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Abstract

La complexité est une notion importante en informatique, aussi bien pour l’étude des programmes que
pour des questions théoriques. Pour un programme ou un algorithme, la complexité correspond au nom-
bre de ressources nécessaires pour calculer une sortie sur une entrée donnée, ce qui informe alors de son
efficacité. En pratique, deux ressources sont principalement étudiées: le temps et l’espace. L’analyse
statique de ces ressources est couramment appelée l’analyse de complexité. Pour ce qui est des questions
théoriques, le point central est l’étude des classes de complexité, dans lesquelles les problèmes sont re-
groupés selon la complexité du meilleur programme qui peut les résoudre. Dans cette thèse, nous étudions
des méthodes basées sur les systèmes de types à tailles pour la complexité en temps, en particulier pour
l’analyse des processus du π-calcul, un modèle basé sur les communications pour les calculs parallèles.
L’idée centrale des types à tailles est de tracer la taille des valeurs d’un programme et d’utiliser cette
information pour contrôler la récursion et en déduire des bornes de complexité en temps.

Dans la première partie de cette thèse, nous nous intéressons à une approche théorique de la com-
plexité, dans le cadre de la complexité computationnelle implicite (ICC). L’objectif de l’ICC est de
caractériser des classes de complexité en utilisant la logique ou les types, généralement sans donner de
bornes explicites. Cela permet en particulier une compréhension plus profonde des ces classes. Plusieurs
méthodes ont été développées pour la complexité en temps. Une approche principale vient de la logique
linéaire, en utilisant des versions restreintes de la modalité ”!”, qui contrôle la duplication. On peut citer
en première instance la logique linéaire light, qui caractérise les calculs en temps polynomial. Une autre
approche, illustrée par les types non-size increasing ou encore les types à tailles évoqués plus haut, est de
se concentrer sur la taille des valeurs. Ces deux approches ont des défauts. La première approche induit
une faible expressivité intentionnelle: certains programmes naturels en temps polynomial ne sont pas ty-
pables. Pour la seconde approche, elle est essentiellement linéaire, donc elle ne permet pas en particulier
une utilisation non-linéaire des arguments d’ordres supérieurs. Dans cette thèse, nous surmontons ces
contraintes en combinant les deux approches dans un système de type commun. Le langage que nous
utilisons est un λ-calcul avec des types de données et un itérateur: un variant du système T de Gödel.
Nous élaborons un système de type pour ce langage qui autorise des arguments fonctionnels non-linéaires
avec une expressivité intentionnelle vraisemblablement correcte. Notre approche se base sur la logique
linéaire élémentaire (ELL) combinée avec un système de types à tailles linéaires. Nous discutons de
l’expressivité de ce système de type, appelé sEAL, et nous prouvons qu’il donne une caractérisation des
classes de complexité FPTIME et 2k-FEXPTIME, pour k ≥ 0.

Dans la seconde partie de cette thèse, nous étudions l’analyse de complexité avec des types. Cette
approche pour analyser la complexité des programmes est un sujet de recherche important, en particulier
pour les langages fonctionnels dans lesquels la notion de composition est essentielle. Parmi toutes les
approches possibles, nous nous intéressons aux types à tailles. Nous explorons comment utiliser ces
types pour l’analyse de complexité parallèle dans le π-calcul. Deux notions de complexités en temps sont
étudiées: le temps de calcul total sans aucune parallélisation (le travail), et le temps de calcul avec une
parallélisation maximale (la profondeur). Nous définissons des sémantiques opérationnelles pour refléter
ces deux notions. La seconde sémantique est particulièrement importante car elle donne des preuves
plus simple que d’autres notions apparentées à la profondeur. Nous présentons deux systèmes de types
similaires à partir duquel on peut extraire une borne de complexité sur un processus. Ces systèmes sont
inspirés à la fois par les types à tailles et les types entrée/sortie du π-calcul, auxquels on ajoute des
informations temporelles. Cependant, cette extension des types à tailles fonctionnels pour l’analyse de
profondeur a une expressivité limitée, en particulier en présence de certains comportements concurrents
comme les sémaphores. Dans le but d’avoir une analyse plus expressive, nous élaborons un système de
type qui repose sur le concept des usages, utilisés originalement pour l’analyse des deadlocks.
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Abstract

Complexity is an important notion in computer science, both for the study of programs and
theoretical problems. For a program or an algorithm, complexity corresponds to the amount
of resources it needs to compute its output on a given input, indicating information about the
efficiency. In practice, two resources are mainly studied: time and space. The static study of this
is called complexity analysis. As for problems, the focus is on the study of complexity classes,
where problems are regrouped depending on the complexity of the best program that can solve
this problem. In this thesis, we study methods based on sized type systems for time complexity,
especially for the analysis of processes in the π-calculus, considered as a communication-based
model for parallel computation. The main idea of sized types is to track the size of values in a
program, and to use this information to control recursion and deduce time complexity bounds.

In the first part of this thesis, we focus on a theoretical approach of complexity, following the
lines of implicit computational complexity (ICC). The goal of ICC is to characterize complexity
classes by means of logics or types, generally without explicit bounds. This allows in particular
for a deeper understanding of complexity classes. Several methods have been proposed to
characterize time complexity classes. One approach comes from linear logic and restricted
versions of its !-modality controlling duplication. The first instance of this is light linear logic
for polynomial time computation. Another approach, illustrated by non-size increasing types or
the sized types defined before, is to focus on the sizes of values. However, both approaches suffer
from limitations. The first one has a limited intensional expressivity, that is to say some natural
polynomial time programs are not typable. Concerning the second approach, it is essentially
linear, more precisely it does not allow for a non-linear use of higher-order arguments. In this
thesis, we incorporate both approaches into a common type system, to overcome their respective
constraints. The source language we consider is a λ-calculus with data-types and iteration, a
variant of Gödel’s system T. We design a type system for this language allowing non-linear
functional arguments, with a seemingly good intensional expressivity. Our approach relies on
elementary linear logic (ELL), combined with a system of linear sized types. We discuss the
expressivity of this new type system, called sEAL, and prove that it gives a characterization of
the complexity classes FPTIME and 2k-FEXPTIME, for k ≥ 0.

In the second part of this thesis, we study complexity analysis with types. Type systems
as a technique to analyse programs have been extensively studied, especially for functional pro-
gramming languages where composition is essential. Among all the approaches for this, we focus
on sized types. We explore how to extend those types to the analysis of parallel complexity
in the π-calculus. Two notions of time complexity are studied: the total computation time
without parallelism (work) and the computation time under maximal parallelism (span). We
define operational semantics to capture those two notions. The semantics for span is particu-
larly important, as it allows for simpler proof methods than related notions. We present then
two similar type systems from which one can extract a complexity bound on a process, inspired
both by sized types and input/output types, with additional temporal information about com-
munications. However, this extension of functional sized types for span analysis has limited
expressivity, especially in presence of concurrent behaviours such as semaphores. Aiming for
a more expressive analysis, we design a type system which builds on the concepts of usages,
originally used for deadlock-freedom analysis.
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Chapter 1

Introduction

1.1 Introduction en Français

Contexte

Une question simple d’apparence mais intéressante en informatique est la comparaison des
programmes: donnés deux programmes qui calculent la même fonction, est-ce que l’un est
plus efficace que l’autre ? Une façon simple de faire cette comparaison serait de choisir un
langage de programmation, d’implémenter ces deux programmes, de les lancer tous les deux
sur une batterie de tests et de mesurer dynamiquement la consommation de ressource de ces
différentes exécutions. Toutefois, cette méthode dépend de certains détails bas-niveaux comme
le matériel utilisé ou encore le choix de l’implémentation, et ce n’est pas faisable en pratique
si les programmes sont trop demandant en ressources, ou encore s’ils ne terminent pas. Ainsi,
pour pouvoir comparer des programmes de façons théoriques, on préférait utiliser une méthode
statique, telle que l’analyse de complexité. Le but de l’analyse de complexité est, sur un pro-
gramme donné, d’approximer les ressources nécessaires pour calculer la sortie pour une entrée
quelconque. Habituellement, les ressources que l’on considère sont l’espace et le temps. La
complexité en espace correspond à l’espace mémoire dont le programme a besoin pour calculer
et la complexité en temps correspond au temps d’exécution du programme. Celle-ci se base
usuellement sur une notion abstraite du temps (par exemple, une multiplication arithmétique
= une unité de temps) afin de simplifier le raisonnement. Tout comme l’analyse de terminaison
des programmes, l’analyse de complexité est indécidable, mais cela reste cependant un problème
intéressant et difficile.

En pratique, pour un langage donné, afin de faire une analyse de complexité en temps on doit
d’abord décider comment abstraire la notion de temps et différents choix sont possibles selon le
langage. Par exemple, pour un langage fonctionnel abstrait comme une extension du λ-calcul,
on pourrait prendre pour unité de temps une étape de réduction, ou encore le temps d’exécution
sur une machine abstraite. Si un programme interagit avec un réseau, on pourrait être intéressé
par le nombre d’accès réseau, car c’est une opération coûteuse en pratique. De même, selon les
effets d’un langage, on pourrait s’intéresser à différentes notions de complexité. Par exemple,
dans un langage non-déterministe, on pourrait choisir la complexité dans le pire cas, ou selon
une stratégie de réduction spécifique. En présence de programmes randomisés, on pourrait
s’intéresser à l’espérance de la complexité, ou encore la probabilité de satisfaire une borne de
complexité spécifique. En présence de parallélisme, on pourrait considérer la complexité totale
séquentielle, appelé le travail, ou encore d’autres notions de complexité parallèle...

Pour des programmes parallèles, une notion intéressante par exemple est la complexité
avec un nombre p de processeurs, ce qui veut dire intuitivement que p calculs peuvent être
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fait en simultanés en parallèle, ce qui peut correspondre à la complexité en pratique d’un
programme lancé sur un système multicœur. D’un point de vue plus théorique, on pourrait
considérer un nombre infini de processeurs, ce qui donne la complexité sous l’hypothèse de
parallélisme maximal, ce qu’on appelle usuellement la profondeur. La profondeur n’est pas
en général atteignable en pratique, mais elle a un intérêt théorique puisqu’un résultat assez
connu [55] dit qu’à partir du travail w et de la profondeur s d’un programme dans une certaine
classe, on peut en déduire une borne sur le temps d’exécution en pratique avec p processeurs, en
O(max(w/p), s). Intuitivement, la profondeur nous dit à quel point il est efficace de lancer un
programme en parallèle, et une analyse de profondeur pourrait être complétée avec une analyse
du nombre de processeurs nécessaires pour atteindre celle-ci.

L’analyse de complexité des programme a été largement étudiée, et de nombreuses approches
ont été explorées pour permettre cette analyse. Parmi toutes ces différentes approches, une qui
nous intérésse particulièrement est l’utilisation des systèmes de types. De façon générale, un
système de type est une façon d’abstraire un programme afin de garantir certaines propriétés
sur celui-ci, de telle manière qu’un programme typé ne peut pas aller mal. Une analyse par
système de type a des avantages intéressants comparées à d’autre approches, vu qu’elle induit
une certaine compositionnalité et une certaine modularité. En effet, un système de type consiste
usuellement en un ensemble de règles qui correspondent aux constructeurs du langage, et donc
l’analyse d’un programme en entier se base sur l’analyse de tout les sous-programmes, analyse
qui peut ensuite être réutilisée dans des contextes différents. Cette approche est particulièrement
utile pour les langage avec une notion de composition intégrée, comme les langages fonctionnels
pour lesquels l’analyse de complexité doit prendre en compte la composition et la réutilisation
des fonctions. Une fois qu’un système de type est élaboré pour une propriété spécifique d’un lan-
gage, deux questions principales surviennent: la vérification de types et l’inférence de types. La
vérification de types consiste en, donnés un programme et une dérivation de typage candidate,
vérifier automatiquement que cette dérivation de type est correcte. Pour la propriété associée,
cela correspond à vérifier un certificat. L’inférence de type consiste en, donné un programme,
trouver automatiquement une dérivation de type pour ce programme. Pour la propriété as-
sociée, cela correspond à vérifier automatiquement si un programme satisfait cette propriété.
L’inférence de types est donc plus difficile que la vérification de types, et il y a usuellement
une contrepartie pour les systèmes de type: plus un système est expressif (plus il peut typer
de programmes), plus il est difficile de vérifier un type ou de l’inférer. Dans le cas partic-
ulier de l’analyse de complexité, le but est, à partir d’une dérivation de type d’un programme,
d’extraire une borne sur la complexité. Ainsi, la vérification de types nous donne un certificat
de complexité et l’inférence de type nous donne une analyse automatique de complexité.

De façon duale à l’analyse de complexité, pour laquelle on regarde la complexité d’un pro-
gramme donné, il y a la théorie de le complexité, dans laquelle on utilise des modèles machines
(comme les machines de Turing) pour étudier la complexité des problèmes. Un objectif principal
de la théorie de la complexité est de définir des classes robustes de problèmes ou de fonctions
avec une certaine borne de complexité, comme P, NP ou encore PSPACE. Tout comme l’analyse
de complexité, la théorie de la complexité prend aussi en compte les effets, avec par exemple
des classes probabilistes comme BPP, ou encore des classes parallèles avec la complexité de
circuit. Élaborer des langages qui correspondent à une classe de complexité peut aussi être une
approche intéressante pour étudier la complexité des programmes. En effet, si après une analyse
de complexité, un programme ne satisfait pas la borne désirée, par exemple polynomiale, il n’est
pas facile de trouver exactement où est le problème. Ainsi, une idée alternative pourrait être
d’écrire directement le programme dans un langage où tous les programmes ont, par construc-
tion, une complexité polynomiale. Cette idée de caractériser des classes de complexité avec des
systèmes de types ou des logiques est une notion centrale de la complexité computationnelle
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implicite (ICC). Ces caractérisations donnent en général une forme rudimentaire d’analyse de
complexité: si un programme peut être typé, alors il satisfait une certaine borne de complexité.
Cependant, en pratique, même si un système de type est assez expressif pour représenter par
exemple les machines de Turing polynomiales (ce qu’on appelle couramment l’expressivité ex-
tensionnelle), cela ne veut pas dire que tous les programmes en temps polynomial peuvent être
typés, et il peut être difficile d’écrire des programmes bien typables pour ce système. Ainsi, en
plus de cette expressivité extensionnelle, pour l’analyse de complexité on s’intéresserait plutôt
à l’expressivité intentionnelle, c’est-à-dire l’ensemble des programmes vraiment typables. Il est
important de noter que pour l’ICC, l’objectif peut aussi être philosophique: en donnant des
caractérisations de classes de complexité, en particulier quand il n’y a pas de bornes explicites,
on peut alors mieux comprendre ce que contient intuitivement une classe de complexité.

Dans cette thèse, nous considérons tout d’abord une approche ICC, en utilisant des types
à tailles [67], et ensuite nous nous intéresserons à l’analyse de complexité des programmes
parallèles écrit dans un calcul de processus concurrent, le π-calcul [90]. Mais tout d’abord, nous
allons donner quelque contextes pour les méthodes introduites plus haut.

État de l’art

L’analyse de complexité a été grandement étudiée en informatique, pour différents types de
langages et avec différentes méthodes. Dans les langages impératifs, une approche possible
est de voir la complexité comme la valeur particulière d’une variable globale d’un programme.
Ainsi, on peut analyser la complexité avec des méthodes d’analyses de variables, comme par
exemple l’interprétation abstraite [27], l’exécutions symbolique [71], l’étude des invariants, des
pré-conditions et de la logique de Hoare, par exemple pour des programmes randomisés [24, 25,
70, 87]. Pour les programmes parallèles, selon la topologie du système, on peut s’intéresser aux
graphes de flots de contrôles [3] ou encore au rely-guarantee reasoning [4]. . .

De son côté, l’utilisation des systèmes de types n’est bien sûr pas limité à l’analyse de
complexité, et plusieurs propriétés peuvent être capturées par des systèmes de types. On peut
citer par exemples les types intersections, principalement pour la terminaison des programmes
[26, 39, 40, 22]. Pour les programmes fonctionnels, on peut citer les types raffinés [49], pour
lesquels intuitivement les types de données sont associés à des formules logiques, ce qui permet
de dériver des propriétés de sûretés, de secret ou de continuité. [18, 19, 1].

Pour ce qui est des programmes parallèles, les propriétés de sûretés avec des systèmes de
types ont été largement étudiées, avec par exemple la terminaison [46, 44], le progrès et l’absence
de deadlock, avec par exemple les types comportementaux [50], les types intersections [28], les
usages [72, 77, 75, 91] ou encore les types de sessions [47, 66, 53].

Pour l’analyse de complexité par système de types, ici aussi plusieurs approches ont été
étudiées selon le langage choisi. Certaines de ses approches ont des liens avec des travaux
de l’ICC. Par exemple, avec le système non-size increasing d’Hofmann [61], à partir duquel la
l’analyse de complexité amortie par type a été dérivée [62, 63, 68], ce qui a été ensuite largement
exploré pour les programmes d’ordres supérieurs [56, 57, 58, 65], les programmes probabilistes
[69] et les programmes parallèles [59, 37]. Une autre approche, basée sur les types à tailles
[67], où l’idée centrale est de tracer la taille des valeurs des programmes, a donné des résultats
intéressants pour les langages fonctionnels [9, 29, 6, 79], les programmes probabilistes [30] et les
programmes parallèles [51]

L’analyse de complexité pour les programmes parallèles par des types a aussi été étudiée
avec d’autre paradigmes de typages, comme les usages [72], les types comportemantaux [80], et
les types de sessions [36, 38, 21, 23].

Dans l’approche duale d’ICC, on peut trouver plusieurs méthodes. Dans les premières
caractérisations des fonctions polynomiales en temps [20, 81, 82], une approche par exemple est

3



la récursion sûre (ou encore le tiering par extension), ce qui a donné plusieurs caractérisations du
temps polynomial dans différents contextes [60, 33, 86] et aussi pour des programmes parallèles
[54, 84, 45]. Une autre ligne principale de recherche, initiée par la logique linéaire light de
Girard [52], sont les systèmes à niveaux inspirés de la logique linéaire, où la duplication est
contrôlée par la modalité ”!”. Ansi, restreindre cette modalité peut donner des bornes de
complexité sur l’élimination des coupures. Cela a par exemple permit de définir des langages
polynomiaux [52, 11, 85, 17, 78] et aussi des langanges exponentiels ou élémentaires [8, 52, 34,
16]. Une fois encore, cette approche a été utilisée pour des travaux récents sur les programmes
parallèles [48, 31, 83]. Pour finir, tracer la taille des valeurs dans les programmes et restreindre
la récursion en conséquence peut aussi donner des caractérisations de certains comportements,
comme les programmes non-size increasing mentionnés plus haut [61], on encore les programmes
qui terminent [67, 29, 32].

Motivations

Dans la première partie de cette thèse, nous adressons un problème de l’approche par logique
linéaire de l’ICC. Pour un langage comme la logique linéaire light [52], une façon de prouver la
caractérisation de FP (fonctions en temps polynomial) est d’abord de montrer que toutes les
exécutions de la logique linéaire light (élimination des coupures) terminent en temps polynomial,
et inversement que toutes les fonctions en temps polynomial sont représentables dans cette
logique. Ceci est fait habituellement en montrant l’expressivité extensionnelle: un encodage des
machines de Turing polynomiales. En revanche, cela ne prend pas bien en compte l’expressivité
intentionnelle de la logique, c’est-à-dire l’ensemble des programmes qui peuvent effectivement
être typés par cette logique. En général, les approches par niveaux se comportent bien avec les
fonctions d’ordres supérieurs, mais la façon de contrôler la récursion est souvent trop restrictive,
et donc beaucoup de programmes naturels ne peuvent en fait pas s’écrire dans ces logiques. Un
exemple typique est le tri par insertion, qui est évidemment polynomial en temps mais qui a
besoin de deux boucles itératives, une sur la liste initiale, et pour chaque élément, une itération
pour pouvoir insérer l’élément au bon endroit dans la liste finale. Ces itérations, où le calcul
n’augmente pas la taille de la sortie par rapport à l’entrée, ne sont pas bien gérées par les
systèmes à niveaux. Cependant, les approches par tailles se comportent bien avec ce type de
programmes, par exemple le système non-size increasing [61] était motivé par ces exemples.
En revanche, les approches par tailles ont aussi leurs inconvénients, en particulier pour les
fonctions d’ordre supérieurs qui peuvent souvent être utilisés qu’une seule et unique fois. Afin
de surmonter ce problèmes d’expressivité intentionnelle des systèmes à niveaux, nous élaborons
dans la première partie de cette thèse un système de type avec à la fois des tailles et des modalités
de la logique linéaire pour obtenir des caractérisations de classes de complexité. La récursion
pour les programmes peut soit être contrôlée par la modalité ”!” de la logique linéaire, soit par
des tailles, ce qui donne plus de flexibilité.

Dans la seconde partie de cette thèse, nous nous intéressons à l’analyse de complexité.
Comme expliqué précédemment, l’approche des types à tailles a donnée plusieurs résultats
intéressants pour les langages fonctionnels d’ordre supérieurs. Cependant, les applications aux
programmes parallèles n’ont pas été très explorées, en particulier pour le π-calcul. Le π-calcul
est un langage de processus basé sur les communications dans lequel des valeurs peuvent être
envoyés par des canaux. Ce calcul permet aussi la création dynamique de nouveau noms de
canaux, et des communiquer ces noms de canaux, ce qui en fait un langage particulièrement
expressif. Il est par exemple assez expressif pour représenter des programmes fonctionnels. Cela
veut dire en particulier que l’analyse de complexité pour le π-calcul n’est pas triviale, et il est
intéressant d’étudier si un système de type à tailles typique pour un langage fonctionnel peut
s’étendre au π-calcul. De plus, dans ce calcul, plusieurs notions de complexité peuvent être
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étudiées, et donc plusieurs systèmes de types peuvent être proposés. Une notion plutôt simple
de complexité est le travail, le temps de calcul total d’un processus. Une notion alternative,
plus spécifique aux langages parallèles est la profondeur, qui correspond à la complexité sous
l’hypothèse de parallélisme maximal: les communications sur des canaux peuvent se faire simul-
tanément. Cette seconde notion de complexité, aussi appelée complexité parallèle, a été définie
de plusieurs façon dans la littérature. Une première approche est le progrès maximal, qui dit
intuitivement qu’à chaque étape, on fait toutes les communications qui sont disponibles. Cela
permet en effet de définit une sorte de complexité parallèle, mais à cause de cette définition,
une course apparâıt dans le calul: quand il y a un choix non-déterministe pour une communi-
cation, la plus rapide est toujours déclenchée. Cela peut être intéressant en pratique, mais en
théorie certains chemins de réductions sont bloqués, ce qui peut être insatisfaisant. Une autre
notion de complexité qui prend en compte entièrement ce non-déterminisme est la complexité
causale, introduite dans [41, 42, 43] et récemment utilisée dans [45]. Cette notion de complexité
se comporte bien, mais elle peut être difficile d’utilisation comme elle se base sur l’analyse des
traces, avec une relation de causalité. Il peut donc être intéressant de donner une présentation
alternative de la profondeur, facile d’utilisation afin d’avoir des preuves plus simples. Dans
la seconde partie de cette thèse, nous nous intéressons au travail et à la profondeur, et nous
proposons un cadre pour l’analyse de complexité dans le π-calcul.

Notre approche

Dans cette thèse, notre approche se base sur les types à tailles [67, 29]. L’idée centrale des
types à tailles est de tracer la taille des types de données dans un programme. C’est une
approche intéressante pour l’analyse de complexité car elle permet la compositionnalité. En
effet, supposons données deux fonctions f et g, pour lesquelles nous connaissons une borne de
complexité en temps sur les entrées de tailles n, Cf (n) et Cg(n). Peut-on en déduire une borne
sur la complexité de f ◦ g ? Avec seulement ces informations, le mieux que l’on puisse faire
est de supposer, par définition, que la taille de g(n) est plus petite que Cg(n) et donc que la
complexité totale sur une entrée de taille n est d’abord de calculer g(n) (Cg(n)), et ensuite
de calculer f(g(n)) (Cf (Cg(n))). Cette borne n’est pas très satisfaisante, en effet si g est, par
exemple, une fonction qui n’augmente pas la taille de son entrée mais en temps quadratique,
alors on obtient une borne en O(n4) au lieu de O(n2). Ainsi, connâıtre la taille de la sortie de
g est nécessaire pour avoir une borne de complexité plus précise. De plus, contrôler la taille
des valeurs peut aussi aider à contrôler le nombre de boucles dans un programme, ou le nombre
d’appels récursifs à une fonction (en particulier avec une induction structurelle). C’est pourquoi
les types à tailles peuvent être intéressants pour l’analyse de complexité.

Dans cette thèse, nous allons donner deux types de résultats. Dans la première partie, nous
avons une approche ICC de la complexité, où nous donnons des caractérisations de classes de
complexité grâce à un langage équipé d’un système de type. Ainsi, notre cible principale est le
langage en entier, donnant une borne de complexité générique pour n’importe quel programme
qui peut être écrit dans celui-ci. Dans la seconde partie, nous avons une approche d’analyse
de complexité, où l’objectif est d’élaborer des systèmes de types à partir desquels ont peut
dériver une borne (précise) sur la complexité d’un programme typé. Donc la cible n’est plus le
langage en entier mais une analyse de complexité précise de chaque programme, cas par cas.
Toutefois, pour ces deux résultats, il y a des similarités, et en particulier il y a un théorème de
correction à prouver, disant que la borne de complexité donnée par le système de type est bien
correcte. Dans notre approche, ce théorème de correction est toujours prouvé avec la même
méthodologie: nous montrons que le système de type satisfait la réduction du sujet, ce qui
veut dire qu’évaluer un programme ne change pas son type. Comme nous nous intéressons à la
complexité, la réduction du sujet doit aussi satisfaire des propriétés quantitatives: si une étape
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de réduction M → N décrôıt la complexité totale du programme, alors la borne dérivée pour
le typage de N doit être plus petite que la borne dérivée pour le typage de M .

Comme expliquée précédemment, dans la première partie de cette thèse, nous considérons
une approche ICC de la complexité. Notre but est de donner des caractérisations de classes
de complexité, où la récursion peut être contrôlée soit par la modalité de logique linéaire ! soit
par des tailles. Dans ce travail, nous utilisons la logique linéaire élémentaire (ELL) [52, 34],
que l’on associe avec des types à tailles inspirés de [9]. La logique linéaire élémentaire est
intuitivement la logique linéaire sans la co-unit (!A ( A) et la co-multiplication (!A (!!A).
Avec ces modifications, la profondeur d’un type, c’est-à-dire le nombre de ! au dessus d’un type,
devient une informations importante pour l’analyse de complexité. Par exemple, avec un type
W pour les mots, alors dans le type des fonctions des mots vers les mots !W (!kW, plus k
est grand, plus la fonction dispose de ressources. En particulier, il est montré dans [8] qu’en
présence de type récursifs, cela correspond à la classe de complexité k-FEXPTIME (fonctions

de complexité 22···
2poly(n)

, où k est la hauteur de cette tour d’exponentielle). Afin d’améliorer la
faible expressivité intentionnelle de ELL, nous ajoutons dans le type !W (!W quelques fonctions
polynomiales du premier-ordre, obtenues grâce à un système de types à tailles. Nous montrons
alors qu’avec cette extension, le système de type donne une caractérisation de PTIME et 2k-
EXPTIME, encore une fois selon la profondeur de la sortie, avec une expressivité intentionnelle
vraisemblablement meilleure et sans avoir besoin de types récursifs.

Dans la seconde partie de cette thèse, nous nous intéressons à l’analyse de complexité dans le
π-calcul. Nous présentons sur un langage fonctionnel un cadre uniforme pour les types à tailles,
inspiré par [6, 29], que nous modifions afin de capturer différentes notions de complexité dans le
π-calcul: le travail et la profondeur. Cette approche se base sur des expressions entières afin de
décrire les tailles des types de données. Par exemple, un entier n pourrait avoir un type Nat[I, J ],
indiquant ainsi que cette entier satisfait I ≤ n ≤ J , où I et J sont des expressions entières.
De plus, nous utilisons une sorte de polymorphisme sur les tailles pour les fonctions récursives.
Par exemple, une fonction qui n’augmente pas la taille de son entrée pourrait être typée avec
∀i,Nat[0, i] → Nat[0, i]. Cette approche, à laquelle on ajoute des informations supplémentaires
de complexité, est suffisante aussi bien pour le langage fonctionnel que pour le travail dans le
π-calcul.

Cependant, pour l’analyse de la profondeur, l’extension n’est pas si simple. Tout d’abord,
afin de simplifier les preuves, nous donnons une présentation de la profondeur, notion similaire
à la complexité causale, avec une sémantique petit pas simple, ce qui permet encore une fois
au théorème de correction d’être prouvé par réduction du sujet. Ensuite, nous enrichissons les
types à taille avec des informations de temps, inspirés par [36]. Ces informations temporelles
sont nécessaires pour pouvoir traiter la synchronisation des canaux, qui peuvent communiquer
simultanément dans une analyse de profondeur. Dans une première approche, nous nous basons
sur un système de type entrée/sortie [90]. Si cette approche semble assez expressive pour les
programmes parallèles, elle ne permet pas l’analyse de quelques comportements concurrents
comme les sémaphores. Ainsi, afin de prendre en compte ceux-ci, nous élaborons dans une
seconde approche un système de type avec usages [72] enrichis avec des tailles pour l’analyse de
complexité, en collaboration avec Naoki Kobayashi (Université de Tokyo).

Plan

Dans le Chapitre 2, nous décrivons le calcul basé sur la logique linéaire élémentaire avec taille,
et nous donnons le théorème de caractérisation. Dans le Chapitre 3, nous décrivons un cadre
pour les types à tailles sur un langage fonctionnel, que nous allons utiliser dans le reste de la
thèse. Nous donnons également une méthode de preuve pour le théorème de correction. Dans

6



le Chapitre 4, nous présentons d’abords quelques définitions préliminaires sur le π-calcul et
quelques paradigmes de typages que nous utilisons dans cette thèse. Puis, de la Section 4.2
jusqu’à la fin de la thèse, nous décrivons nos contributions pour l’analyse de complexité dans
le π-calcul, avec un système de type pour le travail, la définition de la profondeur et le système
de type entrée/sortie pour la profondeur, suivi de celui avec les usages.

1.2 English Introduction

Context

A simple yet challenging question in computer science is the comparison of programs: given two
programs computing the same function, is one more efficient than the other? A simple way to do
this comparison could be to choose a programming language, implement the two programs, let
them run both on multiple inputs and then measure dynamically the resource consumption of
those executions. This method however depends on some low-level details such as the hardware
or the choice of implementation, and it is not feasible if a program consumes too many resources,
or if, for example, it does not terminate. Thus, in order to compare programs theoretically, one
may prefer to use a static method such as complexity analysis. The goal of complexity analysis
is, given a program, to statically approximate the resources it needs to compute its output on
a given input. The usual resources that are considered are space and time. Space complexity
corresponds to the amount of memory space required to run the program, and time complexity
corresponds to the execution time of the program. Usually, the analysis of time complexity
relies on abstracting the notion of time (for example, an arithmetic multiplication = one unit
of time...). Such as the analysis of termination, complexity analysis is undecidable, however, it
remains an interesting and challenging problem.

In practice, given a language or an abstract programming language, for time complexity
analysis one first needs to abstract the notion of time to carry the analysis, and different choices
are possible depending on the language. For example, in a functional abstract language such as
an extension of λ-calculus, one could take as a time unit a reduction step, or computation time
on an abstract machine. If a program interacts with a network, one may be interested in the
number of network accesses, as it could be a costly operation in practice. Also, depending on
the effects in a language, one could be interested in different notions of complexity. For instance,
in a non-deterministic setting, one could choose the worst-case complexity or the complexity
under a specific reduction strategy, in presence of probabilities, one could consider expected
time complexity or the probability of satisfying a specific complexity bound, in presence of
parallelism, one could examine the total sequential complexity, usually called work, or other
notions of parallel complexity...

For parallel programs, an interesting notion for instance could be the complexity with p
processors, meaning intuitively that p computations can be done simultaneously in parallel,
which can correspond to the practical complexity of a program that runs on a multicore system.
In a more theoretical point of view, one could consider an infinite number of processors, which
would give the complexity under maximal parallelism, usually called span. The span is in general
not feasible in practice, however it has some theoretical interest since a well-known result [55]
says that from the work w and the span s of a program in a certain class, one can derive a bound
on the execution time with p processors, in O(max(w/p), s). Intuitively, the span gives some
information about how efficient it would be run the program in parallel, and a span analysis
could be completed with an analysis of how many processors are needed to obtain the span.

Complexity analysis of programs has been extensively studied, and several approaches have
been explored to carry the analysis. Among all the different approaches, one that interests
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us particularly is the type systems approach. Usually, a type system is a way to abstract
programs in order to guarantee some properties, such that typed programs cannot go wrong. A
type system analysis has some interesting benefits compared to other approaches, as it allows
for compositionality and modularity. Indeed, generally a type system consists in a set of rules
corresponding to simple constructors of the language, thus the analysis of the whole program
relies on the analysis of all the subprograms, which can then be reused in different contexts.
This approach is especially useful for systems with a built-in notion of composition, such as
functional languages, where complexity analysis must take into account the composition and
the reusability of functions. Once a type system is designed for a specific property of a language,
two main questions arise: type-checking and type inference. Type-checking consists in, given a
program and a candidate typing derivation for this program, verifying automatically that this
type derivation is correct. For the examined property, this corresponds to checking a certificate
for this property. Type inference consists in, given a program, finding automatically a type
derivation for this program. For the inspected property, this corresponds to automatically
verifying if a program satisfies the property. Type inference is thus harder than type checking
and usually, there is a kind of trade-off for type systems: the more expressive the type system
(the more programs it can type), the more complex it is to type-check a program or to infer
its type. In the particular case of complexity analysis, the goal is, from a typing derivation
of a program, to extract a bound on its complexity. Thus, type-checking gives a complexity
certificate, and type inference gives automatic complexity analysis.

Dually to complexity analysis, where given a program, one looks at the complexity of this
program, there is computational complexity theory, where one uses machine models (originally
Turing machines) to talk about complexity of problems. One goal of computational complexity
theory is to define robust classes of problems, or functions, with some complexity bound, such as
P, NP or PSPACE. As for complexity analysis, computational complexity theory also considers
some effects, with for example probabilistic classes such as BPP, or parallel classes with circuit
complexity. Designing languages corresponding to a complexity class can also be an interesting
approach when studying complexity of programs. Indeed, if after some complexity analysis, a
program does not have the desired complexity, for example polynomial time, it is not direct to
pinpoint specifically where the problem is. An alternative could be to directly try to write the
program in a language where every program has, by construction, polynomial time complexity.
This idea of characterizing complexity classes with type systems or logics is a central notion
of implicit computational complexity (ICC). Those characterizations of complexity classes may
also provide a rudimentary form of complexity analysis: if a program can be typed, it satisfies
in particular some complexity bound. However, in practice, even if a type system is expressive
enough to encode for example polynomial time Turing machines (we call this the extensional
completeness), it does not mean all polynomial time programs can be typed, and it may not be
easy to actually write well-typed programs for this type system. Thus, in addition to extensional
completeness, for complexity analysis one may want to study intensional expressivity, i.e. the
set of actually typable programs. Moreover, in ICC, the goal may also be philosophical: by
giving characterizations of complexity classes, especially when there is no explicit complexity
bound, one could have a better understanding of what contains a complexity class.

In this thesis, we first consider an ICC approach, using sized types [67], and then we focus on
complexity analysis of parallel programs, written in a concurrent process calculus, the π-calculus
[90]. But first, let us provide some background on the methods introduced above.

State of the art

Complexity analysis has been largely studied in computer science, for different kinds of lan-
guages, and with different methods. In imperative programming languages, an approach is to
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see complexity as the particular value of a global variable of the program, and so, one can carry
complexity analysis by using methods for the analysis of variables, with for example abstract
interpretation [27], symbolic execution [71], invariants, weakest pre-condition and Hoare logic,
also useful in presence of probabilities [24, 25, 70, 87]. As for parallel programs, depending on
the topology of system, one could do flow graph analysis [3] or rely-guarantee reasoning [4]...

The use of type systems is of course not limited to complexity analysis, as several prop-
erties can be enforced by type systems. There are for instance intersection types, mainly for
characterizing termination of programs [26, 39, 40, 22]. For functional programs, an interesting
approach is refinement types [49], where intuitively data-types are associated with formulas,
allowing to derive many safety properties, or even privacy or continuity [18, 19, 1].

Concerning parallel programs, safety properties with type systems have been largely studied,
such as termination [46, 44], deadlock-freedom or progress, with for example behavioural types
[50], intersection types [28], usages [72, 77, 75, 91] or session types [47, 66, 53].

As for complexity analysis by type systems, several approaches have been studied depending
on the chosen language. Some of those approaches have a link with work on ICC. For example,
from the non-size increasing system of Hofmann [61], the type-based amortized cost analysis was
derived [62, 63, 68], which was then largely explored for higher order programs [56, 57, 58, 65],
probabilistic programs [69] and for parallel programs [59, 37]. Another approach, based on
sized types [67], where the main idea is to track the values of sizes in programs, has led to
interesting results for functional programs [9, 29, 6, 79], for probabilistic programs [30] and
parallel programs [51]

Complexity analysis of parallel programs by types has also been studied with some other
type paradigms, such as usages [72], behavioural types [80], session types [36, 38] and multiparty
session types [21, 23].

In the dual reasoning approach of ICC, we can find several approaches. In the early char-
acterizations of poly-time functions [20, 81, 82], one approach is for instance safe recursion (or
tiering by extension), which led to several characterizations of polynomial time in different con-
texts [60, 33, 86] and for parallel programs [54, 84, 45]. Another main line of research, initiated
with Girard’s light linear logic [52], are the level-based systems inspired by linear logic, where
duplication is controlled by the ! modality, and so restraining this modality can lead to complex-
ity bounds on cut elimination. This for example led to polytime languages [52, 11, 85, 17, 78],
and exponential and elementary languages [8, 52, 34, 16]. Again, this approach was also used
on recent work for parallel programs [48, 31, 83]. Finally, the approach of tracking sizes in pro-
grams, and restrict recursions, can also give characterizations of complexity classes, such as the
non-size increasing programs mentioned above [61], or simply terminating programs [67, 29, 32].

Motivations

In the first part of this thesis, we address a problem of the linear logic approach to ICC. For a
language such as light linear logic [52], the way to prove a characterization of FP (polynomial
time functions) is to first show that all executions of light linear logic (cut-elimination) terminate
in polynomial time, and conversely, that all polynomial time functions can be represented in this
logic. This is usually done by showing the extensional completeness: an encoding of polynomial
time input/output Turing machines. However, this does not account well for the intensional
expressivity of the logic, i.e. the set of programs that can effectively be typed by this logic.
Generally, level-based approaches behave well with higher-order functions, but the way recursion
is controlled is often too restrictive, and thus many commons programs are in fact not expressible
in those logics. A typical example is the insertion sort, which is obviously a polynomial time
algorithm but needs two iterative loops, one iteration that ranges over the initial list, and for
each element, an iteration to insert it in the final list. Those kinds of iterations, where in fact
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the computation does not increase the size of the input, is not handled well by level-based
systems. Nevertheless, the sized-based approach behaves well with this category of programs,
for example the non-size increasing type system [61] was motivated by those examples. However,
size-based approaches also have their limitations, especially with higher-order functions as it is
often assumed that programs are linear, i.e. all higher-order functions can be used at most once.
In order to tackle this problem of intensional expressivity of level-based systems, we design in
the first part of this thesis a type system with both sizes and linear logic modalities to obtain
characterizations of complexity classes, where recursion can be either controlled by the linear
logic modality ! or by sizes, thereby giving more flexibility.

In the second part of this thesis, we focus on complexity analysis. As explained before, the
sized types approach led to many interesting results in higher-order functional languages. Still,
the applications to parallel languages have not been explored yet, especially for π-calculus. The
π-calculus is a communication-based process language where values can be sent on channels.
This calculus also allows for dynamic creation of channel names and name-passing, which makes
it a particularly expressive language. It is for example expressive enough to encode some
functional programs. Thus, this means complexity analysis in π-calculus is not trivial, and it is
interesting to study if a typical sized type system for a functional language could be extended
to π-calculus. Moreover, in this calculus several notions of complexity could make sense, and
thus several type systems can be proposed corresponding to different notions of complexity. A
simple notion of complexity is the work, the total computation time of a process. An alternative
notion, and more specific to parallel languages, is the span, corresponding to complexity under
maximal parallelism: communications on channels can happen simultaneously. This second
notion of complexity, also called parallel complexity, has been defined in various ways in the
literature. A first approach is maximal progress, stating intuitively that at each step, we trigger
all communications that are available. This indeed defines a notion of maximal parallelism.
Although, because of this, a notion of race appears in the calculus: when there is a choice for
a communication, the faster one is always triggered, and the slower one never happens. This
could be interesting in practice, but it theoretically blocks some reduction paths, which can be
unsatisfactory. Another notion of complexity that accounts for full non-determinism is causal
complexity, introduced in [41, 42, 43] and recently used in [45]. This notion of complexity
behaves well, but it may not be easy to work with, as it relies on the analysis of traces, with
a causality relation. Thus, it could be interesting to give an alternative presentation of span,
easy to work with in order to have simpler proofs. In the second part of this thesis, we will
focus on both work and span, and propose a sized types framework for complexity analysis in
the π-calculus.

Our approach

In this thesis, our approach relies on sized types [67, 29]. The basic idea of sized types is to track
sizes of data-types in a program. This is an interesting approach for complexity analysis as it
allows for compositionality. Indeed, suppose given two functions f and g, for which we know
some time complexity bound on inputs of size n, Cf (n) and Cg(n). Can we derive a bound on
the complexity of f ◦ g? With only this information, the best we can assume is, by definition,
that the size of g(n) is smaller than Cg(n), and so the total complexity on an input of size
n is first computing g(n) (Cg(n)), and then computing f(g(n)), (Cf (Cg(n))). This bound is
unsatisfactory, indeed if g is, for example a non-size increasing function in quadratic time, and
f is also in quadratic time, then we obtain a bound in O(n4) instead of O(n2). Thus, knowing
the size of the output of g is necessary to have precise complexity bounds. Moreover, controlling
the size of values can also help controlling the number of loops in a program, or the number of
recursive calls to a function (especially with structural induction). That is why sized types can
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be a good start for complexity analysis.
In this thesis, we will give two kinds of results. In the first part, we focus on an ICC

approach of complexity, where we give a characterization of complexity classes by a language
equipped with a type system. Thus, we focus on the language as a whole, giving a generic
complexity bound for any programs that can be written in it. In the second part, we have a
complexity analysis approach, where the goal is to design type systems from which one can
derive a (precise) bound on the complexity of the typed program. So, the focus is no longer on
the language as a whole, but on a precise complexity analysis for each program, case by case.
Nevertheless, for both results, there are some similarities, and in particular there is a soundness
theorem to prove, stating that the complexity bound given by the type system is indeed correct.
In our approach, this soundness theorem is always proved with the same methodology: we show
that the type system satisfies subject reduction, that is to say evaluating a program does not
change the type of this program. As we focus on complexity, subject reduction must also satisfy
some quantitative properties: if a reduction step M → N decreases the overall complexity of
a program, then the bound derived from the typing for N should be smaller than the bound
derived from the typing for M .

As stated before, in the first part of this thesis we consider an ICC approach to complexity.
Our goal is to give a characterization of complexity classes, where recursion can be either
controlled with the linear logic modality !, or with sizes. In this work, we use for the level-based
system the elementary linear logic (ELL) [52, 34], combined with sized types inspired from
[9]. Elementary linear logic is intuitively linear logic without the co-unit (!A ( A) and the
co-multiplication (!A(!!A). With these modifications, the depth of a type, that is to say the
number of ! above a type, becomes a relevant information for complexity analysis. For example,
with a type W for words, then in the type of functions from words to words !W (!kW, the
greater k is, the more computational power the function can have. In particular, it is shown
in [8] that with recursive type, this corresponds to the k-EXPTIME complexity class (function

of complexity 22···
2poly(n)

, where k is the height of this tower of exponentials). In order to
improve the poor intensional expressivity of ELL, we add in the type !W (!W some first-order
polynomial functions, obtained with a sized type system. We then show that with this extension,
the type system gives a characterization of PTIME and 2k-EXPTIME, again depending on the
depth of the output, with a seemingly better intensional expressivity.

In the second part of this thesis, we focus on complexity analysis of the π-calculus. We
present on a functional language a uniform framework for sized types, inspired by [6, 29], that
we modify to capture different notions of complexity in the π-calculus, namely work and span.
This approach relies on integers expressions in order to describe sizes of data-types. For example,
an integer n could be given a type Nat[I, J ], stating that this integer satisfies I ≤ n ≤ J , where
I and J are integer expressions. Moreover, we use some kind of polymorphism on sizes to
handle recursive functions. For example, a non-size increasing function could be typed with
∀i,Nat[0, i] → Nat[0, i]. This approach, equipped with additional complexity information, is
sufficient for both functional languages and work.

However, for the analysis of span in the π-calculus, the extension is not as simple. First,
in order to simplify the proofs, we give a presentation of span, similar to a kind of causal
complexity, described by a simple small-step semantics, allowing again the soundness theorem
to be proved by subject reduction. Then, we enrich sized-types with time information, inspired
by [36]. This time information is necessary to handle synchronization of channels, that can
communicate simultaneously in a span analysis. In a first approach, we rely on an input/output
type system [90]. If this approach seems expressive enough for parallel programs, it cannot
handle some concurrent behaviours, such as semaphore. Thus, in order to account for those,
we design in a second approach a usage type system [72] with sizes for complexity analysis, in
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collaboration with Naoki Kobayashi (University of Tokyo).

Outline

In Chapter 2, we describe the calculus based on elementary linear logic with sizes, and we give
the characterization theorem. In Chapter 3, we describe a sized type framework for a functional
language, that we will use throughout the thesis. We also give the proof methodology for the
soundness theorem. In Chapter 4, we first give some preliminaries on π-calculus and some type
systems paradigms that we use in this thesis, and from Section 4.2 to the end, we describe our
contributions for complexity analysis in π-calculus, with a type system for work, the definition
of span and the input/output type system for span, followed by the usage type system for span.
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Chapter 2

Combining Linear Logic and Sized
Types for Implicit Complexity

The light logic approach for characterizing complexity classes, initiated by Girard [52], led to
many interesting results for implicit computational complexity. This approach relies on the
Curry-Howard correspondence, stating the link between proofs and programs. Thus, from a
logic such as (intuitionistic) linear logic, we can derive a programming language where a proof
corresponds to a program, and cut-elimination corresponds to reduction. In linear logic in
particular, a focus is given on resource consumption: a formula can be used exactly once in a
proof, and both duplication and erasure of formulas are controlled by modalities (”!” and its
dual ”?”). With the Curry-Howard correspondence, those modalities could also control erasure
and duplication of resources, which is useful to carry a complexity analysis.

In particular, Girard’s approach for characterizing complexity classes consists in restraining
the power of the ! modality, controlling duplication, and thus restraining the overall complexity
of the logic. Several logics have been derived in this way, such as light linear logic [52] and soft
linear logic [78] for polynomial time, and elementary linear logic [52, 34] for elementary time.

As stated before however, those logics suffer from poor intensional expressivity: even if
all functions of the complexity class can be represented, the actual set of programs that are
expressible is not large enough, and the languages derived from the logic do not allow to write
programs in a natural way. For light linear logic, a functional language with recursive definitions
and pattern-matching has been designed [11]. This language satisfied the expected polytime
complexity bound, however the proof was rather tedious and did not seem robust enough to
support other extensions of the language. A similar question could be asked for elementary
linear logic: is the characterization robust enough to support extensions/enrichments?

To answer this question, we show that enriching the usual type W ( W from words to
words of elementary linear logic by some polynomial time functions leads to characterizations
of the complexity classes 2k-EXPTIME, for k ≥ 0, where k corresponds to the depth of the
output : !W(!k+1Bool.

An advantage of this characterization is that, depending on how the polynomial-time first-
order functions are defined, it can give a language in which it is easier to write programs,
compared to usual elementary linear logic. Thus, we choose for this language a linear λ-calculus
with primitive recursion and sized types, called s`T. This language is inspired by [9], and we
restrict sizes to polynomials to enforce polynomial time complexity. Note that this choice is a
bit arbitrary, as the results could be adapted for other polynomial-time languages. The overall
enriched elementary linear calculus corresponds to the usual elementary linear logic, equipped
with an additional specific constructor in order to use a first-order function of s`T. We call this
new language sEAL.
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As the goal of this chapter is the characterization of complexity classes, we are not interested
in deriving precise and practical complexity bounds for programs, our only consideration is that
those complexity bounds must correspond to the complexity class. Because of this, the sized
types we use in this chapter differ from the sized types we will use for complexity analysis,
where precise bounds are desired.

The bounds we derive are over-approximations of the number of reduction steps to reach
a normal form, where we define a weight on a program from a typing, and we show that this
weight strictly decreases in a reduction step. The polynomial weight for s`T is inspired by [9]
and then the elementary weight for sEAL is inspired by [83]. After showing this soundness
theorem, we proceed to illustrate the expressivity of the type system on some examples, and
we show how to encode Turing machines in this language, leading to the characterization of
complexity classes. Those results have been published in [12, 13].

2.1 A Polynomial Time Language with Sizes: s`T

We present s`T (for sized linear system T) which is a linear λ-calculus with constructors for
base types and a constructor for high-order primitive recursion. Types are enriched with a
polynomial index describing the size of the value represented by a term, and this index imposes
a restriction on recursions. With this, we are able to derive a weight on terms in order to control
the number of reduction steps.

2.1.1 Syntax, Semantics and Type System

Definition 2.1.1. The set of terms and values of s`T are defined by the following grammars:

t, u ::= x | λx.t | t u | t⊗ u | let x⊗ y = t in u | 0 | s(t) | ifn(t, u) | itern(V, t)

| ε | si(t) | ifw(t0, t1, u) | iterw(V0, V1, t) | tt | ff | if(t, u)

V,W ::= x | λx.t | V ⊗W | 0 | s(V ) | ifn(V,W ) | itern(V,W )

| ε | si(V ) | ifw(V0, V1,W ) | iterw(V0, V1,W ) | tt | ff | if(V,W )

with i ∈ {0, 1}.

We define free variables and free occurrences as usual, and we work up to α-renaming. Here,
we choose the alphabet {0, 1} for simplification, but we could have taken any finite alphabet Σ
and in this case, the constructors ifw and iterw would need a term for each letter.

The definitions of those constructors will be more explicit with their reduction rules and their
types. For intuition, the constructor ifn(t, t′) defines a function on integers that does a pattern
matching on its input, and the constructor itern(V, t) is such that itern(V, t) n→∗ V n t, if n
is the coding of the integer n, that is sn(0).

Definition 2.1.2 (Substitution). For an object t with a notion of free variable and substitution
we write t{t′/x} the term t in which free occurrences of x have been replaced by t′.

Base reductions in s`T are given by the rules described in Figure 2.1. Note that in the iterw
rule, the order in which we apply the iterated functions is the reverse of the one for iterators
we see usually. In particular, it does not correspond to the reduction defined in [9]. Those base
reductions can be applied in contexts C defined by the following grammar:

C := [] | C t | V C | C ⊗ t | t⊗ C | let x⊗ y = C in t | s(C) | ifn(C, t) | ifn(V,C) | itern(V,C)

| si(C) | ifw(C, t, u) | ifw(t, C, u) | ifw(V,W,C) | iterw(V0, V1, C) | if(C, t) | if(t, C).
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if(V,W ) tt → V (λx.t) V → t{V/x}
if(V,W ) ff →W let x⊗ y = V ⊗W in t → t{V/x}{W/y}
ifn(V,W ) 0 →W ifn(V, V ′) s(W ) → V W

itern(V,W ) 0 →W itern(V, V ′) s(W ) → itern(V, V V ′) W
ifw(V0, V1,W ) ε →W ifw(V0, V1, V

′) si(W ) → Vi W
iterw(V0, V1,W ) ε →W iterw(V0, V1, V

′) si(W ) → iterw(V0, V1, Vi V
′) W

Figure 2.1: Base Reduction Rules for s`T.

We introduce the system of linear types with sizes. First, base types are given by the
following grammar:

U := WI | NI | B I, J := i | n ∈ N∗ | I+J | I · J

N∗ is the set of non-zero integers. I represents an index and i represents an index variable. We
define for indices the notions of occurrences of a variable in the usual way, and we work up to
renaming of variables. We also define the substitution of a variable in an index in the usual way.
Then, we can generalize substitution to types, for example NI{J/a} = NI{J/a}. The intended
meaning is that closed values of type NI (resp. WI) will be integers (resp. words) of size (resp.
length) at most I. Usually, we use a finite set of index variables ϕ in indexes.

Definition 2.1.3 (Order on indices). For two indices I and J , we say that I ≤ J if for any
valuation ρ :ϕ 7→ N∗ we have Iρ ≤ Jρ where Iρ is I where all index variables have been replaced
by their value in ρ, thus Iρ is a non-zero integer. We also consider that if I ≤ J and J ≤ I then
I = J (i.e. we take the quotient set for the equivalence relation). Remark that by definition of
indices, we always have 1 ≤ I.

For two indices I and J , we say that I < J if for any valuation ρ, we have Iρ < Jρ. This is
not equivalent to I ≤ J and I 6= J , as we can see with i ≤ i · j.

For example, we have i+1 ≤ 2 · i, i+j · i = (j+1) · i and i+1 < i+j+k. Here we only consider
polynomial indices. This is a severe restriction w.r.t. usual indices, that we will use later
and that can be found in [79, 9], in which indices can use any set of functions along with a
semantic interpretation. But in the present setting this is sufficient because we only want s`T
to characterize polynomial time computation.

Definition 2.1.4. Types are given by the grammar:

D,E, F := U | D( E | D ⊗ E.

The subtyping order v on those types is described in Figure 2.2. This definition allows for
example the subtyping Ni+1 ( W2i v Ni ( W3i, meaning that a function taking an integer
of size smaller than i+1 and returning a word of size at most 2i can also be seen as a function
taking an integer of size smaller than i and returning a word of size at most 3i.

Definition 2.1.5 (Variable Contexts). Variables contexts are denoted Γ, with the shape Γ ≡
x1 : D1, . . . , xn : Dn. We say that Γ v Γ′ when Γ and Γ′ have exactly the same variables, and
for x : D in Γ and x : D′ in Γ′ we have D v D′. Ground variables contexts, denoted dΓ,
are variables contexts in which all types are base types. We write Γ = Γ′, dΓ to denote the
decomposition of Γ into a ground variable context dΓ and a variable context Γ′ in which types
are non-base types. This allows us to decompose a context into his duplicable variables dΓ and
the non-duplicable ones. For a variable context without base type, we denote Γ = Γ1,Γ2 when Γ
is the concatenation of Γ1 and Γ2, and Γ1 and Γ2 do not have any common variables.
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B v B
I ≤ J

NI v NJ
I ≤ J

WI vWI

E v D D′ v E′
D( D′ v E ( E′

D v E D′ v E′
D ⊗D′ v E ⊗ E′

Figure 2.2: Subtyping Rules.

We denote proofs as π C Γ ` t : D and we define an index ω(π) called the weight for such
a proof. The idea is that the weight will be an upper-bound for the number of reduction steps
of t. Note that since ω(π) is an index, this bound can depend on some index variables. As the
goal of this section is to ensure that the language is polynomial, we do not pay attention to the
precision of this upper bound, we only need it to be polynomial. The rules for those proofs are
described by Figure 2.3. Here are some remarks:

• Observe that this system enforces a linear usage of variables of non-base types, this can
be seen for instance in binary rules, such as application, where non-base variables (those
in Γ,Γ′) do not occur both in t and u.

• In the rule for itern and iterw described in Figure 2.3, the index variable i must be a
fresh variable. Then dΓ ` V : D( D{i+1/i} means intuitively that for any index J , we
have dΓ ` V : D{J/i} ( D{J+1/i}. This will be formalized in Lemma 2.1.3. Also, we
need some monotonicity with respect to i (expressed here by the condition E v E{i+1/i}),
as it is essential for subtyping (see Lemma 2.1.7). Note that in this definition, D is not
necessarily monotonous, but it must be a subtype of a monotonous type E. This gives
us more freedom on the type D than directly asking for monotonicity. Finally, linearity
in this rule is expressed by the impossibility to use higher-order variables in the iterated
function, contrary to other notions of linearity for system T [5].

Examples in s`T

For the sake of conciseness, we may write from now on λx, y, z.t instead of λx.λy.λz.t.

Other iterators Using a function reversing a word rev, that one could construct easily, we
can define an iterator on words doing operations in the usual order. We denote this iterator
with Riterw. Formally it is defined by:

Riterw(V0, V1, t) := λw.iterw(V0, V1, t) (rev w).

We have Riterw(V0, V1,W ) w0w1 . . . wn →∗ Vw0 (Vw1 (· · · (Vwn W ) · · · )).
We also show that for integers we can construct an iterator rec(V, t) with:

rec(V, t) n→∗ V n−1 (V n−2 (. . . (V 0 t) . . . ))

and such that the following rule is derivable.

D v E E{I/i} v F
dΓ ` V :D( Ni( D{i+1/i}

E v E{i+1/i}
Γ, dΓ ` t : D{1/i}

Γ, dΓ ` rec(V, t) : NI ( F
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D v E
πC

Γ, x :D ` x : E
ω(π) = 1

σ C Γ, x :D ` t : E
πC

Γ ` λx.t :D( E
ω(π) = 1+ω(σ)

σ C Γ, dΓ ` t : E ( D τ C Γ′, dΓ ` u : E
πC

Γ,Γ′, dΓ ` t u :D
ω(π) = ω(σ)+ω(τ)

σ C Γ, dΓ ` t :D τ C Γ′, dΓ ` u : E
πC

Γ,Γ′, dΓ ` t⊗ u :D ⊗ E
ω(π) = ω(σ)+ω(τ)+1

σ C Γ, dΓ, x :D, y : E ` u : F τ C Γ′, dΓ ` t :D ⊗ E
πC

Γ,Γ′, dΓ ` let x⊗ y = t in u : F
ω(π) = ω(σ)+ω(τ)

πC
Γ ` 0 : NI ω(π) = 0

J+1 ≤ I σ C Γ ` t : NJ
πC

Γ ` s(t) : NI
ω(π) = ω(σ)

σ C Γ, dΓ ` t : NI ( D τ C Γ′, dΓ ` u :D
πC

Γ,Γ′, dΓ ` ifn(t, u) : NI ( D
ω(π) = ω(σ)+ω(τ)+1

D v E E{I/i} v F
σ C dΓ ` V :D( D{i+1/i}

E v E{i+1/i}
τ C Γ, dΓ ` t :D{1/i}

πC
Γ, dΓ ` itern(V, t) : NI ( F

ω(π) = ω(τ)+I · (ω(σ)+1){I/i}

πC
Γ ` ε : WI ω(π) = 0

J+1 ≤ I σ C Γ ` t : WJ

πC
Γ ` si(t) : WI

ω(π) = ω(σ)

∀i, σi C Γi, dΓ ` ti : WI ( D τ C Γ′, dΓ ` u :D
πC

Γ1,Γ2,Γ
′, dΓ ` ifw(t1, t2, u) : WI ( D

ω(π) = ω(σ1)+ω(σ2)+ω(τ)+1

D v E E{I/i} v F
∀i, σi C dΓ ` Vi :D( D{i+1/i}

E v E{i+1/i}
τ C Γ, dΓ ` t :D{1/i}

πC
Γ, dΓ ` iterw(V0, V1, t) : WI ( F

ω(π) = ω(τ)+I · (ω(σ1)+ω(σ2)+1){I/i}

πC
Γ ` tt : B ω(π) = 0

πC
Γ ` ff : B ω(π) = 0

σ C Γ, dΓ ` t :D τ C Γ′, dΓ ` u :D
πC

Γ,Γ
′, dΓ ` if(t, u) : B( D

ω(π) = ω(σ)+ω(τ)+1

Figure 2.3: Type system for s`T.
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We first give a term that takes a pair with an object x of type D and an integer n and returns
the pair (V n x, n+1):

tstep := λr.let x⊗ n = r in (V n x)⊗ s(n).

We have dΓ ` tstep : (D ⊗ Ni) ( (D{i+1/i} ⊗ Ni+1). Thus, we can iterate on this term using
itern and this gives us the desired iterator:

rec(V, t) := λn.let x⊗m = (itern(tstep, t⊗ 0) n) in x.

This constructor can be defined likewise for words.

Addition for unary integers In order to give an example of weight, we define the addition
for unary integers in s`T. It is represented by:

add := λx.itern(λy.s(y), x) : NI ( NJ ( NI+J .

The typing derivation is:

(1)

I+i+1 ≤ I+i+1

NI+i v NI+i

x : NI , y : NI+i ` y : NI+i

x : NI , y : NI+i ` s(y) : NI+i+1

π1 C x : NI ` λy.s(y) : NI+i( NI+i+1

NI v NI+1

π2 C x : NI ` x : NI+1

x : NI ` itern(λy.s(y), x) : NJ ( NI+J

π0 C · ` add : NI ( NJ ( NI+J

where (1) is NI+i v NI+i, NI+i v NI+J , NI+i v NI+i+1, that is the conditions imposed
by the iteration rule. We have ω(π1) = 2 and ω(π2) = 1. Thus, the final weight is ω(π0) =
1+(1+J · (2+1)) = 3J+2.

Multiplication for unary integers We also sketch the multiplication in s`T. The multipli-
cation can be represented by:

mult := λx.itern(λy.add x y, 0) : NI ( NJ ( NI·J

and the typing derivation is:

x : NI , y : NI·a ` add x y : NI·a+I

π1 C x : NI ` λy.add x y : NI·a( NI·a{a+1/a} π2 C x : NI ` 0 : NI

x : NI ` itern(λy.add x y, 0) : NJ ( NI·J

π0 C · ` mult : NI ( NJ ( NI·J

With the previous weight for add, we obtain ω(π1) = 3 · I · a+5. We also have ω(π2) = 1.
Thus, we can compute the final weight:

ω(π0) = 1+ω(π2)+J · (ω(π1)+1){J/a} = 3IJ2+6J+2.

Note that this way of doing multiplication is not optimal as we iterate on the largest number
during the addition. However, this is a good example for the weight, so we presented this version
of multiplication instead of a better one.
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Addition on binary integers Now, we define some terms working on integers written in
binary, with type WI , as we will use them later in order to describe our term for SAT (see
Section 2.3). First, we can define an addition on binary integers in s`T with a control on
the number of bits. More precisely, we can give a term Cadd : NI ( WJ1 ( WJ2 ( WI

such that Cadd n w1 w2 outputs the least significant n bits of the sum w1+w2. For example,
Cadd 3 101 110 = 011, and Cadd 5 101 110 = 01011. This will usually be used with a n greater
than the expected number of bits, the idea being that those extra 0 can be useful for some other
programs. The term follows the usual algorithm for addition: the result is computed bit by bit
starting from the right, and we keep track of the carry.

Unary integers to binary integers We define a term CUnToBi : NI ( NJ (WI such that
on the input n, n′, this term computes the least n significant bits of the representation of n′ in
binary:

CUnToBi = λn.itern(λw.Cadd n w (s1(ε)), Cadd n ε ε).

Binary integers to unary integers We would like a way to compute the unary integer
corresponding to a given binary integer. However, this function is exponential in the size of
its input, so it should have intuitively the type WJ ( N2J . As we cannot do exponentiation
on indices, it is impossible to write such a function in s`T. Nevertheless, given an additional
information bounding the size of this unary word, we can give a term CBiToUn : NI (WJ ( NI

such that on an input n,w this term computes the minimum between n and the unary repre-
sentation of w. What is important in this type is the discarding of J . In order to do that, we
first define a term min : NI ( NJ ( NI . As NI is the type of integers of size smaller than I, we
have indeed that the minimum between an integer of size smaller than I and an integer of size
smaller than J is smaller than I. It is not a precise bound but it is sufficient for its incoming
use. The idea to construct min is to use the following term:

tstep := λr.let n⊗m = r in ifn(λm′.s(n)⊗m′, n⊗ 0) m.

The term tstep takes a pair of integers (n,m) and if m = 0, it does nothing, otherwise it returns
(n+1,m−1). We can derive the typing · ` tstep : (Ni ⊗ NJ)( (Ni+1 ⊗ NJ). Thus, we can iterate
on this term, and if we iterate n times starting from the pair (0, n′) we indeed compute the
minimum between n and n′:

min = λn, n′.let m⊗m′ = (itern(tstep, 0⊗ n′) n) in m.

Now that we have the term min, we can define the following term:

CBiToUn = λn.iterw(λn′.min n (mult n′ 2), λn′.min n (s(mult n′ 2)), 0).

2.1.2 Subject Reduction and Soundness

Index Variable Substitution and Subtyping

In order to prove the subject reduction for s`T and that the weight is a bound on the number
of reduction steps of a term, we give some intermediate lemmas.

First, we show that typed values are linked to normal forms. In particular, this theorem
shows that a value of type N is indeed of the form s(s(. . . (s(0)) . . . )). From this it follows that
in this call-by-value calculus, when an argument is of type N, it is the encoding of an integer.

Lemma 2.1.1. Let t be a term in s`T, if t is closed and has a typing derivation ` t : D then t
is in normal form if and only if t is a value V .
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Proof. First, we prove by induction on values V that if V is closed and has a typing derivation
then V is in normal form. We only show some cases and the others are easily deducible from
those cases.

• If V = λx.t then V is in normal form since in the definition of contexts for reductions, we
cannot reduce under a λ-abstraction.

• If V = V0 ⊗ V1. V is closed so are V0 and V1. Moreover, V has a typing derivation, so it
must end with the introduction of tensor rule, and we deduce that V0 and V1 have also
a typing derivation. So by induction hypothesis, V0 and V1 are in normal form. Then V
has no base reduction possible, and no contexts reductions since V0 and V1 are is normal
form, so V is also in normal form.

• If V = 0 then V is in normal form.

Now for the other implication, we prove that if a closed typed term is in normal form then
it is a value. We prove that by induction on terms, again we only detail some interesting cases.

• If t := t0 t1. Suppose, by absurd, that t is a closed typed normal term. Since t has a
typing derivation, we know that t0 and t1 are also closed typed terms. By definition of
contexts in which we can apply reductions, t0 is normal, and so by induction hypothesis, t0
is a value. Again, by definition of contexts, t1 is normal, and so by induction hypothesis,
t1 is a value. So t0 is a value with an arrow type D ( E. By looking at the definition
of values, either t0 is a λ-abstraction, or it is one of the functional constructors like ifn.
If t0 is a λ-abstraction, as t1 is a value, we could apply the usual β-rule, so this is not
possible because t is in normal form. If t0 is ifn(V, V ′), as t1 is a value of type N, it is the
encoding of an integer, and so t is not normal since we could apply one of the ifn rules.
All the other cases work in the same way, and we deduce that t cannot be in normal form.

• If t := let x ⊗ y = t0 in t1. Suppose that t is a closed typed normal term. Since t has
a typing derivation, we know that t0 has also a typing derivation, and t0 is closed. By
definition of contexts, t0 is in normal form and so by induction hypothesis, t0 is a value.
t0 has a tensor type D⊗E, by definition of values, t0 is of the form V ⊗W , this is absurd
since in this case t would not be normal. And so, we deduce that t cannot be a normal
term.

We now give a list of intermediate lemmas for which we do not always detail the proofs if
they are immediate.

Lemma 2.1.2 (Weakening). Let ∆,Γ be disjoint typing contexts, and π C Γ ` t : D. Then, we
have a proof π′ C Γ,∆ ` t : D with ω(π) = ω(π′).

Lemma 2.1.3 (Index substitution). Let I be an index.

1. Let J1, J2 be indices such that J1 ≤ J2 then J1{I/i} ≤ J2{I/i}.

2. Let J1, J2 be indices such that J1 < J2 then J1{I/i} < J2{I/i}.

3. Let D,D′ be types such that D v D′ then D{I/i} v D′{I/i}.

4. If π C Γ ` t :D then π{I/i}C Γ{I/i} ` t :D{I/i}.
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5. ω(π{I/i}) = ω(π){I/i}.

Proof. Point 1 and Point 2 are by definition of ≤ and <, then Point 3 is a direct induction on
types using Point 1 for base types. Point 4 and Point 5 are proved by induction on π:

• In the case of s or si, we use Point 1.

• In the axiom rule, we use Point 3.

• Then, the only interesting cases are iterations. We show here the iteration for integers.
Suppose that we have the following proof:

D v E E v E{j+1/j}
σ C dΓ ` V : D( D{j+1/j}

E{J/j} v F
τ C Γ, dΓ ` t : D{1/j}

πC
Γ, dΓ ` itern(V, t) : NJ ( F

With ω(π) = ω(τ)+J · (ω(σ)+1){J/j}. We want to prove that π{I/i} C Γ{I/i} `
itern(V, t) : NJ{I/i}( F{I/i}.
By induction hypothesis and Point 3 of Lemma 2.1.3 we have

D{I/i} v E{I/i} E{I/i} v E{j+1/j}{I/i}
σ{I/i}C dΓ{I/i} ` V : D{I/i}( D{j+1/j}{I/i}

E{J/j}{I/i} v F{I/i}
τ{I/i}C Γ{I/i}, dΓ{I/i} ` t :D{1/j}{I/i}

By using the fact that j must be a fresh variable in Γ, dΓ, J and F , we can suppose, by
renaming, that j does not occur in I. Then, we obtain:

D{I/i} v E{I/i} E{I/i} v E{I/i}{j+1/j}
σ{I/i} C dΓ{I/i} ` V : D{I/i}( D{I/i}{j+1/j}

E{I/i}{J{I/i}/b} v F{I/i}
τ{I/i} C Γ{I/i}, dΓ{I/i} ` t : D{I/i}{1/j}

π{I/i}C
Γ{I/i}, dΓ{I/i} ` itern(V, t) : NJ{I/i} ( F{I/i}

with weight ω(π{I/i}) = J{I/i}+ω(τ){I/i}+J{I/i} · ω(σ){I/i}{J{I/i}/b}.
And so ω(π{I/i}) = ω(π){I/i}.

Lemma 2.1.4 (Monotonic index substitution). Take J1, J2 such that J1 ≤ J2.

1. Let I be an index, then I{J1/i} ≤ I{J2/i}.

2. For any proof π, ω(π{J1/i}) ≤ ω(π{J2/i}).

3. Let E be a type. If E v E{i+1/i} then E{J1/i} v E{J2/i} and if E{i+1/i} v E then
E{J2/i} v E{J1/i}.

Proof. Point 1 can be proved by induction on indices, and then Point 2 is just a particular case
of Point 1, by Lemma 2.1.3. Point 3 is proved by induction on the type E. Let us first show an
intermediate lemma:

Lemma 2.1.5. Let I be an index. If an index variables i has at least one occurrence in I then
we have I < I{i+1/i}.
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By induction on I. On the base case, I = i so obviously i < i+1. In the inductive case
I = J1+J2, if i has at least one occurrence in I, then i has at least one occurrence in J1

or in J2. If i appears in J1 and J2, by induction hypothesis we have J1 < J1{i+1/i} and
J2 < J2{i+1/i}. So, we obtain directly I < I{i+1/i}. If i appears in J1 and not in J2, then
we have J1 < J1{i+1/i} and J2 = J2{i+1/i}. Thus, we obtain I < I{i+1/i}. The last case is
symmetric. The case of the multiplication is similar to the one for addition, using the fact that
all indices are at least 1 so multiplication conserves the strict ordering.

Now we can prove Point 3 of Lemma 2.1.4 by induction on E.

• Suppose that E is a base type. The boolean case is direct, so we suppose that E = NI

(the case for words is similar). By Point 1 of Lemma 2.1.4, we have I{J1/i} ≤ I{J2/i}.
This concludes the first case. Now, suppose that E{i+1/i} v E. By definition, this
means I{i+1/i} ≤ I. By Lemma 2.1.5, i have no occurrence in I. Thus, we have directly
I{J2/i} ≤ I{J1/i}, and so E{J2/i} v E{J1/i}.

• If E = D ( D′. Suppose that E v E{i+1/i}. By definition, D′ v D′{i+1/i} and
D{i+1/i} v D. By induction hypothesis, we have D′{J1/i} v D′{J2/i} and D{J2/i} v
D{J1/i}. Thus, we obtain E{J1/i} v E{J2/i}. The other case E{i+1/i} v E is similar.

• The case for E = D ⊗D′ is direct by induction hypothesis.

Lemma 2.1.6 (Typing Base Values). If πCΓ, dΓ ` V : U then we have a proof π′CdΓ ` V : U
with ω(π) = ω(π′). Moreover, ω(π′) ≤ 1.

Indeed, the only rules we can use to type values of base type are the axiom rule with a
variable in dΓ or the rules for base constructors on integers, words or boolean such as 0 or s.

Another important lemma is the one for subtyping, it shows that we do not need an explicit
rule for subtyping and subtyping does not harm the upper bound derived from typing. Moreover,
this lemma is important in order to substitute variables, since the axiom rule allows subtyping.

Lemma 2.1.7 (Subtyping). If π C Γ ` t : D then for all Γ′, D′ such that D v D′ and Γ′ v Γ,
we have a proof π′ C Γ′ ` t : D′ with ω(π′) ≤ ω(π).

Proof. This can be proved by induction on π. The only interesting cases are for iterations. We
only detail the case of iteration for integers. Suppose that we have

D v E E{I/i} v F
σ C dΓ ` V :D( D{i+1/i}

E v E{i/i+1}
τ C Γ, dΓ ` t :D{1/i}

πC
Γ, dΓ ` itern(V, t) : NI ( F

with ω(π) = ω(τ)+I · (ω(σ)+1){I/i}. Let Γ′, dΓ′, I ′, F ′ be such that NI ( F v NI
′
( F ′

and Γ′, dΓ′ v Γ, dΓ. By definition, we have F v F ′ and I ′ ≤ I. By induction hypothesis we have
σ′ C dΓ′ ` V :D( D{i+1/i} and τ ′ C Γ′, dΓ′ ` t :D{1/i} with ω(σ′) ≤ ω(σ) and ω(τ ′) ≤ ω(τ).
We give then the following proof π′:

D v E E{I ′/i} v F ′

σ′ C dΓ′ ` V :D( D{i+1/i}
E v E{i/i+1}

τ ′ C Γ′, dΓ′ ` t :D{1/i}
π′C

Γ, dΓ ` itern(V, t) : NI
′
( F ′
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with ω(π′) = ω(τ ′)+I ′ · (ω(σ′)+1){I ′/i}. Indeed, by Point 3 of Lemma 2.1.4, we have
E{I ′/i} v E{I/i}. Thus, by transitivity, we have E{I ′/i} v E{I/i} v F v F ′. Moreover,
ω(π′) ≤ ω(π) since ω(τ ′) ≤ ω(τ), I ′ ≤ I, and:

(ω(σ′)+1){I ′/i} ≤ (ω(σ′)+1){I/i} ≤ (ω(σ)+1){I/i}

by Point 1 of Lemma 2.1.4 for the first inequality, and since ω(σ′) ≤ ω(σ), we get the second
inequality by Point 1 of Lemma 2.1.3.

Term Substitution Lemma

In order to prove the subject reduction of the calculus, we examine what happens during a
substitution of a value in a term. There are two cases, first the substitution of variables with
base types, that is to say duplicable variables, and then the substitution of variables with a
non-base type for which the type system imposes linearity.

Lemma 2.1.8 (Value Substitution). Suppose that π C Γ1, dΓ, x : E ` t : D and σ C Γ2, dΓ `
V : E, then we have a proof π′ C Γ1,Γ2, dΓ ` t{V/x} : D. Moreover, if E is a base type then
ω(π′) ≤ ω(π). Otherwise, ω(π′) ≤ ω(π)+ω(σ).

Proof. This is proved by induction on π. For the base type case, we use Lemma 2.1.6 to show
that Γ2 can be ignored, and then as dΓ is duplicable, the proof is rather direct. For the non-base
case, in multiplicative rules such as application and if, the property holds by the fact that x
only appears in one of the premises, and so ω(σ) appears only once in the total weight.

Subject Reduction and Upper Bound

We can now express the subject-reduction of the calculus and the fact that the weight of a proof
strictly decreases during a reduction.

Theorem 2.1.1. Suppose that τ C Γ ` t0 : D and t0 → t1, then there is a proof τ ′ C Γ ` t1 : D
such that ω(τ ′) < ω(τ).

Proof. By induction. We first consider the base-reduction case. Some cases are trivial and we
will not develop them. Indeed the if-rules can be proved with weakening (Lemma 2.1.2).

• If t0 = (λx.t)V , and t1 = t{V/x}, we have a proof:

π C Γ1, dΓ, x : E ` t : D

Γ1, dΓ ` λx.t : E ( D σ C Γ2, dΓ ` V : E
τC

Γ1,Γ2, dΓ ` (λx.t)V : D

with ω(τ) = ω(σ)+1+ω(π).

Then by using the value substitution lemma (Lemma 2.1.8) with π and σ, we obtain a
proof π′ C Γ1,Γ2, dΓ ` t{V/x} : D. Moreover, we have ω(π′) ≤ ω(π)+ω(σ) < ω(τ). This
concludes this case.

• If t0 = let x ⊗ y = V0 ⊗ V1 in t and t1 = t{V0/x}{V1/y}, we can conclude this case by
using twice Lemma 2.1.8.

• If t0 = itern(V, V ′) 0 and t1 = V ′. We have a proof:
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(1)

σ1{1/i}C dΓ ` V : D{1/i}( D{i+1/i}{1/i} σ2 C Γ, dΓ ` V ′ : D{1/i}
σ1{i+1/i}C dΓ ` V : D{i+1/i}( D{i+1/i}{i+1/i} Γ, dΓ ` V V ′ : D{i+1/i}{1/i}

Γ, dΓ ` itern(V, V V ′) : NJ ( F

where (1) is:

D{a+1/a} v E{a+1/a} E{a+1/a} v E{a+1/a}{a+1/a} E{a+1/a}{J/a} = E{J+1/a} v E{I/a} v F

Figure 2.4: A derivation for itern(V, V V ′).

D v E E v E{i+1/i}
σ1 C dΓ ` V : D( D{i+1/i}

E{I/i} v F
σ2 C Γ, dΓ ` V ′ : D{1/i}

Γ, dΓ ` itern(V, V ′) : NI ( F Γ′, dΓ ` 0 : NI
τC

Γ,Γ′, dΓ ` itern(V, V ′) 0 : F

with ω(τ) = I+ω(σ2)+I · ω(σ1){I/a} ≥ 1+ω(σ2).

We have D{1/i} v E{1/i} v E{I/i} v F by Lemma 2.1.3 and Lemma 2.1.4 since
1 ≤ I. So, by subtyping and weakening (Lemma 2.1.7 and Lemma 2.1.2), we have a proof
σ′2 C Γ,Γ′, dΓ ` V ′ : F with ω(σ′2) ≤ ω(σ2) < ω(τ).

This concludes this case. The proof for the rule iterw with ε follows the same pattern.

• If t0 = itern(V, V ′) s(W ) and t1 = itern(V, V V ′) W . We have a proof:

D v E E v E{i+1/i}
σ1 C dΓ ` V : D( D{i+1/i}

E{I/i} v F
σ2 C Γ, dΓ ` V ′ : D{1/i}

Γ, dΓ ` itern(V, V ′) : NI ( F

π C Γ′, dΓ `W : NJ J+1 ≤ I
Γ′, dΓ ` s(W ) : NI

τC
Γ,Γ′, dΓ ` itern(V, V ′) s(W ) : F

with ω(τ) = ω(π)+I+ω(σ2)+I · ω(σ1){I/i}.
We can construct a proof τ ′0 for itern(V, V V ′). The proof is described in Figure 2.4.
This gives us a proof for t1.

τ ′0 C Γ, dΓ ` itern(V, V V ′) : NJ ( F π C Γ′, dΓ `W : NJ
τ ′C

Γ,Γ′, dΓ ` itern(V, V V ′)W : F

with ω(τ ′) = ω(π)+J+ω(σ2)+ω(σ1){1/i}+J · ω(σ1){i+1/i}{J/i}.
And we have ω(τ ′) ≤ ω(π)+J+ω(σ2)+(J+1) · ω(σ1){J+1/i} so, since J+1 ≤ I, we have
ω(τ ′) < ω(π)+I+ω(σ2)+I · ω(σ1){I/i} = ω(τ).

The rules for iterw in the cases s0 and s1 follow the same pattern.

Now we need to verify that a reduction under context strictly decreases the weight. This
can be proved directly by structural induction on contexts.

As the indices can only define polynomials, the weight of a sequent can only be a polynomial
on the index variables. And so, in s`T, we can only define terms that work in time polynomial
in the size of their inputs.
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Polynomial indices and Degree

For the following section on the elementary affine logic, we need to define a notion of degree of
indices and make clear some properties of this notion.

Definition 2.1.6. The indices can be seen as multi-variables polynomials, and we can define
the degree of an index I by induction on I.

• ∀n ∈ N∗, d(n) = 0. • For an index variable i, d(i) = 1.

• d(I+J) = max(d(I), d(J)). • d(I · J) = d(I)+d(J).

This definition of degree is essential for the control of reductions in sEAL, that we present
in the following section. We obtain the following property for degree.

Theorem 2.1.2 (Degree). For all indices I and J, the following properties are verified:

1. For all non-zero integer k, we have I{k/i} ≤ kd(I) · I{1/i}.

2. If I ≤ J then d(I) ≤ d(J).

Proof. The first point is proved by induction on I. For the second point, let us first show the
following lemma:

Lemma 2.1.9. Let I be an index with at most one index variable i. Then, we have id(I) ≤ I ≤
I{1/i} · id(I).

This is proved directly by induction on indices, and it uses the fact that the constant integers
in indices are non-zero, the image of a variable in a valuation is non-zero and an index is always
positive.

Now, we prove our theorem by contraposition. Given I, J such that d(I) > d(J), we
construct two new indices called I ′ and J ′ that are I and J in which we replaced all variables
by a new fresh variable i. The degree stays the same, and we have, by Lemma 2.1.9:

id(J)+1 ≤ id(I) ≤ I ′ and J ′ ≤ id(J) · J ′{1/i}.

If we replace i by k = (J ′{1/i}+1) (which is a non-zero integer), we obtain:

I ′{k/i} ≥ kd(J)+1 and J ′{k/i} ≤ kd(J) · (k−1).

And so we have I ′{k/i} > J ′{k/i}. We deduce that we have a valuation ρ that sends all
variables of I and J to k such that Iρ > Jρ, so we do not have I ≤ J . By contraposition, we
obtain Point 2 of Theorem 2.1.2.

This second point shows that our notion of degree is well-defined w.r.t. the equivalence
relation between indices.

2.2 Elementary Affine Logic and Sizes

2.2.1 An Elementary Affine Lambda Calculus

We work on an elementary affine lambda calculus based on [83] without multithreading and
side-effects, that we present here. In this calculus, any sequence of reduction terminates in
elementary time. The keystone of this proof is the use of the modality ”!”, called bang, inspired
by linear logic. As in linear logic, there are restrictions for the duplication of variables in this
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(Lin Ax)
Γ, x : T | ∆ ` x : T

(Glob Ax)
Γ | ∆, x : T ` x : T

Γ, x : T | ∆ `M : U
(λ)

Γ | ∆ ` λx.M : T ( U

Γ | ∆ `M : U ( T Γ′ | ∆ ` N : U
(App)

Γ,Γ′ | ∆ `M N : T

· | ∆ `M : T
(! Intro)

Γ | ∆′, [∆] `!M : !T

Γ | ∆ `M : !T Γ′ | ∆, x : [T ] ` N : U
(! Elim)

Γ,Γ′ | ∆ ` let !x = M in N : U

Γ | ∆ `M : T α fresh in Γ, ∆
(∀ Intro)

Γ | ∆ `M : ∀α.T
Γ | ∆ `M : ∀α.T

(∀ Elim)
Γ | ∆ `M : T{U/α}

Figure 2.5: Type system for the EAL-calculus.

calculus. Moreover, the bang has a more limited use than in linear logic, this limitation gives
birth to the notion of depth. This notion is crucial to derive the elementary bound on this
calculus. To describe formally this calculus, we follow the presentation from [83] and we encode
the usual restrictions in a type system.

Definition 2.2.1. The set of terms is given by the grammar:

M,N := x | λx.M |M N |!M | let !x = M in N.

The constructor let !x = M in N binds the variable x in N . We define as usual the notion
of free variables, free occurrences and substitution.

Definition 2.2.2. The semantic of this calculus is given by the rules:

(λx.M) N →M{N/x} let !x =!M in N → N{M/x}

Those rules can be applied in any context.

We add to this calculus a polymorphic type system that also restrains the possible terms
we can write. Types are given by the grammar:

T,U := α | T ( U |!T | ∀α.T.

Definition 2.2.3 (Typing Contexts). Linear variables contexts are denoted Γ, with the shape
Γ = x1 : T1, . . . , xn : Tn. We write Γ1,Γ2 the disjoint union between Γ1 and Γ2. Global variables
contexts are denoted ∆, with the shape ∆ = x1 : T1, . . . , xn : Tn, y1 : [T ′1], . . . , ym : [T ′m]. We say
that [T ] is a discharged type, as we could see in light linear logic [52, 92]. A global variable
context x1 : T1, . . . , xn : Tn, y1 : [T ′1], . . . , ym : [T ′m] may sometimes be denoted by ∆, [∆′]. In this
case, we consider that ∆ = x1 : T1, . . . , xn : Tn and ∆′ = y1 : T ′1, . . . , ym : T ′m.

Typing judgments have the shape Γ | ∆ ` M : T . The intended meaning is that variables
in Γ are used linearly in M while variables in ∆ can be used non-linearly in M .

The rules are given in Figure 2.5. Observe that all the rules are multiplicative for Γ and,
seen from bottom to top, the ”!Intro” rule erases linear contexts, non-discharged types and
transforms discharged types into usual types. With this, we can see that some restrictions
appear in a typed term. First, in λx.M , x occurs at most once in M , and moreover, there is no
”! Intro” rule below the axiom rule for x. Then, in let !x = M in M ′, x can be used several
times in M ′, but there is exactly one ”! Intro” rule below each axiom rule for x. For example,
with this type system, we can not type terms like λx.!x, λf, x.f (f x), let !x = M in x or
let !x = M in !!x.
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With this type system, we obtain as a consequence of the results exposed in [83] that any
sequence of reductions of a typed term terminates in elementary time. This proof relies on the
notion of depth linked with the modality ”!” and a measure on terms bounding the number of
reductions for this term. We will adapt those two notions in the following part on sEAL, but
for now, let us present some terms and encoding in this EAL-calculus.

Examples of Terms in EAL and Church Integers

First, a useful term fonct : ∀α, α′.!(α( α′)(!α(!α′:

fonct := λf, x.let !g = f in let !y = x in !(g y).

We sketch the typing derivation for this term.

f :!(α( α′) | · ` f :!(α( α′)

x:!α | g : [(α( α′)] ` x:!α

. . .

· | g : (α( α′), y : α ` g y : α′

· | g : [(α( α′)], y : [α] `!(g y):!α′

x:!α | g : [(α( α′)] ` let !y = x in !(g y):!α′

f :!(α( α′), x:!α | · ` let !g = f in let !y = x in !(g y):!α′

f :!(α( α′) | · ` λx.let !g = f in let !y = x in !(g y):!α(!α′

· | · ` fonct:!(α( α′)(!α(!α′

· | · ` fonct : ∀α′.!(α( α′)(!α(!α′

· | · ` fonct : ∀α, α′.!(α( α′)(!α(!α′

This term allows application under a bang. Indeed, the following reduction can be derived:

fonct !M !N →∗ let !g =!M in let !y =!N in !(g y)→∗!(M N)

Unary integers can be encoded in this calculus as Church integers, with N = ∀α.!(α( α)(
!(α( α). For example, 3 is represented by the term:

3 = λf.let !g = f in !(λx.g (g (g x))) : N.

And we can represent addition and multiplication with type N( N( N:

add = λn,m, f.let !f ′ = f in let !g = n !f ′ in let !h = m !f ′ in !(λx.h (g x)).

mult = λn,m, f.let !g = f in n(m !g).

And finally, one can also define an iterator using integers:

iter = λf, x, n.fonct (n f) x : ∀α.!(α( α)(!α( N(!α

with iter !M !M ′ n→∗!(Mn M ′).

Intensional Expressivity

Those examples show that this calculus suffers from limitations. First, we need to work with
Church integers, because of a lack of data structures. Furthermore, we need to be careful with
the modality, and this can be sometimes a bit tricky, as one can observe with the addition.
And finally if we want to do an iteration, we are forced to work with types with bangs. This
implies that each time we need to use an iteration, we are forced to add a bang in the final type.
Typically, this prevents from iterating a function which has itself been defined by iteration.
It has been proved that polynomial and exponential complexity classes can be characterized
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in a variant of this calculus with recursive types [10]. For example, with a type for words W
and booleans B we have that !W (!!B characterizes polynomial time computation. However,
because of the restrictions mentioned above, some natural polynomial time programs cannot be
typed with the type !W(!!B. We say that this calculus has a limited intensional expressivity.
One goal of this chapter is to try to lessen this problem, and for that, we now present an enriched
version of this calculus, sEAL, using the language s`T.

2.2.2 EAL enriched with sizes: sEAL

In order to solve improve the intensional expressivity of this calculus, we enrich it with con-
structors for integers, words and booleans, and some iterators on those types following the usual
constraint on iteration in elementary affine logic (EAL). Then, based on the fact that the proof
of correctness in [83] is robust enough to support functions computable in polynomial time with
type N( N (Remark 2.2.1 will explain this in detail), we enrich EAL with the polynomial time
calculus defined previously. We call this new language sEAL (EAL with sizes). More precisely,
we add the possibility to use first-order s`T terms in this calculus in order to work on those
base types, particularly we can then do controlled iterations for those types. We then adapt the
measure used in [83] to sEAL to find an upper-bound on the number of reductions for a term.

Let us first give some notations on vectors.

Definition 2.2.4 (Vectors). In the following we will work with vectors of Nn+1, for n ∈
N. We introduce here some notations on those vectors. We usually denote vectors by µ =
(µ(0), . . . , µ(n)).

When there is no ambiguity with the value of n, for 0 ≤ k ≤ n, we note 1k for the vector
µ with µ(k) = 1 and ∀i, 0 ≤ i ≤ n, i 6= k, µ(i) = 0. We extend this notation for k > n. In this
case, 1k is the zero-vector.

Let µ0, µ1 ∈ Nn+1. We write µ0 ≤ µ1 when ∀i, 0 ≤ i ≤ n, µ0(i) ≤ µ1(i). We also write
µ0 ≤lex µ1 for the lexicographic order on vectors.

For k ∈ N, when there is no ambiguity with the value of n, we write k̃ the vector µ such that
∀i, 0 ≤ i ≤ n, µ(i) = k.

Then, the concatenation of two vectors is denoted by (µ0, µ1), the pointwise addition by
µ0+µ1 and the scalar product by k · µ.

Terms and Reductions

Terms of sEAL are defined by the following grammar:

M,N ::= x | λx.M |M N |!M | let !x = M in N |M ⊗N | let x⊗ y = M in N

| 0 | s(M) | ifn(M,N) | iter!
N(M,N) | tt | ff | if(M,N)

| ε | si(M) | ifw(M0,M1, N) | iter!
W(M0,M1, N) | [λxn . . . x1.t](M1, . . . ,Mn)

with i ∈ {0, 1}.
Note that the t used in [λxn . . . x1.t](M1, . . . ,Mn) refers to terms defined in s`T. This nota-

tion means that we call the function t defined in s`T with arguments M1, . . . ,Mn. Moreover,
n can be any integer, even zero. Constructors for iterations directly follow from the ones we
can usually define in EAL for Church integers or Church words, as we could see in the previous
section on EAL. As usual, we work up to α-isomorphism and we do not explicit the renaming
of variables. As before, for words, the choice of the alphabet Σ = {0, 1} is arbitrary, we could
have chosen any finite alphabet.
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(λx.M) N →M{N/x} let !x =!M in N → N{M/x}
let x⊗ y = M ⊗M ′ in N → N{M/x}{M ′/y} ifn(M,N) 0 → N

ifn(M,M ′) s(N) →M N iter!N(!M, !N) n →!(Mn N)
ifw(M0,M1, N) ε → N ifw(M0,M1,M

′) si(N) →Mi N
iter!W(!M0, !M1, !N) w →!(Mw N) if(M,N) tt →M

if(M,N) ff → N if t→ t′ in s`T then [t]() → [t′]()

[λxn . . . x1.t](M1, . . . ,Mn−1, v) → [λxn−1 . . . x1.t{v/xn}](M1, . . . ,Mn−1)
[v]() → v

Figure 2.6: Base rules for sEAL.

Definition 2.2.5 (Base type values). We note v for base type values, defined by the grammar:

v := 0 | s(v) | ε | si(v) | tt | ff

with i ∈ {0, 1}.
In particular, if n is an integer and w is a binary word, we note n for the base value sn(0),

and w = w1 · · ·wn for the base value sw1(. . . swn(ε) . . . ). We also define the size |v| of v.

|0| = |ε| = |tt| = |ff| = 1 |s(v)| = |si(v)| = 1+|v|

We may use the following notation for terms.

Definition 2.2.6 (Iterated Applications). For terms M,M ′ and an integer n, we write MnM ′

to denote n applications of M to M ′. In particular, M0M ′ = M ′. We also define for a word w,
given terms Ma for all letter a, MwM ′. This is defined by induction on words with M εM ′ = M ′

and Maw′M ′ = Ma (Mw′M ′).

Base reductions are defined by the rules given in Figure 2.6. Note that for some of these
rules, for example the last one, v can denote either the s`T term or the sEAL term.

Contexts are defined by:

C ::= [] | λx.C | C N |M C |!C | let !x = C in N | let !x = M in C | C ⊗N |M ⊗ C
| let x⊗ y = C in N | let x⊗ y = M in C | s(C) | ifn(C,N) | ifn(M,C)

| iter!
N(C,N) | iter!

N(M,C) | if(C,N) | if(M,C) | si(C) | ifw(C,M1, N)

| ifw(M0, C,N) | ifw(M0,M1, C) | iter!
W(C,M1, N) | iter!

W(M0, C,N)

| iter!
W(M0,M1, C) | [λxn . . . x1.t](M1, . . . ,Mj−1, C,Mj+1, . . . ,Mn).

with i ∈ {0, 1} and j ∈ {1, . . . , n}.
The reductions can be extended to any context, and so we have M →M ′ if there is a context

C and a base reduction M0 → M ′0 such that M = C[M0] and M ′ = C[M ′0]. In order to work
with s`T, we use the three last rules and contexts: from the term [λxn . . . x1.t](M1, . . . ,Mn),
we could start by reducing the term Mn to obtain [λxn . . . x1.t](M1, . . . ,Mn−1, v), then use the
second last reduction rule to obtain [λxn−1 . . . x1.t{v/xn}](M1, . . . ,Mn−1), and repeat n times
to obtain a term of the form [t′](). We can then reduce this term t to a normal form v in s`T
and we obtain in sEAL the term [v](). Finally, with the last rule we obtain the value v. Note
that this order for the reduction is not mandatory as contexts do not impose to always start by
reducing Mn.
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πC
Γ, x : T | ∆ ` x : T µn(π) = 10

πC
Γ | ∆, x : T ` x : T µn(π) = 10

σ C Γ, x : T | ∆ `M : U
πC

Γ | ∆ ` λx.M : T ( U
µn(π) = µn(σ)+10

σ C Γ | ∆ `M : U ( T τ C Γ′ | ∆ ` N : U
πC

Γ,Γ′ | ∆ `M N : T
µn(π) = µn(σ)+µn(τ)+10

σ C · | ∆ `M : T
πC

Γ | ∆′, [∆] `!M : !T
µn(π) = (1, µn−1(σ))

σ C Γ | ∆ `M : !T τ C Γ′ | ∆, x : [T ] ` N : U
πC

Γ,Γ′ | ∆ ` let !x = M in N : U
µn(π) = µn(σ)+µn(τ)+10

σ C Γ | ∆ `M : T τ C Γ′ | ∆ ` N : U
πC

Γ,Γ′ | ∆ `M ⊗N : T ⊗ U
µn(π) = µn(σ)+µn(τ)+10

σ C Γ | ∆ `M : S ⊗ U τ C Γ′, x : S, y : U | ∆ ` N : T
πC

Γ,Γ′ | ∆ ` let x⊗ y = M in N : T
µn(π) = µn(σ)+µn(τ)+10

σ C Γ | ∆ `M : T α fresh in Γ, ∆
πC

Γ | ∆ `M : ∀α.T
µn(π) = µn(σ)

σ C Γ | ∆ `M : ∀α.T
πC

Γ | ∆ `M : T{U/α}
µn(π) = µn(σ)

Figure 2.7: Type and measure for generic constructors in sEAL.

Types

Types are usual types for intuitionistic linear logic enriched with some base types for booleans,
integers and words.

A := B | N |W T,U, S := α | A | T ( U |!T | T ⊗ U | ∀α.T

A type A is called a base type. The type for words W depends on the choice of the alphabet Σ.

Definition 2.2.7 (Contexts and Type System). Linear variables contexts are denoted Γ and
global variables contexts are denoted ∆. They are defined in the same way as in the previous
part on the EAL-calculus. Typing judgments have the usual shape of dual contexts judgments
π C Γ | ∆ `M : T . For such a proof π, and i ∈ N, we define a weight ωi(π) ∈ N.

Definition 2.2.8 (Measure and Depth). For all integers k and n, we use the notation µkn(π) =
(ωk(π), . . . , ωn(π)), with the convention that if k > n, then µkn(π) is the empty vector. We
write µn(π) to denote the vector µ0

n(π). In the definitions given in the type system, instead of
defining ωi(π) for all i, we define µn(π) for all n, from which one can recover the weights. We
will often call µn(π) the measure of the proof π. The depth of a proof π (or a typed term),
denoted depth(π), is the greatest integer i such that ωi(π) 6= 0. It is always defined for any
proof.

The idea behind the definition of measure is to show that with a reduction step, this measure
strictly decreases for the lexicographic order and we can control the growing of the weights. The
rules are given on Figure 2.7, Figure 2.8 and Figure 2.9.

The rules given in Figure 2.7 represent the usual constructors in EAL. Those rules impose
some restrictions on the use of variables similar to the ones described in the previous section
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πC
Γ | ∆ ` 0 : N µn(π) = 11

σ C Γ | ∆ `M : N
πC

Γ | ∆ ` s(M) : N
µn(π) = µn(σ)+11

σ C Γ | ∆ `M : N( T τ C Γ′ | ∆ ` N : T
πC

Γ,Γ′ | ∆ ` ifn(M,N) : N( T
µn(π) = µn(σ)+µn(τ)+10

σ C Γ | ∆ `M : !(T ( T ) τ C Γ′ | ∆ ` N : !T
πC

Γ,Γ′ | ∆ ` iter!
N(M,N) : N(!T

µn(π) = µn(σ)+µn(τ)+10

πC
Γ | ∆ ` ε : W µn(π) = 11

σ C Γ | ∆ `M : W
πC

Γ | ∆ ` si(M) : W
µn(π) = µn(σ)+11

∀i, σi C Γi | ∆ `Mi : W( T τ C Γ′ | ∆ ` N : T
πC

Γ1,Γ2,Γ
′ | ∆ ` ifw(M0,M1, N) : W( T

µn(π) = µn(σ1)+µn(σ2)+µn(τ)+10

∀i, σi C Γi | ∆ `Mi : !(T ( T ) τ C Γ′ | ∆ ` N : !T
πC

Γ1,Γ2,Γ
′ | ∆ ` iter!

W(M,N) : W(!T
µn(π) = µn(σ1)+µn(σ2)+µn(τ)+10

πC
Γ | ∆ ` tt : B µn(π) = 11

πC
Γ | ∆ ` ff : B µn(π) = 11

σ C Γ | ∆ `M : T τ C Γ′ | ∆ ` N : T
πC

Γ,Γ′ | ∆ ` if(M,N) : B( T
µn(π) = µn(σ)+µn(τ)+10

Figure 2.8: Type and measure for constructors on base types in sEAL.

∀`, (1 ≤ ` ≤ k), σ` C Γ` | ∆ ` M` : A` τ C x1 : A
(i1)
1 , . . . , xk : A

(ik)
k `s`T t : U

πC
Γ,Γ1, . . . ,Γk | ∆ ` [λxk . . . x1.t](M1, . . . ,Mk) : type(U)

µn(π) =
k∑̀
=1

µn(σ`)+k(d(ω(τ)+I)+1) · 10+((ω(τ)+I){1/j1} · · · {1/jl}+1) · 11

where I = ind(U) and {j1, . . . , jl} = Var(ω(τ)) ∪ Var(I).

Figure 2.9: Typing rule and measure for the s`T call in sEAL.

on classical EAL. Observe that the constructors for base type values such as 0 and s given in
Figure 2.8 influence the weight only in position one and not zero like the others constructors.
As a consequence, if you take for example a proof of · ` v : W, then this proof has depth 1.

For the rule given by Figure 2.9, we first introduce some notations.

Definition 2.2.9 (Base Types in s`T and sEAL). For a base type A of sEAL and an index I,
we define a base type A(I) in s`T:

B(I) := B N(I) := NI W(I) := WI

Reciprocally, for a base type U in s`T, we define a type in sEAL type(U) and an index
ind(U).

• type(B) := B and ind(B) = 1.

• type(NI) := N and ind(NI) = I.
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• type(WI) := W and ind(WI) = I.

Note that we associate the index 1 to B since boolean values are either tt or ff, thus values
of size 1.

The premise for t is a proof τ in s`T. In this proof, we add on each non-boolean base type
Ai an index variable ai. This proof τ must yield a base type U , and this converts to a base type
in sEAL. Moreover, the previous section gives us a weight ω(τ) for this proof in s`T.

Let us now comment on the definition of µn(π). First, Var(I) is a notation for the set of
variables in I. Then, at position 0 in the weight, we put k times the degree of ω(τ) and ind(U).
Indeed, as one could see in the incoming definition of Red (Definition 2.2.11) or more informally
in Remark 2.2.1, having k times the degree at position 0 allows the future k substitution of
x1, . . . , xk by their actual value. Then, as this term outputs a base type, and as base types have
their size at position 1 in the weight, we add at position 1 an expression that will allow us to
bound the number of reductions in s`T and the size of the output. Furthermore, remark that
when k = 0, the term [t]() influences only the weight at position 1, such as constructors for base
types.

2.2.3 Subject Reduction and Measure

In this section, we show that we can bound the number of reduction steps of a typed term
using the measure. This is done by first showing that a reduction preserves some properties
on the measure, and then by giving an explicit integer bound that will strictly decrease after
a reduction. This proof is inspired by the methodology of [83]. The relation Red defined in
the following is a generalization of the usual requirements exposed in elementary linear logic in
order to control reductions.

Let us first express that type variables can be substituted.

Lemma 2.2.1 (Substitution of Type Variables). Suppose that π C Γ | ∆ ` M : T . Then, for
every type variable α and for every type U , we can derive a proof π{U/α}CΓ{U/α} | ∆{U/α} `
M : T{U/α} with ∀n, µn(π) = µn(π{U/α}).

Proof. By induction on π. All cases are straightforward, we just need to be a bit careful with
the renaming of variables for the introduction of ∀ and choose the good instantiation for the
elimination of ∀.

Let us then express substitution lemmas for sEAL. There are 3 cases to consider: linear
variables, discharged global variables and non-discharged global variables.

Lemma 2.2.2 (Linear Substitution). Suppose that π C Γ1, x : T ′ | ∆ ` M : T and σ C Γ2 |
∆ ` M ′ : T ′, then, we have a proof π′ C Γ1,Γ2 | ∆ ` M{M ′/x} : T . Moreover, for all n,
µn(π′) ≤ µn(π)+µn(σ).

Proof. The proof comes from the fact that rules are multiplicative for Γ and so x only appears
in one of the premises for each rule. Thus, the proof σ is used only once in the new proof π′.

Lemma 2.2.3 (General Substitution). Suppose that π C Γ | ∆, x : T ′ ` M : T and σ C · |
∆ ` M ′ : T ′ and the number of occurrences of x in M is less than K, then we have a proof
π′ C Γ | ∆ `M{M ′/x} : T . Moreover, for all n, µn(π′) ≤ µn(π)+K · µn(σ).

Proof. This time, the non-linearity of the variable x induces a duplication of the proof σ, that
is why the measure µn(σ) is also duplicated.
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Lemma 2.2.4 (Discharged Substitution). If π C Γ | ∆′, [∆], x : [T ′] ` M : T and σ C · |
∆ ` M ′ : T ′ then we have a proof π′ C Γ | ∆′, [∆] ` M{M ′/x} : T . Moreover, for all n,
µn(π′) ≤ (ω0(π), (µ1

n(π)+ω1(π) · µn−1(σ))).

Proof. The proof of this lemma relies directly on Lemma 2.2.3. Indeed, a variable with a
discharged type can be used only after crossing a (!-Intro) rule and then the upper bound on
µn(π′) comes from the previous lemma since the number of occurrences of x in M is less than
ω1(π).

Next, let us give two important definitions, tα and Red, in order to derive the upper bound
on the number of reduction steps in sEAL.

Definition 2.2.10 (Tower of Functions). We define a family of tower functions tα(x1, . . . , xn)
on vectors of integers by induction on n, where we assume α ≥ 1 and xi ≥ 2 for all i: tα() = 0

and tα(x1, . . . , xn) = (α · xn)2tα(x1,...,xn−1)
for n ≥ 1.

For example, tα(3, 4, 5) = (5α)2(4α)2
3α

. Note that tα(x1, . . . , xn) is a polynomial function
in xn (if x1, . . . , xn−1 are fixed) and a tower of exponential of height 2n for x1 (if x2, . . . , xn
are fixed). This function gives us a bound on the measure of a given proof. However, it is
not convenient to work with, so we give a sufficient condition on two vectors µ and µ′ to have
tα(µ′) < tα(µ).

Definition 2.2.11 (Red). We define a relation on vectors denoted Red. Intuitively, we want
Red(µ, µ′) to express that a proof of measure µ has been reduced to a proof of measure µ′. Let
µ, µ′ ∈ Nn+1. We have Red(µ, µ′) if and only if the following conditions are satisfied:

1. µ ≥ 2̃ and µ′ ≥ 2̃.

2. µ′ <lex µ: there exists 0 ≤ i0 ≤ n, µ = (ω0, . . . , ωn) and µ′ = (ω0, . . . , ωi0−1, ω
′
i0
, . . . , ω′n),

with ωi0 > ω′i0.

3. There exists d ∈ N, 1 ≤ d ≤ (ωi0−ω′i0) such that for all j > i0, we have ω′j ≤ ωj ·(ωi0+1)d−1.

The first condition with 2̃, that can also be seen in the definition of tα, makes calculation
easier, since with this condition, exponentials and multiplications conserve the strict order
between integers. This does not harm the proof, since we can simply add 2̃ to each vector we
will consider. For an example of two vectors in relation, we have Red((2, 5, 3, 2), (2, 2, 25, 15)):

• (2, 5, 3, 2) ≥ (2, 2, 2, 2) and (2, 2, 25, 15) ≥ (2, 2, 2, 2).

• (2, 2, 25, 15) <lex (2, 5, 3, 2), with i0 = 1.

• If we take d = 3, we have indeed 1 ≤ d ≤ 5− 2. Moreover, we have 25 ≤ 3 · 32 = 27 and
15 ≤ 2 · 32 = 18.

One can see on this example that Red(µ, µ′) indicates that µ′ <lex µ and the components
of the vector µ′ are not ”too big” compared to µ.

We can then connect those two definitions:

Theorem 2.2.1. Let µ, µ′ ∈ Nn+1 and α ≥ n, α ≥ 1. If we have Red(µ, µ′) then tα(µ′) < tα(µ).

In order to prove this theorem, we first give some properties on tα and Red. The proofs are
often only calculation.
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Lemma 2.2.5. If µ ≤ µ′ then tα(µ) ≤ tα(µ′).

This is just a simple consequence of the fact that the exponentiation is monotonic.

Lemma 2.2.6 (Shift). Let k ∈ N∗. Let µ = (ω0, . . . , k·ωi−1, ωi, . . . ωn) and µ′ = (ω0, . . . , ωi−1, k·
ωi, . . . ωn). Then tα(µ′) ≤ tα(µ).

Proof. Let us define µ0 = (ω0, . . . , ωi−2).

k ≥ 1 so k ≤ 22k−1−1, then

k · ωi ≤ ωi · 22k−1−1 ≤ (ωi)
2k−1

since wi ≥ 2. So,

α · k · ωi ≤ (α · ωi)2(α·(k−1)·ωi−1)2
tα(µ0)

.

(α · k · ωi)2(α·ωi−1)2
tα(µ0)

≤ (α · ωi)2(α·(k−1)·ωi−1)2
tα(µ0)

·2(α·ωi−1)2
tα(µ0)

and so,

tα(µ0, (ωi−1, k · ωi)) ≤ (α · ωi)2(α·k·ωi−1)2
tα(µ0)

= tα(µ0, (k · ωi−1, ωi)).

We can now obtain tα(µ′) ≤ tα(µ) by monotonicity of exponential.

Lemma 2.2.7. If 2̃ ≤ µ′ < µ then Red(µ, µ′).

Proof. Take d = 1 and the proof is simple.

Lemma 2.2.8. If Red(µ, µ′) then for all µ0, we have Red(µ+µ0, µ
′+µ0).

Proof. The conditions 1 and 2 for Red(µ+µ0, µ
′+µ0) are given by the hypothesis Red(µ, µ′).

We keep the notations ωj , ω
′
j , i0, d.

1 ≤ d ≤ ωi0 − ω′i0 so 1 ≤ d ≤ (ωi0+µ0(i0))− (ω′i0+µ0(i0)).

Let j > i0, we have:

ω′j+µ0(j) ≤ ωj · (ωi0+1)d−1+µ0(j) ≤ (ωj+µ0(j)) · (ωi0+1+µ0(i0+1))d−1

since ωi0+1 ≥ 1.

We now want to prove Theorem 2.2.1.

Proof. Suppose Red(µ, µ′). Using the notations from the definition of Red, we have:

µ ≥ (ω0, . . . , ω
′
i0+d, ωi0+1, . . . , ωn) and we have

µ′ ≤ (ω0, . . . , ωi0−1, ω
′
i0 , ωi0+1 · (ωi0+1)d−1, . . . , ωn · (ωi0+1)d−1).

Let us call µ0 = (ω0, . . . , ωi0−1).

α · d ≥ 1 so α · d < 2α·d then,

as ωi0+1 ≥ 2, we have (ωi0+1)α·d < (ωi0+1)2α·d so,

α · (ωi0+1)α·d < (α · ωi0+1)2(α·d)2
tα(µ0)

and so

(α · (ωi0+1)α·d)2
(α·ω′i0

)2
tα(µ0)

< (α · ωi0+1)2
(α·(d+ω′i0 ))2

tα(µ0)

.
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tα(ω0, . . . , ωi0−1, ω
′
i0 , (ωi0+1)α·d) < tα(ω0, . . . , ωi0−1, ω

′
i0+d, ωi0+1).

By Lemma 2.2.5, since ωi0+1 · (ωi0+1)(n−i0)(d−1) ≤ (ωi0+1)α·d, and by monotonicity of the expo-
nential, we obtain:

tα(ω0, . . . , ωi0−1, ω
′
i0 , ωi0+1 · (ωi0+1)(n−i0)(d−1), . . . , ωn) < tα(ω0, . . . , ω

′
i0+d, ωi0+1, . . . , ωn).

Using several times the shift lemma (Lemma 2.2.6), we obtain:

tα(ω0, . . . , ωi0−1, ω
′
i0 , ωi0+1 · (ωi0+1)d−1, . . . , ωn · (ωi0+1)d−1) < tα(ω0, . . . , ω

′
i0+d, ωi0+1, . . . , ωn).

Again by Lemma 2.2.5, we obtain tα(µ′) < tα(µ).

To sum up, this theorem shows that if we want to ensure that a certain integer defined with
tα strictly decreases for a reduction, it is sufficient to work with the relation Red.

Finally, we need to consider rules for polymorphism. Because of the ∀ elimination and
introduction rules, our type system is not syntax directed. However, we can prove that for some
terms, namely introduction terms, we can ”recover” syntax directed rules.

Definition 2.2.12. A term Mintro is said to be an introduction term if it has one of those
form:

λx.M |!M |M ⊗N | 0 | s(M) | ifn(M,N) | iter!
N(M,N) | tt | ff

| if(M,N) | ε | si(M) | ifw(M0,M1, N) | iter!
W(M0,M1, N).

To each such term we can associate a typing rule, for instance to λx.M the rule ((), to !M
the rule (!) etc. Note that these rules correspond to introduction rules and rules for base type
constructors.

For the sake of simplicity, we introduce a notation for list of objects. Let us write T to
denote a sequence T1, . . . , Tn of types, and ∀α.T to denote the type ∀α1 . . . ∀αn.T when T does
not begin with a quantifier. We can now present the generation lemma.

Lemma 2.2.9 (Generation lemma). Let Mintro be an introduction term. Let π be a typing
π C Γ | ∆ ` Mintro : ∀α̃.T , where type variables in α̃ are fresh in Γ and ∆. Let T̃ ′ be an
instantiation of α̃. Let (R) denote the rule associated to Mintro and n its number of premises.
Then there exist type derivations π′1, . . . , π

′
n such that if π′ is the derivation obtained by applying

the rule (R) to π′1, . . . , π
′
n we have:

• π′ is a typing of conclusion π′ C Γ | ∆ `Mintro : T{T̃ ′/α̃}.

• For all integer k, µk(π
′) = µk(π).

For example, if πCΓ | ∆ ` λx.M : ∀α̃.(T ( U), then for any sequence of type T̃ ′ with same
length as α̃, such that variables in α̃ are not free in T̃ ′, we have a proof π′1 C Γ, x : T{T̃ ′/α̃} |
∆ `M : U{T̃ ′/α̃} with for all k, µk(π) = µk(π

′
1)+10.

So for each possible shape for Mintro, we can state this lemma more formally just by looking
at the associated typing rule. Observe that for terms like 0, this lemma only states that the
measure of the proof is exactly 11.

Proof. This is proved by induction on πCΓ | ∆ `Mintro : ∀α̃.T . Observe that for a given Mintro

there are only 3 possibles rules: introduction and elimination of ∀ and the rule (R) associated
to the form of Mintro.
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• Rule (R). This case is trivial, this is exactly the definition of the generation lemma, with
α̃ = ∅. Observe that for this case, it is important to consider only introduction terms,
otherwise there is no reason that α̃ = ∅.

• Elimination of ∀. Suppose we have the proof

τ C Γ | ∆ `Mintro : ∀α0.∀α̃.T
πC

Γ | ∆ `Mintro : ∀α̃.T{T ′0/α0}

By definition, we have ∀k, µk(π) = µk(τ). By renaming, α0 and variables in α̃ are not
free in T ′0. Take a sequence of type T̃ ′ with same length as α̃, then (T ′0, T̃

′) has the same
length as (α0, α̃), thus we can conclude directly by induction hypothesis and using the
fact that ∀k, µk(π) = µk(τ).

• Introduction of ∀. Suppose we have the proof

τ C Γ | ∆ `Mintro : ∀α̃.T α0 fresh in Γ and ∆
πC

Γ | ∆ `Mintro : ∀(α0, α̃).T

By definition, we have ∀k, µk(π) = µk(τ). Take a sequence of type (T ′0, T̃
′). Let (R)

denote the rule associated to Mintro and n its number of premises. By induction hy-
pothesis, there exist type derivations π′1, . . . , π

′
n such that if π′ is the derivation obtained

by applying the rule (R) to π′1, . . . , π
′
n, we have π′ C Γ | ∆ ` Mintro : T{T̃ ′/α̃} and

∀k, µk(π′) = µk(π). By Lemma 2.2.1, we can instantiate α0 by T ′0 in π′1, . . . , π
′
n and we

obtain proofs π′′1 , . . . , π
′′
n such that, if we denote π′′ the derivation obtained by applying

the rule (R) to π′′1 , . . . , π
′′
n, we have π′′ C Γ | ∆ `Mintro : T{(T ′0, T̃ ′)/(α0, α̃)}. Moreover,

for all k, µk(π
′′) = µk(π

′) = µk(π).

We can now state the subject reduction of sEAL and we show that the measure allows us
to construct a bound on the number of reductions.

Theorem 2.2.2. Let τ C Γ | ∆ ` M0 : T and M0 → M1. Let α be an integer equal or greater
than the depth of τ . Then there is a proof τ ′CΓ | ∆ `M1 : T such that Red(µα(τ)+2̃, µα(τ ′)+2̃).
Moreover, the depth of τ ′ is smaller than the depth of τ .

Intuitively, with Lemma 2.2.9, for some terms, we can do as if the typing rules were syntax
directed. Then, the proof uses the substitution lemmas (Lemma 2.2.2 and Lemma 2.2.4) for
reductions in which substitution appears. For the others constructors, one can see that the
measure given in the type system for sEAL is following this idea of the relation Red. For
example, in [λxn . . . x1.t](M1, . . . ,Mn−1, v)→ [λxn−1 . . . x1.t{v/xn}](M1, . . . ,Mn−1), the degree
that appears at position 0 is here to compensate the growing of the measure at position 1.
Formally, the proof proceeds as follows.

Proof. To begin with, we show that we can consider that the first rule of τ is not an elimination
or an introduction of quantification.

Lemma 2.2.10. Let τ C Γ | ∆ `M0 : T be a proof that does not start with an introduction or
elimination of quantifier, and M0 →M1. Let α be an integer equal or greater than the depth of
τ . Then there is a proof τ ′ C Γ | ∆ `M1 : T such that Red(µα(τ)+2̃, µα(τ ′)+2̃). Moreover, the
depth of τ ′ is smaller than the depth of τ .
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Suppose that we proved Lemma 2.2.10. We can then prove Theorem 2.2.2 by induction on
τ .

• If τ does not start with an introduction or elimination of quantification, by Lemma 2.2.10
we can conclude this case.

• If τ is:

σ C Γ | ∆ `M0 : T α fresh in Γ,∆

Γ | ∆ `M0 : ∀α.T

with µ(τ) = µ(σ). By induction hypothesis with σ, there is a proof σ′ C Γ | ∆ `M1 : T
such that Red(µα(σ)+2̃, µα(σ′)+2̃). Moreover, the depth of σ′ is smaller than the depth
of σ.

We can construct the proof τ ′:

σ′ C Γ | ∆ `M1 : T α fresh in Γ,∆

Γ | ∆ `M1 : ∀α.T

And we have µ(τ ′) = µ(σ′). We can conclude this case. The case of elimination of ∀ is
similar.

Now, we prove Lemma 2.2.10. We first consider base reductions without contexts. With
the generation lemma (Lemma 2.2.9), the case for the if-constructors are straightforward, it is
a simple consequence of Lemma 2.2.7. We detail the other cases:

• If M0 = (λx.M)M ′ and M1 = M{M ′/x}, we have a proof:

π C Γ1, x : T ′ | ∆ `M : T

Γ1 | ∆ ` λx.M : T ′( T σ C Γ2 | ∆ `M ′ : T ′
τC

Γ1,Γ2 | ∆ ` (λx.M)M ′ : T

The double line corresponds to the generation lemma (Lemma 2.2.9). We will use this
notation everywhere in the proof.

∀n ∈ N, µn(τ) = µn(σ)+µn(π)+2 · 10.

The proof τ ′CΓ1,Γ2 | ∆ `M{M ′/x} : T is given by Lemma 2.2.2. As a consequence, we
have:

∀n ∈ N, µn(τ ′) ≤ µn(π)+µn(σ) so, ∀n ∈ N,µn(τ ′) < µn(τ).

Then, it is still true for n = α ≥ depth(τ) and the depth of τ ′ is smaller than the depth
of τ . Moreover, by Lemma 2.2.7, we obtain directly that Red(µα(τ)+2̃, µα(τ ′)+2̃).

• If M0 = let !x =!M ′ in M and M1 = M{M ′/x} then we have a proof:

σ C · | ∆ `M ′ : T ′

Γ1 | ∆′, [∆] `!M ′ :!T ′ π C Γ2 | ∆′, [∆], x : [T ′] `M : T
τC

Γ1,Γ2 | ∆′, [∆] ` let !x =!M ′ in M : T
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∀n ∈ N, µn(τ) = µn(π)+(2, µn−1(σ)).

By Lemma 2.2.4, we obtain a proof π′ C Γ2 | ∆′, [∆] `M{M ′/x} : T , with:

∀n ∈ N, µn(π′) ≤ (ω0(π), (µ1
n(π)+ω1(π) · µn−1(σ))).

By weakening we have τ ′ C Γ1,Γ2 | ∆′, [∆] ` M{M ′/x} : T . By the precedent upper-
bound, we obtain depth(τ ′) ≤ depth(τ). Moreover, ω0(τ) − ω0(τ ′) ≥ 2, and so for α ≥
depth(τ) ≥ 0, we have µα(τ ′) <lex µα(τ). Finally, for α ≥ j > 0, we have:

ωj(τ
′)+2 ≤ ωj(π)+ω1(π) · ωj−1(σ)+2.

ωj(τ
′)+2 ≤ (ωj(π)+ωj−1(σ)+2) · (ω1(π)+ω0(σ)+2).

ωj(τ
′)+2 ≤ (ωj(τ)+2) · (ω1(τ)+2).

And so we have indeed Red(µα(τ)+2̃, µα(τ ′)+2̃).

• If M0 = let x⊗ y = M ⊗M ′ in N and M1 = N{M/x}{M ′/y}, we have a proof:

σ C Γ | ∆ `M : T σ′ C Γ′ | ∆ `M ′ : T ′

Γ,Γ′ | ∆ `M ⊗M ′ : T ⊗ T ′ π C Γ′′, x : T, y : T ′ | ∆ ` N : T ′′
τC

Γ,Γ′,Γ′′ | ∆ ` let x⊗ y = M ⊗M ′ in N : T ′′

∀n ∈ N, µn(τ) = µn(π)+µn(σ)+µn(σ′)+2 · 10.

Using twice Lemma 2.2.2, we obtain a proof τ ′ C Γ,Γ′,Γ′′ | ∆ ` N{M/x}{M ′/y} : T ′′

with:
∀n ∈ N, µn(τ ′) ≤ µn(π)+µn(σ)+µn(σ′) < µn(τ).

So depth(τ ′) ≤ depth(τ) and for α ≥ depth(τ), µα(τ ′) < µα(τ). By Lemma 2.2.7, we have
Red(µα(τ)+2̃, µα(τ ′)+2̃).

• If M0 = iter!
N(!M, !M ′) k and M1 =!(MkM ′), then we have a proof:

σ1 C · | ∆ `M : T ( T

Γ1 | ∆′, [∆] `!M :!(T ( T )

σ2 C · | ∆ `M ′ : T

Γ2 | ∆′, [∆] `!M ′ :!T

Γ1,Γ2 | ∆′, [∆] ` iter!N(!M, !M ′) : N(!T σ C Γ3 | ∆′, [∆] ` k : N
τC

Γ1,Γ2,Γ3 | ∆′, [∆] ` iter!N(!M, !M ′)k :!T

∀n ∈ N, µn(τ) = µn(σ)+(4, µn−1(σ1)+µn−1(σ2)).

Also note that ∀n ∈ N, µn(σ) = (k+1) · 11. We can construct τ ′:

σ1 C · | ∆ `M : T ( T

σ1 C · | ∆ `M : T ( T σ2 C · | ∆ `M ′ : T
·
·
·

· | ∆ `Mk−1M ′ : T

· | ∆ `MkM ′ : T
τ ′C

Γ1,Γ2,Γ3 | ∆′, [∆] `!(MkM ′) :!T
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∀n ∈ N, µn(τ ′) = k · 11+(1, k · µn−1(σ1)+µn−1(σ2)).

We can see that depth(τ ′) ≤ depth(τ). Furthermore, ω0(τ)− ω0(τ ′) ≥ 2, so for α ≥
depth(τ) ≥ 0, we have µα(τ ′) <lex µα(τ). We have ω1(τ ′)+2 ≤ (ω1(τ)+2)2, indeed:

k · (1+ω0(σ1))+ω0(σ2)+2 ≤ (k+1+ω0(σ1)+ω0(σ2)+2)2.

For 1 < j ≤ α, ωj(τ
′)+2 ≤ (ωj(τ)+2)(ω1(τ)+2). Indeed:

k · ωj−1(σ1)+ωj−1(σ2)+2 ≤ (ωj−1(σ1)+ωj−1(σ2)+2)(k+1+ω0(σ1)+ω0(σ2)+2).

We can conclude Red(µα(τ)+2̃, µα(τ ′)+2̃). The proof for the rule iter!
W follows the same

pattern.

• If M0 = [λxk . . . x1.t](M
′
1, . . . ,M

′
k−1, v) and M1 = [λxk−1 . . . x1.t{v/xk}](M ′1, . . . ,M ′k−1),

then we have the following proof.

∀1 ≤ ` ≤ (k − 1), σ` C Γ` | ∆ `M ′` : A` σ C Γk | ∆ ` v : Ak π C xk : A
(ik)
k , . . . , x1 : A

(i1)
1 `s`T t : U

τC
Γ,Γ1, . . .Γk | ∆ ` [λxk . . . x1.t](M ′1, . . . ,M

′
k−1, v) : type(U)

Note that, with the generation lemma (Lemma 2.2.9), the proof σ induces that v is
either an actual integer m, an actual word w or an actual boolean tt or ff. Moreover,
∀n ∈ N, µn(σ) = |v| · 11 and

∀n ∈ N, µn(τ) =
k−1∑
`=1

µn(σ`)+|v| ·11+k(d(ω(π)+I)+1) ·10+((ω(π)+I){1/j1} · · · {1/jl}+1) ·11

where ind(U) = I and {j1, . . . , jl} = Var(I) ∪ Var(ω(π)). From the proof π, we can
construct by Lemma 2.1.3 a proof

π{|v|/ik}C xk : A
(|v|)
k , xk−1 : A

(ik−1)
k−1 , . . . , x1 : A

(i1)
1 ` t : U{|v|/ik}.

Furthermore, we can construct a proof σ′ C · `s`T v : A
|v|
k . By Lemma 2.1.8,

π′ C xk−1 : A
(ik−1)
k−1 , . . . , x1 : A

(i1)
1 ` t{v/xk} : U{|v|/ik}

and ω(π′) ≤ ω(π){|v|/ik}. We can now construct the proof τ ′:

∀1 ≤ ` ≤ (k−1), σ` C Γ` | ∆ `M ′` : A` π′ C xk−1 : A
(i

k−1
)

k−1
, . . . , x1 : A

(i1)
1 `s`T t{v/xk} : U{|v|/ik}

τ ′C
Γ,Γk,Γ1, . . .Γk−1 | ∆ ` [λxk−1 . . . x1.t{v/xk}](M ′1, . . . ,M ′k−1

) : type(U)

Let us denote {j′1, . . . , j′l′} = Var(I) ∪ Var(ω(π)) ∪ Var(ω(π′)).

∀n ∈ N, µn(τ ′) =

k−1∑
`=1

µn(σ`)+(k−1)(d(ω(π′)+I{|v|/ik})+1) ·10+((ω(π′)+I{|v|/ik}){1/j′1} · · · {1/j′l′}+1) ·11.

With this, we can first see that depth(τ ′) ≤ depth(τ). Moreover, by Theorem 2.1.2, from
the inequality ω(π′)+I{|v|/ik} ≤ (I+ω(π)){|v|/ik}, we have:

d(ω(π′)+I{|v|/ik}) ≤ d((I+ω(π)){|v|/ik}) ≤ d(I+ω(π)).
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By Theorem 2.1.2, (I+ω(π)){|v|/ik} ≤ |v|d(I+ω(π)) · (I+ω(π)){1/ik}.

So, (I+ω(π)){|v|/ik}{1/j′1, . . . , j′l′} ≤ |v|d(I+ω(π)) · (I+ω(π)){1/j′1, . . . , j′l′}

by Lemma 2.1.3 (the substitution for ik is either one of the j′ by definition, or irrelevant
if ik does not appear in the indices). Now from those results, we have, ∀n ∈ N:

µn(τ ′) ≤
k−1∑
`=1

µn(σ`)+(k− 1)(d(ω(π)+I)+1) ·10+(|v|d(I+ω(π)) · (I+ω(π)){1/j′1, . . . , j′l′}+1)11.

Now we can prove Red(µα(τ)+2̃, µα(τ ′)+2̃):
By the precedent bound, ω0(τ)− ω0(τ ′) ≥ d(ω(π)+I)+1. Then:

ω1(τ ′)+2 ≤
k−1∑
`=1

ω1(σ`)+|v|d(I+ω(π)) · (I+ω(π)){1/j′1, . . . , j′l′}+3.

ω1(τ ′)+2 ≤ (
k−1∑
`=1

ω1(σ`)+|v|+(ω(π)+I){1/j′1, . . . , j′l′}+3)d(ω(π)+I)+1.

ω1(τ ′)+2 ≤ (ω1(τ)+2) · (ω1(τ)+2)d(ω(π)+I).

And for 1 < j ≤ α,

ωj(τ
′)+2 ≤

k−1∑
`=1

ωj(σi)+2 = ωj(τ)+2 ≤ (ωj(τ)+2)(ω1(τ)+2)d(ω(π)+I).

This proves Red(µα(τ)+2̃, µα(τ ′)+2̃).

• If M0 = [t0]() and M1 = [t1]() with t0 → t1 in s`T. We have a proof:

π C · `s`T t0 : U
τC

Γ | ∆ ` [t0]() : type(U)

∀n ∈ N, µn(τ) = (1+(ω(π)+I){1/j1, . . . , jl}) · 11

where ind(U) = I and {j1, . . . , jl} = Var(I) ∪ Var(ω(π)). By Theorem 2.1.1, the main
theorem of s`T, we have a proof π′C · `s`T t1 : U with ω(π′) < ω(π). So we can construct
the following proof.

π′ C · `s`T t1 : U
τ ′C

Γ | ∆ ` [t1]() : type(U)

Let us denote {j′1, . . . , j′l′} all the index variables in I, ω(π) and ω(π′).

∀n ∈ N, µn(τ ′) = (1+(ω(π′)+I){1/j′1, . . . , j′l′}) · 11.

We directly see that the depth does not increase. Remark that the depth of τ is greater
than 1 in this case.

We have by Lemma 2.1.3, (ω(π′)+I){1/j′1, . . . , j′l′} < (ω(π)+I){1/j′1, . . . , j′l′}.

And so, for α ≥ depth(τ) ≥ 1, µα(τ ′) < µα(τ), and so we have Red(µα(τ)+2̃, µα(τ ′)+2̃).

Remark that as opposed to all the precedent cases, µ0(τ) and µ0(τ ′) are equal, and so
we need to look at position 1 to see that the measure strictly decreases. This remark is
essential in the proof of Lemma 2.4.1.
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• If M0 = [v]() and M1 = v. The fact that M0 can be typed by τ indicates that v is either
an actual integer, a word or a boolean. With this remark, the typing τ ′ of M1 is just the
usual typing for those values. Moreover, we know the weight in s`T and the measure in
sEAL for the typing proof of a value, in s`T the weight is 0 and in sEAL the measure is
|v| · 11. Furthermore, if π C · `s`T v : U , then we know that |v| ≤ ind(U). With this,
we have µn(τ) = (1+I{1/Var(I)}) · 11 and µn(τ ′) = |v| · 11. By Lemma 2.1.3, we have
|v| ≤ I{1/Var(I)} and so for n ≥ 1, µn(τ ′) < µn(τ). This gives usRed(µα(τ)+2̃, µα(τ ′)+2̃).
And the fact that the depth does not increase is direct.

Remark that as the precedent case, we need to look at position 1 to see that the measure
strictly decreases.

Now we need to work on the reductions under a context. For this we work by induction
on contexts, and what we have done previously is the base case. For any inductive case of
context except the ! case, the proof is straightforward, it is a direct application of the induction
hypothesis.

When the context has the form C =!C ′, the notion of depth is crucial. Indeed, suppose
M → M ′, M0 =!M and M1 =!M ′. With the proof τ for M0, we obtain a proof π for M ,
this gives us by induction hypothesis a proof π′ for M ′, and this gives us a proof τ ′ for M1.
Moreover,

∀n ∈ N, µn(τ) = (1, µn−1(π)) and µn(τ ′) = (1, µn−1(π′)).

As depth(π′) ≤ depth(π) we have:

depth(τ ′) = depth(π′)+1 ≤ depth(π)+1 = depth(τ).

And for α ≥ depth(τ), then (α− 1) ≥ depth(π). By induction hypothesis, we have

Red(µα−1(π)+2̃, µα−1(π′)+2̃)

From this, we can easily deduce

Red(µα(τ)+2̃, µα(τ ′)+2̃)

Remark that this proof shows that if we had

Red(µn(π)+2̃, µn(π′)+2̃)

we obtain
Red(µn+1(τ)+2̃, µn+1(τ ′)+2̃)

This remark is important for the proof of Lemma 2.4.1.

From Theorem 2.2.2 and Theorem 2.2.1, we can easily deduce:

Theorem 2.2.3. Let π C Γ | ∆ `M : T . Denote α = max(depth(π), 1), then tα(µα(π)+2̃) is a
bound on the number of reductions from M .

Remark 2.2.1. As explained in the beginning of Section 2.2, we show informally that the proof
of correctness in [83] is robust enough to support the addition of polynomial time functions in the
type N( N. This is a generic enrichment of EAL that does not describe the layer computing
polynomial time function.

We work in the classical EAL calculus described in Section 2.2. For any function f from
integers to integers, we define a new constructor f in the classical EAL-calculus, and a new
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reduction rule f n → f(n), saying that f applied to the Church encoding of the integer n
is reduced to the Church encoding of the integer f(n). We consider a cost to this reduction,
depending on the integer n and the function f , that we call Cf (n). We consider that this
constructor f has type N( N.

If this function f is a polynomial time computable function, we can bound the cost function
Cf (n) by a polynomial function (n+2)d for a certain d, and we can also bound the size of f(n)
by the cost, and so f(n) ≤ (n+2)d. The proof of correctness relies on a measure µ on terms,
and as in the present work, this measure yields a bound by computing tα(µ) (see Section 2.2 or
[83]).

Now if we look at the reduction rule, if we call µ(f) the measure for f , we go from the
measure µ(f)+(1, n+1) to (0, (n+2)d). In order to take in consideration the cost of the reduction,
we add it in the measure. Thus, we consider that in the right part of the reduction, we have the
measure (0, 2(n+2)d). If we define µ(f) = (d, 1), this reduction follows the relation Red defined
in Section 2.2. Thus, as in the present work, we can prove that EAL enriched with constructors
for polynomial functions characterizes 2k-EXP.

2.3 Examples of Programs for sEAL

Simple Examples in sEAL

We give some examples of terms in sEAL, first some terms we can usually see for the elementary
affine logic, and then we give the term for computing tower of exponentials.

Some general results and notations on sEAL

• For base types A we have the coercion A (!A. For example, for words, we have
coercw w →∗ !w, with:

coercw = iter!
W(!(λw′.s0(w′)), !(λw′.s1(w′)), !ε).

• We write λx⊗ y.M for the term λz.let x⊗ y = z in M .

Polynomials and Tower of Exponentials in sEAL Recall that we defined polynomials
in s`T. With this we can define polynomials in sEAL with type N ( N using the s`T call.
Moreover, using the iteration in sEAL, we can define a tower of exponentials.

We can compute the function k 7→ 22k in sEAL with type N(!N.

n : N | · ` n : N σ C x1 : Na1 `s`T mult x1 x1 : Na1·a1

n : N | · ` [λx1.mult x1 x1](n) : N

π C · | · ` λn.[λx1.mult x1 x1](n) : N( N

· | · ` !(λn.[λx1.mult x1 x1](n)) : !(N( N) · | · ` !2 : !N

· | · ` exp = iter!N(!λn.[λx1.mult x1 x1](n), !2) : N(!N

iter!
N(!λn.[λx1.mult x1 x1](n), !2) k →∗!((λn.[λx1.mult x1 x1](n))k 2)→∗!(22k).

For an example of measure, for the subproof π, we have depth(π) = 1. From Section 2.1.1,
we can deduce the weight for σ: ω(σ) = 4+6a1+3a3

1. We can then deduce:

µ(π) = (1+1+1 · (d(ω(σ)+a1 · a1)+1), 1+(ω(σ)+a1 · a1){1/a1}) = (6, 15).

If we define 2x0 = x and 2x
k+1

= 22xk , with the use of polynomials, we can represent the

function n 7→ 2
P (n)
2k for all k ≥ 0 and polynomial P with a term of type N(!kN.
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2.3.1 Testing Satisfiability of a Propositional Formula

We sketch here the construction of a term for deciding the SAT problem.
The term for SAT has type N ⊗W (!B and given a formula in conjunctive normal form

encoded in the type N ⊗W, it checks its satisfiability. The modality in front of the output !B
shows that we used a non-polynomial computation, or more precisely an iteration in sEAL, as
expected of a term for satisfiability.

We encode formulas in conjunctive normal form in the type N⊗W, representing the number
of distinct variables in the formula and the encoding of the formula by a word on the alphabet
Σ = {0, 1,#, |}. A literal is represented by the number of the corresponding variable written in
binary and the first bit determines if the literal is positive or negative. Then # and | are used
as separator for literals and clauses.

For example, the formula (x1 ∨x0 ∨x2)∧ (x3 ∨x0 ∨x1)∧ (x2 ∨x0 ∨x3) could be represented
by 4⊗ |#101#100#110|#111#000#001|#010#100#011.

Intermediate terms in s`T

For the sake of simplicity, we sometimes omit to describe all terms in ifw or iterw, especially
for the letters # and |, when they are not important. First, we can easily define a term
occa : WI ( NI that gives the number of occurrences of a ∈ Σ in a word. We can also describe
a term that gives the nth bit (from the right) of a binary word as a boolean nth : WI ( NI ( B.
And finally, we have a term Extracta : WI ( WI ⊗WI that separates a word w = w0aw1 in
w0 ⊗ w1 such that w1 does not contain any a. This function will allow us to extract the last
clause/literal of a word representing a formula.

A valuation is represented by a binary word with a length equal to the number of variables,
such that the nth bit of the word represents the boolean associated to the nth variable. To
begin with, we define the term LittoBool : NI (WJ (WK ( B such that given the number
of variables, a valuation and the encoding of a literal, this term yields the boolean value that
the valuation assigns to the literal. This term is described in Figure 2.10.

We then define a term ClausetoBool : NI (WJ (WK ( B such that, given the number
of variables, a valuation and a word representing a clause, this term outputs the truth value of
this clause using the valuation. The definition is given in Figure 2.10. With this we can check
if a clause is true given a certain valuation. We can define in the same way a term for the
truth value of a formula FormulatoBool : NI (WJ (WK ( B. It is the same definition as
ClausetoBool, where we replace ”or” by ”and” and ”LitttoBool” by ”ClausetoBool”.

Testing all different valuations

Now that we have FormulatoBool, all we have to do is to test this term with all possible
valuations. If n is the number of variables, all possible valuations are described by all the
binary integers from 0 to 2n − 1. Thus, intuitively, given the number of variables n and the
formula wf , we want to compute:

2n−1∨
v=0

FormulatoBool n v wf .

In order to do this, we use the constructor for iteration defined in Section 2.1.1:

rec(V, t) n→∗ V n− 1 (V n− 2 (. . . (V 0 t) . . . ))

. We can then give the term for SAT as described in Figure 2.10.
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LittoBool≡ λn,v , l . ifw( λl ’ . nth v (CBiToUn n l ’ ) ,λl ’ . not (nth v (CBiToUn n l ’ ) ) , f f ) l

ClausetoBool≡ λn,v ,c . let w ⊗ b = itern(
λw′ ⊗ b′ . let w0 ⊗ w1 = Extract# w’ in w0 ⊗ (or b ’ (LitttoBool n v w1))
,c ⊗ f f

) (occ# c) in b

SAT≡ λn⊗ w . let ! r = iter !n (
! (λn0 ⊗ n1 . succ(n0) ⊗ [ double ] (n1))
, ! (0 ⊗ 1)

) n in let !wf = coerc w in ! ( let n⊗ exp = r in

[λn,exp ,wf . rec(λv ,b . or b (FormulatoBool n (CUnToBi n v) wf ) , f f ) exp ] (n,exp ,wf ))

QBF0≡ λv ⊗ q ⊗ f . FormulatoBool (length v) v f

QBF1≡ λv ⊗ n⊗ exp⊗ q ⊗ f . rec(
λv ’ ,b . (andor q) b (QBF0 (conc v (CUnToBi n v ’ ) ) ⊗ (not q) ⊗ f ) ,q

) exp

SubSum≡ λwS . Riterw(
λw ⊗ r . let w0 ⊗ w1 = Extract| w in w0 ⊗ r
,λw ⊗ r . let w0 ⊗ w1 = Extract| w in w0 ⊗ (Binaryadd r w1)
,wS ⊗ s0(epsilon )

)

SolvSubSum≡ λk ⊗ wS . let ! r = (exp [occ| ] ⊗ coerc)(wS ) ⊗ (coerc k) in

! [λn,w,k . rec(λv ,b or b (equal k (SubSum w (CUnToBi (occ| w) v))) , f f ) n] (r)

Figure 2.10: Examples in sEAL.

The first iteration computes both 2n and a copy of n. This technique is important as it
shows that the linearity of sEAL for base variables is not too constraining for the iteration.
Then, the second iteration in s`T computes the big ”or” given previously. Note that we need
to be cautious about how to write integers, the number of variables n and exp (the integer
representing 2n) are given in unary, but we need the valuation in binary. And with that we
have SAT : N⊗W(!B.

Defining a s`T term for QBFk

Now we consider the following QBFk problem, with k being a fixed non-negative integer. Take
a formula:

Qkxn, xn−1, . . . , xik−1+1. Qk−1xik−1
, xik−1−1, . . . , xik−2+1 . . . , Q1xi1 , xi1−1, . . . x0.φ.

The formula φ is a propositional formula in conjunctive normal form on the variables from
x0 to xn, and Qi ∈ {∀, ∃} are alternating quantifiers. That means that if Q1 is ∀ then Q2 must
be ∃ and then Q3 must be ∀ and so on. Here the variables are ordered for simplification. It can
always be done by renaming. And now we have to answer if this formula is true. This can be
solved in our enriched EAL calculus.

First, let us talk about the encoding of such a formula. With those ordered variables, a
representation of such a formula can be a term of type Nk ⊗ Nk−1 ⊗ · · · ⊗ N1 ⊗ B⊗W. For all
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i with 1 ≤ i ≤ k, Ni represents the number of variables between the quantifiers Qi and Qi−1.
The boolean represents the quantifier Qk, with the convention ∀ = tt. And finally, the formula
φ is encoded in a word as previously. This is not a canonical representation of a formula, but
for any good encoding of a QBFk formula we should be able to extract this information with
a s`T term, so for simplification, we directly take this encoding. For example, with k = 2, the
formula:

∀x3, x2.∃x1, x0.(x1 ∨ x0 ∨ x2) ∧ (x3 ∨ x0 ∨ x1) ∧ (x2 ∨ x0 ∨ x3)

is represented by:

2⊗ 2⊗ tt⊗ |#101#100#110|#111#000#001|#010#100#011.

Now we define by induction on k a s`T term called QBFk for k a non-negative integer. We
give to this term the type:

QBFk : WK1 ⊗ NIk ⊗ NJk ⊗ · · · ⊗ NI1 ⊗ NJ1 ⊗ B⊗WK2 ( B.

One can see a similitude with the representation of a SAT formula. But we add some arguments.
First, the argument wv of type WK1 is a valuation on free variables of the QBFk formula. Then
we are given for each quantifier two integers ni and expi of type NIi and NJi , with ni being the
number of variables between the quantifiers Qi and Qi−1, and expi = 2ni . Finally, the boolean
represents the quantifier Qk and WK2 is a formula on variables from x0 to xn1+...+nk+length(wv)−1.

QBF0 has almost already been defined. See Figure 2.10 for the exact term.
Now, let us describe the term for QBF1. One can observe that it is close to the s`T term SAT.

First, we have andor : B( B( B = if(and, or). We also write conc : WI ( WJ ( WI+J

the term for concatenation of words. With that we can define QBF1 as explained in Figure 2.10.
So, contrary to SAT, we do not always do a big ”or” on the results of QBF0 but we do either a big
”and” if the quantifier Qk is ∀, or a big ”or” if the quantifier is ∃, as one can observe with the
use of andor. And when we call QBF0, we have to update the current valuation wv and we have
to alternate the quantifier. Now with this intuition, we can deduce the general term for QBFk+1

using QBFk, and then we can also deduce the sEAL term that just computes the arguments of
the s`T term QBFk (with only one ”!” as we only need to compute exponentials) and uses this
function. And so, we obtain a term solving QBFk with type Nk⊗Nk−1⊗· · ·⊗N1⊗B⊗W(!B.

2.3.2 Solving the Subset Sum Problem

We give here another example of solving an NP-Complete problem. Given a goal integer k ∈ N
and a set S of integers, is there a subset S′ ⊂ S such that

∑
n∈S′

n = k? We explain how we could

solve this problem in our calculus. We represent the SUBSET SUM problem by two words,
k written as a binary integer and a word of the form |n1|n2| . . . |nm, with the integers written
in binary, representing the set S. In order to solve this problem, we can first define a s`T term
equal : WI ( WJ ( B that verifies if two binary integers are equal. Note that this is not
exactly the equality on words because of the possible extra zeros at the beginning. Then, we
can define a term SubSum : WI ( WJ ( WI·J such that, given the word wS representing the
set S and a binary word wsub with a length equal to the cardinality of S, this term computes
the sum of all the elements of the subset represented by wsub, since this word can be seen as
a function from S to {0, 1}. See Figure 2.10 for the term. We obtain a type WI·J for the
output because we iterate at most J times a function for binary addition which can be given
a type Wa·I ( WI ( W(a+1)·I . Note that to define this function, we use Extract| defined
previously. Then, we can solve the SUBSET SUM problem in the same way as SAT in the
term SolvSubSum. The notation (f ⊗ g)(x), when f and g are functions defined by iterators,
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stands for the function defined by iteration on a couple, where the first projection will compute
f and the second one g, such as before in SAT. And so, we obtain a term of type W ⊗W(!B.
We could also construct a term that gives us the subset corresponding to the goal, by changing
the type in the iteration rec from Na( B( B to Na( (B⊗WI)( (B⊗WI), WI being the
type of the argument w.

2.4 Complexity Results: Characterization of 2k-EXP and 2k-
FEXP

Now that we have proved Theorem 2.2.2, we have obtained a bound on the number of reduction
steps from a term in sEAL. More precisely, this bound shows that between two consecutive
weights ωi+1 and ωi, there is a difference of 2 in the height of the tower of exponentials. This
will allow us to give a characterization of the classes 2k-EXP for k ≥ 0, and each modality ”!” in
the type of a term will induce a difference of 2 in the height of the tower of exponentials. With
exactly the same method, we also have a characterization of the classes 2k-FEXP for k ≥ 0.

Restricted Reductions and Values

First, we show that the previous bound on the number of reductions steps in Theorem 2.2.3 can
be improved. Indeed, if we restrict the possible reductions, we obtain a more precise bound.

Definition 2.4.1 (Reductions up to a Certain Depth). For i ∈ N, we define the i-reductions,
that we note →i:

• ∀i ≥ 1, [t]()→i [t′]() if t→ t′ in s`T. Moreover, [v]()→i v.

• For the other base reductions M →M ′, we have ∀i ∈ N,M →i M
′.

• For all i ∈ N, if M →i M
′ then !M →i+1!M ′.

• For all others constructors for contexts, the index i stays the same. For example with the
application, we have for all i ∈ N, if M →i M

′ then M N →i M
′ N .

Now, we can find a more precise measure to bound the number of i-reductions.

Lemma 2.4.1. Let i ∈ N, τ C Γ | ∆ ` M0 : T and M0 →i M1. Then there is a proof
τ ′ C Γ | ∆ `M1 : T such that Red(µi(τ)+2̃, µi(τ

′)+2̃).

The proof of this lemma is very similar to the proof of Theorem 2.2.2, the details are
expressed in the proof of Theorem 2.2.2. We can then deduce the following theorem using
previous results on the relation Red.

Theorem 2.4.1. Let π C Γ | ∆ ` M : T and α = max(i, 1). Then tα(µi(π)+2̃) is a bound on
the number of i-reductions from M .

Let us now give an over approximation of the set of closed normal terms for i-reductions,
that we call i-values.

Definition 2.4.2 (Values Associated to Restricted Reductions). We define for all i ∈ N, closed
i-values V i by the following grammar.

V 0 := M

∀i ≥ 1, V i := λx.M |!V i−1 | V i
0 ⊗ V i

1 | 0 | s(V i) | ifn(V i
0 , V

i
1 ) | iter!

N(V i
0 , V

i
1 )

| tt | ff | if(V i
0 , V

i
1 ) | ε | si(V i) | ifw(V i

0 , V
i

1 , V
i

2 ) | iter!
W(V i

0 , V
i

1 , V
i

2 )
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We can then prove the following lemma:

Lemma 2.4.2. Let M be a term. If M is closed and has a typing derivation then, for all i ∈ N,
if M is normal for i-reductions then M is an i-value V i.

The proof is very similar to the one of Lemma 2.1.1. Note that we do not have the converse,
an i-value is not a normal form for i-reductions. However, we do not need the converse to obtain
the complexity results, we are only interested in base type closed i-values with i ≥ 1. That is
why 0-values and non-closed term, such as M in λx.M , are so generic.

From the previous results, we now have that, from a typed term M , we can reach the
normal form for i-reductions for M in less than ti(µi(π)+2̃) reductions, and this normal form is
an i-value.

A Characterization of 2k-EXP

Now, we sketch how the type !W(!k+1B can characterize the class 2k-EXP for k ≥ 0. Recall
that 2xk is defined by 2x0 = x and 2x

k+1
= 22xk . The class k-EXP is the class of problems solvable

by a Turing machine that works in time 2
p(n)
k on an entry of size n, where p is a polynomial. First

we show that the number of reductions for such a term is bounded by a tower of exponentials
of height 2k.

Lemma 2.4.3. Let π C · | · ` t :!W(!k+1B. Let w be a word of size |w|. We can compute the
result of t !w in less than a 2k-exponential tower in |w|.

Proof. Observe that the result of this computation is of type !k+1B, and a (k+2)-value of type
!k+1B is exactly of the form !k+1tt or !k+1ff. So it is enough to only consider (k+2)-reductions
to compute the result, by Lemma 2.4.2. The measure µn of t !w is µn = µn(π)+2 ·10+|w| ·12. By
Theorem 2.4.1, we can bound the number of reductions from t !w by tk+2(µk+2+2̃). By definition,

in tk+2(µk+2+2̃), we can see that the weight at position 2, where the size of w appears, is at
height 2k.

Now we have to prove that we can simulate a Turing-machine in our calculus. This proof is
usual in implicit complexity [10, 8]. Formally, we want to show the following lemma.

Lemma 2.4.4. Let k be an integer. Let TM be a Turing machine on binary words such that,

for an input word w, TM works in time 2
P (|w|)
2k , where P is a polynomial function. Then, TM

can be simulated in sEAL by a term of type !W(!k+1B.

The first thing we prove is the existence of a term in s`T to simulate n steps of a deterministic
Turing-machine on a word w. Suppose given two variables w : Wiw and n : Nin , we note Confj
the type Wiw+j ⊗ B⊗Wiw+j ⊗ Bq, with q an integer and Bq being q tensors of booleans. This
type represents a configuration on a Turing machine after j steps, with Bq coding the state,
and then w0 ⊗ x⊗ w1 represents the tape, with x being the head, w0 represents the reverse of
the word before j, and w1 represents the word after x. We then define some terms in s`T that
work with this encoding. First we have a term init such that w : Wiw , n : Nin ` init : Conf1
and init computes the initial configuration of the Turing machine. Then, we have a term step

with · ` step : Confj ( Confj+1 that computes the result of the transition function from a
configuration to the next one, and finally we have a term final with · ` final : Confj ( B
verifying if the final configuration is accepted or not. More precisely, this is given by:

• Given an initial state s of size q, we can code this state in a term s : Bq. Then we pose:

init = ε⊗ (ifw(λw′.ff⊗ w′, λw′.tt⊗ w′, ff⊗ ε) w)⊗ s.
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• Given for each state s of size q and boolean b a transition function of the shape δ(b, s) ⊂
{left, right, stay} × {0, 1} × {0, 1}q, we can construct the term step:

step = λc.let x⊗ b⊗ y ⊗ s = c in (caseq+1(t0q+1 , . . . , t1q+1)) (b⊗ s).

The term case is a notation for a sequence of conditionals on the tensor of booleans of
type B(q+1), in this case b⊗s. For a given boolean b and a state s, we define tb⊗s according
to δ(b, s). For example, if δ(b, s) = (left, b′, s′), we define:

tb⊗s = (ifw(λw.w ⊗ ff, λw.w ⊗ tt, ε⊗ ff) x)⊗ sb′(y)⊗ s′.

• Given for states of size q a function accept : Bq → B (constructed with caseq), we can
construct the term final:

final = λc.let x⊗ b⊗ y ⊗ s = c in accept(s).

Now, suppose given a one-tape deterministic Turing machine TM on binary words such that

for words w, TM works in time 2
P (|w|)
2k . As usual, we suppose that TM has an infinite tape,

this means that on an input w, the Turing-machine can read outside the bound of w and in
this case, it reads a 0. We can compute a term in sEAL tTM such that · | · ` tTM :!W(!k+1B
and on an input !w, the term reduces to the term !k+1b with b = tt if w is accepted by TM ,
and b = ff otherwise. For this, we show how to decompose the work in order to construct this
term.

1. We duplicate the word given in input.

2. With one of those words, we compute the length of the word, and we keep the other one
as a copy.

3. Now that we have the length, we can compute 2
P (|w|)
2k . So we obtain !w⊗!k+1n with n

representing 2
P (|w|)
2k . By using the coercion, we obtain !k+1w⊗!k+1n. We can then give

this word and this integer as an input for a s`T program using the s`T-call of sEAL.

4. In s`T, by using the previously defined term init with the word w : Wiw and the integer
n : Nin , we obtain a configuration C1 of type Conf1 representing the initial tape of the
Turing machine.

5. By iterating n times (using the constructor itern) the term · ` step : Confj( Confj+1 ,
from C1, we obtain a term of type Confin . By definition, this term is a representation of
the tape of the Turing machine after n steps, that is to say at the end of the computation.

6. Finally, with the term final we can extract the result of the computation as a boolean
in s`T.

7. As the word and the integer we used in the s`T-call had the type !k+1W⊗!k+1N, we obtain
in sEAL the result of the computation as a boolean of type !k+1B.

In conclusion, we can simulate TM by a term of type !W(!k+1B.
With this, using Lemma 2.4.3, we obtain the following theorem.

Theorem 2.4.2. Terms of type !W(!k+1B characterize the class 2k-EXP.
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As explained previously, this theorem can be expanded for the classes 2k-FEXP, that is the
class of functions from words to words that can be computed by a one-tape Turing machine with

a running time bounded by 2
p(|w|)
2k on a word w. For more precise definitions of such classes, see

[10]. This characterization uses the same proof, replacing !W(!k+1B with !W(!k+1W.
Let us now briefly compare this result for sEAL with the situation for EAL. Recall that

in EAL with recursive types, we can characterize k-EXP with the type !W (!k+2B [8]. The
difference can be explained by the fact that in EAL, in the type N( N we only have polynomials
of degree 1 (polynomials in general have the type !N (!N), whereas in our case, polynomials
have the type N( N.

To sum up, we showed in this chapter that from a type W ( W with enough polynomial
time functions, the bang modality from elementary linear logic leads to a characterization of
2k-FEXPTIME in the type !W (!k+1W . We believe there should be more elegant presentation
of this result, but the idea in itself of combining a rather expressive language with linear logic
modalities can be of interest, since being able to characterizing a specific complexity class can
lead to characterizations of other classes.

In the following, we will focus on complexity analysis of programs, instead of characteriza-
tions of complexity classes. So, not only we want some complexity bounds on programs, but we
want those bounds to be as precise as possible. We thus define a framework, relying on sized
types, where sizes are far more expressive that the one of s`T, in order to carry this complexity
analysis.

49



Chapter 3

Complexity in a Functional
Language with Sized Types

In this chapter, we present a simple functional language, with data-types and fixpoints, for
which we give a sized type system for complexity analysis. This sized type system is inspired
both by [6] and [29], and it relies mainly on polymorphic use of integer variables and explicit
annotations for complexity and sizes in types. Moreover, the language we define uses an explicit
tick constructor, which will be our abstraction of complexity: a tick accounts for one unit of
time, and all other constructors are considered to take zero unit of time. This allows for a more
flexible notion of complexity, and we can recover usual notions as a special case. For example,
the number of reduction steps could be recovered by adding a tick after a function call or a
pattern matching.

The goal of this chapter is to present this sized-type system first in the usual context of a
functional language, with all the notations we use to write sizes. This type system will later be
adapted for parallel complexity. Then, we present a proof of soundness: the type system gives
a bound that is indeed greater than the number of tick that we can see during a reduction.
The methodology for this proof will also be used throughout the thesis. First, we prove some
structure lemmas on the type system, then some usual substitution lemmas, showing that
variables are well-behaved. Finally, the main theorem is subject reduction, showing that typing
is preserved by reduction, and that the complexity derived from a typing behaves accordingly.

3.1 A simple functional language with sizes

3.1.1 Syntax and Semantics

The language we consider for this chapter is a λ-calculus with data-types, pattern matching and
fix point for functions. In order to account for complexity, we will also use a tick constructor
to indicate which parts of the term should count for the reduction cost in a program. By a
slight abuse of language, we call this language PCF, as the features are globally the same, even
if the syntax does not respect the usual syntax of PCF.

Definition 3.1.1. The sets of terms and values are given by the following grammars:

M,N := x | λx.M |M N | 〈M,N〉 | π1 M | π2 M | fix f x = M | tick.M
| 0 | s(M) | match M {0 7→ N1; ; s(x) 7→ N2}

V,W := x | λx.M | 〈V,W 〉 | 0 | s(V )
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(λx.M) V →0 M [x := V ] πi〈V1, V2〉 →0 Vi

(fix f x = M) V →0 M [x := V ][f := (fix f x = M)] tick.M →1 M

match 0 {0 7→ N1; ; s(x) 7→ N2} →0 N1

match s(V ) {0 7→ N1; ; s(x) 7→ N2} →0 N2[x := V ]
M →k N

C[M ]→k C[N ]

Figure 3.1: Semantics for PCF

So, we have standard lambda calculus, constructors for integers with a pattern-matching,
pairs and projections, the tick constructor as the only source of complexity, and fix f x = M
which is a function defined recursively, so in M both x and f are free variables. We only have
integers as data-types, but this is merely for the sake of simplicity, the type system could
be extended to other data-types, as long as the pattern-matching rule is well-defined. See
Remark 3.1.3 for more details.

As usual in a functional language, we may use the notation let x = M in N to denote the
term (λx.N) M . We also use (λ〈x, y〉.N) to denote (λz.let x = π1 z in let y = π2 z in N), and
similarly for fix f 〈x, y〉 = M . Finally, we use n when n is an integer to denote s(s(· · · s(0)))
with n calls to successor.

We then define a call-by-value semantics for this language. It is described by a set of base
rules and a contextual rule. We also annotate rules by their complexity, where any standard rule
has complexity 0 and removing a tick has complexity one. The rules are given in Figure 3.1.
We use the notation M [x := N ] to denote the term M in which the free variable x has been
replaced by N .

Definition 3.1.2. The contexts are defined by the following grammar:

C := [] |M C | C V | 〈C,M〉 | 〈M,C〉 | πi C | s(C) | match C {0 7→ N1; ; s(x) 7→ N2}

The important points of this semantics is that first it is call-by-value, so for the complexity
it means that if we have a tick in an argument, then it is reduced before being used as an
argument. This avoids in particular duplication and erasure of a tick by a function call. For
the function defined by fixpoint, we only unfold this fixpoint in an actual call to this function.
This avoids unnecessary unfolding. In this sense, the fixpoint constructor in this language differs
from the usual fixpoint operator in PCF. Still, it behaves as expected, as shown in the following
example:

Example 3.1.1 (Reduction with Fixpoint). Consider the term M :

fix f x = tick.match x {0 7→ 0; ; s(y) 7→ f y}

Then:

(M 1)→0 tick.match 1 {0 7→ 0; ; s(y) 7→M y} →1 match 1 {0 7→ 0; ; s(y) 7→M y}
→0(M 0)→0 tick.match 0 {0 7→ 0; ; s(y) 7→M y} →1 match 0 {0 7→ 0; ; s(y) 7→M y}
→00

Then, we easily define the complexity of a term.
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Definition 3.1.3 (Complexity of a Term). The complexity of a reduction M →∗k N , where →∗k
is the reflexive and transitive closure of (→0 ∪ →1) is defined as the sum of the cost through
this reduction. Then, the complexity of a term M is defined as the maximal complexity over all
reductions from M . This complexity could potentially be infinite.

So on the previous example, the complexity is then 2, as expected. Let us look at another
example.

Example 3.1.2 (Fibonacci). We can define the Fibonnaci function, where we count the number
of calls, with the following terms:

ADD := fix add 〈x, y〉 = match x {0 7→ y; ; s(x′) 7→ s(add 〈x′, y〉)}

FIB := fix fib x = tick.match x {0 7→ 0; ; s(x′) 7→ match x′ {0 7→ 1; ; s(x′′) 7→ add 〈fib x′, fib x′′〉}}

Then, the complexity of (FIB n) is given by F (n) where

F (0) = F (1) = 1 F (n+2) = 1+F (n+1) + F (n)

3.1.2 Sized Types

We now focus on a typing system for this functional language, such that we can extract a bound
on the complexity of a program from a typing derivation. We give a presentation of sized types
inspired by [6]. This type system will be close to the base we use for the π-calculus, and we
present it to illustrate the interest of a sized type system. With regard to [6], there are some
differences to notice. We choose a more generic form of arrow types, not well-suited for type
inference but that generalizes the canonical types of [6]. Moreover, we annotate explicitly types
with complexity, but we explain in Remark 3.1.2 that this is in fact not a big difference with
regard to [6]. And finally, we choose a presentation of sizes adapted to this thesis, and inspired
by [29].

As the previous type system described in Section 2.1, this system relies on the definition of
indices to keep track of the size of values in a process.

Definition 3.1.4. The set of indices for natural numbers is given by the following grammar.

I, J,K := i, j, k | f(I1, . . . , In)

The variables i, j, k are called index variables. The set of index variables is denoted V. The
symbol f is an element of a given set of function symbols containing addition and multiplication.
We also assume that we have the subtraction as a function symbol, with n−m = 0 when m ≥ n.
Each function symbol f of arity ar(f) comes with an interpretation JfK : Nar(f) → N.

Given an index valuation ρ : V → N, we extend the interpretation of function symbols to
indices, noted JIKρ with:

JiKρ = ρ(i) Jf(I1, . . . , Iar(f))Kρ = JfK(JI1Kρ, . . . , JIar(f)Kρ)

In an index I, the substitution of the occurrences of i in I by J is denoted I{J/i}.

Definition 3.1.5 (Constraints on Indices). Let ϕ ⊂ V be a set of index variables. A constraint
C on ϕ is an expression with the shape I ./ J where I and J are indices with free variables in
ϕ and ./ denotes a binary relation on integers. Usually, we take ./ ∈ {≤, <,=, 6=}. Finite set
of constraints are denoted Φ.
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For a set ϕ ⊂ V, we say that a valuation ρ : ϕ→ N satisfies a constraint I ./ J on ϕ, noted
ρ � I ./ J when JIKρ ./ JJKρ holds. Similarly, ρ � Φ holds when ρ � C for all C ∈ Φ. Likewise,
we note ϕ; Φ � C when for all valuations ρ on ϕ such that ρ � Φ we have ρ � C. Notice that the
order ≤ in a context ϕ; Φ is not total in general, for example (i, j); · 2 i ≤ ij and (i, j); · 2 ij ≤ i.

Remark 3.1.1 (More Complex Indices). This definition of indices allows any usual function
to be defined, but it does not allow some more complex indices that are used for example in [29].
For example, we cannot define ∑

0≤i≤I
J

where, if we call ϕ the set of index variables in I and J without i, and we have ρ : ϕ→ N,

J
∑

0≤i≤I
JKρ =

JIKρ∑
n=0

JJKρ[i 7→n]

A usual way to add this kind of indices is to explicitly put them in the definitions, or we could
alternatively consider higher-order interpretation of indices, where for example the pair of this
index J and the index variable i would be interpreted as the higher order function of type N→ N
defined by

J(J, i)Kρ(n) = JJKρ[i 7→n]

For the sake of simplicity, we keep here the simple interpretation of functions.

We now define the sized type system by enriching usual base types with sizes, and by adding
some polymorphism and complexity information in an arrow type.

Definition 3.1.6 (Types). The set of types is given by the following grammar:

T, S := Nat[I, J ] | T × S | ∀̃i.T ⇒K S

Intuitively, an integer n of type Nat[I, J ] satisfies I ≤ n ≤ J . A function of type ∀̃i.T ⇒K S
is of type T{Ĩ /̃i} ⇒

K{Ĩ /̃i} S{Ĩ /̃i} for any sequence Ĩ of indices, and K is the complexity of a

call to this function. The important point is that it can express a complexity which depends on
the size, for example a linear time function from integer to integers that doubles the size of its
input could be typed with ∀i.Nat[0, i]⇒i Nat[0, 2i]. We will use Nat[I] to denote the singleton
type Nat[I, I]. We only consider well-defined intervals, so in order to use the interval [I, J ] in a
context ϕ; Φ we must have ϕ; Φ � I ≤ J .

Let us give some notations that will be used throughout the thesis before giving formal rules.

Definition 3.1.7 (Notations for Contexts). From now on, when we write (ϕ, i), it is always
assumed that i /∈ ϕ. So, for example in Figure 3.2, in the rule for arrow, it is implicit that ĩ
are fresh index variables. Note that this can always be done by renaming.

Similarly, for a context Γ = x1 : T1, . . . , xn : Tn, when we write Γ, x : T , then it is assumed
that x is not already in Γ.

However, for the set of constraints, we write Φ, I ./ J to denote the set Φ∪{I ./ J}, without
any assumption on whether this union is disjoint.

With those types comes a simple notion of subtyping. Intuitively, subtyping allows to take
a larger bound on the size of an input, and a smaller bound on an input. This is described by
Figure 3.2. A subtyping judgement has the shape ϕ; Φ ` T v T ′, where the free index variables
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ϕ; Φ � I ≥ I ′ ϕ; Φ � J ≤ J ′

ϕ; Φ ` Nat[I, J ] v Nat[I ′, J ′]

ϕ; Φ ` T v T ′ ϕ; Φ ` S v S′

ϕ; Φ ` T × S v T ′ × S′

(ϕ, ĩ); Φ ` T ′ v T (ϕ, ĩ); Φ � K ≤ K ′ (ϕ, ĩ); Φ ` S v S′

ϕ; Φ ` ∀̃i.T ⇒K S v ∀̃i.T ′ ⇒K′ S
′

Figure 3.2: Subtyping Rules for PCF with Sizes

of T , T ′, Φ should be included in ϕ. In this thesis, almost all relations depend on a context
ϕ; Φ, and ϕ always describes the set of usable free index variables, and Φ a set of constraints
on ϕ. A way to understand the rule for subtyping is just to reason about set inclusion. The
set of integers between I and J is included in the set of integers between I ′ and J ′ if I ≤ I ′

and J ≤ J ′. A function from T to S with complexity bounded by K is included in the set of
function from a smaller set T ′, to a greater set S′. And if K ≤ K ′, then the complexity of this
function is indeed bounded by K ′.

We can extend this subtyping relation to contexts, so given Γ = x1 : T1, . . . xn : Tn and
Γ′ = x1 : T ′1, . . . , xn : T ′n, we say that ϕ; Φ ` Γ v Γ′ if ϕ; Φ ` Ti v T ′i for all 1 ≤ i ≤ n.

A typing judgement has the shape ϕ; Φ; Γ ` M : T / K, with the meaning that under the
constraints Φ, then M has type T in the typing context Γ, and K is a bound on the complexity
of M . The typing rules are detailed in Figure 3.3.

ϕ; Φ; Γ, x : T ` x : T / 0
(ϕ, ĩ); Φ; Γ, x : T `M : S / K

ϕ; Φ; Γ ` λx.M : ∀̃i.T ⇒K S / 0

ϕ; Φ; Γ `M : ∀̃i.T ⇒K S / K1 ϕ; Φ; Γ ` N : T{Ĩ /̃i} / K2

ϕ; Φ; Γ `M N : S{Ĩ /̃i} / K1+K2+K{Ĩ /̃i}

ϕ; Φ; Γ `M : T / K1 ϕ; Φ; Γ ` N : S / K2

ϕ; Φ; Γ ` 〈M,N〉 : T × S / K1 +K2

ϕ; Φ; Γ `M : T1 × T2 / K

ϕ; Φ; Γ ` πi M : Ti / K

(ϕ, ĩ); Φ; Γ, x : T, f : ∀̃i.T ⇒K S `M : S / K

ϕ; Φ; Γ ` fix f x = M : ∀̃i.T ⇒K S / 0

ϕ; Φ; Γ `M : T / K

ϕ; Φ; Γ ` tick.M : T / K+1

ϕ; Φ; Γ ` 0 : Nat[0, 0] / 0
ϕ; Φ; Γ `M : Nat[I, J ] / K

ϕ; Φ; Γ ` s(M) : Nat[I+1, J+1] / K

ϕ; Φ; Γ `M : Nat[I, J ] / K′ ϕ; (Φ, I ≤ 0); Γ ` N1 : T / K ϕ; (Φ, J ≥ 1); Γ, x : Nat[I−1, J−1] ` N2 : T / K

ϕ; Φ; Γ ` match M {0 7→ N1; ; s(x) 7→ N2} : T / K′+K

ϕ; Φ; Γ′ `M : T ′ / K′ ϕ; Φ ` Γ v Γ′ ϕ; Φ ` T ′ v T ϕ; Φ � K′ ≤ K
ϕ; Φ; Γ `M : T / K

Figure 3.3: Sized Typing Rules for PCF

In this typing system, we observe that all values are given complexity 0, this is expected as
a value is in normal form so has indeed complexity 0. The rule we should explain is the one for
application. In order to call the function M , we first need to instantiate the variables in ĩ by
actual indices. Once this is done, the complexity of M N is the complexity of reducing N to
a value VN (K2), then reducing M to a value VM (K1) and finally the complexity of reducing
VM applied to VN , which is given by the complexity of the arrow type.

Let us give an example of typing, with the Fibonacci function described in Example 3.1.2.

Example 3.1.3 (Typing of Fibonacci Function). The typing for ADD is given in Figure 3.4,
and the one for FIB is described in Figure 3.5. In this example, and in the following ones, we
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(i, j); i ≤ 0 � j = i+j

ϕ; i ≤ 0; Γ ` y : Nat[i+j] / 0

ϕ; i ≥ 1; Γ, x′ : Nat[i−1] ` 〈x′, y〉 : Nat[i−1]× Nat[j] / 0

ϕ; i ≥ 1; Γ, x′ : Nat[i−1] ` add 〈x′, y〉 : Nat[(i−1)+j] / 0

ϕ; i ≥ 1; Γ, x′ : Nat[i−1] ` add 〈x′, y〉 : Nat[(i+j)−1] / 0

ϕ; i ≥ 1; Γ, x′ : Nat[i−1] ` s(add 〈x′, y〉) : Nat[i+j] / 0

(i, j); ·;x : Nat[i], y : Nat[j], add : T+ ` match x {0 7→ y; ; s(x′) 7→ s(add 〈x′, y〉)} : Nat[i+j] / 0

·; ·; · ` fix add 〈x, y〉 = match x {0 7→ y; ; s(x′) 7→ s(add 〈x′, y〉)} : T+ / 0

Figure 3.4: Typing for ADD in PCF

ϕ; Φ; Γ ` fib x′ : Nat[Fib(i−1)] / F (i−1) ϕ; Φ; Γ ` fib x′′ : Nat[Fib(i−2)] / F (i−2)

ϕ; Φ; Γ ` 〈fib x′, fib x′′〉 : Nat[Fib(i−1)]× Nat[Fib(i−2)] / F (i−1)+F (i−2)

ϕ; Φ;x : Nat[i], x′ : Nat[i−1], x′′ : Nat[i−2], fib : Tf ` ADD 〈fib x′, fib x′′〉 : Nat[Fib(i−1)+Fib(i−2)] / F (i−1)+F (i)

i; (i ≥ 1, i−1 ≥ 1);x : Nat[i], x′ : Nat[i−1], x′′ : Nat[i−2], fib : Tf ` ADD 〈fib x′, fib x′′〉 : Nat[Fib(i)] / F (i)−1

i; i ≥ 1;x : Nat[i], x′ : Nat[i−1], fib : Tf ` match x′ {0 7→ 1; ; s(x′′) 7→ · · ·} : Nat[Fib(i)] / F (i)−1

i; ·;x : Nat[i], fib : Tf ` match x {0 7→ 0; ; s(x′) 7→ match x′ {0 7→ 1; ; s(x′′) 7→ · · ·}} : Nat[Fib(i)] / F (i)−1

i; ·;x : Nat[i], fib : Tf ` tick.match x {0 7→ 0; ; s(x′) 7→ match x′ {0 7→ 1; ; s(x′′) 7→ · · ·}} : Nat[Fib(i)] / F (i)

·; ·; · ` fix fib x = tick.match x {0 7→ 0; ; s(x′) 7→ match x′ {0 7→ 1; ; s(x′′) 7→ ADD 〈fib x′, fib x′′〉}} : Tf / 0

Figure 3.5: Typing for FIB in PCF

may omit some easy premises, we represent a subtyping rule by a double line, without precising
the constraints when they are obvious, and we may automatically rename contexts in order to
gain some space. For this example, we denote by T+ and Tf the types

T+ := ∀(i, j).Nat[i]× Nat[j]⇒0 Nat[i+j] Tf := ∀i.Nat[i]⇒F (i) Nat[Fib(i)]

where F is the function described in Example 3.1.2, and Fib is the index function representing
the Fibonacci function.

Remark 3.1.2 (About Explicit Complexity in Types). Contrary to the sized types literature,
we add explicitly complexity in types. One may think that this makes the type system too
complicated, but we show informally that this is in fact equivalent to types with only sizes.
Indeed, it is well-known that for an imperative language, complexity can just be computed as the
size of a global variable that we increment through the computation. For a functional language,
we can do the same thing with a simple state monad, where we choose Nat for the state space.
This is in fact what is done in [6]. In our case, the tick constructor would then correspond to
incrementing this state, and the complexity K in an arrow type corresponds to the difference on
the size of this state between output and input, and so in this sense, complexity is just the size
of one particular state that we follow through the computation.

Remark 3.1.3 (Pattern Matching for Other Data-Types). We only presented the pattern
matching for integers in this section. The pattern matching for words can easily be found as an
extension of the one for integers, and the one for lists will be given formally in a later section,
in Figure 4.11. If we want to consider algebraic-data types, then pattern matching will be more
complex. For example, consider the case of trees. For a tree, we may want two informations
about both size and depth, and so a type of the shape Tr[Id, Jd][Is, Js], where intuitively, a tree
of this type had a depth between Id and Jd and a size between Is and Js. Then, the pattern
matching rule would be, with ϕ′ = ϕ, i, i′, j, j′:

ϕ′; (Φ, i ≤ j, i′ ≤ j′, Jd ≥ 1, Is ≤ 1+i+i′, 1+j+j′ ≤ Js); Γ, x : Tr[Id−1, Jd−1][i, j], y : Tr[Id−1, Jd−1][i′, j′] ` N2 : T / K

ϕ; Φ; Γ ` match M {Leaf 7→ N1; ; Node(x, y) 7→ N2} : T / K′+K
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with the two additional premises:

(1) ϕ; Φ; Γ `M : Tr[Id, Jd][Is, Js] / K
′

(2) ϕ; (Φ, Id ≤ 0, Is ≤ 0); Γ ` N1 : T / K

Even if the rule seems complex, the reasoning is natural: we do not know the size of the subtree,
but we do know a bound on their sum, as we have a bound on the size of the initial tree. So,
we take arbitrary bounds for the sizes of the subtree, and we add a constraint on the sum. Note
that in the case where we impose i′ = j′ = 0, we have in the constraints Is ≤ 1+i ≤ 1+j ≤ Js,
which can be written equivalently with (Is−1 ≤ i ≤ j ≤ Js−1, Js ≥ 1), and we have the same
constraints as depth. Also, we emphasize the fact that, by definition of ϕ, the index variables
i, i′, j, j′ must not appear in T nor K, and so the type and the complexity cannot depend on the
actual sizes of the subtrees as they are unknown.

3.1.3 Soundness by Subject Reduction

The fact that K is indeed a bound on the complexity of a term in a judgement should not be
surprising given the type system. In this section, we give a proof method to show formally this
complexity bound, and we will see that this methodology is reused in this thesis for all the
complexity type systems. The idea is to prove soundness of the type system (K is indeed a
bound on the complexity) with a subject reduction theorem, stating that typing is somewhat
preserved through a reduction step.

Structure Lemmas

The first lemmas we usually show are the structure lemmas. Their proofs are often direct, but
they are useful to simplify the soundness proof.

Lemma 3.1.1 (Weakening). Let ϕ,ϕ′ be disjoint set of index variables, Φ be a set of constraints
on ϕ, Φ′ a set of constraints on (ϕ,ϕ′), and Γ and Γ′ be contexts on disjoint set of variables.
Then, we have:

1. If ϕ; Φ � C then (ϕ,ϕ′); (Φ,Φ′) � C

2. If ϕ; Φ ` T v S then (ϕ,ϕ′); (Φ,Φ′) ` T v S

3. If ϕ; Φ; Γ `M : T / K then (ϕ,ϕ′); (Φ,Φ′); Γ,Γ′ `M : T / K

The proof proceeds by induction, Point 1 is a direct consequence of the definition of ϕ; Φ � C,
and then Point 2 is by induction on the subtyping rules, and Point 3 is by induction on the
typing rules, using Point 2 when needed. Overall, there is nothing difficult with this proof.
Then, we have the opposite of weakening.

Lemma 3.1.2 (Strengthening). Let ϕ be a set of index variables, Φ a set of constraints on ϕ
and C a constraint on φ such that ϕ; Φ � C. Then, we have:

1. If ϕ; (Φ, C) � C ′ then ϕ; Φ � C ′

2. If ϕ; (Φ, C) ` T v S then ϕ; Φ ` T v S

3. If ϕ; (Φ, C); Γ,Γ′ ` M : T / K and the variables in Γ′ are not free in M , then ϕ; Φ; Γ `
M : T / K

Again, the proofs are straightforward.
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Substitution Lemmas

Then, we are interested in substitution lemmas. In this type system, we can substitute both
index variables and terms variables, so this gives two substitution lemmas.

Lemma 3.1.3 (Index Substitution). Let ϕ be a set of index variables and i /∈ ϕ. Let J be an
index with free variables in ϕ. Then,

1. JI{J/i}Kρ = JIKρ[i 7→JJKρ].

2. If (ϕ, i); Φ � C then ϕ; Φ{J/i} � C{J/i}.

3. If (ϕ, i); Φ ` T v U then ϕ; Φ{J/i} ` T{J/i} v U{J/i}.

4. If (ϕ, i); Φ; Γ `M : T / K then ϕ; Φ{J/i}; Γ{J/i} `M : T{J/i} / K{J/i}.

Again, this lemma is proved by successive inductions. Note that from the previous lemmas,
we can easily deduce the following lemma, that may be useful:

Lemma 3.1.4 (Name Preserving Index Substitution). Let ϕ be a set of index variables with
i ∈ ϕ, and J an index with free variables in ϕ. If ϕ; Φ; Γ `M : T /K then ϕ; Φ{J/i}; Γ{J/i} `
M : T{J/i} / K{J/i}.

Proof. The proof uses renaming and weakening. Let us call ϕ′ = ϕ/{i}. So, from (ϕ′, i); Φ; Γ `
M : T / K, we have, by weakening (Lemma 3.1.1), (ϕ′, i, i′); Φ; Γ ` M : T / K. Let us call J ′

equal to J but the index variable i is renamed with i′. Then, we have, by index substitution,
(ϕ′, i′); Φ{J ′/i}; Γ{J ′/i} ` M : T{J ′/i} / K{J ′/i}. And then, again by renaming i′ by i, we
obtain (ϕ′, i); Φ{J/i}; Γ{J/i} `M : T{J/i} / K{J/i}.

Then, we have substitution for terms, or more precisely for values since the reduction rules
only substitute terms variables by values:

Lemma 3.1.5 (Value Substitution). If ϕ; Φ; Γ, x : S `M : T /K and ϕ; Φ; Γ ` V : S /K ′, then
ϕ; Φ; Γ `M [x := V ] : T / K.

Proof. The important point for this lemma, is that K ′ is not used in the final derivation, this
is because we can prove the following lemma:

Lemma 3.1.6 (Complexity of Values). If ϕ; Φ; Γ ` V : S / K ′ then there is a typing ϕ; Φ; Γ `
V : S / 0

This can easily be proved by induction on the typing derivation: the only rule that can
increase the complexity of a value is the subtyping rule.

Once this lemma is proved, the proof of Lemma 3.1.5 is done by induction on the typing
derivation for M . The main point is that the axiom rule

ϕ; Φ; Γ, x : S ` x : S / 0

can then directly be replaced by the derivation for ϕ; Φ; Γ ` V : S / 0.
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Subject Reduction

Finally, we prove subject reduction, and then we will directly obtain the soundness theorem.

Theorem 3.1.1 (Subject Reduction). If ϕ; Φ; Γ `M : T / K then:

1. If M →0 N , we have ϕ; Φ; Γ ` N : T / K

2. If M →1 N , we have ϕ; Φ; Γ ` N : T / K ′ with ϕ; Φ � K ′+1 ≤ K.

Proof. We proceed by induction on M →k N . The first thing to notice is that the only non
syntax-directed rule of the type system is the subtyping rule, and we can always suppose that
there is exactly one subtyping rule between each other rules, by transitivity and reflexivity of
subtyping. Moreover, if the typing ϕ; Φ; Γ `M :T /K starts with a subtyping rule and M →0 N ,
then we can mimic exactly the same rule for N , thus we can ignore this first subtyping rule in
this case, as in Lemma 2.2.10. So, formally, we will prove the following lemma:

Lemma 3.1.7 (Subject Reduction). If π is a derivation of ϕ; Φ; Γ `M : T / K then:

1. If M →0 N , and the bottom rule of π is not a subtyping rule, then, we have ϕ; Φ; Γ `
N : T / K

2. If M →1 N , we have ϕ; Φ; Γ ` N : T / K ′ with ϕ; Φ � K ′+1 ≤ K.

And, from this lemma, we can easily obtain Theorem 3.1.1. Indeed, given M →0 N and a
derivation π of ϕ; Φ; Γ `M : T / K, with the shape

ϕ; Φ; Γ′ `M : T ′ / K ′ ϕ; Φ ` Γ v Γ′ ϕ; Φ ` T ′ v T ϕ; Φ � K ′ ≤ K
ϕ; Φ; Γ `M : T / K

Then, as ϕ; Φ; Γ′ `M : T ′ /K ′ does not start with a subtyping rule, we can apply Lemma 3.1.7
and obtain ϕ; Φ; Γ′ ` N : T ′ / K ′. Thus, we can give the proof:

ϕ; Φ; Γ′ ` N : T ′ / K ′ ϕ; Φ ` Γ v Γ′ ϕ; Φ ` T ′ v T ϕ; Φ � K ′ ≤ K
ϕ; Φ; Γ ` N : T / K

And this derivation has the same conclusion as the original one, so this concludes Theorem 3.1.1.
So, let us know show Lemma 3.1.7.

• Case (λx.M) V →0 M [x := V ]. Then, the typing has the shape:

ΠM

(ϕ, ĩ); Φ; ∆, x : T ′ `M : S′ / K ′

ϕ; Φ; ∆ ` (λx.M) : ∀̃i.T ′ ⇒K′ S
′ / 0 (1)

ϕ; Φ; Γ ` (λx.M) : ∀̃i.T ⇒K S / K1

ΠV

ϕ; Φ; Γ ` V : T{Ĩ /̃i} / K2

ϕ; Φ; Γ ` (λx.M) V : S{Ĩ /̃i} / K1 +K2 +K{Ĩ /̃i}

where (1) is
ϕ; Φ ` Γ v ∆ ϕ; Φ ` ∀̃i.T ′ ⇒K′ S

′ v ∀̃i.T ⇒K S

The subtyping condition on the arrow type gives us

(ϕ; ĩ); Φ ` T v T ′ (ϕ; ĩ); Φ � K ′ ≤ K (ϕ; ĩ); Φ ` S′ v S
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so, using the subtyping rule, we can obtain from ΠM a derivation of (ϕ, ĩ); Φ; Γ, x : T `
M :S /K. Then, by the index substitution lemma (Lemma 3.1.3), we obtain a derivation
of

ϕ; Φ{Ĩ /̃i}; Γ{Ĩ /̃i}, x : T{Ĩ /̃i} `M : S{Ĩ /̃i} / K{Ĩ /̃i}

If we look where the index variables in ĩ can be free, we can refine this judgement by

ϕ; Φ; Γ, x : T{Ĩ /̃i} `M : S{Ĩ /̃i} / K{Ĩ /̃i}

We can then use the value substitution lemma (Lemma 3.1.5) with ΠV to obtain

ϕ; Φ; Γ `M [x := V ] : S{Ĩ /̃i} / K{Ĩ /̃i}

We can then conclude this case by subtyping.

• Case πi 〈V1, V2〉 →0 Vi. Then, the typing has the shape:

Π1

ϕ; Φ; ∆ ` V1 : T ′1 / K1

Π2

ϕ; Φ; ∆ ` V2 : T ′2 / K2

ϕ; Φ; ∆ ` 〈V1, V2〉 : T ′1 × T ′2 / K1+K2 (1)

ϕ; Φ; Γ ` 〈V1, V2〉 : T1 × T2 / K

ϕ; Φ; Γ ` πi 〈V1, V2〉 : Ti / K

where (1) is

ϕ; Φ ` Γ v ∆ ϕ; Φ ` T ′1 × T ′2 v T2 × T2 ϕ; Φ � K1+K2 ≤ K

With a subtyping rule, we obtain immediately for both i = 1 and i = 2 that ϕ; Φ; Γ `
Vi : Ti / K, as Ki ≤ K1+K2 ≤ K. This concludes this case.

• Case (fix f x = M) V →0 M [x := V ][f := (fix f x = M)]. Then the typing has the
shape:

ΠM

(ϕ, ĩ); Φ; ∆, x : T ′, f : ∀̃i.T ′ ⇒K′ S
′ `M : S′ / K ′

ϕ; Φ; ∆ ` fix f x = M : ∀̃i.T ′ ⇒K′ S
′ / 0 (1)

ϕ; Φ; Γ ` fix f x = M : ∀̃i.T ⇒K S / K1

ΠV

ϕ; Φ; Γ ` V : T{Ĩ /̃i} / K2

ϕ; Φ; Γ ` (fix f x = M) V : S{Ĩ /̃i} / K1 +K2 +K{Ĩ /̃i}

where (1) is
ϕ; Φ ` Γ v ∆ ϕ; Φ ` ∀̃i.T ′ ⇒K′ S

′ v ∀̃i.T ⇒K S

.

First, we have a derivation of (ϕ, ĩ); Φ; ∆, x : T ′, f : ∀̃i.T ′ ⇒K′ S
′ ` M : S′ / K ′ and a

derivation of ϕ; Φ; ∆ ` fix f x = M : ∀̃i.T ′ ⇒K′ S
′ / 0, so by Lemma 3.1.5, we obtain a

derivation of
(ϕ, ĩ); Φ; ∆, x : T ′ `M [f := (fix f x = M)] : S′ / K ′

The subtyping condition on the arrow type gives us

(ϕ; ĩ); Φ ` T v T ′ (ϕ; ĩ); Φ � K ′ ≤ K (ϕ; ĩ); Φ ` S′ v S
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so, using the subtyping rule, we can obtain a derivation of

(ϕ, ĩ); Φ; Γ, x : T `M [f := (fix f x = M)] : S / K

Then, by the index substitution lemma (Lemma 3.1.3), we obtain a derivation of

ϕ; Φ; Γ, x : T{Ĩ /̃i} `M [f := (fix f x = M)] : S{Ĩ /̃i} / K{Ĩ /̃i}

We then use the value substitution lemma (Lemma 3.1.5) with ΠV to obtain

ϕ; Φ; Γ `M [f := (fix f x = M)][x := V ] : S{Ĩ /̃i} / K{Ĩ /̃i}

We can then conclude this case by subtyping.

• Case tick.M →1 M . Then, the typing has the shape:

ΠM

ϕ; Φ; ∆ `M : T ′ / K ′

ϕ; Φ; ∆ ` tick.M : T ′ / K ′+1 ϕ; Φ ` Γ v ∆ ϕ; Φ ` T ′ v T ϕ; Φ � K ′+1 ≤ K
ϕ; Φ; Γ ` tick.M : T / K

Then, with subtyping from ΠM we can obtain ϕ; Φ; Γ `M :T /K ′ and this concludes this
case.

• Case match 0 {0 7→ N1; ; s(x) 7→ N2} →0 N1. Then, the typing has the shape:

ϕ; Φ; ∆ ` 0 : Nat[0, 0] / 0 ϕ; Φ ` Γ v ∆;Nat[0, 0] v Nat[I, J ]

ϕ; Φ; Γ ` 0 : Nat[I, J ] / K′
Π1

ϕ; (Φ, I ≤ 0); Γ ` N1 : T / K · · ·
ϕ; Φ; Γ ` match 0 {0 7→ N1; ; s(x) 7→ N2} : T / K′+K

By definition of subtyping, we obtain directly that ϕ; Φ � I ≤ 0. So, by Lemma 4.5.9 on
Π1, we obtain ϕ; Φ; Γ ` N1 : T / K and this concludes this case.

• Case match s(V ) {0 7→ N1; ; s(x) 7→ N2} →0 N2[x := V ]. Then, the typing has the
shape:

ΠV

ϕ; Φ; ∆ ` V : Nat[I ′, J ′] / K′′

ϕ; Φ; ∆ ` s(V ) : Nat[I ′, J ′] / K′′ (1)

ϕ; Φ; Γ ` s(V ) : Nat[I, J ] / K′ · · ·
Π2

ϕ; (Φ, J ≥ 1); Γ, x : Nat[I−1, J−1] ` N2 : T / K

ϕ; Φ; Γ ` match s(V ) {0 7→ N1; ; s(x) 7→ N2} : T / K′+K

where (1) is

ϕ; Φ ` Γ v ∆ ϕ; Φ ` Nat[I ′+1, J ′+1] v Nat[I, J ] ϕ; Φ � K ′′ ≤ K ′

In particular, we have ϕ; Φ � I ≤ I ′+1 and ϕ; Φ � J ′+1 ≤ J . From this, we obtain
ϕ; Φ � I−1 ≤ I ′, ϕ; Φ � J ≥ 1 and ϕ; Φ � J ′ ≤ J−1. So, we have by subtyping from ΠV :

ϕ; Φ; Γ ` V : Nat[I−1, J−1] / K ′
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so by Lemma 3.1.5: ϕ; (Φ, J ≥ 1); Γ ` N2[x := V ] : T /K, and finally by strengthening we
obtain ϕ; Φ; Γ ` N2[x := V ] : T / K and this concludes this case.

The methodology for pattern-matching is very simple, we only need to show that the
actual predecessor indeed satisfies the assumption we took on predecessors, and that the
constraints are satisfied. With this methodology, we can adapt the soundness proof for
other data-types, and it also works for the rule described in Remark 3.1.3, using index
substitution to replace i, i′, j, j′ by the actual bounds given in the typing.

• Case C[M ]→k C[N ] when M →k N . This case can be done by induction on the grammar
for C, all cases are straightforward.

Finally, from Theorem 3.1.1, we deduce the following theorem.

Theorem 3.1.2 (Soundness). If ϕ; Φ; Γ ` M : T / K, and M has complexity n, then we have
ϕ; Φ � K ≥ n. In particular, for any ρ : ϕ→ N such that ρ � Φ, we have JKKρ ≥ n.

Notice that this theorem talks about open terms (with variables). However, our notion of
complexity does not behave well with open terms. For example match x {0 7→ N1; ; s(x) 7→ N2}
is in normal form for a variable x. However, a typing of this term would give a non-zero
complexity, as it would assume that x is an actual integer. So, the complexity bound should be
understood as a bound on all possible closed terms obtainable from a well-typed substitution
of the open term. Formally, we have the following corollary:

Corollary 3.1.1 (Complexity and Open Terms). If ϕ; Φ; Γ, x̃ : T̃ ` M : T / K, then for any
sequence of values Ṽ such that ϕ; Φ; Γ ` Ṽ : T̃ /0, K is a bound on the complexity of M [x̃ := Ṽ ].

This is easily proved using Theorem 3.1.2 and Lemma 3.1.5.

So, we showed that the type system defined in this chapter indeed gives a bound on the
complexity, which should have been expected with the way this type system is defined. More-
over, as stated before, the soundness result could be extended to other data-types, such as lists,
words or trees. An other possible extension would be to consider refinement types [49], in which
base types have the shape Nat{α | φ(α)}, where φ(α) is a formula on α. In this case, sized types
could be recovered by considering formulas of the shape I ≤ α ≤ J , but depending on the set
of formulas one could express more interesting properties. In particular, such a type system is
used in [7] for probabilistic complexity analysis, and the similitude with our type system can
be seen especially on the pattern matching rule.

In the following, we adapt the sized type system for parallel complexity analysis.
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Chapter 4

Complexity in Pi-calculus

In this chapter, we focus on parallel complexity analysis in the π-calculus, with sized types. A
first observation is that for the work analysis of the π-calculus, corresponding to the sequential
computation time of a process, the constructors for parallelism should not have important
consequences for the way complexity is managed, and indeed we show that an adaptation of
the previous type system can directly give interesting results for the work. This adaptation
uses in particular the usual input/output type system of the π-calculus, in order to manage
subtyping. As the type system for work will be close to the usual sized type systems for
functional languages, methods developed for functional languages on those type systems can be
adapted for work-analysis of π-calculus, especially the type inference procedure of [6].

As for parallel complexity analysis, we define a notion of span for π-calculus, correspond-
ing to complexity under maximal parallelism. This notion of span is defined by a small-step
semantics where processes are annotated with the number of tick they saw. For this notion,
we give two type systems. The first one is adapted from the type system for work, with time
annotations that are useful for span analysis, as in [36]. Those results on work and span analysis
with sized types have been published in [14]. However, this adaption leads to some limitations
for the type system, especially in presence of some concurrent behaviours such as semaphores.

In the last section, we thus present a type system with usages, a type system paradigm
originally used for deadlock-freedom [77]. This type system comes from joint work with Naoki
Kobayashi, and it relies on a new way to manage time annotations in usages, specifically designed
for complexity analysis. This type system, although more complex than the previous one, seems
more expressive, and it can in particular handle semaphores.

4.1 The Pi-calculus : Preliminaries

In this work, we consider the π-calculus as a model of parallelism and concurrent systems. he
main points of π-calculus are that processes can be composed in parallel, communications be-
tween processes happen with the use of channels, and channel names can be created dynamically,
so the topology can change at runtime.

Several presentations of the π-calculus exist in the literature, so we detail here the presen-
tation we chose for this thesis. Moreover, we give some usual definitions useful for this thesis,
and we present the two type systems we rely on for complexity analysis: input/output types
and usages.
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4.1.1 Syntax and Standard Semantics

We present here a classical syntax for the synchronous π-calculus. More details about π-calculus
and variants of the syntax can be found in [90]. The sets of variables, expressions and processes
are defined by the following grammar.

v := x, y, z | a, b, c e := v | 0 | s(e) | [] | e :: e′

P,Q := 0 | (P | Q) | !a(ṽ).P | a(ṽ).P | a〈ẽ〉.P | (νa)P

| match e {0 7→ P ; ; s(x) 7→ Q} | match e {[] 7→ P ; ; x :: y 7→ Q}

We use x, y, z as meta-variables for integer variables, and a, b, c as those for channel names.
The notation ṽ stands for a sequence of variables v1, v2, . . . , vk. Similarly, ẽ denotes a sequence
of expressions. We work up to α-renaming, and we write P [̃v := ẽ] to denote the substitution
of ẽ for the free variables ṽ in P . For the sake of simplicity, we consider only integers and lists
as base types in the following, but the results can be generalized to other data-types, as in
Section 3.1. Moreover, we consider very simple expressions with only base constructors, but we
could enrich the set of expressions with functions (such as addition on integers) and still obtain
the soundness. Indeed, the core of our proof lies in the parallel constructors, and the set of
expressions has little impact on the theoretical results.

Intuitively, P | Q stands for the parallel composition of P and Q. The process a(ṽ).P
represents an input: it stands for the reception on the channel a of a tuple of values identified
by the variables ṽ in the continuation P. The process !a(ṽ).P is a replicated version of a(ṽ).P , it
behaves like an infinite number of a(ṽ).P in parallel. The process a〈ẽ〉.P represents an output:
it sends a sequence of expressions on the channel a, and continues as P . A process (νa)P
dynamically creates a new channel name a and then proceeds as P . We also have standard
pattern matching on data types.

We now describe the standard semantics for this calculus. The first step is to define a
congruence relation ≡ on those processes. It is defined as the least congruence containing:

P | 0 ≡ P P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R

(νa)(νb)P ≡ (νb)(νa)P (νa)(P | Q) ≡ (νa)P | Q (when a is not free in Q)

Note that the last rule can always be applied from right to left by α-renaming. Also, one
can see that contrary to usual congruence relation for the π-calculus, we do not consider the
rule for replication (!P ≡ !P | P ) as it will be captured by the semantics, and α-conversion is
not taken as an explicit rule in the congruence. By associativity, we will often write parallel
composition for any number of processes and not only two. Another way to see this congruence
relation is that, up to congruence, a process is entirely described by a set of channel names and
a multiset of guarded processes. Formally, we give the following definition.

Definition 4.1.1 (Guarded Processes and Canonical Form). A process G is guarded if it has
one of the following shapes:

G := !a(ṽ).P | a(ṽ).P | a〈ẽ〉.P | tick.P | match e {0 7→ P ; ; s(x) 7→ Q} | match e {[] 7→ P ; ; x :: y 7→ Q}

We say that a process is in canonical form if it has the form (νã)(G1 | · · · | Gn) with G1, . . . , Gn
guarded processes.

Formally, we now show that all processes have a somewhat unique canonical form, as in [76].

Lemma 4.1.1 (Existence of Canonical Form). For any process P , there is a Q in canonical
form such that P ≡ Q.
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Proof. Le us suppose that, by renaming, all the introductions of new variables have different
names and that they also differ from the free variables already in P . We can then proceed by
induction on the structure of P . The only interesting case is for parallel composition. Suppose
that

P ≡ (νã)(P1 | · · · | Pn) Q ≡ (νb̃)(Q1 | · · · | Qm)

With P1, . . . , Pn, Q1, . . . , Qm guarded processes. Then, by hypothesis on the name of variables,
we have ã and b̃ disjoint and ã is not free in Q, as well as b̃ is not free in P . So, we obtain

P | Q ≡ (νã)(νb̃)(P1 | · · · | Pn | Q1 | · · · | Qm)

Lemma 4.1.2 (Uniqueness of Canonical Form). If

(νã)(P1 | · · · | Pn) ≡ (νb̃)(Q1 | · · · | Qm)

with P1, . . . , Pn, Q1, . . . , Qm guarded processes, then m = n and ã is a permutation of b̃. More-
over, for some permutation Q′1, . . . , Q

′
n of Q1, . . . , Qn, we have Pi ≡ Q′i for all i.

Proof. Recall that α-renaming is not a rule of ≡. Let us define a set name of channel variables
and a multiset gp of guarded processes.

• name(0) = ∅ and gp(0) = ∅.

• name(P | Q) = name(P )
∐

name(Q) and gp(P | Q) = gp(P )+gp(Q).

• name(P ) = ∅ and gp(P ) = [P ], when P is guarded.

• name((νa)P ) = name(P)
∐
{a} and gp((νa)P ) = gp(P ).

where
∐

denotes the usual disjoint union, + denotes the usual union of multisets and [P ] denotes
the multiset corresponding to the singleton P with multiplicity 1. Then, we can easily show the
following lemma by definition of the congruence relation.

Lemma 4.1.3. If P ≡ Q then name(P ) = name(Q). Moreover, if gp(P ) = [P1, . . . , Pn] and
gp(Q) = [Q1, . . . , Qm] , then m = n and for some permutation Q′1, . . . , Q

′
n of Q1, . . . , Qn, we

have Pi ≡ Q′i for all i.

Finally, Lemma 4.1.2 is a direct consequence of Lemma 4.1.3.

We now define the usual reduction relation for the π-calculus, that we denote P → Q. It
is defined by the rules given in Figure 4.1. Remark that substitution should be well-defined in
order to do some reduction steps: channel names must be substituted by other channel names
and base type variables can be substituted by any expression except channel names. However,
when we will consider typed processes, this will always yield well-defined substitutions.

Let us give some examples of process that should be of interest in the following. As a first
example, we show a way to encode a usual functional program in π-calculus. In order to do
this, we use replicated input to encode functions, and we use a return channel for the output.

Example 4.1.1 (Map). Given a channel f representing a function F such that f〈y, a〉 returns
F (y) on the channel a, we can write the ”map” function in our calculus as described in Fig-
ure 4.2. The main idea for this kind of encoding is to use the dynamic creation of names ν to
create the return channel before calling a function, and then to use this channel to obtain back
the result of this call.
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!a(v).P | a〈ẽ〉 →!a(v).P | P [̃v := ẽ] a(v).P | a〈ẽ〉 → P [̃v := ẽ]

match 0 {0 7→ P ; ; s(x) 7→ Q} → P match s(e) {0 7→ P ; ; s(x) 7→ Q} → Q[x := e]

match [] {[] 7→ P ; ; x :: y 7→ Q} → P match e :: e′ {[] 7→ P ; ; x :: y 7→ Q} → Q[x, y := e, e′]

P → Q

P | R→ Q | R
P → Q

(νa)P → (νa)Q

P ≡ P ′ P ′ → Q′ Q′ ≡ Q
P → Q

Figure 4.1: Standard Reduction Rules

!map(x , f ,a) . match(x) {
[ ] 7→ a〈x〉 ; ;

y :: x1 7→ (νb)(νc)(f 〈y ,b〉 | map〈x1 , f ,c〉 | b(z) .c(x2) .a〈z :: x2〉)
}

Figure 4.2: The Map Function

Example 4.1.2 (Fibonacci). As another simple example, we take a representation of the Fi-
bonacci function in π-calculus. This is described by Figure 4.3, where both servers add and fib
are put in parallel.

This example is a simple interesting example to compare the sequential complexity (work)
and the complexity under maximal parallelism (span). Indeed, we would like the work to be
exponential in n and the span to be linear, since all recursive calls can be done in parallel.

4.1.2 Input/Output Types

Several typing paradigms have been proposed for the π-calculus, see [90] or [73] for a survey. As
we saw in Section 3.1, with a sized type system, we want to have a subtyping relation, as this
allows for more flexibility. In the π-calculus, the simplest type system that allows subtyping
is the input/output type system [88]. The idea is to give to a channel some capabilities. For
example, a channel with only the input capability can only be used to receive message. A channel
with both input and output capabilities can be used to both receive and send messages. Let us
explain intuitively why this distinction between input and output is important for subtyping.

Recall that in Section 3.1, we saw that T v U means that the set of values typed with T is
a subset of the values typed with U . So, if we consider, for the sake of the example, a type Nat
for integers, and a type Real for real numbers, then we have Nat v Real. Another way to see
this is that in any program where a value v is used as a real, then it is safe to feed an integer to
this program. So, if T v U , then in a program that uses a value of type U , it is safe to consider
that this value has type T instead.

Let us apply the same reasoning for channels. Consider a channel a used to receive messages,
in a process a(v).P . Let us suppose that the process uses the channel a as a channel working
with real numbers. Then, v is used as a real number in P , so it is safe to use a value v of type
Nat instead. So overall, it is safe to assume this input is done on a value of type Nat. So, for
an input channel, we should have : in(Nat) v in(Real).

Now, let us look at a channel a used to send a message, in a process a〈e〉.P . Let suppose that
the process uses the channel a as a channel working with integers. Then, the message e sent on
this channel is an integer. In particular, it is also a real number. So, it is safe to assume that
all messages sent on this channel are real numbers, and we should have out(Real) v out(Nat).

If we look at the variance of the subtyping relation, for an input channel we have covariance,
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!add(n,m,a) . match(n) {
0 7→ a〈m〉 ; ;

s(p) 7→ (νb) (add〈p ,m,b〉 | b(q) . a〈s(q)〉)
}
! f ib (n,a) . match(n) {
0 7→ a〈0〉 ; ;
s(m) 7→ match(m) {
0 7→ a〈1〉 ; ;

s(p) 7→ (νb)(νc) (fib〈m,b〉 | fib〈p ,c〉 | c(x) .b(y) . add〈x ,y ,a〉)
}}

Figure 4.3: The Fibonacci Function

B v B
T̃ v Ũ Ũ v T̃
ch(T̃ ) v ch(Ũ)

ch(T̃ ) v in(T̃ ) ch(T̃ ) v out(T̃ )

T̃ v Ũ
in(T̃ ) v in(Ũ)

Ũ v T̃
out(T̃ ) v out(Ũ)

T v T ′ T ′ v T ′′
T v T ′′

Figure 4.4: Subtyping Rules

and for an output channel we have contravariance. Then, a channel with both capabilities should
have invariance. That is why it is important to make a distinction between input channel and
output channel, as they do not behave the same way with subtyping.

We now formally state this in a type system. The sets of base types and types are given by
the following grammars.

B := Nat | List(B) T := B | ch(T̃ ) | in(T̃ ) | out(T̃ )

A channel of type in(T̃ ) is used only as an input, with messages of type T̃ , similarly for
out(T̃ ) but for output. And a channel of type ch(T̃ ) can be used both as an input and as an
output.

When a type T is not a base type, we call it a channel type. Then, we define a subtyping
relation on those types, expressed by the rules of Figure 4.4. As stated above, we have indeed
covariance for input, contravariance for output and invariance for channels. We also use an
explicit transitivity rule, but it is in fact not needed as it could be replaced by an exhaustive
set of rules. The transitivity is only used to first remove a capability, and then do subtyping
according to the variance of the remaining capability.

We can now define typing for expressions and processes. This is expressed by the rules of
Figure 4.5 and Figure 4.6. We use the notation Γ ` ẽ : T̃ for a sequence of typing judgements
for expressions in the tuple ẽ.

v : T ∈ Γ
Γ ` v : T Γ ` 0 : Nat

Γ ` e : Nat
Γ ` s(e) : Nat Γ ` [] : List(B)

Γ ` e : B Γ ` e′ : List(B)

Γ ` e :: e′ : List(B)

∆ ` e : U Γ v ∆ U v T
Γ ` e : T

Figure 4.5: Typing Rules for Expressions
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Γ ` 0
Γ ` P Γ ` Q

Γ ` P | Q
Γ ` a : in(T̃ ) Γ, ṽ : T̃ ` P

Γ `!a(ṽ).P

Γ ` a : in(T̃ ) Γ, ṽ : T̃ ` P
Γ ` a(ṽ).P

Γ ` a : out(T̃ ) Γ ` ẽ : T̃ Γ ` P
Γ ` a〈ẽ〉.P

Γ, a : T ` P
Γ ` (νa)P

∆ ` P Γ v ∆

Γ ` P
Γ ` e : Nat Γ ` P Γ, x : Nat ` Q

Γ ` match e {0 7→ P ; ; s(x) 7→ Q}

Γ ` e : List(B) Γ ` P Γ, x : B, y : List(B) ` Q
Γ ` match e {[] 7→ P ; ; x :: y 7→ Q}

Figure 4.6: Input/Output Typing Rules for Processes

So, in the following, for the first two type systems of Section 4.2 and Section 4.4, we will
use input/output types and then define the subtyping relation accordingly.

4.1.3 An Introduction to Usages

In the last typing system of this thesis, of Section 4.5, we will consider usages, another typing
paradigm of π-calculus usually used for deadlock-freedom analysis [75, 72, 77]. The main idea
of usages is to type a channel with a simple abstract program describing the behaviour of this
channel independently of other channels, and then to analyse the property of this abstract
program to try to obtain a property on the initial process.

In this section, we describe briefly and informally a usage type system, namely a simple
version of the one in [72], to analyse deadlock-freedom.

The basic idea is to define usages by the following grammar:

U := 0 | In.U | Out.U | (U1 | U2)

So, basically, a usage is a very simple parallel program, with In that can communicate with
Out. The idea is then to type a channel by a program describing its behaviour. For example,
in the process

a() | b().a〈〉 | b〈〉

we would then give the respective usages Ua and Ub to a and b:

Ua = In | Out | 0 Ub = 0 | In | Out

As the process can be modified with a congruence relation, it seems then natural to also take a
congruence relation for usages. We can thus simply take

U | 0 ≡ U U | V ≡ V | U (U | V ) | W = U | (V | W )

mimicking the congruence relation for the π-calculus.
And then, if we look at subject reduction, we see that

a() | b().a〈〉 | b〈〉 → a() | a〈〉

so, even if the usage of a stays the same, the usage of b has been changed to U ′b = 0. But this
is not a problem, since U ′b is in fact obtained by one reduction step from Ub, with the intuition
that In.U | Out.V → (U | V ). So, we can define a semantics for usages, and then a reduction
step of a process induces a reduction step in one of the usages.
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However, such simple usages are not useful in practice. Indeed, consider the process

a().b〈〉 | b().a〈〉

The usages of channels in this process are exactly Ua and Ub defined above. However, the
previous process was perfectly fine but this one is deadlocked, so we must be able to differentiate
them. In order to do that, time annotations are introduced.

Formally, the set of usages is in fact defined by the following grammar:

U := 0 | Intotc .U | Outtotc .U | (U | V ) to, tc ∈ N∞ = N ∪ {∞}

Those time indications on usages should be seen as a kind of assume-guarantee reasoning. In
[72], the usage Intotc .U describes a channel that will be used for input, and then used according
to U . The two time annotations to and tc are called the obligation and the capacity respectively.
The obligation to indicates a guarantee that if the channel is indeed used for input, then the
input will become ready before to time units. The capacity tc indicates the assumption that an
output will be provided before tc time units once the input is ready. We have a similar meaning
for Outtotc .U . In [72], a unit of time corresponds to the time of one communication between an
input and an output. Informally, we then say that a usage is reliable if the associated assume-
guarantee reasoning is correct. So, for example, In0

1 | Out1
0 is reliable, because if we look at the

input, the capacity says that the environment should provide an output within one unit of time,
and this is correct since the obligation of the output is 1. However, the usage In0

1 | Out2
0 is not

reliable, as the assumption on the capacity 1 of the input is incorrect. Note that this reliability
should always be true during a computation, so it should also be verified after any number of
reduction steps.

Let us come back the example given before:

a() | b().a〈〉 | b〈〉

The usage Ub should have the shape:

Ub = Intotc | Out
t′o
t′c

Let us look at obligations. Both the input and the output are ready immediately, so we can
take to = t′o = 0. Then, for the input, we have a guarantee that the output is ready in 0 unit of
time, so we can take tc = 0, and similarly, we have t′c = 0. So, we have

Ub = In0
0 | Out0

0

Then, for Ua, we have also a shape, with unknown to, t
′
o, tc, t

′
c:

Ua = Intotc | Out
t′o
t′c

Again, the input is ready immediately, so to = 0. For the output, we need to wait for the input
of b, so t′o = 1. Then, we obtain by symmetry tc = 1 and t′c = 0. So,

Ua = In0
1 | Out1

0

.
Now, let us come back to

a().b〈〉 | b().a〈〉
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and consider the usages:

Ua = In
t1o
t1c
| Outt

2
o

t2c
Ub = In

t3o
t3c
| Outt

4
o

t4c

Let us examine the usage Ua. We have easily t1o = 0, because the input is immediately ready.
For t2o, we observe that in order for the output of a to be ready, the input on b must be reduced.
Looking at the usage of b, we can say that t2o ≥ t3c + 1, since t3c gives a bound on the time b need
to synchronize, and this synchronization counts for one time unit. Moreover, in order to have a
reliable usage, the capacity should verify t3c ≥ t4o. Then by symmetry, as the output for b needs
to wait for the input on a, we have t4o ≥ t1c + 1. Again, by reliability, it must be the case that
t1c ≥ t2o. So, we have:

t2o ≥ t3c + 1 ≥ t4o + 1 ≥ t1c + 2 ≥ t2o + 2

And we obtain t2o =∞. In the end, we therefore obtain the usages:

Ua = In0
∞ | Out∞0 Ub = In0

∞ | Out∞0

stating that, in fact, the output on a and b will never be ready, and thus we have indeed a
deadlock.

Finally, in a usage type system, a subusage relation is defined: similarly to subtyping, we

need some flexibility on usages. As a simple example, if a channel is typed with the usage In
t′o
t′c

,

then in particular, it must be ready before t′o unit of time, so if t′o ≤ to, it is also ready before
to unit of time. Moreover, if it is typed under the assumption that the context will provide
something within t′c unit of time, then in particular, under the assumption that the context will
provide something faster, within tc unit of time where tc ≤ t′c, the typing should still be safe.
So, we obtain:

t′o ≤ to tc ≤ t′c
Intotc v In

t′o
t′c

To summarize, if we read this relation from right to left, it is safe for the typing to weaken the
guarantee and to strengthen the assumption.

So, to sum up the main points of usages:

1. Usages are defined as simple parallel programs, with time annotations. Those programs
come with a congruence relation.

2. A semantics is then defined for usages, allowing input and output to communicate.

3. A notion of reliable usages is defined, where a usage is reliable if the assume-guarantee
reasoning is always sound, even after some reduction steps.

4. A subusage relation must also be defined, to have some flexibility. This subusage relation
is also very important for soundness.

Note that there is a choice to be made in a usage type system. One can enrich usages with
choice, or replication. Then, depending on the meaning one want to give to time annotations,
reliability would be defined differently. Similarly, the semantics and the subusage relation can
differ depending on the way time annotations are used. In the literature, usages have been
mainly used for deadlock-freedom, but we will give in Section 4.5 a usage type-system for
complexity analysis.
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tick.P →1 P
P →1 P

′

P | Q→1 P
′ | Q

Q→1 Q
′

P | Q→1 P | Q′
P →1 P

′

(νa)P →1 (νa)P ′

Figure 4.7: Simple Tick Reduction Rules

4.2 Work of a Process

We now proceed to present our contributions to complexity analysis in the π-calculus. As in
Section 3.1, we introduce a tick constructor, as the only source of complexity of this language.
Again, from this several notions of complexity can be derived. For example, counting the number
of communication steps consists in adding a tick after each input. Similarly, the number of
reduction steps can be recovered by also adding a tick after each pattern matching. It can also
be useful to single out what is a costly operation. For example, in a sorting algorithm, we can
use tick to count the number of comparisons, ignoring everything else.

4.2.1 Semantics and Type System

Semantics

We first describe a semantics for the work, that is to say the total number of ticks during a
reduction without parallelism. The time reduction →1 is defined in Figure 4.7. Intuitively, this
reduction removes exactly one tick at the top-level.

Then from any process P , a sequence of reduction steps to Q is just a sequence of one-step
reductions with the standard reduction→ defined in Figure 4.1 or→1, and the work complexity
of this sequence is the number of →1 steps. In this paper, we always consider the worst-case
complexity so the work of a process is defined as the maximal complexity over all such sequences
of reduction steps from this process.

Notice that with this semantics for work, adding tick in a process does not change its
behaviour: we do not create nor erase reduction paths.

Example 4.2.1 (Fibonacci). We take back the process P described in Example 4.1.2 with a
slight modification: after the replicated input !fib we add a tick. We can see that the work of
(νa)(P | fib〈10, a〉) is F (10) where F is defined by:

F (0) = 1 F (1) = 1 F (n+2) = 1+F (n)+F (n+1)

Size Input/Output Types

We now define a type system to bound the work of a process. The goal is to obtain a soundness
result: if a process P is typable then we can derive an integer expression K such that the work
of P is bounded by K.

Definition 4.2.1. The set of base types is given by the following grammar.

B := Nat[I, J ] | List[I, J ](B)

As for Definition 3.1.6, in the context ϕ; Φ, an integer n of type Nat[I, J ] must be such that
ϕ; Φ � I ≤ n ≤ J . Likewise, a list of type List[I, J ](B) must have a length between I and J . We
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ϕ; Φ � I ′ ≤ I ϕ; Φ � J ≤ J ′

ϕ; Φ ` Nat[I, J ] v Nat[I ′, J ′]

ϕ; Φ � I ′ ≤ I ϕ; Φ � J ≤ J ′ ϕ; Φ ` B v B′

ϕ; Φ ` List[I, J ](B) v List[I ′, J ′](B′)

Figure 4.8: Subtyping Rules for Base Sized types

may use Nat[I] to denote the type Nat[I, I] in order to gain some space, especially in examples
of type derivations.

As in Section 3.1, with those types comes a notion of subtyping, in order to have some
flexibility on bounds. This is described by the rules of Figure 4.8.

Then, after base types, we have to give a type to channel names in a process. As we want
to generalize subtyping for channel types, we will use input/output types, as explained before
in Section 4.1.2.

Unlike in usual input/output types, in this work we also distinguish two kinds of channels:
the simple channels (that we will often call channels), and replicated channels (called servers).
All the inputs on a server channel must be replicated (as in !a(ṽ).P ), while no input on a simple
channel can be replicated.

Definition 4.2.2. The set of types is given by the following grammar.

T := B | ch(T̃ ) | in(T̃ ) | out(T̃ ) | ∀̃i.srvK(T̃ ) | ∀̃i.isrvK(T̃ ) | ∀̃i.osrvK(T̃ )

The three different types for channels and servers correspond to the three different sets of
capabilities. We note srv when the server have both capabilities, isrv when it has only input
and osrv when it has only output. Then, for servers, we have additional information: there is
a quantification over index variables, and the index K stands for the complexity of the process
spawned by this server. This type for servers is very similar to the arrow type described in
Section 3.1.

A typical example could be a server taking as input a list and a channel, and sending to
this channel the sorted list, in time k · n where n is the size of the list: P = !a(x, b). · · · b〈e〉
where e represents at the end of the process the list x sorted. Such a server name a could be
given the type ∀i.srvk·i(List[0, i](B), out(List[0, i](B))). This type means that for all integers
i, if given a list of size at most i and an output channel waiting for a list of size at most i,
the process spawned by this server will stop at time at most k · i. As for functional programs,
the quantified index variables are very useful especially for replicated input, in the same way it
was useful for recursive functions. Some more details about the similarities will be explained in
Example 4.2.2.

Then, we describe subtyping for servers in Figure 4.9. Those rules have flavor similar to the
one described in Section 4.1.2. Note that the complexity can be modified by subtyping, with a
variance depending on the capabilities. As before, we can understand the variance by looking at
what modifications are safe. In an input server, if we can safely guarantee when defining a server
that the complexity is no greater than K ′, then we can safely guarantee that the complexity is
no greater than K with K ≥ K ′. Similarly, for an output server, if we can derive a complexity
bound under the assumption that the computation will not last longer than K ′, then we can
also derive this same complexity bound under the assumption that the computation will not
last longer than K, with K ≤ K ′.

We can now present the type system. Rules for expressions are given in Figure 4.10. The
typing for expressions ϕ; Φ; Γ ` e : T means that under the constraints Φ, in the context Γ, the
expression e can be given the type T .
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(ϕ, ĩ); Φ ` T̃ v Ũ (ϕ, ĩ); Φ ` Ũ v T̃ (ϕ, ĩ); Φ � K = K ′

ϕ; Φ ` ∀̃i.srvK(T̃ ) v ∀̃i.srvK′(Ũ)

ϕ; Φ ` ∀̃i.srvK(T̃ ) v ∀̃i.isrvK(T̃ ) ϕ; Φ ` ∀̃i.srvK(T̃ ) v ∀̃i.osrvK(T̃ )

(ϕ, ĩ); Φ ` T̃ v Ũ (ϕ, ĩ); Φ � K ′ ≤ K
ϕ; Φ ` ∀̃i.isrvK(T̃ ) v ∀̃i.isrvK′(Ũ)

(ϕ, ĩ); Φ ` Ũ v T̃ (ϕ, ĩ); Φ � K ≤ K ′

ϕ; Φ ` ∀̃i.osrvK(T̃ ) v ∀̃i.osrvK′(Ũ)

ϕ; Φ ` T v T ′ ϕ; Φ ` T ′ v T ′′

ϕ; Φ ` T v T ′′

Figure 4.9: Subtyping Rules for Server Types

v : T ∈ Γ
ϕ; Φ; Γ ` v : T ϕ; Φ; Γ ` 0 : Nat[0, 0] ϕ; Φ; Γ ` [] : List[0, 0](B)

ϕ; Φ; Γ ` e : Nat[I, J ]

ϕ; Φ; Γ ` s(e) : Nat[I+1, J+1]

ϕ; Φ; Γ ` e : B ϕ; Φ; Γ ` e′ : List[I, J ](B)

ϕ; Φ; Γ ` e :: e′ : List[I+1, J+1](B)

ϕ; Φ; ∆ ` e : U ϕ; Φ ` Γ v ∆ ϕ; Φ ` U v T
ϕ; Φ; Γ ` e : T

Figure 4.10: Typing Rules for Expressions

Then, rules for processes are described in Figure 4.11 and Figure 4.12. Figure 4.12 describes
rules specific to work, whereas rules in Figure 4.11 will be reused for span. A typing judgement
ϕ; Φ; Γ ` P / K intuitively means that under the constraints Φ, in a context Γ, a process P is
typable and its work complexity is bounded by K.

ϕ; Φ; Γ ` 0 / 0
ϕ; Φ; Γ, a : T ` P / K

ϕ; Φ; Γ ` (νa)P / K

ϕ; Φ; Γ ` e : Nat[I, J ] ϕ; (Φ, I ≤ 0); Γ ` P / K ϕ; (Φ, J ≥ 1); Γ, x : Nat[I−1, J−1] ` Q /K

ϕ; Φ; Γ ` match e {0 7→ P ; ; s(x) 7→ Q} / K

ϕ; Φ; Γ ` e : List[I, J ](B)

ϕ; (Φ, I ≤ 0); Γ ` P / K

ϕ; (Φ, J ≥ 1); Γ, x : B, y : List[I−1, J−1](B) ` Q /K

ϕ; Φ; Γ ` match e {[] 7→ P ; ; x :: y 7→ Q} / K

ϕ; Φ; ∆ ` P / K ′ ϕ; Φ ` Γ v ∆ ϕ; Φ � K ′ ≤ K
ϕ; Φ; Γ ` P / K

Figure 4.11: Common Typing Rules for Processes

The rules can be seen as a combination of the input/output typing rules of Section 4.1.2
with rules for the size type system for functional program of Section 3.1. The main differences
are that because of the two kinds of channels, we need two rules for an output. Note that a
replicated input has complexity zero, and it is a call to this server that generates complexity
in the type system, as for functions in Section 3.1. This is because once defined, a replicated
input stays during all the reduction, so we do not want them to generate complexity.

Note that there is a dissymmetry between servers and simple channel in this type system:
for servers, complexity comes from output and thus an index to keep track of the complexity
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ϕ; Φ; Γ ` P / K1 ϕ; Φ; Γ ` Q /K2

ϕ; Φ; Γ ` P | Q /K1+K2

ϕ; Φ; Γ ` P / K

ϕ; Φ; Γ ` tick.P / K+1

ϕ; Φ; Γ ` a : ∀̃i.isrvK(T̃ ) (ϕ, ĩ); Φ; Γ, ṽ : T̃ ` P / K

ϕ; Φ; Γ `!a(ṽ).P / 0

ϕ; Φ; Γ ` a : ∀̃i.osrvK(T̃ ) ϕ; Φ; Γ ` ẽ : T̃{J̃ /̃i}
ϕ; Φ; Γ ` a〈ẽ〉 / K{J̃ /̃i}

ϕ; Φ; Γ ` a : in(T̃ ) ϕ; Φ; Γ, ṽ : T̃ ` P / K

ϕ; Φ; Γ ` a(ṽ).P / K

ϕ; Φ; Γ ` a : out(T̃ ) ϕ; Φ; Γ ` ẽ : T̃

ϕ; Φ; Γ ` a〈ẽ〉 / 0

Figure 4.12: Work Typing Rules for Processes

is needed in the type, whereas for simple channels, complexity comes from input. However,
this dissymmetry is not necessary. Indeed, servers need to have those typing rules, because we
want a replicated input to have complexity 0 and we want polymorphism over indices, but for
simple channels we have a choice. We can either keep the current type system or modify simple
channels types such that they are similar to servers types (with polymorphism over indexes and
an index for complexity in the type). We choose to present the current type system first because
this way we can show this alternative choice of typing for simple channels instead of mimicking
servers. Another interesting type system would be a totally non-syntax directed type-system for
which we have the choice between those two typing behaviours for simple channels. For the sake
of simplicity, we avoid presenting this type system, but in fact the two choices have advantages
and disadvantages and so allowing two different choices of typing can increase expressivity.

Remark 4.2.1 (Advantages and Disadvantages of the Different Typing Behaviours). Consider
this example:

a().P1 | a().P2 | a〈〉 | a〈〉 | a〈〉

With the typing behaviour for simple channels described in Figure 4.12, we obtain a complexity
bound of the shape K1 + K2 where K1 is the complexity of P1 and K2 is the complexity of
P2. If we use a server-like typing behaviour, as described in Figure 4.15, then we have to give
a complexity for the channel a, and this complexity must be max(K1,K2). So, in the end,
we obtain a complexity bound equals to 3 ∗ max(K1,K2), which is less precise than K1 + K2.
However, if we consider this example:

a().P1 | a().P2 | a〈〉

Then, the typing behaviour presented in Figure 4.12 gives us a complexity bound K1 + K2,
whereas a server-like typing behaviour gives us a complexity bound max(K1,K2).

So, to sum up, informally the behaviour presented in Figure 4.12 gives more precise com-
plexity bound when there are no locked inputs but the server-like typing behaviour is more precise
when there are locked inputs. That is why a type system where we have a choice should be better
for theoretical analysis.

Example 4.2.2. Let us take again the process for Fibonacci described in Example 4.1.2. We
first give a typing for add. As there is no tick in add, this typing only shows how input/output
types and sized types work. A simplified version of this typing is given in Figure 4.13. In order
to gain some space, we do not precise the easy premises, and we automatically rename the typing
contexts. Also, recall that Nat[I] denotes the type Nat[I, I].
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ϕ; (i ≤ 0) � i+j = j

ϕ; (i ≤ 0); Γ ` m : Nat[i+j]

(i, j); (i ≤ 0); Γ ` a〈m〉 / 0

ϕ; (i ≥ 1) � ((i−1)+j)+1 = i+j

ϕ; (i ≥ 1); ∆, q : Nat[(i−1)+j] ` s(q) : Nat[i+j]

ϕ; (i ≥ 1); ∆, q : Nat[(i−1)+j] ` a〈s(q)〉 / 0

ϕ; (i ≥ 1); ∆ ` b(q).a〈s(q)〉 / 0

ϕ; (i ≥ 1); Γ, p : Nat[i−1], b : out(Nat[(i−1)+j]) ` · · · | b(q).a〈s(q)〉 / 0

(i, j); (i ≥ 1); Γ, p : Nat[i−1] ` (νb) · · · / 0

(i, j); ·; add : · · · , n : Nat[i],m : Nat[j], a : out(Nat[i+j]) ` match n {0 7→ a〈m〉; ; s(p) 7→ (νb) · · ·} / 0

·; ·; add : ∀i, j.srv0(Nat[i],Nat[j], out(Nat[i+j])) `!add(n,m, a). · · · / 0

Figure 4.13: A Typing Without Complexity for Addition

fib with i replaced by i−1

ϕ; Φ; ∆ ` fib〈m, b〉 / F (i−1)

fib with i replaced by i−2

ϕ; Φ; ∆ ` fib〈p, c〉 / F (i−2)

ϕ; Φ � Fib(i−1)+Fib(i−2) = Fib(i)

ϕ; Φ; ∆ ` c(x).b(y).add〈x, y, a〉 / 0

i; (i ≥ 2); ∆ ` fib〈m, b〉 | fib〈p, c〉 | c(x).b(y).add〈x, y, a〉 / F (i−1)+F (i−2)+0

i; (i ≥ 2); Γ,m : Nat[i−1], p : Nat[i−2], b : out(Nat[Fib(i−1)]), c : out(Nat[Fib(i−2)]) ` · · · | · · · | · · · / F (i)−1

i; (i−1 ≥ 1); Γ,m : Nat[i−1], p : Nat[i−2] ` (νb)(νc) · · · / F (i)−1

i; (i ≥ 1); Γ,m : Nat[i−1] ` match m {0 7→ a〈1〉; ; s(p) 7→ · · ·} / F (i)−1

i; ·; Γ ` match n {0 7→ a〈0〉; ; s(m) 7→ · · ·} / F (i)−1

i; ·; Γ ` tick.match n {0 7→ a〈0〉; ; s(m) 7→ · · ·} / (F (i)−1)+1

i; ·; fib : · · · , n : Nat[i], a : out(Nat[Fib(i)]) ` tick.match n {0 7→ a〈1〉; ; s(m) 7→ · · ·} / F (i)

·; ·; fib : ∀i.srvF (i)(Nat[i], out(Nat[Fib(i)])) `!fib(n, a).tick. · · · / 0

Figure 4.14: A Typing for Fibonacci (Work)

The way sizes and indices are used in this typing is similar to Section 3.1.
We now describe the typing for the Fibonacci function. Again, we will only focus on inter-

esting premises. The type derivation is given in Figure 4.14. We use the Fibonacci function in
indices, denoted Fib(I), and we also use the function F defined in Example 4.2.1.

4.2.2 Soundness of the Type System

We now state the properties of this typing system. We do not detail the proofs as all proofs
are a simplified version of the one for span that will be described in Section 4.4.2. The proof
follows the same methodology as Section 3.1: in this type system for work, we can easily obtain
the structural properties: weakening and strengthening. Then, we can prove the substitution
lemmas, and with those properties, we obtain the usual subject reduction.

Theorem 4.2.1 (Subject Reduction). If ϕ; Φ; Γ ` P / K then:

• If P → Q then ϕ; Φ; Γ ` Q /K.

• If P →1 Q then ϕ; Φ; Γ ` Q /K ′ with ϕ; Φ � K ′+1 ≤ K.

Proof. The second point can be proved by induction on P →1 Q . All the cases are direct, since
the rule for parallel composition is the sum of the two complexities and the rule for ν does not
change the complexity. Finally, the rule for tick gives directly this property.

So, as a consequence we almost immediately obtain that K is indeed a bound on the work
of P if we have ϕ; Φ; Γ ` P / K. Formally, we have:
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Theorem 4.2.2 (Work Complexity Bound). If ϕ; Φ; Γ ` P / K then, if we call n the work
complexity of P , we have ϕ; Φ � K ≥ n. In particular, for any ρ : ϕ → N such that ρ � Φ, we
have JKKρ ≥ n.

So, again, this complexity bound only makes sense if the set of constraints Φ is satisfiable.
We emphasize the fact that this soundness result is easily adaptable to similar processes and
type systems for work. As stated before, we can enrich processes with other algebraic data-
types and the proof can easily be adapted. We can also change the typing behaviour for simple
channels, and we still get the soundness. An interesting consequence of this soundness theorem
is that it immediately gives soundness for any subsystem. In particular, we now detail a weaker
typing system where the shapes of types are restricted in order to have an inference procedure
close to the one in [6].

4.2.3 A Hint for Type Inference

We present in this section a type inference procedure based from [6]. This work gives an
inference procedure for a sized type system for functional programs, in a similar fashion of
the one presented in Section 3.1. In order to define the procedure smoothly, arrow types are
restricted (restricted types are called canonical types). This paper then describes a sound
and complete inference procedure for this canonical type system. We describe how to obtain
intuitively a sound and complete type procedure for a subsystem of our work type system by
mimicking the inference procedure of [6]. Intuitively, in [6], the canonical form of a type forces
the input of functions to have the shape Nat[0, i] (or List[0, i](B)) for some new fresh variable
i. Then, in a type more complex indices, such as i2+j or other expressions, only appear at
positions that correspond to outputs.

So, what we will do is to give a type system inspired by this canonical form. Then, if we can
show that this type system is a restriction of the previous one for work, we obtain automatically
its soundness (with regard to work complexity). We can then use an inference procedure as in
[6], that we will not detail here, but it will be described in the Appendix A.1. There are two
steps to this type inference procedure, first we need to be able to generate constraints from a
process such that if this set of constraints is satisfiable, then the process is typable (soundness).
In order to show expressivity, we would also like that if a process is typable, then the generated
set of constraints is indeed satisfiable (completeness). With this, we know that we do not lose
expressivity with the reduction to a constraint satisfaction problem. Then, the second step,
is to give those constraints to a SMT solver and hope that it can solve it (recall that this is
undecidable in general). In this section, we will focus on the first step of this procedure.

We begin by changing the behaviour of channels, in order to have a quantification for channel
variables even for channel types, then we merge servers and channels together. This way, we
obtain a type for channels very close to the arrow type in [6].

Definition 4.2.3. The set of types and base types are given by the following grammar.

B := Nat[I, J ] | List[I, J ](B) T := B | ∀̃i.chK(T̃ ) | ∀̃i.inK(T̃ ) | ∀̃i.outK(T̃ )

With the associated subtype system described in Figure 4.8 and Figure 4.9 where srv is
replaced by ch. The typing rules are given by Figure 4.10, Figure 4.11 and Figure 4.15. So, the
only modification compared to the system we presented before is that channel types and server
types are not distinct.
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ϕ; Φ; Γ ` P / K1 ϕ; Φ; Γ ` Q /K2

ϕ; Φ; Γ ` P | Q /K1+K2

ϕ; Φ; Γ ` P / K

ϕ; Φ; Γ ` tick.P / K+1

ϕ; Φ; Γ ` a : ∀̃i.inK(T̃ ) (ϕ, ĩ); Φ; Γ, ṽ : T̃ ` P / K

ϕ; Φ; Γ `!a(ṽ).P / 0

ϕ; Φ; Γ ` a : ∀̃i.inK(T̃ ) (ϕ, ĩ); Φ; Γ, ṽ : T̃ ` P / K

ϕ; Φ; Γ ` a(ṽ).P / 0

ϕ; Φ; Γ ` a : ∀̃i.outK(T̃ ) ϕ; Φ; Γ ` ẽ : T̃{J̃ /̃i}
ϕ; Φ; Γ ` a〈ẽ〉 / K{J̃ /̃i}

Figure 4.15: Typing Rules for Processes for Work Inference

The Restricted Type System

In order to obtain a procedure for our type system, we would first need to begin by a classical
algorithm such that, given a process P , this algorithm gives a classical π-calculus type to this
process P . This is a standard type inference algorithm. This algorithm outputs a type in the
following grammar:

BA := Nat | List(B) | α, β, . . . TA := BA | ch(T̃A) | A,B, . . .
Where α, β, . . . are variables for base types, and A,B, . . . are variables for channel types. So,
similarly, our type inference procedure will use those base types variables α, β, . . . and those
channel types variables A,B, . . . .

For now, we only have a type system that gives a sound bound on the complexity, described
in Figure 4.15. So, we need to adapt it in order to obtain a type system very close to the one in
[6] so that we can mimic the type inference procedure. We call this type system the intermediate
type system.

Definition 4.2.4. For this intermediate type system, we consider the following grammar.

Bi := Nat[0, I] | List[0, I] | α, β, . . . Ti := Bi | ∀̃i.chK(T̃i) | A,B, . . .
Then, we define types in canonical form, inspired by [6].

Definition 4.2.5 (Canonical Intermediate Types). A canonical intermediate type is a type
given by the following grammar:

Bc := Nat[0, i+n] | List[0, i+n](Bc) | α, β, . . . Tc := Bc | ∀i1, . . . , im.chK(T̃c) | A,B, . . .
Where i is an index variable, n an integer and in the channel type, the index variables of K
are in {i1, . . . , im} and m is equal to the number of base type index occurrences in T̃c, noted
btocc(T̃c), and defined by:

• btocc(T 1
c , · · · , T kc ) = btocc(T 1

c )+ · · ·+btocc(T kc )

• btocc(Nat[0, i]) = 1

• btocc(List[0, i](Bc)) = 1+btocc(Bc)

• btocc(α) = 0
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v : Tc ∈ Γ

ϕ; Γ ` v : Tc
ϕ; Γ ` 0 : Nat[0, 0]

ϕ; Γ ` e : Nat[0, I]

ϕ; Γ ` s(e) : Nat[0, I+1]

ϕ; Γ ` [] : List[0, 0]
ϕ; Γ ` e : B1i ϕ; Γ ` e′ : List[0, I](B2i ) ϕ; · ` B1i ,B2i v Bi

ϕ; Γ ` e :: e′ : List[0, I+1](Bi)

Figure 4.16: Intermediate Typing Rules for Expressions

• btocc(∀i1, . . . , im.chK(T̃c)) = btocc(A) = 0

And then, we also ask that for a canonical intermediate channel type, all the indexes for base
types corresponding to the base type index occurences are an actual index variable (thus n = 0),
that they are all distinct, and in the left to right order (thus, we use all the different index variable
name exactly once in base types, and in a specific order). Moreover, as we are interested in
an implementable procedure, a special focus is given to names of binding variables. We ask
explicitly that in a canonical type, a binding name is never used twice in a type.

Example 4.2.3. The following type is a canonical channel type:

∀i11, i12, i13.ch(i11+i13)(Nat[0, i11], ∀i21.ch0(Nat[0, i21], ch3()), List[0, i12](List[0, i13](α)), A)

The first quantification is over 3 index variables because there are exaclty 3 positions in this
type in which we can put an index variable without crossing another quantifier. Then, those 3
variables are indeed ordered from left to right. All the subtypes are also canonical, and notice
that base type variables and type variables are not taken in account in the counting of index
variables.

Obviously, a canonical intermediate type is an intermediate type. So, in our intermediate
type system, we will ask that all channel names have a canonical type. Moreover, in a context Γ,
we will require all types to be canonical. Formally, a typing judgment has the shape ϕ; Γ ` P /K
where Γ contains only canonical types, and there is no set of constraints Φ as there are no such
constraints in [6]. Subtyping is defined as a restriction of the previous subtyping relation
to intermediate types, and the type system is given by Figure 4.16 and Figure 4.17. One
can see that the invariants described above on canonical types are respected. Also, there are
no subtyping rules in this type system, as canonical types do not need subtyping, and the
modifications on the complexity bounds are internalized in the useful rules. Moreover, in this
typing, and for the following of this section, we only consider processes with well written pattern
matching, meaning that pattern matching can only be done on base type variable (otherwise,
the pattern matching is not useful...). Please note that this intermediate type system is not
used for its theoretical value, that is why we can ask those kinds of restrictions, since we are
not interested in subject reduction for this intermediate type system. Note that thanks to this
restriction, we can consider that the base type element in a pattern matching is a canonical
type, and this helps us get rid of the previous rule for pattern matching when we needed to
add constraints in the branches. The idea is that instead of adding the constraints i ≥ 1 in the
typing, we do a substitution and replace i by an index of the shape i+1, and so i now becomes
the size of the predecessor (or the tail for a list). Without this set of constraint Φ in a typing,
we obtain a type system closer to the one in [6].

Now, let us show that if a process is typable with those intermediate types, then it is typable
for the type system presented in the beginning of this section.
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ϕ; Γ ` 0 / 0
ϕ; Γ ` P / K1 ϕ; Γ ` Q /K2 ϕ; · � K1+K2 ≤ K

ϕ; Γ ` P | Q /K

ϕ; Γ, a : Tc ` P / K

ϕ; Γ ` (νa)P / K

ϕ; Γ ` a : ∀̃i.chK(T̃c) (ϕ, ĩ); Γ, ṽ : T̃c ` P / K′ (ϕ, ĩ); · � K′ ≤ K
ϕ; Γ `!a(ṽ).P / 0

ϕ; Γ ` a : ∀̃i.chK(T̃c) (ϕ, ĩ); Γ, ṽ : T̃c ` P / K′ (ϕ, ĩ); · � K′ ≤ K
ϕ; Γ ` a(ṽ).P / 0

ϕ; Γ ` a : ∀̃i.chK(T̃c) ϕ; Γ ` ẽ : T̃c{J̃ /̃i} ϕ; · � K{J̃ /̃i} ≤ K′

ϕ; Γ ` a〈ẽ〉 / K′
ϕ; Γ ` P / K

ϕ; Γ ` tick.P / K+1

ϕ; Γ ` v : Nat[0, i] ϕ; Γ ` P / K1 ϕ; · � K1 ≤ K ϕ; Γ{i+1/i}, x : Nat[0, i] ` Q /K2 ϕ; · � K2 ≤ K{i+1/i}
ϕ; Γ ` match v {0 7→ P ; ; s(x) 7→ Q} / K

ϕ; Γ ` v : Nat[0, i+n+1] ϕ; Γ ` P / K1 ϕ; · � K1 ≤ K ϕ; Γ, x : Nat[0, i+n] ` Q /K2 ϕ; · � K2 ≤ K
ϕ; Γ ` match v {0 7→ P ; ; s(x) 7→ Q} / K

ϕ; Γ ` v : List[0, i](Bi) ϕ; Γ ` P / K1 ϕ; Γ{i+1/i}, x : Bi, y : List[0, i](Bi) ` Q /K2 ϕ � K1 ≤ K;K2 ≤ K{i+1/i}
ϕ; Γ ` match v {[] 7→ P ; ; x :: y 7→ Q} / K

ϕ; Γ ` v : List[0, i+n+1](Bi) ϕ; Γ ` P / K1 ϕ; · � K1 ≤ K ϕ; Γ, x : Bi, y : List[0, i+n](Bi) ` Q /K2 ϕ; · � K2 ≤ K
ϕ; Γ ` match v {[] 7→ P ; ; x :: y 7→ Q} / K

Figure 4.17: Intermediate Typing Rules for Processes

Theorem 4.2.3. If a process P is such that ϕ; Γ ` P / K by the rules of Figure 4.16 and
Figure 4.17, then, for any Γsub that is Γ where all type variables have been substituted by actual
types, we have ϕ; ·; Γsub ` P / K for the rules of Figure 4.10, Figure 4.11 and Figure 4.15.

Proof. The proof is done by induction on ϕ; Γ ` P / K. The type variables do not cause any
problem, since in a intermediate typing, if we can use a type variable then it means that this
type is never really inspected. When typing an expression, this is rather direct, using subtyping
for expressions. Again, for typing rules for processes, a lot of cases are direct just by using the
subtyping rule of Figure 4.11. Thus, we only detail the interesting cases.

• If the typing is

a : ∀̃i.chK(T̃c) ∈ Γ

ϕ; Γ ` a : ∀̃i.chK(T̃c) (ϕ, ĩ); Γ, ṽ : T̃c ` P / K ′ (ϕ, ĩ); · � K ′ ≤ K
ϕ; Γ!a(ṽ).P / 0

Note that with the rules of Figure 4.16, the only way to type a channel is by the axiom
rule. Then, we can give the following type:

a : ∀̃i.chK(T̃csub) ∈ Γsub

ϕ; ·; Γsub ` a : ∀̃i.inK(T̃csub)

(ϕ, ĩ); ·; Γsub, ṽ : T̃csub ` P / K ′ (ϕ, ĩ); · ` K ′ v K
(ϕ, ĩ); ·; Γsub, ṽ : T̃csub ` P / K

ϕ; ·; !a(ṽ).P / 0

• If the typing is

ϕ; Γ ` v : Nat[0, i] ϕ; Γ ` P / K1 ϕ; · � K1 ≤ K ϕ; Γ{i+1/i}, x : Nat[0, i] ` Q /K2 ϕ; · � K2 ≤ K{i+1/i}
ϕ; Γ ` match v {0 7→ P ; ; s(x) 7→ Q} / K

Then, we would like to give the following type:
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ϕ; ·; Γsub ` e : Nat[0, i] ϕ; (0 ≤ 0); Γsub ` P / K ϕ; (i ≥ 1); Γsub, x : Nat[0−1, i−1] ` Q /K

ϕ; ·; Γsub ` match v {0 7→ P ; ; s(x) 7→ Q} / K

From the typing ϕ; Γ ` P / K1, obtaining ϕ; (0 ≤ 0); Γsub ` P / K is direct by induction
hypothesis. Now, by induction hypothesis we also obtain

ϕ; ·; Γsub{i+1/i}, x : Nat[0, i] ` Q /K2 ϕ; · � K2 ≤ K{i+1/i}

Then, by index substitution, we have

ϕ; ·; Γsub{i+1/i}{i−1/i}, x : Nat[0, i−1] ` Q /K2{i−1/i} ϕ; · � K2{i−1/i} ≤ K{i+1/i}{i−1/i}

Thus, by weakening we obtain:

ϕ; (i ≥ 1); Γsub{i+1/i}{i−1/i}, x : Nat[0, i−1] ` Q /K2{i−1/i}

ϕ; (i ≥ 1) � K2{i−1/i} ≤ K{i+1/i}{i−1/i}

Then, as we have i ≥ 1, we have (i−1)+1 = i. Moreover, 0−1 = 0 by definition. So, by
subtyping we obtain

ϕ; (i ≥ 1); Γsub, x : Nat[0, i−1] ` Q /K

Thus, we can conclude the proof as the typing above can be obtained. The other case of
pattern matching, where e has a type Nat[0, i+ n+ 1], is easier.

With this, we covered all the important cases.

So, if we have a correct and complete procedure for this intermediate type system, we obtain
indeed a bound on the complexity by soundness for the other type system. Moreover, this new
type system does not seem too restrictive. The main problem is that we cannot have too much
information about the input. For example in order to have a more understandable type, we
would like to be able to assume that an input list is of a size 2i for some i. With this type
system, this kind of assumption is not possible, thus we would need to use the logarithm in
order to obtain a similar reasoning. In general, we can lose some information about the input
of a function that may have been useful. Subtyping also becomes very restrained, we have
no more input/output types and subtyping between canonical forms is not really useful, this
is just equality everywhere. Note that in practice, because of canonical types, checking type
equality is easy, since canonical forms simplify a lot the problems of α-renaming and reordering
of quantifiers.

Still, with this intermediate type system, we can mimic the work in [6], and we obtain a
procedure that is sound and complete. We have not explored yet a procedure that would work
directly in our original type system and be complete with regard to this type system. Some
details of the procedure and the proof are given in the Appendix A.1.

4.3 Parallel Complexity

4.3.1 Span with Annotated Processes

We now define another notion of complexity taking into account parallelism. Before presenting
formally the semantics, we show with some simple examples what kind of properties we want
for this parallel complexity.

First, we want a parallel complexity that works as if we had an infinite number of processors.
So, on the process tick.0 | tick.0 | tick.0 | · · · | tick.0 we want the complexity to be 1, whatever
the number of tick in parallel.
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Moreover, reductions with a zero-cost complexity (in our setting, this should mean all reduc-
tions except when we reduce a tick) should not harm this maximal parallelism. For example
a().tick.0 | a〈〉 | tick.0 should also have complexity one, because intuitively this synchroniza-
tion between the input and the output can be done independently of the tick on the right, and
then the tick on the left can be reduced in parallel with the tick on the right.

Finally, as before for the work, adding a tick should not change the behaviour of a process.
For instance, consider the process tick.a().P0 | a().tick.P1 | a〈〉, where a is not used in P0

and P1. This process should have the complexity max(1+C0, 1+C1), where Ci is the cost of Pi.
Indeed, there are two possible reductions, either we reduce the tick, and then we synchronize
the left input with the output, and continue with P0, or we first do the synchronization with
the right input and the output, then we reduce the ticks and finally we continue as P1.

Remark 4.3.1. A notion of complexity defined with maximal progress, as in [72], would not
satisfy this condition. Indeed, maximal progress is usually defined as ”when a communication
is available, then we need to do this communication”. In this previous example, this would
impose the reduction path to P1. We can also construct a similar example without tick, with
b().a().P0 | b〈〉 | a().(c().P1 | c〈〉) | a〈〉

A possible way to define such a parallel complexity by using the literature would be to adapt
causal complexity [45, 43, 42], however we believe there is a simpler presentation in our case.
We will show at the end of this section the equivalence between our notion and a kind of causal
complexity. The idea for defining span has been proposed by Naoki Kobayashi. It consists in
introducing a new construction for processes, m : P , where m is an integer. A process using
this constructor will be called an annotated process. Intuitively, this annotated process has the
meaning P with m ticks before. We can then enrich the congruence relation ≡ with the following
rules:

m : (P | Q) ≡ (m : P ) | (m : Q) m : (νa)P ≡ (νa)(m : P ) m : (n : P ) ≡ (m+n) : P 0 : P ≡ P

This intuitively means that the ticks can be distributed over parallel composition, name
creation can be done before or after ticks without changing the semantics, ticks can be grouped
together, and finally zero ticks is equivalent to nothing.

With this congruence relation and this new constructor, we can give a new shape to the
canonical form presented in Definition 4.1.1.

Definition 4.3.1 (Canonical Form for Annotated Processes). An annotated process is in canon-
ical form if it has the shape:

(νã)(n1 : G1 | · · · | nm : Gm)

with G1, . . . , Gm guarded annotated processes, defined as in Definition 4.1.1.

Notice that the congruence relation above allows to obtain this canonical form from any
annotated processes. With this intuition in mind, we can then define a reduction relation ⇒
for annotated processes. The rules are given in Figure 4.18. We do not detail the rules for
integers as they are deducible from the ones for lists. Intuitively, this semantics works as the
usual semantics for π-calculus, but when doing a synchronization, as we need both the input
and the output to be ready, the synchronization can only happen after the maximum of the two
annotations.

We then define the parallel complexity of an annotated process.

Definition 4.3.2 (Parallel Complexity). Let P be an annotated process. We define its local
complexity C`(P ) by:
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(n : a(ṽ).P ) | (m : a〈ẽ〉)⇒ (max(n,m) : P [̃v := ẽ]) tick.P ⇒ 1 : P

(n :!a(ṽ).P ) | (m : a〈ẽ〉)⇒ (n :!a(ṽ).P ) | (max(n,m) : P [̃v := ẽ])

match [] {[] 7→ P ; ; x :: y 7→ Q} ⇒ P

match e :: e′ {[] 7→ P ; ; x :: y 7→ Q} ⇒ Q[x, y := e, e′]

P ⇒ Q

P | R⇒ Q | R
P ⇒ Q

(νa)P ⇒ (νa)Q

P ⇒ Q

(n : P )⇒ (n : Q)

P ≡ P ′ P ′ ⇒ Q′ Q′ ≡ Q
P ⇒ Q

Figure 4.18: Reduction Rules

• C`(n : P ) = n+C`(P )

• C`(P | Q) = max(C`(P ), C`(Q))

• C`((νa)P ) = C`(P )

• C`(G) = 0 if G is a guarded process

Equivalently, C`(P ) is the maximal integer that appears in the canonical form of P . Then, for
an annotated process P , its global parallel complexity is given by max{n | P ⇒∗ Q∧C`(Q) = n}
where ⇒∗ is the reflexive and transitive closure of ⇒.

To show that this parallel complexity is well-behaved, we give the following lemmas.

Lemma 4.3.1 (Congruence and Local Complexity). Let P,Q be annotated processes such that
P ≡ Q. Then, we have C`(P ) = C`(Q).

Lemma 4.3.2 (Reduction and Local Complexity). Let P, P ′ be annotated processes such that
P ⇒ P ′. Then, we have C`(P ′) ≥ C`(P ).

Those lemmas are proved by induction. The main point for the second lemma is that guarded
processes have a local complexity equal to zero, so doing a reduction will always increase this
local complexity. Thus, in order to bound the complexity of an annotated process, we need
to reduce it with ⇒, and then we have to take the maximum local complexity over all normal
forms. Moreover, this semantics respects the conditions given in the beginning of this section.

4.3.2 Span and Causal Complexity

In this section, we present how our notion of span can be linked with the causal complexity of
the literature. This section is not mandatory to understand the typing systems for span, but
we believe it can be of interest to show that both annotated processes and causal complexity
are well-behaved notions of parallel complexity in the π-calculus.

Presentation of Causal Complexity

We present here a notion of causal complexity inspired by other works [45, 43, 42]. We explained
before with the canonical form in Definition 4.1.1 that a process can be described by a set
of names and a multiset of guarded processes, when working up to congruence. For causal
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complexity, we consider more structure for processes. The idea is to see a process as a set
of names and a binary tree where leaves are guarded processes and a node means parallel
composition. So formally, instead of using the previous congruence relation, we use the tree
congruence. This is defined as the least congruence relation ≡t closed under:

(νa)(νb)P ≡t (νb)(νa)P

(νa)(P | Q) ≡t (νa)P | Q (when a is not free in Q) (νa)(P | Q) ≡t P | (νa)Q (when a is not free in P )

So, this tree congruence can indeed move names as before, but it preserves the tree-shape of
a process. This time, the canonical form, initially described in Definition 4.1.1, has the shape
(νã)t, where t is a tree as defined above. With this intuition, we can redefine the semantics in
order to preserve this tree structure. The tree rules are described in Figure 4.19. It is supposed
in this reduction rules that for the left-hand side, all the names (νa) are at the beginning of
the process, as in the canonical form. So, for example, from a process P seen as a tree with at
position p a replicated input !a(ṽ).Q and at position p′ an output a〈ẽ〉, we obtain the process
P ′, the same tree as P , with at position p the same replicated input but at position p′ we have
the tree corresponding to the process Q[̃v := ẽ]. This reduction step is annotated by a location
τ〈p, p′〉 in order to remember at which positions the modification happened, and what was the
action performed (here τ means a communication). In the same way, we can define a reduction
annotated by a tick, or a match. An alternative presentation of this semantics, closer to the
one in [45], with a labelled transition system, is also possible. As for the standard reduction in
π-calculus, we could show that both semantics (the one with the congruence and the one with
the labelled transition system) are equivalent. We work with the tree congruence definition
because it is easier to use in proofs.

The goal of this semantics is first to preserve the tree structure in a reduction step, and
second to remember when doing a reduction step where the modification occurs exactly in the
tree. Then, we can define a causality relation between locations. The idea is that a location `1
causes a location `2 when the reduction step with location `2 could not have happened without
the reduction step with location `1.

Formally, we define a location by the following grammar.

p := ε | 0 · p | 1 · p ` := p; tick | p; if | τ〈p, p′〉

The intuition is that a reduction P → P ′ with location p; tick removed the top tick

of the guarded process of P at position p. A reduction P → P ′ with location τ〈p, p′〉 is a
communication between the input process at position p and the output process at position p′.
Finally, the action p; if is for the position of a pattern-matching reduction. Then, we can define
a causality relation ` ≺c `′ between locations:

Definition 4.3.3. The causality relation ` ≺c `′ between locations is defined by:

• p; tick ≺c p′; tick when p is a prefix of p′

• p; tick ≺c τ〈p0, p1〉 when p is a prefix of p0 or p1

• τ〈p0, p1〉 ≺c p; tick when p1 is a prefix of p

• τ〈p0, p1〉 ≺c τ〈p′0, p′1〉 when p1 is a prefix of p′0 or p′1.

By extension, we will sometimes say that a location ` ≺c p when ` ≺c p; tick.

And for if locations, they behave as a tick location. The main interest of causal complexity
is that this notion of causality can be adapted to account for different behaviours. For example,
in [45], the causality relation is different. Here, we choose this causality relation to show the

82



P

!a(ṽ).Q

p

a〈ẽ〉

p′
τ〈p, p′〉

P ′

!a(ṽ).Q Q[̃v := ẽ]

p p′

P

a(ṽ).Q

p

a〈ẽ〉

p′
τ〈p, p′〉

P ′

0 Q[̃v := ẽ]

p p′

P

tick.Q

p

p; tick

P ′

Q

p

P

match [] {[] 7→ Q; ; x :: y 7→ R}

p

p; if

P ′

Q

p

P

match a :: q {[] 7→ Q; ; x :: y 7→ R}

p

p; if

P ′

R[x, y := a, q]

p

Figure 4.19: Semantics for Causal Complexity

equivalence with annotated processes, and in this sense, our notion of span is a particular case
of causal complexity with this choice of causality relation.

The important point in the causality relation we define is that a τ location causes another
location ` when the output position is a prefix of the positions in `. Indeed, for a communication
with a non-replicated input, the input position becomes a 0 thus it cannot cause anything, and
for a communication with a replicated input, we consider that two calls to the same replicated
input are independent of each other. Then, the important point is that two reductions with
independent locations could be done in any order, it would not change the final tree.

With this definition of causality, intuitively we can define causal complexity of a computation
as the maximal number of tick in all the chains of causality in the computation.

Definition 4.3.4 (Computation). A computation from a process P is a sequence (Pi, `i)i≤N

such that P0 = P and Pi
`i−→ Pi+1 for i < N .

Definition 4.3.5 (Causal Complexity). In a computation (Pi, `i)i≤N , we say that `i depends
on `j, noted `i ≺ `j when i < j and `i ≺c `j. Then, the causal complexity of this computation
is given by the maximal number of tick locations in all the chains of ≺?, the reflexive and

83



transitive closure of ≺. Then, the causal complexity of a process P is defined as the maximal
causal complexity over all computations from P .

Remark 4.3.2. In the rules for synchronization in Figure 4.19, the continuation of the input is
that an unusual position. Indeed, the continuation is put where the output was, instead of where
the input was. We choose this presentation because this way, we obtain a simple statement for
an exchange lemma that can be proved easily:

”If P0
`−→ P1

`′−→ P2 and ` ⊀c `′, then there exists P ′1 and P ′2 with P0
`′−→ P ′1

`−→ P ′2 and
P2 ≡t P ′2 ” With an alternative presentation where the continuation is put at the input position,
we could have for example

!a(v).P | (a〈e〉 | a〈e′〉)→ (!a(v).P | P [v := e]) | (0 | a〈e′〉)→ ((!a(v).P | P [v := e′]) | P [v := e]) | (0 | 0)

And if we exchange the two reduction steps we obtain

!a(v).P | (a〈e〉 | a〈e′〉)→2 ((!a(v).P | P [v := e]) | P [v := e′]) | (0 | 0)

And so, the tree has been slightly modified, thus the exchange lemma is harder to state with
tree congruence only. Moreover, as the shape of the tree changes, then the locations may also
change, so a notion of trace equivalence may be needed.

We can now prove the equivalence between the notions of parallel complexity with annotated
processes complexity and causal complexity for this particular causality relation.

Parallel Complexity ≥ Causal Complexity

In this section, we consider causal complexity, and we show that the parallel complexity is
always greater than causal complexity. Formally, we prove the following lemma.

Lemma 4.3.3. Let P be a process. Let (Pi, `i)i≤N be a computation from P with causal com-
plexity K. Then, the global parallel complexity of P is greater than K.

In order to do that, we show that we can do the same computation with our semantics with
annotated processes. Let us take a process P seen as a tree. By definition, each leaf of P is
a guarded process G. For each leaf, we replace the guarded process G by 0 : G, and we call
P ′ this annotated process. By the definition of congruence for annotated processes, we have
P ≡ P ′. Then, we will work with this tree representation for annotated processes.

Definition 4.3.6 (Tree Representation of Annotated Processes). We consider annotated trees
such that a set of names is given at the beginning, nodes represent parallel composition and leaves
are processes of the shape n : G with G guarded. Such a tree indeed represents an annotated
process.

Then, we say that an annotated process P ′ seen as a tree is an annotation of a process P
seen as a tree if P ′ and P have exactly the same shape, and each leaf G of P is a leaf n : G for
P ′.

So, by definition P ′ is an annotation of P . We can then prove the following lemma:

Lemma 4.3.4 (Causal Reduction and Annotation). Suppose that P
`−→ Q. Then, for any P ′

annotation of P , we have P ′ ⇒ Q′ where Q′ is an annotation of Q.
Moreover, we have:

• If ` = p; tick then Q′ has the same annotation as P ′ for all leaves at a position p′ such
that p is not a prefix of p′. For all the other leaves, Q′ has the annotation n+ 1 where n
is the annotation for the leaf at position p in P ′
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• If ` = p; if then Q′ has the same annotation as P ′ for all leaves at a position p′ such that
p is not a prefix of p′. For all the other leaves, Q′ has the annotation n where n is the
annotation for the leaf at position p in P ′

• If ` = τ〈p, p′〉 then Q′ has the same annotation as P ′ for all leaves at position q such that
p′ is not a prefix of q. For all the other leaves, Q′ has the annotation max(n,m) where n
is the annotation for the leaf at position p in P ′ and m is the annotation for the leaf at
position p′ in P ′.

Proof. The proof is done by case analysis on the rules of Figure 4.19. All cases are rather
direct. The idea is to always keep the same tree shape in the reduction ⇒, and then to make
the names go up and the annotations go down after doing this reduction using the congruence
rules. Formally, the names can go up with ((νa)P ) | Q ≡ (νa)(P | Q) (always possible by
α-renaming) and n : ((νa)P ) ≡ (νa)(n : P ), and then the annotations can go down with
n : (P | Q) ≡ n : P | n : Q. Then, with the shape of the reduction ⇒ we can indeed see that
the annotations indeed correspond to the one given in this lemma.

With this lemma, we can start from P ′ the annotation of P , and simulate the computation.
Now we only need to show that the annotations correspond to the number of ticks in a chain
of causality. Formally, we prove the following lemma.

Lemma 4.3.5. Let (P ′i , `i)i≤N be the computation given by the previous lemma from an original
computation (Pi, `i)i≤N . Then, for all i ≤ N , the annotation of a guarded process G at position
p in P ′i is an upper bound of the maximal number of tick locations in all chains of ≺? for the
locations `0, . . . , `i−1 such that the last location ` of this chain satisfies ` ≺c p

We prove this by induction on i.

• This is true for i = 0 since P ′ is P annotated with zeros everywhere.

• Let i < N . Suppose that this is true for P ′i , the annotation of Pi. Let us look at the

reduction Pi
`i−→ Pi+1.

– If `i = p; if. Then by induction hypothesis, the annotation n for the pattern matching
bounds the maximal number of tick locations in all chains of ≺? for the locations
`0, . . . , `i−1 such that the last location ` is such that ` ≺c p. Let us look at P ′i+1

given by lemma 4.3.4. For all the positions in P ′i+1 with p not a prefix, dependency
did not change since `i = p; if does not cause those positions. As annotations did not
change either, the hypothesis is still correct. For the new positions in the tree with
p as a prefix, all the annotations are n. Any chain of causality ≺? with the locations
`0, . . . , `i is either a chains that does not contain `i and that caused p, and so n is a
bound by induction hypothesis, or it is a chain that contains `i and so it is a chain
in causal relation with p, and so n is a bound.

– If `i = p; tick. Then by induction hypothesis, the annotation n for the tick cor-
responds to the maximal number of tick locations in all chains of ≺? for the lo-
cations `0, . . . , `i−1 that are also in causality ≺c with p. Let us look at P ′i+1 given
by lemma 4.3.4. For all the positions in P ′i+1 with p not a prefix, dependency did
not change since `i = p; if does not cause those positions. As annotations did not
change either, the hypothesis is still correct. For the new positions in the tree with
p as a prefix, all the annotations are n. All chains of causality ≺? with the locations
`0, . . . , `i are either chains that do not contain `i and that caused p and so n + 1 is
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P

n : a(ṽ).Q

p

m : a〈ẽ〉

p′ p

P ′

n : 0

max(n,m) : Q[ṽ := ẽ]

p p′

Figure 4.20: Tree Semantics for Span

a bound because n is a bound by induction hypothesis, either they contain `i and so
in this case it was a chain in causal relation with p and so n+ 1 is a bound as n is a
bound on the causality between `0 and `i−1 and the last location `i adds one to the
complexity.

– If `i = τ〈p, p′〉. By induction hypothesis, the annotation n for the input and m for
the output are bounds on some chains of causality on `0, . . . , `i−1. Let us look at P ′i+1

given by Lemma 4.3.4. For all positions that are not a prefix of p′, nothing changed
so the hypothesis is still true. Let us look at positions with p′ as a prefix. All the
annotations for those positions are max(n,m). Let us look at chains of causality on
`0, . . . , `i that end with a location that causes those positions. The new chains that
were not in the previous hypothesis are the ones that finish with `i. For those chains,
either they cause `i because they cause p or because they cause p′. In both cases, n
or m was a bound on the number of ticks by induction hypothesis. So, max(n,m) is
indeed a bound on the number of ticks for all those chains.

This concludes the proof. So, in the end, the annotation in position p in PN is a bound on
chains of causality that cause p. Moreover, for any chain of causality, this chain causes its last
position (or output position by definition of causality). So, all chains of causality are bounded
by at least one of the annotations, so the maximum over all annotations is a bound on the
causal complexity. This directly gives us that global parallel complexity is greater than causal
complexity.

Causal Complexity ≥ Parallel Complexity

Let us work on the converse. In order to do that, we will restrict a bit the congruence ≡ for
annotated processes and expand the semantics⇒ in order to work with trees. So, as before, we
can define a tree congruence ≡t for annotated processes, with the base rules

(νa)(νb)P ≡t (νb)(νa)P

(νa)(P | Q) ≡t (νa)P | Q (when a is not free in Q) (νa)(P | Q) ≡t P | (νa)Q (when a is not free in P )

n : (P | Q) ≡ n : P | n : Q n : (m : P ) ≡ (n+m) : P (νa)(n : P ) ≡ n : ((νa)P ) 0 : P ≡ P

And then we define the semantics⇒ exactly as before but with trees instead of simple processes
in parallel. An example is given in Figure 4.20

As before, any annotated process can be written in a tree representation as in Definition 4.3.6
using the tree congruence rule ≡t for annotated processes. So, from this, it is rather direct that
this semantics defined with tree ⇒ is equivalent to the previously defined ⇒, in the sense that
they give the same complexity. (It relies in particular on the fact that congruence does not
change the parallel complexity). And now, we can work on this parallel complexity with tree
representation. Formally, we want to prove:
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Lemma 4.3.6. If P is a process without annotation, with P (⇒)∗Q and C`(Q) = K, then there
is a computation (Pi, `i)i≤N from P with causal complexity greater than K.

So, by definition of causal complexity and parallel complexity, this will indeed show that
the causal complexity is greater than the parallel complexity.

As we only need to prove this lemma for processes without annotation, we can take an
additional hypothesis on annotated processes: we consider in the following that annotations
appear exclusively at the ”top-level” of a process, so there is no annotation in the subprocess
P in a(ṽ).P , in tick.P , in !a(ṽ).P or in the subprocesses of a pattern matching. We can take
this hypothesis because if a process P satisfies this hypothesis and P ⇒ Q then Q also satisfies
this hypothesis. And of course, processes without annotation satisfy this hypothesis. Moreover,
in this definition, we do not consider 0 : P as a real annotation since it can be removed by
congruence. We start by the following definition.

Definition 4.3.7 (Removing Annotation). Let P be a tree representation of an annotated
process. We define forget(P ) as the tree P where leaves n : G are replaced by G.

Note that this definition makes sense only because of the previous hypothesis, otherwise we
would need to apply recursively the forgetful function to G. We then easily show the following
lemma.

Lemma 4.3.7 (Forget Reductions). Suppose that P ⇒ Q. Then, we have forget(P )
`−→

forget(Q) for some location `.

Proof. The proof is direct because we modified ⇒ in order to obtain immediately this. Note
that the reduction tick.P ⇒ 1 : P , or more generally n : tick.P ⇒ (n+1) : P here corresponds
indeed to removing a tick with the forgetful function.

With this lemma, we can start from forget(P ) and simulate the reduction (⇒)∗. Now we only
need to show that the annotations are bounded by the number of ticks in a chain of dependency.
We show the following lemma:

Lemma 4.3.8. If P is a process without annotation, and if P (⇒)∗Q, then there is a compu-
tation (Pi, `i)i≤N from P = forget(P ) to forget(Q). Moreover, for each leaf n : G at position p
in Q, there is a chain of causality ≺? with at least n ticks that ends with a location ` such that
` ≺c p.

Note that from this lemma we can deduce immediately Lemma 4.3.6. We prove this by
induction on P (⇒)∗Q

• If this relation is the reflexive one, and P = Q, this is direct because all annotations are
equal to 0.

• Now suppose we have P (⇒)∗R ⇒ Q. By induction hypothesis, there is a computation
(Pi, `i)i≤N from forget(P ) to forget(R), with the expected chains of causality. We now
proceed by case analysis on R⇒ Q.

– If this reduction is a pattern matching reduction at position p. Then, we have

forget(R)
p;if−→ forget(Q). Let us take a leaf n : G at position p′ of Q. If p is not a

prefix of p′, then this leaf was also in R. So, by induction hypothesis, we obtain the
desired chain of causality. If p is a prefix of p′, then this n was also the annotation for
the position p in R. So, by induction hypothesis for R, there is a chain of causality
≺? with at least n ticks that ends with a location ` such that ` ≺c p. By definition, it
means that this last location ` ≺c p; if. So, this gives us a chain of causality with at
least n ticks that ends with a location that cause p′ in Q. This concludes this case.

87



– If this reduction is a tick reduction at position p. Then, we have forget(R)
p;tick−→

forget(Q). Let us take a leaf n : G at position p′ of Q. If p is not a prefix of p′, then
this leaf was also in R. So, by induction hypothesis, we obtain the desired chain of
causality. If p is a prefix of p′, then n−1 was the annotation for the position p in R.
So, by induction hypothesis for R, there is a chain of causality ≺? with at least n−1
ticks that ends with a location ` such that ` ≺c p. By definition, it means that this
last location ` ≺c p; tick. So, this gives us a chain of causality with at least n ticks
that ends with a location that causes p′ in Q. This concludes this case.

– If this reduction is a synchronization with input at position p and output at position

p′. Then, we have forget(R)
τ〈p,p′〉−→ forget(Q). Let us take a leaf n : G at position q of

Q. If p′ is not a prefix of q, then this leaf was also in R (except for the position p in
the case of non-replicated input where the guarded process changes but not the an-
notation, still the following reasoning works). So, by induction hypothesis, we obtain
the desired chain of causality. If p′ is a prefix of q, then, we have n = max(n0, n1)
with n0 the annotation for the input position p in R and n1 the annotation for the
output position p′ in R. Let us say, by symmetry, that n0 is the maximum between
those two. So, by induction hypothesis for R, there is a chain of causality ≺? with
at least n0 ticks that ends with a location ` such that ` ≺c p. By definition, it means
that this last location ` ≺c τ〈p, p′〉. So, this gives us a chain of causality with at least
n0 ticks that ends with a location that causes q in Q. This concludes this case.

This concludes the proof.

So, we have indeed that causal complexity is greater than parallel complexity.
From this, we have the equivalence between causal complexity and our definition of parallel

complexity.

4.4 Types for Span

We present here a type system for span, so we want as previously a type system such that
typing a process gives us a bound on its span. Formally, we will prove the following theorem:

Theorem 4.4.1 (Typing and Complexity). Let P be a process and m be its global parallel
complexity. If we have ϕ; Φ; Γ ` P / K, then ϕ; Φ � K ≥ m.

Notice that this theorem talks about open processes. However, our notion of complexity
does not behave well with open processes, similarly to what happened for Theorem 3.1.2. For
example the process match v {0 7→ P ; ; s(x) 7→ Q} is in normal form for a variable v, so this
process has global complexity 0. Still, we will also obtain the following corollary:

Corollary 4.4.1 (Complexity and Open Processes). We have:

• If ϕ; Φ; Γ, ṽ : T̃ ` P / K, then for any sequence of expressions ẽ such that ϕ; Φ; Γ ` ẽ : T̃ ,
K is a bound on the global complexity of P [̃v := ẽ]

• If ϕ; Φ; Γ ` P / K, then for any other annotated process Q such that ϕ; Φ; Γ ` Q / K ′,
max(K,K ′) is a bound on the global complexity of P | Q.

So, when we have a typing ϕ; Φ; Γ ` P / K for an open process, one should not see K as a
bound on the actual complexity on P , but it should be seen as a bound on the complexity of
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this particular process in an environment respecting the type of Γ. So, in ϕ; Φ; v : Nat[2, 10] `
match v {0 7→ P ; ; s(x) 7→ Q} / K, this index K is a bound on the complexity of this pattern
matching under the assumption that the environment gives to v an integer value between 2 and
10.

4.4.1 Sized Types with Time

The type system is an extension of the previous one for work. In order to take into account
parallelism, we need a way to synchronize the time between processes in parallel, thus we will
add some time information in types, as in [72] or [36].

Definition 4.4.1. The set of types and base types are given by the grammar:

B := Nat[I, J ] | List[I, J ](B)

T := B | chI(T̃ ) | inI(T̃ ) | outI(T̃ ) | ∀̃i.srvKI (T̃ ) | ∀̃i.isrvKI (T̃ ) | ∀̃i.osrvKI (T̃ )

As before, we have channel types, server types, and input/output capabilities in those types.
For a channel type or a server type, the index I is called the time of this type. Giving a channel
name the type chI(T̃ ) ensures that communication on this channel should happen within time
I. For example, a channel name of type ch0(T̃ ) should be used to communicate before any
tick occurs. With this information, we can know when the continuation of an input will be
available. Likewise, a server name of type ∀̃i.isrvKI (T̃ ) should be used in a replicated input,
and this replicated input should be ready to receive for any time greater than I. Typically, a
process tick.!a(v).P enforces that the type of a is ∀̃i.isrvKI (T̃ ) with I greater than one, as the
replicated input is not ready to receive at time zero. About the free variables in a server types,
∀̃i.srvKI (T̃ ), we emphasize the fact that ĩ can appear in K and T̃ but not in I. Indeed, the time
that a server takes to become ready does not depend on the values sent to this server. However,
in order to harmonize notations with channels, this time I is written after the quantification
over ĩ even if it does not depend on it.

As before, we define a notion of subtyping on those types. The rules are essentially the same
as the ones in Figures 4.8 and 4.9. The only difference is that we force the time of a type to be
invariant in subtyping.

In order to write the typing rules, we need some other definitions to work with time in types.
The first thing we need is a way to advance time.

Definition 4.4.2 (Advancing Time in Types). Given a set of index variables ϕ, a set of con-
straints Φ, a type T and an index I, we define T after I time units, denoted 〈T 〉ϕ;Φ

−I by:

• 〈B〉ϕ;Φ
−I = B

• 〈chJ(T̃ )〉ϕ;Φ
−I = ch(J−I)(T̃ ) if ϕ; Φ � J ≥ I. It is undefined otherwise.

Other channel types follow exactly the same pattern.

• 〈∀̃i.srvKJ (T̃ )〉ϕ;Φ
−I = ∀̃i.srvK

J−I(T̃ ) if ϕ; Φ � J ≥ I.

Otherwise, 〈∀̃i.srvKJ (T̃ )〉ϕ;Φ
−I = ∀̃i.osrvK

J−I(T̃ )

• 〈∀̃i.isrvKJ (T̃ )〉ϕ;Φ
−I = ∀̃i.isrvK

J−I(T̃ ) if ϕ; Φ � J ≥ I.
It is undefined otherwise.

• 〈∀̃i.srvKJ (T̃ )〉ϕ;Φ
−I = ∀̃i.osrvK

J−I(T̃ ).
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ϕ; Φ; Γ ` P / K ϕ; Φ; Γ ` Q /K

ϕ; Φ; Γ ` P | Q /K

ϕ; Φ; 〈Γ〉−1
` P / K

ϕ; Φ; Γ ` tick.P / K+1

ϕ; Φ; Γ,∆ ` a : ∀̃i.isrvKI (T̃ ) ϕ; Φ ` 〈Γ〉ϕ;Φ

−I v Γ′ Γ′ time invariant (ϕ, ĩ); Φ; Γ′, ṽ : T̃ ` P / K

ϕ; Φ; Γ,∆ ` !a(v) / I

ϕ; Φ; Γ ` a : inI(T̃ ) ϕ; Φ; 〈Γ〉−I , ṽ : T̃ ` P / K

ϕ; Φ; Γ ` a(v) / K+I

ϕ; Φ; Γ ` a : outI(T̃ ) ϕ; Φ; 〈Γ〉−I ` ẽ : T̃

ϕ; Φ; Γ ` a〈ẽ〉 / I

ϕ; Φ; Γ ` a : ∀̃i.osrvKI (T̃ ) ϕ; Φ; 〈Γ〉−I ` ẽ : T̃{J̃ /̃i}

ϕ; Φ; Γ ` a〈ẽ〉 / K{J̃ /̃i}+I

Figure 4.21: Span Typing Rules for Processes

This definition can be extended to contexts, with 〈v : T,Γ〉ϕ;Φ
−I = v : 〈T 〉ϕ;Φ

−I , 〈Γ〉
ϕ;Φ
−I if 〈T 〉ϕ;Φ

−I is

defined. Otherwise, 〈v : T,Γ〉ϕ;Φ
−I = 〈Γ〉ϕ;Φ

−I . We will often omit the ϕ; Φ in the notation when it
is clear from the context. Recall that as the order ≤ on indexes is not total, ϕ; Φ 2 J ≥ I does
not mean that ϕ; Φ � J < I.

Let us explain a bit the definition here. For base types, there is no time indication thus
nothing happens. For simple channel types, there are two cases. Either the bound J on the
time was greater than I, and so we only have to subtract I from J to make time pass. Either
the bound J was not greater than I, and so this channel cannot be used any more after I units
of time, thus we erase this channel from the context.

For servers types, there is a dissymmetry between the input and output capabilities. The
input capability behaves like a simple channel, if the time J is too small, we erase this capability.
However, the output capability is never erased, even if the time J is too small. This is because
when a server is defined, it must stay available until the end. Thus, an output to a server should
always be possible, no matter the time. Still, the input capability of a server should not be
available eternally, as the time J is supposed to mean the time for which a replicated input is
effectively defined. So, when this time has passed, we should not be able to define a replicated
input any more.

We notice that this definition of time advancing generates constraints in a type derivation.
Indeed, if we know that 〈a : chJ(T̃ )〉ϕ;Φ

−1
= a : chJ−1(T̃ ), then we have ϕ; Φ � J ≥ 1. This will

be useful to see what constraints the complexity of a process should satisfy, as we will see in
examples.

Definition 4.4.3 (Time Invariant Context). Given a set of index variables ϕ and a set of
constraints Φ, a context Γ is said to be time invariant when it only contains base type variables
or output server types ∀̃i.osrvKI (T̃ ) with ϕ; Φ � I = 0.

Such a context is thus invariant by the operator 〈·〉−I for any I. This is typically the kind
of context that we need to define a server, as a server should not be dependent on the time it is
called. We can now present the type system. Typing rules for expressions and some processes
do not change, they can be found in Figure 4.10 and Figure 4.11. In Figure 4.21, we present
the remaining rules in this type system that differ from the ones in Figure 4.12. As before, a
typing judgement ϕ; Φ; Γ ` P / K intuitively means that under the constraints Φ, in a context
Γ, a process P is typable and its span complexity is bounded by K.

The rule for parallel composition shows that we consider parallel complexity as we take the
maximum between the two processes instead of the sum. In practice, we ask for the same com-
plexity K in both branches of parallel composition, but with the subtyping rule, it corresponds
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indeed to the maximum. For input server, we integrate some weakening on context (∆), and
we want a time invariant context to type the server, as a server should not depend on time.
Weakening is important since some types are not time invariant, such as channels. So, we need
to separate time invariant types that can be used in the continuation P from other types.

Some rules make the time advance in their continuation, for example the tick rule or input
rule. This is expressed by the advance time operator on contexts, and because time advances,
the complexity also increases. Also, notice that because of the advance of time, some channels
names could disappear, thus there is a kind of ”time uniqueness” for channels, contrary to the
previous section on work. This will be detailed later. Also, note that in the rule for replicated
input, there is an explicit subtyping in the premises. This is because 〈Γ〉ϕ;Φ

−I is not time invariant
in general, since the type of a contains the input capability. However, if this server has both
input and output capabilities, we can give a time invariant type for a (or other servers) just by
removing the input capability, which can be done by subtyping.

Looking back at Corollary 4.4.1, we can for example understand the rule for input by taking
the judgement ϕ; Φ; a :ch3() ` a().tick.0/4. This expresses that with an environment providing
a message on a within 3 time units, this process terminates in 4 time units.

Finally, we can see that if we remove all size annotations and merge server types and channel
types together, we get back the classical input/output types, and all the rules described here
are admissible in the classical input/output type system for the π-calculus.

Definition 4.4.4 (Forgetting Sizes). Formally, given a sized type T , we define U(T ) the usual
input/output type (U is for forgetful) by:

U(Nat[I, J ]) := Nat U(List[I, J ](B)) := List(U(B))

U(chI(T̃ )) := ch(U(T̃ )) U(inI(T̃ )) := in(U(T̃ )) U(outI(T̃ )) := out(U(T̃ ))

U(∀̃i.srvKI (T̃ )) := ch(U(T̃ )) U(∀̃i.isrvKI (T̃ )) := in(U(T̃ )) U(∀̃i.osrvKI (T̃ )) := out(U(T̃ ))

Then, we obtain the following lemma, with the classical input/output typing:

Lemma 4.4.1. If ϕ; Φ ` T v T ′ then U(T ) v U(T ′). Moreover, if ϕ; Φ; Γ ` e : T then
U(Γ) ` e : U(T ) and if ϕ; Φ; Γ ` P / K then U(Γ) ` P

Examples

Input, Time and Complexity. We first illustrate the type system on a simple generic
example that will be very useful for other concrete examples.

Example 4.4.1. Let us consider the process P = c().b().a〈〉. We have the following typing for
P :

ϕ; Φ; a : outIa(), b : inIb(), c : inIc() ` P / Ia

if and only if ϕ; Φ � Ia ≥ Ib ≥ Ic.

Indeed, the typing derivation has the shape:

ϕ; Φ; a : out(Ia−Ic)−(Ib−Ic)(), b : in0() ` a〈〉 / (Ia−Ic)−(Ib−Ic)
ϕ; Φ; 〈(a : outIa−Ic(), b : inIb−Ic(), c : in0())〉−(Ib−Ic) ` a〈〉 / (Ia−Ic)−(Ib−Ic)

ϕ; Φ; a : outIa−Ic(), b : inIb−Ic(), c : in0() ` b().a〈〉 / Ia−Ic
ϕ; Φ; 〈(a : outIa(), b : inIb(), c : inIc())〉−Ic ` b().a〈〉 / Ia−Ic

ϕ; Φ; a : outIa(), b : inIb(), c : inIc() ` c().b().a〈〉 / Ia
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fib with i replaced by i−1

ϕ; Φ; ∆ ` fib〈m, b〉 / i−1

fib with i replaced by i−2

ϕ; Φ; ∆ ` fib〈p, c〉 / G(i−2)

ϕ; Φ; ∆ ` fib〈p, c〉 / i−1

see Example 4.4.1

ϕ; Φ; ∆ ` c(x).b(y).add〈x, y, a〉 / i−1

i; (i ≥ 2); ∆ ` fib〈m, b〉 | fib〈p, c〉 | c(x).b(y).add〈x, y, a〉 / i−1

i; (i ≥ 2); 〈Γ〉−1
,m : Nat[i−1], p : Nat[i−2], b : outi−1(Nat[Fib(i−1)]), c : outG(i−2)(Nat[Fib(i−2)]) ` · | · | · / i−1

i; (i−1 ≥ 1); 〈Γ〉−1
,m : Nat[i−1], p : Nat[i−2] ` (νb)(νc) · · · / i−1

i; (i ≥ 1); 〈Γ〉−1
,m : Nat[i−1] ` match m {0 7→ a〈1〉; ; s(p) 7→ · · ·} / i−1

i; ·; 〈Γ〉−1
` match n {0 7→ a〈0〉; ; s(m) 7→ · · ·} / G(i)−1

i; ·; Γ ` tick.match n {0 7→ a〈0〉; ; s(m) 7→ · · ·} / (G(i)−1)+1

i; ·; fib : · · · , n : Nat[i], a : outG(i)(Nat[Fib(i)]) ` tick.match n {0 7→ a〈1〉; ; s(m) 7→ · · ·} / G(i)

·; ·; fib : ∀i.srvG(i)
0 (Nat[i], outG(i)(Nat[Fib(i)])) `!fib(n, a).tick. · · · / 0

Figure 4.22: A Typing for Fibonacci (Span)

And the constraints ϕ; Φ � Ia ≥ Ib ≥ Ic are necessary in order for the various 〈·〉−I to be
defined. So, to sum up, the complexity of such a sequence of input/output is given by the time
of the last channel, and the constraints that appear are that the order of time should correspond
to the order of the process sequence.

Another interesting case of this is when a is a server type and not a simple channel type:
let us take a : srvKaIa (). As an output capability for a server type is never erased by 〈·〉−I , we
have fewer restrictions. In particular, we only need ϕ; Φ � Ib ≥ Ic and the complexity becomes
Ka+Ib+(Ia−Ib). Recall that this is not always equal to Ka+Ia by definition of subtraction, for
example if Ia = 0, then we have the complexity Ka+Ib in the end.

Finally, one can notice that if we add a tick constructor to this process, then the only thing
it does is changing the shape of constraints. For example, if P = tick.c().tick.b().a〈〉 and a
is a simple channel, then the total complexity is still Ia but the constraints on Ia, Ib and Ic
become:

ϕ; Φ � Ic ≥ 1 ϕ; Φ � Ib ≥ Ic+1 ϕ; Φ � Ia ≥ Ib

Fibonacci. Let us consider again the process P described in Figure 4.3. We pose G(n) =
max(1, n) and we want to show that the server fib has a span G(n). In order to do this, we give
the typing described in Figure 4.22.

An Example to Justify the Use of Time. In order to justify the use of time in types for
span, and to show how we could find the time of a channel, we present here three examples of
recursive calls with different behaviours. Usually, type inference for a size system reduces to
satisfying a set of constraints on indices. We believe that even with time indexes on channels,
type inference is still reducible to satisfying such a set of constraints. So, for the sake of
simplicity, we will describe this example with constraints. We define three processes P1, P2 and
P3 by:

Pl ≡!a(n, r).tick.match n {0 7→ r〈〉; ; s(m) 7→ (νr′)(νr′′)(Ql)}

for the following definitions of Ql:

Q1 ≡ a〈m, r′〉 | a〈m, r′′〉 | r′().r′′().r〈〉
Q2 ≡ a〈m, r′〉 | r′().a〈m, r′′〉 | r′′().r〈〉
Q3 ≡ a〈m, r′〉 | r′().(a〈m, r′′〉 | r〈〉) | r′′().0
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So intuitively, for P1 the two recursive calls are done after one unit of time in parallel, and
the return signal on r is done when both processes have done their return signal on r′ and r′′.
So, this is total parallelism for the two recursive calls (the span is linear in n). For P2, a first
recursive call is done, and then the process waits for the return signal on r′, and when it receives
it, the second recursive call begins. So, this is totally sequential (the span is exponential in n).
Finally, for P3 we have an intermediate situation between totally parallel and totally sequential.
The process starts with a recursive call. Then, it waits for the return signal on r′. When this
signal arrives, it immediately starts the second recursive call and immediately does the return
signal on r. So, intuitively, the second recursive call starts when all the ”left” calls have been
done. Note that those three servers have the same work, which is exponential in n.

So, let us type the three examples with the type system for span. For the sake of simplicity,
we omit the typing of expressions, we only consider the difficult branch for the match construc-
tors, and we focus on complexity and time. We consider the following context that is used for
the three processes:

Γ ≡ a : ∀i.osrvf(i)
0 (Nat[0, i], chg(i)()), n : Nat[0, i], r : chg(i)()

We have two unknown function symbols: f , that represents the complexity of the server, and
g, the time for the return channel. We also use this second context:

∆ ≡ 〈Γ〉−1,m : Nat[0, i−1], r′ : chg′(i)(), r
′′ : chg′′(i)()

This gives two more unknown functions, g′ and g′′ corresponding respectively to the time of r′

and r′′ when defined. The three processes start with the same typing:

i; · � f(i) ≥ g(i)

i; ·; 〈Γ〉−1
` r〈〉 / f(i)−1 i; i ≥ 1; ∆ ` Ql / f(i)−1

i; ·; 〈Γ〉−1
` match n {0 7→ r〈〉; ; s(m) 7→ (νr′)(νr′′)(Ql)} / f(i)−1

i; ·; Γ ` tick.match n {0 7→ r〈〉; ; s(m) 7→ (νr′)(νr′′)(Ql)} / f(i)

·; ·; a : ∀i.srvf(i)
0 (Nat[0, i], chg(i)()) ` Pl / 0

Because of the tick, we know that the complexity on the bottom should have the shape
K+1 for some K, so here we obtain immediately that f(i) ≥ 1. In the same way, r should still
be defined in 〈Γ〉−1

, so we obtain g(i) ≥ 1.
We now describe the different constraints obtained on the three processes, under the as-

sumption that i ≥ 1. For Q1, we obtain a typing similar to Fibonacci, and we derive the
constraints:

f(i)−1 ≥ f(i−1) g′(i) = g(i−1) g′′(i) = g(i−1)

g(i)−1 ≥ g′′(i) ≥ g′(i) f(i)−1 ≥ g(i)−1

The first constraint is because the total complexity f(i)−1 must be greater than the complexity
of the two recursive calls f(i−1). Then, r′ and r′′ must have a time equal to g(i−1) in order
to correspond to the type of a in the outputs a〈m, r′〉 and a〈m, r′′〉. Finally, the last two
constraints correspond to the constraints of Example 4.4.1 and the fact that the complexity
bound f(i)−1 should be greater that the complexity of this subprocess with is g(i)−1 again as
in Example 4.4.1. So, we can satisfy the conditions with the following choice:

f(i) ≡ i+1 g(i) ≡ i+1 g′(i) ≡ g′′(i) ≡ i

So, as expected, the span, represented by the function f , is indeed linear.
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ϕ; Φ; ∆ ` r′ : chg(i−1)()

ϕ; Φ; ∆ ` m : Nat[0, i−1]

ϕ; Φ; ∆ ` a〈m, r′〉 / f(i−1)

ϕ; Φ; ∆ ` a〈m, r′〉 / f(i)−1

ϕ; Φ; 〈∆〉−g′(i) ` r
′′ : chg(i−1)()

ϕ; Φ; 〈∆〉−g′(i) ` m : Nat[0, i−1]

ϕ; Φ; 〈∆〉−g′(i) ` a〈m, r
′′〉 / f(i−1)

ϕ; Φ; 〈∆〉−g′(i) ` a〈m, r
′′〉 / f(i)−1−g′(i)

ϕ; Φ; ∆ ` r′().a〈m, r′′〉 / f(i)−1

see Example 4.4.1

ϕ; Φ; ∆ ` r′′().r〈〉 / g(i)−1

ϕ; Φ; ∆ ` r′′().r〈〉 / f(i)−1

i; (i ≥ 1); ∆ ` a〈m, r′〉 | r′().a〈m, r′′〉 | r′′().r〈〉 / f(i)−1

Figure 4.23: A Typing for Q2

· · ·

· · ·

ϕ; Φ; 〈∆〉−g′(i) ` r〈〉 / g(i)−1−g′(i)

ϕ; Φ; 〈∆〉−g′(i) ` r〈〉 / f(i)−1−g′(i)

ϕ; Φ; 〈∆〉−g′(i) ` a〈m, r
′′〉 | r〈〉 / f(i)−1−g′(i)

ϕ; Φ; ∆ ` r′().(a〈m, r′′〉 | r〈〉) / f(i)−1

ϕ; Φ; 〈∆〉−g′′(i) ` 0 / 0

ϕ; Φ; ∆ ` r′′().0 / g′′(i)
ϕ; Φ; ∆ ` r′′().0 / f(i)−1

i; (i ≥ 1); ∆ ` a〈m, r′〉 | r′().(a〈m, r′′〉 | r〈〉) | r′′().0 / f(i)−1

Figure 4.24: A Typing for Q3

Then, for Q2, we describe the typing in Figure 4.23, where ϕ; Φ ≡ i; (i ≥ 1).
Thus, we obtain the following constraints:

f(i)−1 ≥ f(i−1) g′(i) = g(i−1) f(i)−1−g′(i) ≥ f(i−1)

g′′(i)−g′(i) = g(i−1) g(i)−1 ≥ g′′(i) f(i)−1 ≥ g(i)−1

The constraints on f(i) are obtained because of the subtyping rules, expressed by the double
lines in the type derivation. The equality constraints are obtained because we need both r′ and
r′′ to have the type chg(i−1)(), and finally the constraint g(i)−1 ≥ g′′(i) is as in Example 4.4.1.
Thus, we can take:

f(i) ≡ 2i+1−1 g(i) ≡ 2i+1−1

So, we indeed obtain the exponential complexity.
However, with those two examples, the time of the channel r is always equal to the complexity

of the server a, so we cannot really see the usefulness of time. Still, with the next example we
obtain something more interesting. A type derivation for Q3 is given in Figure 4.24.

And we obtain the constraints:

f(i)−1 ≥ f(i−1) g′(i) = g(i−1) f(i)−1−g′(i) ≥ f(i−1)

g′′(i)−g′(i) = g(i−1) g(i)−1 ≥ g′(i) f(i)−1−g′(i) ≥ g(i)−1−g′(i) f(i)−1 ≥ g′′(i)

The first four constraints are exactly the same as before, because there are the same typing
derivation (represented by · · · ). Then, the constraint on g(i)−1 is because of 〈·〉−g′(i), and

the other constraints come from subtyping rules. So, using the equalities, and by removing
redundant inequalities, we obtain for f and g:

f(i) ≥ 1+g(i−1)+f(i−1) g(i) ≥ 1+g(i−1) f(i) ≥ 1+2 · g(i−1)

Thus, we can take:

g(i) ≡ i+1 f(i) ≡ (i+1)(i+2)

2
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The complexity is quadratic in n. Note that for this example, the complexity f depends
directly on g, and g is given by a recursive equation independent of f . So in a sense, to find the
complexity, we need to find first the delay of the second recursive call. Without time indications
on channel, it would not be possible to track and obtain this recurrence relation on g and thus
we could not deduce the complexity.

Note that the two first examples used channels as a return signal for a parallel computation,
whereas for the last example, channels are used as a synchronization point in the middle of a
computation. We believe that this flexibility of channels justifies the use of π-calculus to reason
about parallel computation. Moreover, this work is a step to a more expressive type system
inspired by [72], taking in account concurrent behaviour, that we will present in Section 4.5.
Indeed, as we will show, the current type system fails to capture some simple concurrency.

Limitations of the Type System. Our current type system enforces some kind of time
uniqueness in channels.

Example 4.4.2 (Time Uniqueness). Indeed, take the process a().tick.a〈〉. When trying to type
this process, we obtain:

·; · ` chI() v inI()

·; ·; a : chI() ` a : inI()

Error
·; ·; 〈a : ch0()〉−1 ` a〈〉 / 0

·; ·; a : ch0() ` tick.a〈〉 / 1

·; ·; a : chI() ` a().tick.a〈〉 / I+1

As by definition 〈a : ch0()〉−1
is ∅, we cannot type the output on a.

So, channels have strong constraints on the time they can be used. This is true especially
when channels are not used linearly. Still, note that we can type a process of the shape a().0 |
a〈〉 | tick.a〈〉, so it is better than plain linearity on channels. This restriction limits examples
of concurrent behaviours. For example, take two processes P1 and P2 that should be executed
but not simultaneously. In order to do that in a concurrent setting, we can use semaphores.
In π-calculus, we could consider the process (νa)(a().P ′1 | a().P ′2 | a〈〉), where P ′1 is P1 with an
output a〈〉 at the end, likewise for P ′2. This is a way to simulate semaphore in π-calculus. Now,
we can see that this example has the same problem as the example given above if for example
P1 contains a tick, thus we cannot type this kind of processes. Formally, this is because of our
parallel composition rule:

ϕ; Φ; Γ ` P / K ϕ; Φ; Γ ` Q /K

ϕ; Φ; Γ ` P | Q /K

If we take Q equal to P , we then obtain, from a typing ϕ; Φ; Γ ` P / K a typing ϕ; Φ; Γ `
P | P /K. So, the type system consider that P and P | P are equivalent, and this is obviously
not true in general, especially with the example described above. However, in a linear setting,
this is not a problem.

Still, we believe that for parallel computation, our type system should be quite expressive
in practice. Indeed, as stated above, the restriction appears especially when channels are not
used linearly. However, it is known that linear π-calculus in itself is expressive for parallel
computation [76]. For example, classical encodings of functional programs in a parallel setting
rely on the use of linear return signals, as we will see in the example for bitonic sort in Sect.
4.4.3. Moreover, session types can also be encoded in linear π-calculus in the presence of variant
types [73, 35]. Note that in order to encode a calculus as the one in [36], we would also need
recursive types. Our calculus and its proof of soundness could be extended to variant types,
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but not straightforwardly to recursive types. However, we believe the results on the linear π-
calculus we cited suggest that the restriction given above should not be too harmful for parallel
computation.

We will come back later on this example, in Section 4.5, and we will use type usages to
overcome this problem.

4.4.2 Soundness

In this section, we show how to prove that our type system indeed gives a bound on the number
of time reduction steps of a process. As we work with the reduction ⇒, we need to consider
annotated processes instead of simple processes. So, we need to enrich our type system with a
rule for the constructor n : P .

ϕ; Φ; 〈Γ〉−n ` P / K

ϕ; Φ; Γ ` n : P / K+n

As the intuition suggested, this rule is equivalent to n times the typing rule for tick. We
can now work on the properties of our type system on annotated processes.

The procedure to prove the subject reduction for⇒ in this type system is intrinsically more
difficult than the one for Theorem 4.2.1. So, from the proof of subject reduction for span, one
could deduce the proof of subject reduction for work, just by forgetting the considerations with
time and the constructor n : P in the following proof.

Intermediate Lemmas

As usual, we first show some intermediate lemmas on the typing system. To begin with, we
give a lemma on the link between subtyping and time advance.

Lemma 4.4.2. If ϕ; Φ ` T v U then for any I, either 〈U〉−I is undefined, or both 〈U〉−I and
〈T 〉−I are defined, and ϕ; Φ ` 〈T 〉−I v 〈U〉−I .

Proof. The proof is by induction on the subtyping derivation. First, transitivity is direct by
induction hypothesis. For non-channel type, this is direct because time advancing does not do
anything. Then, for channels that are not servers, time is invariant by subtyping, thus time
advancing is either undefined for both types, either defined for both types, with the same time.
For a server type, again time is invariant by subtyping, so either both types lose their input
capability, either they both keep the same capabilities. The case where 〈U〉−I is undefined and
not 〈T 〉−I is when T is an input/output server that looses its input capability, and U is an input
server.

Now, for the usual properties of typing systems, we have first structure lemmas.

Lemma 4.4.3 (Weakening). Let ϕ,ϕ′ be disjoint set of index variables, Φ be a set of constraints
on ϕ, Φ′ be a set of constraints on (ϕ,ϕ′), Γ and Γ′ be contexts on disjoint set of variables.

1. If ϕ; Φ � C then (ϕ,ϕ′); (Φ,Φ′) � C

2. If ϕ; Φ ` T v U then (ϕ,ϕ′); (Φ,Φ′) ` T v U .

3. If ϕ; Φ; Γ ` e : T then (ϕ,ϕ′); (Φ,Φ′); Γ,Γ′ ` e : T .

4. 〈Γ〉(ϕ,ϕ
′);(Φ,Φ′)

−I = ∆,∆′ with (ϕ;ϕ′); (Φ; Φ′) ` ∆ v 〈Γ〉ϕ;Φ
−I .

5. If ϕ; Φ; Γ ` P / K then (ϕ,ϕ′); (Φ,Φ′); Γ,Γ′ ` P / K.
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Proof. Point 1 is the same as in Lemma 3.1.1, it comes from the definition of indexes. Point 2
is proved by induction on the subtyping derivation, and it uses explicitly Point 1. Point 4 is

a consequence of Point 1: everything that is defined in 〈Γ〉φ;Φ
−I is also defined in 〈Γ〉(φ,φ

′);(Φ,Φ′)
−I ,

and the subtyping condition is here since with more constraints, a server may not be changed
into an output server by the advance of time. Point 3 and Point 5 are proved by induction on
the typing derivation, and each point uses crucially the previous ones. Note that the weakening
integrated in the rule for input servers is necessary to obtain Point 5. Note also that when the
advance time operator is used, the weakened typing is obtained with the use of a subtyping
rule.

Lemma 4.4.4 (Strengthening). Let ϕ be a set of index variables, Φ be a set of constraint on
ϕ, and C a constraint on ϕ such that ϕ; Φ � C.

1. If ϕ; (Φ, C) � C ′ then ϕ; Φ � C ′.

2. If ϕ; (Φ, C) ` T v U then ϕ; Φ ` T v U .

3. If ϕ; (Φ, C); Γ,Γ′ ` e : T and the variables in Γ′ are not free in e, then ϕ; Φ; Γ ` e : T .

4. 〈Γ〉ϕ;(Φ,C)

−I = 〈Γ〉ϕ;Φ
−I .

5. If ϕ; (Φ, C); Γ,Γ′ ` P / K and the variables in Γ′ are not free in P , then ϕ; Φ; Γ ` P / K.

Proof. Point 1 is a direct consequence of the definition, as in Lemma 3.1.2. Point 2 is proved
by induction on the subtyping derivation. Point 4 is straightforward with Point 1 of this lemma
and Point 1 of Lemma 4.4.3. Point 3 and Point 5 are proved by induction on the typing
derivation.

We also have the usual property specific to our sized type systems, index substitution.

Lemma 4.4.5 (Index Substitution). Let ϕ be a set of index variable and i /∈ ϕ. Let J be an
index with free variables in ϕ. Then,

1. JI{J/i}Kρ = JIKρ[i 7→JJKρ].

2. If (ϕ, i); Φ ` C then ϕ; Φ{J/i} � C{J/i}.

3. If (ϕ, i); Φ ` T v U then ϕ; Φ{J/i} ` T{J/i} v U{J/i}.

4. If (ϕ, i); Φ; Γ ` e : T then ϕ; Φ{J/i}; Γ{J/i} ` e : T{J/i}.

5. 〈Γ{J/i}〉ϕ;Φ{J/i}
−I{J/i} = ∆,∆′ with ϕ; Φ{J/i} ` ∆ v (〈Γ〉(ϕ,i);Φ−I ){J/i}.

6. If (ϕ, i); Φ; Γ ` P / K then ϕ; Φ{J/i}; Γ{J/i} ` P / K{J/i}.

Proof. Again, Point 1 and Point 2 are some properties in indices, that were already stated in
Lemma 3.1.3. Point 3 is proved by induction on the subtyping derivation, then Point 4 is proved
by induction on the typing derivation. Point 5 is direct with the use of Point 2. And finally
Point 6 is proved by induction on P . The induction is on P and not the typing derivation
because of Point 5 that forces the use of weakening, which is admissible but not derivable.
(Lemma 4.4.3).

We also need a lemma specific to the notion of time.
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Definition 4.4.5 (Delaying). Given a type T and an index I, we define the delaying of T by
I units of time, denoted 〈T 〉+I :

〈B〉+I = B 〈chJ(T̃ )〉+I = chJ+I(T̃ )

and for other channel and server types, the definition is in correspondence with the one on the
right above. This definition can be extended to contexts.

Lemma 4.4.6 (Delaying). For any index I, we have:

1. If ϕ; Φ ` T v U then ϕ; Φ ` 〈T 〉+I v 〈U〉+I .

2. If ϕ; Φ; Γ ` e : T then ϕ; Φ; 〈Γ〉+I ` e : 〈T 〉+I .

3. 〈〈Γ〉+I〉−J = ∆,∆′ with ϕ; Φ ` ∆ v 〈〈Γ〉−J〉+I .

4. 〈〈Γ〉+I〉−(J+I) = 〈Γ〉−J .

5. If ϕ; Φ; Γ ` P / K then ϕ; Φ; 〈Γ〉+I ` P / K+I.

Proof. Point 1, Point 2, Point 3 and Point 4 are straightforward. Then, Point 5 is proved by
induction on P . Point 4 is used on every rule for channel or servers, and Point 3 is used in the
rule for tick.

With this lemma, we can see that if we add a delay of I time units in the contexts for all
channels, it increases the complexity by I time units, thus we see the link between time in types
and the complexity. Then, we can show the usual substitution lemma.

Lemma 4.4.7 (Substitution). We have:

1. If ϕ; Φ; Γ, v : T ` e′ : U and ϕ; Φ; Γ ` e : T then ϕ; Φ; Γ ` e′[v := e] : U .

2. If ϕ; Φ; Γ, v : T ` P / K and ϕ; Φ; Γ ` e : T then ϕ; Φ; Γ ` P [v := e] / K.

The proof is pretty straightforward.

Subject Reduction

We now present the core theorem in order to obtain the complexity soundness: subject reduc-
tion. First, we need to show that tying is invariant by congruence.

Lemma 4.4.8 (Congruence and Typing). Let P and Q be annotated processes such that P ≡ Q.
Then, ϕ; Φ; Γ ` P / K if and only if ϕ; Φ; Γ ` Q /K.

Proof. We prove this by induction on P ≡ Q. Notice that again, for a process P , the typing
system is not syntax-directed because of the subtyping rule, so we consider that a derivation
has exactly one subtyping rule before any syntax-directed rule. And, as for Theorem 3.1.1, the
first subtyping rule on the bottom can be ignored. We first show this property for base case of
congruence. The reflexivity is trivial then we have:

• Case P | 0 ≡ P . Suppose ϕ; Φ; Γ ` P | 0 / K. Then the derivation has the shape:

π
ϕ; Φ; Γ ` P / K

π′

ϕ; Φ; Γ ` 0 / K

ϕ; Φ; Γ ` P | 0 / K
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Thus, π gives us the desired proof. Reciprocally, given a derivation π of ϕ; Φ; Γ ` P / K,
we can derive the proof:

π
ϕ; Φ; Γ ` P / K

ϕ; Φ; Γ ` 0 / 0 ϕ; Φ � 0 ≤ K
ϕ; Φ; Γ ` 0 / K

ϕ; Φ; Γ ` P | 0 / K

• Case P | Q ≡ Q | P . Suppose ϕ; Φ; Γ ` P | Q /K. Then the derivation has the shape:

π
ϕ; Φ; Γ ` P / K

π′

ϕ; Φ; Γ ` Q /K

ϕ; Φ; Γ ` P | Q /K

And so we can derive:

π′

ϕ; Φ; Γ ` Q /K
π

ϕ; Φ; Γ ` P / K

ϕ; Φ; Γ ` Q | P / K

• Case P | (Q | R) ≡ (P | Q) | R. Suppose ϕ; Φ; Γ ` P | (Q | R) /K. Then the derivation
has the shape:

πP
ϕ; Φ; Γ ` P / K

πQ

ϕ; Φ; ∆ ` Q /K′
πR

ϕ; Φ; ∆ ` R / K′

ϕ; Φ; ∆ ` Q | R / K′ ϕ; Φ ` Γ v ∆ ϕ; Φ � K′ ≤ K
ϕ; Φ; Γ ` Q | R / K

ϕ; Φ; Γ ` P | (Q | R) / K

We can derive the proof:

πP
ϕ; Φ; Γ ` P / K

πQ

ϕ; Φ; ∆ ` Q /K′ ϕ; Φ ` Γ v ∆;K′ ≤ K
ϕ; Φ; Γ ` Q /K

ϕ; Φ; Γ ` P | Q /K

πR

ϕ; Φ; ∆ ` R / K′

ϕ; Φ; Γ ` R / K

ϕ; Φ; Γ ` (P | Q) | R / K

The reverse follows the same pattern.

• Case (νa)(νb)P ≡ (νb)(νa)P . Suppose ϕ; Φ; Γ ` (νa)(νb)P /K. Then the derivation has
the shape:

π

ϕ; Φ; ∆, a : T ′, b : U ` P / K′

ϕ; Φ; ∆, a : T ′ ` (νb)P / K′ ϕ; Φ ` Γ v ∆ ϕ; Φ � K′ ≤ K ϕ; Φ ` T v T ′

ϕ; Φ; Γ, a : T ` (νb)P / K

ϕ; Φ; Γ ` (νa)(νb)P / K

We can derive the proof:

99



π

ϕ; Φ; ∆, a : T ′, b : U ` P / K′ ϕ; Φ ` Γ v ∆ ϕ; Φ � K′ ≤ K ϕ; Φ ` T v T ′ ϕ; Φ ` U v U
ϕ; Φ; Γ, a : T, b : U ` P / K

ϕ; Φ; Γ, b : U ` (νa)P / K

ϕ; Φ; Γ ` (νb)(νa)P / K

• Case (νa)P | Q ≡ (νa)(P | Q) with a not free in Q. Suppose ϕ; Φ; Γ ` (νa)P | Q / K.
Then the derivation has the shape:

πP

ϕ; Φ; ∆, a : T ` P / K′

ϕ; Φ; ∆ ` (νa)P / K′ ϕ; Φ ` Γ v ∆ ϕ; Φ � K′ ≤ K
ϕ; Φ; Γ ` (νa)P / K

πQ

ϕ; Φ; Γ ` Q /K

ϕ; Φ; Γ ` (νa)P | Q /K

By weakening (Lemma 4.4.3), we obtain a derivation π′Q of ϕ; Φ; Γ, a : T ` Q / K. Thus,
we have the following derivation:

πP

ϕ; Φ; ∆, a : T ` P / K′ ϕ; Φ ` Γ v ∆ ϕ; Φ � T v T ϕ; Φ � K′ ≤ K
ϕ; Φ; Γ, a : T ` P / K

π′Q

ϕ; Φ; Γ, a : T ` Q /K

ϕ; Φ; Γ, a : T ` P | Q /K

ϕ; Φ; Γ ` (νa)(P | Q) / K

For the converse, suppose ϕ; Φ; Γ ` (νa)(P | Q) / K. Then the derivation has the shape:

πP

ϕ; Φ; ∆, a : T ′ ` P / K′
πQ

ϕ; Φ; ∆, a : T ′ ` Q /K′

ϕ; Φ; ∆, a : T ′ ` P | Q /K′ ϕ; Φ ` Γ v ∆ ϕ; Φ ` T v T ′ ϕ; Φ � K′ ≤ K
ϕ; Φ; Γ, a : T ` P | Q /K

ϕ; Φ; Γ ` (νa)(P | Q) / K

Since a is not free in Q, by Lemma 4.4.4, from πQ we obtain a derivation π′Q of ϕ; Φ; ∆ `
Q /K ′. We can then derive the following typing:

πP

ϕ; Φ; ∆, a : T ′ ` P / K′ ϕ; Φ ` T v T ′

ϕ; Φ; ∆, a : T ` P / K′

ϕ; Φ; ∆ ` (νa)P / K′
π′Q

ϕ; Φ; ∆ ` Q /K′

ϕ; Φ; ∆ ` (νa)P | Q /K′ ϕ; Φ ` Γ v ∆ ϕ; Φ � K′ ≤ K
ϕ; Φ; Γ ` (νa)P | Q /K

• Case m : (P | Q) ≡ m : P | m : Q. Suppose ϕ; Φ; Γ ` m : (P | Q) /K+m. Then we have:

πP

ϕ; Φ; ∆ ` P / K′
πQ

ϕ; Φ; ∆ ` Q /K′

ϕ; Φ; ∆ ` P | Q /K′ ϕ; Φ ` 〈Γ〉−m v ∆ ϕ; Φ � K′ ≤ K
ϕ; Φ; 〈Γ〉−m ` P | Q /K

ϕ; Φ; Γ ` m : (P | Q) / K+m
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So, we can give the following derivation:

πP

ϕ; Φ; ∆ ` P / K′ ϕ; Φ ` 〈Γ〉−m v ∆ ϕ; Φ � K′ ≤ K
ϕ; Φ; 〈Γ〉−m ` P / K

ϕ; Φ; Γ ` m : P / K+m

πQ

ϕ; Φ; ∆ ` Q /K′

ϕ; Φ; 〈Γ〉−m ` /K
ϕ; Φ; Γ ` m : Q /K+m

ϕ; Φ; Γ ` m : P | m : Q /K+m

Now, suppose we have a typing ϕ; Φ; Γ ` m : P | m : Q /K. The typing has the shape:

πP

ϕ; Φ; 〈∆1〉−m ` P / K1

ϕ; Φ; ∆1 ` m : P / K1+m

πQ

ϕ; Φ; 〈∆2〉−m ` Q /K2

ϕ; Φ; ∆2 ` m : Q /K2+m ϕ; Φ ` Γ v ∆1; Γ v ∆2;K1+m ≤ K;K2+m ≤ K
ϕ; Φ; Γ ` m : P / K ϕ; Φ; Γ ` m : Q /K

ϕ; Φ; Γ ` m : P | m : Q /K

By Lemma 4.4.2, from Γ v ∆1, we obtain Γ = Θ0,Θ1 with 〈Θ1〉−m v 〈∆1〉−m. In the
same way, Γ = Θ′0,Θ

′
1 with 〈Θ′1〉−m v 〈∆2〉−m. Moreover, we have easily ϕ; Φ � K ≥ m.

Thus, by the Lemma 4.4.3 (weakening) for πP and πQ, we obtain:

πwP
ϕ; Φ; 〈Θ0〉−m, 〈∆1〉−m ` P / K1

ϕ; Φ; 〈Γ〉−m ` P / K−m

πwQ

ϕ; Φ; 〈Θ′0〉−m, 〈∆2〉−m ` Q /K2

ϕ; Φ; 〈Γ〉−m ` Q /K−m
ϕ; Φ; 〈Γ〉−m ` P | Q /K−m
ϕ; Φ; Γ ` m : (P | Q) / K

This concludes this case.

• Case m : (νa)P ≡ (νa)(m : P ).

Suppose that ϕ; Φ; Γ ` m : (νa)P / K+m. Then, the derivation has the shape:

πP

ϕ; Φ; ∆, a : T ` P / K′

ϕ; Φ; ∆ ` (νa)P / K′ ϕ; Φ ` 〈Γ〉−m v ∆ ϕ; Φ � K′ ≤ K
ϕ; Φ; 〈Γ〉−m ` (νa)P / K

ϕ; Φ; Γ ` m : (νa)P / K+m

Recall that, by Lemma 4.4.6, 〈〈T 〉+m〉−m = 〈T 〉−0
= T . So, we have:

πP

ϕ; Φ; ∆, a : T ` P / K′ ϕ; Φ ` 〈Γ〉−m v ∆ ϕ; Φ � K′ ≤ K ϕ; Φ ` T v T
ϕ; Φ; 〈Γ〉−m, a : T ` P / K

ϕ; Φ; Γ, a : 〈T 〉+m ` m : P / K+m

ϕ; Φ; Γ ` (νa)(m : P ) / K+m

For the converse, suppose that ϕ; Φ; Γ ` (νa)m : P / K. Then the typing has the shape:
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πP

ϕ; Φ; 〈(∆, a : T ′)〉−m ` P / K′

ϕ; Φ; ∆, a : T ′ ` m : P / K′+m ϕ; Φ ` Γ v ∆ ϕ; Φ ` T v T ′ ϕ; Φ � K′+m ≤ K
ϕ; Φ; Γ, a : T ` m : P / K

ϕ; Φ; Γ ` (νa)m : P / K

By an abuse of notation, let us write 〈T ′〉−m to denote 〈T ′〉−m if it is defined, and any
other type otherwise. Then, we have the derivation (with possibly a weakened version of
πP ):

πwP

ϕ; Φ; 〈∆〉−m, a : 〈T ′〉−m ` P / K′

ϕ; Φ; 〈∆〉−m ` (νa)P / K′

ϕ; Φ; ∆ ` m : (νa)P / K′+m ϕ; Φ ` Γ v ∆ ϕ; Φ � K′+m ≤ K
ϕ; Φ; Γ ` m : (νa)P / K

• Case m : (n : P ) ≡ (m+n) : P .

Suppose that ϕ; Φ; Γ ` m : (n : P ) / K+m. Then the derivation has the shape:

πP

ϕ; Φ; 〈∆〉−n ` P / K′

ϕ; Φ; ∆ ` n : P / K′+n ϕ; Φ ` 〈Γ〉−m v ∆ ϕ; Φ � K′+n ≤ K
ϕ; Φ; 〈Γ〉−m ` n : P / K

ϕ; Φ; Γ ` m : (n : P ) / K+m

We have 〈Γ〉−(m+n)
= 〈〈Γ〉−m〉−n. So, by Lemma 4.4.2, we obtain 〈Γ〉−m = Θ,Θ′ with

ϕ; Φ ` 〈Θ′〉−n v 〈∆〉−n. So, by weakening, we obtain:

πwP

ϕ; Φ; 〈Θ〉−n, 〈∆〉−n ` P / K′ ϕ; Φ ` 〈Γ〉−(m+n)
v (〈Θ〉−n, 〈∆〉−n) ϕ; Φ � K′ ≤ K−n

ϕ; Φ; 〈Γ〉−(m+n)
` P / K−n

ϕ; Φ; Γ ` (m+n) : P / K+m

For the converse, suppose that ϕ; Φ; Γ ` (m+n) : P / K+(m+n). Then the derivation has
the shape:

πP
ϕ; Φ; 〈Γ〉−(m+n)

` P / K+

ϕ; Φ; Γ ` (m+n) : P / K+(m+n)

So, we have:

πP
ϕ; Φ; 〈Γ〉−(m+n)

` P / K

ϕ; Φ; 〈Γ〉−m ` n : P / K+n

ϕ; Φ; Γ ` m : (n : P ) / K+(m+n)
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ϕ; Φ � I ′ ≤ I ϕ; Φ � J ≤ J ′

ϕ; Φ ` Nat[I, J ] v Nat[I ′, J ′]

ϕ; Φ � I ′ ≤ I ϕ; Φ � J ≤ J ′ ϕ; Φ ` B v B′

ϕ; Φ ` List[I, J ](B) v List[I ′, J ′](B′)

ϕ; Φ � I = J (ϕ, ĩ); Φ ` T̃ v Ũ (ϕ, ĩ); Φ ` Ũ v T̃ (ϕ, ĩ); Φ � K = K ′

ϕ; Φ ` ∀̃i.srvKI (T̃ ) v ∀̃i.srvK′

J (Ũ)

ϕ; Φ � I = J (ϕ, ĩ); Φ ` T̃ v Ũ (ϕ, ĩ); Φ � K ′ ≤ K
ϕ; Φ ` ∀̃i.srvKI (T̃ ) v ∀̃i.isrvK′

J (Ũ)

ϕ; Φ � I = J (ϕ, ĩ); Φ ` Ũ v T̃ (ϕ, ĩ); Φ � K ≤ K ′

ϕ; Φ ` ∀̃i.srvKI (T̃ ) v ∀̃i.osrvK′

J (Ũ)

ϕ; Φ � I = J (ϕ, ĩ); Φ ` T̃ v Ũ (ϕ, ĩ); Φ � K ′ ≤ K
ϕ; Φ ` ∀̃i.isrvKI (T̃ ) v ∀̃i.isrvK′

J (Ũ)

ϕ; Φ � I = J (ϕ, ĩ); Φ ` Ũ v T̃ (ϕ, ĩ); Φ ` K ≤ K ′

ϕ; Φ ` ∀̃i.osrvKI (T̃ ) v ∀̃i.osrvK′

J (Ũ)

Figure 4.25: An Alternative Presentation of Subtyping

• Case 0 : P ≡ P . This case is direct because the rule for 0 : P does nothing.

This concludes all the base case. We can then prove Lemma 4.4.8 by induction on P ≡ Q.
All the base case have been done, symmetry and transitivity are direct by induction hypothesis.
For the cases of contextual congruence, the proof is straightforward.

Now that we have Lemma 4.4.8, we can work up to the congruence relation. In order to
proceed to the subject reduction, we first need an exhaustive description of subtyping. As
expressed before, the transitivity rule is not necessary and so in the following proof it will be
better to consider a subtyping without transitivity. This alternative presentation of subtyping
is described in Figure 4.25 for servers. The case of simple channels can easily be deduced from
the case of servers.

And of course, we have:

Lemma 4.4.9 (Exhaustive Description of Subtyping). ϕ; Φ ` T v U for the usual description
if and only if ϕ; Φ ` T v U with the rules of Figure 4.25.

Proof. The converse is direct, all the rules described in Figure 4.25 can be derived in the original
subtyping description using at most once the transitivity rule. For the direct implication, the
proof is rather straightforward. We proceed by induction on the usual subtyping relation. All
base cases are indeed of this form, and the only hard case is for transitivity. For this case, we
have to use the induction hypothesis and consider all cases in which the right member of a rule
of Figure 4.25 can match with a left member of another rule. This is a long case analysis, but
all the cases are simple.

And with all this, we can finally work on the subject reduction.

Theorem 4.4.2 (Subject Reduction). If ϕ; Φ; Γ ` P / K and P ⇒ Q then ϕ; Φ; Γ ` Q /K.

Let us show this Theorem. We do this by induction on P ⇒ Q. Let us first notice that
when considering the typing of P , again the first subtyping rule has no importance since we
can always start the typing of Q with the exact same subtyping rule. We now proceed by doing
the case analysis on the rules of Figure 4.18.
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• Case (n :!a(ṽ).P ) | (m : a〈ẽ〉) ⇒ (n :!a(ṽ).P ) | (max(n,m) : P [̃v := ẽ]). Consider the
typing ϕ; Φ; Γ ` (n :!a(ṽ).P ) | (m : a〈ẽ〉) / K. The first rule is the rule for parallel
composition, then the derivation is split into the two following subtree:

ϕ; Φ; ∆0,∆′0 ` a : ∀̃i.isrvK
′
0

I0
(T̃0)

πP

(ϕ, ĩ); Φ; Θ0, ṽ : T̃0 ` P / K′0 ϕ; Φ ` 〈∆0〉−I0 v Θ0, time invariant

ϕ; Φ; ∆0,∆′0 `!a(ṽ).P / I0 ϕ; Φ ` 〈Γ0〉−n v ∆0,∆′0; I0 ≤ K0

ϕ; Φ; 〈Γ0〉−n `!a(ṽ).P / K0

ϕ; Φ; Γ0 ` n :!a(ṽ).P / K0+n ϕ; Φ ` Γ v Γ0;K0+n ≤ K
ϕ; Φ; Γ ` n :!a(ṽ).P / K

ϕ; Φ; ∆1 ` a : ∀̃i.osrvK
′
1

I1
(T̃1)

πe

ϕ; Φ; 〈∆1〉−I1 ` ẽ : T̃1{J̃ /̃i}

ϕ; Φ; ∆1 ` a〈ẽ〉 / I1+K′1{J̃ /̃i} ϕ; Φ ` 〈Γ1〉−m v ∆1; I1+K′1{J̃ /̃i} ≤ K1

ϕ; Φ; 〈Γ1〉−m ` a〈ẽ〉 / K1

ϕ; Φ; Γ1 ` m : a〈ẽ〉 / K1+m ϕ; Φ ` Γ v Γ1;K1+m ≤ K
ϕ; Φ; Γ ` m : a〈ẽ〉 / K

The first subtree can be used exactly as it is to type the server in the right part of the
reduction relation. Furthermore, as the name a is used as an input and as an output, so
the original type in Γ for this name must be a server type ∀̃i.srvKaI (T̃ ). As this server
does not lose its input capacity after the time decrease, we also know that ϕ; Φ � I ≥ n.
So, by Lemma 4.4.9, we have:

ϕ; Φ � I0 = I−n (ϕ, ĩ); Φ ` T̃ v T̃0 (ϕ, ĩ); Φ � K ′0 ≤ Ka

ϕ; Φ � I1 = I−m (ϕ, ĩ); Φ ` T̃1 v T̃ (ϕ, ĩ); Φ � Ka ≤ K ′1

There are now two cases to consider.

– Let us first consider that ϕ; Φ � I ≥ m. Then, we obtain directly:

ϕ; Φ � I0+n = I1+m (ϕ, ĩ); Φ ` T̃1 v T̃0 (ϕ, ĩ); Φ � K ′0 ≤ K ′1

Thus, by subtyping, from πP we can obtain a derivation of (ϕ, ĩ); Φ; 〈∆0〉−I0 , ṽ : T̃1 `
P / K ′1. By Lemma 4.4.5, we have a derivation of ϕ; Φ{J̃ /̃i}; (〈∆0〉−I0){J̃ /̃i}, ṽ :

T̃1{J̃ /̃i} ` P / K ′1{J̃ /̃i}. As ĩ only appears in T̃1 and K ′1, we obtain a derivation of

ϕ; Φ; 〈∆0〉−I0 , ṽ : T̃1{J̃ /̃i} ` P / K ′1{J̃ /̃i}.
Now, by using several times Lemma 4.4.2, we have:

ϕ; Φ ` 〈Γ〉−(n+I0) v ε0, 〈∆0〉−I0 v ε0,Θ0 ϕ; Φ ` 〈Γ〉−(m+I1) v ε1, 〈∆1〉−I1
for some ε0, ε1. By Lemma 4.4.3, and as ϕ; Φ ` I = I1+m = I0+n we can obtain two
proofs, with the subtyping rule:

ϕ; Φ; 〈Γ〉−I , ṽ : T̃1{J̃ /̃i} ` P / K1{J̃ /̃i} ϕ; Φ; 〈Γ〉−I ` ẽ : T̃1{J̃ /̃i}

Thus, by the substitution lemma (Lemma 4.4.7), we have ϕ; Φ; 〈Γ〉−I ` P [̃v := ẽ] /

K1{J̃ /̃i}. As by definition, I ≥ m and I ≥ n, let us call I ′ = I−max(n,m), and we
can obtain the following typing using the associated typing rule:

ϕ; Φ; 〈Γ〉−I′ ` max(n,m) : P [̃v := ẽ] /max(n,m)+K1{J̃ /̃i}
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Then, by delaying (Lemma 4.4.6), we have ϕ; Φ; 〈〈Γ〉−I′〉+I′ ` max(n,m) : P [̃v :=

ẽ] / I+K1{J̃ /̃i}, and Γ = ε′0, ε
′
1 with ϕ; Φ ` ε′1 v 〈〈Γ〉−I′〉+I′ . Recall that ϕ; Φ �

I1+m+K ′1{J̃ /̃i} ≤ K. Thus, again by subtyping and weakening, we obtain

ϕ; Φ; Γ ` max(n,m) : P [̃v := ẽ] / K

And this concludes this case.

– Now, we suppose that we do not have ϕ; Φ � I ≥ m. Note that as we know ϕ; Φ �
I ≥ n, it means that m > n. Moreover, as ϕ; Φ � I1 = I −m, then ϕ; Φ � I1+m =
max(I,m). We still have:

(ϕ, ĩ); Φ ` T̃1 v T̃0 (ϕ, ĩ); Φ � K ′0 ≤ K ′1

Thus, by subtyping, from πP we can obtain a derivation of (ϕ, ĩ); Φ; Θ0, ṽ : T̃1 `
P / K ′1. By Lemma 4.4.5, we have a derivation of ϕ; Φ{J̃ /̃i}; Θ0{J̃ /̃i}, ṽ : T̃1{J̃ /̃i} `
P /K ′1{J̃ /̃i}. As ĩ only appears in T̃1 and K ′1, we obtain a derivation of ϕ; Φ; Θ0, ṽ :

T̃1{J̃ /̃i} ` P / K ′1{J̃ /̃i}.
Now, by using several times Lemma 4.4.2, we have:

ϕ; Φ ` 〈Γ〉−(n+I0) v ε0, 〈∆0〉−I0 v ε0,Θ0 ϕ; Φ ` 〈Γ〉−(m+I1) v ε1, 〈∆1〉−I1

for some ε0, ε1. Moreover, we know that Θ0 is time invariant. let us call J =
max(I0+n, I1+m), we have by again decreasing in the first subtyping relation:

ϕ; Φ ` 〈Γ〉−J v ε2,Θ0

for some ε2. Note that we have ϕ; Φ � J = max(I,m) = I1+m since ϕ; Φ � I0+n = I
and ϕ; Φ � I1+m = max(I,m).

By Lemma 4.4.3, we can obtain two proofs, with the subtyping rule,

ϕ; Φ; 〈Γ〉−J , ṽ : T̃1{J̃ /̃i} ` P / K1{J̃ /̃i} ϕ; Φ; 〈Γ〉−J ` ẽ : T̃1{J̃ /̃i}

Thus, by the substitution lemma (Lemma 4.4.7), we have ϕ; Φ; 〈Γ〉−J ` P [̃v :=

ẽ] / K1{J̃ /̃i}. Recall that in this case, max(n,m) = m. We can obtain the following
typing using the associated typing rule:

ϕ; Φ; 〈Γ〉−(J−m) ` m : P [̃v := ẽ] / m+K1{J̃ /̃i}.

Then, by delaying (Lemma 4.4.6), we have ϕ; Φ; 〈〈Γ〉−(J−m)
〉+(J−m) ` m : P [̃v :=

ẽ] / J+K1{J̃ /̃i}, and Γ = ε′0, ε
′
1 with ϕ; Φ ` ε′1 v 〈〈Γ〉−(J−m)

〉+(J−m). Recall that

ϕ; Φ � J = I1+m and ϕ; Φ � I1+m+K1{J̃ /̃i} ≤ K. Thus, again by subtyping and
weakening, we obtain

ϕ; Φ; Γ ` max(n,m) : P [̃v := ẽ] / K

And this concludes this case. Notice that many notations in this case are somewhat
complicated because we only know that ϕ; Φ � I ≥ m is false, but it does not im-
mediately means that ϕ; Φ � m > I because the relation on indexes is not complete.
So, we have to take that into account when writing substraction.
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• Case (n : a(ṽ).P ) | (m : a〈ẽ〉) ⇒ max(n,m) : P [̃v := ẽ]. Consider the typing ϕ; Φ; Γ `
(n : a(ṽ).P ) | (m : a〈ẽ〉) / K. The first rule is the rule for parallel composition, then the
derivation is split into the two following subtree:

ϕ; Φ; ∆0 ` a : inI0 (T̃0)

πP

ϕ; Φ; 〈∆0〉−I0 , ṽ : T̃0 ` P / K′0

ϕ; Φ; ∆0 ` a(ṽ).P / I0+K′0 ϕ; Φ ` 〈Γ0〉−n v ∆0 ϕ; Φ � I0+K′0 ≤ K0

ϕ; Φ; 〈Γ0〉−n ` a(ṽ).P / K0

ϕ; Φ; Γ0 ` n : a(ṽ).P / K0+n ϕ; Φ ` Γ v Γ0;K0+n ≤ K
ϕ; Φ; Γ ` n : a(ṽ).P / K

ϕ; Φ; ∆1 ` a : outI1(T̃1)

πe

ϕ; Φ; 〈∆1〉−I1 ` ẽ : T̃1

ϕ; Φ; ∆1 ` a〈ẽ〉 / I1 ϕ; Φ ` 〈Γ1〉−m v ∆1 ϕ; Φ � I1 ≤ K1

ϕ; Φ; 〈Γ1〉−m ` a〈ẽ〉 / K1

ϕ; Φ; Γ1 ` m : a〈ẽ〉 / K1+m ϕ; Φ ` Γ v Γ1;K1+m ≤ K
ϕ; Φ; Γ ` m : a〈ẽ〉 / K

As the name a is used as an input and as an output, so the original type in ∆ for this name
must be a channel type chI(T̃ ). As this channel is not erased after the time decrease, we
also know that ϕ; Φ � I ≥ n and ϕ; Φ � I ≥ m. So, by Lemma 4.4.9, we have:

ϕ; Φ � I0 = I−n (ϕ, ĩ); Φ ` T̃ v T̃0 ϕ; Φ � I−m = I1 (ϕ, ĩ); Φ ` T̃1 v T̃

So, we obtain directly:

ϕ; Φ � I0+n = I1+m (ϕ, ĩ); Φ ` T̃1 v T̃0

Thus, by subtyping, from πP we can obtain a derivation of ϕ; Φ; 〈∆0〉−I0 , ṽ : T̃1 ` P / K ′0.

Now, by using several times Lemma 4.4.2, we have:

ϕ; Φ ` 〈Γ〉−(n+I0) v ε0, 〈∆0〉−I0 ϕ; Φ ` 〈Γ〉−(m+I1) v ε1, 〈∆1〉−I1

for some ε0, ε1. By Lemma 4.4.3, and as ϕ; Φ ` I = I1+m = I0+n we can obtain two
proofs, with the subtyping rule,

ϕ; Φ; 〈Γ〉−I , ṽ : T̃1 ` P / K ′0 ϕ; Φ; 〈Γ〉−I ` ẽ : T̃1

Thus, by the substitution lemma (Lemma 4.4.7), we have ϕ; Φ; 〈Γ〉−I ` P [̃v := ẽ] / K ′0.
As by definition, I ≥ m and I ≥ n, let us call I ′ = I−max(n,m), and we can obtain the
following typing using the associated typing rule:

ϕ; Φ; 〈Γ〉−I′ ` max(n,m) : P [̃v := ẽ] /max(n,m)+K ′0

Then, by delaying (Lemma 4.4.6), we have ϕ; Φ; 〈〈Γ〉−I′〉+I′ ` max(n,m) : P [̃v := ẽ]/I+K ′0,
and ∆ = ε′0, ε

′
1 with ϕ; Φ ` ε′1 v 〈〈Γ〉−I′〉+I′ . Recall that ϕ; Φ � I0+n+K ′0 ≤ K ′. Thus,

again by subtyping and weakening, we obtain

ϕ; Φ; Γ ` max(n,m) : P [̃v := ẽ] / K

And this concludes this case.
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• Case tick.P ⇒ 1 : P . This case is direct because both constructors have exactly the
same typing rule.

• Case match [] {[] 7→ P ; ; x :: y 7→ Q} ⇒ P . This case is similar to its counterpart
for natural number, so we only detail this one. Suppose given a derivation ϕ; Φ; Γ `
match [] {[] 7→ P ; ; x :: y 7→ Q} / K. Then the derivation has the shape:

ϕ; Φ; ∆ ` [] : List[0, 0](B′) ϕ; Φ ` Γ v ∆; List[0, 0](B′) v List[I, J ](B)

ϕ; Φ; Γ ` [] : List[I, J ](B)

πP
ϕ; (Φ, I ≤ 0); Γ ` P / K

ϕ; Φ; Γ ` match [] {[] 7→ P ; ; x :: y 7→ Q} / K

Where we ignore the branch for Q as it does not interest us in this case. By Lemma 4.4.9,
we obtain:

ϕ; Φ � I ≤ 0 ϕ; Φ � 0 ≤ J ϕ; Φ ` B′ v B

As ϕ; Φ � I ≤ 0, by Lemma 4.4.4, we obtain directly from πP a derivation ϕ; Φ; Γ ` P /K.

• Case match e :: e′ {[] 7→ P ; ; x :: y 7→ Q} ⇒ Q[x, y := e, e′]. This case is more difficult
than its counterpart for integers, thus we only detail this case and the one for integers can
easily be deduced from this one. Suppose given a derivation ϕ; Φ; Γ ` match e :: e′ {[] 7→
P ; ; x :: y 7→ Q} / K. Then the derivation has the shape:

πe

ϕ; Φ; ∆ ` e : B′
πe′

ϕ; Φ; ∆ ` e′ : List[I ′, J ′](B′)
ϕ; Φ; ∆ ` e :: e′ : List[I ′+1, J ′+1](B′) ϕ; Φ ` Γ v ∆; List[I ′+1, J ′+1](B′) v List[I, J ](B)

ϕ; Φ; Γ ` e :: e′ : List[I, J ](B) πQ

ϕ; Φ; Γ ` match e :: e′ {[] 7→ P ; ; x :: y 7→ Q} / K

Where we ignore the branch for P and πQ proves ϕ; (Φ, J ≥ 1); Γ, x:B, y:List[I−1, J−1](B) `
Q /K. Lemma 4.4.9 gives us the following information:

ϕ; Φ � I ≤ I ′+1 ϕ; Φ � J ′+1 ≤ J ϕ; Φ ` B′ v B

From this, we can deduce the following constraints:

ϕ; Φ � J ≥ 1 ϕ; Φ � I−1 ≤ I ′ ϕ; Φ � J ′ ≤ J − 1

Thus, with the subtyping rule and the proofs πe and πe′ we obtain:

ϕ; Φ; Γ ` e : B ϕ; Φ; Γ ` e′ : List[I−1, J−1](B)

Then, by Lemma 4.4.4, from πQ we obtain a derivation of ϕ; Φ; Γ, x:B, y:List[I−1, J−1](B) `
Q/K. By the substitution lemma (Lemma 4.4.7), we obtain ϕ; Φ; Γ ` Q[x, y := e, e′] /K.
This concludes this case.

• Case P | R⇒ Q | R with P ⇒ Q. Suppose that ϕ; Φ; Γ ` P | R/K. Then the derivation
has the shape:

πP
ϕ; Φ; Γ ` P / K

πR
ϕ; Φ; Γ ` R / K

ϕ; Φ; Γ ` P | R / K

By induction hypothesis, with the derivation πP of ϕ; Φ; Γ ` P /K, we obtain a derivation
πQ of ϕ; Φ; Γ ` Q /K. Then, we can derive the following proof:
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πQ

ϕ; Φ; Γ ` Q /K

πR
ϕ; Φ; Γ ` R / K

ϕ; Φ; Γ ` Q | R / K

This concludes this case.

• Case (νa)P ⇒ (νa)Q with P ⇒ Q. Suppose that ϕ; Φ; Γ ` (νa)P / K. Then the
derivation has the shape:

πP
ϕ; Φ; Γ, a : T ` P / K

ϕ; Φ; Γ ` (νa)P / K

By induction hypothesis, with the derivation πP of ϕ; Φ; Γ, a : T ` P / K, we obtain a
derivation πQ of ϕ; Φ; Γ, a : T ` Q /K We can then derive the proof:

πQ

ϕ; Φ; Γ, a : T ` Q /K

ϕ; Φ; Γ ` (νa)Q /K

This concludes this case.

• Case n : P ⇒ n : Q with P ⇒ Q. Suppose that ϕ; Φ; Γ ` n : P / K+n. Then, the
derivation has the shape:

πP
ϕ; Φ; 〈Γ〉−n ` P / K

ϕ; Φ; Γ ` n : P / K+n

By induction hypothesis, we have a derivation πQ of ϕ; Φ; 〈Γ〉−n ` Q/K, thus we can give
the derivation:

πQ

ϕ; Φ; 〈Γ〉−n ` Q /K

ϕ; Φ; Γ ` n : Q /K+n

• Case P ⇒ Q with P ≡ P ′, P ′ ⇒ Q′ and Q ≡ Q′. Suppose that ϕ; Φ; Γ ` P / K. By
Lemma 4.4.8, we have ϕ; Φ; Γ ` P ′/K. By induction hypothesis, we obtain ϕ; Φ; Γ ` Q′/K.
Then, again by Lemma 4.4.8, we have ϕ; Φ; Γ ` Q /K. This concludes this case.

This concludes the proof of Theorem 4.4.2.
Now that we have the subject reduction for ⇒, we can easily deduce a more generic form

of Theorem 4.4.1.

Theorem 4.4.3. Let P be an annotated process and let m be its global parallel complexity.
Then, for a typing ϕ; Φ; Γ ` P / K, we have ϕ; Φ � K ≥ m.

Proof. By Theorem 4.4.2, all reductions from P using⇒ preserve the typing. Moreover, for any
process Q, if we have a typing ϕ; Φ; Γ ` Q / K, then ϕ; Φ � K ≥ C`(Q). Indeed, a constructor
n : P incurs an increment of the complexity of n both in typing and in the definition of C`(Q),
and for parallel composition the typing imposes a complexity greater than the maximum as in
the definition for C`(Q). Thus, for any process Q reachable from P , we have ϕ; Φ � K ≥ C`(Q),
so K is indeed a bound on the parallel complexity.

Corollary 4.4.1 is then obtained with the substitution lemma and the rule for parallel com-
position.
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4.4.3 Examples: Bitonic Sort / Brute Force

Bitonic Sort

As an example for this type system, we first show how to obtain the bound on a common
parallel algorithm: bitonic sort [2]. The particularity of this sorting algorithm is that it admits
a parallel complexity in O(log(n)2). We will show here that our type system allows to derive
this bound for the algorithm, just as the paper-and-pen analysis. Actually we consider here a
version for lists, which is not optimal for the number of operations, but we obtain the usual
number of comparisons. For the sake of simplicity, we present the algorithm for lists of size a
power of two. Let us briefly sketch the ideas of this algorithm. For a formal description see [2].

• A bitonic sequence is either a sequence composed of an increasing sequence followed by a
decreasing sequence (e.g. [2, 7, 23, 19, 8, 5]), or a cyclic rotation of such a sequence (e.g.
[8, 5, 2, 7, 23, 19]).

• The algorithm uses two main functions, bmerge and bsort.

• bmerge takes a bitonic sequence and recursively sorts it, as follows:

Assume s = [a0, . . . , an−1] is a bitonic sequence such that the sequence [a0, . . . , an/2−1] is
increasing and the sequence [an/2 . . . , an−1] is decreasing, then we consider:

s1 = [min(a0, an/2),min(a1, an/2+1) . . . ,min(an/2−1, an−1)]

s2 = [max(a0, an/2),max(a1, an/2+1) . . . ,max(an/2−1, an−1)]

Then we have: s1 and s2 are bitonic and satisfy: ∀x ∈ s1,∀y ∈ s2, x ≤ y.

bmerge then applies recursively to s1 and s2 to produce a sorted sequence.

• bsort takes a sequence and recursively sorts it. It starts by separating the sequence
in two. Then, it recursively sorts the first sequence in increasing order, and the second
sequence in decreasing order. With this, we obtain a bitonic sequence that can be sorted
with bmerge.

We will encode this algorithm in π-calculus with a boolean type. As expressed before, our
results can easily be extended to support boolean with a conditional constructor.

First, we suppose that a server for comparison lessthan is already implemented. We start
with bcompare such that given two lists of same length, it creates the list of maximum and the
list of minimum. This is described in Figure 4.26.

We present here intuitively the typing. To begin with, we suppose that lessthan is given
the server type srv0

0(B,B, ch0(Bool)), saying that this is a server ready to be called, and it takes
in input a channel that is used to return the boolean value. With this, we can give to bcompare

the following server type:

∀i.srv1
0(List[0, i](B), List[0, i](B), out1(List[0, i](B), List[0, i](B)))

The important things to notice is that this server has complexity 1, and the channel taken in
input has a time 1. A sketch of this typing is given in Figure 4.27. The cases of empty lists are
not detailed, but they are easy. In the non-empty case, for the ν constructor, we must give a
type to the channels b and c. We use:

b : ch1(List[0, i−1](B), List[0, i−1](B)) c : ch1(Bool)

And we can then type the different processes in parallel.
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!bcompare(l1 ,l2 ,a) . match(l1) {
[ ] 7→ a〈l1 ,l2〉 ; ;
x :: l′1 7→ match(l2) {

[ ] 7→ a〈l1 ,l2〉 ; ;
y :: l′2 7→ (νb)(νc)(

bcompare〈l′1 ,l′2 ,b〉 | tick.lessthan〈x ,y ,c〉
| b(lm ,lM ) .c(z) .if z then a〈x :: lm ,y :: lM 〉 else a〈y :: lm ,x :: lM 〉
)

}
}
!bmerge(up , l ,a) . match( l ) {

[ ] 7→ a〈 l 〉 ; ;
[y ] 7→ a〈 l 〉 ; ;
7→ let (l1 ,l2) = partition( l ) in (νb)(νc)(νd)(

bcompare〈l1 ,l2 ,b〉 | b(p1 ,p2) . (bmerge〈up ,p1 ,c〉 | bmerge〈up ,p2 ,d〉)
| c(q1) .d(q2) . if up then let l′ = q1 @ q2 in a〈l′〉 else let l′ = q2 @ q1 in a〈l′〉
)

}
!bsort(up , l ,a) . match( l ) {

[ ] 7→ a〈 l 〉 ; ;
[y ] 7→ a〈 l 〉 ; ;
7→ let (l1 ,l2) = partition( l ) in (νb)(νc)(νd)(

bsort〈tt ,l1 ,b〉 | bsort〈ff ,l2 ,c〉
| b(q1) .c(q2) .let q = q1 @ q2 in bmerge〈up ,q ,d〉 | d(p) .a〈p〉
)

}

Figure 4.26: Bitonic Sort

• For the call to bcompare, the arguments have the expected type, and this call has com-
plexity 1 because of the type of bcompare.

• For the process tick.lessthan〈x, y, c〉, the tick enforces a decreasing of time 1 in the
context. This modifies in particular the time of c, that becomes 0. Thus, we can do the
call to lessthan as everything is well-typed.

• Finally, for the last process, we have in the two branches a shape b(· · · ).c(· · · ).a〈· · ·〉. So,
by Example 4.4.1, as all those three channels b, c and a have a time equal to 1, we have a
complexity 1 for this typing.

So, we can indeed give this server type to bcompare, and thus we can call this server and it
generates a complexity of 1.

Then, to present the processes for bitonic sort, let us use the macro let ṽ = f(ẽ) in P to
represent (νa)(f〈ẽ, a〉 | a(ṽ).P ), and let us also use a generalized pattern matching. We also
assume that we have a function for concatenation of lists and a function partition taking a
list of size 2n, and giving two lists corresponding to the first n elements and the last n elements.
Then, the process for bitonic sort is given in Figure 4.26.

Then, the main point in the typing of the two remaining servers is to find a solution to
a recurrence relation for the complexity of server types. In the typing of bmerge, we suppose
given a list of size smaller than 2i and we choose both the complexity of this type and the time
of the channel a equal to an index f(i) as in Section 4.4.1. So, it means we choose for bmerge
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i; i ≥ 1; ∆ ` (l′1, l
′
2, b) : T̃ (i−1)

i; i ≥ 1; ∆ ` bc〈l′1, l′2, b〉 / 1

· · · ` (x, y, c) : (B,B, ch0(Bool))

i; i ≥ 1; 〈∆〉−1
` lt〈x, y, c〉 / 0

i; i ≥ 1; ∆ ` tick.lt〈x, y, c〉 / 1

See Example 4.4.1

i; i ≥ 1; ∆ ` b(lm, lM ).c(z).if · · · / 1

i; i ≥ 1; Γ′, (l1, l2, a) : T̃ (i), (l′1, l
′
2, b) : T̃ (i−1), x, y : B, c : ch1(Bool) ` · · · | · · · | · · · / 1

i; i ≥ 1; Γ′, (l1, l2, a) : T̃ (i), x, y : B, l′1, l′2 : List[0, i−1](B) ` (νb)(νc) · · · / 1

i; i ≥ 1; Γ′, (l1, l2, a) : T̃ (i), x : B, l′1 : List[0, i−1](B) ` match l2 {[] 7→ · · · ; ; y :: l′2 7→ · · ·} / 1

i; ·; Γ′, (l1, l2, a) : T̃ (i) ` match l1 {[] 7→ · · · ; ; x :: l′1 7→ · · ·} / 1 Γ′ time invariant ·; ·;` 〈Γ〉−0
v Γ′

·; ·; Γ `!bc(l1, l2, a). . . . / 0

with T̃ (i) ≡ List[0, i](B), List[0, i](B), out1(List[0, i](B), List[0, i](B))

Γ ≡ lt : srv0
0(B,B, ch0(Bool)), bc : ∀i.srv1

0(T̃ (i))

Γ′ ≡ lt : srv0
0(B,B, ch0(Bool)), bc : ∀i.osrv1

0(T̃ (i))

Figure 4.27: Type Derivation for Bitonic Comparison

the type:

∀i.srvf(i)
0 (Bool, List[0, 2i](B), outf(i)(List[0, 2

i](B)))

Then, the typing given in Figure 4.28 gives us the following conditions, for the three branches,
when i ≥ 1:

f(i) ≥ 1 f(i) ≥ 1+f(i−1) f(i) ≥ f(i−1) ≥ f(i−1)

So, we can take f(i) = i, and thus bmerge has logarithmic complexity.
In the same way, for bsort we choose the type:

∀i.srvg(i)0 (Bool, List[0, 2i](B), outg(i)(List[0, 2
i](B)))

The typing is given in Figure 4.29, which gives us the following conditions, again for the
three branches, when i ≥ 1:

g(i) ≥ g(i−1) g(i) ≥ g(i−1)+f(i) g(i) ≥ g(i−1)+f(i)

So, if we take f(i) = i as previously, we have:

i ≥ 1 implies g(i) ≥ g(i−1)+i

Thus, we can take g(i) inO(i2), and we obtain in the end that bitonic sort is indeed inO(log(n)2)
on a list of size n.

Notice that in this example, the type system gives recurrence relations corresponding to
the usual recurrence relations we would obtain with a complexity analysis by hand. Here, the
recurrence relation is only on f or g because channel names are only used as return channels, so
their time is always equal to the complexity of the server that uses them. In general this is not
the case as we saw before in Section 4.4.1, so we obtain in general mutually recurrent relations
when defining a server.

Brute Force

In this example, we focus on a brute forcing algorithm: given a propositional logic formula on n
boolean variables, can we find an assignment for those variables such that the formula is true?
For this example, we use both binary words and booleans as data-types. The formal rules for
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i; i ≥ 1; ∆ ` (l1, l2, b) : T̃ (2i−1)

i; i ≥ 1; ∆ ` bc〈l1, l2, b〉 / 1

i; i ≥ 1; ∆ ` bc〈l1, l2, b〉 / f(i)

See Example 4.4.1

i; i ≥ 1; ∆ ` b(p1, p2). · · · / 1+f(i−1)

i; i ≥ 1; ∆ ` b(p1, p2). · · · / f(i)

see Example 4.4.1

i; i ≥ 1; ∆ ` c(q1). · · · / f(i)

i; i ≥ 1; Γ′, (up, l, a) : Ũ(i), (l1, l2, b) : T̃ (2i−1), c, d : outf(i−1)(List[0, 2
i−1](B)) ` · · · | · · · | · · · / f(i)

i; i ≥ 1; Γ′, (up, l, a) : Ũ(i), l1, l2 : List[0, 2i−1](B) ` (νb)(νc)(νd) · · · / f(i)

i; 2i ≥ 2; Γ′, (up, l, a) : Ũ(i) ` let (l1, l2) = partition(l) in · · · / f(i)

i; ·; Γ′, (up, l, a) : Ũ(i) ` match l {· · · } / f(i) Γ′ time invariant ·; ·;` 〈Γ〉−0
v Γ′

·; ·; Γ `!bm(up, l, a). . . . / 0

with T̃ (i) ≡ List[0, i](B), List[0, i](B), out1(List[0, i](B), List[0, i](B))

Ũ(i) ≡ Bool, List[0, 2i](B), outf(i)(List[0, 2
i](B))

Γ ≡ bc : ∀i.osrv1
0(T̃ (i)), bm : ∀i.srvf(i)

0 (Ũ(i))

Γ′ ≡ bc : ∀i.osrv1
0(T̃ (i)), bm : ∀i.osrvf(i)

0 (Ũ(i))

Figure 4.28: Type Derivation for Bitonic Merge

those types are not written in Figure 4.10 and Figure 4.11, but they can be deduced from the
rules for integers.

To begin with, we will give an abstraction of formulas on n boolean variables in the π-
calculus. A formula is represented by a server name formula with the following type:

∀i.srvk0(Word[0, i], outk(Bool))

Thus, a formula receives an assignment for the n variables given by a binary word w. This word
w = w1w2 · · ·wm represents the assignment xi = tt if and only if wi = 1. If wi = 0 or m < i
then xi = ff. In particular, the formula should not read more that the n first letters of w, so
we can assume that for a given formula, evaluating the truth of this formula can be done in
a constant time k. Please note that this k can still depend on the evaluated formula, and in
particular it can depend on n. Finally, this server returns the truth value of the formula on a
return channel, sending a value of type Bool.

We do not detail how to obtain this server in practice. For propositional formulas for
example, it should be clear that basic constructors on booleans are enough in order to have a
simple encoding. The problem we consider is, given a server representing a formula, is there an
assignment that satisfies this formula? In order to do this, we construct a function (a server)
test of type

∀j, k.srvf(j,k)
0 (Nat[0, j], ∀i.osrvk0(Word[0, i], outk(Bool)), outf(j,k)(Bool))

So, this test function takes as input the integer n, a formula, and a return channel. For the
sake of simplicity, we do not send the assignment that satisfies the formula if it exists, but we
could have done this without changing anything to complexity analysis. This function will use
an auxiliary recursive function constr that constructs all the possible assignments and feeds
them to the formula, with type:

∀j′, j, k.srvg(j
′,j,k)

0 (Word[0, j′],Nat[0, j−j′],∀i.osrvk0(Word[0, i], outk(Bool)), outg(j′,j,k)(Bool))

Intuitively, this auxiliary function takes an unfinished assignment (the word of size j′) and
completes it depending on the number of variables that must still be assigned (the integer of
size j−j′). The actual processes are given in Figure 4.30.
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i; i ≥ 1; ∆ ` (tt, l1, b) : ṽ(i−1)

i; i ≥ 1; ∆ ` bs〈tt, l1, b〉 / g(i−1)

i; i ≥ 1; ∆ ` bs〈tt, l1, b〉 / g(i)

See Example 4.4.1

i; i ≥ 1; ∆ ` b(q1). · · · / g(i−1)+f(i)

i; i ≥ 1; ∆ ` b(q1). · · · / g(i)

See Example 4.4.1

i; i ≥ 1; ∆ ` d(p).a〈p〉 / g(i)

i; i ≥ 1; Γ′′, b, c : outg(i−1)(List[0, 2
i−1])(B), d : out(g(i−1)+f(i))(List[0, 2

i])(B) ` · / g(i)

i; i ≥ 1; Γ′, (up, l, a) : ṽ(i), l1, l2 : List[0, 2i−1](B) ` (νb)(νc)(νd) · · · / g(i)

i; 2i ≥ 2; Γ′, (up, l, a) : ṽ(i) ` let (l1, l2) = partition(l) in · · · / g(i)

i; ·; Γ′, (up, l, a) : ṽ(i) ` match l {· · · } / g(i) Γ′ time invariant ·; ·;` 〈Γ〉−0
v Γ′

·; ·; Γ `!bs(up, l, a). . . . / 0

with Ũ(i) ≡ Bool, List[0, 2i](B), outf(i)(List[0, 2
i](B))

ṽ(i) ≡ Bool, List[0, 2i](B), outg(i)(List[0, 2
i](B))

Γ ≡ bm : ∀i.osrvf(i)
0 (Ũ(i)), bs : ∀i.srvg(i)0 (ṽ(i))

Γ ≡ bm : ∀i.osrvf(i)
0 (Ũ(i)), bs : ∀i.osrvg(i)0 (ṽ(i))

Figure 4.29: Type Derivation for Bitonic Sort

! test (n, f , r) . constr〈ε ,n, f , r〉

! constr (w,n, f , r) . match (n) {
0 7→ f 〈w, r〉
s(m) 7→ (νa)(νb) (constr〈s0(w) ,m, f ,a〉) | (constr〈s1(w) ,m, f ,b〉)
| a( t ) .b( t ’ ) . if t then r〈 t 〉 else r〈 t ’ 〉

}

Figure 4.30: Brute Forcing Formula Satisfiability

In a first analysis, we do not add any tick anywhere, thus the complexity only comes from the
evaluation of the formula. As before, the complexity analysis consists in finding the functions
f and g. By the definition of test, we obtain immediately that:

f(j, k) = g(0, j, k)

Then, from the definition of constr, we obtain in the first branch of the pattern matching:

g(j′, j, k) ≥ k

for any j, j′, since the call to f has complexity k. Moreover, in the second branch, we obtain,
for j − j′ ≥ 1 (equivalently, j ≥ j′ + 1)

g(j′, j, k) ≥ g(j′ + 1, j, k)

Indeed, the two recursive calls to constr are done on a word of size j′ + 1 and an integer of
size j−(j′ + 1) = j−j′−1. Moreover, the subprocess if t then r < t > else r < t′ > imposes
that the time of r must be greater than the time of a and b, giving again the same inequality
g(j′, j, k) ≥ g(j′ + 1, j, k).

Thus, we can take in particular

f(j, k) = g(j′, j, k) = k
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Indeed, all those calls to the formula can be done in parallel, and the span is then the complexity
of one call to the formula.

A first thing to remark with this result is that even if the span seems good, in practice we
would need to run 2n computations in parallel in order to obtain this span. In particular, for
n large enough, this is not feasible in practice. This is were the work analysis comes in handy.
Indeed, a work analysis of this process gives us 2j · k′. We should have, if we consider the work
complexity functions f ′ and g′:

f ′(j, k) = g′(0, j, k) g′(j′, j, k) ≥ 2 · g′(j′ + 1, j, k)

Thus, we can take:
g′(j′, j, k) = 2j−j′ · k f ′(j, k) = 2j · k

So, from the huge difference of complexity between work and span, one can see that even if
this process is highly parallelisable, it requires a huge amount of computations in parallel. That
is why we believe a span analysis alone is often not sufficient and it should be completed with
a work analysis.

On a second approach, we consider that evaluating the formula is not the only costly opera-
tion for this process, and that the construction of those assignments should be taken in account.
A way to do that is to add a tick after an input of constr. In this case, the constraints become:

f(j, k) = g(j′, j, k) g(j′, j, k) ≥ k + 1 g(j′, j, k) ≥ g(j′ + 1, j, k) + 1

And we can take
g(j′, j, k) = k + (j−j′) + 1 f(j, k) = k + j + 1

And so the cost of constructing those assignments is linear in j. In particular, in the case
of a propositional formula of size polynomial in n (such as SAT), we obtain a process with a
polynomial time complexity for span, and an exponential complexity for work.

Overall, the type system seems expressive enough to type interesting parallel programs,
however it does not behave well with some concurrent behaviours because of time uniqueness.
We thus present a usage type system in order to solve this problem.

4.5 Span Analysis with Sized Types and Usages

In this section, we present some results obtained in joint work with Naoki Kobayashi [15], on
a usage type system with sizes for parallel complexity analysis. As stated in Section 4.1.3, the
usage type system we define here differs from the one in the literature [77, 72, 75] since we
manage time differently, and thus all the operations must be defined accordingly. In particular,
our type system relies on time intervals, in order to have more precise complexity bounds (see
Section 4.5.3), and the notion of reliability should take in account any possible reduction path,
which was not the case in deadlock-freedom analysis.

Still, in order to introduce the relevance of usages for complexity, let us look back at an
example presented in Section 4.4.1

Example 4.5.1 (Motivating Example). We define

P := a().tick.a〈〉

Then, the complexity of P | P | P | · · · | P | a〈〉 is equal to the number of P in parallel.

Let us look at the rule for parallel composition. If we take, as before, a rule of the shape:
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Γ ` Q1 / K1 Γ ` Q2 / K2

Γ ` Q1 | Q2 /max(K1,K2)

given a typing Γ ` P /K, then we would obtain Γ ` P | · · · | P /K and so we have two processes
with different complexities when composed with a〈〉 that are not distinguished by typing. In
Section 4.4.1, P was not typable and so this did not break soundness, but it implied some
limitations on the expressivity of the type system. A better alternative is to separate contexts.

Γ ` Q1 / K1 ∆ ` Q2 / K2

f(Γ,∆) ` Q1 | Q2 /max(K1,K2)

This could for example lead to linear type systems, session types, or usages [73]. As we want
a type system that can type example such as P , usages seem adapted. Indeed, the concept of
reliability, the central notion of usages, that allows types to adapt compositionally, is especially
useful here, as we will see in Example 4.5.3.

4.5.1 Usages and Type System

Recall from Section 4.1.3 that in order to define a usage type system, we need first to define
usages as some simple parallel programs, and we need to give a meaning to time annotations.
As we saw before, an infinite time annotation may be useful for usages, so, for this section, we
modify slightly the size annotations.

Indices

Definition 4.5.1. We take again V as a countable set of index variables. The set of indices,
representing integers in N∞ = N ∪ {∞}, is given by the following grammar.

I, J := IN |∞ IN := i | f(IN, . . . , IN)

where i ∈ V. So, an index IN corresponds to an index from the previous sections, and now we
use the notation I to consider indexes that may have an infinite value.

As before, given an index valuation ρ : V → N, we can extend the interpretation of function
symbols to indices, this gives us a number JIKρ ∈ N∞. As for substitution, we ask that an index
variable is always replaced by an integer index, so it cannot be replaced by infinity. Formally,
for an index I, the substitution of the occurrences of i in I by JN (denoted I{JN/i}), is only
defined for an integer index JN, and not for global index J . This substitution is easily defined
for infinity by ∞{JN/i} =∞.

As before, we will use constraints on indices, using this time relations on N∞. Finally, we
will use the following notations.

Definition 4.5.2 (Notations for Indices). In order to harmonize notation, we extend some
operations on indices IN, JN to indices I, J . We will use the following operations:

∞+ J = I +∞ =∞ max(∞, J) = max(I,∞) =∞

min(∞, J) = min(J,∞) = J ∞−1 =∞
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Usages

We use usages to express the channel-wise behaviour of a process. Our notion of usages has
been inspired by the usages introduced in type systems for deadlock-freedom [91, 72, 77], but
differs from the original one in a significant manner. We define usages as a kind of CCS [89]
processes on a single channel, where each action is annotated with two time intervals.

The set of usages, ranged over by U or V , is given by:

U, V ::= 0 | (U |V ) | InAoJc .U | Out
Ao
Jc
.U |!U | U + V

Ao, Bo ::= [I, J ] Jc, Ic ::= J | [I, J ]

Given a set of index variables ϕ and a set of constraints Φ, for an interval [I, J ], we always
require that ϕ; Φ � I ≤ J . For an interval Ao = [I, J ], we denote Left(Ao) = I and Right(Ao) =
J . In the original notion of usages [91, 72, 77], Ao and Jc were just numbers. The extension
to intervals plays an important role in our analysis. Note that Jc is not always an interval, as
it can be a single index J . However, this single index J should be understood as the interval
[−∞, J ].

Intuitively, a channel with usage 0 is not used at all. A channel of usage U | V can be
used according to U and V possibly in parallel. The usage InAoJc .U describes a channel that
may be used for input, and then used according to U . The two intervals Ao and Jc, called
obligation and capacity respectively, are used to achieve a kind of assume-guarantee reasoning.
The obligation Ao indicates a guarantee that if the channel is indeed used for input, then the
input will become ready during the interval Ao. The capacity Jc indicates the assumption
that if the environment performs a corresponding output, that output will be provided during
the time interval Jc after the input becomes ready. For example, if a channel a has usage

In
[1,1]
Jc

.0, then the process tick.a().0 conforms to the usage, but a().0 and tick.tick.a().0 do

not. Furthermore, if Jc = [0, 1], and if a process tickk.a is running in parallel with tick.a().0,
then k belongs to the interval [1, 1] + [0, 1] = [1, 2]. Similarly, OutAoJc .U has the same meaning
but for output. The usage !U denotes the usage U that can be replicated infinitely, and U + V
denotes a non-deterministic choice between the usages U and V . This is useful for example in
a case of pattern matching where a channel can be used very differently in the two branches.
For the sake of conciseness, we may use αAoJc .U to denote either the usage OutAoJc .U or InAoJc .U .

Recall that the obligation and capacity intervals in usages express a sort of assume-guarantee
reasoning. We thus require that the assume-guarantee reasoning in a usage is “consistent” (or

reliable, in the terminology of usages). For example, the usage In
[0,0]
[1,1] | Out

[1,1]
0 is reliable, since

the part In
[0,0]
[1,1] assumes that a corresponding output will become ready at time 1, and the other

part Out
[1,1]
0 indeed guarantees that. Then, Out

[1,1]
0 assumes that a corresponding input will be

ready by the time the output becomes ready, and the part In
[0,0]
[1,1] guarantees that. In contrast,

the usage In
[0,0]
[1,1] | Out

[2,2]
0 is problematic because, although the part In

[0,0]
[1,1] assumes that an

output will be ready at time 1, Out
[2,2]
0 provides the output only at time 2. The consistency on

assume-guarantee reasoning must hold during the whole computation; for example, in the usage

In
[0,0]
[0,0].In

[0,0]
[1,1] | Out

[0,0]
[0,0].Out

[2,2]
0 , the assume/guarantee on the first input/output pair is fine, but

the usage expressing the next communication: In
[0,0]
[1,1] | Out

[2,2]
0 is problematic. To properly define

the reliability of usages during the whole computation, we first prepare a reduction semantics
for usages, by viewing usages as CCS processes.

Definition 4.5.3 (Congruence for Usages). Congruence on usages is defined as the least con-
gruence relation closed under:

U | 0 ≡ U U | V ≡ V | U U | (V | W ) ≡ (U | V ) | W
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!0 ≡ 0 !U ≡!U | U !(U | V ) ≡!U | !V !!U ≡!U

We have the usual relations for parallel composition. We also add a relation defining repli-
cation !U ≡!U | U . The other relations allow manipulation of replication. This will be useful
for the subusage relation, as it can increase the set of typable programs.

Now that we have congruence, as before, we give the reduction semantics. Let us first
introduce some notations.

Definition 4.5.4 (Operations on Usages). We define the operations ⊕, t, and + by:

Ao ⊕ J = [0, Left(Ao) + J ]
Ao ⊕ [I, J ] = [Right(Ao) + I, Left(Ao) + J ]
[I, J ] t [I ′, J ′] = [max(I, I ′),max(J, J ′)]
[I, J ] + [I ′, J ′] = [I + I ′, J + J ′]

Note that ⊕ is an operation that takes an obligation interval and a capacity and returns an
interval. This is where we see the fact that a capacity J alone should be understood as the
interval [−∞, J ]. Indeed, when considering a single index, the lower bound of the sum becomes
0. So, in particular, we have Ao ⊕ J 6= Ao ⊕ [0, J ] in general. A case where we need this single
index will be explained in Example 4.5.2.

The delaying operation ↑AoU on usages is defined by:

↑Ao0 = 0 ↑Ao(U | V ) = ↑AoU | ↑AoV
↑Ao(U + V ) = ↑AoU + ↑AoV
↑AoαBoJc .U = αAo+BoJc

.U ↑Ao(!U) =!(↑AoU)

We also define [I, J ] + Jc and thus ↑JcU by extending the operation with: [I, J ] + J ′ =
[I, J + J ′].

Intuitively, a usage ↑AoU corresponds to the usage U delayed by a time approximated by
the interval Ao. Given two obligations Ao and Bo, Ao t Bo corresponds to an interval of time
approximating the time for which those two obligations are respected. For example, if an input
has the obligation to be ready in the interval of time [4, 8] and an output has the obligation to
be ready in the interval of time [5, 7], then we now for sure that the input and the output will
both be ready in the interval of time [5, 8].

The reduction relation is given by the rules of Figure 4.31. The first rule means that to
reduce a usage, we choose one input and one output, and then we trigger the communication
between them. This communication occurs and does not lead to an error when the capacity
of an action corresponds indeed to a bound on the time the dual action is defined. This is
given by the relation Ao ⊆ Bo ⊕ Jc. As an example, let us suppose that Bo = [1, 3], and
the time for which the output becomes ready is in fact 2, then the capacity Jc says that
after two units of time, the synchronization should happen in the interval Jc. So, if we take
Jc = [5, 7] for example, then if we call t the time for which the dual input becomes ready, we
must have t ∈ [2 + 5, 2 + 7]. This should be true for any time value in Bo, so we want that
∀t′ ∈ [1, 3], ∀t ∈ Ao, t ∈ [t′ + 5, t′ + 7], and this is equivalent to Ao ⊆ Bo ⊕ [5, 7] = [8, 8]. Indeed,
8 is the only time that is in the three intervals [6, 8], [7, 9] and [8, 10]. The case where Jc = J is
a single index occurs when t can be smaller than t′, and in this case we only ask that the upper
bound is correct: ∀t′ ∈ Bo,∀t ∈ Ao, t ≤ t′ + J .

If the bound was incorrect, we trigger an error, see the second rule. In the case everything
went well, the continuation is delayed by an approximation of the time when this communication
occurs (see ↑AotBo in the first rule). The idea is that we would like, after a communication, to
synchronize the time of the continuation with the other subprocesses of a usage. As it is not
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ϕ; Φ � Bo ⊆ Ao ⊕ Ic ϕ; Φ � Ao ⊆ Bo ⊕ Jc
ϕ; Φ ` InAoIc .U | Out

Bo
Jc
.V −→ ↑AotBo(U | V )

ϕ; Φ 2 (Bo ⊆ Ao ⊕ Ic ∧Ao ⊆ Bo ⊕ Jc)
ϕ; Φ ` InAoIc .U | Out

Bo
Jc
.V −→ err

ϕ; Φ ` U + V −→ U ϕ; Φ ` U + V −→ V

ϕ; Φ ` U −→ U ′ U ′ 6= err

ϕ; Φ ` U | V −→ U ′ | V
ϕ; Φ ` U −→ err

ϕ; Φ ` U | V −→ err

U ≡ U ′ ϕ; Φ ` U ′ −→ V ′ V ′ ≡ V
ϕ; Φ ` U −→ V

Figure 4.31: Reduction Rules for Usages

easy to advance the time of all the other subprocesses, delaying the current subprocess leads
to an easier semantics. In the rules for U + V , a reduction step in usages can also make a
non-deterministic choice.

An error in a usage reduction means that the assume-guarantee reasoning was inconsistent.
Keeping that in mind, we define what is a reliable usage, that is to say a usage with consistent
time indications.

Definition 4.5.5 (Reliability). A usage U is reliable under ϕ; Φ when for any reduction from
U using −→, it does not lead to an error.

A type T is reliable under ϕ; Φ if it is a base type or a channel (resp. server) type with a
reliable usage.

Example 4.5.2. Take the usage

U := In
[1,1]
1 .Out

[1,1]
0 | In[1,1]

1 .Out
[1,1]
0 | Out[0,0]

[1,1]

The only possible reduction step (with symmetry) is:

U −→ Out
[2,2]
0 | In[1,1]

1 .Out
[1,1]
0

as we have indeed [1, 1] ⊆ [0, 0] ⊕ [1, 1] = [1, 1] and [0, 0] ⊆ [1, 1] ⊕ 1 = [0, 2]. Note that the
capacity [0, 1] instead of 1 for the input would not have worked since [1, 1]⊕ [0, 1] = [1, 2]. Then,
we end the reduction with

Out
[2,2]
0 | In[1,1]

1 .Out
[1,1]
0 −→ Out

[3,3]
0

since [2, 2] ⊆ [1, 1] ⊕ 1 = [0, 2] and [1, 1] ⊆ [2, 2] ⊕ 0 = [0, 2]. Thus, this usage is reliable. It
corresponds for example to the usage of the channel a in the following process P

tick.a().tick.a〈〉 | tick.a().tick.a〈〉 | a〈〉

The obligation [1, 1] corresponds to waiting exactly one tick. Then, the capacities say that
once they are ready, the two inputs will indeed communicate before one time unit for any re-
duction. And at the end, we obtain an output available at time 3, and this output has no
communication. One can see that those capacities and obligations give indeed the complexity of
this process. Thus, we will ask in the type system that all usages are reliable, and so the time
indications will give some complexity bounds on the behaviour of a channel.
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Example 4.5.3. Let us take as another example a non-reliable usage. We take the previous
example and add another input in parallel

U := In
[1,1]
1 .Out

[1,1]
0 | In[1,1]1 .Out

[1,1]
0 | In[1,1]1 .Out

[1,1]
0 | Out[0,0][1,1]

Again, the reduction gives:

U −→∗ Out[3,3]
0 | In[1,1]

1 .Out
[1,1]
0 −→ err

because [1, 1] ⊕ 1 = [0, 2], so the capacity here is not a good assumption. Therefore, this usage
is not reliable. However, if we change the usage to

U := In
[1,1]
2 .Out

[1,1]
0 | In[1,1]2 .Out

[1,1]
0 | In[1,1]2 .Out

[1,1]
0 | Out[0,0][1,1]

this time we obtain a reliable channel. This example shows how reliability adapts composition-
ally.

We introduce another relation U v V called the subusage relation, which will be used later
to define the subtyping relation. It is defined by the rules of Figure 4.32. The relation U v V
intuitively means that if a channel is given a usage V , then it is safe for the typing to consider
that the usage is U . For example, U v 0 says that if a channel is not used (usage equal to
0), then it is safe to give any usage to this channel. Recall that an obligation and a capacity
express a guarantee and an assumption respectively. The last but one rule says, read from right
to left, that it is safe to weaken the guarantee and strengthen the assumption, as explained in
Section 4.1.3. We use the relation Ic ≤ Jc to denote the relation ⊆ on intervals, where a single
index J is considered as the interval [−∞, J ]. The last rule can be understood as follows. If a
channel is safely typed with the right usage. Then, in particular the usage V should happen
after the action αAoJc . Since the action αAoJc is finished during the interval Ao +Jc, the channel is
used according to V only after the interval Ao + Jc. thus it is safe to move V outside the guard
of αAoJc , as long as it is delayed by Ao + Jc unit of time. This last rule is especially useful for
substitution, as explained in the example below.

Example 4.5.4. Let us consider the process:

P := a(r).r().b() | a〈b〉

Let us give usages to b and r; here we omit time annotations for the sake of simplicity.

Ur = In Ub = In | Ur

Indeed, r is used only once as an input, and b is used as an input on the left, and it is sent to
be used as r on the right. Thus, after a reduction step we obtain P → b().b() where b has usage
U ′b = In.In. So, the channel b had usage Ub in P , but it ended up being used according to U ′b;
that is valid since we have the subusage relation Ub v U ′b.

Before describing the type system, we give some intermediate results on subusages.

Lemma 4.5.1 (Properties of Subusage). For a set of index variables ϕ and a set of constraints
Φ on ϕ we have:

1. If ϕ; Φ ` U v V then for any interval Ao, we have ϕ; Φ ` ↑AoU v ↑AoV .

2. If ϕ; Φ ` U v V and ϕ; Φ ` V −→ V ′, then there exists U ′ such that ϕ; Φ ` U −→∗ U ′
and ϕ; Φ ` U ′ v V ′ (with err v U for any usage U)
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ϕ; Φ ` U v 0
i ∈ {1; 2}

ϕ; Φ ` U1 + U2 v Ui
ϕ; Φ ` U v U ′

ϕ; Φ ` U | V v U ′ | V

ϕ; Φ ` U v U ′

ϕ; Φ ` U + V v U ′ + V

ϕ; Φ ` V v V ′

ϕ; Φ ` U + V v U + V ′
ϕ; Φ ` U v U ′

ϕ; Φ `!U v!U ′

U ≡ U ′ ϕ; Φ ` U ′ v V ′ V ≡ V ′
ϕ; Φ ` U v V

ϕ; Φ ` U v U ′ ϕ; Φ ` U ′ v U ′′

ϕ; Φ ` U v U ′′

ϕ; Φ ` U v U ′

ϕ; Φ ` αAoJc .U v α
Ao
Jc
.U ′

ϕ; Φ � Bo ⊆ Ao ϕ; Φ � Ic ≤ Jc
ϕ; Φ ` αAoIc .U v α

Bo
Jc
.U

ϕ; Φ ` (αAoJc .U) | (↑Ao+JcV ) v αAoJc .(U | V )

Figure 4.32: Rules Defining the Subusage Relation

3. If ϕ; Φ ` U v V and U is reliable under ϕ; Φ then V is reliable under ϕ; Φ.

The first point shows that subtyping is invariant by delaying. The second property means
that the subusage relation serves as a simulation relation, and the last one means that the
reliability is closed under the subusage relation. In our setting, it means that the subusage
relation cannot lead to unsound complexity bounds.

In order to proceed with a proof, we first give the following lemma:

Lemma 4.5.2. If ϕ; Φ � Bo ⊆ Ao then ϕ; Φ ` (↑AoU) v (↑BoU)

This can be proved easily by induction on U . We now give elements of proof for Point 2
and Point 3 of Lemma 4.5.1. For Point 2, we can see two possible directions, either proceed
by induction on U v V and then do a case analysis on V −→ V ′ on proceed by induction on
V −→ V ′ and then do a case analysis on U v V . In both cases, the definition of subusage with
the transitivity rule and congruence that can be used everywhere make the proof complicated.
So, we chose to first simplify the definition of subusage.

Definition 4.5.6 (Decomposition of Subusage). Let us call vct the relation defined by the rule
of Figure 4.32 without using congruence and transitivity. Then, we define vt as:

U ≡ U ′ ϕ; Φ ` U ′ vct V ′ V ′ ≡ V ′
ϕ; Φ ` U vt V

And we have the following lemma.

Lemma 4.5.3 (Decomposition of Subusage). The subusage relation v is equivalent to the
reflexive and transitive closure of vt.

The proof can be done by induction on v, and it relies mainly on the fact that congruence
can be used in any context, so we can use it at the end. In the same way, as the subusage
relation can also be used in any context, the transitivity can be done at the end. So, with this
lemma we got rid of the complicated rules by putting them always at the end of a derivation.
Moreover, note that it is easy to describe exhaustively subtyping for vt. Let us drop the ϕ; Φ
notation for the sake of conciseness, and we have:
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Lemma 4.5.4 (Exhaustive Description of Subusage). Let us use ∗ ∈ {·, !}. Then, ∗U denotes
either U or !U according to the value of ∗. If U vt V , then one of the following cases hold.

U ≡ (U0 | ∗U1) V ≡ U0

U ≡ U0 | ∗(U1 + U2) V ≡ U0 | ∗Ui i ∈ {1; 2}
U ≡ U0 | ∗αAoJc .W V ≡ U0 | ∗αAoJc .W

′ W vct W ′

U ≡ U0 | ∗(U1 + U2) V ≡ U0 | ∗(U ′1 + U2) U1 vct U ′1
U ≡ U0 | ∗(U1 + U2) V ≡ U0 | ∗(U1 + U ′2) U2 vct U ′2
U ≡ U0 | ∗αAoJc .W V ≡ U0 | ∗αA

′
o

J ′c
.W A′o ⊆ Ao Jc ≤ J ′c

U ≡ U0 | ∗((αAoJc .W ) | (↑Ao+JcU1)) V ≡ U0 | ∗αAoJc .(W | U1)

This proof is done directly by induction on U vct V . The replication context rule works
because we have !(U0 |W ) ≡!U0 | !W and !!W ≡!W . We now go back to Point 2 of Lemma 4.5.1.

Proof. We rely on Lemma 4.5.3. So, we will prove first this intermediate lemma:

Lemma 4.5.5. If U vt V and V → V ′, then there exists U ′ such that U →∗ U ′ and U ′ v V ′

Then, if this lemma is proved, we conclude by transitivity of the property. So, it is sufficient
to prove it. We will also use the following lemma

Lemma 4.5.6. If V ≡ U0 | !U1 and V −→ V ′ then V ′ ≡W | !U1 with U0 | U1 −→W

Indeed, there are three cases for V −→ V ′. Either it is only a reduction step in U0 indepen-
dently of !U1, either it is a reduction step within U1 (note that one copy is always sufficient),
either it is a synchronization between one action in U0 and one action in U1. In the first case,
the lemma is true because we can arbitrarily add U1. In the same way, in the second case the
lemma is correct because we can just ignore U0. In the third case, the lemma is verified since
we allow this synchronization between U0 and U1.

We now start the proof. We proceed by induction on U vct V , and we use the exhaustive
description given by Lemma 4.5.4. We always consider the case ∗ =! as it is the harder of the
two cases. Let us give some interesting cases:

•
U ≡ U0 | !αAoJc .W V ≡ U0 | !αAoJc .W

′ W vct W ′

The easy case is when V ′ is obtained by a reduction step in U0. So, we suppose that the
reduction step is a synchronization between U0 and αAoJc .W

′. So, we have:

U0 ≡ U ′0 | αBoIc .W0

If V ′ = err, then we take U ′ = err and concludes this case. Otherwise, we have:

V ′ ≡ U ′0 | !α
Ao
Jc
.W ′ | ↑(AotBo)(W0 | W ′)

So, we take
U ′ = U ′0 | !αAoJc .W | ↑AotBo(W0 | W )

And, we have indeed:
U −→ U ′ U ′ v V ′

The fact that U ′ v V ′ is given by the previous point of Lemma 4.5.1.
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•
U ≡ U0 | !αAoJc .W V ≡ U0 | !αA

′
o

J ′c
.W

A′o ⊆ Ao Jc ≤ J ′c
Again, the only interesting case is when the synchronization is not only in U0. So, we
have:

U0 ≡ U ′0 | !α
Bo
Ic
.W0

If we have Ao ⊆ Bo ⊕ Ic and Bo ⊆ Ao ⊕ Jc then

V ′ ≡ U ′0 | !α
A′o
J ′c
.W | ↑A′otBo(W0 | W )

because A′o ⊆ Ao and Jc ≤ J ′c so we have A′o ⊆ Bo ⊕ Ic and Bo ⊆ Ao ⊕ J ′c. Thus, we take

U ′ = U ′0 | !αAoJc .W | ↑AotBo(W0 | W )

We have indeed U −→ U ′ and U ′ v V ′ by Lemma 4.5.2. Otherwise, we obtain an error
for U ′ and so it indeed is a subusage of V ′.

•
U ≡ U0 | !((αAoJc .W ) | (↑Ao+JcU1))

V ≡ U0 | !αAoJc .(W | U1)

Again, if the reduction step V → V ′ is a synchronization between subprocesses in U0, it
is simple. So let us suppose that:

U0 ≡ U ′0 | αBoIc .W0

If we have Bo ⊆ Ao ⊕ Jc and Ao ⊆ Bo ⊕ Ic, then

V ′ ≡ U ′0 | !α
Ao
Jc
.(W | U1) | (↑AotBo(W | U1 | W0))

We pose U ′ equal to:

U ′0 | !((α
Ao
J .W ) | (↑Ao+JcU1)) | (↑AotBo(W | W0))

We have indeed U → U ′ and we have U ′ v V ′ because Ao tBo ⊆ Ao + Jc. Indeed,

Left(Ao + Jc) ≤ max(Left(Ao), Left(Bo))

As either Jc = J and so Left(Ao = Jc) = Left(Ao), either Jc = [I, J ] and

Left(Ao) + I ≤ Right(Ao) + I ≤ Left(Bo)

since Bo ⊆ Ao ⊕ Jc. Moreover, we have

max(Right(Ao),Right(Bo)) ≤ Right(Ao + Jc)

again because Bo ⊆ Ao ⊕ Jc.

Thus, we have indeed Lemma 4.5.5, and we deduce the second point of Lemma 4.5.1.
Finally, the third point is a direct consequence of the second point. Indeed, suppose that U

is reliable. So, for any reduction from U , it does not lead to an error. Let us take a reduction
from V . By the third point, it gives us a reduction from U where some steps are a subtype of
the steps in V . So, as an error cannot happen in the steps from U , and the only usage U such
that U v err is err, we know that the reduction from V does not lead to an error. Thus, V is
reliable.
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ϕ; Φ � I ′ ≤ I ϕ; Φ � J ≤ J ′

ϕ; Φ ` Nat[I, J ] v Nat[I ′, J ′]

ϕ; Φ ` T̃ v T̃ ′ ϕ; Φ ` T̃ ′ v T̃ ϕ; Φ ` U v V
ϕ; Φ ` ch(T̃ )/U v ch(T̃ ′)/V

ϕ, ĩ; Φ ` T̃ v T̃ ′ ϕ, ĩ; Φ ` T̃ ′ v T̃ ϕ, ĩ; Φ � K = K ′ ϕ; Φ ` U v V
ϕ; Φ ` ∀̃i.srvK(T̃ )/U v ∀̃i.srvK′(T̃ ′)/V

Figure 4.33: Subtyping Rules for Usage Types

Finally, we also have the following lemmas, saying that delaying does not modify the be-
haviour of a type.

Lemma 4.5.7 (Invariance by Delaying). For any interval Ao:

1. If ϕ; Φ ` ↑AoU −→ V ′ then, there exists V such that ↑AoV = V ′ and ϕ; Φ ` U −→ V .
(with err = ↑Aoerr)

2. If ϕ; Φ ` U −→ V then ϕ; Φ ` ↑AoU −→ ↑AoV .

3. U is reliable under ϕ; Φ if and only if ↑AoU is reliable under ϕ; Φ.

In our setting, this lemma shows among other things that the tick constructor, or more
generally the annotation n : P , does not break reliability.

Type System with Sizes

Definition 4.5.7 (Usage Types). We define types by the following grammar:

T, S ::= Nat[I, J ] | ch(T̃ )/U | ∀̃i.srvK(T̃ )/U

So, as expected, usual types for π-calculus are replaced by a type with usage, and we keep
track of sizes for integers.

As before, channels are classified into servers and simple channels. The type ch(T̃ )/U
describes a simple channel that is used for transmitting values of type T̃ according to usage U .
The type ∀̃i.srvK(T̃ )/U describes a server channel that is used for transmitting values of type
T̃ according to usage U ; the superscript K, is an interval for this section. It denotes a lower
bound and an upper bound on the cost incurred when a server is invoked.

Also note that for a simple channel, only one type T̃ is associated to all usages. So for
example, in a channel of type ch(Nat[I, J ])/U , at any time this channel is used, all messages
must be integers between I and J .

The subtyping relation is defined by the rules of Figure 4.33. The only thing subtyping can
do is to change the usage of a channel or modify the size bound on an integer.

In order to describe the type system for those types, we need to extend the previous opera-
tions on usages to partial operations on types and typing contexts with Γ = v1 : T1, . . . , vn : Tn.
The delaying of a type ↑AoT is defined as the delaying of the usage for a channel or a server type,
and it does nothing on integers. We also say that a type is reliable when it is an integer type,
or when it is a server or channel type with a reliable usage. We define following operations:

Definition 4.5.8 (Parallel Composition of Types). The parallel composition of two types T | T ′
is defined by:

Nat[I, J ] | Nat[I, J ] = Nat[I, J ] ch(T̃ )/U | ch(T̃ )/V = ch(T̃ )/(U | V )

∀̃i.srvK(T̃ )/U | ∀̃i.srvK(T̃ )/V = ∀̃i.srvK(T̃ )/(U | V )
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(zero)
ϕ; Φ; Γ ` 0 / [0, 0]

ϕ; Φ; Γ ` P / K1 ϕ; Φ; ∆ ` Q /K2
(par)

ϕ; Φ; Γ | ∆ ` P | Q /K1 tK2

ϕ; Φ; Γ ` P / K
(tick)

ϕ; Φ; ↑[1,1]Γ ` tick.P / K + [1, 1]

ϕ; Φ; Γ, a : ch(T̃ )/U, ṽ : T̃ ` P / K
(ich)

ϕ; Φ; ↑JcΓ, a : ch(T̃ )/In
[0,0]
Jc

.U ` a(ṽ).P / Jc;K

(ϕ, ĩ); Φ; Γ, a : ∀̃i.srvK(T̃ )/U, ṽ : T̃ ` P / K
(iserv)

ϕ; Φ; ↑Jc !Γ, a : ∀̃i.srvK(T̃ )/!In
[0,0]
Jc

.U `!a(ṽ).P / [0, 0]

ϕ; Φ; Γ′, a : ch(T̃ )/V ` ẽ : T̃ ϕ; Φ; Γ, a : ch(T̃ )/U ` P / K
(och)

ϕ; Φ; ↑Jc(Γ | Γ′), a : ch(T̃ )/Out
[0,0]
Jc

.(V | U) ` a〈ẽ〉.P / Jc;K

ϕ; Φ; Γ′, a : ∀̃i.srvK(T̃ )/V ` ẽ : T̃{ĨN/̃i} ϕ; Φ; Γ, a : ∀̃i.srvK(T̃ )/U ` P / K′
(oserv)

ϕ; Φ; ↑Jc(Γ | Γ′), a : ∀̃i.srvK(T̃ )/Out
[0,0]
Jc

.(V | U) ` a〈ẽ〉.P / Jc; (K′ tK{ĨN/̃i})

ϕ; Φ; Γ ` e : Nat[I, J ] ϕ; (Φ, I ≤ 0); Γ ` P / K ϕ; (Φ, J ≥ 1); Γ, x : Nat[I−1, J−1] ` Q /K
(case)

ϕ; Φ; Γ ` match e {0 7→ P ; ; s(x) 7→ Q} / K

ϕ; Φ; Γ, a : T ` P / K T reliable
(ν)

ϕ; Φ; Γ ` (νa)P / K

ϕ; Φ; ∆ ` P / K ϕ; Φ ` Γ v ∆ ϕ; Φ � K ⊆ K′
(sub)

ϕ; Φ; Γ ` P / K′

Figure 4.34: Typing Rules for Processes with Usages

Definition 4.5.9 (Replication of Type). The replication of a type !T is defined by:

!Nat[I, J ] = Nat[I, J ] !ch(T̃ )/U = ch(T̃ )/(!U) !∀̃i.srvK(T̃ )/U = ∀̃i.srvK(T̃ )/(!U)

The (partial) operations on types defined above are extended pointwise to contexts. For
example, for Γ = v1 : T1, . . . , vn : Tn and ∆ = v1 : T ′1, . . . , vn : T ′n, we define Γ | ∆ = v1 :
T1 | T ′1, . . . , vn : Tn | T ′n. Note that this is defined just if Γ and ∆ agree on the typing of integers
and associate the same types (excluding usage) to names.

We also introduce the following notation.

Definition 4.5.10. Given a capacity Jc and an interval K = [K1,K2], we define Jc;K by;

J ; [K1,K2] = [0, J +K2] [∞,∞]; [K1,K2] = [0, 0] [IN, J ]; [K1,K2] = [0, J +K2]

Intuitively, Jc;K represents the complexity of an input/output process when the input/out-
put has capacity Jc and the complexity of the continuation is K. Jc = [∞,∞] means the
input/output will never succeed (because there is no corresponding output/input); hence the
complexity is 0. A case where this is useful is given later in Example 4.5.7. Otherwise, an
upper-bound is given by J +K2 (the time spent for the input/output to succeed, plus K). The
lower-bound is 0, since the input/output may be blocked forever.

The type system is given in Figures 4.10 and 4.34. The typing rules for expressions are the
standard ones for sized types.

A type judgment is of the form ϕ; Φ; Γ ` P / [I, J ] where J is a bound on the parallel
complexity of P under the constraints Φ. As before, this complexity bound J can also be seen as
a bound on the open complexity of a process, that is to say the complexity of P in an environment

corresponding to the types in Γ. For example, a channel with usage In
[1,1]
5 alone cannot be

reduced, as it is only used as an input. So, the typing ·; ·; a : ch()/In
[1,1]
5 ` tick.a() / [1, 6] says

that in an environment that may provide an output on the channel a within the time interval
[1, 1] ⊕ 5 = [0, 6], this process has a complexity bounded by 6. Similarly, the lower bound I is

124



·; ·; a : ch()/Out
[0,0]
0 ` a〈〉 / [0, 0]

·; ·; a : ch()/Out
[1,1]
0 ` tick.a〈〉 / [1, 1]

·; ·; a : ch()/(In
[0,0]
1 .Out

[1,1]
0 ) ` a().tick.a〈〉 / [0, 2]

·; ·; a : ch()/(In
[1,1]
1 .Out

[1,1]
0 ) ` tick.a().tick.a〈〉 / [1, 3] ·; ·; a : ch()/(Out

[0,0]

[1,1]) ` a〈〉 / [0, 1]

·; ·; a : ch()/(In
[1,1]
1 .Out

[1,1]
0 | In[1,1]

1 .Out
[1,1]
0 | Out[0,0]

[1,1]) ` tick.a().tick.a〈〉 | tick.a().tick.a〈〉 | a〈〉 / [1, 3]

Figure 4.35: Typing of Example 4.5.2

a lower bound on the parallel complexity of P . But in practice, this lower bound is often too
imprecise.1

The (par) rule separates a context into two parts, and the complexity is the maximum over
the two complexities, both for lower bound and upper bound. The (tick) rule shows the addition
of a tick implies a delay of [1, 1] in the context and the complexity. The (ν) rule imposes that
all names must have a reliable usage when they are created. In order to type a channel with
the (ich) rule, the channel must have an input usage, with obligation [0, 0]. Note that with

the subusage relation, we have InAoJc v In
[0,0]
Jc

if and only if Ao = [0, I] for some I. So, this
typing rule imposes that the lower-bound guarantee is correct, but the rule is not restrictive
for upper-bound. This rule induces a delay of Jc in both context and complexity. Indeed, in
practice this input does not happen immediately as we need to wait for output. This is where
the assumption on when this output is ready, given by the capacity, is useful. The rule for
output (och) is similar. For a server, the rules for both input and output are similar to the one
for channels in principle but differ in the way complexity is managed, similarly to Section 4.4.
Finally, the (case) rule is the standard rule for a sized type system. Note that contexts are not
separated in this rule. In the typing for the expression this is not a problem since names are not
useful for the typing of an integer. Then for both branches, it means that the usage of channels
must be the same. However, because we have the choice usage (U + V ), in practice we can use
different usages in those two branches.

As an illustration of the type system, let us take back again the reliable usage described in
Example 4.5.2 and show that it corresponds indeed to the typing of a in the process described
in Example .

Example 4.5.5. The typing derivation of the process in Example 4.5.2 is given in Figure 4.35.
Note that the process

tick.a().tick.a〈〉 | tick.a().tick.a〈〉 | tick.a().tick.a〈〉 | a〈〉

is also typable, in the same way, using the usage described in Example 4.5.2, and with complexity
[1, 3]. However, we saw in Example 4.5.3 that the usage was not reliable, and that is why we do
not obtain a valid complexity bound. If we take the reliable usage

U := In
[1,1]
2 .Out

[1,1]
0 | In[1,1]2 .Out

[1,1]
0 | In[1,1]2 .Out

[1,1]
0 | Out[0,0][1,1]

It gives us back the correct complexity bound [1, 4]

So, our type system can adapt compositionally with the use of reliability. And we saw on
this example that reliability is needed to obtain soundness. An example for the use of servers
and sizes is given later, in Example 4.5.6.

Remark 4.5.1. A careful reader may wonder why we need intervals for obligations and capac-
ities, instead of single numbers. An informal justification is given in the Appendix 4.5.3.

1This is because in the definition of JC ;K in Definition 4.5.10, we pessimistically take into account the
possibility that each input/output may be blocked forever. We can avoid the pessimistic estimation of the
lower-bound by incorporating information about lock-freedom [72, 74].
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4.5.2 Soundness

The proof of soundness relies again on standard lemmas for type systems. In the following we
will always consider P as an annotated process. As in Section 4.4.2, we introduce a typing rule
for the annotation, corresponding to a generalization of the rule for tick.

ϕ; Φ; Γ ` P / K

ϕ; Φ; ↑[m,m]Γ ` m : P / K + [m,m]

Intermediate Lemmas

As usual, we start with the structure lemmas.

Lemma 4.5.8 (Weakening). Let ϕ,ϕ′ be disjoint set of index variables, Φ be a set of constraints
on ϕ, Φ′ be a set of constraints on (ϕ,ϕ′), Γ and Γ′ be contexts on disjoint set of variables.

1. If ϕ; Φ � C then (ϕ,ϕ′); (Φ,Φ′) � C

2. If ϕ; Φ ` U −→ V and V 6= err then (ϕ,ϕ′); (Φ,Φ′) ` U −→ V

3. If U is reliable under ϕ; Φ then it is reliable under (ϕ,ϕ′; Φ,Φ′)

4. If ϕ; Φ ` U v V then (ϕ,ϕ′); (Φ,Φ′) ` U v V .

5. If ϕ; Φ ` T v T ′ then (ϕ,ϕ′); (Φ,Φ′) ` T v T ′.

6. If ϕ; Φ; Γ ` e : T then (ϕ,ϕ′); (Φ,Φ′); Γ,Γ′ ` e : T .

7. If ϕ; Φ; Γ ` P / K then (ϕ,ϕ′); (Φ,Φ′); Γ,Γ′ ` P / K.

Because of our definitions that always rely on other inductive definitions, in order to prove
lemmas we often need to go back to the first definition and then go over all definitions to
reach type derivation. None of those points are difficult, but they all rely on previous points.
Note that for the last point, we can always consider usage equal to 0 in Γ′, and with this Γ′ is
unaffected by the ↑ operation.

Lemma 4.5.9 (Strengthening). Let ϕ be a set of index variables, Φ be a set of constraints on
ϕ, and C a constraint on ϕ such that ϕ; Φ � C.

1. We have ϕ; (Φ, C) � C ′ if and only if ϕ; Φ � C ′.

2. If ϕ; (Φ, C) ` U −→ V then ϕ; Φ ` U −→ V

3. If U is reliable under ϕ; (Φ, C) then it is reliable under ϕ; Φ.

4. If ϕ; (Φ, C) ` U v V then ϕ; Φ ` U v V

5. If ϕ; (Φ, C) ` T v T ′ then ϕ; Φ ` T v T ′.

6. If ϕ; (Φ, C); Γ,Γ′ ` e : T and the variables in Γ′ are not free in e, then ϕ; Φ; Γ ` e : T .

7. If ϕ; (Φ, C); Γ,Γ′ ` P / K and the variables in Γ′ are not free in P , then ϕ; Φ; Γ ` P / K.

Again, those are direct induction proofs.
We now proceed to the substitution lemmas.
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Lemma 4.5.10 (Index Substitution). Let ϕ be a set of index variables and i /∈ ϕ. Let JN be
an index with free variables in ϕ. Then,

1. If (ϕ, i); Φ � C then ϕ; Φ{JN/i} � C{JN/i}.

2. If (ϕ, i); Φ ` U −→ V and V 6= err then ϕ; Φ{JN/i} ` U{JN/i} −→ V {JN/i}

3. If U is reliable under (ϕ, i); Φ then U{JN/i} is reliable under ϕ; Φ{JN/i}

4. If (ϕ, i); Φ ` U v V then ϕ; Φ{JN/i} ` U{JN/i} v V {JN/i}

5. If (ϕ, i); Φ ` T v T ′ then ϕ; Φ{JN/i} ` T{JN/i} v T ′{JN/i}.

6. If (ϕ, i); Φ; Γ ` e : T then ϕ; Φ{JN/i}; Γ{JN/i} ` e : T{JN/i}.

7. If (ϕ, i); Φ; Γ ` P / K then ϕ; Φ{JN/i}; Γ{JN/i} ` P / K{JN/i}.

Again, this lemma is rather easy. For the last point, in order to change the order of substi-
tution, we need to show that, as usual:

I{ĨN/̃i}{JN/j} = I{JN/j}{ĨN{JN/j}/̃i}

We now present the variable substitution lemmas. In the setting of usages, this lemma is
a bit more complex than usual. Indeed, we have a separation of contexts with the parallel
composition, and we have to rely on subusage, especially the rule ϕ; Φ ` (αAoJ .U) | (↑Ao+JcV ) v
αAoJc .(U | V ) as expressed in the Example 4.5.4 above. We put some emphasis on the following
notation: when we write Γ, v : T as a context in typing, it means that v does not appear in Γ.

Lemma 4.5.11 (Substitution). Let Γ and ∆ be contexts such that Γ | ∆ is defined. Then we
have:

1. If ϕ; Φ; Γ, v : T ` e′ : T ′ and ∆ ` e : T then ϕ; Φ; Γ | ∆ ` e′[v := e] : T ′

2. If ϕ; Φ; Γ, v : T ` P / K and ∆ ` e : T then ϕ; Φ; Γ | ∆ ` P [v := e] / K

The first point is straightforward. It uses the fact that we have the relation ϕ; Φ ` U v 0
for any usage U , and so we can use ϕ; Φ ` Γ | ∆ v Γ in order to weaken ∆ (similarly for Γ)
if needed. The second point is more interesting. The easy case is when T is Nat[I, J ] for some
[I, J ]. Then, we take a ∆ that only uses the zero usage, and so Γ | ∆ = Γ and everything
becomes simpler. The more interesting cases are:

Lemma 4.5.12 (Difficult Cases of Substitution). We have:

• If ϕ; Φ; Γ, b : ch(S̃)/W0, c : ch(S̃)/W1 ` P / K then ϕ; Φ; Γ, b : ch(S̃)/(W0 | W1) ` P [c := b] / K

• If ϕ; Φ; Γ, b : ∀̃i.srvK(S̃)/W0, c : ∀̃i.srvK(S̃)/W1 ` P /K then ϕ; Φ; Γ, b : ∀̃i.srvK(S̃)/(W0 | W1) `
P [c := b] / K

Indeed, this corresponds to the cases when v = c and ∆ = (Γ/0), b : ch(S̃)/W1 or ∆ =
(Γ/0), b : ∀̃i.srvK(S̃)/W1 where Γ/0 is Γ with all usages replaced by 0. Note that it is sufficient
to prove this intermediate lemma, since if ∆ had another shape, it could be obtained again by
subtyping. For those two points, the main difficulty is for the input and output rules. We first
detail the first point of this lemma, and we will detail the difference for the second point.

1. • Case of input, with a 6= b and a 6= c.
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ϕ; Φ; Γ, b : ch(S̃)/W0, c : ch(S̃)/W1, a : ch(T̃ )/U, ṽ : T̃ ` P / K

ϕ; Φ; ↑JcΓ, b : ch(S̃)/(↑JcW0), c : ch(S̃)/(↑JcW1), a : ch(T̃ )/In
[0,0]
Jc

.U ` a(ṽ).P / Jc;K

By induction hypothesis, we obtain ϕ; Φ; Γ, b : ch(S̃)/(W0 | W1), a : ch(T̃ )/U, ṽ : T̃ `
P [c := b] / K.

We then give the following proof:

ϕ; Φ; Γ, b : ch(S̃)/(W0 | W1), a : ch(T̃ )/U, ṽ : T̃ ` P [c := b] / K

ϕ; Φ; ↑JcΓ, b : ch(S̃)/(↑Jc(W0 | W1)), a : ch(T̃ )/In
[0,0]
Jc

.U ` a(ṽ).P / Jc;K

This case is similar to all other cases when b and c do not interfere with the typing
rule. Thus, we only need to show the cases when they interfere.

• Case of input, with a = b.

ϕ; Φ; Γ, b : ch(T̃ )/U, c : ch(T̃ )/W1, ṽ : T̃ ` P / K

ϕ; Φ; ↑JcΓ, b : ch(T̃ )/In
[0,0]
Jc

.U, c : ch(T̃ )/(↑JcW1) ` b(ṽ).P / Jc;K

By induction hypothesis, we obtain ϕ; Φ; Γ, b : ch(T̃ )/(U | W1), ṽ : T̃ ` P [c := b] / K.
So, we give the typing:

ϕ; Φ; Γ, b : ch(T̃ )/(U | W1), ṽ : T̃ ` P [c := b] / K

ϕ; Φ; ↑JcΓ, b : ch(T̃ )/In
[0,0]
Jc

.(U | W1) ` b(ṽ).P [c := b] / Jc;K

ϕ; Φ; ↑JcΓ, b : ch(T̃ )/In
[0,0]
Jc

.U | (↑JcW1) ` b(ṽ).P [c := b] / Jc;K

Indeed, the last rule represents subtyping. This concludes this case.

• Case of input, with a = c.

ϕ; Φ; Γ, b : ch(T̃ )/W0, c : ch(T̃ )/U, ṽ : T̃ ` P / K

ϕ; Φ; ↑JcΓ, b : ch(T̃ )/(↑JcW0), c : ch(T̃ )/In
[0,0]
Jc

.U ` c(ṽ).P / Jc;K

By induction hypothesis, we obtain ϕ; Φ; Γ, b : ch(T̃ )/(W0 | U), ṽ : T̃ ` P [c := b] / K.
So, we give the typing:

ϕ; Φ; Γ, b : ch(T̃ )/(W0 | U), ṽ : T̃ ` P [c := b] / K

ϕ; Φ; ↑JcΓ, b : ch(T̃ )/In
[0,0]
Jc

.(W0 | U) ` b(ṽ).P [c := b] / Jc;K

ϕ; Φ; ↑JcΓ, b : ch(T̃ )/In
[0,0]
Jc

.U | (↑JcW0) ` (c(ṽ).P )[c := b] / Jc;K

• Case of output, with a = b.

ϕ; Φ; Γ′, b : ch(T̃ )/V, c : ch(T̃ )/W ′1 ` ẽ : T̃ ϕ; Φ; Γ, b : ch(T̃ )/U, c : ch(T̃ )/W1 ` P / K

ϕ; Φ; ↑Jc(Γ | Γ′), b : ch(T̃ )/Out
[0,0]
Jc

.(V | U), c : ch(T̃ )/↑Jc(W ′1 | W1) ` b〈ẽ〉.P / Jc;K

By point 1 of Lemma 4.5.11 and induction hypothesis, we obtain

ϕ; Φ; Γ′, b : ch(T̃ )/(V | W ′1) ` ẽ : T̃ ϕ; Φ; Γ, b : ch(T̃ )/(U | W1) ` P / K

Thus, we have:

ϕ; Φ; Γ′, b : ch(T̃ )/(V | W ′1) ` ẽ : T̃ ϕ; Φ; Γ, b : ch(T̃ )/(U | W1) ` P / K

ϕ; Φ; ↑Jc(Γ | Γ′), b : ch(T̃ )/Out
[0,0]
Jc

.(V | U | W1 | W ′1) ` b〈ẽ〉.P / Jc;K

ϕ; Φ; ↑Jc(Γ | Γ′), b : ch(T̃ )/Out
[0,0]
Jc

.(V | U) | ↑Jc(W1 | W ′1) ` b〈ẽ〉.P / Jc;K

Again, the last rule is obtained by subtyping. We have a similar proof for the case
a = c.
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2. We now work on the case of servers. The notations are a bit cumbersome but the proofs
are similar to the one for channels. The only point that need some details is for server
input as there is the replication in usages that appear.

• Case of input, with a 6= b and a 6= c.

(ϕ, ĩ); Φ; Γ, a : ∀̃i.srvK(T̃ )/U, b : ∀j̃.srvK′
(S̃)/W0, c : ∀j̃.srvK′

(S̃)/W1, ṽ : T̃ ` P / K

ϕ; Φ; ↑Jc !Γ, a : ∀̃i.srvK(T̃ )/!In
[0,0]
Jc

.U, b : ∀j̃.srvK(′)/S̃(↑Jc !W0), c : ∀j̃.srvK′
(S̃)/(↑Jc !W1) `!a(ṽ).P / [0, 0]

By induction hypothesis, we have (ϕ, ĩ); Φ; Γ, a : ∀̃i.srvK(T̃ )/U, b :∀j̃.srvK′(S̃)/(W0 |
W1), ṽ : T̃ ` P [c := b] / K. So, we have the proof

(ϕ, ĩ); Φ; Γ, a : ∀̃i.srvK
′
(T̃ )/U, b : ∀j̃.srvK

′
(S̃)/(W0 | W1), ṽ : T̃ ` P [c := b] / K

ϕ; Φ; ↑Jc !Γ, a : ∀̃i.srvK(T̃ )/!In
[0,0]
Jc

.U, b : ∀j̃.srvK
′
(S̃)/(↑Jc !(W0 | W1)) `!a(ṽ).P [c := b] / [0, 0]

• Case of input, with a = b.

(ϕ, ĩ); Φ; Γ, b : ∀̃i.srvK(T̃ )/U, c : ∀̃i.srvK(T̃ )/W1, ṽ : T̃ ` P / K

ϕ; Φ; ↑Jc !Γ, b : ∀̃i.srvK(T̃ )/!In
[0,0]
Jc

.U, c : ∀̃i.srvK(T̃ )/(↑Jc !W1) `!a(ṽ).P / [0, 0]

By induction hypothesis, we obtain (ϕ, ĩ); Φ; Γ, b : ∀̃i.srvK(T̃ )/(U | W1), ṽ : T̃ ` P /K

(ϕ, ĩ); Φ; Γ, b : ∀̃i.srvK(T̃ )/(U | W1), ṽ : T̃ ` P [c := b] / K

ϕ; Φ; ↑Jc !Γ, b : ∀̃i.srvK(T̃ )/!In
[0,0]
Jc

.(U | W1) `!a(ṽ).P [c := b] / [0, 0]

ϕ; Φ; ↑Jc !Γ, b : ∀̃i.srvK(T̃ )/(!In
[0,0]
Jc

.U | ↑Jc !W1) `!a(ṽ).P [c := b] / [0, 0]

This last derivation is obtained by subtyping. Indeed, by definition we have ↑Jc !W1 =
!↑JcW1. Then,

!In
[0,0]
Jc

.U | !↑JcW1 ≡!(In
[0,0]
Jc

.U | ↑JcW1) v!In
[0,0]
Jc

.(U | W1)

• The case a = c is similar to the previous one.

This concludes the proof.

Subject Reduction and Soundness

We then explain the subject reduction. Let us first introduce a notation:

Definition 4.5.11 (Reduction for Contexts). We say that a context Γ reduces to a context Γ′

under ϕ; Φ, denoted ϕ; Φ ` Γ −→∗ Γ′ when one of the following holds:

• Γ = Γ′

• Γ = ∆, a : ch(T̃ )/U ϕ; Φ ` U −→∗ U ′ Γ′ = ∆, a : ch(T̃ )/U ′

• Γ = ∆, a : ∀̃i.srvK(T̃ )/U ϕ; Φ ` U −→∗ U ′ Γ′ = ∆, a : ∀̃i.srvK(T̃ )/U ′

So intuitively, Γ′ is Γ after some reduction steps but only in a unique usage. Note that we
obtain immediately that if all types in Γ are reliable then all types in Γ′ are also reliable by
definition of reliability.

We then formalize the subject reduction.

Theorem 4.5.1 (Subject Reduction). If ϕ; Φ; Γ ` P /K with all types in Γ reliable and P ⇒ Q
then there exists Γ′ with ϕ; Φ ` Γ −→∗ Γ′ and ϕ; Φ; Γ′ ` Q /K.
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In order to do that, we need first a lemma saying that the congruence relation behaves well
with typing.

Lemma 4.5.13 (Congruence and Typing). Let P and Q be annotated processes such that
P ≡ Q. Then, ϕ; Φ; Γ ` P / K if and only if ϕ; Φ; Γ ` Q /K.

Proof. Let us show Lemma 4.5.13. We prove this by induction on P ≡ Q. Note that as usual,
for a process P , the typing system is not syntax-directed because of the subtyping rule, but we
can always assume that a derivation has exactly one subtyping rule before any syntax-directed
rule. We first show this property for base case of congruence. The reflexivity is trivial, then we
have those interesting cases:

• Case (νa)P | Q ≡ (νa)(P | Q) with a not free in Q. Suppose ϕ; Φ; Γ | ∆ ` (νa)P | Q/K.
Then the derivation has the shape:

π

ϕ; Φ; Γ′, a : T ` P / K′1 T reliable

ϕ; Φ; Γ′ ` (νa)P / K′1 ϕ; Φ ` Γ v Γ′;K′1 ⊆ K1

ϕ; Φ; Γ ` (νa)P / K1

π′

ϕ; Φ; ∆ ` Q /K2

ϕ; Φ; Γ | ∆ ` (νa)P | Q /K1 tK2

By weakening (Lemma 4.5.8), we obtain a derivation π′w of ϕ; Φ; ∆, a : (T/0) ` Q / K2.
Thus, we have the following derivation:

π

ϕ; Φ; Γ′, a : T ` P / K′1 ϕ; Φ ` Γ v Γ′;K′1 ⊆ K1

ϕ; Φ; Γ, a : T ` P / K1

π′w
ϕ; Φ; ∆, a : (T/0) ` Q /K2

ϕ; Φ; Γ | ∆, a : T ` P | Q /K1 tK2 T reliable

ϕ; Φ; Γ | ∆ ` (νa)(P | Q) / K1 tK2

For the converse, suppose ϕ; Φ; Γ ` (νa)(P | Q) / K. Then the derivation has the shape:

π
ϕ; Φ; ΓP , a : TP ` P / K1

π′

ϕ; Φ; ΓQ, a : TQ ` Q /K2

ϕ; Φ; ΓP | ΓQ, a : TP | TQ ` P | Q /K1 tK2 ϕ; Φ ` Γ v ΓP | ΓQ;T v TP | TQ;K1 tK2 ⊆ K
ϕ; Φ; Γ, a : T ` P | Q /K T reliable

ϕ; Φ; Γ ` (νa)(P | Q) / K

Since a is not free in Q, by Lemma 4.5.9, from π′ we obtain a derivation π′s of ϕ; Φ; ΓQ `
Q /K2. We then derive the following typing:

π
ϕ; Φ; ΓP , a : TP ` P / K1 ϕ; Φ ` T v TP | TQ v TP

ϕ; Φ; ΓP , a : T ` P / K1 T reliable

ϕ; Φ; ΓP ` (νa)P / K1

π′s
ϕ; Φ; ΓQ ` Q /K2

ϕ; Φ; ΓP | ΓQ ` (νa)P | Q /K1 tK2 ϕ; Φ ` Γ v ΓP | ΓQ;K1 tK2 ⊆ K
ϕ; Φ; Γ ` (νa)P | Q /K

• Case m : (P | Q) ≡ m : P | m : Q. Suppose ϕ; Φ; ↑[m,m]Γ ` m : (P | Q) / K + [m,m].
Then we have:
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πP
ϕ; Φ; ΓP ` P / K1

πQ

ϕ; Φ; ΓQ ` Q /K2

ϕ; Φ; ΓP | ΓQ ` (P | Q) / K1 tK2 ϕ; Φ ` Γ v ΓP | ΓQ;K1 tK2 ⊆ K
ϕ; Φ; Γ ` (P | Q) / K

ϕ; Φ; ↑[m,m]Γ ` m : (P | Q) / K + [m,m]

By Lemma 4.5.1, from ϕ; Φ ` Γ v ΓP | ΓQ we obtain ϕ; Φ ` ↑[m,m]Γ v (↑[m,m]ΓP ) |
(↑[m,m]ΓQ). So, we give the following derivation:

πP
ϕ; Φ; ΓP ` P / K1

ϕ; Φ; ↑[m,m]ΓP ` m : P / K1 + [m,m]

πQ

ϕ; Φ; ΓQ ` Q /K2

ϕ; Φ; ↑[m,m]ΓQ ` m : Q /K2 + [m,m]

ϕ; Φ; (↑[m,m]ΓP ) | (↑[m,m]ΓQ) ` m : P | m : Q / (K1 tK2) + [m,m] (1)

ϕ; Φ; ↑[m,m]Γ ` m : P | m : Q / (K1 tK2) + [m,m] ϕ; Φ � K1 tK2 ⊆ K
ϕ; Φ; ↑[m,m]Γ ` m : P | m : Q /K + [m,m]

where (1) is
ϕ; Φ ` ↑[m,m]Γ v (↑[m,m]ΓP ) | (↑[m,m]ΓQ)

Now, suppose we have a typing ϕ; Φ; ΓP | ΓQ ` m : P | m : Q /K1 tK2. The typing has
the shape:

πP
ϕ; Φ; ∆P ` P / KP

ϕ; Φ; ↑[m,m]∆P ` m : P / KP + [m,m]

ϕ; Φ; ΓP ` m : P / K1

πQ

ϕ; Φ; ∆Q ` Q /KQ

ϕ; Φ; ↑[m,m]∆Q ` m : Q /KQ + [m,m]

ϕ; Φ; ΓQ ` m : Q /K2

ϕ; Φ; ΓP | ΓQ ` m : P | m : Q /K1 tK2

with

ϕ; Φ ` ΓP v ↑[m,m]∆P ϕ; Φ ` ΓQ v ↑[m,m]∆Q ϕ; Φ � KP + [m,m] ⊆ K1 ϕ; Φ � KQ + [m,m] ⊆ K2

So, we derive:

πP
ϕ; Φ; ∆P ` P / KP

πQ

ϕ; Φ; ∆Q ` Q /KQ

ϕ; Φ; ∆P | ∆Q ` (P | Q) / KP tKQ

ϕ; Φ; ↑[m,m](∆P | ∆Q) ` m : (P | Q) / (KP tKQ) + [m,m] (2)

ϕ; Φ; ΓP | ΓQ ` m : (P | Q) / K

where (2) is

ϕ; Φ ` ΓP | ΓQ v ↑[m,m](∆P | ∆Q); (KP tKQ) + [m,m] ⊆ K1 tK2

This concludes this case.

• Case m : (νa)P ≡ (νa)(m : P ).

Suppose ϕ; Φ; ↑[m,m]Γ ` m : (νa)P / K + [m,m]. Then, the typing has the shape:
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π

ϕ; Φ; Γ′, a : T ` P / K′ T reliable

ϕ; Φ; Γ′ ` (νa)P / K′ ϕ; Φ ` Γ v Γ′;K′ ⊆ K
ϕ; Φ; Γ ` (νa)P / K

ϕ; Φ; ↑[m,m]Γ ` m : (νa)P / K + [m,m]

By Lemma 4.5.7, we know that ↑[m,m]T is reliable. So, we have:

π

ϕ; Φ; Γ′, a : T ` P / K′ ϕ; Φ ` Γ v Γ′;K′ ⊆ K
ϕ; Φ; Γ, a : T ` P / K

ϕ; Φ; ↑[m,m](Γ, a : T ) ` (m : P ) / K + [m,m] ↑[m,m]T reliable

ϕ; Φ; ↑[m,m]Γ ` (νa)(m : P ) / K + [m,m]

For the converse, suppose we have ϕ; Φ; Γ ` (νa)(m : P ) / K. Then, the typing has the
shape:

π

ϕ; Φ; Γ′, a : T ′ ` P / K′

ϕ; Φ; ↑[m,m]Γ′, a : ↑[m,m]T ′ ` (m : P ) / K′ + [m,m] ϕ; Φ ` Γ v ↑[m,m]Γ′;T v ↑[m,m]T ′;K′ + [m,m] ⊆ K
ϕ; Φ; Γ, a : T ` (m : P ) / K T reliable

ϕ; Φ; Γ ` (νa)(m : P ) / K

As T is reliable, by Lemma 4.5.1, we have ↑[m,m]T ′ reliable. Then, by Lemma 4.5.7, we
have T ′ reliable. So, we give the typing:

π
ϕ; Φ; Γ′, a : T ′ ` P / K ′ T ′ reliable

ϕ; Φ; Γ′ ` (νa)P / K ′

ϕ; Φ; ↑[m,m]Γ′ ` m : (νa)P / K ′ + [m,m] ϕ; Φ ` Γ v ↑[m,m]Γ′;K ′ + [m,m] ⊆ K
ϕ; Φ; Γ ` m : (νa)P / K

This concludes the interesting base case. Symmetry and transitivity are direct, and for the
cases of contextual congruence, the proof is straightforward.

And now that we can work up to the congruence relation with Lemma 4.5.13. Theorem 4.5.1
is proved by induction on P ⇒ Q. Without surprise, the most difficult case is for a communi-
cation, and it greatly relies on reliability.

Again, when considering the typing of P , the first subtyping rule has no importance. We
now proceed by doing the case analysis on the rules of Figure 4.18. In order to simplify the
proof, we will also consider that types and indexes invariant by subtyping (like the complexity
in a server) are not renamed with subtyping. Note that this only adds cumbersome notations
but it does not change the core of the proof.

• Case (n :!a(ṽ).P ) | (m : a〈ẽ〉.Q)⇒ (n :!a(ṽ).P ) | (max(m,n) : (P [̃v := ẽ] | Q)). Consider
the typing ϕ; Φ; Γ0 | ∆0, a : ∀̃i.srvKa(T̃ )/(U0 | V0) ` (n :!a(ṽ).P ) | (m : a〈ẽ〉.Q) /K0 tK ′0.
The first rule is the rule for parallel composition, then the derivation is split into the two
following subtrees:
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πP

(ϕ, ĩ); Φ; Γ2, a : ∀̃i.srvKa(T̃ )/U2, ṽ : T̃ ` P / Ka

ϕ; Φ; ↑Jc !Γ2, a : ∀̃i.srvKa(T̃ )/!In
[0,0]
Jc

.U2 `!a(ṽ).P / [0, 0] (2)

ϕ; Φ; Γ1, a : ∀̃i.srvKa(T̃ )/U1 `!a(ṽ).P / K1

ϕ; Φ; ↑[n,n]Γ1, a : ∀̃i.srvKa(T̃ )/↑[n,n]U1 ` n :!a(ṽ).P / K1 + [n, n] (1)

ϕ; Φ; Γ0, a : ∀̃i.srvKa(T̃ )/U0 ` n :!a(ṽ).P / K0

where (1) is
ϕ; Φ ` Γ0 v ↑[n,n]Γ1;U0 v ↑[n,n]U1;K1 + [n, n] ⊆ K0

and (2) is

ϕ; Φ ` Γ1 v ↑Jc !Γ2;U1 v!In
[0,0]
Jc

.U2; [0, 0] ⊆ K1

πe

ϕ; Φ; ∆2, a : ∀̃i.srvKa(T̃ )/V2 ` ẽ : T̃{ĨN/̃i}
πQ

ϕ; Φ; ∆′2, a : ∀̃i.srvKa(T̃ )/V ′2 ` Q /K2

ϕ; Φ; ↑J′
c(∆2 | ∆′2), a : ∀̃i.srvKa(T̃ )/Out

[0,0]
J′
c
.(V2 | V ′2) ` a〈ẽ〉.Q / J ′c; (K2 tKa{ĨN/̃i}) (4)

ϕ; Φ; ∆1, a : ∀̃i.srvKa(T̃ )/V1 ` a〈ẽ〉.Q / K ′1

ϕ; Φ; ↑[m,m]∆1, a : ∀̃i.srvKa(T̃ )/↑[m,m]V1 ` m : a〈ẽ〉.Q / K ′1 + [m,m] (3)

ϕ; Φ; ∆0, a : ∀̃i.srvKa(T̃ )/V0 ` m : a〈ẽ〉.Q / K ′0

where (3) is
ϕ; Φ ` ∆0 v ↑[n,n]∆1;V0 v ↑[m,m]V1;K ′1 + [m,m] ⊆ K ′0

and (4) is

ϕ; Φ ` ∆1 v ↑J
′
c(∆2 | ∆′2) ϕ; Φ ` V1 v Out

[0,0]
J′
c
.(V2 | V ′2) ϕ; Φ � J ′c; (K2 tKa{ĨN/̃i}) ⊆ K ′1

First, by the index substitution lemma (Lemma 4.5.10), from πP we obtain a proof:

πP {ĨN/̃i} : ϕ; Φ; Γ2, a : ∀̃i.srvKa(T̃ )/U2, ṽ : T̃{ĨN/̃i} ` P / Ka{ĨN/̃i}

Since the index variables ĩ can only be free in T̃ and Ka.

Then, we know that Γ0 | ∆0 is defined. Moreover, we have

ϕ; Φ ` Γ0 v ↑[n,n]Γ1 ϕ; Φ ` Γ1 v ↑Jc !Γ2 ϕ; Φ ` ∆0 v ↑[m,m]∆1 ∆1 v ↑J
′
c(∆2 | ∆′2)

So, for the channel and server types, in those seven contexts, the shape of the type does
not change (only the usage can change). Let us look at base types. For a context Γ, we
write ΓNat the restriction of Γ to base types. Then, we have:

ΓNat
0 = ∆Nat

0 ϕ; Φ ` ΓNat
0 v ΓNat

1 v ΓNat
2 ϕ; Φ ` ∆Nat

0 v ∆Nat
1 v ∆Nat

2 ∆Nat
2 = ∆′Nat2

Similarly, we note Γν the restriction of a context to its channel and server types. Thus,
we have Γ = Γν ,ΓNat.

So, from πe and πP {ĨN/̃i} we obtain by subtyping:

π′P : ϕ; Φ; ΓNat
0 ,Γν2 , a : ∀̃i.srvKa(T̃ )/U2, ṽ : T̃{ĨN/̃i} ` P / Ka{ĨN/̃i}

π′e : ϕ; Φ; ΓNat
0 ,∆ν

2 , a : ∀̃i.srvKa(T̃ )/V2 ` ẽ : T̃{ĨN/̃i}
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So, we use the substitution lemma (Lemma 4.5.11) and we obtain:

πsub : ϕ; Φ; ΓNat
0 , (Γν2 | ∆ν

2), a : ∀̃i.srvKa(T̃ )/(U2 | V2) ` P [ṽ := ẽ] / Ka{ĨN/̃i}

As previously, by subtyping from πQ, we have:

π′Q : ϕ; Φ; ΓNat
0 ,∆′ν2 , a : ∀̃i.srvKa(T̃ )/V ′2 ` Q /K2

Thus, with the parallel composition rule (as parallel composition of context is defined)
and subtyping we have:

πPQ : ϕ; Φ; ΓNat
0 , (Γν2 |∆ν

2 |∆′ν2 ), a : ∀̃i.srvKa(T̃ )/(U2 | V2 | V ′2) ` (P [ṽ := ẽ] |Q)/K2tKa{ĨN/̃i}

Let us denote M = max(m,n). Thus, we derive the proof:

πPQ

ϕ; Φ; ΓNat
0 , (Γν2 | ∆ν

2 | ∆′ν2 ), a : ∀̃i.srvKa(T̃ )/(U2 | V2 | V ′2) ` (P [ṽ := ẽ] | Q) / K2 tKa{ĨN/̃i}
ϕ; Φ; E `M : (P [ṽ := ẽ] | Q) / (K2 tKa{ĨN/̃i}) + [M,M ]

where E is:

ΓNat
0 , ↑[M,M ](Γν2 | ∆ν

2 | ∆′ν2 ), a : ∀̃i.srvKa(T̃ )/↑[M,M ](U2 | V2 | V ′2)

Now, recall that by hypothesis, U0 | V0 is reliable. We have:

ϕ; Φ ` U0 v ↑[n,n]U1 ϕ; Φ ` U1 v!In
[0,0]
Jc

.U2 ϕ; Φ ` V0 v ↑[m,m]V1 ϕ; Φ ` V1 v Out
[0,0]

J′
c

(V2 | V ′2 )

So, by Point 1 of Lemma 4.5.1, with transitivity and parallel composition of subusage, we
have:

ϕ; Φ ` U0 | V0 v (↑[n,n]U1) | (↑[m,m]V1) v!In
[n,n]
Jc

.U2 | Out[m,m]
J ′c

(V2 | V ′2)

By Point 3 of Lemma 4.5.1, we have !In
[n,n]
Jc

.U2 | Out[m,m]
J ′c

(V2 | V ′2) reliable. So, in particular,
we have:

ϕ; Φ `!In
[n,n]
Jc

.U2 | Out[m,m]
J ′c

(V2 | V ′2) −→!In
[n,n]
Jc

.U2 | ↑[M,M ](U2 | V2 | V ′2)

ϕ; Φ � [n, n] ⊆ [m,m]⊕ J ′c ϕ; Φ � [m,m] ⊆ [n, n]⊕ Jc
Thus, we deduce immediately that neither Jc or J ′c are [∞,∞] and that

ϕ; Φ � [M,M ] ⊆ [m,M ] ⊆ [n, n] + Jc ϕ; Φ � [M,M ] ⊆ [n,M ] ⊆ [m,m] + J ′c

So, we have in particular, with Lemma 4.5.2 and Point 1 of Lemma 4.5.1 and parallel
composition:

ϕ; Φ ` Γ0 | ∆0 v (↑[n,n]Γ1) | ↑[m,m]∆1 v (↑[n,n]+Jc !Γ2) | (↑[m,m]+J′
c(∆2 | ∆′2)) v ↑[M,M ](!Γ2 | ∆2 | ∆′2)

We also have

ϕ; Φ � (K2 tKa{ĨN/̃i}) + [M,M ] ⊆ (J ′c; (K2 tKa{ĨN/̃i}) + [m,m]) ⊆ K ′0

Thus, we simplify a bit the derivation given above, and we have:
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πPQ

ϕ; Φ; ΓNat
0 , (Γν2 | ∆ν

2 | ∆′ν2 ), a : ∀̃i.srvKa(T̃ )/(U2 | V2 | V ′2) ` (P [ṽ := ẽ] | Q) / K2 tKa{ĨN/̃i}
ϕ; Φ; E `M : (P [ṽ := ẽ] | Q) / (K2 tKa{ĨN/̃i}) + [M,M ]

ϕ; Φ; E `M : (P [ṽ := ẽ] | Q) / K ′0

We also have the following derivation:

πP

(ϕ, ĩ); Φ; Γ2, a : ∀̃i.srvKa(T̃ )/U2, ṽ : T̃ ` P / Ka

ϕ; Φ; ↑Jc !Γ2, a : ∀̃i.srvKa(T̃ )/!In
[0,0]
Jc

.U2 `!a(ṽ).P / [0, 0]

ϕ; Φ; ↑[n,n]+Jc !Γ2, a : ∀̃i.srvKa(T̃ )/!In
[n,n]
Jc

.U2 ` n :!a(ṽ).P / [n, n]

ϕ; Φ; ΓNat
0 , ↑[M,M ]!Γν2 , a : ∀̃i.srvKa(T̃ )/!In

[n,n]
Jc

.U2 ` n :!a(ṽ).P / K0

So, by parallel composition of those two derivations we obtain a derivation of:

ϕ; Φ; ΓNat
0 , ↑[M,M ](!Γν2 | Γν2 | ∆ν

2 | ∆′ν2 ), a : ∀̃i.srvKa(T̃ )/!In
[n,n]
Jc

.U2 | (↑[M,M ](U2 | V2 | V ′2))

` (n :!a(ṽ).P ) | M : (P [ṽ := ẽ] | Q) / K0 tK ′0

By Point 2 of Lemma 4.5.1, there exists W such that:

ϕ; Φ ` U0 | V0 −→∗ W ϕ; Φ `W v!In
[n,n]
Jc

.U2 | ↑[M,M ](U2 | V2 | V ′2)

So, by subtyping we have a proof:

ϕ; Φ; ΓNat
0 ,Γν0 | ∆ν

0 , a : ∀̃i.srvKa(T̃ )/W ` (n :!a(ṽ).P ) | M : (P [ṽ := ẽ] | Q) / K0 tK ′0

This concludes this case.

• Case (n : a(ṽ).P ) | (m : a〈ẽ〉.Q) ⇒ (max(m,n) : (P [̃v := ẽ] | Q)). Consider the typing
ϕ; Φ; Γ0 | ∆0, a : ch(T̃ )/(U0 | V0) ` (n : a(ṽ).P ) | (m : a〈ẽ〉.Q) / K0 t K ′0. The first
rule is the rule for parallel composition, then the derivation is split into the two following
subtrees:

πP

ϕ; Φ; Γ2, a : ch(T̃ )/U2, ṽ : T̃ ` P / K2

ϕ; Φ; ↑JcΓ2, a : ch(T̃ )/In
[0,0]
Jc

.U2 ` a(ṽ).P / Jc;K2 (3)

ϕ; Φ; Γ1, a : ch(T̃ )/U1 ` a(ṽ).P / K1

ϕ; Φ; ↑[n,n]Γ1, a : ch(T̃ )/↑[n,n]U1 ` n : a(ṽ).P / K1 + [n, n] (4)

ϕ; Φ; Γ0, a : ch(T̃ )/U0 ` n : a(ṽ).P / K0

where (3) is

ϕ; Φ ` Γ1 v ↑JcΓ2;U1 v In
[0,0]
Jc

.U2; Jc;K2 ⊆ K1

and (4) is
ϕ; Φ ` Γ0 v ↑[n,n]Γ1;U0 v ↑[n,n]U1;K1 + [n, n] ⊆ K0
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πe

ϕ; Φ; ∆2, a : ch(T̃ )/V2 ` ẽ : T̃

πQ

ϕ; Φ; ∆′2, a : ch(T̃ )/V ′2 ` Q /K ′2

ϕ; Φ; ↑J′
c(∆2 | ∆′2), a : ch(T̃ )/Out

[0,0]
J′
c
.(V2 | V ′2) ` a〈ẽ〉.Q / J ′c;K

′
2 (1)

ϕ; Φ; ∆1, a : ch(T̃ )/V1 ` a〈ẽ〉.Q / K ′1

ϕ; Φ; ↑[m,m]∆1, a : ch(T̃ )/↑[m,m]V1 ` m : a〈ẽ〉.Q / K ′1 + [m,m] (2)

ϕ; Φ; ∆0, a : ch(T̃ )/V0 ` m : a〈ẽ〉.Q / K ′0

where (1) is

ϕ; Φ ` ∆1 v ↑J
′
c(∆2 | ∆′2) ϕ; Φ ` V1 v Out

[0,0]
J ′c

.(V2 | V ′2) ϕ; Φ � J ′c;K
′
2 ⊆ K ′1

and (2) is
ϕ; Φ ` ∆0 v ↑[n,n]∆1;V0 v ↑[m,m]V1;K ′1 + [m,m] ⊆ K ′0

First, we know that Γ0 | ∆0 is defined. Moreover, we have

ϕ; Φ ` Γ0 v ↑[n,n]Γ1 ϕ; Φ ` Γ1 v ↑JcΓ2 ϕ; Φ ` ∆0 v ↑[m,m]∆1 ∆1 v ↑J
′
c(∆2 | ∆′2)

So, for the channel and server types, in those seven contexts, the shape of the type does
not change (only the usage can change). We also have:

ΓNat
0 = ∆Nat

0 ϕ; Φ ` ΓNat
0 v ΓNat

1 v ΓNat
2 ϕ; Φ ` ∆Nat

0 v ∆Nat
1 v ∆Nat

2 ∆Nat
2 = ∆′Nat2

So, from πe and πP we obtain by subtyping:

ϕ; Φ; ΓNat
0 ,Γν2 , a : ch(T̃ )/U2, ṽ : T̃ ` P / K2 ϕ; Φ; ΓNat

0 ,∆ν
2 , a : ch(T̃ )/V2 ` ẽ : T̃

So, we use the substitution lemma (Lemma 4.5.11) and we obtain:

ϕ; Φ; ΓNat
0 , (Γν2 | ∆ν

2), a : ch(T̃ )/(U2 | V2) ` P [ṽ := ẽ] / K2

As previously, by subtyping from πQ, we have:

ϕ; Φ; ΓNat
0 ,∆′ν2 , a : ch(T̃ )/V ′2 ` Q /K ′2

Thus, with the parallel composition rule (as parallel composition of context is defined)
and subtyping we have:

ϕ; Φ; ΓNat
0 , (Γν2 | ∆ν

2 | ∆′ν2 ), a : ch(T̃ )/(U2 | V2 | V ′2) ` (P [ṽ := ẽ] | Q) / K2 tK ′2

Let us denote M = max(m,n). Thus, we derive the proof:

ϕ; Φ; ΓNat
0 , (Γν2 | ∆ν

2 | ∆′ν2 ), a : ch(T̃ )/(U2 | V2 | V ′2) ` (P [ṽ := ẽ] | Q) / K2 tK′2
ϕ; Φ; ΓNat

0 , ↑[M,M ](Γν2 | ∆ν
2 | ∆′ν2 ), a : ch(T̃ )/↑[M,M ](U2 | V2 | V ′2) `M : (P [ṽ := ẽ] | Q) / (K2 tK′2) + [M,M ]

Now, recall that by hypothesis, U0 | V0 is reliable. We have:

ϕ; Φ ` U0 v ↑[n,n]U1 ϕ; Φ ` U1 v In
[0,0]
Jc

.U2 ϕ; Φ ` V0 v ↑[m,m]V1 ϕ; Φ ` V1 v Out
[0,0]

J′
c

(V2 | V ′2 )

136



So, by Point 1 of Lemma 4.5.1, with transitivity and parallel composition of subusage, we
have:

ϕ; Φ ` U0 | V0 v (↑[n,n]U1) | (↑[m,m]V1) v In
[n,n]
Jc

.U2 | Out[m,m]
J ′c

(V2 | V ′2)

By Point 3 of Lemma 4.5.1, we have In
[n,n]
Jc

.U2 | Out[m,m]
J ′c

(V2 | V ′2) reliable. So, in particular,
we have:

ϕ; Φ ` In[n,n]
Jc

.U2 | Out[m,m]
J ′c

(V2 | V ′2) −→ ↑[M,M ](U2 | V2 | V ′2)

ϕ; Φ � [n, n] ⊆ [m,m]⊕ J ′c ϕ; Φ � [m,m] ⊆ [n, n]⊕ Jc
Thus, we deduce that

ϕ; Φ � [M,M ] ⊆ [n, n] + Jc ϕ; Φ � [M,M ] ⊆ [m,m] + J ′c

So, we have in particular, with Lemma 4.5.2 and Point 1 of Lemma 4.5.1 and parallel
composition:

ϕ; Φ ` Γ0 |∆0 v (↑[n,n]Γ1) | ↑[m,m]∆1 v (↑[n,n]+JcΓ2) | (↑[m,m]+J′
c(∆2 |∆′2)) v ↑[M,M ](Γ2 |∆2 |∆′2)

We also have

ϕ; Φ � K2 +[M,M ] ⊆ Jc;K2 +[n, n] ⊆ K0 ϕ; Φ � K ′2 +[M,M ] ⊆ J ′c;K ′2 +[m,m] ⊆ K ′0

So, we obtain direclty ϕ; Φ � (K2 tK ′2) + [M,M ] ⊆ K0 tK ′0
Thus, we can simplify a bit the derivation given above, and we have:

ϕ; Φ; ΓNat
0 , (Γν2 | ∆ν

2 | ∆′ν2 ), a : ch(T̃ )/(U2 | V2 | V ′2) ` (P [ṽ := ẽ] | Q) / K2 tK′2
ϕ; Φ; ΓNat

0 , ↑[M,M ](Γν2 | ∆ν
2 | ∆′ν2 ), a : ch(T̃ )/↑[M,M ](U2 | V2 | V ′2) `M : (P [ṽ := ẽ] | Q) / (K2 tK′2) + [M,M ]

ϕ; Φ; (Γ0 | ∆0), a : ch(T̃ )/↑[M,M ](U2 | V2 | V ′2) `M : (P [ṽ := ẽ] | Q) / K0 tK′0

By Point 2 of Lemma 4.5.1, there exists W such that:

ϕ; Φ ` U0 | V0 −→∗ W ϕ; Φ `W v ↑[M,M ](U2 | V2 | V ′2)

So, by subtyping we have a proof:

ϕ; Φ; Γ0 | ∆0, a : ch(T̃ )/W `M : (P [ṽ := ẽ] | Q) / K0 tK ′0

This concludes this case.

• Case match s(e) {0 7→ P ; ; s(x) 7→ Q} ⇒ Q[x := e]. The case when we match on the
integer 0 is similar, so we only present the successor case. Suppose given a derivation for
match s(e) {0 7→ P ; ; s(x) 7→ Q} / K. Then the derivation has the shape:

πe

ϕ; Φ; ∆ ` e : Nat[I ′, J ′]

ϕ; Φ; ∆ ` s(e) : Nat[I ′ + 1, J ′ + 1] ϕ; Φ ` Γ v ∆;Nat[I ′ + 1, J ′ + 1] v Nat[I, J ]

ϕ; Φ; Γ ` s(e) : Nat[I, J ] πP πQ

match s(e) {0 7→ P ; ; s(x) 7→ Q} / K
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where πQ is a derivation of φ; (Φ, J ≥ 1); Γ, x : Nat[I−1][J−1] ` Q /K, and πP is a typing
derivation for P that does not interest us in this case.

By definition of subtyping, we have:

ϕ; Φ � I ≤ I ′ + 1 ϕ; Φ � J ′ + 1 ≤ J

From this, we deduce the following constraints:

ϕ; Φ � J ≥ 1 ϕ; Φ � I−1 ≤ I ′ ϕ; Φ � J ′ ≤ J−1

Thus, with the subtyping rule and the derivation πe we obtain:

ϕ; Φ; ∆ ` e : Nat[I−1, J−1]

Then, by Lemma 4.5.9, from πQ we obtain a derivation of ϕ; Φ; Γ, x : Nat[I−1][J−1] `
Q / K. By the substitution lemma (Lemma 4.5.11), we obtain ϕ; Φ; Γ ` Q[x := e] / K.
This concludes this case.

• Case n : P ⇒ n : Q with P ⇒ Q. Suppose that ϕ; Φ; ↑[n,n]Γ ` n : P / K + [n, n]. Then,
the derivation has the shape:

ϕ; Φ; Γ ` P / K

ϕ; Φ; ↑[n,n]Γ ` n : P / K + [n, n]

By Lemma 4.5.7, if ↑[n,n]Γ is reliable then Γ is reliable. By induction hypothesis, we have
a derivation ϕ; Φ; Γ′ ` Q /K with ϕ; Φ ` Γ −→∗ Γ′.

We give the proof:

ϕ; Φ; Γ′ ` Q /K

ϕ; Φ; ↑[n,n]Γ′ ` n : Q /K + [n, n]

And we have indeed ϕ; Φ ` ↑[n,n]Γ −→∗ ↑[n,n]Γ′ by Lemma 4.5.7.

• Case P ⇒ Q with P ≡ P ′, P ′ ⇒ Q′ and Q ≡ Q′. Suppose that ϕ; Φ; Γ ` P / K. By
Lemma 4.4.8, we have ϕ; Φ; Γ ` P ′/K. By induction hypothesis, we obtain ϕ; Φ; Γ′ ` Q′/K
with ϕ; Φ ` Γ −→∗ Γ′. Then, again by Lemma 4.4.8, we have ϕ; Φ; Γ′ ` Q / K. This
concludes this case.

This concludes the proof of Theorem 4.5.1.
Finally, we conclude with the following theorem:

Theorem 4.5.2. Let P be an annotated process and n be its global parallel complexity. Then,
if we have ϕ; Φ; Γ ` P / [I, J ], then ϕ; Φ � J ≥ n. Moreover, if Γ does not contain any integer
variables, we have ϕ; Φ � I ≤ n.

Proof. By Theorem 4.5.1, all reductions from P using⇒ preserve the typing. The context may
be reduced too, but as reducibility does not harm reliability, we can still apply the subject
reduction through all the reduction steps of ⇒ Moreover, for a process Q, if we have a typing
ϕ; Φ; Γ ` Q / [I, J ], then J ≥ C`(Q). Indeed, a constructor n : P forces an increment of the
complexity of n both in typing and in the definition of C`(Q), and for parallel composition the
typing imposes a complexity greater than the maximum as in the definition for C`(Q). Thus, J
is indeed a bound on the parallel complexity by definition. As for the lower bound, one can see
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that we do not always have I ≤ C`(Q) because of two guarded processes: the process tick.Q′

and match e {0 7→ Q1; ; s(x) 7→ Q2}. However, those two processes are not in normal form for
⇒, because tick.Q′ ⇒ 1 : Q′ and as there are no integer variables in Γ, the pattern matching
can also be reduced. Thus, from a process Q with possibly top guarded processes that are ticks
or pattern matching, we can find Q′ such that Q⇒ Q′ and Q′ has no guarded processes of this
shape. And then, we obtain I ≤ C`(Q′) which is smaller than the parallel complexity of Q by
definition.

4.5.3 Examples

Let us also present again how sizes and polymorphism over indices in servers can type processes
defined by replication such as the factorial in the context of usages. On such simple replicated
input, the similarities with Section 4.4 should be clear.

Example 4.5.6 (Factorial). Suppose given a function on expressions for multiplication: mult :
Nat[I, J ] × Nat[I ′, J ′] → Nat[I ∗ I ′, J ∗ J ′]. In practice, this should be encoded as a server in
π-calculus, but for the sake of simplicity we consider it as a function. We will describe the
factorial and count the number of multiplications with tick. For the sake of conciseness, we
write Nat[I] to denotes Nat[I, I]. We use the usual notation I! to represent the factorial function
in indices. The process representing factorial and its typing derivation are given in Figure 4.36.
We denote T the following type:

∀i.srv[0,i](Nat[i], ch(Nat[i!])/Out
[i,i]
0 )/(!In[0,0]

∞ .Out
[0,∞]
0 )

This type is reliable and it would be reliable even if composed with any kind of output OutAo0 if
we want to call this server. Let us denote:

T ′ = ∀i.srv[0,i](Nat[i], ch(Nat[i!])/Out
[i,i]
0 )/Out

[0,∞]
0 )

and we also pose:

S(i) = ch(Nat[(i)!])/(Out
[i,i]
0 | In[0,0]

[i,i] ) = S1(i) | S2(i)

where S1(i) and S2(i) are the expected separation of the usage. This type S(i−1) is reliable
under (i); (i ≥ 1). Thus, we give the typing described in Figure 4.36. From the type of f , we
see on its complexity [0, i] that it does at most a linear number of multiplications.

Let us now justify the use of this operator Jc;K in order to treat complexity.

Example 4.5.7 (Deadlock). Let us consider the process

P := (νa)(νb)(a().tick.b〈〉 | b().tick.a〈〉)

Remark that this process is similar to the one we described in Section 4.1.3. In order to
understand the constraints needed to type this process, we will give a typing with variables for
obligation and capacity, and we will look at which values those variables can take. This is
described in Figure 4.37.

First, as a and b have exactly the same behaviour, they must have the same typing. And
from just this, we already have some constraints to satisfy. Indeed, because of reliability, we
have:

Bo ⊆ Ao ⊕ Ic Ao ⊆ Bo ⊕ Jc

Moreover, in order to continue the typing, we must have

InAoIc v In
[0,0]
I′c

OutBoJc v ↑
I′c↑[1,1]Out

[0,0]
J ′c
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P :=!f(n, r).match n {0 7→ r〈1〉; ; s(m) 7→ (νr′)(f〈m, r′〉 | r′(x).tick.r〈mult(n, x)〉)}

i; ·;n : Nat[i] ` n : Nat[i]

i; (i ≤ 0) � i! = 1

i; i ≤ 0; f : T ′, n : Nat[i], r : S1(i) ` r〈1〉 / [0, i] π1

i; ·; f : T ′, n : Nat[i], r : S1(i) ` match n {0 7→ r〈1〉; ; s(m) 7→ (νr′) · · ·} / [0, i]

·; ·; f : T `!f(n, r).match n {0 7→ r〈1〉; ; s(m) 7→ (νr′)(f〈m, r′〉 | r′(x).tick.r〈mult(n, x)〉)} / [0, 0]

with π1 :

(i; i ≥ 1) � i ∗ (i−1)! = i!

ϕ; Φ;n : Nat[i], x : Nat[(i−1)!] ` mult(n, x) : Nat[i!]

ϕ; Φ;n : Nat[i], x : Nat[(i−1)!], r : ch(Nat[i!])/Out
[0,0]
0 ` r〈mult(n, x)〉 / [0, 0]

ϕ; Φ; Γ ` (m, r′) : (Nat[i−1], S1(i−1)) ϕ; Φ;n : Nat[i], x : Nat[(i−1)!], r : ch(Nat[i!])/Out
[1,1]
0 ` tick. · · · / [1, 1]

ϕ; Φ;m : Nat[i−1], r′ : S1(i−1), f : T1 ` f〈m, r′〉 / [0, i] ϕ; Φ;n : Nat[i], r′ : S2(i−1), r : S1(i) ` r′(x). · · · / [0, i]

ϕ; Φ;n : Nat[i],m : Nat[i−1], r : S1(i), f : T ′, r′ : S(i−1) ` f〈m, r′〉 | r′(x).tick.r〈mult(n, x)〉 / [0, i]

i; i ≥ 1;n : Nat[i],m : Nat[i−1], r : S1(i), f : T ′ ` (νr′)(f〈m, r′〉 | r′(x).tick.r〈mult(n, x)〉) / [0, i]

Figure 4.36: Representation and Typing of Factorial

·; ·; a : ch()/InAo
Ic
, b : ch()/OutBo

Jc
` a().tick.b〈〉 / K1 ·; ·; a : ch()/OutBo

Jc
, b : ch()/InAo

Ic
` b().tick.a〈〉 / K2

·; ·; a : ch()/(InAo
Ic
| OutBo

Jc
), b : ch()/(OutBo

Jc
| InAo

Ic
) ` a().tick.b〈〉 | b().tick.a〈〉 / K1 tK2

·; ·; · ` (νa)(νb)(a().tick.b〈〉 | b().tick.a〈〉) / K1 tK2

Figure 4.37: Typing Constraints for Example 4.5.7

This gives us the additional constraints:

[0, 0] ⊆ Ao Ic ≤ I ′c ([1, 1] + I ′c) ⊆ Bo Jc ≤ J ′c

So, if we put it together, we have:

([1, 1] + Ic) ⊆ ([1, 1] + I ′c) ⊆ Bo ⊆ Ao ⊕ Ic

As [0, 0] ⊆ Ao we have Left(Ao) = 0. In order to have Right([1, 1]+Ic) ≤ Right(Ao⊕Ic) then we
are forced to take Ic =∞ or Ic = [I,∞] for some I. If we take such a capacity, this could induce
a infinite upper bound. However, recall that we have the special case [∞,∞];K = [0, 0]. So, if
we can give an infinite lower bound to this capacity, we recover the complexity 0 of this deadlock.
In fact, this is possible as described in Figure 4.38. Thus, the capacity [∞,∞], describing input
or output that will never be reduced, allows us to derive a complexity of zero.

Example 4.5.8. We describe here informally an example for which our system can give a
complexity, but fails to catch a precise bound, compared to Section 4.4. Let us consider the
process:

P := tick.!a(n).match n {0 7→ 0; ; s(m) 7→ a〈m〉} | a〈10〉 | tick.tick.!a(n).0

This process has complexity 2, and the type system of Section 4.4 can infer this complexity.
However, if we want to give a usage to the server a, we must have a usage:

!In
[1,1]
0 .Out

[0,0]
1 | Out[0,0]

[1,2] | !In
[2,2]
0
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·; ·; a : ch()/0, b : ch()/Out
[0,0]
0 ` b〈〉 / [0, 0]

·; ·; a : ch()/0, b : ch()/Out
[1,1]
0 ` tick.b〈〉 / [1, 1]

·; ·; a : ch()/In
[0,0]
[∞,∞], b : ch()/Out

[∞,∞]
0 ` a().tick.b〈〉 / [0, 0] symmetry with the other branch

·; ·; a : ch()/(In
[0,0]
[∞,∞] | Out

[∞,∞]
0 ), b : ch()/(Out

[∞,∞]
0 | In[0,0][0,0]) ` a().tick.b〈〉 | b().tick.a〈〉 / [0, 0]

·; ·; · ` (νa)(νb)(a().tick.b〈〉 | b().tick.a〈〉) / [0, 0]

Figure 4.38: Typing of Example 4.5.7

We took as obligations the number of ticks before the action, and as capacity the minimal number

for which we have reliability. So in particular, because of the capacity 1 in the usage Out
[0,0]
1 ,

typing the recursive call a〈m〉 increases the complexity by one, and so typing n recursive calls
generates a complexity of n in the type system. So, in the usage setting, the complexity of this
process can only be bounded by 10. Overall, this type system may not behave well when there
are more than one replicated input process on each server channel, since an imprecision on a
capacity for a recursive call leads to an overall imprecision depending on the number of recursive
calls. This issue is the main source of imprecision we found with respect to the type system of
Section 4.4.

The Need for Intervals in Usages

In this paragraph, we describe informally on an example where the use of intervals is important
in our work. The need for an interval capacity is apparent for the process

a().b〈〉 | match v {0 7→ a〈〉; ; s(x) 7→ tick.a〈〉}

where v has type Nat[0, 1]. Indeed, depending on the value of v (which may be statically
unknown), an output on a may be available at time 0 or 1. Thus, the input usage on a should
have a capacity interval [0, 1]. As a result, the obligation of the output usage on b should also
be an interval [0, 1].

Now, one might think that we can assume that lower-bounds are always 0 (or∞, to consider
processes like Example 4.5.7) and omit lower-bounds, since we are mainly interested in an upper-
bound of the parallel complexity. Information about lower-bounds is, however, actually required
for precise reasoning on upper-bounds. For example, consider the following process:

a().b〈〉 | tick.a〈〉.b()

With intervals, a has the usage In
[0,0]
[1,1] | Out

[1,1]
0 and so b has the usage Out

[1,1]
[0,0] | In

[1,1]
[0,0], and the

parallel complexity of the process can be precisely inferred to be 1.

If we set lower-bounds to 0 and assign to a the usage In
[0,0]
[0,1] | Out

[0,1]
0 to a, then the usage

of b can only be: Out
[0,1]
1 | In[0,1]

1 . Note that according to the imprecise usage of a, the output
on b may become ready at time 0 and then have to wait for one time unit until the input on
b becomes ready; thus, the capacity of the output on b is 1, instead of [0, 0]. An upper-bound
of the parallel complexity would therefore be inferred to be 1 + 1 = 2 (because the usages tell
us that the lefthand side process may wait for one time unit at a, and then for another time
unit at b), which is too imprecise. The problem described here was already in [72], even if it
was not shown in this paper. Overall, we are certain that even by trying to modify slightly the
definition of [72] in order to account for this imprecision, there is no way to still have a sound
type system without lower-bounds. This is because the proof of soundness relies on important
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properties of subusage (namely Lemma 4.5.1 and Lemma 4.5.2), and in order to satisfy this
lemma, all the definitions must be carefully designed.

Elements of Comparison with Section 4.4

Finally, we give intuitively a description of how to simulate types from Section 4.4 in a linear
setting with usage. We say that a process has a linear use of channels if it uses channel names
at most one time for input and at most one time for output. For servers, we suppose that the
replicated input is once and for all defined at the beginning of a process, and as free variables
it can only use others servers. The main idea is to represent the channel type chI(T̃ ) by a type

ch(T̃ )/(In
[I1,I1]
J1
c

| Out[I2,I2]
J2
c

) where either J1
c is 0 and then I1 ≤ I , either J1

c = [J1, J1] and then

I1 + J1 ≤ I. We have the same thing for J2
c and I2. To be more precise, the typing in our

setting should be a non-deterministic choice (using +) over such usages, and the capacity should
adapt to the obligation of the dual action in order to be reliable. So, for example if I1 ≤ I2,

then we would take: ch(T̃ )/(In
[I1,I1]

[I2−I1,I2−I1]
| OutI2,I20 ). Note that this shape of type adapts well

to the way time is delayed in Section 4.4. For example, the tick constructor makes the time
advance by 1 in this previous setting, and in the usage setting, then we would obtain the usage

(In
[I1+1,I1+1]

[I2−I1,I2−I1]
| OutI2+1,I2+1

0 ) and we still have I2−I1 = (I2 + 1)−(I1 + 1).

In the same way, when doing an output (or input), the time was delayed by I. Here, with
usages, it would be delayed by Jc which is, by definition, a delay of the shape ↑[J,J ] with J ≤ I.
So, we would keep the invariant that our time annotation have the shape of singleton interval
with a smaller value than the time annotation in the setting of Section 4.4.

For servers, in the linear setting, types had the shape: ∀̃i.srvK0 (T̃ ) where the time is zero
because of the assumption given above on servers. So, in the usage setting it would be:

∀̃i.srv[0,K](T̃ )/!In[0,0]
∞ .!Out

[0,∞]
0 | !Out[0,∞]

0

Note that this usage is reliable. The main point here is this infinite capacity for input. Please
note that because of our input rule for servers, it does not generate an infinite complexity.
However, it imposes a delaying ↑[0,∞]!Γ in the context. Because of the shape we gave to types,
it means that the context can only have outputs for other servers as free variables, but this
was the condition imposed by linearity, and it is similar to the time invariant hypothesis of
Figure 4.21. As an example, the bitonic sort described before could be typed similarly in
the usage setting with this kind of type. This type corresponds also to the type we used for
Example 4.5.6.

Finally, choice in usages U1 + U2 is used to put together the different usages we obtain in
the two branches of a pattern matching.

However, the transformation described in this section may not be possible if we lose some
precision on the sizes of values. Indeed, we showed in the previous example that an imprecision
on a value can lead to a need for a non-singleton obligation in a usage, which contradicts the
typing we want to give. However, it is not clear if this imprecise obligation leads to a less precise
complexity bound with regards to Section 4.4. We believe it may depend on the context, and
sometimes usages will be more efficient, and sometimes not. However, what we know for certain
is that the usage type system is not theoretically limited by the time uniqueness presented in
Example 4.4.2.
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Chapter 5

Perspectives

We see several perspectives for this thesis:

• A direct perspective for our type system for π-calculus would be to study type inference
for span. For the type system of Section 4.4, it is possible to draw inspiration from usual
sized types inference algorithm [6], as for work. The main difference is to find a way to
derive the constraints obtained because of the advance of time (the 〈·〉−I operation), as in
the examples of Section 4.4.1. For the usage type system, we could build on previous work
by Naoki Kobayashi on type inference for usages [74, 77] in order to derive the constraints.

Then, once we obtain this set of constraints, an interesting question is how to solve them
in practice. This is usually done by chosing a particular shape for index functions (for
example, all functions are polynomials of degree two), and then transforming the inequa-
tions on functions to linear inequations. In the analysis of span, the use of logarithms
should be important, and so it would be interesting to explore the literature on how to
efficiently solve constraints on logarithmic functions, see for instance the recent work [64].

• If we think of our notions of complexity in terms of circuits, then work corresponds to size
and span corresponds to depth. Thus, another interesting notion, corresponding intuitively
to the width, would be the number of processors needed to obtain the span. This notion
seems harder to capture easily in a small-step semantics. An idea could be to consider
those kinds of reduction for tick:

(νã)(n : tick.P | Q), ρ⇒ (νã)(n+ 1 : P | Q), ρ[n 7→ ρ(n) + 1]

With the intuition that ρ(n) gives the number of computations that happen simultaneously
at time n. Then, the width of P would be

max{ρ(i) | P, (fun n 7→ 0)⇒∗ Q, ρ and i ∈ N}

Again, sized types should be useful as the width of a function may depend on the size of
input, but it seems that an adaptation of our previous type system would not be sufficient
for a width analysis.

• An interesting extension of our type systems would be to consider amortized complexity
analysis, which could be especially useful if we add trees in the data-types. Some recent
work on resource-aware types for parallel programs [37] could be studied to see if the
addition of potential in our type systems is feasible.
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• Our work is especially focused on π-calculus, however, in particular for the type system of
Section 4.4, working on the whole π-calculus may be difficult. It would be interesting to
see if our approach can lead to better results on theoretically simpler parallel languages
(a language with fork [54], or a functional language with parallel computations [59]), or
even other expressive approaches of parallel computations (such as actor-based language
[80]).

• Finally, an interesting approach could be to go back to ICC, and to work on characteriza-
tions of complexity classes in the π-calculus with our approach. A linear logic approach has
been used for session types [31], and safe recursion lead to results on parallel complexity
[45], but otherwise this problem has not be much studied.
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Appendix A

Additional Results

A.1 Type Inference Procedure for Work

We describe formally a type inference procedure for the work type system described in Sec-
tion 4.2.3. The work described here has not been implemented yet, but in order to be sure it
would be implementable and sound, we give a totally inductive presentation of the procedure.
The notations might be cumbersome, as we have to track in particular names of variables. How-
ever, with this inductive presentation, we are convinced that the soundness and completeness
result given at the end of this section is verified.

Notations for Type Inference

We start by introducing some notations for type inference. We have a particular focus on names
and variable renaming, as it could be a source of problems in implementation. We want to design
the procedure in such a way that it is easily implementable from the theoretical description,
and such that the procedure is correct and complete.

From now on, we may use second order variables for indexes, denoted by e1, . . . , en. This is
useful when doing type inference, in the same way that we usually need to add type variables,
in a context with sized types we need second-order index variables. The difference between a
usual index variable and a second-order index variable is that the second-order index variable
comes with a closure (a function ν from second order index variables to index variables), that
is to say the set of index variables that it can use. Moreover, we can do a substitution e{I/i}
on those variables. So, formally, we define extended indices on a set ϕ of first order variables
and Ψ of second order variables (with closure ν) by:

I, J,K ::= i ∈ ϕ | f(I1, . . . , In) | e ∈ Ψ

We also ask that in the closure ν we have ν(e) ⊂ ϕ for all e (usually noted by abuse of notation
ν ⊂ ϕ).

Definition A.1.1 (Canonical Extension). We say that a canonical intermediate type Tc is a
canonical extension of a simple type U if they have the same skeleton (that is to say Tc without
sizes is U). We can generalize this to context.

Definition A.1.2 (Constraints and Satisfaction). A constraint C on a set ϕ of first order
variables and Ψ of second order variables (with closure ν ⊂ ϕ) is an object of the form I ≤ J
where I and J are extended indices on ϕ and Ψ, or an explicit substitution of an extended index.
A set of such constraints is usually denoted C.
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We say that ε is an instantiation of Ψ (with a closure ν) if ε is a function defined on Ψ, such
that ε(e) is an index with no second-order variables, and with first order variables in ν(e). Given
an index I on ϕ and Ψ such that ν ⊂ ϕ, we define Iε as an index on ϕ with no second-order
variables given by:

• iε = i

• (f(I1, . . . , In))ε = f(I1
ε , . . . , I

n
ε )

• eε = ε(e)

• (e{I/i})ε = ε(e){I/i}

(Note that for the last rule, there is a distinction to make between the syntactic substitution
e{I/i} and the semantically defined substitution ε(e){I/i})

Finally, we say that a set of constraints C on ϕ and Ψ (with closure ν ⊂ ϕ) is satisfiable if
there exists an instantiation ε of Ψ such that, for all constraints I ≤ J in C, we have:

ϕ; · � Iε ≤ Jε

In order to harmonize notations for the following functions, let us give some usual notations
we will reuse in the following.

Definition A.1.3 (Notations for index variables). In this section, we will denote an index
variable as ilm. To denote the set of variables already used, we use an integer k and a function
ρ : {1, . . . , k} → N. This means that the variables we used are in the set {ilm | 1 ≤ l ≤ k ∧ 1 ≤
m ≤ ρ(l)}.

Also, especially when doing type inference, we want to represent the usual ϕ in the type
system. To do that, we use a set K ⊂ {1, . . . , k}. This denotes the set ϕ ≡ {ilm | l ∈ K ∧ 1 ≤
m ≤ ρ(l)}.

Definition A.1.4 (Notation for second-order index variables). We will usually denote an index
variable as ei. To denote the set of variables already used, we use an integer N and a function ν :
{1, . . . , N} → P({1, . . . , k}). This means that the already defined second-order index variables
are {ei | 1 ≤ i ≤ N}, and the variable ei uses the index variables var(ei) ≡ {ilm | l ∈ ν(i) ∧ 1 ≤
m ≤ ρ(l)}.

Definition A.1.5 (Notation for output). Using the previous notations, we will usually in a
procedure define new variables, thus updating the set of defined variables. For this, we use the
notation k′, ρ′, K′, ϕ′, N ′, ν ′, with the expected meaning. When we need to use several times
those notations, we will prefer using integers index k0, k1, etc.

Intermediate Functions for Inference

Definition A.1.6 (Creating a Canonical Extension). We define the function

canon(T, k, ρ,N, ν, l) ≡ (T ′c, k
′, ρ′, N ′, ν ′)

where T is a simple type and T ′c is a canonical extension of T . The additional integer l ∈
{1, . . . , k}, denotes the current exponent for index variables we are using.

This is defined by induction on T . For simplicity reason, we do not recall the input arguments
except T .

• canon(Nat) ≡ let m = ρ(l) in (Nat[0, ilm+1], k, ρ[l 7→ m+ 1], N, ν)
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• canon(List(B)) ≡ let m = ρ(l) in let (B′c, k′, ρ′, N ′, ν′) = canon(B, k, ρ[l 7→ m+ 1], N, ν, l) in

(List[0, ilm+1](B′c), k′, ρ′, N ′, ν′)

• canon(α) ≡ (α, k, ρ,N, ν)

• canon(A) ≡ (A, k, ρ,N, ν)

• canon(ch(T̃ )) ≡ let (T̃ ′c, k
′, ρ′, N ′, ν′) = canon(T̃ , k+1, ρ[k+1 7→ 0], N+1, ν[N+1 7→ {k+1}], k+1)

in let m′ = ρ′(k + 1) in (∀ik+1
1 , . . . , ik+1

m′ .cheN+1(T̃ ′c), k
′, ρ′, N ′, ν′)

• canon(·) = (·, k, ρ,N, ν)

• canon((U, T̃ )) = let ((Uc), k1, ρ1, N1, ν1) = canon(U, k, ρ,N, ν, l) in

let (T̃ ′c, k2, ρ2, N2, ν2) = canon(T̃ , k1, ρ1, N1, ν1, l) in

((U ′c, T̃
′
c), k2, ρ2, N2, ν2).

Then, we can easily show by induction that the type returned is indeed a canonical type,
and it verifies the constraints on the use of variables given by the notations.

We also need a unification procedure for base sized types. In order to do this, let us first
define a generalization of types.

Definition A.1.7 (Quantified Type Form). A quantified type form has the shape ∀ω :: B, T
where B is a simple base type and T is an intermediate type that can use the special base type
variable ω. Intuitively, this is used to type an expression e such that, for all intermediate type B′
with a skeleton equal to B, e has type T [ω ::= B′]. Such a type T [ω ::= B′] is called a particular
case of the type form.

We say that the skeleton of ∀ω :: B, T is the skeleton of T where the special variable ω is
replaced by the skeleton of B.

Definition A.1.8 (Unification Procedure). Given two base types (quantified type form) B1 and
B2 with the same skeleton, we define the unification procedure

unif(B1,B2, k, ρ,K, N, ν) ≡ (B′, C, N ′, ν ′).

B′ can be a quantified type form, and C is a set of constraints on the first-order variables described
by k and ρ, and on the second order variables described by N and ν. The intuition is that if the
constraints in C are satisfied by an instantiation ε, then there exists particular cases of the type
forms B1 and B2, with ϕ; · ` (Bi)ε v B′ε for i = 1, 2.

This is defined by induction on the shape of both B1 and B2. In practice, we take in input
a base type with possibly a special variable ω1 or ω2 with its associated type, and it returns a
base type with possibly a special variable ω.

• unif(Nat[0, I],Nat[0, J ]) ≡ (Nat[0, eN+1], {I ≤ eN+1; J ≤ eN+1}, N + 1, ν[eN+1 7→ K])

• unif(List[0, I](B′1), List[0, J ](B′2)) ≡
let (B′, C, N ′, ν ′) = unif(B′1,B′2, k, ρ,K, N + 1, ν[eN+1 7→ K]) in
(List[0, eN+1](B′), C′ ∪ {I ≤ eN+1; J ≤ eN+1}, N ′, ν ′)

• unif(α, α) ≡ (α, ∅, N, ν)

• unif(ω1 :: B,B2) ≡ (B2[ω2 ::= ω], ∅, N, ν)

• unif(B1, ω2 :: B) ≡ (B1[ω1 ::= ω], ∅, N, ν)

• Undefined otherwise.
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With this, it is easy to show the following lemma.

Lemma A.1.1 (Correction of Unification). If unif(B1,B2, k,K, ρ,N, ν) = (B′, C, N ′, ν ′) then B′
has the same skeleton as B1 and B2, and for any base type B, there exists two base types B′1 and
B′2 such that for any instantiation ε satisfying C, we have

ϕ; · ` (Bi(Bi)′)ε v (B′(B))ε

Proof. By induction on the skeleton of both B1 and B2. All cases are direct.

In the same way that we did for canon, we need a function that renames variables in an
intermediate type.

Definition A.1.9 (Renaming a Canonical Type). We define the function

rename(Tc, k, ρ,N, ν, l0, l1) ≡ (T ′c, C, k′, ρ′, N ′, ν ′)

where C is a set of constraints. The integers l0, l1 ∈ {1, . . . , k}, denote the current exponent for
index variables in Tc and in the renaming. We also ask that ρ(l0) = ρ(l1).

This is defined by induction on Tc.

• rename(Nat[0, il0m + n]) ≡ (Nat[0, il1m + n], ∅, k, ρ,N, ν)

• rename(List[0, il0m + n](Bc)) ≡ let (B′c, C, k′, ρ′, N ′, ν ′) = rename(Bc, k, ρ,N, ν, l0, l1) in

(List[0, il1m + n](B′c), C, k′, ρ′, N ′, ν ′)

• rename(α) ≡ (α, ∅, k, ρ,N, ν)

• rename(A) ≡ (A, ∅, k, ρ,N, ν)

• rename(∀il1, . . . , ilm.chK(T̃c)) ≡ let (T̃ ′c, C, k′, ρ′, N ′, ν ′) = rename(T̃c, k + 1, ρ[k + 1 7→
m], N + 1, ν[N + 1 7→ {k + 1}], l, k + 1)

in (∀ik+1
1 , . . . , ik+1

m .cheN+1(T̃ ′c), C ∪ {eN+1 = K{̃ik+1/ĩl}}, k′, ρ′, N ′, ν ′)

• rename(·) = (·, k, ρ)

• rename((Uc, T̃c)) = let (U ′c, C1, k1, ρ1, N1, ν1) = rename(Uc, k, ρ,N, ν, l0, l1) in

let (T̃ ′c, C2, k2, ρ2, N2, ν2) = rename(T̃c, k1, ρ1, N1, ν1, l0, l1) in

((U ′c, T̃
′
c), C1 ∪ C2, k2, ρ2, N2, ν2).

To prove correctness of this definition, we will define a relation called simply equal, that is
a notion of equality between types weaker than α-renaming equality, but easier to implement.

Definition A.1.10 (Simple Equality). We say that two canonical types Tc and T ′c are simply
equal (denoted Tc =s T

′
c) if they are syntactically equal when we remove the exponent on the

index variables. Formally, this is defined by the rules in Figure A.1. Note that by definition
of canonicity (notably because of btocc and the ordering of variables), two canonical channel
types with the same skeleton are simply equal if and only if all the complexity appearing in those
types are simply equal.

It is then easy to see that if two canonical channels types with no higher-order variables are
simply equal then they are equal by α-renaming.

And then, we can prove the following lemma for correctness of renaming:
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m0 = m1 n0 = n1

Nat[0, il0m0
+ n0] =s Nat[0, i

l1
m1

+ n1]

m0 = m1 n0 = n1 (Bc)0 =s (Bc)1

List[0, il0m0
+ n0]((Bc)0) =s List[0, i

l1
m1

+ n1]((Bc)1)

α =s α A =s A
m0 = m1 K0 =s K1 T̃0 =s T̃1

∀il01 , . . . , il0m0
.chK0(T̃0) =s ∀il11 , . . . , il1m1

.chK1(T̃1)

m0 = m1

il0m0
=s i

l1
m1

Ĩ0 =s Ĩ1

f(Ĩ0) =s f(Ĩ1)
ei =s ei

Figure A.1: Simple Equality

Lemma A.1.2 (Correctness of Renaming). If rename(Tc, k, ρ,N, ν, l0, l1) =s (T ′c, C, k′, ρ′, N ′, ν ′)
and ε is an instantiation satisfying C, then (T ′c)ε =s (Tc)ε.

The proof is done by induction.
Finally, let us say something about naming. We define first well-named types and contexts.

Definition A.1.11 (Well-named Types). Intuitively, we will say that a type is well-named given
a set of variables if it uses all first-order variables at least once, and all the binding of first-
order variables always use different variables. Intuitively, to show that a type is well-named, we
extract the names in a type and show that this corresponds to our set of names. Formally, this
is defined by the partial function:

names(T, k, ρ,K, N, ν) ≡ (ϕ′f , ϕ
′
b)

Also defined on extended indexes, with T an intermediate type, and we define as usual ϕ ≡
{ilm | l ∈ K | 1 ≤ m ≤ ρ(l)}. This set ϕ will correspond to the already bounded variables.
Then, ϕ′f ⊂ ϕ is the set of free variables that we saw in the type (in the end, we would want

ϕ = ϕ′f ), and ϕ′b ⊂ {ilm | 1 ≤ l ≤ k, 1 ≤ m ≤ ρ(l)} is the set of variables bound somewhere in
the type, always satisfying ϕ∩ϕ′b = ∅. Note that we consider that first-order index variables are
always denoted ilm for some integers l and m (as it will be the way to denote variables in the
implementation). For the sake of simplicity, we define ϕ

∐
ϕ′ as the partial function returning

ϕ ∪ ϕ′ when ϕ ∩ ϕ′ = ∅, and is undefined otherwise. Then, we define (ϕ′f , ϕ
′
b) + (ϕ′′f , ϕ

′′
b ) ≡

(ϕ′f ∪ϕ′′f , ϕ′b
∐
ϕ′′b ). We will also use assert(b) to say that the function is undefined if b is false.

• names(ilm) ≡ assert(ilm ∈ ϕ); ({ilm}, ∅)

• names(f(I1, . . . , In)) ≡
∑

1≤i≤n names(Ii, k, ρ,K, N, ν)

• names(ej) ≡ assert(ν(j) ⊂ K); ({ilm | l ∈ ν(j) ∧ 1 ≤ m ≤ ρ(l)}, ∅)

• names(Nat[0, I]) ≡ names(I, k, ρ,N, ν)

• names(List[0, I](B)) ≡ names(I, k, ρ,N, ν) + names(B, k, ρ,N, ν)

• names(α) ≡ names(A) ≡ (∅, ∅)

• names(∀̃i.chK(T̃ )) ≡ assert(̃i = il1, . . . , i
l
m for some 1 ≤ l ≤ k, l /∈ K and m = ρ(l));

let (ϕf , ϕb) = names(K, k, ρ, {l}, N, ν) in assert(ϕb = ∅)
let (ϕ′f , ϕ

′
b) = names(T̃ , k, ρ,K ∪ {l}, N, ν) in assert({il1, . . . , ilm} ⊂ ϕ′f );

(ϕ′f ∩ ϕ,ϕ′b
∐
{il1, . . . , 1lm})

• names((T1, . . . , Tn)) ≡
∑

1≤i≤n names(Ti, k, ρ,K, N, ν)
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And we obtain directly by induction that if names(T, k, ρ,K, N, ν) ≡ (ϕ′f , ϕ
′
b) is defined, then

we have indeed ϕ′f ⊂ ϕ and ϕ′b ∩ ϕ = ∅ with ϕ′b ⊂ {ilm | 1 ≤ l ≤ k, 1 ≤ m ≤ ρ(l)}

And then, we say that a type T (or a list of types) is well-named (under (k, ρ,K, N, ν)) when
names(T, k, ρ,K, N, ν) ≡ (ϕ′f , ϕ

′
b) is defined, and we have ϕ′f = ϕ and ϕ′b

∐
ϕ = {ilm | 1 ≤ l ≤

k, 1 ≤ m ≤ ρ(l)}
Now, we show that names are well-used in the functions defined previously.

Lemma A.1.3 (Naming in Intermediate Functions). We have,

• If canon(T, k, ρ,N, ν, l) ≡ (T ′c, k
′, ρ′, N ′, ν ′) then names(T ′c, k

′, ρ′, {l}, N ′, ν ′) ≡ (ϕ′f , ϕ
′
b) is

defined and ϕ′f = {ilm | ρ(l) < m ≤ ρ′(l)}, ϕ′b = {il′m | k < l′ ≤ k′, 1 ≤ m ≤ ρ′(l′)}.
Moreover, for l′ 6= l, 1 ≤ l′ ≤ k, we have ρ(l′) = ρ′(l′).

• If rename(Tc, k, ρ,N, ν, l0, l1) ≡ (T ′c, C, k′, ρ′, N ′, ν ′), and the following is defined:
names(Tc, k, ρ, {l0}, N, ν) ≡ (ϕf , ϕb), then names(T ′c, k

′, ρ′, {l1}, N ′, ν ′) ≡ (ϕ′f , ϕ
′
b) is de-

fined and ϕ′f = {il1m | il0m ∈ ϕf}, ϕ′b = {il′m | k < l′ ≤ k′, 1 ≤ m ≤ ρ′(l′)} and is isomorphic
to ϕb. Moreover, for 1 ≤ l ≤ k, we have ρ(l) = ρ′(l).

The proof can be done by induction in both cases. Nothing is really difficult, we only need
to expand the definitions.

In the same way of unify, we give a procedure to impose (simple) equality between two types.
There are two different procedures, for canonical types and for non canonical types.

Definition A.1.12 (Imposing Canonical Equality). Given two canonical types T 0
c and T 1

c , we
define the partial function:

canoneq(T 0
c , T

1
c , k, ρ,N, ν, l0, l1) ≡ C

where 1 ≤ l0 ≤ k, 1 ≤ l1 ≤ k are indices indicating the variables used in T 0
c and T 1

c , and we
ask that ρ(l0) = ρ(l1). The procedure is such that if it is defined and ε satisfies C, then we have
indeed (T 0

c )ε =s (T 1
c )ε.

• canoneq(Nat[0, il0m + n],Nat[0, il1m + n], k, ρ,N, ν, l0, l1) ≡ ∅

• canoneq(List[0, il0m+n](B0
c ), List[0, i

l1
m+n](B1

c ), k, ρ,N, ν, l0, l1) ≡ canoneq(B0
c ,B1

c , k, ρ, l0, l1)

• canoneq(α, α, k, ρ,N, ν, l0, l1) ≡ ∅

• canoneq(A,A, k, ρ,N, ν, l0, l1) ≡ ∅

• canoneq(∀il
′
0

1 , . . . , i
l′0
m.chK0(T̃c

0
),∀il

′
1

1 , . . . , i
l′1
m.chK1(T̃c

1
), k, ρ,N, ν, l0, l1) ≡

{K0 = K1{ĩl
′
0/ĩl

′
1}} ∪

⋃
j canoneq((T 0

c )j , (T
1
c )j , k, ρ,N, ν, l

′
0, l
′
1)

Then, for non-canonical types.

Definition A.1.13 (Imposing Equality). Given two types T 0 and T 1, we define the partial
function:

eq(T 0, T 1, k, ρ,K, N, ν) ≡ C

where K indicates the variables used in T 0 and T 1.

• eq(Nat[0, I0],Nat[0, I1], k, ρ,K, N, ν) ≡ {I0 = I1}
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v : T ∈ Γ
Γ ` v : T (∆(v), ∅, N, ν)

Γ ` 0 : Nat (Nat[0, 0], ∅, N, ν)

Γ ` e : Nat
Γ ` s(e) : Nat

let (Nat[0, I], C, N ′, ν′) = Inf(Γ ` e : Nat, k, ρ,K, N, ν,∆) in

(Nat[0, I + 1], C, N ′, ν′)

Γ ` [] : List(B) (∀ω :: B.List[0, 0](ω), ∅, N, ν)

Γ ` e : B Γ ` e′ : List(B)

Γ ` e :: e′ : List(B)

let (B1, C1, N1, ν1) = Inf(Γ ` e : B, k, ρ,K, N, ν,∆) in

let (List[0, I](B2), C2, N2, ν2) = Inf(Γ ` e′ : List(B), k, ρ,K, N1, ν1,∆) in

let (B′, C3, N3, ν3) = unif(B1,B2, k, ρ,K, N2, ν2) = in

(List[0, I + 1](B′), C1 ∪ C2 ∪ C3, N3, ν3)

Figure A.2: Constraints Generation Rules for Expressions

• eq(List[0, I0](B0), List[0, I1](B1), k, ρ,K, N, ν) ≡ {I0 = I1} ∪ eq(B0,B1, k, ρ,K, N, ν)

• eq(α, α, k, ρ,K, N, ν) ≡ ∅

• eq(A,A, k, ρ,K, N, ν) ≡ ∅

• eq(∀il
′
0

1 , . . . , i
l′0
m.chK0(T̃c

0
), ∀il

′
1

1 , . . . , i
l′1
m.chK1(T̃c

1
), k, ρ,K, N, ν) ≡

{K0 = K1{ĩl
′
0/ĩl

′
1}} ∪

⋃
j canoneq((T 0

c )j , (T
1
c )j , k, ρ,N, ν, l

′
0, l
′
1)

Note that because of the last item, eq is not defined on types with non-canonical subtypes for
channels. This is not a problem since in type inference, all channel types will be canonical.

It is then easy to see that for any instantiation ε satisfying C, we have T 0
ε equal to T 1

ε by
α-renaming.

Type Inference Procedure

We can now present the procedure associated to the intermediate type system. The goal is, from
a process P and a classical π-calculus type derivation for this process (obtained by a standard
type inference algorithm) to generate a set of constraints such that if this set has a solution,
then we can construct a type derivation with sizes and complexity for the process P .

More precisely, we design two procedures, one for expressions and one for processes. Given
a typing Γ ` P , and a context ∆ that is a canonical extension of Γ, and that is well-named with
respect to (k, ρ,K, N, ν). We define:

Inf(Γ ` P, k, ρ,K, N, ν,∆) ≡ (K, C, k′, ρ′, N ′, ν ′)

where K is an expression using index variables in ϕ′ and possibly second-order index vari-
ables. The intuition is that, if we are given an instantiation ε satisfying C, then, we have a
typing ϕ; ∆ε ` P / Kε.

In the same way, we have an inference function for expressions

Inf(Γ ` e : T, k, ρ,K, N, ν,∆) ≡ (T ′, C, N ′, ν ′)

Where T ′ is a type or a quantified type form ∀ω :: B, U(ω).
The procedure for expressions and processes are given in Figure A.2 and Figure A.3, where

the notation for input are given above.
Then, we can show the following lemma on the procedure for expressions:
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Γ ` 0 (0, ∅, k, ρ,N, ν)

Γ ` P Γ ` Q
Γ ` P | Q

let (K1, C1, k1, ρ1, N1, ν1) =
Inf(Γ ` P, k, ρ,K, N + 1, ν[N + 1 7→ K],∆) in

let (K2, C2, k2, ρ2, N2, ν2) =
Inf(Γ ` Q, k1, ρ1,K, N1, ν1,∆) in

(eN+1, C1 ∪ C2 ∪ {eN+1 ≥ K1 +K2}, k2, ρ2, N2, ν2)

Γ ` a : ch() Γ, ṽ : T̃ ` P
Γ `!a(ṽ).P

let (∀̃i.chK(T̃ ′c), C1, k1, ρ1, N1, ν1) =
rename(∆(a), k, ρ,N, ν, , )) in

let (K′, C2, k2, ρ2, N2, ν2) =

Inf(Γ, ṽ : T̃ ` P, k1, ρ1,K ∪ {k + 1}, N1, ν1, (∆, ṽ :

T̃ ′c)) in

(0, C1 ∪ C2 ∪ {K′ ≤ K}, k2, ρ2, N2, ν2)

Γ ` a : ch() Γ, ṽ : T̃ ` P
Γ ` a(ṽ).P

Same as above.

Γ ` a : ch() Γ ` ẽ : T̃

Γ ` a〈ẽ〉

let ∀il1, . . . , ilm.chK(T̃c) = ∆(a) in

let (T̃ ′, C, N ′, ν′) = Inf0(Γ ` ẽ : T̃ , k, ρ,K, N +m+
1, ν[N ′ 7→ K | N < N ′ ≤ N +m+ 1],∆) in

let C′ = eq(T̃c{eN+1, . . . , eN+m/i
l
1, . . . , i

l
m}, T̃ ′,

k, ρ,K, N ′, ν′) in

(eN+m+1, C ∪ C′ ∪ {eN+m+1 ≥
K{eN+1, . . . , eN+m/i

l
1, . . . , i

l
m}}, k, ρ,N ′, ν′)

Γ, a : T ` P
Γ ` (νa)P

let (Tc, k
′, ρ′, N ′, ν′) = canon(T, k, ρ,N, ν, ) in

Inf(Γ, a : T ` P, k′, ρ′,K, N ′, ν′, (∆, a : Tc))

Γ ` v : Nat Γ ` P Γ, x : Nat ` Q
Γ ` match v {0 7→ P ; ; s(x) 7→ Q}

let Nat[0, i+ n] = ∆(v) in

let (K1, C1, k1, ρ1, N1, ν1) =
Inf(Γ ` P, k, ρ,K, N + 1, ν[N + 1 7→ K],∆) in

let (∆′, e′) = if (n = 0)
then ((∆{i/i+ 1}, x : Nat[0, i]), eN+1{I + 1/i}
else ((∆, x : Nat[0, i+ (n− 1)]), eN+1) in

let (K2, C2, k2, ρ2, N2, ν2) =
Inf(Γ, x : Nat ` Q, k1, ρ1,K, N1, ν1,∆

′) in

(eN+1, C1∪C2∪{K1 ≤ eN+1;K2 ≤ e′}, k2, ρ2, N2, ν2)

Γ ` v : List(B) Γ ` P Γ, x : B, y : List(B) ` Q
Γ ` match v {[] 7→ P ; ; x :: Q 7→ }

let List[0, i+ n](B′) = ∆(v) in

let (K1, C1, k1, ρ1, N1, ν1) =
Inf(Γ ` P, k, ρ,K, N + 1, ν[N + 1 7→ K],∆) in

let (∆′, e′) = if (n = 0)
then ((∆{i/i+1}, x:B′, y :List[0, i](B′)), eN+1{i+1/i})
else ((∆, x : B′, y : List[0][i+ (n− 1)][B′]), eN+1) in
let (K2, C2, k2, ρ2, N2, ν2) =
Inf(Γ, x : B, y : List(B) ` Q, k1, ρ1,K, N1, ν1,∆

′) in

(eN+1, C1∪C2∪{K1 ≤ eN+1;K2 ≤ e′}, k2, ρ2, N2, ν2)

Γ ` P
Γ ` tick.P

let (K, C, k′, ρ′, N ′, ν′) =
Inf(Γ ` P, k, ρ,K, N, ν,∆) in

(K + 1, C, k′, ρ′, N ′, ν′)

Figure A.3: Constraints Generation Rules for Processes
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Lemma A.1.4 (Correction of Inference for Expressions). If Inf(Γ ` e : T, k, ρ,K, N, ν,∆) =
(T ′, C, N ′, ν ′), then the skeleton of T ′ is T and for an instantiation ε satisfying C, we have
ϕ; ∆ε ` e : T ′ε. Moreover, if Inf(Γ ` e : T, k, ρ,K, N, ν,∆) = (∀ω :: B.T ′(ω), C, N ′, ν ′) then the
skeleton of T ′(B) is T , and for all intermediate type B′ of skeleton B, we have ϕ; ∆ε ` e :T ′(B′)ε
for all instantiation ε satisfying C.

Proof. The proof is done by induction on Γ ` e : P . All cases are direct except for list
concatenation. The case for list concatenation is a consequence of Lemma A.1.1.

Note that in particular, this procedure in the case of channel type is very easy, as channel
types can only be typed with the axiom rule. So, in the following we may not use this procedure
for channel type and for the sake of simplicity, directly rewrite the case of axiom when working
with a channel. We also define simply Inf0(Γ ` e : T, k, ρ,K, N, ν,∆) as the usual inference
but instead of returning a type form ∀ω :: B, T (ω), we return the type T (B0) where B0 is the
intermediate type consisting in B with 0 everywhere for the sizes.

The first thing that we can easily verify with the previous results on names, is that we have
indeed the invariant that ∆ is a well-named canonical extension of Γ through the computation,
as it is the main goal of the function rename and canon to keep this invariant. Moreover, we
can easily see that ρ′(l) = ρ(l) for all 1 ≤ l ≤ k and ν(n) = ν ′(n) for all 1 ≤ n ≤ N from
Lemma A.1.3

And finally, we can show the following theorem.

Theorem A.1.1 (Soundness). If Inf(Γ ` P, k, ρ,K, N, ν,∆) ≡ (K, C, k′, ρ′, N ′, ν ′) then for any
instantiation ε satisfying C, we have ϕ; ∆ε ` P /Kε with ϕ ≡ {ilm | l ∈ K, 1 ≤ m ≤ ρ(l) = ρ′(l)}.

Proof. By induction. We present here the important cases.

Case input. Let ε an instantiation satisfying C1∪C2∪{K ′ ≤ K}. As ∆(a) is well-named, it has
the shape ∀il1, . . . , ilm.chK(T̃c). And, by definition, ρ(l) = m. Then, by definition of renaming,

in ∀̃i.chK(T̃ ) we have ĩ = ik+1
1 , . . . , ik+1

m .

By induction hypothesis, we obtain ϕ2; ∆ε, ṽ : T̃ε ` P / K ′ε with ϕ2 ≡ {iln | l ∈ K, 1 ≤ n ≤
ρ(l) = ρ1(l) = ρ2(l)} ∪ {ik+1

n | 1 ≤ n ≤ m = ρ(l) = ρ1(l) = ρ2(l)}. By Lemma A.1.2, we have
∆(a)ε =s (∀̃i.chK(T̃ ))ε. Thus, by definition of simple equality, they are equal by α-renaming.
We can thus consider ∆′ equal to ∆ε everywhere except for ∆′(a) ≡ (∀̃i.chK(T̃ ))ε. And we
obtain directly ϕ2; ∆′, ṽ : T̃ε ` P / K ′ε. And we have K ′ε ≤ Kε, thus we can do the usual input
typing rule and conclude this case.

Case output. Let ε be an instantiation satisfying the set of constraints C ∪ C′ ∪ {eN+m+1 ≥
K{eN+1, . . . , eN+m/i

l
1, . . . , i

l
m}}. By Lemma A.1.4, we have ϕ; ∆ε ` ẽ : T̃ ′ε. Moreover, by defi-

nition of eq, we have T̃ ′ε equal to Uε where U ≡ T̃c{eN+1, . . . , eN+m/i
l
1, . . . , i

l
m} by α-renaming.

Thus, ε(N + 1), . . . , ε(N +m) gives us an instantiation for the output rule.

Case Pattern Matching. The case of pattern matching is direct by induction hypothesis.
The only thing that needs some care is if we are going to use the rule for n = 0 or n 6= 0, but
both cases are direct.

Completeness: Intermediate Results

We now focus on completeness for the type inference procedure. First, remark that by a good
use of variables and α-renaming, we can always consider that in a typing ϕ; ∆ ` P / K, ∆ is
well-named. In order to state completeness, let us first give the following definition.

Definition A.1.14 (Ground Typing). Given a typing ϕ; ∆ ` P /K, we define bϕ; ∆ ` P /Kc
as the simple typing corresponding to the initial one without sizes.
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And now, what we want to show is the following theorem. Note that we do not have total
completeness because of one detail. Indeed, when doing an output rule, we have to choose in the
expressions ẽ the sizes corresponding to the type of the channels. And sometimes, this choice
can be totally arbitrary. For example, if a : ∀i1, i2.chK(List[0, i1](Nat[0, i2])), and we have the
output a〈[]〉, then we need to choose a value for i2, and it can be whatever we want. So, in
order to impose some uniformity and have completeness, we ask that this choice is always 0.
(When we can take whatever size we want, we consider that the size is 0 as it should lead to a
smaller complexity). Such a typing is called a 0-typing.

Theorem A.1.2 (Completeness of Type Inference). Given a set of index variables described by
k, ρ and K and a 0-typing (without second order variables) ϕ; ∆ ` P / K with ∆ well-named,
then Inf(bϕ; ∆ ` P / Kc, k, ρ,K, 0, ∅,∆) ≡ (K ′, C, k′, ρ′, N ′, ν ′) is defined and there exists an
instantiation ε satisfying C such that K ′ε is equal to K.

Let us first present some intermediate lemmas before going to the proof, related to the
intermediate procedure.

Lemma A.1.5 (Completeness for Canonical Extension). Given variables decribed by (k, ρ,N, ν).
Given a simple channel type T . Suppose also that

canon(T, k, ρ,N, ν, ) ≡ (T ′c, k
′, ρ′, N ′, ν ′)

Then, for any instantiation ε of (k, ρ,N, ν), for any other canonical channel type Tc with skeleton
T , there exists an instantiation ζ of (k′, ρ′, N ′, ν ′) extension of ε such that (T ′c)ε is equal to Tc.

Proof. This relies on several facts. The first one is to see that canon output indeed a canonical
type, so the variables are ordered and there are exactly as many variables as there are occurrences
of base types (as defined before). Then, we have to remark that two canonical channel types
are equal (up-to α-renaming) if and only if their complexities are equal, because the shape is
totally restricted for everything else. And then, by definition of canon, it suffices to take the
instantiation ζ that gives to second-order variables the complexity in the type Tc.

For the following lemma, we need the following definition for type form.

Definition A.1.15 (Type Form and Equality). By an abuse of notation, we say that a type
form ∀ω :: B.T (ω) is equal to a type U is there exists a type T ′ of skeleton B such that T (T ′) is
equal to U .

Lemma A.1.6 (Completeness for Unification). Given variables described by (k, ρ,K, N, ν) and
two base types (or quantified type form) B1 and B2 with the same skeleton, given also two
intermediate base types Br1 and Br2 and an instantiation ε such that (Bi)ε is equal to Bri , then,

unif(B1,B2, k, ρ,K, N, ν) ≡ (B′, C, N ′, ν ′)

is defined. And, for all intermediate type Br such that ϕ; · ` Bri v Br, we have an instantiation
ζ extension of ε satisfying C and such that B′ζ is equal to Br.

Proof. By induction. The statement is a bit convoluted (notably because of type form and
subtyping), but it works well in the proof. For example, suppose we are in the case

unif(List[0, I](B1), List[0, J ](B2), k, ρ,K, N, ν) ≡ (List[0, eN+1](B′), C ∪ {I ≤ eN+1; J ≤ eN+1}, N ′, ν′)

with
unif(B1,B2, k, ρ,K, N + 1, ν[eN+1 7→ K]) ≡ (B′, C, N ′, ν ′)
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(Recall the special variables ω1 and ω2 can appear in B1 or B2)
By hypothesis, we have two intermediate base types List[0, Ir](Br1) and List[0, Jr](Br2) and an

instantiation ε. Let Br ba a type such that ϕ; · ` List[0, Ir](Br1) v Br and ϕ; · ` List[0, Jr](Br2) v
Br. So, by definition, Br ≡ List[0, L](B′r). Let ε′ ≡ ε[N + 1 7→ L]. By induction hypothesis, we
have the variables described by (k, ρ,K, N + 1, ν[eN+1 7→ K]), two types B1 and B2 with the
same skeleton. Two intermediate types Br1 and Br2, and instantiation ε′ such that we have the
equality (as ε′ is an extension of ε). So, for the chosen intermediate type B′r that is such that
ϕ; · ` Br1 v B′r and ϕ; · ` Br2 v B′r, we have an instantiation ζ extension of ε′ satisfying C and
such that B′ζ is equal to B′r. Thus, we obtain directly that ζ is a good instantiation for this case
(as ε′(N + 1) = L and Lζ is greater than Iζ and Jζ).

Lemma A.1.7. Given variables described by (k, ρ,N, ν). Given a canonical type Tc with free
variables in {il0m | 1 ≤ m ≤ ρ(l0)} and an instantiation ε, we have,

rename(Tc, k, ρ,N, ν, l0, l1) ≡ (T ′c, C, k′, ρ′, N ′, ν ′)

defined and there exists an instantiation ζ extension of ε satisfying C.

Proof. The proof is direct by induction on Tc.

Then, we also have the following lemma.

Lemma A.1.8 (Completeness for Equality). Given variables described by (k, ρ,K, N, ν), two
types T 0 and T 1 and an instantiation ε such that T 0

ε is equal to T 1
ε , then

eq(T 0, T 1, k, ρ,K, N, ν) ≡ C

is defined and ε satisfies C.

Proof. By induction. The only interesting case is the one for channel types, but it can be
done easily by induction again, verifying that canoneq corresponds in fact to α-renaming in this
case.

And finally the most important lemma is the one for type inference for expressions.

Lemma A.1.9 (Completeness for Type Expressions). Given a set of first-order index variables
described by k, ρ and K and second order index variables described by N and ν, given a typing
(with no second order variables) ϕ; ∆ ` e : T with ∆ well-named, given also ∆′ well-named
(possibly using second-order variables) and an instantiation ε such that ∆′ε is equal to ∆ then

Inf(bϕ; ∆ ` e : T c, k, ρ,K, N, ν,∆′) ≡ (T ′, C, N ′, ν ′)

is defined and there exists an instantiation ζ extension of ε satisfying C such that T ′ζ (possibly
a type form) is equal to T .

Proof. By induction. Almost all cases are direct except for list concatenation, that we detail
here. Suppose that we have the typing:

ϕ; ∆ ` e : B1r ϕ; ∆ ` e′ : List[0, Ir](B2r) ϕ; · ` B1r ,B2r v Br
ϕ; ∆ ` e :: e′ : List[0, Ir + 1](Br)
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Let ∆′ be a well-named context. Let ε be an instantiation of (k, ρ,N, ν) such that ∆′ε is equal
to ∆. By induction hypothesis, we have:

Inf(bϕ; ∆ ` e : B1
rc, k, ρ,K, N, ν,∆′) ≡ (B1, C1, N1, ν1)

is defined, and there exists an instantiation ζ1 extension of ε satisfying C1 such that (B1)ζ is
equal to B1

r .
Thus, again by induction hypothesis,

Inf(bϕ; ∆ ` e′ : List[0, I](B2
r)c, k, ρ,K, N1, ν1,∆

′) ≡ (List[0, I](B2), C2, N2, ν2)

is defined and there exists an instantiation ζ2 extension of ζ1 satisfying C2 and such that (Iζ2)
is equal to Ir and (B2)ζ2 is equal to B2

r .
Moreover, we have that B1 and B2 have the same skeleton, and (B1)ζ2 is equal to B1

r and
(B2)ζ2 is equal to B2

r . So, by Lemma A.1.6,

unif(B1,B2, k, ρ,K, N2, ν2) ≡ (B′, C3, N3, ν3)

is defined. And, as we have ϕ; · ` B1
r ,B2

r v Br, we also have an instantiation ζ extension of ζ2

satisfying C3 and such that B′ζ is equal to Br.
So, ζ is indeed an extension of ε, satisfying C1 ∪ C2 ∪ C3, and we have (List[0, I + 1](B′))ζ

equal to List[0, Ir + 1](Br). This concludes this case.

Proof of Theorem A.1.2

In order to show that, we need a more general property that can be used in induction hypothesis.
Namely:

Lemma A.1.10 (Completeness of Type Inference). Given a set of first-order index variables
described by k, ρ and K and second order index variables described by N and ν. Given a typing
(with no second order variables) ϕ; ∆ ` P / K with ∆ well-named, given also ∆′ well-named
(possibly using second-order variables) and an instantiation ε such that ∆′ε is equal to ∆ then

Inf(bϕ; ∆ ` P / Kc, k, ρ,K, N, ν,∆′) ≡ (K ′, C, k′, ρ′, N ′, ν ′)

is defined and there exists an instantiation ζ extension of ε satisfying C such that K ′ζ is equal
to K. (Remark that this concept of extension makes sense only because both ρ,ρ′ and ν,ν ′ agree
on the initial set of variables)

Proof. We prove here Lemma A.1.10. By induction on the typing ϕ; ∆ ` P / K.

• Case 0. Thus, K = 0. The inference procedure is defined, and it returns (0, ∅, k, ρ,N, ν).
Thus, we can define ζ ≡ ε, it satisfies indeed ∅ and we have 0ζ = 0.

• Case Parallel Composition. We have the following typing:

ϕ; ∆ ` P / K1 ϕ; ∆ ` Q /K2 ϕ; · � K1 +K2 ≤ K
ϕ; ∆ ` P | Q /K

Let us define ε′ ≡ ε[N +1 7→ K]. We have directly that ε′ is an instantiation for (k, ρ,N +
1, ν[N + 1 7→ K], and ∆′ε′ is ∆. Thus, by induction hypothesis, we know that

Inf(bϕ; ∆ ` P / K1c, k, ρ,K, N + 1, ν[N + 1 7→ K],∆′) ≡ (K ′1, C1, k1, ρ1, N1, ν1)
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is defined, and we have an instantiation ζ1 extension of ε′ satisfying C1 and such that
(K ′1)ζ1 is equal to K1.

Thus, ζ1 is by definition an instantiation for (k1, ρ1, N1, ν1), and we have ∆′ζ1 equal to ∆
as it is an extension of ε′. So, by induction hypothesis,

Inf(bϕ; ∆ ` Q /K2c, k1, ρ1,K, N1, ν1,∆
′) ≡ (K ′2, C2, k2, ρ2, N2, ν2)

is defined, and we have an instantiation ζ2 extension of ζ1 satisfying C2 and such that
(K ′2)ζ2 is equal to K2.

Thus, ζ2 is by definition an instantiation for (k2, ρ2, N2, ν2), ζ2 satisfies C1 as it is an
extension of ζ1, it satisfies also C2 and it also satisfies eN+1 ≥ K ′1 +K ′2 as we have (since
ζ2 is an extension of ε′):

(eN+1)ζ2 ≡ K (K ′1 +K ′2)ζ2 ≡ K1 +K2 ϕ; · � K ≥ K1 +K2

This concludes this case.

• Case Input. Suppose we have the following typing:

ϕ; ∆ ` a : ∀j̃.chK0(T̃c) ϕ, j̃; ∆, ṽ : T̃c ` P / K1 (ϕ, j̃); · � K1 ≤ K0

ϕ; ∆ ` a(ṽ).P / 0

By definition of canonical type, ∆′(a) has no free variables. By Lemma A.1.7,

rename(∆′(a), k, ρ,N, ν, , ) ≡ (∀̃i.chK(T̃c
′
), C1, k1, ρ1, N1, ν1)

is defined and there exists an instantiation ζ1 extension of ε satisfying C1.

Moreover, by Lemma A.1.2, ∆′ζ1(a) and (∀̃i.chK(T̃c
′
))ζ1 are equal by α-renaming. Thus,

(∆′, ṽ : T̃c
′
)ζ1 is equal to ∆ by α-renaming. In particular, we have Kζ1 equals to

K0{ĩk+1/j̃} So, by induction hypothesis,

Inf(bϕ, ĩ; ∆, ṽ : T̃c ` P /K1c, k1, ρ1,K∪{k+1}, N1, ν1, (∆
′, ṽ : T̃c

′
) ≡ (K ′, C2, k2, ρ2, N2, ν2)

is defined, and there exists an instantiation ζ2 extension of ζ1 satisfying C2 such that K ′ζ2
is equal to K1{ĩk+1/j̃}. Moreover, recall that K ′ζ2 ≤ Kζ2 because (ϕ, ĩ); · � K1 ≤ K0.
Thus, this concludes this case.

• Case Output. Suppose we have the following typing:

ϕ; ∆ ` a : ∀j̃.chK0(T̃c) ϕ; ∆ ` ẽ : T̃c{J̃/j̃} ϕ; · � K0{J̃/j̃} ≤ K1

ϕ; ∆ ` a〈ẽ〉 / K1

As ∆′ is well named, ∆′(a) has the shape ∀il1, . . . , ilm.chK(T̃c
′
). Moreover, ∆′ε is equal to

∆, so we obtain directly:

K0{ĩl/j̃} = Kε T̃c{ĩl/j̃} = T̃c
′
ε

Let us define ε′ extension of ε with, for all 1 ≤ i ≤ m, ε′(N+i) ≡ Ji and ε′(N+m+1) ≡ K1.
Then, ε′ is an instantiation for (k, ρ,N +m+ 1, ν[N ′ 7→ K | N < N ′ ≤ N +m+ 1]). So,
by Lemma A.1.9,

Inf0(bϕ; ∆ ` ẽ : T̃c{J̃/j̃}c, k, ρ,K, N +m+ 1, ν[N ′ 7→ K | N < N ′ ≤ N +m+ 1],∆) ≡ (T̃ ′, C, N ′, ν′)
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is defined and there exists an instantiation ζ extension of ε′ satisfying C and such that T̃ ′ζ
is equal to T̃c{J̃/j̃}. Indeed, we can easily generalize Lemma A.1.9 to lists of expressions,
and as we have a 0-typing, we know that replacing the special variable ω by a 0-type give
exactly the initial type.

By the previous equality between T̃ ′ζ and T̃c{J̃/j̃}, and the fact that T̃c{ĩl/j̃} = T̃c
′
ε, we

obtain that (T̃c
′
{eN+1, . . . , eN+m/i

l
1, . . . , i

l
m})ζ is equal to T̃ ′ζ . So, by Lemma A.1.8,

eq(T̃c{eN+1, . . . , eN+m/i
l
1, . . . , i

l
m}, T̃ ′, k, ρ,K, N ′, ν ′) ≡ C′

is defined and ζ satisfies C′. Moreover, as previously, ζ also satisfies the constraint
{eN+m+1 ≥ K{eN+1, . . . , eN+m/i

l
1, . . . , i

l
m}}, so we can conclude this case.

• Case ν. This case is rather direct using induction hypothesis on the instantiation given
by Lemma A.1.5.

• Case tick. This case is direct by induction hypothesis.

• Case Pattern Matching. Again, this case is direct by induction hypothesis and looks a
lot like the case for parallel composition. The only thing that needs to be done is separate
in two cases depending on whether the initial typing was with a n = 0 or not.

So, we have indeed a sound and complete procedure for type inference for intermediate
types, we have reduced the problem of type inference to solving a set of constraints.
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