
HAL Id: tel-03406086
https://theses.hal.science/tel-03406086v1

Submitted on 27 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Architecture cognitive constructiviste : un modèle pour
concevoir un agent automotivé capable de faire du sens
et de construire des connaissances de l’environnement

Jianyong Xue

To cite this version:
Jianyong Xue. Architecture cognitive constructiviste : un modèle pour concevoir un agent automotivé
capable de faire du sens et de construire des connaissances de l’environnement. Neural and Evolution-
ary Computing [cs.NE]. Université de Lyon, 2020. English. �NNT : 2020LYSE1242�. �tel-03406086�

https://theses.hal.science/tel-03406086v1
https://hal.archives-ouvertes.fr

N°d’ordre NNT : 2020LYSE1242

THESE de DOCTORAT DE L’UNIVERSITE DE LYON
opérée au sein de

l’Université Claude Bernard Lyon 1

Ecole Doctorale N° ED 512

Informatique et Mathématiques de Lyon (InfoMaths)

Spécialité de doctorat : Architecture Cognitive Constructiviste

Discipline : Informatique

Soutenue publiquement le 23/11/2020, par :

Jianyong XUE

Constructivist Cognitive Architecture:
A model for Designing Self-motivated Agent

Capable of Sense-making and Knowledge
Construction of the Environment

Devant le jury composé de :

M. ALEXANDRE Frédéric, Professeur, INRIA Bordeaux Rapporteur
M. DE LOOR Pierre, Professeur, Ecole Nationale D'ingénieurs de Brest Rapporteur
Mme GHODOUS-SHARIAT TORBAGHAN Parisa, Professeure, Université Lyon 1

Examinatrice
M. MARSHALL James, Professeur, Sarah Lawrence College Examinateur
Mme MEEDEN Lisa, Professeure, Swarthmore College Examinatrice

Mme HASSAS Salima, Professeure, Université Lyon 1 Directrice de thèse
M. GEORGEON Olivier, Professeur Associé, Université Catholique de Lyon

 Co-directeur de thèse

Université Claude Bernard – LYON 1

Administrateur provisoire de l’Université M. Frédéric FLEURY

Président du Conseil Académique M. Hamda BEN HADID

Vice-Président du Conseil d’Administration M. Didier REVEL

Vice-Président du Conseil des Etudes et de la Vie Universitaire M. Philippe CHEVALLIER

Vice-Président de la Commission de Recherche M. Jean-François MORNEX

Directeur Général des Services M. Pierre ROLLAND

COMPOSANTES SANTE

Département de Formation et Centre de Recherche

en Biologie Humaine

Directrice : Mme Anne-Marie SCHOTT

Faculté d’Odontologie Doyenne : Mme Dominique SEUX

Faculté de Médecine et Maïeutique Lyon Sud - Charles Mérieux Doyenne : Mme Carole BURILLON

Faculté de Médecine Lyon-Est Doyen : M. Gilles RODE

Institut des Sciences et Techniques de la Réadaptation (ISTR) Directeur : M. Xavier PERROT

Institut des Sciences Pharmaceutiques et Biologiques (ISBP) Directrice : Mme Christine VINCIGUERRA

COMPOSANTES & DEPARTEMENTS DE SCIENCES & TECHNOLOGIE

Département Génie Electrique et des Procédés (GEP) Directrice : Mme Rosaria FERRIGNO

Département Informatique Directeur : M. Behzad SHARIAT

Département Mécanique Directeur M. Marc BUFFAT

Ecole Supérieure de Chimie, Physique, Electronique (CPE Lyon) Directeur : Gérard PIGNAULT

Institut de Science Financière et d’Assurances (ISFA) Directeur : M. Nicolas LEBOISNE

Institut National du Professorat et de l’Education Administrateur Provisoire : M. Pierre CHAREYRON

Institut Universitaire de Technologie de Lyon 1 Directeur : M. Christophe VITON

Observatoire de Lyon Directrice : Mme Isabelle DANIEL

Polytechnique Lyon Directeur : Emmanuel PERRIN

UFR Biosciences Administratrice provisoire : Mme Kathrin GIESELER

UFR des Sciences et Techniques des Activités Physiques et

Sportives (STAPS)

Directeur : M. Yannick VANPOULLE

UFR Faculté des Sciences Directeur : M. Bruno ANDRIOLETTI

Abstract

Infants are excellent at interacting with the environment. Especially in the initial phase
of cognitive development, they exhibit amazing abilities to generate novel behaviors in
unfamiliar situations, and explore actively to learn the best while lacking extrinsic rewards
from the environment. These abilities of sense-making and knowledge construction of the
environment set them apart from even the most advanced autonomous robots. However,
for most artificial agents (and robots), acquiring such abilities is overwhelming.

While for most traditional Artificial Intelligence (AI) approaches, learning is usually
insufficient, such as with various biases, and lacks of flexibility. Seeking ways to explain
the learning mechanism behind infants’ early cognitive development and try to replicate
some of these abilities for an autonomous agent has been an active point in recent efforts
of robotics and AI research.

Over the last decades, a multitude of theories and methods have been devoted to the
study of learning mechanisms in infants’ early-stage cognitive development and proposed
various algorithms targeted at designing and implementing a self-motivated agent, like
learning with constructivist paradigm, reinforcement learning paradigm, active learning,
developmental learning, intrinsic motivation, curiosity-driven learning, enactive paradigm
and attention mechanism.

Specifically, among these theories and approaches, the constructivism as a knowledge
acquisition theory that describes the information processing mechanisms behind infants’
cognitive development. As infants interact with the world around them, they continually
absorb new knowledge build upon existing knowledge, and simultaneously adapt previous
ideas to accommodate with new information. In this dissertation, I present a computa-
tional model of Constructivist Cognitive Architecture (CCA) as a way towards simulating
the early learning mechanism of infants’ cognitive development based on theories of enac-
tive cognition, intrinsic motivation, and constructivist epistemology. Meanwhile, the CCA
allows a self-motivated agent to autonomously construct the perception of the environ-
ment and acquire capabilities of self-adaption and flexibility to generate proper behaviors
to tackle with diverse situations in interacting with the environment.

Different with traditional cognitive architectures, the introduced model neither ini-
tially endows the agent with prior knowledge of its environment, nor supplies it with
knowledge during its learning process. Accordingly, I am not proposing an algorithm that
optimizes exploration of a predefined problem-space to reach predefined goal states. In-
stead, I propose a way for the agent to autonomously encode the interaction experiences
and reuse behavioral patterns based on the agent’s self-motivation implemented as inborn
proclivities that drive the agent in a proactive way. In addition, I introduce two forms
of self-motivation: successfully enacting sequences of interactions (or called autotelic mo-
tivation), and preferably enacting interactions that have predefined positive values (or
called interactional motivation). Following these drives, the agent autonomously learns
regularities afforded by the environment, and constructs hierarchical sequences to perform
higher-level behaviors.

i

Furthermore, I proposed a Bottom-up hiErarchical sequential Learning model based
on the CCA, which is also called BEL-CA, as a solution for an autonomous agent learn-
ing hierarchical sequences of behaviors and acquiring capabilities of self-adaptation and
flexibility. The agent represents its current situation in terms of perceived affordances
that develop through the agent’s experience. This situational representation works as an
emerging situation awareness that is grounded in the agent’s interaction with its environ-
ment and that in turn generates expectations and activates adapted behaviors. Through
its activity and these aspects of behavior (behavioral proclivity, situation awareness, and
hierarchical sequential learning), the agent starts to exhibit emergent sensibility, intrinsic
motivation, and autonomous learning.

Moreover, I introduced an implementation of a toolkit to analyze the learning pro-
cess at run time, which is called GAIT (Generating and Analyzing Interaction Traces
Toolkit). I use GAIT to report and explain the detailed learning process and the struc-
tured behaviors that the agent has learned on each decision making step. The experiment
demonstrated that the agent learned to successfully interact with its environment and to
avoid unfavorable interactions using regularities discovered through interaction.

Following with dissertation, this initial autonomous mechanism provides a basis for
implementing autonomously developing cognitive systems. Therefore, the agent gets the
perception of this world and generates proper behaviors in different and complicated
situations. Thus, the agent could moving around freely and learn regularities of the
environment. Meanwhile, it spurs the agent to discover a long sequence of “correct”
actions to find an accurate configuration of the environment and reuse it appropriately.

ii

Résumé

Les nourrissons sont excellents pour interagir avec l’environnement. Surtout dans la phase
initiale du développement cognitif, ils présentent des capacités étonnantes à générer de
nouveaux comportements dans des situations inconnues et à explorer activement pour
apprendre le meilleur tout en manquant de récompenses extrinsèques de l’environnement.
Ces capacités de création de sens et de construction de connaissances de l’environnement
les distinguent même des robots autonomes les plus avancés.

Pour la plupart des agents artificiels (et des robots), l’acquisition de telles capacités
est écrasante. Dans la plupart des approches traditionnelles d’intelligence artificielle (IA),
l’apprentissage est généralement insuffisant, avec divers biais et manque de flexibilité.
Chercher des moyens d’expliquer le mécanisme d’apprentissage derrière le développement
cognitif précoce des nourrissons et essayer de reproduire certaines de ces capacités que
les bébés ont pour un agent autonome sont devenus un point focal des efforts récents en
robotique et en recherche sur l’IA.

Au cours des dernières décennies, une multitude de théories et de méthodes ont été con-
sacrées à l’étude des mécanismes d’apprentissage dans le développement cognitif précoce
des nourrissons et au développement de divers algorithmes visant à concevoir et à met-
tre en œuvre un agent auto-motivé, sous diverses approches telles que l’apprentissage
utilisant paradigme constructiviste, paradigme d’apprentissage par renforcement, appren-
tissage actif, apprentissage développemental, motivation intrinsèque, apprentissage axé
sur la curiosité, paradigme énactif et mécanisme d’attention.

Parmi ces théories et approches, le constructivisme en tant que théorie d’acquisition
des connaissances qui décrit les mécanismes de traitement de l’information derrière le
développement cognitif des nourrissons. Au fur et à mesure que les nourrissons interagis-
sent avec le monde qui les entoure, ils absorbent continuellement de nouvelles connais-
sances, s’appuient sur les connaissances existantes et adaptent des idées antérieures pour
accueillir de nouvelles informations. Le paradigme d’apprentissage constructiviste suggère
qu’un agent autonome construit itérativement la représentation de son environnement à
travers ses expériences d’interactions et sans a priori.

Dans cette thèse, je propose un modèle informatique de l’architecture cognitive con-
structiviste (CCA) comme moyen de simuler le mécanisme d’apprentissage précoce du
développement cognitif des nourrissons basé sur les théories de la cognition énactive,
de la motivation intrinsèque et de l’épistémologie constructiviste. Pendant ce temps,
le CCA permet à un agent motivé de construire de manière autonome la perception de
l’environnement et d’acquérir des capacités d’auto-adaptation et de flexibilité pour générer
des comportements appropriés pour faire face à diverses situations en interagissant avec
l’environnement.

Contrairement aux architectures cognitives traditionnelles, le modèle introduit ne
confère pas initialement à l’agent une connaissance préalable de son environnement, ni ne
lui fournit des connaissances au cours de son processus d’apprentissage. En conséquence,
je ne propose pas d’algorithme qui optimise l’exploration d’un espace-problème prédéfini

iii

pour atteindre des états d’objectifs prédéfinis. Au lieu de cela, je propose un moyen
pour l’agent d’encoder de manière autonome les expériences d’interaction et de réutiliser
des modèles de comportement basés sur l’auto-motivation de l’agent implémentée comme
des penchants innés qui conduisent l’agent de manière proactive. De plus, je présente
deux formes d’auto-motivation: la mise en œuvre réussie de séquences d’interactions (ou
appelées motivation autotélique), et de préférence des interactions qui ont des valeurs pos-
itives prédéfinies (ou appelées motivation interactionnelle). pulsions, l’agent apprend de
manière autonome les régularités offertes par l’environnement, et construit la perception
causale de phénomènes dont la présence hypothétique dans l’environnement explique ces
régularités.

De plus, je propose un modèle d’apprentissage séquentiel ascendant hiErarchique
basé sur le CCA, également appelé BEL-CA, comme solution pour un agent autonome
apprenant des séquences hiérarchiques de comportements et acquérant des capacités
d’auto-adaptation et de flexibilité. L’agent représente sa situation actuelle en termes
d’affordances perçues qui se développent à travers l’expérience de l’agent. Cette représentation
situationnelle fonctionne comme une prise de conscience de situation émergente qui est
ancrée dans l’interaction de l’agent avec son environnement et qui à son tour génère des
attentes et active des comportements adaptés. Par son activité et ces aspects du comporte-
ment (propension comportementale, conscience de situation et apprentissage séquentiel
hiérarchique), l’agent commence à faire preuve d’une sensibilité émergente, d’une motiva-
tion intrinsèque et d’un apprentissage autonome.

De plus, j’introduis une implémentation d’une bôıte à outils pour analyser le processus
d’apprentissage au moment de l’exécution, qui s’appelle GAIT (Generating and Analyzing
Interaction Traces Toolkit). J’utilise GAIT pour rendre compte et expliquer le processus
d’apprentissage détaillé et les comportements structurés que l’agent a appris à chaque
étape de prise de décision. Je rapporte une expérience dans laquelle l’agent a appris à
interagir avec succès avec son environnement et à éviter les interactions défavorables en
utilisant des régularités découvertes par interaction.

Suivant les théories du développement cognitif, je soutiens que ce mécanisme autonome
initial fournit une base pour la mise en œuvre de systèmes cognitifs en développement
autonome. Par conséquent, l’agent obtient la perception de ce monde et génère des
comportements appropriés dans des situations différentes et compliquées. Ainsi, l’agent
pourrait se déplacer librement et apprendre les régularités de l’environnement. Pendant
ce temps, cela incite l’agent à découvrir une longue séquence d’actions “correctes” pour
trouver une configuration précise de l’environnement et la réutiliser de manière appropriée.

iv

Acknowledgements

The past three years of studying in Lyon are the most memorable and the most rewarding
time for me. The unique study experience broadened my horizons, enriched my knowledge,
and experienced a different lifestyle, which gave me new discoveries and thoughts. In the
past three years, I have met knowledgeable scholars, made interesting friends, participated
in various academic reports and lectures, and attended a variety of activities. At the same
time, I have witnessed how fast the new ideas and theories in Artificial Intelligence are
proposed and applications have been developed, and also I’m so excited to be a part in
this. I would not have been able to make this journey without the help and encourage
from so many nice people and I think I have not done enough.

First and foremost, I would like to express my sincere gratitude to my supervisors
Salima Hassas and Olivier Georgeon. They both have a very insightful and high-level
view about the field while also have uncommonly detail oriented and understands the
nature of the problems very well. Each time I take part in a discussion with them, always
gives me a lot of inspirations. More importantly, Salima and Olivier are extremely kind,
caring and supportive advisors that I could not have asked for more. During three years
of my thesis, they gave me enough patience and trust to allow me to keep exploring and
trying. At the same time, they also gave me more encouragement and let me persevere
all the way.

I would like to thank Alain Mille, a mentor with profound knowledge and rigorous
scholarship, whom I admire the most and want to learn from. As a well-known scholar in
the field of research, he has given me continuous attention and encouragement.

I want to thank warmly all members of the Systèmes Multi-Agents (SMA) team in the
LIRIS laboratory. Véronique Deslandres, Laetitia Matignon, Frédéric Armetta, Mathieu
Lefort for their precious advises and support during my thesis. I also thank all other
members for welcoming me into this research team: Arthur Aubret, Rémy Chaput, Simon
Forest, Alexandre Galdeano, Huan Vu, Benoit Vuillemin for their valuable feedback on my
works. In particular, Alexandre as one of my best friends always gives me so many good
suggestions and invited me to participate in various interesting activities. Every time I
talk with him on the cutting-edge theories in the academic world and novel technologies
in the industrial fiedlds, as well as hobbies like mechanism of sport cars, I always feel
relaxed and happy, and benefit a lot. Simon and I share a same office in the lab and he
helped me a lot in administrative procedures, especially the translations of various french
documents.

Collaboration is a big lesson that I have learned, and also a fun part in my thesis.
Meetings and presentations with the company of Hoomano gave me an opportunity to
get acquainted with experienced scholars and talented engineers in the industrial fields.
I’d like to thank Xavier Basset, Amélie Cordier, Pierre Laurent and Laurianne Charrier
for they generously sharing their valuable experiences in applications and new challenges
in applying these applications with real robots. Their constructive suggestions helped
me a lot when I was designing an algorithm for an autonomous agent and considering

v

to improve its performance in diverse scenarios. Moreover, the collaboration with the
team from Université Catholique de Lyon (UCLy) on the project of INIT give me another
opportunity to explain the theory of constructivism to young developers who are interested
in studying of cognitive development for autonomous robots. Particularly, I’d like to thank
Paul Robertson and Heidi Souibki. Paul gave me many constructive advice on the design
of learning algorithms and approaches to improve the agent’s performance. Heidi inspired
me to think about the design of a cross-platform algorithm architecture and find ways to
implement it on the ROS and Gazebo platform.

I would like to thank Mathieu Gillermin and Béatrice de Montera from the Université
Catholique de Lyon (UCLy). Thank Mathieu’s expertise in philosophy and cognition for
providing me with valuable suggestions, which gave me a deeper understanding of the
construction of causal models. Thank Béatrice for her caring and encouraging, which
gave me enough confidence.

I thank my parents for their constant confidence and support during my studies and
to push me to do what I like. I address a special thank to my sister, for her immeasurable
thoughtfulness and support. I thank all my precious friends for their kindness and to
make me explain my works regularly. It would have never be possible without all of them
around me.

Finally, I thank all members of the University Claude Bernard Lyon 1 and people who
works in the library of BU Sciences La Doua for providing such a great and comfortable
workplace.

vi

Contents

1 Introduction 1

1.1 Context . 2

1.2 The challenge for an autonomous agent . 3

1.2.1 Problem statement . 3

1.2.2 Challenges . 4

1.3 Motivation . 5

1.4 Overview of the dissertation . 6

1.5 Contributions . 7

2 The state of the art 8

2.1 Infants’ cognitive development . 9

2.2 Cognitive development of an autonomous agent 10

2.2.1 Constructivist learning . 10

2.2.2 Intrinsic motivation . 11

2.2.3 Self-adaptation and flexibility . 12

2.3 Cognitive architecture . 13

2.3.1 The Soar Cognitive Architecture . 13

2.3.2 Constructivist Learning Architecture 15

2.3.3 Enactive Cognitive Architecture . 15

2.4 Summary . 17

3 Foundations 18

3.1 Theoretical foundations . 19

3.1.1 The theory of developmental psychology 19

3.1.2 Radical constructivism . 22

3.1.3 Enactive cognition . 22

3.1.4 Motivations in agent’s cognitive development 23

3.2 Implementation Foundations . 24

3.2.1 Representation and operations of schemes 25

3.2.2 Benchmarks . 30

3.3 Conclusion . 32

vii

4 The Constructivist Cognitive Architecture 34

4.1 The CCA design . 35

4.1.1 Interaction cycle between the agent and the environment 35

4.1.2 The sensorimotor interaction . 36

4.1.3 Schemes in the CCA . 37

4.1.4 Self-motivation in CCA . 38

4.2 CCA structure . 39

4.2.1 The CCA structure . 39

4.3 CCA implementation . 41

4.3.1 Learning of of regularities: the composite interaction 41

4.3.2 Selection mechanism . 41

4.3.3 The enaction of intended interaction 42

4.3.4 Learning of structured behaviors. 42

4.3.5 Episodic memory, “surprise”, and “novelty” 44

4.4 Conclusion . 44

5 Causality reconstruction with CCA 46

5.1 Causal Perception . 47

5.1.1 Causal Perception in Adults . 47

5.1.2 Causal Perception in Infants . 47

5.2 Modeling Causal Acquisition with CCA . 48

5.2.1 Interaction scenarios . 49

5.2.2 Principles of the learning . 49

5.2.3 The algorithm of the causality reconstruction 51

5.3 Experiment . 54

5.4 Conclusion . 57

6 Bottom-up hierarchical sequential learning in CCA 58

6.1 The interaction and its valence allocation 59

6.2 The hierarchical sequential learning process in CCA 60

6.3 The BEL-CA . 61

6.3.1 The structure of BEL-CA . 61

6.4 Algorithms . 63

6.4.1 Initialization . 64

6.4.2 Context construction . 64

6.4.3 Activation of composite interactions and the construction of antic-
ipations . 65

6.4.4 Selection mechanism . 67

6.4.5 The enaction of intended interaction 69

6.5 Comparison with related work . 70

viii

6.6 Conclusion . 71

7 Methodology and experimental scenario of the BEL-CA 73

7.1 Experimental settings . 74

7.2 Generating and Analyzing Interaction Traces toolkit (GAIT) 75

7.3 Interaction traces analysis . 77

7.4 The results . 79

7.4.1 The agent’s learning process exported from the GAIT 79

7.4.2 The threshold of regularity sensibility in the interactions 81

7.4.3 The growth of the episodic memory and the surprises exported from
the GAIT . 82

7.4.4 The agent’s performance in the changed environment 84

7.5 Simulations in autonomous robots . 86

7.5.1 Robots and the environment . 86

7.5.2 The implementations of experiments 87

7.5.3 Performance . 88

7.6 Conclusion . 88

8 Conclusion, open issues and perspectives 91

8.1 Conclusion . 92

8.2 Open issues . 92

8.2.1 The growth of composite interaction 92

8.2.2 Differences between the valence and the reward 93

8.2.3 The allocation strategy for the valence of primitive interactions . . 95

8.3 Existing problems . 96

8.4 Future work and perspectives . 97

A Causality reconstruction 109

A.1 The interaction scenario . 109

A.2 The complete two-step regularities afforded by the environment. 109

A.3 The full structure of Petri-Net in Little AI of Level2.00 111

B Interaction traces 112

C Agent’s performance in diverse environments 127

C.1 The first changed environment . 127

C.2 The second changed environment . 132

C.3 The third changed environment . 132

ix

List of Figures

1.1 The interaction scenarios. 4

2.1 The structure of Soar 9. 14

2.2 A schematic of the layer setup used in CLA model. 16

2.3 The Enactive Cognitive Architecture (ECA). 16

3.1 Scheme of starting self-studying in the library 20

3.2 Three processes of assimilation, accommodation and equilibration. 22

3.3 The form of schemes and the construction of higher-level scheme from
lower-level schemes. 25

3.4 The structure of schemes in binary tree. 26

3.5 An simplified example of the schemes. 27

3.6 The process of construction composite interactions in binary tree. 28

3.7 Examples of Small Loop Problem environment 31

3.8 The Little AI interface. 32

4.1 Interaction cycle between the agent and the environment 35

4.2 The interaction cycle of embodied model compares with traditional model. 36

4.3 The interaction cycle of the constructivist learning paradigm. 38

4.4 The Constructivist Cognitive Architecture (CCA). 39

4.5 The decision making mechanism and the enaction mechanism of intended
interaction. 43

5.1 Launching events. 48

5.2 Eleven different sensorimotor interactions. 49

5.3 Partial 12 two-step regularities afforded by the environment. 50

5.4 Patterns of interaction experience. 50

5.5 Partial representation of the Petri-net constructed by the algorithm. 51

5.6 Modeling Causal Acquisition with CCA . 52

5.7 The Little AI interface and interactions. 55

5.8 Traces of the first 350 interaction cycles in our experiment. 56

6.1 The hierarchical sequential learning system in CCA. 61

6.2 The hierarchical sequential learning model of BEL-CA with CCA 62

x

6.3 Mapping anticipations to experiments. 66

6.4 Selection intended interaction. 67

7.1 The environment and experimental settings. 75

7.2 The layers in the GAIT is designed to display various information in the
interaction. 76

7.3 The inducing field of primitive intended/enacted interaction. 76

7.4 The tip windows experiments with their anticipation tip window. 77

7.5 The inducing field of enacting composite interactions. 77

7.6 The first several interactions and composite interactions construct process. 78

7.7 Enact the same intended interaction with different feedback. 78

7.8 The enacted composite interaction’s weight less than the threshold. 79

7.9 The agent enacts composite interaction and constructs higher-level com-
posite interaction. 79

7.10 Enacting complicated composite interaction. 80

7.11 Bump times with decision cycles as agent interacts with the environment. . 80

7.12 Accumulated valence with decision cycles in agent’s interactions with the
environment. 81

7.13 Average valence with decision cycles in agent’s interactions with the envi-
ronment. 81

7.14 The results reported from the GAIT of interactions in different thresholds. 82

7.15 The growth of composite interactions with decision cycles in agent’s inter-
actions with the environment. 83

7.16 The surprises with decision cycles in agent’s interactions with the environ-
ment. 83

7.17 The changed environment. 84

7.18 The results reported from the GAIT of agent’s performance in the changed
environment. 85

7.19 The environment of SLP with a Pioneer 3-DX robot. 87

7.20 The detected points from the proximity sensor. 88

7.21 The alignment of of the robot in the environment. 88

7.22 The coordinate system of proximity sensors and the description of its co-
ordinate values. 89

7.23 The combination of GAIT in simulations of robot on V-REP. 89

8.1 Utility rate of composite interaction. 96

A.1 The Little AI interface and experiences. 110

A.2 The complete two-step regularities afforded by the environment. 110

A.3 The complete structure of the Petri-Net. 111

B.1 The set of primitive interactions which are combined with experiments and
their possible feedback from interaction with the environment. 112

xi

C.1 The first changed environment. 127

C.2 The bump times with decision cycles in the first changed environment. . . 128

C.3 The total valence with decision cycles in the first changed environment. . . 128

C.4 The average valence with decision cycles in the first changed environment. 129

C.5 The number of composite interactions with decision cycles in the first
changed environment. 129

C.6 The second changed environment. 130

C.7 The bump times with decision cycles in the second changed environment. . 130

C.8 The total valence with decision cycles in the second changed environment. 131

C.9 The average valence with decision cycles in the second changed environment.131

C.10 The number of composite interactions with decision cycles in the second
changed environment. 132

C.11 The third changed environment. 132

C.12 The bump times with decision cycles in the third changed environment. . . 133

C.13 The total valence with decision cycles in the third changed environment. . 133

C.14 The average valence with decision cycles in the third changed environment. 134

C.15 The number of composite interactions with decision cycles in the third
changed environment. 134

xii

List of Tables

xiii

Chapter 1

Introduction

”Knowledge of the world, [. . .], is created from the interaction with the environment,
rather than existing in an ontic reality, supposedly pre-existing or available for registration
from the physical world.”

Roesch et al. ,2013, § 1, p1.

Contents
1.1 Context . 2

1.2 The challenge for an autonomous agent 3

1.2.1 Problem statement . 3

1.2.2 Challenges . 4

1.3 Motivation . 5

1.4 Overview of the dissertation . 6

1.5 Contributions . 7

1

1.1 Context

During the initial phase of cognitive development, infants exhibit amazing abilities to
generate novel behaviors with unfamiliar situations and explore actively to learn the best
with lacking extrinsic rewards from the environment [1, 2, 3]. With skills and abilities
that borne with (such as looking, listening, sucking, touching, and grasping) to interact
with the environment, infants continually acquire new information build upon their exist-
ing knowledge, and simultaneously adapt previous ideas to accommodate with this new
information over a short period of time and involves a dramatic of growth.

Infants, as described of “scientists in the crib” by Gopnik et all. 1999 [4] who inten-
tionally discover events that are new, informative, then exciting to them [5, 6]. Their
abilities of sense-making and knowledge construction of the environments set them apart
from even the most advanced autonomous robots.

For most artificial agents (and robots), acquiring such learning abilities that infants
have is overwhelming. Learning is usually insufficient [7], with different biases [8, 9, 10],
and lacks of flexibility [11, 12]. One of the biggest reasons is that traditional learning
approaches heavily rely on the problem specificities and the availability of prior knowledge
that is specific to a task proposed by the system designer. Thus how well the agent
perceives the state of the environment (for example, through actuators/sensors patterns)
determines the performance of the learning models [13]. As Russell & Norvig [14] state
that “the problem of AI is to build agents that receive percepts from the environment
and perform actions”. The approaches based on this statement assumes that the input
data for the agent is a direct function of the state of the environment. However, this
assumption is not satisfied in situations where the input data of the agent comes from the
feedback of actions in the control loop.

In addition, the agent is designed for desired goals and with a well-defined reward
function (such as reinforcement learning paradigm), it’s thus motivated to maximize the
accumulated reward when it achieves these specific goals, rather than focuses on learning
behavioral patterns and constructing the knowledge of the environment from interaction
experiences. Particularly in cases where the agent is designed to pursue a wide variety of
tasks, the reward function needs to be designed sufficiently to include all possible inter-
action situations. Moreover, it could lead to an unexpected result in situations where the
desired reward function is modified [11]. Agent’s abilities of self-adaptation and flexibility
to tackle with diverse situations in different (or dynamic) and complex environment are
limited as well [12] .

Seeking ways to understand the learning mechanisms behind infants’ early-stage cog-
nitive development and try to replicate some of these abilities that babies have for an
autonomous agent, which allows it to behave in an “intelligent” and flexible manner has
become an active research domain as presented in [15, 16, 2, 17, 18, 19, 10, 20, 21, 22].
Over the last decades, a multitude of theories and methods have been devoted to the study
of learning in infants’ cognitive development and developing various algorithms targeted
at designing and implementation a self-developing agent, under various approaches such
as learning using constructivist paradigm [23, 24, 25, 13, 12, 26], reinforcement learning
paradigm [27, 28, 7, 29, 19, 30, 11], active learning [10, 31, 32, 33], developmental learning
[30, 16, 20, 34, 35, 36], intrinsic motivation [19, 18, 31, 17, 37], curiosity-driven learning
[38, 16, 39, 20, 40, 41], enactive paradigm [42, 43, 44, 9, 45] and attention mechanism
[46, 47, 48, 49].

Among these theories and approaches, the constructivism as a knowledge acquisition
theory ameliorated by Piaget [50] that describes the information processing mechanisms

2

behind infants’ cognitive development. The constructivist learning paradigm suggests
that an autonomous agent iteratively construct the representation of its environment and
its self through its experiences of interactions and without a prior knowledge. Specifically,
the agent is not designed as a passive observer of reality, but represents its current situ-
ation with perceived affordances that developed through the agent’s experience. Also as
as Georgeon and Ritter [9] mentioned that “this situational representation works as an
emerging situation awareness that is grounded in the agent’s interaction with its environ-
ment and that in turn generates expectations and activates adapted behaviors”.

Inspired from the theory of constructivism and recent developments in AI [18, 51, 7, 29,
52], we introduce a new computational model of cognitive architecture in this dissertation,
which allows an autonomous agent to acquire the perception of the environment from its
interaction experience and obtain capabilities of self-adaptation and flexibility for gener-
ating proper behaviors to tackle with diverse situations, as a way to simulate the early
mechanism of infants’ learning process based on theories of constructivist epistemology,
intrinsic motivation and enactive cognition.

Particualrly, the introduced computational model neither initially endows the agent
with the prior knowledge of its environment, nor supplies it with knowledge in its learning
process. Instead, it propose a way for the agent to autonomously encode the interactional
experiences and reuse behavioral patterns based on the its self-motivation (we prefer to
call it the interactional motivation [53]) as inborn proclivities that drive the agent in a
proactive way. Following these drives, the agent autonomously learns regularities afforded
by the environment, and hierarchical sequences of behaviors adapted to these regularities
[9].

1.2 The challenge for an autonomous agent

1.2.1 Problem statement

Imaging the following scenario: an agent is placed in an unfamiliar environment without
any prior knowledge(as shown in Figure 1.1(a)), and it endowed with few innate actions
that enable it to perform elementary functions such as moving one step forward, turning
its direction and sensing the environment. In the early stage of the agent interacting with
the environment, the agent does not know the meaning of these actions and needs it to
learn this from its interaction experience. Typically, the difference between this scenario
with other traditional ones is in that the agent’s input data doesn’t directly come from
the representation of the environment, nor the final goals for it to achieve. The questions
raise as follows: (a) how the agent acquires the perception of the environment and (b)
how it proposes appropriate behaviors for interacting. Moreover, (c) how does the agent
behave flexibly in the cases where the environment has been changed (as shown in Figure
1.1(b)).

In such scenario, the agent needs to learn regularities of interaction that afforded by
the environment and generate structured behaviors for diverse situations1. Meanwhile,
following a viable learning paradigm that allows the agent to successfully interact with
its environment and learn to avoid unfavorable interactions using structured behavior it
has learned. In addition, with capabilities of self-adaptation and flexibility that prevent
the agent learning from zero for the response of cases where the environment changes or
performance degrading in interacting with the environment.

1The perception is internal constructed by the agent from its own interaction experience rather than
input data directly comes from the state of the environment.

3

(a) Agent is placed in an unfamiliar environment. (b) The agent is in a changed environment.

Figure 1.1: The interaction scenarios.

1.2.2 Challenges

Designing such an autonomous agent to construct the knowledge of the environment and
have flexibility to tackle with diverse interactive situations is one of the greatest and long-
standing challenges in Artificial Intelligence. To be autonomous, the agent must learn to
master the contingencies from its own sensorimotor experiences in the world [54] (refer to
section 3.1.3).

For an autonomous agent, it needs to construct the perception of the environment
by autonomously discovering, learning and exploiting regularities of interaction afforded
by the environment, but without encoding any prior knowledge. As Roesch et al. [55]
(§1, p1) stated that:“knowledge of the world [. . .] is created from the interaction with the
environment, rather than existing in an ontic reality, supposedly pre-existing or available
for registration from the physical world”.

Furthermore, facing with different interaction scenarios, the agent should have capa-
bilities of adaptation and flexibility for recognizing the context and generate appropriate
behaviors. Designing a such learning model for an autonomous agent mainly involves the
following challenges:

• The environment-agnosticism challenge. The environment-agnosticism was pro-
posed that the agent should not implement ontological presuppositions about the
environment. Instead, the agent should have abilities to learn to construct the per-
ception of the environment from sensorimotor interactions without any predefined
knowledge of the environment.

• The autonomous and active learning challenge. The cognitive development should
be in an open-ended manner and the agent is self-motivated to learn behaviors that
fulfill an innate preference [17], which devoting to forming the core of a system for
task-independent learning.

• The progressive and incremental learning challenge. In the progress of cognitive
development, the agent continuously interacts with the environment around it and
undergo a developmental way to obtain new skills associated with its interaction
experience, rather than manually crafted by hand.

• The learning of regularities of interaction challenge. The agent has capabilities to
discover, learn and exploit regularities of interaction to master the sensorimotor

4

contingencies afforded by its coupling with the environment. Regularities of inter-
action are patterns of interaction that occur consistently and are building blocks of
constructing structured behaviors for increasing complexity.

• The acquirement of capabilities of adaptation and the flexibility challenge. The
agent has capabilities of continuously absorbing new knowledge from interaction
experience and adapting its percept of the environment in the cases where it receives
feedback from the environment beyond its expectations. Moreover, the agent is
capable of recognizing the context and generating appropriate behaviors for various
interaction situations.

1.3 Motivation

Based on the challenges we mentioned above, this dissertation mainly focuses on the
following aspects:

Knowledge construction of the environment through agent’s sensorimotor interactions.
With the cognition development is active and incremental, the agent is self-motivated to
discover, learn and explore regularities of interaction from its stream of experiences and to
construct knowledge about phenomena, which hypothetical presence in the environment
explains these regularities. The agent could construct categories of phenomena, and
exploit this knowledge to satisfy its innate preferences, as the way that imitates the
humans learning process from experiences.

Learning of structured behaviors with hierarchical sequential learning paradigm. The
agent’s cognitive development follows a hierarchical progression. With rudimentary lower-
level patterns of regularities that have learned from interactions, the agent is capable of
autonomously organizing them into a form of higher-level abstraction, which is hierar-
chical sequential learning of structured behaviors. With structured behaviors, agent could
gradually learn and exploit it, and simultaneously infer the structure of the environment
based on the patterns in the stream of interactions traces. Generating proper behaviors
for different situations as well. 2

Context recognition, adaptation and flexibly generating proper behaviors. The agent
enables to recognize current context3 and effectively proposes intentions with proper be-
haviors for the next interaction. In particular, the agent has abilities to accurately rep-
resent the context while reasonably matching it with its own interaction experience. In
addition, an efficient decision-making mechanism is needed for the selection of an ap-
propriate intention. Furthermore, with performance degrading in the enaction of this
intention, the agent is capable of acquire new structured behaviors based on the modifica-
tions of previously learned behaviors. In this work, we prefer the definition of “context”
from Abowd et al. [62] (p306) that “context is the information that can be used to

2The “higher-level” in this work indicates that the agent not only enables to learn to organize simple
behavioral patterns, but also has a reasoning mechanism to exploit experiences of fallback into a more
complex structure with flexibility in various scenarios. The agent could increasingly learn elaborated be-
haviors and organized them in a hierarchy that reflects how the agent exploits the higher-level regularities
afforded by the environment.

3The definition of context from [56, 57]is that the context as location, identities of nearby people and
objects, and changes to those objects, [58] enumerates context as the user’s emotional state, focus of
attention, location and orientation, date and time, objects, and people in the user’s environment. [59]
included the entire environment by defining context to be aspects of the current situation. [60] defines
context to be the user’s physical, social, emotional or informational state. [61] defines context to be the
subset of physical and conceptual states of interest to a particular entity. We prefer the definition from
[62].

5

characterize the situation of an entity, which could be a person, place, or object that is
considered relevant to the interaction”. Specifically, the context focuses on the reciprocal
process of interactions (some of them involve geographical conditions of the environment),
which is used to discover behavioral patterns for representing the learning process of the
agent.

Through this dissertation, we are going to answer the following questions:

• How can an agent build knowledge of the environment and of itself effectively and
efficiently with innate actions?

• How to design an efficient cognitive architecture which fits with agent’s continuous
interaction with the environment and new learned behavioral patterns with progres-
sive learning? Is there any efficient structure of behavioral patterns exist?

• With the learning is autonomous and progressive, which way can let us effectively
organize the behavioral patterns the agent has learned into a form of abstraction to
perform the structured behavior?

• Being placed in a new or a more complicated environment, how can the agent aware
the changes of the environment and generate proper behavior in it?

1.4 Overview of the dissertation

Following the central themes that we just have discussed above, this dissertation consists
of five parts: Introduction and background (Chapters 1, 2 and 3), The structure of CCA
(Chapter 4), Applications of CCA (Chapters 5 and 6), Experimental settings and per-
formance evaluation (Chapters 7) and Conclusion, discussion and perspective (Chapter
8).

In Chapter 2 reviews research in early mechanisms of infants’ cognitive development
and main ideas that are applied in designing an autonomous agent. The research of in-
fants’ learning mechanism includes Piaget’s theory of cognitive development, the theory of
Information Processing Principles (IPPs) and intrinsic motivations (like curiosity, novelty
etc.) in infants’ cognitive development. Also discussed the recently applications based on
these theories in infants’ early learning mechanisms.

Chapter 4 describes the design, the structure and the implementation of Constructivist
Cognitive Architecture, a computational model to simulate the learning mechanisms be-
hind infants’ cognitive development, for designing an autonomous agent constructs the
perception of the environment and acquires capabilities of self-adaption and flexibility.
This is one of the main contributions of this dissertation.

In Chapter 5, we demonstrate CCA’s ability to discover and learn regularities of
interaction in its stream of experience and construct causal perception between phenomena
whose hypothetical presence in the environment explains these regularities.

In Chapter 6, we introduce a Bottom-up hiErarchical sequential Learning model with
CCA, which is also called BEL-CA, as a solution for an autonomous agent continuously
learning representations of the environment and acquiring capabilities of self-adaptation
and flexibility.

Chapter 7 sets up an experimental scenario and introduce an implementation of ana-
lyzing agent’s interaction traces to demonstrate CCA’s ability of bottom-up hierarchical
sequential learning. The experimental scenario is designed based on the classic Small Loop

6

Problem (SLP), which acts as a benchmark of implementing and demonstrating cognitive
emergence for an autonomous agent. Meanwhile, we verify the agent’s capabilities of self-
adaptation and flexibility by modifying the environment to simulate interaction scenarios
that it hasn’t experienced before.

Finally, Chapter 8 presents an overview of the work presented in this dissertation and
concludes. Meanwhile, we provide several open issues related the design of CCA and its
applications. With problems still remain in the CCA and challenges that we have not yet
faced, we introduce the perspectives for the future work.

1.5 Contributions

The contributions of this dissertation are summarized as follows:

• We introduced a computational model of Constructivist Cognitive Architecture
(CCA) as the way to simulate the early mechanisms of infants’ cognitive devel-
opment based on theories of enactive cognition, intrinsic motivation and construc-
tivist epistemology. Furthermore, the proposed cognitive architecture allows a self-
developing agent to autonomously construct the perception of the environment and
obtain capabilities of self-adaption and flexibility to generate proper behaviors in
tacking with diverse situations.

• We presented a learning model that endows an autonomous agent with two differ-
ent motivations: (a) the motivation to be in control of one’s activity by seeking
to successfully enact interactions and (b) the motivation to enact interactions have
positive predefined positive valences and to avoid enacting interactions have prede-
fined negative valences. These two motivations spur the agent to learn regularities
of interaction afforded by the environment.

• We demonstrated CCA’s ability to discover and learn regularities of interaction in
its stream of experience and construct causal perception between phenomena whose
hypothetical presence in the environment explains these regularities. Moreover, we
introduced a Bottom-up hiErarchical sequential Learning model with CCA, which
is also called BEL-CA, as a solution for an autonomous agent continuously learning
representations of the environment and acquiring capabilities of self-adaptation and
flexibility.

• We proposed an implementation of toolkit to analyze the learning process at run
time called GAIT (Generating and Analyzing Interaction Traces), which allows us
to report and observe the detailed learning process for the agent interacts with
environment and the structured behaviors it has learned in each decision-making.

• Finally, we introduced the design and implementation of new simulations of CCA
and GAIT for autonomous robots on multiples platforms. We provided methods to
precisely control the robots’ movement and explained strategies for the robots to
maintain alignments with the environment.

7

Chapter 2

The state of the art

Contents
2.1 Infants’ cognitive development 9

2.2 Cognitive development of an autonomous agent 10

2.2.1 Constructivist learning . 10

2.2.2 Intrinsic motivation . 11

2.2.3 Self-adaptation and flexibility 12

2.3 Cognitive architecture . 13

2.3.1 The Soar Cognitive Architecture 13

2.3.2 Constructivist Learning Architecture 15

2.3.3 Enactive Cognitive Architecture 15

2.4 Summary . 17

8

In this chapter, we suggest a review of related works. We start with studies of early
stage learning mechanisms in infants’ cognitive development. Specifically, theories of
constructivism, Information Processing Principles (IPPs) and intrinsic motivations (like
curiosity, novelty and pleasantness etc.) in infants’ cognitive development have been
gradually developed and improved with considerable success. After then, we introduce
the recently applications based on these theories for an autonomous agents and cognitive
development with acquiring some abilities that infants have. Furthermore, we did a sur-
vey of developments in cognitive architectures and then introduced several successful and
classic cognitive architectures, which include the Soar Cognitive Architecture, Construc-
tivist Learning Architecture (CLA), and Enactive Cognitive Architecture (ECA). Finally,
we made a summary of this chapter.

2.1 Infants’ cognitive development

In the initial phase of cognitive development, in spite of the rapid physical growth, infants
also exhibit significant development of abilities in knowledge acquisition, thinking and
reasoning. With a number of ways (such as through sight, touch, taste, etc.) of interacting
with the environment, infants dynamically acquire the information and construct the
perception of the environment, engaging physically with objects in the environment and
behaving in novel and surprising ways. The question is how do infants connect and make
sense of what they are learning?

One natural idea is that the capacities of world modeling in infants are the re-
sult of built-in core systems, including those for object attention and permanence, self-
localization, number sense, and intuitive physics [34]. Mentioned by Lipsitt [66] that
“once operational, such systems would naturally give the infant a basis on which to make
judgments about which sequences of actions would be interesting to perform”. Expert
system [63, 64, 65] is such a model that emulates the judgment and behavior of a human
or an organization that has expert knowledge and experience in a particular field. Typi-
cally, it incorporates a knowledge about accumulated experience and an inference or rules
engine for applying the knowledge base to each particular situation that is described to
the program.

Meanwhile, it exists another understanding of that infants have a host of innate re-
sponses prepared to interact with the environment [66]. The acquisition of structured
behaviors is considered as a model of specific sets of response and response-induced stim-
ulation in which each elemental response may serve also as a stimulus for the next reaction
component. Particularly, a radical view from the behaviorist (e.g. Watson [67]) described
that “infants with a set of unconditional responses [. . .] environment then begins to shape
into patterns of behavior” [66].

However, from nervous system considerations, a view held that young children cogni-
tive development is based on the relationship between the maturation and the environment
[66]. It suggests that the maturation-environment relationship is a two-way street that (a)
experimental effects awaited maturational changes that would permit the experience to
have an effect and for the behavior to occur. And (b) environmental enrichment through
the implementation of special experiences can alter maturation rates in certain sphere,
which in turn can alter the readiness of the organism to assimilate further stimulation
in that modality. Evidences from Globus and Scheibe [68], Schapiro and Vukovieh [69]
and Hubel and Wiesel [70] support the contention that experience itself increases dendrite
proliferation.

As one of the a first psychologists who makes a systematic study of the beginnings of

9

mental development and the origins of intelligence in children, Piaget [50] explains the
mechanisms and processes of how an infant, and then the child, develops into an individ-
ual who can reason and think using hypotheses, and constructs a mental representation
of the world. Disagreed with the idea that intelligence was a fixed trait, he regarded
cognitive development as a progressive reorganization of mental processes which occurs
due to biological maturation and interaction experience with the environment [50, 71].
The mechanism by which infants integrate experience into progressively higher-level rep-
resentations, which called the “constructivism”.

The constructivism as a theory of knowledge acquisition proposes that “learning hap-
pens as a result of an internal mental representations and external perceptions from
interactions” [72]. According to the constructivism, infants learning progress from sim-
ple to complex models of the environment which allow the them to build higher-level
representations from lower-level ones. Behavior in constructivism acts as the adaptation
to the environment is controlled through mental organizations of sensorimotor scheme,
which the individual uses to represent the world and generate corresponding actions. Each
sensorimotor scheme (refers to section 3.1.1) binds the correlation between the mental
and physical actions in knowledge construction from the environment. As the hierarchy
of schemes grows higher, which representing that they are responsible for more complex
behaviors, therefore structures are termed. While structures become sophisticated, they
could be organized in a hierarchical manner [73] which represents from general to specific.

For providing a formal model of constructivism, the habituation technique was intro-
duced to explore the details of infant cognition. The habituation technique relies on a
novelty preference in infants [77]. The habituation technique is described as thant “when
an infant is presented with the same familiar scene repeatedly, the he will grow bored and
look away from the scene, presumably in searching of something novel. However, if the he
is presented with something new, the infant will stare longer” [85]. Thus, gaze duration
could be used as a measure of novelty. The habituation experiment could be designed by
using a scene that familiar in one way, and novel in another way. Such experiment can
be used to determine how the infant is processing the scene [25].

With studies of infant cognitive development and the habituation technique, Cohen
et al. [78, 79] demonstrated that primitives of infant’s world model are acquired rather
than innate. Specifically, infants organize stimuli into categories based on criteria and
build higher-level representations by applying these criteria to lower-level representations.
“Given this work, it suggests a possible path to implement a more accurate computational
model of developmental cognition” [76].

A related but alternative idea is that the intrinsic motivation of curiosity can itself
drive the development of world model making [18]. The idea relies on that the child pushes
the boundaries of what its world-model-prediction systems can achieve, giving itself useful
data on which to improve and develop these systems [1]. Related to the conception of the
“scientist in the crib” [4], in which behaviors learning are an active learning process [10]
and could be reorganized into highly structured, driving the self-supervised learning of
a variety of representations underlying sensory judgments and motor planning capacities
[81, 3, 2, 82].

10

2.2 Cognitive development of an autonomous agent

2.2.1 Constructivist learning

Constructivism as a knowledge acquisition theory suggests that learning happens as a re-
sult of an internal mental representations and external perceptions from interactions [72],
rather than existing in an ontic reality, supposedly pre-existing or available for registra-
tion from the physical world [55]. In particular, the radical constructivism [83] describes
that knowledge of the world comes from the “result of self-organizing construction” based
on individual’s experience. In the view of constructivist, the agent is not designed as a
passive observer of reality, but rather constructs a perception of reality through active
interaction experience [9].

Drescher [74] proposes a constructivist schema mechanism attempts to implement Pi-
agetian constructivist learning. The constructed schema associated with context, actions,
and expectations. In Drecher’s implementation, schemas were neither associated with
satisfaction value nor did the agent exhibit self-driven behavior. Particularly, the agent’s
exploration was rather random and resulted in a combinatorial explosion as the agent
encountered increasingly complex environment.

Georgeon et al. [84] presented a self-motivated and hierarchical sequential learning
model which inspired by Piaget’s theories of early-stage developmental learning. In this
learning model, the behavior organization is driven by pre-defined values associated with
primitive behavioral patterns. Thus the agent increasingly learns elaborated behaviors
through its interactions with its environment. Additionally, these learned behaviors are
gradually organized in a hierarchy that reflects how the agent exploits the hierarchical
regularities afforded by the environment.

Guériau et al. [12, 13] combined constructivism with reinforcement learning (RL) for
autonomous and continuous learning of state space representations and their run-time
adaptation, as a way toward fully self-adaptive RL. Following a constructivist learn-
ing perspective, the agent iteratively builds a mapping of its environment into a self
perception-action states and the knowledge governs the decision process, through learn-
ing its experience of interacting with environment.

Based on the Information-Processing Principles (IPPs) introduced by Cohen et al.
[78], Chaput et al. [25, 76, 85] combine with a hierarchy of Self-Organizing Map (SOM)
and present a hierarchical self-organizing model with constructivist learning, as a way
to simulate infants’ cognitive development and flesh out the detail of learning process.
Particularly, the model is aimed at modeling the constructive process of cognitive devel-
opment as observed in infants. However, the Constructivist Learning Architecture (CLA)
they proposed by using the scheme mechanism in each level of the architecture is depended
on goals defined by the designer. Therefore, it relies upon a problem-solving approach
that in fact differs from our motivations [9].

2.2.2 Intrinsic motivation

Intrinsic motivation [1, 17, 10, 15] (like curiosity, novelty, and surprise etc.) drives the
development of the world-model making, as a way to replicate some abilities of infants’
interactions [86]. Examples of intrinsic motivation systems like curiosity [17], search for
predictability and control [87], and search for simplification of knowledge or compressibil-
ity of data [18]. With intrinsic motivation, the value system is generally not made explicit
in the form of numerical values. Instead, it is implicitly characterized by the resulting

11

behavior of the system.

Driven by intrinsic motivations, Satinder et al. [19] adopt an evolutionary perspective
and define a new optimal reward framework that captures the pressure to design good pri-
mary reward functions that lead to evolutionary success across environments. The result
shows that optimal primary reward signals may yield both emergent intrinsic and extrinsic
motivation. Savinov et al. [88] propose an intrinsic motivation model with curiosity and
episodic memory for an autonomous agent obtain capabilities of self-adaptation. Specifi-
cally, the method stores agent’s interactive experiences of the environment in an episodic
memory, while also spur the robot for reaching experiences not yet represented in memory.
Oudeyer et al. [17] present the mechanism of Intelligent Adaptive Curiosity as an intrin-
sic motivation system which pushes a robot towards situations in which it maximizes its
learning progress. This drive makes the robot focus on situations which are neither too
predictable nor too unpredictable, then emerging the autonomous mental development.

With intrinsic motivation of curiosity, Haber et al.[15] mathematically formalize a
curiosity-driven intrinsic motivation with neural network and placed the agent in an eco-
logically naturalistic simulated environment. By combining with an error map, the agent
then uses the self-model to adversarially challenge the developing world-model. Twomey
et Westermann [20] present a formalization of the mechanism underlying infants’ curiosity-
driven learning during visual exploration and implement this mechanism in a neural net-
work that captures empirical data from an infant visual categorization task. The results
performed that maximal learning emerges when maximize stimulus novelty relative to its
learning history, depending on the interaction across learning between the structure of
the environment and the plasticity in the learner itself.

2.2.3 Self-adaptation and flexibility

Most studies in adaptive learning distinguish between a learning phase where the knowl-
edge is acquired, and a performance phase where the learning is assessed. Aha [89]
highlighted two categories of learning algorithms like: “eager learning and lazy learning”.
Eager learning algorithms as a way to compile input samples and use only the compila-
tion to make decisions (e.g., reinforcement learning). Lazy learning algorithms sometimes
perform little compilation and reuse the stored input samples to make decisions (e.g.,
schema mechanisms) [9, 10].

Reinforcement Learning (RL) [90] and with its advances [7, 28, 91] as a most popu-
lar and successful way to enable runtime adaptation, to learn the appropriate actions by
learning to get the maximum cumulative reward of actions, which is used to help making
decision of actions in response to interactions with the environment. However, the per-
formance of algorithms become unsuitable and will need further self-adapting during the
system execution in situations where environment changes. Various techniques have been
developed to enable RL to tackle with such non-stationary environments, basically the
main methods aim at continuously detecting and predicting environment conditions [13].

Baranes et al. [10] introduce an self-adaptive architecture with intrinsic motivation
of curiosity that allows an artificial robot to efficiently and actively learn distributions of
parameterized motor skills/policies that solve a corresponding distribution of parameter-
ized tasks/goals. With result from the experiments, it demonstrated that: (a) exploration
in the task space can be a lot faster than exploration in the actuator space for learning
inverse models in redundant robots; (b) selecting goals maximizing competence progress
creates developmental trajectories driving the robot to progressively focus on tasks of
increasing complexity; (c) this architecture allows the robot to actively discover which

12

parts of its task space it can learn to reach and which part it cannot.

Focus on the limitations of the design of the reward function for complex behavior
learning in Reinforcement Learning, Heess et al. [11] tried to explore methods from the
perspective of rich environment to promote the learning of complex behavior. In partic-
ular, they trained multiple agents on a diverse set of challenging terrains and obstacle,
combined with a novel scalable variant of policy gradient reinforcement learning, they
demonstrate that this principle encourages the emergence of robust behaviors that per-
form well across a suite of tasks. Moreover, the agent learns to run, jump, crouch and
turns as required by the environment without explicit reward-based guidance.

The enactive paradigm as a viable alternative to traditional computational approaches
with respecting to the practical goal of building artificial agents, which allows an au-
tonomous agent to behave in a robust and flexible manner under changing real-world
conditions [43]. Based on the enactive paradigm, Georgeon et al. [44] propose an Enac-
tive Cognitive Architecture that allows the agent to “autonomously discover, memorize,
and exploit spatio-sequential regularities of interaction”. Particularly, the ECA suggests
that the cognitive development of an autonomous agent is on the basis of sensorimo-
tor interactions with the environment, which indicates perception and action embedded
within sensorimotor schemes, rather than separates them apart. Gay et al. [92] present
an architecture for self-motivated agents to organize its behaviors in space according to
possibilities of interactions afforded by initially unknown objects. The agent is designed
to construct its own knowledge of objects through experience, rather than exploiting pre-
coded knowledge. Experiments from this work with a simulated agent and a robot show
that they learn to navigate in their environment, taking into account multiple surround-
ing objects, reaching or avoiding objects according to the valence of the interactions that
they afford.

2.3 Cognitive architecture

Cognitive architecture as a part of research in Artificial general intelligence (AGI) which
aims at enabling to reconstruct human-level intelligence in the fields of AI and computa-
tional cognitive science. With the definition of cognitive architecture from the Institute
for Creative Technologies as: “hypothesis about the fixed structures that provide a mind,
whether in natural or artificial systems, and how they work together – in conjunction with
knowledge and skills embodied within the architecture – to yield intelligent behavior in a
diversity of complex environments” 1. One of the ultimate goals of a cognitive architecture
is to summarize the various results of cognitive psychology in a comprehensive computer
model.

During the last decades, a large number of cognitive architectures have been developed
and have achieved great success both in theory and in application. Classic cognitive
architectures, such as Soar [93],ACT-R [94], EPIC [95], MicroPsy [96], CLARION [97],
ICARUS [98] etc. have been greatly improved in ease of use and robustness after long-
term continuous developments and improvements [99, 100, 101, 102, 103, 104]. At the
same time, the newly proposed cognitive architectures, such as CLA [85], LIDA [105],
ECA [44], ECRL [88], which integrate various new ideas and cutting-edge implementation
technologies in the field of artificial intelligence and cognitive development, and thus has
better performance in the flexibility and autonomy. We respectively introduce and explain
several typical cognitive architectures below.

1Cited from https://en.wikipedia.org/wiki/Cognitive_architecture

13

https://en.wikipedia.org/wiki/Cognitive_architecture

2.3.1 The Soar Cognitive Architecture

As a general cognitive architecture, Soar was originally created by Laird et al [93] and
integrates a multiple of learning theories related to knowledge-intensive reasoning, reac-
tive execution, hierarchical reasoning, and learning from experience. The goal of the Soar
as mentioned that “is to develop the fixed computational building blocks necessary for
general intelligent agents – agents that can perform a wide range of tasks and encode, use,
and learn all types of knowledge to realize the full range of cognitive capabilities found in
humans, such as decision making, problem solving, planning, and natural language under-
standing” [106]. Since its beginnings of creation and long-term continuous development
and improvement, it has been widely used by AI researchers to create intelligent agents
and cognitive models of different aspects of human behavior.

The cognitive architecture of Soar is not designed for solving a specific problem. In-
stead, it is the task-independent infrastructure to bring an agent’s knowledge focus on
generating appropriate behavior. Furthermore, the learning mechanisms in which con-
stitute the agent’s memories upon interaction experience. Over years of development
and improvement, the current version of Soar (as shown in Figure 2.1) features major
extensions that support multiple long-term memory systems (procedural, episodic, and
semantic), multiple learning mechanisms (chunking, reinforcement learning, semantic,
and episodic learning), and multiple representations of knowledge (symbolic, numeric,
and imagery-based representations) [93].

Figure 2.1: The structure of Soar 9 from Laird et al. [106], which features major extensions
of reinforcement learning, semantic memory, episodic memory, mental imagery, and an
appraisal-based model of emotion.

Above all, the cognitive architecture Soar is both a theory of what computational
structures are necessary to support human-level agents and an implementation of that
theory. However, it follows a problem solving approach and treats inputs as percepts that

14

expresses the realist paradigm of Artificial Intelligence (as we mentioned in Section 1.1),
which does not match with our requirement.

2.3.2 Constructivist Learning Architecture

The Constructivist Learning Architecture (CLA) is a computational model of infant cog-
nitive development that was built using the Information-Processing Principles (IPPs) as
a general design specification. Unlike many other computational models, CLA is not in-
tended to be an “existence proof” which shows that something can be learned. Rather,
CLA is an attempt to model the constructive process of cognitive development as observed
in infants.

The implementation of the CLA combines with the Self-Organizing Maps (SOM) [107],
an kind unsupervised learning style system based on neuroscientific principles. Particu-
larly, the CLA uses a SOM for simulating each layer of unit, and connects multiple layers
hierarchically using a Hebbian learning algorithm [108]. Specifically, the lowest level orga-
nizes simple perceptual stimuli into a set of prototypes positioned within a topographical
map. The next level organizes the information represented by the lower-level map into
yet another map of prototypes. Levels may continue to be added as needed. Thus, CLA
is a simple-to-compound system that is consistent with the evidence for constructivist
learning [85].

Figure 2.2 provides a schematic overview of the different layers of the model. Espe-
cially, the launching events are captured with diverse spatial and temporal components.
The two input feature vectors represented for each of components of the launching events.
The Position Input as the first input by representing the position of the two balls in time.
The Speed Input represented the speed of each ball which is provided the temporal infor-
mation of the events. These two parallel input vectors simulate the stimuli of the model
by using features that we know even young infants can perceive. Additionally, each of
these input vectors projects to a corresponding layer, the Position Input to the Position2
Layer, and the Speed Input to the Speed2 Layer. These second level layers represent,
as prototypes, the different positions and speeds separately over the course of an entire
event. Finally, the Top Layer of the model receives inputs from both the Position2 and
Speed2 Layers. Its task is to represent the event as a whole and hopefully, after training,
be able to distinguish causal from non-causal events.

2.3.3 Enactive Cognitive Architecture

The Enactive Cognitive Architecture (ECA) was introduced by Georgeon et al. as a novel
way that “allows the agent to autonomously discover, memorize, and exploit spatial-
sequential regularities of interaction afforded by the coupling of the agent and the en-
vironment” [44] . The learning model in the ECA is called Enactive Markov Decision
Process (EMDP). In ECA, EMDP keeps perception and action embedded in sensori-
motor schemes, rather that dissociates them separately. Moreover, instead of seeking
specific goals with a well defined reward function (as reinforcement learning paradigm),
the EMDP agent actively learns to continuously master the sensorimotor contingencies
from its interaction experience with the environment. In doing so, the agent exhibits a
form of intrinsic motivation related to the autotelic principle [109], and a value system
attached to interactions called interactional motivation. From the perspective of cogni-
tive science, this modeling approach allows the design of agents capable of autonomous
self-programming, which provides rudimentary constitutive autonomy—a property that
theoreticians of enaction consider necessary for autonomous sense-making.

15

Figure 2.2: A schematic of the layer setup used in CLA model of an infant’s development
of causal understanding.

Figure 2.3: The Enactive Cognitive Architecture (ECA).

16

Figure 2.3 gives an overview of the Enactive Cognitive Architecture (ECA). (a) At
the bottom, the Interaction Timeline shows the stream of interactions enacted over time.
Enacted interactions are represented by colored symbols to indicate different interaction
situations. (b) On the top, the Sequential System represents the hierarchical sequential
regularity learning mechanism of EMDP. (c) In the center, Spatial Memory keeps track of
the position (relative to the agent) of enacted interactions over the short term. When the
agent moves, spatial memory is updated to reflect the relative displacement of enacted
interactions. (d) On the left, the Ontology mechanism records bundles of interactions
based on their spatial overlap observed in spatial memory. (e) On the right, Behavior
Selection mechanism balances the propositions made by the sequential system and by
spatial memory, and then selects the next sequence of interactions to try to enact.

2.4 Summary

Focus on designing an autonomous agent to obtain learning abilities that infants have, we
suggest a review in this chapter. We start with recent developments in the field of studies
in learning mechanisms of infants’ early-stage cognitive development. In particular, the-
ories of constructivism, information-processing principles and intrinsic motivations (like
curiosity, novelty etc.) in infants’ cognitive development have been largely developed and
improved with considerable success. Base on these theories, large numbers of models and
approaches are being proposed to encourage an autonomous agent to acquire the knowl-
edge of the environment from its experience and learn to organize its behavior to fulfill a
from of intentionality which is defined independently of a specific task.

Furthermore, we did a survey of developments in cognitive architectures and intro-
duced several successful and classic cognitive architectures, which include Soar, Con-
structivist Learning Architecture (CLA), and Enactive Cognitive Architecture (ECA).

Inspired by the theories development in the filed of early mechanisms in infants’ cog-
nitive development and recent developments in artificial intelligence, we introduce a new
computational model of cognitive architecture (refers to Chapter 4) for designing an au-
tonomous agent to acquire the perception of the environment and obtain capabilities
of self-adaptation and flexibility for generating proper behaviors to tackle with diverse
situations, as a way to simulate the early mechanism of infants’ learning process.

17

Chapter 3

Foundations

Contents
3.1 Theoretical foundations . 19

3.1.1 The theory of developmental psychology 19

3.1.2 Radical constructivism . 22

3.1.3 Enactive cognition . 22

3.1.4 Motivations in agent’s cognitive development 23

3.2 Implementation Foundations . 24

3.2.1 Representation and operations of schemes 25

3.2.2 Benchmarks . 30

3.3 Conclusion . 32

18

In this chapter, we provide the foundations behind this computational model of Con-
structivist Cognitive Architecture (CCA) and pave the way for the next chapter to describe
the design, the structure and the implementation of CCA. The foundations are divided
into two parts: the theoretical foundations and the implementation foundations. Since
the central of the dissertation is that a model based on the constructivist paradigm to
simulate the early mechanisms of infant’s cognitive development, we started with intro-
ducing Piaget’s theory of cognitive development and the constructivism. The theories of
radical constructivism and radical interactionism provide viable approaches to implement
the constructivism into an autonomous agent. Moreover, the enactive paradigm originally
emerged as a part of embodied cognitive science endows the self-developing agent with a
self-motivation, which spurs the agent to construct regularities of interaction afforded by
the environment.

In the part of implementation foundations, we explain the representation and oper-
ations of schemes in computer science. Two benchmarks of Small Loop Problem (SLP)
and a pedagogical game named “Little AI” are introduced for validating CCA’s abilities
in Chapter 5 and Chapter 7. In the following chapters, these two foundations are merged
to form the computational model that is the main contribution of this dissertation: the
Constructivist Cognitive Architecture, or the CCA.

3.1 Theoretical foundations

3.1.1 The theory of developmental psychology

The modern study of infant cognition can truly be said to have started with the research
of Piaget [50]. His seminal work in the area of infant cognition presented for the first time
a comprehensive picture of infant cognitive development, and provided a theory of infant
cognition called the Developmental Stage Theory.

To better understand some of the things that happen during cognitive development,
it is important first to examine a few of the important ideas and concepts introduced by
Piaget. Piaget’s cognitive theory mainly includes the following basic components that
influence how children learn and grow: (1) schemes as building blocks of knowledge, (2)
stages of cognitive development, and (3) adaptation processes that enable the transition
from one stage to another.

Schemes

Schemes are described as elementary building blocks in cognitive development, by which
organizing knowledge that enables human to perform a mental representation of the en-
vironment. In the definition of scheme from Piaget [111], that “The scheme is a cohesive,
repeatable action sequence possessing component actions that are tightly interconnected
and governed by a core meaning.” Specifically, a scheme includes both a category of
knowledge and the process of obtaining that knowledge [110]. As experiences happen,
the newly obtained information is used to modify, append to previously existing schemes.
One of the assumptions comes from that human stores mental representations and applies
them when needed [111]. For example, a person might have a scheme about studying in
the library. The scheme is a stored form of the pattern of behavior which includes find
an available table and a comfortable chair, plug the charger, open the computer and start
self-studying. This is an example of a type of scheme called a “script”. Whenever they
want to study in the library, they retrieve this scheme from memory and apply it to the

19

situation. The schemes Piaget described tend to be simpler than this, especially those
used by infants. He described how as a child gets older his or her schemes become more
numerous and elaborate.

Figure 3.1: The scheme (or ”script”) of starting self-studying in the library by retrieving
schemes from the memory about taking a chair, finding a available table, going to the
power socket and plugging the charger, opening the computer and starting self-studying.

With theories from Piaget that newborn babies have a small number of innate schemes-
even before they have had many opportunities to experience the world [111]. As the
infants use reflexes to adapt to the environment, these reflexes are quickly replaced with
constructed schemes. The neonatal schemes are the cognitive structures underlying innate
reflexes and are genetically programmed into us. For example, babies have a grasping
reflex, which is elicited when something touches the palm of a baby’s hand, or the rooting
reflex, in which a baby will turn its head towards something which touches its cheek, are
innate schemes. Shaking a rattle would be the combination of two schemes, grasping and
shaking.

The four stages of cognitive development in infants

With the cognitive development in Piaget’s theory, it suggests that children go through
4 distinct stages which reflect the development of sophistication in children’s thought,
which relate to aspects of mental development including that of reasoning, language,
morals, and memory. Specifically, each child goes through the stages in the same order,
and the development progress is determined by biological maturation and interaction with
the environment. The four stages of cognitive development include 1:

• Sensorimotor stage (Infancy, Birth-2 years). In this period, intelligence is demon-
strated through motor activity without the use of symbols. Infants know the world
through their basic actions such as sucking, grasping, looking and listening. Knowl-
edge of the world is limited(but while also developing) because its based on physical
interactions/experiences.

• Pre-operational stage (Toddlerhood through Early Childhood, 2-7 years). In this pe-
riod, intelligence is demonstrated through the use of symbols, language use matures,
and memory and imagination are developed, but thinking is done in a nonlogical,
nonreversable manner.

1Cited from https://www.verywellmind.com/piagets-stages-of-cognitive-development-2795457,
Section 2

20

https://www.verywellmind.com/piagets-stages-of-cognitive-development-2795457

• Concrete operational stage (Elementary and early adolescence, age 7 to 11 years).
In this stage (characterized by 7 types of conservation: number, length, liquid, mass,
weight, area, volume), intelligence is demonstrated through logical and systematic
manipulation of symbols related to concrete objects.

• Formal operational stage (Adolescence to adulthood, 11 years and over). In this
stage, intelligence is demonstrated through the logical use of symbols related to
abstract concepts and logically test hypotheses.

Adaptation processes between four stages of cognitive development

In the view of constructivism, children take an active role in the learning process, act-
ing much like little scientists as they perform experiments, make observations, and learn
about the world [112]. As kids interacting with the world around them, they continually
add new knowledge, build upon existing knowledge, and adapt previously held ideas to ac-
commodate new information. This adaptation processes happen through (a) Assimilation
which is using an existing scheme to deal with a new object or situation. (b) Accommo-
dation which happens when the existing scheme (knowledge) does not work, and needs to
be changed to deal with a new object or situation, and (c) Equilibration the force which
moves development along. Each process is not developed or operated in isolation, but
enables and mutually supports learning and development in the others. Moreover, these
processes are used throughout life as the person increasingly adapts to the environment
in a more complex manner.

The assimilation refers to a part of the adaptation process which initially proposed by
Piaget, as one of the processes by using or transforming the environment so that it can be
placed in preexisting cognitive structures. Through assimilation, the agent incorporates
new information or experiences into already existing cognitive schemes (or knowledge)
[113], sometimes that reinterprets these new experiences so that they will fit in with
previously existing old information.

While another part of adaptation involves of modifying or altering existing schemes to
accept new information from the environment, or called as accommodation. This happens
when the existing scheme does not work, and needs to be changed to deal with a new object
or situation [114, 115]. Accommodation is necessary because it is how people will continue
to interpret new concepts, schemes, and more [116]. The process of accommodation
involves changing current cognitive structures, as a result of newly acquired external
knowledge or new experiences [12, 117]. New schemes could also be developed during this
process. With this procedure, schemes become more refined, detailed, and nuanced as
new information into knowledge.

Additionally, assimilation and accommodation cannot exist without the other [116].
They are two sides of a coin. For keeping the balance between these two functions of as-
similation and accommodation, the equilibration is proposed as the force that drives the
learning process keeps going. Equilibrium occurs when a child’s schemes can deal with
most new information through assimilation. However, an unpleasant state of disequilib-
rium occurs when new information cannot be fitted into existing schemes (assimilation).
Equilibration is the force which drives the learning process as we do not like to be frus-
trated and will seek to restore balance by mastering the new challenge (accommodation).
Once the new information is acquired, the process of assimilation with the new scheme
will continue until the next time we need to make an adjustment to it [118]. As shown in
Figure 3.2, all adaptation processes are used simultaneously and alternately throughout
life as the agent increasingly adapts to the environment in a more complex manner.

21

Figure 3.2: Three processes of assimilation, accommodation and equilibration. When the
agent faced with a new situation, it takes this new information in existing schemes is
known as assimilation. Accommodation involves modifying existing schemes to accept
new information. Equilibration is the force moves development along.

3.1.2 Radical constructivism

The radical constructivism as a theory of knowing concerns the relation between the
knowledge and the reality, which basically focusing on two classic epistemological prob-
lems of: (a) how can acquire the knowledge of reality and (b) how reliable and “true” that
knowledge might be. Particularly, the radical constructivism suggests that “the knowl-
edge does not reflect an ‘objective’fe ontological reality, but exclusively an ordering and
organization of a world constituted by experience” [119].

Based on the fundamental feature of constructivist epistemology, the radical con-
structivism proposes a prototype of knowledge acquisition in cognitive organisms which
describes that the world is constructed as an experiential world that consists of interaction
experiences and have no clue about the judgment of “truth” in the sense of feedback from
the interaction with the reality. As stated by Von Glasersfeld [83] that “the cognitive ac-
tivity takes place within the experiential world involves a purpose to establish regularities
that allows to repeat certain cognitive activities that well serve this purpose and avoid
the others based on the evaluation of its experience”.

Furthermore, it proposes constructivist approaches that concern the nature of regu-
larities which a cognitive organism looks for invariant experience. Particularly, the ex-
periential sequence was constructed with the comparison between the past perception or
experience and the relation between them, or an activity call like “putting-in-relation”.
And also it makes possible to consider repeated experiences as particular objects and to
connect them with a space that is “independent of the subject’s own motion and into a
time independent of the subject’s own stream of experience” [120].

3.1.3 Enactive cognition

In cognitive science, there has been a traditional tripartite division of the mind between
perception, the control system and motor action. As Georgeon, Manzotti and Marshall
[44] (p46) noted that this view has been nicely dubbed as the “classic sandwich model” by

22

Susan Hurley [121]. Based on this understanding, a large number of control architectures
are developed by following this way. Since 1980s, different attempts gradually emerged
to face this traditional view, especially in the field of robotics [122] but also from a more
psychological and theoretical perspective [123, 124, 125]. In particular, the view conveyed
an idea that it might be a mistake to consider sensation independently from action and
that cognitive system should be designed on the basis of low-level sensorimotor loops
that represent sensorimotor patterns of interaction. This intuition gained momentum
from other related views such embodied cognition [126, 127], ecological psychology [128,
129], sensorimotor theories [54, 130], morphological robotics [131, 132, 132], evolutionary
robotics [133, 134], developmental robotics [35], and epigenetic robotics [135, 136].

Especially, the enactive approaches were introduced as that “perceptual experiences
are not events that are internal to our heads, but are rather something which we enact or
bring forth through our engagement and sensorimotor exploration of our environment”
[43]. More specifically, perception is an exploratory activity, and in particular that vision
is a mode of exploration of the environment that is mediated by knowledge of sensorimotor
contingencies. The enactivist approach suggests modeling a cognitive agent on the basis
of sensorimotor interactions with the environment.

In this dissertation, we introduce a modeling approach that goes a step beyond the
notion of low-level sensorimotor loops by simply considering sensorimotor patterns - also
called sensorimotor schemes by Piaget [137] - as the atomic elements manipulated by our
algorithms.

3.1.4 Motivations in agent’s cognitive development

Motivation is generally defined as a driving force that initiates and directs behaviors. In
this dissertation, we introduce two forms of self-motivation: the motivation of enjoyment
being in control of one’s own activity by seeking to successfully enact interactions, and
the motivation to enact interactions have predefined positive values and to avoid enacting
interactions have predefined negative values. We call the former as autotelic motivation,
and the latter interactional motivation.

In traditional computational models, motivations is presented as an agent’s decision
making for behaviors selection based on maximizing a value function, typically, the rein-
forcement learning (RL) algorithms [138, 30] try to simulate an agent learns to perform
actions with the best rewards [139]. The designer of the RL interprets a state s ∈ S as
a specific configuration of an agent in a virtual environment, and interprets a ∈ A as an
action that the agent performs in the environment according to the agent’s policy. In
this case, the agent’s motivation is regarded as the extrinsic motivation [140] with the
reason of that this reward function r : S → ℜ is defined independently from the agent’s
policy. Additionally, within designer’s view that “agent’s motivation seems to come from
something rewarding in the environment that is external to the agent itself” 2.

Autotelic motivation

Autotelic motivation as a form of intrinsic motivation related to the autotelic principle,
which proposed by which an agent could self-regulate its build-up skills and knowledge
without the intervention of the designer to scaffold the environment, stage the reward
function , or bring resources progressively online in a maturational schedule [109].

2Cited from Implementation of DEvelopmental learning from O.Georgeon, https://projet.liris.
cnrs.fr/ideal/mooc/lesson.php?n=022

23

https://projet.liris.cnrs.fr/ideal/mooc/lesson.php?n=022
https://projet.liris.cnrs.fr/ideal/mooc/lesson.php?n=022

With the original definition of autotelic motivation from Luc Steels [109], it implies 3

• Each component must be parameterised so that challenge levels can be self-adjusted
based on self-monitoring of performance.

• Each component must have the ability to increase skill to cope with new challenge.

• A global dynamics regulating the adjustment (both increase and decrease) of chal-
lenge levels

The reward function in this motivation corresponds to the degree of balance between chal-
lenge and skill for each of its components. When the complexity of the agent’s behavior
increases, an emergent side effect of the system’s effort to keep this balance between the
challenge and the skill.

Interactional motivation

Interactional Motivation as a new form of self-motivation for artificial agents and robots
to specify an inborn perception system without any prior knowledge of the environment.
In the interactional motivation, the agent has no specific goal to achieve and even in some
cases may lack the state of the environment. However, the agent has a set of predefined
primitive interactions (as like schemes) that allow it to enact with the environment.

We call valence of interaction v(i) the scalar value associated with the interaction i that
represents the value of enacting this interaction and design the agent’s policy that tries to
enact interactions that have a positive valence. Consequently, the agent must construct
knowledge of the world so that it can predict the consequences of enacted interactions and
seek situations that lead to positive valences and avoid situations that lead to negative
valences. This learning process is open-ended because the agent has no goals predefined
as reward states.

While we knew that this type of interactional motivation is not the only possible
motivational drives for sensorimotor agents. Recall that we introduced the drive to learn
to enact the result of interactions. Bue more importantly, since there is not external
data for the agent that directly represents the environment’s state, it can hardly can be
pre-designed to perform a predefined goal.

3.2 Implementation Foundations

Constructivism suggests that knowledge of reality is constructed from learning regulari-
ties of sensorimotor schemes afforded by the environment. And each scheme represents
the bind relationships between the mental and physical actions involved in the obtain of
knowledge of the environment. Particularly, as schemes increasingly become more com-
plex, which represent that they are responsible for more complex behaviors, structures
are termed. While structures become complicated, higher-level schemes can be built from
the activation of lower-level schemes. Therefore, they could be organized in a hierarchical
manner [73] which represents from general to specific.

Inspired by Piaget’s constructivist epistemology, a large number of implementations
called schemes mechanisms are springing up. Most of which concretized the scheme as
a triplet of [observation1, action, observation2] and referred to them with the term of

3Cited from [109], Selection 3, Page 7.

24

schema, for example Gary Drescher [74], Filipo Perotto et al. [141], and Michael Miller
[142]. The agent explores its environment and records schemes with a particular action
in a specific state (observation1) would likely obtain a certain outcome (observation2).
However, this approach could lead to a combinatorial explosion when the environment’s
complexity grows gradually [9].

However, more recently, new models have been proposed based on couples (2-tuple)
rather than triplets (3-tuple). Georgeon and Ritter [9] modeled the schemes in the
form of 〈interaction1, interaction2〉, which represents that in the context of interaction1,
the agent can enact interaction2. A related but alternative idea comes from Kristinn
Thórisson [143] in that a Causal-relational models (CRMs) could be created when the
controller observes an event α and a subsequent event β that follows. The model can be
seen as a hypothesis that the observed event α caused the observed event β, so that when
observing again en event α in the future, this model will predict that β will be observed.
Moreover, Brett Martensen [144] utilized Binons (binary neurons) to represent and im-
plement the perception-action hierarchy. In particular, there exists two different types of
binons: the spatial and the temporal, the spatial binons represent simultaneously occur-
ring patterns of percepts and actions; The temporal binons represent sequential patterns
of percepts and actions.

In our work, schemes are modeled as twosomes (2-tuple) and we follow the form of
schemes from Georgeon and Ritter [9] of 〈interaction1, interaction2〉 (as shown in Figure
3.3) , which describes the context in terms of interaction means that the agent learns
to “see” its world in terms of affordances [129] related to its own prior experience. In
this dissertation, we follow Gibson’s definition of affordances as possibilities of interaction
afforded to the agent by the environment. With this formalism, schemes natively encode
entire sequences of interactions in a hierarchical style. In order to highlight this radical
difference with classical scheme mechanisms, we prefer to keep Piaget’s term scheme
rather than using the term of schema.

Figure 3.3: The form of schemes and the construction of higher-level scheme from lower-
level schemes.

3.2.1 Representation and operations of schemes

Representation of schemes in computer science

As shown in Figure 3.3, a scheme is composed of two interactions in form, and higher-
level schemes are also composed of two low-level schemes. In order to better express the
construction and operation of schemes, we utilize a type of data structure in computer
science which call binary tree (BT) to represent schemes, and through the operations on

25

this binary tree, we can realize the dynamic generation, construction and modification of
schemes.

In computer science, the binary tree as a kind of tree structure, which is characterized
that each node has at most two sub-nodes. The sub-nodes of the binary tree are divided
into left and right, and its order is not allowed to be modified arbitrarily. In particular,
the binary tree has a hierarchical structure. These features of the binary tree meet the
requirements of schemes, which are composed of two lower-level schemes on the left and
right, and these two lower-level schemes follow the left and right order to be encoded
sequentially. The hierarchical structure of the binary tree could intuitively represents the
structure of schemes.

In order to facilitate the storage and operation of the schemes in binary tree, we design
each scheme node consists six parts (as shown in figure 3.4). In each node of the binary
tree, (a) left node specifies the left lower-level scheme that composes the current scheme.
For each primitive sensorimotor scheme plays as the basic block of schemes, its left node
is initialized as NULL (as shown of leaf node at the bottom of Figure 3.4). (b) Layer
level represents the level of current scheme. We define the layer level of basic primitive
sensorimotor scheme as 0. Whenever a new scheme is constructed, its layer level is the
largest layer level among the lower-level schemes that compose it plus 1. (c) Interaction
information describes all primitive interactions that constitute the scheme and with its
structure, as a convenient way to flat complex interactions down to a series of primitive
interactions for facilitating to enact this complex interaction. This part will be described
in detailed in enacting composite interactions of section 4.3.3 in the next chapter. (d)
Upper node indicates its higher-level scheme and (e) upper direction specifies this lower-
level schemes belongs to which branch of the higher-level scheme. For the top scheme
which represents the whole sequence of complex behavioral patterns of interactions, its
upper node is initialized as NULL and its upper direction is NULL also (as shown of
middle-node at the middle of Figure 3.4). (f) Right node specifies the right lower-level
scheme that composes the current scheme. Similarly, for each primitive sensorimotor
scheme, its right node is initialized as NULL (as shown of leaf node at the bottom of
Figure 3.4).

Figure 3.4: The structure of schemes in binary tree.

26

Operations of schemes

With similarities between the characteristics of scheme and binary tree, we utilize binary
tree as a way to represent schemes that are produced in agent’s interactions with the en-
vironment. Therefore, through operations on this binary tree, we can realize the dynamic
construction of new schemes, executing the traversal of schemes in different ways, and lo-
cate any interaction in a specific scheme. The operations of schemes include initialization
of a binary tree, traversal of this binary tree, and interaction localization.

Given a scheme, a new node is created according to the form of scheme node and
initialize its upper node as NULL and upper direction as NULL. The newly created node
is regarded as the root of the binary tree. Meanwhile, we initialize a stack NodeStack to
iteratively visit each part of the root node and an empty list NodeList to store all nodes in
this scheme, then we append this root bode in the NodeList and push it at the bottom of
the NodeStack. Each time the NodeStack pops an element, we need to check whether this
element is primitive scheme. If so, we proceed to pop the elements from the NodeStack. If
not, we first create a new node according to the element’ right lower-level scheme, setting
this newly created node’s upper node as this element and its upper direction to be “right”.
After then, append this newly created node in the NodeList and set it as element’s right
node. Finally, and most importantly, push the newly created node in the NodeStack.
Similarly, we create another new node according to the element’s left lower-level scheme,
setting this newly create node’s upper node as this element and its upper direction to be
“left”. Then append this newly created node in the NodeList and set it as element’s left
node, push it in the NodeStack. When the NodeStack is empty and no other elements
are added, the presentation of the scheme and the construction of the binary tree are
completed.

Note that the right node is first created when a non-primitive scheme is popped from
the NodeStack, there exists two reasons: (a) stack as a specific type of data structure
which allows the element that first enters the stack but the last to be popped out, and
the element that last enters the stack as the first to be popped out. (b) The lower-level
schemes that compose the higher-level scheme have a left-to-right order. The right node
is pushed into the stack first is the last to be popped out. And the left node is the last
to be pushed into the stack but the first to be popped out the stack. In this way, the
primitive schemes that appear after continuous iteration are carried out in the order from
left to right, which can facilitate the traversal and positioning of the next node.

Figure 3.5: An simplified example of the schemes.

As an example, we reuse the Figure 3.4 with a slight simplification (as show in Figure
3.5). The higher-level consist of two lower-level schemes, and each lower-level scheme is
composed by two primitive sensorimotor interactions. As illustrated in the Figure 3.6, at
the beginning of building the binary tree, the node of scheme3 is the first to be created
and pushed into the NodeStack. After the scheme3 is popped out, we find that it is not a

27

primitive scheme, then the nodes of its right scheme (scheme2) and left scheme (scheme1)
are created and pushed into the NodeStack respectively. When the scheme2 is popped
out, finding that it isn’t a primitive scheme, nodes of its right scheme (interaction4)
and left scheme (interaction3) are created and pushed into the NodeStack separately.
After popping out the scheme (interaction4), we find that it’s a primitive scheme, then
continue popping element interaction3 in the NodeStack. Same way with the scheme1,
then we receive a series of sequences of primitive schemes: interaction1, interaction2,
interaction3, interaction4, which are consistent with their order in scheme3. Algorithm
1 gives an explanation of reconstruction of a scheme in the binary tree.

Figure 3.6: The process of construction composite interactions in binary tree.

Algorithm 1 The algorithm of the representation of the scheme and the construction of
the binary tree.

1: Initial:
2: root = createNode(given scheme);
3: root.upperScheme ← NULL; root.upperDirection ← NULL;
4: NodeStack = [], NodeList = [], PrimitiveSchemeList = [];
5: NodeStack.push(root);
6: NodeList.append(root);
7: While (NodeStack is not empty)
8: upperNode = NodeStack.pop()
9: if (upperNode is not primitive scheme)

10: rightNode = create(upperNode.rightScheme);
11: rightNode.upperScheme ← upperNode;
12: rightNode.upperDirection ← “right”;
13: upperNode.rightNode ← rightNode;
14: NodeStack.push(rightNode);
15: NodeList.append(rightNode);
16: leftNode = create(upperNode.leftScheme);
17: leftNode.upperScheme ← upperNode;
18: leftNode.upperDirection ← “left”;
19: upperNode.leftNode ← leftNode;
20: NodeStack.push(leftNode);

28

21: NodeList.append(leftNode);
22: else
23: PrimitiveSchemeList.append(upperNode);
24: upperNode = NodeStack.pop();

In Algorithm 1, Line 2: create a new node with a given scheme and regard it as the
root; Line3 and 4: initialize the NodeStack, NodeList, and the PrimitiveSchemeList, set
root’s upperScheme and upperDirection are NULL; Line 8 and 9: pop out an element from
NodeStack and check the element whether it is a primitive scheme. Line 10 to 15: if the
popped out element isn’t a primitive scheme, a new node is created with according to this
element’s right scheme. Setting the newly created node’s upper node as this element and
its upper direction to be “right”. After then, set the newly created node as element’s right
node, append it in the NodeList and push it in the NodeStack. Line 16 to 21: a new node
is created with the popped element’s left scheme, setting this newly create node’s upper
node as this element and its upper direction to be “left”. Then set this newly created
node as element’s left node, append it in the NodeList and push it in the NodeStack.
Line 23, if the popped element is a primitive scheme, then append this continue popping
elements from the NodeStack. When the NodeStack is empty and no other elements are
added, the algorithm ends.

In the operation of schemes, it is usually required to implement the traversal of all
the primitive schemes in a given scheme, localize the first primitive scheme, and find
the next primitive scheme given the current primitive scheme. In the traversal of all
primitive schemes, we initialize a list of primitiveSchemeList as a set of all primitive
schemes. With the NodeList which records all nodes from the reconstruction of a given
scheme, we iteratively visit each node in it and examine whether it is a primitive scheme.
The primitiveSchemeList records each primitive scheme until the end of the NodeList (as
shown in the function of localizeNextNode() in Algorithm 2) . The first element in the
primitiveSchemeList is thus the first primitive scheme. Given a primitive scheme schemei,
the localization of the next primitive scheme is schemei+1.

Algorithm 2 Operations in the binary tree.

1: Initial:
2: NodeList ← binaryTreeReconsturction(given scheme);
3: rootNode ← NodeList.get(0);
4: given primitive scheme: schemeg;
5:

6: traversalScheme(NodeList)
7: primitiveSchemeList = [];
8: For (each node in the NodeList)
9: if (the node is primitive scheme)
10: primitiveSchemeList.append(node);
11:

12: getFirstNode (rootNode)
13: currentNode ← rootNode
14: While (currentNode is not primitive scheme)
15: currentNode ← currentNode.leftNode;
16: return currentNode;
17:

18: localizeNextNode (currentNode)
19: pointNode ← currentNode
20: if (pointNode is not the last node of NodeList)

29

21: While (pointNode.upperDirection is “right”)
22: pointNode ← pointNode.upperNode;
23: if (pointNode.upperDirection is “left”)
24: pointNode ← pointNode.upperNode.rightNode;
25: While (pointNode is not primitive scheme)
26: pointNode ← pointNode.leftNode;
27: return pointNode
28: else
29: pointNode ← NULL;
30: return pointNode;

Considering with the hierarchical structure of the scheme, given with the NodeList,
the localization of the first primitive scheme could be completed from recursively visiting
all left nodes from the root to the leaf node of the binary tree (as shown in the function
of traversalScheme() in Algorithm 2). Given with current primitive scheme for looking
for its next primitive scheme, we should first check the current primitive schemes is the
last node of NodeList or not. If the current primitive node is the last node of NodeList,
which indicates all primitive schemes have been visited, the next primitive node of the
current primitive node is thus NULL. Otherwise, the current primitive is not the last node
of NodeList, obtaining its next node depends on its upper direction. If current primitive
scheme’s upper-direction is “left”, we just need to find the first primitive scheme of its
upper-node’s right-node. If current primitive scheme’s upper-direction is “right”, we need
to recursively trace the current primitive scheme’s upper-node until its upper-direction is
“left”, then we go to look for the first primitive scheme of its upper-node’s right-node (as
shown in the function of localizeNextNode() in Algorithm 2).

3.2.2 Benchmarks

Small Loop Problem

Small Loop Problem (SLP) as a new benchmark to the implementation and demonstrate
four principles of emergent cognition: “environment-agnosticism, self-motivation, sequen-
tial regularity learning, and spatial regularity learning” [145] .

Firstly, the principle of environment-agnosticism was proposed to account for that
the agent should not rely on any prior knowledge of the environment. According to this
principle, the SLP requires that the designer of the agent must not include predefined
knowledge of the environment in the agent.

Secondly, the principle of self-motivation implies that learning a internal policy P (t)
to maximize a internal reward function V (t), which presents that agent learns to fulfill an
innate value system. Assumptions on this view describe that such an innate value system
goes through an evolution-style according to natural organisms to favor the survival of
the organism and of its species.

Thirdly, the principle of sequential regularity learning aims at that the agent need
to discover, learn, and exploit interaction patterns from its experiences to maximize self-
motivation internal function V (t). Additionally, this principle follows the principle of
principle of environment-agnosticism and remains an open challenge, which the goal that
SLP intends to address.

Finally, the agent could use principle of sequential regularity learning for spatial reg-
ularities. Basically, natural organisms have inborn structures that prepared for dealing

30

with space, thus the spatial regularity learning is a key feature which the SLP also intends
to integrate with a biologically inspired cognitive architecture.

In the design of SLP, it consists of squares surrounded by walls shown in Figure 3.7
and the agent is presented as a head arrow with a random initialization direction. Note
that the SLP differs from benchmarks traditionally used in AI (e.g., [146]) by the fact
that the environment does not offer a final goal to reach.

(a) An example of SLP environment (b) Another example of SLP environment

Figure 3.7: Examples of Small Loop Problem environment

In the SLP, the agent has a endowed with a set of possible actions A = {a1, . . . , ai}
with possible observations O = {o1, . . . , oj}. The set of primitive interactions is defined
as I = A × O but the agent has no initial knowledge of these interactions’ meaning.
Paticularly, each primitive interaction i = [ap, oq], 1 ≤ p ≤ i, 1 ≤ q ≤ j associated with
numerical value vi for simulating its nature preference, hence the agent prefers to enact
interactions have larger value and avoid enacting interactions that have smaller values.
The value function V (t) equals to the value vi of the interaction i at step tmentioned above
in the principles. The policy function aims to select the action aj that would maximize
the value function in an infinite steps. Additionally, within each decision cycle, the best
action is selected usally does not depend on a single previous interaction but also rely on a
sequence of interactions and on the possibility of enacting several next interactions. This
makes the SLP more suitable for demonstrating the structured behaviors construction
process detail, also as the highest-level which most satisfying sequence can be repeated
indefinitely.

Little AI

Little AI is a pedagogical game aimed at presenting the fundamental concepts in con-
structivism learning and developmental learning [147]. In this game, players can control
a simulated artificial agent(a “baby robot”) by pressing several buttons. At the start of
playing, the agent designed without any prior knowledge about the effects of the com-
mands and the environment. The player cannot directly observe the agent, and also the
environment it interacts with . The only information received from the interactions and
supported for the player is the feedback from the agent’s interactions with the environment
by pressing these commands. At the same time, the player needs to learn the function of
different command and the structure of the environment from patterns in the stream of
interaction feedback traces. The learning process is analogous to how infants engage in

31

early-state developmental learning [147].

To play the game, players need to press the commands at the bottom of the Screen.
The new interactions will automatically generate at the bottom of the trace as illustrated
in Figure 3.8. The traces is scrolled one step upward with a numerical value display on
the right and also in digits as a bar-graph(green means positive while red means negative)
which represents how much the agent ”likes” or ”dislikes” in this interaction [147]. The
score on the top left is the sum of the values of the last interactions and the level on
the top right is the current agent’s play-level. Levels are organized in groups with regard
to the kind of research questions they illustrate and the teams that study them. The
level will be completed when the score reaches 10 and the player can move the next or to
the previous level(if unlocked) by sliding the robot to the left or to the right. The level
numbers are generally in the form of g.nn, where g is the group number and nn is the
level number in group g, The player can slide Level Screen horizontally to access other
group of levels, or slide downwards to resume playing the current level. The player can
press the level link at the top left to access the Level Screen.

Figure 3.8: The Little AI interface.

3.3 Conclusion

In this chapter, we provide the foundations behind this computational model and pave
the way for the next chapter to describe the design, the structure and the implementation
of CCA. The foundations are divided into two parts: the theoretical foundations and the
implementation foundations. Since the central of the dissertation is that a model based
on the constructivist paradigm to simulate the early mechanisms of infant’s cognitive
development, we start with introducing Piaget’s theory of constructivism and with its
basic ideas and concepts, which include the definition of schemes, the theory of stages in
the infants’ cognitive development, and the adaptation processes between theses stages.
The theories of radical constructivism and radical interactionism provide viable ways to
implement the constructivism into an autonomous agent. In addition, we introduce the
embodied paradigm which suggests that the agent is not a passive observer of reality, but
rather constructs a perception through its active interaction with the environment. The
enactive paradigm as an approach originally emerged from embodied cognitive science

32

endows the autonomous agent with a self-motivation, which spurs the agent to construct
regularities of interaction afforded by the environment.

In the part of implementation foundations, we explain the representation and opera-
tions of schemes in computer science. Specifically, with similarities between the charac-
teristics between schemes and binary tree, we utilize a data structure of binary tree as
a way to represent schemes that are produced in agent’s interaction with the environ-
ment. We can thus realize different kinds of operations in schemes by operating with a
binary tree. Two benchmarks of Small Loop Problem and Little AI are introduced for
validating CCA’s abilities in the flowing chapters. In the following chapter, these two
foundations are merged to form the computational model that is the main contribution
of this dissertation: the Constructivist Cognitive Architecture, or the CCA.

33

Chapter 4

The Constructivist Cognitive
Architecture

Contents
4.1 The CCA design . 35

4.1.1 Interaction cycle between the agent and the environment . . . 35

4.1.2 The sensorimotor interaction 36

4.1.3 Schemes in the CCA . 37

4.1.4 Self-motivation in CCA . 38

4.2 CCA structure . 39

4.2.1 The CCA structure . 39

4.3 CCA implementation . 41

4.3.1 Learning of of regularities: the composite interaction 41

4.3.2 Selection mechanism . 41

4.3.3 The enaction of intended interaction 42

4.3.4 Learning of structured behaviors. 42

4.3.5 Episodic memory, “surprise”, and “novelty” 44

4.4 Conclusion . 44

34

The constructivist cognitive architecture (CCA) is such a learning system that simu-
lates the early mechanisms of infants’ cognitive development based on theories of enactive
cognition and principles of constructivist epistemology. This chapter contains a detailed
description of the design, the structure, and the implementation of CCA, which is one of
the main contributions of this dissertation. Particularly, the design and the implemen-
tation of of CCA is based on the analysis of Georgeon et al. [44]’s Enactive Cognitive
Architecture (ECA), which presents my understanding and re-implementation of it.

The structure of this chapter is as follows: the section 4.1 describes the design of CCA,
which includes the interaction cycle between the agent and the environment, sensorimo-
tor interaction, representation of schemes and self-motivation in CCA. The section 4.2
introduces the structure of CCA with detailed explanation of each modules involved and
the workflow between them. Section 4.3 presents the implementation of CCA. The final
section makes a conclusion of this chapter.

4.1 The CCA design

4.1.1 Interaction cycle between the agent and the environment

Cognitive architectures and computational machine learning models generally represent
the interaction between the agent and the environment as a cycle, in which the agent
alternatively receives input data from the environment and sends output data to the
environment, this interaction cycle as depicted in Figure 4.1.

Figure 4.1: Interaction cycle between an agent (top) and an environment (bottom).

As presented in Figure 4.1, the model implies no particular commitment about the
description of the input and output data. The lack of this explanation usually has a
significant impact on the design of learning system, therefore forms different learning
paradigm. From the traditional view, most models usually make an additional commit-
ment that they arrange the input data (or called “observation” o in Figure 4.2(a)) so
that it directly represents the environment’ state, as if the input data partially made the
environment’s state accessible [148]. Furthermore, they agent’s algorithm implementation
follows this assumption. In the case of simulated environments, the observation o = f(s)
as a function of s, where s is the state of the environment (as shown in Figure 4.2(a)).
While in cases of robots, input data presented by sensor data which is processed by the
designer.

However, in the constructivist learning paradigm, agent is not a passive observer of
the environment but the participant in the interaction between them that constructs a
perception of reality through its active interaction [9]. This implies that the learning model
should derive perception as a secondary construct resulting from experience of interaction,
rather than considering the input data as the agent’s perception. Fortunately, there exists

35

(a) The interaction cycle of traditional model. (b) The interaction cycle of embodied model.

Figure 4.2: The interaction cycle of embodied model (right) compared to the traditional
model (left). In the traditional model, the cycle conceptually starts with observing the
environment (half black circle on the environment) and ends by acting on the environment
(black arrow on the environment). The embodied model cycle conceptually starts with
the agent performing an experiment (half black circle on the agent), and ends by the
agent receiving the result of the experiment (black arrow on the agent).

other possibilities proposed that input data for the agent is not the representation of the
environment. A typical alternative is an inversion of the perception-action cycle [149, 148],
in which the input data can represent the result of an experiment initiated by the agent.
In the same environment’s state, experiments may produce different results and the result
itself thus not represent the environment’s state, not even partially or with noise [148].

As shown in Figure 4.2(b), the agent’s input data (called feedback f ∈ F) described
as a feedback of an experiment e ∈ E initiated by the agent, F as a set of all possible
feedback and E as a set of all experiments. In the simulated environments, feedback f as
a function f(e, s) of the experiment e and the state s of the environment. Within a given
state of the environment, the feedback may vary according to the experiment. In addition,
in the cases where the environment is implemented without any states, agent could still
interact with the environment and receive corresponding feedback, this situation will be
explained in the next section. In the case of designing robots, sensor data can be taken
as representing the result of an experiment initiated by the robot.

Meanwhile, another point that needs to pay attention is the starting point and the
end point in the interaction cycle between the agent and the environment. Particularly,
most works often ignore to make it explicit but it has a significant impact on the designs
of agent’s learning system, therefore forms the robot’s sensors or simulated environment
differently.

4.1.2 The sensorimotor interaction

As introduced in the last section, the inversion of the perception-action cycle ensures that
agent’s input data as a feedback of an experiment initiated by the agent [148]. In this
section, I introduce the sensorimotor interaction in the CCA. The sensorimotor paradigm
suggests that the input data should be taken in the association with output data, by
combining both of them into a single entity called a sensorimotor interaction.

With the formalism introduced in last section, the sensorimotor interaction is defined
as a tuple of i = 〈e, f〉 which consists of an experiment e with its corresponding feedback f
from the environment, also it can be presented as i = 〈experiment, feedback〉. Noted that
in this definition of the sensorimotor interaction, I utilize the term of experiment rather
than the action (as previously mentioned in Section 1.2.1 of the Problem statement) is

36

in the reasons that the experiment provides an intended interaction that could flexibly
represent a single primitive interaction or a complex interaction that consists of a series of
primitive interactions. While for an action, it is an one-way process and not sufficient to
express the interaction cycle (more detail explanation will be discussed in Section 6.1). In
the theory of autonomous mental development, Piaget [118] coined the term sensorimotor
scheme refers to a pattern of interaction between the agent and its environment. In the
CCA, an interaction is as a pair of experiment and feedback 〈e, f〉 that represents a
primitive sensorimotor scheme.

In this section and latter in this dissertation, the expression of “to enact an interaction
i : 〈e, f〉” refers to performing the experiment e and receiving the feedback f that compose
a given interaction i. Meanwhile, the expression of “to intend to enact interaction i :
〈e, f〉” means that the agent performs experiment e while expecting the corresponding
feedback f . As a result of this intention of interaction i = 〈e, f〉, the agent may actually
enact interaction 〈e, f ′〉 if it receives the feedback of f ′ which is different from the expected
feedback f . In this situation, the agent newly received enacted interaction 〈e, f ′〉 as
the feedback from the environment represents the differences of the interaction context,
which reminds the agent that it may produce different feedback when performing an same
experiment next time.

Overall, the sensorimotor paradigm allows designing self-motivated agents without
modeling the world as a predefined set of states. Instead, the agent is left alone to
construct its own model of the world through its individual experience of interaction.
Since there is no predefined model of the world, the agent is not bound to a predefined
set of goals. For example, it can discover/categorize new edible entities in the world.

4.1.3 Schemes in the CCA

The constructivist epistemology [120, 55] suggests that ·“sensorimotor patterns of inter-
action constitute the basic elements from which the agent constructs knowledge of the
world”. Accordingly, in the CCA, the agent’s input data constitutes the feedback of its
interactions iteratively construct a representation of the unknown environment [150]. In
Piaget’s view, the distinction between the inner self and the external world is not innate
but is learned by the subject: “Intelligence (and therefore knowledge) begins not with the
knowledge of the self, nor with the knowledge of things as such, but with the knowledge of
their interaction; intelligence organizes the world while organizing itself by simultaneously
considering the two poles of this interaction”.

In the CCA, schemes are modeled in a form of 〈interaction1, interaction2〉 (refers
to Section 3.2), which expresses that the agent can enact interaction2 in the context of
interaction1. Since the sensorimotor interactions are atomic elements in the construc-
tivist learning model, I redesign the coupling of agent/environment to be more consistent
with the cognitive coupling. As shown in Fgure 4.3, we replace the concepts of prim-
itive experiments and feedback with the concepts of intended interactions and enacted
interactions. This helps us address the constructivist learning problem of constructing
knowledge of reality from regularities of sensorimotor interactions.

However, there exists several differences in terminology between the sensorimotor
paradigm (as shown in Figure 4.2(b)) and the constructivist learning paradigm (as shown
in Figure 4.3). (a) The agent’s output data has been renamed i for intended interaction
instead of e for experiment. (b) The agent’s input data has been renamed e for enacted
interaction instead of f for feedback. Besides the terminology, the only formal difference
is that the agent’s output data and the agent’s input data now are all belong to the

37

same set of interactions I, instead of two different sets E of all experiments and F of all
possible feedback. This means that the primitive data of the model is only of one kind:
sensorimotor interactions. This is the key concept of constructivist learning paradigm
and of the CCA that: using sensorimotor interactions as primitives of the model.

Figure 4.3: The interaction cycle of the constructivist learning paradigm.

From the perspective of constructivism, intended interaction it as it represents the
sensorimotor scheme that the agent intends to enact, and constitutes the agent’s output
that is sent to the environment. While the enacted interaction et represents the sensori-
motor scheme that the agent records as actually enacted, which constitutes the agent’s
input received from the environment. At the beginning of interaction cycle t, the agent
chooses an intended interaction it to enact with the environment. The attempt to enact it
may change the environment or not. At the end of cycle t, the agent receives the enacted
interaction et. If the enacted interaction equals with the intended interaction (et = it),
then the agent’s attempted enaction is considered as a success. Otherwise, it is considered
a failure.

As an example, the primitive interaction it may correspond to actively feeling (through
touching) an object in front of the agent, involving both a movement and a sensory
feedback. The tentative enaction of it may indeed result in feeling an object, in which case
et = it. It may, however, result in feeling nothing if there is no object in front of the agent.
In this case the enacted interaction et corresponds to a different interaction: moving while
feeling nothing. The agent constructs knowledge about its environment and organizes its
behavior through regularities observed in the sequences of enacted interactions.

4.1.4 Self-motivation in CCA

In CCA, there exists two forms of self-motivation: the motivation to be in control of
one’s own activity to by seeking to successfully enact interactions, and the motivation to
enact interactions have predefined positive values and to avoid enacting interactions have
predefined negative values. The former is called as autotelic motivation, and the latter is
interactional motivation (refer to Section 3.1.4).

With the formally defined a successful enaction before, the autotelic motivation could
be explained as the tendency to learn to successfully enact interactions. This tendency
involves neither a maximizing reward function nor a specific goal to achieve, it is intrin-
sically encoded in the agent through discovering, recording, and re-enacting sequences of
interactions that capture regularities in the coupling with the environment. To an exter-
nal observer, the agent seems to enjoy being in control of its activity, which relates to the
autotelic principle proposed by Steels [109] that “an agent could self-regulate its build-up
skills and knowledge without the intervention of the designer”.

Additionally, each sensorimotor interaction is associated with an “innate” value as a
nature behavioral preference. For example, a positive value with interactions represents
that an agent wants to move forward one step and it gets succeed, and a negative value

38

with interactions represents that the agent intends to move forward but it gets bumped
with the wall in front of him. Interactional motivation is meant to “underdetermine the
agent’s behavior so that the agent can use neutral interactions to place itself in situations
in which it can successfully enact positive interactions and to stay away from situations
in which negative interactions cannot be avoided” [9].

4.2 CCA structure

In the previous sections, I explained the interaction cycle between the agent and the
environment and specified the start point of this cycle, after then I introduced the sen-
sorimotor paradigm with the definition of sensorimotor primitive interaction. With the
redesigned coupling of agent/environment, the interactions are treated as primitives in
the interaction cycle and introduce two forms of self-motivations: the autotelic motiva-
tion and the interactional motivation. In this section, I will introduce the structure of
CCA, which includes the detailed explanation of each module involved and the workflow
between them.

4.2.1 The CCA structure

As shown in Figure 4.4, the CCA is mainly composed of the following parts: the stream of
enacted interactions timeline, the episodic memory of interaction experiences, the imple-
mentation of episodic memory with interactions, the hierarchical sequential system and
the behavior selection mechanism.

Figure 4.4: The Constructivist Cognitive Architecture (CCA).

39

At the bottom, the interaction timeline shows the stream of enacted interactions that
occur over time as the agent interacting with the environment. Enacted interactions are
represented by colored symbols indicate different interactions. The right green trapezoids
represent touching right side and it’s a wall, green squares represent touching front side
and it’s a wall, right half circles represent turning right, white square represent touching
front side and it’s empty, left white trapezoids represent touching left side and it’s empty,
green triangles represent moving forward and success, left green trapezoids represent
touching left side and it’s a wall, left half circles represent turning left.

As the agent receives enacted interactions in the interaction timeline, the episodic
memory records all the agent’s interaction history in the form of hierarchical sequential
schemes. Each time the agent receives an enacted interaction, it will compare this en-
acted interaction with its corresponding intended interaction. According to our previous
statement, if the intended interaction equals with the enacted interaction, this enaction of
the intended interaction is considered as asuccess and this interaction experience will be
marked as “stable” and reinforced in the episodic memory. The next time when the agent
in the same context, the successful interaction experiment will be probably activated to
enact again. However, if the intended interaction is different with the enacted interaction,
the agent will retrieve this newly received enacted interaction in the episodic memory. If
this enacted interaction already exist, then the agent reinforces this interaction experience
in the memory and marks it as “unstable”. Otherwise, if the enacted interaction isn’t
exist in the episodic memory, it will be appended in the memory and marked as “new
learned”. In essence, the agent’s encoding of its interaction experience reflects the way
the agent has learned to understand this experience. Then the agent gradually learn to
pre-encode its experience for the future reuse.

One of the key ideas of CCA is to store the agent’s interaction experience with the
environment in an episodic memory, while also spurring the agent for enacting interactions
not yet presented in memory. Being “not in memory” is the definition of novelty in CCA
— seeking such enacted interaction means seeking the unfamiliar. Such a drive to seek the
unfamiliar will lead the agent to experience new interactions (or schemes) for exploring
new optimal behaviors in interacting with the environment. Agent in the interaction
among the new enacted interaction, as the agent in interaction of study to the new
scheme.

In the CCA, the episodic memory is implemented in the form of interaction. There
are two different kinds of interactions exist in it: the one is primitive interaction and
the other is composite interaction. Primitive interaction as a way to represent prim-
itive sensorimotor scheme, the composite interaction is used to represent hierarchical
sequential scheme. As mentioned in previous section, schemes are modeled as a couple
of 〈interaction1, interaction2〉, means that in the context of interaction1, the agent can
enact interaction2. Composite interaction follows the same formalism but combines with
two enacted interactions, the definition of composite interaction will be introduced in next
section and explain how composite interactions represent schemes with episodic memory.

With agent’s continuously interacting with the environment, new patterns of interac-
tion and higher-level behaviors are gradually constructed, which enhances the hierarchical
sequential system on the left top of CCA. Hierarchical Sequential System represents the
mechanism of learning hierarchical regularities of interactions. It includes the rudimentary
learning of regularities of interaction and the recursive learning of composite interactions.
The rudimentary learning of regularities of interactions constructs the basic patterns of
interaction with previous enacted interaction and current enacted interaction. While the
recursive learning of composite interaction give a bottom-up way to learn higher-level pat-
terns of interaction which are made of lower-level patterns of interactions (or rudimentary

40

composite interactions), which is bottom-up hierarchical sequential learning.

Behavior Selection mechanism balances the propositions made by the sequential sys-
tem and by episodic memory, and then selects the next sequence of interactions to try
to enact. For example, if an interaction of moving forward and succeeded is evoked in
episodic memory in front of the agent, then the behavior selection mechanism may select
this interaction as the next intended interaction to try to enact.

4.3 CCA implementation

4.3.1 Learning of of regularities: the composite interaction

Regularities of interaction (in short as regularities) are patterns of interaction that occur
consistently. Specifically, regularities depend on the coupling between the agent and the
environment. That is, they depend both on the structure of the environment, and on the
possibilities of interaction that the agent has at its disposal.

At the beginning of interaction cycle at time t, the agent decides an intended in-
teraction iit = 〈et, ft〉 and tries to enact with reference with the reactive part of the
environment. Enacting iit means the agent performs the experiment et and receives a
feedback ft that compose a given interaction iit (refer to the expression of ”enact an inter-
action” at section 4.1.2) at time t. As a result, the agent receives the enacted interaction
iet and memorizes the two-step enacted interaction sequence ct = 〈i

e
t−1, i

e
t〉 as a tuple of

〈contextInteraction, enactedInteraction〉 made by the previously enacted interaction iet−1

of iet . The sequence of these two enacted interaction 〈iet−1, i
e
t〉 called a composite inter-

action, as the pattern of structured behaviors corresponds to the assimilation process in
constructivism. The interaction iet−1 is called ct’s pre-interaction, noted as pre(〈iet−1, i

e
t〉),

and iet is called ct’s post-interaction and is noted as post(〈iet−1, i
e
t〉). The tuple of com-

posite interaction expresses that in the context of iet−1, the agent learns to recognize its
interactive situation in terms of affordances related to its own prior experience, then en-
acts the proposed enacted interaction in the future to verify its assumptions. For the
enacted interaction itt+1 at interaction cycle t + 1, the composite interaction ct : 〈i

e
t−1, i

e
t〉

also called itt+1’s super-interaction. From now on, low-level interactions i = 〈e, f〉 will be
called primitive interactions to differentiate them from composite interactions.

As interaction continuing, more complex and higher-level composite interactions will
be emerged with combinations of different kinds of pre-interactions and post-interactions.
To better reflect the closeness of pre-interaction and post-interaction in composite inter-
actions, each composite interaction associated with a weight (initialized as “1”) and it will
be incremented when the same composite interaction has learned again (coincide with the
accommodation process in constructivism). Moreover, composite interaction as a complex
type of interaction, its valence is the sum of its pre-interaction’s and post-interaction’s
valence, which meaning that enacting a sequence of interaction has the same motivational
valence as it enacting all its elements successively.

4.3.2 Selection mechanism

Note that the enacted interaction may activate more than one composite interaction,
each of activated composite interactions could propose its post-interaction’s experiment,
these experiments may be the same, may be different, or partially the same. An an-
ticipation is created for each activated composite interaction and associates with their
post-interaction’s experiment.

41

For making a decision among multiple anticipations, a notion of proclivity is introduced
as a way to reflect the agent’s intrinsic satisfaction for enacting each anticipation. The
proclivity value comes from the weight of activated composite interaction multiplied by
the valence of its post-interaction. As a result, the anticipations that are the most likely
to result in the experiment that have the highest valence receives the highest proclivity.
A selection mechanism is designed to sort the list of anticipations by decreasing proclivity
value of their proposed interactions. Then, the agent takes the fist anticipation, which
has the highest proclivity in this anticipations’ list.

4.3.3 The enaction of intended interaction

As introduced in the last section, each anticipation corresponds to an experiment associ-
ated with a proclivity value for performing this experiment. The proclivity is computed
on the basis of the possible interactions that may actually be enacted as an effect of per-
forming this experiment, as far as the system can tell from its experience. The selection
of anticipations is implemented by a decision mechanism that sorts the list of anticipa-
tions by decreasing their proclivities. Then the experiment of the first anticipation will
be select to perform.

If the chosen experiment corresponds to a primitive interaction, the agent directly
enact this primitive interaction and returns the enacted primitive interaction. However,
if the experiment corresponds to a composite interaction, the agent needs to recursively
enact the intended composite interaction all the way down to a sequence of primitive
interactions, and return the enacted interaction according to the structure of the intended
composite interaction.

As shown in Figure 4.5, at the beginning of decision cycle t (dashed loop in Figure
4.5), the agent’s decision-making mechanism chooses the intended composite interaction
iict from the set Ct of composite interactions known at time t. The enaction of iict consists of
trying to enact the n primitive interactions iip1, . . . , i

i
pn that constitute iict one after another

(solid loops). If the enaction of iepk fails (iipk 6= iepk) then the enaction of iict is interrupted.
The decision making mechanism then receives the actually enacted composite interaction
iect corresponding to the sequence 〈i

e
p1..., i

e
pk〉 . From the perspective of the decision making

mechanism, iect thus seems to be enacted as a single interaction in a virtual ”environment
known by the agent at time t” (dashed-line box). Because the primitive loop (plain line)
and the decisional loop (dashed line) use the same entities (interactions), the learning
mechanism that applies to the primitive loop can apply in the same way to the decisional
loop, which allows recursive learning of increasingly complex composite interactions.

4.3.4 Learning of structured behaviors.

As introduced in the last section, the agent memorizes the two-step enacted interaction
sequence, ct = 〈i

e
t−1, i

e
t〉, i

e
t−1 as ct’s pre-interaction and iet as ct’s post-interaction. At the

beginning of the interaction, the pre-interaction and post-interaction that make up the
composite interaction are both primitive interactions. However, as the interaction contin-
ues, the agent gradually learns the patterns of interaction, therefore the pre-interaction
and post-interaction that make up the composite interaction will gradually become com-
posite interaction.

The system learns the composite interaction 〈iect−1, i
e
ct〉 made of the sequence of the

previous enacted composite interaction iect−1 and the last enacted composite interaction
iect. Additionally, the system learns the composite interaction 〈iect−2, 〈i

e
ct−1, i

e
ct〉〉, which

42

Figure 4.5: (adapted from [44]) The decision making mechanism and the enaction mech-
anism of intended interaction, particularly the intended composite interaction. At the
beginning of each decision cycle t, the behavior selection mechanism decides a most likely
intended composite interaction ict = 〈ip1, . . . , ipn 〉, (ipj ∈ I, 1 ≤ j ≤ n) from activated
composite interactions whose context interaction belongs to the interactional context.
The tentative enaction of ict refers to the enaction of a sequence of n primitive interac-
tions from ip1 to ipn. At the end of the decision cycle t, the agent receives the enacted
composite interaction ect = 〈ep1, . . . epk〉, 1≤ k ≤ n, (eph ∈ I, 1 ≤ h ≤ k), corresponding
to the enactions of multiple primitive interactions in the intended composite interaction.

represents that if iect−2 is enacted again, 〈iect−2, 〈i
e
ct−1, i

e
ct〉〉 will be re-activated and will

propose to enact its post-interaction 〈iect−1, i
e
ct〉. The system has thus learned to re-enact

composite interaction 〈iect−1, i
e
ct〉 as a sequence. Moreover, the higher-level composite in-

teraction 〈〈iect−2, i
e
ct−1〉, i

e
ct〉 is also learned so that it can be re-activated in the context

when 〈iect−2, i
e
ct−1〉 is enacted again, and propose its post-interaction iect for enacting.

In addition, once a new composite interaction iict is added to the set Jt of known
interactions at time t, a new abstract experiment eat is created to the set Et of known
experiments at time t, and its intended interaction is initialized as this newly learned
composite interaction iict. In addition, the composite interaction’s experiment is set as
this newly created experiment eat . Abstract experiments are called abstract because the
environment cannot process them directly. The environment is only programmed to
interpret a predefined set of experiments that now called concrete.

To perform an abstract experiment eat , the agent must perform a series of concrete
interactions and check their feedback. That is, the agent must try to enact the composite
interaction iict from which the abstract experiment eat was constructed. If the agent chooses
experiment eat , then the system tries to enact iict. If this tentative enaction fails and
results in the enacted composite interaction iect ∈ Jt+1, a composite interaction icct is
thus formed as 〈iec(t−1), i

e
ct〉, the i

e
c(t−1) is composite interaction icct’s pre-interaction. If this

composite interaction icct hasn’t learned before, then the system creates a new the abstract
experiment eat+1 and set its intended interaction as icct, the icct’experiment is set as this
newly created experiment eat+1. As a result of this learning mechanism, each composite
interactions can have two forms: the sequential form 〈pre−interaction, post−interaction〉
and the abstract form 〈experiment, feedback〉. In order to differentiate these two forms,
the abstract experiments and feedback in initial caps are separated by the ”|” symbol:
〈experiment | feedback〉 .

43

4.3.5 Episodic memory, “surprise”, and “novelty”

As described in section 4.2, the CCA provides episodic memory for recording all agent’s
interaction history and in a hierarchical sequential form. The novelty is defined as “not in
the memory”. Once the agent receives an enacted interaction, new composite interactions
will be learned or reinforced in conditions that the composite interactions have previously
learned in the episodic memory. The newly learned composite interaction as the “novelty”
in the memory. As mentioned above, the current enacted interaction acts as the context
to retrieve interactions from the memory and activate composite interactions that their
pre-interaction matches with this enacted interaction for proposing anticipations.

Furthermore, for each enacted interaction, the episodic memory also records it with
its intended interaction. When the agent receives an enacted interaction, it will compare
this enacted interaction with its corresponding intended interaction. With our previous
statement, if the enacted interaction equals with the intended interaction, this enaction
of intended interaction is considered as a success. If the enacted interaction is different
with the intended interaction, therefore “surprise” comes up.

The agent needs to retrieve all enacted interactions with this intended interaction
from the memory and check whether the newly received enacted interaction has appeared
before. If it did appear, the “surprise-level” of this enacted interaction will be decrease
to indicate that the agent is less surprised of this enaction. However, if the enacted inter-
action does not appear in the history of enacting this intended interaction, the “surprise-
level” will be increased based on the differences between the intended interaction and
the enacted interaction, particularly, the number of primitive interactions in the intended
interaction subtracts the number of primitive interactions in the enacted interaction that
equal with the ones in the intended interaction.

As interaction continues, the agent gradually learns the regularities of interaction
afforded by the environment and build perception of the environment to explain such
regularities. The construction of composite interactions becomes stable from the rapid
development at the beginning of interaction. Similarly, novelties and surprises will disap-
pear with the process of agent constructing the perception of the environment.

4.4 Conclusion

In this chapter, I introduced the design, the structure, and the implementation of the
proposed Constructivist Cognitive Architecture (CCA). This is a contribution of my dis-
sertation that was done in close collaboration with Olivier Georgeon.

In the first section, I start with the interaction cycle with between the agent and the
environment. In particular, the Experiment-Result Cycle (ERC) ensures the input data
of the agent is not present the states of the environment and I emphasize the importance
of the start point and the end point in the agent/environment interaction cycle. Further-
more, I gave the definition of sensorimotor interaction and the representation schemes in
CCA, which play as the basic blocks in this computational model. In the CCA, there
exits two different forms of self-motivation, the autotelic motivation and the interactional
motivation, the former spurs the agent to successfully enact interactions, and the latter
implements the agent’s natural preference to enact interactions have predefined positive
values and avoid interactions have predefined negative values.

In the second section, I present the structure of CCA, which contains five main parts:
(a) the stream of enacted interactions timeline, (b) the episodic memory of interaction
experiences, (c) the implementation of episodic memory with interactions, (d) the hierar-

44

chical sequential system and (e) the behavior selection mechanism. After then, I explained
each part involved and the workflow between them.

In the third section, I described the implementation of each part in CCA according to
the workflow, which includes the rudimentary learning of regularities of interaction, selec-
tion mechanism, recursive enacting intended interaction, recursive learning of composite
interaction and the episodic memory in the CCA.

Above all, the constructivist cognitive architecture (CCA) as the way towards simulat-
ing the learning mechanism of infants’ early-stage cognitive development based on theories
of enactive cognition, intrinsic motivation, and constructivist epistemology. Different with
traditional cognitive architecture, the CCA neither initially endows the agent with the
prior knowledge of its environment, nor supplies it with knowledge during its learning
process. If it did, the agent’s knowledge about the environment will not be grounded in
the agent’s interaction experience and motivations (it would not be the agent’s knowl-
edge, but the designer’s knowledge). Instead, the CCA proposes a way for the agent to
autonomously encode the interactional experiences and reuse behavioral patterns based
on the agent’s self-motivation as inborn proclivities that drive the agent in a proactive
way. Following these drives, the agent autonomously learns regularities afforded by the
environment, and hierarchical sequences of behaviors adapted to these regularities.

45

Chapter 5

Causality reconstruction with CCA

Contents
5.1 Causal Perception . 47

5.1.1 Causal Perception in Adults . 47

5.1.2 Causal Perception in Infants 47

5.2 Modeling Causal Acquisition with CCA 48

5.2.1 Interaction scenarios . 49

5.2.2 Principles of the learning . 49

5.2.3 The algorithm of the causality reconstruction 51

5.3 Experiment . 54

5.4 Conclusion . 57

46

The previous chapter introduced the design, the structure, and the implementation
of CCA, a learning system that allows the agent to encode the interactional experiences
and reuse behavioral patterns based on the agent’s self-motivation as inborn proclivities
that drive the agent in a proactive way. Particularly, one of the most basic and the most
critical parts in CCA is that the agent has abilities to learn regularities of interaction
afforded by the environment and construct causality from interaction experiences.

The study of acquisition of causal perception is an important and challenging area in
cognitive development. This chapter demonstrates CCA’s ability to discover and learn reg-
ularities of interaction in its stream of experience and construct causal perception between
phenomena whose hypothetical presence in the environment explains these regularities.
The agent starts with looking for interactions that can be repeated several times in a row
(or called persistent interactions) and obtains higher-level causal relations between these
interactions. Results show that the agent develops a rudimentary form of causality, along
with active perception as it learns to master the sensorimotor contingencies afforded by its
coupling with the environment [150]. In the following chapters, the CCA will be applied
to a self-motivated agent for bottom-up hierarchical sequential learning (Chapter 6) and
applied to an autonomous robot in diverse simulations (Chapter 7).

5.1 Causal Perception

The capability of understanding causal relations is essential for sense-making and in-
teracting with the environment [151]. Particularly in infants who shown by behavioral
psychology studies that discover the underlying causal mechanisms from their interaction
with the world [152], and also their causality knowledge in turn facilitates subsequent
learning process. [153, 154, 155]. Accordingly, for a self-motivated agent, the causal ac-
quisition allows the it learns to predict the effects of interactions and affect goal-directed
change on the physical environment.

5.1.1 Causal Perception in Adults

The study of causal perception was famously inaugurated by Michotte [158] on exploring
casual perception in adults with experiment which called launching events (as shown in
Figure 5.1 of a schematic of these events). The experiment is in the scene that on billiard
ball strikes another stationary ball, resulting in the launching of the stationary ball and
the halting of the moving ball (or called the “launching event”). Michotte found that
adults presented with a simple direct launching event would describe the event as causal
[85].

By using the launching event, Michotte could affect a subjects’ likeliness of perceiving
causality [85]. One situation is that we can alter the event by introducing a gap between
the two balls to keep objects ever touch. Also can alter the temporal component by
introducing a delay between the moment of contact and launching as events presented in
Figure 5.1.

5.1.2 Causal Perception in Infants

Since the study of Michotte on causal perception in adults, researchers have combined
these launching events with habituation techniques to demonstrate the presence of causal
perception in infants. One study by Leslie [159] demonstrated that infants’ ability to

47

Figure 5.1: Launching events (Cited from Chaput 2004 [85] Ch4, Section 1, p20). Four
different launching events used by [158] to study causal perception in adults.

discriminate between different launching events, especially their responses were on the
causality of the event.

However, recent studies tend to refute these claims and have new results demon-
strated that infant develops his own causal perception and follows a hierarchical style.
Particularly, Cohen and Amsel [160] performed a similar experiment and they found that
different with older infants, younger ones would respond to the introduction or removal or
either a delay or gap, regardless of how this change impacted the causality of the event.
These result indicated a developmental shift in causal understanding that progresses from
a component view to a higher-level causal view. The development of causality is just
one instance of a more general part-to-whole progression that can be see in a variety of
cognitive developmental domains.

Nevertheless, a related but alternative view from Georgeon et al. [161] introduce
design principles that implement the construction of phenomenal knowledge and causal
perception in an unknown noumenal reality. Particularly, the view conveyed an idea that
discovers and learns regularities in its stream of experience and to construct knowledge
about phenomena whose hypothetical presence in the environment explains these regu-
larities. Thus the causality emerges between phenomena.

5.2 Modeling Causal Acquisition with CCA

The studies described above suggest a simple progression stages of causal understanding
from low-level component views to a higher-level causal view. These stages do not occur
sequentially and independent of one another. Rather, the component view is used to
build the causal view. Following with these theories, I have designed and implemented a
causality reconstruction model with CCA as presented below. In particular, the design
principles are introduced for a self-motivated agent followed by constructivist paradigm to
learn regularities of the environment and construct causality consists of learning feedback
from interactions with the environment and organizing its behaviors to fulfill a form
of intentionality defined specific-tasks independently with the environment. This work
suggests a new approach to cognitive modeling that focuses on the agent’s internal stream
of experience. In addition, for facilitating to explain this model, an interaction scenario
is provided to demonstrate the causal acquisition with CCA in the following section.

48

5.2.1 Interaction scenarios

As an example, an interaction scenario is presented in which the agent can experience
11 different sensorimotor interactions (in short as interactions, as shown in Figure 5.2)
represented by shapes of left trapezoid/left-half circle/square/right trapezoid/right-half
circle with colors of red/green. Specifically, the green-square interaction has a positive
valence (+10), the rest interactions have a zero valence. These valences are arbitrary
and remain constant during the system’s existence. That is, the agent as if it tends
to enjoy experiencing green-square interaction, and was indifferent to experience other
interactions. For the sake of demonstration, agent is initialized ignorant of the meaning
of interactions, which is consistent with the constructivist paradigm that the agent isn’t
endowed with any prior knowledge of the environment, nor supplies it with knowledge
during its learning process.

Figure 5.2: Eleven different sensorimotor interactions.

At any given moment, the agent needs to make a decision to select an interaction
for enacting. Assuming that the environment affords regularities in the way it generates
the actual interaction iet . These regularities may depend both on the current intended
interaction iit and on previous interactions. Moreover, to anticipate actual interactions,
the agent must construct causality that represents the regularities afforded to it by the
environment.

5.2.2 Principles of the learning

In the casual acquisition model, there exists an implementation of the mechanism that
between two kinds of regularities: immediate regularities and sequential regularities. Im-
mediate regularities usually present the correlation between enacted interactions with
intended interactions, regarding to its interaction experience. However, sequential reg-
ularities mostly depend on the interaction history. A sequential regularity is usually
performed in the form like that: in a given interactions have experienced, a corresponding
interaction could be experienced next. With this implementation of the sequential regular-
ities, it is complied with the definition of schemes as a tuple of 〈interaction1, interaction2〉
that has mentioned in the Section 3.2, which describes the context in terms of interac-
tion interaction1 that the agent learns to “see” its world in terms of affordances [129]
interaction2 related to its own interaction experience. As shown in Figure 5.3, it lists
partial 12 first-order (two-step) regularities afforded by the environment (the complete
two-step regularities afforded by the environment refer to Appendix A.2).

With these two kinds of regularities, the agent is expected to discover the patterns
between interactions and exploit them to construct the causality, which allows the agent
to obtain more experiences that enact interactions have positive valence and avoid inter-
actions that have zero valence. As a result, the agent could develop the causal acquisition
model that is depicted in Figure 5.4. As illustrated in Figure 5.4, the agent is expected
to learn to use square interactions to inform subsequent behavior. If an intended square
interaction yields a green-square, the system will subsequently experience green-square
interaction with the reason that it has a positive valence (Figure 5.4-a, exploiting Regu-
larity 7 of Figure 5.3). If the intended square interaction yields a red-square, the system

49

Figure 5.3: Partial 12 two-step regularities afforded by the environment, consisting of a
pre-interaction followed by a post-interaction. Regularity 1: in the context when two red
squares have just been experienced, it is likely that the interaction of right-red-trapezoid
can be experienced again; i.e., if the agent intends to experience any of the two-red inter-
action again, then the agent will be more likely experience right-red-trapezoid than other
interactions. Similar with regularity 5, in the left-red-square and the right-green-square
context, the agent is likely to experience a green-left-half-circle interaction (immediate
regularities prevail over sequential regularities).

Figure 5.4: Patterns of interaction experience that expect the causal acquisition model
to develop. The curly brackets represent a conditional scheme that results in sequence
a), b), c) or d) depending on the current state of the environment. Once the agent has
learned these schemes, it applies them indefinitely.

50

should subsequently experience green-left-circle interaction so that it can then experience
green-square interaction (Figure 5.4-d, exploiting Regularities 3 and then 4 of Figure 5.3).
After this, I expect the agent to intend a square interaction again and to repeat the same
conditional choice again (Figure 5.4-b or 5.4-c again).

5.2.3 The algorithm of the causality reconstruction

In this section, I introduce the algorithm of the causality reconstruction that allows the
agent to explicitly interpret the patterns of behavior as illustrated in Figure 5.4. I divide
the learning process into two parts: the node construction stage and the arc construction
stage. In the node construction stage, the algorithm tries to learn which stable phenomena
exist. In the arc construction stage, the algorithm learns how to transition from one
phenomena to another.

Figure 5.5: Partial representation of the Petri-net constructed by the algorithm. White
rectangles represent nodes. Arcs with feeling experiences (trapezoids and squares) are
self-loops that do not change the state. Arcs with swapping experiences (half-circles)
cause transitions between belief states.

The node construction stage

To model the part-to-whole progression of causal acquisition, the agent is designed to start
with looking for interactions that can be repeated several times in a row and then use
these solid interactions to construct the causality. When the same interaction is enacted in
a certain number (or call as the excitement threshold k) of times in a row, which confirms
that this interaction is a solid experience, then the algorithm assumes that the interaction
is persistent and creates a new node combines with this interaction (as shown in the left
figure of Figure 5.6). Otherwise, this interaction is a sporadic experience.

Once the enaction of an interaction exceeds the excitement threshold, the agent holds
a belief of it. Particularly, the algorithm implements a BeliefState class with an array
of triedNumber for each interaction and a adaptive method getLeastTriedInteraction().
When a new node is created, a new BeliefState object associated with this node is instan-
tiated. Its triedNumber attribute is used to count the number of trials of an interaction
in this belief state. When the algorithm is in the “curious” mood, it uses the function of

51

getLeastTriedInteraction() to select the least tried interaction based on the triedNumber
within the current BeliefState. In the initial phase of the interaction, the BeliefState is
initialized as unknown and all interactions have not been tried before, the agent randomly
selects an interaction begins the interaction.

Figure 5.6: Modeling Causal Acquisition with CCA .

The arc construction stage

When the agent finds a candidate persistent interaction, it creates a self-loop based on
this interaction, and a node attached to this self-loop. This node thus represents a hy-
pothetical phenomenon that can be consistently observed through this interaction. Next,
the agent learns arcs between nodes which represent the causality between these persis-
tent interactions. When the agent learns a new stable BeliefState, then it goes into the
arc construction stage (as shown in the right figure of Figure 5.6).

The arc construction combines with the feedback that the agent receives from its
past interactions and the previous patterns in the stream of interaction traces. With the
changeable environment, it needs to figure out the difference of the context between pre-
vious and post persistent interactions after the agent experiences a sporadic interaction.
If the two persistent interactions are different, then an arc between these two persistent
interactions will be created through this sporadic interaction. Otherwise, the agent con-
tinues try another sporadic interaction until all sporadic interactions have all been tested
with all persistent interactions. When all interactions are known to the agent and no
changes happen in the causal structure, the agent is in the “confident” mood. Overall, I
expect the algorithm to learn the Petri-net as shown in Figure 5.5, which constitutes a
valid representation of the structure of the coupling of agent/environment.

The algorithm

Algorithm 3 A proof-of-concept algorithm to infer phenomena from regularities of
interaction afforded by the environment.

1: Initial:
2: currentBeliefState ← ”unknown”, mood ← ”curious”;
3: loop
4: if mood = “curious”
5: intendedInteraction = getLeastTriedInteraction(currentBeliefState);

52

6: if mood = ”hedonist”
7: intendedInteraction = intentionWithMaxValence(currentBeliefState)
8: if mood = ”confident”
9: finish the knowledge construction and learning is done;

10: if mood = ”excited”
11: intendedInteraction = enactedInteraction;
12: enactedInteraction = ReactiveSubsystem(intendedInteraction)
13: if enactedInteractionis”unknown”
14: mood = ”excited”;

Alg 3 summarizes this algorithm at the highest level. The algorithm has four possible
motivational moods: curious, excited, hedonist, and confident. At the beginning of the
interaction, the current belief state is initialized as “unknown” and the agent is in a curious
mood. Lines 04 and 05: if the agent is in a curious mood, it selects an interaction that is
the least tried in the current BeliefState as the next intendedInteraction. Line 06 to Line 7:
if the agent is in a hedonist mood, it will intend an interaction with the maximum valence
in the current BeliefState. Line 08 and 09: if the agent is in a confident mood, then the
algorithm has already finished the reconstruction of the whole Petri-net which represents
the causality of interaction experiences, the learning process is thus done. Lines 10 and
11: if the agent is in an excited mood, then it intends to repeat the previously enacted
interaction. Line 12: the algorithm provides the intended interaction to the subprogram
that implements in the environment. This subprogram processes the action associated
with the intended interaction and returns the enacted interaction, which may be same with
the intended interaction or not. Lines 13 and 14: if the enacted interaction is “unknown”,
which means this interaction has neither been marked persistent nor sporadic, then the
agent gets excited about this interaction and the mood becomes “excited”.

Algorithm 4 Causality reconstruction.

1: if mood = “excited”
2: if intendedInteraction 6= enactedInteraction
3: intendedInteraction is sporadic
4: currentBeliefState = knowledgeUpdating(intendedInteraction)
5: else if excitement ≥ excitementThreshold
6: enactedInteraction is persistent
7: create new beliefState and added in the beliefStateList
8: currentBeliefState = knowledgeUpdating(enactedInteraction)
9: else
10: excitement++
11: updateTriedNumberOfInteraction(intendedInteraction)
12: knowledgeUpdating(currentBeliefState)
13: if (all interactions have not been tried yet in the current BeliefState)
14: mood = “curious”
15: if (all interactions have been tried and knowledge isn′t updated)
16: mood = “confident”

Lines 01 to 10: if the agent is in the excited mood and the intendedInteraction dif-
fers from the actually enactedInteraction, the intendedInteraction is marked as sporadic.
Otherwise, the algorithm increments its excitement level. When the excitement reaches
the preset threshold, this intendedInteraction is marked as persistent, then a new belief
state is instantiated. Line 11: the current BeliefState updates its intendedInteraction’s
tried numbers. Line 12: learning regularities between persistent interactions and sporadic

53

interactions, and update the current belief state. Lines 13 and 14: if all interactions
have not been experienced before, the mood becomes curious. Lines 15 and 16: in the
situations that all interactions are known to the agent and there is no other change in the
procedure of knowledge reconstruction, the agent is thus in the “confident” mood. This
means that the algorithm has reconstructed a valid representation of the structure of the
agent/environment coupling. The arc construction is thus finished.

5.3 Experiment

Little AI is a pedagogical game as mentioned before in Section 3.2.2, in the experiment,
I mainly focus on the Level2.00 of Little AI. In this level, the system initially provides
five commands with same shape and same color (as shown in Figure 5.7(a)). The effects
of these five commands and the structure of the environment are unknown to the agent
and the player as well [161], so the players need to construct the knowledge gradually by
their interactions with the agent and its environment. For the sake of demonstration, I
intentionally place the reader in the same situation as the system: initially ignorant of
the meaning of experiences.

The self-motivated agent is designed to execute five actions affiliated with differ-
ent numbers which are A = {feelleft = 1, swapleft = 2, feelboth = 3, feelright =
4, swapright = 5}. These numbers in A are just used to identify the actions in the later
experimentation more conveniently. In a given time, the agent chooses an action amongst
the set of five possible actions A, then it receives an interaction corresponded with this
action and the state of situated environment. Actions of feel left and feel right touch
the environment and report the state of the environment, they have two different results:
true (marked 1) or false (marked 0), action feel both touch the left and the right at the
same time and gives the situation of current environment, it thus has three different re-
sults: left and right both are false (0,0), left and right only one are true (0,1 or 1,0) and
left and right both are true (1,1). Only actions of swap left can change the left state of
the environment and swap right can change the state of right. Above all, the agent has
eleven different kinds of interactions which are based on corresponding actions and the
state of situated environment. When the agent experiences several interactions, then the
environment will give the response result of the actions. In order to present these five
actions more clearly, I prefer to use different icons and colors to identify five actions and
eleven interactions respectively (as shown in Figure 5.7(b)). With different situations the
agent faced with and the changeable environment the agent situated in, I use three colors
(red means false, green means true and pink only used for the action of feel both means
only one side is true) combined with five actions to illustrate these eleven interactions.

The experimentations are conducted following two main steps. Firstly, the agent
selects the intended interaction which is the least tried in the current belief state and
uses the persistent interactions to observe the following interactions. Secondly, once the
agent confirms the intended interaction is persistent or sporadic, it then tries to construct
the connections between this new learned interaction with previously confirmed persistent
interactions and sporadic interactions.

When interactions are all known to the agent and there are nothing changes in the
procedure of creating connections between all persistent and sporadic interactions, which
represents that the agent has already learned regularities of Little AI and the causality
reconstruction goes to stable. Then it is in the confident mood and then in the hedonist
mood and trying to organize its behaviors to fulfill a form of intentionality defined in the
environment. This work suggests a new approach to cognitive modeling that focuses on the

54

(a) Little AI interface. (b) Five actions and eleven interactions.

Figure 5.7: The Little AI interface and five actions with their eleven interactions.

agent’s internal stream of interaction. The experimentation helps clarify the distinction
between the designer’s goal and the agent’s intentionality. while the agent remained
unaware of the underlying structure of the environment, it learned to master sensorimotor
contingencies.

Behavioral analysis of a rudimentary constructivist agent

Our experiment shows that the algorithm was able to construct the Petri-net in 350 inter-
action cycles (Figure 5.8) Our system’s 350 interactions. Line 1: the intended interaction.
Line 2: the enacted interaction. Line 3: current belief: unknown(grey pointed rectan-
gle)/persistent interactions/ allKnown(green pointed rectangle). Line 4: mood: curious
(“?”), excited (black bargraph), or hedonist (green circle). Step 1: the algorithm intends
a red left trapezoid and obtains a same red left trapezoid. Since the red left trapezoid
interaction is neither yet marked sporadic or persistent, the agent gets excited (black bar
in Line 4). Step 2 to 5, the agent repeat the red left trapezoid and gets increasingly ex-
cited. Step 6: the agent reaches the excitement threshold; it marks the red left trapezoid
is persistent, and creates a new belief state associated with this interaction (Line 3: the
current belief becomes red left trapezoid; Line 4: the agent becomes curious to play with
the newly created belief). Step 7: the agent tries red rectangle. Step 15: the agent tries
red left half-circle and obtains green left half-circle. Step 16: green left circle-rectangle is
learned to be sporadic since it failed on the second attempt. Then the agent enters the arc
reconstruction stage, The agent will test all the effects of different sporadic interactions to
persistent interactions consecutively. Step 17, the agent encounters again with the red left
trapezoid, it knows this interaction that experienced before and recognizes this interac-
tion is persistent, then the current belief associates with this persistent interaction. Step
77: similar, green right half-circle is sporadic. Step 350: The interactions are all marked
to the agent and there are no more changes in the Petri-net, the agent’s mood becomes
confident (green circle) and in an all-known belief state(green pointed rectangle). Arrived
at this step, the algorithm can use the constructed Petri-net to predict the consequences
of interaction interactions.

55

Figure 5.8: Trace of the first 350 interaction cycles in our experiment. Line 1: intended
interactions.Line 2: enacted interactions. Line 3: belief states: unknown (grey triangle)
/ known state represented by its corresponding persistent interaction. Line 4: mood:
curious (question mark), excited (increasing black bars), or confident (green circle).

56

5.4 Conclusion

In this chapter, I introduced the design principles with CCA to let an self-motivated agent
discover and learn regularities of Little AI(in level2.00) in this stream of experience and
construct causality that consists of learning feedback from interactions with the environ-
ment and organizing its behaviors to fulfill a form of specific-tasks intentionality defined
independently with the environment. In the game of Little AI, the agent learns the mean-
ing of their own actions and infer the structure of the environment simultaneously based
on the patterns in the stream of interactions feedback traces.

An intriguing philosophical question is whether the learned model of the coupling
between the agent and the environment constitutes the best possible model accessible to
the agent. When transposed to humans and their knowledge, Kantian-like positions affirm
that we can only know the world as we experience it. By contrast, those admitting a more
(scientific) realist epistemology believe that knowledge can be pushed further, toward the
world in itself. Returning to our discussion, this suggests the following question: would
it be possible and interesting to design an agent that would try to infer theories of the
world in itself (the complete implementation of the agent and of the environment)?

Technically, the question remains how the algorithm could construct a theory that
involves a representation of its environment with tiles and their sides. This may be
feasible if the agent presupposes the existence of space. The agent could try to construct
a simpler model based on the assumption that states of the agent/environment coupling
are caused by the presence of objects in some locations in space. Such simplification
of knowledge will be necessary when moving on towards more complex tasks. In more
complex tasks, the Petri net will be too large and complex. Explaining the regularities in
terms of the presence of objects in some locations in space will provide a powerful means
to deal with such complexity.

57

Chapter 6

Bottom-up hierarchical sequential
learning in CCA

Contents
6.1 The interaction and its valence allocation 59

6.2 The hierarchical sequential learning process in CCA 60

6.3 The BEL-CA . 61

6.3.1 The structure of BEL-CA . 61

6.4 Algorithms . 63

6.4.1 Initialization . 64

6.4.2 Context construction . 64

6.4.3 Activation of composite interactions and the construction of an-
ticipations . 65

6.4.4 Selection mechanism . 67

6.4.5 The enaction of intended interaction 69

6.5 Comparison with related work 70

6.6 Conclusion . 71

58

In the constructivist view, infant’s cognitive development can be described as a bottom-
up and a hierarchical processing according to which infants initially process simple percep-
tual units. These building blocks of simple units then are organized into a more complex,
higher-level abstractions at the next level, which themselves in turn become integrated
to yield more higher units at the third level, and so on. Furthermore, once infants have
access to multiple levels, they will tend to process information at the highest possible
level unless the system is somehow overloaded. In that case, learning will drop down to a
lower level of processing and attempt to rebuild the system. In brief, the infant cognitive
development follows a hierarchical and constructive paradigm.

In the previous chapters, I presented the structure of CCA and described the imple-
mentations of rudimentary learning of regularities of interaction and recursive learning
of composite interactions. In this chapter, I introduce a Bottom-up hiErarchical sequen-
tial Learning model based on the CCA, which is also called BEL-CA, as a solution for
an autonomous agent continuously constructing the knowledge of the environment and
acquiring capabilities of self-adaptation and flexibility. In addition, for facilitating to
observe the agent’s learning process in interacting with the environment and the emer-
gence of structured behaviors after each enaction of intended interaction, I have designed
and developed an implementation of toolkit for agent autonomously generating and an-
alyzing interaction (GAIT) at run-time, which will be introduced in the next chapter of
methodology.

This chapter is structured as follows. The section 6.1 gives the definition of interaction
in BEL-CA and with its valence allocation. Section 6.2 explains the hierarchical sequential
learning process in CCA. Section 6.3 gives the formal model of bottom-up hierarchical
sequential learning based on CCA, as well as the BEL-CA. In section 6.4, I introduce
the algorithms for implementing each part in the BEL-CA. Section 6.5 describes the
comparison with related work and Section 6.6 gives a conclusion of this chapter.

6.1 The interaction and its valence allocation

The definition of interaction in the BEL-CA is followed by the sensorimotor paradigm
(refers to Section 4.1.2), which suggests that the input data should be taken in asso-
ciation with output data, rather disassociated. Also this complies with constructivist
epistemology, which suggests that knowledge of reality is constructed from regularities
observed in sensorimotor experience. As shown in Figure 4.3, agent’s output data and
input data are all interactions and belong to the same set of I, which represents the set
of primitive interactions. The primitive interaction is defined as a tuple of an experiment
et with its corresponding feedback ft at time t, it = 〈et, ft〉.

Additionally, each primitive interaction associated with an innate scalar valence vt as
a way to simulate agent’s inborn behavioral preference and quantify the agent’s “feeling”
of each interaction experience. In a sense, such innate valences relate to fundamental
constraints that involve the agent’s risk aversion. Examples of such constraints allow
the agent to move around and avoid being bumped with the wall. This innate valence,
nonetheless, provides a reason why the agent should even learn to cope with the environ-
ment in the first place: the agent should be able to efficiently enact interactions that favor
its moving activity and avoid interactions that have a risk of collisions with the wall.

The quantification of valences (or the valences allocation) for various primitive inter-
actions can reflect the strength of the agent’s desire for each primitive interaction. For
example, if the agent decides to “move forward”, there exits two possible situations af-
forded for the agent: moving forward successfully or bumping with the wall. Suppose

59

associating positive valence for the interaction of “move forward successfully”, the agent
will be satisfied with this interaction and continues enacting interactions that have exper-
iment of “move forward” and expecting the feedback of “success”. Otherwise, the agent
enjoys receiving the feedback of “bumping”. With the commonsense, positive valence is
usually associated for interaction of “moving forward successfully” and negative valence
for “bumping” interaction. With these predefined primitive interactions, the agent will
find ways to elegantly organize them to experience more interactions for “moving forward”
with the feedback of “success” and reduce the interactions with “bumping”. For primi-
tive interactions with negative valences, except the “bumping” interaction, the valence of
experiencing interaction of “touch front side and it is empty” is better than “touch front
side and it is a wall ”, then the agent is expected to construct the connection between the
interaction of “feeling front side and it is empty” first and making decisions for enacting
interaction of “moving forward successfully”.

The valence allocation for primitive interactions is an important topic in construc-
tivist learning. The optimal allocation strategy could apparently accelerate the learning
process and improve the agent’s performance in interacting with the environment. Oth-
erwise, it could slow down the agent’s interaction and even interfere with the learning
process. Currently, there exists several approaches [162, 163, 164, 165, 166, 167] dedicate
to finding the optimal valence among various combination possibilities. However, these
approaches have certain limitations, and usually obtain the partial optimal valence. In
this dissertation, valence is mainly allocated based on experiences, this issue of valence
allocation will be detailly discussed in the Section 8.2.3 of Chapter 8.

With the explanation from Section 4.1.2 that enacting an interaction it : 〈et, ft〉 means
that the agent intends to perform an experiment et and receives feedback ft that compos-
ites a given interaction at step t. Note that the experiment may contain a single primitive
interaction or a series of primitive interactions, thus the performance of this experiment
will be different. In the case of a single primitive interaction, the agent enacts it directly
and receives the corresponding feedback. While in cases where the experiment contains
an interaction that is composed by a multiple of primitive interactions, the agent needs
to flat this interaction down to a series of primitive interactions and enact these primitive
interactions recursively. The feedback of enacting this type of interaction comes from
the results of enacting each primitive interaction and re-form them with this interaction’s
hierarchical structure. Furthermore, the agent intends an interaction it which expresses
that it performs an experiment et while expecting its corresponding feedback ft at step
t. Within diverse situations, this “intention” could be that the agent actually enacts
interaction 〈et, f

′

t 〉 if it receives feedback f
′

t instead of ft.

From the perspective of constructivism, intended interaction as it represents the sen-
sorimotor schema that the agent intends to enact, and constitutes the agent’s output that
is sent to the environment. While the enacted interaction represents the sensorimotor
schema that the agent records as actually enacted, which constitutes the agent’s input
received from the environment. If the enacted interaction equals the intended interaction,
then the attempted enaction of intended interaction is considered a success, otherwise
failure.

6.2 The hierarchical sequential learning process in

CCA

Following the structure of CCA in Section 4.2, the hierarchical sequential learning system
in CCA as shown in Figure 6.1. At the beginning of each interaction cycle t, the agent de-

60

cides an intended interaction iit = 〈et, ft〉 and tries to enact with reference to the reactive
part of the environment. After the enacted interaction iet has received, new composite
interactions are constructed or reinforced with their pre-interaction belonging to the con-
text and their post-interaction iet , forming the set of learned or reinforced interaction ct to
be included in Ct+1, which represents the set of composite interaction at time t + 1. For
supporting affordance of more complicated interaction situations in the future. The set of
composite ct is defined as ct = {〈i

e
t−1, i

e
t〉, 〈i

e
t−2, 〈i

e
t−1, i

e
t〉〉, 〈〈i

e
t−2, i

e
t−1〉, i

e
t〉}, Ct+1 = Ct ∪ ct.

Figure 6.1: The hierarchical sequential learning system in CCA.

Thus the set of composite interactions known by the agent at time t is Ct and the
set Jt = I ∪ Ct indicates all interactions known to the agent at time t. For the next
step interaction, the enacted interaction iet activates all previously learned composite
interactions Ct as it matches with their pre-interaction, then the agent forms the activated
composited interaction set At = {ai|ai ∈ Ct, pre(ai) = iet}. For example, if iet = a
and the composite interaction 〈a, b〉 has been learned before time t, then the composite
interaction 〈a, b〉 is activated, like it’s recalled from the memory. Activated composite
interactions propose their post-interaction as anticipations for the next round, in this
case: the interaction of b. The agent’s decision making comes from these anticipations.

For each post-interactions, anticipation is created with a scalar value proclivity pi ∈ ℜ
which is computed from the weight wai of the activated composite interaction ai multiplied
by the valence of the proposed post-interaction v(post(ai)). The proclivity value as a way
to reflect the regularity of the interaction based on its probability of occurrence and the
motivations of the agent.

pi = wai × v(post(ai)) (6.1)

As a result, the anticipation which is the most likely to result in the primitive interac-
tion that has the highest valence receives the highest proclivity, and that have the biggest
proclivity are the most likely to be enacted in the next round.

6.3 The BEL-CA

6.3.1 The structure of BEL-CA

Based on the CCA, I propose a Bottom-up hiErarchical sequential Learning model, which
is also called BEL-CA, as a solution for an autonomous agent continuously learning repre-
sentations of the environment and acquiring capabilities of self-adaptation and flexibility.

61

As shown in Figure 6.2, it consists of nine parts: (a) pairs of intended interaction with its
enacted interaction at the bottom, (b) sequential learning with composite interactions,
(c) abstraction of experiments in the memory, (d) activation of composite interactions by
enacted interactions, (e) anticipations from activated composite interactions and afford
its propositions , (f) mapping from propositions to experiments, (g) selection mechanism,
(h) enacting intended interactions and (i) the construction of higher-level behavioral se-
quences.

Intended interaction
Enacted interaction

Composite interaction

Partial sequence

Improved partial sequences

anticipations

afford

propose

select

enact

Interaction traces

mapping

a
ct

iv
a

te

abstract

Figure 6.2: The hierarchical sequential learning model of BEL-CA with CCA

Following the timeline at the bottom of CCA, the timeline in the BEL-CA represents
the stream of selected intended interactions with its enacted interactions that occur over
time as agent interacts with the environment. Particularly, colored symbols in the timeline
indicate different interactions, right green trapezoid represents that the agent touches right
side and finds it’s a wall, left half-circle represents turn left, white rectangle represents
touching front and the result is empty, white triangle represents moving forward one step
and it succeeds, green triangle represents moving forward but bumping with the wall,
left blue trapezoid represents touch the left side and find it’s a wall, white left trapezoid
represents touch the left side but it’s empty, right half circle represents turn right.

Meanwhile, same with CCA, composite interactions in the BEL-CA represent the se-
quential learning system, which are composed by enacted interaction and with its previous
enacted interactions. Each time the agent receives an enacted interaction, it records this
enacted interaction with previous enacted interaction as a composite interaction. More-
over, the agent recalls the two-step previous enacted interaction with new learned com-
posite interaction to form a newly third level composite interaction. Besides, the agent
combines previous super-interaction with enacted interaction to form another third level
composite interaction. For example, the agent receives an enacted interaction iet at time t,
a composite interaction is formed as 〈iet−1, i

e
t〉. Combined with two-step previous enacted

interaction and previous super-interaction, another two composite interaction are built as:
〈iet−2, 〈i

e
t−1, i

e
t〉〉, 〈〈i

e
t−2, i

e
t−1〉, i

e
t〉. As new composite interactions have learned, new abstract

experiments are created as described in Section 4.3.4.

The enacted interaction as a way to recognize the current context is used to pro-
pose anticipations from the episodic memory for the following interactions. Especially,
composite interactions are retrieved from the memory and activated in cases where their
pre-interaction matches with the enacted interaction. All activated composite interactions
propose their post-interaction’s experiment as anticipations with a proclivity value which

62

is calculated by activated composite interactions’ weight and their post-interaction’s va-
lence.

Based on anticipations from CCA, the BEL-CA mainly focuses on the classification of
anticipations that start with same primitive experiment. Based on this, anticipations are
classified into different groups and identified by the experiment of first primitive ineraction
in their intended interaction. The proclivity value of different groups is the sum of their
anticipations’ proclivities. Thus the selection mechanism is mainly divided into two steps:
firstly, sorting these groups with their proclivities and choose one group has the biggest
proclivity; secondly, sorting the anticipations in the chosen group with their proclivities
and select one anticipation with the biggest proclivity. The intended interaction of the
selected anticipation’s experiment will be enacted for the next interaction.

The enaction of an intended interaction depends on which type it is (primitive inter-
action or composite interaction) and how much weight it has (compared with the given
threshold). If the intended interaction is a primitive interaction, then directly enact it
and receive the corresponding primitive enacted interaction. However, if the intended
interaction is a composite interaction, the enaction of this intended interaction should
consider its weight with the threshold. If the weight is greater than the threshold, called
the regularity sensibility threshold, then it is effectively proposed for being enacted as a
whole. If its weight is lower than or equal to the threshold and if its proclivity value is
positive, then the intended interaction is not proposed but its proposition is propagated
to its pre-interaction. In essence, this mechanism makes sure that higher-level schemes
are sufficiently rehearsed before being enacted as a whole. During each rehearsal, higher-
level schemes are reinforced, which tends to pass the reinforcement from one hierarchy
level to the next. A lower regularity sensibility threshold results in a faster adoption of
potentially less satisfying higher-level schemes. A higher regularity sensibility threshold
results in a slower adoption of potentially more satisfying higher-level schemes.

This selection mechanism shows that proclivity values do not operate as a reward but
rather as inward drives that either push the agent toward or restrain him from enacting
certain behavior. Moreover, the reinforcement does not operate as a form of reward
propagation but as a mechanism for experience counting. By driving the agent’s behavior,
this selection mechanism also shapes the agent’s experience and consequently the agent’s
learning. The agent does not learn all that can be learned in the environment—which
would be overwhelming—but only what its motivations make it experience. In addition,
this mechanism guarantees that higher-level regularities will only be constructed upon
lower-level regularities that have been effectively tested.

6.4 Algorithms

Following with the hierarchical sequential learning system in CCA and nine parts in the
learning process of BEL-CA, a high-level overview of BEL-CA is presented as in Algorithm
5 below.

Algorithm 5 Bottom-up hierarchical sequential learning with CCA.

1: Initial:
2: the set of experiments E = {e1, e2, e3, . . . , en};
3: the set of valences V = {v1, v2, v3, . . . , vm };
4: the set of Feedback Fe = [f1,f2];
5: E.resetAbstract();
6: the set of primitive interactions I = addOrGetPrimitiveInteraction(E,Fe, V);

63

7: the set of default intended Interactions De = defaultInteractions(I);
8: E.setIntendedInteraction(De);
9: the set composite Interaction C0 = φ,

10: the set of all interactions J0 = I.
11:

12: while interactions continues do
13: anticipations = anticipate();
14: selectedAnticipation = selectInteraction(anticipations);
15: intendedInteraction = selectedAnticipation.intendedInteraction;
16: enactedInteraction = enact(intendedInteraction);
17: if intendedInteraction = enactedInteraction then
18: enaction of intended interaction is a success ;
19: else
20: enaction of intended interaction is a failure;
21: end if
22: ct = learnCompositeInteraction(intendedInteraction, enactedInteraction);
23: if ct /∈ Ct then
24: Initial ct’s weight as 1;
25: Add ct in Ct;
26: else
27: Increase ct’s weight;
28: Reinforce ct in Ct;
29: end if
30: end while

6.4.1 Initialization

At the beginning of interaction with the environment, the agent is pre-defined with a set of
primitive interactions, which is composed of innate experiments and the possible feedback
of the interaction with the environment. These primitive interactions enable the agent to
interact with the environment without any prior knowledge about the environment, nor
desired goals for the agent to achieve. Noted that each innate experiment contains a type
of action, and also pre-defined with a primitive intended-interaction which is composed
of this experiment and a possible interaction feedback. In addition, each primitive in-
teraction is associated with a scalar valence pre-defined with positive or negative values
that represent agent’s nature reference. For example, if the agent decides an experiment
of “moving forward”, there exists two different feedback: moving successfully or bumping
with the wall. In order to distinguish these two kinds of feedback, a positive valence could
be used as “1” to perform moving successfully and “-1” for bumping with the wall.

Since there exists no enacted interaction and interaction experiences at this moment,
the set of composite interaction C0 is empty as performed with φ, the set of all interac-
tions J0 equals with the set of primitive interactions I. With no composite interactions
are activated for proposing anticipations, the agent randomly selects one from default
anticipations which are formed by innate experiments, and intends the default intended-
interaction of its experiment to start the interaction process.

6.4.2 Context construction

On each decision cycle, an intended interaction is selected through an activation mecha-
nism which is triggered by the context. At the end of decision cycle t, the agent records

64

or reinforces the composite interaction composed by the pre-interaction which belongs to
Ct−1 and post-interaction is the actually enacted interaction iet . Thus, the newly learned
or reinforced composite interactions set is formed as: Lc

t = {〈i
e
t−1, i

e
t〉|i

e
t−1 ∈ Ct−1}. Each

learned or reinforced composite interaction thus represents that when then context iet−1

is enacted, iet will subsequently enacted in the future. The set of composite interactions
known by the agent at decision cycle t thus become Ct = Ct−1 ∪ Lc

t . The weight of
the newly learned composite interactions is initialized as 1. For reinforcing previously
constructed composite interactions, their weight is automatically increased by 1.

Before making the decision for the next interaction, the agent saves the current context
Bt as the set of interactions were enacted at the end of decision cycle t and that are
sufficiently reinforced.

Bt = iet−1 ∪ post(iet−1) ∪ isupert−1 (6.2)

Equation 6.2 implies that Bt includes interactions of various lengths that have been
enacted at the end of decision cycle t. As interaction continues, the agent selects an
intended interaction to enact that capture sequential regularities of interaction afforded
by the environment, Bt tends to represent the agent’s situation in terms of the sequences
of interactions that are the most representations of the situation at time t.

6.4.3 Activation of composite interactions and the construction
of anticipations

Given with the context Bt, the agent retrieves the memory and searches for composite
interactions whose pre-interaction is contained in the current context Bt. The qualified
composite interactions will be activated and form the set of activated interactions At which
is defined as At = {ai|ai ∈ Ct, pre(ai) ∈ Bt} (as shown in Algorithm 6). After then, the
activated interactions in At propose their post-interaction’s experiment to form weighted
anticipations. The weight of each anticipation equals to the weight of the proposing
activated interaction and its proclivity value will be calculated from the weight of activated
interaction ai and the valence v(post(ai)) of its post interaction. In this way, the set
of anticipations is formed as: ANt = {antii ∈ ANt|ai ∈ At, proclivityantii = wai ×
v(post(ai))}.

Algorithm 6 Activation of composite interactions and the construction of anticipations

1: Initial:
2: the set of primitive interactions I;
3: the set of context interaction Bt;
4: the set of activated composite interaction At = [];
5: the set of default anticipations Defaultt = [];
6: the set of anticipations ANt = [];
7:

8: for (each it ∈ I)
9: antiidefault = createAnticipation(it.experiment, 0);
10: antiidefault.anticipationsList = [];
11: add antiidefault in Defaultt;
12:

13: for (each ci ∈ Ct)
14: if(pre(ci) ∈ Bt)
15: add ci in At;

65

16:

17: for (each ai ∈ At)
18: proclivityantii = wai × v(post(ai));
19: antii = createAnticipation(post(ai).experiment, proclivityantii);
20: antii.intendedInteraction = post(ai);
21: antii.weight = weight(ai);
22: if (antii /∈ ANt)
23: Add antii in ANt;
24: else
25: antiold = ANt.getAlreadyExistAnticipaiton()
26: antiold.addProclivity(proclivityantii)
27: antiold.addWeight(antii.weight)
28:

29: for (each antiidefault ∈ Defaultt)
30: for (each antii ∈ ANt)
31: firstPrimitiveIntearction = getFirstPrimitiveInteraction(antii);
32: if (firstPrimitiveIntearction.experiment = antiidefault.experiment)
33: Add antii in antiidefault.anticipationsList;
34: proclivityantii

default
+ = proclivityantii ;

Figure 6.3: Mapping anticipations to experiments. With the previous enacted interac-
tion is a white triangle, seven composite interactions are activated for proposing their
post-interaction. After calculating each anticipation’s proclivity, I classify these seven
anticipations into three different groups according to their anchor, which is the innate
experiment of the first primitive interaction in the intended-interaction of each antic-
ipation’s experiment. The proclivity value of each group is the sum of anticipation’s
proclivity which is classified in it.

Meanwhile, with anticipations obtained from the activation mechanism, I classify them
into different groups according to their anchor, which is the innate experiment of the first
primitive interaction in the intended-interaction of each anticipation’s experiment. For
anticipations sharing with the same anchor, or called partial similar anticipations (PSAs),
they will be classified into the same group and form an anticipationsList identified by this
anchor (as shown in Figure 6.3. The proclivity of each group is the sum of the proclivity of
all anticipations in it. The process of the classification of anticipations and the proclivity
calculation of each group is presented in following equations:

66

groupi = {antii ∈ groupi|antii ∈ ANt, f irstExp(antii) = anchor(groupi)} (6.3)

proclivityantii
default

=
n

∑

i=1

wai × v(post(ai)) (6.4)

The proclivityantii
default

is the proclivity of the group i, n refers to the number of

anticipations in this group, wai is the weight of activated composite interactions ai and
the v(post(ai)) is the valence of ai’s post-interaction.

6.4.4 Selection mechanism

The intended interaction iit is selected through the function of selectInteraction() (as
shown in Figure 6.4). First, sorting all groups with their proclivities in descending order
and selecting one with the biggest proclivity. Second, once again sort all anticipations in
the selected group in descending order according to their respective proclivity and select
the anticipation with the biggest proclivity. Therefore, the intended-interaction of the
selected anticipation’s experiment is selected to enact for the next interaction.

Figure 6.4: Selection intended interaction. The selection mechanism sorts all groups of
innate experiments by their proclivity and selects one group has the biggest proclivity.
The selected group sorts its anticipationList according to their proclivity and selects
the anticipation with the biggest proclivity. The intended-interaction of the selected
anticipation’s experiment is selected to enact for the next interaction.

The moment when the intended interaction is selected, a little heuristic applies (as
shown in Algorithm 7). If the intended interaction is a composite interaction, the in-
tention of this composite interaction is subject to its anticipation’s weight wai and the
threshold d ∈ ℜ (or called as the regularities sensibility threshold). The parameter d is
the threshold which encodes the limitation of intending the composite interaction as a
whole. If the weight of the proposing anticipation is greater than d and its proclivity
value is positive, then the agent will effectively enact all primitive interactions within this
composite interaction according to the hierarchical sequential structure recursively. If the
weight is lower or equal with d but its proclivity is positive, the agent will try to enact the
pre-interaction of this composite interaction. Otherwise, the agent just needs to enact the

67

first primitive interaction of this composite interaction. In essence, this intention mecha-
nism of composite interactions ensures that higher-level schemes are sufficiently rehearsed
before being enacted as a whole. During this rehearsal, higher-level schemes are enough
reinforced and gradually establish believes from one hierarchy level to the next. If the
sequence of intended interaction corresponds to the regularity of interaction, then it is
possible that the sequence of this intended interaction can be enacted again. Therefore,
the agent can thus base its choice of the next interaction on this anticipation.

As shown in Algorithm 7, in the selection mechanism, proclivity values as an inward
drives the agent towards or restrains him from enacting certain behaviors. Moreover,
this mechanism shapes agent’s experience and consequent learning, which guarantees the
higher-level regularities are constructed based on lower-level regularities that have been
effectively proven to be trustworthy. In addition, with different levels in the intentions
of composite interactions, the selection mechanism allows the agent to capture different
levels of regularities. Over time, the schemes are established by the most robust level of
regularity afforded by the environment and that best fulfill the agent’s satisfaction become
popular. For example, in cases where the agent tries to move forward, the decision-making
will not rest upon the last primitive step but rather exploit regularities that propose a
sequence of experiences.

Algorithm 7 The selection mechanism of intended interaction.

1: Initial:
2: default anticipations ← Defaultt;
3: intendedInteraction ← NULL;
4: threshold ← d;
5:

6: function selectInteraction(Defaultt):
7: sortedDefaultAnticipations = sort(Defaultt);
8: selectedDefaultAnticipation = sortedDefaultAnticipations.get(0);
9: if (selectedDefaultAnticipation is primitive)

10: experiment = selectedDefaultAnticipation.experiment;
11: intendedInteraction = experiment.intendedInteraction;
12: return intendedInteraction;
13: else
14: detailAnticipationList = selectedDefaultAnticipation.anticipationsList;
15: sortedDetailAnticipationList = sort(detailAnticipationList);
16: selectedAnti = sortedDetailAnticipationList.get(0);
17: experiment = selectedAnti.experiment;
18: intendedInteraction = experiment.intendedInteraction;
19: if (intendedInteraction is primitive)
20: return intendedInteraction;
21: else
22: if (selectedAnti.weight >threshold and selectedAnti.proclivity >0)
23: return intendedInteraction;
24: else if (selectedAnti.weight ≤ threshold and selectedAnti.proclivity >0)
25: intendedInteraction = intendedInteraction.preInteraction;
26: return intendedInteraction;
27: else
28: intendedInteraction = firstPrimitive(intendedInteraction);
29: return intendedInteraction;
30:

31: function firstPrimitive(intendedInteraction):

68

32: firstPrimitiveInteraction = intendedInteraction;
33: while (firstPrimitiveInteraction is not primitive)
34: firstPrimitiveInteraction = firstPrimitiveInteraction.preInteraction;
35: return firstPrimitiveInteraction

6.4.5 The enaction of intended interaction

Once the intended interaction is proposed, the agent tries to enact it. To do so, the enac-
tion mechanism recursively flats the intended interaction down to a sequence of primitive
interactions according to its hierarchical structure (as shown in Algorithm 8 Following with
this sequence, the agent enacts each primitive interaction and compares the correspond-
ing enacted primitive interaction with it. If the obtained enacted primitive interaction
matches with the intended primitive interaction, then the enaction procedure follows the
same way to the next intended primitive interaction until the end of the sequence, unless
a special situation that the enacted primitive interaction and the intended primitive in-
teraction are different. In this special situation, the enaction progress is interrupted and
the actually enacted interaction is constructed based on the part of the hierarchy that
has been actually enacted until the interruption. The enacted interaction will be used to
reflect the situation where the current intention ends up for the next interaction, both
at the hierarchy level of intended interaction and the hierarchy level where the enaction
fallback.

Algorithm 8 Enaction intended interaction

1: Initial:
2: Given with intendedInteraction iit;
3: Nodes = [];
4: nodeStack = [];
5: enactedInteraction = NULL;
6:

7: if (intendedInteraction is primitive)
8: enactedInteraction = enact(intendedInteraction);
9: else

10: add intendedInteraction in nodeStack;
11: while (nodeStack is not null)
12: topInteraction = nodeStack.pop();
13: if (topNode is not primitive)
14: nodeStack.push(topInteraction.postInteraction);
15: nodeStack.push(topInteraction.preInteraction);
16: else
17: newNode = createNode(topInteraction);
18: add newNode in Nodes;
19: node = getLeftNode(Nodes);
20: while (the root node is not visited)
21: intendedPrimitiveInteraction = node.getInteraction;
22: enactedPrimitiveInteraction = enact(intendedPrimitiveInteraction);
23: if (intendedPrimitiveInteraction = enactedPrimitiveInteraction)
24: previousReInteraction = recordWithStructure(enactedPrimitiveInteraction);
25: node = getNearestRightNode(node);
26: else
27: previousReInteraction = recordWithStructure(enactedPrimitiveInteraction);
28: break;

69

29: enactedInteraction = previousReInteraction;
30: learnCompositeInteraction (intendedInteraction, enactedInteraction);

In effect, the enaction mechanism associated with the selection mechanism favors the
agent to adopt unsatisfying experience to form various hierarchical interactions, which
allows the agent to enact more satisfying or elegant interactions in the future. Therefore,
the agent not only simply reflexes interactions toward the highest immediate proclivity,
but also learns from unsatisfying interactions for more satisfying interactions.

With the enacted interaction, composite interactions are learned or reinforced with
their pre-interaction belongs to the context and their post-interaction iet , forming the set
of learned or reinforced composite interaction ct to be included in Ct+1, for supporting
affordance of more complicated interaction situations in the future. The set ct is presented
as ct = {〈i

e
t−1, i

e
t〉, 〈i

e
t−2, 〈i

e
t−1, i

e
t〉〉, 〈〈i

e
t−2, i

e
t−1〉, i

e
t〉}, Ct+1 = Ct ∪ ct. A new context Bt+1 is

constructed based on iet and post(iet).

6.5 Comparison with related work

The first needs to note that the proposed model of BEL-CA differs from studies in robotics
for autonomously learning the correlation between actuators and sensors. Mostly, these
studies conform to the “perception-cognition-action” (as mentioned in Section 3.1.3) loop
with a mechanism that implements the sensor’s signal as the temporary perception of the
environment. Instead, I follow the sensorimotor paradigm that associates the input data
with the output data. The agent is initialized with a set of primitive interactions that
associate the agent’s innate experiments with their corresponding possible feedback. The
agent thus does not need to learn the relation between its actions and its inputs, but is
self-motivated to generate proper intended interactions based on its perception of the en-
vironment for establishing various higher-level schemes. Nevertheless, with implementing
more complex perceptual behaviors, a hybrid model needs to be considered in the future.

Meanwhile, the model uses episodic memory as a way to record agent’s all interac-
tions which include intended interactions with their corresponding enacted interactions,
and all obtained composite interactions in each decision cycle. Inspired from mecha-
nisms of learning through experience, especially the Trace-Based Reasoning [168], the
agent retrieves the memory and activates composite interactions whose pre-interaction is
contained in the context Bt. Particularly, the Trace-Based Reasoning usually follows an
approach of knowledge-representation that requires the designer to provide the process
of encoding episodes, and drive the process of reusing episodes [9]. However, the model
differs from the Trace-Based Reasoning’s knowledge-representation approach in that the I
neither initially endow the agent with the prior knowledge of its environment, nor supply
it with this knowledge during the learning process. Instead, an alternative mechanism has
been proposed for the agent autonomously encoding and reusing episodes based on the
agent’s self-motivation. With this mechanism, it provides a possible way to tackle with
issues that related to non-Markovian sequence modeling which includes automatically de-
limitates episodes, organizes episodes in a hierarchy, and encodes context in a way that
supports the appropriate reuse of episodes.

In addition, during each decision-making, this work differs with the reinforcement
learning paradigm. As mentioned above, in the selection mechanism, proclivity values
do not operate as a reward in reinforcement learning, but as an inward that drives the
agent towards or restrains him from enacting certain behaviors. In particular, the inten-
tion mechanism ensures the higher-level composite interactions are sufficiently rehearsed

70

before being enacted as a whole. During this rehearsal, the mechanism shapes agent’s
experience and consequent learning, which guarantees the higher-level regularities are
constructed based on lower-level regularities that have been effectively proven to be trust-
worthy. Thus our work is also differs from approaches of statistical hierarchical temporal
learning [169] but relates to pragmatic epistemology [170] and evolutionist epistemology
[171] that suggest knowledge evolves on the basis of usage and to constructivist episte-
mology [172], which suggest that knowledge selection is driven by the subject’s intrinsic
motivation. Moreover, the reinforcements for composite interactions in our model are
not to obtain the maximum accumulated reward, but as a mechanism to strengthen the
regularities afforded by the environment and best fulfill the agent’s satisfaction.

Currently, there exists two major approaches to implement intrinsic motivation for
artificial agents (and robots). The one that consists of implementing motivation as be-
havioral rules that directly represent either emotions [173] or drives [174]. The another
implements intrinsic motivation as curiosity [17, 16] and searches for novelty [88]. In this
work, the proposed approach endows the agent with two forms of self-motivation: suc-
cessfully enacting sequences of interactions (autotelic motivation), and preferably enacting
interactions that have predefined positive values (interactional motivation). Nonetheless,
the three approaches could be complementary in the case of higher-level cognition.

6.6 Conclusion

In this chapter, I present a Bottom-up hiErarchical sequential Learning model with CCA,
which is also called BEL-CA, as a model for an autonomous agent continuously constructs
the knowledge of the environment and acquiring capabilities of self-adaptation and flex-
ibility. Following with three processes of assimilation, accommodation and equilibrium
in constructivsm, the agent autonomously organizes schemas it learned from interaction
into hierarchically structured behaviors, which let the agent gradually understand the
meaning of divers experiments and infer the structure of the environment simultaneously
based on the patterns in the stream of interactions feedback traces.

Different with traditional approaches, the proposed model neither initially endows the
agent with the prior knowledge of its environment, nor supplies it with knowledge during
its learning process. Instead, the agent autonomously encodes the interactional experi-
ences and reuses behavioral patterns based on its intrinsic motivation. In BEL-CA, the
agent is driven by two forms of self-motivation: successfully enacting sequences of inter-
actions (autotelic motivation), and preferably enacting interactions that have predefined
positive values (interactional motivation). Therefore, the agent gets the perception of this
world and generates proper behaviors in different and complicated situations. Meanwhile,
our agent can discover a long sequence of “correct” actions to find a configuration of the
environment that yields the non-stationary valence.

Nevertheless, the agent has to retrospect all previous learned composite interactions to
retrieve the ones whose pre-interactions are matched with the current enacted interaction.
With interactions continuing, the recorded enacted interaction traces progressively grow
longer, then the agent will spend a long time to activated all eligible composite interac-
tions for anticipations. In addition, the utility rate of composite interactions needs to be
improved. The agent activated almost all composite interactions but few are proposed
for intending. Although the agent can be easily qualified for the work in the environment
designed in this paper, when the environment becomes more complex, this shortcoming
will be easily shown.

Valence initialization is an another issue. Different valence allocation strategies are

71

crucial to the performance of agents in interactions. According to the commonsenses of
human beings, assuming that the agent can successfully take a step forward, it should get
positive hints, and collisions with the wall should get negative feedback. As for the agent,
it starts interaction without any prior knowledge, which means it should understand the
feedback of different behaviors through their own interaction with the environment. For
the initialization of Valence, it is inevitable to have a certain influence on the cognitive
process of the agent to some extent. The better valence allocation strategy could get
better interaction performance of the agent. In the following research, I need to study
to reduce human intervention as much as possible, let the agent explore for itself, and
discover and optimize how to find the best valence allocation strategy from the interaction.

In the following chapters, I will introduce the experimental scenarios to demonstrate
the model that proposed and discuss open issues of this work, like concerns of the alloca-
tion of valence and the combinational explosion of composite interactions.

72

Chapter 7

Methodology and experimental
scenario of the BEL-CA

Contents
7.1 Experimental settings . 74

7.2 Generating and Analyzing Interaction Traces toolkit (GAIT) 75

7.3 Interaction traces analysis . 77

7.4 The results . 79

7.4.1 The agent’s learning process exported from the GAIT 79

7.4.2 The threshold of regularity sensibility in the interactions 81

7.4.3 The growth of the episodic memory and the surprises exported
from the GAIT . 82

7.4.4 The agent’s performance in the changed environment 84

7.5 Simulations in autonomous robots 86

7.5.1 Robots and the environment 86

7.5.2 The implementations of experiments 87

7.5.3 Performance . 88

7.6 Conclusion . 88

73

In this chapter, I set up an experimental scenario and introduce an implementation
of analyzing agent’s interaction traces to demonstrate CCA’s ability of bottom-up hier-
archical sequential learning. The experimental scenario is designed based on the classic
Small Loop Problem (SLP) [45, 175] as mentioned in Section 3.2.2, which acts as a bench-
mark of implementing and demonstrating cognitive emergence for an autonomous agent.
Meanwhile, I verify the agent’s capabilities of self-adaptation and flexibility by modifying
the environment to simulate interaction scenarios that it hasn’t experienced before.

This chapter is structured as follows. The section 7.1 describes the experimental
settings which include the simulation of the agent and the environment, the experiments
and the initialization of parameters. Section 7.2 explains the implementation of the GAIT
which facilitates to analyze agent’s interaction traces. Section 7.3 explains the detail
learning process for the agent interacts with the environment and the structure behaviors
it has learned in each decision-making. Section 7.4 reports the results from the GAIT. In
section 7.5, I present new simulations for which demonstrating BEL-CA’s performance in
autonomous robots. Section 7.6 gives a conclusion.

7.1 Experimental settings

The agent is presented as a blue head arrow and initialized with a random direction. At
the beginning of the interaction, the agent is positioned in the upper left corner of the
environment and oriented to the left. Different from classic Small Loop environment, our
environment is designed changeable for simulating agent’s performance between familiar
and unfamiliar environments, and dealing with different levels of complexity of interaction
scenarios. The changeable environment means that if you click any walls in the environ-
ment (except the boundaries wall in the environment), this wall will be removed and the
location becomes accessible. Otherwise, it will be filled with a wall and become impass-
able. And also this environment’s modification will be synchronized with the proposed
constructivist cognitive architecture in time.

In order to distinguish different experiments, I utilize divers icons like a triangle,
left and right half-circle square, left and right trapezoid and square to represent moving
forward, turn left and turn right, touch left, touch right and touch front respectively.
With colors of green and white to indicate interactions that the agent enacts with the
same experiment but receives different possible feedbacks from the environment, but it
ignores the meaning of these interactions. The experimenter can preset the valences of
primitive interactions on the “Parameters Panel” (as shown in the right figure of Figure
7.1). The interaction interval could be changed by afforded buttons or edited directly to
speed up or slow down the speed of interactions. The “actionType” indicates the current
experiment the agent enacts, the “Total valence” represents the cumulated valence the
agent has received from current and previous all interactions, and “loopNum” presents the
times that the agent makes decisions. With buttons of “Start”, “Stop” and “Reset” could
control the interaction to start, suspend or reset to the initialization state. In order to
better observe the interaction between agents and the environment, as well as the agent’s
gradually learning process, I have proposed and developed a toolkit named “Generating
and Analyzing Interaction Traces toolkit” (GAIT) as a way to investigate the detailed
learning process for agent interacting with the environment and each structured behaviors
it has learned within each decision-making.

74

(a) The environment for the agent to in-
teract

(b) Parameters to control the interaction

Figure 7.1: The environment and experimental settings.

7.2 Generating and Analyzing Interaction Traces toolkit

(GAIT)

In this section, I introduce the implementation of GAIT to explain the detail learning
process for the agent interacts with the environment and the structure behaviors it has
learned in each decision-making on cross-platforms. The framework of GAIT records all
information in agent’s each interaction with the environment, which includes intended
interaction, enacted interaction, anticipations with its selection process and all learned or
reinforced composite interactions, forming a continuous interaction traces followed with
the timeline.

One of the classic developments of GAIT is based on a Client-Sever architecture. The
animation of the interaction scenario that presents the dynamic interaction between the
agent and the environment is designed by the Canvas of HTML5 and the interaction
traces are drawn by SVG components in the front page as the client side. In the server
side, the algorithm of the BEL-CA is implemented in a Java Servlet and a server of
Tomcat9.0 is prepared for responding requests from the front page. In order to be able
to selectively display the agent’s interaction traces and to facilitate interactive operations
on the interaction traces, I have designed different layers to display various information
in the interaction (as shown in Figure 7.2). By default, except the Layer 1, other layers
always remain invisible. After starting the an operation, the corresponding layer will
be displayed accordingly. Meanwhile, in order to facilitate to display of the information
of concern and keep the page tidy, corresponding methods are also provided to hide
unnecessary information. The implementation of these layers is also drawn by SVG but
the implementation of functions behind operational buttons are based on Javascript and
the CSS3.

Furthermore, in the area of interaction traces, there exists several inducing fields that
facilitate to observe the structure of interactions and processing procedure (as shown in
Figure 7.3). One of the inducing fields in the interaction traces shows that each time
move the mouse on the primitive intended/enacted interaction symbols, a tip window
will pop out to present the all newly learned or reinforced composite interaction with
its hierarchical structure and layers information (as shown in Figure 7.3). The composite
interactions surrounded by green rectangles indicate these composite interaction were new

75

Figure 7.2: The layers of the GAIT in the front page that is designed to display vari-
ous information in the interaction. Particularly, the bottom Layer 1 displays all enacted
interactions affiliated with their intended interaction, and a pair of thumbnails of com-
posite interactions followed by the timeline. The Layer 2 shows the detailed structure
of composite interactions which is shrunken in the Layer 1. Layer 3 was used to present
the selection mechanism in BEL-CA and the anticipations for each interaction. Consid-
ering the situations that the agent enacts an intended composite interaction, the Layer
4 displays the comparison between the intended composite interaction and the enacted
composite interaction.

learned and the ones surrounded by blue rectangles indicate these composite interactions
already learned before but were reinforced in this interaction.

Figure 7.3: The inducing field of primitive intended/enacted interaction.

After moving out the mouse from primitive intended/enacted interaction symbols,
the composite interaction tip window will simultaneously disappear. Operations like left-
clicking any enacted interactions, a tip window with a list of experiments (icons with
grey color) will pop out and sorted by its proclivities (as shown in Figure 7.4). For the
cases where experiments could propose anticipations (surrounded with the pink rectangle),
pick one experiment and continue left-clicking on it, the select experiment fills with light
green to specify it has been chosen and pop up an another tip window with a list of
detailed anticipations, also this list is sorted by their proclivities. The proclivity of detailed
anticipations with red color indicates its weight is lower than the threshold, while the
green color indicates its weight is greater or equals with the threshold. Also, there exists

76

a “close” button at the bottom of the experiments’ tip window for close this experiments’s
tip window with their detailed anticipation tip window, which facilitates to display other
interaction information.

Figure 7.4: The tip windows experiments with their anticipation tip window.

While an agent is enacting composite interactions, there are several inducing fields
(illustrated with light green rectangle) on the “loop number” (as shown in Figure 7.5).
Moving the mouse on this area, a tip window that includes the intended composite interac-
tions with its enacted composite interaction will pop out to show the detailed interaction
process. Similarly, when moving out the mouse, this tip windows will simultaneously
disappear. In order to identify the range of intended/enacted composite interactions,
all primitive interactions that the agent have enacted in the intended/enacted composite
interactions are surrounded with a yellow rectangle.

Figure 7.5: The inducing field of enacting composite interactions.

The scroll button at the bottom of the interaction traces window could be used to
show all previous interaction traces. In our test, the proposed toolkit could support tens
of thousands of interactions which makes it easy to look back at all previous interactions.

7.3 Interaction traces analysis

At the beginning of interacting with the environment, the agent starts the journey of
“perception of the world” without endowing any prior knowledge, nor specific goals for
it to achieve. The agent randomly selects an experiment (feel right) and intend this ex-
periment’s default primitive intended interaction (the green trapezoid). With feedback
from the environment, agent receives the same green trapezoid (as shown in Figure 7.6).
At step 2, the agent memorizes the previously enacted interaction with current enacted

77

interaction forms a composite interaction. Particularly in step 3, combined with previous
enacted interaction and super-interaction, the agent constructs one composite interaction
that composed by previous enacted interaction with current enacted interaction and two
third level composite interaction that composed with previous two-step enacted interac-
tion and super-interaction.

Figure 7.6: The first several interactions and composite interactions construct process.

The proposed intended interaction appears at step 9 and step 14 (in Figure 7.7), the
experiment “move forward” has the highest proclivity and its intended interaction (the
white triangle) is proposed with the highest proclivity (the proclivity value is 15). Then
the agent intends this white triangle (move forward) and gets the same white triangle
(the agent successfully moves forward a step), then this attempt intended interaction
as a success. While the opposite situation happened in step 14, the agent intends the
same white triangle while bumping with the wall, it gets the a green triangle, hence this
interaction is considered a failure.

Figure 7.7: Enact the same intended interaction with different feedback.

At step 23, the agent is going to enact a composite interaction, with the reason that this
anticipation’s weight is less than the threshold, then the agent intends the first primitive
interaction (left half-circle, turn left) of this composite interaction and receives the same
enacted interaction (see Figure 7.8). In this implementation, I use different colors to
identify whether the anticipations’ weight beyond the threshold or not, the color red
means its weight less than the threshold then the agent just intends the first primitive
interaction of the intended interaction (in this case, the white left half circle), while the
green signifies its weight is greater or equal with the threshold which means the agent will
enact all primitive interactions in this composite interaction sequentially as a whole.

78

Figure 7.8: The enacted composite interaction’s weight less than the threshold.

At step 119, the agent gets an intended composite interaction with its anticipation
weight beyond the threshold, then the agent sequentially intends all primitive interactions
in it and successfully receives the same enacted composite interaction (see Figure 7.9). The
agent combines this enacted composited interaction with previous enacted interaction and
previous learned composite interaction construct higher-level and more complex composite
interaction, which present much more complicated behavioral patterns have learned by
the agent for the case that it could generate proper behaviors in the future.

Figure 7.9: The agent enacts composite interaction and constructs higher-level composite
interaction.

As interactions continue, the agent gradually constructs higher-level composite inter-
actions which represent complex structured behaviors that allow the agent to successfully
interact with the environment and learn to avoid unfavorable interactions (bumping with
the wall) by using regularities it has learned. More complicated behavioral patterns have
constructed and it could generate properly with different situations (see Figure 7.10). The
learning process goes stabler with agent’s interaction with the environment and the growth
of constructing composite interactions will become slower from the rapid development at
the beginning of interaction.

7.4 The results

7.4.1 The agent’s learning process exported from the GAIT

The interaction traces exported from the GAIT provide us a possible path to understand
agent’s cognitive development from interactions with the environment. As shown in Figure
7.11, at the beginning of interaction, the agent tries to enact predefined primitive interac-

79

Figure 7.10: Enacting complicated composite interaction.

tions and occasionally bumps with the wall. As interactions continue, the agent gradually
learns regularities from its interaction experiences and organizes them into structured be-
haviors. With the agent constructs perception of the environment, it can generate proper
behaviors and reduce the collision with the environment. Especially from the 357th inter-
action, the bumping phenomenon starts to disappear and the agent enables to generate
proper behaviors based on accurately recognizing the context. Moreover, the agent could
successfully interact with its environment and start preventing unfavorable interactions
using regularities that it has learned.

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 570 600 630
Decision cycles

0

5

10

15

20

25

30

35

Bu
m

p
tim

es

Bumping times with decision cycles as the agent interacts with the environment.
Bumps with decision cycles.

Figure 7.11: Bump times with decision cycles as agent interacts with the environment.

From the perspective of total valences can also demonstrate agent’s learning process in
cognitive development of the environment. Total valence, which represents the cumulated
valence the agent has received from enacted interactions. As shown in Figure 7.12, in
the initial interactions, the total valence continued to reduce with the agent continuously
bumps with the wall and tries to find ways to enact interactions have positive valence.
In this period, the agent occasionally move forward successfully, but in most cases where
the agent is making various explorations and attempts to prevent bumping with the wall.
Since 357th interaction, the total valence starts to rise, and the increase goes faster until
the increase rate tends to be stable, which as a way to prove the emergence of sense-
making in agent’s interactions with the environment. This could also be confirmed from
the Figure 7.13 that shows the average valence with decision cycles in agent’s interactions

80

with the environment.

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 570 600 630
Decision cycles

400

300

200

100

0

100

200
To

ta
l v

al
en

ce

Accumulated valence with decision cycles in agent's interactions with the environment.
Accumulated valence with decision cycles.

Figure 7.12: Accumulated valence with decision cycles in agent’s interactions with the
environment.

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 570 600 630
Decision cycles

4

3

2

1

0

Av
er

ag
e

va
le

nc
e

Average valence with decision cycles from agent's interactions with the environment.
Average valence with decision cycles.

Figure 7.13: Average valence with decision cycles in agent’s interactions with the envi-
ronment.

7.4.2 The threshold of regularity sensibility in the interactions

Meanwhile, from the result reported from the GAIT, the threshold of regularity sensibility
(as mentioned in Section 6.3.1) results in the adoption of potential satisfying higher-level
schemes. As shown in Figure 7.14, the lower regularity sensibility threshold results in
a faster adoption of potentially less satisfying higher-level schemes. A higher regularity
sensibility threshold results in a slower adoption of potentially more satisfying higher-level
schemes.

81

0 200 400 600 800 1000
Decision cycles

0

10

20

30

40

Bu
m

p
tim

es

The optimal thresholdThe optimal thresholdThe optimal thresholdThe optimal threshold

Threshold: 0
Threshold: 1
Threshold: 2
Threshold: 3

0 200 400 600 800 1000
Decision cycles

800

600

400

200

0

200

To
ta

l v
al

en
ce

The optimal thresholdThe optimal thresholdThe optimal thresholdThe optimal threshold

Threshold: 0
Threshold: 1
Threshold: 2
Threshold: 3

Figure 7.14: The results reported from the GAIT of interactions in different thresholds.

7.4.3 The growth of the episodic memory and the surprises ex-
ported from the GAIT

In the learning process of agent’s cognitive development, the construction of composite
interactions plays as a way to represent structured behaviors emergence from interactions,
or in other words, learning regularities from interaction afforded by the environment. As
interaction continues, the agent is building the perception of the environment and avoid-
ing unfavorable interaction experience based on regularities it have learned, the newly
learned composite interaction will gradually decrease until it disappears. Instead, most
of the composite interaction will be gradually reinforced in subsequent interactions. This
complies with agent’s self-motivation, which successfully enacting sequences of interac-
tions (autotelic motivation) and preferably enacting interactions that have predefined
positive values (interactional motivation). Therefore, as the interaction progresses, the
“surprises” in enacting intended interactions will decrease, the growth of the number of
composite interactions should slow down, and the hierarchical structures will also become
more stable. As shown in Figure 7.16 and Figure 7.15.

82

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 570 600 630
Decision cycles

0

100

200

300

400

500

600

700

Co
m

po
sit

e
in

te
ra

ct
io

n
co

un
t

The number of composite interactions with decision cycles.
The number of composite interactions with decision cycles.

Figure 7.15: The growth of composite interactions with decision cycles in agent’s interac-
tions with the environment.

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 570 600 630
Decision cycles

0

1

2

3

4

5

6

7

Su
rp

ris
es

 in
 in

te
ra

ct
io

ns

The surprises with decision cycles in agent's interactions with the environment.
Surprises with decision cycles.

Figure 7.16: The surprises with decision cycles in agent’s interactions with the environ-
ment.

83

In Figure 7.16, the surprise in agent’s interaction decreases until it disappears. As
interaction progresses, higher-level composite interaction will constructed and selected to
enact, thus surprise in enacting this composite interaction grows stronger than before, but
this “surprise” will decrease with the agent gets familiar with this intended interaction
and the context. In Figure 7.15, the construction of composite grows rapid in the initial
interaction process. As agent gets familiar with regularities patterns, this growth will
slow down until goes stable. Thus the number of composite interaction remains constant.

7.4.4 The agent’s performance in the changed environment

In the model of BEL-CA, the agent not only continuously constructs the knowledge of
the environment but also acquires capabilities of self-adaptation and flexibility for gener-
ating proper behaviors in diverse situations. As shown in the interaction traces exported
from the GAIT, from the 357th interaction, the agent could successfully interact with its
environment and start avoiding unfavorable interactions (the collisions with the walls)
using regularities that it has learned. In the 500th interaction, the environment has beed
changed (as shown in Figure 7.17) for examining the agent’s performance in the changed
environment.

Figure 7.17: The changed environment.

With interaction traces exported from the GAIT, the agent reuses the regularities
that it has learned in the previous environment and dynamically adapted new patterns
from the interaction experience. At the beginning of interactions in the new environment,
the proposed intended interactions are not satisfied with the context, thus there exists a
period of oscillations in agent’s performance, which is mainly manifested in the increase of
bumping times and the oscillations of valences in the interaction (as shown in Figure 7.18).
Nevertheless, with interaction continues, the agent gradually absorbs novel knowledge of
the environment and successfully interact with its environment with generated behaviors,
which represent that the agent has acquired capabilities of self-adaptation and flexibility.
The bumping phenomena starts to disappear and valence is rising (as shown in Figure
7.18).

84

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050
Decision cycles

0

5

10

15

20

25

30

35

Bu
m

p
tim

es

The moment that the environment has been changed

Bumping times with decision cycles as the agent interacts with the environment.
Bumps with decision cycles.

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050
Decision cycles

400

300

200

100

0

To
ta

l v
al

en
ce The moment that the environment has been changed

Accumulated valence with decision cycles in agent's interactions with the environment.
Accumulated valence with decision cycles.

Figure 7.18: The results reported from the GAIT of agent’s performance in the changed
environment. Since the environment has been changed in the 500th interaction, the agent
experiences a period of oscillations in the interaction with the environment. After then,
the agent gradually absorbs novel knowledge of the environment and successfully interact
with its environment with generated behaviors, thus the bumping phenomena starts to
disappear and the valence is rising.

85

7.5 Simulations in autonomous robots

The previous section demonstrates CCA’s ability of bottom-up hierarchical sequential
learning in a simple simulation, which an autonomous agent is designed as a blue head ar-
row with randomly initialized direction in the environment of Small Loop Problem (SLP).
As interaction continues, the agent gradually constructs the perception of the environ-
ment and acquire capabilities of self-adaptation and flexibility with diverse interaction
scenarios.

However, for autonomous robots, the learning process is far more complex than that.
For example, even in the realization of simple experiments, like moving or turnings, robot
needs to control its own mechanical and power system effectively and accurately. More-
over, the enacted interactions are not available immediately but delayed for the reason
that it needs to wait until the robot finishes all experiments in the enaction of an intended
interaction sequentially. The simulations of BEL-CA for autonomous robots is interesting
but also it’s a big challenge. In this section, I describe the approaches of implementing this
new simulation, for which demonstrating BEL-CA’s performance in autonomous robots.

7.5.1 Robots and the environment

For the simulation of autonomous robots, the development of GAIT also follows a Client-
Server architecture but in a different way. Our new simulation for autonomous robots is
based on the platform of V-REP, and the robot in this simulation is a Pioneer 3-DX, a
small lightweight two-wheel and two-motor differential drive robot. The V-REP is a cross-
platform robot simulator which provides various robots and modules and allows to design
desired robots and interaction environment according to different kinds of requirements.
Meanwhile, the robot is equipped with sixteen ultrasonic sensors, three proximity sensors,
a vision sensor of camera. In addition, the robot in this simulation as a client side and the
server side of the algorithm BEL-CA is implemented by Python. The interaction traces
are drawn by framework of PyQT5 and combined with Python’s original GUI toolkits of
Tkinter.

As shown in Figure 7.19(a), the robot has sixteen build-in ultrasonic sensors that are
placed around the edge with different angles, and also it is equipped with three proximity
sensors in different directions (forward, left and right), a vision sensor of camera on the
head of the robot in the forward direction to capture the images of the environment in
front of the robot. Particularly, the forward proximity sensor has a bigger detect range
(Range: 3.5 m) and smaller angle (Radium: 0.005m, Angle: 5◦) than the others two
directions (Range: 1.5m, Radium: 0.005m, Angle: 10◦), which allows it to detect farther
and reduce the interference from the environment (typically, the walls). The proximity
sensors not only enable the robot to obtain the distance of the object in the corresponding
direction, but also get the object’s normalized surface normal vector and the detected
point coordinates.

In order to avoid physical collision between the robot and the wall, I set the robot
to move forward only in conditions that the distance is greater than a certain threshold,
otherwise it is not allowed to continue to move forward. At the same time, with the
obtained surface normal vector of the object, the robot can continuously handle the
controllers of two wheels on both sides to keep the surface normal vector vertical, which
aligns the robot with the environment after each execution of the experiment.

Meanwhile, the environment is designed as the classic Small Loop Problem (SLP) (as
shown in Figure 7.19(b)). In the initialization environment, the agent is positioned in the

86

lower right corner of the environment and oriented to the front. The walls around the
robot are designed to be collidable, measurable,detectable and renderable, which allows
the proximity sensors and vision sensors to function to obtain corresponding parameter
data.

(a) The robot of Pioneer 3-DX. (b) The classic environment of SLP for the Pi-
oneer 3-DX.

Figure 7.19: The environment of SLP with a Pioneer 3-DX robot.

7.5.2 The implementations of experiments

The implementation of primitive interactions for the robot

The implementation of primitive interactions in robot plays an elementary and fundamen-
tal role in the simulation for autonomous robots. Learning process starts from these basic
implementations. The first implementation of the robot is to move the robot forward. As
mentioned before, the robot only moves forward in conditions that the distance between
it and the wall in front of it is greater than a certain threshold, otherwise it is not allowed
to continue to move. The calculation of the distance comes from the normalization of
detected point coordinates from the proximity sensor.

‖distance‖F =

√

∑

i

pi(xi, yi, zi)
2 (7.1)

An advantage of the robot Pioneer 3-DX is that its two wheels can be independently
controlled, which can facilitate us to achieve precise control of the robot’s forward and
steering. To make the robot move forward, the only need is to set a certain speed and
duration to let it reach a certain distance forward. For steering, it needs to set a duration,
and set the same speed for the both two wheels but move in the opposite direction.

Alignment with the environment

Each time the robot executes an experiment, it needs to ensure that it is aligned with
the environment, so that it is convenient for the robot to execute a series of experiments
afterwards. As described above, the robot is equipped with three proximity sensors with
three different directions (forward, left and right), which allows the robot to obtain dis-
tances from these directions and their normalized surface normal vectors. As shown in
Figure 7.21, the robot is placed in the environment with an angle, the forward proximity
sensor affords the coordinates of surface normal vector of the wall in front of the robot.
The coordinate of the surface normal vector is a three-dimensional parameter in the form

87

Figure 7.20: The detected points from the proximity sensor.

of [x,y,z] based on the coordinate system of the proximity sensor. As shown in Figure
7.22, the coordinate value of x,y,z respectively represent the direction of the coordinates
along the red line, green line and blue line. When the direction of the robot is gradually
perpendicular to the wall surface, the coordinate value of z will gradually tend to 1, and
the coordinate value of x will gradually tend to 0. Based on this feature, the adjustment
of the surface normal vector by controlling the movement of the two wheels Vector to
realize the alignment of robot and environment.

Figure 7.21: The alignment of of the robot in the environment.

7.5.3 Performance

After implementing the elementary experiments, the robot starts interacting with the sur-
rounded environment and learning regularities of interaction afforded by the environment.
Similarly, I deployed the toolkit of GAIT in this simulation to observe robot’s learning
process and the construction of hierarchical behaviors from its interaction traces.

7.6 Conclusion

In this chapter, I set up an experimental scenario and introduce an implementation of
analyzing agent’s interaction traces to demonstrate CCA’s ability of bottom-up hierarchi-
cal sequential learning. The experimental scenario is designed based on the classic Small

88

Figure 7.22: The coordinate system of proximity sensors and the description of its coor-
dinate values.

Figure 7.23: The combination of GAIT in simulations of robot on V-REP.

89

Loop Problem (SLP) [45, 175], which acts as a benchmark of implementing and demon-
strating cognitive emergence for an autonomous agent. Meanwhile, I verify the agent’s
capabilities of self-adaptation and flexibility by modifying the environment to simulate
interaction scenarios that it hasn’t experienced before.

90

Chapter 8

Conclusion, open issues and
perspectives

Contents
8.1 Conclusion . 92

8.2 Open issues . 92

8.2.1 The growth of composite interaction 92

8.2.2 Differences between the valence and the reward 93

8.2.3 The allocation strategy for the valence of primitive interactions 95

8.3 Existing problems . 96

8.4 Future work and perspectives 97

91

8.1 Conclusion

This dissertation introduces a computational model of Constructivist Cognitive Archi-
tecture (CCA) as the way towards simulating the learning mechanism of infants’ early-
stage cognitive development based on theories of enactive cognition, intrinsic motivation,
and constructivist epistemology. Meanwhile, the CCA allows a self-developing agent to
autonomously acquire the perception of the environment and obtain capabilities of self-
adaption and flexibility to generate proper behaviors for tacking with diverse situations.

The BEL-CA, a bottom-up hierarchical sequential learning model for autonomously
learning of hierarchical sequences of behaviors and obtain capabilities of self-adaptation
and flexibility. Following with three processes of assimilation, accommodation and equi-
librium in constructivsm, the agent autonomously organizes schemes it has learned from
interactions into the hierarchical manner, which allows the agent to gradually under-
stand the meaning of different experiments and simultaneously infer the structure of the
environment based on the patterns in the stream of interaction traces.

Meanwhile, combined with BEL-CA and the implementation of toolkit GAIT allow
us to report and explain the detailed learning process and the structured behaviors that
the agent has learned on each decision making step. We report an experiment in which
the agent learned to successfully interact with its environment and to avoid unfavorable
interactions using regularities discovered through interaction.

We evaluated the agent’s cognition emergence based on a classic Small Loop Problem
(SLP) environment, which not involves a final goal for the agent to achieve, nor the lim-
itations of interactions ending. The changeable environment is designed for simulating
agent’s performance in different levels of complex scenarios. With recorded enacted inter-
action traces from GAIT and hierarchically structured behaviors the agent has learned,
we found that the agent could gradually exploit the hierarchical regularities afforded by
the environment and learn to avoid unfavorable interactions using regularities that it has
learned. Within 357 interactions, it could successfully interact with its environment and
generate proper behaviors for different situations.

The experiments report that certain interactions become meaningful to the agent, with
which the agent learns to use them to inform its future behavior. This result demonstrates
that the agent learns to perform active perception, that is, the agent actively uses certain
interactions as a form of perception to inform its knowledge of the current situation.
Additionally, the agent addresses the autonomous ontology construction problem at a
rudimentary level. It learns to actively distinguish between types of phenomena afforded
by its environment and to cope with these phenomena by successfully enacting learned
sequences of interactions.

8.2 Open issues

8.2.1 The growth of composite interaction

In the learning process of agent’s cognitive development, the construction of composite
interactions represents the emergence of structured behaviors from interactions, or in
other words, learning regularities from interaction afforded by the environment. Since
in each interaction, the agent always combines the previously enacted interaction and
constructed composite interaction to form new composite interactions, doubts concern
the growth of composite interactions as the interaction progresses.

92

At the beginning of the interaction between the agent and the environment, the growth
of composite interaction is indeed very rapid. However, as interaction continues, the agent
gradually acquires the perception of the environment and avoids unfavorable interaction
experience based on regularities it have learned, the newly learned composite interaction
will gradually decrease until it disappears (as shown in Figure 7.15). With the reason that
most composite interaction will be gradually reinforced in subsequent interactions and
few new interaction experience is generated. This complies with agent’s self-motivation,
which successfully enacting sequences of interactions (autotelic motivation) and preferably
enacting interactions that have predefined positive values (interactional motivation). The
same reason can be used to explain the “surprises” in enacting intended interactions will
decrease as the interaction progresses.

Meanwhile, as shown in Figure 7.15, the growth of composite interactions slows down,
and the hierarchical structures will also become more stable. As shown in Figure 7.16,
we can find that the surprise in agent’s interaction decreases until it disappears. As
interaction progresses, higher-level composite interaction will constructed and selected to
enact, thus surprise in enacting this composite interaction grows stronger than before, but
this “surprise” will decrease with the agent gets familiar with this intended interaction
and the context. In Figure 7.15, the construction of composite grows rapid in the initial
interaction process. As agent gets familiar with regularities patterns, this growth will slow
down until it disappears. Thus the number of composite interaction remains constant.

8.2.2 Differences between the valence and the reward

Under normal circumstances, it’s generally regard the valence and the reward as same
things. Due to an intuitive reason that the valence and the reward both serve the decision
making for the agent to select an intention (an single action or a series of primitive
interactions) for the next interaction. However, the actual situation is that there are
essential differences between them. For solving the confusions from the difference between
the valence in the CCA and the reward from reinforcement learning paradigm, we give
an detail explanation from the following three aspects: their origin, their formalism and
the way of use.

The origin of the valence and the reward

In order to implement agent’s self-motivations, the tendency to successfully enact inter-
actions and nature preferences to enact interactions have positive values, we introduce
an innate value system to indicate all interactions are not equal to the agent. In the
CCA, we associate each primitive interaction with an innate scalar valence vt as a way to
simulate agent’s inborn behavioral preferences and qualify the agent’s “feeling” of each
interaction experience. Therefore, the agent’s interaction does not use a reward function
or a problem representation, it constitutes neither a reward maximization algorithm nor
a problem-solving algorithm. Instead, the agent’s preferences are defined independently
of an preference to the environment’s states.

However, in Reinforcement Learning (RL) paradigm, agent is designed to learn what to
do - how to map situations to actions - so as to maximize a numerical reward signal. The
RL agent is not told which actions to take, but instead must discover which actions yield
the most valuable reward by trying them. In the most interesting and challenging cases,
actions may affect not only the immediate reward but also the next series situations
and, through that, the all accumulated subsequent rewards. These two characteristics
- trial-and-error search and delayed reward-are the two most important distinguishing

93

features of reinforcement learning. In the RL, the agent must be able to sense the state
of its environment to some extent and must be able to take actions that affect the state.
Moreover, the agent also must have a goal or goals relating to the state of the environment.

The formalism of the valence and the reward

In the CCA, valence as an attribute of sensorimotor interaction remains constant dur-
ing the agent interacts with the environment. For primitive interaction, its valence has
been preset in the initial stage of agent interacts with the environment. For composite
interaction, its valence is the sum of the valences of all primitive interactions in it. The
valence calculation as shown in equation 8.1 below, we can find that the valence function
v(it) is defined independently of any state of the environment and the agent is motivated
to select an interaction for successfully enacting it, rather than for the outcome of the
interaction or achieving a specific goal.

v(it) =

{

valence(it), it ∈ I
∑k

1 valence(i
p
j), i

p
j ∈ it, 1 ≤ j ≤ k, it ∈ Ct

(8.1)

In the RL, the purpose or goal of the agent is formalized in terms of a special signal,
the reward, obtaining from the environment to the agent. At each time step, the reward
is a simple scalar number, rt ∈ ℜ. Informally, the agent’s goal is to maximize the total
amount of reward it receives. The classic calculation of expected return as describes as
equations below. The value of a state s under a policy π, denoted as vπ(s), is the expected
return when starting in s and following π thereafter. The definition of vπ formally by

vπ(s) = Et

[

∞
∑

k=0

γkRt+k+1 |St = s

]

, for all s ∈ S, (8.2)

where Eπ[·] denotes the expected return value of a random variable given that agent
follows policy π, and t is any time step. Similarly, the expected return value of taking an
action a in state s under a policy π, denoted qπ(s, a), formally by

qπ(s, a) = Eπ

[

∞
∑

k=0

γkRt+k+1 |St = s, At = a

]

. (8.3)

function qπ(s, a) is called the action-value function for policy π. As shown in equations
of 8.2 and 8.3, the expected return value depends on the state of the environment and
the terminal state, which indicates the specific goals in the RL. In this case, the agent’s
motivation comes from the environment that is external to the agent itself, which is said
to be the extrinsic motivation.

The usage of the valence and the reward

Both the usage of valence in CCA and reward in RL participates in the decision-making
mechanism for selecting potential intended interactions or actions, but in different ways.
In CCA, the intended interaction selection is based on the term of proclivity (pi = w(ai)×
v(post(ai))), which comes from the activated composite interaction ’s weight (w(ai), ai ∈
At) and the valence of its post-interaction (v(post(ai)), ai ∈ At). The anticipation with the
biggest proclivity value has a high probability of being enacted. The intended interaction
of the selected anticipation’s experiment could be a primitive interaction which means

94

the agent only needs to perform a single experiment, or it could be a series of primitive
interaction for the agent to perform a sequence of experiments.

However, in the case of RL, the decision-making mechanism mainly focuses on selection
an action to obtain the maximum cumulative return value starting from that action. Once
the action is selected, agent immediately executes this action and then selects the action
for the next interaction in the same way. Noted that each time the agent makes a decision,
only a single action will be performed by the agent, rather than a sequence of actions.
This is another obvious difference with the enaction of composite interaction in CCA.

8.2.3 The allocation strategy for the valence of primitive inter-
actions

In this dissertation, the term valence is presented as the agent’s innate behavioral prefer-
ence, which endows an agent with an intrinsic motivation that spurs it to enact interac-
tions with positive valence rather than interactions with negative valence. Hence the way
to qualify this preferences for the initialization of various primitive interactions’ valence
directly effect the agent’s performance in knowledge construction of the environment. At
the same time, it is also obviously that different valence allocation strategies will have
different effects.

Generally, based on our human commonsense, we will assume that the experience of
the agent successfully moving forward one step is considered as a satisfactory experience
and should have positive hints. While for experience like “collision” should be given
a negative hint, unless the agent enjoys this experience, such as rock climbing. For
experiences such as turning the current direction and touching the wall, they play an
indirect and different role in the agent’s commitment to achieve this preference, they will
be given with different negative valences. According to this valence allocation strategy,
the agent will be motivated to find ways to experience interaction of “moving forward
successfully” and avoid “collisions”. Obviously, in the process of valence allocation, it is
inevitable that we will have more or less influence on the agent’s learning process.

In addition, the valence allocation involves a combinatorial optimization problem [167],
which is to find a set of optimal valences among various combination possibilities. In our
experiment, we need to allocate five valences (or parameters) for the following five different
types of experiences: (a) moving forward success, (b) bumping with the wall, (c)turning
the direction, (d) touching with empty, and (e) touching with a wall. These valences
act as a set of parameters P = {θ1, θ2, θ3, θ4, θ5} for the function of agent’s performance
lθ = L(θ1; θ2; θ3; θ4; θ5) in interacting with the environment. Our goal is to find an optimal
combination of pi = {θ

∗

1, θ
∗

2, θ
∗

3, θ
∗

4, θ
∗

5} to get the minimum of bumping times minL(θ∗).

One of the simplest and most intuitive solution is the Brute-force Algorithm [162, 163,
164], which is used to find an optimal set of parameters by traversing all the possibilities
of combinations. In the case of small parameter value range, this method can easily obtain
the globally optimal solution. While the cost of this approach can be very high when the
parameter range is extended. Assuming that the given interval length of each parameter
is n, the algorithm complexity will reach the power of n in the worst case, it is apparently
inefficient.

The most classic algorithm is the Monte Carlo Algorithm [165, 166]. The general idea
is to randomly cast one point in the parameter combination space, and then search a
small group of points in its nearby area to get the locally optimal solution. Using the
same way to randomly cast another point, and then find another locally optimal solution.
This procedure is repeated until the termination conditions are met. This method greatly

95

reduces the complexity of the algorithm, but it needs to ensure that each cast point is in
different area, otherwise the obtained point is just the locally optimal solution that has
been searched before.

The combinatorial optimization problem and the integer programming problem are
beyond the scope of this dissertation, but the solution of these problems can greatly
improve the agent’s performance in sense-making and perception (re)construction of the
environment.

8.3 Existing problems

However, in the description of the introduced cognitive architecture, we point out many
questions that remain to be addressed in moving towards more sophisticated agents con-
fronted which couplings that offer more complex sequential regularities of interaction.
In this current version, we acknowledged that CCA relies upon too many hard-coded
function, which should be ultimately removed to the agent with more flexibility to scale
up in more complex environments. In particular, some of these functions should be au-
tonomously constructed from agent’s interaction experience, which leave us rooms for
even more constitutive autonomy.

In terms of scalability, we should notice that the number of new schemas constructed
at each round would not grow with the environment complexity but with the agent’s
complexity, which remains under the modeler’s control. The time needed to explore
the environment would however grow with the environment complexity. This raises the
interesting question of the agent’s “education”, that is, designing “pedagogical” situations
where the agent could more easily learn lower-level schemas on which higher-level schemas
could anchor.

With reports from the GAIT, the agent needs to retrospect all previous learned com-
posite interactions to retrieve the ones whose pre-interactions are matched with the current
enacted interaction in each decision cycle. As interactions continue, the recorded enacted
interaction traces progressively grow longer, hence the agent will spend a long time to
activated all eligible composite interactions for anticipations, increases the burden on the
selection mechanism as well.

Figure 8.1: Utility rate of composite interaction.

96

In addition, the utility rate of composite interactions needs to be improved. As shown
in Figure 8.1, the agent activates almost all composite interactions but only a few are
proposed for enacting. Although the agent can be easily qualified for the work in the cur-
rent setting scenario designed in this dissertation, the shortcoming will be easily revealed
in conditions that the environment becomes more complex.

8.4 Future work and perspectives

Further work will be mainly focused on following aspects:

• Optimizing our model and upgrading the toolkit. For example, a experience-based
predictive model could be used in the selection mechanism for better proposing antic-
ipations for the agent to interact with the environment. With memorizing patterns
that could improve the learning efficiency and eliminating composite interactions
that probably will not use to simplify the activation and proposition processes in
BEL-CA in the future.

• Implementing higher-level abstraction mechanisms in our agent and examining it in
more complex environments. An abstraction of the interaction regularities endows
the agent has capabilities to adapt to different interaction scenarios and generate
behaviors flexibly.

• Acquiring the capability of exploration. The learned structure behaviors which
allow the agent to generate proper behaviors in the environment that it has been
familiar with. However, in changed environments, the agent persists in following
the generated behaviors in each interaction prevents it to explore the unfamiliar
parts in the environment. A dynamic exploring mechanism could spur the agent to
acquire new regularities of interaction afforded by the environment.

• And also, in the enaction of composite interactions, we could flat composite inter-
actions into sequences of primitive interactions without referring to its structure.
In addition, we’d like to combine with this hierarchical sequential learning model
to evaluate the performance of the agent in a multi-agent scenario, which provides
more challenges and opportunities to improve the agent’s learning ability in complex
environment and dynamic situations.

97

Bibliography

[1] Nick Haber, Damian Mrowca, Li Fei-Fei, and Daniel LK Yamins. Emergence
of structured behaviors from curiosity-based intrinsic motivation. arXiv preprint
arXiv:1802.07461, 2018.

[2] Louise Goupil, Margaux Romand-Monnier, and Sid Kouider. Infants ask for help
when they know they don’t know. Proceedings of the National Academy of Sciences,
113(13):3492–3496, 2016.

[3] Katarina Begus, Teodora Gliga, and Victoria Southgate. Infants learn what they
want to learn: Responding to infant pointing leads to superior learning. PloS one,
9(10):e108817, 2014.

[4] Alison Gopnik, Andrew N Meltzoff, and Patricia K Kuhl. The scientist in the crib:
Minds, brains, and how children learn. William Morrow & Co, 1999.

[5] Robert L Fantz. Visual experience in infants: Decreased attention to familiar pat-
terns relative to novel ones. Science, 146(3644):668–670, 1964.

[6] Evgenii Nikolaevich Sokolov. Perception and the conditioned reflex. 1963.

[7] Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum.
Hierarchical deep reinforcement learning: Integrating temporal abstraction and in-
trinsic motivation. In Advances in neural information processing systems, pages
3675–3683, 2016.

[8] Daniel L Silver, Qiang Yang, and Lianghao Li. Lifelong machine learning systems:
Beyond learning algorithms. In AAAI Spring Symposium: Lifelong Machine Learn-
ing, volume 13, page 05, 2013.

[9] Olivier L Georgeon and Frank E Ritter. An intrinsically-motivated schema mecha-
nism to model and simulate emergent cognition. Cognitive Systems Research, 15:73–
92, 2012.

[10] Adrien Baranes and Pierre-Yves Oudeyer. Active learning of inverse models with in-
trinsically motivated goal exploration in robots. Robotics and Autonomous Systems,
61(1):49–73, 2013.

[11] Nicolas Heess, Dhruva TB, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg
Wayne, Yuval Tassa, Tom Erez, Ziyu Wang, SM Eslami, et al. Emergence of loco-
motion behaviours in rich environments. arXiv preprint arXiv:1707.02286, 2017.

[12] Maxime Guériau, Nicolás Cardozo, and Ivana Dusparic. Constructivist approach
to state space adaptation in reinforcement learning. Learning, 4(S3):S2, 2019.

98

[13] Maxime Guériau, Frédéric Armetta, Salima Hassas, Romain Billot, and Nour-Eddin
El Faouzi. A constructivist approach for a self-adaptive decision-making system:
application to road traffic control. In 2016 IEEE 28th International Conference on
Tools with Artificial Intelligence (ICTAI), pages 670–677. IEEE, 2016.

[14] Stuart Russell and Peter Norvig. Artificial intelligence: a modern approach. 2002.

[15] Nick Haber, Damian Mrowca, Stephanie Wang, Li F Fei-Fei, and Daniel L Yamins.
Learning to play with intrinsically-motivated, self-aware agents. In Advances in
Neural Information Processing Systems, pages 8388–8399, 2018.

[16] Pierre-Yves Oudeyer and Linda B Smith. How evolution may work through
curiosity-driven developmental process. Topics in Cognitive Science, 8(2):492–502,
2016.

[17] Pierre-Yves Oudeyer, Frdric Kaplan, and Verena V Hafner. Intrinsic motivation
systems for autonomous mental development. IEEE transactions on evolutionary
computation, 11(2):265–286, 2007.

[18] Jürgen Schmidhuber. Formal theory of creativity, fun, and intrinsic motivation
(1990–2010). IEEE Transactions on Autonomous Mental Development, 2(3):230–
247, 2010.

[19] Satinder Singh, Richard L Lewis, Andrew G Barto, and Jonathan Sorg. Intrinsically
motivated reinforcement learning: An evolutionary perspective. IEEE Transactions
on Autonomous Mental Development, 2(2):70–82, 2010.

[20] Katherine E Twomey and Gert Westermann. Curiosity-based learning in infants: a
neurocomputational approach. Developmental science, 21(4):e12629, 2018.

[21] Stefan Stojanov, Samarth Mishra, Ngoc Anh Thai, Nikhil Dhanda, Ahmad Hu-
mayun, Chen Yu, Linda B Smith, and James M Rehg. Incremental object learning
from contiguous views. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 8777–8786, 2019.

[22] Karinna B Hurley and Lisa M Oakes. Experience and distribution of attention:
Pet exposure and infants’ scanning of animal images. Journal of Cognition and
Development, 16(1):11–30, 2015.

[23] Alexander Riegler. The radical constructivist dynamics of cognition. The mind, the
body and the world: Psychology after cognitivism, pages 91–115, 2007.

[24] Jianyong Xue, Olivier L Georgeon, and Mathieu Gillermin. Causality reconstruction
by an autonomous agent. In Biologically Inspired Cognitive Architectures Meeting,
pages 347–354. Springer, 2018.

[25] Harold Henry Chaput and Leslie B Cohen. A model of infant causal perception
and its development. In Proceedings of the Twenty-Third Annual Conference of the
Cognitive Science Society, ed. JD Moore & K. Stenning, pages 182–87, 2001.

[26] Olivier L Georgeon, Frank E Ritter, and Steven R Haynes. Modeling bottom-up
learning from activity in soar. In 18th Annual Conference on Behavior Representa-
tion in Modeling and Simulation (BRIMS), Sundance, Utah, 2009.

[27] Andrei Marinescu, Ivana Dusparic, and Siobhán Clarke. Prediction-based multi-
agent reinforcement learning in inherently non-stationary environments. ACM
Transactions on Autonomous and Adaptive Systems (TAAS), 12(2):1–23, 2017.

99

[28] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep reinforcement learning. Nature,
518(7540):529, 2015.

[29] Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z
Leibo, David Silver, and Koray Kavukcuoglu. Reinforcement learning with unsu-
pervised auxiliary tasks. arXiv preprint arXiv:1611.05397, 2016.

[30] Xiao Huang and John Weng. Novelty and reinforcement learning in the value system
of developmental robots. 2002.

[31] Adrien Baranes and Pierre-Yves Oudeyer. Robust intrinsically motivated explo-
ration and active learning. In 2009 IEEE 8th International Conference on Develop-
ment and Learning, pages 1–6. IEEE, 2009.

[32] Burr Settles. Active learning literature survey. Technical report, University of
Wisconsin-Madison Department of Computer Sciences, 2009.

[33] Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas De-
grave, Tom Van de Wiele, Volodymyr Mnih, Nicolas Heess, and Jost Tobias Sprin-
genberg. Learning by playing-solving sparse reward tasks from scratch. arXiv
preprint arXiv:1802.10567, 2018.

[34] Elizabeth S Spelke and Katherine D Kinzler. Core knowledge. Developmental
science, 10(1):89–96, 2007.

[35] Max Lungarella, Giorgio Metta, Rolf Pfeifer, and Giulio Sandini. Developmental
robotics: a survey. Connection science, 15(4):151–190, 2003.

[36] Olivier L Georgeon, Mark A Cohen, and Amélie V Cordier. A model and simu-
lation of early-stage vision as a developmental sensorimotor process. In Artificial
Intelligence Applications and Innovations, pages 11–16. Springer, 2011.

[37] Chuang Gan, Xiaoyu Chen, Phillip Isola, Antonio Torralba, and Joshua B Tenen-
baum. Noisy agents: Self-supervised exploration by predicting auditory events.
arXiv preprint arXiv:2007.13729, 2020.

[38] Kuno Kim, Megumi Sano, Julian De Freitas, Nick Haber, and Daniel Yamins. Active
world model learning with progress curiosity. arXiv preprint arXiv:2007.07853,
2020.

[39] Jacqueline Gottlieb, Pierre-Yves Oudeyer, Manuel Lopes, and Adrien Baranes.
Information-seeking, curiosity, and attention: computational and neural mecha-
nisms. Trends in cognitive sciences, 17(11):585–593, 2013.

[40] Goren Gordon. Infant-inspired intrinsically motivated curious robots. Current Opin-
ion in Behavioral Sciences, 35:28–34, 2020.

[41] Michael John Lingelbach, Damian Mrowca, Nick Haber, Li Fei-Fei, and Daniel LK
Yamins. Towards curiosity-driven learning of physi-cal dynamics.

[42] Rafik Hadfi. Investigating enactive learning for autonomous intelligent agents. arXiv
preprint arXiv:1810.04535, 2018.

100

[43] Tom Froese and Tom Ziemke. Enactive artificial intelligence: Investigating the
systemic organization of life and mind. Artificial Intelligence, 173(3-4):466–500,
2009.

[44] Olivier L Georgeon, James B Marshall, and Riccardo Manzotti. Eca: An enac-
tivist cognitive architecture based on sensorimotor modeling. Biologically Inspired
Cognitive Architectures, 6:46–57, 2013.

[45] Olivier L Georgeon, Christian Wolf, and Simon Gay. An enactive approach to
autonomous agent and robot learning. In 2013 IEEE Third Joint International
Conference on Development and Learning and Epigenetic Robotics (ICDL), pages
1–6. IEEE, 2013.

[46] Ilya E Monosov. How outcome uncertainty mediates attention, learning, and
decision-making. Trends in Neurosciences, 2020.

[47] Zihang Dai, Zhilin Yang, Yiming Yang, WilliamW Cohen, Jaime Carbonell, Quoc V
Le, and Ruslan Salakhutdinov. Transformer-xl: Attentive language models beyond
a fixed-length context. arXiv preprint arXiv:1901.02860, 2019.

[48] Allison Bruce, Illah Nourbakhsh, and Reid Simmons. The role of expressiveness
and attention in human-robot interaction. In Robotics and Automation, 2002. Pro-
ceedings. ICRA’02. IEEE International Conference on, volume 4, pages 4138–4142.
IEEE, 2002.

[49] Ahmed Hussain Qureshi, Yutaka Nakamura, Yuichiro Yoshikawa, and Hiroshi Ishig-
uro. Show, attend and interact: Perceivable human-robot social interaction through
neural attention q-network. In Robotics and Automation (ICRA), 2017 IEEE In-
ternational Conference on, pages 1639–1645. IEEE, 2017.

[50] Jean Piaget. The construction of reality in the child, volume 82. Routledge, 2013.

[51] Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-
driven exploration by self-supervised prediction. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition Workshops, pages 16–17, 2017.

[52] Fei Xu. Towards a rational constructivist theory of cognitive development. Psycho-
logical review, 126(6):841, 2019.

[53] Olivier L Georgeon, James B Marshall, and Simon Gay. Interactional motivation in
artificial systems: Between extrinsic and intrinsic motivation. In 2012 IEEE inter-
national conference on development and learning and epigenetic robotics (ICDL),
pages 1–2. IEEE, 2012.

[54] J Kevin O’Regan and Alva Noë. A sensorimotor account of vision and visual con-
sciousness. Behavioral and brain sciences, 24(5):939, 2001.

[55] Etienne B Roesch, Matthew Spencer, Slawomir J Nasuto, Thomas Tanay, and
J Mark Bishop. Exploration of the functional properties of interaction: Computer
models and pointers for theory. Constructivist Foundations, 9(1), 2013.

[56] Bill N Schilit and Marvin M Theimer. Disseminating active map information to
mobile hosts. IEEE network, 8(5):22–32, 1994.

[57] Peter J Brown, John D Bovey, and Xian Chen. Context-aware applications: from
the laboratory to the marketplace. IEEE personal communications, 4(5):58–64,
1997.

101

[58] Anind K Dey. Context-aware computing: The cyberdesk project. In Proceedings of
the AAAI 1998 Spring Symposium on Intelligent Environments, pages 51–54, 1998.

[59] Richard Hull, Philip Neaves, and James Bedford-Roberts. Towards situated com-
puting. In Wearable Computers, 1997. Digest of Papers., First International Sym-
posium on, pages 146–153. IEEE, 1997.

[60] AK Dey, GD Abowd, and A CyberDesk Wood. A framework for providing self-
integrating context-aware services proceedings of the. In International Conference
on Intelligent User Interfaces (IUI’98), pages 47–54.

[61] Jason Pascoe. Adding generic contextual capabilities to wearable computers. In
Wearable Computers, 1998. Digest of Papers. Second International Symposium on,
pages 92–99. IEEE, 1998.

[62] Gregory D Abowd, Anind K Dey, Peter J Brown, Nigel Davies, Mark Smith, and
Pete Steggles. Towards a better understanding of context and context-awareness.
In International symposium on handheld and ubiquitous computing, pages 304–307.
Springer, 1999.

[63] Frederick Hayes-Roth, Donald A Waterman, and Douglas B Lenat. Building expert
system. 1983.

[64] John Durkin. 4 expert system. The Handbook of Applied Expert Systems, 4:15,
1997.

[65] Shu-Hsien Liao. Expert system methodologies and applications—a decade review
from 1995 to 2004. Expert systems with applications, 28(1):93–103, 2005.

[66] Lewis P Lipsitt. Learning in infancy: cognitive development in babies. The Journal
of pediatrics, 109(1):172–182, 1986.

[67] John B Watson. Psychology as the behaviorist views it. Psychological review,
101(2):248, 1994.

[68] Albert Globus and Arnold B Scheibel. The effect of visual deprivation on cortical
neurons: a golgi study. Experimental neurology, 19(3):331–345, 1967.

[69] Shawn Schapiro and Katherine R Vukovich. Early experience effects upon cortical
dendrites: a proposed model for development. Science, 167(3916):292–294, 1970.

[70] David H Hubel and Torsten N Wiesel. The period of susceptibility to the physiologi-
cal effects of unilateral eye closure in kittens. The Journal of physiology, 206(2):419–
436, 1970.

[71] William Huitt and John Hummel. Piaget’s theory of cognitive development. Edu-
cational psychology interactive, 3(2):1–5, 2003.

[72] Frank Guerin. Constructivism in ai: Prospects, progress and challenges. In AISB
Convention, pages 20–27, 2008.

[73] Robert J Vallerand. Toward a hierarchical model of intrinsic and extrinsic moti-
vation. In Advances in experimental social psychology, volume 29, pages 271–360.
Elsevier, 1997.

[74] Gary L Drescher. Made-up minds: a constructivist approach to artificial intelligence.
MIT press, 1991.

102

[75] Paul R Cohen, Marc S Atkin, Tim Oates, and Carole R Beal. Neo: Learning con-
ceptual knowledge by sensorimotor interaction with an environment. In Proceedings
of the first international conference on Autonomous agents, pages 170–177, 1997.

[76] Harold Henry Chaput. Post-piagetian constructivism for grounded knowledge acqui-
sition. In Proceedings from the AAAI Spring Symposium on Grounded Knoweldge,
2001.

[77] Leslie B Cohen, Geoffrey Amsel, Melissa A Redford, and Marianella Casasola. The
development of infant causal perception. Perceptual development: Visual, auditory,
and speech perception in infancy, pages 167–209, 1998.

[78] Leslie B Cohen. An information-processing approach to infant perception and cog-
nition. The development of sensory, motor, and cognitive capacities in early infancy,
pages 277–300, 1998.

[79] Leslie B Cohen, Harold H Chaput, and Cara H Cashon. A constructivist model of
infant cognition. Cognitive Development, 17(3-4):1323–1343, 2002.

[80] Leslie B Cohen and Cara H Cashon. Infant object segregation implies information
integration. Journal of experimental child psychology, 78(1):75–83, 2001.

[81] Chaitanya Mitash, Kostas E Bekris, and Abdeslam Boularias. A self-supervised
learning system for object detection using physics simulation and multi-view pose
estimation. In 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 545–551. IEEE, 2017.

[82] Celeste Kidd, Steven T Piantadosi, and Richard N Aslin. The goldilocks effect:
Human infants allocate attention to visual sequences that are neither too simple
nor too complex. PloS one, 7(5):e36399, 2012.

[83] Ernst Von Glasersfeld. Thirty years constructivism. 2005.

[84] Olivier L Georgeon, Jonathan H Morgan, and Frank E Ritter. An algorithm for self-
motivated hierarchical sequence learning. In Proceedings of the International Con-
ference on Cognitive Modeling. Philadelphia, PA. ICCM-164, pages 73–78. Citeseer,
2010.

[85] Harold Henry Chaput. The constructivist learning architecture: A model of cognitive
development for robust autonomous robots. PhD thesis, 2004.

[86] Aimee E Stahl and Lisa Feigenson. Observing the unexpected enhances infants’
learning and exploration. Science, 348(6230):91–94, 2015.

[87] Doug Blank, Joshua M Lewis, and James B Marshall. The multiple roles of antici-
pation in developmental robotics. In AAAI Fall Symposium Workshop Notes, From
Reactive to Anticipatory Cognitive Embodied Systems, 2005.

[88] Nikolay Savinov, Anton Raichuk, Raphaël Marinier, Damien Vincent, Marc Polle-
feys, Timothy Lillicrap, and Sylvain Gelly. Episodic curiosity through reachability.
arXiv preprint arXiv:1810.02274, 2018.

[89] David W Aha. Feature weighting for lazy learning algorithms. In Feature extraction,
construction and selection, pages 13–32. Springer, 1998.

[90] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018.

103

[91] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement
learning. In Proceedings of the twenty-first international conference on Machine
learning, page 1. ACM, 2004.

[92] Simon L Gay, Olivier L Georgeon, and Christian Wolf. Autonomous object model-
ing based on affordances for spatial organization of behavior. In 4th International
Conference on Development and Learning and on Epigenetic Robotics, pages 87–92.
IEEE, 2014.

[93] John E Laird and Clare Bates Congdon. The soar user’s manual version 9.5. 0. The
Regents of the University of Michigan, 2015.

[94] John R Anderson and Christian J Lebiere. The atomic components of thought.
Psychology Press, 2014.

[95] David E Kieras and David E Meyer. The epic architecture: Principles of operation.
Unpublished manuscript from ftp://ftp. eecs. umich. edu/people/kieras/EPICarch.
ps, 1996.

[96] Joscha Bach. The micropsi agent architecture. In Proceedings of ICCM-5, interna-
tional conference on cognitive modeling, Bamberg, Germany, pages 15–20. Citeseer,
2003.

[97] Ron Sun, Todd Peterson, and Edward Merrill. A hybrid architecture for situated
learning of reactive sequential decision making. Applied Intelligence, 11(1):109–127,
1999.

[98] Pat Langley and Dongkyu Choi. Learning recursive control programs from problem
solving. Journal of Machine Learning Research, 7(Mar):493–518, 2006.

[99] Chien Van Dang, Tin Trung Tran, Ki-Jong Gil, Yong-Bin Shin, Jae-Won Choi,
Geon-Soo Park, and Jong-Wook Kim. Application of soar cognitive agent based
on utilitarian ethics theory for home service robots. In 2017 14th International
Conference on Ubiquitous Robots and Ambient Intelligence (URAI), pages 155–158.
IEEE, 2017.

[100] Bryan Stearns, John Laird, and Mazin Assanie. Applying primitive elements theory
for procedural transfer in soar. In Proceedings of the 15th international conference
on cognitive modeling, 2017.

[101] Nicholas M DiFilippo. Framework for the automated disassembly of electronic waste
using the soar cognitive architecture. 2016.

[102] John E Laird and Shiwali Mohan. A case study of knowledge integration across
multiple memories in soar. Biologically Inspired Cognitive Architectures, 8:93–99,
2014.

[103] Nate Derbinsky and John E Laird. Competence-preserving retention of learned
knowledge in soar’s working and procedural memories. In Proceedings of the 11th
international conference on cognitive modeling, pages 205–210, 2012.

[104] John Edwin Laird, Keegan R Kinkade, Shiwali Mohan, and Joseph Z Xu. Cognitive
robotics using the soar cognitive architecture. In CogRob@ AAAI. Citeseer, 2012.

[105] Usef Faghihi and Stan Franklin. The lida model as a foundational architecture for
agi. In Theoretical Foundations of Artificial General Intelligence, pages 103–121.
Springer, 2012.

104

[106] John E Laird. The Soar cognitive architecture. MIT press, 2012.

[107] Teuvo Kohonen. Self-organizing maps, volume 30. Springer Science & Business
Media, 2012.

[108] Donald Olding Hebb. The organization of behavior: A neuropsychological theory.
Psychology Press, 2005.

[109] Luc Steels. The autotelic principle. In Embodied artificial intelligence, pages 231–
242. Springer, 2004.

[110] Alisha Moreland-Capuia. The developing brain and trauma. In Training for Change,
pages 1–31. Springer, 2019.

[111] J Piaget. The origins of intelligence in children (m. cook, trans.). new york, ny, us,
1952.

[112] Barry J Wadsworth. Piaget’s theory of cognitive and affective development: Foun-
dations of constructivism. Longman Publishing, 1996.

[113] Kathleen Stassen Berger. The developing person through the life span, volume 41.
Worth Publishers New York, NY, 2014.

[114] S McLeod. Jean piaget cognitive theory simply psychology. simply psychology, 2012.

[115] S McLeod. Jean piaget— cognitive theory— simply psychology.[online] simplypsy-
chology. org, 2009.

[116] Jack Block. Assimilation, accommodation, and the dynamics of personality devel-
opment. Child development, pages 281–295, 1982.

[117] Ana A Sobel, Patricia A Resick, and Aline E Rabalais. The effect of cognitive
processing therapy on cognitions: Impact statement coding. Journal of Traumatic
Stress: Official Publication of The International Society for Traumatic Stress Stud-
ies, 22(3):205–211, 2009.

[118] Saul McLeod. Jean piaget’s theory of cognitive development. Simply psychology,
pages 1–9, 2018.

[119] Ernst Von Glasersfeld. An introduction to radical constructivism. The invented
reality, 1740, 1984.

[120] Ernst von Glasersfeld. An introduction to radical constructivism. AntiMatters,
2(3):5–20, 2008.

[121] Susan L Hurley. Consciousness in action. Harvard University Press, 2002.

[122] Rodney A Brooks. New approaches to robotics. Science, 253(5025):1227–1232,
1991.

[123] Naoya Hirose. An ecological approach to embodiment and cognition. Cognitive
Systems Research, 3(3):289–299, 2002.

[124] Murray Shanahan. Embodiment and the inner life: Cognition and Consciousness
in the Space of Possible Minds. Oxford University Press, USA, 2010.

105

[125] Tom Ziemke. The construction of ‘reality’in the robot: Constructivist perspectives
on situated artificial intelligence and adaptive robotics. Foundations of science,
6(1-3):163–233, 2001.

[126] Michael L Anderson. Embodied cognition: A field guide. Artificial intelligence,
149(1):91–130, 2003.

[127] Owen Holland. The future of embodied artificial intelligence: Machine conscious-
ness? In Embodied artificial intelligence, pages 37–53. Springer, 2004.

[128] Anthony Chemero and Michael T Turvey. Gibsonian affordances for roboticists.
Adaptive Behavior, 15(4):473–480, 2007.

[129] James J Gibson. The ecological approach to visual perception: classic edition. Psy-
chology Press, 2014.

[130] J Kevin O’Regan. How to build a robot that is conscious and feels. Minds and
Machines, 22(2):117–136, 2012.

[131] Chandana Paul. Morphological computation: A basis for the analysis of morphology
and control requirements. Robotics and Autonomous Systems, 54(8):619–630, 2006.

[132] Rolf Pfeifer and Josh Bongard. How the body shapes the way we think: a new view
of intelligence. MIT press, 2006.

[133] Inman Harvey, Ezequiel Di Paolo, Rachel Wood, Matt Quinn, and Elio Tuci. Evo-
lutionary robotics: A new scientific tool for studying cognition. Artificial life, 11(1-
2):79–98, 2005.

[134] Stefano Nolfi, Dario Floreano, and Director Dario Floreano. Evolutionary robotics:
The biology, intelligence, and technology of self-organizing machines. MIT press,
2000.

[135] Luc Berthouze and Giorgio Metta. Epigenetic robotics: modelling cognitive devel-
opment in robotic systems, 2005.

[136] Jordan Zlatev. The epigenesis of meaning in human beings, and possibly in robots.
Minds and machines, 11(2):155–195, 2001.

[137] Jean Piaget. The psychology of intelligence. Routledge, 2003.

[138] Bradly C Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing exploration in re-
inforcement learning with deep predictive models. arXiv preprint arXiv:1507.00814,
2015.

[139] George E Monahan. State of the art—a survey of partially observable markov
decision processes: theory, models, and algorithms. Management science, 28(1):1–
16, 1982.

[140] Roland Benabou and Jean Tirole. Intrinsic and extrinsic motivation. The review of
economic studies, 70(3):489–520, 2003.

[141] Filipo Studzinski Perotto, Jean-Christophe Buisson, and Lúıs Otávio Campos Al-
vares. Constructivist anticipatory learning mechanism (calm): Dealing with par-
tially deterministic and partially observable environments. 2007.

[142] Michael Miller. Building minds with patterns. ISBN-10: 0-692-54140-1, 2016.

106

[143] Kristinn R Thórisson. Seed-programmed autonomous general learning. In Interna-
tional Workshop on Self-Supervised Learning, pages 32–61. PMLR, 2020.

[144] Brett Martensen. The perception–action hierarchy and its implementation using
binons (binary neurons). Procedia Computer Science, 169:489–500, 2020.

[145] Olivier L Georgeon and James B Marshall. The small loop problem: A challenge for
artificial emergent cognition. In Biologically Inspired Cognitive Architectures 2012,
pages 137–144. Springer, 2013.

[146] Brandon Rohrer. Accelerating progress in artificial general intelligence: Choosing a
benchmark for natural world interaction. Journal of Artificial General Intelligence,
2(1):1–28, 2010.

[147] Olivier L Georgeon. Little ai: Playing a constructivist robot. SoftwareX, 6:161–164,
2017.

[148] Olivier L Georgeon and Amélie Cordier. Inverting the interaction cycle to model
embodied agents. In BICA, pages 243–248, 2014.

[149] Rolf Pfeifer and Christian Scheier. From perception to action: The right direction?
IEEE, 1994.

[150] Olivier L Georgeon and Mathieu Guillermin. Mastering the laws of feedback con-
tingencies is essential to constructivist artificial agents. 2018.

[151] Matthew E Roser, Jonathan A Fugelsang, Kevin N Dunbar, Paul M Corballis,
and Michael S Gazzaniga. Dissociating processes supporting causal perception and
causal inference in the brain. Neuropsychology, 19(5):591, 2005.

[152] Laura E Schulz and Elizabeth Baraff Bonawitz. Serious fun: preschoolers engage
in more exploratory play when evidence is confounded. Developmental psychology,
43(4):1045, 2007.

[153] Suraj Nair, Yuke Zhu, Silvio Savarese, and Li Fei-Fei. Causal induction from visual
observations for goal directed tasks. arXiv preprint arXiv:1910.01751, 2019.

[154] Bob Rehder. Categorization as causal reasoning. Cognitive Science, 27(5):709–748,
2003.

[155] Roberta Corrigan and Peggy Denton. Causal understanding as a developmental
primitive. Developmental review, 16(2):162–202, 1996.

[156] Scott H Johnson-Frey. What’s so special about human tool use? Neuron, 39(2):201–
204, 2003.

[157] John McClure. Discounting causes of behavior: Are two reasons better than one?
Journal of Personality and Social Psychology, 74(1):7, 1998.

[158] Albert Michotte. The perception of causality, volume 21. Routledge, 2017.

[159] Alan M Leslie. Spatiotemporal continuity and the perception of causality in infants.
Perception, 13(3):287–305, 1984.

[160] Leslie B Cohen and Geoffrey Amsel. Precursors to infants’ perception of the causal-
ity of a simple event. Infant behavior and development, 21(4):713–731, 1998.

107

[161] Olivier L Georgeon, Florian J Bernard, and Amélie Cordier. Constructing phe-
nomenal knowledge in an unknown noumenal reality. Procedia Computer Science,
71:11–16, 2015.

[162] Jimmy Lin. Brute force and indexed approaches to pairwise document similarity
comparisons with mapreduce. In Proceedings of the 32nd international ACM SIGIR
conference on Research and development in information retrieval, pages 155–162,
2009.

[163] Michael R Fellows, Fedor V Fomin, Daniel Lokshtanov, Frances Rosamond, Saket
Saurabh, and Yngve Villanger. Local search: Is brute-force avoidable? Journal of
Computer and System Sciences, 78(3):707–719, 2012.

[164] Daniel J Bernstein. Understanding brute force. In Workshop Record of ECRYPT
STVL Workshop on Symmetric Key Encryption, eSTREAM report, volume 36, page
2005. Citeseer, 2005.

[165] Reuven Y Rubinstein and Dirk P Kroese. The cross-entropy method: a unified ap-
proach to combinatorial optimization, Monte-Carlo simulation and machine learn-
ing. Springer Science & Business Media, 2013.

[166] Nasser R Sabar and Graham Kendall. Population based monte carlo tree search
hyper-heuristic for combinatorial optimization problems. Information Sciences,
314:225–239, 2015.

[167] Walter J Gutjahr. A converging aco algorithm for stochastic combinatorial optimiza-
tion. In International Symposium on Stochastic Algorithms, pages 10–25. Springer,
2003.

[168] Alain Mille. From case-based reasoning to traces-based reasoning. Annual Reviews
in Control, 30(2):223–232, 2006.

[169] Jeff Hawkins and Sandra Blakeslee. On intelligence: How a new understanding of
the brain will lead to the creation of truly intelligent machines. Macmillan, 2007.

[170] William James. Pragmatism: A new name for old ways of thinking. New York,
1907.

[171] Karl R Popper. Objective knowledge, volume 360. Oxford University Press Oxford,
1972.

[172] Jean Piaget. L’épistémologie génétique. 1970.

[173] Sandra Clara Gadanho and John Hallam. Exploring the role of emotions in au-
tonomous robot learning. Department of Artificial Intelligence, University of Edin-
burgh, 1998.

[174] Ron Sun. Motivational representations within a computational cognitive architec-
ture. Cognitive Computation, 1(1):91–103, 2009.

[175] Olivier L Georgeon and James B Marshall. Demonstrating sensemaking emergence
in artificial agents: A method and an example. International Journal of Machine
Consciousness, 5(02):131–144, 2013.

108

Appendix A

Causality reconstruction

A.1 The interaction scenario

In the Little AI of Level2.00, the system initially provides five commands with same shape
and same color. The effects of these five commands and the structure of the environment
are unknown to the agent and the player as well [161], So we need the players to construct
the knowledge gradually by their interactions with the agent and its environment. For
the sake of demonstration, we intentionally place the reader in the same situation as the
system: initially ignorant of the meaning of experiences.

The self-motivated agent has five innate actions and identified by different numbers
which are A = {feelleft = 1, swapleft = 2, feelboth = 3, feelright = 4, swapright = 5}.
As interaction starts, the agent selects an action amongst the set of actions A, then it
simultaneously receives the feedback from the environment and automatically forms an
experience combined with this action. In particular, action feel left and feel right touch
the environment from two different sides and receive their corresponding feedback of the
environment. There exits two different results: true (marked 1) or false (marked 0), action
feel both touch the left and the right at the same time, it thus has three different result:
left and right both are false(0,0), left and right only one are true(0,1 or 1,0), and left
and right both are true(1,1). In addition, actions of swap left and swap right can change
the environment. Therefore, the agent has eleven different kinds of experiences which
are based on corresponding actions and the state of situated environment. When the
agent experienced several experiences, then the environment will give the response result
of the actions. In order to present these five actions more clearly, we use different icons
and colors to identify five actions and eleven experiences respectively (as shown in Figure
A.1(b)). With different situations the agent faced with and the changeable environment
the agent situated in, we use three colors (red means false, green means true and pink
only used for feel both means only one is true) combined with five actions to illustrate
these eleven experiences.

A.2 The complete two-step regularities afforded by

the environment.

In section 5.2.2 we presented 12 partial two-step regularities afforded by the environment,
here we present the all fully two step regularities afforded by the environment (as shown
in Figure A.2).

109

(a) Little AI interface. (b) Five actions and eleven experiences.

Figure A.1: The Little AI interface and five actions with their eleven experiences.

Figure A.2: The complete two-step regularities afforded by the environment.

110

A.3 The full structure of Petri-Net in Little AI of

Level2.00

As we introduced the partial structure of Petri-Net in the section 5.2.3, here we present
the complete structure of the Petri-Net as shown in Figure A.3.

(a) Partial Petri-Net 1st. (b) Partial Petri-Net 2ed.

(c) Partial Petri-Net 3rd. (d) Partial Petri-Net 4th.

Figure A.3: The complete structure of the Petri-Net.

111

Appendix B

Interaction traces

In the interaction traces, a set of experiments E = {e0, e1, e2, e3, e4, e5} which represents
moving forward,turn left, turn right, touch the front side, touch the left side, touch the
right side respectively. Combined with experiments and their possible feedback from
interacting with the environment, a set of primitive interactions I is formed as shown in
Figure B.1. The description of the interaction follows the sequence of its label, valence,
weight, and its level.

Figure B.1: The set of primitive interactions which are combined with experiments and
their possible feedback from interaction with the environment.

The valences are allocated as:

{moveSucess:5, moveFailture:-10, turn:-3, feelEmpty:-1, feelWall:-2}

The interaction is starting as follows...

112

loop number is:1

intendedInteraction is: e50,-2,0,0

enactedInteraction is: e50,-2,0,0

learnCompositeInteraction()

The intended interaction is: e50,-2,0,0

The enacted interaction is: e50,-2,0,0

loop number is:2

The primitive intendedInteraction is: e50,-2,0,0

The primitive enactedInteraction is: e50,-2,0,0

learnCompositeInteraction()

LEARN:(e50e50),-4,1,1

loop number is:3

The primitive intendedInteraction is: e01,5,0,0

The primitive enactedInteraction is: e00,-10,0,0

learnCompositeInteraction()

LEARN:(e50e00),-12,1,1

LEARN:(e50(e50e00)),-14,1,2

LEARN:((e50e50)e00),-14,1,2

. . .

loop number is:8

The best choice of the anticipation interaction is Primitive

The primitive intendedInteraction is: e01,5,0,0

The primitive enactedInteraction is: e01,5,0,0

learnCompositeInteraction()

REINFORCE:(e01e01),10,2,1

LEARN:(e01(e01e01)),15,1,2

LEARN:((e01e01)e01),15,1,2

loop number is:9

The best choice of the anticipation interaction is Primitive

The primitive intendedInteraction is: e01,5,0,0

The primitive enactedInteraction is: e00,-10,0,0

learnCompositeInteraction()

LEARN:(e01e00),-5,1,1

LEARN:(e01(e01e00)),0,1,2

LEARN:((e01e01)e00),0,1,2

loop number is:10

The primitive intendedInteraction is: e01,5,0,0

The primitive enactedInteraction is: e00,-10,0,0

learnCompositeInteraction()

LEARN:(e00e00),-20,1,1

LEARN:(e01(e00e00)),-15,1,2

LEARN:((e01e00)e00),-15,1,2

. . .

loop number is:23

The best choice of the anticipation interaction is composite and its weight

is:1

113

The best choice of the anticipation interaction’s weight less or equal

than threshold and proclivity is positive

The primitive intendedInteraction is: e11,-3,0,0

The primitive enactedInteraction is: e11,-3,0,0

learnCompositeInteraction()

REINFORCE:(e00e11),-13,2,1

LEARN:(e41(e00e11)),-14,1,2

LEARN:((e41e00)e11),-14,1,2

loop number is:24

The best choice of the anticipation interaction is Primitive

The primitive intendedInteraction is: e01,5,0,0

The primitive enactedInteraction is: e01,5,0,0

learnCompositeInteraction()

REINFORCE:(e11e01),2,3,1

REINFORCE:(e00(e11e01)),-8,2,2

REINFORCE:((e00e11)e01),-8,2,2

loop number is:25

The primitive intendedInteraction is: e30,-2,0,0

The primitive enactedInteraction is: e30,-2,0,0

learnCompositeInteraction()

LEARN:(e01e30),3,1,1

LEARN:(e11(e01e30)),0,1,2

LEARN:((e11e01)e30),0,1,2

. . .

loop number is:38

The best choice of the anticipation interaction is composite and its weight

is:2

The best choice of the anticipation interaction’s weight plus than threshold

and proclivity is positive

The primitive intendedInteraction is: e11,-3,0,0

The primitive enactedInteraction is: e11,-3,0,0

The primitive intendedInteraction is: e01,5,0,0

The primitive enactedInteraction is: e00,-10,0,0

REINFORCE:(e11e00),-13,3,1

The intended composite interaction is: (e11e01),2,5,1

The enacted composite interaction is: (e11e00),-13,3,1

learnCompositeInteraction()

LEARN:(e00(e11e00)),-23,1,2

LEARN:(e11(e00(e11e00))),-26,1,3

LEARN:((e11e00)(e11e00)),-26,1,2

loop number is:39

The best choice of the anticipation interaction is Primitive

The primitive intendedInteraction is: e50,-2,0,0

The primitive enactedInteraction is: e50,-2,0,0

learnCompositeInteraction()

LEARN:((e11e00)e50),-15,1,2

LEARN:(e00((e11e00)e50)),-25,1,3

LEARN:((e00(e11e00))e50),-25,1,3

114

loop number is:40

The primitive intendedInteraction is: e21,-3,0,0

The primitive enactedInteraction is: e21,-3,0,0

learnCompositeInteraction()

LEARN:(e50e21),-5,1,1

LEARN:((e11e00)(e50e21)),-18,1,2

LEARN:(((e11e00)e50)e21),-18,1,3

. . .

loop number is:80

The best choice of the anticipation interaction is composite and its weight

is:2

The best choice of the anticipation interaction’s weight plus than threshold

and proclivity is positive

The primitive intendedInteraction is: e31,-1,0,0

The primitive enactedInteraction is: e31,-1,0,0

The primitive intendedInteraction is: e01,5,0,0

The primitive enactedInteraction is: e01,5,0,0

The intended composite interaction is: (e31e01),4,3,1

The enacted composite interaction is: (e31e01),4,3,1

learnCompositeInteraction()

REINFORCE:(e11(e31e01)),1,3,2

LEARN:(e41(e11(e31e01))),0,1,3

LEARN:((e41e11)(e31e01)),0,1,2

loop number is:81

The best choice of the anticipation interaction is composite and its weight

is:1

The best choice of the anticipation interaction’s weight less than threshold

or proclivity is negative

The primitive intendedInteraction is: e30,-2,0,0

The primitive enactedInteraction is: e31,-1,0,0

learnCompositeInteraction()

LEARN:((e31e01)e31),3,1,2

LEARN:(e11((e31e01)e31)),0,1,3

LEARN:((e11(e31e01))e31),0,1,3

loop number is:82

The best choice of the anticipation interaction is Primitive

The primitive intendedInteraction is: e01,5,0,0

The primitive enactedInteraction is: e01,5,0,0

learnCompositeInteraction()

REINFORCE:(e31e01),4,4,1

LEARN:((e31e01)(e31e01)),8,1,2

LEARN:(((e31e01)e31)e01),8,1,3

. . .

loop number is:85

The best choice of the anticipation interaction is composite and its weight

is:2

The best choice of the anticipation interaction’s weight plus than threshold

and proclivity is positive

115

The primitive intendedInteraction is: e31,-1,0,0

The primitive enactedInteraction is: e30,-2,0,0

The intended composite interaction is: (e31e01),4,5,1

The enacted composite interaction is: e30,-2,0,0

learnCompositeInteraction()

REINFORCE:(e01e30),3,3,1

LEARN:(e31(e01e30)),2,1,2

LEARN:((e31e01)e30),2,1,2

loop number is:86

The best choice of the anticipation interaction is Primitive

The primitive intendedInteraction is: e50,-2,0,0

The primitive enactedInteraction is: e50,-2,0,0

learnCompositeInteraction()

REINFORCE:(e30e50),-4,2,1

LEARN:(e01(e30e50)),1,1,2

LEARN:((e01e30)e50),1,1,2

loop number is:87

The best choice of the anticipation interaction is composite and its weight

is:1

The best choice of the anticipation interaction’s weight less or equal

than threshold and proclivity is positive

The primitive intendedInteraction is: e40,-2,0,0

The primitive enactedInteraction is: e41,-1,0,0

learnCompositeInteraction()

REINFORCE:(e50e41),-3,2,1

LEARN:(e30(e50e41)),-5,1,2

LEARN:((e30e50)e41),-5,1,2

. . .

loop number is:106

The best choice of the anticipation interaction is composite and its weight

is:2

The best choice of the anticipation interaction’s weight plus than threshold

and proclivity is positive

The primitive intendedInteraction is: e40,-2,0,0

The primitive enactedInteraction is: e40,-2,0,0

The primitive intendedInteraction is: e01,5,0,0

The primitive enactedInteraction is: e01,5,0,0

The intended composite interaction is: (e40e01),3,4,1

The enacted composite interaction is: (e40e01),3,4,1

learnCompositeInteraction()

REINFORCE:(e21(e40e01)),0,3,2

LEARN:(e00(e21(e40e01))),-10,1,3

LEARN:((e00e21)(e40e01)),-10,1,2

loop number is:107

The best choice of the anticipation interaction is Primitive

The primitive intendedInteraction is: e11,-3,0,0

The primitive enactedInteraction is: e11,-3,0,0

learnCompositeInteraction()

LEARN:((e40e01)e11),0,1,2

116

LEARN:(e21((e40e01)e11)),-3,1,3

LEARN:((e21(e40e01))e11),-3,1,3

loop number is:108

The best choice of the anticipation interaction is composite and its weight

is:3

The best choice of the anticipation interaction’s weight plus than threshold

and proclivity is positive

The primitive intendedInteraction is: e31,-1,0,0

The primitive enactedInteraction is: e30,-2,0,0

The intended composite interaction is: (e31e01),4,5,1

The enacted composite interaction is: e30,-2,0,0

learnCompositeInteraction()

REINFORCE:(e11e30),-5,2,1

LEARN:((e40e01)(e11e30)),-2,1,2

LEARN:(((e40e01)e11)e30),-2,1,3

. . .

loop number is:110

The best choice of the anticipation interaction is composite and its weight

is:3

The best choice of the anticipation interaction’s weight plus than threshold

and proclivity is positive

The primitive intendedInteraction is: e31,-1,0,0

The primitive enactedInteraction is: e31,-1,0,0

The primitive intendedInteraction is: e01,5,0,0

The primitive enactedInteraction is: e01,5,0,0

The intended composite interaction is: (e31e01),4,5,1

The enacted composite interaction is: (e31e01),4,5,1

learnCompositeInteraction()

REINFORCE:(e11(e31e01)),1,4,2

LEARN:(e30(e11(e31e01))),-1,1,3

LEARN:((e30e11)(e31e01)),-1,1,2

loop number is:111

The best choice of the anticipation interaction is Primitive

The primitive intendedInteraction is: e11,-3,0,0

The primitive enactedInteraction is: e11,-3,0,0

learnCompositeInteraction()

LEARN:((e31e01)e11),1,1,2

LEARN:(e11((e31e01)e11)),-2,1,3

LEARN:((e11(e31e01))e11),-2,1,3

loop number is:112

The best choice of the anticipation interaction is composite and its weight

is:4

The best choice of the anticipation interaction’s weight plus than threshold

and proclivity is positive

The primitive intendedInteraction is: e31,-1,0,0

The primitive enactedInteraction is: e31,-1,0,0

The primitive intendedInteraction is: e01,5,0,0

The primitive enactedInteraction is: e01,5,0,0

The intended composite interaction is: (e31e01),4,5,1

117

The enacted composite interaction is: (e31e01),4,5,1

learnCompositeInteraction()

REINFORCE:(e11(e31e01)),1,5,2

LEARN:((e31e01)(e11(e31e01))),5,1,3

LEARN:(((e31e01)e11)(e31e01)),5,1,3

loop number is:113

The best choice of the anticipation interaction is Primitive

The primitive intendedInteraction is: e21,-3,0,0

The primitive enactedInteraction is: e21,-3,0,0

learnCompositeInteraction()

LEARN:((e31e01)e21),1,1,2

LEARN:(e11((e31e01)e21)),-2,1,3

LEARN:((e11(e31e01))e21),-2,1,3

. . .

loop number is:153

The best choice of the anticipation interaction is composite and its weight

is:2

The best choice of the anticipation interaction’s weight plus than threshold

and proclivity is positive

The primitive intendedInteraction is: e11,-3,0,0

The primitive enactedInteraction is: e11,-3,0,0

The primitive intendedInteraction is: e31,-1,0,0

The primitive enactedInteraction is: e31,-1,0,0

The primitive intendedInteraction is: e01,5,0,0

The primitive enactedInteraction is: e01,5,0,0

The intended composite interaction is: (e11(e31e01)),1,8,2

The enacted composite interaction is: (e11(e31e01)),1,8,2

learnCompositeInteraction()

REINFORCE:(e41(e11(e31e01))),0,3,3

LEARN:(e41(e41(e11(e31e01)))),-1,1,4

LEARN:((e41e41)(e11(e31e01))),-1,1,3

loop number is:154

The best choice of the anticipation interaction is composite and its weight

is:9

The best choice of the anticipation interaction’s weight plus than threshold

and proclivity is positive

The primitive intendedInteraction is: e31,-1,0,0

The primitive enactedInteraction is: e31,-1,0,0

The primitive intendedInteraction is: e01,5,0,0

The primitive enactedInteraction is: e01,5,0,0

The intended composite interaction is: (e31e01),4,6,1

The enacted composite interaction is: (e31e01),4,6,1

learnCompositeInteraction()

REINFORCE:((e11(e31e01))(e31e01)),5,4,3

LEARN:(e41((e11(e31e01))(e31e01))),4,1,4

LEARN:((e41(e11(e31e01)))(e31e01)),4,1,4

loop number is:155

The best choice of the anticipation interaction is composite and its weight

is:8

118

The best choice of the anticipation interaction’s weight plus than threshold

and proclivity is positive

The primitive intendedInteraction is: e31,-1,0,0

The primitive enactedInteraction is: e30,-2,0,0

The intended composite interaction is: (e31e01),4,6,1

The enacted composite interaction is: e30,-2,0,0

learnCompositeInteraction()

REINFORCE:((e31e01)e30),2,6,2

LEARN:((e11(e31e01))((e31e01)e30)),3,1,3

LEARN:(((e11(e31e01))(e31e01))e30),3,1,4

. . .

loop number is:301

The best choice of the anticipation interaction is composite and its weight

is:4

The best choice of the anticipation interaction’s weight plus than threshold

and proclivity is positive

The primitive intendedInteraction is: e21,-3,0,0

The primitive enactedInteraction is: e21,-3,0,0

The primitive intendedInteraction is: e01,5,0,0

The primitive enactedInteraction is: e01,5,0,0

The primitive intendedInteraction is: e31,-1,0,0

The primitive enactedInteraction is: e31,-1,0,0

The primitive intendedInteraction is: e01,5,0,0

The primitive enactedInteraction is: e01,5,0,0

The intended composite interaction is: (e21(e01(e31e01))),6,7,3

The enacted composite interaction is: (e21(e01(e31e01))),6,7,3

learnCompositeInteraction()

REINFORCE:(e51(e21(e01(e31e01)))),5,4,4

REINFORCE:(e30(e51(e21(e01(e31e01))))),3,2,5

REINFORCE:((e30e51)(e21(e01(e31e01)))),3,2,4

loop number is:302

The primitive intendedInteraction is: e21,-3,0,0

The primitive enactedInteraction is: e21,-3,0,0

learnCompositeInteraction()

LEARN:((e21(e01(e31e01)))e21),3,1,4

LEARN:(e51((e21(e01(e31e01)))e21)),2,1,5

LEARN:((e51(e21(e01(e31e01))))e21),2,1,5

loop number is:303

The best choice of the anticipation interaction is composite and its weight

is:7

The best choice of the anticipation interaction’s weight plus than threshold

and proclivity is positive

The primitive intendedInteraction is: e01,5,0,0

The primitive enactedInteraction is: e01,5,0,0

The primitive intendedInteraction is: e31,-1,0,0

The primitive enactedInteraction is: e31,-1,0,0

The primitive intendedInteraction is: e01,5,0,0

The primitive enactedInteraction is: e01,5,0,0

The intended composite interaction is: (e01(e31e01)),9,5,2

The enacted composite interaction is: (e01(e31e01)),9,5,2

119

learnCompositeInteraction()

REINFORCE:(e21(e01(e31e01))),6,8,3

LEARN:((e21(e01(e31e01)))(e21(e01(e31e01)))),12,1,4

LEARN:(((e21(e01(e31e01)))e21)(e01(e31e01))),12,1,5

. . .

loop number is:313

The best choice of the anticipation interaction is composite and its weight

is:2

The best choice of the anticipation interaction’s weight plus than threshold

and proclivity is positive

The primitive intendedInteraction is: e51,-1,0,0

The primitive enactedInteraction is: e51,-1,0,0

The primitive intendedInteraction is: e21,-3,0,0

The primitive enactedInteraction is: e21,-3,0,0

The primitive intendedInteraction is: e01,5,0,0

The primitive enactedInteraction is: e01,5,0,0

The primitive intendedInteraction is: e31,-1,0,0

The primitive enactedInteraction is: e31,-1,0,0

The primitive intendedInteraction is: e01,5,0,0

The primitive enactedInteraction is: e01,5,0,0

The intended composite interaction is: (e51(e21(e01(e31e01)))),5,5,4

The enacted composite interaction is: (e51(e21(e01(e31e01)))),5,5,4

learnCompositeInteraction()

REINFORCE:(e30(e51(e21(e01(e31e01))))),3,3,5

LEARN:((e31e01)(e30(e51(e21(e01(e31e01)))))),7,1,6

LEARN:(((e31e01)e30)(e51(e21(e01(e31e01))))),7,1,5

loop number is:314

The best choice of the anticipation interaction is composite and its weight

is:2

The best choice of the anticipation interaction’s weight plus than threshold

and proclivity is positive

The primitive intendedInteraction is: e31,-1,0,0

The primitive enactedInteraction is: e30,-2,0,0

The intended composite interaction is: (e31e01),4,6,1

The enacted composite interaction is: e30,-2,0,0

learnCompositeInteraction()

REINFORCE:((e51(e21(e01(e31e01))))e30),3,2,5

LEARN:(e30((e51(e21(e01(e31e01))))e30)),1,1,6

LEARN:((e30(e51(e21(e01(e31e01)))))e30),1,1,6

loop number is:315

The best choice of the anticipation interaction is composite and its weight

is:3

The best choice of the anticipation interaction’s weight plus than threshold

and proclivity is positive

The primitive intendedInteraction is: e51,-1,0,0

The primitive enactedInteraction is: e51,-1,0,0

The primitive intendedInteraction is: e21,-3,0,0

The primitive enactedInteraction is: e21,-3,0,0

The primitive intendedInteraction is: e01,5,0,0

The primitive enactedInteraction is: e01,5,0,0

120

The primitive intendedInteraction is: e31,-1,0,0

The primitive enactedInteraction is: e30,-2,0,0

REINFORCE:(e01e30),3,9,1

REINFORCE:(e21(e01e30)),0,5,2

REINFORCE:(e51(e21(e01e30))),-1,4,3

The intended composite interaction is: (e51(e21(e01(e31e01)))),5,5,4

The enacted composite interaction is: (e51(e21(e01e30))),-1,4,3

learnCompositeInteraction()

REINFORCE:(e30(e51(e21(e01e30)))),-3,2,4

LEARN:((e51(e21(e01(e31e01))))(e30(e51(e21(e01e30))))),2,1,5

LEARN:(((e51(e21(e01(e31e01))))e30)(e51(e21(e01e30)))),2,1,6

. . .

loop number is:319

The best choice of the anticipation interaction is composite and its weight

is:4

The best choice of the anticipation interaction’s weight plus than threshold

and proclivity is positive

The primitive intendedInteraction is: e51,-1,0,0

The primitive enactedInteraction is: e51,-1,0,0

The primitive intendedInteraction is: e21,-3,0,0

The primitive enactedInteraction is: e21,-3,0,0

The primitive intendedInteraction is: e01,5,0,0

The primitive enactedInteraction is: e01,5,0,0

The primitive intendedInteraction is: e31,-1,0,0

The primitive enactedInteraction is: e31,-1,0,0

The primitive intendedInteraction is: e01,5,0,0

The primitive enactedInteraction is: e01,5,0,0

The intended composite interaction is: (e51(e21(e01(e31e01)))),5,5,4

The enacted composite interaction is: (e51(e21(e01(e31e01)))),5,5,4

learnCompositeInteraction()

REINFORCE:(e30(e51(e21(e01(e31e01))))),3,4,5

REINFORCE:((e31e01)(e30(e51(e21(e01(e31e01)))))),7,2,6

REINFORCE:(((e31e01)e30)(e51(e21(e01(e31e01))))),7,2,5

loop number is:320

The best choice of the anticipation interaction is Primitive

The primitive intendedInteraction is: e40,-2,0,0

The primitive enactedInteraction is: e40,-2,0,0

learnCompositeInteraction()

LEARN:((e51(e21(e01(e31e01))))e40),3,1,5

LEARN:(e30((e51(e21(e01(e31e01))))e40)),1,1,6

LEARN:((e30(e51(e21(e01(e31e01)))))e40),1,1,6

loop number is:321

The best choice of the anticipation interaction is composite and its weight

is:1

The best choice of the anticipation interaction’s weight less than threshold

or proclivity is negative

The primitive intendedInteraction is: e51,-1,0,0

The primitive enactedInteraction is: e51,-1,0,0

learnCompositeInteraction()

REINFORCE:(e40e51),-3,4,1

121

LEARN:((e51(e21(e01(e31e01))))(e40e51)),2,1,5

LEARN:(((e51(e21(e01(e31e01))))e40)e51),2,1,6

. . .

loop number is:401

The best choice of the anticipation interaction is composite and its weight

is:16

The best choice of the anticipation interaction’s weight plus than threshold

and proclivity is positive

The primitive intendedInteraction is: e51,-1,0,0

The primitive enactedInteraction is: e51,-1,0,0

The primitive intendedInteraction is: e21,-3,0,0

The primitive enactedInteraction is: e21,-3,0,0

The primitive intendedInteraction is: e01,5,0,0

The primitive enactedInteraction is: e01,5,0,0

The primitive intendedInteraction is: e31,-1,0,0

The primitive enactedInteraction is: e31,-1,0,0

The primitive intendedInteraction is: e01,5,0,0

The primitive enactedInteraction is: e01,5,0,0

The intended composite interaction is: (e51(e21(e01(e31e01)))),5,7,4

The enacted composite interaction is: (e51(e21(e01(e31e01)))),5,7,4

learnCompositeInteraction()

REINFORCE:(e30(e51(e21(e01(e31e01))))),3,15,5

REINFORCE:((e11(e31e01))(e30(e51(e21(e01(e31e01)))))),4,3,6

REINFORCE:(((e11(e31e01))e30)(e51(e21(e01(e31e01))))),4,3,5

loop number is:402

The best choice of the anticipation interaction is composite and its weight

is:17

The best choice of the anticipation interaction’s weight plus than threshold

and proclivity is positive

The primitive intendedInteraction is: e31,-1,0,0

The primitive enactedInteraction is: e30,-2,0,0

The intended composite interaction is: (e31e01),4,6,1

The enacted composite interaction is: e30,-2,0,0

learnCompositeInteraction()

REINFORCE:((e51(e21(e01(e31e01))))e30),3,9,5

REINFORCE:(e30((e51(e21(e01(e31e01))))e30)),1,7,6

REINFORCE:((e30(e51(e21(e01(e31e01)))))e30),1,7,6

loop number is:403

The best choice of the anticipation interaction is composite and its weight

is:17

The best choice of the anticipation interaction’s weight plus than threshold

and proclivity is positive

The primitive intendedInteraction is: e51,-1,0,0

The primitive enactedInteraction is: e51,-1,0,0

The primitive intendedInteraction is: e21,-3,0,0

The primitive enactedInteraction is: e21,-3,0,0

The primitive intendedInteraction is: e01,5,0,0

The primitive enactedInteraction is: e01,5,0,0

The primitive intendedInteraction is: e31,-1,0,0

The primitive enactedInteraction is: e31,-1,0,0

122

The primitive intendedInteraction is: e01,5,0,0

The primitive enactedInteraction is: e01,5,0,0

The intended composite interaction is: (e51(e21(e01(e31e01)))),5,7,4

The enacted composite interaction is: (e51(e21(e01(e31e01)))),5,7,4

learnCompositeInteraction()

REINFORCE:(e30(e51(e21(e01(e31e01))))),3,16,5

REINFORCE:((e51(e21(e01(e31e01))))(e30(e51(e21(e01(e31e01)))))),8,3,6

REINFORCE:(((e51(e21(e01(e31e01))))e30)(e51(e21(e01(e31e01))))),8,3,6

. . .

loop number is:416

The best choice of the anticipation interaction is composite and its weight

is:20

The best choice of the anticipation interaction’s weight plus than threshold

and proclivity is positive

The primitive intendedInteraction is: e51,-1,0,0

The primitive enactedInteraction is: e51,-1,0,0

The primitive intendedInteraction is: e21,-3,0,0

The primitive enactedInteraction is: e21,-3,0,0

The primitive intendedInteraction is: e01,5,0,0

The primitive enactedInteraction is: e01,5,0,0

The primitive intendedInteraction is: e31,-1,0,0

The primitive enactedInteraction is: e31,-1,0,0

The primitive intendedInteraction is: e01,5,0,0

The primitive enactedInteraction is: e01,5,0,0

The intended composite interaction is: (e51(e21(e01(e31e01)))),5,9,4

The enacted composite interaction is: (e51(e21(e01(e31e01)))),5,9,4

learnCompositeInteraction()

REINFORCE:(e30(e51(e21(e01(e31e01))))),3,18,5

REINFORCE:((e51(e21(e01(e31e01))))(e30(e51(e21(e01(e31e01)))))),8,4,6

REINFORCE:(((e51(e21(e01(e31e01))))e30)(e51(e21(e01(e31e01))))),8,4,6

loop number is:417

The best choice of the anticipation interaction is composite and its weight

is:21

The best choice of the anticipation interaction’s weight plus than threshold

and proclivity is positive

The primitive intendedInteraction is: e31,-1,0,0

The primitive enactedInteraction is: e31,-1,0,0

The primitive intendedInteraction is: e01,5,0,0

The primitive enactedInteraction is: e01,5,0,0

The intended composite interaction is: (e31e01),4,6,1

The enacted composite interaction is: (e31e01),4,6,1

learnCompositeInteraction()

REINFORCE:((e51(e21(e01(e31e01))))(e31e01)),9,12,5

REINFORCE:(e30((e51(e21(e01(e31e01))))(e31e01))),7,7,6

REINFORCE:((e30(e51(e21(e01(e31e01)))))(e31e01)),7,7,6

. . .

loop number is:443

The best choice of the anticipation interaction is composite and its weight

is:2

123

The best choice of the anticipation interaction’s weight plus than threshold

and proclivity is positive

The primitive intendedInteraction is: e11,-3,0,0

The primitive enactedInteraction is: e11,-3,0,0

The primitive intendedInteraction is: e31,-1,0,0

The primitive enactedInteraction is: e31,-1,0,0

The primitive intendedInteraction is: e01,5,0,0

The primitive enactedInteraction is: e01,5,0,0

The primitive intendedInteraction is: e51,-1,0,0

The primitive enactedInteraction is: e51,-1,0,0

The primitive intendedInteraction is: e21,-3,0,0

The primitive enactedInteraction is: e21,-3,0,0

The primitive intendedInteraction is: e01,5,0,0

The primitive enactedInteraction is: e01,5,0,0

The primitive intendedInteraction is: e31,-1,0,0

The primitive enactedInteraction is: e31,-1,0,0

The primitive intendedInteraction is: e01,5,0,0

The primitive enactedInteraction is: e01,5,0,0

The intended composite interaction is:

((e11(e31e01))(e51(e21(e01(e31e01))))),6,3,5

The enacted composite interaction is:

((e11(e31e01))(e51(e21(e01(e31e01))))),6,3,5

learnCompositeInteraction()

REINFORCE:((e51(e21(e01e30)))((e11(e31e01))(e51(e21(e01(e31e01)))))),5,3,6

LEARN:(e30((e51(e21(e01e30)))((e11(e31e01))(e51(e21(e01(e31e01))))))),3,1,7

LEARN:((e30(e51(e21(e01e30))))((e11(e31e01))(e51(e21(e01(e31e01)))))),3,1,6

. . .

loop number is:554

The best choice of the anticipation interaction is composite and its weight

is:32

The best choice of the anticipation interaction’s weight plus than threshold

and proclivity is positive

The primitive intendedInteraction is: e31,-1,0,0

The primitive enactedInteraction is: e31,-1,0,0

The primitive intendedInteraction is: e01,5,0,0

The primitive enactedInteraction is: e01,5,0,0

The primitive intendedInteraction is: e51,-1,0,0

The primitive enactedInteraction is: e51,-1,0,0

The primitive intendedInteraction is: e21,-3,0,0

The primitive enactedInteraction is: e21,-3,0,0

The primitive intendedInteraction is: e01,5,0,0

The primitive enactedInteraction is: e01,5,0,0

The primitive intendedInteraction is: e31,-1,0,0

The primitive enactedInteraction is: e31,-1,0,0

The primitive intendedInteraction is: e01,5,0,0

The primitive enactedInteraction is: e01,5,0,0

The intended composite interaction is:

((e31e01)(e51(e21(e01(e31e01))))),9,25,5

The enacted composite interaction is:

((e31e01)(e51(e21(e01(e31e01))))),9,25,5

learnCompositeInteraction()

REINFORCE:((e51(e21(e01(e31e01))))((e31e01)

124

(e51(e21(e01(e31e01)))))),14,30,6

REINFORCE:(e30((e51(e21(e01(e31e01))))

((e31e01)(e51(e21(e01(e31e01))))))),12,4,7

REINFORCE:((e30(e51(e21(e01(e31e01)))))

((e31e01)(e51(e21(e01(e31e01)))))),12,4,6

. . .

loop number is:610

The best choice of the anticipation interaction is composite and its weight

is:48

The best choice of the anticipation interaction’s weight plus than threshold

and proclivity is positive

The primitive intendedInteraction is: e31,-1,0,0

The primitive enactedInteraction is: e31,-1,0,0

The primitive intendedInteraction is: e01,5,0,0

The primitive enactedInteraction is: e01,5,0,0

The primitive intendedInteraction is: e51,-1,0,0

The primitive enactedInteraction is: e51,-1,0,0

The primitive intendedInteraction is: e21,-3,0,0

The primitive enactedInteraction is: e21,-3,0,0

The primitive intendedInteraction is: e01,5,0,0

The primitive enactedInteraction is: e01,5,0,0

The primitive intendedInteraction is: e31,-1,0,0

The primitive enactedInteraction is: e31,-1,0,0

The primitive intendedInteraction is: e01,5,0,0

The primitive enactedInteraction is: e01,5,0,0

The intended composite interaction is:

((e31e01)(e51(e21(e01(e31e01))))),9,25,5

The enacted composite interaction is:

((e31e01)(e51(e21(e01(e31e01))))),9,25,5

learnCompositeInteraction()

REINFORCE:((e51(e21(e01(e31e01))))((e31e01)

(e51(e21(e01(e31e01)))))),14,38,6

REINFORCE:(e30((e51(e21(e01(e31e01))))((e31e01)

(e51(e21(e01(e31e01))))))),12,12,7

REINFORCE:((e30(e51(e21(e01(e31e01)))))((e31e01)

(e51(e21(e01(e31e01)))))),12,12,6

loop number is:611

The best choice of the anticipation interaction is composite and its weight

is:63

The best choice of the anticipation interaction’s weight plus than threshold

and proclivity is positive

The primitive intendedInteraction is: e31,-1,0,0

The primitive enactedInteraction is: e31,-1,0,0

The primitive intendedInteraction is: e01,5,0,0

The primitive enactedInteraction is: e01,5,0,0

The primitive intendedInteraction is: e51,-1,0,0

The primitive enactedInteraction is: e51,-1,0,0

The primitive intendedInteraction is: e21,-3,0,0

The primitive enactedInteraction is: e21,-3,0,0

The primitive intendedInteraction is: e01,5,0,0

The primitive enactedInteraction is: e01,5,0,0

125

The primitive intendedInteraction is: e31,-1,0,0

The primitive enactedInteraction is: e31,-1,0,0

The primitive intendedInteraction is: e01,5,0,0

The primitive enactedInteraction is: e01,5,0,0

The intended composite interaction is:

((e31e01)(e51(e21(e01(e31e01))))),9,25,5

The enacted composite interaction is:

((e31e01)(e51(e21(e01(e31e01))))),9,25,5

learnCompositeInteraction()

REINFORCE:(((e31e01)(e51(e21(e01(e31e01)))))

((e31e01)(e51(e21(e01(e31e01)))))),18,15,6

REINFORCE:((e51(e21(e01(e31e01))))(((e31e01)(e51(e21(e01(e31e01)))))

((e31e01)(e51(e21(e01(e31e01))))))),23,12,7

REINFORCE:(((e51(e21(e01(e31e01))))((e31e01)(e51(e21(e01(e31e01))))))

((e31e01)(e51(e21(e01(e31e01)))))),23,12,7

126

Appendix C

Agent’s performance in diverse
environments

As we mentioned in the Section 7.4.1, with interaction traces exported from the GAIT, from the
357th interaction, the agent could successfully interact with its environment and start avoiding
unfavorable interactions (the collisions with the walls) using regularities that it has learned. In
the 500th interaction, we changed the environment in different ways (an example as shown in
Figure C.1) and examine the agent’s performance in the changed environment.

C.1 The first changed environment

Figure C.1: The first changed environment.

127

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050
Decision cycles

0

5

10

15

20

25

30

35
Bu

m
p

tim
es

The moment that the environment has been changed

Bumping times with decision cycles as the agent interacts with the environment.
Bumps with decision cycles.

Figure C.2: The bump times with decision cycles in the first changed environment.

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050
Decision cycles

400

300

200

100

0

To
ta

l v
al

en
ce The moment that the environment has been changed

Accumulated valence with decision cycles in agent's interactions with the environment.
Accumulated valence with decision cycles.

Figure C.3: The total valence with decision cycles in the first changed environment.

128

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050
Decision cycles

4

3

2

1

0

Av
er

ag
e

va
le

nc
e

The moment that the environment has been changed

Average valence with decision cycles from agent's interactions with the environment.
Average valence with decision cycles.

Figure C.4: The average valence with decision cycles in the first changed environment.

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050
Decision cycles

0

200

400

600

800

Co
m

po
sit

e
in

te
ra

ct
io

n
co

un
t The moment that the environment has been changed

The number of composite interactions with decision cycles.
The number of composite interactions with decision cycles.

Figure C.5: The number of composite interactions with decision cycles in the first changed
environment.

129

Figure C.6: The second changed environment.

0 50 100 150 200 250 300 350 400 450 500 550 600 650
Decision cycles

0

5

10

15

20

25

30

35

Bu
m

p
tim

es

The moment that the
 environment has been changed

Bumping times with decision cycles as the agent interacts with the environment.
Bumps with decision cycles.

Figure C.7: The bump times with decision cycles in the second changed environment.

130

0 50 100 150 200 250 300 350 400 450 500 550 600 650
Decision cycles

500

0

500

1000

1500

To
ta

l v
al

en
ce

The moment that the
 environment has been changed

Accumulated valence with decision cycles in agent's interactions with the environment.
Accumulated valence with decision cycles.

Figure C.8: The total valence with decision cycles in the second changed environment.

0 50 100 150 200 250 300 350 400 450 500 550 600 650
Decision cycles

5

4

3

2

1

0

1

2

Av
er

ag
e

va
le

nc
e

The moment that the
 environment has been changed

Average valence with decision cycles from agent's interactions with the environment.
Average valence with decision cycles.

Figure C.9: The average valence with decision cycles in the second changed environment.

131

0 50 100 150 200 250 300 350 400 450 500 550 600 650
Decision cycles

0

100

200

300

400

500

600

700

Co
m

po
sit

e
in

te
ra

ct
io

n
co

un
t

The moment that the
 environment has been changed

The number of composite interactions with decision cycles.
The number of composite interactions with decision cycles.

Figure C.10: The number of composite interactions with decision cycles in the second
changed environment.

C.2 The second changed environment

C.3 The third changed environment

Figure C.11: The third changed environment.

132

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050
Decision cycles

0

5

10

15

20

25

30

35

Bu
m

p
tim

es

The moment that the environment has been changed

Bumping times with decision cycles as the agent interacts with the environment.
Bumps with decision cycles.

Figure C.12: The bump times with decision cycles in the third changed environment.

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050
Decision cycles

400

200

0

200

400

600

To
ta

l v
al

en
ce

The moment that the
 environment has been changed

Accumulated valence with decision cycles in agent's interactions with the environment.
Accumulated valence with decision cycles.

Figure C.13: The total valence with decision cycles in the third changed environment.

133

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050
Decision cycles

4

3

2

1

0

Av
er

ag
e

va
le

nc
e

The moment that the environment has been changed

Average aaavalence with decision cycles from agent's interactions with the environment.
Average valence with decision cycles.

Figure C.14: The average valence with decision cycles in the third changed environment.

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050
Decision cycles

0

200

400

600

800

1000

Co
m

po
sit

e
in

te
ra

ct
io

n
co

un
t

The moment that the environment has been changed

The number of composite interactions with decision cycles.
The number of composite interactions with decision cycles.

Figure C.15: The number of composite interactions with decision cycles in the third
changed environment.

134

135

	Introduction
	Context
	The challenge for an autonomous agent
	Problem statement
	Challenges

	Motivation
	Overview of the dissertation
	Contributions

	The state of the art
	Infants' cognitive development
	Cognitive development of an autonomous agent
	Constructivist learning
	Intrinsic motivation
	Self-adaptation and flexibility

	Cognitive architecture
	The Soar Cognitive Architecture
	Constructivist Learning Architecture
	Enactive Cognitive Architecture

	Summary

	Foundations
	Theoretical foundations
	The theory of developmental psychology
	Radical constructivism
	Enactive cognition
	Motivations in agent's cognitive development

	Implementation Foundations
	Representation and operations of schemes
	Benchmarks

	Conclusion

	The Constructivist Cognitive Architecture
	The CCA design
	Interaction cycle between the agent and the environment
	The sensorimotor interaction
	Schemes in the CCA
	Self-motivation in CCA

	CCA structure
	The CCA structure

	CCA implementation
	Learning of of regularities: the composite interaction
	Selection mechanism
	The enaction of intended interaction
	Learning of structured behaviors.
	Episodic memory, ``surprise", and ``novelty"

	Conclusion

	Causality reconstruction with CCA
	Causal Perception
	Causal Perception in Adults
	Causal Perception in Infants

	Modeling Causal Acquisition with CCA
	Interaction scenarios
	Principles of the learning
	The algorithm of the causality reconstruction

	Experiment
	Conclusion

	Bottom-up hierarchical sequential learning in CCA
	The interaction and its valence allocation
	The hierarchical sequential learning process in CCA
	The BEL-CA
	The structure of BEL-CA

	Algorithms
	Initialization
	Context construction
	Activation of composite interactions and the construction of anticipations
	Selection mechanism
	The enaction of intended interaction

	Comparison with related work
	Conclusion

	Methodology and experimental scenario of the BEL-CA
	Experimental settings
	Generating and Analyzing Interaction Traces toolkit (GAIT)
	Interaction traces analysis
	The results
	The agent's learning process exported from the GAIT
	The threshold of regularity sensibility in the interactions
	The growth of the episodic memory and the surprises exported from the GAIT
	The agent's performance in the changed environment

	Simulations in autonomous robots
	Robots and the environment
	The implementations of experiments
	Performance

	Conclusion

	Conclusion, open issues and perspectives
	Conclusion
	Open issues
	The growth of composite interaction
	Differences between the valence and the reward
	The allocation strategy for the valence of primitive interactions

	Existing problems
	Future work and perspectives

	Causality reconstruction
	The interaction scenario
	The complete two-step regularities afforded by the environment.
	The full structure of Petri-Net in Little_AI of Level2.00

	Interaction traces
	Agent's performance in diverse environments
	The first changed environment
	The second changed environment
	The third changed environment

