
HAL Id: tel-03404605
https://theses.hal.science/tel-03404605v2

Submitted on 26 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Relaxations of the seriation problem and applications to
de novo genome assembly

Antoine Recanati

To cite this version:
Antoine Recanati. Relaxations of the seriation problem and applications to de novo genome assembly.
Data Structures and Algorithms [cs.DS]. Université Paris sciences et lettres, 2018. English. �NNT :
2018PSLEE086�. �tel-03404605v2�

https://theses.hal.science/tel-03404605v2
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT

de l’Université de recherche Paris Sciences Lettres
PSL Research University

Préparée à l’École normale supérieure

Relaxations of the Seriation Problem and Applications to de

novo Genome Assembly
Relaxations du problème de sériation et applications à l’assemblage de génome de

novo.

École doctorale n�386

ÉCOLE DOCTORALE DE SCIENCES MATHÉMATIQUES DE PARIS CENTRE

Spécialité INFORMATIQUE

COMPOSITION DU JURY :

Alexandre d’Aspremont
Inria Paris, Directeur de thèse

Dominique Lavenier
IRISA/Inria Rennes, Rapporteur

Stéphane Vialette
LIGM, Université Paris Est,
Rapporteur

Thomas Brüls
CEA, Genoscope, Membre du Jury

Fajwel Fogel
Sancare, Membre du Jury

Jean-Philippe Vert
Google Brain, Mines ParisTech,
Directeur du Jury

Soutenue par Antoine Recanati
le 29 novembre 2018

Dirigée par
Alexandre d’Aspremont

ÉCOLE NORMALE

S U P É R I E U R E

RESEARCH UNIVERSITY PARIS

Plus ça rate, et plus on a de chances que
ça marche.

Second Principe Shadock

Résumé

Les technologies de séquençage d’ADN ne permettent de lire que de courts fragments, dont
on ignore la position sur le génome. L’assemblage de novo vise à reconstituer une séquence
d’ADN entière en mettant ces fragments bout-à-bout, tel un puzzle. Dans l’approche OLC
(overlap-layout-consensus), on calcule le chevauchement entre fragments afin de les disposer en
ordre (réarrangement), puis extraire une séquence consensus.

Le réarrangement peut s’écrire comme un problème combinatoire de sériation, où l’on réor-
donne des éléments comparable entre eux, de sorte que deux éléments adjacents sont similaires.
Ce problème est résolu efficacement par un algorithme spectral en l’absence de bruit, mais il
en va autrement des données génomiques réelles. En particulier, des régions du génome sont
similaires bien qu’éloignées (séquences répétées), rendant l’assemblage problématique.

Les méthodes d’assemblage emploient des algorithmes hiérarchiques et gloutons pour désam-
biguïser les séquences répétées. Nous proposons ici une approche épurée où l’on réarrange tous
les fragments «d’un coup» via la résolution de sériation.

Notre première contribution montre que l’emploi de la méthode spectrale pour le réarrange-
ment s’intègre parfaitement dans le schéma OLC, produisant des résultats de qualité semblable
aux méthodes standard. Cependant, du fait des séquences répétées, cette méthode produit des
assemblages fragmentés (typiquement en quelques sous-séquences au lieu d’une).

La deuxième contribution est un prolongement de la méthode spectrale lié à la réduction
de dimension sous conservation de distances, englobant les problèmes de sériation et de séri-
ation circulaire (une variante où les éléments peuvent être ordonnés selon un cycle) dans un
cadre unifié. Ce prolongement rend l’algorithme robuste au bruit et résout le problème de
fragmentation de l’assemblage précédent.

Notre troisième contribution formalise la sériation robuste, où l’on souhaite réordonner des
données bruitées. Nous décrivons des liens avec d’autres problèmes combinatoires, en partic-
ulier pour des matrices modèlisant les données réelles d’ADN. Nous proposons des algorithmes
adaptés, améliorant expérimentalement la robustesse sur données synthétiques et réelles, bien
que moins clairement que la deuxième contribution.

La quatrième contribution présente le problème de sériation avec duplication, motivé par
l’assemblage de génomes cancéreux via des données de conformation spatiale, que nous tentons
de résoudre avec un algorithme de projections alternées fondé en partie sur les méthodes de
sériation robuste, sur données synthétiques.

Mots-clés

sériation, méthodes spectrales, optimisation combinatoire, relaxations convexes, permutations,
permutaèdre, optimisation robuste, assemblage de novo , séquençage de troisième génération,
Oxford Nanopore Technology, Overlap-Layout-Consensus, classement.

ii

Abstract

In a sequencing experiment, we can only “read” small fragments (reads) of DNA due to physical
limitations, whose location on the genome is unknown. De novo assembly aims to put them
together to retrieve the full DNA sequence, like a jigsaw puzzle. The OLC approach computes
pairwise Overlaps between reads to find their Layout, and then derive a Consensus sequence.

The layout can be cast as an instance of the Seriation combinatorial problem, seeking to
reorder a set of elements based on their pairwise similarity, such that similar elements are
nearby. In a noiseless setting, a spectral method can solve Seriation efficiently. Still, it often
fails on noisy, real DNA data. Notably, assembly is challenged by repeated genomic regions
(repeats) causing distant fragments to be similar.

Most assembly engines follow hierarchical, greedy schemes, including modules dedicated to
detect and disambiguate repeats while constructing the output sequence. We explore a simpler
approach using Seriation to lay out all reads at once.

Our first contribution is to show that the spectral method can be seamlessly integrated in
an OLC framework, yielding competitive results compared to standard methods on real data.
However, due to repeats, the method can only find fragmented assemblies (with a few large
assembled fragments), i.e., it does not succeed to layout all the reads together at once.

In our second contribution, we extend the spectral method using a multidimensional spectral
embedding. It provides a unifying framework for seriation and circular seriation, a variant
searching for a cyclic ordering of the data. This method significantly improves the robustness
of the original algorithm on noisy data, and yields single-contig assembly of bacterial genomes.

As a third contribution, we introduce the Robust Seriation framework, formalizing the task
of seriation on corrupted data. We outline the relation between (robust) seriation and other
combinatorial problems, particularly for stylized matrices modeling DNA sequencing data. We
propose dedicated algorithms that experimentally improve robustness on synthetic and real
data, although they turn out to be more sensitive than the method constituting our second
contribution.

In a fourth contribution, we introduce the problem of Seriation with Duplications, which
is motivated by the application of assembling cancer genome from spatial conformation (Hi-C)
data. We propose an alternated minimization algorithm that can utilize methods designed to
solve Robust Seriation, and evaluate it on toy data.

Keywords

seriation, spectral methods, combinatorial optimization, convex relaxations, permutations, per-
mutahedron, robust optimization, de novo genome assembly, third generation sequencing, Ox-
ford Nanopore Technology, overlap-layout-consensus, layout problems, ordering.

iii

Remerciements

Tout d’abord, merci à mon directeur de thèse, Alexandre d’Aspremont, avec qui ce fut une
chance et un bonheur inestimables de travailler. Une chance, d’être guidé scientifiquement par
ta vision d’ensemble et ta capacité bluffante à faire, en quelques secondes, le lien entre un
problème nouveau et une méthode clé dont la plupart des gens ignoraient même l’existence.
Un bonheur, d’être encadré avec tant d’enthousiasme, de dynamisme et de bienveillance.

Je remercie vivement Dominique Lavenier et Stéphane Vialette d’avoir accepté de rapporter
cette thèse; c’est un honneur de présenter mes travaux devant vous et de bénéficier de vos
observations. Je remercie également les autres membres du jury d’avoir accepté d’en faire
partie, à commencer par son président, Jean-Philippe Vert, avec qui j’ai eu le privilège de
travailler, dont je suis reconnaissant de la gentillesse et admiratif de la faculté à reformuler
les problème les plus complexes avec transparence, et les présenter sous un autre angle qui
y apporte un éclairage et des perspectives nouvelles. Merci à Thomas Brüls; avec qui ce fut
aussi un bonheur de travailler, m’apportant une fraîcheur et une expertise précieuses, sous un
oeil bienveillant. Merci enfin à Fajwel Fogel; j’ai été heureux de te côtoyer en commençant
ma thèse et de reprendre le flambeau de certains de tes travaux, et je suis très enthousiaste à
l’idée de travailler avec toi après ma thèse ! Je suis tout aussi enthousiaste de travailler avec
Chloé-Agathe Azencott, que je remercie chaleureusement de m’accueillir au CBIO.

Ces trois années ont été enrichissantes pour moi, intellectuellement et humainement, et
cela tient à l’environnement du laboratoire, qui ne serait pas ce qu’il est sans le directeur de
l’équipe Sierra, Francis Bach, que je remercie de m’y avoir accueilli, et d’oeuvrer à ce climat
exceptionnel. Merci à tous les autres membres de Willow-Sierra, avec qui j’ai partagé de très
bons moments lors de diverses pauses (ou de travail commun !); et dont je considère aujourd’hui
certains comme des amis. Merci notamment à mes co-bureaux formidables. Et désolé de ne
pas faire de dédicaces nominatives dans ce paragraphe, mais je n’en pense pas moins !

Merci enfin à ma famille pour leur présence, leur importance et leur amour, et à Alice, pour
les mêmes raisons, et d’autres encore.

iv

Contents

1 Introduction 4
1.1 Seriation . 4

1.1.1 Presentation . 4
1.1.2 Notations . 6
1.1.3 Mathematical Formulation and Related Problems 7

1.2 Optimization Strategies . 9
1.2.1 Greedy Algorithms . 9
1.2.2 Spectral Relaxation . 10
1.2.3 Convex Relaxations . 12

1.3 Applications to Genomics . 18
1.3.1 De novo Genome Assembly . 18
1.3.2 Repeated Regions (repeats) . 21
1.3.3 Sequencing technologies . 23
1.3.4 State of the Art of Assembly Methods 24
1.3.5 Hi-C: Spatial Conformation Data . 26
1.3.6 10X Genomics . 27

1.4 Challenges . 27

2 Application of the Spectral Method to Genome Assembly 29
2.1 Introduction . 32
2.2 Methods . 33

2.2.1 Layout computation . 33
2.2.2 Consensus generation . 36
2.2.3 Overlap-based similarity and repeats handling 36

2.3 Results . 39
2.3.1 Data . 39
2.3.2 Layout . 40
2.3.3 Consensus . 41

2.4 Discussion . 47

3 Multi-dimensional Spectral Ordering : Reconstructing Linear Orderings via Spectral
Embedding 50
3.1 Introduction . 53
3.2 Related Work . 56

3.2.1 Spectral Ordering for Linear Seriation 56
3.2.2 Laplacian Embedding . 57

v

3.2.3 Link with Continuous Operators . 59
3.2.4 Other embeddings . 60
3.2.5 Ordering points lying on a curve . 61

3.3 Spectral properties of some (circular) Robinson matrices 61
3.3.1 Circular Seriation with Symmetric, Circulant matrices 61
3.3.2 (Linear) Robinson Toeplitz matrices . 63
3.3.3 Spectral properties of the Laplacian . 64

3.4 Recovering Ordering on Filamentary Structure 64
3.4.1 The Algorithm . 64
3.4.2 Illustration of Algorithm 3.3 . 65

3.5 Perturbation analysis . 66
3.5.1 Application of the Davis-Kahan Theorem 66
3.5.2 Exact recovery with noise for Algorithm 3.2 68

3.6 Numerical Results . 70
3.6.1 Synthetic Experiments . 70
3.6.2 Genome assembly experiment : bacterial genomes with ONT long-reads 72
3.6.3 Genome assembly using Hi-C data . 74
3.6.4 Assembly of genomes with multiple chromosomes with Hi-C data 75
3.6.5 Finding circular orderings with single-cell Hi-C data 80

3.7 Conclusion . 82

4 Robust Seriation 83
4.1 Introduction . 86
4.2 Robust Seriation . 88

4.2.1 Application of Seriation to Genome Assembly 89
4.2.2 Robust 2-SUM . 90

4.3 Robust Seriation Algorithms . 94
4.3.1 QAP solvers (FAQ and PHCD) . 94
4.3.2 Symmetry issue in the Permutahedron PH 95
4.3.3 Frank-Wolfe with tie-breaking constraint (FWTB) 97
4.3.4 Graduated Non-Convexity : Frank-Wolfe Algorithm with Concave Penalty

(GnCR and HGnCR) . 98
4.3.5 Unconstrained Optimization in Hn with Iterative Bias (UBI) 99
4.3.6 Spectral relaxation for HuberSUM(�) . 101
4.3.7 First Order Optimization on Manifold 103

4.4 Numerical Results . 103
4.4.1 Synthetic data . 103
4.4.2 Frank-Wolfe with Tie-Break (FWTB) is biased 104
4.4.3 E. coli genome reconstruction . 106
4.4.4 Genome assembly using Hi-C data . 107

4.5 Conclusion . 108

5 Seriation with Duplications 109
5.1 Introduction . 111
5.2 Seriation with Duplications . 112

5.2.1 Hi-C data . 112
5.2.2 Problem setting . 114

vi

5.3 Algorithms . 115
5.3.1 Alternate projection for Seriation with Duplications 115
5.3.2 Algorithms for Robust Seriation . 116
5.3.3 Algorithmic details . 116

5.4 Numerical Results . 118
5.5 Multiple chromosomes : Seriation+Clustering with Duplications 120

5.5.1 Numerical experiments with block + Robinson matrices 121
5.6 Discussion . 122

6 Conclusion and Perspectives 124
6.1 Summary of the thesis . 124
6.2 Perspectives . 125

A Supplementary Material for Chapter 2, Application of the Spectral Method to Genome
Assembly 128
A.1 Running Times . 128

A.1.1 Total time . 128
A.1.2 Runtime for layout only . 129

A.2 the Bandwidth Heuristic . 132
A.3 Consensus accuracy . 135
A.4 Additional Assembly Results . 136
A.5 Implementation and reproducibility . 139

B Supplementary Material for Chapter 3, Multi-dimensional Spectral Ordering : Recon-
structing Linear Orderings via Spectral Embedding 143
B.1 Additional Algorithms . 143

B.1.1 Merging connected components . 143
B.1.2 Computing Kendall-Tau score between two permutations describing a

circular ordering . 145
B.2 Additional Numerical Results . 146

B.2.1 Genome assembly experiment (detailed) 146
B.2.2 Gain over baseline . 147
B.2.3 Numerical results with KMS matrices 148
B.2.4 Sensitivity to parameter k (number of neighbors) 148
B.2.5 Sensitivity to the normalization of the Laplacian 148
B.2.6 Supplementary Figures for Hi-C data experiments 149

B.3 Proof of Theorem 3.3.2 . 149
B.3.1 Properties of sum of cosines. 149
B.3.2 Properties on R-Toeplitz circular matrix. 153
B.3.3 Recovering exactly the order. 156

C Supplementary Material for Chapter 4, Robust Seriation 163
C.1 Seriation and Robust Seriation Algorithms . 163
C.2 Supplementary Tables . 163

vii

D Supplementary Material for Chapter 5, Seriation with Duplications 166
D.1 Supplementary Figures . 166
D.2 Supplementary Tables . 166

viii

Contributions and thesis outline

Chapter 1: In this introductory chapter, we present the two problems that come into play

in this thesis. First, we introduce the Seriation problem, its mathematical formulation, and

develop two key methods to tackle this combinatorial problem over permutations, that will be

employed further in the manuscript : the spectral relaxation, and convex relaxations. Then, we

present the problem of de novo genome assembly, and explain the challenge caused by repeated

regions (repeats), before briefly describing the technology-specific data used in our experiments.

We conclude this chapter by stating the major challenges arising when trying to apply seriation

to genome assembly.

Chapter 2: In this applicative chapter, we set up to use the spectral method to compute

the layout of the reads, and integrate this layout module in a straightforward, end-to-end

Overlap-Layout-Consensus assembly pipeline. We test the method against real, third generation

sequencing DNA data of bacterial and yeast genomes. The proposed method is shown to

be competitive, thus validating the use of seriation for genome assembly. However, due to

repeats, the spectral method cannot layout all reads at once and eventually produces fragmented

assemblies. For the bacterial data-sets, the assembled contigs can sometimes be merged into a

single contig seamlessly, but the final yeast assemblies remain fragmented.

Chapter 3: This chapter presents a simple, yet powerful enhancement of the spectral method,

drawing a parallel between Seriation and the Spectral Clustering method, well known in the

machine learning community. We propose a unifying framework for seriation and circular se-

riation. In the circular variant of seriation, one seeks to find a circular (as opposed to linear)

ordering of the elements based on their pairwise similarity. It has diverse applications in bioin-

formatics. Notably, finding the layout of circular genomes (such as the bacterial genomes used

in Chapter 2) fits in the circular seriation framework. In this chapter, we bring together results

from machine learning and specific matrix theory that shed light on the mechanisms underpin-

ning the spectral method for seriation, and allow us to prove theoretical guarantees for circular

seriation analogous to those existing for linear seriation in the noiseless case. Importantly, we

designed an algorithm leveraging these results. It is a straightforward extension of the baseline

spectral method, yet we show that it yields a valuable gain in robustness through numerical

1

experiments. Remarkably, despite repeats, it correctly finds the layout of the bacterial genomes

introduced in Chapter 2 in one shot (leading to a single contig).

Chapter 4: Here, we focus on the mathematical modeling of seriation through optimization

problems, with the aim of finding algorithms that are by design more robust to the repeat-

induced noise. We formalize the robust seriation problem and show that it is equivalent to a

modified 2-SUM problem for a class of similarity matrices modeling those observed in DNA

assembly. We explore several relaxations of this modified 2-SUM problem, and compare them

empirically on synthetic data. The most salient and efficient methods are also evaluated on the

bacterial genomes used in the previous chapters. One of them is able to correctly find the full

layout of an E. coli genome in one shot from Oxford Nanopore reads. However, this method is

experimentally more sensitive than the one presented in Chapter 3.

Chapter 5: This chapter introduces the problem of Seriation with Duplications. It is motivated

by an application to cancer genome reconstruction, which is challenged by so-called structural

variations. Namely, large portions of the genome, up to whole chromosomes, are duplicated or

deleted, and new chromosomes are formed by fusing two pieces of chromosomes which are not

connected in a normal genome. Hi-C (spatial conformation) data can be used to reconstruct

the structure of such genome, but the duplications need to be addressed through a specific

framework. After motivating and formalizing the problem of seriation with duplications, we

propose an alternated minimization method, and evaluate it on synthetic data.

Chapter 6: This chapter concludes the thesis by summarizing our contributions, highlight-

ing the key challenges addressed, and describing possible extensions and improvements of the

present work.

Publications related to this manuscript are listed below.

• Chapter 2 is based on the following publication, Antoine Recanati, Thomas Brüls, and

Alexandre d’Aspremont. A spectral algorithm for fast de novo layout of uncorrected long

nanopore reads. Bioinformatics, 2016. The software is available on https://github.

com/antrec/spectrassembler.

• Chapter 3 is based on the following report, Antoine Recanati, Thomas Kerdreux, and

Alexandre d’Aspremont. Reconstructing latent orderings by spectral clustering. arXiv

preprint arXiv:1807.07122, 2018a. A python package is available on https://github.

com/antrec/mdso.

• Chapters 4 and 5 are based on the following report, Antoine Recanati, Nicolas Servant,

Jean-Philippe Vert, and Alexandre d’Aspremont. Robust seriation and applications to

2

cancer genomics. arXiv preprint arXiv:1806.00664, 2018b. The best performing method

for Robust Seriation was added to the mdso package given above. Code for Seriation with

Duplications is available on https://github.com/antrec/serdupli, although it is not

properly documented and ready-to-use at the moment.

3

Chapter 1

Introduction

Genome sequencing plays central role in biological research, with applications ranging from

evolutionary science to human disease research. The process of whole genome sequencing, that

is, reading the genome of a (member of a) species, involves two distinct tasks. First, the actual

sequencing consists in collecting signal from a biological sample through a physical experiment

(in the laboratory). Then, the assembly aims to reconstruct the genome from this signal,

typically with dedicated algorithms (on a computer).

Over the past quarter-century, increase in computational power has facilitated genome

sequencing through the collection and processing of larger amounts of data. The advent of new,

“high throughput” sequencing technologies lead to an even more dramatic increase in sequencing

power (and reduction in cost). Some of these “sequencing revolutions” have changed the game

of genome assembly, calling for adapted methods on the algorithmic front.

Seriation is a mathematical problem akin to solving a one-dimensional jigsaw puzzle. One of

the key steps of genome assembly essentially boils down to solving seriation. In this thesis, we

will present algorithmic efforts to solve seriation, and investigate their efficiency when applied

to genome assembly. Let us introduce the two core components of this thesis: seriation (theory

and algorithms), and de novo genome assembly (application).

1.1 Seriation

In the following, we present the seriation problem, and introduce a few formal definitions and

related problems. Then, we briefly review methods that have been proposed to solve it.

1.1.1 Presentation

The seriation problem seeks to recover a latent ordering from similarity information, such that

similar elements are nearby in the final ordering. We typically observe a matrix measuring

pairwise similarity between a set of n elements and assume they have a serial structure, i.e.,

4

they can be ordered along a chain where the similarity between elements decreases with their

distance within this chain. In practice, we observe a random permutation of this similarity

matrix, where the elements are not indexed according to that latent ordering. Seriation then

seeks to find it back using only (local) pairwise similarity.

The problem was introduced in archaeology to find the chronological order of a set of

graves [Robinson, 1951]. Each grave contained artifacts, assumed to be specific to a given time

period. The number of common artifacts between two graves define their similarity, resulting

in a chronological ordering where two contiguous graves belong to a same time period.

As a graphic illustration, let us consider the following example. The teapots dataset [Wein-

berger and Saul, 2006] is a collection of images of a rotating teapot, taken at angles regularly

spaced between 0 and 360�. If the sequence of images is sorted by increasing angle, it consti-

tutes a movie of the rotating teapot, making a full circle on itself. However, the collection of

images is given unsorted. In order to recover the movie, we can compute the pairwise similarity

between two images as the opposite of their `2 distance (the sum of the squared differences

between the gray level in each pixel, if the image is black and white). Applying seriation to

this set of similarities will output an ordering of the images where similar images are placed

nearby, hopefully matching the ordering of the movie. Figure 1.1 shows the similarity matrix

(a) ordered (b) permuted

Figure 1.1: Similarity matrix between teapots images using the `2 distance, when the subscripts
follow the ordering of the movie (1.1a), and when it is randomly permuted (1.1b).).

between images. Each entry (i, j) is the opposite of the sum of the squared pixel-wise distance.

In Figure 1.1a, the subscripts are ordered by increasing rotation angle (linearly spaced between

0 to 360�). The similarity tends to decrease as we move away from the diagonal, i.e., when the

difference of angles of the teapot images increases. In Figure 1.1b, the subscripts are given in

a random order, which is what is observed in practice. We still observe maximal values on the

5

main diagonal, which corresponds to self similarity between an image and itself. The diagonal

of the matrix is invariant by permutation since the `2 distance between an image and itself is

0, for all images. The goal of seriation is to recover (1.1a) given (1.1b). As a qualitative result,

Figure 1.2 shows a sub-sample of the ordered set of images found by seriation, on which we can

see the rotative movement.

(a) equi-spaced

(b) consecutive

Figure 1.2: Five teapots images sampled along the ordering found by seriation. On the top
Figure 1.2a, the images are uniformly sampled along the ordering (at positions 1, 21, 41, 61,
81 out of 100). The bottom Figure 1.2b displays five consecutive images in the ordering. The
mdso software presented in Chapter 3 was used in this experiment.

The seriation problem has applications in DNA sequencing [Meidanis et al., 1998, Garriga

et al., 2011] that we will develop throughout this manuscript. It also has applications in, e.g.,

envelope reduction [Barnard et al., 1995] and bioinformatics [Atkins and Middendorf, 1996,

Higgs et al., 2006, Cheema et al., 2010, Jones et al., 2012] (see Liiv [2010] for a more thorough

overview of applications).

1.1.2 Notations

Let us introduce notations in order to formulate the problem mathematically.

Matrices and vectors. Sn is the set of real, symmetric matrices of dimension n, and S+
n the set of

non-negative, symmetric matrices of dimension n. The transpose of a matrix X is written XT ,

and we use the notation xT y for the dot product between two vectors x, y 2 R
n (which can be

seen as a matrix of size n⇥1), and sometimes also the standard notation hx, yi. 1n = (1, . . . , 1)T

is the vector of size n with all ones. The sum of the entries of a vector x 2 R
n can thus be

written xT1n. For a matrix X of dimension n, diag(X) 2 R
n is the vector constituting the

main diagonal of X. However, if x 2 R
n is a vector, diag(x) denotes the diagonal matrix whose

main diagonal is x. We use ek = (0, . . . , 0, 1, 0, . . . , 0)T for the k-th vector of the canonical basis

6

of Rn. In is the identity matrix of dimension n. The sorted eigenvalues of a real, symmetric

matrix X 2 Sn are written �1(X)  · · ·  �n(X). We often omit the comma separating the

two subscripts of a matrix, i.e.we may use both notations Ai,j and Aij .

Permutations. The set of integers from 1 to n is written {1, . . . , n}, or [n] for short. Any

permutation can be represented by a vector ⇡ 2 R
n consisting in the rearrangement of the

integers 1, . . . , n, where ⇡i = j if and only if it moves the element at position j to position i.

Such a permutation vector takes values in [n] and each value appears once in the vector. For

ease of reading, we will use both notations ⇡i and ⇡(i) to denote the i-th entry of the vector ⇡.

Alternatively, the same permutation can be represented by a permutation matrix Π 2 {0, 1}n⇥n

such that Πij = 1 if and only if ⇡i = j. The two representations are equivalent and relate

through the equation Πg = ⇡, where g = (1, . . . , n)T denotes the identity permutation. The

identity permutation matrix is the identity matrix In. The matrix notation is convenient to

write a matrix A whose entries have been permuted by ⇡. AΠT is the matrix with coefficients

Ai,⇡(j), and ΠAΠT is the matrix whose entry (i, j) is A⇡(i),⇡(j). The set of permutations of n

elements is written Pn, and this notation can refer to the set of permutation vectors or matrices,

depending on the context. Also, whenever the dimension is clear from the context, we may

omit the subscript n in Pn, 1n, etc.

1.1.3 Mathematical Formulation and Related Problems

The main structural hypothesis on similarity matrices related to seriation is the concept of

R-matrix, defined hereafter, using the terminology introduced in Atkins et al. [1998].

Definition 1.1.1. We say that the matrix A 2 Sn is an R-matrix (or Robinson matrix) iff

it is symmetric and satisfies Ai,j  Ai,j+1 and Ai+1,j  Ai,j in the lower triangle, where

1  j < i  n.

These matrices are named after Robinson [1951]. The set of R matrices is written R in

the following, and sometimes LR in Chapter 3 (to emphasize that the underlying structure is

Linear, as opposed to Circular). Their entries are non increasing when moving away from the

diagonal in a given row or column. An equivalent formulation is to say that, given any triplet

(i, j, k) 2 [n]3, with i  j  k, we have Aij � Aik and Ajk � Aik.

We say that a symmetric matrix A is pre-R if there exists a permutation matrix Π such

that the matrix ΠAΠT (whose entry (i, j) is A⇡(i),⇡(j)) is an R-matrix. For such matrices, the

seriation problem is to find a permutation that makes the matrix Robinson. Given a similarity

matrix A that is pre-R, seriation can be written as a feasibility problem

find Π 2 P

such that ΠAΠT 2 R.
(Seriation)

Figure 1.3 illustrates these definitions.

7

(a) R-matrix (b) pre-R

Figure 1.3: An R-matrix, A (3.2a) and a permuted observation, ΠAΠT , with Π a permutation
matrix (1.3b). Seriation seeks to recover the R-matrix (3.2a) from the pre-R matrix (1.3b).

Remark that the similarity matrix in Figure 1.1a is not an R-matrix. Indeed, although

the similarity tends to decrease when moving away from the diagonal, it locally increases in

some places. For instance, there are high similarity values between the last and the first

images, given that the final orientation of the teapot is close to the initial. Yet, even when the

strict (Seriation) problem is infeasible, we are still interested in finding an ordering such that

(most) similar elements are placed nearby. This can be achieved by minimizing a well designed

objective function. For instance, we can aim to minimize the number of anti-Robinson events,

that is to say the number of violations of the two inequalities appearing in Definition 1.1.1. A

discussion about such seriation criteria can be found in Hahsler [2017]. An objective function

that will allow for spectral and convex relaxations in the following is the 2-SUM loss. The

2-SUM problem reads

minimize
Pn

i,j=1Aij |⇡i � ⇡j |
2

such that ⇡ 2 Pn.
(2-SUM)

Note that it is equivalent to minimize
Pn

i,j=1Aij |⇡i � ⇡j |
2 and

Pn
i,j=1A�i�j |i � j|2 over the

variable ⇡ 2 Pn or � 2 Pn, since the optimal permutation of one of these problems is the inverse

permutation of the other (⇡⇤ = ��1
⇤). Intuitively, the 2-SUM problem lays similar elements

nearby as it penalizes the similarity between two elements by their squared distance in the

ordering. It is also a particular case of the Quadratic Assignment Problem [Koopmans and

Beckmann, 1957], written

min
⇡2Pn

nX

i,j=1

Ai,jB⇡(i),⇡(j) (QAP(A,B))

8

with Bij = |i� j|2. Laurent and Seminaroti [2015] showed that for pre-R matrices A, Seriation

is equivalent to QAP(A,B) when �B 2 Rn, i.e. when B has increasing values when moving

away from the diagonal, and has constant values across a given diagonal (i.e., B is a Toeplitz

matrix). This includes p-SUM problems, for p > 0, corresponding to Bij = |i � j|p. The

case p = 1 is also known as the minimum linear arrangement problem (MLA) [George and

Pothen, 1997]. For pre-R matrices, these problems are all equivalent and can be solved by a

spectral algorithm in polynomial time, as we are about to see. However, when A is not pre-R,

Seriation has multiple local solutions, and the spectral algorithm does not necessarily find a

global optimum for 2-SUM, p-SUM or QAP(A,B) with B a Toeplitz, negated R matrix. In

fact, these problems are NP-hard in general [Sahni and Gonzalez, 1976].

1.2 Optimization Strategies

We have seen that Seriation can be tackled by minimizing a loss function, such as the number of

anti-Robinson events, the 2-SUM loss, or more generally some instances of QAP(A,B). Different

methods can be used to perform the minimization.

Remark that the search space Pn is discrete and of cardinality n!, thus preventing the use of

exhaustive search (i.e., testing the values of the function over all possible permutations and pick

the one with lowest score), even for small scale problems. To address this challenge, one may

resort to relaxations of the problem. That is, replacing the hard, combinatorial problem with

an easier, continuous one. By representing the permutation variable in a vector space such as

R
n, we can allow (“relax”) the variable to take values in the space between some permutations,

even though it does not represent a permutation anymore.

Spectral relaxations reformulate the problem into an eigen-problem, for which there exists

efficient, polynomial time iterative algorithms. Convex relaxations let the variable take values

in the convex hull of the initial set, meaning that instead of having a permutation variable

⇡ 2 P , we work with a variable x that can always be written x =
P

j ✓j⇡
(j), with

P

j ✓j = 1,

✓j � 0 and ⇡(j) 2 P for all j. The loss function is also approximated by a convex function, if it

is not already a convex function. Then, the arsenal of convex optimization, including first-order

methods (such as gradient descent), can be used to solve the convex problem. These methods

have convergence guarantees towards an optimal solution x⇤ of the convex problem. However,

x⇤ is most often not in the initial search space P , and its projection onto P may not be optimal

for the initial problem.

1.2.1 Greedy Algorithms

Greedy methods typically solve sub-problems at a small neighborhood scale, with exhaustive-

search like procedures, and add up the bricks together to form the output sequence. For

instance, branch and bound methods have been proposed for small scale seriation [Brusco,

9

2002]. However, they are impractical for problems of size larger than n ⇠ 100. Other heuristics

from combinatorial optimization, e.g., simulated annealing and dynamic programming, have

been proposed [Brusco et al., 2008], demonstrating very good experimental performance, but

are still limited to small scale problems (n ⇠ 100) [Evangelopoulos et al., 2017a, Hahsler et al.,

2008].

1.2.2 Spectral Relaxation

The 2-SUM loss has been extensively used since it can be written as a quadratic, which is

convenient for optimization. The following relaxation is also at the core of spectral clustering,

where one seeks to cluster the data instead of ordering it (see the tutorial of Von Luxburg

[2007] for details). It has a major importance in this thesis. It will serve as a baseline in the

experiments, for it is scalable and efficient. Also, in Chapter 3, we will investigate extensions

of this method.

For any real symmetric matrix A 2 Sn, let D = diag(A1). Dij = 0 if j 6= i, and Dii =
Pn

j=1Aij . D is called the degree matrix of A. If A is the adjacency matrix of an undirected

non-weighted graph, Dii is the degree of the node i. Now, let L = D � A be the Laplacian of

A. For any vector f 2 R
n, we have

fTLf =
1

2

nX

i,j=1

Aij(fi � fj)
2. (1.1)

Indeed, observe that

fTLf = fTDf � fTAf

=
Pn

i=1 f
2
i Dii �

Pn
i,j=1Aijfifj

=
Pn

i=1 f
2
i (
Pn

j=1Aij)�
Pn

i,j=1Aijfifj

=
Pn

i,j=1Aij(f
2
i � fifj)

= 1
2

Pn
i,j=1Aij(f

2
j + f2

i � 2fifj)

= 1
2

Pn
i,j=1Aij(fi � fj)

2,

(1.2)

where we have used the symmetry of A on the penultimate line, and the fact that the symbols

of the subscripts i and j could be switched. Hence, 2-SUM can be written as a quadratic

optimization problem on permutation vectors,

minimize ⇡TL⇡

such that ⇡ 2 Pn.
(2-SUM (quad.))

The spectral relaxation relies on the analysis of the spectrum of the Laplacian. Without loss

of generality, we will consider in the following that the similarity matrices have non-negative

entries. Remark that adding an offset to a matrix A to make it non-negative does not change

10

the optimal permutation in 2-SUM, since it translates into an offset in the objective function

that is independent of the permutation. From Equation (1.1), we can see that when L is the

laplacian of a (symmetric, non-negative) similarity matrix A, it has non-negative eigenvalues.

Indeed, recall that the eigenvector associated to the smallest eigenvalue of a matrix M 2 Sn is

given by

f1 2 argmin
kfk2=1

fTMf, (1.3)

and for i > 1, the i-th smallest eigenvector is given by

fi 2 argmin
kfk2=1, fT fj=0, j<i

fTMf, (1.4)

Now, observe that the right-hand-side of Equation (1.1) is always non-negative, hence no eigen-

vector f can have negative eigenvalue. Note also that 1 is an eigenvector of L, with associated

eigenvalue 0. Indeed, if all fi in Equation (1.1) are equal, then the right-hand-side is 0. To

summarize, let 0 = �1  �2  . . .  �n, Λ , diag (�1, . . . ,�n), Φ = (1 = f1, . . . , fn), be the

eigendecomposition of L = ΦΛΦT .

The difficulty in solving 2-SUM (quad.) does not come from the objective function (the

unconstrained minimization of a quadratic is one of the easiest optimization problems), but

from the constraint set (combinatorial). As observed by Lim and Wright [2014], a permutation

vector can be characterized by the three following constraints,

⇡(i) 2 [n], i = 1, . . . , n (integer constraint)

⇡T1 = n(n+ 1)/2 (sum constraint)

k⇡k22 = n(n+ 1)(2n+ 1)/6. (norm constraint)

The membership to P can be equivalently enforced by the three previous constraints. The spec-

tral relaxation of 2-SUM (quad.) studied in Atkins et al. [1998] basically drops the (integer constraint),

as noted in Ding and He [2004]. Since 1 is in the nullspace of L, the objective in 2-SUM (quad.)

does not vary by subtracting ((n+ 1)/2)1 to the permutation vectors. Hence, the (sum constraint)

can be transformed into ⇡T1 = 0 in the 2-SUM problem. Finally, the quadratic 2-SUM ob-

jective is homogeneous, and we can therefore chose to rescale the permutation vectors and

transform the (norm constraint) into k⇡k22 = 1. All in all, the spectral relaxation of 2-SUM

reads,

minimize fTLf

such that fT1 = 0, kfk2 = 1.
(Spectral Relax.)

11

Given that 1 is the first eigenvector of L, we recognize Equation (1.4) with i = 2. The

solution f⇤ of the Spectral Relax. is the eigenvector associated to the second smallest eigenvalue

of the laplacian of A. However, since we relaxed the integer constraint, the solution f⇤ is in

general not a permutation. In order to recover a permutation from f⇤, we can project f⇤ back

onto the set of permutation vectors, i.e., find ⇡̃ 2 argmin⇡2Pn
kf⇤ � ⇡k2. The computation

of this projection actually boils down to sorting the entries of f⇤ : ⇡̃ is such that f⇤(⇡̃(1)) 
. . .  f⇤(⇡̃(n)). Note that this projection ⇡⇤ is not guaranteed to be the optimum of 2-SUM

in general. If A is the adjacency matrix of a disconnected graph, i.e., there are connected

components in the graph with no edges in between, then f⇤ has constant values inside each

connected component (and can be used for clustering [Von Luxburg, 2007]). This makes the

projection degenerate, since there is no best way to sort a constant vector. However, Seriation

and 2-SUM aim to find a global ordering integrating all the local similarities. If the graph is

disconnected, say, in two clusters, then only the sub-orderings restricted to each cluster will

matter. Therefore, we restrict ourselves to the case where A is the adjacency matrix of a

connected graph (for any pair of nodes (i, j), there exists a path going from i to j). Then,

the second smallest eigenvalue, called the Fiedler value, is positive : �2 > 0, and there are

meaningful variations in f⇤. Some values of f⇤ can still be equal, and Atkins et al. [1998]

propose a method to deal with these degeneracies with so-called PQ-trees, but this situation is

scarcely encountered in practice when dealing with real or noisy data.

We summarize the spectral method in Algorithm 1.1. A major result from Atkins et al.

Algorithm 1.1 Spectral ordering [Atkins et al., 1998]

Input: Connected similarity matrix A 2 R
n⇥n

1: Compute Laplacian LA = diag(A1)�A
2: Compute second smallest eigenvector of LA, f1
3: Sort the values of f1

Output: Permutation � : f1(�(1))  . . .  f1(�(n))

[1998] states that Algorithm 1.1 solves Seriation whenever it is feasible. This is formalized in

Theorem 1.2.1

Theorem 1.2.1. Atkins et al. [1998, Theorem 3.3] Let A be a pre-R matrix with a simple Fiedler

value and whose Fiedler vector f⇤ has no repeated values. Let ⇡ be the permutation obtained by

sorting the values of f⇤ by increasing value (the output of Algorithm 1.1), and Π the associated

permutation matrix. Then, ΠAΠT is an R-matrix.

1.2.3 Convex Relaxations

The spectral relaxation is powerful, but it is intrinsically specific to the (2-SUM (quad.)) objec-

tive, and may perform poorly when the input matrix A is noisy. Convex relaxations are more

flexible and come with theoretical guarantees, though they are often heavier computationally.

12

Formally, consider the constrained optimization problem,

minimize f(x)

subject to x 2 C,
(1.5)

in x 2 R
d, where f is a smooth (its gradient is Lipschitz continuous) convex function (e.g., the

(2-SUM) objective) and C is a closed set (e.g., P). The convex relaxation approach approxi-

mates the non-convex set C with a convex one. Specifically, it lets the variable be in a convex

set that contains the original set C. The tightest relaxation consists in considering the convex

hull of the original set. For the record, the convex hull of a set C, denoted hull(C), is the set

of all convex combinations of points in C,

hull(C) =
�
✓1x1 + . . .+ ✓kxk | ✓i � 0, i = 1, . . . , k, ✓1 + . . .+ ✓k = 1

.

It is the smallest convex set that contains C. The convex relaxation of (1.5) reads

minimize f(x)

subject to x 2 hull(C).
(1.6)

Then, convex optimization methods can be used to solve (1.6). For instance, projected gradient

descent is a first order iterative method. Given the current iterate xt, it computes the gradient

of the function at xt, takes a step in the opposite direction of the gradient, and projects back

onto the constraint set (since xt+1/2 may no longer be in hull(C)), with,

xt+1/2 = xt � �rf(xt), (gradient step)

xt+1 = argmin
x2hull(C)

kx� xt+1/2k. (projection step)

In practice, although we can mathematically define hull(C), it may be computationally chal-

lenging to perform the projection step.

13

Algorithm 1.2 Conditional gradient algorithm for constrained problem (1.5)

Inputs: Initial point x0 2 hull(C), target precision "

for t = 0, . . . do

Solve linear minimization oracle

st = argmin
s2hull(C)

hrf(xt), si (1.7)

Get estimated gap
∆t = hxt � st,rf(xt)i (1.8)

if ∆t  " then Stop end if

Set

xt+1 = xt +
2

t+ 2
(st � xt)

end for

Output: x̂ = xt

The conditional gradient method (a.k.a Frank-Wolfe [Frank and Wolfe, 1956, Lacoste-Julien

and Jaggi, 2015]), described in Algorithm 1.2, can circumvent this problem. It uses a linear

minimization oracle (1.7) to produce a sequence of iterates that remain in hull(C) by con-

struction. When f is convex and smooth, Algorithm 1.2 has a guaranteed convergence rate of

O(1/t) towards a solution x⇤ of (1.6). It also provides an estimated duality gap (1.8), due to an

inequality involving the convexity of f . Note that using Algorithm 1.2 is dependent upon the

availability of an efficient linear minimization oracle to solve Equation (1.7). If this step can

be performed efficiently (with a computationally cheap algorithm), then Algorithm 1.2 is likely

to be efficient. The linear minimization oracle (LMO) depends solely on the set C. Indeed, in

Equation (1.7), the gradient at xt is given, hence the problem is no other but a linear program

on hull(C). For permutation problems, one can choose to represent permutations with vectors

or matrices, resulting in two possible sets C.

Permutation matrices

The set of permutation matrices can be written with the following constraints,

Pn =
n

Π 2 {0, 1}n⇥n
�
�
�Π1 = 1, ΠT1 = 1

o

. (1.9)

The two stochastic constraints impose that in a permutation of the integers 1, . . . , n, each

integer i 2 [n] appear once, and only once. The convex hull of P is obtained by relaxing the

integer constraints Πij 2 {0, 1} into Πij 2 [0, 1]. The resulting set, called the Birkhoff polytope,

is defined as follows,

14

Definition 1.2.2. The convex hull of the set of n⇥ n permutation matrices, called the Birkhoff

polytope Bn, is the set of all doubly-stochastic n⇥ n matrices:

Bn = {X 2 R
n⇥n | X � 0, X1 = 1, XT1 = 1}.

It is a polyhedron, i.e., it is defined by linear constraints. Work akin to seriation involving

B include that of Vogelstein et al. [2011], who used the conditional gradient Algorithm 1.2 to

minimize the objective of QAP(A,B) over the Birkhoff polytope B.

Each iteration of the algorithm involves solving a linear program in B (1.7), which is achieved

using a Hungarian matching algorithm [Kuhn, 1955]. Again, the membership to B needs not

to be enforced explicitly when using the conditional gradient algorithm, since the sequence of

iterates remain in B by construction (using convex combinations of points in B).

More recently, Fogel et al. [2013] proposed a convex relaxation of 2-SUM in B. In its most

basic form, it solves the following problem,

minimize gTΠTLΠg

subject to Π 2 Bn.
(1.10)

The objective function is still the 2-SUM objective, but is written in the variable Π, and is

a quadratic function of the variable. The constraints appearing in Definition 1.2.2 are linear,

hence, the problem can be solved with standard optimization solvers such as MOSEK [Andersen

and Andersen, 2000], using, e.g., interior point methods. However, the variable Π has n2 entries,

which makes this approach limited to medium-scale problem. Refinements of this approach,

using for instance the Frank-Wolfe algorithm, can make the problem scale to larger sizes [Fogel

et al., 2013].

Permutation vectors

A permutation vector has only n entries (compared to n2 for a permutation matrix). Therefore,

a relaxation on the set of permutation vectors may be more scalable. We have seen earlier three

constraints defining the set of permutation vectors (also written P in this subsection). Still,

the (norm constraint) is not linear. Yet, convex optimization routinely solves problems with

a quadratic objective and linear equality and inequality constraint, but quadratic constraints

are often challenging, hence this formulation is not adapted to convex optimization. The set of

15

permutation vectors can also be defined as follows [Lim and Wright, 2014],

⇡(i) 2 [n], i = 1, . . . , n (integer constraint)

⇡T1 = n(n+ 1)/2 (sum constraint)

X

i2S
⇡i 

|S|
X

i=1

(n+ 1� i) for all S ⇢ [n] (partial sum constraints)

The convex hull of the set of permutation vectors is also obtained by relaxing the (integer constraint),

and is defined as follows [Lim and Wright, 2014],

Definition 1.2.3. The permutahedron PHn, the convex hull of the set of permutation vectors of

size n, is

PHn =

8

<

:
x 2 R

n

�
�
�
�
�
�

nX

i=1

xi =
n(n+ 1)

2
,
X

i2S
xi 

|S|
X

i=1

(n+ 1� i) for all S ⇢ [n]

9

=

;
.

Still, there are 2n subsets S of [n], hence it is impractical to enforce explicitly all 2n in-

equalities from (partial sum constraints) in a convex optimization solver.

Lim and Wright [2014] proposed a convex relaxation of 2-SUM in PH, using an extended

formulation of PHn from Goemans [2014], based on sorting networks. This formulation repre-

sents PHn with Θ(n log n) variables and constraints, instead of Θ(n2) for permutation matrices.

In a nutshell, the extended formulation states that a vector x belongs to PHn if it constitutes

the first n entries of a larger vector respecting some linear inequality constraints,

x 2 PHn if x 2 {xin | (xin, xrest) 2 SN n}, (1.11)

where SN n is a polyhedron, i.e., the membership of xextd. = (xin, xrest) to SN n is enforced by

linear inequalities. It enables solving the following relaxation,

minimize xTLx

subject to x 2 PHn

(1.12)

by calling a convex optimization solver on a variable xextd. with linear inequality constraints,

whose n first entry only are used in the objective.

Even more recently, Evangelopoulos et al. [2017a] attempted to solve 2-SUM with the

conditional gradient Algorithm 1.2 in PH. The key observation is that the LMO (1.7) can be

computed efficiently here, as it boils down to sorting the entries of the gradient (which is a

16

vector of size n). Indeed, if y denotes the gradient of f at xt, Equation (1.7) can be written as,

minimize
Pn

i=1 yisi

subject to s 2 PHn.
(1.13)

Now, observe that the minimum of a linear function on a polyhedron resides on a vertex, hence

we can restrict the variable s to be in Pn instead of PHn. The permutation that minimizes

(1.13) is the one with maximal weight (n) on the largest entry of y, with second maximal weight

(n � 1) on the second largest entry of y, etc. Formally, if ⇡ is the permutation that sorts the

entries of s increasingly,

y⇡(1)  y⇡(2)  . . .  y⇡(n)

the solution s⇤ of Equation (1.13) is the inverse permutation of ⇡, defined by,

s⇤⇡(k) = k, for k = 1, . . . , n.

Algorithm 1.2 can be implemented with hull(C) = PHn, where the LMO (1.7) consists in

sorting the entries of the gradient as described previously, which has algorithmic complexity

O(n log n).

Symmetry Breaking

A crucial issue with the convex relaxations presented above is that the optimum of the convex

problems (1.10) and (1.12) are trivial and non-informative.

Indeed, recall that 1 is in the nullspace of L, and that L is positive semi-definite. The

geometrical center of PHn, cn = n+1
2 1n, therefore minimizes (1.12) (where the objective is 0).

Similarly, the geometrical center of Bn, Cn = 1
n1n1

T
n , minimizes (1.10). Yet, the respective

centers of PHn and Bn are at the same distance from any permutation (vector or matrix,

respectively). Therefore, the task of projecting them back onto the set of permutations is

totally degenerate.

This is essentially due to the following symmetry. The 2-SUM objective is invariant by

flipping a permutation. For instance, (1, . . . , n) and (n, . . . , 1) yield equal score. Formally, the

operator Tn defined by Tn(⇡) = (n+ 1)� ⇡ leaves 2-SUM invariant. In order to overcome this

issue, Fogel et al. [2013] augmented the convex relaxation (1.10) as follows.

- Introduce a tie-breaking constraint, ⇡1 + 1  ⇡n, or in matrix form, eT1 Πg + 1  eTnΠg,

to resolve ambiguity about the direction of the ordering.

- Add a penalty to the Froebenius norm of PΠ, with P = In �Cn = In � 1
n1n1

T
n , to push

the solution away from the center Cn.

17

Additionally, their convex formulation allows to incorporate ordering constraints of the form

⇡i � ⇡j  �k, to leverage prior knowledge on the ordering (and, if this prior knowledge is

consistent, help breaking the symmetry). Also, they average over several perturbations of g to

gain in robustness. All in all, the enhanced problem (1.10) reads,

minimize 1
p Tr(Y

TΠTLAΠY)� µ
pkPΠk2F

subject to DΠg  �,

Π1 = 1, ΠT1 = 1, Π � 0,

(Matrix-Relax. 2-SUM)

where DΠg  � contains the tie-breaking and a priori constraints, the second line of constraints

imposes Π 2 Bn, each column of Y 2 R
n⇥p is a perturbed version of g, and µ is a regularization

parameter. Keeping µ < �2(LA)�1(Y Y T) ensures that (Matrix-Relax. 2-SUM) remains convex.

Lim and Wright [2014] adapted these improvements to the permutation vector formulation,

yielding the following problem,

minimize xTLx� µkPxk22
subject to Dx  �,

x 2 PHn.

(Vector-Relax. 2-SUM)

The objective of (Vector-Relax. 2-SUM) can also be written xT (L�µP)x, making it clear that

the objective remains convex when the regularization parameter is smaller than the Fiedler

value, i.e., µ < �2(L).

Finally, Evangelopoulos et al. [2017a] also use the above regularization, i.e., they mini-

mize the objective from (Vector-Relax. 2-SUM) in PHn with the Frank-Wolfe Algorithm 1.2.

However, rather than choosing a fixed value of the regularization parameter µ, they iteratively

increase it in outer-loops of a continuation (a.k.a, graduated non-convexity) scheme. They

start with µ < �2(L), and increase it until µ > �n(L). Their approach produces a sequence of

solutions to sub-problems following a path from cn to a permutation (i.e., a vertex of PHn).

1.3 Applications to Genomics

Let us present the outline of de novo genome assembly, one of the key challenges (the repeats),

and some specific sequencing technologies.

1.3.1 De novo Genome Assembly

DNA sequencing refers to the process of determining the nucleotide order of a given DNA

fragment. There are four possible nucleotides (also called bases), Adenine, Cytosine, Thymine

or Guanine, which we represent by their first letter, A, C, T, or G. DNA sequencing results in

a linear sequence forming a string in the 4-letters alphabet {A,T,G,C}, e.g. ’AATCGCG’.

18

AATTGGCATGCTGATGTGCTGATGCGTAGTGCTGTGCTAGTGCTGATC

AATTGGCATGC

TTGGCATGCTGATGTG

GCTGATGTGCT

TGCTAGTG

CTAGTGCTG

TGCTGATC

Figure 1.4: Illustration of the genome assembly process. The long, black sequence is the DNA
strand we wish to sequence. The colored fragments (called reads) are the input for the assembly.
However, these fragments are given “in a bag”, i.e., we ignore their positions and their order
in the genome (they are correctly located in the Figure for illustration only). Thanks to the
overlaps, we can recover the full sequence from the fragments.

In practice, we use a device that outputs an electronic signal from a DNA fragment. The

sequence can then be deduced from the signal (this inference process is called basecalling).

However, due to limitations inherent to the physicochemical process enabling us to “read” the

DNA sequence, we can only access partial sub-fragments (called reads hereafter) extracted from

the input DNA strand.

To overcome this limitation, the idea of shotgun sequencing is to clone the genome multiple

times, and sequence pieces of the clones at random locations in the genome. Consequently,

the genome is oversampled and all parts are covered by multiple reads with high probabil-

ity. Hence, we have redundant information : there are overlaps between the reads, and we

can assemble all the pieces together to retrieve the input DNA strand. For instance, the

example sequence ’AATCGCA’ could yield the three following sub-sequences in an experi-

ment, {’AATC’,’ATCG’,’CGCA’}. We see that ’AATC’ overlaps ’ATCG’ and ’ATCG’ overlaps

’CGCA’, enabling us to reconstruct the full word. Nonetheless, we ignore the locations of the

reads on the genome, and we must infer them from the overlap information, in the way of a

jigsaw puzzle. A schematic illustration is given in Figure 1.4.

In some applications, we wish to sequence the genome of the member of a species for which

we already have a reference genome (for instance, a human). Then, we can find the locations of

the reads by mapping them to a reference before reconstructing the full sequence of the given

individual. In contrast, de novo genome assembly refers to the task of reconstructing the whole

DNA strand from the fragments (reads), sampled at random locations, without any reference.

In a de novo assembly experiment, the coverage c is the sum of the lengths of the reads divided

by the length of the genome. In average, if all reads had the same length and were sampled

uniformly along the genome, a given read would overlap with c other reads.

The DNA has a double-strand structure, as shown on Figure 1.5. Each strand has an

orientation determined by the direction in which DNA was replicated (from one end denoted

5’ to the other, denoted 3’). The two strands are complementary, i.e., one is the reverse

complement of the other, where the reverse complement of a sequence (s1, . . . , sn) is defined as

(s̄n, . . . , s̄1), with Ā = T , T̄ = A, C̄ = G, and Ḡ = C. In an assembly experiment, the reads may

19

come from either strand. Therefore, it is necessary to consider both possible orientations when

computing the overlaps. Also, when using the Seriation framework, the orientation information

is not taken into account in the similarity matrix, but the layout needs to be consistent with

the orientation constraints (one read has only one global orientation).

Figure 1.5: Double-helix 3D structure of DNA. The DNA has two strands, where each C base
is bounded with G, and T with A. One strand is the reverse component of the other, i.e., it
is obtained by reading it backwards and replacing all Cs by Gs and all T s by As (and vice-
versa). In a genome assembly experiment, the reads may come from either strand. Therefore,
one has to consider both orientations (strands) for each read when determining the layout. It
adds consistency constraints on the layout, and is necessary to perform consensus. Figure from
BCcampus on https://opentextbc.ca

Typical genome lengths are a few Mb (106 bases) for a bacteria, a few tens of Mb (107 bases)

for a yeast, a few thousands Mb (109 bases) for the human genome, and can reach hundreds

of Gb for some plants. The typical size of the reads is of a few hundreds bases for one of the

major sequencing technologies (Illumina), and a few thousands to tens of kb (104 bases) for

third generation sequencing technologies.

Overlap-Layout-Consensus (OLC) is a major assembly paradigm based on three main steps.

First, compute the overlaps between all pairs of read. This provides a similarity matrix A,

whose entry (i, j) measures how much reads i and j overlap (and is zero if they do not).

20

Then, determine the layout from the overlap information, that is to say find an ordering and

positioning of the reads that is consistent with the overlap constraints. Finally, given the tiling

of the reads obtained in the layout stage, the consensus step aims at determining the most

likely DNA sequence that can be explained by this tiling.

Computing the overlaps between all pairs of reads involves n(n�1)/2 pairwise comparisons.

Dynamic programming can be used to perform sequence alignment [Smith and Waterman, 1981]

and provide an overlap score. However, such methods are impractical with n ⇠ 104 reads.

Instead, methods based on hashing [Li, 2016, Berlin et al., 2015] can be used. In this work, we

will use such software to compute the overlaps (sometimes called overlapper) as a black-box,

providing, for all pairs of sequences, 1. an overlap score (length of the overlap, if any) and

2. overlap detailed information, i.e., position of the overlap on each of the two sequences,

and mutual orientation (a DNA strand can be read in two possible directions, as shown in

Figure 1.5, and the orientation of an overlap indicates whether the two reads come from the

same strand or from opposite strands).

The layout step, akin to solving a one dimensional jigsaw puzzle, is a key step in the

assembly process, and fits in the framework of Seriation. In an ideal setting, a given read has a

significant overlap with the next read, a smaller overlap with the one after, and so on, until it no

longer overlaps the subsequent reads. For instance, on Figure 1.4, the leftmost read (darkblue)

has a large overlap with the second read (blue), a small overlap with the third one (light blue),

and does not overlap the following reads. Hence, the similarity matrix from an ideal genome

assembly experiment is an R-matrix. Also, it is a sparse, banded matrix (it has non-zero values

only within a band, corresponding to the maximal distance between two overlapping reads).

Finally, the consensus can be performed through multi-sequence alignment. In the above

example with the ’AATCGCA’ sequence, it could be recovered from the three reads as follows,

AATC

AATCG

AATCGCA

AATCGCA

However, in practice, there are basecalling errors in the reads. There can be substitution errors

(a nucleotide is replaced by another one), insertions (a nucleotide is added in the sequence),

and deletions (a nucleotide is removed from the sequence). Performing the consensus therefore

requires more than majority-vote like rules. Hopefully, efficient implementations of algorithms

based on dynamic programming exist for multiple sequence alignment, with reasonable numbers

and sizes of sequences to align [Lee et al., 2002, Sović et al., 2016].

1.3.2 Repeated Regions (repeats)

The basecalling errors represent a challenge in the assembly process, as they may induce errors

in the overlap computation (leading to erroneous layout), and make the consensus derivation

21

R A R B R

r1

a1
a2

r2

r3

b1

b2
r4

r1
b1 b2

r2

r3
a1

a2
r4

correct

mis-assembled

Figure 1.6: Genome rearrangement around a repeat that occurs in three places. The reads at
the junction between one of the two sequences A, B and a repeat R have apparent overlaps with
the two other repeats, resulting in two possible layouts consistent with the overlaps constraints
(the correct and the mis-assembled).

more challenging. Yet an even more challenging issue is the presence of repeated regions (called

repeats), i.e., stretches of DNA that occur multiple times in near-identical copies throughout

the genome. Repeats can be as long as a few thousands of nucleotides. As illustrated in

Figure 1.6, a read that joins the end of a repeat and of another region in the genome will have

apparent overlaps with the other repeats. For instance, on Figure 1.6, the read a1 overlaps with

r1, but also r3. Analogously, b1 overlaps with r3, but also r1. In the end, the assembled layout

[bottom] is consistent with the overlaps, yet it is incorrect (compared to the original sequence

[top]).

From an algorithmic perspective, the repeats may compromise the application of Seriation

to genome assembly. Indeed, they induce overlaps between reads that can be far apart in the

genome. For instance, in Figure 1.6, b2 overlaps with r1, but not with b1, a2 nor a1. Yet, b2 is

further away from r1 than from a2 and a1. The resulting, correctly ordered similarity matrix

therefore violates the Robinson property from Definition 1.1.1.

Figure 1.7a shows the overlap-based similarity matrix between reads from a bacterium

(Escherichia coli). There are almost n ' 20000 reads, with a coverage c ' 30X. Therefore,

with a repeat-free genome we would expect a similarity matrix Robinsonian and roughly banded

with a bandwidth of order 30. Still, we observe a few out-of-band terms on Figure 1.7a, due

to repeats. The resulting ordering found by the spectral Algorithm 1.1 shown in Figure 1.7b is

corrupted.

A complete introduction to shotgun sequence assembly, presenting the repeats problem,

assembly paradigms and engineering challenges in details can be found in Pop [2004], Nagarajan

and Pop [2013].

22

(a) Similarity Matrix (b) Ordering Found

Figure 1.7: Similarity matrix between reads from an E. coli genome (1.7a), and the ordering
found with Algorithm 1.1 vs the true ordering (1.7b). If the ordering found was identical to
the reference ordering, we would observe a straight line. The mis-assembly is imputable to the
out-of-diagonal points observed in 1.7a.

1.3.3 Sequencing technologies

Several sequencing technologies exist and produce data with different characteristics, leading

to technology-specific algorithmic paradigms. The most widely used sequencing technologies

fall into the following categories (see Nagarajan and Pop [2013] for a more complete survey of

sequencing tools and assembly algorithms).

Next Generation Sequencing (NGS)

What was formerly called Next Generation Sequencing (NGS) or High Throughout sequencing

usually refers to several short-reads technologies that parallelize the sequencing process. One of

the most widely used is commercialized by Illumina and based on the sequencing by synthesis

process. It synthesizes and amplifies the reads with DNA polymerase, and uses imagery with

fluorescent markers to read the (short) sub-sequences base per base. These technologies have

dramatically reduced the cost of DNA sequencing in the late 1990s.

Typical data produced with Illumina are millions of reads of a few hundreds bases, with

accuracy exceeding 99% (the read accuracy is the proportion of correctly sequenced bases,

as opposed to the sequencing errors listed above [substitution, deletion, insertion]). Such se-

quencers provide additional information to be used in the assembly: the reads are given in

pairs, and we know the distance between two paired reads (it is the same for all pairs and is

substantially larger than the reads length). This adds structural constraints on the layout, and

provides information of longer range than the overlaps.

23

Third Generation Sequencing

More recently, modifications to the sequencing by synthesis technology by Pacific Biosciences

(PacBio) gave rise to Single Molecule Real Time Sequencing (SMRT), a method capable of pro-

ducing reads tens of thousands nucleotides (104b) long. However, the reads accuracy dropped

to ⇠ 87%.

An even more recent long-reads technology, introduced by Oxford Nanopore Technology

(ONT), is based on the observation of ion current when a DNA strand passes through a

nanopore. It also produces reads of a few tens of thousands bases with lower accuracy than

short-reads, although the reads accuracy tends to improve and is claimed to reach 92 to 97%

now.

Despite its lower accuracy, such “long-reads” technology is highly valuable for de novo as-

sembly, since the length of the reads is larger than most repeats, making them easier to resolve.

Moreover, while short-reads assemblers have been enhanced with number of handcrafted heuris-

tics throughout the years, long-reads assemblers are quite novel and the algorithmic design of

dedicated assemblers is still burgeoning, as the technology keeps evolving. Therefore, the de

novo assembly experiments conducted throughout this thesis will use long-reads.

1.3.4 State of the Art of Assembly Methods

Let us briefly review the key principles used in assembly computational tools.

Assembly paradigms

Most assembly methods rely on (at least) one of the following paradigms: greedy methods, De

Bruijn graphs, and overlap-layout-consensus (OLC).

Greedy methods seek to reconstruct the sequence in a step-by-step fashion where only local

information is used at each step. Given n reads to assemble, a prototypical greedy assembly

algorithm starts with picking a first read (called read 1), and then searches for the read that

has the largest overlap with read 1 among the n � 1 other reads. It then merges those two

reads into a consensus sequence (called seq 1), before searching for the read that has the largest

overlap with seq 1 among the n� 2 remaining reads, etc.

De Bruijn graphs (DBG) methods are based on the Eulerian path problem on a graph,

which aims to find a path that visits every edge once. The application of DBG to genome

assembly is detailed in, e.g., Compeau et al. [2011]. Given a set of reads, we can construct a

graph where the edges are the k-mers (sub-words of length k) appearing in the reads, and the

nodes are the prefix and suffix corresponding k-1-mers. For instance, given the set of reads

{’AATC’,’ATCG’,’CGCA’} virtually sequenced from the genome ’AATCGCA’, and chosing

k=3, the first read ’AATC’ contains two 3-mers, ’AAT’ and ’ATC’. Thus we add to the graph

the edge ’AAT’ between nodes ’AA’ and ’AT’ (prefix and suffix of ’AAT’), and the edge ’ATC’

24

between the node ’AT’ and the new node ’TC’. Then, the read ’ATCG’ contains two 3-mers,

’ATC’ and ’TCG’. The edge and nodes corresponding to ’ATC’ are already present in the graph

(because this 3-mer was present in the read ’AATC’, which overlaps with ’ATCG’). The ’TCG’

3-mer gives rise to two new nodes and a new edge in the graph. Doing the same operation with

the read ’CGCA’, we obtain the graph from Figure 1.8. A key computational benefit of De

AA AT TC CG GA
AAT ATC TCG CGA

Figure 1.8: De Bruijn graph based on 3-mers from the reads ’AATC’,’ATCG’,’CGCA’. There
is only one Eulerian path, yielding the consensus sequence ’AATCGCA’.

Bruijn graph methods is that although it is necessary that consecutive reads overlap in order

to find a contiguous path in the graph, there is no need to compute the overlaps between the

pairs of reads. However, such an exact k-mers based approach is sensitive to sequencing errors.

Thus, De Bruijn graphs methods are suited to Next Generation Sequencing, as it provides large

volumes (for which the pairwise alignment of reads can be prohibitive) of accurate (with few

sequencing errors) data.

The Overlap-Layout-Consensus (OLC) paradigm has already been introduced in the present

introduction. It consists in three steps. First, compute the overlaps between the reads. This

can be done by computing pairwise alignment between all pairs of reads (with, e.g., a dynamic

programming algorithm [Smith and Waterman, 1981]), but more computationally efficient ap-

proaches based on hashing [Myers, 2014, Berlin et al., 2015, Li, 2016] can be used in practice.

Then, the layout step searches for an ordering and positioning of the reads consistent with the

overlap information. Notably, overlapping reads must be placed nearby in the layout found.

For instance, a method akin to De Bruijn graphs could be applied to the layout step, where the

nodes of the graph of interest are the reads, and edges represent the overlap (if any) between

the reads. Then, the layout can be found by searching for a path that goes through all nodes

once, where the sum of the weights along the path is maximized (Hamiltonian path problem).

Finally, once the layout of the reads is obtained, the consensus step derives a sequence in a

majority-vote fashion, with, e.g., multiple sequence alignment.

Assembly pipelines

In practice, an approach such as DBG fails to uniquely assemble genomes in the presence of

repeats. Hence, in order to meet the challenges caused by repeats and sequencing errors, assem-

bly software consist in pipelines involving several components. Most NGS assembly pipelines

involve the three following steps : 1. Contig generation; 2. scaffolding, 3. finishing.

25

The contigs are contiguous genomic fragments, i.e., the result of the assembly of a sub-

sequence of the whole genome. Typically, heuristics are used to identify reads originating from

repeats, and the overlap graph is cut into separate, repeat-free connected components. In these

repeat-free sub-graphs, a De Bruijn graph approach can be successfully applied to perform

the partial assembly of the contigs. Thus, this first step assembles the “easy” regions with no

ambiguities.

Then, the scaffolding consists in determining the layout of the contigs (which can be thought

of as blocks of pieces of jigsaw puzzle, where a single piece would be a read) together, i.e.,

determining their relative position and orientation. Although NGS data provides short reads,

some longer-range additional pairing information is available. The scaffolding aims to lay out

the contigs in a way that is consistent with these pairing constraints. It can be done, for

instance, with a greedy method [Huson et al., 2002].

Finally, finishing seek to fill the gaps between the ordered contigs.

Although most methods for scaffolding do not explicitly handle the presence of repeats, some

effort has been made to take them into account in an integer optimization framework. While

Weller et al. [2015], Davot et al. [2018], Tabary et al. [2018] derived theoretical complexity and

approximation bounds for solving the scaffolding problem in the presence of repeats, François

et al. [2016], Francois et al. [2017] proposed a global mixed integer linear programming (MILP)

approach to solve the scaffolding problem, by imposing overlap and pairing based constraints.

Due to the higher sequencing error-rate occurring in third generation sequencing data, most

long-reads assembly pipelines, such as Canu [Koren et al., 2017], begin with a correction step.

Although there is no mate pair or pair end side information with third generation data to be

used in the scaffolding, the length of the reads allow to resolve contigs smaller than the read

length, resulting in larger contigs than with NGS.

1.3.5 Hi-C: Spatial Conformation Data

Besides standard DNA sequencing techniques, an interesting recent development called Hi-

C and based on the chromosome conformation capture (3C) technology allows to measure

experimentally the frequency of physical interactions in 3D between all pairs of positions in the

genome [Lieberman-Aiden et al., 2009a]. In short, if we split the full human genome into n bins

(of typical length 104� 106 basepairs each), an Hi-C experiment produces an n⇥n interaction

matrix A such that Aij is the frequency of interactions between DNA fragments in bins i and

j. It roughly proceeds as follows. First, freeze the DNA in its current 3D conformation, and

collect pairs of DNA fragments that lie close to each other in this spatial conformation, thanks

to a ligation process. For every such pair (k, l), each of the two fragments is then mapped to

a reference genome, providing their positions, pk and pl. Finally, add +1 to the interaction

matrix entry Aij corresponding to the two bins i and j that respectively span pk and pl. This

process is repeated to statistically obtain an average proximity (frequency) between two bins.

26

Interestingly, the frequency of 3D interactions tends to decrease with the distance between

the fragments. Thus, the layout of the bins can be obtained by applying Seriation to Hi-C data

(although this is not the original purpose of Hi-C data). The GRAAL assembler [Marie-Nelly

et al., 2014] uses a probabilistic model of the interaction to compute the most likely genome

structure from the contact maps.

1.3.6 10X Genomics

A recent development in sequencing technology commercialized by 10X genomics combines

short-reads with so-called molecular barcoding, linking short-reads to long molecules to provide

long-range information. In short, a barcode is associated to regions of DNA of large length (a

few tens of kbp), and two reads that are close to each other on a DNA strand are likely to share

several barcodes. This barcoding notably permits to call structural variants and distinguish

between haplotypes for diploid genomes (such as the human genome). The Supernova assembler

[Weisenfeld et al., 2017] is based on a short-reads assembly scheme, and the additional molecular

barcode information is used to disambiguate the scaffolding.

1.4 Challenges

We have introduced a mathematical problem, seriation, and an applicative problem, de novo

genome assembly. Although with idealistic data, the latter problem would fit seamlessly as

an instance of the first, we have seen that in practice, it does not. For instance, applying the

Spectral Algorithm 1.1 to a similarity matrix constructed from a real sequencing experiment

yields a corrupted ordering, as one can see in Figure 1.7b. Yet, Theorem 1.2.1 guarantees that

Algorithm 1.1 solves Seriation. Therefore, this experiment does not fit “as is” in the framework

of Seriation. Let us highlight three key challenges when trying to apply seriation to de novo

genome assembly.

• Robustness. As observed in Figure 1.7, the repeats induce a number of out-of-diagonal

points on the similarity matrix (1.7a), which can be decomposed as the sum of a banded

(and, in theory, Robinsonian) matrix, and a sparse noise matrix out of the band. This

sparse noise suffices to make the spectral Algorithm 1.1 fail, although it has theoretical

guarantees in the noiseless case. One of the key challenges is to design algorithmic schemes

that are robust to variations from a noiseless R-matrix to a noisy observation of it. In

fact, the repeats induce a specific kind of noise. Ideally we would like to be robust to it.

• Scalability. Typical de novo genome experiments with long reads involve similarity ma-

trices of size n ⇠ 104. Many seriation algorithms are impractical at such a scale. Hence,

a major challenge is to design algorithms for seriation that are scalable.

27

• Dealing with multiple strands. Another challenge that we have not mentioned so far is

that many species are eukaryotes (have cells with a nucleus) and their genome has multiple

chromosomes, i.e., it is composed of several DNA strands. As a result, we do not wish

to find one sequence, but several sequences (one per chromosome). However, there are

overlaps between reads sampled from distinct chromosomes. Hence, the clustering-in-

chromosomes step is non trivial, and cannot be done easily as a pre-processing, to break

down the problem into several single-strand assembly problems.

28

Chapter 2

Application of the Spectral Method to

Genome Assembly

This chapter presents a direct application of seriation to de novo assembly. From a mathemat-

ical perspective, it solely relies on the material introduced in 1.2.2. Specifically, the spectral

Algorithm 1.1 is employed.

The main goal here was to get our hands dirty with real sequencing data, and make the

proof of concept that seriation is an adequate framework for de novo assembly. To this end,

we developed a pipeline that takes DNA reads (in fasta or fastq format) as input and provides

an assembled sequence (or a set of sequences) in output. The overlaps between pairs of reads

are computed with standard software. Algorithm 1.1 is applied to a similarity matrix built

from the overlaps in a straightforward fashion. Then, given the layout found by seriation, a

consensus sequence is derived via multiple sequence alignment, with dedicated software.

Despite the repeats issue presented in 1.3.2, this simple pipeline yields perhaps surprisingly

good results. The challenge posed by repeats is addressed with the so-called bandwidth heuris-

tic, which is a quick and dirty way to tackle the shortcomings of the spectral method. The un-

derlying observation is that long overlaps are more likely to be true rather than repeat-induced

overlaps. This seems to hold thanks to the length of the reads used here (third generation

sequencing).

In the couple of years that followed this work, some related methods have emerged or

evolved. For instance, we used the minimap [Li, 2016] tool to compute overlaps between reads,

and GraphMap [Sović et al., 2016] to align the reads to a reference sequence in order to plot the

layout versus a reference. Now, the minimap2 tool [Li, 2018] has been released and can perform

both tasks. Also, the reads accuracy may have slightly improved, and the Oxford Nanopore

preset modes of standard assemblers such as canu [Koren et al., 2017] incorporate more data-

specific refinements. Still, the related work for de novo assembly of long reads outlined in the

introduction of this chapter remains broadly accurate.

29

The content of this chapter is based on the following publication,

Antoine Recanati, Thomas Brüls, and Alexandre d’Aspremont. A spectral algorithm for fast

de novo layout of uncorrected long nanopore reads. Bioinformatics, 2016.

Supplementary material for this chapter is given in Appendix Chapter A.

Chapter Abstract

Motivation: New long read sequencers promise to transform sequencing and genome

assembly by producing reads tens of kilobases long. However, their high error rate

significantly complicates assembly and requires expensive correction steps to layout

the reads using standard assembly engines.

Results: We present an original and efficient spectral algorithm to layout the un-

corrected nanopore reads, and its seamless integration into a straightforward over-

lap/layout/consensus (OLC) assembly scheme. The method is shown to assemble

Oxford Nanopore reads from several bacterial genomes into good quality (⇠99%

identity to the reference) genome-sized contigs, while yielding more fragmented as-

semblies from the eukaryotic microbe Sacharomyces cerevisiae.

Availability and implementation: https://github.com/antrec/spectrassembler.

30

Contents

2.1 Introduction . 32

2.2 Methods . 33

2.2.1 Layout computation . 33

2.2.2 Consensus generation . 36

2.2.3 Overlap-based similarity and repeats handling 36

2.3 Results . 39

2.3.1 Data . 39

2.3.2 Layout . 40

2.3.3 Consensus . 41

2.4 Discussion . 47

31

2.1 Introduction

De novo whole genome sequencing seeks to reconstruct an entire genome from randomly sam-

pled sub-fragments whose order and orientation within the genome are unknown. The genome

is oversampled so that all parts are covered multiple times with high probability.

High-throughput sequencing technologies such as Illumina substantially reduced sequencing

cost at the expense of read length, which is typically a few hundred base pairs long (bp) at

best. Yet, de novo assembly is challenged by short reads, as genomes contain repeated sequences

resulting in layout degeneracies when read length is shorter or of the same order than repeat

length [Pop, 2004].

Recent long read sequencing technologies such as PacBio’s SMRT and Oxford Nanopore

Technology (ONT) have spurred a renaissance in de novo assembly as they produce reads over

10kbp long [Koren and Phillippy, 2015]. However, their high error rate (⇠15%) makes the task

of assembly difficult, requiring complex and computationally intensive pipelines.

Most approaches for long read assembly address this problem by correcting the reads prior to

performing the assembly, while a few others integrate the correction with the overlap detection

phase, as in the latest version of the Canu pipeline [Koren et al., 2017] (former Celera Assembler

[Myers et al., 2000]).

Hybrid techniques combine short and long read technologies: the accurate short reads are

mapped onto the long reads, enabling a consensus sequence to be derived for each long read

and thus providing low-error long reads (see for example Madoui et al. [2015]). This method

was shown to successfully assemble prokaryotic and eukaryotic genomes with PacBio [Koren

et al., 2012] and ONT [Goodwin et al., 2015] data. Hierarchical assembly follows the same

mapping and consensus principle but resorts to long read data only, the rationale being that

the consensus sequence derived from all erroneous long reads matching a given position of

the genome should be accurate provided there is sufficient coverage and sequencing errors are

reasonably randomly distributed: for a given base position on the genome, if 8 out of 50 reads

are wrong, the majority vote still yields the correct base. Hierarchical methods map long reads

against each other and derive, for each read, a consensus sequence based on all the reads that

overlap it. Such an approach was implemented in HGAP [Chin et al., 2013] to assemble PacBio

SMRT data, and more recently by Loman et al. [2015], to achieve complete de novo assembly

of Escherichia coli with ONT data exclusively.

Recently, Li [2016] showed that it is possible to efficiently perform de novo assembly of noisy

long reads in only two steps, without any dedicated correction procedure: all-vs-all raw read

mapping (with minimap) and assembly (with miniasm). The miniasm assembler is inspired by

the Celera Assembler and produces unitigs through the construction of an assembly graph. Its

main limitation is that it produces a draft whose error rate is of the same order as the raw

reads.

Here, we present a new method for computing the layout of raw nanopore reads, resulting

32

in a simple and computationally efficient protocol for assembly. It takes as input the all-vs-all

overlap information (e.g. from minimap, MHAP [Berlin et al., 2015] or DALIGNER [Myers,

2014]) and outputs a layout of the reads (i.e., their position and orientation in the genome).

Like miniasm, we compute an assembly from the all-vs-all raw read mapping, but achieve

improved quality through a coverage-based consensus generation process, as in nanocorrect

[Loman et al., 2015], although reads are not corrected individually in our case.

The method relies on a simple spectral algorithm akin to Google’s PageRank [Page et al.,

1999] with deep theoretical underpinnings, described in §2.2.1. It has successfully been applied

to consecutive-ones problems arising in physical mapping of genomes [Atkins and Middendorf,

1996], ancestral genome reconstructions [Jones et al., 2012], or the locus ordering problem

[Cheema et al., 2010], but to our knowledge has not been applied to de novo assembly problems.

In §2.2.2, we describe an assembler based on this layout method, to which we add a consensus

generation step based on POA [Lee et al., 2002], a multi-sequence alignment engine. Finally,

we evaluate this pipeline on prokaryotic and eukaryotic genomes in §3.4, and discuss possible

improvements and limitations in §2.4.

2.2 Methods

2.2.1 Layout computation

We lay out the reads in two steps. We first sort them by position, i.e., find a permutation ⇡

such that read ⇡(1) will be positioned before read ⇡(2) on the genome. Then, we iteratively

assign an exact position (i.e., leftmost basepair coordinate on the genome) to each read by

using the previous read’s position and the overlap information.

The key step is the first one, which we cast as a seriation problem, i.e., we seek to reconstruct

a linear order between n elements using unsorted, pairwise similarity information [Atkins et al.,

1998, Fogel et al., 2013]. Here the n elements are the reads, and the similarity information

comes from the overlapper (e.g. from minimap).

The seriation problem and the spectral relaxation have been discussed in the introductory

Chapter 1. For self-containment, we briefly recall the formulation leading to the spectral

relaxation. Given a pairwise similarity matrix Aij , and assuming the data has a serial structure,

i.e.that there exists an order ⇡ such that A⇡(i)⇡(j) decreases with |i�j|, seriation seeks to recover

this ordering ⇡ (see Figure 1.3 in Chapter 1, repeated here in Figure 2.1 for an illustration). If

such an order ⇡ exists, it minimizes the 2-SUM score,

2-SUM(⇡) =
nX

i,j=1

Aij

�
⇡(i)� ⇡(j)

�2
, (2.1)

and the seriation problem can be solved as a minimization over the set of permutation vectors

33

[Fogel et al., 2013]. In other words, the permutation ⇡ should be such that if Aij is high

(meaning that i and j have a high similarity), then
�
⇡(i)� ⇡(j)

�2
should be low, meaning that

the positions ⇡(i) and ⇡(j) should be close to each other. Conversely, if Aij = 0, the positions

of i and j in the new order may be far away without affecting the score.

(a) R-matrix (b) pre-R

Figure 2.1: A similarity matrix reordered with the spectral algorithm. The original matrix
(left) has values that decrease when moving away from the diagonal. It is randomly permuted
(right), and the spectral algorithm will find back the original ordering.

When using seriation to solve genome assembly problems, the similarity Aij measures the

overlap between reads i and j. In an ideal setting with constant read length and no repeated

regions, two overlapping reads should have nearby positions on the genome. We therefore

expect the order found by seriation to roughly match the sorting of the positions of the reads.

The problem of finding a permutation over n elements is combinatorial. Still, provided

the original data has a serial structure, an exact solution to seriation exists in the noiseless

case [Atkins et al., 1998] using spectral clustering, and there exist several convex relaxations

allowing explicit constraints on the solution [Fogel et al., 2013].

The exact solution is directly related to the well-known spectral clustering algorithm. In-

deed, for any vector x, the objective in (2.1) reads

nX

i,j=1

Aij

�
xi � xj

�2
= xTLAx, LA = diag(A1)�A

where LA is the Laplacian matrix of A. This means that the 2-SUM problem amounts to

min
⇡

⇡TLA⇡

where ⇡ is a permutation vector. Roughly speaking, the spectral clustering approach to seriation

relaxes the constraint “⇡ is a permutation vector” into “⇡ is a vector of Rn orthogonal to the

constant vector 1 = (1, ..., 1)T ” with fixed norm. As we have seen in the Introduction, up to

34

a dilatation and a shift of the set of permutation vectors, this only amounts to relaxing the

integer constraints on permutation vectors. The problem then becomes

min
{1T ⇡=0, k⇡k2=1}

⇡TLA⇡

This relaxed problem is an eigenvector problem. Finding the minimum over normalized vectors

x yields the eigenvector associated to the smallest eigenvalue of LA, but the smallest eigen-

value, 0, is associated with the eigenvector 1, from which we cannot recover any permutation.

However, if we restrict x to be orthogonal to 1, the solution is the second smallest eigenvec-

tor, called the Fiedler vector. A permutation is recovered from this eigenvector by sorting

its coefficients: given x = (x1, x2, ..., xn), the algorithm outputs a permutation ⇡ such that

x⇡(1)  x⇡(2)  ...  x⇡(n). This procedure is summarized in Algorithm 1.1, repeated here as

Algorithm 2.1.

Algorithm 2.1 Spectral ordering [Atkins et al., 1998]

Input: Connected similarity matrix A 2 R
n⇥n

1: Compute Laplacian LA = diag(A1)�A
2: Compute second smallest eigenvector of LA, x⇤

3: Sort the values of x⇤

Output: Permutation ⇡ : x⇤
⇡(1)  x⇤

⇡(2)  ...  x⇤
⇡(n)

In fact, [Atkins et al., 1998] showed that under the assumption that A has a serial structure,

Algorithm 2.1 solves the seriation problem exactly, i.e., recovers the order ⇡ such that A⇡(i)⇡(j)

decreases with |i�j|. This means that we solve the read ordering problem by simply solving an

extremal eigenvalue problem, which has low complexity (comparable to Principal Component

Analysis (PCA)) and is efficient in practice (see Supplementary Figure A.1 and Table A.1).

Once the reads are reordered, we can sequentially compute their exact positions (basepair

coordinate of their left end on the genome) and orientation. We assign position 0 and strand

“+” to the first read, and use the overlap information (position of the overlap on each read

and mutual orientation) to compute the second read’s position and orientation, etc. More

specifically, when computing the position and orientation of read i, we use the information

from reads i � 1, ..., i � c to average the result, where c roughly equals the coverage, as this

makes the layout more robust to misplaced reads. Note that overlappers relying on hashing,

such as minimap and MHAP, do not generate alignments but still locate the overlaps on the

reads, making this positioning step possible. Thanks to this “polishing” phase, we would still

recover the layout if two neighboring reads were permuted due to consecutive entries of the

sorted Fiedler vector being equal up to the eigenvector computation precision, for example.

35

2.2.2 Consensus generation

We built a simple assembler using this layout idea and tested its accuracy. It is partly inspired

by the nanocorrect pipeline of Loman et al. [2015] in which reads are corrected using multiple

alignments of all overlapping reads. These multiple alignments are performed with a Partial

Order Aligner (POA) [Lee et al., 2002] multiple-sequence alignment engine. It computes a

consensus sequence from the alignment of multiple sequences using a dynamic programming

approach that is efficient when the sequences are similar (which is the case if we trim the

sequences to align their overlapping parts). Specifically, we used SPOA, a Single Instruction

Multiple Data implementation of POA developed in Vaser et al. [2016].

The key point is that we do not need to perform multiple alignment using all reads, since we

already have a layout. Instead, we can generate a consensus sequence for, say, the first 3000 bp

of the genome by aligning the parts of the reads that are included in this window with SPOA,

and repeat this step for the reads included in the window comprising the next 3000 bp of the

genome, etc. In practice, we take consecutive windows that overlap and then merge them to

avoid errors at the edges, as shown in Figure 2.2. The top of the figure displays the layout of the

reads broken down into three consecutive overlapping windows, with one consensus sequence

generated per window with SPOA. The final assembly is obtained by iteratively merging the

window k+1 to the consensus formed by the windows 1, . . . , k.

The computational complexity for aligning N sequences of length L with POA, with an

average divergence between sequences ✏, is roughly O(mNL2), with m ' (1+2✏). With 10% of

errors, m is close to 1. If each window of size Lw contains about C sequences, the complexity of

building the consensus in a window is O(mCL2
w). We compute Lg/Lw consensus windows, with

Lg the length of the genome (or contig), so the overall complexity of the consensus generation

is O(mCLgLw). We therefore chose in practice a window size relatively small, but large enough

to prevent mis-assemblies due to noise in the layout, Lw = 3kbp.

2.2.3 Overlap-based similarity and repeats handling

In practice, we build the similarity matrix A as follows. Given an overlap found between the

i-th and j-th reads, we set Aij equal to the overlap score (or number of matches, given in

tenth column of minimap or fourth column of MHAP output file). Such matrices are sparse: a

read overlaps with only a few others (the number of neighbors of a read in the overlap graph

roughly equals the coverage). There is no sparsity requirement for the algorithm to work,

however sparsity lowers RAM usage since we store the n⇥n similarity matrix with about n⇥C

non-zero values, with C the coverage. In such cases, the ordered similarity matrix is band

diagonal.

Unfortunately, the correctly ordered (sorted by position of the reads on the reference se-

quence) similarity matrix contains outliers outside the main diagonal band (see Figure 2.3a)

36

window 1

window 2

window 3

POA in windows

consensus 1

consensus 2

consensus 3

consensus (1+2)

consensus ((1+2) +3)

Figure 2.2: Consensus generation. Given the layout, the genome is sliced into overlapping
windows, and a consensus is computed in each window. The final consensus is then obtained
by merging the consensus windows.

that corrupt the ordering. These outliers are typically caused by either repeated subsequences

or sequencing noise (error in the reads and chimeric reads), although errors in the similarity

can also be due to hashing approximations made in the overlap algorithm. We use a threshold

on the similarity values and on the length of the overlaps to remove them. The error-induced

overlaps are typically short and yield a low similarity score (e.g., number of shared min-mers),

while repeat-induced overlaps can be as long as the length of the repeated region. By weighting

the similarity, the value associated to repeat-induced overlaps can be lowered. Weighting can

be done with, e.g., the –weighted option in MHAP to add a tf-idf style scaling to the MinHash

sketch, making repetitive k-mers less likely to cause a match between two sequences, or with

default parameters with minimap.

In the Supplementary Material presented in Chapter A, we describe experiments with real,

37

(a) raw similarity (b) thresholded at 90%

Figure 2.3: Similarity matrix for E. coli ONT sequences before (left) and after (right) thresh-
olding. The positions of the reads were obtained by mapping to the reference genome with
GraphMap [Sović et al., 2016].

corrected and simulated reads to assess the characteristics of such overlaps and validate our

method. Figure A.2 shows that although the overlap scores and lengths are lower for out-

liers than for inliers on average, the distributions of these quantities intersect. As shown in

Figure A.3, the experiments indicate that all false-overlaps can be removed with a stringent

threshold on the overlap length and score. However, removing all these short or low score over-

laps will also remove many true overlaps. For bacterial genomes, the similarity graph can either

remain connected or be broken into several connected components after a threshold-based out-

lier removal, depending on the initial coverage. Figure A.3 illustrates the empirical observation

that the coverage needs to be above 60x to keep the graph connected while removing all outliers.

Most outliers can be similarly removed for real and synthetic data from S. cerevisiae, although

a few outliers, probably harboring telomeric repeats, remain at the ends of chromosomes after

thresholding.

There is thus a tradeoff to be reached depending on how many true overlaps one can

afford to lose. With sufficient coverage, a stringent threshold on overlap score and length

will remove both repeat-induced and error-induced overlaps, while still yielding a connected

assembly graph. Otherwise, aggressive filtering will break the similarity graph into several

connected components. In such a case, since the spectral algorithm only works with a connected

similarity graph, we compute the layout and consensus separately in each connected component,

resulting in several contigs. To set the threshold sufficiently high to remove outliers but small

enough to keep the number of contigs minimal, we used a heuristic based on the following

empirical observation, illustrated in Supplementary Figure A.4. The presence of outliers in

the correctly (based on the positions of the reads) ordered band diagonal matrix imparts an

increased bandwidth (maximum distance to the diagonal of non zero entries) on the matrix

reordered with the spectral algorithm. We can therefore run the spectral algorithm, check the

bandwidth in the reordered matrix, and increase the threshold if the bandwidth appears too

38

large (typically larger than twice the coverage).

In practice, we chose to set the threshold on the overlap length to 3.5kbp, and removed the

overlaps with the lowest score [in the first 40%-quantile (respectively 90% and 95%) for C60X

(resp. 60XC100X and C�100X)]. As indicated in Algorithm 2.2, we let these threshold

values increase if indicated by the bandwitdh heuristic.

Finally, we added a filtering step to remove reads that have non-zero similarity with several

sets of reads located in distant parts of the genome, such as chimeric reads. These reads usually

overlap with a first subset of reads at a given position in the genome, and with another distinct

subset of reads at another location, with no overlap between these distinct subsets. We call such

reads “connecting reads”, and they can be detected from the similarity matrix by computing,

for each read (index i), the set of its neighbors in the graph Ni = {j : Aij > 0}. The subgraph

represented by A restricted to Ni is either connected (there exists a path between any pair of

edges), or split into separate connected components. In the latter case, we keep the overlaps

between read i and its neighbors that belong to only one of these connected components (the

largest one).

Algorithm 2.2 OLC assembly pipeline

Input: n long noisy reads
1: Compute overlaps with an overlapper (e.g. minimap or MHAP)
2: Construct similarity matrix S 2 R

n⇥n from the overlaps
3: Remove outliers from S with a threshold on values Sij , on overlap length, and removal of

connecting reads (as explained in §2.2.3)
4: for all Connected component A of S do
5: Reorder A with spectral algorithm (Algorithm 2.1)
6: if bandwidth of Areordered � 2⇥ Coverage then
7: set higher threshold on A and try again
8: end if
9: Compute layout from the ordering found and overlaps

10: Partition the length of the contig into small windows
11: Compute consensus in each window with SPOA
12: Merge consecutive windows with SPOA
13: end for
Output: Contig consensus sequences

2.3 Results

2.3.1 Data

We tested this pipeline on ONT and PacBio data. The bacterium Acinetobacter baylyi ADP1

and the yeast Saccharomyces cerevisiae S288C were sequenced at Genoscope with Oxford

Nanopore’s MinION device using the R7.3 chemistry, together with an additional dataset

39

of S. cerevisiae S288C using the R9 chemistry. Only the 2D high quality reads were used.

The S. cerevisiae S288C ONT sequences were deposited at the European Nucleotide Archive

(http://www.ebi.ac.uk/ena) where they can be accessed under Run accessions ERR1539069

to ERR1539080. We also used the following publicly available data: ONT Escherichia coli by

Loman et al. [2015] (http://bit.ly/loman006 - PCR1 2D pass dataset), and PacBio E. coli

K-12 PacBio P6C4, and S. cerevisiae W303 P4C2. Their key characteristics are given with

the assembly results in Table 2.1, and read length histograms are given in Figure 2.4. For each

dataset, we also used the reads corrected and trimmed by the Canu pipeline as an additional

dataset with low error-rate. The results on these corrected datasets are given in Supplementary

Figures A.6 and A.7 and Tables A.2 and A.4.

(a) A. baylyi ONT (b) E. coli ONT (c) E. coli PacBio

(d) S. cerevisiae ONT R7.3 (e) S. cerevisiae ONT R9 (f) S. cerevisiae PacBio

Figure 2.4: Read length histograms of the raw datasets.

2.3.2 Layout

Bacterial genomes

minimap was used to compute overlaps between raw reads (we obtained similar results with

MHAP and DALIGNER). The similarity matrix preprocessed as detailed in Section 2.2.3

yielded a few connected components for bacterial genomes. The reads were successfully or-

dered in each of these, as one can see in Figure 2.5 for E. coli, and in Figure A.6 for the other

datasets.

40

Figure 2.5: Ordering of the reads computed with the spectral algorithm vs true ordering (ob-
tained by mapping the reads to the reference genome with GraphMap) for the E. coli ONT
dataset. All contigs are artificially displayed on the same plot for compactness. There are
two equivalent correct orderings for each contig : (1,2,...,n) and (n, n-1, ..., 1), both yield-
ing the same 2-SUM score (2.1) and leading to the same consensus sequence (possibly reverse
complemented).

Eukaryotic genome

For the S. cerevisiae genome, the threshold on similarity had to be set higher than for bacterial

genomes because of a substantially higher number of repetitive regions and false overlaps,

leading to a more fragmented assembly. Most of them are correctly reordered with the spectral

algorithm, see Figure 2.6 and Supplementary Figure A.7.

2.3.3 Consensus

Recovering contiguity

Once the layout was established, the method described above was used to assemble the contigs

and generate a consensus sequence. For the two bacterial genomes, the first round of layout

produced a small number of connected components, each of them yielding a contig. Sufficient

overlap was left between the contig sequences to find their layout with a second iteration of the

algorithm and produce a single contig spanning the entire genome. The number of contigs in

the yeast assemblies can be reduced similarly. The fact that the first-pass contigs overlap even

though they result from breaking the similarity graph into several connected components might

41

Figure 2.6: Ordering of the Saccharomyces cerevisiae ONT R7.3 reads identified with the
spectral algorithm vs true ordering (obtained by mapping the reads to the reference genome
with GraphMap and concatenating the ordering found in each chromosome). The different
chromosomes are separated by grid lines.

seem counter-intuitive at first sight. However, note that when cutting an edge Aij results in

the creation of two contigs (one containing i and the other j), the sequence fragment at the

origin of the overlap between the two reads is still there on both contigs to yield an overlap

between them in the second iteration. Alternatively, we found the following method useful to

link the contigs’ ends: 1. extract the ends of the contig sequences, 2. compute their overlap

with minimap, 3. propagate the overlaps to the contig sequences, 4. use miniasm with all

pre-selection parameters and thresholds off, to just concatenate the contigs (see Supplementary

Material §A.5).

Consensus quality evaluation

We first investigated the quality of the consensus sequences derived in each window. Figures 2.8

and A.5 highlight the correcting effect of the consensus. Figure 2.7 provides hints about what

causes inaccurate consensus windows, and suggests that the error-rate in the consensus windows

depends mainly on the local coverage. The top plots examine the error-rate in the consensus

windows according to their position (and whether they are located on a repeat). Most of the

windows with a high error rate are positioned at the ends of the contigs to which they belong.

We also observed that repeats are often positioned at the edge between two contigs, though

this does not seem to be the determinant factor. The bottom plots represent the error-rate

42

in the windows against their estimated coverage, defined as the total length of sequences used

to perform the multiple alignment in the window normalized by the length of the consensus

sequence. Overall, one can see that the windows with high error rate are the ones with low

coverage. Nevertheless, especially for the yeast genomes, there are also several windows with

high values for both error-rate and coverage. Manual inspection of these reveals that they

usually do not span repeated regions, but their high error-rates arise from imperfections in the

layout.

(a) A. baylyi ONT (b) S. cerevisiae ONT R7.3

(c) A. baylyi ONT (d) S. cerevisiae ONT R7.3

Figure 2.7: Error-rates in consensus windows versus position of the windows on the reference
genome (a,b). The dashed lines represent the location of repeats for A. baylyi, and the separa-
tion between chromosomes for S. cerevisiae. The size of each scatter marker is proportional to
the coverage of the window. The (c,d) panel represents the error-rates in consensus windows
versus the coverage of the windows. The error-rate was computed with the errorrates.py

script from samtools, using the mapping obtained from GraphMap.

We then compared our results to those obtained with other long reads assemblers : Mini-

asm, Canu and Racon [Vaser et al., 2016]. Racon takes a draft assembly, the raw reads, and a

mapping of the reads to the draft assembly as input. We used it with the draft assembly pro-

duced by Miniasm (as done by Vaser et al. [2016]). We label this method “Miniasm+Racon”

43

in our results. We also used Racon with the draft assembly derived by our method (“Spec-

tral+Racon” method), using Minimap to map the raw reads to the draft assemblies before

using Racon. Racon’s use here can be seen as a polishing phase for the sequences outputted by

the spectral method and Miniasm. To keep both assemblers on an equal footing, we compared

Spectral+Racon to two iterations of Miniasm+Racon (since one pass of Miniasm does not im-

plement any consensus). A summary of assembly reports generated with DNAdiff [Kurtz et al.,

2004] and QUAST [Gurevich et al., 2013] are given in Table 2.1 and Supplementary Table A.3.

Briefly, the assemblies displayed between 98% and 99% average identity to their reference

genome, with errors mostly consisting in deletions. Misassemblies were rare in reconstructed

bacterial genomes but more frequent in assembled yeast genomes, where they mostly consisted

in translocations and relocations caused by either deletions and/or misplaced reads in the lay-

out. Canu clearly outperforms the spectral method on PacBio data, while both assemblers

yield comparable results on the ONT datasets.

44

Table 2.1: Assembly results of the spectral method, compared to Miniasm, Canu and Racon, across the different
datasets. For the spectral method, we give the results after contig merging (see §2.3.3); the number of contigs before
this post-processing is given between parentheses. The best results in terms of average identity are highlighted in
bold (but other metrics should also be used to compare the assemblies).

Miniasm Spectral Canu Miniasm+RaconMiniasm+Racon
(2 iter.)

Spectral+Racon

A.

baylyi

ONT
R7.3
28x

Ref. size [bp] 3598621 3598621 3598621 3598621 3598621 3598621
Total size [bp] 3531295 3551582 3513432 3564823 3566438 3551094
Ref. chr. [#] 1 1 1 1 1 1
Contigs [#] 5 1 (7) 1 5 5 1 (7)
Aln. ref [bp] 3445457(95.74%)3596249(99.93%)3595082(99.90%)3596858(99.95%)3596854(99.95%)3598181(99.99%)

Aln. query [bp] 3379002(95.69%)3549290(99.94%)3513081(99.99%)3564455(99.99%)3566021(99.99%)3550742(99.99%)
Misassemblies [#] 0 0 2 2 2 0

Avg. identity 87.31 98.17 97.59 98.18 98.36 98.42

E. coli

ONT
R7.3
30x

Ref. size [bp] 4641652 4641652 4641652 4641652 4641652 4641652
Total size [bp] 4759346 4662043 4625543 4647066 4643235 4629112
Ref. chr. [#] 1 1 1 1 1 1
Contigs [#] 3 1 (4) 2 3 3 1 (4)
Aln. ref [bp] 4355121(93.83%)4612515(99.37%)4638255(99.93%)4640127(99.97%)4640127(99.97%)4641457(100.00%)

Aln. query [bp] 4432658(93.14%)4623823(99.18%)4625535(100.00%)4642837(99.91%)4639816(99.93%)4628962(100.00%)
Misassemblies [#] 0 2 8 3 3 2

Avg. identity 89.28 98.80 99.40 99.31 99.45 99.46

S.

cere-

visiae

ONT
R7.3
68x

Ref. size [bp] 12157105 12157105 12157105 12157105 12157105 12157105
Total size [bp] 11813544 12213218 12142953 11926664 11926191 12167363
Ref. chr. [#] 17 17 17 17 17 17
Contigs [#] 29 71 (127) 36 29 29 71 (127)
Aln. ref [bp] 11566318(95.14%)12043050(99.06%)12086977(99.42%)12084923(99.41%)12086556(99.42%)12061384(99.21%)

Aln. query [bp] 11236806(95.12%)12134480(99.36%)12089056(99.56%)11923058(99.97%)11918621(99.94%)12135284(99.74%)
Misassemblies [#] 0 7 34 18 19 11

Avg. identity 89.00 98.00 98.33 98.49 98.63 98.61

S.

cere-

visiae

ONT
R9 86x

Ref. size [bp] 12157105 12157105 12157105 12157105 12157105 12157105
Total size [bp] 11734150 11795644 12217497 12128279 12129086 11750114
Ref. chr. [#] 17 17 17 17 17 17
Contigs [#] 30 48 (85) 26 30 29 48 (85)
Aln. ref [bp] 11947453(98.28%)11607131(95.48%)12126980(99.75%)12126663(99.75%)12127467(99.76%)11695983(96.21%)

Aln. query [bp] 11549494(98.43%)11668882(98.93%)12179843(99.69%)12118506(99.92%)12121202(99.93%)11717047(99.72%)
Misassemblies [#] 0 23 39 18 19 36

Avg. identity 93.55 98.81 99.02 99.16 99.20 99.10

E. coli

PacBio
161x

Ref. size [bp] 4641652 4641652 4641652 4641652 4641652 4641652
Total size [bp] 4845211 4731239 4670125 4653228 4645420 4674460
Ref. chr. [#] 1 1 1 1 1 1
Contigs [#] 1 2 (6) 1 1 1 2 (6)
Aln. ref [bp] 4437473(95.60%)4617713(99.48%)4641652(100.00%)4641551(100.00%)4641500(100.00%)4641652(100.00%)

Aln. query [bp] 4601587(94.97%)4705704(99.46%)4670125(100.00%)4653140(100.00%)4645420(100.00%)4673065(99.97%)
Misassemblies [#] 0 5 4 4 4 4

Avg. identity 89.13 98.63 99.99 99.64 99.91 99.87

S.

cere-

visiae

PacBio
127x

Ref. size [bp] 12157105 12157105 12157105 12157105 12157105 12157105
Total size [bp] 12266420 12839034 12346258 12070971 12052148 12695031
Ref. chr. [#] 17 17 17 17 17 17
Contigs [#] 30 90 (136) 29 30 30 90 (136)
Aln. ref [bp] 11250453(92.54%)11917823(98.03%)12091868(99.46%)12023040(98.90%)12024968(98.91%)12002816(98.73%)

Aln. query [bp] 11396172(92.91%)12456415(97.02%)12304982(99.67%)12045088(99.79%)12027812(99.80%)12485128(98.35%)
Misassemblies [#] 0 57 76 61 59 68

Avg. identity 88.29 98.41 99.87 99.43 99.72 99.5445

Figure 2.8: Error rate of consensus window sequences, compared to the raw and corrected (with
the Canu correction and trimming modules) reads for the A. baylyi ONT dataset. The error
rates were computed by mapping the sequences to the A. baylyi reference genome. Histograms
for the other datasets are available in Supplementary Figure A.5.

Optical mapping

After the first iteration of the bacterial genome assembly pipeline, overlaps between the first-

pass contigs were sufficient to find their layout. It should be anticipated however that not

all overlaps might be apparent in some cases, e.g. if too many reads were removed during the

preprocessing step. One attractive option is to use optical mapping [Aston et al., 1999] to layout

the contigs. We had such an optical map available for the A. baylyi genome, and implemented

the algorithm of Nagarajan et al. [2008] to map the contigs to the restriction map, which led

to the same layout as the one identified from our two-round assemblies (data not shown), thus

providing a “consistency check” for the layout. We suggest in Table 2.2 and Figure 2.9 that

optical maps could be particularly valuable for the ordering of contigs from more structurally

complex eukaryotic genomes such as S. cerevisiae.

Table 2.2 displays assembly results for the following experiment. We divided a set of reads

from S. cerevisiae into subsets, according to the chromosome membership of each read (obtained

by mapping the reads to a reference genome). We then ran the method on each chromosome-

specific dataset separately. The assembled contigs were evaluated with QUAST and DNAdiff

for each chromosome (only a subset of the QUAST descriptive statistics is shown here). This

experiments sheds light on how our method would behave if there were no repeats between

chromosomes, or if we knew to which chromosomes some reads belong to thanks to, e.g., optical

mapping. Figure 2.9 provides results from another experiment designed to evaluate the extent

46

Table 2.2: Assembly of each chromosome of S. cerevisiae (for each chromosome, we used the
subset of reads from the S. cerevisiae ONT R7.3 dataset that were mapped to it).

Chr. Ref size [bp] Contigs [#] Aln. bp Aln. bp Misassem- Avg.
ref [bp] query [bp] -blies [#] identity [%]

I 230218 1 228273(99.16%) 225845(98.43%) 0 98.21
II 813184 1 806340(99.16%) 797624(98.91%) 0 98.17
III 316620 4 313707(99.08%) 326011(93.47%) 3 98.33
IV 1531933 6 1519577(99.19%) 1539642(99.04%) 0 98.24
V 576874 1 574944(99.67%) 575037(99.30%) 3 98.37
VI 270161 3 270161(100.00%) 285160(98.97%) 0 98.36
VII 1090940 8 1088278(99.76%) 1115166(98.37%) 0 98.09
VIII 562643 2 556839(98.97%) 561348(99.48%) 2 98.22
IX 439888 2 437971(99.56%) 443785(97.81%) 0 98.38
X 745751 2 740696(99.32%) 738859(99.16%) 0 98.35
XI 666816 2 665942(99.87%) 667003(99.46%) 0 98.35
XII 1078177 5 1067559(99.02%) 1084233(98.50%) 2 98.27
XIII 924431 4 922948(99.84%) 937417(99.58%) 1 98.12
XIV 784333 2 779066(99.33%) 783072(99.35%) 0 98.41
XV 1091291 3 1089941(99.88%) 1088832(99.49%) 0 98.34
XVI 948066 11 942078(99.37%) 1015108(97.50%) 1 97.83

Chrmt. 85779 5 65196(76.00%) 69107(80.98%) - 90.32

to which optical mapping could improve long-range anchoring of the 127 S. cerevisiae ONT

R7.3 contigs and provide an alternative consistency check of the assembly. A restriction map

was generated in silico from the reference S. cerevisiae genome with the BamHI restriction site

(GGATCC), yielding one map per chromosome. Note that this simulated optical map represents

a best-case scenario since real optical measurements lack some precision and are obtained

through an error-prone assembly process. We used the same algorithm to layout the contigs

with optical mapping as we had with the A. baylyi genome [Nagarajan et al., 2008]. Some

contigs were correctly mapped by this process, while some others were not. Figure 2.9 shows

histograms of the correctly and mis-mapped contigs according to the number of occurrences of

the restriction site in the contigs, and to the length of the contigs. We observe that all contigs

longer than 60kbp are correctly mapped.

2.4 Discussion

We have shown that seriation based layout algorithms can be successfully applied to de novo

genome assembly problems, at least for genomes harboring a limited number of repeats.

In a similar vein to the recent report about the miniasm assembly engine [Li, 2016], our

work confirms that the layout of long reads can be found without prior error correction, us-

ing only overlap information generated from raw reads by tools such as minimap, MHAP or

DALIGNER. However, unlike miniasm, which does not derive a consensus but instead concate-

nates the reads into a full sequence, we take advantage of read coverage to produce contigs

with a consensus quality on par with that achieved by assembly pipelines executing dedicated

47

(a) A. baylyi ONT (b) S. cerevisiae ONT R7.3

Figure 2.9: Histograms of the number of contigs as a function of the number of distinct re-
striction sites (RS) appearing in their sequence (a) or contig length (b). For a given number of
RS occurrences (a) or contig length (b), the blue part of the bar shows the fraction of contigs
correctly aligned to the theoretical restriction map, whereas the red part corresponds to the
complementary fraction of unperfectly aligned contigs.

error-correction steps. The results of Table 2.1 appear promising. For example, our assembler

combined with Racon yields among the highest average identities with the reference for the

ONT datasets. In terms of speed however, our pipeline is clearly outperformed by Miniasm,

but also by Miniasm+Racon, the latter improving overall accuracy. Still, compared to ap-

proaches implementing error correction steps, we gain significant speed-ups by highly localizing

the error correction and consensus generation processes, which is made possible by knowledge

of the layout. We believe that tools such as Miniasm and Racon are implemented in a much

more efficient way than our own, but the layout method itself is efficient (see Supplementary

Table A.1) and is known to be scalable as it relies on the same algorithmic core as Google’s

PageRank.

The main limitation of our layout algorithm is its sensitivity to outliers in the similarity

matrix, hence the need to remove them in a pre-processing phase. Higher coverage and quality

of the input reads, both expected in the near future, would likely improve the robustness of

our pipeline. Still, for eukaryotic genomes, we found that some outliers require additional

information to be resolved (see Supplementary Figure A.3), which could be provided in the

future by extracting topological information from the assembly graph.

In the meantime, our pipeline behaves like a draft generating assembler for prokaryotic

genomes, and a first-pass unitigger for eukaryotic genomes. Importantly, the overall approach

is modular and can integrate other algorithms to increase layout robustness or consensus quality,

as illustrated here by the integration of Racon as an optional polishing module.

Our original contribution here consists in the layout computation. The spectral OLC as-

sembler we built on top of it could be enhanced in many ways. We have shown that the spectral

algorithm is suited to find the layout for bacterial genomes, even though there is room left for

48

performance improvements on repeat-rich eukaryotic genomes.

For these eukaryotic genomes, it could make sense to use the spectral algorithm jointly

with other assembly engines (e.g. Miniasm or Canu), to check the consistency of connected

components before they are assembled. Our consensus generation method is coarse-grained for

now and does not take into account statistical properties of ONT sequencing errors. Never-

theless, the three components (O, L and C) of the method being independent, an external and

more refined consensus generation process could readily be plugged after the overlap and layout

computations to further improve results and increase accuracy.

49

Chapter 3

Multi-dimensional Spectral Ordering :

Reconstructing Linear Orderings via

Spectral Embedding

In the previous chapters, we have observed that due to repeats, the spectral method (Algo-

rithm 1.1) fails to reorder full similarity matrices correctly into a single contig (see Figure 1.7b).

Yet, Algorithm 2.2, at the core of the method presented in Chapter 2, uses a simple iterative

thresholding procedure leveraging the fact that the largest overlaps are scarcely due to repeats

to adapt Algorithm 1.1. It yields correct but fragmented assemblies.

In this chapter, we explore an extension of the spectral method, that was at first moti-

vated by the following experimental observation. While Figure 1.7b plots the first (non-trivial)

eigenvector of the Laplacian -the Fiedler vector, we can also take a look at the following eigen-

vectors. For instance, we can make a 3d scatter plot of the three eigenvectors associated to

the three smallest non-zero eigenvalues. Interestingly, the points in this 3d scatter plot are

roughly distributed along a curve with linear pieces bent in some points. Recall Theorem 3.2.1.

It states that if there is an ordering of the points such that the pairwise similarity decreases

within their distance along this ordering, then the spectral method finds it. These assumptions

mean that we can embed the points on a line such that the similarity is monotonic with the

distance within the line. The Fiedler vector then provides such a linear embedding (it is a 1d

embedding of the points, with one real value per coordinate i 2 [n]). Imagine we start with

data satisfying the assumptions, but we add similarity between the first and the last elements

in the chain so that the assumptions no longer hold. In the original linear embedding, the first

and the last elements have high similarity but are placed far apart on the line. However, if we

add one dimension to the embedding (an additional degree of freedom), and place ourselves on

a plane, we can bend the line so that the first and the last elements are close to each other.

Specifically, we can obtain a circular embedding such that two elements that are nearby on the

50

circle have high similarity. Thus, while the repeats make it impossible to find a linear ordering

consistent with all pairwise similarity information, we can hope that the chain structure ap-

pears in a higher dimensional embedding, where the repeats may cause angles and loops in the

chain.

A significant part of this chapter is devoted to existing work, since several results scattered

in different fields (from theoretical to application-specific) provide intuition or partial results

motivating our approach. Bringing them all together into a consistent frame is one of the

contributions of this work.

A remark about the notations used in this Chapter. We have previously used the notation

�1(L) � . . . � �n(L) to denote the eigenvalues of the (laplacian) matrix L of size n. Here, we

will instead use �0(L) � . . . � �n�1(L), and the same indexing for the associated eigenvectors,

as we will be interested only in the non-zero eigenvalues and the associated eigenvectors, hence

we start the indexing to 1 from the second (which is the first non-zero) eigenvalue.

The content of this chapter is based on the following publication,

Antoine Recanati, Thomas Kerdreux, and Alexandre d’Aspremont. Reconstructing latent or-

derings by spectral clustering. arXiv preprint arXiv:1807.07122, 2018a.

Supplementary for this chapter is given in Appendix Chapter B.

Chapter Abstract

Spectral clustering uses a graph Laplacian spectral embedding to enhance the cluster

structure of some data sets. When the embedding is one dimensional, it can be used

to sort the items (spectral ordering). Empirically we found that a multidimensional

Laplacian embedding enhances the latent ordering of the data, if any. This also

extends to circular orderings, a case where unidimensional embeddings fail. We

tackle the task of retrieving linear and circular orderings in a unifying framework,

and show how a latent ordering on the data translates into a filamentary structure

on the Laplacian embedding. We propose a method to recover it, illustrated with

numerical experiments on synthetic data, real DNA third-generation sequencing

data, and spatial conformation Hi-C data. The code and experiments are available

at https://github.com/antrec/mdso.

51

Contents

3.1 Introduction . 53

3.2 Related Work . 56

3.2.1 Spectral Ordering for Linear Seriation 56

3.2.2 Laplacian Embedding . 57

3.2.3 Link with Continuous Operators . 59

3.2.4 Other embeddings . 60

3.2.5 Ordering points lying on a curve . 61

3.3 Spectral properties of some (circular) Robinson matrices 61

3.3.1 Circular Seriation with Symmetric, Circulant matrices 61

3.3.2 (Linear) Robinson Toeplitz matrices 63

3.3.3 Spectral properties of the Laplacian 64

3.4 Recovering Ordering on Filamentary Structure 64

3.4.1 The Algorithm . 64

3.4.2 Illustration of Algorithm 3.3 . 65

3.5 Perturbation analysis . 66

3.5.1 Application of the Davis-Kahan Theorem 66

3.5.2 Exact recovery with noise for Algorithm 3.2 68

3.6 Numerical Results . 70

3.6.1 Synthetic Experiments . 70

3.6.2 Genome assembly experiment : bacterial genomes with ONT long-reads 72

3.6.3 Genome assembly using Hi-C data . 74

3.6.4 Assembly of genomes with multiple chromosomes with Hi-C data . . . 75

3.6.5 Finding circular orderings with single-cell Hi-C data 80

3.7 Conclusion . 82

52

3.1 Introduction

At the risk of being redundant, let us recall the seriation problem introduced in Chapter 1,

before we present its generalization to circular orderings.

The seriation problem seeks to recover a latent ordering from similarity information. We

typically observe a matrix measuring pairwise similarity between a set of n elements and assume

they have a serial structure, i.e. they can be ordered along a chain where the similarity between

elements decreases with their distance within this chain. In practice, we observe a random

permutation of this similarity matrix, where the elements are not indexed according to that

latent ordering. Seriation then seeks to find that global latent ordering using only (local)

pairwise similarity.

Yet, in some applications, the latent ordering is circular. For instance, in de novo assembly

of bacterial genomes, such as the E. coli and A. baylyi genomes encountered in Chapter 2, one

has to reorder DNA fragments sub-sampled from a circular genome. The graphic illustration

of de novo assembly shown in Chapter 1, Figure 1.4 was adequate for a linear strand of DNA,

but Figure 3.1 is more appropriate for a circular genomes.

1

2

3

n-3

n-2

n-1

n

Figure 3.1: Illustration of the assembly process for a circular genome. The physical strand of
DNA is circular. The DNA sequence is therefore represented as a circle (black). Reads are
randomly sampled from this sequence, and we wish to infer their position (layout) from their
pairwise overlaps. Given an ordering of the reads matching their position on the (linearized)
genome, the first and the last reads are likely to overlap. Here, the first read (dark blue)
overlaps with the last read (red).

Let us consider two other examples where one seeks to recover circular orderings. In biology,

a cell evolves according to a cycle: a newborn cell passes through diverse states (growth, DNA-

53

replication, etc.) before dividing itself into two newborn cells, hence closing the loop. Problems

of interest then involve collecting cycle-dependent data on a population of cells at various,

unknown stages of the cell-cycle, and trying to order the cells according to their cell-cycle

stage. Such data include gene-expression [Liu et al., 2017], or DNA 3D conformation data [Liu

et al., 2018]. In planar tomographic reconstruction, the shape of an object is inferred from

projections taken at unknown angles between 0 and 2⇡. Reordering the angles then enables to

perform the tomography [Coifman et al., 2008].

The main structural hypothesis on similarity matrices related to seriation is the concept of

R-matrix, which we have introduced in Chapter 1 and repeat here, together with its circular

counterpart.

Definition 3.1.1. We say that A 2 Sn is a R-matrix (or Robinson matrix) if it is symmetric and

satisfies Ai,j  Aik, for all triplets of indices (i,j,k) such that |i� j| � |i� k|.

Definition 3.1.2. We say that A 2 Sn is a circular R-matrix if it is symmetric and satisfies

Ai,j  Aik, for all triplets of indices (i,j,k) such that D(|i� j|) � D(|i� k|), where D(|i� j|) =

min(|i� j|, n� |i� j|).

As a reminder, Sn is the set of real symmetric matrices of dimension n. The proximity

matrix of points embedded on a line follows Definition 3.1.1, whereas that of points embedded

on a circle (as in Figure B.1) follows Def 3.1.2. Figure 3.2 displays examples of such matrices.

(a) R-matrix (b) circular R-matrix (c) permuted R-matrix

Figure 3.2: From left to right, R-matrix (3.2a), circular R-matrix (3.2b), and a randomly
permuted observation of a R-matrix (3.2c). Seriation seeks to recover (3.2a) from its permuted
observation (3.2c).

In what follows, we write Ln
R (resp., Cn

R) the set of R (resp., circular-R) matrices of size n,

and Pn the set of permutations of n elements. A permutation can be represented by a vector ⇡

(lower case) or a matrix Π 2 {0, 1}n⇥n (upper case) defined by Πij = 1 iff ⇡(i) = j, and ⇡ = Πg

where g = (1, . . . , n)T . We refer to both representations by Pn and may omit the subscript

n whenever the dimension is clear from the context. We say that A 2 Sn is pre-LR (resp.,

pre-CR) if there exists a permutation Π 2 P such that the matrix ΠAΠT (whose entry (i, j) is

54

A⇡(i),⇡(j)) is in LR (resp., CR). Given such A, Seriation seeks to recover this permutation Π,

find Π 2 P such that ΠAΠT 2 LR (Linear Seriation)

find Π 2 P such that ΠAΠT 2 CR (Circular Seriation)

A widely used method for Linear Seriation is the spectral relaxation presented in Chap-

ter 1, 1.2.2, based on the graph Laplacian of the similarity matrix. It transposes Spectral

Clustering [Von Luxburg, 2007] to the case where we wish to infer a latent ordering rather than

a latent clustering on the data. Roughly speaking, both methods embed the elements on a

line and associate a coordinate fi 2 R to each element i 2 [n]. Spectral clustering addresses a

graph-cut problem by grouping these coordinates into two clusters. Spectral ordering [Atkins

et al., 1998] addresses Linear Seriation by sorting the fi. The clustering method is closely

related to the ordering, as noted in Ding and He [2004].

A graph-cut partitions the data in two clusters. When seeking to cluster data in K groups

with K > 2, one can recursively iterate graph cuts in the sub-groups obtained at the previous

iterations. However, most Spectral Clustering algorithms actually use a Laplacian embedding

of dimension d > 1, denoted d-LE in the following, in order to find K clusters. Latent cluster

structure is assumed to be enhanced in the d-LE, and the k-means algorithm [MacQueen et al.,

1967, Hastie et al., 2009] seamlessly identifies the clusters from the embedding. In contrast,

Spectral Ordering is restricted to d = 1 by the sorting step (there is no total order relation on

R
d for d > 1). Still, the latent linear structure may emerge from the d-LE, if the points are

distributed along a curve. Also, for d = 2, it may capture the circular structure of the data

and allow for solving Circular Seriation. One must then recover a (circular) ordering of points

lying in a 1D manifold (a curve, or filament) embedded in R
d.

In Section 3.2, we review the Spectral Ordering algorithm and the Laplacian Embedding

used in Spectral Clustering. We mention graph-walk perspectives on this embedding and how

this relates to dimensionality reduction techniques. Finally, we recall how these perspectives

relate the discrete Laplacian to continuous Laplacian operators, providing insights about the

curve structure of the Laplacian embedding through the spectrum of the limit operators. These

asymptotic results were used to infer circular orderings in a tomography application in, e.g.,

Coifman et al. [2008]. In Section 3.3, we evidence the filamentary structure of the Laplacian Em-

bedding, and provide theoretical guarantees about the Laplacian Embedding based method for

Circular Seriation. We then propose a method in Section 3.4 to leverage the multidimensional

Laplacian embedding in the context of Linear Seriation and Circular Seriation. In Section 3.5,

we show that a perturbation analysis similar to that existing for Linear Seriation can be applied

to Circular Seriation. We eventually present numerical experiments in Section 3.6 to illustrate

how the spectral method gains in robustness by using a multidimensional Laplacian embedding.

55

3.2 Related Work

Let us recall the highlights of the spectral relaxation, which is the starting point of this work,

before we review definitions and results involving higher-dimensional Laplacian embeddings.

3.2.1 Spectral Ordering for Linear Seriation

Linear Seriation can be addressed with a spectral relaxation of the 2-SUM combinatorial prob-

lem,

minimize
Pn

i,j=1Aij |⇡i � ⇡j |
2 such that ⇡ 2 Pn (2-SUM)

Intuitively, the optimal permutation compensates high Aij values with small |⇡i�⇡j |2, thus lay-

ing similar elements nearby. As we have seen in Section 1.2.2, for any f =
�
f(1), . . . , f(n)

�T 2
R
n, the objective of 2-SUM can be written as a quadratic,

Pn
i,j=1Aij |f(i)� f(j)|2 = fTLAf (3.1)

where LA , diag(A1)�A is the graph-Laplacian of A. From (3.1), LA is positive-semi-definite

for A having non-negative entries, and 1 = (1, . . . , 1)T is an eigenvector associated to �0 = 0.

The spectral method relaxes the 2-SUM problem by dropping the integer constraint on

permutation vectors ⇡ 2 Pn and enforcing only norm and orthogonality constraints, k⇡k = 1,

⇡T1 = 0, to avoid the trivial solutions ⇡ = 0 and ⇡ / 1. It results in,

minimize fTLAf such that kfk2 = 1 , fT1 = 0. (Relax. 2-SUM)

This is an eigenvalue problem on LA solved by f(1), the eigenvector associated to �1 � 0

the second smallest eigenvalue of LA. If the graph defined by A is connected (which we assume

further) then �1 > 0. From f(1), one can recover a permutation by sorting its entries. The

resulting algorithm, presented in Chapter 1 and applied to de novo assembly in Chapter 2, is

recalled here in Algorithm 3.1. We also recall a key theoretical result related to it. For pre-LR

matrices, Linear Seriation is equivalent to 2-SUM [Fogel et al., 2013], and can be solved with

Algorithm 3.1 [Atkins et al., 1998], as stated in Theorem 3.2.1.

Algorithm 3.1 Spectral ordering [Atkins et al., 1998]

Input: Connected similarity matrix A 2 R
n⇥n

1: Compute Laplacian LA = diag(A1)�A

2: Compute second smallest eigenvector of LA, f1
3: Sort the values of f1

Output: Permutation � : f1(�(1))  . . .  f1(�(n))

56

Theorem 3.2.1 (Atkins et al. [1998]). If A 2 Sn is a pre-LR matrix, then Algorithm 3.1 recovers

a permutation Π 2 Pn such that ΠAΠT 2 Ln
R, i.e., it solves Linear Seriation.

3.2.2 Laplacian Embedding

Let 0 = �0 < �1  . . .  �n�1 be the eigenvalues of LA, and Φ = (1, f1, . . . , fn�1) the matrix

whose column j is the eigenvector corresponding to the j-th smallest eigenvalue, which is the

j � 1 smallest, non-zero eigenvalue �j�1. We have the following decomposition, LA = ΦΛΦT ,

with Λ , diag (�0, . . . ,�n�1).

Algorithm 3.1 embeds the data in 1D through the eigenvector f1 (1-LE). It then uses

this 1-d embedding to infer an ordering of the points. More generally, for any d < n, Φ(d) ,

(f1, . . . , fd) defines a d-dimensional embedding (d-LE)

yi =
�
f1(i), f2(i), . . . , fd(i)

�T 2 R
d, for i = 1, . . . , n. (d-LE)

The d-LE solves the following embedding problem, which is a generalization of 2-SUM to

multi-dimensions,

minimize
Pn

i,j=1Aijkyi � yjk22
such that Φ̃ =

⇣

y
T
1 , . . . ,y

T
n

⌘T
2 R

n⇥d , Φ̃T Φ̃ = Id , Φ̃
T1n = 0d

(d-2SUM)

Indeed, thanks to the ortho-normality constraints, the objective of d-2SUM can also be written

as a quadratic,

minimize Tr
⇣

Φ̃TLAΦ̃

⌘

such that Φ̃ 2 R
n⇥d , Φ̃T Φ̃ = Id , Φ̃

T1n = 0d
(d-2SUM’)

The reader can find a detailed derivation in Belkin and Niyogi [2003]. The 2-SUM intuition still

holds: the d-LE lays similar elements nearby, and dissimilar apart, in R
d. Other dimensionality

reduction techniques such as Multidimensional scaling (MDS) [Kruskal and Wish, 1978], kernel

PCA [Schölkopf et al., 1997], or Locally Linear Embedding (LLE) [Roweis and Saul, 2000]

could be used as alternatives to embed the data in a way that intuitively preserves the latent

ordering. However, guided by the generalization of Algorithm 3.1 and theoretical results that

follow, we restrict ourselves to the Laplacian embedding.

Normalization and Scaling

Several variants of the Laplacian (and resulting spectral embeddings d-LE) exist in the litera-

ture, leading to diverse interpretations and experimental behaviors.

Given the weighted adjacency matrix W 2 Sn of a graph, its Laplacian reads L = D �W ,

where D = diag(W1) has diagonal entries di =
Pn

j=1Wij (degree of i). Normalizing Wij by

57

p
didj or di leads to the normalized Laplacians,

Lsym = D�1/2LD�1/2 = I�D�1/2WD�1/2 (symmetric)

Lrw = D�1L = I�D�1W (random-walk)

They correspond to graph-cut normalizations (normalized cut or ratio cut). Moreover, Lrw

has a Markov chain interpretation, where a random walker on edge i jumps to edge j from

time t to t + 1 with transition probability Pij , Wij/di. It has connections with diffusion

processes, governed by the heat equation @Ht
@t = �∆Ht, where ∆ is the Laplacian operator,

Ht the heat kernel, and t is time [Qiu and Hancock, 2007]. These connections lead to diverse

Laplacian embeddings backed by theoretical justifications, where the eigenvectors f rw
k of Lrw

are sometimes scaled by decaying weights ↵k (thus emphasizing the first eigenvectors),

ỹi =
�
↵1f

rw
1 (i), . . . ,↵d�1f

rw
d (i)

�T 2 R
d, for i = 1, . . . , n. ((↵, d)-LE)

Laplacian eigenmaps [Belkin and Niyogi, 2003] is a nonlinear dimensionality reduction tech-

nique based on the spectral embedding of Lrw (((↵, d)-LE) with ↵k = 1 for all k). Specif-

ically, given points x1, . . . , xn 2 R
d, the method computes a heat kernel similarity matrix

Wij = exp�
�
kxi � xjk2/t

�
and outputs the first eigenvectors of Lrw as a lower dimensional

embedding. The choice of the heat kernel is motivated by connections with the heat diffusion

process on a manifold, a partial differential equation involving the Laplacian operator. This

method has been successful in many machine learning applications such as semi-supervised clas-

sification [Belkin and Niyogi, 2004] and search-engine type ranking [Zhou et al., 2004]. Notably,

it provides a global, nonlinear embedding of the points that preserves the local structure.

The commute time distance CTD(i, j) between two nodes i and j on the graph is the

expected time for a random walker to travel from node i to node j and then return. The full

(↵, d)-LE, with ↵k = (�rw
k)�1/2 and d = n � 1, satisfies CTD(i, j) / kỹi � ỹjk. Given the

decay of ↵k, the d-LE with d ⌧ n approximately preserves the CTD. This embedding has

been successfully applied to vision tasks, e.g., anomaly detection [Albano and Messinger, 2012],

image segmentation and motion tracking [Qiu and Hancock, 2007].

Another, closely related dimensionality reduction technique is that of diffusion maps [Coif-

man and Lafon, 2006], where the embedding is derived to preserve diffusion distances, resulting

in the (↵, d)-LE, for t � 0, ↵k(t) = (1� �rw
k)t.

Coifman and Lafon [2006], Coifman et al. [2008] also propose a normalization of the simi-

larity matrix W̃ D�1WD�1, to extend the convergence of Lrw towards the Laplace-Beltrami

operator on a curve when the similarity is obtained through a heat kernel on points that are

non uniformly sampled along that curve.

Finally, we will use in practice the heuristic scaling ↵k = 1/
p
k to damp high dimensions,

58

as explained in Appendix B.2.5.

For a deeper discussion about spectral graph theory and the relations between these meth-

ods, see for instance Qiu and Hancock [2007] and Chung and Yau [2000].

3.2.3 Link with Continuous Operators

In the context of dimensionality reduction, when the data points x1, . . . , xn 2 R
D lie on a

manifold M ⇢ R
d of dimension K ⌧ D, the graph Laplacian L of the heat kernel (Wij =

exp
�
�kxi � xjk2/t

�
) used in Belkin and Niyogi [2003] is a discrete approximation of ∆M,

the Laplace-Beltrami operator on M (a differential operator akin to the Laplace operator,

adapted to the local geometry of M). Singer [2006] specify the hypothesis on the data and the

rate of convergence of L towards ∆M when n grows and the heat-kernel bandwidth t shrinks.

Von Luxburg et al. [2005] also explore the spectral asymptotics of the spectrum of L to prove

consistency of spectral clustering.

This connection with continuous operators gives hints about the Laplacian embedding in

some settings of interest for Linear Seriation and Circular Seriation. Indeed, consider n points

distributed along a curve Γ ⇢ R
D of length 1, parameterized by a smooth function � : R! R

D,

Γ = {�(s) : s 2 [0, 1]}, say xi = �(i/n). If their similarity measures their proximity along

the curve, then the similarity matrix is a circular-R matrix if the curve is closed (�(0) = �(1)),

and a R matrix otherwise. Coifman et al. [2008] motivate a method for Circular Seriation with

the spectrum of the Laplace-Beltrami operator ∆Γ on Γ when Γ is a closed curve. Indeed, ∆Γ

is simply the second order derivative with respect to the arc-length s, ∆Γf(s) = f 00(s) (for f

twice continuously differentiable), and its eigenfunctions are given by,

f 00(s) = ��f(s). (3.2)

With periodic boundary conditions, f(0) = f(1), f 0(0) = f 0(1), and smoothness assumptions,

the first eigenfunction is constant with eigenvalue �0 = 0. The remaining eigenvalues �m are

double, associated to the eigenfunctions fm,cos and fm,sin given by, for m = 1, . . . ,1,

�m = (2⇡m)2

f cos
m = cos (2⇡ms)

f sin
m = sin (2⇡ms)

Hence, the 2-LE given by the following equation should approximately lay the points on a

circle, allowing for solving Circular Seriation [Coifman et al., 2008],

�
f1(i), f2(i)

�
⇡
�
cos (2⇡si), sin (2⇡si)

�
.

59

More generally, the 2d-LE given by the following equation is a closed curve in R
2d,

�
f1(i), . . . , f2d+1(i)

�T ⇡
�
cos (2⇡si), sin (2⇡si), . . . , cos (2d⇡si), sin (2d⇡si)

�
.

If Γ is not closed, we can also find its eigenfunctions. For instance, with Neumann boundary

conditions (vanishing normal derivative), f(0) = 1, f(1) = 0, f 0(0) = f 0(1) = 0, the non-trivial

eigenfunctions of ∆Γ, fm, associated to the eigenvalues �m, for m = 1, . . . ,1, are given by,

�m = (⇡m)2

fm = cos (⇡ms)

The 1-LE, f1(i) ⇡ cos (⇡si), respects the monotonicity of i, which is consistent with The-

orem 3.2.1. Lafon [2004] invoked this asymptotic argument to solve an instance of Linear

Seriation but seemed unaware of the existence of Atkin’s Algorithm 3.1. Note that here too,

the d-LE,

�
f1(i), . . . , fd(i)

�T ⇡
�
cos (⇡si), . . . , cos (d⇡si)

�

follows a closed curve in R
d, with endpoints.

These asymptotic results hint that the Laplacian embedding preserves the latent ordering of

data points lying on a curve embedded in R
D. However, these results are only asymptotic and

there is no known guarantee for the Circular Seriation problem as there is for Linear Seriation.

Also, the curve (sometimes called filamentary structure) stemming from the Laplacian embed-

ding has been observed in more general cases where no hypothesis on a latent representation of

the data is made, and the input similarity matrix is taken as is (see, e.g., Diaconis et al. [2008]

for a discussion about the horseshoe phenomenon).

3.2.4 Other embeddings

We focus on the Laplacian embedding since it naturally extends results from Atkins et al.

[1998]. However, other methods can produce low-dimensional embeddings from a similarity (or

distance) matrix, such as Multi-Dimensional Scaling (MDS) [Kruskal and Wish, 1978]. Clas-

sical -MDS uses the eigen-decomposition of the centered distance matrix, (it is also a spectral

method). metric-MDS finds the embedding through the minimization of a stress function.

t-SNE [Maaten and Hinton, 2008] minimizes the divergence between similarity-based proba-

bilities to find a 2D or 3D embedding of the data. We experimentally compare the orderings

found by our method when using these alternative embedding techniques.

Dimensionality reduction techniques, e.g., kernel PCA [Schölkopf et al., 1997] and Locally

Linear Embedding (LLE) [Roweis and Saul, 2000], take design matrices (high-dimensional em-

bedding) as input, to produce the low-dimensional embedding, instead of distance/similarity

60

matrices, hence we do not consider those in the following.

3.2.5 Ordering points lying on a curve

Existing approaches for Seriation rely on either 1D or 2D embeddings, sorting coordinates (1D),

or angles between two coordinates (2D) to reorder the points. Friendly [2002] sorts the angle

between the coordinates of the 2D-MDS embedding to perform Linear Seriation. Coifman et al.

[2008] use the 2-LE to perform Circular Seriation in a tomographic reconstruction setting,

sorting the inverse tangent of the angle between the two components to reorder the points

(Algorithm 3.2). Liu et al. [2018] use a similar approach to solve Circular Seriation in a

cell-cycle related problem, but with the 2D embedding given by MDS. We are not aware of

any method using higher-dimensional embeddings under Linear Seriation or Circular Seriation

assumptions.

3.3 Spectral properties of some (circular) Robinson matrices

We have claimed that the d-LE enhances the latent ordering of the data and we now present

some theoretical evidences. We adopt a point of view similar to Atkins et al. [1998], where the

feasibility of Linear Seriation relies on structural assumptions on the similarity matrix (LR).

For a subclass C⇤
R of CR (set of circular-R matrices), we show that the d-LE lays the points

on a closed curve, and that for d = 2, the elements are embedded on a circle according to

their latent circular ordering. This is a counterpart of Theorem 3.2.1 for Circular Seriation.

It extends the asymptotic results motivating the approach of Coifman et al. [2008], shifting

the structural assumptions on the elements (data points lying on a curve embedded in R
D) to

assumptions on the raw similarity matrix that can be verified in practice. Then, we develop

a perturbation analysis to bound the deformation of the embedding when the input matrix is

in C⇤
R up to a perturbation. Finally, we discuss the spectral properties of some (non circular)

LR-matrices that shed light on the filamentary structure of their d-LE for d > 1.

For simplicity, we assume n , 2p + 1 odd in the following. The results with n = 2p even

are relegated to the Appendix Chapter B, together with technical proofs.

3.3.1 Circular Seriation with Symmetric, Circulant matrices

Let us consider the set C⇤
R of matrices in CR that are circulant, in order to have a closed form

expression of their spectrum. A matrix A 2 R
n⇥n is Toeplitz if its entries are constant on a

given diagonal, Aij = b(i�j) for a vector of values b of size 2n� 1. A symmetric Toeplitz matrix

A satisfies Aij = b|i�j|, with b of size n. In the case of circulant symmetric matrices, we also

61

have that bk = bn�k, for 1  k  n, thus symmetric circulant matrices are of the form,

A =

0

B
B
B
B
B
B
B
B
B
B
@

b0 b1 b2 · · · b2 b1

b1 b0 b1 · · · b3 b2

b2 b1 b0 · · · b4 b3
...

...
...

. . .
...

...

b2 b3 b4 · · · b0 b1

b1 b2 b3 · · · b1 b0

1

C
C
C
C
C
C
C
C
C
C
A

. (3.3)

Where b is a vector of values of size p+ 1 (recall that n = 2p+ 1). The circular-R assumption

(Def 3.1.2) imposes that the sequence (b0, . . . , bp+1) is non-increasing. We thus define the set

C⇤
R of circulant matrices of CR as follows.

Definition 3.3.1. A matrix A 2 Sn is in C⇤
R iff it verifies Aij = b|i�j| and bk = bn�k for 1  k  n

with (bk)k=0,...,bn/2c a non-increasing sequence.

The spectrum of symmetric circulant matrices is known [Reichel and Trefethen, 1992, Gray

et al., 2006, Massey et al., 2007], and for a matrix A of size n = 2p+ 1, it is given by,

⌫m = b0 + 2
Pp

k=1bk cos
�
2⇡km/n

�

ym,cos = 1p
n

⇣

1, cos
�
2⇡m/n

�
, . . . , cos

�
2⇡m(n� 1)/n

�⌘

ym,sin = 1p
n

⇣

1, sin
�
2⇡m/n

�
, . . . , sin

�
2⇡m(n� 1)/n

�⌘

.

(3.4)

For m = 1, . . . , p, ⌫m is an eigenvalue of multiplicity 2 with associated eigenvectors ym,cos,ym,sin.

For any m, (ym,cos, ym,sin) embeds the points on a circle, but for m > 1, the circle is walked

through m times, hence the ordering of the points on the circle does not follow their latent

ordering. The ⌫m from equations (3.4) are in general not sorted. It is the Robinson property

(monotonicity of (bk)) that guarantees that ⌫1 � ⌫m, for m � 1, and thus that the 2-LE embeds

the points on a circle that follows the latent ordering and allows one to recover it by scanning

through the unit circle. This is formalized in Theorem 3.3.2, which is the main result of our

paper, proved in Appendix B.3. It provides guarantees in the same form as in Theorem 3.2.1

with the simple Algorithm 3.2 that sorts the angles, used in Coifman et al. [2008].

Algorithm 3.2 Circular Spectral Ordering [Coifman et al., 2008]

Input: Connected similarity matrix A 2 R
n⇥n

1: Compute normalized Laplacian Lrw
A = I�

�
diag(A1)

��1
A

2: Compute the two first non-trivial eigenvectors of Lrw
A , (f1, f2)

3: Sort the values of ✓(i) , tan�1
�
f2(i)/f1(i)

�
+ [f1(i) < 0]⇡

Output: Permutation � : ✓(�(1))  . . .  ✓(�(n))

62

Theorem 3.3.2. Given a permuted observation ΠAΠT (Π 2 P) of a matrix A 2 C⇤
R, the 2-LE

maps the items on a circle, equally spaced by angle 2⇡/n, following the circular ordering in

Π. Hence, Algorithm 3.2 recovers a permutation Π 2 Pn such that ΠAΠT 2 C⇤
R, i.e., it solves

Circular Seriation.

3.3.2 (Linear) Robinson Toeplitz matrices

In order to show Theorem 3.3.2, we have examined the spectrum of some circular-R matrices.

Although only the 2-LE appears in Theorem 3.3.2, it is interesting to see that for any d > 1, the

d-LE of matrices in C⇤
R is a curve. Let us investigate how the latent linear ordering of Toeplitz

matrices in LR translates to the d-LE. Remark that from Theorem 3.2.1, the 1-LE suffices

to solve Linear Seriation. Yet, for perturbed observations of A 2 LR, the d-LE may be more

robust to the perturbation than the 1-LE, as the experiments in Section 3.6 indicate. However,

there is no closed form expression for the spectrum of (linear) R matrices in general, or even of

Toeplitz R matrices, which are the analog of C⇤
R for 2-SUM. Therefore, in the remainder of this

Section, we will review spectral properties of specific standard Robinson matrices appearing in

some applications, whose spectrum has been studied.

Tridiagonal Toeplitz matrices are defined by b0 > b1 > 0 = b2 = . . . = bp. For m =

0, . . . , n�1, they have eigenvalues ⌫m with multiplicity 1 associated to eigenvector y(m) [Trench,

1985],

⌫m = b0 + 2b1 cos
�
m⇡/(n+ 1)

�

y(m) =
⇣

sin
�
m⇡/(n+ 1)

�
, . . . , sin

�
mn⇡/(n+ 1)

�⌘

,
(3.5)

thus matching the spectrum of the Laplace operator on a curve with endpoints from §3.2.3 (up

to a shift). This type of matrices can indeed be viewed as a limit case with points uniformly

sampled on a line with strong similarity decay, leaving only the two nearest neighbors with

non-zero similarity.

Kac-Murdock-Szegö (KMS) matrices are defined, for ↵ > 0, ⇢ = e�↵, by Aij = b|i�j| =

e�↵|i�j| = ⇢|i�j|. For m = 1, . . . , bn/2c, there exists ✓m 2
�
(m� 1)⇡/n,m⇡/n

�
, such that ⌫m

is a double eigenvalue associated to eigenvectors ym,cos,ym,sin,

⌫m = 1�⇢2

1�2⇢ cos ✓m+⇢2

ym,cos =
⇣

cos
�
(n� 2r + 1)✓m/2

�⌘n

r=1

ym,sin =
⇣

sin
�
(n� 2r + 1)✓m/2

�⌘n

r=1
.

(3.6)

Linearly decreasing Toeplitz matrices defined by Alin
ij = b|i�j| = n � |i � j| have spec-

tral properties analog to those of KMS matrices (trigonometric expression, interlacement, low

frequency assigned to largest eigenvalue), but with more technical details available in Bünger

63

[2014]. This goes beyond the asymptotic case modeled by tridiagonal matrices.

Banded Robinson Toeplitz matrices typically include similarity matrices from DNA sequenc-

ing. Actually, any Robinson Toeplitz matrix becomes banded under a thresholding operation.

Also, fast decaying Robinson matrices such as KMS matrices are almost banded. There is

a rich literature dedicated to the spectrum of generic banded Toeplitz matrices [BoeÓttcher

and Grudsky, 2005, Gray et al., 2006, Böttcher et al., 2017]. However, it mostly provides

asymptotic results on the spectra. Notably, some results indicate that the eigenvectors of some

banded symmetric Toeplitz matrices become, up to a rotation, close to the sinusoidal, almost

equi-spaced eigenvectors observed in equations (3.5) and (3.6) [Böttcher et al., 2010, Ekström

et al., 2017].

3.3.3 Spectral properties of the Laplacian

We have listed some spectral properties of typical similarity matrices. Let us conclude this

section by remarking how the spectrum of a matrix relates to that of its Laplacian.

For circulant matrices A, LA and A have the same eigenvectors since LA = diag(A1)�A =

cI � A, with c ,
Pn�1

k=0 bk. For general symmetric Toeplitz matrices, this property no longer

holds as ci =
Pn

j=1 b|i�j| varies with i. Yet, for fast decaying Toeplitz matrices, ci is almost

constant except for i at the edges, namely i close to 1 or to n. Therefore, the eigenvectors of

LA resemble those of A except for the “edgy” entries.

Note that using the eigenvectors of A to embed the points boils down to classical (or, non-

metric) multi-dimensional scaling (MDS) [Kruskal and Wish, 1978]. MDS is a dimensionality

reduction method aiming to find an embedding of points that preserves the pairwise distances.

Given a similarity matrix A, one can consider the distance matrix D , max(A)�A, and apply

MDS. Therefore, although the Laplacian embedding enjoys theoretical properties leading to

Theorems 3.2.1, 3.3.2, in practice, classical MDS yields a similar embedding for R matrices

with a fast decay.

3.4 Recovering Ordering on Filamentary Structure

We have seen that (some) similarity matrices A with a latent ordering lead to a filamentary

d-LE. The d-LE integrates local proximity constraints together into a global consistent em-

bedding. We expect isolated (or, uncorrelated) noise on A to be averaged out by the spectral

picture. Therefore, we present Algorithm 3.3 that redefines the similarity Sij between two items

from their proximity within the d-LE.

3.4.1 The Algorithm

Basically, our algorithm fits the points by a line locally, in the same spirit as LLE, which makes

sense when the data lies on a linear manifold (curve) embedded in R
K . Note that Spectral

64

Ordering (Algorithm 3.1) projects all points on a given line (it only looks at the first coordinates

f1(i)) to reorder them. Our method does so in a local neighborhood, allowing for reordering

points on a curve with several oscillations. We then run the basic Algorithms 3.1 (or 3.2 for

Circular Seriation). Hence, the d-LE is eventually used to pre-process the similarity matrix.

Algorithm 3.3 Ordering Recovery on Filamentary Structure in R
K .

Input: A similarity matrix A 2 Sn, a neighborhood size k � 2, a dimension of the Laplacian
Embedding d.

1: Φ =
⇣

y
T
1 , . . . ,y

T
n

⌘T
2 R

n⇥d d-LE(A) . Compute Laplacian Embedding

2: Initialize S = In . New similarity matrix
3: for i = 1, . . . , n do
4: V {j : j 2 k-NN(yi)} [{i} . find k nearest neighbors of yi 2 R

d

5: w LinearFit(V) . fit V by a line
6: Duv |wT (yu � yv)|, for u, v 2 V . . Compute distances on the line
7: Suv Suv +D�1

uv , for u, v 2 V . . Update similarity
8: end for
9: Compute �⇤ from the matrix S with Algorithm 3.1 (resp., Algorithm 3.2) for a linear (resp.,

circular) ordering.
Output: A permutation �⇤.

In Algorithm 3.3, we compute a d-LE in line 1 and then a 1-LE (resp., a 2-LE) for linear

ordering (resp., a circular ordering) in line 9. For reasonable number of neighbors k in the k-NN

of line 4 (in practice, k = 15), the complexity of computing the d-LE dominates Algorithm 3.3.

We shall see in Section 3.6 that our method, while being almost as computationally cheap as

the base Algorithms 3.1 and 3.2 (roughly only a factor 2), yields substantial improvements. In

line 7 we can update the similarity Suv by adding any non-increasing function of the distance

Duv, e.g., D�1
uv , exp (�Duv), or �Duv (the latter case requires to add an offset to S afterwards

to ensure it has non-negative entries, and is what we implemented in practice.) In line 9, the

matrix S needs to be connected in order to use Algorithm 3.1, which is not always verified in

practice (for low values of k, for instance). In that case, we reorder separately each connected

component of S with Algorithm 3.1, and then merge the partial orderings into a global ordering

by using the input matrix A, as detailed in Algorithm B.1, Appendix B.1.

3.4.2 Illustration of Algorithm 3.3

As a qualitative result, we provide a visual illustration of the method’s behavior with a circular

banded matrix in Figures 3.3 and 3.4. Given a matrix A (Figure 3.3a), Algorithm 3.3 computes

the d-LE. The 2-LE is plotted for visualization in Figure 3.3b. Note that Algorithm 3.2 would

directly infer the circular ordering from the 2-LE displayed in Figure 3.3b. Then, it creates a

new matrix S (Figure 3.4a) from the local alignment of the points in the d-LE. Finally, from

the new matrix S, it computes the 2-LE (Figure 3.4a), on which Algorithm 3.2 is eventually

65

(a) Noisy circular banded matrix A (b) Noisy 2-LE

Figure 3.3: Noisy Circular Banded matrix (3.3a) and associated 2d Laplacian embedding (3.3b).

(a) Matrix S from Algorithm 3.3 (b) New 2-LE

Figure 3.4: Matrix S created through Algorithm 3.3 (3.4a), and associated 2d-Laplacian em-
bedding (3.4b).

ran.

3.5 Perturbation analysis

The spectrum is a continuous function of the matrix. We can bound the deformation of the

2-LE under a perturbation of the matrix A using the Davis-Kahan theorem [Davis and Kahan,

1970], well introduced in [Von Luxburg, 2007, Theorem 7], yielding the following result.

3.5.1 Application of the Davis-Kahan Theorem

Proposition 3.5.1 (Davis-Kahan). Let L and L̃ = L+ �L be the Laplacian matrices of A 2 C⇤
R

and A + �A 2 Sn, respectively, and V, Ṽ 2 R
2⇥n be the associated 2-LE of L and L̃, i.e.,

the concatenation of the two eigenvectors associated to the two smallest non-zero eigenvalues,

66

written �1  �2 for L. Then, there exists an orthonormal rotation matrix O such that

kV1 � Ṽ1OkFp
n

 k�AkF
min(�1,�2 � �1)

. (3.7)

For circular matrices, we can derive a slightly finer result.

Proposition 3.5.2 (Davis-Kahan). Consider L a graph Laplacian of a R-symmetric-circular

Toeplitz matrix A. We add a symmetric perturbation matrix H and denote by Ã = A + H

and L̃ the new similarity matrix and graph Laplacian respectively. Denote by (pi)i=1,...,n and

(p̃i)i=1,...,n the 2-LE coming from L and L̃ respectively. Then there exists a cyclic permutation

⌧ of {1, . . . , n} such that

sup
i=1,...,n

||p⌧(i) � p̃i||2 
23/2min(

p
2||LH ||2, ||LH ||F)

min(|�1|, |�2 � �1|)
, (3.8)

where �1 < �2 are the first non-zeros eigenvalues of L.

Proof. For a matrix V 2 R
n⇥d, denote by

�
�
�
�V
�
�
�
�
2,1 = sup

i=1,...,n

�
�
�
�Vi

�
�
�
�
2
,

where Vi are the columns of V . Because in R
n we have || · ||1  || · ||2, it follows that

�
�
�
�V
�
�
�
�
2,1 

�
�
�
�
�
||Vi||

�

i=1,...,n

�
�
�
�
2
=

v
u
u
t

nX

i=1

||Vi||22


�
�
�
�V
�
�
�
�
F
.

We apply [Yu et al., 2014, Theorem 2] to our perturbed matrix, a simpler version of classical

Davis-Kahan theorem [Davis and Kahan, 1970].

Let’s denote by (�1,�2) the first non-zeros eigenvalues of L and by V its associated 2-

dimensional eigenspace. Similarly denote by Ṽ the 2-dimensional eigenspace associated to the

first non-zeros eigenvalues of L̃. There exists a rotation matrix O 2 SO2(R) such that

||Ṽ � V O||F 
23/2min(

p
2||LH ||2, ||LH ||F)

min(|�1|, |�2 � �1|)
. (3.9)

In particular we have

�
�
�
�Ṽ � V O

�
�
�
�
2,1 

�
�
�
�Ṽ � V O

�
�
�
�
F

�
�
�
�Ṽ � V O

�
�
�
�
2,1  23/2min(

p
2||LH ||2, ||LH ||F)

min(|�1|, |�2 � �1|)

67

Finally because A is a R-symmetric-circular Toeplitz, from Theorem 3.3.2, the row of V

are n ordered points uniformly sampled on the unit circle. Because applying a rotation is

equivalent to translating the angle of these points on the circle. It follows that there exists a

cyclic permutation ⌧ such that

sup
i=1,...,n

||pi � p̃⌧(i)||2 
23/2min(

p
2||LH ||2, ||LH ||F)

min(|�1|, |�2 � �1|)
,

3.5.2 Exact recovery with noise for Algorithm 3.2

These results bounding the perturbation of the embedding allow to find conservative guarantees

of ordering recovery with Algorithm 3.2, based on simple geometric reasoning. Indeed, when

all the points remain in a sufficiently small ball around their original position on the circle,

Algorithm 3.2 can exactly find the ordering. Let us start with a geometrical lemma quantifying

the radius of the ball around each (cos(✓k), sin(✓k)) so that they do not intersect.

Lemma 3.5.3. For x 2 R
2 and ✓k = 2⇡k/n for k 2 N such that

||x� (cos(✓k), sin(✓k))||2  sin(⇡/n) , (3.10)

we have

|✓x � ✓k|  ⇡/n ,

where ✓x = tan�1(x1/x2) + 1[x1 < 0]⇡.

Proof. Let x that satisfies (3.10). Let’s assume without loss of generality that ✓k = 0 and

✓x � 0. Assume also that x = e1 + sin(⇡/n)ux where u is a unitary vector. A x for which ✓x

is maximum over these constrained is such that ux and x are orthonormal.

Parametrize ux = (cos(�), sin(�)), because ux and x are orthonormal, we have cos(�) =

sin(�⇡/n). Finally since ✓x � 0, it follows that � = ⇡/2 + ⇡/n and hence with elementary

geometrical arguments ✓x = ⇡/n.

Proposition 3.5.4 (Exact circular recovery under noise in Algorithm 3.2). Consider a matrix

Ã = ΠTAΠ +H with A a R�circular Toeplitz (Π is the matrix associated to the permutation

�) and H a symmetric matrix such that

min(
p
2||LH ||2, ||LH ||F)  2�3/2 sin(⇡/n)min(|�1|, |�2 � �1|) ,

68

where �1 < �2 are the first non-zeros eigenvalues of the graph Laplacian of ΠTAΠ. Denote by

�̂ the output of Algorithm 3.2 when having Ã as input. Then there exists a cyclic permutation

⌧ such that

�̂ = ��1 � ⌧�1 . (3.11)

Proof. We have

Π
T ÃΠ = A+Π

THΠ .

L is the graph Laplacian associated to A and L̃, the one associated to Ã. Denote by (pi)i=1,...,n

and (p̃i)i=1,...,n the 2-LE coming from L and L̃ respectively. (p̃��1(i))i=1,...,n is the 2-LE coming

from the graph Laplacian of ΠT ÃΠ.

Applying Proposition 3.5.2 with ΠT ÃΠ, there exists a cyclic permutation such that

sup
i=1,...,n

||p̃��1(i) � p⌧(i)||2 <
23/2min(

p
2||LH⇡ ||2, ||LH⇡ ||F)

min(|�1|, |�2 � �1|)
,

with H⇡ = ΠTHΠ, �1 < �2 the first non zero eigenvalues of A.

Graph Laplacian involve the diagonal matrix DH . In particular we have that DH⇡ =

ΠTDHΠ. For the unnormalized Laplacian, it results in LH⇡ = ΠTLHΠ. We hence have

sup
i=1,...,n

||p̃�(i) � p⌧(i)||2 <
23/2min(

p
2||LH ||2, ||LH ||F)

min(|�1|, |�2 � �1|)

sup
i=1,...,n

||p̃i � p⌧���1(i)||2 < sin(⇡/n) .

From Theorem 3.3.2, pi = cos(2⇡i/n) for all i. It follows that for any i

||p̃i � cos(2⇡⌧ � �(i)/n)||2 < sin(⇡/n) .

Algorithm 3.2 recovers the ordering by sorting the values of

✓i = tan�1(p̃1i /p̃
2
i) + 1[p̃1i < 0]⇡ ,

where p̃i = (p̃1i , p̃
2
i). Applying Lemma 3.5.3:

|✓i � 2⇡(⌧ � ��1)(i)/n| < ⇡/n 8i 2 {1, . . . , n},

so that

✓��1�⌧�1(1)  · · ·  ✓��1�⌧�1(n) . (3.12)

69

Finally �̂ = ��1 � ⌧�1.

3.6 Numerical Results

In this section, we present results from synthetic experiments where we seek to reorder pre-R

matrices corrupted with noise. They quantify the performance gain achieved by using the d-

LE instead of the 1-LE (or 2-LE, for Circular Seriation), in terms of correlation between the

ground-truth permutation (for which the noiseless matrix is R), and the permutation found by

the algorithms. Then, we set out to use our method to determine the layout of reads in de

novo assembly, i.e., reordering overlap-based similarity matrices.

3.6.1 Synthetic Experiments

We performed synthetic experiments with noisy observations of Toeplitz matrices A, either

linear (LR) or circular (C⇤
R). We added a uniform noise on all the entries, with an amplitude

parameter a varying between 0 and 5, with maximum value of the noise akAkF . The matrices

A used are either banded (sparse), with linearly decreasing entries when moving away from the

diagonal, or dense, with exponentially decreasing entries (KMS matrices). We used n = 500,

several values for the parameters k (number of neighbors) and d (dimension of the d-LE), and

various scalings of the d-LE (parameter ↵ in (↵, d)-LE), yielding similar results (see sensitivity

to the number of neighbors k and to the scaling (↵, d)-LE in Appendix B.2.4). In an given

experiment, the matrix A is randomly permuted with a ground truth permutation ⇡⇤. We report

the Kendall-Tau scores between ⇡⇤ and the solution of Algorithm 3.3 for different choices of

dimension K, for varying noise amplitude a, in Figure 3.5, for banded (circular) matrices. For

the circular case, the ordering is defined up to a shift. To compute a Kendall-Tau score from two

permutations describing a circular ordering, we computed the best Kendall-Tau scores between

the first permutation and all shifts from the second, as detailed in Algorithm B.2. The analog

results for exponentially decaying (KMS) matrices are given in Appendix B.2.3, Figure B.3.

For a given combination of parameters, the scores are averaged on 100 experiments and the

standard-deviation divided by
p
nexps = 10 (for ease of reading) is plotted in transparent above

and below the curve. The baseline (in black) corresponds to the basic spectral method of

Algorithm 3.1 for linear and Algorithm 3.2 for circular seriation. Other lines correspond to

given choices of the dimension of the d-LE, as written in the legend.

We observe that leveraging the additional dimensions of the d-LE unused by the baseline

methods Algorithm 3.1 and 3.2 substantially improves the robustness of Seriation. For instance,

in Figure 3.5a, the performance of Algorithm 3.3 is almost optimal for a noise amplitude going

from 0 to 4, when it falls by a half for Algorithm 3.1. We illustrate the effect of the pre-

processing of Algorithm 3.3 in Figures 3.3 and 3.4, Appendix 3.4.2.

70

(a) Linear Banded (b) Circular Banded

Figure 3.5: Kendall-Tau scores for Linear (3.5a) and Circular (3.5b) Seriation for noisy obser-
vations of banded, Toeplitz, matrices, displayed for several values of the dimension parameter
of the d-LE(d), for fixed number of neighbors k = 15.

Finally, in Figure 3.6, we compare our Algorithm 3.3 when using alternative embedding

methods mentioned in §3.2.4, namely classical MDS (denoted cMDS), metric-MDS (denoted

MDS), and t-SNE, instead of the spectral (Laplacian embedding). The method performs simi-

larly when used with a classical-MDS or spectral embedding, which is not surprising since both

method rely on the spectral decomposition of slightly differently normalized similarity matri-

ces. The spectral embedding outperforms the other techniques in these experiments, empirically

justifying the choice of embedding made from theoretical considerations.

(a) Linear Banded (b) Circular Banded

Figure 3.6: Kendall-Tau scores for Seriation for noisy observations of Linear and Circular
banded, Toeplitz, matrices, displayed for several embedding methods. All embeddings are of
dimension d = 8 except t-SNE for which d = 2. The number of neighbors is set to k = 15.

71

3.6.2 Genome assembly experiment : bacterial genomes with ONT long-reads

We tested the method on some of the datasets introduced in Chapter 2. Recall that in de novo

genome assembly, a whole DNA strand is reconstructed from randomly sampled sub-fragments

(called reads) whose positions within the genome are unknown. The genome is over-sampled

so that all parts are covered by multiple reads with high probability. The Overlap-Layout-

Consensus (OLC) assembly paradigm is based on three steps. First, compute the overlaps

between all pairs of read. This provides a similarity matrix A, whose entry (i, j) measures

how much reads i and j overlap (and is zero if they do not). Then, determine the layout from

the overlap information, that is to say find an ordering and positioning of the reads that is

consistent with the overlap constraints. This step, akin to solving a one dimensional jigsaw

puzzle, is a key step in the assembly process. Finally, given the tiling of the reads obtained in

the layout stage, the consensus step aims at determining the most likely DNA sequence that

can be explained by this tiling. It essentially consists in performing multi-sequence alignments.

In the true ordering (corresponding to the sorted reads’ positions along the genome), a

given read overlaps much with the next one, slightly less with the one after it, and so on,

until a point where it has no overlap with the reads that are further away. This makes the

read similarity matrix Robinson and roughly band-diagonal (with non-zero values confined to

a diagonal band). Finding the layout of the reads therefore fits the Linear Seriation framework

(or Circular Seriation for circular genomes, as illustrated in Figure 3.1). In practice however,

there are some repeated sequences (called repeats) along the genome that induce false positives

in the overlap detection tool [Pop, 2004], resulting in non-zero similarity values outside (and

possibly far away) from the diagonal band. The similarity matrix ordered with the ground

truth is then the sum of a Robinson band matrix and a sparse “noise” matrix, as in Figure 3.7a.

Because of this sparse “noise”, the basic spectral Algorithm 3.1 fails to find the layout, as the

quadratic loss appearing in 2-SUM is sensitive to outliers.

In Chapter 2, we have proposed the so-called bandwidth heuristic, which relies only on

the baseline Algorithm 3.1 and iteratively breaks the overlap graph in connected components

until the sub-components seem to contain no outlier. Instead, we show here that the simple

multi-dimensional extension proposed in Algorithm 3.3 suffices to capture the ordering of the

reads despite the repeats.

We used our method to perform the layout of an E. coli and A. baylyi bacterial genomes

sequenced with the Oxford Nanopore Technology MinION device. Details on the data are

given in Section 2.3.1 from Chapter 2. We computed the overlaps with the minimap2 dedicated

software [Li, 2018], as detailed in Appendix B.2.1.

The method only worked with a sufficient threshold on the input similarity matrix in a

pre-processing step. Here, we used 50% for E. coli dataset, and 70% for A. baylyi. The

new similarity matrix S computed from the embedding in Algorithm 3.3 was disconnected,

resulting in several connected component instead of one global ordering (see Figure B.2b).

72

(a) E. coli similarity (b) ordering found

(c) A. baylyi similarity (d) ordering found

Figure 3.7: Overlap-based similarity matrix from E. coli (3.7a) and A. baylyi (3.7c) reads,
and the ordering found with Algorithm 3.3 (for E. coli - 3.7b, and A. baylyi - 3.7d) versus
the position of the reads within a reference genome obtained by mapping to a reference with
minimap2. The genome being circular, the ordering is defined up to a shift, which is why we
observe two lines instead of one in (3.7b and 3.7d).

However, the sub-orderings could be unambiguously merged into one in a simple way described

in Algorithm B.1, resulting in the orderings shown in Figures 3.7b and 3.7d. In practice, the

threshold on the input similarity can be set as high as possible as long as the resulting sub-

orderings can be merged into one single component (yielding a single contig). This criterion

leads to the results presented here, where the bacterial genomes are correctly reordered.

The Kendall-Tau score between the ordering found and the one obtained by sorting the

position of the reads along the genome (obtained by mapping the reads to a reference with

minimap2) is of 99.5% for the E. coli dataset, and 99.3% for A. baylyi, using Algorithm B.2 to

account for the circularity of the genome.

73

3.6.3 Genome assembly using Hi-C data

Although the output of a DNA sequencing experiment consists in a linear representation of

the genome (a string, e.g., ’AAAT...GC’), or a collection of linear sequences (when there are

several contigs or chromosomes), physical DNA has a non-linear spatial organization in the 3-D

space (it can be thought of as a ball of yarn, or a plate of spaghetti). Hi-C is a chromosome

conformation capture (3C) technique measuring the frequency of physical interactions between

genomic loci that are nearby in 3-D space, though they can be separated by many nucleotides

in the linear genome. Experiments indicate that the spatial proximity between genomic loci

is not random, and provide valuable information in, e.g., gene identification and regulation

[Dekker et al., 2013].

Interestingly, the frequency of interactions between genomic loci (called bins) tend to de-

crease with their distance in the linear genome [Lieberman-Aiden et al., 2009b]. Also, interac-

tions are more frequent within a given chromosome than between distinct chromosomes. Thus,

we can use Hi-C data to find the layout of the bins in a de novo assembly experiment [Dud-

chenko et al., 2017]. We have seen that due to repeats, reads-overlap-based similarity matrices

had a specific structure (banded Robinsonian matrices + sparse out-of-band noise) challeng-

ing seriation methods. Hi-C similarity matrices are also expected to be close to Robinsonian

matrices, but with a different structure. The underlying stylized Robinsonian matrices are not

banded but harbour a power-law decay when moving away from the diagonal, and the noise

seem to have another structure that repeat-induced noise.

We performed experiments using synthetic and real Hi-C data. The synthetic data include

similarity matrices of four synthetic genomes of lengths 100, 150, 300 and 1000 bins. In the

true ordering, these similarity matrices follow a power-law decay, 1/|i� j + 1|2, when moving

away from the diagonal, with additive uniform noise.

There are also two synthetic similarity matrices modeling Hi-C data from a genome with

multiple chromosomes, where the entries within a given chromosome (block of the matrix) are

generated with the same rules as the single-stranded synthetic matrices described above, and

the entries between distinct chromosomes are set with a low amplitude, sparse noise. The first

one, called DL1, has 7 chromosomes of respective lengths 30, 40, 50, 70, 50, 40, 30 bins (total

length 310 bins). The second one, called DL2, has 7 chromosomes of lengths 10, 20, 40, 80,

160, 320, 370 bins (total length 1000 bins).

Finally, we used four similarity matrices constructed from real data. The first one was built

by mapping Hi-C reads of Plasmodium knowlesi to a reference genome split in 10kbp bins.

The reference genome is made of 14 chromosomes, and the resulting matrix is of size 2014.

The other matrices were built by mapping Hi-C reads of Spodoptera frugiperda to a genome

assembly obtained with Pacbio long reads. The reference assembly is fragmented, and each of

the three matrices Sf200, Sf669 and Sf846 is the restriction of the Hi-C reads that map to a given

contig. However, these contigs may contain multiple chromosomes, or separated regions that

74

Table 3.1: Seriation results on synthetic Hi-C data from linear single-stranded genome.

Spectral mdso

N = 100
⌧ (%) 99.4 99.7

Time (s) 0.74 0.18

N = 150
⌧ (%) 99.7 100

Time (s) 0.093 0.23

N = 300
⌧ (%) 100 100

Time (s) 0.42 0.70

N = 1000
⌧ (%) 100 100

Time (s) 2.1 1.7

were wrongfully assembled together by the assembler. The respective lengths of the resulting

matrices Sf200, Sf669 and Sf846 are 198, 284, and 461 bins.

We acknowledge Dominique Lavenier from the GenOuest group at INRIA Rennes for pro-

viding the synthetic and Plasmodium knowlesi data, and Fabrice Legeai, from the same group,

for the Spodoptera frugiperda data.

Single-stranded synthetic data

In Table 3.1, we provide the Kendall-Tau (written ⌧) correlation score between the true per-

mutation and the ordering obtained with the spectral baseline method (Algorithm 1.1) and the

method introduced in this chapter (Algorithm 3.3), on the synthetic single-stranded frequency

matrices of sizes 100, 150, 300, 1000. We also indicate the running time (ran on a 2014 Mac-

book Pro). We can see that although our method provides a marginal improvement on these

matrices, the noise is sufficiently low for Algorithm 1.1 to be efficient.

3.6.4 Assembly of genomes with multiple chromosomes with Hi-C data

Let us consider the synthetic, multiple-chromosomes Hi-C data and the real data (which also

contains separated fragments). For genomes with several chromosomes, we wish to find an or-

dering of the bins within any chromosome, rather than a global ordering with all chromosomes

mixed. Yet, the chromosome assignment is not given in the Hi-C data. We can then attempt

to cluster the bins into distinct chromosomes before reordering the elements in a given chromo-

some. If there was zero similarity between any two bins that span distinct chromosomes, then

the input similarity matrix would be disconnected, and it would be trivial to find this cluster

assignment. However, in practice we observe some high values of frequency of interactions

between bins spanning distinct chromosomes, making the clustering step non trivial. In some

cases, for instance here with the synthetic data and the Plasmodium knowlesi data, the user

may know in advance the number of target chromosomes. In some others, for instance here

75

with the Spodoptera frugiperda data, or in a de novo perspective, that number is unknown.

Methods for clustering and ordering

Let us comment on the spectral method for seriation and clustering. From equations (3.1) and

(Relax. 2-SUM), we can see that if the input similarity matrix is disconnected into K connected

components, then the eigenvalue 0 has multiplity K + 1, with associated eigenvectors 1 and

the indicator vectors Ck
of the K connected components Ck, k = 1, . . . ,K. Indeed, consider

a given connected component Ck. By definition, Aij = 0 if i 2 Ck and j /2 Ck. Thus, if

f = Ck
in the objective from equation (3.1), then for each pair (i, j), either i, j 2 Ck and

f(i) = f(j) = 1, thus f(i)�f(j) = 0, or i, j /2 Ck and f(i) = f(j) = 0, thus thus f(i)�f(j) = 0,

or i 2 Ck, j /2 Ck and Aij = 0. Therefore, all the products appearing in (3.1) are equal to zero.

This is at the core of spectral clustering [Von Luxburg, 2007]. Therefore, for a matrix with K

disconnected clusters, the K-LE only contains information regarding the clustering, but not the

intra-cluster ordering, which is relegated to the higher-order eigenvectors. On the other hand,

as we have seen in this chapter, if the similarity matrix is connected, then the eigenvalue 0 has

a unique corresponding eigenvector, 1, and the Fiedler vector (the first non-zero eigenvector)

is associated to the second smallest eigenvalue �1 > 0 and contains information about the

ordering (remark that we have used the notation �1 for the second smallest eigenvector in this

chapter, although the notation �2 > 0 is often used in the literature). When the similarity

is “weakly” connected, �1 gets close to 0, the computation of the K-LE becomes less stable,

and the ordering information contained in the K-LE gets diluted at the profit of clustering

information. Therefore, we also include the t-SNE-embedding version of our method in the

experiments, as t-SNE handles disconnected matrices seamlessly, where the clustering appears

in the 2D embedding without losing the local serial structure, if any.

We consider the following methods to obtain a chromosome assignment and a reordering of

the bins inside each chromosome. We denote the method presented in this chapter by mdso,

standing for multi-dimensional spectral ordering.

Pre-processing. We found empirically that the following pre-processing of the similarity matri-

ces enhanced the cluster structure and improved the results of the methods described below,

Aij
P

h2k-NN(i),l2k-NN(j)Ahl

|k-NN(i)||k-NN(j)|
, (3.13)

where k-NN(i) are the k-nearest neighbors of i (the bins with the top k similarity values with i).

In practice we use k = 15. Appendix Figure B.8 illustrates the effect of this pre-preprocessing.

Spectral Clustering + Spectral Ordering (SC+SO). We first cluster the data from the similarity

matrix (using no assumption regarding the Robinsonian structure) with spectral clustering, and

then use Algorithm 1.1 in each cluster.

Spectral Clustering + mdso (SC+mdso). We first cluster the data from the similarity matrix

76

(using no assumption regarding the Robinsonian structure) with spectral clustering, and then

use Algorithm 3.3 in each cluster.

mdso. We only run Algorithm 3.3 on the input similarity, hoping that the d-LE will capture

both clustering and intra-cluster ordering information, leading to a new similarity matrix S

computed in Algorithm 3.3 that has connected components corresponding to the chromosomes.

tSNE-mdso. Same as the previous method, except that we use t-SNE to compute the embedding

instead of the Laplacian embedding, with d = 2. The behaviour of t-SNE does not change

whether the input similarity is connected or disconnected. If it is disconnected, it will simply

find an embedding with separate clusters, but keep the intra-cluster structure.

Remark that the two first methods (SC+SO and SC+mdso) require the user to provide the

number of desired clusters as input. Therefore, we only use them for the synthetic data and

the Plasmodium knowlesi, for which we know the number of chromosomes.

Evaluation of clustering and sub-orderings

We evaluate the quality of the clustering with respect to the ground truth chromosome assign-

ments with two scores. Given two partitions into K clusters, (Ω1, . . . ,ΩK) and (C1, . . . , CK),

such that [Kk=1Ωk = [Kk=1Ck = {1, . . . , N}, and \Kk=1Ωk = \Kk=1Ck = ;, the purity index

defined by,

purity(Ω, C) =
1

N

KX

k=1

max
j=1,...,K

|Ωk \ Cj | (3.14)

where | · | is the cardinal of a set. It takes value between 0 and 1, and is equal to 1 if and

only if both partitions are equal (the higher, the better). This metric can only be used when

we compare two partitions with the same number of clusters. When using spectral clustering,

the user specifies the number of clusters, hence we can always find a clustering with as many

clusters as the ground truth. Still, when using mdso or tSNE-mdso, we do not control the

number of clusters found by the method. Therefore, we also use the following metric measuring

the distance between two partitions (Ω1, . . . ,ΩK) and
�
C1, . . . , C

0
K

�
(where K and K 0 may

differ), as in Bach and Harchaoui [2008],

d2(Ω, C) =
K +K 0

2
�

KX

k=1

K0

X

k0=1

|Ωk \ Ck0 |
2

|Ωk||Ck0 |
(3.15)

It takes value between 0 and K+K0

2 � 1 (and between 0 and K � 1 if the two partitions have

the same number of clusters) (the lower, the better).

Finally, given two raking (in the form of a permutation) ⇡1 and ⇡2, we say that a pair i < j is

concordant if the two rankings agree, namely, ⇡1(i) > ⇡1(j) and ⇡2(i) > ⇡2(j), or ⇡1(i) < ⇡1(j)

and ⇡2(i) < ⇡2(j). We say that they are discordant otherwise, namely, ⇡1(i) > ⇡1(j) and

77

Table 3.2: Seriation results on synthetic Hi-C data from genomes with multiple chromosomes.

SC+SO SC+mdso mdso tSNE-mdso

DL1

Chr. 7 7 7 7

Purity 100 100 100 100

Cluster dist. 0.0 0.0 0.0 0.0

⌧̃ (%) 96.7 83.3 96.7 95.6

Time (s) 0.079 0.24 0.31 3.77

DL2

Chr. 7 7 7 7

Purity 100 100 100 100

Cluster dist. 0.0 0.0 0.0 0.0

⌧̃ (%) 99.5 99.2 99.4 99.5

Time (s) 0.19 0.53 1.45 15.9

⇡2(i) < ⇡2(j), or ⇡1(i) < ⇡1(j) and ⇡2(i) > ⇡2(j). Then, the Kendall-Tau rank correlation is

defined by,

⌧ =
number of concordant pairs� number of discordant pairs

n(n� 1)/2
. (3.16)

If we have clustered data, it makes no sense to compare global orderings including the concor-

dance of pairs (i, j) where i and j are in two separate clusters. We therefore use the following

definition of the weighted Kendall-Tau metric between two sets of local orderings in K clusters,

⌧̃ =

P

k ⌧knk(nk � 1)/2
P

k nk(nk � 1)/2
(3.17)

where ⌧k is the Kendall-Tau score between the two local orderings in the k-th cluster, and nk

is the number of points within the k-th cluster.

Results on data with reference clustering

In Table 3.2 we compare these methods on the two synthetic datasets DL1 and DL2. We

observe that on this data, the inter-chromosomes frequency is sufficiently low for all methods

to recover the correct clustering. Notably, the spectral and t-SNE based embeddings used in

the two versions of mdso contain both clustering and ordering information (multiple, separated

filamentary structures). We illustrate this in Figure 3.8. The two first dimensions of the spectral

embedding (Figure 3.8b) contain mostly clustering information, although zooming in allow to

see that the points roughly follow a filament in each cluster. The higher order eigenvectors

of the Laplacian (Figure 3.8c) contain partial ordering information. Note that Algorithm 3.3

leverages all these eigenvectors simultaneously in the line fitting procedure. We also display

78

(a) t-SNE (b) spectral, d = 1, 2 (c) spectral, d = 11, 12

Figure 3.8: t-SNE 2D embedding (3.8a), and two projections of the spectral embedding (3.8b,
3.8c) for the synthetic multiple chromosomes frequency matrix DL1. The colormap goes from
dark blue to yellow with the absolute position of the bins, where the first bin is the first bin
in the first chromosome, and the last bin is the last bin from the last chromosome (with an
arbitrary ordering between chromosomes for illustrative purposes).

the sub-orderings found in the chromosomes for the mdso method in Figure 3.9.

(a) DL1 (b) DL2

Figure 3.9: sub-orderings found by mdso on synthetic, multiple chromosomes Hi-C data.

In Table 3.3, we provide results on the Plasmodium knowlesi data. Interestingly, for the

tSNE-mdso method, the weighted Kendall-Tau (⌧̃) metric varies significantly depending on the

random initialization of t-SNE, with values ranging from about 60% to 92%. After investigation,

it appears that the low values of ⌧̃ are due to the fact that when the method finds a cluster

which contains several non contiguous sets of bins (say, two distant chromosomes), even if

the ordering within the two chromsomes is approximately correct, the way the sub-orderings

are arranged together can make ⌧̃ vary. We illustrate these variations in Figure 3.10 and

Appendix Figure B.9, where we show the tSNE embedding and the resulting sub-orderings in

two instances of the experiment, one leading to ⌧̃ = 91.8, and one to ⌧̃ = 61.6, where the low

⌧̃ score is evidently due to the blue component spanning several chromosomes. In Table 3.3,

we provide the results for tSNE-mdso in the following form : mean ± standard deviation,

computed through 30 experiments with different random initialization of tSNE.

79

Table 3.3: Seriation results on real Hi-C data from the Plasmodium knowlesi genome

SC+SO SC+mdso mdso tSNE-mdso

Chr. 14 14 8 16.7 ± 0.5

Purity 76.3 76.3 - -

Cluster dist. 3.81 3.81 6.61 2.83 ± 0.23

⌧̃ (%) 77.3 69.6 18.9 85.0 ± 11.7

Time (s) 0.30 1.45 7.76 43.9 ± 2.8

(a) tSNE embedding (b) sub-orderings

Figure 3.10: t-SNE embedding (3.10a), and resulting sub-orderings found with mdso (3.10b)
on the Plasmodium knowlesi Hi-C data, in an experiment leading to a weighted Kendall-Tau
score of 91.8%. The line ticks in (3.10b) delimitate the chromosomes.

Results on real data with no reference clustering

Here, we present results on the Hi-C data from Spodoptera frugiperda where the reference

genome used was a fragmented assembly from Pacbio reads, with some mis-assemblies. The

similarity matrices used here may contain fragments to separate (like chromosomes), but we

ignore their locations and their number. Hence, we cannot provide the number of cluster to

spectral clustering, and we cannot assess the quality of the clustering found by mdso and tSNE-

mdso. Therefore, in Table 3.4, we only give the number of clusters and the weighted kendall-tau

scores for mdso and t-SNE mdso, and we test the Spectral method without prior clustering.

The results for tSNE-mdso are also averaged over 30 experiments, as with the Plasmodium

knowlesi data. In Appendix Figure B.10, we show the pre-processed similarity matrices (with

a logarithmic colormap for ease of reading), and the resulting orderings obtained with mdso.

3.6.5 Finding circular orderings with single-cell Hi-C data

Single-cell Hi-C data allows to capture part of the 3D architecture of DNA in the nucleus

of individual cells. The similarity matrices used here are not Hi-C frequency matrices as in

80

Table 3.4: Seriation results on real Hi-C data from a Spodoptera frugiperda genome.

Spectral mdso tSNE-mdso

Sf200
Chr. 1 2 4.87 ± 0.7

⌧̃ (%) 92.7 91.6 86.4 ± 3.0

Time (s) 0.033 0.14 3.06 ± 0.12

Sf669
Chr. 1 4 5.9 ± 0.5

⌧̃ (%) 75.7 88.2 87.8 ± 2.3

Time (s) 0.049 0.19 4.64 ± 0.07

Sf846
Chr. 1 6 12.2 ± 0.45

⌧̃ (%) 95.8 86.7 86.8 ± 0.6

Time (s) 0.063 0.22 8.03 ± 0.66

the previous subsection. Rather, given a set of n individual cells, Hi-C frequency interaction

profiles were derived for each cell (such as the frequency matrices appearing above), and a

pairwise similarity between cells was computed, based on the similarity between their frequency

interaction profiles.

Liu et al. [2017] used it in order to cluster each cells according to four possible cell-cycle

phases (G1, E-S, M-S or L-S/G2). Specifically, they applied classical MDS to HiCRep [Yang

et al., 2017b] data, approximately embedding it onto a circle. They introduced a circular-

ROC (CROC) measure to assess the ability of the embedding to distinguish between the four

phases. This circle-like embedding reflects a latent ordering on the data, each capturing a

cell architecture at a given stage of the cell life. Although we are ultimately interested in a

clustering task, it can benefit from an embedding enhancing the latent ordering of the data, as

Algorithm 3.3 produces.

Table 3.5: Comparison of CROC scores between MDS embedding, basic spectral embedding
(Spec) and the pre-processing of our Multi-dimensional Spectral ordering method (Mdso) de-
pending on the neighborhood parameter k. The score are only slighty better.

CROC G1 E-S M-S L-S/G2 avg

MDS 0.938 0.966 0.917 0.917 0.936
Spec 0.932 0.951 0.922 0.886 0.923
Mdso5 0.943 0.964 0.927 0.914 0.937

Mdso10 0.943 0.967 0.921 0.905 0.934

Table 3.5 shows a comparison of the CROC score according to the embedding use. MDS

and Spec performs similarly. Both embeddings (MDSO) resulting from Algorithm 3.3 lead to

a better score with respect to the the baseline spectral Algorithm 3.2. Nevertheless there is no

outstanding benefit in using the processing of Algorithm 3.3 instead of a simple MDS on that

particular type of data. Figure 3.11 illustrates the MDS and spectral-Laplacian embeddings

81

(a) Linear KMS (b) Circular KMS (c) Circular KMS

Figure 3.11: Various embedding methods of HicRep data. Figure 3.11a is the first two dimension
of Multi-dimensional Embedding while Figures 3.11b and 3.11c are the first two dimensions of
the embedding resulting from Algorithm 3.3 for k = 10 and k = 20 respectively.

used in these methods.

3.7 Conclusion

In this chapter, we bring together results that shed light on the filamentary structure of the

Laplacian embedding of serial data. It allows for tackling Linear Seriation and Circular Seri-

ation in a unifying framework. Notably, we provide theoretical guarantees for Circular Seriation

analog to those existing for Linear Seriation. These do not make assumptions about the under-

lying generation of the data matrix, and can be verified a posteriori by the practitioner. Then,

we propose a simple method to leverage the filamentary structure of the embedding. It can be

seen as a pre-processing of the similarity matrix. Although the complexity is comparable to

the baseline methods, experiments on synthetic and real data indicate that this pre-processing

substantially improves robustness to noise.

From a genome assembly application standpoint, generalizing the spectral Algorithm 3.1 to

Circular Seriation provides a sounder model for laying out circular bacterial genomes. However,

in practice, the repeat-induced overlaps also thwart Algorithm 3.2. Still, letting additional

degrees of freedom in the d-LE enables the serial structure of the data to stand out although

the repeats constrain some elements to remain close to each other in the embedding. The

algorithm we propose leads to single-contig layouts for bacterial genomes.

82

Chapter 4

Robust Seriation

The work presented so far in this manuscript relies mainly on the spectral relaxation of the

2-SUM problem, introduced in Chapter 1. In Chapter 2, we use the existing method as is in the

context of de novo genome assembly. In Chapter 3, we propose an enhancement of the spectral

method, leading to a more efficient approach to overcome the presence of repeat-induced noise

in the similarity matrices. Here, we explore another strategy, following the convex relaxations

approaches to permutation problems proposed by, e.g., Vogelstein et al. [2011], Fogel et al.

[2013], Lim and Wright [2014, 2016], Evangelopoulos et al. [2017a]. We aim to model the

similarity matrices arising in de novo assembly, and design algorithmic schemes that are robust

to the specific, repeat-induced noise.

The content of this chapter is based on the following publication,

Antoine Recanati, Nicolas Servant, Jean-Philippe Vert, and Alexandre d’Aspremont. Robust

seriation and applications to cancer genomics. arXiv preprint arXiv:1806.00664, 2018b

Supplementary material for this chapter is given in Appendix Chapter C.

83

Chapter Abstract

The seriation problem seeks to reorder a set of elements given pairwise similarity

information, so that elements with higher similarity are closer in the resulting se-

quence. When a global ordering consistent with the similarity information exists, an

exact spectral solution recovers it in the noiseless case and seriation is equivalent to

the combinatorial 2-SUM problem over permutations, for which several relaxations

have been derived. However, in applications such as DNA assembly, similarity val-

ues are often heavily corrupted, and the solution of 2-SUM may no longer yield an

approximate serial structure on the elements. We introduce the robust seriation

problem and show that it is equivalent to a modified 2-SUM problem for a class of

similarity matrices modeling those observed in DNA assembly. We explore several

relaxations of this modified 2-SUM problem and compare them empirically on both

synthetic matrices and real DNA data.

84

Contents

4.1 Introduction . 86

4.2 Robust Seriation . 88

4.2.1 Application of Seriation to Genome Assembly 89

4.2.2 Robust 2-SUM . 90

4.3 Robust Seriation Algorithms . 94

4.3.1 QAP solvers (FAQ and PHCD) . 94

4.3.2 Symmetry issue in the Permutahedron PH 95

4.3.3 Frank-Wolfe with tie-breaking constraint (FWTB) 97

4.3.4 Graduated Non-Convexity : Frank-Wolfe Algorithm with Concave

Penalty (GnCR and HGnCR) . 98

4.3.5 Unconstrained Optimization in Hn with Iterative Bias (UBI) 99

4.3.6 Spectral relaxation for HuberSUM(�) 101

4.3.7 First Order Optimization on Manifold 103

4.4 Numerical Results . 103

4.4.1 Synthetic data . 103

4.4.2 Frank-Wolfe with Tie-Break (FWTB) is biased 104

4.4.3 E. coli genome reconstruction . 106

4.4.4 Genome assembly using Hi-C data . 107

4.5 Conclusion . 108

85

4.1 Introduction

In the seriation problem, we are given a similarity matrix between a set of n elements, which we

assume to have a serial structure, i.e., which can be ordered along a chain where the similarity

between elements decreases with their distance within this chain. Among the applications of

seriation, ranging from fields such as archeology [Robinson, 1951], to bioinformatics [Atkins

and Middendorf, 1996, Cheema et al., 2010, Jones et al., 2012], the one of interest throughout

this manuscript is genome assembly. We have introduced the Robinson structural hypothesis

on similarity matrices underpinning Seriation in Chapters 1 and 3, in Definition 1.1.1. Here,

we consider a stronger assumption, introduced below.

Definition 4.1.1. We say that A 2 Sn is a strong-R-matrix (or strong Robinson matrix) iff it is

symmetric and satisfies Aij  Akl for all (i, j, k, l) such that |i� j| > |k � l|.

Here, Sn denotes the set of real symmetric matrices of dimension n. Definition 4.1.1 is more

restrictive than the usual R-matrix property from Definition 1.1.1 (repeated in Definition 3.1.1),

and used in Atkins et al. [1998], Fogel et al. [2013], which only requires the entries of the matrix

to decrease when moving away from the diagonal on a given row or column. For strong-R

matrices, we impose that the entries on a given diagonal are no greater than any entry located

on the previous diagonals (see Figure 4.1).

(a) R-matrix (b) strong R-matrix (c) permuted strong-R

Figure 4.1: A R-matrix (4.1a) and its projection on the set of strong-R matrices (4.1b). A
pre-strong-R matrix (4.1c) is a strong-R matrix up to a permutation of the rows and columns.
If a matrix is pre-strong-R (4.1c), Seriation aims to find the permutation that makes it strong-R
(4.1b).

In what follows, we write R⇤
n the set of strong-R-matrices of size n, and Pn the set of

permutations of n elements. A permutation can be represented by a vector ⇡ (lower case)

or a matrix Π 2 {0, 1}n⇥n (upper case) defined by Πij = 1 iff ⇡(i) = j, and ⇡ = Πg where

g = (1, . . . , n)T . We refer to both representations by Pn and may omit the subscript n whenever

the dimension is clear from the context. We say that A 2 Sn is pre-R⇤ if there exists a

permutation Π 2 P such that the matrix ΠAΠT (whose entry (i, j) is A⇡(i),⇡(j)) is a strong-R-

86

matrix, and the seriation problem seeks to recover this permutation Π, i.e., solve

find Π 2 P

such that ΠAΠT 2 R⇤ (Seriation)

in the variable Π 2 P . This is illustrated in Figure 4.1. Given A 2 Sn, 2-SUM is an combina-

torial problem over permutations, written

minimize
Pn

i,j=1Aij |⇡i � ⇡j |
2

such that ⇡ 2 Pn

(2-SUM)

Remark that the search space Pn is discrete and of cardinality n!, thus preventing the use of

exhaustive search or greedy branch and bound methods for Seriation or 2-SUM when n gets

large [Hahsler et al., 2008]. Yet, for pre-R⇤ matrices, Seriation is equivalent to 2-SUM [Fogel

et al., 2013], which can be solved exactly in polynomial time, using the spectral relaxation from

Atkins et al. [1998], presented in Chapter 1 (Algorithm 1.1), and exploited in Chapter 2 in the

context of genome assembly.

Problem 2-SUM is also a particular case of the Quadratic Assignment Problem [Koopmans

and Beckmann, 1957], written

min
⇡2Pn

nX

i,j=1

Ai,jB⇡(i),⇡(j) (QAP(A,B))

with Bij = |i� j|2. Laurent and Seminaroti [2015] showed that for pre-R⇤ matrices, Seriation

is equivalent to QAP(A,B) when �B 2 R⇤
n, i.e. when B has increasing values when moving

away from the diagonal, and has constant values across a given diagonal (i.e. B is a Toeplitz

matrix). This includes p-SUM problems, for p > 0, corresponding to Bij = |i � j|p. The

case p = 1 is also known as the minimum linear arrangement problem (MLA) [George and

Pothen, 1997]. For pre-R⇤ matrices, these problems are all equivalent and can be solved by the

spectral algorithm of Atkins et al. [1998], described in Algorithm 1.1. However, when A is not

pre-R⇤, the Seriation problem has multiple local solutions, and the spectral algorithm does not

necessarily find a global optimum for 2-SUM, p-SUM or QAP(A,B) with B a Toeplitz, negated

R matrix. In fact, these problems are NP-hard in general [Sahni and Gonzalez, 1976].

More recently, several relaxations have been proposed to tackle 2-SUM and QAP(A,B), al-

though there are no approximation bounds in the general case [Lyzinski et al., 2016]. Vogelstein

et al. [2011] used the Frank-Wolfe algorithm to minimize the objective of QAP(A,B) over the

convex hull of the permutation matrices, namely the Birkhoff polytope B. Fogel et al. [2013]

presented a convex relaxation of 2-SUM in B, and used a quadratic programming approach

where the variable’s membership to B is enforced through linear constraints (instead of the

implicit projection of the Frank-Wolfe algorithm). Lim and Wright [2014] proposed a similar

87

relaxation in the convex hull of the set of permutation vectors, the Permutahedron PHn, rep-

resented with Θ(n log n) variables and constraints, instead of Θ(n2) for permutation matrices,

thanks to an extended formulation by Goemans [2014]. All these relaxations for 2-SUM suffer

from a symmetry problem, because flipping permutations leaves the objective unchanged, and

the minimum of 2-SUM is achieved for a vector proportional to 1 = (1, . . . , 1)T , which lies in

the center of the convex hull of permutation vectors. To overcome this issue, constraints can be

added to the problem, corresponding to either a priori kwowledge, or to pure “tie-breaking”, e.g.,

⇡1 + 1  ⇡n, ensuring that the center is excluded from the constraint set, thus breaking sym-

metry without loss of generality. Lim and Wright [2014] stated that a Frank-Wolfe algorithm

could also be used for 2-SUM in PH if no other constraint but the tie-breaking was enforced,

thanks to a specific linear minimization oracle, thus implicitly enforcing membership to PH

without imposing the constraints from Goemans [2014]. Lim and Wright [2016] generalized the

use of the representation of Goemans [2014] for PH to tackle QAP(A,B), with a coordinate

descent algorithm and a continuation scheme to move away from the center of the convex hull

of permutations. Evangelopoulos et al. [2017a] proposed a Frank-Wolfe algorithm in PH with a

continuation scheme (instead of a tie-breaking constraint) to tackle 2-SUM and avoid the cen-

ter. They also discussed problems of the form (QAP(A,B)) where Bij = Pseudo-Huber(|i� j|)

[Evangelopoulos et al., 2017b], which helps in solving robust seriation as we will see below.

In Section 4.2, we introduce the robust seriation problem, motivated by applications to

genome assembly. We show that for DNA data obeying a simple model which takes repeats

into account, robust seriation is equivalent to Robust 2-SUM, which is a QAP problem similar

to 2-SUM, where the squared distance to the diagonal that appears in the loss function is

truncated. This truncated quadratic can be relaxed as a Huber loss. We present experiments

to compare existing and new algorithmic approaches to solve this problem on two datasets:

synthetic data following our simple model, and real data from an E. coli genome sequenced

with third generation sequencing tools.

4.2 Robust Seriation

Classical Seriation is written as a feasibility problem: find the permutation that reorders the

input matrix into an Robinson matrix. When A is pre-R⇤, solving 2-SUM yields this permu-

tation. However, when A is not pre-R⇤, the matrix A reordered using the permutation that

minimizes 2-SUM may be far from being R. Robust seriation seeks to find the closest pre-R⇤

matrix to A and reorder it, solving instead

minimize kS �ΠAΠT k
such that Π 2 P, S 2 R⇤.

(Robust Seriation)

88

where the variable Π 2 P is a permutation matrix, the variable S 2 R⇤ is a strong-R-matrix,

and the norm is typically either the l1 norm on components or the Froebenius norm.

4.2.1 Application of Seriation to Genome Assembly

De novo genome assembly has been presented in the Introduction, Section 1.3.1, and repeatedly

throughout the chapters of this manuscript. As a reminder, it aims to reconstruct a DNA strand

from fragments (reads) randomly sampled throughout the genome (and whose position on the

genome is unknown). A common method is to compute the overlaps between all pairs of read,

providing a similarity matrix A, whose entry (i, j) measures how much reads i and j overlap

(and is zero if they do not). Then, we can determine the layout from the overlap information,

that is to say find an ordering and positioning of the reads that is consistent with the overlap

constraints.

In the true ordering (corresponding to the sorted reads’ positions along the genome), a

given read overlaps much with the next one, slightly less with the one after it, and so on,

until a point where it has no overlap with the reads that are further away. This makes the

read similarity matrix Robinson and roughly band-diagonal (with non-zero values confined to

a diagonal band). Finding the layout of the reads therefore fits the Seriation framework. In

practice, however, there are repeated sequences (repeats) along the genome that induce false

positives in the overlap detection tool [Pop, 2004], resulting in non-zero similarity values outside

(and possibly far away) from the diagonal band. The similarity matrix ordered with the ground

truth is then the sum of a Robinson band matrix and a sparse “noise” matrix, as displayed in

Figure 4.2a, which is a subset of the matrix shown in Figure 1.7a.

Repeats longer than the overlap length are perhaps the most fundamental issue in genome

assembly as they lead to ambiguous reconstructions. For instance, recall the sequence RARBR,

where A,B and R are sub-sequences, and R is repeated three times, illustrated in Figure 1.6

from Chapter 1. The overlap constraints arising from this sequence are identical to those of

RBRAR, therefore the overlap constraints are not sufficient to uniquely determine the layout.

Recently, long-reads sequencers such as PacBio’s SMRT and Oxford Nanopore Technology

(ONT) spurred a renaissance in assembly by enabling sequencing reads over 10kbp (kilo base-

pairs) long, resolving many small repeats [Koren and Phillippy, 2015]. However, their error rate

is high (⇠ 10%). Thus, many assemblers include a correction module in a preprocessing step,

which can help in separating repeats when the repeated copies slightly differ [Pop, 2004]. They

also use statistical models on the data generation in order to filter out the overlaps that are

likely to be repeat-induced, and retrospectively inspect the overlap graph for potential errors

in a greedy fashion, until the graph is “cleaned” and contains as few ambiguities for reconstruc-

tion as the model allows for [Koren et al., 2017, Li, 2016]. When there are ambiguities, the

ambiguous reads are removed and the resulting assembly is fragmented.

In contrast, the approach presented in Chapter 2 is simpler and more principled. Yet, the

89

presence of repeats often corrupts the ordering, as we illustrate in Figure 4.2, and previously in

Figure 1.7b. To overcome this issue, the threshold-based method also ends up removing overlaps

from the graph. Although it does not explicitly winnow out the repeats with a dedicated

module, it eventually yields fragmented assemblies.

Here, we seek to apply Robust Seriation to genome assembly, dealing with the repeats in

a principled manner. To this end, let us introduce stylized matrices modeling overlap-based

similarity matrices arising in genome assembly. We write Mn(�, s) the set of matrices in

{0, 1}n⇥n that are the sum of a band matrix of bandwidth � and a sparse out-of-band matrix

with s non-zero elements,

Definition 4.2.1. A 2 {0, 1}n⇥n belongs to Mn(�, s) iff it is symmetric and satisfies Aij = 1 for

all (i, j) such that |i� j|  �, and nnz(A) =
�
n+ (2n� 1)� � �2

�
+ s.

Here nnz(A) is the number of non-zero elements of A, and the first term in the sum is the

total number of elements in the bands. This means in particular s  n2�
�
n+ (2n� 1)� � �2

�

(the total number of non-zeros cannot exceed n2). In this setting, we wish to find an ordering

in which most pairs of similar elements are nearby. The 2-SUM objective can perform poorly

here, since it strongly penalizes orderings with non-zero values far away from the diagonal, even

when there is a small number of them, as we can see in Figure 4.2. Reducing this penalty on

outliers is the goal of the robust seriation methods detailed below.

(a) Ground truth (b) 2SUM

Figure 4.2: Similarity matrix from a subset of Oxford Nanopore reads of E. coli in the ordering
given by the ground truth position of the reads along the genome (4.2a, left), and the same
matrix reordered by minimizing the 2SUM objective (4.2b, right), which pushes the out-of-
diagonals terms close to the main diagonal and yields a corrupted ordering.

4.2.2 Robust 2-SUM

Given A 2 Sn, Robust Seriation seeks to find a pre-R⇤ matrix that is as close to A as possible.

Instead of searching directly for a perturbation of A that is pre-R⇤, we search for a perturbation

90

of A that yields a low 2-SUM score, solving

minimize
Pn

i,j=1 Sij |⇡i � ⇡j |
2 + �kA� Sk1

such that ⇡ 2 P, S 2 S+.
(R2S(�))

where S+ is the set of symmetric matrices with non-negative entries, and we use the l1 norm

on the difference between A and S to enforce sparsity in errors. Here, � is a parameter that

controls the deviation of S from A. The sum is separable and the minimization in S is closed

form. Indeed, for a given (i, j), the function Sij ! Sij∆
2
ij+�|Sij�Aij | is piecewise linear, with

slope ∆2
ij � � for Sij < Aij , and ∆2

ij + � for Sij > Aij , and is therefore minimal at Sij = Aij

if ∆2
ij  � and Sij = 0 otherwise (recall that Sij is constrained to be non-negative). Hence,

R2S(�) is equivalent to

minimize
Pn

i,j=1Aij min(�, |⇡i � ⇡j |
2)

such that ⇡ 2 P.
(R2SUM(�))

in the variable ⇡ 2 P . We now show that for stylized genome assembly similarity matrices,

if the number of reads spanning repeated regions is controlled, then solving R2SUM(�) also

solves Robust Seriation.

Proposition 4.2.2. For s  slim , (n � � � 1) and A 2 Sn, if A can be permuted to belong to

Mn(�, s), i.e., if there is Π 2 Pn : ΠAΠT 2Mn(�, s), then Π solves both Robust Seriation and

R2SUM(�) with parameter � = �2, and the `1 norm in Robust Seriation.

Proof. Let �, s be two positive integers such that �  n, s  (n � � � 1). Without loss

of generality, assume that A 2 M(�, s), i.e., Π = I, the identity permutation (otherwise, we

simply factor out the true permutation). First, let us observe that for � = �2, I is optimal for

R2SUM(�). Indeed, since A 2 {0, 1}n⇥n, the objective in R2SUM(�) is the sum of min(�2, |⇡i�
⇡j |

2) over all indexes (i, j) such that Aij = 1. This sum can be split into two terms,

fin =
X

(i,j):Aij=1 , |⇡i�⇡j |�

|⇡i � ⇡j |
2,

fout =
X

(i,j):Aij=1 , |⇡i�⇡j |>�

�2.

For Π = I, the number of terms in fin is maximized since Aij = 1 for all (i, j) such that

|i� j|  � (A 2M(�, s)). The sum of the number of terms in fin and fout is equal to nnz(A)

and is invariant by permutation (therefore, the number of terms in fout is also minimized for

Π = I) Since any term in fin is smaller than any term in fout, Π = I is optimal for R2SUM(�)

with � = �2.

Now, let us see that Π = I is also optimal for Robust Seriation. Given Π, optimizing over

S in Robust Seriation yields SΠ = ProjR⇤(ΠAΠT), the projection of ΠAΠT onto the set of

91

strong-R-matrices. Let us assume that we use the `1 norm in (Robust Seriation). Then, SΠ,

the projection in `1 norm of the binary matrix ΠAΠT , is also binary, as we prove further in

Lemma 4.2.3. A sparse, {0, 1} strong-R-matrix is necessarily of the form

8

>><

>>:

Sij = 1 if |i� j|  k,

Sij = 0 if |i� j| > k + 1,

Sij 2 {0, 1} for |i� j| = k + 1,

with the integer k + 1 denoting the bandwidth of S. Given SΠ and the corresponding k, the

distance between ΠAΠT and SΠ appearing in Robust Seriation is separable (whether we use

the l1 or Frobenius norm, since A 2 {0, 1}n⇥n) and can be grouped into three terms, according

to whether (i, j) is such that |i � j| > k + 1, |i � j|  k or |i � j| = k + 1. The first term,

nout(k) � 0, equals the number of non-zero elements of ΠAΠT such that |i � j| > k + 1. The

second, nin(k) � 0, equals the number of zero elements of ΠAΠT such that |i � j|  k. The

third equals zero, because setting the (k+1)-th diagonal of S identical to the (k+1)-th diagonal

of ΠAΠT does not violate the R property of SΠ, and SΠ is by definition the strong-R-matrix

that minimizes the distance to ΠAΠT . For any Π, if k > �, the number of non-zeros elements

inside the band of width k being bounded by the number of non-zero elements of A, we have

nin(k) � 2 (n� � � 1) � s � (n � � � 1) � s. Similarly, for k  �, nout(k) � s. For Π = I,

as long as k  �, nout(k)  s decreases with k and nin(k) = 0. For k = �, nin(k) = 0 and

nout(k)  s (it is equal to s minus the number of elements in the � + 1-th diagonal). Thus,

Π = I is optimal, and k = �.

Note that in practice, one has to chose the parameter � without observing � before trying

to solve R2SUM(�). Yet, for matrices A satisfying the hypothesis of Proposition 4.2.2, the

number of non-zero values of A (which is observed even when A is permuted) provides a way to

estimate �. We compute it as the smallest integer � such that the number of non-zero elements

in a band matrix of size � is larger than nnz(A). Also remark that the proof of Proposition 4.2.2

is conservative: it only involves reasoning about the location of non-zero values of a vectorized

version of ΠAΠT . Permuting rows and columns of a matrix adds constraints on the locations

of these non-zero values that we did not take into account.

Lemma 4.2.3. Given a binary symmetric matrix S 2 {0, 1}n⇥n, it has a binary projection in `1

norm onto the set of strong-R-matrices, that is to say, there exists a solution R 2 {0, 1}n⇥n to

the following problem,

minimize
Pn

i,j=1 |Rij � Sij |

such that R 2 LR.
(R-proj)

Proof. Consider a given diagonal 0  k  n � 1 in the lower triangle. The strong-

R constraints are lower and upper bounds on the values of Rij on the k-th diagonal. Let

92

mk , mini,j : |i�j|=k Rij , and Mk , maxi,j : |i�j|=k Rij . Recall that S has only ones and zeros on

the k-th diagonal. From R-proj, Rij has values in [0, 1]. Clearly, a solution of R-proj satisfies,

Rij =

8

><

>:

M|i�j|, if Sij = 1

m|i�j|, if Sij = 0.

Let 0  pk  n�k denote the number of ones on the k-th diagonal of S, and 0  zk = n�k�pk
the number of zeros on the k-th diagonal of S. Summing over all the diagonals of the matrix,

the objective in R-proj can be written as,

kS �Rk1 = p0 (1�M0) + z0 (m0 � 0) + 2
Pn�1

k=1 pk (1�Mk) + zk (mk � 0) (4.1)

where we have separated the main diagonal from the others that are coupled with their sym-

metric. Now, we have that 0  mk  Mk  1 for all 0  k  n� 1. The strong-R constraints

also require that Mk  mk�1 for 1  k  n � 1. The minimizer of R-proj saturates these

constraints (Mk = mk�1), and equation (4.1) can finally be written as,

kS �Rk1 = p0 (1�M0) + z0m0 + 2
Pn�1

k=1 pk (1�mk�1) + zkmk

= p0 (1�M0) + (z0 � 2p1)m0 + 2
Pn�1

k=1 (zk � pk+1)mk +
Pn�1

k=1 pk.

where by convention pn , 0. R-proj seeks to minimize this objective on the variables (M0,m0,m1, . . . ,mn�1),

under the constraints 1 � M0 � m0, mk�1 � mk for 1  k  n � 1, and mk � 0 for

0  k  n � 1. All in all, we can rewrite R-proj as a linear program over the variable

x = (M0,m0,m1, . . . ,mn�1) 2 R
n+1,

minimize cTx

such that Ax  b , x � 0.

where

A =

0

B
B
B
B
B
B
B
B
@

�1
1 �1

1 �1
.

1 �1

1

C
C
C
C
C
C
C
C
A

, b =

0

B
B
B
B
B
@

�1
0
...

0

1

C
C
C
C
C
A

, c =

0

B
B
B
B
B
B
B
B
@

�p0
(z0 � 2p1)

2(z1 � p2)
...

2(zn�1 � pn)

1

C
C
C
C
C
C
C
C
A

.

Now, observe that b 2 R
n+1 has integer entries, and that A 2 R

(n+1)⇥(n+1) is totally unimodu-

lar. It follows that it has an integral solution x⇤ [Papadimitriou and Steiglitz, 1998][Th. 13.3].

From the previous considerations, the corresponding matrix R 2 LR has entries in {0, 1}.

93

4.3 Robust Seriation Algorithms

We compare several methods to address the R2SUM(�) problem. First, observe that the

objective of R2SUM(�) is not convex. In order to use convex optimization algorithms, it can

be relaxed to its convex envelope, resulting in the following problem,

minimize
Pn

i,j=1Aijh�(|⇡i � ⇡j |)

such that ⇡ 2 P.
(HuberSUM(�))

where h�(x) is the Huber function, which equals x2 when |x|  �, and �(2|x|� �) otherwise. In

Figure 4.3 are shown plots of the square (`2), absolute value (`1), Huber, and truncated square

loss functions appearing in (2-SUM), (1-SUM), (HuberSUM(�)), and (R2SUM(�)).

Figure 4.3: Plot of the square (`2), absolute value (`1), Huber, and truncated square losses,
appearing respectively in the (2-SUM), (1-SUM), (HuberSUM(�)), and (R2SUM(�)) problems.

4.3.1 QAP solvers (FAQ and PHCD)

The first strategy is to directly minimize the objective of R2SUM(�) using QAP solvers. Indeed,

the problem matches QAP(A,B) with Bij = min(�, |i � j|2). We test the aforementioned

Vogelstein et al. [2011] and Lim and Wright [2016] methods for solving the QAP.

The first, which we refer to as FAQ [Vogelstein et al., 2011], uses the matrix representation

of permutations with a relaxation in the convex hull of permutation matrices, B, where the

QAP(A,B) objective is optimized with the conditional gradient (a.k.a. Frank-Wolfe) algorithm,

described in the Introduction Chapter, Algorithm 1.2, and repeated here in 4.1. Each step of

Frank-Wolfe in B (4.2) involves an assignment problem solved with a Hungarian algorithm

[Kuhn, 1955].

94

Algorithm 4.1 Conditional gradient algorithm for permutation problem minx2hull(P) f(x).
(hull(P) can be either B or PH).

Inputs: Initial point x0 2 hull(P), target precision "

for t = 0, . . . do

Solve linear minimization oracle

st = argmin
s2P

hrf(xt), si (4.2)

Get estimated gap
∆t = hxt � st,rf(xt)i (4.3)

if ∆t  " then Stop end if

Set

xt+1 = xt +
2

t+ 2
(st � xt)

end for

Output: x̂ = xt

The latter, denoted PHCD [Lim and Wright, 2016] in the following, uses the sorting-network

based representation of permutation vectors of Goemans [2014] and performs coordinate descent

in the convex hull of permutation vectors PH.

For completeness, we also used these QAP solvers in the experiments to solve 2-SUM (i.e.

QAP(A,B) with Bij = |i� j|2), and HuberSUM(�) (Bij = h�(|i� j|)).

4.3.2 Symmetry issue in the Permutahedron PH

A typical convex relaxation work-flow involves relaxing both the objective function to its convex

envelope, and relaxing the constrained set to its convex hull, in order to use of the arsenal of

convex optimization, including scalable first order methods. Here, we seek to optimize the

objective functions of 2-SUM and HuberSUM(�), f2SUM and fHuber, on the convex hull of the

set of permutation vectors Pn, the polyhedron PHn.

Unfortunately, the solution of a relaxation x̃ 2 PHn does not necessarily (and most of the

time, not) lie in Pn. To retrieve a solution in Pn, one must project the relaxed solution x̃ onto

the set of permutations Pn, which may be challenging. Here, the flat vector cn , n+1
2 1n 2

PHn minimizes f2SUM and fHuber in PHn. Indeed, all its entries being equal, f2SUM(cn) =

fHuber(cn) = 0, which is optimal since these sums involve only non-negative terms. Yet,

this optimum is non-informative. Any permutation ⇡ 2 Pn has the same distance to cn,

d =
Pn

i=1(
n+1
2 � i)2, thus projecting back cn to Pn is completely degenerate.

This is illustrated in Figure 4.4, where PH3 is a salmon-colored hexagone centered around c3

(red circled dot), and whose vertices are the permutations. PH3 is represented on a planar figure

95

since PHn lies in a hyperplane of dimension n� 1, Hn = {x 2 R
n|xT1 = n(n+1)

2 }. Indeed, all

permutation vectors have the same set of elements, hence the same sum, and also the same norm,

as one can see from the black dashed circle of fixed norm in Figure 4.4 on which all permutations

lie. The symmetry of center cn, formally defined by Tn(x)�cn = �(x�cn), is visible from the

level lines of f2SUM (blue ellipses). The objectives from 2-SUMand HuberSUM(�) are invariant

under the “flipping” operator Tn. For instance, the permutation ⇡ = (1, 3, 2)T and its symmetric

T3(⇡) = (n + 1)1 � ⇡ = (3, 1, 2) are on the same level line. This is the fundamental reason

why the minimum of 2-SUM and HuberSUM(�) lies in the center, making the basic convex

relaxation in PHn useless.

(3,1,2)

(2,1,3) (1,2,3)

(1,3,2)

(2,3,1)(3,2,1)

Figure 4.4: View of the 3-Permutahedron PH3 (filled polygon) in the 2D plane H3 (orthogonal
to the vector 13 represented by the red pointing arrow (circled dot)). The blue ellipses are the
level curves of f2SUM. The black dashed circle represents the set of points having the same
norm as the permutation vectors, and the black diamond is the minimizer of 2-SUM among
them. The green (resp. orange) line is where the “good” (resp. “bad”) tie-breaking constraint
⇡2+1  ⇡3 (resp. ⇡1+1  ⇡3) is active, and the green (resp. orange) diamond is the minimizer
of f2SUM on the corresponding constrained set, the triangle

�
(2, 1, 3), (1, 2, 3), (1, 3, 2)

�
[resp.

�
(3, 1, 2), (2, 1, 3), (1, 2, 3)

�
]. The closest permutation to the green diamond is (2, 1, 3), which is

the correct solution (minimizer of f2SUM on P3), but the orange diamond is closer to (1, 2, 3)
because of the anisotropy induced by the tie-breaking constraint. Figure adapted from Lim
and Wright [2014].

To overcome this issue, Fogel et al. [2013], Lim and Wright [2014] employ two strategies.

One is to add a penalty in the objective that increases towards to the center c, e.g., add the

concave penalty �µkx � ck2 to the objective. The other one is to add constraints that keep

the center c out of the feasible set, e.g., add the tie-breaking constraint ⇡1 + 1  ⇡n. This

resolves the ambiguity about the direction of the ordering without removing any permutation

from the search space (up to a flip), since, for any permutation ⇡ 2 P , either ⇡ satisfies the

tie-breaking constraint, or its symmetric T (⇡) does. On Figure 4.4, the tie-breaking constraint

is active on the orange line, and the constrained set satisfying it is the top-right triangle of PH3,

96

�
(2, 1, 3), (1, 2, 3), (1, 3, 2)

�
. We consider methods employing both strategies in what follows.

4.3.3 Frank-Wolfe with tie-breaking constraint (FWTB)

The conditional gradient (Frank-Wolfe) Algorithm 4.1 is suited to optimization in PHn since

the linear minimization oracle (LMO) performed at each iteration (4.2) boils down to sorting the

entries of a vector g 2 R
n (hence, it has a computational complexity of O(n log n)). Specifically,

the LMO solves,

minimize
Pn

i=1 ⇡igi

such that ⇡ 2 PHn

(LMO)

where gi is the i-th entry of the gradient of the loss function. This linear form is minimized on

a vertex of PH, i.e. on a permutation ⇡⇤. Let � 2 Pn be a permutation that sorts the entries

of g by decreasing order, such that g�1 � . . . � g�n , then ⇡⇤ is defined by ⇡⇤
�1

= 1, . . . ,⇡⇤
�n

= n.

The method (FWTB) adds a tie-breaking constraint (e.g., ⇡1 + 1  ⇡n) in order to break

the symmetry and exclude the center cn from the feasible set, as suggested by Lim and Wright

[2014]. Yet, while Fogel et al. [2013], Lim and Wright [2014] proposed convex optimization

methods that could incorporate any such linear constraint into the problem seamlessly, if one

wants to use Frank-Wolfe in the restriction of PH where the tie-break is satisfied, the LMO

has to be modified. The new LMO must solve,

minimize
Pn

i=1 ⇡igi

such that

8

<

:

⇡ 2 PHn,

⇡i + 1  ⇡j .

(LMO-tb)

where we let 1  i 6= j  n be the tie-break indexes (in Fogel et al. [2013], Lim and Wright

[2014], i = 1 and j = n). Lim and Wright [2014] propose an algorithm for solving LMO

that preserves the O(n log n) complexity of the LMO. We describe in Algorithm 4.2 a slightly

simplified version of theirs, for any tie-break indexes 1  i 6= j  n. We use the matlab-like

notation x(i) to denote xi for ease of reading.

Proposition 4.3.1. Algorithm 4.2 minimizes gT⇡ over PHn with tie-break ⇡(i) + 1  ⇡(j).

Proof. Without loss of generality, let us assume for simplicity that g is already sorted by

decreasing value. Let ⇡⇤ be the solution of LMO. If ⇡⇤
i + 1  ⇡⇤

j , then ⇡⇤ is also solution of

LMO-tb. Otherwise, the solution of LMO-tb will be a permutation ⇡ where the constraint is

active : ⇡i+1 = ⇡j [Lim and Wright, 2014]. Let k = ⇡i. There are n� 1 possible values for k :

{1, . . . , n�1}. For a given k, the vector ⇡̃k, the restriction of ⇡ to the n�2 indexes other than i

and j is given by Smith’s rule : it is the concatenation of the remaining values ⇡̃k = (1, . . . , k�
1, k + 2, . . . , n) (given that g is sorted). Therefore, the permutation ⇡ optimal for LMO-tb is

97

Algorithm 4.2 Minimizing gT⇡ over PHn with tie-break ⇡(i) + 1  ⇡(j).

1: g0,� sort g in decreasing order (i.e., g(�1) � . . . � g(�n))
2: for k 1 to n� 1 do
3: if g0(k) < g(i)+g(j)

2 then
4: break
5: end if
6: ��1 argsort�
7: Set z̃ = (1, . . . , k � 1, k + 2, . . . , n)T 2 R

n�2

8: ⇡(l) z̃(��1(l)) for l 2 {1, . . . , n}r {i, j}
9: ⇡(i) k

10: ⇡(j) k + 1.
11: end for
Output: A permutation ⇡(T).

determined by k. Let us note g̃ 2 R
n�2 the vector g without the two entries corresponding to

indexes i and j, that is to say, if i < j, g̃ = (g1, . . . , gi�1, gi+1, . . . , gj�1, gj+1, . . . , n). To know

the optimal value of k, let us observe the difference between the objective of LMO-tb for k = K

and k = K + 1, with 1  K  n� 2. For a given k, he objective in LMO-tb can be written as

the sum g̃T ⇡̃k + kgi + (k + 1)gj . Let us write the tilde scalar product part first.

g̃T ⇡̃K = 1g̃1 + 2g̃2 + . . .+ (K � 1)g̃K�1 + (K + 2)g̃K + (K + 3)g̃K+1 + . . .+ ng̃n�2

g̃T ⇡̃K+1 = 1g̃1 + 2g̃2 + . . .+ (K � 1)g̃K�1 + Kg̃K + (K + 3)g̃K+1 + . . .+ ng̃n�2

The difference between the objective values for k = K and k = K + 1 is therefore ∆K =

2g̃K � (gi + gj). Since we assumed g sorted by decreasing order, g̃ also is, and consequently,

∆K decreases with K. The optimal K⇤ is therefore the smallest (first) index k for which

g̃k <
(gi+gj)

2 , and if g̃k � (gi+gj)
2 for all k 2 {1, . . . , n� 2}, then K⇤ = n� 1.

4.3.4 Graduated Non-Convexity : Frank-Wolfe Algorithm with Concave Penalty (GnCR

and HGnCR)

In Fogel et al. [2013], Lim and Wright [2014], the parameter µ controlling the amplitude of the

penalty �µ kx� ck2 is bounded in order to keep the objective convex. Precisely, the objective

function f2SUM = xTLAx is replaced by,

f̃(x) = xTLAx� µkPxk2 = xT (LA � µP)x,

where LA = diag(A1)� A is the Laplacian of A and P = I� 1
n11

T projects on the subspace

orthogonal to 1. To keep the problem convex, µ needs to be smaller than �2, the smallest

non-zero eigenvalue of LA. Still, for small values of �2, this may lead to solutions lying close

to the center c up to numerical precision. Also, for fHuber , the convexity is broken for any

98

positive value of µ.

Evangelopoulos et al. [2017a] proposed a graduated non-convexity scheme called GnCR to

solve 2-SUM, where µ is gradually increased in outer iterations of the problem, starting with

a small value (µ  �2) preserving convexity, and moving towards high values of (µ � �max) ,

making the objective concave. This strategy aims at finding a sequence of solutions to the sub-

problems that follow a path from near cn (when the objective is convex) towards a permutation

(when it is concave). To solve each subproblem, GnCR uses the Frank-Wolfe algorithm in PHn

without tie-breaking constraint. In Evangelopoulos et al. [2017b], the approach is extended to

a pseudo-Huber loss, thus approximately solving HuberSUM(�), with a method called HGnCR.

We include both methods in the experiments.

4.3.5 Unconstrained Optimization in Hn with Iterative Bias (UBI)

We propose a method based on unconstrained optimization. We also add a penalty to fHuber

in order to avoid the center c and aim to minimize,

f̃Huber(x) = fHuber(x)� µh(x),

where h is a penalty function pushing away from c. In practice, we use a sigmoidal penalty,

hw(x) =
⇣

1 + exp
�
�hx� c, w � ci

�⌘�1
.

It breaks the symmetry by adding a bias in a given direction w. However, the penalty h becomes

negligible compared to fHuber(x) when kx�ck gets large, and the minimizer of f̃Huber(x) remains

bounded. Up to a scaling of µ, it will lie in PHn. Hence, we can use unconstrained optimization

to find a minimizer of f̃Huber in PHn without enforcing the membership to PHn explicitly.

Algorithm 4.3 Iterative scheme with biased unconstrained optimization in Hn (UBI).

Input: An objective function f , an initial bias direction ⇡(1) 2 Pn, an increasing bias function
h : R! R, a maximum number of outer iterations T , an optimization algorithm A.

1: for t = 1 to T do
2: Compute

x
(t+1)
⇤ 2 argmin

x2Hn

�
f(x)� h⇡(t)(x)

using algorithm A. (4.4)

3: Set ⇡(t+1) = argsortx
(t+1)
⇤

4: end for
Output: A permutation ⇡(T).

We propose an iterative method where each outer iteration t solves a sub-problem biased

towards the optimum x⇤(t�1) found at the previous iteration, described in Algorithm 4.3. The

99

algorithm A used in practice in (4.4) is the LBFGS method, using the implementation from

Schmidt [2005]. Figure 4.5 illustrates the iterative procedure. The colored crosses indicate the

(3,1,2)

(2,1,3) (1,2,3)

(1,3,2)

(2,3,1)(3,2,1)

Figure 4.5: Illustration of Algorithm 4.3 in the 3-Permutahedron PH3 (filled polygon, same
representation as in Figure 4.4). The colored crosses (from flashy yellow (right) to red (left))

represent the solutions x
(t)
⇤ obtained at the outer loops of the algorithm, and the associated

colored arrows in the center point towards the associated bias that was used at iteration t. In

blue are the level lines of
n

f(x)� h
x
(t)
⇤

(x)
o

with f = f2SUM and t = 5 (red arrow).

minima of the sequence of biased functions. The last one (with the level lines) is biased towards

the optimum. Empirically, we found better results by using We could have used h
x
(t)
⇤

rather

than h⇡(t) in step 4.4 of Algorithm 4.3, but we empirically found better results with the latter

option. Optimization of f in Hn is done through unconstrained optimization in R
n�1 of the

composition of f with an affine transformation described in the following.

We have seen in § 4.3.2 and Figure 4.4 that the set of permutation lie in a hyperplane of

dimension n � 1, Hn = {x 2 R
n|xT1 = n(n+1)

2 } (which simply means that all permutation

vectors have the same sum). Thus, we compute a basis of Hn and use an affine transformation

from R
n�1 to Hn such that 0n�1 corresponds to cn = (n+ 1)/21n 2 Hn. In practice, we used,

U = (u(1), . . . , u(n�1)) 2 R
n⇥n�1, e.g., u(j) = ũ(j)

kũ(j)k , with

8

>><

>>:

ũ
(j)
i = 0 if i < j,

ũ
(j)
j = �j

ũ
(j)
i = 1 if i > j,

The vectors {u(j)}1jn�1 are orthonormal and are all orthogonal to 1n. Any point x 2 Hn

can be written as x = A(y) , Uy + cn with y 2 R
n�1. For any f : Rn ! R, we define

fHn
: Rn�1 ! R by fHn(y) = f(Uy + cn) in order to perform unconstrained optimization

(UBI) on fHn . The intersection of the sphere Σn with Hn, represented by the black dashed

100

circle in Figure 4.4, is the transformation of a sphere Σ̃n�1 by A.

4.3.6 Spectral relaxation for HuberSUM(δ)

Let us recall the spectral method introduced in Chapter 1, here in Algorithm 4.4. Roughly, it

aims to minimize the 2SUM objective defined as,

nX

i,j=1

Aij

�
xi � xj

�2
= xTLAx, (2SUM)

over the set of permutations, by relaxing the integer constraints on permutations, leading to

an eigenvalue problem. The spectral method minimizes f2SUM on a sphere of fixed norm by

Algorithm 4.4 Spectral ordering [Atkins et al., 1998]

Input: Connected similarity matrix A 2 R
n⇥n

1: Compute Laplacian LA = diag(A1)�A
2: Compute second smallest eigenvector of LA, f1
3: Sort the values of f1

Output: Permutation � : f1(�(1))  . . .  f1(�(n))

computing a second extremal eigenvector, thus resolving the center issue. As we have seen in

Section 1.2.2, up to a translation and dilatation of this sphere, it is the sphere with fixed sum

(xT1 = n(n+1)/2) and fixed norm (kxk22 = n(n+1)(2n+1)/6) on which all permutations lie.

For n = 3, it is represented by the black dashed circle in Figure 4.4.

As we noted earlier, the spectral relaxation relies on the quadratic nature of the 2-SUM

objective, and there is no general method for performing convex optimization on a sphere (we

can seamlessly deal with linear equality constraints, but not quadratic constraints such as the

fixed norm constraints). Optimizing HuberSUM(�) over a sphere is therefore challenging. We

propose to extend the spectral Algorithm 1.1 to HuberSUM(�) through the variational form of

the Huber loss (so-called ⌘-trick). The absolute value of a real number x 2 R can be expressed

as the solution of an minimization problem over a real variable ⌘,

2|x| = min
⌘�0

x2

⌘
+ ⌘, (4.5)

and the minimum is realized for ⌘⇤ = |x|. Similarly, for any � � 0, the Huber function defined

by

h�(x) =

8

<

:

x2 if |x|  �,

�(2|x|� �) otherwise
(4.6)

can be expressed, up to an affine transformation, as the minimum of the same function of ⌘,

101

but on [�,+1] instead of [0,+1],

h�(x) ' min
⌘��

x2

⌘
+ ⌘. (4.7)

Specifically, the equation for the Huber function as defined in (4.6) is,

h�(x) = min
⌘��

�

x2

⌘
+ ⌘ � �

!

, (4.8)

and the minimum is realized for ⌘⇤ = max(�, |x|), i.e., ⌘⇤ = |x| when |x| � �, and ⌘⇤ = �

otherwise. Using this variational form, we can write HuberSUM(�) as an optimization problem

over variables ⇡ and ⌘ 2 Sn,

minimize
Pn

i,j=1Aij

⇣
(⇡i�⇡j)

2

⌘ij
+ ⌘ij

⌘

such that
⇡ 2 P,

⌘ij � �, for all i, j.

(⌘-HuberSUM)

The objective in ⌘-HuberSUM is jointly convex in (⇡, ⌘) (sum and combination of linear func-

tions with quadratic over linear). The constraint set for ⌘ is convex, and although P is not, it

can be relaxed to PH. However we found empirically that an alternate minimization scheme

that is not based on convex optimization but rather exploits the efficiency of the spectral algo-

rithm demonstrates good performances. We present it in Algorithm 4.5. We use the spectral

Algorithm 4.5 ⌘-Spectral Alternate Minimization Scheme for HuberSUM(�).

Input: A similarity matrix A 2 S+
n , a maximum number of iterations T .

1: Set ⌘(1) = 1n1
T
n .

2: for t = 1 to T do
3: Compute

⇡(t) 2 argmin
⇡2P

nX

i,j=1

Aij

⇣

(⇡i � ⇡j)
2/⌘

(t)
ij + ⌘

(t)
ij

⌘

,

i.e., ⇡(t) is solution of (2-SUM) for the matrix A ↵ ⌘ where ↵ denotes the Hadamard
(entrywise) division.

4: Compute

⌘⇤ 2 argmin
⌘��

nX

i,j=1

Aij

⇣

(⇡
(t)
i � ⇡

(t)
j)2/⌘ij + ⌘ij

⌘

,

i.e., ⌘⇤ij max(�, |⇡
(t)
i � ⇡

(t)
j |), for all (i, j).

5: Update ⌘(t+1) �⌘(t) + (1� �)⌘⇤.
6: end for

Output: A permutation ⇡(T).

102

algorithm to (approximately) solve (2-SUM) in line 3. Here, � is a parameter that controls

the influence of the previous iterates of ⌘, the case � = 0 is just plain alternate minimization.

In practice, we evaluate the objective of (HuberSUM(�)) for A and ⇡(t) at each iteration, and

keep the iterate ⇡ with the lowest score.

4.3.7 First Order Optimization on Manifold

Finally, we used a manifold optimization toolbox [Boumal et al., 2014] as a black-box, to

which we provide the expression of the objective and gradient of HuberSUM(�) and ask for the

minimum over the sphere (computed with a trust-regions algorithm). We refer to this method

as Manopt, which is the name of the toolbox [Boumal et al., 2014]. We use the formulation of

the hyperplane Hn through an affine transformation as with the UBI method, in order to use

(Manopt) with fHn on a sphere in R
n�1 in the experiments.

4.4 Numerical Results

In this section, we test the algorithms detailed above on both synthetic and real data sets.

4.4.1 Synthetic data

We performed experiments with matrices from Mn(�, s) with n = 100, 200, 500, � = n/10, n/20,

and s/slim = 0.5, 1, 2.5, 5, 7.5, 10, with s is the number of out-of-band terms as in Definition 4.2.1

and slim = (n���1) is the value appearing in Proposition 4.2.2, where R2SUM(�) and Robust

Seriation coincide when s  slim. In Table 4.1, we show the seriation results of the different

methods described in Section 4.3. When an algorithm can be used for 2-SUM, but also with

R2SUM(�) (or HuberSUM(�), respectively), we pre-pend -R (or -H, resp.) to its name in the

R-2SUM (or Huber, resp.) corresponding row of the Table. In Table 4.2, we show the Kendall-

⌧ score for different values of s/slim. For a given set of parameters (n, �, s), we generated

100 experiments with random locations for the out-of-band entries. The results displayed in

Tables 4.1 and 4.2 are averaged over these experiments, with the standard deviation given after

the ± sign. The experiments with different values of n and � exhibit similar trends, as one can

see in Tables C.1 and C.2. Overall, ⌘-Spect. finds the best ordering, and is also time efficient.

Uncons is also competitive. Some methods such as HGnCR do not perform as good in average,

but have a higher standard deviation over the 100 simulations. They actually perform well on

most simulations, but fail on a few ones. Overall this results in a lower mean Kendall-⌧ score

and a higher standard deviation.

103

Table 4.1: Kendall-⌧ , HuberSUM(�), R2SUM(�), Robust Seriation (with Froebenius norm)
scores for the different methods for n = 200, � = 20, and s/slim = 5. The results are averaged
over 100 instances of A 2Mn(�, s). The first six methods are used with the 2-SUM loss, the
six middle ones with the HuberSUM(�) loss, where � was chosen following the rule described
at the end of §4.2.2, and the two last middle ones with the R2SUM(�) loss. and Some scores
are scaled to simplify the table.

Kendall-
⌧

Huber
×1e−6

R2SUM
×1e−6

Dist2R
2SUM
×1e−6

Time (s)

spectral 0.86 ±0.06 7.76 ±0.61 2.67 ±0.19 73.6 ±5.3 7.7 ±0.4 3.54e-01
GnCR 0.87 ±0.15 7.21 ±0.40 2.47 ±0.17 67.6 ±4.7 7.5 ±0.3 6.99e-01
FAQ 0.89 ±0.08 7.19 ±0.31 2.46 ±0.14 67.6 ±4.1 7.4 ±0.2 3.37e+00

LWCD 0.89 ±0.08 7.18 ±0.30 2.46 ±0.14 67.5 ±3.9 7.4 ±0.2 2.99e+00
UBI 0.89 ±0.06 7.32 ±0.31 2.52 ±0.12 69.5 ±3.3 7.5 ±0.2 1.45e+00

Manopt 0.86 ±0.06 7.72 ±0.58 2.66 ±0.18 73.2 ±5.2 7.6 ±0.4 3.90e+00

⌘-Spectral 0.97 ±0.00 6.74 ±0.13 2.03 ±0.02 50.8 ±0.8 7.6 ±0.2 1.07e+00
HGnCR 0.89 ±0.22 6.91 ±0.52 2.11 ±0.26 53.6 ±8.6 7.7 ±0.4 9.06e+00
H-FAQ 0.95 ±0.08 6.84 ±0.32 2.01 ±0.08 49.0 ±3.9 7.7 ±0.3 4.28e-01

H-LWCD 0.94 ±0.09 6.88 ±0.34 2.03 ±0.11 49.7 ±5.0 7.7 ±0.3 3.00e+00
H-UBI 0.97 ±0.00 6.74 ±0.13 2.05 ±0.02 51.4 ±1.1 7.6 ±0.2 3.08e+00

H-Manopt 0.92 ±0.06 7.05 ±0.39 2.26 ±0.15 59.7 ±5.2 7.6 ±0.3 9.22e+00

R-FAQ 0.95 ±0.10 6.97 ±0.40 1.99 ±0.08 44.9 ±4.3 7.9 ±0.4 3.39e-01
R-LWCD 0.94 ±0.09 7.03 ±0.42 2.01 ±0.09 46.0 ±4.8 8.0 ±0.4 3.32e+00

4.4.2 Frank-Wolfe with Tie-Break (FWTB) is biased

We have not included the results of the FWTB method in the previous section, as it performed

poorly. After investigation, we realized that the tie-break constraint actually introduces a bias

in the problem, as we explain in the following. Let us focus on the 2-SUM problem. The loss

function is homogeneous,

f2SUM (tx) =
X

i,j

Aij(txi � txj)
2 = t2

X

i,j

Aij(xi � xj)
2 = t2f2SUM (x).

Similarly, f1SUM (tx) = tf1SUM (x) for t > 0. Hence, scaling down a given vector x, e.g.,

letting x 1
2x, reduces the objective function but does not add information about the optimal

permutation (the projection on the set of permutations is the same for both vectors). What we

are interested in is to find a direction x⇤ which is optimal compared to other vectors x of same

norm. In the original problem over permutations, all permutation vectors have the same norm.

In the spectral relaxations, we optimize over a sphere. However, when we relax to PH, the most

prominent descent direction of the function is towards the center. The tie-breaking constraint

prevents iterates reaching the center, but it adds a bias in a given direction because not all

points saturating the tie-breaking contraint have the same norm nor the same distance to the

center. On the set of points in PHn where the tie-break is active, e.g., {x 2 PHn |x1+1  xn},

104

Table 4.2: Kendall-⌧ score for different values of s/slim, for the same methods as in Table 4.1,
and n = 200, � = 20.

s/slim = 0.5 s/slim = 1 s/slim = 2.5 s/slim = 5 s/slim = 7.5 s/slim = 10

spectral 0.96 ±0.01 0.95 ±0.01 0.91 ±0.03 0.86 ±0.06 0.84 ±0.06 0.80 ±0.09

GnCR 0.98 ±0.00 0.96 ±0.04 0.93 ±0.07 0.87 ±0.15 0.81 ±0.20 0.80 ±0.18

FAQ 0.98 ±0.00 0.97 ±0.00 0.94 ±0.02 0.89 ±0.08 0.87 ±0.08 0.82 ±0.13

LWCD 0.98 ±0.00 0.97 ±0.00 0.94 ±0.02 0.89 ±0.08 0.87 ±0.08 0.82 ±0.13

UBI 0.97 ±0.00 0.96 ±0.01 0.92 ±0.03 0.89 ±0.06 0.86 ±0.07 0.82 ±0.12

Manopt 0.97 ±0.00 0.95 ±0.01 0.91 ±0.03 0.86 ±0.06 0.84 ±0.06 0.80 ±0.09

⌘-Spectral 0.99 ±0.00 0.99 ±0.00 0.98 ±0.00 0.97 ±0.00 0.96 ±0.00 0.94 ±0.06

HGnCR 1.00 ±0.00 0.99 ±0.00 0.99 ±0.00 0.89 ±0.22 0.85 ±0.23 0.83 ±0.25

H-FAQ 1.00 ±0.00 1.00 ±0.00 0.99 ±0.01 0.95 ±0.08 0.94 ±0.09 0.91 ±0.13

H-LWCD 1.00 ±0.00 1.00 ±0.00 0.99 ±0.02 0.94 ±0.09 0.94 ±0.09 0.90 ±0.14

H-UBI 0.99 ±0.00 0.99 ±0.00 0.98 ±0.00 0.97 ±0.00 0.96 ±0.01 0.94 ±0.03

H-Manopt 1.00 ±0.00 0.99 ±0.00 0.97 ±0.02 0.92 ±0.06 0.89 ±0.07 0.84 ±0.10

R-FAQ 1.00 ±0.00 1.00 ±0.00 0.99 ±0.04 0.95 ±0.10 0.94 ±0.10 0.90 ±0.15

R-LWCD 0.99 ±0.00 1.00 ±0.00 0.99 ±0.04 0.94 ±0.09 0.94 ±0.10 0.90 ±0.16

the point c̃ = c+ en � 1
n1 has a squared distance to c and `2 norm : kc̃� ck22 ' 1, kc̃k22 ' n3

4 ,

whereas a permutation ⇡ that satisfies the constraints has a distance to c that scales in n3 and

a larger norm : k⇡ � ck22 ' n3

12 , k⇡k22 ' n3

3 . Therefore, although the direction c̃ may not be

optimal for 2-SUM (compared to other vectors of same norm), the minimizer of 2-SUM with

tie-break may be closer to the direction of c̃ than to the optimal one. This is what we observe

in Figure 4.4 for the bad (orange, top-right triangle) tie-break.

When n becomes large, this may actually lead to numerical precision issues. Indeed, the

n� 1 first entries of c̃ are equal. When the optimum x⇤ in the tie-break-constrained PH gets

close to c̃, the variations among the n�1 first entries of x⇤ also shrink and the precision required

to sort them (in order to project back onto the set of permutations) may become too high.

In Figure 4.4, we also display a good (green, top-left triangle) tie-break. In practice, al-

though there are
�
n
2

�
non-redundant choices for the indexes i and j constituting a tie-breaking

constraint ⇡i + 1  ⇡j , we can use the solution ⇡spectr. of the cheap, spectral ordering (Al-

gorithm 3.1) to find a good candidate tie-break. Specifically, chose i 2 argmin⇡spectr. and

j 2 argmax⇡spectr..

The performances of FWTB with the naive (i = 1, j = n) and spectral-initialized tie-

breaking strategies are compared to that of the basic spectral Algorithm 3.1 in Table 4.3 (a -I

is appended to the algorithm name for the spectral-initialized tie-break results), with the same

experimental setup as in Section 4.2 with matrices in Mn(�, s).

We can see that using a default tie-breaking constraint performs very poorly on average.

Using the solution of the spectral algorithm to define the tie-breaking constraint significantly

improves the performance compared to using a default tie-break. Still, it does not outperform

105

Table 4.3: Kendall-⌧ score for different values of s/slim, for the spectral method and Frank-
Wolfe with default and initialized tie-breaks (-I variants), with n = 200, � = 20.

s/slim = 0.5 s/slim = 1 s/slim = 2.5 s/slim = 5 s/slim = 7.5 s/slim = 10

spectral 0.96 ±0.01 0.95 ±0.01 0.91 ±0.03 0.86 ±0.06 0.84 ±0.06 0.80 ±0.09

FWTB 0.40 ±0.27 0.33 ±0.27 0.32 ±0.26 0.34 ±0.22 0.28 ±0.21 0.24 ±0.20

H-FWTB 0.50 ±0.31 0.36 ±0.27 0.32 ±0.25 0.32 ±0.22 0.25 ±0.21 0.22 ±0.18

FWTB-i 0.91 ±0.20 0.92 ±0.13 0.84 ±0.19 0.73 ±0.20 0.71 ±0.13 0.64 ±0.15

H-FWTB-i 0.98 ±0.01 0.94 ±0.13 0.86 ±0.15 0.70 ±0.18 0.63 ±0.15 0.57 ±0.17

the spectral algorithm except in a very low noise setting.

4.4.3 E. coli genome reconstruction

We performed experiments with two ONT bacterial data-sets introduced in Chapter 2, including

reads sampled from an Escherichia coli genome [Loman et al., 2015], and from an A. baylyi

genome [Recanati et al., 2016]. These data-sets are described in Section 2.3.1 and read-length

histograms are given in Figure 2.4. Notably, 50% of the reads from the E. coli data-set are

larger than 7kbp, whereas it is only the case for 20% of the A. baylyi reads. We used the

minimap2 tool [Li, 2018] with default ONT parameters to compute the overlaps between the

reads. For each pair of reads for which minimap2 found an overlap, we set the similarity value

between those reads as the output (number of matching bases) from minimap2. This process

defined a similarity matrix on which we tested our seriation methods. Among the methods that

could scale to this size of problem n ⇠ 104, namely, the Frank-Wolfe based relaxations, UBI

and ⌘-Spectral, only ⌘-Spectral gave satisfying results, which we report here. We performed

a grid search on the threshold to set on the similarity matrix with 24 linearly spaced values

varying between the 40% and 80% percentiles of all similarity entries. For each of them, we

compute
p
� = � from the number of non-zero entries of the matrix as explained in 4.2.2, and

kept the permutation yielding the best R2SUM(�) score.

For the E. coli data, this method yielded correctly ordered reads, as one can see in Figure ,

with a Kendall-Tau score of 99.5% with the reference ordering obtained by mapping the reads

to a reference genome with minimap2. In comparison, the spectral Algorithm 4.4 has a Kendall-

Tau score of 32.6%. For the A. baylyi data, however, the method produced an ordering with

mis-assemblies, as one can see on Figure , with a Kendall-Tau score of 90.3% (in comparison,

Algorithm 4.4 has 41.5%). Here, we only assess the quality of the ordering, but we have seen

in Chapter 2 that a correct layout lead to high quality assembly. The mis-ordered points on

Figure are not scattered at random. We expect an assembly resulting from this layout to

harbour a few large mis-assemblies, i.e., large portions of genome mis-placed or reversed.

106

(a) Spectral (b) ⌘-Spectral

Figure 4.6: Ordering found with the spectral baseline Algorithm 4.4 (4.6a), and with the ⌘-
Spectral Algorithm 4.5 (4.6b) on the E. coli ONT data.

(a) Spectral (b) ⌘-Spectral

Figure 4.7: Ordering found with the spectral baseline Algorithm 4.4 (4.7a), and with the ⌘-
Spectral Algorithm 4.5 (4.7b) on the A. baylyi ONT data..

4.4.4 Genome assembly using Hi-C data

We evaluate the ⌘-Spectral method on the real Hi-C data-sets introduced in Chapter 3, Sec-

tion 3.6.4, where the weighted Kendall-Tau score ⌧̃ to assess fragmented orderings, and the

purity index and cluster distance to assess clustering, are defined. Table 4.4 shows the results

for the Plasmodium knowlesi data, for which we have a ground truth chromosome assignment.

Table 4.5 shows the results for the Spodoptera frugiperda data, for which we do not have such

a ground truth clustering. We can see that the ⌘-Spectral method improves upon the ba-

sic spectral method for the data-sets where the spectral method is already efficient, but that

the method introduced in Chapter 3 combined with tSNE performs better on some data-sets

harbouring a cluster structure, such as the Plasmodium knowlesi and Sf669 data.

107

Table 4.4: Seriation results on real Hi-C data from the Plasmodium knowlesi genome.

SC+SO SC+mdso SC+⌘-SO mdso tSNE-mdso

Chr. 14 14 14 8 16.7 ± 0.5

Purity 76.3 76.3 76.3 - -

Cluster dist. 3.81 3.81 3.81 6.61 2.83 ± 0.23

⌧̃ (%) 77.3 69.6 79.3 18.9 85.0 ± 11.7

Time (s) 0.30 1.45 2.04 7.76 43.9 ± 2.8

Table 4.5: Seriation results on real Hi-C data from a Spodoptera frugiperda genome.

Spectral ⌘-Spectral mdso

Sf200
Chr. 1 1 2

⌧̃ (%) 92.7 95.9 91.6

Time (s) 0.033 0.026 0.14

Sf669
Chr. 1 1 4

⌧̃ (%) 75.7 75.9 88.2

Time (s) 0.049 0.61 0.19

Sf846
Chr. 1 1 6

⌧̃ (%) 95.8 97.7 86.7

Time (s) 0.063 0.9 0.22

4.5 Conclusion

We introduced the Robust Seriation problem, which arises in e.g. de novo genome assembly.

We show that for a class of similarity matrices modeling those observed in genome assembly,

the problem of Robust Seriation is equivalent to a modified 2-SUM problem. This modified

problem can be relaxed, with an objective function using a Huber loss instead of the squared

loss present in 2-SUM. We adapt several relaxations of permutation problems to this 2-SUM

problem with Huber loss and also introduce new relaxations, including the ⌘-Spectral method,

which is computationally efficient and performs best in our experiments. Notably, it successfully

reorders a bacterial genome from third generation sequencing data.

108

Chapter 5

Seriation with Duplications

In this chapter, we introduce the problem of Seriation with Duplications. It is an extension of

Seriation that differs from the problem of seriation with repeats. Here, given two duplicates,

we do not observe the similarity values for any of the two duplicates, like we could with two

repeated reads in genome assembly. Instead, we observe an aggregated similarity over all

duplicates. It is motivated by an application to cancer genome assembly given Hi-C frequency

data.

The content of this chapter is based on the following publication,

Antoine Recanati, Nicolas Servant, Jean-Philippe Vert, and Alexandre d’Aspremont. Robust

seriation and applications to cancer genomics. arXiv preprint arXiv:1806.00664, 2018b

Supplementary material for this chapter is given in Appendix Chapter D.

Chapter Abstract

The seriation problem seeks to reorder a set of elements given pairwise similar-

ity information, so that elements with higher similarity are closer in the resulting

sequence. We introduce the problem of seriation with duplications, which is a gen-

eralization of Seriation motivated by applications to cancer genome reconstruction.

In this context, we also aim to reorder a set of elements such that similar elements

are nearby. However, some of these elements are identical copies, but we do not

have access to the similarity information involving each of the copies. Instead, we

observe a coarser-grained aggregated similarity, which is the sum over all the copies.

We propose an alternated minimization scheme that involves seriation, and present

preliminary results on synthetic data sets.

109

Contents

5.1 Introduction . 111

5.2 Seriation with Duplications . 112

5.2.1 Hi-C data . 112

5.2.2 Problem setting . 114

5.3 Algorithms . 115

5.3.1 Alternate projection for Seriation with Duplications 115

5.3.2 Algorithms for Robust Seriation . 116

5.3.3 Algorithmic details . 116

5.4 Numerical Results . 118

5.5 Multiple chromosomes : Seriation+Clustering with Duplications 120

5.5.1 Numerical experiments with block + Robinson matrices 121

5.6 Discussion . 122

110

5.1 Introduction

The seriation problem has been studied throughout this thesis. As a reminder, it seeks to

reorder a set of n elements given only pairwise similarity information. The resulting ordering

should lay similar elements nearby. In practice, this translates to properties on the similarity

matrix. We recall key definitions related to seriation from Chapter 4.

Definition 5.1.1. We say that A 2 Sn is a strong-R-matrix (or strong Robinson matrix) iff it is

symmetric and satisfies Aij  Akl for all (i, j, k, l) such that |i� j| > |k � l|.

Here, Sn denotes the set of real symmetric matrices of dimension n. We write R⇤
n the set

of strong-R-matrices of size n, and Pn the set of permutations of n elements. A permutation

can be represented by a vector ⇡ (lower case) or a matrix Π 2 {0, 1}n⇥n (upper case) defined

by Πij = 1 iff ⇡(i) = j, and ⇡ = Πg where g = (1, . . . , n)T . We refer to both representations

by Pn and may omit the subscript n whenever the dimension is clear from the context.

We say that A 2 Sn is pre-R⇤ if there exists a permutation Π 2 P such that the matrix

ΠAΠT (whose entry (i, j) is A⇡(i),⇡(j)) is a strong-R-matrix, and the seriation problem seeks to

recover this permutation Π, i.e., solve

find Π 2 P

such that ΠAΠT 2 R⇤ (Seriation)

in the variable Π 2 P.

Chapter 4 introduced the problem of Robust seriation, which seeks to find the closest pre-R⇤

matrix to A and reorder it, solving instead

minimize kS �ΠAΠT k
such that Π 2 P, S 2 R⇤.

(Robust Seriation)

where the variable Π 2 P is a permutation matrix, the variable S 2 R⇤ is a strong-R-matrix,

and the norm is typically either the l1 norm on components or the Froebenius norm.

The main challenge we have been confronted to when trying to perform genome assembly

with Seriation is the presence of repeated regions throughout the genome. Let us say that

a fragment of DNA is repeated in two separate locations in the genome. When computing

pairwise alignments between sequences (to obtain a pairwise similarity), a read encompassing

one of the repeated region can seem to overlap with reads encompassing the other.

In the former framework, each read has a distinct identifier, even though it may essentially

contain a repeated sequence. Here, we are interested in a different, more complex problem,

where we are not able to distinguish duplicates. If an element appears in two copies, we

cannot tell whether one or the other copy is similar to another given element. Instead, we can

only access a similarity value aggregated over the two duplicates (this will be formalized in

111

Section 5.2.2).

The chapter is organized as follows. In Section 5.2, we first motivate the problem with the

application of cancer genome assembly through Hi-C data. Then, we formalize the problem,

starting with an illustrative example. In Section 5.3, we propose an alternate minimization

method to solve the problem of seriation with duplications. It involves solving robust seriation,

for which we have proposed several algorithms in Chapter 4. Finally, we present numerical

results on synthetic data in Section 5.4.

5.2 Seriation with Duplications

The reformulation of de novo sequencing as a (robust) seriation problem is based on the assump-

tion that, up to noise, the bins can be reordered to form a long chain. While this hypothesis

is relevant when a normal genome or chromosome is sequenced with long reads, it clearly fails

to hold in an important case: cancer genomes. Indeed cancer cells typically harbour so-called

structural variations where large portions of the genome, up to whole chromosomes, are dupli-

cated or deleted, and where new chromosomes are formed by fusing two pieces of chromosomes

which are not connected in a normal genome. For example, Figure 5.1 shows the 1D structure

of a breast cancer cell line. Different colors correspond to DNA fragments normally in different

chromosomes. Instead of 23 pairs of chromosomes with each pair in a single uniform color,

expected in a normal cell, we observe various mosaics of colors indicating various duplication

and fusion events.

5.2.1 Hi-C data

Reconstructing the 1D structure of a cancer genome from experimental data is an important

problem. Besides standard DNA sequencing techniques, an interesting recent development

called Hi-C and based on the chromosome conformation capture (3C) technology allows to

measure experimentally the frequency of physical interactions in 3D between all pairs of posi-

tions in the genome [Lieberman-Aiden et al., 2009a]. In short, if we split the full human genome

into n bins (of typical length 104� 106 basepairs each), an Hi-C experiment produces an n⇥n

interaction matrix A such that Aij is the frequency of interactions between DNA fragments

in bins i and j. Interestingly, most 3D interactions take place between DNA fragments which

are on the same chromosome, and the frequency of 3D interactions tends to decrease with the

distance between the fragments when they are on the same chromosome; hence Hi-C data can

be used to perform genome assembly, using e.g., a seriation algorithm to obtain the layout

[Korbel and Lee, 2013].

An Hi-C experiment roughly proceeds as follows. Freeze the DNA in its current 3D con-

formation, and collect pairs of DNA fragments that lie close to each other in this spatial

conformation. For every such pair (k, l), map each of the two fragments to a normal reference

112

Figure 5.1: Structure of a typical cancer genome (breast cancer cell line). Instead of the
standard 23 pairs of chromosomes, cancer cells often harbour large structural variants, such as
changes in copy number and translocations. Reconstructing this 1D map from high-throughput
Hi-C or sequencing data is an important problem that motivates the definition of seriation with
duplications. Figure from Karp et al. [2015].

genome, providing their positions, pk and pl. Add +1 to the interaction matrix entry Aij cor-

responding to the two bins i and j that respectively span pk and pl. This process is repeated

to statistically obtain an average proximity (frequency) between two bins.

Because of duplications, deletions and translocations in cancer genome, each bin (defined

according to a normal reference genome) may be included in several fragments of different

chromosomes in a cancer genome, and it may therefore not be possible nor relevant to order

the bins. Instead, since it is possible to estimate from Hi-C data the total number of DNA

copies for each bin, it makes more sense to first associate to each bin a corresponding number

of fragments (e.g. two fragments per bin in a normal diploid genome), and then reconstruct an

ordering of fragments into a number of chains to estimate the 1D structure of a cancer genome

(Figure 5.1).

The difficulty to apply a seriation algorithm is that Hi-C data provide cumulative informa-

tion at the bin level, not at the fragment level. More precisely, if we denote Skl the (unobserved)

frequency of interactions between fragments k and l, respectively extracted from bins bi and

bj , what Hi-C measures as interactions between bi and bj is the sum of Sk0l0 where k0 and l0 are

fragments contained in bi and bj , respectively. This motivates the definition of the seriation

with duplication problem formalized below.

113

5.2.2 Problem setting

For clarity, let us begin by an example with n = 3, N = 4. Consider a simplified reference

genome split in 3 subsequences, g = (♥,♦,|). In a cancer genome, the♥ sequence is duplicated

and also appears at the end of the genome. Using the symbol ~ to denote the duplicated

sequence of DNA, the cancer genome can be written g̃ = (♥,♦,|,~). The true interaction

matrix between the fragments (♥,♦,|,~) is a LR matrix,

S⇤ =

♥ ♦ | ~
0

B
B
B
@

1

C
C
C
A

♥ 3 2 1 0

♦ 2 3 2 1

| 1 2 3 2

~ 0 1 2 3

Yet, interactions between (|,~) and (|,♥) are both attributed to (|,♥) by the Hi-C experi-

ment, resulting in the following observed interaction matrix and duplication count vector,

A =

♥ ♦ |
0

B
@

1

C
A

♥ 6 3 3

♦ 3 3 2

| 3 2 3

, c = (2, 1, 1)T .

Observing A, the sequence we wish to reconstruct is in fact ⇡⇤ = (1, 2, 3, 1)T .

Given a matrix A 2 Sn of similarity between n bins, and a vector c 2 Nn (the “counts”

of the bins), with total N =
Pn

i=1 ci, Seriation with Duplications aims at finding a sequence

⇡̃ 2 [1, n]N of N integers such that i appears ci times in ⇡̃, at positions Li ⇢ [1, N] with

|Li| = ci, and a matrix S 2 R⇤
N such that

Aij =
X

k2Li,l2Lj

Skl for all i, j 2 [1, n].

Remark that if c = 1n (the vector of Rn with all entries equal to 1), the problem is equivalent

to seriation and ⇡̃ is a permutation vector.

To represent the subsets {Li}i2[1,n], we use assignment matrices Z 2 {0, 1}n⇥N such that

Zik = 1 iff k 2 Li (as in clustering problems). Such an assignment matrix is linked to the

vector-based notation ⇡̃ 2 [1, n]N from above through ⇡̃ = ZT (1, 2, . . . , n)T . We write Zc the

set of assignment matrices for a given duplication count vector c 2 Nn,

Zc =
n

Z 2 {0, 1}n⇥N
�
�
� Z1N = c , ZT1n = 1N

o

114

where N = cT1n, and the constraints indicate that each bin i 2 [1, n] has ci duplicates, and that

each element k 2 [1, N] comes from one single bin. Observe that given an initial assignment

matrix Z0 2 Zc, any other Z 2 Zc can be expressed as Z0 whose columns have been permuted,

i.e. there exists Π 2 PN such that Z = Z0Π. As in the Seriation formulation, the problem of

Seriation with Duplications can be written

find Π 2 PN , S 2 R⇤
N

such that Z0ΠSΠ
TZT

0 = A.
(SD)

where Z0 is an initial assignment matrix. Like Seriation, SD may not be feasible. The analog

of Robust Seriation is then written

minimize kZ0ΠSΠTZT
0 �Ak

such that Π 2 PN , S 2 R⇤
N .

(RSD)

Note again that if c = 1n, then N = n, Z0 = In, and SD (respectively RSD) is equivalent to

Seriation (resp. Robust Seriation).

5.3 Algorithms

5.3.1 Alternate projection for Seriation with Duplications

Let us assume that we are able to project on the set of pre-strong-R matrices, that is to say,

given S, we can compute the couple (Π⇤, S⇤) 2 P ⇥ R⇤ that minimizes kΠRΠT � Sk (note

that the projection on the set of pre-strong-R matrices is nothing but the Robust Seriation

problem). We can then use alternationg projections to optimize (RSD) (although the set of

pre-strong-R matrices is not convex, so convergence to a global optimum is not garanteed). We

detail this method in Algorithm 5.1.

In fact, we can use any method presented in the previous chapter (Section 4.2) to solve the

projection step 3 in Algorithm 5.1. In our experiments here, we use ⌘-spectral and UBI, which

are the most efficient, and spectral as a baseline. From the permutation Π⇤ obtained by, e.g.,

solving HuberSUM(�) with ⌘-Spectral, we compute S⇤ by doing a `1 projection of Π⇤S(t)ΠT
⇤

onto R⇤ through linear programming. Indeed, the membership to R⇤ can be described by

a set of linear inequalities. We can also add upper bounds on the matrix entries belonging

to a given diagonal, if we have a priori knowledge on the law by which the entries decrease

when moving away from the diagonal, which is the case for Hi-C genome reconstruction. We

detail these steps in Section 5.3.3. Projecting onto the set of matrices satisfying linear equality

constraints in step 4 can also be done with a convex programming solver, but the problem is

actually separable on the values (i, j) 2 [1, n]⇥ [1, n] and has a closed form solution detailed in

Section 5.3.3.

115

Algorithm 5.1 General Alternating Projection Scheme for Seriation with Duplications.

Input: A matrix A 2 Sn, a duplication count vector c 2 Nn, a maximum number of iterations
T .

1: Set N =
Pn

i=1 ci, Z
(0) 2 Zc and S(0) = Z(0)T diag(c�1)Adiag(c�1)TZ(0), i.e., S(0)

kl =
Aij

cicj
with k 2 Li and l 2 Lj .

2: while t  T do
3: Compute (Π⇤, S⇤), solution of (Robust Seriation) for S(t), and set

S(t+ 1
2
) S⇤

Z(t+1) Z(t)Π⇤
4: Compute SA, projection of S(t+ 1

2
) on the set of matrices that satisfy Z(t+1)SZ(t+1)T = A,

and set
S(t+1) SA

5: t t+ 1.
6: if Z(t+1) = Z(t) then
7: break
8: end if
9: end while

Output: A matrix S(T), an assignment matrix Z(T)

5.3.2 Algorithms for Robust Seriation

We have studied the (Robust Seriation) problem in Chapter 4 and evaluated various methods

designed to solve it. One of the steps of Algorithm 5.1 coincides with (Robust Seriation). In

this chapter, we will retain the three following methods evaluated in Chapter 4,

• Spectral (baseline method, Algorithm 4.4)

• ⌘-Spectral (Algorithm 4.5)

• Unconstrained minimization in PH (UBI, Algorithm 4.3),

and refer the reader to Section 4.3 for details on these methods.

5.3.3 Algorithmic details

We now detail algorithmic solutions to several subproblems required by seriation with duplica-

tions.

Projection on R⇤ (step 3 of Algorithm 5.1)

In step 3 of Algorithm 5.1, we wish to compute (Π⇤, S⇤), solution of (Robust Seriation) for

S(t). To do so, we can use one of the algorithms presented in Section 4.2. However, these

algorithms do not address the problem of Robust Seriation directly. Rather, they seek to find

a permutation that is optimal for a objective function which coincides with Robust Seriation

for the specific class of Mn(�, s) matrices. Two problems arise then. First, in our Seriation

116

with Duplication setting (SD), the matrices may not fit the class Mn(�, s), especially when

the matrix S to be recovered is dense (and not a band matrix). Second, the output of the

algorithm is a permutation Π⇤, but what we are really interested in step 3 of Algorithm 5.1 is

the matrix S⇤ 2 R⇤
N that is the closest to S(t). To approximate S⇤ 2 R⇤

N , we first use one of

the methods introduced in Section 4.2 to find a permutation Π⇤ that makes Π⇤S(t)ΠT
⇤ as close

to R⇤
N as possible. Still, in general the permuted matrix Π⇤S(t)ΠT

⇤ will not be in R⇤
N . We then

project Π⇤S(t)ΠT
⇤ onto R⇤

N , which is solved with linear programming. Indeed, the projection,

in `1 norm for example of a matrix S, reads

minimize
PN

i,j=1 |Rij � Sij |

such that R 2 R⇤
N .

(R-proj)

We can also use a Froebenius norm and consider the sum of squares instead of the absolute

differences. We would then use quadratic programming, as we have then a quadratic objective

with linear constraints. The constraint R 2 R⇤
N can indeed be written as linear constaints

on R. Specifically, we consider the vectorized forms of S and R, s, r 2 R
N2

, which are the

concatenation of the columns of S and R, respectively. Imposing R 2 R⇤ is equivalent to

saying that ru  rv for all pairs of indexes (u, v) such that the corresponding subscripts for u

are on a diagonal higher than those for v. There is one linear constraint per pair (u, v) (and

there are N(N�1)
2 pairs), but we can reduce the number of constraints by adding slack variables

{�k}1kN and impose that for each element ru on a given diagonal k, 1  k  N�1, ru  �k+1

and ru � �k. Finally, we can use a priori knowledge on how the values are supposed to decrease

when moving away from the diagonal (e.g., a power law Sij = |i� j|�� as in our experiments,

which is consistent with the intra-chromosomal frequency observed in Lieberman-Aiden et al.

[2009b]), to upper bound the values �k. We end up with the following optimization problem

over the variable (r,�)T ,

minimize kr � sk

such that C

0

@
r

�

1

A  0,

0  �  b

(R-proj)

where the matrix C contains the strong-R constraints expressed between r and �, and the

vector b 2 R
N contains upper bounds on the values of �k, e.g., bk = k�� .

Projection on duplication constraints (step 4 of Algorithm 5.1)

In step 4 of Algorithm 5.1, we wish to compute the projection of S on the set of matrices X

that satisfy ZXZT = A, that is to say, solve the following optimization problem on variable

117

X,

minimize
PN

k,l=1 |Skl �Xkl|

such that ZXZT = A.
(dupli-proj)

The constraints impose that for each pair (i, j) 2 [1, n] ⇥ [1, n], Aij =
P

k2Li,l2Lj
Xkl, where

Li ⇢ [1, N] is the set of indexes assigned to i through the assignment matrix Z. The objective

is also separable, since

NX

k,l=1

|Skl �Xkl| =
nX

i,j=1

X

k2Li,l2Lj

|Skl �Xkl|

We can then solve separately, for each pair (i, j), the subproblem,

minimize
P

k2Li,l2Lj
|Skl �Xkl|

such that Aij =
P

k2Li,l2Lj
Xkl.

(dupli-proj(i,j))

For a given pair (i, j), Li and Lj are known (through Z), and if we consider the vectorization

(stacking of the columns into a single vector) of the submatrices XLi,Lj and SLi,Lj , denoted x

and s respectively, and denote a = Aij , the subproblem on the variable x reads

minimize ks� xk
such that xT1 = a,

x � 0.

(dupli-proj(i,j))

We impose non-negativity of the coefficients of X since this is part of the definition of similarity

matrices. The above general problem of approximating a vector with a non-negative vector of

fixed norm can be solved exactly when the norm is the `2 norm (this solution is optimal for the

`1 norm too) with Algorithm 5.2.

5.4 Numerical Results

We performed synthetic experiments in which we generate the data as follows. We first build

a strong-R matrix S of size N , and a random duplication count vector c 2 Nn such that

N =
Pn

i=1 ci. We generate a random assignment matrix Z 2 Zc, and the corresponding

observed matrix A = ZSZT . We then test Algorithm 5.1 by providing it with A and c and

comparing its output Zout and Sout to the ground truth.

Specifically, we compute the relative Froebenius distance between S and Sout, d2R = kS �
SoutkF /kSkF , and we compute a distance between the assignment matrices as follows. For a

given bin index i 2 [1, n] (i.e. a row Zi), there are ci locations for the non-zeros of the i-th row

118

Algorithm 5.2 Minimizing ks�xk with non-negativity (x � 0) and sum (xT1 = a) constraints.

Input: A target vector s 2 R
p
+, a value a � 0.

1: s0,� sort s in decreasing order (i.e., s(�1) � . . . � s(�n))
2: for k 1 to n do
3: x̃0(k) s0(k) + 1

k (a�
Pk

i=1 s
0(i))

4: if x̃0(k) < 0 then
5: k k � 1
6: break
7: end if
8: end for
9: x0(j) = s0(j) + 1

k (a�
Pk

i=1 s
0(i)) for j = 1, . . . , k

10: x0(j) = 0 for j > k
11: x(�j) = x0(j) for j = 1, . . . , p.
Output: A vector x 2 R

p
+.

of Z and of Zout (which can also be viewed as two subsets Li and Lout
i of [1, N]). To compute

the distance between these positions, we first compute a matching between the elements of Li

and Lout
i using the Hungarian algorithm [Kuhn, 1955]. Then, we compute the distance between

each matched pair of elements (k, kout) 2 Li ⇥ Lout
i , and store the average distance between

matching pairs for row i. Supplementary Figures D.5 and D.6 illustrates this process. The

average over all rows of this average distance is given in Table 5.1 as meanDist, and we also

provide its standard deviation and median.

In the experiments, we built dense strong-R, Toeplitz matrices S where the entries follow a

power law of the distance to the diagonal, Skl = |k� l|�� , which is consistent with the observed

frequency of intra-chromosomal interactions [Lieberman-Aiden et al., 2009b]. We used N = 200

and tried several values for the exponent � and the ratio N/n, namely � 2 {0.1, 0.5, 1} and

N/n 2 {1.33, 2, 4}. The results are shown in Tables 5.2, D.2, D.3, and some qualitative

results are shown in Figure D.1. We also conducted experiments with sparse, band matrices

S 2 MN (�, s) as in Section 4.2. The results are shown in Tables 5.1, D.4, D.5, and some

qualitative results are shown in Figure D.2. The ⌘-Spectral method works best for dense

matrices, and is outperformed by H-UBI for maatrices in MN (�, s). We observe that, as

expected, the recovered assignment Zout is closer to Z when N/n is smaller. However, the

D2S scores and the qualitative Figures D.1 and D.2 suggest that for large N/n, the recovered

matrix Sout may be close to S although the assignment is not well recovered. Intuitively, this

means the problem is degenerate, with several assignment matrices roughly leading to the same

matrix S, and the algorithm finds one of these.

119

Table 5.1: Results of synthetic experiments for Seriation with Duplications from matrices
S 2 MN (�, s) with n = 200, � = n/5, s = 0, and various values of N/n, where the
(Robust Seriation) problem is tackled with either Spectral, ⌘-Spectral or H-UBI within Al-
gorithm 5.1. From the output Sout and Zout of Algorithm 5.1 and the ground truth S and Z
from which the data A is generated, D2S is the relative Froebenius distance between S and
Sout, Huber is the (HuberSUM(�)) loss on S, meanDist, stdDist and medianDist are the aver-
age, standard deviation and median of the distance between the positions assigned to a index
k by Z and Zout (see main text for details). Time is the amount of CPU time elapsed until
convergence of Algorithm 5.1.

N/n method d2S Huber meanDist stdDist Time
(×1e−7) (×1e−3s)

1.33

spectral 0.53 ±0.08 1.67 ±0.33 11.8 ±3.5 13.2 ±1.7 7.45 ±4.08

⌘-Spectral 0.12 ±0.06 0.76 ±0.06 0.8 ±0.8 2.4 ±2.2 2.85 ±1.78

H-UBI 0.09 ±0.06 0.74 ±0.05 0.6 ±0.6 1.8 ±1.9 3.99 ±2.76

2

spectral 0.38 ±0.05 1.48 ±0.26 10.3 ±4.2 10.5 ±2.8 1.30 ±0.25

⌘-Spectral 0.21 ±0.04 0.99 ±0.12 4.1 ±4.1 6.9 ±3.9 0.50 ±0.19

H-UBI 0.19 ±0.05 0.96 ±0.14 4.0 ±5.8 6.2 ±4.6 0.79 ±0.31

4

spectral 0.29 ±0.02 1.45 ±0.09 18.4 ±4.5 11.8 ±3.1 1.34 ±0.23

⌘-Spectral 0.22 ±0.02 1.29 ±0.06 16.3 ±6.8 12.2 ±5.1 0.61 ±0.14

H-UBI 0.22 ±0.02 1.26 ±0.06 15.9 ±7.2 12.0 ±5.6 0.91 ±0.25

5.5 Multiple chromosomes : Seriation+Clustering with Duplications

In the application motivating this problem, the cancer genome to be reconstructed has mul-

tiple chromosomes (which may harbour structural variants). In a Hi-C experiment, the inter-

chromosome frequencies of interaction are significantly lower than the intra-chromosome fre-

quencies [Lieberman-Aiden et al., 2009a]. Thus, if reordered correctly, the target similarity

matrix S has a block-structure, and each block has a Robinsonian structure. Still, the meth-

ods we use for Seriation, and in particular the spectral methods, are not necessarily suited to

reordering clustered (block) matrices. We therefore propose to add a clustering step in Algo-

rithm 5.1 in order to leverage the cluster structure. This is summarized in Algorithm 5.3, where

we project the current matrix S on the set of block matrices in line 4, and we reorder each

cluster in line 5. The projection on block matrices is not exactly a clustering procedure, since

we only want to find breakpoints between clusters, but two points can be in the same cluster

only if they are contiguous in the current ordering Π⇤. To find these breakpoints, we use an

algorithm from Ding and He [2004] which seeks the minima of a measure called cluster crossing.

For each point i, it is roughly defined as the sum along the anti-diagonal i in a bandwidth m,

⇢(i) =

mX

j=1

Ai�j,i+j , (5.1)

120

Table 5.2: Results of synthetic experiments for Seriation with Duplications from dense, strong-R
matrices of size n = 200, with the same metrics and methods as in Table 5.1, with � = 0.5.

N/n method d2S Huber meanDist stdDist Time
(×1e−7) (×1e−2s)

1.33

spectral 0.25 ±0.04 1.36 ±0.03 6.1 ±1.8 7.9 ±1.6 8.74 ±4.85

⌘-Spectral 0.15 ±0.02 1.30 ±0.01 2.2 ±0.7 3.7 ±1.1 6.12 ±4.84

H-UBI 0.24 ±0.04 1.35 ±0.03 5.5 ±1.6 7.3 ±1.4 11.06 ±7.56

2

spectral 0.27 ±0.02 1.41 ±0.02 9.5 ±1.6 8.4 ±1.3 7.47 ±3.20

⌘-Spectral 0.22 ±0.02 1.37 ±0.02 6.6 ±1.5 6.7 ±1.9 7.89 ±3.89

H-UBI 0.26 ±0.02 1.40 ±0.02 9.0 ±1.5 8.1 ±1.2 10.09 ±4.90

4

spectral 0.18 ±0.01 1.35 ±0.01 14.4 ±2.8 8.7 ±2.7 6.53 ±1.90

⌘-Spectral 0.18 ±0.01 1.35 ±0.01 14.3 ±2.9 8.9 ±2.9 7.59 ±2.28

H-UBI 0.19 ±0.01 1.35 ±0.01 14.8 ±2.5 8.8 ±2.1 8.62 ±2.46

where m can be chosen according to the number of target clusters. If the similarity matrix

has a cluster structure, then the cluster crossing ⇢ should have local minima at the boundaries

between the clusters, as we can see in Figure 5.2b.

5.5.1 Numerical experiments with block + Robinson matrices

We conducted experiments similar to those of Section 5.4 where we start with matrices S that

are the sum of a dense Robinson matrix and a block matrix, as the one displayed in Figure 5.2.

(a) similarity S

(b) cluster crossing ⇢

Figure 5.2: Similarity matrix with Robinson + Block structure (5.2a), and the associated
cluster-crossing curve that enables one to determine the breakpoints between the clusters (5.2b).

121

Algorithm 5.3 General Alternating Projection Scheme for Seriation+Clustering with Duplica-
tions.
Input: A matrix A 2 Sn, a duplication count vector c 2 Nn, a maximum number of iterations

T .
1: Set N =

Pn
i=1 ci, Z

(0) 2 Zc and S(0) = Z(0)T diag(c�1)Adiag(c�1)TZ(0), i.e., S(0)
kl =

Aij

cicj
with k 2 Li and l 2 Lj .

2: while t  T do
3: Compute (Π⇤, S⇤), solution of (Robust Seriation) for S(t).
4: Compute SClus., projection of S⇤ on the set of block matrices.
5: Reorder each block with (Robust Seriation), and update Π⇤ accordingly.
6: Set S(t+ 1

2
) S⇤ , and Z(t+1) Z(t)Π⇤.

7: Compute SA, projection of SClus. on the set of matrices that satisfy Z(t+1)SZ(t+1)T = A,
and set
S(t+1) SA

8: t t+ 1.
9: if Z(t+1) = Z(t) then

10: break
11: end if
12: end while
Output: A matrix S(T), an assignment matrix Z(T)

In Table 5.3, we provide the results of such experiments with 5 clusters, where we use

the ⌘-Spectral algorithm to solve (Robust Seriation) in Algorithms 5.1 and 5.3. Table D.6 is

the analog with 10 clusters, for which the results are similar. We observe that when N/n is

suffiently small (N/n = 1.33), the clustering step clearly helps the algorithm to converge to a

good minimum. However, the performance gain becomes marginal and both Algorithms 5.1

and 5.3 perform poorly with higher values of N/n.

5.6 Discussion

We have introduced the problem of Seriation with Duplications. It generalizes Seriation and can

adapt the problem of performing genome assembly from Hi-C frequency matrices to genomes

with structural variants. After formalizing the problem setting, we present an algorithmic

scheme based on seriation and alternate projections between the set of duplications constraints

and the set of Robinson matrices. We evaluate this method synthetic experiments on styl-

ized matrices modeling Hi-C experiments from single-chromosome genomes, with duplications.

Then, we outline the issues due to the presence of multiple chromosomes. We propose to modify

the alternate projections algorithm to handle the cluster structure, and evaluate it on synthetic

data, on which it perform moderately well.

122

Table 5.3: Results of synthetic experiments for Seriation+Clustering with Duplications from
dense, strong-R matrices of size n = 200, with an additive block matrix with 5 clusters, with
Algorithm 5.1 (that do not take the cluster structure into account), denoted SerDupli and
Algorithm 5.3, denoted SerDuClus. Both are used with the ⌘-Spectral method at step 3 of
the alternate projections Algorithm. The results are averaged over 20 experiments and the
standard deviation is given after the ± sign.

N/n method Huber meanDist stdDist

1.33
SerDupli 1.266e+07 ±4.946e+06 23.9 ±16.2 19.9 ±12.2

SerDuClus 9.265e+06 ±2.439e+06 9.04 ±10.4 8.9 ±8.1

2
SerDupli 1.683e+07 ±5.283e+06 38.8 ±9.9 26.6 ±7.1

SerDuClus 1.373e+07 ±4.284e+06 30.6 ±12.8 20.2 ±8.1

4
SerDupli 3.639e+07 ±4.357e+06 42.0 ±11.0 18.5 ±4.9

SerDuClus 2.512e+07 ±6.704e+06 35.5 ±9.1 15.5 ±5.0

123

Chapter 6

Conclusion and Perspectives

6.1 Summary of the thesis

Throughout this thesis, we have studied the problem of seriation with the aim of solving an

important genome assembly task. We explored existing techniques and develop new methods

in order to meet the challenges arising with real genomic data.

In the opening chapter, we formalized the seriation problem mathematically. We recalled

algorithmic challenges and detailed existing approaches constituting the basis of our work.

Then, we presented genome assembly techniques, highlighted the key challenges, and reviewed

major sequencing technologies.

In our first contribution, we made the proof of concept that the seriation framework was

suited to de novo genome assembly. To this end, we applied a standard spectral, seriation

algorithm to real de novo assembly problems, using third-generation sequencing data. We

integrated our seriation module seamlessly in an end-to-end overlap-layout-consensus assembly

scheme. This yielded competitive experimental results compared to state-of-the-art methods,

although it was challenged by the repeated regions occurring in DNA sequences, leading to

possibly fragmented assemblies.

In our second contribution, we borrowed from spectral graph theory and embedding tech-

niques to propose an extension of the spectral method used in the first contribution (Chapter 2).

It provided a unifying framework for seriation and circular seriation, a variant of the problem

where instead of seeking for an ordering of data along a linear chain, we search for a cyclic or-

dering of the data, where the objects at the end of the cycle are similar to those at the beginning

of it. We derived theoretical guarantees for circular seriation analog to those existing for linear

seriation. Notably, our extended spectral method significantly improves the robustness of the

original spectral method when the data is corrupted by noise. We evaluated it on several types

of data, including third-generation sequencing data for de novo assembly, spatial conformation

(Hi-C) data, and single-cell Hi-C data used in a cell-cycle ordering problem.

In our third contribution, we attempted to model the problem of performing seriation on

124

data corrupted by noise, and introduced the framework of robust seriation. We showed how

several seriation-like optimization problems relate for stylized matrices modeling those observed

in de novo assembly (including the noise). Then, we explored several algorithmic approaches,

including recently developed methods for permutation problems, and new methods that we

introduced, to tackle these problems. We compared experimentally this set of methods on

synthetic and real sequencing data. Some of our methods are substantially more robust to

noise than the basic spectral method, but the de novo assembly experiments do not support

improvement over the spectral extension presented in Chapter 3.

Finally, our last contribution was to introduce the problem of seriation with duplications.

It is an extension of the seriation problem, motivated by the assembly of cancer genomes from

Hi-C data. We described how structural variations arising in cancer genomes lead to Hi-C

frequency matrices which cannot be used for assembly in a standard seriation framework. We

then formalized the problem setting, and proposed an alternate projection scheme to tackle

it. We evaluated this method on synthetic data modeling a single-chromosome genome with

structural variations. Then, we attempted to adapt the method to genomes with multiple

chromosomes, and performed additional synthetic experiments.

6.2 Perspectives

The work presented in this manuscript calls for subsequent development, in both applications

and theory. Let us list key future work directions.

i Integration of new seriation methods in a full-assembly pipeline. In Chapters 3 and 4, we

introduced new algorithmic methods for the seriation problem with enhanced robustness,

and evaluated them for the layout computation in de novo assembly experiments. However,

we did not integrate them into the full assembly pipeline presented in Chapter 2. Thus,

when testing the methods, we only evaluated ordering produced, but not the eventual

output DNA assembly. Since our new methods produced accurately ordered layouts with

fewer contigs than the spectral method used in Chapter 2, we can expect the resulting

assembly to be of better quality, with a smaller number of mis-assemblies. Still, it would be

interesting to quantify how improvements on the layout translate to the consensus produced.

ii Extensions of Chapter 3. In Chapter 3, we derived theoretical guarantees for circular

seriation, but with more restrictive assumptions than those used for linear seriation in Atkins

et al. [1998], which essentially rely on results specific to the ordering relation of real numbers.

Moreover, in the linear seriation case, we provided insight about the curve structure of the

Laplacian embedding through the study of the spectrum of specific Toeplitz matrices, but

we could not generalize to general Robinson matrices. An interesting work direction is to

search for theoretical guarantees about circular seriation under milder assumptions on the

125

input matrices. Another line of work concerns the normalization of the Laplacian (or of the

similarity matrix itself). Indeed, we have explored the normalization proposed by Coifman

et al. [2008], that roughly normalizes the similarity by the local density of points. It would

be interesting to compare this method to normalizations of the similarity matrix able to

make it closer to a Toeplitz matrix, such as Sinkhorn-Knopp normalization.

iii 10X Genomics data. We have mostly dealt with third-generation sequencing data in our

experiments. Such data contains long-read (tens of kbp), allowing for an easier resolution of

the repeats than with short-reads, where using additional pair-end information is necessary

to construct the layout through a scaffolding procedure. A recent development in sequencing

technology commercialized by 10X genomics combines short-reads with so-called molecu-

lar barcoding, linking short-reads to long molecules to provide long-range information. In

short, a barcode is associated to regions of DNA of large length (a few tens of kbp), and two

reads that are close to each other on a DNA strand are likely to share several barcodes. This

barcoding notably permits to call structural variants and distinguish between haplotypes

for diploid genomes (such as the human genome). The Supernova assembler [Weisenfeld

et al., 2017] is based on a short-reads assembly scheme, and the additional molecular bar-

code information is used to disambiguate the scaffolding. It would be of major interest to

see whether the barcode information is sufficient to find the layout of the short-reads with

seriation, without even computing overlaps. Specifically, we could define a pairwise similar-

ity between reads as the number of barcodes they share, and apply a clustering/reordering

method directly on it.

iv Algorithms to perform Clustering+Seriation. In Chapter 2, we attempted to assemble eu-

karyotic genomes with seriation methods. These genomes contain multiple chromosomes.

Though, due to repeats occurring in distinct chromosomes, the read-overlap based similar-

ity matrices contain non-zero values between reads coming from distinct chromosomes. We

have shown through experiments related to optical mapping that having prior information

about the chromosome assignment of the reads (given a read, know to which chromosome it

belongs) improved the quality of the assembly. In practice, we do not have such information,

and our methods need to fragment the assembly into many contigs to avoid mis-assemblies

where contigs from distinct chromosomes are mixed together. Then, in Chapter 3, we con-

ducted experiments with Hi-C frequency matrices having a block structure corresponding

to distinct chromosomes. Although the inter-chromosomes similarity is generally smaller

than the intra-chromosome similarity for Hi-C data, there are still some high similarity val-

ues between chromosomes. On synthetic data where the cluster structure is prominent, our

method can naturally split the data in sub-orderings. Indeed, Algorithm 3.3 from Chapter 3

creates a new similarity matrix from a spectral embedding of the data. When there is a clear

cluster structure in the data, it translates to the embedding and the new similarity matrix

126

can be disconnected into connected components corresponding to individual chromosomes.

Still, in most cases, with real data involving separate chromosomes, dividing the reads into

clusters can be crucial, yet it is not explicitly handled by our methods. An interesting line

of future research would be to formulate the task of performing both clustering and ordering

simultaneously as an optimization problem over permutations, and try to derive dedicated

algorithms. A possible lead could be to follow the approach of Lim and Wright [2016] using

the extended formulation of the Permutahedron [Goemans, 2014].

v Seriation with duplication on real Hi-C data from cancer genomes. In Chapter 5, we intro-

duce the problem of seriation with duplications in order to assemble genomes with structural

variants from Hi-C data. Yet, we only test our method on synthetic data. A key issue aris-

ing with real data is related to the previous point, namely that the genome is divided into

distinct chromosomes. Still, in seriation with duplications, there is an additional level of

complexity compared to regular seriation, for the clustering step also. Indeed, the cluster-

structure appears on the hidden similarity matrix S, but not on the observed, cumulative

matrix A. In Chapter 5, we consider adding a clustering step to the alternate projections

scheme. However, this only enhances the results with few duplications, on synthetic, well-

conditioned matrices that are the sum of a block matrix and a Robinson matrix. Regarding

the previous item from this list, finding a principled method solving Clustering+Seriation

could be used in the alternated projection scheme instead of regular seriation. Also, another

issue with our proposed method is its algorithmic complexity. The projection on the set of

R-matrices is done through a linear program and do not scale to large similarity matrices.

Finally, Hi-C data from cancer genomes have additional structure that is not leveraged here.

The structural variants consist of entire blocks of DNA that are duplicated and merged.

Within a block, the ordering is the same as for the reference genome. Taking this structure

into account would likely improve the method.

127

Appendix A

Supplementary Material for Chapter 2,

Application of the Spectral Method to

Genome Assembly

A.1 Running Times

In Table A.1, we give the running time of the methods evaluated in Chapter 2. Figure A.1

focuses on the runtime for the layout method (spectral algorithm) only.

A key a posteriori remark is that the implementation of the spectral method whose results

are reported here is quite slow for large matrices, as one can see in Figure A.1. The hack

proposed here was to use the Julia computing language [Bezanson et al., 2017] for large matrices.

However, we noted during the experiments of Chapter 3 that a simpler solution could be used,

while keeping all the code in python. Indeed, resorting to the pyamg solver instead of arpack

in the eigenvalue computation of the Laplacian solved the issue and enabled a speedup of an

order of magnitude for matrices with n ⇠ 104.

A.1.1 Total time

Table A.1 shows the run-time and peak memory for the previously compared methods, when

run on a 24 cores Intel Xeon E5-2640 2.50GHz node. Runtime and Max mem correspond to the

wall-clock and maximum resident set size fields of the unix /usr/bin/time -v command. The

first column (Spectral Layout) displays the running time of the layout phase of our method

in the following way: time to reorder contigs with the spectral algorithm (total time to get

fine-grained layout); the total time for the layout (including the fine-grained computation of

the position of the reads on a backbone sequence) is given between parentheses next to the time

for the ordering. The second column gives the runtime for our full pipeline, including running

minimap to obtain the overlaps. The runtime for Racon includes the time to map the reads

128

Table A.1: Running time for the different methods on the datasets presented in Section 2.3.1
(Chapter 2)

Spectral
Layout

Spectral
(full,

+Min-
imap)

Canu Minimap
+

Miniasm

Racon
after

Miniasm

Racon
after

Spectral

A. baylyi

ONT R7.3
28x

Runtime
[h:mm:ss]

0:00:23
(0:00:59)

0:12:52 0:25:55 0:00:28 0:01:54 0:01:48

Max mem
[Gb]

1.966 1.966 3.827 1.499 0.756 0.484

E. coli

ONT R7.3
30x

Runtime
[h:mm:ss]

0:00:41
(0:01:25)

0:16:15 0:28:40 0:00:13 0:04:36 0:02:14

Max mem
[Gb]

1.216 1.216 4.655 2.099 0.879 0.645

S. cere-

visiae ONT
R7.3 68x

Runtime
[h:mm:ss]

0:01:41
(0:07:60)

1:41:20 4:33:08 0:01:17 0:21:11 0:21:32

Max mem
[Gb]

12.208 12.208 4.015 8.506 2.376 2.325

S. cere-

visiae ONT
R9 86x

Runtime
[h:mm:ss]

0:03:38
(0:09:28)

2:26:44 7:15:41 0:02:14 0:23:09 0:22:03

Max mem
[Gb]

32.928 32.928 3.986 12.397 2.966 2.775

E. coli

PacBio
161x

Runtime
[h:mm:ss]

0:05:19
(0:05:44)

1:32:13 0:51:32 0:01:16 0:16:51 0:18:18

Max mem
[Gb]

21.650 21.650 3.770 9.969 8.082 4.619

S. cere-

visiae

PacBio
127x

Runtime
[h:mm:ss]

0:03:11
(0:07:01)

2:59:41 1:50:23 0:02:10 0:20:54 0:23:32

Max mem
[Gb]

32.184 32.184 3.810 16.881 4.290 4.307

to the backbone sequence with Minimap and to run Racon for the consensus (Racon requires

a backbone sequence, obtained either with Miniasm or Spectral in the present experiments).

Indeed, the Racon pipeline maps the reads to a draft sequence to get the layout and then

computes consensus sequences in windows across the genome. Our pipeline instead directly

computes the layout and then generates consensus sequences in windows across the genome

(the latter task being embarassingly parallel). Canu is faster than our method on the PacBio

datasets (probably at least because because we did not adapt our pipeline (as Canu does) to

the much higher coverage, nor to the higher fraction of chimeric reads typical of PacBio data),

but not on the ONT datasets. The memory for the spectral method can be allocated among

several cores.

A.1.2 Runtime for layout only

The running time of the sole spectral method in Figure A.1 aims to show that although our

full pipeline is not strikingly fast (as one can see in Table A.1, due to a somewhat naive

implementation), the layout itself is fast to compute.

Given the results from Figure A.1, we implemented a call to Julia for matrices of size larger

129

than 3000 in the code since its eigenvector computation scales better for large matrices but

has a non-negligible overhead for small matrices. However, as mentioned earlier, a simpler

and more efficient solution is to switch to the amg solver instead of arpack in the eigenvalue

computation (results not shown here).

130

Figure A.1: Runtime of the spectral ordering algorithm in connected components of different
sizes (across all datasets), with two solvers for the eigenvalues computations (scipy.sparse.eigsh
and the eigs function from Julia [Bezanson et al., 2017]).

131

A.2 the Bandwidth Heuristic

We present some qualitative and quantitative results to support the bandwidth heuristic.

Figure A.2 shows the distributions of overlap length for the repeat-induced, and the true

overlaps. Although these distributions intersect, the true-overlaps distribution has a longer tail,

hence long and accurate overlaps are most likely not due to repeats.

(a) A. baylyi ONT (b) S. cerevisiae ONT R7.3 (c) S. cerevisiae ONT R9

(d) A. baylyi ONT (e) S. cerevisiae ONT R7.3 (f) S. cerevisiae ONT R9

Figure A.2: Histograms of overlap scores [number of matches from minimap] (a-c) and overlap
lengths (d-f) for the ONT datasets, for outliers (blue) and inliers (green). The x-axis is in log
scale. The mapping of the reads to the reference genome with GraphMap was used to label
inliers and outliers.

Figure A.3 shows the locations of non-zero values for simulated similarity matrices thresh-

olded at several values. It illustrates that setting a threshold on the overlap score removes

outliers.

Subfigures A.3a and A.3d (respectively A.3c and A.3f) represent the similarity for reads

generated with NanoSim from the A. baylyi ONT R7.3 (respectively S. cerevisiae ONT R9)

dataset with option –perfect, which means these synthetic reads follow the same length distri-

bution than the original dataset, but have no errors, and have the coverage specified above.

The matrices A.3b and A.3e were generated from the A. baylyi ONT R7.3 dataset without

the –perfect option, which means they have the same length and error distribution than the

original data, but with higher coverage.

For perfect and noisy synthetic A. baylyi reads and with sufficient coverage, all outliers

could be removed by thresholding while keeping a connected similarity graph (all matrices in

132

the Figure are connected). On the other hand, the similarity matrix generated with S. cerevisiae

perfect reads still harbors a few outliers after removing 90% of the overlaps (with lowest score).

When increasing the threshold value, the connectivity within some individual chromosomes

will be broken before all outliers have been removed. Additional structural information (as

used in Canu or Miniasm) will be required to resolve repeats in such situations.

(a) A. baylyi simu. perfect
104X (b) A. baylyi simu. raw 104X

(c) S. cerevisiae simu. perfect
87x

(d) A. baylyi sim. perfect 104X (e) A. baylyi simu. raw 104X
(f) S. cerevisiae simu. perfect
87x

Figure A.3: Ordered similarity matrices for simulated datasets after removing 50% of the
overlaps (a-c) or 90% (d-f). The reads were simulated with NanoSim [Yang et al., 2017a], from
the A. baylyi ONT R7.3 and S. cerevisiae ONT R9 datasets.

Finally, Figure A.4 illustrates the bandwidth heuristic. It shows that an input similarity

matrix containing outliers imparts a reordered matrix with a large bandwidth (and an incorrect

reordering). In this experiment, the bandwidth is about 50 times as large as in the absence

of outliers. This significant gap (an order of magnitude difference) between the bandwidth of

the matrix reordered with the spectral algorithm depending on whether the original matrix

(ordered by increasing position of the reads) contained outliers (i.e., is band-diagonal) or not

motivated the development of the heuristic for assessing the ordering found by the spectral

algorithm, as explained in 2.2.3 (Chapter 2). However, this heuristic is not applicable when the

size of the similarity matrix is small. For instance, if the matrix is of size 100, the bandwidth

cannot exceed 100 and the use of the heuristic is precluded.

133

(a) (b)

Figure A.4: Similarity matrices containing outliers, displayed with true ordering (obtained by
mapping the reads to the reference genome with GraphMap) and generated with a subset of
A. baylyi ONT NanoSim perfect reads A.4a, and the same matrix incorrectly reordered with
the spectral algorithm A.4b.

134

A.3 Consensus accuracy

(a) A. baylyi ONT (b) E. coli ONT (c) E. coli PacBio

(d) S. cerevisiae ONT R7.3 (e) S. cerevisiae ONT R9 (f) S. cerevisiae PacBio

Figure A.5: Error-rates in consensus windows, raw reads and corrected reads for the six real
datasets.

Figure A.5 is the analog of Figure 2.8 in Chapter 2. It shows the error rate in the raw reads,

in the reads corrected with Canu, and in the consensus windows. With ONT R7.3 data, the

consensus produced by our pipeline appears more accurate than via the correction module of

Canu, while the contrary is true for PacBio data.

135

A.4 Additional Assembly Results

(a) A. baylyi ONT (b) E. coli ONT (c) E. coli PacBio

(d) A. baylyi ONT corr. (e) E. coli ONT corr. (f) E. coli PacBio corr.

Figure A.6: Ordering of the reads computed with the spectral algorithm vs true ordering
(obtained by mapping the reads to the reference genome with GraphMap) for the original (a-c)
and corrected (d-f) bacterial datasets. All contigs are artificially displayed on the same plot for
compactness.

Figures A.6 and A.7 show the layout obtained with the spectral method for all datasets

(only two of them are displayed in Chapter 2). It includes the corrected datasets (obtained by

using the correction module of canu on the raw reads). The correction slightly improves the

layout for the yeast genomes.

136

(a) ONT R7.3 (b) ONT R9 (c) PacBio

(d) ONT R7.3 corr. (e) ONT R9 corr. (f) PacBio corr.

Figure A.7: Ordering of the reads computed with the spectral algorithm vs true ordering
(obtained by mapping the reads to the reference genome with GraphMap) for the original (a-c)
and corrected (d-f) yeast (S. cerevisiae) datasets. All contigs are artificially displayed on the
same plot for compactness. The dashed lines represent the boundaries between chromosomes.

137

Table A.2: Assembly results of several assemblers across the datasets corrected with Canu

Miniasm Spectral Canu Miniasm+RaconMiniasm+Racon
(2 iter.)

Spectral+Racon

A.

baylyi

ONT
R7.3
28x
(26x)

Ref. size [bp] 3598621 3598621 3598621 3598621 3598621 3598621
Total bases [bp] 3493724 3523055 3516777 3540178 3540766 3522315
Ref. chr. [#] 1 1 1 1 1 1
Contigs [#] 5 2 (9) 2 5 5 2 (9)

Aln. bp ref [bp] 3594663(99.89%)3596069(99.93%)3595264(99.91%)3595193(99.90%)3595193(99.90%)3596269(99.93%)
Aln. bp query [bp] 3492976(99.98%)3522804(99.99%)3516440(99.99%)3539856(99.99%)3540444(99.99%)3522311(100.00%)
Misassemblies [#] 2 1 2 2 2 1

Avg. identity 96.40 97.87 97.61 97.79 97.85 97.86

E. coli

ONT
R7.3
30x
(27x)

Ref. size [bp] 4641652 4641652 4641652 4641652 4641652 4641652
Total bases [bp] 4597538 4613973 4627578 4617120 4617100 4613521
Ref. chr. [#] 1 1 1 1 1 1
Contigs [#] 3 1 (8) 2 3 3 1 (8)

Aln. bp ref [bp] 4639179(99.95%)4639815(99.96%)4639396(99.95%)4639355(99.95%)4639355(99.95%)4639420(99.95%)
Aln. bp query [bp] 4597389(100.00%)4613972(100.00%)4627577(100.00%)4617119(100.00%)4617099(100.00%)4613520(100.00%)
Misassemblies [#] 2 2 4 2 2 2

Avg. identity 98.89 99.43 99.41 99.42 99.43 99.43

S.

cere-

visiae

ONT
R7.3
68x
(38x)

Ref. size [bp] 12157105 12157105 12157105 12157105 12157105 12157105
Total bases [bp] 11814836 11959669 12112186 11877015 11876882 11949674
Ref. chr. [#] 17 17 17 17 17 17
Contigs [#] 29 67 (126) 37 28 28 67 (126)

Aln. bp ref [bp] 12061456(99.21%)11963869(98.41%)12068379(99.27%)12062161(99.22%)12061809(99.22%)11969742(98.46%)
Aln. bp query [bp] 11814252(100.00%)11930637(99.76%)12069253(99.65%)11876268(99.99%)11876225(99.99%)11925068(99.79%)
Misassemblies [#] 19 22 26 20 20 24

Avg. identity 97.81 98.32 98.36 98.39 98.39 98.38

S.

cere-

visiae

ONT
R9 86x
(40x)

Ref. size [bp] 12157105 12157105 12157105 12157105 12157105 12157105
Total bases [bp] 11946760 12081487 12184545 11970672 11970529 12061759
Ref. chr. [#] 17 17 17 17 17 17
Contigs [#] 21 65 (108) 30 20 20 65 (108)

Aln. bp ref [bp] 12055448(99.16%)11851023(97.48%)12110461(99.62%)12056562(99.17%)12056734(99.17%)11879607(97.72%)
Aln. bp query [bp] 11944969(99.99%)12043650(99.69%)12184122(100.00%)11970041(99.99%)11969729(99.99%)12040521(99.82%)
Misassemblies [#] 21 32 26 22 22 38

Avg. identity 98.83 98.90 99.06 99.06 99.05 99.04

E. coli

PacBio
161x
(38x)

Ref. size [bp] 4641652 4641652 4641652 4641652 4641652 4641652
Total bases [bp] 4642736 4663427 4670125 4642423 4642443 4662179
Ref. chr. [#] 1 1 1 1 1 1
Contigs [#] 1 1 (1) 1 1 1 1 (1)

Aln. bp ref [bp] 4639048(99.94%)4640514(99.98%)4641652(100.00%)4641623(100.00%)4641616(100.00%)4641652(100.00%)
Aln. bp query [bp] 4639955(99.94%)4662891(99.99%)4670125(100.00%)4642423(100.00%)4642443(100.00%)4662172(100.00%)
Misassemblies [#] 2 4 4 4 4 4

Avg. identity 99.59 99.97 99.99 99.99 99.99 99.99

S.

cere-

visiae

PacBio
127x
(37x)

Ref. size [bp] 12157105 12157105 12157105 12157105 12157105 12157105
Total bases [bp] 12174558 12232964 12346261 12194786 12193481 12217702
Ref. chr. [#] 17 17 17 17 17 17
Contigs [#] 26 55 (86) 29 26 26 55 (86)

Aln. bp ref [bp] 12036689(99.01%)12008560(98.78%)12091871(99.46%)12042104(99.05%)12041381(99.05%)12018488(98.86%)
Aln. bp query [bp] 12151704(99.81%)12179852(99.57%)12304982(99.67%)12177020(99.85%)12175701(99.85%)12172316(99.63%)
Misassemblies [#] 74 75 76 76 76 80

Avg. identity 99.22 99.78 99.87 99.88 99.88 99.86

138

Table A.2 provides the assembly results obtained by using the reads corrected by Canu’s cor-

rection module. These corrected datasets were obtained by running Canu with the saveReadCorrections=True

option on the datasets presented in 2.3.1. Canu includes correction and trimming, resulting

in a removal of short reads and a lower coverage than in the original raw data. However, it is

the coverage of the raw dataset which is relevant since higher coverage in the latter will result

in longer reads in the corrected data, even though the coverage in all corrected datasets are

roughly below 40x. We indicate the coverage of the corrected datasets in parentheses next to

the coverage of the original dataset. For the spectral method, we give the results after the con-

tig merging step (see 2.3.3). The number of contigs before this post-processing is given between

parentheses. Unlike with raw data, the polishing effect of adding Racon to our pipeline is not

significant. All methods have comparable results on the corrected datasets. The best result in

terms of average identity only is indicated in bold (but other metrics should also be used to

compare the assemblies).

Table A.3 is a mis-assembly report obtained with QUAST [Gurevich et al., 2013] (only a

subset of the report is shown). Given the accuracy of the Miniasm assembly, it is likely that the

zeros in the Miniasm column are due to the fact that the algorithm failed to correctly match the

sequences, rather than the absence of misassemblies. On all ONT datasets, the Spectral and

Spectral+Racon methods are among those yielding the least global misassemblies (relocation,

translocation or inversions).

Table A.4 is the analog of Table A.3 for the corrected datasets. We observe that the number

of local misassemblies is smaller than with the uncorrected data, but the number of global ones

is not. None of the assemblers has a significantly smaller or larger number of misassemblies

compared to the others.

A.5 Implementation and reproducibility

Spectrassembler is implemented in python and available on https://github.com/antrec/

spectrassembler with a usage example of how to reproduce the results obtained with E.

coli ONT data. We used the following software :

• SPOA - https://github.com/rvaser/spoa

• Minimap - https://github.com/lh3/minimap

• Miniasm - https://github.com/lh3/miniasm

• Canu v1.4 - https://github.com/marbl/canu

• Racon - https://github.com/isovic/racon

• MUMmer’s DNAdiff version 1.2, NUCmer version 3.07 - http://mummer.sourceforge.

net/

139

• QUAST - https://sourceforge.net/projects/quast/files/

• GraphMap - https://github.com/isovic/GraphMap

• errorrates.py from samscripts - https://github.com/isovic/samscripts

• NanoSim - https://github.com/bcgsc/NanoSim

SPOA is used in our pipeline for performing multiple sequence alignment. For generating

the consensus in windows, it was run with the options : -l 2 -r 0 -x -3 -o -5 -e -2

(semi-global alignment with custom gap and mismatch penalties). minimap was run with

options -Sw5 -L100 -m0 -t12 (long reads specific values and multithreading with 12 threads).

miniasm was run with default parameters when used as a comparative method. Canu was

run with saveReadCorrections=True option and data specifications (e.g., genomeSize=3.6m

-nanopore-raw). Racon was run with the alignment generated with minimap (to map the

draft assembly, either from miniasm or from our pipeline) with default parameters. GraphMap

[Sović et al., 2016] was used to generate alignment between the reads and the reference genome

in order to have the position of the reads and their error rate (which was computed with the

script errorrates.py). DNAdiff and QUAST were used to evaluate the assemblies. To con-

catenate the contigs obtained with our method, we extracted their ends (end length used :

35kbp) and used minimap with options -Sw5 -L500 to compute overlaps between them, and

ran miniasm with options -1 -2 -e 0 -c 0 -r 1,0 (no pre-selection, no cutting small unitigs,

no overlap drop). The related script is available in the tools folder of our GitHub code. We also

publish the other scripts we used (although they may be poorly written and undocumented),

including our implementation of the optical mapping algorithm of Nagarajan et al. [2008], in

the tools folder.

140

Table A.3: Misassemblies report of the different assemblers across the various datasets

Miniasm Spectral Canu Miniasm+ Miniasm+ Spectral+
Racon Racon

(x2)
Racon

A.

baylyi

ONT
R7.3
28x

Relocations [#] 0 0 2 2 2 0
Translocations [#] 0 0 0 0 0 0

Inversions [#] 0 0 0 0 0 0
Missmbld. contigs [#] 0 0 1 1 1 0

Missmbld. contigs length [bp] 0 0 3513432 1993457 1994286 0
Local misassemblies [#] 0 7 5 0 0 0

Mismatches [#] 0 0 0 0 0 0
Indels [#] 0 0 0 0 0 0

Indels length [bp] 0 0 0 0 0 0

E. coli

ONT
R7.3
30x

Relocations [#] 0 2 6 3 3 2
Translocations [#] 0 0 0 0 0 0

Inversions [#] 0 0 2 0 0 0
Missmbld. contigs [#] 0 1 2 2 2 1

Missmbld. contigs length [bp] 0 2160837 4625543 3743081 3740186 2148788
Local misassemblies [#] 0 50 2 2 2 3

Mismatches [#] 0 55 0 0 0 0
Indels [#] 0 1 1 0 0 0

Indels length [bp] 0 30 1 0 0 0

S.

cere-

visiae

ONT
R7.3
68x

Relocations [#] 0 0 17 6 7 1
Translocations [#] 0 7 17 12 12 10

Inversions [#] 0 0 0 0 0 0
Missmbld. contigs [#] 0 7 16 11 11 10

Missmbld. contigs length [bp] 0 1223452 4852688 4638491 4638515 909031
Local misassemblies [#] 0 57 17 9 10 12

Mismatches [#] 0 63 0 0 0 0
Indels [#] 0 3 2 3 2 1

Indels length [bp] 0 90 124 167 132 54

S.

cere-

visiae

ONT
R9 86x

Relocations [#] 0 5 22 9 9 4
Translocations [#] 0 18 17 9 10 32

Inversions [#] 0 0 0 0 0 0
Missmbld. contigs [#] 0 11 11 10 11 10

Missmbld. contigs length [bp] 0 3149392 5957900 4545988 4563372 2661541
Local misassemblies [#] 0 41 88 11 11 30

Mismatches [#] 0 0 0 0 0 0
Indels [#] 0 2 4 3 3 2

Indels length [bp] 0 161 250 208 207 157

E. coli

PacBio
161x

Relocations [#] 0 3 2 2 2 2
Translocations [#] 0 0 0 0 0 0

Inversions [#] 0 2 2 2 2 2
Missmbld. contigs [#] 0 1 1 1 1 1

Missmbld. contigs length [bp] 0 2848876 4670125 4653228 4645420 2818134
Local misassemblies [#] 0 66 2 3 2 2

Mismatches [#] 0 0 0 0 0 0
Indels [#] 0 0 0 1 0 0

Indels length [bp] 0 0 0 66 0 0

S.

cere-

visiae

PacBio
127x

Relocations [#] 0 17 31 21 20 18
Translocations [#] 0 40 44 39 38 50

Inversions [#] 0 0 1 1 1 0
Missmbld. contigs [#] 0 28 24 22 21 31

Missmbld. contigs length [bp] 0 6470761 10214689 9569247 9421896 6683508
Local misassemblies [#] 0 157 26 42 30 33

Mismatches [#] 0 0 0 5 0 0
Indels [#] 0 3 8 9 6 2

Indels length [bp] 0 132 260 416 245 78
141

Table A.4: Misassemblies report of the different assemblers across the datasets corrected with
Canu

Miniasm Spectral Canu Miniasm+ Miniasm+ Spectral+
Racon Racon

(x2)
Racon

A.

baylyi

ONT
R7.3
28x
(26x)

Relocations [#] 2 1 2 2 2 1
Translocations [#] 0 0 0 0 0 0

Inversions [#] 0 0 0 0 0 0
Missmbld. contigs [#] 1 1 1 1 1 1

Missmbld. contigs length [bp] 1949981 3245660 2802152 1976843 1977319 3244955
Local misassemblies [#] 4 1 3 2 1 0

Mismatches [#] 0 0 0 0 0 0
Indels [#] 0 0 0 0 0 0

Indels length [bp] 0 0 0 0 0 0

E. coli

ONT
R7.3
30x
(27x)

Relocations [#] 2 2 2 2 2 2
Translocations [#] 0 0 0 0 0 0

Inversions [#] 0 0 2 0 0 0
Missmbld. contigs [#] 1 1 2 1 1 1

Missmbld. contigs length [bp] 3945897 4613973 4627578 3962753 3962721 4613521
Local misassemblies [#] 5 2 2 2 2 2

Mismatches [#] 58 0 0 77 77 77
Indels [#] 3 1 1 2 2 2

Indels length [bp] 13 1 1 2 2 2

S.

cere-

visiae

ONT
R7.3
68x
(38x)

Relocations [#] 6 7 14 7 6 9
Translocations [#] 13 15 12 13 14 15

Inversions [#] 0 0 0 0 0 0
Missmbld. contigs [#] 11 15 14 11 11 15

Missmbld. contigs length [bp] 5025689 2643657 2808407 5053047 5052895 2634865
Local misassemblies [#] 12 26 10 6 7 10

Mismatches [#] 21 0 0 0 0 0
Indels [#] 3 1 1 3 1 1

Indels length [bp] 122 78 78 235 78 78

S.

cere-

visiae

ONT
R9 86x
(40x)

Relocations [#] 11 7 13 11 11 8
Translocations [#] 10 25 13 11 11 30

Inversions [#] 0 0 0 0 0 0
Missmbld. contigs [#] 10 12 12 9 9 13

Missmbld. contigs length [bp] 4954988 3199985 3534917 4573865 4573600 3361506
Local misassemblies [#] 12 58 8 9 10 16

Mismatches [#] 55 0 0 0 0 0
Indels [#] 1 0 1 1 1 0

Indels length [bp] 7 0 54 54 54 0

E. coli

PacBio
161x
(38x)

Relocations [#] 2 2 2 2 2 2
Translocations [#] 0 0 0 0 0 0

Inversions [#] 0 2 2 2 2 2
Missmbld. contigs [#] 1 1 1 1 1 1

Missmbld. contigs length [bp] 4642736 4663427 4670125 4642423 4642443 4662179
Local misassemblies [#] 13 5 2 2 2 3

Mismatches [#] 0 0 0 0 0 0
Indels [#] 0 0 0 0 0 0

Indels length [bp] 0 0 0 0 0 0

S.

cere-

visiae

PacBio
127x
(37x)

Relocations [#] 29 22 31 33 33 24
Translocations [#] 44 52 44 42 42 56

Inversions [#] 1 1 1 1 1 0
Missmbld. contigs [#] 22 33 24 22 22 34

Missmbld. contigs length [bp] 10163939 9816851 10214692 10180811 10178266 9840033
Local misassemblies [#] 49 59 26 24 25 28

Mismatches [#] 28 0 0 0 0 0
Indels [#] 8 6 8 5 6 7

Indels length [bp] 462 216 260 147 153 222142

Appendix B

Supplementary Material for Chapter 3,

Multi-dimensional Spectral Ordering :

Reconstructing Linear Orderings via

Spectral Embedding

Notation: We will commonly denote � a permutation of {1, . . . , n} and S the set of all such

permutations. When represented matricially, � will often be noted Π while cyclic permutation

of {1, . . . , n} will be noted as ⌧ . A will usually denote the matrix of raw pair-wise similarities. S

will denote the similarity matrix resulting from Algorithm 3.3, and k a neighboring parameter.

Finally we use indexed version ⌫ (resp., �) to denote eigenvalues of a similarity matrix (resp.

a graph Laplacian).

B.1 Additional Algorithms

B.1.1 Merging connected components

The new similarity matrix S computed in Algorithm 3.3 is not necessarily the adjacency matrix

of a connected graph, even when the input matrix A is. For instance, when the number of

nearest neighbors k is low and the points in the embedding are non uniformly sampled along

a curve, S may have several, disjoint connected components (let us say there are C of them

in the following). Still, the baseline Algorithm 3.1 requires a connected similarity matrix as

input. When S is disconnected, we run 3.1 separately in each of the C components, yielding C

sub-orderings instead of a global ordering.

However, since A is connected, we can use the edges of A between the connected components

to merge the sub-orderings together. Specifically, given the C ordered subsequences, we build a

meta similarity matrix between them as follows. For each pair of ordered subsequences (ci, cj),

143

we check whether the elements in one of the two ends of ci have edges with those in one of

the two ends of cj in the graph defined by A. According to that measure of similarity and

to the direction of these meta-edges (i.e., whether it is the beginning or the end of ci and cj

that are similar), we merge together the two subsequences that are the closest to each other.

We repeat this operation with the rest of the subsequences and the sequence formed by the

latter merge step, until there is only one final sequence, or until the meta similarity between

subsequences is zero everywhere. We formalize this procedure in the greedy Algorithm B.1,

which is implemented in the package at https://github.com/antrec/mdso.

Given C reordered subsequences (one per connected component of S) (ci)i=1,...,C , that form

a partition of {1, . . . , n}, and a window size h that define the length of the ends we consider (h

must be smaller than half the smallest subsequence), we denote by c�i (resp. c+i) the first (resp.

the last) h elements of ci, and a(c✏i , c
✏0

j) =
P

u2c✏i ,v2c✏
0

j
Auv is the similarity between the ends

c✏i and c✏
0

j , for any pair ci, cj , i 6= j 2 {1, . . . , C}, and any combination of ends ✏, ✏0 2 {+,�}.
Also, we define the meta-similarity between ci and cj by,

s(ci, cj) , max(a(c+i , c
+
j), a(c

+
i , c

�
j), a(c

�
i , c

+
j), a(c

�
i , c

�
j)) , (B.1)

and (✏i, ✏j) 2 {+,�}2 the combination of signs where the argmax is realized, i.e., such that

s(ci, cj) = a(c✏ii , c
✏j
j). Finally, we will use c̄i to denote the ordered subsequence ci read from the

end to the beginning, for instance if c = (1, . . . , n), then c̄ = (n, . . . , 1).

144

Algorithm B.1 Merging connected components

Input: C ordered subsequences forming a partition P = (c1, . . . , cC) of {1, . . . , n}, an initial

similarity matrix A, a neighborhood parameter h.

1: while C > 1 do

2: Compute meta-similarity S̃ such that S̃ij = s(ci, cj), and meta-orientation (✏i, ✏j), for all

pairs of subsequences with equation B.1.

3: if S̃ = 0 then

4: break

5: end if

6: find (i, j) 2 argmax S̃, and (✏i, ✏j) the corresponding orientations.

7: if (✏i, ✏j) = (+,�) then

8: cnew (ci, cj)

9: else if (✏i, ✏j) = (+,+) then

10: cnew (ci, c̄j)

11: else if (✏i, ✏j) = (�,�)) then

12: cnew (c̄i, cj)

13: else if (✏i, ✏j) = (�,+)) then

14: cnew (c̄i, c̄j)

15: end if

16: Remove ci and cj from P .

17: Add cnew to P .

18: C C � 1

19: end while

Output: Total reordered sequence cfinal, which is a permutation if C = 1 or a set of reordered

subsequences if the loop broke at line 5.

B.1.2 Computing Kendall-Tau score between two permutations describing a circular

ordering

Suppose we have data having a circular structure, i.e., we have n items that can be laid on a

circle such that the higher the similarity between two elements is, the closer they are on the

circle. Then, given an ordering of the points that respects this circular structure (i.e., a solution

to Circular Seriation), we can shift this ordering without affecting the circular structure. For

instance, in Figure B.1, the graph has a CR affinity matrix whether we use the indexing printed

in black (outside the circle), or a shifted version printed in purple (inside the circle). Therefore,

we transpose the Kendall-Tau score between two permutations to the case where we want to

compare the two permutations up to a shift with Algorithm B.2

145

1

2

3

4

5
6

2

3

4

5

6
1

Figure B.1: Illustration of the shift-invariance of permutations solution to a Circular Seriation
problem.

Algorithm B.2 Comparing two permutation defining a circular ordering

Input: Two permutations vectors of size n, � =
�
�(1), . . . ,�(n)

�
and ⇡ =

�
⇡(1), . . . ,⇡(n)

�

1: for i = 1 to n do

2: KT (i) Kendall-Tau(�,
�
⇡(i),⇡(i+ 1), . . . ,⇡(n),⇡(1), . . . ,⇡(i� 1)

�
)

3: end for

4: best score maxi=1,...,nKT (i)

Output: best score

B.2 Additional Numerical Results

B.2.1 Genome assembly experiment (detailed)

Here we provide details about the application of seriation methods for genome assembly and

details about our experiment. We used the E. coli reads from Loman et al. [2015]. They

were sequenced with Oxford Nanopore Technology (ONT) MinION device. The sequencing ex-

periment is detailed in http://lab.loman.net/2015/09/24/first-sqk-map-006-experiment

where the data is available. We also used the A. baylyi dataset sequenced at the Genoscope,

introduced in Chapter 2, Section 2.3.1. The overlaps between raw reads were computed with

minimap2 [Li, 2018] with the ONT preset (minimap2 -x ava ont). The similarity matrix was

constructed directly from the output of minimap2. For each pair (i, j) of reads where an overlap

was found, we let the number of matching bases be the similarity value associated (and zero

where no overlap are found). The only preprocessing on the matrix is that we set a threshold to

remove short overlaps. In practice we set the threshold to the median of the similarity values,

i.e., we discard the lower half of the overlaps. We then apply our method to the similarity

matrix. The laplacian embedding is shown in Figure B.2a. We used no scaling of the Laplacian

146

as it corrupted the filamentary structure of the embedding, but we normalized the similar-

ity matrix beforehand with W D�1WD�1 as in Coifman and Lafon [2006]. The resulting

similarity matrix S computed from the embedding in Algorithm 3.3 is disconnected. Then,

Algorithm 3.1 is applied in each connected component, yielding a fragmented assembly with

correctly ordered contigs, as shown in Figure B.2b. However, if the new similarity matrix S is

disconnected, the input matrix A is connected. The fragmentation happened while “scanning”

the nearest-neighbors from the embedding. One can therefore merge the ordered contigs using

the input matrix A as follows. For each contig, we check from A if there are non-zero overlaps

between reads at the edges of that contig and some reads at the edges of another contig. If so,

we merge the two contigs, and repeat the procedure until there is only one contig left (or until

there is no more overlaps between edges from any two contigs). This procedure is detailed in

Algorithm B.1. Note that the E. coli genome is circular, therefore computing the layout should

be casted as a Circular Seriation problem, as illustrated in Figure 3.1. Yet, since the genome

is fragmented in subsequences since S is disconnected, we end up using Algorithm 3.1 in each

connected component, i.e., solving an instance of Linear Seriation in each contig.

The experiment can be reproduced with the material on https://github.com/antrec/

mdso, and the parameters easily varied. Overall, the final ordering found is correct when the

threshold on the overlap-based similarity is sufficient (in practice, above ⇠ 50% of the non-

zero values for E. coli, and ⇠ 70% for A. baylyi). When the threshold increases or when the

number of nearest neighbors k from Algorithm 3.3 decreases, the new similarity matrix S gets

more fragmented, but the final ordering remains the same after the merging procedure, except

for very large values where many reads end up with no overlap with any other read. A good

heuristic to choose the threshold value is to take the highest value that leaves the resulting

merged component contiguous (and of size comparable to the number of input reads, meaning

that few reads lost all their overlaps/edges in the thresholding procedure).

B.2.2 Gain over baseline

In Figure 3.5, each curve is the mean of the Kendall-tau (a score directly interpretable by prac-

titioners) over many different Gaussian random realizations of the noise. The shaded confidence

interval represents the area in which the true expectation is to be with high probability but

not the area in which the score of an experiment with a given noisy similarity would be. As

mentioned in the main text, the shaded interval is the standard deviation divided by
p
nexps,

since otherwise the plot was hard to read, as the intervals crossed each others.

Practitioners may use this method in one-shot (e.g. for one particular data-set). In that

case, it would be more relevant to show directly the standard deviation on the plots, which is

the same as what is displayed, but multiplied by 10. Then, the confidence intervals between

the baseline and our method would cross each other. However, the standard deviation on all

experiments is due to the fact that some instances are more difficult to solve than some others.

147

On the difficult instances, the baseline and our method perform more poorly than on easy

instances. However, we also computed the gain over the baseline, i.e., the difference of score

between our method and the baseline, for each experiment, and it is always, or almost always

positive, i.e., our method almost always beats the baseline although the confidence intervals

cross each other.

B.2.3 Numerical results with KMS matrices

In Figure B.3 we show the same plots as in Section 3.6 but with matrices A such that Aij =

e↵|i�j|, with ↵ = 0.1 and n = 500.

B.2.4 Sensitivity to parameter k (number of neighbors)

Here we show how our method performs when we vary the parameter k (number of neighbors at

step 4 of Algorithm 3.3), for both linearly decrasing, banded matrices, Aij = max
�
c� |i� j|, 0,

�

(as in Section 3.6), in Figure B.4 and with matrices A such that Aij = e↵|i�j|, with ↵ = 0.1

(Figure B.5.

We observe that the method performs roughly equally well with k in a range from 5 to 20,

and that the performances drop when k gets too large, around k = 30. This can be interpreted

as follows. When k is too large, the assumption that the points in the embedding are locally

fitted by a line no longer holds. Note also that in practice, for small values of k, e.g., k = 5, the

new similarity matrix S can be disconnected, and we have to resort to the merging procedure

described in Algorithm B.1.

B.2.5 Sensitivity to the normalization of the Laplacian

We performed experiments to compare the performances of the method with the default Lapla-

cian embedding (d-LE) (red curve in Figure B.6 and B.7) and with two possible normalized

embeddings ((↵, d)-LE) (blue and black curve). We observed that with the default d-LE, the

performance first increases with d, and then collapses when d gets too large. The CTD scaling

(blue) has the same issue, as the first d eigenvalues are roughly of the same magnitude in our

settings. The heuristic scaling (↵, d)-LE with ↵k = 1/
p
k that damps the higher dimensions

yields better results when d increases, with a plateau rather than a collapse when d gets large.

We interpret these results as follows. With the (d-LE), Algorithm 3.3, line 5 treats equally all

dimensions of the embedding. However, the curvature of the embedding tends to increase with

the dimension (for CR matrix, the period of the cosines increases linearly with the dimension).

The filamentary structure is less smooth and hence more sensitive to noise in high dimensions,

which is why the results are improved by damping the high dimensions (or using a reasonably

small value for d).

148

B.2.6 Supplementary Figures for Hi-C data experiments

B.3 Proof of Theorem 3.3.2

In this Section, we prove Theorem 3.3.2. There are many technical details, notably the distinc-

tion between the cases n even and odd. The key idea is to compare the sums involved in the

eigenvalues of the circulant matrices A 2 C⇤
R. It is the sum of the bk times values of cosines.

For �1, we roughly have a reordering inequality where the ordering of the bk matches those of

the cosines. For the following eigenvalues, the set of values taken by the cosines is roughly the

same, but it does not match the ordering of the bk. Finally, the eigenvectors of the Laplacian

of A are the same than those of A for circulant matrices A, as observed in §3.3.3.

We now introduce a few lemmas that will be useful in the proof.

Notation. In the following we denote z
(m)
k , cos(2⇡km/n) and S

(m)
p ,

Pp
k=1 z

(m)
k . Let’s

define Zn = {cos(2⇡k/n) | k 2 N}\{�1; 1}. Depending on the parity of n, we will write n = 2p

or n = 2p + 1. Hence we always have p =
⌅
n
2

⇧
. Also when m and n are not coprime we will

note m = dm0 as well as n = dn0 with n0 and m0 coprime.

B.3.1 Properties of sum of cosines.

The following lemma gives us how the partial sum sequence (S
(m)
q) behave for q = p or q = p�1

as well as it proves its symmetric behavior in (B.3).

Lemma B.3.1. For z
(m)
k = cos(2⇡kmn), n = 2p+ 1 and any m = 1, . . . , p

S(m)
p ,

p
X

k=1

z
(m)
k = �1

2
. (B.2)

Also, for 1  q  p/2,

S
(1)
p�q � S(1)

q . (B.3)

For n and m � 2 even (n = 2p), we have

S
(1)
p�1�q = S(1)

q for 1  q  (p� 1)/2 (B.4)

S
(1)
p�1 = 0 and S

(m)
p�1 = �1 . (B.5)

Finally for n even and m odd we have

S(m)
p = S(1)

p = �1 . (B.6)

Proof.

149

Let us derive a closed form expression for the cumulative sum S
(m)
q , for any m, q 2 {1, . . . , p}

S
(m)
q =

Pq
k=1 z

(m)
k = Re

⇣
Pq

k=1 e
2i⇡km

n

⌘

= Re
⇣

e2i⇡m/n 1�e2i⇡qm/n

1�e2i⇡m/n

⌘

= cos
�
⇡(q + 1)m/n

� sin(⇡qm/n)
sin(⇡m/n) .

(B.7)

Let us prove equation (B.2) with the latter expression for q = p. Given that n = 2p+ 1 =

2(p+ 1/2), we have,

⇡(p+ 1)m

n
=

⇡(p+ 1/2 + 1/2)m

2(p+ 1/2)
=

⇡m

2
+

⇡m

2n
,

⇡pm

n
=

⇡(p+ 1/2� 1/2)m

2(p+ 1/2)
=

⇡m

2
� ⇡m

2n
.

Now, by trigonometric formulas, we have,

cos

✓
⇡m

2
+ x

◆

=

8

><

>:

(�1)m/2 cos (x), if m is even

(�1)(m+1)/2 sin (x), if m is odd

sin

✓
⇡m

2
� x

◆

=

8

><

>:

(�1)(1+m/2) sin (x), if m is even

(�1)(m�1)/2 cos (x), if m is odd

It follows that, for any m,

cos

✓
⇡m

2
+ x

◆

sin

✓
⇡m

2
� x

◆

= � cos (x) sin (x) = �1

2
sin (2x)

Finally, with x = ⇡m/(2n), this formula simplifies the numerator appearing in equation (B.7)

and yields the result in equation (B.2).

Let us now prove equation (B.3) with a similar derivation. Let f(q) , cos
�
⇡(q+1)/n

�
sin(⇡q/n),

defined for any real q 2 [1, p/2]. We wish to prove f(p � q) � f(q) for any integer q 2
{1, . . . , bp/2c}. Using n = 2(p+ 1/2), we have,

⇡(p� q + 1)

n
=

⇡(p+ 1/2� (q � 1/2))

2(p+ 1/2)
=

⇡

2
� ⇡(q � 1/2)

n
,

⇡(p� q)

n
=

⇡(p+ 1/2� (q + 1/2))

2(p+ 1/2)
=

⇡

2
� ⇡(q + 1/2)

n
.

150

Using cos (⇡/2� x) = sin (x) and sin (⇡/2� x) = cos (x), we thus have,

f(p� q) = cos
�
⇡(q + 1/2)/n

�
sin(⇡(q � 1/2)/n) = f(q � 1/2) (B.8)

To conclude, let us observe that f(q) is non-increasing on [1, p/2]. Informally, the terms

{z1k}1kq appearing in the partial sums S(1)
q are all non-negative for q  p/2. Formally, remark

that the derivative of f , df/dq(q) = (⇡/n) cos
�
⇡(2q + 1)/n

�
is non-negative for q 2 [1, p/2].

Hence, for q  p/2, f(q � 1/2) � f(q), which ends the proof of equation (B.3).

To get the first equality of (B.5), from the exact form in (B.7), we have (n = 2p)

S
(1)
p�1 = cos(⇡p/(2p))

sin(⇡(p� 1)/n)

sin(⇡/n)
= 0 .

For the second equality in (B.5), we have (m = 2q):

Sm
p�1 = cos(⇡q)

sin(⇡q � ⇡m/n)

sin(⇡m/n)
= (�1)q�(�1)

q sin(⇡m/n)

sin(⇡m/n)
= �1 .

Finally to get (B.6), let us write (n = 2p and m odd):

S(m)
p = (�1)m+1 cos(⇡(p+ 1)m/n)

sin(⇡m/n)
= (�1)m+1 cos(⇡m/2 + ⇡m/n)

sin(⇡m/n)

= (�1)m sin(⇡m/2) = �1 .

The following lemma gives an important property of the partial sum of the z
(m)
k that is

useful when combined with proposition B.3.3.

Lemma B.3.2. Denote by z
(m)
k = cos(2⇡km/n). Consider first n = 2p and m even. For

m = 1, . . . , p and q = 1, . . . , p� 2

S(1)
q =

q
X

k=1

z
(1)
k �

q
X

k=1

z
(m)
k = S(m)

q . (B.9)

Otherwise we have for every (m, q) 2 {1, . . . , p}2

S(1)
q > S(m)

q , (B.10)

with equality when q = p.

Proof. Case m and n coprime. Values of
�
z
(m)
k

�

k=1,...,p
are all distinct. Indeed z

(m)
k = z

(m)
k0

implies that n divides k + k0 or k � k0. It is impossible (the range of k + k0 is [2, 2p]) unless

k = k0.

151

Case m and n not coprime. m = dm0 and n = dn0, with d � 3. In that situation we need

to distinguish according to the parity of n.

Case n = 2p + 1. Let’s first remark that
�
z
(1)
k

�

k=1,...,p
takes all values but two (�1 and

1) of the cosinus of multiple of the angle 2⇡
n , e.g.

�
z
(1)
k

�

k=1,...,p
⇢ Zn. Also (z

(1)
k)k=1,...,p is

non-increasing.

Let’s prove (B.10) by distinguishing between the various values of q.

• Consider q = p � (n0 � 1), . . . , p. From (B.2) in lemma (B.3.2), we have S
(1)
p = S

(m)
p .

The
�
z
(1)
k

�

k
are ordered in non-increasing order and the

�
z
(m)
k

�

k=p�n0+1,...,p
take value in

Zn [{1} without repetition (it would requires k ± k0 ⇠ 0 [n0]). Also the partial sum of

z
(1)
k starting from the ending point p are lower than any other sequence taking the same

or greater value without repetition. Because 1 is largest than any possible value in Zn,

we hence have

p
X

k=q

z
(1)
k 

p
X

k=q

z
(m)
k for any q = p� (n0 � 1), . . . , p . (B.11)

Since S
(m)
q = S

(m)
p �Pp

k=q+1 z
(m)
k , (B.11) implies (B.10) for that particular set of q.

• For q = 1, . . . , n0 � 1 it is the same type of argument. Indeed the (z
(1)
k)k takes the

highest values in Zn in decreasing order, while (z
(m)
k)k takes also its value in Zn (because

z
(m)
q 6= 1). This concludes (B.10).

Note that when n0 � p+1
2 , (B.10) is then true for all q. In the sequel, let’s then assume

that this is not the case, e.g. n0 < p+1
2 .

• For q = n0�1, . . . ,
⌅p
2

⇧
, the z

(1)
q are non-negative. Hence S

(1)
q is non-decreasing and lower

bounded by S
(1)
n0�1. Also because S

(m)
n0 = 0 and S

(1)
n0�1 � S

(m)
k for k = 1, . . . , n0, it is true

that for all q in the considered set, S(m)
q is upper-bounded by S

(1)
n0�1. All in all it shows

(B.10) for these values of q.

• For q =
⌅p
2

⇧
+ 1, . . . , p � n0, we apply (B.3) with q = n0 (and indeed n0  p

2) to get

S
(1)
p�n0 � S

(1)
n0 . Because S

(m)
q is upper-bounded by S

(1)
n0�1, it follows that S

(1)
p�n0 � S

(m)
q .

Finally since (S
(1)
q) is non-increasing for the considered sub-sequence of q, (B.10) is true.

Case n = 2p. Here
�
z
(1)
k

�

k=1,...,p
takes unique values in Zn [{�1}. We also need to

distinguish according to the parity of m.

•
�
z
(m)
k

�

k=1,...,n0�1
takes also unique value in Zn. We similarly get (B.10) for q = 1, . . . , n0�

1, and for q = n0 because S
(m)
n0 = 0.

152

• Consider m odd, from (B.6), S(m)
p = S

(1)
p = �1 so that we can do the same reasoning as

with n odd to prove (B.10) for q = p � n0 + 1, . . . , p and q = 1, . . . , n0. The remaining

follows from the symmetry property (B.4) of the sequence (S
(1)
q)q in Lemma B.3.1.

• m and n even, we have that S
(1)
p�1 = 0 and S

(m)
p�1 = �1 so that

S
(1)
p�1 � S

(m)
p�1 + 1 .

S
(1)
q � S

(m)
q for q < p� 1 follows with same techniques as before.

B.3.2 Properties on R-Toeplitz circular matrix.

This proposition is a technical method that will be helpful at proving that the eigenvalues of a

R-circular Toeplitz matrix are such that ⌫1 > ⌫m.

Proposition B.3.3. Suppose than for any k = 1, . . . , q :

Wk ,

kX

i=1

wi �
kX

i=1

w̃i , W̃k ,

with (wi) and (w̃i) two sequences of reals. Then, if (bk)k is non increasing and non negative,

we have

q
X

k=1

bkwk �
q
X

k=1

bkw̃k . (B.12)

Proof. We have

q
X

k=1

bkwk =

q
X

k=1

bk(Wk �Wk�1)

= bq
|{z}

�0

Wq +

q�1
X

k=1

(bk � bk+1)
| {z }

�0

Wk

� bqW̃q +

q�1
X

k=1

(bk � bk+1)W̃k =

q
X

k=1

bkW̃k .

As soon as there exists k0 2 {1, . . . , q} such that

k0X

i=1

wi >

k0X

i=1

w̃i ,

153

then (B.12) holds strictly.

The following proposition gives the usual derivations of eigenvalues in the R-circular Toeplitz

case.

Proposition B.3.4. Consider A, a circular-R Toeplitz matrix of size n.

For n = 2p+ 1

⌫m , b0 + 2

p
X

k=1

bk cos

✓
2⇡km

n

◆

. (B.13)

For m = 1, . . . , p each ⌫m are eigenvalues of A with multiplicity 2 and associated eigenvectors

ym,cos = 1p
n

⇣

1, cos
�
2⇡m/n

�
, . . . , cos

�
2⇡m(n� 1)/n

�⌘

ym,sin = 1p
n

⇣

1, sin
�
2⇡m/n

�
, . . . , sin

�
2⇡m(n� 1)/n

�⌘

.
(B.14)

For n = 2p

⌫m , b0 + 2
Pp�1

k=1 bk cos
⇣
2⇡km

n

⌘

+ bp cos (⇡m) , (B.15)

where ⌫0 is still singular, with y(0) = 1p
n
(1, . . . , 1) . ⌫p also is, with y(p) = 1p

n
(+1,�1, . . . ,+1,�1) ,

and there are p� 1 double eigenvalues, for m = 1, . . . , p� 1, each associated to the two eigen-

vectors given in equation (B.14).

Proof. Let us compute the spectrum of a circular-R, symmetric, circulant Toeplitz matrix.

From Gray et al. [2006], the eigenvalues are

⌫m =
n�1X

k=0

bk⇢
k
m , (B.16)

with ⇢m = exp(2i⇡mn), and the corresponding eigenvectors are,

y(m) =
1p
n

⇣

1, e�2i⇡m/n, . . . , e�2i⇡m(n�1)/n
⌘

, (B.17)

for m = 0, . . . , n� 1.

Case n is odd, with n = 2p + 1. Using the symmetry assumption bk = bn�k, and the fact

154

that ⇢n�k
m = ⇢nm⇢�k

m = ⇢�k
m , it results in real eigenvalues,

⌫m = b0 +
Pp

k=1 bk⇢
k
m +

Pn�1
k=p+1 bk⇢

k
m

= b0 +
Pp

k=1 bk⇢
k
m +

Pp
k=1 bn�k⇢

n�k
m

= b0 +
Pp

k=1 bk(⇢
k
m + ⇢�k

m)

= b0 + 2
Pp

k=1 bk cos
⇣
2⇡km

n

⌘

.

(B.18)

Observe also that ⌫n�m = ⌫m, for m = 1, . . . , n� 1, resulting in p+1 real distinct eigenvalues.

⌫0 is singular, whereas for m = 1, . . . , p, ⌫m has multiplicity 2, with eigenvectors ym and

yn�m. This leads to the two following real eigenvectors, ym,cos = 1/2(ym + yn�m) and ym,sin =

1/(2i)(ym � yn�m)

ym,cos = 1p
n

⇣

1, cos
�
2⇡m/n

�
, . . . , cos

�
2⇡m(n� 1)/n

�⌘

ym,sin = 1p
n

⇣

1, sin
�
2⇡m/n

�
, . . . , sin

�
2⇡m(n� 1)/n

�⌘ (B.19)

Case n is even, with n = 2p. A derivation similar to (B.18) yields,

⌫m = b0 + 2
Pp�1

k=1 bk cos
⇣
2⇡km

n

⌘

+ bp cos (⇡m) (B.20)

⌫0 is still singular, with y(0) = 1p
n
(1, . . . , 1) , ⌫p also is, with y(p) = 1p

n
(+1,�1, . . . ,+1,�1) ,

and there are p � 1 double eigenvalues, for m = 1, . . . , p � 1, each associated to the two

eigenvectors given in equation (B.14).

The following proposition is a crucial property of the eigenvalues of a circular Toeplitz

matrix. It later ensures that when choosing the second eigenvalues of the laplacian, it will

corresponds to the eigenvectors with the lowest period. It is paramount to prove that the

latent ordering of the data can be recovered from the curve-like embedding.

Proposition B.3.5. A circular-R, circulant Toeplitz matrix has eigenvalues (⌫m)m=0,...,p such

that ⌫1 � ⌫m for all m = 2, . . . , p with n = 2p or n = 2p+ 1.

Proof. Since the shape of the eigenvalues changes with the parity of n, let’s again distinguish

the cases.

For n odd, ⌫1 � ⌫m is equivalent to showing

p
X

k=1

bk cos(2⇡k/n) �
p
X

k=1

bk cos(2⇡km/n) . (B.21)

It is true by combining proposition B.3.3 with lemma B.3.2. The same follows for n even and

m odd.

155

Consider n and m even. We now need to prove that

2

p�1
X

k=1

bk cos

✓
2⇡k

n

◆

� bp � 2

p�1
X

k=1

bk cos

✓
2⇡km

n

◆

+ bp . (B.22)

From lemma B.3.2, we have that

q
X

k=1

z
(1)
k �

q
X

k=1

z
(m)
k for q = 1, . . . , p� 2 (B.23)

p�1
X

k=1

z
(1)
k �

p�1
X

k=1

z
(m)
k + 1 . (B.24)

Applying proposition B.3.3 with wk = z
(1)
k and w̃k = z

(m)
k for k  p� 2 and w̃p�1 = z

(m)
p�1 + 1,

we get

p�1
X

k=1

z
(1)
k bk �

p�1
X

k=1

bkz
(m)
k + bp�1 (B.25)

2

p�1
X

k=1

z
(1)
k bk � 2

p�1
X

k=1

bkz
(m)
k + 2bp . (B.26)

The last inequality results from the monotonicity of (bk) and is equivalent to (B.22). It concludes

the proof.

B.3.3 Recovering exactly the order.

Here we provide the proof for Theorem 3.3.2.

Theorem B.3.6. Consider the seriation problem from an observed matrix ΠSΠT , where S is a R-

circular Toeplitz matrix. Denote by L the associated graph Laplacian. Then the two dimensional

laplacian spectral embedding ((d-2SUM) with d=2) of the items lies ordered and equally spaced

on a circle.

Proof. Denote A = ΠSΠT . The unnormalized Laplacian of A is L , diag(A1) � A. The

eigenspace associated to its second smallest eigenvalue corresponds to that of µ1 in A. A and

S share the same spectrum. Hence the eigenspace of µ1 in A is composed of the two vectors

Πy1,sin and Πy1,cos.

Denote by (pi)i=1,...,n 2 R
2 the 2-LE. Each point is parametrized by

pi = (cos(2⇡�(i)/n), sin(2⇡�(i)/n)) , (B.27)

where � is the permutation represented matricially by Π.

156

(a) E. coli 3-LE (b) partial orderings

(c) A. baylyi 3-LE
(d) partial orderings

Figure B.2: 3d Laplacian embedding from overlap-based similarity matrix of E. coli (B.2a)
and A. baylyi (B.2c) reads, and the orderings found in each connected component of the new
similarity matrix created in Algorithm 3.3 (B.2b and B.2d) versus the position of the reads
within a reference genome obtained by mapping tge reads to the reference with minimap2 (all
plotted on the same plot for compactness). The orderings have no absolute direction, i.e.,
(1, 2, . . . , n) and (n, n � 1, . . . , 1) are equivalent, which is why the lines in Figures B.2b and
B.2d can be either diagonal or anti-diagonal.

157

(a) Linear KMS (b) Circular KMS

Figure B.3: K-T scores for Linear (B.3a) and Circular (B.3b) Seriation for noisy observations of
KMS, Toeplitz, matrices, displayed for several values of the dimension parameter of the d-LE.

(a) Linear Banded (b) Circular Banded

Figure B.4: K-T scores for Linear (B.4a) and Circular (B.4b) Seriation for noisy observations
of banded, Toeplitz, matrices, displayed for several values of the number of nearest neighbors
k, with a fixed value of the dimension of the d-LE, d = 10.

158

(a) Linear KMS (b) Circular KMS

Figure B.5: K-T scores for Linear (B.5a) and Circular (B.5b) Seriation for noisy observations
of KMS, Toeplitz, matrices, displayed for several values of the number of nearest neighbors k,
with a fixed value of the dimension of the d-LE, d = 10.

(a) Linear Banded (b) Circular Banded

Figure B.6: Mean of Kendall-Tau for Linear (B.6a) and Circular (B.6b) Seriation for noisy
observations of banded, Toeplitz, matrices, displayed for several scalings of the Laplacian em-
bedding, with a fixed number of neighbors k = 15 and number of dimensions d = 10 in the
d-LE.

159

(a) Linear Banded (b) Circular Banded

Figure B.7: Mean of Kendall-Tau for Linear (B.7a) and Circular (B.7b) Seriation for noisy
observations of banded, Toeplitz, matrices, displayed for several scalings of the Laplacian em-
bedding, with a fixed number of neighbors k = 15 and number of dimensions d = 20 in the
d-LE.

(a) raw (b) pre-processed

Figure B.8: Similarity matrix (with main diagonal removed) from synthetic, multiple chromo-
somes Hi-C data (DL1) without (B.8a) and with (B.8b) preprocessing as defined in Section 3.6.4.

160

(a) tSNE embedding (b) sub-orderings

Figure B.9: t-SNE embedding (B.9a), and resulting sub-orderings found with mdso (B.9b) on
the Plasmodium knowlesi Hi-C data, in an experiment leading to a weighted Kendall-Tau score
of 61.6%.

161

(a) matrix
(b) sub-orderings

(c) matrix
(d) sub-orderings

(e) matrix
(f) sub-orderings

Figure B.10: Similarity matrices for the Spodoptera frugiperda data, Sf200 (B.10a), Sf669
(B.10c) and Sf846 (B.10e), and the corresponding orderings found with mdso (B.10b), (B.10d),
(B.10f).

162

Appendix C

Supplementary Material for Chapter 4,

Robust Seriation

C.1 Seriation and Robust Seriation Algorithms

C.2 Supplementary Tables

Tables C.1 and C.2 display the Kendall-⌧ correlation between the ordering found and the ground

truth for different values of s/slim and of n, with � = n/10 and � = n/20 respectively. For

given values of �/n and s/slim, the problem is easier (i.e., the methods perform better) when

n increases.

163

Table C.1: Kendall-⌧ score for different values of s/slim, for the same methods as in Table 4.1,
for different values of n (namely, 100 , 200 , 500), and � = n/10 (namely, 10 , 20 , 50).

s/slim = 0.5 s/slim = 1 s/slim = 2.5 s/slim = 5 s/slim = 7.5 s/slim = 10

n = 100

spectral 0.91 ±0.08 0.83 ±0.13 0.72 ±0.19 0.62 ±0.21 0.55 ±0.20 0.48 ±0.21

GnCR 0.92 ±0.13 0.82 ±0.23 0.70 ±0.26 0.62 ±0.26 0.55 ±0.25 0.48 ±0.24

FAQ 0.93 ±0.09 0.85 ±0.17 0.72 ±0.24 0.61 ±0.25 0.55 ±0.25 0.48 ±0.23

LWCD 0.93 ±0.10 0.85 ±0.17 0.72 ±0.24 0.61 ±0.25 0.55 ±0.25 0.48 ±0.23

UBI 0.92 ±0.09 0.85 ±0.16 0.73 ±0.24 0.62 ±0.24 0.56 ±0.24 0.49 ±0.23

Manopt 0.92 ±0.08 0.84 ±0.13 0.72 ±0.19 0.62 ±0.21 0.55 ±0.20 0.48 ±0.21

n = 100

⌘-Spectr. 0.99 ±0.00 0.98 ±0.00 0.89 ±0.17 0.74 ±0.25 0.65 ±0.26 0.56 ±0.26

HGnCR 0.98 ±0.06 0.96 ±0.14 0.80 ±0.25 0.65 ±0.30 0.54 ±0.29 0.49 ±0.29

H-FAQ 0.97 ±0.09 0.90 ±0.16 0.80 ±0.25 0.70 ±0.29 0.64 ±0.28 0.55 ±0.26

H-LWCD 0.97 ±0.09 0.90 ±0.16 0.80 ±0.25 0.70 ±0.29 0.65 ±0.28 0.55 ±0.28

H-UBI 0.99 ±0.00 0.98 ±0.04 0.88 ±0.20 0.75 ±0.25 0.62 ±0.26 0.54 ±0.25

H-Manopt 0.98 ±0.05 0.91 ±0.14 0.78 ±0.23 0.65 ±0.24 0.56 ±0.21 0.48 ±0.21

n = 100
R-FAQ 0.96 ±0.09 0.91 ±0.16 0.80 ±0.25 0.70 ±0.28 0.65 ±0.27 0.54 ±0.28

R-LWCD 0.95 ±0.09 0.89 ±0.17 0.78 ±0.24 0.69 ±0.28 0.62 ±0.28 0.53 ±0.28

n = 200

spectral 0.96 ±0.01 0.95 ±0.01 0.91 ±0.03 0.86 ±0.06 0.84 ±0.06 0.80 ±0.09

GnCR 0.98 ±0.00 0.96 ±0.04 0.93 ±0.07 0.87 ±0.15 0.81 ±0.20 0.80 ±0.18

FAQ 0.98 ±0.00 0.97 ±0.00 0.94 ±0.02 0.89 ±0.08 0.87 ±0.08 0.82 ±0.13

LWCD 0.98 ±0.00 0.97 ±0.00 0.94 ±0.02 0.89 ±0.08 0.87 ±0.08 0.82 ±0.13

UBI 0.97 ±0.00 0.96 ±0.01 0.92 ±0.03 0.89 ±0.06 0.86 ±0.07 0.82 ±0.12

Manopt 0.97 ±0.00 0.95 ±0.01 0.91 ±0.03 0.86 ±0.06 0.84 ±0.06 0.80 ±0.09

n = 200

⌘-Spectr. 0.99 ±0.00 0.99 ±0.00 0.98 ±0.00 0.97 ±0.00 0.96 ±0.00 0.94 ±0.06

HGnCR 1.00 ±0.00 0.99 ±0.00 0.99 ±0.00 0.89 ±0.22 0.85 ±0.23 0.83 ±0.25

H-FAQ 1.00 ±0.00 1.00 ±0.00 0.99 ±0.01 0.95 ±0.08 0.94 ±0.09 0.91 ±0.13

H-LWCD 1.00 ±0.00 1.00 ±0.00 0.99 ±0.02 0.94 ±0.09 0.94 ±0.09 0.90 ±0.14

H-UBI 0.99 ±0.00 0.99 ±0.00 0.98 ±0.00 0.97 ±0.00 0.96 ±0.01 0.94 ±0.03

H-Manopt 1.00 ±0.00 0.99 ±0.00 0.97 ±0.02 0.92 ±0.06 0.89 ±0.07 0.84 ±0.10

n = 200
R-FAQ 1.00 ±0.00 1.00 ±0.00 0.99 ±0.04 0.95 ±0.10 0.94 ±0.10 0.90 ±0.15

R-LWCD 0.99 ±0.00 1.00 ±0.00 0.99 ±0.04 0.94 ±0.09 0.94 ±0.10 0.90 ±0.16

n = 500

spectral 0.98 ±0.00 0.98 ±0.00 0.96 ±0.00 0.95 ±0.01 0.94 ±0.01 0.93 ±0.01

GnCR 0.99 ±0.00 0.99 ±0.00 0.98 ±0.00 0.97 ±0.00 0.96 ±0.00 0.95 ±0.05

FAQ 0.99 ±0.00 0.99 ±0.00 0.98 ±0.00 0.97 ±0.00 0.96 ±0.00 0.95 ±0.00

LWCD 0.99 ±0.00 0.99 ±0.00 0.98 ±0.00 0.97 ±0.00 0.96 ±0.00 0.95 ±0.00

UBI 0.99 ±0.00 0.98 ±0.00 0.97 ±0.00 0.96 ±0.01 0.95 ±0.00 0.94 ±0.00

Manopt 0.99 ±0.00 0.98 ±0.00 0.97 ±0.00 0.95 ±0.00 0.94 ±0.01 0.93 ±0.01

n = 500

⌘-Spectr. 1.00 ±0.00 1.00 ±0.00 0.99 ±0.00 0.99 ±0.00 0.99 ±0.00 0.98 ±0.00

HGnCR 1.00 ±0.00 1.00 ±0.00 0.99 ±0.00 0.99 ±0.00 0.99 ±0.00 0.99 ±0.00

H-FAQ 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 0.99 ±0.00 0.99 ±0.00 0.99 ±0.00

H-LWCD 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 0.99 ±0.00 0.99 ±0.00 0.99 ±0.00

H-UBI 1.00 ±0.00 1.00 ±0.00 0.99 ±0.00 0.99 ±0.00 0.99 ±0.00 0.98 ±0.00

H-Manopt 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 0.99 ±0.00 0.98 ±0.01 0.97 ±0.01

n = 500
R-FAQ 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00

R-LWCD 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 1.00 ±0.01

164

Table C.2: Kendall-⌧ score for different values of s/slim, for the same methods as in Table 4.1,
for different values of n (namely, 100 , 200 , 500), and � = n/20 (namely, 5 , 10 , 25).

s/slim = 0.5 s/slim = 1 s/slim = 2.5 s/slim = 5 s/slim = 7.5 s/slim = 10

n = 100

spectral 0.46 ±0.24 0.39 ±0.21 0.31 ±0.20 0.25 ±0.16 0.22 ±0.15 0.20 ±0.14

GnCR 0.43 ±0.28 0.37 ±0.21 0.32 ±0.21 0.25 ±0.16 0.25 ±0.14 0.20 ±0.13

FAQ 0.45 ±0.25 0.39 ±0.22 0.31 ±0.21 0.25 ±0.17 0.23 ±0.15 0.22 ±0.14

LWCD 0.45 ±0.26 0.39 ±0.22 0.31 ±0.21 0.25 ±0.17 0.23 ±0.15 0.22 ±0.14

UBI 0.45 ±0.26 0.40 ±0.22 0.32 ±0.21 0.26 ±0.17 0.23 ±0.15 0.23 ±0.14

Manopt 0.46 ±0.25 0.40 ±0.21 0.31 ±0.20 0.25 ±0.16 0.22 ±0.15 0.21 ±0.14

n = 100

⌘-Spectr. 0.65 ±0.33 0.50 ±0.28 0.37 ±0.24 0.28 ±0.19 0.25 ±0.16 0.23 ±0.16

HGnCR 0.53 ±0.31 0.43 ±0.26 0.36 ±0.22 0.25 ±0.17 0.22 ±0.15 0.18 ±0.14

H-FAQ 0.48 ±0.26 0.41 ±0.23 0.33 ±0.23 0.28 ±0.17 0.24 ±0.16 0.23 ±0.15

H-LWCD 0.49 ±0.27 0.42 ±0.23 0.34 ±0.23 0.28 ±0.18 0.24 ±0.16 0.23 ±0.16

H-UBI 0.60 ±0.35 0.52 ±0.29 0.40 ±0.26 0.28 ±0.19 0.25 ±0.16 0.23 ±0.15

H-Manopt 0.54 ±0.30 0.44 ±0.25 0.33 ±0.22 0.25 ±0.16 0.22 ±0.15 0.21 ±0.14

n = 100
R-FAQ 0.48 ±0.25 0.41 ±0.22 0.33 ±0.21 0.26 ±0.18 0.23 ±0.15 0.23 ±0.16

R-LWCD 0.47 ±0.24 0.41 ±0.22 0.32 ±0.21 0.25 ±0.16 0.22 ±0.15 0.22 ±0.15

n = 200

spectral 0.72 ±0.21 0.59 ±0.24 0.49 ±0.26 0.42 ±0.23 0.35 ±0.20 0.31 ±0.18

GnCR 0.69 ±0.29 0.56 ±0.31 0.45 ±0.26 0.37 ±0.27 0.34 ±0.22 0.32 ±0.23

FAQ 0.72 ±0.24 0.60 ±0.26 0.49 ±0.26 0.41 ±0.24 0.35 ±0.21 0.33 ±0.20

LWCD 0.72 ±0.24 0.60 ±0.26 0.49 ±0.27 0.42 ±0.25 0.36 ±0.21 0.33 ±0.20

UBI 0.73 ±0.26 0.59 ±0.28 0.50 ±0.28 0.42 ±0.25 0.35 ±0.21 0.33 ±0.21

Manopt 0.72 ±0.22 0.59 ±0.24 0.49 ±0.26 0.42 ±0.24 0.35 ±0.20 0.31 ±0.18

n = 200

⌘-Spectr. 0.99 ±0.00 0.91 ±0.21 0.65 ±0.33 0.52 ±0.30 0.41 ±0.25 0.37 ±0.23

HGnCR 0.73 ±0.33 0.61 ±0.32 0.50 ±0.31 0.44 ±0.29 0.39 ±0.25 0.35 ±0.22

H-FAQ 0.75 ±0.24 0.63 ±0.27 0.53 ±0.29 0.46 ±0.27 0.38 ±0.23 0.35 ±0.23

H-LWCD 0.75 ±0.23 0.62 ±0.27 0.53 ±0.29 0.46 ±0.27 0.38 ±0.23 0.35 ±0.22

H-UBI 0.94 ±0.19 0.82 ±0.30 0.69 ±0.34 0.57 ±0.32 0.46 ±0.28 0.40 ±0.23

H-Manopt 0.84 ±0.23 0.67 ±0.29 0.54 ±0.29 0.45 ±0.26 0.36 ±0.21 0.31 ±0.19

n = 200
R-FAQ 0.75 ±0.23 0.62 ±0.26 0.53 ±0.28 0.45 ±0.27 0.38 ±0.23 0.33 ±0.23

R-LWCD 0.74 ±0.22 0.62 ±0.25 0.51 ±0.27 0.44 ±0.25 0.37 ±0.23 0.33 ±0.21

n = 500

spectral 0.96 ±0.03 0.93 ±0.05 0.86 ±0.11 0.76 ±0.18 0.71 ±0.19 0.67 ±0.21

GnCR 0.90 ±0.21 0.80 ±0.28 0.71 ±0.31 0.60 ±0.31 0.62 ±0.29 0.55 ±0.31

FAQ 0.98 ±0.03 0.95 ±0.06 0.87 ±0.13 0.76 ±0.21 0.72 ±0.22 0.67 ±0.24

LWCD 0.98 ±0.03 0.95 ±0.06 0.87 ±0.13 0.76 ±0.21 0.72 ±0.22 0.67 ±0.24

UBI 0.97 ±0.02 0.95 ±0.04 0.88 ±0.14 0.76 ±0.24 0.71 ±0.25 0.67 ±0.25

Manopt 0.97 ±0.03 0.94 ±0.06 0.86 ±0.12 0.76 ±0.18 0.72 ±0.19 0.67 ±0.22

n = 500

⌘-Spectr. 1.00 ±0.00 1.00 ±0.00 0.99 ±0.00 0.96 ±0.12 0.88 ±0.18 0.81 ±0.24

HGnCR 1.00 ±0.00 0.96 ±0.18 0.87 ±0.28 0.80 ±0.32 0.70 ±0.36 0.75 ±0.33

H-FAQ 0.99 ±0.02 0.98 ±0.06 0.91 ±0.13 0.82 ±0.21 0.78 ±0.23 0.74 ±0.26

H-LWCD 0.99 ±0.03 0.97 ±0.07 0.90 ±0.13 0.80 ±0.21 0.77 ±0.23 0.72 ±0.25

H-UBI 1.00 ±0.00 1.00 ±0.00 0.99 ±0.00 0.98 ±0.07 0.95 ±0.13 0.92 ±0.17

H-Manopt 1.00 ±0.00 0.99 ±0.01 0.93 ±0.12 0.81 ±0.21 0.76 ±0.22 0.72 ±0.25

n = 500
R-FAQ 0.99 ±0.03 0.97 ±0.07 0.90 ±0.13 0.80 ±0.21 0.76 ±0.23 0.72 ±0.25

R-LWCD 0.98 ±0.03 0.96 ±0.06 0.89 ±0.13 0.80 ±0.21 0.76 ±0.23 0.71 ±0.25

165

Appendix D

Supplementary Material for Chapter 5,

Seriation with Duplications

D.1 Supplementary Figures

We present qualitative illustrations about the behavior of Algorithm 5.1, and about the evalua-

tion of the output assignment matrix Z, given a ground truth assignment. Figures D.1 and D.2

show qualitative results on the output of the algorithm for dense and sparse similarity matrices

S, respectively. Figure D.4 illustrates the different steps of Algorithm 5.1. Finally, Figures D.5

and D.6 illustate the meanDist metric used to compare assignment matrices Z.

D.2 Supplementary Tables

Tables D.1, D.2 and D.3 display additional results of Seriation with Duplication (with the same

scores as in Table 5.2) on dense matrices expanding the results from Section 5.4. Tables D.4

and D.5 expand these results to matrices in MN (�, s).

166

50 100 150 200

20

40

60

80

100

120

140

160

180

200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a) Ground truth S

50 100 150 200

20

40

60

80

100

120

140

160

180

200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) Sout for N/n = 1.33
50 100 150 200

20

40

60

80

100

120

140

160

180

200 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(c) Sout for N/n = 4

Figure D.1: Original matrix S (with parameter � = 0.5) from which the data (A, c) is generated
(A), output Sout recovered from (A, c) by Algorithm 5.1 (used with ⌘-spectral) with N/n = 1.33
(B) and with N/n = 4 (C). The meanDist metric is 0.98 for N/n = 1.33 (B) and 10.40 for
N/n = 4 (C)

50 100 150 200

20

40

60

80

100

120

140

160

180

200 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Ground truth S

50 100 150 200

20

40

60

80

100

120

140

160

180

200 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Sout for N/n = 1.33

50 100 150 200

20

40

60

80

100

120

140

160

180

200 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Sout for N/n = 4

Figure D.2: Original matrix S (with parameters � = n/5, s = 0) from which the data (A, c) is
generated (A), output Sout recovered from (A, c) by Algorithm 5.1 (used with ⌘-spectral) with
N/n = 1.33 (B) and with N/n = 4 (C). The meanDist metric is 1.03 for N/n = 1.33 (B) and
7.26 for N/n = 4 (C)

50 100 150 200

20

40

60

80

100

120

140

160

180

200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a) Π∗S
(t)ΠT

∗
at step 3 of

Alg 5.1

50 100 150 200

20

40

60

80

100

120

140

160

180

200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) S(t+ 1

2
) at step 3 of Alg 5.1

50 100 150 200

20

40

60

80

100

120

140

160

180

200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(c) SA at step 4 of Alg 5.1

Figure D.3: Three steps of Algorithm 5.1 for a dense matrix S (with parameter � = 0.5,
n = 200, N/n = 4).

167

50 100 150 200

20

40

60

80

100

120

140

160

180

200 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Π∗S
(t)ΠT

∗
at step 3 of

Alg 5.1

50 100 150 200

20

40

60

80

100

120

140

160

180

200 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) S(t+ 1

2
) at step 3 of Alg 5.1

50 100 150 200

20

40

60

80

100

120

140

160

180

200 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) SA at step 4 of Alg 5.1

Figure D.4: Three steps of Algorithm 5.1 for a sparse matrix S with parameters n = 200,
� = 40, s = 0, N/n = 4.

δ1 = 2 δ3 = 2 δ4 = 3

I1 = 1 I2 = 8 I3 = 11 I4 = 20

J1 = 3 J2 = 8 J3 = 13 J4 = 17

δ2 = 0

Figure D.5: Mean distance computation between two assignments I = {1, 8, 11, 20} and J =
{3, 8, 13, 17} corresponding to the non-zeros in a given row i of two assignment matrices Z1

and Z2. Before computing the �i, a matching between I and J is performed.

0 50 100 150 200

assigned positions k

0

50

100

150

b
in

 i
n
d
e
x
 i

Figure D.6: Plot of the true assignment matrix Z (blue diamonds) vs the one obtained with
Algorithm 5.1 (black crosses) for an experiment with a sparse matrix S with n = 200, � = n/5.
For each row, we compute the mean distance between the non-zero represented by the blue
diamonds and the black crosses, as illustrated in Figure D.5. The average over all rows of
this mean distance is of 1.03 here. Left: assignment matrices. Right: Histogram of the mean
distance between the matched non-zero locations (distance between black crosses and associated
blue diamond), among the rows i of the two assignment matrices plotted on the left.

168

Table D.1: Results for Seriation with Duplications on dense, strong-R matrices (with several
values of the parameter � and N/n), and no noise added.

� N/n method d2S Huber (x1e-7) meanDist stdDist Time (x1e-2s)

0.1

1.33

spectral 0.03 ±0.00 8.33 ±0.01 3.0 ±0.7 5.5 ±1.0 5.14 ±1.36

⌘-Spectr. 0.03 ±0.00 8.33 ±0.01 3.0 ±0.7 5.5 ±1.0 5.75 ±1.41

H-UBI 0.02 ±0.00 8.33 ±0.01 2.8 ±0.7 5.2 ±1.0 6.37 ±1.60

2

spectral 0.03 ±0.00 8.37 ±0.01 7.1 ±1.0 7.5 ±1.0 5.05 ±1.05

⌘-Spectr. 0.03 ±0.00 8.37 ±0.01 7.1 ±1.0 7.6 ±1.0 5.41 ±1.07

H-UBI 0.03 ±0.00 8.37 ±0.01 7.0 ±1.0 7.5 ±0.9 6.14 ±1.17

4

spectral 0.02 ±0.00 8.35 ±0.01 12.8 ±2.2 7.8 ±1.8 5.41 ±2.03

⌘-Spectr. 0.02 ±0.00 8.35 ±0.01 12.9 ±2.3 7.9 ±2.1 5.86 ±2.16

H-UBI 0.03 ±0.00 8.35 ±0.01 13.1 ±1.4 7.9 ±1.4 7.05 ±2.36

0.5

1.33

spectral 0.25 ±0.04 1.36 ±0.03 6.1 ±1.8 7.9 ±1.6 8.74 ±4.85

⌘-Spectr. 0.15 ±0.02 1.30 ±0.01 2.2 ±0.7 3.7 ±1.1 6.12 ±4.84

H-UBI 0.24 ±0.04 1.35 ±0.03 5.5 ±1.6 7.3 ±1.4 11.06 ±7.56

2

spectral 0.27 ±0.02 1.41 ±0.02 9.5 ±1.6 8.4 ±1.3 7.47 ±3.20

⌘-Spectr. 0.22 ±0.02 1.37 ±0.02 6.6 ±1.5 6.7 ±1.9 7.89 ±3.89

H-UBI 0.26 ±0.02 1.40 ±0.02 9.0 ±1.5 8.1 ±1.2 10.09 ±4.90

4

spectral 0.18 ±0.01 1.35 ±0.01 14.4 ±2.8 8.7 ±2.7 6.53 ±1.90

⌘-Spectr. 0.18 ±0.01 1.35 ±0.01 14.3 ±2.9 8.9 ±2.9 7.59 ±2.28

H-UBI 0.19 ±0.01 1.35 ±0.01 14.8 ±2.5 8.8 ±2.1 8.62 ±2.46

1

1.33

spectral 0.61 ±0.02 2.10 ±0.13 15.2 ±2.4 15.2 ±1.4 9.04 ±8.61

⌘-Spectr. 0.30 ±0.06 1.48 ±0.08 2.2 ±1.4 3.1 ±1.5 15.35 ±7.54

H-UBI 0.30 ±0.12 1.50 ±0.15 2.4 ±2.1 3.1 ±2.1 26.12 ±2.96

2

spectral 0.60 ±0.03 2.46 ±0.11 19.3 ±6.6 12.6 ±4.9 1.78 ±0.31

⌘-Spectr. 0.42 ±0.04 1.91 ±0.13 10.3 ±8.6 9.8 ±6.4 1.20 ±0.51

H-UBI 0.49 ±0.05 2.06 ±0.14 10.4 ±7.9 8.5 ±6.0 2.57 ±0.21

4

spectral 0.37 ±0.02 1.81 ±0.05 19.3 ±4.7 11.6 ±4.4 1.96 ±0.50

⌘-Spectr. 0.34 ±0.01 1.78 ±0.04 20.0 ±6.9 13.2 ±6.1 1.00 ±0.34

H-UBI 0.36 ±0.01 1.80 ±0.04 18.9 ±5.2 11.5 ±4.8 2.25 ±0.65

169

Table D.2: Results for Seriation with Duplications on dense, strong-R matrices (with several
values of the parameter � and N/n), and noiseProp=5%.

� N/n method d2S Huber (x1e-7) meanDist stdDist Time (x1e-2s)

0.1

1.33

spectral 0.07 ±0.00 8.36 ±0.01 5.7 ±0.9 7.2 ±1.3 1.27 ±0.78

⌘-Spectr. 0.07 ±0.00 8.36 ±0.01 5.7 ±0.9 7.2 ±1.2 1.39 ±0.80

H-UBI 0.07 ±0.00 8.35 ±0.02 5.2 ±0.9 6.4 ±1.4 1.48 ±0.93

2

spectral 0.07 ±0.00 8.38 ±0.01 8.5 ±0.8 7.7 ±0.8 6.62 ±4.69

⌘-Spectr. 0.07 ±0.00 8.38 ±0.01 8.5 ±0.8 7.7 ±0.9 7.62 ±5.05

H-UBI 0.07 ±0.00 8.37 ±0.01 8.4 ±0.8 7.5 ±0.9 8.75 ±6.02

4

spectral 0.06 ±0.00 8.35 ±0.01 13.7 ±2.4 7.9 ±2.7 5.15 ±1.49

⌘-Spectr. 0.06 ±0.00 8.35 ±0.01 13.8 ±2.3 8.0 ±2.7 5.47 ±1.58

H-UBI 0.06 ±0.00 8.35 ±0.01 13.8 ±2.2 7.9 ±2.7 6.17 ±1.58

0.5

1.33

spectral 0.27 ±0.04 1.37 ±0.03 6.7 ±1.8 8.4 ±1.6 1.60 ±0.58

⌘-Spectr. 0.17 ±0.02 1.31 ±0.01 2.6 ±0.7 4.1 ±1.0 1.61 ±0.78

H-UBI 0.25 ±0.03 1.36 ±0.02 5.6 ±1.5 7.3 ±1.4 2.01 ±0.74

2

spectral 0.28 ±0.02 1.41 ±0.02 9.7 ±1.5 8.5 ±1.2 1.07 ±0.58

⌘-Spectr. 0.23 ±0.02 1.37 ±0.02 6.7 ±1.4 6.6 ±1.9 1.08 ±0.64

H-UBI 0.26 ±0.02 1.40 ±0.02 9.0 ±1.5 8.1 ±1.3 1.46 ±0.91

4

spectral 0.19 ±0.01 1.35 ±0.01 14.4 ±2.4 8.4 ±2.1 6.21 ±1.85

⌘-Spectr. 0.19 ±0.01 1.35 ±0.01 14.2 ±2.8 8.7 ±2.6 6.72 ±1.72

H-UBI 0.19 ±0.01 1.35 ±0.01 14.8 ±2.6 8.8 ±2.2 7.86 ±1.89

1

1.33

spectral 0.62 ±0.02 2.10 ±0.13 15.3 ±2.4 15.3 ±1.3 9.20 ±8.34

⌘-Spectr. 0.32 ±0.06 1.49 ±0.08 2.3 ±1.1 3.2 ±1.3 18.45 ±6.40

H-UBI 0.32 ±0.11 1.50 ±0.16 2.6 ±2.3 3.2 ±2.3 26.30 ±3.52

2

spectral 0.61 ±0.03 2.46 ±0.12 19.4 ±6.7 12.6 ±4.9 2.13 ±0.66

⌘-Spectr. 0.42 ±0.04 1.92 ±0.13 10.6 ±8.8 10.1 ±6.6 1.52 ±0.75

H-UBI 0.49 ±0.05 2.06 ±0.15 10.3 ±7.9 8.4 ±6.1 3.43 ±0.80

4

spectral 0.37 ±0.02 1.80 ±0.05 19.0 ±4.9 11.2 ±4.6 1.44 ±0.30

⌘-Spectr. 0.35 ±0.01 1.79 ±0.04 20.0 ±6.8 13.2 ±6.0 0.77 ±0.17

H-UBI 0.37 ±0.02 1.80 ±0.05 18.9 ±4.9 11.3 ±4.4 1.83 ±0.41

170

Table D.3: Results for Seriation with Duplications on dense, strong-R matrices (with several
values of the parameter � and N/n), and noiseProp=10%.

� N/n method d2S Huber (x1e-7) meanDist stdDist Time (x1e-2s)

0.1

1.33

spectral 0.13 ±0.00 8.36 ±0.01 8.0 ±0.7 8.0 ±1.0 1.26 ±0.74

⌘-Spectr. 0.13 ±0.00 8.36 ±0.01 7.9 ±0.7 7.9 ±1.1 1.23 ±0.83

H-UBI 0.13 ±0.00 8.35 ±0.02 7.1 ±0.7 6.5 ±1.0 1.43 ±0.87

2

spectral 0.12 ±0.00 8.38 ±0.01 11.1 ±0.9 8.4 ±0.9 6.44 ±4.31

⌘-Spectr. 0.12 ±0.00 8.38 ±0.01 11.0 ±0.8 8.4 ±0.9 7.08 ±4.86

H-UBI 0.12 ±0.00 8.38 ±0.01 10.8 ±0.9 8.2 ±1.0 8.49 ±5.50

4

spectral 0.11 ±0.00 8.35 ±0.01 15.6 ±2.8 8.2 ±2.9 5.54 ±1.55

⌘-Spectr. 0.11 ±0.00 8.35 ±0.01 15.5 ±2.5 8.3 ±3.0 6.19 ±2.23

H-UBI 0.11 ±0.00 8.35 ±0.01 15.5 ±2.0 8.2 ±1.8 6.98 ±2.38

0.5

1.33

spectral 0.31 ±0.03 1.38 ±0.02 7.5 ±1.6 9.0 ±1.4 1.73 ±0.50

⌘-Spectr. 0.21 ±0.02 1.31 ±0.01 3.0 ±0.6 4.3 ±1.1 1.67 ±0.79

H-UBI 0.29 ±0.03 1.36 ±0.02 6.1 ±1.6 7.5 ±1.5 2.06 ±0.81

2

spectral 0.29 ±0.02 1.41 ±0.02 9.8 ±1.4 8.5 ±1.2 1.08 ±0.59

⌘-Spectr. 0.25 ±0.02 1.38 ±0.02 7.0 ±1.3 6.9 ±1.9 0.90 ±0.57

H-UBI 0.28 ±0.02 1.40 ±0.02 9.3 ±1.5 8.1 ±1.3 1.25 ±0.69

4

spectral 0.21 ±0.01 1.35 ±0.01 14.6 ±2.6 8.5 ±2.2 6.65 ±2.23

⌘-Spectr. 0.21 ±0.01 1.35 ±0.01 14.4 ±3.3 8.8 ±3.1 7.54 ±2.72

H-UBI 0.21 ±0.01 1.35 ±0.01 15.1 ±2.5 8.8 ±2.2 8.95 ±3.53

1

1.33

spectral 0.64 ±0.02 2.10 ±0.13 15.4 ±2.3 15.4 ±1.3 8.93 ±8.70

⌘-Spectr. 0.35 ±0.05 1.52 ±0.07 2.5 ±1.1 3.4 ±1.3 20.46 ±7.24

H-UBI 0.36 ±0.10 1.54 ±0.16 2.9 ±2.4 3.4 ±2.4 29.20 ±3.68

2

spectral 0.61 ±0.03 2.46 ±0.11 19.6 ±6.6 12.9 ±4.8 1.70 ±0.36

⌘-Spectr. 0.43 ±0.04 1.92 ±0.13 10.4 ±8.6 9.9 ±6.4 1.18 ±0.54

H-UBI 0.50 ±0.04 2.07 ±0.14 10.6 ±7.8 8.7 ±6.2 2.49 ±0.24

4

spectral 0.38 ±0.02 1.81 ±0.05 19.7 ±5.2 11.7 ±5.0 1.59 ±0.42

⌘-Spectr. 0.36 ±0.01 1.79 ±0.04 20.0 ±6.9 13.1 ±6.0 0.87 ±0.25

H-UBI 0.38 ±0.02 1.80 ±0.05 19.5 ±5.8 11.9 ±5.4 1.85 ±0.43

171

Table D.4: Results for Seriation with Duplications on sparse, strong-R matrices (with several
values of the parameter s/slim and N/n), and � = n/5.

s/slim N/n method d2S Huber (x1e-7) meanDist stdDist Time (x1e-2s)

0

1.33

spectral 0.53 ±0.08 1.67 ±0.33 11.8 ±3.5 13.2 ±1.7 7.45 ±4.08

⌘-Spectr. 0.12 ±0.06 0.76 ±0.06 0.8 ±0.8 2.4 ±2.2 2.85 ±1.78

H-UBI 0.09 ±0.06 0.74 ±0.05 0.6 ±0.6 1.8 ±1.9 3.99 ±2.76

2

spectral 0.38 ±0.05 1.48 ±0.26 10.3 ±4.2 10.5 ±2.8 1.30 ±0.25

⌘-Spectr. 0.21 ±0.04 0.99 ±0.12 4.1 ±4.1 6.9 ±3.9 0.50 ±0.19

H-UBI 0.19 ±0.05 0.96 ±0.14 4.0 ±5.8 6.2 ±4.6 0.79 ±0.31

4

spectral 0.29 ±0.02 1.45 ±0.09 18.4 ±4.5 11.8 ±3.1 1.34 ±0.23

⌘-Spectr. 0.22 ±0.02 1.29 ±0.06 16.3 ±6.8 12.2 ±5.1 0.61 ±0.14

H-UBI 0.22 ±0.02 1.26 ±0.06 15.9 ±7.2 12.0 ±5.6 0.91 ±0.25

0.5

1.33

spectral 0.52 ±0.08 1.68 ±0.33 11.1 ±3.5 12.9 ±1.8 8.79 ±3.83

⌘-Spectr. 0.21 ±0.03 0.87 ±0.06 1.3 ±0.7 2.6 ±2.0 4.15 ±3.10

H-UBI 0.19 ±0.02 0.85 ±0.04 0.9 ±0.5 1.8 ±1.5 5.95 ±4.06

2

spectral 0.40 ±0.04 1.55 ±0.23 10.3 ±3.8 10.5 ±2.6 1.33 ±0.24

⌘-Spectr. 0.24 ±0.03 1.07 ±0.11 4.3 ±4.0 7.0 ±3.9 0.55 ±0.22

H-UBI 0.23 ±0.05 1.06 ±0.16 4.6 ±7.0 6.4 ±5.1 0.76 ±0.33

4

spectral 0.30 ±0.03 1.50 ±0.09 19.0 ±5.1 12.1 ±3.5 1.35 ±0.19

⌘-Spectr. 0.24 ±0.02 1.34 ±0.06 16.3 ±7.1 12.0 ±5.1 0.65 ±0.17

H-UBI 0.24 ±0.02 1.31 ±0.06 15.8 ±7.1 11.8 ±5.6 0.97 ±0.26

1

1.33

spectral 0.51 ±0.07 1.65 ±0.30 9.9 ±3.1 12.4 ±1.8 1.03 ±0.28

⌘-Spectr. 0.26 ±0.02 0.95 ±0.05 1.5 ±0.6 2.7 ±1.9 0.41 ±0.33

H-UBI 0.25 ±0.02 0.94 ±0.04 1.2 ±0.5 2.1 ±1.7 0.59 ±0.72

2

spectral 0.39 ±0.04 1.51 ±0.18 9.2 ±3.9 10.0 ±2.7 1.24 ±0.25

⌘-Spectr. 0.27 ±0.04 1.13 ±0.13 4.5 ±5.2 6.9 ±4.4 0.55 ±0.23

H-UBI 0.26 ±0.04 1.11 ±0.14 4.3 ±6.3 6.3 ±4.7 0.80 ±0.36

4

spectral 0.30 ±0.02 1.50 ±0.09 18.7 ±5.0 12.1 ±3.3 1.29 ±0.18

⌘-Spectr. 0.25 ±0.02 1.37 ±0.06 16.5 ±7.2 12.1 ±5.2 0.64 ±0.20

H-UBI 0.25 ±0.01 1.34 ±0.06 15.4 ±6.6 11.4 ±4.9 0.91 ±0.27

2.5

1.33

spectral 0.51 ±0.05 1.71 ±0.23 8.1 ±2.4 11.1 ±2.0 1.79 ±1.50

⌘-Spectr. 0.35 ±0.01 1.25 ±0.04 1.9 ±0.4 2.7 ±1.4 0.90 ±1.39

H-UBI 0.35 ±0.01 1.24 ±0.04 1.8 ±0.4 2.4 ±1.3 1.20 ±1.48

2

spectral 0.43 ±0.03 1.69 ±0.13 9.3 ±4.5 10.2 ±3.4 1.24 ±0.22

⌘-Spectr. 0.34 ±0.03 1.39 ±0.13 5.1 ±6.3 7.0 ±4.8 0.49 ±0.18

H-UBI 0.34 ±0.04 1.38 ±0.15 5.1 ±7.0 6.3 ±5.1 0.75 ±0.30

4

spectral 0.36 ±0.02 1.64 ±0.07 19.1 ±5.3 12.1 ±3.7 1.30 ±0.20

⌘-Spectr. 0.32 ±0.01 1.52 ±0.06 16.6 ±7.2 12.1 ±5.3 0.64 ±0.15

H-UBI 0.32 ±0.01 1.49 ±0.05 15.6 ±6.3 11.3 ±4.6 0.97 ±0.29

5

1.33

spectral 0.54 ±0.02 2.01 ±0.09 6.7 ±1.0 9.0 ±1.8 1.08 ±0.14

⌘-Spectr. 0.45 ±0.01 1.77 ±0.03 2.7 ±0.3 3.0 ±1.1 0.43 ±0.34

H-UBI 0.45 ±0.01 1.77 ±0.03 2.8 ±0.3 3.1 ±1.0 0.98 ±0.54

2

spectral 0.49 ±0.02 2.00 ±0.10 9.1 ±5.0 9.5 ±3.5 1.21 ±0.20

⌘-Spectr. 0.43 ±0.03 1.83 ±0.11 5.5 ±6.4 6.4 ±4.7 0.45 ±0.14

H-UBI 0.43 ±0.03 1.83 ±0.11 5.5 ±6.2 6.3 ±4.5 0.89 ±0.42

4

spectral 0.45 ±0.01 1.83 ±0.07 19.7 ±5.3 12.3 ±3.9 1.25 ±0.22

⌘-Spectr. 0.43 ±0.01 1.76 ±0.06 17.5 ±7.1 11.8 ±4.9 0.61 ±0.16

H-UBI 0.43 ±0.01 1.74 ±0.05 16.5 ±5.9 11.2 ±4.5 0.87 ±0.29

172

Table D.5: Results for Seriation with Duplications on sparse, strong-R matrices (with several
values of the parameter s/slim and N/n), and � = n/10.

s/slim N/n method d2S Huber (x1e-7) meanDist stdDist Time (x1e-2s)

0

1.33

spectral 0.85 ±0.04 6.42 ±0.63 29.1 ±14.3 23.4 ±8.1 2.13 ±3.72

⌘-Spectr. 0.28 ±0.17 1.86 ±1.13 5.4 ±12.2 6.6 ±8.5 5.67 ±3.65

H-UBI 0.29 ±0.22 2.09 ±1.66 8.5 ±17.2 8.4 ±11.7 10.01 ±5.36

2

spectral 0.87 ±0.02 1.01 ±0.06 44.7 ±11.9 26.7 ±7.4 9.01 ±13.31

⌘-Spectr. 0.49 ±0.10 0.43 ±0.11 26.3 ±17.2 21.1 ±10.8 85.15 ±27.35

H-UBI 0.53 ±0.14 0.52 ±0.21 28.9 ±17.9 22.3 ±11.8 176.26 ±39.43

4

spectral 0.78 ±0.05 1.19 ±0.10 47.5 ±7.7 21.3 ±5.1 1.04 ±0.62

⌘-Spectr. 0.39 ±0.02 0.44 ±0.02 29.6 ±7.2 18.0 ±5.4 0.60 ±0.13

H-UBI 0.50 ±0.17 0.65 ±0.33 33.1 ±10.6 18.6 ±6.0 1.76 ±0.40

0.5

1.33

spectral 0.86 ±0.04 6.90 ±0.63 29.6 ±14.6 23.7 ±8.3 2.07 ±3.74

⌘-Spectr. 0.37 ±0.13 2.38 ±1.09 6.0 ±12.8 7.2 ±9.1 6.62 ±3.44

H-UBI 0.37 ±0.17 2.46 ±1.51 7.6 ±16.0 7.4 ±11.0 10.88 ±4.48

2

spectral 0.87 ±0.01 1.05 ±0.06 45.1 ±12.4 27.0 ±7.4 8.42 ±3.70

⌘-Spectr. 0.51 ±0.09 0.47 ±0.10 27.1 ±17.4 21.8 ±11.4 89.50 ±28.54

H-UBI 0.56 ±0.13 0.58 ±0.21 29.5 ±18.4 22.5 ±12.0 175.28 ±48.61

4

spectral 0.78 ±0.05 1.23 ±0.11 47.1 ±7.8 20.7 ±5.2 1.08 ±0.60

⌘-Spectr. 0.40 ±0.02 0.46 ±0.02 29.9 ±7.1 18.6 ±5.5 0.62 ±0.15

H-UBI 0.49 ±0.16 0.64 ±0.32 31.8 ±9.8 18.2 ±6.1 1.78 ±0.42

1

1.33

spectral 0.88 ±0.03 7.67 ±0.69 29.4 ±14.3 23.5 ±8.2 1.57 ±3.20

⌘-Spectr. 0.42 ±0.11 2.79 ±1.26 5.7 ±12.5 6.6 ±8.9 6.34 ±3.79

H-UBI 0.41 ±0.14 2.81 ±1.45 6.4 ±14.6 6.5 ±10.0 10.22 ±4.59

2

spectral 0.87 ±0.01 1.14 ±0.06 44.7 ±12.2 26.7 ±7.1 1.53 ±2.76

⌘-Spectr. 0.51 ±0.08 0.51 ±0.12 26.1 ±17.7 21.1 ±11.7 8.06 ±2.78

H-UBI 0.58 ±0.13 0.64 ±0.23 29.0 ±18.4 21.6 ±11.9 17.74 ±4.40

4

spectral 0.75 ±0.06 1.26 ±0.14 44.6 ±7.7 20.5 ±5.2 1.21 ±0.55

⌘-Spectr. 0.40 ±0.01 0.48 ±0.02 29.4 ±7.0 18.3 ±6.2 0.63 ±0.16

H-UBI 0.42 ±0.08 0.51 ±0.18 28.8 ±8.6 18.0 ±6.4 1.59 ±0.38

2.5

1.33

spectral 0.90 ±0.03 9.46 ±0.74 30.2 ±14.5 23.8 ±8.6 1.76 ±3.33

⌘-Spectr. 0.51 ±0.05 4.19 ±0.66 3.9 ±8.3 5.1 ±6.2 6.31 ±3.76

H-UBI 0.54 ±0.11 4.58 ±1.53 9.4 ±17.5 8.5 ±12.5 11.94 ±4.72

2

spectral 0.88 ±0.01 1.33 ±0.06 44.8 ±12.2 26.9 ±7.1 2.28 ±3.51

⌘-Spectr. 0.55 ±0.05 0.63 ±0.10 26.0 ±17.3 21.1 ±11.5 7.16 ±2.69

H-UBI 0.61 ±0.11 0.75 ±0.25 28.0 ±18.9 21.2 ±12.5 18.28 ±4.10

4

spectral 0.72 ±0.06 1.31 ±0.19 41.8 ±8.7 20.6 ±5.4 1.35 ±0.41

⌘-Spectr. 0.45 ±0.01 0.55 ±0.03 31.5 ±7.1 19.1 ±5.3 0.62 ±0.16

H-UBI 0.44 ±0.01 0.53 ±0.03 28.2 ±7.9 17.8 ±6.2 1.49 ±0.38

5

1.33

spectral 0.93 ±0.02 1.33 ±0.09 31.4 ±13.8 24.9 ±8.8 2.60 ±4.09

⌘-Spectr. 0.64 ±0.04 0.75 ±0.07 6.5 ±11.3 7.0 ±8.9 6.73 ±4.22

H-UBI 0.68 ±0.10 0.83 ±0.19 12.4 ±18.4 10.6 ±13.2 16.54 ±3.74

2

spectral 0.88 ±0.01 1.73 ±0.08 44.4 ±11.6 27.0 ±6.9 4.87 ±5.68

⌘-Spectr. 0.63 ±0.03 0.87 ±0.08 26.5 ±16.0 21.3 ±10.4 7.03 ±2.69

H-UBI 0.65 ±0.06 0.92 ±0.16 26.0 ±17.9 20.0 ±12.1 19.58 ±2.81

4

spectral 0.66 ±0.04 1.23 ±0.22 35.4 ±7.3 18.5 ±5.3 1.42 ±0.19

⌘-Spectr. 0.57 ±0.01 0.68 ±0.03 30.9 ±5.6 19.0 ±4.9 0.58 ±0.14

H-UBI 0.56 ±0.01 0.66 ±0.03 28.6 ±7.1 17.2 ±5.8 0.94 ±0.29

173

Table D.6: Results of synthetic experiments for Seriation+Clustering with Duplications from
dense, strong-R matrices of size n = 200, with an additive block matrix with 10 clusters, with
Algorithm 5.1 (that do not take the cluster structure into account), denoted SerDupli and
Algorithm 5.3, denoted SerDuClus. Both are used with the ⌘-Spectral method at step 3 of
the alternate projections Algorithm. The results are averaged over 20 experiments and the
standard deviation is given after the ± sign.

N/n method Huber meanDist stdDist

1.33
SerDupli 8.086e+06 ±2.199e+06 30.6 ±15.1 26.6 ±13.0

SerDuClus 6.618e+06 ±1.317e+06 13.2 ±13.5 12.7 ±11.3

2
SerDupli 1.111e+07 ±2.599e+06 40.0 ±8.3 27.4 ±6.8

SerDuClus 9.271e+06 ±2.341e+06 28.4 ±9.7 20.2 ±7.4

4
SerDupli 2.125e+07 ±2.843e+06 42.8 ±10.9 19.6 ±5.1

SerDuClus 1.504e+07 ±2.835e+06 35.0 ±8.7 17.0 ±4.2

174

Bibliography

James A Albano and David W Messinger. Euclidean commute time distance embedding and its

application to spectral anomaly detection. In Algorithms and Technologies for Multispectral,

Hyperspectral, and Ultraspectral Imagery XVIII, volume 8390, page 83902G. International

Society for Optics and Photonics, 2012.

Erling D Andersen and Knud D Andersen. The mosek interior point optimizer for linear

programming: an implementation of the homogeneous algorithm. In High performance opti-

mization, pages 197–232. Springer, 2000.

Christopher Aston, Bud Mishra, and David C Schwartz. Optical mapping and its potential for

large-scale sequencing projects. Trends in biotechnology, 17(7):297–302, 1999.

Jonathan E Atkins and Martin Middendorf. On physical mapping and the consecutive ones

property for sparse matrices. Discrete Applied Mathematics, 71(1-3):23–40, 1996.

Jonathan E Atkins, Erik G Boman, and Bruce Hendrickson. A spectral algorithm for seriation

and the consecutive ones problem. SIAM Journal on Computing, 28(1):297–310, 1998.

Francis R Bach and Zaïd Harchaoui. Diffrac: a discriminative and flexible framework for

clustering. In Advances in Neural Information Processing Systems, pages 49–56, 2008.

Stephen T Barnard, Alex Pothen, and Horst Simon. A spectral algorithm for envelope reduction

of sparse matrices. Numerical linear algebra with applications, 2(4):317–334, 1995.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and data

representation. Neural computation, 15(6):1373–1396, 2003.

Mikhail Belkin and Partha Niyogi. Semi-supervised learning on riemannian manifolds. Machine

learning, 56(1-3):209–239, 2004.

Konstantin Berlin, Sergey Koren, Chen-Shan Chin, James P Drake, Jane M Landolin, and

Adam M Phillippy. Assembling large genomes with single-molecule sequencing and locality-

sensitive hashing. Nature biotechnology, 33(6):623, 2015.

175

Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia: A fresh approach to

numerical computing. SIAM review, 59(1):65–98, 2017.

Albrecht BoeÓttcher and Sergei M Grudsky. Spectral properties of banded Toeplitz matrices,

volume 96. Siam, 2005.

Albrecht Böttcher, Sergei M Grudsky, and Egor A Maksimenko. On the structure of the

eigenvectors of large hermitian toeplitz band matrices. In Recent Trends in Toeplitz and

Pseudodifferential Operators, pages 15–36. Springer, 2010.

Albrecht Böttcher, Johan Manuel Bogoya, SM Grudsky, and Egor Anatol’evich Maximenko.

Asymptotics of eigenvalues and eigenvectors of toeplitz matrices. Sbornik: Mathematics, 208

(11):1578, 2017.

Nicolas Boumal, Bamdev Mishra, P-A Absil, and Rodolphe Sepulchre. Manopt, a Matlab

toolbox for optimization on manifolds. Journal of Machine Learning Research, 15(1):1455–

1459, 2014. URL http://www.manopt.org.

Michael J Brusco. A branch-and-bound algorithm for fitting anti-robinson structures to sym-

metric dissimilarity matrices. Psychometrika, 67(3):459–471, 2002.

Michael J Brusco, Hans-Friedrich Köhn, and Stephanie Stahl. Heuristic implementation of dy-

namic programming for matrix permutation problems in combinatorial data analysis. Psy-

chometrika, 73(3):503, 2008.

F Bünger. Inverses, determinants, eigenvalues, and eigenvectors of real symmetric toeplitz

matrices with linearly increasing entries. Linear Algebra and its Applications, 459:595–619,

2014.

Jitender Cheema, TH Noel Ellis, and Jo Dicks. Thread mapper studio: a novel, visual web

server for the estimation of genetic linkage maps. Nucleic acids research, 38(suppl_2):W188–

W193, 2010.

Chen-Shan Chin, David H Alexander, Patrick Marks, Aaron A Klammer, James Drake, Cheryl

Heiner, Alicia Clum, Alex Copeland, John Huddleston, Evan E Eichler, et al. Nonhybrid,

finished microbial genome assemblies from long-read smrt sequencing data. Nature methods,

10(6):563, 2013.

Fan Chung and S-T Yau. Discrete green’s functions. Journal of Combinatorial Theory, Series

A, 91(1-2):191–214, 2000.

Ronald R Coifman and Stéphane Lafon. Diffusion maps. Applied and computational harmonic

analysis, 21(1):5–30, 2006.

176

Ronald R Coifman, Yoel Shkolnisky, Fred J Sigworth, and Amit Singer. Graph laplacian

tomography from unknown random projections. IEEE Transactions on Image Processing, 17

(10):1891–1899, 2008.

Phillip EC Compeau, Pavel A Pevzner, and Glenn Tesler. How to apply de bruijn graphs to

genome assembly. Nature biotechnology, 29(11):987, 2011.

Chandler Davis and William Morton Kahan. The rotation of eigenvectors by a perturbation.

iii. SIAM Journal on Numerical Analysis, 7(1):1–46, 1970.

Tom Davot, Annie Château, Rodolphe Giroudeau, and Mathias Weller. On the hardness of

approximating linearization of scaffolds sharing repeated contigs. In RECOMB International

conference on Comparative Genomics, pages 91–107. Springer, 2018.

Job Dekker, Marc A Marti-Renom, and Leonid A Mirny. Exploring the three-dimensional

organization of genomes: interpreting chromatin interaction data. Nature Reviews Genetics,

14(6):390–403, 2013.

Persi Diaconis, Sharad Goel, and Susan Holmes. Horseshoes in multidimensional scaling and

local kernel methods. The Annals of Applied Statistics, pages 777–807, 2008.

Chris Ding and Xiaofeng He. Linearized cluster assignment via spectral ordering. In Proceedings

of the twenty-first international conference on Machine learning, page 30. ACM, 2004.

Olga Dudchenko, Sanjit S Batra, Arina D Omer, Sarah K Nyquist, Marie Hoeger, Neva C

Durand, Muhammad S Shamim, Ido Machol, Eric S Lander, Aviva Presser Aiden, et al. De

novo assembly of the aedes aegypti genome using hi-c yields chromosome-length scaffolds.

Science, 356(6333):92–95, 2017.

Sven-Erik Ekström, Carlo Garoni, and Stefano Serra-Capizzano. Are the eigenvalues of banded

symmetric toeplitz matrices known in almost closed form? Experimental Mathematics, pages

1–10, 2017.

Xenophon Evangelopoulos, Austin J Brockmeier, Tingting Mu, and John Y Goulermas. A

graduated non-convexity relaxation for large scale seriation. In Proceedings of the 2017

SIAM International Conference on Data Mining, pages 462–470. SIAM, 2017a.

Xenophon Evangelopoulos, Austin J Brockmeier, Tingting Mu, and John Y Goulermas. Ap-

proximation methods for large scale object sequencing. Submitted to Machine Learning,

2017b.

Fajwel Fogel, Rodolphe Jenatton, Francis Bach, and Alexandre d’Aspremont. Convex relax-

ations for permutation problems. In Advances in Neural Information Processing Systems,

pages 1016–1024, 2013.

177

Sebastien François, Rumen Andonov, Hristo Djidjev, and Dominique Lavenier. Global opti-

mization methods for genome scaffolding. In 12th International Workshop on Constraint-

Based Methods for Bioinformatics, 2016.

Sébastien Francois, Rumen Andonov, Dominique Lavenier, and Hristo Djidjev. Global op-

timization approach for circular and chloroplast genome assembly. bioRxiv, page 231324,

2017.

Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval research

logistics quarterly, 3(1-2):95–110, 1956.

Michael Friendly. Corrgrams: Exploratory displays for correlation matrices. The American

Statistician, 56(4):316–324, 2002.

Gemma C Garriga, Esa Junttila, and Heikki Mannila. Banded structure in binary matrices.

Knowledge and information systems, 28(1):197–226, 2011.

Alan George and Alex Pothen. An analysis of spectral envelope reduction via quadratic assign-

ment problems. SIAM Journal on Matrix Analysis and Applications, 18(3):706–732, 1997.

Michel X. Goemans. Smallest compact formulation for the permutahedron. Mathematical

Programming, pages 1–7, 2014.

Sara Goodwin, James Gurtowski, Scott Ethe-Sayers, Panchajanya Deshpande, Michael C

Schatz, and W Richard McCombie. Oxford nanopore sequencing, hybrid error correction,

and de novo assembly of a eukaryotic genome. Genome research, 25(11):1750–1756, 2015.

Robert M Gray et al. Toeplitz and circulant matrices: A review. Foundations and Trends R� in

Communications and Information Theory, 2(3):155–239, 2006.

Alexey Gurevich, Vladislav Saveliev, Nikolay Vyahhi, and Glenn Tesler. Quast: quality assess-

ment tool for genome assemblies. Bioinformatics, 29(8):1072–1075, 2013.

Michael Hahsler. An experimental comparison of seriation methods for one-mode two-way data.

European Journal of Operational Research, 257(1):133–143, 2017.

Michael Hahsler, Kurt Hornik, and Christian Buchta. Getting things in order: an introduction

to the r package seriation. Journal of Statistical Software, 25(3):1–34, 2008.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. Unsupervised learning. In The ele-

ments of statistical learning, pages 485–585. Springer, 2009.

Brandon W Higgs, Jennifer Weller, and Jeffrey L Solka. Spectral embedding finds meaningful

(relevant) structure in image and microarray data. Bmc Bioinformatics, 7(1):74, 2006.

178

Daniel H Huson, Knut Reinert, and Eugene W Myers. The greedy path-merging algorithm for

contig scaffolding. Journal of the ACM (JACM), 49(5):603–615, 2002.

Bradley R Jones, Ashok Rajaraman, Eric Tannier, and Cedric Chauve. Anges: reconstructing

ancestral genomes maps. Bioinformatics, 28(18):2388–2390, 2012.

Gerald Karp, Janet Iwasa, and Wallace Marshall. Cell and Molecular Biology: Concepts and

Experiments. Wiley, 2015.

Tjalling C Koopmans and Martin Beckmann. Assignment problems and the location of eco-

nomic activities. Econometrica: journal of the Econometric Society, pages 53–76

Jan O Korbel and Charles Lee. Genome assembly and haplotyping with Hi-C. Nature biotech-

nology, 31:1099–1101, December 2013. ISSN 1546-1696. doi: 10.1038/nbt.2764.

Sergey Koren and Adam M Phillippy. One chromosome, one contig: complete microbial genomes

from long-read sequencing and assembly. Current opinion in microbiology, 23:110–120, 2015.

Sergey Koren, Michael C Schatz, Brian P Walenz, Jeffrey Martin, Jason T Howard, Ganeshku-

mar Ganapathy, Zhong Wang, David A Rasko, W Richard McCombie, Erich D Jarvis, et al.

Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nature

biotechnology, 30(7):693, 2012.

Sergey Koren, Brian P Walenz, Konstantin Berlin, Jason R Miller, Nicholas H Bergman, and

Adam M Phillippy. Canu: scalable and accurate long-read assembly via adaptive k-mer

weighting and repeat separation. Genome research, 27(5):722–736, 2017.

Joseph B Kruskal and Myron Wish. Multidimensional scaling, volume 11. Sage, 1978.

Harold W Kuhn. The hungarian method for the assignment problem. Naval Research Logistics

(NRL), 2(1-2):83–97, 1955.

Stefan Kurtz, Adam Phillippy, Arthur L Delcher, Michael Smoot, Martin Shumway, Corina

Antonescu, and Steven L Salzberg. Versatile and open software for comparing large genomes.

Genome biology, 5(2):R12, 2004.

Simon Lacoste-Julien and Martin Jaggi. On the global linear convergence of frank-wolfe op-

timization variants. In Advances in Neural Information Processing Systems, pages 496–504,

2015.

Stéphane S Lafon. Diffusion maps and geometric harmonics. PhD thesis, Yale University PhD

dissertation, 2004.

Monique Laurent and Matteo Seminaroti. The quadratic assignment problem is easy for robin-

sonian matrices with toeplitz structure. Operations Research Letters, 43(1):103–109, 2015.

179

Christopher Lee, Catherine Grasso, and Mark F Sharlow. Multiple sequence alignment using

partial order graphs. Bioinformatics, 18(3):452–464, 2002.

Heng Li. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences.

Bioinformatics, page btw152, 2016.

Heng Li. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 1:7, 2018.

E. Lieberman-Aiden, N. L. van Berkum, L. Williams, M. Imakaev, T. Ragoczy, A. Telling,

I. Amit, B. R. Lajoie, P. J. Sabo, M. O. Dorschner, R. Sandstrom, B. Bernstein, M. A.

Bender, M. Groudine, A. Gnirke, J. Stamatoyannopoulos, L. A. Mirny, E. S. Lander, and

J. Dekker. Comprehensive mapping of long-range interactions reveals folding principles of

the human genome. Science, 326(5950):289–293, Oct 2009a.

Erez Lieberman-Aiden, Nynke L Van Berkum, Louise Williams, Maxim Imakaev, Tobias

Ragoczy, Agnes Telling, Ido Amit, Bryan R Lajoie, Peter J Sabo, and Michael O Dorschner.

Comprehensive mapping of long-range interactions reveals folding principles of the human

genome. science, 326(5950):289–293, 2009b.

Innar Liiv. Seriation and matrix reordering methods: An historical overview. Statistical Anal-

ysis and Data Mining: The ASA Data Science Journal, 3(2):70–91, 2010.

Cong Han Lim and Stephen Wright. Beyond the birkhoff polytope: Convex relaxations for

vector permutation problems. In Advances in Neural Information Processing Systems, pages

2168–2176, 2014.

Cong Han Lim and Steve Wright. A box-constrained approach for hard permutation problems.

In International Conference on Machine Learning, pages 2454–2463, 2016.

Jie Liu, Dejun Lin, Gurkan Yardimci, and William Noble. Unsupervised embedding of single-

cell hi-c data. bioRxiv, page 257048, 2018.

Zehua Liu, Huazhe Lou, Kaikun Xie, Hao Wang, Ning Chen, Oscar M Aparicio, Michael Q

Zhang, Rui Jiang, and Ting Chen. Reconstructing cell cycle pseudo time-series via single-cell

transcriptome data. Nature communications, 8(1):22, 2017.

Nicholas J Loman, Joshua Quick, and Jared T Simpson. A complete bacterial genome assembled

de novo using only nanopore sequencing data. Nature methods, 12(8):733, 2015.

Vince Lyzinski, Donniell E Fishkind, Marcelo Fiori, Joshua T Vogelstein, Carey E Priebe, and

Guillermo Sapiro. Graph matching: Relax at your own risk. IEEE transactions on pattern

analysis and machine intelligence, 38(1):60–73, 2016.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine

learning research, 9(Nov):2579–2605, 2008.

180

James MacQueen et al. Some methods for classification and analysis of multivariate observa-

tions. In Proceedings of the fifth Berkeley symposium on mathematical statistics and proba-

bility, volume 1, pages 281–297. Oakland, CA, USA, 1967.

Mohammed-Amin Madoui, Stefan Engelen, Corinne Cruaud, Caroline Belser, Laurie Bertrand,

Adriana Alberti, Arnaud Lemainque, Patrick Wincker, and Jean-Marc Aury. Genome as-

sembly using nanopore-guided long and error-free dna reads. BMC genomics, 16(1):327,

2015.

Hervé Marie-Nelly, Martial Marbouty, Axel Cournac, Jean-François Flot, Gianni Liti,

Dante Poggi Parodi, Sylvie Syan, Nancy Guillén, Antoine Margeot, Christophe Zimmer,

et al. High-quality genome (re) assembly using chromosomal contact data. Nature commu-

nications, 5:5695, 2014.

Adam Massey, Steven J Miller, and John Sinsheimer. Distribution of eigenvalues of real symmet-

ric pavndromic toeplitz matrices and circulant matrices. Journal of Theoretical Probability,

20(3):637–662, 2007.

João Meidanis, Oscar Porto, and Guilherme P Telles. On the consecutive ones property. Discrete

Applied Mathematics, 88(1):325–354, 1998.

Eugene W Myers, Granger G Sutton, Art L Delcher, Ian M Dew, Dan P Fasulo, Michael J

Flanigan, Saul A Kravitz, Clark M Mobarry, Knut HJ Reinert, Karin A Remington, et al.

A whole-genome assembly of drosophila. Science, 287(5461):2196–2204, 2000.

Gene Myers. Efficient local alignment discovery amongst noisy long reads. In International

Workshop on Algorithms in Bioinformatics, pages 52–67. Springer, 2014.

Niranjan Nagarajan and Mihai Pop. Sequence assembly demystified. Nature Reviews Genetics,

14(3):157, 2013.

Niranjan Nagarajan, Timothy D Read, and Mihai Pop. Scaffolding and validation of bacterial

genome assemblies using optical restriction maps. Bioinformatics, 24(10):1229–1235, 2008.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation

ranking: Bringing order to the web. Technical report, Stanford InfoLab, 1999.

Christos H Papadimitriou and Kenneth Steiglitz. Combinatorial optimization: algorithms and

complexity. Courier Corporation, 1998.

Mihai Pop. Shotgun sequence assembly. Advances in computers, 60(1):193–248, 2004.

Huaijun Qiu and Edwin R Hancock. Clustering and embedding using commute times. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 29(11), 2007.

181

Antoine Recanati, Thomas Brüls, and Alexandre d’Aspremont. A spectral algorithm for fast

de novo layout of uncorrected long nanopore reads. Bioinformatics, 2016.

Antoine Recanati, Thomas Kerdreux, and Alexandre d’Aspremont. Reconstructing latent or-

derings by spectral clustering. arXiv preprint arXiv:1807.07122, 2018a.

Antoine Recanati, Nicolas Servant, Jean-Philippe Vert, and Alexandre d’Aspremont. Robust

seriation and applications to cancer genomics. arXiv preprint arXiv:1806.00664, 2018b.

Lothar Reichel and Lloyd N Trefethen. Eigenvalues and pseudo-eigenvalues of toeplitz matrices.

Linear algebra and its applications, 162:153–185, 1992.

William S Robinson. A method for chronologically ordering archaeological deposits. American

antiquity, 16(4):293–301, 1951.

Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally linear

embedding. science, 290(5500):2323–2326, 2000.

Sartaj Sahni and Teofilo Gonzalez. P-complete approximation problems. Journal of the ACM

(JACM), 23(3):555–565, 1976.

Mark Schmidt. minfunc: unconstrained differentiable multivariate optimization in matlab.

Software available at http://www. cs. ubc. ca/˜ schmidtm/Software/minFunc. htm, 2005.

Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Kernel principal component

analysis. In International Conference on Artificial Neural Networks, pages 583–588. Springer,

1997.

Amit Singer. From graph to manifold laplacian: The convergence rate. Applied and Computa-

tional Harmonic Analysis, 21(1):128–134, 2006.

Temple F Smith and Michael S Waterman. Comparison of biosequences. Advances in applied

mathematics, 2(4):482–489, 1981.

Ivan Sović, Mile Šikić, Andreas Wilm, Shannon Nicole Fenlon, Swaine Chen, and Niranjan

Nagarajan. Fast and sensitive mapping of nanopore sequencing reads with graphmap. Nature

communications, 7, 2016.

Dorine Tabary, Tom Davot, Mathias Weller, Annie Château, and Rodolphe Giroudeau. New

results about the linearization of scaffolds sharing repeated contigs. In International Confer-

ence on Combinatorial Optimization and Applications, pages 94–107. Springer, 2018.

William F Trench. On the eigenvalue problem for toeplitz band matrices. Linear Algebra and

its Applications, 64:199–214, 1985.

182

Robert Vaser, Ivan Sović, Niranjan Nagarajan, and Mile Šikić. Racon-rapid consensus module

for raw de novo genome assembly of long uncorrected reads. In London calling conference

2016, 2016.

Joshua T Vogelstein, John M Conroy, Vince Lyzinski, Louis J Podrazik, Steven G Kratzer,

Eric T Harley, Donniell E Fishkind, R Jacob Vogelstein, and Carey E Priebe. Fast

approximate quadratic programming for large (brain) graph matching. arXiv preprint

arXiv:1112.5507, 2011.

U. Von Luxburg, O. Bousquet, and M. Belkin. Limits of spectral clustering. In Advances in

Neural Information Processing Systems 17, pages 857–864, Cambridge, MA, USA, July 2005.

Max-Planck-Gesellschaft, MIT Press.

Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17(4):395–416,

2007.

Kilian Q Weinberger and Lawrence K Saul. Unsupervised learning of image manifolds by

semidefinite programming. International journal of computer vision, 70(1):77–90, 2006.

Neil I Weisenfeld, Vijay Kumar, Preyas Shah, Deanna M Church, and David B Jaffe. Direct

determination of diploid genome sequences. Genome research, 2017.

Mathias Weller, Annie Chateau, and Rodolphe Giroudeau. Exact approaches for scaffolding.

BMC bioinformatics, 16(14):S2, 2015.

Chen Yang, Justin Chu, René L Warren, and Inanç Birol. Nanosim: nanopore sequence read

simulator based on statistical characterization. GigaScience, 6(4):1–6, 2017a.

Tao Yang, Feipeng Zhang, Galip Gurkan Yardimci, Fan Song, Ross C Hardison,

William Stafford Noble, Feng Yue, and Qunhua Li. Hicrep: assessing the reproducibility

of hi-c data using a stratum-adjusted correlation coefficient. Genome research, pages gr–

220640, 2017b.

Yi Yu, Tengyao Wang, and Richard J Samworth. A useful variant of the davis–kahan theorem

for statisticians. Biometrika, 102(2):315–323, 2014.

Denny Zhou, Jason Weston, Arthur Gretton, Olivier Bousquet, and Bernhard Schölkopf. Rank-

ing on data manifolds. In Advances in neural information processing systems, pages 169–176,

2004.

183

Résumé
Les technologies de séquençage d’ADN ne permettent

de lire que de courts fragments, dont on ignore la po-

sition sur le génome. L’assemblage de novo vise à re-

constituer une séquence d’ADN entière en mettant ces

fragments bout-à-bout, tel un puzzle. Dans l’approche

OLC (overlap-layout-consensus), on calcule le chevau-

chement entre fragments afin de les disposer en ordre

(réarrangement), puis extraire une séquence consensus.

Le réarrangement peut s’écrire comme un problème

combinatoire de sériation, où l’on réordonne des élé-

ments comparable entre eux, de sorte que deux élé-

ments adjacents sont similaires. Ce problème est résolu

efficacement par un algorithme spectral en l’absence de

bruit, mais il en va autrement des données génomiques

réelles. En particulier, des régions du génome sont simi-

laires bien qu’éloignées (séquences répétées), rendant

l’assemblage problématique.

Les méthodes d’assemblage emploient des algorithmes

hiérarchiques et gloutons pour désambiguïser les sé-

quences répétées. Nous proposons ici une approche

épurée où l’on réarrange tous les fragments « d’un

coup »via la résolution de sériation.

Notre première contribution montre que l’emploi de la

méthode spectrale pour le réarrangement s’intègre par-

faitement dans le schéma OLC, produisant des résul-

tats de qualité semblable aux méthodes standard. Ce-

pendant, du fait des séquences répétées, cette méthode

produit des assemblages fragmentés (typiquement en

quelques sous-séquences au lieu d’une).

La deuxième contribution est un prolongement de la mé-

thode spectrale lié à la réduction de dimension sous

conservation de distances, englobant les problèmes de

sériation et de sériation circulaire (une variante où les

éléments peuvent être ordonnés selon un cycle) dans

un cadre unifié. Ce prolongement rend l’algorithme ro-

buste au bruit et résout le problème de fragmentation de

l’assemblage précédent.

Notre troisième contribution formalise la sériation ro-

buste, où l’on souhaite réordonner des données brui-

tées. Nous décrivons des liens avec d’autres problèmes

combinatoires, en particulier pour des matrices modéli-

sant les données réelles d’ADN. Nous proposons des al-

gorithmes adaptés, améliorant expérimentalement la ro-

bustesse sur données synthétiques et réelles, bien que

moins clairement que la deuxième contribution.

La quatrième contribution présente le problème de sé-

riation avec duplication, motivé par l’assemblage de gé-

nomes cancéreux via des données de conformation spa-

tiale, que nous tentons de résoudre avec un algorithme

de projections alternées fondé en partie sur les mé-

thodes de sériation robuste, sur données synthétiques.

Mots-clés
sériation, méthodes spectrales, optimisation combina-

toire, relaxations convexes, permutations, permutaèdre,

optimisation robuste, assemblage de novo , séquençage

de troisième génération, Oxford Nanopore Technology,

Overlap-Layout-Consensus, classement.

Abstract
In a sequencing experiment, we can only “read” small

fragments (reads) of DNA due to physical limitations,

whose location on the genome is unknown. De novo

assembly aims to put them together to retrieve the full

DNA sequence, like a jigsaw puzzle. The OLC approach

computes pairwise Overlaps between reads to find their

Layout, and then derive a Consensus sequence.

The layout can be cast as an instance of the Seriation

combinatorial problem, seeking to reorder a set of ele-

ments based on their pairwise similarity, such that simi-

lar elements are nearby. In a noiseless setting, a spec-

tral method can solve Seriation efficiently. Still, it often

fails on noisy, real DNA data. Notably, assembly is chal-

lenged by repeated genomic regions (repeats) causing

distant fragments to be similar.

Most assembly engines follow hierarchical, greedy

schemes, including modules dedicated to detect and

disambiguate repeats while constructing the output se-

quence. We explore a simpler approach using Seriation

to lay out all reads at once.

Our first contribution is to show that the spectral method

can be seamlessly integrated in an OLC framework,

yielding competitive results compared to standard meth-

ods on real data. However, due to repeats, the method

can only find fragmented assemblies (with a few large

assembled fragments), i.e., it does not succeed to lay-

out all the reads together at once.

In our second contribution, we extend the spectral

method using a multidimensional spectral embedding. It

provides a unifying framework for seriation and circular

seriation, a variant searching for a cyclic ordering of the

data. This method significantly improves the robustness

of the original algorithm on noisy data, and yields single-

contig assembly of bacterial genomes.

As a third contribution, we introduce the Robust Seriation

framework, formalizing the task of seriation on corrupted

data. We outline the relation between (robust) seriation

and other combinatorial problems, particularly for styl-

ized matrices modeling DNA sequencing data. We pro-

pose dedicated algorithms that experimentally improve

robustness on synthetic and real data, although they turn

out to be more sensitive than the method constituting our

second contribution.

In a fourth contribution, we introduce the problem of Se-

riation with Duplications, which is motivated by the appli-

cation of assembling cancer genome from spatial confor-

mation (Hi-C) data. We propose an alternated minimiza-

tion algorithm that can utilize methods designed to solve

Robust Seriation, and evaluate it on toy data.

Keywords

seriation, spectral methods, combinatorial optimization,

convex relaxations, permutations, permutahedron, ro-

bust optimization, de novo genome assembly, third

generation sequencing, Oxford Nanopore Technology,

overlap-layout-consensus, layout problems, ordering.

	Introduction
	Seriation
	Presentation
	Notations
	Mathematical Formulation and Related Problems

	Optimization Strategies
	Greedy Algorithms
	Spectral Relaxation
	Convex Relaxations

	Applications to Genomics
	De novo Genome Assembly
	Repeated Regions (repeats)
	Sequencing technologies
	State of the Art of Assembly Methods
	Hi-C: Spatial Conformation Data
	10X Genomics

	Challenges

	Application of the Spectral Method to Genome Assembly
	Introduction
	Methods
	Layout computation
	Consensus generation
	Overlap-based similarity and repeats handling

	Results
	Data
	Layout
	Consensus

	Discussion

	Multi-dimensional Spectral Ordering : Reconstructing Linear Orderings via Spectral Embedding
	Introduction
	Related Work
	Spectral Ordering for Linear Seriation
	Laplacian Embedding
	Link with Continuous Operators
	Other embeddings
	Ordering points lying on a curve

	Spectral properties of some (circular) Robinson matrices
	Circular Seriation with Symmetric, Circulant matrices
	(Linear) Robinson Toeplitz matrices
	Spectral properties of the Laplacian

	Recovering Ordering on Filamentary Structure
	The Algorithm
	Illustration of Algorithm 3.3

	Perturbation analysis
	Application of the Davis-Kahan Theorem
	Exact recovery with noise for Algorithm 3.2

	Numerical Results
	Synthetic Experiments
	Genome assembly experiment : bacterial genomes with ONT long-reads
	Genome assembly using Hi-C data
	Assembly of genomes with multiple chromosomes with Hi-C data
	Finding circular orderings with single-cell Hi-C data

	Conclusion

	Robust Seriation
	Introduction
	Robust Seriation
	Application of Seriation to Genome Assembly
	Robust 2-SUM

	Robust Seriation Algorithms
	QAP solvers (FAQ and PHCD)
	Symmetry issue in the Permutahedron PH
	Frank-Wolfe with tie-breaking constraint (FWTB)
	Graduated Non-Convexity : Frank-Wolfe Algorithm with Concave Penalty (GnCR and HGnCR)
	Unconstrained Optimization in Hn with Iterative Bias (UBI)
	Spectral relaxation for HuberSUM()
	First Order Optimization on Manifold

	Numerical Results
	Synthetic data
	Frank-Wolfe with Tie-Break (FWTB) is biased
	E. coli genome reconstruction
	Genome assembly using Hi-C data

	Conclusion

	Seriation with Duplications
	Introduction
	Seriation with Duplications
	Hi-C data
	Problem setting

	Algorithms
	Alternate projection for Seriation with Duplications
	Algorithms for Robust Seriation
	Algorithmic details

	Numerical Results
	Multiple chromosomes : Seriation+Clustering with Duplications
	Numerical experiments with block + Robinson matrices

	Discussion

	Conclusion and Perspectives
	Summary of the thesis
	Perspectives

	Supplementary Material for Chapter 2, Application of the Spectral Method to Genome Assembly
	Running Times
	Total time
	Runtime for layout only

	the Bandwidth Heuristic
	Consensus accuracy
	Additional Assembly Results
	Implementation and reproducibility

	Supplementary Material for Chapter 3, Multi-dimensional Spectral Ordering : Reconstructing Linear Orderings via Spectral Embedding
	Additional Algorithms
	Merging connected components
	Computing Kendall-Tau score between two permutations describing a circular ordering

	Additional Numerical Results
	Genome assembly experiment (detailed)
	Gain over baseline
	Numerical results with KMS matrices
	Sensitivity to parameter k (number of neighbors)
	Sensitivity to the normalization of the Laplacian
	Supplementary Figures for Hi-C data experiments

	Proof of Theorem 3.3.2
	Properties of sum of cosines.
	Properties on R-Toeplitz circular matrix.
	Recovering exactly the order.

	Supplementary Material for Chapter 4, Robust Seriation
	Seriation and Robust Seriation Algorithms
	Supplementary Tables

	Supplementary Material for Chapter 5, Seriation with Duplications
	Supplementary Figures
	Supplementary Tables

