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THÈSE de DOCTORAT DE L’UNIVERSITÉ DE LYON
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L’humanité est constamment aux prises avec

deux processus contradictoires dont l’un tend à

instaurer l’unification, tandis que l’autre vise à

maintenir ou à rétablir la diversification.

Claude Lévi-Strauss.
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Résumé

L’évolution moléculaire vise à caractériser les mécanismes à l’œuvre dans l’évolution des

séquences, régie par un processus stochastique dont les principaux composants sont la

mutation, la sélection et la dérive génétique. À long terme, ce processus stochastique

se traduit par une histoire d’événements de substitutions le long des arbres d’espèces,

induisant des motifs complexes de divergence moléculaire entre les espèces. En analysant

ces divergences, les modèles de codons phylogénétiques visent à capturer les paramètres

intrinsèques de l’évolution. Dans ce contexte, cette thèse s’est concentrée sur les modèles

à codons phylogénétiques et sur la modélisation de l’interaction entre la mutation, la

sélection et la dérive génétique dans les séquences d’ADN codant pour des protéines.

Parce que la composition de ces séquences ne reflète pas le processus de mutation sous-

jacent, mais son filtrage par sélection au niveau des acides aminés, une modélisation

minutieuse est nécessaire pour démêler la mutation et la sélection. Ainsi, j’ai développé

un modèle d’inférence phylogénétique dans lequel différents taux d’évolution donnent

une représentation précise de la manière dont la mutation et la sélection s’opposent à

l’équilibre. Deuxièmement, l’équilibre entre mutation et sélection est arbitré par la dérive

génétique, qui est médiée par la taille efficace de la population, et ses changements le

long d’une phylogénie peuvent être déduits des motifs de substitutions le long des lignées.

J’ai ainsi développé un deuxième modèle d’inférence, reconstituant à la fois le paysage

de fitness en chaque site, les tendances à long terme de taille efficace de population et

les changements de taux de mutation le long de la phylogénie. Ce cadre bayésien a été

testé sur des données simulées puis appliqué à des données empiriques. Les estimations

de la variation de taille efficace de population correspondent à la direction attendue de la

corrélation avec les traits d’histoire de vie ou les variables écologiques, bien que l’ampleur

de la variation de la taille efficace de population estimée soit étroite. Afin de comprendre

cette variation étroite de la taille efficace de population estimée, j’ai finalement développé

un modèle théorique décrivant comment les changements à la fois de taille efficace de

population ou du niveau d’expression de la protéine se traduisent par un changement

du taux de substitution, sous l’hypothèse que les protéines sont sous sélection direction-

nelle pour maximiser leur stabilité conformationnelle. Cette réponse est déterminée en

fonction des paramètres moléculaires de la biophysique des protéines, et implique une

faible réponse du taux de substitution aux changements de niveau d’expression ou de

taille efficace de population dans ce contexte. Ce travail démontre que les hypothèses

faites sur la structure du paysage de fitness ont une importance critique sur la sensibilité

des changements de vitesse d’évolution à des changements de variables écologiques ou

moléculaires. Réciproquement, les observations empiriques des motifs de substitutions

en réponse à des changements de variables moléculaires ou écologiques nous informent

sur la structure sous-jacente du paysage de fitness. En se basant sur l’équilibre mutation-

sélection et en intégrant explicitement la taille efficace de population, ce travail présente

aussi un cadre conceptuel permettant de relier phylogénie et génétique des populations,

dont certaines pistes d’unifications sont envisagées.



Résumé étendu

La théorie neutre de l’évolution a influencé notre compréhension de la génétique des

populations et de l’évolution moléculaire. Au-delà des disputes et des controverses en-

tre neutralisme et sélectionnisme, le consensus actuel est de considérer l’évolution des

séquences génétiques comme un processus stochastique combinant mutation, sélection et

dérive génétique. Les mutations sont source de diversité génétique. La sélection, quant

à elle filtre cette diversité. Enfin, l’équilibre entre mutation et sélection est arbitré par

la dérive génétique, déterminé par la taille efficace de population (Ne). Sur la longue

durée évolutive, mutation, sélection et dérive génétique résultent en une accumulation de

substitutions ponctuelles entre les espèces, qui dans les séquences codantes peuvent être

soit synonymes, soit non synonymes. S’appuyant ainsi sur ces différences interspécifiques,

telles qu’observées dans les alignements multiples de séquences d’ADN codant pour des

protéines, l’objectif des modèles à codons phylogénétiques est de mieux caractériser et

quantifier les processus mutationnels et sélectifs et de mieux comprendre leur articula-

tion. Les modèles à codons sont toujours un domaine de recherche actif et se scindent en

deux philosophies différentes. D’un côté, les modèles phénoménologiques visent à cap-

turer l’effet net de la sélection s’exerçant sur toutes les mutations non synonymes au sein

de la protéine, à travers un seul paramètre. De l’autre côté, des approches mécanistes ont

pour objectif de capturer l’effet de la sélection sur chaque mutation non synonyme prise

individuellement, ce qui requiert de modéliser explicitement le paysage du fitness sous-

jacent. En l’état, cependant, de nombreuses questions restent ouvertes et les modèles

actuels, qu’ils soient phénoménologiques ou mécanistes, présentent de nombreuses faib-

lesses. Les approches phénoménologiques n’articulent pas explicitement la relation entre

mutation, sélection et dérive génétique, et pourraient encore être améliorées, tout en

restant dans l’idée de ne pas modéliser explicitement le paysage sélectif dans ses détails.

Quant aux approches mécanistes, dans leurs versions actuelles, elles font des hypothèses

très fortes, telles que l’indépendance entre sites, un paysage de fitness fixe au cours du

temps, mais aussi une taille efficace de population (Ne) constante le long de la phy-

logénie. Plus fondamentalement, il existe un certain vide à combler entre ces approches

phénoménologiques et mécanistes, et de meilleures connexions conceptuelles et pratiques

pourraient être établies entre elles.

Dans ce contexte, mon travail de thèse représente une tentative de démêler les inter-

actions complexes entre mutation, sélection et dérive génétiques en construisant de nou-

veaux modèles à codons phylogénétiques, selon les deux approches, phénoménologiques

et mécanistes. Au cours de ce travail, j’ai lié des idées théoriques à des données em-

piriques, en utilisant une combinaison d’approches analytiques, d’expériences de simula-

tion de développements statistiques et informatiques utilisant les principes de l’inférence

bayésienne par chaines de Markov Monte-Carlo. Les résultats sont divisés en trois

manuscrits indépendants, sur le point d’être soumis à des journaux à comité de lecture.



Le premier article revient sur la question de l’équilibre entre biais de mutation et biais

de sélection, et de comment cet équilibre doit être correctement formalisé dans le con-

texte des modèles à codons phénoménologiques. Parce que la composition des séquences

d’ADN codant pour les protéines ne reflète pas le processus sous-jacent de mutation, mais

son filtrage par sélection au niveau des acides aminés, une modélisation minutieuse est

nécessaire pour démêler le processus de mutation et les biais nucléotidiques d’un côté, et

la sélection d’un autre côté. Malheureusement, les modèles à codons phénoménologiques

actuels, développés à l’origine pour estimer la pression de sélection s’exerçant sur les

protéines, ne modélisent pas correctement cet équilibre mutation-sélection. En effet,

ils utilisent le biais de composition nucléotidique observé comme proxy pour le biais

mutationnel. En conséquence, ils ne fournissent pas une estimation précise du proces-

sus de mutation, même s’ils sont capables d’estimer de manière assez fiable la pression

de sélection agissant sur les acides aminés. Pour résoudre ce problème, j’ai développé

un modèle à codon phylogénétique dans lequel la pression de sélection n’est pas con-

sidérée comme un paramètre unique, mais comme un tenseur (95 paramètres libres). Le

tenseur capture les faibles différences de pression de sélections dans différentes directions,

ce qui donne une représentation précise de la manière dont la mutation et la sélection

s’opposent à l’équilibre. Cette paramétrisation représente la forme paramétrique la plus

simple, dans un contexte phénoménologique, capable de séparer les effets de la mutation

et de la sélection de manière exacte, ou asymptotiquement exacte. Grâce à cela, cette

approche de modélisation donne une estimation fiable du processus de mutation, tout en

démêlant les pressions de sélection dans différentes directions. Ces développements of-

frent des outils qui permettront ultimement de mieux comprendre comment le processus

mutation-mutation s’articule avec d’autres processus évolutifs impactant la composition

nucléotidique, tels que la conversion génique biaisée (gBGC).

Si le premier manuscrit se focalise sur l’articulation entre mutation et sélection,

l’équilibre entre ces deux forces est arbitré par la dérive génétique, qui à son tour est

modulée par taille efficace de population (Ne). En conséquence, théoriquement, la vari-

ation de Ne le long d’une phylogénie peut être déduite de l’histoire des substitutions le

long des lignées. Le deuxième manuscrit explore ainsi la question de la prise en compte

des variations à long terme de la taille efficace de population (Ne) entre les espèces,

dans le contexte d’un modèle à codons mécaniste. Les travaux présentés dans ce sec-

ond manuscrit représentent la partie la plus intensive du travail de doctorat, en matière

de modélisation, d’algorithmes de Monte-Carlo et de développement logiciel. J’ai ainsi

développé un modèle à codons mécaniste reconstituant le paysage de fitness en chaque

site, les tendances à long terme de la taille efficace de population et du taux de mutation

le long de la phylogénie, à partir d’alignements d’ADN de séquences codantes. Simul-

tanément, l’approche estime la corrélation entre les traits d’histoires de vie, le taux de

mutation et la taille efficace de population, prenant explicitement en compte l’inertie

phylogénétique. Ce modèle a été testé sur des données simulées, puis appliqué à des

données empiriques chez les mammifères, les isopodes, les primates et les drosophiles.

Les résultats sur données simulées et empiriques suggèrent qu’il existe des signaux per-



sistants dans les séquences d’ADN qui permettent de reconstruire l’histoire évolutive du

Ne le long de la phylogénie. Par ailleurs, les variations de taille efficace de population

inférées corrèlent avec les traits d’histoire de vie ou les variables écologiques d’une façon

qui est attendue d’après les connaissances écologiques disponibles par ailleurs. Cepen-

dant, l’ampleur de la variation inférée de Ne à travers la phylogénie est plus étroite que

prévu, si l’on compare en particulier aux estimés sur la base du polymorphisme.

Cette dernière observation, qui suggère une violation de certaines hypothèses du

modèle, m’a amené à revoir la question de savoir comment la biophysique des protéines,

et plus généralement l’épistasie, peut moduler quantitativement la réponse du processus

évolutif moléculaire aux changements de la taille efficace de population. Ce dernier travail

est présenté comme un troisième manuscrit. En effet, les hypothèses sur la structure sous-

jacente du paysage de fitness peuvent avoir une grande influence sur la vitesse d’évolution

des protéines, et tout particulièrement sur les changements de cette vitesse d’évolution

après un changement de Ne. En plus de Ne, le niveau d’expression des protéines est

un autre facteur majeur susceptible de moduler la vitesse d’évolution moléculaire. Les

protéines fortement exprimées évoluent généralement moins vite, une corrélation prédite

par les modèles biophysiques supposant que les protéines mal repliées sont toxiques et

donc soumises à une sélection purificatrice. En conséquence, il convient d’articuler en-

semble toutes ces corrélations entre la vitesse d’évolution, la taille efficace de population

et le niveau d’expression, en rapport avec la structure du paysage de fitness sous-jacent.

Pour ce faire, j’ai dérivé une approximation théorique de la réponse quantitative de vitesse

d’évolution à des changements à la fois de Ne et du niveau d’expression, en fonction de

la relation génotype-phénotype-fitness sous-jacente. Ce développement est généralement

valide pour des traits phénotypiques additifs et une fonction de fitness concave, mais a

été appliqué plus spécifiquement à un modèle biophysique dans lequel les protéines sont

sous sélection directionnelle pour maximiser leur stabilité conformationnelle. Dans ce

cas précis, le modèle prédit une réponse faible du taux d’évolution aux changements de

Ne ou de niveau d’expression (qui sont interchangeable), un résultat corroboré par des

simulations sous des modèles plus complexes. Sur la base de preuves empiriques, je pro-

pose que l’adéquation basée sur la stabilité conformationnelle puisse ne pas fournir un

mécanisme suffisant pour expliquer l’amplitude des variations de la vitesse d’évolution

observée empiriquement, entre protéines ou entre espèces, induites par les variations de

niveau d’expression ou de taille efficace de population. D’autres aspects de la biophysique

des protéines pourraient être explorés tels que la sélection pour limiter les interactions

non spécifiques entre protéines. Ces aspects pourraient conduire à une réponse plus forte

de la vitesse d’évolution aux changements de Ne. Plus généralement, ce travail offre

des perspectives pour réduire l’écart entre les prévisions quantitatives des modèles bio-

physiques et les observations empiriques reliant la réponse de la pression de sélection aux

changements de Ne et du niveau d’expression.



Pour conclure, ce travail est une tentative encourageante, quoiqu’encore inaboutie

de construire des modèles intégrés d’évolution des séquences d’ADN codant pour les

protéines. Ce travail réussit à consolider l’idée que les motifs de substitutions nous in-

forment sur les fluctuations à long terme de la dérive génétique le long des branches et la

sélection le long des séquences. Il démontre que les hypothèses faites sur la structure du

paysage de fitness ont une importance critique sur la sensibilité des changements vitesse

d’évolution à des changements de variables écologiques (Ne) ou de moléculaires (niveau

d’expression des protéines). Réciproquement, les observations empiriques des motifs

de substitutions en réponse à des changements de variables moléculaires ou écologiques

nous informent sur la structure sous-jacente du paysage de fitness. En se basant sur

l’équilibre mutation-sélection et en intégrant explicitement la taille efficace de popula-

tion, ce travail présente aussi un cadre conceptuel permettant de relier phylogénie et

génétique des populations, dont certaines pistes d’unifications sont envisagées. Enfin, je

pense que cette thèse consolide les modèles théoriques sur lesquels se fonde l’évolution

moléculaire et souligne les écueils à éviter, tout en donnant des perspectives pour le

développement de méthodes d’inférence permettant d’intégrer différentes données em-

piriques et niveaux de complexité.
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l’observation et tes incroyables qualités d’empathie. J’espère qu’on aura l’occasion de

refaire une ou plusieurs randonnées ensemble.

. . . my jury who accepted reviewing this thesis, Céline Brochier-Armanet, Julien Yann
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Modelling the interplay between selective
and neutral mechanisms in the evolution

of protein-coding DNA sequences

Abstract

Molecular evolution aims to characterize the mechanisms at work in the evolution of

genetic sequences. This evolution is governed by a stochastic process whose main com-

ponents are mutation, selection and genetic drift. In the long term, this stochastic process

results in a history of substitution events along species trees, inducing complex patterns

of molecular divergence between species. By analysing them, phylogenetic codon models

aim at capturing the intrinsic parameters of evolution. In this context, this thesis has been

focused on phylogenetic codon models, and on how they can be used to understand the

interplay between mutation, selection and drift in shaping protein-coding DNA sequences.

Because the composition of protein-coding DNA sequences does not reflect the un-

derlying mutational process, but its filtering by selection at the level of amino acids, a

careful modelling approach is necessary to tease apart mutation and selection. Current

codon models are inherently misspecified in this respect and, as a result, do not return

accurate estimates of mutation biases. Therefore, I first developed a phylogenetic codon

model in which the ratio of the non-synonymous over the synonymous substitution rates

is modelled as a tensor, rather than a scalar. This model gives a more accurate rep-

resentation of how mutation and selection oppose each other at equilibrium and yields

accurate estimates of the mutation bias.

Second, the balance between the opposing forces of mutation and selection is arbi-

trated by genetic drift, which in turn is modulated by effective population size. As a

consequence, variation in effective population size along of a phylogeny can theoretically

be inferred from the trails of substitutions along the lineages. I thus developed a second

model of inference, jointly reconstructing site-specific fitness landscapes and the vari-

ation in effective population size and in the mutation rate along the phylogeny. This

Bayesian framework was tested against simulated data and then applied to empirical

data. Estimated lineage-specific ancestral population sizes show the expected correlation

with life-history traits or ecological variables. However, the magnitude of the inferred

variation is narrower than expected based on independent estimates.

In order to understand this narrow variation in the estimated effective population

sizes, and the possible role of epistasis in this outcome, i finally developed a theoreti-

cal model describing how changes in both effective population size or expression level

of protein translate into a change in the substitution rate, and how this response de-

pends on the underlying sequence-phenotype-fitness map. I more specifically explored

a biophysical model assuming that proteins are under directional selection to maximize

their conformational stability. Results of this theoretical and simulation work imply a

weak response (or susceptibility) of the substitution rate to changes in expression level

i



or effective population size (which are interchangeable). Theoretical approximations

were also developed, expressing this susceptibility as a function of the parameters of

the biophysical model. Finally, these quantitative estimates are discussed in the light

of current empirical knowledge.

Altogether, this thesis demonstrates that the assumptions made on the structure of

the fitness landscape have a critical importance on the sensitivity of the substitution rate

to changes in ecological or molecular variables. Conversely, empirical observations of the

patterns of substitutions in response to changes in molecular or ecological variables inform

us about the underlying structure of the fitness landscape. Being based on the mutation-

selection balance and by explicitly integrating effective population size, my work also

presents a conceptual framework relating phylogenetic and population genetics, while

proposing conceptual and methodological paths in order to achieve their unification.
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Preamble
The diversity of living organisms today is the result of a complex and intricate process,

which operates at multiple levels. At the molecular level, the fate of a protein depends on

its ability to fold but also on the enzymes it encounters from its creation up to its degra-

dation. Composed of millions of proteins, a cell’s own fate depends on its own ability to

metabolize substrates and copy its DNA, but also on the fate of surrounding cells and the

individual to which it belongs. Moreover, the fate of this individual depends on its own

behaviour, but also on its environment and the population to which it belongs. Alto-

gether, scientists have dissected this intricate process into its core components, through

molecular biology, enzymology, metabolism, physiology, population genetics, ecology, and

so on. Molecular evolution seeks to encompass different levels, relating molecular changes

to higher-level evolutionary processes. In this vein, this work is a modest attempt to rec-

oncile several layers of evolution, mechanistically deriving how observable parameters

between populations and within populations depends in microscopic molecular and cel-

lular parameters. Altogether, through the framework of population genetics, I seek to

draw connections between independent datasets, from molecular parameters of protein

biophysics, to diversity and divergence of DNA sequences within and between species,

while relating to species’ quantitative life-history traits.

This thesis is submitted in partial fulfilment of the requirements for the degree of

Philosophiae Doctor at the Université de Lyon. The research presented here was con-

ducted at the Laboratoire de Biométrie et Biologie Evolutive (LBBE), under the supervi-

sion of research director M. Nicolas Lartillot. This work was conducted from September

2017 onward during a 3-year grant by ENS de Lyon (Contrat Doctoral Spécifique Nor-

malien). The thesis is a collection of three manuscripts preceded by an introduction that

relates them and provides background information and motivation for the work.

All figures, scripts and LATEXsource code used in this manuscript can be reused under

CC-BY-SA license, available at https://github.com/ThibaultLatrille/PhD.
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From the discovery of evolution to today’s knowledge, the understanding of the mech-

anisms by which the diversity and the complexity of living forms emerge has seen dramatic

changes and has gone through several scientific revolutions. Molecular evolutionary sci-

ences represent one such revolution, a relatively recent scientific development emerging

at the crossroads of two scientific fields. On the one hand, evolutionary biology, which

has seen tremendous theoretical development in the nineteenth and twentieth centuries.

On the other hand, molecular biology, which recruited the advances in biochemistry over

the 20th century and has seen many technical revolutions over this time. Being both

empirical and theoretical, molecular evolution borrows strength simultaneously from the

ever-increasing amount of empirical data available in molecular biology and from the pre-

dictive power of theoretical evolutionary biology. From the differences in the observed

molecular sequences between individuals of the same population, or between species,

biologists can uncover the processes generating this diversity, and unravel the forces gov-

erning the underlying evolutionary mechanisms. Can we quantify the relative strength

of these forces, shaping both extant populations but also ancient and sometimes extinct

lineages? In a nutshell, molecular evolution leverages the patterns of genetic variation
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carried by individuals in order to uncover evolutionary mechanisms shaping the evolution

of organisms and their ancestral lineages, while at the same time shedding new light on

cellular and molecular processes allowing organisms to live and reproduce.

This section will recall the theoretical basis, the assumptions and the limitations

on which molecular evolution is based. It is a modest attempt, neither exhaustive nor

accurate, probably imprinted with the ideology of our current society on how we perceive

and interpret past discoveries. Moreover, this introduction will highlight a few names,

while in reality much of the development of molecular evolution also benefited from the

contribution of many unmentioned and sometimes forgotten scientists.

1.1 Population-genetics

Molecular evolution is theoretically built upon the framework of population genetics,

which in turn historically emerged as a unifying theory between Mendelian inheritance

and quantitative genetics, in the early twentieth century. Originally, Johann Gregor

Mendel established the statistical laws governing heredity of discrete characters through

hybridization experiments on the garden pea plant Pisum sativum between 1857 and

1864. This model of inheritance was rediscovered and confirmed in the early twen-

tieth century independently by botanists Hugo de Vries, Carl Correns and Erich von

Tschermak (Dunn, 2003).

At first, models of Mendelian inheritance were deemed incompatible with the models

of biometricians. The crux of the argument revolved around the evolution of continuous

characters1. Broadly speaking, supporters of Mendelian genetics held that evolution was

driven by mutations transmitted by the discrete segregation of alleles, which biometri-

cians rejected on the basis that this would necessarily imply discontinuous evolutionary

leaps (Bowler, 2003). Conversely, biometricians claimed that variation was continuous,

which Mendelian geneticists rejected on the basis that the variation measured by biome-

tricians was too small to be impacted by selection (Provine, 2001).

In a series of articles over the 1920s, the statistician Ronald A. Fisher reconciled

both theories. First, he proved mathematically that multiple discrete loci could result

in a continuous variation (Fisher, 1919). Secondly, Fisher (1930) and Haldane (1932)

proved that natural selection could change allele frequencies in a population. Fisher

and Haldane hence articulated selection on continuous traits with discrete underlying

genetic inheritance, a work that was completed by Wright (1932) for combinations of

interacting genes. Wright also proposed the concept of fitness landscape, viewing the

evolution of a population as a hill-climbing process. In this context, Wright also explored

some of the consequences of random drift, proposing that drift could sometimes allow

for a population to cross a valley between multiple fitness peaks. Altogether, Fisher,

Haldane and Wright laid the foundations of population genetics, a discipline which basi-

1Incompatibility between continuous and discrete evolution can actually be traced back to
debates between Jean-Baptiste de Lamarck (1744-1829) defending gradual changes and Georges
Cuvier (1869-1932) supporting punctual catastrophic changes, in the late eighteenth century.
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cally integrated Mendelian genetics, Darwinism and biometry, easing the debate between

continuous and gradual evolution2.

The emergence of this new scientific field was the first step towards the development

of a unified theory of evolution (Huxley, 1942), essentially defined on the basis that

natural selection acts on the heritable variation supplied by mutations (Mayr, 1959;

Stebbins, 1966; Dobzhansky, 1974).

1.2 Central dogma of molecular biology

During the theoretical development of population genetics, the support of heredity was

largely unknown, and the terminology of ’gene’, ’alleles’ and ’locus’ was essentially the-

oretical and not grounded on directly observable correlates. The first evidence that

deoxyribonucleic acid (DNA) is the molecular support of genetic information is in the

work of Avery et al. (1944), who showed that bacteria treated with a deoxyribonuclease

enzyme failed to transform, while otherwise transforming when treated by a protease.

The chemical composition of DNA was further elucidated by Chargaff et al. (1950), who

found that the proportions of adenine (A) and thymine (T) in DNA were roughly the

same as the amounts of cytosine (C) and guanine (G), suggesting a relation of comple-

mentarity between base pairs (A:T and G:C). On the other hand, the proportion of G+C

was found to vary from one species to another, which provided evidence that DNA could

encode the genetic information, via a four-letter molecular alphabet.

Ultimately, the double-helix structure of DNA was deciphered by Franklin and Gosling

(1953), Watson and Crick (1953) and Wilkins et al. (1953). Once the molecular structure

of DNA and its role as a support of heredity was elucidated, the work of Crick (1958) on

the question of the transfer of information from DNA to proteins resulted in the deter-

mination of the genetic code, the translation table from triplets of nucleotides (codons)

to amino acids. Ultimately, the establishment of the central dogma of molecular biology

detailed the process of protein synthesis. Briefly, the central dogma of molecular biology

states that the ”determination of sequence from nucleic acid to nucleic acid, or from

nucleic acid to protein may be possible, but transfer from protein to protein, or from

protein to nucleic acid is impossible” (Crick, 1970).

As the support of heredity, DNA gained a central role in evolutionary biology. More-

over, the development of new technologies such as the polymerase chain reaction (PCR)

by Kleppe et al. (1971), Sanger sequencing (Sanger and Coulson, 1975; Sanger et al.,

1977) and more recently the availability of next-generation sequencing techniques, re-

viewed in Mardis (2008) and Levy and Myers (2016), revolutionized the availability of

empirical data on which to test the theoretical predictions of population genetics.

2This debate was revived by palaeontologists Gould and Eldredge (1972). As of today it is
admitted that both macroevolutive patterns of punctual and gradual changes can be found.
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1.3. Neutral theory

1.3 Neutral theory

Although a unifying theory, population genetics remained rather theoretical for some

time, because it deals with the concept of gene frequencies, yet there was no direct way

to unambiguously identify the genes with the observable phenotypic traits. For that

reason, the connection between theoretical population genetics and empirical and experi-

mental work was only indirect, although quite precisely formalized, through quantitative

genetics. Quantitative genetics, or the genetics of complex traits, works by proposing

a ‘microscopic’ model of the genetic architecture of a given observable phenotypic trait.

This entails the specification of the number of loci, the effect sizes contributed by each of

them, the possible dominance or epistatic interactions between alleles at the same locus

or between loci, etc. Population genetics is then used to derive theoretical expectations

about the response of the trait to artificial or natural selection, predictions which are

then tested against empirical data (Lande, 1976, 1980; Lande and Arnold, 1983). In

this framework, however, the detailed genetic basis of the evolutionary process is never

accessed directly, but is only indirectly tested.

The situation changed radically during the second half of the 20th century. With the

advent of molecular genetics, it became possible to have a direct access to the variability

of nucleic and protein sequences within a species, as well as to the differences between

closely related species, making it possible to estimate the rate at which allelic genes are

substituted. The new observations that were made thanks to these new technological

developments turned out to create some surprise.

First, by comparing protein sequences from related species, it was observed that the

number of point substitutions between pairs of species was approximately proportional

to the time since their last common ancestor (Zuckerkandl and Pauling, 1965; Salser

et al., 1976). These observations led to posit the molecular clock hypothesis, which

assumes that the rate at which point substitutions accumulate is approximately con-

stant through time. This apparently constant rate of molecular evolution is in sharp

contrast with the much more variable rate of morphological evolution observed in the

same species, and more generally across the entire fossil record (Simpson, 1944, 1953).

Second, electrophoretic methods uncovered surprisingly high levels of genetic variabil-

ity within natural populations, such that most proteins in diverse organisms were found

to be naturally polymorphic (Harris, 1966; Hubby and Lewontin, 1966; Lewontin and

Hubby, 1966). In many cases, this molecular polymorphism had no visible phenotypic

effects and showed no obvious correlation with any other covariate. Finally, by compar-

ing DNA sequences in related species, it was observed that the overall (genome-wide)

rate of DNA substitutions is very high, of least one nucleotide base per genome every

two years in a mammalian lineage.

These observations are not easily explained in purely adaptive terms. Instead, they

led Kimura (1968), and independently, King and Jukes (1969), to propose the neutral

theory of molecular evolution (Kimura et al., 1986; Kimura, 1991). The main tenet of the

neutral theory is that most intra- and inter-specific molecular variation is in fact adap-
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tively neutral, thus explaining the high protein variability observed in polymorphism

datasets, where the diversity is supplied by a high mutational input. Subsequently to

origination by mutation, this selectively neutral diversity is reduced by the random ex-

tinction of alleles, via the cumulative effect of the random sampling of alleles at each

generation. Although the likely fate of a neutral allele just created by mutation is its

ultimate extinction, it is also possible that random drift leads to the fixation of this allele

in the population. In this context, the frequency of the neutral allele fluctuates through

generations, randomly increasing or decreasing over time, because only a relatively small

number of gametes are randomly sampled out of the vast number of male and female

gametes produced in each generation. As a consequence, the effect of genetic drift at

the level of a population results into divergence between lineages, where the majority of

the nucleotide substitutions in the course of evolution must have been the result of the

random fixation of neutral mutants rather than the result of positive Darwinian selection.

Of note, the neutral theory does not say that most mutations are neutral or that adap-

tation does not take place. A substantial fraction of all mutations are in fact strongly

deleterious. However, those mutations are quickly purified away and are generally not

visible, neither in the polymorphism within species nor in the divergence between species.

The argument of the neutral theory is just that most mutations that are not deleterious

are essentially neutral. Adaptive mutations are just rare, relative to neutral mutations,

and as a consequence, adaptive arguments do not need to be invoked in order to explain

most of the observed intra- and inter-specific variation.

In a second step, Ohta and Kimura (1971) refined the neutral theory, by proposing

that mutations can have an effect on the phenotype, and therefore on fitness. However, if

their effect on fitness is sufficiently small, they should still behave neutrally and have their

fate dictated solely by drift. Ohta (1973) later proposed a mathematical formalization

of this argument, incorporating weakly selected mutations to propose the nearly-neutral

theory. This theory emphasizes that selective effects lower than the inverse of effective

population size are negligible and are expected to behave neutrally. In this regard,

effective population size (Ne) is a quantitative measure of genetic drift such that genetic

drift decreases with increased effective population size.

The neutral theory sparked a long-standing controversy between neutralist and selec-

tionists. Selectionists maintain that a mutant allele must have some selective advantage

to spread through a species, although admitting that a neutral allele may occasionally be

carried along by hitchhiking on a closely linked gene that is positively selected. Neutral-

ists, on the other hand, argued that some mutants might spread through a population

without having any selective advantage, just by random sampling, such that if a mutant

is selectively equivalent to preexisting resident alleles, its fate is thus left to chance. Of

note, even if the probability of fixation of any given neutral mutation is low (p = 1/2Ne),

the high rate of mutation at the gene or genome-wide level and the highly degener-

ate mapping between genotype and phenotype both leave considerable latitude at the

molecular level for random genetic changes that have no effect upon the fitness of the

organism (King and Jukes, 1969). As a result, the total flux of neutral substitutions
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1.4. The legacy of the nearly-neutral theory

can in fact be the dominant contribution to intraspecific polymorphism and interspecific

differences. This overwhelming combinatorial effect was probably the point that was

hard to grasp by many evolutionary biologists at the time, trained in the idea that most

mutations should have an effect on the phenotype. Another factor that contributed to

the difficulty in accepting the neutral theory is the fact that effective population sizes

turn out to be much smaller than true (census) population sizes. This point is important,

because, according to the nearly-neutral theory of Ohta (1992), the inverse of effective

population size directly determines the proportion of all mutations that are effectively

neutral. Once it is recognized that effective population sizes are small, it becomes easier

to accept that most mutations with weak effects are effectively neutral.

As of today, it is widely accepted that both genetic drift and natural selection par-

ticipate in the evolution of genomes. The controversy is no longer strictly dichotomous

but rather concerns the quantitative contributions of adaptive and of non-adaptive evo-

lutionary processes, and their articulation with regards to mutation, selection, drift,

migration, gene conversion, and other evolutionary processes.

1.4 The legacy of the nearly-neutral theory

The neutral theory, and its nearly-neutral extension, have broad implications in evolu-

tionary biology. Much of its insight has been integrated in modern population genetics,

molecular evolutionary sciences, but also phylogenetics and molecular dating. Impor-

tantly, because of the marginal role played in this theory by the most unpredictable

factor involved in molecular evolution, namely adaptation, the nearly-neutral theory is

in a good position to make clear quantitative predictions about the rate and patterns of

molecular evolution, or about the structure of genetic diversity within species. As such

it gives a well-defined framework to formalize various assumptions about the underlying

processes and test them against empirical sequence data, which are becoming increas-

ingly available. Questions within this framework range from the causes of mutational

rate variation, to the structure of fitness landscapes, or the impact of changes in effec-

tive population size between species. In the following, I summarize several of the most

important insights that have been contributed by the neutral and nearly-neutral theory,

and how they still play on current research in molecular evolution.

1.4.1 Mostly-purifying selection

First, along with the adoption of the nearly-neutral theory by evolutionary biologists, the

common perception about the nature of selection shifted from selection being a driver

of changes mediated by adaptive mutations to a mainly purifying force discarding and

filtering out strongly deleterious mutations (Lynch and Walsh, 2007). From this perspec-

tive, protein sequences are relatively close to their adaptive optimum such that many

mutations occurring in their sequence are likely to disrupt their functions. This effect

can be observed in underlying DNA sequences, where non-synonymous substitutions oc-
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cur less frequently than synonymous substitutions (King and Jukes, 1969), and similarly,

radical amino acid replacements are more less than conservative changes (Kimura, 1983).

These effects are also observed within populations, non-synonymous single-nucleotide

polymorphisms segregate at lower frequencies compared to synonymous polymorphisms,

a phenomenon explained by purification of deleterious alleles which cannot reach high

frequencies (Akashi, 1999; Cargill et al., 1999; Hughes, 2005). Finally, what determines

the rate of non-synonymous evolution of protein-coding genes is primarily the amount

of selective constraint acting on them, such that slowly evolving genes are just more

constrained than fast-evolving genes Kimura (1983).

1.4.2 The mutation-selection balance

Proteins are relatively close to, but not quite at their optimum. This relates to another

important conceptual point contributed by the nearly-neutral theory. From a neutralist

perspective, evolution should not be seen as an optimization process, but instead, as a

process driving natural protein sequences at their mutation-selection equilibrium. This

concept of mutation-selection balance explains important features of natural protein se-

quences, which cannot be explained only in terms of optimization. Thus, as noted early

on by King and Jukes (1969), amino acids that have more codons are more frequently

represented in natural protein coding sequences. Similarly, later work by Singer and

Hickey (2000) has shown that species with a mutational bias towards AT (respectively

GC) tended to have proteomes with a higher frequency of amino acids encoded by AT-

rich (respectively GC-rich) codons. Another implication is that proteins are not optimal,

either for their enzymatic properties (Cornish-Bowden, 1976; Albery and Knowles, 1976;

Hartl et al., 1985) or for their conformational stability (Taverna and Goldstein, 2002).

This non-optimality is observed even if proteins are under directional selection for the

optimal sequence. All these observations are clear illustrations of the fact that natural

sequences are not at their optimum, but instead, are the result of a trade-off between

mutation biases and mostly purifying selection. This trade-off between mutation and se-

lection is regulated by the amount of random drift, and thus by effective population size.

The concept of mutation-selection balance is not yet fully incorporated in evolutionary

thinking. Many evolutionary scientists, and many biologists more generally, still tend to

think in terms of optimization. Correctly formalizing this interplay between mutation,

selection and drift in the context of phylogenetic codon models is in fact at the core of

most of the work presented in the thesis.

1.4.3 The importance of drift

Tempering the effect of selection, drift mediated by effective population size has been

repeatedly invoked to explain the relaxation of the selective strength. First, it has been

observed that within populations relative diversity of selected site is more reduced for

species with smaller effective population size. Indeed, in an intra-specific context, the

non-synonymous diversity, relative to the synonymous diversity (i.e. πN/πS), is reduced
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in species characterized by larger effective population sizes (Piganeau and Eyre-Walker,

2009; Elyashiv et al., 2010; Galtier, 2016; Chen et al., 2017; James et al., 2017). Similarly,

in a phylogenetic context, the strength of selection, such as measured by the relative rate

of non-synonymous over synonymous substitution, is lower along lineages with small

effective population size (Ohta, 1993, 1995; Moran, 1996; Woolfit and Bromham, 2003,

2005; Popadin et al., 2007). It is important to note that, in most cases, the effective

population size is not directly measured, but a surrogate measure is used instead, for

example synonymous diversity (i.e. πS) as in (Galtier, 2016), or body size or longevity,

expected to be large in lineages with a low Ne (Romiguier et al., 2014). Leveraging the

nearly-neutral theory in order to quantitatively measure effective population size in a

phylogenetic context is one of the main objectives of this thesis, such as presented in

chapter 8. Of note, the quantitative response of the molecular evolutionary process to

changes in effective population size appears to strongly depend on the underlying fitness

landscapes (Welch et al., 2008), to the point of being entirely absent (Cherry, 1998;

Goldstein, 2013). This relationship between the rate of evolution and effective population

size is also a main question addressed in this thesis, such as studied in chapter 9.

1.4.4 Unravelling adaptation

The neutralist view of selection as mostly purifying raises an important question: where,

and to what extent, does adaptation leave traces in molecular sequences? The fact that

the neutral theory has been relatively silent on this question has largely contributed

to its rejection by many biologists, and in many respects the question is still open.

At first, methods for detecting adaptation have been developed, integrating either the

neutral or the nearly-neutral regime as a null model. Departures from one of these

null model are then typically interpreted as traces of adaptations. This idea to detect

traces of adaptation has been explored in a phylogenetic context, whenever the null

model is neutral (Goldman and Yang, 1994; Muse and Gaut, 1994; Yang and Swan-

son, 2002; Zhang and Nielsen, 2005) or nearly-neutral (Rodrigue and Lartillot, 2016;

Bloom, 2017). Similarly, in a population-genetics context, adaptation is detected as a

deviation from the null model, considered originally neutral (McDonald and Kreitman,

1991; Charlesworth, 1994; Smith and Eyre-Walker, 2002), and subsequently improved

to account for slightly deleterious mutations in a nearly-neutral regime (Eyre-Walker

and Keightley, 2009; Galtier, 2016).

These methods have clearly revealed important traces of adaptation (Bustamante

et al., 2005; Halligan et al., 2010; Enard et al., 2014), in particular, in genes implicated

in host-pathogen interactions (Enard et al., 2016; Grandaubert et al., 2019), or in other

specific genes involved in intra-genomic Red-Queen dynamics such as PRDM9 (Thomas

et al., 2009; Oliver et al., 2009; Ponting, 2011; Latrille et al., 2017). However, this might

represent only the most extreme adaptive events. Much of adaptation might still have

been missed at the molecular level. Kimura (1983) proposed a more radical insight about

the link between phenotypic adaptation and neutral molecular evolution. By showing an
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example of a phenotypic trait under stabilizing selection and controlled by a large number

of loci with small effects, phenotype efficiently optimized by selection, but the molecular

evolutionary process at each locus essentially indistinguishable from a neutral process.

More recent work, using the empirical knowledge acquired by large-scale population-

genomics project in humans, draws similar conclusions (Simons et al., 2018). Namely that

many traits turn out to be highly polygenic (Pritchard and Cox, 2002), and the frequency

changes contributing to their adaptive fine-tuning can be highly stochastic (Sella and

Barton, 2019). Analogous to statistical physics, microscopic behaviour of a physical

system is dominated by thermal noise, while the macroscopic state looks essentially

deterministic and driven by a principle of free-energy minimization.

1.4.5 Molecular evolution is mutation-limited

Originally, the neutral theory was heavily relying on the molecular clock hypothesis of

Zuckerkandl and Pauling (1965), which posits that rate of sequence evolution is con-

stant through time and across evolutionary lineages. Although appealing, it became

clear that the rate of evolution was not constant (ChungWu and Wen-Hsiung Li, 1985;

Li et al., 1987; Bulmer et al., 1991; Gaut et al., 1992). This rejection of the strict clock

motivated important methodological developments for modelling the fluctuations of the

substitution rate along a phylogeny (Sanderson, 1997; Thorne et al., 1998; Kishino et al.,

2001; Aris-Brosou and Yang, 2002; Drummond et al., 2006; Lepage et al., 2007). The

primary motivation for these relaxed clock models was to achieve more accurate molec-

ular dating. However, these developments also fostered comparative analyses, trying to

explain the causes of the variation of substitution rate between lineages. Methodologi-

cally, this motivated the developments of methods able to conduct correlation analyses

between molecular evolutionary rates and observable quantitative traits, while correcting

for phylogenetic inertia (Lanfear et al., 2010b; Lartillot and Poujol, 2011). Empirically,

generation time, but also metabolic rate, or selection for longevity, are potential expla-

nations for the variation in substitution rate (Lartillot and Delsuc, 2012), which can be

interpreted in the light of the molecular mechanisms of cell division (Gao et al., 2016).

The exact reasons for the variation in substitution rate between lineages are still

debated. However, what is clear is that this variation is mostly reflecting variation in the

mutation rate. As such, and in spite of the historically central role played by the molecular

clock in the arguments in favour of the neutral theory, the rejection of the molecular

clock by empirical data does not contradict the neutral theory. It just confirms that, in a

neutral or nearly-neutral regime, the molecular evolutionary process is mutation-limited,

or, in other words, that the substitution rate is determined primarily by the mutation rate.

1.4.6 Extending the null hypothesis of molecular evolution

Finally, some patterns have been found inconsistent within the general framework of

mutation, selection and drift, thus leading to uncovering new forces such as biased gene

conversion which mimics selection but are fundamentally segregation distortion during
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recombination (Marais, 2003; Galtier and Duret, 2007; Duret and Galtier, 2009). Such

forces are altering the composition of genomes and must be carefully accounted for in

models of evolution (Galtier et al., 2009; Ratnakumar et al., 2010; Figuet et al., 2014).

However, even though forces such as biased gene conversion are not within the scope

of this thesis, some assumptions and design of our models had been taken such as to

implement these forces subsequently.

1.4.7 Conclusion

Altogether, evolution of sequences results from the interplay between mutation, selec-

tion and drift, where this formalism is developed in chapter 2. Of all these components,

selection is the most pervasive, which can be approximated and observed in protein-

coding DNA sequences in a phylogenetic context between lineages, presented in chap-

ter 3). Consequently, models are applied to empirical data, and the methodology of

Bayesian inference from an alignment of DNA sequences is presented in chapter 4. Fi-

nally, selection of protein-coding DNA sequences is related to biochemical and biophys-

ical constraints (chapter 4).
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In molecular evolution, the information contained in empirically observed sequences

is leveraged to reconstruct ancestral lineages and to unveil the evolutionary mechanisms

having generated this diversity of sequences. In other words, the task is to reconstruct

the ancestral path followed by lineages using the knowledge available today, by working

backward in time. To do so, however, requires a theoretical model of the generating

process forward in time. One can then play this model forward in time and relate the

resulting generated sequences to empirically observed patterns.

Working out the long-term molecular evolutionary process first requires to formalize

what happens in a short time period within populations. Population genetics, with its

assumptions and limitations, provides the theoretical framework for this. The first sec-

tion thus recalls the basics of mathematical population genetics, and more specifically,
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the Wright-Fisher model and its assumptions. This will allow me to relate parameters

of evolution such as mutation, selection and drift to observable patterns in molecular

sequences such as the probability of fixation of a mutant allele, as well as the expected

number of copies of the derived allele we should observe in a population. These rela-

tionships between the underlying evolutionary forces and the observable patterns will

subsequently be leveraged and recruited in the next section to derive an approximation

of the long-term process of sequence substitution, again, parameterized directly in terms

of mutation, selection and drift.

Although the mathematical proofs for most of the results presented here are out of

the scope of this manuscript, an effort was made to state all definitions and assump-

tions. Such an effort is meant to clearly define the models, their assumptions and their

parameterization from the ground up.

2.1 Population genetics of sequences

2.1.1 The Wright-Fisher model with selection

The Wright-Fisher model describes the change in frequency of a polymorphic gene with

two alleles in a diploid population over time. The population is assumed to consist of

fixed number of diploid individuals N ≫ 1. It is also assumed to be panmictic (i.e. non-

preferential random mating), with non-overlapping generations. The number of copies of

the derived alleleB present at the current generation is denoted i and the frequency of this

mutant allele B is denoted p = i/2N , while the frequency of the resident A alleles is 1−p.

The ability to survive and produce offspring differs between the three diploid geno-

types (AA, AB, BB). Here, selection is assumed to occur between the zygotic and

the adult stage, called post-zygotic selection. Quantitatively, selection is captured by a

measure called Wrightian fitness (W ), which, for a given diploid genotype, is defined as

the expected number of offspring produced by an individual having this genotype. Since

the population is regulated in size, only the relative fitness matters, which is usually

set to 1 for the reference (wild-type) genotype. It is convenient to define the fitness of

the other two genotypes, relative to the wild-type, in terms of a selection coefficient.

Furthermore, in the following, we will assume additive effects (co-dominance), such that

the heterozygote has an intermediate fitness between the two homozygotes. Altogether,

fitness of the three diploid genotypes are defined as:





WAA = 1

WAB = 1 + s

WBB = 1 + 2s

(2.1)

More generally than the previous equations, under the assumption that selection is

weak |s| ≪ 1, the selection coefficient can be approximated by the difference in Wrightian
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fitness of the mutant and the resident allele as:

s =
WB −WA

WA
, (2.2)

=
WB

WA
− 1, (2.3)

≃ ln

(
WB

WA

)
, (2.4)

≃ ln(WB) − ln(WA), (2.5)

≃ fB − fA, (2.6)

where f = ln(W ) is often referred to as the Malthusian fitness, relative fitness or also log-

fitness.

2.1.2 Frequency changes across successive generations

Under the Hardy-Weinberg equilibrium of the population, the diploid genotype frequen-

cies in the current generation are distributed as given in table 2.1.

As a result, the mean fitness in the population is a function of the selection coefficient

and the frequency of two alleles as:

W = (1 + 2s)p2 + (1 + s)2p(1 − p) + (1 − p)2 (2.7)

= 1 + 2ps, (2.8)

And the relative fitness of the three different genotypes are also shown in table 2.1.

Genotype AA AB BB

Wrightian fitness (W ) 1 1 + s 1 + 2s

Hardy-Weinberg frequency (1 − p)2 2p(1 − p) p2

Relative Wrightian fitness
1

1 + 2ps

1 + s

1 + 2ps

1 + 2s

1 + 2ps

Table 2.1: Fitnesses of the different genotypes

Reproduction proceeds in two steps. In a first step, a very large pool of gametes

is produced, in which adults contribute proportionally to the fitness of their genotype.

Altogether, the frequency p′ of gametes bearing the B allele is a function of p and s,

as shown in figure 2.1, and formally derived as:

p′ = p2 1 + 2s

1 + 2ps
+ p(1 − p)

1 + s

1 + 2ps
(2.9)

= p
1 + s(1 + p)

1 + 2ps
(2.10)
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Figure 2.1: Frequency of derived allele p′ after a generation in the vertical axis a
function of the frequency in the previous generation p in the horizontal axis, shown for
several selection coefficients in coloured solid lines. Positive selection coefficients (s > 0)
result in increased derived allele frequency at the next generation, which is intuitively
expected. The effect is stronger when the derived allele frequency is close to 0.5, intuitively
because the poll of both alleles must be sufficiently large such that they can be replaced. It
is worth noting that even for strong selection coefficients (s = 0.2), completely unrealistic
in real population, the difference in frequency from one generation to the next is subtle.

In a second step, the N individuals of the next generation are obtained by randomly

sampling from the pool of gametes. As a result, the probability Pij , that there are j

copies of the derived allele B present at the next generation, given that there were i

copies in the current generation is given by the binomial distribution, with a propor-

tion p′ of B alleles in gametes:

Pij =

(
2N

j

)
(
p′)j (1 − p′)2N−j

(2.11)

=

(
2N

j

)(
p

1 + s(1 + p)

1 + 2ps

)j (
1 − p

1 + s(1 + p)

1 + 2ps

)2N−j

(2.12)

These transition probabilities define a discrete-space and discrete-time Markov pro-

cess. It has also been shown to be extremely difficult to explicitly derive formulas for

several quantities of evolutionary interest.

Of note, under the assumption that selection is weak |s| ≪ 1, p′ reduces to:

p′ ≃ p(1 + s+ ps− 2ps) (2.13)

= p+ sp(1 − p) (2.14)

= p+ ∆p, (2.15)

where ∆p = sp(1 − p)
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Intuitively, fluctuations induced by the binomial sampling (equation 2.12) are the

underlying cause of random drift. Quantitatively, the expected frequency change from

one adult generation to the next adult generation is:

E[∆p] = sp(1 − p). (2.16)

The variance of this binomial distribution is given by:

Var[∆p] =
p′(1 − p′)

2N
(2.17)

Since the change in frequency between two generations is small (p ≃ p′), the variance

is very close to:

Var[∆p] ≃
p(1 − p)

2N
(2.18)

Thus, the variance induced by random drift is inversely proportional to the population

size N . Also, if s ≫ 1/2N , then E[∆p] ≫ Var[∆p], or, in other words, the system-

atic trend imprinted by selection dominates over drift, describing the strong selection

regime. In contrast, if s ≪ 1/2N , drift dominates over selection, describing the ef-

fectively neutral regime.

2.1.3 Effective population size

The notion of effective population size, called Ne, only appears when we apply a panmic-

tic model to a population that is not, or to a real population. Ne was originally defined as

”the number of breeding individuals in an idealized population that would show the same

amount of dispersion of allele frequencies under random genetic drift or the same amount

of inbreeding as the population under consideration” (Wright, 1931). For most quantities

of interest and most real populations, the census population size N of a real population is

usually larger than the effective population size Ne. The same population may have mul-

tiple effective population sizes for different genetic loci, as for example sex chromosomes

do not have the same population sizes as autosomes. For the following development, this

idealize population with a single effective population Ne will be assumed.

2.1.4 Probability of fixation

Starting from an initial frequency, the Wright-Fisher process eventually reaches absorp-

tion: the derived allele either dies out or invades the population and thus reach fix-

ation. As the effective population size (Ne) approaches infinity (i.e. Ne → ∞), and

assuming that the selection coefficient scaled by effective population size (Nes) remains

constant, the discrete Markov process defined above can be closely approximated by a

continuous-time and continuous-space diffusion process. The parameters of this process

are summarized in table 2.2 for readability.

Under this diffusive approximation, a partial differential equation known as the Kol-

mogorov’s backward equation can be used to obtain the fixation probability of the derived
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Parameter Symbol Range

Census population size N [102, 106]

Effective population size Ne [102, 106]

Absolute Wrightian fitness W ≃ 1

Relative fitness f = ln(W ) ≪ 1

Selection coefficient s |s| ≪ 1

Scaled selection coefficient S = 4Nes Finite (negative or positive)

Mutation rate per generation u [10−10, 10−7] per site

Scaled mutation rate θ = 4Neu [10−8, 10−1] per site

Table 2.2: Parameters of population genetics

allele. Formally, for an effective population size Ne, Kimura (1962) derived the proba-

bility of fixation (Pfix(s,Ne, p)) of a derived allele with selection coefficient s and initial

frequency p if the selection coefficient is small (|s| ≪ 1):

Pfix(s,Ne, p) =
1 − e−4Neps

1 − e−4Nes
. (2.19)

Because s and Ne are confounded parameters, this probability of fixation is denoted

Pfix(S, p), as a function the scaled selection coefficient S = 4Nes and p, as shown in

figure 2.2, and formally derived as:

Pfix(S, p) =
1 − e−pS

1 − e−S
. (2.20)
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Figure 2.2: Probability of fixation Pfix(S, p) in the vertical axis as a function of the
initial frequency p in the horizontal axis, shown for different scaled effective population
size S = 4Nes. In contrast to changes of frequency during a generation, the probability
of fixation is sensitive to very weak selection coefficients (|s| ≪ 1), as long as the scaled
selection coefficient is not negligible (|S| > 1). Intuitively, selective effects are magnified
by population size because the fixation probability is the resultant of the overall trajectory
of the allele, integrating small effects throughout its lifespan.
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An interesting special case is obtained for a new mutation appearing in the population.

Because it is a single mutant, the initial frequency of the derived allele is p = 1/2Ne, and

this probability of fixation denoted Pfix(s,Ne) is given by:

Pfix(s,Ne) =
1 − e−2s

1 − e−4Nes
(2.21)

≃
2s

1 − e−4Nes
(2.22)

The special case of a neutral allele can be obtained by taking the limit when s goes to 0.

Pfix(0, Ne) =
1

2Ne
(2.23)

Altogether, the fixation probability of a selected single mutant relative to the fixation

probability of a selectively neutral single mutant is given as:

Pfix(s,Ne)

Pfix(0, Ne)
≃ 2Ne

2s

1 − e−S
, (2.24)

≃
S

1 − e−S
, (2.25)

where this quantity is solely dependent on the scaled selection coefficient S. Such essential

result has important consequences, random genetic drift and selection are intrinsically

confounded factors. As a an example, increasing population size by a factor of 2 while

reducing the selection coefficient by the same amount leads to the exact same equation,

such that they are indistinguishable. Moreover, the equation have different limits as a

function of the selection coefficient:





lim
S→−∞

S

1 − e−S
= −SeS

lim
S→0

S

1 − e−S
= 1 +

S

2

lim
S→+∞

S

1 − e−S
= S.

(2.26)

More precisely, the scaled fixation probability has different regimes depending on the

value of the scaled selection coefficient, as illustrated in figure 2.3. In the regime of a

weak selection coefficient, usually defined as |S| ≪ 1 or |s| ≪ 1/Ne, known as the drift

barrier, the mutant allele is behaving mostly as a neutral allele.
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Figure 2.3: Fixation probability of a selected allele relative to a neutral allele, shown in
the vertical axis, as function of the scaled selection coefficient S = 4Nes in the horizontal
axis. For a substantial negative scaled selection coefficient (s ≤ −1/Ne, red-filled area),
the probability of fixation is greatly reduced (by an exponential factor), and the allele will
not likely reach fixation. On the other hand, for a positive scaled selection coefficient
(s ≥ 1/Ne, green filled area), the ratio is approximately linear with regard to S. In
between, whenever the absolute value of s is close to 1/Ne (yellow filled area), the allele
behaves approximately neutrally.

2.1.5 Site frequency spectrum

The probability of fixation of an allele can be empirically observable, and in the context of

a Wright-Fisher processes it is related to selection and drift. However, this absorbing fate

is not the sole characteristic of the process that relates empirical observable quantities

to parameters of the process. Along the whole trajectory of an allele, before fixation or

extinction, the probability of this allele to be at a certain frequency can be related to

its selection coefficient and to the effective population size. More precisely, g(x)dx is

the expected time for which the population frequency of derived allele is in the range

(x, x+ dx) before eventual absorption, as shown in figure 2.4, which is derived using the

Kolmogorov forward equation as a function of x and S:

g(x, s,Ne) =

(
1 − e−2s

) (
1 − e−4Nes(1−x)

)

s(1 − e−4Nes)x(1 − x)
(2.27)

⇒ g(x, S) ≈
2
(
1 − e−S(1−x)

)

(1 − e−S)x(1 − x)
(2.28)
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Figure 2.4: Expected time at a derived frequency g(x, S) in the vertical axis as a function
of the frequency x, shown for different scaled selection coefficient. Alleles with a positive
selection coefficient can be observed at high frequency, while alleles with negative selection
coefficients are unlikely to be observed at high frequency.

This equation is solely valid for a gene with two alleles, a configuration which is rarely

observed in empirical data since more than two variants of a gene are usually present in

the population. However, it is frequent to observe sites inside a gene sequence for which

only two alleles are segregating. This observation led to the development of a site-specific

Wright-Fisher process, assuming that each site follows an independent process (Sawyer

and Hartl, 1992). Strictly speaking, this model considers a collection of independently

evolving loci, meaning without linkage. It provides a good approximation if there is free

recombination between sites. Moreover, the collection is considered infinite whereas the

total mutation rate across this infinite collection is considered finite. The assumption of

an infinite number of sites is necessary to ensure that each mutation arises at a new site,

with a Poisson distribution of total rate u per generation for the whole sequence.

From an empirical perspective, for a sample of n sequences taken in the population,

the expected number of sites with i copies of the derived allele (with i ranging from

1 to n − 1) is denoted G(i, n). The collection of all G(i, n) generates what is called

a site frequency spectrum (SFS), which can intuitively be interpreted as the discrete

version of the expected time at a derived frequency (equation 2.28), readily available

from a sample of sequences from a population. Given the scaled selection coefficient

(S = 4Nes), and the scaled mutation rate per generation for the whole sequence (θ =
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2.2. Mutation-selection process

4Neu), each entry of the SFS is:

G(i, n) =

∫ 1

0
2Neug(x, S)

(
n

i

)
xi(1 − x)n−idx (2.29)

= θ

∫ 1

0

1 − e−S(1−x)

(1 − e−S)x(1 − x)

(
n

i

)
xi(1 − x)n−idx (2.30)

=
θ

1 − e−S

(
n

i

)∫ 1

0

(
1 − e−S(1−x)

)
xi−1(1 − x)n−i−1dx (2.31)

This site frequency spectrum can be confronted to empirical polymorphic data in

order to estimate the scaled selection coefficient of new mutations. However, a single

selection coefficient for all sites and all mutations is biologically not realistic. Accordingly,

a distribution of selection coefficients across sites is assumed, which is usually modelled

as a continuous distribution, known as the distribution of fitness effects of mutations

(DFE). Mixing over this distribution, the SFS can then be computed as a function of

the underlying DFE, and can thus be estimated based on empirical data (Eyre-Walker

et al., 2006; Eyre-Walker and Keightley, 2009).

2.2 Mutation-selection process

The previous section recalled the Wright-Fisher process of evolution inside a popula-

tion, relating selection and drift to the diversity of sequences, which empirically requires

gene sequences for at least several individuals. However, modelling sequence evolution

between different species along lineages is a different endeavour, in which species are of-

ten simplified with a single representative sequence, collapsing the intraspecific diversity.

Under this simplification, the interspecific variability and the evolutionary trajectory of

sequences are described by the past history of point substitutions along lineages. The

rate at which such substitution occurs can nonetheless be decomposed into two mech-

anisms: their origination through mutation and their final fate of fixation or loss, a

modelling approach broadly known as the origin-fixation approximation (McCandlish

and Stoltzfus, 2014), illustrated in figure 2.5. Most importantly, this decomposition of

substitution events into mutation and fixation events is able to conciliate population

genetics and interspecific molecular evolution, where the substitution history is parame-

terized by mutation, selection and drift. In the field of phylogenetics, the origin-fixation

framework is more commonly known as the mutation-selection paradigm, where fixation

of an allele encompasses the effect of natural selection and drift (which are confounded

factors, see equation 2.25), and origination corresponds to mutation. Since the scope

of this manuscript emanates from phylogenetics, I will use the convention mutation-

selection terminology hereafter. Of note, a more general mathematical description of the

mutation-selection framework recruiting tools from statistical physics can be found in

Sella and Hirsh (2005) and Mustonen and Lässig (2009).
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Figure 2.5: Mutation-selection substitutions models. The trajectory of alleles inside a
population is collapsed into a single point substitution process. This approximation is
valid under low mutation rates such that a mutation originates uniquely whenever the
gene is monomorphic (with a single allele).

2.2.1 Mutation-limited process

Mutation-selection probabilistic models are usually Markovian with respect to time, such

that the next substitution event depends on the current representative sequence but not

on earlier sequences visited in the history of a lineage. This continuous-time Markovian

process is valid if the mutation rate is sufficiently low, such that the event of a new

mutation reaching fixation is completed before the next one occurs. Since the rate of

substitution is equal to u (per generation) and that each allele ultimately reaching fix-

ation is segregating for an average of 4Ne generations (Kimura and Ohta, 1969), this

assumption is broadly applicable whenever the product of population size and mutation

rate per generation for the sequence is lower than 1 (4Neu ≪ 1). More strictly, the

model would require not only that new mutations reaching fixation do so before the next

substitution occurs, but before any mutation occurs, even the ones that ultimately be-

come extinct. Since at each generation during the process an average of 2Ne mutations

are produced, the point substitution is valid under the condition that 8N2
e u ≪ 1. In

practice, the assumptions that 4Neu ≪ 1 is a sufficient condition for the process to be

well approximated. Throughout this development, it is important to note that u is the

mutation rate for the whole sequence under consideration.

For large sequences this approximation is usually not valid, and the sequence is then

decomposed into each individual site, forming a collection of independently evolving

continuous-time Markov chains. For such a decomposition to be valid, these models have

to assume free recombination between sites. The mutation rate u in this condition then

refers to the mutation rate for each independent site, rather than the total mutation

rate over the collection as a whole. For example, Halpern and Bruno (1998) constructed

a model for the evolution of coding sequences where each codon site is modelled as

an independent Markov chain.
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2.2. Mutation-selection process

2.2.2 Substitution rate

The continuous-time Markov chain is defined by the instantaneous rate at which tran-

sitions occur between pairs of states. Parameters of this process are summarized in

table 2.3 for readability.

Parameter Symbol Range

Scaled fitness F = 4Nef finite, positive or negative

Mutation rate per time µ [10−11, 10−8] per site per year

Substitution rate per time Q [10−11, 10−8] per site per year

Equilibrium frequency π [0, 1]

Equilibrium frequency under mutation σ [0, 1]

Mean scaled fixation probability ν [0, 1] for purifying selection

Table 2.3: Parameter of mutation-selection processes used in this section (2.2.1)

Given the current state of allele A, the rate of transition to other states can be

derived using the population-genetic equations introduced above. At each generation,

the expectation for the number of possible mutants is 2Neu, and each of these mutants

has a probability Pfix(s,Ne) to result in a substitution. Altogether, the instantaneous

rate of substitution from allele A to B, denoted QA→B, is equal to the rate of mutation

(µA→B) multiplied by the probability of fixation of the mutation Pfix(sA→B, Ne) and

scaled by the number of possible mutants at each generation (2Ne):

QA→B = 2NeµA→BPfix(sA→B, Ne) (2.32)

It is important to note that the substitution rate and the mutation rate are in the same

units, such that this equation is valid whether the rate is measured either in units of

chronological time or per generation (or in branch length, which will matter later on).

As a convention, in what follows, mutation rate is denoted u when measured in units

of generation, and denoted µ when measured in units of time. As a consequence, Q is

measured in units of time in this section.

In the case of selected mutations, the probability of fixation depends on the difference

in log-fitness (fA and fB) between the two alleles:

QA→B = 2NeµA→BPfix(sA→B, Ne) (2.33)

= 2NeµA→B
2(fB − fA)

1 − e4Ne(fA−fB)
(2.34)

= µA→B
FB − FA

1 − eFA−FB
, where F = 4Nef (2.35)

In the case of neutral mutations, the probability of fixation is independent of the

original and target sequence, and equals 1/2Ne. As a consequence, the substitution
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rate denoted Q0
A→B simplifies to:

Q0
A→B = 2NeµA→BPfix(0, Ne) (2.36)

= 2NeµA→B
1

2Ne
(2.37)

= µA→B (2.38)

If the difference of log-fitness tends to 0, the substitution rate is equal to the mutation

rate, retrieving equation 2.38:

lim
|FB−FA|→0

QA→B = µA→B (2.39)

Taken together, the transition rates which generate the substitution history and ulti-

mately the interspecific diversity is parameterized solely by mutation, selection and drift.

Consequently, from a particular history of substitutions, one can theoretically estimate

the parameters of selection, mutation and drift, although it is important to keep in mind

that selection and drift are confounded.

2.2.3 Reversibility of the process

The continuous-time Markov chain has so far been defined for 2 alleles but can be gen-

eralized to any number of alleles, when the number of alleles is discrete (n) and when

transition from any allele to any other allele is possible in one or more substitutions. In

this configuration, the transition rates between all possible pairs of alleles is defined by

equation 2.35, and equals 0 whenever single step transitions are not possible. Because

any state is ultimately connected to any other state, the continuous-time Markov chain is

irreducible. Moreover, this substitution process is positive recurrent and aperiodic since

any strictly positive transition rate is matched by a strictly positive transition for the

reverse substitution. More precisely, the substitution rate between two alleles is null only

if the underlying mutation rate is null, in which case the transition rate for the reverse

mutation is also null, hence the transition rate for the reverse substitution is also null.

Theoretically, for an irreducible, positive recurrent and aperiodic continuous-time

Markov chain, a necessary and sufficient condition to be reversible is given by Kol-

mogorov’s criterion. Kolmogorov’s criterion implies that the product of transition rates

through any closed loop is the same whenever the traversing is done forward or in reverse.

As an example for a Markov chain composed of 3 alleles (i, j and k), as illustrated in

figure 2.6, the transition rates must satisfy the equality:

Qi→jQj→kQk→i = Qi→kQk→jQj→i (2.40)

Kolmogorov’s criterion is satisfied under specific conditions for the substitution pro-
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Figure 2.6: The continuous-time Markov chain is reversible if the process fulfils Kol-
mogorov’s criterion. Namely, the product of the transition rates for a closed loop is equal
whether traversed in one sense (blue arrows) or the other (red arrows).

cess (2.35):

1 =
Qi→jQj→kQk→i

Qi→kQk→jQj→i
(2.41)

=
µi→jµj→kµk→i

µi→kµk→jµj→i
×

(Fj − Fi)(Fk − Fj)(Fi − Fk)

(Fk − Fi)(Fj − Fk)(Fi − Fj)

×
(1 − eFi−Fk)(1 − eFk−Fj )(1 − eFj−Fi)

(1 − eFi−Fj )(1 − eFj−Fk)(1 − eFk−Fi)
, (2.42)

=
µi→jµj→kµk→i

µi→kµk→jµj→i
× −✘✘✘✘✘(Fi − Fj)✘✘✘✘✘

(Fj − Fk)✘✘✘✘✘(Fk − Fi)

✘✘✘✘✘(Fk − Fi)✘✘✘✘✘
(Fj − Fk)✘✘✘✘✘(Fi − Fj)

×
(eFi−Fi − eFi−Fk)(eFk−Fk − eFk−Fj )(eFj−Fj − eFj−Fi)

(eFi−Fi − eFi−Fj )(eFj−Fj − eFj−Fk)(eFk−Fk − eFk−Fi)
, (2.43)

= −
µi→jµj→kµk→i

µi→kµk→jµj→i

×
✚
✚eFi(e−Fi − e−Fk)✚

✚eFk(e−Fk − e−Fj )✚✚eFj (e−Fj − e−Fi)

✚
✚eFi(e−Fi − e−Fj )✚✚eFj (e−Fj − e−Fk)✚

✚eFk(e−Fk − e−Fi)
, (2.44)

=
µi→jµj→kµk→i

µi→kµk→jµj→i

✭✭✭✭✭✭✭
(e−Fk − e−Fi)✭✭✭✭✭✭✭

(e−Fj − e−Fk)✭✭✭✭✭✭✭
(e−Fi − e−Fj )

✭✭✭✭✭✭✭
(e−Fi − e−Fj )✭✭✭✭✭✭✭

(e−Fj − e−Fk)✭✭✭✭✭✭✭
(e−Fk − e−Fi)

, (2.45)

=
µi→jµj→kµk→i

µi→kµk→jµj→i
. (2.46)

Namely, Kolmogorov’s criterion for the substitution process is satisfied only if the muta-

tion process is also reversible, in which case Kolmogorov’s criterion is also fulfilled:

µi→jµj→kµk→i = µi→kµk→jµj→i. (2.47)

This example can be generalized for any closed loop, such that the reversibility of the

substitution process is conditioned on the reversibility of the underlying mutation pro-

cess, which is often assumed.

2.2.4 Stationary distribution

A realization of the Markov chain for a long period of time results in a given proportion

of the time for which the process is fixed for a specific allele, where this proportion
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depends of the allele fitness, the mutational process and Ne. Because the continuous-time

Markov chain is irreducible, positive recurrent and aperiodic, it has a unique stationary

distribution π, where πi corresponds to the proportion of time spent in allele i (1 ≤≤ n)

after the Markov chain has run for an infinite amount of time.

Moreover, under the condition that the Markov chain is time-reversible, the detailed

balance for the stationary distribution is satisfied for every pair i and j:

πi

πj
=
Qj→i

Qi→j
(2.48)

=
µj→i

µi→j

Fi − Fj

1 − eFj−Fj

1 − eFi−Fj

Fj − Fi
(2.49)

= −
µj→i

µi→j

eFi(e−Fi − e−Fj )

eFj (e−Fj − e−Fi)
(2.50)

=
µj→i

µi→j

eFi

eFj
(2.51)

(2.52)

Under the assumption that the mutational process is also reversible, the detailed bal-

ance for the stationary distribution of the mutation process (σ) is satisfied for ev-

ery pair i and j:

µj→i

µi→j
=
σi

σj
(2.53)

Altogether, the probability πi to find the population in allele i is proportional to a

function (also called a Boltzmann factor) that depends only on the fitness of allele i,

the population size, and details of the mutation process (Sella and Hirsh, 2005; Mus-

tonen and Lässig, 2005):

πi

πj
=
σie

Fi

σjeFj
and

n∑

i=1

πi = 1, (2.54)

⇐⇒ πi =
σie

Fi

n∑
j=1

σjeFj

, (2.55)

where the denominator is a normalizing constant such that the sum of probabilities is

equal to 1. By analogy with thermodynamic systems, the evolutionary system thus

reaches a Boltzmann-like distribution with N−1
e playing the role of evolutionary temper-

ature, and the log-fitness f the role of energy1.

2.2.5 Mean scaled fixation probability

Occurrence probabilities given by the stationary distribution allows one to calculate all

observable quantities of interest, such as the mean fitness, or the mean mutation and

1At high mutation rates, the quasi-species theory provides another analogy with statistical
mechanics, in which the mutation rate plays the role of temperature instead of genetic drift.
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substitution rates, using standard probability theory. One quantity of interest is the

ratio of the mean substitution rate over the mean mutation rate, called ν:

ν =
〈Q〉

〈µ〉
, (2.56)

=

∑
1≤i,j≤n

πiQi→j

∑
1≤i,j≤n

πiµi→j
, (2.57)

where the notation 〈·〉 denotes the statistical average, and the sum is over all possible pairs

of codons having a certain property. In other words, ν represents the flow of substitutions

at equilibrium, normalized by the mutational flow (or mutational opportunities).

This definition can in principle be applied to any subset of codon pairs. A particularly

important case is to sum over all possible pairs of non-synonymous codons (which will

be considered in the next chapter). In that case, ν captures the fundamental quantity

usually referred to as dN/dS . However, the definition is more general.

This ratio can also be interpreted as the mean scaled fixation probability of all mu-

tations that are being proposed at mutation selection equilibrium. Indeed, the scaled

fixation probability of a given mutation is the probability of fixation of this mutation,

normalized by the fixation probability of neutral mutations:

Pfix(si→j , Ne)

Pfix(0, Ne)
= 2NePfix(si→j , Ne) (2.58)

In addition, the probability for a given type of mutation, from i to j, to be proposed

at equilibrium, is given by:

P(i → j) =
πiµi→j

Z
, where Z =

∑

1≤i,j≤n

πiµi→j (2.59)

And thus, the statistical average at equilibrium is:

〈2NePfix〉 =
∑

1≤i,j≤n

P(i → j)2NePfix(si→j , Ne), (2.60)

=

∑
1≤i,j≤n

πiQi→j

∑
1≤i,j≤n

πiµi→j
, from equation 2.32 and 2.59, (2.61)

= ν. (2.62)

As a result of this definition, ν = 1 for genes or sites under neutral evolution. Most

importantly, departure from 1 would be interpreted as a signature of selection on se-

quences. First, ν > 1 is interpreted as a signal of adaptive recurrent evolution, since

this means that Pfix > 1/2Ne on average. On the other hand, ν < 1 is a signal of un-

derlying purifying selection such that the sequence is constrained on average. Of note,

ν > 1 (or < 1) does not necessarily mean that the selection coefficients are positive (or

negative) on average. Finally, a mutation-selection point substitution process at equi-

librium under a time-independent fitness landscape results in ν ≤ 1, as demonstrated

in Spielman and Wilke (2015).
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2.3 Mutation-selection analogy in other scientific

fields

Presented in the context of phylogenetic evolution of genetic sequences, the mutation-

selection process bears many similarities and analogies between other processes present in

a variety of scientific fields outside of evolutionary biology, displaying the same underlying

mechanism and emerging properties, though with different names and aspirations. This

section is an attempt to describe analogous processes and their emerging properties. This

effort is made in the aim of giving another view of the mutation-selection process, such as

to better appreciate and conceptualize its assumptions, its limits, and the respective role

of the different components. Such attempts require to boil down the mutation-selection

mechanism into its core components, while at the same time rephrasing the description

using lexicography outside of population genetics such as to open new perceiving angles.

2.3.1 Metropolis-Hastings sampling

Obtaining a sequence of random samples from a probability distribution can be difficult,

especially when the number of dimensions is high. However, the Metropolis-Hastings

procedure based on a Markov chain Monte Carlo can sample from any probability dis-

tribution, provided that we know how to compute the probability density, or even less

restrictively any function proportional to the density (Hastings, 1970). This stochastic

procedure which is based on three steps bears many similarities with the mutation-

selection process:

• Generate a stochastic candidate from the current state, analogous to mutation.

• Calculate the acceptance ratio as the ratio of the two densities, analogous to the

selection coefficient of the mutated state.

• Stochastic acceptance or rejection based on the acceptance ratio, a process analo-

gous to drift.

Inherently, the Metropolis-Hastings procedure is based on creating and subsequently re-

ducing diversity, which allows to obtain a random sequence of samples from any distribu-

tion with a straightforward recipe, and is a critical tool in statistics and statistical physics.

2.3.2 The exploration-exploitation dilemma

Many mathematical, engineering and daily-life problems are not about sampling a state

space, but rather about finding the optimal and best state given the criteria or a func-

tion to maximize. Naturally, we would prefer deterministic (strictly reproducible) rather

than stochastic optimizing strategies to search for an optimal state. Unfortunately, when-

ever the state space is too large, often due to the curse of dimensionality, a greedy or

heuristic search of an optimal state can perform atrociously (Bellman, 1966). In high-

dimensional space, stochastic optimization tools have been deemed very valuable, such
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as stochastic gradient descent or so-called evolutionary algorithms (Russell and Norvig,

2010; Vikhar, 2017). Inherently, they are based on two processes, one is stochastically

creating diversity and exploring the state space, while the other is filtering the explored

states and thus reducing the diversity.

In the constrained case of a finite amount of time or attempts to find the best outcome

overall, the problem is best described by the multi-armed bandit problem. The name

comes from imagining a gambler at a row of slot machines (sometimes known as one-

armed bandits), where each slot machine provides a random reward from a probability

distribution specific to that machine. The player has to decide which machines to play,

how many times to play each machine and in which order to play them, and whether to

continue with the current machine or try a different machine, such as to maximize the

sum of rewards earned through a sequence of trials. The gambler faces a dilemma at

each trial, either reducing his regret by exploiting the best arm, or gaining information

through exploration of other arms. The best strategy to solve this dilemma can be

mathematically derived in numerous cases, and encompasses mixing strategies with a

defined ratio of exploration and exploitation (Auer et al., 2002; Kocsis and Szepesvári,

2006; Fürnkranz et al., 2006). This problem is far from being only theoretical, and

has been used to explain a multitude of phenomena, such as the movement of animals

in novel landscapes, the most efficient resource allocation for a start-up company, the

effects of age on knowledge acquisition in humans, and in the search of the most efficient

treatment in clinical trials (Berger-Tal et al., 2014; March, 1991). Another application

of the exploration-exploitation dilemma is AlphaGo, the first computational program

mastering the board game Go at the professional 9-dan level in 2017, which outcompeted

Ke Jie, the world first ranked player at the time (Silver et al., 2017, 2018). AlphaGo

has often been publicized and hyped in various media outlets stating that this feat was

possible due to machine learning, more specifically due to convolutional neural networks.

However, it is more scarcely mentioned that the AlphaGo neural network is combined with

an exploration-exploitation algorithm, or more specifically a Monte Carlo tree search. In

practice, the convolutional neural network is used as a criterion to measure the advantage

of a board configuration2, but the different moves and paths probed and trimmed are

done via an exploration-exploitation procedure.

2.3.3 Interaction between analogies

At the bottom, mutation is a process creating diversity, changing and moving the current

viable state to a novel and unknown position, fundamentally allowing exploration of

the state space. On the other hand, selection is the criteria on which a new state is

deemed a disrupting innovation or a nonviable alteration, and allows to determine which

changes to exploit and which to filter out and discard based on its fitness. Fundamentally,

mutation creates diversity and selection reduces this diversity by selecting the fittest

2Convolutional neural networks also use a stochastic gradient descent to reach convergence,
inherently leveraging the stochastic exploration and exploitation procedure to optimize the pa-
rameters of the neural network.
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mutants. Finally, drift arbitrates between the creation and reduction of the two processes,

it dictates how much exploration of novelty is permitted, and conversely how much

exploitation of only the fittest states is granted.

Exploration and exploitation, creation and reduction, mutation and selection, are

different names (see table 2.4) that ultimately encompass the inherently same process:

efficiently sampling and optimizing whenever the state space is too large to be traversed

in a finite amount of time.

Mutation Selection Drift

Exploration Exploitation Trade-off

Creation Reduction Arbitration

Candidate generation Acceptance Hastings ratio

Table 2.4: Mutation, selection and drift lexicographic rephrasing in different fields.

I argue that evolutionary biologists, studying and leveraging the pervasive process

of mutation and selection, can gain knowledge by recruiting insight and developments

from other fields, much like there has been many crossovers between economics and

evolution in the context of game theory.3. From a political standpoint, I also argue

that scientific research endeavour is also an exploration-exploitation dilemma, which

is arguably externally pressured to pursue exploitation, through funding of impactful

research and a publish-or-perish systemic culture in the early career stage.

3Game theory was originally developed to model economic actors’ behaviour and strate-
gies (Von Neumann and Morgenstern, 1947). It was later adopted within the framework of
evolutionary dynamics, helping to explain, for example, the emergence of altruistic behaviour in
Darwinian evolution (Smith and Price, 1973; Smith, 1982; Nowak, 2006).
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Evolutionary trajectories of sequences depend on the forces of mutation, selection

and drift, which act conjointly such that each one of them must be well studied and

understood. More precisely, models of molecular evolution requires either a given selec-

tion coefficient associated to mutation, or that the fitness of each particular sequence

is defined. In other words, the relationship between sequence and fitness must be eluci-
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3.1. Protein coding DNA sequences

dated, which is the focus of the present chapter in the special case of protein-coding DNA

sequences. To this aim, this chapter will first present the genetic code and classical phy-

logenetic codons models, which can quantify the strength of selection acting on proteins

through an aggregate parameter (called ω or dN/dS). Application of these phylogenetic

models to empirical DNA alignments can be extended to model variation of selection

across sites of the same protein, or between branches of a phylogenetic tree. Subse-

quently, mechanistic codon models are presented, assuming that the DNA sequence is at

mutation-selection balance under a time-independent fitness landscape over the 20 amino

acids. Finally, the relationship between classical and mechanistic models is investigated,

and the interpretation of the discrepancy between both models is analysed.

3.1 Protein coding DNA sequences

Proteins have a variety of molecular and cellular roles, they are the enzymes that catalyse

chemical bonds, they regulate cell processes and control their rates, they carry signals

within the cell and across membranes, they bind and transport small molecules, they

form cellular structures, among other functions. This diversity of roles is accomplished

by a variety of three-dimensional shapes. A protein’s three-dimensional shape is in turn

determined by the linear one-dimensional sequence of amino acids of which it is made

of, with protein sequences ranging from fewer than 20 to more than 5000 amino acids

across the tree of life, with an average of about 350 amino acids. Just as DNA is oriented

because of the asymmetry of nucleotides, proteins are oriented due to the asymmetry of

amino acids. One end is called the N-terminus, and the other end, the C-terminus, and

each amino acid will interact with the other amino acids in its spatial vicinity.

Although each of the 20 different amino acids has unique biochemical properties,

they can be classified broadly into four categories determining their solubility and acidity

(classification is given in table 3.1). Charged amino acids can be either basic (positively

charged) or acidic (negatively charged). However, non-charged amino acids can be polar

due to an uneven charge distribution, such that they can form hydrogen bonds with water.

Consequently, polar amino acids are called hydrophilic, and are often found on the outer

surface of folded proteins. Also, non-charged amino acids can have a uniform charge

distribution, and do not form hydrogen bonds with water. Reciprocally, these non-polar

amino acids are called hydrophobic and tend to be found in the core of folded proteins.

3.1.1 The genetic code

Because the 20 letter alphabet of proteins is different to the 4 letter alphabet of nucleic

acids (DNA and RNA), there is not a one-to-one correspondence between the two alpha-

bets. Instead, amino acids are encoded by codons, a consecutive sequence of 3 nucleotides,

yielding 43 = 64 possible permutations, more than sufficient to encode the 20 different

amino acids. Moreover, three stop codons (TGA, TAA and TAG) signal the termination

of the protein, such that 61 of the 64 codons are used to encode amino acids. Since there
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3.1. Protein coding DNA sequences

are 61 coding codons and only 20 amino acids, there is a necessary redundancy in the

code. Thus, amino acids are encoded by synonymous codons, which are interchangeable

in the sense of producing the same amino acid, with the notable exception of methionine

and tryptophan, which are only encoded by a singe codon. Altogether, the standard

DNA genetic code, which is used by many organisms, translates codon to amino acids

as given in table 3.1. To note, there are organisms that use other genetic codes, and in

addition many of our genes are mitochondrial, which also use a different genetic code.

T C A G

T

TTT TCT TAT TGT T
TTC

Phenylalanine (Phe/P)
TCC TAC

Tyrosine (Tyr/Y)
TGC

Cysteine (Cys/C)
C

TTA TCA TAA Stop (Ochre) TGA Stop (Opal) A

TTG TCG

Serine (Ser/S)

TAG Stop (Amber) TGG Tryptophan (Trp/W) G

C

CTT CCT CAT CGT T
CTC CCC CAC

Histidine (His/H)
CGC C

CTA CCA CAA CGA A
CTG

Leucine (Leu/L)

CCG

Proline (Pro/P)

CAG
Glutamine (Gln/Q)

CGG

Arginine (Arg/R)

G

A

ATT ACT AAT AGT T
ATC ACC AAC

Asparagine (Asn/N)
AGC

Serine (Ser/S)
C

ATA
Isoleucine (Ile/I)

ACA AAA AGA A

ATG Methionine (Met/M) ACG

Threonine (Thr/T)

AAG
Lysine (Lys/K)

AGG
Arginine (Arg/R)

G

G

GTT GCT GAT GGT T
GTC GCC GAC

Aspartic acid (Asp/D)
GGC C

GTA GCA GAA GGA A
GTG

Valine (Val/V)

GCG

Alanine (Ala/A)

GAG
Glutamic acid (Glu/E)

GGG

Glycine (Gly/G)

G

Table 3.1: The genetic code DNA table translating codons into amino acids. Amino
acids are represented into 4 categories based on electrochemical properties. Non-polar
in yellow (■), polar in green (■), basic in blue (■) and finally acidic in red (■). Stop
codons are represented in gray (■). The synonymous codons encoding for the same amino
acid are usually different in their third codon position, the wooble base.

Biochemical translation from codon to amino acid mechanistically emanates from

transfer RNA (tRNA). More precisely, codons bind to tRNA via an anticodon, three

consecutive bases that are complementary and antiparallel to the associated codon. On

the other end, a given tRNA binds uniquely with one of the 20 amino acids, where the

catalytic reaction is performed by aminoacyl-tRNA synthetase (Rich and RajBhandary,

1976). As a result, tRNA genes along with aminoacyl-tRNA synthetase genes constitute

the machinery necessary for translating codons into amino acids . However, there is

not a one-to-one correspondence between the 61 codons and tRNA genes. First, the set

of unique sequences of anticodon found in tRNAs genes is actually lower than 61, and

depends on the species but varies from 41 to 55 (Goodenbour and Pan, 2006). This

subset of anticodon sequences necessary to bind all 61 codons is due to non-canonical

base pairing1. More precisely, the first two positions in the codon bind strongly to the

anticodon of the tRNA (second and third positions), while the third base of the codon

can be subject to non-standard pairing with the first base of the anticodon. If the

anticodon contains a guanine at first position, codons with either U or C at the third

position can bind to this anticodon, and this phenomenon explains why there is not any

non-synonymous transition from only U to C at the third position, and why synonymous

1Canonical base pairing are A-U and G-C, where thymine (T) is replaced by uracil (U) in
RNA
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3.2. Classical codon models

codons usually end with T or C. Also, if the anticodon contains an inosine at the first

position, codons with either C, U or A at the third position can bind to this anticodon,

such that for example leucine encoded by three codons (AUU, AUC, AUA) can be bound

by the unique anticodon IAU. Altogether, non-standard pairing explains why the number

of unique anticodons is lower than the number of possible codons, and also explains some

part of the structure of the genetic code.

Secondly, tRNA genes with the same amino-acid binding site and anticodon, which

are called isoacceptor tRNA, may vary in other parts of the tRNA sequence. Effectively,

many genes can code for the same isoacceptor tRNA, where each gene can display varying

efficiency and errors in translation, adding a layer of regulation to the process of protein

synthesis (Lowe and Eddy, 1997; Chan and Lowe, 2008; Jühling et al., 2008; Lin et al.,

2019). As a result, in some genes, some codons are more frequently represented than

other possible synonymous codons, an effect named codon usage bias. For genes that are

expressed at high levels, the codon usage is biased in favour of the codons that have a high

tRNA concentration in the cell, ultimately increasing the expression rate and decreasing

the rate of mistranslation by reducing the time of occupancy of an open site. Thus,

at a fine-grained molecular scope, a synonymous change can influence mRNA stability,

splicing process and protein folding during translation (Plotkin and Kudla, 2011; Rak

et al., 2018). However in the scope of this manuscript, such selection between synonymous

codons will not be considered. Selection for proteins will be framed at the amino-acid

level in a first approximation, and mutation, at the nucleotide level.

3.1.2 Amino-acid transitions

Because mutations are at the nucleotide level and affect only one base, any codon can

have at most 9 possible transitions to another codon as illustrated in the left panel of

figure 3.1 as a graph. Moreover, it is possible that some pairs of amino acids are not

accessible through a single non-synonymous transition between the underlying codons.

In fact, most pairs of amino acids require at least two non-synonymous transitions (114

pairs), in comparison to pairs of amino acids that are accessible through a single non-

synonymous transition (75 pairs). More precisely, the number of possible transitions

between the underlying codons for a pair of amino acids is determined by the adjacency

matrix shown table 3.2, which is illustrated in the right panel of figure 3.1 as a graph.

3.2 Classical codon models

Under the approximation that selection occurs for proteins, designing substitution mod-

els at the amino-acid level has the major shortcoming of not taking into account that

the underlying mutation process occurs at the nucleotide level. Conversely, studying

evolution of protein-coding DNA sequences only at the nucleotide level, while disre-

garding the genetic code neglects the consequences that nucleotide variation can have

onto protein sequences.
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AAA

AAG

AAC

AAT

ACA

ACC

ACG

ACT

AGA

AGG

CGA

CGC
CGG

CGTAGCAGTTCA
TCC

TCG
TCT
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ATC

ATT

ATG

CAA

CAG
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CCG
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CTA
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GAC
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Figure 3.1: Graphs of possible one nucleotide transitions between codons (left panel) and
between amino acids (right panel). Nodes correspond to codons (left panel) and amino
acids (right panel), and their colour represents the encoded amino acid. Additionally,
for amino acids, the size of nodes represents the number of underlying codons. An edge
between two codons depicts a one nucleotide transition such that a codon can have at most
9 possible transitions. Similarly, an edge between two amino acids correspond to a one
nucleotide non-synonymous transition between the underlying codons, and the width of
the edges represents the number of such possible transitions. Non-synonymous transitions
are represented in a colour gradient, while synonymous transitions are depicted in black.
The graph of the 61 codons contains 263 transitions, 67 of them are synonymous while 196
are non-synonymous. Codons encoding for the same amino acid are all fully connected
by synonymous changes, except for serine where a transition from the set TCT, TCG,
TCC, TCA to the set AGT, AGC requires passing through another amino acid, hence at
least two non-synonymous transitions. From the perspective of amino acids, the graph
of the 20 amino acids contains 75 non-synonymous transitions. The graph is not fully
connected and does not form a clique. Moreover, the most distant amino acids are at
most three transitions away, because a transition from methionine to tyrosine requires
at least three non-synonymous transitions. Altogether, for all of the possible 190 pairs
of amino acids, 114 pairs require at least two non-synonymous transitions, and one pair
(M-Y) requires at least three non-synonymous transitions.
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K N T R S I M Q H P L E D A G V Y C W F

K - 4 2 2 0 1 1 2 0 0 0 2 0 0 0 0 0 0 0 0

N - - 2 0 2 2 0 0 2 0 0 0 2 0 0 0 2 0 0 0

T - - - 2 6 3 1 0 0 4 0 0 0 4 0 0 0 0 0 0

R - - - - 6 1 1 2 2 4 4 0 0 0 6 0 0 2 2 0

S - - - - - 2 0 0 0 4 2 0 0 4 2 0 2 4 1 2

I - - - - - - 3 0 0 0 4 0 0 0 0 3 0 0 0 2

M - - - - - - - 0 0 0 2 0 0 0 0 1 0 0 0 0

Q - - - - - - - - 4 2 2 2 0 0 0 0 0 0 0 0

H - - - - - - - - - 2 2 0 2 0 0 0 2 0 0 0

P - - - - - - - - - - 4 0 0 4 0 0 0 0 0 0

L - - - - - - - - - - - 0 0 0 0 6 0 0 1 6

E - - - - - - - - - - - - 4 2 2 2 0 0 0 0

D - - - - - - - - - - - - - 2 2 2 2 0 0 0

A - - - - - - - - - - - - - - 4 4 0 0 0 0

G - - - - - - - - - - - - - - - 4 0 2 1 0

V - - - - - - - - - - - - - - - - 0 0 0 2

Y - - - - - - - - - - - - - - - - - 2 0 2

C - - - - - - - - - - - - - - - - - - 2 2

W - - - - - - - - - - - - - - - - - - - 0

F - - - - - - - - - - - - - - - - - - - -

Table 3.2: Number of possible one nucleotide non-synonymous transitions between
amino acids, integrating over the underlying codons, represented as an adjacency ma-
trix. For all the possible 190 pairs of amino acids, only 75 pairs contain at least one
non-synonymous transition.

These shortcomings are both addressed by codon models, where the complexity of the

genetic code is seen as an asset rather than an encumbrance. Indeed the redundancy in

the genetic code can be leveraged to disentangle mutation and selection in protein-coding

DNA sequences, under the approximation that selection occurs at the protein level in first

approximation, while the mutation process occurs at the DNA level. The genetic code

allows to split mutations into synonymous and non-synonymous mutations, where syn-

onymous mutations are deemed neutral, and non-synonymous mutations are considered

under selection. Thus, by contrasting the two types of substitutions, non-synonymous

against synonymous, one can estimate the impact of selection, effectively factoring out

the contribution of the mutation rate and the mutation patterns. This idea was already

present in the earliest landmark contributions in molecular evolution (Kimura, 1968; King

and Jukes, 1969), using simple statistical approaches. However, the mathematical com-

plexities created by the very irregular nature of the genetic code led to the progressive

development of more sophisticated probabilistic models, formalized in a likelihood frame-

work. The first codon models were proposed independently by Muse and Gaut (1994) and

Goldman and Yang (1994). The mathematical formalism is now presented in more detail.

3.2.1 The Muse & Gaut formalism

Here, we follow the formalism of codon models pioneered by Muse and Gaut (1994), and

further developed by Nielsen and Yang (1998). A 4 × 4 mutation rate matrix R is first
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defined at the nucleotide level. In its most general form consisting of 12 free parameters:

R =

A C G T





A − RAC RAG RAT

C RCA − RCG RCT

G RGA RGC − RGT

T RT A RT C RT G −

(3.1)

By definition of the instantaneous rate matrix, the sum of the entries in each row of the

nucleotide rate matrix R is equal to 0, giving the diagonal entries:

Raa = −
∑

b6=a

Rab, ∀a ∈ {A,C,G, T} (3.2)

Most often, this matrix is assumed to be a generalized time-reversible (Tavaré, 1986),

or in short GTR, defined by nucleotide equilibrium frequencies (σ) and by symmetric

exchangeability rates (ρ) consisting of 9 free parameters:

R =

A C G T





A − ρACσC ρAGσG ρATσT

C ρACσA − ρCGσG ρCTσT

G ρAGσA ρCGσC − ρGTσT

T ρATσA ρCTσC ρGTσG −

(3.3)

Then, grouping nucleotides into codons, the mutation rate induced by this nucleotide

process from codon i to j depends on the underlying nucleotide change between the

two codons. Thus, if codons i and j are only a mutation away, let M(i, j) denote the

nucleotide change between them (e.g. M(AAT,AAG) = TG). With this notation, the

mutation rate µi,j from codon i to j is:

µi,j =

{
RM(i,j) if codons i and j are one mutation away,

0 else.
(3.4)

In other words, the mutation rate between codons is simply the mutation rate between

the underlying nucleotide change.

At the codon level, synonymous mutations are deemed neutral and the rate of syn-

onymous substitutions Qi,j is equal to the mutation rate:

Qi,j = µi,j , (3.5)

= RM(i,j). (3.6)

In contrast, non-synonymous mutations are considered under selection such that the

rate of substitution is modulated by a factor ω:

Qi,j = ωµi,j , (3.7)

= ωRM(i,j). (3.8)
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Altogether, the 61-by-61 codon substitution matrix of Muse and Gaut (1994) is de-

fined entirely by the mutation matrix (R), ω and the genetic code:





Qi,j = 0 if codons i and j are more than one mutation away,

Qi,j = RM(i,j) if codons i and j are synonymous,

Qi,j = ωRM(i,j) if codons i and j are non-synonymous.

(3.9)

Again, by definition of the instantaneous rate matrix, the sum of the entries in each row

of the codon substitution rate matrix Q is equal to 0, giving the diagonal entries:

Qi,i = −
61∑

j 6=i,j=1

Qi,j . (3.10)

3.2.2 Interpretation of the model

With the definition given above, ω identifies with the ratio of the rate of non-synonymous

substitutions over the rate of synonymous substitutions, hence dN/dS . More globally,

given how its parameterization carefully distinguishes between synonymous and non-

synonymous substitutions, the model can be seen as trying to separate the effects of the

mutation rates (captured by R) and those of selection at the non-synonymous level

(captured by ω).

All non-synonymous mutations are considered equivalent, and ω encompasses the

average strength of selection exercised on them. Most importantly, ω > 1 is due to an

excess in the rate of non-synonymous substitutions, indicating that the protein is under

adaptive evolution. Conversely, a default of non-synonymous substitutions, leading to

ω < 1, means the protein is on average under purifying selection. It is worth noting that

the protein can be on average under purifying selection (ω < 1), but can have specific

regions undergoing positive selection (ω > 1).

3.2.3 Equilibrium properties

Under the Muse & Gaut formalism, the codon equilibrium frequencies (π) depend only

on the equilibrium nucleotide frequencies (σ), but not on ω:

πi =

[
∏

k∈{1,2,3}
σi[k]

]

61∑
j=1

σj[1]σj[2]σj[3]

(3.11)

=

[
∏

k∈{1,2,3}
σi[k]

]

(1 − σTσAσA − σTσAσG − σTσGσA)
, (3.12)

where i[k] denotes the nucleotide at position k ∈ {1, 2, 3} of codon i, and the sum

in the denominator can be obtained by simply correcting for the stop codons (TAA,

TAG and TGA).
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As a result of equation 3.12, the Muse & Gaut formalism predicts that the nucleotide

composition is the same for all 3 positions of the codons. However it has empirically been

observed that the nucleotide compositions are in fact not identical (Singer and Hickey,

2000). These modulations across the three coding positions have been accommodated

using the so-called 3x4 formalism (Muse and Gaut, 1994; Goldman and Yang, 1994),

allowing for different nucleotide rate matrices at the three positions. However, this is

problematic, since this modelling has the consequence that synonymous substitutions

occur at different rates at the first and third positions. For instance, mutations from

codon CTC to CTT or from CTA to TTA are both synonymous (leucine) and from

C to T, but the 3x4 formalism would give them different rates. Yet, in reality, the

mutation process is blind to the coding structure, and should be homogeneous across

coding positions, and if neutral, all mutations from C to T should have the same rate.

In any case, this suggests that the mutation matrices estimated by codon models are not

correctly reflecting the mutation rates between nucleotides.

3.2.4 The Goldman & Yang formalism

In the alternative Goldman and Yang (1994) formalism, the mutation rate between two

codons does not depend only on the exchangeability between the underlying nucleotide

change (ρM(i,j)), but also on the frequency of the target codon (πj):

µi,j = ρM(i,j)πj . (3.13)

Careful examination of this model reveals a number of peculiar properties, which

seem undesirable. For example, under a mutational bias toward T, a synonymous muta-

tion from codon AAC to AAT (asparagine) would have a lower instantaneous rate than

a substitution from codon TTC to TTT (phenylalaline), both being synonymous and

from C to T at third position. In this formalism, the mutation involving a specific codon

position depends on the nucleotide states at the other two positions, even if the mutation

is synonymous (neutral). Moreover, it has been shown that this alternative formalism

induces different estimations of the strength of selection ω (Kosakovsky Pond and Muse,

2005b; Yap et al., 2010; Spielman and Wilke, 2015). Altogether, such alternative for-

malisms are theoretically problematic, and the original Muse & Gaut formalism remains

the mechanistically justified framework (Rodrigue et al., 2008a).

As a result, throughout this manuscript the symbol ω will be used specifically for the

multiplicative factor appearing in the Muse and Gaut (1994) formalism (see section 3.2.1),

whereas dN/dS will be used to refer generically to the ratio of non-synonymous over

synonymous substitution rates, regardless of the specific formalism. Hence, whenever

dN/dS is used in this manuscript instead of ω, the underlying specific formalism is not

considered necessary to the point raised. Contrarily, whenever ω is used, it refers to the

specific Muse & Gaut formalism of section 3.2.1. A notable exception for this conventions

is in the third article (chapter 9 and supplementary materials in chapter 12), where

ω will be used for readability while having a slightly different meaning (mean scaled
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fixation probability of non-synonymous mutations) but still identifies with the ratio of

non-synonymous over synonymous substitution rates (see section 3.4.1).

3.2.5 Complexification of classical codon models

Classical models of codon substitutions have been extensively applied to protein-coding

sequence alignments, to estimate the ratio of non-synonymous over synonymous sub-

stitution rates, dN/dS . Such models capture the average effect of selection on non-

synonymous mutations, without seeking to discriminate between different types of mu-

tations. To circumvent such limitation, Yang et al. (1998) introduced a codon model in

which dN/dS depends on the distance between amino acids, measured in terms of the

Grantham (1974) distance. Additionally, models introduced several dN/dS to account

for amino-acid chemical properties (polarity, volume, charge, and so on) in classical

codon models (Dutheil, 2008).

One particularly important application of classical codon models has been to char-

acterize genes under positive selection (i.e. with a dN/dS > 1), or sites within genes or

specific lineage under accelerated evolution. As a result, variants of codon models have

been developed that can provide estimates of dN/dS for each site within a gene, or for

each branch within a phylogenetic tree. Moreover, these codon models have also proved

to be valuable to quantify and assess the modulation of the selective constraints more

generally imposed on protein-coding sequences (see section 5.2).

3.2.6 Variation across sites

The strength of selection is not typically homogeneous along the protein sequence, and

it has been rapidly recognized that it could be useful to estimate the dN/dS for each

site individually, as opposed to globally over the entire sequence. This turns out to be

particularly important for detecting recurrent diversifying selection. Indeed, recurrent

positive selection might often be concentrated in a small region of the protein (e.g. domain

or site of the protein that is more directly interacting with a pathogen), the rest of the

protein being under a regime of purifying selection. Estimating dN/dS at the site level

will make it possible to detect such regions under positive selection. In contrast, the

gene-level dN/dS will generally be below 1.

However, the statistical information available along the tree for a specific site is sparse

such that sites sharing similar patterns are merged together to gather enough signal.

Practically, in a popular approach of so-called random-site phylogenetic codon models,

dN/dS is allowed to vary across sites, via a finite mixture model (Nielsen and Yang,

1998; Yang et al., 2000, 2005; Huelsenbeck et al., 2006). Generally, for detecting positive

selection a category of sites is constrained to be under dN/dS > 1. Both proportions

of sites and values of the different dN/dS categories are then estimated by maximum

likelihood or Bayesian inference (see chapter 4). Sites under adaptive evolution are then

detected based on their empirical Bayes posterior probability dN/dS > 1 (Huelsenbeck

and Dyer, 2004; Yang et al., 2005). To note, in this context of site-specific finite mixture
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models, methods have also proposed to estimate both dN and dS separately (Kosakovsky

Pond and Muse, 2005b; Spielman et al., 2016).

A long series of site models has been proposed, most of which have been implemented

in PAML (Yang, 1997, 2007), but also in MrBayes for the infinite mixture version (Huelsen-

beck and Ronquist, 2001; Ronquist et al., 2012). Specific applications at the level of the

entire exome have uncovered sites of the sequence under positive recurrent selection (Ko-

siol et al., 2008). Other analyses have revealed the importance of host-pathogen or

host-virus interactions in contributing to strong signals of ongoing adaptation in protein-

coding sequences (Enard et al., 2016).

Finally, independently of the question of detecting positive selection, site models also

turn out to be very valuable models, in the aim of uncovering selective pressures acting

on specific sites. This can be used, for instance, to investigate the biophysical correlates

of the strength of purifying selection at the site level (see section 5.2.2).

3.2.7 Variation across branches

Beside variation across sites, the strength of selection is not typically homogeneous along

the phylogenetic tree, and it has also been recognized that it could be useful to model

this variation. A first approach allows for a different dN/dS only on a given branch, or

on a subset of the phylogeny, chosen a priori based on biological assumptions (Yang and

Nielsen, 1998). For example, such models can detect an adaptive process ongoing during

the divergence of one lineage, which can allow for the detection of the proteins responsible

for speciation (Yang and Nielsen, 1998; Zhang and Nielsen, 2005). The most extreme

version of this model simply assumes that each branch has its own dN/dS , without any

constraints (Popadin et al., 2007). To avoid overfitting, branches can be clustered based

on their substitution rates, using a sequential testing approach (Dutheil et al., 2012).

Alternatively, dN/dS can be modelled as a continuous trait, varying continuously

along the phylogeny, and susceptible to show phylogenetic inertia. To account for this,

dN/dS is not mathematically formalized as a parameter anymore, but instead, it is mod-

elled as a stochastic process, and more specifically, a log-Brownian process, splitting at

each node of the tree into independent processes. This modelling approach was previously

used in the context of the comparative method, to model the evolution of quantitative

traits observable at the tips (Felsenstein, 1985; Huelsenbeck and Rannala, 2003). It

was then recruited to model the variation in the total rate of substitution, in the con-

text of the so-called auto-correlated relaxed clock models, used to estimate divergence

times (Thorne et al., 1998). Finally, it was used to model the variation, independently,

of dS and dN (Seo et al., 2004), or of dS and dN/dS (Lartillot and Poujol, 2011).
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Figure 3.2: dN/dS variations across branches in mammals. The Brownian process
(i.e. logarithm of dN/dS) starts at the root of the dated tree, runs along branches and
splits at each node of the tree into two independent children processes until reaching the
extant species. Along each branch, the value of dN/dS used in the substitution matrix
is taken as the average of the trajectory between the two nodes at the tips of the branch
(i.e. child and parent). However, for the representation, a gradient between the child
and parent node highlight the change of dN/dS along this specific branch. The dataset
consist of 77 extant taxa on a randomly chosen set of 18 coding sequences (CDS) from
OrthoMam database (Ranwez et al., 2007; Scornavacca et al., 2019). This analysis was
performed under the Muse & Gaut formalism and conducted on the software BayesCode

(see chapter 4). Variations in dN/dS along the tree can also be related to ecological
variables, or life-history traits.

The external factors determining the variation dN/dS across lineages have subse-

quently been investigated, primarily focused on environmental variables and life-history

traits that can vary between species. This has been done using either sequential ap-

proaches, first estimating the variation in dN/dS using some of the methods mentioned
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above, and then using the classical comparative method to correlate the estimated varia-

tion with independently observed quantitative or life-history traits (Popadin et al., 2007;

Lanfear et al., 2010a; Romiguier et al., 2014).

Thereafter, integrative inference methods combining both molecular sequences and

quantitative traits have been developed, jointly modelling the variation of all of these

variables using a single multivariate Brownian process (Lartillot and Poujol, 2011). Each

entry of the process describes the evolution of one of the variables of interest: dS , dN/dS ,

quantitative traits, etc. The model can then be fitted on an empirical data set consisting

of a multiple sequence alignment of coding sequences and a matrix of quantitative traits

observed in extant species. This leads to a joint estimation of the stochastic process

and the covariance matrix, thus giving estimates of the covariance between dN/dS and

traits, corrected for phylogenetic inertia.

Applications of this integrative approach also found that dN/dS correlates positively

with traits such as longevity and body mass (Lartillot and Poujol, 2011; Figuet et al.,

2017). Since lineages with a large body size and extended longevity typically corre-

spond to low Ne (Romiguier et al., 2014), these empirical correlations suggest a negative

correlation between dN/dS and Ne, thus confirming the theoretical prediction of the

nearly-neutral theory of evolution. Similarly, and more directly, dN/dS was found to

correlate negatively with the synonymous diversity (πS = 4Neu), which is a molecular

proxy of effective population size (Brevet and Lartillot, 2019). These important results

confirm one of the key predictions of the nearly-neutral theory. However, the universality

and robustness of the correlation between dN/dS and life-history traits is still debated,

and further investigations are required (Nabholz et al., 2013; Lanfear et al., 2014; Figuet

et al., 2016; Boĺıvar et al., 2019).

3.2.8 Variation across sites and branches

Naturally, both space (site-specific) and time (branch-specific) refinements mentioned

above led to the development of the so-called branch-site models (Yang and Nielsen,

2002; Zhang and Nielsen, 2005; Kosakovsky Pond et al., 2011; Murrell et al., 2012, 2013).

The fine-grained tuning of site-branch models increased statistical power by seeking short

and strong episodes of adaptive selection on a background of purifying selection. How-

ever, in the case of Red-Queen processes ongoing on the protein, the episodes detected

by branch-site models would merely be a small fraction of the underlying adaptation.

Indeed the overall tree is under adaptive process and one cannot contrast a branch

to the rest of the tree.

3.3 Mechanistic codon models

Classical codon models presented above capture the average effect of selection on non-

synonymous mutations, without seeking to discriminate between different types of mu-

tations. In contrast, mechanistic codon models seek to predict individually all substi-
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tution rates, for each position and between each pair of codons, in an explicit model

of the adaptive landscape.

3.3.1 The Halpern & Bruno formalism

The Halpern and Bruno (1998) formalism assumes that the protein-coding sequence is

at mutation-selection balance under a time-independent fitness landscape, with a fit-

ness that is multiplicative across sites (i.e. without epistasis). As a result, the fitness

landscape is characterized by a fitness vector over the 20 amino acids at each site. Fur-

thermore, the substitution process at each position is independent of the current state

at all other positions, and it will generally be different at each site (Rodrigue et al.,

2010; Tamuri and Goldstein, 2012).

In the following equations, I omit the dependence on sites, such that the fact that

this process is site-specific is implicit. Consider a given site, the probability of fixation

depends on the difference in fitness between the amino acid encoded by the mutated

codon (fA(j)) and the amino acid encoded by the original codon (fA(i)), where A(i)

denotes the amino acid encoded by codon i. The rate of substitution from codon i to

j is derived from equation 2.35:

Qi,j = µi,j

4Ne

(
fA(j) − fA(i)

)

1 − e4Ne(fA(i)−fA(j))
, (3.14)

= µi,j

FA(j) − FA(i)

1 − eFA(i)−FA(j)
. (3.15)

Altogether, the 61-by-61 codon substitution matrix of mechanistic codon models Q

is defined entirely by the mutation matrix (R), the vector of 20 amino-acid relative

fitness (f) and the genetic code:




Qi,j = 0 if codons i and j are more than one mutation away,

Qi,j = µi,j if codons i and j are synonymous,

Qi,j = µi,j

FA(j) − FA(i)

1 − eFA(i)−FA(j)
if codons i and j are non-synonymous.

(3.16)

Because the process is time-reversible (see chapter 2), from equation 2.55, the sta-

tionary distribution equals to:

πi =

[
∏

k∈{1,2,3}
σi[k]

]
eFA(i)

61∑
j=1

σj[1]σj[2]σj[3]FA(j)

. (3.17)

The stationary frequency of a codon is ultimately the product of the nucleotide frequen-

cies (σ) at its three positions and the scaled Wrightian fitness of the amino-acid (eFA(i)).

3.3.2 Empirical calibration of the model

Fitting the mutation-selection model on a sequence alignment, via equation (3.16), results

in an estimation of the nucleotide mutation rate matrix as well as the amino-acid fitness
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landscapes at each site of the sequence. Several approaches have been used to do this.

In the original approach, Halpern and Bruno (1998) leveraged the detailed balance:

πi

πj
=
Qj,i

Qi,j
(3.18)

=
µj,i

(
FA(i) − FA(j)

) (
1 − eFA(i)−FA(j)

)

µi,j

(
FA(j) − FA(i)

) (
1 − eFA(j)−FA(i)

) (3.19)

=
µj,i

(
eFA(i)−FA(j) − 1

)

µi,j

(
1 − eFA(j)−FA(i)

) (3.20)

=
µj,ie

FA(i)

(
e−FA(j) − e−FA(i)

)

µi,jeFA(j)

(
e−FA(j) − e−FA(i)

) (3.21)

= eFA(i)−FA(j)
µj,i

µi,j
(3.22)

Such that the scaled selection coefficients are related to the stationary codon frequencies:

FA(i) − FA(j) = ln

(
πiµi,j

πjµj,i

)
(3.23)

And finally the substitution rate between codon i and j is:

Qi,j = µi,j

FA(j) − FA(i)

1 − eFA(i)−FA(j)
(3.24)

= µi,j

ln
(

πjµj,i

πiµi,j

)

1 −
πiµi,j

πjµj,i

(3.25)

As a result, the substitution rate from codon i to j can be approximated based on a plu-

gin estimator for both the mutational process and the amino-acid frequencies, indepen-

dently estimated. Alternatively, site-specific amino-acid preferences have been estimated

either by penalized maximum likelihood (Tamuri and Goldstein, 2012; Tamuri et al.,

2014), or in a Bayesian context using an infinite mixture based on a Dirichlet process

prior (Rodrigue et al., 2010; Rodrigue and Lartillot, 2014). Comparison of both inference

approaches yields similar results in terms of estimated profiles and their induced selec-

tive constraint on protein-coding DNA sequences (Spielman and Wilke, 2016). Finally,

instead of estimating the fitness landscape directly on the multiple sequence alignment,

deep mutational scanning approaches can be used to estimate fitness profiles experimen-

tally (Bloom, 2014b,a), as presented in chapter 5.

3.3.3 Modulating the fitness landscape across branches

Thus far, in the mutation-selection formalism, fitness landscape has been considered

static. In practice, fitness landscapes are dynamic and changing with time (Naumenko

et al., 2012; Bazykin, 2015). In particular, selective pressures may change following one

(or more) transitions to a new environment (e.g.: a new host). Changes in selective

pressures induced by environmental changes can be modelled in a mutation-selection
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framework by introducing different fitness profiles in different parts of the tree (Tamuri

et al., 2009). Similarly, phenotypic convergent evolution has been investigated in re-

lation to underlying molecular convergence at the level of codons. In this context, if

a specific codon site is responsible for the phenotypic convergence, the species sharing

the convergent phenotype should also share convergence in amino-acid profiles at this

specific site (Parto and Lartillot, 2017, 2018)

3.3.4 Mutation-selection and codon usage

Another example of a mutation-selection mechanistic codon model is one in which codon

usage bias is modelled, in particular, a model in which each synonymous codon of the

same amino acids have different fitness (i.e. Fi for all 61 codons) as in Yang and Nielsen

(2008). It is important to note that contrarily to the Halpern & Bruno formalism, codon

preferences are not site-specific but instead are estimated gene-wide. In this model,

substitution rates are defined as:




Qi,j = 0 if codons i and j are more than one mutation away,

Qi,j = RM(i,j)
Fj − Fi

1 − eFi−Fj
if codons i and j are synonymous,

Qi,j = ωRM(i,j)
Fj − Fi

1 − eFi−Fj
if codons i and j are non-synonymous.

(3.26)

With such a definition, this model is hybrid between the classical model (due to ω)

and the mechanistic mutation-selection codon model (due to the selection coefficients

for codons Fi). Such hybrid models have the interest of measuring the average effect of

selection on non-synonymous mutations through dN/dS without making the assumption

that synonymous mutations are neutral.

3.4 Relationship between mechanistic and clas-

sical codon models

Even though classical codon models have fewer parameters than mechanistic codon mod-

els, it is important to realize they are not nested. Indeed, it is impossible to find a given

set of parameters for which the two models are equivalent, except by assuming all sites to

have a uniform fitness distribution over amino acids in the Halpern & Bruno mutation-

selection model, and setting ω = 1 in the Muse & Gaut model, but this is really a trivial

case. They are inherently different and proceed from a different philosophy. On one

hand, mechanistic models rely on an explicit fitness landscape, while, on the other hand,

classical models capture the average effect of selection through a single ω parameter.

The difference can be highlighted by considering the case of reverse mutations. In a

mechanistic model (section 3.3), a negative selection coefficient associated with a given

non-synonymous mutation is always matched by a positive selection coefficient for the

reverse mutation. As a result, the rate of substitution will be lower than the mutation

rate in one direction, but higher in the other direction. In contrast, in classical codon
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models (section 3.2), if ω < 1 (respectively, ω > 1), the rate of substitution is lower

(respectively, higher) than the synonymous substitution rate in the two directions.

Nevertheless, it is possible to make conceptual and quantitative connections between

these two modelling paradigms. This point was explored in detail by Spielman and

Wilke (2015), Dos Reis (2015), Jones et al. (2016) and Rodrigue and Lartillot (2016),

summarized in table 3.3.

Symbol Interpretation

dN Non-synonymous substitution rate.

dS Synonymous substitution rate.

dN/dS Ratio of non-synonymous over synonymous substitution rate.

ν Mean scaled fixation probability of non-synonymous mutations.

ω Scaling factor for all non-synonymous substitutions in the Muse and Gaut (1994) formalism.

ω0 Induced νHB in the Halpern and Bruno (1998) mechanistic formalism.

ω∗ Scaling factor for all non-synonymous substitutions in the Halpern and Bruno (1998) formalism.

Table 3.3: Relationship between classical and mechanistic codon models

3.4.1 The Halpern & Bruno mechanistic codon model as
a nearly-neutral model

Once fitted to the data, the classical Muse & Gaut (MG) formalism returns estimates of

mutation rates and ω (see subsection 3.2.1). From there, one can compute the substitu-

tion and mutation rates of each codon substitution. Using equation 2.56 on the subset

of non-synonymous mutations thus gives νMG at stationarity:

νMG =

61∑
i=1

πi
∑

j∈Ni

Qi,j

61∑
i=1

πi
∑

j∈Ni

µi,j

(3.27)

=

61∑
i=1

πi
∑

j∈Ni

ωµi,j

61∑
i=1

πi
∑

j∈Ni

µi,j

(3.28)

= ω, (3.29)

where Ni is the set of non-synonymous codons neighbours to codon i. Such equation

is also true for any classical codon model formalism, where this identity between ν and

dN/dS bears much importance.

This rate of non-synonymous substitutions over mutations (ν) can be interpreted as

the mean scaled fixation probability of non-synonymous mutations (see section 2.2.5),

such that even if classical codon models are not mechanistic in essence, the parame-

ter dN/dS can be interpreted a posteriori as the mean scaled fixation probability of

non-synonymous mutations.

On the other hand, the mechanistic codon models in the Halpern & Bruno (HB)

formalism return estimates of mutation rates and fitness profiles of amino acids (see sub-
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section 3.3.1). From there, one can also compute the fixation probability individually for

each codon substitution. Likewise, using equation 2.56 on the subset of non-synonymous

mutations gives (νHB) at stationarity:

νHB =

61∑
i=1

πi
∑

j∈Ni

Qi,j

61∑
i=1

πi
∑

j∈Ni

µi,j

(3.30)

=

61∑
i=1

πi
∑

j∈Ni

FA(j) − FA(i)

1 − eFA(i)−FA(j)

61∑
i=1

πi
∑

j∈Ni

µi,j

. (3.31)

Hence, for the mutation-selection mechanistic model, νHB can be interpreted as the result-

ing dN/dS induced by the model (Spielman and Wilke, 2015; Dos Reis, 2015). Indeed,

simulation experiments conducted by Spielman and Wilke (2015) under a mutation-

selection model then analysed using a classical codon model indeed showed agreement

between the induced and estimated dN/dS . To note, inference under the Muse &

Gaut formalism showed the best agreement compared to other formalisms of classi-

cal codon models.

Moreover, Spielman and Wilke (2015) showed mathematically that, if the underly-

ing process is at equilibrium under a time-independent fitness landscape (nearly-neutral

regime), then the mean scaled fixation probability νHB induced by the model will al-

ways be lower than 1. In other words, they showed that mechanistic mutation-selection

codon models display the important feature of genuinely accounting for purifying se-

lection. From a dynamic perspective, a non-synonymous mutation from a codon with

high fitness to another codon will have a low probability of fixation, since the mutated

codon will have a lower fitness. At equilibrium, this low probability of fixation of the

other codon results in a high frequency of the codon with higher fitness. Essentially,

at equilibrium the codon frequencies only fluctuate at the mutation-selection balance,

and all the mutations are neutral on average, but slightly deleterious or advantageous,

hence the name nearly-neutral models (Ohta, 1973, 1992; Rodrigue and Lartillot, 2016).

This justifies the interpretation of the Halpern & Bruno mechanistic codon models as

an implementation of the nearly-neutral regime.

Altogether, classical codon substitution models will interpret a mechanistic mutation-

selection model as purifying selection (ω < 1). Accordingly, the mean scaled probability

of fixation νHB has also been denoted ω0 (Rodrigue and Lartillot, 2016).

3.4.2 The Halpern & Bruno mechanistic codon model as a
nearly-neutral null model

As seen above, under the assumption that the protein is under a nearly-neutral regime,

the predicted ω0 (mutation-selection model) and the estimated ω (classical model) should

be the same (Spielman and Wilke, 2015). But assumptions of the models can be bro-
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ken, resulting in discrepancy between the ω0 induced (or predicted) by the Halpern &

Bruno mechanistic model, once fitted on the data, and ω directly estimated by clas-

sical codon models.

This deviation can be captured as a gene-wide multiplying factor ω∗ (Rodrigue and

Lartillot, 2016):




Qi,j = 0 if codons i and j are more than one mutation away,

Qi,j = µi,j if codons i and j are synonymous,

Qi,j = ω∗µi,j

FA(j) − FA(i)

1 − eFA(i)−FA(j)
if codons i and j are non-synonymous.

(3.32)

Since fitness profiles are capturing ω0, the resulting ω which is a function of the model

parameters, can be interpreted as:

ω = ω∗ × ω0 (3.33)

This modelling approach is hybrid between mechanistic and phenomenological model,

since the parameter ω∗ cannot be interpreted mechanistically. Moreover, the deviation of

ω∗ can bend upward or downward, where different interpretations can be given of both

cases.

3.4.3 Adaptive evolution

The Halpern & Bruno formalism assumes that fitness landscapes are not dependent on

time. Alternatively, time-dependent fitness landscapes are known as seascape (Mustonen

and Lässig, 2009). Because of the external movement of the fitness landscape, similarly

to Red-Queen dynamics, the current sequence is more likely to slide into a fitness valley

rather than on top of a peak when the landscape is moving. In other words, because

the current sequence is at mutation-selection-drift balance and the movement of the

landscape is external, the fitness of the sequence is not likely to increase in the new

fitness landscape. As a result, external changes of the landscape results in lower fitness

of the current sequence on average. The resulting dynamics is that selection pushes the

sequence to climb up the time-dependent fitness landscape constantly, and the protein

sequence is tracking a constantly moving fitness optimum.

Since the protein sequence is always lagging behind the moving target defined by the

amino acid preferences, and since substitutions are accepted preferentially if they are

in the direction of this target, substitutions are on average adaptive. In other words,

the sequence would become increasingly maladaptive in the absence of such positively

selected substitutions. Thus, breaking the assumption of time independence of amino-

acid preferences leads to the estimation of an induced ω0 lower than the realized ω:

ω ≥ ω0 ⇐⇒ ω∗ ≥ 1 (3.34)

3.4.4 Epistasis and entrenchment

The nearly-neutral assumption of the Halpern & Bruno formalism can also be broken if

there is no independence between sites, known as epistasis between sites. Unfortunately,
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one consequence of epistatic interactions is that even if a mutation is nearly-neutral upon

fixation, subsequently fixed mutations on other sites make the original substitution more

and more deleterious to revert over time (Gong and Bloom, 2014; Lunzer et al., 2010; Mc-

candlish et al., 2013). This effect called entrenchment results in the current amino acids

reinforcing their relative fitness with time, in opposition to constantly lagging behind a

moving target (Pollock et al., 2012). In other words, at the moment of a substitution, the

target amino acid has a nearly equal relative fitness, which on average then increases with

time (Goldstein and Pollock, 2016, 2017). Contradictory to what happens during adap-

tation, breaking the assumption of independence between sites leads to entrenchment

and the realized ω being lower than the induced ω0 (Rodrigue and Lartillot, 2016):

ω ≤ ω0 ⇐⇒ ω∗ ≤ 1 (3.35)

Altogether, a departure from near-neutrality with a ω ≥ ω0 is a signature of an

ongoing Red-Queen process and that the protein is under ever-changing adaptation. On

the other hand, a ω ≤ ω0 is a signature of epistatic interaction between amino acids.

However, one shortcoming of nearly-neutral codon substitution models is that if one

does not get a statistical departure from near-neutrality (ω = ω0), it could be due to a

mixture of both Red-Queen and epistatic processes that cannot be disentangled.

51



4
Probabilistic inference and

parameter estimation

Contents

4.1 Likelihood of the data . . . . . . . . . . . . . . . . . . . . . 52
4.1.1 Finite-time transition probabilities over a branch at a given

site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.1.2 Integrating over ancestral states . . . . . . . . . . . . . . 54
4.1.3 Pruning algorithm . . . . . . . . . . . . . . . . . . . . . . 56
4.1.4 Maximum likelihood . . . . . . . . . . . . . . . . . . . . . 56

4.2 Bayesian inference . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.1 Bayesian statistics and model complexity . . . . . . . . . 57
4.2.2 Hierarchical model . . . . . . . . . . . . . . . . . . . . . . 58
4.2.3 Markov chain Monte Carlo (MCMC) . . . . . . . . . . . . 59
4.2.4 Metropolis-Hastings sampling . . . . . . . . . . . . . . . . 59
4.2.5 Gibbs sampling . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2.6 Sufficient statistics & data augmentation . . . . . . . . . . 60
4.2.7 Implementation . . . . . . . . . . . . . . . . . . . . . . . . 61

The previous chapter treated how substitution rates are defined and parameterized in

phylogenetic codon models, either classical or mechanistic, but not how these parameters

are inferred and estimated. In contrast, the goal of this chapter is to present the method-

ology for estimating the parameters from a set of observed protein-coding DNA sequences

in different species or lineages. To do so, I will first introduce the concept of likelihood and

how the likelihood is computed in the context of phylogenetic models (section 4.1). Then,

I will briefly introduce the maximum likelihood method of inference (section 4.1.4) and,

finally, the principles of Bayesian inference using Markov chain Monte Carlo (section 4.2).

4.1 Likelihood of the data

To define the likelihood, it is important to realize that codon models presented previously

can also be used in forward mode, so as to generate a simulated alignment of protein-
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coding sequences. Given specific parameter values for the model (generically noted θ),

the probability of simulating a replicate of the sequence data exactly identical to the

empirical dataset D (noted P(D | θ)) can then be taken as a measure of how well this

alignment is explained by the model, under the specific parameter values θ. This defines

the likelihood, which is thus a function of the parameter θ:

L(θ) = P(D | θ) (4.1)

Unfortunately, even with an astronomical number of simulations, it is very unlikely

to generate precisely our observed alignment, and even more difficult to precisely pin

down the probability that our observed alignment has been generated by the model

under a given set of parameters. Deriving this probability analytically is thus the first

theoretical question to answer, which is the focus of this section. The challenge is that

only the data for extant species are observed whereas sequence at the root of the tree

and subsequent evolutionary events of speciation are not directly observed. In other

words, all possible trajectories leading to the observed alignment must be integrated and

weighted by their respective probabilities.

Throughout this development, the tree topology (τ) is considered known and fixed.

This restriction emanates from the fact that the scope of this work is not to infer the

topology, but rather the parameters of the molecular evolutionary process. Moreover, the

development conducted below does not delve into the details of how multiple sequence

alignments are obtained in practice, and assumes in particular that they are correct.

However, it has been shown that outputs of different sequence alignment methods tend

to produce different results that are not always mutually consistent. The main determin-

ing factor of alignment accuracy is evolutionary divergence, such that if alignments are

restricted to orthologs from closely related taxa, or to slowly evolving genes, alignment

errors become rare and may not cause significant problems.

Importantly, the models of sequence evolution considered in this thesis all assume site

independence, such that changes at one sequence position have no impact on whether and

how other positions will change. This assumption of independence between sites allows

the probability of an observed alignment to be expressed as the product over alignment

columns of the probability of observing each of them. This independence assumption is

a simplification. However it greatly facilitates likelihood-based inference.

This development of likelihood computation is divided into three sections, first inte-

grating over all trajectory along a single branch of the tree (section 4.1.1), and subse-

quently over the entire tree (section 4.1.2), while finally efficiently computing the prob-

ability of the data given the parameters (section 4.1.3).

4.1.1 Finite-time transition probabilities over a branch at
a given site

The point substitution process implied by the codon model defines the instantaneous

rates of change between the different codons through the substitution matrix Q. Given a
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starting (ancestral) codon state and a given amount of time over which the substitution

process runs, the first task is to derive the probability of the descendant sequence present-

ing each of the 61 possible codon states. In practice, the substitution rate matrix must be

normalized, such that time is measured in units of branch length, expressing the expected

number of neutral changes that have occurred since the ancestor. For example, a branch

length of 2 implies that 2 changes are expected to be seen on average along the branch

under the condition that substitutions are neutral. At a given site (z) of the sequence, and

along a given branch with branch length l, the codon probability matrix P (z)(l) is related

to the transition matrix (Q(z) at site z) through the first-order differential equation:

dP (z)(l)

dl
= P (z)(l)Q(z), (4.2)

which has solution:

P (z)(l) = elQ(z)
. (4.3)

This integration of the substitution rate matrix over the branch takes into account all

possible histories of substitution events compatible with the states at the two ends,

leading to a compact probability matrix computed as an exponential of the rate matrix.

In practice, exponentiating the rate matrix is usually performed using decomposition

in eigenvalues and eigenvectors.

4.1.2 Integrating over ancestral states

The challenge for generalizing this argument from a single branch to a complete tree

is that only the data at the tips of the tree are observed whereas the states at the

internal nodes are not. If they were known, the likelihood would be readily calculated,

by taking the product of the transition probabilities over all branches. As an example,

and for better readability, a simple illustrative tree given in figure 4.1 will be used prior

to giving to general formulas.

S1

S0

S2

S5

S3

S4

l(1)

l(2)

l(5)

l(3)

l(4)

Figure 4.1: Illustrative phylogenetic tree. Internal states of nodes (S0 and S5) are
represented in yellow, while states of extant nodes (S1 to S4) for which the state is known
from the observed data is represented in blue.

In the example of the illustrated tree, from the observed data for the extant nodes

D(z) = {S1,S2,S3,S4}, at site z, given that the states of the internal nodes are known,
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the likelihood is computed as:

P

(
D(z) | S0,S5,Q

(z), l(b)
)

= P
(z)
S0,S1

(l(1))P
(z)
S0,S2

(l(2)), (4.4)

× P
(z)
S5,S3

(l(3))P
(z)
S5,S4

(l(4))P
(z)
S0,S5

(l(5)).

In the general case of an arbitrary topology with B branches, Sb↑ and Sb↓ are used

to denote the parent and descendant nodes of a branch, the likelihood conditional on

internal states is given as:

P

(
D(z) | SI ,Q

(z), l(b)
)

=
B∏

b=1

P
(z)
S

b↓ ,S
b↑

(l(b)), (4.5)

where I runs over all the internal nodes, and there are B branches.

Because the states of the internal nodes are actually unknown, the likelihood must

be summed over all possible configurations for them, including at the root. At the root,

the states are produced according to equilibrium frequencies of the process (π(z)).

In the case of the illustrative example, the total probability is given as:

P

(
D(z) | Q(z), l(b)

)
=

61∑

S0=1

πS0

61∑

S5=1

πS5P

(
D(z) | S0,S5,Q

(z), l(b)
)

(4.6)

=
61∑

S0=1

πS0

61∑

S5=1

πS5P
(z)
S0,S1

(l(1))P
(z)
S0,S2

(l(2)), (4.7)

× P
(z)
S5,S3

(l(3))P
(z)
S5,S4

(l(4))P
(z)
S0,S5

(l(5)).

And because the process is reversible, the codon equilibrium frequencies satisfy the

equations:

0 = π(b,z)Q(b,z), (4.8)

⇐⇒ π(b,z) = π(b,z)P (b,z), (4.9)

⇐⇒
π

(z)
i

π
(z)
j

=
Q

(z)
j,i

Q
(z)
i,j

for all pairs i, j. (4.10)

In the general topology with B branches, the likelihood is thus given as:

P

(
D(z) | Q(z), l(b)

)
=

61∑

S0=1

πS0 . . .
61∑

Sk=1

πSk
P

(
D(z) | SI ,Q

(z), l(b)
)
, (4.11)

=
61∑

S0=1

πS0 . . .
61∑

Sk=1

πSk

B∏

b=1

P
(z)
Sb+ ,Sb−

(l(b)). (4.12)

And finally, the assumption of independence between sites allows the probability of

an observed set of aligned sequences at the tips of an evolutionary tree to be expressed

as the product over alignment columns (Z sites) of the observed nucleotides or amino

acids in those columns:

P

(
D | Q(z), l(b)

)
=

Z∏

z=1

P

(
D(z) | Q(z), l(b)

)
(4.13)
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4.1.3 Pruning algorithm

The likelihood at a specific column of a multiple sequence alignment given by equa-

tion 4.13 requires extensive computation, but can, however, be computed in linear time

(as a function of the number of branches) using the pruning algorithm of Felsenstein

(1981).

P

(
D(z) | Q(z), l(b)

)
=

61∑

i=1

π
(z)
i ψ

(z)
0 (i) , (4.14)

where ψ
(z)
n (i) is computed recursively from the 2 descendant children n1 and n2 of an

internal node n, as:

ψ(z)
n (i) =




61∑

j=1

P
(z)
i,j (l(n→n1))ψ(z)

n1
(j)


 ·




61∑

j=1

P
(z)
i,j (l(n→n2))ψ(z)

n2
(j)


 . (4.15)

And if the node n is a node with no descendant, meaning an extant taxa:

ψ(z)
n (i) =

{
1, if Sn = i

0, otherwise.
(4.16)

4.1.4 Maximum likelihood

The previous sections introduced the computational procedure to compute the likelihood.

Combining this procedure with numerical optimization methods allows one to find the

parameter values θ̂ maximizing the likelihood. In other words, our point estimate for

the parameters is taken such as to maximize the probability for the model to reproduce

the empirical alignment. This approach, which enjoys many desirable theoretical prop-

erties, such as asymptotic consistency and efficiency, was introduced in phylogenetics by

Cavalli-Sforza and Edwards (1967) with reconstruction based on allele frequencies, and

then by Felsenstein (1981) for phylogenies based on nucleotide sequences. It has also

been extensively used for estimating the parameters of codon models, and in particular,

classical dN/dS based codon models (Yang, 1997; Kosakovsky Pond and Muse, 2005a;

Dutheil et al., 2006; Yang, 2007; Guéguen et al., 2013; Kosakovsky Pond et al., 2020).

4.2 Bayesian inference

An alternative to maximum likelihood is Bayesian inference. This inference methodol-

ogy, which dates back from Laplace and Bayes (1763), was introduced in phylogenetics by

Yang and Rannala (1997), Mau et al. (1999), Larget and Simon (1999), Li et al. (2000)

and Huelsenbeck and Ronquist (2001). Broadly speaking, the Bayesian paradigm can

be seen as a way to model uncertainty in a probabilistic way. More specifically, the pa-

rameters of the model (collectively denoted θ) are considered as random variables, from

a prior distribution describing our uncertainty about their value before having seen the

data. The probability of those parameters are going to be modified after acquisition of
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information supplied by observed data. Formally, this update of our knowledge is cap-

tured by the computation of the posterior distribution, which is obtained by conditioning

the random variable theta on the observed value for the data:

P(θ | D) =
P(D | θ)P(θ)

P(D)
. (4.17)

Here the denominator is the marginal likelihood, meaning the likelihood integrated over

the prior:

P(D) =

∫
P(D | θ)P(θ)dθ. (4.18)

In an inference context, because we are only interested in the relative posterior proba-

bilities of alternative values of θ, the marginal likelihood is a constant. For that reason,

Bayes theorem can also be presented as:

P(θ | D) ∝ P(D | θ)P(θ). (4.19)

Simply stating that posterior is proportional to likelihood multiplied by prior. In other

words, updating our knowledge, such as initially represented by our prior, is done multi-

plicatively, using the likelihood, and renormalizing to obtain a proper probability dis-

tribution (the posterior).

4.2.1 Bayesian statistics and model complexity

Bayesian statistics and maximum likelihood are often opposed to each other and some-

times fiercely defended by their respective proponents. There are indeed fundamental

philosophical differences. In particular, Bayesian inference is potentially sensitive to the

prior, although, practically, prior sensitivity can be investigated. In addition posterior

and prior can be presented next to each other, such that differences between the two

can be interpreted as the amount of signal extracted from the data, and potential issues

with the choice of the prior can be pointed out.

However, the recent success of Bayesian inference relates more fundamentally to the

way it deals with model complexity (Huelsenbeck et al., 2000; Lartillot, 2020).

First, by sampling from the posterior distribution, Bayesian inference offers a method

for integrating over the uncertainty about the parameters. This leads to more robust

inference (Huelsenbeck et al., 2000). A corollary is that over parametrization is not

such a drastic issue as in maximum likelihood inference. In the worst possible case of

over-parametrization, namely that of confounded parameters, such that the model is

exactly the same for different set of parameters, confounded parameters can be identified

afterward through parameters correlation in their joint posterior distribution. However,

over-parameterized models are still a misappropriate use of computing resources, which

results in a greater environmental cost.

Second, and most importantly, Bayesian inference gives a natural language to combine

multiple levels of random variables, in the form of hierarchical models. Thus, for instance,

in Bayesian molecular dating, the substitution process depends on divergence times and
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substitution rate variations across the tree. In turn, divergence times, such as specified by

the phylogeny, are the result of a birth-death process, while variation in the substitution

rate across branches is naturally expressed by modelling the rate itself as a log-Brownian

process. Finally, the parameters of the birth-death and log-Brownian processes are en-

dowed with a prior. The model is thus hierarchical, with four levels. This expressiveness

in model structure, combined with generic Monte Carlo approaches for dealing with com-

plex random effects and multi-level evolutionary processes, has played a fundamental role

in the recent success and popularity of Bayesian inference in evolutionary genetics.

4.2.2 Hierarchical model

The relationship between the random variables defining a hierarchical model can be for-

malized as a Bayesian network, which is a probabilistic graphical representation of the

set of variables and their conditional dependencies via a directed acyclic graph (DAG).

In the example of the prior distribution for the rate substitution matrix in the case of the

mutation-selection model, the prior is defined as the joint distribution of the prior over

the selection coefficient over amino acids and the mutation rate matrix, which itself is a

deterministic function of the equilibrium frequencies of nucleotides and the exchangeabil-

ity rates for the general-time-reversible (GTR) mutation matrix (see figure 4.2). Seeing

the DAG the other way around (following the arrows), simple prior distributions are com-

bined together to form more complex joint prior distribution which ultimately defines the

prior distribution over the model parameter vector (θ). This hierarchy can naturally be

extended across sites, across branches or across genes, and include the data, which are

themselves a random variable produced by the substitution process.

P (z)(l(b))

Q(z)

l(b) 1

F (z) φ β

R

ρ 1

6
, 6

σ
1

4
, 4

Exp

Dir

Dir

DP

Figure 4.2: Directed acyclic graph of dependencies between variables. Nodes of the
directed acyclic graph are the variables, and edges are the functions. Hyper-parameters
are depicted in red circle, random variables in blue circles, and transformed variables in
black. blue dashed line denotes a drawing from a random distribution, and black solid
lines denote a function. Exp denotes an exponential distribution, Dir denotes a Dirichlet
distribution, and finally DP denotes a Dirichlet process.
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4.2.3 Markov chain Monte Carlo (MCMC)

Once realizing that the prior distribution can be boiled down to a set of simpler dis-

tributions over the components of the parameter vector, the difficulty in computing the

posterior distribution arises from the high dimensionality of the parameter space, known

as the curse of dimensionality. More precisely, the number of states increases exponen-

tially with the number of dimensions of the space, such that the explicit evaluation for

both the prior and the likelihood for a sufficiently fine-grained set of parameter val-

ues is unrealistic. In addition, the posterior distribution takes negligibly small values

over most of the parameter space. Reduction in the exploration of the state space, and

focusing of most of the computational effort in the relevant region, is obtained by em-

ploying Monte Carlo (MC) methods, which effectively approximate the target posterior

distribution by sampling from it.

Historically, the first MC algorithm is associated with the army laboratory in Los

Alamos under the direction of Metropolis in early 1952 1. Published by Metropolis

et al. (1953), the primary focus of MC algorithm is on computing the mean energy

of random configurations for a system of many particles. This energy is not available

analytically and requires integration across all realizations of the random configurations

of the particle system. Because dimensionality is high (proportional to the number of

particles), numerical integration is impossible using a deterministic algorithm. Moreover,

because the probability of a given configuration can be very small, even Monte Carlo

integration by sampling randomly the prior (uniform) distribution over configurations

fails to correctly approximate this integral.

This problem can, however, be formalized in terms of a Markov chain, where each

state of the process is a particular configuration of particles. The transition probabilities

between states must generate a stationary distribution equal to the target distribution

of particle configurations. Given this requirement, and given one can also sample from

the transition probabilities, the Markov chain Monte Carlo starts from an arbitrary state

and can be updated by random sampling from the transition probabilities. After a pe-

riod of burn-in, the Markov chain reaches the dynamic equilibrium, and the energy of

each configuration can be computed. Finally, the average of this energy is an approx-

imate solution for the integral of energy over the thermal equilibrium distribution of

atomic configurations.

4.2.4 Metropolis-Hastings sampling

One specific algorithm designed such that the MCMC stationary distribution match the

specified target distribution is the Metropolis algorithm, presented in the original pa-

per (Metropolis et al., 1953). This algorithm is composed of an acceptance/rejection rule

such that the algorithm proceeds as follows at each step of the Markov chain. Start-

1Both a physicist and a mathematician, Nicolas Metropolis was one of the first scientists to
work on the Manhattan Project that led to the production of the atomic bomb. Almost as early,
he became obsessed with the hydrogen bomb, which he eventually contributed to make.
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ing from a state Xt at step t:

• Generate a random candidate state X ′ according to g(X ′ | Xt).

• Calculate the acceptance ratio r = min

(
1,

P(X ′)

P(Xt)

g(Xt | X ′)

g(X ′ | Xt)

)
.

• Generate a uniform random number u ∈ [0, 1]. If u ≤ r, then accept the new state

and set Xt+1 = X ′. Otherwise reject the new state and set Xt+1 = X

The algorithm requires the ability to calculate the acceptance ratio r for all possible

jump, and to draw a jump from any state. In addition, the last step above requires the

generation of a uniform random number. The Metropolis procedure has been initially

developed in the context of a symmetric distribution g(X ′ | X) = g(X | X ′), and was

later generalized to incorporate any proposal distribution, in which case an additional

factor named the Hastings ratio (g(X ′ | X)/g(X | X ′)) as to be accounted for.

4.2.5 Gibbs sampling

Whenever a joint distribution of variables is not known explicitly or is difficult to sample

from directly, but the conditional distribution of each variable is easier to sample from, a

specific algorithm known as Gibbs sampling is applicable. The original implementation of

the Gibbs sampler by Geman and Geman (1984) was applied to a discrete image process-

ing problem, a problem somewhat remote from statistical inference in the classical sense2.

The individual random variables are sampled one at a time, with each variable being

conditioned on the most recent values for all other variables. It can be shown that the

sequence of samples constitutes a Markov chain, and the stationary distribution of that

Markov chain is just the joint distribution. Gibbs sampling is particularly well adapted

to sampling the posterior distribution of a Bayesian network, since they are composed

of a set of individual random variables in which each variable is conditioned on only

a small number of other variables.

Gibbs sampling, or more generally conditional Metropolis-Hastings can be considered

a general framework for sampling from a large set of variables by sampling each variable

(or in some cases, each group of variables) in turn. Various algorithms can be used to sam-

ple these individual variables, depending on the exact form of the multivariate distribu-

tion, it can incorporate the Metropolis–Hastings algorithm, or more sophisticated meth-

ods such as slice sampling, adaptive rejection sampling or adaptive rejection Metropolis.

4.2.6 Sufficient statistics & data augmentation

MCMC samplers target the distribution over the model parameters by repeatedly in-

voking the pruning algorithm to recalculate the pruning-based likelihood. This is most

2This paper is also responsible for the name Gibbs sampling, because it implemented this
method for the Bayesian study of Gibbs random fields, which in turn, derive their name from the
physicist Josiah Willard Gibbs (1839-1903).
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often the limiting step of the MCMC. An alternative is to augment the observed se-

quence data with a realization of the random process resulting in a detailed substitution

history over the tree (Nielsen, 2002; Rodrigue et al., 2008b). Conditionally on the de-

tailed substitution history H, compatible with the data D, the MC can be performed

over the augmented configuration (H, θ | D). The key idea that makes this strategy

efficient is that the mapping-based likelihood depends on compact summary statistics of

H, leading to very fast evaluation of the likelihood (Lartillot, 2006; De Koning et al.,

2010; Romiguier et al., 2012; Irvahn and Minin, 2014; Davydov et al., 2016; Guéguen

and Duret, 2018). On the other hand, this requires to implement more complex MC

procedures that have to alternate between:

1. sampling H conditionally on the data and the current parameter configuration;

2. re-sampling the parameters conditionally on H.

This strategy plays an essential role in the case of the complex phylogenetic codon

model introduced in chapter 8.

4.2.7 Implementation

The software implementation of Bayesian phylogenetic models is generally a difficult

endeavour. They must be flexible to adapt to different models of variations, while at

the same time be reliable, reproducible, maintainable and fast. This is even more true

for models integrating variation across sites, across branches or across genes. All these

constraints led to the (still ongoing) development of a new Bayesian phylogenetic soft-

ware platform called BayesCode, conducted by multiple maintainers with different goals

and different models of evolution in mind. BayesCode adopts a modular design, using

the graphical model formalism (see section 4.2.2) at a coarse-grained level, resulting in

a flexible approach for model design by combining building blocks, corresponding to

the fundamental distributions, the stochastic processes, and the likelihood computation

routines that form the basis of a large family of phylogenetic models. Historically, the

development of this software platform was initiated concurrently to the beginning of this

thesis, and chapter 8 which model variation of selection across sites and drift across

branches has been implemented under this framework. This software written in modern

C++ (version 14) is available at https://github.com/bayesiancook/bayescode.
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The previous chapters introduced codon models and methodology for estimating pa-

rameters of mutation, selection and drift from empirical data, but remained elusive on

the nature of the fitness landscape underlying proteins and did not question the causal

determining factor for the strength of selection. This chapter will seek to clarify the

relationship between phylogenetic codon models and biophysics of protein, such as to

uncover the underlying properties of the selective pressures shaping protein-coding DNA

sequences. Consequently, this chapter will present work at the interface between phy-

logenetic codon models and protein biophysics, where both fields are corroborated and

consolidated by the other. Within this interface, many questions arise regarding the com-

patibility and feedback between these fields. Are the predictions of biophysical models

of protein evolution compatible and confirmed by the application of phylogenetic codon

models on empirical data? Or the other way around, can phylogenetic codon models
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be informed by the underlying biophysics of proteins? To answer such questions, the

first section of this chapter will present the theoretical foundations of protein biophysics,

focusing on globular protein stability imposed by structural constraints. Subsequently,

the second section will present how these models can explain in part the observed varia-

tion of selective constraints across genes, across sites and across branches observed with

classical codon models. Thirdly, moving from classical to mechanistic codon model, the

next section will discuss how fitness landscapes estimated by mechanistic codon models

can also be related to the underlying protein biophysics. Finally, phylogenetic models

augmented and incorporating the underlying biophysics are presented and the implica-

tions of such models is discussed.

Several authors have adequately reviewed the interface between both fields from

a broad perspective (Tokuriki and Tawfik, 2009b; Liberles et al., 2012; Serohijos and

Shakhnovich, 2014; Sikosek and Chan, 2014; Arenas, 2015; Echave and Wilke, 2017; Bas-

tolla et al., 2017). This chapter, being aimed at evolutionary biologists familiar with

phylogenetic codon models (already presented in chapter 3), addresses more specifically

how such models fit within the prediction of protein biophysics of globular proteins.

5.1 The link between protein biophysics and molec-

ular evolution

The ability of a protein to perform its function depends on the stability of its 3-dimensional

folding structure, but also on its ability to bind ligands and/or interact with other pro-

teins, both in terms of kinetics and stability. Theoretically, thermodynamics and ki-

netics of proteins are expected to be related to their function, and hence to selective

constraints (Tokuriki and Tawfik, 2009a; Bastolla et al., 2017).

5.1.1 Conformational stability of proteins

In thermodynamics, the stability of a protein is determined by the Gibbs free energy

of its folded conformation, in comparison to the free energy of its possible unfolded

conformations. Similarly to the mutation-selection Markov process defined in chapter 2,

it is possible to derive the equilibrium distribution of conformations, where fitness is

analogous to the opposite of free energy (less energetic conformations are more stable)

and population size is analogous to inverse temperature. As a result, the probability

of observing a protein in its folded conformation, given by the Boltzmann equation, is

proportional to the exponential of the free energy of its folded conformation (GF):

PF =
e−GF/kT

Z
, (5.1)

where k is the Boltzmann constant and T is temperature in Kelvin, Z is a normalizing

constant summed over all possible conformations, also called the conformational partition

function. The conformational partition function is related to the free energy of the folded
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state and of all the possible unfolded states:

Z = e−GF/kT +
∑

unfolded

e−Gunfolded/kT (5.2)

= e−GF/kT + e−GU/kT , (5.3)

where GU encompasses the free energy of all the possible unfolded conformations. Al-

together, the probability of observing the protein in folded conformation can then be

re-expressed as:

PF =
e−GF/kT

e−GF/kT + e−GU/kT
, (5.4)

=
e−∆G/kT

1 + e−∆G/kT
, (5.5)

=
1

1 + e∆G/kT
. (5.6)

where ∆G = GF − GU. Thus, in order for a protein to fold into its native state with

high probability, the free energy gap (∆G) has to be both negative and large in absolute

value, as depicted in figure 5.1.
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Figure 5.1: Probability of folding (PF) as a function of the free energy gap (∆G =
GF −GU). ∆G is in kcal/mol and 1/kT = 1.686 mol/kcal at 25°C (or 298.2K). The free
energy gap has to be both negative and large in absolute value for the protein to be folded.

In this context, mutations stabilize the protein only if they decrease the free energy

of the folded conformations more than they decrease the free energy of unfolded confor-

mations. For example, a transition to an amino acid that decreases by the same amount

the free energy of both folded and unfolded conformations will have no impact on the

stability of the protein. As a result, protein stability can be increased by stabilizing the

folded conformation (positive design) or destabilizing the competing unfolded conforma-

tions (negative design). We can thus characterize the destabilizing effect of a mutation
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by its effect on ∆G, denoted ∆∆G:

∆∆G = ∆G (Mutant) − ∆G (Wild type) , (5.7)

where by definition ∆∆G < 0 for stabilizing mutations, and conversely ∆∆G > 0 for

destabilizing mutations.

Free energy gaps ∆G can be experimentally measured, and fall within the range

of −25 to −5 kcal/mol (Kumar et al., 2006; Gromiha et al., 2016). Moreover, empir-

ical measurements of folding stability changes due to single point mutations can also

be obtained experimentally. This process is costly and has to be done for each single

mutation (Rocklin et al., 2017).

Alternatively, the free energy gap of a protein can be computed with a biophysical

model of the protein, by modelling the atomic structure and the potential energy of

contact between residues at the atomic level in a 3-dimensional structure. Computing

the free energy gap for a given protein sequence is challenging for any given conformation

of the backbone, since it also depends on the conformation of the side chains as well

as the solvent. To allow for faster computation, coarse-grained approximations have

been proposed, in the form of statistical potentials, which approximate free energy (G)

as a sum of free energy terms over all pairwise contacts between residues across the

protein (Miyazawa and Jernigan, 1985).

For a given folded conformation of the protein, the statistical potential gives GF.

However, in order to get ∆G, one still needs to sum over all unfolded conformations to

compute Z, or GU. Models typically approximate the distribution of unfolded Gibbs free

energy using representative decoy conformations for which energy is computed, assuming

a quasi-chemical or normal approximation (Goldstein, 2011).

Alternatively, in order to explicitly sum over all possible conformations, some mod-

els approximate the structure and dynamics of proteins by 2-dimensional lattice models

with regular pavement (Taverna and Goldstein, 2002; Noivirt-Brik et al., 2009). Lat-

tice models are designed to sum over all possible conformations, and are useful as a

theoretical construct to gain new insights about biophysics and protein evolution. How-

ever, lattice models are empirically less directly usable. In between these two extremes,

many models can approximate with various degrees of freedom and parametrization the

stability of a protein from its sequence.

5.1.2 From stability to fitness

Empirically, a large body of evidence indicates that the stability, or, in other words,

the ability to fold in globular conformation, is a target of natural selection (Sikosek and

Chan, 2014). Even though the association between protein sequence and protein stability

is within reach and can be obtained with various degrees of approximations, the asso-

ciation between protein stability and fitness is more elusive and difficult to apprehend.

It is known that protein stability is related to fitness, as demonstrated by a study of

beta-lactamase TEM-1 mutants (Jacquier et al., 2013), or illustrated by the use of func-

tional assays to identify stabilizing mutations (Araya et al., 2012). However, it is not clear
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whether protein stability increases fitness by being more efficient, or whether it is the dele-

terious cytotoxic effect of unfolded proteins that results in purifying selection for desta-

bilizing mutations. Additionally, the ability to bind other proteins may interfere with

stability against misfolding, and large functional movements may imply a stability cost.

The relationship between stability and fitness raises the more general question of

why globular proteins are marginally stable. Indeed, the optimal stability is never

achieved, and two types of explanation have been proposed. Firstly, that it could be

the consequence of the stability-activity trade-off such that proteins are selected for an

intermediate stability. Secondly, and more fundamentally, that it is an expectation of

the mutation-selection equilibrium even under directional selection for stability (Taverna

and Goldstein, 2002). These two explanations are not mutually incompatible, and can

both explain the observed marginal stability of proteins.

Furthermore, translation errors act like point mutations, with a fairly high translation

error rate. They have measurable destabilizing effects in terms of ∆∆G, just like non-

synonymous mutations. The fitness associated with a sequence variant at the DNA

level thus integrates the average effect of these destabilizing mutations induced at the

translation level. For this reason, at mutation-selection equilibrium, the protein encoded

at the DNA level tends to have a more negative ∆G than without error, as if to anticipate

these additional destabilizing effects (Wilke and Drummond, 2006).

5.1.3 Conformational stability and epistasis

Computing the free energy gap ∆G requires knowledge of interacting energy contact

between amino acids in close proximity. It is important to remember that proximity

can exist even between amino acids far apart in the folded structure, inasmuch as they

may be in contact in unfolded structures. As a result, the ∆G impact of a mutation at

a specific position of the protein depends on the context and the amino acids at other

positions. Specifically, amino-acid changes can be stabilizing or destabilizing depending

on the amino acids present at other positions. Moreover, even if ∆G would be an additive

trait, in the sense that each position contributes independently to ∆G without pairwise

interaction terms, the selective effect of a mutation would still depend on the amino

acids at other positions. The reason is that even if ∆G is an additive trait, the log-fitness

is still not a linear function of ∆G. The former case of site interdependence due to

interacting terms is called specific epistasis, while the latter case of non-linearity of the

fitness function is called by contrast non-specific epistasis.

Formally, the relation between sequence (S) and log-fitness (f) is complex, and can be

abstracted by an intermediate phenotype. In the specific case of conformational stability,

the phenotype is the free energy gap, and the ternary relationship develops as:

S → ∆G(S) → f (∆G) . (5.8)

Withing this ternary relationship, the fitness effect of a mutation is site-specific in only

one specific case, namely that the phenotype is additive and that the log-fitness is linear
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with the phenotype. Whenever one of these two assumptions is not valid, the fitness effect

of a mutation at a specific site depends on the overall sequence. This site interdependence

represents a challenge for phylogenetic codons, generally not modelled explicitly with

some exceptions (see section 5.3).

Site interdependence has important consequences on molecular evolution of protein

sequences, and results in entrenchment and Stokes shifts (Pollock et al., 2012; Shah et al.,

2015) Briefly speaking, even if a mutation is nearly-neutral upon fixation, subsequently

fixed mutations on other sites make the original substitution more and more deleterious

to revert over time (Lunzer et al., 2010; Naumenko et al., 2012; Mccandlish et al., 2013).

5.1.4 Aggregation avoidance

So far, proteins have been seen as independent machinery of cells, however, within the

crowded intracellular space, proteins are not independent entities but are interacting

with other proteins and engaged in non-specific interactions (Yang et al., 2012; Zhang

et al., 2013). In non-specific interactions at the protein surface, stabilizing amino acids

are hydrophilic and destabilizing amino acids are hydrophobic, sticking to hydropho-

bic residues in other proteins (Dixit and Maslov, 2013; Manhart and Morozov, 2015a).

The misinteraction avoidance hypothesis predicts that, compared with lowly expressed

proteins, highly expressed proteins disfavour residues that promote misinteraction, ex-

hibit a lower misinteraction probability per molecule and have higher conservation for

misinteraction avoiding residues.

5.2 Confronting classical codon models with pro-

tein biophysics

Application of phylogenetic codon models to empirical data has made it possible to infer

the variation in the overall strength of the selective constraints across genes, sites, and

branches. These results have been interpreted in the light of the underlying biophysics.

5.2.1 Variation across genes

Phylogenetic codon models can readily be applied to independent single-gene multiple-

sequence alignments. The dN/dS estimated for each gene can then be related to the

selective constraints acting on the gene. As a result, increased availability of genomic

data together with the advancement of computing resources and algorithms prompted

an extensive search for the major determining factor of a gene’s dN/dS . Surprisingly, the

functional importance of a protein, widely thought to approximate the level of functional

constraint, has only a minor role, whereas protein expression level (mRNA concentra-

tion) is found to be a major determinant (Zhang and Yang, 2015). Most importantly, this

relationship is negative such that genes with a high expression level are under stronger

purifying selection, and have a lower dN/dS at the level of the gene (Duret and Mouch-
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iroud, 2000; Drummond et al., 2005; Zhang and Yang, 2015). In unicellular organisms,

the mRNA concentration of a gene varies across cell cycle stages and environments, but

most studies used data collected from the mid-log phase of growth under rich media,

which presumably reflects average concentrations across cell cycle stages. In multicellu-

lar organisms, mRNA concentration data used are typically from the whole organism or

are averaged from several examined tissues. Because of the strong correlation between

mRNA and protein concentrations, the negative correlation between protein concentra-

tion and evolutionary rate is also strong.

Theoretical models based on protein stability presented previously have been invoked

to explain the negative correlation between dN/dS and expression level (Wilke and Drum-

mond, 2006; Drummond and Wilke, 2008). The rationale is that for the same fraction

of misfolded proteins, a strongly expressed protein will produce more macromolecules

toxic to the cell than a weakly expressed protein. As a result, selection against protein

misfolding induces abundant proteins to evolve to greater stability, where the protein is

more constrained and evolves more slowly (Serohijos et al., 2012).

However, even for those proteins of comparable expression levels, their dN/dS still

spans several orders of magnitude (Drummond and Wilke, 2008). This observation sug-

gest that protein abundance, although a major determinant of dN/dS , is not its only

causal variable. As an example, some topologies are more robust (depending on the

density of contacts, in particular), and therefore evolve faster, which may be one of the

contributing factors of the residual variance (Echave and Wilke, 2017).

5.2.2 Variation across sites

Similarly to the search for determining factors of dN/dS at the gene level, an extensive

search had been conducted at the site level, within a protein. The major determinant

of site-specific dN/dS proved to be relative solvent accessibility (RSA), where sites with

higher RSA display a higher dN/dS (Ramsey et al., 2011). It was later shown that the

number of native inter-residue contacts formed by a protein site, which is negatively

correlated with the RSA, is a stronger predictor of site-specific dN/dS (Yeh et al., 2013).

The observations that surface residues of globular proteins undergo substitution more

rapidly than those in the core is generally attributed to the fact that natural selection

imposes stronger constraints on buried sites. In fact, selection for protein stability in-

duces stronger constraints on amino-acid residues located inside a protein structure (that

is, core residues), which indeed have more central roles than surface residues in the pro-

tein’s Gibbs free energy of folding.

Altogether, dN/dS changes dramatically between exposed and buried sites in such

a way that buried sites tend to evolve more slowly than exposed sites, compatible with

models of selection for protein stability (Echave et al., 2016).
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experimental data

5.2.3 Variation across branches

As already mentioned in chapter 1, the nearly-neutral theory predicts a lower dN/dS

in species with a higher Ne, due to a better purification of weakly deleterious mutants.

Biophysical knowledge can be useful here to get more insight about the magnitude of the

response of dN/dS to changes in Ne. Surprisingly, under simple biophysically inspired

models assuming that proteins are under selection for their thermodynamic stability, with

fitness being proportional to the folded fraction, computational experiments have led to

the observation that dN/dS is essentially independent of Ne (Goldstein, 2013). This ob-

servation has been explained by the equimutability of the free energy of folding, namely,

that the distribution of changes in free energy of folding (∆∆G) due to mutations is

approximately independent of the current free energy (∆G), a necessary and sufficient

condition (under the condition that fitness is log-concave) to obtain independence be-

tween dN/dS and Ne (Cherry, 1998). In reality, however, the distribution of ∆∆G is

expected to at least weakly depend on ∆G due to combinatorial considerations. For ex-

ample, if a protein sequence is already maximally stable, only destabilizing (or neutral)

mutations can occur, which has been empirically observed (Serohijos et al., 2012).

5.2.4 Integrating several levels

Ultimately, studies presented in this section focus on the scaling of dN/dS to either pro-

tein abundance, or to effective population size, and also to relative solvent accessibility.

However, these various factors susceptible to modulate the dN/dS have been rarely in-

vestigated simultaneously. Why is dN/dS supposedly independent of Ne but depend on

protein abundance? For example, is the relationship between dN/dS and either protein

abundance or population size expected to be different? I argue the integration and uni-

fication between these levels are scarcely made. For example, under which models for

the relation between biophysics and fitness are the relations of dN/dS to protein abun-

dance and population size expected to be the same or different? What do empirical data

have to say quantitatively about this question? Can we derive quantitative estimates of

the magnitude of these responses, and compare them with empirical estimates? I argue

that some work is still needed toward a better integration and unification between these

multiple aspects of the role of biophysics in molecular evolution.

5.3 Informing mutation-selection codon models

using protein biophysics and experimental data

In section 5.2, I reviewed how the selective patterns inferred using classical models could

then be confronted with insights from biophysics. In the case of mutation-selection

codon models, on the other hand, knowledge obtained from biophysics can be more

directly introduced into the model.
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experimental data

5.3.1 Experimentally informed site-specific codon models

In an experimental context, it is possible to mutate the DNA of an organism and establish

an experiment where the mutant competes with the resident in a specific medium, and

the difference in growth of the two variants allows to determine the fitness impact of the

mutation. In the case of free-living unicellular organisms, such process can be automated

to estimate selection coefficients of a wide variety of mutants, an experiment called deep

mutational scanning. Technically, for each site of the protein, the fitness of the 20 amino

acids can be experimentally determined and the resulting fitness landscape (also named

preferences or fitness profile) can be estimated, as shown in figure 5.2. Such experimen-

tally determined fitness landscapes are directly comparable to statistical estimates by

phylogenetic codon models, under the assumption that the site-specific fitness landscape

is kept constant along the phylogeny. Bloom (2014b,a) found that site-specific evolution-

ary models informed by experimentally determined profiles greatly outperformed non

site-specific alternatives in fitting phylogenies of proteins, from humans, swine, equine,

and avian influenza (Doud et al., 2015). Moreover, Bloom (2017) recruited experimen-

tally determined fitness profiles to determine which site of the protein are sufficiently

different from their phylogenetic counterpart to be considered under adaptation.
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Figure 5.2: Site-specific deep mutational scanning data on β-lactamase (bacteria) of
Stiffler et al. (2015). For each site, preferences of the 20 amino acids are represented
by the height of the corresponding amino-acid letter. The analysis is performed using
phydms (Hilton et al., 2017).
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5.3. Informing mutation-selection codon models using protein biophysics and

experimental data

5.3.2 Structurally constrained site-interdependent codon
models

It has long been realized that inter-residue interactions within proteins leads to amino-

acid fixation probabilities that are dependent upon amino acids present at other sites.

More generally, site-specific fixation probabilities may change along an evolutionary tra-

jectory because the selection coefficient of a given mutation may depend on the specific

sequence background in which it occurs (Goldstein and Pollock, 2016). However, both

classical codon models and mechanistic codon models rely on the assumption of site

independence, where each site of the protein is modelled as an independent Markov pro-

cess. Accordingly, each site is considered separately, and defines an independent Markov

substitution process along the branches of a tree.

From a modelling and inference perspective, accounting for epistasis is challenging

both in terms of parametrization and computational complexity (Manhart and Morozov,

2015b). Means of relaxing this assumption have been pursued, usually with dependence

introduced between a limited number of sites (Felsenstein and Churchill, 1996). In par-

ticular, models explicitly treating protein structure and site interdependencies have been

developed, recruiting a coarse-grained protein structure conjointly to a statistical poten-

tial scoring the compatibility between sequence and structure, in order to evaluate the

probability of fixation of a given mutation (Robinson et al., 2003; Rodrigue et al., 2005).

Subsequently, methods to assess the statistical fit of such computationally complex

models had been developed (Rodrigue et al., 2009), as well as refinement of statistical po-

tentials (Kleinman et al., 2010). These structurally constrained models have been shown

to fit data better than the corresponding models that ignore protein structure. However,

some of the available site-specific phylogenetic codon models still better fit the data than

structurally constrained models, possibly indicating that alternative models should be

explored in order to better incorporate structural constraints and protein biophysics.

Alternatively, the assumption of site independence can be understood as consider-

ing that substitution processes at the level of sites are averaged over time, where the

dependencies to other sites are integrated over the course of the process. As a result,

statistical methods relying on site-specific processes while accounting for epistasis consist

in obtaining the marginal process for a specific site, derived analytically from the joint

process integrated over the other sites. Projecting a joint process of several sites into a

single site process leverages mean-field theory developed in statistical physics, and has

been used to develop phylogenetic models accounting for protein structure (Chi et al.,

2018) and protein stability (Arenas et al., 2015, 2017). Unfortunately, these methods

are not parameterized directly in terms of parameters of evolution, namely mutation

and effective population size, and the estimated fitness parameters cannot be related

to empirically determined parameters.
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5.4. General conclusions

5.4 General conclusions

Finally, models of protein biophysics are appealing to evolutionary biologists since they

are based on theoretical grounds and can also be confronted to empirical data. However,

integration of protein biophysics models into the framework of phylogenetic inference

is difficult, and inference models have to balance the trade-off between complexity and

simplicity. Moreover, I argue that phylogenetic models should be mechanistic in principle,

or, in other words, they should be defined in terms of parameters that can be accessed

by independent experimental means, such as to confront estimates. As an example,

analytical models of protein biophysics relating probability of fixation to molecular and

thermodynamic parameters can be fitted to protein-coding DNA sequences. Parameter

estimates can be compared to their empirically determined counterparts, such as to verify

and solidify the soundness of both phylogenetic inference and protein biophysics.
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The neutral theory, and its nearly-neutral extension, such as historically reviewed in

chapter 1, have deeply influenced our understanding of population genetics and molecular

evolution. Beyond the disputes and the controversies between neutralism and selection-

ism, the current consensus is to view the evolution of genetic sequences as a stochastic

process. One component of this process is creating diversity through mutation; an antag-

onistic component is filtering out this diversity through selection; and finally, the balance

between these components is tuned by the effective population size, which determines

the amount of random drift, formally presented in chapter 2. The long-term outcome

of this evolutionary process is an accumulation of point substitutions (both synonymous

and non-synonymous) between species. Relying on this primary source of information

contained in multiple sequence alignments of protein-coding genes obtained from con-

temporaneous species, the aim of phylogenetic codon models, as discussed in chapter 3,

is to better characterize and quantify the interplay between mutation, selection and ran-

dom drift. Codon models are still an active area of research, and proceed from two

different philosophies: on one side, phenomenological models, aiming to capture the net

effect of selection through ω = dN/dS ; on the other side, mechanistic approaches, with

the more ambitious aim of modelling the fine-grained fitness landscape. As it stands,

however, many questions are still open, and current models, whether phenomenological

or mechanistic, present many weaknesses. Phenomenological approaches could still be

improved, while staying in the idea of not explicitly modelling the detailed fitness land-

scape. As for mechanistic approaches, in their current version, are making very strong

assumptions, such as site independence, a time-independent fitness landscape, but also

constant effective population size across the whole phylogeny. More fundamentally, there
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6. Thesis objectives

is a certain gap to be filled between these two alternative approaches, and better con-

nections could be made between them.

Substitution

Mutation

Selection

Drift

Divergence data

Chapter 7

Chapter 8Chapter 9

Figure 6.1: In this thesis, several aspects of the mutation, selection and drift equilib-
rium are studied and related to empirical data, in the context of protein-coding DNA
sequences. Firstly, because the composition of protein-coding DNA sequences does not
reflect the underlying mutational process but its filtering by selection at the level of amino
acids, a careful phenomenological modelling is necessary to uncover mutational process
and nucleotide fixation bias, a study presented in chapter 7. Secondly, the balance between
mutation and selection is arbitrated by drift, which is mediated by effective population size
and its changes along a phylogeny can be estimated by mechanistic codon models, a study
presented in chapter 8. Finally, selection for protein stability implies an analytical rela-
tionship between the rate of evolution and effective population size and protein expression
level, a study presented in chapter 9.

In this context, my thesis work represents an attempt at revisiting the question of how

to correctly disentangle the complex interactions between mutation, selection and random

drift using phylogenetic codon models, under both approaches, either phenomenological

or mechanistic. During this work, I have confronted theoretical insights with empiri-

cal data, using a combination of analytical developments, simulation experiments and

Bayesian inference. The results are divided in three chapters, each written in the form

of an independent manuscript, that shall be submitted to peer-reviewed journals. The

first article (chapter 7) revisits the question of the balance between mutation bias and

selection, and how this balance should be properly formalized in the context of classical

(phenomenological) codon models. The second manuscript (chapter 8, with supplemen-

tary materials in chapter 11), explores the question of accounting for the variation in

long-term effective population size (Ne) between species, in the context of a mechanistic

mutation-selection model. The work presented in this manuscript represents the most

intensive part of the PhD work, in terms of modelling, Monte Carlo algorithmics (see

chapter 4) and software development. Finally, some of the observations made during

this second part of my work, in particular the relatively narrow dynamic range of varia-
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6.1. Robustness of codon models to mutational bias

tion in Ne uncovered using this fully mechanistic approach, prompted me to revisit the

question of how protein biophysics (see chapter 5), and more generally epistasis, can

quantitatively modulate the response of the molecular evolutionary process to changes

in effective population size. This last work is presented as a third manuscript (chapter 9,

with supplementary materials in chapter 12).

6.1 Robustness of codon models to mutational

bias

Nucleotide composition in protein-coding sequences is the result of the equilibrium be-

tween mutation and selection. Because of selection, the nucleotide composition of protein-

coding sequences is different from what would be expected under a pure mutational pro-

cess. In particular, it differs between the three coding positions, with the third position

showing more extreme composition than the first and the second positions. This empiri-

cal observation is well known. Yet, classical codon models (see chapter 3) do not correctly

capture this phenomenon. Instead, in their classical parameterization, in terms of a 4x4

nucleotide rate matrix and a single ω parameter, phenomenological codon models predict

that the nucleotide composition should be the same for all 3 positions of the codons, and

should be equal to the equilibrium frequencies of the underlying 4x4 nucleotide process.

Alternatively, to accommodate this variation across coding positions, some models allow

for different nucleotide rate matrices at the three positions. However, this approach is

problematic since the mutation process should in principle be blind to the coding struc-

ture, and should be homogeneous across coding positions. Although this misconception

has probably minor impact on the detection of positive selection, it is a clear symptom

of a more fundamental issue with teasing apart mutation rates and fixation biases in

the context of phenomenological codon models. Practically, this could have important

consequences, in particular, given the current interest in modelling the impact of GC-

biased gene conversion (gBGC) on the evolution of protein-coding sequences, a factor

which requires mutation and fixation biases to be carefully disentangled. Conceptually,

the problem comes from the fact that, at the mutation-selection equilibrium, there is a

net selection differential, or net fixation bias, acting against the mutational pressure. In

other words, at equilibrium, ω is not the same in different mutational directions. Be-

cause they capture selection through a single parameter ω, classical codon models cannot

correctly capture this net fixation bias. To address this problem, chapter 7 presents an

alternative modelling approach, where ω is not seen as a scalar anymore, but as an array

of ω values unfolding along multiple directions. This model is tested against empirical

and simulated protein coding DNA alignments.
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6.2 Inferring long-term population size

Presented in section 3.2, mechanistic phylogenetic codon models are grounded on popu-

lation genetics first principles. Being explicitly parameterized in terms of mutation rates

and population-scaled fitness coefficients, these models represent a principled approach

for investigating the intricate interplay between mutation, selection and drift. In their

current form, mutation-selection models assume a fixed and site-specific fitness landscape,

without epistasis. As a result, they are entirely characterized by the collection of site-

specific amino-acid fitness profiles. However, thus far, they have relied on the assumption

of a constant effective population size across the phylogeny, clearly an unreasonable hy-

pothesis. Selection and drift are confounded parameters, but they can nevertheless be

disentangled by assuming that fitness is fixed along the phylogeny but changing along

the sequence, and orthogonally, by assuming that effective population size is constant

across sites, but variable across the phylogeny. In addition to effective population size

(Ne), the mutation rate (µ) is also susceptible to vary between lineages. Furthermore,

both Ne and µ are expected to co-vary with life-history traits (LHTs). This suggests

that the model should more globally account for the joint evolutionary process followed

by all of these lineage-specific variables (Ne, µ, and LHTs). In this direction, chapter 8

introduces an extended mutation-selection model jointly reconstructing the fitness land-

scape across sites and long-term trends in effective population size, mutation rate and

LHTs along the phylogeny, from an alignment of DNA coding sequences and a matrix

of observed LHTs in extant species. The model was implemented in a Bayesian Monte

Carlo framework (see chapter 4.2). Together, the model estimates correlation between

reconstructed life-history traits, mutation rate and effective population size, intrinsically

including phylogenetic inertia. It was tested against simulated data, and finally applied

to empirical data in mammals, isopods, primates and Drosophila. The reconstructed

history of Ne in these groups appears to correlate with LHTs or ecological variables in

a way that suggests that the reconstruction is reasonable, at least in its global trends.

On the other hand, the range of variation in Ne inferred across species is surprisingly

narrow. This last point suggests that some of the assumptions of the model, in particular

concerning the structure of the assumed fitness landscape, are potentially problematic.

6.3 Substitution rate response to changes in ef-

fective population size and expression level

The surprisingly narrow range of variation in Ne inferred across large phylogenies by the

mechanistic mutation-selection model such as mentioned above (section 6.2), prompted

me to conduct a more detailed theoretical investigation of the quantitative impact of

changes in Ne on the molecular evolutionary process followed by protein-coding se-

quences. A particularly important variable to investigate in this direction is the sub-

stitution rate of selected mutations relative to the neutral substitution rate ω = dN/dS .
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6.3. Substitution rate response to changes in effective population size and

expression level

Under the nearly-neutral theory of evolution, lineages with large effective population size

(Ne) are expected to undergo stronger purifying selection, and consequently a decrease in

ω. Empirical correlation patterns between ω and either life-history traits or synonymous

diversity (which is a proxy of Ne), have tended to confirm this prediction. However, sim-

ulations using computational models based on the biophysics of protein conformational

stability (presented in section 5.1) have suggested that ω can in fact be virtually inde-

pendent of Ne. The discrepancy between these conclusions suggests that a more detailed

quantitative investigation of what determines the quantitative response of ω to changes

in Ne, depending on the exact model of the mapping from sequences to fitness, would be

useful. Another related question is how ω varies between proteins, depending on their

expression level. Empirically, there is a robust negative correlation between ω and ex-

pression level across genes. Theoretically, many biophysically inspired models suggest

that the response of ω to changes in expression levels should be the same as, or similar

to, its response to changes in Ne. This suggests that the two questions, the impact of

changes in Ne and in expression levels, would benefit from a simultaneous theoretical

investigation. To address these questions, chapter 9 derives a theoretical approximation

for the quantitative response of ω to changes in Ne and in expression level, under an

explicit genotype-phenotype-fitness map. The method presented is generally valid for an

additive trait and log-concave fitness functions, but more specifically applied to proteins

undergoing selection for their conformational stability. The analytical results, obtained

under simplified models, are corroborated by simulations under more complex models.

Finally, analytical predictions of the response of ω to changes in Ne and expression level

are confronted with empirical data, while other aspects of protein biophysics such as

protein-protein interactions are also discussed.
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Biométrie et Biologie Évolutive, 69622 Villeurbanne, France
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7.1. Introduction

7.1 Introduction

Phylogenetic codon models are now routinely used in many domains of bioinformatics and

molecular evolutionary studies. One of their main applications has been to characterize

the genes, sites (Nielsen and Yang, 1998), or lineages (Zhang and Nielsen, 2005) having

experienced positive selection. More generally, these models highlight the respective

contributions of mutation, selection, genetic drift and biased gene conversion (Kosiol and

Anisimova, 2019), and the causes of their variation between genes (Zhang and Yang,

2015) or across species (Lartillot and Poujol, 2011).

Conceptually, codon models take advantage of the fact that synonymous and non-

synonymous substitutions are differentially impacted by selection. Assuming synonymous

mutations are neutral, the synonymous substitution rate is equal to the underlying muta-

tion rate (Kimura, 1983). Non-synonymous substitutions, on the other hand, reflect the

combined effect of mutation and selection (Ohta, 1995). Classical codon models formalize

this idea by invoking a single parameter ω, acting multiplicatively on non-synonymous

substitutions rates (Muse and Gaut, 1994; Goldman and Yang, 1994). Using a parametric

model automatically corrects for the multiplicity issues created by the complex structure

of the genetic code and by uneven mutation rates between nucleotides. As a result, ω

captures the net, or aggregate, effect of selection on non-synonymous mutations.

Classical codon models, so defined, are phenomenological, in the sense that they cap-

ture a complex mixture of selective effects through a single parameter (Rodrigue and

Philippe, 2010). In reality, the selective effects associated with non-synonymous mu-

tations depends on the context (site-specificity) and the amino acids involved in the

transition (Kosiol et al., 2007). Attempts at an explicit modelling of these complex se-

lective landscapes have also been done, leading to mechanistic codon models, based on

the mutation-selection formalism (Halpern and Bruno, 1998). These models, further

developed in multiple inference frameworks (Rodrigue et al., 2010; Tamuri and Gold-

stein, 2012), sometimes using empirically informed fitness landscapes (Bloom, 2014b),

could have many interesting applications, such as inferring the distribution of fitness ef-

fects (Tamuri and Goldstein, 2012) or detecting genes under adaptation (Rodrigue and

Lartillot, 2016), or even phylogenetic inference. However, they are computationally com-

plex and potentially sensitive to the violation of their assumptions about the fitness

landscape (such as site independence). For this reason, classical codon models remain an

attractive, potentially more robust, although still perfectible approach.

The parametric design of current classical models, relying on a single aggregate pa-

rameter ω, raises the question whether they reliably estimate the underlying mutational

process. Several observations suggest that this may not be the case. For instance, in

their simplest form (Muse and Gaut, 1994; Goldman and Yang, 1994), classical codon

models predict that the nucleotide composition should be the same for all three positions

of the codons, and should be equal to the nucleotide equilibrium frequencies implied by

the underlying nucleotide substitution rate matrix. In reality, the nucleotide composition

differs: the third position shows more extreme GC composition, reflecting the underlying
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mutation bias, compared to the first and second positions, which are typically closer to

50% GC (Singer and Hickey, 2000).

These modulations across the three coding positions have been accommodated using

the so-called 3x4 formalism (Goldman and Yang, 1994; Kosakovsky Pond and Muse,

2005b), allowing for different nucleotide rate matrices at the three coding positions.

However, this is also problematic, since this modelling approach has the consequence

that synonymous substitutions, say, from A to C, occur at different rates at the first and

third positions. Yet, in reality, the mutation process is blind to the coding structure,

and should be homogeneous across coding positions, and if neutral, all mutations from

A to C should thus have the same rate.

These observations suggest that the mutation matrix (1x4) or matrices (3x4) es-

timated by codon models are not correctly reflecting the mutation rates between nu-

cleotides (Rodrigue et al., 2008a). Instead, what these matrices are capturing is the

result of the compromise between mutation and selection at the level of the realized nu-

cleotide frequencies. For detecting selection, this problem is probably minor, although it

still bears consequences on the estimation of ω (Spielman and Wilke, 2015). Conceptu-

ally, however, it is a clear symptom of a more fundamental problem: mutation rates and

fixation probabilities are not correctly teased apart by current codon models.

Practically, this misconception could have important consequences in contexts other

than tests of positive selection. In particular, there is a current interest in investigating

the variation between species in GC content, and its effect on the evolution of protein-

coding sequences (Boĺıvar et al., 2019). An important factor here is biased gene conversion

toward GC (called gBGC), which can confound the tests for detecting positive selection

and, more generally, the estimation of dN/dS (Galtier et al., 2009; Ratnakumar et al.,

2010; Figuet et al., 2014). Even in the absence of gBGC, however, uneven mutation

rates varying across species can have an important impact on the estimation of the

strength of selection. All this suggests that, even before introducing gBGC in codon

models, correctly formalizing the interplay between mutation and selection in current

codon models would be an important first step.

In this direction, the key point that needs to be correctly formalized is the following.

If the nucleotide’s realized frequencies are the result of a compromise between mutation

and selection, then this implies that the strength of selection is not the same between

all nucleotide or amino-acid pairs. For instance, if the mutation process is AT-biased,

then, because of selection, the realized nucleotide frequencies at equilibrium will be less

AT-biased than expected under the pure mutation process. However, this implies that,

at equilibrium, there will be a net mutation pressure toward AT, which has to be com-

pensated for by a net selection differential toward GC. In other words, at equilibrium,

mutations toward AT will be more deleterious on average than those toward GC, or

equivalently, the dN/dS toward AT will be lower than the dN/dS toward GC.

All this suggests that, in order for a codon model to correctly formalize this subtle

interplay between mutation and selection, the component of the parameter vector re-

sponsible for absorbing the net effect of selection (i.e. ω) should not be a scalar, as is
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currently the case. Instead, it should be a tensor, that is, an array of ω values unfolding

along multiple directions. In the present work, we address the question of whether we

can derive a parametric structure being able correctly tease apart mutation rates and

selection, and this, without having to explicitly model the underlying fitness landscape.

In order to derive a codon model along those lines, our strategy is to first assume a true

site-specific evolutionary process, following the mutation-selection formalism. Then, we

derive the mean substitution process implied across all sites by this mechanistic model

and identify the mean fixation probabilities appearing in this mean-field process with the

ω tensor to be estimated. Inferring parameters on simulated alignments, we show that

the model correctly estimates the mutation rates, as well as the mean effect of selection.

7.2 Results

To illustrate the problem, we first conduct simulation experiments under a simple mutation-

selection substitution model assuming site-specific amino-acid preferences. We use these

simulation experiments to explore through summary statistics the intricate interplay

between mutation and selection. Then, we explore how codon models with different pa-

rameterizations are able to infer the mutation rates and the strength of selection on these

simulated alignments. Finally, these alternative models are applied to empirical data.

7.2.1 Simulations experiments

Simulations of protein-coding DNA sequences were conducted under an origination-

fixation substitution process (McCandlish and Stoltzfus, 2014) at the level of codons

(see section 7.4.1). We assume a simple mutation process with a single parameter con-

trolling the mutational bias toward AT, denoted λ = (σA+σT )/(σC +σG), where σx is the

equilibrium frequency of nucleotide x. This mutational process is shared by all sites of

the sequence. With regards to selection, synonymous mutations are considered neutral,

such that the synonymous substitution rate equal to the underlying mutation rate. At

the non-synonymous level, selection is modelled by introducing site-specific amino-acid

fitness profiles (i.e. a vector of 20 fitnesses for each coding site), which are drawn from a

uniform dirichlet distribution of concentration parameter α. A low α induces site-specific

profiles having a large variance, with some amino acids with a high fitness while all other

have a low fitness. Conversely, a large value for α induces more even amino-acid fitness

profiles at each site. Thus, ultimately, the stringency of selection increase with decreas-

ing α. Altogether, the two parameters of the model tune the mutation bias (λ) and the

stringency of selection (α), respectively, as depicted in figure 7.1. All simulations are

obtained using the same underlying topology of 180 species and 498 codon sites.

Simulation of this origination-fixation process along a species tree result in a multiple

sequence alignment of coding sequences for the extant species, from which summary

statistics can then be computed. One such straightforward summary statistic is the

frequency of the different nucleotides, and the resulting nucleotide bias AT/GC observed
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Figure 7.1: Parameters of the mutation-selection model. Mutational bias (toward A and
T) is shared by all sites of the sequence, and tuned by the parameter λ. Conversely, each
codon site of the sequence is defined by a unique fitness profile, drawn from a Dirich-
let distribution with concentration parameter α. Stringency of selection increase with
decreasing α.

in the alignment. This observed nucleotide bias can be computed separately for each

coding position (first, second and third) and compared to the underlying true mutational

bias λ. As can be seen from figure 7.2, the third position of codons reflects the underlying

mutational bias quite faithfully, while the first and second positions are impacted by

the strength of selection and display nucleotide biases that are less extreme than the

one implied by the mutational process. This differential effect across the three coding

positions is explained by nucleotide mutations at the third codon position being more

often synonymous, while mutations at the first and second positions are more often

changing the amino-acid and are thus more often under purifying selection.

Apart from the observed nucleotide bias in the alignment, the diversity of amino acids

is an important indicator of the selective constraints that the sequence experiences. This

diversity can be quantified by the frequencies of amino acids observed across all taxa in the

alignment, and then summarized through a single statistic, namely the Shannon entropy

of amino-acid frequencies (Goldstein and Pollock, 2017), as described in section 7.4.4.

Diversity can be quantified for a given site of the sequence, and this site-specific diversity

can subsequently be averaged over all sites of the sequence (yielding what is hereafter

called the site-specific diversity). Alternatively, the diversity can be quantified directly

on the amino-acid frequencies observed across the whole sequence alignment (which we

refer to as the sequence diversity).

These two variants of the amino-acid diversity are computed for alignments simu-
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Figure 7.2: Observed AT/GC composition of the alignment, represented at the different
positions of codons (first, second and third), summed over all sites. The horizontal axis
represents the underlying mutational bias (λ) of the nucleotide matrix, and the vertical
axis represent the observed AT/GC of the codon position across the alignment. Stringency
of selection is represented by 5 coloured solid lines with decreasing α. AT/GC at the
third codon position (panel C) matches the mutational bias, whereas in contrast first and
second positions (panel A and B) are less extreme than the underlying bias. With increase
stringency of selection (i.e. with decreasing α), the observed bias is less strongly reflecting
the underlying mutational bias, because selection is opposing the mutational bias.

lated under different values of α and λ (figure 7.3). Under stringent selection, only a

small number of amino acids are typically permissible any given site, resulting in a low

site-specific diversity. Yet all amino acids occur at comparable frequencies in the align-

ment, resulting in a high sequence diversity. These observations highlight the distinction

between averaged site-specific diversity and global sequence diversity. Of note, vary-

ing α has a strong impact on the site-specific diversity (figure 7.3), directly reflecting

the fact that more stringent selection amounts to reducing the number of acceptable

amino-acids at each site. On the other hand, it has a minor impact on sequence diver-

sity, which merely reflects the fact that the strength of selection does not impact the

global composition of the sequence.

Imposing a stronger mutational bias (either toward AT or toward GC) greatly reduces

both site-specific and sequence diversity. This shows that the composition in amino acids

is highly dependent on the underlying mutational bias, but also, that a more extreme

mutational bias results in a more constrained substitution process: in effect, under a

strong mutational bias, only those amino-acids that have both a high fitness and codons

enriched in the nucleotides favored by the mutational process are eventually observed.

This effect is less visible whenever selection is more stringent (i.e. with decreasing α),

but can still be observed even for stringent selection.

The observed diversity is the result of a mix between mutation and selection. An

alternative statistic, more directly relevant for measuring the intrinsic effect of selection,

is the mean scaled fixation probability of non-synonymous mutations (ν). This sum-

mary statistic ν can be quantified from the substitutions recorded along the simulation

trajectory (see section 7.4.5). For very long trajectories, it identifies with the ratio of

non-synonymous over synonymous substitution rates (or dN/dS) induced by the under-

lying mutation-selection model (Spielman and Wilke, 2015; Dos Reis, 2015; Jones et al.,

2016). As expected, ν is always lower than 1 for simulations at equilibrium, under a

time-independent fitness landscape (Spielman and Wilke, 2015). Quite expectedly (fig-

ure 7.4, panel A) ν depends strongly on the stringency of selection (α), which it is meant
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Figure 7.3: Diversity of the amino-acid frequencies is quantified as the exponential of
Shannon’s entropy in the vertical axis, either as site-specific diversity in the panel A or as
sequence diversity in the panel B. Sequence diversity is higher than site-specific diversity,
because at any given site only a small number of amino acids are actually permissible.
From a selective perspective, site-specific diversity decreases with stringency of selection
(decreasing α represented by 5 different solid lines) because at given site only a few amino
acids are permitted. Conversely, because site-specific fitness profiles are randomly drawn,
each site has different permitted amino acid, increasing the sequence diversity as the
stringency of selection increases. From a mutational perspective, diversity decreases with
increased mutational bias toward either toward AT or GC (λ in horizontal axis). This
effect is explained by the high frequency of amino acids containing nucleotides favoured
by the underlying mutational bias. Finally, under stringent selection, diversity is less
sensitive to the underlying mutational bias.

to measure. On the other hand, ν depends weakly on the mutational bias (λ). This is in

stark contrast with the amino-acid diversity, which is dependent on λ (figure 7.3).

The proxy of selection represented by ν concerns all non-synonymous mutations, but

we can also consider the mean scaled fixation probability only for the subset of non-

synonymous mutations from weak nucleotides (A or T) to strong nucleotides (G or C),

called νAT→GC. Interestingly, νAT→GC increases with the strength of the mutational bias

toward AT (i.e. with increasing λ, figure 7.4, panel B). This distortion of the selective

effects toward GC is stronger under an increased stringency of selection (i.e. under a

lower α). Likewise, the non-synonymous mutations could also be restricted from strong

(GC) to weak nucleotides (AT). This ratio decreases with the strength of the mutational

bias toward AT (not shown). As a result, the ratio ratio between νAT→GC and νAT→GC

is higher than 1 under an mutational bias toward AT (and lower than 1 respectively for

a bias toward GC). It is monotonously increasing with the mutational bias toward AT

(i.e. with increasing λ, figure 7.4, panel C). Altogether, fixation probabilities are opposed

to mutational bias, and the realized equilibrium frequencies are thus at an equilibrium

point between these two opposing forces.

7.2.2 Parameter inference on simulated data

From an alignment of protein-coding DNA sequences, without knowing the specific his-

tory of substitutions, can one estimate the mutational bias (λ) and the mean scaled

fixation probability (ν)? In other words, can we tease apart mutation and selection?
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Figure 7.4: Mean scaled fixation probability (ν) in vertical axis as a function of muta-
tional bias (λ) in the horizontal axis, for different stringency of selection (α) in coloured
solid lines. In panel A, expectedly, ν decrease with increased strength of selection (i.e. with
decreasing α). However, ν is relatively unaffected by the mutational bias (λ). In panel
B, ν is restricted to mutations from weak nucleotides (AT) to strong nucleotides (GC),
called νAT→GC, represented in the vertical axis. A mutational process biased towards AT
leads to an increased fixation probability toward GG, in the opposite direction. In panel
C, νAT→GC is divided by the fixation probabilities in the opposing direction νGC→AT, rep-
resented in the vertical axis and increasing monotonously with λ. Altogether, mutational
bias is balanced by selection in the opposite direction, where this effect increases with the
stringency of selection.

To address this question, here we consider two codon models for inference, differing

only by their parametrization of the codon matrix Q. Both are homogeneous along the

sequence (i.e. not site-specific). The first is based on Muse and Gaut (1994) formalism

and uses a scalar ω parameter, while the second is based on a tensor representation of ω.

Species tree

ATG|GGA|TCC|ATG|CTA|CGA|TCG 

ATG|CGA|TCG|ATC|CAT|CGA|TCG 

ATG|CGA|TCG|AAG|CTT|CGA|TCC 

ATG|CGA|TCC|ATG|GTA|CGA|TCG 

ATG|CGA|TAG|AAG|CTT|CGA|TCG 

Mutation-Selection
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Number
of sites

Inference of parameters
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Alignment of coding sequence

Non-synonymous
mean scaled fixation
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Species tree
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Figure 7.5: Inferred value (λ̂, ν̂) compared to underlying value (λ, ν) of the simulation.
The different parameterization of the inference model can result in different estimates of
mutational bias (λ̂) and mean scaled fixation probability (ν̂). The main goal is to derive
a model of inference that can reliably estimate these parameters. Two models of inference
are proposed, the first is based on Muse & Gaut formalism, and the second based on a
tensor of mean scaled fixation probabilities.

ω as a scalar: the Muse & Gaut formalism

This model is defined in terms of a generalized time-reversible nucleotide rate matrix R

and a scalar parameter ω. The matrix R is a function of the nucleotide frequencies σ
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and the symmetric exchangeability rates ρ (Tavaré, 1986):

Ra,b = ρa,bσb (7.1)

At the level of codons, the substitution rate between the source (i) and target codon

(j) depends on the underlying nucleotide change between (M(i, j)) and whether or not

the change is non-synonymous (e.g. M(AAT,AAG) = TG). Altogether, the substitution

rates between codons Qi,j , formalized by Muse and Gaut (1994) are a function of the mu-

tation matrixR(σ,ρ), a single parameter of selective strength ω, and the genetic code as:





Qi,j = 0 if codons i and j are more than one mutation away,

Qi,j = RM(i,j) if codons i and j are synonymous,

Qi,j = ωRM(i,j) if codons i and j are non-synonymous.

(7.2)

The model can be fitted by maximum likelihood. Then, from the estimate of R̂, one

can derive a nucleotide bias toward AT as:

λ̂MG = (σ̂A + σ̂T )/(σ̂G + σ̂C). (7.3)

As for the mean strength of selection ν̂MG, a direct estimate is given by ω̂.

As shown in the left panel of figure 7.6, estimate of the mutational bias is halfway

between the nucleotide bias observed in the alignment and the true mutational bias

used during the simulation. Thus, the MG model cannot reliably infer the mutational

bias. On the other hand, ω̂ is close to the underlying mean scaled fixation probability

ν computed during the simulation, with a precision of 98.2% (not shown). Thus, the

failure to correctly estimate the mutation process does not seem to have a strong impact

on the inference of selection, at least in the present case.

ω as a tensor: mean-field derivation

We would like to derive a codon model that would be more accurate than the Muse

& Gaut model, but that would still be site-homogeneous. However, the true process is

site-specific. The link between the two can be formalized by projecting the site-specific

processes onto a gene-wise process, using what can be seen as a mean-field approximation.

The gene-wise process obtained by this procedure is expressed in terms of mutation rates

and mean scaled fixation probabilities. Finally, the mean scaled fixation probabilities

can be identified with the ω-tensor.

Specifically, at each site z, the true codon process is:





Q
(z)
i,j = 0 if codons i and j are more than one mutation away,

Q
(z)
i,j = RM(i,j) if codons i and j are synonymous,

Q
(z)
i,j = RM(i,j)2NeP

(z)
fix (i, j) if codons i and j are non-synonymous.

(7.4)

Where 2NeP
(z)
fix (i, j) is the scaled fixation probability of codon j against codon i, at site z.
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At equilibrium of the process, averaging over sites gives the mean-field gene-level process:





〈Qi,j〉 = 0 if codons i and j are more than one mutation away,

〈Qi,j〉 = RM(i,j) if codons i and j are synonymous,

〈Qi,j〉 = RM(i,j) 〈2NePfix(i, j)〉 if codons i and j are non-synonymous.

(7.5)

However, because selection between codons reduces to selection between pairs of amino-

acids, 〈2NePfix(i, j)〉 only depends on the amino-acids encoded by i and j (section 7.4.6

in methods). Thus, by identification, the inference model should be parameterized by

a set of ω values for all pairs of amino acids, denoted ωx,y. For 20 amino acids, the

total number of pairs of amino acids is 190, hence 380 parameters by counting in both

directions. However, because of the structure of the genetic code, there are 75 pairs that

are one nucleotide away, since some amino acids are not directly accessible through a

single non-synonymous mutation. As a result, the number of parameters necessary to

determine all non-zero entries of the tenser (ωx,y) in both directions is 150. Finally, under

the assumption of a reversible process, the number of parameters can be reduced to 75

symmetric exchangeabilities (βx,y) and 20 stationary effects (ǫx):

ωx,y = ǫyβx,y, where βx,y = βy,x. (7.6)

Altogether, the substitution rates between codons Qi,j are defined as:





Qi,j = 0 if codons i and j are non neighbors,

Qi,j = RM(i,j) if codons i and j are synonymous,,

Qi,j = RM(i,j)ωA(i),A(j) if codons i and j are non-synonymous,

(7.7)

where A(i) is the amino acid encoded by codon i and ωx,y is given by equation 7.6.

This mean-field (MF) model is fitted by maximum likelihood, giving an estimate for

its parameters, R̂, β̂ and ǫ̂. Then, from the estimate of the GTR nucleotide matrix (R̂),

a mutation bias λ̂MF can be estimated as previously (equation 7.3 above).

As shown in the right panel of figure 7.6, λ̂MF under the MF model provides an

accurate estimate of the true mutational. In other words, the MF model can tease out

the observed AT/GC bias of the alignment and the underlying mutational bias.

The mean scaled fixation probability of non-synonymous mutations ν̂MF can also be

computed. It is now a compound parameter, expressed as a function of R̂, β̂ and ǫ̂ (see

section 7.4.7). Under this model, ν̂MF is close to the true mean scaled fixation probability

ν computed during the simulation, with a precision of 97.0% (not shown).

7.2.3 Estimation of empirical sequence data

The two alternative models of inference just considered, namely the classical Muse &

Gaut (MG) and the mean-field (MF) codon models, were then applied to empirical

protein-coding sequence alignments. Two examples were analysed: the nucleoprotein in

Influenza Virus assembled in Bloom (2017), and the β-lactamase in bacteria gathered

in Bloom (2014b), as shown in table 7.1.
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Muse & Gaut inference Mean-field inference

Figure 7.6: Different estimates of the mutational bias in the vertical axis are represented
as a function of the underlying true mutational bias (λ) of the simulation in the horizontal
axis. Mutational bias can be estimated directly from the observed nucleotide frequencies
in the alignment (AT/GC in blue solid line), similarly to figure 7.2, which is skewed by
selection and always less extreme than the underlying mutational bias. The robustness
of mutational bias estimation of two different inference models are shown. Selection is
modelled as a single ω parameter in the Muse & Gaut formalism (MG) in the left panel,
while selection is modelled as a tensor of ω parameters in different directions using a
mean-field (MF) approximation in the right panel. In both panels, the true value of
the mutational bias is represented in black solid line. The estimated mutational bias
λ̂MG (in yellow dotted line) in the MG formalism is between the true value and the
observed AT/GC. Conversely, estimated mutational bias λ̂MG (in yellow dotted line) in

the MF approximation equal to the underlying value. Moreover, the expected ÂT/GC
from the parameter of the model fits the observed value in the MF approximation, while
being skewed in the MG formalism. Altogether, the MF approximation can tease apart
mutation and selection, while the MG formalism has to reach a compromise between
observed AT/GC and underlying mutational bias.

The nucleoprotein alignment of 498 amino acids is available for 180 virus strains (as

human host), and is globally biased toward AT. Similarly to what was observed in the

simulation experiments presented above, the mutational bias estimates under the two

codon models are greater than the observed nucleotide bias (i.e. 1 < AT/GC < λ̂). This

effect is, as previously, probably due to selection at the level of amino acids, partially

opposing the mutational bias. More importantly, the mutational bias estimated by the

MF model is more extreme than the MG estimate (i.e. 1 < λ̂MG < λ̂MF). This ex-

ample behaves identically to the observations made with simulated alignments, where,

compared to MG, the MF model estimates a stronger mutational bias, which was also

closer to the real value. Thus, a reasonable interpretation is that MG is also underes-

timating the underlying mutational bias in the present case, and that the estimate of

the MF model is more accurate.

Concerning selection, the estimated mean scaled fixation probability of non-synonymous

mutations, denoted ν̂, is similarly estimated in the MG and MF models (ν̂MG ≃ ν̂MF).

Additionally, in the MF model, ν̂MF can be restricted to mutations from weak nucleotides

(AT) to strong (GC), or vice versa (see section 7.4.7). We observe that under a muta-

tional bias favouring AT (i.e. λ > 1), the mean fixation probability of non-synonymous

mutations is higher toward GC than toward AT (i.e. ν̂MF,AT→GC > ν̂MF,GC→AT), as
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expected if the mutational bias is toward AT.

Reciprocally, for the β-lactamase, the alignment of 263 amino acids available for 85

species is globally biased toward GC. Expectedly, the mean-field estimate is even more

strongly biased toward GC (i.e. λ̂MF < AT/GC < 1). Curiously, the MG model estimates

a weaker underlying mutational bias than the observed bias (i.e. AT/GC < λ̂MG < 1).

Concerning selection, we observe that the fixation probability of non-synonymous muta-

tions is higher on average toward AT than toward GC (i.e. ν̂MF,GC→AT > ν̂MF,AT→GC),

again, as expected under a GC-biased mutation process.

Altogether, the results obtained on empirical data are globally in agreement with the

observations gathered from the simulation experiments, namely that the presence of a

mutational bias results in a selection differential, taking the form of a slightly higher mean

fixation probability of non-synonymous mutations opposing the mutational bias. Our

MF model detects this effect and simultaneously estimates more extreme (and probably

more accurate) mutational biases compared to the MG model.

Nucleoprotein Lactamase

Number of sites 498 263

Number of taxa 180 85

AT/GC of the alignment 1.15 0.79

AT/GC at first coding position 1.06 0.58

AT/GC at second coding position 1.22 1.18

AT/GC at third coding position 1.19 0.71

Muse & Gaut mutational bias (λ̂MG) 1.39 0.85

Mean-field mutational bias (λ̂MF) 1.64 0.68

Site diversity 1.10 1.37

Muse & Gaut scaled fixation probability (ν̂MG) 0.085 0.29

Mean-field scaled fixation probability (ν̂MF) 0.086 0.30

Mean-field scaled fixation probability
0.14 0.31

from AT to GC (ν̂MF,AT→GC)

Mean-field scaled fixation probability
0.10 0.44

from GC to AT (ν̂MF,GC→AT)

ν̂MF,AT→GC/ν̂MF,GC→AT 1.36 0.71

Table 7.1: Estimated parameters of mutational bias (λ̂) from two models of inference,
namely classical Muse & Gaut (MG) and mean-field (MF). These models are applied to
two distinct datasets of protein-coding DNA alignment, nucleoprotein in the left column
and β-lactamase in the right column. By taking into account selection in multiple direc-
tion, MG models estimates a stronger mutational bias than the MG model. For the MG
model the mean scaled fixation probability of non-synonymous mutations (ν̂MF ) can be
obtained either from weak (AT) to strong nucleotides (GC), or vice versa. The fixation
probability of non-synonymous mutations is opposed to the underlying mutational bias,
such that a skewed mutational process results in a skewed selection, justifying that they
must be articulated together.
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7.3 Discussion

In protein-coding DNA sequences, the nucleic composition results from a subtle interplay

between mutation at the nucleic level and selection at the protein level. As a result, the

observed nucleotide bias in the alignment is different from the underlying mutational bias.

However, current parametric codon models are inherently misspecified and, for that

reason, are unable to tease apart these opposing effects of mutation and selection cor-

rectly. As a result, they don’t estimate the mutational process reliably.

In this work we sought to find the simplest parametric codon model able to correctly

tease apart mutation rates on one hand, and net mean fixation probabilities on the other

hand, and this, without having to explicitly model the underlying fitness landscape. In

order to derive a codon model along those lines, our strategy is to first assume an under-

lying microscopic model of sequence evolution (here, a mutation-selection model based

on a site-specific, time-independent fitness landscape). Then, we derive the gene-wise

mean fixation probabilities between all pairs of codons, implied by the underlying micro-

scopic process. Finally, we observe that this mean-field process should in fact invoke as

many distinct ω parameters as there are pairs of amino acids that are nearest neighbours

in the genetic code. There are reversibility conditions, reducing the dimensionality and

allowing for a GTR-like parameterization of this tensor (95 parameters for selection).

Inferring parameters on simulated alignments, we show that the model derived using

this mean-field argument correctly estimates the underlying mutational bias and selective

pressure. Applied to empirical alignments, we also observe that there is a selection

differential opposing the mutational bias.

This work first points to a fundamental property of natural genetic sequences, namely

that they are not optimized but are the result of an equilibrium between forces. In the

specific case highlighted in this work, mutational bias at the nucleotide-level results in

suboptimal amino-acid being overrepresented in the sequence. This was pointed out

previously (Singer and Hickey, 2000), although never directly formalized in the context

of a phylogenetic codon model.

One important consequence of this tradeoff between mutation and selection at equi-

librium is that the observed higher mean fixation probability toward GC is mimicking

the effect of biased gene conversion toward GC (gBGC), although unlike gBGC, the phe-

nomenon described here corresponds to a genuine selective effect. Although we did not

explore the consequences of this at the level of intra-specific polymorphism, the selection

differential uncovered here also implies that the distribution of fitness effects is not the

same in the two directions, either toward AT or toward GC. Specifically, in the presence

of an AT-biased mutation process, the non-synonymous GC polymorphisms are expected

to segregate at higher frequencies, compared to non-synonymous AT polymorphisms.

These observations have some practical implications: for instance, experiments ob-

serving a fixation (or segregation) bias toward GC at the non-synonymous level must

also rule out that this fixation bias is not a simple consequence of the mutation-selection

balance. More generally, our observations and modelling principles offer a useful pre-
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liminary basis to better understand how mutation and selection will work together with

biased gene conversion (gBGC), and therefore will help better understand how gBGC

will impact both nucleotide composition and dN/dS . It is worth mentioning that in

our result, we focused on the fixation probability from AT to GC (νAT→GC) because of

the relationship to gBGC. However, in practice, the same analysis and methods can be

applied to any subset of nucleotides or codons.

Our mean-field parametric model uses gene-level parameters (in the form of a tensor)

that is meant to capture the mean scaled fixation probabilities. This derivation, and

its validation on simulated data, shows that, even though the underlying selective land-

scape is site-specific, a gene-level approximation can nonetheless accurately disentangles

mutation and selection. As a result, this study demonstrates that phenomenological

models derived out of mechanistic models are more compact (i.e. not site-specific), and

in certain cases are sufficient to extract the relevant parameters.

The methodology proposed here for deriving inference models consists in proceed-

ing in two steps, first assuming an underlying mechanistic model of sequence evolution,

parameterized by variables that are derived from first principles (fitness landscape, mu-

tations rates, . . .). Subsequently, the phenomenological inference model is obtained by

matching its parameters (here, the entries of the ω tensor) with the aggregate parame-

ters derived from the application of the mean-field procedure to the mechanistic model.

Altogether, we believe that the approach used here could be applied more generally: in-

ference models can be phenomenological in practice, but should nonetheless be derived

from an underlying mechanistic model, so as to correctly formalize the interplay between

mutation, selection, drift and other evolutionary forces.

Finally, this work is still preliminary since the mean-field model should be tested

against a more diverse range of empirical data, in terms of phylogenetic depth, strength

of selection, and codon usage bias to assert the validity of our empirical results. Also, the

empirical fit to the data between the models (e.g. using AIC) should be more carefully

examined. Indeed, by setting ǫ = 1 and β = ω × 1 in our mean-field model, we retrieve

the nested Muse & Gaut model, hence, both models are directly comparable. In addition,

several other codon models (Rodrigue et al., 2008a; Kosakovsky Pond et al., 2020) should

be included in a broader comparison of the accuracy of the estimation of the underlying

mutational bias and strength of selection on protein-coding DNA sequences.

7.4 Materials & Methods

7.4.1 Simulation model

We seek to simulate the evolution of protein-coding sequences along a specie tree. Starting

with one sequence at the root of the tree, the sequences evolve independently along the

different branches of the tree by point substitutions, until they reach the leaves. At the

end of the simulation, we get one sequence for each leaf of the tree, meaning one sequence

per species. The substitution is modelled using the origination-fixation approximation,
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i.e. substitution rates are the product of the mutation rate at the nucleotide level, and

fixation probabilities, based on selection at the amino-acid level.

The mutation process is assumed homogeneous across sites. On the other hand,

selection is assumed to be varying along the sequence. During the simulation, given

the current sequence, the substitution rates toward all possible mutants (one nucleotide

change) are computed and the next substitution event is drawn randomly based on Gille-

spie’s algorithm (Gillespie, 1977).

7.4.2 Mutational bias at the nucleotide level

The mutation rate between nucleotides is always proportional to µ. Moreover, mutations

from any nucleotide to another weak nucleotide is increased by the factor λ compared

with mutations to another strong nucleotide. The mutation rate matrix is thus:

R =

A C G T





A −µ(2 + λ) µ µ µλ
C µλ −µ(1 + 2λ) µ µλ
G µλ µ −µ(1 + 2λ) µλ
T µλ µ µ −µ(2 + λ)

(7.8)

Which has the following stationary distribution:

σR = 1, (7.9)

⇐⇒ σ =

(
λ

2 + 2λ
,

1

2 + 2λ
,

1

2 + 2λ
,

λ

2 + 2λ

)
. (7.10)

The process is reversible and fulfills the detailed balance condition, i.e. for any pair

of distinct nucleotides:

σaRa,b = σbRb,a. (7.11)

As a result, the ratio of weak over strong nucleotide frequencies at stationarity is equal to

λ:

σA + σT

σC + σG
=
λ(2 + 2λ)−1 + λ(2 + 2λ)−1

(2 + 2λ)−1 + (2 + 2λ)−1
, from eq. 7.10, (7.12)

= λ. (7.13)

7.4.3 Selection at the amino-acid level

The substitution rate is considered null between any two codons differing by more than

one nucleotide. Otherwise, the mutation rate between a pair of codons is given by the

mutation rate of the underlying single nucleotide change. Selection is modelled at the

amino-acid level, i.e. we assume that all codons encoding for one particular amino acid

are selectively neutral.

To take into account the heterogeneity of selection between different sites of the

protein, we assume that each site z of the sequence is independently evolving under
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a site-specific fitness landscape, characterized by a 20-dimensional frequency vector of

scaled (Wrightian) fitness parameters φ(z) = {φ
(z)
a , 1 ≤ a ≤ 20}. The (Wrigthian)

fitness vectors across sites are drawn IID from a uniform Dirichlet distribution prior

to the simulation over the tree:

φ(z) ∼ Dirichlet(α, . . . , α), z ∈ {1, . . . ,Z}, (7.14)

The malthusian fitness (or log-fitness) of amino acid a, denoted F
(z)
a , is accordingly:

F (z)
a = ln

(
φ(z)

a

)
, z ∈ {1, . . . ,Z}, a ∈ {1, . . . , 20} (7.15)

At site z, the substitution rate between non-synonymous codons i and j is given by the

product of the mutation rate and the probability of fixation:

Q
(z)
i,j = RM(i,j)

F
(z)
A(j) − F

(z)
A(i)

1 − e
F

(z)

A(i)
−F

(z)

A(j)

(7.16)

where A(i) denotes the amino-acid encoded by codon i. At the root of the tree, for each

site z, the sequence is drawn from the stationary distribution of the process specified

by π(z), which is given by:

π
(z)
i = Z(z)


 ∏

k∈{1,2,3}

σi[k]


 e

F
(z)

A(i) , (7.17)

where i[k] denotes the nucleotide at position k ∈ {1, 2, 3} of codon i, and Z(z) is the

normalizing constant at site z:

Z(z) =




61∑

j=1


 ∏

k∈{1,2,3}

σj[k]


 e

F
(z)

A(j)




−1

(7.18)

The substitution process is reversible and fulfils detailed balance conditions at each site

z and between each pair of codons (i, j):

π
(z)
i Q

(z)
i,j = π

(z)
j Q

(z)
j,i (7.19)

Of note, by modelling fitness at the amino-acid level, we assume that all codons en-

coding for one particular amino acid are selectively neutral. In addition, in this modelling

framework, the genetic code is of particular importance since the number of codons encod-

ing for a particular amino acid varies greatly. As an example, tryptophan is encoded by

one codon, while leucine is encoded by 6 codons. Intuitively, this variation makes the mu-

tation bias more pronounced among codons encoding for the same amino acid, since there

are more mutations possible that are selectively neutral (i.e. synonymous). On the other

hand, the mutation bias is more constrained if the amino acid is encoded by few codons.
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7.4.4 Site and sequence diversity of amino-acids

For a site z, the diversity D(z) (or effective number of amino acids) is computed as

the exponential of Shannon’s entropy from the frequencies of the different amino-acids

ψ(z) = {ψ
(z)
a , a ∈ {1, . . . , 20}, as:

D
(
ψ(z)

)
= exp

[
−

20∑

a=1

ψ(z)
a ln

(
ψ(z)

a

)]
(7.20)

The diversity is a measure of the sparsity of the amino-acid frequencies, with a value

of 1 corresponding to the minimum diversity (i.e. with only one amino acid permissi-

ble), and a value of 20 corresponding to maximum diversity, where each amino acid

has the same frequency. The diversity can be first computed for each site and then

averaged over all sites as:

〈D (ψ)〉 =
1

Z

Z∑

z=1

D
(
ψ(z)

)
(7.21)

Alternatively, average frequencies of the different amino acids can first be computed over

the alignment and then used to compute the global sequence diversity:

〈ψ〉 =
1

Z

Z∑

z=1

ψ(z) (7.22)

Then the sequence diversity is simply:

D (〈ψ〉) = exp

[
−

20∑

a=1

〈ψ〉a ln (〈ψ〉a)

]
(7.23)

7.4.5 Mean scaled fixation probability

The sequence at time t is denoted S(t) and the codon present at site z is denoted Sz(t).

For a given sequence, the mean scaled fixation probability over mutations away from S(t)

(weighted by their probability of occurrence) is given by the ratio:

ν(t) =

Z∑
z=1

∑
j∈N (Sz(t))

QSz(t)→j

Z∑
z=1

∑
(j∈Sz(t))

µSz(t)→j

, (7.24)

where N (i) is the set of non-synonymous codons neighbours of codon i and Q
(z)
i,j are

defined as in equation 7.16. Averaged over all branches of the tree, the mean scaled

fixation probability is :

ν = 〈ν(t)〉 , (7.25)

=

∫

t
ν(t)dt, (7.26)

where the integral is taken over all branches of the tree, while the integrand ν(t) is a piece-

wise function changing after every point substitution event. The mean scaled fixation
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probability from weak (AT) to strong (GC) nucleotides, denoted νAT→GC, is obtained

similarly by restricting the sums (in the numerator and the denominator) from weak to

strong mutations. A similar computation can be done from strong to weak.

7.4.6 Derivation of mean-field model

The mean-field codon model 〈Q〉 is defined such that 〈Qi,j〉 is the average rate of sub-

stitution to codon j, conditional on currently being on codon i, the average being taken

across sites. Importantly, sites differ in their probability of being currently in state i.

The average should therefore be weighted by this probability.

Assuming an underlying site-specific mutation-selection process at equilibrium, given

we know that a mutation is from codon i, the probability that this mutation is oc-

curing at site z is:

P(z | i) =
π

(z)
i

Z∑
z=1

π
(z)
i

(7.27)

The site-averaged (mean-field) substitution rate from codon i to j is as result given as:

〈Qi,j〉 =
Z∑

z=1

P(z | i)Qi,j (7.28)

If codon i and codon j are synonymous, this equation simplifies to the underlying muta-

tion rate RM(i,j). Otherwise, if codon i and codon j are non-synonymous, the mean-

field substitution rate is:

〈Qi,j〉 =
〈
RM(i,j)2NePfix(i, j)

〉
, (7.29)

= RM(i,j) 〈2NePfix(i, j)〉 , (7.30)

= RM(i,j)

Z∑
z=1

π
(z)
i

F
(z)
A(j) − F

(z)
A(i)

1 − e
F

(z)

A(i)
−F

(z)

A(j)

Z∑
z=1

π
(z)
i

, (7.31)

= RM(i,j)

Z∑
z=1

Z(z)
F

(z)
A(j) − F

(z)
A(i)

e
−F

(z)

A(i) − e
−F

(z)

A(j)

Z∑
z=1

Z(z)e
F

(z)

A(i)

(7.32)

As a result, 〈2NePfix(i, j)〉 is dependent on the source and target codon solely through the

source amino acid (A(i)) and target amino acid (A(j)), hence the parameter ωA(i),A(j)

identifies with the average fixation probability:

ωA(i),A(j) =

Z∑
z=1

Z(z)
F

(z)
A(j) − F

(z)
A(i)

e
−F

(z)

A(i) − e
−F

(z)

A(j)

Z∑
z=1

Z(z)

. (7.33)
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7.4.7 Mean scaled fixation probability (ν) under the mean-
field model

The mean-field model is parameterized by a GTR mutation matrix R(σ,ρ) and the

selection coefficient ω(β, ǫ). As a result, the mean scaled fixation probability of non-

synonymous mutations is:

νMF =

61∑
i=1

πi
∑

j∈N (i)
Qi,j

61∑
i=1

πi
∑

j∈N (i)
µi,j

, (7.34)

=

61∑
i=1

[
∏

k∈{1,2,3}
σi[k]

]
ǫA(i)

∑
j∈N (i)

RM(i,j)ǫA(j)βA(i),A(j)

61∑
i=1

[
∏

k∈{1,2,3}
σi[k]

]
ǫA(i)

∑
j∈N (i)

RM(i,j)

, (7.35)

where i[k] denotes the nucleotide at position k ∈ {1, 2, 3} of codon i.

Similarly, the mean scaled fixation probability from weak (AT) to strong (GC) nu-

cleotides denoted νMF,AT→GC is obtained similarly by restricting the sums (in the nu-

merator and the denominator) to one nucleotide mutations only from weak to strong.

Conversely, by restricting the sum from strong (GC) to weak (AT), we obtain νMF,GC→AT.

7.4.8 Inference method with Hyphy

Maximum likelihood estimation has been performed with the software Hyphy (Kosakovsky

Pond and Muse, 2005a). The Python scripts generating the Hyphy batch files (for both

Muse & Gaut and mean-field), as well as scripts for the post-analysis of the experi-

ments, are available at https://github.com/ThibaultLatrille/NucleotideBias un-

der MIT license.
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8.1. Introduction

8.1 Introduction

Since the realization, by Zuckerkandl and Pauling (1965) that genetic sequences are infor-

mative about the evolutionary history of the species, molecular phylogenetics has devel-

oped into a mature and very active field. A broad array of models and inference methods

have been developed, using DNA sequences for reconstructing the phylogenetic relation-

ships among species (Felsenstein, 1981), for estimating divergence times (Thorne and

Kishino, 2002), or for reconstructing the genetic sequences of remote ancestors (Liberles,

2007). However, genetic sequences might contain information about other aspects of the

evolutionary history and, in particular, about past population-genetic regimes.

Interspecific divergence is the long-term outcome of population-genetic processes, in

which point mutations at the level of individuals are then subjected to selection and

genetic drift, leading to substitutions at the level of the population. As a result, the

substitution patterns that can be reconstructed along phylogenies are modulated by the

underlying population-genetic parameters (mutation biases, selective landscapes, effective

population size), suggesting the possibility to infer the past variation of these parameters

over the phylogeny. Independently, ecological properties such as phenotypic characters or

life-history traits can be observed in extinct or in present-day species. Using the compar-

ative method (Felsenstein, 1985), these traits can be reconstructed for the unobserved an-

cestral species. Combined together, genetic and phenotypic ancestral reconstructions can

then be used to unravel the interplay between evolutionary and ecological mechanisms.

Practically, in order to disentangle mutation, selection and genetic drift, we need to

classify individual substitutions into different categories, differing in the strength of muta-

tion, selection or genetic drift. In protein-coding DNA sequences, the mutational process

occurs at the nucleotide level. Assuming that synonymous mutations are selectively neu-

tral and that selection mostly acts at the protein level, synonymous substitutions can be

used to infer the patterns of mutation, without any interference contributed by selection.

Then, by comparing the non-synonymous substitution rate relative to the synonymous

substitution rate (the ratio dN/dS), one can estimate the global strength of selection

acting on proteins. This idea was formalized using phylogenetic codon models (Muse

and Gaut, 1994; Goldman and Yang, 1994). This led to a broad range of applications,

either to detect proteins under adaptive selection (Kosiol et al., 2008), or to measure the

modulations of the strength of purifying selection between sites (Echave et al., 2016),

genes (Zhang and Yang, 2015), or lineages (Lartillot and Poujol, 2011).

Concerning variation in dN/dS between lineages, and in a context mostly charac-

terized by purifying selection, the nearly-neutral theory predicts that changes in the

global strength of selection (measured as dN/dS) is related to changes in the relative

strength of genetic drift, which is in turn mediated by changes in effective population

size (Ne) (Ohta, 1992). Mechanistically, populations with high Ne are characterized by

more efficient purifying selection against mildly deleterious mutations, resulting in lower

dN/dS (Kimura, 1979; Welch et al., 2008).

Codon models have been used to empirically measure such changes in the efficacy
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of purifying selection along phylogenies, either by allowing for different dN/dS values in

different parts of the tree (Dutheil et al., 2012), or by estimating dN/dS independently for

every branch of the tree (Popadin et al., 2007). Alternatively, dN/dS can be modelled as

a continuous trait, varying along the phylogeny as a stochastic process, splitting at each

node of the tree into independent processes (Seo et al., 2004). Once empirical estimates

of the variation in dN/dS between lineages or groups has been obtained, these can be

compared to changes in Ne across lineages, so as to test the validity of the predictions

of the nearly-neutral theory. Independent empirical estimation of Ne is usually done vie

proxies, such as the neutral diversity within species (Galtier, 2016), or life-history traits.

For instance, animal species characterized by a large body size or an extended longevity

are typically expected to also have a low Ne (Romiguier et al., 2014). Alternatively, a

Bayesian integrative framework has been proposed (Lartillot and Poujol, 2011), extending

the approach of Seo et al. (2004), in which the joint variation in dS , dN/dS and in life-

history traits or other proxies of Ne is modelled as a multivariate Brownian process, with

a variance-covariance matrix capturing the signal of their correlated evolution.

Analyses using these approaches and these proxies of Ne have suggested a negative

correlation between dN/dS and Ne (Popadin et al., 2007; Lanfear et al., 2010a; Lartillot

and Poujol, 2011; Lartillot and Delsuc, 2012; Romiguier et al., 2014; Figuet et al., 2017),

thus confirming the theoretical prediction of the nearly-neutral theory. However, the uni-

versality and robustness of the correlation between dN/dS and Ne is still debated (Nab-

holz et al., 2013; Lanfear et al., 2014; Figuet et al., 2016; Boĺıvar et al., 2019), and further

investigation might be required. Moreover, these analyses do not explicitly formalize the

quantitative relationship between Ne and dN/dS . This relation is in principle dependent

on the underlying fitness landscape (Welch et al., 2008; Cherry, 1998; Goldstein, 2011),

and can show complicated behavior due to non-equilibrium properties (Jones et al., 2016).

These questions could be addressed in the context of a mechanistic modelling approach.

As an alternative to classical dN/dS-based codon models, mechanistic codon mod-

els explicitly introduce population genetic equations into the codon substitution pro-

cess (Halpern and Bruno, 1998). Specifically, these so-called mutation-selection codon

models explicitly assign a fitness parameter to each amino acid. As a result, the substi-

tution rate between each pair of codons can be predicted, as the product of the mutation

rate and the fixation probability of the new codon, which is in turn dependent on the

fitness of the initial and the final codons. Since the strength of selection is typically not

homogeneous along the protein sequence, and depends on the local physicochemical re-

quirements (Echave et al., 2016; Goldstein and Pollock, 2016, 2017), local changes in selec-

tive strength are usually taken into account by allowing for site-specific amino-acid fitness

profiles. Site-specific amino-acid preferences are typically estimated either by penalized

maximum likelihood (Tamuri and Goldstein, 2012; Tamuri et al., 2014), or in a Bayesian

context, using an infinite mixture based on a Dirichlet process prior (Rodrigue et al.,

2010; Rodrigue and Lartillot, 2014). This second approach is further considered below.

Although not directly expressed in terms of this variable, the mutation-selection for-

malism induces an equilibrium dN/dS , which is theoretically lower than 1, thus explicitly
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Figure 8.1: Model summary. Panel A. Our method requires a (given) rooted tree topol-
ogy, an alignment of protein-coding DNA and (optionally) quantitative life-history trait
for the extant species. Panel B. Relying on a codon model based on the mutation-selection
formalism, assuming an auto-correlated log-Brownian process for the variation through
time in effective population size (Ne), mutation rate (µ) and life-history traits, our
Bayesian inference method estimates amino-acid fitness profiles across sites, variation
in mutation rate and effective population size along the tree, as well as the node ages and
the nucleotide mutation rates.

modelling purifying selection (Spielman and Wilke, 2015; Dos Reis, 2015). As a result,

the mutation-selection codon framework proved to be a valuable null (nearly-neutral)

model, against which to compare the observed dN/dS by classical codon models, so as to

test for the presence of adaptation (Rodrigue and Lartillot, 2016; Bloom, 2017).

However, these mutation-selection methods have so far assumed the strength of ge-

netic drift, or equivalently Ne, to be constant across the phylogeny. This assumption

is clearly not realistic, as attested by the empirically measured variation in dN/dS be-

tween lineages using classical codon models or, more directly, by the broad range of

synonymous neutral diversity observed across species (Galtier, 2016). The impact of

this assumption on the estimation of the fitness landscape across sites (Tamuri et al.,

2014; Rodrigue and Lartillot, 2014), or on the tests for the presence of adaptation (Ro-

drigue and Lartillot, 2016; Bloom, 2017) is totally unknown. Relaxing this assumption

of a constant Ne is thus necessary.

Conversely, since the mutation-selection formalism explicitly incorporates Ne as a

parameter of the model, extending the model so as to let Ne vary across lineages is rela-

tively straightforward, at least conceptually. Doing this would then provide an occasion

to address several important questions: do we have enough signal in empirical sequence

alignments, to estimate the evolutionary history of Ne along a phylogeny? Can we more

generally revisit the question of the empirical correlations between Ne and ecological life-

history traits (longevity, maturity, weight, size, . . .), previously explored using classical

dN/dS based models, but now in the context of this mechanistic framework?
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8.2 New approaches

To address these questions, here we introduce a variant of the mutation-selection codon

model, in which selection is modulated along the sequence (using site-specific amino-

acid profiles), while the mutation rate (µ), the effective population size (Ne) and life-

history traits are allowed to vary along the phylogeny (figure 8.1). Methodologically, our

model is fundamentally an integration between the Bayesian non-parametric version of

the Halpern and Bruno (1998) mutation-selection model (Rodrigue and Lartillot, 2014),

and the molecular comparative framework modelling the joint evolution of life-history

and molecular traits (Lartillot and Poujol, 2011).

Formally, the substitution rate (per unit of time) from codon i to j, denoted Qi,j ,

is equal to the total rate of mutation (per unit of time) at the level of the popula-

tion (2Neµi,j) multiplied by the probability of fixation of the mutation Pfix(i, j):

Qi,j = 2Neµi,jPfix(i, j) (8.1)

In the case of synonymous mutations, which we assumed are neutral, the probability

of fixation is independent of the original and target codon, and equals 1/2Ne, such

that Qi,j simplifies to:

Qi,j = µi,j (8.2)

In the case of non-synonymous mutations, the probability of fixation depends on the

difference in fitness between the amino acid encoded by the initial and final codons:

Qi,j = µi,j

4Ne

(
fA(j) − fA(i)

)

1 − e4Ne(fA(i)−fA(j))
(8.3)

where f is a 20-dimensional vector specifying the log-fitness for each amino acid, and

A(i) is the amino acid encoded by codon i.

In the model introduced here, Ne and µ are allowed to vary between species (across

branches) as a multivariate log-Brownian process, but are assumed constant along the

DNA sequence. Conversely, amino-acid fitness profiles f are considered constant along

the tree but are assumed to vary across sites, being modelled as independent and identi-

cally distributed random-effects from an unknown distribution estimated using a Dirich-

let process prior.

This model was implemented in a Markov chain Monte Carlo framework, allowing

for joint inference of site-specific selection profiles and reconstruction of life-history traits

and population-genetic regimes along the phylogeny. After validating our model and

our inference framework against simulated data, we apply it to several cases of interest

across metazoans (placental mammals, primates and isopods), for which some proxies

of Ne are available.

8.3 Results
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Figure 8.2: A-C: branch lengths in expected number of substitutions per site. D-F:
Ne values across nodes (including the leaves) relative to Ne at the root. From left to
right: simulation under the mutation-selection approximation (A,D), under a Wright-
Fisher model accounting for small population size effects (5000 individuals at the root),
site linkage and short term fluctuation of Ne (B,E) and accounting for site epistasis
in the context of selection for protein stability. The tree root is 150 million years old,
where the initial population start with a mutation rate of 1e−8 per site per generation,
and generation time of 10 years. These experiments confirm that signal in the placental
mammalian tree can allow to reliably infer the direction of change in Ne, even if linkage
disequilibrium, short term fluctuation of Ne and finite population size effects are not
accounted for in the inference framework. However, the presence of epistasis between
sites is a serious threat to the inference of Ne.

8.3.1 Validation using simulations

The inference framework was first tested on independently simulated multiple sequence

alignments (see methods). With the aim of applying the inference method to empirical

datasets, the simulation parameters were chosen so as to match an empirically relevant

empirical regime. Thus, the tree topology and the branch lengths were chosen based

on a tree estimated on the mammalian dataset further considered below. The other

aspects of the simulation model (fitness landscape, variation in Ne) were then varied

along a gradient of increasing complexity, so as to test the inference framework under

increasingly challenging conditions.

A first series of simulations was meant to test the soundness of our inference frame-

work, by simulating essentially under the model used for inference, although with an

independently developed software. Thus, the mutation-selection approximation was as-

sumed to be valid, and sites were simulated under different fitness profiles empirically

determined (Bloom, 2017), and finally, Ne was assumed to undergo discrete shifts at

the tree nodes but otherwise to remain constant along each branch. In this context,

branch lengths and branch-specific values of Ne were accurately estimated by our infer-

ence method (figure 8.2, panel A & D). Concerning Ne, the slope of the linear regression

between true and estimated branch-specific Ne is 0.794 (r2 = 0.915).

103



8.3. Results

However, the assumptions made for this first round of simulations are almost cer-

tainly violated in practice. First, Ne is expected to undergo continuous changes along

the lineages of the phylogeny. Second, the diffusion approximation for the probability

of fixation (equation 8.3) may not hold in small finite populations. Third, assuming a

separate substitution process for each site is equivalent to assuming no linkage between

sites (free recombination). In practice, however, there is limited recombination, at least

within exons, and this could induce deviations from the mutation-selection approxima-

tion, due to Hill-Robertson effects.

The finite population was now modelled explicitly, using a Wright-Fisher simulator,

tracking the frequency of each allele at the gene level and at each generation along

the phylogeny. No recombination was implemented within genes. These more complex

simulation settings account for small population size effects, for hitchhiking of weakly

deleterious mutations during selective sweep and for background selection due to linkage

disequilibrium. In addition, the effective population size Ne and the mutation rate were

allowed to fluctuate continuously along the branches of the tree (changing by a small

amount after each generation of the underlying Wright-Fisher process). Finally, short-

term fluctuations of Ne, of the order of 20% per generation, were accounted for by adding

a random noise to the Brownian process describing the long-term evolution of Ne. In

spite of these deviations between the simulation and the inference models, branch lengths

and branch-specific effective population sizes could again be robustly recovered by the

inference framework (slope of 0.868, r2 = 0.919, figure 8.2, panel B & E).

These results are encouraging. However, they still rely on the assumption of a site-

independent fitness landscape, which is equivalent to assuming no epistasis. Yet this

assumption is almost certainly violated in practice (Pollock and Goldstein, 2014; Shah

et al., 2015). Accordingly, we implemented a more complex, site-dependent fitness land-

scape accounting for the selective interactions between sites induced by the 3-dimensional

structure of protein. In this model, the conformational stability of the protein deter-

mines its probability of being in the folded state, which is in turn taken as a proxy for

fitness (Williams et al., 2006; Goldstein, 2011; Pollock et al., 2012). Under this evolu-

tionary model, and at any given time, the fitness landscape at a particular codon site is

dependent on the amino acids that are currently present at those sites that are in the

vicinity of the focal site in 3D space (see supplementary). When applied to data simu-

lated using this model, our inference framework could accurately recover the simulated

branch lengths (figure 8.2, panel D). On the other hand, the distribution of Ne across the

tree could not be accurately recovered (slope of 0.0196, r2 = 0.0122, figure 8.2, panel F).

In fact, no meaningful variation in Ne is detected, and the little variation in Ne that is

inferred shows no correlation with the true branch-specific mean Ne values. This effect

can be explained by the predicted independence of dN/dS , and more generally of the

scaled selection coefficients associated with non-synonymous mutations, to changes in Ne

in this specific model of protein stability, as shown theoretically by Goldstein (2013).

As an alternative model of epistasis between sites, a Fisher geometric model was also

considered for the simulations (see supplementary). The results under this model are in-
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termediate between simulations without epistasis and simulations under the biophysically-

inspired model considered above. More specifically, under data simulated using Fisher’s

geometric model, the true and estimated branch-specific Ne are strongly correlated with

each other (r2 = 0.73). On the other hand, the slope of the correlation is substan-

tially less than 1 (0.571). In other words, the trends in Ne across the tree are correctly

recovered, but the range of the variation in effective population size over the tree is

substantially under-estimated. As for the branch lengths, they are again correctly esti-

mated. In summary, our simulation experiments show that our inference framework is

reliable in the absence of model mis-specification and is robust to violations concerning

short-versus long-term variation in Ne or to the presence of empirically reasonable lev-

els of Hill-Robertson interference. On the other hand, and very importantly, epistasis,

which is ignored by the inference model, appears to lead to a general underestimation

of the true variation in Ne, to an extent that depends on the exact epistatic model but

can go as far as completely obliterating any signal about the true variation in Ne across

the tree in the most extreme situations.

8.3.2 Empirical experiments

We next applied our inference framework to a series of 4 empirical datasets spanning

different taxnonomic groups within metazoans. As a first empirical case, we considered a

dataset of 77 placental mammals, for which complete genome sequences and information

about life-history traits is available. Placental mammals offer an interesting example,

for which effective population size is likely to show substantial variation across lineages.

This variation in Ne is expected to covary with life-history traits (LHTs), such that

large-bodied species are expected to have smaller effective population sizes, compared

to small-bodied species.

For computational reasons, we restricted our analyses to small concatenates made

of 18 randomly sampled alignments of orthologous genes. Since the mutation-selection

model considered here assumes a mostly nearly-neutral regime, genes for which positive

selection was detected using a site codon model were excluded. To assess the repro-

ducibility of our inference and check that the signal about variation in Ne is not driven

by particular genes, we analysed 4 concatenated random samples of 18 genes. The dif-

ferent concatenate showed similar trends in the change of µ (r2 = [0.92, 0.95]) and Ne

(r2 = [0.51, 0.68]) between pairs of experiments (see supplementary).

The reconstructed long-term changes in effective population size (Ne) is displayed

in figure 8.3. We visually observe a global trend of increasing Ne throughout the tree

around 90 and 60 My. We also observe Ne to be lower in some clades, such as Cetacea

and Camelidae, while being higher in other clades, such as Rodentia and Pecora. In some

cases, a decrease in Ne can be observed along an isolated branch of the tree, for example

on the branches leading to the Alpaca (Vicugna pacos) or the cheetah (Acinonyx jubatus).

The estimated covariance matrix (table 8.1) gives a global synthetic picture about

the patterns of covariation between the mutation rate per unit of time µ, the effective
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Figure 8.3: Inferred phylogenetic history of Ne (left) and µ (right) across placental
mammals. Inference was conducted on a randomly chosen set of 18 out of 226 highly
conserved CDS (< 1% of gaps). Only highly conserved CDS were retained such that
the assumption of constant fitness landscape is not incautiously broken by protein with
changing function and/or adaptive selection. Ne values are relative to the root, which is
arbitrarily set to one. Mean values of MCMC (after burn-in) are obtained at each node
of the tree, hence a gradient can be extrapolated along each branch. µ spanned almost 2
order of magnitude, and if we assume the root to be 105My old (Kumar et al., 2017), the
rescaled mutation rate per site per year in extant species is between 1.1e−10 and 7.8e−9.
Ne at the root of the tree is arbitrarily set to 1, and all values are relative to the root,
which spans at most an order of magnitude.

population size Ne and the three LHTs. First, the variation in µ across species is neg-

atively correlated with variation in body mass, age at sexual maturity and longevity

(ρ = [−0.84,−0.83], table 8.1). These correlations, which were previously reported (Lar-

tillot and Delsuc, 2012; Nabholz et al., 2013) probably reflect generation time effects (Lan-

fear et al., 2010a; Gao et al., 2016). Similarly, and more interestingly in the present

context, the variation in Ne between species is also negatively correlated with LHTs

(ρ = [−0.54,−0.47], table 8.1). This is consistent with the expectation that small-

sized and short-lived species tend to be characterized by larger effective population

sizes (Romiguier et al., 2014). Of note, these results mirror previous findings, based

on classical codon models, showing that dN/dS tends to be positively correlated with

LHTs (Lartillot and Delsuc, 2012; Nabholz et al., 2013; Figuet et al., 2017). Result

which was also recovered on the present dataset, using a classical dN/dS based codon

model (supplementary materials). Interestingly, the correlation of dN/dS with LHTs is

weaker than that of our inferred Ne with LHTs, as expected if the variation in dN/dS

indirectly (and imperfectly) reflects the underlying variation in Ne. Finally, Ne and µ

are positively correlated in their variation (ρ = 0.44), which might simply reflect the fact

that both negatively correlate with LHTs. The partial-correlation coefficients (see sup-
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Correlation (ρ) Ne µ Maximum longevity Adult weight Female maturity

Ne - 0.439∗∗ −0.523∗∗ −0.544∗∗ −0.47∗∗

µ - - −0.832∗∗ −0.835∗∗ −0.833∗∗

Maximum longevity - - - 0.827∗∗ 0.845∗∗

Adult weight - - - - 0.809∗∗

Female maturity - - - - -

Table 8.1: Correlation coefficient between effective population size (Ne), mutation rate
per site per unit of time (µ), and life-history traits (Maximum longevity, adult weight
and female maturity). Asterisks indicate strength of support of the posterior probability
to be different than 0 (pp) as ∗pp > 0.95 and ∗∗pp > 0.975. Observed correlations are
compatible with the interpretation that large populations are composed of small, short-lived
individuals. Moreover if the mutation rate per generation is considered constant in first
approximation, the mutation rate per unit of time is positively correlated to generation
rate, hence to population size.

plementary) between Ne and LHTs are not significantly different from 0. However, this

might simply be due to the very strong correlation between the three LHTs considered

here (ρ = [0.81, 0.85]), such that controlling for any one of them removes most of the

signal contributed by the available empirical variation between species.

Thus, altogether, the inferred trends in Ne across species appear to be as expected,

based on considerations about life-history evolution. On the other hand, the total range

of the inferred variation in Ne across the entire extant taxa is surprisingly narrow, with

one order of magnitude (9.2) at most between high and low Ne (see supplementary).

This almost certainly represents an underestimate of the true range of variation across

placental mammals.

As another case study, we analysed a group of isopod species that have made multiple

independent transitions to subterranean environments. The transition from a terrestrial

to a subterranean lifestyle is typically associated with a global life-history and ecological

syndrome characterized by a loss of vision, longer generation times and, most interest-

ingly, smaller population sizes, due to a lower carrying capacity of the subterranean

environment (Capderrey et al., 2013). Protein coding DNA sequence alignments and

qualitative life-history traits such as habitat (surface or underground), pigmentation (de-

pigmented, partially depigmented or pigmented) and ocular structure (anophthalmia,

microphthalmia, or ocular) are available for these species (Eme et al., 2013; Saclier et al.,

2018). The assumption of a Brownian auto-correlated process for describing the changes

in Ne along the tree may not be so well adapted to the present case, since the changes in

Ne associated with the transition to a subterranean environment are likely to correspond

to relatively sudden shifts, rather than continuous variation, and the ecological correlate

(subterranean versus terrestrial) is not a quantitative trait. However, the dataset con-

sidered here contains independent transitions to a subterranean lifestyle, thus offering an

opportunity to test for a potential correlation between inferred Ne variation and terres-

trial versus subterranean lifestyles over the terminal branches. In our analysis across 4

concatenated random samples of 12 genes, we observe a reproducible (see supplementary)

and statistically significant reduction in Ne for underground or depigmented species, or

for species with visual impairment (see figure 8.4). Of note, the species that dit not un-
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Figure 8.4: Ne estimation for extant isopods species, sorted according to their habitat
(left), pigmentation (middle), and ocular structure (right). All three qualitative trait sta-
tistically correlate with changes in Ne. Underground, or depigmented species, or species
with visual impairment are characteristic of low Ne species.

dergo a transition to subterranean environments feature a relative Ne close to 1, meaning

that Ne has not changed much along the lineages (since the root of the tree). Again, the

total range of the inferred variation in Ne across the entire extant taxa is surprisingly

narrow, with ratio of 3.3 at most between high and low Ne (see supplementary).

Next, our empirical framework was also applied on a set of genes sampled across pri-

mates, taken from Perelman et al. (2011) and reanalysed in Brevet and Lartillot (2019).

In addition to LHTs (mass, female maturity, generation time and longevity), informa-

tion about nuclear synonymous diversity (πS) and non-synonymous over synonymous

diversity (πN/πS), are available for 10 species across the dataset and are expected to

correlate with Ne according to population genetics (Eyre-walker and Keightley, 2007;

Galtier, 2016). However, the correlation coefficient between our inferred Ne and πS or

πN/πS and LHTs are not statistically significant, nor with LHTs (see supplementary).

Again, the total range of the inferred variation in Ne across the entire tree is narrow,

with ratio of 6.4 at most between high and low Ne. This results contrast with the find-

ing of Brevet and Lartillot (2019) on the same dataset based on dN/dS-based codon

models, where the estimated Ne was found to span several orders of magnitude, and

correlated positively with πS .

8.4 Discussion

Mechanistic phylogenetic codon models express the substitution rates between codons

as a function of the mutation rates at the nucleotide level, selection over amino-acid

sequences and effective population size. Thus far, the development of mutation-selection

models of the HB family (Rodrigue et al., 2010; Tamuri and Goldstein, 2012) has mostly

focused on the question of fully accounting for the fine-scale modulations of selection be-

tween amino-acids and across sites (Rodrigue et al., 2010; Tamuri and Goldstein, 2012).

However, the issue of the variation in the global population-genetic regime between

species has received much less attention. In particular, effective population size (Ne)

is expected to vary substantially over the species of a given clade, yet current mutation-

selection models all invariably assume Ne to be constant across the phylogeny.

Here, we have introduced an extension of the mutation-selection model that accounts

for this variation. When applied to an alignment of protein coding sequences, this mech-

108



8.4. Discussion

anistic model returns an estimate of the modulations of amino-acid preferences across

sites. Simultaneously, it reconstructs the joint evolution of life-history traits and molecu-

lar and population-genetic parameters (mutation rate µ and effective population size Ne)

along the phylogeny, while estimating the correlation matrix between these variables,

intrinsically accounting for phylogenetic inertia.

8.4.1 Reliability of the inference of the phylogenetic his-
tory of Ne

The reconstructions obtained on several empirical datasets, in particular in mammals

and in isopods, suggest that the method is able to correctly infer the directional trends

of the changes in Ne across species. In particular, in mammals, the inferred variation in

Ne correlates negatively with body size and, more generally, with life-history traits, as ex-

pected under the reasonable assumption that large-bodied mammals would tend to have

smaller effective population sizes Popadin et al. (2007); Lartillot and Delsuc (2012); Nab-

holz et al. (2013); Figuet et al. (2017). Similarly, in isopods, smaller effective population

sizes are inferred in subterranean species, again, as expected (Capderrey et al., 2013).

However, if the trends are in right direction, the magnitude of the changes inferred

across the phylogeny is surprisingly narrow and does not match independent empirical

estimates of the variation in those clades. In particular, in mammals, synonymous di-

versity varies by a factor at least 10 between species (Galtier, 2016). In animals, the

synonymous diversity roughly spans two orders of magnitude, whereas Ne varies consid-

erably more across species, by a factor of 103 (Galtier and Rousselle, 2020). For instance,

effective population sizes estimated based on population genomic data are of the order

of 10 000 in humans (Li and Durbin, 2011), and 100 000 in mice (Geraldes et al., 2008).

Thus, clearly, our approach underestimates the true variation. Different mechanisms not

accounted for by the model could explain this result.

First, genetic hitchhiking, Hill-Robertson interference, and short-term fluctuations

of Ne could generate this effect. However, inference conducted on alignments simulated

under a Wright-Fisher model accounting for linkage and for short-term variation in Ne

suggests that empirically reasonable levels of Hill-Robertson interferences are not strong

enough to explain this observation, at least in the regimes explored. Second, µ and Ne

could also be fluctuating along the genome (Gossmann et al., 2011; Ellegren et al., 2003;

Eyre-Walker and Eyre-Walker, 2014). This assumption needs to be tested, though we

expect that relaxing this assumption would not change drastically the magnitude of in-

ferred Ne since some of this fluctuation should be absorbed by the inferred site-specific

fitness profiles. Third, the DNA sequences could also be misaligned at some sites. How-

ever we observe the same magnitude of inferred Ne for different sets of genes indicating

this might not be the primary reason. Fourth, the genes selected in our alignments could

be under adaptive evolution, or their function could have changed. However, at least in

mammals, the impact of this potential problem was minimized by the use of genes for

which no positive selection was detected using standard phylogenetic codon site models.
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Finally, one key assumption of the mutation-selection model that is likely to be vi-

olated in practice is the assumption of site-independence. In reality, epistasis might be

prevalent in protein coding sequence evolution (Pollock and Goldstein, 2014; Shah et al.,

2015). Our simulations under an epistatic landscape point to epistasis being a major fac-

tor to be investigated. Indeed, Ne could not be appropriately estimated under these sim-

ulation settings, although the outcome more specifically depends on the exact model for

the fitness landscape. An extreme case is obtained using a biophysically-inspired model,

assuming purifying selection for conformational stability. This model was previously ex-

plored using simulations and theoretical developments Goldstein (2013), and it was shown

that, under this model, dN/dS and more generally the substitution process is virtually

insensitive to Ne. This is confirmed by our experiments, showing that the mutation-

selection approach explored here cannot infer the true variation in Ne under this model.

A less extreme outcome is obtained under an alternative model also implementing

epistatic interactions between sites via Fisher’s geometric model (Tenaillon, 2014; Blan-

quart and Bataillon, 2016). Interestingly, under this model, our inference framework

is able to infer the correct trends of Ne, although with a substantially underestimated

range of inferred variation, thus mirroring the results obtained on placental mammals. Of

note, these results do not necessarily imply that models based on biophysics are empir-

ically less relevant than Fisher’s geometric model. Instead, they might just betray that

the response of the substitution process to changes in Ne may be sensitive to the exact

quantitative details of the underlying fitness landscape. More work is probably needed

here to characterize these exact conditions. Nevertheless, our simulation experiments

suggest a global pattern: epistatic interactions induce a buffering of the response of the

substitution process to changes in Ne. The meaningful correlation patterns observed

with LHTs in the case of placental mammals suggest that this buffering is not complete.

Nevertheless, ignoring epistatic interactions at the inference level appears to result in a

substantial underestimation of the range over which Ne varies across species.

Interestingly, the magnitude of the inferred range of Ne variation is similar for the

placental and the primate datasets (with a 9-fold and 6-fold variation in mammals and

primates, respectively), whereas one would have expected a much larger range of variation

over the broader phylogenetic scale of placental mammals, compared to primates. An

explanation could be that the effects of epistasis are more apparent at longer time-scales.

Indeed, the total number of substitutions from root to leaves is greater, and as a result,

the local environment, and therefore the fitness landscape at the level of each site, has

been less stable across the phylogeny.

Although modelling epistasis in an inference framework is a complex biological, math-

ematical and computational problem, our work points to a potential signal of epistasis

that could be retrieved in a phylogenetic context. More specifically, since the slope of the

response of the substitution process to changes in Ne appears to be informative about

the epistatic regime, then, conversely, by relying on independent estimates of Ne (e.g.

using polymorphism), this effect could be used to leverage a quantitative estimate of the

statistical distribution of epistatic effects.
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8.4. Discussion

Other methods have recently been developed to reconstruct phylogenetic changes in

Ne. For example, a method recently developed uses polymorphism and generation time

for some present-day species to reconstruct Ne along the phylogeny, based on a classical

(dN/dS-based) codon model (Brevet and Lartillot, 2019). This method implicitly relies

on a nearly-neutral model, assuming a fixed and gamma-shaped distribution of fitness

effects across non-synonymous mutations. The approach is calibrated using fossils, and

as a result, returns estimates of the absolute value of Ne and of its phylogenetic variation.

Here, in contrast, our method requires neither generation times nor polymorphism data,

and the fitness effects are not constrained to a specific distribution. On the other hand,

the inferred effective population sizes are only relative. In addition, the empirical fitting

of the model requires more computing resources.

8.4.2 Potential applications and future developments

Apart from reconstructing the phylogenetic history of Ne and investigating its causes

and covariates, another potentially interesting application of our approach is in detecting

adaptation. In this direction, mutation-selection models represent a useful null nearly-

neutral model, explicitly modelling the background of purifying selection acting over

protein coding genes. Adaptation can then be detected by measuring the deviation from

this null model (Rodrigue and Lartillot, 2016; Bloom, 2017).

However, by assuming a constant Ne along a phylogeny, the statistical power of this

approach to detect sites under adaptive evolution may not be optimal. In particular, the

site-specific fitness profiles inferred by the model are averaged along the phylogeny and

are seemingly more diffuse than those estimated profiles under our present framework

(see supplementary materials). Thus, our method should provide a better null model of

purifying selection against which to test for the presence of adaptive evolution.

This approach can be further extended in other directions. First, currently, our

model also assumes no selection on codon usage. In the case of primates or placental

mammals, this assumption is probably reasonable (Yang and Nielsen, 2008), although

it is more questionable for other groups, in particular Drosophila (Duret and Mouch-

iroud, 1999; Plotkin and Kudla, 2011). In principle, this assumption can be relaxed

by implementing selective codon preferences that are shared across all sites. Such an

implementation would provide the advantage of estimating codon usage biases, while

simultaneously accounting for its confounding effect when estimating selection on amino-

acids and inter-specific variation in Ne.

Second, the Bayesian analysis conducted here was based on relatively small align-

ments (20 000 sites at most), and with strong limits on the parametrization of the un-

derlying mixture model (allowing for at most 50 distinct profile categories). Profiling of

the program (not shown) shows that the number of components of the profile mixture

is the limiting step of the computation. Yet, a larger number of components might be

required, in order to achieve more accurate inference of the site-specific profiles. One

possible development, leading to statistically more stable genome-wide estimates of Ne,
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would be to develop a multi-gene parallelized version of the model, in which each coding

sequence would have its own mixture model, and would run on a separate thread, while

the history of Ne would be shared by all computing processes.

Finally, estimating Ne in a mutation-selection phylogenetic model relies on the rela-

tion between Ne and the relative strength of drift, in a context where, ultimately, the

signal about the intensity of drift comes from the relative rate of non-synonymous substi-

tutions. However, this purely phylogenetic approach does not leverage a second aspect of

Ne at the population level, namely, the fact that Ne also determines the levels of neutral

genetic diversity that can be maintained (π = 4Neu, where u is the mutation rate per

generation). Hence, neutral diversity yields an independent empirical estimate of Ne. In

principle, our mechanistic model could be extended so as to incorporate polymorphism

data within species at the tips of the phylogeny. A similar method has been previously

pioneered in the case of 3 species and using a distribution of fitness effect (Wilson et al.,

2011). More generally, the nearly-neutral theory of evolution defines a long-term Ne,

which might be different from the short-term definition of Ne (Platt et al., 2018). Thus

we could ask if empirical independent estimations of Ne from within species (based on

genetic diversity) and between species (based on the substitution process) are congruent,

and if not, what are the mechanisms responsible for this discrepancy.

Notwithstanding theoretical considerations on the nearly-neutral theory of evolution,

empirical clues about the long-term trends in the modulations of the intensity of genetic

drift opens up a large diversity of ecological and evolutionary questions. Spatial and tem-

poral changes of genetic drift along ecological niches and events can now be investigated,

so as to disentangle the underlying evolutionary and ecological pressures.

8.5 Materials and Methods

In the model presented here, Ne and µ and quantitative traits are allowed to vary be-

tween species across branches as a multivariate log-Brownian process, but assumed con-

stant along the DNA sequence. Conversely, amino-acid fitness profiles are assumed to

vary across sites, but are considered constant along the tree. The model makes several

assumptions about the evolutionary process generating the observed alignment. First,

the species tree topology is supposed to be known, and each gene should match the

species tree, meaning genes are strict orthologs (no paralogs and no horizontal transfers).

Second, there is no epistasis (interaction between sites), such that any position of the

sequence has its own independent evolutionary process and a substitution at one posi-

tion does not affect the substitution process at other positions. Third, from a population

genetics perspective, we assumed sites of the protein to be unlinked, or equivalently the

mutation rate is low enough such that there is no Hill-Robertson interference nor genetic

hitchhiking. Fourth, polymorphism is ignored in extant species.

The parameterization of the models is described as a Bayesian hierarchical model,

including the prior distributions and the parameters of the model. This hierarchical

model is formally represented as directed acyclic graph, depicted in figure 8.5.
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8.5.1 Nucleotide mutation rates

The generalized time-reversible nucleotide mutation rate matrix R is a function of the

nucleotide frequencies σ and the symmetric exchangeability rates ρ (Tavaré, 1986).

σ = (σA, σC , σG, σT ) is the equilibrium base frequency vector, giving the frequency at

which each base occurs at each site. ρ = (ρAC , ρAG, ρAT , ρCG, ρCT , ρGT ) is the vector of

exchangeabilities between nucleotides. Altogether, the rate matrix is:

R =

A C G T





A − ρACσC ρAGσG ρATσT

C ρACσA − ρCGσG ρCTσT

G ρAGσA ρCGσC − ρGTσT

T ρATσA ρCTσC ρGTσG −

(8.4)

By definition, the sum of the entries in each row of the nucleotide rate matrix R is

equal to 0, giving the diagonal entries:

Ra,a = −
∑

b6=a,b∈{A,C,G,T }

Ra,b (8.5)

The prior on the exchangeabilities ρ is a uniform Dirichlet distribution of dimension 6:

ρ ∼ Dir

(
1

6
, 6

)
. (8.6)

The prior on the equilibrium base frequencies σ is a uniform Dirichlet distribution

of dimension 4:

σ ∼ Dir

(
1

4
, 4

)
(8.7)

The general time-reversible nucleotide matrix is normalized such that the total flow equals

to 1:

∑

a∈{A,C,G,T }

−σaRa,a = 1. (8.8)

8.5.2 Site-dependent selection

Site-specific amino-acid fitness profiles are assumed i.i.d. from a mixture model, itself

endowed with a truncated Dirichlet process prior. Specifically, the mixture has K com-

ponents (K = 50 by default). The prior on component weights (θ) is modeled using a

stick-breaking process, truncated at K and of parameter β:

θ ∼ StickBreaking (K, β)

⇐⇒ θk = ψk ·
k−1∏

a=1

(1 − ψa) , k ∈ {1, . . . ,K},
(8.9)

where ψk are i.i.d. from a beta distribution

ψk ∼ Beta (1, β) , k ∈ {1, . . . ,K}. (8.10)
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Of note, the weights decrease geometrically in expectation, at rate β, such that lower

values of β induce more heterogeneous distributions of weights.

Each component of the mixture defines a 20-dimensional fitness profile φ(k) (sum-

ming to 1), for k ∈ {1, . . . ,K}. These fitness profiles are i.i.d. from a Dirichlet of

center γ and concentration α:

φ(k) ∼ Dir (γ, α) , k ∈ {1, . . . ,K}. (8.11)

Site allocations to the mixture components κ (z) ∈ {1, . . . ,K}, for z ∈ {1, . . . ,Z}

running over the Z sites of the alignment, are i.i.d. multinomial of parameter θ:

m ∼ Multinomial (θ) , (8.12)

where mk =
∑

z∈{1,...,Z}

✶κ(z)=k (8.13)

For a given parameter configuration for the mixture, the Malthusian fitness selection

coefficients f (z) at site z, are obtained by taking the logarithm of the fitness profile

assigned to this site:

f (z) = ln
(
φ(κ(z))

)
, z ∈ {1, . . . ,Z}. (8.14)

8.5.3 Dated tree

The topology of the rooted phylogenetic tree is supposed to be known and is not estimated

by the model. The model estimates the dates at which branches split, thus the dated

tree requires P − 2 internal node ages that are free parameters, where P is the number

of extant taxa (leaves of the tree). By definition, leaf ages are all set to 0. The root

age is set arbitrarily to 1, but if fossils data are also available the dated tree can be

rescaled into absolute time using cross-multiplication. A uniform prior is assumed over

internal node ages T (n), n ∈ {P + 1, . . . , 2P − 2}.

The duration ∆T (b) represented by a given branch b, for b ∈ {1, . . . , 2P − 2} is de-

fined as the difference in ages between the oldest node at the tip of the branch T (b↑),

and the youngest node T (b↓):

∆T (b) = T (b↑) − T (b↓). (8.15)

8.5.4 Branch dependent traits

The effective population size Ne and mutation rate per unit of time µ are assumed to

evolve along the phylogeny, and to be correlated. If quantitative life-history traits (LHTs)

are also available for some nodes of the tree (leaves and/or internal nodes), they are also

assumed to evolve along the phylogeny and to be correlated between them, and with Ne

and µ. The total number of traits is noted L, when counting Ne, µ and all user-defined
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P (b,z)
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l(b)

N (b)
e
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Figure 8.5: Directed acyclic graph (DAG) of dependencies between variables. Nodes of
the directed acyclic graph are the variables, and edges are the functions. Hyper-parameters
are depicted in red circles, random variables in blue circles, and transformed variables in
black. Blue dashed line denotes a drawing from a random distribution, and black solid
lines denote a function. For a given node, all the nodes pointing toward him (upstream)
are its dependencies which determines its distribution. The other way around, following
the arrows in the DAG (downstream), simple prior distributions are combined together to
form more complex joint prior distribution which ultimately defines the prior distribution
of the model.

LHT (denoted X). Their variation through time is modelled by an L-dimensional log-

Brownian processB. By convention, the first component of the log-brownian corresponds

to Ne, and the second component to µ. Thus:




B1(t) = lnNe(t)

B2(t) = lnµ(t)

Bk+2(t) = lnXk(t), k ∈ {1, . . . , L}

(8.16)

The effective population size at the root is set to 1 for identifiability of the fitness profiles.

Along a branch b ∈ {1, . . . , 2P − 2} of the tree, a log-Brownian process starts at the

oldest node at the tip of the branch (b↑), and ends at the youngest node (b↓). The rate

of change of the log-Brownian process per unit of time is constant and determined by

the positive semi-definite and symmetric covariance matrix Σ. Thus the distribution at

node b↓ of B(b↓) is multivariate Gaussian, with mean equals to the Brownian process

sampled at the oldest node B(b↑), and variance ∆T (b)Σ:

B(b↓) ∼ N
(
B(b↑),∆T (b)Σ

)
, b ∈ {1, . . . , 2P − 2}. (8.17)

The Brownian process at the root of the tree is uniformly distributed, except for the first

component fixed to 0 for identifiability (see above). The prior on the covariance ma-

trix is an inverse Wishart distribution, parameterized by κ = 1 and with q = L + 1
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degrees of freedom:

Σ ∼ Wishart−1(κI, q). (8.18)

We are interested in approximating the expected substitution rates between codons

over the branch. Ideally, under the Brownian process just described, the rates of substitu-

tion between codons are continuously changing through time. Also, even conditional on

the value of Ne at both ends, the Brownian path along the branch entails a random com-

ponent, leading to complicated integral expressions for substitution rates (Horvilleur and

Lartillot, 2014). Here, a branchwise approximation is used (Lartillot and Poujol, 2011),

which consists of first deriving an approximation for the mean Ne along the branch,

conditional on the values of Ne at both ends, and then using this mean branchwise Ne

to define the codon substitution rates.

In the case of log-Brownian process, the most likely path (or geodesic) from B(b↑)

to B(b↓) is the straight line, and therefore, it would make sense to take the mean

value of eB
(n)

along this geodesic. We then have N
(b)
e and µ(b) for each branch b ∈

{1, . . . , 2P − 2} of the tree:





N (b)
e =

eB
(b↓)
1 − eB

(b↑)
1

B
(b↓)
1 −B

(b↑)
1

µ(b) =
eB

(b↓)
2 − eB

(b↑)
2

B
(b↓)
2 −B

(b↑)
2

.

(8.19)

8.5.5 Codon substitution rates

The mutation rate between codons i and j, denoted µi,j depends on the underlying

nucleotide change between the codons. First, if codons i and j are not nearest-neighbours,

µi,j is equal to 0. Second, if codons i and j are only one mutation away, M(i, j) denotes

the nucleotide change (e.g. M(AAT,AAG) = TG), and µi,j is given by the underlying

nucleotide relative rate (RM(i,j)) scaled by the mutation rate per time (µ). Technically,

the 4-dimensional nucleotide relative rate matrix (R) is normalized such that we expect

1 substitution per unit of time, hence the scaling by µ.

For a given branch b and a given site z, the codon substitution rate (per unit of

time) matrix Q(b,z) is given by:





Q
(b,z)
i,j = 0 if codons i and j are not neighbors,

Q
(b,z)
i,j = RM(i,j) if codons i and j are synonymous,

Q
(b,z)
i,j = RM(i,j)

4N
(b)
e

(
f

(z)
A(j) − f

(z)
A(i)

)

1 − e
4N

(b)
e

(
f

(z)

A(i)
−f

(z)

A(j)

) if i and j are non-synonymous,

Q
(b,z)
i,i = −

61∑

j 6=i,j=1

Q
(b,z)
i,j .

(8.20)
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We see from this equation that, f and Ne are confounded, such that increasing the ef-

fective population size while decreasing the fitnesses by the same factor leads to the

same substitution rate.

The branch lengths l(b) are defined as the expected number of neutral substitutions

per DNA site along a branch:

l(b) = µ(b)∆T (b). (8.21)

Together, the probability of transition between codons for a given branch b and site z is:

P (b,z) = el(b)Q(b,z)
, (8.22)

which are the matrices necessary to compute the likelihood of the data (D) given the

parameters of the model using the pruning algorithm.

8.5.6 Bayesian implementation

Bayesian inference was conducted using Markov Chain Monte Carlo (MCMC). Most

phylogenetic MCMC samplers target the distribution over the model parameters given

the sequence alignment, which means that they have to repeatedly invoke the pruning

algorithm to recalculate the likelihood which is most often the limiting step of the MCMC.

An alternative, which is used here, is to do the MCMC conditionally on the detailed

substitution history H, thus doing the MCMC over the augmented configuration (H,

D), under the target distribution obtained by combining the mapping-based likelihood

with the prior over model parameters.

The key idea that makes this strategy efficient is that the mapping-based likelihood

depends on compact summary statistics of H, leading to very fast evaluation of the like-

lihood. On the other hand, this requires to implement more complex MCMC procedures

that have to alternate between:

1. sampling H conditionally on the data and the current parameter configuration.

2. re-sampling the parameters conditionally on H.

To implement the mapping-based MCMC sampling strategy, we first sample the

detailed substitution history H for all sites along the tree. Several methods exist for

doing this (Nielsen, 2002; Rodrigue et al., 2008b), which are used here in combination

(first trying the accept-reject method of Nielsen, then switching to the uniformization

approach of Rodrigue et al if the first round has failed).

Then, we write down the probability of H given the parameters, and finally, we col-

lect all factors that depend on some parameter of interest and make some simplifications.

This ultimately leads to relatively compact sufficient statistics (see supplementary) al-

lowing for fast numerical evaluation of the likelihood (Irvahn and Minin, 2014; Davydov

et al., 2016). As an example, making an MCMC move on the Ne at a given node of
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the tree is faster since only the mapping-based likelihood (using path sufficient statis-

tics) at the neighbouring branches of the node is necessary, instead of computing the

likelihood for the entire tree.

Markov chain Monte Carlo (MCMC) are run for 4000 points and the first 1000 points

are discarded as burn-in. Convergence is then assessed (see supplementary) by com-

paring two independent chains, checking that both site-specific fitness and branch Ne

have the same posterior mean.

8.5.7 Correlation between traits

The correlation between trait a and trait b ∈ {1, . . . , L} can be obtained from the co-

variance matrix Σ:

ρa,b =
Σa,b√

Σa,aΣb,b
. (8.23)

This correlation coefficient is then averaged over the posterior distribution, and sta-

tistical support is assessed based on the posterior probability of having a positive (or

negative) value for the coefficient.

8.5.8 Simulations

To test the robustness of the model, four parameterized simulators were developed:

SimuDiv, SimuPoly, SimuFold & SimuGeo. All four simulators use a log-Brownian multi-

variate process to model the changes in the mutation rate per generation, the generation

time and Ne along the lineages. SimuDiv, SimuFold & SimuGeo all simulate point sub-

stitutions along the phylogenetic tree. The simulator starts from an initial sequence at

equilibrium. The change in fitness is computed for all possible mutant, hence computing

all strictly positive substitution rates. At each point, the next substitution is chosen pro-

portional to these rates using in Gillespie’s algorithm (Gillespie, 1977). At each node, the

process is split, and finally stopped at the leaves of the tree. SimuPoly simulates explic-

itly each generation along the phylogeny under a Wright-Fisher population, consisting of

three steps: mutation, selection and genetic drift of currently segregating alleles. Muta-

tions are drawn randomly based on mutation rates. Drift is induced by the multinomial

resampling of the currently segregating alleles. We assume that the DNA sequence is

composed of exons, with no linkage between exons, and total linkage of sites within an

exon. Moreover, in SimuPoly, the instant value of log-Ne can also be modelled as a

sum of a log-Brownian process and an Ornstein-Uhlenbeck process. The log-Brownian

motion accounts for long-term fluctuations, while the Ornstein-Uhlenbeck introduces

short-term fluctuations. In SimuDiv and SimuPoly, each codon site contributes inde-

pendently to the fitness depending on the encoded amino acids, through site-specific

amino-acid fitness profiles experimentally determined (Bloom, 2017). In SimuFold, the

fitness of a sequence is computed as the probability of the protein to be in the folded

state. SimuFold is a C++ adaptation of a Java code previously published (Goldstein
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and Pollock, 2016, 2017), where we also allow for changes in Ne and µ along a phylo-

genetic tree. Supplementary materials describe the models in more details, as well as

performance of the inference model against them.

8.5.9 Empirical data

For placental mammals, alignments were extracted from OrthoMam database (Ranwez

et al., 2007; Scornavacca et al., 2019). Only highly conserved coding sequences are kept for

the analysis, representing 226 CDS with ≤ 1% of gaps in the alignment. Life-history traits

(LHTs) for longevity, age at maturity and weight were obtained from AnAge database (De

Magalhães and Costa, 2009; Tacutu et al., 2012). We focused our analysis on 77 taxa

for which information is available for at least one LHT.

8.6 Reproducibility - Supplementary Materials

Supplementary materials and figures are available in appendix, chapter 11. The scripts

and instructions necessary to reproduce the simulated and empirical experiments are

available at https://github.com/ThibaultLatrille/MutationSelectionDrift.
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9.1. Introduction

9.1 Introduction

Molecular sequences differ across species due to the particular history of nucleotide sub-

stitutions along their respective lineages. These substitutions in turn are the result of

the interplay between evolutionary forces such as mutation and selection, whose relative

forces are determined by the amount of random genetic drift. These forces have effects

at different levels: mutations are carried by molecular sequences, selection is mediated at

the level of individuals, while random genetic drift is a population sampling effect. Yet,

they jointly contribute to the long-term molecular evolutionary process. Thus, the chal-

lenge of the study of molecular evolution is to tease out their respective contributions,

based on comparative analyses.

One main aspect of this challenge is to correctly evaluate the role of random drift in

the long term evolutionary process. Population genetics theory implies that the strength

of drift, due to the stochastic sampling of mutations, is less pronounced in lineages with

large effective population size (Ne), and as a consequence, the purification by selection

of weakly deleterious mutations is more effective in large populations. This fundamental

idea is at the core of the nearly-neutral theory of evolution. This theory posits that

a substantial fraction of mutations are deleterious or weakly deleterious, and as a re-

sult, predicts that the substitution rate (relative to the neutral expectation), called ω,

decreases along lineages with higher Ne (Ohta, 1972, 1992).

This prediction has been more quantitatively examined under the assumption that

the selective effects of mutations are drawn from a fixed distribution of fitness effects

(DFE) (Kimura, 1979; Welch et al., 2008). Assuming a gamma distribution for the DFE,

a key result obtained in this context is an approximate allometric scaling of ω as a function

of Ne (i.e. ω ∼ N−k
e ), where k is the shape parameter of the DFE. In practice, DFEs are

strongly leptokurtic, which thus predicts a weak negative relation between ω and Ne.

The study of protein-coding sequences evolution fostered another modelling approach,

based on genotype-fitness maps instead of distribution of fitness effects. In this alternative

approach, the selective effect of a mutation depends on the fitness of both the source

and the target amino acids involved in the mutation event (Halpern and Bruno, 1998;

Rodrigue et al., 2010; Tamuri and Goldstein, 2012). Even though this modelling approach

differs substantially from the one assuming a fixed DFE, it also predicts a negative

correlation between ω and Ne, at least when the process is at equilibrium (Spielman

and Wilke, 2015; Dos Reis, 2015).

Conversely, one striking theoretical result was the proof that ω is in fact predicted to

be independent of Ne under relatively general circumstances, namely, whenever (i) the fit-

ness is a log-concave function of a phenotype and (ii) the phenotype itself is equimutable.

Equimutability states that the distribution of phenotypic changes due to mutation is inde-

pendent of the current phenotype of individuals (Cherry, 1998). This general theoretical

argument has been invoked in the context of in silico experiments of protein sequence

evolution, assuming that proteins are under selection for their thermodynamic stability,

with fitness being proportional to the folding probability of the protein (Goldstein, 2013).
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Thermodynamic stability is itself computed using a 3D structural model of the protein.

These computational experiments have led to the observation that ω is essentially inde-

pendent of Ne. An explanation proposed for this result is that the distribution of changes

in free energy of folding (∆∆G) due to mutations is approximately independent of the

current free energy (∆G), thus making the free energy of folding essentially equimutable.

However, the equimutability assumption is a relatively strong one, which also con-

flicts with combinatorial considerations about the relation between sequence and pheno-

type (Serohijos et al., 2012). For example, if a protein sequence is already maximally

stable, only destabilizing (or neutral) mutations can occur. More generally, assuming

that the stability of a protein sequence reflects an underlying fraction of positions having

already accepted destabilizing amino acids, then the probability of destabilizing muta-

tional events is in turn expected to directly depend on the current stability of the protein.

Altogether, depending on the theoretical model mapping sequence to fitness, ω can

be either independent or negatively correlated to Ne, or even positively if considering

adaptive evolution and environmental changes (Lanfear et al., 2014).

Empirically, variation in ω between lineages has been inferred using phylogenetic

codon models applied to empirical sequences (Yang and Nielsen, 1998; Zhang and Nielsen,

2005). Confronting branch-specific ω estimates to life-history traits such as body mass

or generation time uncovered a positive correlation (Popadin et al., 2007; Nikolaev et al.,

2007). Subsequently, integrative inference methods combining molecular sequences and

life-history traits have also found that ω correlates positively with traits such as longevity

and body mass (Lartillot and Poujol, 2011; Figuet et al., 2017). Since lineages with a large

body size and extended longevity typically correspond to species with low Ne (Romiguier

et al., 2014), these empirical correlations suggest a negative correlation between ω and

Ne, thus confirming the theoretical prediction of the nearly-neutral theory of evolution.

However, the universality and robustness of the correlation between ω and life-history

traits is still debated. Results have not been entirely consistent across independent

studies. The correlation was found to be either not statistically significant (Lartillot and

Delsuc, 2012), or even in the opposite direction depending on the specific clade under

study or the potential biases taken into account (Lanfear et al., 2010a; Nabholz et al.,

2013; Lanfear et al., 2014; Figuet et al., 2016).

If empirical evidence for a negative correlation of ω with Ne is still not totally con-

vincing, another empirical correlation is known to be much more robust. Indeed, ex-

pression level or protein abundance is one of the best predictors of ω, with highly ex-

pressed proteins typically having lower ω values, a correlation clearly significant although

relatively weak (Duret and Mouchiroud, 2000; Rocha and Danchin, 2004; Drummond

et al., 2005; Zhang and Yang, 2015; Song et al., 2017). Theoretical models, also based

on protein stability, have been invoked to explain this negative correlation between ω

and expression level (Wilke and Drummond, 2006; Drummond and Wilke, 2008). Ac-

cording to this argument, selection against protein misfolding due to toxicity, which is

stronger for more abundant proteins, induces abundant proteins to evolve toward greater

stability, resulting in a more constrained and more slowly evolving protein coding se-
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quence (Serohijos et al., 2012).

The possibility that expression level and Ne might play similar roles in the evolution

of proteins has already been noticed. More precisely, under models of selection against

protein misfolding, the free energy of folding ∆G is predicted to vary similarly along

a gradient of either Ne or expression level (Serohijos et al., 2013). As a corollary, un-

der strict equimutability of ∆G, these computational models imply that ω should also

be independent of expression level (Serohijos et al., 2012), akin to what is predicted

with regards to changes in Ne.

Altogether, both theoretical results and empirical analyses are not yet conclusive

about the question of how ω depends on Ne and expression level. In particular, the

theoretical response of ω to changes in both Ne and expression level has not been quan-

tified and, most importantly, has not been related to the specific map between genotype,

phenotype and fitness. Such an analytical development would be useful to more deci-

sively confront the theoretical predictions relating ω to both Ne and expression level

to empirical data. Ultimately, relating proteins structural parameters to the response

of ω would help to bridge the gap between protein thermodynamics on one side and

comparative genomics on the other side.

Lastly, the theoretical results discussed so far are valid only at the mutation-selection-

drift balance. In a non-equilibrium regime, however, and at least under a model assuming

a site-independent genotype-fitness map, an increase in Ne first leads to an increase in ω

caused by adaptive substitutions, and subsequently a decrease in ω due to stronger puri-

fying selection in the long term (Jones et al., 2016). Studying only equilibrium properties

can thus be misleading. For this reason, the dynamic response of ω to changes in Ne must

also be addressed, quantified, and its connection with the underlying selective landscape

better characterized. Dynamic properties of ω to changes in Ne are of theoretical interest

but are also empirically relevant, such that, if overlooked they could thwart the relation

between theoretical expectations and empirical estimates.

In this context, the aim of the present study is to characterize the dynamics and equi-

librium response of ω to changes in Ne and expression level, and to relate this response

to structural parameters of the model. To this effect, we develop a general mathematical

approach to derive a quantitative approximation of the response of ω to changes in Ne

and expression level, in the context of a given genotype-phenotype-fitness map, as de-

picted in figure 9.1. In the light of previously published empirical estimates from protein

thermodynamics and comparative genomics, we discuss the articulation between empiri-

cal data and our mechanistic model. We also discuss some of the alternative biophysical

mechanisms that could determine the selective landscape on protein-coding sequences,

and how they would modulate the response of ω to changes in Ne and expression level.

9.2 Results
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9.2.1 Models of evolution

The results that are presented below are valid for a general category of models of sequence

evolution, based on an additive trait x, such that the coding positions of the sequence

contribute additively to the trait. The trait is under directional selection specified by

a decreasing and log-concave fitness function W (x). As a specific example, we more

specifically consider a model of protein evolution under the constraint of thermodynamic

stability, as depicted in the left panel of figure 9.1. This model is inspired from previous

work (Williams et al., 2006; Goldstein, 2011; Pollock et al., 2012), except that we make

several simplifying assumptions, allowing us to derive analytical equations.
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Figure 9.1: Outline of the theoretical results. The genotype to fitness relationship is
depicted in the left panel. The phenotype (x) is a real-valued function of the genotype
(i.e. the amino-acid sequence), and is defined in our model as the fraction of destabilizing
amino acids in the sequence. Fitness is a decreasing log-concave function of the pheno-
type, depending on structural parameters of the model. Once the relation from genotype
to fitness is defined, the substitution process proceeds as presented in the middle panel.
For a given effective population size Ne, the evolutionary process results in an average
value of the phenotype x∗ and an average substitution rate (relative to the neutral rate)
ω. Averaging over time is equivalent to determining the statistical equilibrium, by ergod-
icity of the stochastic process. The slope of the scaling of the equilibrium ω as a function
of log-Ne defines the susceptibility χ, which is a function of the structural parameters
defined by the phenotype-fitness map.

In the original biophysical model, protein stability is determined by the difference

in free energy between the folded and unfolded conformations, called ∆G and measured

in kcal/mol. Technically, free energy is computed based on the 3D conformation of the

protein and using statistical potentials. As a result, the stabilizing or destabilizing ef-

fect of an amino acid at a particular site depends on amino acids present in the vicinity

in 3D conformation, thus implementing what has been called specific epistasis (Starr

and Thornton, 2016).

Here, we approximate this model such that the (de-)stabilizing effect at a particular

site, such as measured by the ∆∆G of the mutation, does not depend on other neigh-

bouring residues, thus disregarding specific epistasis (Dasmeh et al., 2014). Instead, each

site contributes independently and additively to ∆G. In addition, we assume that, for
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each site of the sequence, only one amino acid is stabilizing the protein. All 19 other

amino acids are equally destabilizing. Each site bearing a destabilizing amino acid con-

tributes an excess of ∆∆G > 0 (in kcal/mol) to the total ∆G. The smallest achievable

value of ∆G, obtained when all amino acids of the sequence are stabilizing, is noted

∆Gmin < 0. In this model, the most succinct phenotype of a given genotype (i.e. se-

quence) is just the proportion of destabilizing amino acids in the sequence, defined as

0 ≤ x ≤ 1. Thus ∆G is a linear function of x:

∆G(x) = ∆Gmin + n∆∆Gx, (9.1)

where n is the number of sites in the sequence.

For a given ∆G, thermodynamic equations allow one to derive the proportion of

protein molecules that are in the native (folded) conformation in the cytoplasm. This

fraction is assumed to be a proxy for fitness, motivated in part by the fact that a protein

must be folded to perform its function. A slightly different model will be considered

below, in order to take into account protein expression level (see section 9.2.3).

Analytically, the fitness function is given by the Fermi Dirac distribution and is

typically close to 1, leading to a first-order approximation (Goldstein, 2011):

W (x) =
1

1 + eβ(∆Gmin+n∆∆Gx)
, (9.2)

⇒ W (x) ≃ 1 − eβ(∆Gmin+n∆∆Gx), (9.3)

⇒ f(x) = ln(W (x)) ≃ eβ(∆Gmin+n∆∆Gx), (9.4)

where W is the Wrightian fitness for a given phenotype and f is the Malthusian fitness

(or log-fitness). Here, ∆Gmin and ∆∆G are defined as above, and the parameter β is

1.686 mol/kcal at 25°C (or 298.2K).

Of note, even though the phenotypic effect of a mutation at a given site does not

depend on the amino-acids that are present at other sites (i.e. the trait is additive), the

fitness effect of a mutation still depends on other sites (i.e. the log-fitness is not additive).

As a result, the molecular evolutionary process is site-interdependent, a property referred

to as non-specific epistasis (Starr and Thornton, 2016; Dasmeh and Serohijos, 2018).

9.2.2 Response of ω to changes in Ne. Analytical approx-
imation

For a given effective population size Ne, the evolutionary process reaches an equilibrium

(figure 9.1, middle panel). This substitution rate at this equilibrium, normalized by

the substitution rate of neutral of mutations to discard the influence of the underlying

mutation rate, is denoted ω. This relative rate can also be interpreted as the mean fixation

probability of mutations scaled by the fixation probability of neutral alleles p = 1/2Ne,

the mean being weighted by the probability of occurrence of mutations in the population.

As a result, an ω < 1 indicates that mutations are negatively selected on average, and

ω decreases with increasing strength of purifying selection.
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In this section we present an analytical approximate solution for the response of ω

after a change in Ne (in log space), as depicted in the right panel of figure 9.1. We call

this response the susceptibility of ω to changes in Ne, and denote it as χ:

χ =
dω

d ln(Ne)
(9.5)

Deriving χ is done in two steps. First, we determine the mean phenotype at equilibrium,

when evolutionary forces of mutation, selection and genetic drift compensate each other.

Subsequently, differential calculus is used to compute the response of the equilibrium

phenotype to a change in Ne, which allows us to ultimately derive an equation for χ.

The main results of our derivation are given both in the general case of any (log-concave)

phenotype-fitness map, and in the specific case of the biophysical model introduced above.

A more detailed derivation is available in the supplementary materials.

For a given genotype, mutations can have various effects: they can increase or decrease

the proportion of destabilizing amino acids, or do nothing if the mutation is between two

destabilizing amino acids. To derive the probabilities of such events to occur, we also

make the simplifying assumption that all transitions between amino acids are equiprob-

able. Altogether, any mutation in the sequence can then have a phenotypic effect of 0

or δx = 1/n, with probabilities of transitions equal to:





δx with probability 1 − x,

0 with probability 18x
19 ,

−δx with probability x
19 .

(9.6)

In the extreme case of an optimal phenotype (x = 0), only destabilizing mutations are

proposed. Moreover, the probability to propose a stabilizing mutation (effect −δx), or a

neutral mutation (effect 0), is proportional to x. Conversely, the probability to propose a

destabilizing mutation is equal to (1 − x). As a result, the mutation bias is proportional

to (1 − x)/x. This mutation bias fundamentally reflects a combinatorial effect, due to

the number of mutational opportunities available in either direction.

Second, we need to determine the strength of selection acting on mutations. Desta-

bilizing mutations are selected against with a negative selection coefficient which can

be approximated by:

s ≃
1

n

∂f(x)

∂x
(9.7)

⇒ s ≃ −β∆∆Geβ(∆Gmin+n∆∆Gx), (9.8)

where f = ln(W ) is the log-fitness (or Malthusian fitness). Conversely, stabilizing mu-

tations will be under positive selection with opposite sign but same absolute value. It

is important to realize that the selective effect is dependent on x. Furthermore, because

the fitness function is log-concave, the absolute value of s increases with x.

Based on these expressions for the mutational and selective pressures, one can then

study the trajectory followed by the evolutionary process. Starting from an optimal se-

quence, mostly destabilizing mutations will occur, some of which may reach fixation and
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accumulate until selection coefficients against new deleterious mutations is too strong, at

which point the protein will reach a point of equilibrium called marginal stability (Tav-

erna and Goldstein, 2002; Bloom et al., 2007). Most importantly, the probability of

fixation of mutations is affected by genetic drift, and thus depends on the effective pop-

ulation size (Ne). At the equilibrium between mutation, selection and drift, the process

fluctuates through the occurrence of advantageous and deleterious substitutions com-

pensating each other. This equilibrium can be determined by expressing the constraint

that the selection coefficient of substitutions is expected to be null on average (Gold-

stein, 2013). Formally, and after simplification, the equilibrium phenotype denoted x∗

is given in the general case by:

ln

(
1 − x∗

x∗

)
+ ln(19) ≃ −

4Ne

n

∂f(x∗)

∂x∗
(9.9)

⇒ ln

(
1 − x∗

x∗

)
+ ln(19) ≃ 4Neβ∆∆Geβ(∆Gmin+n∆∆Gx∗), (9.10)

in the more specific case of the biophysical model. This equation essentially expresses the

mutation-selection equilibrium: the left-hand side of the equation is the log of the muta-

tion bias at x, while the right-hand side is simply 4Nes, the scaled selection coefficient.

This equation cannot be solved explicitly for x∗, but a qualitative intuition on the

consequences of change in Ne to the equilibrium phenotype x∗ is given in figure 9.2.

Intuitively, an increase in Ne results in a more optimal phenotype, closer to 0. The

mutation bias (left-hand side of equation 9.10) decreases with x while the strength of

selection (right-hand side of equation 9.10) increases with x, and the equilibrium pheno-

type is obtained at their intersection. An increase in Ne leads to shifting the selective

response upward, which then results in a leftward shift of the equilibrium phenotype

(i.e. closer to 0). The leftward shift is smaller for selective strengths characterized by a

steeper curve, resulting in qualitatively weaker susceptibility of the equilibrium phe-

notype to changes in Ne

The results obtained thus far only relate the equilibrium phenotype (x∗) to Ne. To

capture how ω varies with Ne, we also need to obtain an expression for ω as a function

of x∗. At equilibrium we can derive (supplementary materials) the expected substitution

rate of mutations, and thus ω, which simply approximates to:

ω ≃ x∗ (9.11)

This simple approximation is due to the fact that the substitutions between two desta-

bilizing amino acids (which are neutral) compose the largest proportion of proposed

mutations having a substantial probability of fixation (equation 9.6). In contrast, stabi-

lizing mutations are rare, while destabilizing mutations have a low probability of fixation.

Since there is a fraction x∗ of sites already occupied by a destabilizing amino-acid, these

neutral substitutions occur at rate x∗.

Combined together, these analytical approximations yield the susceptibility (equa-
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Figure 9.2: Response of the equilibrium phenotype after a change in Ne. The equi-
librium phenotype x∗ is obtained when the selective pressure equals to the mutational
pressure (equation 9.10). The selective pressure (right-hand side of eq. 9.10) increases
exponentially with x where βn∆∆G is the exponential growth rate (yellow and green
curves). When βn∆∆G is large, increasing Ne by an order of magnitude (yellow dotted
curves) very moderately impacts the equilibrium phenotype (small ∆x∗). In contrast, for
small βn∆∆G (green curves), the equilibrium phenotype is more strongly impacted by a
change in Ne (large ∆x∗). Finally, response of x∗ to changes in Ne reflects the response
of ω since both are approximately equal (equation 9.11).

tion 9.5) of ω to a change in Ne:

χ =
dω

d ln(Ne)
≃ −

∂f(x∗)
∂x∗

n
4Ne

∂ ln[(1−x∗)/x∗]
∂x∗ + ∂2f(x∗)

∂x∗2

. (9.12)

The two terms of the denominator correspond to the derivative of the mutational bias

and the scaled selection coefficient, respectively. However, the mutational bias decreases

weakly with x (blue curve on figure 9.2) while the strength of selection increases sharply

with x (red and green curves). As a consequence, the derivative of the mutational bias is

much lower than the derivative of the selection coefficient around the equilibrium point

(i.e. the phenotype is nearly equimutable). The first term can therefore be ignored, which

leads to a very compact equation for susceptibility χ in the general case:

χ ≃ −
∂f(x∗)

∂x∗

∂2f(x∗)
∂x∗2

(9.13)

The susceptibility is thus equal to the inverse of the relative curvature, i.e. the ratio of

the second to the first derivatives, of the log-fitness function, taken at the equilibrium

phenotype. Of note, this susceptibility is strictly negative for decreasing log-concave

fitness functions, asserting that ω is a decreasing function of Ne. In addition, the suscep-

tibility itself is low in absolute value (i.e. ω responds more weakly) for strongly concave

log-fitness functions. This equation quantitatively captures the intuition developed in

figure 9.2, namely that the response of ω is very weak if the selection curve is very steep

around the equilibrium set point (red curve compared to green curve).
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In the specific case of the biophysical model, the susceptibility (χ) further simplifies to:

χ ≃ −
1

βn∆∆G
, (9.14)

meaning that ω is linearly decreasing with Ne (in log scale) since χ is independent of x∗,

or, in other words, that the exact value of the equilibrium phenotype has no impact on

the slope. Moreover, only the compound parameter β∆∆Gn has an impact on the slope

of the linear relationship. Thus, in particular, the slope of the linear relationship between

ω and Ne is affected by ∆∆G but not by ∆Gmin. Of note, empirically, only relative values

of Ne (up to a multiplicative constant) are required to obtain an estimate of χ.

9.2.3 Response of ω to changes in protein expression level

Effective population size is not the sole predictor of ω, and expression level (or pro-

tein abundance) is also negatively correlated to ω. However, our previous model, which

assumes that fitness is proportional to the folded fraction, and is thus independent of

protein abundance, does not express the fact that selection is typically stronger for pro-

teins characterized by higher levels of expression. An alternative biophysical model is

to assume that each misfolded protein molecule has the same relative effect on fitness,

caused by its toxicity for the cell (Drummond et al., 2005; Wilke and Drummond, 2006;

Drummond and Wilke, 2008; Serohijos et al., 2012).

Our general derivation can be directly applied to this case. For a given protein with

expression level y and a cost A representing the selective cost per misfolded molecule

(positive constant), the fitness and selection coefficient can be defined as follows:

f(x) ≃ −Ayeβ(∆Gmin+n∆∆Gx) (9.15)

⇒ s ≃ −β∆∆GAyeβ(∆Gmin+∆∆Gnx). (9.16)

Under this model, the total selective cost of a destabilizing mutation is now directly

proportional to the total amount of misfolded proteins. This fitness function leads to the

following expression for the mutation-selection-drift equilibrium:

ln

(
1 − x∗

x∗

)
+ ln(19) = 4NeyAβ∆∆Gneβ(∆Gmin+∆∆Gnx∗). (9.17)

Importantly, in this equation, Ne and y are confounded factors appearing only as a

product. This means that increasing either Ne or y leads to same change in equilibrium

phenotype, and hence the same change in ω. In other words, the susceptibility of the

response to changes in either Ne or expression level is the same:

χ =
dω∗

d ln(Ne)
=

dω∗

d ln(y)
≃ −

1

βn∆∆G
. (9.18)

A similar result can be obtained under other models relating phenotype to fitness,

for example if the selective cost is due to translational errors (supplementary materials).

Alternatively if the protein is assumed to be regulated such as to reach a specific level

of functional protein abundance under a general cost-benefit argument (Cherry, 2010;
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Gout et al., 2010), a multiplicative factor depending solely on the expression level is

prefixed (supplementary materials). Altogether, we theoretically obtain the same linear

decrease of ω with regards to either effective population size or expression level (in log

space) under a broad variety of hypotheses.

9.2.4 Simulation experiments
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Figure 9.3: Scaling of equilibrium ω as a function of log-Ne, under the additive phe-
notype model using Grantham distances (A,B,D) or the explicit biophysical model using
a statistical potential (C), with n = 300 and β = 1.686. 200 replicates per Ne value are
shown (dots). Solid lines are average over replicates, and shaded areas are 90% confi-
dence interval. The slope (or susceptibility (χ̂), is estimated by linear regression (dashed
lines). (A): ∆Gmin are given in the legend, and ∆∆G = 1. Decreasing ∆Gmin (to more
negative values) increases ω but does not impact the slope. (B): ∆∆G is increased and
∆Gmin is changed accordingly such that the equilibrium value x∗ is kept constant, by
solving numerically equation 9.10. The estimated susceptibility (χ̂) decreases proportion-
ally to the inverse of ∆∆G, as predicted by our theoretical model. (C): Stability of the
folded native state is computed using 3D structural conformations and pairwise contact
potentials. (D): Additive model with ∆Gmin = −118 kcal/mol and ∆∆G = 1 kcal/mol
matches structural model shown in C (although with less variance).

Our theoretical derivation of the susceptibility of ω to changes in Ne (and expres-

sion level) is based on several simplifying assumptions about the evolutionary model

and makes multiple approximations. In order to test the robustness of our main result,

we therefore conducted systematic simulation experiments, relaxing several of these as-

sumptions. In each case, simulations were conducted under a broad range of values of

Ne, monitoring the average ω observed at equilibrium and plotting the scaling of these

measured equilibrium ω as a function of Ne.

Specifically, with respect to mutations, our derivation assumes that all amino-acid
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transitions are equiprobable, or in other words, the complexity of the genetic code is

not taken into account. Simulating evolution of DNA sequence and invoking a matrix of

mutation rates between nucleotide allows us to test the robustness of our results to this

assumption. Furthermore, with regard to the phenotypic effects of amino-acid changes,

in our derivation, we assumed that all destabilizing amino acids have an identical impact

on protein stability. In reality, one would expect conservative amino-acid replacements to

be less destabilizing than radical changes. This assumption is relaxed in our simulation,

such that destabilizing mutations in each position are now proportional to the Grantham

distance (Grantham, 1974) between the optimal amino acid in this position and the

amino acid proposed by the non-synonymous mutation. Finally, our derivation assumes

that the number of sites in the sequence (n) is large, such that the selection coefficient

is well approximated by the fitness derivative (equation 9.7). The robustness of this

approximation was tested by conducting simulations with finite sequences of realistic

length (n = 300 coding positions).

These simulation experiments demonstrate, first, that the relation between ω and log-

Ne is indeed linear, at least in the range explored here, and that the slope of the linear

regression matches the expected theoretical value (figure 9.3A). Secondly, we observe

that the parameter ∆Gmin has virtually no effect on the slope of the linear regression, as

also expected theoretically (figure 9.3B). Instead, decreasing ∆Gmin (to more negative

values) merely results in an overall increase in ω over the whole range of Ne (i.e. has an

impact on the intercept, not on the slope of the relation). This is due to the fact that

decreasing ∆Gmin shifts the equilibrium to higher x∗, since more destabilizing sites can

then reach fixation before reaching the point of marginal stability.

Finally, we relaxed our assumption that each site of the sequence contributes indepen-

dently to ∆G, by taking into account the 3D structure of protein and using a statistical

potential to estimate ∆G (supplementary materials). We implemented the original model

considered in Williams et al. (2006), Goldstein (2011) and Pollock et al. (2012), in which

the free energy is computed based on the 3D conformation using pairwise contact poten-

tial energies between neighbouring amino-acid residues (Miyazawa and Jernigan, 1985).

The original works showed that under this model, ω is approximately independent of

Ne (Goldstein, 2013). Using extensive simulations in order to obtain sufficient resolu-

tion, we observe that ω is in fact weakly dependent on Ne, being again approximately

linear with log-Ne (figure 9.3C). Moreover, the observed slope (χ̂ = −0.00117) matches

the slope obtained under the model of additive ∆G (χ̂ = −0.00125, figure 9.3D), con-

sidering an empirical ∆∆G = 1.0 kcal/mol for destabilizing mutations and n = 300. In

this experiment (figure 9.3D), ∆Gmin was set to −118 kcal/mol, which is the ∆G of the

optimal (maximally stable) sequence of 300 sites (Goldstein, 2011).

9.2.5 Time to relaxation

Although the equilibrium value of ω after changes in Ne is an important feature of

the ω-Ne relationship, another characteristic that is scarcely studied is the dynamic as-

131



9.2. Results

ω

t (in 100 million years)
0 1 2 3 4 5 6 7

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5 6 7
0.30

0.35

0.40

0.45

0.50

0.55

0.60

t (in 100 million years)

ω

Fixed distribution of fitness effects
Site-specific fitness profiles

N
e
=105 N

e
=105N

e
=2.106 N

e
=105 N

e
=105N

e
=2.106

A B

Figure 9.4: Relaxation of ω after a change in Ne Solid line corresponds to the average
over 1000 replicates and the shaded area corresponds to the 90% interval among replicates.
The mutation rate (µ) is 1e−8 per year per site, and the total evolutionary period is 700
million years. (A): β = 1.686 for all simulations. The DNA sequence of 500 sites is
divided into exons of equal size. However the number of sites per exon changes between
simulations from n = 5 to n = 500. Moreover, ∆∆G is changed according to the exon
size such that n∆∆G (and as a result, the susceptibility) are kept constant, and ∆Gmin

is changed accordingly such that the equilibrium value x∗ is kept constant, by solving
numerically equation 9.10. Thus, regardless of exon size, x∗ and χ are kept constant
and thus the observed effect is due to the number of sites in the exon. We observe
that increasing the number of sites leads to a reduced time to reach the new equilibrium.
(B): In the context of a time-independent fitness landscape (yellow curve), where each
amino acid has different fitness (site-specific profiles), the time taken to reach the new
equilibrium value of ω after a change in Ne is long. In the context of a fixed distribution
of fitness effects (blue curve), the relaxation time is non-existent and the new equilibrium
value of ω is reached instantaneously.

pect (Jones et al., 2016), particularly the relaxation time to reach the new equilibrium

ω. We observed in our simulations that the determining factor of the relaxation time

is the number of sites n (figure 9.4A), such that the return to equilibrium is faster

for longer sequences. This observation matches the theoretical prediction that more

mutational opportunities are available for longer sequences, driving the trait close to

equilibrium at a faster rate.

It may be useful to compare the relaxation pattern observed here with the predictions

under two alternative models of sequence evolution, representing two extreme scenarios.

On one hand, having fitness modelled at the level of sites, such as contemplated by many

phylogenetic mutation-selection models (Halpern and Bruno, 1998; Rodrigue et al., 2010;

Tamuri and Goldstein, 2012), leads to a situation where every site has to adapt on its

own to the new change in Ne. The relaxation time is then very long, on the order of the

inverse of the per-site substitution rate. On the other hand, assuming a fixed distribution

of fitness effect (DFE) as in Welch et al. (2008), the response of ω is instantaneous

(figure 9.4B). Our model is effectively in between these two extreme scenarios.

Another characteristic observed in these non-equilibrium experiments is the discon-

tinuity of ω after a change in Ne. Most importantly, both an increase and decrease in

Ne lead to a discontinuity (figure 9.4A & 9.4B). These non-equilibrium behaviors can

both be explained mechanistically. Under low Ne, the phenotype is far away from the
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optimal phenotype because the efficacy of selection is weaker. A sudden increase in Ne

results first in a short traction toward a more optimal phenotype, which results in a

suddenly higher ω, caused by a transient adaptation of the protein toward a higher sta-

bility. Conversely, under high Ne the phenotype is closer to optimal and the purification

of deleterious mutations is stronger. The reaction to a decrease in Ne is a relaxation

of the purification and thus an ω closer to the neutral case, which results into higher

ω until reaching the point of marginal stability. To note, an increase in Ne can theo-

retically and possibly lead to an ω that is temporarily greater than 1 due to adaptive

evolution (Jones et al., 2016), while a decrease in Ne always imply an ω < 1, as it gives

at most a neutral regime of relaxed selection.

9.3 Discussion

We provide a compact analytical result for the equilibrium response (which, by analogy

with thermodynamics, we call the susceptibility) of ω to changes in Ne, and we relate this

response to the parameterization of the genotype-phenotype-fitness map. An application

to a model of selection against protein misfolding shows that the response of ω to vari-

ation in Ne (in log space) is linear, with a negative slope. Furthermore, this application

demonstrates that effective population size and protein expression level are interchange-

able with respect to their impact on the response of ω. Our compact theoretical results,

which were obtained by making several simplifying assumptions, are supported by more

complex simulations of protein evolution relaxing these assumptions. In particular, our

theoretical predictions are verified under a numerical model of protein evolution in which

the free energy is computed based on the 3D structure.

Overall, the susceptibility (χ) is a function of the structural parameters of the protein

and takes a very simple analytical form, being inversely proportional to the product of

three terms: the sequence size, the inverse temperature (β), and the average change in

conformational energy of destabilizing mutations (∆∆G). Quantitatively, this product

can be several orders of magnitude greater than 1 in practice, such that the susceptibility

of ω, which is its inverse, is typically small. Previous studies using this model presented

an apparent lack of response of ω to changes in Ne (Goldstein, 2013). We refine this result,

by observing that there is in fact a very subtle and weak relation, which requires extensive

computation to be detected, but which is well predicted by our theoretical derivation.

Based on empirical estimates of the structural parameters β = 1.686, n = 300 sites and

∆∆G = 1.0 kcal/mol for destabilizing mutations (Zeldovich et al., 2007), the estimated

susceptibility is χ̂ ≃ −0.002. In other words, for a relative increase in Ne or expression

level of 6 orders of magnitude, a factor approximately equal to 0.01 is subtracted from

ω, a subtle relationship that requires laborious effort to be detected in simulated data.
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9.3.1 Adequacy to empirical data

Empirically, variation in ω along the branches of phylogenetic trees has been inferred

and correlated to proxies of Ne, such as body size or other life-history traits. These

analyses showed mitigated support for a negative relation between ω and Ne (Lanfear

et al., 2014). More recently, phylogenetic integrative methods refined the estimate of co-

variation between ω and Ne along lineages by leveraging polymorphism data (Brevet and

Lartillot, 2019). This approach gives an estimate of χ̂ ≃ 0.02 in primates (supplemen-

tary materials) at least one order of magnitude greater than the quantitative estimate

obtained above from the biophysical model. More empirical data across different clades

would be required to robustly consolidate such empirical estimates, but as of yet, these

results are challenging the idea of a very weak response.

The relation between ω and expression level provides an independent, and potentially

more robust, source of empirical observation. Our theoretical results suggest that, under

relatively general conditions, the response of ω to expression level should be of the same

magnitude than the response to Ne. Empirically, the protein expression level is one of

the best predictors of ω and the empirical estimation of χ in fungi, archaea and bacteria

varies in the range [−0.046; −0.021] (supplementary materials) extracted from Zhang and

Yang (2015). Estimation in animals and plants gives somewhat lower estimates, in the

range of [−0.026; −0.004], although still higher (in absolute value) than −0.002.

Additionally, another empirical observation is the negative relation between the mean

destabilizing effect of mutations (mean ∆∆G) and the ∆G of the protein. Such a relation

is empirically observed in Serohijos et al. (2012), where the slope of the linear regression

is −0.13 (r2 = 0.04). The slope of the linear correlation observed in our simulations is

weaker, with an observed slope of −0.01 (r2 = 0.29) under the 3D biophysical model, and

−0.003 (r2 = 0.33) under the model of additive phenotype parameterized by ∆∆G = 1

and n = 300 (supplementary materials). This observation also sheds light on the corre-

lation between ω and Ne in empirical data and in our model. Indeed, equimutability, or

namely that the distribution of ∆∆G of mutations is independent of ∆G is a necessary

condition to observe independence between ω and Ne (Cherry, 1998). In our model, the

average ∆∆G of mutations at equilibrium depends on ∆G due to combinatorial consider-

ations, but this dependence is weaker than empirically observed, which also translates into

a weaker susceptibility of ω to changes in Ne or expression level than empirically observed.

Thus, overall, the response of ω to either Ne or expression level predicted by the bio-

physical model considered above seems lower than what is empirically observed. There

are several possible explanations for this discrepancy. First, the biophysical model might

be valid, but the numerical estimates used for n or ∆∆G could be inadequate. A ∆∆G of

1.0 kcal/mol for destabilizing mutations seems to correspond to empirical estimates (Zel-

dovich et al., 2007). On the other hand, the effective number of positions implicated in

the trait might be smaller than the total number of residues in the protein. In our model,

all positions in the protein can in principle compensate for the destabilizing effect of a mu-

tation at a particular position. In practice, the number of sites susceptible to compensate
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each other is probably smaller, resulting in a stronger departure from equimutability.

Alternatively, the biophysical model considered here might be too restrictive. Recent

empirical studies have provided evidence against the hypothesis that the rate of sequence

evolution is driven solely by the toxicity effect of unfolded proteins (Plata and Vitkup,

2017; Razban, 2019; Biesiadecka et al., 2020). Notably, the response of ω to changes in

expression level has also been found theoretically to arise as a consequence of protein-

protein interactions, where protein may either be in free form or engaged in non-specific

interactions (Yang et al., 2012; Zhang et al., 2013). In non-specific interactions at the

protein surface, stabilizing amino acids are hydrophilic and destabilizing amino acids are

hydrophobic, sticking to hydrophobic residues at the surface of other proteins (Dixit and

Maslov, 2013; Manhart and Morozov, 2015a).

Our theoretical results can be applied more broadly to protein-protein interactions

using a mean-field argument (supplementary materials). Fitting this model with empir-

ical structural estimates (Janin, 1995; Zhang et al., 2008), we obtain a susceptibility of

χ ≃ −0.2 thus a much stronger response than under the model based on conformational

stability. This much stronger response is due to fewer sites in the protein being involved

in protein-protein interaction than for conformational stability, in addition to a lower

free energy engaged in contact between residues.

Altogether, fitness based on protein stability is a compelling model of molecular

evolution, but may not be a sufficiently comprehensive model to explain the amplitude

of variation of ω empirically observed along a gradient of either effective population size

or protein expression level. The net response of ω to changes in Ne or expression level

could have several biophysical causes, which in the end would imply a weak but still

empirically measurable response.

9.3.2 The statistical mechanics of molecular evolution

This study describes the signature imprinted on DNA sequences by an evolutionary pro-

cess by merging equations from population genetics and from structural physicochemical

first principles. More generally, it outlines a general approach for deriving quantitative

predictions about the observable macroscopic properties of the molecular evolutionary

process based on an underlying microscopic model of the detailed relation between se-

quence, phenotype and fitness. In this respect, it borrows from statistical mechanics, at-

tempting approximations to derive analytically tractable results (Sella and Hirsh, 2005;

Mustonen and Lässig, 2009; Bastolla et al., 2012, 2017) The robustness of results can

be assessed by computational implementations and simulations. Computational models

offer a means to test the validity and robustness, while mathematical models offer an

intuitive mechanistic mental analogy.

Ultimately, the approach could be generalized to other aspects of the evolutionary

process. Beyond ω, other macroscopic observables could be of interest, for example site

entropy, i.e. the effective number of observed amino acids per site at equilibrium (Gold-

stein and Pollock, 2016; Jimenez et al., 2018; Jiang et al., 2018), or the nucleotide or
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amino-acid composition. In addition to Ne, other evolutionary forces could also be con-

sidered, for instance the mutational bias or GC-biased gene conversion. The susceptibility

of the macroscopic observables to changes in the strength of these underlying forces could

then more generally be investigated. As such, the framework outlined here could foster

a better understanding of observable signatures of the long-term evolutionary process

emerging from ecological parameters and molecular physico-chemical first principles, by

carefully teasing out the combined effects of mutation, selection and drift.

9.4 Materials & Methods

Protein sequence evolution is simulated under an origin-fixation model (McCandlish and

Stoltzfus, 2014), i.e. the whole population is considered monomorphic and only the

succession of fixation events is modeled. Given the currently fixed sequence S, we define

M (S) as the set of all possible mutant that are one nucleotide away from S. Non-sense

mutants are not considered. For a protein of n amino-acid sites, |M (S)| ≤ 9n, since

each codon has a maximum of 9 possible nearest neighbors that are not stop codons.

For each mutant sequence S′ ∈ M (S), we compute its fitness and subsequently the

selection coefficient of the mutant:

s
(
S,S′) =

W (S′) −W (S)

W (S)
, (9.19)

⇒ s
(
S,S′) ≃ f

(
S

′)− f
(
S

′) , (9.20)

where W is the Wrightian fitness for a given phenotype and f is the Malthusian fit-

ness (or log-fitness).

The waiting time before the next mutant invading the population, and the specific

mutation involved in this event, are chosen using Gillespie’s algorithm (Gillespie, 1977),

according to the rates of substitution between S and each S′ ∈ M (S), which are given by:

QS,S′ = µS,S′

4Nes (S,S′)

1 − e−4Nes(S,S′)
, (9.21)

where µS,S′ is the mutation rate between S and S′, determined by the underlying 4x4 nu-

cleotide mutation rate matrix, and QS,S′ = µS,S′ in the case of synonymous substitutions.

Various optimizations are implemented to reduce the computation time of mutant fitness.

The simulation starts with a burn-in period to reach mutation-selection-drift equilibrium.

9.4.1 Models of the fitness function

Under the additive model for the free energy, the difference in free energy between folded

and unfolded state is assumed to be given by:

∆G (S) = ∆Gmin + n∆∆G ∗ x (S) ,

where 0 ≤ x (S) ≤ 1 is the distance of S to the optimal sequence (i.e. the fraction of

sites occupied by a destabilizing amino-acid). For each site of the sequence, the optimal
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amino acids are chosen randomly at initialization, and the distance between the current

amino acid and the optimal is scaled by the Grantham amino-acid distance (Grantham,

1974). The Wrightian fitness is defined as the probability of our protein to be in the

folded state, given by the Fermi-Dirac distribution:

W (S) =
e−β∆G(S)

1 + e−β∆G(S)
=

1

1 + eβ∆G(S)
, (9.22)

where β is the inverse of the temperature (β = 1/kT ).

For simulations under a 3D model of protein conformations, we adapted the model de-

veloped in Goldstein and Pollock (2017) to our C++ simulator (see supplementary mate-

rials).

For simulations under a site-independent fitness landscape, with site-specific fitness

profiles, the protein log-fitness is computed as the sum of amino-acid log-fitness coeffi-

cients along the sequence. In this model, each codon site i has its own fitness profile,

denoted φ(i) = {φ
(i)
a , 1 ≤ a ≤ 20}, a vector of 20 amino-acid scaled (Wrightian) fitness

coefficients. Since S[i] is the codon at site i, the encoded amino acid is A (S[i]), hence

the fitness at site i is φ
(i)
A(S[i]). Altogether, the selection coefficient of the mutant S′ is:

s
(
S,S′) =

n∑

i=1

ln


φ

(i)
A(S′[i])

φ
(i)
A(S[i])


 , (9.23)

The fitness vectors φ(i) used in this study are extracted from Bloom (2017). They were

experimentally determined by deep mutational scanning.

For simulations assuming a fixed distribution of fitness effects (DFE), the selection

coefficient of the mutant S′ is gamma distributed (shape k > 0):

− s
(
S,S′) ∼ Gamma

(
¯|s|, k

)
(9.24)

9.4.2 Computing ω along the simulation

From the set of mutants M (S) that are one nucleotide away from S, we define the subsets

N (S) of non-synonymous and synonymous mutants (N (S) ⊆ M (S)). The ratio of non-

synonymous over synonymous substitution rates, given the sequence S at time t is defined

as (Spielman and Wilke, 2015; Dos Reis, 2015; Jones et al., 2016):

ω(t) =

∑
S′∈N (S)

µS,S′

4Nes (S,S′)

1 − e−4Ne(S,S′)

∑
S′∈N (S)

µS,S′

(9.25)

Averaged over all branches of the tree, the average ω is:

ω = 〈ω(t)〉 , (9.26)

=

∫

t
ω(t)dt, (9.27)

where the integral is taken over all branches of the tree, while the integrand ω(t) is a

piece-wise function changing after every point substitution event.
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9.5 Reproducibility - Supplementary Materials

The mathematical developments under the general case of an arbitrary additive trait and

an arbitrary log-concave fitness function, and the derived susceptibility under various

fitness functions, as well as supplementary figures, are available in appendix, chapter 12.

The scripts and instructions necessary to reproduce this study are available at https:

//github.com/ThibaultLatrille/GenotypePhenotypeFitness.

9.6 Author contributions

TL gathered and formatted the data, developed the new models in SimuEvol and con-

ducted all analyses, in the context of a PhD work (Ecole Normale Superieure de Lyon).

TL and NL both contributed to the writing of the manuscript.

9.7 Acknowledgements

We wish to thank Julien Joseph for whiteboard mathematical sessions. We gratefully

acknowledge the help of Nicolas Rodrigue and Laurent Duret for their input on this work

and their comments on the manuscript. This work was performed using the computing

facilities of the CC LBBE/PRABI.

138

https://github.com/ThibaultLatrille/GenotypePhenotypeFitness
https://github.com/ThibaultLatrille/GenotypePhenotypeFitness


Part III

Conclusion

139



10
Discussion & perspectives

Contents

10.1 Summary of main results . . . . . . . . . . . . . . . . . . 141

10.2 Site interdependence and epistasis . . . . . . . . . . . . 142

10.3 Adaptive landscape and positive selection . . . . . . . . 143

10.3.1 Mechanistic mutation-selection models under fitness seascapes 143

10.3.2 Hybrid mechanistic and phenomenological mutation-selection
models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

10.3.3 Detecting adaptation with polymorphism . . . . . . . . . 145

10.3.4 Confronting methods for detecting adaptation . . . . . . 145

10.4 Unifying phylogenetic and population-genetics models 146

10.5 Mechanistic and phenomenological models . . . . . . . 148

10.6 Reproducible science . . . . . . . . . . . . . . . . . . . . . 150

10.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . 152

As a legacy of the nearly-neutral theory, the evolution of molecular sequences is

seen as a stochastic process. One component of this process is creating diversity through

mutation, while an antagonistic component is filtering out this diversity through selection,

and finally the balance between these components is arbitrated by drift. In the long

term, this stochastic process results in a history of substitution events along species

trees, inducing complex patterns of molecular divergence between species. By analysing

them, phylogenetic codon models aim at capturing the intrinsic parameters of evolution.

The focus of this thesis has been the development of new phylogenetic codon models

and the modelling of the interplay between mutation, selection and drift in the evolu-

tionary processes followed by protein-coding DNA sequences. In this conclusive chapter,

I first recall the main results of this thesis in section 10.1. Subsequently, I attempt to

discuss the limitations of my work. One main limitation concerns the problem of mod-

elling site interdependence, which is discussed in section 10.2. Secondly, in section 10.3, I

draw upon some important connections between the mechanistic models developed here

and the problem of detecting adaptive evolutionary regimes. As a perspective, I discuss

how phylogenetic mechanistic models could be unified with population genetics in sec-
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tion 10.5, and the inference methodology that would be adapted to such an endeavour

in section 10.5. Finally, before some concluding remarks, I discuss the question and the

issue of reproducible sciences in evolutionary biology in section 10.6.

10.1 Summary of main results

In chapter 7, I developed a phenomenological codon model in which ω is seen not as a sin-

gle parameter but as a tensor (95 free parameters). This sensor captures the small differ-

ences in fixation rate (or ω) in different directions, which gives an accurate representation

of how mutation and selection oppose each other at equilibrium. This parameterization

is the simplest one, in a phenomenological context, capable of correctly teasing apart mu-

tation and selection. Thanks to this, this modelling approach yields a reliable estimate of

the mutational process, while disentangling fixation probabilities in different directions.

In chapter 8, I developed an extended mechanistic mutation-selection model recon-

structing site-specific fitness landscapes, long-term trends in effective population size and

in the mutation rate along the phylogeny, from an alignment of DNA coding sequences.

Simultaneously, the approach estimates the correlation between life-history traits, muta-

tion rate and effective population size, intrinsically accounting for phylogenetic inertia.

Our framework was tested against simulated data and then applied to empirical data in

mammals, isopods, primates and Drosophila. Simulated and empirical evidence suggest

that there is a persistent signal in substitution patterns that relates to the past history

of Ne, whose trends correspond to the expected direction of correlation with life-history

traits or ecological variables. However, the magnitude of inferred variation in Ne across

the phylogeny is narrower than expected, which is probably a bias of the approach caused

by the assumptions made on the structure of the fitness landscape.

As a way to further investigate this last question, the third manuscript in chapter 9

revisits the question of how the exact structure of the fitness landscape determines the

quantitative response of the molecular evolutionary process, and in particular of dN/dS ,

to changes in Ne and in protein expression levels. Specifically, I derive a theoretical

approximation for the quantitative response of dN/dS to changes in both Ne and ex-

pression level, under an explicit genotype-phenotype-fitness map. The development is

generally valid for an additive trait under a log-concave fitness function, but was applied

more specifically to a biophysical model in which proteins are under directional selec-

tion for maximizing their conformational stability. In this specific case, I predict a weak

response of dN/dS to changes in either Ne or expression level (which are interchange-

able), a result corroborated by simulations under more complex models. Based on this,

I propose that fitness based on conformational stability might not provide a sufficient

mechanism to explain the amplitude of the variation in the mean fixation probability

which is observed empirically. Other aspects of protein biophysics could be explored

such as protein-protein interactions, which could lead to a stronger response of the mean

fixation probability to changes in Ne.

More globally, there is a remaining gap between quantitative predictions of biophys-
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ical models and empirical observations relating the response of protein coding sequence

evolution to changes in Ne and expression level.

10.2 Site interdependence and epistasis

One of the blind spots of the mechanistic codon model developed in chapter 8, and more

generally of current mechanistic models of the Halpern-Bruno family (see section 3.3.1),

is the assumption of site independence. This assumption is convenient, both computa-

tionally and statistically. Computationally, each site can be considered as an independent

Markov process (see sections 2.2.1 and 4.1). Statistically, one can rely on mixture models

to estimate site-specific amino-acid fitness profiles (see section 3.3.2) In contrast, from

a modelling and inference perspective, accounting for epistasis is challenging both in

terms of parametrization and in terms of computational complexity (see section 5.3.2)

This complexity is the main reason why epistasis is generally ignored in phylogenetic

models, and more particularly in codon models. Empirically, however, evolutionary bi-

ologists have many reasons to believe that this hypothesis of site independence is not

adequate, especially given our knowledge about protein biophysics (see section 5.1.3).

This approximation is therefore problematic, and raises multiple questions. What are

the consequences of ignoring epistasis in the context of phylogenetic inference? Practi-

cally, how could we ultimately account for epistasis in the context of inference?

Previous studies have argued that models of molecular evolution should consider the

importance of epistasis for its different roles: from its importance in speciation, in mod-

ulating the rate of adaptation, in interlocking between sites (Stokes shift), its downward

impact on the dN/dS predicted by the mutation-selection models, and many other factors

Goldstein and Pollock (2017); Miller et al. (2018). Based on our analysis presented in

chapter 9, we argue that epistasis also has an important role in the response of dN/dS

to changes in Ne, both in terms of its susceptibility and dynamics of the response. This

is a conceptual point that, to my knowledge, had never been really identified until now.

More precisely, one key result of chapter 9 is that any model without (or ignoring)

epistasis implies slow dynamics and a strong sensitivity of the mean fixation probability

to changes in Ne. Intuitively, a model without epistasis exhibits a slow return to equilib-

rium upon a change in Ne due to the waiting time until the next substitution. Indeed,

the evolutionary process is mainly mutation limited (see section 1.4.5) In addition, the

mutation rate per site is very low, from 10−8 to 10−9 in mammals. As a result, for each

site, the expected waiting time until the next mutation is between 100 to 1000 million

years. As for the strong sensitivity of the mean fixation probability to changes in Ne, it

originates in the fact that after a change in Ne, each site of the sequence has to adapt

independently, and change its position in the fitness landscape.

In contrast, in the presence of epistasis, the burden of adapting to changes in Ne is

shared by more sites, such that not all of them (and possibly, very few of them) have to

switch their position in the fitness landscape, in order for the trait to return to equilibrium

under the new Ne. As a result, adding epistasis to the model implies faster dynamics
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and a weaker response of the mean fixation probability to changes in Ne.

These observations have several implications for empirical analyses. First, if epistasis

implies a weak response of the dN/dS to changes in Ne, such as observed in chapter 9,

for similar reasons, it may also explain the low magnitude of Ne variation estimated with

site-specific mechanistic codon models in chapter 8. Empirically, it appears that the

susceptibility of dN/dS to changes in Ne is between these two extremes, namely that of

site-specific fitness landscapes, and the other extreme of a single univariate phenotype

controlled by all sites. More probably, the ternary relation from sequence to phenotype to

fitness implies several sites, but not all sites of the sequences, in a given phenotypic trait.

Second, the very long relaxation time implied by site-specific models are of the order

of the depth of phylogeny (100 to 1000 My). As such, in the absence of epistasis, we

should not even see dN/dS correlations with either LHTs or Ne because of it. Conversely,

the fact that we see it is in itself an important indication of the presence of epistasis.

Ultimately, accounting for epistasis in mechanistic models of evolution is necessary

but challenging from a computational and statistical perspective. Paths for statistical

methods that can account for it are developed in section 10.5.

10.3 Adaptive landscape and positive selection

Another blind spot the mechanistic phylogenetic codon model is the absence of adaptive

evolution (see section 1.4.4). Indeed, the mutation-selection equilibrium is essentially

a nearly-neutral regime. As a result, at mutation-selection equilibrium, the sequence is

close to the fitness optimum and therefore, most mutations are deleterious or compensate

for previous deleterious mutations that reached fixation. Adaptation, on the other hand,

can be seen as a process where the underlying fitness landscape is not fixed (i.e. time-

independent) but is instead dynamic (i.e. time-dependent). In other words, it is not so

much a fitness landscape than fitness seascapes (Mustonen and Lässig, 2009). Under

a fitness seascape, the sequence is constantly running after a moving target, and as a

result, there is net flux of adaptive substitutions (see section 3.4.3).

10.3.1 Mechanistic mutation-selection models under fitness
seascapes

In the context of a mutation-selection framework, explicitly modelling adaptation in

terms of fitness seascapes fluctuating along the phylogeny appears to be challenging. A

first direction is to consider that adaptation consists in changes in the site-specific fitness

profiles along some lineages. These changes can either be informed by experimental

mutational scanning (Bloom, 2017), or estimated using a priori knowledge of phenotypic

changes or ecological shifts (Tamuri et al., 2009; Parto and Lartillot, 2017, 2018). Without

knowledge of the drivers of adaptation, modulations of the fitness profiles through time

could also be implemented as a Markov modulated process along the phylogeny. However,

such an endeavour would be statistically and computationally challenging and might
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require to first rethink the entire statistical approach (see section 10.5).

10.3.2 Hybrid mechanistic and phenomenological mutation-
selection models

As an alternative to explicit models of adaptation through fitness seascapes, the current

nearly-neutral mutation-selection framework can be leveraged as a null model. Devia-

tion from this null model can be seen as a signal of adaptation (see section 3.4.3). In

particular, if the sequences are under recurrent positive selection, the mean fixation prob-

ability (ν) of non-synonymous mutations will tend to be higher than predicted by the

purely nearly-neutral model. This discrepancy between the mean fixation probability

and the nearly-neutral expectation can be captured by a deviation parameter ω∗, as in

Rodrigue and Lartillot (2016).

Thus far, however, this idea has been implemented only at the gene level (i.e. invoking

a single ω∗ for the whole gene). Yet, adaptation often occurs more locally, in specific

domains of the protein. Accordingly, this gene-wide deviation parameter ω∗ could be

refined at the site-level. In this direction, in a work led by Nicolas Rodrigue, we devel-

oped a method to detect site-specific adaptation as a deviation from a null nearly-neutral

model of evolution. This method has been developed in the generic programming envi-

ronment provided by BayesCode (see section 4.2.7), and the manuscript accepted in the

journal Molecular Biology & Evolution is available in the Appendix (page 217). These

methods are relatively new, and must still be validated, more broadly applied to empir-

ical data, and their predictions more extensively compared with those obtained from

with classical codon models.

However, in its current form, phylogenetic models seeking adaptation as a deviation

from near-neutrality assume a constant Ne across the tree. As already discussed, this

assumption is of course not reasonable. A simple solution to this problem would be to

add a deviation parameter ω∗ in the mechanistic model developed in chapter 8. The

resulting model would potentially be more effective at detecting positive selection.

Interestingly, ω∗ could also be allowed to vary across branches, like Ne. This could

have useful applications. For instance, bats are known to be reservoirs of pathogens.

Recent results suggest they have a more efficient immune system (Baker et al., 2013;

Pavlovich et al., 2018), such that proteins involved in host-pathogen interactions are un-

der positive selection (Hawkins et al., 2019; Vandewege et al., 2020). But also, bats have

large population sizes, compared to other mammals, and thus more efficient purifying

selection. These two factors have opposing effects on dN/dS , and teasing them out might

therefore be difficult using classical codon models. In contrast, the mutation-selection

model with both Ne and ω∗ varying across lineages could offer a way to estimate them

separately, which would allow to address the problems mentioned above. In particular,

this would allow us to answer if bats, compared to other mammals, have both stronger pu-

rifying selection (lower dN/dS) due to large Ne and stronger positive selection (larger ω∗).
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10.3.3 Detecting adaptation with polymorphism

Phylogenetic codon models are only one of the methods currently available to detect

adaptation. There are other approaches that are widely used in population genetics, and

that make use of the signal contained in polymorphism data, such as originally pioneered

by McDonald and Kreitman (1991). The idea behind the McDonald & Kreitman (MK)

approach is to decompose the rate of selected substitutions (ωTot), as a mixture of both

advantageous substitutions and non-adaptive (nearly-neutral) substitutions:

ωTot = ωA + ωNA, (10.1)

⇐⇒ ωA = ωTot − ωNA, (10.2)

where ωNA is the rate of substitutions contributed by non-adaptive nearly-neutral evo-

lution and ωA is the total rate of substitutions contributed by adaptive evolution. In

this context, under the assumption that adaptive mutations are rare, the ratio of non-

synonymous over synonymous polymorphisms (πN/πS) mostly contains non-adaptive

polymorphisms and is a measure of ωNA:

ωNA ≃ πN/πS . (10.3)

Moreover, the total ratio of non-synonymous over synonymous substitutions (dN/dS),

estimated from divergence data, is a measure of ωTot:

ωTot ≃ dN/dS . (10.4)

Altogether, the rate of adaptive evolution, which contributes disproportionately to di-

vergence is estimated as the difference between divergence and polymorphism:

ωA ≃ dN/dS − πN/πS . (10.5)

However, estimation of the non-adaptive rate through πN/πS can be biased by mod-

erately deleterious mutations and by the change in population size through time (Eyre-

Walker, 2002). To overcome these biases, a method initially proposed by Eyre-Walker

and Keightley (2009); Galtier (2016) relies on the synonymous and non-synonymous site-

frequency spectra (SFS) to correct for demography and to estimate the distribution of

fitness effects of mutations (DFE), modelled as a continuous distribution. This method,

and subsequent developments which are reviewed in Moutinho et al. (2019b), provide

more reliable estimates of ωNA and, as a result, a better estimate of ωA.

10.3.4 Confronting methods for detecting adaptation

The availability of independent phylogenetic methods (based on either phenomenological

and mechanistic codon models) and population genetics approaches (using the McDon-

ald & Kreitman ideas) for detecting adaptation raises the question whether they detect

congruent signals of adaptation.
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Empirically, phenomenological and mechanistic codon methods should be confronted

to McDonald & Kreitman (MK) methods. In the case of the overlap between positively

selected genes detected with phenomenological codon models and with MK methods,

the set of genes detected does not seem to overlap beyond random expectations (He

et al., 2020). In contrast, at the site level, classical codon models are congruent with

MK methods, with most adaptive mutations occurring at the surface of proteins in both

methods (Moutinho et al., 2019a). These results still need to be refined across clades

and genes, and the availability of polymorphism and divergence DNA sequences that are

aligned will make this comparison possible.

However, positively selected genes or sites detected by classical codon models and

MK methods can theoretically be different, since the non-adaptive part of substitutions

(ωNA) is subtracted in the MK test while classical codon models do not account for

it. Interestingly, another estimate of ωNA in the context of phylogenetic codon models

is what was referred to as ω0 in the context of the mutation-selection null model (see

section 3.4.1). As a result, mechanistic mutation-selection codon models (ω0) and the

MK test (πN/πS) should theoretically be more directly comparable. From the availability

of divergence and polymorphism data, it is now possible to ask whether the rate of non-

adaptive evolution measured by phylogenetic mutation-selection models and MK methods

are congruent, and if not the reason for such discrepancy should be understood.

Time

Mc-Donald & Kreitman test

Classical codon models & 

mutation-selection codon models

Figure 10.1: Detecting adaptive evolution in coding sequences from inter- and intra-
specific data

10.4 Unifying phylogenetic and population-genetics

models

Throughout this manuscript, the phylogenetic codon models that have been presented

have ignored genetic diversity within species. As a result, all differences observed in the
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alignment are assumed to be substitutions. However some of the differences observed in

the alignment might in fact be polymorphisms segregating in the population. Moreover,

substitutions are not instantaneous and ancestral polymorphisms can result in shared

polymorphisms across species due to incomplete lineage sorting (Charlesworth, 2010).

Mistaking polymorphisms for substitutions is problematic, since both are not sensitive

to mutation, selection and drift to the same extent (Mugal et al., 2014). For example, the

neutral diversity increases with Ne, while the rate of neutral substitutions is insensitive

to Ne. Also, polymorphisms involving mildly deleterious mutations are very common but

are normally filtered out by selection and thus, are not often seen as substitutions.

More generally, substitution rates are much more strongly influenced by fixation bi-

ases (such as gBGC) than polymorphisms, which are primarily reflecting mutation biases.

Interestingly, this suggests that polymorphism and divergence could be leveraged

together to help disentangle mutation, selection and drift. In other words, phylogenetic

and population-genetic approaches could be unified, in the context of a single modelling

framework (Thorne et al., 2012).

Such an integration between phylogenetic and population genetics has already been

attempted in several studies. For example, Wilson et al. (2011) modelled codon evolution

in a joint framework with 3 species, which allowed them to analyse the variation in

selection pressure spatially along the genome and temporally between lineages. However,

this methodology proved to be computationally intensive and does not scale well with

the number of extant species. Alternatively, modelling substitutions as mutational events

followed by a gradual fixation, using an explicit Wright-Fisher or Moran process along

the phylogeny, makes it possible to estimate nucleotide mutation rates and mean fixation

probabilities from genetic variation within and between species, while accounting for

shared ancestral polymorphisms and incomplete lineage sorting (De Maio et al., 2013;

Schrempf et al., 2016; Bergman et al., 2018; Schrempf et al., 2019). In particular, this

methodology was used to disentangle gBGC and the mutational bias (Borges et al., 2019;

Borges and Kosiol, 2020). However, this methodology does not scale well with the number

of states of the models. For that reason, it would be particularly difficult to translate

the approach from nucleotides (4 states) to codons (61 states).

Because mechanistic codon models are based on population-genetic first principles,

they can theoretically be extended to account for within species diversity. One strategy

would be to augment molecular divergence data between species with information about

molecular polymorphism within species. Such an approach was attempted during the first

year of my PhD training. The formalism that was used is based on Poisson Random fields

(details can be found in appendices page 215). This extension was rather straightforward

to implement in BayesCode, in the context of site-specific mechanistic codon models.

A first implementation was tested against simulations under a Wright-Fisher model

of evolution along the phylogeny. It yielded an accurate estimation of diversity (θ =

4Neu) in extant species, and was able to better tease out mutation and selection by

leveraging both divergence and polymorphism signals. However, it was found to be

computationally intensive, even with the use of sufficient statistics to accelerate the
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computation (see section 4.2.6). Moreover, the assumption of a constant Ne along the

phylogeny in mutation-selection codon models was arguably the strongest restriction to

relax in this context (Rousselle et al., 2018). Indeed, it makes limited sense to integrate

empirical data about genetic diversity in extant species that generally have quite different

levels of diversity if Ne is considered constant along the phylogeny. This was historically

the reason why I decided to first extend phylogenetic site-specific mutation-selection

codon models by incorporating branch-specific Ne, such as presented in chapter 8.

Once incorporating branch specific Ne, the original goal was then to add polymor-

phism data in the context of this improved mutation-selection codon model. As it turns

out, however, there are other issues that needed to be addressed, before achieving this

integration, in particular, the fact that the range of Ne inferred by the model turns

out to be too narrow (see section 8), as well as computational issues. Indeed, with

branch-specific Ne and extant polymorphism, the computing time to reach convergence

of the MCMC became prohibitive.

Retrospectively, even though site- and branch-specific mutation-selection phyloge-

netic codon models can be extended by incorporating empirical data about polymor-

phism, as I have started to do in BayesCode, I believe it is not yet the path forward to

build a unified phylogenetic and population-genetic model. Before doing this, I believe

phylogenetic codon models and population-genetics method should first be confronted,

and the discrepancy should be understood, such as presented in the previous section.

The impact of epistasis should also be better understood and characterized. Only in

a second step, subsequently to this confrontation, could phylogenetic models in prin-

ciple accommodate extant polymorphism. However, this will probably require another

approach of inference, more computationally reasonable than the one that I have ex-

plored in my work (in chapter 8).

10.5 Mechanistic and phenomenological models

Models of inference are classified broadly into phenomenological and mechanistic (Ro-

drigue and Philippe, 2010). Mechanistic models dissect the detailed causal chain of

events responsible for each substitution event and then use this to construct a detailed

model from first principles. By doing this, they relate structural, population genetics

and ecological parameters to the likelihood function (see chapter 8). As such, mecha-

nistic inference models are suitable to construct an integrative framework, for example

relating the signal available in molecular sequences to structural parameters, expression

level across genes and varying effective population size across lineages.

Once such models have been fitted to empirical data, the estimated parameters can

then be confronted with independent estimations, which allow one to robustly test the

model since independent estimates of biological and ecological parameters should of

course be congruent (Dasmeh et al., 2014). However mechanistic models are compu-

tationally very intensive, to a point where they can reach the current limits in available
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computing power (personal computers or clusters)1. Moreover, increased complexity

of the models bears another consequence: the liability of the code and software de-

creases, compromising the reproducibility of the results obtained with such models. For

these reasons, mechanistic models tend to make a number of strong simplifying assump-

tions (such as no epistasis), which can have detrimental effects on the robustness of

the inference (see chapter 8).

In contrast, phenomenological models are formulated in terms of aggregate parame-

ters, capturing the average rate of synonymous or non-synonymous substitutions, or their

ratio. Their aim is to determine the statistical distribution of these aggregate quantities

across the tree, across genes, or across sites, but without deriving them from first prin-

ciples. Compared to mechanistic models, they are computationally much more efficient.

On the other hand, they do not give direct access to the population-genetic parameters.

The distinction between phenomenological models and mechanistic models is useful

to frame different models in this context. However, that there is no such thing as a

pure phenomenological or pure mechanistic model. The most phenomenological models

are still based on the overall process of sequence change, and the fact that there is, for

instance, a difference between synonymous and non-synonymous substitutions. The most

mechanistic models are still highly coarse-grained, abstracting away a certain amount of

biological, chemical, and physical phenomena and replacing it with descriptions of how

things are observed to behave at a higher level. This raises the question of how to

benefit from the advantages of the two approaches. Observations and experiments done

throughout this thesis led me to crystallize the conception that models of inference should

be mechanistic in essence, in the sense that they should be parameterized by variables

that are derived from first principles, but should be phenomenological in practice, in the

sense that these variables should nevertheless be aggregate parameters.

The first manuscript presented in this thesis (chapter 7) gives some preliminary di-

rections in this regard. A mean-field argument was used to derive a phenomenological

model based on an underlying mechanistic site-specific model. As a result, the mean-field

parameters of the phenomenological model capture aggregate quantities that are aver-

ages across sites. The phenomenological model that was obtained using this approach

is easier to fit to the data. Nonetheless, it captures essential parameters that are easy

to interpret mechanistically, after the fact.

Altogether, hybrid models based on mechanistic first principles but obtained by de-

riving aggregate parameters are avoiding the pitfalls of both approaches, being based

on independently identifiable parameters and at the same time being computationally

parsimonious. Such hybrid models can be developed with the following procedure:

1. Define a mechanistic microscopic model from molecular first principles (see chap-

ter 9). This model can be potentially complex, modelling all kinds of variations,

for example, incorporating site interdependence or polymorphism within species.

Such model is meant to be implemented in simulations, but never in inference.

1Apart from the physical limit of resource available, the use of computing resources bears
ecological consequences on environmental degradation and C02 emissions.
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2. Use a mean-field argument and calculate aggregate quantities emerging from the

microscopic model, leveraging population genetics first principles. Possibly, use

theoretical developments such as presented in chapter 9 to approximate the re-

sponse of the aggregate quantities to changes in the underlying mechanistic pa-

rameters.

3. Implement the inference phenomenological model whose parameters correspond to

the mean-field aggregates. Such phenomenological models are meant to be con-

fronted with simulations under the mechanistic model and subsequently applied to

empirical data in order to estimate the parameters of interest and their covariation

with variables that might change across species or across genes.

Such endeavour, however, requires mathematical work to derive the relationship between

parameters of interest (such as ∆∆G,Ne, expression level, . . . ) and aggregate param-

eters of evolution that are extractable from the data (ν). Chapter 9 represents one

such mathematical development.

10.6 Reproducible science

This thesis is based on a combination of analytical developments, computational simu-

lations and inference models, which I argue are complementary, but more importantly,

they are all jointly required. Theoretical modelling allows one to understand the princi-

ples, while simulations are crucial to verify the soundness. Inference makes it possible to

extract and test the theoretical results using empirical data, which are verified and tested

against simulations. Simulations have thus a dual role, testing the robustness of both

inference procedures and theoretical results, outside of their comfort zone and assump-

tions. However, this assumes we are confident enough to write reproducible programs.

In this direction, the next section is dedicated to my experience in reproducing results.

First, I stand firmly on the ground that data, codes and scripts should be rendered

open access for any published and peer reviewed paper. Practically, the availability of the

data and source code should simply be enforced upon submission to any journal, which

is currently not the case for all journals even within the fields of bioinformatics and ge-

nomics. It is true that such enforcement imposes a heavier burden on scientists upon

publishing. However, it avoids the bloating of the technical debt, or research debt result-

ing from building theories on the ground of a dangerous and possibly shaky basement.

It also encourages peer collaboration, both helping the team or person(s) who made the

code available, and the community as a whole. A straightforward approach is to provide

a git versioned repository, with the advantage that collaboration is facilitated through

web hosted repositories such as GitLab (hosted by institutions) or GitHub (hosted by a

private company, Microsoft, at the moment of writing).

Nonetheless, code availability is a necessary condition, but not the sole requirement of

reproducible research. Specific instructions to reproduce the results should also be made

available (Wilson et al., 2014; Darriba et al., 2018). The first step to reproduce a code is to
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have the required environment, meaning the necessary libraries and dependencies for the

code and scripts. For script and code written in Python, the package manager Anaconda

(or Conda) provides a readily available environment to configure the necessary libraries

with their versions. More complex environments requiring code compilation or system-

level packages can leverage containerization technology such as Docker or Singularity

for example, but any other containers implementing system-level virtualization is very

helpful to provide the necessary libraries. Once the environment is specified, the docu-

mentation can be made available as a README with the necessary instructions.

More generally, notebooks such as Jupyter Notebook, RMarkdown or Org-mode to

name a few also provide an environment for knitting together code and instructions,

allowing anyone to follow step-by-step experiments, analysis and results, in a similar

fashion as laboratory notebooks are required in wet labs. It is important to note that

notebooks can run code from a variety of languages (C++, Haskell, Java, Julia, Python,

Wolfram Language, Matlab, Ruby, . . . ). These tools are emerging in the community, as

well as workflow management system (Nextflow, Snakemake, . . . ) allowing one to create

reproducible and scalable data analyses running on computing clusters.

Using this range of tools helps other scientists who might want to understand, test

or build upon published work. Moreover, they are also very helpful for the person or

team implementing them, since a more rigorous and reproducible environment makes it

possible to more easily track down bugs and test programs under different conditions or

datasets2. During the development period, continuous integration pipelines are valuable

to increase the reliability of code generation, which should be used whether working

alone or inside a team, but is, of course, more critical for collaborative code where one

cannot control all of the code that is written.

Collaborative coding practices such as peer-coding sessions are really useful to imple-

ment critical code at the core of the program under development. I argue that efficient

peer-coding sessions can be organized by dividing the tasks into a group focused in the

detailed implementation while the others are free to focus on edge cases and on the

overall implications of different implementations. Moreover, peer-coding sessions provide

a convenient and structured place for learning good practices, for expanding technical

knowledge while correcting bad habits.

Another remarkable practice is to write two independent versions of the program,

using if possible different algorithms and languages but with the same functionality, but

most importantly, by a different person. Subsequent testing of the programs against each

other under the same conditions and datasets should result in the same outcomes3. Such

a model of reproducible computing experiments and analyses is laborious and demanding,

but I argue this is the definition of reproducibility we collectively should aim for, namely

where one can independently reproduce the same experiment. If the two (or more)

2Notebooks are very useful to present work and data analysis, but should not be used during
development since they often offer poor integration with debugger and code inspection tools,
enforce awkward software design patterns, and often result in bloated versioned repository.

3An extreme version is adversarial coding (or chaos engineering), where the goal is to find
conditions on which the program written by someone else fails.
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programs result in different outcome, one can run the code with different conditions to

pinpoint which one is the failing code (which might actually be both versions). Personally,

having practised this method, I strongly believe it pervasively reduces our research debt

that we might inadvertently burden others with whenever not realizing the program is

bugged, and that it also ultimately saves us time on debugging and conducting research.

Finally, explaining to others our choices of algorithms, implementation and data structure

forces us to express intelligibly our ideas and, therefore, to better understand them, while

gaining from others insights and new algorithmic expertise.

10.7 Concluding remarks

To conclude, this work is an encouraging, although still far from complete, attempt

to build integrated models of the evolution of protein-coding DNA sequences. I think

my work has contributed to consolidating the idea that the patterns of substitutions

inform us on the long-term fluctuations in genetic drift along branches and selection

along sequences. This thesis also further emphasizes that the assumptions made on

the structure of the fitness landscape have a critical importance in the sensitivity of

changes in substitution rates to changes in ecological (Ne) or molecular variables (protein

expression level). Conversely, empirical observations of the patterns of substitutions in

response to changes in molecular or ecological variables inform us about the underlying

structure of the fitness landscape.

Altogether, this work can be seen as a building block toward bridging phylogeny and

population genetics. Constructing an integrated framework is theoretically possible but

with a still limited scope so far. However, confronting the estimation of phylogenetic

codon models and population-genetics approaches, for example, on the question of the

rate of adaptive substitution, is a path forward toward an integrated view of protein-

coding DNA sequence evolution. Finally, I believe this thesis is not providing disruptive

results, but instead is consolidating theoretical models on which molecular evolution is

based, and points out some of the pitfalls to avoid.
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11.1 Summary statistics

11.1.1 Partial correlation coefficient

The correlation coefficient ρa,b give the total regression between two variables. Partial-

correlation coefficient account for the entire covariance matrix, and measure the correla-

tion between 2 traits, knowing the values of all the other traits:

ρa,b|c∈{1,...,L}\{a,b} = −
Ωa,b√

Ωa,aΩb,b
, (11.1)

where the precision matrix Ω is the inverse of the covariance matrix:

Ω = Σ−1 (11.2)

11.1.2 Fitness profile entropy

For a category k, the Shannon’s entropy (Ω) of the fitness profile (φ) is defined as:

Ω(k) = −
20∑

a=1

φ(k)
a ln

(
φ(k)

a

)
(11.3)

The Shannon’s entropy measures the flatness of the fitness profile, with a value of 0

corresponding to a single peak fitness landscape (only one amino acid is present), and

a value of log(20) ≃ 3 corresponding to a neutral landscape, where each amino acid

has the same fitness.

The Shannon’s entropy can be averaged over all sites as:

〈Ω〉 =
1

Z

Z∑

z=1

Ωκ(z) (11.4)

11.2 Simulations

11.2.1 Site-specific fitness profiles (SimuDiv)

For simulations under a site-independent fitness landscape, with site-specific fitness pro-

files, the protein log-fitness is computed as the sum of amino-acid log-fitness coefficients

along the sequence. In this model, each codon site z has its own fitness profile, denoted

φ(z) = {φ
(z)
a , 1 ≤ a ≤ 20}, a vector of 20 amino-acid scaled (Wrightian) fitness coeffi-

cients. Since S[z] is the codon at site z, the encoded amino acid is A (S[z]), hence the

fitness at site z is φ
(z)
A(S[z]). Altogether, the selection coefficient of the mutant S′ is:

s
(
S, S′) =

Z∑

z=1

ln


φ

(z)
A(S′[z])

φ
(z)
A(S[z])


 , (11.5)

The fitness vectors φ(z) used in this study are extracted from Bloom (2017). They were

experimentally determined by deep mutational scanning.

155



11.2. Simulations

Genotype

ATG|GGA| ... |TCG 

DNA sequence

Fitness
Fitness of the organism depending on the fitness 

profil at each possible position
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it
n
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ss

Amino-acid

The next change in the protein coding DNA and the time to next the event is cho-

sen using Gillespie’s algorithm (Gillespie, 1977), according to the rates of substitution

between codons:

Qi,j = µi,j
4Nes

(
St, St+1

)

1 − e−4Nes(St,St+1)
, (11.6)

where Qi,j = µi,j in the case of synonymous substitutions.
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Figure 11.1: Inferred branch parameters under simulations accounting for site-specific
amino-acid profiles, long term fluctuation of Ne, mutation rate per generation and gen-
eration time. Estimation is obtained with the mechanistic inference model developed in
this paper of site-specific amino-acid fitness profiles and log-Brownian process for Ne, µ
and life-history traits.
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11.2. Simulations

Figure 11.2: Inferred and simulated site-specific amino-acid profiles under simulation
accounting for long term fluctuation of Ne, mutation rate per generation and generation
time. Estimation is obtained with the mechanistic inference model developed in this paper
of site-specific amino-acid fitness profiles and log-Brownian process for Ne, µ and life-
history traits (in the left panel), or under the assumption of constant Ne (in the right
panel).

Experiment 〈Ω〉 (branch Ne) 〈Ω〉 (constant Ne)

SimuDiv, chain 1 2.30 ± 0.04 2.45 ± 0.02

SimuDiv, chain 2 2.30 ± 0.04 2.45 ± 0.02

Table 11.1: Estimated amino-acid entropy under simulations accounting for long term
fluctuation of Ne, mutation rate per generation and generation time. Estimation is ob-
tained with the mechanistic inference model developed in this paper of site-specific amino-
acid fitness profiles and log-Brownian process for Ne, µ and life-history traits (in the left
column), or under the assumption of constant Ne (in the right column).

11.2.2 Wright-Fisher with polymorphism (SimuPoly)

The evolutionary dynamics was formalized as a Wright-Fisher model with mutation,

selection and drift The population is assumed to be panmictic, with effective population

size Ne and with non-overlapping generations.

At each generation: mutation, selection, drift,

change of Ne, mutation rate and generation time.
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Figure 11.3: Inferred branch parameters under simulation accounting for finite popu-
lation effects, site linkage and short term fluctuation of Ne. Estimation is obtained with
the mechanistic inference model developed in this paper of site-specific amino-acid fitness
profiles and log-Brownian process for Ne, µ and life-history traits.

Figure 11.4: Inferred and simulated site-specific amino-acid profiles under simulation
accounting for finite population effects, site linkage and short term fluctuation of Ne.
Estimation is obtained with the mechanistic inference model developed in this paper of
site-specific amino-acid fitness profiles and log-Brownian process for Ne, µ and life-history
traits (in the left panel), or under the assumption of constant Ne (in the right panel).

Experiment 〈Ω〉 (branch Ne) 〈Ω〉 (constant Ne)

SimuPoly, chain 1 2.47 ± 0.03 2.37 ± 0.02

SimuPoly, chain 2 2.47 ± 0.03 2.37 ± 0.02

Table 11.2: Estimated amino-acid entropy under simulation accounting for finite popu-
lation effects, site linkage and short term fluctuation of Ne. Estimation is obtained with
the mechanistic inference model developed in this paper of site-specific amino-acid fitness
profiles and log-Brownian process for Ne, µ and life-history traits (in the left column), or
under the assumption of constant Ne (in the right column).
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11.2.3 Fisher geometric landscape (SimuGeo)

We simulated substitutions in a protein using an adaptation of Fisher’s geometric land-

scape (Tenaillon, 2014; Blanquart and Bataillon, 2016). In the original context, the

phenotype is a vector (P ) in a multidimensional space, where the number of dimensions

is often termed complexity. From a phenotype, the fitness is a monotonously decreas-

ing function of the phenotype distance to 0. The exact functional phenotype-fitness

map depends on 2 external parameters controlling for strength (α) and epistasis (β). If

the phenotype-fitness map is explicit, the genotype-phenotype map is more pervasive.

Mutations are seen has displacement of the phenotype in the multidimensional space.

Beneficial mutations are moving the phenotype closer to 0, whereas deleterious muta-

tions are moving the phenotype further away. In such original context, the distribution

of mutational effects is not dependent on the current genotype, but this can be relaxed

using a genotype-phenotype map.

In a protein context, the genotype-phenotype map can be defined by assigning to

each of the 20 amino acid a vector in the multidimensional space. Since different sites

of the protein do not have the same physico-chimical properties, we can define a spe-

cific genotype-phenotype map for each position of the sequence. Overall, the protein

phenotype is computed as the sum of site-specific multidimensional vectors, obtained by

accessing the amino acid present at each site of the protein. From a DNA sequence St

after t substitutions, the protein’s phenotype is given by:

P
(
S

t
)

=
Z∑

z=1

Pz

(
S

t(z)
)
, (11.7)

where Pz is the genotype-phenotype map at site z.

And the Wrightian fitness of St is :

W
(
P
(
S

t
))

= e−α|P (St)|
β

, (11.8)

where strength (α > 0) and epistasis (β) are parameters of the fitness function.

Genotype

ATG|GGA| ... |TCG 

DNA sequence

Phenotype Fitness

P
Z

Axis 1

A
xi

s 
2

P
Z-1 P

1

P
2

P

P
Z

(Alanine)
Site 1 Site Z

P
1

(Methionine)

...

For each possible mutant (at time t + 1 substitutions), we compute P
(
St+1

)
from the
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updated sequence St+1, and subsequently the selection coefficient of the mutant:

s
(
S

t,St+1
)

=
W
(
P
(
St+1

))
−W

(
P
(
St
))

W (P (St))
. (11.9)

The next change in the protein coding DNA and the time to next the event is cho-

sen using Gillespie’s algorithm (Gillespie, 1977), according to the rates of substitution

between codons:

Qi,j = µi,j
4Nes

(
St, St+1

)

1 − e−4Nes(St,St+1)
, (11.10)

where Qi,j = µi,j in the case of synonymous substitutions.
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Figure 11.5: Inferred branch parameters under simulation accounting for site epistasis
in geometric landscape, thus fluctuation of the selection coefficient along the phylogeny.
Estimation is obtained with the mechanistic inference model developed in this paper of
site-specific amino-acid fitness profiles and log-Brownian process for Ne, µ and life-history
traits.

Experiment 〈Ω〉 (branch Ne) 〈Ω〉 (constant Ne)

SimuGeo, chain 1 2.27 ± 0.02 2.46 ± 0.02

SimuGeo, chain 2 2.23 ± 0.04 2.46 ± 0.02

Table 11.3: Estimated amino-acid entropy under simulation accounting for site epistasis
(geometric landscape), thus fluctuation of the selection coefficient along the phylogeny.
Estimation is obtained with the mechanistic inference model developed in this paper of
site-specific amino-acid fitness profiles and log-Brownian process for Ne, µ and life-history
traits (in the left column), or under the assumption of constant Ne (in the right column).

11.2.4 Protein folding probability (SimuFold)

We simulated substitutions in the protein phosphatase (Z = 300 codon sites) as in Gold-

stein and Pollock (2017). From a DNA sequence St after t substitutions, we compute the
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free energy of the folded state GF

(
St
)
, using the 3-dimensional structure of the folded

state and pair-wise contact energies between neighboring amino-acid residues:

GF

(
S

t
)

=
Z∑

z=1

∑

r∈V(z)

I
(
S

t(z),St(r)
)
, (11.11)

where I(a, b) is the pair-wise contact energies between amino acid a and b, using con-

tact potentials estimated by Miyazawa and Jernigan (1985), and V(z) are the neighbor

residues of site z (closer than 7Å) in the 3D structure.

The free energy of unfolded states GU

(
St
)

is approximated using 55 decoy 3D struc-

tures that supposedly represent a sample of possible unfolded states:

GU

(
S

t
)

=
〈
G
(
S

t
)〉

− kT ln(1.0E160) −
2
[〈
G
(
St
)2〉

−
〈
G
(
St
)〉2]

kT
(11.12)

where the average 〈.〉 runs other the 55 decoy 3D structures, and k is the Boltzmann

constant and T the temperature in Kelvin.

From the energy of folded and unfolded states, we can compute the difference in

free energy between the states:

∆G
(
S

t
)

= GF

(
S

t
)

−GU

(
S

t
)

(11.13)

Wrightian fitness is defined as the probability of our protein to be in the folded state:

W
(
∆G

(
S

t
))

= PF

(
S

t
)

=
e−βGF(St)

e−βGF(St) + e−βGU(St)
=

1

1 + eβ∆G(St)
, (11.14)

where β is the inverse of the temperature (β = 1/kT ).
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For each possible mutant (at time t + 1 substitutions), we compute ∆Gt+1 from the

updated sequence St+1, and subsequently the selection coefficient of the mutant:

s
(
S

t,St+1
)

=
W
(
∆G

(
St+1

))
−W

(
∆G

(
St
))

W (∆G (St))
. (11.15)

The next change in the protein coding DNA and the time to next the event is cho-

sen using Gillespie’s algorithm (Gillespie, 1977), according to the rates of substitution

between codons:

Qi,j = µi,j
4Nes

(
St, St+1

)

1 − e−4Nes(St,St+1)
, (11.16)
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where Qi,j = µi,j in the case of synonymous substitutions.
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Figure 11.6: Inferred branch parameters under simulation accounting for site epistasis
(folding stability model), thus fluctuation of the selection coefficient along the phylogeny.
Estimation is obtained with the mechanistic inference model developed in this paper of
site-specific amino-acid fitness profiles and log-Brownian process for Ne, µ and life-history
traits.

Experiment 〈Ω〉 (branch Ne) 〈Ω〉 (constant Ne)

SimuFold, chain 1 1.31 ± 0.05 1.61 ± 0.03

SimuFold, chain 2 1.30 ± 0.04 1.60 ± 0.03

Table 11.4: Estimated amino-acid entropy under simulation accounting for site epistasis
(folding stability model), thus fluctuation of the selection coefficient along the phylogeny.
Obtained with the mechanistic inference model developed in this paper of site-specific
amino-acid fitness profiles and log-Brownian process for Ne, µ and life-history traits (in
the left column), or under the assumption of constant Ne (in the right column).

11.3 Empirical data in mammals

11.3.1 Chain convergence

Obtained with the mechanistic inference model developed in this paper of site-specific

amino-acid fitness profiles and log-Brownian process for Ne, µ and life-history traits.
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Figure 11.7: Chain convergence of site amino-acid preferences (left panel) and branch
Ne (right panel).

11.3.2 Traits estimation & correlation (replicate 1, chain 1)

Obtained with the mechanistic inference model developed in this paper of site-specific

amino-acid fitness profiles and log-Brownian process for Ne, µ and life-history traits.

Covariance (Σ) Ne µ Maximum longevity Adult weight Female maturity

Ne 0.281∗∗ 0.324∗∗ −0.268∗∗ −1.29∗∗ −0.308∗∗

µ - 1.93∗∗ −1.12∗∗ −5.19∗∗ −1.43∗∗

Maximum longevity - - 0.934∗∗ 3.58∗∗ 1.01∗∗

Adult weight - - - 19.9∗∗ 4.48∗∗

Female maturity - - - - 1.53∗∗

Table 11.5: Covariance coefficient between effective population size (Ne), mutation rate
per site per unit of time (µ), and life-history traits (maximum longevity, adult weight
and female maturity) were computed in placental mammals. Asterisks indicate strength
of support (∗pp > 0.95, ∗∗pp > 0.975).

Partial coefficient Ne µ Maximum longevity Adult weight Female maturity

Ne - −0.146 −0.177 −0.265∗ −0.0223

µ - - −0.283∗ −0.396∗∗ −0.327∗∗

Maximum longevity - - - 0.236∗ 0.383∗∗

Adult weight - - - - 0.179

Female maturity - - - - -

Table 11.6: Partial correlation coefficient between effective population size (Ne), muta-
tion rate per site per unit of time (µ), and life-history traits (maximum longevity, adult
weight and female maturity) were computed in placental mammals. Asterisks indicate
strength of support (∗pp > 0.95, ∗∗pp > 0.975).
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 Trichechus_manatus_latirostris       0.568 [ 0.414, 1.041]
 Procavia_capensis                    0.506 [ 0.376, 0.941]
 Loxodonta_africana                   0.696 [ 0.494, 1.581]
 Orycteropus_afer_afer                0.777 [ 0.576, 1.797]
 Elephantulus_edwardii                0.969 [ 0.749, 1.619]
 Echinops_telfairi                    0.463 [ 0.344, 0.766]
 Dasypus_novemcinctus                 0.391 [ 0.282, 0.729]
 Choloepus_hoffmanni                  0.628 [ 0.448, 1.289]
 Sorex_araneus                        0.871 [ 0.632, 1.629]
 Erinaceus_europaeus                  0.892 [ 0.637, 1.879]
 Condylura_cristata                   0.942 [ 0.700, 1.747]
 Rousettus_aegyptiacus                0.784 [ 0.574, 1.672]
 Pteropus_vampyrus                    0.940 [ 0.670, 2.218]
 Rhinolophus_sinicus                  0.967 [ 0.705, 2.121]
 Hipposideros_armiger                 0.733 [ 0.540, 1.398]
 Miniopterus_natalensis               0.809 [ 0.610, 1.620]
 Myotis_lucifugus                     0.741 [ 0.544, 1.539]
 Eptesicus_fuscus                     0.838 [ 0.634, 1.593]
 Equus_caballus                       1.155 [ 0.773, 2.805]
 Ceratotherium_simum_simum            0.597 [ 0.408, 1.203]
 Vicugna_pacos                        0.530 [ 0.351, 1.211]
 Camelus_bactrianus                   0.716 [ 0.490, 1.724]
 Sus_scrofa                           0.552 [ 0.409, 0.936]
 Odocoileus_virginianus_texanus       0.896 [ 0.643, 1.800]
 Bos_taurus                           0.645 [ 0.462, 1.316]
 Ovis_aries                           0.815 [ 0.597, 1.570]
 Capra_hircus                         0.850 [ 0.619, 1.737]
 Physeter_catodon                     0.283 [ 0.194, 0.591]
 Lipotes_vexillifer                   0.543 [ 0.374, 1.413]
 Tursiops_truncatus                   0.356 [ 0.257, 0.769]
 Orcinus_orca                         0.290 [ 0.207, 0.599]
 Delphinapterus_leucas                0.411 [ 0.289, 0.899]
 Balaenoptera_acutorostrata_scammoni  0.325 [ 0.224, 0.683]
 Canis_familiaris                     1.143 [ 0.790, 2.497]
 Ursus_maritimus                      0.457 [ 0.326, 0.921]
 Ailuropoda_melanoleuca               0.756 [ 0.514, 1.975]
 Mustela_putorius                     1.366 [ 0.950, 3.166]
 Enhydra_lutris_kenyoni               0.816 [ 0.556, 1.811]
 Panthera_pardus                      0.753 [ 0.512, 1.655]
 Acinonyx_jubatus                     0.584 [ 0.411, 1.217]
 Felis_catus                          0.829 [ 0.570, 1.825]
 Tupaia_belangeri                     0.990 [ 0.691, 2.093]
 Oryctolagus_cuniculus                1.050 [ 0.710, 2.449]
 Ochotona_princeps                    0.756 [ 0.549, 1.459]
 Marmota_marmota_marmota              0.884 [ 0.620, 2.139]
 Ictidomys_tridecemlineatus           0.962 [ 0.682, 2.151]
 Octodon_degus                        0.815 [ 0.626, 1.475]
 Chinchilla_lanigera                  0.855 [ 0.645, 1.478]
 Cavia_porcellus                      0.803 [ 0.611, 1.435]
 Heterocephalus_glaber                0.763 [ 0.572, 1.496]
 Jaculus_jaculus                      0.910 [ 0.689, 1.692]
 Rattus_norvegicus                    0.783 [ 0.606, 1.386]
 Mus_musculus                         1.214 [ 0.934, 2.370]
 Meriones_unguiculatus                0.858 [ 0.672, 1.447]
 Peromyscus_maniculatus               1.068 [ 0.810, 2.052]
 Microtus_ochrogaster                 0.949 [ 0.746, 1.683]
 Mesocricetus_auratus                 0.892 [ 0.685, 1.748]
 Dipodomys_ordii                      0.842 [ 0.637, 1.483]
 Castor_canadensis                    0.861 [ 0.628, 1.917]
 Otolemur_garnettii                   1.072 [ 0.733, 2.426]
 Propithecus_coquereli                1.004 [ 0.647, 2.945]
 Microcebus_murinus                   1.809 [ 1.152, 4.740]
 Nomascus_leucogenys                  0.813 [ 0.539, 2.209]
 Pongo_abelii                         0.494 [ 0.333, 1.094]
 Pan_troglodytes                      0.532 [ 0.371, 1.242]
 Homo_sapiens                         0.447 [ 0.307, 0.939]
 Gorilla_gorilla                      0.525 [ 0.356, 1.225]
 Chlorocebus_sabaeus                  0.819 [ 0.555, 2.652]
 Macaca_mulatta                       0.812 [ 0.554, 1.977]
 Papio_anubis                         0.840 [ 0.575, 2.050]
 Mandrillus_leucophaeus               0.773 [ 0.539, 1.691]
 Cercocebus_atys                      0.834 [ 0.577, 1.916]
 Colobus_angolensis                   0.551 [ 0.384, 1.206]
 Saimiri_boliviensis                  1.041 [ 0.711, 2.553]
 Cebus_capucinus                      0.846 [ 0.576, 1.982]
 Callithrix_jacchus                   0.687 [ 0.494, 1.326]
 Aotus_nancymaae                      0.921 [ 0.615, 2.525]
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Figure 11.8: Effective population size (Ne) estimation in mammals
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 Trichechus_manatus_latirostris       0.044 [ 0.021, 0.210]
 Procavia_capensis                    0.226 [ 0.132, 0.635]
 Loxodonta_africana                   0.045 [ 0.019, 0.197]
 Orycteropus_afer_afer                0.091 [ 0.048, 0.266]
 Elephantulus_edwardii                0.350 [ 0.211, 0.973]
 Echinops_telfairi                    0.402 [ 0.243, 1.018]
 Dasypus_novemcinctus                 0.119 [ 0.065, 0.369]
 Choloepus_hoffmanni                  0.076 [ 0.039, 0.250]
 Sorex_araneus                        0.492 [ 0.315, 1.356]
 Erinaceus_europaeus                  0.220 [ 0.124, 0.715]
 Condylura_cristata                   0.235 [ 0.135, 0.716]
 Rousettus_aegyptiacus                0.161 [ 0.094, 0.488]
 Pteropus_vampyrus                    0.080 [ 0.043, 0.275]
 Rhinolophus_sinicus                  0.152 [ 0.085, 0.423]
 Hipposideros_armiger                 0.146 [ 0.083, 0.385]
 Miniopterus_natalensis               0.154 [ 0.086, 0.456]
 Myotis_lucifugus                     0.140 [ 0.075, 0.431]
 Eptesicus_fuscus                     0.166 [ 0.095, 0.467]
 Equus_caballus                       0.043 [ 0.022, 0.157]
 Ceratotherium_simum_simum            0.022 [ 0.010, 0.107]
 Vicugna_pacos                        0.043 [ 0.021, 0.166]
 Camelus_bactrianus                   0.027 [ 0.013, 0.106]
 Sus_scrofa                           0.086 [ 0.048, 0.234]
 Odocoileus_virginianus_texanus       0.082 [ 0.043, 0.235]
 Bos_taurus                           0.057 [ 0.031, 0.152]
 Ovis_aries                           0.075 [ 0.043, 0.211]
 Capra_hircus                         0.059 [ 0.032, 0.180]
 Physeter_catodon                     0.023 [ 0.012, 0.067]
 Lipotes_vexillifer                   0.036 [ 0.020, 0.099]
 Tursiops_truncatus                   0.052 [ 0.029, 0.166]
 Orcinus_orca                         0.029 [ 0.016, 0.087]
 Delphinapterus_leucas                0.033 [ 0.019, 0.089]
 Balaenoptera_acutorostrata_scammoni  0.014 [ 0.007, 0.053]
 Canis_familiaris                     0.050 [ 0.028, 0.170]
 Ursus_maritimus                      0.052 [ 0.028, 0.259]
 Ailuropoda_melanoleuca               0.025 [ 0.013, 0.109]
 Mustela_putorius                     0.112 [ 0.063, 0.316]
 Enhydra_lutris_kenyoni               0.048 [ 0.026, 0.163]
 Panthera_pardus                      0.022 [ 0.011, 0.086]
 Acinonyx_jubatus                     0.043 [ 0.024, 0.108]
 Felis_catus                          0.047 [ 0.025, 0.157]
 Tupaia_belangeri                     0.070 [ 0.041, 0.166]
 Oryctolagus_cuniculus                0.083 [ 0.040, 0.269]
 Ochotona_princeps                    0.336 [ 0.201, 0.879]
 Marmota_marmota_marmota              0.043 [ 0.022, 0.134]
 Ictidomys_tridecemlineatus           0.101 [ 0.054, 0.299]
 Octodon_degus                        0.352 [ 0.218, 0.836]
 Chinchilla_lanigera                  0.158 [ 0.091, 0.457]
 Cavia_porcellus                      0.297 [ 0.186, 0.717]
 Heterocephalus_glaber                0.125 [ 0.066, 0.449]
 Jaculus_jaculus                      0.136 [ 0.077, 0.347]
 Rattus_norvegicus                    0.362 [ 0.228, 0.915]
 Mus_musculus                         0.378 [ 0.235, 1.073]
 Meriones_unguiculatus                0.291 [ 0.185, 0.701]
 Peromyscus_maniculatus               0.273 [ 0.176, 0.622]
 Microtus_ochrogaster                 0.435 [ 0.291, 0.969]
 Mesocricetus_auratus                 0.362 [ 0.235, 0.824]
 Dipodomys_ordii                      0.225 [ 0.140, 0.640]
 Castor_canadensis                    0.071 [ 0.037, 0.224]
 Otolemur_garnettii                   0.103 [ 0.056, 0.331]
 Propithecus_coquereli                0.040 [ 0.020, 0.195]
 Microcebus_murinus                   0.101 [ 0.058, 0.319]
 Nomascus_leucogenys                  0.023 [ 0.012, 0.085]
 Pongo_abelii                         0.023 [ 0.012, 0.065]
 Pan_troglodytes                      0.024 [ 0.013, 0.076]
 Homo_sapiens                         0.015 [ 0.008, 0.051]
 Gorilla_gorilla                      0.022 [ 0.012, 0.067]
 Chlorocebus_sabaeus                  0.039 [ 0.023, 0.117]
 Macaca_mulatta                       0.031 [ 0.018, 0.086]
 Papio_anubis                         0.021 [ 0.012, 0.069]
 Mandrillus_leucophaeus               0.025 [ 0.014, 0.066]
 Cercocebus_atys                      0.027 [ 0.015, 0.071]
 Colobus_angolensis                   0.029 [ 0.016, 0.083]
 Saimiri_boliviensis                  0.058 [ 0.033, 0.156]
 Cebus_capucinus                      0.044 [ 0.025, 0.152]
 Callithrix_jacchus                   0.124 [ 0.079, 0.286]
 Aotus_nancymaae                      0.047 [ 0.027, 0.137]
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Figure 11.9: Mutation rate (µ) estimation in mammals

165



11.3. Empirical data in mammals

 Trichechus_manatus_latirostris        54.5 [  54.5,  54.5]
 Procavia_capensis                     14.8 [  14.8,  14.8]
 Loxodonta_africana                    65.0 [  65.0,  65.0]
 Orycteropus_afer_afer                 29.8 [  29.8,  29.8]
 Elephantulus_edwardii                8.133 [ 8.133, 8.133]
 Echinops_telfairi                     19.0 [  19.0,  19.0]
 Dasypus_novemcinctus                  19.6 [  19.6,  19.6]
 Choloepus_hoffmanni                   38.9 [  38.9,  38.9]
 Sorex_araneus                        3.100 [ 3.100, 3.100]
 Erinaceus_europaeus                  8.900 [ 8.900, 8.900]
 Condylura_cristata                   2.500 [ 2.500, 2.500]
 Rousettus_aegyptiacus                 18.5 [  18.5,  18.5]
 Pteropus_vampyrus                     21.6 [  21.6,  21.6]
 Rhinolophus_sinicus                   24.3 [  24.3,  24.3]
 Hipposideros_armiger                  13.0 [  13.0,  13.0]
 Miniopterus_natalensis                22.0 [  22.0,  22.0]
 Myotis_lucifugus                      21.7 [  21.7,  21.7]
 Eptesicus_fuscus                      20.0 [  20.0,  20.0]
 Equus_caballus                        38.3 [  38.3,  38.3]
 Ceratotherium_simum_simum             45.0 [  45.0,  45.0]
 Vicugna_pacos                         28.7 [  28.7,  28.7]
 Camelus_bactrianus                    31.9 [  31.9,  31.9]
 Sus_scrofa                            18.6 [  18.6,  18.6]
 Odocoileus_virginianus_texanus        22.5 [  22.5,  22.5]
 Bos_taurus                            24.9 [  24.9,  24.9]
 Ovis_aries                            20.0 [  20.0,  20.0]
 Capra_hircus                          20.7 [  20.7,  20.7]
 Physeter_catodon                      77.0 [  77.0,  77.0]
 Lipotes_vexillifer                    24.0 [  24.0,  24.0]
 Tursiops_truncatus                    51.6 [  51.6,  51.6]
 Orcinus_orca                          90.0 [  90.0,  90.0]
 Delphinapterus_leucas                 40.0 [  40.0,  40.0]
 Balaenoptera_acutorostrata_scammoni   84.0 [  84.0,  84.0]
 Canis_familiaris                      19.3 [  19.3,  19.3]
 Ursus_maritimus                       39.2 [  39.2,  39.2]
 Ailuropoda_melanoleuca                36.8 [  36.8,  36.8]
 Mustela_putorius                     9.650 [ 9.650, 9.650]
 Enhydra_lutris_kenyoni                27.0 [  27.0,  27.0]
 Panthera_pardus                       27.2 [  27.2,  27.2]
 Acinonyx_jubatus                      20.5 [  20.5,  20.5]
 Felis_catus                           19.1 [  19.1,  19.1]
 Tupaia_belangeri                      11.8 [  11.8,  11.8]
 Oryctolagus_cuniculus                9.000 [ 9.000, 9.000]
 Ochotona_princeps                    8.200 [ 8.200, 8.200]
 Marmota_marmota_marmota               15.4 [  15.4,  15.4]
 Ictidomys_tridecemlineatus           7.900 [ 7.900, 7.900]
 Octodon_degus                         14.0 [  14.0,  14.0]
 Chinchilla_lanigera                   17.2 [  17.2,  17.2]
 Cavia_porcellus                      8.100 [ 8.100, 8.100]
 Heterocephalus_glaber                 31.0 [  31.0,  31.0]
 Jaculus_jaculus                      6.400 [ 6.400, 6.400]
 Rattus_norvegicus                    4.425 [ 4.425, 4.425]
 Mus_musculus                         3.933 [ 3.933, 3.933]
 Meriones_unguiculatus                6.100 [ 6.100, 6.100]
 Peromyscus_maniculatus               6.675 [ 6.675, 6.675]
 Microtus_ochrogaster                 4.520 [ 4.520, 4.520]
 Mesocricetus_auratus                 4.150 [ 4.150, 4.150]
 Dipodomys_ordii                      9.840 [ 9.840, 9.840]
 Castor_canadensis                     23.4 [  23.4,  23.4]
 Otolemur_garnettii                    21.3 [  21.3,  21.3]
 Propithecus_coquereli                 24.0 [  24.0,  24.0]
 Microcebus_murinus                    18.2 [  18.2,  18.2]
 Nomascus_leucogenys                   45.1 [  45.1,  45.1]
 Pongo_abelii                          59.0 [  59.0,  59.0]
 Pan_troglodytes                       57.2 [  57.2,  57.2]
 Homo_sapiens                         122.5 [ 122.5, 122.5]
 Gorilla_gorilla                       60.1 [  60.1,  60.1]
 Chlorocebus_sabaeus                   30.8 [  30.8,  30.8]
 Macaca_mulatta                        33.0 [  33.0,  33.0]
 Papio_anubis                          37.5 [  37.5,  37.5]
 Mandrillus_leucophaeus                39.5 [  39.5,  39.5]
 Cercocebus_atys                       38.5 [  38.5,  38.5]
 Colobus_angolensis                    34.7 [  34.7,  34.7]
 Saimiri_boliviensis                   30.3 [  30.3,  30.3]
 Cebus_capucinus                       47.1 [  47.1,  47.1]
 Callithrix_jacchus                    18.9 [  18.9,  18.9]
 Aotus_nancymaae                       29.0 [  29.0,  29.0]
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Figure 11.10: Maximum longevity estimation in mammals
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11.3. Empirical data in mammals

 Trichechus_manatus_latirostris         4e5 [   4e5,   4e5]
 Procavia_capensis                   3600.0 [3600.0,3600.0]
 Loxodonta_africana                   4.8e6 [ 4.8e6, 4.8e6]
 Orycteropus_afer_afer                  6e4 [   6e4,   6e4]
 Elephantulus_edwardii                 50.5 [  50.5,  50.5]
 Echinops_telfairi                    180.0 [ 180.0, 180.0]
 Dasypus_novemcinctus                3487.5 [3487.5,3487.5]
 Choloepus_hoffmanni                 6250.0 [6250.0,6250.0]
 Sorex_araneus                        7.469 [ 7.469, 7.469]
 Erinaceus_europaeus                  734.5 [ 734.5, 734.5]
 Condylura_cristata                    55.3 [  55.3,  55.3]
 Rousettus_aegyptiacus                112.1 [ 112.1, 112.1]
 Pteropus_vampyrus                    564.4 [ 564.4, 564.4]
 Rhinolophus_sinicus                   11.4 [  11.4,  11.4]
 Hipposideros_armiger                 7.000 [ 7.000, 7.000]
 Miniopterus_natalensis                13.0 [  13.0,  13.0]
 Myotis_lucifugus                      10.6 [  10.6,  10.6]
 Eptesicus_fuscus                      18.1 [  18.1,  18.1]
 Equus_caballus                       2.8e5 [ 2.8e5, 2.8e5]
 Ceratotherium_simum_simum            2.2e6 [ 2.2e6, 2.2e6]
 Vicugna_pacos                        5.6e4 [ 5.6e4, 5.6e4]
 Camelus_bactrianus                   4.5e5 [ 4.5e5, 4.5e5]
 Sus_scrofa                           7.9e4 [ 7.9e4, 7.9e4]
 Odocoileus_virginianus_texanus       7.2e4 [ 7.2e4, 7.2e4]
 Bos_taurus                           7.5e5 [ 7.5e5, 7.5e5]
 Ovis_aries                           9.6e4 [ 9.6e4, 9.6e4]
 Capra_hircus                         6.7e4 [ 6.7e4, 6.7e4]
 Physeter_catodon                     2.8e7 [ 2.8e7, 2.8e7]
 Lipotes_vexillifer                   8.3e4 [ 8.3e4, 8.3e4]
 Tursiops_truncatus                     2e5 [   2e5,   2e5]
 Orcinus_orca                           4e6 [   4e6,   4e6]
 Delphinapterus_leucas                1.4e6 [ 1.4e6, 1.4e6]
 Balaenoptera_acutorostrata_scammoni    5e7 [   5e7,   5e7]
 Canis_familiaris                     1.9e4 [ 1.9e4, 1.9e4]
 Ursus_maritimus                      2.5e5 [ 2.5e5, 2.5e5]
 Ailuropoda_melanoleuca               1.2e5 [ 1.2e5, 1.2e5]
 Mustela_putorius                     580.3 [ 580.3, 580.3]
 Enhydra_lutris_kenyoni               2.6e4 [ 2.6e4, 2.6e4]
 Panthera_pardus                      1.1e5 [ 1.1e5, 1.1e5]
 Acinonyx_jubatus                     5.3e4 [ 5.3e4, 5.3e4]
 Felis_catus                         4629.2 [4629.2,4629.2]
 Tupaia_belangeri                     164.1 [ 164.1, 164.1]
 Oryctolagus_cuniculus               1800.0 [1800.0,1800.0]
 Ochotona_princeps                    152.9 [ 152.9, 152.9]
 Marmota_marmota_marmota             4558.3 [4558.3,4558.3]
 Ictidomys_tridecemlineatus           172.7 [ 172.7, 172.7]
 Octodon_degus                        235.0 [ 235.0, 235.0]
 Chinchilla_lanigera                  642.5 [ 642.5, 642.5]
 Cavia_porcellus                      568.8 [ 568.8, 568.8]
 Heterocephalus_glaber                 35.0 [  35.0,  35.0]
 Jaculus_jaculus                       94.5 [  94.5,  94.5]
 Rattus_norvegicus                    186.3 [ 186.3, 186.3]
 Mus_musculus                          12.5 [  12.5,  12.5]
 Meriones_unguiculatus                 96.6 [  96.6,  96.6]
 Peromyscus_maniculatus                25.7 [  25.7,  25.7]
 Microtus_ochrogaster                  38.9 [  38.9,  38.9]
 Mesocricetus_auratus                 139.5 [ 139.5, 139.5]
 Dipodomys_ordii                       74.5 [  74.5,  74.5]
 Castor_canadensis                    2.3e4 [ 2.3e4, 2.3e4]
 Otolemur_garnettii                  1197.2 [1197.2,1197.2]
 Propithecus_coquereli               4698.3 [4698.3,4698.3]
 Microcebus_murinus                    60.1 [  60.1,  60.1]
 Nomascus_leucogenys                 6426.3 [6426.3,6426.3]
 Pongo_abelii                         6.4e4 [ 6.4e4, 6.4e4]
 Pan_troglodytes                      4.2e4 [ 4.2e4, 4.2e4]
 Homo_sapiens                         6.2e4 [ 6.2e4, 6.2e4]
 Gorilla_gorilla                      1.4e5 [ 1.4e5, 1.4e5]
 Chlorocebus_sabaeus                 5620.0 [5620.0,5620.0]
 Macaca_mulatta                      7958.9 [7958.9,7958.9]
 Papio_anubis                         1.8e4 [ 1.8e4, 1.8e4]
 Mandrillus_leucophaeus               2.1e4 [ 2.1e4, 2.1e4]
 Cercocebus_atys                     8986.7 [8986.7,8986.7]
 Colobus_angolensis                  9366.6 [9366.6,9366.6]
 Saimiri_boliviensis                  776.2 [ 776.2, 776.2]
 Cebus_capucinus                     2558.3 [2558.3,2558.3]
 Callithrix_jacchus                   311.6 [ 311.6, 311.6]
 Aotus_nancymaae                      944.2 [ 944.2, 944.2]
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Figure 11.11: Adult weight estimation in mammals
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11.3. Empirical data in mammals

 Trichechus_manatus_latirostris      1187.0 [1187.0,1187.0]
 Procavia_capensis                    500.0 [ 500.0, 500.0]
 Loxodonta_africana                  4018.0 [4018.0,4018.0]
 Orycteropus_afer_afer                730.0 [ 730.0, 730.0]
 Elephantulus_edwardii                192.5 [ 192.5, 192.5]
 Echinops_telfairi                    365.0 [ 365.0, 365.0]
 Dasypus_novemcinctus                 319.5 [ 319.5, 319.5]
 Choloepus_hoffmanni                 1004.5 [1004.5,1004.5]
 Sorex_araneus                        268.1 [ 268.1, 268.1]
 Erinaceus_europaeus                  233.0 [ 233.0, 233.0]
 Condylura_cristata                   304.0 [ 304.0, 304.0]
 Rousettus_aegyptiacus                257.5 [ 257.5, 257.5]
 Pteropus_vampyrus                    481.7 [ 481.7, 481.7]
 Rhinolophus_sinicus                  695.2 [ 695.2, 695.2]
 Hipposideros_armiger                 563.0 [ 563.0, 563.0]
 Miniopterus_natalensis               577.0 [ 577.0, 577.0]
 Myotis_lucifugus                     370.4 [ 370.4, 370.4]
 Eptesicus_fuscus                     547.0 [ 547.0, 547.0]
 Equus_caballus                       994.3 [ 994.3, 994.3]
 Ceratotherium_simum_simum           1643.0 [1643.0,1643.0]
 Vicugna_pacos                        581.0 [ 581.0, 581.0]
 Camelus_bactrianus                  1186.5 [1186.5,1186.5]
 Sus_scrofa                           436.0 [ 436.0, 436.0]
 Odocoileus_virginianus_texanus       393.5 [ 393.5, 393.5]
 Bos_taurus                           651.5 [ 651.5, 651.5]
 Ovis_aries                           585.5 [ 585.5, 585.5]
 Capra_hircus                         703.0 [ 703.0, 703.0]
 Physeter_catodon                    2922.0 [2922.0,2922.0]
 Lipotes_vexillifer                  2920.0 [2920.0,2920.0]
 Tursiops_truncatus                  2831.0 [2831.0,2831.0]
 Orcinus_orca                        3780.0 [3780.0,3780.0]
 Delphinapterus_leucas               1644.0 [1644.0,1644.0]
 Balaenoptera_acutorostrata_scammoni 2804.8 [2804.8,2804.8]
 Canis_familiaris                     395.0 [ 395.0, 395.0]
 Ursus_maritimus                     1355.0 [1355.0,1355.0]
 Ailuropoda_melanoleuca              2192.0 [2192.0,2192.0]
 Mustela_putorius                     242.3 [ 242.3, 242.3]
 Enhydra_lutris_kenyoni               974.0 [ 974.0, 974.0]
 Panthera_pardus                     1007.5 [1007.5,1007.5]
 Acinonyx_jubatus                     456.0 [ 456.0, 456.0]
 Felis_catus                          335.3 [ 335.3, 335.3]
 Tupaia_belangeri                      90.0 [  90.0,  90.0]
 Oryctolagus_cuniculus                730.0 [ 730.0, 730.0]
 Ochotona_princeps                    247.7 [ 247.7, 247.7]
 Marmota_marmota_marmota              866.2 [ 866.2, 866.2]
 Ictidomys_tridecemlineatus           354.0 [ 354.0, 354.0]
 Octodon_degus                        182.0 [ 182.0, 182.0]
 Chinchilla_lanigera                  240.0 [ 240.0, 240.0]
 Cavia_porcellus                       67.3 [  67.3,  67.3]
 Heterocephalus_glaber                228.0 [ 228.0, 228.0]
 Jaculus_jaculus                      327.0 [ 327.0, 327.0]
 Rattus_norvegicus                     91.5 [  91.5,  91.5]
 Mus_musculus                          51.0 [  51.0,  51.0]
 Meriones_unguiculatus                 74.3 [  74.3,  74.3]
 Peromyscus_maniculatus                63.6 [  63.6,  63.6]
 Microtus_ochrogaster                  54.2 [  54.2,  54.2]
 Mesocricetus_auratus                  44.5 [  44.5,  44.5]
 Dipodomys_ordii                       83.7 [  83.7,  83.7]
 Castor_canadensis                    639.0 [ 639.0, 639.0]
 Otolemur_garnettii                   547.5 [ 547.5, 547.5]
 Propithecus_coquereli               1246.7 [1246.7,1246.7]
 Microcebus_murinus                   243.0 [ 243.0, 243.0]
 Nomascus_leucogenys                 3080.0 [3080.0,3080.0]
 Pongo_abelii                        2555.0 [2555.0,2555.0]
 Pan_troglodytes                     3285.0 [3285.0,3285.0]
 Homo_sapiens                        4745.0 [4745.0,4745.0]
 Gorilla_gorilla                     2829.0 [2829.0,2829.0]
 Chlorocebus_sabaeus                 1034.0 [1034.0,1034.0]
 Macaca_mulatta                      1378.3 [1378.3,1378.3]
 Papio_anubis                        1514.0 [1514.0,1514.0]
 Mandrillus_leucophaeus              1231.5 [1231.5,1231.5]
 Cercocebus_atys                     1620.0 [1620.0,1620.0]
 Colobus_angolensis                  1551.5 [1551.5,1551.5]
 Saimiri_boliviensis                 1003.0 [1003.0,1003.0]
 Cebus_capucinus                     1668.3 [1668.3,1668.3]
 Callithrix_jacchus                   477.0 [ 477.0, 477.0]
 Aotus_nancymaae                      821.0 [ 821.0, 821.0]
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Figure 11.12: Female maturity estimation in mammals

11.3.3 Repeatability of experiments

4 independent inferences were performed on a randomly chosen set of 18 coding sequences

(CDS) out of 226. Obtained with the mechanistic inference model developed in this

paper of site-specific amino-acid fitness profiles and log-Brownian process for Ne, µ and

life-history traits. Each plot is a correlation between a pair of experiments for a given

parameter. For each node (or branch) of the tree, the mean posterior of the parameter

over the MCMC (after burn-in) is represented in blue dots, green solid lines are the 90%

confidence interval of the MCMC. Solid red line is the regression line between replicates.
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11.3. Empirical data in mammals
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Figure 11.13: Repeatability of branch length (l) estimation in mammals
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Figure 11.14: Repeatability of effective population size (Ne) estimation in mammals
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Figure 11.15: Repeatability of mutation rate (µ) estimation in mammals
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Figure 11.16: Repeatability of branch time (∆T ) estimation in mammals
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11.3. Empirical data in mammals

Rep. 1 Rep. 2 Rep. 3 Rep. 4 Taxon

0.568 0.469 0.489 0.548 Trichechus manatus latirostris
0.506 0.706 0.615 0.65 Procavia capensis
0.696 0.799 0.532 0.595 Loxodonta africana
0.777 0.812 0.651 0.717 Orycteropus afer afer
0.969 0.904 0.68 0.949 Elephantulus edwardii
0.463 0.673 0.56 0.586 Echinops telfairi
0.391 0.945 0.51 0.639 Dasypus novemcinctus
0.628 0.621 0.52 0.376 Choloepus hoffmanni
0.871 1.84 0.745 0.819 Sorex araneus
0.892 0.833 1.12 1.06 Erinaceus europaeus
0.942 1.15 1.1 0.916 Condylura cristata
0.784 0.679 0.488 0.535 Rousettus aegyptiacus
0.94 0.838 0.662 0.604 Pteropus vampyrus
0.967 0.823 0.586 0.636 Rhinolophus sinicus
0.733 0.98 0.876 0.746 Hipposideros armiger
0.809 0.934 0.742 0.738 Miniopterus natalensis
0.741 0.504 0.442 0.53 Myotis lucifugus
0.838 0.849 0.588 0.753 Eptesicus fuscus
1.16 0.573 0.846 0.711 Equus caballus
0.597 0.524 0.438 0.402 Ceratotherium simum simum
0.53 0.399 0.438 0.356 Vicugna pacos
0.716 0.68 0.418 0.432 Camelus bactrianus
0.552 1.3 0.531 0.43 Sus scrofa
0.896 0.861 0.761 0.568 Odocoileus virginianus texanus
0.645 0.844 0.583 0.69 Bos taurus
0.815 0.649 0.747 0.473 Ovis aries
0.85 0.723 0.742 0.538 Capra hircus
0.283 0.264 0.261 0.342 Physeter catodon
0.543 0.517 0.345 0.486 Lipotes vexillifer
0.356 0.484 0.2 0.549 Tursiops truncatus
0.29 0.376 0.182 0.437 Orcinus orca
0.411 0.491 0.356 0.488 Delphinapterus leucas
0.325 0.366 0.211 0.337 Balaenoptera acutorostrata scammoni
1.14 1.35 1 0.842 Canis familiaris
0.457 0.766 0.615 0.461 Ursus maritimus
0.756 0.716 0.569 0.53 Ailuropoda melanoleuca
1.37 1.04 1.31 0.795 Mustela putorius
0.816 0.557 0.7 0.657 Enhydra lutris kenyoni
0.753 0.881 0.683 0.556 Panthera pardus
0.584 0.61 0.381 0.561 Acinonyx jubatus
0.829 0.761 0.655 0.602 Felis catus
0.99 0.738 1.04 0.627 Tupaia belangeri
1.05 1.46 1.17 0.897 Oryctolagus cuniculus
0.756 0.751 0.514 0.902 Ochotona princeps
0.884 0.746 0.541 0.862 Marmota marmota marmota
0.962 0.933 0.773 0.977 Ictidomys tridecemlineatus
0.815 0.733 0.688 0.874 Octodon degus
0.855 0.979 0.691 0.645 Chinchilla lanigera
0.803 1.08 0.684 0.898 Cavia porcellus
0.763 0.76 0.702 0.518 Heterocephalus glaber
0.91 0.655 0.449 0.865 Jaculus jaculus
0.783 0.956 0.91 0.883 Rattus norvegicus
1.21 0.963 1.01 0.839 Mus musculus
0.858 0.856 0.818 0.828 Meriones unguiculatus
1.07 1.11 0.877 0.757 Peromyscus maniculatus
0.949 1.16 1.01 1.06 Microtus ochrogaster
0.892 0.949 1.12 0.788 Mesocricetus auratus
0.842 1.07 1.01 0.695 Dipodomys ordii
0.861 0.583 0.494 0.575 Castor canadensis
1.07 1.13 0.812 0.821 Otolemur garnettii
1 0.945 0.741 0.418 Propithecus coquereli
1.81 0.98 1.67 0.985 Microcebus murinus
0.813 0.512 0.399 0.582 Nomascus leucogenys
0.494 0.71 0.568 0.475 Pongo abelii
0.532 0.713 0.381 0.513 Pan troglodytes
0.447 0.508 0.261 0.433 Homo sapiens
0.525 0.611 0.493 0.528 Gorilla gorilla
0.819 0.754 0.782 0.71 Chlorocebus sabaeus
0.812 0.816 0.538 0.679 Macaca mulatta
0.84 0.8 0.555 0.676 Papio anubis
0.773 0.813 0.501 0.628 Mandrillus leucophaeus
0.834 0.823 0.221 0.631 Cercocebus atys
0.551 0.749 0.599 0.706 Colobus angolensis
1.04 0.93 0.466 0.859 Saimiri boliviensis
0.846 0.519 0.444 0.667 Cebus capucinus
0.687 0.658 0.659 0.805 Callithrix jacchus
0.921 0.532 0.614 0.794 Aotus nancymaae
6.38 6.96 9.19 3.16 Maximum range

Table 11.7: Repeatability of effective population size (Ne) estimation in mammals, for
the extant taxa.

170



11.3. Empirical data in mammals

Rep. 1 Rep. 2 Rep. 3 Rep. 4 Taxon

0.0436 0.039 0.0645 0.0422 Trichechus manatus latirostris
0.226 0.281 0.369 0.229 Procavia capensis
0.0455 0.0656 0.0435 0.0342 Loxodonta africana
0.0909 0.0995 0.144 0.0862 Orycteropus afer afer
0.35 0.614 0.434 0.457 Elephantulus edwardii
0.402 0.478 0.684 0.848 Echinops telfairi
0.119 0.194 0.104 0.0861 Dasypus novemcinctus
0.0764 0.0713 0.109 0.0915 Choloepus hoffmanni
0.492 0.468 0.64 1.01 Sorex araneus
0.22 0.521 0.281 0.317 Erinaceus europaeus
0.235 0.228 0.282 0.352 Condylura cristata
0.161 0.173 0.186 0.266 Rousettus aegyptiacus
0.08 0.0942 0.0565 0.103 Pteropus vampyrus
0.152 0.222 0.157 0.158 Rhinolophus sinicus
0.146 0.232 0.208 0.164 Hipposideros armiger
0.154 0.166 0.135 0.23 Miniopterus natalensis
0.14 0.164 0.174 0.158 Myotis lucifugus
0.166 0.154 0.166 0.217 Eptesicus fuscus
0.0428 0.0657 0.0345 0.0404 Equus caballus
0.0217 0.0368 0.0158 0.017 Ceratotherium simum simum
0.0431 0.0512 0.0335 0.0788 Vicugna pacos
0.027 0.0244 0.0357 0.0244 Camelus bactrianus
0.0859 0.0431 0.0402 0.0497 Sus scrofa
0.0818 0.0677 0.0525 0.0805 Odocoileus virginianus texanus
0.057 0.0696 0.0575 0.0424 Bos taurus
0.0753 0.0883 0.0886 0.101 Ovis aries
0.0586 0.0764 0.0653 0.0641 Capra hircus
0.0234 0.0291 0.0161 0.0181 Physeter catodon
0.0355 0.0534 0.0373 0.038 Lipotes vexillifer
0.0524 0.0474 0.0481 0.0393 Tursiops truncatus
0.0292 0.0254 0.0184 0.0171 Orcinus orca
0.0331 0.0347 0.019 0.0318 Delphinapterus leucas
0.0141 0.00903 0.00772 0.0067 Balaenoptera acutorostrata scammoni
0.0505 0.0795 0.0329 0.065 Canis familiaris
0.0518 0.0158 0.0165 0.0256 Ursus maritimus
0.0255 0.0517 0.0513 0.0368 Ailuropoda melanoleuca
0.112 0.0774 0.101 0.163 Mustela putorius
0.0479 0.0513 0.0456 0.0528 Enhydra lutris kenyoni
0.0218 0.0175 0.0144 0.0194 Panthera pardus
0.0426 0.0261 0.039 0.0486 Acinonyx jubatus
0.0465 0.0235 0.038 0.038 Felis catus
0.0703 0.0841 0.0683 0.127 Tupaia belangeri
0.0829 0.127 0.107 0.112 Oryctolagus cuniculus
0.336 0.364 0.28 0.398 Ochotona princeps
0.0429 0.0489 0.0222 0.0388 Marmota marmota marmota
0.101 0.102 0.131 0.136 Ictidomys tridecemlineatus
0.352 0.5 0.416 0.447 Octodon degus
0.158 0.143 0.195 0.183 Chinchilla lanigera
0.297 0.39 0.357 0.283 Cavia porcellus
0.125 0.114 0.069 0.116 Heterocephalus glaber
0.136 0.193 0.139 0.18 Jaculus jaculus
0.362 0.466 0.366 0.401 Rattus norvegicus
0.378 0.383 0.409 0.451 Mus musculus
0.291 0.256 0.271 0.443 Meriones unguiculatus
0.273 0.186 0.224 0.343 Peromyscus maniculatus
0.435 0.633 0.473 0.528 Microtus ochrogaster
0.362 0.561 0.541 0.538 Mesocricetus auratus
0.225 0.221 0.181 0.336 Dipodomys ordii
0.0708 0.0903 0.0716 0.0659 Castor canadensis
0.103 0.197 0.0849 0.151 Otolemur garnettii
0.0403 0.0785 0.0421 0.0504 Propithecus coquereli
0.101 0.0509 0.0524 0.144 Microcebus murinus
0.0229 0.0197 0.0232 0.0201 Nomascus leucogenys
0.0231 0.0187 0.0112 0.0145 Pongo abelii
0.0239 0.0992 0.0197 0.0292 Pan troglodytes
0.0154 0.0131 0.0102 0.0131 Homo sapiens
0.0222 0.0158 0.00956 0.0145 Gorilla gorilla
0.0392 0.0311 0.018 0.0295 Chlorocebus sabaeus
0.0314 0.029 0.0164 0.0242 Macaca mulatta
0.0211 0.0224 0.0137 0.0201 Papio anubis
0.0245 0.0231 0.0138 0.0232 Mandrillus leucophaeus
0.0269 0.0343 0.209 0.0233 Cercocebus atys
0.0291 0.0259 0.014 0.0208 Colobus angolensis
0.0581 0.0503 0.0673 0.117 Saimiri boliviensis
0.0445 0.0498 0.038 0.039 Cebus capucinus
0.124 0.0856 0.0996 0.114 Callithrix jacchus
0.0472 0.0469 0.0366 0.0677 Aotus nancymaae
34.9 70.1 88.6 151 Maximum range

Table 11.8: Repeatability of mutation rate (µ) estimation in mammals, for the extant
taxa.
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11.3. Empirical data in mammals

Correlation (ρ) Ne µ Maximum longevity Adult weight Female maturity

Ne - 0.439∗∗ −0.523∗∗ −0.544∗∗ −0.47∗∗

µ - - −0.832∗∗ −0.835∗∗ −0.833∗∗

Maximum longevity - - - 0.827∗∗ 0.845∗∗

Adult weight - - - - 0.809∗∗

Female maturity - - - - -

Correlation (ρ) Ne µ Maximum longevity Adult weight Female maturity

Ne - 0.51∗∗ −0.591∗∗ −0.496∗∗ −0.465∗∗

µ - - −0.771∗∗ −0.722∗∗ −0.679∗∗

Maximum longevity - - - 0.802∗∗ 0.812∗∗

Adult weight - - - - 0.764∗∗

Female maturity - - - - -

Correlation (ρ) Ne µ Maximum longevity Adult weight Female maturity

Ne - 0.497∗∗ −0.643∗∗ −0.577∗∗ −0.627∗∗

µ - - −0.803∗∗ −0.795∗∗ −0.739∗∗

Maximum longevity - - - 0.836∗∗ 0.843∗∗

Adult weight - - - - 0.805∗∗

Female maturity - - - - -

Correlation (ρ) Ne µ Maximum longevity Adult weight Female maturity

Ne - 0.707∗∗ −0.687∗∗ −0.638∗∗ −0.611∗∗

µ - - −0.85∗∗ −0.865∗∗ −0.83∗∗

Maximum longevity - - - 0.839∗∗ 0.851∗∗

Adult weight - - - - 0.817∗∗

Female maturity - - - - -

Table 11.9: In all four replicates, covariance coefficient between effective population
size (Ne), mutation rate per site per unit of time (µ), and life-history traits (maximum
longevity, adult weight and female maturity) were computed in placental mammals. As-
terisks indicate strength of support (∗pp > 0.95, ∗∗pp > 0.975).
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11.3. Empirical data in mammals

11.3.4 Amino-acid preferences entropy

Experiment 〈Ω〉 (branch Ne) 〈Ω〉 (constant Ne)

Mammals 18 CDS, replicate 1, Chain 1 1.07 ± 0.10 1.14 ± 0.10

Mammals 18 CDS, replicate 2, Chain 2 1.07 ± 0.09 1.14 ± 0.10

Mammals 18 CDS, replicate 2, Chain 1 1.06 ± 0.10 1.12 ± 0.09

Mammals 18 CDS, replicate 2, Chain 2 1.06 ± 0.09 1.11 ± 0.10

Mammals 18 CDS, replicate 3, Chain 1 1.08 ± 0.12 1.15 ± 0.11

Mammals 18 CDS, replicate 3, Chain 2 1.04 ± 0.10 1.18 ± 0.11

Mammals 18 CDS, replicate 4, Chain 1 0.94 ± 0.11 1.02 ± 0.12

Mammals 18 CDS, replicate 4, Chain 2 0.89 ± 0.11 1.02 ± 0.11

Mammals 36 CDS, replicate 1, Chain 1 1.02 ± 0.06 1.07 ± 0.10

Mammals 36 CDS, replicate 1, Chain 2 0.91 ± 0.07 1.03 ± 0.07

Mammals 36 CDS, replicate 2, Chain 1 0.92 ± 0.09 0.96 ± 0.09

Mammals 36 CDS, replicate 2, Chain 2 1.01 ± 0.09 1.02 ± 0.11

Mammals 36 CDS, replicate 3, Chain 1 0.93 ± 0.00 1.05 ± 0.09

Mammals 36 CDS, replicate 3, Chain 2 1.02 ± 0.07 1.05 ± 0.11

Mammals 36 CDS, replicate 4, Chain 1 1.04 ± 0.07 1.10 ± 0.08

Mammals 36 CDS, replicate 4, Chain 2 1.03 ± 0.10 1.08 ± 0.08

Mammals 36 CDS, replicate 5, Chain 1 1.03 ± 0.10 1.03 ± 0.08

Mammals 36 CDS, replicate 5, Chain 2 0.99 ± 0.10 1.04 ± 0.08

Mammals 36 CDS, replicate 6, Chain 1 1.05 ± 0.10 1.10 ± 0.08

Mammals 36 CDS, replicate 6, Chain 2 0.97 ± 0.11 1.10 ± 0.10

Table 11.10: Estimated amino-acid entropy in mammals. Obtained with the mechanis-
tic inference model developed in this paper of site-specific amino-acid fitness profiles and
log-Brownian process for Ne, µ and life-history traits (in the left column), or under the
assumption of constant Ne (in the right column).

11.3.5 Traits estimation with branch ω (replicate 1, chain 1)

Obtained with the phenomenological inference model of log-Brownian process for the µ

and the relative non-synonymous substitution rate (ω), as in Lartillot and Poujol (2011).
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11.3. Empirical data in mammals

 Trichechus_manatus_latirostris       0.154 [ 0.110, 0.278]
 Procavia_capensis                    0.154 [ 0.113, 0.269]
 Loxodonta_africana                   0.154 [ 0.108, 0.296]
 Orycteropus_afer_afer                0.114 [ 0.082, 0.208]
 Elephantulus_edwardii                0.073 [ 0.052, 0.147]
 Echinops_telfairi                    0.174 [ 0.129, 0.335]
 Dasypus_novemcinctus                 0.205 [ 0.147, 0.381]
 Choloepus_hoffmanni                  0.151 [ 0.104, 0.309]
 Sorex_araneus                        0.075 [ 0.052, 0.159]
 Erinaceus_europaeus                  0.076 [ 0.051, 0.158]
 Condylura_cristata                   0.065 [ 0.045, 0.133]
 Rousettus_aegyptiacus                0.105 [ 0.076, 0.218]
 Pteropus_vampyrus                    0.098 [ 0.070, 0.210]
 Rhinolophus_sinicus                  0.123 [ 0.088, 0.227]
 Hipposideros_armiger                 0.127 [ 0.091, 0.266]
 Miniopterus_natalensis               0.166 [ 0.122, 0.308]
 Myotis_lucifugus                     0.155 [ 0.117, 0.275]
 Eptesicus_fuscus                     0.144 [ 0.107, 0.255]
 Equus_caballus                       0.114 [ 0.078, 0.274]
 Ceratotherium_simum_simum            0.156 [ 0.108, 0.458]
 Vicugna_pacos                        0.137 [ 0.090, 0.420]
 Camelus_bactrianus                   0.139 [ 0.093, 0.338]
 Sus_scrofa                           0.125 [ 0.092, 0.224]
 Odocoileus_virginianus_texanus       0.109 [ 0.078, 0.220]
 Bos_taurus                           0.121 [ 0.086, 0.238]
 Ovis_aries                           0.102 [ 0.075, 0.195]
 Capra_hircus                         0.100 [ 0.072, 0.214]
 Physeter_catodon                     0.299 [ 0.208, 0.678]
 Lipotes_vexillifer                   0.176 [ 0.119, 0.451]
 Tursiops_truncatus                   0.287 [ 0.207, 0.563]
 Orcinus_orca                         0.339 [ 0.244, 0.737]
 Delphinapterus_leucas                0.255 [ 0.183, 0.614]
 Balaenoptera_acutorostrata_scammoni  0.271 [ 0.188, 0.653]
 Canis_familiaris                     0.071 [ 0.048, 0.148]
 Ursus_maritimus                      0.151 [ 0.105, 0.308]
 Ailuropoda_melanoleuca               0.123 [ 0.084, 0.254]
 Mustela_putorius                     0.085 [ 0.060, 0.199]
 Enhydra_lutris_kenyoni               0.125 [ 0.089, 0.284]
 Panthera_pardus                      0.107 [ 0.072, 0.222]
 Acinonyx_jubatus                     0.113 [ 0.079, 0.219]
 Felis_catus                          0.099 [ 0.068, 0.221]
 Tupaia_belangeri                     0.084 [ 0.056, 0.200]
 Oryctolagus_cuniculus                0.063 [ 0.041, 0.140]
 Ochotona_princeps                    0.066 [ 0.046, 0.146]
 Marmota_marmota_marmota              0.096 [ 0.067, 0.196]
 Ictidomys_tridecemlineatus           0.088 [ 0.061, 0.202]
 Octodon_degus                        0.086 [ 0.064, 0.150]
 Chinchilla_lanigera                  0.097 [ 0.072, 0.185]
 Cavia_porcellus                      0.090 [ 0.066, 0.162]
 Heterocephalus_glaber                0.137 [ 0.100, 0.243]
 Jaculus_jaculus                      0.063 [ 0.045, 0.131]
 Rattus_norvegicus                    0.093 [ 0.071, 0.166]
 Mus_musculus                         0.072 [ 0.055, 0.127]
 Meriones_unguiculatus                0.091 [ 0.069, 0.165]
 Peromyscus_maniculatus               0.106 [ 0.080, 0.204]
 Microtus_ochrogaster                 0.091 [ 0.070, 0.160]
 Mesocricetus_auratus                 0.103 [ 0.078, 0.191]
 Dipodomys_ordii                      0.076 [ 0.056, 0.134]
 Castor_canadensis                    0.088 [ 0.062, 0.172]
 Otolemur_garnettii                   0.091 [ 0.064, 0.187]
 Propithecus_coquereli                0.077 [ 0.049, 0.201]
 Microcebus_murinus                   0.067 [ 0.044, 0.185]
 Nomascus_leucogenys                  0.137 [ 0.091, 0.447]
 Pongo_abelii                         0.180 [ 0.121, 0.497]
 Pan_troglodytes                      0.173 [ 0.117, 0.388]
 Homo_sapiens                         0.228 [ 0.156, 0.668]
 Gorilla_gorilla                      0.180 [ 0.124, 0.423]
 Chlorocebus_sabaeus                  0.101 [ 0.067, 0.245]
 Macaca_mulatta                       0.118 [ 0.080, 0.272]
 Papio_anubis                         0.107 [ 0.072, 0.257]
 Mandrillus_leucophaeus               0.112 [ 0.077, 0.253]
 Cercocebus_atys                      0.111 [ 0.076, 0.245]
 Colobus_angolensis                   0.124 [ 0.084, 0.322]
 Saimiri_boliviensis                  0.094 [ 0.064, 0.202]
 Cebus_capucinus                      0.115 [ 0.076, 0.242]
 Callithrix_jacchus                   0.101 [ 0.069, 0.234]
 Aotus_nancymaae                      0.107 [ 0.073, 0.278]

0.3

0.10 0.200.10 0.20
3×10−1

Non-synonymous relative substitution rate ( )

Figure 11.17: Non-synonymous substitution rate (ω) estimation in mammals

Correlation (ρ) ω µ Maximum longevity Adult weight Female maturity

ω - −0.374∗∗ 0.544∗∗ 0.43∗∗ 0.433∗∗

µ - - −0.807∗∗ −0.781∗∗ −0.824∗∗

Maximum longevity - - - 0.801∗∗ 0.83∗∗

Adult weight - - - - 0.785∗∗

Female maturity - - - - -

Table 11.11: Correlation coefficient between non-synonymous substitution rate (ω), mu-
tation rate per site per unit of time (µ), and life-history traits (maximum longevity, adult
weight and female maturity) were computed in placental mammals. Asterisks indicate
strength of support (∗pp > 0.95, ∗∗pp > 0.975).
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11.4. Empirical data in Isopods

Covariance (Σ) ω µ Maximum longevity Adult weight Female maturity

ω 0.215∗∗ −0.236∗∗ 0.231∗∗ 0.828∗∗ 0.242∗∗

µ - 1.82∗∗ −0.998∗∗ −4.38∗∗ −1.34∗∗

Maximum longevity - - 0.837∗∗ 3.04∗∗ 0.917∗∗

Adult weight - - - 17.1∗∗ 3.93∗∗

Female maturity - - - - 1.45∗∗

Table 11.12: Correlation coefficient between non-synonymous substitution rate (ω), mu-
tation rate per site per unit of time (µ), and life-history traits (maximum longevity, adult
weight and female maturity) were computed in placental mammals. Asterisks indicate
strength of support (∗pp > 0.95, ∗∗pp > 0.975).

Partial coefficient ω µ Maximum longevity Adult weight Female maturity

ω - 0.15 0.369∗∗ 0.0468 0.0223

µ - - −0.299∗ −0.272 −0.382∗∗

Maximum longevity - - - 0.283∗∗ 0.338∗∗

Adult weight - - - - 0.21∗

Female maturity - - - - -

Table 11.13: Partial correlation coefficient between non-synonymous substitution
rate (ω), mutation rate per site per unit of time (µ), and life-history traits (maximum
longevity, adult weight and female maturity) were computed in placental mammals. As-
terisks indicate strength of support (∗pp > 0.95, ∗∗pp > 0.975).

11.4 Empirical data in Isopods

11.4.1 Traits estimation (replicate 1, chain 1)

Obtained with the mechanistic inference model developed in this paper of site-specific

amino-acid fitness profiles and log-Brownian process for Ne, µ and life-history traits.
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11.4. Empirical data in Isopods

 GHM2     0.917 [ 0.818, 1.154]
 SyspA    0.906 [ 0.806, 1.157]
 BFA      0.897 [ 0.725, 1.365]
 BCoP     1.012 [ 0.862, 1.406]
 BPM      1.047 [ 0.886, 1.502]
 BLaA4    0.907 [ 0.800, 1.245]
 BMoV     0.823 [ 0.723, 1.115]
 PBS4     0.866 [ 0.713, 1.298]
 PBF5     0.780 [ 0.406, 1.238]
 PSlRo11  0.676 [ 0.407, 1.043]
 PHeZ     0.562 [ 0.319, 0.950]
 PKK      0.997 [ 0.857, 1.459]
 PPvN2    0.881 [ 0.775, 1.126]
 PPrS     0.793 [ 0.686, 1.126]
 PCoB     1.036 [ 0.795, 1.860]
 PCoZa5   0.940 [ 0.767, 1.455]
 PCoAx5   0.762 [ 0.596, 1.182]
 PCoCd9   0.767 [ 0.612, 1.252]
 PSloP5   1.080 [ 0.948, 1.433]
 PCoiP    1.159 [ 1.007, 1.608]
 ISPB     0.763 [ 0.571, 1.507]
 PspVi    0.885 [ 0.659, 1.787]
 PWRo5    0.627 [ 0.465, 1.084]
 PWM5     0.743 [ 0.571, 1.411]
 PWH13    0.754 [ 0.593, 1.209]
 PWVi6    0.653 [ 0.509, 1.089]
 PStB     0.625 [ 0.483, 1.038]
 PStN     0.717 [ 0.545, 1.275]
 PCBF     0.537 [ 0.356, 1.274]
 PCMt5    0.627 [ 0.437, 1.249]
 PCBo     0.716 [ 0.511, 1.379]
 PCG6     0.663 [ 0.466, 1.496]
 PAL6     0.731 [ 0.575, 1.304]
 PspAG1   0.869 [ 0.675, 1.456]
 PGC      0.849 [ 0.705, 1.277]
 POJ      0.674 [ 0.532, 1.092]
 PCanC    0.650 [ 0.499, 1.214]
 PEF      0.733 [ 0.571, 1.353]
 PLeC5    0.736 [ 0.584, 1.167]
 PLeM4    0.846 [ 0.664, 1.365]
 PArE     0.795 [ 0.607, 1.541]
 PSSE     1.062 [ 0.811, 2.348]
 PHL5     0.890 [ 0.738, 1.461]
 PBuB2    1.014 [ 0.842, 1.459]
 PIsS     0.782 [ 0.621, 1.228]
 PMiM     0.764 [ 0.617, 1.170]
 PRBe     0.803 [ 0.663, 1.249]
 PBtS     1.015 [ 0.814, 1.664]
 PJJ      0.742 [ 0.581, 1.191]
 PEcD     0.907 [ 0.702, 1.609]
 PGrP     1.005 [ 0.814, 1.594]
 PSoG     0.779 [ 0.593, 1.236]
 PIbB     0.785 [ 0.654, 1.207]
 PAtL     0.874 [ 0.698, 1.407]
 PAsA     0.914 [ 0.692, 1.632]
 PRuE     1.029 [ 0.800, 1.848]
 PMaF     0.889 [ 0.755, 1.262]
 PMC      0.823 [ 0.623, 1.552]
 PMLL     0.820 [ 0.621, 1.667]
 PMAx     0.771 [ 0.582, 1.420]
 PMB      0.775 [ 0.583, 1.362]
 AKT6     0.530 [ 0.347, 1.075]
 AAD3     0.639 [ 0.443, 1.215]
 AAPl     0.798 [ 0.582, 1.672]
 BSSV1    0.669 [ 0.589, 0.835]
 SBrI     0.715 [ 0.635, 0.892]

0.3

1.00
6×10−1 7×10−1 8×10−1 9×10−1
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Figure 11.18: Effective population size (Ne) estimation in isopods

 GHM2     0.482 [ 0.441, 0.571]
 SyspA    0.558 [ 0.504, 0.807]
 BFA      0.111 [ 0.011, 0.723]
 BCoP     0.725 [ 0.198, 3.977]
 BPM      0.748 [ 0.222, 3.636]
 BLaA4    1.265 [ 0.772, 4.047]
 BMoV     0.726 [ 0.341, 2.336]
 PBS4     0.005 [   0.0, 0.361]
 PBF5     0.038 [ 0.003, 0.397]
 PSlRo11  0.014 [   0.0, 0.177]
 PHeZ     0.002 [   0.0, 0.068]
 PKK      0.113 [ 0.029, 0.343]
 PPvN2    0.306 [ 0.268, 0.413]
 PPrS     0.024 [ 0.006, 0.203]
 PCoB     0.055 [ 0.012, 0.381]
 PCoZa5   0.131 [ 0.039, 0.642]
 PCoAx5   0.038 [ 0.007, 0.510]
 PCoCd9   0.054 [ 0.013, 0.572]
 PSloP5   0.387 [ 0.347, 0.512]
 PCoiP    0.341 [ 0.305, 0.444]
 ISPB     0.062 [ 0.015, 0.485]
 PspVi    0.053 [ 0.013, 0.347]
 PWRo5    0.015 [ 0.003, 0.124]
 PWM5     0.053 [ 0.015, 0.312]
 PWH13    0.089 [ 0.027, 0.534]
 PWVi6    0.060 [ 0.014, 0.318]
 PStB     0.019 [ 0.003, 0.266]
 PStN     0.026 [ 0.005, 0.264]
 PCBF     0.003 [   0.0, 0.056]
 PCMt5    0.016 [ 0.003, 0.198]
 PCBo     0.019 [ 0.004, 0.234]
 PCG6     0.009 [ 0.001, 0.117]
 PAL6     0.031 [ 0.007, 0.274]
 PspAG1   0.037 [ 0.008, 0.335]
 PGC      0.048 [ 0.009, 0.362]
 POJ      0.040 [ 0.008, 0.429]
 PCanC    0.055 [ 0.011, 0.463]
 PEF      0.058 [ 0.013, 0.940]
 PLeC5    0.100 [ 0.023, 0.806]
 PLeM4    0.095 [ 0.021, 0.648]
 PArE     0.086 [ 0.020, 0.579]
 PSSE     0.141 [ 0.054, 0.755]
 PHL5     0.082 [ 0.023, 0.506]
 PBuB2    0.145 [ 0.055, 0.632]
 PIsS     0.057 [ 0.011, 0.664]
 PMiM     0.060 [ 0.012, 1.226]
 PRBe     0.033 [ 0.005, 0.191]
 PBtS     0.124 [ 0.038, 1.342]
 PJJ      0.026 [ 0.005, 0.424]
 PEcD     0.046 [ 0.009, 0.512]
 PGrP     0.144 [ 0.045, 1.753]
 PSoG     0.042 [ 0.007, 0.552]
 PIbB     0.079 [ 0.021, 0.607]
 PAtL     0.046 [ 0.008, 0.416]
 PAsA     0.054 [ 0.011, 0.912]
 PRuE     0.083 [ 0.020, 1.182]
 PMaF     0.041 [ 0.009, 0.390]
 PMC      0.034 [ 0.006, 0.246]
 PMLL     0.042 [ 0.007, 0.391]
 PMAx     0.054 [ 0.012, 0.496]
 PMB      0.038 [ 0.008, 0.484]
 AKT6     0.004 [   0.0, 0.105]
 AAD3     0.011 [ 0.001, 0.201]
 AAPl     0.023 [ 0.005, 0.272]
 BSSV1    1.046 [ 0.626, 2.636]
 SBrI     1.124 [ 0.664, 2.686]
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Figure 11.19: Mutation rate (µ) estimation in isopods
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11.4. Empirical data in Isopods

11.4.2 Repeatability of experiments

6 independent inferences were performed on a randomly chosen set of 12 coding sequences

(CDS) out of 135. Obtained with the mechanistic inference model developed in this paper

of site-specific amino-acid fitness profiles and log-Brownian process for Ne, µ. Each plot

is a correlation between a pair of experiments for a given parameter. For each node (or

branch) of the tree, the mean posterior of the parameter over the MCMC (after burn-

in) is represented in blue dots, green solid lines are the 90% confidence interval of the

MCMC. Solid red line is the regression line between replicates.
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Figure 11.20: Repeatability of branch length (l) estimation in isopods
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Figure 11.21: Repeatability of effective population size (Ne) estimation in isopods
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11.4. Empirical data in Isopods

Rep. 1 Rep. 2 Rep. 3 Rep. 4 Rep. 5 Rep. 6 Habitat Pigmentation Ocular structure Code Taxon

0.917 1.21 0.91 1.09 1.1 0.997 Underground Depigmented Anophthalmia GHM2 Gallasellus heyli
0.906 0.511 0.876 0.907 0.948 0.964 Underground Depigmented Anophthalmia SyspA Synasellus sp
0.897 0.954 0.838 0.819 0.721 0.859 Underground Depigmented Anophthalmia BFA Bragasellus frontellum
1.01 1.15 0.78 0.894 0.78 0.945 Surface Pigmented Ocular BCoP Bragasellus cortesi
1.05 0.95 0.881 0.815 0.87 1.08 Surface Pigmented Ocular BPM Bragasellus peltatus
0.907 0.891 0.769 0.831 0.873 0.907 Underground Depigmented Anophthalmia BLaA4 -
0.823 0.797 0.839 0.949 0.852 1.06 Underground Depigmented Anophthalmia BMoV Bragasellus molinai
0.866 0.39 0.61 0.51 0.773 0.871 Underground Depigmented Anophthalmia PBS4 Proasellus boui
0.78 0.637 0.702 0.808 0.919 0.884 Underground Depigmented Anophthalmia PBF5 Proasellus boui
0.676 0.657 0.718 0.895 0.777 0.884 Underground Depigmented Anophthalmia PSlRo11 Proasellus slavus
0.562 0.681 0.62 0.616 0.778 0.608 Underground Depigmented Anophthalmia PHeZ Proasellus hercegovinensis
0.997 1.15 0.962 1.08 0.907 1.06 Surface Pigmented Ocular PKK Proasellus karamani
0.881 0.897 0.753 0.746 0.877 0.901 Underground Depigmented Anophthalmia PPvN2 Proasellus pavani
0.793 0.66 0.876 0.711 0.813 0.808 Underground Depigmented Anophthalmia PPrS Proasellus parvulus
1.04 1.06 1.06 0.968 1.05 0.957 Surface Pigmented Ocular PCoB Proasellus coxalis
0.94 1.17 1.06 0.937 1.18 1.14 Surface Pigmented Ocular PCoZa5 Proasellus coxalis
0.762 0.595 0.792 0.731 0.902 0.657 Underground Depigmented Anophthalmia PCoAx5 Proasellus coxalis
0.767 0.705 0.711 0.848 0.847 0.761 Underground Depigmented Microphthalmia PCoCd9 Proasellus coxalis
1.08 1.09 0.893 0.975 1.1 0.968 Underground Depigmented Anophthalmia PSloP5 Proasellus slovenicus
1.16 1.28 1.02 1.07 1.21 1.32 Surface Pigmented Ocular PCoiP Proasellus coiffaiti
0.763 0.888 0.753 0.709 0.766 0.86 Underground Depigmented Anophthalmia ISPB Proasellus nsp
0.885 0.789 0.765 0.675 0.67 0.857 Underground Depigmented Anophthalmia PspVi Proasellus nsp
0.627 0.636 0.493 0.771 0.754 0.732 Underground Depigmented Anophthalmia PWRo5 Proasellus walteri
0.743 0.671 0.558 1.03 0.834 0.761 Underground Depigmented Anophthalmia PWM5 Proasellus walteri
0.754 0.718 0.54 0.79 0.656 0.824 Underground Depigmented Anophthalmia PWH13 Proasellus walteri
0.653 0.689 0.538 0.774 0.667 0.764 Underground Depigmented Anophthalmia PWVi6 Proasellus walteri
0.625 0.701 0.682 0.703 0.796 0.875 Underground Depigmented Anophthalmia PStB Proasellus strouhali
0.717 0.693 0.682 0.582 0.839 0.734 Underground Depigmented Anophthalmia PStN Proasellus strouhali
0.537 0.535 0.475 0.941 0.705 0.656 Underground Depigmented Anophthalmia PCBF Proasellus cavaticus
0.627 0.611 0.512 0.659 0.614 0.68 Underground Depigmented Anophthalmia PCMt5 Proasellus cavaticus
0.716 0.761 0.632 0.603 0.844 0.747 Underground Depigmented Anophthalmia PCBo Proasellus cavaticus
0.663 0.437 0.495 0.535 0.689 0.793 Underground Depigmented Anophthalmia PCG6 Proasellus cavaticus
0.731 0.668 0.778 0.805 0.608 0.568 Underground Depigmented Anophthalmia PAL6 Proasellus albigensis
0.869 0.737 0.729 0.92 0.827 0.896 Underground Depigmented Anophthalmia PspAG1 Proasellus n
0.849 0.839 0.95 0.966 0.931 0.94 Underground Depigmented Anophthalmia PGC Proasellus grafi
0.674 0.79 0.719 0.772 0.784 0.826 Surface Part. dep. Microphthalmia POJ Proasellus ortizi
0.65 0.517 0.732 0.613 0.711 0.729 Underground Depigmented Anophthalmia PCanC Proasellus cantabricus
0.733 0.659 0.684 0.579 0.795 0.802 Surface Part. dep. Microphthalmia PEF Proasellus ebrensis
0.736 0.743 0.8 0.685 0.805 0.935 Underground Depigmented Anophthalmia PLeC5 -
0.846 0.711 0.785 0.864 0.957 0.889 Underground Depigmented Anophthalmia PLeM4 -
0.795 1.03 0.846 0.87 0.869 0.851 Surface Part. dep. Microphthalmia PArE Proasellus aragonensis
1.06 0.785 0.694 0.756 0.893 0.804 Underground Depigmented Anophthalmia PSSE Proasellus spelaeus
0.89 0.774 0.727 0.766 0.926 0.992 Underground Depigmented Anophthalmia PHL5 -
1.01 0.994 0.783 0.789 1.14 1.17 Underground Depigmented Anophthalmia PBuB2 -
0.782 1.14 0.991 0.853 1 1.07 Surface Pigmented Ocular PIsS Proasellus istrianus
0.764 0.878 0.853 0.736 0.887 0.966 Surface Pigmented Ocular PMiM Proasellus micropectinatus
0.803 1.08 0.819 0.96 1.1 0.823 Surface Part. dep. Microphthalmia PRBe Proasellus racovitzai
1.01 1.1 0.905 0.931 0.884 1.01 Surface Pigmented Ocular PBtS Proasellus beticus
0.742 0.896 0.842 0.826 0.84 0.882 Underground Depigmented Microphthalmia PJJ Proasellus jaloniacus
0.907 1.04 0.792 0.594 0.859 0.836 Underground Depigmented Anophthalmia PEcD Proasellus escolai
1.01 1.02 0.86 0.786 1.06 0.922 Surface Part. dep. Microphthalmia PGrP Proasellus granadensis
0.779 0.738 0.707 0.731 0.812 0.808 Underground Depigmented Anophthalmia PSoG Proasellus solanasi
0.785 0.918 0.854 0.788 1.04 0.986 Surface Pigmented Ocular PIbB Proasellus ibericus
0.874 0.836 0.764 0.815 0.866 1.05 Underground Depigmented Anophthalmia PAtL Proasellus arthrodilus
0.914 0.951 0.888 0.834 0.881 0.886 Surface Part. dep. Microphthalmia PAsA Proasellus assaforensis
1.03 0.994 0.939 0.854 0.971 1 Underground Depigmented Anophthalmia PRuE Proasellus rectus
0.889 0.764 0.761 0.651 0.698 0.847 Underground Depigmented Anophthalmia PMaF Proasellus margalefi
0.823 1.1 0.961 0.914 1.03 0.838 Surface Pigmented Ocular PMC Proasellus meridianus
0.82 1.05 0.806 0.914 0.856 0.799 Surface Pigmented Ocular PMLL Proasellus meridianus
0.771 0.889 0.796 0.907 0.839 0.863 Underground Part. dep. Microphthalmia PMAx Proasellus meridianus
0.775 0.982 0.892 1.02 1.05 0.882 Surface Pigmented Ocular PMB Proasellus meridianus
0.53 0.57 0.71 0.679 0.413 0.603 Underground Depigmented Anophthalmia AKT6 Asellus kosswigi
0.639 0.936 0.732 0.859 0.859 0.866 Surface Pigmented Ocular AAD3 Asellus aquaticus
0.798 0.882 0.795 0.89 0.641 0.875 Surface Pigmented Ocular AAPl Asellus aquaticus
0.669 0.704 0.684 0.655 0.805 0.711 Underground Depigmented Anophthalmia BSSV1 Balkanostenasellus skopljensis
0.715 0.682 0.685 0.614 0.707 0.77 Underground Depigmented Anophthalmia SBrI Stenasellus breuili
2.19 3.29 2.24 2.13 2.93 2.33 - - - - Maximum range

Table 11.14: Repeatability of effective population size (Ne) estimation in isopods, for
the extant taxa.
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11.4. Empirical data in Isopods
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Figure 11.22: Repeatability of mutation rate (µ) estimation in isopods

Rep. 1 Rep. 2 Rep. 3 Rep. 4 Rep. 5 Rep. 6 Habitat Pigmentation Ocular structure Code Taxon

0.482 0.488 0.54 0.462 0.456 0.497 Underground Depigmented Anophthalmia GHM2 Gallasellus heyli
0.558 0.563 0.536 0.52 0.503 0.59 Underground Depigmented Anophthalmia SyspA Synasellus sp
0.111 0.0674 0.0703 0.0781 0.0555 0.0852 Underground Depigmented Anophthalmia BFA Bragasellus frontellum
0.725 0.32 0.3 0.377 0.421 0.579 Surface Pigmented Ocular BCoP Bragasellus cortesi
0.748 0.337 0.364 0.331 0.427 0.692 Surface Pigmented Ocular BPM Bragasellus peltatus
1.27 0.579 0.893 0.516 0.607 0.49 Underground Depigmented Anophthalmia BLaA4 -
0.726 0.462 0.442 0.463 0.428 0.519 Underground Depigmented Anophthalmia BMoV Bragasellus molinai
0.00478 0.000136 0.00937 0.00462 0.00277 0.046 Underground Depigmented Anophthalmia PBS4 Proasellus boui
0.038 0.0347 0.0822 0.0873 0.048 0.0628 Underground Depigmented Anophthalmia PBF5 Proasellus boui
0.0137 0.00942 0.0281 0.031 0.0105 0.0259 Underground Depigmented Anophthalmia PSlRo11 Proasellus slavus
0.00228 0.0229 0.00329 0.00422 0.0197 0.00957 Underground Depigmented Anophthalmia PHeZ Proasellus hercegovinensis
0.113 0.224 0.235 0.103 0.218 0.202 Surface Pigmented Ocular PKK Proasellus karamani
0.306 0.25 0.257 0.225 0.229 0.23 Underground Depigmented Anophthalmia PPvN2 Proasellus pavani
0.0238 0.0105 0.235 0.0472 0.104 0.0275 Underground Depigmented Anophthalmia PPrS Proasellus parvulus
0.0545 0.0359 0.0712 0.0458 0.073 0.0453 Surface Pigmented Ocular PCoB Proasellus coxalis
0.131 0.121 0.213 0.149 0.198 0.141 Surface Pigmented Ocular PCoZa5 Proasellus coxalis
0.0381 0.015 0.0518 0.0305 0.0522 0.0356 Underground Depigmented Anophthalmia PCoAx5 Proasellus coxalis
0.0544 0.0332 0.0673 0.0728 0.0931 0.0672 Underground Depigmented Microphthalmia PCoCd9 Proasellus coxalis
0.387 0.328 0.364 0.348 0.3 0.317 Underground Depigmented Anophthalmia PSloP5 Proasellus slovenicus
0.341 0.28 0.296 0.246 0.0573 0.253 Surface Pigmented Ocular PCoiP Proasellus coiffaiti
0.062 0.0427 0.0495 0.0556 0.0217 0.0281 Underground Depigmented Anophthalmia ISPB Proasellus nsp
0.0533 0.0419 0.0549 0.0516 0.0228 0.0245 Underground Depigmented Anophthalmia PspVi Proasellus nsp
0.0151 0.0144 0.0101 0.015 0.00874 0.0115 Underground Depigmented Anophthalmia PWRo5 Proasellus walteri
0.0531 0.0167 0.0231 0.0911 0.0218 0.0243 Underground Depigmented Anophthalmia PWM5 Proasellus walteri
0.0886 0.0317 0.0384 0.0491 0.0402 0.0934 Underground Depigmented Anophthalmia PWH13 Proasellus walteri
0.0597 0.093 0.0527 0.106 0.0297 0.0383 Underground Depigmented Anophthalmia PWVi6 Proasellus walteri
0.019 0.0117 0.0353 0.0242 0.0131 0.0291 Underground Depigmented Anophthalmia PStB Proasellus strouhali
0.0263 0.0262 0.026 0.0173 0.0345 0.0534 Underground Depigmented Anophthalmia PStN Proasellus strouhali
0.00317 0.00521 0.00612 0.0523 0.0211 0.00902 Underground Depigmented Anophthalmia PCBF Proasellus cavaticus
0.0159 0.00485 0.0112 0.00879 0.00919 0.00876 Underground Depigmented Anophthalmia PCMt5 Proasellus cavaticus
0.0188 0.0205 0.0221 0.00963 0.0302 0.00951 Underground Depigmented Anophthalmia PCBo Proasellus cavaticus
0.0095 0.00162 0.00309 0.00461 0.00475 0.0132 Underground Depigmented Anophthalmia PCG6 Proasellus cavaticus
0.0314 0.021 0.0791 0.0263 0.0238 0.00749 Underground Depigmented Anophthalmia PAL6 Proasellus albigensis
0.0372 0.0313 0.073 0.0375 0.0464 0.0191 Underground Depigmented Anophthalmia PspAG1 Proasellus n
0.0477 0.0403 0.0817 0.0666 0.0594 0.0425 Underground Depigmented Anophthalmia PGC Proasellus grafi
0.0404 0.03 0.0467 0.0547 0.0285 0.0343 Surface Part. dep. Microphthalmia POJ Proasellus ortizi
0.0551 0.0385 0.0367 0.0343 0.0369 0.052 Underground Depigmented Anophthalmia PCanC Proasellus cantabricus
0.0578 0.0337 0.0446 0.0149 0.0349 0.0499 Surface Part. dep. Microphthalmia PEF Proasellus ebrensis
0.1 0.0399 0.0968 0.0322 0.0743 0.104 Underground Depigmented Anophthalmia PLeC5 -
0.095 0.0243 0.0793 0.0904 0.0706 0.12 Underground Depigmented Anophthalmia PLeM4 -
0.0856 0.0426 0.0472 0.0317 0.0361 0.0311 Surface Part. dep. Microphthalmia PArE Proasellus aragonensis
0.141 0.0482 0.0583 0.0461 0.0474 0.0372 Underground Depigmented Anophthalmia PSSE Proasellus spelaeus
0.0822 0.0338 0.0387 0.0355 0.0522 0.059 Underground Depigmented Anophthalmia PHL5 -
0.145 0.0777 0.052 0.0705 0.0868 0.132 Underground Depigmented Anophthalmia PBuB2 -
0.0573 0.0857 0.106 0.0794 0.0706 0.0643 Surface Pigmented Ocular PIsS Proasellus istrianus
0.0599 0.0387 0.0584 0.0471 0.0606 0.0728 Surface Pigmented Ocular PMiM Proasellus micropectinatus
0.0328 0.0543 0.0365 0.052 0.0391 0.0289 Surface Part. dep. Microphthalmia PRBe Proasellus racovitzai
0.124 0.0797 0.15 0.168 0.128 0.12 Surface Pigmented Ocular PBtS Proasellus beticus
0.0256 0.0475 0.0985 0.0846 0.0751 0.0621 Underground Depigmented Microphthalmia PJJ Proasellus jaloniacus
0.0455 0.03 0.0441 0.0175 0.0339 0.0279 Underground Depigmented Anophthalmia PEcD Proasellus escolai
0.144 0.102 0.234 0.163 0.185 0.161 Surface Part. dep. Microphthalmia PGrP Proasellus granadensis
0.0423 0.028 0.0529 0.0454 0.0455 0.0635 Underground Depigmented Anophthalmia PSoG Proasellus solanasi
0.0788 0.0552 0.0724 0.0547 0.0686 0.0646 Surface Pigmented Ocular PIbB Proasellus ibericus
0.0458 0.0447 0.0517 0.0443 0.0601 0.0791 Underground Depigmented Anophthalmia PAtL Proasellus arthrodilus
0.0543 0.0351 0.0573 0.0478 0.065 0.0503 Surface Part. dep. Microphthalmia PAsA Proasellus assaforensis
0.083 0.0536 0.139 0.0608 0.0918 0.0674 Underground Depigmented Anophthalmia PRuE Proasellus rectus
0.0413 0.0168 0.0202 0.0369 0.0292 0.0359 Underground Depigmented Anophthalmia PMaF Proasellus margalefi
0.0343 0.034 0.0559 0.0219 0.0199 0.0235 Surface Pigmented Ocular PMC Proasellus meridianus
0.0416 0.0215 0.0337 0.0312 0.0187 0.0231 Surface Pigmented Ocular PMLL Proasellus meridianus
0.0542 0.0241 0.044 0.0194 0.0247 0.0486 Underground Part. dep. Microphthalmia PMAx Proasellus meridianus
0.0385 0.0252 0.0807 0.0782 0.0541 0.06 Surface Pigmented Ocular PMB Proasellus meridianus
0.00351 0.00353 0.34 0.00401 0.00106 0.00307 Underground Depigmented Anophthalmia AKT6 Asellus kosswigi
0.0107 0.0378 0.438 0.0589 0.0152 0.031 Surface Pigmented Ocular AAD3 Asellus aquaticus
0.0232 0.0321 0.802 0.048 0.0118 0.0209 Surface Pigmented Ocular AAPl Asellus aquaticus
1.05 0.901 1.31 0.585 0.841 0.711 Underground Depigmented Anophthalmia BSSV1 Balkanostenasellus skopljensis
1.12 0.784 1.11 0.479 0.641 0.701 Underground Depigmented Anophthalmia SBrI Stenasellus breuili
554 6.63e+03 423 146 792 231 - - - - Maximum range

Table 11.15: Repeatability of mutation rate (µ) estimation in isopods, for the extant
taxa.
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11.4. Empirical data in Isopods
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Figure 11.23: Repeatability of branch time (∆T ) estimation in isopods
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Figure 11.24: Ne as a function of habitat in isopods.

Analysis of Variance Table

Response: PopulationSize

Df Sum Sq Mean Sq F value Pr(>F)

Habitat 1 1.6777 1.67769 89.506 < 2.2e-16 ***

rep 5 0.4226 0.08452 4.509 0.0005236 ***

Residuals 389 7.2913 0.01874

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Figure 11.25: Ne as a function of pigmentation in isopods

Analysis of Variance Table

Response: PopulationSize

Df Sum Sq Mean Sq F value Pr(>F)

Pigmentation 2 1.9442 0.97210 53.6917 < 2.2e-16 ***

rep 5 0.4226 0.08452 4.6681 0.0003764 ***

Residuals 388 7.0248 0.01811

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Figure 11.26: Ne as a function of ocular structure in isopods

Analysis of Variance Table

Response: PopulationSize

Df Sum Sq Mean Sq F value Pr(>F)

Ocular.structure 2 1.9335 0.96676 53.316 < 2.2e-16 ***

rep 5 0.4226 0.08452 4.661 0.000382 ***

Residuals 388 7.0355 0.01813

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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11.5. Empirical data in Primates

11.5 Empirical data in Primates

11.5.1 Chain convergence

Obtained with the mechanistic inference model developed in this paper of site-specific

amino-acid fitness profiles and log-Brownian process for Ne, µ and life-history traits.
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Figure 11.27: Chain convergence of site amino-acid preferences (left panel) and branch
Ne (right panel).

11.5.2 Traits estimation (chain 1)

Obtained with the mechanistic inference model developed in this paper of site-specific

amino-acid fitness profiles and log-Brownian process for Ne, µ and life-history traits.

Correlation (ρ) Ne µ maturity mass longevity πS πN/πS generation time

Ne - −0.433∗∗ 0.155 0.166 0.157 −0.133 0.104 0.16

µ - - −0.792∗∗ −0.791∗∗ −0.773∗∗ 0.62∗∗ −0.59 −0.78∗∗

maturity - - - 0.986∗∗ 0.985∗∗ −0.8∗∗ 0.746 0.991∗∗

mass - - - - 0.977∗∗ −0.737∗∗ 0.695 0.981∗∗

longevity - - - - - −0.819∗∗ 0.752 0.999∗∗

πS - - - - - - −0.86∗∗ −0.816∗∗

πN/πS - - - - - - - 0.752

generation time - - - - - - - -

Table 11.16: Correlation coefficient between effective population size (Ne), mutation
rate per site per unit of time (µ), and life-history traits (maximum longevity, adult weight
and female maturity) were computed in primates. Asterisks indicate strength of support
(∗pp > 0.95, ∗∗pp > 0.975).
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11.5. Empirical data in Primates

Covariance (Σ) Ne µ maturity mass longevity πS πN/πS generation time

Ne 1.08∗∗ −1.39∗∗ 0.66 1.18 0.414 −0.251 0.0898 0.452

µ - 9.86∗∗ −10.1∗∗ −17.5∗∗ −6.44∗∗ 3.42∗∗ −1.28 −6.96∗∗

maturity - - 16.9∗∗ 28.4∗∗ 10.6∗∗ −5.39∗∗ 1.9 11.5∗∗

mass - - - 49.8∗∗ 18.1∗∗ −8.89∗∗ 3.29 19.5∗∗

longevity - - - - 6.99∗∗ −3.75∗∗ 1.31 7.47∗∗

πS - - - - - 3.26∗∗ −0.986∗∗ −3.96∗∗

πN/πS - - - - - - 0.419∗∗ 1.39

generation time - - - - - - - 8.02∗∗

Table 11.17: Correlation coefficient between effective population size (Ne), mutation
rate per site per unit of time (µ), and life-history traits (maximum longevity, adult weight
and female maturity) were computed in primates. Asterisks indicate strength of support
(∗pp > 0.95, ∗∗pp > 0.975).

Partial coefficient Ne µ maturity mass longevity πS πN/πS generation time

Ne - −0.411 −0.0622 0.0184 −0.0436 −0.0482 −0.00476 0.0333

µ - - 0.0548 −0.101 0.146 −0.0134 −0.102 −0.124

maturity - - - 0.292 −0.793∗∗ −0.167 0.0547 0.824∗∗

mass - - - - −0.0589 0.43 −0.195 0.101

longevity - - - - - −0.159 −0.148 0.991∗∗

πS - - - - - - −0.573∗∗ 0.11

πN/πS - - - - - - - 0.144

generation time - - - - - - - -

Table 11.18: Partial correlation coefficient between Neffective population size (Ne),
mutation rate per site per unit of time (µ), and life-history traits (maximum longevity,
adult weight and female maturity) were computed in primates. Asterisks indicate strength
of support (∗pp > 0.95, ∗∗pp > 0.975).
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11.5. Empirical data in Primates

 Tupaia_minor                  0.643 [ 0.442, 1.216]
 Tarsius_syrichta              1.216 [ 0.865, 2.210]
 Callicebus_donacophilus       0.832 [ 0.491, 2.472]
 Pithecia_pithecia             0.885 [ 0.547, 2.478]
 Chiropotes_chiropotes         0.682 [ 0.382, 2.197]
 Cacajao_calvus                0.792 [ 0.463, 2.454]
 Alouatta_palliata             0.987 [ 0.530, 3.398]
 Ateles_belzebuth              1.226 [ 0.715, 6.191]
 Lagothrix_cana                0.870 [ 0.409, 4.734]
 Brachyteles_arachnoides       0.441 [ 0.233, 1.918]
 Saguinus_fuscicollis          0.935 [ 0.581, 3.613]
 Leontopithecus_rosalia        0.916 [ 0.554, 2.838]
 Callimico_goeldii             1.239 [ 0.682, 5.955]
 Callithrix_jacchus            0.964 [ 0.489, 4.925]
 Aotus_azarai                  0.780 [ 0.423, 3.136]
 Saimiri_oerstedii             0.813 [ 0.456, 2.387]
 Cebus_apella                  1.295 [ 0.714, 6.823]
 Nomascus_siki                 1.222 [ 0.563,  14.9]
 Symphalangus_syndactylus      1.388 [ 0.658, 7.310]
 Hylobates_agilis              0.819 [ 0.420, 3.836]
 Pongo_pygmaeus                0.611 [ 0.344, 1.926]
 Gorilla_gorilla               0.829 [ 0.476, 2.369]
 Homo_sapiens                  0.806 [ 0.394, 4.690]
 Pan_paniscus                  0.755 [ 0.364, 2.867]
 Macaca_mulatta                0.678 [ 0.390, 2.225]
 Lophocebus_aterrimus          0.554 [ 0.338, 1.331]
 Papio_papio                   0.879 [ 0.534, 2.982]
 Mandrillus_sphinx             0.718 [ 0.424, 2.413]
 Cercocebus_torquatus          0.879 [ 0.437, 3.032]
 Chlorocebus_aethiops          1.022 [ 0.514, 5.443]
 Erythrocebus_patas            1.074 [ 0.569, 4.577]
 Cercopithecus_albogularis     1.496 [ 0.632,  20.5]
 Allenopithecus_nigroviridis   1.504 [ 0.693,  11.1]
 Miopithecus_ogouensis         1.613 [ 0.797, 8.070]
 Colobus_angolensis            0.795 [ 0.387, 2.583]
 Piliocolobus_badius           1.271 [ 0.603, 7.814]
 Presbytis_melalophos          1.560 [ 0.635,  10.7]
 Trachypithecus_francoisi      1.257 [ 0.543, 8.561]
 Semnopithecus_entellus        0.873 [ 0.436, 3.234]
 Rhinopithecus_brelichi        0.670 [ 0.294, 2.825]
 Nasalis_larvatus              0.818 [ 0.334, 4.041]
 Pygathrix_cinerea             1.339 [ 0.658, 8.592]
 Daubentonia_madagascariensis  1.671 [ 0.982, 4.780]
 Varecia_variegata             0.799 [ 0.367, 4.026]
 Eulemur_rufus                 2.835 [ 0.857,  29.8]
 Lemur_catta                   1.560 [ 0.468,  14.7]
 Hapalemur_griseus             0.890 [ 0.378, 8.085]
 Avahi_laniger                 0.881 [ 0.472, 2.739]
 Propithecus_verreauxi         0.932 [ 0.470, 6.606]
 Lepilemur_dorsalis            0.604 [ 0.313, 2.214]
 Cheirogaleus_medius           1.087 [ 0.646, 3.194]
 Mirza_coquereli               1.027 [ 0.583, 5.476]
 Microcebus_murinus            1.205 [ 0.683, 4.986]
 Loris_tardigradus             1.318 [ 0.740, 5.498]
 Nycticebus_coucang            1.121 [ 0.633, 5.118]
 Arctocebus_calabarensis       1.383 [ 0.707, 4.902]
 Perodicticus_potto            0.942 [ 0.492, 4.518]
 Galago_senegalensis           0.993 [ 0.574, 3.224]
 Otolemur_crassicaudatus       0.767 [ 0.381, 2.892]
 Galeopterus_variegatus        0.987 [ 0.472, 4.224]
 Cynocephalus_volans           2.426 [ 0.875,  15.9]

0.3

0.500.50 1.00 2.00
6×10−1
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Figure 11.28: Effective population size (Ne) estimation in primates

 Tupaia_minor                  0.057 [ 0.016, 0.292]
 Tarsius_syrichta              0.008 [ 0.002, 0.066]
 Callicebus_donacophilus       0.034 [ 0.014, 0.144]
 Pithecia_pithecia             0.045 [ 0.016, 0.176]
 Chiropotes_chiropotes         0.036 [ 0.013, 0.159]
 Cacajao_calvus                0.033 [ 0.013, 0.154]
 Alouatta_palliata             0.023 [ 0.009, 0.129]
 Ateles_belzebuth              0.026 [ 0.011, 0.102]
 Lagothrix_cana                0.014 [ 0.004, 0.102]
 Brachyteles_arachnoides       0.044 [ 0.018, 0.207]
 Saguinus_fuscicollis          0.085 [ 0.048, 0.212]
 Leontopithecus_rosalia        0.152 [ 0.090, 0.372]
 Callimico_goeldii             0.089 [ 0.045, 0.360]
 Callithrix_jacchus            0.098 [ 0.049, 0.464]
 Aotus_azarai                  0.016 [ 0.005, 0.125]
 Saimiri_oerstedii             0.056 [ 0.025, 0.221]
 Cebus_apella                  0.036 [ 0.014, 0.179]
 Nomascus_siki                 0.002 [   0.0, 0.026]
 Symphalangus_syndactylus      0.014 [ 0.004, 0.109]
 Hylobates_agilis              0.020 [ 0.007, 0.159]
 Pongo_pygmaeus                0.078 [ 0.047, 0.165]
 Gorilla_gorilla               0.025 [ 0.012, 0.079]
 Homo_sapiens                  0.040 [ 0.021, 0.114]
 Pan_paniscus                  0.034 [ 0.018, 0.120]
 Macaca_mulatta                0.058 [ 0.035, 0.172]
 Lophocebus_aterrimus          0.104 [ 0.055, 0.381]
 Papio_papio                   0.022 [ 0.009, 0.095]
 Mandrillus_sphinx             0.034 [ 0.018, 0.107]
 Cercocebus_torquatus          0.023 [ 0.011, 0.080]
 Chlorocebus_aethiops          0.008 [ 0.003, 0.046]
 Erythrocebus_patas            0.016 [ 0.006, 0.072]
 Cercopithecus_albogularis     0.006 [ 0.001, 0.045]
 Allenopithecus_nigroviridis   0.015 [ 0.005, 0.088]
 Miopithecus_ogouensis         0.010 [ 0.002, 0.066]
 Colobus_angolensis            0.035 [ 0.015, 0.129]
 Piliocolobus_badius           0.036 [ 0.015, 0.141]
 Presbytis_melalophos          0.004 [ 0.001, 0.019]
 Trachypithecus_francoisi      0.002 [   0.0, 0.014]
 Semnopithecus_entellus        0.008 [ 0.003, 0.041]
 Rhinopithecus_brelichi        0.009 [ 0.003, 0.044]
 Nasalis_larvatus              0.005 [ 0.002, 0.043]
 Pygathrix_cinerea             0.008 [ 0.002, 0.044]
 Daubentonia_madagascariensis  0.002 [   0.0, 0.038]
 Varecia_variegata             0.024 [ 0.007, 0.127]
 Eulemur_rufus                 0.004 [   0.0, 0.065]
 Lemur_catta                   0.006 [ 0.002, 0.053]
 Hapalemur_griseus             0.018 [ 0.006, 0.090]
 Avahi_laniger                 0.073 [ 0.029, 0.326]
 Propithecus_verreauxi         0.038 [ 0.013, 0.218]
 Lepilemur_dorsalis            0.042 [ 0.016, 0.142]
 Cheirogaleus_medius           0.017 [ 0.005, 0.097]
 Mirza_coquereli               0.065 [ 0.023, 0.438]
 Microcebus_murinus            0.022 [ 0.006, 0.194]
 Loris_tardigradus             0.022 [ 0.006, 0.181]
 Nycticebus_coucang            0.016 [ 0.004, 0.150]
 Arctocebus_calabarensis       0.038 [ 0.013, 0.200]
 Perodicticus_potto            0.039 [ 0.013, 0.220]
 Galago_senegalensis           0.054 [ 0.017, 0.243]
 Otolemur_crassicaudatus       0.029 [ 0.008, 0.139]
 Galeopterus_variegatus        0.023 [ 0.003, 0.253]
 Cynocephalus_volans           0.012 [   0.0, 0.222]
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Figure 11.29: Mutation rate (µ) estimation in primates
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 Tupaia_minor                  154.9 [  66.0, 875.6]
 Tarsius_syrichta              250.7 [ 125.7,1049.1]
 Callicebus_donacophilus       587.4 [ 342.5,1526.1]
 Pithecia_pithecia             775.0 [ 775.0, 775.0]
 Chiropotes_chiropotes        1468.8 [ 367.7, 1.5e4]
 Cacajao_calvus               1204.0 [1204.0,1204.0]
 Alouatta_palliata            1095.0 [1095.0,1095.0]
 Ateles_belzebuth             1461.0 [1461.0,1461.0]
 Lagothrix_cana                603.0 [  97.7, 5.2e4]
 Brachyteles_arachnoides      2738.0 [2738.0,2738.0]
 Saguinus_fuscicollis          546.0 [ 546.0, 546.0]
 Leontopithecus_rosalia        547.0 [ 547.0, 547.0]
 Callimico_goeldii             365.0 [ 365.0, 365.0]
 Callithrix_jacchus            477.0 [ 477.0, 477.0]
 Aotus_azarai                  856.7 [ 471.0,2467.4]
 Saimiri_oerstedii             556.6 [ 270.1,2667.1]
 Cebus_apella                 1703.0 [1703.0,1703.0]
 Nomascus_siki                3541.6 [ 461.7, 6.9e4]
 Symphalangus_syndactylus      387.8 [  40.7,3832.6]
 Hylobates_agilis             1427.5 [ 804.9,6055.4]
 Pongo_pygmaeus               2555.0 [2555.0,2555.0]
 Gorilla_gorilla              2829.0 [2829.0,2829.0]
 Homo_sapiens                 4745.0 [4745.0,4745.0]
 Pan_paniscus                 3194.0 [3194.0,3194.0]
 Macaca_mulatta               1231.0 [1231.0,1231.0]
 Lophocebus_aterrimus           77.8 [  15.8, 472.2]
 Papio_papio                   360.6 [  99.7,3164.7]
 Mandrillus_sphinx            1186.0 [1186.0,1186.0]
 Cercocebus_torquatus          973.0 [ 973.0, 973.0]
 Chlorocebus_aethiops         1034.0 [1034.0,1034.0]
 Erythrocebus_patas            956.0 [ 956.0, 956.0]
 Cercopithecus_albogularis     673.1 [  79.5, 3.6e4]
 Allenopithecus_nigroviridis   821.7 [ 447.8,3988.9]
 Miopithecus_ogouensis         506.7 [  26.3, 1.9e4]
 Colobus_angolensis           1197.6 [ 713.9,4446.9]
 Piliocolobus_badius           217.4 [  29.7,5100.0]
 Presbytis_melalophos          859.1 [ 465.2,3233.1]
 Trachypithecus_francoisi     1460.0 [1460.0,1460.0]
 Semnopithecus_entellus       1162.0 [1162.0,1162.0]
 Rhinopithecus_brelichi        400.8 [  55.8, 1.9e4]
 Nasalis_larvatus             1460.0 [1460.0,1460.0]
 Pygathrix_cinerea             338.0 [  55.3,8987.3]
 Daubentonia_madagascariensis  882.0 [ 882.0, 882.0]
 Varecia_variegata             604.0 [ 604.0, 604.0]
 Eulemur_rufus                1190.0 [ 214.9, 2.4e5]
 Lemur_catta                   595.0 [ 595.0, 595.0]
 Hapalemur_griseus             880.0 [ 880.0, 880.0]
 Avahi_laniger                 411.6 [  76.1, 3.2e4]
 Propithecus_verreauxi         912.0 [ 912.0, 912.0]
 Lepilemur_dorsalis            153.5 [ 3.051, 1.9e4]
 Cheirogaleus_medius           365.0 [ 365.0, 365.0]
 Mirza_coquereli                47.8 [ 4.360,1152.4]
 Microcebus_murinus            243.0 [ 243.0, 243.0]
 Loris_tardigradus             380.0 [ 380.0, 380.0]
 Nycticebus_coucang            578.0 [ 578.0, 578.0]
 Arctocebus_calabarensis       279.0 [ 279.0, 279.0]
 Perodicticus_potto            547.0 [ 547.0, 547.0]
 Galago_senegalensis           240.0 [ 240.0, 240.0]
 Otolemur_crassicaudatus       495.0 [ 495.0, 495.0]
 Galeopterus_variegatus        511.5 [  38.1, 5.3e4]
 Cynocephalus_volans           506.2 [ 178.6,3488.7]
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Figure 11.30: Female maturity estimation in primates

 Tupaia_minor                   58.6 [  58.6,  58.6]
 Tarsius_syrichta              119.2 [ 119.2, 119.2]
 Callicebus_donacophilus       795.0 [ 795.0, 795.0]
 Pithecia_pithecia            1480.0 [1480.0,1480.0]
 Chiropotes_chiropotes        4651.6 [ 455.2, 3.3e5]
 Cacajao_calvus               3165.0 [3165.0,3165.0]
 Alouatta_palliata            7000.0 [7000.0,7000.0]
 Ateles_belzebuth             7535.0 [7535.0,7535.0]
 Lagothrix_cana               1183.5 [  32.9,   2e6]
 Brachyteles_arachnoides       1.1e4 [ 1.1e4, 1.1e4]
 Saguinus_fuscicollis          456.5 [ 456.5, 456.5]
 Leontopithecus_rosalia        654.5 [ 654.5, 654.5]
 Callimico_goeldii             555.0 [ 555.0, 555.0]
 Callithrix_jacchus            255.2 [ 255.2, 255.2]
 Aotus_azarai                 1230.0 [1230.0,1230.0]
 Saimiri_oerstedii             788.5 [ 788.5, 788.5]
 Cebus_apella                 2642.5 [2642.5,2642.5]
 Nomascus_siki                 3.3e4 [ 633.0, 3.1e7]
 Symphalangus_syndactylus      830.7 [  22.6, 8.4e4]
 Hylobates_agilis             5925.0 [5925.0,5925.0]
 Pongo_pygmaeus                6.4e4 [ 6.4e4, 6.4e4]
 Gorilla_gorilla               1.4e5 [ 1.4e5, 1.4e5]
 Homo_sapiens                  6.2e4 [ 6.2e4, 6.2e4]
 Pan_paniscus                    4e4 [   4e4,   4e4]
 Macaca_mulatta               8235.0 [8235.0,8235.0]
 Lophocebus_aterrimus          121.6 [  14.1,2085.7]
 Papio_papio                  1752.2 [ 232.1, 8.8e4]
 Mandrillus_sphinx             2.3e4 [ 2.3e4, 2.3e4]
 Cercocebus_torquatus         9492.5 [9492.5,9492.5]
 Chlorocebus_aethiops         5620.0 [5620.0,5620.0]
 Erythrocebus_patas           7750.0 [7750.0,7750.0]
 Cercopithecus_albogularis    2763.5 [  46.4, 9.9e5]
 Allenopithecus_nigroviridis  4702.5 [4702.5,4702.5]
 Miopithecus_ogouensis        1712.7 [ 7.045,   1e6]
 Colobus_angolensis           8625.0 [8625.0,8625.0]
 Piliocolobus_badius           421.5 [  13.2, 2.6e5]
 Presbytis_melalophos         6540.0 [6540.0,6540.0]
 Trachypithecus_francoisi     7325.0 [7325.0,7325.0]
 Semnopithecus_entellus        1.4e4 [ 1.4e4, 1.4e4]
 Rhinopithecus_brelichi       1358.7 [  46.7, 1.2e6]
 Nasalis_larvatus              1.5e4 [ 1.5e4, 1.5e4]
 Pygathrix_cinerea             994.8 [  34.1, 4.3e5]
 Daubentonia_madagascariensis 2277.5 [2277.5,2277.5]
 Varecia_variegata            3670.0 [3670.0,3670.0]
 Eulemur_rufus                4109.2 [ 161.0, 1.1e7]
 Lemur_catta                  2555.0 [2555.0,2555.0]
 Hapalemur_griseus            1347.5 [1347.5,1347.5]
 Avahi_laniger                 657.1 [  22.9, 6.4e5]
 Propithecus_verreauxi        5000.0 [5000.0,5000.0]
 Lepilemur_dorsalis            122.8 [ 0.165, 1.4e6]
 Cheirogaleus_medius           380.0 [ 380.0, 380.0]
 Mirza_coquereli               7.715 [ 0.304,2925.6]
 Microcebus_murinus             64.8 [  64.8,  64.8]
 Loris_tardigradus             238.2 [ 238.2, 238.2]
 Nycticebus_coucang            890.5 [ 890.5, 890.5]
 Arctocebus_calabarensis       257.5 [ 257.5, 257.5]
 Perodicticus_potto           1225.0 [1225.0,1225.0]
 Galago_senegalensis           192.2 [ 192.2, 192.2]
 Otolemur_crassicaudatus      1094.5 [1094.5,1094.5]
 Galeopterus_variegatus       1116.3 [  13.2, 1.4e7]
 Cynocephalus_volans          1300.0 [1300.0,1300.0]
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Figure 11.31: Mass estimation in primates
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11.5. Empirical data in Primates

 Tupaia_minor                   12.2 [  12.2,  12.2]
 Tarsius_syrichta               16.0 [  16.0,  16.0]
 Callicebus_donacophilus        25.0 [  25.0,  25.0]
 Pithecia_pithecia              36.0 [  36.0,  36.0]
 Chiropotes_chiropotes          45.8 [  18.5, 235.6]
 Cacajao_calvus                 35.8 [  35.8,  35.8]
 Alouatta_palliata              24.0 [  24.0,  24.0]
 Ateles_belzebuth               37.0 [  37.0,  37.0]
 Lagothrix_cana                 18.6 [ 4.660, 180.7]
 Brachyteles_arachnoides        55.4 [  32.7, 124.4]
 Saguinus_fuscicollis           24.9 [  24.9,  24.9]
 Leontopithecus_rosalia         31.6 [  31.6,  31.6]
 Callimico_goeldii              22.2 [  22.2,  22.2]
 Callithrix_jacchus             16.5 [  16.5,  16.5]
 Aotus_azarai                   30.0 [  30.0,  30.0]
 Saimiri_oerstedii              21.8 [  11.9,  75.5]
 Cebus_apella                   46.0 [  46.0,  46.0]
 Nomascus_siki                  70.6 [  14.0, 348.2]
 Symphalangus_syndactylus       18.9 [ 4.660,  76.2]
 Hylobates_agilis               49.0 [  49.0,  49.0]
 Pongo_pygmaeus                 59.0 [  59.0,  59.0]
 Gorilla_gorilla                55.4 [  55.4,  55.4]
 Homo_sapiens                  122.5 [ 122.5, 122.5]
 Pan_paniscus                   55.0 [  55.0,  55.0]
 Macaca_mulatta                 40.0 [  40.0,  40.0]
 Lophocebus_aterrimus          6.235 [ 3.584,  12.9]
 Papio_papio                    16.3 [ 6.283,  57.0]
 Mandrillus_sphinx              40.0 [  40.0,  40.0]
 Cercocebus_torquatus           46.0 [  46.0,  46.0]
 Chlorocebus_aethiops           30.8 [  30.8,  30.8]
 Erythrocebus_patas             28.3 [  28.3,  28.3]
 Cercopithecus_albogularis      20.1 [ 4.214, 165.1]
 Allenopithecus_nigroviridis    27.0 [  27.0,  27.0]
 Miopithecus_ogouensis          15.4 [ 1.369, 116.7]
 Colobus_angolensis             35.3 [  35.3,  35.3]
 Piliocolobus_badius            10.5 [ 3.040,  57.0]
 Presbytis_melalophos           20.0 [  20.0,  20.0]
 Trachypithecus_francoisi       26.3 [  26.3,  26.3]
 Semnopithecus_entellus         29.0 [  29.0,  29.0]
 Rhinopithecus_brelichi         11.7 [ 2.283,  91.4]
 Nasalis_larvatus               25.1 [  25.1,  25.1]
 Pygathrix_cinerea              10.2 [ 2.137,  83.6]
 Daubentonia_madagascariensis   23.3 [  23.3,  23.3]
 Varecia_variegata              36.0 [  36.0,  36.0]
 Eulemur_rufus                  40.5 [  15.0, 217.4]
 Lemur_catta                    37.3 [  37.3,  37.3]
 Hapalemur_griseus              23.3 [  23.3,  23.3]
 Avahi_laniger                  18.0 [ 5.050, 226.5]
 Propithecus_verreauxi          30.5 [  30.5,  30.5]
 Lepilemur_dorsalis             13.5 [ 1.347, 413.6]
 Cheirogaleus_medius            23.2 [  23.2,  23.2]
 Mirza_coquereli               6.085 [ 1.790,  70.3]
 Microcebus_murinus             18.2 [  18.2,  18.2]
 Loris_tardigradus              19.3 [  19.3,  19.3]
 Nycticebus_coucang             25.8 [  25.8,  25.8]
 Arctocebus_calabarensis        13.0 [  13.0,  13.0]
 Perodicticus_potto             26.8 [  26.8,  26.8]
 Galago_senegalensis            17.1 [  17.1,  17.1]
 Otolemur_crassicaudatus        22.7 [  22.7,  22.7]
 Galeopterus_variegatus         24.9 [ 4.544, 638.4]
 Cynocephalus_volans            20.9 [ 8.548,  83.6]
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Figure 11.32: Longevity estimation in primates

 Tupaia_minor                  0.004 [ 0.001, 0.470]
 Tarsius_syrichta              0.003 [   0.0, 0.084]
 Callicebus_donacophilus       0.002 [ 0.001, 0.031]
 Pithecia_pithecia             0.002 [ 0.001, 0.015]
 Chiropotes_chiropotes         0.002 [   0.0, 0.023]
 Cacajao_calvus                0.002 [ 0.001, 0.014]
 Alouatta_palliata             0.005 [ 0.002, 0.084]
 Ateles_belzebuth              0.003 [ 0.001, 0.042]
 Lagothrix_cana                0.004 [ 0.001, 0.083]
 Brachyteles_arachnoides       0.002 [   0.0, 0.013]
 Saguinus_fuscicollis          0.002 [   0.0, 0.008]
 Leontopithecus_rosalia        0.002 [   0.0, 0.009]
 Callimico_goeldii             0.002 [ 0.001, 0.022]
 Callithrix_jacchus            0.002 [ 0.002, 0.002]
 Aotus_azarai                  0.002 [   0.0, 0.014]
 Saimiri_oerstedii             0.003 [   0.0, 0.055]
 Cebus_apella                  0.001 [   0.0, 0.011]
 Nomascus_siki                 0.003 [   0.0, 0.118]
 Symphalangus_syndactylus      0.005 [ 0.002, 0.112]
 Hylobates_agilis              0.002 [ 0.001, 0.017]
 Pongo_pygmaeus                0.006 [ 0.003, 0.036]
 Gorilla_gorilla               0.008 [ 0.004, 0.062]
 Homo_sapiens                  0.002 [ 0.002, 0.002]
 Pan_paniscus                  0.004 [ 0.004, 0.004]
 Macaca_mulatta                0.004 [ 0.004, 0.004]
 Lophocebus_aterrimus          0.015 [ 0.005, 0.392]
 Papio_papio                   0.009 [ 0.004, 0.429]
 Mandrillus_sphinx             0.007 [ 0.004, 0.073]
 Cercocebus_torquatus          0.004 [ 0.003, 0.062]
 Chlorocebus_aethiops          0.003 [ 0.003, 0.003]
 Erythrocebus_patas            0.005 [ 0.003, 0.063]
 Cercopithecus_albogularis     0.007 [ 0.002, 0.692]
 Allenopithecus_nigroviridis   0.005 [ 0.002, 0.050]
 Miopithecus_ogouensis         0.009 [ 0.002, 2.326]
 Colobus_angolensis            0.004 [ 0.002, 0.070]
 Piliocolobus_badius           0.008 [ 0.002, 0.216]
 Presbytis_melalophos          0.008 [ 0.003, 0.364]
 Trachypithecus_francoisi      0.004 [ 0.002, 0.226]
 Semnopithecus_entellus        0.007 [ 0.003, 0.090]
 Rhinopithecus_brelichi        0.010 [ 0.002, 1.231]
 Nasalis_larvatus              0.007 [ 0.003, 0.153]
 Pygathrix_cinerea             0.011 [ 0.002, 2.691]
 Daubentonia_madagascariensis  0.004 [ 0.002, 0.092]
 Varecia_variegata             0.006 [ 0.006, 0.006]
 Eulemur_rufus                 0.003 [ 0.003, 0.003]
 Lemur_catta                   0.004 [ 0.002, 0.050]
 Hapalemur_griseus             0.003 [ 0.002, 0.055]
 Avahi_laniger                 0.008 [ 0.002, 0.361]
 Propithecus_verreauxi         0.009 [ 0.009, 0.009]
 Lepilemur_dorsalis            0.005 [   0.0, 4.318]
 Cheirogaleus_medius           0.003 [ 0.002, 0.214]
 Mirza_coquereli               0.005 [ 0.001, 0.553]
 Microcebus_murinus            0.002 [   0.0, 0.088]
 Loris_tardigradus             0.003 [ 0.001, 0.024]
 Nycticebus_coucang            0.003 [ 0.003, 0.003]
 Arctocebus_calabarensis       0.005 [ 0.002, 0.109]
 Perodicticus_potto            0.004 [ 0.002, 0.055]
 Galago_senegalensis           0.004 [ 0.004, 0.004]
 Otolemur_crassicaudatus       0.004 [ 0.002, 0.099]
 Galeopterus_variegatus        0.004 [   0.0, 0.830]
 Cynocephalus_volans           0.005 [   0.0,  29.8]
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Figure 11.33: πS estimation in primates
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11.5. Empirical data in Primates

 Tupaia_minor                  0.159 [ 0.104, 0.393]
 Tarsius_syrichta              0.173 [ 0.115, 0.412]
 Callicebus_donacophilus       0.182 [ 0.138, 0.347]
 Pithecia_pithecia             0.190 [ 0.153, 0.389]
 Chiropotes_chiropotes         0.208 [ 0.149, 0.470]
 Cacajao_calvus                0.192 [ 0.152, 0.337]
 Alouatta_palliata             0.154 [ 0.119, 0.258]
 Ateles_belzebuth              0.179 [ 0.141, 0.314]
 Lagothrix_cana                0.168 [ 0.111, 0.566]
 Brachyteles_arachnoides       0.214 [ 0.160, 0.398]
 Saguinus_fuscicollis          0.195 [ 0.161, 0.319]
 Leontopithecus_rosalia        0.192 [ 0.157, 0.334]
 Callimico_goeldii             0.168 [ 0.134, 0.356]
 Callithrix_jacchus            0.197 [ 0.197, 0.197]
 Aotus_azarai                  0.202 [ 0.151, 0.443]
 Saimiri_oerstedii             0.178 [ 0.121, 0.414]
 Cebus_apella                  0.232 [ 0.169, 0.442]
 Nomascus_siki                 0.205 [ 0.130, 0.636]
 Symphalangus_syndactylus      0.163 [ 0.111, 0.349]
 Hylobates_agilis              0.193 [ 0.142, 0.436]
 Pongo_pygmaeus                0.164 [ 0.127, 0.338]
 Gorilla_gorilla               0.154 [ 0.117, 0.306]
 Homo_sapiens                  0.238 [ 0.238, 0.238]
 Pan_paniscus                  0.196 [ 0.196, 0.196]
 Macaca_mulatta                0.158 [ 0.158, 0.158]
 Lophocebus_aterrimus          0.106 [ 0.076, 0.280]
 Papio_papio                   0.126 [ 0.090, 0.237]
 Mandrillus_sphinx             0.135 [ 0.110, 0.221]
 Cercocebus_torquatus          0.153 [ 0.128, 0.244]
 Chlorocebus_aethiops          0.178 [ 0.178, 0.178]
 Erythrocebus_patas            0.154 [ 0.127, 0.251]
 Cercopithecus_albogularis     0.147 [ 0.092, 0.334]
 Allenopithecus_nigroviridis   0.152 [ 0.107, 0.322]
 Miopithecus_ogouensis         0.135 [ 0.073, 0.327]
 Colobus_angolensis            0.162 [ 0.118, 0.322]
 Piliocolobus_badius           0.126 [ 0.071, 0.328]
 Presbytis_melalophos          0.141 [ 0.095, 0.341]
 Trachypithecus_francoisi      0.176 [ 0.126, 0.345]
 Semnopithecus_entellus        0.146 [ 0.111, 0.280]
 Rhinopithecus_brelichi        0.134 [ 0.077, 0.374]
 Nasalis_larvatus              0.153 [ 0.114, 0.285]
 Pygathrix_cinerea             0.129 [ 0.077, 0.326]
 Daubentonia_madagascariensis  0.168 [ 0.119, 0.408]
 Varecia_variegata             0.125 [ 0.125, 0.125]
 Eulemur_rufus                 0.159 [ 0.159, 0.159]
 Lemur_catta                   0.150 [ 0.116, 0.301]
 Hapalemur_griseus             0.166 [ 0.126, 0.294]
 Avahi_laniger                 0.121 [ 0.080, 0.301]
 Propithecus_verreauxi         0.116 [ 0.116, 0.116]
 Lepilemur_dorsalis            0.147 [ 0.075, 0.566]
 Cheirogaleus_medius           0.160 [ 0.122, 0.298]
 Mirza_coquereli               0.139 [ 0.086, 0.472]
 Microcebus_murinus            0.179 [ 0.127, 0.387]
 Loris_tardigradus             0.183 [ 0.144, 0.362]
 Nycticebus_coucang            0.186 [ 0.186, 0.186]
 Arctocebus_calabarensis       0.147 [ 0.115, 0.277]
 Perodicticus_potto            0.161 [ 0.126, 0.282]
 Galago_senegalensis           0.159 [ 0.159, 0.159]
 Otolemur_crassicaudatus       0.154 [ 0.122, 0.349]
 Galeopterus_variegatus        0.172 [ 0.101, 0.859]
 Cynocephalus_volans           0.152 [ 0.090, 0.477]
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Figure 11.34: πN/πS estimation in primates

 Tupaia_minor                 1376.6 [1200.3,1862.0]
 Tarsius_syrichta             1872.0 [1682.9,2325.6]
 Callicebus_donacophilus      3091.1 [2842.1,3607.3]
 Pithecia_pithecia            4360.8 [4360.8,4360.8]
 Chiropotes_chiropotes        5885.2 [2280.8,   3e4]
 Cacajao_calvus               4644.3 [4644.3,4644.3]
 Alouatta_palliata            3317.8 [3317.8,3317.8]
 Ateles_belzebuth             4953.7 [4953.7,4953.7]
 Lagothrix_cana               2441.4 [ 604.9, 3.4e4]
 Brachyteles_arachnoides      7610.3 [4882.7, 1.4e4]
 Saguinus_fuscicollis         3023.3 [3023.3,3023.3]
 Leontopithecus_rosalia       3733.2 [3733.2,3733.2]
 Callimico_goeldii            2609.0 [2609.0,2609.0]
 Callithrix_jacchus           2085.2 [2085.2,2085.2]
 Aotus_azarai                 3825.8 [3472.4,4552.8]
 Saimiri_oerstedii            2740.4 [1521.8,9154.4]
 Cebus_apella                 6078.2 [6078.2,6078.2]
 Nomascus_siki                9845.3 [1845.0, 5.3e4]
 Symphalangus_syndactylus     2325.7 [ 522.4,   1e4]
 Hylobates_agilis             6273.4 [5723.8,7708.9]
 Pongo_pygmaeus               8059.2 [8059.2,8059.2]
 Gorilla_gorilla              7872.6 [7872.6,7872.6]
 Homo_sapiens                  1.6e4 [ 1.6e4, 1.6e4]
 Pan_paniscus                 8089.5 [8089.5,8089.5]
 Macaca_mulatta               5108.0 [5108.0,5108.0]
 Lophocebus_aterrimus          707.5 [ 394.8,1647.9]
 Papio_papio                  2012.8 [ 777.4,7645.1]
 Mandrillus_sphinx            5076.1 [5076.1,5076.1]
 Cercocebus_torquatus         5559.9 [5559.9,5559.9]
 Chlorocebus_aethiops         3994.3 [3994.3,3994.3]
 Erythrocebus_patas           3674.3 [3674.3,3674.3]
 Cercopithecus_albogularis    2648.2 [ 525.5, 2.5e4]
 Allenopithecus_nigroviridis  3477.9 [3160.2,4466.5]
 Miopithecus_ogouensis        2021.0 [ 177.0, 1.6e4]
 Colobus_angolensis           4633.1 [4263.7,5619.5]
 Piliocolobus_badius          1292.2 [ 340.9,8105.3]
 Presbytis_melalophos         2769.9 [2503.6,3346.5]
 Trachypithecus_francoisi     3820.4 [3820.4,3820.4]
 Semnopithecus_entellus       3894.7 [3894.7,3894.7]
 Rhinopithecus_brelichi       1579.4 [ 314.5, 1.3e4]
 Nasalis_larvatus             3693.4 [3693.4,3693.4]
 Pygathrix_cinerea            1371.9 [ 295.5, 1.3e4]
 Daubentonia_madagascariensis 3092.5 [3092.5,3092.5]
 Varecia_variegata            4239.5 [4239.5,4239.5]
 Eulemur_rufus                5197.2 [1834.7, 3.9e4]
 Lemur_catta                  4370.7 [4370.7,4370.7]
 Hapalemur_griseus            3091.1 [3091.1,3091.1]
 Avahi_laniger                2222.2 [ 610.8, 3.3e4]
 Propithecus_verreauxi        3875.9 [3875.9,3875.9]
 Lepilemur_dorsalis           1506.7 [ 136.8, 4.7e4]
 Cheirogaleus_medius          2714.9 [2714.9,2714.9]
 Mirza_coquereli               649.6 [ 165.3,7983.5]
 Microcebus_murinus           2099.0 [2099.0,2099.0]
 Loris_tardigradus            2312.7 [2312.7,2312.7]
 Nycticebus_coucang           3141.3 [3141.3,3141.3]
 Arctocebus_calabarensis      1574.1 [1574.1,1574.1]
 Perodicticus_potto           3225.1 [3225.1,3225.1]
 Galago_senegalensis          1980.4 [1980.4,1980.4]
 Otolemur_crassicaudatus      2754.2 [2754.2,2754.2]
 Galeopterus_variegatus       3009.0 [ 495.8, 6.9e4]
 Cynocephalus_volans          2608.9 [1111.7,9955.8]

0.3

103 104

Generation time (days)

Figure 11.35: Generation time estimation in primates
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11.5. Empirical data in Primates

11.5.3 Amino-acid preferences entropy

Experiment 〈Ω〉 (branch Ne) 〈Ω〉 (constant Ne)

Primates, chain 1 1.41 ± 0.10 1.49 ± 0.08

Primates, chain 2 1.40 ± 0.10 1.48 ± 0.08

Table 11.19: Estimated amino-acid entropy in primates. Obtained with the mechanistic
inference model developed in this paper of site-specific amino-acid fitness profiles and log-
Brownian process for Ne, µ and life-history traits (in the left column), or under the
assumption of constant Ne (in the right column).

11.5.4 Traits estimation with branch ω (chain 1)

Obtained with the phenomenological inference model of log-Brownian process for the µ

and the relative non-synonymous substitution rate (ω), as in Lartillot and Poujol (2011).

 Tupaia_minor                  0.214 [ 0.168, 0.339]
 Tarsius_syrichta              0.169 [ 0.126, 0.292]
 Callicebus_donacophilus       0.312 [ 0.254, 0.520]
 Pithecia_pithecia             0.310 [ 0.252, 0.508]
 Chiropotes_chiropotes         0.319 [ 0.256, 0.581]
 Cacajao_calvus                0.310 [ 0.252, 0.502]
 Alouatta_palliata             0.302 [ 0.241, 0.499]
 Ateles_belzebuth              0.303 [ 0.244, 0.464]
 Lagothrix_cana                0.313 [ 0.244, 0.614]
 Brachyteles_arachnoides       0.339 [ 0.266, 0.548]
 Saguinus_fuscicollis          0.302 [ 0.249, 0.554]
 Leontopithecus_rosalia        0.358 [ 0.297, 0.664]
 Callimico_goeldii             0.346 [ 0.283, 0.593]
 Callithrix_jacchus            0.318 [ 0.260, 0.543]
 Aotus_azarai                  0.356 [ 0.289, 0.653]
 Saimiri_oerstedii             0.333 [ 0.272, 0.522]
 Cebus_apella                  0.354 [ 0.289, 0.592]
 Nomascus_siki                 0.284 [ 0.209, 0.551]
 Symphalangus_syndactylus      0.312 [ 0.238, 0.568]
 Hylobates_agilis              0.319 [ 0.247, 0.577]
 Pongo_pygmaeus                0.391 [ 0.310, 0.678]
 Gorilla_gorilla               0.336 [ 0.260, 0.609]
 Homo_sapiens                  0.349 [ 0.262, 0.638]
 Pan_paniscus                  0.321 [ 0.249, 0.528]
 Macaca_mulatta                0.336 [ 0.277, 0.539]
 Lophocebus_aterrimus          0.339 [ 0.276, 0.600]
 Papio_papio                   0.323 [ 0.263, 0.505]
 Mandrillus_sphinx             0.354 [ 0.286, 0.685]
 Cercocebus_torquatus          0.331 [ 0.268, 0.557]
 Chlorocebus_aethiops          0.304 [ 0.244, 0.524]
 Erythrocebus_patas            0.319 [ 0.255, 0.527]
 Cercopithecus_albogularis     0.272 [ 0.204, 0.534]
 Allenopithecus_nigroviridis   0.311 [ 0.248, 0.646]
 Miopithecus_ogouensis         0.286 [ 0.222, 0.506]
 Colobus_angolensis            0.290 [ 0.225, 0.512]
 Piliocolobus_badius           0.290 [ 0.219, 0.605]
 Presbytis_melalophos          0.266 [ 0.196, 0.540]
 Trachypithecus_francoisi      0.240 [ 0.173, 0.443]
 Semnopithecus_entellus        0.286 [ 0.221, 0.549]
 Rhinopithecus_brelichi        0.286 [ 0.216, 0.587]
 Nasalis_larvatus              0.294 [ 0.222, 0.609]
 Pygathrix_cinerea             0.277 [ 0.208, 0.595]
 Daubentonia_madagascariensis  0.149 [ 0.096, 0.306]
 Varecia_variegata             0.265 [ 0.200, 0.511]
 Eulemur_rufus                 0.275 [ 0.207, 0.530]
 Lemur_catta                   0.262 [ 0.201, 0.472]
 Hapalemur_griseus             0.252 [ 0.191, 0.516]
 Avahi_laniger                 0.239 [ 0.178, 0.434]
 Propithecus_verreauxi         0.261 [ 0.197, 0.516]
 Lepilemur_dorsalis            0.268 [ 0.207, 0.515]
 Cheirogaleus_medius           0.259 [ 0.205, 0.446]
 Mirza_coquereli               0.278 [ 0.221, 0.566]
 Microcebus_murinus            0.248 [ 0.191, 0.452]
 Loris_tardigradus             0.202 [ 0.150, 0.324]
 Nycticebus_coucang            0.237 [ 0.181, 0.359]
 Arctocebus_calabarensis       0.216 [ 0.166, 0.359]
 Perodicticus_potto            0.238 [ 0.180, 0.474]
 Galago_senegalensis           0.223 [ 0.174, 0.396]
 Otolemur_crassicaudatus       0.222 [ 0.168, 0.388]
 Galeopterus_variegatus        0.231 [ 0.170, 0.436]
 Cynocephalus_volans           0.262 [ 0.193, 0.664]

0.3

0.200.20
3×10−1

Non-synonymous relative substitution rate ( )

Figure 11.36: Non-synonymous substitution rate (ω) estimation in primates
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11.5. Empirical data in Primates

 Tupaia_minor                  0.015 [ 0.003, 0.167]
 Tarsius_syrichta              0.003 [   0.0, 0.046]
 Callicebus_donacophilus       0.048 [ 0.022, 0.197]
 Pithecia_pithecia             0.035 [ 0.013, 0.174]
 Chiropotes_chiropotes         0.033 [ 0.011, 0.170]
 Cacajao_calvus                0.031 [ 0.010, 0.175]
 Alouatta_palliata             0.035 [ 0.014, 0.148]
 Ateles_belzebuth              0.033 [ 0.015, 0.121]
 Lagothrix_cana                0.019 [ 0.006, 0.125]
 Brachyteles_arachnoides       0.059 [ 0.024, 0.239]
 Saguinus_fuscicollis          0.041 [ 0.018, 0.144]
 Leontopithecus_rosalia        0.092 [ 0.047, 0.276]
 Callimico_goeldii             0.077 [ 0.031, 0.283]
 Callithrix_jacchus            0.090 [ 0.036, 0.296]
 Aotus_azarai                  0.058 [ 0.029, 0.209]
 Saimiri_oerstedii             0.113 [ 0.058, 0.346]
 Cebus_apella                  0.078 [ 0.038, 0.285]
 Nomascus_siki                 0.003 [   0.0, 0.035]
 Symphalangus_syndactylus      0.013 [ 0.004, 0.076]
 Hylobates_agilis              0.015 [ 0.005, 0.081]
 Pongo_pygmaeus                0.066 [ 0.038, 0.153]
 Gorilla_gorilla               0.024 [ 0.012, 0.084]
 Homo_sapiens                  0.030 [ 0.015, 0.128]
 Pan_paniscus                  0.031 [ 0.016, 0.085]
 Macaca_mulatta                0.041 [ 0.023, 0.124]
 Lophocebus_aterrimus          0.098 [ 0.052, 1.649]
 Papio_papio                   0.023 [ 0.009, 0.123]
 Mandrillus_sphinx             0.034 [ 0.016, 0.127]
 Cercocebus_torquatus          0.020 [ 0.009, 0.082]
 Chlorocebus_aethiops          0.014 [ 0.005, 0.074]
 Erythrocebus_patas            0.024 [ 0.009, 0.131]
 Cercopithecus_albogularis     0.008 [ 0.002, 0.053]
 Allenopithecus_nigroviridis   0.021 [ 0.008, 0.098]
 Miopithecus_ogouensis         0.013 [ 0.004, 0.077]
 Colobus_angolensis            0.011 [ 0.003, 0.088]
 Piliocolobus_badius           0.011 [ 0.003, 0.094]
 Presbytis_melalophos          0.004 [ 0.001, 0.033]
 Trachypithecus_francoisi      0.003 [   0.0, 0.029]
 Semnopithecus_entellus        0.008 [ 0.003, 0.072]
 Rhinopithecus_brelichi        0.011 [ 0.003, 0.071]
 Nasalis_larvatus              0.010 [ 0.003, 0.067]
 Pygathrix_cinerea             0.016 [ 0.006, 0.079]
 Daubentonia_madagascariensis    0.0 [   0.0, 0.012]
 Varecia_variegata             0.009 [ 0.002, 0.099]
 Eulemur_rufus                 0.006 [ 0.001, 0.060]
 Lemur_catta                   0.006 [ 0.002, 0.049]
 Hapalemur_griseus             0.017 [ 0.005, 0.100]
 Avahi_laniger                 0.019 [ 0.005, 0.160]
 Propithecus_verreauxi         0.008 [ 0.002, 0.075]
 Lepilemur_dorsalis            0.041 [ 0.014, 0.215]
 Cheirogaleus_medius           0.017 [ 0.005, 0.103]
 Mirza_coquereli               0.071 [ 0.022, 0.425]
 Microcebus_murinus            0.023 [ 0.005, 0.198]
 Loris_tardigradus             0.018 [ 0.004, 0.207]
 Nycticebus_coucang            0.018 [ 0.004, 0.185]
 Arctocebus_calabarensis       0.021 [ 0.005, 0.181]
 Perodicticus_potto            0.017 [ 0.004, 0.160]
 Galago_senegalensis           0.019 [ 0.005, 0.129]
 Otolemur_crassicaudatus       0.008 [ 0.002, 0.080]
 Galeopterus_variegatus        0.022 [ 0.005, 0.154]
 Cynocephalus_volans           0.009 [ 0.002, 0.097]

0.3

0.00 0.00 0.01 0.01 0.02 0.05 0.100.10
Mutation rate per unit of time ( )

Figure 11.37: Mutation rate (µ) estimation in primates

Correlation (ρ) ω µ maturity mass longevity πS πN/πS generation time

ω - 0.294 0.000316 0.0361 0.0155 −0.197 0.145 0.0111

µ - - −0.804∗∗ −0.798∗∗ −0.817∗∗ −0.0201 0.031 −0.823∗∗

maturity - - - 0.952∗∗ 0.957∗∗ −0.166 0.162 0.97∗∗

mass - - - - 0.933∗∗ −0.0437 0.0427 0.943∗∗

longevity - - - - - −0.223 0.165 0.999∗∗

πS - - - - - - −0.664 −0.212

πN/πS - - - - - - - 0.162

generation time - - - - - - - -

Table 11.20: Correlation coefficient between non-synonymous substitution rate (ω),
mutation rate per site per unit of time (µ), and life-history traits (maximum longevity,
adult weight and female maturity) were computed in primates. Asterisks indicate strength
of support (∗pp > 0.95, ∗∗pp > 0.975).
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11.6. Sufficient statistics

Covariance (Σ) ω µ maturity mass longevity πS πN/πS generation time

ω 0.0674∗∗ 0.231 −0.0106 0.0149 −0.00138 −0.0435 0.0101 −0.00314

µ - 8.71∗∗ −4.8∗∗ −9.22∗∗ −3.97∗∗ 0.188 0.0483 −4.08∗∗

maturity - - 4.95∗∗ 8.37∗∗ 3.29∗∗ −1.01 0.000924 3.53∗∗

mass - - - 16.3∗∗ 6.14∗∗ −0.932 −0.0741 6.45∗∗

longevity - - - - 2.76∗∗ −0.577 0.0919 2.82∗∗

πS - - - - - 1.3∗∗ −0.148 −0.637

πN/πS - - - - - - 0.182∗∗ 0.0775

generation time - - - - - - - 2.92∗∗

Table 11.21: Correlation coefficient between non-synonymous substitution rate (ω),
mutation rate per site per unit of time (µ), and life-history traits (maximum longevity,
adult weight and female maturity) were computed in primates. Asterisks indicate strength
of support (∗pp > 0.95, ∗∗pp > 0.975).

Partial coefficient ω µ maturity mass longevity πS πN/πS generation time

ω - 0.463 −0.0461 0.248 −0.027 −0.193 −0.0681 0.0319

µ - - 0.0649 −0.000258 0.0374 −0.128 0.115 −0.075

maturity - - - 0.228 −0.834∗∗ −0.0991 0.0491 0.854∗∗

mass - - - - −0.038 0.435 −0.123 0.0851

longevity - - - - - −0.184 −0.145 0.994∗∗

πS - - - - - - −0.553∗ 0.125

πN/πS - - - - - - - 0.136

generation time - - - - - - - -

Table 11.22: Partial correlation coefficient between non-synonymous substitution
rate (ω), mutation rate per site per unit of time (µ), and life-history traits (maximum
longevity, adult weight and female maturity) were computed in primates. Asterisks indi-
cate strength of support (∗pp > 0.95, ∗∗pp > 0.975).

11.6 Sufficient statistics

A sequence of length Z evolves by point substitutions, according to a random process

defined by the substitution matrices Q(b,z), over a phylogenetic tree. A realization of

the random process along a branch b, and at a particular site z results in a detailed

substitution history, which will be denoted by H(b,z).

11.6.1 Path sufficient statistics

All sites owning to the same category of fitness profile share the same substitution rate

matrix. Hence, H(b,z) can be gathered across all sites owing to a specific category k, de-

noted H(b). If we express the probability of the substitution mapping (H(b,k)) as a func-

tion of the codon substitution process for this category k, we get the following expression:

P(H(b,k)|l(b),Q(b,k)) ∝

[
61∏

i=1

[
π

(b,k)
i

]n(b,k)
i

]
·


 ∏

1≤i,j≤61

[
Q

(b,k)
i,j

]m(b,k)
i,j


 ·

[
61∏

i=1

e
−

∣∣∣Q(b,k)
i,i

∣∣∣a(b,k)
i

]
,

(11.17)

where we define the sufficient statistics:

• m
(b,k)
i,j is the total number of substitutions from codon i to codon j
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• n
(b,k)
i is the number of sites starting with codon i at the tip of the branch.

• a
(b,k)
i is the total waiting time in codon i.

Once these sufficient statistics have been computed, the parameters of the substitution

matrix Q(b,k) can be resampled conditional on H(b,k), using equation 11.17 each time the

likelihood needs to be recomputed. This leads to relatively fast MCMC strategy.

11.6.2 Length sufficient statistics

H(b,z) can also be gathered across all sites along a specific branch, giving H(b). Then

the probability of the substitution history given the branch lengths (l(b) = µ(b)∆T (b)),

takes a very simple form:

P(H(b)|L(b)) ∝
[
L(b)

]u(b)

e−r(b)L(b)
, (11.18)

where we define the sufficient statistics:

• u(b) is the total number of substitutions over branch b, summed over all sites.

• r(b) is the mean rate away from current codon state (averaged over the entire

substitution history).

Thus, formally, the probability of the substitution mapping can be summarized by say-

ing that the total number of substitutions along a given branch over all sites, u(b), is

Poisson distributed, of mean r(b)L(b).

11.6.3 Scatter sufficient statistics

From the independent contrast C(b) of the Brownian process B(n), we can define the

2 × 2 scatter sufficient statistic matrix, A as:

A =
2P −2∑

b=1

C(b) ·
[
C(b)

]T
(11.19)

By Bayes theorem, the posterior on Σ, conditional on a particular realization of B (and

thus of C) is an invert Wishart distribution, of parameter κI +A and with 2P − 2 + 3

degrees of freedom.

Σ ∼ Wishart−1 (κI +A, 2P − 2 + 3) (11.20)

This invert Wishart distribution can be obtained by sampling 2P − 2 + 3 independent

and identically distributed multivariate normal random variables Z(a) defined by

Z(a) ∼ N
(
0, [κI +A]−1

)
. (11.21)

And from these multivariate samples, Σ is Gibbs sampled as:

Σ =

(
2P −2+3∑

k=1

Z(a) ·
[
Z(a)

]T
)−1

(11.22)
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12.1. ω response after a change in Ne

12.1 ω response after a change in Ne

12.1.1 Genotype to phenotype map

Define n as the number of sites in the genotype sequence. Each site can be in one of

K ≥ 2 states, where only 1 state is defined the stable state, and K−1 states are unstable.

For a given genotype sequence, define phenotype 0 ≤ x ≤ 1 as the current proportion of

sites in the unstable state. After a mutation, given that only one site can change at a

time, the absolute change of x is either 0 or δx = 1/n. Define ρx(δx) as the probability

to get a change of phenotype equal to δx, if the current phenotype is x:





δx with probability ρx(δx) = 1 − x,

0 with probability ρx(0) = x
[
1 − 1

K−1

]
,

−δx with probability ρx(−δx) = x
K−1 .

(12.1)

12.1.2 Selection coefficient

s(x, δx) is the selection coefficient of an effect δx if the current phenotype is x:

s(x, δx) =
W (x+ δx) −W (x)

W (x)
, (12.2)

≃
1

W (x)

∂W (x)

∂x
δx, (12.3)

≃
∂ ln(W (x))

∂x
δx, (12.4)

≃
∂f(x)

∂x
δx, (12.5)

where W (x) is the Wrightian fitness of phenotype x, and f = ln(W ) is the log-fitness

(or Malthusian fitness). And the selective effect of the opposite change (−δx) is the

opposite selection coefficient:

s(x,−δx) ≃ −s(x, δx) from eq. 12.5, (12.6)

⇐⇒ S(x,−δx) ≃ −S(x, δx), (12.7)

where S(x∗, δx) = 4Nes(x
∗, δx) is the scaled selection coefficient.

12.1.3 Probability of fixation

The probability of fixation of a mutation with effect δx, for a resident phenotype x is :

Pfix(x, δx) =
1 − e−2s(x,δx)

1 − e−4Nes(x,δx)
, (12.8)

≃
2s(x, δx)

1 − e−4Nes(x,δx)
, (12.9)

=
2s(x, δx)

1 − e−S(x,δx)
. (12.10)
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12.1. ω response after a change in Ne

And in the case of neutral mutations, the probability of fixation is:

Pfix(x, 0) =
1

2Ne
. (12.11)

And the ratio of probability of fixation between selected and neutral mutations is:

Pfix(x, δx)

Pfix(x, 0)
=

2Ne2s(x, δx)

1 − e−S(x,δx)
from eq. 12.10 and 12.11, (12.12)

=
S(x, δx)

1 − e−S(x,δx)
. (12.13)

12.1.4 Equilibrium phenotype

At equilibrium phenotype x∗, the expected selection coefficient of mutation that reached

fixation must be 0:

0 = Eδx [s(x∗, δx)Pfix(x∗, δx)] , (12.14)

⇐⇒ 0 =
2s(x∗, δx)2

1 − e−S(x∗,δx)
ρx∗(δx) + s(x∗, 0)

ρx∗(0)

2Ne
+

2s(x∗,−δx)2

1 − e−S(x∗,−δx)
ρx∗(−δx) from eq. 12.10 and 12.11,

(12.15)

=⇒
2s(x∗, δx)2

1 − e−S(x∗,δx)
ρx∗(δx) ≃

−2s(x∗, δx)2

1 − eS(x∗,δx)
ρx∗(−δx) from eq. 12.7, (12.16)

⇐⇒
ρx∗(δx)

ρx∗(−δx)
≃ e−S(x∗,δx) e−S(x∗,δx) − 1

e−S(x∗,δx)
(
1 − eS(x∗,δx)

) , (12.17)

⇐⇒ ln

(
1 − x∗

x∗

)
+ ln(K − 1) ≃ −S(x∗, δx) from eq. 12.1, (12.18)

⇐⇒ λK(x∗) ≃ −S(x∗, δx), (12.19)

where λK(x∗) = ln
(

1−x∗

x∗

)
+ ln(K − 1).

12.1.5 Relative substitution rate (ω) at equilibrium

The substitution rate of all selected relative to the substitution rate of neutral mutations

is denoted ω, which can also be interpreted as the mean fixation probability of mutations

scaled by the fixation probability of neutral mutations p = 1/2Ne.

ω = Eδx

[
Pfix(x, δx)

Pfix(x, 0)

]
, (12.20)

= (1 − x)
S(x, δx)

1 − e−S(x,δx)
+ x

(
K − 2

K − 1

)
+

x

K − 1

S(x,−δx)

1 − e−S(x,−δx)
from eq. 12.1, 12.10 and 12.11,

(12.21)

= (1 − x)
S(x, δx)

1 − e−S(x,δx)
−

x

K − 1

S(x, δx)

1 − eS(x,δx)
+ x

(
K − 2

K − 1

)
from eq. 12.7. (12.22)

ω∗ at equilibrium is then determined by the phenotype at equilibrium x∗:

ω∗ = (1 − x∗)
S(x∗, δx)

1 − e−S(x∗,δx)
−

x∗

K − 1

S(x∗, δx)

1 − eS(x∗,δx)
+ x∗

(
K − 2

K − 1

)
, (12.23)

= x∗
[

2(x∗ − 1)λK(x∗)

K(x∗ − 1) + 1
+

K − 2

K − 1

]
from eq. 12.18. (12.24)
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12.1. ω response after a change in Ne
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Moreover, given that the number of state if large enough K ≫ 1, the equilibrium ω

can be approximated as:

ω∗ = x∗
[

2(x∗ − 1)λK(x∗)

K(x∗ − 1) + 1
+

K − 2

K − 1

]
, (12.25)

≃ x∗ (12.26)

And the derivative of ω∗ w.r.t to x∗ is:

dω∗

dx∗
= 2

[
K(x∗ − 1) + 1 +

[
K(x∗ − 1)2 + 2x∗ − 1

]
λK(x∗)

(K(x∗ − 1) + 1)2

]
+

K − 2

K − 1
. (12.27)
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12.1. ω response after a change in Ne

Moreover, given that the number of state if large enough K ≫ 1, the response in equi-

librium ω due to change in phenotype can be approximated as:

dω∗

dx∗
= 2

[
K(x∗ − 1) + 1 +

[
K(x∗ − 1)2 + 2x∗ − 1

]
λK(x∗)

(K(x∗ − 1) + 1)2

]
+

K − 2

K − 1
, (12.28)

≃
2λK(x∗)

K
+ 1, (12.29)

≃ 1. (12.30)

12.1.6 ω response after a change in Ne

Define the function G(x,Ne) as:

G(x,Ne) ≡ λK(x∗) + 4Nes(x, δx), (12.31)

The equilibrium equation (eq. 12.18) states that G(x∗, Ne) = 0, meaning that x∗ is

implicitly a function of Ne:

G(x∗(Ne), Ne) = 0, (12.32)

=⇒
∂G(x∗, Ne)

∂x∗

dx∗

dNe
+
∂G(x∗, Ne)

∂Ne
= 0, (12.33)

⇐⇒

[
∂λK(x∗)

∂x∗
+ 4Ne

∂s(x∗, δx)

∂x∗

]
dx∗

dNe
+ 4s(x∗, δx) = 0, (12.34)

⇐⇒

[
∂λK(x∗)

∂x∗
+ 4Ne

∂2f(x∗)

∂x∗2 δx

]
dx∗

dNe
= −4

∂f(x∗)

∂x∗
δx from eq. 12.5, (12.35)

⇐⇒ 4δx

[
1

4δxNe

∂λK(x∗)

∂x∗
+
∂2f(x∗)

∂x∗2

]
Ne

dx∗

dNe
= −4δx

∂f(x∗)

∂x∗
, (12.36)

⇐⇒
dx∗

d ln(Ne)
= −

∂f(x∗)
∂x∗

1
4δxNe

∂λK(x∗)
∂x∗ + ∂2f(x∗)

∂x∗2

. (12.37)

Giving the equation for the response of phenotype at equilibrium after a change of ef-

fective population size. Together, the response of substitution rate at equilibrium, after

a change of effective population size can be obtained as:

dω∗

d ln(Ne)
=

dω∗

dx∗

dx∗

d ln(Ne)
, (12.38)

= −
dω∗

dx∗

∂f(x∗)
∂x∗

1
4δxNe

∂λK(x∗)
∂x∗ + ∂2f(x∗)

∂x∗2

from eq. 12.37. (12.39)

Moreover, with the approximation that
∣∣∣4Ne

∂s(x∗,δx)
∂x∗

∣∣∣ ≫
∣∣∣∂λK(x∗)

∂x∗

∣∣∣, meaning that a change

in phenotype causes a higher change in scaled selection coefficient than mutational bias,

we have:

dx∗

d ln(Ne)
= −

∂f(x∗)
∂x∗

1
4δxNe

∂λK(x∗)
∂x∗ + ∂2f(x∗)

∂x∗2

, (12.40)

=⇒
dx∗

d ln(Ne)
≃ −

∂f(x∗)
∂x∗

∂2f(x∗)
∂x∗2

. (12.41)
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12.2. Models for the log-fitness function

Together, these approximations leads to the following response in equilibrium ω after

change in Ne as:

dω∗

d ln(Ne)
≃ −

∂f(x∗)
∂x∗

∂2f(x∗)
∂x∗2

(12.42)

12.2 Models for the log-fitness function

12.2.1 Folded fraction

All phenotype-fitness functions considered below are log-concave, and as a result, ∂f(x∗)
∂x∗

is a decreasing function of x; the less stable the protein already is, the stronger the

purifying selection against additional destabilizing mutations. More precisely, fitness

functions depends on the folded fraction of the protein of interest, which is given by

the Fermi-Dirac distribution:

PF(x) =
1

1 + eβ(α+γnx)
, (12.43)

where x is the fraction of destabilizing mutations, each contributing to γ in free energy

of folding (also denoted empirically ∆∆G), and β = 1/kT . Thus, α < 0 is the difference

in free energy between folded and unfolded state when all sites are stable (also denoted

empirically ∆Gmin). As a result, nγ is thus the expected change in ∆G when all sites are

considered unstable. The misfolded fraction is PU = 1 − PF. In addition, PF is typically

close to 1 (or PU ≪ 1), so that we can use a first-order approximation:

PF(x) = 1 − PU(x) (12.44)

≃ 1 − eβ(α+γnx) (12.45)

or equivalently

PU(x) ≃ eβ(α+γnx) (12.46)

12.2.2 Fitness equal to folded fraction

A first model is to assume that the fitness is equal to the folded fraction (Goldstein, 2013):

W (x) =
1

1 + eβ(α+nγx)
. (12.47)

The derivative of fitness w.r.t to phenotype is:

∂f(x)

∂x
= −

∂ ln
(
1 + eβ(α+nγx)

)

∂x
from eq. 12.47, (12.48)

= −βnγ
eβ(α+nγx)

1 + eβ(α+nγx)
, (12.49)

≃ −βnγeβ(α+nγx). (12.50)
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12.2. Models for the log-fitness function

The equilibrium phenotype (x∗) is :

λK(x∗) = 4Neβγ
eβ(α+nγx∗)

1 + eβ(α+nγx∗)
from eq. 12.19 and 12.49. (12.51)

Using Ne = 104, β = 1.686, α = ∆Gmin = −118, n = 300, γ = ∆∆G = 1, we

have the following :
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Where in this example we can visually appreciate that the a change in phenotype causes

a higher change in scaled selection coefficient than mutational bias (eq. 12.41). And the

second derivative of fitness w.r.t to phenotype is:

∂2f(x)

∂x2
= −βnγ

∂

∂x

(
eβ(α+nγx)

1 + eβ(α+nγx)

)
from eq. 12.49, (12.52)

= −βnγβnγ
eβ(α+nγx)

(
1 + eβ(α+nγx)

)2 , (12.53)

=
βnγ

1 + eβ(α+nγx)

∂f(x)

∂x
from eq. 12.49, (12.54)

≃ βnγ
∂f(x)

∂x
(12.55)

Finally, ω response after a change in Ne is simply:

dω∗

d ln(Ne)
≃ −

1

βnγ
from eq. 12.54 and 12.30, (12.56)

which is independent of x∗, meaning ω is linearly decreasing with Ne in log space. This

model, however, does not express the fact that selection is typically stronger for proteins

characterized by higher levels of expression.
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12.2. Models for the log-fitness function

12.2.3 Selective cost proportional to amount of misfolded
protein

A slight variation is to assume that the selective cost itself is proportional to the total

amount of misfolded protein (Drummond et al., 2005; Wilke and Drummond, 2006; Drum-

mond and Wilke, 2008; Serohijos et al., 2012). For a given protein with expression level y:

f(x) = −AyPU(x), (12.57)

where A is the cost per misfolded macromolecule. Then,

∂f(x)

∂x
≃ −Ayβγneβ(α+γnx). (12.58)

Under this model, the phenotype at equilibrium is given by:

λK(x∗) = 4NeyAβγne
β(α+γnx∗) from eq. 12.19 and 12.49. (12.59)

And the response of ω after a change in Ne is the same as before:

dω∗

d ln(Ne)
≃ −

1

βnγ
. (12.60)

Since Ne and y are confounded factors, meaning they only appear in the equation as

a product between the two, implicit derivation leads to the same result whenever the

derivation is w.r.t Ne or y, leading to same compact equation:

dω∗

d ln(y)
=

dω∗

d ln(Ne)
≃ −

1

βnγ
. (12.61)

12.2.4 Translational errors

Another variant account for translational errors. Translational errors occur at a rate

ρ per residue. These errors contribute additional destabilizing mutations, each with

effect size δx = 1/n. The total number of translational errors per macromolecule is

approximately Poisson distributed:

πk = e−ρn (ρn)k

k!
(12.62)

and the total selective cost is now an average over all possible values of k:

f(x) = −Ay
∑

k

πke
β(α+γnx+γk) (12.63)

= −Ayeβ(α+γnx)
∑

k

e−ρn (ρn)k

k!
eβγk (12.64)

= −Ayeβ(α+γnx)+ρn(eβγ−1) (12.65)

≃ −Ayeβ(α+γnx)+ρβγn (12.66)

= −Ayeβ(α+γn(x+ρ)) (12.67)
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12.2. Models for the log-fitness function

In words, the fitness function is the same the previous model, except that the trait x

(fraction of destabilizing mutations) is shifted by ρ, the mean fraction of additional mu-

tations contributed by translation errors. This additional factor is independent of x, and

as a result, the scaled selection strength is essentially the same, up to a proportionality

constant (contributed by the shift):

4Ne
∂f(x)

∂x
∝ −4Neye

β(α+γn(x+ρ)) (12.68)

∝ −4Neye
β(α+γnx) (12.69)

Moreover, ω response after a change in Ne is again the same as before:

dω∗

d ln(Ne)
≃ −

1

βnγ
. (12.70)

12.2.5 Cost-benefit argument

The cost-benefit argument (Beaulieu et al., 2018) is based on two assumptions

1. the expression level is regulated so that the total number of functional macro-

molecules is maintained at a target level y;

2. the log-fitness is proportional to the ratio of the total cost of expression over the

benefit contributed by the protein.

Specifically, the protein is assumed to be regulated so as to reach a level of expression of

functional proteins of y, and contributes a total benefit B (which depends on its specific

function). Given that only a fraction PF(x) = 1 − PU(x) of the total amount of protein

expressed by the cell is functional, the total cost of expression C is then equal to:

C(x) =
y

PF(x)
(12.71)

≃ y(1 + PU(x)) (12.72)

Then, the log-fitness is given by:

f(x) = −A
y

B

(
1 + eβ(α+γnx)

)
(12.73)

= −by(1 + eβ(α+γnx)), (12.74)

where b = A/B. Compared to models 2 (section 12.2.3) and 3 (section 12.2.4), the log-

fitness now has an additional term that depends on the target expression level y, but

not on trait x. The scaled strength of selection on mutations affecting x has thus the

same functional form as for the two previous models:

4Ne
∂f(x)

∂x
∝ −4Neye

β(α+γnx) (12.75)

Alternative cost-expression models could also be used, allowing for a non-linear cost

function for expression or for some susceptibility of the realized equilibrium expression
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12.3. Model of protein-protein interactions

level, as a function of the number of mutations. Under these models, the strength of

selection is still expected to be an increasing function of y, although not linear:

4Ne
∂f(x)

∂x
∝ −4Neg(y)eβ(α+γnx), (12.76)

where g is some function of y. Moreover, ω response after a change in Ne is again

the same as before:

dω∗

d ln(Ne)
≃ −

1

βnγ
. (12.77)

12.3 Model of protein-protein interactions

The proteome is assumed to be composed of m protein species, all with same abun-

dance C. Each macromolecule may either be in free form or engaged in a non-specific

interaction. Only pairwise interactions are considered, and higher-order interactions are

ignored. The equilibrium is characterized by:

[ij] =
[i][j]

C0
eβEij , (12.78)

where [i] and [j] are the concentrations of protein species i and j, and [ij] is the con-

centration of their (non-specific) dimer. Here, Eij is the interaction free energy, which

can itself be decomposed as a sum of three terms:

Eij = α+ Ei + Ej (12.79)

= α+ γn(xi + xj), (12.80)

where we assume that each protein has n = 100 residues at its surface, xi stands for

the fraction of hydrophobic residues at the surface of protein i, and each hydrophobic

residue makes an additive contribution of ∆∆G to the total.

By conservation of the total number of molecules:

C = [i] +
∑

j 6=i

[ij] (12.81)

= [i] +
∑

j 6=i

[i][j]

C0
eβEij (12.82)

and we note:

ǫi =
∑

j

[ij] (12.83)

the fraction of protein i sequestered in non-specific interactions. We assume that the log

fitness is proportional to the total amount of protein sequestered in non-specific interac-

tions:

f(x) = −b
∑

i

ǫi, (12.84)

where b > 0 is a parameter determining the overall stringency of selection against non-

specific interactions.
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12.3. Model of protein-protein interactions

12.3.1 Mean field, weak-interaction limit

To make the model tractable and compact, we assume that non-specific interactions

are weak, i.e. ǫi ≪ 1 for all i. We then make a first-order approximation in the ǫi’s.

In addition, we use a mean-field approximation, such that, when considering a specific

protein species i, we assume that all other proteins have the same fraction x̄ of hy-

drophobic residues at their surface. The value of x̄ could in principle be found using

a self-consistent argument, essentially by (1) explicitly calculating the net substitution

flux for protein i with fraction xi, under mean field x̄, and (2) expressing the constraint

that this substitution process for protein i is stationary at xi = x̄. This derivation is

not conducted here, as it is not needed. Using these approximations, we can re-express

the conservation of total mass as:

C = [i] + (m− 1)[i]
C

C0
eβ(α+γn(x̄+xi)) (12.85)

Here, we have used the fact that [j] = C(1 − ǫj) can be approximated as [j] ≃ C since

it is involved in a term already of the order of ǫi. As a result, all m − 1 terms of the

sum over j 6= i are identical. Next, solving for [i] gives:

[i] =
C

1 + (m− 1) C
C0
eβ(α+γn(x̄+xi))

(12.86)

≃ C

(
1 −m

C

C0
eβ(α+γn(x̄+xi))

)
(12.87)

= C(1 − ǫi) (12.88)

and thus ǫi can be identified with:

ǫi = m
C

C0
eβ(α+γn(x̄+xi)) (12.89)

Now, assume that the system is at equilibrium (thus xi = x̄). The strength of selection

acting on mutations occurring at the surface of protein i, of effect size δx = ±1/n,

is given by s = κδx where:

κi = b
dǫi
dxi

(12.90)

= bβγnm
C

C0
eβ(α+γn(x̄+xi)) (12.91)

and thus:

ln(κi) = ln

(
bβγnm

C

C0

)
+ β(α+ γnx̄) + βγnxi, (12.92)

where only the last term depends on xi. Finally, applying the main result of this work

to the present case allows us to express the response of ω as a function of Ne as:

χ =
dω

d ln(Ne)
(12.93)

= 2(λ− 1)
d lnκi

dxi
(12.94)

= 2(λ− 1)
1

βγn
(12.95)
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Note that, here, we have used K = 2 (hydrophobic and polar residues are roughly equally

likely to occur by mutation), and assumed x∗ ≪ 1. A more accurate formula could be

used without this latter assumption. In any case, χ is now dependent on x∗, through λ.

12.3.2 Empirical calibration

Based on empirical estimates found in Zhang et al. (2008). The mean fraction of hy-

drophobic residues at the surface of proteins is 0.22 ± 0.06. With n = 100 residues, this

makes 22 ± 6. The mean value for Eij is 7kT , with a standard deviation of σ = 1.8kT .

Assuming that this standard deviation of ±1.8kT is contributed by ±6 mutations gives

∆∆G = 1.8/6 = 0.3 kT or 0.18 kcal per mole. Also, with x = 0.22, λ ≃ 4, and

thus χ = 6/30 = 0.2, thus a much stronger response than under the model based on

conformational stability.

12.4 Empirical estimation

Type Specie χ̂ r2

Plant Oryza sativa -0.008 0.047

Plant Arabidopsis thaliana -0.012 0.128

Archaea Sulfolobus solfataricus -0.037 0.097

Archaea Thermococcus kodakarensis -0.026 0.058

Fungi Saccharomyces cerevisiae -0.029 0.211

Fungi Aspergillus nidulans -0.034 0.124

Bacteria Escherichia coli -0.021 0.151

Bacteria Bacillus subtilis -0.046 0.151

Animal Caenorhabditis elegans -0.026 0.039

Animal Drosophila melanogaster -0.005 0.021

Animal Mus musculus -0.008 0.085

Animal Homo sapiens -0.004 0.031

Table 12.1: Substitution rate as a function of expression level compiled by Zhang and
Yang (2015).

In Brevet and Lartillot (2019), the covariance matrix with ln(Ne) and ln(ω) as entries

allows to approximate χ:

d̂ ln(ω)

d ln(Ne)
=

Cov[ln(ω), ln(Ne)]

Var[ln(Ne)]
, (12.96)

⇒
d̂ω

ωd ln(Ne)
=

Cov[ln(ω), ln(Ne)]

Var[ln(Ne)]
, (12.97)

⇒ χ̂ ≃ ω̂
Cov[ln(ω), ln(Ne)]

Var[ln(Ne)]
, (12.98)

⇒ χ̂ ≃ 0.2
−0.45

4.45
, (12.99)

⇒ χ̂ ≃ −0.02 (12.100)

203



12.5. Simulation using the 3D structure of protein

12.5 Simulation using the 3D structure of pro-

tein

We simulated substitutions in the protein phosphatase (Z = 300 codon sites) as in Gold-

stein and Pollock (2017). From a DNA sequence S after t substitutions, we compute the

free energy of the folded state GF (S), using the 3-dimensional structure of the folded

state and pair-wise contact energies between neighboring amino-acid residues:

GF (S) =
Z∑

z=1

∑

r∈V(z)

I (S(z),S(r)) , (12.101)

where I(a, b) is the pair-wise contact energies between amino acid a and b, using con-

tact potentials estimated by Miyazawa and Jernigan (1985), and V(z) are the neighbor

residues of site z (closer than 7Å) in the 3D structure.

The free energy of unfolded states GU (S) is approximated using 55 decoy 3D struc-

tures that supposedly represent a sample of possible unfolded states:

GU (S) = 〈G (S)〉 − kT ln(1.0E160) −
2
[〈
G (S)2

〉
− 〈G (S)〉2

]

kT
(12.102)

where the average 〈.〉 runs other the 55 decoy 3D structures, and k is the Boltzmann

constant and T the temperature in Kelvin.

From the energy of folded and unfolded states, we can compute the difference in

free energy between the states:

∆G (S) = GF (S) −GU (S) (12.103)

Genotype

ATG|GGA| ... |TCG 

DNA sequence

Phenotype

Free energy of
folded state

Free energy of
unfolded state

Fitness

Fitness of the organism
proportional to the
number of folded
proteins in the cell
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Figure 12.1: ∆G response to changes in Ne. Left Panel: Model of folding free energy
computed using 3D structural conformations and pairwise contact potential energies be-
tween neighbouring amino-acid residues. Right Panel: Additive phenotype model, where
for each non-optimal amino acid, γ is scaled by the Grantham distance to the optimal
amino acid. Scaling experiment simulating sequence evolution and recording the aver-
age ∆G (y-axis) observed at equilibrium as a function of Ne (x-axis). Along the x-axis,
200 replicate simulations are performed for each different Ne, the average (solid lines)
and 90% confidence interval (shaded area) of ω are shown. ∆G is linearly dependent on
log-Ne, with a slope equal to 1/β = 0.593.
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Figure 12.2: ∆∆G correlation to ∆G. Left Panel: Model of folding free energy com-
puted using 3D structural conformations and pairwise contact potential energies between
neighbouring amino-acid residues. Right Panel: Additive phenotype model, where for
each non-optimal amino acid, γ is scaled by the Grantham distance to the optimal amino
acid. Simulations are performed for Ne varying from 102 to 108, where each dot is an
independent simulation at equilibrium. Along each simulation, the average ∆∆G of all
proposed mutations is recorded (y-axis), and represented as a function of the average
∆G (x-axis). ∆∆G is negatively correlated to ∆, which is expected since protein under
higher Ne are more stable (lower ∆G, see above), and mutations are more destabilizing
on average. To be more precise, the negative correlation between ∆∆G and ∆G is ob-
served empirically with a linear fit of ∆∆G = −0.13∆G + 0.23 (Serohijos et al., 2012).
This correlation is a necessary condition for observing a response of ω to changes in
Ne (Goldstein, 2013) and protein expression level (Serohijos et al., 2012).
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12.6 Simulated ω response to changes in Ne
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Figure 12.3: ω at equilibrium as a function of Ne (log scale), under a model of gamma
distributed selection coefficient. For each population size, 200 simulations were performed
and the average (solid line) and 90% confidence interval (shaded area) are shown. In the
model of gamma distributed fitness effect, ω at equilibrium is strongly dependent on log-
Ne where the slope correlation is proportional to the inverse of the shape parameter of
the gamma distribution (Welch et al., 2008).
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Figure 12.4: ω at equilibrium as a function of Ne (relative), under a model of amino-
acid fitness profiles. For each population size, 200 simulations were performed and the
average (solid line) and 90% confidence interval (shaded area) are shown. In the model
of site-wise amino-acid fitness profiles taken from (Bloom, 2017), ω at equilibrium is
strongly dependent on log-Ne.
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Figure 12.5: ω at equilibrium as a function of Ne (log scale), for a model of additive
free energy of folding. For each population size, 200 simulations were performed and
the average (solid line) and 90% confidence interval (shaded area) are shown. The fixed
parameters are α = −118, γ = 1, n = 300, β = 1.686. The simulations of our additive
free energy model match the theoretical prediction that the slope of the linear relation
(dashed line) is equal to βnγ)−1 = 0.00198 ≃= 0.00199. The non-monotony is suspected
to be due to the discrete number of sites and states, such that the changes in ∆G after
a mutation is either −1, 0 or 1. Such non-monotony is not observed with the Grantham
model, in which the ω is lower and the slope of the response is lower, closer to the
empirical 3D model.
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Figure 12.6: ω at equilibrium as a function of Ne (log scale), for various parameter β.
For each population size, 200 simulations were performed and the average (solid line) and
90% confidence interval (shaded area) are shown. The fixed parameters are α = −118,
γ = 1, n = 300, and for each non-optimal amino acid, γ is scaled by the Grantham
distance to the optimal amino acid. β are given in the legend. Increasing β decreases the
slope of the ω-Ne relationship, as predicted in our theoretical model.
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Figure 12.7: ω at equilibrium as a function of Ne (log scale), for various sequence size.
For each population size, 200 simulations were performed and the average (solid line) and
90% confidence interval (shaded area) are shown. The fixed parameters are α = −118,
γ = 1, β = 1.686, and for each non-optimal amino acid, γ is scaled by the Grantham
distance to the optimal amino acid. n are given in the legend. Increasing n decreases the
slope of the ω-Ne relationship, as predicted in our theoretical model.
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Figure 12.8: ω at equilibrium as a function of the expression level y (log scale), for
various value of γ. For each population size, 200 simulations were performed and the
average (solid line) and 90% confidence interval (shaded area) are shown. The fixed
parameters are α = −118, β = 1.686, n = 300, and for each non-optimal amino acid, γ
is scaled by the Grantham distance to the optimal amino acid. γ are given in the legend.
Increasing γ increases the slope of the ω-y relationship, as predicted in our theoretical
model.
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Figure 12.9: ω at equilibrium as a function of Ne (log scale), for various between
site variance. For each population size, 200 simulations were performed and the average
(solid line) and 90% confidence interval (shaded area) are shown. The parameters are
α = −118, n = 300, β = 1.686 and each site has its own gamma distributed γ with
mean 1 and standard deviation given in the legend. γ is scaled by the Grantham distance
to the optimal amino acid. Increasing the variance of γ increases ω, by shifting the
equilibrium to higher x∗ since more unstable sites with low γ are fixed before reaching
sensible deleterious selection coefficient against unstable mutations. Once many sites are
unstable, the ω is higher since non-synonymous mutations between unstable states are
effectively neutral. However the slope of the ω-Ne relationship is not sensibly changed.

209



12.6. Simulated ω response to changes in Ne

102 103 104 105 106 107 108

Ne

0.4

0.5

0.6

0.7

0.8 = 0.00198, ( ) = 0.5
= 0.001303 (r2=0.985)
= 0.00198, ( ) = 0.707
= 0.001328 (r2=0.985)
= 0.00198, ( ) = 1
= 0.001324 (r2=0.989)
= 0.00198, ( ) = 1.41
= 0.0009702 (r2=0.975)
= 0.00198, ( ) = 2
= 0.0006926 (r2=0.969)

Figure 12.10: ω at equilibrium as a function of Ne (log scale), for various between
site variance under a model considering Grantham distances. For each population size,
200 simulations were performed and the average (solid line) and 90% confidence interval
(shaded area) are shown. The parameters are α = −118, n = 300, β = 1.686 and each
site has its own gamma distributed γ with mean 1 and standard deviation given in the
legend. Increasing the variance of γ increases ω, by shifting the equilibrium to higher x∗

since more unstable sites with low γ are fixed before reaching sensible deleterious selection
coefficient against unstable mutations. Once many sites are unstable, the ω is higher since
non-synonymous mutations between unstable states are effectively neutral. However the
slope of the ω-Ne relationship is not sensibly changed.
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12.7 Simulated relaxation time of ω
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Figure 12.11: ω Relaxation after a brutal change in Ne, for various n while correcting
for α. The left and right panel correspond to low Ne (1e5) and the middle panel corre-
sponds to high Ne (2e6). Solid line corresponds to the average over replicates (r) and
the shaded area correspond to the 90% interval among replicates. The mutation rate (µ)
is 1e−8 per year per site, and the total time of the computation is 900 million years.
β = 1.686, γ = 0.2 for all simulations. The number of sites is changed from n = 15 to
n = 158, and the number of replicates is changed accordingly such that the total number
of sites (n∗r) is kept constant. Moreover, α is changed according to n and γ such that the
equilibrium value x∗ is kept constant, by solving numerically equation 12.18. Increasing
n implies a higher rate of relaxation.
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Figure 12.12: ω Relaxation after a brutal change in Ne, for various n. The left and
right panel correspond to low Ne (1e5) and the middle panel corresponds to high Ne (2e6).
Solid line corresponds to the average over replicates (r) and the shaded area correspond to
the 90% interval among replicates. The mutation rate (µ) is 1e−8 per year per site, and
the total time of the computation is 900 million years. β = 1.686, γ = 0.2 and α = −10
for all simulations. The number of sites is changed from n = 15 to n = 158, and the
number of replicates is changed accordingly such that the total number of sites (n ∗ r) is
kept constant. Increasing n implies a higher ω at equilibrium, a lower response of the ω
to changes in Ne and a higher rate of relaxation.
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Figure 12.13: ω Relaxation after a brutal change in Ne, for various n while correcting
for γ. The left and right panel correspond to low Ne (1e5) and the middle panel corre-
sponds to high Ne (2e6). Solid line corresponds to the average over replicates (r) and
the shaded area correspond to the 90% interval among replicates. The mutation rate (µ)
is 1e−8 per year per site, and the total time of the computation is 900 million years.
β = 1.686, α = −10 for all simulations. The number of sites is changed from n = 15 to
n = 158, and the number of replicates is changed accordingly such that the total number
of sites (n ∗ r) is kept constant. Moreover, γ is changed according to n such that the
product γn is kept constant, thus the response of the ω to changes in Ne is kept constant.
Increasing n implies a higher ω at equilibrium, and a higher rate of relaxation.
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Figure 12.14: ω Relaxation after a brutal change in Ne, under a Grantham model.
The left and right panel correspond to low Ne (1e5) and the middle panel corresponds to
high Ne (2e6). Solid line corresponds to the average over replicates (r) and the shaded
area correspond to the 90% interval among replicates. The mutation rate (µ) is 1e−8
per year per site, and the total time of the computation is 900 million years. β = 1.686,
γ = −10 for all simulations. The number of sites is changed from n = 15 to n = 158,
and the number of replicates is changed accordingly such that the total number of sites
(n ∗ r) is kept constant. Moreover, γ is changed according to n such that the product γn
is kept constant, thus the response of the ω to changes in Ne is kept constant. Finally,
α is changed according to n and γ such that the equilibrium value x∗ is kept constant, by
solving numerically equation 12.18. Increasing n implies a higher rate of relaxation.

12.8 Distribution of fitness effects

DNA mutations changing a genotype can result in a change of phenotype, and ultimately

a change in fitness. From a specific genotype, all the possible mutations thus result in

a distribution of phenotypic effect (DPE) and fitness effects (DFE). The DPE and DFE

are not known a priori, but are the resulting consequence of the mutation-selection-drift

balance. Empirically, these distributions are of particular importance since they can be

obtained experimentally or inferred with other data. As an example, DFE can be inferred

from polymorphism dataset (Eyre-walker and Keightley, 2007; Galtier, 2016). Moreover,

the distribution of ∆∆G for novel mutations can be obtained experimentally.
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A B

Figure 12.15: Distribution of fitness effects and phenotypic effect for novels non-
synonymous mutations observed along a simulation at the mutation-selection balance.
α = −118, γ = 1, n = 300, β = 1.686, and for each non-optimal amino acid, γ is scaled
by the Grantham distance to the optimal amino acid. Each side of the distribution is
fitted to a gamma distribution, shown in dotted line. Panel A. Distribution of observed
∆∆G, which fit adequately the gamma distribution for negative ∆∆G (stabilizing muta-
tions). Panel A. Distribution of observed selection coefficient, which fit adequately the
gamma distribution for both positive and negative selection coefficient. However the shape
parameter estimated is not the same for positive and negative selection coefficients.
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Mutation-selection-drift as bridge
between phylogeny and

population-genetics
The first strategy is to augment information about interspecies conservation with in-

formation about genetic polymorphisms. g(x, S)dx is the expected time for which the

population frequency of the derived allele, at the site, is in the range (x, x + dx) be-

fore eventual absorption:

g(x, S) ≈
2
[
1 − e−S(1−x)

]

(1 − e−S)x(1 − x)
(12.104)

Sawyer and Hartl (1992) expanded the modeling of site evolution to multiple sites. The

model makes the following assumptions:

• Mutations arise at Poisson times (rate u per site per generation)

• Each mutation occurs at a new site (infinite sites, irreversible)

• Each mutant follows an independent Wright-Fisher process (no linkage)

In a sample of size n, the expected number of sites with k (which ranges from 1 to n− 1)

copies of the derived allele is defined as a function of g(x):

G(k, n, θ, S) = 2Neu

∫ 1

0
g(x, S)

(
n

k

)
xk(1 − x)n−kdx

= θ

∫ 1

0

1 − e−S(1−x)

(1 − e−S)x(1 − x)

(
n

k

)
xk(1 − x)n−kdx, where θ = 4Neu

=

(
n

k

)
θ

1 − e−S

∫ 1

0

(
1 − e−S(1−x)

)
xk−1(1 − x)n−k−1dx (12.105)

In the mutation selection-framework developed, the fitness of a given genotype is a func-

tion of the encoded amino-acid through the site-wise amino-acid fitness profiles (f (z) at

site z). Thus the coefficient (S = 4Nes) associated to a mutation is a function of the

amino acids encoded by the ancestral (i) and derived (j) codon. Altogether the selection

coefficient from i to j at site z is:

Si,j(Ne,f
(z)) = 4Ne(f

(z)
j − f

(z)
i )

= F
(z)
j − F

(z)
i (12.106)

Similarly, the mutation rate between by the ancestral (i) and derived (j) codon is a

function of the nucleotide changes between the codons. If the codons are not neighbor,

meaning a single mutation is not sufficient to jump from i) to j, the mutation rate is
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12.8. Distribution of fitness effects

equal to 0. If the codons are neighbors, the mutation rate is given by the nucleotide rate

matrix (u). Altogether, the scaled mutation rate θi,j from codon i to j is:

θi,j(Ne, u,R) = 4NeuRM(i,j), (12.107)

where M(i, j) denotes the nucleotide change between neighbors codon i and j (e.g. M(AAT,AAG) =

TG). If a site is polymorphic and the ancestral (i) and derived (j) codons are neigh-

bors, the probability of observing i copies (n ≥ i > 0) of the derived codon (j), in a

sample of size n, at site z, is given by:

P(i = n− k, j = i | Ne, u,R,f
(z)) = G

(
k, n, θi,j(Ne, u,R), Si,j(Ne,f

(z))
)

(12.108)

Altogether, the probability that a site is monomorphic is given by:

P(i = n | Ne, u,R,f
(z)) = 1 −

∑

j∈V(i)

n∑

k=1

G
(
k, n, θi,j(Ne, u,R), Si,j(Ne,f

(z))
)
, (12.109)

where V(i) is the set of codons neighbors of codon i (i.e. one mutation away). And all

other probabilities equal to 0.0.
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Abstract

In recent years, codon substitution models based on the mutation–selection principle have been extended for the

purpose of detecting signatures of adaptive evolution in protein-coding genes. However, the approaches used to date

have either focused on detecting global signals of adaptive regimes—across the entire gene—or on contexts where

experimentally derived, site-specific amino acid fitness profiles are available. Here, we present a Bayesian site-

heterogeneous mutation–selection framework for site-specific detection of adaptive substitution regimes given a

protein-coding DNA alignment. We offer implementations, briefly present simulation results, and apply the approach

on a few real data sets. Our analyses suggest that the new approach shows greater sensitivity than traditional methods.

However, more study is required to assess the impact of potential model violations on the method, and gain a greater

empirical sense its behavior on a broader range of real data sets. We propose an outline of such a research program.

Key words: nearly neutral evolution, fitness landscape, Dirichlet process, Markov chain Monte Carlo.

Introduction

Codon substitution models (Goldman and Yang 1994; Muse

and Gaut 1994) are among the important modern tools used

for uncovering potential signals of molecular adaptation from

protein-coding gene alignments. One set of broadly used

models focuses on estimating the ratio of rates of nonsynon-

ymous (dN) and synonymous (dS) substitutions. These mod-

els introduce a multiplicative parameter, denoted x, to

entries in a codon substitution matrix corresponding to non-

synonymous events. Because x is the only distinction be-

tween the rate specification of nonsynonymous and

synonymous events, it directly corresponds to x ¼ dN=dS.
Fitting a model with a single (global) nonsynonymous

multiplicative parameter almost always leads to x < 1

(Yang 2006), given the pervasive purifying selection that oper-

ates at most codon sites over most of evolutionary history.

Many efforts were thus made to develop codon substitution

models with distributions of x values across sites and/or

across the branches of a phylogeny (reviewed in Yang

2019). A common objective of such developments is to un-

cover specific sites having evolved under an adaptive regime

(e.g., with x > 1), perhaps along a particular branch of the

phylogeny.
Meanwhile, another set of codon substitution models was

proposed, with a focus on accounting for purifying selection

at the amino acid level in a site-heterogeneous manner

(Halpern and Bruno 1998). Having nucleotide-level parame-

ters controlling a mutational process, and amino acid fitness

profiles controlling selection, they have come to be known as

mutation–selection models (e.g., Yang and Nielsen 2008;

Rodrigue et al. 2010). In these models, the dN/dS ratio is

not explicitly parameterized. Instead, it is an emerging quan-

tity, induced by the interplay between mutation, selection,

and drift. Spielman and Wilke (2015) have shown how to

calculate the dN/dS induced by the mutation–selection

framework—which we denote x0 (Rodrigue and Lartillot

2017)—and found that, under specific conditions (i.e., a sub-

stitution process at equilibrium, without selection on synon-

ymous variants), it is always true that x0 � 1, as expected

from a model focused on purifying selection.
In the last few years, the mutation–selection framework

has been extended for the purpose of detecting genes having

evolved under an adaptive regime, in either a global (Rodrigue

and Lartillot 2017) or site-specific (Bloom 2017) manner. Like

their traditional predecessors, these recent mutation–selec-

tion models introduce a multiplicative parameter on non-

synonymous rates. However, because amino acid profiles

are also involved in modulating nonsynonymous rates, such

a multiplicative parameter—which we denote as x�

(Rodrigue and Lartillot 2017)—cannot be interpreted as the

dN/dS ratio; we chose to emphasize this distinction with an

asterisk in the notation. Given that the mutation–selection

formulation itself induces a certain dN/dS ratio, x0, the net

overall dN/dS ratio, x, can be thought of as x ¼ x0 � x�,

which can be rearranged tox� ¼ x=x0. The latter equation

helps clarify the interpretation of x� as a measure of the

deviation in nonsynonymous rates from the expectation
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under the pure mutation–selection equilibrium; in particular,

x� > 1 indicates that nonsynonymous rates are higher than

expected, even though theymight not be so high as to lead to

x > 1.

New Approaches
Here, we conduct the first exploration of a Bayesian muta-

tion–selection model with site-heterogeneous amino acid fit-

ness profiles and site-heterogeneous x� values. The Bayesian

nature of the model qualifies it as a random-effects approach,

in contrast to the fixed-effects approach utilized to date in

maximum-likelihood versions of mutation–selection models

(Halpern and Bruno 1998; Holder et al. 2008; Tamuri et al.

2014; Bloom 2017).

Results and Discussion

Models with Global x or x�

We first contrasted the difference in behavior between a tra-

ditional codon substitution model inspired from Muse and

Gaut (1994), with a global x parameter (a traditional model

we denote MG-M0, described in detail in the Materials and

Methods section), and a mutation–selection model with a

Dirichlet process prior on amino acid profiles across sites and

a global x� parameter (a model presented in Rodrigue and

Lartillot, 2017, which we denote here as MutSel-M0*, and also

described in the Materials and Methods section).

Simulations
Figure 1 shows results of the two models on data generated

through a simulation approach explicitly allowing for fluctu-

ating selection at some sites; for these sites, amino acid fitness

profiles change along the branches of the phylogeny, as de-

scribed in Rodrigue and Lartillot (2017) and in the Materials

andMethods section. The simulation system is an attempt at

mimicking an adaptive substitution process, where the sim-

ulated substitution history tracks a changing amino acid fit-

ness optimum along the branches of the tree, and thus

accrues more nonsynonymous substitutions than expected

under a pure nearly neutral regime (i.e., mutation–selection

balance). An important distinction with Rodrigue and

Lartillot (2017) is that here the simulated data set contains

only 10% of codon sites generated under adaptive regimes,

and 90% of codon sites generated under a pure nearly neutral

mutation–selection formulation (Rodrigue et al. 2010). We

produced alignments of 300 codons in length, repeating the

simulation thrice, with different sets of empirically inferred

amino acid profiles (see Lowe and Rodrigue 2020, and the

Materials and Methods section).
Results under the traditional MG-M0 model (red) reflect

the overall purifying selection governing most of the data-

generating processes, with posterior mean x values at 0.14,

0.15, 0.13 in three replicates displayed in panels 1A, 1B, and

1C, respectively. The fact that 10% of sites where produced

under an adaptive regime is underwhelming to the MG-M0

model, and indeed little is generally expected of it in practice.

Results under the MutSel-M0*model (blue) show a posterior

distribution for x� situated above 1, with pðx� > 1jDÞ �

0:99 (whereD refers to the data set) for the first two replicates
(fig. 1A and B); indeed, the second replicate has a posterior
mean that surpasses 2. For the third replicate, we find a
slightly lower probability, at pðx� > 1jDÞ � 0:93, still highly
suggestive of a signal for adaptive evolution.

Previous studies (Rodrigue and Lartillot 2017; Lowe and
Rodrigue 2020) have shown that a simulation conductedwith
100% of sites under the pure nearly neutral mutation–selec-
tion formulation leads to a posterior distribution of x� situ-
ated around 1 (while the x parameter inferred under the

MG-M0 model on such simulated data tends to be closer
to 0 than to 1, as shown in Rodrigue and Lartillot 2017). Here,
however, 10% of sites have evolved with higher than expected
nonsynonymous rates, which pulls the distribution of x� to
the right. Already with the use of single additional parameter,
x�, the mutation–selection framework allows us to detect
adaptation where the traditional framework with a single x
parameter would not. Note that these results are under ideal
conditions, however, free of the numerous potential model
violations present in real data that could sway inferences of
x�.

Real Data
Figure 2 shows the results of these models on a hand-full of
real alignments. Figure 2A displays the results on the well-
known b-GLOBIN alignment sampled across 17 vertebrates
(Yang et al. 2000). As in the simulation, the MG-M0 model
indicates that x < 1. In contrast, under MutSel-M0*, the
posterior mean of x� is around 1.8, with a high posterior
probability in favor of a value greater than 1,
pðx� > 1jDÞ > 0:99, suggesting the presence of adaptive
evolution in this gene. As described with the simulation ex-
periment presented above, and assuming negligible effects of

potential model violations, adaptive evolution on even a rel-
atively small fraction of the sites of the gene could be suffi-
cient to induce such a rightward shift in the posterior
distribution of x�.

Figure 2B displays results on an alignment of the alcohol

dehydrogenase (ADH) gene sampled across 23 species of
Drosophila. Here again, the MG-M0 model indicates that
x < 1, with a posterior mean �0.13. In contrast, with the
MutSel-M0* model, we find a posterior mean x� �1.2, and
pðx� > 1jDÞ > 0:95. As for the b-GLOBIN alignment, and
again assuming no major effects from potential model viola-
tions, this result could be explained by a fraction of sites
evolving under adaptive evolution regimes. No previous phy-
logenetic approach has found signals of adaptive evolution in
this gene, in spite of the fact that population-genetic
approaches have long suggested adaptation in many instan-

ces (e.g., McDonald and Kreitman 1991; Matzkin and Eanes
2003; Matzkin 2003). While a specific scenario of ADH adap-
tation in specific species has been refuted by Siddiq and
Thornton (2019), their study nonetheless provides strong ex-
perimental evidence of major fitness effects of some muta-
tions, suggesting adaptive opportunities across Drosophila.

The four remaining panels of figure 2 (C–F) show results on
four genes sampled across placental mammals (Lartillot and
Delsuc 2012). Again, x < 1 in all four genes, whereas x� is

Rodrigue et al. . doi:10.1093/molbev/msaa265 MBE
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either around 1, or slightly below, which does not suggest

adaptive evolution in these genes across placental mammals.

This does not rule out the possibility that some of these genes

have some sites under adaptive evolution, but perhaps these

sites are too few and/or too mildly adaptive to raise x� be-

yond 1. Previous simulations studies have pointed to epistasis

(Rodrigue and Lartillot 2017) or weak evolutionary signal

(Lowe and Rodrigue 2020) as potential reasons for x� < 1.

In the absence of major effects from model violations, these

are conditions that tend to make the model conservative in

the detection of adaptive regimes.

Models with Heterogeneous x or x�

In spite of the potential of the MutSel-M0*model—able to

capture relatively subtle signals of adaptive evolution—it

still does not directly allow us to pinpoint which sites are

most responsible for such signals. This is one of the moti-

vations of site-models. Classical site-models (Nielsen and

Yang 1998; Yang et al. 2000; Yang and Swanson 2002) con-

sider alignment sites as having been produced from a

distribution of possible x values. They are typically used

in the context of an empirical Bayes approach for identify-

ing sites with a strong statistical support for a x > 1; and

they are more efficient at detecting positive selection than

the simple MG-M0 model with a single x for all sites. For

instance, they do find sites under positive selection in the

case of the b-GLOBIN gene (detailed below, but also see Yang
et al. 2000). On the other hand, site-models might still miss

those sites under weaker positive selection. In particular, an

adaptive regime at a site could be sufficiently strong to

increase the dN/dS ratio, but not to the point of driving

it well above 1. In other words, at least in their current

version, these models might present the same limitation

as the classical MG-M0 model, as compared with MutSel-

M0*model, although now at the level of the single site. This

in turn suggests that the rationale of estimating x� in the

context of a mutation–selection model should be explored

not just globally over the whole gene (Rodrigue and

Lartillot 2017), but as a distribution across sites of the

gene (Bloom 2017).
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FIGURE 1:. Posterior distributions of x (red, under MG-M0) and x� (blue, under MutSel-M0*) on simulated data sets with 10% of sites evolved

under adaptive evolution (see Materials and Methods section).
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FIGURE 2:. Posterior distributions ofx (red, under MG-M0) andx� (blue, under MutSel-M0*) on b-GLOBIN, ADH, VWF, ADORA3, RBP3, S1PR1 data sets

(see Materials and Methods section).

Detecting Site-Specific Adaptation with Mutation–Selection Models . doi:10.1093/molbev/msaa265 MBE

3

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
b
e
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/m

o
lb

e
v
/m

s
a
a
2
6
5
/5

9
2
1
1
8
4
 b

y
 U

M
R

 C
N

R
S

 u
s
e
r o

n
 1

4
 J

a
n
u
a
ry

 2
0
2
1



To illustrate this point, and for simplicity here, we work

with the classical MG-M3 model, inspired from Muse and

Gaut (1994) and Yang et al. (2000), which invokes a finite

mixture of three x values—with their respective weights—

jointly estimatedwith all other parameters given the data.We

also study a new model referred to as MutSel-M3*, which is

built from a finite mixture of three x� values, and respective

weights, combined with the Dirichlet process prior on amino

acid profiles across sites, and global mutational parameters.

The two forms of across-site heterogeneity are independent

in the model construction, in that each site draws its amino

acid profile and its x� independently from the two corre-

sponding mixtures.

Simulations
As a verification, figure 3 shows the results under the MG-M3

(red) and MutSel-M3* (blue) models on three simulated data

sets, this time generated entirely under the pure mutation–

selection framework (i.e., no adaptive regimes within the

data-generating processes). In accordance with the simula-

tion, no sites have high probabilities of having x� > 1 (or

x > 1). Most sites have posterior probabilities of x� > 1

ranging from 0 to 0.5, or not much more, suggesting that

the MutSel-M3* model tends to mildly underestimate some

site-specific x� values. One possible reason for such under-

estimates is the fact that, in its current form, the mutation–

selection apparatus utilized tends to overestimate x0 (the

nonsynonymous to synonymous rate ratio induced by the

amino acid fitness profiles), as shown by Spielman and

Wilke (2015). Overall, however, if the data-generating process

does not depart too drastically from themodel’s assumptions,

this behavior tends to make MutSel-M3* conservative vis-�a-

vis inferences of adaptive evolution.
These simulations also highlight an inherent risk built into

the MutSelM3* model’s construction, in comparison with

MG-M3: the threshold for a site to considered of interest—

in terms of potential adaptive evolution—is much closer to

the value expected under the null (of no adaptive regime)

under MutSelM3* than under MG-M3, with the latter report-

ing site-specific probabilities of havingx > 1 that are close to

0; for the second replicate in particular (fig. 3B), pðx > 1jDÞ
never surpasses 0.007. In other words, finding a site with pð
x > 1jDÞ > 0:95 under the MG-M3 model represents a

dramatic increase in nonsynonyomous rate, compared to

finding one with pðx� > 1jDÞ > 0:95 under the

MutSelM3* model, which could make MutSelM3* more vul-

nerable to false positives from stochastic effects, or from the

effects of model violations.
Figure 4 shows the results on the three simulated data sets

studied in figure 1 (i.e., with 10% of sites simulated with an

adaptive regime). The panels include vertical marks at the

top, showing the 30 codon sites simulated under adaptive

regimes. Sites evolving under an adaptive regime tend to ac-

cruemore nonsynonymous substitutions than under a nearly

neutral regime, which would shift x� to the right of the unit.

With a threshold posterior probability of 0.95 for
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FIGURE 3:. Site-specific posterior probabilities of x (red, under MG-M3) and x� (blue, under MutSel-M3*) being greater than 1 on data sets

simulated under the pure mutation–selection framework.

Rodrigue et al. . doi:10.1093/molbev/msaa265 MBE

4

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
b
e
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/m

o
lb

e
v
/m

s
a
a
2
6
5
/5

9
2
1
1
8
4
 b

y
 U

M
R

 C
N

R
S

 u
s
e
r o

n
 1

4
 J

a
n
u
a
ry

 2
0
2
1



pðx� > 1jDÞ, the MutSel-M3* model correctly identifies 23/

30 sites (76%), calls 1 false positive, and misses 7 sites for the

first and second replicates, whereas for the third replicate it

correctly identifies 20/30, with no false positives. Of note, a

single false positive out of 24 discoveries, using a threshold of

0.95, corresponds to an accuracy of �96%, thus suggesting

that the posterior probabilities are reasonably well-calibrated,

reflecting our actual rate of true discovery. TheMG-M3mod-

els identify no sites at this threshold, although the plot sug-

gests that it nonetheless faintly detects some adaptive signal.

Interestingly, the sites leading to false positives under the

MutSel-M3* model also tempt the MG-M3 model; the sim-

ulations are stochastic processes, and can, from time to time,

accumulate a disproportionately high number of nonsynon-

ymous substitutions, even when the configuration of the sim-

ulating model is one of pure mutation–selection balance. In

other words, false positives may not come about solely as a

result of a problem with MutSel-M3* model itself, but rather,

at least partly, from a chance occurrence in the simulation.

Still, this demonstrates the increased risk of the MutSelM3*
model over MG-M3. However, theMG-M3model also clearly

lacks sensitivity; the sure way of having no false positives is to

have no positives at all. It is particularly noteworthy that some

of the sites correctly identified by MutSel-M3* show virtually

no signal under MG-M3 (e.g., sites 52, 103, 285 in the first

replicate, fig. 4A). In contrast, all of the sites simulated with an

adaptive regime butmissing the 0.95 threshold underMutSel-

M3* nonetheless have relatively high probabilities of having

x� > 1. Overall, under ideal conditions, the MutSel-M3*
model seems to have considerably greater sensitivity than

the traditional-style MG-M3, at the cost of a mildly increased

risk of false positives.

Real Data
Figures 5 and 6 display the results obtained from analyzing

the six real data sets mentioned above with the MG-M3 and

MutSel-M3*models. For the b-GLOBIN alignment (fig. 5A), our

Bayesian version of the classic MG-M3 model leads to the

same set of sites identified with these traditional models in

the maximum likelihood context (Yang et al. 2000): at the

95% threshold, the sites are 7, 11, 42, 48, 50, 54, 67, 85, and 123.

Under theMutSel-M3*model, these same sites are also found,

and the following three are added: 10, 74, and 84. (The com-

plete lists of sites identified at different thresholds are

reported in table 1.) It is interesting to note that the MG-

M3 model found pðx > 1jDÞ ¼ 0:381 for site 10, pðx > 1

jDÞ ¼ 0:244 for site 74, and pðx > 1jDÞ ¼ 0:074 for site 84.
These last three sites, and site 84 in particular, yield results

compatible with the interpretation of having evolved under a

mild adaptive regime, of changing amino acid fitness profiles

over time, leading to an increase in nonsynonymous rate; the

increase is not to the point wherex > 1 at a site in question,

although it is enough for x� > 1. Sites 10 and 74 are known
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FIGURE 4:. Site-specific posterior probabilities of x (red, under MG-M3) and x� (blue, under MutSel-M3*) being greater than 1 on data sets

simulated with 30 sites (marked with at top of panels) under an adaptive regime, and the remaining 270 sites under the pure mutation–selection

framework.
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FIGURE 5:. Site-specific posterior probabilities of x (red, under MG-M3) and x� (blue, under MutSel-M3*) being greater than 1 on b-GLOBIN, ADH,
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to be involved in oxygen affinity, which could indeed make

them a target for adaptive evolution.
The sites uncovered by MutSel-M3* on the b-GLOBIN data

set are conditional on the overall construction of the model,

which makes many oversimplified assumptions. As such, the

list of sites should be considered provisional, in need of more

thorough investigation by external means, and in the context

of a larger scale application of the model. Some of the model

violations potentially at play here, and that have mislead

other types of approaches to detecting adaptive evolution,

include variable effective population size (Rousselle et al.

2018), biased gene-conversion (Ratnakumar et al. 2010), mul-

tinucleotide mutations (Venkat et al. 2018), and nonhomo-

geneous/nonneutral synonymous substitution rates

(Wisotsky et al. forthcoming). Richer simulation studies will

be needed to better understand how the MutSel-M3* model

reacts to such violations, and the extent to which they could

be responsible for false positives.
Results of the analysis of ADH (fig. 5B, table 1) suggest sev-

eral sites under adaptive evolution under the MutSel-M3*
model, whereas the MG-M3 yields posterior probabilities of

x > 1 at all sites that are numerically indistinguishable from

0. Given that most studies suggesting adaptation in this gene

have relied on population-genetic methodologies, which pool

the statistics across all sites, a comparison of sites uncovered

by the MutSel-M3* model with previous results is not

possible.
As with the analyses of the b-GLOBIN data set, much more

work will be required to determine the plausibility of these

new results on the ADH data set. In addition to the aforemen-

tioned potential model violations, with a sampling across

Drosophila, which have high effective population sizes, fea-

tures such as uneven codon usage can become highly pro-

nounced (Powell andMoriyama 1997), potentially misleading

inferences of site-specific adaptation as well. As a hypothetical

example, suppose that the codon TTG is used almost exclu-

sively for encoding leucine, and that GTG is similarly strongly

favored for encoding valine. Also suppose that leucine and

valine are of equivalent fitness at a given site. In such a con-

text, nonsynonymous substitutions between TTG and GTG

accumulate more readily than synonymous substitutions. If

this feature were to be present to a high extent, it could

mislead the MutSel-M3* model into inferring x� > 1, thus

suggesting adaptive evolution where the regime is in fact one

of strict purifying selection on codon usage. Simulations

should eventually be used to study effects relevant to high

effective population sets of taxa—such as codon usage—on

the inferences of MutSel-M3*.
Our analysis of themammalian-level alignment of the gene

VWF also suggests several sites with adaptive signatures under

the MutSel-M3* model, and none under the MG-M3 model

(fig. 5C, table 1). A previous study, utilizing branch-

heterogeneous models, has suggested adaptive evolution

conferring venom resistance to opposoms that prey on pit-

vipers (Jansa and Voss, 2011). Moreover, variants of this gene

have been found to have dramatic effects on its own expres-

sion levels in mice (Lemmerhirt et al. 2006), and hence with

high potential for strong fitness effects.
While these latter studies are precedents to finding sites

with signatures of adaptive evolution under the MutSel-M3*
model, many of the model violations mentioned above could

apply here as well. At the mammalian scale of this VWF data

set, a mutation–selection-based test of selection on codon

usage has been shown to be misled by the effect of CpG

hypermutability (Laurin-Lemay et al. 2018). This context-

dependent mutational feature could have the effect of inflat-

ing x� values beyond 1 at sites where there is in fact no

adaptive evolution (Suzuki et al. 2009). Again, however,

more simulation work is required to better understand

how such issues play out with the MutSel-M3*.
Of the remaining mammalian gene alignments studied

with theMutSel-M3*model, two suggest very few sites having

evolved under adaptive regimes (ADORA3 and S1PR1, in fig. 6A

and C, respectively), and one (RBP3, fig. 6B) with none. The

traditional MG-M3 model suggests no sites under adaptive

evolution for these data sets. These three genesmay be typical

of results under the MutSel-M3* model at the mammalian

scale (i.e., few, if any sites with high pðx� > 1jDÞ), but
broader empirical studies evaluating the relative proportion

of genes with several sites having high probabilities ofx� > 1

are pressing.

Future Directions

The traditional codon models based on x have become in-

creasingly well understood thanks to decades of empirical

applications and simulation studies. A similar project should

be considered within the mutation–selection framework. We

Table 1. Amino acid sites under positive selection.

Data Model Sites

MG-M3 77, 11, 4242, 4848, 5050 5454, 6767, 8585, 123123

b�GLOBIN

MutSel-M3* 77, 10, 11, 14, 4242, 4848, 5050 5454, 6767, 7474, 84, 8585,

110, 113, 123123

MG-M3 –

ADH

MutSel-M3* 9, 39, 49, 5757, 6868, 69, 72, 81, 85, 98, 133, 163,

165, 170, 185185, 187, 197, 201, 205, 208,

216, 229, 253

MG-M3 –

VWF

MutSel-M3* 5, 9, 26, 4141, 82, 85, 103, 108108, 125, 147, 148,

158, 177, 182, 197, 226, 227, 235235, 239239,

241, 242242, 247, 288, 291, 307, 313313, 318,

324, 339, 371, 379, 390

MG-M3 –

ADORA3

MutSel-M3* 2, 4, 93, 9696

MG-M3 –

RBP3

MutSel-M3* –

MG-M3 –

S1PR1

MutSel-M3* 1, 58, 144, 145, 146, 148

Note.—Numbers in italic font are at the 0.9 level, in plain font at the 0.95 level, and

in bold font at 0.99 level.
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have already suggested several lines of research meriting fur-

ther attention, and we expand on these themes below.

Simulation Studies
A flurry of recent research has shown how a variety of

approaches are highly susceptible to model violations, with

many instances of purported signals of molecular adaptation

being the result of unaccounted features of the evolutionary

process (e.g., Ratnakumar et al. 2010; Rousselle et al. 2018;

Venkat et al. 2018; Laurin-Lemay et al. 2018; Wisotsky et al.

forthcoming). From the codon substitution modeling per-

spective, this raises important questions regarding the muta-

tion–selection-based approach we propose here: whereas the

biological expectation under traditionalmodels is forx values

closer to 0 than to 1, such that x > 1 is a drastic threshold,

representing a very pronounced increase in nonsynonymous

rates, the biological expectation under the new approach is

for x� values closer to 1, and thus naturally approaching

threshold of x� > 1. This could make the mutation–selec-

tion-based methods highly susceptible to model violations

that mildly increase nonsynonymous rates for reasons other

than adaptive evolution. We plan to use richer simulations to

study how the new approach reacts to suchmodel violations,

and if expanding the model to recognize features such as

variable effective population size, CpG hypermutability, co-

don usage and gene conversion biases, could introduce

greater robustness to inferences of adaptive evolution.

Empirical Studies
A more detailed examination, ideally combined with experi-

mental corroborations, of the sites uncovered by themodel is

pressing, and hopefully based on far more than the hand-full

of data sets of the present study. This would help build our

empirical understanding how the model behaves in a variety

of different contexts (Moutinho et al. 2019; Slodkowicz and

Goldman 2020). We hope to apply the model on a few thou-

sand genes from the OrthoMamm database (Scornavacca

et al. 2019) in a first step, before engaging broader applications

across varied taxanomic contexts.

Model Variations
While we have outlined the modeling strategy with a three-

component finite mixture of x� values, in combination with

a Dirichlet process prior on amino acid profiles, many other

possibilities could be considered: various parametric families

on x� (as did Yang et al. 2000, with x), nonparametric

approaches on x� (as proposed for x by Huelsenbeck et al.

2006), grids of predetermined x� values (in the spirit of

Murrell et al. 2013), along with similar choices on modeling

amino acid fitness heterogeneity (e.g., Rodrigue et al. 2010;

Rodrigue 2013; Rodrigue and Lartillot 2014). The potentially

complex interactions between the numerous combinations

also entail a large study.

Applications
We propose these modeling ideas in two independent soft-

ware packages (see below). One of our Markov chain Monte

Carlo implementations can run under fixed topology as well

as sample over trees, and thus enable studies of the impact of

phylogenetic uncertainty in inferences of adaptive evolution,

utilizing both traditional and mutation–selection codon sub-

stitution models; this also suggests more extensive studies on

the potential of suchmodels for phylogenetic inference per se.

Another implementation we offer lends itself to integrative

modeling objectives, with a wide suite of potential research

avenues utilizing the mutation–selection-based approaches.

Foreseeable directions in the short-term with the latter im-

plementation include capturing the evolution of effective

population size over the phylogeny, along with joint infer-

ences of continuous-trait evolution, as formalized by Lartillot

and Poujol (2011).

Materials and Methods

Simulated Data
We used the simulation system described in Rodrigue and

Lartillot (2017) to generate artificial data sets using a muta-

tion–selection framework with global mutation parameters

and site-specific amino acid fitness profiles. The mutation-

level parameters (which assume no selection on synonymous

variants) are as given in Rodrigue and Lartillot (2017), as is the

phylogenetic tree (with 38 tips). With nearly neutral simula-

tions (i.e., with the pure mutation–selection formulation,

such as detailed below), the amino acid fitness profile used

to simulate a codon site is chosen at random from a set of

empirically derived profiles. We obtained such profiles by

running the pure Dirichlet process-based mutation–selection

model (Rodrigue et al. 2010) on a multigene data set at the

scale of placental mammals (Lartillot and Delsuc 2012), and

calculating the posterior mean amino acid profile at each site.

The simulation draws at random (with replacement) one

such site-specific posterior mean profile to run the evolution-

ary process along the tree at one codon site, repeating to

produce alignments of 300 codons. For simulations with

adaptive evolutionary regimes, the starting profiles are altered

along the branches of the phylogeny as detailed in Rodrigue

and Lartillot (2017), with the RedQueen parameter set to 0.01.

In contrast to the simulations in Rodrigue and Lartillot (2017),

however, the adaptive simulations herein are applied to only

10% of sites of the alignment; these 30 sites were chosen at

random, that is, they were spread out randomly across the

alignment. The remaining 270 codon sites are simulated with

the Red Queen parameter set to 0, thus constituting pure

mutation–selection regimes.

Real Data
We used previously studied alignments of protein-coding

genes provided by the authors of earlier works:

• b-GLOBIN: 17 vertebrate sequences of b-globin gene, 144

codons in length, taken from Yang et al. (2000);
• ADH: 23 Drosophila sequences of the alcohol dehydroge-

nase gene, 254 codons in length, taken from Yang et al.

(2000);
• VWF: 62 sequences, at the scale of placental mammals, of

the von Willbrand factor gene, 392 codons in length,

Rodrigue et al. . doi:10.1093/molbev/msaa265 MBE
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taken from Lartillot and Delsuc (2012), as were the next

three alignments;
• ADORA3: 67 sequences of the adenosine receptor A3 gene,

107 codons in length;
• RBP3: 54 sequences of the retinol-binding protein 3, 412

codons in length;
• S1PR1: 67 sequences of the sphingosine-1-phosphate re-

ceptor 1 gene, 325 codons in length.

Substitution Models
The MG-M0 codon substitution model, inspired from Muse

andGaut (1994), but with a singlex parameter distinguishing

nonsynonymous events, has entries given as:

Qij ¼
lij; if i and j are synonymous;

lijx; if i and j are nonsynonymous:

(

(1)

Here, lij is the mutational parameterization, which we set

as a general-time reversible nucleotide-level model (Lanave

et al. 1984), with six exchangeability parameters (five degrees

of freedom) and four frequency parameters (three degrees of

freedom). The MG-M3 model has the same form, but rather

than a single x parameter, it invokes three different values

(with their respective weights), and has a likelihood function

consisting of the a weighted average of likelihood scores un-

der each of the three x values (Yang et al. 2000).
The MutSel-M0* model, presented in Rodrigue and

Lartillot (2017), is given as:

Q
ðnÞ
ij ¼

lij; if i and j are synonymous;

lijx�

S
ðnÞ
ij

1� e�S
ðnÞ
ij

; if i and j are nonsynonymous;

8

>

>

<

>

>

:

(2)

where S
ðnÞ
ij ¼ F

ðnÞ
j � F

ðnÞ
i ¼ 4Nesij ¼ 4Nef

ðnÞ
j � f

ðnÞ
i is the

scaled selection coefficient (scaled by the effective population

size Ne and a ploidy-dependent constant, in this example set

at 4 Yang andNielsen, 2008), calculated from the difference in

fitness associated with a mutant protein with the amino acid

encoded by codon j at site n, denoted F
ðnÞ
j , with that of the

wild-type population where the amino-acid encoded by i is

fixed at that position, F
ðnÞ
i . Site-specific fitness profiles are

treated as random effects within a Dirichlet process system

(Rodrigue et al. 2010; Rodrigue and Lartillot 2014). As with the

MG-M3model, the MutSel-M3*model invokes three distinct

x� values, with their respective weights, as a finite mixture

model of heterogeneity across sites.

Priors
Branch lengths are endowed with an exponential prior of

mean controlled by a hyperprior, itself endowed with an ex-

ponential prior of mean 1. Nucleotide exchangeabilities and

frequencies are each endowed with flat Dirichlet priors,

whereas x and x� have priors following a gamma law, con-

trolled by two hyperparameters, each endowed with expo-

nential priors of mean 1.Weights of finitemixture onx orx�

follow with flat Dirichlet prior. Amino acid fitness profiles

follow a Dirichlet process prior (Rodrigue et al. 2010), imple-

mented under a stick-breaking representation (Lartillot et al.

2013; Rodrigue and Lartillot 2014).

Data Availability

For convenience, all data sets (simulated and real) studied

herein are included in the Supplementary Material.
The models presented have been implemented in an ex-

perimental version (2) of PhyloBayes-MPI (https://github.

com/bayesiancook/pbmpi2), allowing for a joint sampling

across parameter space, auxiliary variables, and tree topology

space. We have also implemented the models in a new soft-

ware called BayesCode, which is focused on integrative com-

parative methods under fixed topology (https://github.com/

bayesiancook/bayescode). Example scripts demonstrating the

use of the software are provided in the Supplementary

Material.

Supplementary Material

Supplementary data are available at Molecular Biology and

Evolution online.
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