
HAL Id: tel-03405449
https://theses.hal.science/tel-03405449v1
Submitted on 27 Oct 2021 (v1), last revised 27 Oct 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High-order spectral element methods for the simulation
of compressible turbulent flows

Niccolo Tonicello

To cite this version:
Niccolo Tonicello. High-order spectral element methods for the simulation of compressible tur-
bulent flows. Fluid mechanics [physics.class-ph]. Normandie Université, 2021. English. �NNT :
2021NORMR046�. �tel-03405449v1�

https://theses.hal.science/tel-03405449v1
https://hal.archives-ouvertes.fr


THÈSE
Pour obtenir le diplôme de doctorat

Spécialité MECANIQUE DES FLUIDES, ENERGETIQUE, THERMIQUE, COMBUSTION,

ACOUSTIQUE

Préparée au sein de l'Université de Rouen Normandie

Ηigh-οrder spectral element methοds fοr the simulatiοn οf
cοmpressible turbulent flοws

Présentée et soutenue par
Niccolo TONICELLO

Thèse soutenue le 28/09/2021
devant le jury composé de

M. ERIC LAMBALLAIS PROFESSEUR DES UNIVERSITES, UNIVERSITE
POITIERS Rapporteur du jury

M. FRANCK NICOUD PROFESSEUR DES UNIVERSITES, UNIVERSITE
MONTPELLIER 2 SCIENCES ET TEC Rapporteur du jury

M. ABDELLAH HADJADJ PROFESSEUR DES UNIVERSITES, INSA DE
ROUEN NORMANDIE Membre du jury

M. GUIDO LODATO MAITRE DE CONFERENCES, INSA DE ROUEN
NORMANDIE Membre du jury

M. GIANMARCO MENGALDO PROFESSEUR DES UNIVERSITES, Université
Nationale de Singapour (NUS) Membre du jury

M. STEPHANE MOREAU PROFESSEUR DES UNIVERSITES, Université
de Sherbrooke (Canada) Membre du jury

M. LUC VERVISCH PROFESSEUR DES UNIVERSITES, INSA DE
ROUEN NORMANDIE Directeur de thèse

Thèse dirigée par LUC VERVISCH, COMPLEXE DE RECHERCHE
INTERPROFESSIONEL EN AEROTHERMOCHIMIE





High-order spectral element
methods for the simulation of
compressible turbulent flows

Thesis submitted for the degree of Doctor of Philosophy of the University of Rouen

Normandie

Niccolò Tonicello

niccolo.tonicello@coria.fr

Jury:

Eric Lamballais Université de Poitiers Rapporteur

Franck Nicoud Université de Montpellier Rapporteur

Abdellah Hadjadj INSA de Rouen Normandie Examinateur

Gianmarco Mengaldo Université Nationale de Singapour Examinateur

Stephane Moreau Université de Sherbrooke Examinateur

Guido Lodato INSA de Rouen Normandie Co-Directeur de thèse

Luc Vervisch INSA de Rouen Normandie Directeur de thèse

CORIA UMR 6614 - University of Rouen Normandie

Technopole du Madrillet, B.P. 8

76801 Saint-Etienne du Rouvray - France



2



Acknowledgements

When I was about to finish my Master degree in Italy I had only one clear
idea for the future: apply for a PhD in a foreign country. Everyone who
did it knows how many applications are generally sent in the deep ocean,
hoping for a chance to play in the top league. It is now funny to remember
that when I received the first interview request by Dr. Lodato, I almost
forgot I applied for that position in the first place. As it often happens in
life, I didn’t realise that mine was about to change radically. I had the best
three years of my life in France, diving into a similar, but at the same time
different, colourful culture, made by wonderful people and awful weather.

I wish to thank my Advisors, Prof. Luc Vervisch and Dr. Guido Lodato,
for giving me the opportunity to pursue my professional goals and for their
valuable guidance. I thank them for the independence and trust they gave
me since the very first day. I thank them for treating me as a professional
and not as a student, as a man and not as a child, for trusting me along
these years, for leading me to the best possible version of myself. At the
same time, of course, I thank them for the fundamental role they had in
my work, for their advices and guidance, both scientifically and personally.
I particularly thank Dr. Lodato for helping me in the many panic attacks
I had during these three years. He once told me: “At a certain point, it
doesn’t really matter how many papers you published or your h-index, but
the hours you spend playing with your son”. I will keep these words with me
forever, as bedrock of my future professional life.

Secondly, I want to thank my family, for being a solid pylon in my life.
I thank my mom and dad, Cristina and Amedeo, for always believing in me
and for always supporting me to pursue my dreams (even outside our beloved
country). I also thank my sister and brother in law, Carlotta and Nicolò, for
giving me critical advices both professionally but most importantly person-
ally.

Finally I thank all the people working at CORIA and INSA. I felt wel-
comed since the very first day in such an amazing environment of inclusion
and vibrating diversity. In these years, I met great people (mostly foreigners)
that helped me so much in my everyday struggles. I want to thank, in par-
ticular, Diego and Sabina, for giving me shelter in many different occasions
from the many psychological (and physical) storms during my PhD. Along

3



4

them, I thank Cléante for bearing my persistently annoying and depressing
petulance. I thank Alberto and Lorenzo for giving me the priceless oppor-
tunity to hear my mother-tongue language and to nostalgically remember
those wonderful rain-free summers in Italy. I thank Victor for trying, in his
last few months in Normandy, to help me with my hopeless social awkward-
ness. I finally thank, from the bottom of my heart, Louise, for showing me
how to be brave and gentle in these challenging times.

I also thank everyone who was not physically here in Normandy but still
close to me from different corners of the world: Gabriele from Paris, Riccardo
from Barcelona and Dario from Trieste. Our long-distance discussions about
the scientific community and, in general, about the research environment
helped me a lot in my growth over the years. I finally thank my friends
from Italy, in particular Riccardo, Martino and Gianmarco. You made all
the many trips to Italy always enjoyable and each one of them special in a
unique way.

I do believe we all sit on the shoulders of giants and I can only hope I gave
my small contribution in the limitless field of Computational Fluid Dynam-
ics. Adding that little pinnacle, apparently useless, on top of a magnificent
cathedral.

Enjoy the reading.



Abstract

This thesis is focused on the application of high-order methods to com-
pressible turbulent flows. Aspects such as numerical dissipation/dispersion,
dynamic Sub-Grid Scale modelling, shock-capturing techniques and com-
pressibility effects on turbulence modelling are thoroughly discussed. The
thesis manuscript is organised for increasing levels of complexity, leading ul-
timately to the simulation of fully compressible turbulent flows where all the
up-mentioned difficulties are simultaneously involved. The results presented
in this work fit into development of reliable and robust high-order solvers for
computational fluid dynamics applications.

An innovative generalisation of standard spectral analyses techniques ap-
plied to high-order methods is first presented. Special attention is dedicated
to the Spectral Difference scheme used for the numerical simulations per-
formed for this thesis. Spectral analyses of high-order methods are normally
based on the numerical discretisation of the one-dimensional linear advec-
tion equation. In the present work, such approach has been generalised for
non-constant advection velocities to gain more meaningful insights about
high-order numerical discretisations of non-linear equations, such as Navier-
Stokes or Euler equations. The Spectral Difference method has shown some
significant differences with respect to the correspondent Flux Reconstruc-
tion recovering scheme when non-constant advection velocities are consid-
ered. The general behaviour of dissipative curves has shown remarkable
deviations between SD, FR-SD and the Flux Reconstruction Discontinuous
Galerkin recovering scheme. Numerical experiments have been conducted to
highlight the role played by numerical fluxes and order of approximation for
Spectral Difference and FR-DG methods.

The informations gathered from spectral analyses are then used to present
the Spectral Element Dynamic Model. The SEDM has been developed by
Chapelier & Lodato [1] to link numerical dissipation, which represents a typ-
ical build-in feature of spectral element methods, and classical explicit SGS
dissipation within the framework of Large-Eddy Simulations of turbulent
flows. A series of relevant transitional turbulent flows are then considered to
better evaluate the performance of the SEDM in more complex conditions.
Namely, a zero-pressure-gradient flow over a flat plate and a low-Reynolds
SD7003 airfoil simulation. Both computations are meant to study in deep
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the dynamic nature of the SEDM for complex geometries and transitional
flows.

Within the framework of compressible flows, an innovative low dissi-
pative bulk-based artificial viscosity shock-capturing technique is presented
and analysed in detail. Numerical simulations in one to three dimensions,
inviscid and viscous, laminar and turbulent flows are considered to provide
a sufficiently wide range of flow configurations where the proposed model
performs well. In particular, in comparison with another widely diffused ar-
tificial viscosity model based on a laplacian regularisation. The bulk-based
artificial viscosity provides, in fact, considerably reduced levels of artificial
dissipation of vortical structures, keeping, at the same time, the simulation
stable.

Finally, in the last part of the manuscript, the coexistence of all the
up-mentioned investigations and models presented throughout the thesis is
studied for more complex compressible turbulent flows. Among these, the
transonic flow around an RAE2822 airfoil and the interaction between a tur-
bulent boundary layer with a 24◦ compression ramp have been simulated
using an LES approach, where the SEDM has been coupled with the pro-
posed bulk-based AV technique. Both simulations provided results in good
agreement with other simulations and experiments, certifying the robustness
and reliability of the combined effect of the two models.

In the end, in order to generalise even more the SEDM to more com-
pressible applications, a Direct Numerical Simulation study for a compres-
sion/expansion ramp configuration has been performed. The highly-resolved
data have been used to reveal insightful informations regarding the SGS
kinetic energy dissipation expected to take place in the presence of non-
negligible compressibility effects for wall bounded flows. The impact of the
spherical part of the SGS tensor (i.e., the turbulent kinetic energy), often
not explicitly modelled for weakly compressible flows, appeared to have a
relevant role in kinetic energy transfer. The SGS dissipation term has shown
to be directly connected to the local levels of compressibility, identified by
the velocity dilatation field. Compressions motions are more likely to expe-
rience classical direct kinetic energy cascade, whereas expansions promote
back-scatter phenomena. Such informations can be particularly useful in
the development of more compressible formulations of classical LES models,
including, for example, a model for the spherical part of the SGS tensor.

All the contributions, ideas and investigations presented in this thesis rep-
resent the first step toward a unified LES model able to handle, at the same
time, both turbulence under-resolution and shock-waves with techniques and
strategies specifically tailored for high-order numerical schemes.



Resumé

Cette thèse se concentre sur l’application des méthodes d’ordre élevé aux
écoulements turbulents compressibles. Des aspects tels que la dissipation/dispersion
numérique, la modélisation dynamique à l’échelle de sous-maille (SGS), les
techniques de capture des chocs et les effets de la compressibilité sur la
modélisation de la turbulence sont discutés. Le manuscrit de thèse est
organisé selon des niveaux de complexité croissants, menant à la simula-
tion d’écoulements turbulents entièrement compressibles où toutes les dif-
ficultés mentionnées ci-dessus sont simultanément impliquées. Les résul-
tats présentés dans ce travail s’inscrivent dans le développement de solveurs
d’ordre élevé fiables et robustes pour les applications de mécanique des flu-
ides numérique.

Une généralisation innovante des techniques d’analyses spectrales stan-
dard appliquées aux méthodes d’ordre élevé est d’abord présentée. Une
attention particulière est consacrée au schéma de différence spectrale utilisé
pour les simulations numériques réalisées dans le cadre de cette thèse. Les
analyses spectrales des méthodes d’ordre élevé sont généralement basées sur
la discrétisation numérique de l’équation d’advection linéaire unidimension-
nelle. Dans ce travail de thèse, cette approche a été généralisée pour des
vitesses d’advection non constantes afin d’obtenir des informations plus sig-
nificatives sur les discrétisations numériques d’ordre élevé des équations non
linéaires, telles que les équations de Navier-Stokes ou d’Euler. La méthode de
différence spectrale a montré quelques différences significatives par rapport
au schéma correspondant de récupération par reconstruction de flux lorsque
des vitesses d’advection non constantes sont considérées. Le comportement
général des courbes dissipatives a montré des écarts remarquables entre la
méthode SD, la méthode FR-SD et le schéma de récupération par recon-
struction de flux de Galerkin discontinu. Des expériences numériques ont
été menées pour mettre en évidence le rôle joué par les flux numériques et
l’ordre d’approximation pour les méthodes SD et FR-DG.

Les informations recueillies à partir des analyses spectrales sont ensuite
utilisées pour présenter le modèle dynamique des éléments spectraux. Le
modèle SEDM a été développé par Chapelier & Lodato [1] pour relier la
dissipation numérique, qui représente une caractéristique intégrale typique
des méthodes par éléments spectraux, et la dissipation de sous-maille ex-
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plicite classique dans le cadre des simulations à grande échelle d’écoulements
turbulents. Une série d’écoulements turbulents transitoires pertinents sont
ensuite considérés pour mieux évaluer la performance du modèle SEDM dans
des conditions plus complexes. Il s’agit d’un écoulement à gradient de pres-
sion nul sur une plaque plane et d’une simulation d’un profil aérodynamique
SD7003 à faible nombre de Reynolds. Les deux calculs sont destinés à étudier
en profondeur la nature dynamique du modèle SEDM pour des géométries
complexes et des écoulements transitoires.

Dans le cadre des écoulements compressibles, une technique innovante de
capture des chocs par viscosité artificielle à faible dissipation est présentée
et analysée en détail. Des simulations numériques unidimensionnel et tridi-
mensionnel, inviscides et visqueuses, laminaires et turbulentes, sont consid-
érées comme fournissant une gamme suffisamment large de configurations
d’écoulement où le modèle proposé donne de bons résultats. En particulier,
en comparaison avec un autre modèle de viscosité artificielle largement ré-
pandu basé sur une régularisation laplacienne. La viscosité artificielle basée
sur le volume fournit des niveaux considérablement réduits de dissipation
artificielle des structures tourbillonnaires, en gardant, en même temps, la
simulation stable.

Enfin, dans la dernière partie du manuscrit, la coexistence de toutes les
recherches et modèles présentés tout au long de la thèse est étudiée pour
des écoulements turbulents compressibles plus complexes. Parmi ceux-ci,
l’écoulement transsonique autour d’un profilé RAE2822 et l’interaction entre
une couche limite turbulente et une rampe de compression de 24◦ ont été
simulés à l’aide d’une approche LES, où le modèle SEDM a été couplé avec la
technique AV basée sur le volume proposée. Les deux simulations ont fourni
des résultats en accord avec d’autres simulations et expériences, certifiant la
robustesse et la fiabilité de l’effet combiné des deux modèles.

Enfin, afin de généraliser encore plus le modèle SEDM à des applications
plus compressibles, une étude en simulation numérique directe pour une
configuration de rampe de compression/détente a été réalisée. Les données
hautement résolues ont été utilisées pour révéler des informations instructives
sur la dissipation de l’énergie cinétique de sous-maille qui devrait avoir lieu
en présence d’effets de compressibilité non négligeables pour des écoulements
limités par des parois. L’impact de la partie sphérique du tenseur SGS (i.e.,
l’énergie cinétique turbulente), souvent non modélisée explicitement pour les
écoulements faiblement compressibles, est apparu comme ayant un rôle per-
tinent dans le transfert d’énergie cinétique. Le terme de dissipation SGS s’est
avéré être directement lié aux niveaux locaux de compressibilité, identifiés
par le champ de dilatation de la vitesse. Les mouvements de compression sont
plus susceptibles de connaître une cascade d’énergie cinétique directe clas-
sique, tandis que les expansions favorisent les phénomènes de rétrodiffusion.
Ces informations peuvent être particulièrement utiles dans le développement
de formulations plus compressibles des modèles LES classiques, y compris,
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par exemple, un modèle pour la partie sphérique du tenseur SGS.
Toutes les contributions, idées et recherches présentées dans cette thèse

représentent le premier pas vers un modèle LES unifié capable de traiter, en
même temps, la sous-résolution de la turbulence et les ondes de choc avec
des techniques et stratégies spécifiquement adaptées aux schémas numériques
d’ordre élevé.
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Introduction
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1.1 Background and motivations

High-order methods for fluid dynamics represent a trending topic in the
Computational Fluid Dynamics (CFD) community, gaining more and more
popularity in both academia and industry. Their computational efficiency
and geometric flexibility make them promising candidates as building blocks
for the next generation of commercial solvers. In particular, high-order meth-
ods have shown encouraging results in the simulations of vortical flows due
to their intrinsic numerical properties, leading to a widespread use of them
in both Direct Numerical Simulations (DNS) and Large-Eddy Simulations
(LES). Nonetheless, the level of robustness and reliability provided by low-
order methods such as classical finite volumes approaches, is still currently
out of reach, at least for under-resolved flows as it happens in LES. The gen-
eral structure and the dynamics of numerical errors in under-resolved flows
still represents a major issue in high-order simulations, both in terms of sta-
bility and turbulent modelling. The interplay between the errors associated
to the spatial discretisation and turbulence dynamics plays a central role in
the development of high-order schemes. The community of high-order meth-
ods is consequently constantly looking for innovative and insightful numerical
analyses tools to gain a deep understanding of the intrinsic numerical proper-
ties of the scheme. Based on such knowledge, classical turbulence modelling
needs to be specifically tailored to the numerical scheme in order to work
harmoniously in a wide range of different turbulent flows.

As a secondary note, the CFD community, driven by more and more de-
manding industrial queries, is rapidly shifting toward more and more com-
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28 CHAPTER 1. INTRODUCTION

plex flows, involving, among many others, compressibility, multiple phases
and chemical reactions. Considering more complex applications, using the
same numerical scheme developed for simpler sets of equations, clearly brings
additional complications in terms of numerics and modelling. The present
work will consider the relevant difficulties in the simulation of compressible
flows using high-order methods. In particular, as it is well-known, compress-
ible gas-dynamics is intrinsically characterised by the natural development
of discontinuities in the flow field, also known as shock-waves. The numeri-
cal description of very sharp feature such as shock-waves represent another
major research branch in the high-order methods community.

Finally, considering compressible turbulent flows, not every numerical
treatment of shock-waves will be allowed, since numerics, turbulence mod-
elling and shock-capturing need to coexist at the same time. Each of them
cannot be developed individually as the whole ensemble needs to work as a
unity.

The present work aims at a first step toward the development of a unified
LES model, able to deal with turbulence under-resolution and shock-waves
at the same time within the high-order framework of the Spectral Difference
scheme.

1.2 Outline

The present thesis will be organised in agreement with the previous discus-
sion, gradually increasing the level of complexity, leading only at the end to
high-order simulations of fully compressible turbulent flows. The first three
chapter will be introductory: chapter 2 will be focused on the set of continu-
ous equations used throughout the thesis, chapter 3 will introduce the main
turbulence modelling concepts within the framework of Large-Eddy Simula-
tions, and chapter 4 will introduce the specific numerical scheme employed
in the present work, the Spectral Difference (SD) scheme.

Once the numerical and modelling set-up has been properly introduced,
the concepts of numerical dispersion and dissipation, along with classical and
innovative techniques to quantify them, will be discussed in chapter 5. Chap-
ter 5 will be focused on the numerical scheme only, on its properties and gen-
eral dynamics in the simulation of under-resolved turbulent flows. Chapter 5
is based on the published work “A Comparative Study from Spectral Analyses

of High-Order Methods with Non-Constant Advection Velocities” [15].

Chapter 6 will treat how numerical dissipation, introduced in the pre-
vious chapter, needs to be taken into account in the development of LES
models for high-order numerical schemes. The Spectral Element Dynamics
Model (SEDM), which is based on a well-balanced interaction between nu-
merical dissipation and classical explicit Sub-Grid Scales (SGS) modelling
will be introduced. A series of numerical experiments involving the SEDM
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will be presented and discussed. Chapter 6 is based on two different publica-
tions on “Flow, Turbulence and Combustion”. Namely, “Large-Eddy Simula-

tion of Bypass Transition on a Zero-Pressure-Gradient Flat Plate Using the

Spectral-Element Dynamic Model ” [16] and “Analysis of High-order Explicit

LES Dynamic Modeling Applied to Airfoil Flows” [17].
Chapters 7 and 8 will be focused on the role played by compressibil-

ity in the simulation of turbulent flows. In particular, in chapter 7, a low
dissipative, bulk-based artificial viscosity model will be introduced as suit-
able shock-capturing technique for the simulation of compressible turbulent
flows. Chapter 7 is based on the “Computer & Fluids” paper “Entropy pre-

serving low dissipative shock capturing with wave-characteristic based sensor

for high-order methods” [18].
The final chapter 8 will include all the previously presented topics at

the same time. Both LES and DNS of compressible turbulent flows will be
considered. The LES computations will be mainly focused on the mutual
interaction between shock-capturing and turbulence model. On the other
hand, the DNS aims at a better understanding on the role played by com-
pressibility in terms of mathematical modelling.

Finally, the second part of the thesis collects the first page of the archival
journal publications relevant to this Ph.D. Thesis.
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2.1 Fluid mechanics fundamentals

The motion of a compressible viscous fluid is completely described by the im-
position of local conservation of mass, momentum and energy. Each of them,
in a cartesian framework, can be expressed as a Partial Differential equation
(PDE). In the following Einstein summation convention for repeated indices
has been employed.

1. Conservation of mass,

∂ρ

∂t
+
∂(ρuj)

∂xj
= 0 (2.1)

where ρ is the fluid’s density and uj is the velocity component along
the direction xj .

2. Conservation of momentum

∂ρui
∂t

+
∂(ρuiuj)

∂xj
=
∂σij
∂xj

+ ρfi, (i = 1, 2, 3) (2.2)

where σij = Aij − pδij is the tensor of surface stresses accounting for
viscous actions Aij and thermodynamic pressure p, and fi denotes the
i-th component of body forces per unit of mass acting on the fluid
element
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3. Conservation of total energy

∂ρE

∂t
+
∂(ρEuj)

∂xj
=
∂(σijui)

∂xj
+ ρuifi −

∂Qj

∂xj
(2.3)

where E = e+ ukuk/2 is the total energy (with e the internal energy),
and Qk is the k-th component of the heat flux vector.

The above five equations, which constitute the Navier-Stokes (NS) sys-
tem of equations, are used to obtain the five unknowns, represented by the
conserved variables U = (ρ, ρu1, ρu2, ρu3, ρE)T . All the other terms appear-
ing in the equations (σij , Q and f) are either analytical functions or they
can be expressed as functions of U.

In particular, the following assumptions are usually made:

1. The fluid is Newtonian and follows the Stokes Law for mono-atomic
gases:

Aij = 2µSij (2.4)

where µ is the dynamic viscosity and Sij is the deviatoric part of the
velocity gradient tensor

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
− 1

3
δij
∂uk
∂xk

. (2.5)

2. The fluid evolves following the equation of state of calorically perfect
gas:

p = ρRT, (2.6)

e = cvT, (2.7)

cp = cv +R, (2.8)

γ = cp/cv, (2.9)

where T is the temperature, cp and cv are the the specific heat, respec-
tively, at constant pressure and volume, R = R/Mw is the gas constant
computed form the universal gas constant R = 8.31451J/(mol K) and
the gas molar weigth Mw, and γ = 1.4. The total energy density, in
particular, may be expressed as

ρE =
1

2
ρukuk +

p

γ − 1
. (2.10)
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3. The heat flux Qk follows the Fourier’s law

Qk = −λ ∂T
∂xk

= −µcp
Pr

∂T

∂xk
, (2.11)

where λ is the thermal conductivity, and Pr is the Prandtl number.

4. The dynamic viscosity of the fluid µ may be computed from the tem-
perature T using the Sutherland’s law:

µ(T ) = µref

(
T

Tref

)3/2Tref + TS
T + TS

(2.12)

5. Body forces can be neglected, i.e. fi = 0.

In this way the problem can be written in a more compact vectorial form
as:

∂U

∂t
+
∂Fk

∂xk
+
∂Dk

∂xk
= 0, (2.13)

where F and D denote, respectively, inviscid and viscous fluxes, defined as

Fk =




ρuk
ρu1uk + δ1kp
ρu2uk + δ2kp
ρu3uk + δ3kp
(ρE + p)uk



, Dk =




0
−2µS1k
−2µS2k
−2µS3k

−2µujSkj − µcp
Pr

∂T
∂xk



. (2.14)

2.2 The dimensionless formulation

In order to better understand the problem of turbulence, the non-dimensional
set of Navier-Stokes equations are introduced. The relevant normalisation
procedure is summarised below. To simplify the formulation, viscosity is
considered constant.

Let ρR, uR, lR and TR be the reference density, velocity, length and
temperature respectively. The relevant dimensionless quantities are

ρ∗ = ρ/ρR, u∗i = ui/uR, x∗i = xi/lR, T ∗ = T/TR, (2.15)

where the subscript (·)∗ is now used to address normalised non-dimensional
quantities. The reference time and pressure may be derived by dimensional
analysis as:

tR = lR/uR, pR = ρRu
2
R. (2.16)

Moreover, the dimensionless equation of state is obtained as:

p∗ = ρ∗R∗T ∗, (2.17)
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with

R∗ =
1

γMa2
and Ma =

uR√
γRTR

=
uR
aR
, (2.18)

where aR is the reference speed of sound.
Dividing the internal energy by u2R and the total energy by ρRu

2
R and using

the identity R∗ = RTR/u
2
R, the following relations descend immediately:

e∗ =
R∗T ∗

γ − 1
= c∗vT

∗, and ρ∗E∗ =
1

2
ρ∗u∗ku

∗
k +

p∗

γ − 1
, (2.19)

where c∗v = R∗/(γ − 1) = cvTR/u
2
R is related to γ and Ma. Evidently, the

dimensionless specific heat at constant volume and pressure are related to
their dimensional counterparts by the following identities:

c∗v = cvTR/u
2
R and c∗p = γc∗v = cpTR/u

2
R. (2.20)

Using Eqs. (2.15), (2.16), (2.18), (2.19), (2.20) and related identities, the
dimensionless Navier-Stokes equations become:

∂ρ∗

∂t∗
+
∂(ρ∗u∗j )

∂x∗j
=0,

∂(ρ∗u∗i )

∂t∗
+

∂

∂x∗j
(ρ∗u∗iu

∗
j + p∗δij) =

1

Re

∂

∂x∗j
(2S∗

ij),

∂(ρ∗E∗)

∂t∗
+

∂

∂x∗j
[(ρ∗E∗ + p∗)u∗j ] =

1

Re

∂

∂x∗j

(
2S∗

iju
∗
i +

c∗p
Pr

∂T ∗

∂x∗j

)
,

(2.21)

where Re = ρRuRlR/µ.
The dimensionless equations are formally identical to the dimensional

counterparts, with all the quantities replaced by starred ones. Based on this
consideration, in all the next sections, no distinction will be made anymore
between dimensional and dimensionless formulations.

2.3 A brief introduction to turbulence

Looking closer to Eq. (2.21), the first thing that can be noticed is that for
high values of the parameter Re, the viscous effects become less and less
important, hence the flow tends to be almost inviscid. On the other hand,
when Re is small, viscous effects become more and more important with
respect to convective forces.

The importance of this parameter was first pointed out by Reynolds while
making experimental observations of the flow along straight smooth pipes,
He notice that, for some certain values of the ratio

ρUl

µ
, (2.22)



2.3. A BRIEF INTRODUCTION TO TURBULENCE 35

with U the average fluid velocity in the pipe and l its radius, the flow was
changing radically from “direct” motion into “sinuous” motions, indicating
what nowadays is commonly referred to ad “laminar” and “turbulent” flow
regimes.

If U is the typical velocity of the flow, lu is the typical length of the
streamline pattern and lv is the typical length of the cross-stream velocity
gradients, it is easily shown, by simple dimensional considerations, that the
inertial and viscous forces for unit of volume of fluid scale as ρU2/lu and
µU/l2v respectively. Hence, provided that l is properly chosen,

Re =
ρUl

µ
, (2.23)

namely the Reynolds number, represents the relative intensity of inertial
forces compared to the viscous ones. When inertial forces are predominant
over viscous forces, the fluid motion is more prone to instabilities. And,
since the non-linear nature of Navier-Stokes equations – expressed by the
convective term ρuiuj– makes them extremely sensitive to small differences
in the initial conditions, chaotic, or turbulent, motion is generally the out-
come of those instabilities. In other words, fluid flows are always naturally
unstable, and these instabilities can be properly controlled tuning the level of
viscosity. The Reynolds number quantifies the ratio between the convective
(non-linear) term in Navier-Stokes equations and the viscous forces, provid-
ing a qualitative recipe to distinguish between laminar and turbulent flows.
Nonetheless, the specific transition between the two phases is not always
easily determined as it strongly depends on the particular flow characteris-
tics. In fact, an intermediate state is usually identified as “transition” where
the flow is not laminar nor fully turbulent. It is then evident that a formal
definition of turbulence is not trivial and possibly not even useful.

Sometimes, a practical example can reveal much more insight that any
mathematical formalism. Consider the flow around a cylinder for low enough
viscosity values and suppose that the velocity field in a certain location of
the wake behind is available at any instant for a certain time. From an ex-
perimental point of view, repeating the measure for the same amount of time
and in the same conditions will provide always different results. Of course,
experimental uncertainties can be many and not necessarily related to turbu-
lence. Nevertheless, these differences are commonly amplified by turbulence.
If instead, a time-averaging operation is applied to all the measurements, the
output will be the same. This is a fundamental point of turbulence under-
standing: every turbulence theory needs to be statistical. At each location
and each time instant, the flow field will look random and chaotic, while
its statistical properties are smooth functions. It exists a fascinating coexis-
tence of randomness and determinism hidden inside Navier-Stokes equations.
With this in mind a general flow field can be decomposed as:

u(x, t) = 〈u(x, t)〉+ u′(x, t), (2.24)
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where the average operator (〈·〉) has been introduced. The averaged veloc-
ity 〈u(x, t)〉 needs to be interpreted as a statistical mean flow while u′(x, t)
represents velocity fluctuations around the mean value. The mean flow is
smooth and it obeys to deterministic equations while velocities fluctuations
are random variables varying at any instant of time and any spatial loca-
tion. In a physical sense, fluctuations are intrinsically linked to vortical
structures. Geometrical properties of the flows, nevertheless, impose some
bounds on the amplitude and behaviour of such fluctuations. Largest vor-
tices will have dimensions comparable to the characteristic length scales of
the problem, while the smallest are more universal and representative of
turbulence. Largest vortices are advected in the flow by the mean flow.
Due to non-linear instabilities smaller and smaller eddies are generated by
a break-up mechanism. The kinetic energy contained in the large scales is
then progressively transferred to smaller and smaller scales, until it is finally
dissipated by viscous forces. This process is commonly known as energy cas-

cade and it represents probably one of the most popular phenomenological
descriptions of turbulence as it was first proposed by Richardson in 1922 [19].
It also highlights the dualism between convective and viscous forces. Con-
vective forces provide the large scale kinetic energy coming from the mean
flow; viscous forces, instead, are responsible of the dissipation at the smallest
scales. There exist then a set of characteristic lengths and velocities scales
such that the correspondent Reynolds number is close to 1, i.e., convective
and viscous forces are comparable:

uηη

ν
∼ 1, (2.25)

where η is this small-scale characteristic length and uη the correspondent
characteristic velocity. It is then necessary to relate such quantities to the
mean flow to have a quantitative measure of turbulence and its scales.

An important quantity, as already stated, is represented by the kinetic
energy and its viscous dissipation, which can be formally written, for incom-
pressible flows, as:

ε = 2νSijSij . (2.26)

Since viscous dissipation is supposed to be strictly related to the smallest
scales, using simple dimensional analysis, it is possible to obtain:

ε ∼ ν
u2η
η2
. (2.27)

At this point Kolmogorov’s theory [20] can be introduced. According to
Kolmogorov’s first similarity hypothesis, at smallest scales, the only relevant
quantities influencing the flow are the kinetic energy dissipation ε and the
viscosity ν. From dimensional analysis is then possible to write explicitly η
and uη as

η = ε−1/4ν3/4 and uη = (νε)1/4. (2.28)
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This range of scales much smaller than the characteristic length scale lR
is normally called universal equilibrium range. At the same time, under the
equilibrium hypothesis, the rate at which energy is passed down the cascade,
must be equal to the rate of energy dissipation:

ν
u2η
η2

∼ ε ∼ ∂(12ukuk)

∂t
∼ u3R/lR (2.29)

This expression gives the necessary link between large and small scales. In
particular, after some algebra, it is possible to write:

η ∼lRRe−3/4 and uη ∼ uRRe
−1/4. (2.30)

It is then interesting to notice that high values of the Reynolds number
provide larger and larger separation between large and small scales of the
flow. For this reason, turbulence is often described as a strongly “multiscale”
problem: a wide range of scales are indeed involved in the dynamics of the
flow, varying from the large scales imposed by the geometry of the specific
flow, to the smallest viscous scales.

Kolmogorov’s second similarity hypothesis assumes the existence of two
sub-ranges within the universal equilibrium range: inertial and viscous sub-
ranges. The latter involves the smallest scales and it satisfies all the pre-
viously stated properties, while the latter involves intermediate scales η ≪
l ≪ lR. Within this sub-range, the flow depends only on the scale l and
the dissipation rate ε. This is commonly called inertial subrange and it is
characterised by the energy cascade from large to small scales.

Another useful statistical tool in turbulence is the spatial cross correlation

Rij(x, t) = 〈ui(x0, t)uj(x0 + x, t)〉, (2.31)

as it quantifies the correlation, i.e., the mutual influence, between velocities
at different locations. In order to express the different scales, it is sometimes
useful to work in Fourier space. The energy spectrum tensor Eij(κ) with the
wavenumber κ can be expressed as:

Eij(κ) =
1

(2π)3

∫ ∫ ∫ ∞

−∞

e−iκ·xRij(x)dx. (2.32)

Then, the scalar kinetic energy spectrum can be written as:

E(κ) =

∮
1

2
Eii(κ)dS(κ), (2.33)

where κ = ||κ||. The kinetic energy spectrum quantifies the distribution
of energy along wavenumbers/frequencies instead of scales. The dimensional
analysis used in the previous calculations can be applied in the Fourier space
too. The energy spectrum within the universal equilibrium range, according
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to Kolmogorov’s first similarity hypothesis, may be written as a function of ε
and ν only. Using dimensional analysis, it is possible to obtain the following
expression for the inertial subrange:

E = E(κ, ε) = Cκε
2/3κ−5/3, (2.34)

where Cκ is commonly indicated as the Kolmogorov constant. Eq. (2.34) is
commonly known as the Kolmogorov’s κ−5/3 law. For the viscous subrange,
dimensional analysis does not provide a solution and the kinetic energy spec-
trum takes the more general form:

E = Cκε
2/3κ−5/3f(κη). (2.35)

A schematic representation of a typical kinetic energy spectrum of a tur-
bulent flow is reported in Fig. 2.1. In such figure it is possible to observe

Figure 2.1: Schematic example of kinetic energy spectrum.

the consequences of the kinetic energy cascade. Most of the kinetic energy
is contained in the largest scales, where the spectrum reaches its maximum
values. Subsequently, an inertial range with constant slope, denoted as the
inertial sub-range, represents the kinetic energy transfer from the largest
scales to the viscous scales. At the beginning of the viscous sub-range, the
kinetic energy dissipation rate increases, and the modes associated to large
wavenumbers drop abruptly. The sudden decrease of such modes is repre-
sentative of the viscous dissipation acting on the kinetic energy transferred
from the large scales motion.
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3.1 Introduction

Turbulent flows are characterised by a wide range of time and spatial scales
which non-linearly interact with each other. Either the simulation or the
modelling of such interactions can be particularly complex. On one hand,
the grid size can be chosen small enough to catch the dynamics of even
the smallest scales involved in the physical problem. Such scales, however,
can be particularly small and cause the simulation to be computationally
very expensive, even for simple geometries. The numerical resolution of the
whole spectrum of scales, varying from the large ones, linked to boundary
conditions and geometry of the problem, to the smallest, viscous scales, is
commonly called “Direct Numerical Simulation”. Despite the rapidly growing
computational power of modern architectures, DNS is still out of reach for
many relatively simple flows.
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On the other hand, for industrial applications, it is not always necessary
to have very accurate temporal knowledge of the flow field. Statistical quan-
tities are sometimes sufficient for the design of engineering prototypes, as,
for example, the mean pressure load of a rigid boundary, or the mean heat
flux at the wall. The numerical resolution of the “Reynolds-Averaged Navier-
Stokes” (RANS) equations, aims at resolving only the statistical means of
relevant variables such as the velocity field, pressure or temperature. Statis-
tical means are much smoother than the instantaneous flow field and a much
reduced resolution is needed to represent them. Nonetheless, the local inter-
actions between scales, which would be directly solved in DNS, need to be
properly modelled in the RANS framework, where only the first mode (i.e.,
the mean) is available. The gain in computational efficiency, consequently,
is worth only if coupled with accurate turbulence modelling.

A possible midway solution between DNS and RANS is represented by
“Large-Eddy Simulations”. Large scales are the most energetic scales involved
in the problem. The large-scale motions are responsible for the production
of kinetic energy and are strongly dependent on the general flow configu-
ration (boundary conditions, geometry, etc.). The smallest scales, instead,
are representative of viscous effects which are normally assumed to be much
more universal and independent with respect to the specific turbulent flow.
The idea of LES consists in resolving the large scales and model the small,
universal scales. With respect to DNS, the computational cost is consider-
ably reduced. At the same time, since most of the scales are numerically
resolved, LES models are normally much less complex than RANS models.
Due to their flexibility, LES are considered the natural evolution of RANS
approaches in the next generation of commercial codes for industrial appli-
cations.

3.2 The filtered Navier-Stokes Equations

Length-scale separation, on a generic quantity φ(x, t), is achieved in physical
space by means of the convolution product

φ(x, t) =

∫ +∞

−∞

φ(ξ, t)G∆(x− ξ)d3ξ (3.1)

where G∆ is the convolution kernel associated to the filter operation at cutoff
length ∆. Using the superscript (·)⋆ to indicate Fourier transformed quan-
tities, previous equation can be rewritten, using the Convolution Theorem,
to the point-wise multiplication in Fourier space:

φ
⋆
(κ, ω) = φ⋆(κ, ω)G⋆

kc(κ), (3.2)

where G⋆
κc
(κ) is the transfer function, namely, the Fourier transform, asso-

ciated to the convolution kernel G∆(x), κ and ω are the wavelength and the
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phase respectively and κc = 2π/∆ is the cutoff wave-number. The spectral
representation of φ may be then truncated at wave-number κc by an ap-
propriately chosen low-pass filter G⋆

κc
. For the filtered Navier-Stokes to be

tractable, the filter has to:

1. conserve constant values; this is equivalent to the normalization con-
dition: ∫ +∞

−∞

G∆(ξ)d
3ξ = 1 (3.3)

2. be linear, i.e. φ+ ψ = φ+ ψ

3. commute with derivation in space and time:

∂φ

∂t
=
∂φ

∂t
,

∂φ

∂xi
=

∂φ

∂xi
. (3.4)

The first two requirements are generally met with a properly defined
filter (the second condition, in particular, is ensured by the linearity of con-
volution operation). The third requirement is a bit more complex in nature.
Commutation errors arise when the filter is anisotropic [21] (e.g., when solid
boundaries are present or when the computational grid is not uniform) or,
for instance, when Favre-filtering (the relevant definition will be given later)
is adopted. On this regard, additional approximations will be made case
by case. In all the developments which follow, it is assumed that the filter
operator commutes with spatial and temporal differentiation. Typical filters
used to perform spatial scale separation are the top-hat, the Gaussian and
the spectral cutoff filters.

Using the above definitions and applying the commutation property, the
filtered Navier-Stokes equations are obtained:

∂U

∂t
+
∂F

k

∂xk
+
∂D

k

∂xk
= 0 (3.5)

with

U =




ρ
ρu1
ρu2
ρu3
ρE



, F

k
=




ρuk
ρu1uk + δ1kp
ρu2uk + δ2kp
ρu3uk + δ3kp

(ρE + p)uk



, D

k
=




0
−2µS1k

−2µS2k

−2µS3k

−2µujSkj − µcp
Pr

∂T
∂xk



, (3.6)

the filtered energy and the filtered equation of state being given by the
following relations

ρE = ρcvT +
1

2
ρukuk =

p

γ − 1
+

1

2
ρukuk, and p = ρRT . (3.7)
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Following the same methodology generally applied when solving the com-
pressible LES equations, in order to avoid unclosed SGS terms in the conti-
nuity equation, a density-weighted Favre filter operator tilde may be intro-
duced; this operator, which represents density weighted filtering, is defined
for a given quantity φ as:

φ̃ =
ρφ

ρ
, → ρφ = ρφ̃ (3.8)

The advantage of using Favre-filtered equations is twofold:

1. The absence of SGS terms in the mass conservation equation where
the theoretically unclosed term ρui can be expressed as a function
of the Favre filtered velocity as ρũi. A smaller number of unclosed
SGS contributions, of course, gives a simplified theoretical modelling
of turbulence.

2. The Favre-filtered equations are structurally similar to their correspon-
dent incompressible formulations providing a natural generalization of
theoretical and modelling results of incompressible turbulence.

The non-linear interaction terms in the flux vector F
k

are then decom-
posed in resolved and SGS parts, the former being accessible from the filtered
solution and the latter, namely the SGS terms now included into the diffu-

sive vector D
k
, requiring modelling. The form of vectors U , F

k
and D

k
can

then be re-expressed with the explicit application of Favre filtering:

U =




ρ
ρũ1
ρũ2
ρũ3
ρẼ



,F

k
=




ρũk
ρũ1ũk + δ1kp
ρũ2ũk + δ1kp
ρũ3ũk + δ1kp

(ρẼ + p)ũk



,D

k
=




0
−2µS1k − τ1k
−2µS2k − τ2k
−2µS3k − τ3k

−2µujSkj − µcp
Pr

∂T
∂xk

− qk




(3.9)

where τij and qk are the unclosed SGS terms:

τij = ρ(ũiũj − ũiuj), (3.10)

qk = (ρẼ + p)ũk − (ρE + p)uk = cvρ(T̃ ũk − T̃ uk)

+ pũk − puk

+
1

2
(ρ(ũjuj ũk − ũjujuk)),

(3.11)

Using the above decomposition and the Favre-filtering operator, the total
filtered energy becomes:

ρẼ =
p

γ − 1
+

1

2
ρũkũk −

1

2
τkk, and p = ρRT̃ (3.12)
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Considering different sets of filtered quantities as unknowns can lead to dif-
ferent formulations of the filtered Navier-Stokes Equations, resulting in dif-
ferent sets of SGS terms to be modelled. The equations expressed in this
form naturally lead to the choice of ρ, ũi and Ẽ as unknowns. Such option
is equivalent to pick the filtered conservative variables U since both ũi and
Ẽ can be evaluated using the filtered density:

ũi =U i+1/U1, (i = 1, 2, 3)

Ẽ =U5/U1.
(3.13)

For this choice of variables, all terms included in the diffusive fluxes are
unclosed and proper modelling is needed to express them as functions of the
Favre-filtered quantities.

Sub-grid terms involving viscous or heat fluxes are usually considered
relatively small for high Reynolds number flows. It is, in fact, assumed that
viscous scales, which are considerably smaller than the cutoff length, will be
only mildly affected by the filtering operation. Mathematically, it is normally
assumed that

2µSij ≈ 2µS̃ij , (3.14)

2µSkjuj ≈ 2µS̃kj ũj , (3.15)

and

µcp
Pr

∂T

∂xk
≈ µcp

Pr

∂T̃

∂xk
. (3.16)

On the contrary, for similar reasons, inviscid sub-grid terms cannot be
neglected and proper modelling is needed. In particular, the unclosed SGS
terms are represented in Eq. 3.9 by τij and qk.

At this point a choice regarding the spherical part of the SGS tensor τij is
in order. Notice that the spherical part of τij appears not only in the momen-
tum conservation law but also in the energy equation. The choice regarding
the spherical part of the SGS tensor can lead to different forms of filtered
energy equation. In the present work, the solution proposed by Ducros [22]
and Lesieur [23] has been employed. The spherical part of the SGS tensor
is incorporated in a macropressure. Hence, the spherical part of the SGS
tensor is not modelled. Nevertheless, such choice implies consequences on
the energy equation which will be briefly summarized.

The resolved macropressure is then defined as

ω = p̄− 1

3
τkk. (3.17)
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In this way the convective and diffusive fluxes can be re-written as

F
k
=




ρũk
ρũ1ũk + δ1kω
ρũ2ũk + δ1kω
ρũ3ũk + δ1kω

(ρẼ + ω)ũk



, Dk =




0

−2µS1k − τd1k
−2µS2k − τd2k
−2µS3k − τd3k

−2µujAkj − µcp
Pr

∂T
∂xk

− qk



. (3.18)

Where the subscript (·)d denotes the deviatoric part of the SGS tensor
τdij = τij − 1

3τkkδij . Since filtered pressure is no more accessible from filtered
variables, the SGS energy flux qk has been redefined in terms of resolved
macropressure:

qk = (ρẼ + ω)ũk − (ρE + p)uk. (3.19)

Moreover, observing that the filtered total energy contains the trace of the
SGS tensor, a resolved macrotemperature needs to be defined as well, such
that the total energy is computable from resolved quantities:

ρẼ = ρcv θ̃ +
1

2
ρũkũk, with θ̃ = T̃ − 1

2ρcv
τkk. (3.20)

The filtered state equation in terms of macropressure and macrotemperature
reads:

ω = ρRT̃ − 1

3
τkk = ρRθ̃ + ρR

1

2ρcv
τkk = ρRθ̃ +

3γ − 5

6
τkk, (3.21)

suggesting that, for τkk sufficiently small, macropressure and macrotemper-
ature may be related by the usual equation of state, i.e.,

ω = ρRθ̃ (3.22)

defining the sub-grid Mach number as

M2
sgs =

τkk
ρa2

=
τkk
γp

, (3.23)

this condition becomes:

|3γ − 5|
6

γM2
sgs ≪ 1. (3.24)

For γ = 1.4 for instance, this condition is ≈ 1.6 times less restrictive on
Msgs than just neglecting the effects of the SGS stress’ trace compared to
the filtered thermodynamic pressure:

1

3
τkk ≪ p, → 1

3
γMsgs ≪ 1. (3.25)
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A final remark needs to be done regarding the definition of the SGS energy
flux, which is now defined using macropressure and macrotemperature:

qk = (ρẼ + ω)ũk − (ρE + p)uk = cvρ(θ̃ũk − T̃ uk)

+ ωũk − puk

+
1

2
(ρ(ũjuj ũk − ũjujuk)),

(3.26)

Finally, the assumption on heat sub-grid flux applies to the macrotempera-
ture as well, namely,

µcp
Pr

∂T

∂xk
≈ µcp

Pr

∂θ̃

∂xk
. (3.27)

A possible alternative which includes the spherical part of the SGS tensor can
be also obtained. In this work, it has been followed the guideline proposed by
Vreman et al. [24]. The mathematical modelling is almost identical with the
previous discussion except for the energy equation, which needs a specific
treatment. In particular, a conservation law for a large-scale total energy
can be written as:

∂(ρÊ)

∂t
+

∂

∂xj
((ρÊ + p)ũj) =

∂

∂xj
(2µS̃ij ũi)−

∂

∂xj

(
µcp
Pr

∂T̃j
∂xj

)

−B1 −B2 +B3 −B4 +B5 +B6 −B7,

(3.28)

where Ê = p
γ−1 + 1

2ρũkũk and additional unclosed terms are defined as:

B1 =
1

γ − 1

∂

∂xj
(puj − pũj),

B2 =p
∂uk
∂xk

− p
∂ũk
∂xk

,

B3 =
∂

∂xj
(τij ũi),

B4 =τij
∂ũi
∂xj

,

B5 =2µSij
∂ui
∂xj

− 2µSij
∂ũi
∂xj

,

B6 =
∂

∂xj
(2µSij ũi − 2µS̃ij ũi),

B7 =
∂

∂xj

(
µcp
Pr

∂T

∂xj
− ∂

∂xj

(
µcp
Pr

∂T̃j
∂xj

))
.

(3.29)

This equation is obtained by the subtraction of the transport equation for
the turbulent kinetic energy (i.e., the spherical part of τij) from the filtered
energy equation. In this way, the pressure herein considered is the actual
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filtered pressure without the addition of the trace of τij . Consequently, the
main advantage of such formulation consists in an easier interpretation of the
pressure field. In the weakly compressible formulation, in fact, the specific
importance of the spherical part of the SGS tensor in the macropressure is
generally unknown. On the other hand, as it can be clearly noticed, a signif-
icantly larger number of unclosed terms appear in the equation. Still, most
of them are usually considered negligible and only B1 and B3 are commonly
modelled.

Notice that in this case no assumption on the spherical part of the SGS
tensor has been made. Consequently, each term involving τij englobes auto-
matically both deviatoric and spherical contributions. This is of course true
also for the SGS tensor in the filtered momentum balance equation. Notice
that the form of the equation is almost identical to the first formulation,
where it has been chosen a different type of large-scale total energy. In the
weakly compressible formulation the unknown is

ρẼ =
p

γ − 1
+

1

2
ρũkuk, (3.30)

whereas in this latter approach it is

ρÊ =
p

γ − 1
+

1

2
ρũkũk. (3.31)

A clear connection between the choice of resolved energy and the modelling
of the spherical part of SGS tensor can be easily identified. Finally, it is
worthwhile noticing that the relevance of the spherical part of the SGS tensor
is intimately linked to the SGS Mach number and the level of compressibility
will implicitly dictate which formulation is more suitable for a specific flow
field. The role of compressibility, and in particular of the spherical part of
the SGS tensor, will be thoroughly discussed in chapter 8.

3.3 Mathematical modelling

The unclosed terms which need to be modelled are the SGS tensor τij and
the SGS energy flux qk, namely,

τij =ρ(ũiũj − ũiuj), and qk = (ρẼ + p)ũk − (ρE + p)uk. (3.32)

Only the deviatoric part of τij needs to be modelled if the first weakly com-
pressible approach is considered. Only this specific case will be considered
in the present section. The modelling of the spherical part, although widely
diffused [25, 26], has been only mildly treated in the present work (see chap-
ter 8).

Sub-Grid Scale modelling of turbulence consists in identifying the general
algorithm that expresses the unclosed SGS terms as functions of the filtered
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variables which are directly available from the simulation. This process can
be represented by a simple analytical functional form of each term or by
a more complex algorithm taking the resolved variables as general inputs.
In simpler terms, turbulence modelling consists in an input-output relation
where the input are the resolved variables and the output are the unclosed
SGS terms. It is finally interesting to notice that also the choice of the
resolved variables is arbitrary and it can lead to different modelling choices.
If the conserved variables are the prescribed unknowns, then the available
quantities for a turbulence model are entirely contained in the vector U. In
particular the set of unknowns that can be used is:

{
ρ, ρu1, ρu2, ρu3, ρE

}
. (3.33)

On the other hand, if the fully-compressible formulation is considered, also
the spherical part of the SGS tensor needs to be modelled and the choices
on the resolved variables could differ. In fact, the resolved energy will be
different as shown in Eqs. (3.30) and (3.31).

Then, the formal way to write the turbulence closure modelling problem
is simply:

τdij =fij(U,x, t),

qk =gk(U,x, t).
(3.34)

Once this dependence is explicitly stated, the filtered equations can be nu-
merically discretised, causing an ulterior non-trivial influence on turbulence
modelling as it will be deeply analysed in the next chapters. Under-resolved
flows, such as the ones normally modelled using the LES approach, are signif-
icantly influenced by the numerical discretisation and any specific turbulence
model should be tailored based on the underlying numerical scheme used to
solve the filtered equations. This concept will be fundamental throughout
the whole thesis work and it will be deeply discussed in chapter 6.

Another fundamental difference in SGS modelling relies on the tensor
or vector level of approximation of the unclosed terms. In fact, in order to
obtain satisfying LES results, it is not always necessary to model unclosed
terms on a tensor level (each component individually). Sometimes, SGS
models base on their divergence (vector level), which is the actual term ap-
pearing in the filtered equations, can suffice to predict the correct dynamics
of the resolved field. In other words, a tensor level model such as

τdij = fij(U,x, t) for i, j = 1, ..., 3

can be substituted by a vector-level model of the form

∂τdij
∂xj

= f∗i (U,x, t) for i = 1, ..., 3
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Since the SGS heat flux qk is a vector, it can be modelled on a vector level
as

qk = gk(U,x, t) for k = 1, ..., 3

or, on a scalar level, as
∂qk
∂xk

= g∗(U,x, t).

Vectorial and tensor level approximations define the difference between func-

tional and stuctural models. More specifically, the former aim to reproduce
the effects of sub-grid terms on the resolved flow field, while the latter seek
a good correlation on a tensor level too.

One of the most popular class of functional models is the Eddy-Viscosity
or Sub-Grid Viscosity approximation. Eddy-viscosity models are based on
the assumption of similarity between molecular diffusion mechanics and sub-
grid scales energy transfers. The influence of unresolved scales on the large
scale flow field is assumed to be essentially dissipative. Such an assumption
was first proposed by Richardson’s theory [27] on energy cascade and lately
formalised by Kolmogorov [20]. The kinetic energy is produced by the large
scale motions, characterised by the problem/s geometry and boundary con-
ditions. Subsequently, the kinetic energy contained in the largest vortices is
transferred to smaller and smaller scales through the vortex-stretching mech-
anism. For small enough scales, the viscous effects become comparable with
convective stresses and the accumulated kinetic energy is finally dissipated.
If these scales are excessively small, the computational cost of the numerical
simulation required to resolve them can become extremely high. Using the
assumption of energy cascade, instead, the influence of viscous scales on the
resolved field can be easily modelled as a dissipative process. The simplest
approach consists in the addition of turbulent dissipation:

τdij = 2νt(S̃ij − 2/3δijS̃kk). (3.35)

Furthermore, employing the hypothesis of Eidson [28], the SGS energy flux
can be directly related to the eddy-viscosity as

qk = γ
ρνt
Prt

∂ẽ

∂xk
. (3.36)

The closure problem is then solved when νt(x, t) and Prt(x, t) are defined.
Notice that both can be spatially and time dependent. In fact, the eddy-
viscosity is a property of the turbulence itself and it needs to be differently
active depending on the different nature of the turbulent structures within
the domain. The Prandtl number, instead, is generally taken as a constant
value varying between 0.5 and 0.9 [29]. Among the advantages of eddy-
viscosity models, simplicity and robustness are certainly the most important.
The theoretical concept behind is intuitive and reliable. Nevertheless, in cer-
tain conditions, such assumptions can be dramatically simplistic, leading to
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excessive dissipation, in particular in combination with high-order meth-
ods. Along the years, more and more complex models have been developed
since the rise of LES. Most of them, leading to superior improvements with
respect to classical models such Smagorinsky model. Nevertheless, more ac-
curate predictions usually come along with more expensive algorithms and
more delicate stability which could fail for certain complex simulations. It
is in fact important to highlight how LES cannot be categorised neither as
a merely numerical problem nor as a turbulence physics one. A deep under-
standing of the dynamics of turbulent flows is crucial. A strong theoretical
background could potentially lead to very accurate models, but, if such mod-
els are extremely complex and expensive, the whole purpose of LES would be
pointless. A good equilibrium between complexity and computational cost
is pivotal for a successful SGS model.

3.4 A-priori and a-posteriori analyses

In order to evaluate the validity of particular SGS model, two main ap-
proaches are commonly practised in the literature: a-priori and a-posteriori

testing [30, 31]. In the first approach, fully-resolved fields are available from
DNS of specific turbulent flows. Explicit filtering is then applied to the DNS
data in order to evaluate the unclosed SGS terms in the filtered equations.
Such quantities can then be used as reference for the development of a spe-
cific SGS model built using the filtered variables. In this way it is possible
to estimate the reliability and robustness of a certain SGS model without
actually perform any Large-Eddy Simulation (i.e., in a offline fashion). Fol-
lowing an a-posteriori approach, the problem is tackled in the opposite way,
the theoretical filtered equations are simply discretised and the SGS model
is directly employed in a LES computations. Secondly, quantities extracted
from the LES can then be compared with measured mean velocity profiles
for which an extensive set of experimental and DNS data are available in
the literature. Of course, both approaches are needed in the development of
innovative SGS models.

A-priori testing based on DNS data has shown some discouraging results:
classical SGS models have shown poor correlation with respect to the SGS
unclosed terms obtained from explicit filtering of DNS data. Nevertheless,
it has also been noticed in multiple works ([32, 31, 33]) that poor a-priori
correlations do not necessarily translate in poor results when the model is
actually employed in a LES. In the same way, models which correlates very
well with explicitly filtered quantities are not always suitable for LES and
additional dissipative eddy-viscosity terms are usually needed (for example,
the gradient/tensor diffusivity model [34] or Bardina’s model [35]).

In ideal conditions the perfect equivalence between the two approaches
would be likely to take place. For a given set filtered DNS fields, it is
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reasonable to think that it would exists a certain SGS model capable of giving
the same exact outcomes when actually applied to a real LES. Finding the
exact model capable of such results, nevertheless has be theoretically proved
to be impossible ([36, 37]) due to inevitable commutation errors.

In fact, the comparison between the two approaches relies in a funda-
mental assumption: the explicit filtering operation applied to the DNS data
is representative of the numerical resolution of the filtered equations. In a
sense, the filter kernel, implicitly defined through the discretisation of the
filtered equations, is assumed to have an a-priori known expression (such as
box-hat/gaussian/sharp spectral filter). The role played by the numerics,
instead, is extremely complex and, in large part, characterised by unknown
outcomes in terms of dissipation and regularity of the solution. The con-
nection between the numerical scheme employed to solve the equations and
the physical-based SGS model is a crucial aspect in the success or failure
of the LES. Secondly, but not less importantly, the a-priori approach com-
pletely neglects the dynamics of the system, since the analysis is only based
on snapshots of DNS filtered data. It is then commonly assumed that such
deficiency would affect the reliability of a-posteriori approaches.

In the present work, both a-priori and a-posteriori approaches will be
used to study the recently developed Spectral Element Dynamic Model
(SEDM) [1] which will be briefly introduced in the next sections and thor-
oughly discussed in chapter 6.

3.5 Eddy-viscosity models

The Eddy-viscosity models belong to the class of functional SGS models. In
fact, their goal is not reproducing exactly all the individual entries of the SGS
tensor, but to reproduce the effect of such terms on the resolved fields. If
the energy transfer within the inertial range of the kinetic energy spectrum
is assumed to replicate classical molecular diffusion, then it is possible to
model such transfer introducing a properly defined eddy-viscosity term. In
other words, as already mentioned in the previous sections, the following
approximations are commonly invoked:

τdij = 2νt(S̃ij − 2/3δijS̃kk), (3.37)

and

qk = γ
ρνt
Prt

∂ẽ

∂xk
. (3.38)

Of course, many different eddy-viscosity models have been proposed over the
years, each with specific desirable properties. In the present section, a brief
overview on the most popular ones will be given.
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3.5.1 Smagorinsky Model

Among the most used sub-grid eddy-viscosity models, the Smagorinsky model [38]
computes the sub-grid viscosity νt as :

νt = C2
s∆

2|S̃d|, (3.39)

where the tensor norm term is computed from the resolved strain rate tensor
with the following relation

|S̃d| = (2S̃ijS̃ij)
1/2, (3.40)

and ∆ is the grid level filter width. The model constant Cs can be the-
oretically determined from Local Equilibrium Hypothesis considerations or
adapted for the specific problem. Typical values range from 0.1 to 0.2.

3.5.2 The wall-adapting local eddy-viscosity (WALE) model

The WALE model [39] was designed primarily to achieve the correct near-
wall scaling behaviour, O(y3), for the sub-grid eddy-viscosity by using a new
operator Sd

ij defined as:

Sd
ij =

1

2
(g2ij + g2ji)−

1

3
δijg

2
kk, (3.41)

where Sd
ij is the traceless-symmetric part of the square of the velocity-

gradient tensor gij = ∂ũi/∂xj . Since the term Sd
ijSd

ij scales as O(y2), it
is possible to construct an eddy-viscosity:

νt = (Cw∆)2
(Sd

ijSd
ij)

3/2

(S̃ijS̃ij)5/2 + (Sd
ijSd

ij)
5/4

, (3.42)

such that O(y3) scaling may be achieved near the wall. In the equation
above, Cw is the coefficient of the WALE model and is a user specified
parameter. This coefficient has been calibrated using isotropic turbulence
to obtain the relation C2

w = 10.6C2
s , where Cs is the constant-coefficient

Smagorinsky coefficient. Based upon this expression and the value of Cs =
0.1 (typical for wall-bounded flows), we set the coefficient of the WALE
model to 0.3 [40].

3.5.3 The SIGMA model

The SIGMA model [41] improves upon the behaviour of the WALE model
by using the singular-value-decomposition of the velocity-gradient tensor to
build the eddy-viscosity. This manner of constructing the sub-grid eddy-
viscosity provides the model with many useful properties. For example the
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SIGMA model vanishes completely in the presence of solid rotation and pure
shear. By comparison, the WALE model only vanishes in the presence of
pure shear. Furthermore, similar to the WALE model, O(y3) scaling of the
eddy-viscosity is achieved near the wall. The eddy-viscosity of the SIGMA
model may be defined as:

νt = (Cσ∆)2Dσ, (3.43)

where:

Dσ =
σ3(σ1 − σ2)(σ2 − σ3)

σ21
, (3.44)

and where σ1 ≥ σ2 ≥ σ3 ≥ 0 are the three, singular-values of the velocity
gradient tensor gij (as defined in Sec. 3.5.2) and Cσ is the SIGMA model
coefficient which is a user specified parameter. The value of Cσ has been
evaluated to be 1.35 in Ref. [41].

3.5.4 Spectral Element Dynamic Model

The Spectral Element Dynamic Model [1] defines a constant kinematic eddy-
viscosity within the element of the SD discretisation as:

νnt = C2
SEDMf(σn)∆n

√
kn , (3.45)

where ∆n is an estimate of the local cutoff length scale, f(σn) is a spectral
turbulence sensor, CSEDM is a model constant and kn is an estimate of the
SGS turbulent kinetic energy within the element defined as:

kn =
1

2

(
〈ũn · ũn〉 − 〈ũn〉 · 〈ũn〉

)
, (3.46)

where 〈·〉 denotes spatial averaging within the element.
The expression for the turbulent sensor reads:

f(σn) =





1 for σn < σthr,
1

2

{
1 + sin

[
π(σt + ζ − σn)

2ζ

]}
for σthr ≤ σn ≤ σthr + 2ζ ,

0 for σn > σthr + 2ζ ,

(3.47)

where σn is a least square approximation of the decay exponent of the modes
associated to Legendre polynomials within the n-th element.

Before the computation of the SGS terms, the eddy-viscosity is made
linear across the elements to avoid discontinuities of νt within the domain.

Three parameters influence the level of dissipation introduced by the SGS
model, namely, σthr, CSEDM and ζ. Their values have been calibrated using
low Mach number Taylor Green Vortex DNS data [1]. In all the simulations
presented hereafter, the following set of values have been used:

CSEDM = 0.23, σthr = 1.6, ζ = 0.3 . (3.48)

Finally, the turbulent Prandlt number has been set to 0.5 [29]. A more
detailed overview on the SEDM will be provided in chapter 6.
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4.1 Introduction

The constant increase of computing power in modern hardware architec-
tures made computational fluid dynamics a widely-used virtual prototyping
tool [42]. Well established CFD softwares are now robust and reliable for
many engineering design processes. Although, they still lack in accuracy for
many delicate situations of high interest in engineering and applied sciences.
Along these lines, innovative numerical high-order schemes gained a lot of in-
terest in the last few decades, emerging as the building core of the next CFD
generation [43]. Among them, the Spectral Difference method [44, 45, 46],
which has been used in the present work. In the following sections the Spec-
tral Difference method will be first introduced to discretise one-dimensional
conservation laws and subsequently generalised for the three-dimensional
Navier-Stokes equations. All the significant details about the numerical
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scheme will be briefly mentioned to provide a satisfactory overall charac-
terisation of the Spectral Difference scheme.

4.2 1D Spectral Difference method

The SD method solves the strong form of the differential equation using
piecewise continuous functions as approximation space. Consequently, the
solution is assumed to be discontinuous at elements interface. In order to
have a consistent discretisation, the solution is interpolated using a poly-
nomial of degree N while the flux, which is connected to the conservative
variables via a divergence operator, is approximated with a polynomial of
degree N + 1. The most important ingredient of the SD discretisation is
the definition of two different set of points: solution and flux points. The
numerical solution is defined on the nodes xsi with i=0 to N . Fluxes, in-

stead, are defined on a different set of nodes xfi , with i=0 to N + 1, among
which element boundary points are included. It shall be noted that, in the
present study, the solution points are set as the Gauss-Legendre points of
order N+1, a sensible choice to minimise aliasing errors in the nonlinear case
while defining a well conditioned basis set for the solution interpolation [47],
whereas the flux points are set as the Gauss-Legendre points of order N plus
the two end points -1 and 1 to ensure linear stability [48]. An example of
solution and flux points for a polynomial approximation of degree N = 3 is
shown in Fig. 4.1.

Figure 4.1: Solution (red circles) and flux (blue squares) points of SD dis-
cretisation in the reference element (N = 3).

As in the FR scheme, the solution is approximated with a polynomial of
degree N

û(x̂) =
N∑

i=0

uil
s
i (x̂). (4.1)

within the reference element Ωn = {x̂| − 1 ≤ x̂ ≤ 1}. In the one-dimensional
case, the map linking the reference element to the physical element, and
consequently x̂ with x, is a simple linear transformation, acting on the length
of the element.

At this point the FR scheme would use an interpolated flux (of degree N)
on the same set of points and subsequently add a correction flux (of degree
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N + 1) defined on element extrema as well. In the SD scheme, instead, the
values of the solution are extrapolated at the flux points

û(x̂fj ) =
N∑

i=0

uil
s
i (x̂

f
j ), j = 0, ..., N + 1, (4.2)

and then used to compute fluxes on the same collocation basis:

fj = f̂(x̂fj ) = f̂(û(x̂fj )). (4.3)

Then, a continuous flux polynomial of degree N + 1 is constructed, by La-
grange interpolation, using the fluxes evaluated from the interpolated so-
lution at the interior flux points and the numerical fluxes at the element
interfaces:

f̂(x̂) = f̂ ILl
f
0 (x̂) +

N∑

j=1

fjl
f
j (x̂) + f̂ IRl

f
N+1(x̂). (4.4)

In other words, the interpolated values of the flux at elements extrema are
substituted by the interface numerical fluxes f̂ IL and f̂ IR. Finally, the flux
divergence is evaluated at the solution points,

df̂

dx̂
(x̂si ) = f̂ IL

dlf0
dx̂

(x̂si ) +

N∑

j=1

fj
dlfj
dx̂

(x̂si ) + f̂ IR
dlfN+1

dx̂
(x̂si ), (4.5)

and the numerical solution can be advanced in time using a suitable time
integration scheme discretising the following equation:

dû

dt
= −df̂

dx̂
(x̂si ). (4.6)

As example, in the case of linear advection equation, Eq. (4.6), for the
n-th element, can be written in matrix form as

dûn

dt
= −2D(f̂L✶

0 + Mûn + f̂R✶
N+1), (4.7)

where

Dij =
dlfj (x̂

s
i )

dx̂
, Mij =





0 for i = 0,

0 for i = N + 1,

lsj(x̂
f
i ) otherwise,

(4.8)

✶
0
j = δj0 and ✶

N+1
j = δj(N+1) for j = 0 to N + 1. In the above formal-

ism, when the superscript s is used, the relevant index ranges from 0 to N ,
whereas, when the superscript f is adopted, the index goes from 0 to N +1.
Hence, D ∈ R(N+1)×(N+2) and M ∈ R(N+2)×(N+1) resulting in a local linear
system of dimensions (N +1)× (N +1). The subscript (·)n, instead, denotes
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the element numbering. Notice how a clear distinction between the interior
differential operator and the evaluation of the interface flux is evident in
Eq. (4.7).

The core of the method is hidden inside the definition of the matrix
M, for which both nodal sets are needed, while the interface information is
contained in the f̂L/R terms. A specific SD method is completely defined by:

1. the location of both solution and flux points;

2. the expression of interface fluxes f̂L/R.

In chapter 5, the Flux Reconstruction (FR) scheme will be introduced.
It will be shown that the different choice of correction functions in the FR
method can be directly linked to the location of the solution points in the SD
scheme. The interpolation operator between solution and flux points, in fact,
implicitly defines the correction function of the corresponding FR recovering
scheme. Nodes coordinates are somehow a useful degree of freedom that can
be modified in order to increase accuracy and/or stability. In fact, some
recent work has been done in optimised nodes location for SD methods [49].

4.3 Multi-dimensional formulation

Once the one-dimensional strategy is properly outlined, the three-dimensional
SD discretisation of conservation laws can be easily generalised. The gov-
erning equations are once again transferred from the physical to the compu-
tational domain through the change of coordinates:

x =

K∑

i=0

Mi(x̂)xi (4.9)

where K is the number of points defining the physical element, whereas
xi and Mi are the relevant position vectors (in physical space) and shape
functions, respectively. The change of coordinates, in the one-dimensional
case, consisted in a simple linear scaling of the element, whereas, in multiple
dimensions, more complex deformations of the reference element are allowed.
In this sense, using appropriate definition of coordinates transformation, it is
possible to handle highly complex geometries with a reasonably small effort.
Of course, the geometrical flexibility of spectral element methods represents
a very powerful feature for realistic CFD configurations.

The general multi-dimensional conservation law can be expressed in the
computational space as

∂Q

∂t
+∇x̂ · G = 0, (4.10)
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with Q = det(J)U, G = adj(J) · F, where det(J) and adj(J) respectively
represent the determinant and the adjoint of the Jacobian of the transfor-
mation J = ∂x̂

∂x .

Within the element, solution and flux points are defined in a tensor prod-
uct fashion, leading to the following expression of the interpolated represen-
tation of conserved variables:

U(x̂, ŷ, ẑ) =
N∑

i=0

N∑

j=0

N∑

k=0

Qi,j,k

det (J)i,j,k
lsi (x̂)l

s
j(ŷ)l

s
k(ẑ) (4.11)

where li(x̂), lj(ŷ), lk(ẑ) represent one dimensional Lagrange polynomials
along the three dimensions of the reference element. Similarly to the one-
dimensional case, along each direction, the polynomial approximation defines
immediately a strategy to evaluate the conserved variables at the flux points.
Namely,

Uf,j,k =
N∑

i=0

Qi,j,k

det (J)i,j,k
lsi (x̂f ) (4.12)

Ui,f,k =
N∑

j=0

Qi,j,k

det (J)i,j,k
lsj(ŷf ) (4.13)

Ui,j,f =
N∑

k=0

Qi,j,k

det (J)i,j,k
lsk(ẑf ) (4.14)

with f = 0, ..., N + 1. An example of tensor product locations of solution

Figure 4.2: Distribution of solution (red circles) and flux points (blue
squares) in the standard element for a 3-rd order spatial discretisation.

and flux points is shown in the reference element in Fig. 4.2.



58 CHAPTER 4. SPECTRAL DIFFERENCE METHOD

Fluxes, considered along x̂, ŷ and ẑ, can be written as:

G1
j,k(x̂) =

N+1∑

p=0

(adj(J) · F)1p,j,klfp (x̂), (4.15)

G2
i,k(ŷ) =

N+1∑

p=0

(adj(J) · F)2i,p,klfp (ŷ), (4.16)

G3
i,j(ẑ) =

N+1∑

p=0

(adj(J) · F)3i,j,plfp (ẑ), (4.17)

where (adj(J) · F)d is the d-th component of adj(J) · F evaluated at the
p-th flux point for fixed indices along the other two dimensions. Finally,
lfp is the Lagrange polynomial defined on the p-th flux point, constructed
on the flux points basis. Consequently, such polynomial is one order higher
than the ones used to define conserved variables on the solution points. The
point-wise values of the flux are computed using the reconstructed solution
evaluated at the flux points, namely, Uf,j,k, Ui,f,k, Ui,j,f from Eqs. 4.12, 4.13
and 4.14 respectively. The reconstructed flux is only element-wise continuous
and discontinuous across element interfaces. With regards to the interface
contribution, a Riemann solver is employed to compute a common flux at
the cell interface to ensure conservation and stability. Theory and common
practices of Riemann solvers will be the focus of the next section. The flux
is then made continuous replacing the element interface fluxes F0,j,k and
FN+1,j,k (for fluxes along x̂) with the one-valued numerical interface flux
given by the approximate solution of the interface Riemann problem. The
computation of the derivative along x̂ is finally performed exactly in the
same way as in the one-dimensional case. Namely, given the interpolation
of the corrected fluxes G̃(x̂), the derivative of G̃(x̂) along x̂, ŷ and ẑ is
computed simply applying the derivative operator to Eqs. 4.15 4.16 and
4.17 respectively:

∂

∂x̂

(
G̃

1

j,k(x̂)

)
=

N+1∑

p=0

(adj(J) · F̃)1p,j,k
dlfp (x̂)

dx̂
, (4.18)

∂

∂ŷ

(
G̃

2

i,k(ŷ)

)
=

N+1∑

p=0

(adj(J) · F̃)2p,i,k
dlfp (ŷ)

dŷ
, (4.19)

∂

∂ẑ

(
G̃

3

i,j(ẑ)

)
=

N+1∑

p=0

(adj(J) · F̃)3p,i,j
dlfp (ẑ)

dẑ
. (4.20)
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All the previous expressions can be finally evaluated on the solutions points
of each direction:

∂

∂x̂

(
G̃

1

i,j,k

)
=

∂

∂x̂

(
G̃

1

j,k(x̂)

)∣∣∣∣
x̂i

with i = 0, ..., N (4.21)

∂

∂ŷ

(
G̃

2

i,j,k

)
=

∂

∂ŷ

(
G̃

2

i,k(ŷ)

)∣∣∣∣
ŷj

with j = 0, ..., N (4.22)

∂

∂ẑ

(
G̃

3

i,j,k

)
=

∂

∂ẑ

(
G̃

3

i,j(ẑ)

)∣∣∣∣
ẑk

with k = 0, ..., N (4.23)

Finally, the semi-discrete SD discretisation of the conservation law 4.10 can
be written as:

∂Qi,j,k

∂t
+

∂

∂x̂

(
G̃

1

i,j,k

)
+

∂

∂ŷ

(
G̃

2

i,j,k

)
+

∂

∂ẑ

(
G̃

3

i,j,k

)
= 0. (4.24)

In a similar manner, the same procedure can be repeated to compute vis-
cous fluxes, where the extrapolation on the flux points is applied to fluxes
involving first derivatives. In fact, after the computation of inviscid fluxes,
the first derivatives of the conserved quantities are directly available within
the element, and they can be used to evaluate viscous fluxes at the solution
points. Given such information, the same strategy, briefly presented in this
section, can be almost identically employed to compute the divergence of
viscous fluxes. In analogy with respect to the computation of inviscid fluxes,
an appropriate definition of interface fluxes will be needed. More details on
Riemann solvers and viscous fluxes will be provided in the next sections.

4.4 Numerical fluxes

In the previous sections the general strategy to discretise a general conser-
vation law using the SD scheme has been provided. It has been explained
that fluxes are made continuous at the interface using numerical fluxes. In
the three-dimensional discretisation of the Navier-Stokes equations, the nu-
merical fluxes are obtained solving a Riemann problem.

Due to the intimate connection between upwinding fluxes and numerical
dissipation, most of the present section will be focused on inviscid fluxes.
In particular, Roe flux will be considered as one of the most representative
examples of inviscid numerical flux for spectral element methods. Many
other alternatives have been developed in the last decades giving a very
vast choice of fluxes that can be used in solving compressible Navier-Stokes
equations in an high-order discretisation framework (see [50] for an extensive
review).

In a similar way, the literature on viscous numerical fluxes for high-order
methods recently experienced a sensible grow [51, 52, 53]. Nevertheless,
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in terms of numerical dissipation at high wavenumbers, numerical viscous
fluxes play a less relevant role (see also [54]). The eventual dissipative term
added to the numerical viscous flux is in fact usually proportional to the
conserved variables’ jumps across the element’s interface, leading, ultimately,
to a dissipative effect which is identical to the one associated to inviscid
fluxes.

4.4.1 Inviscid fluxes

Characteristic Variables

Characteristic variables play a fundamental role in many different aspects
of CFD, from characteristic-based boundary conditions [55, 56, 57, 58] to
Godunov’s methods for finite volume schemes [59]. In particular, as it will
be explained in more details in the following sections, characteristic variables
are very important in the theory and practice use of Riemann solvers as they
give a fundamental understanding on how information propagates within the
fluid domain.

As first building block, the eigenvalue formulation of the one-dimensional
form of Euler equations will be considered as a simplified example of hyper-
bolic conservation law. In this particular setting, the governing equations
can be written as:

Ut +AUx = 0, (4.25)

where

A =



u ρ 0
0 u 1/ρ
0 ρc2 u


 with c =

√
dp/dρ, (4.26)

and U = (ρ, u, p)T .

One of the useful properties of the matrix A for hyperbolic conservation
laws is that it can be diagonalised. Namely, the matrix A can be written as:

A = L−1ΛL, (4.27)

where L and L−1 can have different forms based on the normalisation coef-
ficients. One of the most popular options leads to the following expressions:

L =



1 ρ/2c −ρ/2c
0 1/2 1/2
0 ρc/2 −ρc/2


 and L−1 =



1 0 −1/c2

0 1 1/(ρc)
0 1 −1/(ρc)


 , (4.28)

whilst the corresponding eigenvalues are λ1 = u, λ2 = u+ c and λ3 = u− c.

Multiplying both sides of 4.25 by L−1 Euler’s equations read:

L−1Ut + L−1A(LL−1)Ux = 0. (4.29)
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In order to obtain an advantageous formulation, the matrix L is considered
constant. Such approximation is essentially equivalent to assume that the
equations can be locally linearised. Consequently, introducing the change of
variables W = L−1U, which from now on will be denoted as characteristic

variables, Euler’s equations take a very simple and powerful form:

Wt + ΛWx = 0. (4.30)

All the equations are now completely decoupled and a simple analytical
solution is immediately available. Namely,

wi(x, t) = w0(x− λit) i = 1, ..., 3 (4.31)

Consequently, it exists a local change of variables such that the new set of
unknowns assume always a constant value along a certain space-time di-
rection and the speed of propagation coincides with the magnitude of the
eigenvalues.

Obviously, the matrix A (and so L, L−1 and Λ) is not constant, as it
depends on the local values of U. The present theory holds only locally.
Nonetheless, the characteristic decomposition gives very important informa-
tions on the solution’s structure. The local values of characteristic variables,
as presented in the next sections, play a fundamental role in the framework
of Riemann solvers.

Finally, notice that, once the characteristic equations are solved, the
solution of conserved variables can be simply written as:

U(x, t) = LW =

3∑

i=1

w0
i (x− λit)L

(i). (4.32)

Riemann Problem

The Riemann problem for the hyperbolic, constant coefficient system 4.25
can be defined as the following Initial Value Problem:

Ut +AUx = 0, (4.33)

with initial conditions

U(x, 0) =

{
UL for x < 0

UR for x > 0
. (4.34)

The general structure of the solution in the (x, t) plane is sketched in Fig. 4.3:
a finite number of space-time waves characterised by different slopes ( i.e.,
propagation velocities) represent the full solution of the Riemann problem.
Assuming that the matrix A is a constant, the Riemann problem can be
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Figure 4.3: General solution structure.

easily solved using the characteristic change of variables introduced in the
previous section.

As a first step, left and right states are defined using the vector space
spanned by the eigenvectors of the matrix A. Namely,

UL =

3∑

i=1

αiL
(i) and UR =

3∑

i=1

βiL
(i). (4.35)

The general solution is evaluated using the characteristic system which reads:

Wt + ΛWx = 0, (4.36)

with initial data

w0
i (x) =

{
αi x < 0

βi x > 0
i = 1, ..., 3 , (4.37)

The solution of the characteristic system is then computed as:

wi(x, t) = w0
i (x− λit) =

{
αi x− λit < 0

βi x− λit > 0
, (4.38)

and the solution in the primitive variables is simply defined by Eq. (4.32).
In particular, whenever x − λit < 0, the solution is just UL and the linear
combination of the eigenvectors defining the solution involves only α coeffi-
cients. Instead, if x− λit > 0 only β coefficients will appear. In the middle,
combinations of left and right states will emerge. In particular, in the case
of three equations, the possible options are:

U∗
12 =β1L

(1) + α2L
(2) + α3L

(3),

U∗
23 =β1L

(1) + β2L
(2) + α3L

(3).
(4.39)

This idea is graphically pictured in Fig. 4.3.
The actual expression of the coefficients α and β can be easily found from

Eqs. 4.35 which represent two linear systems to be solved.
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Exact solvers

In the previous section a constant matrix A was considered to simplify the
mathematical setting. Euler equations, instead, are strongly non-linear and
the formulation becomes more complex. In other words, mathematically, the
equations should be written as :

Ut +A(U)Ux = 0. (4.40)

Moreover, in the previous case, everything was defined a-priori, meaning that
the two waves were somehow intrinsically defined in the constant matrix A.
In reality, the fully non-linear Riemann problem can lead to many different
configurations. In the 1D case, three characteristics are present in the system
and each of them can be a shock, a rarefaction wave or a contact discontinuity
(so 10 alternative).

The basic idea of exact Riemann solvers relies on exact iterative methods,
designed to find the intermediate state (ρ∗, u∗, p∗)T , guessing a first general
structure of the waves. Algebraic equations can be defined for shocks, expan-
sions and contact discontinuities and the problem can ultimately be reduced
to a systems of non-linear algebraic equations. This approach imposes the
use of a Newton-type algorithm to solve them numerically.

Nevertheless, for the purposes of the present work, most of the attention
will be focused on approximate solvers.

Godunov’s Method

Godunov’s method is one of the most famous numerical discretisation of non-
linear systems. In order to deal with discontinuous solutions, an integral form
of the equations is considered. The general conservation law

Ut + F(U)x = 0, (4.41)

can be integrated both in time and space, leading to the following expression:

∫ x2

x1

U(x, t2)dx =

∫ x2

x1

U(x, t1)dx+

∫ t2

t1

(F(U(x1, t))− F(U(x2, t)))dt. (4.42)

The canonical paradigm considers then an element-wise constant solution
as schematically shown in Fig. 4.4. After element-averaging, the Godunov
method can be written as:

Un+1
i = Un

i +
∆t

∆x
[Fi−1/2 − Fi+1/2], (4.43)

with Fi±1/2 = F(Ui±1/2) and ∆t ≤ ∆x
Sn
max

with Sn
max the maximum wave

velocity in the whole domain.
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Figure 4.4: Graphical visualisation of Godunov’s method.

A priori, the solution at interface is unknown, the only available infor-
mations are located at the cell center. Moreover, the solution is expected to
be in the self-similar form Ui+1/2(x/t). Consequently, the evaluation of the
Riemann problem RP(Un

i , U
n
i+1) solution at x/t = 0 is needed to advance in

time.

As already stated, it is possible to solve analytically the Riemann prob-
lem but most of the times this strategy can be very time-consuming and
computationally inefficient. In fact, the errors associated to the spatial or
temporal discretisation can be much larger than the errors arising from ap-
proximate Riemann solvers.

Approximate Riemann solvers

As previously state, the goal is to solve numerically the general initial bound-
ary value problem:

Ut + F(U)x = 0, (4.44)

with initial data U(x, 0) = U(0)(x), using the explicit conservative formula

Un+1
i = Un

i +
∆t

∆x
(Fi−1/2 − Fi+1/2), (4.45)

along with the Godunov intercell numerical flux

Fi±1/2 = F(Ui±1/2). (4.46)

Considering now the equation

Ut +AUx = 0, (4.47)

the problem can be approximated imposing that A ≈ Ã = Ã(UL,UR).
Once the matrix A is considered locally constant, the problem can be easily
solved using the ideas presented in the first section for hyperbolic systems
of equations with constant coefficients.
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The choice of Ã is only partially arbitrary. In fact, Ã needs to fulfil some
specific constraints associated to the equations.

It can be proven that for a general hyperbolic system, numerically re-
solved using Godunov method, the intercell fluxes can be generally defined
as:

Fi+1/2 =
1

2
(FL + FR)−

1

2

∑
γ̃i|λ̃i|L̃

(i)
. (4.48)

for some coefficients γ̃i.
The different approximate Riemann solvers will differ from each other

according to the specific definition of Ã. Once the approximated Jacobian
is defined, the coefficients γ̃i, eigenvalues λ̃i and eigenvectors L̃(i) can be
evaluated and used to compute the interface flux Fi+1/2 according to 4.48.

The coefficient γ̃’s are defined through the eigenvectors expansion of the
primitive variables’s jumps:

∆U =
∑

γ̃iL̃
(i)
. (4.49)

Explicit calculations for the original Roe’s flux are reported in the Ap-
pendix C. Furthermore, the application of Roe’s flux to the three-dimensional
Euler equations is outlined in the Appendix D.

4.4.2 Viscous fluxes

In order to introduce the numerical discretisation of viscous numerical fluxes
in Navier-Stokes equations, the general one-dimensional scalar conservation
law will be used as guideline. How to generalise to three-dimensional systems
of conservation laws has been already outlines in previous sections. The
difference with respect to the previous formulations relies on the flux explicit
dependence on the first derivatives of the solution. Namely,

∂u

∂t
− ∂

∂x

(
f

(
u,
∂u

∂x

))
= 0, (4.50)

It can be useful to rewrite equation 4.50 as a system of first order equations
as:

{
∂u
∂t −

∂f(u,q)
∂x = 0

q − ∂u
∂x = 0

(4.51)

where q is commonly called auxiliary variable. Consequently, the first equa-
tion is referred to as the principal equation and the second as the auxiliary
equation.

The classical procedure to compute viscous numerical fluxes starts with
the resolution of the auxiliary equation in q which simply coincides with the
first derivative of the conserved variable u. The first step is essentially an
interpolation problem and it can be seen as the first full step of SD resolution
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of a conservation law: the solution is extended to the edges of the element,
is corrected using the interface fluxes and finally re-interpolated and derived
on the solution points providing the derivative of u at each solution point.
At this stage then, q and u are directly available on the solution points. This
first step depends on the specific numerical flux for u used at interfaces. The
common flux can be written in the generic form as:

û =
uR + uL

2
+ β

uR − uL
2

. (4.52)

After the auxiliary equation is solved, both q and u are known. Consequently
the flux function can be easily evaluated at the solution points. At this point,
the procedure coincides with the standard SD strategy: the flux is interpo-
lated at the edges, corrected and finally re-interpolated and differentiated on
the solution points. In a similar way with respect to the first step, the only
needed information relies on the interface flux, which will depend on left and
right state of not only u but also q.

The interface value of u has been already defined in equation 4.52 but
no definition has been given to the common value of q at the interface. The
different choices on the interface value of q will lead to different well-known
schemes used in the spectral element methods framework. Namely, in the
case of Local Discontinuous Galerkin (LDG) [51],

q̂ =
qR + qL

2
− β

qR − qL
2

+ τ
uR − uL

2
, (4.53)

where a penalty term proportional to the parameter τ can be added to control
the jump at the interface. A similar definition is used in the internal penalty
approach [52] where β = 0, giving

û =
uR + uL

2
and q̂ =

qR + qL
2

+ τ
uR − uL

2
. (4.54)

An even easier choice is to simply consider centered fluxes [60] of the form:

û =
uR + uL

2
and q̂ =

qR + qL
2

. (4.55)

It is then interesting to notice that the construction of the numerical viscous
flux is based on two choices: the definition of an interface state for both u
and q. Despite the similarities, the computation of the conserved variables
at the interface and the definition of a common state is completely decoupled
with respect to the inviscid flux computation. In other words, the definition
of inviscid and viscous fluxes are independent one another.

4.5 Boundary conditions

A fundamental ingredient in any discretisation of compressible Navier-Stokes
equations is represented by the implementation of appropriate boundary con-
ditions. As commonly established in the research field, different approaches
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can be followed in the imposition of boundary conditions in compressible
flows. Each of such techniques can significantly influence the overall stability
and accuracy of the numerical simulation. A deep discussion on the specific
consequences of each approach is far beyond the purpose of the present work.
The following considerations are meant to delineate a general guideline on
the efficient implementation of boundary conditions in the SD high-order
framework (see also [61] for an extensive summary).

As discussed in the previous sections, in the SD scheme, the solution is
extrapolated from the solution points to the flux points which include the
element’s edge. The flux at the element’s extrema is then corrected using
a common interface flux. Within the general introduction of the numerical
scheme, the computation of the interface flux was specified to be a function of
the left and right states only, representing the combined information coming
from the two elements sharing a common face. Of course, such scenario is
not possible at the boundary elements, where boundary faces belong to only
one element. A proper definition of the numerical flux at boundary faces
is consequently needed. Two different approaches can be followed in this
case. The interface flux can be defined either introducing a convenient ghost

state and compute the interface flux as result of the Riemann solver applied
to the interior and exterior (or ghost) states. Such approach is commonly
denoted as Weak-Riemann. Alternatively, the common interface flux can
be directly prescribed knowing the exact, expected values of the solution at
the boundary. This latter approach is instead known as Weak-Prescribed.
In the present work, both approaches will be discussed. A visual sketch of
the Weak-Riemann approach using a ghost state is represented in Fig. 4.5.
The definition of the ghost state will clearly depend on the specific type of

Figure 4.5: Visualisation of the Weak-Riemann approach applied to a right
boundary edge. The green square represents the right (ghost) state which is
chosen according to the specific boundary condition.

boundary condition. In the following subsections the most common choices
of boundary conditions will be presented and an appropriate ghost state will
be introduced for each of them. Without any loss of generality, in agreement
with Fig. 4.5, the left state represents the interior of the domain and the
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ghost state coincides with the right state. More precisely, if FI denotes the
flux at the interface, Weak-Riemann, and Weak-Prescribed can be written
as

Weak− Riemann : FI = RI(UL,UR)

Weak− Prescribed : FI = FI(UBC)
(4.56)

where RI(·, ·) represent a standard approximate/exact Riemann solver and
UBC the exact values of the conserved variables at the boundaries. In a
similar way, for the diffusive fluxes, the following notation can be used:

Weak− Riemann : DI = VF(UL,UR,∇UL,∇UR)

Weak− Prescribed : DI = DI(UBC ,∇UBC)
(4.57)

where VF defines the full strategy already presented in previous chapters
to compute viscous fluxes at the edges using left/right states and respective
gradients.

4.5.1 Far field

The far-field boundary condition represent one of the most basic condition
which is imposed in the numerical resolution of Euler equations. Conse-
quently, in the case of the compressible Navier-Stokes equations, such con-
ditions are imposed in regions of the flow where viscous effects are neg-
ligible. Normally, due to natural hyperbolic nature of Euler equations, a
characteristic-based imposition of boundary conditions is needed. In this
sense, the concept of Riemann invariant needs to be properly introduced. In
a three-dimensional setup, considering a specific direction n, the character-
istic variables take the form:

W = L−1U =




p
2a2

− ρun

2a
n1

(
ρ− p

a2

)
+ ρw1

a
n2

(
ρ− p

a2

)
+ ρw2

a
n3

(
ρ− p

a2

)
+ ρw3

a
p

2a2
+ ρun

2a



. (4.58)

where un = u · n and w = u × n (for additional details, see Sec. D).
The case of an upper boundary is considered as a representative example.
In fact, the far-field boundary condition is often applied to the top edge
in boundary layer simulations. In other words, the case n = (0, 1, 0)T is
considered. In this conditions the characteristic variables reduce to:

W = L−1U =




p
2a2

− ρu2

2a
ρw1

a(
ρ− p

a2

)
ρw3

a
p

2a2
+ ρu2

2a



. (4.59)
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Furthermore, using the isentropic assumption p/ργ = const it is possible to
write

W1 = u2 +
2a

γ − 1
and W5 = u2 −

2a

γ − 1
, (4.60)

which are commonly known as Riemann invariants associated to the in-
coming and outgoing acoustic waves. Based on the previous analysis, it is
possible to consider all the possible combinations of supersonic/subsonic in-
flow/outflow and use the knowledge on the characteristic waves to compute
explicitly the appropriate flux at the boundary. Namely, the correct values
at the boundary will be written as

UBC =




ρb
(ρu1)b
(ρu2)b
(ρu3)b
Eb




(4.61)

using appropriate values (·)b. The boundary flux can then be directly eval-
uated using a Weak-Prescribed approach. On the other hand, if a Weak-

Riemann approach is preferred, a suitable ghost state can be defined as:

UR =




ρ∞
(ρu1)∞
(ρu2)∞
(ρu3)∞
E∞



. (4.62)

It can be proven, in fact, that any Riemann solver based on a characteristic
decomposition (such as Roe, HLL or HLLC fluxes) automatically takes into
account the sign of the normal velocity and the local Mach number.

4.5.2 Inflow/outflow

In regions of the flow where viscous effects are not negligible, different con-
ditions with respect to the classical far-field boundary conditions need to
be properly enforced. In particular, depending on the supersonic/subsonic
regime and on the sign of the normal velocity, different combinations of im-
posed (·)BC and extrapolated (·)L values of the variables will be considered.



70 CHAPTER 4. SPECTRAL DIFFERENCE METHOD

In particular, the following choices of ghost states are normally considered:

Subsonic inflow : UR =




ρBC

(ρu1)BC

(ρu2)BC

(ρu3)BC

E(pL, ρBC ,uBC)



,

Supersonic inflow : UR =




ρBC

(ρu1)BC

(ρu2)BC

(ρu3)BC

E(pBC , ρBC ,uBC)



,

Subsonic outflow : UR =




ρL
(ρu1)L
(ρu2)L
(ρu3)L

E(pBC , ρL,uL)



,

Supersonic outflow : UR =




ρL
(ρu1)L
(ρu2)L
(ρu3)L

E(pL, ρL,uL)



.

Finally, since viscous effects are not negligible, also proper boundary vis-
cous fluxes need to be defined. Recalling how viscous fluxes are evaluated in
the Spectral Difference scheme, the first step consists in evaluating a com-
mon interface flux for the conserved variables. In the case of inflow/outflow
boundary conditions, it is often imposed to have an intermediate auxiliary
state

Uaux
BC =




ρL
(ρu1)L
(ρu2)L
(ρu3)L

E(pL, ρL,uL)



, (4.63)

which is merely used to compute the gradients within the boundary element
and evaluate the boundary viscous fluxes as DI = DI(Uaux

BC , (∇U)L). Notice
that only the gradients on the left state are considered, since at the boundary
gradients are, in general, unknown.
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4.5.3 Isothermal/Adiabatic no-slip wall

In addition to far-field and inflow/outflow boundary conditions, in the nu-
merical discretisation of compressible Navier-Stokes equations, proper im-
position of wall boundary conditions is needed. Among these, in the large
majority of numerical simulations of engineering interest, isothermal and adi-
abatic no-slip wall conditions are the most commonly employed. In agree-
ment with the previous subsection, proper inviscid and viscous numerical
fluxes need to be defined at the wall using either Weak-Prescribed or Weak-
Riemann approach.

In the computation of the inviscid fluxes, the following ghost state is used
to imposed zero velocity at the wall:

UR =




ρL
−(ρu1)L
−(ρu2)L
−(ρu3)L
EL



. (4.64)

Imposing as ghost state the interior velocity with opposite sign clearly re-
sembles the classical strategy commonly used in finite differences discretisa-
tions. The common interface inviscid flux is subsequently computed using a
Weak-Riemann approach. The same ghost state is used for both isothermal
and adiabatic conditions, which will differ in the treatment of the viscous
numerical flux.

For the computation of the viscous fluxes, a first auxiliary inviscid step is
needed and an interface inviscid flux is imposed. At this point, the procedure
differs depending on whether isothermal or adiabatic condition is imposed.
In particular, for the isothermal case the ghost state reads

Uaux
BC =




ρBC = ρ(pL, TBC)
0
0
0

E(pL, ρBC ,0)



. (4.65)

The prescribed wall temperature and the extrapolated pressure are used
to evaluate the value of density at the wall. Subsequently, these values,
combined with null velocity, are used to compute the total energy at the
wall boundary.

Afterwards, similarly to the previous subsection, the viscous boundary
flux is computed as DI = DI(Uaux

BC , (∇U)L). Namely, only the extrapolated
gradients from the inner part of the element (left state) are used for the
computation of the viscous flux.
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In the case of adiabatic wall, instead, the auxiliary intermediate state
will read

Uaux
BC =




ρL
0
0
0

E(pL, ρL,0)



. (4.66)

In this case, density and pressure are extrapolated and combined with null
velocities to compute the right ghost state. Differently with respect to the
previous case, instead of imposing a prescribed temperature at the wall, null
values of temperature gradients are enforced. Consequently, the imposition
of adiabatic boundary condition appears explicitly in the computation of the
viscous numerical fluxes.

After imposing the auxiliary state Uaux
BC , all the gradients are directly

available at the solution points and, from direct extrapolation, on the wall
boundary too. Similarly to the previous point, viscous fluxes are imposed
using a Weak-Prescribed approach:

DI = DI(UBC , (∇U)∗), (4.67)

where in the computation of (∇U)∗ all the gradients of the left state are
used except the normal component of the heat flux, which is imposed to be
zero:

(κ∇T · n)BC = 0. (4.68)

4.6 Time-integration

In previous sections, a detailed strategy to approximate spatial derivatives
using the high-order Spectral Difference scheme has been presented. In a
more general sense, in the one-dimensional formulation, a specific approach
to evaluate the term flux divergence ∂f(û)

∂x̂ at the solution points has been
introduced. The semi-discrete form of the SD discretisation of a general one-
dimensional conservation law within the element n will take the following
form:

dûn

dt
= −∂f̂n(ûn)

∂x̂
= L(ûn), (4.69)

where ûn and f̂n respectively represent the discrete representation of con-
served variables and fluxes. Since the relationship f̂n = f̂n(ûn) is often non-
linear, explicit time-integration schemes have an immediate and straight-
forward implementation, whereas implicit time-integration is more complex.
In the present work, only explicit time-integration schemes will be employed.
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For the sake of simplicity, if a standard explicit Euler scheme is employed,
the fully-discrete scheme will read:

ûn(t+∆t) = ûn(t) + ∆tL(ûn(t)) (4.70)

Of course, more complex explicit time integration schemes can be con-
sidered. In particular, in many of the simulations considered in the following
sections explicit Runge-Kutta (RK) schemes have been used.

For example, assuming the flux have no explicit dependence on time, the
standard fourth-order four stage explicit RK method can be written as:

û⋆
1 = L(ûn(t))

û⋆
2 = L

(
ûn(t) +

1

2
∆tû⋆

1

)

û⋆
3 = L

(
ûn(t) +

1

2
∆tû⋆

2

)

û⋆
4 = L

(
ûn(t) + ∆tû⋆

3

)

ûn(t+∆t) = ûn(t) +
1

6
∆t

(
û⋆
1 + 2û⋆

2 + 2û⋆
3 + û⋆

4

)
.

(4.71)

Once a strategy to compute the residual L(·) is given, any RK scheme can
be used to advance the solution over times.

As well known, explicit time-integration is limited by Courant-Friedrichs-
Lewy (CFL) and Fourier (FOU) conditions which are respectively associate
to the spatial discretisation of inviscid and viscous fluxes. In particular, the
CFL and FOU time steps for the compressible Navier-Stokes equations are
defined as:

∆tCFL = αCFL
hs
a

and ∆tFOU = αFOU

h2f
2Dµ/ρ

(4.72)

where hs and hf quantify the spatial resolution of convective and diffusive
fluxes, a =

√
ukuk +

√
γp/ρ is the spectral radius of the convective flux

jacobian, and D is the dimension of the problem. More specifically, in the
high-order, three-dimensional framework that will be often considered in the
following sections, a measure of the local spatial resolution can be defined
as:

hs = det(J) · ξs and hf = det(J) · ξf (4.73)

where ξs and ξf represent the smallest distance of solution and flux points
in the reference element.

The coefficients αCFL and αFOU set the maximum allowed time-step for
each specific time-integration scheme. Once the two time steps are evaluated,
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and the minimum value in the whole domain is computed, the prescribed
time-step is selected as:

∆tmax =
1

∆t−1
CFL +∆t−1

FOU

. (4.74)
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5.1 Introduction

The constant increase of computing power made computational fluid dy-
namics a widely-used virtual prototyping tool [42]. Well established CFD
software are now robust, but they usually lack in accuracy for many deli-
cate situations of high interest in engineering and applied sciences. Along
these lines, innovative numerical high-order schemes gained a lot of interest

75
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in the last few decades, appearing as the building core of the next CFD
generation [43].

The theoretical analysis of such schemes is then of fundamental interest
to understand the interaction between the numerics and the simulated flow
physics, an interaction of paramount importance in the case of turbulent
flows. A high-order discretisation of convective dominated flows is usually
associated to two main numerical phenomena, respectively known as numeri-
cal diffusion (or dissipation) and dispersion. The former, as suggested by the
name itself, consists in the introduction of numerical dissipation, usually at
the smallest resolved scales, while the latter in the phase-shifting of propagat-
ing waves in the computational domain. Much interest has been focused on
the numerical dissipation and multiple studies tried to use it as a built-in tur-
bulence model for specific choices of numerical fluxes [62, 63, 64, 65, 66]. This
approach is commonly known as Implicit Large Eddy Simulation (ILES). De-
spite the advantages in terms of computational efficiency and simplicity of
implementation, it is not completely straightforward to match the level of
numerical dissipation according to turbulence theory. This is particularly
true for certain classes of high-order methods, such as the spectral element
methods [67], for which the order of accuracy is a user-selectable parameter
of the computation. In this challenging context, additional information on
the response of the numerical discretisation becomes useful.

The present work is based on three main approaches to address accuracy
and robustness of a numerical scheme: (a) temporal eigenanalysis, (b) spatial
eigenanalysis and (c) non-modal analysis.

The first, temporal eigenanalysis, is the most popular technique to study
the characteristic properties of a numerical discretisation and it has been
employed to study a large variety of high-order methods [68, 69, 70, 71,
72, 73] varying from Compact Difference schemes to, more recently, spectral
element methods, such as Discontinuous Galerkin (DG) [74, 75, 76], Flux
Reconstruction [77, 78] and Spectral Difference [44, 45, 46] schemes.

The second approach, namely the spatial eigenanalysis, is less popu-
lar [79, 80, 81, 82] and represents a complementary analysis with respect
to the classical approach of temporal eigenanalysis. In particular, the tem-
poral eigenanalysis is used to characterise the temporal evolution of spatial
oscillations, whereas the spatial eigenanalysis studies the spatial evolution
of temporal perturbations. It is quite intuitive that both aspects are partic-
ularly important in under-resolved turbulent flows.

Finally, non-modal analysis has been considered as an ulterior approach
based on hydrodynamic instability theory [83, 84, 85]. It constitutes an
alternative strategy to study the diffusive behaviour of a numerical scheme
without explicitly focussing on the spectral properties of the discretised equa-
tions. The short-term dynamics of the element-wise dynamical system is then
examined, in a more intuitive and straightforward manner.

All the above mentioned techniques have been generalised to the non-



5.2. STANDARD TEMPORAL EIGENANALYSIS 77

constant one-dimensional conservation law following the guideline presented
in [86, 87] for the non-homogeneous linear advection equation.

The chapter is organised as follows: temporal, spatial and non-modal
analyses are presented for the linear advection equation and later generalised
to the standard one-dimensional conservation law. In this latter case, all
the up-quoted techniques have been applied to a set of different advection
velocities. Finally, theoretical findings are verified through a series of one-,
two-, and three-dimensional simulations.

The first part of the chapter includes a detailed description of each tech-
nique, aimed to provide a sufficiently general introduction, even for readers
who are not familiar with spectral analyses for high-order schemes.

It is worthwhile noting that the major focus of the present study is
about the FR and SD discretisations, whose properties and formalism are
summarised in Appendix A and chapter 4. Concerning the FR method-
ology, which can recover different types of schemes for linear advection
(cf.Appendix B), recovered schemes through the FR formalism will be
indicated hereafter by appending the label “-FR” to the relevant acronym
(e.g., SD-FR will refer to the FR scheme using the SD recovering correction
functions). The theoretical framework and numerical results presented in
this chapter have been published in “Journal of Scientific Computing” [15]
(https://doi.org/10.1007/s10915-021-01484-1).

5.2 Standard temporal eigenanalysis

The temporal eigenanalysis is here presented for the FR method . The same
procedure applied to the SD scheme would be almost identical.

In the standard temporal analysis, the linear advection equation is dis-
cretised looking for wave-like solutions in order to reduce the infinite dimen-
sional problem to a simple element-wise local description. Then, dispersion
and dissipation properties of any scheme follow directly from the correspond-
ing eigensolutions.

Let us now suppose the case of a constant unitary advection velocity:

∂u

∂t
+
∂u

∂x
= 0. (5.1)

This equation admits plane wave solutions of the form

u = eι(θx−ωt), with ι =
√
−1, (5.2)

provided that the temporal frequency ω = ω(θ) is such that

Re(ω) = θ and Im(ω) = 0, (5.3)

where θ is a real prescribed wave number. Equation 5.3 provides what are
respectively known as dispersion and diffusion relations for the exact plane
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wave solution. Consider now a FR discretisation such that all elements Ωh

of the domain Ω have a fixed width hn = h = 1. Under such assumptions, a
FR semi-discretisation of Eq. (5.1) within the standard element Ωn can be
written as

dûn
dt

= −2

N∑

j=0

ûn
dlj
dx̂

(x̂i)−(2f̂ IL−2ûL)
dgL
dx̂

(x̂i)−(2f̂ IR−2ûR)
dgR
dx̂

(x̂i), (5.4)

where ûL = ûn(−1, t) and ûR = ûn(+1, t).
To examine a sufficiently general framework, the following classes of nu-

merical fluxes are now considered:

f̂ IL = (1− α)ûn−1(+1, t) + αûn(−1, t) (5.5)

and
f̂ IR = (1− α)ûn(+1, t) + αûn+1(−1, t). (5.6)

Notice that, for α = 0, a full-upwind scheme is recovered whereas, for α =
0.5, a centered flux is obtained. Strongly negative values of α (∼ −50),
instead, denote hyper-upwind numerical fluxes. The α parameter can be
used to mimic different levels of interface upwinding that result from the use
of different formulations of the actual numerical flux. Equation 5.4 can be
rewritten, in matrix form, as:

dûn

dt
= −2Dûn − (2f̂ IL − 2lT ûn)gL − (2f̂ IR − 2rT ûn)gR, (5.7)

where ûn
i = û(x̂i), Dij =

dlj
dx̂ (x̂i), g

L/R
i =

dgL/R

dx̂ (x̂i) and ri = li(1), li =
li(−1).

Within the set of approximate solutions in the form of Eq. (5.2), Bloch
wave-like functions are considered, namely:

ûn = eι(θ̃xn/h−ω̃t)v̂, (5.8)

where tilde accent denotes the numerical counterparts of continuum variables
and xn indicates the left boundary of the element n in the global reference
frame. Once ûn is defined in this way, due to periodicity, it is straightforward
to obtain a closed form for all the fluxes expressed in Eq. (5.4). In fact,

ûn−1 = eι(θ̃xn−1/h−ω̃t)v̂ = eι(θ̃(xn−h)/h−ω̃t)v̂ = e−ιθ̃ûn (5.9)

and
ûn+1 = eι(θ̃xn+1/h−ω̃t)v̂ = eι(θ̃(xn+h)/h−ω̃t)v̂ = eιθ̃ûn, (5.10)

which leads to an explicit expression for the fluxes in vector form as:

f̂ IL = (1− α)e−ιθ̃ rT ûn + αlT ûn,

f̂ IR = (1− α) rT ûn + αlT eιθ̃ ûn.
(5.11)
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It is also easy to notice that dûn/dt = −ιω̃ûn.

Finally, it can be seen that, due to solution periodicity, the infinite dimen-
sional problem has now been reduced to a simpler element-wise formulation,
i.e., numerical fluxes now depend only on the local solution ûn. Hence the
apex n can be dropped and the final discretised equation can be written as

− ι

2
ω̃û = Dû − ((1− α)e−ιθ̃rT û + αlT û − lT û)gL

− ((1− α)rT û + αlT eιθ̃û − rT û)gR,
(5.12)

or, in a more compact way:

ω̃û = −2ι(C−e−ιθ̃ + C0 + C+eιθ̃)û, (5.13)

where C0 = D− (α−1)gLlT −αgRrT , C− = (1−α)gLrT and C+ = αgRlT .

Following the same steps presented above, the following expression can
be obtained for the SD scheme:

ω̃û = −2ιD(M−e−ιθ̃ + M0 + M+eιθ̃)û, (5.14)

with

M−

ij =

{
(1− α)lsj (1) for i = 0

0 for i 6= 0
, M+

ij =

{
0 for i 6= N + 1

αlsj (−1) for i = N + 1
(5.15)

and

M0
ij =





αlsj(−1) for i = 0,

(1− α)lsj(1) for i = N + 1,

lsj(x̂
f
i ) otherwise.

(5.16)

Notice that, by setting N0,+,− = DM0,+,−, a mathematical form similar to
Eq. (5.13) can be easily recovered:

ω̃û = −2ι(N−e−ιθ̃ + N0 + N+eιθ̃)û. (5.17)

For both schemes, the discretised system is now reduced to an eigenvalue
problem of dimensions (N + 1)× (N + 1):

ω̃Iû = H(θ̃)û. (5.18)

For both the FR and SD schemes (Eqs. (5.13) and (5.17), respectively),
the algebraic structure of the problem is almost identical: the middle term,
indicator of the influence of the interior part of element (C0 and N0 for
the FR and the SD schemes, respectively) and the two boundary terms
representing the influence of the interface numerical fluxes from the left (C−

and N− ) and right boundaries (C+ and N+).
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The classical approach normally imposes a real number for the phase
θ̃ ∈ [−π, π] and, for each value of θ̃, the eigenvalue problem is solved to
obtain, as output, N + 1 values for w̃, commonly called modes. Only one of
these will be denoted as the primary mode: this is the only mode which is
characterised by the convergence property

ω̃ → θ for N → ∞. (5.19)

The remaining eigenvalues are considered spurious and are referred as sec-
ondary modes [72]. As a consequence, all propagation properties are con-
tained in the primary mode, which will be the main focus in the remaining
part of the presented temporal analysis.

Given a null phase, the primary mode will assume a value equal to zero
but, moving away from the origin, the identification of the primary curve
becomes less straightforward due to the possible presence of complex dis-
tribution patterns of the eigenvalues. Nevertheless, considering low order
discretisations, this issue is less problematic due to the smaller number of
eigenvalues per phase value and an intuitive behaviour of the primary curve
can be easily recognised. By analogy, it is possible to construct primary
curves also for higher orders of approximation. Otherwise, a more method-
ical procedure to identify the primary mode has been proposed by Vincent,
et al. [71], involving an energy evaluation of the eigensolution coefficients in
the Legendre polynomial basis. In the present work, a simple geometrical
interpretation of the eigenvalue distribution has been used to construct the
primary curve.

The technique presented here is commonly known as temporal eigenanal-
ysis. In fact, for any given value of spatial phase, the capability of the
numerical scheme to describe them over time can be evaluated. In mathe-
matical terms, a real number for θ̃ is assumed and ω̃ = ω̃(θ̃) is consequently
calculated. The numerically solved dispersion relation will give informations
on the velocity of propagation of discretised waves within the domain, while
the diffusion counterpart will quantify dissipation of spatial oscillations along
time. In order to highlight the link between the imaginary part of ω̃ and
numerical diffusion, it is useful to observe that

u ∝ eι(θ̃x−ω̃t) = eIm(ω̃)teι(θ̃x−Re(ω̃)t). (5.20)

Therefore, for negative values of Im(ω̃), the coefficient eIm(ω̃)t represents
a damping coefficient over time. Some level of numerical diffusion can be
very useful whenever spatial under-resolution is expected. In fact, a well-
distributed amount of dissipation in the high wavenumbers region is very
convenient in high-order methods. This property can be helpful in terms of
stability and a valuable feature in the perspective of sub-grid scale (SGS)
modelling. In Fig. 5.1, some examples of dispersion-diffusion relations are
shown for the DG-FR scheme using a full-upwind numerical flux.
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(a) Dispersion (b) Diffusion

Figure 5.1: DG-FR numerical dispersion and diffusion using temporal ap-
proach: influence of the approximation order.

5.3 Spatial eigenanalysis

The relation between ω̃ and θ̃ is intrinsically defined by Eq. (5.13) which,
except for some very particular cases, cannot be analytically inverted. In
order to obtain non-trivial solutions the condition û 6= 0 is needed. In other
words, an equivalent equation which defines the relation between ω̃ and θ̃
can be expressed as

det(ιω̃I − 2(C−1e−ιθ̃ + C0 + C+eιθ̃)) = 0, (5.21)

that can be seen as an equation in z = eιθ̃:

det(ιω̃I − 2(C−z−1 + C0 + C+z)) = 0. (5.22)

The same exact form can be obtained using the SD discretisation simply by
replacing the matrices C0,+,− with the previously defined N0,+,−. It can be
proven that this approach leads to a second order characteristic equation in
z which admits, consequently, two (in general complex) roots.

Usually, like in the temporal approach, one root is considered physical
and the other spurious. Given a fixed value of ω̃, Eq. (5.22) can be solved
numerically in terms of z and, consequently, θ̃ can be evaluated. In the most
general case ω̃ ∈ C, however, as in the temporal approach, where a real value
is assumed for θ̃, in the spatial approach, this assumption is applied to ω̃.
Once Eq. (5.22) is solved, a criterion to distinguish physical and spurious
solutions is needed. In this work the same idea proposed by Mengaldo,
et al. [80] has been exploited: the amplification behaviour of a wave-like
solution is embedded in the imaginary part of the eigensolution and, as a
consequence, positive values of Im(θ̃) are expected for physical solutions and,
vice versa, negative values of Im(θ̃) are expected for spurious ones.
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This can be clearly noticed giving a different interpretation of Eq. (5.20),
where roles of θ̃ and ω̃ are simply inverted:

u ∝ eι(θ̃x−ω̃t) = e−Im(θ̃)xeι(Re(θ̃)x−ω̃t). (5.23)

Consequently, positive values of Im(θ̃) produce a damping factor in space.
Notice the change of sign with respect to temporal analysis.

Since z = exp(ιθ̃), one has:

z = exp(ιRe(θ̃))exp(−Im(θ̃)). (5.24)

Furthermore, the sign of Im(θ̃) is strictly related to the absolute value of z:

Im(θ̃) ≶ 0 ⇔ |z| ≷ 1. (5.25)

Therefore, in order to see if a numerical solution z is either spurious or
physical, a fast evaluation of its absolute value will give an efficient algorithm
to discard the spurious solution. The same idea can also be used to compute
an initial guess z0 for Newton-like methods in the numerical resolution of
Eq. (5.22). In particular, an initial physical guess can be expressed as z0 =
r1exp(2πr2) with both r1 and r2 real numbers in [0, 1]. Then, the second
solution is automatically identified as spurious.

Once the physical solution z is identified, it is easy to invert the expression
z = eιθ̃ in order to obtain the final value of θ̃, namely:

Re(θ̃) = −ι ln(z/|z|) and Im(θ̃) = − ln(|z|). (5.26)

Finally, considering the real part, i.e., dispersion curves, periodicity of θ̃
needs to be taken into account. A simple check on the variation of the real
part with respect to θ̃ will give a valid indicator to solve the problem: when-
ever the numerical derivative d(Re(θ̃))/dω̃ is negative, a vertical translation
of θ̃ of 2π is imposed. The exact wave-like solution can be trivially re-written
in terms of ω as:

Re(ω) = θ and Im(ω) = 0. (5.27)

In Fig. 5.2 examples of dispersion-diffusion relations are shown for the DG-
FR scheme using a full-upwind numerical flux. Complementary features with
respect to the classical temporal analysis can be observed. The increase of
the approximation order produces smaller dispersion errors (left figure), in
analogy with temporal eigenanalysis. On the contrary, higher approximation
orders provide smaller levels of spatial diffusion for any value of ω̃ (right fig-
ure), whereas in temporal eigenanalysis a stronger level of numerical diffusion
is usually present in the high wavenumbers region (compare with Fig. 5.1).
Furthermore, notice that in Fig. 5.2 the imaginary part of θ̃ assumes only
positive values, whereas in Fig. 5.1 the imaginary part of ω̃ is always nega-
tive.
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(a) Dispersion (b) Diffusion

Figure 5.2: DG-FR numerical dispersion and diffusion using spatial ap-
proach: influence of the approximation order.

5.4 Non-Modal analysis

Recently, a completely different approach to study numerical diffusion has
been proposed by Fernandez, et al. [88] called non-modal analysis. The
principal aim of such analysis originates from the following proposition: given
an initial condition characterised by a certain spatial frequency, how does the
magnitude of oscillations evolve over time? Standard temporal eigenanalysis
answers this question though a spectral analysis of the discretised differential
operator. Using temporal analysis, each eigenvalue is considered individually.
In particular, only the primary mode is examined while all the others are
supposed spurious. Non-modal analysis proposes a formulation in which
the influence of the whole spectrum is taken into account. In this regard,
the theoretical framework is exactly the same until the discretised linear
dynamical system is obtained. In fact, if the explicit dependency on time by
the Bloch-wave solutions is not exploited, classical temporal analysis leads
to the local linear dynamical system:

u̇ = H(θ̃)u. (5.28)

Once the system is expressed in this form, the very wide literature of dynam-
ical systems can be used to study the influence of numerics on the solution
behaviour.

Let us define the so-called short-term diffusion as:

ω̄∗ :=
d log(||uh||)

dτ∗

∣∣∣∣
τ∗=0

, (5.29)

where || · || denotes the L2 norm and τ∗ = τ(N + 1) = ta(N + 1)/h is a
characteristic non-dimensional time scale (which is simply τ∗ = t(N + 1)/2
with the assumptions introduced before).
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It can be noticed that the previous equation can be re-written as:

ω̄∗ := lim
τ∗→0

1

τ∗
log

( ||uh||
||uh,0||

)
. (5.30)

This expression is more useful in terms of physical interpretation: as it will
be explained later, the quantity ω̄∗ depends on the wavenumber θ̃ and on the
numerics (namely, the type of scheme, the order of approximation and the
upwinding parameter). Intuitively, ω̄∗ gives an estimate of the initial decay
rate (per unit convection time) of the numerical solution between degrees of
freedom (DoF), starting from the initial condition exp(ιθx).

In fact, inverting Eq. (5.30):

||uh(τ
∗)|| ≈ ||uh,0||exp(ω̄∗τ∗). (5.31)

At early times, the term exp(ω̄∗τ∗) can be seen as a damping factor per DoF,
giving an alternative interpretation of numerical diffusion not based on an
eigenanalysis of the matrix H.

Finally, it can be noticed that, using the Legendre polynomials basis, the
following expression can be obtained:

ω̄∗ : =
1

N + 1
Re

(
u
†
h,0Huh,0

u
†
h,0uh,0

)
, (5.32)

where (·)† denotes conjugate transpose. The final form involves the Rayleigh
quotient of the linear dynamical system. The Rayleigh quotient gives useful
informations regarding the dynamics of the system and it is particularly
popular in non-modal hydrodynamic instability theory [83, 84, 85].

In the original work by Fernandez, et al. [88], a classical DG scheme has
been employed and explicit formulas to evaluate Eq. (5.32) have been used.
In a collocation setting, instead, norms can be alternatively evaluated using
proper quadrature formulas:

∫ 1

−1
u2dx =

N∑

j=0

u2(xsj)wj ,

where xsj denotes the set of solution points with the corresponding integration
weights wj . Accordingly, Eq. (5.32) can be actually computed as

ω̄∗ : =
1

N + 1
Re

(
u
†
h,0WHuh,0

u
†
h,0Wuh,0

)
, (5.33)

with Wik = wjδik. Formally the L2 norm should be evaluated in (−∞,∞),
but, thanks to the periodicity condition, the integral is simply nel times
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the element-wise one and, since only quotients of norms are considered, the
proportionality constant nel simplifies.

It is easy to notice that the matrix H is the exact same matrix of the
temporal approach (except for the complex sign). Then, the difference be-
tween the classical temporal analysis and the present analysis is precisely
linked to the modal/non-modal character. The classic temporal eigenanaly-
sis studies the eigenvalues of the matrix H in order to evaluate whether the
Fourier modes in the initial solution grow or are dissipated over time. Non-
modal analysis, instead, considers all the eigenvalues simultaneously for each
wavenumber. Notice that non-modal analysis does not necessitate distin-
guishing between primary and secondary modes exactly because all of them
are considered simultaneously. Finally, notice that, if the primary eigenvec-
tors of H are selected as initial condition, the Rayleigh quotient coincides
with the corresponding eigenvalue and the classical temporal eigenanalysis
is then recovered.

5.5 Non-constant advection velocities

A generalisation of the classical temporal approach for non-constant advec-
tion velocities has been recently proposed by Manzanero, et al. [86, 87].

For the sake of simplicity, positive advection velocities, periodic within
the reference element, have been considered. Without any loss of generality,
the inter-element value of the advection velocity has been set equal to 1.
These conditions strongly simplify the numerical analysis and are equivalent
to apply the following approach to one element only. It is possible to define
generalised Bloch wave solutions of the form:

u(x, t) = eι(θG(x)−ωt), (5.34)

where non-homogeneity in the advection velocity is taken into account by
the function G(x).
For an appropriate choice of this function, classical dispersion/diffusion re-
lations can be obtained:

ω = āθ. (5.35)

where ā denotes the average advection speed. Finally, in order to compare
relevant results for constant and non-constant advection velocities, scaled
wavenumber and frequency are usually considered:

θ̂ =
θ

ḡ
and ω̂ = āθ̂ =

āθ

ḡ
,

where

ḡ =
1

2

∫ 1

−1
ā/a(x̂)dx̂.
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The C0 matrix in Eq. (5.13) will be simply replaced by

C0 = DA − B − (α− 1)gLlTA − αgRrTA, (5.36)

where Aij = a(xi)δij and Bij = (Dika(xk))δij . The term involving the ma-
trix A represents the derivative of the conservative part, namely, ∂(au)/∂x,
while the term involving the matrix B is the discrete version of the operator
u∂a/∂x. Then, a generalisation of the present approach to the full scalar
conservation

∂u

∂t
+
∂(a(x)u)

∂x
= 0 (5.37)

can be obtained simply by neglecting the term B. The final expression of
the C0 matrix will be:

C0 = DA − (α− 1)gLlTA − αgRrTA. (5.38)

The same reasoning can be applied to the SD discretisation, where only
the central term in Eq. (5.17) needs to be modified:

N0 = DAfM0, (5.39)

where matrix Af represents the values of the advection velocity at the flux
points: Af

ij = a(xfi )δij .

In this way, both temporal and spatial analyses can be easily generalised
to non-constant advection velocity conservation laws. Non-modal analysis
can be generalised for non-homogeneous cases as well. The difference is im-
plicitly defined within Eqs. (5.38) and (5.39): the central block of the matrix
H in Eq. (5.28) will change and, consequently, the short-term diffusion of
the dynamical system will change accordingly.

While linear stability has been mathematically proven for all the nu-
merical schemes herein considered [89, 48, 70], in the case of non-constant
advection velocities, numerical stability is not ensured. In this particular
case, the functional form of the advection velocity can lead to what are com-
monly known as aliasing errors. Such numerical errors are caused by an
under-sampling of the advection velocity nodal values. In the context of
FR schemes, the use of an exact L2 projection in the flux approximation
can eliminate aliasing errors [47]. Nevertheless, such approach is computa-
tional expensive and it can strongly affect efficiency and simplicity of the
FR scheme. Similarly, split form coefficient in DG method with summation
by parts and simultaneous-approximation-term properties have shown to be
of significant importance in non-linear stability analysis [87]. In particular,
the conservative form of the DG scheme is capable of removing aliasing er-
rors, preventing exponential growth of the solution. Such result suggests
the possibility of similar proofs for FR and SD schemes, which rely on the
conservative form of the equation. Nevertheless, a mathematical proof of
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non-linear stability is out of the scope of the present study and it will not
be discussed. Finally, most of the works studying non-constant advection
velocities have been primarily focused on DG schemes whereas, to the au-
thors’ knowledge, such techniques have never been applied to FR and SD
schemes. Furthermore, the non-homogeneous case has never been studied
through spatial and non-modal analysis for any spectral element method.

5.6 Theoretical results

The large variety of spectral analysis techniques presented in the previous
sections allows a vast number of useful comparisons for each of them. Chang-
ing the order of approximation, the numerical scheme and the upwinding
parameter, a comprehensive study can be easily performed. The generalisa-
tion to non-constant advection velocities provides an extra degree of freedom
that can be used to analyse more complex flow configurations.

Most of the numerical analysis results available in the literature are fo-
cused on nodal DG methods and, in particular, temporal analysis is per-
formed considering constant advection velocity. Hence the interest in per-
forming a comparative study between SD and DG schemes. In particular, the
FR recovered versions, SD-FR and DG-FR, respectively, will be considered
in the present analysis whenever the solved equation is of linear advection
type. This is justified by the fact that, as already mentioned, for linear ad-
vection problems, the SD-FR (resp. DG-FR) scheme coincides with the SD
(resp. DG) scheme (cf. Appendix B). It shall be noted that, although the
temporal analysis has been already performed on both methods, to the au-
thors’ knowledge, no spatial or non-modal analysis has ever been performed
on the SD scheme.

The present section will be organised as follows: in the first subsection, a
simple comparison between DG-FR and SD-FR is performed using temporal
and spatial analysis; in the second subsection, non-modal analysis is applied
to both schemes; finally, non-homogeneous advection velocity cases are anal-
ysed and DG-FR, SD-FR and SD schemes are compared. In particular, two
different type of advection velocities are considered: (a) a sinusoidal velocity
profile and (b) a random velocity signal. Concerning the interface fluxes,
full-upwind, centered and hyper-upwind fluxes will be adopted depending
on the performed analysis.

In all the figures presented in the following sections, imposed values of
frequency and wavenumber are denoted as ω and θ, respectively, whereas,
computed values are indicated as ω̃ and θ̃, respectively.

5.6.1 Temporal and spatial analyses

In order to give a solid background, a first comparison of dispersion/diffusion
properties of DG-FR and SD-FR is here presented. Once this basic analy-
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sis is performed, complexity will be added by considering non-homogeneous
advection velocities. It is worthwhile pointing out that, the present analy-
sis being concerned with the linear advection case, the relevant results are
expected to hold true for the DG and SD schemes as well.

A full-upwind numerical flux has been considered first. This is also a con-
venient choice in spatial analysis where no spurious solutions are expected,
as already proved by Hu, et al. [79]. Spatial and temporal analyses have
been performed for both schemes. Numerical diffusion curves are shown in
Figs. 5.3 (temporal analysis) and 5.4 (spatial analysis).

It can be noticed that the diffusive role of the two methods are inverted:
according to temporal analysis, for high wavenumber, DG-FR schemes are
more dissipative than SD-FR, whereas, in spatial analysis, the opposite hap-
pens. In other words, DG-FR has a stronger tendency to damp tempo-

ral developing high frequencies while SD-FR tends to dissipate more high
wavenumber spatial disturbances.

Dispersion counterparts are shown in Figs. 5.5 and 5.6. As already
observed in other papers [71, 90], according to temporal analysis, SD-FR
schemes are more accurate than DG-FR (in particular for high-order ap-
proximations). The classical peak in the high wavenumber region is, in fact,
less marked. Nevertheless, the wavenumbers responsible for such deviations
from the exact solution are supposedly sufficiently dissipated not to influence
the overall accuracy of the scheme. On the other hand, spatial dispersion
analysis gives almost indistinguishable results between the two schemes.

It is interesting to notice such evident differences between spatial and
temporal approaches. The mathematical formulation would suggest specular

results, i.e., a simple exchange of x and y axis. The eigenvalue problems,
Eqs. (5.18) and (5.22), are in fact mathematically equivalent and the roles
of θ̃ and ω̃ are simply inverted. Nevertheless, in the temporal analysis, a
real number is assumed for θ̃ and ω̃ ∈ C is evaluated whereas, in the spatial
analysis, a real number is assumed for ω̃ and θ̃ ∈ C is computed. Most likely,
dropping the assumption of real values for θ̃ and ω̃ and consider more general
complex values for both would give the expected symmetry between the two
procedures.

In order to assess the influence of the numerical flux, a quasi-centered nu-
merical flux has been considered by setting α = 0.49 in Eqs. (5.5) and (5.6).

In the following analysis, and in the relevant figures, only physical modes
are considered.

Temporal analysis using quasi-centered (see Fig. 5.7) provides some dif-
ferent trends: dispersion curves are characterised by high accuracy in the
first region following, instead, large deviations from the exact solution for
high wavenumbers. Numerical diffusion, on the other hand, is extremely low
for both schemes. In other words, quasi-centered fluxes provide very small
numerical diffusion at the cost of sensible dispersion errors. Furthermore,
as already mentioned, lack of numerical diffusion in the high wavenumbers
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(a) N = 1 (b) N = 4

Figure 5.3: Numerical diffusion using temporal analysis: solid line, DG-FR;
dotted line, SD-FR; dashed line, exact wave-like solution.

(a) N = 1 (b) N = 4

Figure 5.4: Numerical diffusion using spatial analysis: solid line, DG-FR;
dotted line, SD-FR; dashed line, exact wave-like solution.

region can lead to numerical instability and damage the robustness of the
scheme.

Small differences are observed between DG-FR and SD-FR in spatial
numerical dispersion and diffusion (see Fig. 5.8). As already noticed by
Mengaldo, et al. [80], dissipative bubbles are observed for certain frequencies
with both methods, as clearly evident in Fig. 5.8(b). Bubbles seem to be
slightly translated and enlarged when using the SD-FR scheme. This fact
further suggests that the SD-FR scheme is more dissipative according to the
spatial eigenanalysis.

5.6.2 Non-modal analysis

In this subsection a comparison between DG-FR and SD-FR is presented
using the non-modal analysis introduced by Fernandez, et al. [88]. The
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(a) N = 1 (b) N = 4

Figure 5.5: Numerical dispersion using temporal analysis: solid line, DG-FR;
dotted line, SD-FR; dashed line, exact wave-like solution.

(a) N = 1 (b) N = 4

Figure 5.6: Numerical dispersion using spatial analysis: solid line, DG-FR;
dotted line, SD-FR; dashed line, exact wave-like solution.

application of non-modal analysis to FR and SD schemes, to the authors’
knowledge, have never been studied in previous works on spectral analyses
of spectral element methods.

The influence of the order of approximation is shown in Fig. 5.9. Accord-
ing to Fernandez, et al. [88], desirable features of the short-term diffusion
are monotonicity (dω̄∗/dθ < 0) and slowly varying curves. Both properties
should imply a more stable discretisation, in particular for strongly non-
linear systems, where the interaction between scales plays a more central
role. It can be clearly noticed that the SD-FR diffusive curves are, from
this point of view, slightly flatter, which suggests higher accuracy. This is
particularly evident whenever very high polynomial orders are used as shown
in Fig. 5.10. In agreement with [88], polynomial orders around 2–3 are the
most promising in the ILES framework, while higher approximation orders
tend to introduce insufficient levels of dissipation for high wavenumbers and
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(a) Dispersion (b) Diffusion

Figure 5.7: Numerical dispersion and diffusion for N = 4 using quasi-
centered fluxes α = 0.49 (temporal analysis): solid line, DG-FR; dotted
line, SD-FR; dashed line, exact wave-like solution.

(a) Dispersion (b) Diffusion

Figure 5.8: Numerical dispersion and diffusion for N = 4 using quasi-
centered fluxes α = 0.49 (spatial analysis): solid line, DG-FR; dotted line,
SD-FR; dashed line, exact wave-like solution.

are hence characterised by a more non-monotonic behaviour.

As a final note, some positive values of ω̄∗ are observed when using the
SD-FR scheme, which could lead to a numerically induced growth of oscilla-
tions. Nevertheless, these are still quite small even for very high polynomial
order.

5.6.3 Comparison between methods for non-constant advec-
tion velocity

In order to consider more realistic conditions, previous analyses are here
generalised to the case of non-constant advection velocities. Departing from
the linear advection case, the improved SD method by Liang and Jame-
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(a) DG-FR (b) SD-FR

Figure 5.9: Short-term diffusion term using nodal DG-FR and SD-FR
schemes.

Figure 5.10: Comparison of diffusive curves using DG-FR and SD-FR scheme
for N = 8.

son [91, 92, 48] will be considered as well. In fact, as explained in Appendix B,
for a non-linear flux function, the SD-FR scheme does not coincides anymore
with the SD approach. As a consequence, common spectral analyses based
on linear equations are insufficient to properly study and highlight differences
between these schemes and more advanced techniques are needed.

Concerning the numerical flux and the order of accuracy, a full-upwind
flux and an approximation order N +1 = 6 have been chosen. Two different
prescribed spatial profiles are considered for the advection velocity. The for-
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mer and simplest is a sinusoidal velocity profile, while the latter is a random
velocity signal with prescribed variance around the mean value (taken equal
to 1); see Fig. 5.11.

Deviations from the constant case a = 1 are defined through the pa-
rameter σ. In particular, for the two advection velocities herein considered:

a(x) = 1 + σ sin(πx) and a(x) = 1 + σW (x) (5.40)

where W is a particular realisation of a random field with null mean and
unitary variance such that W (±1) = 0. In the present subsection a value
of σ = 0.6 has been chosen, imposing a relatively high level of inhomogene-
ity. The two selected profiles are deemed to be sufficiently representative of
a wide range of applications where numerics play a key role in the physi-
cal description of the phenomenon and in the computation outcome. The
sinusoidal function is the classical simple form of perturbation, which can
be considered as the building block of more complex perturbations. For
instance, depending on the form of the flux, a sinusoidal perturbation can
lead to shock formation and, as a result, characterising the behaviour of
the numerical scheme is of paramount importance to ensure the necessary
robustness of the simulation.

Concerning the random signal, this can be viewed as a first approxima-
tion of a turbulent flow. Differently from the simple sinusoidal profile, the
random signal has a rather broad spectrum. Characterising the behaviour of
the numerical scheme in such a case can promote a better understanding con-
cerning the suitability of spectral element methods for ILES or, conversely,
highlight the necessity of explicit SGS modeling.

In agreement with the continuous theory presented in Section 5.5, for
non-constant advection velocity computations, numerical dissipation and dis-
persion have been conveniently scaled by ḡ.

Temporal eigenanalysis

A comparison of the results from temporal analysis obtained using the men-
tioned forms of advection velocity profile is presented in this section. In
particular, dispersion and diffusion plots are shown in Fig. 5.12.

(a) Sinusoidal profile (b) Random profile

Figure 5.11: Advection velocities.
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(a) Sinusoidal advection (b) Random advection

(c) Sinusoidal advection (d) Random advection

Figure 5.12: Temporal dispersion (a, b) and diffusion (c, d) plots: solid
line, DG-FR; dotted line, SD-FR; dash-dotted line, SD; dashed line, exact
wave-like solution.

Diffusion curves from the temporal analysis (Figs. 5.12 (c) and (d)) do
not differ significantly from those obtained in the linear case: the SD and the
SD-FR schemes have quite similar behaviours and they are characterised by
a lower dissipation for high wavenumbers compared to the DG-FR scheme.
In particular, in the sinusoidal velocity case, the SD scheme is always more
dissipative than the SD-FR method for any given value of θ, whereas in
the random advection case their roles are inverted and the SD-FR is more
diffusive. Temporal dispersion shown in Figs. 5.12 (a) and (b) display well-
know features: the DG-FR scheme is characterised by a visible peak for high
wavenumbers (see also Fig. 5.1 (a)) while the SD and SD-FR schemes follow
more accurately the exact wave-like solution. Due to the inhomogeneity
in the advection velocity, small differences between the SD-FR and the SD
schemes can be noticed, in particular for the sinusoidal profile where the
SD scheme appears to be slightly more accurate with respect to the SD-FR
method (Fig. 5.12 (a)).
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Spatial eigenanalysis

(a) Sinusoidal advection (b) Random advection

(c) Sinusoidal advection (d) Random advection

Figure 5.13: Spatial dispersion (a, b) and diffusion (c, d) plots: solid line,
DG-FR; dotted line, SD-FR; dash-dotted line, SD; dashed line, exact wave-
like solution.

Diffusion and dispersion curves from the spatial analysis are reported in
Fig. 5.13. Noticeable differences are observed in the diffusive curves only,
where it appears that the SD and the SD-FR schemes are overall more dis-
sipative than the DG-FR method. Nonetheless, in a similar way as in the
temporal analysis, the roles of the SD and the SD-FR are inverted in terms
of their diffusive character for the two prescribed advection velocities: in the
sinusoidal case, the SD is more dissipative than the SD-FR, whereas the op-
posite behaviour is observed when a random signal advection velocity is used.
Consequently, the influence of the functional form of the advection velocity
can significantly affect the numerical diffusion and highlight, for example,
noticeable differences between the SD and the SD-FR schemes.

As a representative example of non-upwind fluxes, spatial numerical dif-
fusion for the FR and the SD schemes has been evaluated in the case of
sinusoidal advection velocity and strongly upwind fluxes (α = −50). In par-
ticular, increasing values of σ can be selected to promote a stronger deviation
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from the homogeneous case.

(a) DG-FR (b) SD-FR

(c) SD

Figure 5.14: Numerical diffusion from DG-FR (a), SD-FR (b), and SD (c)
schemes (spatial approach).

In order to understand the role played by the numerical dissipation for
increasingly complex advection velocities, the spatial numerical diffusion of
the FR and SD schemes has been plotted in Fig. 5.14 for different values of
the parameter σ. It is worth recalling that, whenever non-constant advection
velocities are considered there is no simple way to distinguish between the
physical and the spurious modes; therefore, for this case, both modes have
been plotted.

Particular attention should be payed to the medium frequencies region
separating the two subsequent dissipative bubbles. With regards to the SD
and SD-FR schemes, for increasing values of σ, dissipative bubbles tend to
blend together as they flatten along the horizontal direction. Such tendency
is even more pronounced for the SD scheme (Fig. 5.14 (c)). The DG-FR
scheme, on the other hand, is characterised by bubbles of similar shape and
only slightly shifted toward smaller frequencies.

It is important to stress out that the interpretation of diffusive curves lies
in essentially two complementary aspects. The magnitude of Im(ω̃) indicates
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the strength of numerical dissipation and it represents the primary measure
to differentiate between more or less dissipative schemes. Nevertheless, how
numerical dissipation is distributed along the different frequencies can be
as much as relevant. Sharp profiles for such curves are in fact generally
not advisable and monotonic behaviours are preferable. Rapid variations of
numerical diffusion within a limited range of frequencies could in fact trigger
unpredictable energy transfers between scales in realistic simulations.

Non-modal analysis

(a) Sinusoidal advection (b) Random advection

Figure 5.15: Short-term diffusion curves: solid line, DG-FR; dotted line,
SD-FR; dash-dotted line, SD; dashed line, exact wave-like solution.

(a) Sinusoidal advection (b) Random advection

Figure 5.16: Short-term diffusion for increasing values of σ (DG-FR).

Diffusion curves from non-modal analysis are depicted in Figs. 5.15–5.17.
Positive values (i.e., anti-diffusion behaviour) are observed employing only
the SD and the SD-FR methods in the random signal case. As already
observed for the linear advection case, the SD-FR and SD curves are charac-
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(a) Sinusoidal advection (b) Random advection

Figure 5.17: Short-term diffusion for increasing values of σ (SD).

terised by more regular profiles with respect to the DG-FR scheme, for which
some larger variations can be observed in the high wavenumbers region in
Figs. 5.15 and 5.16. It is interesting to notice that the sinusoidal advection
velocity profile produces larger differences between the SD and the SD-FR
methods with respect to the random signal advection velocity.

Concerning the influence of the σ parameter, diffusion plots for the DG-
FR and the SD schemes are reported in Figs 5.16 and 5.17. Considering
the sinusoidal advection velocity case first, when σ is increased, the DG-
FR method tends to be more dissipative for all wavenumbers (the same
behaviour is observed for the SD scheme). On the other hand, in terms of
overall smoothness, an extra local minimum appears in the high wavenum-
bers region, reducing the regularity of diffusion curves, whereas no relevant
profile variations are noticed for the SD scheme. In general, sensitivity to
σ is milder when using the SD scheme, which is a desirable feature in term
of outcome predictability. Considering the random advection velocity case,
variations in the diffusion curves for different values of σ are smaller for both
the SD and the DG-FR schemes.

5.6.4 Summary

The use of non-homogeneous advection velocities, as shown in this section,
can lead to some differences between the SD and SD-FR schemes. Accord-
ing to temporal analysis, the deviations between the SD and the SD-FR are
noticeable in both dispersion and diffusion curves, whereas, in the spatial
analysis, differences are mostly present in the diffusion curves. Spatial dis-
persive errors are in fact less affected by the inhomogeneity of the advection
velocity (Figs. 5.13 (a) and (b)) compared to their temporal counterparts
(Figs. 5.12 (a) and (b)).

The importance of the parameter σ has been studied through non-modal
analysis in the case of fully-upwind fluxes. The overall influence of the inho-
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mogeneity parameter appears to be milder using the SD scheme with respect
to the DG-FR, in particular for the sinusoidal advection velocity (Figs. 5.16
(a) and 5.17 (a)). For increasing values of σ the DG-FR develops additional
oscillations on the diffusive curves whereas the behaviour of the SD diffusive
curves are more regular.

In general, the SD and the SD-FR schemes behave similarly in the well-
resolved regions, both in terms of spatial and temporal eigenanalysis. Dif-
ferences are in fact larger for high wavenumbers, which are particularly im-
portant in under-resolved turbulent simulations. In this wavenumber region,
even little discrepancies between the two methods could ultimately lead to
complete different results in practical applications. This is certainly one
of the most limiting factors when performing ILES with these kind of nu-
merical methods: the combination between mesh size, numerical flux and
order of approximation needs to be carefully chosen in order to obtain a
level of dissipation which mimics the influence of unresolved scales on the
large scale dynamics. Although, in the literature, third- and fourth-order
ILES with discontinuous finite element methods generally provide satisfac-
tory results, higher orders will certainly need additional dissipation in the
high-wavenumbers region. This kind of analysis is therefore a useful tool
for the design of dynamic SGS models which should be active only for high
wavenumbers. It is then relevant to highlight how numerical diffusion, in
general, has neither a positive nor negative connotation in the present dis-
cussions. In some cases, for very specific choices, it can be used as an im-
plicit SGS model able to efficiently dissipate small scale fluctuations. On
the other hand, if insufficient, can otherwise lead to unstable computations.
Thus, the objective of a broad comparative study of spectral techniques ap-
plied to different numerical schemes should not be interpreted as a precise
recipe to determine which numerical method is best. The final aim, instead,
is a deeper knowledge on each specific numerical scheme, providing a rich
set of tools that can be used to design tailored SGS models for high-order
discretisations.

5.7 Numerical results

5.7.1 Temporally evolving turbulence: Taylor-Green Vortex

The Taylor-Green Vortex (TGV) constitutes a well-established test case to
study vortex dynamics, turbulent transition, turbulent decay and energy dis-
sipation processes in a three-dimensional setting [93]. It represents a perfect
example of temporally evolving turbulence where classical temporal eigen-
analysis can be tested. The problem consist of a cubic domain [−Lπ,Lπ]3
with periodic boundary conditions applied to all faces starting from the
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smooth initial condition

ρ = ρ0,

u = U0




sin(ξ) cos(η) cos(ζ)
− cos(ξ) sin(η) cos(ζ)

0


 ,

p = P0 +
ρ0U

2
0

16
[cos(2ξ) + cos(2η)] [cos(2ζ) + 2] ,

where ξ = x/L, η = y/L and ζ = z/L. Unity has been assigned to both
U0 and ρ0, the reference velocity and density, respectively, and the initial
value of the pressure P0 has been chosen such that the corresponding initial
Mach number is equal to 0.1. For this value of the Mach number, the flow
is practically incompressible. The flow domain is subdivided in 643 uniform
cubic elements and discretised with a third-order SD scheme.

Despite the rather idealised and simple initial flow field, the TGV prob-
lem contains many different interesting features of turbulence. As the time
advances, the vortex stretching process leads to a natural transition to
isotropic turbulence, giving a perfect example of temporally evolving tur-
bulence. Due to the absence of physical viscosity (inviscid flow), the energy
of the fluctuating field cascades into smaller scales without any viscous dis-
sipation, making the TGV a stringent test case for evaluating numerical
dissipation [94].

Different phases of turbulence transition and development can be recog-
nised. Before reaching the characteristic time t ≈ 4L/U0, the flow is laminar
and it is fully resolved by the mesh and the numerical discretisation. After
a transitional period, at t ≈ 7L/U0, the vortex stretching process breaks
down and sub-grid scales mechanisms start to affect the solution. As pre-
dicted by the spectral analysis, the particular choice of the numerical flux
employed will strongly affect the solution in the under-resolved phases (after
t ≈ 7L/U0). In order to assess the influence of the numerical flux, ILES have
been performed using Roe and Rusanov fluxes.

As pointed out in the previous test case, the former will lead to an upwind
flux and the latter, under almost incompressible regime, to a strong upwind-
ing. Therefore, in Figs. 5.18 numerical dissipation from temporal analysis
is shown using upwind (α = 0) and strong upwind fluxes (α = −50); see
Eqs. (5.5)–(5.6). As already observed by Manzanero, et al. [54], varying the
upwind parameter α, the maximum level of dissipation is achieved around
α = 0 (upwind fluxes), while strongly negative values of α yields the opposite
effect. In fact, very negligible levels of numerical dissipation can be observed
using strongly upwinding fluxes, whereas upwind fluxes follow the classical
behaviour already discussed in the previous theoretical sections.

To understand the influence of the Riemann solver on the different scales
of the TGV flow, kinetic energy spectra have been computed in the fully
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turbulent phase (namely, at t = 9L/U0). As observed in multiple pa-

(a) α = 0.0 (b) α = −50.0

Figure 5.18: Numerical diffusion with standard upwind (left) and strong
upwind (right): solid line, DG-FR; dotted line, SD-FR; dashed line, exact
wave-like solution.

pers [62, 88, 95], and in total agreement with the herein presented analysis,
the particular choice of numerical flux does not affect the large scales of the
flow field. Closer to the inertial and dissipation range, instead, numerical
diffusion plays a more important role. In this case, substantial differences
between the two fluxes can be noticed: as shown in Fig. 5.19 the Roe flux
is more dissipative for a wide range of scales while the Rusanov flux extends
the inertial range till very close to the Nyquist wavenumber. These charac-
teristics are well predicted by temporal eigenanalysis as shown in Figs. 5.18.

Figure 5.19: Kinetic energy spectra at t = 9L/U0: solid line, Roe flux; dotted
line, Rusanov flux.

A more detailed look of the high-wavenumber region is shown in Figs. 6.26
to emphasise such behaviour. Notice the similarity between Figs. 5.18 and
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the corresponding spectra in Fig. 6.26. When the Rusanov flux is adopted,
an extended inertial range can be observed till κ ≈ 70L, where a weak dissi-
pative region begins. On the other hand, using the Roe solver, dissipation is
more well-distributed, providing a smother dissipative range till almost the
Nyquist wavenumber. In the very high wavenumbers region, some kinetic
energy accumulation can be noticed. This is a clear indication that, for the
actual discretisation order and mesh resolution, additional diffusion via a
SGS model is advisable.

(a) Roe (b) Rusanov

Figure 5.20: Detailed look of Fig. 5.19: solid line, Roe flux; dotted line,
Rusanov flux. Dashed lines have been used to highlight the different slopes
in the high-wavenumber region.

5.7.2 Spatially evolving turbulence: duct flow

Duct flow simulations have been performed using SD scheme and then com-
pared with DG simulations presented in [80]. The computational domain
consists of a rectangular domain of dimensions [Lx, Ly] = [20π, 2π]. It could
be argued that an inviscid, two-dimensional simulation provides an unphys-
ical, under-resolved manufactured turbulence. Nevertheless, in order to un-
derstand the dissipative role of the numerical scheme, the current setting
gives the same macro-behaviour expected in more realistic three-dimensional
and viscous configurations. Moreover, the use of Euler equations is a com-
mon technique to study the influence of numerics, as the numerical method
itself is the only dissipative mechanism acting on the flow. In this way, it
can be isolated from molecular viscosity and SGS modelling (if present).

Free slip boundary conditions are applied to y = ±π and inlet conditions
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Figure 5.21: Example of mesh and flow configuration adopted.

are prescribed as:

ρ = ρ∞,

u = u∞

(
1 +A sin(Ky) sin(Ωt)

0

)
,

p = p∞,

where ρ∞ = 1, u∞ = 1 and p∞ is set in order to get a desired value of
inflow Mach number, p∞ = (ρ∞u

2
∞)/(γMa2). The parameters defining the

inflow perturbations have been set as A = 1/2, K = 5, Ω = 1. Finally, in
agreement with the simulations presented by Mengaldo, et al. [80], far-field
conditions (ρ∞, u∞ and p∞) have been used to compute numerical fluxes at
the outlet boundary.

In the following simulations two different Riemann solvers have been
used: the Roe’s solver, representative of the classical upwinding approach,
and the Rusanov solver, which can lead to hyper-upwinding for low Mach
number simulations.

In order to trigger a sufficiently wide range of scales, two meshes have
been considered: one consists of a homogeneous rectangular mesh of 120×12
elements and a second non-homogeneous mesh is modified with coarsening
in the final part of the domain. Mesh coarsening starts at x = 12π, the
first block is discretised with 72× 12 elements while the second with 12× 12
elements imposing a severe under-resolution. A sketch of the flow configura-
tion is shown in Fig. 5.21. The simulations here considered use a 6th-order
accurate SD scheme. Of course, being the main objective the evaluation
of numerical dissipation, no SGS modelling has been added to the set of
equations.

The results obtained with the SD solver using the Rusanov and Roe
fluxes are reported, respectively, in Figs. 5.22 and 5.23. As already observed
in [80], the Rusanov flux is less accurate than the Roe flux due to the presence
of spurious modes and numerical oscillations are clearly visible close to the
outlet and (to a minor extent) at the mesh coarsening interface. The Roe
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Figure 5.22: Vorticity magnitude using Rusanov Flux with and without
mesh coarsening (Ma = 0.03). Black vertical line denotes the beginning of
the second block.

Figure 5.23: Vorticity magnitude using Roe Flux with and without mesh
coarsening (Ma = 0.03). Black vertical line denotes the beginning of the
second block.

flux, instead, thanks to the absence of spurious modes, gives good results also
with the coarse mesh. Moreover, the smooth variation of dissipation across
frequencies shown in the previous sections, as opposed to the dissipative
bubbles observed using central fluxes, suggests a smoother energy transition
between scales, providing better results.

For higher Mach numbers, the hyper-upwinding character of Rusanov
flux should be less pronounced and results are expected to be similar to
those obtained using the Roe flux. In order to verify such behaviour, the
same test has been performed at a higher Mach number (Ma = 0.3). As
clearly visible in Figs. 5.24 and 5.25, results do not differ excessively.

Finally, a direct comparison between SD3D and Nektar++ simulations is
presented. Nektar++ [96] is a tensor product-based finite element package,
based on the DG method formulation, designed to allow the construction
of efficient classical low polynomial order h-type solvers as well as higher
p-order piecewise polynomial order solvers. The test case simulation at
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Figure 5.24: Vorticity magnitude using Rusanov Flux with and without
mesh coarsening (Ma = 0.3). Black vertical line denotes the beginning of
the second block.

Figure 5.25: Vorticity magnitude using Roe Flux with and without mesh
coarsening (Ma = 0.3). Black vertical line denotes the beginning of the
second block.

Ma = 0.03 has been here considered using the Rusanov numerical flux.
As already said, spurious reflections are expected at the mesh coarsening
interface and at the outlet boundary. From Figs. 5.26 and 5.27, weaker re-
flections are observed using the SD scheme, compared to the DG method.
Different interpretations can arise from such results. From the theoretical
dispersion/diffusion analysis, a stronger spatial dissipation has been observed
using the SD scheme compared to the DG scheme (cf. Fig. 5.4), in particular
in the high-wavenumbers region. Accordingly, high-frequency oscillations
are smoothed out more efficiently by the dissipation of the SD numerical
scheme. A different interpretation can instead be sought in the non-constant
advection velocity analysis. In previous sections, spatial diffusion curves us-
ing hyper-upwind have shown relevant differences between the DG-FR and
the SD schemes (see Fig. 5.14). Indeed, a smoother distribution has been
noticed using the SD method for increasing levels of inhomogeneity in the
advection velocity. A higher regularity of spatial diffusive curves could then
partially explain the reduced presence of spurious oscillations in the SD sim-
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ulations. The results reported in this section demonstrates how the spectral
analysis can provide some useful hints to the role of numerics in computing
under-resolved turbulent flows. Indeed, assumptions such as homogeneity,
linearity and one-dimensionality are certainly unsuitable to fully describe
complex turbulent flows. Nevertheless, such a simple modelling can still well
predict the macro-behaviour of the numerical scheme, so relevant for the
physical description of the problem.

Figure 5.26: Vorticity magnitude using Rusanov Flux with Ma = 0.03 using
DG (up) and SD (down). Black vertical line denotes the beginning of the
second block and the horizontal dashed line indicates a symmetry axis to
facilitate the comparison.

Figure 5.27: Vorticity magnitude using Rusanov Flux with Ma = 0.03 using
DG (up) and SD (down) with mesh coarsening. Black vertical line denotes
the beginning of the second block and the horizontal dashed line indicates a
symmetry axis to facilitate the comparison.

5.8 Conclusions

A comprehensive spectral analysis of high-order schemes has been here per-
formed and numerically tested. In particular, the classical temporal ap-
proach [77] has been presented along with the more recent spatial and non-
modal analyses [79, 80, 88]. All these techniques have been applied to the
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Flux Reconstruction methods [77, 89], in particular, those recovering the
nodal Discontinuous Galerkin and the Spectral Difference schemes for lin-
ear advection, as well as to the improved Spectral Difference scheme by
Liang and Jameson [91, 92, 48]. A generalisation to the non-constant, one-
dimensional conservation law has been presented, following the guidelines
proposed by Manzanero et al. [86, 87] for non-homogeneous linear advec-
tion equations. Classical spectral analyses applied to the standard constant-
velocity advection equation provide useful insights in the role of the numer-
ical scheme in the simulation of complex physical systems. Each analysis
contributes singularly, highlighting different aspects of the interaction be-
tween physics and numerics. Nevertheless, such a simplified approximation
can be sometimes inappropriate. The generalisation to non-constant ad-
vection velocities yields deeper informations on dispersion and dissipation
errors induced by the numerical scheme in more realistic conditions, leading,
eventually, to a better understanding of the reliability of high-order ILES.
Furthermore, non-constant advection velocities allow to study a larger set
of numerical schemes which would act identically for the most simple linear
advection case (for example, SD-FR and SD).

In the comparison of numerical dispersion and diffusion errors produced
by such schemes, it has been observed a stronger temporal dissipation using
the DG-FR scheme, compared to the SD-FR scheme, while this particular
behaviour is inverted considering spatial eigenanalysis, where SD-FR ap-
pears to be more dissipative. Furthermore, the DG-FR is more dissipative
for temporally evolving spatial oscillations, whereas the SD-FR is more dissi-
pative for spatially evolving temporal oscillations. Considering non-constant
advection velocities, two different functional forms have been considered: a
sinusoidal function and a random signal with unitary mean and prescribed
variance. Although they may be considered oversimplified choices to describe
realistic flows, the proposed advection velocities are sufficiently complex to
give important hints in the role played by numerics in such conditions. Vary-
ing the level of inhomogeneity, the SD scheme has shown weaker sensitivity to
advection velocity variations with respect to FR methods. Temporal eigen-
analysis has show similar behaviours between the SD and the SD-FR schemes
both in terms of dispersion and diffusion. In the spatial analysis, instead,
deviations between the two schemes have been mainly noticed in the diffusive
curves, which have been studied in the case of standard and strongly upwind
numerical fluxes. The general observation is that the SD scheme seems to be
more dissipative. Additionally, in the case of non-upwind fluxes, smoother
profiles of numerical diffusion has been reported. Typical dissipative bubbles
tend in fact to blend together for increasing levels of inhomogeneity in the
advection velocity. Such behaviour suggest a more robust discretisation for
complex flows.

Theoretical findings have been verified through a series of numerical ex-
periments. The constant-velocity advection equation with a prescribed inlet
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condition has been discretised using the SD scheme in order to verify spa-
tial eigenanalysis results. Dissipative bubbles, typical of central fluxes, have
been observed as in [80], in accordance with spatial eigenanalysis theory.

Considering more complex configurations, the SD scheme has shown
stronger dissipation for spatially evolving turbulence. A duct flow with time-
dependent inlet boundary condition has been modelled using Euler equations
and two different type of numerical fluxes have been employed: Roe and Ru-
sanov fluxes. For low Mach numbers the latter produces fluxes which mimic
strong upwinding. In such conditions, spurious reflections due to grid coars-
ening and outlet boundary conditions, already observed in [80], have been
noticed in the present simulations too. Nevertheless, the magnitude of these
spurious perturbations appears to be smaller, and in good agreement with
spatial eigenanalysis theoretical results, where the SD scheme is expected to
be more dissipative.

As an example of temporally evolving turbulence, simulations of Taylor-
Green vortex have been performed. Energy transfers between scales have
been evaluated through the kinetic energy spectrum in the fully-turbulent
phase (t = 9L/U0). Results show a good agreement with temporal eigen-
analysis. The use of hyper-upwinding (Rusanov flux) provides a long inertial
range suddenly interrupted by a weak dissipative region at very small scales.
Classical upwinding (Roe flux), instead, is characterised by a smoother tran-
sition between the inertial and the dissipative ranges. In agreement with the
temporal eigenanalysis, excessive upwinding (Rusanov flux) produces coun-
terintuitive results, leading to lower dissipation compared to the classical
upwinding (Roe flux). Nevertheless, using the Roe flux, a slight accumu-
lation of kinetic energy for high wavenumbers has been noticed due to the
insufficient level of numerical dissipation in this region.

It is then clearly evident that upwind fluxes are the most suitable choice
for ILES computations. In spite of this, the order of approximation and,
consequently, the level of accuracy of the approximation, plays a very impor-
tant role and can easily lead to insufficient or excessive levels of dissipation.
High-order discretisations, typically of order three to four, employing upwind
fluxes are commonly used in the literature to perform ILES (mostly using
DG-based solvers). Higher orders are instead unfeasible due to the insuffi-
cient level of numerical dissipation at the smallest scales. Spectral analyses,
like those herein presented, can then be used as a very useful tool in the
design of dynamical explicit SGS models which adapt the level of dissipation
based on the order of approximation.
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6.1 Introduction: Implicit vs Explicit LES

In the previous chapter the general problem of turbulence has been treated
from a mathematical point of view. More specifically, the approach com-
monly known as “Large-Eddy Simulations” has been introduced in chapter 3.
Concepts such as “filtered equations” and “eddy-viscosity models” have been
discussed from a theoretical perspective. Chapter 4, instead, was focused on

109
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the numerical set-up. The high-order Spectral Difference scheme was anal-
ysed in detail, starting from the interpolation and differentiation operators to
the definition of inviscid and viscous numerical fluxes. Sub-Grid Scales mod-
elling and the Spectral Difference method have been presented separately to
simplify the discussion. Nonetheless, in practical under-resolved flows, the
interaction between spatial discretisation and turbulence modelling often
represent a crucial point in the reliability of the numerical simulation. In
chapter 5, the influence of the numerical scheme for under-resolved flows
was analysed using spectral eigen-analsysis and relevant numerical experi-
ments. In the present chapter, instead, the discussion will take one more
step forward, analysing how intrinsic numerical properties such as numerical
dissipation and dispersion can be taken into account in the development of
SGS models.

In the practice of numerical simulations, truncation errors associated to
discretisation schemes can not be fully avoided whenever under-resolution
is present [21]. These errors can significantly perturb the flow physics ex-
pected from the solution of the first principle equations. Normally, low order
spectral element methods lead to a strong, numerically-induced, dissipation
injected in the system. High robustness and implementational simplicity are
then paid at the price of a poor description of a non-negligible part of the
flow scales, which are irreversibly dissipated. High-order methods, instead,
introduce a very low level of numerical dissipation which, on the one hand,
implies a better representation of small scales and, on the other, makes the
computation more susceptible to undergo stability issues. Accordingly, one
of the stumbling-block in the high-order Large Eddy Simulations community
lies in the development of a robust theoretical framework, which would re-
late truncation errors of the numerical discretisation scheme and turbulence
under-resolution.

In the context of the so-called Implicit Large Eddy Simulations, the nu-
merical dissipation associated to the scheme is calibrated to model energy
transfers along scales [97, 62, 63, 64, 65, 66]. However, the choice of order
of accuracy, mesh resolution, and numerical flux may influence strongly the
success or failure of these approaches. This is particularly true for certain
classes of high-order methods, such as the spectral element methods [67], for
which the order of accuracy is a user-selectable parameter of the computa-
tion.

The shortcomings and advantages of ILES have been widely discussed in
the last decades [98, 99, 100], with a rising interest in the theoretical relation
between upwinding/non-oscillatory high-order schemes and numerical dissi-
pation in under-resolved turbulent flows. Nevertheless, a fully generic and
clear connection between them is not yet fully understood for complex flows.

Within the framework of high-order discontinuous finite element meth-
ods, in particular, recent works on LES modeling strategies for the spectral
difference scheme [44, 45, 46], have highlighted the inability of the ILES to
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provide consistent and controlled reproduction of sub-grid scale interactions
when different orders of accuracy are selected [101, 102, 103]. This, in turn, is
a major drawback in view of applications of high-order methods as predictive
tools for engineering.

The present chapter will start the discussion on this point. The Spectral
Element Dynamic Model, which was just briefly mentioned in chapter 3, will
be herein fully analysed and discussed. Firstly, the main concepts of the
original work by Chapelier & Lodato [1] will be introduced. Secondly, a se-
ries of Large-Eddy Simulations using the SEDM will be considered with
a special focus on transition to turbulence. Part of the work presented
in this chapter has been published in two different “Flow, Turbulence and
Combustion” papers [17, 16] (https://doi.org/10.1007/s10494-021-00273-y,
https://doi.org/10.1007/s10494-021-00262-1).

6.2 Spectral Element Dynamic Model

The Spectral Element Dynamic Model [1] defines a constant kinematic eddy-
viscosity within the element of the SD discretisation as:

νnt = C2
SEDMf(σn)∆n

√
kn , (6.1)

where ∆n is an estimate of the local cutoff length scale, f(σn) is a spectral
turbulence sensor, CSEDM is a model constant and kn is an estimate of the
SGS turbulent kinetic energy within the element defined as:

kn =
1

2

(
〈ũn · ũn〉 − 〈ũn〉 · 〈ũn〉

)
, (6.2)

where 〈·〉 denotes spatial averaging within the element.

6.2.1 Turbulence sensor

In chapter 3, the Spectral Element Dynamic was only briefly introduced be-
cause the concept of numerical diffusion/dispersion had not been presented
yet. The functional form of the SEDM is, in fact, quite simple and straight-
forward, whereas the delicate point in terms of interpretation and calibration
is represented by the turbulence sensor. This particular object plays a fun-
damental role in the connection between the SGS model dissipation, which
is essentially not particularly different with respect to other classical SGS
models, and the numerical dissipation associated to numerical scheme.

The turbulence sensor, denoted as f(σn), is a smooth function varying
from 0 to 1 designed to quantify the local level of resolution of the LES



112CHAPTER 6. EXPLICIT HIGH-ORDER SUB-GRID SCALES MODELLING

filtered field. The expression for f(σn) reads:

f(σn) =





1 for σn < σthr,
1

2

{
1 + sin

[
π(σt + ζ − σn)

2ζ

]}
for σthr ≤ σn ≤ σthr + 2ζ ,

0 for σn > σthr + 2ζ ,

(6.3)

The form of the turbulence sensor resembles the classical discontinuity sensor
used by [7] for sub-sell shock-capturing. Defining a turbulence sensor which
shares similarities with shock-capturing techniques can be an interesting fea-
ture in the development of a generalised SGS models for compressible flows,
where both shocks and turbulence under-resolution are treated in a similar
manner. More details and a deeper discussion on the connection between
these two aspects will be furnished in chapter 8.

The calibration of the parameters involved is based on a-priori studies
of isotropic turbulence decay. Details on the calibration procedure can be
found in the original work by Chapelier & Lodato [1].

On the other hand, in order to better understand the behaviour of the
SEDM, some further details will be provided on the computation of σn.
The power decay σn is evaluated using the modal representation of the re-
solved velocity ũ. In particular, starting from the nodal values available
from the simulation, the modes within the functional space spanned by Leg-
endre polynomials are evaluated. Subsequently, one-dimensional spectra are
computed along each direction and later averaged to give a sense of three-
dimensionality. The final output of such procedure is a single kinetic energy
spectrum representative of the velocity field within the spectral element. In
more details, the modal projection can be very easily computed using the
Vandermonde matrix. A pseudo kinetic energy spectrum along each direc-
tion can be computed as:

Em
x̂ (ŷj , ẑk) =

1

2

3∑

d=1

( N∑

s=0

V−1
msũd(x̂s, ŷj , ẑk)

)2

, (6.4)

Em
ŷ (x̂i, ẑk) =

1

2

3∑

d=1

( N∑

s=0

V−1
msũd(x̂i, ŷs, ẑk)

)2

, (6.5)

Em
ẑ (x̂i, ŷj) =

1

2

3∑

d=1

( N∑

s=0

V−1
msũd(x̂i, ŷj , ẑs)

)2

, (6.6)

where V represents the Vandermonde matrix for the Legendre polynomials
basis, and Em indicate the m-th modal component of the kinetic energy
spectrum along a given direction. Subsequently, the kinetic energy spectra
along each direction are averaged within the element as follows:

Em
Ωn

=
1

3(N + 1)2

[ N∑

j,k=0

Em
x̂ (ŷj , ẑk) +

N∑

i,k=0

Em
ŷ (x̂i, ẑk) +

N∑

i,j=0

Em
ẑ (x̂i, ŷj)

]
. (6.7)
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An exponential representation is then assumed for the averaged kinetic en-
ergy spectrum on the element Ωn in the form EΩn ∝ m−σn (m = 1, ..., N).
The zero-th mode, which corresponds to the mean kinetic energy, is not con-
sidered for the evaluation of the modal energetic decay in order to evaluate
only the fluctuating component of the velocity field. Finally, the exponent
σn is estimated using a least square expression:

σn =
N

∑N
m=1 ln(m) ln(Em

Ωn
)−

∑N
m=1 ln(m)

∑N
m=1 ln(E

m
Ωn

)

N
∑N

m=1

(
ln(m)

)2

−
(∑N

m=1 ln(m)

)2 . (6.8)

6.2.2 Taylor-Green Vortex

In the original paper, both for the calibration and validation purposes, a
very useful canonical flow has been considered: the Taylor-Green Vortex [93].
Such test case is particularly useful to study transition to turbulence as it is
characterised by a first laminar phase which ends in a fully turbulent config-
uration after approximately 10 characteristic time steps. Such configuration
is therefore appealing to evaluate the ability of SGS models to accurately
represent laminar-to-turbulent transition. In the framework of Large-Eddy
Simulation of the Taylor-Green Vortex, the balance of total kinetic energy
averaged on the domain can be a useful source of informations on the dissi-
pative character of SGS model. For low Mach numbers, the balance of the
normalised integrated kinetic energy reads

−dEk

dt
= εvis + εSGS + εnum, (6.9)

where

Ek =
1

Ω

∫

Ω

1

2
ρũiũidΩ, (6.10)

εvis =
2ν

Ω

∫

Ω
S̃ijS̃ijdΩ, (6.11)

εSGS =
2

Ω

∫

Ω
νtS̃ijS̃ijdΩ, (6.12)

and εnum = −dEk
dt − εvis − εSGS. Particular attention is also focused on the

combined effect of both numerical and SGS dissipation:

εtotSGS = εSGS + εnum. (6.13)

As already introduced in chapter 5, larger order of approximations are as-
sociated to a reduced level of numerical dissipation. How numerical dissipa-
tion is distributed in the wavenumber domain can vary significantly depend-
ing on the numerical scheme used for discretisation. This tendency applies
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also in more complex conditions such as in the case of the fully viscous
Navier-Stokes equations. In Fig. 6.1, numerical dissipation, evaluated as in
Eq. (6.13), is shown for the TGV case for different orders of approxima-
tion. The magnitude of εnum is larger for low orders whereas it gets smaller
and smaller increasing the order of approximation. Furthermore, numerical
dissipation follows the very desirable feature of null dissipation in the first
laminar/transient phase for t < 4. It is then clear that the levels of dissipa-
tion injected by the SGS model need to vary consistently with the order. In
other words, for low orders of approximation, numerical dissipation can be
sufficiently large to mimic the dissipative nature of unresolved scales. On the
other hand, for higher orders, numerical diffusion gets weaker and explicit
SGS modelling is necessary to maintain the simulation stable and accurate.
At the same time, an hypothetical SGS model for the TGV flow should ide-
ally preserve the ability of numerical dissipation to grow significantly only
when the flow becomes under-resolved. In this sense, for the same simula-

Figure 6.1: Numerical dissipation of resolved kinetic energy εnum for varying
order of approximation. (Fig. from [1]).

tions, in Fig. 6.2 the explicit dissipation of the SEDM model is shown. As
already anticipated, the SEDM is capable of dynamically adapt the levels
of dissipation injected in the system. In the case of low order, the model is
essentially inactive, leaving to numerical diffusion the role of build-in SGS
model, whereas, for higher orders, the model dissipation gets stronger and
stronger to maintain the simulation stable. Furthermore, for any order, the
use of a turbulence sensor able to detect under-resolution makes the model
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Figure 6.2: Explicit SGS dissipation of resolved kinetic energy εSGS for vary-
ing order of approximation. (Fig. from [1]).

always inactive for times smaller t < 4. Classical models such as Smagorinsky
model, for example, are active also in the laminar/transient phase, causing
an over-dissipation of the flow field. Of course, for some intermediate orders
of approximation, numerical dissipation can be sufficiently large to keep the
simulation stable and, at the same time, small enough not to over-dissipate
the small scale fluctuations. Finding such equilibrium point can be a very
difficult task to achieve. The SEDM tries to circumnavigate the issue pro-
viding adapting levels of dissipation based on the order of approximation
and on the local resolution of the numerical scheme.

6.3 Bypass transition on a zero-pressure-gradient

flat plate

The prediction of laminar to turbulent transition is an important problem
in the field of aerodynamics and turbo-machinery. One of the most exten-
sively studied cases of transition, is the transition of a zero-pressure-gradient
smooth flat-plate boundary layer (ZPGSFPBL). Two principle transition
mechanisms exist in nature. At low levels of freestream turbulence inten-
sity (Tu < 1%), natural transition occurs [104]. This is characterised by
the development of two-dimensional Tollmien-Schlichting (TS) waves (pri-
mary instability), which grow in amplitude along the streamwise direction.
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When the amplitude of the TS waves reaches a certain magnitude (usually
at Reynolds numbers of O(106)), three-dimensional secondary instabilities
develop, which finally breakdown into fully turbulent flow. It is possible
to trigger transition further upstream simply by increasing the freestream
turbulence intensity. This produces bypass transition [105], in which the
mechanism of the TS waves is skipped and instead, the flow goes from lami-
nar to turbulent over a relatively narrow range of Reynolds numbers, usually
of O(105).

Transitional flows have received a lot of attention in the recent past and
as a result the mechanism of transition is relatively well understood. The
predominant numerical approach to study bypass transition has been via
DNS studies which are computationally quite expensive. Alternative nu-
merical methods do exists in the form of Reynolds averaged Navier-Stokes
modelling, which is widely prevalent in the industry. However, RANS mod-
els require extensive tuning to produce acceptable results for transitional
cases. In recent years, large-eddy simulation in conjunction with high-order
solvers have shown much potential in being a truly predictive tool for tran-
sition. Thus, in keeping with this theme, the present work focusses entirely
upon the application and evaluation of LES models to bypass transition,
specifically the experimental ERCOFTAC T3A test case (EXP-T3A), which
is a well known example of ZPGSFPBL bypass transition. Although we
work with a variety of LES models, our primary objective is to evaluate the
spectral-element dynamic model (SEDM) of Ref. [1], since it exhibits several
properties which are known to be useful in transitional flows.

The LES of ZPGSFPBL bypass transition was first undertaken in Ref. [106],
using freestream turbulence of intensity 6%, in an attempt to reproduce the
ERCOFTAC T3B test case. The model employed by them was the dynamic
Smagorinsky model. They also performed implicit large eddy simulations by
discarding the sub-grid model and instead using a significantly finer mesh.
These simulations were termed as low-resolution simulations (LRS). Despite
the low resolution, good qualitative agreement was achieved. They also
demonstrated the importance of the wall-normal component of the velocity
of the freestream turbulence in provoking the transition. The localized ver-
sion of the dynamic Smagorinsky model was made use of in Ref. [107] on
swept-wing boundary layers. Subsequently, [108] carried out one of the ear-
liest controlled transition studies using the filtered-structure-function (FSF)
model and a second-order finite difference code. This was a modified version
of the original structure function model in Ref. [109], which was found to
be too dissipative for transitional flows. They produced good results even
with the limited grid resolution available. A more recent study on the ER-
COFTAC T3A test case, which used a freestream turbulence of intensity 3%,
was performed in Ref. [4]. A second-order finite volume scheme served as
the numerical solver and a residual-based variational multi-scale (RB-VMS)
style LES model was used. In this work the grid-convergence properties
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of the VMS approach were clearly highlighted. More recently, several LES
models were tested in Ref. [110] on controlled H-type and K-type transition
using a 5th-order accurate finite-difference code. A detailed comparison was
made against the DNS. It was found that all the models exhibited an under-
prediction of the skin-friction coefficient in both transitional and turbulent
regions. Their conclusion was that only those models which introduced neg-
ligible sub-grid viscosity prior to transition were capable of allowing the
transition process to occur. This is an important point whose effects are
deeply discussed in this work. Finally, we mention the work in Ref. [111], on
bypass transition over an adverse pressure gradient flat plate, wherein nu-
merous LES models (dynamic Smagorinsky, mixed-time scale and WALE)
were tested. They sought to test out the transition-prediction capabilities of
various models and found that only the mixed-time scale model could suc-
cessfully capture all the physical features and bore the strongest similarity
to the DNS data.

The key conclusion of several of these studies was that negligible amounts
of dissipation are required within the pre-transitional region of the flow. This
is because the primary disturbances, called the ‘Klebanoff modes’, which are
usually well resolved even on coarse grids, must be allowed to grow in am-
plitude until they reach the stage at which secondary instabilities may begin
to develop. It is only within the transitional region, where the unresolved
scales begin to grow rapidly, that the sub-grid models must begin to act.
Thus in general, for flows which exhibit a high-degree of intermittency, the
sub-grid eddy-viscosity must be applied in a manner which is local, both in
physical and in wavenumber space. A distinct preference exists towards the
application of the sub-grid eddy-viscosity within regions of low-resolution in
physical space and upon the high wave-numbers. The bypass transition test
case is ideal for testing these behaviours in LES models, since there exists
two distinct regions of flow, one well-resolved and dominated by low wave-
numbers (laminar region) and the other poorly-resolved and dominated by
high wave-numbers (turbulent region).

The well documented behaviour of the ZPGSFPBL bypass transition [112,
113, 114, 2, 115, 116], makes an accurate comparison and evaluation possi-
ble. Despite this, LES studies of transition are quite rare in literature [111]
since they tend to give rise to numerous complications. The primary compli-
cation is the interaction between the numerical dissipation and the sub-grid
model dissipation, making it difficult to truly evaluate the model behaviour.
To overcome this obstacle we make use of a high-order Spectral Difference
solver [117] which introduces low levels of numerical dissipation and dis-
persion errors [118, 73] and hence allows the model’s effects to dominate.
A secondary concern, pertains to the specification of the inflow and means
of forcing transition. When forcing transition by means of freestream dis-
turbances, this difficulty encompasses not only the generation of synthetic
turbulence, on an auxiliary mesh, with a behaviour comparable with that of
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the experiment, but also the transfer of the synthetic turbulence to a highly
under-resolved, and non-uniform LES mesh. We have utilised the technique
put forth in Ref. [3]. The present approach makes use of synthetic turbulence,
generated by the digital filter method in Ref. [119], of specific length-scale
and intensity, injected at the inflow, at a certain height above the flat plate.
The resulting freestream disturbance exhibits a streamwise behaviour very
similar to that of the T3A case. Furthermore, the primary disturbance,
induced within the pre-transitional boundary layer, closely matches the ex-
perimental data. Thus with grid refinement, the overall transition behaviour
converges strongly towards the T3A experiment.

Thus with the tools outlined above, we seek to carry out LES studies
of ZPGSFPBL bypass transition with settings designed to reproduce the
conditions of the ERCOFTAC T3A test case. Our objective is to test the
transition-prediction capabilities of SEDM. We also utilise the WALE and
SIGMA models as reference. Direct comparisons are made between the LES
simulations and the experimental T3A data for quantities such as the skin-
friction coefficient, fluctuating stresses and sub-grid eddy-viscosity. A grid-
convergence study is also performed to reveal the convergence characteristics
of the models.

6.3.1 Computational domain and boundary conditions

The simulations are carried out within a hexahedral computational domain,
starting downstream of the flat plate leading edge. The domain exten-
sion is such that 104 ≤ Rex ≤ 5 × 105, x being the distance from the
flat plate leading edge. Transition for the T3A case, generally occurs for
1.1 × 105 ≤ Rex ≤ 3.1 × 105. The domain height is three times the height
of the turbulent boundary layer at the outflow and the width of the do-
main is equal to the height of the turbulent boundary layer at the outflow.
While the streamwise and wall-normal dimensions are nearly identical to the
domain used in the DNS in Ref. [2], the spanwise width is only half that
of the DNS. This was done primarily to keep down computational costs,
however it is widely accepted that the spanwise scale of even the largest
eddies in a turbulent boundary layer are generally smaller than turbulent
boundary layer height [120]. The dimensions of the domain, normalised
by the inflow boundary layer displacement thickness (δ∗in), are presented in
Tab. 6.1. A characteristic boundary condition is used at the inflow and a
characteristic-based boundary condition, using extrapolated variables for the
ghost state and exit pressure specified, is used at the outflow and freestream
boundary. Finally, in the spanwise direction, periodic boundary conditions
are employed and an adiabatic no-slip boundary condition is applied to the
wall. The SD discretisation of the domain with these boundary conditions
has been observed to be stable, consistent and convergent using a laminar
Blasius profile test case.
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Reynolds number range 1.0× 104 − 5.0× 105

Fluid properties

Freestream density ρ∞ 1.0 kg/m3

Kinematic Viscosity ν 10−5 m2/s
Specific heat capacity
(const. pressure)

cp 1.006 kJ/kgK

Specific heat ratio γ 1.4
Prandtl number Pr 0.72

Domain details

Displacement thickness
at inflow

δ∗in 9.5× 10−6 m

Domain dimensions Hx 2847δ∗in
Hy 214δ∗in
Hz 71δ∗in

Flow properties

Freestream Mach num-
ber

Ma∞ 0.5

Freestream velocity U∞ 188.0 m/s
Bulk velocity (laminar
flow)

Ubulk 187.0 m/s

Freestream turbulence
intensity

Tu 3.0− 3.5%

Freestream turbulence
integral length scale

Lii 10.92δ∗in

Table 6.1: Parameters used in this study for the reproduction of the T3A
experiment.

Grids

The domain is discretised by hexahedral elements, kept uniform in the stream-
wise and spanwise direction and stretched in the wall-normal direction using

Name No. elements Stretching Scheme ∆x+ ∆y+ ∆z+

factor order
(Ex×Ey ×Ez) Cstr (N+1)

Coarse 40× 6× 3 0.03 6 70 ≃ 1 24
Medium 60× 8× 5 0.04 6 47 ≃ 1 14
Fine 80× 10× 6 0.06 6 35 ≃ 1 11

Table 6.2: Computational grid details (the friction velocity, uτ , used for
normalisation is computed at Re = 3.1 × 105, which is the skin-friction
peak. An equidistant distribution of solution points within the element was
assumed.)
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an algebraic stretching function [108], defined as:

ǫj = j/Ney, ∀ 0 ≤ j ≤ Ney, (6.14)

yj = Hy
Cstr × ǫj

1 + Cstr − ǫj
, (6.15)

where Ney is the number of elements in the wall-normal direction, Cstr is
the user specified stretching factor, Hy is the domain height and yj is the
co-ordinate of the upper boundary of element number j. The stretching fac-
tor has been adjusted for all grids, such that the first element has its upper
boundary located at y+ ≃ 7. Thus, with the use of a 6th-order SD scheme,
the first solution point is always located at y+ < 1 and at least 10 points
are present below y+ = 10, thus providing sufficient wall resolution. It must
be noted that since the distribution of the solution points, interior to the
element, is unknown during the grid-generation process, we have calculated
∆x+,∆y+,∆z+ assuming equidistant interior solution points. However, in
general due to the clustering of the solution points near the element bound-
aries, the true values are usually lower.

Three sets of grids are used for the LES computations, one coarse, one
medium and one fine. Their nomenclature may be justified by comparing
them with the DNS grid in Ref. [2] which utilises 2048 × 180 × 192 points.
Thus, as can be seen from Tab. 6.2, the coarse grid has approximately one-
tenth the number of points of the DNS in the streamwise and spanwise
dimension while having one-fifth the number of points in the wall-normal
direction, with the medium grid having one and a half times and the fine
grid having two times the number of elements as the coarse grid, along
each direction. Thus overall the coarse grid contains nearly 500 times fewer
number of points and the fine grid possesses nearly 70 times fewer number of
points as compared to the DNS grid in Ref. [2]. This level of under-resolution
is significantly greater than that used in prior studies of this case. For the
sake of comparison, it must be pointed out, that the fine grid used in this
study is nearly equivalent to the coarse grid used in the LES study in Ref. [4].

Freestream Disturbance

The properties of the freestream turbulence are crucial to obtain the cor-
rect behaviour of the ZPGSFPBL bypass transition case. Earlier studies in
Ref. [3] have shown that it is possible to obtain a close agreement with the
experimental T3A data by injecting synthetic turbulence of specific length-
scale, Lii, and turbulent intensity, Tu, over the laminar boundary layer at
the inflow. This synthetic turbulence is produced, upon an auxiliary grid
at the inflow plane, by the method put forth in Ref. [119]. This method
makes use of digital filters in order to correlate three random fields of data,
Rα, α = x, y, z, to produce a field at the inflow plane, u′α(j, k), whose prop-
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(a) Continuous modes of the Orr-
Sommerfeld equation plotted at different
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Ref. [2]).

0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

2.5

y/
δ 9

9,
in

h=1.5δ99,in

(b) Damping function behaviour with pa-
rameter h = 1.5δ99,in plotted at Rex = 104.

Figure 6.3: A comparison between the wall-normal basis used in the synthetic
turbulence in Ref. [2] (figure on the left) and the damping function used
to suppress fluctuations within the boundary layer (figure on the right).
Blasius streamwise velocity component, u/U∞ ( ) and wall-normal velocity
component, v/U∞ ×

√
U∞x/µ ( ), also shown for reference.

erties closely resemble those of the desired turbulent field:

u′α(j, k) =

Nx∑

i′=−Nx

Ny∑

j′=−Ny

Nz∑

k′=−Nz

bi′j′k′Rα(i
′, j + j′, k + k′), (6.16)

with u′i = 0 and u′i · u′j = δij and where Nx, Ny, Nz represent the stencil of
the filter bi′j′k′ . In order to account for the cross-correlations between the
various velocity components, the method proposed in Ref. [121] is used. We
define ui = ui + aiju

′
j where:

aij =




(R11)
1/2 0 0

R21/a11 (R22 − a221)
1/2 0

R31/a11 (R32 − a21a31)/a22 (R33 − a231 − a232)
1/2


 , (6.17)

and where Rij is the correlation tensor known a priori such as from experi-
mental or DNS data. By setting the cross-correlation coefficients to zero in
Rij , homogeneous-isotropic synthetic turbulence may be obtained.

Finally, we can ensure that the fluctuations are confined solely within
the freestream by making use of a van Driest type damping functions, given
by

(1− e−y/(0.137×h))1000,

which is multiplied by all three components of the synthetic turbulent fluc-
tuations at the inflow plane. This function, as seen in Fig. 6.3(b), undergoes
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Name Tu L11/δ
∗
in = L22/δ

∗
in = L33/δ

∗
in h/δ99,in

COARSE 3.75% 10.92 1.5
MEDIUM 3.65% 10.92 1.5

FINE 3.5% 10.92 1.5

Table 6.3: Parameters for the generation of freestream turbulence for each
grid used within this study.

a smooth change in value from 0 to 1. More specifically, it achieves a value
of 0.5 at a height of h. This parameter, h, is user specified and strongly
determines the transition behaviour as it controls the depth to which the
freestream disturbance penetrates into the boundary layer at the inflow. It
must be kept in mind that the choice of this function was completely ar-
bitrary and its behaviour merely designed to mimic the continuous modes
of the Orr-Sommerfeld spectrum as shown in Fig. 6.3(a). Experiments in
Ref. [3] have provided us with suitable values for the turbulence intensity
(3.5% ≤ Tu ≤ 3.75%), the length-scale (Lii = 10.92δ∗in) and the height of
injection of the synthetic turbulence (h = 1.5δ99,in). These values are pre-
sented within Table. 6.3. By using these parameters and a 6th-order ILES
approach, there is a strong trend of convergence towards the T3A experi-
mental data. Finally, by making use of a grid with 780 × 120 × 48 solution
points (which we call U-FINE since it has better resolution than the FINE
grid used within this study), a very close agreement is achieved with the
T3A experimental data as can be observed from the comparison of the skin-
friction coefficient and the streamwise component of the fluctuating stress
(Fig. 6.4).
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Figure 6.4: T3A reproduction upon the ultra-fine grid using synthetic tur-
bulence within the freestream (selected results from Ref. [3]).



6.3. BYPASS TRANSITION ON A ZERO-PRESSURE-GRADIENT FLAT PLATE 123

6.3.2 Results and Discussion

The results presented within this section contain data from the simula-
tions carried out with the three different LES models (WALE, SIGMA and
SEDM), as well as the ILES, upon the three different LES grids (coarse,
medium and fine). The data presented within this work represents the time-
averaged quantities over the course of forty flow turn-over times, similar to
that used in the study in Refs. [108] and [4] followed by a single spanwise
averaging of the quantities of interest at the solution points. The statistical
averaging has been commenced after a period of five flow turn-over times
used to flush out any transients.

Behaviour of freestream intensity and fluctuating stresses close to

inflow

(a) Variation with grid resolution. (b) Variation with sub-grid model (medium
grid).

Figure 6.5: %Tu streamwise behaviour.

The grid and the numerical scheme have a strong influence upon the
freestream behaviour. Once the parameters for the generation of the tur-
bulence upon the auxiliary grid have been set, there is very little that can
be done to control its streamwise evolution. The grid and numerical scheme
affect, not only the total intensity, but also the homogeneity and isotropy of
the freestream turbulence.

The curves in Fig. 6.5(a) show the freestream turbulence intensity upon
the three different LES grids. The simulation is an ILES. We can easily ob-
serve the influence of the grid resolution upon the freestream turbulence in-
tensity. In general, there appears to be a sharp initial drop in the freestream
turbulence intensity, followed by slower decay. With grid refinement, the
magnitude of the initial drop decreases, while the decay rate downstream of
the drop increases (approaching the reference decay rate). This phenomenon
tends to make it appear as if the freestream turbulence upon the coarser grid
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(a) ILES: isotropy. (b) SEDM: isotropy.

(c) ILES: homogeneity. (d) SEDM: homogeneity.

Figure 6.6: %Tu comparison between the ILES and SEDM (medium grid).

possesses a length-scale greater than the prescribed one. This behaviour has
been well documented in Ref. [3], and grid convergence produces a distinc-
tive trend towards the reference T3A data. We now look at the influence of
the model upon the freestream behaviour. A comparison of the freestream
turbulence intensity of the ILES and the SEDM on the medium grid is shown
in Fig. 6.5(b). In general, the model effect is dissipative in nature, thus many
of the trends for the ILES, described in the previous paragraph, are expected
to be exaggerated for an LES using the model. The comparison between the
curves of the freestream turbulence intensity of the ILES and the SEDM,
as seen in Fig. 6.5(b), reveal that the sharp drop in intensity, near the in-
flow, is a bit more severe in the case where the model is applied. In general,
this drop in the turbulence intensity can be directly attributed to the drop
in the wall-normal intensity, Tuy, which is quite apparent when examining
the behaviour of the individual components of the freestream turbulence in
Figs. 6.6(a) and 6.6(b).

The reason for this behaviour is relatively simple to explain. Within
the turbulence injection technique, perturbations are firstly evaluated on an
auxiliary cartesian grid. Subsequently, the same quantities are interpolated
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Figure 6.7: u′i,rms/uτ at location Rex = 3.2× 105.

on the high-order SD discretisation. Although such procedure is straightfor-
ward in the case of isotropic grids, it can be more complex whenever one of
the direction is stretched, like in the wall-normal direction for this particular
case. Velocity fluctuations along this direction can then be affected by the
anisotropy of the grid.
Furthermore, the presence of a model tends to exacerbate this trend, as seen
in the case of the SEDM in Fig. 6.6(b). This overall trend is indicative of
a relative loss in the isotropy of the freestream turbulence in the case of
ILES as seen in Fig. 6.6(a), with the situation being even more severe for
the case with a model Fig. 6.6(b), with deviations between the individual
components of the stresses as large as 20% being seen. Moreover, when
viewing the turbulence intensities at several different wall-normal locations,
in Figs. 6.6(c) and 6.6(d), it becomes apparent that there is a relative loss in
the homogeneity as well. In general, at any given streamwise location, the
freestream turbulence intensity is lower the further we move away from the
boundary layer due to the coarsening of the grid due to stretching, with the
effect being more significant for the SEDM than the ILES.

Despite the relatively large variations in the freestream behaviour due
to the grid and model, the effect upon the fluctuating stresses, within the
boundary layer, close to the inflow is relatively minor, as seen in Fig. 6.7.
A comparison of the boundary layer fluctuating stresses among the three
different grids is shown in Fig. 6.7(a), for the ILES simulation. A similar
figure, showing a comparison of the boundary layer fluctuating stresses, on
the medium grid, among the various models is shown in Fig. 6.7(b). We



126CHAPTER 6. EXPLICIT HIGH-ORDER SUB-GRID SCALES MODELLING

can observe in Fig. 6.7(a), that the effect of the grid is relatively small
and, in general, the disturbance is well predicted. As can be expected, the
prediction upon the coarsest mesh is the least accurate, with the streamwise
fluctuating stress exhibiting higher values than the T3A reference and the
other two components exhibiting lower values. However, on the medium and
fine grids, a much improved agreement is achieved. In a similar manner,
the curves in Fig. 6.7(b), show that the use of the LES models results only
in a minor deviation as compared to the ILES. A prominent discrepancy
between simulation and experiment is visible within the wall-normal and
spanwise components of the fluctuating stresses close to the wall (y+ < 40).
This discrepancy was visible even within the simulations using the U-FINE
mesh, previously described in Sec. 6.3.1, within the study in Ref. [3]. It is
also present within the reference DNS [2] and to the best of our knowledge,
no simulation has been able to match these experimental curves exactly.
However, within the realm of existing literature, our representation of the
fluctuating stresses close to the inflow is quite acceptable and thus, it is with
these conditions within the boundary layer and freestream that the following
LES transition studies will be carried out.

Transition behaviour

The transitional zone extends between 1.1 × 105 ≤ Rex ≤ 3.1 × 105 and it
represents our main region of interest. However, in order to understand the
onset of the transition, it is important to study the trends present within
the pre-transitional zone, which occupies Rex < 1.1 × 105. A discussion
concerning this zone as well as the early portion of the transition zone (1.1×
105 ≤ Rex ≤ 2 × 105) is presented in Sec. 6.3.2. A discussion concerning
the remainder of the transitional zone as well as the fully turbulent region
is subsequently presented within Sec. 6.3.2. Finally, a detailed look at the
trends of the sub-grid eddy-viscosity, useful for understanding the transition
behaviour, is presented within Sec. 6.3.2.

Pre-transitional region

Transition typically occurs when the amplitude of the fluctuating stresses
(primary disturbance) within the boundary layer grows sufficiently large so
that breakdown of the structures of the pre-transitional region into fully
turbulent flow can occur [2]. This growth, which should occur linearly with
respect to the square-root of Reynolds number, is presented in Fig. 6.8, for
the medium and fine grids. The figures indicate that, in general, the coarser
the grid, the lower is the rate at which the disturbance tends to grow. This
trend was seen in Ref. [3] and observations regarding its relevance to the
transition onset were made.

The influence of the sub-grid dissipation upon the growth rate of the
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Figure 6.8: u′rms,max/U∞ behaviour along the streamwise direction. Linear

growth with respect to Re
1/2
x ( ) shown for reference.

disturbance is what is of interest here. As pointed out in Ref. [110], models
which input minimal sub-grid dissipation within the pre-transitional region
tend to predict higher growth rates. In our simulations we do observe a
dependency of the growth rate upon the model type. Across all the grids
used, the growth rates of the disturbance were the highest for the ILES,
followed by the SEDM, then the WALE and finally the SIGMA model. Since
all the models used, introduce a dissipative effect, it is to be expected that
the ILES will exhibit the highest growth rate. However, among the various
LES models used, the curves in Figs. 6.8(a) and 6.8(b) seem to indicate that
the SEDM is the least dissipative while the SIGMA is the most dissipative
within this region, with the behaviour of the WALE falling neatly between
the two. Evidence in support of this claim will be presented within Sec. 6.3.2,
where the eddy-viscosity behaviour at several streamwise stations has been
plotted. The graphs therein, do show that the SEDM has lower levels of
eddy-viscosity than either WALE or SIGMA models.

This influence is felt not only upon the streamwise component of the
fluctuating stress, but to a greater extent upon the wall-normal and span-
wise components. This can be observed in the behaviour of the fluctuating
stresses, just downstream of the pre-transitional region, upon the medium
grid, as shown in Fig. 6.9. Three different streamwise locations are shown
which best exhibit the effect of the sub-grid dissipation. We can observe
that although at the first location there is not much of a distinction between
the curves of the various models, as we move downstream, large differences
begin to evolve. This effect is most apparent in the curves of the wall-normal
and spanwise components of the fluctuating stresses as seen in Figs. 6.9(b)
and 6.9(c) respectively. In general, the ILES and the SEDM exhibit a higher
prediction of the peak stress, in keeping with the T3A reference, while the
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(a) Streamwise stress: 0.1(u′

rms/uτ )+Rex. (b) Wall-normal stress: 0.5(v′rms/uτ )+Rex.

(c) Spanwise stress: 0.4(w′

rms/uτ ) +Rex. (d) Cross stress: 0.5(u′v′/u2
τ ) +Rex.

Figure 6.9: Behaviour of the fluctuating stresses within the pre-transitional
region of the boundary layer. ILES ( ), SEDM ( ), WALE ( ), SIGMA
( ) and T3A reference (•).

WALE and SIGMA exhibit a much lower value. This trend is different for
the curves representing the cross-stress shown in Fig. 6.9(d), where the ILES
and WALE tend to exhibit strong over-predictions deviating far from the
T3A reference, while the SEDM and SIGMA stay relatively close to the
reference.

However, in general the ILES and SEDM tend to maintain higher rates of
disturbance growth, which leads to them exhibiting an earlier transition as
compared to the WALE and SIGMA. The skin-friction coefficient, the quan-
tity most sensitive to the transition behaviour, is shown, for the three differ-
ent models as well as the ILES, for the medium and fine grids, in Fig. 6.10.
In keeping with the trend seen for the disturbance growth, the transition
onset takes place first in the ILES simulation, followed by the SEDM, next
by the WALE model and, finally, by the SIGMA model.
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Transitional and fully turbulent region

(a) Medium grid. (b) Fine grid.

Figure 6.10: Friction coefficient behaviour for various grids and models. ILES
( ), SEDM ( ), WALE ( ), SIGMA ( ) and T3A reference (•). The
equivalent simulation in Ref. [4] ( × ) is also shown in the figure on the right.

The results of the skin-friction, presented within Fig. 6.10, demonstrate
well the capabilities of the ILES computations when carried out with high-
order schemes. The computations upon the medium and fine grids are quite
accurate despite their poor resolution (relative to the DNS). The relative
power of the ILES computations performed here, are visible in Fig. 6.10(b),
when making a comparison with the ILES on the coarse grid in Ref. [4]
(a grid with an equivalent resolutions to the fine grid used in this study).
The relative difference between the two curves indicates a dramatic improve-
ment in the prediction of the location of the transition onset as well as the
magnitude of the skin-friction coefficient between the two. While the ILES
simulations are relatively accurate, we seek to examine the influence of the
LES models on the transition behaviour. Of the three LES models used
within this study, it was observed that the WALE and the SIGMA model
exhibited relatively similar behaviours to each other, while the SEDM exhib-
ited rather different behaviour, falling somewhere in between the behaviour
of the ILES and the WALE model. In general, on a given grid, the use of
a model tends to push the transition onset downstream while increasing the
range over which the transition occurs, as compared to the ILES (Fig. 6.10).
This effect is the strongest in the case of the SIGMA model followed by
the WALE and finally the SEDM. For the medium grid ILES, the onset of
transition occurs far upstream of the reference and is completed slightly up-
stream of the reference, as seen in Fig. 6.10(a) . In the case of the SEDM
while the transition also commences close to the ILES, the transition range
overlaps that of the reference in a manner which provides a good matching
between the two. However, for the WALE and SIGMA models, despite the
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(a) Streamwise stress: 0.2(u′

rms/uτ )+Rex. (b) Wall-normal stress: 0.5(v′rms/uτ )+Rex.

(c) Spanwise stress: 0.5(w′

rms/uτ ) +Rex. (d) Cross stress: 0.5(u′v′/u2
τ ) +Rex.

Figure 6.11: Behaviour of the fluctuating stresses within the transitional
and fully turbulent region of the boundary layer. ILES ( ), SEDM ( ),
WALE ( ), SIGMA ( ) and T3A reference (•).

location of the transition onset being roughly similar to that of the SEDM,
the transition range is longer and as a result the matching of the WALE
and SIGMA, with the reference is noticeably worse. The differences between
these models, within the transition region, may be related to the interaction
between the eddy-viscosity and the mechanism of transition. A more dissi-
pative model tends to inhibit the transition mechanism as compared to a less
dissipative model. The previous section, Sec. 6.3.2, had shown that, based
upon the growth-rate of the disturbance, the SEDM is the least dissipative
model followed by the WALE and finally the SIGMA model. Thus, the
length of the transition range progressively increases in this order. We will
elaborate upon this trend in Sec. 6.3.2, where the profiles of eddy-viscosity
in the wall-normal direction lend support to this reasoning.

Finally, we observe a discrepancy in the level of the skin-friction coeffi-
cient, within the fully turbulent region, for the WALE and SIGMA models on
both medium and fine grids (Fig. 6.10). We can see that for the medium grid,
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the simulation using the SEDM achieves a level of the skin-friction coefficient
close to that of the reference within the fully turbulent region (Fig. 6.10(a)).
However, this is clearly not the case for the WALE and SIGMA models. Even
upon the fine grid, although there is a definite trend towards the reference,
the true level of the skin-friction coefficient in the fully turbulent region is
not achieved (Fig. 6.10(b)). The cause for this discrepancy is unknown.

The relatively poorer performance of the WALE and SIGMA models as
compared with the SEDM is also apparent in the behaviour of the fluctu-
ating stresses at three different streamwise locations within the transitional
and fully turbulent regions. To illustrate this point, four components of the
fluctuating stresses, on the medium grid, are shown in Fig. 6.11. A common
feature of all the curves is the relative over-prediction of the stress levels by
the ILES at all three streamwise locations. While the WALE and SIGMA
models usually under-predict the stresses at the downstream location, they
tend to also exhibit an over-prediction at the upstream location. It is inter-
esting that the SEDM exhibits the most consistent behaviour in mitigating
the over and under-prediction at all three streamwise locations.

Eddy-viscosity behaviour

With the impact of the sub-grid dissipation quite apparent within the results
presented above, it is of interest to examine this behaviour in detail. In
order to do this, we view directly the spatial behaviour of the sub-grid eddy-
viscosity, the physical manifestation of the sub-grid dissipation. In order to
achieve this, the wall-normal behaviour of the eddy-viscosity, for all three
sub-grid models, upon all three LES grids, at several streamwise locations,
are plotted in Fig. 6.12. The trends of the sub-grid eddy-viscosity, described
in the following sections, help in interpreting and understanding the results
presented in the sections above.

Wall-normal behaviour of eddy-viscosity at streamwise locations

In general, the behaviour of the sub-grid eddy-viscosity, as shown in Fig. 6.12,
differentiates clearly between two different flow regions: the freestream and
the boundary layer. The magnitude of the sub-grid eddy-viscosity is very
strong within the freestream, while it is noticeably weaker within the bound-
ary layer. This is primarily because the freestream is a region with large gra-
dients and thus activates the WALE and SIGMA models, while the under-
resolution of the grid within this region (due to wall-normal stretching) ac-
tivates the SEDM. However, the behaviour of the sub-grid eddy-viscosity at
the edge of, as well as within the boundary layer, is of greater importance
as it dictates the transition behaviour. As we have pointed out previously in
Sec. 6.3.2, the boundary layer may be split into the pre-transitional, transi-
tional and fully turbulent regions.
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[ht!]
(a) Coarse grid (scale = 0.5).

(b) Medium grid (scale = 0.5). Closeup regions in Figs. 6.13(a)
and 6.14(a).

(c) Fine grid (scale = 0.5).

Figure 6.12: Behaviour of the eddy-viscosity ratio, νsgs/ν, at several stream-
wise locations for the SEDM ( ), WALE ( ), SIGMA ( ). Also shown,
with a grey line, the boundary layer 99% thickness.

Ideally, we would like to have zero eddy-viscosity within the pre-transitional
region to allow for the undamped growth of the primary disturbance. Mod-
els such as the SIGMA and the WALE do vanish when the flow field is two-
dimensional in nature. However, the pre-transitional region is not a region
of strictly two-dimensional flow, as can be seen from the fluctuating stresses
close to the inflow, in Fig. 6.7. Thus, as can be observed, upon all three
grids, shown in Fig. 6.12, starting from the edge of the boundary layer and
progressively moving towards the wall there is a strong growth in the mag-
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(a) 0.5νsgs/ν (b) 0.5(v′rms/uτ )

Figure 6.13: Near-wall behaviour showing the peaks in sub-grid eddy-
viscosity and fluctuating stress for the SEDM ( ), WALE ( ) and SIGMA
( ) at the streamwise location Rex = 2.035× 105 upon the medium grid.

(a) SEDM ( ), WALE ( ), SIGMA
( ).

(b) Coarse grid ( ), Medium grid ( )
and Fine grid ( ).

Figure 6.14: Behaviour of 0.5νsgs/ν at the streamwise locations Rex =
1.006 × 105 (a) and Rex = 3.093 × 105 (b). In (a), model comparison close
to the edge of the boundary layer; in (b), grid convergence when using the
SEDM.

nitude of the sub-grid eddy-viscosity. By comparison, the pre-transitional
region is one where, except upon the coarse grid, the eddy-viscosity of the
SEDM is kept quite close to zero (Figs. 6.12(b) and 6.12(c)). This is due
to the fact that the grid in this region is quite fine due to the wall-normal
stretching and the fluctuating stresses are of a sufficiently low magnitude
such that they can be well resolved. The results of this are demonstrated in
growth of the fluctuating stress as shown in Fig. 6.8 which for the SEDM
are closer to the ILES than those of either the WALE or SIGMA model.

When comparing the eddy-viscosity behaviour of the SEDM with the
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WALE and SIGMA models, we observe that the growth in the eddy-viscosity
of the SEDM occurs near the wall and subsequently remaining close to zero
over the bulk of the boundary layer, as can be seen in Fig. 6.12. This
behaviour can be understood by observing the correlations between the fluc-
tuating stress and the eddy-viscosity. This has been highlighted in Fig. 6.13,
by plotting the eddy-viscosity (Fig. 6.13(a)) and the wall-normal component
of the fluctuating stress (Fig. 6.13(b)) at a single streamwise location within
the transitional region. As can be observed, for the case of the SEDM, there
is a strong correlation between the position of the peak stress and the peak
eddy-viscosity. Furthermore, as the stress begins to decay away from the
wall, so does the sub-grid eddy-viscosity. This behaviour indicates that the
spectral sensor in the model is indeed being triggered by the behaviour of
the fluctuating stress, within the boundary layer.

By comparison, the behaviour of the eddy-viscosity of the WALE and
SIGMA models are quite different from that of the SEDM as seen in Fig. 6.12.
They are noticeably non-zero over much of the boundary layer height, and
particularly at the interface between the boundary layer and freestream,
where the sub-grid eddy-viscosity levels of the WALE and the SIGMA are
noticeably higher than that of the SEDM. This behaviour has been high-
lighted in Fig. 6.14(a), which contains the plots of the eddy-viscosity be-
haviour near the edge of the boundary layer at a single streamwise station
within the transitional zone. Based upon the transition behaviour described
in Ref. [2], it is this region of the boundary layer that plays an impor-
tant role in the transition mechanism. Once the primary disturbances have
acquired a certain amplitude, high-frequency and high-wavenumber modes
within the freestream, normally damped within the boundary layer, may
interact with them to produce secondary instabilities which produce fully
turbulent flow. It is thus apparent that the eddy-viscosity behaviour in this
region will strongly influence this interaction. As we have observed in the
behaviour of the skin-friction coefficient, in Fig. 6.10, the transition range of
all the models appears longer than that of the ILES. Furthermore, the tran-
sition range of the WALE and SIGMA models are noticeably longer than
that of the SEDM. We speculate that this difference is due to the behaviour
of the eddy-viscosity within this region. One possible explanation is that the
higher levels of the sub-grid eddy-viscosity in this region, introduced by the
WALE and SIGMA models, suppresses the high-frequency, high-wavenumber
modes close to the edge of the boundary layer, thus inhibiting transition and
prolonging the range of the transitional region.

Grid convergence of the eddy-viscosity

The grid convergence study also highlights an interesting trend in the eddy-
viscosity behaviour. That of the convergence of the sub-grid eddy-viscosity to
zero with grid refinement. For the WALE and SIGMA models, approaching
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to convergence, non-null values of the eddy-viscosity will be locally found
also for ∆sgs ≪ ηk (where ηk represents the Kolmogorov length scale). Such
behaviour is clearly undesirable, since no model would be necessary under
these conditions. Instead, the dynamic nature of the SEDM, provided by
the spectral decay sensor, f(ζKj ), allows the model to be inactive whenever
the velocity field is sufficiently well-resolved. Then, at least in a qualitative
way, a different type of convergence is expected for the SEDM with respect
to the more classical SGS models.

This trend is visible when comparing at any given streamwise location,
the eddy-viscosity behaviour across the the coarse, medium and fine grids,
in Fig. 6.12(a), Fig. 6.12(b) and Fig. 6.12(c), respectively. By doing so
we observe, that with grid refinement, there is a strong trend of the eddy-
viscosity of the SEDM to vanish, within the bulk of the boundary layer.
This has been highlighted in Fig. 6.14(b), which shows the eddy-viscosity
behaviour for all the grids at a single streamwise location within the fully
turbulent zone. As the figure shows, upon the fine grid, except at locations
very close to the wall (due to the large fluctuating stress peaks) the eddy-
viscosity is nearly zero throughout the entire boundary layer. By comparison,
although some convergence is observed in the eddy-viscosity of the WALE
and SIGMA models (particularly within the freestream), the rate at which
the eddy-viscosity vanishes is noticeably slower overall.

Since high-order schemes, such as the SD, typically converge rapidly in
space. It appears to be desirable to have sub-grid models that can match
this rate of convergence. The failure to do so, as is the case for the WALE
and SIGMA models, may be responsible for the discrepancy in the prediction
of the skin-friction coefficient in the fully turbulent region (Fig. 6.10). This
situation is not ideal since in most practical situations our grid resolution
is always limited and thus a slowly converging sub-grid model appears to
produces a sub-optimal solution at a given resolution.

Near-wall eddy-viscosity scaling behaviour

We had mentioned previously, that the ideal sub-grid eddy-viscosity must
exhibit a near-wall scaling of O(y3). The WALE and SIGMA models exhibit
a theoretical scaling of of O(y3), while the SEDM exhibits a theoretical
scaling of O(y). We now look to see whether, the theoretical behaviours are
reproduced within the simulations.

In order to do this, we have plotted the wall-normal behaviour of the sub-
grid eddy-viscosity and fluctuating stresses at a single streamwise location,
placed within the fully turbulent region, for the simulations on the fine grid,
in Fig. 6.15. We observe from Fig. 6.15(a), that while the SEDM exhibits
a linear scaling O(y), just like the theoretical scaling law, the WALE and
SIGMA models exhibit only a quadratic scaling O(y2), which is a departure
from the theoretical cubic scaling O(y3). This behaviour persists throughout
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Figure 6.15: Near-wall scaling behaviour of relative sub-grid eddy viscosity
and fluctuating stresses at streamwise station Rex = 4.189×105. Also shown
are the theoretical rates.

the transitional and turbulent regimes of all grids. The cause of the departure
between the practical and theoretical scaling for the WALE and SIGMA
models is unknown.

However, we observe that despite the deviation of the eddy-viscosity,
for all three models, from the ideal scaling behaviour, the near-wall scal-
ing of the fluctuating stresses is unaffected. To demonstrate this, we have
presented the fluctuating streamwise, wall-normal and spanwise stresses in
Figs. 6.15(b), 6.15(c) and 6.15(d) respectively at the same streamwise sta-
tion. The slopes of the fluctuating stresses are identical to their theoretical
values, taken from Ref. [122], and shown alongside in the figures. As yet,
we are unable to explain the reason why the fluctuating stresses retain their
theoretical scaling behaviour, while the eddy-viscosity does not.
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6.4 SD7003 airfoil

6.4.1 Introduction

Accurate simulations of turbulent flow over airfoils and wings are of funda-
mental importance in modern aeronautical process design. Flow conditions
and geometrical parameters lead to a wide range of challenging situations
to be numerically modelled. Ultimately, CFD tools should address these
concerns with robustness and accuracy for efficient virtual prototyping of
advanced aerodynamical systems.

The SD7003 low Reynolds airfoil simulation is a classical test for transi-
tional flows [123, 124, 125, 126], in particular for spectral element high-order
methods [127, 128, 129, 130, 131]. In such conditions, dynamic turbulence
models should distinguish between smooth and under-resolved regions of the
flow and act accordingly. The capability of a turbulence model to remain
inactive in laminar flows is of fundamental importance for such complex ap-
plications. Classical RANS (Reynolds Averaged Navier-Stokes) approaches
may lack this property and additional models to detect/trigger transition
are needed [132, 133, 134, 135]. These are normally based on user-defined
parameters or on simplified theories (two-dimensional flows and thin bound-
ary layers). Here, the Spectral Element Dynamic Model [1] is used, which is
based on a direct modal analysis of the simulated velocity signal.

The total simulated time is of 50c/u∞ convective times (with c = 1
chord length). Statistics collection starts after 20c/u∞. The most relevant
quantities to be evaluated are pressure and skin friction coefficients due to the
large amount of reference data. Notice that spectral element methods, due
to their intrinsic flux-based formulation, return automatically pressure and
viscous fluxes on the elements’ faces, including wall boundaries. Such values
can then be easily combined with the local geometric informations, such as
the wall normal direction, to compute pressure and friction coefficients.

Finally, averaged streamwise velocity and streamwise fluctuations are
computed along the airfoil surface normal direction. Vortex structures are
visualised by means of the Q-criterion isosurfaces at t ≈ 50c/u∞ in Fig. 6.16.
The flow is characterised by a laminar region close to the leading edge of the
airfoil, followed by a rapid transition to turbulence in the detached boundary
layer. The vortical structures are then smoothed out in the first region,
whereas they break up to smaller and smaller vortices in the second part of
the airfoil, where the local turbulent Reynolds number increases.

In order to better quantify the influence of the SEDM, Implicit Large
Eddy Simulations have been performed on the same computational grid and
with identical solver’s parameters. Unfortunately, for both orders of accu-
racy, the ILES have shown to be unstable. More precisely, starting from the
prescribed, uniform, initial condition, the two implicit LES fail right before
the transition to turbulence. Such behaviour is not totally unexpected as it
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Figure 6.16: Isosurface of the Q-criterion (Q = 200) colored with instanta-
neous velocity field magnitude.

is typical of such high-order turbulent simulations. In the authors’ experi-
ence, in fact, similar unstable ILES have been observed both in free shear
and wall bounded flows [1, 136]. In particular, as in this case, the simulations
tend to fail just before the transition phase, when large-scale kinetic energy
starts flowing toward the smallest (unresolved) scales. The failure of ILES
is, in fact, directly caused by the insufficient level of numerical dissipation
at such scales and the consequent buildup of energy at the highest wave-
numbers. Even restarting the simulation from a fully-established turbulent
flow field, obtained from explicit LES computations, has lead to numerical
failure soon after. Such behaviours are even more exacerbated by high or-
ders of approximation and strongly anisotropic grids. Thus, despite of their
appealing efficiency, ILES are often very delicate in terms of both stability
and accuracy. It is quite well-established that for relatively low orders (3-rd
or 4-th) and proper choices of the numerical flux, spatial discretisation and
grid size, ILES can provide satisfactory results in a fairly wide range of tur-
bulent flows. Nevertheless, such conditions can be rather specific and, more
importantly, in large part uncertain, in particular for complex configurations
like the ones herein considered.

6.4.2 Simulation Setup

All relevant informations regarding present simulations are listed in Ta-
ble 6.4. Both grids have been generated on a two-dimensional geometry
and subsequently extruded along spanwise direction z. The first solution
point along the wall-normal direction has been located such that y+ < 1, in
order to achieve a wall-resolved LES. In particular, in Table 1, y+ has been
evaluated at at x/c = 0.7 as reference. Nonetheless, the condition y+ < 1 is
satisfied along the whole surface of both profiles.

The wing span to chord ratio is set to 0.2 for both cases, the same as
in Galibraith and Visbal [5] simulations of SD7003 profile. In both con-
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SD7003

Reynolds number Re 6× 104

Mach number Ma 0.1
Angle of attack AoA 8◦

Wall BC - Twall = 1.002 · T∞
Number of elements Nt ×Nn ×Nz 128× 24× 2

Polynomial degree N 5 7
Degrees of freedom DoF 1.3× 106 3.1× 106

Wall distance 〈h〉 1.08× 10−5 6.35× 10−6

Wall scaling y+ at x/c = 0.7 ≈ 0.05 ≈ 0.03

Probe 1 location (x1, y1, z1) (0.5, 0.11, 0)
Probe 2 location (x2, y2, z2) (0.5, 0.05, 0)
Probe 3 location (x3, y3, z3) (1.3, 0.00, 0)

Table 6.4: Physical and computational set-up. All quantities are made di-
mensionless with respect to the chord length and free-stream values. A
nominal value c = 1 has been assigned to the airfoil length. Reference frame
is centred on the leading edge. In y+ calculations the closest solution point
to the wall has been considered. In particular, the notation 〈h〉 denotes the
averaged value of wall-distance along the whole profile.

figurations the airfoil has been located approximately 15 chords away from
boundaries. For the SD7003 simulations two different polynomial degree
have been considered (N = 5 and N = 7) to evaluate the influence of the
scheme’s accuracy on the numerical results.

The response of the shear viscosity versus temperature is expressed ac-
cording to Sutherland’s law:

µ(T ) = µ0

(
T

T0

)3/2T0 + TS
T + TS

, (6.18)

where µ0 = 1.827× 10−5 kg m−1s−1, TS = 120K and T0 = 291.15K. Finally,
a specific heat ratio γ = 1.4 and a Pr = µ0cP /κ = 0.71 are assumed. The
flow is initialised homogeneously in the whole domain according to the far-
field conditions.

Notice that in both computations high-orders of approximation are cho-
sen (N = 6 and 8). The reason for such choice is twofold. First of all,
the SGS model described in the previous section is based on a modal tur-
bulence sensor which is more suitable for high orders of approximation (at
least N = 3) for which the decay exponent can be estimated more accurately.
The same applies to the shock-capturing scheme, whose modal sensor needs
a sufficiently high order of approximation as well. Secondly, the use of the
SEDM model would be of very little interest for low order discretisations
since it would be almost constantly inactive, leading, in the end, to a low or-
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der implicit LES. For a deeper discussion on the SEDM and its relationship
with numerical dissipation see [1].

Notice that the reduced number of elements along the spanwise can have
a misleading interpretation. Of course, due to the high-order approximation,
the total number of degrees of freedom along z is considerably larger. More-
over, the use of high-order spectral element methods has often shown super-
convergence properties (see [77]). In each element, the smallest resolved scale
can then be even smaller than the classical estimation ∆z/(N + 1).

6.4.3 Pressure and skin friction coefficients

In Fig. 6.17, it can be clearly noticed how the Laminar Separation Bubble
(LSB) is the most difficult region of the flow to be predicted accurately.
Only in this zone, noticeable differences can be identified with respect to the
reference data. Such deviations may be explained, to some extent, by the
different size of the domain, or by the different numerical discretisation em-
ployed (order of approximation, numerical flux, scheme, etc.). In particular,
in [137], a considerable influence due to farfield boundary conditions has been
observed, along with some evident discrepancies using different orders of ap-
proximation, while keeping the same number of degrees of freedom (DoF).
The latter observation highlight the importance of the implicit features of
the spatial discretisation such as numerical dissipation and dispersion. These
observed differences, with the consequential uncertainties, underline the gen-
eral need for reliable and robust theoretical studies on numerical diffusion
and dispersion of high-order schemes in order to accurately predict the levels
of dissipation introduced in ILES. A minor influence of the approximation
order has been observed in the present simulations too. For N = 8, the
peak of friction coefficient at x ≈ 0.4 is slightly higher and the location of
the LSB is closer to the leading edge. In particular, the reattachment point
is moved upstream with respect to the 6-th order simulation, whereas no
relevant differences have been noticed for the separation point location. It is
also interesting to notice that the minimum value of the friction coefficient
is located at x ≈ 0.25 for both simulations and it coincides with the pressure
peak on the left Fig. 6.17. Finally, it is worthwhile mentioning that most
of reference simulations used a compressible Navier-Stokes solver, whereas,
only Catalano and Tognaccini [138] used an incompressible solver. Averaged
quantities have a good agreement with respect to previously published works,
even though a considerably smaller number of DoF is used.

It is interesting to notice that all the reference simulations predict ac-
curately the location of the separation bubble, except for the computation
by Boom and Zingg [139], where the LSB is significantly shifted toward the
leading edge. Furthermore, considering the friction coefficient, shown on the
right of Fig. 6.17, only the present 6-th order simulation along with the com-
putation by Catalano and Tognaccini [138] show slightly positive values of
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Cf around x ≈ 0.2.

The capability of the Spectral Element Dynamic Model to distinguish
between smooth and turbulent regions appears here as a key factor for a good
description of laminar, fully turbulent, and more importantly, transitional
regions. This can be noticed, in particular, in Fig. 6.18, where the ratio
between eddy-viscosity and molecular viscosity is shown. Very small values
are observed in the first laminar region close to the leading edge, followed
by a gradual increase, up to the fully turbulent boundary layer. In the
separated flow the eddy-viscosity ratio takes values up to ≈ 4 indicating a
non-negligible influence of the SGS model in this particular test case.

(a) Pressure coefficient (b) Skin friction coefficient (suction side)

Figure 6.17: Pressure and Skin friction coefficients.

In Table 6.5, the mean aerodynamic loads and separation bubble dimen-
sions are listed. The data extracted from the present simulation appear to be
in good agreement with respect to other reference simulations. All of them,
in agreement with the present analysis, are formally categorised as Large-
Eddy simulations. In particular, the most refined computation by Garmann
and Visbal will be considered as reference. A fairly good grid convergence
was, in fact, reported in [5, 6].

Notice that high-order methods, such as Spectral Difference used here,
Flux Reconstruction or Discontinuous Galerkin schemes, locate the solution



142CHAPTER 6. EXPLICIT HIGH-ORDER SUB-GRID SCALES MODELLING

Author CL CD xs/xr Order DoF

Galbraith and Visbal [123] 0.910 0.043 0.040/0.280 6 5.70M
Catalano and Tognaccini [138] 0.940 0.044 0.030/0.290 2 8.63M
Boom and Zingg [139] 0.968 0.034 0.037/0.200 4 4.48M
Beck et al. [137] 0.923 0.045 0.027/0.310 3 4.26M
Beck et al. [137] 0.932 0.050 0.030/0.336 7 4.55M
Garmann and Visbal [5] 0.917 0.045 0.031/0.303 6 54.4M
Selig et al. (exp) [140] ≈ 0.920 ≈ 0.029 - - -
Current (N = 5) 0.947 0.048 0.027/0.316 6 1.30M
Current (N = 7) 0.943 0.046 0.028/0.288 8 3.10M

Table 6.5: Mean Aerodynamic loads and separation (xs) and reattachment
(xr) locations and computational details.

Figure 6.18: Averaged eddy-viscosity ratio (N = 5).

points in the inner part of the element while fluxes are evaluated on a different
set of nodes (flux nodes) including the element’s edges. Pressure values and
viscous fluxes are then directly available at the wall boundaries and can be
used to compute the pressure and friction coefficient, respectively.

To quantify the dynamic nature of the SEDM, the turbulence sensor (the
function f(σn) in Eq. 6.3) has been computed on a fully-developed flow field
in a post-processing fashion. In particular, a snapshot of the 8-th order sim-
ulation has been chosen. In Fig. 6.19 the instantaneous flow field and the
turbulence sensor applied to it are consequently shown. Firstly, it can be
noticed that the turbulence sensor is almost completely inactive on the lower
side of the airfoil, where the flow does not separate. In fact, the numerical
algorithm correctly recognises such region of the flow as well-resolved due to
the negligible small scale fluctuations. On the upper side, instead, a much
higher activation can be observed due to the detached flow characterising
this region. In particular, the very narrow shear layer developed closely
after the leading edge is detected by the turbulence sensor has a partially
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under-resolved region (f ≈ 0.5). A detailed view of such region is shown in
Fig. 6.20. Subsequently, downstream the separation bubble, the flow com-
pletely separates and the turbulence sensor frequently assumes a unitary
value, indicating fully-developed turbulence. However, the turbulence sen-
sor can also occasionally take much smaller values in the detached region,
highlighting the presence of locally well-resolved structures even within the
separated flow.

(a) Instantaneous flow field. (b) Turbulence sensor f .

Figure 6.19: Instantaneous flow field (left) and spectral turbulence sensor
applied to the velocity field (right).

(a) Instantaneous flow field. (b) Turbulence sensor f .

Figure 6.20: Detailed view of Fig. 6.19 in proximity of the shear layer devel-
oped closely after the leading edge.

6.4.4 Averaged normal profiles

In addition to wall values, like pressure and viscous stresses, a set of wall-
normal slices are extracted and main variables are compared against those
of the most refined simulation [5, 6] (the locations of the planes of measure
are shown in Fig. 6.21).

In Fig. 6.22, the averaged streamwise velocity is shown. It can be clearly
noticed that the fully turbulent and laminar regions are well described by
the SEDM model. Some discrepancies are still present in the transition re-
gion, however such differences are reasonably expected due to the very large
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Figure 6.21: Profile lines normal to the airfoil surface. These have been taken
every 10% of the chord except for the first point located at x/c = 0.025.

resolution difference between the two simulations (more than one order of
magnitude in terms of DoF). The 6-th order simulation is marginally more
accurate in the transitional region, in particular at x = 0.2 and x = 0.3.
At x = 0.3, all the velocity profiles have almost null normal derivative, in-
dicating the proximity with the reattachment point. In particular, in the
6-th order simulation, the normal derivative assumes small negative values,
followed by the reference data and finally the 8-th order simulation, with
slightly positive values. In other words, the 6-th order simulation antici-
pates the separation, while the 8-th order simulation delays it. The same
conclusions can be drawn from Fig. 6.17 and Table 6.5.

Figure 6.22: Averaged streamwise velocity along normal direction (N = 5,
solid line, N = 7, dot-dashed line). Red dots represent streamwise velocity
by the most accurate simulation [5, 6].

Analogous observations can be made from the streamwise velocity fluc-
tuations shown in Fig. 6.23, where the two simulations show similar trends.
At x = 0.2, the predicted fluctuations are larger than the reference whereas
at x = 0.3, both simulations show smaller fluctuations, indicating a faster
transition with respect to the reference data. Namely, the largest fluctua-
tions occur more upstream with respect to the DNS data in both simulations.
Nevertheless, for this level of resolution, results are sufficiently satisfying.

Finally, in Fig. 6.24, the eddy-viscosity ratio is plotted. The ability of the
sensor to activate only in the transitional and fully turbulent regions, leaving
practically untouched the laminar part of the flow, is particularly evident. In
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Figure 6.23: Streamwise velocity fluctuations along normal direction (N = 5,
solid line, N = 7, dot-dashed line). Red dots represent streamwise velocity
fluctuations by the most accurate simulation [5, 6].

the fully turbulent region of the airfoil, the eddy viscosity reaches an almost
constant value along the streamwise direction, suggesting an expected self
similar behaviour of the flow field. It is finally interesting to notice a peculiar
characteristic of the SEDM: considering the 8-th order simulation, the eddy
viscosity values are smaller with respect to the 6-th order case. in fact, since
the level of resolution has been increased, the amount of kinetic energy to
be dissipated is smaller and the model is naturally tending to a progressive
deactivation. Such behaviour is a very desirable feature of turbulence models,
which should turn completely off in both laminar and sufficiently resolved
turbulent regions of the flow.

Figure 6.24: Averaged eddy-viscosity ratio along normal direction (N = 5,
solid line, N = 7, dot-dashed line).

6.4.5 Kinetic energy spectra

In order to assess the energy transfers and content in fully turbulent regions,
velocity data have been stored over time using virtual probes located in
different zones of the boundary layer and wake regions, as shown in Fig. 6.25.
Fast Fourier transform (FFT) has then been applied to time signals and
energy spectra are computed. It is then possible to relate the temporal
energy spectra with the spatial one assuming the applicability of the Taylor’s
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hypothesis [141]. In the present section only the 6-th order simulation has
been considered.

Figure 6.25: Instantaneous velocity magnitude. Numbers mark probes loca-
tions.

Once the full time signal processing is done, a possible estimate of the
wavenumber is provided as:

κ =
2πF
〈||u||〉 , (6.19)

where F is the temporal frequency and 〈·〉 denotes temporal averaging oper-
ation. Subsequently, the dissipation rate can be directly computed in phase
space according to the well known relation:

ǫ(κ) = 2νκ2E(κ) , (6.20)

where E(κ) denotes the kinetic energy spectrum.

In Fig. 6.26, the energy spectrum of two different probes is shown. Probes
1 and 2 are chosen in order to validate the applicability of Taylor’s hypothesis.

A transition to spectral decay is expected right after the inertial range for
high wavenumbers, located approximately within the range π/2 < κ∗ < π
with κ∗ = κ∆x/(N + 1). A good alignment between advection velocity and
the x-direction has been here assumed with the use of the streamwise grid
size ∆x. Due to very high velocity fluctuations, in the second probe, the
expected dissipative region close to the Nyqvist grid wavenumber is shifted.
On the other hand, analysing the spectrum of probe number 1, the natural
transition to the smooth region is located close to the maximum resolved
wavenumber. In Fig. 6.26, both curves are characterised by a very short
inertial range, typical for such small Reynolds numbers turbulence. Finally,
no energy accumulation has been observed in proximity of the Nyqvist grid
wavenumber, providing a smooth transition from inertial to dissipative range.
The SGS model is then capable of properly mimicking energy transfers be-
tween scales.
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(a) Probe 1 (b) Probe 2

Figure 6.26: Kinetic energy spectra in probe 1 and 2. Vertical lines denotes
an estimate of the dissipation region: π/2 < κ∗ < π.

6.5 Conclusions

This work has presented the behaviour of various LES models, the WALE,
SIGMA and particularly the SEDM, upon a numerical reproduction of the
experimental ERCOFTAC T3A, ZPGSFPBL bypass transition test case. In
general, we conclude that at the finest grid resolutions (although coarser than
those of previous studies) the performance of all the models is acceptable.
In fact for the current test case, the sensitivity of the transition behaviour to
the grid far exceeds the sensitivity to the LES models used. However, when
we compare the behaviour of the models among each other we observe that
the SEDM performs better than either the WALE or SIGMA models. We
elaborate upon these conclusions and lay out a path for future work below.

As pointed out above, the quality of the LES simulation was quite sen-
sitive to the grid used. This is due to the use of the high-order spectral
difference schemes. These schemes possess high-rates of convergence and
thus the results change dramatically in moving from coarse to fine grid as
the scheme exhibits rapid grid-convergence. The ILES computation on the
fine grid is quite revealing of this trend. The fine grid used by us is close,
in terms of the number of solution points used, to the coarse grid utilised
in Ref. [4]. This notwithstanding, better agreement with reference data is
shown in the present study. While it is quite possible that the different syn-
thetic turbulence used in the two cases may have played a role, it is more
likely that the difference is due to the use of different numerical schemes,
low-order schemes (2nd-order finite volume) in Ref. [4] as compared to high-
order (6th-order SD) in our case. Thus it appears, that an ILES using a
high-order scheme will tend to produce better results than an LES using a
low-order scheme, irrespective of the type of model used, due to the rapid
grid-convergence of the high-order schemes. The strong dependency of the
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solution quality on the numerical scheme as compared to the sub-grid model,
leads us to believe that perhaps a test case must be chosen, for which the
influence of the sub-grid model is comparable to that of the scheme. The
natural transition of the T3A- case (Tu ≃ 0.9%) appears to be a suitable
candidate as the transition occurs at Reynolds numbers an order of magni-
tude higher than either the T3A or T3B cases. To our knowledge there does
not appear to have been any simulation upon the T3A- case and perhaps it
may be used in future to obtain large differences between the models.

We now focus upon the behaviour of the LES models. All three models,
WALE, SIGMA and SEDM, allow for transition to occur, but with varying
behaviour. In general, the WALE and SIGMA model are relatively more
dissipative than the SEDM. Within the pre-transitional region, the sub-grid
eddy-viscosity introduced by the WALE and SIGMA is significant. This
damps out the growth of the primary disturbance in the streamwise direction
and hence delays the onset of transition. For the SEDM however, particu-
larly on the medium and fine grids, the eddy-viscosity within this region is
noticeably lower. This in turn allows the disturbance to grow in a manner
similar to the ILES and thus the onset of transition is further upstream as
compared to the WALE or SIGMA models. Thus, from this fact we can con-
clude that it is indeed a desirable property to have vanishing or low-levels of
sub-grid eddy-viscosity in the pre-transitional region.

The grid convergence property of the SEDM is a property which has
proven to be quite useful in our simulations. With the rapid decrease in
the eddy-viscosity in the well-resolved regions of the domain (such as the
freestream-boundary layer interface), a proper transition range and skin-
friction level can be attained. With the rapid spread of high-order methods,
the property of super-linear grid convergence of the eddy-viscosity is likely to
become a more attractive feature in future LES modelling approaches. This
feature was also highlighted as one of the major advantages of the variational
multi-scale models (VMS), a technique specific to the high-order FEM type
discretizations [142]. By comparison, for the WALE and SIGMA models,
the rate at which the eddy-viscosity vanishes is linear and the consequences
of this are quite apparent with a poorer prediction of the skin-friction in the
fully turbulent region as well as the transition range. At this point we must
bear in mind that the WALE and SIGMA models were developed during a
period when low-order methods dominated numerical simulations and thus
the need for the sub-grid eddy-viscosity to converge at high rates was never
considered.

Despite what was stated in the paragraph above, the WALE and SIGMA
models do provide reasonable accuracy. However, what is troubling is the
fact that the near-wall scaling of the eddy-viscosity is quadratic rather than
the cubic as is the theoretical rate. While we have been unable to identify
cause of this problem, it does not appear to affect the scaling behaviour of
the fluctuating stress. By comparison the eddy-viscosity of the SEDM scales
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linearly and since it is based upon the scaling of the fluctuating stress, this is
the best scaling behaviour possible. Future work could be focused in different
combinations of functional forms of the eddy-viscosity operator multiplied by
the turbulence sensor in order to reproduce the correct scaling. Finally, we
recall the simulations in Ref. [111] involving the transition over a flat plate
subjected to an adverse pressure gradient. In their simulations, they noticed
that only the mixed-time-scale (MTS) model [143] was capable of predicting
the presence of a recirculation zone, with the dynamic Smagorinsky and
WALE model being too dissipative. We have come to a similar conclusion,
about the WALE and SIGMA model, within this work as well. However,
what is interesting is that the MTS model scales its eddy-viscosity with
a test-filtered sub-grid scale energy and a time-scale and thus its overall
formulation bears a strong resemblance to the SEDM. Perhaps, these test
may point towards the benefits of using sub-grid kinetic energy as part of the
eddy-viscosity formulation in the development of future turbulence models.

Considering the flow over the SD7003 airfoil, transition to turbulence
has been well predicted by the proposed dynamic turbulence model, both
in terms of bubble location and wall-normal profiles. A good agreement
with previously published experimental and computational results has been
observed, despite the use of a fairly coarse mesh. Kinetic energy spectra
have been computed in both cases using the Taylor’s hypothesis. Despite the
high order selected for the simulation and the associated very low numerical
dissipation introduced by the discretisation, no energy accumulation has
been observed in the proximity of the Nyqvist grid wavenumber, providing
a smooth transition from inertial to dissipative range.

Implicit large eddy simulation performed on the same computational grid
have been performed to better quantify the overall influence of the Spectral
Element Dynamic Model on the resolved field. However, all the implicit
computations have shown to be unstable due to the insufficient numerical
dissipation at the smallest scales. Implicit large eddy simulations, in fact,
despite the appealing computational efficiency, are often inaccurate and/or
unstable for a wide range of computational grids, numerical fluxes, especially
when high orders of approximation are adopted on under-resolved meshes
(i.e., typical LES resolutions). Therefore, adaptive dynamic SGS models,
able to operate only in presence of insufficient numerical dissipation, rep-
resent a crucial step in the development of reliable and robust high-order
schemes for complex turbulent flows.
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7.1 Introduction

Compressible gas dynamics has motivated many studies [144] and shock
capturing techniques have been developed since the very beginning of the
application of computational fluid dynamics. This research field is still ex-
tremely active due to the necessity of a proper description of compress-
ibility effects in various complex engineering applications. Many different
available numerical schemes are particularly susceptible to the treatment
of discontinuous solutions, especially when high-order approximations are
employed. In this case, the persistency of numerical oscillations in the
proximity of a shock (commonly known as Gibbs phenomenon) can lead
to unstable solutions implying accuracy and robustness reduction. Within
the framework of high-order Discontinuous Finite Element (DFE) meth-
ods, many different procedures have been constructed to mitigate this is-
sue. In particular, two of the most utilised approaches involve the use of
limiters [145, 146, 147, 148]—including weighted essentially non-oscillatory
(WENO) schemes [149, 150, 151, 152, 153]—or the injection of artificial
viscosity (AV) [154, 155, 7, 156]. The former approach is based on the
proper numerical limitation of the amplitude of the gradients of the solu-
tion, whereas the latter consists in the local addition of an ad-hoc amount of
numerical dissipation. Both methods intend to limit or damp the presence
of oscillatory behaviours near shocks and discontinuities.

Depending on the geometrical, physical and mathematical setting, one
approach can be more suitable than the other: artificial viscosities terms
are usually highly compact and can be easily computed even in higher di-
mensions, whereas limiters and WENO schemes cannot preserve the DFE
scheme compactness and an appropriate and efficient generalisation to mul-
tiple dimensions on unstructured grids can be extremely cumbersome, both
theoretically and computationally. On the other hand, the use of artificial
viscosity does not provide full control on local minima and maxima of the
solution and can lead to the occurrence of negative densities or pressures.
Under such circumstances, it is necessary to couple the artificial viscosity
with a positivity preserving scheme [157].

Regardless of which class of methods is employed, the identification and
localisation of sharp features in the fluid flow is of fundamental importance
for the correct description of the physical system. To this end, the use of
shock sensors is widely diffused: these are designed to detect if a discontinu-
ity is present or not in a certain region of the domain. Shock development
and dynamics could sometimes be extremely difficult to predict, leading to
a strong interest in the development of very accurate and highly automated
sensors. The detection of such structures can be directly performed using
nodal values of the solution (for example the divergence of the velocity [158])
or it can rely on modal sensors, which are based on the decay rate of the
expansion coefficients of the approximated solution [7, 8]. In the context of
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high-order approximations, the latter procedure is clearly more attractive,
as it basically exploits intrinsic information provided by the spatial discreti-
sation itself. Possible approaches include the use of the ratio between the
energy of highest mode and the energy of the whole spectrum [7], or a least-
square power fit of the modal coefficients decay [156]. It is worthwhile noting
that an obvious limitation of the use of modal sensors is the necessity of a
sufficiently high order approximation to get a meaningful modal spectrum.
In the present work, the recently proposed characteristic-based sensor is im-
plemented [159].

Once the discontinuity is identified the operative procedure to smooth out
or limit the shock can be applied locally, stabilising the solution. However
a careful attention should be paid on how spurious terms or numerical ma-
nipulations could affect the physical phenomena. Different shock capturing
methods could lead to a similar mean behaviour of the solution but damage,
or eventually completely destroy, some key characteristic of the governing
equations.

On this particular regard, in the present work, a detailed comparison
is presented between shock capturing approaches based either on the addi-
tion of Laplacian terms in the Navier-Stokes equations or on the addition
of an amount of bulk viscosity in the stress tensor. Five canonical com-
pressible flows are considered, namely: the one-dimensional shock collision;
the two-dimensional inviscid strong-vortex/shock-wave interaction; the in-
viscid Taylor-Green vortex; the decaying compressible isotropic turbulence
and the shock/wavy-wall interaction. Both direct numerical simulation and
large-eddy simulation are performed depending on the selected test case.

The novelty of the work lies in the particular emphasis put in the assess-
ment of the shock capturing procedure in correctly reproducing the theo-
retically expected non-monotonic behaviour of the entropy across the shock
and on the capacity of the artificial viscosity to deal with turbulence, when
present, and to interact with relevant models—i.e., the sub-grid scale model
in the case of LES—such as to provide physically accurate results.

The results of the present chapter have been published in “Computers
and Fluids” [18] (https://doi.org/10.1016/j.compfluid.2019.104357).

7.2 Shock capturing in high-order discretisations

The usual Navier-Stokes equations [160] for the density ρ, the momentum
ρu, u being the velocity vector, and the specific total energy E (internal +
kinetic) are solved in their compressible form using the high-order Spectral
Difference method [161, 162, 48]. The SD scheme enables arbitrary high-
order computations over unstructured meshes and provides high resolution of
the flow with minimal numerical dissipation [163, 94]. It is worthwhile noting
that, the shock capturing formalisms discussed herein is based on the original
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work of Persson and Peraire [7] and subsequent developments [8, 164, 159],
and can be applied to any discretisation relying on a modal approximation
of the solution.

7.2.1 Laplacian viscosity

The Laplacian viscosity represents a very robust approach [7, 8, 165, 166,
167, 164, 168, 159] in which the right-hand-side of each advection-diffusion
equation (including mass conservation) is augmented by a Laplacian term in
the form

∇ · (εAV∇φ) , (7.1)

where φ is the relevant transported quantity—either the density, the mo-
mentum, or the total energy—and εAV is the added artificial viscosity by
the shock capturing scheme. It is worth stressing that this approach treats
each equation in the same way and the same amount of diffusion is added
to every transported quantity.

7.2.2 Physical artificial viscosity

The physical artificial viscosity approach, on the other end, formally intro-
duces artificial viscous fluxes in strict analogy to those representing molec-
ular viscosity. An artificial viscosity µAV, an artificial bulk viscosity βAV
and an artificial thermal conductivity λAV are then added to the molecular
viscosities and to the flow thermal conductivity.1 In particular, according to
previous works on physical models for the artificial viscosity [169, 170], in
the present study an additional bulk viscosity is applied without any arti-
ficial shear viscosity. Hence, using index notation and Einstein summation
convention, the viscous tensor and heat flux vector read, respectively,

Aij = µ

[(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3

∂uk
∂xk

δij

]
+ βAV

∂uk
∂xk

δijH

(
−∂uk
∂xk

)
, (7.2)

Qj = −(λ+ λAV)
∂T

∂xj
, with λAV =

βAVcp
Prβ

, (7.3)

1It is worth noting that a previous work on modal detection approaches for discontinu-
ous Galerkin schemes [7] seem to suggest the use of the artificial shear viscosity only, µAV,
while keeping the Stokes’s hypothesis valid for the artificial viscous stresses (βAV = 0).
Such a choice, which would prevent any artificial dissipation in the momentum equa-
tion in the one-dimensional case, appears—to the authors—to be in conflict with the
one-dimensional results presented in the same paper, where the physical model provides
sufficient robustness even at relatively high Mach numbers. Indeed, in a subsequent recent
works [169, 170], not only the artificial bulk viscosity is retained, but it is the artificial
shear viscosity which is set to zero because, as the authors emphasise, “shock waves are
stabilized through β∗ and λ∗ only” (the ∗ superscript is adopted therein for artificial
viscosity terms).
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where Prβ is the artificial viscosity Prandtl number and cp the constant-
pressure heat capacity. Notice that, to prevent the artificial viscosity from
being triggered in flow regions undergoing expansions (i.e., where the diver-
gence of the velocity is positive), an additional switch based on H (·), the
Heaviside function, is embedded in the artificial bulk viscosity expressed by
(7.2) [171, 172].

For the majority of the presented simulations, a constant value of Prβ =
Pr = 0.71 is used, whereas, for the three-dimensional cases featuring quite
strong fluctuations of the local Mach numbers, the expression proposed
in [170] is adopted:

Prβ = Pr {1 + exp [−4 (Ma−Mathr)]} , (7.4)

where Ma is the local Mach number computed from the velocity magni-
tude and Mathr = 3 is a fixed threshold. This formulation avoids adding
unnecessary thermal dissipation for low Mach number regions of the flow
and provides a value of Prβ that would tend asymptotically to Pr, the flow
Prandtl number for hypersonic problems. Concerning the suppression of the
shear AV term in favour of a bulk viscosity only, as it will be discussed in
more details in the results section, the addition of a shear viscosity implies an
extra dissipative term on vorticity equation, whereas the bulk viscosity adds
a similar term in the dilatation equation only. As a result, the former affects
vorticity modes, while the latter acts on dilatational modes. The use of bulk
viscosity only appears to be very well suited for shock capturing for two main
reasons. First of all because, being multiplied by the divergence of velocity,
its functional form has an intrinsic compressible nature: even if shock de-
tection is not perfect, the additional bulk viscosity is still proportional to a
term which is big only in presence of strong compressibility effects. Secondly,
the shear viscosity being linked to vorticity, it is more suited for turbulence
modelling, as it is well established by widely popular eddy-viscosity mod-
els for LES. In this sense an additional artificial shear viscosity would lead
to unnecessary vorticity dissipation and, more importantly, it could lead to
unexpected interactions between an eddy-viscosity SGS model and the AV
model.

7.2.3 Discontinuity sensor

Within the context of high-order methods, discontinuities are usually de-
tected from the decay rate of the expansion coefficients of the solved signals
(the reader is referred to the original works in [7, 8, 159] for additional
details). In the current implementation, a recently proposed modal sensor
based on the acoustic characteristics and the density is used [159]. Let ψ and
ψ be, respectively, the signal adopted for shock detection and its truncated
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polynomial expansion:

ψ(ξ) =

N∑

i=0

ψ̂iPi(ξ), ψ(ξ) =

N−1∑

i=0

ψ̂iPi(ξ), (7.5)

where Pk is a polynomial of degree k from a suitable polynomial basis and
ψ̂k is the relevant kth mode. Then, the modal sensor se can be computed
as:

se(ψ) = log10

[
(ψ − ψ̄, ψ − ψ̄)L2

(ψ,ψ)L2

]
, (7.6)

where (·, ·)L2 is the standard L2 inner product within the element.2

Depending on the adopted approach—namely, Laplacian or physical model—
the artificial viscosities, εAV or βAV, are triggered in the neighbourhood of
discontinuities using a sinusoidal function of the modal sensor se:

f(se) =





0 for se < s0 − l,
ε0
2

{
1 + sin

[
π(se − s0)

2l

]}
for s0 − l ≤ se ≤ s0 + l,

ε0 for se > s0 + l,

(7.8)

with f being either εAV or βAV/ρ in the case of Laplacian or physical model,
respectively. The quantities s0 and l are, respectively, a threshold and the
sensor tolerance, whereas the nominal maximum value of the artificial vis-
cosity, ε0, is computed from the spectral radius of the flux Jacobian and the
mesh element size h as

ε0 = Cεamaxh/(N + 1), (7.9)

where amax is the maximum wave speed in the whole domain. Unless ex-
plicitly stated otherwise, in the following computations, an automatic cali-
bration algorithm based on manufactured solutions [164, 159] is adopted to
determine optimal values of the shock capturing parameters (s0, l, Cε).

7.3 On non-monotonicity of entropy profile across

an inviscid shock

Back in 1949, Morduchow and Libby [173] used an analytic solution for the
profile of a weak shock in a viscous, heat-conducting, compressible flow to

2In the case an orthonormal polynomial base is adopted (e.g., normalised Legendre
polynomials), the inner products in the sensor definition assume the particularly simple
form

(ψ,ψ)e =

N∑

i=0

ψ̂2
i and (ψ − ψ,ψ − ψ)L2 = ψ̂2

N , (7.7)

where the modes are obtained from nodal values via matrix multiplication with the inverse
Vandermonde matrix of the selected polynomial basis [52].
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demonstrate that the equilibrium thermodynamic entropy has a maximum
inside the propagating wave. Such overshoot of entropy within a shock layer
was then further investigated for inviscid flows using weak solutions of partial
differential equations based on distribution theory and integral conservation
form of the equations [174, 175, 176, 177].

In the context of the Euler equations and Hugoniot jump conditions [178],
the underlying idea is that, since the (normalised) entropy s = ln(p/ργ) is
defined using two functions (pressure and density) which are discontinuous
across the shock, it cannot be defined by a single jump for, in such a case,
some information would be unavoidably lost. Along these lines, Salas and
Iollo [175] have discussed a more adequate form for the entropy function
built from two Heaviside functions (Fig. 7.1)

s(ξ) = sl + (s∗ − sl)H(ξ) + (sr − s∗)H(ξ), (7.10)

where ξ is the coordinate in a frame moving with the shock. The subscript
‘r’ denotes the shocked (compressed) gases and ‘l’ the gases upstream of the
propagating interface, whereas s∗ is the maximum level of entropy approxi-
mated as

s∗ =

[
ln(pr)

(
pr

pr − 1

)
− 1

]
+ γ

[
ln(vr)

(
vr

vr − 1

)
− 1

]
, (7.11)

where p denotes the pressure and v = 1/ρ is the specific volume and the
left relevant values of pl and vl, without any loss of generality, have been set
equal to unity. The above relation provides the value of the theoretical peak

Figure 7.1: Sketch of the entropy profile across an inviscid shock layer.

of entropy which is expected in the case of a shock in the inviscid limit.
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Such entropy peak is practically unattainable when the Euler equations
are numerically solved because, no matter how accurate is the scheme or how
fine is the mesh, a certain amount of numerical dissipation is unavoidable.
Such (numerical) departure from the inviscid limit is even more pronounced
when an artificial viscosity is adopted in the neighbourhood of shocks and
discontinuities to guarantee a sufficient resolution of the solution. Under such
circumstances and in the absence of a viscous counterpart of Eq. (7.11), this
last can be used to asses the entropy preserving nature of the numerical
scheme and the artificial viscosity approach, the most performing ones being
those that provide the best approximation of the theoretical entropy profile
across the shock. This is a crucial point which, to the authors’ knowledge,
has not been considered in detail so far in the archival literature. On this
regard, however, it is worth noting that non-monotonic profiles in the entropy
across one-dimensional shocks were reported in [7] when using the physical
artificial viscosity model with non-zero artificial thermal conductivity λAV,
whereas, this behaviour was lost when λAV = 0 or in the case the Laplacian
viscosity model was used. In view of the present analysis, these two particular
choices in dealing with shocks would rise questions concerning their physical
consistency in terms of entropy.

It is finally worth pointing out that overheating errors which were ob-
served in [159] when performing one-dimensional shock collisions—and for
which no remedy could be identified—are indeed, as it will be shown in the
next sections, a direct consequence of the use of a Laplacian viscosity model
and the resulting error in the entropy across the shocks.

7.4 Flow configurations and computational set-up

Five canonical test cases are considered to evaluate the two shock cap-
turing approaches and their physical consistency in term of entropy be-
haviour: (a) stationary one-dimensional weak shock; (b) the collision of one-
dimensional shocks; (c) the interaction between a two-dimensional strong-
vortex and a shock-wave; (d) the inviscid Taylor-Green vortex; (e) the com-
pressible, decaying, homogeneous, isotropic turbulence and (f) the interac-
tion between a shock and a wavy-wall. Time integration is performed using
a three step explicit Runge-Kutta scheme. The order of accuracy of the SD
spatial discretisation varies with the cases. Whenever needed depending on
the test cases, the Spectral-Element Dynamic Model (SEDM) for turbulence
modelling has been employed [1]. It is worth noting that this SGS model fea-
tures a modal turbulence sensor to detect flow under-resolution and locally
activate the eddy-viscosity when needed.
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7.4.1 Stationary one-dimensional weak shock

The simulation of a weak one-dimensional shock of Ma = 1.1 is here consid-
ered. The domain is 0.02 units long, equivalent to approximately 650λ, with
λ the mean free path. The initial value of density, pressure and velocities are
defined through Rankine-Hugoniot conditions and the system is let evolve
toward the expected stationary solution. A very refined, shock-resolving
simulation is here considered as reference: a uniform grid of 405 8th-order
elements has been used, leading to approximately 90 solutions points located
within the shock. For this level of resolution, shock capturing models are not
needed. A dynamic behaviour of shear viscosity according to Sutherland’s
law has been assumed:

µ(T ) = µ0

(
T

T0

)3/2T0 + TS
T + TS

, (7.12)

where µ0 = 1.827× 10−5 kg m−1s−1, TS = 120K and T0 = 291.15K. Finally,
a Specific heat ratio γ = 1.4 and a Pr = µ0cP /λ = 0.71 are assumed.
Coarser 8-th order inviscid simulations have been performed on a 45 element
grid with the two models active. For this discretization, approximately 8
solutions points are located in the inner part of the shock.

7.4.2 One-dimensional shock collision

Let a unitary long one-dimensional domain be initialised with two identical
shocks moving towards each other, initialised respectively at x = 0.2 and
x = 0.8. Two Mach numbers, Ma = 5 and Ma = 10 are considered. The
domain is discretised in 60 uniformly distributed elements and Euler equa-
tions are solved using a 6th-order SD scheme. The initial values of density,
pressure and velocity upstream the shocks, defined by the Rankine-Hugoniot
conditions, along with the reflected shocks properties are summarised in Ta-
ble 7.1. For all one-dimensional test cases, a slightly higher activation value
has been chosen for the physical model in order to make it more sensitive to
shock detection and, consequently, more aggressive in damping oscillations.
Regarding the Laplacian approach, nominal parameters have been used.

7.4.3 Two-dimensional inviscid strong-vortex/shock-wave in-
teraction

The physical domain is Ω = (0, 2L) × (0, L) and a stationary shock is lo-
cated at xs = L/2, where L is a reference length scale (unity in the present
case). The inflow Mach number is Ma∞ = 1.5 and a compressible, isother-
mal, zero-circulation vortex with external radius b = 0.175L and inner core
a = 0.075L is initially centred at (x, y) = (L/4, L/2). The initialisation
procedure of velocity, temperature, density and pressure can be found in
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Ma 5 10

Incident
ρ 5.000 5.714
|u| 4.733 9.762
p 29.000 116.500

Reflected

Mar 2.408 2.579
ρr 16.110 19.550
|us| 5.916 10.946
pr 191.400 884.500

Table 7.1: One-dimensional shock collision (all the quantities are normalised
with respect to the initial density and pressure of the fluid at rest between
the initial shocks).

multiple articles [179, 180, 181, 170], based on isothermal, isochoric or isen-
tropic conditions. As in [179], an isothermal initial condition is prescribed
and the vortex Mach number Mav is set to 0.9 (based on the maximum
tangential velocity in the vortex’ inner core). Considering a reference frame
with the origin in the initial position of the vortex centre, the initial velocity
vector field upstream of the shock is obtained as the superposition of a uni-
form horizontal velocity corresponding to upstream shock conditions and the
vortex velocity field, namely, u(r) = uθ(r)êθ + u∞êx, where êθ is a unitary
vector in the tangential direction around the centre and uθ is the relevant
tangential velocity component. The velocity components then read

u∞ = Ma∞
√
γRT0, (7.13)

uθ(r) = Mav
√
γRT0





r/a for r ≤ a,
η

2

(
r

b
− b

r

)
for a ≤ r ≤ b,

0 for r > b,

(7.14)

where
η = 2(b/a)/[1− (b/a)2].

The thermodynamic variables in the vortex zone are evaluated combining the
balance of the pressure gradients with the centripetal force and isothermal
condition for ideal gases,

dp

dr
= ρ

u2θ
r
, p = ρRT0, (7.15)

leading to

ln

(
p

p∞

)
=





γMa2v
2

[(r
a

)2
+ η

b

a
+ η2 ln

(
b

a

)]
for r ≤ a,

γMa2v
2

η2
[
(r/b)4 − 1

4(r/b)2
− ln

(r
b

)]
for a ≤ r ≤ b,

1 for r > b,

(7.16)
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The spatial domain is subdivided in 256×128 uniform quadrilateral elements
with a 5th-order SD discretisation. Free-slip and adiabatic walls are imposed
on the top and bottom sides of the domain and characteristic-based, non-
reflecting boundary conditions are applied on the inflow and outflow [182,
183].

7.4.4 Inviscid Taylor-Green vortex

The Taylor-Green Vortex constitutes a well-established test case to study
vortex dynamics, turbulent transition, turbulent decay and energy dissipa-
tion processes in a three-dimensional setting [93]. The problem consist of a
cubic domain [−Lπ,Lπ]3 with periodic boundary conditions applied to all
faces starting from the smooth initial condition





ρ = ρ0,

u1 = U0 sin

(
x

L

)
cos

(
y

L

)
cos

(
z

L

)
,

u2 = −U0 cos

(
x

L

)
sin

(
y

L

)
cos

(
z

L

)
,

u3 = 0,

p = P0 +
ρ0U0

16

[
cos

(
2x

L

)
+ cos

(
2y

L

)][
cos

(
2z

L

)
+ 2

]
.

(7.17)

Unity has been assigned to both U0 and ρ0, the reference velocity and density,
respectively, and the initial value of the pressure P0 has been chosen such
that the corresponding initial Mach number is equal to 0.1. For this value
of the Mach number, the flow is practically incompressible. The objective
of the present simulation is thus to evaluate how dissipative are the two
artificial viscosity models discussed in Section 7.2 when they are applied to
an inviscid flow free from shocks. The flow domain is subdivided in 323

uniform cubic elements and discretised with a 6th-order SD scheme. The
solution obtained without artificial viscosity will serve as reference. In all
the simulations, considering the actual resolution of the employed mesh, the
SEDM model has been activated due to turbulent nature of the developed
flow field in later times of the simulation.

7.4.5 Under-resolved compressible isotropic turbulence

The objective of this test case is to investigate the performance of Laplacian
and physical shock capturing models when shocks and turbulence coexist and
both the SGS model and the shock capturing viscosity are activated. The
computational domain consists in a periodic cube Ω = [−Lπ,Lπ]3 contain-
ing decaying homogeneous and isotropic turbulence. Pressure, temperature
and density fields are initially constant and the velocity is solenoidal with
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a turbulent kinetic energy spectrum E(k) ∼ k4 exp[−2(k/kM )2], where k is
the wavenumber and kM corresponds to the most energetic wavenumber (in
this case kM = 4/L). The initial turbulent Mach number and Taylor-scale
Reynolds number are evaluated on the initial flow filed as:

Mat,0 =
urms,0

√
3

〈a〉 = 0.6, and Reλ,0 =
〈ρ〉urms,0λ0

〈µ〉 = 100, (7.18)

where a is the speed of sound and 〈·〉 denotes spatial averaging, whereas

urms,0 =
√

1
3〈uiui〉

∣∣∣∣
t=0

and λ0 =

√
〈u12〉

〈(∂u1/∂x1)2〉

∣∣∣∣∣
t=0

(7.19)

are, respectively, the initial root-mean-square velocity fluctuations and the
Taylor micro-scale. A power-law is assumed for the dynamic viscosity,

µ = µ0(T/T0)
3/4.

It’s easy to show that the initial condition is such that λ0 = 1/kM . The
domain has been discretised using 163 hexahedra elements with a 6-th order
polynomial approximation. Considering state-of-the-art LES of compress-
ible isotropic turbulence [169] [184] [185] this resolution gives a purposely
slightly under-resolved simulation in order to enhance the impact of numeri-
cal dissipation, this last including the dissipation coming from the numerical
discretization, the artificial shock capturing viscosity and the SGS modeling
viscosity. Defining the Nyquist wavenumber as k̃N = π/h, corresponding to
the smallest resolvable scales, the chosen grid gives k̃N = 48/L, which is in
good agreement with commonly used values for LES of this configuration.
The value h has been approximated as 2πL/N where N is the number of
degrees of freedom (DoF) along one direction. It shall be noticed that this
resolution corresponds, in terms of DoF, to the one used in [170] for 3rd-order
computation of the same test case. Results have been compared with a DNS
on 2563 DoF [186]. According to [186], higher resolution data (3843 DoF)
have been employed to evaluate kinetic energy contributions. The simulation
is performed from t = 0 to t = 4A0, with A0 = λ0/urms,0.

7.4.6 Shock/wavy-wall interaction

The interaction between a shock wave and a sinusoidal wavy wall is a more
challenging test case, simultaneously featuring complex shock reflections and
a background low-Mach number flow with very specific small scale patterns
[187, 188, 168]. The problem has been chosen to match the experiment
reported in [187]. In this experiment, a vertical planar shock propagating
at Mach number 1.5 in air is reflected on a sinusoidal wall with amplitude
1.0 mm and wavelength 2.0 cm. The Navier-Stokes equations are integrated



7.5. RESULTS AND DISCUSSION 163

Figure 7.2: Geometrical set-up and initial conditions for shock/wavy-wall
interaction.

over a computational domain 10 cm long and 2 cm high with 600 × 140 un-
structured quadrilateral elements. A 5th-order SD scheme is adopted and
the total number of degrees of freedom is 2.1 × 106. The left wall is char-
acterised by a no-slip condition while top and bottom boundaries are set
as periodic. The initial setup is schematically represented in Fig. 7.2. The
typical properties for air have been used in the simulation, hence the specific
heat ratio γ is set equal to 1.4, while the Prandtl number is set equal to 0.72.
The dynamic viscosity is modelled using a Sutherland’s law, namely,

µ(T ) = µ0

(
T

T0

)3/2T0 + TS
T + TS

, (7.20)

where µ0 = 1.827 × 10−5 kg m−1s−1, TS = 120K and T0 = 291.15K. A
second, more challenging, situation has been considered where the incident
shock Mach number is increased up to 5.0 and the specific heat ratio γ is re-
duced down to 1.15, thus approaching the Newtonian limit [168]. The other
physical parameters are the same as in the Mach 1.5 case. All the main com-
putational and physical parameters are listed in Table 7.2 for convenience.

7.5 Results and discussion

7.5.1 Stationary one-dimensional weak shock

This particular test case is focused on the shock-shape across a viscous weak
shock. It is well-known that a non-monotonic behaviour should be observed
whenever a viscous-thermal conductive fluid is considered [173]. Moreover,
even if this property can be observed for strong shocks as well, a weak shock
allows to easily run shock-resolved simulations, which do not need any shock
capturing procedure. Accordingly, a highly resolved simulation of a weak
shock has been performed and considered here as a reference. In order to
evaluate the capability of the two shock capturing models to describe the
physical properties of the shock, two coarser inviscid simulations have been
tested. An example of coarse grid solution is shown in Fig. 7.3, where ap-
proximately 8 solution points are contained within the shock. The density
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Domain size L×H 10.0× 2.0 cm2

Number of elements Nx ×Ny 600× 140 –
Discretisation order n 5 –
Degrees of freedom DoF 2.1× 106 –
Wavy-wall amplitude Aww 1.0 mm
Wavy-wall wavelength λww 2.0 cm

Specific heat ratio γ 1.4 1.15 –
Incident shock Mach Mai 1.5 5.0 –
Incident shock speed Di −514.0 −1553.0 m s−1

Reflected shock Mach Mai 1.43 3.16 –
Incident shock speed Dr 324.9 271.5 m s−1

Initial left state
ρ1 1.208 kg m−3

u1 0.0 m s−1

p1 101.325 kPa

Initial right state
ρ2 2.25 11.29 kg m−3

u2 −237.96 −1386.88 m s−1

p2 249.091 2703.344 kPa

Table 7.2: Physical and computational set-up of shock wavy-wall interaction.
Velocities are indicated on the laboratory reference frame.

and the entropy profiles from the coarse grid computations are compared
to the reference solution in Fig. 7.4 From the observation of the reference
solution, the non-monotonic behaviour of the entropy is clearly evident, with
a very strong overshoot located almost exactly at x/λ = 0; cf. Fig. 7.4(b).
It can be noted how the relative jump in the entropy overshoot is extremely
large compared to the shock-generated entropy, ∆s = sr − sl. In particular,
smax − sl ≈ 23∆s, which is slightly higher than the expected value given
by Eq. (7.11), namely, smax − sl ≈ 15∆s. This is not really surprising:
the presence of thermal conductivity gives an additional increase of entropy
within the shock, which adds to the inviscid overshoot. Regarding the two
coarser simulations, non-monotonicity is preserved by the physical model
while the Laplacian AV gives an almost flat profile. Moreover, concerning
the Laplacian approach, the small, persisting, numerical oscillations close to
the shock force the entropy to take values smaller than sl. In other words,
the use of the Laplacian model leads, for this test case, to a local decrease of
entropy, which is clearly unphysical. The Physical artificial viscosity gives
the expected behaviour of entropy across the shock, even if it is not able to
reach the exact peak of entropy production.

7.5.2 One-dimensional shock collision

The present analysis focuses mainly on three aspects which are strictly
connected to the accuracy and reliability of the shock capturing scheme:
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Figure 7.3: Example of coarse grid with ≈ 8 solution points in the shock
region. The x-axis is normalized with respect to the mean free path λ.
Dashed lines indicate element interfaces; symbols indicate the location of
the solution points.

(a) density (b) entropy

Figure 7.4: Density and entropy shock profiles: solid line, reference solution;
dashed line, physical AV model; dotted line, Laplacian AV model; the black
dot on the entropy profile indicates the theoretical maximum in the inviscid
limit (cf. Eq. (7.11)).

(a) the correct reproduction of the theoretically expected behaviour of en-
tropy across the shock front, (b) the presence of spurious post-collision os-
cillations and (c) the onset of overheating errors in the solution and their
connection to entropy preservation. In Fig. 7.5(a), the density field is shown
before collision. No particular difference is present between the Laplacian
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(a) density (b) entropy

Figure 7.5: Ma = 5 shocks before collision: solid line, physical artifi-
cial viscosity model; dotted line, Laplacian AV model; the black dot on
the entropy profile indicates the theoretical maximum in the inviscid limit
(cf. Eq. (7.11)).

and physical models, which both smooth adequately the shocks. Looking
at the normalised entropy profile in Fig. 7.5(b), however, more marked dif-
ferences between the two approaches appear. Using the physical model, the
behaviour of the entropy across the shock is non-monotonic, whereas the
Laplacian artificial viscosity produces a simple entropy jump. Hence, the
expected non-monotonic theoretical profile of entropy is preserved by the
physical model due to its capability to secure the proper physical coupling
between the viscous work, the thermal dissipation and the entropy itself. In
Fig. 7.5(b) the entropy jump is compared with the theoretical value obtained
from the inviscid Eq. (7.11). The purely numerical nature of the Laplacian
approach becomes evident, with the lack of knowledge on the energy trans-
fers within the shock (without mentioning the artificial diffusion of density).
Turning the attention to the behaviour of the two models after the shock
collide, the relevant density and entropy profiles are depicted in Figs. 7.6(a)
and 7.6(b), respectively. At the location of the impact between the shocks,
another notable difference between physical and Laplacian viscosities is visi-
ble. In particular, when the Laplacian approach is adopted, an unphysical de-
crease of density is generated. This phenomena is commonly known as over-

heating error, which motivated multiple studies [189, 190, 191, 192, 193, 194].
It was concluded that the onset of overheating errors is directly related to the
numerical scheme and its inability to preserve exactly the entropy convection
at the moment of collision. The consequent increase in entropy would then
be the main responsible of these spurious effects. This is readily confirmed by
looking at Fig. 7.6(b), where the two shock capturing approaches report very
different entropy behaviours. As already mentioned, the same type of over-
heating errors were observed in [159] for the same test case when using the
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(a) density (b) entropy

Figure 7.6: Ma = 5 shocks after collision: solid line, physical AV model; dot-
ted line, Laplacian AV model; the black dot on the entropy profile indicates
the theoretical maximum in the inviscid limit (cf. Eq. (7.11)).

(a) physical AV, density (b) Laplacian AV, density

(c) physical AV, entropy (d) Laplacian AV, entropy

Figure 7.7: Mach = 5 shock collision. Density (a, b) and entropy (c, d) time
history profiles. Solid line, x = 0.5; dotted line x = 0.58
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Laplacian model. However, overheating errors can be observed in multiple
other test cases, even in absence of shocks, such as in the case, for example,
of the receding flow [191, 193]. This phenomenon is not directly related to
the shock capturing procedure unless, of course, this last impacts, negatively,
entropy conservation. On the contrary, a wise choice of artificial viscosity
can lead to the mitigation, or even to the complete removal, of overheating
errors. It is clear from Fig. 7.6(b) that the physical approach appears as a
better option, simply because the physical model uses an artificial thermal
conductivity related to the bulk viscosity, which features an elliptic/diffusive
nature. Therefore, every temperature gradient (in the absence of any forcing
term) tends to be dissipated due to thermal conduction.

The damping of the overheating error is quantitatively evaluated in Fig. 7.7,
where the time history of the density and the entropy at two different lo-
cations (x = 0.5 and x = 0.58) is shown. These plots provide additional
evidence of differences in the value of the density and the entropy at the
point of impact (x = 0.5) and away from it (x = 0.58). A gap between the
two lines can be clearly noticed when using the Laplacian model: under-
estimation of the density and over-estimation of the entropy. The physical
model, on the other hand, does not produce overheating errors and no differ-
ence is visible between the relevant values recorded at x = 0.5 and x = 0.58.

Finally, a more challenging situation is considered increasing the Mach
number up to 10. Results are reported in Fig. 7.8, where the density and en-
tropy profiles after collision are shown. Overall, no major differences between
the Ma = 5 and the Ma = 10 test cases are found.

(a) Density (b) Entropy

Figure 7.8: Ma = 10 shocks after collision: solid line, physical AV model;
dotted line, Laplacian AV model; the black dot on the entropy profile indi-
cates the theoretical maximum in the inviscid limit (cf. Eq. (7.11)).
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(a) physical AV, density (b) Laplacian AV, density

(c) physical AV, entropy (d) Laplacian AV, entropy

Figure 7.9: M = 10 shock collision. Density (a, b) and entropy (c, d) time
history profiles. Solid line, x = 0.5; dotted line x = 0.58.

7.5.3 Two-dimensional inviscid strong-vortex/shock-wave in-
teraction

In the shock-vortex interaction, particular attention will be paid on the lo-
cality of the artificial viscosity and on the low dissipative character of the
physical model. To evaluate the accuracy of the shock capturing procedure,
snapshots of the density field are shown in Fig. 7.10(a), right after the vor-
tex traverses the shock, and in Fig. 7.10(b), when the vortex splits into two
smaller vortices as a result of its interaction with the shock front. After the
interaction, complex acoustic structures arise. Some interesting differences
between the two AV approaches are observed in Fig. 8.9. The higher dissipa-
tion of the Laplacian approach does not allow for the vortex to breakdown,
whereas the physical artificial viscosity captures this feature. In other words,
when the Laplacian viscosity is used, the fluid behaves as a more viscous gas,
thereby jeopardising the development of the smallest flow structures. Con-
cerning the localization of the artificial viscosity when using the physical
model, Figs. 7.12(a) and 7.12(b) show the contours of artificial bulk viscos-
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(a) t1 = 0.085s

(b) t2 = 0.245s

Figure 7.10: Shock-vortex interaction. Density field.

(a) physical (b) Laplacian

Figure 7.11: Shock-vortex interaction. Density field detail at t2 = 0.245s.

ity right after interaction and at the moment the vortex breaks down. As
it can be seen, the artificial bulk viscosity is zero almost everywhere, except
in the shock region. This is, of course, of paramount importance to avoid
the injection of unnecessary dissipation in the system away from the shock.
Finally, as already mentioned in the mono-dimensional test case, entropy
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(a) t1 = 0.085s

(b) t2 = 0.245s

Figure 7.12: Shock-vortex interaction. Physical artificial viscosity. Image
resolution is low due to the lack of smoothness of the artificial viscosity itself
(which is only linear).
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shocks should be non-monotonic. This characteristic property is clearly sat-
isfied by the physical model in this two-dimensional case too (see Fig. 7.13).

Figure 7.13: Shock-vortex interaction. Entropy field at t1 = 0.085s (see
Fig. 7.10(a) for vortex position) along the line y=0.4L. Solid line, physical AV
model; dotted line, Laplacian AV model; the black dot on the entropy profile
indicates the theoretical maximum in the inviscid limit (cf. Eq. (7.11)).

7.5.4 Inviscid Taylor-Green Vortex

Despite the rather idealized and simple initial flow field, the TGV problem
contains many different interesting features of turbulence. As the time ad-
vances, the vortex stretching process leads to a natural transition to isotropic
turbulence. Due to the absence of physical viscosity (inviscid flow), the en-
ergy of the fluctuating field cascades to smaller and smaller scales without
any viscous dissipation, making it a stringent test case for calibrating artifi-
cial numerical dissipation.

Different phases of turbulence transition and development can be recog-
nised. Before reaching the characteristic time t ≈ 4L/U0, the flow is laminar
and it is fully resolved by the mesh. After a transitional period, at t ≈ 7L/U0

the vortex stretching process breaks down and sub-grid scales mechanisms
start to affect the solution.

Figs. 7.14 and 7.15 show the time evolutions of four main quantities,
namely the mean kinetic energy ratio k = (1/2)ρuiui/kref (where kref is
the mean kinetic energy theoretically present in the flow), the mean square
vorticity Ω = L2ωiωi/U

2
0 , the temperature variance c2v〈T ′T ′〉/U2

0 (where cv is
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the specific heat at constant volume) and the dilatation variance L2〈θ′θ′〉/U2
0

with θ = ∂ui/∂xi. Note that the prime denotes deviations from the mean
value over the whole domain, namely, given any generic quantity φ, φ′ =
φ− 〈φ〉.

In this inviscid flow, the mean kinetic energy should stay constant. As it
can be seen in Fig. 7.14(a), this is observed when the physical artificial viscos-
ity is used. The Laplacian model, on the other hand, is found to be too dissi-
pative and promotes a rapid decay of the kinetic energy. Similarly, applying
the Laplacian artificial viscosity, the mean-square vorticity is not increasing
as it should in this inviscid flow (cf. Fig. 7.14(b)), whereas the physical arti-
ficial viscosity allows for the vorticity to raise as expected. The temperature
variance also suffers from a too rapid decay with the Laplacian formulation,
which is not the case with the physical formulation (Fig. 7.15(a)). Turning
to the compressible character of the flow (cf. Fig. 7.15(b)), the Laplacian
form of the artificial viscosity does not allow for the variance of dilatation to
grow in a significant manner. Because of the bulk character of the physical
model for the artificial viscosity, part of this variance is unavoidably damped;
nonetheless, a significant growth is yet captured.

(a) Normalised mean kinetic energy (b) Normalised mean-square vorticity

Figure 7.14: Inviscid Taylor-Green Vortex. Kinetic energy and vorticity.

7.5.5 Under-resolved compressible isotropic turbulence

To further progress on the evaluation of artificial viscosity in the presence
of both turbulence and compressibility effects, results with the compressible
isotropic turbulent test case are now examined. The unstable initial con-
figuration leads quickly to the development of strong vortical, entropy and
acoustic modes in the whole domain. Weak shock waves, commonly known
as eddy shocklets [195], appear spontaneously from the turbulent motions
as well. An example of a shocklet is shown in Fig. 7.16, where the relevant
profiles of dilatation, density and Mach number are plotted. Simulations
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(a) Variance of temperature (b) Variance of dilatation

Figure 7.15: Inviscid Taylor-Green Vortex. Variance of temperature and
dilatation.

(a) Normalised dilatation (b) Normalised density (solid line) and
Mach number (dash-dotted)

Figure 7.16: Example of shocklet occurring at normalised time t ≈ 0.557 at
(x, y) ≈ (4.3, π) plotted along z direction.

performed without artificial viscosity and using the Laplacian or physical
models are compared to DNS results. The relevant results are reported in
Figs 7.17–7.19. It shall be noted that the simulation performed without
artificial viscosity, due to the accumulation of kinetic energy at the unre-
solved scales, became unstable at a normalised time of about 0.56. This
notwithstanding, the relevant (partial) curves are retained for reference in
all plots. Concerning the SEDM model, it is worth pointing out that, due to
the actual order of accuracy of the employed discretization and due to the
relevant enhanced resolution of the SD scheme, the SEDM turbulence sensor
seldom detected any appreciable under-resolution. As a consequence, negli-
gible amounts of eddy-viscosity were injected throughout the computation.
This indicates that the numerical dissipation from the spatial discretization
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operators sufficiently describes the energy transfers between resolved and
under-resolved scales.

Using the physical artificial viscosity, the time evolution of the normalised
mean kinetic energy (Fig. 7.17(a)) is in perfect agreement with the reference
DNS [186], while the Laplacian form overestimates the dissipation, which
confirms once again the over-dissipative character of the Laplacian model.
The mean-square vorticity is also well reproduced with the physical artificial
viscosity (dashed line in Fig. 7.17(b)), while the Laplacian form misses the
vorticity response and returns a constant decay (dotted line in Fig. 7.17(b)).
Turning the attention to quantities more related to compressibility effects,

(a) Normalised mean kinetic energy (b) Normalised mean-square vorticity

(c) Normalised variance of temperature (d) Normalised variance of dilatation

Figure 7.17: Under-resolved isotropic compressible turbulence.

such as the variance of temperature (Fig. 7.17(c)) and the variance of dilata-
tion (Fig. 7.17(d)), the Laplacian AV yields results which depart significantly
from the DNS, yet some weakness of the physical AV model become also ap-
parent. The variance of temperature from the physical model is slightly un-
derestimated, which suggests a slight overestimation of thermal dissipation.
Unfortunately, the bulk viscosity is known to damp acoustic modes [171]
and this is clearly visible in Fig. 7.17(d). The use of divergence-based sen-
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sors should improve the results [170, 171].
The kinetic energy balance (under the periodic boundary condition ap-

plied here) can be written as

Variation of kinetic energy︷ ︸︸ ︷
− d

dt

(
1

2

∫
ρuiuidV

)
=

Viscous dissipation︷ ︸︸ ︷∫ (
2µSijSij −

2

3
µ

(
∂uj
∂xj

)2)
dV

−
∫
p

(
∂uj
∂xj

)
dV

︸ ︷︷ ︸
Dilatation work

+ε,

(7.21)

where the dissipation term ε contains the three contributions stemming from
the sub-grid scale model, the artificial viscosity and the numerical dissipa-
tion:

ε = εSGS + εAV + εnum. (7.22)

Fig. 7.18(a) shows the viscous dissipation from Eq. (7.21), which is well

(a) Viscous dissipation (b) Dilatation dissipation

Figure 7.18: Under-resolved isotropic compressible turbulence.

reproduced by the physical artificial viscosity due to the small damping of
vortical modes, which is not the case when using the Laplacian form. As far
as the dilatation term is concerned (see Fig. 7.18(b)), this is not perfectly
reproduced due to the use of the bulk viscosity. Even if acoustic damping
using bulk viscosity is clearly visible and theoretically known, it is worth
noticing that using a Laplacian approach gives no advantage at all for this
test case. In Fig. 7.19, the additional spurious dissipation is analysed. The
difference in energy, which is artificially dissipated in the system between
Laplacian and physical approach, becomes here clearly evident and further
confirms the lower dissipation overall promoted by the use of the physical
model. Concerning the influence of the shock capturing parameters, these
can be changed within reasonable limits, yet the main results of our discus-
sion remain unchanged: the Laplacian viscosity tends to be more dissipa-
tive overall and cannot preserve the expected entropy behaviour. Finally it
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Figure 7.19: Under-resolved isotropic compressible turbulence. Spurious dis-
sipation (in absolute value scaled by −Ėk).

should be pointed out that similar results have been shown in [184], where
some drawbacks when using an artificial bulk viscosity were pointed out.
The presence of a bulk viscosity implies a certain amount of dissipation on
dilatational modes. Such dissipation is more or less strong depending on the
specific parameters chosen, as clearly confirmed in Fig. 7.17(d). Nonetheless,
whenever moderately compressible turbulent flows are considered, the use of
a bulk viscosity over a shear viscosity shall be preferred, as the latter could
lead to an excessive dissipation on vorticity modes, affecting energy transfers
of turbulence. Moreover, the coexistence of a shear artificial viscosity and
an eddy-viscosity SGS model could lead to unpredictable outcomes in both
shock stabilization and turbulence modelling.

7.5.6 Shock/wavy-wall interaction in the Newtonian limit

The interaction between a shock wave and a wavy-wall involves a rather
broad range of scales: the complex flow patterns arising in proximity of the
wall are characterised by velocities many order of magnitudes smaller than
the macroscopic shock speed. This wide spectrum of scales implies chal-
lenging difficulties in the experimental detection of such structures. On the
other hand, numerical experiments are computationally very expensive in
order to get a sufficient level of detail. A more detailed analysis on the pecu-
liar physical features of this particular test case at an initial Mach number
of 1.5, based on the companion experiment by Biamino [187], can be found
in [188]. Other similar computations at higher Mach numbers (3.0 and 5.0)
are reported in [168]. The present study focuses on the 1.5 and 5.0 Mach
number tests only. Compared to the results reported in [188, 168] the present
simulation has been performed with the physical shock capturing procedure
instead of the Laplacian based approach.

A first validation for the lower Mach number case is reported in Fig. 7.20,
where experimental Schlieren photography images are compared with nu-
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merical results at times 120µs, 200µs and 280µs giving a qualitatively good
agreement with respect to experimental data. Clearly, even the physical
model for the shock capturing procedure is able to stabilise the numerical
simulation without damaging the complex pattern of reflections arising from
the collision with the wavy wall. As in the one-dimensional case no partic-
ular difference can be noticed between the two models: they both represent
accurately shocks reflection and collision. The only characteristic feature
preserved by the physical approach is the shape of entropy across the shocks
both before the impact, at t = 0s (Fig. 7.21) and after, at t = 120µs
(Fig. 7.22). A more challenging situation as been studied as well, consider-

Figure 7.20: Qualitative comparison between experimental (left) and nu-
merical Schileren using physical AV model (right) at times 120µs, 200µs and
280µs (up to bottom).

ing an incident Mach number Mai = 5.0 and a specific heat ratio γ = 1.15.
These choices lead to stronger reflected shocks and to even more complex
patterns into the shocked gas region. In these extreme conditions the diver-
gence switch has been turned off while instead all the other AV parameters
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Figure 7.21: Entropy field at t = 0.0s along y=0. Solid line, physical AV
model; dotted line, Laplacian AV model; the black dot on the entropy profile
indicates the theoretical maximum in the inviscid limit (cf. Eq. (7.11)).

Figure 7.22: Entropy field at t = 120µs along y=0. Solid line, physical AV
model; dotted line, Laplacian AV model; the black dot on the entropy profile
indicates the theoretical maximum in the inviscid limit (cf. Eq. (7.11)).

are the same as in one-dimensional tests. It is worth mentioning that the
additional divergence check affects only partially the results: it implies less
dilatational modes dissipation but other quantities are only slightly affected.
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In this particular test case, more marked differences between Laplacian and
physical approaches can be noticed. First of all, in Fig. 7.23 it is evident
the tendency of the Laplacian approach to englobe many smaller vorticity
structures and over-smooth the velocity field while instead the physical arti-
ficial viscosity gives sharper profiles. Furthermore, higher values of vorticity
have been computed using the physical approach in agreement with previous
tests results, indicating a different influence on vortical modes. More inter-
esting, is the peculiar loss of symmetry in the shocked gas: in the very first
instants after the impact the boundary layer near the wall gets unstable and
a strong burst of vorticity is injected in the far-wall region (Fig. 7.24). This
phenomenon propagates in time affecting larger and larger regions of the
domain. Both numerical and laboratory experiments of this particular test
case are very rare so the detailed physics is still not completely known. In
this sense, it is still premature to say if this phenomenon is just a numerical
artefact or rather a physically realistic hydrodynamic instability of the flow.
On the other hand, results exposed in this paper suggest a certain level of
physical reliability regarding the proposed artificial viscosity procedure.

Figure 7.23: Wavy Wall (M=5.0): vorticity field at t = 160µs. Up, physical
approach, bottom Laplacian approach.
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Figure 7.24: Wavy Wall (M=5.0): vorticity field at t = 40µs. Up, physical
approach, bottom Laplacian approach.
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Chapter 8

Compressible turbulent flows
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8.1 Introduction

In the first chapter of the present work the problem of turbulence was intro-
duced and the main techniques to tackle it were presented, with particular
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attention to Large Eddy Simulations. Subsequently, the role played by the
numerical scheme was taken into account, highlighting the important link
between physics and numerics in SGS modelling. The interaction between
the numerical scheme and sub-grid modelling lead to the presentation of
the SEDM, which has been used in this work. Finally, a chapter has been
dedicated to a characteristic-based low dissipative bulk artificial viscosity as
shock-capturing technique.

Considering compressible turbulent flows, each of these three aspects are
of major importance for the reliability of numerical simulations. In this chap-
ter, then, attention will be particularly focused on the interaction between
SGS modelling and AV techniques. The combined presence of both models
will be not only analysed in terms of dissipative contributions to resolved
quantities such as kinetic or internal energy, but also in terms of their inter-
pretation as under-resolved quantities in a filtered LES formalism. In this
sense, similarities between these two aspects will be presented and discussed
thoroughly.

Following the same concept, the interaction between turbulence and
shock-waves will be analysed in terms of coexistence of SGS and AV mod-
elling. A series of increasingly complex numerical simulations have been con-
sidered. In particular, as representative example of shock-induced boundary
layer separation, the transonic flow over a RAE2822 airfoil has been sim-
ulated using both SEDM and AV models active. Secondly, the interaction
between a fully-developed turbulent boundary layer and a shock-wave has
been simulated considering a classic compression ramp configuration. The
former case is characterised by a less complex physics since turbulence is
essentially generated downstream the shock-wave and no real superposition
of turbulent and shocked regions is present. In the latter case, instead, the
interaction is stronger as it triggers a richer range of physical phenomena
characterising shock wave-turbulence interaction. Considering the compres-
sion ramp geometry, both a-posteriori LES and a-priori analyses on DNS
data have been performed.

8.2 RAE2822 airfoil

8.2.1 Ducros modification

With the increasing popularity of high-order methods in CFD, the devel-
opment of efficient, low-dissipative shock-capturing techniques gained a lot
of interest in recent years. As a matter of fact, the influence of shock-
capturing algorithms on the overall accuracy of compressible flow simula-
tions has shown to be far from negligible. For example, WENO schemes,
if not carefully designed, can seriously damage the quality of the solution
due to excessive numerical dissipation [184]. In a similar way, Laplacian
artificial viscosity has shown to be extremely dissipative if applied to under-
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resolved turbulent flows [18, 170]. Therefore, the methodical design of shock-
capturing techniques, specifically tailored for spectral element methods, rep-
resents a key feature in the development of reliable and robust numerical
solvers for compressible turbulent flows. Artificial viscosity approaches are
more common in spectral element methods, as, in a similar way, WENO
techniques are more suited for compact finite differences schemes. Even if
spectral element methods and compact finite differences have a compara-
ble computational cost [196], the geometrical flexibility of the former can
be particularly attractive for the simulation of complex geometries such as
external flows around airfoils. The shock-capturing procedure herein consid-
ered is based on the concept of modal decay by Persson and Peraire [7, 8]
for Discontinuous Galerkin schemes, combined with the recently proposed
characteristic-based sensor by Lodato [159]. The specifics on the artificial
viscosity technique have been presented in chapter 7.

A further improvement of the present AV model in the case of wall
bounded flows is employed. While eddy viscosity needs to be set to zero
at the wall, as dictated by turbulent boundary layer theory, artificial viscos-
ity has no constraint from this point of view. Nevertheless, it is common
practise turning off the AV model at wall boundaries [172]. There are two
main reasons to do so. First of all, high values of the artificial viscosity in the
inner layer (where grid spacing is necessarily small) would impose extremely
small time-steps due to viscous Courant-Friedrichs-Lewy conditions. This
problem is even more accentuated by bulk artificial viscosity, which usually
assumes quite high values with respect to its shear counterpart. Secondly,
due to the strong mesh anisotropy close to the wall, the approximation of
the cell grid size, and consequently of the CFL stable time-step, can be par-
ticularly inaccurate. High values of the artificial viscosity exacerbate even
more such numerical issue.

To avoid unnecessary artificial viscosity activation, it is proposed to cou-
ple a Ducros-type of sensor [158] with the standard modal shock detection.
The local element shock sensor by Persson and Peraire [7] is thus modified
as follows:

s̃e = se ·
[0.5(|〈∇ · u〉| − 〈∇ · u〉)]2
〈∇ · u〉2 + 〈||∇ × u||〉2 + ε

, (8.1)

where 〈·〉 denotes element averaging and ε is usually a constant of order ma-
chine epsilon squared. However, in the following simulations the correction
proposed by Pirozzoli [197] has been employed, namely,

ε = (u∞/l)
2, (8.2)

which is a global measure of a large scale velocity gradient squared. In the
present work, the chord of the airfoil has been used as characteristic length
scale l.

The gain in such generalisation is twofold. It provides a smooth transition
to null values of AV at the wall boundaries, increasing stability and efficiency.
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Furthermore, the Ducros sensor avoids the injection of unnecessary artificial
dissipation in strongly vortical regions of the flow characterised by negligible
compressibility effects. Finally, the numerator in Eq. (8.1) has been modified
in order to be zero in expansion regions (∇ · u > 0). The additional modi-
fications applied to the modal sensor can surely increase the computational
expense of the baseline shock-capturing scheme. Nonetheless, achieving a
simple and yet efficient shock-capturing algorithm for high-order turbulent
simulations has always been a very elusive goal to reach [184, 172]. Handling
shock-waves, in fact, similarly to turbulence modeling, is a task intrinsically
numerical and physical at the same time. Finding a reasonable equilib-
rium between these two aspects is a crucial challenge for shock-capturing
techniques. The combined use of modal [7, 8] and physical [158] sensors is
then representative of the delicate balance between numerics and physics.
A physical correction have been deemed essential to differentiate between
turbulence under-resolution and shock waves, which are often undistinguish-
able from a merely numerical point of view. In particular, a modal decay
sensor would likely be active in both cases, even for different choices of target
variables. The application of the Ducros sensor, instead, offers a more phys-
ical insight on the nature itself of under-resolved quantities, providing better
shock detection and consequently reduced levels of artificial dissipation.

8.2.2 Simulation setup

The features of a turbulent boundary layer can be strongly affected by the
interaction with shock waves. A wide range of coupled length and time scales
are then involved and either sufficiently high resolution or precise modeling
is necessary. For example, the interaction with a fully developed boundary
layer and a compression corner presents an unsteady oscillation of the shock
wave, which involves time scales much larger than the ones characterising tur-
bulent fluctuations. RANS models have been widely tested for this particular
case with evident limitations [198, 199, 200, 201], whereas LES [202, 203, 204]
and of course DNS [14, 205] show a better agreement with experimental data.
With respect to a compression corner, the present configuration is less chal-
lenging since the boundary layer interacting with the shock wave has been
forced to be laminar. However, the inherent unsteadiness of the detached
flow generated by the interaction has a non-negligible influence on the shock
wave itself, which oscillates around a mean location [206, 207]. The com-
bined action of SGS and AV model is then particularly important in terms of
dissipation injected in the system: over-dissipation would damp excessively
the shock motion whereas insufficient energy draining could cause spurious
oscillations. Like in the SD7003 simulation, statistics are collected between
20 and 50 convective times. Probes locations are the same as in the previous
case (Table 8.1).

The response of the shear viscosity versus temperature is expressed ac-
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RAE 2822

Reynolds number Re 6.5× 106

Mach number Ma 0.729
Angle of attack AoA 2.31◦

Wall BC - adiabatic

Number of elements Nt ×Nn ×Nz 166× 30× 2

Polynomial degree N 5
Degrees of freedom DoF 2.15× 106

Wall distance 〈h〉 8.16× 10−6

Wall scaling y+ at x/c = 0.7 ≈ 0.2

Probe 1 location (x1, y1, z1) (0.5, 0.11, 0)
Probe 2 location (x2, y2, z2) (0.5, 0.05, 0)
Probe 3 location (x3, y3, z3) (1.3, 0.00, 0)

Table 8.1: Physical and computational set-up. All quantities are made di-
mensionless with respect to the chord length and free-stream values. A
nominal value c = 1 has been assigned to the airfoil length. Reference frame
is centred on the leading edge. In y+ calculations the closest solution point
to the wall has been considered. In particular, the notation 〈h〉 denotes the
averaged value of wall-distance along the whole profile.

cording to Sutherland’s law:

µ(T ) = µ0

(
T

T0

)3/2T0 + TS
T + TS

, (8.3)

where µ0 = 1.827× 10−5 kg m−1s−1, TS = 120K and T0 = 291.15K. Finally,
a specific heat ratio γ = 1.4 and a Pr = µ0cP /κ = 0.71 are assumed. The
flow is initialised homogeneously in the whole domain according to the far-
field conditions.

8.2.3 Pressure coefficient

For this particular case, an extensive set of experimental measurements are
present in the literature [208]. The pressure coefficient is known to be a good
indicator of the reliability of the simulation. From its behaviour, it is possible
to evaluate the accuracy of both shock-capturing and turbulence modeling,
depending on the flow regions that they affect. A clearly desirable feature of
the shock capturing technique is to produce pressure profiles as steep as the
numerical scheme can possibly achieve. The width of the shock wave, which
is inherently affected by both the AV model and the accuracy of the numerical
scheme, can strongly impact on the shock oscillation due to the interaction
with the subsequent turbulent region. A very small region of break down
turbulence, in fact, is present right after the shock wave. The location of the
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shock is then another relevant measure of how well transition to turbulence is
captured. In the present simulation the shock location is in good agreement
with experiments, implying a good description of transition and a low level
of dissipation injected by the artificial viscosity model (cf. Eq. 7.2). Fig. 8.1
displays a snapshot of the simulation results. In proximity of the shock
wave roll-ups structures start to develop, and finally, downstream of the
shock wave, they break up in fully turbulent vortices. Fig. 8.2 shows the

Figure 8.1: Isosurface of the Q-criterion (Q = 20) colored with instantaneous
velocity field magnitude. The Ma = 1 isosurface has been used to visualise
the shock wave on the upper side.

pressure coefficient with a good agreement against experiments along the
whole airfoil length. The upstream region and the location of the shock
itself are fairly well predicted, despite the absence of a geometrical trip. In
the proximity of the leading edge, the small pressure peak on the upper
side is not perfectly captured due to lack of transition mechanism. The
turbulence generated by this test case is visibly different with respect to the
SD7003 simulation (see Fig. 8.1). The thickness of the boundary layer is
much smaller due to the higher Reynolds number and the smaller angle of
attack. The shock-induced boundary layer separation point near the mid-
chord region on the upper surface can be clearly noticed in Fig. 8.3. In fact,
as a result of the adverse pressure gradient across the shock, the thickness
of the boundary layer increases in the second part of the suction side. Wall-
normal slices of the streamwise velocity highlight such behaviour (Fig. 8.4).
The boundary layer is very steep in the first, laminar region of the flow,
whereas it thickens considerably after the interaction with the shock wave
where detachment occurs. Finally, mean aerodynamic loads are listed in
Table 8.2 and are in good agreement with the reference data by Cook and
Mcdonald [208]. Averaged eddy-viscosity and artificial bulk viscosity are
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Figure 8.2: Pressure Coefficient.

(a) (b)

Figure 8.3: Instantaneous velocity magnitude. On the right, a closer look of
the shock wave region (averaged velocity).

Figure 8.4: Averaged streamwise velocity along normal direction. Red-
dashed line denotes the approximate mean location of the shock wave. The
99% boundary layer thickness is shown using red dots to highlight detach-
ment.

shown in Figs. 8.5 and 8.40, respectively, where the different zones in which
they are activated can be clearly noticed. As expected, the SGS model is
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Author CL CD

Cook and Mcdonald [208] 0.743 0.0127
Current 0.704 0.0110

Table 8.2: Mean Aerodynamic loads.

mainly active close to the airfoil tail, in the turbulent boundary layer and
wake, while the AV assumes nonzero values mostly in proximity of the shock.
The eddy viscosity assumes small values in a very narrow region close to the
trailing edge, coinciding with an highly refined zone. The SGS model is,
in fact, weakly active in this area for multiple reasons related to the local
level of resolution. Firstly, the eddy-viscosity is proportional to the grid size
(see Eq. 6.1). Secondly, the estimate of turbulent kinetic energy given by
Eq. (6.2), for sufficiently small cells, is very close to zero. Finally, in the case
of highly refined grids, the decay exponent used in the turbulence sensor’s
definition is particularly high, indicating well resolved velocity fields. As
already discussed by Tonicello et al. [18], the present artificial bulk viscosity
without Ducros sensor has a quite high activation. Due to its functional form,
nevertheless, the influence is limited to dilatational modes only, whereas
vorticity is well preserved. The present modification using the Ducros sensor
(Eq. 8.1) improves the AV model providing a much better activation. In
fact, in the RAE2822 simulation, excessive levels of AV had been observed
inside the boundary layer in absence of the Ducros correction (cf. Fig. 8.12).

It is finally worthwhile mentioning that in multiple works (mainly RANS
simulations), a similar behaviour of the eddy-viscosity activation has been
observed [209, 210, 211, 212, 213, 214] (see Fig. 8.5). Finally, in Figs. 8.7

Figure 8.5: Average eddy-viscosity ratio. Notice that, due to the high
Reynolds number, the eddy-viscosity ratio is considerably larger than in
the previous test case.

and 8.44, Reynolds shear stresses and turbulent kinetic energy are shown.
As expected, the turbulence is restricted to a very narrow region close the
airfoil tail. The rapid transition to turbulence appears right after the shock
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Figure 8.6: Average artificial bulk viscosity.

wave, causing an increase of both turbulent kinetic energy and Reynolds
stresses (a detailed look is shown in Fig. 8.9). Supercritical transonic air-

Figure 8.7: Reynolds shear stresses (|〈u′v′〉|/u2∞).

Figure 8.8: Turbulent kinetic energy (12ρ(〈u′xu′x + u′yu
′
y + u′zu

′
z〉)/(12ρ∞u2∞)).

foils are usually characterised by streamwise shock oscillations (or buffeting)
on the upper side of the wing. In the present configuration, however, the flow
experiences only a mild buffeting phenomenon, which is expected for very
low angles of attack [215] as the one herein considered. The oscillation of
the shock wave is then highlighted in Fig. 8.10 through a turbulent kinetic
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(a) Reynolds stress anisotropic part (b) Turbulent kinetic energy

Figure 8.9: Closeup of Reynolds shear stresses (left) and turbulent kinetic
energy (right) in the neighborhood of the shock wave location.

energy closeup in proximity of the shock wave. Outside of the separated
boundary layer, the turbulent kinetic energy assumes non-zero values only
in a very narrow region around the mean shock location, indicating only
mild oscillations of the shock front. The same analysis used for Fig. 6.19

Figure 8.10: Closeup of turbulent kinetic energy in proximity of the shock-
wave.

has been applied to the RAE2822 airfoil in Fig. 8.11. Namely, the turbu-
lence sensor has been used as a post-processing tool and computed on a
given instantaneous flow field. Similarly to the previous SD7003 case, the
turbulence sensor is mostly active in the detached region of the flow, where
the velocity field is expected to be under-resolved. It is interesting to notice
that the turbulence sensor never reaches a unitary value, indicating that the
algorithm recognises the separated flow as only partially under-resolved. A
possible explanation of such behaviour could be partially linked to the pres-
ence of an additional smoothing mechanism, represented by the artificial
viscosity model. In a similar way, in fact, the turbulence sensor is essentially
inactive in proximity of the shock wave since the bulk artificial viscosity is
sufficiently large not to necessitate any additional shear viscosity. In order to
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(a) Instantaneous flow field. (b) Turbulence sensor f .

Figure 8.11: Instantaneous flow field (left) and spectral turbulence sensor
applied to the velocity field (right).

assess the major impact of the Ducros modification on the shock-capturing
technique, a comparison between the baseline modal sensor and its modified
version applied to an instantaneous flow field is shown in Fig. 8.12. It can
be clearly noticed that the modal sensor is extremely active in the separated
region of the flow field. Turbulence under-resolution is in fact erroneously de-
tected as a shock wave discontinuity. The physical information provided by
the Ducros sensor represent the key ingredient to distinguish between shock
waves and turbulence under-resolution (which can be numerically similar).
The modified artificial viscosity model, in fact, as observed also in Fig. 8.40,
is active only in proximity of the shock wave. In other words, the Ducros
modification is able to remove all the unnecessary artificial viscosity in the
detached region preserving, at the same time, the correct detection of the
main shock wave. Due to the high complexity of the present transonic sim-

(a) Baseline modal sensor. (b) Ducros-modified sensor.

Figure 8.12: Comparison between the baseline modal sensor [7, 8] (left) and
its modified version (Eq. 8.1) using the Ducros correction (right).

ulation, some further discussions are necessary. In particular, the nature of
the boundary layer interacting with the shock wave needs to be specified. In
the experimental setup, the flow was geometrically tripped at x/c = 0.03.
However, it is relevant to observe that sufficiently satisfying results have been
reported also without an explicit transition mechanism. The ultimate goal
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of the present work was in fact to analyse the interaction between a tur-
bulent boundary layer and a large scale shock wave. For such purpose, the
accurate prediction of separation-induced transition has been considered ad-
equate to evaluate the combined effects of the two models herein employed.
The present setup is meant to highlight the capability of the two models to
coexist and influence different regions of the flow field. A more refined sim-
ulation, with a more accurate description of transition, would give similar
results and conclusions on the interaction between AV and SGS modeling.
On the upper side of the airfoil a very narrow region of non-zero values of
eddy-viscosity would likely appear, region in which AV would be essentially
zero due to the proximity to the wall. In the authors’ experience, a coarse
mesh as the one herein considered is adequately capable of providing useful
insights on the mutual interaction between the two models. Furthermore,
such a coarse resolution highlights even more the delicate stability of the
numerical computation. In particular, both the Ducros correction on the
AV and the explicit SGS modeling have shown to be necessary to keep the
computation stable.

8.2.4 Kinetic energy spectra

Using the same technique previously introduced, kinetic energy spectra have
been computed for the RAE2822 profile as well. The location of the virtual
probes is the same as before. In Fig. 8.13 they are shown in superposition
with the instantaneous flow in the fully turbulent regime. There is no real
interest in the study of turbulence in probes 1 and 2, where the flow is either
laminar (probe 1) or not suitable to Taylor’s hypothesis (probe 2). On the
other hand, probe 3 gives some insights on compressible turbulence. The

Figure 8.13: Instantaneous velocity magnitude. Numbers mark probes loca-
tions.

difference between these flow regimes can be seen in Fig. 8.36(b), where the
kinetic energy spectra of probes 1 and 3 are plotted. The difference is clearly
evident: the flow field at location 1 is laminar and even if a small transition
is seen close to the estimated dissipative region, the whole spectrum under-
goes an almost perfect spectral convergence for all wavenumbers. Differently,
observing the kinetic energy spectrum of probe 3, the expected turbulent be-
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haviour is present. It is interesting to point out that no particular difference
can be reported in the spectrum between the SD7003 case and the present
one. Both show an inertial range, followed by a spectral convergence region
close to the range π/2 < κ∗ < π. The different levels of smoothness mainly
depends on the sampling rate and on the characteristic time scales, which
are different in the two airfoil simulations.

(a) Probe 1 (b) Probe 3

Figure 8.14: Kinetic energy spectra in probe 1 and 3. Vertical lines denotes
an estimate of the dissipation region: π/2 < κ∗ < π.

8.3 Compression ramp: Large-Eddy Simulation

Shock-wave turbulence interaction is of fundamental importance in many dif-
ferent applications of aerospace engineering, such as propulsion and aerody-
namic systems. These highly compressible flows are characterised by multi-
scale phenomena, which are still highly challenging for numerical simulation.
Despite a rapidly increasing interest in the simulation of such complex con-
figurations, fundamental questions on the underlying flow physics, the cor-
responding modeling and the most appropriate numerical discretisation are
still open.

Along these lines, innovative numerical high-order schemes such as the
Discontinuous Galerkin [52, 51], the Flux Reconstruction [77, 89], and the
Spectral Difference [44, 117], gained a lot of interest in the last few decades.
High-order discretisation of convective dominated flows are indeed charac-
terised by many useful features in terms of numerical dissipation and are
widely used to simulate turbulent flows [62, 137].

In particular, much interest has been focused on the numerical dissipation
and multiple studies tried to use it as a built-in turbulence model for specific
choices of numerical fluxes [62, 63, 64, 65, 66] . This approach is commonly
known as Implicit Large Eddy Simulation. Despite the advantages in terms
of computational efficiency and simplicity of implementation, the choice of



196 CHAPTER 8. COMPRESSIBLE TURBULENT FLOWS

order, grid size, and numerical flux strongly influences the success or failure
of such procedures. This is particularly true for certain classes of high-order
methods, such as the spectral element methods [67], for which the order of
accuracy is a user-selectable parameter of the computation.

Explicit large-eddy simulations using standard SGS models, on the other
hand, may inject too high levels of dissipation, ignoring the informations
coming from the numerical discretisation. It is then crucial to design explicit
turbulence models that take into account not only the flow physics, but
also the intrinsic characteristics of the numerical scheme used to solve the
equations.

Furthermore, considering high speed flows, performing reliable numeri-
cal simulations becomes even more challenging due to the presence of non-
negligible compressibility effects, which can eventually lead to the formation
of shock waves. Under these conditions, the SGS model needs not only to
distinguish between laminar and fully turbulent regions, tuning accurately
the level of dissipation, but it also interacts with shock capturing techniques,
which can strongly affect in return the turbulence properties.

All these flow modeling features are involved in the simulation of a com-
pression ramp, which is thus a perfect test case to evaluate the capability of
the recently developed SEDM [1] to accurately predict the rapid variations
of turbulence, typical of the problem, and to study its interaction with the
shock capturing technique herein employed.

The following results will be shown in comparison with a DNS by Priebe
et al. [12] and a LES at similar conditions by Dawson et al. [216].

8.3.1 Simulation setup

The test case considered has been deeply analysed in many different works,
both numerical [202, 203, 217, 205, 204, 14] and experimental [218, 13], with
a particular attention to the unsteadiness of the shock-wave front. Most
of the numerical simulations rely on WENO-type schemes [219] to handle
shock waves, with recycling/rescaling techniques [220, 221] for the incoming
turbulent boundary layer. In all the previously cited works, different resolu-
tion levels and a large variety of analyses has been performed on the same
configuration.

The problem consists in a supersonic, fully-turbulent boundary layer in-
teracting with a 24◦ degrees compression ramp. The unsteady nature of the
boundary layer causes the shock to wrinkle and oscillate near the corner.
The adverse pressure gradient, caused by the main shock, creates a sepa-
ration bubble in proximity of the corner. Such bubble, due to the motion
of the shock front, tends to increase and decrease in dimensions with low
frequency oscillations. Downstream of the corner, the boundary layer is su-
periorly bounded by the main shock, while additional shocks arise from the
large structures in the wake of the boundary layer, to finally merge with the
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Ma Reθ δ+ U∞ δ δ∗ θ H
2.91 2900 340 610 m/s 7.1 mm 2.58 mm 0.47 mm 5.49

Table 8.3: Characteristic of the incoming boundary layer.

main shock downstream.

The computational domain is parametrised using the 99% thickness of the
incoming boundary layer δ, as shown in Fig. 8.30; the main flow properties
of the boundary layer are listed in Table 8.5.

[t]

Figure 8.15: Computational domain. In the background, Q-criterion
coloured by velocity magnitude (Q = 1.0U2

∞/δ
2).

The Reynolds number is defined as Reθ = U∞θ/ν∞, where θ is the mo-
mentum thickness, U∞ the free-stream velocity and ν∞ is the kinematic
viscosity in the free-stream. The Karman number is defined as δ+ = δuτ/νw
where uτ is the friction velocity and νw is the kinematic viscosity at the wall.
Finally, δ∗ is the displacement thickness and H = δ∗/θ is the shape factor.
Dynamic viscosity has been modelled using the Sutherland’s law:

µ = µref

(
T

Tref

)3/2 (Tref + S)

(T + S)
, (8.4)

where µref = 1.834 · 10−5 kg m/s, Tref = 291.15 K and S = 120 K.

No slip, isothermal boundary conditions have been applied to the wall,
with a temperature at the wall fixed at Tw = 307K. The free-stream density
has been set to the nominal value ρ∞ = 7.7 · 10−2 kg /m3. Consequently,
pressure can be evaluated through the mach number, p∞ = 2.41678 · 103 Pa.
The temperature of the free-stream flow is equal to T∞ = 109.1 K. Finally,
the reference dynamic viscosity has been chosen in order to provide the
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N Nx Ny Nz ∆x+ ∆y+ ∆z+ DoF
6 70 + 84 18 8 5.5 ∼ 40 0.18 ∼ 43 13 5.25M

Table 8.4: Grid properties.

prescribed Reynolds number. Since pressure is assumed to be constant, the
density at the wall can be evaluated as ρw = 2.736 · 10−2 kg /m3, then all
the remaining variables can be evaluated:

νw = µw/ρw = 7.0460 · 10−4 m2/s, and uτ = δ+/δνw = 33.741 m/s.

Many different approaches are present in the literature to prescribe turbulent
inflow generation (see Wu [222] for an extensive summary). In the present
study, the Klein’s digital filter technique [119]—which has been recently gen-
eralised and validated to the present numerical setup [223, 16]—has been
employed for the turbulent inflow condition. The mean profiles, to which
perturbations are superimposed, have been evaluated using closed form re-
lations involving Van Driest transformed velocity profiles as described by
Touber [224].

The correlation tensor of the fluid velocity and the characteristic turbu-
lence length scales are the control parameters used to generate the synthetic
turbulent boundary layer at the inlet. The technique herein applied is the one
proposed by Klein [119], which has been recently generalised and validated
to the present numerical setup [223, 16]. A constant value has been chosen
for the length scales along y and z (spanwise) equal to ly,z = 1.3 mm which
is approximately one sixth of the inlet 99% displacement and lx = 2.6 mm
(streamwise) for the length scale along x. The values of the correlation ten-
sor have been extrapolated from the DNS by Pirozzoli and Bernardini [225]
at a similar Reynolds number.

Regarding the numerical discretisation, grid properties are listed in Ta-
ble 8.4. The number of total degrees of freedom suits a typical LES resolution
for such configurations [202, 204, 216, 226].

The LES solves the Favre-filtered Navier-Stokes on a coarse grid. In
particular the system (I) by Vreman [24] has been considered. The deviatoric
part of the SGS tensor and the SGS heat flux have been modelled using the
SEDM by Chapelier et al. [1] whereas a modification of Yoshizawa model [25]
has been used for the isotropic part of the SGS tensor.

The shock capturing technique is based on the modal sensor by Persson
and Peraire [7], combined with the physical, bulk-based, artificial viscosity by
Fernandez et al. [169], recently generalised to the SD method using charac-
teristic based sensors [159, 18]. Furthermore, to avoid unnecessary artificial
viscosity activation in strongly vortical regions, a Ducros-type sensor [158]
has been coupled with the standard modal shock detection.

Finally, due to the very high complexity of such test case, a positivity-
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preserving scheme [227] has been employed to maintain stability of the sim-
ulation.

8.3.2 Validation of turbulent boundary layer injection

The very first step in results analysis consists in a proper validation of the
incoming turbulent boundary layer which needs to satisfy the imposed prop-
erties at the inlet. In order to evaluate quantities along the wall-normal
direction, the plane x = x0− 7δ has been considered. In Fig. 8.34 are shown
the Van-Driest transformed streamwise velocity (left) and Reynolds stresses
(right). Secondly, in Fig. 8.33 the velocity profiles along wall-normal direc-
tion and Reynolds stresses have been evaluated after the interaction with
the shock wave (x = x0 + 4δ).

Incoming velocity profiles are in very good agreement with previous sim-
ulations and experiments in this configuration. Velocity fluctuations are rea-
sonably similar to the ones imposed at the inlet. On this particular point,
it is important to highlight that Reynolds stresses have been extrapolated
by Pirozzoli [225] where different flow parameters have been used. A perfect
convergence of Fig. 8.34 is then not expected.

(a) Streamwise velocity. (b) Reynolds stresses.

Figure 8.16: streamwise velocity and Reynolds stresses at x = x0 − 7δ.

In Fig. 8.33 the streamwise velocity component and Reynolds stresses
have been plotted along the wall-normal direction in the outer region. Both
profiles are in good agreement with the reference data. Accurate predictions
downstream the interaction with the shock-wave are particularly meaningful,
since the turbulent flow, in this particular region, is characterised by even
smaller length scales.

As downstream Reynolds stresses reference data, the DNS data by Chen [228]
have been used.

Finally, the main properties of the incoming boundary layer are sum-
marised in Table 8.5. Most of them are in fairly good agreement with the
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(a) Streamwise velocity. (b) Reynolds stresses..

Figure 8.17: streamwise velocity and Reynolds stresses at x = x0 + 4δ.

- Reθ δ δ+ δ∗ θ H Cf × 103

ref 2900 7.10 mm 340 2.58 mm 0.47 mm 5.49 2.16

x0 − 7δ 2907 7.71 mm 362 3.02 mm 0.47 mm 6.42 2.22

Table 8.5: Characteristic of the incoming boundary layer: reference vs com-
puted.

reference values of Priebe’s simulation.
The differences observed in Fig. 8.34 affect the properties of the incoming

boundary layer, leading, for example, to larger 99% displacement. The mo-
mentum thickness θ and consequently the Reynolds number are accurately
reproduced.

8.3.3 Friction coefficient & wall pressure

In order to validate the test case here presented, friction coefficient and wall
pressure have been compared with previous simulations and experimental
data respectively in Figs. 8.18(a) and 8.18(b). Simulations results are in
good agreement with the DNS by Priebe et al. [217, 12] and a comparable
LES by Dawson et al. [226].

In particular, considering the friction coefficient, the present simulation
seems to be located more or less halfway, in terms of accuracy, in between
the LES by Dawson and the DNS by Priebe. Analysing the wall pressure,
instead, an almost perfect agreement between the DNS reference data and
the present LES has been obtained.

The friction coefficient, in agreement with all the reference data, is char-
acterised by 5 local extrema: a minimum right after the separation point,
a local maximum at approximately (x − x0) = −δ, and a rapid sequence
of two minimum separated by at maximum located exactly at the corner.
Such peak can be explained by the sudden variation of the normal direc-
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(a) Friction coefficient (b) Wall pressure

tion, whereas the flow varies smoothly at this location. It is then commonly
considered a mere consequence of the inexact geometry description of the
problem and it has no relevant physical meaning. Instead, the central in-
crease of friction coefficient can be related to the low-frequency unsteadiness
of the shock front [12].

Before proceeding to more complex analysis, it is worthwhile mention-
ing some relevant results regarding the coexistence of shock-capturing and
SGS model. It is reasonable to think that a shock-capturing technique
should be as local as possible and inject the exact right amount of dissi-
pation necessary to stabilise numerical description of shock waves. Consid-
ering shock-wave/turbulence interaction problems, different type of under-

resolution can be present: one related to the inability of the numerical scheme
to accurately resolve shock waves and another related to turbulence under-
resolution. These two aspects should be treated and, more importantly,
detected separately. It is, in fact, advisable to have a clear distinction, if the
problem allows it, between the two. As already mentioned in previous sec-
tions, in order to decrease the activation of the modal AV sensor in turbulent
regions, a Ducros type correction has been applied. Hence, for this partic-
ular test case, the shock wave is situated mainly far from the wall except
for a very narrow region located right before the separation bubble. On the
other hand, turbulence is mainly located close to the wall, in the boundary
layer. The ratio between eddy and physical viscosity is shown in Fig. 8.18(c)
while artificial bulk viscosity is shown in Fig. 8.18(d). The activation re-
gions are almost perfectly complementary one another: AV is active mainly
at the shock location, far from the wall, whereas eddy-viscosity assumes non
zero values only in the turbulent boundary layer. A small overlapping zone
is still present where the interaction occurs, nevertheless, the shock gets
weaker and weaker approaching the wall and AV is sensibly smaller in this
region. Furthermore, notice that neither AV or SGS model is active in the
separation bubble: in this zone, in fact, no shock wave is present and the
flow is sufficiently well-resolved to not necessitate the activation of an SGS
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model. Finally, the eddy-viscosity is also active in some elements containing
the shock wave: the addition of the Ducros sensor is extremely relevant in
the present AV since it has been already shown in previous works how con-
siderably deteriorating can be the influence of a bulk viscosity on the levels
of compressibility of turbulent flows [18, 184, 229]. On the other hand, the
presence of additional shear-viscosity in proximity of a shock-wave, if not ex-
tremely high, will only implicate another secondary dissipative mechanism
in the smoothing operation of the discontinuity. It is in fact, important to
remind that a bulk-viscosity is much more influent in proximity of a shock
wave since it acts on the most relevant components of the velocity gradient,
i.e., the dilatation.

(c) Eddy-viscosity ratio. (d) Artificial viscosity.

It is finally worthwhile mentioning that due to the very high complexity
of such test case, a positivity-preserving scheme [227] has been employed to
maintain stability of the simulation. The limiter, nevertheless, has a very
low and localised activation as shown in Fig. 8.18. To visualise its activation
levels it has been introduced an element-wise constant flag which assumes
unitary value if the limiter is active and zero if it is not. Consequently, it
can be noticed that the maximum value assumed is approximately 2.9 · 10−3

meaning that the limiter is not only active in a very small region of the flow
but it is mostly temporally inactive too. As it is reasonable to expect, the
region where the limiter is mostly active is nearby the interaction between
the boundary layer and the shock wave.

Finally it is interesting to study the behaviour of the SGS tensor com-
ponent along the streamwise direction (Fig. 8.19). As predicted from clas-
sical Shock Wave-Turbulence Interaction (SWTI) problems, the magnitude
of each component should increase across the shock-wave, in particular the
streamwise velocity fluctuations get almost 4 times larger in the middle of
the interaction. It is also evident the increase of turbulent kinetic energy
(which is simply the trace of the SGS tensor with a minus sign).

8.3.4 Probes

Main variables have been collected over time through virtual probes in differ-
ent locations. Subsequently, temporal and spatial kinetic energy spectra can



8.3. COMPRESSION RAMP: LARGE-EDDY SIMULATION 203

Figure 8.18: Limiter activation.

Figure 8.19: Reynolds stresses along x (y+ = 30).

be related through Taylor hypothesis. All the probes have been located far
enough from the wall, in order to make such hypothesis reasonably suitable.
Probes location are shown in Fig. 8.20. Probes number 1 is located in the log
region of the incoming boundary layer, number 2 in the separation bubble
and the remaining two (number 3 and 4) in the log region of the turbulent
boundary layer developed after the interaction with the shock wave.

As it can clearly understood, probe number 2 is not suitable for Taylor’s
hypothesis application, in fact, oscillations are comparable to the mean flow
in the separation bubble region. So, in order to evaluate the resolution of the
present simulation only probes 1 and 3 have been considered. Their kinetic
energy spectra are respectively shown in Fig. 8.36(a). Furthermore, due to
periodicity along the spanwise direction, kinetic energy spectrum along z has
been evaluated too and it is shown in Fig. 8.36(b). Inertial range is clearly
visible in all of the kinetic energy spectra, followed by a steeper viscous range
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Figure 8.20: Probes location. Velocity magnitude in background.

where dissipation takes place. Notice that no accumulation of kinetic energy
in proximity of the Nyquist grid wavenumber is present. The SGS model
is then fully capable to dissipate the extra kinetic energy associated to the
smallest scales.

(a) Kinetic energy spectra (tempo-
ral).

(b) Kinetic energy spectra along z
(y = 0.7δ). Vertical dashed-line in-
dicates the Nyquist grid wavenum-
ber.

Figure 8.21: Kinetic energy spectra. Blue line, probe 1; red line, probe 3.

Observing the kinetic spectra evaluated using the Taylor’s hypothesis
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some relevant deviations can be noticed looking at the different probes.
Firstly, the inertial range occupying the medium wavenumber region is more
evident after the interaction with the shock (i.e.for probes 3 and 4). In other
words, a larger part of kinetic energy is present in the higher wavenumber
region, indicator of smaller length scales characterising the downstream tur-
bulence. Moreover, longer inertial range is typically associated with higher
Reynolds number flows. In agreement with such observation, in many stud-
ies of SWTI, intensity and anisotropy of the incoming turbulence strongly
increase after the interaction with the shock wave.

Knowing the time history of main variables it is possible to construct
discrete PDF (Probability Density Function) of the main quantities. Fur-
thermore, it has been observed that at location 4 the flow locally passes from
subsonic to supersonic frequently. The same PDFs have been consequently
conditioned to the local Mach number in order to highlight features typical
of such conditions. These are shown in Fig 8.22.

(a) Density PDF. (b) Pressure PDF.

Figure 8.22: PDF of density and pressure. Dashed vertical lines denote
the mean value in the different regimes. Pressure PDFs have been centered
around zero because their mean values were practically identical.

It is interesting to notice that the probability density function of the pres-
sure (Fig 8.39(a)) is not particularly influenced by the supersonic/subsonic
regime. Its shape follows the classical behaviour of this quantity in com-
pressible flows with a slight tendency to promote negative values. On the
other hand, in Fig 8.39(a), a relevant difference is observed in subsonic and
supersonic regimes: whenever the Mach number is higher than 1 density
PDF tends to extend to higher values, whereas in subsonic conditions it is
more symmetric with respect to the mean value. This can be related to the
presence of local shocklets in the boundary layer causing local compression
events, and, consequently, local increase of density.
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8.3.5 Wall-normal profiles

In order to analyse in more detail the behaviour of both SGS and AV model,
a series of wall-normal profiles have been evaluated in proximity of the sep-
aration point. In particular, in Fig. 8.23, the value of the eddy-viscosity
ratio is shown. In agreement with previous simulations using the same tur-
bulence model [1, 136], a local maximum is present in proximity of the wall.
Such behaviour is clearly related to the definition of the model itself, where
an approximation of the turbulent kinetic energy is used. Consequently, in
proximity of high velocity fluctuations the SGS model is more active. It
is interesting to stress that such behaviour can be particularly important
in the Large Eddy Simulation of wall-bounded flows since the peak of tur-
bulent kinetic energy is usually coinciding with the local maximum of SGS
kinetic energy transfer [230, 231] at approximately y+ ≈ 10. This is evident

Figure 8.23: Eddy-viscosity ratio along the wall-normal direction. Blue line
represents the maximum value of νt at each location.

in Fig. 8.24, where the streamwise component of the Reynolds stresses is
shown. To facilitate the comparison the location of the maximum value of
eddy-viscosity ratio and streamwise component of the Reynolds stresses are
respectively represented by the blue and dotted-line.

The superposition between these two lines is visible as higher values of
velocity fluctuations lead to larger values of eddy-viscosity.

Likewise, the artificial viscosity is shown in Fig. 8.25. In a similar way
with respect to the previous figures, the location of the maximum value of
βAV is shown by the red line, whereas the blue line indicates the location of
the maximum value of eddy-viscosity. Such representation is useful to high-
light the separation between the two regularisation techniques. Close to the
interaction the two maxima are close since both turbulence and shock-wave
coexist in a very narrow region close to the wall. Moving downstream, the
eddy-viscosity is mainly active in the separated flow, where vortical struc-
tures develop, whereas a clear departure toward the free-stream region can
be noticed for the artificial viscosity.

Such tendency is obviously related to the Ducros correction applied to
the present AV technique. In Fig. 8.26, the dilatation is shown following
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Figure 8.24: Streamwise component of the Reynolds stresses along the wall-
normal direction. Dotted-line represents the maximum value of τ11 at each
location, whereas the blue line indicates the location of maximum value of
νt.

Figure 8.25: Artificial viscosity along the wall-normal direction. Red line
represents the maximum value of βAV at each location, whereas the blue
line indicates location of the maximum value of νt.

the same visualisation paradigm introduced before: the dotted line repre-
sents the location of minimum dilatation, whereas the red line indicates the
correspondent maximum of AV. The two lines are almost perfectly overlap-
ping, showing that the artificial viscosity is much larger in presence of strong
compressions, whereas it assumes very small values in the shear layer, where
turbulence is more intense.

8.3.6 Reynolds Stress Anisotropy Invariant Map (RSAIM)

One of the most popular technique to visualise the anisotropic behaviour
of Reynolds stresses is commonly known as “Lumley triangle” introduced
by Lumley and Newman in 1977 [232]. In the original work and in many
followings scientific paper the main objective was identified in a better un-
derstanding of isotropic turbulence recovery which is represented by the ref-
erence frame’s origin of the Lumley triangle map.

The Reynolds stress anisotropy tensor, bij , is calculated as :

bij =
τij
τkk

− δij
3
. (8.5)



208 CHAPTER 8. COMPRESSIBLE TURBULENT FLOWS

Figure 8.26: Dilatation along the wall-normal direction. Dotted-line repre-
sents the maximum value of the dilatation at each location, whereas the red
line indicates the location of maximum value of βAV .

Its corresponding second and third invariants can be calculated as:

II = bijbji/2, (8.6)

III = bijbjnbni/3. (8.7)

The states highlighted here as x1, x2 and x3 represent the limit values as-
sumed by the invariants of bij . The origin, x3, corresponds to the isotropic
case, x2 the axisymmetric two-component case and x1 the one-component
case.
An example of such representation is shown in Fig. 8.27.

Figure 8.27: Example of Lumley triangle for a channel flow DNS [9] (blue
circles) and experimental turbulent mixing layer [10] (red circles).

Due to the rich variety of turbulence topologies characterising the present
configuration, RSAIM can be a very useful tool in the physical analysis of
SWTI flows. It is then interesting to visualise the Reynolds Stress anisotropy
map invariant for a certain set of points such as wall-normal profiles. In
Figs. 8.28(a) and 8.28(b) the RSAIM is shown at x = x0 − 7δ and x =
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x0+4δ for varying values of wall-normal distance. The resemblances between
Fig. 8.28(a) and the classical behaviour of turbulent channel flow shown in
Fig. 8.27 are evident. In proximity of the wall, turbulence lies on the two-
component line connecting x1 and x2. Moving toward the free-stream, in-
stead, turbulence converges toward the expected isotropic state. Considering
instead Fig. 8.28(b), the behaviour is considerably different. In proximity of
the wall, turbulence state lies very close to the axisymmetric contraction line,
it passes through an isotropic state at y+ ≈ 28 and it finally moves toward
the one-component state through an axisymmetric expansion. The upstream
region turbulence structures resemble classical boundary layer turbulence like
channel flow simulations, occupying essentially the second quadrant of the
RSAIM, whereas, after the interaction negative values of III are observed
as well, which are usually associated to mixing layers [233]. The similarity
between mixing layers and downstream turbulence has been already reported
by Priebe et al. [12]. Finally, within the SWTI framework, similar behaviours
of RSAIM has been observed in other previous studies [234, 235, 236].

(a) x = x0 − 7δ. (b) x = x0 + 4δ.

Figure 8.28: Reynolds Stress Anisotropy Invariant Map along the wall nor-
mal direction at two different location upstream and downstream the shock-
wave interaction.

In a similar way it is possible to analyse the variation of turbulence across
the interaction plotting the RSAIM along x for a fixed value of y+ = 30. Such
visualisation is show in Fig. 8.29. As already observed in Fig. 8.19 a strong
variation is expected around x ≈ x0 − 2δ where the shock-wave interacts
with the incoming boundary layer. In Fig. 8.29 it can be noticed that such
variation is represented as a sharp tendency toward the one-component case,
meaning that streamwise fluctuations are considerably larger then the other
two components. After the interaction, turbulence rapidly moves toward
isotropy due to flow separation.
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Figure 8.29: Reynolds Stress Anisotropy Invariant Map along the streamwise
direction at y+ = 30.

8.3.7 Conclusions

A Large Eddy Simulation of a 24◦ compression ramp has been performed
using a high-order Spectral Difference solver. Turbulence modelling has been
handled using the Spectral Element Dynamic model by Chapelier et al. [1],
whereas shock capturing has been performed using a low dissipative, bulk-
based, artificial viscosity technique [18]. For turbulence inflow generation,
Klein’s digital filter approach [119] has been used. Numerical results have
been compared with both simulations and experimental data available for
this particular test case. In particular, mean profiles, variances and wall
coefficients have shown to be in fairly good agreement with the references.

The combination of SGS and AV is well balanced thanks to the addition
of Ducros sensor [22] to the standard modal sensor by Peraire and Persson [7]
within the shock-capturing procedure. The activation of the AV is mainly
limited to the outer layer, where the shock is laminar and unaffected by tur-
bulence. The SGS model, in the same way, thanks to its dynamical natural
is mainly active in the turbulent boundary layer. An extensive validation of
the present test case has been performed, including temporal/spatial kinetic
energy spectra, wall-normal profiles and Reynolds Stress Anisotropy Invari-
ant Maps flow representation. The next section will be focused on a series of
physical and numerical analyses based on a DNS of a similar configuration.

8.4 Compression/expansion ramp: Direct Numeri-

cal Simulation

Shock wave-turbulence interaction is a major challenge in many different
applications of aerospace engineering, varying from external flows around
supersonic/hypersonic vehicles to rocket nozzles and scramjet engines. The
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intrinsic unsteadiness of SWTI problems often imposes severe thermal and
mechanical loads, which can strongly affect the structural integrity and ef-
ficiency of high-speed vehicles, thus playing a fundamental role in the aero-
nautical design process. The first attempts of studying the mutual interac-
tion between shock waves and laminar or turbulent boundary layers started
with the experimental works by Ackeret [237] and Liepmann [238]. In the
following decades, most of the research on SWTI advanced by virtue of ex-
perimental data of both compression ramps and impinging shocks (see [239]
and references therein for an extensive overview). More recently, the uprising
computational power allowed to tackle the flow physics of the compression
ramp via direct numerical simulation for reasonably low Reynolds numbers
[14, 240, 241, 242].

The interaction between a large scale structure, such as a shock wave,
and the small scale turbulence contained in an incoming boundary layer
triggers a wide range of length and time scales characterising the physics of
the problem. The capability of accurately representing the intricate dynam-
ics of such scales is a fundamental step in the development of high-fidelity
computational fluid dynamics simulations of turbulent flows.

The effect of compressibility alone can be particularly challenging in
terms of turbulence modelling. It is commonly conjectured that, for in-
compressible flows, in statistical mean, the influence of the smallest scales
on the large scales can be represented as a fully-dissipative process, justify-
ing the widespread use of eddy-viscosity models. In practical applications
to compressible turbulent flows, the use of fully-dissipative models can be
controversial, specifically when the Reynolds-averaging operator adopted in
Reynolds-averaged Navier-Stokes equations is replaced by the filtering oper-
ator of large-eddy simulation. The general assumption of similarity between
incompressible and compressible turbulence has lead to a series of generalisa-
tions of popular turbulence models for the sub-grid scale tensor (in LES) and
Reynolds stresses (in RANS). Nevertheless, with the Navier-Stokes equations
in their compressible form, a new set of unclosed SGS terms arise from both
the RANS and the LES formalisms. Some previous works addressed the im-
portance of such terms in a-priori DNS analyses (see for instance [24] and
reference therein), however modelling can still be considered significantly
under-developed for most of those unclosed terms. Furthermore, even for in-
compressible contributions, such as the kinetic energy SGS dissipation term,
their dependency on compressibility and thermodynamics remains, at this
date, in great measure unknown.

Since the very beginning of turbulence modelling, the kinetic energy dy-
namics has always been identified as one of the primary driving force of
turbulent flows. A comprehensive understanding of how kinetic energy is
distributed along scales and how turbulent structures interact one another
is of fundamental importance to understand turbulent flows physics. In the
context of LES, the phenomenon known as kinetic energy backscatter (also
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known as inverse energy cascade) has been extensively studied in the last
decades [230, 231, 243, 244]. Based on explicitly filtered DNS data, it is in
fact possible to directly evaluate the kinetic energy transfer contributions as-
sociated to the unresolved scales of the flow. The main results presented by
Piomelli et al. [230] highlighted the predominance of a forward energy cas-
cade as the one first conjectured by Richardson [27] and later formalised by
Kolmogorov [20] for three-dimensional turbulence. However, a large amount
of the flow field is instead characterised by backscatter events, i.e., an inverse
energy cascade, where small scales contribute as a source term for the large
scale kinetic energy. After these first results, the presence of backscatter has
been observed in many different applications [245, 246, 247, 248, 249, 250].
Both a-posteriori and a-priori analyses of turbulent flows have soon been
applied to more complex conditions, such as reactive and compressible flows.
In such circumstances, thermodynamics plays a much more relevant role in
the total energy balance. Thus, the description of total energy transfers
in turbulence soon evolved from the canonical formulation involving kinetic
energy only to more generalised forms, where the influence of internal en-
ergy cannot be neglected anymore. The interconnection between kinetic and
internal energy has been consequently studied in deep, analysing the role
played by pressure-dilatation work as the predominant conversion mecha-
nism between the two forms of energy [251, 252, 253, 254, 255]. Along these
lines, shock waves represent a conventional process of energy redistribution
in compressible flows. Shock waves have been shown to have a major impact
on the turbulence characteristics.

The first theoretical attempts to treat SWTI were formulated in the
50’s [256, 257, 258, 259] and they were all based on the classical decomposi-
tion of disturbances introduced by Kovasznay [260]. Only many years later,
as a result of the increasing computational capabilities, DNS of isotropic
turbulence-normal shock wave interaction were within reach for relatively
weak shocks [261, 262]. It was observed that the interaction was charac-
terised by an abrupt increase in turbulence anisotropy and intensity, trigger-
ing strong energy transfers in proximity of the shock-wave. A long series of
works followed, analysing the different aspects of SWTI, ranging from the
effect of the shock strength [263] to the variations of the upstream turbu-
lence [264, 265, 266].

Many of these computations considered small enough Mach numbers to
numerically resolve the inner structure of the viscous shock wave. However,
for sufficiently strong shocks, like the ones frequently encountered in com-
plex engineering applications, an accurate resolution of the shock profile is
often computationally impossible and an additional regularisation mecha-
nism is needed. The canonical approaches to address such matter in tur-
bulent flows are usually categorised in ENO/WENO/TENO schemes [149,
267, 150], shock-fitting techniques [268, 269, 270, 271] and artificial viscosi-
ties [272, 155, 7, 169, 18]. Each of them needs to be properly designed to
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regularise shock waves, preserving, at the same time, the delicate properties
of turbulence. Each shock-capturing technique is characterised by two main
steps: identification and regularisation. In particular, in turbulent flows, the
detection of shock waves can be particularly challenging due to the presence
of highly unsteady and rapidly varying turbulent structures. An inaccu-
rate identification of flow discontinuities can then easily lead to a significant
degradation of small scale fluctuations [184, 172].

The present work addresses the up-mentioned fundamental features of
compressible turbulence in a unified setting. The compression/expansion
ramp herein considered is, in fact, a particularly interesting setup charac-
terised by complex compressible turbulence dynamics in a self-contained con-
figuration.

8.4.1 Simulation setup

The canonical compression ramp setup features all the ingredients of shock
wave-turbulent boundary layer interaction. The arising flow field can be par-
ticularly complex, containing many challenging physical phenomena among
which shock waves, turbulence, flow separation and unsteady heat transfer.
All of these factors have been extensively studied in the literature as each of
them requires specific numerical treatments, in particular, if they strongly
interact with each other. For example, standard shock-capturing techniques
need to be carefully tailored whenever applied to compressible turbulent
flows, in order to avoid excessive artificial dissipation [184, 172]. In a similar
way, low-dissipative numerical schemes are often essential to reduce as much
as possible detrimental effects by numerical dissipation.

The test case herein considered has been extensively studied in many
works, both experimental [218, 13] and numerical [14, 12, 202, 204, 203],
with particular attention to the unsteady nature of the main shock-wave
front. The majority of the up-cited numerical simulations rely on different
forms of WENO schemes to handle shock waves [273] and recycling/rescaling
techniques to reproduce the incoming turbulent boundary layer [221]. An-
other relevant simulation of the same configuration, which will be used as
an additional reference, has been presented by Li et al. [274]. Starting from
this, a series of related studies have been proposed in the following years, in-
cluding a large number of investigations, such as, wall temperature/turning
angle influence, Reynolds stress anisotropy maps and turbulent kinetic en-
ergy balance [235, 275, 11]. Most of these works are characterised by the
same parameters and techniques used by Martín, except for the turbulent
boundary layer inlet condition. In the simulation by Li et al [274], the tran-
sition to turbulence has been simulated without any artificial turbulence
injection nor recycling/rescaling technique. Instead, a blow-and-suction dis-
turbance has been used to trigger the transition sufficiently far away from
the compression corner.
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To the authors’ knowledge, the interaction between a fully-developed tur-
bulent boundary layer and an oblique shock-wave generated by a compres-
sion ramp has never been simulated using the high-order spectral element
method [161, 162, 48].

In all the previously cited works, different resolution levels and a large
variety of analyses have been performed on the same configuration, provid-
ing an extensive framework for validation. The canonical problem consists in
a supersonic, fully-turbulent, boundary layer interacting with a 24◦ degrees
compression/expansion ramp. The computational domain (see figure 8.30)
has been parametrised using the 99% thickness of the incoming boundary
layer (here denoted as δ). The classical geometry of the present configura-
tion is commonly limited to the compression ramp only. The subsequent
expansion corner has been added to study the effect of strong expansions on
the turbulence.

As geometrical reference, the origin is located at the corner of the com-
pression ramp and the x-coordinates are measured starting from this point
following wall-tangent directions. In agreement with the DNS by Priebe &
Martín [12], the reference supersonic boundary layer has been evaluated at
x = −8δ. Upstream of this location the generation of the turbulent bound-
ary layer itself takes place. In the work by Priebe & Martín [12], a secondary
simulation based on recycling/rescaling has been used in order to prescribe
a realistic inlet condition at x = −8δ. In the present simulation, instead, an
extended domain has been considered, in which the digital filter technique
for turbulence generation by Klein et al. [119] has been applied at x = −20δ.

Figure 8.30: Q-criterion contours coloured by velocity magnitude (Q =
1.0u2∞/δ

2). In the background, numerical Schlieren is displayed to highlight
the primary shock-wave. δ: incoming boundary layer thickness.
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N Nx Ny Nz δx+ δy+ δz+ DoF
6 120 + 120 + 120 28 27 4.75 ∼ 15 0.3 ∼ 9 4.2 54M

Table 8.6: Numerical discretisation details. N , order of approximation; Nx,
Ny,Nz, number of elements along the stream-wise, wall-normal and span-
wise directions respectively; δx+,δy+,δz+, wall-normalised grid spacings.

Regarding the turbulent inlet condition, many different approaches have
been proposed in the literature of SWTI to prescribe turbulent inflow gen-
eration (see [222] for an extensive summary). Using the digital filter tech-
nique by Klein [119], generalised and validated to the present numerical
setup [223, 16], the mean profiles, to which perturbations are superposed,
have been evaluated using closed form relations involving Van Driest trans-
formed velocity as described by Touber [224]. Given the correlation tensor of
the fluid velocity and typical length scales of the desired turbulence field, re-
alistic velocity fluctuations are prescribed at the inlet boundaries, far enough
from the flow zone of interest. The values of the correlation tensor have been
extrapolated from a turbulent boundary layer DNS performed by Pirozzoli
& Bernardini [225] at a similar Reynolds number. Finally, density and tem-
perature fluctuations have been imposed using the strong Reynolds analogy
(SRA).

Details regarding the 6th-order accurate numerical discretisation are listed
in Table 8.6. The number of total degrees of freedom (DoF) has been chosen
in order to match the same accuracy of the DNS by Priebe & Martín [12].
As common practice for high-order spectral element schemes, the grid spac-
ings in Table 8.6 have been evaluated using the length of the elements along
each direction divided by the order of approximation (denoted as N). Wall
resolution is enforced locating the first solution point at y+ ≈ 0.3 and the
entire first element within the viscous sub-layer (y+ < 10). The computa-
tional domain (figure 8.31) has been enlarged with respect to most of the
previously cited works based on recycling/rescaling techniques. Indeed, the
inlet forcing method for turbulence injection necessitates of a certain length
to develop the desired boundary layer statistical properties, which measures
approximately 2/3δ as previously observed by Adler et al [276].

8.4.2 Simulation validation and physical analysis

In this section, a detailed validation of the the main flow features is presented.
Once the reliability of the simulation is established, further analyses on the
resolved flow field are discussed in subsequent sections.
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Figure 8.31: Compression/expansion ramp: computational grid. δ: incoming
boundary layer thickness.

Wall coefficients and mean profiles

In order to validate the proposed DNS, the averaged friction coefficient
and wall pressure have been computed and compared with previous sim-
ulations and experimental data of the same configuration in figures 8.32(a)
and 8.32(b). In many other works, a perfect agreement within the rich lit-
erature of compression ramp simulations has proven to be a very difficult
task to achieve. This is commonly true not only in the detached region
of the flow, which can be very challenging to be accurately predicted, but
also in the upstream region where large deviations of the skin friction coef-
ficient are normally reported in the literature. To highlight such tendency,
the DNS by Zhu et al. [11] along with experimental data by Ringuette et
al. [13] have been added to figures 8.32(a) and 8.32(b). The simulation by
Zhu et al. [11] was performed in the same conditions of the experiments by
Ringuette et al. [13] and DNS by Wu & Martín [14], which were characterised
by a slightly smaller Reynolds number with respect to the present compu-
tation (namely, Reθ = 2400). Another relevant difference can be identified
in the upstream boundary layer: the DNS performed by Zhu et al. [11] did
not rely on any artificial injection of turbulence. In fact, the full laminar-to-
turbulent transition of the incoming boundary layer was explicitly simulated
using a blow-and-suction disturbance technique.

In figure 8.32(a), in the upstream region, the friction coefficient is slightly
higher than the reference DNS by Priebe & Martín [12], whereas the sim-
ulation by Zhu et al. [11] reports an even larger value. The experimental
separation point is much better predicted by both Zhu et al. [11] and the
present simulation rather than by Priebe & Martín [12]. Furthermore, both
simulations tend to provide smaller values of the friction coefficient in the
downstream region, in agreement with the experimental location of the reat-
tachment point. In figure 8.32(b), the computed wall pressure profile follows
nicely the one obtained by Zhu et al. [11], which departs from the DNS by
Priebe & Martín [12] within the interaction region around −3 < x/δ < 0.
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In order to asses the quality of the incoming boundary layer, mean profiles

(a) Friction coefficient. (b) Wall pressure.

Figure 8.32: Averaged friction coefficient and wall pressure along the stream-
wise direction. Solid line, present simulation; dashed line, DNS by Zhu et
al. [11], dashed-dotted line, DNS by Priebe & Martín [12]. Black circles,
measurements by Ringuette et al. [13].

along wall-normal planes at different locations have been extracted. First,
in figure 8.33, velocity profiles have been evaluated before the interaction
with the shock wave (x = −3δ) and after (x = 4δ). Secondly, in figure 8.34,
the Van-Driest transformed stream-wise velocity at x = −8δ is shown. In
figure 8.34, the first 6 solution points of the high-order discretisation are
shown to highlight wall resolution. Notice that the first element is entirely
contained in the viscous sub-layer (y+ < 10). The Van-Driest transformed
velocity follows accurately the experimental data in the log-region whereas
some small differences with respect to the reference DNS are visible, in par-
ticular in the buffer layer.

At x = −3δ the profile extracted from the present simulation shows a per-
fect agreement with the reference DNS. Downstream of the shock-interaction
region, instead, some discrepancies can be noticed, where a much better
agreement with the experimental data by Ringuette et al. [13] has been ob-
tained. Similar results in the detached region have been reported only by
Kokkinakis et al. [277] using a 9-th order WENO scheme. In the same work,
different schemes were employed and compared. Compared to lower order
methods, the 9-th order WENO scheme resulted in higher values of the skin
friction in the upstream boundary layer and smaller ones in the downstream
region, in agreement with the results shown in Fig 8.32(a).

Finally, the main features of the incoming boundary layer are summarised
in Table 8.7. Most of them are in fairly good agreement with the reference
values of Priebe’s simulation.
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(a) x = −3δ. (b) x = 4δ.

Figure 8.33: Tangential velocity profile along the wall-normal direction at
x = −3δ (left) and x = 4δ (right). On the left figure, solid line, present
simulation; dashed line, DNS by Priebe & Martín [12]. On the right fig-
ure, solid line, present simulation; dashed line, DNS by Wu & Martín [14];
symbols, experimental data by Ringuette et al. [13]. On the right figure the
stream-wise velocity is normalised by the outer velocity ue downstream of
the main shock.

Figure 8.34: Van-Driest transformed stream-wise velocity at x = −8δ. Solid
line, present simulation; dashed line, DNS by Wu & Martín [14]; symbols,
experimental data by Ringuette et al. [13]; dash-dotted line, u+V D = y+ and
u+V D = 5.25 + log(y+)/0.41.

Probes

The main variables have been collected over the simulated time through
virtual probes located in regions characterised by different thermodynamic
states and turbulence structure (see figure 8.35). Subsequently, temporal and
spatial kinetic energy spectra have been related using the Taylor’s hypoth-
esis. All the probes have been taken far enough from the wall, in order to
make the Taylor’s hypothesis reasonably realistic. The first probe has been
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- Reθ δ δ+ δ∗ θ H cf × 103

reference 2900 7.10 mm 340 2.58 mm 0.47 mm 5.49 2.16

x = −8δ 2873 7.43 mm 355 2.72 mm 0.47 mm 5.86 2.17

Table 8.7: Characteristic of the incoming boundary layer: reference vs com-
puted.

located in the log region of the incoming boundary layer and the second in
the detached flow downstream of the interaction with the shock wave. The

Figure 8.35: Probes location. In the background, instantaneous normalised
velocity magnitude field.

kinetic energy spectra, computed using the Taylor’s hypothesis, are shown in
figure 8.36(a). In addition, due the periodic conditions along z, the kinetic
energy spectra in the span-wise direction have been evaluated at the same
locations and they are shown in figure 8.36(b). To reduce numerical noise,
the spatial kinetic energy spectra have been computed at multiple time steps
and subsequently averaged.

The inertial range is clearly visible in all the spectra, followed by a steeper
viscous range where viscous dissipation takes place. Notice that no accumu-
lation of kinetic energy in the proximity of the Nyquist grid wavenumber is
observed. The molecular viscosity is then sufficiently large to dissipate the
kinetic energy associated to the smallest grid size, indicating a fairly good
resolution of the dissipative scales. It is interesting to notice that the inertial
range is evidently elongated after the interaction with the shock wave. This
feature is in good agreement with the widely known evolution of isotropic
turbulence across large scale shock waves. The turbulence downstream of the
interaction is, in fact, characterised by smaller scales (see also figure 8.37),
pushing the dissipative range to larger wave-numbers. Another well-known
effect of shock waves on isotropic turbulence is the strong amplification of
the transverse vorticity component. As a qualitative visualisation of such
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(a) Kinetic energy spectra applying Tay-
lor’s hypothesis to temporal signals.

(b) Kinetic energy spectra along z (y =
0.7δ). The vertical dashed line represents
the Nyquist grid wavenumber.

Figure 8.36: Kinetic energy spectra. Dashed line, x = −8δ; solid line,
x = 4δ. E denotes the kinetic energy Fourier spectrum of the temporal (left)
and span-wise (right) velocity signal. κ represents the wavenumber which is
evaluated along the span-wise direction as κz = 0.5/z and, using Taylor’s
hypothesis, as κ = 2πf/〈||u||〉, with f the temporal frequency of the time
signal.

Figure 8.37: Numerical Schlieren.

behaviour, a wall view of the vorticity field is shown in figure 8.38. From
this figure, the recovery of velocity fluctuations right after the turbulent inlet
condition is also seen.

Knowing the time history of the main variables, the discrete Probability
Density Function (PDF) of quantities of interest may be built in a time-
averaged statistical sense. At the downstream probe location, the flow regu-
larly oscillates between subsonic and supersonic regimes. Consequently, the
PDFs have been conditioned to the local Mach number. The discrete PDFs
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Figure 8.38: Instantaneous absolute value of the normalised span-wise com-
ponent of the vorticity field (wall view). Vertical white lines represent com-
pression and expansion corners. Three periods along the span-wise direction
have been plotted.

of density and pressure are shown in Fig 8.39. The PDF of pressure, shown

(a) Pressure PDF. (b) Density PDF.

Figure 8.39: PDF of density and pressure. Dash-dotted line, conditional
PDF with Ma < 1; dashed line, conditional PDF with Ma > 1; solid line,
total PDF. Vertical dotted line on the left figure represents the pressure mean
value.

in figure 8.39(a), is not particularly influenced by the supersonic/subsonic
regime. On the other hand, in figure 8.39(b), a significant dependance on the
sonic regime is observed for the density: whenever the Mach number exceeds
a unitary value, the density PDF tends to extend to larger values, whereas,
in subsonic conditions, it is more symmetric with respect to the mean value.
This tendency can be partially explained by the presence of shocklets [278] in
the detached flow, causing local compressions, and, consequently, an abrupt
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increase of the fluid’s density.

In these simulations, the shock-capturing artificial viscosity must be es-
sentially inactive in the separated flow, which is characterised by strong vor-
tical structures. This is confirmed in figure 8.40, where the averaged value
of the artificial viscosity is shown. The model is active only in the proximity
of the shock wave, whereas vanishing values are observed in the rest of the
domain. Similarly, the positivity-preserving scheme, has a relatively low and

Figure 8.40: Snapshot of averaged artificial viscosity (m2/s).

localised activation, as shown in figure 8.41. To visualise its activation levels,
an element-wise constant flag has been introduced, taking a unitary value if
the limiter is active and zero if it is not. Such flag indicator is then averaged
in time and along the span-wise direction following the classical paradigm
for statistically steady state and span-wise periodic flows. The maximum
value assumed by the limiter flag is approximately 1 × 10−4 meaning that
the limiter is not only active in a very small region of the flow but also mostly
inactive in time as well.

Figure 8.41: Averaged limiter activation.
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8.4.3 Analysis of the resolved kinetic energy balance

The space filtered mass and momentum balance equations are obtained ap-

plying a density weighted spatial filtering operation (̃·) = ρ(·)/ρ to equa-
tions (2.1) and (2.2):

∂ρ

∂t
+

∂

∂xj
(ρũj) = 0 , (8.8)

∂

∂t
(ρũi) +

∂

∂xj
(ρũiũj) = − ∂p

∂xi
+

∂

∂xj

[
2µ(T̃ )S̃d

ij

]
+
∂τij
∂xj

+
∂τvij
∂xj

, (8.9)

where S̃d
ij is the deviatoric part of the strain-rate tensor, computed from the

resolved velocity field,

S̃d
ij =

1

2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
− 1

3

∂ũk
∂xk

δij , (8.10)

and the terms representative of transport by unresolved fluctuations read,

τij = ρũiũj − ρuiuj , (8.11)

τ vij = 2µSd
ij − 2µ(T̃ )S̃d

ij . (8.12)

The total kinetic energy may be written

ρEk =
1

2
ρuiui =

1

2
ρũiũi + ρk , (8.13)

where ρk = (ρuiui − ρũiũi)/2 denotes the unresolved part of the kinetic
energy.

The contribution of τ vij (8.12) is often neglected, based on the assumption
that terms involving molecular viscosity are mostly restricted to the smallest
scales and then weakly affected by the averaging or filtering operations. Most
common turbulence models for the unresolved Reynolds stress tensor τij rely
on the so-called Boussinesq’s hypothesis (eddy-viscosity hypothesis):

τij = 2ρνtS̃
d
ij −

2

3
ρkδij , (8.14)

where νt is the eddy-viscosity.
The balance equation for the resolved part of the kinetic energy may be

written as
∂(12ρũkũk)

∂t
= K0 +K1 −K2 +K3 −K4, (8.15)

with

K0 =
∂

∂xj

{
−1

2
ρũkũkũj − pũj +

[
2µ(T̃ )S̃d

ij + τij + τ vij

]
ũi

}
, (8.16)

K1 = p
∂ũj
∂xj

, K2 = 2µ(T̃ )S̃d
ij

∂ũi
∂xj

, K3 = −τij
∂ũi
∂xj

, K4 = τ vij
∂ũi
∂xj

. (8.17)
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The first term on the RHS of (8.15) represents a transport term, which
only redistributes kinetic energy. The last four terms, instead, act as sources
and sinks of the kinetic energy of the resolved scales. K1 denotes the
pressure-dilatation work, which quantifies the exchange of energy between
kinetic and internal energy balances. The term K2 represents the large-scale
viscous dissipation. K3 is the dissipation term of the resolved part of the ki-
netic energy (i.e., the so-called production term of k, the unresolved kinetic
energy) and K4 denotes the contribution of the unclosed viscous term due
to the non-linearity of molecular viscosity.

In a similar manner, the transport equation for the unresolved part of
the kinetic energy (i.e., the last term in equation 8.13) reads,

∂ρk

∂t
=

∂

∂xj

[
−ρkũj −

1

2
ρ(ũkukuj − ũkukũj)

]

+
∂

∂xj

[(
− puj + pũj

)
+

(
2µ(T )Sd

ijui − 2µ(T )S̃d
ij ũi

)
− τij ũj

]

+

(
p
∂uj
∂xj

− p
∂ũj
∂xj

)
−

(
2µ(T )Sd

ij

∂ui
∂xj

− 2µ(T )S̃d
ij

∂ũi
∂xj

)
+ τij

∂ũi
∂xj︸ ︷︷ ︸

−K3

.

(8.18)

As in the resolved kinetic energy balance, all the terms on the RHS can
be cast in flux terms, which only redistribute the turbulent kinetic energy
in space, and in source/sink contributions. The most interesting term, for
the purposes of the present work, is certainly the last one in equation 8.18,
which coincides exactly with the term K3 of (8.15) with inverted sign. Such
term is, in fact, representative of the interchange of kinetic energy between
the resolved and unresolved scales within the LES formalism or mean and
fluctuating fields in the RANS framework. In other words, the dissipation
of the resolved kinetic energy, denoted as K3, directly coincides with the
production of unresolved kinetic energy. Most of the following analyses will
be focused on the resolved kinetic energy balance rather than on the unre-
solved kinetic energy conservation law. Such decision is mainly justified by
the fundamental importance of the resolved kinetic energy within the LES
framework. The main task of LES is, in fact, providing a generally satisfying
description of the large scale motions and only model the influence of the
smallest scales on the resolved field.

If not explicitly stated differently, all the terms of the resolved kinetic
energy balance will be considered as normalised by the quantity ρ∞u

3
∞/δ.

Averaged fields

In the DNS featuring an homogeneous direction, the density-weighted ensemble-
averaging is defined from an integration in time and along the statistically
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homogeneous direction:

φ̃(x1, x2) =
ρφ

ρ
=

∫ L
−L

∫ T
0 ρφ dx3dt

∫ L
−L

∫ T
0 ρ dx3dt

, (8.19)

for a sufficiently large duration T and where L denotes the length of the x3
homogeneous direction. The terms K1 (pressure-dilatation) and K3 (dissi-
pation) of equation (8.15) are thus first considered in a RANS context, for
which the balance equations formally take the exact same form as the filtered
ones.

Pressure-dilatation (K1) represents a quantity which can be directly ex-
pressed as a function of the resolved variables, as opposed to the unresolved
dissipation (K3), for which explicit turbulence modelling is needed. The
pressure-dilatation term, despite being a large-scale quantity, is particularly
important as it represents the primary mechanism of energy exchange be-
tween kinetic and internal energies.

Each of these terms is plotted in the whole domain in figures 8.42 and 8.43.
In the first figure, showing the dissipation, black and red lines have been
added to highlight zones of negative and positive values, respectively. Clearly,
most of the flow field is characterised by forward transfer of kinetic energy
from the mean flow to the turbulent kinetic energy, as expected in RANS.
The dissipation term reaches its smallest values right after the interaction
with the shock wave, indicating that most of the unresolved dissipation takes
place at this location. The presence of non-zero values of dissipation in prox-
imity of the shock wave is instead caused by the unsteadiness of the shock
front which oscillates along the stream-wise direction. As already mentioned,
backscatter is rarely observed in mean whereas it is a more common feature
in an explicit filtering setup. However, in the present configuration, even in
mean, a large portion of the flow experiences an inverse energy transfer, from
the fluctuating field to the mean flow, in proximity of the expansion corner.
The correlation between expansion/compression motions and inverse/direct
energy cascade observed by O’Brien et al. [245] and Wang et al. [246, 279]
is then confirmed also in mean. A deeper discussion on the interpretation of
such behaviour will be presented in the next sections.

The pressure-dilatation term p(∂ũj/∂xj) is shown in figure 8.43. The
large-scale compression and expansion are clearly visible in proximity of the
corresponding corners. In the detached region, most of the flow is mildly
compressed due to the presence of local shocklets. Closely after the main
shock/turbulence interaction, the secondary shocks caused by the separated
flow (visible also in figure 8.37) produce a relatively extended compression
region downstream of the main shock. The presence of secondary shocks
is also responsible for the main shock deflection, coinciding in the figure
with the intersection between the two white lines. The pressure-dilatation
work interacts only partially with the incoming turbulent boundary layer in
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Figure 8.42: Dissipation of the kinetic energy of the resolved scale (K3 term
of equation 8.15).

a very narrow region of the flow, coinciding with the shock in the vicinity
of the wall. The Reynolds number is in fact not large enough for the shock
wave to penetrate entirely in the turbulent boundary layer. To highlight

Figure 8.43: Pressure-dilatation term (K1 term of equation 8.15).

the interaction, the evolution of the most relevant terms of the resolved ki-
netic energy balance have been computed along the stream-wise direction,
at height y+ ≈ 30 (figure 8.45). As already observed in figure 8.43, the dis-
sipation reaches its local minimum right after the shock. Upstream of the
shock, turbulence interacts with the shock wave generating fluctuations at
smaller scales, thereby promoting a large amount of dissipation immediately
after. For the same reason, downstream of the primary shock, turbulent ki-
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netic energy is locally produced and subsequently advected in the detached
region (see figure 8.44). Similarly to the kinetic energy dissipation, non-zero
values of turbulent kinetic energy in proximity of the shock wave are mainly
caused by the oscillation of the shock wave. It is worth mentioning that the

Figure 8.44: Normalised turbulent kinetic energy: 2ρk/(ρ∞u
2
∞).

pressure-dilatation work assumes non-negligible values only in proximity of
the shock wave. Across the shock, in fact, kinetic energy is locally converted
in internal energy, precisely, through the pressure-dilatation term. In terms
of resolved kinetic energy balance, the negative values of dissipation and
pressure-dilatation work are mainly compensated by the flux term K0 which
assumes mostly positive values along the stream-wise direction. The sum of
all the terms on the RHS of (8.15) has been evaluated and it is additionally
shown in figure 8.45 as solid black line. The local balance of resolved kinetic
energy is very close to zero, indicating an accurate prediction not only of
the large-scale terms such as pressure-dilatation and viscous dissipation, but
also of the unclosed fluctuating contributions such as the unresolved dissi-
pation term K3. Furthermore, an accurate local balance of resolved kinetic
energy is also indicative of negligible numerical dissipation, confirming the
high resolution of the present DNS. An additional term in equation 8.15, rep-
resenting the contribution of the artificial viscosity model, has been taken
into account in the evaluation of the resolved kinetic energy balance shown
in figure 8.45. Such term can be written as

K5 =
∂

∂xj

(
βAV

∂ũk
∂xk

ũj

)
− βAV

(
∂ũk
∂xk

)2

. (8.20)

Its contribution on the total balance of resolved kinetic energy has shown
to be quite smaller than the other relevant terms. Nonetheless, it has been
found necessary to include it in order to achieve an accurate balance, in
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Figure 8.45: Main terms of the resolved kinetic energy balance (equa-
tion 8.15) along the stream-wise direction at height y+ ≈ 30. Dashed line,
flux term K0; dotted line, pressure-dilatation work K1; dash-dotted line, dis-
sipation term of the resolved part of the kinetic energy K3; solid line, local
balance of the resolved kinetic energy

∑5
i=0Ki (K5 from equation 8.20). All

the terms are normalised by ρ∞u
3
∞/δ.

particular in proximity of the shock wave. (The expression of such term has
been omitted in equation (8.15) for clarity purposes.)

Space filtered vs averaged fields

The differential filter proposed by Germano [280] is applied, in which the
resolution of a heat-type equation is performed with the spectral difference
scheme employed for simulating the flow. Filter widths of ∆ = 2h, ∆ = 4h
and ∆ = 8h have been considered in the following analysis, with h the DNS
resolution.

The role of compressibility in kinetic energy transfers has been exten-
sively investigated [279, 281, 282, 246, 283, 284, 245], where the most relevant
studies have been focused on the interconnection between large scale dilata-
tion, turbulent Mach number and the dissipation. The first two represent
the most relevant indicators of local levels of compressibility and the last one
drives the canonical mechanism of kinetic energy redistribution along scales
in turbulent flows.

In figure 8.46, the PDF of the dissipation term of the resolved field (term
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K3 in equation 8.15) is shown using both averaging and filtering approaches.
Some peculiar differences can be noticed. The first, more relevant, can

Figure 8.46: PDF of the SGS kinetic energy dissipation term (K3). Black
line, averaging; shades of greys, filtering with ∆ = 2h, ∆ = 4h, and ∆ = 8h
for increasing darkening

.

be identified in an evident prevalence of negative contributions of K3 using
averaged fields (see figure 8.47). In mean, within reasonable bounds, the as-
sumption of classic kinetic energy cascade holds, whereas, using the filtering
operation, a much larger amount of both positive and negative values are
observed. Still, the left tail of the PDF is clearly longer than the right one,
indicating that forward transfer is still more likely to occur than backscat-
ter. Even if the general behaviour of averaged and filtered PDFs is clearly
different, mean values are similar. Such observation is in agreement with the
suitability of eddy-viscosity models: their dissipative nature is in fact able to
represent mean kinetic energy transfers (but not local ones). The influence
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Figure 8.47: Detailed view of figure 8.46.

of the small scales on the resolved flow field is then fairly well approximated,
despite the absence of explicit backscatter mechanisms.

Secondly, as expected, local interactions allow much larger values of both
inverse and direct energy cascade due to a less regular flow field. Smaller
filter widths lead, in fact, to larger gradients and therefore larger values of
dissipation. Such behaviour is clearly visible in figure 8.46, where a narrower
PDF is observed for the largest filter size (∆ = 8h). Similar trends have been
already reported in the case of compressible forced isotropic turbulence by
Wang et al. [246]. Finally, the negligible difference between the PDFs for ∆ =
2h and ∆ = 4h is a good accuracy indicator for the present computation. A
very small amount of kinetic energy is, in fact, transferred between the two
scales, showing that the total kinetic energy can be considered fairly well
resolved by the Nyquist grid size (see also figure 8.36(b)).

In the present work, as classical indicator of small scale compressibility
activity, the SGS Mach number has been considered. Namely, the SGS Mach
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number is defined as:

MaSGS =

√
2ρk

3γp
. (8.21)

The averaged SGS Mach number throughout the domain is shown in
figure 8.48. In figures 8.49 and 8.50, the filtered SGS Mach number is dis-
played for increasing filter size. The maximum value of the averaged SGS
Mach number is approximately equal to 0.32. Using explicit filtering, instead,
slightly higher values can be observed (around 0.42 for ∆ = 4h and ∆ = 8h).
Non-negligible compressibility effects are expected for values approximately
larger than 0.3 [285, 286, 287, 288]. Such values have been reported mainly
in the detached region of the flow, where compressibility is expected to have
a much stronger influence. Non-zero values of the turbulent kinetic energy

Figure 8.48: Averaged SGS Mach number (equation 8.21).

Figure 8.49: Filtered SGS Mach number (∆ = 4h).
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Figure 8.50: Filtered SGS Mach number (∆ = 8h).

are observed not only in the detached region but also in proximity of the
shock wave, where the flow is essentially laminar. In average, the generation
of turbulent kinetic energy at the shock location is explained by the oscilla-
tion of the shock wave in the stream-wise direction. Considering LES space
filtering, such tendency is simply caused by the spatial regularisation of the
discontinuity.1

To focus on the mutual influence between kinetic energy transfers and
compressibility, the correlation between large scale pressure-dilation work
and SGS kinetic energy dissipation is analysed in figure 8.51, where the
joint-PDF (JPDF) of the K3 and K1 terms is depicted. In mean, a large
amount of the flow field is characterised by a classical direct energy cascade,
as the kinetic energy dissipation term is evidently skewed toward negative
values. The evident branch of positive values of dissipation in the second
quadrant is instead caused by the expansion fan downstream of the compres-
sion ramp (see figure 8.42 for comparison). Considering filtered quantities,
both differences and analogies can be noticed. Differently with respect to
the JPDF of the averaged field, a larger amount of backscatter is present,
in particular, in compression regions. Expansion motions are still mainly
characterised by backscatter, whereas compressions enhance a direct energy
cascade. Such tendency is more evident for larger filter widths and is in-
trinsically connected to the previous figures 8.49 and 8.50: for larger filter
widths the unresolved kinetic energy is higher, leading to larger SGS Mach
numbers and a consequently stronger influence of compressibility in kinetic
energy transfers.

A more intuitive visualisation of pressure-dilatation work and dissipa-
tion of the resolved scales is shown in figure 8.52, where local interactions

1A shock wave, from a numerical point of view, will still represent an unresolved feature
of the flow even if not directly linked to the classical concept of turbulence under-resolution.
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Figure 8.51: JPDF of dissipation of resolved scales (K3) and resolved
pressure-dilatation work (K1). Left plot, averaged data; middle plot, fil-
tered data with ∆ = 4h; right plot, filtered data with ∆ = 8h.

are highlighted: compression regions are characterised by classical forward
kinetic energy cascade, whereas, vice-versa, expansion regions are more likely
to experience backscatter.

Notice that the JPDF of the averaged field in figure 8.51 is in large
amount restricted to a very narrow region along the K1 = 0 line, mean-
ing that, in mean, most of the unresolved activity is restricted to regions of
negligible pressure dilatation work. The strongest kinetic energy transfers
are located right downstream of the interaction with the shock wave, where
the flow is only mildly compressed due to the presence of shocklets gener-
ated by the detached flow. Considering filtered fields, the JPDFs are much
wider and characterised by a large amount of both positive and negative
pressure-dilatation work. The shape of the JPDF of the averaged field can
be explained by the highly intermittent character of the separated flow. The
averaging operation causes an overall compensation between compression
and expansion regions. Such effect is an example of the kind of information
which is lost studying averaged fields only. It is then relevant to highlight
that the importance of compressibility in the modeling is not entirely im-
posed by the physics of the problem, but it is also strongly influenced by
the filter width and thus by the flow resolution chosen for the simulation.
Relatively coarse LES are then more likely to experience a stronger influence
of compressibility in the modeling rather than well-resolved simulations.

Another way to study the relation between compressibility and kinetic
energy transfer is to relate the SGS Mach number with the SGS kinetic
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K1

0.00−3 · 10−3 3 · 10−3

K3

0.00−5 · 10−2 5 · 10−2

Figure 8.52: Visual comparison of dissipation (bottom, K3) and pressure-
dilatation work (top, K1) for a given instantaneous filtered field (∆ = 4h).
The two quantities are shown in a specular way to ease the comparison.
White and black circles highlight regions of intense back and forward scat-
tering respectively.

energy dissipation. In figure 8.53 the JPDFs of these two quantities are
shown considering both averaging and filtering approaches. The amount

Figure 8.53: JPDF of SGS kinetic energy dissipation and MaSGS. Left plot,
averaged data; middle plot, filtered data with ∆ = 4h; right plot, filtered
data with ∆ = 8h.

of forward kinetic energy transfer gets stronger and stronger for increasing
values of MaSGS, indicating that larger turbulent Mach numbers enhance



8.4. COMPRESSION/EXPANSION RAMP: DIRECT NUMERICAL SIMULATION235

MaSGS
0.00 0.42

K3

0.00−5 · 10−2 5 · 10−2

Figure 8.54: Visual comparison of SGS dissipation (bottom) and SGS Mach
number (top) for a given instantaneous filtered field (∆ = 4h). The two
quantities are shown in a specular way to ease the comparison. Circles
highlight strong energy transfer regions.

dissipation of the resolved scales.

Considering the filtered counterparts, a large amount of backscatter is
present, even if the JPDF is still clearly asymmetric toward negative values
of K3. In a similar way with respect to the averaged terms, both forward
and backscatter tend to increase for larger SGS Mach numbers. This can be
clearly observed in figure 8.54 as well, where a direct comparison of the two
quantities is shown for a given instantaneous filtered field.

Figure 8.53 links two quantities which are both unresolved, since the
definition of SGS Mach number involves the turbulent kinetic energy. On
the contrary, figure 8.51 relates an unclosed term, such as the dissipation
of the resolved kinetic energy, with the large scale pressure-dilatation work,
giving more useful informations in terms of turbulence modelling.

8.4.4 Eddy-viscosity hypothesis

In the previous discussions, the dissipation of the resolved kinetic energy
has been used as the sole indicator of backscatter. Still, due to the intrinsic
compressible character of the equations, it is reasonable to decompose the
dissipation term in two separate contributions,

−τij
∂ũi
∂xj

= −
(
τdij +

1

3
τkkδij

)
∂ũi
∂xj

= −τdij
∂ũi
∂xj

− 1

3
τkk

∂ũi
∂xi

, (8.22)

where τdij = τij − 1
3τkkδij is the deviatoric part of the SGS tensor. Under

incompressible conditions, such decomposition is redundant from an ener-
getic point of view, due to the solenoidal nature of the velocity field. In
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other words, the influence of the trace of the SGS tensor on the large-scale
kinetic energy is directly proportional to the level of compressibility of the
flow, quantified by the velocity field dilatation. To recover a traceless tensor,
in compressible LES, only the deviatoric part of the SGS tensor is commonly
modelled using an eddy-viscosity hypothesis (see equation 8.14). The influ-
ence of this hypothesis on the total resolved kinetic energy is then expressed
as:

−τij
∂ũi
∂xj

+
1

3
τkk

∂ũl
∂xl

= −2ρνtS̃
d
ij

∂ũi
∂xj

, (8.23)

(see [289]) which leads to the following expression of eddy-viscosity:

νt =
K3 + Λ

−2ρS̃d
ij(∂ũi/∂xj)

, (8.24)

where Λ = −(2/3)ρk(∂ũl/∂xl). Such formulation can be interpreted in both
filtered and averaged sense.

The term Λ represents the turbulent kinetic energy transfer due to the
spherical part of the SGS tensor. It is usually modelled following the [25]
approach, also with a dynamic formulation [26]. This term, involving the
turbulent kinetic energy, vanishes in the incompressible case and the pres-
ence of negative/positive eddy-viscosities is entirely caused by the sign of
the dissipation term (i.e., backscatter implies negative eddy-viscosities and,
vice-versa, forward kinetic energy transfer causes positive eddy-viscosities).
Consequently, the unresolved part of the turbulent kinetic energy does not
play a role in terms of dissipation of the resolved part of the kinetic energy
in incompressible conditions. For non-spectral filters, as observed by Vre-
man et al. [290], the turbulent kinetic energy always takes positive values.
Consequently, in the compressible case, the term Λ is negative in expansion
regions and positive in compression regions, thus following an opposite trend
with respect to K3.

In figure 8.55 the joint probability density function of these two terms
has been plotted for both averaging and explicit filtering. The solid black
line denotes the line νt = 0 (i.e., K3 = −Λ). Below such line, the eddy-
viscosity assumes positive values, whereas, above of it, the eddy-viscosity is
negative. Regarding the JPDF within the RANS context, a clear prevalence
of forward kinetic energy cascade can be observed. The term K3 assumes
mostly negative values and it is particularly clustered around the vertical
line Λ = 0. This property indicates that most of the energy transfers are
located in regions of negligible dilatation (at least in mean). Furthermore, a
distinct bandwidth of non-null values of the JPDF is almost perfectly aligned
with the νt = 0 line. This narrow stripe is located slightly below the νt = 0
line, as it extends for relatively large values of Λ. Finally, the JPDF is
almost entirely confined below the νt = 0 line, indicating that, in statistical
mean, the assumption of positive eddy-viscosity can be fairly accurate, even
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in presence of backscatter. The term Λ, in fact, compensates the backscatter
phenomenon, preventing the occurrence of negative eddy-viscosities. With
the space filtered fields, the same tendencies are present but in a less evident
form. Even if a forward kinetic energy cascade is generally more likely to
occur than backscatter, a large amount of the flow field is characterised by
negative values of the eddy-viscosity.

Figure 8.55: JPDF of SGS dissipation and Λ. The solid black line denotes the
line νt = 0. Left plot, averaged data; middle plot, filtered data with ∆ = 4h;
right plot, filtered data with ∆ = 8h. Both K3 and Λ are normalised by
ρ∞u

3
∞/δ.

To highlight the difference between K3 and the sum K3 + Λ, their av-
eraged values are shown in figure 8.56. Following the classical definition of
kinetic energy transfer based on K3, the expansion region experiences strong
backscatter (left figure), but, if the compressible contribution Λ is accounted
for, only negative values are observed in the whole domain. It is then rea-
sonable to conclude, that the deviatoric part of the SGS tensor, in average,
has an essentially dissipative role, whereas the trace is directly responsible
for the backscatter observed in proximity of the expansion corner.

To evaluate the contribution of the spherical part on the total SGS kinetic
energy dissipation, the joint probability function of the deviatoric contribu-
tion K3 + Λ with respect to the large scale pressure-dilatation work K1 has
been computed and shown in figure 8.57. Starting from the JPDF of the
averaged field, in agreement with figure 8.56, the deviatoric contribution of
the SGS kinetic energy dissipation takes negative values only. The backscat-
ter region observed in the left side of figure 8.51 completely disappears when
the spherical part is subtracted. In the filtered case, instead, a mild correla-
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(a) K3. (b) K3 + Λ.

Figure 8.56: Comparison between averaged terms K3 and K3 + Λ. Both
terms are normalised by ρ∞u

3
∞/δ.

tion between the two terms can still be observed even though considerably
weaker, in particular for small filter widths. These observations highlight
a clearly different behaviour between averaged and filtered approaches. On
the one hand, the correlation, once observed, completely vanishes in mean
when the spherical part is subtracted. On the other, the same correlation
persists when evaluated on filtered fields.

Figure 8.57: JPDF of deviatoric SGS dissipation and large scale pressure-
dilatation work. Left plot, averaged data; middle plot, filtered data with
∆ = 4h; right plot, filtered data with ∆ = 8h.

To facilitate the comparison, figure 8.58 shows the JPDFs of the averaged
field accounting, respectively, for both deviatoric and spherical contributions
or for deviatoric contributions only. A spherical bulk term, as the one intro-
duced by the artificial viscosity scheme, can be interestingly interpreted as
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Figure 8.58: Averaged JPDF of standard and deviatoric SGS dissipation and
large scale pressure-dilatation work. Left, K3; right, K3 + Λ.

some kind of approximation of the turbulent kinetic energy itself. In fact,
close to the shock wave, the flow field divergence is negative and the term

β
∂ũk
∂xk

is consistently negative too, where β is a bulk viscosity. From a direct com-
parison of such term with the spherical part of the SGS tensor the following
heuristic expression can be easily obtained:

2

3
ρk ∼ −β∂ũk

∂xk
. (8.25)

Away from the shock, such similarity is less evident. Nevertheless, the
parallelism between compression regions and positive turbulent kinetic en-
ergy can be conveniently used for modelling purposes. In fact, it can be
easily proved that a bulk viscosity term in the momentum equation causes
large scale kinetic energy dissipation. Therefore, the additional bulk term
would ideally reproduce only the dissipative character of the turbulent ki-
netic energy on the large scales, in a fashion which resembles eddy-viscosity
models, where only the direct kinetic energy transfers are modelled. In a
similar way, [246, 279] proposed a simplified relation between SGS dissipa-
tion and dilatation, reporting a scaling close to (∂ũk/∂xk)

2 in compression
regions, which is the same form of a bulk viscosity term. In their work, the
total SGS dissipation was analysed, including both deviatoric and spherical
contributions. The bulk viscosity, furthermore, has a well-knows dissipative
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character on the dilatation field, reinforcing the idea of SGS modelling as
essentially a regularisation technique.

In the incompressible case, vorticity is smoothed thorough explicit filter-
ing of DNS data and an analogous mechanism needs to be present in under-
resolved a-priori simulations, for example, through an augmented shear vis-
cosity. In the same way, a similar tendency is expected for the dilatation as
well. The filtered dilatation will result less singular and irregular. Thus, a
regularisation of it would be successfully produced by an artificial bulk term
in the resolution of the filtered momentum equation. The natural decoupling
between dilatational and solenoidal contributions in compressible turbulence
(see [229]) clearly indicates a convenient dichotomy based on Helmholtz de-
composition. The contraposition between solenoidal and dilatational field
(and consequently vorticity and divergence) could possibly suggest a paral-
lelism in the SGS modelling as well, based on the difference between devi-
atoric and spherical components of the SGS tensor, that could be possibly
modelled using their respective natural choices of shear and bulk viscosities.
A methodical development of such a model is far beyond the scope of the
present work. Nevertheless, the preliminary results herein presented can be
interpreted as very first step in this direction and future research will be
focused on this matter.

8.4.5 Conclusions

A Direct Numerical Simulation of a 24◦ compression/expansion ramp has
been performed using a high-order spectral difference code. The presented
setup has been chosen as a popular example of shock wave-turbulence in-
teraction. Despite its relatively simple geometry, the interaction between a
supersonic boundary layer and compression/expansion ramps is representa-
tive of many different complex features of compressible turbulent flows.

After a thorough validation, considering mean profiles and wall coeffi-
cients, a series of a-priori analyses have been considered. The present work
has been developed using both averaging and explicit filtering, providing a
clear dualism between RANS and LES approaches, respectively. Most of the
attention has been focused on specific terms which appear in the resolved
kinetic energy balance in both filtered and averaged sense. In particular, the
well-known dissipation term has been analysed in detail. It has been shown
that, in the present setup, following both the averaging and filtering for-
malisms, the presence of both direct and reverse kinetic energy cascade was
observed. In agreement with previous observations [246, 245], compression
regions are mostly characterised by forward kinetic energy transfers whereas
an inverse cascade is promoted by expansion motions.

Subsequently, the dissipation term has been decomposed in deviatoric
and spherical contributions. Such procedure has been used to evaluate the
suitability of eddy-viscosity models for the deviatoric part of the SGS ten-
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sor in compressible flows. Averaged results have shown that the expression
of equivalent eddy-viscosity rarely assumes negative values throughout the
whole domain. It is then evident that the correlation, already observed, be-
tween large scale dilatation and SGS dissipation is, in large part, caused by
the spherical part of the SGS tensor. Its corresponding term in the total
kinetic energy balance is, in fact, directly proportional to the divergence of
the velocity field. The importance of proper modelling of the spherical part
of the SGS tensor is then highlighted.

For sufficiently high turbulent Mach numbers, the influence of expan-
sion/compression motions and, consequently, of the spherical part of the
SGS tensor, increases, revealing a clear mechanism of backscatter based on
the local levels of compressibility. It has been observed that, inspired by
classical eddy-viscosity models for the deviatoric part, a bulk viscosity could
be used as an SGS model for the turbulent kinetic energy. Further analyses
will be focused on a better understanding of solenoidal and dilatational con-
tributions on kinetic energy transfers. The ultimate goal of such analyses is
identified in the development of SGS models (in particular for the turbulent
kinetic energy) more suitable to high-order simulations of compressible flows.
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Chapter 9

Conclusions and perspectives

High-order methods represent an expanding field in the CFD community.
Their use is becoming more and more widespread both in academia and
industry. Still, aspects such as numerical stability, turbulence modelling
and shock-capturing, represent the real bottle-neck for their definitive blos-
soming in the industry. Along these lines, the present work was structured
touching all these fundamental topics of high-order methods. In the first
chapter 2 was focused on the fundamental equations considered in this work,
such as Euler and Navier-Stokes equations. Later, the problem of turbu-
lence modelling, within the framework of Large-Eddy Simulations, was first
introduced in chapter 3. Finally, the specific numerical scheme herein stud-
ied (i.e., the Spectral Difference scheme) was presented in chapter 4. All
the relevant details on its implementation, from the interpolation and dif-
ferentiation operators to inviscid and viscous fluxes, have been thoroughly
discussed. These three first chapters aim at providing a sufficiently extensive
background knowledge on high-order simulations of turbulent flows.

Continuing with the reading, more and more complex systems have been
considered. In chapter 5, a series of spectral analyses have been applied, not
only to the Spectral Difference scheme but also on two different variations
of the Flux-Reconstruction scheme. Such analyses aim at providing a better
understanding on the general behaviour of high-order schemes in the simula-
tion of under-resolved flows. The current state-of-the-art of spectral analyses
for high-order methods is mainly composed by temporal eigen-analysis, spa-
tial eigen-analysis and non-model analysis. These three techniques are all
based on the numerical discretisation of the one-dimensional linear advection
equation using Bloch wave-like functions. Nonetheless, high-order methods,
employed in three-dimensional, strongly non-linear problems can behave very
differently. In the present work, a generalisation of the up-cited techniques
for non-constant advection velocity was proposed as a first step toward more
complex systems. A deep theoretical study, considering different schemes
and different classes of numerical fluxes has been used to gain useful insights
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about the spatial discretisation and its dependency on non-linear fluxes. A
series of relevant numerical experiments have been considered, confirming
the theoretical findings. The Spectral Difference scheme has shown to be
more dissipative for spatially evolving turbulence with respect to the nodal
Discontinuous Galerkin recovering Flux Reconstruction scheme. The dy-
namics of numerical dissipation for increasing levels of inhomogeneity in the
advection velocities was considered responsible of such behaviour.

In chapter 6, once known the concept of numerical dissipation and the
most commonly used techniques to quantified it, the informations gathered
in the previous chapter have been used in connection with Sub-Grid Scales
modelling. The Spectral Element Dynamic Model (SEDM) has been now
properly introduced with all the implementational details and its intrinsic
connection with numerical dissipation has been thoroughly discussed. The
aim of the SEDM is to develop an SGS model, within the high-order SD dis-
cretisation, which is aware of the local levels of numerical dissipation. The
SEDM can be, in fact, interpreted as a linking point between Implicit LES
and Explicit LES. For sufficiently low orders of approximation numerical
dissipation is used to mimic the dissipative influence of the smallest scales
on the resolved field. On the other hand, increasing the order, and conse-
quently decreasing numerical diffusion, explicit SGS dissipation is injected in
the system to keep the simulation accurate and stable. In chapter 6, two nu-
merical simulations of transitional flows have been considered to highlight the
capabilities of the SEDM. Namely, the bypass transition on a zero-pressure-
gradient flat plate simulation and the flow transitional flow over an SD7003
airfoil. Both computations where considered in almost incompressible con-
ditions. The aim of such computations was highlighting the behaviour of
the SEDM for complex flows where different levels of resolution coexisted
within the domain. The SEDM, in fact, has shown a significant improve-
ment with respect to standard SGS models in transitional flow was observed.
Its ability to automatically distinguish between laminar and turbulent flows
has shown to be a crucial point in simulating transition. Furthermore, in
particular for the SD7003 simulation, the drawbacks of Implicit LES have
been highlighted: the SEDM has shown to keep the simulation stable also
for relatively high-order of approximation (N = 6 and N = 8).

The last two chapters were dedicated to the generalisation of the previ-
ously presented concepts to compressible flows. The first obstacle in simu-
lating compressible turbulence flows is certainly represented by the natural
development of shock-waves in the flow field. The numerical discretisation
of discontinuities such as shock waves can be particularly complex in the
framework of high-order numerical scheme. Consequently, in chapter 7, the
notion of shock-capturing techniques was introduced. More specifically, a
bulk-based, low dissipative, artificial viscosity (AV) approach was proposed
and compared with a more classical laplacian regularisation model. It was
shown that the bulk-based artificial viscosity was able to present the non-
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monotonic behaviour of the entropy field across the shock-wave and to dras-
tically reduce the levels of dissipation for under-resolved turbulent flows. It
was, in fact, shown that the laplacian approach caused a significantly strong
dissipation of vorticity modes, leading to an extremely fast decay of kinetic
energy. Instead, the bulk viscosity has shown to leave almost untouched the
vorticity field. On the other hand, the bulk artificial viscosity caused a non-
negligible deterioration of temperature and dilatation fluctuations, although
smaller than the one provoked by the laplacian model.

Consequently, chapter 8 starts with the introduction of a Ducros-based
correction on the proposed AV technique. The improved model was then
applied to a turbulent transonic airfoil simulation in combination with the
SEDM. In such scenario, it was shown the correct activation of both artificial
viscosity and SGS model within the domain. The bulk viscosity field was
observed to take high values only in proximity of the shock-wave developing
on the upper side of the airfoil. The SGS model, in a similar way, was
active only in the narrow detached region of the flow field. The transonic
airfoil simulation was used a first, simplified example of shock-turbulence
interaction.

In the second part of chapter 8 the interaction between a fully-developed
turbulent boundary layer and a compression ramp was presented.

Firstly, in order to develop more generalised versions of the SEDM for
compressible flows, a Direct Numerical Simulation study has been performed
on a compression/expansion ramp. In particular, the transfer of kinetic en-
ergy has been evaluated using explicit filtering and Reynolds averaging. Such
analyses have been performed with the goal of a better understanding on
the general form of turbulence SGS models in the presence of non-negligible
compressibility effects. Most of the attention has been focused on specific
terms which appear in the resolved kinetic energy balance in both filtered
and averaged sense. In particular, the well-known dissipation term has been
analysed in detail. It has been shown that, in the present setup, follow-
ing both the averaging and filtering formalisms, the presence of both direct
and reverse kinetic energy cascade was observed. In agreement with previ-
ous observations [246, 245], compression regions are mostly characterised by
forward kinetic energy transfers whereas an inverse cascade is promoted by
expansion motions.

Subsequently, the dissipation term has been decomposed in deviatoric
and spherical contributions. Such procedure has been used to evaluate the
suitability of eddy-viscosity models for the deviatoric part of the SGS ten-
sor in compressible flows. Averaged results have shown that the expression
of equivalent eddy-viscosity rarely assumes negative values throughout the
whole domain. It is then evident that the correlation, already observed, be-
tween large scale dilatation and SGS dissipation is, in large part, caused by
the spherical part of the SGS tensor. Its corresponding term in the total
kinetic energy balance is, in fact, directly proportional to the divergence of
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the velocity field. The importance of proper modelling of the spherical part
of the SGS tensor is then highlighted.

Finally, an LES computation was performed to evaluate, once again, the
coexistence between the shock-capturing and SGS model. The combination
of SGS and AV is well balanced thanks to the addition of Ducros sensor [22]
to the standard modal sensor by Peraire and Persson [7] within the shock-
capturing procedure. The activation of the AV is mainly limited to the outer
layer, where the shock is laminar and unaffected by turbulence. The SGS
model, in the same way, thanks to its dynamical natural is mainly active in
the turbulent boundary layer. An extensive validation of the present test
case has been performed, including temporal/spatial kinetic energy spectra,
wall-normal profiles and Reynolds Stress Anisotropy Invariant Maps flow
representation.

The present work, as mentioned at the beginning of this section, was
structured in order to touch the three main aspects of high-order simu-
lations of compressible turbulent flows: numerical dissipation/dispersion
(chapter 5), Sub-Grid Scales modelling (chapter 6), compressibility effects
(chapters 7 and 8). As a whole, the work presented in each of these chap-
ters continues and expands the field of high-order methods for compressible
turbulence. Each of the sub-topics therein presented can evolve in several
different ways, exploring a large variety of new techniques and applications.
More and more complex spectral analyses techniques are likely to appear
in the field, considering more complex sets of equations and mathematical
tools to study them. In addition, for example, a fully-discrete version of the
present techniques focused on the interaction between spatial and temporal
errors in currently in development by the author.

Different improvements of the bulk artificial viscosity model can be ex-
plored. In particular, possible future work could be focused on the identi-
fication of optimal sets of variables to better detect shock wave and reduce
the artificial dissipation as much as possible. Finally, the DNS database gen-
erated with the compression/expansion ramp can be extremely useful in the
development of more sophisticated SGS models for compressible flows. The
highly resolved flow field can provide useful informations on the local struc-
ture of wall-bounded, compressible turbulence. In similarity with respect to
the shock-capturing technique, also the SEDM could be easily modified in a
more generalised form, detecting turbulence under-resolution using not only
the velocity field but also thermodynamic variables. The global knowledge on
numerical dissipation/dispersion, shock-capturing and compressibility effects
could lead to a unified SGS model able to detect under-resolution associated
to shock waves and turbulence using different sets of variables and treat them
using models specifically design to interact with each other.
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Appendix A

Flux Reconstruction schemes

Collocation based nodal DG and SD have been widely used in the last few
years due to their simplicity. The FR method [77, 78] provides a simple and
general framework among which popular schemes like DG and SD can be
recovered for linear advection problems.

The FR scheme, apart from being a robust and promising numerical
scheme for aerodynamics simulations, is also a very useful tool to study
a wide range of different high-order numerical schemes. Like nodal DG
schemes, FR schemes exploit a high-order (nodal) polynomial basis to ap-
proximate the solution within each element of the computational domain,
and like nodal DG schemes, inter-element continuity is not strongly enforced.
However, unlike nodal DG schemes, FR methods are based solely on the gov-
erning system in a differential form. A description of the FR approach in
one dimension is presented below.

For simplicity, let us consider a reference element Ωn = {x̂| − 1 ≤ x̂ ≤ 1}
in which the general one-dimensional conservation law is defined

∂u

∂t
+
∂(f(u))

∂x̂
= 0. (A.1)

The FR approach to solve Eq. (A.1) within the standard element can be
described in five stages. The first stage involves the representation of the
approximated solution û in terms of a nodal basis function:

û(x̂) =
N∑

i=0

uili(x̂), (A.2)

where li are the Lagrange polynomials defined on a certain set of points x̂i
(with i=0 to N) called solution points. Notice that this implies a polynomial
representation of û of degree k. The second stage consists in the construction
of a degree N polynomial flux f̂D = f̂D(x̂, t) which is based on the same
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collocation basis as û:

f̂D(x̂) =

N∑

i=0

fDi li(x̂), (A.3)

where flux nodal values can be easily evaluated directly from the approxi-
mated solution. The third stage involves the evaluation of the approximate
solution at the end points of the standard element (namely, û(±1)). Subse-
quently, this information is used to compute the numerical flux at the left
f̂ IL and right f̂ IR interfaces. The fourth stage involves the construction of

the degree N +1 polynomial f̂ , by adding a correction flux f̂C = f̂C(x̂, t) of
degree N+1 to f̂D, such that their sum recovers the numerical interface flux
at x̂ = ±1, yet in some sense follows f̂D within the interior of Ωs. This is
the key step of FR schemes since an higher order polynomial (degree N +1)
is summed to the interpolated one, leading to a difference in approximation
order that plays a fundamental role in the whole procedure.

In order to define f̂C such that it satisfies the above requirements, con-
sider first two degree N +1 correction functions gL = gL(x̂) and gR = gR(x̂)
approximating zero (in some sense) within Ωs and satisfying the following
conditions:

gL(−1) = 1, gL(1) = 0, (A.4)

gR(−1) = 0, gR(1) = 1, (A.5)

and
gL(x̂) = gR(−x̂). (A.6)

Then a suitable formulation for f̂C can now be written as

f̂C = (f̂ IL − f̂DL )gL + (f̂ IR − f̂DR )gR, (A.7)

where f̂DL = f̂D(−1, t) and f̂DR = f̂D(1, t). Using this expression, the de-

gree N + 1 approximate total flux f̂ within Ωs can be constructed from the
discontinuous and correction fluxes as follows

f̂ = f̂D + f̂C = f̂D + (f̂ IL − f̂DL )gL + (f̂ IR − f̂DR )gR. (A.8)

The fifth and final stage of the FR approach involves the evaluation of the
flux divergence at each solution point x̂i using the expression

df̂

dx̂
(x̂i) =

N∑

j=0

f̂Dj
dlj
dx̂

(x̂i) + (f̂ IL − f̂DL )
dgL
dx̂

(x̂i) + (f̂ IR − f̂DR )
dgR
dx̂

(x̂i). (A.9)

These values can then be used to advance û in time via a suitable temporal
discretisation of the following semi-discrete expression

dûi
dt

= −df̂

dx̂
(x̂i). (A.10)

The nature of a particular FR scheme depends solely on three factors:
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1. the location of the solution points x̂i;

2. the methodology for calculating the interface fluxes f̂ IL and f̂ IR;

3. the form of the flux correction functions gL and gR.

It has been shown by Huynh [77] that, for particular choices of the correc-
tion functions, it is possible to recover some well known collocation methods
(among which, nodal DG and SD) for the linear advection equation. In par-
ticular, Vincent-Catonguay-Jameson-Huynh Flux Reconstruction schemes
can be obtained with the following choice of correction functions:

gL(x) =
(−1)N

2

[
LN (x)−

(
ηNLN−1(x) + LN+1(x)

1 + ηN

)]
,

gR(x) =
1

2

[
LN (x) +

(
ηNLN−1(x) + LN+1(x)

1 + ηN

)]
,

(A.11)

where

ηN =
c(2N + 1)(aNN !)2

2
and aN =

(2N)!

2N (N !)2
. (A.12)

In the above relations, LN is a Legendre polynomial of degree N , and c is a
free scalar parameter that must lie within the range

c− < c < c∞, with c− =
−2

(2N + 1)(aNN !)2
and c∞ = ∞.

For the particular choice of the parameter c nodal DG and SD schemes are
recovered. In particular:

cDG = 0 and cSD =
2(N + 1)

(2N + 1)N(aNN !)2
.

In this way, the respective correction functions for DG and SD simplify in
the following expressions:

gDG
L (x) =

(−1)N

2
(LN (x)− LN+1(x)), gDG

R (x) =
(−1)N

2
(LN (x) + LN+1(x)),

gSDL (x) =
(−1)N

2
(1− x)LN (x), gSDR (x) =

1

2
(1 + x)LN (x).

(A.13)
An example of correction functions recovering DG and SD schemes, namely,
the DG-FR and SD-FR schemes, respectively, is shown in Fig. A.1.

In the particular case of the linear advection equation with unitary ad-
vection velocity, the FR scheme can be expressed in a matrix form as

dû

dt
= −2Dû − (2f̂ IL − 2lT û)gL − (2f̂ IR − 2rT û)gR, (A.14)

where ûi = û(x̂i), Dij =
dlj
dx̂ (x̂i), g

L/R
i =

dgL/R

dx̂ (x̂i) and ri = li(1), li =
li(−1).
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Figure A.1: FR correction functions (gL) of degree N = 5 recovering DG
and SD schemes: solid line, DG-FR; dotted line, SD-FR.



Appendix B

SD scheme versus SD-FR

scheme

In order to highlight the connection between the SD method and the corre-
sponding FR recovering scheme, it is interesting to rewrite Eq. (4.5) at the
general location x̂ as

df̂

dx̂
(x̂) =

N+1∑

j=0

fj
dlfj
dx̂

(x̂) + (f̂ IL − f0)
dlf0
dx̂

(x̂) + (f̂ IR − fN+1)
dlfN+1

dx̂
(x̂), (B.1)

where the contributions of the interpolated fluxes at x̂ = ±1 have been added
and subtracted. Observing this formulation, it is clearly evident the analogy
with Eq. (A.9). In particular, it is easy to show that the first summation
of the two equations is exactly the same for a linear flux function. In fact,
considering the linear advection equation with unitary advection velocity,
namely f(x̂) ≡ u(x̂):

N+1∑

j=0

fj
dlfj
dx̂

(x̂) =
N+1∑

j=0

( N∑

i=0

uil
s
i (x̂

f
j )

)
dlfj
dx̂

(x̂) =
N∑

i=0

ui

N+1∑

j=0

lsi (x̂
f
j )
dlfj
dx̂

(x̂) =

=
N∑

i=0

ui
d

dx̂

(N+1∑

j=0

lsi (x̂
f
j )l

f
j (x̂)

)
=

N∑

i=0

ui
dlsi
dx̂

(x̂).

(B.2)
The last equality has been obtained by noting that the Lagrange interpola-
tion over N + 2 points of the Lagrange polynomial of order N + 1, namely
lsi (x̂), coincides with this last.

Notice that, if a non-constant advection velocity is considered and the
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flux is defined as f̂ = a(x̂)u(x̂), following the original SD case:

N+1∑

j=0

fj
dlfj
dx̂

(x̂) =

N+1∑

j=0

a(x̂fj )

( N∑

i=0

uil
s
i (x̂

f
j )

)
dlfj
dx̂

(x̂) =

N∑

i=0

ui

N+1∑

j=0

a(x̂fj )l
s
i (x̂

f
j )
dlfj
dx̂

(x̂) =

=
N∑

i=0

ui
d

dx̂

(N+1∑

j=0

a(x̂fj )l
s
i (x̂

f
j )l

f
j (x̂)

︸ ︷︷ ︸
If [a(x̂)lsi (x̂)]

)
=

N∑

i=0

ui
d(Il[a(x̂)lsi (x̂)])

dx̂
(x̂),

(B.3)
where If [·] denotes the Lagrange interpolation operation over the N+2 flux
points. Eq. (B.3) evidently differs from what would be obtained from the
FR procedure:

N∑

i=0

fi
dlsi
dx̂

(x̂) =

N∑

i=0

a(x̂si )ui
dlsi
dx̂

(x̂). (B.4)

Clearly the two right-hand sides are equal only when the advection velocity
is constant.

Considering now the second part of Eq. (B.1), it is evident that, in order

for the FR method to recover the SD scheme, gL(x̂) = lf0 (x̂) and gR(x̂) =

lfN+1(x̂). So, just changing polynomial basis, the classical expressions for gL
and gR are recovered:

gSDL (x̂) =
(−1)N

2
(1− x̂)LN (x̂) and gSDR (x̂) =

1

2
(1 + x̂)LN (x̂), (B.5)

where LN is the Legendre polynomial of degree N .
It is worthwhile stressing that the definition of flux points is a key in-

gredient in the SD method. In fact, considering the SD discretisation of the
linear advection equation, according to the particular choice of flux nodes, a
correction function in the FR framework is implicitly defined. This link will
be of fundamental importance in the proof of equivalence between the two
schemes under such conditions.



Appendix C

Original Roe’s solver

The idea of Roe is the definition of a parameter vector Q such that both
variables and fluxes can be defined through it:

U = U(Q) F = F(Q) (C.1)

then is useful to use two matrices which, depending on the choice of A and
Q, are able to describe the jumps of primitive variables and fluxes linearly:

∆U = B̃∆Q ∆F = C̃∆Q (C.2)

this implicitly defines Ã = C̃B̃−1.
Let’s consider the one-dimensional isothermal case as an example. Notice

that in this case the speed of sound a is a constant value.

Ut + F(U)x = 0 (C.3)

with

U =

(
U1

U2

)
=

(
ρ
ρu1

)
F =

(
f1
f2

)
=

(
ρu1

ρu21 + a2ρ

)
(C.4)

The exact jacobian can be easily computed as:

A(U) =

[
0 1

a2 − u21 2u1

]
(C.5)

with eigenvalues λ1 = u1 − a and λ2 = u1 + a, and eigenvectors:

L(1) =

(
1

u− c

)
L(2) =

(
1

u+ c

)
(C.6)

We can now choose the parameter vector as:

Q =

(
q1
q2

)
=

U√
ρ

(C.7)
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In this way we can define the jumps of variables and fluxes using the
matrices B̃ and C̃:

B̃ =

[
2q̃1 0
q̃2 q̃1

]
, C̃ =

[
q̃2 q̃1

2a2q̃1 2q̃2

]
, (C.8)

where Q̃ = 1
2(QL + QR). Now it’s easy to derive that

A(U) =

[
0 1

a2 − ũ2 2ũ

]
, (C.9)

with

ũ1 =

√
ρLuL +

√
ρRuR√

ρL +
√
ρR

. (C.10)

So, known Ã, is possible to compute the correspondent eigenvalue and
eigenvectors (exactly the same as before but using the averaged velocity ũ).

Once this is done, as we have seen we can find the coefficients α consid-
ering the jump between the primitive variables and finally compute the flux
using (4.48).

Finally, all these results can be generalized to the x-split three dimen-
sional time dependent Euler equations for real gases.



Appendix D

Split form of Roe’s flux for

Euler equations

The three dimensional Euler equations can be written as follows:

∂U

∂t
+A1

∂U

∂x
+A2

∂U

∂y
+A3

∂U

∂z
= 0 (D.1)

where U = (ρ, ρu1, ρu2, ρu3, ρE)T and

A1 =




0 1 0 0 0
(γ−1)H−u2

1−a2 (3−γ)u1 −(γ−1)u2 −(γ−1)u3 γ−1
−u1u2 u2 u1 0 0
−u1u3 u3 0 u1 0

u1[(γ−1)H−a2] H−(γ−1)u2
1 −(γ−1)u1u2 −(γ−1)u1u3 −(γ−1)u


 (D.2)

A2 =




0 0 1 0 0
−u1u2 u2 u1 0 0

(γ−1)H−u2
2−a2 −(γ−1)u1 (3−γ)u2 −(γ−1)u3 γ−1

−u2u3 0 u3 u2 0
u2[(γ−1)H−a2] −(γ−1)u1u2 H−(γ−1)u2

2 −(γ−1)u2u3 −(γ−1)u2


 (D.3)

A3 =




0 0 0 1 0
−u1u3 u3 0 u1 0
−u2u3 0 u3 u2 0

(γ−1)H−u2
3−a2 −(γ−1)u1 −(γ−1)u2 (3−γ)u3 γ−1

u3[(γ−1)H−a2] −(γ−1)u1u3 −(γ−1)u2u3 H−(γ−1)u2
3 −(γ−1)u3


 (D.4)

It can be theoretically proved that there’s no change of variables capable
of diagonalising A1,A2, and A3 simultaneously. Then, a different strategy
is usually chosen in order to study the three-dimensional case where, as
reference jacobian the following linear combination is used:

An = A1n1 +A2n2 +A3n3. (D.5)

In this way, whenever the one of the particular direction is considered a
consistent one-dimensional formulation is easily recovered. The definition of
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An given in Eqn. (D.5) admits the following eigenvector and eigenvalues:

L(1) =




1
u1 − an1
u2 − an2
u3 − an3
H − aun



, L(2) =




n1
n1u1

n1u2 + an3
n1u3 − an2
n1q − aw1



, L(3) =




n2
n2u1 − an3

n2u2
n2u3 + an1
n2q − aw2



,

(D.6)

L(4) =




n3
n3u1 + an2
n3u2 − an1

n3u3
n3q − aw3



, L(5) =




1
u1 + an1
u2 + an2
u3 + an3
H + aun



, (D.7)

λ1 = un − a, λ2 = λ3 = λ4 = un, λ5 = un + a, (D.8)

with H = 1
ρ(E + p) and q = 1

2(u
2
1 + u22 + u23), un = u · n and w = n × u.

For simplicity, the case n = (1, 0, 0)T will be considered. In this way the
parameter vector can be defined as:

Q =
√
ρ




1
u1
u2
u3
H



. (D.9)

The jumps of conserved variables and fluxes can then be defined using the
parameter vector as ∆U = B̃∆Q and ∆F = C̃∆Q where expressions for
B̃ and C̃ can be easily calculated and used to obtain the Roe matrix Ã =
B̃C̃−1. Finally, (̃·) denotes quantities evaluated using the arithmetic mean
components of the parameter vector. Namely, the relevant averages can be
expressed as:

ũ1 =
1
2((q2)L + (q2)R)
1
2((q1)L + (q1)R)

=
(
√
ρu1)L + (

√
ρu1)R√

ρL +
√
ρR

(D.10)

ũ2 =
1
2((q3)L + (q3)R)
1
2((q1)L + (q1)R)

=
(
√
ρu2)L + (

√
ρu2)R√

ρL +
√
ρR

(D.11)

ũ3 =
1
2((q4)L + (q4)R)
1
2((q1)L + (q1)R)

=
(
√
ρu3)L + (

√
ρu3)R√

ρL +
√
ρR

(D.12)

H̃ =
1
2((q5)L + (q5)R)
1
2((q1)L + (q1)R)

=

√
ρLHL +

√
ρRHR√

ρL +
√
ρR

(D.13)
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ã =

√
(γ − 1)[H̃ − q̃] (D.14)

So, matrix Ã is exactly equal to (D.5) but evaluated using Roe averages.
Consequently, the eigenvalues are the same as well.

In analogy with the classical approach in 1D, the conserved variables’
jumps can be written using the eigenvalues L̃’s as :

∆U =
5∑

i=1

γ̃iL̃
(i). (D.15)

Storing the eigenvalues as columns of the matrix L an alternative expression
reads:

∆U = γ̃L → γ̃ = L−1∆U. (D.16)

Finally, the expression of the numerical flux at the interface can be evaluated
as:

Fi+ 1

2

=
1

2
(FL + FR)−

1

2

5∑

i=1

γ̃i|λ̃i|L̃(i) (D.17)

and so:

Fi+ 1

2

=
1

2
(FL + FR)−

1

2
L|Λ|L−1∆U (D.18)

where Λ = diag(λ̃i). Such formulation is particularly important since it
can be clearly subdivided in a part that will be shown to be essentially the
approximation of the flux at interface whereas the second part represents a
dissipative term as it will be seen in more detail in the following subsection.

As already mentioned, the present approach has been explicitly followed
for the case of n = (1, 0, 0)T . Nevertheless, in the three-dimensional case,
the element in the physical space can be always easily transformed back in
a reference frame where the element edges are aligned with the (x, y, z) axis.
Then, the simple example herein shown is the only relevant one for practical
implementations following the tensor product approach already introduced
in the previous section about the Spectral Difference scheme.
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High-order spectral element

methods for the simulation of

compressible turbulent flows

Keywords : CFD, high-order methods, turbulence, numerical dissipation/dispersion
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Abstract

This thesis is focused on the application of high-order methods to com-
pressible turbulent flows. Aspects such as numerical dissipation/dispersion,
dynamic Sub-Grid Scale modelling, shock-capturing techniques and com-
pressibility effects on turbulence modelling are thoroughly discussed. The
thesis manuscript is organised for increasing levels of complexity, leading ul-
timately to the simulation of fully compressible turbulent flows where all the
up-mentioned difficulties are simultaneously involved. The results presented
in this work fit into development of reliable and robust high-order solvers for
computational fluid dynamics applications.

An innovative generalisation of standard spectral analyses techniques ap-
plied to high-order methods is first presented. Special attention is dedicated
to the Spectral Difference scheme used for the numerical simulations per-
formed for this thesis. Spectral analyses of high-order methods are normally
based on the numerical discretisation of the one-dimensional linear advec-
tion equation. In the present work, such approach has been generalised for
non-constant advection velocities to gain more meaningful insights about
high-order numerical discretisations of non-linear equations, such as Navier-
Stokes or Euler equations. The Spectral Difference method has shown some
significant differences with respect to the correspondent Flux Reconstruc-
tion recovering scheme when non-constant advection velocities are consid-
ered. The general behaviour of dissipative curves has shown remarkable
deviations between SD, FR-SD and the Flux Reconstruction Discontinuous
Galerkin recovering scheme. Numerical experiments have been conducted to
highlight the role played by numerical fluxes and order of approximation for
Spectral Difference and FR-DG methods.

The informations gathered from spectral analyses are then used to present
the Spectral Element Dynamic Model. The SEDM has been developed by
Chapelier & Lodato [1] to link numerical dissipation, which represents a typ-
ical build-in feature of spectral element methods, and classical explicit SGS
dissipation within the framework of Large-Eddy Simulations of turbulent
flows. A series of relevant transitional turbulent flows are then considered to
better evaluate the performance of the SEDM in more complex conditions.
Namely, a zero-pressure-gradient flow over a flat plate and a low-Reynolds
SD7003 airfoil simulation. Both computations are meant to study in deep
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the dynamic nature of the SEDM for complex geometries and transitional
flows.

Within the framework of compressible flows, an innovative low dissi-
pative bulk-based artificial viscosity shock-capturing technique is presented
and analysed in detail. Numerical simulations in one to three dimensions,
inviscid and viscous, laminar and turbulent flows are considered to provide
a sufficiently wide range of flow configurations where the proposed model
performs well. In particular, in comparison with another widely diffused ar-
tificial viscosity model based on a laplacian regularisation. The bulk-based
artificial viscosity provides, in fact, considerably reduced levels of artificial
dissipation of vortical structures, keeping, at the same time, the simulation
stable.

Finally, in the last part of the manuscript, the coexistence of all the
up-mentioned investigations and models presented throughout the thesis is
studied for more complex compressible turbulent flows. Among these, the
transonic flow around an RAE2822 airfoil and the interaction between a tur-
bulent boundary layer with a 24◦ compression ramp have been simulated
using an LES approach, where the SEDM has been coupled with the pro-
posed bulk-based AV technique. Both simulations provided results in good
agreement with other simulations and experiments, certifying the robustness
and reliability of the combined effect of the two models.

In the end, in order to generalise even more the SEDM to more com-
pressible applications, a Direct Numerical Simulation study for a compres-
sion/expansion ramp configuration has been performed. The highly-resolved
data have been used to reveal insightful informations regarding the SGS
kinetic energy dissipation expected to take place in the presence of non-
negligible compressibility effects for wall bounded flows. The impact of the
spherical part of the SGS tensor (i.e., the turbulent kinetic energy), often
not explicitly modelled for weakly compressible flows, appeared to have a
relevant role in kinetic energy transfer. The SGS dissipation term has shown
to be directly connected to the local levels of compressibility, identified by
the velocity dilatation field. Compressions motions are more likely to expe-
rience classical direct kinetic energy cascade, whereas expansions promote
back-scatter phenomena. Such informations can be particularly useful in
the development of more compressible formulations of classical LES models,
including, for example, a model for the spherical part of the SGS tensor.

All the contributions, ideas and investigations presented in this thesis rep-
resent the first step toward a unified LES model able to handle, at the same
time, both turbulence under-resolution and shock-waves with techniques and
strategies specifically tailored for high-order numerical schemes.



Resumé

Cette thèse se concentre sur l’application des méthodes d’ordre élevé aux
écoulements turbulents compressibles. Des aspects tels que la dissipation/dispersion
numérique, la modélisation dynamique à l’échelle de sous-maille (SGS), les
techniques de capture des chocs et les effets de la compressibilité sur la
modélisation de la turbulence sont discutés. Le manuscrit de thèse est
organisé selon des niveaux de complexité croissants, menant à la simula-
tion d’écoulements turbulents entièrement compressibles où toutes les dif-
ficultés mentionnées ci-dessus sont simultanément impliquées. Les résul-
tats présentés dans ce travail s’inscrivent dans le développement de solveurs
d’ordre élevé fiables et robustes pour les applications de mécanique des flu-
ides numérique.

Une généralisation innovante des techniques d’analyses spectrales stan-
dard appliquées aux méthodes d’ordre élevé est d’abord présentée. Une
attention particulière est consacrée au schéma de différence spectrale utilisé
pour les simulations numériques réalisées dans le cadre de cette thèse. Les
analyses spectrales des méthodes d’ordre élevé sont généralement basées sur
la discrétisation numérique de l’équation d’advection linéaire unidimension-
nelle. Dans ce travail de thèse, cette approche a été généralisée pour des
vitesses d’advection non constantes afin d’obtenir des informations plus sig-
nificatives sur les discrétisations numériques d’ordre élevé des équations non
linéaires, telles que les équations de Navier-Stokes ou d’Euler. La méthode de
différence spectrale a montré quelques différences significatives par rapport
au schéma correspondant de récupération par reconstruction de flux lorsque
des vitesses d’advection non constantes sont considérées. Le comportement
général des courbes dissipatives a montré des écarts remarquables entre la
méthode SD, la méthode FR-SD et le schéma de récupération par recon-
struction de flux de Galerkin discontinu. Des expériences numériques ont
été menées pour mettre en évidence le rôle joué par les flux numériques et
l’ordre d’approximation pour les méthodes SD et FR-DG.

Les informations recueillies à partir des analyses spectrales sont ensuite
utilisées pour présenter le modèle dynamique des éléments spectraux. Le
modèle SEDM a été développé par Chapelier & Lodato [1] pour relier la
dissipation numérique, qui représente une caractéristique intégrale typique
des méthodes par éléments spectraux, et la dissipation de sous-maille ex-
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plicite classique dans le cadre des simulations à grande échelle d’écoulements
turbulents. Une série d’écoulements turbulents transitoires pertinents sont
ensuite considérés pour mieux évaluer la performance du modèle SEDM dans
des conditions plus complexes. Il s’agit d’un écoulement à gradient de pres-
sion nul sur une plaque plane et d’une simulation d’un profil aérodynamique
SD7003 à faible nombre de Reynolds. Les deux calculs sont destinés à étudier
en profondeur la nature dynamique du modèle SEDM pour des géométries
complexes et des écoulements transitoires.

Dans le cadre des écoulements compressibles, une technique innovante de
capture des chocs par viscosité artificielle à faible dissipation est présentée
et analysée en détail. Des simulations numériques unidimensionnel et tridi-
mensionnel, inviscides et visqueuses, laminaires et turbulentes, sont consid-
érées comme fournissant une gamme suffisamment large de configurations
d’écoulement où le modèle proposé donne de bons résultats. En particulier,
en comparaison avec un autre modèle de viscosité artificielle largement ré-
pandu basé sur une régularisation laplacienne. La viscosité artificielle basée
sur le volume fournit des niveaux considérablement réduits de dissipation
artificielle des structures tourbillonnaires, en gardant, en même temps, la
simulation stable.

Enfin, dans la dernière partie du manuscrit, la coexistence de toutes les
recherches et modèles présentés tout au long de la thèse est étudiée pour
des écoulements turbulents compressibles plus complexes. Parmi ceux-ci,
l’écoulement transsonique autour d’un profilé RAE2822 et l’interaction entre
une couche limite turbulente et une rampe de compression de 24◦ ont été
simulés à l’aide d’une approche LES, où le modèle SEDM a été couplé avec la
technique AV basée sur le volume proposée. Les deux simulations ont fourni
des résultats en accord avec d’autres simulations et expériences, certifiant la
robustesse et la fiabilité de l’effet combiné des deux modèles.

Enfin, afin de généraliser encore plus le modèle SEDM à des applications
plus compressibles, une étude en simulation numérique directe pour une
configuration de rampe de compression/détente a été réalisée. Les données
hautement résolues ont été utilisées pour révéler des informations instructives
sur la dissipation de l’énergie cinétique de sous-maille qui devrait avoir lieu
en présence d’effets de compressibilité non négligeables pour des écoulements
limités par des parois. L’impact de la partie sphérique du tenseur SGS (i.e.,
l’énergie cinétique turbulente), souvent non modélisée explicitement pour les
écoulements faiblement compressibles, est apparu comme ayant un rôle per-
tinent dans le transfert d’énergie cinétique. Le terme de dissipation SGS s’est
avéré être directement lié aux niveaux locaux de compressibilité, identifiés
par le champ de dilatation de la vitesse. Les mouvements de compression sont
plus susceptibles de connaître une cascade d’énergie cinétique directe clas-
sique, tandis que les expansions favorisent les phénomènes de rétrodiffusion.
Ces informations peuvent être particulièrement utiles dans le développement
de formulations plus compressibles des modèles LES classiques, y compris,
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par exemple, un modèle pour la partie sphérique du tenseur SGS.
Toutes les contributions, idées et recherches présentées dans cette thèse

représentent le premier pas vers un modèle LES unifié capable de traiter, en
même temps, la sous-résolution de la turbulence et les ondes de choc avec
des techniques et stratégies spécifiquement adaptées aux schémas numériques
d’ordre élevé.
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