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General Introduction 
 

Nitride semiconductors of the III-N group are renowned materials for the production of 

optoelectronics and power electronics components. In particular, they are increasingly 

employed to fabricate high power and high frequency transistors with excellent energy 

efficiency, owing to their adapted physical properties such as high electron mobility, 

breakdown field and thermal conductivity. 

These devices are made of III-N thin film structures, whose base typically consists of a µm-

thick layer of gallium nitride (GaN). In the past decades, growth of GaN crystals has mainly 

been performed on foreign substrates of sapphire or silicon carbide (SiC), which allow for a 

good compromise between costs and material quality. More recently, CEA-Leti has chosen to 

develop the fabrication of III-N materials and components on 200 mm diameter wafers of 

(111)-oriented silicon, for power electronics applications. This substrate material renders the 

manufacturing of III-N components compatible with the standards of microelectronics 

industry, while dramatically decreasing production costs. The downside is the low coefficient 

of thermal expansion of Si(111), responsible for the incorporation of tensile stress in III-N 

materials, which might lead to film cracking. This issue is fixed by growing a complex stack of 

intermediate III-N buffer layers between GaN and the substrate. 

This specific stack results in the generation of a gradient of in-plane stress within GaN and 

buffer layers underneath. This evolution of stress throughout the thickness of III-N films 

affects the curvature of wafers, and even their propensity to crack. In addition, GaN and buffer 

layers possess a high concentration of crystal defects, consisting in threading dislocations 

(TDs) extending throughout films thicknesses. Dislocations stem from the high mismatch 

between lattice parameters of Si(111) substrate and III-N crystals. Their density is a critical 

parameter for the quality of produced devices. 

Hence, dislocations and gradients of stress are two defects of prime interest when studying 

GaN layers on silicon substrates (GaN-on-Si). In order to support the development of this 

material, it is essential to have access to quick characterizations of both defects, readily usable 

in the LETI cleanroom facility, where the batch of wafers are processed. To this end, X-ray 

diffraction (XRD) is an acknowledged technique for the study of monocrystalline thin films, 

allowing for non-destructive characterizations. However, the existing XRD analyses of the 

defects of interest are either imprecise, non-adapted to GaN-on-Si layers or non-achievable 

with equipment available in the LETI cleanroom. 

This PhD work aims at developing XRD characterizations adapted to our needs. We chose 

to focus on analyzing the GaN layer, which is the cornerstone of III-N power electronics 

components. Nevertheless, the methods were developed with a concern for their future 

extension to the analysis of buffer layers. We present our studies throughout five chapters. 

The first chapter consists in a description of the physical properties of III-N materials, in 

particular of GaN, including crystallographic, mechanical, polarization and electronic 

properties. The benefits and limits of these characteristics for the main applications of nitride 
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semiconductors are discussed, especially for the production of high electron mobility 

transistors (HEMTs). We then provide a discussion about the impact of the choice of substrate 

on the properties of GaN films and detail the buffer layer structure used at CEA-Leti for GaN-

on-Si samples. The methods of epitaxial growth of III-N crystals are briefly explained. Finally, 

the main defects affecting GaN-on-Si layers are reviewed, with focuses on TDs, including a 

large theoretical background, and stress gradients. 

The second chapter provides basic knowledge about XRD, required for characterization of 

III-N layers. Interactions between X-rays and matter are detailed, and the reader is introduced 

to the theory of diffraction through descriptions of physical phenomena, reciprocal space 

representation and the kinematical model, including the case of a distorted crystal. A 

justification is given of the validity of kinematical model versus dynamical model of diffraction 

for the analysis of III-N epitaxial layers. We then introduce high-resolution X-ray diffraction 

(HRXRD) measurements and associated experimental setups, including details of the 

diffractometers used during this PhD. The last section of the chapter is dedicated to elemental 

analyses of the diffraction signal, especially in the framework of nitride semiconductor 

characterization. 

In the third chapter, we examine analyses of stress gradients that we carried out in GaN 

layers. Firstly, we show different basic estimates of stress/strain profiles, obtained from 

Raman, in-situ sample curvature during growth and XRD measurements. We discuss the 

existing XRD methods to analyze stress gradients and their limits in the case of our samples 

and diffractometers. We propose to answer these issues by developing a program of simulation 

of XRD profiles stemming from our materials. This numerical tool relies on the modelling of 

unit cells (UCs) displacement throughout the GaN layer. The corresponding XRD radial 2𝜃 −

𝜔 scans are simulated for several symmetric reflections, by means of the kinematical theory of 

diffraction. We analyze the evolution of simulated diffraction profiles when integrating effects 

of instrumental resolution, of X-ray correlation length, or modifying the shape of the input 

strain profile. We find that a key parameter to obtain realistic diffraction signals is the local 

variation of displacement profiles. Hence, we propose a simple model to simulate local 

displacement fields, which are assumed to be affected by the surrounding distribution of TDs. 

Threading dislocations are the subject of the fourth chapter. These defects have been 

extensively studied in the XRD literature. However, analyses of TD densities either rely on 

complex simulation procedures, which might in addition require high quality XRD 

measurements, or on lattice misorientation measurements, which translate into TD density 

through simple but imprecise models. In this work, we explore an alternative analysis, based 

on the measurement of the micro-strain field surrounding TDs. Despite allowing for a simple 

estimate of TD density, this method has only been reported a few times for GaN studies, to 

analyze specimens grown on sapphire substrates and without taking into account the particular 

mechanical properties of GaN crystals. Hence, we properly adapt the model of conversion of 

micro-strain measurements into TD density to the low Poisson ratio of GaN layers. In the case 

of GaN-on-Si samples, our characterizations are complicated by the alteration of micro-strain 

measurements due to the presence of a strong stress gradient. We highlight the impact of this 

stress profile and demonstrate how to bypass it. The accuracy of TD density micro-strain 

measurements is assessed by a comparison with cathodoluminescence (CL), transmission 
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electron microscopy (TEM) and XRD lattice misorientation measurements on GaN-on-Si 

samples, on a freestanding GaN substrate and on GaN films grown on sapphire and SiC 

substrates. The impact of the reduction of TD density throughout the thickness of GaN, which 

is different on XRD measurements than on CL and TEM counterparts, is discussed. 

The in-depth evolution of TD density and stress is complex to analyze with XRD 

characterization. To better understand the limitations of our analyses and improve them, we 

performed measurements on progressively etched layers of GaN, as reported in the last 

chapter. The profile of strain/stress is successively calculated from curvature, Raman and XRD 

measurements. XRD results are then input into the program developed in the third chapter, in 

order to achieve the best fit of measured data. The evolution of TD density is also estimated 

with XRD measurements of lattice misorientation and micro-strain. We discuss the good 

agreement between both measurements close to the sample surface and their divergence at a 

deeper position in GaN. A comparison with surface CL measurements is also performed. 

Finally, the correlation between profiles of strain and of TD density is studied, allowing us to 

analyze the mechanism of relaxation of compressive stresses within GaN.
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1. Properties and growth of III-N materials 
 

III-N crystals are semiconductor materials, forming part of the III-V alloys category, like 

a number of other usual semiconductors such as GaAs, GaP or InP. Hence, their crystal lattice 

is formed by equal parts of group-V atoms (nitrogen atoms in this case) and group-III atoms 

(usually gallium, aluminum and indium). The III-N family is therefore composed by the binary 

alloys GaN, AlN, InN, the ternary alloys AlxGa(1-x)N, InxGa(1-x)N and InxAl(1-x)N and quaternary 

alloys InxGayAl(1-x-y)N). 

This chapter gives an overview of III-N materials physical properties, including their 

crystalline structure (focusing on the most common wurtzite structure), mechanical behavior, 

polarization and key properties for the fabrication of electronic devices. Some useful basic 

knowledge on crystallography and mechanics is provided. The main applications of III-N 

semiconductors are detailed, especially in the field of power electronics. The fabrication of 

these materials by epitaxy is briefly explained and the choice of the substrate is discussed, thus 

introducing GaN-on-Si materials, on which this work focuses. Finally, the main crystal defects 

affecting GaN-on-Si layers, such as threading dislocations and in-plane stress gradients are 

reviewed.   

 

1.1. Physical properties and applications of III-N materials 

1.1.1. Crystallographic description 

a) Crystalline structure 

 

III-N materials can adopt three different crystal structures, namely rocksalt, zincblende 

and wurtzite structures. Among these, wurtzite is the thermodynamically stable phase at 

ambient conditions. Conversely, the growth of rock rocksalt structure can only be achieved 

under very high pressures: 12.1 GPa for InN, 22.9 GPa for AlN and 52.2 GPa for GaN.[1] These 

conditions are incompatible with an epitaxial growth,[2] so this structure is not suited for 

industrial applications. III-N zincblende crystals are also metastable under ambient 

conditions.  Their stabilization requires a heteroepitaxial growth on cubic substrates of SiC, Si, 

MgO or GaAs.[1]  

Wurtzite phase is usually preferred to rock-salt and zincblende, as its growth is simpler. 

The research presented in this thesis focus on III-N layers, mostly of GaN, with this crystal 

structure. Wurtzite has a hexagonal lattice system, with a unit cell composed of two pairs of 

atoms (two atoms of group-III and two N atoms for III-N materials). The unit cell of III-N 

crystal with wurtzite structure can be defined in several equivalent ways. In the following, we 

will use the definition depicted in Figure 1.1 b). The cell is defined by a base of three vectors: 

two vectors �⃗� and �⃗⃗� of length 𝑎, separated by an angle of 120°, and an orthogonal vector 𝑐 of 
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length 𝑐. Group-III atoms are placed at coordinates (0,0,0) and (
2

3
,
1

3
,
1

2
), while N atoms are 

placed at (0,0,
3

8
 ) and (

2

3
,
1

3
,
7

8
). 

The structure can be seen as two interpenetrating hexagonal close packed sublattices, of 

group-III cations and anions N respectively, shifted from each other along the c-axis by a 

parameter 𝑢 (see Figure 1.1 a)). Each atom is placed at the center of a tetrahedron composed 

of atoms of the other group. In an ideal wurtzite crystal, the ratio between lattice parameters 

𝑐/𝑎 is equal to √8/3 = 1.633 and the length of a cation-anion bond is 𝑢 = 3/8𝑐.[1] The real 

values of 𝑐/𝑎 and 𝑢 depart from these ideal ratios, in particular because they are linked to the 

difference of electronegativity between the atoms forming the crystal.[3] 

A wide set of lattice parameters, with no consistent reference value,[4] can be found in the 

literature. Indeed, these parameters depend on the concentration in the crystal of free 

electrons, foreign atoms and defects, on the residual strain in the lattice and on the 

temperature.[4],[1] Extensive reviews of lattice parameters measurements can be found in[4],[1], 

and show variations at the fourth significant digit between the different estimates of 𝑎 and 𝑐, 

while the 𝑐/𝑎 ratio is more consistent. Table 1.1 gives the values used in this thesis for the for 

the three III-N wurtzite binary alloys. 

 

 

Figure 1.1 : Wurtzite structure. a) Illustration of the two interpenetrating hexagonal 

sublattices of group-III atoms (black lines) and N atoms (grey lines), the lattice parameters a 

and c and the cation-anion length u. b) Unit cell of a III-N wurtzite crystal (black dotted lines) 

and its basis vectors (a⃗⃗, b⃗⃗, c⃗) 
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Table 1.1 : Lattice parameters of III-N wurtzite binary alloys. Parameters are taken 

from measurements on a GaN substrate,[5] a bulk AlN[6] and an InN powder,[7] due to the 

difficulty of growing monocrystalline thin films with the latter material. 

 

b) Miller-Bravais notation 

 

In the field of crystallography, three-index Miller notation is widely used to describe 

crystallographic directions and crystal planes. This notation relies on the coordinate system 

defined by the three vectors �⃗�, �⃗⃗�, 𝑐 forming the lattice unit cell. The direction of a line passing 

through the origin of the lattice and a point of coordinates 𝑈, 𝑉,𝑊 is indexed as [𝑈𝑉𝑊]. Note 

that 𝑈𝑉𝑊 indices are taken as the combination of smaller integer possible. Furthermore, the 

negative indices are usually noted with a bar over the number. For example, the direction of a 

line passing through the coordinates (0,0,0) ; (
−1

3
, 1,

2

3
) ; (−1,3,2) ; (−2,6,4) is indexed as [1̅32]. 

Some directions are related by symmetry, in such a way that each of them can be indexed by a 

family of [𝑈𝑉𝑊] triplets, depending on which orientation is chosen for the �⃗�, �⃗⃗�, 𝑐 base when 

defining the unit cell. An example of this is the equivalent directions of a cubic unit cell 

diagonals: [111], [1̅11], [11̅1] and [1̅1̅1]. Such a family of directions is called directions of a 

form and is denoted with angle brackets 〈111〉. Crystal planes are indexed by a similar triplet 

(𝐻𝐾𝐿), distinguished by the use of parentheses. 𝐻𝐾𝐿 indices are linked to the intercepts 𝑥𝑦𝑧 of 

the plane and the unit cell vectors in the following way: 𝑥 = ||�⃗�||/𝐻 ;  𝑦 = ||�⃗⃗�||/𝐾 ;  𝑧 = ||𝑐||/𝐿, 

with the index being equal to zero when the plane does not intercept a vector. Hence, by using 

the three-index Miller notation, a direction [𝑈𝑉𝑊] is normal to a plane (𝐻𝐾𝐿) when 𝑈 =

𝐻 ; 𝑉 = 𝐾 and 𝑊 = 𝐿. As for families of directions, families of crystal planes can be defined and 

are denoted by braces {𝐻𝐾𝐿}. 

In the case of III-N crystals and other hexagonal systems, three equivalent crystallographic 

directions are separated by 120° rotations about the c-axis. Due to this particular symmetry, 

the directions of a form and the families of planes are not intuitively distinguishable by using 

the Miller indexation (see Figure 1.2 a)). Hence, an alternative four-index [𝑢𝑣𝑡𝑤]/(ℎ𝑘𝑖𝑙) 

Miller-Bravais notation, initially proposed by Weber,[8] is used. It relies on a base of four vectors 

𝑎1⃗⃗⃗⃗⃗, 𝑎2⃗⃗⃗⃗⃗, 𝑎3⃗⃗⃗⃗⃗, 𝑐 = �⃗�, �⃗⃗�, (−�⃗� − �⃗⃗�), 𝑐, which define the unit cell as shown in Figure 1.2 b). With the 

Miller-Bravais notation, we have 𝑎3⃗⃗⃗⃗⃗ = −(𝑎1⃗⃗⃗⃗⃗ +  𝑎2⃗⃗⃗⃗⃗) , 𝑡 = −(𝑢 + 𝑣) and 𝑖 = −(ℎ + 𝑘), so the 

families of directions and planes are identified by permutations of the values of the indices 𝑢𝑣𝑤 

and ℎ𝑘𝑙. The relationships between Miller triplets and Miller-Bravais quadruplets are given 

by:[9],[10] 

 

Crystal a (Å) c (Å) c/a 

GaN 

AlN 

InN 

3.1896 

3.1106 

3.5378 

5.1855 

4.9795 

3.7033 

1.6258 

1.6008 

1.6121 
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{
[𝑢𝑣𝑡𝑤] = [(2𝑈 − 𝑉) (−𝑈 + 2𝑉) (−𝑈 − 𝑉) 3𝑊]

[𝑈𝑉𝑊] = [(𝑢 − 𝑡) (𝑣 − 𝑡) 𝑤]
 (1.1) 

 

 
{
(ℎ𝑘𝑖𝑙) = (𝐻 𝐾 (−𝐻 − 𝐾) 𝐿)

(𝐻𝐾𝐿) = (ℎ𝑘𝑙)
 (1.2) 

An additional benefit of using the Miller-Bravais notation for hexagonal systems is a more 

intuitive representation of the reciprocal lattice. Indeed, the four reciprocal lattice basis vectors 

𝑎1
∗⃗⃗⃗⃗⃗, 𝑎2

∗⃗⃗⃗⃗⃗, 𝑎3
∗⃗⃗⃗⃗⃗, 𝑐∗⃗⃗ ⃗⃗   are oriented in the same direction as the basis vectors 𝑎1⃗⃗⃗⃗⃗, 𝑎2⃗⃗⃗⃗⃗, 𝑎3⃗⃗⃗⃗⃗, 𝑐 of the direct 

lattice. This is not true with the 3-index Miller notation, for which the basis vectors 𝑎∗⃗⃗⃗⃗⃗, 𝑏∗⃗⃗⃗⃗⃗ are 

separated by a 60° angle. The relation between the reciprocal lattices basis vectors of both 

systems of indexation is given by: 

 

{
𝑎1
∗⃗⃗⃗⃗⃗, 𝑎2

∗⃗⃗⃗⃗⃗, 𝑎3
∗⃗⃗⃗⃗⃗, 𝑐∗⃗⃗ ⃗⃗   =

2𝑎∗⃗⃗⃗⃗⃗ − 𝑏∗⃗⃗⃗⃗⃗

3
,
−𝑎∗⃗⃗⃗⃗⃗ + 2𝑏∗⃗⃗⃗⃗⃗

3
,
−𝑎∗⃗⃗⃗⃗⃗ − 𝑏∗⃗⃗⃗⃗⃗

3
, 𝑐∗⃗⃗ ⃗⃗

𝑎∗⃗⃗⃗⃗⃗, 𝑏∗⃗⃗⃗⃗⃗, 𝑐∗⃗⃗ ⃗⃗ = (2𝑎1
∗⃗⃗⃗⃗⃗ + 𝑎2

∗⃗⃗⃗⃗⃗), (𝑎1
∗⃗⃗⃗⃗⃗ + 2𝑎2

∗⃗⃗⃗⃗⃗), 𝑐∗⃗⃗ ⃗⃗
 (1.3) 

 

 

 

 

Figure 1.2 : Crystallographic directions in a basal plane of a hexagonal crystal. a) 

Miller notation [UVW], based on the basis vectors a⃗⃗, b⃗⃗, c⃗. b) Miller-Bravais notation [uvtw], 

based on the basis vectors a1⃗⃗ ⃗⃗ , a2⃗⃗⃗⃗⃗, a3⃗⃗⃗⃗⃗, c⃗. For both figures, the vector c⃗ is normal to the sheet plane. 

 

1.1.2. Mechanical properties 

 

According to the theory of linear elasticity, the relation between fields of elastic strain and 

stress in a material is given by the general Hooke’s law: 
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 𝜎𝑖𝑗 =∑𝐶𝑖𝑗𝑘𝑙 휀𝑘𝑙
𝑘,𝑙

 (1.4) 

 𝐶𝑖𝑗𝑘𝑙 are the elastic stiffness constants of the material, usually given in GPa. These 

constants linearly relate the stress components 𝜎𝑖𝑗 to the strain components 휀𝑘𝑙, each of them 

being identified by the pairs of subscripts 𝑖𝑗 and 𝑘𝑙. Each index has three possible values (1,2,3), 

corresponding to the three axes of the chosen coordinate system. 𝑖/𝑘 denotes the direction 

along which the stress/strain component applies and 𝑗/𝑙 indicates the normal of the surface 

which undergo the stress or the direction of the force inducing the strain. Hence, 𝜎𝑖𝑗/휀𝑘𝑙 

correspond to a normal tensile (𝜎𝑖𝑗 > 0/휀𝑘𝑙 > 0)  or compressive (𝜎𝑖𝑗 < 0/휀𝑘𝑙 < 0) stress/strain 

if 𝑖 = 𝑗 / 𝑘 = 𝑙 and to a shear stress/strain if 𝑖 ≠ 𝑗 / 𝑘 ≠ 𝑙 . Alternatively, the usual notations of 

the coordinate system axes can be used to write these indices: (1,2,3) = (𝑥, 𝑦, 𝑧) for a Cartesian 

coordinate system, (1,2,3) = (𝑟, 𝜃, 𝑧) for a cylindrical coordinate system or (1,2,3) = (𝑟, 𝜃, 𝜙) 

for a spherical coordinate system. 

Equation (1.4) can be rewritten with a tensor notation [𝜎] = [𝐶][휀], where the stiffness 

tensor [𝐶] gathers the 81 constants 𝐶𝑖𝑗𝑘𝑙. By considering the symmetry of the stress and strain 

tensors [𝜎] and [휀] and the interchangeable nature of 𝑖𝑗 and 𝑘𝑙 pairs of indices, the number of 

different constants 𝐶𝑖𝑗𝑘𝑙 can be reduced to 21. The writing of equation (1.4) is usually simplified 

by using Voigt convention,[11] which consists in a change of notation of the four 𝑖𝑗 and 𝑘𝑙 

subscripts by two 𝑚𝑛 indices, in the following way: 11 → 1, 22 → 2, 33 → 3, 23 = 32 → 4, 13 =

31 → 5 and 12 = 21 → 6. In hexagonal crystals like III-N wurtzite, the number of independent 

elastic coefficients is further reduced by the lattice symmetries. In Cartesian coordinates and 

using Voigt notation, equation (1.4) becomes: 

 

[
 
 
 
 
 
𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑧𝑧
𝜎𝑥𝑦
𝜎𝑦𝑧
𝜎𝑧𝑥 ]
 
 
 
 
 

=

[
 
 
 
 
 
𝐶11 𝐶12 𝐶13 0 0 0
𝐶12 𝐶11 𝐶13 0 0 0
𝐶13 𝐶13 𝐶33 0 0 0
0 0 0 𝐶44 0 0
0 0 0 0 𝐶44 0
0 0 0 0 0 𝐶66]

 
 
 
 
 

[
 
 
 
 
 
휀𝑥𝑥
휀𝑦𝑦
휀𝑧𝑧
휀𝑥𝑦
휀𝑦𝑧
휀𝑧𝑥 ]
 
 
 
 
 

 (1.5) 

where 𝐶66 = (𝐶11 − 𝐶12)/2 

In a similar way, we define a set of elastic compliance coefficients 𝑆𝑚𝑛: 

 

[
 
 
 
 
 
휀𝑥𝑥
휀𝑦𝑦
휀𝑧𝑧
휀𝑥𝑦
휀𝑦𝑧
휀𝑧𝑥 ]
 
 
 
 
 

=

[
 
 
 
 
 
𝑆11 𝑆12 𝑆13 0 0 0
𝑆12 𝑆11 𝑆13 0 0 0
𝑆13 𝑆13 𝑆33 0 0 0
0 0 0 𝑆44 0 0
0 0 0 0 𝑆44 0
0 0 0 0 0 𝑆66]

 
 
 
 
 

[
 
 
 
 
 
𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑧𝑧
𝜎𝑥𝑦
𝜎𝑦𝑧
𝜎𝑧𝑥 ]
 
 
 
 
 

 (1.6) 

where 𝑆66 = (𝑆11 − 𝑆12)/2 

Hence, the mechanical properties of wurtzite III-N materials are fully defined either by 

their elastic stiffness coefficients 𝐶11, 𝐶12, 𝐶13, 𝐶33, 𝐶44 and 𝐶66 or their elastic compliance 
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coefficients 𝑆11, 𝑆12, 𝑆13, 𝑆33, 𝑆44 and 𝑆66. Table 1.2 gives the values of these coefficients for 

GaN, AlN and InN. 

 

Table 1.2 : Elastic stiffness and compliance constants of III-N wurtzite materials. 

Values are taken from[12] for GaN and InN and from[13] for AlN. 

Nevertheless, it is also interesting to define an additional elastic constant of III-N 

materials, namely the Poisson ratio 𝜈. This constant is defined for the case of a uniaxial stress 

and corresponds to a ratio between the strain in the unstressed plane and the strain along the 

stressed direction. In anisotropic materials like III-N crystals, three Poisson ratios can be 

defined, along each of the three axis orthogonal axes of the Cartesian system. However, 

measurements and calculations of Poisson ratio are usually limited to the [0001] direction, as 

this parameter 𝜈[0001] is the relevant one in the case of [0001]-grown films, for example to relate 

lattice parameters in the (0001) plane and along the c-axis in the case of stressed layers.[4] 

𝜈[0001] is linked to 𝐶𝑚𝑛 and 𝑆𝑚𝑛 parameters by the relationships:[14],[15] 

 
𝜈[0001] =

𝐶13
𝐶11 + 𝐶12

=
−(𝑆12 + 𝑆13)

2𝑆11
 (1.7) 

Table 1.3 gives the reference values[4] for Poisson ratio of III-N binary alloys. Note that 

the GaN Poisson ratio is impacted by the density of edge type threading dislocations (see 

section 1.3.1), which tend to reduce the in-plane strain resulting from biaxial in-plane 

stresses.[16] This can result in significant differences between a near perfect GaN crystal 

(𝜈[0001] = 0.212)[17] and a MOVPE-grown GaN (see section 1.2.1) with a medium density of 

threading dislocations of 5 × 108 𝑐𝑚−2 (𝜈[0001] = 0.183).[16] 

 

Stiffness 

constants 

(Gpa) 

GaN AlN InN 

 Compliance 

constants 

(Tpa-1) 

GaN AlN InN 

𝐶11  

𝐶12  

𝐶13  

𝐶33  

𝐶44  

𝐶66  

396 

144 

100 

392 

91 

126 

345 

125 

120 

395 

118 

110 

271 

124 

94 

200 

46 

74 

 𝑆11  

𝑆12  

𝑆13  

𝑆33  

𝑆44  

𝑆66  

3.01 

-0.962 

-0.522 

2.82 

11.0 

7.94 

3.53 

-1.01 

-0.765 

3.00 

8.47 

9.09 

5.03 

-1.77 

-1.53 

6.44 

21.7 

13.5 
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Table 1.3 : C-axis Poisson ratios of III-N wurtzite materials. Values are taken from[17] 

for low dislocation density GaN or calculated from elastic stiffness constants by means of 

equation (1.7), from[16] for high dislocation density GaN and from[18] for AlN and InN. 

We should note that the Poisson ratio is quasi-isotropic in GaN crystals,[14],[16] thus allowing 

the use of the corresponding values of Table 1.3 independently of the stressed axis. This is 

not true in the case of AlN and InN crystals, which have a significant anisotropic behavior.[14] 

 

1.1.3. Polarity and polarization 

 

From Figure 1.1, we observe that the wurtzite structure of III-N crystals is not symmetric 

about the basal plane (0001). Hence, in a III-N crystal, the two interfaces normal to the c-axis 

are distinguished by their polarity, which corresponds to the nature of the terminal atoms. In 

the [0001̅] direction, the face is referred to as N-polar, while in the [0001] direction it is named 

Ga-polar face, regardless of which type of group-III atom is present.[2] III-N layers grown along 

the c-axis can either have a Ga polarity or an N polarity at their top surface, depending on the 

conditions adopted for the epitaxy process. 

Additionally, the high difference of electronegativity between group-III cations and anions 

N (i.e. values on the Pauling scale of 1.61 for Al, 1.81 for Ga and 1.78 for In versus 3.04 for 

N),[19] induces dipole moments, oriented from anions toward cations. As discussed before, III-

N crystal structures deviate from the ideal wurtzite structure, causing a slight deformation of 

the tetrahedra of anions and cations. In the resulting non-regular tetrahedra, the barycenters 

of positive and negative charges do not coincide, thus generating a global dipole moment. The 

sum of all dipole moments along the c-axis leads to a macroscopic spontaneous polarization of 

III-N crystals, oriented toward the N-polar face. The values of this spontaneous polarization 

are −0.090 𝐶/𝑚² for AlN, −0.034 𝐶/𝑚² for GaN and −0.042 𝐶/𝑚² for InN,[2] where the negative 

sign corresponds to an orientation of the polarization vector opposed to the growth direction 

[0001] of the Ga-polar layer. 

In addition to the spontaneous polarization, a piezoelectric polarization arises from the 

strain state in the material, which further modifies the equilibrium of charges within the 

tetrahedra composing the crystal, as these tetrahedra are deformed. In the case of III-N 

heterostructures, this strain often arises from the growth of layers with different lattice 

constants in the plane, such as GaN and AlGaN. The epitaxy process imposes the in-plane 

lattice parameter of the substrate on the grown layers, thus inducing a strain which can be 

either tensile or compressive. Such a strain is associated with an isotropic biaxial stress state 

 

Crystal 𝝂[𝟎𝟎𝟎𝟏]  

GaN (Low dislocation density) 

GaN (Medium dislocation density) 

AlN 

InN 

0.212 

0.183 

0.203 

0.272 
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(i.e. applied with equal values along two orthogonal directions of the surface plane). With this 

assumption, the value of the piezoelectric polarization 𝑃𝑃𝐸 along the c-axis is:[20] 

 
𝑃𝑃𝐸 = 2

𝑎 − 𝑎0
𝑎0

(𝑒31 −
𝐶13
𝐶33
 𝑒33) (1.8) 

where 𝑎 and 𝑎0 are the lattice parameters of the strained crystal and the unstrained crystal, 

associated to the in-plane strain (휀𝑥 = 휀𝑦 = (𝑎 − 𝑎0)/𝑎0). 𝐶13 and 𝐶33 are the elastic stiffness 

constants while 𝑒31 and 𝑒33 are the piezoelectric coefficients of the material, given in Table 

1.4. 

 

Table 1.4 : Piezoelectric coefficients of III-N wurtzite materials. Values are taken 

from reference[2]. 

Spontaneous and piezoelectric polarizations add together to give the overall polarization 

of a III-N film. For a layer grown with Ga surface polarity, both polarizations have a negative 

sign and are therefore oriented in the same direction if the strain is tensile. In the case a 

compressive strain, spontaneous and piezoelectric polarizations have an opposite sign, thus 

limiting the total polarization of the layer. These polarizations have important consequences 

for the electronic properties of the materials, as described below. 

 

1.1.4. Large Bandgap and properties for electronic applications 

 

The suitability of a semiconductor material for electronic device conception is based on 

various physical properties, depending on the targeted application. A number of them are 

compiled in Table 1.5 for III-N materials and other well-known semiconductors. The first of 

these characteristics is the band structure of the material. As shown in Figure 1.3, III-N 

wurtzite alloys cover a large range of bandgap values, from 0.7 eV for InN to 6.2 eV for AlN. 

Despite the small band gap of InN, the III-N materials are usually classified as large gap 

semiconductors, in contrast to small gap Si (1.1 eV) or GaAs (1.4 eV) semiconductors. 

Furthermore, III-N crystals are direct bandgap semiconductors, which implies that a transition 

of carriers between the conduction and valence band happens without any change in their 

wavenumber, thus enabling radiative recombination of electrons and holes. This property is 

essential for optoelectronic applications, such as the generation of light with light emitting 

diodes. 

 

Crystal 𝒆𝟑𝟏  𝒆𝟑𝟑 

GaN  

AlN 

InN 

-0.34 

-0.53 

-0.41 

0.67 

1.5 

0.81 
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Table 1.5 : Physical properties of various semiconductors at 300 K. Values are taken 

from reviews from[21],[22],[23],[24]. 

 

Figure 1.3 : Bandgap of ternary III-N alloys. The bandgap is plotted versus the lattice 

constant a and the composition and the percentages of Al and In for ternary alloys. The figure 

is reproduced from[2]. 

The bandgap value affects several other properties of the semiconductor, such as the 

breakdown voltage or the supported operating temperature. Both properties are essential for 

applications in high power electronics, as they impact the maximum operating power of the 

devices. Power and high frequency electronics also require good transport properties, such as 

high electron mobility (i.e. the displacement speed in the material of an electron accelerated 

by an electric field) and electron saturation velocity, which is the speed reached under very 

high electric field (typically 50-300 kV/cm). 

 

 

Physical properties GaN AlN InN Si 4H-SiC GaAs Diamond 

Bandgap (𝑒𝑉) 

Gap Nature (Direct – Indirect) 

Breakdown field (𝑀𝑉 𝑐𝑚−1) 

Electron mobility  (𝑐𝑚2 𝑉−1𝑠−1) 

Saturation velocity (107𝑐𝑚 𝑠−1) 

Thermal conductivity (𝑊 𝑐𝑚−1𝐾−1) 

3.4 

D 

3.3 

990 

2.5 

2.3 

6.2 

D 

8.4 

135 

2.2 

2.85 

0.8 

D 

1.2 

3000 

1.8 

0.45 

1.1 

I 

0.3 

1350 

1.0 

1.6 

3.2 

I 

3.5 

650 

2.0 

3.30 

1.4 

D 

0.4 

8500 

2.0 

0.54 

5.6 

I 

5.0 

1900 

2.7 

20-25 
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1.1.5. Applications of III-N materials 

a) Optoelectronics 

 

Light emitting diodes (LEDs) have been the main driving force for the development of III-

N based devices in the past thirty years. Back in the early 1990’s, most of the existing LEDs 

were based on cubic III-V materials, such as GaAs and GaP, able to emit red and yellow-green 

light. The efforts made to develop the growth of good quality p-type doped GaN layers[25],[26] led 

to the fabrication of the first efficient blue LED.[27] This opened the way for the high scale 

production of white light LEDs systems which are nowadays massively used for various lighting 

applications, from domestic lightening to back-illumination of displays. III-N based LEDs have 

continued to develop, with increasing interest in devices such as direct light displays, were LCD 

pixels are replaced by GaN-based LEDs pixels, or efficient ultra-violet (UV) LEDs, for 

applications including water purification and medical treatments.[28] Additionally, blue laser 

diodes have been produced for applications such as optical data storage systems. Beyond the 

large range of bandgaps accessible with III-N materials, allowing for emissions from the near 

infrared to UV lights (see Figure 1.3), LEDs based on this family of semiconductors benefit 

from great conversion efficiencies, owing to high breakdown fields and carrier velocities.[21] 

 

b) High electron mobility transistors 

 

Following the advances in the in the field of optoelectronics, the first GaN based high 

electron mobility transistors (HEMTs) were developed in 1993 and 1994.[29],[30] These devices 

rely on the polarization properties of III-N crystals. They are made of heterojunctions of III-N 

layers, typically formed by a GaN channel on top of which an AlGaN barrier layer is grown, 

although this top-film can also be made of InAlN or InGaAlN. At the interface of these layers, 

the spontaneous and piezoelectric polarizations 𝑃𝑆𝑃 and 𝑃𝑃𝐸 generate a two-dimensional 

charge density 𝜎 defined by:[20] 

 𝜎 = 𝑃𝑐ℎ𝑎𝑛𝑛𝑒𝑙 − 𝑃𝑏𝑎𝑟𝑟𝑖𝑒𝑟 = 𝑃𝑆𝑃
𝑐ℎ𝑎𝑛𝑛𝑒𝑙 + 𝑃𝑆𝑃

𝑐ℎ𝑎𝑛𝑛𝑒𝑙 − 𝑃𝑆𝑃
𝑏𝑎𝑟𝑟𝑖𝑒𝑟 − 𝑃𝑆𝑃

𝑏𝑎𝑟𝑟𝑖𝑒𝑟  (1.9) 

In the case of an AlGaN on Ga-polar GaN heterojunction, 𝜎 is positive and the interface 

charge is compensated by the formation, in the Ga channel, of a two-dimensional gas of free 

electrons (2DEG). A high concentration of electrons, typically around 1 × 1013 𝑐𝑚−2,[2],[21] is 

found within such a 2DEG, which is about five times higher than for GaAs HEMTs.[21] Note 

that the formation of the 2DEG does not require any doping of the III-N heterostructure, 

although such an operation can be carried out to further increase the free electron density. 

The physical properties of GaN, presented in Table 1.5, make GaN-based HEMTs 

excellent candidates for applications in high power and high frequency electronics. Indeed, 

GaN have good electron transport properties, with a saturation velocity of 2.5 107 𝑐𝑚/𝑠[31] and 

a mobility within the 2DEG significantly improved compared to bulk GaN, reaching values of 

2000 𝑐𝑚2 𝑉−1𝑠−1[32] instead of 990 𝑐𝑚2 𝑉−1𝑠−1.[33] Furthermore, the wide bandgap of GaN 
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leads to a high breakdown field of 3.3 𝑀𝑉/𝑐𝑚, which is one order of magnitude higher than the 

values found for Si or GaAs. Finally, GaN is able to handle the high temperatures associated to 

high power electronics. Its rather good thermal conductivity, which enables much more 

efficient evacuation of temperature than in GaAs, is associated to a tolerance of high operating 

temperatures. Indeed, low drain current losses have been reported on transistors operated at 

300°C, limited to 30% of the currents at 25°C.[34] 

Thanks to their high performances, GaN-based HEMTs are gaining an increasing part of 

power electronics market. Power amplifiers for future communication systems and radars are 

the core of high frequency applications. The need for high output powers of these systems is 

met by GaN components, with performances about an order of magnitude higher than GaAs 

based components.[35] GaN is also increasingly used for lower frequency power devices, owing 

to its better performances than Si and lower price than SiC, especially for devices grown on 200 

mm diameter Si substrates. Main applications include fast chargers for cell phones and laptop 

computers, electrical converters for electric vehicles and airplanes, power supply of data 

centers or photovoltaic inverters for solar panels. In the following studies of this thesis, we will 

focus on the characterization of few-micrometers thick GaN layers forming the base structure 

of power electronics HEMTs. 

 

1.2. Epitaxy of III-N materials 

1.2.1. Impact of the substrate 

 

Epitaxial growth designates the growth of a crystal, initiated on the surface of another 

crystal, in which the orientation of the initial crystal conditions the orientation of the 

expanding new crystal. This process allows for the growth of large monocrystalline layers, 

required for the fabrication of transistors.  In the case of GaN-based devices, an initial substrate 

serves as a base for the epitaxial deposition of a succession of III-N layers. The choice of the 

substrate has a crucial impact on the quality of the III-N layers on top of it, as well as the 

performances and cost of the manufactured devices. As summarized in Table 1.6, four main 

materials are used as substrates for power electronics III-N stacks, namely GaN, sapphire 

(Al2O3), silicon carbide (SiC) and silicon (Si). 
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Table 1.6 : Benefits and limitations of different substrates used for epitaxial 

growth of III-N materials. The cost of wafers is a 2010 estimate, from reference[36]. Other 

properties are taken from reference[24].  

Typically, semiconductors such as Si, GaAs, SiC or InP are grown on their corresponding 

native substrates, in a process designated as homoepitaxy. The use of such bulk/freestanding 

GaN substrates is highly desirable, as the substrate/layer lattice matching enables to obtain 

III-N epitaxial layers of excellent quality, with low densities of threading dislocations (see 

section 1.3.1) typically of the order of 106 𝑐𝑚−2 to 107 𝑐𝑚−2, with reported values down to 

104 𝑐𝑚−2.[24] However, GaN substrates are extremely expensive and only available in small 

diameters, up to 100 mm. 

Historically GaN substrates were not available, so initial III-N LEDs and power devices 

were developed on hexagonal (0001)-oriented sapphire and SiC substrates, which corresponds 

to a heteroepitaxial growth. Both substrates have a lattice mismatch with GaN crystals (16% 

for sapphire, 3.1% for SiC), leading to the generation of high densities of threading dislocation 

defects at the heterointerface. A further issue induced by the use of foreign substrates is the 

difference of thermal expansion coefficients between the two crystals. As the epitaxy process is 

carried out at high temperatures (see section 1.2.1), a discrepancy in the contraction behavior 

of both lattices arises during the cooling step, thus generating additional stresses in the two 

crystals. Within the epitaxial GaN layer, the resulting in-plane stress is compressive for 

sapphire substrates and tensile for SiC substrates, respectively due to their higher and lower 

thermal expansion coefficients compared to GaN. This phenomenon leads to a bowing of 

wafers, which is in turn responsible for difficulties of growing additional ternary layers on large 

wafers, due to temperature inhomogeneities.[37] Hence, although some large sapphire wafers 

up to 300mm are available, the growth of devices on sapphire substrates has typically been 

confined to sample diameters of 150 mm or less. Overall, SiC appears as the adapted solution 

for better quality epitaxial layers owing to its better matching with GaN lattice, but sapphire 

substrates have often been preferred due to their significantly lower cost and easier availability. 

More recently, III-N community focused on Si substrates to replace Sapphire and SiC, 

motivated by the considerably cheaper cost of this material, its availability in large diameter 

wafers, and its simple integration in a standard microelectronics fabrication chain. (111)-

oriented Si substrates are used to match the hexagonal structure of GaN. Si has a rather large 

mismatch of -17% with GaN. This is similar to the sapphire/GaN mismatch, although the 

interatomic distance in Si (111) plane (3.84 Å) is higher than the lattice parameter 𝑎 of GaN 

 

Properties GaN Sapphire SiC Si 

Lattice mismatch (%) 

Thermal expansion coefficient (106 𝐾−1) 

Thermal conductivity (𝑊 𝑐𝑚−1 𝐾−1) 

Optimized dislocation density on GaN films (𝑐𝑚−2) 

Wafer cost per area ($ 𝑐𝑚−2) 

Maximum available wafer diameter (𝑚𝑚) 

0 

5.6 

2.3 

104-106  

200 

100 

16 

7.5 

0.25 

Low 108  

1 

300 

3.1 

4.4 

4.9 

Low 108  

4 

150 

-17 

2.6 

1.6 

Low 108  

0.06 

300 
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(3.19 Å). Despite this, good quality GaN-on-Si layers can be grown with threading dislocation 

densities of the order of 108 𝑐𝑚−2, which is comparable to sapphire and SiC. Following the 

same arguments as for active layers, substrates used to fabricate III-N HEMTS are expected to 

possess a high capacity of heat dissipation. This point represents an additional benefit of Si 

compared to sapphire, as its thermal conductivity is one order of magnitude higher. Thermal 

conductivity of SiC substrates is even better at 4.9 𝑊 𝑐𝑚−1 𝐾−1 and this has been one reason 

for it being as the favored substrate for RF applications. The main difficulty for GaN on silicon 

(GaN-on-Si) development is its low thermal expansion coefficient of 2.6 × 10−6𝐾−1, which 

induces large amounts of tensile stress during cool down from growth temperatures, resulting 

in the apparition cracks in the GaN layer. 

To avoid this cracking, a set of intermediate layers are typically grown between Si and GaN 

crystals, as shown in Figure 1.4. This stack structure is typical of the GaN-on-Si samples 

studied in this thesis. A few hundred nm thick AlN nucleation layer is first grown on top of the 

Si substrate, typically at a temperature around 1100°C to obtain a highly crystalline 

structure.[38] The first interest of this film is to form a barrier between the GaN and the Si, which 

would otherwise react chemically, leading to the formation of large defects referred to as 

meltback etching.[39],[40] Additionally, AlN has a smaller lattice parameter than GaN, which 

enables the latter layer to be grown under compressive strain, thus compensating the tensile 

strain brought by the cooling down of the substrate after growth. On top of the AlN, two to 

three AlGaN layers are grown, with a progressive decrease in Al content, to gradually adapt the 

lattice parameters of AlN and GaN, thus improving the quality of GaN layer. These buffer films 

also contribute to the compressive strain input within the top of the sample. As it will be 

explained in the section 1.3.2, no relaxation of this compressive stress can occur through the 

generation of dislocations, as the only slip planes of the wurtzite structure are parallel to the 

[0001] growth direction.[41] This allows for large compressive strain to be built into the layers. 

 

Figure 1.4 : Typical structure of a GaN-on-Si epitaxial stack. 

In the III-N stacks presented in Figure 1.4, GaN orientation is such that the GaN (0001) 

plane is almost parallel to Si (111) plane, and the [112̅0] direction of GaN lattice is parallel to 

[110] direction of Si substrate.[38] 

 

1.2.2. Growth methods 
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Besides the choice of the substrate, the fabrication of a GaN-on-Si template requires the 

use of an epitaxial growth technique, typically molecular beam epitaxy (MBE), hydride vapor 

phase epitaxy (HVPE) and metal organic vapor phase epitaxy (MOVPE), also designated by 

the generic term metalorganic chemical vapor phase deposition (MOCVD). 

In MBE growth, III-N elements are heated in effusion cells so that a beam of evaporated 

matter is generated and directed toward the substrate, where it reacts to form the epitaxial 

layers. The process is carried out at relatively low temperatures (500-900 °C) and in an ultra-

high vacuum environment, about 10−8 𝑃𝑎. This extremely low pressure allows to employ in-

situ characterization methods, such as reflection high energy electron diffraction (RHEED), to 

precisely monitor the thicknesses of the epitaxial films. MBE process permits to grow 

homogeneous layers with sharp interfaces, but with the drawback of low growth rates of 0.1 −

2 µ𝑚/ℎ, which are not suitable for a large volume production. 

HVPE relies on the reaction between sources of group-III atoms, hydrogen chloride (HCl) 

and ammonia (NH3) or 1.1-dimethylhydrazine (DMHy) on the surface of the sample heated at 

a temperature of 900-1100°C. The main benefit of this technique is the rapid growth of III-N 

layers, from 10 µ𝑚/ℎ up to 300 µ𝑚/ℎ. The weaknesses of the HVPE technique are the use of 

corrosive HCl gas and the difficult control of the growth. 

MOVPE principle is close to HVPE, although it uses organometallic gases as group-III 

precursors, typically trimethylgallium (TMGa) (C3H9Ga), trimethylaluminum (TMAl) (C3H9Al) 

and trimethylindium (TMIn) (C3H9In). These react with ammonia (NH3), the N-source 

precursor, leading to the deposition of the epitaxial layers on the hot (700-1100 °C) surface of 

the sample. The main parameters of the MOVPE process are the temperature of deposition, 

the ratio of injected precursors and the global pressure within the reactor, which is in the range 

of 50 to 800 mbar. MOVPE technique is associated with high growth rate, usually in the range 

of 1 − 10 µ𝑚/ℎ but reaching values up to  56 µ𝑚/ℎ,[42] and a good quality of the epitaxial layers 

in terms of purity and uniformity. Moreover, this process can be carried out in large growth 

chambers, suited for the growth on large or multiple samples. Hence, MOVPE is a very 

appropriate method for high scale production of III-N devices. The GaN-on-Si samples used 

in this thesis are grown within two MOVPE reactors adapted to epitaxial deposition of III-N 

layers on 200 mm diameter wafers, namely an Aixtron Crius R200 single wafer reactor of 

research and development and an Aixtron G5+ multi-wafer production reactor. The typical 

density of threading dislocations (see the following section 1.3.1) at the surface of GaN-on-Si 

layers grown on Crius and G5+ reactors are respectively in the high 108 cm−2 and low 

109 cm−2. 

 

1.3. Defects in heteroepitaxial III-N materials 

1.3.1. Dislocations 

 

The substantial mismatch between lattices of III-N layers and Si, sapphire or SiC 

heterosubstrates leads to the formation at the interface of numerous crystalline defects, called 
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dislocations. Indeed, the nucleation process of III-N films typically starts with the formation 

of crystalline islands with slightly misoriented lattices.[38] These nuclei subsequently coalesce, 

thus generating at the misoriented crystal interfaces a dense distribution of dislocations, 

usually of the order of 1010 units per square cm. As the epitaxy process progresses, dislocations 

expand through the growing layers, in the direction normal to the surface, and are referred to 

as threading dislocations (TDs). 

Their density progressively decreases as dislocations recombine, especially in the 400 first 

nm of GaN layers in the case of GaN-on-sapphire,[43] typically leading to densities of 

dislocations of the order of 108 − 109𝑐𝑚−2 at the surface of GaN layers. This recombination 

can be enhanced by either strain in the layer, or by the growth of 3D layers. With 3D growth, 

the inclined facets of the pyramids grown tend to bend the dislocations into the plane, allowing 

easier recombination. Growth on sapphire typically uses this strategy of 3D then 2D growth to 

reduce the dislocation density, while this is not possible for GaN on silicon due to the need of 

keeping a compressive strain in the layers during growth. 

These defects highly impact the performances of III-N based power electronics devices. In 

particular, dislocations have been shown to increase current leakage[44], as they act as a vertical 

current paths through the GaN layer. This effect is lowered by carbon or iron doping of GaN 

layers, although the density of threading dislocations might still affect the dynamical behavior 

of GaN-on-Si transistors, such as the trend of channel conductance decrease under a drop of 

applied voltage.[45] Threading dislocations also lead to a decrease of GaN breakdown voltage[46] 

as they act as electron traps.[47] Additionally, dislocations densities above 108 𝑐𝑚−2 cause a 

reduction of electron mobility in GaN layers,[48] with dramatic drops for dislocation densities 

over 109 𝑐𝑚−2.[49] Nevertheless, this effect is observed at low temperature or at low sheet carrier 

concentrations in the 2DEG, which are not typical conditions of operation for power devices. 
[41] This is the reason why the fabrication of efficient HEMTs on GaN-on-Si is possible. 

Dislocations also play an essential role in the relaxation of compressive stress through GaN 

and buffer layers (see section 1.3.2). Hence, a high density of TDs lowers the amount of 

compressive stress supposed to compensate the tensile stress introduced during post epitaxy 

cooling, thus leading to layer cracking. 

 

a) Basic theory of dislocations 

 

Dislocations are described as one-dimensional defects, as they consist of a linear 

disruption of the lattice perfection, which extends through the whole crystal or part of it. This 

dislocation line can follow either a straight or a curved path in the lattice. Along with its line, a 

dislocation is defined by its Burgers vector, which corresponds to the shift induced along a 

circuit surrounding the dislocation line (see Figure 1.5). 

Based on the direction of the Burgers vector with respect to the direction of the dislocation 

line, we can describe different types of dislocations. 
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Edge dislocations, as illustrated in Figure 1.5 a), can be seen as a half plane inserted in 

a perfect lattice. The dislocation line is localized next to the unbounded atoms, at the edge of 

the half plane. The Burgers vector of such dislocation is perpendicular to the dislocation line.  

Screw dislocations consist in a shear of the lattice, so the plane initially normal to the 

dislocation line adopts a helicoid shape (Figure 1.5 b)). The Burgers circuit around this type 

of dislocations shows a shift of one lattice parameter in the direction of the dislocation line. 

Hence, the Burgers vector is parallel to the dislocation line. 

 

Figure 1.5 : Geometry of dislocations within a crystal lattice. a) Edge dislocation. The 

departure from a perfect lattice is shown with the extra half plane ABCD. b) Screw dislocation 

between the points C and D. Figures are adapted from reference.[50] Dislocations are depicted 

in a cubic lattice for a simple understanding of dislocations geometries. Burgers vectors be⃗⃗⃗⃗⃗ and 

bs⃗⃗ ⃗⃗  of edge and screw dislocations are shown in red and their construction paths are outlined in 

blue. 

 

Finally, dislocations with their Burgers vector forming an intermediate angle between the 

two previous cases are called mixed dislocations. Their Burgers vector can be described by the 

sum of its two vector components in the direction normal and parallel to the dislocation line, 

showing the mixed character of such dislocations between screw and edge cases. 

It should be noted that the Burgers vector of a dislocation remains constant along the 

whole dislocation line, which implies that a curved dislocation can change its type along its 

path. For example, a screw dislocation would become mixed in the area where its line bends, 

as the direction of this line would deviate from the direction of the Burgers vector. On the other 

hand, a straight dislocation maintains its character along its whole length. 

Under the action of a mechanical stress, dislocations can move through the crystal lattice. 

We can distinguish two mechanisms of dislocation displacement: 

• Dislocation glide. It consists in the movement of a dislocation in the plane containing its 

line and its Burgers vector. At a macro scale, gliding of dislocations can lead to a slip 

mechanism, corresponding to a plastic deformation of the crystal when two planes of 

atoms slide over each other. This phenomenon can only happen on slip planes, which are 

usually the planes of the crystal with higher atomic density. 

b 

a)

b 

b)
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• Dislocation climb. It corresponds to a displacement of a dislocation out of the glide plane 

and typically occurs at high temperature. 

 

b) Mechanical elastic fields surrounding dislocations 

 

By locally disrupting the crystal lattice perfection, dislocations create a strain field around 

them, that can be described by elasticity theory. This is usually done by considering a straight 

dislocation in an isotropic crystal, with its line direction oriented along the 𝑧 axis of a 

cylindrical coordinate system (𝑟, 𝜃, 𝑧), as represented in Figure 1.6. 

 

Figure 1.6: Distortion induced by dislocations on a surrounding hollow cylinder 

of crystal lattice. a) Screw dislocation. b) Edge dislocation. b is the Burgers vector. r0 and R 

represent respectively the inner and outer radius of the hollow cylinder, in which the elastic 

mechanic fields apply. Figures are reproduced from reference.[51] 

 

The vector of displacement around a screw dislocation with Burgers vector 𝑏𝑠 can be found 

from Figure 1.6 (a): 

 

(
𝑢𝑟
𝑢𝜃
𝑢𝑧

) = (
0
0
𝑏𝑠𝜃
2𝜋

) (1.10) 

From Equation (1.10), we obtain the strain and stress tensors, assuming a linearly elastic 

isotropic crystal with shear modulus 𝐺: 

 

(

휀𝑟𝑟 휀𝑟𝜃 휀𝑟𝑧
휀𝜃𝑟 휀𝜃𝜃 휀𝜃𝑧
휀𝑧𝑟 휀𝑧𝜃 휀𝑧𝑧

) = 

(

 
 

0 0 0

0 0
𝑏𝑠
4𝜋𝑟

0
𝑏𝑠
4𝜋𝑟

0
)

 
 

 (1.11) 
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(

𝜎𝑟𝑟 𝜎𝑟𝜃 𝜎𝑟𝑧
𝜎𝜃𝑟 𝜎𝜃𝜃 𝜎𝜃𝑧
𝜎𝑧𝑟 𝜎𝑧𝜃 𝜎𝑧𝑧

) = 

(

 
 

0 0 0

0 0
𝐺𝑏𝑠
2𝜋𝑟

0
𝐺𝑏𝑠
2𝜋𝑟

0
)

 
 

 (1.12) 

According to equation (1.11), the linear elasticity theory predicts a strain around screw 

dislocations consisting of pure shear. However, when second order terms of nonlinear 

elasticity theory are taken into account, tensile/compressive strain arises, as demonstrated by 

Stehle et Seeger:[52] 

 

(

휀𝑥𝑥 휀𝑥𝑦 휀𝑥𝑧
휀𝑦𝑥 휀𝑦𝑦 휀𝑦𝑧
휀𝑧𝑥 휀𝑧𝑦 휀𝑧𝑧

) = 

(

 
 
 

𝛥 𝑐𝑜𝑠2𝜃 −𝛥  in𝜃 co 𝜃
𝑏𝑠  in𝜃

4𝜋𝑟

−𝛥  in 𝜃 co 𝜃 𝛥 𝑠𝑖𝑛2𝜃
−𝑏𝑠 co 𝜃

4𝜋𝑟
𝑏𝑠  in 𝜃

4𝜋𝑟

−𝑏𝑠 co 𝜃

4𝜋𝑟
0 )

 
 
 

 (1.13) 

where 𝛥 = 𝐾𝑏𝑠
2/(4𝜋𝑟²), 𝐾 being a factor depending on second order atomic forces, close to 1. 

Determining the displacement field of an edge dislocation is not as straightforward as for 

a screw dislocation. The expressions have been derived from Volterra’s works on hollow 

cylinders[53] and adapted to the case of a straight dislocation in an isotropic crystal, described 

in Cartesian coordinates.[54],[55] We give adapted equations replacing the Lamé parameters used 

in this historical literature with the Poisson ratio 𝜈: 

 
𝑢𝑥 =

𝑏𝑒
2𝜋
(𝑎𝑟𝑐𝑡𝑎𝑛

𝑦

𝑥
+

1

4(1 − 𝜈)

𝑥𝑦

𝑥2 + 𝑦²
) =

𝑏𝑒
2𝜋
(𝜃 +

𝑠𝑖𝑛 2𝜃

4(1 − 𝜈)
) (1.14) 

 

𝑢𝑦 =
𝑏𝑒

4𝜋(1 − 𝜈)
(
2𝜈 − 1

2
𝑙𝑛(𝑥2 + 𝑦2) +

 𝑦2

𝑥2 + 𝑦2
) =

𝑏𝑒
4𝜋(1 − 𝜈)

((2𝜈 − 1)𝑙𝑛(𝑟) +
1 − 𝑐𝑜𝑠 2𝜃

2
)    (1.15) 

 

 𝑢𝑧 = 0 (1.16) 

The corresponding strain field is a plane strain, as it expands in the plane normal to the 

dislocation line ( i.e. 휀𝑟𝑧 = 휀𝜃𝑧 = 휀𝑧𝑧 = 0). The stress field around edge dislocations is:[56] 

 

(

𝜎𝑟𝑟 𝜎𝑟𝜃 𝜎𝑟𝑧
𝜎𝜃𝑟 𝜎𝜃𝜃 𝜎𝜃𝑧
𝜎𝑧𝑟 𝜎𝑧𝜃 𝜎𝑧𝑧

) = 
𝐺𝑏𝑒

2𝜋(1 − 𝜈)

(

 
 
 

− in𝜃

𝑟

co 𝜃

𝑟
0

co 𝜃

𝑟

− in𝜃

𝑟
0

0 0
−2ν  in 𝜃

𝑟 )

 
 
 

 (1.17) 
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Note that equations (1.10) to (1.17) are valid for a hollow cylinder of inner radius 𝑟0 

surrounding the dislocations, as depicted in Figure 1.6. Indeed, near to the core of the 

dislocations (i.e. when 𝑟 → 0), the stress field values would diverge, due to the 1/𝑟 tendency 

shown in equations (1.12) and (1.17). The value of 𝑟0 is considered to lie between one to four 

times the Burgers vector,[51] with a typical assumed value of 10−7𝑐𝑚. Hence, the study of strain 

and stress fields in the core region of a dislocation needs to rely on atomic models, whose 

description is beyond the scope of the present work. 

 

c) Threading dislocations in III-N layers 

 

III-N materials grown in the form of hexagonal (0001) layers are crossed by threading 

dislocations, whose lines usually follow a path perpendicular to the surface (along the [0001] 

direction). Figure 1.7 shows the three different groups of threading dislocations that coexist 

in hexagonal (0001) III-N layers. Screw TDs are divided into two dislocation types, depending 

on the orientation of their Burgers vector, which is normal to the surface (𝑏𝑠 = ⟨0001⟩). Edge 

TDs are separated into three types, with Burgers vectors (𝑏𝑒 = 1/3  ⟨112̅0⟩) parallel to the 

surface plane. Finally, six types of mixed dislocations constitute the last group (𝑏𝑚 =

1/3 ⟨112̅3⟩), with their Burgers vector forming an intermediate angle between the two previous 

cases. Hence, in terms of lattice parameters 𝑎 and 𝑐, the magnitude of screw, edge and mixed 

dislocations is respectively 𝑏𝑠 = 𝑐, 𝑏𝑒 = 𝑎 and 𝑏𝑚 = √𝑎
2 + 𝑐2. Edge and mixed TD are 

predominant in hexagonal GaN layers, while pure screw ones generally account for less than 

2% of the total TD density.[4] 

 

Figure 1.7:  Schematic of the Burgers vectors of threading dislocations in a 

hexagonal unit cell of GaN. 𝑎 and 𝑐 are the lattice parameters, respectively in the surface 

plane and in the direction normal to the surface plane. The Burgers vectors are drawn in red 
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(be) for the set of three edge TD, in blue (bs) for the two kinds of screw TD and in purple (bm) 

for the family of mixed TD. 

 

1.3.2. Macro-stress fields 

 

We have seen in the section 1.2.1 that the use of heterosubstrates for GaN epitaxy may 

require the growth of intermediate III-N buffer layers. The small lattice mismatch between 

these buffers films and the GaN layer leads to the introduction of a biaxial compressive stress 

in the (0001) plane of GaN. Before the post-epitaxy cooling step, the GaN layer is therefore 

under a compressive strain within its (0001) plane, and under a tensile strain along the c-axis 

([0001] direction), by Poisson’s effect. As the GaN layer grows up to a few μm thick, the lattice 

relaxes, thus leading to a gradient of in-plane stress along the normal to the surface plane. 

Most of usual semiconductors, such as Si, Ge or GaAs, have a close packed cubic structure, 

characterized by {111} planes with high atomic densities. In these crystals, the relaxation of 

compressive stress typically happen through a slip mechanism (see section 1.3.1.a)). However, 

in the case of wurtzite structure, the slip phenomenon is restricted to the planes of the {101̅0} 

family. In (0001) oriented GaN layers, these planes are normal to the surface, thus preventing 

any relaxation of in-plane stress by slip. Instead, two other mechanisms have been proposed 

for the progressive relaxation of compressive stress, and thus the formation of a stress 

gradient: 

• The bending of TDs with an edge component away from the [0001] direction. The 

projection of the bended dislocation segments on the (0001) plane corresponds to a 

segment of misfit dislocation (i.e with both the line and the orthogonal Burgers vector 

comprised in the (0001) plane), known for relaxing in-plane stresses.[57] Dislocation 

bending is promoted by rough surfaces of growing films, in particular in the case of Si-

doped III-N layers.[58] 

• The recombination of TDs. In III-N layers, part of the TDs annihilate by progressively 

recombining with each other throughout the film thickness. It has been suggested that the 

density at the core of dislocations is smaller than in the rest of the lattice, thus forming a 

free volume that disappears when TDs annihilate, allowing for compressive stress 

relaxation.[59],[60] 

The magnitude of this gradient has been observed to be especially strong in MOVPE-

grown GaN-on-Si layers. Figure 1.8 gives an example of in-plane stress gradient, estimated 

from measurements of sample curvature evolution during the epitaxy process.[61] We note that 

the mechanism described before generates a stress gradient in both the AlGaN films and the 

GaN layer, although the magnitude of the latter is higher. 
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Figure 1.8 : Stress gradient in a GaN-on-Si sample estimated from in-situ bow 

measurements. Black curve: Bow of the sample, measured by optical reflectance during the 

epitaxial growth of the two AlGaN buffers and the GaN layer. Blue curves: Logarithmic fits of 

bow measurements on each layer. Red curve: Stress calculated using the Stoney equation.[62] 

Reproduced from reference.[61] 

 

1.3.3. Stacking faults 

 

Unlike one-dimensional dislocations, planar defects extend through two dimensions of the 

crystal lattice. Beyond the surfaces and interfaces of a crystal, this two-dimensional category 

includes defects such as grain boundary (i.e. the interface between two highly misoriented 

lattices, whether constituted of the same crystal phase or not) or twin, which is a plane of 

inversion of lattice orientation, acting as the interface between two lattice areas related by a 

mirror symmetry. These two latter defects are not common in III-N layers, unlike the last main 

type of planar defect, namely stacking faults. 

In III-N wurtzite crystals, stacking faults occur in the basal (0001) plane and thus are 

called basal plane stacking faults (BSFs). As depicted in Figure 1.9, BSFs consist of a 

disruption of the ABABAB hexagonal closed pack stacking along the c-axis, to locally adopt a 

face-centered cubic close packed ABCABC sequence, which is normally characteristic of 

stacking along the [111] direction of zincblende III-N crystals. BSFs are only observed in III-

N layers grown along semi-polar and non-polar directions (i.e. [ℎ𝑘𝑖𝑙] ≠ [000𝑙]), with typical 

densities of the order of 105𝑐𝑚−1. Hence, this type of defect will not be considered for the 

[0001]-grown layers studied throughout this thesis. 
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Figure 1.9 : Stacking fault in a wurtzite III-N layer. a) Standard wurtzite hexagonal 

closed pack sequence b) Example of BSF sequence of type I1, which represents about 90% of 

BSFs in wurtzite III-N layers, owing to its low formation energy.[55] Each letter ABC letters 

represents a group-III/N bilayer and each sphere represents a group-III/N doublet of atoms. 

 

GaN-on-Si appears to be well positioned to respond to the challenge of supporting the 

upcoming massive expansion of power electronics, as it is with a practical, affordable and 

highly-performant semiconductor. Nevertheless, this material is affected by substantial 

densities of threading dislocations, known for deteriorating the performances of devices, and 

a strong gradient of stress with a magnitude specific to GaN-on-Si. The study of these defects 

is of crucial interest to improve the quality and understanding of grown layers and electrical 

performance. The following chapter will detail the background knowledge to carry out these 

characterizations by using X-ray diffraction techniques.
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2. X-ray diffraction characterizations 
 

X-Ray Diffraction (XRD) is a widely used method of materials characterization, in 

particular for investigation of crystal structures. The study of monocrystals requires the use of 

high-resolution X-ray diffraction (HRXRD) techniques. They rely on the measurement of the 

distances between crystal planes and the strain to which they are subject. A large set of 

structural information can be deduced from these measurements, from the examination of the 

crystal structure and the lattice parameters to the study of the strain fields and defects present 

in the crystal. 

Besides this wide variety of measurements, X-ray diffraction is an ideal answer to the 

constraints of a metrological monitoring of III-N wafers. The technique is indeed non-

destructive, rather fast and easy to implement, especially when using fully automated 

measurement tools adapted to cleanroom processes. 

The following chapter contains an overview of the basic knowledge needed to understand 

XRD characterizations and analyses applied to III-N epitaxial layers. It includes considerations 

on the nature of X-rays, their interactions with matter and an introduction to the diffraction 

theory, by means of the simple kinematical model. This theory is illustrated using the 

reciprocal space representation, which allows a relevant depiction of XRD measurements on 

monocrystals. A description of the diffractometers used for these measurements is provided, 

as well as the setups used in this thesis. Finally, elemental analyses are made of the links 

between the measured diffraction peaks characteristics (position and width) and the crystalline 

structure of the sample. They give the required theoretical bases for the specific studies of 

subsequent chapters, on dislocation distributions and strain gradients. 

 

2.1. X-ray - matter interactions 

2.1.1. Production of X-rays 

 

X-rays is the name given to the category of electromagnetic waves with wavelengths 

ranging from 10 pm to 10 nm. More specifically, the typical wavelengths used for XRD 

characterizations are of the order of the ångström. 

Different sources are used to produce X-ray photons. In the laboratories, the radiation is 

produced in an X-ray tube by the strike of highly accelerated electrons on a metallic anode. 

These electrons are generated by heating a filament, typically made of tungsten, and then 

accelerated by applying a strong electric field. When hitting the anode, the electrons eventually 

undergo a deceleration, thus generating a continuous X-ray radiation called Bremsstrahlung. 

At the same time, an X-ray emission in the form of intense characteristic lines is also observed. 

These lines are the result of electronic transitions, induced in the metal of the anode by the 

incident radiation. 
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This characteristic line emission is the one used for XRD. The wavelength of the lines 

depends on which metal the anode is made of. Usually, the  radiation of a copper anode is 

used, as it will be the case throughout this thesis. According to the recommendations of the 

international union of crystallography, its wavelength is estimated to be equal to 1.54059 Å.[63] 

An example of the spectra emitted by a copper anode is presented in Figure 2.1. It should be 

noted that the efficiency of these sources is highly limited , as 99% of the energy of the electron 

beam is dissipated as heat at the anode.[64] 

 

Figure 2.1 : Emission spectrum of a copper anode hit by an electron beam. 

Schematic representation for a 50kV potential applied on the X-ray tube, including the 𝐾𝛼, 𝐾𝛽 

and continuous Bremsstrahlung radiations. 𝐾𝛼 radiation is composed by two lines 𝐾𝛼1 and 𝐾𝛼2. 

Wavelength values are taken from reference.[65] Relative intensities between the peaks are 

arbitrary.   

The synchrotrons form a second type of artificial X-rays sources. They are constituted of a 

storage ring where electrons are injected and turn at high speed, their trajectory being deviated 

by magnetic fields. The electrons thus undergo a centripetal acceleration and emit an 

electromagnetic radiation, called synchrotron radiation, which is extremely brilliant and is 

composed by a large spectrum of frequencies. This source is a few orders of magnitude more 

powerful than X-ray tubes but require the construction of large and expensive facilities. To 

better adhere to the metrological framework of this thesis, synchrotrons are not used and the 

experiments focus on laboratory-compatible X-ray tube systems. 

 

2.1.2. Absorption 

 

The main interest of X-ray production is the characterization of matter. When an X-ray 

beam travels through a material, different effects are observed. The more obvious is the 

absorption of the X-rays, property which is used for example in medical radiology, or for the 

human protection against X-radiations. At low and medium X-ray energy (i.e. below 1 MeV), 

three effects should be considered to explain the X-rays absorption:[66] 
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• The photoelectric effect. This phenomenon consists in the absorption of an X photon by 

an atom, partially compensated by the emission of an electron. As the energy transmitted 

from the incident photon is higher than the binding energy of the electron, the atom loses 

the energy surplus by emitting an X-radiation or a second electron called Auger electron. 

This effect is predominant at low energy. 

 

• The Rayleigh scattering effect. It is the result of the oscillation of the electron cloud around 

the irradiated atom. This motion leads to the re-emission of X-rays with the same 

wavelength in all the directions around the atom, which is the source of the diffraction 

phenomenon. The loss of intensity due to this phenomenon is higher at low X-ray energy. 

However, its relative importance compared to the photelectric effect increases with the 

rise of energy. 

 

• The Compton scattering effect. It describes the loss of energy of the photons when hitting 

an electron of the external shells of the atoms. This effect is more important at high 

energies. 

The X-ray absorption is described by the sum of these three effects. Its magnitude depends 

on the atomic density of the absorbing material. Hence, for a given X-radiation energy, we 

associate to each material a linear attenuation coefficient 𝜇, which describes the loss of 

intensity of a beam of initial intensity 𝐼0 travelling through a length 𝑥 of material. The 

transmitted intensity 𝐼 is given by the Beer-Lambert law: 

 𝐼 = 𝐼0  xp(−𝜇𝑥) (2.1) 

For the Cu 𝐾𝛼 radiation, which has a photon energy of 8.04 keV, 𝜇 of GaN is equal to 271 

𝑐𝑚−1,[67] corresponding to an 1/e attenuation length of 36.9 μm. 

 

2.1.3. Diffraction 

a) Diffraction and Bragg’s law 

 

Like other electromagnetic waves, X-rays undergo a phenomenon called diffraction when 

passing through apertures with a size of the order of their wavelength. For X-rays, this happens 

when travelling through materials with interatomic distances of the order of the ångström. For 

the particular case of crystalized materials, the separation between atoms is ruled by the 

interplanar distances between crystalline planes. Hence, irradiating a crystal with X-rays leads 

to the scattering of the incident beam all around in space, generating spots of diffracted 

intensity separated by zones of beam extinction. Most of XRD techniques focus on the 

measurement of these crystal-scattered signals, which are used to characterize the 

crystallographic structure of the material.  

When the X-ray source is located far enough from the diffracting material (i.e. at a distance 

much greater than the wavelength value), we can consider that the incident wave is plane. In 
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the same way, the diffracted wave can be treated as a plane wave when it is detected at a high 

distance from the crystal. These criteria correspond to the Fraunhofer diffraction conditions. 

The diffraction phenomenon is caused by the Rayleigh effect detailed previously, which 

transforms each irradiated atom into a sub-X-ray source that scatters the incident beam in all 

space directions. The waves coming from different atoms may have different phases when 

encountering one another due to the unequal lengths of the covered paths. Two waves with 

opposite phases will cancel each other, leading to a destructive interference and an extinction 

of the beam. Conversely, two waves with the same phase will add together to generate a 

constructive interference, which can be measured by a detector. 

This phenomenon is represented in Figure 2.2. A constructive interference is formed 

when the additional path covered by a first wave compared to a second wave is a multiple of 

the wavelength, so the two waves have the same phase after the diffraction. Using the notations 

of Figure 2.2, the length of this additional path is 2𝑑ℎ𝑘𝑙  𝑠𝑖𝑛 𝜃.  

 

Figure 2.2 : Representation of the Bragg’s law. The two series of red points represent 

the atoms of two crystal planes separated by a distance  hkl. θ angle is equal to half of the angle 

between transmitted and diffracted rays. 

One can therefore deduce the Bragg’s law, which links the wavelength 𝜆 to the interplanar 

distance 𝑑ℎ𝑘𝑙 and the angular position 𝜃 at which a diffraction spot is observable: 

 𝑛𝜆 = 2𝑑ℎ𝑘𝑙  in 𝜃 (2.2) 

where 𝑛 is the diffraction order. 

Usually, a monochromatic beam of known wavelength is used. The 𝜃 angle is therefore 

measured to deduce the distance between two planes of Miller indices (ℎ, 𝑘, 𝑙). The diffraction 

phenomenon on this set of crystal planes is called the (ℎ, 𝑘, 𝑙) reflection. 

 

b) Reciprocal space representation 

 

To describe the diffraction phenomenon, it is appropriate to use a vectorial representation. 

Hence, we define a new frame of reference 𝑅𝑐
∗ = (�⃗�∗, �⃗⃗�∗, 𝑐∗) for the crystal lattice, called 

reciprocal lattice. It is defined by means of the direct lattice reference frame 𝑅𝑐 = (�⃗�, �⃗⃗�, 𝑐), 
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which gives the three unit vectors whose linear combinations form the crystal lattice in the real 

space (see section 1.1.1). For a unit cell of volume 𝑉𝑐 in the real space, we have: 

 

{
 
 
 

 
 
 �⃗�∗ =

 �⃗⃗� ^ �⃗⃗⃗�  

𝑉𝑐
 

�⃗⃗�∗ =
 𝑐  ^ 𝑎⃗⃗⃗ ⃗ 

𝑉𝑐

𝑐∗ =
 �⃗� ^ 𝑏⃗⃗⃗ 

𝑉𝑐

 (2.3) 

The reciprocal lattice is in turn generated by a linear combination of these (�⃗�∗, �⃗⃗�∗, 𝑐∗) 

vectors. Hence, the expression of a vector ℎℎ𝑘𝑙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ linking the space origin to a lattice point is: 

 ℎℎ𝑘𝑙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ = ℎ�⃗�∗ + 𝑘�⃗⃗�∗ + 𝑙𝑐∗  (2.4) 

Due to the definition of the reciprocal space, the distances in this system are inverse to the 

distances in the direct lattice system. Hence: 

 
‖ℎℎ𝑘𝑙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗‖ =

1

𝑑ℎ𝑘𝑙
 (2.5) 

where 𝑑ℎ𝑘𝑙 is the interplanar distance between the (ℎ𝑘𝑙) planes. 

In the reciprocal space, the diffraction of a monochromatic beam of wavelength 𝜆 is 

described by a scattering vector �⃗�. This scattering vector is defined by 𝑘𝑖⃗⃗⃗⃗  and 𝑘𝑑⃗⃗ ⃗⃗⃗, the wave 

vectors before and after the diffraction of length |𝑘𝑖⃗⃗⃗⃗ | = |𝑘𝑑⃗⃗ ⃗⃗⃗| = 1/𝜆: 

 �⃗� = 𝑘𝑑⃗⃗ ⃗⃗⃗ − 𝑘𝑖⃗⃗⃗⃗  (2.6) 

As shown in Figure 2.3, the scattering vector’s components 𝑞𝑥⃗⃗⃗⃗⃗ and 𝑞𝑧⃗⃗⃗⃗⃗ are often used as 

unit vectors of a reciprocal space system to illustrate the diffraction phenomena on 

monocrystals. In this system, we can represent the reciprocal lattice points, indexed by their 

Miller indices (ℎ, 𝑘, 𝑙). The diffraction angles, such as the Bragg angle 𝜃, can also be 

incorporated to this representation. 
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Figure 2.3 : Representation of the lattice points, diffraction vectors and 

diffraction angles in the reciprocal space. 

In Figure 2.3, 𝑘𝑖⃗⃗⃗⃗  and 𝑘𝑑⃗⃗ ⃗⃗⃗ are represented with a length 1/𝜆. According to equation (2.5), 

when �⃗� links the reciprocal space origin to a point (ℎ, 𝑘, 𝑙) of the reciprocal lattice, its length is 

inverse to the interplanar distance 𝑑ℎ𝑘𝑙. Graphically, we easily find that this condition leads to 

�⃗� =
sin𝜃

𝜆
+
sin𝜃

𝜆
=

1

𝑑ℎ𝑘𝑙
, which corresponds to Bragg’s law (equation (2.2)).  Hence, the vectorial 

translation of Bragg’s law, called the Laue condition, is defined for any (ℎ𝑘𝑙) reflection by: 

 �⃗� = ℎℎ𝑘𝑙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ (2.7) 

Thus, on every point of the reciprocal lattice of a perfect monocrystal is located a 

diffraction spot, associated to the reflection of the corresponding (ℎ𝑘𝑙) plane (except for 

forbidden (ℎ, 𝑘, 𝑙) reflections, as detailed in the following section 2.1.3c)). For an imperfect 

crystal, the diffraction spot may slightly move away from the reciprocal lattice point, as the real 

interplanar distances differ from their ideal values. 

 

c) Diffracted intensity 

 

When the angles between the X-ray source, the sample and the detector are set according 

to the condition of Bragg/Laue, a diffracted signal is measured. A crucial parameter of this 

measurement is the diffracted intensity, which can vary by several orders of magnitude and 

imposes very long measurements when it is low. We shall describe this diffracted intensity 

using the simple model of the kinematical theory. This model assumes that an X-ray wave 

hitting a crystal only undergoes a single scattering and potentially some absorption. 

We should remember that the diffracted wave originates from a scattering of the incident 

beam by electron clouds around each atom of the irradiated material. The diffracted amplitude 

can be expressed as the sum of the contributions of each of these atoms to the scattering. The 

𝒒𝒛 (𝒏𝒎
−𝟏) 

 

𝒒𝒙 (𝒏𝒎
−𝟏) 

 

𝒌𝒊⃗⃗ ⃗⃗  𝒌𝒅⃗⃗ ⃗⃗ ⃗ 

�⃗⃗⃗� 
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contribution of an atom j is quantified by an atomic scattering factor 𝑓𝑗, which increases with 

the atomic number of the atom, as more electrons are involved in the Rayleigh scattering 

process. Furthermore, due to partial interferences between X-rays scattered by each electron 

of an atom, 𝑓𝑗 is lowered by the increase of the diffraction angle 𝜃 and the decrease of the 

wavelength.[68] 

Let’s consider a wave diffracted by a crystal.  

As stated earlier, we can write the amplitude 𝐴(�⃗�) scattered during the diffraction process 

at a point �⃗� of reciprocal space by the 𝐽 atoms forming the crystal: 

 

𝐴(�⃗�) = |∑𝑓𝑗(�⃗�)𝑒
𝑖2𝜋�⃗⃗�.𝑟𝑗⃗⃗⃗⃗

𝐽

𝑗

| (2.8) 

𝑟𝑗 is the vector connecting the atom 𝑗 to the origin of the lattice. 

It is useful to decompose the diffracting crystal into its elementary components, called unit 

cells. In a perfect crystal, all the unit cells are identical as each of them contains the same 

number and kind of atoms, whose positions with respect to the origin of the cell are described 

by a set of vectors 𝑟𝑛⃗⃗⃗⃗ . For a crystal of finite size containing 𝑀 cells, each of them containing 

𝑛 atoms, the equation (2.8) becomes: 

 
𝐴(�⃗�) = |∑𝑒𝑖2𝜋�⃗⃗�.𝑟𝑚⃗⃗ ⃗⃗ ⃗⃗

𝑀

𝑚

| |∑𝑓𝑛(�⃗�)𝑒
𝑖2𝜋�⃗⃗�.𝑟𝑛⃗⃗⃗⃗⃗

𝑁

𝑛

| =  |𝐿(�⃗⃗�)||𝐹(�⃗�)| (2.9) 

The vectors 𝑟𝑚⃗⃗⃗⃗⃗ give the positions of the origin of each unit cell with respect to the origin of 

the lattice. 

The term 𝐿(�⃗�) is the form factor. It reflects the increase in amplitude of the scattered 

wave with the amount of diffracting material. Alternatively, 𝐿(�⃗�) can be defined as the 

Fourier transform of the crystal shape function 𝑉(𝑟). 

 𝐿(�⃗�) = FT[ 𝑉(𝑟)] (2.10) 

The crystal shape function permits to transform the sum over lattice sites of unit cells 

(equation (2.9)) into an integral over the entire continuous space (equation (2.10)).[69] It is 

defined as: 

 𝑉(𝑟) = 𝑌∞(𝑟) 𝑠(𝑟) (2.11) 

The function 𝑠(𝑟) defines the boundaries of the crystal, as it is equal to unity within 

the crystal and to zero outside the crystal. The function 𝑌∞(𝑟) = ∑ 𝛿(𝑟 − 𝑟𝑚⃗⃗⃗⃗⃗)
∞
𝑚=−∞  

reproduces the periodic contribution to the scattered amplitude originating from each unit 

cell lattice site. 
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The second term 𝐹(�⃗�) of equation (2.9) is called the structure factor. It describes the wave 

diffracted by one unit cell, in terms of amplitude and phase. Its absolute value corresponds to 

the amplitude scattered by the unit cell. As shown in the equation (2.9), the structure factor is 

composed by the sum of the contributions to the diffracted wave of each atom of the unit cell. 

These contributions are expressed in the form of a series of complex numbers, which can add 

together or cancel one another. We can rewrite the structure factor, by developing the scalar 

product �⃗�. 𝑟𝑚⃗⃗⃗⃗⃗, to express it with the Miller indices (ℎ, 𝑘, 𝑙) of the considered reflection and the 

coordinates (𝑢𝑛, 𝑣𝑛, 𝑤𝑛) of each atom in the unit cell: 

 
𝐹(ℎ, 𝑘, 𝑙) =∑𝑓𝑛(ℎ, 𝑘, 𝑙)𝑒

𝑖2𝜋(ℎ𝑢𝑛+𝑘𝑣𝑛+𝑙𝑤𝑛)

𝑁

𝑛

 (2.12) 

For a GaN crystal with wurtzite structure (see section 1.1.1 a)), equation (2.12) becomes: 

 
𝐹𝐺𝑎𝑁(ℎ, 𝑘, 𝑙) = 𝑓𝐺𝑎(ℎ, 𝑘, 𝑙) (1 + 𝑒

𝑖2𝜋(
2ℎ
3
+
𝑘
3
+
𝑙
2
)
) + 𝑓𝑁(ℎ, 𝑘, 𝑙) (𝑒

𝑖2𝜋(
3𝑙
8
)
+ 𝑒𝑖2𝜋

(
2ℎ
3
+
𝑘
3
+
7𝑙
8
)
) (2.13) 

The reader is referred to the section 6.1.1 of the International tables of crystallography 

Volume C[70] for the calculation of  𝑓𝐺𝑎(ℎ, 𝑘, 𝑙) and 𝑓𝑁(ℎ, 𝑘, 𝑙). 

Like for a simple hexagonal closed-packed crystal, the structure factor of GaN is equal to 

zero when the Miller coefficients combination follows both the two rules below: 

• 𝑙 coefficient is odd 

• 2ℎ + 𝑘 = 3𝑛 , 𝑛 ∈ ℕ 

Hence, (ℎ, 𝑘, 𝑙) reflections following these two conditions show theoretically no intensity, 

preventing their use for XRD characterizations. 

Table 2.1 gives the different accessible reflections of a GaN crystal, for 2𝜃 angles up to 

138°. 
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Table 2.1 : Allowed XRD reflections for a GaN crystal. The interplanar distance  hkl , 

twice the Bragg angle 2θ and the inclination ψ of the diffracting planes with respect to the 

surface are given for each reflection, for a Cu Kα1 radiation of wavelength λ = 1.54059 Å. 

The wave summation described in the equations (2.8) and (2.9) happen in a crystal 

domain, whose dimensions ideally correspond to the whole size of the crystal, but can be 

reduced by lattice defects such as grain boundaries or heavy distortions. The width of a domain 

in the surface plane of the sample is called lateral X-ray correlation length and its height along 

the normal to the surface is called normal or vertical X-ray correlation length. Within such a 

domain, the wave amplitudes add together and the diffraction is described as coherent. 

However, if the correlation lengths are lower than the crystal dimensions, this one is divided 

in several diffraction domains. In this case, the sum of the signals coming from each domain is 

not anymore an addition of amplitudes but a sum of their intensities. 

For a crystal divided in D domains of coherent diffraction, each of them containing 𝑀𝑑 

atoms, the total diffracted intensity is expressed as a sum of the squared amplitudes scattered 

by each domain. With 𝐼0 being a reference intensity, we have: 

 

𝐼(�⃗�) = 𝐼0∑𝐴𝑑
2(�⃗�) 

𝐷

𝑑

= 𝐼0|𝐹(�⃗�)|
2∑|∑𝑒𝑖2𝜋�⃗⃗�.𝑟𝑚⃗⃗ ⃗⃗ ⃗⃗

𝑀𝑑

𝑚

|

2 
𝐷

𝑑

 

 

(2.14) 

 

 

Reflection 𝒅𝒉𝒌𝒍 (Å) 𝟐𝜽 (°) 𝝌 (°)  Reflection 𝒅𝒉𝒌𝒍 (Å) 𝟐𝜽 (°) 𝝌 (°) 

(100) 

(002) 

(101) 

(102) 

(110) 

(103) 

(200) 

(112) 

(201) 

(004) 

(202) 

(104) 

(203) 

2.762 

2.593 

2.438 

1.890 

1.595 

1.465 

1.381 

1.358 

1.334 

1.296 

1.219 

1.174 

1.079 
 

32.39 

34.57 

36.84 

48.10 

57.77 

63.43 

67.81 

69.10 

70.52 

72.91 

78.40 

82.05 

91.12 

90.00 

0.00 

61.96 

43.19 

90.00 

32.04 

90.00 

58.41 

75.09 

0.00 

61.96 

25.14 

51.38 

 (210) 

(211) 

(114) 

(105) 

(212) 

(204) 

(300) 

(213) 

(302) 

(006) 

(205) 

(106) 

1.044 

1.023 

1.006 

0.971 

0.968 

0.945 

0.921 

0.894 

0.868 

0.864 

0.829 

0.825 

95.11 

97.65 

99.95 

105.01 

105.40 

109.17 

113.59 

119.09 

125.22 

126.07 

136.52 

138.10 

90.00 

78.62 

39.11 

20.58 

68.07 

43.19 

90.00 

58.87 

70.45 

0.00 

36.91 

17.38 
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d) Case of a distorted crystal 

 

In the case of a distorted crystal, the positions 𝑟𝑚⃗⃗⃗⃗⃗ of unit cells are modified. By assuming 

that the structure factor remains constant within the crystal, Equation (2.9) becomes: 

 
𝐴(�⃗�) = |𝐹(�⃗�)| |∑𝑒𝑖2𝜋�⃗⃗�.(𝑟𝑚⃗⃗ ⃗⃗ ⃗⃗ +𝑢𝑚⃗⃗ ⃗⃗ ⃗⃗ ⃗)

𝑀

𝑚

| (2.15) 

𝑢𝑚⃗⃗ ⃗⃗ ⃗⃗  corresponds to the displacement field induced by the distortion on each unit cell of the 

crystal. 

When the scattering vector �⃗� slightly deviates from the closer reciprocal lattice vector ℎℎ𝑘𝑙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ 

by 𝑠 = �⃗� − ℎℎ𝑘𝑙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ and |𝑠| ≪ |ℎℎ𝑘𝑙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗|, the scalar product (𝑠. 𝑢𝑚⃗⃗ ⃗⃗ ⃗⃗ ) can be neglected to write equation 

(2.15) as: 

 
𝐴(�⃗�) = |𝐹(�⃗�)| |∑𝑒𝑖2𝜋�⃗⃗�.𝑟𝑚⃗⃗ ⃗⃗ ⃗⃗  𝑒𝑖2𝜋ℎℎ𝑘𝑙

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ .𝑢𝑚⃗⃗ ⃗⃗ ⃗⃗ ⃗

𝑀

𝑚

| (2.16) 

This approximation enables to write the scattered amplitude around a reflection (ℎ𝑘𝑙) in 

terms of a Fourier transform: 

 𝐴(�⃗�) = |𝐹(�⃗�)| | 𝐹𝑇[𝑉(𝑟)𝐺(𝑟)] | (2.17) 

 where 𝑉(𝑟) is the crystal shape function of equations (2.10) and (2.11) and 𝐺(𝑟) is the 

correlation function 𝐺(𝑟) =  xp (2𝜋ℎℎ𝑘𝑙⃗⃗⃗⃗⃗⃗⃗⃗ . 𝑢(�⃗�)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗) 

 

e) Dynamical XRD model 

 

The previous description of the intensity scattered by a diffracting crystal relies on the 

simplified model of the kinematical theory. While this theory gives in many cases a very good 

approximation of the real scattered intensity, some diffraction processes require a 

comprehensive model, called dynamical theory. 

Unlike the kinematical theory, the dynamical model takes into account different second 

order effects, such as the interaction between the incoming and diffracted waves, the multiple 

scattering of a wave, or its partial reflection on the material. This results in changes in the 

modeled intensity and width of the diffraction peaks. 

Among the main results of the dynamical theory, it is worth mentioning the prediction of 

an elementary width of the diffraction peaks. This broadening is usually called Darwin width, 

in reference to the pioneering works of this author.[71],[72] It corresponds to the breadth 

encountered for the peak of a perfect and infinite crystal, independently of the instrumental 
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resolution of the diffractometer. The Darwin width 𝛽0 directly depends on the nature of the 

crystal and on which planes are used for the diffraction:[73] 

 
𝛽0 = 𝑟𝑒  

𝜆|𝐹(ℎ, 𝑘, 𝑙)|(1 + |co 2𝜃|)

𝑉𝑐  𝜋  in 2𝜃
  (2.18) 

The constant 𝑟𝑒 is the classical electron radius, equal to 2.818 × 10−15 𝑚. 𝜃 and 𝐹(ℎ, 𝑘, 𝑙) 

are the Bragg angle and the structure factor corresponding to the considered (ℎ, 𝑘, 𝑙) reflection 

and 𝑉𝑐 is the volume of a unit cell. 

The use of the dynamical theory is required to describe diffraction processes on quasi-

perfect crystals, which means large crystals (micrometric dimensions) with very few defects. 

This quasi-perfection condition does not appear to be met in the rather highly defective III-N 

crystals studied in this work, especially regarding their density of threading dislocations.[4] The 

kinematical theory is therefore used in the studies of a wide variety of III-N layers, like GaN 

layers grown on sapphire substrates by MOVPE[74] or HVPE,[75]  laterally overgrown (ELO) GaN 

structures[76] or  InGaN/GaN quantum wells.[77] Similarly, this model will be assumed to be 

sufficient to describe most of the diffraction results presented in this thesis. 

 

2.2. HRXRD measurements 

2.2.1. Diffraction in the real space 

 

X-ray diffraction is a widely used characterization method, which is divided in a large 

range of sub-techniques, using their own measurement geometries. For simple reviews of these 

techniques, the reader is referred to the following references[78],[79]. In this work, we will focus 

on a rotational measurement method, using a measurement geometry usually designated as 

Bragg-Brentano geometry. 

The Bragg-Brentano geometry is shown in Figure 2.4. The diffracting crystal is placed on 

a sample-holder, in the center of a goniometer circle containing the X-ray source and the X-

ray detector. Hence, both the source and the detector are placed at the same fixed distance 

from the sample. This set-up allows the measurement of diffracted beams with high resolution 

and intensity, despite the substantial divergence of the beams produced by the X-ray tubes. 

Once produced by the source, the incident beam irradiates the top-surface of the sample, 

undergoes the diffraction process and emerges from the same top-surface before being 

measured by the detector. Due to the path followed by the beam, the technique is described as 

using a reflection geometry, by contrast with the transmission geometry, for which the beam 

goes through the sample. On thick samples, the reflection geometry allows the use of less 

brilliant beams than the ones required for diffraction in-transmission. This enables once again 

the use of X-ray tubes as sources for the beam, which are compatible with a laboratory 

diffractometer. 
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Figure 2.4 : Sketch depicting the main components of a diffractometer in Bragg-

Brentano geometry. The angles associated to the four rotations of the diffractometer and 

the three movement axes of the sample holder are shown. The plane containing the goniometer 

circle and the X-ray beam is highlighted in red. 

For HRXRD measurements on large crystals, diffractometers typically adopt a four-circle 

configuration, as it uses four different rotations to set the sample in diffracting conditions: 

• The rotation associated to the 𝜔 angle between the surface of the sample and the incident 

beam. Either the X-ray source or the sample can be rotated to set this angle, depending on 

the model of the diffractometer. 

 

• The detector rotation. In a Bragg-Brentano geometry, the detector is placed at the same 

distance from the sample than the source. Instead of the angle between the surface of the 

sample and the emergent beam (i.e. the angular position of the detector), the 

diffractometer user typically monitors the angle 2𝜃 between the virtually transmitted 

beam and the emergent beam. For a given value of ω, this 2𝜃 angle is directly determined 

by the angular position of the detector. However, it is simpler to set the sample in 

diffraction conditions by using 2𝜃 angles, which correspond to twice the Bragg angle of 

equation (2.2), than by using the position of the detector. 

 

• The sample rotation about the axis normal to the surface plane of the sample. The 

associated angle is designated as 𝜙 angle. 

 

• The sample rotation about the projection of the incident and emergent beams on the 

sample surface. The corresponding angle is usually called 𝜒 angle. 

 

Additionally, the sample holder can be moved in space along three axes (𝑥, 𝑦, 𝑧), enabling 

the alignment of the sample height with the beam, as well as the selection of the zone of the 

surface plane (𝑥, 𝑦) to be analyzed. 

 

 

   



 

x
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2.2.2. Measurement scans and reciprocal space mappings 

 

To characterize a monocrystal with diffraction, HRXRD measurements on a four circles 

diffractometer are used. In the reciprocal space representation, the endpoint of the scattering 

vector �⃗� can be seen as a probe of the diffracted intensity, which is moved across the reciprocal 

space by modifying the diffraction angles. A rotation of the crystal (i.e. a modification of 𝜔) 

leads to a rotation of the scattering vector �⃗�, while a modification of 2𝜃 changes the length of 

�⃗�. By acquiring the diffracted intensity at different angular positions, we thus obtain a scan of 

the reciprocal space, with a direction depending on the diffraction angles used. The three most 

common scan types, represented in Figure 2.5, are: 

• 𝜔 scans (also called rocking curves). This scan consists in a variation of the incident beam 

angle 𝜔 while keeping 2𝜃 constant. The path of the scan in the reciprocal space is a circular 

arc centered on the space origin. 

 

• 2𝜃 scans. The 𝜔 angle is kept constant while 2𝜃 varies. The scan follows a circular arc of 

radius 1/𝜆 centered on the endpoint of 𝑘𝑑 
⃗⃗⃗⃗⃗⃗ . 

 

• 2𝜃 − 𝜔 scans. Both the angular positions of the source and the detector with respect to the 

sample vary, so 2𝜃 changes twice as fast as 𝜔. We obtain a linear scan along �⃗�. These 

measurements are also referred to as radial scans.  

Although they are less usual, other scan types like 𝜙 scans or scans along 𝑞𝑧⃗⃗⃗⃗⃗ at a non-zero 

||𝑞𝑥⃗⃗⃗⃗⃗|| value can be used. 

When the path of the scan (i.e. the endpoint of the probe �⃗�) crosses a diffraction spot, a 

peak of diffracted intensity is measured and associated to a position in the reciprocal space 

through the values of the diffraction angles. 
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Figure 2.5: Representation in the reciprocal scape of the path of different HRXRD 

scans. 

By carrying out several scans, we can obtain a two-dimensional mapping of a portion of 

the reciprocal space, around a given reflection. This process is illustrated in Figure 2.6 for a 

series of 𝜔 scans measured at different 2𝜃 − 𝜔 values. Alternatively, series of 2𝜃 or 2𝜃 − 𝜔  

scans can be used to acquire these reciprocal space maps (RSM). This type of measurement 

enables much more comprehensive analyses of the diffraction spots than a simple scan. 

However, RSM can be really long to carry out, due to the multiple scans to measure. 

Nevertheless, the measurement time can be dramatically decreased by using 1D or 2D 

detector, capable of measuring multiple 2𝜃 positions simultaneously (see section 2.3.1). 

 

Figure 2.6 : Representation in the reciprocal space of an RSM measurement. 

Like for simple scans, the data obtained when measuring an RSM are diffracted intensities 

at different angular positions. To obtain an image of the (𝑞𝑥, 𝑞𝑧) reciprocal space system, this 

data needs to be transposed using the following expressions: 

𝒒𝒛 (𝒏𝒎
−𝟏) 

 
𝜽𝟏 

𝜽𝒏 

𝒒𝒙 (𝒏𝒎
−𝟏) 
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{
𝑞𝑥 =

2

𝜆
 in(𝜃)  in (𝜃 − 𝜔)

𝑞𝑧 =
2

𝜆
 in(𝜃) co  (𝜃 − 𝜔)

 

 

(2.19) 

The measurement of the XRD scans can be carried out either in absolute or in relative 

mode. In the absolute mode, the “true” calibrated values of 𝜃 and 𝜔 are used. The calibration 

of 𝜃 is made by matching its zero value with the peak of intensity of the direct beam (i.e. the 

beam directly arriving from the source without interacting with the sample). 𝜔 calibration 

consists of an alignment of the sample with this direct beam. First, the specimen’s height is set 

by aligning its surface with the middle of the beam’s height, resulting in a loss of half the 

intensity of the direct beam. The beam intensity is then recorded while rocking the sample 

about the 𝜔 axis. The measured peak of intensity corresponds to the 𝜔 position for which the 

sample surface is aligned with the incoming beam. This angle is chosen as the zero value of 𝜔. 

This 𝜔 calibration is not rigorous as the inclination of the sample with the incident beam can 

vary with 𝜙. Furthermore, the specimen may not be flat, especially when considering hetero-

epitaxial III-N layers, due to the wafer curvature. In this case, the real value of 𝜔 varies with 

the chosen surface area of the specimen. 

In order to avoid the limitations of angle calibrations, one can carry out XRD 

measurements in relative mode. In this case, the zero-values of 𝜃 and 𝜔 correspond to the 

angular positions measured on a reference diffraction peak. This reference peak needs to come 

from the substrate or any layer for which the lattice parameters are accurately known, so the 

relative measurement can be correctly repositioned in the reciprocal space. This kind of 

measurement is uncommon when characterizing III-N hetero-epitaxial layers, due to the lack 

of reliable reference peak. Indeed, the diffraction peaks of the substrates are widely separated 

from the III-N peaks. Additionally, these substrates and all the layers are strained, as shown 

by the curvature of the wafers, and their lattice parameters are therefore not known. 

 

2.2.3.  Measurement geometries 

  

The HRXRD scans are normally limited to the reciprocal space area surrounding the 

diffraction spot of a given reflection (ℎ, 𝑘, 𝑙). This is due to the wide angular separation between 

the different reflections and to the need of scans with high resolution and therefore low angular 

steps. Hence, before carrying out an HRXRD scan, one needs to access the reciprocal space 

area corresponding to the desired reflection by applying an appropriate rotation of the 

diffraction angles. 

As shown in Figure 2.7, we distinguish different measurement geometries depending on 

which reflections are measured and how the diffraction angles are set to access it: 

• The symmetric geometry concerns the measurements of the planes parallel to the surface 

of the sample. In this case, the angles 𝜔 and 𝜃 are equal. 
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• The asymmetric measurements are made on crystal planes tilted with respect to the 

surface of the sample. Compared to the symmetric case, an additional rotation 𝜔0 is 

applied on the crystal, so 𝜔 = 𝜃 + 𝜔0. The 𝜔0 offset can either be chosen to be positive or 

negative. In the first case, the incidence angle of the beam is higher than its exit angle, and 

the geometry is described as having a grazing incidence. Otherwise, we say that the beam 

has a grazing exit. Measurements with both geometries are equivalent although grazing 

incidence is better suited to increase the measurement intensity, as the beam footprint is 

bigger and thus more material diffracts. Conversely, grazing exit geometry may improve 

the measurement resolution, due to a contraction the diffracted beam width. 

 

• The skew symmetric geometry is an alternative to the asymmetric geometry to access the 

reflections of the planes non-parallel to the surface. The crystal is rotated 90° about the 𝜙 

axis and tilted about the 𝜒 axis with an angle equal to the inclination of the diffracting 

planes with respect to the surface. 

 

Figure 2.7 : The HRXRD measurement geometries. a) Symmetric geometry. b) 

Asymmetric geometry (grazing exit). c) Skew symmetric geometry. For each geometry are 

shown the rotation of the scattering vector q⃗⃗ in the reciprocal lattice and the rotations of a unit 

cell of the crystal in the real space. For the skew symmetric geometry, the angles ω and 2θ are 

depicted with a red circle as their axis of rotation coincides with the qx⃗⃗⃗⃗⃗ axis and they are out of 

the plane of the sheet. 

The terms employed for the measurement geometries are often extended to the (ℎ, 𝑘, 𝑙) 

reflections used for diffraction. Hence, we designate as symmetric the reflections of the planes 

parallel to the surface, while the ones tilted with respect to the surface are referred to as 

asymmetrical reflections. 

We have seen in the section 2.1.3.c) that some (ℎ, 𝑘, 𝑙) reflections cannot be used in 

diffraction measurements as their structure factor is equal to zero and they have no intensity. 
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Besides this forbidden reflection rule, the geometry of measurement induces further 

limitations on which (𝑘, 𝑘, 𝑙) planes can be measured. Due to the reflection geometry used, no 

signal is detected when the path of the X-ray goes through the sample depth. This can happen 

either when the incident beam hits the back surface of the sample (𝜔 < 0) or if the direction of 

the diffracted beam points below the surface of the sample (2𝜃 < 𝜔). 

Further constrains are brought by the angular limitations of the diffractometer, like the 

angular ranges of the source (𝜔 angle), the detector (2𝜃 − 𝜔 angle) and the 𝜒 rotation, or the 

minimum distance between the source and the detector (𝜋 − 2𝜃 condition). 

 

2.3. Experimental setup 

2.3.1. Detectors 

 

Since the first developments of XRD techniques to analyze the matter structure, in the 

early 20th century, diffractometers have gradually evolved to rather complex machines, such as 

the four-circles diffractometers used for this thesis. The success of XRD techniques have led to 

the apparition of numerous variants of each of the diffractometer components, from source to 

detector. 

X-ray detection systems are a good example of these evolutions, from the photographic 

films which used to be employed to modern detectors. Nowadays, three different technologies 

of X-ray detectors are usually used on laboratory diffractometers: the scintillation counters, 

the solid-state detectors and the gas-filled proportional counters. The scintillation counters 

contain a fluorescent crystal, usually made of NaI activated with 1% of Tl.[80] When the 

diffracted beam passes through the aperture of the detector, an amount of X photons 

proportional to the intensity of the incoming beam is generated by fluorescence. This 

fluorescence signal is eventually detected by a photomultiplier tube. The detected diffracted 

intensity is thus expressed as a quantity of counted photons. The scintillation counters have a 

high efficiency, which means a high ratio of detected photons to entering photons. 

Unlike scintillation counters, the solid-state detectors carry out a direct measurement of 

the diffracted beam intensity. Their sensitive material is made of a semi-conductor, usually of 

Si or Ge. When the diffracted beam hits this crystal, the photoelectric effect induces the 

excitation of electrons from the valence band to the conduction band. The created electron-

hole pairs are then collected and taken as a measurement of the beam intensity. These solid-

state detectors are sometimes coupled with a scintillator and use the fluorescence signal to 

make an indirect measurement of the diffracted intensity, as described earlier. The efficiency 

of these detectors is also high, although they may saturate earlier than scintillation counters 

when measuring highly intense beams. 

The proportional counters are made of a cathode chamber filled with an inert gas and 

containing a wire anode in its center. The chamber has a cylindrical shape with an X-ray 

transparent window on one side. When the X-ray beam passes through this window, it ionizes 

the detector’s gas, generating electrical charges which are accelerated toward the anode, for 
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the electrons, and the cathode, for the positive charges, by applying a 600 to 900 volts 

potential.[81] While moving toward the anode, the electrons strike the non-ionized atoms of the 

gas, causing additional ionization and therefore an amplification of the signal measured by the 

wire anode. The efficiency of proportional counters is lower than the one of scintillation and 

solid-state devices. Nevertheless, they are highly linear. This means that from low to high 

intensity beams, they are able to keep a constant proportion between the number of incoming 

and measured photons. 

Independently of the technology of fabrication, the X-ray detectors are classified in three 

categories, depending on their dimensions of observation. The punctual detector, or zero-

dimension (0D) detector, allows an intensity measurement at a given angular position. The 

one-dimension (1D) and two-dimensions (2D) detectors carry out simultaneous 

measurements at multiple points in space, respectively along one and two space directions. 

This enable faster scan measurements, which is especially useful to achieve a reciprocal space 

mapping, as presented in the section 2.2.2. 

 

2.3.2. Optics and beam properties 

 

The beams produced by X-ray tubes are far from being perfect. When leaving the source, 

the beam is non monochromatic, due to the emission of several characteristic lines and the 

continuous Bremsstrahlung signal (see Figure 2.1). Even when focusing on the K line, the 

emission is divided in a doublet K and K , only separated by in the wavelength spectrum by 

0.0038 Å (i.e. a relative separation 𝛿𝜆/𝜆 of 0.25%).[82] The two contributions of the doublet are 

therefore found on the diffracted pattern, which can lead to imprecisions in the measurement 

of diffraction peak positions and widths. The X-ray beams also have a significant divergence, 

which means that the rays composing the beam are slightly non-parallel, as shown in Figure 

2.8. This effect can induce a loss of resolution in the diffraction measurements. One last 

property of the beam that needs to be considered is the dimension of its footprint on the 

sample. Its size depends on the angle of incidence 𝜔 of the X-rays, on the dimensions of the 

beam (width and height) and on the corresponding beam divergences. The dimensions of a 

typical X-ray beam of a laboratory diffractometer is a rectangle of 10 mm × 1.5 mm. Several 

issues can arise from an excessively large dimension of the beam footprint, such as the 

measurement of unwanted areas of the sample or a substantial alteration of the diffracted 

signal due to the sample curvature (see section 2.4.2). Conversely, an undersized beam 

footprint means less diffracting material and thus a deterioration of the measured signal. 
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Figure 2.8: Modifications of the incident beam by a set of HRXRD optics. 

In order to improve the quality of the beam, several X-rays optics can be added in the beam 

path. Their use is essential to allow a high-resolution X-ray diffraction (HRXRD), which is 

required for the study of monocrystals, such as the III-N layers studied in this thesis. The most 

important optics for HRXRD applications are described below: 

• The attenuators and filters. The X-ray beam can sometimes be so intense that it saturates 

the detector. This is especially true for the intense reflections of quasi-perfect 

monocrystals, like Si. It may also happen during the alignment of the goniometer, when 

measuring the direct beam, which means a beam that has not undergone any interaction 

with the crystal. To solve this issue, an X-ray attenuator can be added in the X-ray path, 

usually between the source and the sample. It consists of a thin metallic foil which absorbs 

a portion of the beam intensity. Some attenuators can also be used as selective filters to 

absorb a part of the X-ray spectrum, like the 𝐾𝛽 line of copper which is absorbed by 

titanium foils. 

 

• The mirrors. For X-radiations, the total reflection of the beam with conventional mirrors 

can only be obtained at very low incidences. The X-ray mirrors use instead the diffraction 

phenomenon to “reflect” the beam. They are made of multilayered materials, with 

controlled interlayer distances, having an elliptical or a parabolic shape. The most 

common of these optics for HRXRD applications is the Göbel mirror. It is placed after the 

X-ray source, which is located at the focus of its parabolic shape. This enables a large 

collection of the highly divergent beam coming from the source and its transformation in 

a much more parallel reflected beam, with less than 0,1° of equatorial divergence. Due to 

the high amount of X-rays turned parallel, the mirror permits the obtention of a much 

more intense incident beam than by collimating it to reduce the divergence. Furthermore, 

the wavelength of the beam is monochromatized around the 𝐾𝛼 line during the process. 

 

• The monochromators. These optics are made of perfect crystals which diffract the incident 

beam with a reflection geometry. Hence, only the rays with an angular direction following 
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the Bragg’s law of the monochromator’s crystals are guided toward the sample. This results 

in a highly monochromatic beam, as these devices are able to separate the 𝐾𝛼1 and 𝐾𝛼2 

lines of copper. Furthermore, the beam divergence is also reduced. The use of this optic is 

therefore mandatory for an HRXRD measurement, even though it substantially reduces 

the intensity of the incident beam. There are a wide variety of monochromators, 

differentiated by the number of diffracting crystals they contain, the nature of these 

crystals, their orientation and the (ℎ, 𝑘, 𝑙) diffracting planes that are used. A four-bounce 

monochromator (also called Bartels monochromator), containing four diffracting crystals, 

will generate a beam with a lower divergence than a two-bounce monochromator, at the 

cost of a higher loss of intensity (see Figure 2.9 a)). Furthermore, the instrumental 

resolution of 𝜔 scans measured with monochromators varies with the Bragg angle[83] 

(Figure 2.9 b)) . Two-bounce monochromators have an optimal 𝜃 value, for which their 

resolution is minimal. Conversely, four-bounces models keep a rather constant resolution 

below a high 𝜃 threshold. 

 

Figure 2.9 : Characteristics of a set of monochromators. a) Table of the beam 

divergence and beam relative intensities. b) Evolution of the resolution of 𝜔 scans with the 

Bragg angle. The figure is reproduced from reference.[83] 

• The analyzer crystal. This device is similar to a monochromator although it is placed in the 

diffracted beam path, just before the detector. Its purpose is to only select the diffracted 

rays which arrive toward the detector with a quasi-exact 2𝜃 angle. This eliminates the 

divergent rays of the beam, thus improving the measurement resolution and precision of 

the scan in the reciprocal space. When the analyzer crystal is used, the diffractometer is 

described as set in triple axis mode. When the analyzer crystal is removed, the 

measurements have a higher intensity. In this case, we say that the diffractometer is set in 

double axis mode. 

 

• The slits. The purpose of these optics is to cut a portion of the X-ray beam. They are either 

made of two metallic absorbing foils, separated from each other by a gap, or of a single 

metallic piece in which an aperture has been made. Either way, the aperture/separation 
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has a large height and a small and precisely controlled width. We distinguish several types 

of slits. The divergence slits are usually placed right after the source and reduce the 

equatorial divergence of the beam (see Figure 2.8). Conversely, the receiving slits are 

located right before the detector, in double axis mode, to increase the resolution of the 

measurement. Finally, variable crossed slits can be added to the incident beam path. This 

pair of adjustable slits allows a precise control of the two dimensions of the beam footprint 

on the sample. 

 

2.3.3. Diffractometers used during the PhD 

 

In order to develop characterizations methods compatible with a metrological framework, 

three laboratory diffractometers were used for this thesis. All of them use the general structure 

and measurement geometry presented in the section 2.2.1. Their sources are X-ray tubes 

producing a Cu 𝐾𝛼1 radiation from a copper anode.  

The first diffractometer is a Bruker JV-DX, designed for the characterization of wafers of 

200 mm and 300 mm diameter in a cleanroom facility. This tool is fully automated (samples 

handling, alignments and recipe-based measurements) and therefore ideal for metrological 

measurements on a batch of up to 25 wafers. It has two copper anode X-ray sources, a classical 

one producing a beam with millimetric dimensions and a second one generating a micro-beam 

for the study of patterned samples. Its automated package of optics includes a set of slits, a 

mirror, two interchangeable monochromators 2-bounce Ge(220) and 2-bounce Ge(004) and 

an analyzer crystal. As shown in the Figure 2.9 b), the Ge(220) monochromator is relevant 

for measurements at low Bragg angle (𝜃<30°), like for the (002), (101) or (102) reflections of 

GaN. Beyond this limit, the Ge(004) monochromator should be used to maximize the 

measurement resolution, at the cost of a slight reduction of the beam intensity. Due to the 

space occupied by the two sources, the angular ranges of this diffractometer are limited (-

5°<𝜔<95° and -5°<𝜒<45°). This blocks the measurement of some reflections on GaN samples 

like the symmetric (006), the asymmetric (213) and (205) or, in skew symmetric geometry, all 

the diffracting planes tilted with respect to the surface by an angle higher than 45°.  

To overcome these limitations, we used a second cleanroom diffractometer, a Panalytical 

X’Pert Pro. This tool is also adapted to the measurement of 200 mm and 300 mm wafers, 

although the sample and components handling is manual, and the alignment procedures are 

not automated. The incident beam optics used for the measurements include a divergence slit 

and a hybrid mirror/4-bounce monochromator. On the diffracted beam side, two optical paths 

are mounted simultaneously to switch between double and triple axis modes. The double axis 

path has a 1mm wide receiving slit while the triple axis is equipped with a 3-bounce Ge(220) 

analyzer crystal. Two similar 0D scintillation detectors are mounted on both paths.  

Finally, we used a third diffractometer located outside of the cleanroom facility. This 

diffractometer is also a Panalytical X’Pert Pro, but adapted to a wide range of sample sizes, 

from a 200 mm wafer to a millimetric sample. This tool is not suited for a cleanroom metrology 

framework but enables to work on small samples and to carry out more diverse measurements, 
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as its configuration can be adapted as desired. In its usual configuration, the components of 

this diffractometer are the same than for the first X’Pert Pro, except for the hybrid 

monochromator which is replaced by a mirror and an asymmetrical 4-bounce Ge(220) 

monochromator with higher resolution and lower intensity, the addition of cross slits and the 

double axis 0D scintillation counter replaced by a 2D solid state detector, allowing for easier 

RSM measurements. 

 

2.4.  Characteristics of diffraction peaks and HRXRD analyses 

2.4.1. Peak position analyses 

 

HRXRD techniques focus on the measurement of the diffraction spots of a set of chosen 

(ℎ, 𝑘, 𝑙) reflections. The obtained data is often analyzed along a line of the reciprocal space, 

either corresponding to a 1D scan, or to a cut in a 2D RSM. The resulting 1D diffraction peak 

is characterized both by its position and its shape. 

The position of a diffraction peak is directly linked to the mean distance between the 

crystal planes by Bragg’s law (equation (2.2)). This peak position is widely analyzed, as it 

permits to obtain the main information on the crystal structure. For III-N materials, the 

position of diffraction peaks is usually used to evaluate the lattice parameters, the composition 

of an alloy or the mean strain in the layers. These characterizations, which are already well 

known and widely used, are not further developed in this thesis. Nevertheless, due to their 

importance, a brief summary of the main measurement methods is given in the following. For 

a fully comprehensive description, the reader is referred to the third chapter of the review of 

Moram et Vickers on XRD measurements on III-N crystals.[4] 

The lattice parameters 𝑎0 and 𝑐0 of a hexagonal III-N crystal are linked to the interplanar 

distance 𝑑ℎ𝑘𝑙 by the expression:[84] 

 1

𝑑ℎ𝑘𝑙
2 =

4

3

ℎ2 + ℎ𝑘 + 𝑘2

𝑎0
2 +

𝑙2

𝑐0
2 (2.20) 

𝑐0 is obtained from one or several measurements of interplanar distances 𝑑00𝑙 on 

symmetric XRD reflections, using equations (2.2) and (2.20). High 2𝜃 reflections, like (004) 

and (006) should be used to reduce the measurement errors.[4] The parameter 𝑎0 is then 

deduced from the value of 𝑐0 and one or several interplanar distances measured on 

asymmetrical reflections. The diffracting planes should ideally be chosen highly tilted with 

respect to the surface, so 𝑑ℎ𝑘𝑙 is highly impacted by 𝑎0. 

Any addition of tensile or compressive strain to a relaxed crystal leads to a modification of 

the interplanar distances in the strained direction, and therefore to a shift of XRD peaks along 

the same direction in the reciprocal space. This is readily understandable by assuming that a 

constant strain 휀ℎ𝑘𝑙 is applied to the crystal in the direction normal to a set of (ℎ, 𝑘, 𝑙) planes. 

By definition: 
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휀ℎ𝑘𝑙 =

𝑑ℎ𝑘𝑙
 − 𝑑ℎ𝑘𝑙

0

𝑑ℎ𝑘𝑙
0  (2.21) 

where 𝑑ℎ𝑘𝑙
  is the interplanar distance in the strained crystal and 𝑑ℎ𝑘𝑙

0  the interplanar distance 

in of a relaxed crystal. If the lattice parameters 𝑎0 and 𝑐0 of the relaxed crystal are known, one 

can calculate 𝑑ℎ𝑘𝑙
0  using equation (2.20). By measuring the 𝜃 position of the peak and using 

Bragg’s law (equation (2.2)), 𝑑ℎ𝑘𝑙
  and thus 휀ℎ𝑘𝑙 can be determined. 

In hetero-epitaxial III-N layers, this analysis can be used to determinate the tensile or 

compressive strain arising from the differences in thermal expansion coefficients between the 

substrate and the film (see section 1.2.2), or to measure the relaxation state of a film in a stack 

of mismatched III-N layers.[4] 

Variations in III-N alloys composition induce a global expansion or contraction of the 

crystal lattice. The lattice parameters of the alloy can be estimated using the mole fractions and 

lattice parameters of its binary III-N compounds. For a ternary 𝐴𝑥𝐵1−𝑥𝑁 compound, the 

following Vegard’s law is commonly used on 𝑐0 lattice parameters:[85] 

 𝑐0
𝐴𝑥𝐵1−𝑥𝑁 = 𝑥 𝑐0

𝐴𝑁 + (1 − 𝑥) 𝑐0
𝐵𝑁  (2.22) 

The mole fraction 𝑥 of the 𝐴𝑁 elementary compound is easily determined from this 

relationship and a measurement of 𝑐0
𝐴𝑥𝐵1−𝑥𝑁 on a symmetric reflection. 

 

2.4.2. Peak width analyses 

a) Sources of peak broadening 

 

The shape of the diffraction peaks contains a lot of supplementary information to the one 

apported by the peak position. We can divide the diffraction peak in two zones: its central part 

and the tails. 

The intensity of the tail zone is scattered by parts of the matter where the structure varies 

widely from the rest of the crystal structure, like in highly strained zones immediately 

surrounding a lattice defect. In the tails, the intensity does not follow the same trends than in 

the central part. This peculiar signal is called diffuse scattering. 

However, XRD analyses usually focus on the central signal of the peak, which contains 

most of the diffracted intensity. It is useful to characterize this peak by its width, which 

indicates whether the diffraction is ideal or imperfect. Indeed, an infinite perfect crystal has, 

in every area, constant interplanar distances, associated to constant 𝜃 angles. Hence, the 

diffraction peaks of such a crystal are extremely narrow. Conversely, broad diffraction peaks 

are found when measuring small or highly defective crystals. 

The width of XRD peaks can be quantified by its integral breadth, which is equal to the 

peak area divided by the intensity maximum. This corresponds to the width of a rectangle of 
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same height than the peak. A simpler and more common approach consists in measuring the 

width of the peak at half of the maximum intensity. This width is called FWHM, which means 

full width at half maximum. The two breadth values are close in the case of a diffraction peak 

with gaussian shape, as the ratio FWHM on integral breadth is 0.94, while it is equal to 0.64 in 

the case of a peak with a Lorentzian shape.[86] 

The breadth of a diffraction peak is impacted by numerous factors. The measured width 

𝛽𝑚 of a peak is usually described as a quadratic sum of all these broadening 

components:[87],[88],[4] 

 𝛽𝑚
2 = 𝛽0

2 + 𝛽𝑑
2 + 𝛽𝛼

2 + 𝛽𝜀
2 + 𝛽𝐿

2 + 𝛽𝑟
2  (2.23) 

where 𝛽0 is the Darwin intrinsic peak width associated to the measured crystal and 𝛽𝑑 the 

instrumental resolution of the diffractometer. 𝛽𝛼, 𝛽𝜀, 𝛽𝐿 and 𝛽𝑟 are the respective broadenings 

due to misorientations of the lattice, to the local strain, to the limited correlation lengths (also 

called size effect) and to the curvature of the sample. 

All these sources of broadening are found in III-N layers diffraction. While 𝛽0 and 𝛽𝑑 are 

often considered as negligible, 𝛽𝐿 and 𝛽𝑟 can substantially impact the measured breadth, which 

is usually driven by 𝛽𝛼  and 𝛽𝜀. 

While a global strain, which remains constant in the whole crystal, results in a shift of the 

diffraction peaks, the broadening 𝛽𝜀 comes from variations of the strain throughout the lattice, 

owing to the presence of stress gradients or lattice defects like dislocations. 

The broadening 𝛽𝛼 is the consequence of a rotational disorder within the crystal lattice. 

This can be understood by means of the mosaic block model. The crystal is considered as being 

composed by a set of subdomains, misoriented with respect to one another because of lattice 

rotations. In the case of a monocrystalline layer, we distinguish two kinds of lattice rotations. 

As represented in Figure 2.10, the misorientation caused by rotations of subdomains about 

the normal of the surface plane is called twist, while the rotations about the axes lying in the 

surface plane induce a tilt of the lattice. 

 

Figure 2.10 : Mosaic tilt and twist. The rotated domains are represented for a [0001]-

oriented III-N layer. 

The spread of XRD spots in the reciprocal space is oriented along one or several directions, 

which depend on the nature of the broadening effect (see Figure 2.11). Lattice rotations 

broaden the diffraction spots along an arc-shaped direction. The broadening orientations 
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corresponding to tilt and twist are easily understandable, as they correspond to the real-space 

rotations of the domains in the mosaic blocks representation. Hence, lattice tilt induces a 

broadening oriented about the lines of the (𝑞𝑥 , 𝑞𝑦) plane passing through the reciprocal space 

origin, while the twist broadening spreads about the 𝑞𝑧 axis. Conversely, strain variations along 

a lattice direction generate a distribution of interplanar distances. The resulting broadening 

happens along a straight line passing through the XRD spots and oriented in the strained 

direction. The same happens for the size effect, which causes a straight broadening in the 

direction of limited correlation length. 

 

Figure 2.11 : Directions of broadening of diffraction spots in the reciprocal space. 

 

b) Estimating the impact of the broadening effects 

 

Although the broadening effects spread the diffraction spots in a variety of directions, their 

contributions may add together, as expressed in the equation (2.23). For example, an 𝜔 scan 

on a symmetric reflection can undergo a simultaneous broadening from the lattice tilt, the 

wafer curvature and a limited lateral correlation length. In order to decorrelate these 

contributions, it is useful to evaluate the impact of each broadening effect. 

In HRXRD, the instrumental resolution  d is highly reduced by using monochromators 

and analyzer crystals. Its value, which depends on the chosen optics, the direction in the 

reciprocal space and the 2𝜃 angle, is normally of the order of a few tenths of arcsec. 

The Darwin width 𝛽0 is usually considered to be negligible in III-N materials, as it is equal 

to a few arcsec. Its FWHM value can nevertheless be calculated using the equation (2.18). For 

GaN, it is equal to 8.5 arcsec for the (002) reflection, 2.3 arcsec for the (004) and 2.7 arcsec for 

the (006). 



52 
 

An estimated value of 𝛽𝑟 can be calculated in the case of a uniform spherical bending of 

the measured wafer:[87],[88],[89] 

 𝛽𝑟 =
𝑤

R2  in2 𝜃
  (2.24) 

R is the radius of curvature of the sample and 𝑤 the dimension of the beam footprint on 

the diffracting plane, in the direction parallel to the χ axis. 𝑤 can be lowered by limiting the 

size of the X-ray beam with cross-slits, or by reducing the surface of the specimen by using a 

mask or cutting the sample. 

The broadening 𝛽𝐿 arises from the presence of diffraction domains of limited size (see 

section 2.1.3.c), with dimensions of a few micrometers or less. Historically, this broadening 

has been studied for the analysis of polycrystalline materials, where the diffraction domains 

are associated to the crystallites forming the samples. In 1918, Scherrer was the first to publish 

an eponym relationship between 𝛽𝐿 (given in units of 2𝜃) and the domain size 𝐿:[90] 

 
𝛽𝐿 =

𝐾𝜆

𝐿 co 𝜃
 (2.25) 

In this equation, 𝐾 is the Scherrer constant. Scherrer derived its value using the FWHM 

as a breadth measurement of a diffraction peak with gaussian profile. Assuming a diffracting 

domain with spherical shape, he found 𝐾 = 0.94. The actual value of the Scherrer constant 

depends on the definition adopted or the breadth 𝛽𝐿 (FWHM or integral breadth), on the 

average shape of the diffracting domains and on the reflection (ℎ, 𝑘, 𝑙) considered when the 

domains are non-spherical.[86] Nevertheless, 𝐾 remains relatively close to the value given by 

Scherrer as it ranges, for the most common domain shapes, from 0.73 to 1.03 when using the 

FWHM and from 0.98 to 1.39 when using the integral breadth.[86] 

The 𝛽𝛼 breadth can be quantified by means of the misorientation 𝛼, which corresponds to 

the mean angle between the mosaic blocks.[91] For 𝛽𝛼 corresponding to the integral breadth 

and 𝛼 being related either to a lattice tilt or twist, we have:[4] 

 𝛽𝛼 = 𝛼 (2.26) 

A deeper derivation of 𝛽𝛼 estimations is provided in the section 4.1.1 a), as the rotational 

disorder in the lattice is tightly linked to the distribution of dislocations in the crystal. 

An expression linking the root mean square (RMS) strain 휀 of a crystal to the broadening 

of a  2𝜃 − 𝜔  scan diffraction peak was given in 1944 by Stokes et Wilson, by neglecting the 

effect of rotations of the crystal cells.[92] For a broadening 𝛽𝜀 given in units of 2𝜃 angle, this 

relation is equivalent to: 

 𝛽𝜀 = 4휀 tan𝜃 (2.27) 

In practice, XRD peaks may undergo both strain and domain size broadenings. 

Williamson et Hall suggested a graphical method to decorrelate these two effects.[93],[94] By 
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using equations (2.25), (2.27) and assuming that the measured breadth corresponds to a direct 

summation of the strain and domain size broadenings (𝛽𝑚 = 𝛽𝜀 + 𝛽𝐿), they obtained: 

 
 
𝛽𝑚 co 𝜃

𝜆
=
4  in 𝜃

𝜆
 휀 +

1

𝐿
 (2.28) 

Note that the Scherrer constant is taken equal to unity, which is fully acceptable owing to 

the uncertainties on its value. 

By drawing on a graph 𝛽𝑚 co 𝜃 /𝜆 against 4  in 𝜃/𝜆 for a set of reflections, one obtains a 

linear plot with the slope corresponding to 휀 and the y-axis intercept corresponding to 𝐿. 𝛽𝜀 

and 𝛽𝐿 are then straightforwardly derived from equations (2.25) and (2.27). 

A similar analysis can be carried out on 𝜔 scan peaks to separate the broadenings 𝛽𝛼 and 

𝛽𝐿 due to the misorientation of the lattice and the limited correlation lengths. A plot of 

𝛽𝑚 2 in𝜃 /𝜆 against 2 in𝜃/𝜆  gives a line with a slope 𝛼 and a y-intercept 1/𝐿.[95] 

Unlike the polycrystalline metals analyzed in the works of Scherrer, Stokes et Wilson or 

Williamson et Hall, a monocrystalline III-N layer is divided in a set of diffraction domains with 

similar orientation. It is therefore possible to analyze the strain and domain size in a direction 

orthogonal to a chosen set of diffracting planes, by collecting the XRD data on several orders 

of diffraction. On a III-N layer, by applying a Williamson-Hall plot to the 2𝜃 − 𝜔 scans of a set 

of symmetric reflections, one obtains 휀 along the normal to the surface and the vertical size 𝐿┴ 

of the diffraction domains. The analogous Williamson-Hall plot on the 𝜔 scans of symmetric 

reflections gives the mean tilt 𝛼 and lateral correlation length 𝐿//. 

It should be noted that the Williamson-Hall analyses presented here are strictly valid for 

diffraction peaks with Lorentzian shapes, due to the direct addition employed to sum the 

broadening contributions. The actual peak shapes of the strain, misorientation and sometimes 

domain size contributions are actually better represented by gaussian functions,[96] as assumed 

in the equation (2.23), or by Voigt functions[86] (i.e. the convolution of a Lorentzian and 

Gaussian function). A more accurate addition of 𝛽𝐿 and 𝛽𝜀 − 𝛽𝛼 should therefore lye in between 

the direct summation (∑𝛽) associated to Lorentzian profiles and the quadratic summation 

(∑𝛽2) specific to gaussian profiles. As a consequence, the values of X-ray coherence length 

found using Williamson-Hall plots may be overestimated.[97] Further inaccuracy is brought by 

the uncertainties on the value real value of the Scherrer constant, which is usually taken equal 

to 1 (equation (2.28)). Williamson-Hall plots should therefore be used as an estimation of the 

magnitude of 휀, 𝛼 and 𝐿, rather than a precise determination of these parameters.  

 

2.4.3. Orders of stress and comparative impact on the diffracted 

signal  

 

Lattice distortions within a crystal are either caused by applied stresses, due to forces 

which originate from outside of the material, or by residual stresses independent of these 
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outside forces. Heteroepitaxial III-N materials are highly affected by residual stresses, 

especially owing to the high lattice mismatch and difference of coefficient of thermal expansion 

between substrate and layers. 

We have seen in the sections 2.4.1 and 2.4.2 that a strained lattice can cause both a shift 

in position and a broadening of diffraction peaks. It is useful to adopt a classification of the 

residual stresses responsible for this strain to clarify the impact of lattice distortions on XRD 

signal. Three orders of stress are usually distinguished:[98] 

• The first-order stress (𝜎𝐼) corresponds to the average residual stress within the material. If 

the crystal has a volume 𝑉, it is defined by: 

 
𝜎𝐼 =

1

𝑉
∫𝜎(𝑟)
 

𝑉

𝑑𝑉 (2.29) 

where 𝜎(𝑟) is the stress value at a position 𝑟 of the volume 𝑉. This macroscopic stress (or 

macro-stress) is responsible for a global change in the interplanar distances of some (ℎ𝑘𝑖𝑙) 

planes, and thus a macroscopic strain along the normal to these planes. This results in a 

global shift of XRD peaks for the corresponding (ℎ𝑘𝑖𝑙) reflections (Figure 2.12 b)). The 

biaxial stress in heteroepitaxial III-N layers, stemming from differences in thermal 

contraction behavior compared to the substrate, is an example of first order stress. 

 

• The second-order stress (𝜎𝐼𝐼) is defined as the mean deviation, at a local scale from the first 

order macro-stress. In polycrystalline materials, the local scale is typically taken as the 

volume 𝑉𝐿 of a single crystallite. This stress is therefore equal to: 

 
𝜎𝐼𝐼 =

1

𝑉𝐿
∫ (𝜎(𝑟) − 𝜎𝐼) 𝑑𝑉
 

𝑉𝐿

 (2.30) 

 

 By analogy, we can divide the lattice of a monocrystals in a set of areas within which 

the mean strain differs from its macroscopic value. This treatment is relevant in the case of 

gradients of biaxial stress which form along the normal to the surface of III-N layers, owing 

a progressive relaxation of the lattice. Such local variations induce a broadening of XRD 

peaks, which can possibly be asymmetric (Figure 2.12 c)). 

 

• The third-order stress (𝜎𝐼𝐼𝐼) corresponds to a deviation from the mean local strain value: 

 𝜎𝐼𝐼𝐼 =  𝜎(𝑟) − 𝜎𝐼 − 𝜎𝐼𝐼 (2.31) 

𝜎𝐼𝐼𝐼 is a micro-stress, as it acts at a very local scale (i.e. small compared to a local volume 

𝑉𝐿). It is necessarily due to a crystal defect whose stress field has a mean value of zero. In 

III-N crystals, this is typically the case of threading dislocations (see section 1.3.1 b)). By 

analogy, the strain stemming from third order stresses is called micro-strain. The mean 

value of third order micro-strain is also equal to zero, as the expansions of the lattice are 
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compensated by its contractions. Hence, 𝜎𝐼𝐼𝐼 results in a symmetrical broadening of XRD 

peaks, as shown in Figure 2.12 d). 

 

Figure 2.12 : Impact of mechanical stresses on diffraction peaks. For each order of 

stress, an example of lattice distortion in the [101̅0] plane and the associated impact on the 

2θ − ω scan a (1̅21̅0) reflection is depicted. a) No stress. b) First order stress σI. c) Second order 

stress σII. d) Third order stress σIII. 

 

The theory of XRD peak broadening presented above provides a fast and accessible 

solution to study the strain field of a crystal. Despite the wide use of these analyses, the 

accuracy of the results may be reduced by the numerous hypotheses made on the shape of the 

diffracting domains and the characteristics of the diffraction profiles. Furthermore, this 

treatment only allows a determination of the RMS value of strain. In heteroepitaxial GaN-on-

Si layers, the presence of stress gradients through the layer thickness leads to complex 

asymmetrical XRD peak profiles, whose shape contains information on the evolution of strain 

within the lattice. To accurately measure these stress gradients, it is necessary to go beyond the 

classical analyses presented previously. To this end, we will present in the next chapter an 

approach based on the numerical simulation of the diffraction signals.
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3. Stress gradient analysis 
 

Gradients of in-plane stress of III-N layers have not seen significant analysis, likely due to 

the low magnitude of such gradients in the traditional III-N specimens, such as GaN layers 

grown on sapphire or SiC substrates. However, in GaN layers grown on silicon substrates, 

which is an increasingly common III-N usage, strong stress gradients are reported.[61] Hence, 

it is worth analyzing these stress gradients, considering that they are directly linked to crucial 

parameters of nitride crystals growth process, such as the profile of threading dislocation 

density, the curvature of wafers and even sample fragility. 

In this chapter, we first demonstrate the presence of a stress gradient within a GaN-on-Si 

sample by Raman measurements, curvature measurements and XRD measurements. We then 

propose a simulation-based analysis of this stress gradient, relying on a program developed in 

Python language. The method aims at extracting profiles of strain along the c-axis from simple 

XRD radial scans on (002), (004) and (006) reflections (as it is sufficient for symmetrical 

measurements, three-index Miller notation will be used throughout this chapter). This 

computing tool differs from classic commercial XRD simulation software, as it is specifically 

designed for imperfect epitaxial layers such as GaN materials, in order to generate simulated 

data which better match the real XRD measurements. 

 

3.1. Highlight of the stress gradient in our layers 

 

To analyze stress gradients in GaN layers, we chose to focus our efforts on a GaN-on-Si 

sample grown at CEA-Leti, in an AIXTRON Crius R200 reactor. This sample of limited quality 

has a GaN film thickness of 1.85 µm, grown on an AlN/Al0.5Ga0.5N/ Al0.25Ga0.75N stack of buffer 

layers. We chose this sample as it possesses a stress gradient of high magnitude, due to 

relaxation of compressive stresses during layers growth. 

 

3.1.1. Raman measurements 

 

Raman spectroscopy is a method of characterization frequently used for the determination 

of stresses in semiconductors. The technique consists of irradiating the analyzed sample with 

a monochromatic photon beam, and to measure the energy shift between this incoming beam 

and the beam scattered by the material. By doing so, one can measure the frequency of several 

modes of vibration of the crystal lattice. These frequencies are characterized in terms of the 

Raman shift, which is the difference of wavenumber between the laser source and the scattered 

beam. The Raman shift is directly linked to the strain state of the material. 

In GaN crystals, this kind of measurement is usually performed by using the 𝐸2 mode,[99] 

with an incoming beam oriented toward the c-axis. The beam (typically a green 
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laser),[99],[100],[101] normally scatters through a whole µm-thick GaN layer, thus giving a 

measurement of the main value of stress in the film. 

In order to observe the variation of strain along the film thickness, we needed to carry out 

a cross section measurement of the film. This was achieved by using the alternative 𝐸1(𝐿𝑂) 

mode of vibration, which is compatible with this geometry of measurement. A 700 nm wide 

micro-beam, with a wavelength of 488 nm (green laser), was used to perform a series of 

measurements along the layer thickness, with a step of 100 nm between each point. The result 

of this experiment is shown in Figure 3.1. The evolution of Raman shift along the layer 

thickness clearly demonstrates the presence of a gradient of stress in the sample. However, 

unlike the 𝐸2 mode, a conversion of Raman shift profile into a stress profile cannot be 

performed with the 𝐸1(𝐿𝑂) mode, as the corresponding phonon deformation potential has not 

yet been determined in the literature. In addition, despite the clear evolution of strain, the 

result is difficult to interpret due to the beam width, which covers roughly one third of the layer 

thickness for each measurement. 

 

Figure 3.1 : Demonstration of the presence of a strain gradient in a GaN layer 

with a cross-section micro-Raman measurement. 

 

3.1.2. Curvature measurement 

 

The relaxation of stressed thin films is typically hindered by the substrate on which they 

are deposited/grown. To reach a mechanical equilibrium of forces and bending moments, such 

layer/substrate systems tend to bow, so the thin-film face adopts a concave shape when the 

film is under tension or a convex shape when it is under compression. The relationship linking 

the curvature 𝜅 of the sample to the stress in the film 𝜎𝑓, is known as the Stoney equation:[62] 

 
 𝜎𝑓 =

𝐸𝑠𝑡𝑠
2𝜅

6𝑡𝑓(1 − 𝜈𝑠)
 (3.1) 

In this equation, 𝑡𝑓 and 𝑡𝑠 are the thicknesses of the film and the substrate, 𝐸𝑠 and 𝜈𝑠 are 

the Young’s modulus and Poisson ratio of the substrate. The Stoney equation assumes that the 
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mechanical properties of the substrate are isotropic in the surface plane, that the deflection of 

the substrate is small compared to its thickness, that the total thickness 𝑡𝑓 + 𝑡𝑠 of the system is 

small compared to its lateral dimensions, that 𝑡𝑓 ≪ 𝑡𝑠 and that the film perfectly adheres to the 

substrate. In addition, if the stress is treated as being constant across the film, one should verify 

that the thicknesses are uniform across the sample and that the curvature is spherical (equal 

in all the directions). Equation (3.1) can also be expressed in terms of the curvature radius 

𝑅𝑐 = 1 𝜅⁄ . 

The curvature of the sample can easily be measured by XRD. The method consists in 

measuring the variation of 𝜔 angle position of an (ℎ𝑘𝑙) diffraction peak along a line 

corresponding to the sample diameter. Several 𝜔 scans are carried out at points separated by 

a distance 𝑥. The curvature radius 𝑅𝑐 between two points diffracting at angles 𝜔1 and 𝜔2 is: 

 𝑅𝑐 =
𝑥

𝜔2 −𝜔1
 (3.2) 

When analyzing global film stresses with the Stoney equation, it is best to measure 𝑅𝑐 

along at least two different diameters of the sample, to verify that the curvature is spherical. 

Alternatively, the bow of samples can be measured by optical reflectance, for example by 

measuring the distance between two parallel beams reflected off the wafer.[61] Such a 

measurement can be carried out in-situ during the epitaxy of III-N layers, in adapted growth 

reactors. By monitoring the variation of sample curvature Δ𝜅 during the growth of epitaxial 

layers, one can apply Stoney’s equation on thin slices Δ𝑡𝑓 of the growing film. Hence, the local 

stress 𝜎𝑙
𝑓

in the film slice is obtained by: 

 
𝜎𝑙
𝑓
=

𝐸𝑠𝑡𝑠
2Δ𝜅

6Δ𝑡𝑓(1 − 𝜈𝑠)
 (3.3) 

This procedure has been applied in reference[61] to analyze the stress gradient in our GaN-

on-Si sample. The result is shown in Figure 3.2. This method has frequently been used to 

determine stress gradients within GaN films, see for example references[60],[102]. Note that 

curvature measurements determine the global stress throughout the thickness of the GaN film. 

Hence, equation (3.3) assumes that no relaxation occurs within the layers previously 

deposited. This assumption seems reasonable in the case of compressive stress relaxation 

controlled by growing TDs (see section 1.3.2). 
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Figure 3.2 : Stress gradient in a GaN layer estimated from in-situ bow 

measurements. Negative stress values correspond to a compressive biaxial in-plane stress, 

positive values to a tensile stress. Optical reflectance measurements of bow acquired for the 

publication of the article[61] have been used to construct the stress gradient. A thickness step of 

Δt = 1 nm is used.  

 

3.1.3. XRD peak position measurements 
 

As explained in the section 2.4.1, the crystal strain can be readily deduced from 

measurements of the 2𝜃 position of XRD peaks, for binary alloys such as GaN or AlN. The 

actual value of strain varies depending on the direction 𝜙𝜒 of measurement, where 𝜒 

corresponds to the inclination with respect to the surface of the sample, and 𝜙 to the azimuth, 

as represented in Figure 2.4. For a homogeneous and isotropic crystal, with Poisson ratio 𝜈 

and Young’s modulus 𝐸, the equation linking the strain 휀𝜙𝜒 in this particular direction to the 

stress field is given by:[98] 

 

 휀𝜙𝜒 = (1 + 𝜈)/𝐸 (𝜎11 co 
2𝜙  in2 𝜒 + 𝜎22  in

2𝜙  in2 𝜒 + 𝜎33 co 
2 𝜒 

(3.4) +𝜎12  in2𝜙  in
2 𝜒 + 𝜎13 co 𝜙  in2𝜒 + 𝜎23  in𝜙  in2𝜒) 

−𝜈/𝐸(𝜎11 + 𝜎22 + 𝜎33) 

 

In thin films, out of plane stress components 𝜎𝑖3 (𝑖 𝜖 {1,3}) are equal to zero at the surface 

and can only differ from this value inside of the film if there is a variation of in-plane stress 

components 𝜎𝑖𝑗 (𝑖, 𝑗 𝜖 {1,2}).[103]  Hence, outside from thin film lateral edges, we have 𝜎13 =

𝜎23 = 𝜎33 = 0, so equation (3.4) becomes: 
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 휀𝜙𝜒 = (1 + 𝜈)/𝐸 (𝜎11 co 
2𝜙 + 𝜎22  in

2𝜙 + 𝜎12  in2𝜙)  in
2 𝜒 

(3.5) 
−𝜈/𝐸(𝜎11 + 𝜎22) 

 

The linear dependence of 휀𝜙𝜒 on sin
2
𝜒 shown in equation (3.5) is used to determine the 

stress components 𝜎𝑖𝑗. This is achieved by constructing 휀𝜙𝜒 vs sin
2
𝜒 plots from XRD 

measurements on various reflections and calculating their slope (1 + 𝜈)/𝐸 (𝜎11 co 
2𝜙 +

𝜎22  in
2𝜙 + 𝜎12  in 2𝜙). 

In the case that the stress field is not constant through the thin film’s thickness, the linear 

dependence of 휀𝜙𝜒 vs sin
2
𝜒 may be replaced by a curved trend. Some methods aim at extracting 

stress gradients from the curvature of such 휀𝜙𝜒 vs sin
2
𝜒 plot, such as in reference.[104] However, 

this kind of analysis cannot be applied in the case of thin layers with a thickness inferior to the 

penetration depth of X-rays. In such cases, 휀𝜙𝜒 vs sin
2
𝜒 plots keep a linear trend even in the 

case of steep stress gradients.[103] This is the case in the GaN layers studied throughout this 

thesis, whose thicknesses are between 1 µm and 3µm, and in particular on the GaN-on-Si 

sample studied throughout this chapter, as shown in Figure 3.3. 

In order to reach a shallower X-ray penetration depth, several alternative measurement 

geometries can be used.[103] However, these analyses are either not adapted to the measurement 

of strongly textured/monocrystalline samples, or require measurement geometries such as the 

in-plane mode or 𝜂-mode (rotation of the sample around the diffraction vector), which are not 

accessible on the diffractometers used during this PhD. 

Further issues with these methods of extraction of stress gradient include the large 

number of measurements needed and the high precision required for the determination of 

interplanar distances.[103] The latter point is of special concern in the case of asymmetric line 

profiles caused by steep strain gradients, such as found in our samples (see the following 

section 3.1.4). In such samples, the shape of XRD peaks changes with the inclination 𝜒 and 

their global 2𝜃 position should therefore not be used for the calculation of interplanar 

distances.[105] An example of this issue can be seen in Figure 3.3, were the calculated strain 

greatly varies for the three (00𝑙) reflections, despite having the same tilt 𝜒 = 0°. 
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Figure 3.3 : Strain vs Sin²χ plot in a GaN-on-Si film. 2θ −ω measurements were 

carried out in skew symmetric mode on several planes tilted with respect to the surface with 

varying angles χ. Each data point corresponds to a measurement on one of the following 

reflections: (00 ), (10 ), (11 ), (20 ) and (302). XRD scans were fitted with split-Pearson7 

functions to determine diffraction peak positions and calculate εϕχ strain values. The linear fit 

(dashed line) shows the approximate linear behavior of the plot. 

 

3.1.4. XRD peak shape measurements 

 

Stress gradients may be considered as a succession of local deviations from the material 

mean stress, which corresponds to a second-order stress, as defined in the section 2.4.3. 

Following this definition, we can divide a thin film containing a gradient of in-plane stress into 

a set of sublayers, each associated with a local value of stress and thus with local values of 

strain. One can measure the crystal strain in the direction normal to the surface by carrying 

out a symmetric 𝜔 − 2𝜃 XRD scan. By doing so, all the local values of strain are measured at 

once, provided that the absorption of X-rays by the layer is low. The resulting diffracted signal 

can be seen in a first approximation as composed by an addition of diffraction peaks 

corresponding to each sublayer, whose position varies on the 2𝜃 angles scale. The resulting 

diffraction profile is typically asymmetrical. 

We use this sublayer description to extract a basic estimate of strain gradient in the studied 

GaN-on-Si sample. The low absorption assumption is verified by calculating the path length 𝐿 

of X-rays diffracted by the deepest sublayer of the GaN film of total thickness 𝑡 = 1.85 µ𝑚. For 

a (002) symmetric measurement with a beam incidence 𝜔 = 17.28°, 𝐿 = 2𝑡/  in𝜔 = 12.46 µ𝑚, 

which is three times lower than the 1/𝑒 attenuation length of X-rays in GaN (for the Cu 𝐾𝛼 

radiation, see section 2.1.2). The strain gradient causes the (002) radial scan shown in Figure 

3.4 to have an asymmetrical shape on its left-hand side (low 2𝜃 values). We treat each 

measured point on this left half-peak as the diffraction signal of one GaN sublayer. Hence, for 

each point of angle 𝜃, we calculate a local strain 휀 by using a modified version of equation 

(2.21): 
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휀 =

 in 𝜃0 −  in 𝜃

 in𝜃
 (3.6) 

where 𝜃0 is the angle at the top of the XRD peak. This is equivalent to considering that the 

surface of the sample is relaxed, as the surface sublayer has a strain value of zero. This 

treatment is sufficient to obtain a relative strain gradient, though an absolute strain gradient 

could be obtained by using the (002) Bragg angle of GaN given in Table 2.1 for 𝜃0. 

For each point, we also associate the measured intensity to the sublayer thickness, 

neglecting the absorption effect for the sake of simplicity. The calculation consists of a division 

of the local intensity by the sum of the intensities of all the experimental points. In this way, 

we obtain a set of relative thicknesses which equal to one when added together. We use these 

relative thicknesses to reconstruct the in-depth strain profile of Figure 3.4, by assuming that 

the gradient of strain is continuous from the AlGaN/GaN interface to the surface of the GaN 

layer. 

 

Figure 3.4 : Extraction of the stress gradient in a GaN layer by using the 

asymmetrical shape of a radial diffraction peak. a) (002) 2θ − ω scan measurement of 

the analyzed GaN-on-Si sample. b) Extracted strain gradient. The relative thickness scale 

varies from 0 (AlGaN/GaN interface) to 1 (GaN surface). 

The gradient obtained is characterized by a dramatic decrease of strain in the deepest 

sublayers (90% drop in 9% of the film thickness). In our sample, this corresponds to a 90% 

variation of strain in the 170 nm above the AlGaN/GaN interface. We fitted this gradient with 

a polynomial of logarithms (𝑎1  n 𝑥
 + 𝑎2  n 𝑥

2+ 𝑎3  n 𝑥
3 𝑎4  n 𝑥

4), which is adapted to the high 

curvature of the curve. Parameters (𝑎1, 𝑎2, 𝑎3, 𝑎4) = (−0.0012397,−0.0004661,−0.0000909,

−0.0000044) were found. 

Note that the method presented only gives a rough estimate of the strain gradient as it 

oversimplifies the reality of diffraction. Notably, X-rays absorption and background signal are 

not taken into account. Moreover, the intensity corresponding to each sublayer is treated as 

being entirely concentrated at a single 2𝜃 angle, although it is actually spread across the 

reciprocal space. Along the 2𝜃 − 𝜔 scan direction, it follows a Gaussian distribution with a 
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standard deviation depending on the Darwin width and the instrumental resolution (see 

section 2.4.2 a)). As shown in Figure 3.5, the intensity is also strongly spread in the 

transversal direction (corresponding to an 𝜔 scan cut of the reciprocal space), as the presence 

of TDs leads to a tilt of the crystal lattice (further details in section 4.1.1 a)). Close to the 

AlGaN/GaN interface, the higher number of dislocations increases this effect, thus lowering 

the measured intensity at the left-hand tail of the diffraction peak, eventually resulting in an 

underestimate of the thickness attributed to the sublayer. This might explain why the strain 

gradient of Figure 3.4 is patently sharper than the strain gradient obtained from curvature 

measurements (Figure 3.2). 

 

Figure 3.5 : Distribution on a reciprocal space map of the intensity diffracted by 

layers of GaN and AlGaN. The RSM is measured on a (004) refection. The path of a (004) 

2θ − ω scan is depicted with a line along the qz axis. On the GaN spot, the orthogonal spread 

of intensity (i.e. along the direction of an ω scan) is shown with arrows. Each arrow represents 

the distance away from the qz axis where we observe a 90% drop of intensity, compared to the 

qx = 0 μm
−1 position. This spread of intensity, stemming from lattice tilt, increases when 

approaching the AlGaN/GaN interface (visible on the lower part of the diffraction spot). 

 

3.2. Development of a simulation tool 

3.2.1. Existing simulations 

 

We have demonstrated the presence of a stress gradient in a GaN-on-Si sample, grown by 

MOVPE at Leti, by using micro-raman measurements, in-situ sample curvature measurements 

and the asymmetrical profiles of XRD scans. However, these techniques have their limitations 

and so we would like to develop a post-growth analysis to properly quantify these stress 

profiles. From a metrological point of view, XRD techniques appear as being ideal to carry out 

such measurements in a fast and non-destructive way. Yet, we have seen that conventional 

XRD stress gradient analyses, based on the evaluation of strain at different X-ray penetration 

depths, is not adapted to our samples and diffractometers, as well as being rather time 

consuming in terms of measurements. Extractions of stress gradients from asymmetric XRD 
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profiles is a non-conventional method which cannot be considered as a precise determination 

of stress states. 

Alternatively, stress gradients in epitaxial films can be obtained from a least-squares 

fitting-based method of XRD peak profiles, using the kinematical or dynamical theory of 

diffraction to model diffraction profiles.[106] However, existing commercial XRD simulation 

software are designed for the modeling of quasi-perfect crystals and fail to reproduce the XRD 

signals observed for GaN-on-Si layers, which contain a wide set of defects. 

In Figure 3.6, we illustrate this statement by comparing the XRD profiles measured on 

the studied GaN-on-Si sample with the ones obtained with the XRD simulation software of a 

diffractometer manufacturer. The GaN layer profiles of the symmetrical reflections (002), 

(004) and (006) are simulated by means of the dynamical theory of diffraction. As an input, 

the gradient of strain along the c-axis is given in the form of the polynomial of logarithms 

function of Figure 3.4. Note that this c-axis corresponds to the direction which matters in the 

calculation of interplanar distances to simulate the profiles of symmetric reflections. The 

modeled GaN layer is subsequently divided into a few hundreds of lamellae, each associated to 

a local strain calculated from the input function. We see that the commercial software profiles 

contain clear oscillations, stemming from interferences between the scattered X-rays, which is 

typical of high-quality materials and interfaces. 

 

Figure 3.6 : Comparison of XRD peak profiles obtained by measurement and 

simulation on commercial XRD software. The comparison is shown for three symmetric 

reflections. Diffraction profiles are plotted in reciprocal space units along the qz axis. For 

readability, intensities are normalized and shifted upwards for (004) and (006) reflections. For 

the same reason, the three profiles are plotted in relative units of qz and shifted to the position 

of the (002) peak. 

After the tests shown in Figure 3.6, we conclude that the available XRD modeling 

software are not adapted to the complexity of imperfect thin films. This motivated the 

development of a new simulation model for the study of stress gradients in GaN-on-Si samples. 
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3.2.2. Modeling principle 

a) Introduction 

 

In order to analyze stress gradients in GaN layers, we developed a simulation tool, in 

Python programming language. This program aims at simulating diffraction signals of a GaN 

layer containing a gradient of in-plane stress, so they can be compared to the experimental 

diffraction profiles. 

The generated XRD profiles correspond to scans along the 𝑞𝑧 axis of reciprocal space, 

around one or several of the symmetric reflections (00𝑙). These scans of reciprocal space 

correspond to radial 2𝜃 − 𝜔 symmetric measurements, so that simulated and experimental 

data can directly be compared. This is convenient as (002), (004) and (006) are high intensity 

reflections, allowing for fast measurements. Furthermore, the main advantage of symmetric 

radial scans is that they are not affected by micro-strain and lattice rotational disorder 

stemming from TDs (see chapter 4 for further details). 

Several material-related parameters are required to carry out the simulations, namely the 

lattice parameters and the structure factor. As stated earlier, we focus here on the analysis of 

GaN layer. We use the lattice parameters given in Table 1.1 and the following structure factors 

calculated from equation (2.13): |𝐹(002)| = 50.81 Å
−1 ,  |𝐹(004)| = 32.82 Å

−1 and |𝐹(006)| =

27.05 Å−1. Similarly, the sample thickness and the wavelength of X-rays are input as 

parameters (𝑡 = 1.85 µ𝑚 and 𝜆(𝐶𝑢 𝐾𝛼1) = 1.54059 Å in our case).  

Once the parameters are set, the core of the program is divided into two main steps: 

• The calculation of the displacement field induced by an input strain gradient on each unit 

cell (UC) composing the GaN crystal. 

• The calculation of the intensity scattered by such a distorted thin film, by means of the 

kinematical theory of diffraction. Although being simple, this theory is adequate to 

describe X-ray scattering in imperfect thin-film layers, as explained in section 2.1.3 e). The 

diffracted intensity is subsequently obtained by taking into account the instrumental 

resolution of the diffractometer and is plotted to be compared to the experimental data. 

Detailed information about these simulation steps are given in the two following sub-

sections. Additionally, the developed code is given in Appendix 1. 

 

b) The displacement field 

 

In-plane stresses cause a distortion of GaN thin films, in particular along the normal to 

the sample surface. In the simulation procedure presented below, we will characterize this 

distortion by means of the positions of UCs composing the GaN crystal. As this program aims 

at simulating symmetric 2𝜃 − 𝜔 scans, only the position along the c-axis of the monocrystal is 

relevant. From the reference lattice parameter 𝑐0 of GaN and the sample thickness parameter, 

we determine the number of UCs along the thickness of the GaN layer. Hence, the calculated 
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number of UCs corresponds to the one of a relaxed GaN layer. However, the actual measured 

thickness of the sample can be used as a parameter, as the difference of thickness between a 

relaxed and a stressed GaN layer is negligible compared to the total thickness of the thin film 

(typically a few nanometers vs a few micrometers). 

The next step is to input a gradient of strain expanding along the thickness of the virtual 

crystal. We chose to define it on a relative thickness scale ranging from 0 to 1, so the strain 

profile is independent of the actual thickness of the layer. The physical parameter considered 

here is the strain 휀𝑧𝑧 in the direction normal to the surface, so the strain profile can easily be 

calculated from a gradient of biaxial in-plane stress (𝜎𝑏 = 𝜎𝑥𝑥 = 𝜎𝑦𝑦), by means of the elastic 

constants of GaN (휀𝑧𝑧 = 2𝑆13 𝜎
𝑏, see section 1.1.2). The strain profile is subsequently used to 

calculate the displacement 𝑢𝑛 field of each UC, which can be done in the following way: 

 
𝑢𝑛 = 𝑐0∑휀𝑧𝑧(𝑖)

𝑛

𝑖=0

 (3.7) 

where 휀𝑧𝑧(𝑛) is the strain around the 𝑛th cell and 𝑢𝑛 is given in units of the lattice parameter 𝑐0, 

namely in ångströms in the code. The cell 𝑛 = 0 corresponds to the interface between 

underneath GaN and buffer layers, while the cell 𝑛 = 𝑁𝑈𝐶 corresponds to the GaN surface. We 

apply the condition 𝑢0 = 0, so the sample remains fix at its interface with bottom layers. 

According to equation (3.7), the displacement field is calculated with a resolution 

depending on the number of points 𝑛 considered for the strain profile. Due to the sum of strains 

performed, an error is introduced in the calculation of each value of 𝑢𝑛, which increases as 𝑛 

increases. As shown in Figure 3.7, such a calculation may lead to significant errors in 

displacement values, especially in thinner layers with a low total of UCs. In order to fix this 

issue, we used an oversampled calculation of the displacement field, where the number of 

points 𝑛𝑜𝑣𝑒𝑟𝑠𝑎𝑚𝑝𝑙𝑒𝑑 is increased to 𝑁𝑜𝑣𝑒𝑟𝑠𝑎𝑚𝑝𝑙𝑒𝑑 = 1 + 𝐷(𝑁𝑈𝐶 − 1). Hence, we introduce a 

parameter 𝐷 of definition, such that: 

 

𝑢𝑛𝑜𝑣𝑒𝑟𝑠𝑎𝑚𝑝𝑙𝑒𝑑 =
𝑐0
D

∑ 휀𝑧𝑧(𝑖)

𝑛𝑜𝑣𝑒𝑟𝑠𝑎𝑚𝑝𝑙𝑒𝑑

𝑖=0

 (3.8) 

This definition of 𝑁𝑜𝑣𝑒𝑟𝑠𝑎𝑚𝑝𝑙𝑒𝑑 is chosen so that the distance between two points 𝑛𝑜𝑣𝑒𝑟𝑠𝑎𝑚𝑝𝑙𝑒𝑑 

along the c-axis is equal to 𝑐/𝐷. From equation (3.8), the displacement of each UC is easily 

obtained. At the 𝑚th UC (starting from 𝑚 = 0): 

  𝑢m = 𝑢𝑚×𝑛𝑜𝑣𝑒𝑟𝑠𝑎𝑚𝑝𝑙𝑒𝑑   (3.9) 

For thicknesses of the order of the µm, which is typical of the GaN layers analyzed here, a 

definition parameter of 𝐷 = 16 appears to be sufficient to obtain low errors in the displacement 

field (maximum error < 0.5%, as shown in Figure 3.7). For thinner layers, a higher value of 

𝐷 may be chosen. The list of UCs displacement 𝑢𝑚 obtained from equations (3.8) and (3.9), 

more precise than the one obtained from equation (3.7), is used in the following. 
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Figure 3.7 : Influence of the strain profile resolution on the calculation of the 

displacement field. a) Displacement profiles calculated from the strain gradient of Figure 

3.4 and from equation (3.7), for four GaN layers of thicknesses from 0.5 µm to 4.0 µm. For 

layers with lower thicknesses, x and y axes have been rescaled to show the divergence of profile 

shapes with respect to the 4 µm layer. Original displacement profiles are shown in the inset. b) 

– c) – d) – e) Rescaled displacement profiles calculated from equations (3.7) (b – c) and (3.8) 

(d – e), zoom on the top (c – e) and bottom (b – d) UCs of GaN layers. The displacement value 

of the top UC is 5.80% higher for the 4µm thick layer than for the 0.5µm thick layer when 

calculated with equation (3.7), but only 0.36% lower when calculated with equation (3.8), with 

D = 16. 

The result of equations (3.8) and (3.9) is an average profile of UCs displacement. The 

actual displacement field may include variations of this profile along the 𝑥 and 𝑦 directions of 

the surface plane (Figure 3.8 c)), depending on the local characteristics of the crystal, like the 

presence or lack of TDs. In order to simulate these local variations, we introduce a surface 

plane size parameter and calculate a corresponding number of local strain profiles (see section 

3.2.3.c)). 

Formally, this surface size corresponds to the number of UCs in the surface plane, and a 

strain profile is calculated for each column of UCs irradiated by the X-ray beam. This 

represents a significant number of local strain profiles to calculate (1.1 × 1014 for a 1 mm 

× 1 cm beam footprint). Nevertheless, a representative distribution of strain profiles can be 

obtained for a much lower number of UC columns. We found that 5000 local strain profiles are 

typically sufficient to obtain a result identical to the simulation of a whole diffracting crystal.  

Furthermore, if the displacement field does not significantly vary between two nearby 

columns of UCs, the surface plane can be divided in sub-areas containing a number of UC 

columns, each sub-area being associated with a uniform strain profile. In this case, the surface 

size parameter can be understood as the number of sub-areas in the diffracting crystal. This 
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consideration does not have any impact on the result of simulations, as (𝑥, 𝑦) positions of UCs 

are not relevant for the simulation of radial symmetric scans. This is true as long as the lateral 

X-ray correlation length is high, which is typically the case in our samples (see section 3.2.3.b)). 

If lateral size effects become significant, one should define an (𝑥, 𝑦) range within which the 

local strain is applied. For the sake of simplicity, we will keep speaking of columns of UCs in 

the following, even when they physically may correspond to lateral sub-areas. 

 

Figure 3.8 : Position of unit cells along the c-axis in the simulations. a) Unstrained 

crystal: the positions of UCs along the c-axis are calculated from the reference lattice parameter 

c0 of GaN. b) A base strain profile is applied on every column of UCs, thus generating a 

displacement field. c) Local variations are applied on the base strain profile, so the 

displacement profile differs between each UC column / lateral sub-area.  

 

c) Calculation of the diffracted intensity 

 

Once the displacement field calculation is completed, the program calculates the 

amplitude of X-ray scattering within the GaN layer. To that end, the kinematical theory 

formula of amplitude within a distorted material, presented in equations (2.16) and (2.17) is 

used. In order to reduce computing time, we use for this calculation a fast Fourier transform 

(FFT) algorithm instead of a usual Fourier transform calculation. When computing Fourier 

transforms on a large number 𝑁 of points (that is, UCs positions in this case), FFT calculations 

are associated with a low complexity, as computation time follows an 𝑁  o 𝑁 trend.[107] By 

contrast, simple Fourier transforms would instead follow a much less efficient 𝑁² trend. 

Hence, for a position �⃗� of the reciprocal space, the calculation of scattered amplitude 𝐴(�⃗�) 

is given by: 

 𝐴(�⃗�) = |𝐹(�⃗�)| | 𝐹𝐹𝑇[𝑉(𝑟)𝐺(𝑟)] | (3.10) 

The values for the structure factor module |𝐹(�⃗�)| have been given in the initial parameters 

(see 3.2.2.a)). We recall that 𝐺(𝑟) is the correlation function containing the displacement field 

𝑢(𝑟) applied on crystal UCs:  𝐺(𝑟) =  xp (2𝜋ℎ00𝑙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ . 𝑢(𝑟)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗) and  𝑉(𝑟) is the crystal shape function. 

As we work with unpatterned thin films with thicknesses of the order of a few µm, we take 

𝑉(𝑟) as a gate function equal to 1 within the crystal and to 0 outside of it. With this assumption, 
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𝑉(𝑟) has no influence on the calculation of equation (3.10). This is valid as long as the variation 

of sample thickness due to surface roughness is negligible. This roughness stems essentially 

from steps at the surface of the layer, which originate at the point where screw TDs reach the 

surface. The typical height of this steps, as measured by atomic force microscopy, is of 3 – 4 Å. 

Hence, it is safe to neglect the impact of this roughness for films with a thickness above 100 

nm. Nevertheless, if thinner layers are analyzed, one may simulate the variation of thickness 

by replacing in 𝑉(𝑟) the straight 0 to 1 transition of the gate function by a progressive transition 

following a complementary error function.[106] 

The calculation of equation (3.10) is performed along a 𝑞𝑧 axis scan of reciprocal space, 

centered on the reciprocal lattice point ℎ00𝑙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ . 𝐴(�⃗�) is worked out for 𝑁𝑈𝐶
𝑐𝑜ℎ × 𝒪 positions of �⃗�, 

separated by a distance 𝑐0/(𝑁𝑈𝐶
𝑐𝑜ℎ × 𝒪) in reciprocal space units. 𝑁𝑈𝐶

𝑐𝑜ℎ is the number of UCs 

within a vertical domain of coherent diffraction, as will be detailed below. 𝒪 is an oversampling 

parameter which allows the reciprocal space resolution of the simulation to be adapted. It is 

usually sufficient to set this parameter to 𝒪 = 4. 

The next step of the simulation procedure is the computation of the scattered intensity. 

This calculation takes into account the lateral and vertical X-ray correlation lengths, which are 

set as parameters of the simulation. To this end, the crystal is divided into subdomains, both 

in the (𝑥, 𝑦) plane and along the c-axis (see Figure 3.9). As shown in the equation (2.14), the 

scattered intensities corresponding to each of these subdomains are calculated separately and 

subsequently summed. This corresponds to a summation of squared amplitudes of each 

subdomain. 

 

Figure 3.9 : Division of the simulated crystal in subdomains of coherent 

diffraction. The dimensions of subdomains correspond to the vertical and lateral correlation 

lengths L⊥ and  L//. Note that the actual vertical size of subdomains slightly varies throughout 

the layer, owing to the displacement profile applied. However, this variation is negligible 

compared to L⊥ (for example only a few ångströms for micrometric values of L⊥). 

In order to simulate the measured intensity, the simulated signal is then convolved with 

the instrumental resolution of the diffractometer, which is defined as a Gaussian function 

whose width depends on the Bragg angle of the selected reflection. The simulated diffraction 

scan can finally be plotted in reciprocal space units or in 2𝜃 angle units. Note that the obtained 

intensity is arbitrary, as its real value depends on many parameters, such as the incoming X-



 

71 
 

ray beam intensity and dimensions or which optics are placed in the path of the diffracted 

beam. 

 

3.2.3. Evolution of simulations 

 

With the aim of assessing the efficiency of the modeling tool, we have carried out several 

comparisons of diffraction profiles obtained by simulation and by measurements on the same 

GaN-on-Si sample that was studied in section 3.1. For these tests, we used the strain gradient 

shown in Figure 3.4, obtained from the asymmetrical profile of a (002) radial diffraction 

scan. In the following sub-sections, we will show the analysis of different refinements included 

in the program and their impact on the simulations. 

 

a) Instrumental resolution 

 

The experimental data to be analyzed was obtained on a Panalytical X’Pert Pro 

diffractometer, which allows for the measurement of the three symmetric reflections of GaN 

(002), (004) and (006). For these measurements, an asymmetrical 4-bounce Ge(220) 

monochromator and a 3-bounce Ge(220) analyzer crystal were used. These optics determine 

the instrumental resolution of the experimental setup, which constitutes one of the simulation 

parameters, as explained earlier. This experimental configuration is typical of measurements 

on III-N epitaxial thin films, as it permits to obtain very good instrumental resolution on 𝜔 

scans. By using a four-bounce monochromator, the broadening component of these rocking 

curves is almost constant over Bragg angles 𝜃, with a FWHM value close to 10 arcsec. However, 

this resolution is much worse in the case of 2𝜃 − 𝜔 scans, especially at high 2𝜃 angles for which 

the broadening of XRD peaks increases. The instrumental resolution of 2𝜃 − 𝜔 scans is even 

more important as the corresponding XRD peaks are narrower than 𝜔 scans peaks (no 

broadening due to crystal misorientation stemming from TDs). 

Hence, the instrumental resolution needed to be evaluated correctly. For this, we 

performed 2𝜃 − 𝜔 measurements on a monocrystalline silicon sample. In Figure 3.10, we 

show the widths of diffraction peaks obtained for a wide set of reflections. Owing to the high 

crystalline quality of the sample, we can assume that these widths are only determined by the 

two broadening components 𝛽𝑑 and 𝛽0 of the instrumental resolution and the Darwin width 

(see section 2.4.2.a)). When calculating the Darwin width of each reflection, 𝛽0 also appears to 

have a negligible impact on the measured widths, especially as broadening components add 

together quadratically (see equation (2.23)). Hence, we will consider that the data shown in 

Figure 3.10 directly corresponds to the 2𝜃 − 𝜔 instrumental resolution 𝛽𝑑 of the 

diffractometer. From a fit of the evolution of 𝛽𝑑 with the Bragg angle, we obtain the following 

instrumental resolutions for the three symmetric reflections: 𝛽𝑑(002) = 20 𝑎𝑟𝑐𝑠𝑒𝑐, 𝛽𝑑(004) =

30 𝑎𝑟𝑐𝑠𝑒𝑐, 𝛽𝑑(006) = 84 𝑎𝑟𝑐𝑠𝑒𝑐. 
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Figure 3.10 : Analysis of the experimental setup instrumental resolution for 𝟐𝛉 −

𝛚 scans. Radial scans were carried out in symmetric and skew symmetric geometry on a 

(111)-oriented sample of Si. The FWHM of the corresponding diffraction peaks is plotted in 

arcseconds against 2θ and fitted with a second-order polynomial function (dashed line): 

FWHM ≈ βd = 0.00819 × (2θ)
2 − 0.622 × 2θ + 32.1. The Darwin width of a silicon crystal is 

calculated for each reflection by means of equation (2.18) and shown for comparison. The 2θ 

reference values of the three symmetrical reflections of GaN are shown in red. 

The first simulations of our program were performed by applying the base profile of strain 

to the whole sample, without any lateral variations in the (𝑥, 𝑦) plane. These basic simulations 

did not either include the impact of instrumental resolution. As shown in Figure 3.11 a), the 

result of this are diffraction peaks composed of a series of interference fringes, quite similar to 

the simulations of commercial software shown in Figure 3.6. Owing to its broadening effect, 

the instrumental resolution tends to annihilate these fringes, so the simulations become more 

comparable to experimental measurements. However, by inputting in the model the 

instrumental resolution measured above, the envelope of diffraction peaks still follows the 

global shape of previous simulations, which clearly differs from the measured profiles (Figure 

3.11 b)). Despite being significant, the impact of instrumental resolution is not sufficient to 

obtain realistic simulations. We nevertheless note that the right-hand side of XRD peaks now 

fits much better with the experimental curves. 
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Figure 3.11 : Impact of the instrumental resolution on simulations. Simulations of 

1.85 µm thick GaN sample, uniformly distorted by the strain profile of Figure 3.4 compared 

to radial scan measurements. a) Instrumental resolution is not taken into account. b) The 

instrumental resolution extracted from Figure 3.10 is taken into account. 

 

b) X-ray correlation lengths 

 

Another parameter which may have a significant impact on the shape of diffraction 

profiles is the X-ray correlation length. In the simulations, we distinguish the vertical 

correlation length along the normal to the surface of the layer and the in-plane lateral 

correlation length. 

Figure 3.12 shows how the plots of Figure 3.11 are substantially modified by dividing 

the layer into 10 lamellae diffracting incoherently with each other (i.e. by reducing the vertical 

X-ray correlation length to 185 nm). Once again, this process removes the oscillations of 

Figure 3.11 a), but the diffraction profile does not follow the shape of the experimental 

measurements. 
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Figure 3.12 : Impact of the vertical X-ray correlation length on simulations. 

Graphs a) and b) correspond to the same simulations than those presented in Figure 3.11, 

but with the GaN layer being divided along the c-axis into 10 domains of coherent diffraction. 

Conversely, the lateral correlation length has no impact on the outcome of the previous 

simulations. This is easily understandable as the position of UCs, and thus the scattered 

amplitude, are the same in each simulated column. Hence, the final simulation is just a 

multiplication of the elemental one column simulation, independently of whether the 

amplitudes or intensities have been added together. 

In the case that the displacement field varies between UC columns (as in the following 

section 3.2.3.c), the lateral division of the layer may lead to different intensity profiles for each 

diffraction domain. However, this is only because the number of UC columns in a domain of 

coherent diffraction is so reduced that the intensity profile has not converged to its statistical 

average. This issue is simply fixed by simulating a greater number of UC columns, and thus a 

greater number of lateral domains (>5000). By doing so, the sum of intensities converges 

toward the intensity profile of a simulation with infinite correlation length. 

The magnitudes of vertical and lateral diffraction size effects have both been analyzed on 

the studied GaN-on-Si sample, by means of Williamson-Hall plots of equation (2.28). It was 

found that these effects are negligible. Hence, in the following, a unique domain of coherent 

diffraction will be modeled, by choosing correlation lengths greater than the dimensions of the 

simulated crystal. 

 

c) Variation of strain gradient 

 

In our previous tests, we have seen that basic simulations are characterized by oscillation 

patterns, resulting from interference between X-ray waves, which are typical of quasi perfect 

materials. In practice, these patterns are not found experimentally. As GaN layers are rather 

imperfect, such interferences should simply not arise in the calculation of the sum of 

amplitudes. This is the reason why taking into account the instrumental resolution cannot be 

the full solution to obtain realistic simulations: the calculated scattered signal does contain 

oscillations, which are just attenuated by a convolution with the Gaussian function of 
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instrumental resolution. The impact of a reduced correlation length could explain the absence 

of oscillations, but Williamson-Hall analyses suggest that size effects are negligible in the 

tested samples. 

The uniform displacement profile over the different UC columns appears to be a good 

candidate to explain the absence of oscillation patterns in experimental data. As shown in 

Figure 3.8 b), the c-axis positions of UCs remain constant in all the simulated columns. By 

adding an additional local variation to UCs displacements (Figure 3.8 c)), interferences 

between scattered waves should not arise. 

We identified three potential sources for local alterations of the base displacement profile: 

1. A statistical dispersion of UCs positions around their expected position. This kind of 

displacement can result from thermal motion. 

2. A shift of UC columns along the c-axis. This could be the effect of an irregular AlGaN/GaN 

interface, quite similar to the effect of roughness. 

3. The local environment of the crystal. In the transmission electron microscopy image of 

Figure 3.13, we can see that the in-plane density of TDs is high in some regions of GaN 

layers and low in other ones. As TDs are known to relax surrounding stresses by 

recombining, we assume that densely dislocated areas will lead to a reduced local strain. 

 

Figure 3.13 : Transmission electron microscopy image of the in-plane 

distribution of threading dislocations in a GaN-on-Si layer. This measurement was 

performed on a GaN-on-Si sample grown at CEA-Leti, which corresponds to the specimen 

GaN/Si(2) of chapter 4.  The contrasted spots and lines visible on the image correspond to TDs 

(see section 4.2.1 for details). Two 1 µm diameter red circles highlight that these defects are 

unevenly distributed in the surface plane.  

We tried to simulate each of these three local alterations of the displacement profile. For 

each UC column, the displacement field is calculated as the sum of the base displacement 

profile and its local modification. 

For the dispersion alteration, this consists in adding a random value stemming from a 

normal distribution centered on zero to the displacement value of each UC (see Figure 3.14 

a)). For the shift alteration (Figure 3.14 b)), a random number is similarly generated from a 

Gaussian distribution, but is applied to the whole UC column. These two procedures lead to 
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local strain profiles which do not differ from the base strain profile. In the corresponding 

simulations, we can see the characteristic oscillation patterns. Tests of UCs dispersion with 

random variable generated from other distributions, such as an exponential distribution, gave 

identical results. 

 

Figure 3.14 : Analysis of three kinds of local alteration of the displacement field. 

a) Statistical dispersion of UCs positions. b) Shift of displacement profiles. c) Attenuation of 

displacement profiles by surrounding TDs. For each kind of alteration, a graph shows the base 

displacement profile and a few local strain profiles. A representation of UCs position is 

provided in the insets. The corresponding simulations are plotted below. The instrumental 

resolution is not taken into account in order to better illustrate the annihilation of oscillation 

patterns. 

The local attenuation of strain by surrounding TDs is more complex to model. The 

diagrams of Figure 3.15 show examples of local strain and displacement profiles by assuming 

that the relaxation of stresses is fully determined by the recombination of TDs. However, such 

local displacement profiles are difficult to model as they require us to know the shape of the 

TD density profile along the c-axis, so that an appropriate distribution can be used for the 

position of inflection points in displacement profiles. 
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Figure 3.15 : Dependence on TD recombination of strain and displacement 

profiles. The diagrams show a model of the evolution of local strain profiles εzz(n) and local 

displacement profiles u(n) (n is the UC index), when no surrounding TDs recombine (a), 

surrounding TDs recombine close to the GaN/AlGaN interface (b), surrounding TDs 

recombine close to the surface (c). Arrows mark the point where TD recombination takes place. 

We chose to simplify the above model by simply multiplying, for each atomic column, the 

base strain profile 𝑢𝑟𝑒𝑓(𝑛) by a random factor (1 + 𝑋): 

  𝑢𝑥(𝑛) = 𝑢𝑟𝑒𝑓(𝑛)(1 + 𝑋) (3.11) 

where 𝑢𝑥(𝑛) is the local displacement profile of the 𝑥th column and 𝑛 stands for the 𝑛th UC in 

the column. The random variable 𝑋 is generated from a normal distribution centered on 0 and 

characterized by a standard deviation parameter 𝜎. In the case that 𝑋 < −1, (1 + 𝑋) is taken to 

be equal to zero to avoid physically unrealistic negative local displacement profiles. The main 

benefit of this model is that 𝜎 is the only parameter that determines the local variation of 

strain/displacement. 

As shown in Figure 3.14 c), this model leads to simulated diffraction peaks with a shape 

similar to experimental measurements. This time, we note that the shape of each local 

displacement profile is different from that of the base displacement profile. This appears to be 

the condition required for the annihilation of interferences between X-ray waves. 

The model of equation (3.11) can be used for the analysis of stress gradients in GaN layers. 

Provided that vertical X-ray coherence length effect is negligible (verified with Williamson-

Hall plots) and that the sample thickness and the instrumental resolution are known, the 

outcome of simulations only depends on the shape of the stress/strain gradient and on the 

parameter 𝜎, which quantifies the magnitude of local variations of strain.  

According to our model, 𝜎 is characteristic of the set of TDs expanding through the layer. 

We assumed that in-plane variations of strain are the result of the local environment of UCs, 

which are located at varying distances from sites of TD recombination (and thus of strain 

relaxation). Hence, 𝜎 should be correlated to the standard deviation of the statistical 

distribution of in-plane distances between a UC and the closer site of TD recombination. In 

strongly dislocated layers, UCs have numerous TDs in their vicinity and 𝜎 should be high, and 
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vice versa. The distribution of TDs in the surface plane also plays a role on the distribution of 

UC-to-TD distances and the recombination of TDs might be favored when they are closely 

spaced. 

The physically meaningful parameter to quantify local variations of displacement is the 

standard deviation 𝑆𝐷(𝑢) from the base displacement profile, which is also the mean 

displacement profile. 𝑆𝐷(𝑢) and 𝜎 are linked by: 

 

 𝑆𝐷(𝑢) =
𝜎

√𝑁𝑈𝐶
 √∑ 𝑢𝑟𝑒𝑓

2 (𝑛)

𝑁𝑈𝐶

𝑛=0

 (3.12) 

We recall that 𝑁𝑈𝐶  is the number of UCs in a column. Considering the parameter 𝑆𝐷(𝑢) 

gives a better understanding of the outcome of simulations. For example, as shown in Figure 

3.16 a) and b), two simulations on layers of different thicknesses 𝑡 will give similar results as 

long as the product 𝜎 × 𝑡 stays constant (and 𝑡 is in both cases large enough so that size effects 

remain negligible). The explanation is that when the thickness is multiplied by 𝑘, both the 

profile of displacement and the number of points composing this profile are multiplied by 𝑘, 

so √∑ 𝑢𝑟𝑒𝑓
2 (𝑛)

𝑁𝑈𝐶
𝑛=0  is multiplied by 𝑘3/2. Hence, 𝑆𝐷(𝑢) will remain the same only if 𝜎 is divided 

by 𝑘. 

However, for simplicity and as the thickness of the layer is assumed to be known, we will 

use the parameter 𝜎 to find the best match between experiments and simulations. An Increase 

of this parameter leads to a broadening of the simulated profiles (Figure 3.16 b) c) and d)). 

For the studied sample, 𝜎 = 0.125Å appears to be a good fit, although the simulated peaks do 

not perfectly adopt the shape of the measured ones. The likely reason for this is that the rough 

estimate of strain gradient used for these simulations is not really accurate. In order to find the 

real gradient of strain, it is necessary to describe the strain profile by a function with adaptive 

parameters. 



 

79 
 

 

Figure 3.16 : Impact of the 𝛔 parameter on the simulated profiles. Thickness and 

local variation of displacement profile parameters are set to: t = 3.7 µm , σ = 0.05 Å (a) ; t =

1.85 µm , σ = 0.10 Å (b) ; t = 1.85µm , σ = 0.125 Å  (c) ; t = 1.85 µm , σ = 0.15 Å  (d). 

 

d) Adaptive function for the strain gradient  

 

According to the measurements of section 3.1 and the results obtained in the simulations 

of section 3.2.3, the decrease of strain in the thickness of GaN-on-Si layers appears to be quick 

close to the AlGaN/GaN interface and to progressively abate as reaching the surface. The input 

strain profile should therefore follow a curved trend, with a degree of curvature which needs 

to be determined. 

Hence, we defined an adaptive function to describe strain profiles, based on two 

parameters: the root mean square (RMS) strain and the degree of curvature. The RMS of the 

strain profile is directly measurable by XRD, by means of a Williamson-Hall plot of 2𝜃 − 𝜔 

scans on the three symmetric reflections (00𝑙) of GaN. By using the integral breadth to extract 

peak widths from measurements on the studied sample, we found this RMS strain to be 

√〈휀𝑧𝑧²〉 = 0.00051. 

In the implemented function, the degree of curvature is defined by a single parameter 𝐾 

(without unit). We chose a logarithmic decrease to describe the strain profile 휀𝑧𝑧(𝑧) (defined 

on the relative thickness scale 𝑧 ∈ [0,1]): 
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휀𝑧𝑧(𝑧) = (1 −
 n(𝐾𝑧 + 1)

𝐿
) 휀𝑧𝑧(0) = (1 −

 n(𝐾𝑧 + 1)

𝐿
)√

𝐾𝐿2

−𝐿2 − 2𝐿 + 2𝐾
√〈휀𝑧𝑧²〉 (3.13) 

where 𝐿 =  n (𝐾 + 1). 

As shown in Figure 3.17, the profile obtained from (3.13) varies from a linear decrease 

for 𝐾 → 0 to a pronounced curvature for 𝐾 → ∞. We can see in this figure that the degree of 

curvature 𝐾 is directly linked to the degree of asymmetry of the strain profile, which is easily 

understandable by following the logic detailed in section 3.1.4. However, by varying the 

parameters 𝜎 and 𝐾, we were not able to obtain a better match of experimental peaks than that 

achieved in Figure 3.16 c). 

 

Figure 3.17 : Impact of the degree of curvature of the strain profile on the 

simulations. √〈휀𝑧𝑧²〉 is set at 0.00051, as found from a Williamson-Hall plot. At σ = 0.08 Å 

and σ = 0.10 Å, we see protuberances on the right side of some diffraction peaks, especially on 

(002) reflection, which originate from X-ray interferences. This indicates that the local 

variation of strain is underestimated, as confirmed by the disappearance of these patterns at 

σ = 0.15 Å. 
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In this chapter, we highlighted the presence of a stress gradient on GaN-on-Si samples 

grown at CEA-Leti by several XRD and non XRD techniques. We found that no ideal tool for 

the measurement of such a stress profile was available to us, so we accordingly developed a 

simulation program to reproduce the experimental diffraction curves. 

We found that when simply modelling the displacement of columns of UCs under the 

action of a global stress gradient, oscillations appear in the simulated XRD curves, which are 

characteristic of interferences between the scattered X-ray waves. We fixed this issue by 

modelling local variations of the displacement profile, that we assume to be linked to local 

relaxations of compressive stress by TD recombination.  

By using equation (3.13), we were able to model the diffraction profiles of a GaN layer of 

known thickness containing a gradient of in-plane stress by means of three parameters: the 

RMS strain √〈휀𝑧𝑧²〉 (in the direction normal to the surface), the degree of curvature 𝐾 of this 

strain profile, and its local variations 𝜎 that we assume to be controlled by the surrounding 

distribution of TDs. This may be reduced to only two parameters by estimating the RMS strain 

with a Williamson-Hall plot. However, as illustrated in Figure 3.17, by following this 

procedure we were not able to obtain a combination of (𝜎, 𝐾) parameters matching with the 

experimental diffraction profiles for all three orders of diffraction at the same time. Several 

explanations can be suggested, such as the simplifications adopted to model the effect of TD 

recombination on local displacement profiles, or an unsuitable shape of the strain gradient. 

In order to clarify the impact of these potential issues on simulations, it would be useful to 

determine whether the shapes of strain gradient obtained with equation (3.13) are physically 

realistic. Hence, we need a measurement of strain profiles in our GaN layers more accurate 

than those obtained in section 3.1. To this end, an in-depth measurement of strain gradients 

was carried out and is described in the fifth chapter of this thesis. Before this, the next chapter 

focuses on the analysis of the crystalline defects directly tied to the stress profiles, namely 

threading dislocations.
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4. Threading dislocations analysis 
 

The analysis of TDs is essential to assess the quality of III-N epitaxial films. These 

materials typically contain high densities of TDs, which usually reach 108 to 1010 cm-2 in the 

case of GaN-on-Si layers. TDs may affect the current leakage, breakdown voltage and electron 

mobility in III-N power devices, thus altering their performances (see section 1.3.1). 

Furthermore, a high density of TDs may induce a strong relaxation of compressive stresses, 

eventually leading to cracking of the GaN layer (section 1.3.1). 

Different measurements can be used to quantify TD densities, such as Transmission 

Electron microscopy (TEM), Cathodoluminescence (CL) or X-Ray Diffraction (XRD).[108],[97] 

Among these, TEM is regarded as a reference measurement, as it combines reliable results, the 

advantage of observing the spatial distribution of TDs and the possibility to identify the 

different types of TDs (screw TDs, edge TDs and mixed TDs). However, TEM requires long and 

complex sample preparations, and the measured areas are limited to a few tens of µm.[109] 

  On the other hand, XRD has the advantage of being both easy to implement and non-

destructive, and is therefore widely used. This technique takes advantage of the modification 

of the shape of the diffraction peaks, resulting from the distortion of the crystal by the set of 

TDs. The deduction of TD density is then either based on the observation of the diffraction 

peaks broadening, or on an analysis of the fitted peak profile. 

A theoretical background of these analyses is given below, primarily focusing on XRD peak 

broadening methods, which are easy to implement in a metrological context. In particular, we 

study the peak broadening associated with the micro-strain field around TDs, which has not 

been commonly used to characterize III-N films in the past. Micro-strain measurements are 

carried out on GaN layers grown a wide range of substrates, including GaN-on-Si, and the 

results are compared to XRD misorientation measurements and complementary TEM and CL 

characterizations. For GaN-on-Si samples in particular, the layers have high macro stress 

gradients that complicate the analysis. This chapter shows how to bypass this additional effect 

and allow accurate TD densities measurements. The results presented here are largely based 

on a publication of the author.[110] 

 

4.1. Theoretical background on XRD study of threading 

dislocations 

4.1.1. Peak broadening methods 

 

As we have seen in the section 2.4.2, the breadth of XRD peaks increases as the lattice of 

the analyzed samples deviates from the case of a perfect and infinite crystal. Hence, by 

disrupting the perfection of the lattice, TDs induce a symmetrical broadening of the diffraction 
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peaks in three different ways.[111] We will describe these effects using the notations introduced 

in the equation (2.17). 

Firstly, dislocations induce a rotation of the crystal lattice that results in a broadening 𝛽𝛼 

of angular 𝜔 scans. The second kind of broadening is introduced by the local stress field of 

third order (see section 2.4.3), that surrounds dislocations. The resulting expansion and 

compression of the crystalline structure has a direct effect on the broadening 𝛽𝜀  of radial 2𝜃 −

𝜔 scans. Finally, high dislocations densities can lead to the division of the crystal into several 

domains, separated by sets of dislocations forming boundaries between them. This results in a 

broadening 𝛽𝐿 associated to the decrease of X-ray correlation length. 

 

a) Misorientation measurements 

 

XRD study of lattice rotations is one of the most popular techniques, in III-N materials 

community, for measuring dislocations densities of samples and devices.[112],[95],[4] Historically, 

the link between threading dislocations and mosaicity was studied for characterization of 

polycrystalline metals. 

In 1953, working on annealed metals, Gay et al. used the mosaic block model (see section 

2.4.2 a)) to describe the crystal as a set of subdomains, misoriented with respect to one another 

because of lattice rotations and separated by walls of TDs piled-up at grain boundaries. 

Assuming a Gaussian distribution for the orientation of the domains, they related the FWHM 

𝛽𝛼 of 𝜔 scan peaks, and the dislocations density 𝜌:[113] 

 
𝜌 ≈

𝛽𝛼
3𝑏𝑡

 (4.1) 

where 𝑏 is the Burgers vector and 𝑡 is the mean size of a mosaic block, which typically 

corresponds to the X-ray correlation length 𝐿.[91] As 𝐿 is a parameter directly assessable in X-

ray diffraction, by means of Scherer’s formula or Williamson-Hall plots (see equations (2.25) 

and (2.28) in the section 2.4.2.b), we will use 𝐿 instead of 𝑡 in the following. 

Four years later, Dunn et Koch[91] reassessed the work of Gay et al. In the calculation of 

the mean disorientation 𝛼 between the blocks, they replaced a graphical evaluation of an 

integral by an analytical derivation, thus obtaining a new version of equation (4.1): 

 
𝜌 =

𝛽𝛼

√2𝜋  n(2) 𝑏 𝐿 
≈

𝛽𝛼
2.1𝑏 𝐿 

 (4.2) 

In the two previous formulas assuming TDs piled-up at mosaic block boundaries, 

dislocation densities are correlated both to the FWHM 𝛽𝛼 of radial scans peaks and to the X-

ray correlation length 𝐿. An alternative approach consists in assuming a random distribution 

for dislocations, corresponding to an average spacing between dislocations equal to 1/√𝜌. This 

is equivalent to assume that each boundary between mosaic blocks contains only one 
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dislocation, so that the mean distance between dislocations is equal to the size of a mosaic 

block (i.e. 𝑡 = 𝐿 = 1/√𝜌). Hence, for a random distribution of TDs, Dunn et Koch derived from 

equation (4.2) an estimation of the dislocation density independent of the block size (i.e. f the 

correlation length):[91] 

 𝛽𝛼

√2𝜋  n(2) 𝑏 
1

√𝜌

= 𝜌  
 
⇒  𝜌 =

𝛽𝛼
 2

4.35𝑏 
2

 
(4.3) 

Previously, another formula was suggested by Kurtz et al.[114], again assuming a random 

distribution for dislocations, but starting from equation (4.1) from Gay et al.: 

 
𝜌 =

𝛽𝛼
 2

9𝑏2
 (4.4) 

The resulting TD density is approximately half of the one obtained with the equation (4.3) 

from Dunn et Koch. As the graphical-based derivation carried out by Gay et al. should be less 

precise than the analytical method of Dunn et Koch, the evaluation of TD density of equation 

(4.4) should be less accurate than the one of equation (4.3). Accordingly, the model from Dunn 

et Koch is usually chosen for density evaluation of randomly distributed TDs, such as in 

references.[97],[87],[88] Yet, the model from Kurtz et al. is also occasionally used in the III-N 

semiconductors community, such as in the articles.[115],[116] 

On another note, both random TD distribution and piled-up TD distribution models have 

been applied to measurements on III-N layers. Some authors consider that the assumption of 

TDs being placed at the crystal domains boundaries is better suited than a random distribution 

in the case of epitaxial III-N layers,[117] which is supported by the observations of Chechia et al. 

on MOVPE (0001)-oriented GaN grown on sapphire substrates.[118] Working on similar 

samples, Metzger et al. treat the random and piled-up distributions as extreme cases, thus 

expecting a real TD density lying between the results of equations (4.3) and (4.2). Nevertheless, 

the comparison with TEM measurements carried out in the same study shows much better 

results for the random model of Dunn et Koch. A similar observation is made for edge TDs by 

Lee et al. on a set of MOCVD GaN-on-SiC, GaN-on-sapphire and AlGaN-on-sapphire 

samples.[97] A further limitation of piled-up distribution models is the difficult evaluation of the 

X-ray correlation length. This additional parameter is typically estimated with limited accuracy 

by using a Williamson-Hall plot, leading to errors in the calculated TD density.  

In (0001) wurtzite III-N layers, threading dislocations are oriented along the c-direction 

normal to the surface. In this configuration, edge dislocations cause an in-plane rotation of the 

lattice about the normal to the surface, which corresponds to a lattice twist in the mosaic block 

model. Conversely, screw dislocations are responsible for an out-of-plane rotation associated 

with mosaic tilt. As a combination of edge and screw TDs, mixed dislocations generate both a 

mosaic twist and tilt. Consequently, we can measure independently the densities of 

dislocations with a screw component (i.e. screw + mixed types) and with an edge component 

(i.e. edge + mixed types) by respectively carrying out a tilt and a twist measurement. 
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Figure 4.1 : Broadening of 𝛚 scans associated with lattice twist and tilt. a) 

Broadening owing to lattice twist of mean value α along on a sphere centered on the origin of 

the reciprocal space. b) Broadening owing to lattice tilt of mean value β along such a sphere. 

For both misorientations, the broadening is represented with red arcs for each of the following: 

a symmetric refection, an asymmetric/skew-symmetric reflection and a ( ki0) reflection. 

The diffraction spot broadening associated with a lattice twist is either measurable using 

a ϕ scan or an ω scan in skew symmetric geometry. Both measurements are equivalent on 

( k0) reflections, although ϕ scans are affected by the axial divergence of the beam,[4],[119] which 

is normally higher than the equatorial divergence impacting ω scans. For example, 

measurements from Heinke et al.[119] on a GaN sample with TD density in the mid-109 cm−2, 

suggest an approximate 10% increase of peak width when using a ϕ scan instead of an ω scan 

in skew symmetric mode. In practice, ϕ scans should therefore be reserved for measurements 

on highly twisted crystals.[4] As a rotation of the lattice about the normal to the surface, the 

twist leads to a high rotation of the crystal planes orthogonal to the surface. The rotation 

undergone by planes with an inclination 0° < χ < 90° with respect to the surface is gradually 

reduced as χ decreases, until the extreme case of planes parallel to the surface (i.e. χ = 0°), 

which are not affected by the lattice twist (see Figure 4.1 a). Therefore, the lattice twist should 

ideally be measured on ( ki0) planes with an inclination χ = 90°. However, these reflections 

require measurement geometries such as XRD in transmission or XRD with reflection 

geometry in In-plane mode, obtainable at a synchrotron facility but rarely on laboratory 

diffractometers.  

As these measurements are not achievable on many laboratory diffractometers, and in 

particular on the ones used in this thesis, planes with high χ inclination are usually used 

instead. For GaN samples, the reflections (303̅2) (χ = 70.45°) and (202̅1) (χ = 75.09°) are 

often used as good indicators of the twist value. Heinke et al.[120] estimated that measurements 

on the (303̅2) reflection give 85% to 91% of the real twist value, while the (202̅1) gives an even 

better approximation, owing to its higher χ value. A more precise treatment relies on the 

measurement of a wide set of reflections at different χ values, as proposed by Srikant et al.[121] 

As shown in Figure 4.2, the breadth of a set of diffraction peaks is plotted against the angle 

χ. The data is fitted according to several possible models, which are detailed in 
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references[121],[122],[97] , and the real value of twist (i.e. 100% of twist) is obtained by extrapolation 

to χ = 90°. 

 

Figure 4.2 : Extrapolation of twist values. Figure reproduced from,[121] showing a twist 

assessment in an AlN layer grown on sapphire substrate.  Srikant and al. used two different 

models to fit a plot of the peak breadth βα against the angle of inclination ψ and extrapolate 

the corresponding twist values at ψ = 90°. The independent model (dashed line) is based on 

the assumption that the distributions of tilt and twist are independent. Conversely, the inter-

dependent model assumes an influence of the twist distribution on the tilt distribution and vice 

versa. Hence, a factor m characterizing the tilt/twist interdependence is used. m lies between -

1 and 1 and the interdependent model is equivalent to the independent model when m = 0. 

A lattice tilt of mean angle α leads to a broadening βα of symmetric and asymmetric ω 

scans. In skew symmetric mode, the impact of the tilt on ω scans is reduced as the inclination 

χ of the diffracting planes increases. On (0001) hexagonal III-N layers, the tilt is normally 

evaluated using ω scans on symmetric reflections, which have a high intensity and are not 

affected by the lattice twist. 

It should be noted that the ω scans carried out for misorientation measurements can be 

affected by a number of additional sources of broadening, as detailed in the section 2.4.2. 

Among them, it is worth taking into consideration the X-ray correlation length and the sample 

curvature on III-N heteroepitaxial specimens. A limited lateral size 𝐿// broadens the peaks of 

symmetrical reflections used for tilt measurements, as well as skew symmetric measurements 

of twist, independently of the inclination 𝜓 of the diffracting planes. The curvature of the 

sample affects both tilt and twist measurements. This effect can be lowered by reducing the 

beam height (see Figure 2.8) in the case of tilt measurements on symmetric reflections, and 

by limiting the beam width in the case of twist measurements on planes with high inclination 

𝜓.[123] 

Despite the wide use of misorientation measurements for the quantification of TD density, 

the potential errors in this analysis have been discussed in the literature. In reality, the impact 

of TDs on the lattice misorientations not only depends on their density, but also on their 

distribution in the plane parallel to the surface[95],[97] and on a correlation between the TDs, 

which is linked to the orientation of their Burgers vector.[124] Comparisons with TEM 
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measurements suggest a tendency to overestimate the density of edge dislocations, with a 

factor commonly reaching or exceeding two.[97] Conversely,  a tendency to underestimate the 

density of screw dislocations has been observed, with values about four times lower when 

measured by XRD compared to TEM.[97] 

 

b) Micro-strain measurements 

 

An alternative method to quantify dislocations densities relies on the XRD measurement 

of the strain field created by dislocations. This strain extends locally around the dislocation 

line, its value decreasing rapidly when moving away from the dislocation core. Based on the 

description of stress fields detailed in the section 2.4.3, this kind of strain is associated to a 

third order stress. It is therefore called micro-strain, in contrast to the macro-strain induced 

by epitaxial biaxial stress of first order and its second order variations. 

In 1961, Hordon et Averbach established the link between this micro-strain and the 

broadening of the 2𝜃 − 𝜔 scan peak, within the context of polycrystalline metal 

characterization. Assuming an isotropic crystal and a Gaussian distribution of strain, they 

related this broadening 𝛽𝜀, to the mean square strain 〈휀2〉 in the direction normal to the studied 

crystal plane: 

 𝛽𝜀
2 = 8  n(2) 〈휀2〉 tan²𝜃  (4.5) 

In this formula, 𝜃 is the Bragg angle and 𝛽𝜀 is expressed in terms of FWHM. As the 

broadening contribution due to strain is assumed to have a Gaussian shape, the integral 

breadth could equivalently be used instead of the FWHM. 

The measured expansion and contraction of the lattice are due to the radial micro-strain, 

coming from edge, screw and mixed dislocations, which extends in the plane normal to the 

dislocation line (see section 1.3.1). The stress field around a mixed dislocation is a sum of the 

stress fields around edge and screw dislocations.[51] In the following, we will decompose mixed 

dislocations into its screw and edge components, so that a mixed dislocation will account for 

two dislocations, of screw and edge types. Hordon et Averbach calculated the value of 〈휀2〉 by 

integrating the radial strain around dislocations between an initial core radius 𝑟0 and a final 

radius R, such as represented in Figure 1.6. 

For an edge dislocation with a Burgers vector length 𝑏𝑒, the mean square strain ⟨휀𝑒
2⟩ along 

the diffraction plane normal is given by:[87] 

 
〈휀𝑒
 2〉 =

5

64

𝑏𝑒
2(2.45𝑐𝑜𝑠2Δ + 0.45𝑐𝑜𝑠2Ψ)

𝜋2𝑅2
 n (

R

r0
) (4.6) 

Δ and Ψ are geometrical terms. As depicted in Figure A.1 of Appendix 2,  Δ is the angle 

between the dislocation glide plane normal and the diffracting plane normal. Ψ is the angle 

between the Burgers vector and the diffracting plane normal. 
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In this formula, a Poisson ratio of 1/3 is assumed, as Hordon et Averbach derived them 

to analyze cubic metals.[87] Although a III-N crystal is an anisotropic media, GaN has a quasi-

isotropic Poisson ratio (see section 1.1.2), which allows to use the procedure of calculation of 

〈휀2〉 proposed by Hordon et Averbach. This may not be true for other III-N binary alloys, whose 

Poisson ratios are markedly anisotropic.[14] 

Equation (4.6), with a Poisson ratio of 1/3, was used by Metzger et al. in a previous study 

of a GaN film grown on sapphire substrate[95] and by the author of this thesis and coworkers on 

a study of GaN samples on Si, SiC and sapphire substrates.[110] However, a Poisson ratio of 

0.183 would be more suited for GaN layers with moderate TD density.[4],[16] Hence, starting 

from the initial work of Hordon et Averbach,[87] we recalculated the expression of 〈휀𝑒
2〉, so the 

Poisson ratio 𝜈 appears as an additional parameter: 

 
〈휀𝑒
 2〉 = A

 𝑏𝑒
2(  𝑐𝑜𝑠2Δ + (𝐵 − 2)𝑐𝑜𝑠2Ψ)

𝜋2𝑅2
 n (
R

r0
) (4.7) 

where 𝐴 and 𝐵 are two parameters depending on the Poisson ratio 𝜈: 𝐴 =
1

16(1−𝜈²)
  and 𝐵 =

𝜈2−2𝜈+5

2(1−𝜈²)
. 

The demonstration of equation (4.7) is provided in Appendix 2. We note that by applying 

the assumption of 𝜈 = 1/3 on equation (4.7), we obtain parameters 𝐴 = 5/64 and 𝐵 = 2.50 

slightly different than the ones obtained by Hordon et Averbach (i.e. 𝐴 = 4.5/64 and 𝐵 = 2.45). 

This result reveals an apparent inconsistency in the paper of Hordon et Averbach, which does 

not appear to have been pointed out in the subsequent literature. Equations (4.6) and (4.7) 

have both been tested, assuming 𝜈 = 1/3, for the calculation of TDs on GaN layers (samples 

GaN/SiC and GaN/Si(2) in the following sections). The use of equation (4.7) results in a total 

density of TDs 6.5% - 8.5% higher than when using the result of Hordon et Averbach, almost 

independently of which sample or which reflection is used for the XRD measurement (an 

example is given in Figure 4.12). 

In the following, we will replace equation (4.6) by equation (4.7), assuming a Poisson ratio 

of 0.183, corresponding to parameters 𝐴 = 0.0647 and 𝐵 = 2.41. 

For the case of a screw dislocation with a Burgers vector length 𝑏𝑒, the integration of strain 

is carried out by taking into account the radial component arising from second order terms of 

nonlinear elasticity theory, as presented in equation (1.13). The radial strain in cylindrical 

coordinates 휀𝑟𝑟 = 𝐾𝑏𝑠
2/(4𝜋2𝑟2), with 𝐾 = 1, is used for the calculations. The mean square 

strain ⟨휀𝑠
2⟩ along the diffraction plane normal is given by:[87] 

 
〈휀𝑠
 2〉 =

𝑏𝑠
2𝑠𝑖𝑛2Ψ

4𝜋3𝑅2
 n (
R

r0
) (4.8) 

As previously, the geometrical term Ψ corresponds to the angle between the Burgers vector 

and the diffracting plane normal. 
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In equations (4.6) to  (4.8), a typical value of 10−7𝑐𝑚 is chosen for the lower radius limit 

𝑟0. Below this value, the elasticity theory is no longer valid and the theoretical strain tends to 

infinity. Atomic models must be used to study strain fields around the core of dislocations. For 

the sake of simplicity, strain in this area is simply not taken into account in this model. 

Arrays of dislocations tend to reduce their energy by adopting spatial configurations for 

which the long-range stress field of each dislocation is cancelled out by the stress fields from 

surrounding dislocations. Hence, the stress field around each dislocation is considered to be 

effectively acting in a range corresponding to half the average spacing between dislocations, in 

a random distribution configuration.[51],[125] As this average distance is inversely proportional 

to the square root of the density of dislocations, we can relate the upper radius limit 𝑅 to 𝜌.[87],[95] 

For edge dislocations: 

  
𝑅𝑒 =

1

2√𝜌𝑒
 (4.9) 

Similarly, for screw dislocations: 

 
𝑅𝑠 =

1

2√𝜌𝑠
 (4.10) 

Note that the average spacing between dislocations depends on the distribution of the TDs 

in the surface plane. The values of 𝑅𝑒 and 𝑅𝑠 would therefore slightly vary for configurations of 

TDs differing from the random distribution framework described above, such as the case of a 

piled-up distribution of TDs. Furthermore, the real value of the screening range, i.e. the 

distance of cancellation of the strain fields, actually depends on the correlation of the 

dislocations, which is associated with the distribution of Burgers vectors orientations within 

the set of TDs.[124]  

In the case of a material containing both edge and screw dislocations, a sum of the two 

mean squared strain contributions is made to obtain the global mean squared micro-strain 

responsible for the peak broadening:[95] 

 〈휀2〉 = 〈휀𝑒
2〉 + 〈휀𝑠

2〉 (4.11) 

Note that for a hexagonal (0001) oriented GaN crystal, there are three different edge 

dislocations systems, with Burgers vectors every 120° in the radial plane of the dislocation, and 

different values for the geometrical terms Δ and Ψ. By assuming that the density of each system 

is a third of the total edge TD density, 〈휀𝑒
2〉 is taken as the average value of the mean squared 

strain of the three systems. This hypothesis is acceptable as identical diffraction peaks are 

measured when using the different reflections of a family of planes {ℎ𝑘𝑖𝑙} (i.e. by rotating the 

sample 120° about the normal to its surface). 

Combining the above equations (4.5) to (4.11), we are able to calculate, for a given 

diffracting plane, the peak broadening associated with a density of screw dislocations and a 
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density of edge dislocations. Metzger et al. used this method to quantify threading dislocations 

densities in GaN layers grown on sapphire substrates.[95] 

As for misorientation measurements, micro-strain measurements can be affected by other 

sources of peak broadening, such as a limited correlation length of X-rays. Nevertheless, the 

sample curvature has no effect on the radial scans used in this analysis. This allows for using 

large beams for this kind of measurements, even on highly bowed samples. 

 

4.1.2. Peak shape methods 

 

Peak broadening analyses have been extensively adopted as accessible methods to quantify 

dislocation densities in III-N crystals. Nevertheless, they rely on a rather simplistic treatment 

of the set of dislocations, which is only defined by the nature of the dislocations (edge/screw) 

and their densities, assuming straight dislocation lines with basic distributions (random or 

piled-up). 

In order to treat the influence of dislocations on the diffracted signal more precisely, one 

can model the full shape of the diffraction peak, including the peak tails which correspond to 

the diffuse scattering component. This method may be referred to as whole pattern diffraction 

line analysis.[126] Krivoglaz[127] has provided a complete theory about this diffuse scattering 

based on the derivation, within the kinematical theory, of correlation functions (section 

2.1.3.d)) for randomly distributed sets of straight dislocations, dislocation dipoles (i.e. pairs of 

close parallel straight dislocations with opposite Burgers vectors), dislocation loops or split 

dislocations associated to stacking faults. 

As for the peak broadening analyses, the calculation of displacement fields of the lattice 

relies on basic assumptions about the position of dislocation lines within lattice, such as 

random or piled-up distributions. Additionally, these models take into account the size of the 

crystal, the orientation of dislocations in the lattice, and the distribution of Burgers vectors 

orientations. 

Wilkens[128],[129],[130] noted that the model proposed by Krivoglaz[127] of a set of straight 

parallel dislocations completely uncorrelated with one another (i.e. with random distributions 

of positions and Burgers vector orientation), is not suited to describe the broadening of XRD 

peaks. In such a system, dislocations do not cancel out each other’s strain field, so the mean 

square strain within the material increases with the size of the crystal. Hence, an infinite crystal 

would theoretically contain a diverging amount of energy and would lead to an infinite breadth 

of diffraction peaks. 

 To solve this issue, Wilkens introduced a new distribution model for dislocations, 

physically more accurate although mathematically simple, called “restricted random 

distribution”. In this model, the lattice is divided in a set of sub-domains of equal size, each of 

them containing the same number of dislocations. Within a sub-domain, the positions of 

dislocations are random and their Burgers vectors are oriented in such a way that the total 

Burgers vector of the domain is zero. In this configuration, the dislocations screen each other’s 
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strain fields, which thus only expand within the limits of the sub-domain. Consequently, the 

calculation of the strain fields in the lattice involves two parameters, namely the density of 

dislocations 𝜌 and the size 𝐿 of the sub-domains. The magnitude of the correlation between 

dislocations is given by a parameter 𝑀 = 𝐿√𝜌. Note that the shape of the diffraction profiles is 

determined by 𝑀, as this parameter defines the range on which the central part of the peak 

follows a Gaussian shape,[130],[124] thus meeting the basic assumption of the peak broadening 

theory (sections 2.1.4.2 and  4.1.1).  

Kaganer et al.[124] used the restricted random distribution model to derive a description of 

double axis 𝜔 scans XRD profiles in crystals with straight and randomly distributed TDs. They 

obtained a function with two parameters depending on 𝜌 and 𝐿, and used it to fit the whole 

diffraction profiles obtained on GaN samples on SiC substrates. This method allows to obtain 

both the dislocation density 𝜌 and the correlation length of dislocations 𝐿. From this model, 

the authors derived an interesting analogy with the peak broadening analysis of Dunn et Koch 

(equation (4.3)). They rewrote the relationship between the broadening 𝛽 of 𝜔 scans and the 

densities of edge and screw dislocations 𝜌𝑒 and 𝜌𝑠 in the following way: 

 
𝜌𝑒 =

18 𝛽𝑒
2 co 2 𝜃

(2.8 +  n𝑀)2𝑏𝑒
2 (4.12) 

 
𝜌𝑠 =

36 𝛽𝑠
2

(2.4 +  n𝑀)2𝑏𝑠
2 (4.13) 

 

 𝛽𝑠 is naturally measured on a symmetric reflection in the case of screw TDs and 𝛽𝑒 on a 

highly tilted plane in the case of edge TDs. These equations show that the actual broadening of 

diffraction peaks depends both on the dislocation density and on the magnitude of the 

correlation between dislocations. In their study, Kaganer et al. extracted values of 𝑀 between 

1 and 2 from fitted experimental peaks, corresponding to strong screening of the dislocation 

strain fields. The corresponding estimates of TD densities are four times higher than for the 

model of Dunn et Koch for edge dislocations, and even one order of magnitude higher for screw 

dislocations densities, which shows the importance of the correlation between dislocations in 

misorientation measurements. 

The model developed by Kaganer et al. is only valid at high density of TDs, owing to the 

use of Gaussian statistics when considering the distribution of TD positions.[124] This treatment 

is considered by the authors as sufficient for the analysis of their samples, with calculated TD 

densities of the order of the mid 1010 cm-2. However, no discussion is provided about the lower 

limit of validity of the model, in particular whether it is suited for modern heteroepitaxial GaN 

layers, with TD densities of the order of 108 − 109𝑐𝑚−2. It is worth noting that the TD density 

mismatch between the models of Kaganer et al. and Dunn et Koch is not consistent with 

TEM/Dunn and Koch comparisons provided in the literature for GaN layers with TD densities 

of 108 − 109𝑐𝑚−2 (see section 4.1.1a)). In particular, Kaganer et al. found that Dunn et Koch 

model underestimates the density of edge TDs, while TEM observations conclude that this 
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model tends to an overestimate the number of TDs. This difference may be due to a higher 

correlation (i.e. a lower 𝑀) between TDs of the highly dislocated samples of Kaganer et al. 

Moreover, we observe that the model of Kaganer et al. predicts a strong dependence on the 

Bragg angle of the width of XRD peaks affected by edge TDs. For example, (202̅2) and (101̅1) 

reflections are affected by an equal component of 𝜌𝑒, as they have the same tilt with respect to 

the surface. According to equation (4.12), when measuring a GaN layer (with a given parameter 

𝑀) with both reflections, (202̅2) should give peaks 22% wider than (101̅1). However, when we 

carried out this experiment on GaN-on-Si samples with TD densities of the order of 109𝑐𝑚−2, 

we found identical peak widths for both reflections, such as predicted by Dunn et Koch model. 

These elements suggest that the accuracy of the model of Kaganer et al. for TD densities lower 

than 1010 𝑐𝑚−2 needs to be verified.   

Working on GaN epitaxial layers, some authors developed an alternative method based on 

a Monte Carlo procedure of diffraction peak simulation. This technique relies on the random 

generation of a distribution of dislocation positions within a domain of coherent diffraction. 

For each dislocation, the displacement field of the crystal cells in the domain is calculated from 

the theory of elasticity. All these displacements are summed to calculate a global displacement 

field, which is used to work out the diffracted intensity with the equation (2.16). These 

operations are repeated on several domains of coherent diffraction, and the intensities are 

summed to obtain the simulated pattern. In principle, this method can be applied to every 

distribution of dislocations, such as randomly distributed straight dislocations[76] or a 

combination of threading and misfit dislocations, with dislocation correlation.[131] 

Furthermore, the conventional calculation method of Krivoglaz[127] raises some issues, due to 

the ensemble averaging performed for the calculation of intensity, which are fixed by the Monte 

Carlo process. Examples of thereby overcome limitations are the difficult numerical evaluation 

in the case surface relaxation associated to edge TDs,[74] or the non-validity of the averaging in 

the case of micro-beam diffraction.[76] 

Whole pattern diffraction line analyses and Monte Carlo procedures aim to analyze the 

signal coming from both the center and the tails of XRD peaks. Another approach to study the 

dislocation density is to focus on the tails of the diffraction profiles. Groma et al.[132] extended 

the initial works of Krivoglaz[127] and Wilkens[133],[130] by calculating high order terms of the 

Fourier transform of diffracted intensity for a set of parallel straight dislocations. This 

enabled[134] the calculation of the second-order restricted moment 𝜈(𝑞) = ∫ 𝑞2𝐼(𝑞)𝑑𝑞
𝑞

−𝑞
, which 

is proportional both to the mean dislocation density and to  n 𝑞, where 𝑞 is the distance from 

the XRD peak in the reciprocal space. Hence, the intensity decay at peak tails follows a 

logarithmic trend, with an expected slope about -3 (in log scale). Further studies[124],[74] shown 

that this slope is actually comprised between -2 and -4 (in log scale), depending on the nature 

of the dislocations (edge or screw), on the size effect and on the integration of the signal in the 

reciprocal space (steeper slope when the measurement is made in triple axis mode than in 

double axis mode). Similarly, the calculation of third and fourth-order restricted moments 

gives access to the fluctuation of dislocation density and the polarization of the dislocation 

structure in the presence of dislocation dipoles. Groma and coworkers used this procedure to 

calculate the density of dislocations in a copper monocrystal.[134],[135] 
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The major advantage of XRD peak tails analyses is that the intensity measured in these 

zones corresponds to a diffuse scattering originating from areas strongly misoriented with 

respect to the rest of the lattice, namely the immediate vicinity of dislocation lines. In such an 

area, the lattice distortion is exclusively dominated by the nearest dislocation, which means 

that the distribution of dislocations and their correlation have no effect on the diffuse 

scattering signal. This is true even in the case of piled-up distributions, as long as the 

separation between the wave vector �⃗� and the diffraction peak is higher than the inverse mean 

distance between dislocations.[124] The main limitation of analyzing the tails of diffraction peaks 

is the low intensity of the corresponding signal, which can be difficult to distinguish from the 

measurement noise. Hence, on laboratory diffractometers, long measurements with high X-

ray counting times are required. Additionally, to the author’s knowledge, the procedure of 

Groma[134] has not been applied yet to III-N materials. 

Table 4.1 summarizes the characteristics of the different XRD approaches for extraction 

of TD density detailed in the sections 4.1.1 and 4.1.2. 

Method Analysis of misorientation Analysis of micro-strain 

XRD peak zone Center Center 

Hypotheses on 
TD distribution 
& correlation 

Either random distribution or piled-up 
distribution 

Random distribution 

Parameters 
extracted 

𝜌𝑒 , 𝜌𝑠  𝜌𝑡𝑜𝑡 

Applications on 
epitaxial GaN 

MBE,[120] MOVPE,[95] HVPE[136] GaN-on-
Al2O3  

GaN-on-SiC[117] 

GaN-on-Si[137] 

MOVPE GaN-on-Al2O3[95] 

Main 
limitations 

Restrictive TD distribution assumptions  

TD correlation not taken into account 

𝜌𝑒  obtained by extrapolation or 
approximation 

Restrictive TD distribution assumptions  

TD correlation not taken into account 

Assumption on 𝜌𝑠 or 𝜌𝑠/𝜌𝑡𝑜𝑡 required 

Main 
advantages 

Simple application 

Widely used method 

Simple application 

Only one measurement needed 

Unaffected by sample curvature 

Method 
Whole pattern diffraction 

line profile analysis 

Monte Carlo (MC) 

procedure 

Second-order restricted 

moment peak tail analysis 

XRD peak zone Center + tails Center + tails Tails 

Hypotheses on 
TD distribution 
& correlation 

Restricted random 
distribution 

High TD density 

Characteristics of the TD 
ensemble are defined by 
adapting the MC 
procedure 

 No hypotheses 

Parameters 
extracted 

𝜌𝑒 , 𝜌𝑠 

Correlation between TDs 

𝜌𝑒 , 𝜌𝑠 

Other parameters defined 
in the MC procedure 

2nd order moment: 𝜌𝑡𝑜𝑡 
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Table 4.1 : Characteristics of XRD procedures for extraction of TD density. 

Densities of edge TDs, screw TDs and the total density of TDs are respectively noted ρe , ρs and 

ρtot. 

 

4.2. Additional characterization methods 

 

Beyond XRD methods, TD densities can be measured by means of other characterization 

techniques, such as TEM and CL. These two techniques consist in imaging the dislocations on 

a determined area, so they can be counted and their density calculated. Hence, these 

characterizations constitute a more direct measurement of TDs than XRD. It should also be 

noted that TEM and CL are surface measurements, unlike XRD can usually be considered as a 

bulk measurement when considering layers with thicknesses of a few μm. Atomic force 

microscopy (AFM) also permits a similar counting of dislocations by detection of the pits 

forming at the point where TDs intersect the surface. However, this technique will not be used 

here, as it requires a wet etching of the sample surface[139] to clearly reveal small diameter pits 

of edge dislocations. 

 

4.2.1. Transmission electron microscopy 

 

Transmission electron microscopy (TEM) consists in the measurement of an electron 

beam transmitted through a thin material, with a typical thickness around 100 nm. While 

propagating through the material, the electrons undergo several interactions, such as 

absorption and diffraction. The electron beam absorption is critical in TEM measurements. It 

strongly limits the maximum thickness of the sample, to a value which depends on the atomic 

number of the atoms within the material, on the energy of the electron beam and on the 

temperature. For III-N materials, this critical thickness is normally of a few hundred of nm. 

Sample preparations are therefore required to thin the samples, by means of cleavage, 

Higher-order moments: 
Fluctuation of 𝜌𝑡𝑜𝑡 and 
dislocations polarization  

Applications on  
epitaxial GaN 

MBE GaN-on-SiC[124] 
MOVPE & HVPE            
GaN-on-Al2O3[74],[138],[75] 

None 

Main 
limitations 

Complexity: numerical 
method 

Restrictive assumptions 
(random distribution, 
high TD density) 

Complexity: numerical 
method 

Complexity: numerical 
method 

Need for high quality 
measurements 

Main 
advantages 

Enables to quantify of the 
correlation between TDS 

Easily adaptable model of 
TD distribution 

No ensemble averaging 
assumption  

No influence of the TD 
distribution/correlation 
on the TD density 
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mechanical polishing and milling with a focused ion beam. Sample preparation is the main 

drawback of TEM characterization, as it is a long and delicate operation, especially for plan 

view measurements, such as those used to measure TD density. 

In addition to an electron beam source and an electron detector, transmission electron 

microscopes are constituted of a set of lenses (see Figure 4.3a)), which modulate the incident 

and transmitted beam. The transmitted signal can be measured either on the focal plane of the 

objective lens or in the image plane of the projection lens. The first method is called diffraction 

mode, as it permits to observe the spots pattern of the diffracted beam. The second method, 

called the image mode, is used to obtain either bright field or dark field images. 

Bright field images are performed by selecting the transmitted beam and blocking the 

diffracted beams, using a diaphragm placed in the focal plane of the objective lens. A contrast 

between atoms of different mass can be observed on this transmitted beam, while crystalline 

defects cause the electrons to deviate, and so result in a dark area. Conversely, by blocking the 

transmitted beam and imaging using a beam diffracted by an (ℎ𝑘𝑖𝑙) reflection, one performs a 

dark field image. In this case, the image is dark unless for areas of the crystal which follow 

Bragg’s law, for which a diffracted beam is detected and the zone appears bright. 

To obtain an image of the dislocations in III-N samples, a series of dark field 

measurements are carried out, while scanning an area of the thinned sample. A bright contrast 

is seen when dislocations strain the lattice in a direction which has a component along the 

diffraction vector �⃗�. According to the theory of elasticity, this corresponds to the condition 

�⃗�. �⃗⃗� ≠ 0, where �⃗⃗� is the Burgers vector of the dislocation. 

TEM measurements can be performed out either on a cross section of the sample or on its 

surface. The latter method, called a plan-view measurement, is better suited to perform a 

quantification of TDs, owing to the greater quantity of measured dislocations. In plan-view 

mode, TDs are measured by using a (ℎ𝑘𝑖0) reflection such as the (112̅0).[109] According to the 

�⃗�. �⃗⃗� criterion, only edge and mixed dislocations should be visible. Nevertheless, the relaxation 

of screw dislocations at the surface induces a second strain contrast on the TEM images. This 

enables the measurement of the three types of TDs, and even to assess the nature of each 

dislocation. Indeed, by tilting the sample with an angle around 18°,[109] the contrast due to the 

horizontal component of Burgers vectors of edge and mixed dislocations is visible as a dark 

line along the core of the TD. On the other hand, the relaxation on the two interfaces of the 

film, associated to screw and mixed dislocations, appears as a doublet of black-to-white 

contrast perpendicular to �⃗�. Mixed dislocations are therefore identifiable as they involve both 

contrasts. An example of this analysis is presented on the Figure 4.6 of the section 4.3.1. 



 

97 
 

 

 

Figure 4.3 : Complementary techniques for threading dislocation 

characterizations. a) Scheme of a transmission electron microscope. b) Interactions 

between an electron beam and a semiconductor material. 

 

4.2.2. Cathodoluminescence 

 

Cathodoluminescence (CL) is another technique relying on the interaction between an 

electron beam and a material. As shown in Figure 4.3b), one of the interactions between 

electrons and a semiconductor is the creation and subsequent recombination of electron-hole 

pairs, thus generating an emission of photons. CL technique consists in the measurement and 

analysis of this signal of photons. 

This technique can be used to investigate the dislocations at the surface of a GaN crystal. 

In good quality GaN layers, the process of charge recombination leads to an emission of 

photons at an energy defined by the bandgap of the material. At TDs, non-radiative 

recombination occurs, and so there is no photon emission in the vicinity of dislocations.[140],[141] 

By scanning the surface of a sample with the electron beam while measuring the 

cathodoluminescence signal, we obtain an image of the sample, where the TDs appear as dark 

spots with a radius depending on the energy of the electron beam.[141] The quantification of TDs 

is then carried out by counting these dark spots. 

Three examples of CL measurements are presented in the Figure 4.5 of section 4.3.1. 

These images illustrate the main issue with CL measurements, namely the difficult 

measurement of high densities of TDs, as non-luminescent spots tend to overlap. This effect 

can be lowered by reducing the energy of the electron beam, as it is correlated with the vertical 

and lateral penetration of electrons in the crystal (see Figure 4.4), and therefore to the spot 

diameter. For low electron beam energies, TD densities of the order of 109 𝑐𝑚−2 can be 

measured in GaN samples. 
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Figure 4.4 : Simulation of cathodoluminescence electron beam penetration in a 

GaN crystal. The simulation assumes an incident beam acceleration voltage of 3kV. The 

contour lines represent the intensity decay of the electron beam as penetrating into GaN. 

 

4.3. XRD micro-strain measurements for the analysis of 

threading dislocations on GaN-on-Si layers 

 

Despite being the most common XRD method to quantify TD densities, analyses based on 

the peak broadening of lattice misorientation measurements may lack accuracy. As seen in 

section 4.4.1, this is due to the restrictive assumptions made about the distribution of TDs, the 

distribution of Burgers vectors orientation not taken into account, a double counting of mixed 

TDs and a potential additional broadening linked to the sample curvature. On the basis of 

numerical simulations, Kaganer et al. suggested that misorientation analyses may give results 

more than four times underestimated for highly correlated dislocations.[124]  

On the other hand, numerical approaches seek to model the shape of the diffraction peak, 

especially in the diffuse scattering region of the diffraction peaks. Accurate results are expected 

from these methods, as the diffuse scattering of peak tails is not influenced by the distribution 

of TDs nor by their correlation. However, these models involve complex mathematics, which 

are often considered too time consuming to implement for simple metrological studies. Further 

limitations are due to the low intensity of diffuse scattering, which can be difficult to 

distinguish from the measurement noise. Hence, on laboratory diffractometers, long 

measurements with high X-ray counting times are required. 

In order to obtain a measurement that is both reliable and easy to implement, we decided 

to evaluate the alternative peak broadening method based on micro-strain measurements. As 

this analysis is based on the extension range of the strain field around a dislocation, the same 

issues as for misorientation measurements can be raised about the distributions of TDs and of 
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their Burgers vector. The impact on the results may however differ, as the radial micro-strain 

follows a specific 1/𝑟 decreasing trend extending away from the dislocation line (see section 

1.3.1), and no comparison to a peak shape analysis has been made, such as in reference[124] for 

misorientation measurements. We can also note that micro-strain measurements rely on 

(2𝜃 − 𝜔) 𝑠𝑐𝑎𝑛𝑠, which are not affected by the sample curvature. This enables measurements 

on wafers highly bowed by thick heteroepitaxial layers, without reducing the size of the beam 

and thus increasing the measurement time. 

 

4.3.1. Methodology 

 

To carry out the study of micro-strain we used a set of samples of different types. Three 

200mm diameter wafers of GaN(0001)-on-Si(111), grown by MOVPE, are designated as 

samples (1), (2) and (3). The growth parameters have been changed for each of these samples, 

to decrease their quality from GaN/Si(1) to GaN/Si(3). The thickness of the GaN layer is 1.20 

µm for GaN/Si(1), 1.90 µm for GaN/Si(2) and 1.85 µm for GaN/Si(3). Note that sample 

GaN/Si(3) corresponds to the sample used for the stress gradient analyses of chapter 3. 

We also used three samples with low stress gradients, namely a 3 µm thick GaN sample 

directly grown by MOVPE on a sapphire substrate, a 2 µm thick GaN sample grown by MOVPE 

on an AlN nucleation layer on SiC substrate and a freestanding GaN sample. 

All the XRD data were acquired on the laboratory PANalytical X’Pert Pro diffractometer 

(see section 2.3.3). The measurements were made in high resolution mode, with an 

asymmetrical four bounce Ge(220) primary optic and an analyzer crystal in front of the 

detector, in order to minimize the impact of instrumental resolution and diffraction size effects 

on asymmetric reflections. Cross-slits were kept fully open, so the measured intensity is 

maximized. This configuration is the same than the one used for measurements in the chapter 

3 and the instrumental resolution presented in Figure 3.10 also applies to these 

measurements. In the following, the peak width of XRD micro-strain measurements is 

corrected accordingly, by using equation (2.23). 

As detailed in section 4.1.1.b), TD quantification using their micro-strain relies on the 

measurement of 𝜔 − 2𝜃 radial scans of the reciprocal space. The scans were acquired in skew-

symmetric geometry, allowing the measurement of a larger set of reflections on the 

diffractometer. The experimental peak width is linked to both the densities of screw and edge 

dislocations. Hence, an assumption has to be made on one of these two density parameters. As 

screw dislocations show typical densities significantly lower than that of edge dislocations,[4] 

their impact on the broadening of the diffracted peak is limited. The value of screw dislocations 

density extracted from tilt measurements by employing equation (4.3) is therefore used in the 

calculations of 𝑅𝑠 and 〈휀𝑠
2〉 (equations (4.10) and (4.8)). 

This leaves the density of edge TDs 𝜌𝑒 as the only remaining variable to calculate the peak 

broadening. However, according to equation (4.7), 〈휀𝑒
2〉 has a  n (

𝑅𝑠 𝑟0⁄

𝑅𝑠
) = −2𝜌𝑒  n(𝜌𝑒) −



100 
 

4  n(2𝑟0)𝜌𝑒 dependence, which does not allow to write 𝜌𝑒 in a simple algebraic form. Hence, we 

used two equivalent approaches to calculate 𝜌𝑒: 

• We choose an initial guess for the value of 𝜌𝑒 and calculate the values of 𝑅𝑒 and 〈휀𝑒
2〉 

(equations (4.9) and (4.7), with 𝜈 = 0.183), and finally the total mean squared strain (i.e. 

from edge and screw TDs) and the corresponding peak broadening 𝛽𝜀 (equations (4.11) 

and (4.5)). The calculated 𝛽𝜀 is compared to the width of the measured peak, after 

correction of the instrumental broadening. These operations are repeated with different 

vales of 𝜌𝑒 until 𝛽𝜀 corresponds to the experimental peak width. This procedure can easily 

be carried out with a spreadsheet software, but requires to manually change the parameter 

𝜌𝑒. 

 

• As the first procedure can be rather tedious when analyzing large datasets, we propose an 

alternative automatized approach. By using equations (4.11), (4.5), (4.7) and (4.9), we can 

write the density of edge dislocations under the form: 

 𝑎𝜌𝑒  n(𝜌𝑒) + 𝑏𝜌𝑒 + 𝑐 = 0 (4.14) 

where: 

𝑎 = −2 

𝑏 = −4  n(2𝑟0) 

𝑐 =
〈휀𝑠
2〉 −

𝛽𝜀
2

8 𝑙𝑛 2 𝑡𝑎𝑛2𝜃 
𝑏𝑒
2𝐴
3𝜋2

(𝐵(𝑐𝑜𝑠2𝛥1 + 𝑐𝑜𝑠
2𝛥2 + 𝑐𝑜𝑠

2𝛥3) + (𝐵 − 2)(𝑐𝑜𝑠
2𝛹1 + 𝑐𝑜𝑠

2𝛹2 + 𝑐𝑜𝑠
2𝛹3))

 

 

Δ𝑛 and Ψ𝑛, 𝑛 ∈ (1,3) being the geometric terms for each of the three edge dislocation 

systems. 

Equation (4.14) can be resolved by means of a Lambert W function, as shown in 

Appendix 3. The density of edge TDs has two real number solutions, as 
− 𝑐

𝑎
 xp (

𝑏

𝑎
) < 0. 

The density of edge TDs is given by the 𝑊−1(𝑧) branch of the Lambert W function: 

 
𝜌𝑒 =  xp (𝑊−1 (

− 𝑐

𝑎
 xp

𝑏

𝑎
) −

𝑏

𝑎
) (4.15) 

Various numerical codes propose pre-built functions to evaluate 𝑊0(𝑧), allowing a simple 

calculation of Equation (4.15). 

For both solutions presented above, the total dislocation density is finally found by adding 

together 𝜌𝑠 and 𝜌𝑒. 

As a basis of comparison for the micro-strain measurements, we used several alternative 

measurements of TD densities, namely XRD misorientation, TEM and CL measurements. 𝜔 

scan measurements of tilt and twist were carried out on the (0004) plane, for screw dislocations 

quantification, and in skew-symmetric mode on the highly tilted (202̅1) plane for the 
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measurement of edge dislocations. As misorientation measurement is intended to be a fast 

analysis of the TD density, (202̅1) is considered to give a good enough approximation of the 

twist value and no twist extrapolation is made (see section 4.1.1.b)). Both edge and screw TD 

densities are then added together to get the global result. The (0004) reflection has been chosen 

for tilt measurements owing to its higher Bragg angle and beam incidence angle than the 

(0002). As shown in the equation (2.24), this limits the additional broadening due to the 

curvature of the sample, without having to reduce the size of the beam with cross-slits. 

CL measurements were carried out on an Allalin instrument from Attolight. In this tool, a 

focused electron beam scans the sample while the optical emission is collected and analyzed 

by a spectrometer. This spectrometer consists of a 320 mm monochromator, from Horiba 

Jobin Yvon, fitted with a 1024 × 1024 EMCDD high-speed camera adapted for UV-visible 

detection (200 nm -1100 nm). The camera enables near-instant acquisition of the entire 

emission spectrum. In all experiments, the sample is measured at room temperature. 

For measurements on the samples GaN/Si(1), GaN/Si(2), GaN/SiC and GaN/Al2O3, the 

current and acceleration voltage of the incident beam are set to a few nA and 3 kV respectively, 

leading to a relatively low energy for the incident electrons. This reduces the diameter of the 

dark contrast spots around TDs, which is linked to the excited volume of crystal and therefore 

to the beam energy.[141] Hence, the overlap of dark spots on CL cartographies is reduced, 

enabling the counting of TDs up to a density of about 2×109 cm-2. For each sample, two 

cartographies are measured, corresponding to a total investigated area of 105 µm². For the 

freestanding GaN sample, low dislocation density requires to image larger areas of the sample 

to increase counting statistics. Three measurements are carried out, on a total surface of 3840 

µm². The beam acceleration voltage is raised to 10 kV in order to obtain well defined spots with 

an increased size of several pixels. Figure 4.5 shows examples of three of our measured CL 

images. We can see that a higher density of dislocations on GaN/Si(2) sample makes the 

dislocation count more difficult than for GaN/SiC or freestanding GaN samples. 
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Figure 4.5 : Dislocation imaging using cathodoluminescence. a) GaN/SiC sample. b) 

GaN/Si(2) sample. c) GaN freestanding sample. Each dark spot corresponds to a TD. 

TEM measurements were carried out in plan view mode to quantify the density of edge, 

screw and mixed TDs. The samples of GaN-on-Si (1) and (2) were prepared by means of a 

mechanical polishing and a milling with a 7° incidence ion beam, on a Gatan PIPS II machine, 

allowing measurements on areas between 5 µm² and 30 µm². TEM measurements were carried 

out on a ThermoFisher Osiris microscope. Bright-field plan view images were recorded in 

scanning microprobe mode, by using a condenser aperture of 50 µm. The images were recorded 

with a 15000-fold magnification for the sample GaN/Si(1) and a 11000-fold magnification for 

GaN/Si(2). A good counting statistic was achieved, ranging from 100 to 250 TDs per image, as 

shown in Figure 4.6. 

 

 

Figure 4.6 : Dislocation imaging using plan view TEM. Measurement carried out on 

the sample GaN/Si(2). Examples of edge (E), screw (S) and mixed (M) dislocations are shown. 
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4.3.2. Issues encountered in the case of layers with high stress 

gradients 

 

As we have seen in the section 1.3.2 and the chapter 3, GaN samples may be unevenly 

strained, owing to the presence of in-depth stress gradients. This varying strain introduces a 

second source of broadening to the radial XRD peaks, which adds to the micro-strain 

broadening. Note that this broadening can be asymmetrical, depending on the gradient shape, 

while the broadening from micro-strain is always symmetrical (see section 2.4.3). The stress 

gradient is especially strong in GaN-on-Si samples and has therefore a large influence on the 

diffraction peak shape compared to GaN grown on SiC. As shown in Figure 4.7, the diffraction 

measurements show a quasi-symmetrical broadening of the peaks in the case of the GaN 

sample grown on a SiC substrate, likely indicating a broadening mainly induced by the micro-

strain effect. By contrast, the GaN-on-Si sample shows a clear asymmetrical broadening, as the 

diffracting peaks are also altered by the stress gradient. Consequently, the width of the peak is 

not only affected by the micro-strain magnitude and so cannot be directly used to quantify the 

TD density. 

 

Figure 4.7 : Shapes of 𝟐𝛉 −𝛚 peaks for different inclinations 𝛘 of the diffracting 

plane with respect to the surface. a) (303̅2) plane, at χ = 70.45°. b) (202̅5), at χ = 36.91°. 

c) (101̅6) plane, at χ = 17.38°. Blue line: GaN/Si (2) sample. Red line: GaN/SiC sample. The 

peaks of the two samples have been aligned to the same 2θ position. 

Nevertheless, the value of the strain in these samples varies with the direction of 

observation. Assuming a biaxial in-plane stress acting on the layer, the resulting strain field for 

a hexagonal crystal like GaN, (0001) oriented along the z axis, is such that the strain value 휀𝜒𝜙  

at a given orientation (𝜒𝜙) is:[138] 

 휀𝜒𝜙(𝑧) = 𝜎(𝑧)((𝑆11 + 𝑆12 − 2𝑆13) 𝑠𝑖𝑛
2𝜒 + 2𝑆13) (4.16) 

where at a depth 𝑧, 𝜎(𝑧) is the biaxial in-plane stress. 휀𝜒𝜙 is the resulting expansion or 

contraction of the lattice in a particular direction (𝜒𝜙). This direction is defined by an angle 𝜒, 

which is its inclination with respect to the surface of the layer, and an angle 𝜙 around the 

normal of the surface. 𝑆11, 𝑆12 and 𝑆13 are the elastic constants of GaN. 

Figure 4.8 illustrates the consequences of this equation. A tensile biaxial in-plane stress 

leads to a negative compressive strain in the direction normal to the surface, due to the Poisson 
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effect. The strain value progressively increases when tilting the direction of observation 

(increasing 𝜒), until changing its sign and becoming positive when parallel to the surface. 

Necessarily, in between, there is a direction for which the strain is zero. This direction 𝜒0 can 

be calculated by a straightforward modification of equation (4.16): 

 
𝑠𝑖𝑛2𝜒0 =

−2𝑆13
𝑆11 + 𝑆12 − 2𝑆13

 (4.17) 

Using the elastic constants of GaN (S11 = 3.0067 TPa-1, S12 = -0.9616 TPa-1, S13 = -0.5217 

TPa-1),[12] we find this zero strain inclination to be 35.54°. 

 

 

Figure 4.8 : Effect of a tensile biaxial stress on a hexagonal crystal of GaN. εχϕ is 

negative in the (χϕ) directions represented by the green area and positive in directions 

represented by the red area. 

As we saw in Figure 4.7 a), using a diffracting plane with low tilt with respect to the 

surface leads to an asymmetrical broadening on the lower angle side of the peak of GaN-on-Si, 

as a result of the measurement of a negative macro-strain (a compression of the cell). The same 

measurement on a highly tilted plane (Figure 4.7 c)) leads to a broadening on the higher 

angle side of the peak, associated with a positive micro-strain (a dilation of the cell). If we 

choose a diffracting plane with an inclination close to 35.54°, such as the (20-25) reflection 

(36.91° with respect to the surface), the sample is observed in a direction for which the strain 

value is almost zero. Consequently, the broadening of the diffraction peak is no longer affected 

by the stress gradient, and so only influenced by the dislocations. The peak is therefore 

symmetrical and its width can be used for the micro-strain calculation of TD density. 

 

𝑧 

𝜒 

(101̅6)  
𝜒 = 17.38°  

Neutral angle 

𝜒 = 35.54° 

(303̅2)  
𝜒 = 70.45°  
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4.3.3. Highlight of the stress gradient effect 

 

To examine the effect of a stress gradient on micro-strain TD density measurements, we 

studied the trends of the different contributions to the mean absolute strain ⟨|휀|⟩ in the 

samples, when changing the inclination 𝜒 of the diffracted plane with respect to the surface. 

 In the micro-strain model, the strain distribution is assumed to be Gaussian, with a 

probability density function 𝑃(휀) = 𝑘  xp (−𝑐2휀2).[87] Hence √〈휀2〉 = 1/(√2𝑐) and 〈|휀|〉 =

1/(√𝜋𝑐) (expectation of a half-normal distribution), which leads to: 

 〈|휀|〉 = √2/𝜋 √〈휀²〉 (4.18) 

Using equations (4.8), (4.10) and (4.18), we obtain a linear relation for the screw 

dislocation contribution to the mean absolute strain ⟨|휀𝑠|⟩ versus  in𝜒, with a slope 𝛼𝑠 

depending on the screw TD density: 

 ⟨|휀𝑠|⟩ = 𝛼𝑠(𝜌𝑠) 𝑠𝑖𝑛 𝜒 (4.19) 

For edge dislocations, we find that the average geometrical term (2.45 𝑐𝑜𝑠2Δ +

 0.45 𝑐𝑜𝑠2Ψ) for the three dislocation systems is proportional to 𝑠𝑖𝑛2𝜒. Hence, the contribution 

of edge type dislocations to the mean absolute strain ⟨|휀𝑒|⟩ has a slope 𝛼𝑒 versus  in𝜒: 

 ⟨|휀𝑒|⟩ = 𝛼𝑒(𝜌𝑒) 𝑠𝑖𝑛 𝜒 (4.20) 

The complete demonstration for equations (4.19) and (4.20) is given in Appendix 4. 

Equations (4.19) and (4.20) are used in Figure 4.9 to fit the variation of the micro-strain 

influence with the inclination of the diffracting plane. The values of the slopes are chosen 

arbitrarily, with a factor of two between 𝛼𝑠 and 𝛼𝑒, corresponding to a density of edge TDs 

about ten times higher than the screw TD one. The behavior of the mean absolute strain ⟨|휀𝑔|⟩ 

coming from the stress gradient is found directly from Equation (4.16): 

 
⟨|휀𝑔|⟩ = ⟨|휀𝜒=0|⟩ |1 +

(𝑆11 + 𝑆12 − 2𝑆13)

2𝑆13  

 𝑠𝑖𝑛2𝜒| (4.21) 

With ⟨|휀𝜒=0|⟩ the absolute mean value of the strain gradient in the direction normal to the 

surface. 
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Figure 4.9 : Variation of different contributions to the mean absolute strain 

versus the inclination 𝛘 with respect to the surface. 

In Figure 4.9, the total ⟨|휀|⟩ is assumed to be the sum of contributions ⟨|휀𝑠|⟩ and ⟨|휀𝑒|⟩ 

from dislocations and ⟨|휀𝑔|⟩ from the stress gradient. The corresponding curve is v-shaped, 

with a minimum close to the tilt corresponding to the (202̅5) diffracting plane. The total strain 

measured on sample GaN/Si(3) has been added to the plot and matches quite well with the 

theoretical curve, implying that we can consider the strain to be dominated by the stress 

gradient and the dislocation density. The measured strain is extracted from the full width at 

half-maximum 𝛽 of 2𝜃 − 𝜔 diffraction peaks by using the equation (2.27). Note that the 

average strain value of the three symmetrical reflections (0002), (0004) and (0006) is taken as 

⟨|휀𝜒=0|⟩ parameter for plotting the stress gradient behavior. 

Having validated this preliminary analysis, we carried out micro-strain measurements on 

each of the five samples grown on hetero-substrates, on a set of diffracting planes with different 

inclinations 𝜒, and calculated the TD densities corresponding to the measured widths, as 

detailed in the section 4.1.1.b). The results are plotted against the inclination of the diffracting 

planes in Figure 4.10. For each specimen, the magnitude of the stress gradient is estimated 

by extracting the RMS value 휀𝜒=0 of the associated strain gradient, shown on the top of each 

graph. This value is derived from the slope of Williamson-Hall plots of the symmetric (0002), 

(0004) and (0006) reflections. 
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Figure 4.10 : Total density of threading dislocations calculated from micro-strain 

measurements on crystal planes with varying inclination  with respect to the 

surface. At the top of each graph, εχ=0 is the RMS value, in the direction normal to the surface, 

of the macro-strain induced by the stress gradient. The red points denote the (202̅5) reflection, 

for which the stress gradient should have no effect on the calculated TD density. 

By comparing the five graphs in Figure 4.10, we observe that the stronger the stress 

gradient of the sample is, the more the plots tend to adopt a V-shape, with a minimum for the 

(202̅5) plane. This behavior is the result of an additional macro-strain broadening at high and 

low inclinations, as seen in Figure 4.9, which leads to an overestimation of TD densities for 

the corresponding reflections. This effect is increasingly apparent with the increase of 휀𝜒=0. 

The shape evolution of the plots highlights the fact that, in some of the samples like GaN/Si(3), 

the stress gradient has a non-negligible effect and that the use of (202̅5) planes is therefore 

essential to properly measure the micro-strain TD density. 

On the other hand, when considering the peak broadening of GaN/Al2O3 sample, we 

assume the macro-strain contribution to be negligible compared to the micro-strain 

contribution, as this sample has the lowest stress gradient magnitude. On this sample, the V-

shape was thus expected to be replaced by a constant value of TD density for all 𝜒 inclinations. 

Instead, a decreasing tendency is observed and seems to appear to some extent in the graphs 

of all the samples. The same trend has been observed when processing the data of the reference 

paper on micro-strain measurement on GaN from Metzger at al.[95] This may indicate that 

another effect, not considered in the model, is responsible for an additional broadening at low 

inclination with respect to the surface. 

To address this issue, we carried out analyses on the magnitude of size effects in our 

samples by using Williamson-Hall plots. The results showed that dimensional effects were 

negligible. An example of this analysis is presented on Figure 4.11 for sample GaN/Si(1), 

which gives very high correlation lengths of 1.9 µm for the lateral one (𝐿// ) and 2.0 µm for the 

normal one (𝐿┴). 
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Figure 4.11 : Williamson-Hall plots for size effect estimate. The analysis is carried 

out for the sample GaN/Si(1), on symmetrical (0002), (0004) and (0006) reflections. a) 

Analysis of the full width at half maximum β(2θ − ω) of the diffracted peak of 2θ − ω scans. b) 

Analysis of the full width at half maximum β(ω) of the diffracted peak of ω scans. The lateral 

and normal correlation length L//  and L┴ are found at the y-intercept of the linear fits. 

The unexpected decreasing trend is neither due to the choice of the Poisson ratio value 𝜈. 

As shown in Figure 4.12, the shape of curves in Figure 4.10 does not vary with the value of 

Poisson ratio. This trend is also unaffected by the use of either equation (4.6) from Hordon et 

Averbach or the formula that we demonstrated (equation (4.7)), for the calculation of the mean 

squared edge TDs micro-strain. In fact, our GaN-suited results give an estimate of TD 

dislocation of GaN/Si(2) sample 22%-27% higher than if simply using the theory of Hordon et 

Averbach derived for copper crystals. This result is almost independent of the reflection used 

for the micro-strain measurement and similar results are found for the other samples. In 

details, the changeover to equation (4.7) at constant 𝜈 = 1/3 accounts for a 6.5%-8.5% increase 

of the calculated TD density and the subsequent reduction of Poisson ratio to 𝜈 = 0.183 for an 

additional 14%-17% increase. 

 

Figure 4.12 : Threading dislocation densities calculated with different formulas 

of edge threading dislocation mean squared micro-strain. The graphs are plotted 

using the data of GaN/Si(2) sample. a) The evolution of the total TD density with the 
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inclination χ of the diffracting plane is calculated using equation (4.6), which assumes a 

Poisson ratio ν = 1/3 and equation (4.7), with Poisson ratios of ν = 1/3 and ν = 0.183. b) For 

each reflection, the TD density is normalized so the result of equation (4.6) is equal to unity. 

Hence, no conclusive statement can be made about the origin of the observed decreasing 

trend. Further investigations would be needed to resolve this issue, which could affect the 

accuracy of micro-strain measurements. 

 

4.3.4. Comparison with other measurement techniques 

 

Along with the micro-strain measurements, we performed TD density quantifications with 

rotational disorder based XRD, CL and plan view TEM techniques. For the misorientations 

measurements, we show the results of two models, from Dunn et Koch and from Kurtz et al., 

to highlight the diversity of existing calculations and the consequent variations in the results 

(about a factor 2 between these two models). These two models are compatible in terms of 

hypothesis with micro-strain analyses, as they assume a random distribution of TDs in the 

surface plane. Conversely, piled-up distribution models are not considered for the TD 

quantification, due to errors associated with the evaluation of the X-ray correlation length 

parameter (see section 4.1.1.a)). 

The TD densities measured on GaN/SiC, GaN/Al2O3, GaN/Si(1) and GaN/Si(2) are 

compiled in Figure 4.13. 

 

Figure 4.13 : Total density of threading dislocations found with XRD, CL and TEM 

characterization techniques for different GaN samples. Hatched bars correspond to 

cross section TEM counting of TDs, made on thin (~100 nm) samples prepared by focused ion 

beam. Due to the low number of TDs on these samples, these measurements are associated to 

a high statistical imprecision. The error bars shown on the graph correspond to a ± 3 TD count 

and a ± 5 nm sample thickness accuracy. 

We observe that micro-strain and misorientations, especially with the Dunn and Koch 

model, give similar results, whereas CL and TEM measurements generally lead to lower 
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dislocations densities. This can be explained by at least three factors. Firstly, the counting of 

TDs in CL maps tends to underestimate the density of dislocations. This happens when the 

distance between two TDs is so short that the dark spots surrounding them in a CL image 

overlap. This effect is particularly strong when TDs form clusters, which is marginally observed 

in the CL images of Figure 4.5. A similar underestimate of dislocations within TD clusters 

may also happen, to some extent, when analyzing TEM images.  

Secondly, we have seen that, in XRD measurements, each mixed dislocation is considered 

to be composed of one screw and one edge dislocation. The total TD density given by micro-

strain and misorientations measurements is therefore overestimated, as mixed TDs are 

counted twice. This error can be estimated by using the plan view TEM images, which is the 

only measurement allowing to distinguish mixed TDs from screw and edge TDs. This analysis 

resulted in densities of mixed TD at the surface of 2.6 108 𝑐𝑚−2 (34% of TDs) for GaN/Si(1) 

and 4.3 108 𝑐𝑚−2 (23% of TDs) for GaN/Si(2). As a first approximation, we can subtract these 

values from the total densities of dislocations found by XRD. The value obtained by XRD 

misorientation measurements (Dunn and Koch model) and by TEM would then closely match 

for these two samples, while XRD micro-strain would still result in higher TD densities. Note 

that the count of mixed dislocations suffers from a further incertitude, due to the difficulty to 

distinguish between edge and mixed type for some TDs. 

The third explanation arises from the difference in the measurement depths between the 

three techniques. Due to the low energy of its electron beam, CL is a surface measurement, 

with a collected signal coming from the top 70 nm of the GaN layer. Similarly, during TEM 

sample preparation, only the surface of the specimen is preserved, i.e. the top 80nm to 300nm. 

On the other hand, the attenuation length of the XRD beam in a GaN crystal exceeds 30 µm. 

Hence the whole GaN layer, which is 1 to 3 µm thick, is probed when diffraction measurements 

are performed. As the density of threading dislocations decreases from the buffer-GaN or 

substrate-GaN interface to the GaN surface, as shown in TEM images of Figure 4.14, it is 

normal to find a lower TD density for TEM and CL measurements. 

However, for the GaN grown on SiC, the CL result is higher than those from XRD 

measurements. This is likely due to a different evolution of the TD density through the GaN 

layer in this sample. We expect samples on sapphire and silicon substrates to start with high 

dislocation densities at the nucleation layer, followed by a substantial density decrease when 

approaching the surface, while GaN on SiC substrate shows a good quality at the interface with 

the AlN buffer and less TD density variation. This assertion is supported by TEM cross section 

observations shown in Figure 4.14. 
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Figure 4.14 : TEM images of TDs in GaN layers measured in cross section. a) 

Sample GaN/Si(1). b) Sample GaN/Al2O3. c) Sample GaN/SiC. The separation between the 

GaN layer and the AlGaN buffer / the Al2O3 substrate / the AlN layer on SiC substrate is shown 

with a red line. 

We also observe varying differences between misorientations and micro-strain 

measurements when changing the type of sample, probably due to differences in the 

dislocation arrangement. Despite the very common use of misorientations measurements for 

TD quantification, both XRD methods should therefore be used with care. We would therefore 

recommend using these techniques only to compare samples grown on the same substrates 

with similar epitaxy conditions. 

Results of freestanding GaN sample are not included on Figure 4.13 as we found that the 

widths of 2𝜃 − 𝜔 scan peaks correspond to the instrumental resolution of the diffractometer. 

For the (205) reflection, it appears that the broadening components from instrumental 

resolution and from micro-strain are equal for a TD density of 3 × 107𝑐𝑚−2 (assuming 

respectively 90% and 10% of edge and screw TDs). We consider this value as being the low 

threshold of TD density measurable with micro-strain measurements with our material setup. 

Freestanding GaN specimens typically have TD densities below this limit, such as the value of 

5.1 × 105𝑐𝑚−2 measured by CL on our sample. Micro-strain measurements are therefore not 

suited for this kind of sample, unless lowering the instrumental resolution of radial scans. At 

the cost of a reduction of the measured intensity, this might be achieved by using a 

monochromator/analyzer crystal with non-standard geometry, or made of crystals with a 

lower Darwin width than the Ge crystals used in these experiments. Conversely, according to 

equation (2.23), a 5% increase of peak width is induced by an FWHM instrumental resolution 

3.12 times lower than the peak width predicted by the micro-strain model. On the (205) 

reflection, with the previous assumption on the screw/edge ratio, this corresponds to a TD 

density of less than 5 × 108𝑐𝑚−2. Above this limit, the effect of instrumental broadening may 

be neglected. 

 

We have carried out an evaluation of XRD micro-strain measurement of TD density on a 

set of GaN samples grown on various substrates. In the case of GaN-on-Si layers, the presence 

of high stress gradients was shown to affect micro-strain measurements by inducing an 
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additional broadening on the diffracted peaks. We emphasized the impact of this issue in our 

measurements and solved it by using the (202̅5) diffracting plane. 

A comparison between XRD micro-strain, XRD misorientation, CL and TEM 

measurements has been carried out. For the XRD measurements, we show that micro-strain 

measurement is a complementary method to misorientation measurements for TD 

quantification, for densities ≳ 3 × 107𝑐𝑚−2 . The results confirm that Dunn and Koch model is 

better suited than Kurtz model for misorientation measurements in GaN layers, as expected 

from the literature. Both XRD measurements are easy to implement and could be combined to 

obtain an edge-screw TD ratio from misorientations, and the global dislocation density from 

micro-strain. However, the models associated with the XRD methods do not properly take into 

account all the existing distributions and correlations of the TDs. 

When combined with CL and TEM data, these XRD analyses highlighted the difference of 

measurement depth between the different techniques. XRD gives a result averaged over the 

whole layer depth, while the low energy electron beam of CL enables the measurement of TD 

densities up to 2 × 109 𝑐𝑚−2, but only probes the top 100 nm of the sample. TEM 

characterization, which can also be considered as a surface measurement, gives the TD density 

in the first few hundred nm of the layer, and is therefore roughly comparable to CL. The 

difference in analysis depth typically results in higher estimates of the TD density for XRD 

measurements. Furthermore, the variation of the mismatch between CL and XRD results, for 

samples grown on SiC, on Si and on sapphire, probably indicates a different behavior in the TD 

density reduction through the GaN layer. A full analysis of this issue should also take into 

account the differences in layer thicknesses, which probably explain the increased mismatch 

between CL and XRD results for the GaN/Si (2) sample, whose GaN layer is about 60% thicker 

than for GaN/Si (1). These analyses show that XRD measurements show varying behavior 

when very different samples are characterized and so they are most appropriate when 

comparing similar specimens. 

To correctly compare the density of TDs measured by XRD and by complementary 

characterizations, such as TEM and CL, it is necessary to know the evolution of TDs through 

the GaN film. To better understand this limit, we present in the following chapter an in-depth 

XRD study of progressively etched GaN layers.
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5. In-depth analysis of GaN layers 
 

In the third and fourth chapters, we experienced difficulties when measuring TD densities 

and stress states in GaN-on-Si samples, as these values vary significantly within the thickness 

of GaN films, from the interface with buffer layers to the surface. The underlying problem is 

that the absorption of X-rays is low in this material, so XRD measurements typically probe the 

whole depth of µm-thick layers of GaN. The diffraction signal thus obtained is affected by all 

the conditions throughout the layer thickness and it is complex to extract each of these 

contributions to obtain a profile of stress, a profile of TD density, or even a value of TD density 

at the surface. 

In order to obtain reliable measurements of profiles of stress and of TD density, we carried 

out a detailed measurement of these two properties on GaN-on-Si layers which were processed 

through cycles of etching and characterization. This chapter describes the principle of these 

measurements and of the subsequent analyses. The measured profile of strain is used to further 

assess the accuracy of our program of stress gradient analysis. The TD density profiles obtained 

from XRD lattice misorientation and micro-strain measurements are compared, and the 

discrepancy with CL measurements is analyzed. We finally study the close correlation between 

the reduction of TDs and the relaxation of compressive stresses within the GaN film. 

 

5.1. Measurement Principle 

 

The goal of this study is to analyze in-depth local characteristics of GaN-on-Si layers, by 

alternating cycles of characterizations and of reduction of GaN thickness by dry-etching the 

sample. As XRD based characterizations analyze the whole depth of remaining portions of 

GaN, several samples were used to perform etching from both the front-side and the back-side 

of the film. 

To this end, a batch of 200 mm diameter GaN-on-Si samples were grown by MOVPE at 

CEA-Leti, with an intended thickness of GaN layers of 2300 nm. One of these samples was 

transferred onto a new (001) oriented substrate of silicon, by bonding it to the GaN surface by 

means of Ti/TiN layers. The initial (111) oriented Si substrate was subsequently removed by 

mechanical polishing and chemical etching. AlN and AlGaN buffer layers were also etched by 

reactive ion etching to reveal the face of the GaN film corresponding to the AlGaN/GaN 

interface, now located at the surface of the sample. 

Measurement/etching cycles were then carried out on both the initial samples (Figure 

5.1 a)) and the transferred sample (Figure 5.1 b)). On the initial samples, five etching cycles 

were performed on a first specimen (sample (1)), with respective intended etching depths of 

(30 – 470 – 500 – 500 – 500) nm. Since we found that the whole GaN layer was removed after 

the fifth etching, the process was repeated on a second identical specimen (sample (2)), with 

etching depths of (1500-100-150-150) nm. Etching steps were carried out in two phases: a 
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reactive ion etching followed by an atomic layer etching for the last 10 nm to be removed. This 

final phase aims at limiting the introduction of strain within the sample during etching steps. 

We used XRD measurements to verify that the first 30 nm etching on sample (1) had no 

significant impact on the stress state of the GaN layer. 

 

Figure 5.1 : Samples used for in-depth study of GaN-on-Si. a) Initial stack, as obtained 

by epitaxy. Corresponds to samples (1) and (2). b) Sample after transfer on a (001) Si substrate 

and removal of the initial (111) Si substrate and AlN/AlGaN buffer layers. Corresponds to 

sample (3). Each of the three samples is progressively etched from its surface. 

Before each etching step and after the last ones, a series of characterizations was 

performed, including: 

• Reflectometry and Ellipsometry measurements of the GaN layer thickness. 

• XRD measurements of the density of TDs (micro-strain and lattice misorientation 

measurements), of the strain state and of X-ray correlation lengths in the GaN layer. The 

curvature of the sample was also measured to monitor the evolution of stresses within the 

sample. 

• Raman measurements of the mean in-plane stress within the GaN layer. 

On the transferred specimen (sample (3)), six etching cycles were performed. The first one 

corresponds to the removal of AlN/AlGaN buffers. During this operation, the aluminum 

content in the evacuated gas was monitored, so we could detect the moment when the last 

buffer layer was entirely removed. We stopped this first etching when a drop of the Al-

concentration was detected. We observed that the etching rate was higher at the center of the 

wafer than at its edges. As a result, the GaN layer underwent a slight etching of around 140 

nm, according to ellipsometry measurements. The intended etching depths of the five following 

cycles were respectively (45 – 75 – 150 – 300 – 600) nm, although the actual etching were 

measured to be 50%-70% deeper. This may be because we are etching the N-face of the GaN 

layer, which is more reactive than the standard Ga-face. The same characterizations as for 

samples (1) and (2) were performed, except for Raman measurements, due to time restrictions 

for processing the batch before the end of the thesis. 

 

5.2. In-depth stress gradient analysis 

5.2.1. Extraction of the stress gradient 

a) Theoretical bases 
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As explained in the section 1.3.2, GaN-on-Si layers analyzed in this thesis are grown under 

compressive in-plane stress, as their lattice parameter is greater than the one of buffer layers 

beneath. As shown in the measurements and simulations of chapter 3, this strain is 

progressively relaxed during the growth, essentially owing to the recombination of TDs. During 

the post-epitaxial cooling phase, a tensile stress is introduced in the epitaxial layers, due to the 

mismatch of thermal expansion coefficients with the silicon substrate. This leads to a global 

shift of stress profiles within the epitaxial layers toward tensile values, as depicted in Figure 

5.2. Note that there is a slight variation in the magnitude of this shift for each epitaxial layer, 

due to the different coefficients of thermal expansion of AlN and GaN. Besides the shift toward 

tensile values, we can assume that the shape of the stress profiles remain the same during the 

cooling process.[61] 

 

Figure 5.2 : Evolution of in-depth stress profiles within the sample GaN-on-Si (3) 

during its fabrication. For each step of fabrication of the sample, diagrams of the sample 

curvature, of the layer stack structure and of profiles of in-plane stress within these layers are 

shown. For the sake of simplicity, the second AlGaN buffer and the bonding layers are not 

depicted. The curvature is a direct image of the distribution of strain within the sample. A 

concave wafer corresponds to an average tensile stress within the surface layers, a convex wafer 

to an average compressive stress within the surface layers. The slight wafer curvature depicted 

after the growth of the AlN layer stems from a gradient of temperature within the sample. This 

additional curvature disappears after the post-epitaxy cooling step. Rc values correspond to 

curvature radii measured by XRD. A schematic shape of stress profiles is shown on the graphs 

below. Profiles corresponding to the previous step are depicted in dashed lines to easily follow 

the evolution of stress during the process. The introduction of tensile strain in the substrate 

during the epitaxial growth is exaggerated in the plots, so that it is noticeable. It is actually very 

slight, owing to the large thickness of the substrate compared to epitaxial layers. 

The transfer of sample (3) on a relaxed Si(001) substrate does not lead to any modification 

of the stress state. We assume that no sliding of the GaN layer nor the Si(001) substrate over 

the bonding layers occurs during the process. The lattice parameter of GaN is therefore fixed 

at its interface with the new substrate. Hence, the subsequent removal of Si(111) substrate and 

buffer layers does not attenuate the stress gradient within GaN. This is confirmed by 

comparing XRD measurements performed before etching buffer layers and after etching the 

AlN layer, the Al0.5Ga0.5N layer and about 90% of the last Al0.25Ga0.75N buffer layer. As shown 

in Figure 5.3, the XRD profile of GaN remains the same, as its in-depth strain field is not 

modified. Hence, the shape of the stress gradient of GaN stays exactly the same in the 

transferred sample (3) as in samples (1) and (2). The stress profile is uniformly shifted toward 
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compressive stresses, as the tensile stress within epitaxial layers is slightly reduced when 

removing the initial Si(111) substrate, by compressing the Si(001) substrate. 

 

Figure 5.3 : Evolution of XRD profiles during the removal of buffer layers in the 

sample GaN-on-Si (3). Plot of (002) radial XRD scans centered on the GaN peak (relative 

angles measurement, intensity in log scale), before removal, after partial removal and after 

complete removal of the buffer layers. For the intermediate measurement, the etching 

operation was stopped for measurement just before completing the etching of the last buffer 

layer. From the full XRD profiles shown in the inset, we used the ratio of areas below 

Al0.25Ga0.75N peaks to estimate that 90% of the layer was removed. 

When progressively etching the GaN film, the stress profile in the remaining layer also 

appears unaltered, for the same reasons than discussed above to explain the result of Figure 

5.3. A slight relaxation may occur at the GaN surface, especially at the edge of the sample. 

However, the in-depth extent of this relaxation should be limited to a few nanometers. We 

assume that it has a negligible impact on the XRD and Raman measurements at the center of 

the wafer presented in the following. 

 

b) XRD Curvature measurements 

 

As shown in in the section 3.1.2, it is possible to deduce the in-depth stress gradient in a 

GaN layer from the evolution of wafer curvature during the epitaxy process. Similarly, we can 

reconstruct such a stress gradient by monitoring the evolution of sample curvature between 

each cycle of GaN layer etching. The benefit of this second study is that the extracted stress 

gradient corresponds to that of the final GaN-on-Si specimen, with no need for assuming that 

no relaxation occurs in the lower part of the GaN layer during the growth process and that the 

shape of stress gradients remains unchanged during the post-epitaxy cooling phase. 

We carried out this stress gradient reconstruction from the measurements on sample (3). 

On this sample, buffer layers have been removed, which means that the stress obtained using 

the Stoney equation corresponds to only the GaN layer. We used equation (3.3), by taking as 
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parameters the evolutions of thickness Δ𝑡 and of curvature Δ𝜅 between two etching cycles. The 

thickness is obtained from ellipsometry measurements. The curvature is derived from equation 

(3.2), based on XRD measurements along two orthogonal diameters of the wafer. At the edges 

of the wafer (i.e. at 90 mm away from the center), part of the Al0.25Ga0.75N buffer appears to 

remain after the first etching cycle. Additionally, an uneven etching of the GaN layer is 

observed in the subsequent cycles of the process. This is visible on the reflectometry 

measurements of Figure 5.4, which show a shallower etching at the edges of the wafer. In 

order to obtain the value of stress at the center of the GaN layer, we restrict our analysis on 

curvature measurements within the range of -60mm to +60 mm away from the sample center. 

 

Figure 5.4 : Reflectometry measurement of the GaN layer thickness uniformity. 

Measurements were carried out along two diameters of the sample (3), after the second etching 

of GaN layer. 

The stress gradient obtained is shown in Figure 5.5. Its general shape is coherent with 

the theoretical expectations depicted in Figure 5.2: the highly compressive stress close to the 

AlGaN/GaN interface rapidly decreases before flattening and becoming positive below the 

surface. 

However, the profile lacks precision in the zone close to the initial AlGaN/GaN interface. 

The reason for this might be the high error bar on the value of Δ𝑡 for the first etching cycles, 

due to shallow etching depths of less than 150 nm. This issue does not significantly impact the 

following cycles, as the relative error on Δ𝑡 is limited for deeper etchings. The error bars shown 

in Figure 5.5 correspond to an error of ± 10 nm on the ellipsometry measurements of 

thickness at the center of the GaN layer. 
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Figure 5.5 : Stress profile in a GaN layer, obtained from the evolution of 

curvature of the progressively etched sample (3). Negative stress values correspond to 

a compressive biaxial in-plane stress, positive values to a tensile stress. 

Although the above procedure allowed us to obtain the global trend of GaN in-depth stress 

profiles, curvature measurements are significantly affected by small errors in the measurement 

of the GaN layer thickness. To obtain a more precise stress gradient, it appears to be necessary 

to work with alternative measurements of stress. These characterizations should be restricted 

to the center of the sample, where the thickness is constant. This can be readily achieved thanks 

to the millimetric beam sizes of XRD and Raman measurements. 

 

c) XRD strain measurements 

 

As discussed in chapter 3, radial XRD scans on symmetric reflections give a valuable 

representation of the stress profile within GaN layers. However, the reconstruction of a stress 

gradient from these data is complex, due to the asymmetric shape of XRD profiles. The in-

depth study of GaN presented here allows to bypass this issue. We have seen earlier than 

etching cycles do not affect the strain profile within the remaining layer of GaN. Hence, the 

diffraction profiles obtained before etching can be approximated by the sum of the respective 

XRD signals of etched and remaining parts of GaN. 

In our experiments, we use this approximation to obtain XRD profiles corresponding to 

the removed sublayers. For this, we use (002) diffraction profiles obtained at the center of 

sample (1), after the three first etching steps, and of sample (2) after the four etching cycles. 

The expected total etched depths are respectively of 30 – 500 – 1000 – 1500 – 1600 – 1750 – 

1900 nm. Note that a total depth of 1500 nm is reached both on sample (1), after the fourth 

etching, and on sample (2) after the first etching. As the two corresponding XRD profiles fit 

well with each other, the data from both samples can be integrated together. 

We first align the XRD profiles in 2𝜃 by using the AlN peak, which is not affected by 

etching, as a reference peak. As several months separated the first and the last measurement, 

the intensity delivered by the X-ray source varied slightly between cycles of characterization. 
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We monitored these changes by measuring the intensity of the incoming X-ray beam. Each 

diffraction profile is modified accordingly, so measurements are comparable in terms of 

intensity. We finally apply an X-ray absorption correction to the intensity of each XRD profile. 

This allows us to simulate that the measured layer is still covered by the part of the GaN film 

already etched. Note that this absorption is not negligible (see Figure 5.6 b)) due to the use 

of the (002) reflection, which has a low beam incidence of 17.28°. 

In this way, we obtained the set of diffraction profiles shown in Figure 5.6 a), which 

allows us to visualize the role of different parts of the GaN layer on the diffraction peak of the 

full GaN film. We subtracted from each of these profiles the diffraction peak measured after 

the next etching, thus obtaining a set of virtual diffraction peaks for each etched sublayer 

(Figure 5.6 b)). These peaks are quasi-symmetric, as the variation of strain within each 

sublayer is limited. Hence, we can use their 2𝜃 position to reconstruct the strain gradient in 

the GaN film. 

 

Figure 5.6 : In depth analysis of XRD profiles of a GaN-on-Si film. a) (002) radial 

scans measured after several etching cycles of samples (1) and (2), with intensity corrections 

of incident beam variations and X-ray absorption effects. b) Virtual XRD peaks corresponding 

to the etched sublayers of GaN. The impact of X-ray absorption is highlighted by the difference 

between plots taking this effect into account (red line) or not (grey line). 

Note that the data from sample (3) is not used for a similar analysis, as the steep part of 

the strain gradient is removed during the first etching cycles. Hence, the diffraction peaks soon 

become really similar to each other, so that it is difficult obtain a proper XRD profile of sublayer 

by subtracting measurements with one another. Nevertheless, as no significant gradient of 
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strain remains once the layer is deeply etched, we directly use the XRD measurement after the 

last etching cycle to obtain the value of strain close to the interface with bonding layers. 

The strain within each sublayer is calculated using equation (2.21) and the Bragg law. 

These values are considered as corresponding to the strain at half depth of the corresponding 

sublayers. We use ellipsometry measurements of GaN thickness to derive these in-depth 

positions and obtain the strain profile of Figure 5.7. A conversion to values of biaxial in-plane 

stress 𝜎𝑏 can be performed through elastic constants of GaN (from equation (1.6), εzz =

2S13(𝜎𝑥𝑥 + 𝜎𝑦𝑦) + 𝑆33 𝜎𝑧𝑧 = 2S13 𝜎𝑏). 

 

Figure 5.7: Strain and stress profiles reconstructed from in-depth analysis of 

XRD profiles. Strain values are obtained from the 2θ position of etched sublayer XRD 

profiles of Figure 5.6 b) (samples (1) and (2)), and of XRD measurement after the last etching 

cycle on sample (3). Values of biaxial in-plane stress σb are derived from elastic constants of 

Table 1.2 (σb = εzz/2S13). The extension of etched sublayers is shown with white and grey 

bands. 

Compared to the curvature measurements, thickness measurement uncertainty is far less 

problematic, as it only leads to a small lateral error bar of the order of a few tenth of nm (not 

shown on the figure as it is negligible). We thus obtain a precise estimate of the stress decay 

close to the AlGaN/GaN interface. As expected, a tensile biaxial stress is observed close to the 

surface, with a good agreement between measurements on samples (1) and (3). 

 

d) Raman measurements 

 

Along with XRD, we performed Raman measurements of biaxial stress within the GaN 

layer between etching cycles. Unlike the cross-section measurements of section 3.1.1, these 

measurements are based on the 𝐸2(high) mode of vibration, which is commonly used in the 

literature.[100],[99] This mode is capable of measuring distortions in the (0001) plane of GaN, 

which is convenient to measure the biaxial in-plane stress in (0001)-oriented GaN films.[138] 

The photon beam, a green laser with a power of 8 mW and a wavelength of 532 nm, is oriented 
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along the normal to the sample surface and the measurements were performed at the center of 

the sample. 

In order to obtain an additional reconstruction of the stress profile of GaN, we use Raman 

data from samples (1) and (2), from the same etching cycles as for the XRD analysis. The 

second etching cycle (i.e. total of 500 nm of GaN removed) is however not included, as no 

Raman measurement was performed due to time limitations. Raman profiles are plotted on a 

Raman shift scale (Figure 5.8 a)). From the position 𝜔𝐸2(ℎ𝑖𝑔ℎ)
  of a Raman peak, determined 

by means of a Lorentzian fit with an error of ± 0.1 𝑐𝑚−1, we derive a mean value of biaxial 

stress 𝜎𝑏 in the GaN crystal: 

 𝜔𝐸2(ℎ𝑖𝑔ℎ)
 − 𝜔

𝐸2(ℎ𝑖𝑔ℎ)

0 = 𝐾𝐸2(ℎ𝑖𝑔ℎ)
𝑏  𝜎𝑏 (5.1) 

where 𝜔𝐸2(ℎ𝑖𝑔ℎ)
0 = 567.6 𝑐𝑚−1 [100] is the peak position of an unstrained bulk GaN and 

𝐾𝐸2(ℎ𝑖𝑔ℎ)
𝑏 = −2.9 𝑐𝑚−1𝐺𝑃𝑎−1 is the Raman biaxial pressure coefficient, derived by Demangeot 

et al.[101] assuming a biaxial stress in the (0001) plane. 

By assuming that this measured stress corresponds to the stress at half the thickness of 

the measured layer, we plotted an estimate of the stress profile within the GaN film (Figure 

5.8 b)). 

 

Figure 5.8 : Reconstruction of stress profile from in-depth analysis of Raman 

measurements. a) Raman shift curves. b) Stress profile obtained from the position of Raman 

peaks and equation (5.1). 

The three stress gradient measurement obtained through sample curvature, XRD and 

Raman characterizations are in good agreement with each other, as shown in Figure 5.9. Far 

from the AlGaN/GaN interface, we notice that Raman results slightly diverge from the two 

other analyses. This is likely because we treated Raman measurements of the full GaN film as 

a measurement of stress at half the thickness of the layer. The accuracy of the Raman profile 

might be improved by following a procedure similar to the one detailed in section 5.2.1.d), for 

the construction of virtual XRD profiles of etched sublayers. Conversely, the stress analysis 

from curvature measurements lacks precision in the zone close to the AlGaN/GaN layer, as 
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discussed earlier. The stress profile obtained by XRD analysis of in-depth measurements 

correlates well both with Raman measurements, close to the interface with buffer layers, and 

with curvature measurements near the surface. It appears to be the most precise of our 

analyses and we will thus use this estimate of the strain/stress profile in the following. 

 

Figure 5.9 : Comparison of the stress profiles obtained through curvature, XRD 

and Raman measurements. 

 

5.2.2. XRD simulation results 

 

The strain profile obtained in Figure 5.7 is an interesting opportunity to further assess 

the simulation tool developed in chapter 3. For this, we fitted the measured strain profile with 

a modified version of the logarithmic function of equation (3.13). We obtained the curve shown 

in Figure 5.10 a), with a curvature parameter 𝐾 = 25 and an RMS strain parameter √〈휀𝑧𝑧²〉 =

8.19 × 10−4. The modification of the function consists in adding a parameter 𝑠 = −3.14 × 10−4, 

which is a simple shift of the curve along the y-axis. This parameter allows us to fit the 

experimental absolute strain gradient, and is simply removed from the equation to transform 

the fit into a relative strain gradient (i.e. 휀𝑧𝑧(1) = 0), as used in the simulation tool. We then 

simulated a 2.16 µm GaN layer (i.e. the thickness of samples (1) and (2) as measured by 

ellipsometry) containing this strain profile and computed the corresponding diffraction peaks. 

The results, given in Figure 5.10 b), are quite similar to experimental measurements 

performed on the full film of GaN, although not perfectly matching. 

Although the logarithmic function fits rather well the experimental strain profile, the 

question arises of whether it is physically appropriate. We tried to obtain an answer by 

analyzing an easily measurable characteristic of the relative strain profile, namely its RMS 

value. The experimental RMS strain √〈휀𝑧𝑧²〉 = 3.78 × 10
−4, determined through a Williamson-

Hall plot of the symmetrical reflections (002), (004) and (006), is clearly lower than fitted 

value. This result suggests that the real strain profile might have a lower amplitude and 

converge more rapidly to the surface value of strain. 
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Figure 5.10 :  Fit of the strain gradient with a logarithmic function. a) Strain profile 

obtained. b) XRD simulations of samples (1)/(2), with the fitted logarithmic strain profile as 

an input. This result is obtained with a parameter of local variation of displacement profile σ =

0.10, which gives the best match with experimental data. 

Hence, we tried to use an alternative function to fit the experimental strain gradient, 

namely an exponential decay, with three parameters 𝐴, 𝑡, 𝑦0: 

 휀𝑧𝑧(𝑧) = 𝐴  xp (
−𝑧

𝑡
) + 𝑦0 (5.2) 

This function appears to give a slightly better fit of the strain gradient, as shown in Figure 

5.11 a). To confirm this, we compare the RMS strain √〈휀𝑧𝑧²〉 of this profile with the 

experimental RMS strain in the sample (2), obtained by means of a Williamson-Hall plot. The 

RMS of the profile is obtained by integration of the squared strain 휀𝑧𝑧²(𝑧) = (𝐴 𝑒𝑥𝑝(−𝑧/𝑡) +

𝑦0)² on the [0,1] relative depth scale. We obtain: 

 

√〈휀𝑧𝑧²〉 = √
𝐴2𝑡

2
(1 −  xp ² (−

1

𝑡
)) + 2𝑦0𝐴𝑡 (1 −  xp ² (−

1

𝑡
)) + 𝑦0² (5.3) 

With the parameters 𝐴 = 0.00193, 𝑡 = 0.237 and 𝑦0 = −0.00188 obtained during the fit, 

we calculate an RMS strain of √〈휀𝑧𝑧²〉 = 5.52 × 10
−4, which is closer to that of Williamson-Hall 

analysis. From these observations, we conclude that the strain profiles in few µm-thick layers 

of GaN grown on silicon substrates by MOVPE follow an exponential decay. 
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Figure 5.11 :  Fit of the strain gradient with an exponential function. a) Strain 

profile obtained. b) XRD simulations of samples (1)/(2), with the fitted exponential decay 

strain profile as an input. This result is obtained with a parameter of local variation of 

displacement profile σ = 0.11, which gives the best match with experimental data. 

As for the logarithmic profile, we tested the exponential decay fit as an input strain 

gradient in the XRD simulations. The obtained profiles do not either closely match the 

experimental data, especially on the (002) reflection, for which a remainder of oscillation 

patterns is observed on the right side of the peak. 

It is important to note that, although the strain profiles fitted with logarithmic and 

exponential functions are quite similar, they lead to simulations with significant differences. 

Due to the strong flattening of the exponential strain gradient at a relative thickness above 0.7, 

the mean displacement profile and all the local displacement profiles computed with equation 

(3.11) follow a similar slope in a large zone below the layer surface (see Figure 5.12 b)). As 

discussed in the section 3.2.3 c), this favors the apparition of oscillations on simulated XRD 

curves. Conversely, the logarithmic fit of the strain gradient keeps decreasing until reaching 

the layer surface, so that the displacement profiles still slightly diverge below the surface (see 

Figure 5.12 a)). Consequently, the oscillations on XRD curves disappear at lower values of 

𝜎, even on the (002) curve. 
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Figure 5.12 : Displacement profiles computed with logarithmic and exponential 

fits of the strain gradient. a) Mean and local displacement profiles obtained through the 

logarithmic fit of strain of Figure 5.10, with σ = 0.10. b) Mean and local displacement profiles 

obtained through the exponential decay fit of strain of Figure 5.11, with σ = 0.10. 

The exponential decay function appears to give a satisfactory fit of the strain gradient 

within GaN, which suggests that the accuracy of our simulations is limited by our model. The 

remnants of oscillation patterns on the (002) simulation might be the sign of local variations 

of displacement not being truly adapted to the reality of the material. A new model for the 

computation of local displacement profiles, closer to diagrams of Figure 3.15, would be a 

promising track for further development of the simulation tool. 

 

5.3. In-depth threading dislocations analysis 

 

The evolution of TD density through the thickness of GaN was analyzed by means of XRD 

measurements of lattice misorientation and micro-strain. These characterizations were 

performed in accordance with the protocol detailed in chapter 4, with tilt, twist and micro-

strain being respectively measured on (004), (201) and (205) reflections. Due to the decreasing 

intensity of XRD scans as the samples were etched, micro-strain measurements were fitted 

with a Split Pearson VII function to extract peak widths.  

We combined this XRD data with ellipsometry measurements of thickness to plot a profile 

of TD density through the GaN film. We followed a simple approach by assuming XRD 

measurements to correspond to the TD density at half thickness of the analyzed layer. Hence, 

measurements on samples (1)/(2) and (3) are respectively used to extract the strain profile in 

the bottom half and the top half of the GaN film. 

As micro-strain measurements are impacted by vertical X-ray correlation length, size 

broadening is subtracted from the width of diffraction peaks (equation (2.23)) when the 

thickness of GaN is lower than 1µm (size effects are negligible above this value). We use the 

Scherrer equation ((2.25)) to estimate this additional broadening, with the original Scherrer 

constant of 𝐾 = 0.94.  
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As the precision of the Scherrer equation is often pointed out, we estimate the uncertainty 

associated to this equation by calculating the size broadening with the extreme values of the 

Scherrer constant (𝐾 = 0.73 and 𝐾 = 1.03, see section 2.4.2.b)) derived in the literature for the 

usual crystallite shapes. As shown on Figure 5.13, this leads to a high error bar on the TD 

density of the last measurement of sample (2) (layer thickness of 93 nm). Note that an error in 

thickness measurements would lead to an additional uncertainty on the result of the Scherrer 

equation, thus further increasing the size of vertical error bars. 

 

Figure 5.13 : XRD estimates of TD density profiles in a GaN-on-Si layer. 

The graph in Figure 5.13 compares the gradients of TD density obtained from 

misorientation and micro-strain measurements. We observe that both profiles almost 

converge in the high crystalline quality zone under the GaN surface. Despite the low variation 

of TD density in this area, measurements of the top 1080 nm of GaN layer give TD densities 

almost twice those found in CL measurements. This discrepancy between CL and XRD 

measurements is in part explained by the discussion of chapter 3: CL measurements tend to 

underestimate TD density due to an overlapping of diffraction spots and XRD measurements 

to overestimate it, owing to a double counting of mixed TDs. However, these arguments are 

not sufficient to explain the difference seen here between CL and XRD. In Figure 5.14 a), we 

notice that individual CL spots are generally easily distinguishable. The impact of double 

counting of mixed TDs can be prevented by assuming that all of the contribution to tilt stems 

from mixed dislocations (i.e. there are no screw TDs in the layer, which is usually close to 

reality). With this hypothesis and the opposite extreme assumption (0% of mixed TDs, 100% 

of screw TDs), we obtain at a thickness 𝑧 = 1600 nm a range of TD densities of 1.7 −

2.0 × 109𝑐𝑚−2 for misorientation measurements and 1.9 − 2.2 × 109𝑐𝑚−2 for micro-strain 

measurements, to be compared to the 1.2 × 109𝑐𝑚−2 obtained by CL at the sample surface. The 

remaining difference in the results can be explained by the limits of XRD models, notably the 

distribution of TDs that might not be perfectly random, and the correlation between TDs not 

taken into account. Nevertheless, we note that these results are much more convincing than 

the ones obtained by measuring the entire film of GaN, especially for micro-strain 

measurements which result in TD densities around 4.7 × 109𝑐𝑚−2. 
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In the bottom half of the GaN layer, the two XRD estimates of TD density profiles diverge 

to reach, close to the AlGaN/GaN interface, values of around 1 × 1010𝑐𝑚−2 and 2.5 × 1010𝑐𝑚−2 

respectively for misorientation and micro-strain measurements. This divergence is probably 

due to a change in the structure of TDs with respect to the film surface, in terms of distribution 

and correlation. The presence of misfit dislocations, as reported for other AlGaN/GaN 

interfaces,[102],[142] might further broaden the diffraction profiles of the highly etched sample (2). 

However, their impact is probably small compared to that of the high number of TDs. 

Additionally, those misfit dislocations would lead to a comparable broadening of 𝜔 and  𝜔 −

2𝜃 scans for a given reflection,[124] which does not point toward diverging results between 

misorientation and micro-strain measurements. 

A second CL measurement (Figure 5.14 b)) was performed after the last etching of 

sample (2) to try to determine which of the two XRD estimates of TD density at AlGaN/GaN 

interface is the more realistic. However, it was not possible to count the dislocations, due to 

the presence of micro-cracks at the surface of the sample, also visible on scanning electron 

microscopy (SEM) images (Figure 5.14 c)). 

Sahonta et al.[142] previously measured the evolution of TD density in a similar MOVPE 

grown GaN/Al0.28Ga0.72N heterostructure. These TEM measurements on a set of GaN layers 

with different thicknesses resulted in large variations of TD densities, from 4 × 1010𝑐𝑚−2 to 

6.5 × 109𝑐𝑚−2 for layers of 90 nm and 570 nm, which is quite comparable to our micro-strain 

measurements. 

 

Figure 5.14 : Cathodoluminescence and scanning electron microscopy images of 

GaN layers. a) CL image of the surface of the non-etched GaN layer. b) - c) CL and SEM 

images of the GaN surface of sample (2) after the last etching cycle. Both images are recorded 

on the same area and show identical patterns identified as micro-cracks of the surface. 

 

5.4. Correlation between in-depth dislocation density and strain 

gradient 

 

Throughout this thesis, gradients of biaxial in-plane stress within GaN have been assumed 

to result from a relaxation of compressive stresses during the epitaxy phase, driven by the 
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progressive recombination of TDs. This effect has been observed several times in the 

literature.[142],[143] However, other mechanisms have been proposed to explain the progressive 

relaxation of wurtzite III-N layers, such as the formation of TDs inclined away from the [0001] 

direction at roughened hetero-interfaces between III-N layers.[58] Our in-depth measurements 

allow us to correlate profiles of strain and of TD density throughout the whole thickness of a 

GaN film. From the plot of Figure 5.15, we see that the relaxation of in-plane stress 

throughout GaN is proportional to the reduction of TD density, as quantified with XRD micro-

strain measurements. This strongly suggests that the annihilation of TDs is the major 

mechanism of reduction of compressive stress in this layer. 

 

Figure 5.15 : Correlation of profiles of strain and of threading dislocation 

density. TD densities correspond to the XRD micro-strain measurements. Strain is obtained 

with the analysis of XRD measurements detailed in the sub-section 5.2.1.c), and fitted with 

equation (5.2). 

 

The in depth-characterization of a progressively etched GaN layer allowed us to extract a 

gradient of in-plane stress, through analyses of XRD profiles, Raman and curvature 

measurements. These three characterizations give a similar strain profile, following an 

exponential decay trend. Thanks to these experimental measurements, we were able to confirm 

that the simulation tool developed in chapter 3 gives satisfactory results, although we noted an 

imperfect matching of the (002) curve. 

 From this study, we also obtained two profiles of TD density, relying respectively on lattice 

misorientation and micro-strain measurements. We notice that both measurements are in 

good agreement in the high crystalline quality area near the film surface. However, we find 

these values of TD density to be 40-80% higher than with CL measurements, even when 

assuming an absence of screw TDs, thus highlighting a somewhat limited precision of those 

XRD models. Nevertheless, the accuracy of these XRD measurements of TD density appears to 

be significantly better than what is often reported in the literature (i.e. typical errors of a factor 

two or greater, see section 4.1.1.b)), at least in the sparsely-dislocated zone near the surface. 

Close to the AlGaN/GaN interface, micro-strain and misorientation results diverge, probably 
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due to a TD structure departing from the ideal model in terms of distribution and correlation 

of Burgers vectors. In this zone, XRD analyses of TD density might be less reliable.  

As the gradient of TDs given by micro-strain measurements is closer to the results of the 

literature, we used this profile for a comparison with measurements of the gradient of residual 

macro-strain, as obtained from XRD measurements. We observed that both TD density and 

strain profiles follow the same trend. This strongly suggests that the progressive relaxation of 

compressive stress in these GaN layers is driven by the recombination of TDs. This result might 

be used to implement in our simulation tool a model of variation of the local displacement 

profiles closer to physical reality. This would imply to model the local alterations of the 

displacement field as being proportional to the strain profile input instead of being linear 

through the sample thickness. As in equation (3.12), such a model would require a unique 

additional parameter 𝜎 to simulate the magnitude of the local deviations from the mean 

displacement profile.
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General Conclusion 
 

Development of high quality III-N semiconductor grown on silicon substrate, for power 

electronics applications, demands a comprehensive understanding of the behavior of 

crystalline defects associated with this material. More specifically, CEA-Leti would benefit 

from XRD methods of metrology for GaN-on-Si layer defects, adapted to characterizations 

within its cleanroom facility. During this PhD, we aimed to respond to this problem by focusing 

on the analysis of two important issues, namely gradients of in-plane stress and threading 

dislocations (TDs). 

In-depth stress gradient is an issue specific to the special structure of GaN-on-Si layers, 

grown on top of a succession of III-N buffer layers. During our initial work, we obtained several 

basic estimates of stress gradients, from micro-Raman characterization, in-situ sample 

curvature measurement during layer growth, as well as from the analysis of XRD peak profiles. 

However, none of these techniques is satisfying: in-situ curvature measurements cannot be 

performed post-growth, cross section micro-Raman measurements are destructive and the 

XRD analysis only gives a rough estimate of the actual stress profile. Typical XRD analyses 

described in the literature are not satisfactory either, as they are not adapted to GaN-on-Si or 

require numerous high-quality measurements, often non-achievable with in-line 

diffractometers such as those found in the CEA-Leti cleanroom. 

Hence, we proposed to study stress gradients by simulating XRD profiles, with a program 

that we developed in Python language. This numerical tool models the displacement field of 

the set of unit cells (UCs) composing a GaN layer affected by an in-depth profile of 

strain/stress. The diffracted intensity is computed by means of the kinematical theory of 

diffraction, which is adapted to the case of highly defective crystals. The first simulations were 

affected by oscillation patterns, which are also found in the results of commercial simulation 

software but that are not observed in experimental data. These oscillations correspond to 

interferences between the diffracted X-ray waves, which appear due to the long-range 

coherence of scattered X-rays. 

We considered different physical phenomenon as potential sources of disruption of X-ray 

coherence, such as a limited X-ray correlation length, the thermal motion of UCs, the 

roughness of layer interfaces and a local variation of the strain field due to crystal defects. We 

showed that interferences are removed by implementing variations of the UC displacement 

field, so that the shape of local in-depth displacement profiles differ from the shape of the mean 

displacement gradient. We suggest that such variations are the result of an uneven relaxation 

of compressive stress within GaN, owing to the varying distance in the surface plane between 

UCs and sites of TD recombination. We model this phenomenon with an attenuation of the 

displacement field proportional to UCs depth, with the magnitude of attenuation being defined 

by a single parameter 𝜎, characteristic of the density and distribution of TDs. With this 

procedure, we obtained a satisfying matching of experimental XRD profiles, largely improved 

in comparison with the results of the tested commercial software. Nevertheless, we still needed 

to verify experimentally that the tested in-depth strain profiles were realistic. 
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The high lattice mismatch between Si(111) and (0001) GaN leads to the generation of a 

high density of TDs, of the order of 109 𝑐𝑚−2, within the thin films that we analyzed. The usual 

XRD method to analyze these dislocations, which relies on lattice misorientation 

measurements, has been discussed in the literature for its lack of accuracy. Hence, we decided 

to examine an alternative method, based on measurements of the micro-strain field 

surrounding TDs. This analysis is rarely employed in the literature of GaN characterization, 

even though it allows for simple estimates of TD density. The translation of micro-strain 

measurements into TD densities relies on a model derived for polycrystalline metals. We 

therefore adapted this model to the low Poisson ratio of GaN layers and provided a 

mathematical procedure for rapid calculations of TD densities. For GaN-on-Si samples, we 

found that the analysis is hindered by the presence of a strong gradient of stress. We 

demonstrated that this issue can be bypassed by performing XRD measurements on the (205) 

plane, whose normal is oriented toward a direction free of strain stemming from the stress 

gradient. 

We validated this study by comparing the dislocation densities obtained from XRD micro-

strain analysis with those from XRD lattice misorientation analysis and measurements with 

transmission electron microscopy (TEM) and cathodoluminescence (CL). In addition to GaN-

on-Si samples, this comparison was performed on substrates of freestanding GaN and on 

heteroepitaxial layers of GaN on SiC and sapphire substrates. It was difficult to assess the 

accuracy of micro-strain analysis, due to the evolution of TD density through the GaN layer 

thickness. The lower number of dislocations close to the surface resulted in higher TD densities 

found with both XRD bulk GaN measurements than with TEM and CL surface measurements. 

We observed that the nature of sample substrate also had an effect on XRD results, which can 

be explained by differences in the spatial arrangement and correlation of TDs, and by a 

different evolution of the TD density through the layer thickness. In particular, layers with little 

strain gradient, such as GaN-on-SiC, showed lower dislocation density by XRD versus TEM 

and CL, while GaN-on-Si samples with a large gradient showed the opposite trend. 

After the studies on TDs and stress gradients we performed an in-depth analysis consisting 

of a series of measurements on progressively etched layers of GaN-on-Si. This process allowed 

each part of the layer to be examined more accurately, so that we were able to better assess the 

results of our previous studies of TDs and stress profiles. TD density was measured by XRD 

lattice misorientation and micro-strain measurements. We found a good agreement between 

the two measurements in the zone of high crystalline quality, just below the sample surface. 

These XRD results are 40-80% higher than the corresponding CL measurements, which shows 

that there are still limits to the XRD analyses, likely due to the oversimplified models 

employed. Nevertheless, this result is satisfying compared to the large errors of a factor two or 

more often reported in the literature, thus reinforcing the interest of these simple XRD 

analyses. In the deeper levels of GaN layers, we observed a divergence between misorientation 

and micro-strain measurements, likely due to a non-ideal arrangement of the set of TDs. In 

this area near the buffer layers, the results of XRD analyses are thus less reliable. 

The in-depth profile of stress was estimated by three methods during the cycles of etching 

and characterizations: sample curvature, Raman and XRD measurements. The three analyses 

are in good agreement with one another and result in a strain profile following an exponential 
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decay trend. In particular, the analysis of XRD data, which consists in the reconstruction of the 

diffraction curves stemming from the different parts of the GaN layer, appears to give a precise 

estimate of the stress gradient in both the bottom half and the top half of the thin film.  

We used this XRD strain gradient measurement to replace the estimate of the strain profile 

previously employed in our simulation program, and computed the corresponding diffraction 

curves, which resulted in a satisfactory matching of the experimental data. However, some 

remnants of oscillation patterns were observed on the simulation of the (002) reflection. We 

propose that it is due to the oversimplified model used to simulate the local variations of the 

displacement profile. By comparing the measured gradients of strain and TD density, we found 

a very good correlation between the shape of both profiles. This suggests that the relaxation of 

in-plane stress within GaN layers is determined by the progressive recombination of TDs. 

Hence, the model of variation of displacement profiles could be reworked, so that the local 

alterations of the displacement field are not linear through the sample thickness, but rather 

proportional to the evolution of in-depth strain. 

As profiles of TD density and strain are correlated, we could also consider using the stress 

gradients obtained with the simulations to improve the estimates of the surface density of TDs 

in GaN layers. This would enable a reliable picture of defects within GaN to be obtained from 

a small number of XRD scans. 

Overall, the different methods developed during this PhD open the door to simple analyses 

of the main issues affecting GaN-on-Si layers. These techniques rely on quick and non-

destructive XRD measurements that can be performed on almost every diffractometer 

equipped for high-resolution measurements. In the future, this work could also be extended to 

the analysis of III-N buffer layers below GaN, such as AlGaN layers, which are affected by 

similar distributions of TDs and stress. In addition, the simulation program could be 

complemented by the implementation of additional distortions of the lattice, stemming from 

distributions of crystalline defects. This would allow to handle complex cases, such as GaN-on-

Si layers doped by ion implantation, which before annealing are affected by punctual defects 

in the zone near the surface. We could also consider the case of layers thin enough so that the 

strain field of misfit dislocations has a significant impact on the result of simulations. Finally, 

the inclusion of in-plane displacement fields associated to TDs would open the door to 3D 

simulations of reciprocal space maps. 

One of the main limitations of our analyses might be that they are adapted to rather highly 

dislocated materials. For materials with low densities of dislocations, the kinematical theory 

that we use for our simulations might be limited and the use of dynamical theory simulations 

is recommended. Similarly, for TD densities below the mid 107 𝑐𝑚−2, a proper measurement 

of the micro-strain would require diffractometer optics allowing for an improved resolution of 

radial scans compared to usual HRXRD setups. 

Of course, as long as the high TD density condition is met, the analyses developed here are 

not restricted to nitride materials, but are interesting for a variety of thin films containing in-

plane stress gradients. To this end, the developed program is fairly adaptable, as it essentially 

only requires knowing the lattice parameters of the studied material. For the conversion of 
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micro-strain measurements into TD densities, we provided a general formula which will help 

adapting this analysis to crystals with diverse Poisson ratios.
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Appendix 1: Python program for stress gradient analysis in thin film of 

GaN 
 

""" 

This program simulates the X-ray diffraction (XRD) signal stemming from a GaN layer 

affected by a gradient of in-plane biaxial stress. The simulations correspond to 

XRD radial scans (2theta-omega scans) of symmetric reflections [(002), (004), 

(006)]. 

The function Main(order) computes the diffraction curve for one of the three 

possible orders of diffraction (2,4,6). The main parameters of the simulation are 

defined within this function. 

 

Created on Wed Mar 21 2018 

Author: Victor YON 

""" 

 

import numpy as np 

import matplotlib 

import matplotlib.pyplot as plt 

import math as mt 

import cmath as cmt 

import random 

from scipy.signal import fftconvolve 

from scipy.signal import deconvolve 

import time 

import csv 

pi = mt.pi 

params = {'mathtext.default': 'regular'} 

plt.rcParams.update(params) 

 

 

########################################################################### 

#                     INITIAL PARAMETERS CALCULATION 

########################################################################### 

 

def Interplanar_distance_calculation (reflection, a0, c0): 

     

    # Computes the interplanar distances in the reciprocal space and real space and 

returns the values obtained. 

     

    # Distance in reciprocal space - Hexagonal system: d*² = (h²+k²+hk)a*² + l²c*² 

     

    drec = mt.sqrt((reflection[0]**2 + reflection[1]**2 + 

reflection[0]*reflection[1])/a0**2 + reflection[2]**2/c0**2) 

     

    # Distance in real space - Hexagonal system: d² = 1/(4/3/a².(h²+k²+hk) + l²/c²) 

     

    dreal = 1/mt.sqrt((reflection[0]**2 + reflection[1]**2 + 

reflection[0]*reflection[1])*4/3/a0**2 + reflection[2]**2/c0**2) 

 

    return dreal, drec 

 

########################################################################### 

#                     DISPLACEMENT FIELD CALCULATION 

########################################################################### 

     

def U_strain_gradient(d,z_size,R): 

     

    # == Calculates the strain gradient, with a logarithmic shape, from parameters 

K and RMS_strain defined within the function 

    # == Calculates the base displacement profile along the thickness of the layer 

    # == Returns the profiles of strain (strain_zsize) and displacement (u_zsize)  

     

    definition = 16  # Parameter of oversampling of the stress gradient - A high 

definition parameter enables a more accurate calculation of the displaement field 
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    size = (z_size-1) * definition + 1  # strain_zsize[i] = strain[definition*i] & 

u_zsize[i] = u[definition*i] 

 

 

    #== SETTING THE LOG-SHAPED STRAIN GRADIENT ==# 

     

    K = 1000 # Coefficient of curvature of the logarithm 

    RMS_strain = 0.00051 # Root mean square value of the strain profile - can be 

estimated from a Williamson-Hall plot 

    Max_strain = RMS_strain * (K*L**2/(-1*L**2-2*L+2*K))**0.5 # Max value of the 

strain profile (=strain[0]) 

     

    X = np.linspace(0,1,size) 

    strain = Max_strain * (1 - np.log(K*X+1)/np.log(K+1)) 

     

     

    #== DISPLACEMENT CALCULATION ==# 

     

    u= np.zeros(size) 

    #u[0] = strain[0]*d  # This shifts the position of the first atom in the column 

to take into account the strain on this first atom 

    for i in range (1,size): 

        u[i] = u[i-1] + strain[i-1]*d/definition   # Unit:[Å] d=c0 for (00l) - 

between each step: ݚ˵ = ε × distance   

                                         # No strain is applied on the first atom 

of the column(-> u[0]=0). The strain[0] is applied on the dispacement u[1] of the 

second atom of the column. The strain[z_size] is equal to 0 and not applied to any 

atom 

     

    #== RETURNING TO A NORMAL DEFINITION FOR DISPLACEMENT AND STRAIN GRADIENTS ==# 

     

    strain_zsize = np.zeros(z_size) 

    for i in range(0, z_size): 

        strain_zsize[i] = strain[definition*i]  # Array length: Number of atoms in 

an atomic column 

         

    u_zsize = np.zeros(z_size) 

    for i in range(0, z_size): 

        u_zsize[i] = u[definition*i]  # Array length: Number of atoms in an atomic 

column 

         

    return strain_zsize, u_zsize 

 

 

def U_shift(u): 

     

    # == Calculates the u displacement gradient at one of the (x,y) positions and 

returns it 

    # == This u_xy gradient is calculated by shifting the initial u gradient 

    # == The distribution of shift is Gaussian 

    # == Function not used by the program 

     

    sigma = 1.0  # [Å] Standard deviation of the Gaussian distribution (68.2% of 

the values lie between mean_value +-sigma) 

     

    u_xy = np.zeros(len(u))  # The size of the u_xy gradient is the same that the 

size of the domains along z 

    u_xy = u + random.gauss(0,sigma)  # Distribution of shift centered in 0 

 

    return u_xy 

 

   

def U_dispersion(u): 

     

    # == Calculates the u displacement gradient at one of the (x,y) positions and 

returns it 

    # == This u_xy gradient is calculated by dispertion of each z point of the 

initial u gradient 
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    # == The distribution of shift of each z point is Gaussian 

    # == Function not used by the program 

 

    sigma = 0.45  # [Å] Standard deviation of the gaussian distribution (68.2% of 

the values lie between mean_value +-sigma) 

     

    u_xy = np.zeros(len(u))  # The size of the u_xy gradient is the same that the 

size of the domains along z 

     

    for i in range (len(u)): 

        u_xy[i] = u[i] + random.gauss(0,sigma) # Distribution of shift centered in 

0 

 

    return u_xy 

 

 

def U_factor(u, sigma): 

     

    # == Calculates the u displacement gradient at one of the (x,y) positions and 

returns it 

    # == This u_xy gradient is calculated by multiplying the whole initial u 

gradient by a factor 

    # == The distribution of the factor value is Gaussian, centered in 1 

     

    factor = random.gauss(1,sigma) 

    if factor < 0:  # To avoid having a negative factor that would change the 

global shape of the u gradient 

        factor = 0 

    u_xy = u * factor # Distribution of the factor centered in 1. 99.73% of values 

in (u ±3σu) - 68.27% of values in (u ±σu) 

     

    return u_xy 

 

 

########################################################################### 

#                   AMPLITUDE & INTENSITY CALCULATION 

########################################################################### 

 

def Calculate_shape_function(cryst_size_z): 

     

    # == Calculates the crystal shape function along the normal to the sample 

surface and returns it 

    # == This function is equal to 1 within the crystal and to 0 outside of it 

    # == Parameter: cryst_size_z: Whole size of the crystal along z 

     

    Shape_function = np.ones(cryst_size_z)  # Defined as a gate function 

     

    return Shape_function 

 

 

def Intensity(q,domain_size_xy,size_z,G,U_XY,Shape_function,R,F0): 

     

    # == Computes the amplitude scattered by a subdomain of coherent diffraction of 

size domain_size_xy in the surface plane and size_z along the c-axis 

    # == Computes the corresponding Intensity and returns it 

     

    Ampl = np.zeros(len(q), dtype=complex) 

    Total_Ampl = np.zeros(len(q), dtype=complex) 

     

    # Calculation by means of a fast Fourier transform (Complexity N.log(N)): 

     

    for i in range (domain_size_xy): 

     

        Correlation_function = np.exp(-2*mt.pi*1j*G*U_XY[i,:])  # u for the (x,y) 

position number i 

        Ampl = F0*np.fft.fft(Shape_function*Correlation_function,n=len(q))   # n = 

Length of the transformed axis of the output. If n is larger than the length of the 

input, the input is padded with zeros 
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        Ampl = np.fft.fftshift(Ampl)                       # To center the signal 

on G, the reciprocal space position of the diffraction spot for a relaxed crystal. 

         

        Total_Ampl = Total_Ampl + Ampl 

 

    Intensity = abs(Total_Ampl)**2 

 

    return Intensity 

 

 

def Total_Intensity(size_z, cryst_size_xy, nb_domains_xy, nb_domains_z, q, G, u, V, 

R, F0, sigma): 

     

    # == Call the functions to calculate the local strain fields in each subdomain 

of coherent diffraction of size domain_size_xy in the surface plane and size_z 

along the c-axis.   

    # == Computes the sum of scattered intensities 

    # == Returns the sum of intensities and the array of strain profiles 

     

    cryst_size_z = size_z*nb_domains_z  # = lenght(u) 

    dom_size_xy = cryst_size_xy//nb_domains_xy # number of unit cells in a 

coherently diffracting domain of the surface plane (int=int//int) 

    I = np.zeros(len(q)) 

    U_XY = np.zeros((cryst_size_xy,cryst_size_z))  # Matrice with all the 

displacements of all the (x,y) positions in the whole crystal 

     

    for h in range (cryst_size_xy): 

#        U_XY[h,:] = U_dispersion(u)   # line 1: u(x1,y1) ; line 2 : u(x2,y2) ; ... 

#        U_XY[h,:] = U_shift(u)   # line 1: u(x1,y1) ; line 2 : u(x2,y2) ; ... 

        U_XY[h,:] = U_factor(u,sigma) #U_factor(u)   # line 1: u(x1,y1) ; line 2 : 

u(x2,y2) ; ... 

 

    for h in range (nb_domains_xy):  # Sum of intensities of all (x,y) domains 

        for k in range(nb_domains_z):  # Sum of intensities of all domains along z 

for a position (x,y) 

            I = I + 

Intensity(q,dom_size_xy,size_z,G,U_XY[h*dom_size_xy:(h+1)*dom_size_xy , 

k*size_z:(k+1)*size_z],V[k*size_z:(k+1)*size_z],R,F0)  # The u gradients for all 

(x,y) positions, of the lenght of a domain along z 

         

         

    return I,U_XY 

 

 

########################################################################### 

#                        INSTRUMENTAL RESOLUTION 

########################################################################### 

 

def Instrumental_resolution(theta): 

     

    #== Calculates the Full Width at Half Maximum (FWHM) of the instrumental 

    #== resolution for the Bragg angle θ of the simulated reflection and returns 

    #== this value 

     

    # Resolution = a0 + a1*2θ + a2*2θ^2  (polynomial degree 2) 

    # Coefficients [arcsec/deg]: 

    Coeff = [32.05,-0.6224,0.008185] 

    fwhm = Coeff[0] + Coeff[1]*2*theta + Coeff[2]*(2*theta)**2 

 

    return fwhm 

 

 

def FWHM_Conv(fwhm_sec, theta, lamb): 

     

    #== Converts the FWHM of the instrumental resolution in reciprocal space units 

and returns this value 

     

    fwhm_deg = fwhm_sec/3600  # Arcseconds to degrees 
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    delta_sintheta = mt.sin((theta+fwhm_deg)/180*pi) - mt.sin(theta/180*pi) 

     

    fwhm_reciprocal = 2*delta_sintheta/lamb  # (Å-1) Instrumental resolution of 

XRD3 at GaN peak angle (With ΔTheta=22": ΔG = 2/lambda*Δ(sin Theta) = 0.00013 Å-1) 

 

    return fwhm_reciprocal 

     

     

def f_gaussian(fwhm,d_rec,oversampling,size,range_factor): 

     

    # == Creates a gaussian distribution with the same step between points than the 

simulated scattered signal 

    # == Returns this distribution and its x-axis  

     

    x_step = d_rec/(oversampling*size-1)  # Step = TotalRange/Nb_point 

    x_range = range_factor*fwhm  #Restricted range (Approx. n*FWHM_range) 

    x = np.arange(-0.5*x_range, 0.5*x_range, x_step) 

    gauss = np.exp(-4*mt.log(2)*(x/fwhm)**2)*0.9394/fwhm*x_step  # factor 

0.9394/fwhm so the Area under the gaussian functions equal to 1 (See Langford & 

Wilson 1978) 

                                                            # multiplied by x_step 

so the Area is equal to one in the convolution space, where the step betwwen to 

points is equal to unity 

    return gauss,x 

 

     

def Convolve_instrum_resolution(I,fwhm, d_rec, oversampling, size): 

     

    # == Convolves the simulated profile of scattered intensity with the Gaussian 

profile of intrumental resolution 

    # == Returns the convolved profile of intensity  

     

    instrum,x_instrum = f_gaussian(fwhm, d_rec, oversampling, size, 10.0)  # 

Gaussian function for instrumental resolution: Range = last_param*FWHM_range 

     

    Intensity = fftconvolve(I, instrum, mode = 'same') # Intensity array same size 

as I 

 

    return Intensity 

 

########################################################################### 

#                        GRAPHS PLOTTING & SAVING 

########################################################################### 

     

def Gradients_plot(strain, u, U_XY, Shape_function, size): 

    t0 = time.time() 

     

    # == Plots the strain profile, the base displacement profile plus a few local 

    # == displacement profiles and the shape function 

    # == Returns the figures of displacement and strain 

     

    #-- Plot the strain gradient 

     

    fig_strain=plt.figure(figsize=(5,3.5))   # Plot I vs. qz_order1 

    fig_strain.patch.set_alpha(0.0) 

    ax = fig_strain.add_subplot(111)   

    plt.locator_params(axis='x',nbins=5), plt.locator_params(axis='y',nbins=5) 

    ax.tick_params(width=1.5,direction='inout',length=8) 

    ax.minorticks_on(), 

ax.tick_params(which='minor',width=1,direction='in',length=4) 

    plt.xlabel('Unit cell number', fontsize=20), plt.ylabel('Strain', fontsize=20) 

    plt.xticks(fontsize=15), plt.locator_params(axis='x',nbins=5), 

plt.yticks(fontsize=15) 

    ax.tick_params(width=2,direction='inout',length=12) 

    plt.plot(np.linspace(0,size,size), strain, linestyle= 'None', marker='o', 

markersize=2) 

     

    #-- Plot the Shape function 
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    fig_strain=plt.figure(figsize=(5,3.5))   # Plot I vs. qz_order1 

    fig_strain.patch.set_alpha(0.0) 

    ax = fig_strain.add_subplot(111)   

    plt.locator_params(axis='x',nbins=5), plt.locator_params(axis='y',nbins=5) 

    ax.tick_params(width=1.5,direction='inout',length=8) 

    ax.minorticks_on(), 

ax.tick_params(which='minor',width=1,direction='in',length=4) 

    plt.xlabel('Unit cell number', fontsize=20), plt.ylabel('Strain', fontsize=20) 

    plt.xticks(fontsize=15), plt.locator_params(axis='x',nbins=5), 

plt.yticks(fontsize=15) 

    ax.tick_params(width=2,direction='inout',length=12) 

    plt.plot(np.linspace(0,size,size), Shape_function, color="grey") 

 

    #-- Plot the displacement profiles 

 

    fig_displacement=plt.figure(figsize=(5,5))   # Plot I vs. qz_order1 

    fig_displacement.patch.set_alpha(0.0) 

    ax = fig_displacement.add_subplot(111) 

    plt.locator_params(axis='x',nbins=5), plt.locator_params(axis='y',nbins=5) 

    ax.tick_params(width=1.5,direction='inout',length=8) 

    ax.minorticks_on(), 

ax.tick_params(which='minor',width=1,direction='in',length=4) 

    plt.xlabel('Unit cell number', fontsize=20), plt.ylabel('Displacement [Å]', 

fontsize=20) 

    plt.xticks(fontsize=15), plt.locator_params(axis='x',nbins=5), 

plt.yticks(fontsize=15) 

    ax.tick_params(width=2,direction='inout',length=12) 

     

    # Plot the displacement profiles for all the atomic columns 

    plt.plot(np.linspace(0,size,size), U_XY[0,:], label='Modified displacement 

profiles', linewidth=2, color='blue')#,linestyle= 'None', marker='o', markersize=2) 

    for i in range (1,min(len(U_XY[:,0]),8)):  # limited to 20 plots 

        plt.plot(np.linspace(0,size,size), U_XY[i,:], linewidth=2, 

color='blue')#,linestyle= 'None', marker='o', markersize=2) 

         

    # Plot the base displacement profile 

    plt.plot(np.linspace(0,size,size), u, linewidth=3, label='Base displacement 

profile', color='red') 

    leg= ax.legend(loc='lower left', bbox_to_anchor=(0,1.01,1,0.2), 

borderaxespad=0, mode='expand', fontsize=15.5,  handlelength=1.6, 

handletextpad=0.2, labelspacing=0.3, edgecolor='black', numpoints = 3, 

markerscale=1.5) 

     

    tplot = time.time() - t0 

    return fig_displacement, fig_strain 

     

def Intensity_plot(Intensity,q,lamb): 

     

    # == Plots the simulated profile (x-axis: q / y-axis: Intensity) 

    # == Returns the figure and the x-axis 

     

    Theta_Deg = 180/pi*np.arcsin(lamb*q/2)  # Conversion 1/Å to degrees 

    Theta_Sec = Theta_Deg*3600  # Conversion degrees to arcseconds 

    x = q  # Choice of the x-axis unit ( q: qz (1/Å) - Theta_Deg: θ (°) - Theta_Sec 

(arcsec) ) 

     

    fig=plt.figure(figsize=(8,5)) 

    fig.patch.set_alpha(0.0) 

    ax = fig.add_subplot(111) 

    plt.locator_params(axis='x',nbins=5), plt.locator_params(axis='y',nbins=6) 

    ax.tick_params(width=1.5,direction='inout',length=8) 

    ax.minorticks_on(), 

ax.tick_params(which='minor',width=1,direction='in',length=4) 

    ax.set_xlim([-0.004,0.0000])      

    plt.xlabel('qz [1/Å]', fontsize=20) 

    plt.ylabel('Intensity [arb. unit]', fontsize=20) 

    plt.xticks(fontsize=15) 
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    plt.yticks(fontsize=15) 

    plt.plot(x,Intensity,color="purple",linestyle="-") 

     

    return fig, x 

 

def save_figures(figure, name): 

     

    # == Saves the generated graphs 

     

    fileformat = 'svg' 

    fileformat2 = 'png' 

    filename = name + "." + fileformat 

    filename2 = name + "." + fileformat2 

    figure.savefig(filename, format=fileformat, transparent=True, 

bbox_inches='tight') 

    figure.savefig(filename2, format=fileformat2, transparent=True, 

bbox_inches='tight', dpi = 200) 

 

########################################################################### 

#                              MAIN PROGRAM 

########################################################################### 

 

def Main(order): 

     

    # == Main function of the program 

    # == Simulation parameters are defined at the begining 

    # == Calls the functions to perform a simulation for the reflection (0,0,order) 

    # == Returns the simulated profile of intensity (I), the corresponding x-axis 

(x) and and the total time needed for the simulations (tf)  

     

    t0 = time.time() # Measurement of the length of the simulation duration 

     

    lamb = 1.54059  # Wavelength (Å) - kalpha1 Cu 

    reflection = [0,0,order]  # Studied reflection 

     

    #-- SIMULATION PARAMETERS 

     

    a0, c0 = 3.1896, 5.1855  # Lattice parameters [Å] 

    structure_factors_list = (50.81,32.82,27.05) # Respective structure factors of 

(002),(004) and (006) reflections [1/Å] 

    structure_factor = structure_factors_list[(order-2)//2]  # Structure factor 

(Selection from the list) 

     

    cryst_thickness = 1.85 # Crystal thickness [µm] 

    cryst_size_z = round(cryst_thickness*10000/c0)  # Approximate number of unit 

cells in the whole crystal along z ##### 2µm = 3857 

    nb_domains_z = 1  # Number of incoherently diffracting domains along z 

    size = int(cryst_size_z/nb_domains_z)  # Number of unit cells in the domain 

along z 

    cryst_size_z = size * nb_domains_z  # exact number of unit cells in the whole 

crystal along z 

     

    cryst_size_xy = 5000  # Approximate number of unit cells in the surface plane 

    lateral_correlation_length = 20000.0  # Lateral correlation length (µm) - When 

set to 20000.0: 1 (x,y) Domain for up to 38million of cryst_size_xy 

    dom_size_xy = int(round(lateral_correlation_length/c0*10000)) # Number of unit 

cells in a coherently diffracting domain of the surface plane 

    nb_domains_xy = int(round(cryst_size_xy/dom_size_xy)) # Number of incoherently 

diffracting domains in xy 

    if nb_domains_xy == 0: # To avoid having it = 0 

        nb_domains_xy = 1 

    dom_size_xy = int(round(cryst_size_xy/nb_domains_xy)) 

    cryst_size_xy = dom_size_xy * nb_domains_xy # Exact number of unit cells in the 

whole crystal in the surface plane 

     

    sigma = 0.125  # Parameter of local variation of strain gradients 
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    oversampling = 4  # Oversampling factor (resolution of calculated curve). 

Normally equals to 4 to see the fringes, sometimes 8 in practice 

    display = 'rel' # 'abs' for absolute x-axis units / 'rel' for relative x-axis 

units 

     

    #-- CALCULATION OF BASIC PARAMETERS 

     

    d_refl, G = Interplanar_distance_calculation (reflection, a0, c0)  # 

Interplanar distance of the reflection in real and reciprocal spaces 

    d_reel = order * d_refl  # Interplanar distance for the first order of 

diffraction (distance between atoms = c0 for 00l) 

    d_rec = G/order  # d*001 (Interplanar distance in reciprocal space, 1st order 

of diffraction -> =0.1928 for all symmetric reflections) 

    R = np.linspace(0, (cryst_size_z-1)*d_reel, cryst_size_z)  # Whole crystal unit 

cells basic positions [real space] 

    theta = mt.asin(lamb/2/d_refl)*180/pi  # Bragg angle [Degrees] 

 

    q = np.linspace(G - 0.5*d_rec, G + 0.5*d_rec, oversampling*size)  # the array 

of positions along the qz axis of reciprocal space for which the scattered 

amplitude is about to be calculated. Centered on G. Step between points = 

c0/(oversampling*size) 

     

    if display == 'abs':  # Absolute mode 

        q = np.linspace(G - 0.5*d_rec, G + 0.5*d_rec, oversampling*size)  # Points 

for Intensity computation in one domain [reciprocal space] 

    elif display == 'rel':  # Relative mode 

        q = np.linspace(-0.5*d_rec, 0.5*d_rec, oversampling*size)  # Points for 

Intensity computation in one domain [reciprocal space] 

     

    #-- CALLING THE MAIN FUNCTIONS 

     

    Strain, u = U_strain_gradient(d_reel, cryst_size_z, R)  # Base strain field [no 

unit] and Base displacement field [Å] computation 

    V = Calculate_shape_function(cryst_size_z)  # Calculation of the crystal shape 

function 

     

    I,U_XY= Total_Intensity(size, cryst_size_xy, nb_domains_xy, nb_domains_z, q, G, 

u, V, R, structure_factor, sigma)  # Intensity computation 

                                                                                                    

# I is the sum of intensities of all the incoherently diffracting domains - U_XY is 

the displacement ([Å]) matrix of the atomic columns in the whole crystal 

     

    fwhm_arcsec = Instrumental_resolution(theta)  # Calculation of the instrumental 

resolution of the diffractometer [arcsec]  

    fwhm = FWHM_Conv(fwhm_arcsec, theta, lamb)  # Conversion of the fwhm in the 

reciprocal space 

    I = Convolve_instrum_resolution(I, fwhm, d_rec, oversampling, size)  # 

Convolution of the diffracted intensity with the instrumental resolution 

    tf = time.time() - t0 

     

    figure_displacement, figure_strain = Gradients_plot(Strain, u, U_XY, V, 

cryst_size_z) 

    figure_intensity,x = Intensity_plot(I, q, lamb) 

     

#    save_figures(figure_intensity, "Simul_(00"+str(order)+")_" + 

str(cryst_thickness)+"µm_" + "xy="+str(cryst_size_xy) + "_ov="+str(oversampling) + 

"_fwhm="+str(round(fwhm_arcsec)) + "_sigma-u-factor="+(str(sigma))) 

     

    return I, x, tf 
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Appendix 2: Demonstration of equation (4.7) 

 

The demonstration below is based on the work of Hordon et Averbach. It uses the angles 

and vectors defined in equation (4.6) and Figure A.1, where the use of the subscript 

1 indicates that the first of the three equivalent edge dislocation systems of a wurtzite crystal 

is represented. 

 

Figure A.1 : Sketch of the geometrical relationships around an edge threading 

dislocation with Burgers vector 𝐛𝐞  = 𝟏/𝟑 [𝟏𝟏𝟐 𝟎]. In this figure, we represented the 

angles(Ψ1, Δ1, γ1) for the first of the three edge dislocation system (i.e. Burgers vector be1⃗⃗ ⃗⃗ ⃗⃗⃗ 

oriented in the [112̅0] direction and normal to the glide plane Se1⃗⃗⃗⃗⃗⃗⃗ oriented in the [1̅100] 

direction). N⃗⃗⃗ is the normal to the diffracting plane, n⃗⃗ is the projection of N⃗⃗⃗ on the radial plane 

of the dislocation (i.e. the plane normal to the dislocation line directed along [0001]) and χ is 

the angle between the normal N⃗⃗⃗ and the normal to the surface  ⃗. 

The demonstration starts with the calculation of the mean square strain 〈휀𝑒 �⃗⃗�
 2  〉 of an edge 

TD along �⃗⃗�. As shown in the figure above, �⃗⃗� is the projection of the normal to the diffracting 

plane �⃗⃗⃗� on the radial plane of the dislocation. The calculation is based on an integration of the 

components 휀𝑟𝑟 and 휀𝑟𝜃 of the strain field around an edge dislocation. Hordon et Averbach 

provided the expressions of 휀𝑟𝑟 =
𝑏𝑒 sin𝜃 

4𝜋(1+𝜈)𝑟
 and 휀𝑟𝜃 =

𝑏𝑒 cos𝜃 

2𝜋(1−𝜈)𝑟
 and the expression below, from 

where we will start the calculation. In the following, the inner radius 𝑟0, the outer radius 𝑅, the 

geometrical angle 𝛾 (see figure above) and the Poisson ratio 𝜈 are constants independent of 𝜃. 

〈휀𝑒 �⃗⃗�
 2  〉 =

1

𝜋𝑅²
∫ ∫ (휀𝑟𝑟 + 휀𝑟𝜃  in(𝛾 − 𝜃) co (𝛾 − 𝜃))

2 𝑟 𝑑𝑟 𝑑𝜃
2𝜋

0

𝑅

𝑟0

 

=
1

𝜋𝑅²
∫ ∫ (

𝑏𝑒  in𝜃 

4𝜋(1 + 𝜈)𝑟
+
𝑏𝑒 co 𝜃 

2𝜋(1 − 𝜈)𝑟
 
 in(2𝛾 − 2𝜃)

2
)

2

𝑟 𝑑𝑟 𝑑𝜃
2𝜋

0

𝑅

𝑟0

 

=
𝑏𝑒
2

16𝜋3𝑅²
∫ ∫

(

 
 in² 𝜃

(1 + 𝜈)²⏟    
①

+
co ² 𝜃  in²(2𝛾 − 2𝜃)

(1 − 𝜈)²⏟              
②

+
2  in 𝜃 co 𝜃  in(2𝛾 − 2𝜃)

(1 + 𝜈)(1 − 𝜈)⏟                
③ )

 

 

1

𝑟
 𝑑𝑟 𝑑𝜃

2𝜋

0

𝑅

𝑟0
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① ∶ ∫
 in2 𝜃

(1 + 𝜈)2
 𝑑𝜃

2𝜋

0

 =
1

(1 + 𝜈)2
∫

1 − co (2𝜃)

2
 𝑑𝜃

2𝜋

0

=
1

2(1 + 𝜈)2
[𝜃 −

 in(2𝜃)

2
]
0

2𝜋

 

=
1

2(1 + 𝜈)2
(2𝜋 − 0) =

𝜋

(1 + 𝜈)²
 

② ∶ ∫
co ²𝜃  in²(2𝛾 − 2𝜃)

(1 − 𝜈)²
 𝑑𝜃

2𝜋

0

 =
1

(1 − 𝜈)2
∫

1 + co (2𝜃)

2
  
1 − co (4𝛾 − 4𝜃)

2
 𝑑𝜃

2𝜋

0

 

=
1

4(1 − 𝜈)2
∫ (1 + co (2𝜃) − co (4𝛾 − 4𝜃) − co (2𝜃) co (4𝛾 − 4𝜃)) 𝑑𝜃
2𝜋

0

 

=
1

4(1 − 𝜈)2
∫ (1 + co (2𝜃) − co (4𝛾 − 4𝜃) −

1

2
(co (2𝜃 − 4𝛾 + 4𝜃) + co (2𝜃 + 4𝛾 − 4𝜃)))  𝑑𝜃

2𝜋

0

 

=
1

4(1 − 𝜈)2
([𝜃]0

2𝜋 + [
 in(2𝜃)

2
]
0

2𝜋

− [
 in(4𝛾 − 4𝜃)

−4
]
0

2𝜋

−
1

2
([
 in(4𝛾 + 6𝜃)

6
]
0

2𝜋

+ [
 in(4𝛾 − 2𝜃)

−2
]
0

2𝜋

)) 

=
1

4(1 − 𝜈)2
(2𝜋 + 0 + 0 + 0) =

𝜋

2(1 − 𝜈)²
 

③ ∶ ∫
2  in 𝜃 co 𝜃  in(2𝛾 − 2𝜃)

(1 + 𝜈)(1 − 𝜈)
 𝑑𝜃

2𝜋

0

=
2

(1 + 𝜈)(1 − 𝜈)
∫  in 𝜃 co 𝜃  in(2𝛾 − 2𝜃)  𝑑𝜃
2𝜋

0

 

=
2

(1 + 𝜈)(1 − 𝜈)
∫

 in(2𝜃)

2
  in(2𝛾 − 2𝜃)𝑑𝜃

2𝜋

0

 

=
1

(1 + 𝜈)(1 − 𝜈)
∫

1

2
(co (2𝜃 − 2𝛾 + 2𝜃) − co (2𝜃 + 2𝛾 − 2𝜃)) 𝑑𝜃

2𝜋

0

 

=
1

2(1 + 𝜈)(1 − 𝜈)
 ([
 in(−2𝛾 + 4𝜃)

4
]
0

2𝜋

− [𝜃 co (2𝛾)]0
2𝜋) =

− 𝜋 co (2𝛾)

(1 + 𝜈)(1 − 𝜈)
 

Hence: 

〈휀𝑒 �⃗⃗�
 2  〉 =

𝑏𝑒
2

16𝜋3𝑅²
∫
1

𝑟
 (

𝜋

(1 + 𝜈)²
+

𝜋

2(1 − 𝜈)²
−

 𝜋 co (2𝛾)

(1 + 𝜈)(1 − 𝜈)
)  𝑑𝑟

𝑅

𝑟0

 

=
𝑏𝑒
2

16𝜋2𝑅2
 n (
𝑅

𝑟0
)(
2(1 − 𝜈)2 + (1 + 𝜈)²

2(1 + 𝜈)²(1 − 𝜈)²
+
1 − 2 co ² 𝛾

(1 + 𝜈)(1 − 𝜈)
) 

=
𝑏𝑒
2

16𝜋2𝑅2
 

1

(1 + 𝜈)(1 − 𝜈)
  n (

𝑅

𝑟0
)(
2(1 − 2𝜈 + 𝜈²) + (1 + 2𝜈 + 𝜈²)

2(1 + 𝜈)(1 − 𝜈)
+ 1 − 2 co ² 𝛾) 

=
𝑏𝑒
2

16(1 − 𝜈²)𝜋2𝑅2
  n (

𝑅

𝑟0
)(
2 − 4𝜈 + 2𝜈2 + 1 + 2𝜈 + 𝜈2 + 2 − 2𝜈²

2(1 − 𝜈²)
− 2 co ² 𝛾) 

=
𝑏𝑒
2

16(1 − 𝜈²)𝜋2𝑅2
  n (

𝑅

𝑟0
)(
𝜈2 − 2𝜈 + 5

2(1 − 𝜈²)
− 2 co ² 𝛾)  
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In the following, we will use two Poisson ratio depending parameters:  

𝐴 =
1

16(1−𝜈²)
        𝐵 =

𝜈2−2𝜈+5

2(1−𝜈²)
  

The mean square strain 〈휀𝑒 
 2〉 along the normal to the diffraction plane �⃗⃗⃗� is obtained by 

projection of 〈휀𝑒 �⃗⃗�
 2  〉. We note that, geometrically, (co Δ =  in χ  in 𝛾) and (co Ψ =  in χ co 𝛾). 

Hence, as mentioned by Hordon et Averbach:  co 2 𝛾 = co 2Ψ/ (co 2Ψ+ co 2 Δ) and  in2 χ =

(co 2Ψ+ co 2 Δ). This leads to: 

〈휀𝑒 
 2〉 = 〈휀𝑒 �⃗⃗�

 2  〉  in2 χ = 〈휀𝑒 �⃗⃗�
 2  〉(co 2Ψ+ co 2 Δ) = 𝐴

𝑏𝑒
2

𝜋2𝑅2
  n (

𝑅

𝑟0
) (𝐵 − 2 co ² 𝛾)(co 2Ψ+ co 2 Δ) 

= 𝐴
𝑏𝑒
2

𝜋2𝑅2
 𝑙𝑛 (

𝑅

𝑟0
) (𝐵(𝑐𝑜𝑠2𝛹 + 𝑐𝑜𝑠2 𝛥) − 2 𝑐𝑜𝑠2𝛹) 

= 𝐴
𝑏𝑒
2

𝜋2𝑅2
 𝑙𝑛 (

𝑅

𝑟0
) (𝐵 𝑐𝑜𝑠2 𝛥 + (𝐵 − 2) 𝑐𝑜𝑠2𝛹)  
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Appendix 3: Lambert W function - Demonstration of equation (4.15) 

 

The Lambert W function, noted 𝑊(𝑧), is defined as the inverse function of 𝑓(𝑡) = 𝑡𝑒𝑡 , 𝑡 ∈ ℂ . 

Hence, for every complex number 𝑧:  𝑧 = 𝑡𝑒𝑡
 
⇔ 𝑡 = 𝑊(𝑧). 

𝑊(𝑧) is a multivalued function, which possess two branches of solutions for real arguments 

𝑧 > −1 𝑒⁄  

• The principal branch, noted 𝑊0, is defined on the interval 𝑧 ∈ [−1 𝑒⁄ ,∞[ . It gives the 

unique solution of 𝑊(𝑧) for 𝑧 ≥ 0 

• The 𝑊−1 branch, defined on the interval ∈ [−1 𝑒⁄ , 0[ . It gives a second solution of 𝑊(𝑧) 

for −1 𝑒⁄ <  𝑧 < 0. At the junction of both branches, 𝑊0(−1 𝑒⁄ ) = 𝑊−1(−1 𝑒⁄ ) = −1 

The Lambert W function can be used to resolve equations of the form 𝑎𝑥  n(𝑥) + 𝑏𝑥 + 𝑐 =

0, in the following way: 

𝑎𝑥  n(𝑥) + 𝑏𝑥 + 𝑐 = 0    
𝑋=ln𝑥 
⇔        𝑎𝑋  xp(𝑋) + 𝑏  xp(𝑋) = −c  

  
⇔    ( 𝑋 +

𝑏

𝑎
)  xp(𝑋) = −

c

a
     

  
⇔    ( 𝑋 +

𝑏

𝑎
)   xp (𝑋 +

𝑏

𝑎
) = −

c

a
  xp(𝑋 +

𝑏

𝑎
) 

  
⇔     𝑋 +

𝑏

𝑎
= 𝑊 (−

𝑐

𝑎
 xp

𝑏

𝑎
)     

  
⇔      n 𝑥 =  𝑊 (−

𝑐

𝑎
 xp

𝑏

𝑎
) −

𝑏

𝑎
 

  
⇔     𝑥 =  xp (𝑊 (−

𝑐

𝑎
 xp

𝑏

𝑎
) −

𝑏

𝑎
)  
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Appendix 4: Demonstration of equations (4.19) and (4.20) 

 

For a screw dislocation, using equations (4.8),(4.10) and (4.18): 

〈|휀𝑠|〉 = √2/𝜋  √〈휀𝑠²〉 = √
2

𝜋
 
𝑏𝑠
2𝑠𝑖𝑛2Ψ

4𝜋3𝑅2
 n (

R

r0
) = √

2

𝜋
 
4𝜌𝑠𝑏𝑠

2𝑠𝑖𝑛2Ψ

4𝜋3
 n (

1

2r0√𝜌𝑠
) = 𝛼𝑠(𝜌𝑠)  in𝛹 

For a screw dislocation, the Burgers vector 𝑏𝑠⃗⃗ ⃗⃗  is oriented in the direction [0001] or [0001̅]. 

Hence, the angle Ψ between the normal of the diffracting plane and the Burgers vector is either 

equal to the inclination 𝜒 of the diffracting plane with respect to the surface, or to (𝜋 − 𝜒). 

Hence, we have: 

⟨|휀𝑠|⟩ = 𝛼𝑠(𝜌𝑠) 𝑠𝑖𝑛 𝜒  

 

For an edge dislocation, we will use the angles defined in equation (4.6) and Figure A.1 

of Appendix 2.  

Using equations (4.6) and (4.9), for the first edge dislocation system (𝑏𝑒1⃗⃗⃗⃗⃗⃗⃗, 𝑆𝑒1⃗⃗ ⃗⃗ ⃗⃗ ): 

〈휀𝑒1²〉 =
5𝑏𝑒
2(2.45𝑐𝑜𝑠2Δ1 + 0.45𝑐𝑜𝑠

2Ψ1)

64𝜋2
 4𝜌𝑒  n (

1

2r0√𝜌𝑒
) 

Geometrically, (co Δ =  in χ  in 𝛾) and (co Ψ =  in χ co 𝛾), which leads to: 

2.45𝑐𝑜𝑠2Δ + 0.45𝑐𝑜𝑠2Ψ=  in² χ( 2.45  in² 𝛾 + 0.45 co ² 𝛾)=  in² χ( 2  in² 𝛾 + 0.45) 

Hence: 

〈휀𝑒1²〉 =
5𝑏𝑒
2(2  in2 𝛾1 + 0.45)

64𝜋2
4𝜌𝑒  n (

1

2r0√𝜌𝑒
)  in² χ = 𝐾1(𝜌𝑒)(2  in

2 𝛾1 + 0.45)  in² χ 

As we take 〈휀𝑒²〉 as the average value of the mean squared strain of the three systems, if we 

write 𝛾1 = 𝛾 ;  𝛾2 = 𝛾 +
2𝜋

3
;   𝛾3 = 𝛾 −

2𝜋

3
 : 

〈휀𝑒²〉 =
𝐾1(𝜌𝑒)

3
 [1.35 + 2 ( in2 𝛾 +  in² (𝛾 +

2𝜋

3
) +  in² (𝛾 −

2𝜋

3
) )]  in² χ =  

𝐾1(𝜌𝑒)

3
 4.35  in² χ 

Finally, using Equation (4.18): 

〈|휀𝑒|〉 = 𝛼𝑒(𝜌𝑒)  in 𝜒  

 



 
 

Abstract 

CEA-Leti develops power electronics components with high energy efficiency, based on 

semiconductors of the III-N group (GaN, AlGaN, InGaN…), in particular in partnership with ST 

microelectronics. In order to minimize the costs and improve the compatibility with the standards 

of microelectronics industry, CEA-Leti chose to produce epitaxial thin films of GaN grown on 

silicon substrates. However, these two materials have large mismatches of coefficient of thermal 

expansion and lattice parameter. The resulting GaN layers are affected by strong gradients of 

mechanical stress and dislocation density throughout their thickness. As component performances 

and wafer fragility are linked to crystalline quality and stress state of these thin films, it is important 

to have access to effective, rapid and non-destructive metrology tools. To this end, this PhD focuses 

on the study of GaN layers by X-ray diffraction (XRD), which is an acknowledged and widely used 

technique for the analysis of epitaxial films. The effect of stress gradient on XRD measurements is 

an asymmetrical broadening of diffraction peaks. We suggest extracting this gradient by 

reproducing the experimental XRD signal, by means of a simulation of the diffracted intensity 

stemming from a distorted crystal. A good agreement between simulations and measurements is 

obtained when modelling local variations of the strain profile throughout the surface plane. For the 

quantification of dislocations extending through the thickness of GaN layers, we suggest a simple 

methodology, based on the measurement of the micro-strain field surrounding the dislocations. 

The study shows how to use this type of measurement on GaN layers with strong stress gradient. 

In addition, the results are compared to the dislocation densities obtained with alternative 

characterization techniques such as transmission electron microscopy, cathodoluminescence or 

XRD, via an analysis of crystal lattice misorientations. The studies of stress gradient and dislocation 

density, initially carried out on complete stacks of III-N layers, are enlighten by means of in-depth 

measurements on progressively etched films of GaN. 

Résumé 

Le CEA-Leti développe des composants de puissance à haut rendement énergétique à base de 

semi-conducteurs III-N (GaN, AlGaN, InGaN…), en particulier via un partenariat avec ST 

Microelectronics. Afin de minimiser les coûts et améliorer la compatibilité avec les standards de 

l’industrie microélectronique, le CEA-Leti a fait le choix d’élaborer des films minces de GaN hétéro-

épitaxiés sur substrat de silicium. Cependant, ces deux matériaux présentent d’importants écarts 

de coefficient de dilation thermique et de paramètre de maille. Il en résulte des couches de GaN 

affectées par de forts gradients de contraintes mécaniques et de densité de dislocations dans leur 

épaisseur. Le niveau de performance des composants et la fragilité des plaques étant intimement 

lié à la qualité cristalline et à l’état de contrainte de ces films minces, il est important de disposer 

d’outils de métrologie performants, rapides et non destructifs. A ce titre, les travaux de cette thèse 

se concentrent sur l’étude de couches de GaN par diffraction de rayons X (DRX), technique 

reconnue et largement employée pour l’analyse de films épitaxiés. L’effet du gradient de contraintes 

sur les mesures de DRX est un élargissement asymétrique des pics de diffraction. Afin d’extraire ce 

gradient, nous suggérons de reproduire le signal de DRX expérimental par simulation de l’intensité 

diffractée par un cristal déformé. Une bonne adéquation entre simulations et mesures 

expérimentales est obtenue lorsque l’on modélise les variations locales du profil de déformation le 

long du plan de surface. Afin de quantifier les dislocations traversant les couches de GaN, nous 

proposons une méthodologie simple, basée sur la mesure du champ de micro-déformations 

entourant les dislocations. L’étude montre comment utiliser ce type de mesure dans les couches de 

GaN à fort gradient de contraintes. En outre, les résultats sont comparés aux densités de 

dislocations obtenues par des méthodes de caractérisation alternatives, telles que la microscopie 

électronique en transmission, la cathodoluminescence ou la DRX via l’analyse de la désorientation 

du réseau cristallin. Les études du gradient de contraintes et de la densité de dislocations, 

initialement menées sur des empilements complets de couches III-N, sont éclairées à l’aune de 

mesures en profondeur sur des films de GaN gravés progressivement. 


