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Introduction en Français

Contexte

Une question simple d'apparence mais intéressante en informatique est la comparaison des programmes: donnés deux programmes qui calculent la même fonction, est-ce que l'un est plus efficace que l'autre ? Une façon simple de faire cette comparaison serait de choisir un langage de programmation, d'implémenter ces deux programmes, de les lancer tous les deux sur une batterie de tests et de mesurer dynamiquement la consommation de ressource de ces différentes exécutions. Toutefois, cette méthode dépend de certains détails bas-niveaux comme le matériel utilisé ou encore le choix de l'implémentation, et ce n'est pas faisable en pratique si les programmes sont trop demandant en ressources, ou encore s'ils ne terminent pas. Ainsi, pour pouvoir comparer des programmes de façons théoriques, on préférait utiliser une méthode statique, telle que l'analyse de complexité. Le but de l'analyse de complexité est, sur un programme donné, d'approximer les ressources nécessaires pour calculer la sortie pour une entrée quelconque. Habituellement, les ressources que l'on considère sont l'espace et le temps. La complexité en espace correspond à l'espace mémoire dont le programme a besoin pour calculer et la complexité en temps correspond au temps d'exécution du programme. Celle-ci se base usuellement sur une notion abstraite du temps (par exemple, une multiplication arithmétique = une unité de temps) afin de simplifier le raisonnement. Tout comme l'analyse de terminaison des programmes, l'analyse de complexité est indécidable, mais cela reste cependant un problème intéressant et difficile.

En pratique, pour un langage donné, afin de faire une analyse de complexité en temps on doit d'abord décider comment abstraire la notion de temps et différents choix sont possibles selon le langage. Par exemple, pour un langage fonctionnel abstrait comme une extension du λ-calcul, on pourrait prendre pour unité de temps une étape de réduction, ou encore le temps d'exécution sur une machine abstraite. Si un programme interagit avec un réseau, on pourrait être intéressé par le nombre d'accès réseau, car c'est une opération coûteuse en pratique. De même, selon les effets d'un langage, on pourrait s'intéresser à différentes notions de complexité. Par exemple, dans un langage non-déterministe, on pourrait choisir la complexité dans le pire cas, ou selon une stratégie de réduction spécifique. En présence de programmes randomisés, on pourrait s'intéresser à l'espérance de la complexité, ou encore la probabilité de satisfaire une borne de complexité spécifique. En présence de parallélisme, on pourrait considérer la complexité totale séquentielle, appelé le travail, ou encore d'autres notions de complexité parallèle. .. Pour des programmes parallèles, une notion intéressante par exemple est la complexité avec un nombre p de processeurs, ce qui veut dire intuitivement que p calculs peuvent être fait en simultanés en parallèle, ce qui peut correspondre à la complexité en pratique d'un programme lancé sur un système multicoeur. D'un point de vue plus théorique, on pourrait considérer un nombre infini de processeurs, ce qui donne la complexité sous l'hypothèse de parallélisme maximal, ce qu'on appelle usuellement la profondeur. La profondeur n'est pas en général atteignable en pratique, mais elle a un intérêt théorique puisqu'un résultat assez connu [START_REF] Harper | Practical Foundations for Programming Languages[END_REF] dit qu'à partir du travail w et de la profondeur s d'un programme dans une certaine classe, on peut en déduire une borne sur le temps d'exécution en pratique avec p processeurs, en O(max(w/p), s). Intuitivement, la profondeur nous dit à quel point il est efficace de lancer un programme en parallèle, et une analyse de profondeur pourrait être complétée avec une analyse du nombre de processeurs nécessaires pour atteindre celle-ci.

L'analyse de complexité des programme a été largement étudiée, et de nombreuses approches ont été explorées pour permettre cette analyse. Parmi toutes ces différentes approches, une qui nous intérésse particulièrement est l'utilisation des systèmes de types. De façon générale, un système de type est une façon d'abstraire un programme afin de garantir certaines propriétés sur celui-ci, de telle manière qu'un programme typé ne peut pas aller mal. Une analyse par système de type a des avantages intéressants comparées à d'autre approches, vu qu'elle induit une certaine compositionnalité et une certaine modularité. En effet, un système de type consiste usuellement en un ensemble de règles qui correspondent aux constructeurs du langage, et donc l'analyse d'un programme en entier se base sur l'analyse de tout les sous-programmes, analyse qui peut ensuite être réutilisée dans des contextes différents. Cette approche est particulièrement utile pour les langage avec une notion de composition intégrée, comme les langages fonctionnels pour lesquels l'analyse de complexité doit prendre en compte la composition et la réutilisation des fonctions. Une fois qu'un système de type est élaboré pour une propriété spécifique d'un langage, deux questions principales surviennent: la vérification de types et l'inférence de types. La vérification de types consiste en, donnés un programme et une dérivation de typage candidate, vérifier automatiquement que cette dérivation de type est correcte. Pour la propriété associée, cela correspond à vérifier un certificat. L'inférence de type consiste en, donné un programme, trouver automatiquement une dérivation de type pour ce programme. Pour la propriété associée, cela correspond à vérifier automatiquement si un programme satisfait cette propriété. L'inférence de types est donc plus difficile que la vérification de types, et il y a usuellement une contrepartie pour les systèmes de type: plus un système est expressif (plus il peut typer de programmes), plus il est difficile de vérifier un type ou de l'inférer. Dans le cas particulier de l'analyse de complexité, le but est, à partir d'une dérivation de type d'un programme, d'extraire une borne sur la complexité. Ainsi, la vérification de types nous donne un certificat de complexité et l'inférence de type nous donne une analyse automatique de complexité.

De façon duale à l'analyse de complexité, pour laquelle on regarde la complexité d'un programme donné, il y a la théorie de le complexité, dans laquelle on utilise des modèles machines (comme les machines de Turing) pour étudier la complexité des problèmes. Un objectif principal de la théorie de la complexité est de définir des classes robustes de problèmes ou de fonctions avec une certaine borne de complexité, comme P, NP ou encore PSPACE. Tout comme l'analyse de complexité, la théorie de la complexité prend aussi en compte les effets, avec par exemple des classes probabilistes comme BPP, ou encore des classes parallèles avec la complexité de circuit. Élaborer des langages qui correspondent à une classe de complexité peut aussi être une approche intéressante pour étudier la complexité des programmes. En effet, si après une analyse de complexité, un programme ne satisfait pas la borne désirée, par exemple polynomiale, il n'est pas facile de trouver exactement où est le problème. Ainsi, une idée alternative pourrait être d'écrire directement le programme dans un langage où tous les programmes ont, par construction, une complexité polynomiale. Cette idée de caractériser des classes de complexité avec des systèmes de types ou des logiques est une notion centrale de la complexité computationnelle implicite (ICC). Ces caractérisations donnent en général une forme rudimentaire d'analyse de complexité: si un programme peut être typé, alors il satisfait une certaine borne de complexité. Cependant, en pratique, même si un système de type est assez expressif pour représenter par exemple les machines de Turing polynomiales (ce qu'on appelle couramment l'expressivité extensionnelle), cela ne veut pas dire que tous les programmes en temps polynomial peuvent être typés, et il peut être difficile d'écrire des programmes bien typables pour ce système. Ainsi, en plus de cette expressivité extensionnelle, pour l'analyse de complexité on s'intéresserait plutôt à l'expressivité intentionnelle, c'est-à-dire l'ensemble des programmes vraiment typables. Il est important de noter que pour l'ICC, l'objectif peut aussi être philosophique: en donnant des caractérisations de classes de complexité, en particulier quand il n'y a pas de bornes explicites, on peut alors mieux comprendre ce que contient intuitivement une classe de complexité.

Dans cette thèse, nous considérons tout d'abord une approche ICC, en utilisant des types à tailles [START_REF] Hughes | Proving the correctness of reactive systems using sized types[END_REF], et ensuite nous nous intéresserons à l'analyse de complexité des programmes parallèles écrit dans un calcul de processus concurrent, le π-calcul [START_REF] Sangiorgi | The pi-calculus: a Theory of Mobile Processes[END_REF]. Mais tout d'abord, nous allons donner quelque contextes pour les méthodes introduites plus haut.

État de l'art

L'analyse de complexité a été grandement étudiée en informatique, pour différents types de langages et avec différentes méthodes. Dans les langages impératifs, une approche possible est de voir la complexité comme la valeur particulière d'une variable globale d'un programme. Ainsi, on peut analyser la complexité avec des méthodes d'analyses de variables, comme par exemple l'interprétation abstraite [START_REF] Cousot | Abstract interpretation frameworks[END_REF], l'exécutions symbolique [START_REF] James | Symbolic execution and program testing[END_REF], l'étude des invariants, des pré-conditions et de la logique de Hoare, par exemple pour des programmes randomisés [START_REF] Chatterjee | Automated recurrence analysis for almost-linear expected-runtime bounds[END_REF][START_REF] Chatterjee | Stochastic Invariants for Probabilistic Termination[END_REF][START_REF] Benjamin | Weakest precondition reasoning for expected run-times of probabilistic programs[END_REF][START_REF] Van Chan Ngo | Bounded expectations: Resource analysis for probabilistic programs[END_REF]. Pour les programmes parallèles, selon la topologie du système, on peut s'intéresser aux graphes de flots de contrôles [3] ou encore au rely-guarantee reasoning [4]. . . De son côté, l'utilisation des systèmes de types n'est bien sûr pas limité à l'analyse de complexité, et plusieurs propriétés peuvent être capturées par des systèmes de types. On peut citer par exemples les types intersections, principalement pour la terminaison des programmes [START_REF] Coppo | A new type assignment for lambdaterms[END_REF][START_REF] Davies | Intersection types and computational effects[END_REF][START_REF] De | Execution time of lambda-terms via denotational semantics and intersection types[END_REF][START_REF] Breuvart | On intersection types and probabilistic lambda calculi[END_REF]. Pour les programmes fonctionnels, on peut citer les types raffinés [START_REF] Freeman | Refinement types for ML[END_REF], pour lesquels intuitivement les types de données sont associés à des formules logiques, ce qui permet de dériver des propriétés de sûretés, de secret ou de continuité. [START_REF] Barthe | On the versatility of open logical relations[END_REF][START_REF] Barthe | Higher-order approximate relational refinement types for mechanism design and differential privacy[END_REF]1].

Pour ce qui est des programmes parallèles, les propriétés de sûretés avec des systèmes de types ont été largement étudiées, avec par exemple la terminaison [START_REF] Deng | Ensuring termination by typability[END_REF][START_REF] Demangeon | On the complexity of termination inference for processes[END_REF], le progrès et l'absence de deadlock, avec par exemple les types comportementaux [START_REF] Giachino | Time complexity of concurrent programs --A technique based on behavioural types[END_REF], les types intersections [START_REF] Dal Lago | Intersection types and runtime errors in the pi-calculus[END_REF], les usages [START_REF] Kobayashi | A type system for lock-free processes[END_REF][START_REF] Kobayashi | An implicitly-typed deadlock-free process calculus[END_REF][START_REF] Kobayashi | A new type system for deadlock-free processes[END_REF][START_REF] Sumii | A generalized deadlock-free process calculus[END_REF] ou encore les types de sessions [START_REF] Dezani | Sessions and session types: An overview[END_REF][START_REF] Honda | Multiparty asynchronous session types[END_REF][START_REF] Griffith | Liquidpi: Inferrable dependent session types[END_REF].

Pour l'analyse de complexité par système de types, ici aussi plusieurs approches ont été étudiées selon le langage choisi. Certaines de ses approches ont des liens avec des travaux de l'ICC. Par exemple, avec le système non-size increasing d'Hofmann [START_REF] Hofmann | Linear types and non-size-increasing polynomial time computation[END_REF], à partir duquel la l'analyse de complexité amortie par type a été dérivée [START_REF] Hofmann | Static prediction of heap space usage for first-order functional programs[END_REF][START_REF] Hofmann | Type-based amortised heap-space analysis[END_REF][START_REF] Jost | Automated amortised analysis[END_REF], ce qui a été ensuite largement exploré pour les programmes d'ordres supérieurs [START_REF] Hoffmann | Multivariate amortized resource analysis[END_REF][START_REF] Hoffmann | Resource aware ML[END_REF][START_REF] Hoffmann | Amortized resource analysis with polynomial potential[END_REF][START_REF] Hofmann | Automatic Type Inference for Amortised Heap-Space Analysis[END_REF], les programmes probabilistes [START_REF] Jost | Static determination of quantitative resource usage for higher-order programs[END_REF] et les programmes parallèles [START_REF] Hoffmann | Automatic static cost analysis for parallel programs[END_REF][START_REF] Das | Work analysis with resource-aware session types[END_REF]. Une autre approche, basée sur les types à tailles [START_REF] Hughes | Proving the correctness of reactive systems using sized types[END_REF], où l'idée centrale est de tracer la taille des valeurs des programmes, a donné des résultats intéressants pour les langages fonctionnels [START_REF] Baillot | Implicit Computational Complexity of Subrecursive Definitions and Applications to Cryptographic Proofs[END_REF][START_REF] Dal | Linear dependent types and relative completeness[END_REF][START_REF] Avanzini | Automating sized-type inference for complexity analysis[END_REF][START_REF] Dal | Linear dependent types in a call-by-value scenario[END_REF], les programmes probabilistes [START_REF] Dal | Probabilistic termination by monadic affine sized typing[END_REF] et les programmes parallèles [START_REF] Gimenez | The complexity of interaction[END_REF] L'analyse de complexité pour les programmes parallèles par des types a aussi été étudiée avec d'autre paradigmes de typages, comme les usages [START_REF] Kobayashi | A type system for lock-free processes[END_REF], les types comportemantaux [START_REF] Laneve | Time analysis of actor programs[END_REF], et les types de sessions [START_REF] Das | Parallel complexity analysis with temporal session types[END_REF][START_REF] Das | Work analysis with resource-aware session types[END_REF][START_REF] Bocchi | Timed multiparty session types[END_REF][START_REF] Castro | CAMP: cost-aware multiparty session protocols[END_REF].

Dans l'approche duale d'ICC, on peut trouver plusieurs méthodes. Dans les premières caractérisations des fonctions polynomiales en temps [START_REF] Bellantoni | A new recursion-theoretic characterization of the polytime functions[END_REF][START_REF] Leivant | Stratified functional programs and computational complexity[END_REF][START_REF] Leivant | Lambda calculus characterizations of poly-time[END_REF], une approche par exemple est la récursion sûre (ou encore le tiering par extension), ce qui a donné plusieurs caractérisations du temps polynomial dans différents contextes [START_REF] Hofmann | A mixed modal/linear lambda calculus with applications to bellantonicook safe recursion[END_REF][START_REF] Dal | A higher-order characterization of probabilistic polynomial time[END_REF][START_REF] Mitchell | A linguistic characterization of bounded oracle computation and probabilistic polynomial time[END_REF] et aussi pour des programmes parallèles [START_REF] Hainry | Type-based complexity analysis for fork processes[END_REF][START_REF] Marion | A type system for complexity flow analysis[END_REF][START_REF] Demangeon | Causal computational complexity of distributed processes[END_REF]. Une autre ligne principale de recherche, initiée par la logique linéaire light de Girard [START_REF] Girard | Light linear logic[END_REF], sont les systèmes à niveaux inspirés de la logique linéaire, où la duplication est contrôlée par la modalité "!". Ansi, restreindre cette modalité peut donner des bornes de complexité sur l'élimination des coupures. Cela a par exemple permit de définir des langages polynomiaux [START_REF] Girard | Light linear logic[END_REF][START_REF] Baillot | A polytime functional language from light linear logic[END_REF][START_REF] Mazza | Linear logic and polynomial time[END_REF][START_REF] Baillot | A feasible algorithm for typing in elementary affine logic[END_REF][START_REF] Lafont | Soft linear logic and polynomial time[END_REF] et aussi des langanges exponentiels ou élémentaires [START_REF] Baillot | On the expressivity of elementary linear logic: Characterizing ptime and an exponential time hierarchy[END_REF][START_REF] Girard | Light linear logic[END_REF][START_REF] Danos | Linear logic and elementary time[END_REF][START_REF] Baillot | Linear logic by levels and bounded time complexity[END_REF]. Une fois encore, cette approche a été utilisée pour des travaux récents sur les programmes parallèles [START_REF] Di | On session types and polynomial time[END_REF][START_REF] Dal Lago | Light logics and higher-order processes[END_REF][START_REF] Madet | An elementary affine λ-calculus with multithreading and side effects[END_REF]. Pour finir, tracer la taille des valeurs dans les programmes et restreindre la récursion en conséquence peut aussi donner des caractérisations de certains comportements, comme les programmes non-size increasing mentionnés plus haut [START_REF] Hofmann | Linear types and non-size-increasing polynomial time computation[END_REF], on encore les programmes qui terminent [START_REF] Hughes | Proving the correctness of reactive systems using sized types[END_REF][START_REF] Dal | Linear dependent types and relative completeness[END_REF][START_REF] Dal | The geometry of types[END_REF].

Motivations

Dans la première partie de cette thèse, nous adressons un problème de l'approche par logique linéaire de l'ICC. Pour un langage comme la logique linéaire light [START_REF] Girard | Light linear logic[END_REF], une façon de prouver la caractérisation de FP (fonctions en temps polynomial) est d'abord de montrer que toutes les exécutions de la logique linéaire light (élimination des coupures) terminent en temps polynomial, et inversement que toutes les fonctions en temps polynomial sont représentables dans cette logique. Ceci est fait habituellement en montrant l'expressivité extensionnelle: un encodage des machines de Turing polynomiales. En revanche, cela ne prend pas bien en compte l'expressivité intentionnelle de la logique, c'est-à-dire l'ensemble des programmes qui peuvent effectivement être typés par cette logique. En général, les approches par niveaux se comportent bien avec les fonctions d'ordres supérieurs, mais la façon de contrôler la récursion est souvent trop restrictive, et donc beaucoup de programmes naturels ne peuvent en fait pas s'écrire dans ces logiques. Un exemple typique est le tri par insertion, qui est évidemment polynomial en temps mais qui a besoin de deux boucles itératives, une sur la liste initiale, et pour chaque élément, une itération pour pouvoir insérer l'élément au bon endroit dans la liste finale. Ces itérations, où le calcul n'augmente pas la taille de la sortie par rapport à l'entrée, ne sont pas bien gérées par les systèmes à niveaux. Cependant, les approches par tailles se comportent bien avec ce type de programmes, par exemple le système non-size increasing [START_REF] Hofmann | Linear types and non-size-increasing polynomial time computation[END_REF] était motivé par ces exemples. En revanche, les approches par tailles ont aussi leurs inconvénients, en particulier pour les fonctions d'ordre supérieurs qui peuvent souvent être utilisés qu'une seule et unique fois. Afin de surmonter ce problèmes d'expressivité intentionnelle des systèmes à niveaux, nous élaborons dans la première partie de cette thèse un système de type avec à la fois des tailles et des modalités de la logique linéaire pour obtenir des caractérisations de classes de complexité. La récursion pour les programmes peut soit être contrôlée par la modalité "!" de la logique linéaire, soit par des tailles, ce qui donne plus de flexibilité.

Dans la seconde partie de cette thèse, nous nous intéressons à l'analyse de complexité. Comme expliqué précédemment, l'approche des types à tailles a donnée plusieurs résultats intéressants pour les langages fonctionnels d'ordre supérieurs. Cependant, les applications aux programmes parallèles n'ont pas été très explorées, en particulier pour le π-calcul. Le π-calcul est un langage de processus basé sur les communications dans lequel des valeurs peuvent être envoyés par des canaux. Ce calcul permet aussi la création dynamique de nouveau noms de canaux, et des communiquer ces noms de canaux, ce qui en fait un langage particulièrement expressif. Il est par exemple assez expressif pour représenter des programmes fonctionnels. Cela veut dire en particulier que l'analyse de complexité pour le π-calcul n'est pas triviale, et il est intéressant d'étudier si un système de type à tailles typique pour un langage fonctionnel peut s'étendre au π-calcul. De plus, dans ce calcul, plusieurs notions de complexité peuvent être étudiées, et donc plusieurs systèmes de types peuvent être proposés. Une notion plutôt simple de complexité est le travail, le temps de calcul total d'un processus. Une notion alternative, plus spécifique aux langages parallèles est la profondeur, qui correspond à la complexité sous l'hypothèse de parallélisme maximal: les communications sur des canaux peuvent se faire simultanément. Cette seconde notion de complexité, aussi appelée complexité parallèle, a été définie de plusieurs façon dans la littérature. Une première approche est le progrès maximal, qui dit intuitivement qu'à chaque étape, on fait toutes les communications qui sont disponibles. Cela permet en effet de définit une sorte de complexité parallèle, mais à cause de cette définition, une course apparaît dans le calul: quand il y a un choix non-déterministe pour une communication, la plus rapide est toujours déclenchée. Cela peut être intéressant en pratique, mais en théorie certains chemins de réductions sont bloqués, ce qui peut être insatisfaisant. Une autre notion de complexité qui prend en compte entièrement ce non-déterminisme est la complexité causale, introduite dans [START_REF] Degano | A causal semantics for ccs via rewriting logic[END_REF][START_REF] Degano | Causality and replication in concurrent processes[END_REF][START_REF] Degano | Causality for mobile processes[END_REF] et récemment utilisée dans [START_REF] Demangeon | Causal computational complexity of distributed processes[END_REF]. Cette notion de complexité se comporte bien, mais elle peut être difficile d'utilisation comme elle se base sur l'analyse des traces, avec une relation de causalité. Il peut donc être intéressant de donner une présentation alternative de la profondeur, facile d'utilisation afin d'avoir des preuves plus simples. Dans la seconde partie de cette thèse, nous nous intéressons au travail et à la profondeur, et nous proposons un cadre pour l'analyse de complexité dans le π-calcul.

Notre approche

Dans cette thèse, notre approche se base sur les types à tailles [START_REF] Hughes | Proving the correctness of reactive systems using sized types[END_REF][START_REF] Dal | Linear dependent types and relative completeness[END_REF]. L'idée centrale des types à tailles est de tracer la taille des types de données dans un programme. C'est une approche intéressante pour l'analyse de complexité car elle permet la compositionnalité. En effet, supposons données deux fonctions f et g, pour lesquelles nous connaissons une borne de complexité en temps sur les entrées de tailles n, C f (n) et C g (n). Peut-on en déduire une borne sur la complexité de f • g ? Avec seulement ces informations, le mieux que l'on puisse faire est de supposer, par définition, que la taille de g(n) est plus petite que C g (n) et donc que la complexité totale sur une entrée de taille n est d'abord de calculer g(n) (C g (n)), et ensuite de calculer f (g(n)) (C f (C g (n))). Cette borne n'est pas très satisfaisante, en effet si g est, par exemple, une fonction qui n'augmente pas la taille de son entrée mais en temps quadratique, alors on obtient une borne en O(n 4 ) au lieu de O(n 2 ). Ainsi, connaître la taille de la sortie de g est nécessaire pour avoir une borne de complexité plus précise. De plus, contrôler la taille des valeurs peut aussi aider à contrôler le nombre de boucles dans un programme, ou le nombre d'appels récursifs à une fonction (en particulier avec une induction structurelle). C'est pourquoi les types à tailles peuvent être intéressants pour l'analyse de complexité.

Dans cette thèse, nous allons donner deux types de résultats. Dans la première partie, nous avons une approche ICC de la complexité, où nous donnons des caractérisations de classes de complexité grâce à un langage équipé d'un système de type. Ainsi, notre cible principale est le langage en entier, donnant une borne de complexité générique pour n'importe quel programme qui peut être écrit dans celui-ci. Dans la seconde partie, nous avons une approche d'analyse de complexité, où l'objectif est d'élaborer des systèmes de types à partir desquels ont peut dériver une borne (précise) sur la complexité d'un programme typé. Donc la cible n'est plus le langage en entier mais une analyse de complexité précise de chaque programme, cas par cas. Toutefois, pour ces deux résultats, il y a des similarités, et en particulier il y a un théorème de correction à prouver, disant que la borne de complexité donnée par le système de type est bien correcte. Dans notre approche, ce théorème de correction est toujours prouvé avec la même méthodologie: nous montrons que le système de type satisfait la réduction du sujet, ce qui veut dire qu'évaluer un programme ne change pas son type. Comme nous nous intéressons à la complexité, la réduction du sujet doit aussi satisfaire des propriétés quantitatives: si une étape de réduction M → N décroît la complexité totale du programme, alors la borne dérivée pour le typage de N doit être plus petite que la borne dérivée pour le typage de M .

Comme expliquée précédemment, dans la première partie de cette thèse, nous considérons une approche ICC de la complexité. Notre but est de donner des caractérisations de classes de complexité, où la récursion peut être contrôlée soit par la modalité de logique linéaire ! soit par des tailles. Dans ce travail, nous utilisons la logique linéaire élémentaire (ELL) [START_REF] Girard | Light linear logic[END_REF][START_REF] Danos | Linear logic and elementary time[END_REF], que l'on associe avec des types à tailles inspirés de [START_REF] Baillot | Implicit Computational Complexity of Subrecursive Definitions and Applications to Cryptographic Proofs[END_REF]. La logique linéaire élémentaire est intuitivement la logique linéaire sans la co-unit (!A A) et la co-multiplication (!A !!A). Avec ces modifications, la profondeur d'un type, c'est-à-dire le nombre de ! au dessus d'un type, devient une informations importante pour l'analyse de complexité. Par exemple, avec un type W pour les mots, alors dans le type des fonctions des mots vers les mots !W ! k W, plus k est grand, plus la fonction dispose de ressources. En particulier, il est montré dans [START_REF] Baillot | On the expressivity of elementary linear logic: Characterizing ptime and an exponential time hierarchy[END_REF] qu'en présence de type récursifs, cela correspond à la classe de complexité k-FEXPTIME (fonctions de complexité 2 , où k est la hauteur de cette tour d'exponentielle). Afin d'améliorer la faible expressivité intentionnelle de ELL, nous ajoutons dans le type !W !W quelques fonctions polynomiales du premier-ordre, obtenues grâce à un système de types à tailles. Nous montrons alors qu'avec cette extension, le système de type donne une caractérisation de PTIME et 2k-EXPTIME, encore une fois selon la profondeur de la sortie, avec une expressivité intentionnelle vraisemblablement meilleure et sans avoir besoin de types récursifs.

Dans la seconde partie de cette thèse, nous nous intéressons à l'analyse de complexité dans le π-calcul. Nous présentons sur un langage fonctionnel un cadre uniforme pour les types à tailles, inspiré par [START_REF] Avanzini | Automating sized-type inference for complexity analysis[END_REF][START_REF] Dal | Linear dependent types and relative completeness[END_REF], que nous modifions afin de capturer différentes notions de complexité dans le π-calcul: le travail et la profondeur. Cette approche se base sur des expressions entières afin de décrire les tailles des types de données. Par exemple, un entier n pourrait avoir un type Nat[I, J], indiquant ainsi que cette entier satisfait I ≤ n ≤ J, où I et J sont des expressions entières. De plus, nous utilisons une sorte de polymorphisme sur les tailles pour les fonctions récursives. Par exemple, une fonction qui n'augmente pas la taille de son entrée pourrait être typée avec ∀i, Nat[0, i] → Nat[0, i]. Cette approche, à laquelle on ajoute des informations supplémentaires de complexité, est suffisante aussi bien pour le langage fonctionnel que pour le travail dans le π-calcul.

Cependant, pour l'analyse de la profondeur, l'extension n'est pas si simple. Tout d'abord, afin de simplifier les preuves, nous donnons une présentation de la profondeur, notion similaire à la complexité causale, avec une sémantique petit pas simple, ce qui permet encore une fois au théorème de correction d'être prouvé par réduction du sujet. Ensuite, nous enrichissons les types à taille avec des informations de temps, inspirés par [START_REF] Das | Parallel complexity analysis with temporal session types[END_REF]. Ces informations temporelles sont nécessaires pour pouvoir traiter la synchronisation des canaux, qui peuvent communiquer simultanément dans une analyse de profondeur. Dans une première approche, nous nous basons sur un système de type entrée/sortie [START_REF] Sangiorgi | The pi-calculus: a Theory of Mobile Processes[END_REF]. Si cette approche semble assez expressive pour les programmes parallèles, elle ne permet pas l'analyse de quelques comportements concurrents comme les sémaphores. Ainsi, afin de prendre en compte ceux-ci, nous élaborons dans une seconde approche un système de type avec usages [START_REF] Kobayashi | A type system for lock-free processes[END_REF] enrichis avec des tailles pour l'analyse de complexité, en collaboration avec Naoki Kobayashi (Université de Tokyo).

Plan

Dans le Chapitre 2, nous décrivons le calcul basé sur la logique linéaire élémentaire avec taille, et nous donnons le théorème de caractérisation. Dans le Chapitre 3, nous décrivons un cadre pour les types à tailles sur un langage fonctionnel, que nous allons utiliser dans le reste de la thèse. Nous donnons également une méthode de preuve pour le théorème de correction. Dans le Chapitre 4, nous présentons d'abords quelques définitions préliminaires sur le π-calcul et quelques paradigmes de typages que nous utilisons dans cette thèse. Puis, de la Section 4.2 jusqu'à la fin de la thèse, nous décrivons nos contributions pour l'analyse de complexité dans le π-calcul, avec un système de type pour le travail, la définition de la profondeur et le système de type entrée/sortie pour la profondeur, suivi de celui avec les usages.

English Introduction

Context

A simple yet challenging question in computer science is the comparison of programs: given two programs computing the same function, is one more efficient than the other? A simple way to do this comparison could be to choose a programming language, implement the two programs, let them run both on multiple inputs and then measure dynamically the resource consumption of those executions. This method however depends on some low-level details such as the hardware or the choice of implementation, and it is not feasible if a program consumes too many resources, or if, for example, it does not terminate. Thus, in order to compare programs theoretically, one may prefer to use a static method such as complexity analysis. The goal of complexity analysis is, given a program, to statically approximate the resources it needs to compute its output on a given input. The usual resources that are considered are space and time. Space complexity corresponds to the amount of memory space required to run the program, and time complexity corresponds to the execution time of the program. Usually, the analysis of time complexity relies on abstracting the notion of time (for example, an arithmetic multiplication = one unit of time. ..). Such as the analysis of termination, complexity analysis is undecidable, however, it remains an interesting and challenging problem.

In practice, given a language or an abstract programming language, for time complexity analysis one first needs to abstract the notion of time to carry the analysis, and different choices are possible depending on the language. For example, in a functional abstract language such as an extension of λ-calculus, one could take as a time unit a reduction step, or computation time on an abstract machine. If a program interacts with a network, one may be interested in the number of network accesses, as it could be a costly operation in practice. Also, depending on the effects in a language, one could be interested in different notions of complexity. For instance, in a non-deterministic setting, one could choose the worst-case complexity or the complexity under a specific reduction strategy, in presence of probabilities, one could consider expected time complexity or the probability of satisfying a specific complexity bound, in presence of parallelism, one could examine the total sequential complexity, usually called work, or other notions of parallel complexity. .. For parallel programs, an interesting notion for instance could be the complexity with p processors, meaning intuitively that p computations can be done simultaneously in parallel, which can correspond to the practical complexity of a program that runs on a multicore system. In a more theoretical point of view, one could consider an infinite number of processors, which would give the complexity under maximal parallelism, usually called span. The span is in general not feasible in practice, however it has some theoretical interest since a well-known result [START_REF] Harper | Practical Foundations for Programming Languages[END_REF] says that from the work w and the span s of a program in a certain class, one can derive a bound on the execution time with p processors, in O(max(w/p), s). Intuitively, the span gives some information about how efficient it would be run the program in parallel, and a span analysis could be completed with an analysis of how many processors are needed to obtain the span.

Complexity analysis of programs has been extensively studied, and several approaches have been explored to carry the analysis. Among all the different approaches, one that interests us particularly is the type systems approach. Usually, a type system is a way to abstract programs in order to guarantee some properties, such that typed programs cannot go wrong. A type system analysis has some interesting benefits compared to other approaches, as it allows for compositionality and modularity. Indeed, generally a type system consists in a set of rules corresponding to simple constructors of the language, thus the analysis of the whole program relies on the analysis of all the subprograms, which can then be reused in different contexts. This approach is especially useful for systems with a built-in notion of composition, such as functional languages, where complexity analysis must take into account the composition and the reusability of functions. Once a type system is designed for a specific property of a language, two main questions arise: type-checking and type inference. Type-checking consists in, given a program and a candidate typing derivation for this program, verifying automatically that this type derivation is correct. For the examined property, this corresponds to checking a certificate for this property. Type inference consists in, given a program, finding automatically a type derivation for this program. For the inspected property, this corresponds to automatically verifying if a program satisfies the property. Type inference is thus harder than type checking and usually, there is a kind of trade-off for type systems: the more expressive the type system (the more programs it can type), the more complex it is to type-check a program or to infer its type. In the particular case of complexity analysis, the goal is, from a typing derivation of a program, to extract a bound on its complexity. Thus, type-checking gives a complexity certificate, and type inference gives automatic complexity analysis.

Dually to complexity analysis, where given a program, one looks at the complexity of this program, there is computational complexity theory, where one uses machine models (originally Turing machines) to talk about complexity of problems. One goal of computational complexity theory is to define robust classes of problems, or functions, with some complexity bound, such as P, NP or PSPACE. As for complexity analysis, computational complexity theory also considers some effects, with for example probabilistic classes such as BPP, or parallel classes with circuit complexity. Designing languages corresponding to a complexity class can also be an interesting approach when studying complexity of programs. Indeed, if after some complexity analysis, a program does not have the desired complexity, for example polynomial time, it is not direct to pinpoint specifically where the problem is. An alternative could be to directly try to write the program in a language where every program has, by construction, polynomial time complexity. This idea of characterizing complexity classes with type systems or logics is a central notion of implicit computational complexity (ICC). Those characterizations of complexity classes may also provide a rudimentary form of complexity analysis: if a program can be typed, it satisfies in particular some complexity bound. However, in practice, even if a type system is expressive enough to encode for example polynomial time Turing machines (we call this the extensional completeness), it does not mean all polynomial time programs can be typed, and it may not be easy to actually write well-typed programs for this type system. Thus, in addition to extensional completeness, for complexity analysis one may want to study intensional expressivity, i.e. the set of actually typable programs. Moreover, in ICC, the goal may also be philosophical: by giving characterizations of complexity classes, especially when there is no explicit complexity bound, one could have a better understanding of what contains a complexity class.

In this thesis, we first consider an ICC approach, using sized types [START_REF] Hughes | Proving the correctness of reactive systems using sized types[END_REF], and then we focus on complexity analysis of parallel programs, written in a concurrent process calculus, the π-calculus [START_REF] Sangiorgi | The pi-calculus: a Theory of Mobile Processes[END_REF]. But first, let us provide some background on the methods introduced above.

State of the art

Complexity analysis has been largely studied in computer science, for different kinds of languages, and with different methods. In imperative programming languages, an approach is to see complexity as the particular value of a global variable of the program, and so, one can carry complexity analysis by using methods for the analysis of variables, with for example abstract interpretation [START_REF] Cousot | Abstract interpretation frameworks[END_REF], symbolic execution [START_REF] James | Symbolic execution and program testing[END_REF], invariants, weakest pre-condition and Hoare logic, also useful in presence of probabilities [START_REF] Chatterjee | Automated recurrence analysis for almost-linear expected-runtime bounds[END_REF][START_REF] Chatterjee | Stochastic Invariants for Probabilistic Termination[END_REF][START_REF] Benjamin | Weakest precondition reasoning for expected run-times of probabilistic programs[END_REF][START_REF] Van Chan Ngo | Bounded expectations: Resource analysis for probabilistic programs[END_REF]. As for parallel programs, depending on the topology of system, one could do flow graph analysis [3] or rely-guarantee reasoning [4]... The use of type systems is of course not limited to complexity analysis, as several properties can be enforced by type systems. There are for instance intersection types, mainly for characterizing termination of programs [START_REF] Coppo | A new type assignment for lambdaterms[END_REF][START_REF] Davies | Intersection types and computational effects[END_REF][START_REF] De | Execution time of lambda-terms via denotational semantics and intersection types[END_REF][START_REF] Breuvart | On intersection types and probabilistic lambda calculi[END_REF]. For functional programs, an interesting approach is refinement types [START_REF] Freeman | Refinement types for ML[END_REF], where intuitively data-types are associated with formulas, allowing to derive many safety properties, or even privacy or continuity [START_REF] Barthe | On the versatility of open logical relations[END_REF][START_REF] Barthe | Higher-order approximate relational refinement types for mechanism design and differential privacy[END_REF]1].

Concerning parallel programs, safety properties with type systems have been largely studied, such as termination [START_REF] Deng | Ensuring termination by typability[END_REF][START_REF] Demangeon | On the complexity of termination inference for processes[END_REF], deadlock-freedom or progress, with for example behavioural types [START_REF] Giachino | Time complexity of concurrent programs --A technique based on behavioural types[END_REF], intersection types [START_REF] Dal Lago | Intersection types and runtime errors in the pi-calculus[END_REF], usages [START_REF] Kobayashi | A type system for lock-free processes[END_REF][START_REF] Kobayashi | An implicitly-typed deadlock-free process calculus[END_REF][START_REF] Kobayashi | A new type system for deadlock-free processes[END_REF][START_REF] Sumii | A generalized deadlock-free process calculus[END_REF] or session types [START_REF] Dezani | Sessions and session types: An overview[END_REF][START_REF] Honda | Multiparty asynchronous session types[END_REF][START_REF] Griffith | Liquidpi: Inferrable dependent session types[END_REF].

As for complexity analysis by type systems, several approaches have been studied depending on the chosen language. Some of those approaches have a link with work on ICC. For example, from the non-size increasing system of Hofmann [START_REF] Hofmann | Linear types and non-size-increasing polynomial time computation[END_REF], the type-based amortized cost analysis was derived [START_REF] Hofmann | Static prediction of heap space usage for first-order functional programs[END_REF][START_REF] Hofmann | Type-based amortised heap-space analysis[END_REF][START_REF] Jost | Automated amortised analysis[END_REF], which was then largely explored for higher order programs [START_REF] Hoffmann | Multivariate amortized resource analysis[END_REF][START_REF] Hoffmann | Resource aware ML[END_REF][START_REF] Hoffmann | Amortized resource analysis with polynomial potential[END_REF][START_REF] Hofmann | Automatic Type Inference for Amortised Heap-Space Analysis[END_REF], probabilistic programs [START_REF] Jost | Static determination of quantitative resource usage for higher-order programs[END_REF] and for parallel programs [START_REF] Hoffmann | Automatic static cost analysis for parallel programs[END_REF][START_REF] Das | Work analysis with resource-aware session types[END_REF]. Another approach, based on sized types [START_REF] Hughes | Proving the correctness of reactive systems using sized types[END_REF], where the main idea is to track the values of sizes in programs, has led to interesting results for functional programs [START_REF] Baillot | Implicit Computational Complexity of Subrecursive Definitions and Applications to Cryptographic Proofs[END_REF][START_REF] Dal | Linear dependent types and relative completeness[END_REF][START_REF] Avanzini | Automating sized-type inference for complexity analysis[END_REF][START_REF] Dal | Linear dependent types in a call-by-value scenario[END_REF], for probabilistic programs [START_REF] Dal | Probabilistic termination by monadic affine sized typing[END_REF] and parallel programs [START_REF] Gimenez | The complexity of interaction[END_REF] Complexity analysis of parallel programs by types has also been studied with some other type paradigms, such as usages [START_REF] Kobayashi | A type system for lock-free processes[END_REF], behavioural types [START_REF] Laneve | Time analysis of actor programs[END_REF], session types [START_REF] Das | Parallel complexity analysis with temporal session types[END_REF][START_REF] Das | Work analysis with resource-aware session types[END_REF] and multiparty session types [START_REF] Bocchi | Timed multiparty session types[END_REF][START_REF] Castro | CAMP: cost-aware multiparty session protocols[END_REF].

In the dual reasoning approach of ICC, we can find several approaches. In the early characterizations of poly-time functions [START_REF] Bellantoni | A new recursion-theoretic characterization of the polytime functions[END_REF][START_REF] Leivant | Stratified functional programs and computational complexity[END_REF][START_REF] Leivant | Lambda calculus characterizations of poly-time[END_REF], one approach is for instance safe recursion (or tiering by extension), which led to several characterizations of polynomial time in different contexts [START_REF] Hofmann | A mixed modal/linear lambda calculus with applications to bellantonicook safe recursion[END_REF][START_REF] Dal | A higher-order characterization of probabilistic polynomial time[END_REF][START_REF] Mitchell | A linguistic characterization of bounded oracle computation and probabilistic polynomial time[END_REF] and for parallel programs [START_REF] Hainry | Type-based complexity analysis for fork processes[END_REF][START_REF] Marion | A type system for complexity flow analysis[END_REF][START_REF] Demangeon | Causal computational complexity of distributed processes[END_REF]. Another main line of research, initiated with Girard's light linear logic [START_REF] Girard | Light linear logic[END_REF], are the level-based systems inspired by linear logic, where duplication is controlled by the ! modality, and so restraining this modality can lead to complexity bounds on cut elimination. This for example led to polytime languages [START_REF] Girard | Light linear logic[END_REF][START_REF] Baillot | A polytime functional language from light linear logic[END_REF][START_REF] Mazza | Linear logic and polynomial time[END_REF][START_REF] Baillot | A feasible algorithm for typing in elementary affine logic[END_REF][START_REF] Lafont | Soft linear logic and polynomial time[END_REF], and exponential and elementary languages [START_REF] Baillot | On the expressivity of elementary linear logic: Characterizing ptime and an exponential time hierarchy[END_REF][START_REF] Girard | Light linear logic[END_REF][START_REF] Danos | Linear logic and elementary time[END_REF][START_REF] Baillot | Linear logic by levels and bounded time complexity[END_REF]. Again, this approach was also used on recent work for parallel programs [START_REF] Di | On session types and polynomial time[END_REF][START_REF] Dal Lago | Light logics and higher-order processes[END_REF][START_REF] Madet | An elementary affine λ-calculus with multithreading and side effects[END_REF]. Finally, the approach of tracking sizes in programs, and restrict recursions, can also give characterizations of complexity classes, such as the non-size increasing programs mentioned above [START_REF] Hofmann | Linear types and non-size-increasing polynomial time computation[END_REF], or simply terminating programs [START_REF] Hughes | Proving the correctness of reactive systems using sized types[END_REF][START_REF] Dal | Linear dependent types and relative completeness[END_REF][START_REF] Dal | The geometry of types[END_REF].

Motivations

In the first part of this thesis, we address a problem of the linear logic approach to ICC. For a language such as light linear logic [START_REF] Girard | Light linear logic[END_REF], the way to prove a characterization of FP (polynomial time functions) is to first show that all executions of light linear logic (cut-elimination) terminate in polynomial time, and conversely, that all polynomial time functions can be represented in this logic. This is usually done by showing the extensional completeness: an encoding of polynomial time input/output Turing machines. However, this does not account well for the intensional expressivity of the logic, i.e. the set of programs that can effectively be typed by this logic. Generally, level-based approaches behave well with higher-order functions, but the way recursion is controlled is often too restrictive, and thus many commons programs are in fact not expressible in those logics. A typical example is the insertion sort, which is obviously a polynomial time algorithm but needs two iterative loops, one iteration that ranges over the initial list, and for each element, an iteration to insert it in the final list. Those kinds of iterations, where in fact the computation does not increase the size of the input, is not handled well by level-based systems. Nevertheless, the sized-based approach behaves well with this category of programs, for example the non-size increasing type system [START_REF] Hofmann | Linear types and non-size-increasing polynomial time computation[END_REF] was motivated by those examples. However, size-based approaches also have their limitations, especially with higher-order functions as it is often assumed that programs are linear, i.e. all higher-order functions can be used at most once. In order to tackle this problem of intensional expressivity of level-based systems, we design in the first part of this thesis a type system with both sizes and linear logic modalities to obtain characterizations of complexity classes, where recursion can be either controlled by the linear logic modality ! or by sizes, thereby giving more flexibility.

In the second part of this thesis, we focus on complexity analysis. As explained before, the sized types approach led to many interesting results in higher-order functional languages. Still, the applications to parallel languages have not been explored yet, especially for π-calculus. The π-calculus is a communication-based process language where values can be sent on channels. This calculus also allows for dynamic creation of channel names and name-passing, which makes it a particularly expressive language. It is for example expressive enough to encode some functional programs. Thus, this means complexity analysis in π-calculus is not trivial, and it is interesting to study if a typical sized type system for a functional language could be extended to π-calculus. Moreover, in this calculus several notions of complexity could make sense, and thus several type systems can be proposed corresponding to different notions of complexity. A simple notion of complexity is the work, the total computation time of a process. An alternative notion, and more specific to parallel languages, is the span, corresponding to complexity under maximal parallelism: communications on channels can happen simultaneously. This second notion of complexity, also called parallel complexity, has been defined in various ways in the literature. A first approach is maximal progress, stating intuitively that at each step, we trigger all communications that are available. This indeed defines a notion of maximal parallelism. Although, because of this, a notion of race appears in the calculus: when there is a choice for a communication, the faster one is always triggered, and the slower one never happens. This could be interesting in practice, but it theoretically blocks some reduction paths, which can be unsatisfactory. Another notion of complexity that accounts for full non-determinism is causal complexity, introduced in [START_REF] Degano | A causal semantics for ccs via rewriting logic[END_REF][START_REF] Degano | Causality and replication in concurrent processes[END_REF][START_REF] Degano | Causality for mobile processes[END_REF] and recently used in [START_REF] Demangeon | Causal computational complexity of distributed processes[END_REF]. This notion of complexity behaves well, but it may not be easy to work with, as it relies on the analysis of traces, with a causality relation. Thus, it could be interesting to give an alternative presentation of span, easy to work with in order to have simpler proofs. In the second part of this thesis, we will focus on both work and span, and propose a sized types framework for complexity analysis in the π-calculus.

Our approach

In this thesis, our approach relies on sized types [START_REF] Hughes | Proving the correctness of reactive systems using sized types[END_REF][START_REF] Dal | Linear dependent types and relative completeness[END_REF]. The basic idea of sized types is to track sizes of data-types in a program. This is an interesting approach for complexity analysis as it allows for compositionality. Indeed, suppose given two functions f and g, for which we know some time complexity bound on inputs of size n, C f (n) and C g (n). Can we derive a bound on the complexity of f • g? With only this information, the best we can assume is, by definition, that the size of g(n) is smaller than C g (n), and so the total complexity on an input of size n is first computing g(n) (C g (n)), and then computing f (g(n)), (C f (C g (n))). This bound is unsatisfactory, indeed if g is, for example a non-size increasing function in quadratic time, and f is also in quadratic time, then we obtain a bound in O(n 4 ) instead of O(n 2 ). Thus, knowing the size of the output of g is necessary to have precise complexity bounds. Moreover, controlling the size of values can also help controlling the number of loops in a program, or the number of recursive calls to a function (especially with structural induction). That is why sized types can be a good start for complexity analysis.

In this thesis, we will give two kinds of results. In the first part, we focus on an ICC approach of complexity, where we give a characterization of complexity classes by a language equipped with a type system. Thus, we focus on the language as a whole, giving a generic complexity bound for any programs that can be written in it. In the second part, we have a complexity analysis approach, where the goal is to design type systems from which one can derive a (precise) bound on the complexity of the typed program. So, the focus is no longer on the language as a whole, but on a precise complexity analysis for each program, case by case. Nevertheless, for both results, there are some similarities, and in particular there is a soundness theorem to prove, stating that the complexity bound given by the type system is indeed correct. In our approach, this soundness theorem is always proved with the same methodology: we show that the type system satisfies subject reduction, that is to say evaluating a program does not change the type of this program. As we focus on complexity, subject reduction must also satisfy some quantitative properties: if a reduction step M → N decreases the overall complexity of a program, then the bound derived from the typing for N should be smaller than the bound derived from the typing for M .

As stated before, in the first part of this thesis we consider an ICC approach to complexity. Our goal is to give a characterization of complexity classes, where recursion can be either controlled with the linear logic modality !, or with sizes. In this work, we use for the level-based system the elementary linear logic (ELL) [START_REF] Girard | Light linear logic[END_REF][START_REF] Danos | Linear logic and elementary time[END_REF], combined with sized types inspired from [START_REF] Baillot | Implicit Computational Complexity of Subrecursive Definitions and Applications to Cryptographic Proofs[END_REF]. Elementary linear logic is intuitively linear logic without the co-unit (!A A) and the co-multiplication (!A !!A). With these modifications, the depth of a type, that is to say the number of ! above a type, becomes a relevant information for complexity analysis. For example, with a type W for words, then in the type of functions from words to words !W ! k W, the greater k is, the more computational power the function can have. In particular, it is shown in [START_REF] Baillot | On the expressivity of elementary linear logic: Characterizing ptime and an exponential time hierarchy[END_REF] that with recursive type, this corresponds to the k-EXPTIME complexity class (function of complexity 2 , where k is the height of this tower of exponentials). In order to improve the poor intensional expressivity of ELL, we add in the type !W !W some first-order polynomial functions, obtained with a sized type system. We then show that with this extension, the type system gives a characterization of PTIME and 2k-EXPTIME, again depending on the depth of the output, with a seemingly better intensional expressivity.

In the second part of this thesis, we focus on complexity analysis of the π-calculus. We present on a functional language a uniform framework for sized types, inspired by [START_REF] Avanzini | Automating sized-type inference for complexity analysis[END_REF][START_REF] Dal | Linear dependent types and relative completeness[END_REF], that we modify to capture different notions of complexity in the π-calculus, namely work and span. This approach relies on integers expressions in order to describe sizes of data-types. For example, an integer n could be given a type Nat[I, J], stating that this integer satisfies I ≤ n ≤ J, where I and J are integer expressions. Moreover, we use some kind of polymorphism on sizes to handle recursive functions. For example, a non-size increasing function could be typed with ∀i, Nat[0, i] → Nat[0, i]. This approach, equipped with additional complexity information, is sufficient for both functional languages and work.

However, for the analysis of span in the π-calculus, the extension is not as simple. First, in order to simplify the proofs, we give a presentation of span, similar to a kind of causal complexity, described by a simple small-step semantics, allowing again the soundness theorem to be proved by subject reduction. Then, we enrich sized-types with time information, inspired by [START_REF] Das | Parallel complexity analysis with temporal session types[END_REF]. This time information is necessary to handle synchronization of channels, that can communicate simultaneously in a span analysis. In a first approach, we rely on an input/output type system [START_REF] Sangiorgi | The pi-calculus: a Theory of Mobile Processes[END_REF]. If this approach seems expressive enough for parallel programs, it cannot handle some concurrent behaviours, such as semaphore. Thus, in order to account for those, we design in a second approach a usage type system [START_REF] Kobayashi | A type system for lock-free processes[END_REF] with sizes for complexity analysis, in collaboration with Naoki Kobayashi (University of Tokyo).

Outline

In Chapter 2, we describe the calculus based on elementary linear logic with sizes, and we give the characterization theorem. In Chapter 3, we describe a sized type framework for a functional language, that we will use throughout the thesis. We also give the proof methodology for the soundness theorem. In Chapter 4, we first give some preliminaries on π-calculus and some type systems paradigms that we use in this thesis, and from Section 4.2 to the end, we describe our contributions for complexity analysis in π-calculus, with a type system for work, the definition of span and the input/output type system for span, followed by the usage type system for span.

Chapter 2

Combining Linear Logic and Sized Types for Implicit Complexity

The light logic approach for characterizing complexity classes, initiated by Girard [START_REF] Girard | Light linear logic[END_REF], led to many interesting results for implicit computational complexity. This approach relies on the Curry-Howard correspondence, stating the link between proofs and programs. Thus, from a logic such as (intuitionistic) linear logic, we can derive a programming language where a proof corresponds to a program, and cut-elimination corresponds to reduction. In linear logic in particular, a focus is given on resource consumption: a formula can be used exactly once in a proof, and both duplication and erasure of formulas are controlled by modalities ("!" and its dual "?"). With the Curry-Howard correspondence, those modalities could also control erasure and duplication of resources, which is useful to carry a complexity analysis.

In particular, Girard's approach for characterizing complexity classes consists in restraining the power of the ! modality, controlling duplication, and thus restraining the overall complexity of the logic. Several logics have been derived in this way, such as light linear logic [START_REF] Girard | Light linear logic[END_REF] and soft linear logic [START_REF] Lafont | Soft linear logic and polynomial time[END_REF] for polynomial time, and elementary linear logic [START_REF] Girard | Light linear logic[END_REF][START_REF] Danos | Linear logic and elementary time[END_REF] for elementary time.

As stated before however, those logics suffer from poor intensional expressivity: even if all functions of the complexity class can be represented, the actual set of programs that are expressible is not large enough, and the languages derived from the logic do not allow to write programs in a natural way. For light linear logic, a functional language with recursive definitions and pattern-matching has been designed [START_REF] Baillot | A polytime functional language from light linear logic[END_REF]. This language satisfied the expected polytime complexity bound, however the proof was rather tedious and did not seem robust enough to support other extensions of the language. A similar question could be asked for elementary linear logic: is the characterization robust enough to support extensions/enrichments?

To answer this question, we show that enriching the usual type W W from words to words of elementary linear logic by some polynomial time functions leads to characterizations of the complexity classes 2k-EXPTIME, for k ≥ 0, where k corresponds to the depth of the output : !W ! k+1 Bool.

An advantage of this characterization is that, depending on how the polynomial-time firstorder functions are defined, it can give a language in which it is easier to write programs, compared to usual elementary linear logic. Thus, we choose for this language a linear λ-calculus with primitive recursion and sized types, called s T. This language is inspired by [START_REF] Baillot | Implicit Computational Complexity of Subrecursive Definitions and Applications to Cryptographic Proofs[END_REF], and we restrict sizes to polynomials to enforce polynomial time complexity. Note that this choice is a bit arbitrary, as the results could be adapted for other polynomial-time languages. The overall enriched elementary linear calculus corresponds to the usual elementary linear logic, equipped with an additional specific constructor in order to use a first-order function of s T. We call this new language sEAL.

As the goal of this chapter is the characterization of complexity classes, we are not interested in deriving precise and practical complexity bounds for programs, our only consideration is that those complexity bounds must correspond to the complexity class. Because of this, the sized types we use in this chapter differ from the sized types we will use for complexity analysis, where precise bounds are desired.

The bounds we derive are over-approximations of the number of reduction steps to reach a normal form, where we define a weight on a program from a typing, and we show that this weight strictly decreases in a reduction step. The polynomial weight for s T is inspired by [START_REF] Baillot | Implicit Computational Complexity of Subrecursive Definitions and Applications to Cryptographic Proofs[END_REF] and then the elementary weight for sEAL is inspired by [START_REF] Madet | An elementary affine λ-calculus with multithreading and side effects[END_REF]. After showing this soundness theorem, we proceed to illustrate the expressivity of the type system on some examples, and we show how to encode Turing machines in this language, leading to the characterization of complexity classes. Those results have been published in [START_REF] Baillot | Combining Linear Logic and Size Types for Implicit Complexity[END_REF][START_REF] Baillot | Combining linear logic and size types for implicit complexity[END_REF].

A Polynomial Time Language with Sizes: s T

We present s T (for sized linear system T) which is a linear λ-calculus with constructors for base types and a constructor for high-order primitive recursion. Types are enriched with a polynomial index describing the size of the value represented by a term, and this index imposes a restriction on recursions. With this, we are able to derive a weight on terms in order to control the number of reduction steps. 

Syntax, Semantics and Type System

t, u ::= x | λx.t | t u | t ⊗ u | let x ⊗ y = t in u | 0 | s(t) | ifn(t, u) | itern(V, t) | | s i (t) | ifw(t 0 , t 1 , u) | iterw(V 0 , V 1 , t) | tt | ff | if(t, u) V, W ::= x | λx.t | V ⊗ W | 0 | s(V ) | ifn(V, W ) | itern(V, W ) | | s i (V ) | ifw(V 0 , V 1 , W ) | iterw(V 0 , V 1 , W ) | tt | ff | if(V, W ) with i ∈ {0, 1}.
We define free variables and free occurrences as usual, and we work up to α-renaming. Here, we choose the alphabet {0, 1} for simplification, but we could have taken any finite alphabet Σ and in this case, the constructors ifw and iterw would need a term for each letter.

The definitions of those constructors will be more explicit with their reduction rules and their types. For intuition, the constructor ifn(t, t ) defines a function on integers that does a pattern matching on its input, and the constructor itern(V, t) is such that itern(V, t) n → * V n t, if n is the coding of the integer n, that is s n (0). Definition 2. 1.2 (Substitution). For an object t with a notion of free variable and substitution we write t{t /x} the term t in which free occurrences of x have been replaced by t .

Base reductions in s T are given by the rules described in Figure 2. 1. Note that in the iterw rule, the order in which we apply the iterated functions is the reverse of the one for iterators we see usually. In particular, it does not correspond to the reduction defined in [START_REF] Baillot | Implicit Computational Complexity of Subrecursive Definitions and Applications to Cryptographic Proofs[END_REF]. Those base reductions can be applied in contexts C defined by the following grammar: We introduce the system of linear types with sizes. First, base types are given by the following grammar:

C := [] | C t | V C | C ⊗ t | t ⊗ C | let x ⊗ y = C in t | s(C) | ifn(C, t) | ifn(V, C) | itern(V, C) | s i (C) | ifw(C, t, u) | ifw(t, C, u) | ifw(V, W, C) | iterw(V 0 , V 1 , C) | if(C, t) | if(t, C). if(V, W ) tt → V (λx.t) V → t{V /x} if(V, W ) ff → W let x ⊗ y = V ⊗ W in t → t{V /x}{W/y} ifn(V, W ) 0 → W ifn(V, V ) s(W ) → V W itern(V, W ) 0 → W itern(V, V ) s(W ) → itern(V, V V ) W ifw(V 0 , V 1 , W ) → W ifw(V 0 , V 1 , V ) s i (W ) → V i W iterw(V 0 , V 1 , W ) → W iterw(V 0 , V 1 , V ) s i (W ) → iterw(V 0 , V 1 , V i V ) W
U := W I | N I | B I, J := i | n ∈ N * | I+J | I • J N *
is the set of non-zero integers. I represents an index and i represents an index variable. We define for indices the notions of occurrences of a variable in the usual way, and we work up to renaming of variables. We also define the substitution of a variable in an index in the usual way.

Then, we can generalize substitution to types, for example N I {J/a} = N I{J/a} . The intended meaning is that closed values of type N I (resp. W I ) will be integers (resp. words) of size (resp. length) at most I. Usually, we use a finite set of index variables ϕ in indexes.

Definition 2. 1.3 (Order on indices). For two indices I and J, we say that I ≤ J if for any valuation ρ : ϕ → N * we have I ρ ≤ J ρ where I ρ is I where all index variables have been replaced by their value in ρ, thus I ρ is a non-zero integer. We also consider that if I ≤ J and J ≤ I then I = J (i.e. we take the quotient set for the equivalence relation). Remark that by definition of indices, we always have 1 ≤ I.

For two indices I and J, we say that I < J if for any valuation ρ, we have I ρ < J ρ . This is not equivalent to I ≤ J and I = J, as we can see with i ≤ i • j.

For example, we have i+1 ≤ 2 • i, i+j • i = (j+1) • i and i+1 < i+j+k. Here we only consider polynomial indices. This is a severe restriction w.r.t. usual indices, that we will use later and that can be found in [START_REF] Dal | Linear dependent types in a call-by-value scenario[END_REF][START_REF] Baillot | Implicit Computational Complexity of Subrecursive Definitions and Applications to Cryptographic Proofs[END_REF], in which indices can use any set of functions along with a semantic interpretation. But in the present setting this is sufficient because we only want s T to characterize polynomial time computation. Definition 2. 1.4. Types are given by the grammar:

D, E, F := U | D E | D ⊗ E.
The subtyping order on those types is described in Figure 2.2. This definition allows for example the subtyping

N i+1 W 2i N i W 3i
, meaning that a function taking an integer of size smaller than i+1 and returning a word of size at most 2i can also be seen as a function taking an integer of size smaller than i and returning a word of size at most 3i. Definition 2. 1.5 (Variable Contexts). Variables contexts are denoted Γ, with the shape Γ ≡ x 1 : D 1 , . . . , x n : D n . We say that Γ Γ when Γ and Γ have exactly the same variables, and for x : D in Γ and x : D in Γ we have D D . Ground variables contexts, denoted dΓ, are variables contexts in which all types are base types. We write Γ = Γ , dΓ to denote the decomposition of Γ into a ground variable context dΓ and a variable context Γ in which types are non-base types. This allows us to decompose a context into his duplicable variables dΓ and the non-duplicable ones. For a variable context without base type, we denote Γ = Γ 1 , Γ 2 when Γ is the concatenation of Γ 1 and Γ 2 , and Γ 1 and Γ 2 do not have any common variables. We denote proofs as π Γ t : D and we define an index ω(π) called the weight for such a proof. The idea is that the weight will be an upper-bound for the number of reduction steps of t. Note that since ω(π) is an index, this bound can depend on some index variables. As the goal of this section is to ensure that the language is polynomial, we do not pay attention to the precision of this upper bound, we only need it to be polynomial. The rules for those proofs are described by Figure 2. 3. Here are some remarks:

B B I ≤ J N I N J I ≤ J W I W I E D D E D D E E D E D E D ⊗ D E ⊗ E
• Observe that this system enforces a linear usage of variables of non-base types, this can be seen for instance in binary rules, such as application, where non-base variables (those in Γ, Γ ) do not occur both in t and u.

• In the rule for itern and iterw described in Figure 2.3, the index variable i must be a fresh variable. Then dΓ V : D D{i+1/i} means intuitively that for any index J, we have dΓ V : D{J/i} D{J+1/i}. This will be formalized in Lemma 2. 1.3. Also, we need some monotonicity with respect to i (expressed here by the condition E E{i+1/i}), as it is essential for subtyping (see Lemma 2. 1.7). Note that in this definition, D is not necessarily monotonous, but it must be a subtype of a monotonous type E. This gives us more freedom on the type D than directly asking for monotonicity. Finally, linearity in this rule is expressed by the impossibility to use higher-order variables in the iterated function, contrary to other notions of linearity for system T [5].

Examples in s T

For the sake of conciseness, we may write from now on λx, y, z.t instead of λx.λy.λz.t.

Other iterators Using a function reversing a word rev, that one could construct easily, we can define an iterator on words doing operations in the usual order. We denote this iterator with Riterw. Formally it is defined by:

Riterw(V 0 , V 1 , t) := λw.iterw(V 0 , V 1 , t) (rev w). We have Riterw(V 0 , V 1 , W ) w 0 w 1 . . . w n → * V w 0 (V w 1 (• • • (V wn W ) • • • )).
We also show that for integers we can construct an iterator rec(V, t) with:

rec(V, t) n → * V n-1 (V n-2 (. . . (V 0 t) . . . ))
and such that the following rule is derivable. We first give a term that takes a pair with an object x of type D and an integer n and returns the pair (V n x, n+1):

D E E{I/i} F dΓ V : D N i D{i+1/i} E E{i+1/i} Γ, dΓ t : D{1/i} Γ, dΓ rec(V, t) : N I F D E π Γ, x : D x : E ω(π) = 1 σ Γ, x : D t : E π Γ λx.t : D E ω(π) = 1+ω(σ) σ Γ, dΓ t : E D τ Γ , dΓ u : E π Γ, Γ , dΓ t u : D ω(π) = ω(σ)+ω(τ ) σ Γ, dΓ t : D τ Γ , dΓ u : E π Γ, Γ , dΓ t ⊗ u : D ⊗ E ω(π) = ω(σ)+ω(τ )+1 σ Γ, dΓ, x : D, y : E u : F τ Γ , dΓ t : D ⊗ E π Γ, Γ , dΓ let x ⊗ y = t in u : F ω(π) = ω(σ)+ω(τ ) π Γ 0 : N I ω(π) = 0 J+1 ≤ I σ Γ t : N J π Γ s(t) : N I ω(π) = ω(σ) σ Γ, dΓ t : N I D τ Γ , dΓ u : D π Γ, Γ , dΓ ifn(t, u) : N I D ω(π) = ω(σ)+ω(τ )+1 D E E{I/i} F σ dΓ V : D D{i+1/i} E E{i+1/i} τ Γ, dΓ t : D{1/i} π Γ, dΓ itern(V, t) : N I F ω(π) = ω(τ )+I • (ω(σ)+1){I/i} π Γ : W I ω(π) = 0 J+1 ≤ I σ Γ t : W J π Γ si(t) : W I ω(π) = ω(σ) ∀i, σi Γi, dΓ ti : W I D τ Γ , dΓ u : D π Γ1, Γ2, Γ , dΓ ifw(t1, t2, u) : W I D ω(π) = ω(σ1)+ω(σ2)+ω(τ )+1 D E E{I/i} F ∀i, σi dΓ Vi : D D{i+1/i} E E{i+1/i} τ Γ, dΓ t : D{1/i} π Γ, dΓ iterw(V0, V1, t) : W I F ω(π) = ω(τ )+I • (ω(σ1)+ω(σ2)+1){I/i} π Γ tt : B ω(π) = 0 π Γ ff : B ω(π) = 0 σ Γ, dΓ t : D τ Γ , dΓ u : D π Γ,Γ , dΓ if(t, u) : B D ω(π) = ω(σ)+ω(τ )+1
t step := λr.let x ⊗ n = r in (V n x) ⊗ s(n).
We have dΓ t step : (D ⊗ N i ) (D{i+1/i} ⊗ N i+1 ). Thus, we can iterate on this term using itern and this gives us the desired iterator:

rec(V, t) := λn.let x ⊗ m = (itern(t step , t ⊗ 0) n) in x.
This constructor can be defined likewise for words.

Addition for unary integers In order to give an example of weight, we define the addition for unary integers in s T. It is represented by: add := λx.itern(λy.s(y), x) :

N I N J N I+J .
The typing derivation is:

(1)

I+i+1 ≤ I+i+1 N I+i N I+i x : N I , y : N I+i y : N I+i x : N I , y : N I+i s(y) : N I+i+1 π 1 x : N I λy.s(y) : N I+i N I+i+1 N I N I+1 π 2 x : N I x : N I+1 x : N I itern(λy.s(y), x) : N J N I+J π 0 • add : N I N J N I+J
where (1) is

N I+i N I+i , N I+i N I+J , N I+i N I+i+1
, that is the conditions imposed by the iteration rule. We have ω(π 1 ) = 2 and ω(π 2 ) = 1. Thus, the final weight is ω(π 0 ) = 1+(1+J • (2+1)) = 3J+2.

Multiplication for unary integers

We also sketch the multiplication in s T. The multiplication can be represented by: mult := λx.itern(λy.add x y, 0) :

N I N J N I•J
and the typing derivation is:

x : N I , y : N I•a add x y : N I•a+I π 1 x : N I λy.add x y : N I•a N I•a {a+1/a} π 2 x : N I 0 : N I

x : N I itern(λy.add x y, 0) :

N J N I•J π 0 • mult : N I N J N I•J
With the previous weight for add, we obtain ω(π 1 ) = 3 • I • a+5. We also have ω(π 2 ) = 1. Thus, we can compute the final weight:

ω(π 0 ) = 1+ω(π 2 )+J • (ω(π 1 )+1){J/a} = 3IJ 2 +6J+2.
Note that this way of doing multiplication is not optimal as we iterate on the largest number during the addition. However, this is a good example for the weight, so we presented this version of multiplication instead of a better one.

Addition on binary integers Now, we define some terms working on integers written in binary, with type W I , as we will use them later in order to describe our term for SAT (see Section 2.3). First, we can define an addition on binary integers in s T with a control on the number of bits. More precisely, we can give a term Cadd : N I W J 1 W J 2 W I such that Cadd n w 1 w 2 outputs the least significant n bits of the sum w 1 +w 2 . For example, Cadd 3 101 110 = 011, and Cadd 5 101 110 = 01011. This will usually be used with a n greater than the expected number of bits, the idea being that those extra 0 can be useful for some other programs. The term follows the usual algorithm for addition: the result is computed bit by bit starting from the right, and we keep track of the carry.

Unary integers to binary integers

We define a term CUnToBi : N I N J W I such that on the input n, n , this term computes the least n significant bits of the representation of n in binary:

CUnToBi = λn.itern(λw.Cadd n w (s 1 ( )), Cadd n ).

Binary integers to unary integers

We would like a way to compute the unary integer corresponding to a given binary integer. However, this function is exponential in the size of its input, so it should have intuitively the type W J N 2 J . As we cannot do exponentiation on indices, it is impossible to write such a function in s T. Nevertheless, given an additional information bounding the size of this unary word, we can give a term CBiToUn : N I W J N I such that on an input n, w this term computes the minimum between n and the unary representation of w. What is important in this type is the discarding of J. In order to do that, we first define a term min : N I N J N I . As N I is the type of integers of size smaller than I, we have indeed that the minimum between an integer of size smaller than I and an integer of size smaller than J is smaller than I. It is not a precise bound but it is sufficient for its incoming use. The idea to construct min is to use the following term:

t step := λr.let n ⊗ m = r in ifn(λm .s(n) ⊗ m , n ⊗ 0) m.
The term t step takes a pair of integers (n, m) and if m = 0, it does nothing, otherwise it returns (n+1, m-1). We can derive the typing • t step : (N i ⊗ N J ) (N i+1 ⊗ N J ). Thus, we can iterate on this term, and if we iterate n times starting from the pair (0, n ) we indeed compute the minimum between n and n :

min = λn, n .let m ⊗ m = (itern(t step , 0 ⊗ n ) n) in m.
Now that we have the term min, we can define the following term: CBiToUn = λn.iterw(λn .min n (mult n 2), λn .min n (s(mult n 2)), 0).

Subject Reduction and Soundness

Index Variable Substitution and Subtyping

In order to prove the subject reduction for s T and that the weight is a bound on the number of reduction steps of a term, we give some intermediate lemmas.

First, we show that typed values are linked to normal forms. In particular, this theorem shows that a value of type N is indeed of the form s(s(. . . (s(0)) . . . )). From this it follows that in this call-by-value calculus, when an argument is of type N, it is the encoding of an integer.

Lemma 2.1.1. Let t be a term in s T, if t is closed and has a typing derivation t : D then t is in normal form if and only if t is a value V .

Proof. First, we prove by induction on values V that if V is closed and has a typing derivation then V is in normal form. We only show some cases and the others are easily deducible from those cases.

• If V = λx.t then V is in normal form since in the definition of contexts for reductions, we cannot reduce under a λ-abstraction.

• If V = V 0 ⊗ V 1 . V is closed so are V 0 and V 1 .
Moreover, V has a typing derivation, so it must end with the introduction of tensor rule, and we deduce that V 0 and V 1 have also a typing derivation. So by induction hypothesis, V 0 and V 1 are in normal form. Then V has no base reduction possible, and no contexts reductions since V 0 and V 1 are is normal form, so V is also in normal form.

• If V = 0 then V is in normal form.
Now for the other implication, we prove that if a closed typed term is in normal form then it is a value. We prove that by induction on terms, again we only detail some interesting cases.

• If t := t 0 t 1 . Suppose, by absurd, that t is a closed typed normal term. Since t has a typing derivation, we know that t 0 and t 1 are also closed typed terms. By definition of contexts in which we can apply reductions, t 0 is normal, and so by induction hypothesis, t 0 is a value. Again, by definition of contexts, t 1 is normal, and so by induction hypothesis, t 1 is a value. So t 0 is a value with an arrow type D E. By looking at the definition of values, either t 0 is a λ-abstraction, or it is one of the functional constructors like ifn. If t 0 is a λ-abstraction, as t 1 is a value, we could apply the usual β-rule, so this is not possible because t is in normal form. If t 0 is ifn(V, V ), as t 1 is a value of type N, it is the encoding of an integer, and so t is not normal since we could apply one of the ifn rules. All the other cases work in the same way, and we deduce that t cannot be in normal form.

• If t := let x ⊗ y = t 0 in t 1 . Suppose that t is a closed typed normal term. Since t has a typing derivation, we know that t 0 has also a typing derivation, and t 0 is closed. By definition of contexts, t 0 is in normal form and so by induction hypothesis, t 0 is a value. t 0 has a tensor type D ⊗ E, by definition of values, t 0 is of the form V ⊗ W , this is absurd since in this case t would not be normal. And so, we deduce that t cannot be a normal term.

We now give a list of intermediate lemmas for which we do not always detail the proofs if they are immediate.

Lemma 2.1.2 (Weakening). Let ∆, Γ be disjoint typing contexts, and π Γ t : D. Then, we have a proof π Γ, ∆ t : D with ω(π) = ω(π ).

Lemma 2. 1.3 (Index substitution). Let I be an index.

1. Let J 1 , J 2 be indices such that J 1 ≤ J 2 then J 1 {I/i} ≤ J 2 {I/i}.

2.

Let J 1 , J 2 be indices such that J 1 < J 2 then J 1 {I/i} < J 2 {I/i}. • In the case of s or s i , we use Point 1.

• In the axiom rule, we use Point 3.

• Then, the only interesting cases are iterations. We show here the iteration for integers. Suppose that we have the following proof: By induction on I. On the base case, I = i so obviously i < i+1. In the inductive case I = J 1 +J 2 , if i has at least one occurrence in I, then i has at least one occurrence in J 1 or in J 2 . If i appears in J 1 and J 2 , by induction hypothesis we have J 1 < J 1 {i+1/i} and J 2 < J 2 {i+1/i}. So, we obtain directly I < I{i+1/i}. If i appears in J 1 and not in J 2 , then we have J 1 < J 1 {i+1/i} and J 2 = J 2 {i+1/i}. Thus, we obtain I < I{i+1/i}. The last case is symmetric. The case of the multiplication is similar to the one for addition, using the fact that all indices are at least 1 so multiplication conserves the strict ordering.

D E E E{j+1/j} σ dΓ V : D D{j+1/j} E{J/j} F τ Γ, dΓ t : D{1/j} π Γ, dΓ itern(V, t) : N J F With ω(π) = ω(τ )+J • (ω(σ)+1){J/j}
Now we can prove Point 3 of Lemma 2. 1.4 by induction on E.

• Suppose that E is a base type. The boolean case is direct, so we suppose that E = N I (the case for words is similar) 

V : U with ω(π) = ω(π ). Moreover, ω(π ) ≤ 1.
Indeed, the only rules we can use to type values of base type are the axiom rule with a variable in dΓ or the rules for base constructors on integers, words or boolean such as 0 or s.

Another important lemma is the one for subtyping, it shows that we do not need an explicit rule for subtyping and subtyping does not harm the upper bound derived from typing. Moreover, this lemma is important in order to substitute variables, since the axiom rule allows subtyping. Proof. This can be proved by induction on π. The only interesting cases are for iterations. We only detail the case of iteration for integers. Suppose that we have (ω(σ )+1){I /i} ≤ (ω(σ )+1){I/i} ≤ (ω(σ)+1){I/i} by Point 1 of Lemma 2. 1.4 for the first inequality, and since ω(σ ) ≤ ω(σ), we get the second inequality by Point 1 of Lemma 2. 1.3.

D E E{I/i} F σ dΓ V : D D{i+1/i} E E{i/i+1} τ Γ, dΓ t : D{1/i} π Γ, dΓ itern(V, t) : N I F with ω(π) = ω(τ )+I • (ω(σ)+1){I/i}

Term Substitution Lemma

In order to prove the subject reduction of the calculus, we examine what happens during a substitution of a value in a term. There are two cases, first the substitution of variables with base types, that is to say duplicable variables, and then the substitution of variables with a non-base type for which the type system imposes linearity.

Lemma 2. 1.8 (Value Substitution). Suppose that π Γ 1 , dΓ, x : E t : D and σ Γ 2 , dΓ V : E, then we have a proof π

Γ 1 , Γ 2 , dΓ t{V /x} : D. Moreover, if E is a base type then ω(π ) ≤ ω(π). Otherwise, ω(π ) ≤ ω(π)+ω(σ).
Proof. This is proved by induction on π. For the base type case, we use Lemma 2. 1.6 to show that Γ 2 can be ignored, and then as dΓ is duplicable, the proof is rather direct. For the non-base case, in multiplicative rules such as application and if, the property holds by the fact that x only appears in one of the premises, and so ω(σ) appears only once in the total weight.

Subject Reduction and Upper Bound

We can now express the subject-reduction of the calculus and the fact that the weight of a proof strictly decreases during a reduction.

Theorem 2.1.1. Suppose that τ Γ t 0 : D and t 0 → t 1 , then there is a proof τ Γ t 1 : D such that ω(τ ) < ω(τ ).

Proof. By induction. We first consider the base-reduction case. Some cases are trivial and we will not develop them. Indeed the if-rules can be proved with weakening (Lemma 2.1.2).

• If t 0 = (λx.t)V , and t 1 = t{V /x}, we have a proof:

π Γ 1 , dΓ, x : E t : D Γ 1 , dΓ λx.t : E D σ Γ 2 , dΓ V : E τ Γ 1 , Γ 2 , dΓ (λx.t)V : D with ω(τ ) = ω(σ)+1+ω(π).
Then by using the value substitution lemma (Lemma 2. 1.8) with π and σ, we obtain a proof π Γ 1 , Γ 2 , dΓ t{V /x} : D. Moreover, we have ω(π ) ≤ ω(π)+ω(σ) < ω(τ ). This concludes this case.

• If t 0 = let x ⊗ y = V 0 ⊗ V 1 in
t and t 1 = t{V 0 /x}{V 1 /y}, we can conclude this case by using twice Lemma 2.1.8.

• If t 0 = itern(V, V ) 0 and t 1 = V . We have a proof:

(1)

σ1{1/i} dΓ V : D{1/i} D{i+1/i}{1/i} σ2 Γ, dΓ V : D{1/i} σ1{i+1/i} dΓ V : D{i+1/i} D{i+1/i}{i+1/i} Γ, dΓ V V : D{i+1/i}{1/i} Γ, dΓ itern(V, V V ) : N J F
where (1) is: 

D{a+1/a}
(V, V V ). D E E E{i+1/i} σ 1 dΓ V : D D{i+1/i} E{I/i} F σ 2 Γ, dΓ V : D{1/i} Γ, dΓ itern(V, V ) : N I F Γ , dΓ 0 : N I τ Γ, Γ , dΓ itern(V, V ) 0 : F with ω(τ ) = I+ω(σ 2 )+I • ω(σ 1 ){I/a} ≥ 1+ω(σ 2 ).
We 

σ 2 Γ, Γ , dΓ V : F with ω(σ 2 ) ≤ ω(σ 2 ) < ω(τ ).
This concludes this case. The proof for the rule iterw with follows the same pattern.

• If t 0 = itern(V, V ) s(W ) and t 1 = itern(V, V V ) W .
We have a proof:

D E E E{i+1/i} σ1 dΓ V : D D{i+1/i} E{I/i} F σ2 Γ, dΓ V : D{1/i} Γ, dΓ itern(V, V ) : N I F π Γ , dΓ W : N J J+1 ≤ I Γ , dΓ s(W ) : N I τ Γ, Γ , dΓ itern(V, V ) s(W ) : F with ω(τ ) = ω(π)+I+ω(σ 2 )+I • ω(σ 1 ){I/i}.
We can construct a proof τ 0 for itern(V, V V ). The proof is described in Figure 2. 4. This gives us a proof for t 1 .

τ 0 Γ, dΓ itern(V, V V ) : N J F π Γ , dΓ W : N J τ Γ, Γ , dΓ itern(V, V V )W : F with ω(τ ) = ω(π)+J+ω(σ 2 )+ω(σ 1 ){1/i}+J • ω(σ 1 ){i+1/i}{J/i}.
And we have ω(τ

) ≤ ω(π)+J+ω(σ 2 )+(J+1) • ω(σ 1 ){J+1/i} so, since J+1 ≤ I, we have ω(τ ) < ω(π)+I+ω(σ 2 )+I • ω(σ 1 ){I/i} = ω(τ ).
The rules for iterw in the cases s 0 and s 1 follow the same pattern.

Now we need to verify that a reduction under context strictly decreases the weight. This can be proved directly by structural induction on contexts.

As the indices can only define polynomials, the weight of a sequent can only be a polynomial on the index variables. And so, in s T, we can only define terms that work in time polynomial in the size of their inputs.

Polynomial indices and Degree

For the following section on the elementary affine logic, we need to define a notion of degree of indices and make clear some properties of this notion. Definition 2.1. [START_REF] Avanzini | Automating sized-type inference for complexity analysis[END_REF]. The indices can be seen as multi-variables polynomials, and we can define the degree of an index I by induction on I.

• ∀n ∈ N * , d(n) = 0.

• For an index variable i, d(i) = 1.

• d(I+J) = max(d(I), d(J)). • d(I • J) = d(I)+d(J).
This definition of degree is essential for the control of reductions in sEAL, that we present in the following section. We obtain the following property for degree.

Theorem 2.1.2 (Degree). For all indices I and J, the following properties are verified:

1. For all non-zero integer k, we have I{k/i} ≤ k d(I) • I{1/i}.

If

I ≤ J then d(I) ≤ d(J).
Proof. The first point is proved by induction on I. For the second point, let us first show the following lemma: Lemma 2.1.9. Let I be an index with at most one index variable i. Then, we have i

d(I) ≤ I ≤ I{1/i} • i d(I) .
This is proved directly by induction on indices, and it uses the fact that the constant integers in indices are non-zero, the image of a variable in a valuation is non-zero and an index is always positive. Now, we prove our theorem by contraposition. Given I, J such that d(I) > d(J), we construct two new indices called I and J that are I and J in which we replaced all variables by a new fresh variable i. The degree stays the same, and we have, by Lemma 2.1.9:

i d(J)+1 ≤ i d(I) ≤ I and J ≤ i d(J) • J {1/i}.
If we replace i by k = (J {1/i}+1) (which is a non-zero integer), we obtain:

I {k/i} ≥ k d(J)+1 and J {k/i} ≤ k d(J) • (k-1).
And so we have I {k/i} > J {k/i}. We deduce that we have a valuation ρ that sends all variables of I and J to k such that I ρ > J ρ , so we do not have I ≤ J. By contraposition, we obtain Point 2 of Theorem 2. 1.2. This second point shows that our notion of degree is well-defined w.r.t. the equivalence relation between indices.

Elementary Affine Logic and Sizes

An Elementary Affine Lambda Calculus

We work on an elementary affine lambda calculus based on [START_REF] Madet | An elementary affine λ-calculus with multithreading and side effects[END_REF] without multithreading and side-effects, that we present here. In this calculus, any sequence of reduction terminates in elementary time. The keystone of this proof is the use of the modality "!", called bang, inspired by linear logic. As in linear logic, there are restrictions for the duplication of variables in this Figure 2.5: Type system for the EAL-calculus. calculus. Moreover, the bang has a more limited use than in linear logic, this limitation gives birth to the notion of depth. This notion is crucial to derive the elementary bound on this calculus. To describe formally this calculus, we follow the presentation from [START_REF] Madet | An elementary affine λ-calculus with multithreading and side effects[END_REF] and we encode the usual restrictions in a type system. Definition 2.2.1. The set of terms is given by the grammar:

M, N := x | λx.M | M N |!M | let !x = M in N.
The constructor let !x = M in N binds the variable x in N . We define as usual the notion of free variables, free occurrences and substitution. Definition 2.2.2. The semantic of this calculus is given by the rules:

(λx.M ) N → M {N/x} let !x =!M in N → N {M/x}
Those rules can be applied in any context.

We add to this calculus a polymorphic type system that also restrains the possible terms we can write. Types are given by the grammar: Typing judgments have the shape Γ | ∆ M : T . The intended meaning is that variables in Γ are used linearly in M while variables in ∆ can be used non-linearly in M .

T, U := α | T U |!T | ∀α.
The rules are given in Figure 2. 5. Observe that all the rules are multiplicative for Γ and, seen from bottom to top, the "!Intro" rule erases linear contexts, non-discharged types and transforms discharged types into usual types. With this, we can see that some restrictions appear in a typed term. First, in λx.M , x occurs at most once in M , and moreover, there is no "! Intro" rule below the axiom rule for x. Then, in let !x = M in M , x can be used several times in M , but there is exactly one "! Intro" rule below each axiom rule for x. For example, with this type system, we can not type terms like λx.!x, λf, x.f

(f x), let !x = M in x or let !x = M in !!x.
With this type system, we obtain as a consequence of the results exposed in [START_REF] Madet | An elementary affine λ-calculus with multithreading and side effects[END_REF] that any sequence of reductions of a typed term terminates in elementary time. This proof relies on the notion of depth linked with the modality "!" and a measure on terms bounding the number of reductions for this term. We will adapt those two notions in the following part on sEAL, but for now, let us present some terms and encoding in this EAL-calculus.

Examples of Terms in EAL and Church Integers

First, a useful term fonct : ∀α, α .!(α α ) !α !α :

fonct := λf, x.let !g = f in let !y = x in !(g y).
We sketch the typing derivation for this term.

f :!(α α ) | • f :!(α α ) x:!α | g : [(α α )] x:!α . . . • | g : (α α ), y : α g y : α • | g : [(α α )], y : [α] !(g y):!α x:!α | g : [(α α )] let !y = x in !(g y):!α f :!(α α ), x:!α | • let !g = f in let !y = x in !(g y):!α f :!(α α ) | • λx.let !g = f in let !y = x in !(g y):!α !α • | • fonct:!(α α ) !α !α • | • fonct : ∀α .!(α α ) !α !α • | • fonct : ∀α, α .!(α α ) !α !α
This term allows application under a bang. Indeed, the following reduction can be derived:

fonct !M !N → * let !g =!M in let !y =!N in !(g y) → * !(M N )
Unary integers can be encoded in this calculus as Church integers, with N = ∀α.!(α α) !(α α). For example, 3 is represented by the term:

3 = λf.let !g = f in !(λx.g (g (g x))) : N.
And we can represent addition and multiplication with type N N N:

add = λn, m, f.let !f = f in let !g = n !f in let !h = m !f in !(λx.h (g x)). mult = λn, m, f.let !g = f in n(m !g).
And finally, one can also define an iterator using integers:

iter = λf, x, n.fonct (n f ) x : ∀α.!(α α) !α N !α with iter !M !M n → * !(M n M ).

Intensional Expressivity

Those examples show that this calculus suffers from limitations. First, we need to work with Church integers, because of a lack of data structures. Furthermore, we need to be careful with the modality, and this can be sometimes a bit tricky, as one can observe with the addition.

And finally if we want to do an iteration, we are forced to work with types with bangs. This implies that each time we need to use an iteration, we are forced to add a bang in the final type.

Typically, this prevents from iterating a function which has itself been defined by iteration.

It has been proved that polynomial and exponential complexity classes can be characterized in a variant of this calculus with recursive types [START_REF] Baillot | Characterizing Polynomial and Exponential Complexity Classes in Elementary Lambda-Calculus[END_REF]. For example, with a type for words W and booleans B we have that !W !!B characterizes polynomial time computation. However, because of the restrictions mentioned above, some natural polynomial time programs cannot be typed with the type !W !!B. We say that this calculus has a limited intensional expressivity. One goal of this chapter is to try to lessen this problem, and for that, we now present an enriched version of this calculus, sEAL, using the language s T.

EAL enriched with sizes: sEAL

In order to solve improve the intensional expressivity of this calculus, we enrich it with constructors for integers, words and booleans, and some iterators on those types following the usual constraint on iteration in elementary affine logic (EAL). Then, based on the fact that the proof of correctness in [START_REF] Madet | An elementary affine λ-calculus with multithreading and side effects[END_REF] is robust enough to support functions computable in polynomial time with type N N (Remark 2.2.1 will explain this in detail), we enrich EAL with the polynomial time calculus defined previously. We call this new language sEAL (EAL with sizes). More precisely, we add the possibility to use first-order s T terms in this calculus in order to work on those base types, particularly we can then do controlled iterations for those types. We then adapt the measure used in [START_REF] Madet | An elementary affine λ-calculus with multithreading and side effects[END_REF] to sEAL to find an upper-bound on the number of reductions for a term.

Let us first give some notations on vectors.

Definition 2.2.4 (Vectors). In the following we will work with vectors of N n+1 , for n ∈ N. We introduce here some notations on those vectors. We usually denote vectors by µ = (µ(0), . . . , µ(n)).

When there is no ambiguity with the value of n, for 0 ≤ k ≤ n, we note 1 k for the vector µ with µ(k) = 1 and ∀i, 0 ≤ i ≤ n, i = k, µ(i) = 0. We extend this notation for k > n. In this case, 1 k is the zero-vector.

Let

µ 0 , µ 1 ∈ N n+1 . We write µ 0 ≤ µ 1 when ∀i, 0 ≤ i ≤ n, µ 0 (i) ≤ µ 1 (i).
We also write µ 0 ≤ lex µ 1 for the lexicographic order on vectors.

For k ∈ N, when there is no ambiguity with the value of n, we write k the vector µ such that ∀i,

0 ≤ i ≤ n, µ(i) = k.
Then, the concatenation of two vectors is denoted by (µ 0 , µ 1 ), the pointwise addition by µ 0 +µ 1 and the scalar product by k • µ.

Terms and Reductions

Terms of sEAL are defined by the following grammar:

M, N ::= x | λx.M | M N |!M | let !x = M in N | M ⊗ N | let x ⊗ y = M in N | 0 | s(M ) | ifn(M, N ) | iter ! N (M, N ) | tt | ff | if(M, N ) | | s i (M ) | ifw(M 0 , M 1 , N ) | iter ! W (M 0 , M 1 , N ) | [λx n . . . x 1 .t](M 1 , . . . , M n ) with i ∈ {0, 1}.
Note that the t used in [λx n . . . x 1 .t](M 1 , . . . , M n ) refers to terms defined in s T. This notation means that we call the function t defined in s T with arguments M 1 , . . . , M n . Moreover, n can be any integer, even zero. Constructors for iterations directly follow from the ones we can usually define in EAL for Church integers or Church words, as we could see in the previous section on EAL. As usual, we work up to α-isomorphism and we do not explicit the renaming of variables. As before, for words, the choice of the alphabet Σ = {0, 1} is arbitrary, we could have chosen any finite alphabet. Definition 2.2.5 (Base type values). We note v for base type values, defined by the grammar:

(λx.M ) N → M {N/x} let !x =!M in N → N {M/x} let x ⊗ y = M ⊗ M in N → N {M/x}{M /y} ifn(M, N ) 0 → N ifn(M, M ) s(N ) → M N iter ! N (!M, !N ) n →!(M n N ) ifw(M 0 , M 1 , N ) → N ifw(M 0 , M 1 , M ) s i (N ) → M i N iter ! W (!M 0 , !M 1 , !N ) w →!(M w N ) if(M, N ) tt → M if(M, N ) ff → N if t → t in s T then [t]() → [t ]() [λx n . . . x 1 .t](M 1 , . . . , M n-1 , v) → [λx n-1 . . . x 1 .t{v/x n }](M 1 , . . . , M n-1 ) [v]() → v
v := 0 | s(v) | | s i (v) | tt | ff with i ∈ {0, 1}.
In particular, if n is an integer and w is a binary word, we note n for the base value s n (0), and w = w 1 • • • w n for the base value s w 1 (. . . s wn ( ) . . . ). We also define the size |v| of v.

|0| = | | = |tt| = |ff| = 1 |s(v)| = |s i (v)| = 1+|v|
We may use the following notation for terms.

Definition 2.2.6 (Iterated Applications). For terms M, M and an integer n, we write M n M to denote n applications of M to M . In particular, M 0 M = M . We also define for a word w, given terms M a for all letter a, M w M . This is defined by induction on words with M M = M and

M aw M = M a (M w M ).
Base reductions are defined by the rules given in Figure 2. [START_REF] Avanzini | Automating sized-type inference for complexity analysis[END_REF]. Note that for some of these rules, for example the last one, v can denote either the s T term or the sEAL term.

Contexts are defined by:

C ::= [] | λx.C | C N | M C |!C | let !x = C in N | let !x = M in C | C ⊗ N | M ⊗ C | let x ⊗ y = C in N | let x ⊗ y = M in C | s(C) | ifn(C, N ) | ifn(M, C) | iter ! N (C, N ) | iter ! N (M, C) | if(C, N ) | if(M, C) | s i (C) | ifw(C, M 1 , N ) | ifw(M 0 , C, N ) | ifw(M 0 , M 1 , C) | iter ! W (C, M 1 , N ) | iter ! W (M 0 , C, N ) | iter ! W (M 0 , M 1 , C) | [λx n . . . x 1 .t](M 1 , . . . , M j-1 , C, M j+1 , . . . , M n ).
with i ∈ {0, 1} and j ∈ {1, . . . , n}.

The reductions can be extended to any context, and so we have M → M if there is a context C and a base reduction

M 0 → M 0 such that M = C[M 0 ] and M = C[M 0 ].
In order to work with s T, we use the three last rules and contexts: from the term [λx n . . .

x 1 .t](M 1 , . . . , M n ), we could start by reducing the term M n to obtain [λx n . . . x 1 .t](M 1 , . . . , M n-1 , v), then use the second last reduction rule to obtain [λx n-1 . . . x 1 .t{v/x n }](M 1 , . . . , M n-1 )
, and repeat n times to obtain a term of the form [t ](). We can then reduce this term t to a normal form v in s T and we obtain in sEAL the term [v](). Finally, with the last rule we obtain the value v. Note that this order for the reduction is not mandatory as contexts do not impose to always start by reducing 

M n . π Γ, x : T | ∆ x : T µ n (π) = 1 0 π Γ | ∆, x : T x : T µ n (π) = 1 0 σ Γ, x : T | ∆ M : U π Γ | ∆ λx.M : T U µ n (π) = µ n (σ)+1 0 σ Γ | ∆ M : U T τ Γ | ∆ N : U π Γ, Γ | ∆ M N : T µ n (π) = µ n (σ)+µ n (τ )+1 0 σ • | ∆ M : T π Γ | ∆ , [∆] !M : !T µ n (π) = (1, µ n-1 (σ)) σ Γ | ∆ M : !T τ Γ | ∆, x : [T ] N : U π Γ, Γ | ∆ let !x = M in N : U µ n (π) = µ n (σ)+µ n (τ )+1 0 σ Γ | ∆ M : T τ Γ | ∆ N : U π Γ, Γ | ∆ M ⊗ N : T ⊗ U µ n (π) = µ n (σ)+µ n (τ )+1 0 σ Γ | ∆ M : S ⊗ U τ Γ , x : S, y : U | ∆ N : T π Γ, Γ | ∆ let x ⊗ y = M in N : T µ n (π) = µ n (σ)+µ n (τ )+1 0 σ Γ | ∆ M : T α fresh in Γ, ∆ π Γ | ∆ M : ∀α.T µ n (π) = µ n (σ) σ Γ | ∆ M : ∀α.T π Γ | ∆ M : T {U/α} µ n (π) = µ n (σ)

Types

Types are usual types for intuitionistic linear logic enriched with some base types for booleans, integers and words.

A := B | N | W T, U, S := α | A | T U |!T | T ⊗ U | ∀α.T
A type A is called a base type. The type for words W depends on the choice of the alphabet Σ. 

(π) = (ω k (π), . . . , ω n (π)), with the convention that if k > n, then µ k n (π)
is the empty vector. We write µ n (π) to denote the vector µ 0 n (π). In the definitions given in the type system, instead of defining ω i (π) for all i, we define µ n (π) for all n, from which one can recover the weights. We will often call µ n (π) the measure of the proof π. The depth of a proof π (or a typed term), denoted depth(π), is the greatest integer i such that ω i (π) = 0. It is always defined for any proof.

The idea behind the definition of measure is to show that with a reduction step, this measure strictly decreases for the lexicographic order and we can control the growing of the weights. The rules are given on The rules given in Figure 2.7 represent the usual constructors in EAL. Those rules impose some restrictions on the use of variables similar to the ones described in the previous section ∀ , (1

π Γ | ∆ 0 : N µn(π) = 11 σ Γ | ∆ M : N π Γ | ∆ s(M ) : N µn(π) = µn(σ)+11 σ Γ | ∆ M : N T τ Γ | ∆ N : T π Γ, Γ | ∆ ifn(M, N ) : N T µn(π) = µn(σ)+µn(τ )+10 σ Γ | ∆ M : !(T T ) τ Γ | ∆ N : !T π Γ, Γ | ∆ iter ! N (M, N ) : N !T µn(π) = µn(σ)+µn(τ )+10 π Γ | ∆ : W µn(π) = 11 σ Γ | ∆ M : W π Γ | ∆ si(M ) : W µn(π) = µn(σ)+11 ∀i, σi Γi | ∆ Mi : W T τ Γ | ∆ N : T π Γ1, Γ2, Γ | ∆ ifw(M0, M1, N ) : W T µn(π) = µn(σ1)+µn(σ2)+µn(τ )+10 ∀i, σi Γi | ∆ Mi : !(T T ) τ Γ | ∆ N : !T π Γ1, Γ2, Γ | ∆ iter ! W (M, N ) : W !T µn(π) = µn(σ1)+µn(σ2)+µn(τ )+10 π Γ | ∆ tt : B µn(π) = 11 π Γ | ∆ ff : B µn(π) = 11 σ Γ | ∆ M : T τ Γ | ∆ N : T π Γ, Γ | ∆ if(M, N ) : B T µn(π) = µn(σ)+µn(τ )+10
≤ ≤ k), σ Γ | ∆ M : A τ x 1 : A (i1) 1 , . . . , x k : A (i k ) k s T t : U π Γ, Γ 1 , . . . , Γ k | ∆ [λx k . . . x 1 .t](M 1 , . . . , M k ) : type(U ) µ n (π) = k =1 µ n (σ )+k(d(ω(τ )+I)+1) • 1 0 +((ω(τ )+I){1/j 1 } • • • {1/j l }+1) • 1 1
where I = ind(U ) and {j 1 , . . . , j l } = Var(ω(τ )) ∪ Var(I). As a consequence, if you take for example a proof of • v : W, then this proof has depth 1.

For the rule given by Figure 2.9, we first introduce some notations.

Definition 2.2.9 (Base Types in s T and sEAL). For a base type A of sEAL and an index I, we define a base type A (I) in s T:

B (I) := B N (I) := N I W (I) := W I
Reciprocally, for a base type U in s T, we define a type in sEAL type(U ) and an index ind(U ).

• type(B) := B and ind(B) = 1.

• type(N I ) := N and ind(N I ) = I.

• type(W I ) := W and ind(W I ) = I.

Note that we associate the index 1 to B since boolean values are either tt or ff, thus values of size 1.

The premise for t is a proof τ in s T. In this proof, we add on each non-boolean base type A i an index variable a i . This proof τ must yield a base type U , and this converts to a base type in sEAL. Moreover, the previous section gives us a weight ω(τ ) for this proof in s T.

Let us now comment on the definition of µ n (π). First, Var(I) is a notation for the set of variables in I. Then, at position 0 in the weight, we put k times the degree of ω(τ ) and ind(U ). Indeed, as one could see in the incoming definition of Red (Definition 2. 2.11) or more informally in Remark 2.2.1, having k times the degree at position 0 allows the future k substitution of x 1 , . . . , x k by their actual value. Then, as this term outputs a base type, and as base types have their size at position 1 in the weight, we add at position 1 an expression that will allow us to bound the number of reductions in s T and the size of the output. Furthermore, remark that when k = 0, the term [t]() influences only the weight at position 1, such as constructors for base types.

Subject Reduction and Measure

In this section, we show that we can bound the number of reduction steps of a typed term using the measure. This is done by first showing that a reduction preserves some properties on the measure, and then by giving an explicit integer bound that will strictly decrease after a reduction. This proof is inspired by the methodology of [START_REF] Madet | An elementary affine λ-calculus with multithreading and side effects[END_REF]. The relation Red defined in the following is a generalization of the usual requirements exposed in elementary linear logic in order to control reductions.

Let us first express that type variables can be substituted. Proof. By induction on π. All cases are straightforward, we just need to be a bit careful with the renaming of variables for the introduction of ∀ and choose the good instantiation for the elimination of ∀.

Let us then express substitution lemmas for sEAL. There are 3 cases to consider: linear variables, discharged global variables and non-discharged global variables.

Lemma 2.2.2 (Linear Substitution). Suppose that π Γ 1 , x : T | ∆ M : T and σ Γ 2 | ∆ M : T , then, we have a proof π Γ 1 , Γ 2 | ∆ M {M /x} : T . Moreover, for all n, µ n (π ) ≤ µ n (π)+µ n (σ).
Proof. The proof comes from the fact that rules are multiplicative for Γ and so x only appears in one of the premises for each rule. Thus, the proof σ is used only once in the new proof π . Proof. This time, the non-linearity of the variable x induces a duplication of the proof σ, that is why the measure µ n (σ) is also duplicated.

Lemma 2.2.4 (Discharged Substitution). If π Γ | ∆ , [∆], x : [T ] M : T and σ • | ∆ M : T then we have a proof π Γ | ∆ , [∆] M {M /x} : T . Moreover, for all n, µ n (π ) ≤ (ω 0 (π), (µ 1 n (π)+ω 1 (π) • µ n-1 (σ))).
Proof. The proof of this lemma relies directly on Lemma 2.2.3. Indeed, a variable with a discharged type can be used only after crossing a (!-Intro) rule and then the upper bound on µ n (π ) comes from the previous lemma since the number of occurrences of x in M is less than ω 1 (π).

Next, let us give two important definitions, t α and Red, in order to derive the upper bound on the number of reduction steps in sEAL.

Definition 2.2.10 (Tower of Functions). We define a family of tower functions t α (x 1 , . . . , x n ) on vectors of integers by induction on n, where we assume α ≥ 1 and x i ≥ 2 for all i: t α () = 0 and t

α (x 1 , . . . , x n ) = (α • x n ) 2 tα(x 1 ,...,x n-1 ) for n ≥ 1. For example, t α (3, 4, 5) = (5α) 2 (4α) 2 3α
. Note that t α (x 1 , . . . , x n ) is a polynomial function in x n (if x 1 , . . . , x n-1 are fixed) and a tower of exponential of height 2n for x 1 (if x 2 , . . . , x n are fixed). This function gives us a bound on the measure of a given proof. However, it is not convenient to work with, so we give a sufficient condition on two vectors µ and µ to have

t α (µ ) < t α (µ).
Definition 2. 2.11 (Red). We define a relation on vectors denoted Red. Intuitively, we want Red(µ, µ ) to express that a proof of measure µ has been reduced to a proof of measure µ . Let µ, µ ∈ N n+1 . We have Red(µ, µ ) if and only if the following conditions are satisfied:

1. µ ≥ 2 and µ ≥ 2.
2. µ < lex µ: there exists 0 ≤ i 0 ≤ n, µ = (ω 0 , . . . , ω n ) and µ = (ω 0 , . . . , ω i 0 -1 , ω i 0 , . . . , ω n ),

with ω i 0 > ω i 0 .

3. There exists d ∈ N, 1 ≤ d ≤ (ω i 0 -ω i 0 ) such that for all j > i 0 , we have

ω j ≤ ω j •(ω i 0 +1 ) d-1 .
The first condition with 2, that can also be seen in the definition of t α , makes calculation easier, since with this condition, exponentials and multiplications conserve the strict order between integers. This does not harm the proof, since we can simply add 2 to each vector we will consider. For an example of two vectors in relation, we have Red((2, 5, 3, 2), (2,2,[START_REF] Chatterjee | Stochastic Invariants for Probabilistic Termination[END_REF][START_REF] Baillot | Sized types with usages for parallel complexity of pi-calculus processes[END_REF]):

• (2, 5, 3, 2) ≥ (2, 2, 2, 2) and (2, 2, 25, 15) ≥ (2, 2, 2, 2). • (2, 2, 25, 15) < lex (2, 5, 3, 2), with i 0 = 1. • If we take d = 3, we have indeed 1 ≤ d ≤ 5 -2. Moreover, we have 25 ≤ 3 • 3 2 = 27 and 15 ≤ 2 • 3 2 = 18.
One can see on this example that Red(µ, µ ) indicates that µ < lex µ and the components of the vector µ are not "too big" compared to µ.

We can then connect those two definitions:

Theorem 2.2.1. Let µ, µ ∈ N n+1 and α ≥ n, α ≥ 1. If we have Red(µ, µ ) then t α (µ ) < t α (µ).
In order to prove this theorem, we first give some properties on t α and Red. The proofs are often only calculation.

Lemma 2.2.5. If µ ≤ µ then t α (µ) ≤ t α (µ ).
This is just a simple consequence of the fact that the exponentiation is monotonic.

Lemma 2.2.6 (Shift). Let k ∈ N * . Let µ = (ω 0 , . . . , k•ω i-1 , ω i , . . . ω n ) and µ = (ω 0 , . . . , ω i-1 , k• ω i , . . . ω n ). Then t α (µ ) ≤ t α (µ). Proof. Let us define µ 0 = (ω 0 , . . . , ω i-2 ). k ≥ 1 so k ≤ 2 2 k-1 -1 , then k • ω i ≤ ω i • 2 2 k-1 -1 ≤ (ω i ) 2 k-1 since w i ≥ 2. So, α • k • ω i ≤ (α • ω i ) 2 (α•(k-1)•ω i-1 ) 2 tα(µ 0 )
.

(α • k • ω i ) 2 (α•ω i-1 ) 2 tα(µ 0 ) ≤ (α • ω i ) 2 (α•(k-1)•ω i-1 ) 2 tα(µ 0 ) •2 (α•ω i-1 ) 2 tα(µ 0 )
and so,

t α (µ 0 , (ω i-1 , k • ω i )) ≤ (α • ω i ) 2 (α•k•ω i-1 ) 2 tα(µ 0 ) = t α (µ 0 , (k • ω i-1 , ω i )).
We can now obtain t α (µ ) ≤ t α (µ) by monotonicity of exponential.

Lemma 2.2. 7.

If 2 ≤ µ < µ then Red(µ, µ ).
Proof. Take d = 1 and the proof is simple.

Lemma 2.2.8. If Red(µ, µ ) then for all µ 0 , we have Red(µ+µ 0 , µ +µ 0 ).

Proof.

The conditions 1 and 2 for Red(µ+µ 0 , µ +µ 0 ) are given by the hypothesis Red(µ, µ ).

We keep the notations ω j , ω j , i 0 , d.

1 ≤ d ≤ ω i 0 -ω i 0 so 1 ≤ d ≤ (ω i 0 +µ 0 (i 0 )) -(ω i 0 +µ 0 (i 0 )).
Let j > i 0 , we have:

ω j +µ 0 (j) ≤ ω j • (ω i 0 +1 ) d-1 +µ 0 (j) ≤ (ω j +µ 0 (j)) • (ω i 0 +1 +µ 0 (i 0 +1)) d-1
since ω i 0 +1 ≥ 1.

We now want to prove Theorem 2.2.1.

Proof. Suppose Red(µ, µ ). Using the notations from the definition of Red, we have:

µ ≥ (ω 0 , . . . , ω i 0 +d, ω i 0 +1 , . . . , ω n ) and we have µ ≤ (ω 0 , . . . , ω i 0 -1 , ω i 0 , ω i 0 +1 • (ω i 0 +1 ) d-1 , . . . , ω n • (ω i 0 +1 ) d-1 ).
Let us call µ 0 = (ω 0 , . . . , ω i 0 -1 ).

α • d ≥ 1 so α • d < 2 α•d then, as ω i 0 +1 ≥ 2, we have (ω i 0 +1 ) α•d < (ω i 0 +1 ) 2 α•d so, α • (ω i 0 +1 ) α•d < (α • ω i 0 +1 ) 2 (α•d) 2 tα(µ 0 )
and so

(α • (ω i 0 +1 ) α•d ) 2 (α•ω i 0 ) 2 tα(µ 0 ) < (α • ω i 0 +1 ) 2 (α•(d+ω i 0 )) 2 tα(µ 0 ) . t α (ω 0 , . . . , ω i 0 -1 , ω i 0 , (ω i 0 +1 ) α•d ) < t α (ω 0 , . . . , ω i 0 -1 , ω i 0 +d, ω i 0 +1 ). By Lemma 2.2.5, since ω i 0 +1 • (ω i 0 +1 ) (n-i 0 )(d-1) ≤ (ω i 0 +1 ) α•d
, and by monotonicity of the exponential, we obtain:

t α (ω 0 , . . . , ω i 0 -1 , ω i 0 , ω i 0 +1 • (ω i 0 +1 ) (n-i 0 )(d-1) , . . . , ω n ) < t α (ω 0 , . . . , ω i 0 +d, ω i 0 +1 , . . . , ω n ).
Using several times the shift lemma (Lemma 2.2.6), we obtain:

t α (ω 0 , . . . , ω i 0 -1 , ω i 0 , ω i 0 +1 • (ω i 0 +1 ) d-1 , . . . , ω n • (ω i 0 +1 ) d-1 ) < t α (ω 0 , . . . , ω i 0 +d, ω i 0 +1 , . . . , ω n ).
Again by Lemma 2.2.5, we obtain t α (µ ) < t α (µ).

To sum up, this theorem shows that if we want to ensure that a certain integer defined with t α strictly decreases for a reduction, it is sufficient to work with the relation Red.

Finally, we need to consider rules for polymorphism. Because of the ∀ elimination and introduction rules, our type system is not syntax directed. However, we can prove that for some terms, namely introduction terms, we can "recover" syntax directed rules. Definition 2.2.12. A term M intro is said to be an introduction term if it has one of those form:

λx.M |!M | M ⊗ N | 0 | s(M ) | ifn(M, N ) | iter ! N (M, N ) | tt | ff | if(M, N ) | | s i (M ) | ifw(M 0 , M 1 , N ) | iter ! W (M 0 , M 1 , N ).
To each such term we can associate a typing rule, for instance to λx.M the rule ( ), to !M the rule (!) etc. Note that these rules correspond to introduction rules and rules for base type constructors.

For the sake of simplicity, we introduce a notation for list of objects. Let us write T to denote a sequence T 1 , . . . , T n of types, and ∀α.T to denote the type ∀α 1 . . . ∀α n .T when T does not begin with a quantifier. We can now present the generation lemma.

Lemma 2.2.9 (Generation lemma). Let M intro be an introduction term. Let π be a typing π Γ | ∆ M intro : ∀ α.T , where type variables in α are fresh in Γ and ∆. Let T be an instantiation of α. Let (R) denote the rule associated to M intro and n its number of premises. Then there exist type derivations π 1 , . . . , π n such that if π is the derivation obtained by applying the rule (R) to π 1 , . . . , π n we have:

• π is a typing of conclusion π Γ | ∆ M intro : T { T / α}. • For all integer k, µ k (π ) = µ k (π).
For example, if π Γ | ∆ λx.M : ∀ α.(T U ), then for any sequence of type T with same length as α, such that variables in α are not free in T , we have a proof

π 1 Γ, x : T { T / α} | ∆ M : U { T / α} with for all k, µ k (π) = µ k (π 1 )+1 0 .
So for each possible shape for M intro , we can state this lemma more formally just by looking at the associated typing rule. Observe that for terms like 0, this lemma only states that the measure of the proof is exactly 1 1 .

Proof. This is proved by induction on π Γ | ∆ M intro : ∀ α.T . Observe that for a given M intro there are only 3 possibles rules: introduction and elimination of ∀ and the rule (R) associated to the form of M intro .

• Rule (R). This case is trivial, this is exactly the definition of the generation lemma, with α = ∅. Observe that for this case, it is important to consider only introduction terms, otherwise there is no reason that α = ∅.

• Elimination of ∀. Suppose we have the proof

τ Γ | ∆ M intro : ∀α 0 .∀ α.T π Γ | ∆ M intro : ∀ α.T {T 0 /α 0 }
By definition, we have ∀k, µ k (π) = µ k (τ ). By renaming, α 0 and variables in α are not free in T 0 . Take a sequence of type T with same length as α, then (T 0 , T ) has the same length as (α 0 , α), thus we can conclude directly by induction hypothesis and using the fact that ∀k, µ k (π) = µ k (τ ).

• Introduction of ∀. Suppose we have the proof

τ Γ | ∆ M intro : ∀ α.T α 0 fresh in Γ and ∆ π Γ | ∆ M intro : ∀(α 0 , α).T
By definition, we have ∀k, µ k (π) = µ k (τ ). Take a sequence of type (T 0 , T ). Let (R) denote the rule associated to M intro and n its number of premises. By induction hypothesis, there exist type derivations π 1 , . . . , π n such that if π is the derivation obtained by applying the rule (R) to π 1 , . . . , π n , we have π

Γ | ∆ M intro : T { T / α} and ∀k, µ k (π ) = µ k (π)
. By Lemma 2.2.1, we can instantiate α 0 by T 0 in π 1 , . . . , π n and we obtain proofs π 1 , . . . , π n such that, if we denote π the derivation obtained by applying the rule (R) to π 1 , . . . , π n , we have π

Γ | ∆ M intro : T {(T 0 , T )/(α 0 , α)}. Moreover, for all k, µ k (π ) = µ k (π ) = µ k (π).
We can now state the subject reduction of sEAL and we show that the measure allows us to construct a bound on the number of reductions.

Theorem 2.2.2. Let τ Γ | ∆ M 0 : T and M 0 → M 1 .
Let α be an integer equal or greater than the depth of τ . Then there is a proof τ

Γ | ∆ M 1 : T such that Red(µ α (τ )+ 2, µ α (τ )+ 2).
Moreover, the depth of τ is smaller than the depth of τ .

Intuitively, with Lemma 2.2.9, for some terms, we can do as if the typing rules were syntax directed. Then, the proof uses the substitution lemmas (Lemma 2.2.2 and Lemma 2.2.4) for reductions in which substitution appears. For the others constructors, one can see that the measure given in the type system for sEAL is following this idea of the relation

Red. For example, in [λx n . . . x 1 .t](M 1 , . . . , M n-1 , v) → [λx n-1 . . . x 1 .t{v/x n }](M 1 , . . . , M n-1
), the degree that appears at position 0 is here to compensate the growing of the measure at position 1. Formally, the proof proceeds as follows.

Proof. To begin with, we show that we can consider that the first rule of τ is not an elimination or an introduction of quantification.

Lemma 2.2. [START_REF] Baillot | Characterizing Polynomial and Exponential Complexity Classes in Elementary Lambda-Calculus[END_REF]. Let τ Γ | ∆ M 0 : T be a proof that does not start with an introduction or elimination of quantifier, and M 0 → M 1 . Let α be an integer equal or greater than the depth of τ . Then there is a proof τ

Γ | ∆ M 1 : T such that Red(µ α (τ )+ 2, µ α (τ )+ 2).
Moreover, the depth of τ is smaller than the depth of τ .

Suppose that we proved Lemma 2.2. [START_REF] Baillot | Characterizing Polynomial and Exponential Complexity Classes in Elementary Lambda-Calculus[END_REF]. We can then prove Theorem 2.2.2 by induction on τ .

• If τ does not start with an introduction or elimination of quantification, by Lemma 2. 2.10 we can conclude this case.

• If τ is:

σ Γ | ∆ M 0 : T α fresh in Γ, ∆ Γ | ∆ M 0 : ∀α.T with µ(τ ) = µ(σ). By induction hypothesis with σ, there is a proof σ Γ | ∆ M 1 : T such that Red(µ α (σ)+ 2, µ α (σ )+ 2).
Moreover, the depth of σ is smaller than the depth of σ.

We can construct the proof τ :

σ Γ | ∆ M 1 : T α fresh in Γ, ∆ Γ | ∆ M 1 : ∀α.T
And we have µ(τ ) = µ(σ ). We can conclude this case. The case of elimination of ∀ is similar. Now, we prove Lemma 2.2. [START_REF] Baillot | Characterizing Polynomial and Exponential Complexity Classes in Elementary Lambda-Calculus[END_REF]. We first consider base reductions without contexts. With the generation lemma (Lemma 2.2.9), the case for the if-constructors are straightforward, it is a simple consequence of Lemma 2.2. 7. We detail the other cases:

• If M 0 = (λx.M )M and M 1 = M {M /x}, we have a proof: π Γ 1 , x : T | ∆ M : T Γ 1 | ∆ λx.M : T T σ Γ 2 | ∆ M : T τ Γ 1 , Γ 2 | ∆ (λx.M )M : T
The double line corresponds to the generation lemma (Lemma 2.2.9). We will use this notation everywhere in the proof.

∀n ∈ N, µ n (τ ) = µ n (σ)+µ n (π)+2 • 1 0 . The proof τ Γ 1 , Γ 2 | ∆ M {M /x} : T is given by Lemma 2.2.2.
As a consequence, we have:

∀n ∈ N, µ n (τ ) ≤ µ n (π)+µ n (σ) so, ∀n ∈ N, µ n (τ ) < µ n (τ ).
Then, it is still true for n = α ≥ depth(τ ) and the depth of τ is smaller than the depth of τ . Moreover, by Lemma 2.2.7, we obtain directly that Red(µ α (τ )+ 2, µ α (τ )+ 2).

• If M 0 = let !x =!M in M and M 1 = M {M /x} then we have a proof: σ • | ∆ M : T Γ 1 | ∆ , [∆] !M :!T π Γ 2 | ∆ , [∆], x : [T ] M : T τ Γ 1 , Γ 2 | ∆ , [∆] let !x =!M in M : T ∀n ∈ N, µ n (τ ) = µ n (π)+(2, µ n-1 (σ)).
By Lemma 2.2.4, we obtain a proof π

Γ 2 | ∆ , [∆] M {M /x} : T , with: ∀n ∈ N, µ n (π ) ≤ (ω 0 (π), (µ 1 n (π)+ω 1 (π) • µ n-1 (σ)))
.

By weakening we have τ

Γ 1 , Γ 2 | ∆ , [∆] M {M /x} : T .
By the precedent upperbound, we obtain depth(τ ) ≤ depth(τ ). Moreover, ω 0 (τ ) -ω 0 (τ ) ≥ 2, and so for α ≥ depth(τ ) ≥ 0, we have µ α (τ ) < lex µ α (τ ). Finally, for α ≥ j > 0, we have:

ω j (τ )+2 ≤ ω j (π)+ω 1 (π) • ω j-1 (σ)+2. ω j (τ )+2 ≤ (ω j (π)+ω j-1 (σ)+2) • (ω 1 (π)+ω 0 (σ)+2). ω j (τ )+2 ≤ (ω j (τ )+2) • (ω 1 (τ )+2).
And so we have indeed Red(µ α (τ )+ 2, µ α (τ )+ 2).

• If M 0 = let x ⊗ y = M ⊗ M in N and M 1 = N {M/x}{M /y}, we have a proof: σ Γ | ∆ M : T σ Γ | ∆ M : T Γ, Γ | ∆ M ⊗ M : T ⊗ T π Γ , x : T, y : T | ∆ N : T τ Γ, Γ , Γ | ∆ let x ⊗ y = M ⊗ M in N : T ∀n ∈ N, µ n (τ ) = µ n (π)+µ n (σ)+µ n (σ )+2 • 1 0 . Using twice Lemma 2.2.2, we obtain a proof τ Γ, Γ , Γ | ∆ N {M/x}{M /y} : T with: ∀n ∈ N, µ n (τ ) ≤ µ n (π)+µ n (σ)+µ n (σ ) < µ n (τ ).
So depth(τ ) ≤ depth(τ ) and for α ≥ depth(τ ), µ α (τ ) < µ α (τ ). By Lemma 2.2.7, we have Red(µ α (τ )+ 2, µ α (τ )+ 2).

• If M 0 = iter ! N (!M, !M ) k and M 1 =!(M k M
), then we have a proof:

σ 1 • | ∆ M : T T Γ 1 | ∆ , [∆] !M :!(T T ) σ 2 • | ∆ M : T Γ 2 | ∆ , [∆] !M :!T Γ 1 , Γ 2 | ∆ , [∆] iter ! N (!M, !M ) : N !T σ Γ 3 | ∆ , [∆] k : N τ Γ 1 , Γ 2 , Γ 3 | ∆ , [∆] iter ! N (!M, !M )k :!T ∀n ∈ N, µ n (τ ) = µ n (σ)+(4, µ n-1 (σ 1 )+µ n-1 (σ 2 )).
Also note that ∀n ∈ N, µ n (σ) = (k+1) • 1 1 . We can construct τ :

σ 1 • | ∆ M : T T σ 1 • | ∆ M : T T σ 2 • | ∆ M : T • • • • | ∆ M k-1 M : T • | ∆ M k M : T τ Γ 1 , Γ 2 , Γ 3 | ∆ , [∆] !(M k M ) :!T ∀n ∈ N, µ n (τ ) = k • 1 1 +(1, k • µ n-1 (σ 1 )+µ n-1 (σ 2 )).
We can see that depth(τ ) ≤ depth(τ ). Furthermore, ω 0 (τ ) -ω 0 (τ ) ≥ 2, so for α ≥ depth(τ ) ≥ 0, we have µ α (τ ) < lex µ α (τ ). We have ω 1 (τ )+2 ≤ (ω 1 (τ )+2) 2 , indeed:

k • (1+ω 0 (σ 1 ))+ω 0 (σ 2 )+2 ≤ (k+1+ω 0 (σ 1 )+ω 0 (σ 2 )+2) 2 .
For 1 < j ≤ α, ω j (τ )+2 ≤ (ω j (τ )+2)(ω 1 (τ )+2). Indeed:

k • ω j-1 (σ 1 )+ω j-1 (σ 2 )+2 ≤ (ω j-1 (σ 1 )+ω j-1 (σ 2 )+2)(k+1+ω 0 (σ 1 )+ω 0 (σ 2 )+2).
We can conclude Red(µ α (τ )+ 2, µ α (τ )+ 2). The proof for the rule iter ! W follows the same pattern.

• If M 0 = [λx k . . . x 1 .t](M 1 , . . . , M k-1 , v) and M 1 = [λx k-1 . . . x 1 .t{v/x k }](M 1 , . . . , M k-1 ),
then we have the following proof.

∀1 ≤ ≤ (k -1), σ Γ | ∆ M : A σ Γ k | ∆ v : A k π x k : A (i k ) k , . . . , x 1 : A (i 1 ) 1 s T t : U τ Γ, Γ 1 , . . . Γ k | ∆ [λx k . . . x 1 .t](M 1 , . . . , M k-1 , v) : type(U )
Note that, with the generation lemma (Lemma 2.2.9), the proof σ induces that v is either an actual integer m, an actual word w or an actual boolean tt or ff. Moreover,

∀n ∈ N, µ n (σ) = |v| • 1 1 and ∀n ∈ N, µ n (τ ) = k-1 =1 µ n (σ )+|v| • 1 1 +k(d(ω(π)+I)+1) • 1 0 +((ω(π)+I){1/j 1 } • • • {1/j l }+1) • 1 1
where ind(U ) = I and {j 1 , . . . , j l } = Var(I) ∪ Var(ω(π)). From the proof π, we can construct by Lemma 2.1.3 a proof

π{|v|/i k } x k : A (|v|) k , x k-1 : A (i k-1 )
k-1 , . . . , x 1 :

A (i 1 ) 1 t : U {|v|/i k }.
Furthermore, we can construct a proof σ

• s T v : A |v| k . By Lemma 2.1.8, π x k-1 : A (i k-1 ) k-1 , . . . , x 1 : A (i 1 ) 1 t{v/x k } : U {|v|/i k }
and ω(π ) ≤ ω(π){|v|/i k }. We can now construct the proof τ :

∀1 ≤ ≤ (k-1), σ Γ | ∆ M : A π x k-1 : A (i k-1 ) k-1 , . . . , x 1 : A (i 1 ) 1 s T t{v/x k } : U {|v|/i k } τ Γ, Γ k , Γ 1 , . . . Γ k-1 | ∆ [λx k-1 . . . x 1 .t{v/x k }](M 1 , . . . , M k-1 ) : type(U ) Let us denote {j 1 , . . . , j l } = Var(I) ∪ Var(ω(π)) ∪ Var(ω(π )). ∀n ∈ N, µn(τ ) = k-1 =1 µn(σ )+(k-1)(d(ω(π )+I{|v|/i k })+1) • 10+((ω(π )+I{|v|/i k }){1/j 1 } • • • {1/j l }+1) • 11.
With this, we can first see that depth(τ ) ≤ depth(τ ). Moreover, by Theorem 2.1.2, from the inequality ω(π )+I{|v|/i k } ≤ (I+ω(π)){|v|/i k }, we have:

d(ω(π )+I{|v|/i k }) ≤ d((I+ω(π)){|v|/i k }) ≤ d(I+ω(π)). By Theorem 2.1.2, (I+ω(π)){|v|/i k } ≤ |v| d(I+ω(π)) • (I+ω(π)){1/i k }.
So, (I+ω(π)){|v|/i k }{1/j 1 , . . . , j l } ≤ |v| d(I+ω(π)) • (I+ω(π)){1/j 1 , . . . , j l } by Lemma 2. 1.3 (the substitution for i k is either one of the j by definition, or irrelevant if i k does not appear in the indices). Now from those results, we have, ∀n ∈ N:

µ n (τ ) ≤ k-1 =1 µ n (σ )+(k -1)(d(ω(π)+I)+1) • 1 0 +(|v| d(I+ω(π)) • (I+ω(π)){1/j 1 , . . . , j l }+1)1 1 .
Now we can prove Red(µ α (τ )+ 2, µ α (τ )+ 2): By the precedent bound, ω 0 (τ ) -ω 0 (τ ) ≥ d(ω(π)+I)+1. Then:

ω 1 (τ )+2 ≤ k-1 =1 ω 1 (σ )+|v| d(I+ω(π)) • (I+ω(π)){1/j 1 , . . . , j l }+3. ω 1 (τ )+2 ≤ ( k-1 =1 ω 1 (σ )+|v|+(ω(π)+I){1/j 1 , . . . , j l }+3) d(ω(π)+I)+1 . ω 1 (τ )+2 ≤ (ω 1 (τ )+2) • (ω 1 (τ )+2) d(ω(π)+I) .
And for 1 < j ≤ α,

ω j (τ )+2 ≤ k-1 =1 ω j (σ i )+2 = ω j (τ )+2 ≤ (ω j (τ )+2)(ω 1 (τ )+2) d(ω(π)+I) .
This proves Red(µ α (τ )+ 2, µ α (τ )+ 2).

• If M 0 = [t 0 ]() and M 1 = [t 1 ]() with t 0 → t 1 in s T.
We have a proof:

π • s T t 0 : U τ Γ | ∆ [t 0 ]() : type(U ) ∀n ∈ N, µ n (τ ) = (1+(ω(π)+I){1/j 1 , . . . , j l }) • 1 1
where ind(U ) = I and {j 1 , . . . , j l } = Var(I) ∪ Var(ω(π)). By Theorem 2.1.1, the main theorem of s T, we have a proof π • s T t 1 : U with ω(π ) < ω(π). So we can construct the following proof.

π • s T t 1 : U τ Γ | ∆ [t 1 ]() : type(U )
Let us denote {j 1 , . . . , j l } all the index variables in I, ω(π) and ω(π ).

∀n ∈ N, µ n (τ ) = (1+(ω(π )+I){1/j 1 , . . . , j l }) • 1 1 .
We directly see that the depth does not increase. Remark that the depth of τ is greater than 1 in this case.

We have by Lemma 2. 1.3, (ω(π )+I){1/j 1 , . . . , j l } < (ω(π)+I){1/j 1 , . . . , j l }.

And so, for α ≥ depth(τ ) ≥ 1, µ α (τ ) < µ α (τ ), and so we have Red(µ α (τ )+ 2, µ α (τ )+ 2).

Remark that as opposed to all the precedent cases, µ 0 (τ ) and µ 0 (τ ) are equal, and so we need to look at position 1 to see that the measure strictly decreases. This remark is essential in the proof of Lemma 2. 4. 1.

• If M 0 = [v]() and M 1 = v.
The fact that M 0 can be typed by τ indicates that v is either an actual integer, a word or a boolean. With this remark, the typing τ of M 1 is just the usual typing for those values. Moreover, we know the weight in s T and the measure in sEAL for the typing proof of a value, in s T the weight is 0 and in sEAL the measure is |v| And the fact that the depth does not increase is direct.

• 1 1 . Furthermore, if π • s T v : U ,
Remark that as the precedent case, we need to look at position 1 to see that the measure strictly decreases.

Now we need to work on the reductions under a context. For this we work by induction on contexts, and what we have done previously is the base case. For any inductive case of context except the ! case, the proof is straightforward, it is a direct application of the induction hypothesis.

When the context has the form C =!C , the notion of depth is crucial. Indeed, suppose M → M , M 0 =!M and M 1 =!M . With the proof τ for M 0 , we obtain a proof π for M , this gives us by induction hypothesis a proof π for M , and this gives us a proof τ for M 1 . Moreover,

∀n ∈ N, µ n (τ ) = (1, µ n-1 (π)) and µ n (τ ) = (1, µ n-1 (π )).
As depth(π ) ≤ depth(π) we have:

depth(τ ) = depth(π )+1 ≤ depth(π)+1 = depth(τ ).
And for α ≥ depth(τ ), then (α -1) ≥ depth(π). By induction hypothesis, we have

Red(µ α-1 (π)+ 2, µ α-1 (π )+ 2)
From this, we can easily deduce

Red(µ α (τ )+ 2, µ α (τ )+ 2)
Remark that this proof shows that if we had

Red(µ n (π)+ 2, µ n (π )+ 2) we obtain Red(µ n+1 (τ )+ 2, µ n+1 (τ )+ 2)
This remark is important for the proof of Lemma 2.4.1.

From Theorem 2.2.2 and Theorem 2.2.1, we can easily deduce:

Theorem 2.2.3. Let π Γ | ∆ M : T . Denote α = max(depth(π), 1), then t α (µ α (π)+ 2
) is a bound on the number of reductions from M .

Remark 2.2.1. As explained in the beginning of Section 2.2, we show informally that the proof of correctness in [START_REF] Madet | An elementary affine λ-calculus with multithreading and side effects[END_REF] is robust enough to support the addition of polynomial time functions in the type N N. This is a generic enrichment of EAL that does not describe the layer computing polynomial time function.

We work in the classical EAL calculus described in Section 2.2. For any function f from integers to integers, we define a new constructor f in the classical EAL-calculus, and a new reduction rule f n → f (n), saying that f applied to the Church encoding of the integer n is reduced to the Church encoding of the integer f (n). We consider a cost to this reduction, depending on the integer n and the function f , that we call C f (n). We consider that this constructor f has type N N. If this function f is a polynomial time computable function, we can bound the cost function C f (n) by a polynomial function (n+2) d for a certain d, and we can also bound the size of f (n) by the cost, and so f (n) ≤ (n+2) d . The proof of correctness relies on a measure µ on terms, and as in the present work, this measure yields a bound by computing t α (µ) (see Section 2.2 or [START_REF] Madet | An elementary affine λ-calculus with multithreading and side effects[END_REF]). Now if we look at the reduction rule, if we call µ(f ) the measure for f , we go from the measure µ(f )+(1, n+1) to (0, (n+2) d ). In order to take in consideration the cost of the reduction, we add it in the measure. Thus, we consider that in the right part of the reduction, we have the measure (0, 2(n+2) d ). If we define µ(f ) = (d, 1), this reduction follows the relation Red defined in Section 2. 2. Thus, as in the present work, we can prove that EAL enriched with constructors for polynomial functions characterizes 2k-EXP.

Examples of Programs for sEAL

Simple Examples in sEAL

We give some examples of terms in sEAL, first some terms we can usually see for the elementary affine logic, and then we give the term for computing tower of exponentials.

Some general results and notations on sEAL

• For base types A we have the coercion A !A. For example, for words, we have coerc w w → * !w, with:

coerc w = iter ! W (!(λw .s 0 (w )), !(λw .s 1 (w )), ! ).
• We write λx ⊗ y.M for the term λz.let x ⊗ y = z in M .

Polynomials and Tower of Exponentials in sEAL Recall that we defined polynomials in s T. With this we can define polynomials in sEAL with type N N using the s T call. Moreover, using the iteration in sEAL, we can define a tower of exponentials.

We can compute the function k → 2 2 k in sEAL with type N !N.

n : N | • n : N σ x 1 : N a1 s T mult x 1 x 1 : N a1•a1 n : N | • [λx 1 .mult x 1 x 1 ](n) : N π • | • λn.[λx 1 .mult x 1 x 1 ](n) : N N • | • !(λn.[λx 1 .mult x 1 x 1 ](n)) : !(N N) • | • !2 : !N • | • exp = iter ! N (!λn.[λx 1 .mult x 1 x 1 ](n), !2) : N !N iter ! N (!λn.[λx 1 .mult x 1 x 1 ](n), !2) k → * !((λn.[λx 1 .mult x 1 x 1 ](n)) k 2) → * !(2 2 k ).
For an example of measure, for the subproof π, we have depth(π) = 1. From Section 2.1.1, we can deduce the weight for σ: ω(σ) = 4+6a 1 +3a 3 1 . We can then deduce:

µ(π) = (1+1+1 • (d(ω(σ)+a 1 • a 1 )+1), 1+(ω(σ)+a 1 • a 1 ){1/a 1 }) = (6, 15).
If we define 2 x 0 = x and 2 x k+1 = 2 2 x k , with the use of polynomials, we can represent the function n → 2

P (n) 2k
for all k ≥ 0 and polynomial P with a term of type N ! k N.

Testing Satisfiability of a Propositional Formula

We sketch here the construction of a term for deciding the SAT problem.

The term for SAT has type N ⊗ W !B and given a formula in conjunctive normal form encoded in the type N ⊗ W, it checks its satisfiability. The modality in front of the output !B shows that we used a non-polynomial computation, or more precisely an iteration in sEAL, as expected of a term for satisfiability.

We encode formulas in conjunctive normal form in the type N ⊗ W, representing the number of distinct variables in the formula and the encoding of the formula by a word on the alphabet Σ = {0, 1, #, |}. A literal is represented by the number of the corresponding variable written in binary and the first bit determines if the literal is positive or negative. Then # and | are used as separator for literals and clauses.

For example, the formula (

x 1 ∨ x 0 ∨ x 2 ) ∧ (x 3 ∨ x 0 ∨ x 1 ) ∧ (x 2 ∨ x 0 ∨ x 3 ) could be represented by 4 ⊗ |#101#100#110|#111#000#001|#010#100#011.

Intermediate terms in s T

For the sake of simplicity, we sometimes omit to describe all terms in ifw or iterw, especially for the letters # and |, when they are not important. First, we can easily define a term occ a : W I N I that gives the number of occurrences of a ∈ Σ in a word. We can also describe a term that gives the n th bit (from the right) of a binary word as a boolean n th : W I N I B. And finally, we have a term Extract a : W I W I ⊗ W I that separates a word w = w 0 aw 1 in w 0 ⊗ w 1 such that w 1 does not contain any a. This function will allow us to extract the last clause/literal of a word representing a formula.

A valuation is represented by a binary word with a length equal to the number of variables, such that the n th bit of the word represents the boolean associated to the n th variable. To begin with, we define the term LittoBool : N I W J W K B such that given the number of variables, a valuation and the encoding of a literal, this term yields the boolean value that the valuation assigns to the literal. This term is described in Figure 2. [START_REF] Baillot | Characterizing Polynomial and Exponential Complexity Classes in Elementary Lambda-Calculus[END_REF].

We then define a term ClausetoBool : N I W J W K B such that, given the number of variables, a valuation and a word representing a clause, this term outputs the truth value of this clause using the valuation. The definition is given in Figure 2. [START_REF] Baillot | Characterizing Polynomial and Exponential Complexity Classes in Elementary Lambda-Calculus[END_REF]. With this we can check if a clause is true given a certain valuation. We can define in the same way a term for the truth value of a formula FormulatoBool :

N I W J W K B.
It is the same definition as ClausetoBool, where we replace "or" by "and" and "LitttoBool" by "ClausetoBool".

Testing all different valuations

Now that we have FormulatoBool, all we have to do is to test this term with all possible valuations. If n is the number of variables, all possible valuations are described by all the binary integers from 0 to 2 n -1. Thus, intuitively, given the number of variables n and the formula w f , we want to compute:

2 n -1 v=0 FormulatoBool n v w f .
In order to do this, we use the constructor for iteration defined in Section 2.1.1:

rec(V, t) n → * V n -1 (V n -2 (. . . (V 0 t) . . . ))
. We can then give the term for SAT as described in Figure 2. [START_REF] Baillot | Characterizing Polynomial and Exponential Complexity Classes in Elementary Lambda-Calculus[END_REF]. The first iteration computes both 2 n and a copy of n. This technique is important as it shows that the linearity of sEAL for base variables is not too constraining for the iteration. Then, the second iteration in s T computes the big "or" given previously. Note that we need to be cautious about how to write integers, the number of variables n and exp (the integer representing 2 n ) are given in unary, but we need the valuation in binary. And with that we have SAT :

LittoBool≡ λn, v , l . ifw( λl ' . nth v (CBiToUn n l ' ) ,λl ' . not (nth v (CBiToUn n l ' ) ) , f f ) l ClausetoBool≡ λn, v , c . let w ⊗ b = itern ( λw ⊗ b . let w 0 ⊗ w 1 = Extract # w' in w 0 ⊗ (or b ' (LitttoBool n v w 1 ) ) ,c ⊗ f f ) (occ # c) in b SAT≡ λn ⊗ w . let ! r = it er !n ( ! (λn 0 ⊗ n 1 . succ(n 0 ) ⊗ [ double ] (n 1 ) ) , ! (0 ⊗ 1) ) n in let ! w f = coerc w in ! ( let n ⊗ exp = r in [λn, exp , w f . rec(λv , b . or b (FormulatoBool n (CUnToBi n v) w f ) , f f ) exp ] (n, exp , w f ) ) QBF 0 ≡ λv ⊗ q ⊗ f . FormulatoBool (length v) v f QBF 1 ≡ λv ⊗ n ⊗ exp ⊗ q ⊗ f . rec( λv ' , b . (andor q) b (QBF 0 (conc v (CUnToBi n v ' ) ) ⊗ (not q) ⊗ f ) ,q ) exp SubSum≡ λw S . Riterw( λw ⊗ r . let w 0 ⊗ w 1 = Extract | w in w 0 ⊗ r ,λw ⊗ r . let w 0 ⊗ w 1 = Extract | w in w 0 ⊗ (Binaryadd r w 1 ) ,w S ⊗ s 0 (epsilon ) ) SolvSubSum≡ λk ⊗ w S . let ! r = (exp [ occ | ] ⊗ coerc ) (w S ) ⊗ ( coerc k) in ! [λn,w, k . rec(λv , b or b (equal k (SubSum w (CUnToBi (occ | w) v) ) ) , f f ) n] (r)
N ⊗ W !B.
Defining a s T term for QBF k Now we consider the following QBF k problem, with k being a fixed non-negative integer. Take a formula:

Q k x n , x n-1 , . . . , x i k-1 +1 . Q k-1 x i k-1 , x i k-1 -1 , . . . , x i k-2 +1 . . . , Q 1 x i 1 , x i 1 -1 , . . . x 0 .φ.
The formula φ is a propositional formula in conjunctive normal form on the variables from x 0 to x n , and Q i ∈ {∀, ∃} are alternating quantifiers. That means that if Q 1 is ∀ then Q 2 must be ∃ and then Q 3 must be ∀ and so on. Here the variables are ordered for simplification. It can always be done by renaming. And now we have to answer if this formula is true. This can be solved in our enriched EAL calculus.

First, let us talk about the encoding of such a formula. With those ordered variables, a representation of such a formula can be a term of type

N k ⊗ N k-1 ⊗ • • • ⊗ N 1 ⊗ B ⊗ W. For all i with 1 ≤ i ≤ k, N i represents the number of variables between the quantifiers Q i and Q i-1 .
The boolean represents the quantifier Q k , with the convention ∀ = tt. And finally, the formula φ is encoded in a word as previously. This is not a canonical representation of a formula, but for any good encoding of a QBF k formula we should be able to extract this information with a s T term, so for simplification, we directly take this encoding. For example, with k = 2, the formula:

∀x 3 , x 2 .∃x 1 , x 0 .(x 1 ∨ x 0 ∨ x 2 ) ∧ (x 3 ∨ x 0 ∨ x 1 ) ∧ (x 2 ∨ x 0 ∨ x 3 )
is represented by:

2 ⊗ 2 ⊗ tt ⊗ |#101#100#110|#111#000#001|#010#100#011.
Now we define by induction on k a s T term called QBF k for k a non-negative integer. We give to this term the type:

QBF k : W K 1 ⊗ N I k ⊗ N J k ⊗ • • • ⊗ N I 1 ⊗ N J 1 ⊗ B ⊗ W K 2 B.
One can see a similitude with the representation of a SAT formula. But we add some arguments. First, the argument w v of type W K 1 is a valuation on free variables of the QBF k formula. Then we are given for each quantifier two integers n i and exp i of type N I i and N J i , with n i being the number of variables between the quantifiers Q i and Q i-1 , and exp i = 2 n i . Finally, the boolean represents the quantifier Q k and W K 2 is a formula on variables from x 0 to x n 1 +...+n k +length(wv)-1 . QBF 0 has almost already been defined. See Figure 2.10 for the exact term. Now, let us describe the term for QBF 1 . One can observe that it is close to the s T term SAT. First, we have andor : B B B = if(and, or). We also write conc : W I W J W I+J the term for concatenation of words. With that we can define QBF 1 as explained in Figure 2. [START_REF] Baillot | Characterizing Polynomial and Exponential Complexity Classes in Elementary Lambda-Calculus[END_REF]. So, contrary to SAT, we do not always do a big "or" on the results of QBF 0 but we do either a big "and" if the quantifier Q k is ∀, or a big "or" if the quantifier is ∃, as one can observe with the use of andor. And when we call QBF 0 , we have to update the current valuation w v and we have to alternate the quantifier. Now with this intuition, we can deduce the general term for QBF k+1 using QBF k , and then we can also deduce the sEAL term that just computes the arguments of the s T term QBF k (with only one "!" as we only need to compute exponentials) and uses this function. And so, we obtain a term solving QBF k with type

N k ⊗ N k-1 ⊗ • • • ⊗ N 1 ⊗ B ⊗ W !B.

Solving the Subset Sum Problem

We give here another example of solving an NP-Complete problem. Given a goal integer k ∈ N and a set S of integers, is there a subset S ⊂ S such that n∈S n = k? We explain how we could solve this problem in our calculus. We represent the SU BSET SU M problem by two words, k written as a binary integer and a word of the form |n 1 |n 2 | . . . |n m , with the integers written in binary, representing the set S. In order to solve this problem, we can first define a s T term equal : W I W J B that verifies if two binary integers are equal. Note that this is not exactly the equality on words because of the possible extra zeros at the beginning. Then, we can define a term SubSum : W I W J W I•J such that, given the word w S representing the set S and a binary word w sub with a length equal to the cardinality of S, this term computes the sum of all the elements of the subset represented by w sub , since this word can be seen as a function from S to {0, 1}. See Figure 2.10 for the term. We obtain a type W I•J for the output because we iterate at most J times a function for binary addition which can be given a type W a•I W I W (a+1)•I . Note that to define this function, we use Extract | defined previously. Then, we can solve the SU BSET SU M problem in the same way as SAT in the term SolvSubSum. The notation (f ⊗ g)(x), when f and g are functions defined by iterators, stands for the function defined by iteration on a couple, where the first projection will compute f and the second one g, such as before in SAT. And so, we obtain a term of type W ⊗ W !B. We could also construct a term that gives us the subset corresponding to the goal, by changing the type in the iteration rec from N a B B to N a (B ⊗ W I ) (B ⊗ W I ), W I being the type of the argument w.

Complexity Results: Characterization of 2k-EXP and 2k-FEXP

Now that we have proved Theorem 2.2.2, we have obtained a bound on the number of reduction steps from a term in sEAL. More precisely, this bound shows that between two consecutive weights ω i+1 and ω i , there is a difference of 2 in the height of the tower of exponentials. This will allow us to give a characterization of the classes 2k-EXP for k ≥ 0, and each modality "!" in the type of a term will induce a difference of 2 in the height of the tower of exponentials. With exactly the same method, we also have a characterization of the classes 2k-FEXP for k ≥ 0.

Restricted Reductions and Values

First, we show that the previous bound on the number of reductions steps in Theorem 2.2.3 can be improved. Indeed, if we restrict the possible reductions, we obtain a more precise bound.

Definition 2. 4.1 (Reductions up to a Certain Depth). For i ∈ N, we define the i-reductions, that we note → i :

• ∀i ≥ 1, [t]() → i [t ]() if t → t in s T. Moreover, [v]() → i v.
• For the other base reductions M → M , we have ∀i ∈ N, M → i M .

•

For all i ∈ N, if M → i M then !M → i+1 !M .
• For all others constructors for contexts, the index i stays the same. For example with the application, we have for all i ∈ N, if

M → i M then M N → i M N .
Now, we can find a more precise measure to bound the number of i-reductions.

Lemma 2.4.1. Let i ∈ N, τ Γ | ∆ M 0 : T and M 0 → i M 1 . Then there is a proof τ Γ | ∆ M 1 : T such that Red(µ i (τ )+ 2, µ i (τ )+ 2).
The proof of this lemma is very similar to the proof of Theorem 2.2.2, the details are expressed in the proof of Theorem 2.2.2. We can then deduce the following theorem using previous results on the relation Red.

Theorem 2.4.1. Let π Γ | ∆ M : T and α = max(i, 1). Then t α (µ i (π)+ 2) is a bound on the number of i-reductions from M .
Let us now give an over approximation of the set of closed normal terms for i-reductions, that we call i-values. Definition 2. 4.2 (Values Associated to Restricted Reductions). We define for all i ∈ N, closed i-values V i by the following grammar.

V 0 := M ∀i ≥ 1, V i := λx.M |!V i-1 | V i 0 ⊗ V i 1 | 0 | s(V i ) | ifn(V i 0 , V i 1 ) | iter ! N (V i 0 , V i 1 ) | tt | ff | if(V i 0 , V i 1 ) | | s i (V i ) | ifw(V i 0 , V i 1 , V i 2 ) | iter ! W (V i 0 , V i 1 , V i 2 )
We can then prove the following lemma:

Lemma 2.4.2. Let M be a term. If M is closed and has a typing derivation then, for all i ∈ N, if M is normal for i-reductions then M is an i-value V i .

The proof is very similar to the one of Lemma 2.1.1. Note that we do not have the converse, an i-value is not a normal form for i-reductions. However, we do not need the converse to obtain the complexity results, we are only interested in base type closed i-values with i ≥ 1. That is why 0-values and non-closed term, such as M in λx.M , are so generic.

From the previous results, we now have that, from a typed term M , we can reach the normal form for i-reductions for M in less than t i (µ i (π)+ 2) reductions, and this normal form is an i-value.

A Characterization of 2k-EXP Now, we sketch how the type !W ! k+1 B can characterize the class 2k-EXP for k ≥ 0. Recall that 2 x k is defined by 2 x 0 = x and 2 x k+1 = 2 2 x k . The class k-EXP is the class of problems solvable by a Turing machine that works in time 2

p(n) k
on an entry of size n, where p is a polynomial. First we show that the number of reductions for such a term is bounded by a tower of exponentials of height 2k.

Lemma 2.4.3. Let π • | • t :!W ! k+1 B.
Let w be a word of size |w|. We can compute the result of t !w in less than a 2k-exponential tower in |w|.

Proof. Observe that the result of this computation is of type ! k+1 B, and a (k+2)-value of type ! k+1 B is exactly of the form ! k+1 tt or ! k+1 ff. So it is enough to only consider (k+2)-reductions to compute the result, by Lemma 2.4.2. The measure 4.1, we can bound the number of reductions from t !w by t k+2 (µ k+2 + 2). By definition, in t k+2 (µ k+2 + 2), we can see that the weight at position 2, where the size of w appears, is at height 2k. Now we have to prove that we can simulate a Turing-machine in our calculus. This proof is usual in implicit complexity [START_REF] Baillot | Characterizing Polynomial and Exponential Complexity Classes in Elementary Lambda-Calculus[END_REF][START_REF] Baillot | On the expressivity of elementary linear logic: Characterizing ptime and an exponential time hierarchy[END_REF]. Formally, we want to show the following lemma.

µ n of t !w is µ n = µ n (π)+2•1 0 +|w|•1 2 . By Theorem 2.
Lemma 2. 4. 4. Let k be an integer. Let T M be a Turing machine on binary words such that, for an input word w, T M works in time 2

P (|w|) 2k
, where P is a polynomial function. Then, T M can be simulated in sEAL by a term of type !W ! k+1 B.

The first thing we prove is the existence of a term in s T to simulate n steps of a deterministic Turing-machine on a word w. Suppose given two variables w : W iw and n : N in , we note Conf j the type W iw+j ⊗ B ⊗ W iw+j ⊗ B q , with q an integer and B q being q tensors of booleans. This type represents a configuration on a Turing machine after j steps, with B q coding the state, and then w 0 ⊗ x ⊗ w 1 represents the tape, with x being the head, w 0 represents the reverse of the word before j, and w 1 represents the word after x. We then define some terms in s T that work with this encoding. First we have a term init such that w : W iw , n : N in init : Conf 1 and init computes the initial configuration of the Turing machine. Then, we have a term step with • step : Conf j Conf j+1 that computes the result of the transition function from a configuration to the next one, and finally we have a term final with • final : Conf j B verifying if the final configuration is accepted or not. More precisely, this is given by:

• Given an initial state s of size q, we can code this state in a term s : B q . Then we pose:

init = ⊗ (ifw(λw .ff ⊗ w , λw .tt ⊗ w , ff ⊗ ) w) ⊗ s.
• Given for each state s of size q and boolean b a transition function of the shape δ(b, s) ⊂ {lef t, right, stay} × {0, 1} × {0, 1} q , we can construct the term step:

step = λc.let x ⊗ b ⊗ y ⊗ s = c in (case q+1 (t 0 q+1 , . . . , t 1 q+1 )) (b ⊗ s).
The term case is a notation for a sequence of conditionals on the tensor of booleans of type B (q+1) , in this case b⊗s. For a given boolean b and a state s, we define t b⊗s according to δ(b, s). For example, if δ(b, s) = (lef t, b , s ), we define:

t b⊗s = (ifw(λw.w ⊗ ff, λw.w ⊗ tt, ⊗ ff) x) ⊗ s b (y) ⊗ s .
• Given for states of size q a function accept : B q → B (constructed with case q ), we can construct the term final:

final = λc.let x ⊗ b ⊗ y ⊗ s = c in accept(s).
Now, suppose given a one-tape deterministic Turing machine T M on binary words such that for words w, T M works in time 2

P (|w|) 2k
. As usual, we suppose that T M has an infinite tape, this means that on an input w, the Turing-machine can read outside the bound of w and in this case, it reads a 0. We can compute a term in sEAL t T M such that • | • t T M :!W ! k+1 B and on an input !w, the term reduces to the term ! k+1 b with b = tt if w is accepted by T M , and b = ff otherwise. For this, we show how to decompose the work in order to construct this term. 1. We duplicate the word given in input. 2. With one of those words, we compute the length of the word, and we keep the other one as a copy. 3. Now that we have the length, we can compute 2

P (|w|) 2k
. So we obtain !w⊗! k+1 n with n representing 2

P (|w|) 2k
. By using the coercion, we obtain ! k+1 w⊗! k+1 n. We can then give this word and this integer as an input for a s T program using the s T-call of sEAL. 4. In s T, by using the previously defined term init with the word w : W iw and the integer n : N in , we obtain a configuration C 1 of type Conf 1 representing the initial tape of the Turing machine. 5. By iterating n times (using the constructor itern) the term • step : Conf j Conf j+1 , from C 1 , we obtain a term of type Conf in . By definition, this term is a representation of the tape of the Turing machine after n steps, that is to say at the end of the computation. [START_REF] Avanzini | Automating sized-type inference for complexity analysis[END_REF]. Finally, with the term final we can extract the result of the computation as a boolean in s T.

7.

As the word and the integer we used in the s T-call had the type ! k+1 W⊗! k+1 N, we obtain in sEAL the result of the computation as a boolean of type ! k+1 B.

In conclusion, we can simulate T M by a term of type !W ! k+1 B. With this, using Lemma 2. 4.3, we obtain the following theorem.

Theorem 2.4.2. Terms of type !W ! k+1 B characterize the class 2k-EXP.

As explained previously, this theorem can be expanded for the classes 2k-FEXP, that is the class of functions from words to words that can be computed by a one-tape Turing machine with a running time bounded by 2 p(|w|) 2k on a word w. For more precise definitions of such classes, see [START_REF] Baillot | Characterizing Polynomial and Exponential Complexity Classes in Elementary Lambda-Calculus[END_REF]. This characterization uses the same proof, replacing !W ! k+1 B with !W ! k+1 W.

Let us now briefly compare this result for sEAL with the situation for EAL. Recall that in EAL with recursive types, we can characterize k-EXP with the type !W ! k+2 B [START_REF] Baillot | On the expressivity of elementary linear logic: Characterizing ptime and an exponential time hierarchy[END_REF]. The difference can be explained by the fact that in EAL, in the type N N we only have polynomials of degree 1 (polynomials in general have the type !N !N), whereas in our case, polynomials have the type N N.

To sum up, we showed in this chapter that from a type W W with enough polynomial Chapter 3

Complexity in a Functional Language with Sized Types

In this chapter, we present a simple functional language, with data-types and fixpoints, for which we give a sized type system for complexity analysis. This sized type system is inspired both by [START_REF] Avanzini | Automating sized-type inference for complexity analysis[END_REF] and [START_REF] Dal | Linear dependent types and relative completeness[END_REF], and it relies mainly on polymorphic use of integer variables and explicit annotations for complexity and sizes in types. Moreover, the language we define uses an explicit tick constructor, which will be our abstraction of complexity: a tick accounts for one unit of time, and all other constructors are considered to take zero unit of time. This allows for a more flexible notion of complexity, and we can recover usual notions as a special case. For example, the number of reduction steps could be recovered by adding a tick after a function call or a pattern matching. The goal of this chapter is to present this sized-type system first in the usual context of a functional language, with all the notations we use to write sizes. This type system will later be adapted for parallel complexity. Then, we present a proof of soundness: the type system gives a bound that is indeed greater than the number of tick that we can see during a reduction. The methodology for this proof will also be used throughout the thesis. First, we prove some structure lemmas on the type system, then some usual substitution lemmas, showing that variables are well-behaved. Finally, the main theorem is subject reduction, showing that typing is preserved by reduction, and that the complexity derived from a typing behaves accordingly.

A simple functional language with sizes

Syntax and Semantics

The language we consider for this chapter is a λ-calculus with data-types, pattern matching and fix point for functions. In order to account for complexity, we will also use a tick constructor to indicate which parts of the term should count for the reduction cost in a program. By a slight abuse of language, we call this language PCF, as the features are globally the same, even if the syntax does not respect the usual syntax of PCF. 

M, N := x | λx.M | M N | M, N | π 1 M | π 2 M | fix f x = M | tick.M | 0 | s(M ) | match M {0 → N 1 ; ; s(x) → N 2 } V, W := x | λx.M | V, W | 0 | s(V ) (λx.M ) V → 0 M [x := V ] π i V 1 , V 2 → 0 V i (fix f x = M ) V → 0 M [x := V ][f := (fix f x = M )] tick.M → 1 M match 0 {0 → N 1 ; ; s(x) → N 2 } → 0 N 1 match s(V ) {0 → N 1 ; ; s(x) → N 2 } → 0 N 2 [x := V ] M → k N C[M ] → k C[N ]
Figure 3.1: Semantics for PCF So, we have standard lambda calculus, constructors for integers with a pattern-matching, pairs and projections, the tick constructor as the only source of complexity, and fix f x = M which is a function defined recursively, so in M both x and f are free variables. We only have integers as data-types, but this is merely for the sake of simplicity, the type system could be extended to other data-types, as long as the pattern-matching rule is well-defined. See Remark 3.1.3 for more details.

As usual in a functional language, we may use the notation let x = M in N to denote the term (λx.N ) M . We also use (λ x, y .N ) to denote (λz.let x = π 1 z in let y = π 2 z in N ), and similarly for fix f x, y = M . Finally, we use n when n is an integer to denote s(s(• • • s(0))) with n calls to successor.

We then define a call-by-value semantics for this language. It is described by a set of base rules and a contextual rule. We also annotate rules by their complexity, where any standard rule has complexity 0 and removing a tick has complexity one. The rules are given in Figure 3. 1. We use the notation M [x := N ] to denote the term M in which the free variable x has been replaced by N . Definition 3.1.2. The contexts are defined by the following grammar:

C := [] | M C | C V | C, M | M, C | π i C | s(C) | match C {0 → N 1 ; ; s(x) → N 2 }
The important points of this semantics is that first it is call-by-value, so for the complexity it means that if we have a tick in an argument, then it is reduced before being used as an argument. This avoids in particular duplication and erasure of a tick by a function call. For the function defined by fixpoint, we only unfold this fixpoint in an actual call to this function. This avoids unnecessary unfolding. In this sense, the fixpoint constructor in this language differs from the usual fixpoint operator in PCF. Still, it behaves as expected, as shown in the following example: 

(M 1) → 0 tick.match 1 {0 → 0; ; s(y) → M y} → 1 match 1 {0 → 0; ; s(y) → M y} → 0 (M 0) → 0 tick.match 0 {0 → 0; ; s(y) → M y} → 1 match 0 {0 → 0; ; s(y) → M y} → 0 0
Then, we easily define the complexity of a term. is the reflexive and transitive closure of (→ 0 ∪ → 1 ) is defined as the sum of the cost through this reduction. Then, the complexity of a term M is defined as the maximal complexity over all reductions from M . This complexity could potentially be infinite.

So on the previous example, the complexity is then 2, as expected. Let us look at another example.

Example 3. 1.2 (Fibonacci). We can define the Fibonnaci function, where we count the number of calls, with the following terms:

ADD := fix add x, y = match x {0 → y; ; s(x ) → s(add x , y )} F IB := fix f ib x = tick.match x {0 → 0; ; s(x ) → match x {0 → 1; ; s(x ) → add f ib x , f ib x }}
Then, the complexity of (F IB n) is given by F (n) where

F (0) = F (1) = 1 F (n+2) = 1+F (n+1) + F (n)

Sized Types

We now focus on a typing system for this functional language, such that we can extract a bound on the complexity of a program from a typing derivation. We give a presentation of sized types inspired by [START_REF] Avanzini | Automating sized-type inference for complexity analysis[END_REF]. This type system will be close to the base we use for the π-calculus, and we present it to illustrate the interest of a sized type system. With regard to [START_REF] Avanzini | Automating sized-type inference for complexity analysis[END_REF], there are some differences to notice. We choose a more generic form of arrow types, not well-suited for type inference but that generalizes the canonical types of [START_REF] Avanzini | Automating sized-type inference for complexity analysis[END_REF]. Moreover, we annotate explicitly types with complexity, but we explain in Remark 3.1.2 that this is in fact not a big difference with regard to [START_REF] Avanzini | Automating sized-type inference for complexity analysis[END_REF]. And finally, we choose a presentation of sizes adapted to this thesis, and inspired by [START_REF] Dal | Linear dependent types and relative completeness[END_REF].

As the previous type system described in Section 2.1, this system relies on the definition of indices to keep track of the size of values in a process. Definition 3. 1.4. The set of indices for natural numbers is given by the following grammar.

I, J, K := i, j, k | f (I 1 , . . . , I n )
The variables i, j, k are called index variables. The set of index variables is denoted V. The symbol f is an element of a given set of function symbols containing addition and multiplication. We also assume that we have the subtraction as a function symbol, with n-m = 0 when m ≥ n. Each function symbol f of arity ar(f ) comes with an interpretation f : N ar(f ) → N.

Given an index valuation ρ : V → N, we extend the interpretation of function symbols to indices, noted I ρ with:

i ρ = ρ(i) f (I 1 , . . . , I ar(f ) ) ρ = f ( I 1 ρ , . . . , I ar(f ) ρ )
In an index I, the substitution of the occurrences of i in I by J is denoted I{J/i}. For a set ϕ ⊂ V, we say that a valuation ρ : ϕ → N satisfies a constraint I J on ϕ, noted ρ I J when I ρ J ρ holds. Similarly, ρ Φ holds when ρ C for all C ∈ Φ. Likewise, we note ϕ; Φ C when for all valuations ρ on ϕ such that ρ Φ we have ρ C. Notice that the order ≤ in a context ϕ; Φ is not total in general, for example (i, j); • i ≤ ij and (i, j); • ij ≤ i.

Remark 3.1.1 (More Complex Indices). This definition of indices allows any usual function to be defined, but it does not allow some more complex indices that are used for example in [START_REF] Dal | Linear dependent types and relative completeness[END_REF]. For example, we cannot define 0≤i≤I J where, if we call ϕ the set of index variables in I and J without i, and we have ρ

: ϕ → N, 0≤i≤I J ρ = I ρ n=0 J ρ[i →n]
A usual way to add this kind of indices is to explicitly put them in the definitions, or we could alternatively consider higher-order interpretation of indices, where for example the pair of this index J and the index variable i would be interpreted as the higher order function of type N → N defined by

(J, i) ρ (n) = J ρ[i →n]
For the sake of simplicity, we keep here the simple interpretation of functions.

We now define the sized type system by enriching usual base types with sizes, and by adding some polymorphism and complexity information in an arrow type. Let us give some notations that will be used throughout the thesis before giving formal rules.

Definition 3.1.7 (Notations for Contexts). From now on, when we write (ϕ, i), it is always assumed that i / ∈ ϕ. So, for example in Figure 3.2, in the rule for arrow, it is implicit that i are fresh index variables. Note that this can always be done by renaming.

Similarly, for a context Γ = x 1 : T 1 , . . . , x n : T n , when we write Γ, x : T , then it is assumed that x is not already in Γ.

However, for the set of constraints, we write Φ, I J to denote the set Φ ∪ {I J}, without any assumption on whether this union is disjoint.

With those types comes a simple notion of subtyping. Intuitively, subtyping allows to take a larger bound on the size of an input, and a smaller bound on an input. This is described by Figure 3.2. A subtyping judgement has the shape ϕ; Φ T T , where the free index variables We can extend this subtyping relation to contexts, so given Γ = x 1 : T 1 , . . . x n : T n and Γ = x 1 : T 1 , . . . , x n : T n , we say that ϕ; Φ Γ Γ if ϕ; Φ T i T i for all 1 ≤ i ≤ n.

ϕ; Φ I ≥ I ϕ; Φ J ≤ J ϕ; Φ Nat[I, J] Nat[I , J ] ϕ; Φ T T ϕ; Φ S S ϕ; Φ T × S T × S (ϕ, i); Φ T T (ϕ, i); Φ K ≤ K (ϕ, i); Φ S S ϕ; Φ ∀ i.T ⇒ K S ∀ i.T ⇒ K S
A typing judgement has the shape ϕ; Φ; Γ M : T K, with the meaning that under the constraints Φ, then M has type T in the typing context Γ, and K is a bound on the complexity of M . The typing rules are detailed in Figure 3 In this typing system, we observe that all values are given complexity 0, this is expected as a value is in normal form so has indeed complexity 0. The rule we should explain is the one for application. In order to call the function M , we first need to instantiate the variables in i by actual indices. Once this is done, the complexity of M N is the complexity of reducing N to a value V N (K 2 ), then reducing M to a value V M (K 1 ) and finally the complexity of reducing V M applied to V N , which is given by the complexity of the arrow type.

Let us give an example of typing, with the Fibonacci function described in Example 3.1.2.

Example 3. 1.3 (Typing of Fibonacci Function). The typing for ADD is given in Figure 3.4, and the one for F IB is described in Figure 3. 5. In this example, and in the following ones, we 

(i, j); i ≤ 0 j = i+j ϕ; i ≤ 0; Γ y : Nat[i+j] 0 ϕ; i ≥ 1; Γ, x : Nat[i-1] x , y : Nat[i-1] × Nat[j] 0 ϕ; i ≥ 1; Γ, x : Nat[i-1] add x , y : Nat[(i-1)+j] 0 ϕ; i ≥ 1; Γ, x : Nat[i-1] add x , y : Nat[(i+j)-1] 0 ϕ; i ≥ 1; Γ, x : Nat[i-1] s(add x , y ) : Nat[i+j] 0 (i,
ϕ; Φ; Γ f ib x : Nat[F ib(i-1)] F (i-1) ϕ; Φ; Γ f ib x : Nat[F ib(i-2)] F (i-2) ϕ; Φ; Γ f ib x , f ib x : Nat[F ib(i-1)] × Nat[F ib(i-2)] F (i-1)+F (i-2) ϕ; Φ; x : Nat[i], x : Nat[i-1], x : Nat[i-2], f ib : T f ADD f ib x , f ib x : Nat[F ib(i-1)+F ib(i-2)] F (i-1)+F (i) i; (i ≥ 1, i-1 ≥ 1); x : Nat[i], x : Nat[i-1], x : Nat[i-2], f ib : T f ADD f ib x , f ib x : Nat[F ib(i)] F (i)-1 i; i ≥ 1; x : Nat[i], x : Nat[i-1], f ib : T f match x {0 → 1; ; s(x ) → • • •} : Nat[F ib(i)] F (i)-1 i; •; x : Nat[i], f ib : T f match x {0 → 0; ; s(x ) → match x {0 → 1; ; s(x ) → • • •}} : Nat[F ib(i)] F (i)-1 i; •; x : Nat[i], f ib : T f tick.match x {0 → 0; ; s(x ) → match x {0 → 1; ; s(x ) → • • •}} : Nat[F ib(i)] F (i) •; •; • fix f ib x = tick.match x {0 → 0; ; s(x ) → match x {0 → 1; ; s(x ) → ADD f ib x , f ib x }} : T f 0 Figure 3.5: Typing for F IB in PCF
may omit some easy premises, we represent a subtyping rule by a double line, without precising the constraints when they are obvious, and we may automatically rename contexts in order to gain some space. For this example, we denote by T + and T f the types

T + := ∀(i, j).Nat[i] × Nat[j] ⇒ 0 Nat[i+j] T f := ∀i.Nat[i] ⇒ F (i) Nat[F ib(i)]
where F is the function described in Example 3. 1.2, and F ib is the index function representing the Fibonacci function.

Remark 3.1.2 (About Explicit Complexity in Types). Contrary to the sized types literature, we add explicitly complexity in types. One may think that this makes the type system too complicated, but we show informally that this is in fact equivalent to types with only sizes. Indeed, it is well-known that for an imperative language, complexity can just be computed as the size of a global variable that we increment through the computation. For a functional language, we can do the same thing with a simple state monad, where we choose Nat for the state space. This is in fact what is done in [START_REF] Avanzini | Automating sized-type inference for complexity analysis[END_REF]. In our case, the tick constructor would then correspond to incrementing this state, and the complexity K in an arrow type corresponds to the difference on the size of this state between output and input, and so in this sense, complexity is just the size of one particular state that we follow through the computation.

Remark 3. 1.3 (Pattern Matching for Other Data-Types). We only presented the pattern matching for integers in this section. The pattern matching for words can easily be found as an extension of the one for integers, and the one for lists will be given formally in a later section, in Figure 4.11. If we want to consider algebraic-data types, then pattern matching will be more complex. For example, consider the case of trees. For a tree, we may want two informations about both size and depth, and so a type of the shape

Tr[I d , J d ][I s , J s ],
where intuitively, a tree of this type had a depth between I d and J d and a size between I s and J s . Then, the pattern matching rule would be, with ϕ = ϕ, i, i , j, j :

ϕ ; (Φ, i ≤ j, i ≤ j , J d ≥ 1, Is ≤ 1+i+i , 1+j+j ≤ Js); Γ, x : Tr[I d -1, J d -1][i, j], y : Tr[I d -1, J d -1][i , j ] N 2 : T K ϕ; Φ; Γ match M {Leaf → N 1 ; ; Node(x, y) → N 2 } : T K +K
with the two additional premises:

(1) ϕ; Φ; Γ M :

Tr[I d , J d ][I s , J s ] K (2) ϕ; (Φ, I d ≤ 0, Is ≤ 0); Γ N 1 : T K
Even if the rule seems complex, the reasoning is natural: we do not know the size of the subtree, but we do know a bound on their sum, as we have a bound on the size of the initial tree. So, we take arbitrary bounds for the sizes of the subtree, and we add a constraint on the sum. Note that in the case where we impose i = j = 0, we have in the constraints I s ≤ 1+i ≤ 1+j ≤ J s , which can be written equivalently with (I s -1 ≤ i ≤ j ≤ J s -1, J s ≥ 1), and we have the same constraints as depth. Also, we emphasize the fact that, by definition of ϕ, the index variables i, i , j, j must not appear in T nor K, and so the type and the complexity cannot depend on the actual sizes of the subtrees as they are unknown.

Soundness by Subject Reduction

The fact that K is indeed a bound on the complexity of a term in a judgement should not be surprising given the type system. In this section, we give a proof method to show formally this complexity bound, and we will see that this methodology is reused in this thesis for all the complexity type systems. The idea is to prove soundness of the type system (K is indeed a bound on the complexity) with a subject reduction theorem, stating that typing is somewhat preserved through a reduction step.

Structure Lemmas

The first lemmas we usually show are the structure lemmas. Their proofs are often direct, but they are useful to simplify the soundness proof. 

Substitution Lemmas

Then, we are interested in substitution lemmas. In this type system, we can substitute both index variables and terms variables, so this gives two substitution lemmas.

Lemma 3. 1.3 (Index Substitution). Let ϕ be a set of index variables and i / ∈ ϕ. Let J be an index with free variables in ϕ. Then,

1. I{J/i} ρ = I ρ[i → J ρ] . 2. If (ϕ, i); Φ C then ϕ; Φ{J/i} C{J/i}. 3. If (ϕ, i); Φ T U then ϕ; Φ{J/i} T {J/i} U {J/i}. 4. If (ϕ, i); Φ; Γ M : T K then ϕ; Φ{J/i}; Γ{J/i} M : T {J/i} K{J/i}.
Again, this lemma is proved by successive inductions. Note that from the previous lemmas, we can easily deduce the following lemma, that may be useful: Proof. The important point for this lemma, is that K is not used in the final derivation, this is because we can prove the following lemma: Lemma 3. 1.6 (Complexity of Values). If ϕ; Φ; Γ V : S K then there is a typing ϕ; Φ; Γ V : S 0 This can easily be proved by induction on the typing derivation: the only rule that can increase the complexity of a value is the subtyping rule.

Once this lemma is proved, the proof of Lemma 3.1.5 is done by induction on the typing derivation for M . The main point is that the axiom rule ϕ; Φ; Γ, x : S x : S 0 can then directly be replaced by the derivation for ϕ; Φ; Γ V : S 0.

Subject Reduction

Finally, we prove subject reduction, and then we will directly obtain the soundness theorem. Proof. We proceed by induction on M → k N . The first thing to notice is that the only non syntax-directed rule of the type system is the subtyping rule, and we can always suppose that there is exactly one subtyping rule between each other rules, by transitivity and reflexivity of subtyping. Moreover, if the typing ϕ; Φ; Γ M :T K starts with a subtyping rule and M → 0 N , then we can mimic exactly the same rule for N , thus we can ignore this first subtyping rule in this case, as in Lemma 2.2. [START_REF] Baillot | Characterizing Polynomial and Exponential Complexity Classes in Elementary Lambda-Calculus[END_REF]. So, formally, we will prove the following lemma: Lemma 3. 1.7 (Subject Reduction). If π is a derivation of ϕ; Φ; Γ M : T K then:

1. If M → 0 N , and the bottom rule of π is not a subtyping rule, then, we have ϕ; Φ; Γ

N : T K 2. If M → 1 N , we have ϕ; Φ; Γ N : T K with ϕ; Φ K +1 ≤ K.
And, from this lemma, we can easily obtain Theorem 3.1.1. Indeed, given M → 0 N and a derivation π of ϕ; Φ; Γ M : T K, with the shape • Case (λx.M ) V → 0 M [x := V ]. Then, the typing has the shape:

ϕ; Φ; Γ M : T K ϕ; Φ Γ Γ ϕ; Φ T T ϕ; Φ K ≤ K ϕ; Φ; Γ M : T K Then,
Π M (ϕ, i); Φ; ∆, x : T M : S K ϕ; Φ; ∆ (λx.M ) : ∀ i.T ⇒ K S 0 (1) ϕ; Φ; Γ (λx.M ) : ∀ i.T ⇒ K S K 1 Π V ϕ; Φ; Γ V : T { I/ i} K 2 ϕ; Φ; Γ (λx.M ) V : S{ I/ i} K 1 + K 2 + K{ I/ i} where (1) is ϕ; Φ Γ ∆ ϕ; Φ ∀ i.T ⇒ K S ∀ i.T ⇒ K S
The subtyping condition on the arrow type gives us (ϕ; i); Φ T T (ϕ; i); Φ K ≤ K (ϕ; i); Φ S S so, using the subtyping rule, we can obtain from Π M a derivation of (ϕ, i); Φ; Γ, x : T M : S K. Then, by the index substitution lemma (Lemma 3. We can then conclude this case by subtyping.

• Case π i V 1 , V 2 → 0 V i .
Then, the typing has the shape:

Π 1 ϕ; Φ; ∆ V 1 : T 1 K 1 Π 2 ϕ; Φ; ∆ V 2 : T 2 K 2 ϕ; Φ; ∆ V 1 , V 2 : T 1 × T 2 K 1 +K 2 (1) ϕ; Φ; Γ V 1 , V 2 : T 1 × T 2 K ϕ; Φ; Γ π i V 1 , V 2 : T i K where (1) is ϕ; Φ Γ ∆ ϕ; Φ T 1 × T 2 T 2 × T 2 ϕ; Φ K 1 +K 2 ≤ K
With a subtyping rule, we obtain immediately for both i = 1 and i = 2 that ϕ; Φ; Γ V i :

T i K, as K i ≤ K 1 +K 2 ≤ K.
This concludes this case.

• Case (fix

f x = M ) V → 0 M [x := V ][f := (fix f x = M )].
Then the typing has the shape:

Π M (ϕ, i); Φ; ∆, x : T , f : ∀ i.T ⇒ K S M : S K ϕ; Φ; ∆ fix f x = M : ∀ i.T ⇒ K S 0 (1) ϕ 
; Φ; Γ fix f x = M : ∀ i.T ⇒ K S K 1 Π V ϕ; Φ; Γ V : T { I/ i} K 2 ϕ; Φ; Γ (fix f x = M ) V : S{ I/ i} K 1 + K 2 + K{ I/ i} where (1) is ϕ; Φ Γ ∆ ϕ; Φ ∀ i.T ⇒ K S ∀ i.T ⇒ K S .
First, we have a derivation of (ϕ, i); Φ; ∆, x : T , f : ∀ i.T ⇒ K S M : S K and a derivation of ϕ; Φ; ∆ fix f x = M : ∀ i.T ⇒ K S 0, so by Lemma 3. We can then conclude this case by subtyping.

• Case tick.M → 1 M . Then, the typing has the shape:

Π M ϕ; Φ; ∆ M : T K ϕ; Φ; ∆ tick.M : T K +1 ϕ; Φ Γ ∆ ϕ; Φ T T ϕ; Φ K +1 ≤ K ϕ; Φ; Γ tick.M : T K
Then, with subtyping from Π M we can obtain ϕ; Φ; Γ M : T K and this concludes this case.

• Case match 0 {0 → N 1 ; ; s(x) → N 2 } → 0 N 1 . Then, the typing has the shape:

ϕ; Φ; ∆ 0 : Nat[0, 0] 0 ϕ; Φ Γ ∆; Nat[0, 0] Nat[I, J] ϕ; Φ; Γ 0 : Nat[I, J] K Π 1 ϕ; (Φ, I ≤ 0); Γ N 1 : T K • • • ϕ; Φ; Γ match 0 {0 → N 1 ; ; s(x) → N 2 } : T K +K
By definition of subtyping, we obtain directly that ϕ; Φ I ≤ 0. So, by Lemma 4.5.9 on Π 1 , we obtain ϕ; Φ; Γ N 1 : T K and this concludes this case.

• Case match s(V ) {0 → N 1 ; ; s(x) → N 2 } → 0 N 2 [x := V ].
Then, the typing has the shape:

ΠV ϕ; Φ; ∆ V : Nat[I , J ] K ϕ; Φ; ∆ s(V ) : Nat[I , J ] K (1) ϕ; Φ; Γ s(V ) : Nat[I, J] K • • • Π2 ϕ; (Φ, J ≥ 1); Γ, x : Nat[I-1, J-1] N2 : T K ϕ; Φ; Γ match s(V ) {0 → N1; ; s(x) → N2} : T K +K where (1) is ϕ; Φ Γ ∆ ϕ; Φ Nat[I +1, J +1] Nat[I, J] ϕ; Φ K ≤ K
In particular, we have ϕ; Φ I ≤ I +1 and ϕ; Φ J +1 ≤ J. From this, we obtain ϕ; Φ I-1 ≤ I , ϕ; Φ J ≥ 1 and ϕ; Φ J ≤ J-1. So, we have by subtyping from Π V : ϕ; Φ; Γ V : Nat[I-1, J-1] K so by Lemma 3.1.5: ϕ; (Φ, J ≥ 1); Γ N 2 [x := V ] : T K, and finally by strengthening we obtain ϕ; Φ; Γ N 2 [x := V ] : T K and this concludes this case.

The methodology for pattern-matching is very simple, we only need to show that the actual predecessor indeed satisfies the assumption we took on predecessors, and that the constraints are satisfied. With this methodology, we can adapt the soundness proof for other data-types, and it also works for the rule described in Remark 3. 1.3, using index substitution to replace i, i , j, j by the actual bounds given in the typing.

• Case C[M ] → k C[N ] when M → k N .
This case can be done by induction on the grammar for C, all cases are straightforward.

Finally, from Theorem 3.1.1, we deduce the following theorem. Notice that this theorem talks about open terms (with variables). However, our notion of complexity does not behave well with open terms. For example match x {0 → N 1 ; ; s(x) → N 2 } is in normal form for a variable x. However, a typing of this term would give a non-zero complexity, as it would assume that x is an actual integer. So, the complexity bound should be understood as a bound on all possible closed terms obtainable from a well-typed substitution of the open term. Formally, we have the following corollary: So, we showed that the type system defined in this chapter indeed gives a bound on the complexity, which should have been expected with the way this type system is defined. Moreover, as stated before, the soundness result could be extended to other data-types, such as lists, words or trees. An other possible extension would be to consider refinement types [START_REF] Freeman | Refinement types for ML[END_REF], in which base types have the shape Nat{α | φ(α)}, where φ(α) is a formula on α. In this case, sized types could be recovered by considering formulas of the shape I ≤ α ≤ J, but depending on the set of formulas one could express more interesting properties. In particular, such a type system is used in [7] for probabilistic complexity analysis, and the similitude with our type system can be seen especially on the pattern matching rule.

In the following, we adapt the sized type system for parallel complexity analysis.

Chapter 4

Complexity in Pi-calculus

In this chapter, we focus on parallel complexity analysis in the π-calculus, with sized types. A first observation is that for the work analysis of the π-calculus, corresponding to the sequential computation time of a process, the constructors for parallelism should not have important consequences for the way complexity is managed, and indeed we show that an adaptation of the previous type system can directly give interesting results for the work. This adaptation uses in particular the usual input/output type system of the π-calculus, in order to manage subtyping. As the type system for work will be close to the usual sized type systems for functional languages, methods developed for functional languages on those type systems can be adapted for work-analysis of π-calculus, especially the type inference procedure of [START_REF] Avanzini | Automating sized-type inference for complexity analysis[END_REF].

As for parallel complexity analysis, we define a notion of span for π-calculus, corresponding to complexity under maximal parallelism. This notion of span is defined by a small-step semantics where processes are annotated with the number of tick they saw. For this notion, we give two type systems. The first one is adapted from the type system for work, with time annotations that are useful for span analysis, as in [START_REF] Das | Parallel complexity analysis with temporal session types[END_REF]. Those results on work and span analysis with sized types have been published in [START_REF] Baillot | Types for complexity of parallel computation in pi-calculus[END_REF]. However, this adaption leads to some limitations for the type system, especially in presence of some concurrent behaviours such as semaphores.

In the last section, we thus present a type system with usages, a type system paradigm originally used for deadlock-freedom [START_REF] Kobayashi | An implicitly-typed deadlock-free process calculus[END_REF]. This type system comes from joint work with Naoki Kobayashi, and it relies on a new way to manage time annotations in usages, specifically designed for complexity analysis. This type system, although more complex than the previous one, seems more expressive, and it can in particular handle semaphores.

The Pi-calculus : Preliminaries

In this work, we consider the π-calculus as a model of parallelism and concurrent systems. he main points of π-calculus are that processes can be composed in parallel, communications between processes happen with the use of channels, and channel names can be created dynamically, so the topology can change at runtime.

Several presentations of the π-calculus exist in the literature, so we detail here the presentation we chose for this thesis. Moreover, we give some usual definitions useful for this thesis, and we present the two type systems we rely on for complexity analysis: input/output types and usages.

Syntax and Standard Semantics

We present here a classical syntax for the synchronous π-calculus. More details about π-calculus and variants of the syntax can be found in [START_REF] Sangiorgi | The pi-calculus: a Theory of Mobile Processes[END_REF]. The sets of variables, expressions and processes are defined by the following grammar. We use x, y, z as meta-variables for integer variables, and a, b, c as those for channel names. The notation v stands for a sequence of variables v 1 , v 2 , . . . , v k . Similarly, e denotes a sequence of expressions. We work up to α-renaming, and we write P [ v := e] to denote the substitution of e for the free variables v in P . For the sake of simplicity, we consider only integers and lists as base types in the following, but the results can be generalized to other data-types, as in Section 3.1. Moreover, we consider very simple expressions with only base constructors, but we could enrich the set of expressions with functions (such as addition on integers) and still obtain the soundness. Indeed, the core of our proof lies in the parallel constructors, and the set of expressions has little impact on the theoretical results.

Intuitively, P | Q stands for the parallel composition of P and Q. The process a( v).P represents an input: it stands for the reception on the channel a of a tuple of values identified by the variables v in the continuation P. The process !a( v).P is a replicated version of a( v).P , it behaves like an infinite number of a( v).P in parallel. The process a e .P represents an output: it sends a sequence of expressions on the channel a, and continues as P . A process (νa)P dynamically creates a new channel name a and then proceeds as P . We also have standard pattern matching on data types.

We now describe the standard semantics for this calculus. The first step is to define a congruence relation ≡ on those processes. It is defined as the least congruence containing:

P | 0 ≡ P P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R (νa)(νb)P ≡ (νb)(νa)P (νa)(P | Q) ≡ (νa)P | Q (when a is not free in Q)
Note that the last rule can always be applied from right to left by α-renaming. Also, one can see that contrary to usual congruence relation for the π-calculus, we do not consider the rule for replication (!P ≡ !P | P ) as it will be captured by the semantics, and α-conversion is not taken as an explicit rule in the congruence. By associativity, we will often write parallel composition for any number of processes and not only two. Another way to see this congruence relation is that, up to congruence, a process is entirely described by a set of channel names and a multiset of guarded processes. Formally, we give the following definition. We say that a process is in canonical form if it has the form

(ν a)(G 1 | • • • | G n ) with G 1 , . . . , G n guarded processes.
Formally, we now show that all processes have a somewhat unique canonical form, as in [START_REF] Kobayashi | Linearity and the pi-calculus[END_REF].

Lemma 4.1.1 (Existence of Canonical Form). For any process P , there is a Q in canonical form such that P ≡ Q.

Proof. Le us suppose that, by renaming, all the introductions of new variables have different names and that they also differ from the free variables already in P . We can then proceed by induction on the structure of P . The only interesting case is for parallel composition. Suppose that P ≡ (ν a)(P

1 | • • • | P n ) Q ≡ (ν b)(Q 1 | • • • | Q m )
With P 1 , . . . , P n , Q 1 , . . . , Q m guarded processes. Then, by hypothesis on the name of variables, we have a and b disjoint and a is not free in Q, as well as b is not free in P . So, we obtain

P | Q ≡ (ν a)(ν b)(P 1 | • • • | P n | Q 1 | • • • | Q m ) Lemma 4.1.2 (Uniqueness of Canonical Form). If (ν a)(P 1 | • • • | P n ) ≡ (ν b)(Q 1 | • • • | Q m )
with P 1 , . . . , P n , Q 1 , . . . , Q m guarded processes, then m = n and a is a permutation of b. Moreover, for some permutation

Q 1 , . . . , Q n of Q 1 , . . . , Q n , we have P i ≡ Q i for all i.
Proof. Recall that α-renaming is not a rule of ≡. Let us define a set name of channel variables and a multiset gp of guarded processes.

• name(0) = ∅ and gp(0) = ∅.

• name(P | Q) = name(P ) name(Q) and gp(P | Q) = gp(P )+gp(Q).

• name(P ) = ∅ and gp(P ) = [P ], when P is guarded.

• name((νa)P ) = name(P) {a} and gp((νa)P ) = gp(P ).

where denotes the usual disjoint union, + denotes the usual union of multisets and [P ] denotes the multiset corresponding to the singleton P with multiplicity 1. Then, we can easily show the following lemma by definition of the congruence relation. 

(Q) = [Q 1 , . . . , Q m ] , then m = n and for some permutation Q 1 , . . . , Q n of Q 1 , . . . , Q n , we have P i ≡ Q i for all i.
Finally, Lemma 4.1.2 is a direct consequence of Lemma 4. 1.3.

We now define the usual reduction relation for the π-calculus, that we denote P → Q. It is defined by the rules given in Figure 4. 1. Remark that substitution should be well-defined in order to do some reduction steps: channel names must be substituted by other channel names and base type variables can be substituted by any expression except channel names. However, when we will consider typed processes, this will always yield well-defined substitutions.

Let us give some examples of process that should be of interest in the following. As a first example, we show a way to encode a usual functional program in π-calculus. In order to do this, we use replicated input to encode functions, and we use a return channel for the output. This example is a simple interesting example to compare the sequential complexity (work) and the complexity under maximal parallelism (span). Indeed, we would like the work to be exponential in n and the span to be linear, since all recursive calls can be done in parallel.

P → Q P | R → Q | R P → Q (νa)P → (νa)Q P ≡ P P → Q Q ≡ Q P → Q Figure 4.1: Standard Reduction Rules !map(x , f , a) . match(x) { [ ] → a x ; ; y :: x 1 → (νb) (νc) (f y , b | map x 1 , f , c | b( z ) . c(x 2 ) . a z :: x 2 ) }

Input/Output Types

Several typing paradigms have been proposed for the π-calculus, see [START_REF] Sangiorgi | The pi-calculus: a Theory of Mobile Processes[END_REF] or [START_REF] Kobayashi | Type systems for concurrent programs[END_REF] for a survey. As we saw in Section 3.1, with a sized type system, we want to have a subtyping relation, as this allows for more flexibility. In the π-calculus, the simplest type system that allows subtyping is the input/output type system [START_REF] Pierce | Typing and subtyping for mobile processes[END_REF]. The idea is to give to a channel some capabilities. For example, a channel with only the input capability can only be used to receive message. A channel with both input and output capabilities can be used to both receive and send messages. Let us explain intuitively why this distinction between input and output is important for subtyping.

Recall that in Section 3.1, we saw that T U means that the set of values typed with T is a subset of the values typed with U . So, if we consider, for the sake of the example, a type Nat for integers, and a type Real for real numbers, then we have Nat Real. Another way to see this is that in any program where a value v is used as a real, then it is safe to feed an integer to this program. So, if T U , then in a program that uses a value of type U , it is safe to consider that this value has type T instead.

Let us apply the same reasoning for channels. Consider a channel a used to receive messages, in a process a(v).P . Let us suppose that the process uses the channel a as a channel working with real numbers. Then, v is used as a real number in P , so it is safe to use a value v of type Nat instead. So overall, it is safe to assume this input is done on a value of type Nat. So, for an input channel, we should have : in(Nat) in(Real).

Now, let us look at a channel a used to send a message, in a process a e .P . Let suppose that the process uses the channel a as a channel working with integers. Then, the message e sent on this channel is an integer. In particular, it is also a real number. So, it is safe to assume that all messages sent on this channel are real numbers, and we should have out(Real) out(Nat).

If we look at the variance of the subtyping relation, for an input channel we have covariance, and for an output channel we have contravariance. Then, a channel with both capabilities should have invariance. That is why it is important to make a distinction between input channel and output channel, as they do not behave the same way with subtyping.

We now formally state this in a type system. The sets of base types and types are given by the following grammars.

B := Nat | List(B) T := B | ch( T ) | in( T ) | out( T )
A channel of type in( T ) is used only as an input, with messages of type T , similarly for out( T ) but for output. And a channel of type ch( T ) can be used both as an input and as an output. 

An Introduction to Usages

In the last typing system of this thesis, of Section 4.5, we will consider usages, another typing paradigm of π-calculus usually used for deadlock-freedom analysis [START_REF] Kobayashi | A new type system for deadlock-free processes[END_REF][START_REF] Kobayashi | A type system for lock-free processes[END_REF][START_REF] Kobayashi | An implicitly-typed deadlock-free process calculus[END_REF]. The main idea of usages is to type a channel with a simple abstract program describing the behaviour of this channel independently of other channels, and then to analyse the property of this abstract program to try to obtain a property on the initial process.

In this section, we describe briefly and informally a usage type system, namely a simple version of the one in [START_REF] Kobayashi | A type system for lock-free processes[END_REF], to analyse deadlock-freedom.

The basic idea is to define usages by the following grammar: 

U := 0 | In.U | Out.U | (U 1 | U 2 ) So,
U a = In | Out | 0 U b = 0 | In | Out
As the process can be modified with a congruence relation, it seems then natural to also take a congruence relation for usages. We can thus simply take

U | 0 ≡ U U | V ≡ V | U (U | V ) | W = U | (V | W )
mimicking the congruence relation for the π-calculus.

And then, if we look at subject reduction, we see that The usages of channels in this process are exactly U a and U b defined above. However, the previous process was perfectly fine but this one is deadlocked, so we must be able to differentiate them. In order to do that, time annotations are introduced.

Formally, the set of usages is in fact defined by the following grammar:

U := 0 | In to tc .U | Out to tc .U | (U | V ) t o , t c ∈ N ∞ = N ∪ {∞}
Those time indications on usages should be seen as a kind of assume-guarantee reasoning. In [START_REF] Kobayashi | A type system for lock-free processes[END_REF], the usage In to tc .U describes a channel that will be used for input, and then used according to U . The two time annotations t o and t c are called the obligation and the capacity respectively. The obligation t o indicates a guarantee that if the channel is indeed used for input, then the input will become ready before t o time units. The capacity t c indicates the assumption that an output will be provided before t c time units once the input is ready. We have a similar meaning for Out to tc .U . In [START_REF] Kobayashi | A type system for lock-free processes[END_REF], a unit of time corresponds to the time of one communication between an input and an output. Informally, we then say that a usage is reliable if the associated assumeguarantee reasoning is correct. So, for example, In 0 1 | Out 1 0 is reliable, because if we look at the input, the capacity says that the environment should provide an output within one unit of time, and this is correct since the obligation of the output is 1. However, the usage In 0 1 | Out 2 0 is not reliable, as the assumption on the capacity 1 of the input is incorrect. Note that this reliability should always be true during a computation, so it should also be verified after any number of reduction steps.

Let us come back the example given before:

a() | b().a | b
The usage U b should have the shape:

U b = In to tc | Out t o t c
Let us look at obligations. Both the input and the output are ready immediately, so we can take t o = t o = 0. Then, for the input, we have a guarantee that the output is ready in 0 unit of time, so we can take t c = 0, and similarly, we have t c = 0. So, we have

U b = In 0 0 | Out 0 0
Then, for U a , we have also a shape, with unknown t o , t o , t c , t c :

U a = In to tc | Out t o t c
Again, the input is ready immediately, so t o = 0. For the output, we need to wait for the input of b, so t o = 1. Then, we obtain by symmetry t c = 1 and t c = 0. So,

U a = In 0 1 | Out 1 0 .

Now, let us come back to a().b | b().a

and consider the usages:

U a = In t 1 o t 1 c | Out t 2 o t 2 c U b = In t 3 o t 3 c | Out t 4 o t 4 c
Let us examine the usage U a . We have easily t 1 o = 0, because the input is immediately ready. For t 2 o , we observe that in order for the output of a to be ready, the input on b must be reduced. Looking at the usage of b, we can say that t 2 o ≥ t 3 c + 1, since t 3 c gives a bound on the time b need to synchronize, and this synchronization counts for one time unit. Moreover, in order to have a reliable usage, the capacity should verify t 3 c ≥ t 4 o . Then by symmetry, as the output for b needs to wait for the input on a, we have t 4 o ≥ t 1 c + 1. Again, by reliability, it must be the case that t 1 c ≥ t 2 o . So, we have:

t 2 o ≥ t 3 c + 1 ≥ t 4 o + 1 ≥ t 1 c + 2 ≥ t 2 o + 2 And we obtain t 2 o = ∞.
In the end, we therefore obtain the usages:

U a = In 0 ∞ | Out ∞ 0 U b = In 0 ∞ | Out ∞ 0
stating that, in fact, the output on a and b will never be ready, and thus we have indeed a deadlock.

Finally, in a usage type system, a subusage relation is defined: similarly to subtyping, we need some flexibility on usages. As a simple example, if a channel is typed with the usage In

t o t c
, then in particular, it must be ready before t o unit of time, so if t o ≤ t o , it is also ready before t o unit of time. Moreover, if it is typed under the assumption that the context will provide something within t c unit of time, then in particular, under the assumption that the context will provide something faster, within t c unit of time where t c ≤ t c , the typing should still be safe. So, we obtain:

t o ≤ t o t c ≤ t c
In to tc In

t o t c
To summarize, if we read this relation from right to left, it is safe for the typing to weaken the guarantee and to strengthen the assumption. So, to sum up the main points of usages:

1. Usages are defined as simple parallel programs, with time annotations. Those programs come with a congruence relation.

2.

A semantics is then defined for usages, allowing input and output to communicate.

A notion of reliable usages is defined

, where a usage is reliable if the assume-guarantee reasoning is always sound, even after some reduction steps. 4. A subusage relation must also be defined, to have some flexibility. This subusage relation is also very important for soundness.

Note that there is a choice to be made in a usage type system. One can enrich usages with choice, or replication. Then, depending on the meaning one want to give to time annotations, reliability would be defined differently. Similarly, the semantics and the subusage relation can differ depending on the way time annotations are used. In the literature, usages have been mainly used for deadlock-freedom, but we will give in Section 4.5 a usage type-system for complexity analysis. 

tick.P →

1 P P → 1 P P | Q → 1 P | Q Q → 1 Q P | Q → 1 P | Q P → 1 P (νa)P → 1 (νa)P

Work of a Process

We now proceed to present our contributions to complexity analysis in the π-calculus. As in Section 3.1, we introduce a tick constructor, as the only source of complexity of this language. Again, from this several notions of complexity can be derived. For example, counting the number of communication steps consists in adding a tick after each input. Similarly, the number of reduction steps can be recovered by also adding a tick after each pattern matching. It can also be useful to single out what is a costly operation. For example, in a sorting algorithm, we can use tick to count the number of comparisons, ignoring everything else.

Semantics and Type System

Semantics

We first describe a semantics for the work, that is to say the total number of ticks during a reduction without parallelism. The time reduction → 1 is defined in Figure 4. 7. Intuitively, this reduction removes exactly one tick at the top-level.

Then from any process P , a sequence of reduction steps to Q is just a sequence of one-step reductions with the standard reduction → defined in Figure 4.1 or → 1 , and the work complexity of this sequence is the number of → 1 steps. In this paper, we always consider the worst-case complexity so the work of a process is defined as the maximal complexity over all such sequences of reduction steps from this process.

Notice that with this semantics for work, adding tick in a process does not change its behaviour: we do not create nor erase reduction paths.

Example 4.2.1 (Fibonacci). We take back the process P described in Example 4. 1.2 with a slight modification: after the replicated input !f ib we add a tick. We can see that the work of (νa)(P | fib 10, a ) is F (10) where F is defined by:

F (0) = 1 F (1) = 1 F (n+2) = 1+F (n)+F (n+1)

Size Input/Output Types

We now define a type system to bound the work of a process. The goal is to obtain a soundness result: if a process P is typable then we can derive an integer expression K such that the work of P is bounded by K.

Definition 4.2.1. The set of base types is given by the following grammar.

B := Nat[I, J] | List[I, J](B)
As for Definition 3. 1.6, in the context ϕ; Φ, an integer n of type Nat[I, J] must be such that ϕ; Φ I ≤ n ≤ J. Likewise, a list of type List[I, J](B) must have a length between I and J. We As in Section 3.1, with those types comes a notion of subtyping, in order to have some flexibility on bounds. This is described by the rules of Figure 4. [START_REF] Baillot | On the expressivity of elementary linear logic: Characterizing ptime and an exponential time hierarchy[END_REF].

Then, after base types, we have to give a type to channel names in a process. As we want to generalize subtyping for channel types, we will use input/output types, as explained before in Section 4. 1.2. Unlike in usual input/output types, in this work we also distinguish two kinds of channels: the simple channels (that we will often call channels), and replicated channels (called servers).

All the inputs on a server channel must be replicated (as in !a( v).P ), while no input on a simple channel can be replicated. Definition 4.2.2. The set of types is given by the following grammar.

T := B | ch( T ) | in( T ) | out( T ) | ∀ i.srv K ( T ) | ∀ i.isrv K ( T ) | ∀ i.osrv K ( T )
The three different types for channels and servers correspond to the three different sets of capabilities. We note srv when the server have both capabilities, isrv when it has only input and osrv when it has only output. Then, for servers, we have additional information: there is a quantification over index variables, and the index K stands for the complexity of the process spawned by this server. This type for servers is very similar to the arrow type described in Section 3.1.

A typical example could be a server taking as input a list and a channel, and sending to this channel the sorted list, in time k • n where n is the size of the list:

P = !a(x, b). • • • b e
where e represents at the end of the process the list x sorted. Such a server name a could be given the type ∀i.srv k•i (List[0, i](B), out(List[0, i](B))). This type means that for all integers i, if given a list of size at most i and an output channel waiting for a list of size at most i, the process spawned by this server will stop at time at most k • i. As for functional programs, the quantified index variables are very useful especially for replicated input, in the same way it was useful for recursive functions. Some more details about the similarities will be explained in Example 4.2.2.

Then, we describe subtyping for servers in Figure 4.9. Those rules have flavor similar to the one described in Section 4. 1.2. Note that the complexity can be modified by subtyping, with a variance depending on the capabilities. As before, we can understand the variance by looking at what modifications are safe. In an input server, if we can safely guarantee when defining a server that the complexity is no greater than K , then we can safely guarantee that the complexity is no greater than K with K ≥ K . Similarly, for an output server, if we can derive a complexity bound under the assumption that the computation will not last longer than K , then we can also derive this same complexity bound under the assumption that the computation will not last longer than K, with K ≤ K .

We can now present the type system. Rules for expressions are given in Figure 4. [START_REF] Baillot | Characterizing Polynomial and Exponential Complexity Classes in Elementary Lambda-Calculus[END_REF]. The typing for expressions ϕ; Φ; Γ e : T means that under the constraints Φ, in the context Γ, the expression e can be given the type T . 4.12 describes rules specific to work, whereas rules in Figure 4.11 will be reused for span. A typing judgement ϕ; Φ; Γ P K intuitively means that under the constraints Φ, in a context Γ, a process P is typable and its work complexity is bounded by K. The rules can be seen as a combination of the input/output typing rules of Section 4. 1.2 with rules for the size type system for functional program of Section 3.1. The main differences are that because of the two kinds of channels, we need two rules for an output. Note that a replicated input has complexity zero, and it is a call to this server that generates complexity in the type system, as for functions in Section 3.1. This is because once defined, a replicated input stays during all the reduction, so we do not want them to generate complexity.

(ϕ, i); Φ T U (ϕ, i); Φ U T (ϕ, i); Φ K = K ϕ; Φ ∀ i.srv K ( T ) ∀ i.srv K ( U ) ϕ; Φ ∀ i.srv K ( T ) ∀ i.isrv K ( T ) ϕ; Φ ∀ i.srv K ( T ) ∀ i.osrv K ( T ) (ϕ, i); Φ T U (ϕ, i); Φ K ≤ K ϕ; Φ ∀ i.isrv K ( T ) ∀ i.isrv K ( U ) (ϕ, i); Φ U T (ϕ, i); Φ K ≤ K ϕ; Φ ∀ i.osrv K ( T ) ∀ i.osrv K ( U ) ϕ; Φ T T ϕ; Φ T T ϕ; Φ T T
Note that there is a dissymmetry between servers and simple channel in this type system: for servers, complexity comes from output and thus an index to keep track of the complexity is needed in the type, whereas for simple channels, complexity comes from input. However, this dissymmetry is not necessary. Indeed, servers need to have those typing rules, because we want a replicated input to have complexity 0 and we want polymorphism over indices, but for simple channels we have a choice. We can either keep the current type system or modify simple channels types such that they are similar to servers types (with polymorphism over indexes and an index for complexity in the type). We choose to present the current type system first because this way we can show this alternative choice of typing for simple channels instead of mimicking servers. Another interesting type system would be a totally non-syntax directed type-system for which we have the choice between those two typing behaviours for simple channels. For the sake of simplicity, we avoid presenting this type system, but in fact the two choices have advantages and disadvantages and so allowing two different choices of typing can increase expressivity. With the typing behaviour for simple channels described in Figure 4.12, we obtain a complexity bound of the shape K 1 + K 2 where K 1 is the complexity of P 1 and K 2 is the complexity of P 2 . If we use a server-like typing behaviour, as described in Figure 4.15, then we have to give a complexity for the channel a, and this complexity must be max(K 1 , K 2 ). So, in the end, we obtain a complexity bound equals to 3 * max(K 1 , K 2 ), which is less precise than

ϕ; Φ; Γ P K 1 ϕ; Φ; Γ Q K 2 ϕ; Φ; Γ P | Q K 1 +K 2 ϕ; Φ; Γ P K ϕ; Φ; Γ tick.P K+1 ϕ; Φ; Γ a : ∀ i.isrv K ( T ) (ϕ,
K 1 + K 2 .
However, if we consider this example:

a().P 1 | a().P 2 | a
Then, the typing behaviour presented in Figure 4.12 gives us a complexity bound K 1 + K 2 , whereas a server-like typing behaviour gives us a complexity bound max(K 1 , K 2 ). So, to sum up, informally the behaviour presented in Figure 4.12 gives more precise complexity bound when there are no locked inputs but the server-like typing behaviour is more precise when there are locked inputs. That is why a type system where we have a choice should be better for theoretical analysis.

Example 4.2.2. Let us take again the process for Fibonacci described in Example 4. 1.2. We first give a typing for add. As there is no tick in add, this typing only shows how input/output types and sized types work. A simplified version of this typing is given in Figure 4. [START_REF] Baillot | Combining linear logic and size types for implicit complexity[END_REF]. In order to gain some space, we do not precise the easy premises, and we automatically rename the typing contexts. Also, recall that Nat[I] denotes the type Nat[I, I]. The way sizes and indices are used in this typing is similar to Section 3. 1. We now describe the typing for the Fibonacci function. Again, we will only focus on interesting premises. The type derivation is given in Figure 4. [START_REF] Baillot | Types for complexity of parallel computation in pi-calculus[END_REF]. We use the Fibonacci function in indices, denoted F ib(I), and we also use the function F defined in Example 4.2.1.

; (i ≤ 0) i+j = j ϕ; (i ≤ 0); Γ m : Nat[i+j] (i, j); (i ≤ 0); Γ a m 0 ϕ; (i ≥ 1) ((i-1)+j)+1 = i+j ϕ; (i ≥ 1); ∆, q : Nat[(i-1)+j] s(q) : Nat[i+j] ϕ; (i ≥ 1); ∆, q : Nat[(i-1)+j] a s(q) 0 ϕ; (i ≥ 1); ∆ b(q).a s(q) 0 ϕ; (i ≥ 1); Γ, p : Nat[i-1], b : out(Nat[(i-1)+j]) • • • | b(q).a s(q) 0 (i, j); (i ≥ 1); Γ, p : Nat[i-1] (νb) • • • 0 (i, j); •; add : • • • , n : Nat[i], m : Nat[j], a : out(Nat[i+j]) match n {0 → a m ; ; s(p) → (νb) • • •} 0 •; •; add : ∀i, j.srv 0 (Nat[i], Nat[j], out(Nat[i+j])) !add(n, m, a). • • • 0
ϕ; Φ F ib(i-1)+F ib(i-2) = F ib(i) ϕ; Φ; ∆ c(x).b(y).add x, y, a 0 i; (i ≥ 2); ∆ fib m, b | fib p, c | c(x).b(y).add x, y, a F (i-1)+F (i-2)+0 i; (i ≥ 2); Γ, m : Nat[i-1], p : Nat[i-2], b : out(Nat[F ib(i-1)]), c : out(Nat[F ib(i-2)]) • • • | • • • | • • • F (i)-1 i; (i-1 ≥ 1); Γ, m : Nat[i-1], p : Nat[i-2] (νb)(νc) • • • F (i)-1 i; (i ≥ 1); Γ, m : Nat[i-1] match m {0 → a 1 ; ; s(p) → • • •} F (i)-1 i; •; Γ match n {0 → a 0 ; ; s(m) → • • •} F (i)-1 i; •; Γ tick.match n {0 → a 0 ; ; s(m) → • • •} (F (i)-1)+1 i; •; fib : • • • , n : Nat[i], a : out(Nat[F ib(i)]) tick.match n {0 → a 1 ; ; s(m) → • • •} F (i) •; •; fib : ∀i.srv F (i) (Nat[i], out(Nat[F ib(i)])) !fib(n, a).tick. • • • 0

Soundness of the Type System

We now state the properties of this typing system. We do not detail the proofs as all proofs are a simplified version of the one for span that will be described in Section 4. 4.2. The proof follows the same methodology as Section 3.1: in this type system for work, we can easily obtain the structural properties: weakening and strengthening. Then, we can prove the substitution lemmas, and with those properties, we obtain the usual subject reduction. Theorem 4.2.1 (Subject Reduction). If ϕ; Φ; Γ P K then:

• If P → Q then ϕ; Φ; Γ Q K. • If P → 1 Q then ϕ; Φ; Γ Q K with ϕ; Φ K +1 ≤ K.
Proof. The second point can be proved by induction on P → 1 Q . All the cases are direct, since the rule for parallel composition is the sum of the two complexities and the rule for ν does not change the complexity. Finally, the rule for tick gives directly this property.

So, as a consequence we almost immediately obtain that K is indeed a bound on the work of P if we have ϕ; Φ; Γ P K. Formally, we have: Theorem 4.2.2 (Work Complexity Bound). If ϕ; Φ; Γ P K then, if we call n the work complexity of P , we have ϕ; Φ K ≥ n. In particular, for any ρ : ϕ → N such that ρ Φ, we have K ρ ≥ n.

So, again, this complexity bound only makes sense if the set of constraints Φ is satisfiable. We emphasize the fact that this soundness result is easily adaptable to similar processes and type systems for work. As stated before, we can enrich processes with other algebraic datatypes and the proof can easily be adapted. We can also change the typing behaviour for simple channels, and we still get the soundness. An interesting consequence of this soundness theorem is that it immediately gives soundness for any subsystem. In particular, we now detail a weaker typing system where the shapes of types are restricted in order to have an inference procedure close to the one in [START_REF] Avanzini | Automating sized-type inference for complexity analysis[END_REF].

A Hint for Type Inference

We present in this section a type inference procedure based from [START_REF] Avanzini | Automating sized-type inference for complexity analysis[END_REF]. This work gives an inference procedure for a sized type system for functional programs, in a similar fashion of the one presented in Section 3. 1. In order to define the procedure smoothly, arrow types are restricted (restricted types are called canonical types). This paper then describes a sound and complete inference procedure for this canonical type system. We describe how to obtain intuitively a sound and complete type procedure for a subsystem of our work type system by mimicking the inference procedure of [START_REF] Avanzini | Automating sized-type inference for complexity analysis[END_REF]. Intuitively, in [START_REF] Avanzini | Automating sized-type inference for complexity analysis[END_REF], the canonical form of a type forces the input of functions to have the shape Nat[0, i] (or List[0, i](B)) for some new fresh variable i. Then, in a type more complex indices, such as i 2 +j or other expressions, only appear at positions that correspond to outputs.

So, what we will do is to give a type system inspired by this canonical form. Then, if we can show that this type system is a restriction of the previous one for work, we obtain automatically its soundness (with regard to work complexity). We can then use an inference procedure as in [START_REF] Avanzini | Automating sized-type inference for complexity analysis[END_REF], that we will not detail here, but it will be described in the Appendix A. 1. There are two steps to this type inference procedure, first we need to be able to generate constraints from a process such that if this set of constraints is satisfiable, then the process is typable (soundness). In order to show expressivity, we would also like that if a process is typable, then the generated set of constraints is indeed satisfiable (completeness). With this, we know that we do not lose expressivity with the reduction to a constraint satisfaction problem. Then, the second step, is to give those constraints to a SMT solver and hope that it can solve it (recall that this is undecidable in general). In this section, we will focus on the first step of this procedure.

We begin by changing the behaviour of channels, in order to have a quantification for channel variables even for channel types, then we merge servers and channels together. This way, we obtain a type for channels very close to the arrow type in [START_REF] Avanzini | Automating sized-type inference for complexity analysis[END_REF]. Definition 4.2.3. The set of types and base types are given by the following grammar.

B := Nat[I, J] | List[I, J](B) T := B | ∀ i.ch K ( T ) | ∀ i.in K ( T ) | ∀ i.out K ( T )
With the associated subtype system described in Figure 4.8 and Figure 4.9 where srv is replaced by ch. The typing rules are given by Figure 4.10, Figure 4.11 and Figure 4. [START_REF] Baillot | Sized types with usages for parallel complexity of pi-calculus processes[END_REF]. So, the only modification compared to the system we presented before is that channel types and server types are not distinct. The Restricted Type System

ϕ; Φ; Γ P K 1 ϕ; Φ; Γ Q K 2 ϕ; Φ; Γ P | Q K 1 +K 2 ϕ; Φ; Γ P K ϕ; Φ; Γ tick.P K+1 ϕ; Φ; Γ a : ∀ i.in K ( T ) (ϕ, i); Φ; Γ, v : T P K ϕ; Φ; Γ !a( v).P 0 ϕ; Φ; Γ a : ∀ i.in K ( T ) (ϕ,
In order to obtain a procedure for our type system, we would first need to begin by a classical algorithm such that, given a process P , this algorithm gives a classical π-calculus type to this process P . This is a standard type inference algorithm. This algorithm outputs a type in the following grammar:

B A := Nat | List(B) | α, β, . . . T A := B A | ch( T A ) | A, B, . . .
Where α, β, . . . are variables for base types, and A, B, . . . are variables for channel types. So, similarly, our type inference procedure will use those base types variables α, β, . . . and those channel types variables A, B, . . . . For now, we only have a type system that gives a sound bound on the complexity, described in Figure 4. [START_REF] Baillot | Sized types with usages for parallel complexity of pi-calculus processes[END_REF]. So, we need to adapt it in order to obtain a type system very close to the one in [START_REF] Avanzini | Automating sized-type inference for complexity analysis[END_REF] so that we can mimic the type inference procedure. We call this type system the intermediate type system. Definition 4. 2.4. For this intermediate type system, we consider the following grammar.

B i := Nat[0, I] | List[0, I] | α, β, . . . T i := B i | ∀ i.ch K ( T i ) | A, B, . . .
Then, we define types in canonical form, inspired by [START_REF] Avanzini | Automating sized-type inference for complexity analysis[END_REF].

Definition 4.2.5 (Canonical Intermediate Types). A canonical intermediate type is a type given by the following grammar:

B c := Nat[0, i+n] | List[0, i+n](B c ) | α, β, . . . T c := B c | ∀i 1 , . . . , i m .ch K ( T c ) | A, B, . . .
Where i is an index variable, n an integer and in the channel type, the index variables of K are in {i 1 , . . . , i m } and m is equal to the number of base type index occurrences in T c , noted btocc( T c ), and defined by: And then, we also ask that for a canonical intermediate channel type, all the indexes for base types corresponding to the base type index occurences are an actual index variable (thus n = 0), that they are all distinct, and in the left to right order (thus, we use all the different index variable name exactly once in base types, and in a specific order). Moreover, as we are interested in an implementable procedure, a special focus is given to names of binding variables. We ask explicitly that in a canonical type, a binding name is never used twice in a type.

• btocc(T 1 c , • • • , T k c ) = btocc(T 1 c )+ • • • +btocc(T k c ) • btocc(Nat[0, i]) = 1 • btocc(List[0, i](B c )) = 1+btocc(B c ) • btocc(α) = 0 v : T c ∈ Γ ϕ; Γ v : T c ϕ; Γ 0 : Nat[0, 0] ϕ; Γ e : Nat[0, I] ϕ; Γ s(e) : Nat[0, I+1] ϕ; Γ [] : List[0, 0] ϕ; Γ e : B 1 i ϕ; Γ e : List[0, I](B 2 i ) ϕ; • B 1 i , B 2 i B i ϕ; Γ e :: e : List[0, I+1](B i )
Example 4.2.3. The following type is a canonical channel type:

∀i 1 1 , i 1 2 , i 1 3 .ch (i 1 1 +i 1 3 ) (Nat[0, i 1 1 ], ∀i 2 1 .ch 0 (Nat[0, i 2 1 ], ch 3 ()), List[0, i 1 2 ](List[0, i 1 3 ](α)), A)
The first quantification is over 3 index variables because there are exaclty 3 positions in this type in which we can put an index variable without crossing another quantifier. Then, those 3 variables are indeed ordered from left to right. All the subtypes are also canonical, and notice that base type variables and type variables are not taken in account in the counting of index variables.

Obviously, a canonical intermediate type is an intermediate type. So, in our intermediate type system, we will ask that all channel names have a canonical type. Moreover, in a context Γ, we will require all types to be canonical. Formally, a typing judgment has the shape ϕ; Γ P K where Γ contains only canonical types, and there is no set of constraints Φ as there are no such constraints in [START_REF] Avanzini | Automating sized-type inference for complexity analysis[END_REF]. Subtyping is defined as a restriction of the previous subtyping relation to intermediate types, and the type system is given by Figure 4.16 and Figure 4. [START_REF] Baillot | A feasible algorithm for typing in elementary affine logic[END_REF]. One can see that the invariants described above on canonical types are respected. Also, there are no subtyping rules in this type system, as canonical types do not need subtyping, and the modifications on the complexity bounds are internalized in the useful rules. Moreover, in this typing, and for the following of this section, we only consider processes with well written pattern matching, meaning that pattern matching can only be done on base type variable (otherwise, the pattern matching is not useful...). Please note that this intermediate type system is not used for its theoretical value, that is why we can ask those kinds of restrictions, since we are not interested in subject reduction for this intermediate type system. Note that thanks to this restriction, we can consider that the base type element in a pattern matching is a canonical type, and this helps us get rid of the previous rule for pattern matching when we needed to add constraints in the branches. The idea is that instead of adding the constraints i ≥ 1 in the typing, we do a substitution and replace i by an index of the shape i+1, and so i now becomes the size of the predecessor (or the tail for a list). Without this set of constraint Φ in a typing, we obtain a type system closer to the one in [START_REF] Avanzini | Automating sized-type inference for complexity analysis[END_REF].

Now, let us show that if a process is typable with those intermediate types, then it is typable for the type system presented in the beginning of this section. Proof. The proof is done by induction on ϕ; Γ P K. The type variables do not cause any problem, since in a intermediate typing, if we can use a type variable then it means that this type is never really inspected. When typing an expression, this is rather direct, using subtyping for expressions. Again, for typing rules for processes, a lot of cases are direct just by using the subtyping rule of Figure 4.11. Thus, we only detail the interesting cases.

; Γ 0 0 ϕ; Γ P K 1 ϕ; Γ Q K 2 ϕ; • K 1 +K 2 ≤ K ϕ; Γ P | Q K ϕ; Γ, a : Tc P K ϕ; Γ (νa)P K ϕ; Γ a : ∀ i.ch K ( Tc) (ϕ, i); Γ, v : Tc P K (ϕ, i); • K ≤ K ϕ; Γ !a( v).P 0 ϕ; Γ a : ∀ i.ch K ( Tc) (ϕ, i); Γ, v : Tc P K (ϕ, i); • K ≤ K ϕ; Γ a( v).P 0 ϕ; Γ a : ∀ i.ch K ( Tc) ϕ; Γ e : Tc{ J/ i} ϕ; • K{ J/ i} ≤ K ϕ; Γ a e K ϕ; Γ P K ϕ; Γ tick.P K+1 ϕ; Γ v : Nat[0, i] ϕ; Γ P K 1 ϕ; • K 1 ≤ K ϕ; Γ{i+1/i}, x : Nat[0, i] Q K 2 ϕ; • K 2 ≤ K{i+1/i} ϕ; Γ match v {0 → P ; ; s(x) → Q} K ϕ; Γ v : Nat[0, i+n+1] ϕ; Γ P K 1 ϕ; • K 1 ≤ K ϕ; Γ, x : Nat[0, i+n] Q K 2 ϕ; • K 2 ≤ K ϕ; Γ match v {0 → P ; ; s(x) → Q} K ϕ; Γ v : List[0, i](B i ) ϕ; Γ P K 1 ϕ; Γ{i+1/i}, x : B i , y : List[0, i](B i ) Q K 2 ϕ K 1 ≤ K; K 2 ≤ K{i+1/i} ϕ; Γ match v {[] → P ; ; x :: y → Q} K ϕ; Γ v : List[0, i+n+1](B i ) ϕ; Γ P K 1 ϕ; • K 1 ≤ K ϕ; Γ, x : B i , y : List[0, i+n](B i ) Q K 2 ϕ; • K 2 ≤ K ϕ; Γ match v {[] → P ; ; x :: y → Q} K
• If the typing is

a : ∀ i.ch K ( T c ) ∈ Γ ϕ; Γ a : ∀ i.ch K ( T c ) (ϕ, i); Γ, v : T c P K (ϕ, i); • K ≤ K ϕ; Γ!a( v).P 0
Note that with the rules of Figure 4.16, the only way to type a channel is by the axiom rule. Then, we can give the following type:

a : ∀ i.ch K ( T csub ) ∈ Γ sub ϕ; •; Γ sub a : ∀ i.in K ( T csub ) (ϕ, i); •; Γ sub , v : T csub P K (ϕ, i); • K K (ϕ, i); •; Γ sub , v : T csub P K ϕ; •; !a( v).P 0 • If the typing is ϕ; Γ v : Nat[0, i] ϕ; Γ P K 1 ϕ; • K 1 ≤ K ϕ; Γ{i+1/i}, x : Nat[0, i] Q K 2 ϕ; • K 2 ≤ K{i+1/i} ϕ; Γ match v {0 → P ; ; s(x) → Q} K
Then, we would like to give the following type:

ϕ; •; Γ sub e : Nat[0, i] ϕ; (0 ≤ 0); Γ sub P K ϕ; (i ≥ 1); Γ sub , x : Nat[0-1, i-1] Q K ϕ; •; Γ sub match v {0 → P ; ; s(x) → Q} K
From the typing ϕ; Γ P K 1 , obtaining ϕ; (0 ≤ 0); Γ sub P K is direct by induction hypothesis. Now, by induction hypothesis we also obtain

ϕ; •; Γ sub {i+1/i}, x : Nat[0, i] Q K 2 ϕ; • K 2 ≤ K{i+1/i}
Then, by index substitution, we have

ϕ; •; Γ sub {i+1/i}{i-1/i}, x : Nat[0, i-1] Q K 2 {i-1/i} ϕ; • K 2 {i-1/i} ≤ K{i+1/i}{i-1/i}
Thus, by weakening we obtain:

ϕ; (i ≥ 1); Γ sub {i+1/i}{i-1/i}, x : Nat[0, i-1] Q K 2 {i-1/i} ϕ; (i ≥ 1) K 2 {i-1/i} ≤ K{i+1/i}{i-1/i}
Then, as we have i ≥ 1, we have (i-1)+1 = i. Moreover, 0-1 = 0 by definition. So, by subtyping we obtain ϕ; (i ≥ 1); Γ sub , x : Nat[0, i-1] Q K Thus, we can conclude the proof as the typing above can be obtained. The other case of pattern matching, where e has a type Nat[0, i + n + 1], is easier.

With this, we covered all the important cases.

So, if we have a correct and complete procedure for this intermediate type system, we obtain indeed a bound on the complexity by soundness for the other type system. Moreover, this new type system does not seem too restrictive. The main problem is that we cannot have too much information about the input. For example in order to have a more understandable type, we would like to be able to assume that an input list is of a size 2 i for some i. With this type system, this kind of assumption is not possible, thus we would need to use the logarithm in order to obtain a similar reasoning. In general, we can lose some information about the input of a function that may have been useful. Subtyping also becomes very restrained, we have no more input/output types and subtyping between canonical forms is not really useful, this is just equality everywhere. Note that in practice, because of canonical types, checking type equality is easy, since canonical forms simplify a lot the problems of α-renaming and reordering of quantifiers.

Still, with this intermediate type system, we can mimic the work in [START_REF] Avanzini | Automating sized-type inference for complexity analysis[END_REF], and we obtain a procedure that is sound and complete. We have not explored yet a procedure that would work directly in our original type system and be complete with regard to this type system. Some details of the procedure and the proof are given in the Appendix A.1.

Parallel Complexity

Span with Annotated Processes

We now define another notion of complexity taking into account parallelism. Before presenting formally the semantics, we show with some simple examples what kind of properties we want for this parallel complexity.

First, we want a parallel complexity that works as if we had an infinite number of processors. So, on the process tick.0 | tick.0 | tick.0 | • • • | tick.0 we want the complexity to be 1, whatever the number of tick in parallel.

Moreover, reductions with a zero-cost complexity (in our setting, this should mean all reductions except when we reduce a tick) should not harm this maximal parallelism. For example a().tick.0 | a | tick.0 should also have complexity one, because intuitively this synchronization between the input and the output can be done independently of the tick on the right, and then the tick on the left can be reduced in parallel with the tick on the right.

Finally, as before for the work, adding a tick should not change the behaviour of a process. For instance, consider the process tick.a().P 0 | a().tick.P 1 | a , where a is not used in P 0 and P 1 . This process should have the complexity max(1+C 0 , 1+C 1 ), where C i is the cost of P i . Indeed, there are two possible reductions, either we reduce the tick, and then we synchronize the left input with the output, and continue with P 0 , or we first do the synchronization with the right input and the output, then we reduce the ticks and finally we continue as P 1 .

Remark 4.3.1. A notion of complexity defined with maximal progress, as in [START_REF] Kobayashi | A type system for lock-free processes[END_REF], would not satisfy this condition. Indeed, maximal progress is usually defined as "when a communication is available, then we need to do this communication". In this previous example, this would impose the reduction path to P 1 . We can also construct a similar example without tick, with b().a().

P 0 | b | a().(c().P 1 | c ) | a
A possible way to define such a parallel complexity by using the literature would be to adapt causal complexity [START_REF] Demangeon | Causal computational complexity of distributed processes[END_REF][START_REF] Degano | Causality for mobile processes[END_REF][START_REF] Degano | Causality and replication in concurrent processes[END_REF], however we believe there is a simpler presentation in our case. We will show at the end of this section the equivalence between our notion and a kind of causal complexity. The idea for defining span has been proposed by Naoki Kobayashi. It consists in introducing a new construction for processes, m : P , where m is an integer. A process using this constructor will be called an annotated process. Intuitively, this annotated process has the meaning P with m ticks before. We can then enrich the congruence relation ≡ with the following rules: This intuitively means that the ticks can be distributed over parallel composition, name creation can be done before or after ticks without changing the semantics, ticks can be grouped together, and finally zero ticks is equivalent to nothing.

With this congruence relation and this new constructor, we can give a new shape to the canonical form presented in Definition 4.1.1. Definition 4.3.1 (Canonical Form for Annotated Processes). An annotated process is in canonical form if it has the shape:

(ν a)(n 1 : G 1 | • • • | n m : G m )
with G 1 , . . . , G m guarded annotated processes, defined as in Definition 4. 1.1. Notice that the congruence relation above allows to obtain this canonical form from any annotated processes. With this intuition in mind, we can then define a reduction relation ⇒ for annotated processes. The rules are given in Figure 4. [START_REF] Barthe | On the versatility of open logical relations[END_REF]. We do not detail the rules for integers as they are deducible from the ones for lists. Intuitively, this semantics works as the usual semantics for π-calculus, but when doing a synchronization, as we need both the input and the output to be ready, the synchronization can only happen after the maximum of the two annotations.

We then define the parallel complexity of an annotated process.

Definition 4.3.2 (Parallel Complexity). Let P be an annotated process. We define its local complexity C (P ) by: 

P ⇒ Q P | R ⇒ Q | R P ⇒ Q (νa)P ⇒ (νa)Q P ⇒ Q (n : P ) ⇒ (n : Q) P ≡ P P ⇒ Q Q ≡ Q P ⇒ Q Figure 4.18: Reduction Rules • C (n : P ) = n+C (P ) • C (P | Q) = max(C (P ), C (Q)) • C ((νa)P ) = C (P ) • C (G) = 0 if G is a guarded process
Equivalently, C (P ) is the maximal integer that appears in the canonical form of P . Then, for an annotated process P , its global parallel complexity is given by max{n | P ⇒ * Q∧C (Q) = n} where ⇒ * is the reflexive and transitive closure of ⇒.

To show that this parallel complexity is well-behaved, we give the following lemmas. Those lemmas are proved by induction. The main point for the second lemma is that guarded processes have a local complexity equal to zero, so doing a reduction will always increase this local complexity. Thus, in order to bound the complexity of an annotated process, we need to reduce it with ⇒, and then we have to take the maximum local complexity over all normal forms. Moreover, this semantics respects the conditions given in the beginning of this section.

Span and Causal Complexity

In this section, we present how our notion of span can be linked with the causal complexity of the literature. This section is not mandatory to understand the typing systems for span, but we believe it can be of interest to show that both annotated processes and causal complexity are well-behaved notions of parallel complexity in the π-calculus.

Presentation of Causal Complexity

We present here a notion of causal complexity inspired by other works [START_REF] Demangeon | Causal computational complexity of distributed processes[END_REF][START_REF] Degano | Causality for mobile processes[END_REF][START_REF] Degano | Causality and replication in concurrent processes[END_REF]. We explained before with the canonical form in Definition 4.1.1 that a process can be described by a set of names and a multiset of guarded processes, when working up to congruence. For causal complexity, we consider more structure for processes. The idea is to see a process as a set of names and a binary tree where leaves are guarded processes and a node means parallel composition. So formally, instead of using the previous congruence relation, we use the tree congruence. This is defined as the least congruence relation ≡ t closed under:

(νa)(νb)P ≡t (νb)(νa)P (νa)(P | Q) ≡t (νa)P | Q (when a is not free in Q) (νa)(P | Q) ≡t P | (νa)Q (when a is not free in P )
So, this tree congruence can indeed move names as before, but it preserves the tree-shape of a process. This time, the canonical form, initially described in Definition 4. 1.1, has the shape (ν a)t, where t is a tree as defined above. With this intuition, we can redefine the semantics in order to preserve this tree structure. The tree rules are described in Figure 4. [START_REF] Barthe | Higher-order approximate relational refinement types for mechanism design and differential privacy[END_REF]. It is supposed in this reduction rules that for the left-hand side, all the names (νa) are at the beginning of the process, as in the canonical form. So, for example, from a process P seen as a tree with at position p a replicated input !a( v).Q and at position p an output a e , we obtain the process P , the same tree as P , with at position p the same replicated input but at position p we have the tree corresponding to the process Q[ v := e]. This reduction step is annotated by a location τ p, p in order to remember at which positions the modification happened, and what was the action performed (here τ means a communication). In the same way, we can define a reduction annotated by a tick, or a match. An alternative presentation of this semantics, closer to the one in [START_REF] Demangeon | Causal computational complexity of distributed processes[END_REF], with a labelled transition system, is also possible. As for the standard reduction in π-calculus, we could show that both semantics (the one with the congruence and the one with the labelled transition system) are equivalent. We work with the tree congruence definition because it is easier to use in proofs.

The goal of this semantics is first to preserve the tree structure in a reduction step, and second to remember when doing a reduction step where the modification occurs exactly in the tree. Then, we can define a causality relation between locations. The idea is that a location 1 causes a location 2 when the reduction step with location 2 could not have happened without the reduction step with location 1 .

Formally, we define a location by the following grammar.

p := | 0 • p | 1 • p := p; tick | p; if | τ p, p
The intuition is that a reduction P → P with location p; tick removed the top tick of the guarded process of P at position p. A reduction P → P with location τ p, p is a communication between the input process at position p and the output process at position p . Finally, the action p; if is for the position of a pattern-matching reduction. Then, we can define a causality relation ≺ c between locations: Definition 4. 3.3. The causality relation ≺ c between locations is defined by:

• p; tick ≺ c p ; tick when p is a prefix of p • p; tick ≺ c τ p 0 , p 1 when p is a prefix of p 0 or p 1 • τ p 0 , p 1 ≺ c p; tick when p 1 is a prefix of p • τ p 0 , p 1 ≺ c τ p 0 , p 1 when p 1 is a prefix of p 0 or p 1 .
By extension, we will sometimes say that a location ≺ c p when ≺ c p; tick.

And for if locations, they behave as a tick location. The main interest of causal complexity is that this notion of causality can be adapted to account for different behaviours. For example, in [START_REF] Demangeon | Causal computational complexity of distributed processes[END_REF], the causality relation is different. Here, we choose this causality relation to show the equivalence with annotated processes, and in this sense, our notion of span is a particular case of causal complexity with this choice of causality relation. The important point in the causality relation we define is that a τ location causes another location when the output position is a prefix of the positions in . Indeed, for a communication with a non-replicated input, the input position becomes a 0 thus it cannot cause anything, and for a communication with a replicated input, we consider that two calls to the same replicated input are independent of each other. Then, the important point is that two reductions with independent locations could be done in any order, it would not change the final tree.

P !a( v).Q p a e p τ p, p P !a( v).Q Q[ v := e]
With this definition of causality, intuitively we can define causal complexity of a computation as the maximal number of tick in all the chains of causality in the computation. Definition 4. 3.4 (Computation). A computation from a process P is a sequence (P i , i ) i≤N such that P 0 = P and P i i -→ P i+1 for i < N . Definition 4. 3.5 (Causal Complexity). In a computation (P i , i ) i≤N , we say that i depends on j , noted i ≺ j when i < j and i ≺ c j . Then, the causal complexity of this computation is given by the maximal number of tick locations in all the chains of ≺ , the reflexive and transitive closure of ≺. Then, the causal complexity of a process P is defined as the maximal causal complexity over all computations from P . Remark 4. 3.2. In the rules for synchronization in Figure 4.19, the continuation of the input is that an unusual position. Indeed, the continuation is put where the output was, instead of where the input was. We choose this presentation because this way, we obtain a simple statement for an exchange lemma that can be proved easily: "If P 0 -→ P 1 -→ P 2 and ⊀ c , then there exists P 1 and P 2 with P 0 -→ P 1 -→ P 2 and P 2 ≡ t P 2 " With an alternative presentation where the continuation is put at the input position, we could have for example And so, the tree has been slightly modified, thus the exchange lemma is harder to state with tree congruence only. Moreover, as the shape of the tree changes, then the locations may also change, so a notion of trace equivalence may be needed.

We can now prove the equivalence between the notions of parallel complexity with annotated processes complexity and causal complexity for this particular causality relation.

Parallel Complexity ≥ Causal Complexity

In this section, we consider causal complexity, and we show that the parallel complexity is always greater than causal complexity. Formally, we prove the following lemma.

Lemma 4. 3.3. Let P be a process. Let (P i , i ) i≤N be a computation from P with causal complexity K. Then, the global parallel complexity of P is greater than K.

In order to do that, we show that we can do the same computation with our semantics with annotated processes. Let us take a process P seen as a tree. By definition, each leaf of P is a guarded process G. For each leaf, we replace the guarded process G by 0 : G, and we call P this annotated process. By the definition of congruence for annotated processes, we have P ≡ P . Then, we will work with this tree representation for annotated processes. Definition 4. 3.6 (Tree Representation of Annotated Processes). We consider annotated trees such that a set of names is given at the beginning, nodes represent parallel composition and leaves are processes of the shape n : G with G guarded. Such a tree indeed represents an annotated process.

Then, we say that an annotated process P seen as a tree is an annotation of a process P seen as a tree if P and P have exactly the same shape, and each leaf G of P is a leaf n : G for P .

So, by definition P is an annotation of P . We can then prove the following lemma: Lemma 4. 3.4 (Causal Reduction and Annotation). Suppose that P -→ Q. Then, for any P annotation of P , we have P ⇒ Q where Q is an annotation of Q.

Moreover, we have:

• If = p;
tick then Q has the same annotation as P for all leaves at a position p such that p is not a prefix of p . For all the other leaves, Q has the annotation n + 1 where n is the annotation for the leaf at position p in P • If = p; if then Q has the same annotation as P for all leaves at a position p such that p is not a prefix of p . For all the other leaves, Q has the annotation n where n is the annotation for the leaf at position p in P

• If = τ p, p then Q has the same annotation as P for all leaves at position q such that p is not a prefix of q. For all the other leaves, Q has the annotation max(n, m) where n is the annotation for the leaf at position p in P and m is the annotation for the leaf at position p in P .

Proof. The proof is done by case analysis on the rules of Figure 4. [START_REF] Barthe | Higher-order approximate relational refinement types for mechanism design and differential privacy[END_REF]. All cases are rather direct. The idea is to always keep the same tree shape in the reduction ⇒, and then to make the names go up and the annotations go down after doing this reduction using the congruence rules. Formally, the names can go up with ((νa)P ) | Q ≡ (νa)(P | Q) (always possible by α-renaming) and n : ((νa)P ) ≡ (νa)(n : P ), and then the annotations can go down with n : (P | Q) ≡ n : P | n : Q. Then, with the shape of the reduction ⇒ we can indeed see that the annotations indeed correspond to the one given in this lemma.

With this lemma, we can start from P the annotation of P , and simulate the computation. Now we only need to show that the annotations correspond to the number of ticks in a chain of causality. Formally, we prove the following lemma.

Lemma 4. 3.5. Let (P i , i ) i≤N be the computation given by the previous lemma from an original computation (P i , i ) i≤N . Then, for all i ≤ N , the annotation of a guarded process G at position p in P i is an upper bound of the maximal number of tick locations in all chains of ≺ for the locations 0 , . . . , i-1 such that the last location of this chain satisfies ≺ c p

We prove this by induction on i.

• This is true for i = 0 since P is P annotated with zeros everywhere.

• Let i < N . Suppose that this is true for P i , the annotation of P i . Let us look at the reduction P i i -→ P i+1 .

-If i = p; if. Then by induction hypothesis, the annotation n for the pattern matching bounds the maximal number of tick locations in all chains of ≺ for the locations 0 , . . . , i-1 such that the last location is such that ≺ c p. Let us look at P i+1 given by lemma 4. 3.4. For all the positions in P i+1 with p not a prefix, dependency did not change since i = p; if does not cause those positions. As annotations did not change either, the hypothesis is still correct. For the new positions in the tree with p as a prefix, all the annotations are n. Any chain of causality ≺ with the locations 0 , . . . , i is either a chains that does not contain i and that caused p, and so n is a bound by induction hypothesis, or it is a chain that contains i and so it is a chain in causal relation with p, and so n is a bound.

-If i = p; tick. Then by induction hypothesis, the annotation n for the tick corresponds to the maximal number of tick locations in all chains of ≺ for the locations 0 , . . . , i-1 that are also in causality ≺ c with p. Let us look at P i+1 given by lemma 4. 3.4. For all the positions in P i+1 with p not a prefix, dependency did not change since i = p; if does not cause those positions. As annotations did not change either, the hypothesis is still correct. For the new positions in the tree with p as a prefix, all the annotations are n. All chains of causality ≺ with the locations a bound because n is a bound by induction hypothesis, either they contain i and so in this case it was a chain in causal relation with p and so n + 1 is a bound as n is a bound on the causality between 0 and i-1 and the last location i adds one to the complexity.

-If i = τ p, p . By induction hypothesis, the annotation n for the input and m for the output are bounds on some chains of causality on 0 , . . . , i-1 . Let us look at P i+1 given by Lemma 4. 3.4. For all positions that are not a prefix of p , nothing changed so the hypothesis is still true. Let us look at positions with p as a prefix. All the annotations for those positions are max(n, m). Let us look at chains of causality on 0 , . . . , i that end with a location that causes those positions. The new chains that were not in the previous hypothesis are the ones that finish with i . For those chains, either they cause i because they cause p or because they cause p . In both cases, n or m was a bound on the number of ticks by induction hypothesis. So, max(n, m) is indeed a bound on the number of ticks for all those chains.

This concludes the proof. So, in the end, the annotation in position p in P N is a bound on chains of causality that cause p. Moreover, for any chain of causality, this chain causes its last position (or output position by definition of causality). So, all chains of causality are bounded by at least one of the annotations, so the maximum over all annotations is a bound on the causal complexity. This directly gives us that global parallel complexity is greater than causal complexity.

Causal Complexity ≥ Parallel Complexity

Let us work on the converse. In order to do that, we will restrict a bit the congruence ≡ for annotated processes and expand the semantics ⇒ in order to work with trees. So, as before, we can define a tree congruence ≡ t for annotated processes, with the base rules

(νa)(νb)P ≡t (νb)(νa)P (νa)(P | Q) ≡t (νa)P | Q (when a is not free in Q) (νa)(P | Q) ≡t P | (νa)Q (when a is not free in P ) n : (P | Q) ≡ n : P | n : Q n : (m : P ) ≡ (n + m) : P ( 
νa)(n : P ) ≡ n : ((νa)P ) 0 : P ≡ P And then we define the semantics ⇒ exactly as before but with trees instead of simple processes in parallel. An example is given in Figure 4. [START_REF] Bellantoni | A new recursion-theoretic characterization of the polytime functions[END_REF] As before, any annotated process can be written in a tree representation as in Definition 4.3.6 using the tree congruence rule ≡ t for annotated processes. So, from this, it is rather direct that this semantics defined with tree ⇒ is equivalent to the previously defined ⇒, in the sense that they give the same complexity. (It relies in particular on the fact that congruence does not change the parallel complexity). And now, we can work on this parallel complexity with tree representation. Formally, we want to prove: Lemma 4.3.6. If P is a process without annotation, with P (⇒) * Q and C (Q) = K, then there is a computation (P i , i ) i≤N from P with causal complexity greater than K.

So, by definition of causal complexity and parallel complexity, this will indeed show that the causal complexity is greater than the parallel complexity.

As we only need to prove this lemma for processes without annotation, we can take an additional hypothesis on annotated processes: we consider in the following that annotations appear exclusively at the "top-level" of a process, so there is no annotation in the subprocess P in a( v).P , in tick.P , in !a( v).P or in the subprocesses of a pattern matching. We can take this hypothesis because if a process P satisfies this hypothesis and P ⇒ Q then Q also satisfies this hypothesis. And of course, processes without annotation satisfy this hypothesis. Moreover, in this definition, we do not consider 0 : P as a real annotation since it can be removed by congruence. We start by the following definition. Definition 4. 3.7 (Removing Annotation). Let P be a tree representation of an annotated process. We define forget(P ) as the tree P where leaves n : G are replaced by G.

Note that this definition makes sense only because of the previous hypothesis, otherwise we would need to apply recursively the forgetful function to G. We then easily show the following lemma.

Lemma 4.3.7 (Forget Reductions). Suppose that P ⇒ Q. Then, we have forget(P ) -→ forget(Q) for some location .

Proof. The proof is direct because we modified ⇒ in order to obtain immediately this. Note that the reduction tick.P ⇒ 1 : P , or more generally n : tick.P ⇒ (n+1) : P here corresponds indeed to removing a tick with the forgetful function.

With this lemma, we can start from forget(P ) and simulate the reduction (⇒) * . Now we only need to show that the annotations are bounded by the number of ticks in a chain of dependency. We show the following lemma: Lemma 4. 3.8. If P is a process without annotation, and if P (⇒) * Q, then there is a computation (P i , i ) i≤N from P = forget(P ) to forget(Q). Moreover, for each leaf n : G at position p in Q, there is a chain of causality ≺ with at least n ticks that ends with a location such that ≺ c p.

Note that from this lemma we can deduce immediately Lemma 4. 3.6. We prove this by induction on P (⇒) * Q

• If this relation is the reflexive one, and P = Q, this is direct because all annotations are equal to 0.

• Now suppose we have P (⇒) * R ⇒ Q. By induction hypothesis, there is a computation (P i , i ) i≤N from forget(P ) to forget(R), with the expected chains of causality. We now proceed by case analysis on R ⇒ Q.

-If this reduction is a pattern matching reduction at position p. Then, we have

forget(R) p;if -→ forget(Q).
Let us take a leaf n : G at position p of Q. If p is not a prefix of p , then this leaf was also in R. So, by induction hypothesis, we obtain the desired chain of causality. If p is a prefix of p , then this n was also the annotation for the position p in R. So, by induction hypothesis for R, there is a chain of causality ≺ with at least n ticks that ends with a location such that ≺ c p. By definition, it means that this last location ≺ c p; if. So, this gives us a chain of causality with at least n ticks that ends with a location that cause p in Q. This concludes this case.

-If this reduction is a tick reduction at position p. Then, we have forget(R) p;tick -→ forget(Q). Let us take a leaf n : G at position p of Q. If p is not a prefix of p , then this leaf was also in R. So, by induction hypothesis, we obtain the desired chain of causality. If p is a prefix of p , then n-1 was the annotation for the position p in R. So, by induction hypothesis for R, there is a chain of causality ≺ with at least n-1 ticks that ends with a location such that ≺ c p. By definition, it means that this last location ≺ c p; tick. So, this gives us a chain of causality with at least n ticks that ends with a location that causes p in Q. This concludes this case.

-If this reduction is a synchronization with input at position p and output at position p . Then, we have forget(R) τ p,p -→ forget(Q). Let us take a leaf n : G at position q of Q. If p is not a prefix of q, then this leaf was also in R (except for the position p in the case of non-replicated input where the guarded process changes but not the annotation, still the following reasoning works). So, by induction hypothesis, we obtain the desired chain of causality. If p is a prefix of q, then, we have n = max(n 0 , n 1 ) with n 0 the annotation for the input position p in R and n 1 the annotation for the output position p in R. Let us say, by symmetry, that n 0 is the maximum between those two. So, by induction hypothesis for R, there is a chain of causality ≺ with at least n 0 ticks that ends with a location such that ≺ c p. By definition, it means that this last location ≺ c τ p, p . So, this gives us a chain of causality with at least n 0 ticks that ends with a location that causes q in Q. This concludes this case.

This concludes the proof.

So, we have indeed that causal complexity is greater than parallel complexity. From this, we have the equivalence between causal complexity and our definition of parallel complexity.

Types for Span

We present here a type system for span, so we want as previously a type system such that typing a process gives us a bound on its span. Formally, we will prove the following theorem: Theorem 4. 4.1 (Typing and Complexity). Let P be a process and m be its global parallel complexity. If we have ϕ; Φ; Γ P K, then ϕ; Φ K ≥ m.

Notice that this theorem talks about open processes. However, our notion of complexity does not behave well with open processes, similarly to what happened for Theorem 3.1.2. For example the process match v {0 → P ; ; s(x) → Q} is in normal form for a variable v, so this process has global complexity 0. Still, we will also obtain the following corollary: • If ϕ; Φ; Γ P K, then for any other annotated process Q such that ϕ; Φ; Γ Q K , max(K, K ) is a bound on the global complexity of P | Q.

So, when we have a typing ϕ; Φ; Γ P K for an open process, one should not see K as a bound on the actual complexity on P , but it should be seen as a bound on the complexity of this particular process in an environment respecting the type of Γ. So, in ϕ; Φ; v : Nat[2, 10] match v {0 → P ; ; s(x) → Q} K, this index K is a bound on the complexity of this pattern matching under the assumption that the environment gives to v an integer value between 2 and 10.

Sized Types with Time

The type system is an extension of the previous one for work. In order to take into account parallelism, we need a way to synchronize the time between processes in parallel, thus we will add some time information in types, as in [START_REF] Kobayashi | A type system for lock-free processes[END_REF] or [START_REF] Das | Parallel complexity analysis with temporal session types[END_REF].

Definition 4.4.1. The set of types and base types are given by the grammar:

B := Nat[I, J] | List[I, J](B) T := B | ch I ( T ) | in I ( T ) | out I ( T ) | ∀ i.srv K I ( T ) | ∀ i.isrv K I ( T ) | ∀ i.osrv K I ( T )
As before, we have channel types, server types, and input/output capabilities in those types. For a channel type or a server type, the index I is called the time of this type. Giving a channel name the type ch I ( T ) ensures that communication on this channel should happen within time I. For example, a channel name of type ch 0 ( T ) should be used to communicate before any tick occurs. With this information, we can know when the continuation of an input will be available. Likewise, a server name of type ∀ i.isrv K I ( T ) should be used in a replicated input, and this replicated input should be ready to receive for any time greater than I. Typically, a process tick.!a(v).P enforces that the type of a is ∀ i.isrv K I ( T ) with I greater than one, as the replicated input is not ready to receive at time zero. About the free variables in a server types, ∀ i.srv K I ( T ), we emphasize the fact that i can appear in K and T but not in I. Indeed, the time that a server takes to become ready does not depend on the values sent to this server. However, in order to harmonize notations with channels, this time I is written after the quantification over i even if it does not depend on it.

As before, we define a notion of subtyping on those types. The rules are essentially the same as the ones in Figures 4.8 and 4.9. The only difference is that we force the time of a type to be invariant in subtyping.

In order to write the typing rules, we need some other definitions to work with time in types. The first thing we need is a way to advance time. Definition 4. 4.2 (Advancing Time in Types). Given a set of index variables ϕ, a set of constraints Φ, a type T and an index I, we define T after I time units, denoted T ϕ;Φ -I by:

• B ϕ;Φ -I = B • ch J ( T ) ϕ;Φ -I = ch (J-I) ( T ) if ϕ; Φ J ≥ I.
It is undefined otherwise. Other channel types follow exactly the same pattern. This definition can be extended to contexts, with v : T, Γ ϕ;Φ -I = v : T ϕ;Φ -I , Γ ϕ;Φ -I if T ϕ;Φ -I is defined. Otherwise, v : T, Γ ϕ;Φ -I = Γ ϕ;Φ -I . We will often omit the ϕ; Φ in the notation when it is clear from the context. Recall that as the order ≤ on indexes is not total, ϕ; Φ J ≥ I does not mean that ϕ; Φ J < I.

• ∀ i.srv K J ( T ) ϕ;Φ -I = ∀ i.srv K J-I ( T ) if ϕ; Φ J ≥ I. Otherwise, ∀ i.srv K J ( T ) ϕ;Φ -I = ∀ i.osrv K J-I ( T ) • ∀ i.isrv K J ( T ) ϕ;Φ -I = ∀ i.isrv K J-I ( T ) if ϕ; Φ J ≥ I. It is undefined otherwise. • ∀ i.srv K J ( T ) ϕ;Φ -I = ∀ i.osrv K J-I ( T ). ϕ; Φ; Γ P K ϕ; Φ; Γ Q K ϕ; Φ; Γ P | Q K ϕ; Φ; Γ -1 P K ϕ; Φ; Γ tick.P K+1 ϕ; Φ; Γ, ∆ a : ∀ i.isrv K I ( T ) ϕ; Φ Γ ϕ;Φ -I Γ Γ time invariant (ϕ, i); Φ; Γ , v : T P K ϕ; Φ; Γ, ∆ !a(v
Let us explain a bit the definition here. For base types, there is no time indication thus nothing happens. For simple channel types, there are two cases. Either the bound J on the time was greater than I, and so we only have to subtract I from J to make time pass. Either the bound J was not greater than I, and so this channel cannot be used any more after I units of time, thus we erase this channel from the context.

For servers types, there is a dissymmetry between the input and output capabilities. The input capability behaves like a simple channel, if the time J is too small, we erase this capability. However, the output capability is never erased, even if the time J is too small. This is because when a server is defined, it must stay available until the end. Thus, an output to a server should always be possible, no matter the time. Still, the input capability of a server should not be available eternally, as the time J is supposed to mean the time for which a replicated input is effectively defined. So, when this time has passed, we should not be able to define a replicated input any more.

We notice that this definition of time advancing generates constraints in a type derivation. Indeed, if we know that a : ch J ( T ) ϕ;Φ -1 = a : ch J-1 ( T ), then we have ϕ; Φ J ≥ 1. This will be useful to see what constraints the complexity of a process should satisfy, as we will see in examples.

Definition 4. 4.3 (Time Invariant Context). Given a set of index variables ϕ and a set of constraints Φ, a context Γ is said to be time invariant when it only contains base type variables or output server types ∀ i.osrv K I ( T ) with ϕ; Φ I = 0.

Such a context is thus invariant by the operator • -I for any I. This is typically the kind of context that we need to define a server, as a server should not be dependent on the time it is called. We can now present the type system. Typing rules for expressions and some processes do not change, they can be found in Figure 4.10 and Figure 4.11. In Figure 4.21, we present the remaining rules in this type system that differ from the ones in Figure 4.12. As before, a typing judgement ϕ; Φ; Γ P K intuitively means that under the constraints Φ, in a context Γ, a process P is typable and its span complexity is bounded by K.

The rule for parallel composition shows that we consider parallel complexity as we take the maximum between the two processes instead of the sum. In practice, we ask for the same complexity K in both branches of parallel composition, but with the subtyping rule, it corresponds indeed to the maximum. For input server, we integrate some weakening on context (∆), and we want a time invariant context to type the server, as a server should not depend on time.

Weakening is important since some types are not time invariant, such as channels. So, we need to separate time invariant types that can be used in the continuation P from other types.

Some rules make the time advance in their continuation, for example the tick rule or input rule. This is expressed by the advance time operator on contexts, and because time advances, the complexity also increases. Also, notice that because of the advance of time, some channels names could disappear, thus there is a kind of "time uniqueness" for channels, contrary to the previous section on work. This will be detailed later. Also, note that in the rule for replicated input, there is an explicit subtyping in the premises. This is because Γ ϕ;Φ -I is not time invariant in general, since the type of a contains the input capability. However, if this server has both input and output capabilities, we can give a time invariant type for a (or other servers) just by removing the input capability, which can be done by subtyping.

Looking back at Corollary 4. 4.1, we can for example understand the rule for input by taking the judgement ϕ; Φ; a:ch 3 () a().tick.0 4. This expresses that with an environment providing a message on a within 3 time units, this process terminates in 4 time units.

Finally, we can see that if we remove all size annotations and merge server types and channel types together, we get back the classical input/output types, and all the rules described here are admissible in the classical input/output type system for the π-calculus. Definition 4. 4.4 (Forgetting Sizes). Formally, given a sized type T , we define U(T ) the usual input/output type (U is for forgetful) by:

U(Nat[I, J]) := Nat U(List[I, J](B)) := List(U(B)) U(ch I ( T )) := ch(U( T )) U(in I ( T )) := in(U( T )) U(out I ( T )) := out(U( T )) U(∀ i.srv K I ( T )) := ch(U( T )) U(∀ i.isrv K I ( T )) := in(U( T )) U(∀ i.osrv K I ( T )) := out(U( T ))
Then, we obtain the following lemma, with the classical input/output typing: And the constraints ϕ; Φ I a ≥ I b ≥ I c are necessary in order for the various • -I to be defined. So, to sum up, the complexity of such a sequence of input/output is given by the time of the last channel, and the constraints that appear are that the order of time should correspond to the order of the process sequence.

i; (i ≥ 2); Γ -1 , m : Nat[i-1], p : Nat[i-2], b : out i-1 (Nat[F ib(i-1)]), c : out G(i-2) (Nat[F ib(i-2)]) • | • | • i-1 i; (i-1 ≥ 1); Γ -1 , m : Nat[i-1], p : Nat[i-2] (νb)(νc) • • • i-1 i; (i ≥ 1); Γ -1 , m : Nat[i-1] match m {0 → a 1 ; ; s(p) → • • •} i-1 i; •; Γ -1 match n {0 → a 0 ; ; s(m) → • • •} G(i)-1 i; •; Γ tick.match n {0 → a 0 ; ; s(m) → • • •} (G(i)-1)+1 i; •; fib : • • • , n : Nat[i], a : out G(i) (Nat[F ib(i)]) tick.match n {0 → a 1 ; ; s(m) → • • •} G(i) •; •; fib : ∀i.srv G(i) 0 (Nat[i], out G(i) (Nat[F ib(i)])) !fib(n, a).tick. • • • 0
Another interesting case of this is when a is a server type and not a simple channel type: let us take a : srv Ka Ia (). As an output capability for a server type is never erased by • -I , we have fewer restrictions. In particular, we only need ϕ; Φ I b ≥ I c and the complexity becomes K a +I b +(I a -I b ). Recall that this is not always equal to K a +I a by definition of subtraction, for example if I a = 0, then we have the complexity K a +I b in the end.

Finally, one can notice that if we add a tick constructor to this process, then the only thing it does is changing the shape of constraints. For example, if P = tick.c().tick.b().a and a is a simple channel, then the total complexity is still I a but the constraints on I a , I b and I c become:

ϕ; Φ I c ≥ 1 ϕ; Φ I b ≥ I c +1 ϕ; Φ I a ≥ I b
Fibonacci. Let us consider again the process P described in Figure 4. 3. We pose G(n) = max(1, n) and we want to show that the server fib has a span G(n). In order to do this, we give the typing described in Figure 4. [START_REF] Breuvart | On intersection types and probabilistic lambda calculi[END_REF].

An Example to Justify the Use of Time. In order to justify the use of time in types for span, and to show how we could find the time of a channel, we present here three examples of recursive calls with different behaviours. Usually, type inference for a size system reduces to satisfying a set of constraints on indices. We believe that even with time indexes on channels, type inference is still reducible to satisfying such a set of constraints. So, for the sake of simplicity, we will describe this example with constraints. We define three processes P 1 , P 2 and P 3 by: P l ≡!a(n, r).tick.match n {0 → r ; ; s(m) → (νr )(νr )(Q l )} for the following definitions of Q l :

Q 1 ≡ a m, r | a m, r | r ().r ().r Q 2 ≡ a m, r | r ().a m, r | r ().r Q 3 ≡ a m, r | r ().(a m, r | r ) | r ().0
So intuitively, for P 1 the two recursive calls are done after one unit of time in parallel, and the return signal on r is done when both processes have done their return signal on r and r . So, this is total parallelism for the two recursive calls (the span is linear in n). For P 2 , a first recursive call is done, and then the process waits for the return signal on r , and when it receives it, the second recursive call begins. So, this is totally sequential (the span is exponential in n). Finally, for P 3 we have an intermediate situation between totally parallel and totally sequential. The process starts with a recursive call. Then, it waits for the return signal on r . When this signal arrives, it immediately starts the second recursive call and immediately does the return signal on r. So, intuitively, the second recursive call starts when all the "left" calls have been done. Note that those three servers have the same work, which is exponential in n.

So, let us type the three examples with the type system for span. For the sake of simplicity, we omit the typing of expressions, we only consider the difficult branch for the match constructors, and we focus on complexity and time. We consider the following context that is used for the three processes: Γ ≡ a : ∀i.osrv

f (i) 0 (Nat[0, i], ch g(i) ()), n : Nat[0, i], r : ch g(i) ()
We have two unknown function symbols: f , that represents the complexity of the server, and g, the time for the return channel. We also use this second context:

∆ ≡ Γ -1 , m : Nat[0, i-1], r : ch g (i) (), r : ch g (i) ()
This gives two more unknown functions, g and g corresponding respectively to the time of r and r when defined. The three processes start with the same typing:

i; • f (i) ≥ g(i) i; •; Γ -1 r f (i)-1 i; i ≥ 1; ∆ Q l f (i)-1 i; •; Γ -1 match n {0 → r ; ; s(m) → (νr )(νr )(Q l )} f (i)-1 i; •; Γ tick.match n {0 → r ; ; s(m) → (νr )(νr )(Q l )} f (i)
•; •; a : ∀i.srv

f (i) 0 (Nat[0, i], ch g(i) ()) P l 0
Because of the tick, we know that the complexity on the bottom should have the shape K+1 for some K, so here we obtain immediately that f (i) ≥ 1. In the same way, r should still be defined in Γ -1 , so we obtain g(i) ≥ 1.

We now describe the different constraints obtained on the three processes, under the assumption that i ≥ 1. For Q 1 , we obtain a typing similar to Fibonacci, and we derive the constraints:

f (i)-1 ≥ f (i-1) g (i) = g(i-1) g (i) = g(i-1) g(i)-1 ≥ g (i) ≥ g (i) f (i)-1 ≥ g(i)-1
The first constraint is because the total complexity f (i)-1 must be greater than the complexity of the two recursive calls f (i-1). Then, r and r must have a time equal to g(i-1) in order to correspond to the type of a in the outputs a m, r and a m, r . Finally, the last two constraints correspond to the constraints of Example 4. 4.1 and the fact that the complexity bound f (i)-1 should be greater that the complexity of this subprocess with is g(i)-1 again as in Example 4. 4.1. So, we can satisfy the conditions with the following choice:

f (i) ≡ i+1 g(i) ≡ i+1 g (i) ≡ g (i) ≡ i
So, as expected, the span, represented by the function f , is indeed linear. Then, for Q 2 , we describe the typing in Figure 4.23, where ϕ; Φ ≡ i; (i ≥ 1). Thus, we obtain the following constraints:

• • • • • • ϕ; Φ; ∆ -g (i) r g(i)-1-g (i) ϕ; Φ; ∆ -g (i) r f (i)-1-g (i) ϕ; Φ; ∆ -g (i) a m, r | r f (i)-1-g (i) ϕ; Φ; ∆ r ().(a m, r | r ) f (i)-1 ϕ; Φ; ∆ -g (i) 0 0 ϕ; Φ; ∆ r ().0 g (i) ϕ; Φ; ∆ r ().0 f (i)-1 i; (i ≥ 1); ∆ a m, r | r ().(a m, r | r ) | r ().0 f (i)-1
f (i)-1 ≥ f (i-1) g (i) = g(i-1) f (i)-1-g (i) ≥ f (i-1) g (i)-g (i) = g(i-1) g(i)-1 ≥ g (i) f (i)-1 ≥ g(i)-1
The constraints on f (i) are obtained because of the subtyping rules, expressed by the double lines in the type derivation. The equality constraints are obtained because we need both r and r to have the type ch g(i-1) (), and finally the constraint g(i)-1 ≥ g (i) is as in Example 4. 4.1. Thus, we can take:

f (i) ≡ 2 i+1 -1 g(i) ≡ 2 i+1 -1
So, we indeed obtain the exponential complexity. However, with those two examples, the time of the channel r is always equal to the complexity of the server a, so we cannot really see the usefulness of time. Still, with the next example we obtain something more interesting. A type derivation for Q 3 is given in Figure 4. 24. And we obtain the constraints:

f (i)-1 ≥ f (i-1) g (i) = g(i-1) f (i)-1-g (i) ≥ f (i-1) g (i)-g (i) = g(i-1) g(i)-1 ≥ g (i) f (i)-1-g (i) ≥ g(i)-1-g (i) f (i)-1 ≥ g (i)
The first four constraints are exactly the same as before, because there are the same typing derivation (represented by • • • ). Then, the constraint on g(i)-1 is because of • -g (i) , and the other constraints come from subtyping rules. So, using the equalities, and by removing redundant inequalities, we obtain for f and g:

f (i) ≥ 1+g(i-1)+f (i-1) g(i) ≥ 1+g(i-1) f (i) ≥ 1+2 • g(i-1)
Thus, we can take:

g(i) ≡ i+1 f (i) ≡ (i+1)(i+2) 2 
The complexity is quadratic in n. Note that for this example, the complexity f depends directly on g, and g is given by a recursive equation independent of f . So in a sense, to find the complexity, we need to find first the delay of the second recursive call. Without time indications on channel, it would not be possible to track and obtain this recurrence relation on g and thus we could not deduce the complexity.

Note that the two first examples used channels as a return signal for a parallel computation, whereas for the last example, channels are used as a synchronization point in the middle of a computation. We believe that this flexibility of channels justifies the use of π-calculus to reason about parallel computation. Moreover, this work is a step to a more expressive type system inspired by [START_REF] Kobayashi | A type system for lock-free processes[END_REF], taking in account concurrent behaviour, that we will present in Section 4. 5. Indeed, as we will show, the current type system fails to capture some simple concurrency.

Limitations of the Type System. Our current type system enforces some kind of time uniqueness in channels. As by definition a : ch 0 () -1 is ∅, we cannot type the output on a.

So, channels have strong constraints on the time they can be used. This is true especially when channels are not used linearly. Still, note that we can type a process of the shape a().0 | a | tick.a , so it is better than plain linearity on channels. This restriction limits examples of concurrent behaviours. For example, take two processes P 1 and P 2 that should be executed but not simultaneously. In order to do that in a concurrent setting, we can use semaphores. In π-calculus, we could consider the process (νa)(a().P 1 | a().P 2 | a ), where P 1 is P 1 with an output a at the end, likewise for P 2 . This is a way to simulate semaphore in π-calculus. Now, we can see that this example has the same problem as the example given above if for example P 1 contains a tick, thus we cannot type this kind of processes. Formally, this is because of our parallel composition rule:

ϕ; Φ; Γ P K ϕ; Φ; Γ Q K ϕ; Φ; Γ P | Q K
If we take Q equal to P , we then obtain, from a typing ϕ; Φ; Γ P K a typing ϕ; Φ; Γ P | P K. So, the type system consider that P and P | P are equivalent, and this is obviously not true in general, especially with the example described above. However, in a linear setting, this is not a problem.

Still, we believe that for parallel computation, our type system should be quite expressive in practice. Indeed, as stated above, the restriction appears especially when channels are not used linearly. However, it is known that linear π-calculus in itself is expressive for parallel computation [START_REF] Kobayashi | Linearity and the pi-calculus[END_REF]. For example, classical encodings of functional programs in a parallel setting rely on the use of linear return signals, as we will see in the example for bitonic sort in Sect. 4. 4.3. Moreover, session types can also be encoded in linear π-calculus in the presence of variant types [START_REF] Kobayashi | Type systems for concurrent programs[END_REF][START_REF] Dardha | Session types revisited[END_REF]. Note that in order to encode a calculus as the one in [START_REF] Das | Parallel complexity analysis with temporal session types[END_REF], we would also need recursive types. Our calculus and its proof of soundness could be extended to variant types, but not straightforwardly to recursive types. However, we believe the results on the linear πcalculus we cited suggest that the restriction given above should not be too harmful for parallel computation.

We will come back later on this example, in Section 4.5, and we will use type usages to overcome this problem.

Soundness

In this section, we show how to prove that our type system indeed gives a bound on the number of time reduction steps of a process. As we work with the reduction ⇒, we need to consider annotated processes instead of simple processes. So, we need to enrich our type system with a rule for the constructor n : P . ϕ; Φ; Γ -n P K ϕ; Φ; Γ n : P K+n As the intuition suggested, this rule is equivalent to n times the typing rule for tick. We can now work on the properties of our type system on annotated processes.

The procedure to prove the subject reduction for ⇒ in this type system is intrinsically more difficult than the one for Theorem 4.2.1. So, from the proof of subject reduction for span, one could deduce the proof of subject reduction for work, just by forgetting the considerations with time and the constructor n : P in the following proof.

Intermediate Lemmas

As usual, we first show some intermediate lemmas on the typing system. To begin with, we give a lemma on the link between subtyping and time advance. Proof. The proof is by induction on the subtyping derivation. First, transitivity is direct by induction hypothesis. For non-channel type, this is direct because time advancing does not do anything. Then, for channels that are not servers, time is invariant by subtyping, thus time advancing is either undefined for both types, either defined for both types, with the same time.

For a server type, again time is invariant by subtyping, so either both types lose their input capability, either they both keep the same capabilities. The case where U -I is undefined and not T -I is when T is an input/output server that looses its input capability, and U is an input server.

Now, for the usual properties of typing systems, we have first structure lemmas.

Lemma 4. 4.3 (Weakening). Let ϕ, ϕ be disjoint set of index variables, Φ be a set of constraints on ϕ, Φ be a set of constraints on (ϕ, ϕ ), Γ and Γ be contexts on disjoint set of variables. -I , and the subtyping condition is here since with more constraints, a server may not be changed into an output server by the advance of time. Point 3 and Point 5 are proved by induction on the typing derivation, and each point uses crucially the previous ones. Note that the weakening integrated in the rule for input servers is necessary to obtain Point 5. Note also that when the advance time operator is used, the weakened typing is obtained with the use of a subtyping rule. We also have the usual property specific to our sized type systems, index substitution.

Lemma 4. 4.5 (Index Substitution). Let ϕ be a set of index variable and i / ∈ ϕ. Let J be an index with free variables in ϕ. Then,

1. I{J/i} ρ = I ρ[i → J ρ] .
2. If (ϕ, i); Φ C then ϕ; Φ{J/i} C{J/i}. We also need a lemma specific to the notion of time.

Definition 4. 4.5 (Delaying). Given a type T and an index I, we define the delaying of T by I units of time, denoted T +I :

B +I = B ch J ( T ) +I = ch J+I ( T )
and for other channel and server types, the definition is in correspondence with the one on the right above. This definition can be extended to contexts. With this lemma, we can see that if we add a delay of I time units in the contexts for all channels, it increases the complexity by I time units, thus we see the link between time in types and the complexity. Then, we can show the usual substitution lemma. The proof is pretty straightforward.

Subject Reduction

We now present the core theorem in order to obtain the complexity soundness: subject reduction. First, we need to show that tying is invariant by congruence. Lemma 4. 4.8 (Congruence and Typing). Let P and Q be annotated processes such that P ≡ Q. Then, ϕ; Φ; Γ P K if and only if ϕ; Φ; Γ Q K.

Proof. We prove this by induction on P ≡ Q. Notice that again, for a process P , the typing system is not syntax-directed because of the subtyping rule, so we consider that a derivation has exactly one subtyping rule before any syntax-directed rule. And, as for Theorem 3.1.1, the first subtyping rule on the bottom can be ignored. We first show this property for base case of congruence. The reflexivity is trivial then we have:

• Case P | 0 ≡ P . Suppose ϕ; Φ; Γ P | 0 K. Then the derivation has the shape: π ϕ; Φ; Γ P K π ϕ; Φ; Γ 0 K ϕ; Φ; Γ P | 0 K Thus, π gives us the desired proof. Reciprocally, given a derivation π of ϕ; Φ; Γ P K, we can derive the proof:

π ϕ; Φ; Γ P K ϕ; Φ; Γ 0 0 ϕ; Φ 0 ≤ K ϕ; Φ; Γ 0 K ϕ; Φ; Γ P | 0 K • Case P | Q ≡ Q | P . Suppose ϕ; Φ; Γ P | Q K.
Then the derivation has the shape:

π ϕ; Φ; Γ P K π ϕ; Φ; Γ Q K ϕ; Φ; Γ P | Q K
And so we can derive:

π ϕ; Φ; Γ Q K π ϕ; Φ; Γ P K ϕ; Φ; Γ Q | P K • Case P | (Q | R) ≡ (P | Q) | R. Suppose ϕ; Φ; Γ P | (Q | R) K.
Then the derivation has the shape:

πP ϕ; Φ; Γ P K πQ ϕ; Φ; ∆ Q K πR ϕ; Φ; ∆ R K ϕ; Φ; ∆ Q | R K ϕ; Φ Γ ∆ ϕ; Φ K ≤ K ϕ; Φ; Γ Q | R K ϕ; Φ; Γ P | (Q | R) K
We can derive the proof:

πP ϕ; Φ; Γ P K πQ ϕ; Φ; ∆ Q K ϕ; Φ Γ ∆; K ≤ K ϕ; Φ; Γ Q K ϕ; Φ; Γ P | Q K πR ϕ; Φ; ∆ R K ϕ; Φ; Γ R K ϕ; Φ; Γ (P | Q) | R K
The reverse follows the same pattern.

• Case (νa)(νb)P ≡ (νb)(νa)P . Suppose ϕ; Φ; Γ (νa)(νb)P K. Then the derivation has the shape: Then the derivation has the shape:

πP ϕ; Φ; ∆, a : T P K ϕ; Φ; ∆ (νa)P K ϕ; Φ Γ ∆ ϕ; Φ K ≤ K ϕ; Φ; Γ (νa)P K πQ ϕ; Φ; Γ Q K ϕ; Φ; Γ (νa)P | Q K
By weakening (Lemma 4. 4.3), we obtain a derivation π Q of ϕ; Φ; Γ, a : T Q K. Thus, we have the following derivation:

π P ϕ; Φ; ∆, a : T P K ϕ; Φ Γ ∆ ϕ; Φ T T ϕ; Φ K ≤ K ϕ; Φ; Γ, a : T P K π Q ϕ; Φ; Γ, a : T Q K ϕ; Φ; Γ, a : T P | Q K ϕ; Φ; Γ (νa)(P | Q) K
For the converse, suppose ϕ; Φ; Γ (νa)(P | Q) K. Then the derivation has the shape:

π P ϕ; Φ; ∆, a : T P K π Q ϕ; Φ; ∆, a : T Q K ϕ; Φ; ∆, a : T P | Q K ϕ; Φ Γ ∆ ϕ; Φ T T ϕ; Φ K ≤ K ϕ; Φ; Γ, a : T P | Q K ϕ; Φ; Γ (νa)(P | Q) K
Since a is not free in Q, by Lemma 4. 4.4, from π Q we obtain a derivation π Q of ϕ; Φ; ∆ Q K . We can then derive the following typing:

πP ϕ; Φ; ∆, a : T P K ϕ; Φ T T ϕ; Φ; ∆, a : T P K ϕ; Φ; ∆ (νa)P K π Q ϕ; Φ; ∆ Q K ϕ; Φ; ∆ (νa)P | Q K ϕ; Φ Γ ∆ ϕ; Φ K ≤ K ϕ; Φ; Γ (νa)P | Q K • Case m : (P | Q) ≡ m : P | m : Q. Suppose ϕ; Φ; Γ m : (P | Q) K+m.
Then we have:

πP ϕ; Φ; ∆ P K πQ ϕ; Φ; ∆ Q K ϕ; Φ; ∆ P | Q K ϕ; Φ Γ -m ∆ ϕ; Φ K ≤ K ϕ; Φ; Γ -m P | Q K ϕ; Φ; Γ m : (P | Q) K+m
So, we can give the following derivation:

πP ϕ; Φ; ∆ P K ϕ; Φ Γ -m ∆ ϕ; Φ K ≤ K ϕ; Φ; Γ -m P K ϕ; Φ; Γ m : P K+m πQ ϕ; Φ; ∆ Q K ϕ; Φ; Γ -m K ϕ; Φ; Γ m : Q K+m ϕ; Φ; Γ m : P | m : Q K+m
Now, suppose we have a typing ϕ; Φ; Γ m : P | m : Q K. The typing has the shape:

π P ϕ; Φ; ∆ 1 -m P K 1 ϕ; Φ; ∆ 1 m : P K 1 +m π Q ϕ; Φ; ∆ 2 -m Q K 2 ϕ; Φ; ∆ 2 m : Q K 2 +m ϕ; Φ Γ ∆ 1 ; Γ ∆ 2 ; K 1 +m ≤ K; K 2 +m ≤ K ϕ; Φ; Γ m : P K ϕ; Φ; Γ m : Q K ϕ; Φ; Γ m : P | m : Q K By Lemma 4.4.2, from Γ ∆ 1 , we obtain Γ = Θ 0 , Θ 1 with Θ 1 -m ∆ 1 -m .
In the same way, Γ = Θ 0 , Θ 1 with Θ 1 -m ∆ 2 -m . Moreover, we have easily ϕ; Φ K ≥ m. Thus, by the Lemma 4. 4.3 (weakening) for π P and π Q , we obtain:

π w P ϕ; Φ; Θ0 -m , ∆1 -m P K1 ϕ; Φ; Γ -m P K-m π w Q ϕ; Φ; Θ 0 -m , ∆2 -m Q K2 ϕ; Φ; Γ -m Q K-m ϕ; Φ; Γ -m P | Q K-m ϕ; Φ; Γ m : (P | Q) K
This concludes this case.

• Case m : (νa)P ≡ (νa)(m : P ). Suppose that ϕ; Φ; Γ m : (νa)P K+m. Then, the derivation has the shape: For the converse, suppose that ϕ; Φ; Γ (νa)m : P K. Then the typing has the shape: This concludes all the base case. We can then prove Lemma 4.4.8 by induction on P ≡ Q. All the base case have been done, symmetry and transitivity are direct by induction hypothesis. For the cases of contextual congruence, the proof is straightforward. Now that we have Lemma 4. 4.8, we can work up to the congruence relation. In order to proceed to the subject reduction, we first need an exhaustive description of subtyping. As expressed before, the transitivity rule is not necessary and so in the following proof it will be better to consider a subtyping without transitivity. This alternative presentation of subtyping is described in Figure 4.25 for servers. The case of simple channels can easily be deduced from the case of servers.

ϕ; Φ J ≤ J ϕ; Φ Nat[I, J] Nat[I , J ] ϕ; Φ I ≤ I ϕ; Φ J ≤ J ϕ; Φ B B ϕ; Φ List[I, J](B) List[I , J ](B ) ϕ; Φ I = J (ϕ, i); Φ T U (ϕ, i); Φ U T (ϕ, i); Φ K = K ϕ; Φ ∀ i.srv K I ( T ) ∀ i.srv K J ( U ) ϕ; Φ I = J (ϕ, i); Φ T U (ϕ, i); Φ K ≤ K ϕ; Φ ∀ i.srv K I ( T ) ∀ i.isrv K J ( U ) ϕ; Φ I = J (ϕ, i); Φ U T (ϕ, i); Φ K ≤ K ϕ; Φ ∀ i.srv K I ( T ) ∀ i.osrv K J ( U ) ϕ; Φ I = J (ϕ, i); Φ T U (ϕ, i); Φ K ≤ K ϕ; Φ ∀ i.isrv K I ( T ) ∀ i.isrv K J ( U ) ϕ; Φ I = J (ϕ, i); Φ U T (ϕ, i); Φ K ≤ K ϕ; Φ ∀ i.osrv K I ( T ) ∀ i.osrv K J ( U )
And of course, we have: Proof. The converse is direct, all the rules described in Figure 4.25 can be derived in the original subtyping description using at most once the transitivity rule. For the direct implication, the proof is rather straightforward. We proceed by induction on the usual subtyping relation. All base cases are indeed of this form, and the only hard case is for transitivity. For this case, we have to use the induction hypothesis and consider all cases in which the right member of a rule of Figure 4.25 can match with a left member of another rule. This is a long case analysis, but all the cases are simple.

And with all this, we can finally work on the subject reduction. Let us show this Theorem. We do this by induction on P ⇒ Q. Let us first notice that when considering the typing of P , again the first subtyping rule has no importance since we can always start the typing of Q with the exact same subtyping rule. We now proceed by doing the case analysis on the rules of Figure 4. [START_REF] Barthe | On the versatility of open logical relations[END_REF].

• Case (n :!a( v).P ) | (m : a e ) ⇒ (n :!a( v).P ) | (max(n, m) : P [ v := e]). Consider the typing ϕ; Φ; Γ (n :!a( v).P ) | (m : a e ) K. The first rule is the rule for parallel composition, then the derivation is split into the two following subtree:

ϕ; Φ; ∆ 0 , ∆ 0 a : ∀ i.isrv K 0 I 0 ( T 0 ) π P (ϕ, i); Φ; Θ 0 , v : T 0 P K 0 ϕ; Φ ∆ 0 -I 0 Θ 0 , time invariant ϕ; Φ; ∆ 0 , ∆ 0 !a( v).P I 0 ϕ; Φ Γ 0 -n ∆ 0 , ∆ 0 ; I 0 ≤ K 0 ϕ; Φ; Γ 0 -n !a( v).P K 0 ϕ; Φ; Γ 0 n :!a( v).P K 0 +n ϕ; Φ Γ Γ 0 ; K 0 +n ≤ K ϕ; Φ; Γ n :!a( v).P K ϕ; Φ; ∆ 1 a : ∀ i.osrv K 1 I 1 ( T 1 ) πe ϕ; Φ; ∆ 1 -I 1 e : T 1 { J/ i} ϕ; Φ; ∆ 1 a e I 1 +K 1 { J/ i} ϕ; Φ Γ 1 -m ∆ 1 ; I 1 +K 1 { J/ i} ≤ K 1 ϕ; Φ; Γ 1 -m a e K 1 ϕ; Φ; Γ 1 m : a e K 1 +m ϕ; Φ Γ Γ 1 ; K 1 +m ≤ K ϕ; Φ; Γ m : a e K
The first subtree can be used exactly as it is to type the server in the right part of the reduction relation. Furthermore, as the name a is used as an input and as an output, so the original type in Γ for this name must be a server type ∀ i.srv Ka I ( T ). As this server does not lose its input capacity after the time decrease, we also know that ϕ; Φ I ≥ n. So, by Lemma 4. 4.9, we have:

ϕ; Φ I 0 = I-n (ϕ, i); Φ T T 0 (ϕ, i); Φ K 0 ≤ K a ϕ; Φ I 1 = I-m (ϕ, i); Φ T 1 T (ϕ, i); Φ K a ≤ K 1
There are now two cases to consider.

-Let us first consider that ϕ; Φ I ≥ m. Then, we obtain directly:

ϕ; Φ I 0 +n = I 1 +m (ϕ, i); Φ T 1 T 0 (ϕ, i); Φ K 0 ≤ K 1
Thus, by subtyping, from π P we can obtain a derivation of (ϕ, i); Φ; ∆ 0 -I 0 , v : T 1 P K 1 . By Lemma 4. 4.5, we have a derivation of ϕ; Φ{ J/ i}; ( ∆ 0 -I 0 ){ J/ i}, v :

T 1 { J/ i} P K 1 { J/ i}. As i only appears in T 1 and K 1 , we obtain a derivation of ϕ; Φ; ∆ 0 -I 0 , v : T 1 { J/ i} P K 1 { J/ i}. Now, by using several times Lemma 4. 4.2, we have:

ϕ; Φ Γ -(n+I 0 ) 0 , ∆ 0 -I 0 0 , Θ 0 ϕ; Φ Γ -(m+I 1 ) 1 , ∆ 1 -I 1
for some 0 , 1 . By Lemma 4. As the name a is used as an input and as an output, so the original type in ∆ for this name must be a channel type ch I ( T ). As this channel is not erased after the time decrease, we also know that ϕ; Φ I ≥ n and ϕ; Φ I ≥ m. So, by Lemma 4. 4.9, we have:

ϕ; Φ I 0 = I-n (ϕ, i); Φ T T 0 ϕ; Φ I-m = I 1 (ϕ, i); Φ T 1 T
So, we obtain directly:

ϕ; Φ I 0 +n = I 1 +m (ϕ, i); Φ T 1 T 0 Thus, by subtyping, from π P we can obtain a derivation of ϕ; Φ; ∆ 0 -I 0 , v : T 1 P K 0 . Now, by using several times Lemma 4. 4.2, we have:

ϕ; Φ Γ -(n+I 0 ) 0 , ∆ 0 -I 0 ϕ; Φ Γ -(m+I 1 ) 1 , ∆ 1 -I 1
for some 0 , 1 . By Lemma 4. • Case tick.P ⇒ 1 : P . This case is direct because both constructors have exactly the same typing rule. From this, we can deduce the following constraints:

ϕ; Φ J ≥ 1 ϕ; Φ I-1 ≤ I ϕ; Φ J ≤ J -1
Thus, with the subtyping rule and the proofs π e and π e we obtain: This concludes this case.

• Case P | R ⇒ Q | R with P ⇒ Q. Suppose that ϕ; Φ; Γ P | R K.
Then the derivation has the shape:

πP ϕ; Φ; Γ P K πR ϕ; Φ; Γ R K ϕ; Φ; Γ P | R K
By induction hypothesis, with the derivation π P of ϕ; Φ; Γ P K, we obtain a derivation π Q of ϕ; Φ; Γ Q K. Then, we can derive the following proof:

πQ ϕ; Φ; Γ Q K πR ϕ; Φ; Γ R K ϕ; Φ; Γ Q | R K
This concludes this case.

• Case (νa)P ⇒ (νa)Q with P ⇒ Q. Suppose that ϕ; Φ; Γ (νa)P K. Then the derivation has the shape: πP ϕ; Φ; Γ, a : T P K ϕ; Φ; Γ (νa)P K By induction hypothesis, with the derivation π P of ϕ; Φ; Γ, a : T P K, we obtain a derivation π Q of ϕ; Φ; Γ, a : T Q K We can then derive the proof:

πQ ϕ; Φ; Γ, a : T Q K ϕ; Φ; Γ (νa)Q K
This concludes this case.

• Case n : P ⇒ n : Q with P ⇒ Q. Suppose that ϕ; Φ; Γ n : P K+n. Then, the derivation has the shape: Proof. By Theorem 4. 4.2, all reductions from P using ⇒ preserve the typing. Moreover, for any process Q, if we have a typing ϕ; Φ; Γ Q K, then ϕ; Φ K ≥ C (Q). Indeed, a constructor n : P incurs an increment of the complexity of n both in typing and in the definition of C (Q), and for parallel composition the typing imposes a complexity greater than the maximum as in the definition for C (Q). Thus, for any process Q reachable from P , we have ϕ; Φ K ≥ C (Q), so K is indeed a bound on the parallel complexity. Corollary 4. 4.1 is then obtained with the substitution lemma and the rule for parallel composition.

Examples: Bitonic Sort / Brute Force

Bitonic Sort

As an example for this type system, we first show how to obtain the bound on a common parallel algorithm: bitonic sort [2]. The particularity of this sorting algorithm is that it admits a parallel complexity in O(log(n) 2 ). We will show here that our type system allows to derive this bound for the algorithm, just as the paper-and-pen analysis. Actually we consider here a version for lists, which is not optimal for the number of operations, but we obtain the usual number of comparisons. For the sake of simplicity, we present the algorithm for lists of size a power of two. Let us briefly sketch the ideas of this algorithm. For a formal description see [2].

• A bitonic sequence is either a sequence composed of an increasing sequence followed by a decreasing sequence (e.g. [2,7,[START_REF] Castro | CAMP: cost-aware multiparty session protocols[END_REF][START_REF] Barthe | Higher-order approximate relational refinement types for mechanism design and differential privacy[END_REF][START_REF] Baillot | On the expressivity of elementary linear logic: Characterizing ptime and an exponential time hierarchy[END_REF]5]), or a cyclic rotation of such a sequence (e.g. [START_REF] Baillot | On the expressivity of elementary linear logic: Characterizing ptime and an exponential time hierarchy[END_REF]5,2,7,[START_REF] Castro | CAMP: cost-aware multiparty session protocols[END_REF][START_REF] Barthe | Higher-order approximate relational refinement types for mechanism design and differential privacy[END_REF]).

• The algorithm uses two main functions, bmerge and bsort.

• bmerge takes a bitonic sequence and recursively sorts it, as follows:

Assume s = [a 0 , . . . , a n-1 ] is a bitonic sequence such that the sequence [a 0 , . . . , a n/2-1 ] is increasing and the sequence [a n/2 . . . , a n-1 ] is decreasing, then we consider:

s 1 = [min(a 0 , a n/2 ), min(a 1 , a n/2+1 ) . . . , min(a n/2-1 , a n-1 )] s 2 = [max(a 0 , a n/2 ), max(a 1 , a n/2+1 ) . . . , max(a n/2-1 , a n-1 )]
Then we have: s 1 and s 2 are bitonic and satisfy: ∀x ∈ s 1 , ∀y ∈ s 2 , x ≤ y.

bmerge then applies recursively to s 1 and s 2 to produce a sorted sequence.

• bsort takes a sequence and recursively sorts it. It starts by separating the sequence in two. Then, it recursively sorts the first sequence in increasing order, and the second sequence in decreasing order. With this, we obtain a bitonic sequence that can be sorted with bmerge.

We will encode this algorithm in π-calculus with a boolean type. As expressed before, our results can easily be extended to support boolean with a conditional constructor. First, we suppose that a server for comparison lessthan is already implemented. We start with bcompare such that given two lists of same length, it creates the list of maximum and the list of minimum. This is described in Figure 4. 26. We present here intuitively the typing. To begin with, we suppose that lessthan is given the server type srv 0 0 (B, B, ch 0 (Bool)), saying that this is a server ready to be called, and it takes in input a channel that is used to return the boolean value. With this, we can give to bcompare the following server type:

∀i.srv 1 0 (List[0, i](B), List[0, i](B), out 1 (List[0, i](B), List[0, i](B)))
The important things to notice is that this server has complexity 1, and the channel taken in input has a time 1. A sketch of this typing is given in Figure 4. [START_REF] Cousot | Abstract interpretation frameworks[END_REF]. The cases of empty lists are not detailed, but they are easy. In the non-empty case, for the ν constructor, we must give a type to the channels b and c. We use:

b : ch 1 (List[0, i-1](B), List[0, i-1](B)) c : ch 1 (Bool)
And we can then type the different processes in parallel.

!bcompare(l 1 ,l 2 ,a) . match(l 1 ) { [ ] → a l 1 ,l 2 ; ;

x :: • For the process tick.lessthan x, y, c , the tick enforces a decreasing of time 1 in the context. This modifies in particular the time of c, that becomes 0. Thus, we can do the call to lessthan as everything is well-typed.

l 1 → match(l 2 ) { [ ] → a l 1 ,l 2 ; ; y :: l 2 → (νb) (νc) ( bcompare l 1 ,l 2 ,b | tick.lessthan x , y , c | b(l m ,l M ) . c( z ) .if z then a x :: l m ,y :: l M else a y :: l m ,x :: l M ) } } !bmerge(up, l , a) . match( l ) { [ ] → a l ; ; [ y ] → a l ; ; → let (l 1 ,l 2 ) = partition ( l ) in (νb) (νc) (νd) ( bcompare l 1 ,l 2 ,b | b(p 1 ,p 2 ) . (bmerge up, p 1 ,c | bmerge up, p 2 ,d ) | c(q 1 ) . d(q 2 ) . if up then let l = q 1 @ q 2 in a l else let l = q 2 @ q 1 in a l ) } ! bsort (up, l , a) . match( l ) { [ ] → a l ; ; [ y ] → a l ; ; → let (l 1 ,l 2 ) = partition ( l ) in (νb) (νc) (νd) ( bsort tt ,l 1 ,b | bsort ff ,l 2 ,c | b(q 1 ) . c(q 2 ) .let q = q 1 @ q 2 in bmerge up, q , d | d(p) . a p ) }
• Finally, for the last process, we have in the two branches a shape b(

• • • ).c(• • • ).a • • • . So, by Example 4.4.
1, as all those three channels b, c and a have a time equal to 1, we have a complexity 1 for this typing.

So, we can indeed give this server type to bcompare, and thus we can call this server and it generates a complexity of 1.

Then, to present the processes for bitonic sort, let us use the macro let v = f ( e) in P to represent (νa)(f e, a | a( v).P ), and let us also use a generalized pattern matching. We also assume that we have a function for concatenation of lists and a function partition taking a list of size 2n, and giving two lists corresponding to the first n elements and the last n elements. Then, the process for bitonic sort is given in Figure 4. [START_REF] Coppo | A new type assignment for lambdaterms[END_REF].

Then, the main point in the typing of the two remaining servers is to find a solution to a recurrence relation for the complexity of server types. In the typing of bmerge, we suppose given a list of size smaller than 2 i and we choose both the complexity of this type and the time of the channel a equal to an index f (i) as in Section 4. 4 

i; i ≥ 1; ∆ (l 1 , l 2 , b) : T (i-1) i; i ≥ 1; ∆ bc l 1 , l 2 , b 1 • • • (x, y, c) : (B, B, ch0(Bool)) i; i ≥ 1; ∆ -1 lt x, y, c 0 i; i ≥ 1; ∆ tick.lt x, y, c 1 See Example 4.4.1 i; i ≥ 1; ∆ b(lm, lM ).c(z).if • • • 1 i; i ≥ 1; Γ , (l1, l2, a) : T (i), (l 1 , l 2 , b) : T (i-1), x, y : B, c : ch1(Bool) • • • | • • • | • • • 1 i; i ≥ 1; Γ , (l1, l2, a) : T (i), x, y : B, l 1 , l 2 : List[0, i-1](B) (νb)(νc) • • • 1 i; i ≥ 1; Γ , (l1, l2, a) : T (i), x : B, l 1 : List[0, i-1](B) match l2 {[] → • • • ; ; y :: l 2 → • • •} 1 i; •; Γ , (l1, l2, a) : T (i) match l1 {[] → • • • ; ; x :: l 1 → • • •} 1 Γ time invariant •; •; Γ -0 Γ •; •; Γ !bc(l1, l2, a). . . . 0 with T (i) ≡ List[0, i](B), List[0, i](B), out 1 (List[0, i](B), List[0, i](B))
Γ ≡ lt : srv 0 0 (B, B, ch 0 (Bool)), bc : ∀i.srv 1 0 ( T (i))

Γ ≡ lt : srv 0 0 (B, B, ch 0 (Bool)), bc : ∀i.osrv 1 0 ( T (i)) 

f (i) 0 (Bool, List[0, 2 i ](B), out f (i) (List[0, 2 i ](B)
)) Then, the typing given in Figure 4.28 gives us the following conditions, for the three branches, when i ≥ 1:

f (i) ≥ 1 f (i) ≥ 1+f (i-1) f (i) ≥ f (i-1) ≥ f (i-1)
So, we can take f (i) = i, and thus bmerge has logarithmic complexity.

In the same way, for bsort we choose the type: ∀i.srv

g(i) 0 (Bool, List[0, 2 i ](B), out g(i) (List[0, 2 i ](B)))
The typing is given in Figure 4.29, which gives us the following conditions, again for the three branches, when i ≥ 1:

g(i) ≥ g(i-1) g(i) ≥ g(i-1)+f (i) g(i) ≥ g(i-1)+f (i)
So, if we take f (i) = i as previously, we have:

i ≥ 1 implies g(i) ≥ g(i-1)+i
Thus, we can take g(i) in O(i 2 ), and we obtain in the end that bitonic sort is indeed in O(log(n) 2 ) on a list of size n. Notice that in this example, the type system gives recurrence relations corresponding to the usual recurrence relations we would obtain with a complexity analysis by hand. Here, the recurrence relation is only on f or g because channel names are only used as return channels, so their time is always equal to the complexity of the server that uses them. In general this is not the case as we saw before in Section 4. 4.1, so we obtain in general mutually recurrent relations when defining a server.

Brute Force

In this example, we focus on a brute forcing algorithm: given a propositional logic formula on n boolean variables, can we find an assignment for those variables such that the formula is true? For this example, we use both binary words and booleans as data-types. The formal rules for To begin with, we will give an abstraction of formulas on n boolean variables in the πcalculus. A formula is represented by a server name f ormula with the following type: ∀i.srv k 0 (Word[0, i], out k (Bool)) Thus, a formula receives an assignment for the n variables given by a binary word w. This word w = w 1 w 2 • • • w m represents the assignment x i = tt if and only if w i = 1. If w i = 0 or m < i then x i = ff. In particular, the formula should not read more that the n first letters of w, so we can assume that for a given formula, evaluating the truth of this formula can be done in a constant time k. Please note that this k can still depend on the evaluated formula, and in particular it can depend on n. Finally, this server returns the truth value of the formula on a return channel, sending a value of type Bool.

i; i ≥ 1; ∆ (l1, l2, b) : T (2 i-1 ) i; i ≥ 1; ∆ bc l1, l2, b 1 i; i ≥ 1; ∆ bc l1, l2, b f (i) See Example 4.4.1 i; i ≥ 1; ∆ b(p1, p2). • • • 1+f (i-1) i; i ≥ 1; ∆ b(p1, p2). • • • f (i) see Example 4.4.1 i; i ≥ 1; ∆ c(q1). • • • f (i) i; i ≥ 1; Γ , (up, l, a) : U (i), (l1, l2, b) : T (2 i-1 ), c, d : out f (i-1) (List[0, 2 i-1 ](B)) • • • | • • • | • • • f (i) i; i ≥ 1; Γ , (up, l, a) : U (i), l1, l2 : List[0, 2 i-1 ](B) (νb)(νc)(νd) • • • f (i) i; 2 i ≥ 2; Γ , (up, l, a) : U (i) let (l1, l2) = partition(l) in • • • f (i) i; •; Γ , (up, l, a) : U (i) match l {• • • } f (i) Γ time invariant •; •; Γ -0 Γ •; •; Γ !bm(up, l, a). . . . 0 with T (i) ≡ List[0, i](B), List[0, i](B), out 1 (List[0, i](B), List[0, i](B)) U (i) ≡ Bool, List[0, 2 i ](B), out f (i) (List[0, 2 i ](B)) Γ ≡ bc : ∀i.osrv 1 0 ( T (i)), bm : ∀i.srv f (i) 0 ( U (i)) Γ ≡ bc : ∀i.osrv 1 0 ( T (i)), bm : ∀i.osrv f (i) 0 ( U (i))
We do not detail how to obtain this server in practice. For propositional formulas for example, it should be clear that basic constructors on booleans are enough in order to have a simple encoding. The problem we consider is, given a server representing a formula, is there an assignment that satisfies this formula? In order to do this, we construct a function (a server) test of type ∀j, k.srv

f (j,k) 0 (Nat[0, j], ∀i.osrv k 0 (Word[0, i], out k (Bool)), out f (j,k) (Bool))
So, this test function takes as input the integer n, a formula, and a return channel. For the sake of simplicity, we do not send the assignment that satisfies the formula if it exists, but we could have done this without changing anything to complexity analysis. This function will use an auxiliary recursive function constr that constructs all the possible assignments and feeds them to the formula, with type: ∀j , j, k.srv g(j ,j,k) 0 (Word[0, j ], Nat[0, j-j ], ∀i.osrv k 0 (Word[0, i], out k (Bool)), out g(j ,j,k) (Bool)) Intuitively, this auxiliary function takes an unfinished assignment (the word of size j ) and completes it depending on the number of variables that must still be assigned (the integer of size j-j ). The actual processes are given in Figure 4 In a first analysis, we do not add any tick anywhere, thus the complexity only comes from the evaluation of the formula. As before, the complexity analysis consists in finding the functions f and g. By the definition of test, we obtain immediately that:

; i ≥ 1; ∆ (tt, l1, b) : v(i-1) i; i ≥ 1; ∆ bs tt, l1, b g(i-1) i; i ≥ 1; ∆ bs tt, l1, b g(i) See Example 4.4.1 i; i ≥ 1; ∆ b(q1). • • • g(i-1)+f (i) i; i ≥ 1; ∆ b(q1). • • • g(i) See Example 4.4.1 i; i ≥ 1; ∆ d(p).a p g(i) i; i ≥ 1; Γ , b, c : out g(i-1) (List[0, 2 i-1 ])(B), d : out (g(i-1)+f (i)) (List[0, 2 i ])(B) • g(i) i; i ≥ 1; Γ , (up, l, a) : v(i), l1, l2 : List[0, 2 i-1 ](B) (νb)(νc)(νd) • • • g(i) i; 2 i ≥ 2; Γ , (up, l, a) : v(i) let (l1, l2) = partition(l) in • • • g(i) i; •; Γ , (up, l, a) : v(i) match l {• • • } g(i) Γ time invariant •; •; Γ -0 Γ •; •; Γ !bs(up, l, a). . . . 0 with U (i) ≡ Bool, List[0, 2 i ](B), out f (i) (List[0, 2 i ](B)) v(i) ≡ Bool, List[0, 2 i ](B), out g(i) (List[0, 2 i ](B)) Γ ≡ bm : ∀i.osrv f (i) 0 ( U (i)), bs : ∀i.srv g(i) 0 ( v(i)) Γ ≡ bm : ∀i.osrv f (i) 0 ( U (i)), bs : ∀i.osrv g(i) 0 ( v(i))
! test (n, f , r) . constr ,n, f , r ! constr (w,n, f , r) . match (n) { 0 → f w, r s(m) → (νa) (νb) (constr s 0 (w) ,m, f , a ) | (constr s 1 (w) ,m, f , b ) | a( t ) . b( t ' ) . if t then r t else r t ' }
f (j, k) = g(0, j, k)
Then, from the definition of constr, we obtain in the first branch of the pattern matching: g(j , j, k) ≥ k for any j, j , since the call to f has complexity k. Moreover, in the second branch, we obtain, for j -j ≥ 1 (equivalently, j ≥ j + 1) g(j , j, k) ≥ g(j + 1, j, k) Indeed, the two recursive calls to constr are done on a word of size j + 1 and an integer of size j-(j + 1) = j-j -1. Moreover, the subprocess if t then r < t > else r < t > imposes that the time of r must be greater than the time of a and b, giving again the same inequality g(j , j, k) ≥ g(j + 1, j, k).

Thus, we can take in particular

f (j, k) = g(j , j, k) = k
Indeed, all those calls to the formula can be done in parallel, and the span is then the complexity of one call to the formula.

A first thing to remark with this result is that even if the span seems good, in practice we would need to run 2 n computations in parallel in order to obtain this span. In particular, for n large enough, this is not feasible in practice. This is were the work analysis comes in handy. Indeed, a work analysis of this process gives us 2 j • k . We should have, if we consider the work complexity functions f and g :

f (j, k) = g (0, j, k) g (j , j, k) ≥ 2 • g (j + 1, j, k)
Thus, we can take:

g (j , j, k) = 2 j-j • k f (j, k) = 2 j • k
So, from the huge difference of complexity between work and span, one can see that even if this process is highly parallelisable, it requires a huge amount of computations in parallel. That is why we believe a span analysis alone is often not sufficient and it should be completed with a work analysis.

On a second approach, we consider that evaluating the formula is not the only costly operation for this process, and that the construction of those assignments should be taken in account. A way to do that is to add a tick after an input of constr. In this case, the constraints become: f (j, k) = g(j , j, k) g(j , j, k) ≥ k + 1 g(j , j, k) ≥ g(j + 1, j, k) + 1

And we can take g(j , j, k) = k + (j-j ) + 1 f (j, k) = k + j + 1

And so the cost of constructing those assignments is linear in j. In particular, in the case of a propositional formula of size polynomial in n (such as SAT), we obtain a process with a polynomial time complexity for span, and an exponential complexity for work.

Overall, the type system seems expressive enough to type interesting parallel programs, however it does not behave well with some concurrent behaviours because of time uniqueness. We thus present a usage type system in order to solve this problem.

Span Analysis with Sized Types and Usages

In this section, we present some results obtained in joint work with Naoki Kobayashi [START_REF] Baillot | Sized types with usages for parallel complexity of pi-calculus processes[END_REF], on a usage type system with sizes for parallel complexity analysis. As stated in Section 4. 1.3, the usage type system we define here differs from the one in the literature [START_REF] Kobayashi | An implicitly-typed deadlock-free process calculus[END_REF][START_REF] Kobayashi | A type system for lock-free processes[END_REF][START_REF] Kobayashi | A new type system for deadlock-free processes[END_REF] since we manage time differently, and thus all the operations must be defined accordingly. In particular, our type system relies on time intervals, in order to have more precise complexity bounds (see Section 4. 5.3), and the notion of reliability should take in account any possible reduction path, which was not the case in deadlock-freedom analysis.

Still, in order to introduce the relevance of usages for complexity, let us look back at an example presented in Section 4. Let us look at the rule for parallel composition. If we take, as before, a rule of the shape:

Γ Q 1 K 1 Γ Q 2 K 2 Γ Q 1 | Q 2 max(K 1 , K 2 )
given a typing Γ P K, then we would obtain Γ P | • • • | P K and so we have two processes with different complexities when composed with a that are not distinguished by typing. In Section 4.4.1, P was not typable and so this did not break soundness, but it implied some limitations on the expressivity of the type system. A better alternative is to separate contexts.

Γ Q 1 K 1 ∆ Q 2 K 2 f (Γ, ∆) Q 1 | Q 2 max(K 1 , K 2 )
This could for example lead to linear type systems, session types, or usages [START_REF] Kobayashi | Type systems for concurrent programs[END_REF]. As we want a type system that can type example such as P , usages seem adapted. Indeed, the concept of reliability, the central notion of usages, that allows types to adapt compositionally, is especially useful here, as we will see in Example 4.5.3.

Usages and Type System

Recall from Section 4. 1.3 that in order to define a usage type system, we need first to define usages as some simple parallel programs, and we need to give a meaning to time annotations. As we saw before, an infinite time annotation may be useful for usages, so, for this section, we modify slightly the size annotations. where i ∈ V. So, an index I N corresponds to an index from the previous sections, and now we use the notation I to consider indexes that may have an infinite value.

Indices

As before, given an index valuation ρ : V → N, we can extend the interpretation of function symbols to indices, this gives us a number I ρ ∈ N ∞ . As for substitution, we ask that an index variable is always replaced by an integer index, so it cannot be replaced by infinity. Formally, for an index I, the substitution of the occurrences of i in I by J N (denoted I{J N /i}), is only defined for an integer index J N , and not for global index J. This substitution is easily defined for infinity by ∞{J N /i} = ∞.

As before, we will use constraints on indices, using this time relations on N ∞ . Finally, we will use the following notations. Definition 4.5.2 (Notations for Indices). In order to harmonize notation, we extend some operations on indices I N , J N to indices I, J. We will use the following operations:

∞ + J = I + ∞ = ∞ max(∞, J) = max(I, ∞) = ∞ min(∞, J) = min(J, ∞) = J ∞-1 = ∞ !0 ≡ 0 !U ≡!U | U !(U | V ) ≡!U | !V !!U ≡!U
We have the usual relations for parallel composition. We also add a relation defining replication !U ≡!U | U . The other relations allow manipulation of replication. This will be useful for the subusage relation, as it can increase the set of typable programs. Now that we have congruence, as before, we give the reduction semantics. Let us first introduce some notations. Note that ⊕ is an operation that takes an obligation interval and a capacity and returns an interval. This is where we see the fact that a capacity J alone should be understood as the interval [-∞, J]. Indeed, when considering a single index, the lower bound of the sum becomes 0. So, in particular, we have A o ⊕ J = A o ⊕ [0, J] in general. A case where we need this single index will be explained in Example 4. 5.2. The delaying operation ↑ Ao U on usages is defined by:

↑ Ao 0 = 0 ↑ Ao (U | V ) = ↑ Ao U | ↑ Ao V ↑ Ao (U + V ) = ↑ Ao U + ↑ Ao V ↑ Ao α Bo Jc .U = α Ao+Bo Jc .U ↑ Ao (!U ) =!(↑ Ao U )
We also define [I, J] + J c and thus ↑ Jc U by extending the operation with: [I, J] + J = [I, J + J ].

Intuitively, a usage ↑ Ao U corresponds to the usage U delayed by a time approximated by the interval A o . Given two obligations A o and B o , A o B o corresponds to an interval of time approximating the time for which those two obligations are respected. For example, if an input has the obligation to be ready in the interval of time [4,[START_REF] Baillot | On the expressivity of elementary linear logic: Characterizing ptime and an exponential time hierarchy[END_REF] and an output has the obligation to be ready in the interval of time [5,7], then we now for sure that the input and the output will both be ready in the interval of time [5,[START_REF] Baillot | On the expressivity of elementary linear logic: Characterizing ptime and an exponential time hierarchy[END_REF].

The reduction relation is given by the rules of Figure 4. [START_REF] Dal Lago | Light logics and higher-order processes[END_REF]. The first rule means that to reduce a usage, we choose one input and one output, and then we trigger the communication between them. This communication occurs and does not lead to an error when the capacity of an action corresponds indeed to a bound on the time the dual action is defined. This is given by the relation A o ⊆ B o ⊕ J c . As an example, let us suppose that B o = [1, 3], and the time for which the output becomes ready is in fact 2, then the capacity J c says that after two units of time, the synchronization should happen in the interval J c . So, if we take J c = [5,7] for example, then if we call t the time for which the dual input becomes ready, we must have t ∈ [2 + 5, 2 + 7]. This should be true for any time value in B o , so we want that ∀t ∈ [1,3], ∀t ∈ A o , t ∈ [t + 5, t + 7], and this is equivalent to A o ⊆ B o ⊕ [5,7] = [START_REF] Baillot | On the expressivity of elementary linear logic: Characterizing ptime and an exponential time hierarchy[END_REF][START_REF] Baillot | On the expressivity of elementary linear logic: Characterizing ptime and an exponential time hierarchy[END_REF]. Indeed, 8 is the only time that is in the three intervals [START_REF] Avanzini | Automating sized-type inference for complexity analysis[END_REF][START_REF] Baillot | On the expressivity of elementary linear logic: Characterizing ptime and an exponential time hierarchy[END_REF], [7,[START_REF] Baillot | Implicit Computational Complexity of Subrecursive Definitions and Applications to Cryptographic Proofs[END_REF] and [START_REF] Baillot | On the expressivity of elementary linear logic: Characterizing ptime and an exponential time hierarchy[END_REF][START_REF] Baillot | Characterizing Polynomial and Exponential Complexity Classes in Elementary Lambda-Calculus[END_REF]. The case where J c = J is a single index occurs when t can be smaller than t , and in this case we only ask that the upper bound is correct: ∀t ∈ B o , ∀t ∈ A o , t ≤ t + J.

If the bound was incorrect, we trigger an error, see the second rule. In the case everything went well, the continuation is delayed by an approximation of the time when this communication occurs (see ↑ Ao Bo in the first rule). The idea is that we would like, after a communication, to synchronize the time of the continuation with the other subprocesses of a usage. As it is not Finally, we also have the following lemmas, saying that delaying does not modify the behaviour of a type. (with err = ↑ Ao err)

2. If ϕ; Φ U -→ V then ϕ; Φ ↑ Ao U -→ ↑ Ao V .
3. U is reliable under ϕ; Φ if and only if ↑ Ao U is reliable under ϕ; Φ.

In our setting, this lemma shows among other things that the tick constructor, or more generally the annotation n : P , does not break reliability. As before, channels are classified into servers and simple channels. The type ch( T )/U describes a simple channel that is used for transmitting values of type T according to usage U . The type ∀ i.srv K ( T )/U describes a server channel that is used for transmitting values of type T according to usage U ; the superscript K, is an interval for this section. It denotes a lower bound and an upper bound on the cost incurred when a server is invoked.

Type System with Sizes

Also note that for a simple channel, only one type T is associated to all usages. So for example, in a channel of type ch(Nat[I, J])/U , at any time this channel is used, all messages must be integers between I and J.

The subtyping relation is defined by the rules of Figure 4. [START_REF] Dal | A higher-order characterization of probabilistic polynomial time[END_REF]. The only thing subtyping can do is to change the usage of a channel or modify the size bound on an integer.

In order to describe the type system for those types, we need to extend the previous operations on usages to partial operations on types and typing contexts with Γ = v 1 : T 1 , . . . , v n : T n . The delaying of a type ↑ Ao T is defined as the delaying of the usage for a channel or a server type, and it does nothing on integers. We also say that a type is reliable when it is an integer type, or when it is a server or channel type with a reliable usage. We define following operations: The (partial) operations on types defined above are extended pointwise to contexts. For example, for Γ = v 1 : T 1 , . . . , v n : T n and ∆ = v 1 : T 1 , . . . , v n : T n , we define Γ | ∆ = v 1 : T 1 | T 1 , . . . , v n : T n | T n . Note that this is defined just if Γ and ∆ agree on the typing of integers and associate the same types (excluding usage) to names.

We also introduce the following notation.

Definition 4. 5.10. Given a capacity J c and an interval K = [K 1 , K 2 ], we define J c ; K by;

J; [K 1 , K 2 ] = [0, J + K 2 ] [∞, ∞]; [K 1 , K 2 ] = [0, 0] [I N , J]; [K 1 , K 2 ] = [0, J + K 2 ]
Intuitively, J c ; K represents the complexity of an input/output process when the input/output has capacity J c and the complexity of the continuation is K. J c = [∞, ∞] means the input/output will never succeed (because there is no corresponding output/input); hence the complexity is 0. A case where this is useful is given later in Example 4. 5.7. Otherwise, an upper-bound is given by J + K 2 (the time spent for the input/output to succeed, plus K). The lower-bound is 0, since the input/output may be blocked forever.

The type system is given in Figures 4.10 and 4. [START_REF] Danos | Linear logic and elementary time[END_REF]. The typing rules for expressions are the standard ones for sized types.

A type judgment is of the form ϕ; Φ; Γ P [I, J] where J is a bound on the parallel complexity of P under the constraints Φ. As before, this complexity bound J can also be seen as a bound on the open complexity of a process, that is to say the complexity of P in an environment corresponding to the types in Γ. For example, a channel with usage In alone cannot be reduced, as it is only used as an input. So, the typing •; •; a : ch()/In tick.a() [1,[START_REF] Avanzini | Automating sized-type inference for complexity analysis[END_REF] says that in an environment that may provide an output on the channel a within the time interval [1, 1] ⊕ 5 = [0, 6], this process has a complexity bounded by 6. Similarly, the lower bound I is

Soundness

The proof of soundness relies again on standard lemmas for type systems. In the following we will always consider P as an annotated process. As in Section 4. 4.2, we introduce a typing rule for the annotation, corresponding to a generalization of the rule for tick. 

Intermediate Lemmas

As usual, we start with the structure lemmas. Lemma 4. 5.8 (Weakening). Let ϕ, ϕ be disjoint set of index variables, Φ be a set of constraints on ϕ, Φ be a set of constraints on (ϕ, ϕ ), Γ and Γ be contexts on disjoint set of variables.

In order to do that, we need first a lemma saying that the congruence relation behaves well with typing. Lemma 4. 5.13 (Congruence and Typing). Let P and Q be annotated processes such that P ≡ Q. Then, ϕ; Φ; Γ P K if and only if ϕ; Φ; Γ Q K.

Proof. Let us show Lemma 4. 5.13. We prove this by induction on P ≡ Q. Note that as usual, for a process P , the typing system is not syntax-directed because of the subtyping rule, but we can always assume that a derivation has exactly one subtyping rule before any syntax-directed rule. We first show this property for base case of congruence. The reflexivity is trivial, then we have those interesting cases:

• Case (νa)P | Q ≡ (νa)(P | Q) with a not free in Q. Suppose ϕ; Φ; Γ | ∆ (νa)P | Q K.

Then the derivation has the shape: By weakening (Lemma 4. 5.8), we obtain a derivation π w of ϕ; Φ; ∆, a : (T /0) Q K 2 . Thus, we have the following derivation: For the converse, suppose ϕ; Φ; Γ (νa)(P | Q) K. Then the derivation has the shape: π ϕ; Φ; Γ P , a :

T P P K 1 π ϕ; Φ; Γ Q , a : T Q Q K 2 ϕ; Φ; Γ P | Γ Q , a : T P | T Q P | Q K 1 K 2 ϕ; Φ Γ Γ P | Γ Q ; T T P | T Q ; K 1 K 2 ⊆ K ϕ; Φ; Γ, a : T P | Q K T reliable ϕ; Φ; Γ (νa)(P | Q) K
Since a is not free in Q, by Lemma 4.5.9, from π we obtain a derivation π s of ϕ; Φ; Γ Q Q K 2 . We then derive the following typing: Then we have: 

π P ϕ; Φ; Γ P P K 1 π Q ϕ; Φ; Γ Q Q K 2 ϕ; Φ; Γ P | Γ Q (P | Q) K 1 K 2 ϕ; Φ Γ Γ P | Γ Q ; K 1 K 2 ⊆
π Q ϕ; Φ; Γ Q Q K 2 ϕ; Φ; ↑ [m,m] Γ Q m : Q K 2 + [m, m] ϕ; Φ; (↑ [m,m] Γ P ) | (↑ [m,m] Γ Q ) m : P | m : Q (K 1 K 2 ) + [m, m] (1) 
π Q ϕ; Φ; ∆ Q Q K Q ϕ; Φ; ↑ [m,m] ∆ Q m : Q K Q + [m, m] ϕ; Φ; Γ Q m : Q K 2 ϕ; Φ; Γ P | Γ Q m : P | m : Q K 1 K 2 with ϕ; Φ Γ P ↑ [m,m] ∆ P ϕ; Φ Γ Q ↑ [m,m] ∆ Q ϕ; Φ K P + [m, m] ⊆ K 1 ϕ; Φ K Q + [m, m] ⊆ K 2
So, we derive:

π P ϕ; Φ; ∆ P P K P π Q ϕ; Φ; ∆ Q Q K Q ϕ; Φ; ∆ P | ∆ Q (P | Q) K P K Q ϕ; Φ; ↑ [m,m] (∆ P | ∆ Q ) m : (P | Q) (K P K Q ) + [m, m] (2) ϕ; Φ; Γ P | Γ Q m : (P | Q) K where (2) is ϕ; Φ Γ P | Γ Q ↑ [m,m] (∆ P | ∆ Q ); (K P K Q ) + [m, m] ⊆ K 1 K 2
This concludes this case.

• Case m : (νa)P ≡ (νa)(m : P ). For the converse, suppose we have ϕ; Φ; Γ (νa)(m : P ) K. Then, the typing has the shape: This concludes the interesting base case. Symmetry and transitivity are direct, and for the cases of contextual congruence, the proof is straightforward.

And now that we can work up to the congruence relation with Lemma 4.5.13. Theorem 4.5.1 is proved by induction on P ⇒ Q. Without surprise, the most difficult case is for a communication, and it greatly relies on reliability.

Again, when considering the typing of P , the first subtyping rule has no importance. We now proceed by doing the case analysis on the rules of Figure 4. [START_REF] Barthe | On the versatility of open logical relations[END_REF]. In order to simplify the proof, we will also consider that types and indexes invariant by subtyping (like the complexity in a server) are not renamed with subtyping. Note that this only adds cumbersome notations but it does not change the core of the proof. The first rule is the rule for parallel composition, then the derivation is split into the two following subtrees: 

ϕ; Φ; ∆ 0 , a : ∀ i.srv Ka ( T )/V 0 m : a e .Q K 0 where (3) is ϕ; Since the index variables i can only be free in T and K a .

Φ ∆ 0 ↑ [n,n] ∆ 1 ; V 0 ↑ [m,m] V 1 ; K 1 + [m, m] ⊆ K 0 and (4) is ϕ 
; Φ ∆ 1 ↑ J c (∆ 2 | ∆ 2 ) ϕ; Φ V 1 Out
Then, we know that Γ 0 | ∆ 0 is defined. Moreover, we have

ϕ; Φ Γ 0 ↑ [n,n] Γ 1 ϕ; Φ Γ 1 ↑ Jc !Γ 2 ϕ; Φ ∆ 0 ↑ [m,m] ∆ 1 ∆ 1 ↑ J c (∆ 2 | ∆ 2 )
So, for the channel and server types, in those seven contexts, the shape of the type does not change (only the usage can change). Let us look at base types. For a context Γ, we write Γ Nat the restriction of Γ to base types. Then, we have:

Γ Nat 0 = ∆ Nat 0 ϕ; Φ Γ Nat 0 Γ Nat 1 Γ Nat 2 ϕ; Φ ∆ Nat 0 ∆ Nat 1 ∆ Nat 2 ∆ Nat 2 = ∆ Nat 2 
Similarly, we note Γ ν the restriction of a context to its channel and server types. Thus, we have Γ = Γ ν , Γ Nat .

So, from π e and π P { I N / i} we obtain by subtyping: and match e {0 → Q 1 ; ; s(x) → Q 2 }. However, those two processes are not in normal form for ⇒, because tick.Q ⇒ 1 : Q and as there are no integer variables in Γ, the pattern matching can also be reduced. Thus, from a process Q with possibly top guarded processes that are ticks or pattern matching, we can find Q such that Q ⇒ Q and Q has no guarded processes of this shape. And then, we obtain I ≤ C (Q ) which is smaller than the parallel complexity of Q by definition.

Examples

Let us also present again how sizes and polymorphism over indices in servers can type processes defined by replication such as the factorial in the context of usages. On such simple replicated input, the similarities with Section 4.4 should be clear. 

)
This type is reliable and it would be reliable even if composed with any kind of output Out Ao 0 if we want to call this server. Let us denote: where S 1 (i) and S 2 (i) are the expected separation of the usage. This type S(i-1) is reliable under (i); (i ≥ 1). Thus, we give the typing described in Figure 4. 36. From the type of f , we see on its complexity [0, i] that it does at most a linear number of multiplications.

T = ∀i.srv [0,i] (Nat[i], ch(Nat[i!])/Out [i,i] 0 )/Out
Let us now justify the use of this operator J c ; K in order to treat complexity. Remark that this process is similar to the one we described in Section 4. 1.3. In order to understand the constraints needed to type this process, we will give a typing with variables for obligation and capacity, and we will look at which values those variables can take. This is described in Figure 4. 37. First, as a and b have exactly the same behaviour, they must have the same typing. And from just this, we already have some constraints to satisfy. Indeed, because of reliability, we have:

B o ⊆ A o ⊕ I c A o ⊆ B o ⊕ J c
Moreover, in order to continue the typing, we must have

In Ao Ic In [0,0] I c Out Bo Jc ↑ I c ↑ [1,1] Out [0,0] J c
We say that is an instantiation of Ψ (with a closure ν) if is a function defined on Ψ, such that (e) is an index with no second-order variables, and with first order variables in ν(e). Given an index I on ϕ and Ψ such that ν ⊂ ϕ, we define I as an index on ϕ with no second-order variables given by:

• i = i
• (f (I 1 , . . . , I n )) = f (I 1 , . . . , I n )

• e = (e)

• (e{I/i}) = (e){I/i} (Note that for the last rule, there is a distinction to make between the syntactic substitution e{I/i} and the semantically defined substitution (e){I/i}) Finally, we say that a set of constraints C on ϕ and Ψ (with closure ν ⊂ ϕ) is satisfiable if there exists an instantiation of Ψ such that, for all constraints I ≤ J in C, we have:

ϕ; • I ≤ J
In order to harmonize notations for the following functions, let us give some usual notations we will reuse in the following.

Definition A. 1.3 (Notations for index variables). In this section, we will denote an index variable as i l m . To denote the set of variables already used, we use an integer k and a function ρ : {1, . . . , k} → N. This means that the variables we used are in the set {i

l m | 1 ≤ l ≤ k ∧ 1 ≤ m ≤ ρ(l)}.
Also, especially when doing type inference, we want to represent the usual ϕ in the type system. To do that, we use a set K ⊂ {1, . . . , k}. This denotes the set ϕ ≡ {i l m | l ∈ K ∧ 1 ≤ m ≤ ρ(l)}. Definition A. 1.4 (Notation for second-order index variables). We will usually denote an index variable as e i . To denote the set of variables already used, we use an integer N and a function ν : {1, . . . , N } → P({1, . . . , k}). This means that the already defined second-order index variables are {e i | 1 ≤ i ≤ N }, and the variable e i uses the index variables var(e i ) ≡ {i l m | l ∈ ν(i) ∧ 1 ≤ m ≤ ρ(l)}.

Definition A. 1.5 (Notation for output). Using the previous notations, we will usually in a procedure define new variables, thus updating the set of defined variables. For this, we use the notation k , ρ , K , ϕ , N , ν , with the expected meaning. When we need to use several times those notations, we will prefer using integers index k 0 , k 1 , etc.

Intermediate Functions for Inference

Definition A. 1.6 (Creating a Canonical Extension). We define the function canon(T, k, ρ, N, ν, l) ≡ (T c , k , ρ , N , ν ) where T is a simple type and T c is a canonical extension of T . The additional integer l ∈ {1, . . . , k}, denotes the current exponent for index variables we are using.

This is defined by induction on T . For simplicity reason, we do not recall the input arguments except T .

• canon(Nat) ≡ let m = ρ(l) in (Nat[0, i l m+1 ], k, ρ[l → m + 1], N, ν)
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 211 The set of terms and values of s T are defined by the following grammars:
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4 .

 4 If π Γ t : D then π{I/i} Γ{I/i} t : D{I/i}.
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 215 Let I be an index. If an index variables i has at least one occurrence in I then we have I < I{i+1/i}.
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 217 Subtyping). If π Γ t : D then for all Γ , D such that D D and Γ Γ, we have a proof π Γ t : D with ω(π ) ≤ ω(π).
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 26 Figure 2.6: Base rules for sEAL.
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 27 Figure 2.7: Type and measure for generic constructors in sEAL.
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 227228 Contexts and Type System). Linear variables contexts are denoted Γ and global variables contexts are denoted ∆. They are defined in the same way as in the previous part on the EAL-calculus. Typing judgments have the usual shape of dual contexts judgments π Γ | ∆ M : T . For such a proof π, and i ∈ N, we define a weight ω i (π) ∈ N. Measure and Depth). For all integers k and n, we use the notation µ k n
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 27 Figure 2.8 and Figure 2.9.
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 28 Figure 2.8: Type and measure for constructors on base types in sEAL.
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 29 Figure 2.9: Typing rule and measure for the s T call in sEAL.
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 221 Substitution of Type Variables). Suppose that π Γ | ∆ M : T . Then, for every type variable α and for every type U , we can derive a proof π{U/α} Γ{U/α} | ∆{U/α} M : T {U/α} with ∀n, µ n (π) = µ n (π{U/α}).

Lemma 2 . 2 . 3 (

 223 General Substitution). Suppose that π Γ | ∆, x : T M : T and σ • | ∆ M : T and the number of occurrences of x in M is less than K, then we have a proof π Γ | ∆ M {M /x} : T . Moreover, for all n, µ n (π ) ≤ µ n (π)+K • µ n (σ).

  then we know that |v| ≤ ind(U ). With this, we have µ n (τ ) = (1+I{1/Var(I)}) • 1 1 and µ n (τ ) = |v| • 1 1 . By Lemma 2.1.3, we have |v| ≤ I{1/Var(I)} and so for n ≥ 1, µ n (τ ) < µ n (τ ). This gives us Red(µ α (τ )+ 2, µ α (τ )+ 2).
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Definition 3 . 1 . 1 .

 311 The sets of terms and values are given by the following grammars:

Example 3 . 1 . 1 (

 311 Reduction with Fixpoint). Consider the term M : fix f x = tick.match x {0 → 0; ; s(y) → f y} Then:

Definition 3 . 1 . 3 (

 313 Complexity of a Term). The complexity of a reduction M → * k N , where → * k
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 315 Constraints on Indices). Let ϕ ⊂ V be a set of index variables. A constraint C on ϕ is an expression with the shape I J where I and J are indices with free variables in ϕ and denotes a binary relation on integers. Usually, we take ∈ {≤, <, =, =}. Finite set of constraints are denoted Φ.

Definition 3 . 1 . 6 (

 316 Types). The set of types is given by the following grammar:T, S := Nat[I, J] | T × S | ∀ i.T ⇒ K SIntuitively, an integer n of type Nat[I, J] satisfies I ≤ n ≤ J. A function of type ∀ i.T ⇒ K S is of type T { I/ i} ⇒ K{ I/ i} S{ I/ i} for any sequence I of indices, and K is the complexity of a call to this function. The important point is that it can express a complexity which depends on the size, for example a linear time function from integer to integers that doubles the size of its input could be typed with ∀i.Nat[0, i] ⇒ i Nat[0, 2i]. We will use Nat[I] to denote the singleton type Nat[I, I]. We only consider well-defined intervals, so in order to use the interval [I, J] in a context ϕ; Φ we must have ϕ; Φ I ≤ J.
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 32 Figure 3.2: Subtyping Rules for PCF with Sizes
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 33 Figure 3.3: Sized Typing Rules for PCF
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 34 Figure 3.4: Typing for ADD in PCF

Lemma 3 . 1 . 1 (

 311 Weakening). Let ϕ, ϕ be disjoint set of index variables, Φ be a set of constraints on ϕ, Φ a set of constraints on (ϕ, ϕ ), and Γ and Γ be contexts on disjoint set of variables. Then, we have:1. If ϕ; Φ C then (ϕ, ϕ ); (Φ, Φ ) C 2. If ϕ; Φ T S then (ϕ, ϕ ); (Φ, Φ ) T S 3. If ϕ; Φ; Γ M : T K then (ϕ, ϕ ); (Φ, Φ ); Γ, Γ M : T KThe proof proceeds by induction, Point 1 is a direct consequence of the definition of ϕ; Φ C, and then Point 2 is by induction on the subtyping rules, and Point 3 is by induction on the typing rules, using Point 2 when needed. Overall, there is nothing difficult with this proof. Then, we have the opposite of weakening. Lemma 3.1.2 (Strengthening). Let ϕ be a set of index variables, Φ a set of constraints on ϕ and C a constraint on φ such that ϕ; Φ C. Then, we have: 1. If ϕ; (Φ, C) C then ϕ; Φ C 2. If ϕ; (Φ, C) T S then ϕ; Φ T S 3. If ϕ; (Φ, C); Γ, Γ M : T K and the variables in Γ are not free in M , then ϕ; Φ; Γ M : T K Again, the proofs are straightforward.

Lemma 3 . 1 . 4 (

 314 Name Preserving Index Substitution). Let ϕ be a set of index variables with i ∈ ϕ, and J an index with free variables in ϕ. If ϕ; Φ; Γ M : T K then ϕ; Φ{J/i}; Γ{J/i} M : T {J/i} K{J/i}.Proof. The proof uses renaming and weakening. Let us call ϕ = ϕ/{i}. So, from (ϕ , i); Φ; Γ M : T K, we have, by weakening (Lemma 3.1.1), (ϕ , i, i ); Φ; Γ M : T K. Let us call J equal to J but the index variable i is renamed with i . Then, we have, by index substitution, (ϕ , i ); Φ{J /i}; Γ{J /i} M : T {J /i} K{J /i}. And then, again by renaming i by i, we obtain (ϕ , i); Φ{J/i}; Γ{J/i} M : T {J/i} K{J/i}. Then, we have substitution for terms, or more precisely for values since the reduction rules only substitute terms variables by values: Lemma 3.1.5 (Value Substitution). If ϕ; Φ; Γ, x : S M : T K and ϕ; Φ; Γ V : S K , then ϕ; Φ; Γ M [x := V ] : T K.

Theorem 3 . 1 . 1 (

 311 Subject Reduction). If ϕ; Φ; Γ M : T K then: 1. If M → 0 N , we have ϕ; Φ; Γ N : T K 2. If M → 1 N , we have ϕ; Φ; Γ N : T K with ϕ; Φ K +1 ≤ K.

  as ϕ; Φ; Γ M : T K does not start with a subtyping rule, we can apply Lemma 3.1.7 and obtain ϕ; Φ; Γ N : T K . Thus, we can give the proof:ϕ; Φ; Γ N : T K ϕ; Φ Γ Γ ϕ; Φ T T ϕ; Φ K ≤ K ϕ; Φ; Γ N : T KAnd this derivation has the same conclusion as the original one, so this concludes Theorem 3.1.1. So, let us know show Lemma 3.1.7. 

1 . 3 )

 13 , we obtain a derivation of ϕ; Φ{ I/ i}; Γ{ I/ i}, x : T { I/ i} M : S{ I/ i} K{ I/ i} If we look where the index variables in i can be free, we can refine this judgement by ϕ; Φ; Γ, x : T { I/ i} M : S{ I/ i} K{ I/ i} We can then use the value substitution lemma (Lemma 3.1.5) with Π V to obtain ϕ; Φ; Γ M [x := V ] : S{ I/ i} K{ I/ i}

1 . 5 ,

 15 we obtain a derivation of (ϕ, i); Φ; ∆, x : T M [f := (fix f x = M )] : S K The subtyping condition on the arrow type gives us (ϕ; i); Φ T T (ϕ; i); Φ K ≤ K (ϕ; i); Φ S S so, using the subtyping rule, we can obtain a derivation of (ϕ, i); Φ; Γ, x : T M [f := (fix f x = M )] : S K Then, by the index substitution lemma (Lemma 3.1.3), we obtain a derivation of ϕ; Φ; Γ, x : T { I/ i} M [f := (fix f x = M )] : S{ I/ i} K{ I/ i} We then use the value substitution lemma (Lemma 3.1.5) with Π V to obtain ϕ; Φ; Γ M [f := (fix f x = M )][x := V ] : S{ I/ i} K{ I/ i}

Theorem 3 . 1 . 2 (

 312 Soundness). If ϕ; Φ; Γ M : T K, and M has complexity n, then we have ϕ; Φ K ≥ n. In particular, for any ρ : ϕ → N such that ρ Φ, we have K ρ ≥ n.

Corollary 3 . 1 . 1 (

 311 Complexity and Open Terms). If ϕ; Φ; Γ, x : T M : T K, then for any sequence of values V such that ϕ; Φ; Γ V : T 0, K is a bound on the complexity of M [ x := V ].This is easily proved using Theorem 3.1.2 and Lemma 3.1.5. 
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  := x, y, z | a, b, c e := v | 0 | s(e) | [] | e :: e P, Q := 0 | (P | Q) | !a( v).P | a( v).P | a e .P | (νa)P | match e {0 → P ; ; s(x) → Q} | match e {[] → P ; ; x :: y → Q}
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 411 Guarded Processes and Canonical Form). A process G is guarded if it has one of the following shapes: G := !a( v).P | a( v).P | a e .P | tick.P | match e {0 → P ; ; s(x) → Q} | match e {[] → P ; ; x :: y → Q}

Lemma 4 . 1 . 3 .

 413 If P ≡ Q then name(P ) = name(Q). Moreover, if gp(P ) = [P 1 , .. . , P n ] and gp

Example 4 . 1 . 1 (

 411 Map). Given a channel f representing a function F such that f y, a returns F (y) on the channel a, we can write the "map" function in our calculus as described in Figure4.2. The main idea for this kind of encoding is to use the dynamic creation of names ν to create the return channel before calling a function, and then to use this channel to obtain back the result of this call.

  !a(v).P | a e →!a(v).P | P [ v := e] a(v).P | a e → P [ v := e] match 0 {0 → P ; ; s(x) → Q} → P match s(e) {0 → P ; ; s(x) → Q} → Q[x := e] match [] {[] → P ; ; x :: y → Q} → P match e :: e {[] → P ; ; x :: y → Q} → Q[x, y := e, e ]

Figure 4 . 2 :

 42 Figure 4.2: The Map Function

!

  add(n,m, a) . match(n) { 0 → a m ; ; s(p) → (νb) (add p ,m, b | b(q) . a s(q) ) } ! fib (n, a) . match(n) { 0 → a 0 ; ; s(m) → match(m) { 0 → a 1 ; ; s(p) → (νb) (νc) (fib m, b | fib p , c | c(x) . b(y) . add x , y , a ) }}

Figure 4

 4 Figure 4.3: The Fibonacci Function

Γ

  e : List(B) Γ P Γ, x : B, y : List(B) Q Γ match e {[] → P ; ; x :: y → Q}

Figure 4 . 6 :

 46 Figure 4.6: Input/Output Typing Rules for Processes

  basically, a usage is a very simple parallel program, with In that can communicate with Out. The idea is then to type a channel by a program describing its behaviour. For example, in the process a() | b().a | b we would then give the respective usages U a and U b to a and b:

  a() | b().a | b → a() | a so, even if the usage of a stays the same, the usage of b has been changed to U b = 0. But this is not a problem, since U b is in fact obtained by one reduction step from U b , with the intuition that In.U | Out.V → (U | V ). So, we can define a semantics for usages, and then a reduction step of a process induces a reduction step in one of the usages. However, such simple usages are not useful in practice. Indeed, consider the process a().b | b().a
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 47 Figure 4.7: Simple Tick Reduction Rules
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 48 Figure 4.8: Subtyping Rules for Base Sized types

Figure 4 . 9 :Figure 4 . 10 :

 49410 Figure 4.9: Subtyping Rules for Server Types
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  ϕ; Φ; Γ 0 0 ϕ; Φ; Γ, a : T P K ϕ; Φ; Γ (νa)P K ϕ; Φ; Γ e : Nat[I, J] ϕ; (Φ, I ≤ 0); Γ P K ϕ; (Φ, J ≥ 1); Γ, x : Nat[I-1, J-1] Q K ϕ; Φ; Γ match e {0 → P ; ; s(x) → Q} K ϕ; Φ; Γ e : List[I, J](B) ϕ; (Φ, I ≤ 0); Γ P K ϕ; (Φ, J ≥ 1); Γ, x : B, y : List[I-1, J-1](B) Q K ϕ; Φ; Γ match e {[] → P ; ; x :: y → Q} K ϕ; Φ; ∆ P K ϕ; Φ Γ ∆ ϕ; Φ K ≤ K ϕ; Φ; Γ P K
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 411 Figure 4.11: Common Typing Rules for Processes
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 412 Figure 4.12: Work Typing Rules for Processes
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 421 Advantages and Disadvantages of the Different Typing Behaviours). Consider this example: a().P 1 | a().P 2 | a | a | a

  ϕ
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 4 Figure 4.13: A Typing Without Complexity for Addition
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 4 Figure 4.14: A Typing for Fibonacci (Work)
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 415 Figure 4.15: Typing Rules for Processes for Work Inference
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 416 Figure 4.16: Intermediate Typing Rules for Expressions
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Figure 4 . 17 :

 417 Figure 4.17: Intermediate Typing Rules for Processes

m

  : (P | Q) ≡ (m : P ) | (m : Q) m : (νa)P ≡ (νa)(m : P ) m : (n : P ) ≡ (m+n) : P 0 : P ≡ P

  (n : a( v).P ) | (m : a e ) ⇒ (max(n, m) : P [ v := e]) tick.P ⇒ 1 : P (n :!a( v).P ) | (m : a e ) ⇒ (n :!a( v).P ) | (max(n, m) : P [ v := e]) match [] {[] → P ; ; x :: y → Q} ⇒ P match e :: e {[] → P ; ; x :: y → Q} ⇒ Q[x, y := e, e ]

Lemma 4 . 3 . 1 (

 431 Congruence and Local Complexity). Let P, Q be annotated processes such that P ≡ Q. Then, we have C (P ) = C (Q).

Lemma 4 . 3 . 2 (

 432 Reduction and Local Complexity). Let P, P be annotated processes such that P ⇒ P . Then, we have C (P ) ≥ C (P ).
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 419 Figure 4.19: Semantics for Causal Complexity

  !a(v).P | (a e | a e ) → (!a(v).P | P [v := e]) | (0 | a e ) → ((!a(v).P | P [v := e ]) | P [v := e]) | (0 | 0) And if we exchange the two reduction steps we obtain !a(v).P | (a e | a e ) → 2 ((!a(v).P | P [v := e]) | P [v := e ]) | (0 | 0)
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 420 Figure 4.20: Tree Semantics for Span

Corollary 4 . 4 . 1 (

 441 Complexity and Open Processes). We have: • If ϕ; Φ; Γ, v : T P K, then for any sequence of expressions e such that ϕ; Φ; Γ e : T , K is a bound on the global complexity of P [ v := e]

) I ϕ ;

 ϕ Φ; Γ a : inI ( T ) ϕ; Φ; Γ -I , v : T P K ϕ; Φ; Γ a(v) K+I ϕ; Φ; Γ a : outI ( T ) ϕ; Φ; Γ -I e : T ϕ; Φ; Γ a e I ϕ; Φ; Γ a : ∀ i.osrv K I ( T ) ϕ; Φ; Γ -I e : T { J/ i} ϕ; Φ; Γ a e K{ J/ i}+I
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 421 Figure 4.21: Span Typing Rules for Processes

Lemma 4 . 4 . 1 .

 441 If ϕ; Φ T T then U(T ) U(T ). Moreover, if ϕ; Φ; Γ e : T then U(Γ) e : U(T ) and if ϕ; Φ; Γ P K then U(Γ) PExamplesInput, Time and Complexity. We first illustrate the type system on a simple generic example that will be very useful for other concrete examples.

Example 4 . 4 . 1 . 1 see Example 4 . 4 . 1 ϕ;

 4411441 Let us consider the process P = c().b().a . We have the following typing for P : ϕ; Φ; a : out Ia (), b : in I b (), c : in Ic () P I a if and only if ϕ; Φ I a ≥ I b ≥ I c . Indeed, the typing derivation has the shape: ϕ; Φ; a : out (Ia-Ic)-(I b -Ic) (), b : in 0 () a (I a -I c )-(I b -I c ) ϕ; Φ; (a : out Ia-Ic (), b : in I b -Ic (), c : in 0 ()) -(I b -Ic) a (I a -I c )-(I b -I c ) ϕ; Φ; a : out Ia-Ic (), b : in I b -Ic (), c : in 0 () b().a I a -I c ϕ; Φ; (a : out Ia (), b : in I b (), c : in Ic ()) -Ic b().a I a -I c ϕ; Φ; a : out Ia (), b : in I b (), c : in Ic () c().b().a I a fib with i replaced by i-1 ϕ; Φ; ∆ fib m, b i-1 fib with i replaced by i-2 ϕ; Φ; ∆ fib p, c G(i-2) ϕ; Φ; ∆ fib p, c i-Φ; ∆ c(x).b(y).add x, y, a i-1 i; (i ≥ 2); ∆ fib m, b | fib p, c | c(x).b(y).add x, y, a i-1
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 4 Figure 4.22: A Typing for Fibonacci (Span)

ϕ;

  Φ; ∆ r : ch g(i-1) ()ϕ; Φ; ∆ m : Nat[0, i-1] ϕ; Φ; ∆ a m, r f (i-1) ϕ; Φ; ∆ a m, r f (i)-1 ϕ; Φ; ∆ -g (i) r : ch g(i-1) () ϕ; Φ; ∆ -g (i) m : Nat[0, i-1] ϕ; Φ; ∆ -g (i) a m, r f (i-1) ϕ; Φ; ∆ -g (i) a m, r f (i)-1-g (i) ϕ; Φ; ∆ r ().a m, r f (i)-1 see Example 4.4.1 ϕ; Φ; ∆ r ().r g(i)-1 ϕ; Φ; ∆ r ().r f (i)-1 i; (i ≥1); ∆ a m, r | r ().a m, r | r ().r f (i)-1
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 4 Figure 4.23: A Typing for Q 2
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 4 Figure 4.24: A Typing for Q 3
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 442 Time Uniqueness). Indeed, take the process a().tick.a . When trying to type this process, we obtain:•; • ch I () in I () •; •; a : ch I () a : in I () Error •; •; a : ch 0 () -1 a 0 •; •; a : ch 0 () tick.a1•; •; a : ch I () a().tick.a I+1

Lemma 4 . 4 . 2 .

 442 If ϕ; Φ T U then for any I, either U -I is undefined, or both U -I and T -I are defined, and ϕ; Φ T -I U -I .

1 . 2 .

 12 If ϕ; Φ C then (ϕ, ϕ ); (Φ, Φ ) C If ϕ; Φ T U then (ϕ, ϕ ); (Φ, Φ ) T U .

3 .

 3 If ϕ; Φ; Γ e : T then (ϕ, ϕ ); (Φ, Φ ); Γ, Γ e : T . 4. Γ (ϕ,ϕ );(Φ,Φ ) -I = ∆, ∆ with (ϕ; ϕ ); (Φ; Φ ) ∆ Γ ϕ;Φ -I . 5. If ϕ; Φ; Γ P K then (ϕ, ϕ ); (Φ, Φ ); Γ, Γ P K.

Lemma 4 . 4 . 4 (

 444 Strengthening). Let ϕ be a set of index variables, Φ be a set of constraint on ϕ, and C a constraint on ϕ such that ϕ; Φ C. 1. If ϕ; (Φ, C) C then ϕ; Φ C . 2. If ϕ; (Φ, C) T U then ϕ; Φ T U .

3 .

 3 If ϕ; (Φ, C); Γ, Γ e : T and the variables in Γ are not free in e, then ϕ; Φ; Γ e : T . 4. Γ ϕ;(Φ,C) -I = Γ ϕ;Φ -I . 5. If ϕ; (Φ, C); Γ, Γ P K and the variables in Γ are not free in P , then ϕ; Φ; Γ P K. Proof. Point 1 is a direct consequence of the definition, as in Lemma 3.1.2. Point 2 is proved by induction on the subtyping derivation. Point 4 is straightforward with Point 1 of this lemma and Point 1 of Lemma 4.4.3. Point 3 and Point 5 are proved by induction on the typing derivation.

3 .

 3 If (ϕ, i); Φ T U then ϕ; Φ{J/i} T {J/i} U {J/i}.

4 .

 4 If (ϕ, i); Φ; Γ e : T then ϕ; Φ{J/i}; Γ{J/i} e : T {J/i}.

5 .

 5 Γ{J/i} ϕ;Φ{J/i} -I{J/i} = ∆, ∆ with ϕ; Φ{J/i} ∆ ( Γ (ϕ,i);Φ -I ){J/i}.

6 .

 6 If (ϕ, i); Φ; Γ P K then ϕ; Φ{J/i}; Γ{J/i} P K{J/i}. Proof. Again, Point 1 and Point 2 are some properties in indices, that were already stated in Lemma 3.1.3. Point 3 is proved by induction on the subtyping derivation, then Point 4 is proved by induction on the typing derivation. Point 5 is direct with the use of Point 2. And finally Point 6 is proved by induction on P . The induction is on P and not the typing derivation because of Point 5 that forces the use of weakening, which is admissible but not derivable. (Lemma 4.4.3).

Lemma 4 . 4 . 6 ( 2 .

 4462 Delaying). For any index I, we have: 1. If ϕ; Φ T U then ϕ; Φ T +I U +I . If ϕ; Φ; Γ e : T then ϕ; Φ; Γ +I e : T +I . 3. Γ +I -J = ∆, ∆ with ϕ; Φ ∆ Γ -J +I . 4. Γ +I -(J+I) = Γ -J . 5. If ϕ; Φ; Γ P K then ϕ; Φ; Γ +I P K+I. Proof. Point 1, Point 2, Point 3 and Point 4 are straightforward. Then, Point 5 is proved by induction on P . Point 4 is used on every rule for channel or servers, and Point 3 is used in the rule for tick.

Lemma 4 . 4 . 7 (

 447 Substitution). We have: 1. If ϕ; Φ; Γ, v : T e : U and ϕ; Φ; Γ e : T then ϕ; Φ; Γ e [v := e] : U . 2. If ϕ; Φ; Γ, v : T P K and ϕ; Φ; Γ e : T then ϕ; Φ; Γ P [v := e] K.

π ϕ ;

 ϕ Φ; ∆, a : T , b : U P K ϕ; Φ; ∆, a : T (νb)P K ϕ; Φ Γ ∆ ϕ; Φ K ≤ K ϕ; Φ T T ϕ; Φ; Γ, a : T (νb)P K ϕ; Φ; Γ (νa)(νb)P KWe can derive the proof:

π ϕ ;

 ϕ Φ; ∆, a : T , b : U P K ϕ; Φ Γ ∆ ϕ; Φ K ≤ K ϕ; Φ T T ϕ; Φ U U ϕ; Φ; Γ, a : T, b : U P K ϕ; Φ; Γ, b : U (νa)P K ϕ; Φ; Γ (νb)(νa)P K • Case (νa)P | Q ≡ (νa)(P | Q) with a not free in Q. Suppose ϕ; Φ; Γ (νa)P | Q K.

  πP ϕ; Φ; ∆, a : T P K ϕ; Φ; ∆ (νa)P K ϕ; Φ Γ -m ∆ ϕ; Φ K ≤ K ϕ; Φ; Γ -m (νa)P K ϕ; Φ; Γ m : (νa)P K+m Recall that, by Lemma 4.4.6, T +m -m = T -0 = T . So, we have: πP ϕ; Φ; ∆, a : T P K ϕ; Φ Γ -m ∆ ϕ; Φ K ≤ K ϕ; Φ T T ϕ; Φ; Γ -m , a : T P K ϕ; Φ; Γ, a : T +m m : P K+m ϕ; Φ; Γ (νa)(m : P ) K+m

πP ϕ ;

 ϕ Φ; (∆, a : T ) -m P K ϕ; Φ; ∆, a : T m : P K +m ϕ; Φ Γ ∆ ϕ; Φ T T ϕ; Φ K +m ≤ K ϕ; Φ; Γ, a : T m : P K ϕ; Φ; Γ (νa)m : P K By an abuse of notation, let us write T -m to denote T -m if it is defined, and any other type otherwise. Then, we have the derivation (with possibly a weakened version of π P ): π w P ϕ; Φ; ∆ -m , a : T -m P K ϕ; Φ; ∆ -m (νa)P K ϕ; Φ; ∆ m : (νa)P K +m ϕ; Φ Γ ∆ ϕ; Φ K +m ≤ K ϕ; Φ; Γ m : (νa)P K • Case m : (n : P ) ≡ (m+n) : P . Suppose that ϕ; Φ; Γ m : (n : P ) K+m. Then the derivation has the shape: πP ϕ; Φ; ∆ -n P K ϕ; Φ; ∆ n : P K +n ϕ; Φ Γ -m ∆ ϕ; Φ K +n ≤ K ϕ; Φ; Γ -m n : P K ϕ; Φ; Γ m : (n : P ) K+m We have Γ -(m+n) = Γ -m -n . So, by Lemma 4.4.2, we obtain Γ -m = Θ, Θ with ϕ; Φ Θ -n ∆ -n . So, by weakening, we obtain: π w P ϕ; Φ; Θ -n , ∆ -n P K ϕ; Φ Γ -(m+n) ( Θ -n , ∆ -n ) ϕ; Φ K ≤ K-n ϕ; Φ; Γ -(m+n) P K-n ϕ; Φ; Γ (m+n) : P K+m For the converse, suppose that ϕ; Φ; Γ (m+n) : P K+(m+n). Then the derivation has the shape: π P ϕ; Φ; Γ -(m+n) P K+ ϕ; Φ; Γ (m+n) : P K+(m+n) So, we have: π P ϕ; Φ; Γ -(m+n) P K ϕ; Φ; Γ -m n : P K+n ϕ; Φ; Γ m : (n : P ) K+(m+n) ϕ; Φ I ≤ I

Figure 4 . 25 :

 425 Figure 4.25: An Alternative Presentation of Subtyping

Lemma 4 . 4 . 9 (

 449 Exhaustive Description of Subtyping). ϕ; Φ T U for the usual description if and only if ϕ; Φ T U with the rules of Figure4.25. 

Theorem 4 . 4 . 2 (

 442 Subject Reduction). If ϕ; Φ; Γ P K and P ⇒ Q then ϕ; Φ; Γ Q K.

4 . 3 ,

 43 and as ϕ; Φ I = I 1 +m = I 0 +n we can obtain two proofs, with the subtyping rule:ϕ; Φ; Γ -I , v : T 1 { J/ i} P K 1 { J/ i} ϕ; Φ; Γ -I e : T 1 { J/ i}Thus, by the substitution lemma (Lemma 4.4.7), we have ϕ; Φ; Γ -I P [ v := e] K 1 { J/ i}. As by definition, I ≥ m and I ≥ n, let us call I = I-max(n, m), and we can obtain the following typing using the associated typing rule: ϕ; Φ; Γ -I max(n, m) : P [ v := e] max(n, m)+K 1 { J/ i} • Case (n : a( v).P ) | (m : a e ) ⇒ max(n, m) : P [ v := e]. Consider the typing ϕ; Φ; Γ (n : a( v).P ) | (m : a e ) K.The first rule is the rule for parallel composition, then the derivation is split into the two following subtree:ϕ; Φ; ∆ 0 a : in I 0 ( T 0 ) π P ϕ; Φ; ∆ 0 -I 0 , v : T 0 P K 0 ϕ; Φ; ∆ 0 a( v).P I 0 +K 0 ϕ; Φ Γ 0 -n ∆ 0 ϕ; Φ I 0 +K 0 ≤ K 0 ϕ; Φ; Γ 0 -n a( v).P K 0 ϕ; Φ; Γ 0 n : a( v).P K 0 +n ϕ; Φ Γ Γ 0 ; K 0 +n ≤ K ϕ; Φ; Γ n : a( v).P K ϕ; Φ; ∆1 a : outI 1 ( T1) πe ϕ; Φ; ∆1 -I 1 e : T1 ϕ; Φ; ∆1 a e I1 ϕ; Φ Γ1 -m ∆1 ϕ; Φ I1 ≤ K1 ϕ; Φ; Γ1 -m a e K1 ϕ; Φ; Γ1 m : a e K1+m ϕ; Φ Γ Γ1; K1+m ≤ K ϕ; Φ; Γ m : a e K

4 . 3 , 1 Γ

 431 and as ϕ; Φ I = I 1 +m = I 0 +n we can obtain two proofs, with the subtyping rule, ϕ; Φ; Γ -I , v : T 1 P K 0 ϕ; Φ; Γ -I e : T 1 Thus, by the substitution lemma (Lemma 4.4.7), we have ϕ; Φ; Γ -I P [ v := e] K 0 . As by definition, I ≥ m and I ≥ n, let us call I = I-max(n, m), and we can obtain the following typing using the associated typing rule: ϕ; Φ; Γ -I max(n, m) : P [ v := e] max(n, m)+K 0 Then, by delaying (Lemma 4.4.6), we have ϕ; Φ; Γ -I +I max(n, m) : P [ v := e] I+K 0 , and ∆ = 0 , 1 with ϕ; Φ -I +I . Recall that ϕ; Φ I 0 +n+K 0 ≤ K . Thus, again by subtyping and weakening, we obtain ϕ; Φ; Γ max(n, m) : P [ v := e] K And this concludes this case.

πe ϕ ;

 ϕ Φ; ∆ e : B π e ϕ; Φ; ∆ e : List[I , J ](B ) ϕ; Φ; ∆ e :: e : List[I +1, J +1](B ) ϕ; Φ Γ ∆; List[I +1, J +1](B ) List[I, J](B) ϕ; Φ; Γ e :: e : List[I, J](B) πQ ϕ; Φ; Γ match e :: e {[] → P ; ; x :: y → Q} K Where we ignore the branch for P and π Q proves ϕ; (Φ, J ≥ 1); Γ, x:B, y:List[I-1, J-1](B) Q K. Lemma 4.4.9 gives us the following information: ϕ; Φ I ≤ I +1 ϕ; Φ J +1 ≤ J ϕ; Φ B B

ϕ;

  Φ; Γ e : B ϕ; Φ; Γ e : List[I-1, J-1](B) Then, by Lemma 4.4.4, from π Q we obtain a derivation of ϕ; Φ; Γ, x:B, y:List[I-1, J-1](B) Q K. By the substitution lemma (Lemma 4.4.7), we obtain ϕ; Φ; Γ Q[x, y := e, e ] K.

πP ϕ ;

 ϕ Φ; Γ -n P K ϕ; Φ; Γ n : P K+n By induction hypothesis, we have a derivation π Q of ϕ; Φ; Γ -n Q K, thus we can give the derivation:πQ ϕ; Φ; Γ -n Q K ϕ; Φ; Γ n : Q K+n • Case P ⇒ Q with P ≡ P , P ⇒ Q and Q ≡ Q . Supposethat ϕ; Φ; Γ P K. By Lemma 4.4.8, we have ϕ; Φ; Γ P K. By induction hypothesis, we obtain ϕ; Φ; Γ Q K. Then, again by Lemma 4.4.8, we have ϕ; Φ; Γ Q K. This concludes this case. This concludes the proof of Theorem 4.4.2. Now that we have the subject reduction for ⇒, we can easily deduce a more generic form of Theorem 4.4.1.

Theorem 4 . 4 . 3 .

 443 Let P be an annotated process and let m be its global parallel complexity. Then, for a typing ϕ; Φ; Γ P K, we have ϕ; Φ K ≥ m.

Figure 4 .

 4 Figure 4.26: Bitonic Sort

Figure 4 . 27 :

 427 Figure 4.27: Type Derivation for Bitonic Comparison

Figure 4 . 28 :

 428 Figure 4.28: Type Derivation for Bitonic Merge
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Figure 4 . 29 :

 429 Figure 4.29: Type Derivation for Bitonic Sort

Figure 4 . 30 :

 430 Figure 4.30: Brute Forcing Formula Satisfiability

4 . 1 Example 4 . 5 . 1 (

 41451 Motivating Example). We define P := a().tick.a Then, the complexity of P | P | P | • • • | P | a is equal to the number of P in parallel.

Definition 4 . 5 . 1 .

 451 We take again V as a countable set of index variables. The set of indices, representing integers in N ∞ = N ∪ {∞}, is given by the following grammar. I, J := I N | ∞ I N := i | f (I N , . . . , I N )

Definition 4 . 5 . 4 (

 454 Operations on Usages). We define the operations ⊕, , and + by:A o ⊕ J = [0, Left(A o ) + J] A o ⊕ [I, J] = [Right(A o ) + I, Left(A o ) + J] [I, J] [I , J ] = [max(I, I ), max(J, J )] [I, J] + [I , J ] = [I + I , J + J ]

Figure 4 . 33 :

 433 Figure 4.33: Subtyping Rules for Usage Types

Lemma 4 . 5 . 7 (

 457 Invariance by Delaying). For any interval A o :1. If ϕ; Φ ↑ Ao U -→ V then, there exists V such that ↑ Ao V = V and ϕ; Φ U -→ V .

Definition 4 . 5 . 7 (

 457 Usage Types). We define types by the following grammar:T, S ::= Nat[I, J] | ch( T )/U | ∀ i.srv K ( T )/USo, as expected, usual types for π-calculus are replaced by a type with usage, and we keep track of sizes for integers.

Definition 4 . 5 . 8 (Figure 4 . 34 :

 458434 Figure 4.34: Typing Rules for Processes with Usages

  ϕ; Φ; Γ P K ϕ; Φ; ↑ [m,m] Γ m : P K + [m, m]

π ϕ ;

 ϕ Φ; Γ , a : T P K 1 T reliable ϕ; Φ; Γ (νa)P K 1 ϕ; Φ Γ Γ ; K 1 ⊆ K1 ϕ; Φ; Γ (νa)P K1 π ϕ; Φ; ∆ Q K2 ϕ; Φ; Γ | ∆ (νa)P | Q K1 K2

π ϕ ;

 ϕ Φ; Γ , a : T P K 1 ϕ; Φ Γ Γ ; K 1 ⊆ K1 ϕ; Φ; Γ, a : T P K1 π w ϕ; Φ; ∆, a : (T /0) Q K2 ϕ; Φ; Γ | ∆, a : T P | Q K1 K2 T reliable ϕ; Φ; Γ | ∆ (νa)(P | Q) K1 K2

π ϕ ;

 ϕ Φ; ΓP , a : TP P K1 ϕ; Φ T TP | TQ TP ϕ; Φ; ΓP , a : T P K1 T reliable ϕ; Φ; ΓP (νa)P K1 π sϕ; Φ; ΓQ Q K2 ϕ; Φ; ΓP | ΓQ (νa)P | Q K1 K2 ϕ; Φ Γ ΓP | ΓQ; K1 K2 ⊆ K ϕ; Φ; Γ (νa)P | Q K • Case m : (P | Q) ≡ m : P | m : Q. Suppose ϕ; Φ; ↑ [m,m] Γ m : (P | Q) K + [m, m].

  K ϕ; Φ; Γ (P | Q) K ϕ; Φ; ↑ [m,m] Γ m : (P | Q) K + [m, m] By Lemma 4.5.1, from ϕ; Φ Γ Γ P | Γ Q we obtain ϕ; Φ ↑ [m,m] Γ (↑ [m,m] Γ P ) | (↑ [m,m] Γ Q ).So, we give the following derivation:

  π P ϕ; Φ; Γ P P K 1 ϕ; Φ; ↑ [m,m] Γ P m : P K 1 + [m, m]

ϕ;

  Φ; ↑ [m,m] Γ m : P | m : Q (K 1 K 2 ) + [m, m] ϕ; Φ K 1 K 2 ⊆ K ϕ; Φ; ↑ [m,m] Γ m : P | m : Q K + [m, m]where (1) isϕ; Φ ↑ [m,m] Γ (↑ [m,m] Γ P ) | (↑ [m,m] Γ Q )Now, suppose we have a typing ϕ; Φ;Γ P | Γ Q m : P | m : Q K 1 K 2 .The typing has the shape: π P ϕ; Φ; ∆ P P K P ϕ; Φ; ↑ [m,m] ∆ P m : P K P + [m, m] ϕ; Φ; Γ P m : P K 1

  Suppose ϕ; Φ; ↑ [m,m] Γ m : (νa)P K + [m, m].Then, the typing has the shape:

π ϕ ;

 ϕ Φ; Γ , a : T P K T reliable ϕ; Φ; Γ (νa)P K ϕ; Φ Γ Γ ; K ⊆ K ϕ; Φ; Γ (νa)P K ϕ; Φ; ↑ [m,m] Γ m : (νa)P K + [m, m]By Lemma 4.5.7, we know that ↑ [m,m] T is reliable. So, we have:π ϕ; Φ; Γ , a : T P K ϕ; Φ Γ Γ ; K ⊆ K ϕ; Φ; Γ, a : T P K ϕ; Φ; ↑ [m,m] (Γ, a : T ) (m : P ) K + [m, m] ↑ [m,m] T reliable ϕ; Φ; ↑ [m,m] Γ (νa)(m : P ) K + [m, m]

  π ϕ; Φ; Γ , a : T P K ϕ; Φ; ↑ [m,m] Γ , a : ↑ [m,m] T (m : P ) K + [m, m] ϕ; Φ Γ ↑ [m,m] Γ ; T ↑ [m,m] T ; K + [m, m] ⊆ K ϕ; Φ; Γ, a : T (m : P ) K T reliable ϕ; Φ; Γ (νa)(m : P ) KAs T is reliable, by Lemma 4.5.1, we have ↑ [m,m] T reliable. Then, by Lemma 4.5.7, we have T reliable. So, we give the typing: π ϕ; Φ; Γ , a : T P K T reliable ϕ; Φ; Γ (νa)P K ϕ; Φ; ↑ [m,m] Γ m : (νa)P K + [m, m] ϕ; Φ Γ ↑ [m,m] Γ ; K + [m, m] ⊆ K ϕ; Φ; Γ m : (νa)P K

•

  Case (n :!a( v).P ) | (m : a e .Q) ⇒ (n :!a( v).P ) | (max(m, n) : (P [ v := e] | Q)). Consider the typing ϕ; Φ; Γ 0 | ∆ 0 , a : ∀ i.srv Ka ( T )/(U 0 | V 0 ) (n :!a( v).P ) | (m : a e .Q) K 0 K 0 .

[0, 0 ]

 0 J c .(V 2 | V 2 ) ϕ; Φ J c ; (K 2 K a { I N / i}) ⊆ K 1First, by the index substitution lemma (Lemma 4.5.10), from π P we obtain a proof:π P { I N / i} : ϕ; Φ; Γ 2 , a : ∀ i.srv Ka ( T )/U 2 , v : T { I N / i} P K a { I N / i}

  π P : ϕ; Φ; Γ Nat 0 , Γ ν 2 , a : ∀ i.srv Ka ( T )/U 2 , v : T { I N / i} P K a { I N / i} π e : ϕ; Φ; Γ Nat 0 , ∆ ν 2 , a : ∀ i.srv Ka ( T )/V 2 e : T { I N / i}that we do not always have I ≤ C (Q) because of two guarded processes: the process tick.Q

Example 4 . 5 . 6 (

 456 Factorial). Suppose given a function on expressions for multiplication: mult :Nat[I, J] × Nat[I , J ] → Nat[I * I , J * J ].In practice, this should be encoded as a server in π-calculus, but for the sake of simplicity we consider it as a function. We will describe the factorial and count the number of multiplications with tick. For the sake of conciseness, we write Nat[I] to denotes Nat[I, I]. We use the usual notation I! to represent the factorial function in indices. The process representing factorial and its typing derivation are given in Figure4.[START_REF] Das | Parallel complexity analysis with temporal session types[END_REF]. We denote T the following type: ∀i.srv[0,i] (Nat[i], ch(Nat[i!])/Out

  i] ) = S 1 (i) | S 2 (i)

Example 4 . 5 . 7 (

 457 Deadlock). Let us consider the process P := (νa)(νb)(a().tick.b | b().tick.a )

  2 

  ••• 2 poly(n)

  2 

  Proof. Point 1 and Point 2 are by definition of ≤ and <, then Point 3 is a direct induction on types using Point 1 for base types. Point 4 and Point 5 are proved by induction on π:

	5. ω(π{I/i}) = ω(π){I/i}.

  By using the fact that j must be a fresh variable in Γ, dΓ, J and F , we can suppose, by renaming, that j does not occur in I. Then, we obtain: Take J 1 , J 2 such that J 1 ≤ J 2 .1. Let I be an index, then I{J 1 /i} ≤ I{J 2 /i}.

					. We want to prove that π{I/i} Γ{I/i}
	itern(V, t) : N J{I/i}	F {I/i}.
	By induction hypothesis and Point 3 of Lemma 2.1.3 we have
	D{I/i} E{I/i}	E{I/i} E{j+1/j}{I/i}	E{J/j}{I/i} F {I/i}
	σ{I/i} dΓ{I/i} V : D{I/i}	D{j+1/j}{I/i}	τ {I/i} Γ{I/i}, dΓ{I/i} t : D{1/j}{I/i}
		D{I/i} E{I/i}	E{I/i} E{I/i}{j+1/j}	E{I/i}{J{I/i}/b} F {I/i}
	π{I/i}	σ{I/i} dΓ{I/i} V : D{I/i} Γ{I/i}, dΓ{I/i} itern(V, t) : N J{I/i} D{I/i}{j+1/j} τ {I/i} Γ{I/i}, dΓ{I/i} t : D{I/i}{1/j} F {I/i}
	with weight ω(π{I/i}) = J{I/i}+ω(τ ){I/i}+J{I/i} • ω(σ){I/i}{J{I/i}/b}.
	And so ω(π{I/i}) = ω(π){I/i}.
	Lemma 2.1.4 (Monotonic index substitution). 2. For any proof π, ω(π{J 1 /i}) ≤ ω(π{J 2 /i}).
	3. Let E be a type. If E		E{i+1/i} then E{J 1 /i}	E{J 2 /i} and if E{i+1/i}	E then
	E{J 2 /i} E{J 1 /i}.		
	Proof. Point 1 can be proved by induction on indices, and then Point 2 is just a particular case
	of Point 1, by Lemma 2.1.3. Point 3 is proved by induction on the type E. Let us first show an
	intermediate lemma:		

  . By Point 1 of Lemma 2.1.4, we have I{J 1 /i} ≤ I{J 2 /i}. This concludes the first case. Now, suppose that E{i+1/i} E. By definition, this means I{i+1/i} ≤ I. By Lemma 2.1.5, i have no occurrence in I. Thus, we have directly I{J 2 /i} ≤ I{J 1 /i}, and so E{J 2 /i} E{J 1 /i}. By induction hypothesis, we have D {J 1 /i} D {J 2 /i} and D{J 2 /i} D{J 1 /i}. Thus, we obtain E{J 1 /i} E{J 2 /i}. The other case E{i+1/i} E is similar. • The case for E = D ⊗ D is direct by induction hypothesis. Lemma 2.1.6 (Typing Base Values). If π Γ, dΓ V : U then we have a proof π dΓ

	• If E = D	D . Suppose that E	E{i+1/i}. By definition, D	D {i+1/i} and
	D{i+1/i} D.		

  Definition 2.2.3 (Typing Contexts). Linear variables contexts are denoted Γ, with the shape Γ = x 1 : T 1 , . . . , x n : T n . We write Γ 1 , Γ 2 the disjoint union between Γ 1 and Γ 2 . Global variables contexts are denoted ∆, with the shape ∆ = x 1 : T 1 , . . . , x n : T n , y 1 : [T 1 ], . . . , y m : [T m ]. We say that [T ] is a discharged type, as we could see in light linear logic[START_REF] Girard | Light linear logic[END_REF][START_REF] Terui | Light affine lambda calculus and polytime strong normalization[END_REF]. A global variable context x 1 : T 1 , . . . , x n : T n , y 1 : [T 1 ], . . . , y m : [T m ] may sometimes be denoted by ∆, [∆ ]. In this case, we consider that ∆ = x 1 : T 1 , . . . , x n : T n and ∆ = y 1 : T 1 , . . . , y m : T m .

T. 

  Proof. Point 1 is the same as in Lemma 3.1.1, it comes from the definition of indexes. Point 2 is proved by induction on the subtyping derivation, and it uses explicitly Point 1. Point 4 is a consequence of Point 1: everything that is defined in Γ φ;Φ -I is also defined in Γ

	(φ,φ );(Φ,Φ )

•

  Case match [] {[] → P ; ; x :: y → Q} ⇒ P . This case is similar to its counterpart for natural number, so we only detail this one. Suppose given a derivation ϕ; Φ; Γ match [] {[] → P ; ; x :: y → Q} K. Then the derivation has the shape:Where we ignore the branch for Q as it does not interest us in this case. By Lemma 4.4.9, As ϕ; Φ I ≤ 0, by Lemma 4.4.4, we obtain directly from π P a derivation ϕ; Φ; Γ P K.

	ϕ; Φ; ∆ [] : List[0, 0](B )	ϕ; Φ Γ ∆; List[0, 0](B ) List[I, J](B)	πP
	ϕ; Φ; Γ [] : List[I, J](B)		ϕ; (Φ, I ≤ 0); Γ P K
			ϕ; Φ; Γ match [] {[] → P ; ; x :: y → Q} K
	we obtain:			
	ϕ; Φ I ≤ 0	ϕ; Φ 0 ≤ J	ϕ; Φ B	B

• Case match e :: e {[] → P ; ; x :: y → Q} ⇒ Q[x, y := e, e ]. This case is more difficult than its counterpart for integers, thus we only detail this case and the one for integers can easily be deduced from this one. Suppose given a derivation ϕ; Φ; Γ match e :: e {[] → P ; ; x :: y → Q} K. Then the derivation has the shape:

  .1. So, it means we choose for bmerge

  (ϕ, i); Φ; Γ 2 , a : ∀ i.srv Ka ( T )/U 2 , v : T P K a ϕ; Φ;↑ Jc !Γ 2 , a : ∀ i.srv Ka ( T )/!In Jc .U 2 !a( v).P [0, 0] (2) ϕ; Φ; Γ 1 , a : ∀ i.srv Ka ( T )/U 1 !a( v).P K 1 ϕ; Φ; ↑ [n,n] Γ 1 , a : ∀ i.srv Ka ( T )/↑ [n,n] U 1 n :!a( v).P K 1 + [n, n](1) ϕ; Φ; Γ 0 , a : ∀ i.srv Ka ( T )/U 0 n :!a( v).P K 0 where (1) is ϕ; Φ Γ 0 ↑ [n,n] Γ 1 ; U 0 ↑ [n,n] U 1 ; K 1 + [n, n] ⊆ K 0 and (2) is ϕ; Φ Γ 1 ↑ Jc !Γ 2 ; U 1 !In Jc .U 2 ; [0, 0] ⊆ K 1 π e ϕ; Φ; ∆ 2 , a : ∀ i.srv Ka ( T )/V 2 e : T { I N / i} π Q ϕ; Φ; ∆ 2 , a : ∀ i.srv Ka ( T )/V 2 Q K 2 ϕ; Φ; ↑ J c (∆ 2 | ∆ 2 ), a : ∀ i.srv Ka ( T )/Out [0,0] J c .(V 2 | V 2 ) a e .Q J c ; (K 2 K a { I N / i})(4) ϕ; Φ; ∆ 1 , a : ∀ i.srv Ka ( T )/V 1 a e .Q K 1 ϕ; Φ; ↑ [m,m] ∆ 1 , a : ∀ i.srv Ka ( T )/↑ [m,m] V 1 m : a e .Q K 1 + [m, m]

	π P
	[0,0]
	[0,0]

(Lin Ax) Γ, x : T | ∆ x : T (Glob Ax) Γ | ∆, x : T x : T Γ, x : T | ∆ M : U (λ) Γ | ∆ λx.M : T U Γ | ∆ M : U T Γ | ∆ N : U (App) Γ, Γ | ∆ M N : T • | ∆ M : T (! Intro) Γ | ∆ , [∆] !M : !T Γ | ∆ M : !T Γ | ∆, x : [T ] N : U (! Elim) Γ, Γ | ∆ let !x = M in N : U Γ | ∆ M : T α fresh in Γ, ∆ (∀ Intro) Γ | ∆ M : ∀α.T Γ | ∆ M : ∀α.T (∀ Elim) Γ | ∆ M : T {U/α}

time functions, the bang modality from elementary linear logic leads to a characterization of 2k-FEXPTIME in the type !W ! k+1 W . We believe there should be more elegant presentation of this result, but the idea in itself of combining a rather expressive language with linear logic modalities can be of interest, since being able to characterizing a specific complexity class can lead to characterizations of other classes.In the following, we will focus on complexity analysis of programs, instead of characterizations of complexity classes. So, not only we want some complexity bounds on programs, but we want those bounds to be as precise as possible. We thus define a framework, relying on sized types, where sizes are far more expressive that the one of s T, in order to carry this complexity analysis.

When a type T is not a base type, we call it a channel type. Then, we define a subtyping relation on those types, expressed by the rules of Figure4.4. As stated above, we have indeed covariance for input, contravariance for output and invariance for channels. We also use an explicit transitivity rule, but it is in fact not needed as it could be replaced by an exhaustive set of rules. The transitivity is only used to first remove a capability, and then do subtyping according to the variance of the remaining capability.We can now define typing for expressions and processes. This is expressed by the rules of Figure 4.5 and Figure 4.6. We use the notation Γ e : T for a sequence of typing judgements for expressions in the tuple e.v : T ∈ Γ Γ v : T Γ 0 : Nat Γ e : Nat Γ s(e) : Nat Γ [] : List(B) Γ e : B Γ e : List(B) Γ e :: e : List(B) ∆ e : U Γ ∆ U T Γ e : T Figure 4.5: Typing Rules for Expressions

Γ 0 Γ P Γ Q Γ P | Q Γ a : in( T ) Γ, v : T P Γ !a( v).P Γ a : in( T ) Γ, v : T P Γ a( v).PΓ a : out( T ) Γ e : T Γ P Γ a e .P Γ, a : T P Γ (νa)P ∆ P Γ ∆ Γ P Γ e : Nat Γ P Γ, x : Nat Q Γ match e {0 → P ; ; s(x) → Q}

, . . . , i are either chains that do not contain i and that caused p and so n +

is

This is because in the definition of JC ; K in Definition 4.5.10, we pessimistically take into account the possibility that each input/output may be blocked forever. We can avoid the pessimistic estimation of the lower-bound by incorporating information about lock-freedom[START_REF] Kobayashi | A type system for lock-free processes[END_REF][START_REF] Kobayashi | Type-based information flow analysis for the π-calculus[END_REF].

Then, by delaying (Lemma 4. 4.6), we have ϕ; Φ; Γ -I +I max(n, m) : P [ v := e] I+K 1 { J/ i}, and Γ = 0 , 1 with ϕ; Φ 1 Γ -I +I . Recall that ϕ; Φ I 1 +m+K 1 { J/ i} ≤ K. Thus, again by subtyping and weakening, we obtain ϕ; Φ; Γ max(n, m) : P [ v := e] K And this concludes this case.

-Now, we suppose that we do not have ϕ; Φ I ≥ m. Note that as we know ϕ; Φ I ≥ n, it means that m > n. Moreover, as ϕ; Φ I 1 = I -m, then ϕ; Φ I 1 +m = max(I, m). We still have:

Thus, by subtyping, from π P we can obtain a derivation of (ϕ, i); Φ; Θ 0 , v : T 1 P K 1 . By Lemma 4. 4.5, we have a derivation of ϕ; Φ{ J/ i}; Θ 0 { J/ i}, v : T 1 { J/ i} P K 1 { J/ i}. As i only appears in T 1 and K 1 , we obtain a derivation of ϕ; Φ; Θ 0 , v : T 1 { J/ i} P K 1 { J/ i}. Now, by using several times Lemma 4. 4.2, we have:

for some 0 , 1 . Moreover, we know that Θ 0 is time invariant. let us call J = max(I 0 +n, I 1 +m), we have by again decreasing in the first subtyping relation:

for some 2 . Note that we have ϕ; Φ J = max(I, m) = I 1 +m since ϕ; Φ I 0 +n = I and ϕ; Φ I 1 +m = max(I, m). By Lemma 4. 4.3, we can obtain two proofs, with the subtyping rule, ϕ; Φ; Γ -J , v : T 1 { J/ i} P K 1 { J/ i} ϕ; Φ; Γ -J e : T 1 { J/ i} Thus, by the substitution lemma (Lemma 4. 4.7), we have ϕ; Φ; Γ -J P [ v := e] K 1 { J/ i}. Recall that in this case, max(n, m) = m. We can obtain the following typing using the associated typing rule: And this concludes this case. Notice that many notations in this case are somewhat complicated because we only know that ϕ; Φ I ≥ m is false, but it does not immediately means that ϕ; Φ m > I because the relation on indexes is not complete. So, we have to take that into account when writing substraction.

Usages

We use usages to express the channel-wise behaviour of a process. Our notion of usages has been inspired by the usages introduced in type systems for deadlock-freedom [START_REF] Sumii | A generalized deadlock-free process calculus[END_REF][START_REF] Kobayashi | A type system for lock-free processes[END_REF][START_REF] Kobayashi | An implicitly-typed deadlock-free process calculus[END_REF], but differs from the original one in a significant manner. We define usages as a kind of CCS [START_REF] Milner | A calculus of communicating systems[END_REF] processes on a single channel, where each action is annotated with two time intervals. The set of usages, ranged over by U or V , is given by:

Given a set of index variables ϕ and a set of constraints Φ, for an interval [I, J], we always require that ϕ; Φ I ≤ J. For an interval A o = [I, J], we denote Left(A o ) = I and Right(A o ) = J. In the original notion of usages [START_REF] Sumii | A generalized deadlock-free process calculus[END_REF][START_REF] Kobayashi | A type system for lock-free processes[END_REF][START_REF] Kobayashi | An implicitly-typed deadlock-free process calculus[END_REF], A o and J c were just numbers. The extension to intervals plays an important role in our analysis. Note that J c is not always an interval, as it can be a single index J. However, this single index J should be understood as the interval [-∞, J].

Intuitively, a channel with usage 0 is not used at all. A channel of usage U | V can be used according to U and V possibly in parallel. The usage In Ao Jc .U describes a channel that may be used for input, and then used according to U . The two intervals A o and J c , called obligation and capacity respectively, are used to achieve a kind of assume-guarantee reasoning. The obligation A o indicates a guarantee that if the channel is indeed used for input, then the input will become ready during the interval A o . The capacity J c indicates the assumption that if the environment performs a corresponding output, that output will be provided during the time interval J c after the input becomes ready. For example, if a channel a has usage In [1,1] Jc .0, then the process tick.a().0 conforms to the usage, but a().0 and tick.tick.a().0 do not. Furthermore, if J c = [0, 1], and if a process tick k .a is running in parallel with tick.a().0, then k belongs to the interval [1,1] + [0, 1] = [1,2]. Similarly, Out Ao Jc .U has the same meaning but for output. The usage !U denotes the usage U that can be replicated infinitely, and U + V denotes a non-deterministic choice between the usages U and V . This is useful for example in a case of pattern matching where a channel can be used very differently in the two branches. For the sake of conciseness, we may use α Ao Jc .U to denote either the usage Out Ao Jc .U or In Ao Jc .U . Recall that the obligation and capacity intervals in usages express a sort of assume-guarantee reasoning. We thus require that the assume-guarantee reasoning in a usage is "consistent" (or reliable, in the terminology of usages). For example, the usage In 1] assumes that a corresponding output will become ready at time 1, and the other part Out [1,1] 0 indeed guarantees that. Then, Out [1,1] 0 assumes that a corresponding input will be ready by the time the output becomes ready, and the part In is problematic because, although the part In [0,0] [1,1] assumes that an output will be ready at time 1, Out [2,2] 0 provides the output only at time 2. The consistency on assume-guarantee reasoning must hold during the whole computation; for example, in the usage In 0 , the assume/guarantee on the first input/output pair is fine, but the usage expressing the next communication:

is problematic. To properly define the reliability of usages during the whole computation, we first prepare a reduction semantics for usages, by viewing usages as CCS processes.

Definition 4. 5.3 (Congruence for Usages). Congruence on usages is defined as the least congruence relation closed under: easy to advance the time of all the other subprocesses, delaying the current subprocess leads to an easier semantics. In the rules for U + V , a reduction step in usages can also make a non-deterministic choice.

An error in a usage reduction means that the assume-guarantee reasoning was inconsistent. Keeping that in mind, we define what is a reliable usage, that is to say a usage with consistent time indications. Definition 4. 5.5 (Reliability). A usage U is reliable under ϕ; Φ when for any reduction from U using -→, it does not lead to an error.

A type T is reliable under ϕ; Φ if it is a base type or a channel (resp. server) type with a reliable usage. 

The only possible reduction step (with symmetry) is: The obligation [1,1] corresponds to waiting exactly one tick. Then, the capacities say that once they are ready, the two inputs will indeed communicate before one time unit for any reduction. And at the end, we obtain an output available at time 3, and this output has no communication. One can see that those capacities and obligations give indeed the complexity of this process. Thus, we will ask in the type system that all usages are reliable, and so the time indications will give some complexity bounds on the behaviour of a channel.

Example 4. 5.3. Let us take as another example a non-reliable usage. We take the previous example and add another input in parallel

Again, the reduction gives:

, so the capacity here is not a good assumption. Therefore, this usage is not reliable. However, if we change the usage to

this time we obtain a reliable channel. This example shows how reliability adapts compositionally.

We introduce another relation U V called the subusage relation, which will be used later to define the subtyping relation. It is defined by the rules of Figure 4. [START_REF] Dal | The geometry of types[END_REF]. The relation U V intuitively means that if a channel is given a usage V , then it is safe for the typing to consider that the usage is U . For example, U 0 says that if a channel is not used (usage equal to 0), then it is safe to give any usage to this channel. Recall that an obligation and a capacity express a guarantee and an assumption respectively. The last but one rule says, read from right to left, that it is safe to weaken the guarantee and strengthen the assumption, as explained in Section 4. 1.3. We use the relation I c ≤ J c to denote the relation ⊆ on intervals, where a single index J is considered as the interval [-∞, J]. The last rule can be understood as follows. If a channel is safely typed with the right usage. Then, in particular the usage V should happen after the action α Ao Jc . Since the action α Ao Jc is finished during the interval A o + J c , the channel is used according to V only after the interval A o + J c . thus it is safe to move V outside the guard of α Ao Jc , as long as it is delayed by A o + J c unit of time. This last rule is especially useful for substitution, as explained in the example below. Before describing the type system, we give some intermediate results on subusages.

Lemma 4. 5.1 (Properties of Subusage). For a set of index variables ϕ and a set of constraints Φ on ϕ we have:

If ϕ;

Φ U V and ϕ; Φ V -→ V , then there exists U such that ϕ; Φ U -→ * U and ϕ; Φ U V (with err U for any usage U )

Figure 4.32: Rules Defining the Subusage Relation

The first point shows that subtyping is invariant by delaying. The second property means that the subusage relation serves as a simulation relation, and the last one means that the reliability is closed under the subusage relation. In our setting, it means that the subusage relation cannot lead to unsound complexity bounds.

In order to proceed with a proof, we first give the following lemma:

This can be proved easily by induction on U . We now give elements of proof for Point 2 and Point 3 of Lemma 4.5.1. For Point 2, we can see two possible directions, either proceed by induction on U V and then do a case analysis on V -→ V on proceed by induction on V -→ V and then do a case analysis on U V . In both cases, the definition of subusage with the transitivity rule and congruence that can be used everywhere make the proof complicated. So, we chose to first simplify the definition of subusage. Definition 4. 5.6 (Decomposition of Subusage). Let us call ct the relation defined by the rule of Figure 4.32 without using congruence and transitivity. Then, we define t as:

And we have the following lemma. The proof can be done by induction on , and it relies mainly on the fact that congruence can be used in any context, so we can use it at the end. In the same way, as the subusage relation can also be used in any context, the transitivity can be done at the end. So, with this lemma we got rid of the complicated rules by putting them always at the end of a derivation. Moreover, note that it is easy to describe exhaustively subtyping for t . Let us drop the ϕ; Φ notation for the sake of conciseness, and we have: 

This proof is done directly by induction on U ct V . The replication context rule works because we have !(U 0 | W ) ≡!U 0 | !W and !!W ≡!W . We now go back to Point 2 of Lemma 4.5.1.

Proof. We rely on Lemma 4.5.3. So, we will prove first this intermediate lemma:

Lemma 4. 5.5. If U t V and V → V , then there exists U such that U → * U and U V Then, if this lemma is proved, we conclude by transitivity of the property. So, it is sufficient to prove it. We will also use the following lemma Lemma 4.5. [START_REF] Avanzini | Automating sized-type inference for complexity analysis[END_REF].

Indeed, there are three cases for V -→ V . Either it is only a reduction step in U 0 independently of !U 1 , either it is a reduction step within U 1 (note that one copy is always sufficient), either it is a synchronization between one action in U 0 and one action in U 1 . In the first case, the lemma is true because we can arbitrarily add U 1 . In the same way, in the second case the lemma is correct because we can just ignore U 0 . In the third case, the lemma is verified since we allow this synchronization between U 0 and U 1 .

We now start the proof. We proceed by induction on U ct V , and we use the exhaustive description given by Lemma 4. 5.4. We always consider the case * =! as it is the harder of the two cases. Let us give some interesting cases:

The easy case is when V is obtained by a reduction step in U 0 . So, we suppose that the reduction step is a synchronization between U 0 and α Ao Jc .W . So, we have:

If V = err, then we take U = err and concludes this case. Otherwise, we have:

The fact that U V is given by the previous point of Lemma 4.5.1.

Again, the only interesting case is when the synchronization is not only in U 0 . So, we have:

. Thus, we take

We have indeed U -→ U and U V by Lemma 4.5.2. Otherwise, we obtain an error for U and so it indeed is a subusage of V .

Again, if the reduction step V → V is a synchronization between subprocesses in U 0 , it is simple. So let us suppose that:

We pose U equal to:

We have indeed U → U and we have U

As either J c = J and so Left(

Thus, we have indeed Lemma 4.5.5, and we deduce the second point of Lemma 4.5.1.

Finally, the third point is a direct consequence of the second point. Indeed, suppose that U is reliable. So, for any reduction from U , it does not lead to an error. Let us take a reduction from V . By the third point, it gives us a reduction from U where some steps are a subtype of the steps in V . So, as an error cannot happen in the steps from U , and the only usage U such that U err is err, we know that the reduction from V does not lead to an error. Thus, V is reliable. .

Out a lower bound on the parallel complexity of P . But in practice, this lower bound is often too imprecise. 1 The (par) rule separates a context into two parts, and the complexity is the maximum over the two complexities, both for lower bound and upper bound. The (tick) rule shows the addition of a tick implies a delay of [1,1] in the context and the complexity. The (ν) rule imposes that all names must have a reliable usage when they are created. In order to type a channel with the (ich) rule, the channel must have an input usage, with obligation [0, 0]. Note that with the subusage relation, we have In Ao Jc In [0,0] Jc if and only if A o = [0, I] for some I. So, this typing rule imposes that the lower-bound guarantee is correct, but the rule is not restrictive for upper-bound. This rule induces a delay of J c in both context and complexity. Indeed, in practice this input does not happen immediately as we need to wait for output. This is where the assumption on when this output is ready, given by the capacity, is useful. The rule for output (och) is similar. For a server, the rules for both input and output are similar to the one for channels in principle but differ in the way complexity is managed, similarly to Section 4. 4. Finally, the (case) rule is the standard rule for a sized type system. Note that contexts are not separated in this rule. In the typing for the expression this is not a problem since names are not useful for the typing of an integer. Then for both branches, it means that the usage of channels must be the same. However, because we have the choice usage (U + V ), in practice we can use different usages in those two branches.

As an illustration of the type system, let us take back again the reliable usage described in Example 4. 5.2 and show that it corresponds indeed to the typing of a in the process described in Example . is also typable, in the same way, using the usage described in Example 4.5.2, and with complexity [1,3]. However, we saw in Example 4.5.3 that the usage was not reliable, and that is why we do not obtain a valid complexity bound. If we take the reliable usage

It gives us back the correct complexity bound [1,4] So, our type system can adapt compositionally with the use of reliability. And we saw on this example that reliability is needed to obtain soundness. An example for the use of servers and sizes is given later, in Example 4.5.6.

Remark 4.5.1. A careful reader may wonder why we need intervals for obligations and capacities, instead of single numbers. An informal justification is given in the Appendix 4.5. 3.

We now present the variable substitution lemmas. In the setting of usages, this lemma is a bit more complex than usual. Indeed, we have a separation of contexts with the parallel composition, and we have to rely on subusage, especially the rule ϕ;

as expressed in the Example 4.5.4 above. We put some emphasis on the following notation: when we write Γ, v : T as a context in typing, it means that v does not appear in Γ. The first point is straightforward. It uses the fact that we have the relation ϕ; Φ U 0 for any usage U , and so we can use ϕ; Φ Γ | ∆ Γ in order to weaken ∆ (similarly for Γ) if needed. The second point is more interesting. The easy case is when T is Nat[I, J] for some [I, J]. Then, we take a ∆ that only uses the zero usage, and so Γ | ∆ = Γ and everything becomes simpler. The more interesting cases are: Lemma 4. 5.12 (Difficult Cases of Substitution). We have:

Indeed, this corresponds to the cases when v = c and ∆ = (Γ/0), b : ch( S)/W 1 or ∆ = (Γ/0), b : ∀ i.srv K ( S)/W 1 where Γ/0 is Γ with all usages replaced by 0. Note that it is sufficient to prove this intermediate lemma, since if ∆ had another shape, it could be obtained again by subtyping. For those two points, the main difficulty is for the input and output rules. We first detail the first point of this lemma, and we will detail the difference for the second point.

1.

• Case of input, with a = b and a = c.

2.

We now work on the case of servers. The notations are a bit cumbersome but the proofs are similar to the one for channels. The only point that need some details is for server input as there is the replication in usages that appear.

• Case of input, with a = b and a = c.

By induction hypothesis, we have (ϕ, i); Φ; Γ, a :

• Case of input, with a = b.

By induction hypothesis, we obtain (ϕ, i); Φ; Γ, b :

This last derivation is obtained by subtyping. Indeed, by definition we have

• The case a = c is similar to the previous one.

This concludes the proof.

Subject Reduction and Soundness

We then explain the subject reduction. Let us first introduce a notation: Definition 4. 5.11 (Reduction for Contexts). We say that a context Γ reduces to a context Γ under ϕ; Φ, denoted ϕ; Φ Γ -→ * Γ when one of the following holds:

So intuitively, Γ is Γ after some reduction steps but only in a unique usage. Note that we obtain immediately that if all types in Γ are reliable then all types in Γ are also reliable by definition of reliability.

We then formalize the subject reduction.

Theorem 4. 5.1 (Subject Reduction). If ϕ; Φ; Γ P K with all types in Γ reliable and P ⇒ Q then there exists Γ with ϕ; Φ Γ -→ * Γ and ϕ; Φ; Γ Q K.

So, we use the substitution lemma (Lemma 4. 5.11) and we obtain:

As previously, by subtyping from π Q , we have:

Thus, with the parallel composition rule (as parallel composition of context is defined) and subtyping we have:

Let us denote M = max(m, n). Thus, we derive the proof:

where E is:

Now, recall that by hypothesis, U 0 | V 0 is reliable. We have:

So, by Point 1 of Lemma 4.5.1, with transitivity and parallel composition of subusage, we have:

By Point 3 of Lemma 4. 5.1, we have !In So, in particular, we have:

Thus, we deduce immediately that neither

So, we have in particular, with Lemma 4.5.2 and Point 1 of Lemma 4.5.1 and parallel composition:

We also have

Thus, we simplify a bit the derivation given above, and we have:

We also have the following derivation:

So, by parallel composition of those two derivations we obtain a derivation of:

By Point 2 of Lemma 4.5.1, there exists W such that:

So, by subtyping we have a proof:

This concludes this case.

• Case (n : a( v).P ) | (m : a e .Q) ⇒ (max(m, n)

The first rule is the rule for parallel composition, then the derivation is split into the two following subtrees:

ϕ; Φ; ∆ 0 , a : ch( T )/V 0 m : a e .Q K 0

where (1) is

First, we know that Γ 0 | ∆ 0 is defined. Moreover, we have

So, for the channel and server types, in those seven contexts, the shape of the type does not change (only the usage can change). We also have:

So, from π e and π P we obtain by subtyping:

So, we use the substitution lemma (Lemma 4. 5.11) and we obtain:

As previously, by subtyping from π Q , we have:

Thus, with the parallel composition rule (as parallel composition of context is defined) and subtyping we have:

Let us denote M = max(m, n). Thus, we derive the proof:

Now, recall that by hypothesis, U 0 | V 0 is reliable. We have:

So, by Point 1 of Lemma 4.5.1, with transitivity and parallel composition of subusage, we have:

By Point 3 of Lemma 4. 5.1, we have In

So, in particular, we have:

Thus, we deduce that

So, we have in particular, with Lemma 4.5.2 and Point 1 of Lemma 4. 5.1 and parallel composition:

We also have

Thus, we can simplify a bit the derivation given above, and we have:

By Point 2 of Lemma 4.5.1, there exists W such that:

So, by subtyping we have a proof:

This concludes this case.

The case when we match on the integer 0 is similar, so we only present the successor case. Suppose given a derivation for match s(e) {0 → P ; ; s(x) → Q} K. Then the derivation has the shape: where π Q is a derivation of φ; (Φ, J ≥ 1); Γ, x : Nat[I-1][J-1] Q K, and π P is a typing derivation for P that does not interest us in this case.

By definition of subtyping, we have:

From this, we deduce the following constraints:

Thus, with the subtyping rule and the derivation π e we obtain:

Then, by Lemma 4.5.9, from π Q we obtain a derivation of ϕ; Φ; Γ, x :

By the substitution lemma (Lemma 4. 5.11), we obtain ϕ;

This concludes this case.

• Case n : P ⇒ n :

Then, the derivation has the shape:

We give the proof:

And we have indeed ϕ; Φ ↑ [n,n] Γ -→ * ↑ [n,n] Γ by Lemma 4.5.7.

• Case P ⇒ Q with P ≡ P , P ⇒ Q and Q ≡ Q . Suppose that ϕ; Φ; Γ P K. By Lemma 4. 4.8, we have ϕ; Φ; Γ P K. By induction hypothesis, we obtain ϕ; Φ; Γ Q K with ϕ; Φ Γ -→ * Γ . Then, again by Lemma 4. 4.8, we have ϕ; Φ; Γ Q K. This concludes this case.

This concludes the proof of Theorem 4.5.1. Finally, we conclude with the following theorem: Theorem 4.5.2. Let P be an annotated process and n be its global parallel complexity. Then, if we have ϕ; Φ; Γ P [I, J], then ϕ; Φ J ≥ n. Moreover, if Γ does not contain any integer variables, we have ϕ; Φ I ≤ n.

Proof. By Theorem 4. 5.1, all reductions from P using ⇒ preserve the typing. The context may be reduced too, but as reducibility does not harm reliability, we can still apply the subject reduction through all the reduction steps of ⇒ Moreover, for a process Q, if we have a typing ϕ; Φ; Γ Q [I, J], then J ≥ C (Q). Indeed, a constructor n : P forces an increment of the complexity of n both in typing and in the definition of C (Q), and for parallel composition the typing imposes a complexity greater than the maximum as in the definition for C (Q). Thus, J is indeed a bound on the parallel complexity by definition. As for the lower bound, one can see

with π 1 : This gives us the additional constraints:

So, if we put it together, we have:

As In fact, this is possible as described in Figure 4. [START_REF] Das | Work analysis with resource-aware session types[END_REF]. Thus, the capacity [∞, ∞], describing input or output that will never be reduced, allows us to derive a complexity of zero.

Example 4.5.8. We describe here informally an example for which our system can give a complexity, but fails to catch a precise bound, compared to Section 4. 4. Let us consider the process:

This process has complexity 2, and the type system of Section 4.4 can infer this complexity.

However, if we want to give a usage to the server a, we must have a usage:

symmetry with the other branch We took as obligations the number of ticks before the action, and as capacity the minimal number for which we have reliability. So in particular, because of the capacity 1 in the usage Out

1 , typing the recursive call a m increases the complexity by one, and so typing n recursive calls generates a complexity of n in the type system. So, in the usage setting, the complexity of this process can only be bounded by 10. Overall, this type system may not behave well when there are more than one replicated input process on each server channel, since an imprecision on a capacity for a recursive call leads to an overall imprecision depending on the number of recursive calls. This issue is the main source of imprecision we found with respect to the type system of Section 4. 4.

The Need for Intervals in Usages

In this paragraph, we describe informally on an example where the use of intervals is important in our work. The need for an interval capacity is apparent for the process Now, one might think that we can assume that lower-bounds are always 0 (or ∞, to consider processes like Example 4. 5.7) and omit lower-bounds, since we are mainly interested in an upperbound of the parallel complexity. Information about lower-bounds is, however, actually required for precise reasoning on upper-bounds. For example, consider the following process: 

[0,0] , and the parallel complexity of the process can be precisely inferred to be 1.

If we set lower-bounds to 0 and assign to a the usage In

to a, then the usage of b can only be:

1 . Note that according to the imprecise usage of a, the output on b may become ready at time 0 and then have to wait for one time unit until the input on b becomes ready; thus, the capacity of the output on b is 1, instead of [0, 0]. An upper-bound of the parallel complexity would therefore be inferred to be 1 + 1 = 2 (because the usages tell us that the lefthand side process may wait for one time unit at a, and then for another time unit at b), which is too imprecise. The problem described here was already in [START_REF] Kobayashi | A type system for lock-free processes[END_REF], even if it was not shown in this paper. Overall, we are certain that even by trying to modify slightly the definition of [START_REF] Kobayashi | A type system for lock-free processes[END_REF] in order to account for this imprecision, there is no way to still have a sound type system without lower-bounds. This is because the proof of soundness relies on important properties of subusage (namely Lemma 4.5.1 and Lemma 4. 5.2), and in order to satisfy this lemma, all the definitions must be carefully designed.

Elements of Comparison with Section 4.4

Finally, we give intuitively a description of how to simulate types from Section 4.4 in a linear setting with usage. We say that a process has a linear use of channels if it uses channel names at most one time for input and at most one time for output. For servers, we suppose that the replicated input is once and for all defined at the beginning of a process, and as free variables it can only use others servers. The main idea is to represent the channel type ch I ( T ) by a type ch( T )/(In

) where either J 1 c is 0 and then I 1 ≤ I , either J 1 c = [J 1 , J 1 ] and then I 1 + J 1 ≤ I. We have the same thing for J 2 c and I 2 . To be more precise, the typing in our setting should be a non-deterministic choice (using +) over such usages, and the capacity should adapt to the obligation of the dual action in order to be reliable. So, for example if I 1 ≤ I 2 , then we would take: ch( T )/(In

). Note that this shape of type adapts well to the way time is delayed in Section 4. 4. For example, the tick constructor makes the time advance by 1 in this previous setting, and in the usage setting, then we would obtain the usage (In

) and we still have I 2 -I 1 = (I 2 + 1)-(I 1 + 1). In the same way, when doing an output (or input), the time was delayed by I. Here, with usages, it would be delayed by J c which is, by definition, a delay of the shape ↑ [J,J] with J ≤ I. So, we would keep the invariant that our time annotation have the shape of singleton interval with a smaller value than the time annotation in the setting of Section 4. 4.

For servers, in the linear setting, types had the shape: ∀ i.srv K 0 ( T ) where the time is zero because of the assumption given above on servers. So, in the usage setting it would be:

Note that this usage is reliable. The main point here is this infinite capacity for input. Please note that because of our input rule for servers, it does not generate an infinite complexity. However, it imposes a delaying ↑ [0,∞] !Γ in the context. Because of the shape we gave to types, it means that the context can only have outputs for other servers as free variables, but this was the condition imposed by linearity, and it is similar to the time invariant hypothesis of Figure 4. [START_REF] Bocchi | Timed multiparty session types[END_REF]. As an example, the bitonic sort described before could be typed similarly in the usage setting with this kind of type. This type corresponds also to the type we used for Example 4.5. [START_REF] Avanzini | Automating sized-type inference for complexity analysis[END_REF]. Finally, choice in usages U 1 + U 2 is used to put together the different usages we obtain in the two branches of a pattern matching.

However, the transformation described in this section may not be possible if we lose some precision on the sizes of values. Indeed, we showed in the previous example that an imprecision on a value can lead to a need for a non-singleton obligation in a usage, which contradicts the typing we want to give. However, it is not clear if this imprecise obligation leads to a less precise complexity bound with regards to Section 4. 4. We believe it may depend on the context, and sometimes usages will be more efficient, and sometimes not. However, what we know for certain is that the usage type system is not theoretically limited by the time uniqueness presented in Example 4.4.2.

Chapter 5

Perspectives

We see several perspectives for this thesis:

• A direct perspective for our type system for π-calculus would be to study type inference for span. For the type system of Section 4.4, it is possible to draw inspiration from usual sized types inference algorithm [START_REF] Avanzini | Automating sized-type inference for complexity analysis[END_REF], as for work. The main difference is to find a way to derive the constraints obtained because of the advance of time (the • -I operation), as in the examples of Section 4.4.1. For the usage type system, we could build on previous work by Naoki Kobayashi on type inference for usages [START_REF] Kobayashi | Type-based information flow analysis for the π-calculus[END_REF][START_REF] Kobayashi | An implicitly-typed deadlock-free process calculus[END_REF] in order to derive the constraints.

Then, once we obtain this set of constraints, an interesting question is how to solve them in practice. This is usually done by chosing a particular shape for index functions (for example, all functions are polynomials of degree two), and then transforming the inequations on functions to linear inequations. In the analysis of span, the use of logarithms should be important, and so it would be interesting to explore the literature on how to efficiently solve constraints on logarithmic functions, see for instance the recent work [START_REF] Hofmann | Type-based analysis of logarithmic amortised complexity[END_REF].

• If we think of our notions of complexity in terms of circuits, then work corresponds to size and span corresponds to depth. Thus, another interesting notion, corresponding intuitively to the width, would be the number of processors needed to obtain the span. This notion seems harder to capture easily in a small-step semantics. An idea could be to consider those kinds of reduction for tick:

With the intuition that ρ(n) gives the number of computations that happen simultaneously at time n. Then, the width of P would be

Again, sized types should be useful as the width of a function may depend on the size of input, but it seems that an adaptation of our previous type system would not be sufficient for a width analysis.

• An interesting extension of our type systems would be to consider amortized complexity analysis, which could be especially useful if we add trees in the data-types. Some recent work on resource-aware types for parallel programs [START_REF] Das | Work analysis with resource-aware session types[END_REF] could be studied to see if the addition of potential in our type systems is feasible.

Appendix A Additional Results

A.1 Type Inference Procedure for Work

We describe formally a type inference procedure for the work type system described in Section 4.2.3. The work described here has not been implemented yet, but in order to be sure it would be implementable and sound, we give a totally inductive presentation of the procedure. The notations might be cumbersome, as we have to track in particular names of variables. However, with this inductive presentation, we are convinced that the soundness and completeness result given at the end of this section is verified.

Notations for Type Inference

We start by introducing some notations for type inference. We have a particular focus on names and variable renaming, as it could be a source of problems in implementation. We want to design the procedure in such a way that it is easily implementable from the theoretical description, and such that the procedure is correct and complete.

From now on, we may use second order variables for indexes, denoted by e 1 , . . . , e n . This is useful when doing type inference, in the same way that we usually need to add type variables, in a context with sized types we need second-order index variables. The difference between a usual index variable and a second-order index variable is that the second-order index variable comes with a closure (a function ν from second order index variables to index variables), that is to say the set of index variables that it can use. Moreover, we can do a substitution e{I/i} on those variables. So, formally, we define extended indices on a set ϕ of first order variables and Ψ of second order variables (with closure ν) by:

We also ask that in the closure ν we have ν(e) ⊂ ϕ for all e (usually noted by abuse of notation ν ⊂ ϕ).

Definition A. 1.1 (Canonical Extension). We say that a canonical intermediate type T c is a canonical extension of a simple type U if they have the same skeleton (that is to say T c without sizes is U ). We can generalize this to context. 

Then, we can easily show by induction that the type returned is indeed a canonical type, and it verifies the constraints on the use of variables given by the notations.

We also need a unification procedure for base sized types. In order to do this, let us first define a generalization of types. We say that the skeleton of ∀ω :: B, T is the skeleton of T where the special variable ω is replaced by the skeleton of B.

Definition A. 1.8 (Unification Procedure). Given two base types (quantified type form) B 1 and B 2 with the same skeleton, we define the unification procedure

B can be a quantified type form, and C is a set of constraints on the first-order variables described by k and ρ, and on the second order variables described by N and ν. The intuition is that if the constraints in C are satisfied by an instantiation , then there exists particular cases of the type forms B 1 and B 2 , with ϕ;

This is defined by induction on the shape of both B 1 and B 2 . In practice, we take in input a base type with possibly a special variable ω 1 or ω 2 with its associated type, and it returns a base type with possibly a special variable ω.

With this, it is easy to show the following lemma. Proof. By induction on the skeleton of both B 1 and B 2 . All cases are direct.

In the same way that we did for canon, we need a function that renames variables in an intermediate type.

Definition A. 1.9 (Renaming a Canonical Type). We define the function

where C is a set of constraints. The integers l 0 , l 1 ∈ {1, . . . , k}, denote the current exponent for index variables in T c and in the renaming. We also ask that ρ(l 0 ) = ρ(l 1 ).

This is defined by induction on T c .

• rename(Nat[0,

To prove correctness of this definition, we will define a relation called simply equal, that is a notion of equality between types weaker than α-renaming equality, but easier to implement.

Definition A. 1.10 (Simple Equality). We say that two canonical types T c and T c are simply equal (denoted T c = s T c ) if they are syntactically equal when we remove the exponent on the index variables. Formally, this is defined by the rules in Figure A. 1. Note that by definition of canonicity (notably because of btocc and the ordering of variables), two canonical channel types with the same skeleton are simply equal if and only if all the complexity appearing in those types are simply equal.

It is then easy to see that if two canonical channels types with no higher-order variables are simply equal then they are equal by α-renaming.

And then, we can prove the following lemma for correctness of renaming:

and is an instantiation satisfying C, then

The proof is done by induction.

Finally, let us say something about naming. We define first well-named types and contexts.

Definition A. 1.11 (Well-named Types). Intuitively, we will say that a type is well-named given a set of variables if it uses all first-order variables at least once, and all the binding of firstorder variables always use different variables. Intuitively, to show that a type is well-named, we extract the names in a type and show that this corresponds to our set of names. Formally, this is defined by the partial function:

Also defined on extended indexes, with T an intermediate type, and we define as

This set ϕ will correspond to the already bounded variables. Then, ϕ f ⊂ ϕ is the set of free variables that we saw in the type (in the end, we would want ϕ = ϕ f ), and

} is the set of variables bound somewhere in the type, always satisfying ϕ ∩ ϕ b = ∅. Note that we consider that first-order index variables are always denoted i l m for some integers l and m (as it will be the way to denote variables in the implementation). For the sake of simplicity, we define ϕ ϕ as the partial function returning ϕ ∪ ϕ when ϕ ∩ ϕ = ∅, and is undefined otherwise. Then, we define

). We will also use assert (b) to say that the function is undefined if b is false.

And we obtain directly by induction that if names(T, k, ρ, K, N, ν)

And then, we say that a type T (or a list of types) is well-named (under (k, ρ, K, N, ν)) when names(T, k, ρ, K, N, ν) ≡ (ϕ f , ϕ b ) is defined, and we have

Now, we show that names are well-used in the functions defined previously.

Lemma A. 1.3 (Naming in Intermediate Functions). We have,

• If rename(T c , k, ρ, N, ν, l 0 , l 1 ) ≡ (T c , C, k , ρ , N , ν ), and the following is defined:

The proof can be done by induction in both cases. Nothing is really difficult, we only need to expand the definitions.

In the same way of unify, we give a procedure to impose (simple) equality between two types. There are two different procedures, for canonical types and for non canonical types.

Definition A. 1.12 (Imposing Canonical Equality). Given two canonical types T 0 c and T 1 c , we define the partial function:

where 1 ≤ l 0 ≤ k, 1 ≤ l 1 ≤ k are indices indicating the variables used in T 0 c and T 1 c , and we ask that ρ(l 0 ) = ρ(l 1 ). The procedure is such that if it is defined and satisfies C, then we have indeed

Then, for non-canonical types.

Definition A. 1.13 (Imposing Equality). Given two types T 0 and T 1 , we define the partial function:

where K indicates the variables used in T 0 and T 1 .

• eq(Nat[0, • eq(List[0,

• eq(α, α, k, ρ, K, N, ν) ≡ ∅

• eq(A, A, k, ρ, K, N, ν) ≡ ∅

• eq(∀i

Note that because of the last item, eq is not defined on types with non-canonical subtypes for channels. This is not a problem since in type inference, all channel types will be canonical.

It is then easy to see that for any instantiation satisfying C, we have T 0 equal to T 1 by α-renaming.

Type Inference Procedure

We can now present the procedure associated to the intermediate type system. The goal is, from a process P and a classical π-calculus type derivation for this process (obtained by a standard type inference algorithm) to generate a set of constraints such that if this set has a solution, then we can construct a type derivation with sizes and complexity for the process P .

More precisely, we design two procedures, one for expressions and one for processes. Given a typing Γ P , and a context ∆ that is a canonical extension of Γ, and that is well-named with respect to (k, ρ, K, N, ν). We define:

where K is an expression using index variables in ϕ and possibly second-order index variables. The intuition is that, if we are given an instantiation satisfying C, then, we have a typing ϕ; ∆ P K . In the same way, we have an inference function for expressions

Where T is a type or a quantified type form ∀ω :: B, U (ω). The procedure for expressions and processes are given in Figure A.2 and Figure A.3, where the notation for input are given above.

Then, we can show the following lemma on the procedure for expressions:

Γ 0 (0, ∅, k, ρ, N, ν) Proof. The proof is done by induction on Γ e : P . All cases are direct except for list concatenation. The case for list concatenation is a consequence of Lemma A. 1.1. Note that in particular, this procedure in the case of channel type is very easy, as channel types can only be typed with the axiom rule. So, in the following we may not use this procedure for channel type and for the sake of simplicity, directly rewrite the case of axiom when working with a channel. We also define simply Inf 0 (Γ e : T, k, ρ, K, N, ν, ∆) as the usual inference but instead of returning a type form ∀ω :: B, T (ω), we return the type T (B 0 ) where B 0 is the intermediate type consisting in B with 0 everywhere for the sizes.

The first thing that we can easily verify with the previous results on names, is that we have indeed the invariant that ∆ is a well-named canonical extension of Γ through the computation, as it is the main goal of the function rename and canon to keep this invariant. Moreover, we can easily see that ρ (l) = ρ(l) for all 1 ≤ l ≤ k and ν(n) = ν (n) for all 1 ≤ n ≤ N from Lemma A. 1.3 And finally, we can show the following theorem.

Theorem A. 1.1 (Soundness). If Inf(Γ P, k, ρ, K, N, ν, ∆) ≡ (K, C, k , ρ , N , ν ) then for any instantiation satisfying C, we have ϕ;

Proof. By induction. We present here the important cases.

Case input. Let an instantiation satisfying C 1 ∪C 2 ∪{K ≤ K}. As ∆(a) is well-named, it has the shape ∀i l 1 , . . . , i l m .ch K ( T c ). And, by definition, ρ(l) = m. Then, by definition of renaming, in ∀ i.ch K ( T ) we have i = i k+1 1 , . . . , i k+1 m . By induction hypothesis, we obtain ϕ 2 ; ∆ , v : 1.2, we have ∆(a) = s (∀ i.ch K ( T )) . Thus, by definition of simple equality, they are equal by α-renaming. We can thus consider ∆ equal to ∆ everywhere except for ∆ (a) ≡ (∀ i.ch K ( T )) . And we obtain directly ϕ 2 ; ∆ , v : T P K . And we have K ≤ K , thus we can do the usual input typing rule and conclude this case. Case Pattern Matching. The case of pattern matching is direct by induction hypothesis. The only thing that needs some care is if we are going to use the rule for n = 0 or n = 0, but both cases are direct.

Completeness: Intermediate Results

We now focus on completeness for the type inference procedure. First, remark that by a good use of variables and α-renaming, we can always consider that in a typing ϕ; ∆ P K, ∆ is well-named. In order to state completeness, let us first give the following definition.

Definition A. 1.14 (Ground Typing). Given a typing ϕ; ∆ P K, we define ϕ; ∆ P K as the simple typing corresponding to the initial one without sizes.

And now, what we want to show is the following theorem. Note that we do not have total completeness because of one detail. Indeed, when doing an output rule, we have to choose in the expressions e the sizes corresponding to the type of the channels. And sometimes, this choice can be totally arbitrary. For example, if a : ∀i 1 , i 2 .ch K (List[0, i 1 ](Nat[0, i 2 ])), and we have the output a [] , then we need to choose a value for i 2 , and it can be whatever we want. So, in order to impose some uniformity and have completeness, we ask that this choice is always 0. (When we can take whatever size we want, we consider that the size is 0 as it should lead to a smaller complexity). Such a typing is called a 0-typing.

Theorem A. 1.2 (Completeness of Type Inference). Given a set of index variables described by k, ρ and K and a 0-typing (without second order variables) ϕ; ∆ P K with ∆ well-named, then Inf( ϕ; ∆ P K , k, ρ, K, 0, ∅, ∆) ≡ (K , C, k , ρ , N , ν ) is defined and there exists an instantiation satisfying C such that K is equal to K.

Let us first present some intermediate lemmas before going to the proof, related to the intermediate procedure.

Lemma A. 1.5 (Completeness for Canonical Extension). Given variables decribed by (k, ρ, N, ν). Given a simple channel type T . Suppose also that canon(T, k, ρ, N, ν, ) ≡ (T c , k , ρ , N , ν )

Then, for any instantiation of (k, ρ, N, ν), for any other canonical channel type T c with skeleton T , there exists an instantiation ζ of (k , ρ , N , ν ) extension of such that (T c ) is equal to T c .

Proof. This relies on several facts. The first one is to see that canon output indeed a canonical type, so the variables are ordered and there are exactly as many variables as there are occurrences of base types (as defined before). Then, we have to remark that two canonical channel types are equal (up-to α-renaming) if and only if their complexities are equal, because the shape is totally restricted for everything else. And then, by definition of canon, it suffices to take the instantiation ζ that gives to second-order variables the complexity in the type T c .

For the following lemma, we need the following definition for type form.

Definition A. 1.15 (Type Form and Equality). By an abuse of notation, we say that a type form ∀ω :: B.T (ω) is equal to a type U is there exists a type T of skeleton B such that T (T ) is equal to U . Lemma A. 1.6 (Completeness for Unification). Given variables described by (k, ρ, K, N, ν) and two base types (or quantified type form) B 1 and B 2 with the same skeleton, given also two intermediate base types B r 1 and B r 2 and an instantiation such that Proof. The proof is direct by induction on T c .

Then, we also have the following lemma.

Lemma A. 1.8 (Completeness for Equality). Given variables described by (k, ρ, K, N, ν), two types T 0 and T 1 and an instantiation such that T 0 is equal to T 1 , then

is defined and satisfies C.

Proof. By induction. The only interesting case is the one for channel types, but it can be done easily by induction again, verifying that canoneq corresponds in fact to α-renaming in this case.

And finally the most important lemma is the one for type inference for expressions.

Lemma A. 1.9 (Completeness for Type Expressions). Given a set of first-order index variables described by k, ρ and K and second order index variables described by N and ν, given a typing (with no second order variables) ϕ; ∆ e : T with ∆ well-named, given also ∆ well-named (possibly using second-order variables) and an instantiation such that ∆ is equal to ∆ then Proof of Theorem A. 1.2 In order to show that, we need a more general property that can be used in induction hypothesis. Namely: Lemma A. 1.10 (Completeness of Type Inference). Given a set of first-order index variables described by k, ρ and K and second order index variables described by N and ν. Given a typing (with no second order variables) ϕ; ∆ P K with ∆ well-named, given also ∆ well-named (possibly using second-order variables) and an instantiation such that ∆ is equal to ∆ then Inf( ϕ; ∆ P K , k, ρ, K, N, ν, ∆ ) ≡ (K , C, k , ρ , N , ν ) is defined and there exists an instantiation ζ extension of satisfying C such that K ζ is equal to K. (Remark that this concept of extension makes sense only because both ρ,ρ and ν,ν agree on the initial set of variables) Proof. We prove here Lemma A. 1.10. By induction on the typing ϕ; ∆ P K.

• Case 0. Thus, K = 0. The inference procedure is defined, and it returns (0, ∅, k, ρ, N, ν).

Thus, we can define ζ ≡ , it satisfies indeed ∅ and we have 0 ζ = 0.

• Case Parallel Composition. We have the following typing:

We have directly that is an instantiation for (k, ρ, N + 1, ν[N + 1 → K], and ∆ is ∆. Thus, by induction hypothesis, we know that

is defined, and we have an instantiation ζ 1 extension of satisfying C 1 and such that (K 1 ) ζ 1 is equal to K 1 .

Thus, ζ 1 is by definition an instantiation for (k 1 , ρ 1 , N 1 , ν 1 ), and we have ∆ ζ 1 equal to ∆ as it is an extension of . So, by induction hypothesis,

is defined, and we have an instantiation ζ 2 extension of ζ 1 satisfying C 2 and such that (K 2 ) ζ 2 is equal to K 2 .

Thus, ζ 2 is by definition an instantiation for (k 2 , ρ 2 , N 2 , ν 2 ), ζ 2 satisfies C 1 as it is an extension of ζ 1 , it satisfies also C 2 and it also satisfies e N +1 ≥ K 1 + K 2 as we have (since ζ 2 is an extension of ):

This concludes this case.

• Case Input. Suppose we have the following typing: As ∆ is well named, ∆ (a) has the shape ∀i l 1 , . . . , i l m .ch K ( T c ). Moreover, ∆ is equal to ∆, so we obtain directly:

Let us define extension of with, for all 1 ≤ i ≤ m, (N +i) ≡ J i and (N +m+1) ≡ K is equal to T c { J/ j}. Indeed, we can easily generalize Lemma A. 1.9 to lists of expressions, and as we have a 0-typing, we know that replacing the special variable ω by a 0-type give exactly the initial type.

By the previous equality between T ζ and T c { J/ j}, and the fact that T c { i l / j} = T c , we obtain that ( T c {e N +1 , . • Case ν. This case is rather direct using induction hypothesis on the instantiation given by Lemma A. 1.5.

• Case tick. This case is direct by induction hypothesis.

• Case Pattern Matching. Again, this case is direct by induction hypothesis and looks a lot like the case for parallel composition. The only thing that needs to be done is separate in two cases depending on whether the initial typing was with a n = 0 or not.

So, we have indeed a sound and complete procedure for type inference for intermediate types, we have reduced the problem of type inference to solving a set of constraints.