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Abstract

Infants are excellent at interacting with the environment. Especially in the initial phase
of cognitive development, they exhibit amazing abilities to generate novel behaviors in
unfamiliar situations, and explore actively to learn the best while lacking extrinsic rewards
from the environment. These abilities of sense-making and knowledge construction of the
environment set them apart from even the most advanced autonomous robots. However,
for most artificial agents (and robots), acquiring such abilities is overwhelming.

While for most traditional Artificial Intelligence (AI) approaches, learning is usually
insufficient, such as with various biases, and lacks of flexibility. Seeking ways to explain
the learning mechanism behind infants’ early cognitive development and try to replicate
some of these abilities for an autonomous agent has been an active point in recent efforts
of robotics and Al research.

Over the last decades, a multitude of theories and methods have been devoted to the
study of learning mechanisms in infants’ early-stage cognitive development and proposed
various algorithms targeted at designing and implementing a self-motivated agent, like
learning with constructivist paradigm, reinforcement learning paradigm, active learning,
developmental learning, intrinsic motivation, curiosity-driven learning, enactive paradigm
and attention mechanism.

Specifically, among these theories and approaches, the constructivism as a knowledge
acquisition theory that describes the information processing mechanisms behind infants’
cognitive development. As infants interact with the world around them, they continually
absorb new knowledge build upon existing knowledge, and simultaneously adapt previous
ideas to accommodate with new information. In this dissertation, I present a computa-
tional model of Constructivist Cognitive Architecture (CCA) as a way towards simulating
the early learning mechanism of infants’ cognitive development based on theories of enac-
tive cognition, intrinsic motivation, and constructivist epistemology. Meanwhile, the CCA
allows a self-motivated agent to autonomously construct the perception of the environ-
ment and acquire capabilities of self-adaption and flexibility to generate proper behaviors
to tackle with diverse situations in interacting with the environment.

Different with traditional cognitive architectures, the introduced model neither ini-
tially endows the agent with prior knowledge of its environment, nor supplies it with
knowledge during its learning process. Accordingly, I am not proposing an algorithm that
optimizes exploration of a predefined problem-space to reach predefined goal states. In-
stead, I propose a way for the agent to autonomously encode the interaction experiences
and reuse behavioral patterns based on the agent’s self-motivation implemented as inborn
proclivities that drive the agent in a proactive way. In addition, I introduce two forms
of self-motivation: successfully enacting sequences of interactions (or called autotelic mo-
tivation), and preferably enacting interactions that have predefined positive values (or
called interactional motivation). Following these drives, the agent autonomously learns
regularities afforded by the environment, and constructs hierarchical sequences to perform
higher-level behaviors.



Furthermore, I proposed a Bottom-up hiErarchical sequential Learning model based
on the CCA, which is also called BEL-CA, as a solution for an autonomous agent learn-
ing hierarchical sequences of behaviors and acquiring capabilities of self-adaptation and
flexibility. The agent represents its current situation in terms of perceived affordances
that develop through the agent’s experience. This situational representation works as an
emerging situation awareness that is grounded in the agent’s interaction with its environ-
ment and that in turn generates expectations and activates adapted behaviors. Through
its activity and these aspects of behavior (behavioral proclivity, situation awareness, and
hierarchical sequential learning), the agent starts to exhibit emergent sensibility, intrinsic
motivation, and autonomous learning.

Moreover, I introduced an implementation of a toolkit to analyze the learning pro-
cess at run time, which is called GAIT (Generating and Analyzing Interaction Traces
Toolkit). T use GAIT to report and explain the detailed learning process and the struc-
tured behaviors that the agent has learned on each decision making step. The experiment
demonstrated that the agent learned to successfully interact with its environment and to
avoid unfavorable interactions using regularities discovered through interaction.

Following with dissertation, this initial autonomous mechanism provides a basis for
implementing autonomously developing cognitive systems. Therefore, the agent gets the
perception of this world and generates proper behaviors in different and complicated
situations. Thus, the agent could moving around freely and learn regularities of the
environment. Meanwhile, it spurs the agent to discover a long sequence of “correct”
actions to find an accurate configuration of the environment and reuse it appropriately.
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Résumé

Les nourrissons sont excellents pour interagir avec I’environnement. Surtout dans la phase
initiale du développement cognitif, ils présentent des capacités étonnantes a générer de
nouveaux comportements dans des situations inconnues et a explorer activement pour
apprendre le meilleur tout en manquant de récompenses extrinseques de ’environnement.
Ces capacités de création de sens et de construction de connaissances de I’environnement
les distinguent méme des robots autonomes les plus avancés.

Pour la plupart des agents artificiels (et des robots), 1'acquisition de telles capacités
est écrasante. Dans la plupart des approches traditionnelles d’intelligence artificielle (IA),
I’apprentissage est généralement insuffisant, avec divers biais et manque de flexibilité.
Chercher des moyens d’expliquer le mécanisme d’apprentissage derriere le développement
cognitif précoce des nourrissons et essayer de reproduire certaines de ces capacités que
les bébés ont pour un agent autonome sont devenus un point focal des efforts récents en
robotique et en recherche sur I'TA.

Au cours des dernieres décennies, une multitude de théories et de méthodes ont été con-
sacrées a I’étude des mécanismes d’apprentissage dans le développement cognitif précoce
des nourrissons et au développement de divers algorithmes visant a concevoir et a met-
tre en oceuvre un agent auto-motivé, sous diverses approches telles que 'apprentissage
utilisant paradigme constructiviste, paradigme d’apprentissage par renforcement, appren-
tissage actif, apprentissage développemental, motivation intrinseque, apprentissage axé
sur la curiosité, paradigme énactif et mécanisme d’attention.

Parmi ces théories et approches, le constructivisme en tant que théorie d’acquisition
des connaissances qui décrit les mécanismes de traitement de l'information derriere le
développement cognitif des nourrissons. Au fur et & mesure que les nourrissons interagis-
sent avec le monde qui les entoure, ils absorbent continuellement de nouvelles connais-
sances, s’appuient sur les connaissances existantes et adaptent des idées antérieures pour
accueillir de nouvelles informations. Le paradigme d’apprentissage constructiviste suggere
qu'un agent autonome construit itérativement la représentation de son environnement a
travers ses expériences d’interactions et sans a priori.

Dans cette these, je propose un modele informatique de I'architecture cognitive con-
structiviste (CCA) comme moyen de simuler le mécanisme d’apprentissage précoce du
développement cognitif des nourrissons basé sur les théories de la cognition énactive,
de la motivation intrinseque et de l'épistémologie constructiviste. Pendant ce temps,
le CCA permet a un agent motivé de construire de maniére autonome la perception de
I’environnement et d’acquérir des capacités d’auto-adaptation et de flexibilité pour générer
des comportements appropriés pour faire face a diverses situations en interagissant avec
I’environnement.

Contrairement aux architectures cognitives traditionnelles, le modele introduit ne
confere pas initialement a I’agent une connaissance préalable de son environnement, ni ne
lui fournit des connaissances au cours de son processus d’apprentissage. En conséquence,
je ne propose pas d’algorithme qui optimise I’exploration d’un espace-probleme prédéfini
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pour atteindre des états d’objectifs prédéfinis. Au lieu de cela, je propose un moyen
pour 'agent d’encoder de maniere autonome les expériences d’interaction et de réutiliser
des modeles de comportement basés sur l’auto-motivation de l’agent implémentée comme
des penchants innés qui conduisent l'agent de maniere proactive. De plus, je présente
deux formes d’auto-motivation: la mise en ceuvre réussie de séquences d’interactions (ou
appelées motivation autotélique), et de préférence des interactions qui ont des valeurs pos-
itives prédéfinies (ou appelées motivation interactionnelle). pulsions, 'agent apprend de
manieére autonome les régularités offertes par I'environnement, et construit la perception
causale de phénomenes dont la présence hypothétique dans I’environnement explique ces
régularités.

De plus, je propose un modele d’apprentissage séquentiel ascendant hiErarchique
basé sur le CCA, également appelé BEL-CA, comme solution pour un agent autonome
apprenant des séquences hiérarchiques de comportements et acquérant des capacités
d’auto-adaptation et de flexibilité. L’agent représente sa situation actuelle en termes
d’affordances pergues qui se développent a travers I'expérience de 'agent. Cette représentation
situationnelle fonctionne comme une prise de conscience de situation émergente qui est
ancrée dans l'interaction de I'agent avec son environnement et qui a son tour génere des
attentes et active des comportements adaptés. Par son activité et ces aspects du comporte-
ment (propension comportementale, conscience de situation et apprentissage séquentiel
hiérarchique), I’agent commence & faire preuve d’une sensibilité émergente, d’une motiva-
tion intrinseque et d’un apprentissage autonome.

De plus, j'introduis une implémentation d’une boite a outils pour analyser le processus
d’apprentissage au moment de 'exécution, qui s’appelle GAIT (Generating and Analyzing
Interaction Traces Toolkit). J'utilise GAIT pour rendre compte et expliquer le processus
d’apprentissage détaillé et les comportements structurés que 'agent a appris a chaque
étape de prise de décision. Je rapporte une expérience dans laquelle l'agent a appris a
interagir avec succes avec son environnement et a éviter les interactions défavorables en
utilisant des régularités découvertes par interaction.

Suivant les théories du développement cognitif, je soutiens que ce mécanisme autonome
initial fournit une base pour la mise en ceuvre de systemes cognitifs en développement
autonome. Par conséquent, ’agent obtient la perception de ce monde et génere des
comportements appropriés dans des situations différentes et compliquées. Ainsi, I'agent
pourrait se déplacer librement et apprendre les régularités de 1’environnement. Pendant
ce temps, cela incite I'agent a découvrir une longue séquence d’actions “correctes” pour
trouver une configuration précise de I’environnement et la réutiliser de maniere appropriée.
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Chapter 1

Introduction

"Knowledge of the world, [...], is created from the interaction with the environment,
rather than existing in an ontic reality, supposedly pre-existing or available for registration
from the physical world.”

Roesch et al. ,2013, § 1, pl.
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1.1 Context

During the initial phase of cognitive development, infants exhibit amazing abilities to
generate novel behaviors with unfamiliar situations and explore actively to learn the best
with lacking extrinsic rewards from the environment [I, 2, 3]. With skills and abilities
that borne with (such as looking, listening, sucking, touching, and grasping) to interact
with the environment, infants continually acquire new information build upon their exist-
ing knowledge, and simultaneously adapt previous ideas to accommodate with this new
information over a short period of time and involves a dramatic of growth.

Infants, as described of “scientists in the crib” by Gopnik et all. 1999[!] who inten-
tionally discover events that are new, informative, then exciting to them [5, 6]. Their
abilities of sense-making and knowledge construction of the environments set them apart
from even the most advanced autonomous robots.

For most artificial agents (and robots), acquiring such learning abilities that infants
have is overwhelming. Learning is usually insufficient [7], with different biases [3, 9, 10],
and lacks of flexibility [I1, 12]. One of the biggest reasons is that traditional learning
approaches heavily rely on the problem specificities and the availability of prior knowledge
that is specific to a task proposed by the system designer. Thus how well the agent
perceives the state of the environment (for example, through actuators/sensors patterns)
determines the performance of the learning models [13]. As Russell & Norvig [11] state
that “the problem of Al is to build agents that receive percepts from the environment
and perform actions”. The approaches based on this statement assumes that the input
data for the agent is a direct function of the state of the environment. However, this
assumption is not satisfied in situations where the input data of the agent comes from the
feedback of actions in the control loop.

In addition, the agent is designed for desired goals and with a well-defined reward
function (such as reinforcement learning paradigm), it’s thus motivated to maximize the
accumulated reward when it achieves these specific goals, rather than focuses on learning
behavioral patterns and constructing the knowledge of the environment from interaction
experiences. Particularly in cases where the agent is designed to pursue a wide variety of
tasks, the reward function needs to be designed sufficiently to include all possible inter-
action situations. Moreover, it could lead to an unexpected result in situations where the
desired reward function is modified [ 1]. Agent’s abilities of self-adaptation and flexibility
to tackle with diverse situations in different (or dynamic) and complex environment are
limited as well [12] .

Seeking ways to understand the learning mechanisms behind infants’ early-stage cog-
nitive development and try to replicate some of these abilities that babies have for an
autonomous agent, which allows it to behave in an “intelligent” and flexible manner has
become an active research domain as presented in [15, 16, 2, 17, 18 19, 10, 20, 21, 22].
Over the last decades, a multitude of theories and methods have been devoted to the study
of learning in infants’ cognitive development and developing various algorithms targeted
at designing and implementation a self-developing agent, under various approaches such

as learning using constructivist paradigm [23, 24, 25, 13, 12, 26], reinforcement learning
paradigm [27, 28, 7,29, 19, 30, 11], active learning [10, 31, 32, 33], developmental learning
[30, 16, 20, 34, 35, 36], intrinsic motivation [19, 18, 31, 17, 37], curiosity-driven learning
[38, 16, 39, 20, 10, 11], enactive paradigm [12, 13, 11, 9, 15] and attention mechanism

[ ) ? ) ]

Among these theories and approaches, the constructivism as a knowledge acquisition
theory ameliorated by Piaget [50] that describes the information processing mechanisms



behind infants’ cognitive development. The constructivist learning paradigm suggests
that an autonomous agent iteratively construct the representation of its environment and
its self through its experiences of interactions and without a prior knowledge. Specifically,
the agent is not designed as a passive observer of reality, but represents its current situ-
ation with perceived affordances that developed through the agent’s experience. Also as
as Georgeon and Ritter [9] mentioned that “this situational representation works as an
emerging situation awareness that is grounded in the agent’s interaction with its environ-
ment and that in turn generates expectations and activates adapted behaviors”.

Inspired from the theory of constructivism and recent developments in AI [18, 51, 7, 29,

|, we introduce a new computational model of cognitive architecture in this dissertation,

which allows an autonomous agent to acquire the perception of the environment from its

interaction experience and obtain capabilities of self-adaptation and flexibility for gener-

ating proper behaviors to tackle with diverse situations, as a way to simulate the early

mechanism of infants’ learning process based on theories of constructivist epistemology,
intrinsic motivation and enactive cognition.

Particualrly, the introduced computational model neither initially endows the agent
with the prior knowledge of its environment, nor supplies it with knowledge in its learning
process. Instead, it propose a way for the agent to autonomously encode the interactional
experiences and reuse behavioral patterns based on the its self-motivation (we prefer to
call it the interactional motivation [53]) as inborn proclivities that drive the agent in a
proactive way. Following these drives, the agent autonomously learns regularities afforded
by the environment, and hierarchical sequences of behaviors adapted to these regularities

]

1.2 The challenge for an autonomous agent

1.2.1 Problem statement

Imaging the following scenario: an agent is placed in an unfamiliar environment without
any prior knowledge(as shown in Figure 1.1(a)), and it endowed with few innate actions
that enable it to perform elementary functions such as moving one step forward, turning
its direction and sensing the environment. In the early stage of the agent interacting with
the environment, the agent does not know the meaning of these actions and needs it to
learn this from its interaction experience. Typically, the difference between this scenario
with other traditional ones is in that the agent’s input data doesn’t directly come from
the representation of the environment, nor the final goals for it to achieve. The questions
raise as follows: (a) how the agent acquires the perception of the environment and (b)
how it proposes appropriate behaviors for interacting. Moreover, (¢) how does the agent
behave flexibly in the cases where the environment has been changed (as shown in Figure
1.1(b)).

In such scenario, the agent needs to learn regularities of interaction that afforded by
the environment and generate structured behaviors for diverse situations!. Meanwhile,
following a viable learning paradigm that allows the agent to successfully interact with
its environment and learn to avoid unfavorable interactions using structured behavior it
has learned. In addition, with capabilities of self-adaptation and flexibility that prevent
the agent learning from zero for the response of cases where the environment changes or
performance degrading in interacting with the environment.

!The perception is internal constructed by the agent from its own interaction experience rather than
input data directly comes from the state of the environment.



(a) Agent is placed in an unfamiliar environment. (b) The agent is in a changed environment.

Figure 1.1: The interaction scenarios.

1.2.2 Challenges

Designing such an autonomous agent to construct the knowledge of the environment and
have flexibility to tackle with diverse interactive situations is one of the greatest and long-
standing challenges in Artificial Intelligence. To be autonomous, the agent must learn to
master the contingencies from its own sensorimotor experiences in the world [51] (refer to
section 3.1.3).

For an autonomous agent, it needs to construct the perception of the environment
by autonomously discovering, learning and exploiting regularities of interaction afforded
by the environment, but without encoding any prior knowledge. As Roesch et al. [57]
(81, p1) stated that: “knowledge of the world [...] is created from the interaction with the
environment, rather than existing in an ontic reality, supposedly pre-existing or available
for registration from the physical world”.

Furthermore, facing with different interaction scenarios, the agent should have capa-
bilities of adaptation and flexibility for recognizing the context and generate appropriate
behaviors. Designing a such learning model for an autonomous agent mainly involves the
following challenges:

e The environment-agnosticism challenge. The environment-agnosticism was pro-
posed that the agent should not implement ontological presuppositions about the
environment. Instead, the agent should have abilities to learn to construct the per-
ception of the environment from sensorimotor interactions without any predefined
knowledge of the environment.

e The autonomous and active learning challenge. The cognitive development should
be in an open-ended manner and the agent is self-motivated to learn behaviors that
fulfill an innate preference [17], which devoting to forming the core of a system for
task-independent learning.

e The progressive and incremental learning challenge. In the progress of cognitive
development, the agent continuously interacts with the environment around it and
undergo a developmental way to obtain new skills associated with its interaction
experience, rather than manually crafted by hand.

e The learning of regularities of interaction challenge. The agent has capabilities to
discover, learn and exploit regularities of interaction to master the sensorimotor



contingencies afforded by its coupling with the environment. Regularities of inter-
action are patterns of interaction that occur consistently and are building blocks of
constructing structured behaviors for increasing complexity.

e The acquirement of capabilities of adaptation and the flexibility challenge. The
agent has capabilities of continuously absorbing new knowledge from interaction
experience and adapting its percept of the environment in the cases where it receives
feedback from the environment beyond its expectations. Moreover, the agent is
capable of recognizing the context and generating appropriate behaviors for various
interaction situations.

1.3 Motivation

Based on the challenges we mentioned above, this dissertation mainly focuses on the
following aspects:

Knowledge construction of the environment through agent’s sensorimotor interactions.
With the cognition development is active and incremental, the agent is self-motivated to
discover, learn and explore regularities of interaction from its stream of experiences and to
construct knowledge about phenomena, which hypothetical presence in the environment
explains these regularities. The agent could construct categories of phenomena, and
exploit this knowledge to satisfy its innate preferences, as the way that imitates the
humans learning process from experiences.

Learning of structured behaviors with hierarchical sequential learning paradigm. The
agent’s cognitive development follows a hierarchical progression. With rudimentary lower-
level patterns of regularities that have learned from interactions, the agent is capable of
autonomously organizing them into a form of higher-level abstraction, which is hierar-
chical sequential learning of structured behaviors. With structured behaviors, agent could
gradually learn and exploit it, and simultaneously infer the structure of the environment
based on the patterns in the stream of interactions traces. Generating proper behaviors
for different situations as well. 2

Context recognition, adaptation and flexibly generating proper behaviors. The agent
enables to recognize current context® and effectively proposes intentions with proper be-
haviors for the next interaction. In particular, the agent has abilities to accurately rep-
resent the context while reasonably matching it with its own interaction experience. In
addition, an efficient decision-making mechanism is needed for the selection of an ap-
propriate intention. Furthermore, with performance degrading in the enaction of this
intention, the agent is capable of acquire new structured behaviors based on the modifica-
tions of previously learned behaviors. In this work, we prefer the definition of “context”
from Abowd et al. [02] (p306) that “context is the information that can be used to

2The “higher-level” in this work indicates that the agent not only enables to learn to organize simple
behavioral patterns, but also has a reasoning mechanism to exploit experiences of fallback into a more
complex structure with flexibility in various scenarios. The agent could increasingly learn elaborated be-
haviors and organized them in a hierarchy that reflects how the agent exploits the higher-level regularities
afforded by the environment.

3The definition of context from [56, 57]is that the context as location, identities of nearby people and
objects, and changes to those objects, [58] enumerates context as the user’s emotional state, focus of
attention, location and orientation, date and time, objects, and people in the user’s environment. [59]
included the entire environment by defining context to be aspects of the current situation. [60] defines
context to be the user’s physical, social, emotional or informational state. [61] defines context to be the
subset of physical and conceptual states of interest to a particular entity. We prefer the definition from

[62].



characterize the situation of an entity, which could be a person, place, or object that is
considered relevant to the interaction”. Specifically, the context focuses on the reciprocal
process of interactions (some of them involve geographical conditions of the environment),
which is used to discover behavioral patterns for representing the learning process of the
agent.

Through this dissertation, we are going to answer the following questions:

e How can an agent build knowledge of the environment and of itself effectively and
efficiently with innate actions?

e How to design an efficient cognitive architecture which fits with agent’s continuous
interaction with the environment and new learned behavioral patterns with progres-
sive learning? Is there any efficient structure of behavioral patterns exist?

e With the learning is autonomous and progressive, which way can let us effectively
organize the behavioral patterns the agent has learned into a form of abstraction to
perform the structured behavior?

e Being placed in a new or a more complicated environment, how can the agent aware
the changes of the environment and generate proper behavior in it?

1.4 Overview of the dissertation

Following the central themes that we just have discussed above, this dissertation consists
of five parts: Introduction and background (Chapters 1, 2 and 3), The structure of CCA
(Chapter 4), Applications of CCA (Chapters 5 and 6), Experimental settings and per-
formance evaluation (Chapters 7) and Conclusion, discussion and perspective (Chapter
8).

In Chapter 2 reviews research in early mechanisms of infants’ cognitive development
and main ideas that are applied in designing an autonomous agent. The research of in-
fants’ learning mechanism includes Piaget’s theory of cognitive development, the theory of
Information Processing Principles (IPPs) and intrinsic motivations (like curiosity, novelty
etc.) in infants’ cognitive development. Also discussed the recently applications based on
these theories in infants’ early learning mechanisms.

Chapter 4 describes the design, the structure and the implementation of Constructivist
Cognitive Architecture, a computational model to simulate the learning mechanisms be-
hind infants’ cognitive development, for designing an autonomous agent constructs the
perception of the environment and acquires capabilities of self-adaption and flexibility.
This is one of the main contributions of this dissertation.

In Chapter 5, we demonstrate CCA’s ability to discover and learn regularities of
interaction in its stream of experience and construct causal perception between phenomena
whose hypothetical presence in the environment explains these regularities.

In Chapter 6, we introduce a Bottom-up hiErarchical sequential Learning model with
CCA, which is also called BEL-CA, as a solution for an autonomous agent continuously
learning representations of the environment and acquiring capabilities of self-adaptation
and flexibility.

Chapter 7 sets up an experimental scenario and introduce an implementation of ana-
lyzing agent’s interaction traces to demonstrate CCA’s ability of bottom-up hierarchical
sequential learning. The experimental scenario is designed based on the classic Small Loop



Problem (SLP), which acts as a benchmark of implementing and demonstrating cognitive
emergence for an autonomous agent. Meanwhile, we verify the agent’s capabilities of self-
adaptation and flexibility by modifying the environment to simulate interaction scenarios
that it hasn’t experienced before.

Finally, Chapter 8 presents an overview of the work presented in this dissertation and
concludes. Meanwhile, we provide several open issues related the design of CCA and its
applications. With problems still remain in the CCA and challenges that we have not yet
faced, we introduce the perspectives for the future work.

1.5 Contributions

The contributions of this dissertation are summarized as follows:

e We introduced a computational model of Constructivist Cognitive Architecture
(CCA) as the way to simulate the early mechanisms of infants’ cognitive devel-
opment based on theories of enactive cognition, intrinsic motivation and construc-
tivist epistemology. Furthermore, the proposed cognitive architecture allows a self-
developing agent to autonomously construct the perception of the environment and
obtain capabilities of self-adaption and flexibility to generate proper behaviors in
tacking with diverse situations.

e We presented a learning model that endows an autonomous agent with two differ-
ent motivations: (a) the motivation to be in control of one’s activity by seeking
to successfully enact interactions and (b) the motivation to enact interactions have
positive predefined positive valences and to avoid enacting interactions have prede-
fined negative valences. These two motivations spur the agent to learn regularities
of interaction afforded by the environment.

e We demonstrated CCA’s ability to discover and learn regularities of interaction in
its stream of experience and construct causal perception between phenomena whose
hypothetical presence in the environment explains these regularities. Moreover, we
introduced a Bottom-up hiErarchical sequential Learning model with CCA, which
is also called BEL-CA, as a solution for an autonomous agent continuously learning
representations of the environment and acquiring capabilities of self-adaptation and
flexibility:.

e We proposed an implementation of toolkit to analyze the learning process at run
time called GAIT (Generating and Analyzing Interaction Traces), which allows us
to report and observe the detailed learning process for the agent interacts with
environment and the structured behaviors it has learned in each decision-making.

e Finally, we introduced the design and implementation of new simulations of CCA
and GAIT for autonomous robots on multiples platforms. We provided methods to
precisely control the robots’ movement and explained strategies for the robots to
maintain alignments with the environment.
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In this chapter, we suggest a review of related works. We start with studies of early
stage learning mechanisms in infants’ cognitive development. Specifically, theories of
constructivism, Information Processing Principles (IPPs) and intrinsic motivations (like
curiosity, novelty and pleasantness etc.) in infants’ cognitive development have been
gradually developed and improved with considerable success. After then, we introduce
the recently applications based on these theories for an autonomous agents and cognitive
development with acquiring some abilities that infants have. Furthermore, we did a sur-
vey of developments in cognitive architectures and then introduced several successful and
classic cognitive architectures, which include the Soar Cognitive Architecture, Construc-
tivist Learning Architecture (CLA), and Enactive Cognitive Architecture (ECA). Finally,
we made a summary of this chapter.

2.1 Infants’ cognitive development

In the initial phase of cognitive development, in spite of the rapid physical growth, infants
also exhibit significant development of abilities in knowledge acquisition, thinking and
reasoning. With a number of ways (such as through sight, touch, taste, etc.) of interacting
with the environment, infants dynamically acquire the information and construct the
perception of the environment, engaging physically with objects in the environment and
behaving in novel and surprising ways. The question is how do infants connect and make
sense of what they are learning?

One natural idea is that the capacities of world modeling in infants are the re-
sult of built-in core systems, including those for object attention and permanence, self-
localization, number sense, and intuitive physics [34]. Mentioned by Lipsitt [(0] that
“once operational, such systems would naturally give the infant a basis on which to make
judgments about which sequences of actions would be interesting to perform”. Expert
system [63, 64, 65] is such a model that emulates the judgment and behavior of a human
or an organization that has expert knowledge and experience in a particular field. Typi-
cally, it incorporates a knowledge about accumulated experience and an inference or rules
engine for applying the knowledge base to each particular situation that is described to
the program.

Meanwhile, it exists another understanding of that infants have a host of innate re-
sponses prepared to interact with the environment [66]. The acquisition of structured
behaviors is considered as a model of specific sets of response and response-induced stim-
ulation in which each elemental response may serve also as a stimulus for the next reaction
component. Particularly, a radical view from the behaviorist (e.g. Watson [67]) described
that “infants with a set of unconditional responses [...]| environment then begins to shape
into patterns of behavior” [60].

However, from nervous system considerations, a view held that young children cogni-
tive development is based on the relationship between the maturation and the environment
[66]. It suggests that the maturation-environment relationship is a two-way street that (a)
experimental effects awaited maturational changes that would permit the experience to
have an effect and for the behavior to occur. And (b) environmental enrichment through
the implementation of special experiences can alter maturation rates in certain sphere,
which in turn can alter the readiness of the organism to assimilate further stimulation

in that modality. Evidences from Globus and Scheibe [68], Schapiro and Vukovieh [69]
and Hubel and Wiesel [70] support the contention that experience itself increases dendrite
proliferation.

As one of the a first psychologists who makes a systematic study of the beginnings of



mental development and the origins of intelligence in children, Piaget [50] explains the
mechanisms and processes of how an infant, and then the child, develops into an individ-
ual who can reason and think using hypotheses, and constructs a mental representation
of the world. Disagreed with the idea that intelligence was a fixed trait, he regarded
cognitive development as a progressive reorganization of mental processes which occurs
due to biological maturation and interaction experience with the environment [50, 71].
The mechanism by which infants integrate experience into progressively higher-level rep-
resentations, which called the “constructivism”.

The constructivism as a theory of knowledge acquisition proposes that “learning hap-
pens as a result of an internal mental representations and external perceptions from
interactions” [72]. According to the constructivism, infants learning progress from sim-
ple to complex models of the environment which allow the them to build higher-level
representations from lower-level ones. Behavior in constructivism acts as the adaptation
to the environment is controlled through mental organizations of sensorimotor scheme,
which the individual uses to represent the world and generate corresponding actions. Each
sensorimotor scheme (refers to section 3.1.1) binds the correlation between the mental
and physical actions in knowledge construction from the environment. As the hierarchy
of schemes grows higher, which representing that they are responsible for more complex
behaviors, therefore structures are termed. While structures become sophisticated, they
could be organized in a hierarchical manner [73] which represents from general to specific.

For providing a formal model of constructivism, the habituation technique was intro-
duced to explore the details of infant cognition. The habituation technique relies on a
novelty preference in infants [77]. The habituation technique is described as thant “when
an infant is presented with the same familiar scene repeatedly, the he will grow bored and
look away from the scene, presumably in searching of something novel. However, if the he
is presented with something new, the infant will stare longer” [35]. Thus, gaze duration
could be used as a measure of novelty. The habituation experiment could be designed by
using a scene that familiar in one way, and novel in another way. Such experiment can
be used to determine how the infant is processing the scene [25].

With studies of infant cognitive development and the habituation technique, Cohen
et al. [78, 79] demonstrated that primitives of infant’s world model are acquired rather
than innate. Specifically, infants organize stimuli into categories based on criteria and
build higher-level representations by applying these criteria to lower-level representations.
“Given this work, it suggests a possible path to implement a more accurate computational
model of developmental cognition” [76].

A related but alternative idea is that the intrinsic motivation of curiosity can itself
drive the development of world model making [18]. The idea relies on that the child pushes
the boundaries of what its world-model-prediction systems can achieve, giving itself useful
data on which to improve and develop these systems [1]. Related to the conception of the
“scientist in the crib” [4], in which behaviors learning are an active learning process [10]
and could be reorganized into highly structured, driving the self-supervised learning of
a variety of representations underlying sensory judgments and motor planning capacities

[ )’ T T ]
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2.2 Cognitive development of an autonomous agent

2.2.1 Constructivist learning

Constructivism as a knowledge acquisition theory suggests that learning happens as a re-
sult of an internal mental representations and external perceptions from interactions [72],
rather than existing in an ontic reality, supposedly pre-existing or available for registra-
tion from the physical world [55]. In particular, the radical constructivism [33] describes
that knowledge of the world comes from the “result of self-organizing construction” based
on individual’s experience. In the view of constructivist, the agent is not designed as a
passive observer of reality, but rather constructs a perception of reality through active
interaction experience [9].

Drescher [71] proposes a constructivist schema mechanism attempts to implement Pi-
agetian constructivist learning. The constructed schema associated with context, actions,
and expectations. In Drecher’s implementation, schemas were neither associated with
satisfaction value nor did the agent exhibit self-driven behavior. Particularly, the agent’s
exploration was rather random and resulted in a combinatorial explosion as the agent
encountered increasingly complex environment.

Georgeon et al. [91] presented a self-motivated and hierarchical sequential learning
model which inspired by Piaget’s theories of early-stage developmental learning. In this
learning model, the behavior organization is driven by pre-defined values associated with
primitive behavioral patterns. Thus the agent increasingly learns elaborated behaviors
through its interactions with its environment. Additionally, these learned behaviors are
gradually organized in a hierarchy that reflects how the agent exploits the hierarchical
regularities afforded by the environment.

Guériau et al. [12, 13] combined constructivism with reinforcement learning (RL) for
autonomous and continuous learning of state space representations and their run-time
adaptation, as a way toward fully self-adaptive RL. Following a constructivist learn-
ing perspective, the agent iteratively builds a mapping of its environment into a self
perception-action states and the knowledge governs the decision process, through learn-
ing its experience of interacting with environment.

Based on the Information-Processing Principles (IPPs) introduced by Cohen et al.
[78], Chaput et al. [25, 76, 85] combine with a hierarchy of Self-Organizing Map (SOM)
and present a hierarchical self-organizing model with constructivist learning, as a way
to simulate infants’ cognitive development and flesh out the detail of learning process.
Particularly, the model is aimed at modeling the constructive process of cognitive devel-
opment as observed in infants. However, the Constructivist Learning Architecture (CLA)
they proposed by using the scheme mechanism in each level of the architecture is depended
on goals defined by the designer. Therefore, it relies upon a problem-solving approach
that in fact differs from our motivations [9].

2.2.2 Intrinsic motivation

Intrinsic motivation [, 17, 10, 15] (like curiosity, novelty, and surprise etc.) drives the
development of the world-model making, as a way to replicate some abilities of infants’
interactions [86]. Examples of intrinsic motivation systems like curiosity [17], search for
predictability and control [37], and search for simplification of knowledge or compressibil-
ity of data [18]. With intrinsic motivation, the value system is generally not made explicit
in the form of numerical values. Instead, it is implicitly characterized by the resulting

11



behavior of the system.

Driven by intrinsic motivations, Satinder et al. [19] adopt an evolutionary perspective
and define a new optimal reward framework that captures the pressure to design good pri-
mary reward functions that lead to evolutionary success across environments. The result
shows that optimal primary reward signals may yield both emergent intrinsic and extrinsic
motivation. Savinov et al. [83] propose an intrinsic motivation model with curiosity and
episodic memory for an autonomous agent obtain capabilities of self-adaptation. Specifi-
cally, the method stores agent’s interactive experiences of the environment in an episodic
memory, while also spur the robot for reaching experiences not yet represented in memory.
Oudeyer et al. [17] present the mechanism of Intelligent Adaptive Curiosity as an intrin-
sic motivation system which pushes a robot towards situations in which it maximizes its
learning progress. This drive makes the robot focus on situations which are neither too
predictable nor too unpredictable, then emerging the autonomous mental development.

With intrinsic motivation of curiosity, Haber et al.[l5] mathematically formalize a
curiosity-driven intrinsic motivation with neural network and placed the agent in an eco-
logically naturalistic simulated environment. By combining with an error map, the agent
then uses the self-model to adversarially challenge the developing world-model. Twomey
et Westermann [20] present a formalization of the mechanism underlying infants’ curiosity-
driven learning during visual exploration and implement this mechanism in a neural net-
work that captures empirical data from an infant visual categorization task. The results
performed that maximal learning emerges when maximize stimulus novelty relative to its
learning history, depending on the interaction across learning between the structure of
the environment and the plasticity in the learner itself.

2.2.3 Self-adaptation and flexibility

Most studies in adaptive learning distinguish between a learning phase where the knowl-
edge is acquired, and a performance phase where the learning is assessed. Aha [39)]
highlighted two categories of learning algorithms like: “eager learning and lazy learning”.
Eager learning algorithms as a way to compile input samples and use only the compila-
tion to make decisions (e.g., reinforcement learning). Lazy learning algorithms sometimes
perform little compilation and reuse the stored input samples to make decisions (e.g.,
schema mechanisms) [9, 10].

Reinforcement Learning (RL) [90] and with its advances [7, 28, 91] as a most popu-
lar and successful way to enable runtime adaptation, to learn the appropriate actions by
learning to get the maximum cumulative reward of actions, which is used to help making
decision of actions in response to interactions with the environment. However, the per-
formance of algorithms become unsuitable and will need further self-adapting during the
system execution in situations where environment changes. Various techniques have been
developed to enable RL to tackle with such non-stationary environments, basically the
main methods aim at continuously detecting and predicting environment conditions [13].

Baranes et al. [10] introduce an self-adaptive architecture with intrinsic motivation
of curiosity that allows an artificial robot to efficiently and actively learn distributions of
parameterized motor skills/policies that solve a corresponding distribution of parameter-
ized tasks/goals. With result from the experiments, it demonstrated that: (a) exploration
in the task space can be a lot faster than exploration in the actuator space for learning
inverse models in redundant robots; (b) selecting goals maximizing competence progress
creates developmental trajectories driving the robot to progressively focus on tasks of
increasing complexity; (c) this architecture allows the robot to actively discover which
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parts of its task space it can learn to reach and which part it cannot.

Focus on the limitations of the design of the reward function for complex behavior
learning in Reinforcement Learning, Heess et al. [11] tried to explore methods from the
perspective of rich environment to promote the learning of complex behavior. In partic-
ular, they trained multiple agents on a diverse set of challenging terrains and obstacle,
combined with a novel scalable variant of policy gradient reinforcement learning, they
demonstrate that this principle encourages the emergence of robust behaviors that per-
form well across a suite of tasks. Moreover, the agent learns to run, jump, crouch and
turns as required by the environment without explicit reward-based guidance.

The enactive paradigm as a viable alternative to traditional computational approaches
with respecting to the practical goal of building artificial agents, which allows an au-
tonomous agent to behave in a robust and flexible manner under changing real-world
conditions [13]. Based on the enactive paradigm, Georgeon et al. [11] propose an Enac-
tive Cognitive Architecture that allows the agent to “autonomously discover, memorize,
and exploit spatio-sequential regularities of interaction”. Particularly, the ECA suggests
that the cognitive development of an autonomous agent is on the basis of sensorimo-
tor interactions with the environment, which indicates perception and action embedded
within sensorimotor schemes, rather than separates them apart. Gay et al. [92] present
an architecture for self-motivated agents to organize its behaviors in space according to
possibilities of interactions afforded by initially unknown objects. The agent is designed
to construct its own knowledge of objects through experience, rather than exploiting pre-
coded knowledge. Experiments from this work with a simulated agent and a robot show
that they learn to navigate in their environment, taking into account multiple surround-
ing objects, reaching or avoiding objects according to the valence of the interactions that
they afford.

2.3 Cognitive architecture

Cognitive architecture as a part of research in Artificial general intelligence (AGI) which
alms at enabling to reconstruct human-level intelligence in the fields of AI and computa-
tional cognitive science. With the definition of cognitive architecture from the Institute
for Creative Technologies as: “hypothesis about the fixed structures that provide a mind,
whether in natural or artificial systems, and how they work together — in conjunction with
knowledge and skills embodied within the architecture — to yield intelligent behavior in a
diversity of complex environments” *. One of the ultimate goals of a cognitive architecture
is to summarize the various results of cognitive psychology in a comprehensive computer
model.

During the last decades, a large number of cognitive architectures have been developed
and have achieved great success both in theory and in application. Classic cognitive
architectures, such as Soar [93],ACT-R [91], EPIC [95], MicroPsy [96], CLARION [97],
ICARUS [98] etc. have been greatly improved in ease of use and robustness after long-
term continuous developments and improvements [99, , , , , |. At the
same time, the newly proposed cognitive architectures, such as CLA [85], LIDA [105],
ECA [11], ECRL [88], which integrate various new ideas and cutting-edge implementation
technologies in the field of artificial intelligence and cognitive development, and thus has
better performance in the flexibility and autonomy. We respectively introduce and explain
several typical cognitive architectures below.

1Cited from https://en.wikipedia.org/wiki/Cognitive_architecture
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2.3.1 The Soar Cognitive Architecture

As a general cognitive architecture, Soar was originally created by Laird et al [93] and
integrates a multiple of learning theories related to knowledge-intensive reasoning, reac-
tive execution, hierarchical reasoning, and learning from experience. The goal of the Soar
as mentioned that “is to develop the fixed computational building blocks necessary for
general intelligent agents — agents that can perform a wide range of tasks and encode, use,
and learn all types of knowledge to realize the full range of cognitive capabilities found in
humans, such as decision making, problem solving, planning, and natural languag