈
Jp,q + wi,j

Tp

⌉
Cp,q (using Equation 3.10)

Iext(τi,j) =
∑

τp,q∈hep(τi,j)
π(τp,q)=π(τi,j)

⌈
Jp,q + Iext(τi,j) + Ci,j + I inti (τi,j)

Tp

⌉
Cp,q (3.11)

We note that Iext(τi,j) is expressed recursively using Equation 3.11.
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Corollary 3.1. The global response time of sub-task τi,j could be expressed as
follows:

Rglobal
i,j = max

τi,k∈ipred(τi,j)

{
Rglobal
i,k + ei(k, j)

}
+ Ci,j + I inti (τi,j) + Iext(τi,j) (3.12)

Proof. Based on Theorem 3.1 and Lemma 3.2, we conclude that the global response
time of sub-task τi,j could be written as the sum of the maximum global response
time over immediate predecessors with the communication delay, the execution time
Ci,j, the internal and external interference exerted on τi,j. �

Since we have assumed that a DAG task has only one sink sub-task, the
global response time of a DAG task τi is equal to the global response time of
its sink sub-task:

Rglobal
i = Rglobal

i,sink (3.13)

Example 3.2. In this example, we illustrate how the previous equations include
parallel computations from the same graph. Thus, we consider two DAG tasks
defined in Figure 3.4 and Table 3.3. Task τ1 has a period of T1 = 20 while T2 = 50.
Task τ1 has higher priority than τ2 .

τ1,1 τ1,2
e1(1, 2)

τ2,1

τ2,2

τ2,3

τ2,4 τ2,5

τ2,6

π1

π2

e2(1, 2)

e2(1, 3)

e2(1, 4)

e2(2, 6)

e2(3, 6)

e2(4, 5) e2(5, 6)

Figure 3.4: Example of a DAG task set with parallel sub-tasks

Table 3.3: Parameters of task set described in Figure 3.4

Sub-task Ci,j Ti Priority Precedence delay
τ1,1 3 20 high e1(1, 2) 1
τ1,2 1 20 high e2(1, 2) 0
τ2,1 2 50 low e2(1, 3) 1
τ2,2 1 50 low e2(1, 4) 1
τ2,3 3 50 low e2(4, 5) 0
τ2,4 1 50 low e2(2, 6) 1
τ2,5 1 50 low e2(3, 6) 0
τ2,6 2 50 low e2(5, 6) 0
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In Table 3.4, we show the results obtained by considering parallel execution
in the local response time. We use Equations 3.9, 3.11 and 3.12 to compute an
upper-bound of the response time of the previous DAG tasks with parallel sub-tasks
(Figure 3.4).

Table 3.4: Estimation of the worst-case response time of sub-tasks described in Figure 3.4

Sub-task Ci,j wi,j Ji,j Iint
i (τi,j) Iext(τi,j) Rglobal

i,j
τ1,1 3 3 0 0 0 3
τ1,2 1 1 4 0 0 5
τ2,1 2 5 0 0 3 5
τ2,2 1 4 5 0 3 9
τ2,3 3 6 6 2 1 12
τ2,4 1 5 6 3 1 11
τ2,5 1 5 11 3 1 16
τ2,6 2 3 16 0 1 19

From Table 3.4, we note that the estimated worst-case response time includes
the execution time of parallel sub-tasks. For instance, the local response times
w2,4 and w2,5 of sub-tasks τ2,4 and τ2,5 respectively include the execution time C2,3

of their parallel sub-task τ2,3. Similarly, the local response time w2,3 includes the
execution times C2,4 and C2,5. However, the global response time Rglobal

2,5 of sub-task
τ2,5 includes the execution time of τ2,3 twice: once from the global response time of
its predecessor Rglobal

2,4 and once from its local response time w2,5. In general, if a
sub-task τi,j is parallel and runs on the same core as many sub-tasks that belong
to the same path, then the execution time of τi,j will be included several times and
propagated through this path. Thus, the response time of the last sub-task in the
path will be over-estimated and will suffer from a snowball effect.

We conclude that the proposed response time Equations 3.9, 3.11 and 3.12 take
into consideration the effect of parallel sub-tasks but they are very pessimistic.
Indeed, these equations may include the same sub-task several times if it is parallel
to several related sub-tasks that are executed on the same core. Thus, we propose
to use another way to take into account parallel executions without over-estimating
the worst-case response time.
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3.2.2.2 Second method: Including parallel execution in global response
time

In order to avoid including parallel sub-tasks several times when calculating an upper-
bound of the response time, we propose to compute, first, a sequential response time.

Definition 3.5. The sequential response time Rseq
i,j takes into consideration only the

execution time Ci,j of the studied sub-task τi,j, the maximum sequential response time
over its immediate predecessors and the external interference but it does not consider
the internal interference caused by parallel sub-tasks. The sequential response time
is defined as follows:

Rseq
i,j = max

τi,k∈ipred(τi,j)

{
Rseq
i,k + ei(k, j)

}
+ Ci,j + Iext(τi,j) (3.14)

Second, we compute the global response time by adding to the sequential
response time the effect of parallel sub-tasks on the studied sub-task τi,j and on
all its predecessors pred(τi,j).

Theorem 3.2. The global response time of sub-task τi,j is given by the following
equation:

Rglobal
i,j = Rseq

i,j +
∑

τi,k∈Πi,j

Ci,k (3.15)

We denote by Πi,j the set of parallel sub-tasks that could preempt one of the sub-tasks
in pred?(τi,j) containing τi,j and all its predecessors.

A sub-task τi,k may preempt a sub-task τi,l, if they are parallel and run on the
same core. It should also have a priority that is higher than or equal to τi,l.

Πi,j = {τi,k ∈ Vi | ∃ τi,l ∈ pred?(τi,j) such that τi,k ∈ Pi,l}

We note that the set Πi,j could contain predecessors of τi,j that are parallel
to other predecessors of τi,j on other paths.

Proof. In an oriented graph, the longest path from source nodes to a given node τi,j
is equivalent to the downward rank used in list scheduling [81, 82]. It is computed
by considering the maximum, over immediate predecessors, of the sum of the longest
path to the predecessor considered, the cost of this predecessor and the weight
between the predecessor and the target node.

Li,j = max
τi,k∈ipred(τi,j)

{Li,k + cost(τi,k) + weight(k, j)}
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Let L′i,j = Li,j + cost(τi,j) then:

L′i,j − cost(τi,j) = max
τi,k∈ipred(τi,j)

{
L′i,k + weight(k, j)

}
L′i,j = max

τi,k∈ipred(τi,j)

{
L′i,k + weight(k, j)

}
+ cost(τi,j)

In the previous equation, if we replace weight(k, j) by ei(k, j) and cost(τi,j)
by Ci,j + Iext(τi,j) we obtain a similar equation to Equation 3.14 that defines the
sequential response time. Thus, Rseq

i,j represents the longest path that considers the
the individual execution time Ci,j and the external interference Iext(τi,j) but omits
the effect of parallel sub-tasks.

In order to compute the global response time, we add to the sequential response
time, the internal interference caused by parallel sub-tasks (in the set Πi,j) to the
studied sub-task τi,j and its predecessors. To upper bound this interference, we
consider the worst-case and we neglect any concurrent execution of sub-tasks in
Πi,j even if they run on different cores. Therefore, we sum the execution time of all
sub-tasks in Πi,j to safely estimate their effect.

�

Example 3.3. We use the previous example defined in Figure 3.4 and Table 3.3
for the purpose of illustrating how the proposed response time Equations 3.14 and
3.15 take into consideration parallel sub-tasks. We also show how these equations
allow us to avoid including the effect of the same parallel sub-task several times
when browsing the graph and to avoid a snowball effect on the sink sub-task.

Table 3.5: Applying response time Equations 3.14 and 3.15 on the task set described in
Figure 3.4

Sub-task Ci,j Ji,j Iint
i (τi,j) Iext(τi,j) Rseq

i,j Πi,j Rglobal
i,j

τ1,1 3 0 0 0 3 ∅ 3
τ1,2 1 4 0 0 5 ∅ 5
τ2,1 2 0 0 3 5 ∅ 5
τ2,2 1 5 0 3 9 ∅ 9
τ2,3 3 6 2 1 10 τ2,4, τ2,5 12
τ2,4 1 6 3 1 8 τ2,3 11
τ2,5 1 11 3 1 10 τ2,3 13
τ2,6 2 13 0 1 13 τ2,3, τ2,4, τ2,5 18

In Table 3.5, we give the results obtained by including parallel executions in
the global response time. We note that the response time of the sub-task τ2,5 is
reduced to Rglobal

2,5 = 13 instead of 16 (in Table 3.4) and the response time of the
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DAG task τ2 is reduced from Rglobal
2 = Rglobal

2,6 = 19 to 18. Indeed, a parallel sub-task
to other sub-tasks from the same path, like τ2,3, is no longer included several times.
However, sub-tasks that are included in the sequential response time of the sink
sub-task may be computed twice in the global response time if they are parallel to
other sub-tasks. For example, the execution times of sub-tasks τ2,4 and τ2,5 are
included in the sequential response time Rseq

2,6 (Equation 3.14) through the maximum
term over immediate predecessors. Moreover, they are computed a second time in
the global response time (Equation 3.15) through the sum term since τ2,4 and τ2,5

are members of the set Π2,6 (i.e. they are parallel and could preempt τ2,6 or to one
of its predecessors).

To summarize, Equations 3.14 and 3.15 take into account the effect of parallel
sub-tasks while reducing pessimism and over-estimation of the worst-case response
time. They avoid computing several times the same sub-task that is parallel to other
sub-tasks belonging to the same path and executing on the same core. Nevertheless,
these equations still over-estimate the worst-case response time because some tasks
in the critical path to the sink task may be computed twice if they are parallel to
other sub-tasks and mapped to the same core. Hence, in the next part, we revise
Equations 3.14 and 3.15 to further reduce the pessimism.

3.2.2.3 Third method: Including parallel execution between predeces-
sors

To avoid considering parallel sub-tasks on the critical path twice when computing
sequential and global response times, we propose to consider first the effect of
parallel execution from different paths that are predecessors to the studied sub-task.
Then, we add the effect of parallel sub-tasks that are not predecessors. We denote
by Rpred

i,j the preceding response time that considers the effect of higher priority
DAG tasks and the effect of parallel sub-tasks that are predecessors of τi,j while
it omits the effect of parallel and not predecessor sub-tasks.

Definition 3.6. Let τi,k be an immediate predecessor of a sub-task τi,j (τi,k ∈
ipred(τi,j)). We define Ipred

i,j (τi,k) as the internal interference exerted on τi,k and its
predecessors by other predecessors of τi,j.

Lemma 3.3. The internal interference Ipredi,j (τi,k) is given by:

Ipredi,j (τi,k) =


∑
τi,l∈Ψi,j(τi,k)

Ci,l if τi,k ∈ ipred(τi,j)

0 otherwise
(3.16)
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We denote by Ψi,j(τi,k) the set of predecessor sub-tasks to τi,j but not predecessors
to τi,k that could preempt one of the sub-tasks in pred?(τi,k) containing τi,k and
all its predecessors. We recall that τi,k ∈ ipred(τi,j), otherwise the set Ψi,j(τi,k)
is not defined (Ψi,j(τi,k) = ∅).

Ψi,j(τi,k) = {τi,l ∈ pred(τi,j) \ pred?(τi,k) | ∃τi,a ∈ pred?(τi,k) such that τi,l ∈ Pi,a}
(3.17)

Proof. To estimate the worst-case interference caused by a sub-task τi,l ∈ Ψi,j(τi,k),
we assume that the execution of τi,l on core π(τi,l) delays not only predecessors of
τi,k that are executed on core π(τi,l) but all sub-tasks τi,a ∈ pred?(τi,k) (whether
they are executed on π(τi,l) or not). In fact, such sub-task τi,a may be a successor
of another sub-task in pred?(τi,k) that runs on π(τi,l) and is delayed by τi,l.

Therefore, the worst-case interference that sub-tasks of Ψi,j(τi,k) cause on the
preceding response time of τi,k, is equal to the sum of the execution times of all the
sub-tasks τi,l ∈ Ψi,j(τi,k).

�

Lemma 3.4. The preceding response time Rpred
i,j is computed by the following

equation:

Rpred
i,j = max

τi,k∈ipred(τi,j)

{
Rpred
i,k + ei(k, j) + Ipred

i,j (τi,k)
}

+ Ci,j + Iext(τi,j) (3.18)

Proof. To prove Equation 3.18, we use mathematical induction. First, we verify
this equation for source sub-tasks. The preceding response time of a sub-task τi,j
considers τi,j, its predecessors and higher priority DAGs while discarding the effect
of parallel sub-tasks that are not predecessors. If τi,j is a source sub-task without any
predecessor, then its preceding response time is equal to its execution time with the
effect of sub-tasks belonging to higher priority DAGs (external interference). Since
there are no predecessor sub-tasks to τi,j , the “maximum” term, in Equation 3.18 is
equal to zero. Therefore, the computed Rpred

i,j is equal to the execution time Ci,j
with the external interference and Equation 3.18 is verified for source sub-tasks.

Now, we assume that Equation 3.18 is valid for all predecessors of a sub-task
τi,j and we prove that Equation 3.18 is correct for τi,j. Indeed, for each immediate
predecessor τi,k of τi,j , we assume that Rpred

i,k is enough for τi,k and all its predecessors
to finish their executions. Besides, the maximum interference caused on τi,k by other
predecessors of τi,j is equal to Ipredi,j (τi,k) as explained in Equation 3.16. Since we
consider only predecessor sub-tasks in the preceding response time, the latest start
time of τi,j is equal to the maximum, over immediate predecessors τi,k, of the sum
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of: (i) the preceding response time of τi,k with the corresponding communication
delay ei(k, j). (ii) the maximum interference Ipredi,j (τi,k) caused by other predecessors
of τi,j.

The “maximum” term in Equation 3.18 provides sufficient time for all prede-
cessors of τi,j to be executed and then τi,j starts executing. Since the preceding
response time considers higher priority DAGs but not parallel sub-tasks, τi,j finishes
its execution after Ci,j + Iext(τi,j) from its start. Hence, we add, to the “maximum”
term, the execution time Ci,j and the external interference Iext(τi,j) exerted on τi,j
in order to get the preceding response time Rpred

i,j .
In conclusion, we prove the correctness of Equation 3.18 for any sub-task τi,j

by applying the previous property for all its predecessors. We start from source
sub-tasks and we move step-by-step to successors until reaching τi,j.

�

Theorem 3.3. The global response time is computed as follows:

Rglobal
i,j = Rpred

i,j +
∑

τi,k∈Πpred
i,j

Ci,k (3.19)

We denote by Πpred
i,j the set of sub-tasks not predecessors to τi,j that could preempt

τi,j or one of its predecessors.

Πpred
i,j = {τi,k ∈ Vi \ pred?(τi,j) | ∃ τi,l ∈ pred?(τi,j) such that τi,k ∈ Pi,l} (3.20)

Proof. To obtain the global response time, we add to the preceding response time
Rpred
i,j , the interference exerted on τi,j and its predecessors by parallel sub-tasks

that are not predecessors to τi,j. The parallel sub-tasks considered should not be
predecessors to τi,j because the effect of parallel execution among predecessors of
τi,j is already included in the preceding response time Rpred

i,j (Equation 3.18) by
the interference term Ipredi,j (τi,k). Thus, we consider the set Πpred

i,j containing these
parallel sub-tasks (Equation 3.20).

Similarly to the proof of Lemma 3.3, we prove that the maximum internal
interference that sub-tasks of Πpred

i,j cause on τi,j and its predecessors, is equal to
the sum of the execution times of all sub-tasks τi,k ∈ Πpred

i,j .
�

Example 3.4. Using the previous example defined in Figure 3.4 and Table 3.3, we
illustrate how the proposed response time Equations 3.18 and 3.19 help to reduce
pessimism and to avoid including the execution time of sub-tasks on the critical path
twice.
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Table 3.6: Applying response time Equations 3.18 and 3.19 on task set described in
Figure 3.4

Sub-task Ci,j Ji,j Iext(τi,j) Rpred
i,j Πpred

i,j Rglobal
i,j Edge Ψi,j(τi,k) Ipred

i,j (τi,k)
τ1,1 3 0 0 3 ∅ 3 e1(1, 2) ∅ 0
τ1,2 1 4 0 5 ∅ 5 e2(1, 2) ∅ 0
τ2,1 2 0 3 5 ∅ 5 e2(1, 3) ∅ 0
τ2,2 1 5 3 9 ∅ 9 e2(1, 4) ∅ 0
τ2,3 3 6 1 10 τ2,4, τ2,5 12 e2(4, 5) ∅ 0
τ2,4 1 6 1 8 τ2,3 11 e2(2, 6) ∅ 0
τ2,5 1 11 1 10 τ2,3 13 e2(3, 6) τ2,4, τ2,5 2
τ2,6 2 13 1 16 ∅ 16 e2(5, 6) τ2,3 3

Table 3.6, shows the results obtained by including first the effect of parallel and
predecessor sub-tasks on each sub-task and their predecessors (Rpred

i,j ) as we browse
the graph. This table also presents the global response time Rglobal

i,j that includes the
effect of other parallel sub-tasks that are not predecessors.

We note that the response time of task τ2 is reduced to Rglobal
2 = Rglobal

2,6 = 16
instead of 18. In fact, parallel sub-tasks on the critical path to the sink sub-task,
like τ2,4 and τ2,5, are no longer included twice in the global response time of the sink
sub-task τ2,5.

3.2.2.4 Worst-case arrival patterns assumption used in previous analy-
ses

Among different proposed response time equations, we try to reduce pessimism
and enhance the estimate of the worst-case response time. Nevertheless, these
approaches assume that critical instant and synchronous activation of all higher
priority DAG tasks always occurs at each sub-task activation when browsing the
graph. This context-independent assumption may not always be realistic and may
cause an over-estimation of the worst-case response time. Through the following
example, we show whether the assumption proposed by Palencia et al. [1] about
worst-case arrivals pattern for dependent sub-tasks is always achievable and how
it affects the computed upper-bound on response time.

Example 3.5. Let us consider the task set composed of dependent sub-tasks on
distributed systems described in Figure 3.5 and Table 3.7.

If we apply the previous proposed response time Equations 3.18 and 3.19 that are
based on the assumption about worst-case arrivals scenario proposed by Palencia et
al. [1], we obtain the global response time estimations summarized in the following
Table 3.8.
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Table 3.7: Parameters of sub-tasks in Figure 3.5

Sub-task Ci,j Ti Priority
τ1,1 30 80 high
τ2,1 3 100 low
τ2,2 5 100 low
τ2,3 3 100 low

e2(1, 2) 2 − −
e2(2, 3) 1 − −

τ2,1

τ2,2

τ2,3

τ1,1

CPU 1 CPU 2

e2(1, 2)

e2(2, 3)

Figure 3.5: Example of a task set composed of dependent sub-tasks

Table 3.8: Applying response time Equations 3.18 and 3.19 on the task set described in
Figure 3.5

Sub-task Ci,j Ji,j Iext(τi,j) Rglobal
i,j

τ1,1 30 0 0 30
τ2,1 3 0 30 33
τ2,2 5 35 0 40
τ2,3 3 41 30 74

We note that the estimated worst-case response time of task τ2 is Rglobal
2,3 = 74.

However, the scheduling in Figure 3.6 (on page 47) shows that the effect of the
sub-task τ1,1, whenever it is released, will delay some or all sub-tasks of task τ1 by
30 time units at the most. Besides, τ2 will necessarily finish its execution before
the next activation of τ1,1 and it cannot be preempted a second time. Hence, the
actual response time of task τ2 is Rglobal

2,3 = 44 in the worst-case. We note that the
calculated upper-bound on the response time is much bigger than the exact worst-case
response time deduced from the scheduling in Figure 3.6. In summary, we conclude
that the assumption made by Palencia et al. [1] about the worst-case scenario of
higher priority sub-tasks activation is not always realistic, which may cause a lot
pessimism in the worst-case response time estimation.
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t

π1

0 2 4 6 8 10 12 14 16 18 20

τ2,1 τ2,3

t

π2

0 2 4 6 8 10 12 14 16 18 20

τ2,2

finish time of τ2 = 14

(a) τ2 executes in isolation (τ1 is not activated)

t

π1

0 2 4 6 8 10 12 14 40 42 44

τ1,1 τ1,1

higher priority task

...τ2,1

τ2
,3 τ2,3

t

π2

0 2 4 6 8 10 12 14 40 42 44

...τ2,2

finish time of τ2 = 44

(b) Worst case delay of DAG τ2 if τ1 is activated

Figure 3.6: Scheduling of the task set defined in Figure 3.5 and in Table 3.7

3.2.3 New characterization of worst-case arrival patterns

After observing the pessimism caused by the assumption about worst-case arrival
patterns made by Palencia et al. [1], we suggest other ways to characterize the worst-
case preempting workload of higher priority DAG tasks that delay the completion
of the DAG task under study.

The first idea assumes that the sub-task under study is executed without any
higher priority task (in isolation). To the obtained response time in isolation, we add
the effect of higher priority tasks on the whole graph. The second idea is to include
the effect of higher priority tasks not at the end after browsing the whole graph, nor
at each sub-task activation but to include this effect on each connected sub-graph
that executed on the same core and propagate it from each sub-task to its successors.

3.2.3.1 First method: Including preemption on the whole graph

This proposed method to define worst-case preemption caused by higher priority
DAG tasks, is firstly based on the computation of the response time in isolation



48 3.2. Deterministic Response Time Analysis

(no higher priority tasks). In order to avoid including internal parallel sub-tasks
several times, we proceed as we did previously in Section 3.2.2.3. We start by
computing the preceding response time Rpred

i,j of sub-tasks τi,j that considers the
effect of predecessor sub-tasks but omits the effect of higher priority DAGs and
parallel sub-tasks that are not predecessors.

Lemma 3.5. The preceding response time Rpred
i,j is computed as follows:

Rpred
i,j = max

τi,k∈ipred(τi,j)

{
Rpred
i,k + ei(k, j) + Ipred

i,j (τi,k)
}

+ Ci,j (3.21)

We denote by Ipredi,j (τi,k) the internal interference caused by predecessors of τi,j
on τi,k and its predecessors. It is defined in Lemma 3.3 (on page 42).

Proof. Similarly to the proof of Lemma 3.4, we use mathematical induction to
prove that the preceding response time (computed according to Equation 3.21)
provides sufficient time for τi,j and all its predecessors to be executed without any
preemption from parallel sub-tasks and higher priority DAGs.

�

Remark. If each sub-task runs exactly for its WCET, then the preceding response
time Rpred

i,j could be seen as a lower bound of the response time (i.e. a Best Case
Response Time) of the sub-task τi,j. Indeed, Rpred

i,j considers only the effect of
predecessor sub-tasks that are required to finish their execution before τi,j could start
its execution. Hence, whether the scenario of execution considered, τi,j cannot finish
its execution before Rpred

i,j time units from its release.

Secondly, we compute the response time in isolation Risol
i,j that considers the

effect of all sub-tasks from the same DAG on sub-task τi,j but omits preemptions
caused by higher priority DAGs.

Lemma 3.6. The response time in isolation is given by the following equation:

Risol
i,j = Rpred

i,j +
∑

τi,k∈Πpred
i,j

Ci,k (3.22)

We denote by Πpred
i,j the set of sub-tasks which are not predecessors of τi,j that

could preempt τi,j or one of its predecessors. It is defined by Formula 3.20 (on
page 44).
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Proof. To obtain the response time in isolation Risol
i,j of sub-task τi,j, we add to the

preceding response time the delay caused by parallel sub-tasks on τi,j or on one of
its predecessors. These parallel sub-tasks should not be predecessors to τi,j because
their effect is already included in the preceding response time Rpred

i,j through the
interference term Ipredi,j (τi,k) in Equation 3.21.

Similarly to the proof of Lemma 3.3, we prove that the worst-case internal
interference that sub-tasks of Πpred

i,j cause on τi,j and its predecessors, is equal to
the sum of the execution times of all sub-tasks τi,k ∈ Πpred

i,j .
�

Finally, we compute the global response time that takes into consideration
preemptions caused by sub-tasks in the same graph and by higher priority DAG tasks.

The global response time Rglobal
i,j is calculated by summing the response time in

isolation Risol
i,j and the external interference caused by higher priority DAG tasks

on the whole graph (Equation 3.23).

Theorem 3.4. The global response time is computed as follows:

Rglobal
i,j = Risol

i,j + Iext(τi,j) (3.23)

The external interference Iext(τi,j), caused by higher priority preemption, is
calculated by the following iterative equation on an interval of length Risol

i,j :

Iext(τi,j) =
∑

τp,q∈hep(τi,j)
π(τp,q)∈π(pred?(τi,j))

⌈
Jp,q + Iext(τi,j) + Risol

i,j

Tp

⌉
Cp,q (3.24)

Proof. The response time in isolation considers all possible preemptions except
those caused by higher priority DAGs. Thus, we add to Risol

i,j the effect of other
DAG tasks with higher priority (external interference) in order to obtain the global
response time.

If a sub-task τp,q, belonging to a higher priority DAG task, preempts a sub-task
τi,k ∈ pred?(τi,j) (i.e. it preempts τi,j or one of its predecessors), then it delays not
only τi,k but all sub-tasks τi,a ∈ pred?(τi,j). Hence, we consider that any sub-task
belonging to a higher priority DAG will delay τi,j and all its predecessors if it is
executed on the same core as a sub-task τi,a ∈ pred?(τi,j).

In order to estimate the worst-case external interference Iext(τi,j), we sum the
delays caused by any higher priority sub-task τp,q that belong to another DAG task
and that is executed on the same core as τi,j or one of its predecessors. Each delay
is computed by an iterative equation, as in the literature [1], on an initial interval
of length Risol

i,j . Indeed, sub-task τp,q could preempt τi,j or one of its predecessors at
each activation of τp,q in the interval

[
0, Risol

i,j

[
.

�



50 3.2. Deterministic Response Time Analysis

Example 3.6. In this example, we apply the proposed response time Equations 3.21, 3.22
and 3.23 on the task set defined in Figure 3.4 and Table 3.3. We show how taking
into account higher priority preemption on the whole graph, instead of at each
sub-task activation, allows us to avoid including frequent and non-realistic higher
priority tasks activation and hence to reduce the computed worst-case response time.

Table 3.9: Applying response time Equations 3.21, 3.22 and 3.23 on the task set described
in Figure 3.4

Sub-task Ci,j Rpred
i,j Πpred

i,j Risol
i,j Ji,j Iext(τi,j) Rglobal

i,j Edge Ipred
i,j (τi,k)

τ1,1 3 3 ∅ 3 0 0 3 e1(1, 2) 0
τ1,2 1 5 ∅ 5 4 0 5 e2(1, 2) 0
τ2,1 2 2 ∅ 2 0 3 5 e2(1, 3) 0
τ2,2 1 3 ∅ 3 5 3 6 e2(1, 4) 0
τ2,3 3 6 τ2,4, τ2,5 8 6 4 12 e2(4, 5) 0
τ2,4 1 4 τ2,3 7 6 4 11 e2(2, 6) 0
τ2,5 1 5 τ2,3 8 11 4 12 e2(3, 6) 2
τ2,6 2 10 ∅ 10 12 4 14 e2(5, 6) 3

From Table 3.9, we note that the response time of sub-task τ2,5 is equal to Rglobal
2,5 =

12 while the least pessimistic response time obtained by previous methods, based on
the assumption of Palencia et al. [1], is equal to 13 (obtained in Section 3.2.2.3).
We note also that the global response time of DAG task τ2 is reduced from 16 to 14.
This improvement in the global response time is the result of including the effect of
only the first activation of higher priority task τ1 because, in this example, the next
activation cannot occur when the current job studied task τ2 is still running.

We conclude that the proposed identification of the worst-case preempting
workload implemented through Equations 3.21, 3.22 and 3.23 allows us to avoid
including some non-realistic higher priority preemption. Hence, it may help to reduce
the computed upper-bound of the response time and also to reduce the pessimism.

3.2.3.2 Second method: Including preemption on connected sub-graphs

After studying two approaches that characterize worst-case arrivals pattern of higher
priority tasks, we present another way to identify this worst-case behavior. This
new method is inspired by the two previous ones. However, it does not account
for higher priority preemptions after browsing the whole graph neither at each
sub-task activation like the assumption of Palencia et al. [1]. In fact, if several
connected sub-tasks in a DAG task are executed on the same core then it is not
likely that all higher priority task are synchronously activated at the release of
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each connected sub-task especially when the response time in isolation of these
sub-tasks is much smaller than the periods of preempting tasks.

On the other hand, taking into account higher priority preemptions on the whole
graph over all core reduces the parallelism and increases the worst-case response
time estimate. Therefore, we propose to compute the effect of higher priority tasks
on different sub-graphs composed of connected sub-tasks mapped to the same core.

We define Gcnx
pred(τi,j) as the set of sub-tasks belonging to the sub-graph composed

of connected predecessors of sub-task τi,j that are executed on the same core as τi,j .

Gcnx
pred(τi,j) = {τi,k ∈ pred?(τi,j) | ∃ at least one directed path from τi,k to τi,j such

that all the sub-tasks of this path are executed on core π(τi,j)}
(3.25)

First, we compute the preceding response time Rpred
i,j of sub-tasks τi,j that takes

into consideration the execution time Ci,j , the effect of all predecessor sub-tasks and
the external interference caused by higher priority DAGs on predecessor sub-tasks
that do not belong to connected sub-graph Gcnx

pred(τi,j).

Lemma 3.7. The preceding response time Rpred
i,j is computed as follows:

Rpred
i,j = Ci,j + max

τi,k∈ipred(τi,j

{
Rpred
i,k + Ii,j(τi,k) + ei(k, j) + Ipredi,j (τi,k)

}
(3.26)

We denote by Ii,j(τi,k) the external interference when the immediate predecessor
τi,k is executed on a different core than τi,j.

Ii,j(τi,k) =
{

Iext(τi,k) if π(τi,k) 6= π(τi,j)
0 otherwise

The external interference Iext(τi,j) accounts for the effect of the higher priority
DAGs on sub-task τi,j and its predecessors belonging to the connected sub-graph
Gcnx
pred(τi,j) and mapped to the same core as τi,j.

Proof. Similarly to the proof of Lemma 3.4, we use mathematical induction to prove
that the preceding response time (computed according to Equation 3.26) provides
sufficient time for the execution of τi,j , all its predecessors and higher priority DAGs
that preempt predecessors not in the connected sub-graph Gcnx

pred(τi,j).
�

Lemma 3.8. The worst-case external interference, exerted on τi,j and its predeces-
sors belonging to Gcnx

pred(τi,j), is given as follows:

Iext(τi,j) =
∑

τp,q∈hep(τi,j)
π(τp,q)=π(τi,j)

⌈
Jp,q + Iext(τi,j) + Icnx(τi,j)

Tp

⌉
Cp,q (3.27)
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We consider that the initial interval Icnx(τi,j) = used for computing this external
interference is computed as follows:

Icnx(τi,j) =
∑

τi,k∈Gcnx
pred(τi,j)

Ci,k +
∑

τi,k∈Πcnx
i,j

Ci,k (3.28)

The set Πcnx
i,j is composed of sub-tasks that are parallel to one sub-task in

Gcnx
pred(τi,j) and that run on same core and have higher or equal priority. We

recall that all sub-tasks in Gcnx
pred(τi,j) are mapped to the same core as τi,j.

Πcnx
i,j = {τi,k ∈ Vi \Gcnx

pred(τi,j) | ∃ τi,l ∈ Gcnx
pred(τi,j) such that τi,k ∈ Pi,l} (3.29)

Proof. Similarly to the proof of Theorem 3.4, to estimate the worst-case external
interference Iext(τi,j), we sum the delays caused by any higher priority sub-task τp,q
that belongs to another DAG task and that are mapped to the same core as τi,j.

Each delay is computed by an iterative equation, as in the literature [1], on
an initial time window of length Icnx(τi,j). Indeed, sub-task τp,q could preempt
a sub-task τi,k ∈ Gcnx

pred(τi,j) at each activation of τp,q in the interval [0, Icnx(τi,j)[
of length the sum of execution times of sub-tasks in Gcnx

pred(τi,j) and their parallel
sub-tasks in Πcnx

i,j . Hence, we express Icnx(τi,j) by Equation 3.28.
�

In order to obtain the global response time of sub-task τi,j, we add to the
preceding response timeRpred

i,j the effect of parallel sub-tasks that are not predecessors
of τi,j as well as the effect of external interference Iext(τi,j) exerted on any sub-
task τi,k ∈ Gcnx

pred(τi,j).

Theorem 3.5. The global response time is computed by the following equation:

Rglobal
i,j = Rpred

i,j +
∑

τi,k∈Πpred
i,j

Ci,k + Iext(τi,j) (3.30)

We denote by Πpred
i,j the set of sub-tasks not predecessors of τi,j that could

preempt τi,j or one of its predecessors. It is defined by Formula 3.20 (on page 44).

Proof. Similarly to the proof of Lemma 3.3, we prove that the worst-case internal
interference cause by parallel and not predecessor sub-tasks (composing Πpred

i,j ) on
τi,j and its predecessors, is equal to the sum of the execution times of all these
sub-tasks in Πpred

i,j .
If a sub-task τp,q belongs to a higher priority DAG task and runs on the same core

as τi,j or as one of its predecessors, it delays the finish of τi,j . Indeed, τp,q preempts
a sub-task τi,k ∈ pred?(τi,j). There are two possible cases; If τi,k /∈ Gcnx

pred(τi,j), then
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the delay caused by τp,q is already computed in the preceding response time Rpred
i,j .

Otherwise, if τi,k ∈ Gcnx
pred(τi,j), then the delay caused by τp,q is computed in Iext(τi,j).

Thus, we should add Iext(τi,j) to the preceding response time Rpred
i,j in order to get

the global response time.
�

Example 3.7. On the task set example defined by Figure 3.4 and Table 3.3, we
apply the previous response time Equations 3.26 and 3.30 that include higher priority
preemptions on connected sub-graphs instead of including them at each sub-task
activation. We illustrate how this new approach avoids the accounting for frequent
and non-realistic higher priority tasks activation and how it reduces the pessimism.

Table 3.10: Parameters of sub-tasks in Figure 3.1

Sub-task Ci,j Rpred
i,j Gcnx

pred(τi,j) Πcnx
i,j Icnx(τi,j) Ji,j Iext(τi,j) Rglobal

i,j
τ1,1 3 3 τ1,1 ∅ 3 0 0 3
τ1,2 1 5 τ1,2 ∅ 1 4 0 5
τ2,1 2 2 τ2,1 ∅ 2 0 3 5
τ2,2 1 3 τ2,1, τ2,2 ∅ 5 3 3 6
τ2,3 3 9 τ2,3 τ2,4, τ2,5 5 6 1 12
τ2,4 1 7 τ2,4 τ2,3 4 6 1 11
τ2,5 1 8 τ2,4, τ2,5 τ2,3 6 11 1 12
τ2,6 2 13 τ2,3, τ2,4, ∅ 8 12 1 14

τ2,5, τ2,6

In Table 3.10, we present the results of applying the proposed Equations 3.26
and 3.30. We note that the response time of task τ2 is reduced to Rglobal

2,6 = 14
compared to the analyses based on the assumption of Palencia et al. [1] about worst-
case preemption scenario. Hence, this approach allows us to reduce the computed
upper-bound of response time by not including some non-achievable arrivals of
higher priority tasks. Although, we obtain the same result (Rglobal

2,6 = 14 ) as the
previous proposed characterization of worst-case arrivals pattern, we cannot deduce
that the two approaches are equivalent. In fact, we will see, in Chapter 6, that they
may yield different results for other task sets with different numbers of tasks, cores,
mapping, etc.

We conclude that this approach of identifying the worst-case preempting work-
load implemented through Equations 3.26 and 3.30 avoids taking into account
non-realistic higher priority preemption. Therefore, it reduces the computed upper-
bound of the response time as well as the pessimism. However, we should keep in
mind that the two previously proposed approaches for characterizing the worst-case
preemption scenario are not equivalent.
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3.3 Conclusion
In this chapter, we presented a schedulability analysis based on RTA for a hard
real-time system composed of DAG tasks. We addressed the case of deterministic
timing parameters and we considered a partitioned, fixed-priority and preemptive
scheduling policy on multi-core processors. We extended existing response time
equations for distributed systems [1] that operates on chains of sub-tasks without
any possible parallelism inside a chain. We proposed several response time analyses
to deal with a DAG task model with parallel sub-tasks inside the same task.
These analyses are based on different approaches to upper bound the internal and
external interferences. In Table 3.11 (on page 55), we present a summary of all
RTA approaches proposed in this chapter.

First, we included the effect of parallel sub-tasks in the local response time of
the sub-task studied. This approach may be pessimistic because in some cases it
considers the same sub-task several times if it is parallel to several other sub-tasks.

Second, we proposed to take into account the parallel sub-tasks in the global
response time instead of in the local response time. This method allows us to avoid
including some sub-tasks several times, but it takes into account the execution
time of some sub-tasks twice in specific cases.

Third, we provided an approach in-between that accounts a part of the parallel
workload belonging to the predecessor sub-tasks in the local response time. While,
the remaining parallel sub-tasks are included in the global response time. This
approach avoids considering some sub-tasks more than once when computing the
internal interference. Similarly to the previous methods, this method is also based
on the characterization of the worst-case arrival patterns of higher priority tasks
described in [1] when computing the external interference. We showed that this
characterization may be pessimistic in some cases.

Therefore, we provided two new approaches to characterize the worst-case arrival
patterns. The first one starts by computing the response time in isolation that
omits the effect of any higher priority DAG task. Then, it takes into account higher
priority preemptions, from different cores, on the whole graph. The second method
considers the effect of higher priority DAG tasks on connected sub-graphs that are
executed on the same core. These two approaches, allow to reduce the response
time compared to the three previous methods in most of cases.

For all these methods, we provided theoretical proofs to guarantee the safety
of their response time equations (i.e. never under-estimate the actual response
time). Thus, the corresponding schedulability tests are sufficient to ensure the
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Table 3.11: Summary of different response time equations proposed in this chapter.

Methods Response time equations

Holistic
extension 1
(Sec. 3.2.2.1)

I inti (τi,j) =
∑

τi,k∈Pi,j

Ci,k

Iext(τi,j) =
∑

τp,q∈hep(τi,j)
π(τp,q)=π(τi,j)

⌈
Jp,q + Iext(τi,j) + Ci,j + I inti (τi,j)

Tp

⌉
Cp,q

Ji,j = max
τi,k∈ipred(τi,j)

{
Rglobal
i,k + ei(k, j)

}
Rglobal
i,j = max

τi,k∈ipred(τi,j)

{
Rglobal
i,k + ei(k, j)

}
+ I inti (τi,j) + Iext(τi,j)

Holistic
extension 2
(Sec. 3.2.2.2)

Rseq
i,j = max

τi,k∈ipred(τi,j)

{
Rseq
i,k + ei(k, j)

}
+ Ci,j + Iext(τi,j)

Rglobal
i,j = Rseq

i,j +
∑

τi,k∈Πi,j

Ci,k

Holistic
extension 3
(Sec. 3.2.2.3)

Rpred
i,j = max

τi,k∈ipred(τi,j)

{
Rpred
i,k + ei(k, j) + Ipredi,j (τi,k)

}
+ Ci,j + Iext(τi,j)

Ipredi,j (τi,k) =
∑

τi,l∈Ψi,j(τi,k)
Ci,l

Rglobal
i,j = Rpred

i,j +
∑

τi,k∈Πpred
i,j

Ci,k

Our
method 1

(Sec. 3.2.3.1)

Rpred
i,j = max

τi,k∈ipred(τi,j)

{
Rpred
i,k + ei(k, j) + Ipredi,j (τi,k)

}
+ Ci,j

Risol
i,j = Rpred

i,j +
∑

τi,k∈Πpred
i,j

Ci,k

Rglobal
i,j = Risol

i,j + Iext(τi,j)

Iext(τi,j) =
∑

τp,q∈hep(τi,j)
π(τp,q)∈π(pred?(τi,j))

⌈
Jp,q + Iext(τi,j) +Risol

i,j

Tp

⌉
Cp,q

Our
method 2

(Sec. 3.2.3.1)

Rpred
i,j = Ci,j + max

τi,k∈ipred(τi,j

{
Rpred
i,k + Ii,j(τi,k) + ei(k, j) + Ipredi,j (τi,k)

}
Ii,j(τi,k) = Iext(τi,j) if π(τi,j) 6= π(τi,k), otherwise 0

Iext(τi,j) =
∑

τp,q∈hep(τi,j)
π(τp,q)=π(τi,j)

⌈
Jp,q + Iext(τi,j) + Icnx(τi,j)

Tp

⌉
Cp,q

Icnx(τi,j) =
∑

τi,k∈Gcnx
pred

(τi,j)
Ci,k +

∑
τi,k∈Πcnx

i,j

Ci,k

Rglobal
i,j = Rpred

i,j +
∑

τi,k∈Πpred
i,j

Ci,k + Iext(τi,j)
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feasibility of the hard real-time system studied. Moreover, in Chapter 6, we
study and compare the performance of the 5 methods proposed in this chapter.
We will see that most of them are not comparable and that their run-times are
reasonable compared to other existing analysis due to the polynomial complexity
of iterative equations. Hence, we propose a schedulability test that combines all
these methods together in order to benefit from the performance of each of them.
Indeed, we could apply all these approaches to estimate the response time of a
given real-time system. Then, we use the minimum response time estimation for
the schedulability test. Since all these methods provide a safe estimation of the
response time, then this minimum is also safe and it never under-estimates the
actual response time. Thus, this combined schedulability test is also sufficient to
guarantee the feasibility of hard real-time systems
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The execution time of a program (sub-task) varies depending on many factors
such as the input values, the path taken through the code and the state of hardware
components (such as cache memory and communication bus). This variability may
induce important additional time in the WCET, because of conditions that rarely
occur. For a more accurate analysis, we model execution times and communication
delays by probability distributions where we associate a probability to each possible
value of execution or communication time.

In this chapter, we study the schedulability of a DAG task model with proba-
bilistic execution times and communication delays. We consider the two proposed

57
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RTA (Sections 3.2.3.1 and 3.2.3.2) that characterize the worst-case arrival patterns
differently from the existing work of Palencia et al. [1]. Indeed, we adapt these
response time equations to deal with probabilistic parameters. Firstly, we simplify
the analysis and keep it scalable by assuming that all random variables used are
independent. However, this assumption does not always hold. Secondly, therefore,
we use a Bayesian network to model the dependencies between the different random
variables employed in the response time equations.

In addition, we study the schedulability of a probabilistic DAG task model
among C-space [83, 84] that represents different possible values of each execution
time distribution. We use a machine learning classification technique called SVM
(Support Vector Machine) [85, 86] to determine the combinations of values that lead
to a schedulable system. Then, we weight each combination with its probability
of occurrence and we sum these probabilities to deduce the probability of the
system being schedulable.

4.1 Probabilistic Task Model and Definitions
In this chapter, we consider a task model similar to the DAG task model used in the
previous Chapter 3 and we add probabilistic timing parameters like execution times
and communication delays. We denote by pWCET (respectively pWCCT), the
probabilistic Worst-Case Execution Time (respectively the probabilistic Worst-Case
Communication Time) as defined below.

Definition 4.1 (From Davis and Cucu [87]). The pWCET distribution of a program
is the least upper bound, in the sense of the greater than or equal to operator �
(see Definition 4.3), on the execution time distribution of the program for every
valid scenario of operation, where a scenario of operation is defined as an infinitely
repeating sequence of input states and initial hardware states that characterize a
feasible way in which recurrent execution of the program may occur.

Definition 4.2. Similarly, we define pWCCT distribution as the least upper bound
of communication delay distribution between two programs (sub-tasks) for every
valid scenario of operation.

Definition 4.3 (From Diaz et al. [88]). The probability distribution of a random
variable X is said to be greater than or equal to (i.e. upper bounds) another
random variable Y and we denote X � Y, if ∀ x ∈ R, FX (x) ≤ FY(x), (i.e.
1− FX (x) ≥ 1− FY(x)).
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Remark. In the remainder, we use calligraphic characters, such as X , to denote
random variables.

Graphically, this means that the Cumulative Distribution Function (CDF) of X
is always below that of Y , or alternatively, the 1-CDF (exceedance function) of X
is always above that of Y (see curves in Figure 4.1). We note that the greater than
or equal to relation � between two random variables does not provide a total order.
For instance, in Figure 4.1, the 1-CDF curves of random variables X and Z cross.
Then, we say that X and Z are not comparable, i.e. X � Z and Z � X .

03:8 A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

I Definition 3. (From Diaz et al. [44]) The probability distribution of a random variable X is
greater than or equal to (i.e. upper bounds) that of another random variable Y (denoted by X ≤ Y)
if the Cumulative Distribution Function (CDF) of X is never above that of Y, or alternatively,
the 1-CDF of X is never below that of Y.

Graphically, Definition 2 means that the 1 - CDF of the pWCET distribution is never below
that of the execution time distribution for any scenario of operation. Hence the 1 - CDF or
exceedance funtion of the pWCET distribution may be used to determine an upper bound on the
probability p that the execution time of a randomly selected run of the program will exceed an
execution time budget x, for any chosen value of x. This upper bound is valid for any feasible
scenario of operation.

Figure 2 Exceedance function or 1-CDF for the pWCET distribution of a program, and also execution
time distributions for specific scenarios of operation.

Figure 2 illustrates the execution time distributions of a number of di�erent scenarios of
operation (solid lines), the precise pWCET distribution (red dashed line) which is the least upper
bound (i.e. the point-wise maxima of the 1 - CDF) for all of these distributions, and also some
arbitrary upper bound pWCET distribution (red dotted line) which is a pessimistic estimate of
the precise pWCET. Also shown (on the y-axis) is an upper bound p on the probability that any
randomly selected run of the program will have an execution time that exceeds x (on the x-axis).
The value x is referred to as the pWCET estimate at a probability of exceedance of p. (More
formally, the least upper bound pWCET distribution is given by sup◊œ� F̄◊, where F̄◊ is the 1 -
CDF for scenario of operation ◊, and � is the space of all valid scenarios of operation).

Note that the greater than or equal to relation ≤ between two random variables does not
provide a total order, i.e. for two random variables X and Z it is possible that X ✏ Z and Z ✏ X.
Hence the precise pWCET distribution may not correspond to the execution time distribution for
any specific scenario. This can be seen in Figure 2, considering the execution time distributions
X , Y and Z. It is the case that X ≤ Y , but X ✏ Z and Z ✏ X. By contrast, as the greater than
or equal to relation for scalars (Ø) does provide a total order, the precise WCET does correspond
to the execution time for some specific run of the program.

Figure 4.1: Example for the pWCET distribution of a program, and also execution time
distributions for specific scenarios of operation as presented by Davis and Cucu [87]

In Figure 4.1, solid lines represent execution time distributions of the program
(sub-task) for different scenarios of operation. The red dashed line is the least
upper bound (higher envelope) of all these distributions. It represents the actual
pWCET distribution of the program over every valid scenario of operation, while
the red dotted line is a pessimistic estimate (upper bound) of the actual pWCET.
Exploring all possible scenarios of operation to determine the actual pWCET is
often impractical. Thus, we use an estimate of pWCET to characterize a sub-
task. This estimate should be equal to or upper bound (overestimate) the actual
pWCET to guarantee that it is a safe estimate but this overestimation introduces
some pessimism. Hence, a tighter upper bound of pWCET allows us to reduce
pessimism while being safe.
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Notation for the probabilistic parameters

In the remainder, to represent a probabilistic parameter (pWCET, pWCCT), we
use a discrete random variable that has a finite number of possible values. It is
defined by its probability mass function (discrete distribution) as follows:

Definition 4.4. The probability mass function fC of the discrete random variable
C, that has KC possible values denoted

{
Ch, 1 ≤ h ≤ KC

}
, is defined by:

fC
(
Ch
)

= P
(
C = Ch

)
, ∀h ∈ {1, . . . , KC}

We associate possible values of C with their probabilities according to the following
notation:

C =
(
C1 C2 · · · CKC

fC(C1) fC(C2) · · · fC(CKC)

)

where Ch < Ch+1, ∀h ∈ {1, 2, . . . , KC − 1}. Thus, C1 is the minimum value that
the random variable C could take and CKC is its maximum value. We note that∑KC

h=1 fC
(
Ch
)

= 1 according to the definition of probability mass function.

We denote the pWCET of sub-task τi,j by Ci,j and the pWCCT between sub-
tasks τi,j and τi,k by Ei(j, k).

4.2 Extension of Response Time Equations
In this section, we extend the deterministic RTA proposed in the previous Chapter 3
to deal with probabilistic execution and communication times. The probabilistic
RTA equations should estimate the distribution of probabilistic Worst-Case Response
time (pWCRT) instead of a single WCRT value for each sub-task and DAG task.
The pWCRT distribution of a DAG task is used to derive the Deadline Miss
Probability (DMP), as defined below, of that DAG task instead of a binary decision
about the respect or not of the deadline, as considered in the deterministic analysis.

Definition 4.5. The Deadline Miss Probability DMPi of task τi is the probability
that any job of task τi misses its deadline. It is equal to the probability that the
pWCRT of task τi exceeds its deadline Di:

DMPi = P (Rglobal
i > Di)

We denote by Rglobal
i the pWCRT distribution of task τi as defined by Equation 3.13

(on page 38).
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In this section, we assume that the random variables used like pWCET and
pWCCT are independent in order to simplify the analysis as a first step towards
a more general one. Hence, in the next Section 4.3, we study the case of dependent
random variables and we establish a more precise analysis based on a Bayesian
network to model existing dependencies.

Definition 4.6 (From Davis and Cucu [87]). Two random variables X and Y are
independent if they describe two events such that the knowledge of whether one event
did or did not occur does not change the probability that the other event occurs.

Stated otherwise, the joint probability is equal to the product of their probabilities:

P ({X = x} ∩ {Y = y}) = P (X = x) · P (Y = y)

In our context, a random variable characterizes the event that the execution
times of a program or the communication times between two programs takes
a certain value.

4.2.1 Probabilistic Operators

A probabilistic operator manipulates probability distributions of random variables
and it produces the probability distribution of the random variable defined by
this operator. In order to adapt the response time equations developed in Sec-
tions 3.2.3.1 and 3.2.3.2 to our probabilistic analysis, we present the required
probabilistic operators.

4.2.1.1 Probabilistic sum (convolution) operator

The convolution operator is used to compute the sum of two independent random
variables as defined below:

Definition 4.7. Let X and Y be two discrete and independent random variables
and Z the random variable defined by their sum Z = X + Y.

The probability mass function (distribution) fZ of Z is defined by the convolu-
tion of probability distribution of X and Y i.e. fZ = fX ⊗ fY . More explicitly, fZ
is defined as follows:

fZ(t) = P (Z = t) =
k=+∞∑
k=−∞

P (X = k) · P (Y = t− k) (4.1)
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Example 4.1. For instance, the convolution of two probability distributions is as
follows:(

3 7
0.3 0.7

)
⊗
(

0 4
0.1 0.9

)
=
(

3 7 11
0.3× 0.1 0.3× 0.9 + 0.7× 0.1 0.7× 0.9

)

=
(

3 7 11
0.03 0.34 0.63

)

Remark. For the sake of the simplicity, in the remainder of this thesis, we denote
the probability distribution fX by the name of its random variable i.e. X . Thus, we
refer to the convolution of two probability distributions by Z = X ⊗ Y (instead of
fZ = fX ⊗ fY).

A complementary operator to the convolution is the operator 	, defined by
X 	 Y = X ⊗ (−Y).

4.2.1.2 Probabilistic maximum operator

The maximum operator operates on probability distributions and computes a
probability distribution of a random variable that is greater than or equal to all
the provided distributions. The greater than or equal to relation could be defined
on values taken by independent random variables or it could also be defined on
the CDF function (see Definition 4.3). Depending on the greater than or equal
to relation used, we can define different max operators.

Probabilistic maximum based on independent random variables compar-
ison

The random variable defined as the maximum of two independent random
variables has a probability distribution defined as below:

Definition 4.8. Let X and Y be two discrete and independent random variables
and Z = max(X ,Y)

The cumulative distribution function FZ of Z is computed as follows:

FZ(t) = P (Z 6 t) = P (max (X ,Y) 6 t)
= P (X 6 t,Y 6 t)
= P (X 6 t) · P (Y 6 t) (independence)

=
t∑

i=−∞
P (X = i) ·

t∑
j=−∞

P (Y = j)
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The probability distribution fZ of Z is given by:

fZ(t) = P (Z = t) =
∑

max(i,j)=t
P (X = i) · P (Y = j) (4.2)

We define the probabilistic maximum operator of independent probability distri-
bution fX and fY by:

MaxIndep {fX , fY} = fZ

We note that Z � X because FZ(t) = FX (t) · FY(t) ≤ FX (t), ∀ t ∈ R (since
0 ≤ FX (t) ≤ 1 and 0 ≤ FY(t) ≤ 1, ∀ t ∈ R). Similarly, we deduce that Z � Y.

Remark. For the sake of simplicity of notation, in the remainder, we denote the
maximum operator of independent probability distribution byMaxIndep {X ,Y} = Z
(instead ofMaxIndep(fX , fY) = fZ), where Z is the probability distribution computed
above (in Equation 4.2).

Example 4.2. For instance, the maximum between two independent probability
distributions is as follows:

MaxIndep

{(
3 7

0.3 0.7

)
,

(
0 4

0.1 0.9

)}
=
(

3 4 7
0.3× 0.1 0.3× 0.9 0.7× 0.1 + 0.7× 0.9

)

=
(

3 4 7
0.03 0.27 0.7

)

Probabilistic maximum based on CDF function comparison

According to the comparison relation of CDF functions (defined in Definition 4.3),
the maximum of probability distributions, also called the supremum, is defined
in the work of Diaz et al. [2].

Definition 4.9 (From Diaz et al. [2]). Let X and Y be two discrete random variables,
we denote their supremum (maximum) by the random variable Z =MaxDiaz {X ,Y}.
Z is defined with its CDF function given below:

FZ(t) = min (FX (t), FY(t)) , ∀ t ∈ R

From the definition ofZ, we note that Z � X because FZ(t) = min (FX (t), FY(t)) ≤
FX (t), ∀ t ∈ R. Similarly, we deduce that Z � Y.

Graphically, the maximum, defined by Diaz et al. [2], of two probability
distributions is the higher envelope of their 1-CDF functions (i.e. the lower envelope
of their CDF functions) as illustrated in Figure 4.1 on page 59.



64 4.2. Extension of Response Time Equations

Example 4.3. For instance, the maximum of two probability distributions, according
to the definition of Diaz et al. [2], is computed as follows:

MaxDiaz {X ,Y} =MaxDiaz

{(
3 7

0.3 0.7

)
,

(
0 4

0.1 0.9

)}
=
(

3 4 7
0.1 0.2 0.7

)

In fact, the corresponding CDF functions are
(

0 3 4 7
0 0.3 0.3 1

)
and

(
0 3 4 7

0.1 0.1 1 1

)
.

Thus, the CDF function of their supremum (maximum) is:(
0 3 4 7

min(0, 0.1) min(0.3, 0.1) min(0.3, 1) min(1, 1)

)
=
(

0 3 4 7
0 0.1 0.3 1

)

Graphically, we note, from the Figure 4.2 (on page 66), that theMaxDiaz {X ,Y}
(the red dashed line) is the lower envelope of the CDF functions (i.e. higher envelope
1-CDF functions) of random variables X and Y.

Lemma 4.1. Let X and Y be two discrete and independent random variables.
Then:

MaxIndep {X ,Y} �MaxDiaz {X ,Y}

Proof. The CDF function of MaxIndep {X ,Y} is equal to FX (t) · FY(t), ∀ t ∈ R.
While, the CDF function ofMaxDiaz {X ,Y} is equal to min (FX (t), FY(t)) , ∀ t ∈ R.

We know that 0 ≤ FX (t) ≤ 1 and 0 ≤ FY(t) ≤ 1, ∀ t ∈ R. Thus, FX (t) ·FY(t) ≤
FX (t), ∀ t ∈ R (since FY(t) ≤ 1 and 0 ≤ FX (t), ∀ t ∈ R). Similarly, we can
prove that FX (t) · FY(t) ≤ FY(t), ∀ t ∈ R. Then, we conclude that FX (t) · FY(t) ≤
min (FX (t), FY(t)) , ∀ t ∈ R (i.e. FMaxIndep{X ,Y}(t) ≤ FMaxDiaz{X ,Y}(t), ∀ t ∈ R).
Hence, we getMaxIndep {X ,Y} �MaxDiaz {X ,Y} �

Probabilistic maximum based on the Fréchet-Hoeffding copula bound

Another way to define an upper bound (maximum) of random variables, is by
using the Fréchet-Hoeffding copula bound [3].

Definition 4.10 (From Bernat et al. [3]). Let X and Y be two discrete random
variables and FXY is their joint CDF function. Then, we have:

FXY(x, y) ≥ max (FX (x) + FY(y)− 1, 0) , ∀ x ∈ R and ∀ y ∈ R

Definition 4.11. Let X and Y be two discrete random variables. We denote their
maximum, based Fréchet-Hoeffding copula bound (Definition 4.10), by the random
variable Z =MaxCopula {X ,Y}. Z is defined with its CDF function given below:

FZ(t) = max (FX (t) + FY(t)− 1, 0) = (FX (t) + FY(t)− 1)+
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For a given t ∈ R, if FZ(t) = FX (t) + FY(t) − 1 then FZ(t) ≤ FX (t) because
FY(t)− 1 ≤ 0 (since 0 ≤ FY(t) ≤ 1, ∀ t ∈ R). Otherwise, if FZ(t) = 0 it is obvious
that FZ(t) ≤ FX (t) (since 0 ≤ FX (t) ≤ 1, ∀ t ∈ R).

In conclusion, FZ(t) ≤ FX (t), ∀ t ∈ R. Therefore, Z � X . Similarly, we
deduce that Z � Y.

Theorem 4.1. Let X and Y be two discrete and independent random variables and
Z =MaxIndep {X ,Y}) Then:

MaxCopula {X ,Y} � Z �MaxDiaz {X ,Y} (4.3)

Proof. The cumulative distribution function FZ of Z is computed, ∀ t ∈ R, as
follows:

FZ(t) = P (Z 6 t) = P (max (X ,Y) 6 t)
= P (X 6 t,Y 6 t)
= FXY(t, t)
≥ max (FX (t) + FY(t)− 1, 0) (Fréchet bound Definition 4.10)
≥ FMaxCopula{X ,Y}(t), ∀ t ∈ R

Then, we getMaxCopula {X ,Y} � Z
From Lemma 4.1, we deduce that Z �MaxDiaz {X ,Y}

�

Example 4.4. For instance, based on the Fréchet-Hoeffding copula bound (Defini-
tion 4.10), the maximum of probability distributions is defined as follows:

MaxCopula {X ,Y} =MaxCopula

{(
3 7

0.3 0.7

)
,

(
0 4

0.1 0.9

)}
=
(

4 7
0.3 0.7

)

In fact, the corresponding CDF functions are
(

0 3 4 7
0 0.3 0.3 1

)
and

(
0 3 4 7

0.1 0.1 1 1

)
.

Thus, the CDF function of their maximum bound is:(
0 3 4 7

(0 + 0.1− 1)+ (0.3 + 0.1− 1)+ (0.3 + 1− 1)+ (1 + 1− 1)+

)
=
(

0 3 4 7
0 0 0.3 1

)

From Figure 4.2, we note that the CDF of MaxCopula {X ,Y} (the solid pink
line) is below the CDF of MaxIndep {X ,Y} (the solid green line) which is be-
low the CDF of MaxDiaz {X ,Y} (the red dashed line). Hence, we deduce that
MaxCopula {X ,Y} � MaxIndep {X ,Y} � MaxDiaz {X ,Y}. This result was proven
in general by Theorem 4.1.
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Figure 4.2: CDF functions of distributions examples X and Y and their maximums
corresponding to different Definitions 4.8, 4.9 and 4.11

Remark. Equation 4.3 is similar to the Fréchet-Hoeffding copula lower and upper
bounds (presented by Equation 4 in Bernat et al. [3]). The only difference is the
comparison signs. They are inverted because we use a comparison relation between
distributions (Definition 4.3) which is different from the usual comparison between
reals.

4.2.2 Extension of first method equations

After defining probabilistic operators, we use them to extend deterministic equations
of Section 3.2.3.1 and to provide a RTA for task model with probabilistic parameters.
First, we proceed by replacing the sum and maximum operators, in deterministic
response time equations, by the corresponding probabilistic operators (i.e. con-
volution and probabilistic maximum respectively). Second, we describe how the
iterative update of external interference Equation 3.24 (on page 49) is implemented
in the case of a probabilistic task set. We also adjust the stop condition to be
adapted to probabilistic parameters.
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4.2.2.1 Replacing sum and maximum operators

In equations 3.21 and 3.22, we replace the sum operator by the convolution
to handle probability distributions instead of scalar values. We also replace the
maximum operator by a probabilistic one.

Then, Equation 3.21 becomes

Rpred
i,j = Max

τi,k∈ipred(τi,j)

{
Rpred
i,k ⊗ Ei(k, j)⊗ Ipredi,j (τi,k)

}
⊗ Ci,j (4.4)

TheMax operator, used in the previous equation, refers to one of the defined
probabilistic maximum operators (MaxIndep, MaxDiaz or MaxCopula). Moreover,
Ipredi,j (τi,k) represents the internal interference caused by predecessors of τi,j on τi,k
and its predecessors. It is defined as follows, similarly to Lemma 3.3 (on page 42):

Ipredi,j (τi,k) =
⊗

τi,l∈Ψi,j(τi,k)
Ci,l (4.5)

We denote by Ψi,j(τi,k) the set composed of predecessor sub-tasks to τi,j but not
predecessors to τi,k that could preempt one of the sub-tasks in pred?(τi,k) containing
τi,k and all its predecessors (see Equation 3.17 on page 43).

Equation 3.22 becomes:

Risol
i,j = Rpred

i,j ⊗
⊗

τi,k∈Πpred
i,j

Ci,k (4.6)

We denote by Πpred
i,j the set of sub-tasks not predecessors to τi,j that could

preempt τi,j or one of its predecessors. It is defined by Formula 3.20 (on page 44).

Theorem 4.2. For a probabilistic DAG task set, if all random variables Ci,j and
Ei(j, k) (all pWCETs and pWCCTs) are independent between each other, then the
convoluted random variables in response time equations (Equations 4.4, 4.5 and 4.6)
are also independent.

Proof. We assume that all pWCETs and pWCCTs (Ci,j and Ei(j, k)) are independent.
Hence, Ipredi,j (τi,k) (Equation 4.5) equals the convolution of independent random
variables and it depends on the pWCET of predecessors of τi,j that are not
predecessors of τi,k. In the other hand, Rpred

i,k (defined in Equation 4.4) depends
only on the pWCET of τi,k and its predecessors and the pWCCTs between them.
Then, there is no common random variable that the two random variables Rpred

i,k

and Ipredi,j (τi,k) depend on. Thus, convolution operators in Equation 4.4 are applied
between independent random variables.
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For Equation 4.6, the second term is the convolution of independent random
variables Ci,k. It depends on the pWCET of parallel sub-tasks to τi,j and on its
predecessors (the set Πpred

i,j ). However, the first term Rpred
i,j (the preceding response

time) does not depend on parallel sub-tasks, it depends only on the pWCET of
τi,j and its predecessors and the pWCCTs between them. Hence, the convolution
operators in Equation 4.6 are used on independent random variables.

�

From Theorem 4.2, we conclude that the convolution operator in response time
equations (Equations 4.4, 4.5 and 4.6) is applied on independent random variables
as required by the definition of this operator (Definition 4.7).

Definition 4.12. A DAG is said to have a polytree structure if its underlying
undirected graph is a connected graph without cycles (acyclic).

A DAG is said to be an arborescence if it is a rooted polytree, i.e. a polytree
with a single source node.

Theorem 4.3. The preceding response times Rpred
i,k , k ∈ ipred(τi,j) inside the

probabilistic maximum operator in Equation 4.4 are independent random variables
if the DAG task τi has a polytree structure.

Proof. In Equation 4.4, the preceding response times Rpred
i,k of each immediate

predecessor τi,k depends only on its pWCET Ci,k, the pWCETs of its predecessors
and the pWCCTs between them.

If two immediate predecessors of τi,j have a common predecessor then they will
form an undirected cycle with τi,j and the common predecessor. This is not possible
because the DAG has polytree structure. Thus, immediate predecessors of τi,j cannot
have a common predecessor and their preceding response timesRpred

i,k , k ∈ ipred(τi,j)
are independent random variables.

�

The probabilistic maximum operator between independent random variables
(Definition 4.8) could be used, in equation 4.4, for some specific cases and DAG
structures such as polytree. In general, we should use the maximum operator based
on copula bound (Definition 4.11) in order to avoid under-estimating the maximum
distribution and to guarantee a safe approximation. However, this maximum
operator may provide a pessimistic estimation compared to the exact maximum
distribution as noted in the following Example 4.5.
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Example 4.5. In this example, we use equations 4.4, 4.5 and 4.6 to compute
response time distributions of the task set described by Figure 4.3 and Table 4.1. We
use different definitions of maximum operator and we compare the results obtained
with the exact distribution obtained by exploring all possible combinations.

τ1,1 τ1,2
E1(1, 2)

τ2,1

τ2,2

τ2,3

τ2,4

π1

π2

E2(1, 2)

E2(1, 3)

E2(2, 4)

E2(3, 4)

Figure 4.3: Example of a DAG task set with parallel sub-tasks

Table 4.1: Parameters of the task set described in Figure 4.3

Sub-task Ci,j Ti Priority Precedence delay

τ1,1

(
1
1

)
20 high E1(1, 2)

(
1
1

)

τ1,2

(
1 2

0.5 0.5

)
20 high − −

τ2,1

(
1 5

0.3 0.7

)
30 low E2(1, 2)

(
0
1

)

τ2,2

(
3 7

0.1 0.9

)
30 low E2(1, 3)

(
1
1

)

τ2,3

(
4 8

0.6 0.4

)
30 low E2(2, 4)

(
0
1

)

τ2,4

(
2
1

)
30 low E2(3, 4)

(
1
1

)

In Table 4.2, we present the distribution of response times in isolation for
each sub-task according to different probabilistic maximum operators; the maximum
between independent random variable (Definition 4.8), the maximum based on Diaz
comparison of CDF functions (Definition 4.9) and the maximum based on copula
bound (Definition 4.11).
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Table 4.2: Estimation of the response time in isolation of sub-tasks described in Figure 4.3
and Table 4.1 with different maximum Definitions 4.8, 4.9 and 4.11

Sub-task Risol
i,j (Indep) Risol

i,j (Diaz) Risol
i,j (Copula)

τ1,1 ( 1
1 ) ( 1

1 ) ( 1
1 )

τ1,2 ( 3 4
.5 .5 ) ( 3 4

.5 .5 ) ( 3 4
.5 .5 )

τ2,1 ( 1 5
.3 .7 ) ( 1 5

.3 .7 ) ( 1 5
.3 .7 )

τ2,2 ( 4 8 12
.03 .34 .63 ) ( 4 8 12

.03 .34 .63 ) ( 4 8 12
.03 .34 .63 )

τ2,3 ( 6 10 14
.18 .54 .28 ) ( 6 10 14

.18 .54 .28 ) ( 6 10 14
.18 .54 .28 )

τ2,4 ( 9 10 13 14 17
.0054 .0612 .1998 .4536 .28 ) ( 9 10 13 14 17

.03 .15 .19 .35 .28 ) ( 13 14 17
.09 .63 .28 )

For all sub-tasks except for τ2,4, in Table 4.2, we note that the response time
distributions are equal for different maximum definitions. Indeed, these sub-tasks
have only one immediate predecessor. Thus, the maximum operator in Equation 4.4
yields the input distribution, which is the same for different maximum definitions.
However, sub-task τ2,4 has two immediate predecessors. Therefore, the maximum
operator is applied on two different distributions. Hence, we get different maximum
distributions and different response times according to the maximum operator used.

In Table 4.3, we enumerate all possible combinations of execution time values for
all sub-tasks based on their execution time distribution. Each row presents a possible
combination with the selected value for each execution time and the corresponding
probability. It also contains the computed response time of each sub-task obtained
by applying deterministic analysis on selected execution times values.

In Table 4.4, we compute the distribution of response times in isolation for each
sub-task from Table 4.3 by summing the probabilities of the concerned combinations
for each value in the response time distribution.

For all sub-tasks except for τ2,4, we note that the response time distributions
obtained are equal to the ones computed with response time equations (in Table 4.2).
In fact, the maximum operator in response time equations is not actually applied
for these sub-tasks because they have only one immediate predecessor. However,
the only probabilistic operator actually used for these sub-tasks is the convolution.
As we proved in Theorem 4.2, convolution in response time equations operates on
independent random variables. Therefore, response time distributions computed
with these equations are equal to the exact distributions obtained by exploring all
combinations.

On the other hand, for sub-task τ2,4, the maximum operator is applied on two
dependent distributions because τ2,4 has two immediate predecessors τ2,2 and τ2,3 that
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Table 4.3: Deterministic analysis of deterministic task sets obtained by all possible
combinations of execution times values.

N° C1,2 C2,1 C2,2 C2,3 Prob. Risol
1,1 Risol

1,2 Risol
2,1 Risol

2,2 Risol
2,3 Risol

2,4
1 1 1 3 4 0.009 1 3 1 4 6 9
2 2 1 3 4 0.009 1 4 1 4 6 9
3 1 5 3 4 0.021 1 3 5 8 10 13
4 2 5 3 4 0.021 1 4 5 8 10 13
5 1 1 7 4 0.081 1 3 1 8 6 10
6 2 1 7 4 0.081 1 4 1 8 6 10
7 1 5 7 4 0.189 1 3 5 12 10 14
8 2 5 7 4 0.189 1 4 5 12 10 14
9 1 1 3 8 0.006 1 3 1 4 10 13
10 2 1 3 8 0.006 1 4 1 4 10 13
11 1 5 3 8 0.014 1 3 5 8 14 17
12 2 5 3 8 0.014 1 4 5 8 14 17
13 1 1 7 8 0.054 1 3 1 8 10 13
14 2 1 7 8 0.054 1 4 1 8 10 13
15 1 5 7 8 0.126 1 3 5 12 14 17
16 2 5 7 8 0.126 1 4 5 12 14 17

Table 4.4: Distribution of response times in isolation for all sub-tasks based on exploring
all combinations in Table 4.3.

Sub-task Risol
i,j (All combination)

τ1,1 ( 1
2×.009+2×.021+2×.081+2×.189+2×.006+2×.014+2×.054+2×.126 ) = ( 1

1 )
τ1,2 ( 3 4

.009+.021+.081+.189+.006+.014+.054+.126 .5 ) = ( 3 4
.5 .5 )

τ2,1 ( 1 5
2×.009+2×.081+2×.006+2×.054 2×.021+2×.189+2×.014+2×.126 ) = ( 1 5

.3 .7 )
τ2,2 ( 4 8 12

2×.009+2×.006 .2×.021+2×.081+2×.014+2×.054 2×.189+2×.126 ) = ( 4 8 12
.03 .34 .63 )

τ2,3 ( 6 10 14
2×.009+2×.081 2×.021+2×.189+2×.006+2×.054 2×.014+2×.126 ) = ( 6 10 14

.18 .54 .28 )
τ2,4 ( 9 10 13 14 17

2×.009 2×.081 2×.021+2×.006+2×.054 2×.189 2×.014+2×.126 ) = ( 9 10 13 14 17
.018 .162 .162 .378 .28 )

have a common predecessor τ2,1. Since the proposed maximum operators are not able
to capture these dependencies, they produce an estimate of the maximum distribution
that may under-estimate or over-estimate the exact distribution obtained by exploring
all combinations. Therefore, in Figure 4.4, we compare the CDF function of exact
response time distribution of τ2,4 with CDF functions of response times obtained
according to different maximum definitions.

From Figure 4.4, we note that the CDF of the response time in isolation obtained
with the copula maximum operator is below the one obtained with independent maxi-
mum operator which is also below the CDF of the exact response time distribution
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Figure 4.4: Comparison between CDF functions of response time in isolation Risol2,4
computed with different probabilistic maximum Definitions 4.8, 4.9 and 4.11 and the
exact one derived from all combinations

derived from all combinations. We also remark that the CDF of the response time in
isolation obtained with the Diaz maximum operator is above all other CDF functions.
We deduce that Risol

2,4 (Copula) � Risol
2,4 (Indep) � Risol

2,4 (Combin) � Risol
2,4 (Diaz).

These comparisons are coherent with the results obtained by Theorem 4.1.
It is worth noting that the response time obtained with the independent maximum

operator is a safe estimate because it does not under-estimate the exact response
time distribution (the CDF function never goes above it). It is also less pessimistic
than the one obtained with copula maximum because Risol

2,4 (Copula) � Risol
2,4 (Indep).

Hence, the independent maximum operator allows us to reduce pessimism while
guaranteeing a safe estimation of the response time.

4.2.2.2 Iterative equation for global response time

After estimating the distribution of response times in isolation, we use an iterative
equation to compute the global response time distribution. Indeed, we extend
Equation 3.23 in order to handle probabilistic parameters. Hence, we replace
the usual operators by probabilistic ones like convolution and maximum. Thus,
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Equation 3.23 becomes:

Rglobal
i,j = Risol

i,j ⊗
⊗

τp,q∈hep(τi,j)
π(τp,q)∈π(pred?(τi,j))

Jp,q ⊗R
global
i,j

Tp

 Cp,q (4.7)

The jitter Ji,j of τi,j is given by:

Ji,j = Max
τi,k∈ipred(τi,j)

{
Rglobal
i,k ⊗ Ei(k, j)

}
(4.8)

In the probabilistic case, when considering a preemption from a higher priority
task, we should know its activation time because values in the response time
distribution that are prior to preemption activation should not be modified, only
greater response time values should be preempted and increased. Therefore, we
use an algorithm similar to the one proposed by Maxim and Cucu [74] to solve
the iterative Equation 4.7.

Algorithm 1: Computation of global response time distribution of τi,j
according to iterative Equation 4.7
Data: Preempt(τi,j) set of sub-tasks from higher priority DAG that could

preempt τi,j or one of its predecessors. Risol
i,j distribution of response

time in isolation of τi,j
Result: Rglobal

i,j global response time distribution of τi,j
1 Rglobal

i,j = Risol
i,j /* initialize global response time distribution */

2 for τa,b ∈ Preempt(τi,j) do
3 Aa,b = 0 /* initialize activation time of τa,b */
4 end
5 τp,q = argminτa,b∈Preempt(τi,j)(Aa,b)
6 Next_Activation = Ap,q 	 Jp,q
7 while Next_Activation < maxvalue(Rglobal

i,j ) and Next_Activation < Di do
8 Rglobal

i,j = doPreemption(Rglobal
i,j , Next_Activation, Cp,q)

9 Ap,q = Ap,q + Tp
10 τp,q = argminτa,b∈Preempt(τi,j)(Aa,b)
11 Next_Activation = Ap,q 	 Jp,q
12 end
13 return Rglobal

i,j

In Algorithm 1, we compute the distribution of global response time by including
higher priority preemptions. It consists of tracking the activation time Aa,b of each
sub-task τa,b ∈ Preempt(τi,j) belonging to a higher priority DAG task (lines 2 and
3). Then, we select the higher priority sub-task with the earliest activation (lines
5 and 6) and we perform the preemption using doPreemption() routine (line 8),
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which is similar to the method described in the work of Diaz et al. [73] (Figure 2).
After that, we update the next activation of the preempting sub-task by adding its
minimum inter-arrival time (line 9). Finally, we select the next nearest activation
of higher priority sub-tasks (lines 10 and 11) and we repeat the same steps until
reaching one of the stop conditions (line 7) described later.

The doPreemption() routine is defined in the work of Maxim and Cucu [74] (by
algorithm 2). It is composed mainly of three steps; First, we split the response time
distribution, at the next activation time of the selected higher priority sub-task,
into a head and tail parts. Second, we preempt the tail of the distribution by
convolving it with the execution time of the higher priority sub-task. Third, we
merge the head part and the new tail part resulting from the convolution in order
to obtain the response time distribution after preemption.

The release jitter of sub-task τp,q may delay or advance its activation. In order
to deal with the worst scenario and the greatest workload caused by higher priority
sub-tasks, we assume that the next activation Ap,q of τp,q occurs at the earliest
possible time and we subtract from it the release jitter Jp,q (line 11 of Algorithm 1)
using the 	 operator, which is a complementary operator of the convolution and
is defined in Section 4.2.1.1 (on page 61).

The iterative update and preemption of global response time distribution stop
if one of two conditions is reached (line 7 of Algorithm 1). First, if the earliest next
activation of higher priority sub-tasks is greater than the highest value in the response
time distribution Rglobal

i,j , then there is no additional preemption that could occur.
Therefore, we should stop iterations. Second, when the next activation of higher
priority sub-tasks is greater than the deadline of the studied sub-task τi,j , then even if
additional preemptions could occur they would not change the DMP of this sub-task.

In Chapter 6, we study the performance and run-time of our probabilistic
analysis based on probabilistic operators and iterative Algorithm 1 and we compare
them to those of other probabilistic analyses presented later in this chapter.

Example 4.6. In this example, we use iterative Equation 4.7 and Algorithm 1 to
compute the global response time distribution of the sub-tasks defined in Figure 4.3
and Table 4.1. We also determine the exact response time distribution obtained by
exploring all possible combinations.

In Table 4.5, we compare the global response time distributions computed with
different definitions of the maximum operator. Similarly to Table 4.2, we note that
for all sub-tasks except for τ2,4, the global response time distributions are the same
for all maximum operator definitions. However, for τ2,4, these distributions are
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Table 4.5: Estimation of the global response time of sub-tasks described in Figure 4.3
and Table 4.1 with different maximum Definitions 4.8, 4.9 and 4.11

Sub-
task Rglob

i,j (Indep) Rglob
i,j (Diaz) Rglob

i,j (Copula)

τ1,1 ( 1
1 ) ( 1

1 ) ( 1
1 )

τ1,2 ( 3 4
.5 .5 ) ( 3 4

.5 .5 ) ( 3 4
.5 .5 )

τ2,1 ( 2 6
.3 .7 ) ( 2 6

.3 .7 ) ( 2 6
.3 .7 )

τ2,2 ( 5 9 13
.03 .34 .63 ) ( 5 9 13

.03 .34 .63 ) ( 5 9 13
.03 .34 .63 )

τ2,3 ( 8 9 12 13 16 17
.09 .09 .27 .27 .14 .14 ) ( 8 9 12 13 16 17

.09 .09 .27 .27 .14 .14 ) ( 8 9 12 13 16 17
.09 .09 .27 .27 .14 .14 )

τ2,4 ( 11 12 13 15 16 17 19 22 23
.0027 .0333 .0306 .0999 .3267 .2268 .14 .07 .07 ) ( 11 12 13 15 16 17 19 22 23

.015 .09 .075 .095 .27 .175 .14 .07 .07 ) ( 15 16 17 19 22 23
.045 .36 .315 .14 .07 .07 )

different. This observation stems from the same observation on distributions of
response time in isolation that is included in Equation 4.7 for the calculation of the
global response time.

To illustrate the stop conditions of Algorithm 1 (line 7), we examine the global
response time computation of τ2,2. After the first preemption of higher-priority
sub-task τ1,1 at time 0, its next activation occurs after its minimum inter-arrival
time at instant 20 because its jitter J1,1 is equal to zero. This next activation is
greater than 13, the maximum response time value in Rglobal

2,2 distribution. Therefore,
τ1,1 cannot preempt τ2,2 any more and we should stop iterations.

Alternatively, we may stop iterations due to the second stop condition. To
highlight it, let us assume that the deadline of τ2,2 is equal to 10 (instead of 30) and
the minimum inter-arrival time of τ1,1 is equal to 12 (instead of 20). In this case,
after the first preemption of higher-priority sub-task τ1,1, its next activation becomes
equal to 12, which is lower than 13 the maximum value in R2,2. Thus, a second
preemption could occur. However, the next activation of τ1,1 is greater than the
deadline of τ2,2 (12 > 10) so there is no need to preform this preemption because the
DMP of τ2,2 remains unchangeable. It is equal to 0.63 whether the second preemption
is performed or not.

In Tables 4.6 and 4.7, we enumerate all possible combinations and we compute the
global response time distribution for each sub-task. For lines 12 and 16 in Table 4.6,
there are two values for Rglobal

2,4 because each value depends on the execution time of
the second job of τ1,2 that causes the second preemption. The column C1,2, in this
table, represents the execution time of the first job only. Hence, in lines 12 and 16,
each response time value of τ2,4 has a probability of the corresponding line multiplied
by the probability in C1,2 distribution.
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Table 4.6: Deterministic global response time computation of deterministic task sets
obtained by all possible combinations of execution time values.

N° C1,2 C2,1 C2,2 C2,3 Prob. Rglob
1,1 Rglob

1,2 Rglob
2,1 Rglob

2,2 Rglob
2,3 Rglob

2,4
1 1 1 3 4 0.009 1 3 2 5 8 11
2 2 1 3 4 0.009 1 4 2 5 9 12
3 1 5 3 4 0.021 1 3 6 9 12 15
4 2 5 3 4 0.021 1 4 6 9 13 16
5 1 1 7 4 0.081 1 3 2 9 8 12
6 2 1 7 4 0.081 1 4 2 9 9 13
7 1 5 7 4 0.189 1 3 6 13 12 16
8 2 5 7 4 0.189 1 4 6 13 13 17
9 1 1 3 8 0.006 1 3 2 5 12 15
10 2 1 3 8 0.006 1 4 2 5 13 16
11 1 5 3 8 0.014 1 3 6 9 16 19
12 2 5 3 8 0.014 1 4 6 9 17 22/23
13 1 1 7 8 0.054 1 3 2 9 12 15
14 2 1 7 8 0.054 1 4 2 9 13 16
15 1 5 7 8 0.126 1 3 6 13 16 19
16 2 5 7 8 0.126 1 4 6 13 17 22/23

Table 4.7: Distribution of global response time for all sub-tasks based on exploring all
the combinations in Table 4.6.

Sub-task Rglob
i,j (All combinations)

τ1,1 ( 1
2×.009+2×.021+2×.081+2×.189+2×.006+2×.014+2×.054+2×.126 ) = ( 1

1 )
τ1,2 ( 3 4

.009+.021+.081+.189+.006+.014+.054+.126 .5 ) = ( 3 4
.5 .5 )

τ2,1 ( 2 6
2×.009+2×.081+2×.006+2×.054 2×.021+2×.189+2×.014+2×.126 ) = ( 2 6

.3 .7 )
τ2,2 ( 5 9 13

2×.009+2×.006 .2×.021+2×.081+2×.014+2×.054 2×.189+2×.126 ) = ( 5 9 13
.03 .34 .63 )

τ2,3 ( 8 9 12 13 16 17
.009+.081 .009+.081 .021+.189+.006+.054 .27 .014+.126 .014+.126 ) = ( 8 9 12 13 16 17

.09 .09 .27 .27 .14 .14 )
τ2,4 ( 11 12 13 15 16 17 19 22 23

.009 .009+.081 .081 .021+.006+.054 .021+.189+.006+.054 .189 .014+.126 .007+.063 .007+.063 )

Rglobal
2,4 (All combinations) =

(
11 12 13 15 16 17 19 22 23
.009 .09 .081 .081 .27 .189 .14 .07 .07

)

From Figure 4.5, we have similar observations to those from Figure 4.4. We note
that there is a total order between different distributions. Indeed, from the layout of
CDF functions, we deduce that Risol

2,4 (Copula) � Risol
2,4 (Indep) � Risol

2,4 (Combin) �
Risol

2,4 (Diaz) which is coherent with the results obtained by Theorem 4.1. In addition,
the maximum operator between independent random variables provides a safe
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Figure 4.5: Comparison between CDF functions of global response timeRglobal2,4 computed
with different probabilistic maximum according to Definitions 4.8, 4.9 and 4.11 and the
exact one derived from all combinations

estimate of the exact response time while reducing pessimism compared to the
maximum operator based on copula bound.

4.2.3 Extension of second method equations

Following on the previous Section 4.2.2, we use similar techniques like probabilistic
operators and iterative preemptions algorithm to extend the deterministic equations
of Section 3.2.3.2 in order to analyze the task model with probabilistic parameters.

By replacing the sum and maximum operators by convolution and probabilistic
maximum respectively, Equation 3.26 becomes:

Rpred
i,j = Ci,j ⊗ Max

τi,k∈ipred(τi,j

{
Rpred
i,k ⊗ Ii,j(τi,k)⊗ Ei(k, j)⊗ Ipredi,j (τi,k)

}
(4.9)

We denote by Ii,j(τi,k) the external interference distribution when the immediate
predecessor τi,k is executed on a different core than τi,j.

Ii,j(τi,k) =


Iext(τi,k) if π(τi,k) 6= π(τi,j)(

0
1

)
otherwise
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The external interference distribution Iext(τi,j) is computed using the following it-
erative Equation 4.10. This equation is derived from the deterministic Equation 3.27
and it is resolved in a similar way to iterative Equation 4.7 by using Algorithm 1.

Iext(τi,j) =
⊗

τp,q∈hep(τi,j)
π(τp,q)=π(τi,j)

⌈
Jp,q ⊗ Iext(τi,j)⊗ Icnx(τi,j)

Tp

⌉
Cp,q (4.10)

The jitter Jp,q of sub-task τp,q is computed as in the previous Section 4.2.2
using Equation 4.8.

Equation 3.28 becomes:

Icnx(τi,j) =
⊗

τi,k∈Gcnx
pred

(τi,j)
Ci,k ⊗

⊗
τi,k∈Πcnx

i,j

Ci,k (4.11)

where the sets Gcnx
pred(τi,j) and Πcnx

i,j are defined respectively by Formulas 3.25
and 3.29 (on page 51).

Finally, the computation of the global response time distribution is derived
from deterministic Equation 3.30 as follows:

Rglobal
i,j = Rpred

i,j ⊗
⊗

τi,k∈Πpred
i,j

Ci,k ⊗ Iext(τi,j) (4.12)

We denote by Πpred
i,j the set of sub-tasks that are not predecessors of τi,j that

could preempt τi,j or one of its predecessors. It is defined more formally by
Equation 3.20 (on page 44).

Example 4.7. In this example, we illustrate the results of applying previous response
time equations on the task set defined by Figure 4.3 and Table 4.1. We also determine
the exact response time distribution obtained by exploring all possible combinations.

In Table 4.8, we compute the preceding response time and the global response
time distributions for each sub-task using the maximum operator between indepen-
dent random variables. We also evaluate the external interference and the jitter
distributions.

We focus on the independent maximum operator because it provides a safe
estimate of the maximum distribution and it reduces the pessimism. Moreover, we
do not compare the results of independent maximum to the results of other maximum
operators because we have already studied the order between these operators in
Theorem 4.1 and we have illustrated it in Section 4.2.2 (Figures 4.4 and 4.5).

Rglobal
2,4 (All combinations) =

(
12 13 16 17 20 21
.09 .09 .27 .27 .14 .14

)
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Table 4.8: Computation of preceding and global response times of sub-tasks described
in Figure 4.3 and Table 4.1 using Equations 4.9, 4.10 and 4.12

Sub-
task Rpred

i,j Iexti,j Rglob
i,j Ji,j

τ1,1 ( 1
1 ) ( 0

1 ) ( 1
1 ) ( 0

1 )
τ1,2 ( 3 4

.5 .5 ) ( 0
1 ) ( 3 4

.5 .5 ) ( 1
1 )

τ2,1 ( 1 5
.3 .7 ) ( 1

1 ) ( 2 6
.3 .7 ) ( 0

1 )
τ2,2 ( 4 8 12

.03 .34 .63 ) ( 1
1 ) ( 5 9 13

.03 .34 .63 ) ( 2 6
.3 .7 )

τ2,3 ( 7 11 15
.18 .54 .28 ) ( 1 2

.5 .5 ) ( 8 9 12 13 16 17
.09 .09 .27 .27 .14 .14 ) ( 3 7

.3 .7 )
τ2,4 ( 11 12 14 15 16 19 20

.0333 .0333 .1134 .27 .27 .14 .14 ) ( 1
1 ) ( 12 13 15 16 17 20 21

.0333 .0333 .1134 .27 .27 .14 .14 ) ( 9 10 13 14 17 18
.0333 .0333 .3834 .27 .14 .14 )

Table 4.9: Deterministic global response time computation of deterministic task sets
obtained by all possible combinations of execution time values.

N° C1,2 C2,1 C2,2 C2,3 Prob. Rglob
1,1 Rglob

1,2 Rglob
2,1 Rglob

2,2 Rglob
2,3 Rglob

2,4
1 1 1 3 4 0.009 1 3 2 5 8 12
2 2 1 3 4 0.009 1 4 2 5 9 13
3 1 5 3 4 0.021 1 3 6 9 12 16
4 2 5 3 4 0.021 1 4 6 9 13 17
5 1 1 7 4 0.081 1 3 2 9 8 12
6 2 1 7 4 0.081 1 4 2 9 9 13
7 1 5 7 4 0.189 1 3 6 13 12 16
8 2 5 7 4 0.189 1 4 6 13 13 17
9 1 1 3 8 0.006 1 3 2 5 12 16
10 2 1 3 8 0.006 1 4 2 5 13 17
11 1 5 3 8 0.014 1 3 6 9 16 20
12 2 5 3 8 0.014 1 4 6 9 17 21
13 1 1 7 8 0.054 1 3 2 9 12 16
14 2 1 7 8 0.054 1 4 2 9 13 17
15 1 5 7 8 0.126 1 3 6 13 16 20
16 2 5 7 8 0.126 1 4 6 13 17 21

In Tables 4.9 and 4.10, we explore all possible combinations and we compute
the global response time distribution for each sub-task. Similarly to the previous
Section 4.2.2, we note that, for all sub-tasks except τ2,4, the global response time
distributions computed with response time equations are equal to the exact ones
derived from exploring all combinations. However, for τ2,4, the maximum operator
in Equation 4.9 is applied on two dependent random variables because τ2,4 has two
immediate predecessors (τ2,2 and τ2,3) that have a common predecessor (τ2,1). Hence,
the computed distribution according to response time equations is different from the
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Table 4.10: Distribution of global response times for all sub-tasks based on exploring
all the combinations in Table 4.9.

Sub-task Rglob
i,j (All combinations)

τ1,1 ( 1
2×.009+2×.021+2×.081+2×.189+2×.006+2×.014+2×.054+2×.126 ) = ( 1

1 )
τ1,2 ( 3 4

.009+.021+.081+.189+.006+.014+.054+.126 .5 ) = ( 3 4
.5 .5 )

τ2,1 ( 2 6
2×.009+2×.081+2×.006+2×.054 2×.021+2×.189+2×.014+2×.126 ) = ( 2 6

.3 .7 )
τ2,2 ( 5 9 13

2×.009+2×.006 .2×.021+2×.081+2×.014+2×.054 2×.189+2×.126 ) = ( 5 9 13
.03 .34 .63 )

τ2,3 ( 8 9 12 13 16 17
.009+.081 .009+.081 .021+.189+.006+.054 .27 .014+.126 .014+.126 ) = ( 8 9 12 13 16 17

.09 .09 .27 .27 .14 .14 )
τ2,4 ( 12 13 16 17 20 21

.009+.081 .009+.081 .021+.189+.006+.054 .021+.189+.006+.054 .014+.126 .014+.126 )

exact distribution since the proposed maximum operators are not able to capture
these dependencies.

Figure 4.6: Comparison between CDF functions of global response times Rglobal2,4
computed with the response time equations of Section 4.2.2 (referred to as Method
1) and those of Section 4.2.3 (referred to as Method 2) and the exact distribution derived
from all combinations
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In Figure 4.6, we show that the CDF function of the global response time
computed with the response time equations of this Section 4.2.3 (the orange line) is
below the exact distribution derived from all combinations (the pink line). Similarly
to Figures 4.4 and 4.5, we deduce that Rglobal

2,4 (Indep) � Rglobal
2,4 (Combin). Hence,

the independent maximum operator used in response time equations helps to
compute a safe estimate compared to the exact distribution.

In addition, we note that the response time distributions computed with the
response time equations of Section 4.2.2 (Method 1) and those of Section 4.2.3
(Method 2) are not comparable because the corresponding CDF functions cross
(blue and orange lines). Indeed, Rglobal

2,4 obtained with the equations of Method 2 has
a smaller worst-case value compared to those obtained using Method 1 since they
include only one preemption of τ1,2. This is due to the fact that τ1,2 could preempt
τ2,3 only once since its execution in the worst-case finishes at 17 before the second
activation of τ1,2 at 19 = 20− 1 (minimum inter-arrival time of τ1,2 minus its jitter).
However, the equations of Method 1 account for this preemption on the whole DAG.
They consider that τ1,2 could preempt the sub-tasks of DAG task τ2 twice. Thus,
they provide a higher response time in the worst case than the equations of Method 2.

4.3 Bayesian Network Inference For Dependent
Random Variables

Some hardware architectures and features, like multi-core processors and cache levels,
may cause dependency in the execution time of independent software components
and programs (sub-tasks). For instance, if two sub-tasks are executed on different
cores then the memory access of one may delay the access time and the execution
time of the other especially, if they access to the same variable on an architecture with
multi-levels of cache memory. Moreover, some structures of precedence constraint
between software components may also cause dependency between random variables
used in the response time equations of the Section 4.2.

However, the proposed probabilistic operators (like convolution and maximum)
used in the response time equations do not deal with dependencies between the
random variables involved which may cause under-estimation or over-estimation of
the exact response time distribution. Therefore, in this section, we use a Bayesian
network to model existing dependencies between random variables used in the
response time equations. Then, we use inference techniques used on Bayesian
networks to determine the exact distribution of each random variable and of
the response time.
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4.3.1 Modeling Dependencies
Bayesian networks are used to model dependencies between random variables. They
use a DAG graph to describe these dependencies, where nodes represent random
variables and edges indicate conditional dependencies between these variables. Each
node X is characterized by a Conditional Probability Table (CPT) that describes
the distribution of the concerned node conditioned to its parent. The rows of this
table represent all possible combinations of values of X and of its parent variables.
Each of them has a corresponding probability P (X | parents(X )). For example,
let X be a node that has 5 possible values and 3 parent nodes. If each parent
variable has two possible values, then the CPT of node X will have 5 × 23 rows
that represent all possible combinations of X and its parent variables.

For a source node (without any parent), the CPT is equal to the probability
distribution of the corresponding random variable. In such a case, the sum of the
probabilities of all the rows in the CPT table is equal to 1. For other nodes, the
sum of all probabilities is equal to the number of possible combinations taken by
parent nodes i.e. the cardinality of parent nodes: |parents(X )| = ∏

A∈parents(X ) KA,
where KA is the number of possible values of random variable A (as introduced
in Definition 4.4).

The direction of an edge in the dependency graph may indicate a causality
(cause-effect) relation between parents and child nodes. However, in some cases,
edges represent influence or correlation between variables and not necessarily a
causality relation. For instance, if two random variables (nodes) have a common
cause but this cause random variable is not presented in the model, then the
values taken by these two nodes are correlated and dependent but the direction
of the edge between them it is not clearly defined because there is not a clear
cause-effect relation. In general, we say that directed edges encode conditional
dependence or independence i.e. a random variable X in a Bayesian network
is independent from other variables in the graph given its parent variables i.e.
P (X | parents(X ),Y ,Z, · · · ) = P (X | parents(X )).

Definition 4.13. A Bayesian network is defined by a list of random variables
(nodes) V , a dependency graph between these random variables and a list of factors
(also known as CPT tables) z for all nodes.

In this section, we study existing dependencies between random variables
used in response time Equations 4.4, 4.5 and 4.6. As mentioned in Theorem 4.2
convolution operator is applied between independent random variables in these
response time equations. However, the maximum operator in Equation 4.4 is
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applied between dependent random variables because the response time of two
immediate predecessors could depend on the same random variable (e.g. the
response time of a common predecessor). Therefore, we use a Bayesian network to
study dependencies between random variables involved in the maximum operator
in the preceding response time Equation 4.4.

we recall that the preceding response time of sub-task τi,j is given by:

Rpred
i,j = Max

τi,k∈ipred(τi,j)

{
Rpred
i,k ⊗ Ei(k, j)⊗ Ipredi,j (τi,k)

}
⊗ Ci,j

To distinguish random variables involved in the preceding response time equation,
we define Si,j(τi,k) as the random variable equal to the sum (convolution) of the
three random variables inside the maximum operator of immediate predecessor
τi,k. Then, we write Si,j(τi,k) = Rpred

i,k ⊗ Ei(k, j) ⊗ Ipredi,j (τi,k). We also define the
random variable Mi,j as the resulting maximum distribution in Rpred

i,j equation
over all immediate predecessors. Hence, the equation of preceding response time
Rpred
i,j could be written as follows:

Rpred
i,j = Max

τi,k∈ipred(τi,j)
{Si,j(τi,k)} ⊗ Ci,j =Mi,j ⊗ Ci,j

Example 4.8. For DAG task τ2 in Figure 4.3, the Bayesian graph that describes
dependencies between random variables involved in the preceding response time
Equation 4.4 of sub-task τ2,4 is given below:

C2,1

Rpred
2,1

S2,2(τ2,1)

E2(1, 2)

M2,2

C2,2

Rpred
2,2 S2,4(τ2,2)

E2(2, 4)

S2,3(τ2,1)

E2(1, 3)

M2,3

C2,3

Rpred
2,3 S2,4(τ2,3)

E2(3, 4)

M2,4

C2,4

Rpred
2,4

Figure 4.7: Dependency graph between random variables involved in Rpred2,4 equation.
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We note that the Bayesian graph of dependencies between random variables is an
acyclic graph with directed edges (DAG). The gray nodes represent random variables
corresponding to the timing parameter of the task set (pWCETs and pWCCTs).

Remark. In this example, we assume that pWCETs and pWCCTs are independent
hence they have not any incoming edges. However, in general, they could be
dependent and we should add required edges and adapt CPT tables to model these
dependencies.

CPT tables (factors) of gray nodes are equal to the probability distribution of
their corresponding random variables. For instance, Tables 4.11 and 4.12 correspond
to the probability distribution of random variables C2,1 and E2(1, 3) respectively, given
in Table 4.1. We also note that the probabilities of their rows sum to 1 since they
represent probability distributions of a random variable.

Other CPT tables (from Table 4.13 to Table 4.23) describe the probability
distribution of each node conditioned to its parents. For instance, Table 4.15
represents the probability distribution of S2,3(τ2,1) given its parents; Rpred

2,1 and
E2(1, 3). The number of rows in this table is equal to the product of the number of
possible values for each random variable involved in the conditional distribution (i.e.
KS2,3(τ2,1) ×KRpred

2,1
×KE2(1,3) = 2 × 2 × 1 = 4). The sum of probabilities of these

rows is equal to 2, which is the the number of possible combinations of (cardinality
of) parent variables Rpred

2,1 and E2(1, 3) (i.e. KRpred
2,1
×KE2(1,3) = 2× 1 = 2).

Table 4.11: CPT
of node C2,1

C2,1 P (C2,1)
1 0.3
5 0.7

Table 4.12: CPT of node
E2(1, 3)

E2(1, 3) P (E2(1, 3))
1 1

Table 4.13: CPT of node
Rpred2,1

C2,1 Rpred
2,1 P (Rpred

2,1 | C2,1)
1 1 1
1 5 0
5 1 0
5 5 1

Table 4.14: CPT of node S2,2(τ2,1)

Rpred
2,1 E2(1, 2) S2,2(τ2,1) P (S2,2(τ2,1) |

Rpred
2,1 , E2(1, 2))

1 0 1 1
1 0 5 0
5 0 1 0
5 0 5 1

Table 4.15: CPT of node S2,3(τ2,1)

Rpred
2,1 E2(1, 3) S2,3(τ2,1) P (S2,3(τ2,1) |

Rpred
2,1 , E2(1, 3))

1 1 2 1
1 1 6 0
5 1 2 0
5 1 6 1
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Table 4.16: CPT of nodeM2,2

S2,2(τ2,1) M2,2
P (M2,2 |
S2,2(τ2,1))

1 1 1
1 5 0
5 1 0
5 5 1

Table 4.17: CPT of nodeM2,3

S2,3(τ2,1) M2,3
P (M2,3 |
S2,3(τ2,1))

2 2 1
2 6 0
6 2 0
6 6 1

Table 4.18: CPT of node Rpred2,2

M2,2 C2,2 Rpred
2,2

P (Rpred
2,2 |

M2,2, C2,2)
1 3 4 1
1 3 8 0
1 3 12 0
1 7 4 0
1 7 8 1
1 7 12 0
5 3 4 0
5 3 8 1
5 3 12 0
5 7 4 0
5 7 8 0
5 7 12 1

Table 4.19: CPT of node Rpred2,3

M2,3 C2,3 Rpred
2,3

P (Rpred
2,3 |

M2,3, C2,3)
2 4 6 1
2 4 10 0
2 4 14 0
2 8 6 0
2 8 10 1
2 8 14 0
6 4 6 0
6 4 10 1
6 4 14 0
6 8 6 0
6 8 10 0
6 8 14 1

Table 4.20: CPT of node S2,4(τ2,2)

Rpred
2,2 E2(2, 4) S2,4(τ2,2) P (S2,4(τ2,2) |

Rpred
2,2 , E2(2, 4))

4 0 4 1
4 0 8 0
4 0 12 0
8 0 4 0
8 0 8 1
8 0 12 0
12 0 4 0
12 0 8 0
12 0 12 1

Table 4.21: CPT of node S2,4(τ2,3)

Rpred
2,3 E2(3, 4) S2,4(τ2,3) P (S2,4(τ2,3) |

Rpred
2,3 , E2(3, 4))

6 1 7 1
6 1 11 0
6 1 15 0
10 1 7 0
10 1 11 1
10 1 15 0
14 1 7 0
14 1 11 0
14 1 15 1
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Table 4.22: CPT of nodeM2,4

S2,4(τ2,2) S2,4(τ2,3) M2,4
P (M2,4 |

S2,4(τ2,2), S2,4(τ2,3))
4 7 7 1
4 7 8/11/12/15 0
4 11 11 1
4 11 7/8/12/15 0
4 15 15 1
4 15 7/8/11/12 0
8 7 8 1
8 7 7/11/12/15 0
8 11 11 1
8 11 7/8/12/15 0
8 15 15 1
8 15 7/8/11/12 0
12 7 12 1
12 7 7/8/11/15 0
12 11 12 1
12 11 7/8/11/15 0
12 15 15 1
12 15 7/8/11/12 0

Table 4.23: CPT of nodeRpred2,4

M2,4 C2,4 Rpred
2,4

P (Rpred
2,4 |

M2,4, C2,4)
7 2 9 1
7 2 10/13/14/17 0
8 2 10 1
8 2 9/13/14/17 0
11 2 13 1
11 2 9/10/14/17 0
12 2 14 1
12 2 9/10/13/17 0
15 2 17 1
15 2 9/10/13/14 0

For the sake of clarity, we reduce the size of CPT tables 4.22 and 4.23 by putting
multiple possible values of the same variable (M2,4 and Rpred

2,4 respectively) in the
same row since they have the same probability of occurrence that equals 0.

4.3.2 Probabilistic Inference
Probabilistic inference consists in computing the joint probability of some random
variables conditioned or not to some other random variables. In this context,
the probability distribution that we want to compute is also called a query.
For instance, to solve the query P (X ,Y|Z) we calculate the CPT table of the
probability distribution P (X ,Y|Z). In a Bayesian network, inference is considered
as a mechanism for applying Bayes’ theorem to complex problems with several
dependent random variables.

A naive approach for exact probabilistic inference in a Bayesian network is called
inference by enumeration. First, it consists in calculating the joint distribution
of all random variables involved in the Bayesian graph. This joint distribution
is computed by multiplying the distribution of each random variable conditioned
to its parents P ({A, · · · ;A ∈ V }) = ∏

A∈V P (A | parents(A)). Second, the
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query is deduced by summing over non-query variables. This approach results
in a large CPT table (factor) of the joint distribution that includes all random
variables. This CPT enumerates all combinations of possible values for all variables.
Hence, its size is equal to the product of the number of possible values for each
random variable, i.e. ∏

A∈V KA.
A more efficient approach for probabilistic inference is known as variable

elimination. It tries to avoid creating large CPT tables. In the next Section 4.3.2.1,
we use this approach to compute the exact distribution of response times according to
Equation 4.4. In addition, there exist some approximation methods for probabilistic
inference, such as sampling and Monte Carlo simulation. These methods reduce
the computational complexity and manipulate larger Bayesian networks with many
more variables. In Section 4.3.2.2, we use sampling to approximate preceding
response time distribution.

4.3.2.1 Exact Inference: Variable Elimination

Variable elimination is an exact inference method for Bayesian networks. Instead
of joining all variable distributions together as in the inference by enumeration
approach, it interleaves joining and elimination (marginalization) of non-query
variables. Hence, it avoids creating a large CPT table that represents the joint dis-
tribution of all random variables involved in the Bayesian graph. Therefore, variable
elimination offers better performance than inference by enumeration approach.

In this section, we use the variable elimination approach to compute the exact
distribution of the preceding response time Rpred

i,j of a sub-task τi,j taking into
consideration dependencies between different random variables included in response
time Equation 4.4.

Algorithm 2 illustrates how the variable elimination method works. For each
hidden (non-query) variable v, we join all factors (CPT tables) that mention that
variable v (lines 4 − 9). Then, we eliminate this non-query variable v (line 10)
and we add the newly obtained factor to the list of factors z (line 11). We repeat
these operations (joining and elimination) until all non-query variables have been
eliminated (lines 2 − 12). After that, we join all the remaining factors to obtain
the CPT table of the needed query (called query_factor).

The “join” operation used in Algorithm 2 line 6 and 15 consists in multiplying
two factors to obtain the joint distribution according to Bayes’ rules P (X = x,Y =
y) = P (X = x) × P (Y = y | X = x). Indeed, we match rows from the two CPT
tables that have the same values of common random variables and we multiply
their corresponding probabilities to obtain the probability of the resulting factor.
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Algorithm 2: Variable elimination algorithm
Data: list of factor z, list of variable V , query variable Q
Result: distribution of query variable

1 H = V \ {Q} /* list of Hidden (non-query) variables */
2 foreach v ∈ H do
3 new_factor = ∅ /* Empty CPT table */
4 foreach f ∈ z do
5 if v ∈ f then
6 new_factor = join(new_factor, f)
7 z = z \ {f}
8 end
9 end

10 new_factor = eliminate(new_factor, v)
11 z = z ∪ {new_factor}
12 end
13 query_factor = ∅ /* Empty CPT table */
14 foreach f ∈ z do
15 query_factor = join(query_factor, f)
16 end
17 return query_factor

For the “eliminate” operation used in Algorithm 2 line 10 consists in summing
over one random variable Y of a factor that represents a joint distribution P (X ,Y) in
order to obtain the marginal distribution according to the following marginalization
formula: P (X ) = ∑

y P (X ,Y = y). Indeed, we group rows, from the CPT table
concerned, that have same value of variable X even if the values of Y are different
and we sum their corresponding probabilities.

Example 4.9. In this example, we apply the variable elimination algorithm on
the Bayesian network defined by the dependency graph in Figure 4.7 and by CPT
Tables (from Table 4.13 to Table 4.23). Then, we answer the query P (Rpred

2,4 ) and
we compute the exact distribution of the preceding response time Rpred

2,4 of sub-task
τ2,4.

Eliminating Rpred
2,1 variable:

First, we join all factors that contain the Rpred
2,1 variable. Hence, we join the

following factors: P (Rpred
2,1 | C2,1) , P (S2,2(τ2,1) | Rpred

2,1 , E2(1, 2)) and P (S2,3(τ2,1) |
Rpred

2,1 , E2(1, 3)). The result of joining the two factors P (Rpred
2,1 | C2,1) and P (S2,2(τ2,1) |

Rpred
2,1 , E2(1, 2)) (CPT Table 4.13 and CPT Table 4.14) is shown in the following

Table 4.24.
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Table 4.24: CPT of factor P (S2,2(τ2,1),Rpred2,1 | E2(1, 2), C2,1)

E2(1, 2) C2,1 S2,2(τ2,1) Rpred
2,1

P (S2,2(τ2,1),Rpred
2,1 |

E2(1, 2), C2,1)
0 1 1 1 1× 1 = 1
0 1 1 5 0× 0 = 0
0 1 5 1 0× 1 = 0
0 1 5 5 1× 0 = 0
0 5 1 1 1× 0 = 0
0 5 1 5 0× 1 = 0
0 5 5 1 0× 0 = 0
0 5 5 5 1× 1 = 1

The result of joining the two factors P (Rpred
2,1 | C2,1) and P (S2,2(τ2,1) | Rpred

2,1 , E2(1, 2))
(CPT Table 4.13 and CPT Table 4.14) is presented in the following Table 4.25.

Table 4.25: CPT of factor P (S2,2(τ2,1),Rpred2,1 ,S2,3(τ2,1) | E2(1, 2), C2,1, E2(1, 3))

E2(1, 2) C2,1 E2(1, 3) S2,2(τ2,1) Rpred
2,1 S2,3(τ2,1) P (S2,2(τ2,1),Rpred

2,1 ,S2,3(τ2,1) |
E2(1, 2), C2,1, E2(1, 3))

0 1 1 1 1 2 1× 1 = 1
0 1 1 1 5 2 0× 0 = 0
0 1 1 5 1 2 0× 1 = 0
0 1 1 5 5 2 0× 0 = 0
0 5 1 1 1 2 0× 1 = 0
0 5 1 1 5 2 0× 0 = 0
0 5 1 5 1 2 0× 1 = 0
0 5 1 5 5 2 1× 0 = 0
0 1 1 1 1 6 1× 0 = 0
0 1 1 1 5 6 0× 1 = 0
0 1 1 5 1 6 0× 0 = 0
0 1 1 5 5 6 0× 1 = 0
0 5 1 1 1 6 0× 0 = 0
0 5 1 1 5 6 0× 1 = 0
0 5 1 5 1 6 0× 0 = 0
0 5 1 5 5 6 1× 1 = 1

Second, we sum over Rpred
2,1 variable in order to eliminate Rpred

2,1 from the join
factor P (S2,2(τ2,1),Rpred

2,1 ,S2,3(τ2,1) | E2(1, 2), C2,1, E2(1, 3)) (CPT Table 4.25). Hence,
we obtain the new factor P (S2,2(τ2,1),S2,3(τ2,1) | E2(1, 2), C2,1, E2(1, 3)) given in the
following Table 4.26.
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Table 4.26: CPT of factor P (S2,2(τ2,1),S2,3(τ2,1) | E2(1, 2), C2,1, E2(1, 3))

E2(1, 2) C2,1 E2(1, 3) S2,2(τ2,1) S2,3(τ2,1) P (S2,2(τ2,1),S2,3(τ2,1) |
E2(1, 2), C2,1, E2(1, 3))

0 1 1 1 2 1 + 0 = 1
0 1 1 5 2 0 + 0 = 0
0 5 1 1 2 0 + 0 = 0
0 5 1 5 2 0 + 0 = 0
0 1 1 1 6 0 + 0 = 0
0 1 1 5 6 0 + 0 = 0
0 5 1 1 6 0 + 0 = 0
0 5 1 5 6 0 + 1 = 1

Eliminating C2,1 variable:
The result of joining the two factors P (S2,2(τ2,1),S2,3(τ2,1) | E2(1, 2), C2,1, E2(1, 3))

and P (C2,1) (CPT Table 4.26 and Table 4.11 respectively) that contain C2,1 variable
is presented in the following Table 4.27.

Table 4.27: CPT of factor P (S2,2(τ2,1),S2,3(τ2,1), C2,1 | E2(1, 2), E2(1, 3))

E2(1, 2) E2(1, 3) S2,2(τ2,1) S2,3(τ2,1) C2,1
P (S2,2(τ2,1),S2,3(τ2,1), C2,1 |

E2(1, 2), E2(1, 3))
0 1 1 2 1 1× 0.3 = 0.3
0 1 1 2 5 0× 0.7 = 0
0 1 5 2 1 0× 0.3 = 0
0 1 5 2 5 0× 0.7 = 0
0 1 1 6 1 0× 0.3 = 0
0 1 1 6 5 0× 0.7 = 0
0 1 5 6 1 0× 0.3 = 0
0 1 5 6 5 1× 0.7 = 0.7

After summing over C2,1 variable, we obtain a new factor given in the following
Table 4.28.

Table 4.28: CPT of factor P (S2,2(τ2,1),S2,3(τ2,1) | E2(1, 2), E2(1, 3))

E2(1, 2) E2(1, 3) S2,2(τ2,1) S2,3(τ2,1) P (S2,2(τ2,1),S2,3(τ2,1) |
E2(1, 2), E2(1, 3))

0 1 1 2 0.3 + 0 = 0.3
0 1 5 2 0 + 0 = 0
0 1 1 6 0 + 0 = 0
0 1 5 6 0 + 0.7 = 0.7
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Eliminating remaining non-query variables:
After eliminating all non-query variables, we obtain the exact distribution of

the preceding response time Rpred
2,4 of sub-task τ2,4 (CPT Table 4.29). Since τ2,4 does

not have parallel sub-tasks (i.e. Πpred
2,4 = ∅), then Risol

2,4 = Rpred
2,4 and the distribution

of the response time in isolation is also given by the CPT Table 4.29. We note that
this distribution computed based on a Bayesian network is equal to the exact one
obtained by exploring all combinations of possible values of pWCETs and pWCCTs
given in Table 4.4 (on page 71).

Table 4.29: CPT of factor P (Rpred2,4 )

Rpred
2,4 P (Rpred

2,4 )
9 0.018
10 0.162
13 0.162
14 0.378
17 0.28

The efficiency of the variable elimination algorithm depends on the elimination
order of variables because some orders may cause large factors (CPT tables) than
other orders. Hence, we should use the elimination order that reduces the size of
created CPT tables in order to guarantee better performance. However, finding
the best elimination order is known to be an NP-hard problem [89]. In addition,
Cooper [90] proves that the 3-SAT problem could be reduced to the exact inference
in Bayesian networks. Therefore, exact inference is also an NP-hard problem.

We deduce that even if the best elimination order is found, then the run-time of
the variable elimination algorithm could be exponential in the size of the Bayesian
network for some cases and some graph structures. Despite the NP-hardness,
there exist some graph structures like the polytree where the variable elimination
algorithm runs in time linear in the size of the network [91].

4.3.2.2 Approximate Inference: Sampling

Since exact inference is an NP-hard problem [90], we resort to approximate inference
and we use sampling techniques in order to approximate the distribution of a random
variable (or a query) in a Bayesian network. Indeed, sampling helps to process
larger Bayesian networks than exact inference does because its complexity is linear
in the number of variables.
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To compute a response time distribution using a Bayesian network, we use a
simple query without conditional variables. This query is composed of a single
variable (i.e. the needed response time). Hence, we use forward sampling [92]
because it works well when no conditional variables are included in the query (i.e.
no evidence is observed) [93]. Forward sampling samples from the joint distribution
of all random variables. Then, it estimates the probability distribution of the query
variable by counting the frequencies of each possible value from the samples obtained.

To create a sample, we sample variables in topological order. We start by
sampling the variables with no parents, then we move to their successors and we
sample from their CPT tables conditioned to parents’ values already sampled at the
previous step. We proceed like this until all random variables have been sampled.
In addition, we use inverse transform sampling to sample from a distribution or
a CPT table; we sample from uniform distribution and we use the inverse CDF
function to generate a sample from the given distribution.

Example 4.10. Table 4.30 illustrates some samples of preceding response times
of sub-tasks belonging to task τ2 in Figure 4.7 (on page 83). These samples are
obtained with the forward sampling method.

Table 4.30: Example of samples generated with the forward sampling method

Sample Rpred
2,1 Rpred

2,2 Rpred
2,3 Rpred

2,4

1 5 12 11 14
2 5 12 15 17
3 5 12 11 14
4 1 8 11 13
5 1 8 7 10
6 5 12 11 14
7 5 12 11 14
8 1 8 7 10
9 1 4 7 9
10 5 8 11 13

...
Ns 5 12 11 14

To estimate the probability of each value for a given random variable, we divide
the number of occurrences by the total number of samples Ns. Hence, we obtain
different approximations of preceding response time distributions using different
numbers of samples Ns. These approximations are given in Table 4.31.
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Table 4.31: Preceding response time distributions for sub-tasks of task τ2 estimated
from samples.

Sub-task Ns = 10 Ns = 100 Ns = 1000 Ns = 10000
τ2,1 ( 1 5

.4 .6 ) ( 1 5
.32 .68 ) ( 1 5

.311 .689 ) ( 1 5
.2994 .7006 )

τ2,2 ( 4 8 12
.1 .4 .5 ) ( 4 8 12

.04 .42 .54 ) ( 4 8 12
.029 .330 .641 ) ( 4 8 12

.0304 .3429 .6267 )
τ2,3 ( 6 10 14

.3 .6 .1 ) ( 6 10 14
.24 .52 .24 ) ( 6 10 14

.173 .542 .285 ) ( 6 10 14
.1821 .5393 .2786 )

τ2,4 ( 9 10 13 14 17
.1 .2 .2 .4 .1 ) ( 9 10 13 14 17

.02 .2 .21 .35 .22 ) ( 9 10 13 14 17
.018 .162 .178 .364 .278 ) ( 9 10 13 14 17

.018 .1587 .163 .3814 .2789 )

In Table 4.32, we measure the run-time of the sampling algorithm using different
numbers of samples Ns. We note that the run-time increases if we use a bigger
number of samples for the approximation.

Table 4.32: Run-time of sampling algorithm using different numbers of samples Ns

Ns 10 100 1000 10000
Run-time (second) 0.024 0.039 0.22 2.157

From the previous example, we deduce that the precision of the distribution
approximation depends on the number of samples used, Ns. For instance, with
Ns = 1000 samples, the highest precision that we could get is three digits after
the decimal point. Hence, increasing the number of samples helps to enhance
precision but it also increases the run-time of the sampling algorithm because its
complexity is also linear with the number of samples.

Even if we increase the precision of the computed distribution, the sampling
algorithm still provides an approximation that could under-estimate or over-estimate
the exact distribution. Thus, the computed distribution of the response time using
sampling approach is not guaranteed to be a safe approximation because it could
under-estimate the exact one.

4.4 Schedulability in Probabilistic C-space

In the previous Section 4.3, we study the schedulability and we compute the response
time distribution of a DAG task using Bayesian network inference. This approach
consists in applying some operations (e.g. convolution, join, eliminate) directly
on the timing parameter distributions (pWCETs, pWCCTs). It evaluates the
exact distribution of response time and the exact schedulability probability (or
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the Deadline Miss Probability) of each DAG task. However, it requires a high
computational complexity due to the NP-hardness of the exact inference problem.

In this section, we study the schedulability of probabilistic DAG tasks using
deterministic schedulability condition (i.e. Rglobal

i ≤ Di). In fact, we apply the
deterministic schedulability test on several deterministic task sets with timing
parameters equal to different combinations of possible values for timing parameters.
Then, we deduce the schedulability probability of the studied DAG task.

Remark. The schedulability condition could be verified only on one DAG task to
study its schedulability. Alternatively, it could be applied on all DAG tasks to study
the schedulability of the whole task set.

4.4.1 C-space and schedulability

In order to visualize the schedulability condition as a region, we use a multi-
dimensional space called C-space [83, 84]. This space represents on each dimension
different possible values of a timing parameter distribution (e.g. pWCET and
pWCCT). Each point in C-space represents a task set with timing parameters equal
to the values of this point on each dimension. This task set could be schedulable or
non-schedulable. Hence, C-space is divided into two disjoint regions: schedulable
and non-schedulable. More formally these regions can be defined as follows.

Definition 4.14 ([83]). For a task set τ that has p timing parameters with several
possible values for each of them, the schedulability region in the C-space of p
dimensions is the set of p-tuples (of points) such that the defined task set, with
timing parameters equal to one of these tuples, is schedulable.

Similarly, we define the non-schedulable region as the set of p-tuples such that
the corresponding task set is not schedulable.

Figure 4.8 shows an example of a C-space with two dimensions. The x axis
represents possible values taken by execution time C1,1 while the y axis represents
values of C1,2. Green points correspond to timing parameters that define schedulable
task sets and red points refer to non-schedulable task sets.

In the literature, C-space is mainly used in the context of sensitivity analysis [83].
It allows us to visualize the effect of varying some timing parameters. C-space
representation also helps to evaluate how much execution time of a given sub-task
should be decreased to reach the schedulability region or how much it could be
increased while remaining schedulable. These quantities help the system designer
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Figure 4.8: Example of a C-space

to determine necessary correction actions to make a system schedulable or possible
product extension while guaranteeing schedulability.

In this section, we use the probabilistic version of C-space [94] where each
point (i.e. combination of timing parameters) is characterized by its probability of
occurrence. This probability is given by the joint distribution of all probabilistic
timing parameters. In the case of independent parameters’ distributions, the
joint distribution is equal to the product of all distributions. Otherwise, the joint
distribution is equal to the product of each parameter’s probability distribution
given its parents, similarly to inference by enumeration on a Bayesian network that
captures dependencies between probabilistic timing parameters. In both cases, we
note that computing the probability of a point in C-space is linear with respect to
the number of dimensions p since this probability is a product of p terms.

For the sake of clarity, we reduce the number of dimensions of C-space by reducing
the number of probabilistic timing parameters (several possible values). For this
purpose, we assume that communication times between sub-tasks are deterministic
parameters (a single possible value). Hence, the C-space has only one dimension per
sub-task that represents the pWCET of that sub-task. However, a task set could
have more probabilistic parameters than only pWCETs. In this case, we just need
to add new dimensions to C-space to handle these new probabilistic parameters.

The schedulability probability of a DAG task is equal to the sum of the
probabilities of all points belonging to the schedulable region. The number of
these points may be very large because it increases exponentially to the number of
dimensions in C-space. Thus, computing the exact sum of all points in schedulable
region may be not feasible. In such a case, we resort to sampling techniques. Indeed,
we sample random points from C-space and we compute the sum of the probabilities
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of schedulable points among sampled points. Then, we normalize by the total sum
of the probabilities of all sampled points in order to estimate the schedulability
probability. This approach does not guarantee a safe approximation and it may
cause an over-estimation of the exact probability of schedulability. Avoiding possible
over-estimation of schedulability probability will be the subject of future work.

As mentioned, the schedulability probability is equal to the sum of the probabil-
ities of all schedulable points, so it is sufficient to delimit the schedulable region in
order to compute the schedulability probability. Determining the schedulable region
and the border between the two regions could be seen as a binary classification
problem in C-space where each point is labeled as schedulable or non-schedulable.

4.4.2 C-space and Classification
In this part, we use some properties of C-space and schedulability test to study the
type of the border between the two classes (schedulable and non-schedulable regions).
Then, we apply an SVM classifier that is appropriate for such a classification
problem in order to determine the border.

4.4.2.1 Border and regions characterization

In Section 3.2.2 (on page 33), we point out that RTA is sustainable with respect to
the period. From the work of Baruah and Burns [19], we deduce that our RTA is also
sustainable with respect to the execution time. We state that our schedulability test
is C-sustainable. Indeed, if a task set with given timing parameters is schedulable,
then, by decreasing the execution time of any, some or all sub-tasks, the task set
remains schedulable. Conversely, if it is not schedulable, then, by increasing the
execution time of any, some or all sub-tasks, the task set remains non-schedulable.

Graphically, in Figure 4.8, the point A2 with coordinates (9, 10) should be non-
schedulable (red) since it has higher execution times than a non-schedulable point
A1 with coordinates (7, 6). Moreover, the point B2 with coordinates (5, 4) should be
schedulable (green) because it has a lower execution time than its neighbor point B1

with coordinates (5, 6) that is schedulable. A neighbor point is defined as follows.

Definition 4.15. In a C-space with p dimensions, we call a neighbor point to a
given point A, any point that has its value on one dimension shifted by one step
(higher or lower) with regard to point A and that has the same values as point A on
the other p− 1 dimensions.

The C-sustainability of schedulability test allows us to prove some properties
of schedulable and non-schedulable regions as follows.
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Theorem 4.4. If a schedulability test is C-sustainable, then the corresponding
schedulable region (respectively non-schedulable region) in C-space is connected [95].

Proof. In order to prove that the schedulable region is connected, we prove that
any two schedulable points are connected by moving through successive neighbors
that are all schedulable (path-connected [96]).

Let A and B be two schedulable points in C-space. We define the point
M = min(A,B) such that its value on each dimension is equal to the minimum
between values of points A and B on that dimension. From point A, we can reach
the point M by moving successively to the neighbor that reduces the value by one
step on one of the dimensions with a different value compared to point M . All
these neighbors are schedulable due to the C-sustainability property.

Likewise, by moving from a schedulable neighbor to another schedulable neighbor,
we can reach point M from point B. Hence, we deduce that we can reach point B
from point A. First, we move successively through schedulable neighbors toward
point M . Second, from point M , we move to B using the reverse path from B to
M composed of schedulable neighbors.

More formally, we could construct a continuous function f from interval [0, 1]
to C-space such that f(0) = A and f(1) = B. This function maps the interval
[0, 0.5] to the line segment AM . All points of this segment have lower execution
times than schedulable point A. Due to the C-sustainability property, they are all
schedulable points. Hence, segment AM belongs to the scheduled region. Moreover,
function f maps the interval [0.5, 1] to the line segment MB that also belongs to
the scheduled region. We note that function f is continuous and f(0.5) = M .

We deduce that the schedulable region is path-connected and consequently
it is connected. Similarly, we can prove that the non-schedulable region is also
connected. �

From Theorem 4.4, we deduce that the schedulable and non-schedulable regions
in C-space are both connected regions because the used schedulability test based
on RTA is C-sustainable. Since these two regions are disjoint, then we could find a
single straight line (hyperplane) or a curved line (hypersurface) that separates
the two regions.
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4.4.2.2 SVM classifier

In machine learning, SVM is a binary classification technique [86]. It constructs
a hyperplane that separates data points into two classes. This hyperplane should
maximize the margin between the two classes. Thus, SVM classifier is also known as
a maximum-margin classifier. However, in some cases, data points are not separable
by a linear hyperplane. To resolve this problem, we map the original space into
a much higher-dimensional space using a kernel function [85]. In this new space,
a separating hyperplane could exist and we could apply the maximum-margin
classifier. We note that if the separating hyperplane exists in the original space
then, we just use a linear kernel (identity function).

We deduce that it is reasonable to use SVM classifier to determine the border
between schedulable and non-schedulable regions in C-space because these two
regions could be separated by a single line.

In addition, SVM classifier determines a border between two regions based
on the nearest points to that border. These points are called “Support Vectors”.
However, the number and the positions of far points do not affect the found border.
Hence, we just need to study the schedulability and to label only some points that
lie near to the border rather than exploring all points in the C-space. This allows
us to reduce the computational complexity for determining the schedulable region
and for calculating the schedulability probability.

Single core processor
In this part, we study the border between schedulable and non-schedulable re-

gions in C-space when the corresponding task set executes on a single core processor.

Theorem 4.5. Let a task set τ be executed on a single core. If we use a schedulability
test based on RTA then there is a hyperplane that separates the schedulable and
non-schedulable regions in C-space.

Proof. In the preceding response time Equation 3.21 (on page 48) of sub-task τi,j,
the maximum term represents the time required by all predecessors of τi,j to finish
their execution. In the case of a single core processor, there is no possible parallel
execution and all predecessors are executed on the same core. Thus, this maximum
term is equal to the sum of the execution times of all predecessors.

On the other hand, the response time in isolation and the global response time
of sub-task τi,j (Equations 3.22 and 3.23 respectively) are obtained by adding, to
the preceding response time, the sum of the execution times of parallel or higher
priority sub-tasks. Hence, we deduce that the resulting global response time of a



4. Probabilistic DAG Tasks Schedulability on a Multi-core Processor 99

DAG task is equal to the sum of the execution times of several sub-tasks. In other
words, the global response time of task τi could be written as a linear combination
of some timing parameters i.e. linear combination of execution times of some
sub-tasks because communication delays are assumed to be deterministic (constant);
Rglobal
i = ∑

p,q ap,q · Cp,q + B. where ap,q ∈ {0, 1, 2, · · · } represents the number of
times sub-task τp,q is executed between the release time and the end of the execution
of DAG task τi. B is a constant term that represents the communication times
between different sub-tasks of τi.

The schedulability test based on RTA consists in verifying whether the response
time of DAG task τi is less than or equal to its deadline i.e. Rglobal

i ≤ Di. If we replace
Rglobal
i by its linear combination formulation, we obtain ∑p,q ap,q · Cp,q + B ≤ Di.

This equation defines the schedulable region in C-space. This region is delimited by
the hyperplane defined by the following equation ∑p,q ap,q · Cp,q = Di − B. Thus,
we find a hyperplane that divides the C-space into schedulable and non-schedulable
regions.

�

Example 4.11. Let τ1 and τ2 be two DAG tasks where each is composed of a
single sub-task. Their respective periods and deadlines are T1 = D1 = 10 and
T2 = D2 = 12. We assume that τ1 has higher priority than τ2. The sub-tasks τ1,1

and τ2,1, belonging respectively to DAG tasks τ1 and τ2, are executed on a single core
processor.

Figure 4.9 represents the C-space corresponding to the task set described above.
This C-space has two dimensions that represent the execution times C1,1 and C2,1

of sub-tasks τ1,1 and τ2,1 respectively.
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Figure 4.9: C-space of a task set executed on a single core
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The response time of τ2 is equal to the sum of execution times C1,1 and C2,1

because τ1 has higher priority and could preempt τ2 i.e. Rglobal
2 = C1,1 + C2,1. The

schedulability test of task τ2 consists of comparing its response time to its deadline.
Hence, we obtain this equation C1,1 + C2,1 ≤ 12 that characterizes schedulable
(green) points in C-space. The equation of the border between schedulable and
non-schedulable regions is given by C1,1 + C2,1 = 12 and it defines the blue line
(hyperplane) in Figure 4.9

From the Theorem 4.5, we deduce that we could use a linear kernel for the SVM
classifier, in the case of a task set executed on a single core processor, in order
to find the exact border (hyperplane) between schedulable and non-schedulable
regions in C-space when using a schedulability test based on RTA.

Multi-core processor
In the case of a multi-core processor, parallel sub-tasks could be executed

concurrently if they are mapped to different cores. Hence, the maximum term in
preceding response time Equation 3.21 (on page 48) is applied between different
linear combinations. Each of these linear combinations includes the execution times
of some predecessor sub-tasks according to the structure of the graph and the
partitioning. Depending on the execution time value of different sub-tasks, the
maximum could be caused by one of these linear combinations. In other words, in
each sector of C-space, schedulable points are delimited with a different hyperplane.
For instance, in Figure 4.8, schedulable points are delimited with a given line
(hyperplane) when C1,1 ≤ 6 and they are delimited by another line for C1,1 ≥ 6.

Conversely to the case of single core processors, we deduce that using SVM
classifier with a linear kernel does not guarantee that we will find the exact
border between schedulable and non-schedulable regions. Therefore, we use a
Gaussian kernel in the case of multi-core processors because such a kernel helps
to fit complex borders.

From Figure 4.10, we note that some points could be classified wrongly. For
instance, if we use the dashed blue line as the border between schedulable and
non-schedulable regions, then the red point with coordinates (9, 2) is classified as
schedulable while actually it is not schedulable. Even if we use a Gaussian kernel,
some points may be classified wrongly, especially in a high dimensional C-space.

In order to avoid classifying non-schedulable points as schedulable, we shift the
border toward the schedulable region like in Figure 4.10. Hence, points near to the
border that are situated in the schedulable side with respect to the previous border
(dashed line), will be classified as non-schedulable with the shifted border (solid
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Figure 4.10: Shifting border in C-space to reduce non-schedulable points classified
wrongly

line). This approach allows us to reduce the number of non-schedulable points that
are labeled as schedulable, which enhance the safety of the schedulability analysis
and avoid an over-estimation of the schedulability probability. On the other hand,
this approach increases the pessimism by classifying schedulable points as non-
schedulable. Thus, it may cause an under-estimation of the schedulability probability,
which presents a trade-off between safety and pessimism. In Chapter 6, we study the
performance of this approach and the existing trade-off using a confusion matrix [97].

4.5 Conclusion
In this Chapter, we studied the schedulability of a DAG task model with probabilistic
execution times and communication delays. We proposed several methods to
estimate the response time distribution and the schedulability probability.

First, we defined probabilistic maximum operators and we extended the deter-
ministic response time equations proposed in Chapter 3 to deal with discrete
probability distributions that represent timing parameters. The probabilistic
maximum operators used are either very pessimistic or require independence
between different random variables involved in the response time equations. This
independence is only guaranteed for some specific structure of precedence graph (e.g.
arborescence and polytree). Therefore, in the second section, we used a Bayesian
network to model the dependencies between the different random variables, which
allowed us to compute the exact response time distribution. Moreover, we studied
the schedulability of a probabilistic DAG task model by representing probabilistic
timing parameters and schedulability condition as regions in the C-space. Then,
we used deterministic schedulability test from Chapter 3 and SVM classification
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techniques to determine the schedulable region in C-space and to estimate the
schedulability probability.

From the response time distribution and schedulability probability provided by
our probabilistic schedulability analyses, we compute the DMP of the real-time
system studied. This DMP is proportional to the failure rate of the system. Thus,
we compare this rate to the threshold required to ensure safety and to validate
the system. For instance, let a real-time system be integrated in a safety-critical
functionality of a vehicle such as braking. This functionality belongs to the highest
Automotive Safety and Integrity Level (ASIL D) that should guarantee a failure
rate per hour less than 10−8 according to the standard ISO-26262 [10]. If the failure
rate corresponding to the DMP obtained by the schedulability analysis, is less than
the required threshold 10−8, then we could deem the system as feasible and safe
regarding to the timing behavior. Otherwise, the system does not reach the required
level of safety (ASIL D). Hence, it is not feasible and not validated.
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In this chapter, we propose scheduling techniques for the DAG task model
following a partitioned and fixed-priority policy. First, we study the problem of
priority assignment in Section 5.1. To do so, we distinguish between defining priority
at the task level and at the sub-task level. We adapt existing priority assignment
policies for independent tasks to the DAG task model. At the sub-task level, existing
priority assignment heuristics are applied on a non partitioned DAG. Hence, we
propose new priority assignment algorithms that take into account the sub-task
partitioning. Second, we tackle the partitioning problem in Section 5.2. Indeed, we
propose a partitioning heuristic that operates on multiple DAG tasks with different
periods. This heuristic assigns each sub-task to a given core while balancing the load
between cores in such a way to maximize possible parallelism. Third, in Section 5.3,
we present the idea of reducing the size of a DAG by merging some sub-tasks
without modifying the precedence constraints. This reduction allows us to decrease
the computational complexities of other scheduling and schedulability techniques
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since all of them depend on the number of sub-tasks. Finally, in Section 5.4, we
describe a scheduling workflow that joins different scheduling techniques proposed
in order to reduce the response time and enhance the schedulability of DAG tasks.

Remark. The algorithms proposed in this chapter operate on deterministic as well
as probabilistic task models. In the case of probabilistic parameters, we use expected
values of the probability distributions instead of the deterministic values.

5.1 Priority Assignment
Scheduling algorithms allocate shared resources (like CPU, communication bus,
disk drive, etc.) to competing tasks. They may use best-effort policies based on
time-sharing and fairness like round-robin [98] and fair queuing [99] scheduling.
These scheduling approaches improve efficiency by minimizing resource starvation
and prevent a task from waiting for the resource infinitely. For instance, round-robin
policy executes each job for a time slice (called also quantum) then it moves to
the next job in a circular queue. It repeats this until all the jobs are finished.
Round-robin prevents starvation and shares resources fairly among tasks. However,
response and waiting times of a given task may be relatively large because they
mainly depend on time slices and the number of tasks in the whole system and
not on individual characteristics of a task.

Conversely, in real-time scheduling, some tasks have high rates of activation
and should be more reactive with a small waiting and response time. Hence, we
use priority-driven scheduling that allows us to reduce the response time for crucial
and demanding tasks by assigning high priority to them. We also focus on fixed-
priority policies to reduce interactions between different tasks and cores compared
to dynamic priority assignment. Reducing these interactions allows us to decrease
over-estimation and pessimism in the response time analysis.

When applying priority-driven scheduling algorithms on a DAG task model,
priority could be defined only at the task level or at both the task and sub-task
levels. If a DAG task τi has higher priority than a DAG task τp, then all sub-tasks of
τi have higher priorities than all sub-tasks of τp. In the case of priority defined at the
task level only, all sub-tasks of DAG task τi have the same priority as τi. To define
priorities of DAG tasks, we could use one of the priority assignment algorithms
from the literature, such as Rate Monotonic [12], Deadline Monotonic [13] and
Audsley’s algorithm [75, 76].

On the other hand, if priorities are also defined at the sub-task level then, each
sub-task inside the same graph has an individual priority that is different from
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other sub-tasks. These individual priorities define a kind of execution order between
parallel sub-tasks. Depending on the resulting execution order, the response time
of the DAG task is affected, and it could be reduced or increased.

In this section, we assume that sub-tasks to cores mapping has been already
established and is given. In the first part, we consider fixed-priority assignment
policies that we use to assign priorities at the task level. In the second part, we
tackle priority assignment at the sub-task level for each DAG task. This problem
consists of finding the best execution order of sub-tasks inside the same DAG to
reduce the response time of the DAG task considered.

5.1.1 Priority assignment at the task level

In this section, we define a priority for each DAG task using two priority assignment
policies. First, we assign a priority for a DAG task based only on its individual
characteristics and we apply the Deadline Monotonic policy that prioritizes the
DAG task with the lowest relative deadline. Second, we determine the priority
of a DAG task depending on the parameters and structures of all DAG tasks.
Indeed, we apply Audsley’s algorithm using proposed response time analysis as a
schedulability test to compare different priority orderings.

5.1.1.1 Deadline Monotonic

Deadline Monotonic is a fixed-priority scheduling policy. It orders and prioritizes
tasks in the increasing order of their relative deadline. This algorithm gives higher
priority for the task with a lower relative deadline in order to reduce its response
time. Hence, the task could finish its execution before its deadline and respect its
temporal constraints. The computational complexity of this approach is equivalent
to a sorting problem (i.e. O(n × log n)). In the task model studied, we consider
a constrained deadline (Di ≤ Ti). In the case where the deadline is equal to
the period (Di = Ti), the deadline monotonic priority assignment policy becomes
equivalent to Rate Monotonic [12].

Leung and Whitehead [13] show that deadline monotonic is an optimal policy
for fixed-priority scheduling on a uniprocessor system with sporadic arrivals and
constrained deadlines. Since partitioned multiprocessor scheduling could be seen
as several uniprocessor scheduling problems [14], we decide to use the deadline
monotonic algorithm in order to benefit from its good performance reported in
the literature. However, Deadline Monotonic does not guarantee optimality on
partitioned multiprocessor because the partitioning problem is similar to the bin
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packing problem, which is NP-hard [60]. Even if Deadline Monotonic is optimal
for single core processors, existing heuristics-based solutions for the partitioning
problem do not guarantee optimality.

Example 5.1. In this example, we illustrate how Deadline Monotonic priority
assignment could enhance reactivity of demanding tasks and allow them to finish
earlier and respect their deadlines.

Table 5.1: Parameters of the task set described in Figure 5.1

Sub-task Ci,j Di Ti Precedence delay
τ1,1 9 11 30 e1(1, 2) 1
τ1,2 1 11 30 e2(1, 2) 0
τ2,1 1 15 30 e2(1, 3) 1
τ2,2 1 15 30 e2(2, 4) 2
τ2,3 2 15 30 e2(3, 4) 0
τ2,4 2 15 30 − −

τ1,1 τ1,2
e1(1, 2)

τ2,1

τ2,2

τ2,3

τ2,4

π1

π2

e2(1, 2)

e2(1, 3)

e2(2, 4)

e2(3, 4)

Figure 5.1: Example of a DAG task set with sub-tasks assigned to different cores

Figure 5.1 and Table 5.1 represent an example of a task set composed of two
DAG tasks scheduled on two cores with a preemptive and fixed-priority policy. In
Figure 5.2, we illustrate two different schedules for the previous task set with two
possible priority assignment strategies at the task level. We note that green dashed
arrows represent communication delays between sub-tasks. In the first schedule (see
Figure 5.2a), we assume that τ2 has higher priority than τ1. We note that DAG task
τ2 finishes its execution at time instant t = 6 before its deadline D2 = 15. While,
τ1 finishes its execution at t = 13 and misses its deadline D1 = 11 because it is
delayed by sub-tasks τ2,1 and τ2,2 on core π1. In the second schedule (see Figure 5.2b),
priorities are assigned according to the DM policy where τ1 has higher priority than
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τ2 because its deadline is lower D1 < D2. In this case, we note that both DAG tasks
respect their deadline. Indeed, τ1 finishes its execution at t = 11 and τ2 finishes its
execution at t = 15.

t

π1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

τ2,1 τ2,2 τ1,1

t

π2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

τ2,3 τ2,4 τ1,2

finish time
of τ2 = 6

finish time
of τ1 = 13D1 missed D2 respected

(a) First scheduling: τ2 has higher priority than τ1

t

π1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

τ1,1 τ2,1 τ2,2

t

π2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

τ1,2 τ2,3 τ2,4

D1 respected
finish time of τ1=11

D2 respected
finish time of τ2=15

(b) Second scheduling: τ1 has higher priority than τ2 (according to DM policy)

Figure 5.2: Scheduling of task set defined by Figure 5.1 and Table 5.1 with two different
priority assignments

5.1.1.2 Audsley’s Algorithm

Audsley’s algorithm [75, 76] is a priority assignment policy for tasks. This algorithm
was originally devised for fixed-priority and preemptive scheduling on a single core
(processor). Audsley’s algorithm uses a given schedulability test to derive a priority
assignment that guarantees the schedulability of all tasks according to the test used.
The idea of this algorithm is based on the following Theorem 5.1:

Theorem 5.1 ([76]). Let τ = {τ1, τ2, . . . , τn} be a set of n periodic tasks scheduled
with fixed-priority and preemptive policy on a single core processor. Each task has
an individual priority level ∈ {1, 2, . . . , n} where the nth level is the lowest one.
We assume that the tasks assigned to priority levels from i, . . . , n are feasible under
these priority levels while the other tasks are not assigned to any priority level.
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Then, a feasible priority ordering exists for all tasks, if and only if a feasible priority
ordering exists that assigns the same tasks to priority levels i, . . . , n.

By applying Theorem 5.1, we could build a feasible priority ordering. First,
we look for the task that is feasible at the lowest priority level n. According to
Theorem 5.1, if a feasible priority ordering exists, then we should find a feasible
ordering that assigns that task to the priority level n. Second, we seek a task, from
the remaining tasks, that is feasible at the priority level n−1 and we assign this task
to level n− 1. Third, we proceed as previously until all tasks have been assigned or
until a feasible assignment cannot be found. The approach described above is a
greedy algorithm that assigns, for each priority level, one of the feasible tasks at
that level. This approach is implemented through the following Algorithm 3.

Algorithm 3: Priority assignment at the task level with Audsley’s
algorithm
Data: Task set τ , n number of task, m number of core and π(.) mapping
Result: Task set schedulability and priority order

1 priority = zeros(n)
2 τ ′ = τ
3 for l ∈ {n . . . 1} do
4 assigned = False
5 for τi ∈ τ ′ do
6 if feasible(τi, l) then
7 priority[i] = l
8 τ ′ = τ ′ \ {τi}
9 assigned = True

10 break
11 end
12 end
13 if assigned == False then
14 return not_schedulable
15 end
16 end
17 return schedulable, priority

In the first for loop of Algorithm 3 (line 3), we iterate over priority levels in
decreasing order. In the second for loop (line 5), we iterate over non assigned tasks
(belonging to the set τ ′) and we check (line 6) if one of these tasks is feasible at the
current priority level l when other non assigned tasks have higher priorities. Thus,
we assign this task to level l (line 7) and we remove it from the set of non assigned
tasks τ ′ (lines 8 and 9). If no task is assigned to (feasible at) a given priority
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level (line 13), then no feasible priority ordering exists according to Theorem 5.1
and we return “not_schedulable” (line 14). Otherwise, we return “schedulable”
and the priority ordering is found (line 17).

Algorithm 3 has two nested for loops calling the schedulability test at each
iteration. For a task set composed of n tasks, this algorithm performs at most
(n2 + n)/2 schedulability tests in order to find a feasible priority ordering according
to the schedulability test used, or to conclude that no such feasible priority ordering
exists. Hence, we deduce that the complexity of Audsley’s algorithm is O(n2 × L)
where L is the complexity of the schedulability test.

On the other hand, Davis and Burns [100, 101] generalize the use of Audsley’s
algorithm on multi-core (multiprocessor) platforms instead of only on a single core
processor. They prove that this algorithm is an optimal priority assignment policy
if the schedulability test S used by Audsley’s algorithm, is compliant with the
three conditions stated below. Consequently, Audsley’s algorithm is also known as
Optimal Priority Assignment (OPA). In this context, the term optimal is defined
by Definition 1 in [101]. It means that if there is a priority ordering validating
that a task set is schedulable according to the schedulability test S, then the
priority ordering generated by Audsley’s algorithm is also feasible according to the
schedulability test S. In other words, the set Y of all task sets that are deemed
schedulable by the schedulability test S using its optimal priority assignment policy
(Audsley’s algorithm) is a superset of the set Z (Z ⊆ Y ) of all task sets that are
deemed schedulable by test S using any other priority assignment policy.

These are the three conditions provided by Davis and Burns [100] that a
schedulability test S used by an OPA policy should respect:

• Condition 1: The schedulability of a task τi may, according to test S, be
dependent on the set of higher priority tasks, but not on the relative priority
ordering of those tasks

• Condition 2: The schedulability of a task τi may, according to test S, be
dependent on the set of lower priority tasks, but not on the relative priority
ordering of those tasks.

• Condition 3: When the priorities of any two tasks of adjacent priority are
swapped, the task being assigned the higher priority cannot become non
schedulable according to the test S, if it was previously schedulable at the
lower priority.
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In order to assign priorities at the task level for a DAG task model, we use
Audsley’s algorithm with the schedulability test based on our RTA proposed in
Section 3.2.3.1 (Equations 3.21, 3.22 and 3.23). Therefore, we should prove that
our RTA respects the previous conditions.

Proof. First, we prove that the response time of a DAG task τi obtained by our
RTA is not affected by the relative order of higher priority DAG tasks. Indeed, the
effect of all higher priority DAGs on τi is included in the global response time of the
sink sub-task through the external interference term in Equation 3.23 (on Page 49).
This external interference is given by Equation 3.24 where the sum term depends
only on the set hep(τi) of higher priority DAGs and not on their relative priority
ordering. Hence, the global response time depends only on higher priority DAGs
and not on their relative priority ordering. Consequently, Condition 1 is verified.

Second, Condition 2 is obviously met in the case of preemptive scheduling with
no blocking because lower priority DAG tasks cannot delay the execution of task τi.
Thus, the response time of DAG task τi is not affected by the set of lower priority
DAGs nor by their relative priority ordering.

Third, if a DAG task τi swaps its priority level with a higher priority DAG
task, then the sum term in the external interference Equation 3.24 (on page 49) is
reduced or it remains constant, because some elements in the set hep(τi) of higher
priority DAGs may be removed. Thus, the global response time of τi remains the
same or decreases but it cannot increase. Consequently, if τi was schedulable at its
original priority level, then it cannot become non schedulable at the higher priority
level.

Therefore, we deduce that the three conditions, proposed by Davis and Burns [100],
are respected by our RTA. Hence, we could use this latter as a schedulability test
for Audsley’s algorithm while guaranteeing its optimality.

�

Example 5.2. In this example, we use the same task set described by Figure 5.1
and Table 5.1 with some modified parameters. We change the execution times of
sub-tasks τ1,1 and τ2,4 and the deadline of DAG task τ1 as follows: C1,1 = 7 (instead
of 9), C2,4 = 5 (instead of 2) and D1 = 18 (instead of 11).

In the case where τ2 has the lowest priority, its global response time according
to our RTA is equal to Rglob2 = 17 > D2. Thus, τ2 misses its deadline and any
ordering that assigns to τ2 the lowest priority is not feasible. However, if τ1 has
the lowest priority, then the computed global response times of the two DAGs are
equal to Rglob1 = 18 < D1 and Rglob2 = 9 < D2. Hence, both DAGs respect their
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deadlines and the ordering that assigns to τ1 the lowest priority is feasible. We
deduce that Audsley’s algorithm provides a feasible priority ordering, according to
our RTA, that assigns to τ2 a higher priority than τ1.

In Figure 5.3, we illustrate two different schedules for the previous task set
with two different priority orderings of DAG tasks. We note that green dashed
arrows represent communication delays between sub-tasks. In the first scheduling
(Figure 5.3a), we assume that τ1 has higher priority than τ2. We note that DAG
task τ1 finishes its execution at time instant t = 9 before its deadline D1 = 18.
On the other hand, τ2 finishes its execution at t = 16 and misses its deadline
D2 = 15 because it is delayed by sub-task τ1,1 on core π1. In the second scheduling
(Figure 5.3b), priorities are assigned according to Audsley’s algorithm where τ2

has higher priority than τ1. In this case, we note that the two DAG tasks respect
their deadline. Indeed, τ1 finishes its execution at t = 11 < D1 and τ2 finishes its
execution at t = 9 < D2.

t

π1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

τ1,1 τ2,1 τ2,2

t

π2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

τ1,2 τ2,3 τ2,4

finish time
of τ1 = 9

finish time
of τ2 = 16D2 missed

(a) First scheduling: τ1 has higher priority than τ2

t

π1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

τ2,1 τ2,2 τ1,1

t

π2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

τ2,3 τ2,4 τ1,2

finish time
of τ2 = 9

finish time
of τ1 = 11 D2 respected

(b) Second scheduling: τ2 has higher priority than τ1 (according to Audsley’s algorithm)

Figure 5.3: Scheduling of task set defined in Figure 5.1 with two different priority
assignments
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5.1.2 Priority at the sub-task level

After assigning priorities at the task level, we focus on defining priorities for all sub-
tasks inside each DAG task. This operation avoids ambiguity caused by arbitrary
order of execution between parallel sub-tasks and helps to reduce the response time.
For instance, two parallel sub-tasks having the same predecessors, are activated at
the same time. Moreover, if they are mapped to the same core and have the same
priority, then they will have an arbitrary order of execution. This may also increase
the pessimism of schedulability analysis. To avoid such undefined behavior, we
define priorities at the sub-task level. We determine these priorities for sub-tasks
from the same DAG because they are already ordered with respect to other sub-tasks
from other DAG tasks, based on the priority defined at the task level (Section 5.1.1).
We note that assigning priorities for sub-tasks from the same DAG, transforms
the partial order defined by precedence constraints to a total order that avoids
an arbitrary order of execution between sub-tasks.

Moreover, the execution order of sub-tasks may promote or prevent parallel
executions depending on the structure of the dependency graph and the core
mapping. Therefore, the priority ordering of sub-tasks has an impact on (i.e.
may increase or decrease) the response time of the whole DAG task. Hence, we
define priorities for sub-tasks in such a way as to exploit possible parallelism and
enhance the reactivity of the system.

In this part, we define priorities at the sub-task level. First, we give a scheduling
example to highlight the importance of the sub-task priority ordering and its
influence on DAG response time (Section 5.1.2.1). Second, we exploit the results
of Baruah [59] about optimal scheduling of DAGs on partitioned processors based
on an ILP formulation and we derive the optimal execution order and priority
assignment for sub-tasks inside the same graph (Section 5.1.2.2). This approach
has a high computational complexity since the multi-core task scheduling in general
and the scheduling of DAGs are NP-hard problems [60, 102]. Third, we provide a
heuristic algorithm with a polynomial complexity to approximate the best priority
ordering of sub-tasks (Section 5.1.2.3). Finally, we apply a genetic algorithm
based search to find a near optimal priority assignment for sub-tasks from the
same DAG (Section 5.1.2.4).
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5.1.2.1 Motivation Example

In order to illustrate the purpose of defining priority at the sub-task level, we

schedule the DAG task defined by Figure 5.4 and Table 5.2 with two different

sub-task priority orderings.

Example 5.3. We consider the DAG task τ1 (Figure 5.4) where sub-tasks τ1,1, τ1,2

and τ1,5 are mapped to the same core π1 and the remaining sub-tasks are mapped

to the second core π2. For the sake of simplicity in this example, we assume that

there are no communication delays between different sub-tasks of the DAG task τ1.

The minimum inter-arrival time of τ1 is equal to T1 = 10 and its deadline is D1 = 9

(constrained deadline D1 ≤ T1).

From the structure of the DAG task τ1 in Figure 5.4, we note that when sub-task

τ1,1 finishes its execution, sub-tasks τ1,2 and τ1,5 are activated simultaneously on the

core π1. The first priority ordering (“Order 1” in Table 5.2), gives a higher priority

to τ1,2 compared to τ1,5 while the second priority ordering (“Order 2” in Table 5.2)

inverts their priorities.

τ1,1

τ1,2

τ1,3

τ1,4

τ1,5

τ1,6

π1

π2

level=1 level=2 level=3 level=4

Figure 5.4: Example of a DAG task divided into several levels using topological ordering
described by Kahn [103]
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Table 5.2: Timing parameters and sub-task priority orderings of the DAG task described
in Figure 5.4

Sub-task Ci,j Ti Di Core Order 1 Order 2
τ1,1 1 10 9 π1 1 1
τ1,2 1 10 9 π1 2 4
τ1,3 2 10 9 π2 3 3
τ1,4 2 10 9 π2 5 5
τ1,5 4 10 9 π1 4 2
τ1,6 2 10 9 π2 6 6

In Figure 5.5, we illustrate the two schedulings of DAG task τ1 corresponding
to the two priority orderings in Table 5.2. In the first scheduling (Figure 5.5a),
sub-task τ1,5 is executed before τ1,2. We note that the response time of the whole
DAG τ1 is equal to Rglobal

1 = 10. On the other hand, if τ1,2 is executed before τ1,5 as
in the second scheduling (Figure 5.5b), the response time of τ1 is reduced Rglobal

1 = 8.

t

π1

1 2 3 4 5 6 7 8 9 10

τ1,1 τ1,5 τ1,2

t

π2

1 2 3 4 5 6 7 8 9 10

τ1,3 τ1,4 τ1,6

D1 missed
finish time
of τ1 = 10

(a) First scheduling: τ1,5 has higher priority than τ1,2 (Rglobal1 = 10)

t

π1

1 2 3 4 5 6 7 8 9 10

τ1,1 τ1,2 τ1,5

t

π2

1 2 3 4 5 6 7 8 9 10

τ1,3 τ1,4 τ1,6

D1 respected
finish time
of τ1 = 8

(b) Second scheduling: τ1,2 has higher priority than τ1,5 (Rglobal1 = 8)

Figure 5.5: Examples of scheduling of the DAG task defined in Figure 5.4 according to
different sub-task orderings.

We conclude that the priority ordering of sub-tasks could influence the response
time of a DAG task by promoting or preventing the exploitation of possible
parallelism derived from the DAG structure and the mapping to the existing cores.
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5.1.2.2 Optimal Sub-task Priority Assignment

We aim to assign priorities for sub-tasks in a way that reduces the response time of the
whole DAG. To do so, we are inspired by a recent work of Baruah [59]. In this work,
the author proposes an MILP formulation of the scheduling problem of partitioned
DAG tasks. He uses techniques from operations research literature like ordering
variables. Then, he combines them with an approach from the real-time scheduling
domain, which is the optimal schedulability test for EDF (Earliest Deadline First)
scheduling on a uniprocessor based on the demand bound function [15].

As stated in [59], the size of the MILP problem is polynomial in the number
of sub-tasks ni. In fact, the MILP formulation requires O(n3

i ) non-negative real-
valued variables that represent the start and finish times of each sub-task and
other variables used for the computation of the demand bound function for each
triplet of sub-tasks. This formulation also uses O(n2

i ) zero-one variables that define
the execution order between each pair of sub-tasks. Each of these variables has a
constant number of linear constraints, thus this MILP introduces O(n3

i ) constraints.
We adjust the constraints applied on ordering variables in [59] in order to model

more general cases of the DAG scheduling problem. More details about these
constraints are given in Appendix A. After modifying these constraints, we use
an optimization solver [104, 105] to minimize the finish time of the sink sub-task
and accordingly the response time of the whole DAG. Thus, we obtain an optimal
scheduling for the DAG task under study, defined by the start and finish time
of each sub-task. In some cases, these start and finish times define the same
interval for several sub-tasks to execute successively on the same core without
clearly determining the execution order of these sub-tasks.

We run EDF scheduling algorithm for each core on the set of sub-tasks assigned
to that core and characterized by individual release times and deadlines equal to the
start and finish times respectively. Consequently, we obtain the exact scheduling
interval of each sub-task. In order to determine the priority ordering for sub-tasks,
we sort them according to their exact start times and in the case of equality for
several sub-tasks on different cores, we prioritize the one with the lowest finish time.

Despite the polynomial size of the MILP formulation, the scheduling problem
of DAG tasks remains an NP-hard problem as stated by Baruah [59]. In the
remainder of this section, we propose two approximation methods (heuristic based
and evolutionary based) that, in practice, provide solutions relatively close to the
optimal one while reducing the computational complexity.
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5.1.2.3 Sub-task Priority Assignment Heuristic

In Example 5.3, we show that the execution order of sub-tasks may reduce the
response time of the whole DAG. Finding the optimal priority ordering of sub-tasks
that leads to the lowest response time of the whole DAG, has a high computation
complexity as stated in Section 5.1.2.2. Hence, we propose a heuristic algorithm
with a polynomial complexity in the number of sub-tasks, but it does not guarantee
finding the optimal ordering.

Our algorithm assigns priorities to the sub-tasks based on their successors
workload. The successors workload of a sub-task τi,j that run on different cores
is denoted by succ_sum(τi,j) and is defined as follows:

succ_sum(τi,j) =
∑

τi,k∈succ(τi,j)
π(τi,k)6=π(τi,j)

Ci,k (5.1)

Our algorithm prioritizes a sub-task τi,j if it has the maximum successors workload
that run on cores different from the one of τi,j (see Equation 5.1). Indeed, when
such sub-task completes its execution earlier, it allows successors mapped to other
cores to start their execution earlier and probably to run in parallel with successors
mapped to the same core. For instance, in Figures 5.4 and 5.5, when the sub-task
τ1,2 is executed before τ1,5, it allows τ1,4 to start its execution earlier on the other
core π2 and consequently to run in parallel with τ1,5.

In the case of equality between two sub-tasks or more according to the first
criteria (i.e. successors workload), we resort to a second criteria based on topological
ordering described by Kahn [103]. In fact, we split the DAG into several levels that
respect precedence constraints (see the example in Figure 5.4) and we prioritize
the sub-task that belongs to a prior level. This strategy gives higher priority
to a predecessor sub-task than its successors, which is consistent the precedence
constraints and their corresponding partial order.

Algorithm 4 illustrates how the priority assignment heuristic works. First, we
initialize succ_sum vector (line 1) and we calculate, for each sub-task τi,j, the
sum of the execution time of successors succ(τi,j) that are executed on different
cores than τi,j, i.e. π(τi,k) 6= π(τi,j) (lines 2 − 8). Then, we separate sub-tasks of
τi into levels (line 9) using topological ordering[103]. Finally, we sort sub-tasks
(line 10) in decreasing order of the sum of successors workload (succ_sum). We
break a tie by selecting the sub-task with the lowest level.
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Algorithm 4: Priority assignment for sub-tasks belonging to the same
DAG
Data: τi a DAG task, ni number of sub-tasks in τi and π(·) the core

mapping
Result: Priority ordering of sub-tasks

1 succ_sum = zeros(ni) /* Intialized vector of size ni */
2 for τi,j ∈ τi do
3 for τi,k ∈ succ(i, j) do
4 if π(τi,k) 6= π(τi,j) then
5 succ_sum(τi,j) = succ_sum(τi,j) + Ci,k
6 end
7 end
8 end
9 levels = topologic_order(τi)

10 Priority = argsort(τi, order = [−succ_sum, levels])
11 return Priority

Example 5.4. In this example, we apply the priority assignment heuristic (Algo-
rithm 4) on the DAG task defined in Figure 5.4 and Table 5.2. The results are
presented in Table 5.3.

Table 5.3: Applying priority assignment heuristic for sub-tasks on the DAG task
described in Figure 5.4

Sub-task Ci,j succ(τi,j) Core succ_sum Priority
τ1,1 1 {τ1,2, τ1,3, τ1,4, τ1,5, τ1,6} π1 6 1
τ1,2 1 {τ1,4, τ1,6} π1 4 2
τ1,3 2 {τ1,4, τ1,6} π2 0 4
τ1,4 2 {τ1,6} π2 0 5
τ1,5 4 {τ1,6} π1 2 3
τ1,6 2 ∅ π2 0 6

We note that sub-task τ1,2 has a higher successors workload (succ_sum) than
τ1,5. Hence, our heuristic assigns to τ1,2 a higher priority than τ1,5. Moreover,
sub-tasks τ1,3, τ1,4 and τ1,6 have the same successors workload that is equal to zero.
In this case, our algorithm resorts to the second criteria and assigns the higher
priority to the sub-task belonging to the prior level (see Figure 5.4). Thus, τ1,3 has
a higher priority than τ1,4, which has a higher priority than τ1,6.

In order to evaluate the complexity of our proposed Algorithm 4, we consider
its components as follows:
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• The two nested for loops compute the successors workload (succ_sum) using
a simple sum operation. They have a complexity equal to O(n2

i ), where ni is
the number of sub-tasks in the DAG task τi.

• The topologic_order function used in line 9 implements the topological
ordering described by Kahn [103]. Its complexity equal to O(ni+ | Ei |),
where | Ei | is the number of edges in the DAG. This number is bounded from
above by n2

i . Thus, the complexity of topologic_order function is also upper
bounded by O(n2

i ).

• The argsort function used in line 10 has a complexity that is equal to O(ni×
log ni).

We deduce that the complexity of the entire priority assignment heuristic is equal
to O(n2

i ). Hence, it runs in polynomial time in the number of sub-tasks ni.
On the other hand, it is clear that the proposed heuristic is an m-approximation

algorithm. It provides a solution that cannot exceed the optimal solution times
m, where m is the number of cores. In fact, the response time RH

i of the DAG
τi obtained with the priority ordering generated by our heuristic, is bounded by
the cumulative execution time of all sub-tasks i.e. RH

i ≤
∑
τi,j∈τi

Ci,j (i). On the
other hand, the response time R?

i corresponding to the optimal ordering is always
greater than the cumulative execution time of all sub-tasks divided by the number
of cores m i.e. ∑τi,j∈τi

Ci,j/m ≤ R?
i (ii). By multiplying (i) and (ii), we obtain

RH
i

m
≤ R?

i . Thus, we deduce that RH
i cannot exceed R?

i × m.

Remark. In the case of probabilistic task model, we use the expected value E(Ci,j)
of execution time distribution Ci,j instead of the deterministic value Ci,j to compute
succ_sum(τi,j). We proceed similarly for all the algorithms in this chapter by using
expected values instead of deterministic values in order to deal with probabilistic
parameters.

5.1.2.4 Sub-task Priority Assignment with a Genetic Algorithm

In this part, we build another sub-task priority assignment algorithm that offers near
optimal parallel executions on different processors based on a Genetic Algorithm
(GA) [106]. Genetic algorithms are inspired by natural evolution theory. They
mainly consist of evolving a group of possible solutions called a population by
successively selecting the best members and combining them to create new members
that are likely to be good.
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In our case, we consider a population composed of a set of possible priority
assignments of sub-tasks inside the same graph. Each member in the population
is a vector of size ni (the number of sub-tasks in DAG τi) where each element
represents a priority level in descending order and it contains the sub-task assigned
to that priority level (see the example in Figure 5.8).

Initialization Evaluation Stop ?

SelectionCrossoverMutation

No

Yes

Figure 5.6: Flowchart of the proposed Genetic Algorithm

Our proposed GA-based heuristic is an iterative procedure composed of several
steps (cf. Figure 5.6) detailed as follows:

• Initialization: In order to initialize population members, we use random
priority ordering derived from topological order [103] and we generate several
possible priority assignments for sub-tasks composing the DAG under study.

• Evaluation: In this step, we evaluate the objective function (fitness) of each
member of the population. To do so, we compute the response time of the
studied graph while considering the priority assignment that corresponds to
the population member evaluated.

• Selection: We select the two best members, called the winner and the loser,
that have priority assignments corresponding to the two least response times
in the population. Then, we keep the winner in the next generation (iteration)
and we replace the loser by the child member. The latter is built by applying
evolution operations (crossover and mutation) on the pair composed of the
winner and the loser members. The elitist selection preserves the best member
in the next generation and prevents the degradation of the population fitness.

The proposed GA is based on two main evolution operations:

• Crossover (cf. Figure 5.8): We select the priority order of a subset of nodes
from the loser and insert it in the winner while respecting the topological
order to obtain the child member.
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• Mutation (cf. Figure 5.9): We swap the priorities of two parallel sub-tasks
from the child member while respecting the topological order.

For the stop condition, we use a limited number of iterations equal to 100
because we note that beyond this number, the winner response time becomes almost
constant. The winner of the last generation presents the priority assignments that
most reduce the response time of the DAG task.

Example 5.5. Let us consider an example of one iteration of the deployed GA.
Figure 5.7 presents the DAG task, and we aim to determine a priority ordering for
its sub-tasks.

τ1,1

τ1,2

τ1,3

τ1,4

τ1,5

τ1,6

τ1,7

τ1,8

τ1,9

π1

π2

Figure 5.7: Example of a DAG task τ1 to determine its sub-tasks priorities

First, we randomly initialize a population. Each member is presented as a
sequence of sub-tasks sorted in descending order of priority while respecting the
sub-tasks dependencies (topological order of the DAG). After computing the response
time of all the members, we select the two best members of the population called the
winner and the loser (cf. Figure 5.8).

During the crossover operation (Figure 5.8 ), we select two parallel sub-tasks
having different relative orders in the winner and the loser (τ1,2 and τ1,3). As the
winner has the best fitness, the child member is built by conserving most of the
winner’s sequence and changing the order of the two selected sub-tasks according to
the loser ordering (τ1,3 has higher priority than τ1,2 in the child member as in the
loser). This priority change should respect the precedence constraints. Therefore,
it induces a possible change in the priorities: (i) of the predecessors (τ1,1) of the
selected sub-task with the lower priority in the winner (τ1,3) and (ii) of the successors
(τ1,7 and τ1,9) of the selected sub-task with the higher priority in the winner (τ1,2).

Then, we apply the mutation operation (Figure 5.9 ). We swap the priorities
of two parallel sub-tasks (τ1,3 and τ1,4) from the child member while respecting the
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Winner τ1,1 τ1,2 τ1,7 τ1,4 τ1,3 τ1,5 τ1,6 τ1,8 τ1,9

Loser τ1,4 τ1,1 τ1,3 τ1,6 τ1,8 τ1,5 τ1,2 τ1,7 τ1,9

︸ ︷︷ ︸
⇓

Child τ1,1 τ1,3 τ1,2 τ1,4 τ1,7 τ1,5 τ1,6 τ1,8 τ1,9

Figure 5.8: Crossover operation of genetic algorithm

Child τ1,1 τ1,3 τ1,2 τ1,4 τ1,7 τ1,5 τ1,6 τ1,8 τ1,9

⇓
Elitist τ1,1 τ1,4 τ1,2 τ1,3 τ1,7 τ1,5 τ1,6 τ1,8 τ1,9

Figure 5.9: Mutation operation of genetic algorithm

precedence constraints. We replace the loser in the previous population by the new
child member (Elitist) and we iterate until reaching the stop condition.

5.2 Partitioning Heuristic
Several categories of partitioning algorithms that map executing programs (task,
sub-task) to existing processors or cores have been studied in the literature.
Some heuristics originally devised for the bin packing problem, are used for
allocating independent and periodic tasks with recurrent jobs. From this category
of partitioning heuristics, we list Next Fit (NF) [107], First Fit (FF) [108], Best
Fit (BF) [109], and Worst Fit (WF) [108]. These algorithms allocate tasks to
processors based on their decreasing order of utilization and aim to minimize the
number of processors required.

Other partitioning heuristics are based on a list scheduling approach. They
mainly operate on dependent tasks and they allocate each node of a DAG task to
one processor and schedule them while respecting the precedence constraints. The
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basic idea of these approaches is to make a list of nodes to be scheduled and to
sort them using a priority ordering technique like Highest level First (HLF) [110],
Longest Path (LP) [111] or Critical Path (CP) [112].

The second step of list scheduling is the processor selection. It consists in selecting
a node from the scheduling list according to the defined order and allocating it
to the processor that minimizes its start time. This step is repeated until all the
nodes have been scheduled. The computation of the start time of a given node
on a given processor, is based on whether a non-insertion or an insertion policy
is adopted [113]. The latter considers the possible insertion of a node in a prior
idle time slot on a processor when computing the earliest start time. The idle
time slot considered should come after the activation time of the node in order
to preserve precedence constraints.

In general, partitioning algorithms based on list scheduling are used for a single
DAG task. They could also be applied on multiple DAG tasks that all have the same
period by considering them as a single non-connected graph. Moreover, we could
apply these partitioning heuristics on multiple DAG tasks with different periods
by unfolding their executions to the hyperperiod in order to obtain mono-rate
DAG tasks similarly to the approach used in [58]. However, the hyperperiod could
be potentially large which may explode the number of nodes and increase the
complexity. To the best of our knowledge, partitioning algorithms in the literature
do not deal directly with a DAG task model with individual periods for each DAG.

In this section, we propose a partitioning heuristic that operates on several
DAG tasks with different periods. It takes into consideration the structure of
dependencies graphs as well as their individual periods, utilizations and priorities.
We assume that the priorities at the task level are given. In general, communication
delays between sub-tasks inside the same DAG become significant when two related
sub-tasks are mapped to different cores. Hence, we consider that the communication
delay between two sub-tasks is equal to zero if the they are mapped to the same
core. Our partitioning heuristic aims to minimize introduced communication delays
while balancing the load between cores in a way that maximizes possible parallelism.

Algorithm 5 illustrates how our partitioning heuristic works. We process DAG
tasks in descending order of their priorities (line 2). Then, we consider the sub-
tasks inside each DAG task in ascending order of levels (line 4). These levels are
determined by topological ordering [103] as previously explained in Section 5.1.2.3
(see example in Figure 5.4). For each core πk, we compute the cost function
Fcost(τi,j, πk) defined in the following Equation 5.2:
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Fcost(τi,j, πk) = Ci,j
1− Uπk

+
∑

τi,l∈ipred(τi,j)
π(τi,l) 6=π(τi,j)

ei(l, j)
1− Ucom

(5.2)

We denote by Uπk
the utilization of the core πk. It is equal to the sum of the

utilization of each sub-task mapped to πk. Similarly, Ucom refers to the utilization
of a virtual core that represents the communication bus. It is equal to the sum
of the utilization of each introduced communications delay.

The cost function Fcost(τi,j, πk) (Equation 5.2) estimates the average response
time of sub-task τi,j if it is mapped to the core πk. Then, τi,j is assigned to
the core πbest that minimizes this cost function (lines 5 − 12 in Algorithm 5).
After that, we update the utilization of πbest by adding the utilization of the sub-
task τi,j (line 13) and we also update the communication utilization by the new
introduced communication delays caused by the predecessors that are mapped
to different cores (lines 14 − 18).

Algorithm 5: Sub-tasks partitioning algorithm
Data: τ set of n DAG task and π set of m cores
Result: Sub-tasks mapping π(τi,j)

1 U = zeros(m+ 1) /* m core utilizations + 1 communication
utilization */

2 for τi ∈ τ (in descending order of task priority) do
3 levels = topologic_order(τi)
4 for τi,j ∈ τi (in ascending order of levels) do
5 min_cost = +∞
6 for πk ∈ π do
7 if Fcost(τi,j, πk) < min_cost and U [πk] + Ci,j

Ti
≤ 1 then

8 min_cost = Fcost(τi,j, πk)
9 πbest = πk

10 end
11 end
12 π(τi,j) = πbest

13 U [π(τi,j)] = U [π(τi,j)] + Ci,j

Ti

14 for τi,l ∈ ipred(τi,j) do
15 if π(τi,l) 6= π(τi,j) then
16 U [com] = U [com] + ei(l,j)

Ti

17 end
18 end
19 end
20 end
21 return π(τi,j) sub-tasks mapping for all τi,j
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In order to evaluate the complexity of proposed partitioning Algorithm 5, we
consider its components as follows:

• The inner for loop (line 6) computes the cost function Fcost(τi,j, πk) for each
core πk of the m available cores. The computational complexity of the cost
function equal to O(ni), where ni is the number of sub-tasks in the DAG.
This complexity is derived from the sum term in Equation 5.2. Hence, the
complexity of the for loop (line 6) is O(m× ni).

• The complexity of the other inner for loop (line 14) is O(ni)

• The two outer for loops examine all the sub-tasks in the task set. The total
number of these sub-tasks is Nsub−task = ∑

i ni.

We deduce that the complexity of the partitioning heuristic is equal to O(Nsub−task×
m×maxi ni). Hence, it is is polynomial in the total number of sub-tasks Nsub−task

and in the number of cores m.

Example 5.6. In this example, we apply the partitioning Algorithm 5 of the task
set defined in Figure 5.10 on a processor with three cores (i.e. π = {π1, π2, π3}).
This task set is composed of two DAG tasks τ1 and τ2. Their respective periods are
equal to T1 = 20 and T2 = 40. The execution times of all sub-tasks are given in
Table 5.4. We assume that τ1 has higher priority than τ2. For the sake of simplicity
in this example, we consider that the communication delay between two sub-tasks
mapped to different cores, is equal to 1 time unit.

τ1,1 τ1,2 τ2,1

τ2,2

τ2,3

τ2,4

τ2,5

Figure 5.10: Example of a DAG task with sub-tasks not mapped to cores
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Table 5.4: Execution of partitioning Algorithm 5 on the DAG task defined in Figure 5.10

Sub-
task Ci,j Fcost(τi,j, π1) Fcost(τi,j, π2) Fcost(τi,j, π3) π(τi,j) U1 U2 U3 Ucom

τ1,1 2 2 2 2 π1 0.1 0 0 0
τ1,2 1 1.11 2 2 π1 0.15 0 0 0
τ2,1 4 4.7 4 4 π2 0.15 0.1 0 0
τ2,2 8 10.41 8.88 9 π2 0.15 0.3 0 0
τ2,3 7 9.23 10 8 π3 0.15 0.3 0.175 0.025
τ2,4 8 10.43 11.42 10.72 π1 0.35 0.3 0.175 0.05
τ2,5 4 6.15 5.71 4.84 π3 0.35 0.3 0.275 0.1

Each row in Table 5.4, represents one iteration of the partitioning Algorithm 5
applied on the sub-task τi,j. We compute the cost function Fcost(τi,j, πk) of assigning
τi,j to each of the three cores (Columns 3− 5 in Table 5.4). The minimum cost is
highlighted and the corresponding core is assigned to τi,j (Column 6). After that, we
update the corresponding utilization (Columns 7− 9). If a communication delay is
introduced due to the mapping of τi,j to a different core than its predecessors, we
also update the communication utilization Ucom.

We note that the utilization of the three cores has values around 0.3 confirming
that our algorithm balances the load between cores. Moreover, the communication
utilization is equal to 0.1 due to the trade-off between parallelizing and reducing
communication between cores.

5.3 Graph Reduction
As mentioned previously, the complexity of schedulability analysis depends on
the number of DAG tasks as well as on the number of nodes in each DAG. For
instance, the proposed schedulability test for probabilistic task sets based on
Bayesian inference (in Section 4.3), has an exponential time complexity in the
number of sub-tasks composing each DAG.

In this section, we propose to reduce the number of nodes inside a DAG task
without affecting the precedence constraints defined by the original DAG. Our idea
consists in merging connected sub-tasks that are executed on the same core and
replacing them by a single sub-task with an execution time equal to the sum of all
merged sub-tasks. In some cases, this merge operation imposes new precedence
constraints between the new sub-task (i.e. the merged sub-tasks composing it)
and other sub-tasks. Therefore, we should ensure that no additional precedence
constraints are added by the merge operation.
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For instance, in Figure 5.11, we note that by merging the sub-tasks τ1,7 and
τ1,8 there are no new precedence constraints added. This is because the new node
successors (i.e. τ1,9) are also successors of the nodes composing it (i.e. τ1,7 and
τ1,8). The same also applies for the predecessors. Thus, these two nodes could be
fused without modifying the structure of the precedence constraints. However, if
we consider merging sub-tasks τ1,1 and τ1,2 in Figure 5.11, a precedence constraint
from τ1,1 to τ1,5 will be added since τ1,5 is a successor of one of the merged sub-tasks
(i.e. τ1,2) but not of the others (i.e. τ1,1).

τ1,1

τ1,2

τ1,3

τ1,4

τ1,5

τ1,6

τ1,7 τ1,8

τ1,9

π1

π2

Figure 5.11: Example of a DAG task with sub-tasks assigned to different cores

In order to preserve the same structure of precedence constraint when merging
sub-tasks together, the set Γ of merged sub-tasks that are mapped to the same
core should satisfy these two conditions:

• Condition 1: If a sub-task τi,l is a predecessor of one of the sub-tasks in
the set Γ and if τi,l is not in Γ, then τi,l should also be a predecessor for all
sub-tasks in the set Γ.

• Condition 2: If a sub-task τi,l is a successor of one of the sub-tasks in the
set Γ and if τi,l is not in Γ, then τi,l should also be a successor for all sub-tasks
in the set Γ.

More formally, we define the set Γ of mergeable sub-tasks as follows:

Definition 5.1. Let τi be a DAG task. A set Γ of sub-tasks from τi is said to be a
“mergeable” set if for each pair of sub-tasks τi,j and τi,k that belong to Γ, we have:

• π(τi,j) = π(τi,k)
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• pred(τi,j) \ Γ = pred(τi,k) \ Γ

• succ(τi,j) \ Γ = succ(τi,k) \ Γ

We note that for a DAG task τi there are several mergeable sets that could be
disjoint, overlapping or included one in the other. Thus, we define a “maximal
mergeable” set as follows:

Definition 5.2. A set of sub-tasks Γmax is said to be a “maximal mergeable” set if
it is a meargeable set that cannot be a subset of any other mergeable set.

We note that a sub-task τi,j could belong to different mergeable sets of sub-tasks.
However, we prove that it belongs to only one maximal mergeable.

Theorem 5.2. Let τi be a DAG task partitioned on m cores. Each sub-task τi,j
belongs to only one maximal mergeable set denoted Γmaxi,j .

Proof. We prove this theorem by contradiction. Let us assume that there are two
distinct maximal mergeable sets Γ1

i,j and Γ2
i,j that include a sub-task τi,j. Γ1

i,j is
a mergeable set. Thus, all sub-tasks in Γ1

i,j are executed on the same core as τi,j
(i.e. the core π(τi,j)). If a successor of τi,j is not in Γ1

i,j, then it is a successor of
all sub-tasks in Γ1

i,j. Similarly, for sub-tasks in Γ2
i,j. Hence, we deduce that if a

successor of τi,j is not in Γ1
i,j nor in Γ2

i,j, then it is a successor of all sub-tasks in
Γ1
i,j ∪ Γ2

i,j.
Applying a similar reasoning for predecessors, we deduce that Γ1

i,j ∪ Γ2
i,j is a

meargable set that contains τi,j. This is contradictory to the fact that Γ1
i,j is a

maximal mergeable set and cannot be a subset of any other mergeable set.
We conclude that Γ1

i,j and Γ2
i,j could not be distinct and there is only one

maximal mergeable set Γmaxi,j that contains a sub-task τi,j.
�

Remark. Let Γmaxi,j and Γmaxi,k be two maximal mergeable sets corresponding to sub-
tasks τi,j and τi,k respectively. Therefore, they cannot overlap and they are either
disjoint or equal if one sub-task belongs to the maximal mergeable set of the other
(i.e. τi,j ∈ Γmaxi,k or τi,k ∈ Γmaxi,j ).

If a sub-task τi,j is not mergeable with any other sub-tasks that are executed on
the same core, then Γmaxi,j = {τi,j}.



128 5.3. Graph Reduction

In order to reduce the number of nodes in a partitioned DAG task to the
minimum, we should find the maximal mergeable sets for each node. Then, we
merge sub-tasks in each of these sets. In the remainder of this section, we propose
two methods to determine the maximal mergeable sets and to reduce the size
of a DAG. The first one, based on an ILP formulation, enables us to optimally
reduce the DAG. The second method is a greedy heuristic. It iteratively merges
any two mergeable nodes that respect the three conditions in Definition 5.1, until
no further merging is possible.

5.3.1 ILP based approach

Let G be a DAG graph composed of n nodes vi, ∀ i ∈ {1, . . . , n} and partitioned
on m cores. In this part, we propose an ILP formulation to represent the problem
of determining the maximal mergeable set Γmaxi of the node vi. This ILP based
approach is applied for each node in order to reduce the whole graph G.

First, we define for a studied DAG G the dependencies matrix ∆ such that:

∆j,k =
{

1 if vk ∈ succ(vj)
0 otherwise

We note that ∆j,j = 0, ∀ j ∈ {1, . . . , n}.
We also define n zero-one integer variables xj, ∀ j ∈ {1, . . . , n} such that:

xj =


1 if the node vj is inclued in the maximal

mergeable set Γmaxi of the node vi
0 otherwise

Since all the nodes in the maximal mergeable set Γmaxi should be mapped to the
same core as vi, we impose as a constraint xj = 0 if π(vj) 6= π(vi), ∀ j ∈ {1, . . . , n}.

According to “Condition 1” stated above, for each two nodes vj and vk, belonging
to the maximal mergeable set Γmaxi , if a node vl /∈ Γmaxi is a predecessor of vj, then
vl should also be a predecessor of vk. We present this condition using integer
variables of the ILP problem as follows:

(1− xl) · xj · xk ·∆l,j ≤ ∆l,k ∀ j 6= l, k 6= l (5.3)

According to “Condition 2” stated above, For each two nodes vj and vk belonging
to the maximal mergeable set Γmaxi , if a node vl /∈ Γmaxi is a successor of vj, then
vl should also be a successor of vk.

(1− xl) · xj · xk ·∆j,l ≤ ∆k,l ∀ j 6= l, k 6= l (5.4)
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The two constraints defined by Equations 5.3 and 5.4, are expressed as linear
constraints using a standard method from the Operations Research domain:

∆l,j −M · (3− (1− xl)− xj − xk) ≤ ∆l,k

∆j,l −M · (3− (1− xl)− xj − xk) ≤ ∆k,l

We denote by M a large positive constant.
In order to find the maximal mergeable set Γmaxi of node vi, we maximize

the sum of xj variables that satisfy the previous constraints. Then, we come up
with the following ILP representation:

maximize
n∑
j=1

xj

subject to xj = 0 if π(vj) 6= π(vi)
∆l,j −M · (3− (1− xl)− xj − xk) ≤ ∆l,k ∀ j 6= l, k 6= l

∆j,l −M · (3− (1− xl)− xj − xk) ≤ ∆k,l ∀ j 6= l, k 6= l

(5.5)

In the previous ILP formulation (Equation 5.5), the number of introduced zero-
one variables xj is equal to n. Regarding the number of constraints, it is bounded
from above by 2n3 + n. Hence, the proposed ILP formulation has a polynomial size
in the number of nodes (i.e. number of sub-tasks in the DAG task to reduce).

Example 5.7. In this example, we present the result obtained by applying the ILP
formulation on the DAG task defined in Figure 5.11 in order to find a maximal
mergeable set Γmax1 of the node v1 (i.e. sub-task τ1,1) that runs on core π1.

The dependencies matrix ∆ corresponding to the DAG task defined in Figure 5.11
is equal to:

∆ =



0 0 0 1 0 1 1 1 1
0 0 0 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1
0 0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0


The vector of zero-one variables xj found by an ILP solver [105] that maximize

the defined ILP problem (Equation 5.5) is:

{x1, . . . , x9} = {1, 1, 1, 1, 1, 0, 0, 0, 0}
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For the nodes that run on a different core than v1 (i.e. run on π2), the first
constraint in ILP formulation (Equation 5.5) is verified, i.e. x7 = 0 and x8 = 0.

In addition, the solution obtained (the vector of xj’s) satisfies the two other
constraints of the ILP formulation (Equation 5.5). For instance, if j = 1, k = 5 and
l = 8, we have x1 = 1, x5 = 1, x8 = 0, ∆1,8 = 1, ∆8,1 = 0, ∆5,8 = 1 and ∆8,5 = 0.
Hence, the following constraints are met :

∆8,1 −M · (3− (1− x8)− x1 − x5) ≤ ∆8,5

∆1,8 −M · (3− (1− x8)− x1 − x5) ≤ ∆5,8

When j = 5, k = 1 and l = 8, the following constraints are also met:

∆8,5 −M · (3− (1− x8)− x5 − x1) ≤ ∆8,1

∆5,8 −M · (3− (1− x8)− x5 − x1) ≤ ∆1,8

5.3.2 Heuristic based approach

In this part, we provide a graph reduction algorithm based on a greedy heuristic that
runs in polynomial time. This heuristic searches for two mergeable nodes that satisfy
the three conditions in Definition 5.1 and merges them. It proceeds iteratively until
no more pairs of mergeable nodes are found. This approach allows to reduce the
computational complexity compared to the ILP based approach (Section 5.3.1). But,
it does not guarantee reducing the number of nodes in the DAG task to the minimum.

Algorithm 6 describes how this heuristics works. We start by initializing the
resulting DAG task τ ′i and a Boolean variable that indicates if any merge operation
happened during the last iteration of the while loop (lines 3 − 13). Inside the
while loop, we use two for loops (lines 5− 6) to go through the graph nodes and
examine if there are any mergeable pairs of sub-tasks τi,j and τi,k (line 7). If
so, we merge them (line 8) and we set the Boolean variable merged to true in
order to make the while loop (line 3) recheck if any other pairs of sub-tasks in
the new DAG task τ ′i could be merged.

We note that Algorithm 6 has three nested loops that call the function “merge”.
The latter has an O(ni) time complexity, where ni is the number of sub-tasks in
a DAG task τi. Hence, we deduce that our proposed graph reduction algorithm
has a polynomial time complexity equal to O(n4

i ).
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Algorithm 6: Graph reduction heuristic
Data: τi a DAG task and π(·) the core mapping
Result: τ ′i the reduced DAG task

1 τ ′i = τi
2 merged = true
3 while merged do
4 merged = false
5 for τi,j ∈ τ ′i do
6 for τi,k ∈ τ ′i do
7 if π(τi,j) = π(τi,k) and pred(τi,j) \ {τi,k} = pred(τi,k) \ {τi,j} and

succ(τi,j) \ {τi,k} = succ(τi,k) \ {τi,j} then
8 τ ′i = merge(τi,j, τi,k)
9 merged = true

10 break
11 end
12 end
13 end
14 end
15 return τ ′i

τ1,1

τ1,2

τ1,3

τ1,4

τ1,5

τ1,6

τmerged1,7

τ1,9

(a) Heuristic based approach (Section 5.3.2)

τmerged1,1

τ1,6

τmerged1,7

τ1,9

(b) ILP based approach (Section 5.3.1)

Figure 5.12: Reduction of DAG task defined in Figure 5.11

Example 5.8. In this example, we apply our graph reduction Algorithm 6 on the
DAG task defined in Figure 5.11. In Figure 5.12, we illustrate the reduced DAGs
obtained by our heuristic (cf. Figure 5.12a) and by the ILP based approach (cf.
Figure 5.12b).

We note that our reduction heuristic merges the two sub-tasks that execute on
core π2. However, it does not come out with the maximal mergeable set Γmax1,1 of
sub-task τ1,1 that runs on core π1 as the ILP based approach does.
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From Figure 5.12, we note that we should check different combinations of sets
that include sub-task τ1,1 in order to find the maximal mergeable set Γmax1,1 . Thus,
the problem of determining the maximal mergeable set of a sub-task seems to be an
NP-hard problem. In Appendix B, we give some ideas on proving the NP-hardness
of this problem.

Remark. In the DAG defined in Figure 5.11, if there are precedence constraints
from τ1,1 to τ1,2 and from τ1,2 to τ1,3, then our graph reduction heuristic will find
the optimal solution found by the ILP based approach. In fact, with these additional
edges, our heuristic succeed to merge sub-tasks τ1,1 and τ1,2 together. It also merges
τ1,3 with τ1,5 then τ1,4 with τmerged1,5 . Finally, it merges τmerged1,1 with τmerged1,5 . Therefore,
we obtain the same reduced graph as in Figure 5.12b.

As mentioned previously in Section 5.1.2, the priority ordering of sub-tasks
transforms the partial order defined by precedence constraints to a total order. Thus,
the priority order between two sub-tasks is equivalent to a precedence constraint from
the highest priority sub-task to the lowest one. We deduce that the priority ordering
of sub-tasks helps our graph reduction heuristic to perform better.

5.4 Integrated Scheduling Methodology

In this section, we present an integrated scheduling methodology that joins several
previously proposed scheduling techniques. We apply these techniques together, as
described in the workflow below (cf. Figure 5.13), in order to reduce the response
time and enhance the schedulability of the system. This workflow takes as input a
DAG task set defined by the execution times, period and deadline for each DAG task.
After going through the different phases of the workflow, we obtain a partitioned
DAG task set with priority defined at the task and sub-task levels. Hence, we
apply, on the resulting task set, our partitioned and fixed-priority schedulability
analysis (i.e. RTA) proposed in Chapter 3 for deterministic timing parameters
and in Chapter 4 for probabilistic ones.

Moreover, we use the result of the schedulability analysis to refine different steps
of the workflow. For instance, the priority assignment at the task level based on
Audsley’s algorithm (Section 5.1.1.2) uses the result of the schedulability analysis
to enhance the priority assignment.

The workflow presented in Figure 5.13 is composed of several steps:
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Priority
assignment
at task level

Cores
partitioning

Priority
assignment at
sub-task level

Graph
reduction

RTA

DAG task set

Figure 5.13: Workflow of applying proposed scheduling techniques

1. Priority assignment at the task level: In this step, we define priorities for
DAG tasks using DM policy or Audsley’s algorithm proposed in Section 5.1.1.
If the task set is not yet partitioned (i.e. first run of the workflow), we assign
priority with DM policy since Audsley’s algorithm requires a task set on which
we can apply the schedulability test.

2. Cores partitioning: In this step, we go through DAG tasks in descending
order of their priorities defined in the previous step and we allocate a core for
each sub-task as described in Section 5.2.

3. Priority assignment at the sub-task level: In order to attribute a priority
for each sub-task, we use the defined core partitioning and one of the priority
ordering methods provided in Section 5.1.2.

4. Graph reduction: Here, we use the defined core partitioning and sub-tasks
priority ordering and we apply one of the methods described in Section 5.3.
These methods allow us to reduce the size of the DAGs and consequently to
decrease the computational complexity of the schedulability test.
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In this chapter, we present the evaluation of different scheduling techniques and

schedulability analysis proposed in the previous Chapters 3, 4 and 5. First, we

describe the experimental setup used for the experiments conducted. Second, we

evaluate the proposed algorithms on randomly generated DAG task sets. Finally, we

apply our proposed probabilistic schedulability analysis on a real use case of a PX4

autopilot1 programs used for the control of several types of UAVs2 and mobile robots.

1https://en.wikipedia.org/wiki/PX4_autopilot
2https://docs.px4.io/master/en/airframes/airframe_reference.html
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6.1 Experimental Setup
In this section, we describe the experimental setup used for all evaluation ex-
periments. We start by presenting how our DAG tasks generator works and we
specify the different parameters considered for the generation of graphs and timing
parameters of each sub-task. Then, we present the SimSo simulator [114] used
for simulating independent real-time tasks on either a single core or a multi-core
processor and we explain our implemented extension3 of this tool.

6.1.1 Random Generation of DAG Tasks

The generation procedure of DAG tasks is composed of several steps. We describe
below these steps as well as the parameters involved in each step:

• Step 1: We use “randfixedsum” algorithm [115] to generate n task utiliza-
tions from a given total utilization Ut equal to 70% of the system capacity i.e.
Ut = 0.7×m, where m is the number of cores.

• Step 2: We use “log-uniform” distribution to generate tasks’ periods in
the range [10, 1000ms] and we set the deadlines equal to the periods (Di =
Ti, ∀ i ∈ {1, . . . n}).

• Step 3: We compute the execution time of each DAG task using this formula
Ci = Ti × Ui, ∀ i ∈ {1, . . . n}, where Ui is the individual utilization of the
DAG task τi.

• Step 4: We split the total number of sub-tasks Nsub−task into n numbers that
define the number of sub-tasks ni on each graph τi, i.e. Nsub−task = ∑

i ni

• Step 5: We generate ni sub-tasks per DAG task τi. We define their execution
times Ci,j, ∀ j ∈ {1, . . . ni} in such a way to sum up the total execution time
of τi i.e.

∑
j Ci,j = Ci. To do so, we use “UUniFast” algorithm [116] and we

round the results to obtain integer execution times.

• Step 6: If we need to generate probabilistic task sets, we build a discrete
probability distribution to represent the pWCET of each sub-task τi,j. This
distribution have KCi,j

possible values and its expected value is equal to Ci,j.

• Step 7: We create a graph with ni sub-tasks for each task τi. We generate
edges between nodes randomly and we ensure that there is no cycle.

3https://github.com/SlimBenAmor/simso

https://github.com/SlimBenAmor/simso
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• Step 8: We assign priority to DAG tasks based on their periods according to
the DM policy [13] (equivalent to RM [12] since Di = Ti, ∀ i ∈ {1, . . . n}).

• Step 9: We define sub-task allocation randomly or by the mean of heuristics.

• Step 10: We define static priority for the sub-tasks according to the topolog-
ical order or using heuristics.

The generation of periods using “log-uniform” distribution is studied by Davis
et al. [117]. They show that it helps to avoid the problem of bias between the
magnitude of periods range and the schedulability test efficiency.

The hyperperiod of a task set increases exponentially in the total number of prime
factors composing each period. In order to avoid significantly large hyperperiods
(i.e. study interval) of the generated task sets, we select the two smallest periods
generated with log-uniform distributions and round the other periods to the nearest
multiple of the two selected periods.

We deploy layer-by-layer with the same edge probability method [118, 119]
to generate graphs with unbiased structures. In fact, we group sub-tasks into
layers. We use a random number of layers and a random size for each layers. Then,
we connect arbitrary sub-tasks of a given layer to sub-tasks in subsequent layers.
The probability of edge creation between two sub-tasks is equal to p = 0.2. This
technique allows to avoid cycles formation but it may cause a disconnected graph.
Therefore, we check the connectivity at end of the process and we create additional
edges if needed. In appendix C, we give examples of randomly generated DAG
tasks with the procedure described above.

The random generation of DAG tasks use several parameters. Below, we
enumerate the different input parameters for the generation procedure:

• n: the number of DAG tasks.

• m: the number of cores.

• Ut: the total utilization of the task set.

• Nsub−task: the total number of sub-tasks in the whole task set.

• pedge: the probability of generating an edge between two sub-tasks belonging
subsequent levels.

• KC the number of possible values in each distribution in case of probabilistic
task set.
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In the experiences presented below, we run each algorithm on 100 task sets and
we compare the average performance over these 100 task sets. When not mentioned
below, each generated task set is composed of N = 5 DAG tasks and Nsub−task = 100
sub-tasks scheduled on m = 4 cores with a total utilization Ut = 2.8 . We limit the
number of tasks and sub-tasks because of the computational complexity of some
algorithms from literature used for comparison (e.g. MILP approach [55] for RTA).

6.1.2 SimSo Simulator
SimSo is a simulation tool developed by Chéramy et al. [114] to evaluate real-time
scheduling algorithms. It supports single and multi-core processor scheduling. It
also supports several models and scheduling policies. However, it does not deal
with DAG task models, priority definition at the sub-task level and probabilistic
execution times. Therefore, we adapted the source code4 to be able to add precedence
constraints inside tasks and to specify a static sub-task-to-core allocation. We also
define fixed-priority at the task and sub-task levels. Hence, we could simulate the
generated task sets and derive their response times from the simulator events log.

Since we use a partitioned scheduling on identical multi-core processors, our
problem could be seen as several single core processor problems once the allocation
is done [14]. On the other hand, Baruah and Burns [19] show that fixed-priority and
preemptive scheduling with release jitter on a single core processor is sustainable
with respect to the period. Moreover, our priority assignment algorithm at the sub-
task level is consistent with the precedence constraints and respects the topological
order, i.e. a predecessor sub-task always have a higher priority than its successors.
Thus, the SimSo simulation of a DAG task model with precedence constraints is also
sustainable. Hence, if a sporadic DAG task model is schedulable with the minimum
inter-arrival time as the period for all DAG tasks, then it remains schedulable
with higher periods and sporadic arrivals.

We deduce that if a periodic DAG task model is schedulable on a partitioned
multi-core processor, then the sporadic task set is also schedulable. Thus, it is
sufficient to study the periodic system on the feasibility interval [18] that equals to the
hyperperiod (i.e. least common multiple of the periods) because the same scheduling
will be repeated after each hyperperiod. In fact, there is no backlog (unfinished jobs)
passed from a hyperperiod to the next one because unfinished jobs are dropped at
the end of their deadlines and we assume that the deadline is less than or equal to
the period for each task. Consequently, the maximum response time observed during
the simulation of a generated task set over a hyperperiod, is equal to the WCRT.

4https://github.com/SlimBenAmor/simso

https://github.com/SlimBenAmor/simso
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6.2 Evaluation of RTA and Scheduling Techniques
6.2.1 Response Time Analysis
6.2.1.1 Deterministic approach

First experiment
First, we apply our RTA proposed in Section 3.2.3.1 on a DAG task model with
deterministic execution times and priority defined at the task level only using DM
algorithm [13]. Then, we compare our method and the holistic approach [1] to the
MILP based approach proposed by Fonseca et al. [55] by computing the WCRT
ratio over the one obtained by MILP approach.

Table 6.1: WCRT ratio regarding the MILP based approach [55]

Min ratio Avg ratio Max ratio
Our RTA (sec. 3.2.3.2) 1 1.61 8
Holistic [1] (sec. 3.2.2.1) 1 2.52 9.73

MILP [55] 1 1 1

Table 6.1 shows that our RTA analysis and the holistic one overestimate the
WCRT computed by the MILP based approach [55]. However, our approach
introduces less over-estimation and pessimism than the holistic approach. On
average, our estimated WCRT is 1.61 times larger than the WCRT of MILP
approach, while the WCRT of the holistic approach is 2.52 times larger. Thus,
the WCRT of the holistic approach is about 1.5 times larger, on average, than
our WCRT. Moreover, for some generated task sets, we have large difference
between MILP approach and other approaches. The computed WCRT reaches
even up to 8 and 9 times larger (Max ratio column in Table 6.1). Meanwhile,
for other task sets, we obtain exactly the same WCRT for the three approaches
(Min ratio column in Table 6.1).

Table 6.2: Comparison of run-time of RTA

Min run-time Avg run-time Max run-time
Our RTA (sec. 3.2.3.2) 0.001 s 2.1 s 11.2 s
Holistic [1] (sec. 3.2.2.1) 0.0009 s 1.9 s 10.17 s

MILP [55] 0.01 s 74.7 s 7648 s

Table 6.2 illustrates the run-time performance of the three RTA approaches. We
note that run-times of our RTA and holistic analysis are comparable and they are
much faster than MILP approach. On average, our algorithm takes 2.1 seconds
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to deliver a WCRT estimation and the holistic analysis takes 1.9 seconds, while
MILP based analysis takes 74.7 seconds. Besides, the maximum run-time, over
100 generated task sets, is 11.2 seconds for our approach and 10.17 seconds for the
holistic approach, while MILP analysis takes more than 2 hours. Consequently,
it is clear that the MILP-based schedulability test could not be deployed in an
online scheduler of an interactive real-time system due to its high complexity and
run-time overhead. However, it could be used offline to generate scheduling tables
or as schedulability analysis for real-time systems design.

Second experiment
In this experiment, we evaluate the 5 RTA methods proposed in Chapter 3. We
start by computing the response time of 100 randomly generated task sets composed
each of n = 10 DAG tasks and a total number of sub-tasks Nsub−task = 100
executed on m = 2 cores that have a utilization equal to 50%. We define priority
at the task and sub-task levels using DM algorithm [13] and our sub-task priority
assignment heuristic (Section 5.1.2.3) respectively. Then, we compute the ratios of
the response times obtained with each RTA method over the exact one obtained
with SimSo simulation for a hyperperiod.

Table 6.3: WCRT ratios regarding the SimSo simulation and run-times of the 5 RTA
methods proposed in Chapter 3.

Min
ratio

Avg
ratio

Max
ratio

Min
run-time

Avg
run-time

Max
run-time

RTA in Sec. 3.2.2.1 1 3.01 9.35 0.121 s 0.183 s 0.62 s
RTA in Sec. 3.2.2.2 1 2.9 8.51 0.126 s 0.189 s 0.629 s
RTA in Sec. 3.2.2.3 1 2.79 8.34 0.127 s 0.19 s 0.631 s
RTA in Sec. 3.2.3.1 1 1.66 15.41 0.111 s 0.191 s 0.619 s

RTA in Sec. 3.2.3.2 1 1.2 3.73 0.191 s 0.298 s 0.822 s
RTA SimSo 1 1 1 0.54 s 54.96 s 170.57 s

From Table 6.3, we note that, on average, the two RTA methods based on our
characterization of the worst-case arrival patterns (in Sections 3.2.3.1 and 3.2.3.2)
reduce the over-estimation of the response time compared to other methods based
on the arrival patterns described in [1]. However, for some generated task set our
first characterization of the worst-case arrival patterns (in Sections 3.2.3.1) could
be very pessimistic. It over-estimate the actual response time about 15 and half
times ((Max ratio column in Table 6.3).

Regarding the run-times of the different RTA methods proposed, we note that
they have similar run-times with small variations between 0.1 s and 0.85 s. Indeed,
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these run-times are less than 1 second since RTA methods proposed in Chapter 3
are based on iterative equations with a polynomial complexity.

Table 6.4: Number of DAG task that have strictly greater response time using one RTA
method (from rows) compared to the other (from columns)

RTA in
Sec. 3.2.2.1

RTA in
Sec. 3.2.2.2

RTA in
Sec. 3.2.2.3

RTA in
Sec. 3.2.3.1

RTA in
Sec. 3.2.3.2

RTA in
Sec. 3.2.2.1 0 556 722 787 891

RTA in
Sec. 3.2.2.2 221 0 746 800 908

RTA in
Sec. 3.2.2.3 0 0 0 732 842

RTA in
Sec. 3.2.3.1 107 108 114 0 258

RTA in
Sec. 3.2.3.2 1 1 1 13 0

Even if the WCRT ratio of some RTA methods may seems comparable in
Table 6.3, these methods are not actually comparable. In fact, for some generated
task sets, RTA methods based on our characterization of the worst-case arrival
patterns (in Sections 3.2.3.1 and 3.2.3.2) reduce the over-estimation of the response
time, while for other task sets it is the inverse. In Table 6.4, we illustrates the
number of generated DAG tasks that have a response time with the RTA method
in a given row strictly greater than the RTA method in a given columns (i.e.
R(row) > R(column)). We recall that there is a total number of DAG tasks equal
to 1000 (i.e. 10 DAG tasks ×100 task sets). The number of DAG tasks in a diagonal
cell in Table 6.4 is equal to 0 because using the same RTA methods for a DAG task
always results in equal response times (and not strictly greater).

We note that the third RTA method based on the worst-case arrival patterns
described in [1] (third row in Table 6.4), always yields a response time less than or
equal to the one computed by the two other RTA methods based on the same arrival
patterns. We also note that the second RTA method based on our characterization
of worst-case arrivals (fifth row in Table 6.4) provides almost the lowest over-
estimation of the response time except for 14 generated DAG tasks over 1000.
Nonetheless, other RTA methods provide responses times that are sometimes lower
and sometimes higher when compared to each other. Hence, these methods are
not comparable between each other.
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Third experiment
In this experiment, we apply the 5 RTA methods proposed in Chapter 3 on 100
task sets generated with different configurations and generation parameters. Indeed,
we vary the number of cores m among 2, 4, 8 and 10 with a constant utilization
equal to 50% of the capacity of the system. The number of DAG task n could
be equal to 6, 8, 10 or 12. The total number of sub-tasks Nsub−task varies among
40, 60, 80 and 100. We also define priority at the task level only for one set of
experiments and at both levels for another set of experiments. Then, we compute
and compare the ratios of the response times obtained with each RTA method
over the exact one obtained with SimSo simulation.

(a) Average WCRT ratio with priority
defined at the task level only.

(b) Average WCRT ratio with priority
defined at the task and sub-task levels.

Figure 6.1: Average WCRT ratio of 100 generated task sets that have n = 10 DAG
tasks and Nsub−task = 100 sub-tasks while varying the number of cores.

From the different figures above, we note that the response time is reduce
for all RTA methods when we define priority at the sub-task level using our
assignment heuristic (Section 5.1.2.3).

In Figure 6.1, we note that, on average, the response times of the RTA methods
based on the worst-case arrival patterns described in [1] (Sections 3.2.2.1, 3.2.2.2
and 3.2.2.3), are reduced when the number of cores increases. This is because the
number of preempting sub-tasks from higher priority DAGs that are executed on
the same core become smaller since the total number of sub-tasks (Nsub−task = 100)
is partitioned on more cores. However, the response times of other RTA methods
increase with the number of cores. Indeed, the performance of these methods
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(a) Average WCRT ratio with priority
defined at the task level only.

(b) Average WCRT ratio with priority
defined at the task and sub-task levels.

Figure 6.2: Average WCRT ratio of 100 generated task sets that have Nsub−task = 100
sub-tasks executed on m = 4 cores while varying the number of DAG tasks.

(a) Average WCRT ratio with priority
defined at the task level only.

(b) Average WCRT ratio with priority
defined at the task and sub-task levels.

Figure 6.3: Average WCRT ratio of 100 generated task sets that have n = 10 DAG
tasks executed on m = 4 cores while varying the number of sub-tasks.

depends a lot on the partitioning of sub-tasks and when the number of cores
increases, the partitioning problem become harder.

In Figure 6.3, we note that the response times for all RTA methods increase with
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the total number of sub-tasks Nsub−task because the communication and interference
between different sub-tasks and cores increase. In Figure 6.2, we also note that
the response times slightly decrease when the number of DAG tasks n increases.
This is because the number of sub-tasks in each DAG task become smaller since
the total number of sub-tasks is fixed Nsub−task = 100.

6.2.1.2 Probabilistic approach

Response time equations based on probabilistic operators
We evaluate our probabilistic response time equations presented in Section 4.2.2
by comparing them to the deterministic approach. The deterministic analysis is
based on worst case reasoning. Hence, it considers the highest execution times
in the pWCET distributions and it declares a task set schedulable when the
probabilistic analysis finds a probability of schedulability equals to 100%. We
note that, in Figure 6.4, none of the generated task sets reaches the probability of
100% so they won’t be evaluated as schedulable using the deterministic analysis.
However, about half of generated tasks are schedulable with high probability
(more than 80%) which highlights the pessimism of the worst case reasoning of
the deterministic analyses. There is a significant number of task sets with 0%
probability to be schedulable (not schedulable under any timing parameters values).
This is explained by the random generation of timing and precedence constraints
that may be too stringent to be respected.

Bayesian network
In this experiment, we apply the Bayesian network inference on 10 generated task
sets each composed of a single DAG task with probabilistic execution times. Each
DAG task contains Nsub−task sub-tasks that are executed on m = 2 cores. The
execution time distribution of each sub-task have KC possible values. We vary
Nsub−task among 5, 6 and 7. We also vary KC among 3, 4 and 5.

First, we compute the cumulative distribution of the response time of the 10
DAG tasks generated using four different methods: the exact method that explores
all combinations, the exact Bayesian inference with Variable Elimination, the
approximate Bayesian inference with sampling and the response time equations with
probabilistic operators (Section 4.2.2). In our case, the response time distribution of
the DAG task have on average about 110 points. Second, we calculate the maximum
difference over all points between each method and the exact one that explores all
combinations and we compare the average of this maximum difference over the 10
DAG tasks generated. We limit the value of some parameters such as the number
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Figure 6.4: Histogram of schedulability probability for 100 task sets randomly generated

of DAG task generated, the number of sub-tasks Nsub−task and the size of pWCET
distributions KC due to the high computation complexity of some methods used
(i.e. all combinations and Variable Elimination) that increases exponentially.

Table 6.5: Maximum difference of CDF compared to all combinations method for DAG
tasks with Nsub−task = 6 sub-tasks and different size of pWCET distributions KC .

KC 3 4 5
Variable

Elimination 9.44× 10−17 2.22× 10−16 2.22× 10−16

Sampling 1.99× 10−3 1.14× 10−3 1.19× 10−3

Probabilistic
operators 1.88× 10−2 1.59× 10−2 2.23× 10−2

Table 6.6: Maximum difference of CDF compared to all combinations method for DAG
tasks with a size of distributions KC = 5 and different number of sub-tasks Nsub−task.

Nsub−task 5 6 7
Variable

Elimination 1.89× 10−16 2.22× 10−16 5.32× 10−16

Sampling 9.48.× 10−4 1.19× 10−3 9.18× 10−4

Probabilistic
operators 1.68× 10−2 2.23× 10−2 1.4× 10−2
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From Tables 6.5 and 6.6, we note that the maximum difference of CDF between
the Variable Elimination and all combinations methods is almost equal to 0 (about
10−16). Thus, we deduce that the Variable Elimination method always provides
the same response time distribution as the exact method (i.e. all combinations).
However, Sampling and Probabilistic operators methods have a remarkable difference
(between 10−3 and 10−2). For the Sampling method, this difference is inversely
proportional to the number of samples Ns = 1000.

(a) Average of run-times for
a size of distributionKC = 3

(b) Average of run-times for
a size of distributionKC = 4

(c) Average of run-times for
a size of distributionKC = 5

Figure 6.5: Average of run-times of different probabilistic RTA methods for several
numbers of sub-tasks Nsub−task and sizes of distributions KC .

From Figure 6.5, we note that the run-times of different algorithms increase with
the number of sub-tasks Nsub−task and the size of distributions KC. The run-times
of Variable Elimination and all combinations methods increase exponentially. For a
size of distributions KC = 3, Variable Elimination method have higher run-time
than all combinations. However, the run-time of all combinations method increases
faster for KC = 4 and KC = 5.

On the other hand, the Sampling and Probabilistic operators methods have a
polynomial complexity. Hence, their run-times barely increase for small variation of
number of sub-tasks Nsub−task ∈ {5, 6, 7} and size of distributions KC ∈ {3, 4, 5}.

C-space and SVM classifier
In this experiment, we generate 10 task sets each composed of a single DAG task with
probabilistic execution times. Each DAG task contains Nsub−task ∈ {5, 6, 7, 8} sub-
tasks that are executed on m ∈ {1, 2, 4, 8} cores. The execution time distribution
of each sub-task have KC = 5 possible values. Then, we compute the DMPs of each
DAG task using all combinations and SVM methods (described in Section 4.4).
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SVM classifier with linear Kernel First, we start by evaluating the SVM
classifier with a linear kernel. Therefore, we use DAG tasks that are executed on a
single core processor (m = 1) and we compute the difference between DMPs obtained
with linear kernel SVM and all combinations methods (i.e. DMP(SVM)−DMP(all
combinations)).

Table 6.7, illustrates the minimum, average and maximum of the DMP differences
over the 10 generated DAG tasks with a size of distributions KC = 5 and different
numbers of sub-tasks Nsub−task. We note that the DMP difference is always equal to
0 for Nsub−task = 5 and it is equal to zero 9 times over 10 for other value of Nsub−task

(because the average DMP difference equal to the maximum DMP difference divided
by 10, which is the number of generated DAG tasks). We deduce that the linear
kernel SVM almost succeed to determine the exact border between the schedulable
and non-schedulable regions. The introduced difference for some generated DAG
tasks could be caused by a calculation error when normalizing and sampling.

Table 6.7: DMP difference between linear kernel SVM and all combinations methods
for a single core processor.

Nsub−task 5 6 7 8
Min DMP difference 0 0 0 0
Avg DMP difference 0 2× 10−8 6× 10−8 2.55× 10−4

Max DMP difference 0 2× 10−7 6× 10−7 2.55× 10−3

Table 6.8, shows the result of applying a linear kernel SVM on DAG tasks with
a size of distribution KC = 5 and Nsub−task = 6 sub-tasks that are executed on a
multi-core processor (m ∈ {2, 4, 8}). We note that the minimum DMP difference is
not always equal to 0. Hence, SVM classification with linear kernel do not succeed
to determine the exact border between the schedulable and non-schedulable regions.
Moreover, for some generated DAG tasks the DMP difference between linear kernel
SVM and all combinations methods is negative, which means that computed DMP
with linear kernel SVM method under-estimates the exact DMP. This is equivalent
to an over-estimation of the schedulability probability, which is optimistic and unsafe.

Table 6.8: DMP difference between linear kernel SVM and all combinations methods
for a multi-core processor.

m 2 4 8
Min DMP difference −6.99×10−2 −1.32×10−4 −5.54×10−2

Avg DMP difference −1.98×10−2 −7.2× 10−4 −1.09×10−2

Max DMP difference 0 4.86× 10−4 7.6× 10−6
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SVM classifier with Gaussian Kernel Second, we evaluate the SVM
method with a Gaussian kernel for DAG tasks that are executed on a multi-
core processor (m ∈ {2, 4, 8}). In Table 6.9, we use Gaussian kernel SVM method
and we compute the minimum, average and maximum of the DMP difference. In
Table 6.10, we use shifted Gaussian kernel SVM method that consists in shifting
the border between schedulable and non-schedulable regions toward the schedulable
region. Actually, we shift this border by a half of the standard deviation on
each dimension (i.e. Ci − σi

2 ).

Table 6.9: DMP difference between Gaussian kernel SVM and all combinations methods
for a multi-core processor.

m 2 4 8
Min DMP difference 0 −1.28×10−3 −6.36×10−2

Avg DMP difference 1.05× 10−2 4.46× 10−4 −1.66×10−3

Max DMP difference 5.12× 10−2 3.6× 10−3 4.25× 10−2

In Table 6.9, there are some negative DMP differences, which means unsafe
estimations (under-estimations) of the exact DMPs obtained with all combinations
method. On the other hand, the minimum DMP difference in Table 6.10 are
positive. Thus, there are no negative values obtained with the shifted Gaussian
kernel SVM method in this experiment. We deduce that this method allows to
avoid under-estimation. However, it introduces some pessimism since the maximum
DMP differences increase compared to Table 6.9.

Table 6.10: DMP difference between shifted Gaussian kernel SVM and all combinations
methods for a multi-core processor.

m 2 4 8
Min DMP difference 2.14× 10−4 0 0
Avg DMP difference 2.64× 10−2 9.77× 10−3 6.63× 10−3

Max DMP difference 8.63× 10−2 5.23× 10−2 5.09× 10−2

Furthermore, we compare the Gaussian kernel SVM and shifted Gaussian kernel
SVM methods using confusion matrices [97]. In fact, we apply these methods on
10 DAG tasks with a size of distribution KC = 5 and Nsub−task = 6 sub-tasks that
are executed on m = 4 cores. Then, we compute the average confusion matrix
over the 10 generated DAG tasks.

A confusion matrix consists in dividing the set of points in the C-space into four
groups regarding if they are predicted correctly with the SVM classifier:

• True Positive: schedulable points that are predicted as schedulable.
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• False Positive: non-schedulable points that are predicted as schedulable.
• True Negative: non-schedulable points that are predicted as non-schedulable.
• False Negative: schedulable points that are predicted as non-schedulable.

In our case, the total number of points in the C-space (the number of all
combinations) is KNsub−task

C = 56 = 15625

Table 6.11: Average confusion matrix of the Gaussian kernel SVM method.

Actually
schedulable

Actually non-
schedulable

Predicted
schedulable 517 11

Predicted non-
schedulable 10 15087

Table 6.12: Average confusion matrix of the shifted Gaussian kernel SVM method.

Actually
schedulable

Actually non-
schedulable

Predicted
schedulable 475 4

Predicted non-
schedulable 52 15094

From Table 6.11 and 6.12, we note that the number of “false positive” points
is reduced with the shifted Gaussian kernel SVM method from 11 to 4. This
allows to avoid an under-estimation of the DMP (i.e. an over-estimation of the
schedulability probability). However, the number of “false negative” is increased
from 10 to 52, which increases the over-estimation of the DMP and introduces
some pessimism. The confusion matrix helps to study the trade-off between safety
and pessimism when using shifted Gaussian kernel SVM method and to tune the
shift value on each dimension in the C-space.

Run-time performance From Figure 6.6, we note that the run-times of all
combinations and SVM methods increase with the number of sub-tasks Nsub−task

and the size of distributions KC. The run-time of SVM method increases linearly
since it has a polynomial complexity. However, the run-time of all combinations
method increases faster due to its exponential complexity.
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(a) Average of run-times for
a size of distributionKC = 3

(b) Average of run-times for
a size of distributionKC = 4

(c) Average of run-times for
a size of distributionKC = 5

Figure 6.6: Average of run-times of all combinations and SVM methods for several
numbers of sub-tasks Nsub−task and sizes of distributions KC .

Table 6.13: Comparison of different priority assignment algorithm for sub-tasks

HLFET SCFET CPMISF GA
RTA in Sec. 3.2.3.2 114.66% 119.09% 110.81% 113.9%
Simso simulation 106.57% 110.71% 104.23% 107.18%

6.2.2 Priority Assignment for Sub-tasks
In this section, we evaluate the performance of different priority assignment
algorithms at the sub-task level. We compute the response times corresponding
to each of this algorithms; Our proposed priority assignment heuristic, HLFET
(Highest Levels First with Estimated Times), SCEFT (Smallest Co-levels First with
Estimated Times), CPMISF (Critical Path/Most Immediate Successors First) [120,
121] and our proposed genetic algorithm. The response time is computed using
two methods: (i) our RTA proposed in Section 3.2.3.1 and (ii) our extension of
the SimSo simulator. After that, we calculate the ratio of the obtained response
times over the one obtained by our heuristic and we compare them.

Table 6.13 shows that different priority assignment heuristic and genetic al-
gorithm produce, on average, response times larger than the one obtained by
our heuristic (ratio > 100%). Besides, we note that, on average, our proposed
GA performs better than HLFET and SCEFT heuristics for computed response
time with our RTA. However, for response time obtained with SimSo simulator,
it perfoms better than SCEFT heuristic only.

6.2.3 Partitioning Heuristic
Figure 6.7 compares the performance of our proposed partitioning heuristic to Best
Fit and First Fit heuristics. We use Simso [114] to simulate the execution of the 100
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Figure 6.7: WCRT ratio improvement under different partitioning heuristics

generated task sets on 2, 4 and 8 cores. Then, we determine response time of each
DAG task and we compute the ratio of between the response times obtained by
Best Fit and First Fit heuristics over the one obtained by our partitioning heuristic.

We note that our heuristic reduces the response time by mapping sub-tasks in
way to increase the possible parallelism. We also note that the difference between
our proposed heuristic and others increases when we move from 2 to 4 cores.
This is explained by the augmentation of computation resources and the possible
parallelism, which confirms that our heuristic exploits the existing parallelism to
reduce response time contrary to the two other heuristics that do not consider the
structure of DAG and possible parallelism. However, there is almost no difference
between using 4 and 8 cores because the maximum parallelism is reached and no
further improvement could be made beyond this limit.

6.2.4 Graph Reduction

In order to evaluate the performance of our graph reduction heuristic, we apply
it on 100 generated task sets each composed of a single DAG task with different
number of sub-tasks Nsub−task ∈ {10, 20, . . . , 70} that are executed on m ∈ {2, 4, 8}
cores. The edges between these sub-tasks are generated with a probability pedge ∈
{0.1, 0.2, 0.4, 0.6}. Then, we compute the ratio of the size of the reduced DAG over
the size of the original one (i.e. the number of sub-tasks Nsub−task).

From Figure 6.8, we note that the number of cores have not a significant
influence on the reduction ratio and the performance of our graph reduction heuristic.
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(a) m = 2 cores (b) m = 4 cores (c) m = 8 cores

Figure 6.8: Average of reduction ratios over 100 DAG tasks randomly generated with
different parameters’ configurations (pedge, Nsub−task and m).

However, the reduction ratio increases with the number of sub-tasks because it
becomes harder for our heuristic to find mergeable sub-tasks in larger graphs.
We also note that the probability of creating edges pedge has an influence on the
reduction ratio. If this probability is not very high (e.g. pedge = 0.1, blue lines in
Figure 6.8), then there are not many edges and constraints that prevent merging
sub-tasks together. In such a case, our heuristic reduces the size of the original
graph up to 80% for not very large graphs (Nsub−task ≤ 30). On the other hand, if
the probability of creating edges is relatively important (e.g. pedge = 0.6, red lines
in Figure 6.8), then there are many edges and the order defined by these edges is
almost a total order. In Section 5.3.2, we mentioned that defining a total order
between sub-tasks helps our graph reduction heuristic to perform better. Thus, our
heuristic reduces more (i.e. lower reduction ratio) large graphs (Nsub−task ≥ 30)
with an important probability of edge (e.g. pedge = 0.6) than other graphs with
a medium probability (e.g. pedge = 0.2 and pedge = 0.4).

From Figure 6.9, we note that the run-time of our graph reduction heuristic
increases with the number of sub-tasks Nsub−task and with the probability of creating
edges pedge. This, is due to the polynomial complexity of our algorithm.

6.3 Use Case: PX4 Autopilot

In this section, we present numerical results obtained for DAG tasks corresponding
to the open source PX4 autopilot programs5 of a drone. The structure of the
DAG tasks is illustrated in Figure 6.10.

5https://en.wikipedia.org/wiki/PX4_autopilot

https://en.wikipedia.org/wiki/PX4_autopilot
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Figure 6.9: Average of run-times over 100 DAG tasks randomly generated with different
parameters’ configurations (pedge, Nsub−task) and executed on m = 4 cores.

Sensors EKF

Nav

Pos

τ1

Att

GYRO

Att_rate Motor_Drv

τ2
GPS

τ3

Figure 6.10: DAGs describing the precedence constraints between the sub-tasks of the
three tasks representing the PX4 Autopilot programs.

The execution time traces have been obtained from hardware-in-the-loop mea-
surements while the sensors and the output drivers are simulated on predefined
flying missions on a Pixhawk 4 hardware6 on top of a NuttX OS7. Moreover, when
measured, each sub-task was executed with a highest priority in order to avoid
any preemptions from other sub-tasks. The execution time measurements of the

6https://pixhawk.org
7http://nuttx.org

https://pixhawk.org
http://nuttx.org
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sub-tasks are obtained by executing them on a single core processor (ARM family).
In order to obtain the probabilistic bounds, we extracted from each empirical
distribution several quantiles.

6.3.1 Single Core Processor

Table 6.14: Comparison of computed DMP and drone behavior

Periods Drone behavior DMP
3 ms Could not fly 0.9999

3.5 ms Could not fly 0.994
4 ms Poor stability 0.2696

4.5 ms Medium stability 0.0049
5 ms Good stability 1.4959× 10−14

First, we compute various DMP by setting the period of the PX4 drone autopilot
with different values. Then, we compare them to the drone behavior already
evaluated with different period values. Results are illustrated in Table 6.14. We
note that the obtained DMPs are coherent with the drone behavior obtained from
simulation. For instance, when the tasks’ period is relatively small, the DMP is
very high (near to one) and the drone could not fly because the execution frequency
of programs is very high and they cannot finish their execution before the deadline
(Di = Ti). On the other hand, DMP is reduced to 10−14 when the period is not
too small and the drone shows a good stability.

6.3.2 Multi-core Processor

Table 6.15: DMP of PX4 autopilot tasks under dual core processor with different period
configurations

T1 T2 T3 DMP τ1 DMP τ2 DMP τ3
4 ms 7 ms 10 ms 0 0.1536 0
3 ms 7 ms 10 ms 2.7× 10−8 0.9147 0
3 ms 6 ms 10 ms 2.7× 10−8 0.9993 0
3 ms 6 ms 7 ms 2.7× 10−8 0.9993 0.0006
3 ms 6 ms 7 ms 2.7× 10−8 0.9993 0.0006
2 ms 4 ms 5 ms 0.7082 0.9999 0.9271
4 ms 2 ms 5 ms 0 0 0
3 ms 2 ms 5 ms 5.5× 10−6 0 0.0451

We assume that the set of three tasks of the PX4 autopilot (Figure 6.10) is
scheduled on a dual core processor with two identical cores. Then, we compute their
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DMP to study the schedulability of the system on such hardware architecture. To
do so, we apply our partitioning heuristic on these tasks and we assign the sub-tasks
Sensors, EKF, Nav, GYRO and GPS to the first core and the sub-tasks Pos,
Att, Att_rate and Motor_Drv to the second core.
Results are illustrated in Table 6.15 for different periods combinations. Since
priorities of tasks are defined by DM [13], all sub-tasks of task τ1 have higher
priorities than τ2 in the first six experiment in Table 6.15. We note that DMPs of
the three tasks increase as we decrease periods. For the two last experiments, we
inverse the priorities of τ1 and τ2 by choosing T2 < T1. We notice that DMP are
significantly reduced even with smaller periods. Thus, we suggest to change the
priorities of programs to assign the highest priority to task τ2. We also note under this
configuration, we guarantee low DMPs with smaller periods than the ones obtained
in the case of single core. Hence, the parallelization on dual core processor allows to
reach a more schedulable and reactive system with higher rates (i.e.smaller periods).
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Conclusion and Perspectives
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In this chapter, we conclude this thesis. First, we give a summary of our
contributions presented in the previous chapters. Second, we propose some research
perspectives for future work.

7.1 Contributions

The contributions presented in this manuscript are the following:

• Deterministic schedulability analysis for the DAG task model: We
proposed sufficient schedulability tests for the DAG task model with deter-
ministic execution and communication times.

1. We provided methods to compute the response times of DAG tasks
based on the characterization of the worst-case arrival patterns of higher
priority tasks used in the holistic approach [1].

2. We also provided two methods to compute the response times based on a
new characterization of the worst-case arrival patterns of higher priority
tasks.
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3. We proved the safety of the response time estimation computed by our
proposed methods in polynomial time.

• Probabilistic schedulability analysis for the DAG task model:

4. We defined different probabilistic operators (e.g. convolution, maximum)
and we employed them to extend our deterministic RTA to deal with
probabilistic timing parameters.

5. We used a Bayesian network to model dependencies between different
random variables employed in the response time equations. Then, we
computed the response time distributions using two different inference
methods:

(a) Exact inference with Variable Elimination.
(b) Forward sampling.

6. We studied the schedulability of probabilistic task model using a C-space
representation of probabilistic timing parameters and schedulability
conditions. We combined our deterministic schedulability test with
a machine learning based classifier (SVM) in order to estimate the
schedulability probability of each DAG task and of the whole system.

• Scheduling techniques for the DAG task model:

7. We defined priority at the task level using DM policy [13] and Audsley’s
algorithm[76] combined with our schedulability test. In so doing, we
proved that our schedulability test is compliant (in the sense defined
in [101]) with Audsley’s algorithm.

8. We also defined priority at the sub-task level using different methods:

(a) Optimal priority assignment for sub-tasks using an MILP formula-
tion [59].

(b) Heuristic based priority assignment for sub-tasks.
(c) Genetic algorithm based solution for sub-task priority assignment.

9. We provided a heuristic for assigning sub-tasks to cores that minimizes
communication delays and balances the load between cores.

10. We reduced the size of a DAG while preserving the same precedence
constraints structure using two methods:

(a) Exact solution based on an ILP formulation.
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(b) A heuristic based on a greedy approach.

11. We proposed a workflow (Figure 5.13) that integrates the different
proposed scheduling techniques together in order to reduce the response
time of DAGs.

7.2 Research Perspectives
In this thesis, we provided scheduling and schedulability techniques that rise new
challenges and can be extended to other task models. In this section, we present
research perspectives for our future work. These perspectives are divided into two
categories: (i) Short-term perspectives that consist in an incremental extension or
improvement of our proposed scheduling techniques. (ii) Long-term perspectives
that consist in more challenging extensions and goals.

Short-Term Perspectives:

Better estimation of the jitter
Based on the task model with a Best Case Execution Time (BCET) for each
sub-task, we can compute a lower bound of the Best Case Response Time (BCRT)
using similar approaches to the one employed in [122–124]. We suggest adapting
these approaches to the DAG task model. Indeed, the BCRT helps us to better
estimate the jitter that equal to the difference between the WCRT and BCRT of
the predecessors. Moreover, we note that in the case of sporadic arrivals, we can
ignore the effect of higher priority tasks when computing the BCRT. Thus, we could
use the optimal scheduling of DAGs proposed recently by Baruah [59] in order to
compute the exact BCRT of a single partitioned DAG task.

Model dependencies between different DAGs using a Bayesian net-
work
For the sake of simplicity in Section 4.3, we deployed the Bayesian network to model
dependencies only between sub-tasks inside the same DAG. After that, we computed
the distribution of the response time in isolation (i.e. with no higher priority DAGs).
As an extension, we suggest using the Bayesian network to model dependencies
between different random variables and sub-tasks belonging to different DAG tasks.
Then, we could compute the global response time distribution.



160 7.2. Research Perspectives

Apply RTA to refine scheduling techniques
In Figure5.13, we described a workflow that explains how to apply the different
scheduling techniques (proposed in Chapter 5) before moving to the schedulability
analysis step (RTA). In future work, we propose to apply this workflow several
times in a loop. After each iteration, we use the response time obtained by
the RTA to refine the priority assignment and the partitioning produced by this
iteration. Hence, the RTA is used as a cost function (or fitness) to minimize by
exploring different possible priority assignments and partitioning. The solution
space could be extremely large. However, some techniques of local search like
GA could provide promising results.

Actually, we have already used a similar strategy for some of the problems
studied in this work. We used the results of the schedulability test to assign
priority at the task level based on OPA algorithm [76]. We also used the response
time as a fitness function for GA when defining priority at the sub-task level. In
future work, we could generalize such an approach for all scheduling steps described
by the workflow in Figure5.13.

Long-Term Perspectives:

Prove the safe estimation of the MaxIndep operator
In Section 4.2.2, numerical examples showed thatMaxIndep operator never under-
approximates the actual distribution of response time (obtained by studying all
combinations of execution times). We believe that if we have the comonotonic
property between two random variables (that are independent or not), then we
could prove that theMaxIndep operator will provide a maximum distribution that
never under-approximates the actual one.

Sampling techniques that ensure safe estimation
In Section 4.3, we used the forward sampling technique for Bayesian inference in
order to estimate the response time distribution. Moreover, in Section 4.4 , we also
used sampling to estimate the DMP in C-space. These sampling techniques do not
guarantee a safe estimation. Indeed, they could result in an under-approximation of
the actual DMP or response time distribution. In future work, we plan to explore
other sampling techniques or propose new sampling techniques that guarantee to
never under-approximate the estimated value.
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Improve the priority assignment heuristic for sub-tasks
In future work, we aim to explore new ideas to improve the heuristic for priority
assignment at the sub-task level proposed in Section 5.1.2.3. For example, we could
consider the number of cores used by successor sub-tasks and not only the sum of
their execution times. In addition, prioritizing sub-tasks that belong to the critical
path could be a good alternative. In the case of partitioned scheduling, we note
that the critical path also depends on the sub-tasks allocation and not only on the
structure of the graph and the cost of the nodes and of the edges.

Use of proposed probabilistic techniques for global scheduling
In Chapter 4, we proposed some techniques (probabilistic operators, Bayesian
network and probabilistic C-space) to analyze the schedulability of a task model
characterized by probabilistic timing parameters. In future work, we plan to explore
applying these techniques to global scheduling. For example, we believe that a
Bayesian network could be used to compute the local release time and the local
deadline distributions of each sub-task in a DAG task, similarly to the approach
used on deterministic DAGs in [51].
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A
DAG scheduling with MILP Formulation

A.1 MILP Formulation [59]

Let G be a DAG graph composed of n nodes vi, ∀ i ∈ {1, . . . , n} and partitioned

on m cores. Each node has an execution time Ci and a deadline D. The MILP

formulation of DAG scheduling problem proposed in [59] introduces several real

and integer variables as follows:

• si and fi non-negative real-valued variables that represent respectively the

start time and finish time of node vi.

• xij and yij zero-one integer variables defined for each pair of nodes vi and vj.

xij is equal to 1 if si ≤ sj and 0 otherwise. yij is equal to 1 if fi ≤ fj and 0

otherwise.

• cijk non-negative real-valued variables defined for each 3-tuple of nodes vi, vj
and vk. cijk is equal to Ck if the execution of vk starts after vi and finishes

before vj (i.e. si ≤ sk and fk ≤ fj). Otherwise, cijk equals to 0.

The MILP formulation and corresponding constraint are given as follows:
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minimize fi if vi is thet sink node
subject to si + Ci ≤ fi ∀ node vi

fi ≤ D ∀ node vi
fi ≤ sj ∀ edge (vi, vj)
si ≥ sj −M · xij if π(vi) = π(vj)
sj ≥ si −M · (1− xij) if π(vi) = π(vj)
fi ≥ fj −M · yij if π(vi) = π(vj)
fj ≥ fi −M · (1− yij) if π(vi) = π(vj)
xij = 1− xji if i 6= j (optional)
yij = 1− yji if i 6= j (optional)
cijk ≥ Ck −M · (2− xik − ykj) if π(vi) = π(vj) = π(vk)∑
k cijk ≤ (fj − si) +M · (2− xij − yij) if π(vi) = π(vj)

(A.1)
We denote by M a large positive constant.
Solving this MILP problem allows to find the optimal scheduling of the DAG

graph G that minimize its finish time. Indeed the solution of this MILP is a valid
assignment of different decision and ordering variables (i.e. si, fi, xij, yij and cijk)
that respect the previous constraints.

A.2 Specific Case

For some DAG structures and node-to-core mappings, the solution of the previous
MILP formulation (Equation A.1) provide an unfeasible scheduling of the DAG
graph G. Below, we give an example of a such DAG graph.

Example A.1. In this example, we present a DAG graph composed of four nodes
(Figure A.1 and Table A.1) and we illustrate the obtained solution of the corre-
sponding MILP formulation and constraints (Equation A.1).

Table A.1: Parameters of nodes described by DAG graph in Figure A.1

Node Ci Core Deadline
v1 2 π1 12
v2 2 π1 12
v3 3 π1 12
v4 5 π1 12
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v1

v2

v3

v4

Figure A.1: Example of DAG graph

After using Gurobi solver [105] to solve the MILP formulation (Equation A.1)
corresponding to the previous DAG graph (Figure A.1 and Table A.1), we obtain
the following assignment for different decision and ordering variable:

{si}1≤i≤4 = {0, 2, 2, 2}

{fi}1≤i≤4 = {2, 7, 7, 7}

{xij}1≤i≤4
1≤j≤4

=


1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0

 {yij}1≤i≤4
1≤j≤4

=


1 1 1 1
0 0 1 1
0 0 0 1
0 0 0 0

 {cijk}1≤i≤4
1≤j≤4
k=1

=


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



{cijk}1≤i≤4
1≤j≤4
k=2

=


0 0 2 2
0 0 0 0
0 0 0 0
0 0 0 0

 {cijk}1≤i≤4
1≤j≤4
k=3

=


0 0 0 3
0 0 0 0
0 0 0 0
0 0 0 0

 {cijk}1≤i≤4
1≤j≤4
k=4

=


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



According to the obtained start and finish times and corresponding scheduling, we
note that in the time interval [2, 7] core π1 should execute nodes v2, v3 and v4 with a
total execution times equals to 10 time units, which is unfeasible because 10 > 7− 2.
Even if we add the optional constraints of MILP formulation (Equation A.1), we
obtain similar results. In fact, we introduce two additional constraints xij = 1− xji
and yij = 1−yji when i 6= j. Otherwise, we set xii = 1 and yii = 1, ∀ i ∈ {1, . . . , n}.
Hence, we obtain the following solution:

{si}1≤i≤4 = {0, 2, 2, 2}

{fi}1≤i≤4 = {2, 10, 10, 10}
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{xij}1≤i≤4
1≤j≤4

=


1 1 1 1
0 1 0 0
0 1 1 0
0 1 1 1

 {yij}1≤i≤4
1≤j≤4

=


1 1 1 1
0 1 0 1
0 1 1 0
0 0 1 1

 {cijk}1≤i≤4
1≤j≤4
k=1

=


2 2 2 2
0 0 0 0
0 0 0 0
0 0 0 0



{cijk}1≤i≤4
1≤j≤4
k=2

=


0 2 0 2
0 2 0 2
0 2 0 2
0 2 0 2

 {cijk}1≤i≤4
1≤j≤4
k=3

=


0 3 3 0
0 0 0 0
0 3 3 0
0 3 3 0

 {cijk}1≤i≤4
1≤j≤4
k=4

=


0 0 5 5
0 0 0 0
0 0 0 0
0 0 5 5



We also note that in the time interval [2, 10] core π1 should execute nodes v2,
v3 and v4, which is unfeasible.

A.3 Adapting Constraints
The problem with the previous DAG graph (Example A.1) comes from the con-
straints applied on xij and yij variables in MILP formulation (from fourth to ninth
constraints in Equation A.1). These constraints do not always guarantee that xij
(respectively yij) variables are equal to 1 when node vi starts (respectively finishes)
before or at the same time as node vj i.e. si ≤ sj (respectively fi ≤ fj). In fact,
if si = sj (respectively fi = fj) then xij (respectively yij) could be equal to 1 or 0
while respecting the constraints of the MILP formulation (Equation A.1).

The values of xij and yij have an influence on the constraints applied on cijk
variables that should be equal to the execution time Ck if the node vk is scheduled
entirely in the interval [si, fj]. Consequently, in some cases, the obtained solution
of MILP problem schedules in an interval of length l a workload larger than l,
which is unfeasible and leads to wrong scheduling.

In order to fix this problem, we add constraints that force xij (respectively yij)
to be equal to 1 when si = sj (respectively when fi = fj). These constraints use
absolute value operator and they are given as follows:

1−M · |si − sj| ≤ xij if π(vi) = π(vj)

1−M · |fi − fj| ≤ yij if π(vi) = π(vj)

After using the new constraints, we obtain the following variables assignments:

{si}1≤i≤4 = {0, 5, 2, 7}

{fi}1≤i≤4 = {2, 7, 5, 12}
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{xij}1≤i≤4
1≤j≤4

=


1 1 1 1
0 1 0 1
0 1 1 1
0 0 0 1

 {yij}1≤i≤4
1≤j≤4

=


1 1 1 1
0 1 0 1
0 1 1 1
0 0 0 1

 {cijk}1≤i≤4
1≤j≤4
k=1

=


2 2 2 2
0 0 0 0
0 0 0 0
0 0 0 0



{cijk}1≤i≤4
1≤j≤4
k=2

=


0 2 0 2
0 2 0 2
0 2 0 2
0 0 0 0

 {cijk}1≤i≤4
1≤j≤4
k=3

=


0 3 3 3
0 0 0 0
0 3 3 3
0 0 0 0

 {cijk}1≤i≤4
1≤j≤4
k=4

=


0 0 0 5
0 0 0 5
0 0 0 5
0 0 0 5



From the obtained values of start and finish times of each node, we note that we
obtain a feasible scheduling of the DAG graph defined in Figure A.1 and Table A.1.
This scheduling is illustrated as follows in Figure A.2:

t

π1

1 2 3 4 5 6 7 8 9 10 11 12 13 14

v1 v3 v2 v4

Figure A.2: Scheduling of DAG graph defined in Figure A.1 and Table A.1 according
to the solution of MILP formulation with new constraints.
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B
NP-hardness of Graph Reduction Problem

As mentioned in Example 5.8 (on page 131), reducing the size of DAG task requires,
in some case, to examine all possible combinations. Hence, it seems to be a NP-
hard problem. In order to prove that graph reduction is a NP-Hard problem,
we give some hints to reduce the 3-SAT problem (a NP-hard problem) [125] to
a graph reduction problem.

Let g be an instance of 3-SAT problem composed of 2 clauses and 3 variables.
For example, g = (x1 ∨ x2 ∨ x3)︸ ︷︷ ︸

clause1

∧ (x1 ∨ x2 ∨ x3)︸ ︷︷ ︸
clause2

.

We could construct a DAG task as in Figure B.1. This DAG is executed on
two cores. Each sub-tasks Ai represents a possible assignment for the decision
variables of the 3-SAT problem. The sub-tasks that are called clausei refer to
clauses in expression g. Each clause sub-task is connect to all assignment Ai except
the assignment that make it equal to 0. The sub-task S is connected to all clause
sub-task. S is executed on the same core as all assignment sub-tasks Ai.

If the graph reduction algorithm succeed to merge the sub-task S with any
assignment sub-task while preserving precedence structure (i.e. respecting conditions
given in Definition 5.1 on page 126), then this assignment makes the expression g
equal to 1. In fact, such assignment sub-task is connected to all clause sub-tasks
because it is mergeble with the sub-task S that is connected to all clauses. Thus, this
assignment makes all clauses equal to 1 and accordingly the expression g is also equal
to 1. However, if sub-task S is not mergeable with any assignment sub-task, then
there is no valid assignment for xi’s variables that makes the expression g equal to 1.
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clause1

clause2

A1

A2

A3

A4

A5

A6

A7

A8

S

end

π1

π2

Figure B.1: Example of reducing a 3-SAT problem to a graph reduction problem
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Example of Generated DAG Tasks

0,1 4,3

1,2
2,1

8,4

7,5

3,1 5,2

6,1

Figure C.1: Example of randomly generated graph partitioned on 3 cores. First number
in each node represents its id and the second number is its execution time.

173



174 C. Example of Generated DAG Tasks

0,1 3,1

12,1

14,1

18,2

24,3

1,1
21,2

2,1

6,1

7,1

26,4

4,2

23,3

5,1

25,48,1

16,1

13,1

15,1

9,1

17,2

10,1

29,5

30,6

11,1

19,2

31,7

27,4

28,5

20,2

22,3

32,0

Figure C.2: Example of randomly generated graph partitioned on 4 cores with an
additional virtual node (i.e. the blue node with an execution time equal to 0) to ensure a
single sink for the graph
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0,2

11,9

18,8

36,10

49,5

1,3

10,8

13,5

25,10

2,1

4,9 8,7

32,4

34,6

3,1

5,4

30,4

33,1

35,7

16,7

20,5

23,3

6,9

14,4

41,9

43,2

7,10

27,10

28,8

40,9

48,10

26,10

47,1

9,4

12,5

22,10

38,7

44,8

45,10

24,5

37,8

31,5

39,1

46,2

15,1

42,1

19,3

29,2

17,7

21,9

Figure C.3: Example of randomly generated graph partitioned on 3 cores with a
probability of creating edges equals to p = 0.2.
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