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Introduction 

I. THE VISUAL PROCESS 

A. PRIMARY ELEMENTS OF VISION 

1. OCULAR  GLOBE STRUCTURE 

The processing of an image by the brain starts by the entry of light in the ocular globe. The 

light first goes through the cornea and the aqueous humor to reach the pupil. The size of the 

pupil varies; it gets wider in the dark and narrower in the light. These changes of the size of 

the pupil are controlled by the iris, which is the colored part of the eye that is unique to each 

individual. After passing through the pupil, the light is focused by the lens, through the 

vitreous, on the retina, which is located at the back of the eye. Subsequently, the light crosses 

the retina to reach the photoreceptors that transform this light signal into a biochemical one 

which converges in the optic nerve. The latter, which is composed of the axons of retinal 

ganglion cells (RGCs), guides the visual signal towards the brain to be processed in the visual 

cortex [1]. The mouse eye is mainly structured the same way but smaller with a relatively 

much larger lens and the global shape of the cornea is less protruding [2](Fig.1). 

 

Figure 1: Comparative structure of human and mouse ocular globe 
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2. THE RETINA, KEY ORGAN OF VISION 

Retinal structure 

The retina, the visual organ located at the posterior part of the ocular globe, is multi-stratified. 

These layers are enumerated as follows, from the choroidal side to the vitreous side (Fig.2): 

- The retinal pigmented epithelium (RPE) plays a role in the phagocytosis of photoreceptor 

outer segments and the recycling of retinoid acid, which are essential to ensure a proper 

function of the retina.  

- The photoreceptor layer comprises the outer (OS) and inner segments (IS) of 

photoreceptors 

- The outer limiting membrane (OLM) separates the inner segments of photoreceptors 

from their nuclei through gap junctions between the IS of the photoreceptors and Müller 

cells 

- The outer nuclear layer (ONL) contains nuclei of rod and cone photoreceptors,  

- The outer plexiform layer (OPL), is the region where the synapses of photoreceptors 

connect with bipolar (BCs) and horizontal cells (HCs),  

- The inner nuclear layer (INL) includes the nuclei of amacrine (ACs), BCs, HCs and Müller 

glial cells, 

- The inner plexiform layer (IPL) is the region, where the synapses of ACs and BCs connect 

with RGCs 

- The ganglion cell layer (GCL) comprises the nuclei of RGCs 

- The nerve fiber layer (NFL) contains the axons of the RGCs that form the optic nerve 

- The inner limiting membrane (ILM) separates the retina from the vitreous 

Finally, Müller cells expanse from the OLM to the ILM where they act as support structures of 

the retina. They also protect retinal cells from potential overflows of neurotransmitters [1] 

(Fig.2).  
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Figure 2: Basic retinal structure 

 

Retinal development 

Studies in mouse showed that retinal cells start to differentiate from progenitors at different 

gestation times. Horizontal cells and cones only mature in utero while RGCs, BCs, ACs, Müller 

cells and rods start to differentiate in utero but complete their maturation at different post-

natal days. In particular, differentiation and maturation of the BCs extends from embryonic 

day 14.5 to post-natal day 11 [3] (Fig.3A).   

In humans, the retina is fully developed prior to birth [4]. Interestingly, the development of 

the human retinal cells is quite similar to the one observed in the mouse as RGCs, horizontal 

cells and cones are the first cells to differentiate, followed by amacrine cells, rods, bipolar cells 

and finally Müller cells [5] (Fig. 3B). 
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Figure 3: Representation of the retinal cell development over time. (A) Retinal cell development in the mouse; E: 
Embryonic day; P: Post-natal day. (B) Retinal cell development in humans; Hgw: Human gestation week 

 

B. VISUAL PROCESSING IN THE RETINA 

1. GENESIS OF THE VISUAL PROCESS 

As light reaches the retina, photoreceptors, which are the main photosensitive cells of the 

retina, initiate the visual signaling. Two types of photoreceptors have been described based 

on the shape of their outer segments: rods and cones (Fig.4A). Rods are involved in vision in 

dim-light, while cones are involved in day light vision, color vision and visual acuity. Three 

subtypes of cones are present in the retina, which defer in their respective photopigment, 

called opsins, and their respective distinct spectral sensitivities: S-cones have a maximal 

sensitivity to short wavelengths (also called blue cones), M-cones have a maximal sensitivity 

to medium wavelengths (also referred as green cones) and L-cones have a maximal sensitivity 

to long wavelengths (also called red cones) [6]. In mice, only two types of cones (M-cones and 

S-cones) have been described, expressing two distinct opsins sensitive to various wavelengths 

[7]. 
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Figure 4: Simple anatomy and repartition of photoreceptors. (A) Schematic drawing of the structure of photoreceptors. (B) 
Representation of the organization of the photoreceptors in the human retina, modified from Osterberg et al., 1935 

 

Photoreceptors are organized in a specific manner. Both rods and cones are present at the 

entire surface of the retina. However, rods outnumber cones in the peripheral retina while 

the density of cones is at its maximum at the fovea, which is solely composed of cones [8] 

(Fig.4B). Mice do not have a fovea but the organization of photoreceptors in the mouse retina 

is comparable to the one of humans with an area enriched in cones (area centralis) [9]. In the 

human retina, rods are the most represented type of photoreceptors as they are about 120 

million (95%) while there are 6 million cones (5%) [8]. This proportion is approximately the 

same in the mouse retina where rods represent 97% of the photoreceptors and cones 3% [10].  

Rod phototransduction cascade 

Photoreceptors transform light into a biochemical signal through a G-protein signaling 

pathway. Under dark conditions, all proteins involved in phototransduction are at a resting 

state. cGMP-gated channels are opened, photoreceptors are depolarized, leading to the 

release of the neurotransmitter glutamate at the synaptic cleft.  

In rods at light, the light-sensitive G-protein coupled receptor rhodopsin absorbs a photon 

driving the activation of the G-protein transducin. The α-subunit of transducin activates the 

phosphodiesterase (PDE) provoking the hydrolyzation of cGMP. This light-induced drop of 

cGMP triggers the closure of the cGMP-gated channels. Subsequently, photoreceptors 

hyperpolarize and the outflow of glutamate decreases [11] (Fig.5). 
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Figure 5: Schematic representation of the rod phototransduction. * means activated 

 

2. TRANSMISSION OF THE SIGNAL:  GLUTAMATE RELEASE  

At the synaptic terminals of rods and cones, the biochemical signals are transmitted to HCs 

and BCs through glutamate release. 

Photoreceptor to bipolar cell synapses 

The synaptic terminal of cones is referred as the cone pedicle (Fig. 6A). It displays dense 

structures called synaptic ribbons and is filled with synaptic vesicles containing glutamate, the 

neurotransmitter essential for the propagation of the visual signal from the photoreceptors 

to the BCs. In one cone pedicle, approximately 30 ribbons are found which are associated with 

the same number of triads [12]. These triads are the combination of three elements: the 

dendritic terminal of an invaginating BC at the center and two flanking dendritic terminals of 

HCs [13]. Most cone bipolar cells (CBCs) contact several cones, they are referred as diffuse 

BCs; while some contact a single cone pedicle and are cited as midget BCs. 

The synaptic terminals of rods are quite similar to the ones of cones. They are called rod 

spherule and are also composed of presynaptic ribbon flanked by synaptic vesicles (Fig.6B). In 

apposition, invaginating processes of HCs and BCs are found. While the cone pedicle contains 

multiple ribbons, which deliver the information to more than a hundred BCs, the rod spherule 

includes a ribbon contacting rod BCs (RBCs) and two HCs [14].  
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Rod spherules contact with only one type of bipolar cell, the RBCs, while the cone pedicle can 

connect to different types of CBCs, ON- and OFF-CBCs. These diverse connections discriminate 

two pathways of light processing in the retina: the ON- and OFF-pathway. 

 

Figure 6: Schematic drawing of the synapse of photoreceptor. (A) Representation of the cone pedicle, the base of the cone 
is represented in green, invaginating HCs are depicted in yellow, invaginating dendrites of BCs are represented in orange 
forming the triad. The ribbon is apposed to the invaginating HCs and BCs- Synaptic vesicles are drawn in red. (B) 
Representation of the rod spherule, the base of the rod is showed in grey; the other components are represented by the 
same color code as for the cone pedicle. 

 

Glutamate release by photoreceptors 

Glutamate release at the photoreceptor synapse is controlled by Ca2+ currents and requires 

an L-type voltage-dependent Ca2+ channel  composed of a heteromultimeric protein complex 

[11]. CACNA1F codes for the α1 subunit (CACNA1F, Cav1.4) of this channel. This subunit is the 

pore through which calcium influxes across the synaptic membrane.  The β, γ and α2 subunits, 

modulate calcium currents and are involved in the correct structure and localization of the 

complex at the synaptic membrane [15, 16]. The α2 subunit is encoded by CACNA2D4. 

CACNA1F is also associated to CABP4, which is a Ca2+ binding protein that contributes to 

CACNA1F modulation. In darkness, CACNA1F is in an open conformation and calcium influx 

triggers a continuous release of glutamate in the synaptic cleft. Conversely, when the 

phototransduction cascade is initiated by light, photoreceptors hyperpolarize and glutamate 

release is reduced [17] (Fig.7). 
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Figure 7: Signaling cascade at the synapse between photoreceptors (top) and ON-bipolar cells (bottom). The exact 
localization of LRIT3 is not elucidated between pre- and post-synaptic. 

 

3. BIPOLAR CELL PROCESSING:  ON-  &  OFF-PATHWAYS  

Bipolar cells 

As mentioned before, BCs can be subdivided in two groups: RBCs and CBCs. So far, one type 

of RBC has been described versus twelve for the CBCs depending on morphology and 

connections. They are also classified as follows:  

- Diffuse BCs that can contact 5 to 10 M- or L-cone pedicles 

- Midget BCs which contact a single M- or L-cone pedicle; they can also be subdivided 

in flat (OFF) or invaginating (ON) midget BCs 

- S-cone BCs only connect to S-cones (1-5) and carry an ON-pathway 

- RBC which contact 20-80 rod spherules [14] 

RBCs are only transmitting the visual signal through the ON-pathway while CBCs can follow 

either the ON-pathway or the OFF-pathway (Fig.8).  
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Figure 8: Illustration of the thirteen types of BCs in the retina. DB: diffuse bipolar cell; FMB: flat midget bipolar cell; IMB: 
invaginating midget bipolar cell; BB: S-cone bipolar cell and RB: rod bipolar cell. Green FMB and IMB are connecting to M-
cones and red FMB and IMB are related to L-cones.  

 
ON-pathway 

When released in the synaptic cleft, glutamate bounds the metabotropic glutamate receptor 

6 (mGluR6), localized at the membrane of ON-BCs [18, 19]. mGluR6 activates the α-subunit of 

a G-protein, GαO [20]. The dissociation of the G-protein subunits causes the closure of a non-

selective ion channel TRPM1 for Transient Receptor Potential cation channel subfamily 

Member 1. In the light, the amount of glutamate released by photoreceptors decreases, 

leading to the opening of the TRPM1 channel at the end of the cascade. This phenomenon is 

consistent with ON-BC depolarization, therefore these cells are also called depolarizing BCs 

[21]. Since photoreceptors hyperpolarize in response to light while ON-BCs depolarize, the 

synapse between photoreceptors and ON-BCs is called a sign-inverting synapse. Other 

regulatory proteins play a role in this cascade: GPR179 is an orphan seven transmembrane G-

protein coupled receptor, which is required for the depolarization of bipolar cells, plays a role 

in mGluR6 sensitivity and interacts directly with TRPM1 [22]. Specific intracellular motifs 

present in LRIT3 and in vivo/in vitro studies of nyctalopin and TRPM1 suggest that nyctalopin 

and LRIT3 are important for the correct localization of TRPM1 to the dendritic tips of ON-BCs 

(Fig.7) [23, 24].  

Two ON-pathways have been described depending on the type of photoreceptor implicated: 

either the rod ON-pathway (ON1, Fig.9) or the cone ON-pathway (ON2, Fig.9). Rods deliver 

the signal to RBCs which communicate it to a type II AC that then transmit it to ON-CBC which 

convey it to ON-RGC. Cones transmit the signal directly to ON-CBC to finally pass it to ON-RGC 

(Fig.9).  
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Figure 9: Simple outline of the ON- & OFF-pathways in the mammalian retina. 

OFF-pathway 

In contrast to ON-CBCs, OFF-CBCs express ionotropic glutamate receptors at their dendrites. 

These receptors are formed by a complex of receptor and channel subunits. It is not a sign-

inverting synapse and OFF-CBCs hyperpolarize in response to light, as photoreceptors. 

Therefore, these BCs are also called hyperpolarizing BCs. Two types of ionotropic receptors 

are expressed by OFF-CBCs depending on the neurotransmitter to which they bound. The first 

type is the ionotropic receptor sensitive to α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 

acid (AMPA) and the second one to kainate. The major OFF-pathway originates in cones which 

transmit this signal to OFF-CBCs that convey the signal towards OFF-RGCs [14] (fig 9, OFF1). 

4. BIPOLAR TO GANGLION CELL SYNAPSE  

ON- and OFF-BCs are not only expressing different glutamate receptors, they also display 

distinct morphological features.  

OFF-pathway 

OFF-CBC axons are shorter than the ones from ON-BCs and end in the OFF sublamina (outer 

half) of the IPL (Fig.8). They directly transfer the signal through their excitatory synapses onto 

OFF-RGC.   
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ON-pathway 

Conversely, ON-cone and axons of the RBCs terminate in the ON sublamina (inner half) of the 

IPL (Fig.8). ON-CBCs can convey the signal straight to the ON-RGCs while RBCs first pass on the 

signal to type II ACs, which are depolarizing in response to light. These type II ACs are forming 

electrical synapses into the axon terminals of ON-CBCs that finally synapse onto ON-RGCs [25]. 

This pathway is actually the most sensitive one as it can be triggered by the absorption of only 

one photon. Ultimately, OFF- and ON-RGCs dendrites transmit the signals towards the brain.  

 
C. INVESTIGATION OF THE RETINAL STRUCTURE AND FUNCTION 

1. STRUCTURAL STUDY OF THE RETINA  

To control the retinal integrity, two ophthalmological exams can be performed: 

- A Fundoscopy 

As a result of the transparency of the cornea and the vitreous humor, the retina is easily 

observable. The fundoscopy consists of the observation of the inner face of the retina through 

a magnifying lens using a light beam that illuminates the retina through the pupil [26]. Retinal 

vessels and the optic disc (head of the optic nerve) can also be observed. In a normal fundus, 

the background retina appears of a light orange color, the optic disc is orange-pink and the 

blood vessels light red. Several retinal disorders present characteristic fundus abnormalities 

such as fundus albipunctatus [27] or choroideremia [28]. The physiologic fundus appearance 

of the mouse retina resembles the one of humans even though a difference in color is notable 

(Fig. 10). 

 

  

Figure 10: Normal fundus of human (left) [29] and mouse (right). 
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- A Spectral-Domain Optical-Coherence-Tomography (SD-OCT) 

The SD-OCT allows the observation of the retinal structure through cross-sections. Multiple 

retinal layers are documented such as the nerve fiber layer, a combination of the RGC layer 

and the IPL, the INL, the OPL, the ONL and the outer segments of the photoreceptors. The 

thickness of these layers can be measured or the reflectivity of the different layers studied in 

order to evaluate a retinal disorder [30]. The SD-OCT can be performed as well in rodents [31].  

 

Figure 11: SD-OCT from an unaffected patient. NFL: nerve fiber layer; GCL: ganglion cell layer; IPL: inner plexiform layer; 
INL: inner nuclear layer; OPL: outer plexiform layer; ONL: outer nuclear layer; OLM: outer limiting membrane; IS: inner 
segments; OS: outer segments; RPE: retinal pigment epithelium. Courtesy of Dr. Marco Nassisi 

 
2. V ISUAL ACUITY  

The visual acuity is the spatial resolving capacity of the visual system and is often described as 

the ability to see fine details [32]. It depends on the sharpness of the light focus on the retina, 

the proper health and function of the fovea and finally the treatment of the visual information 

by the brain [33]. To measure the visual acuity of patients, subjective or objective 

measurement can be performed.  

As a subjective test, the measure of visual acuity by presenting optotype after optimal optical 

correction is the most common method. Different optotype charts are used and the 

standardized method of the Early Treatment Diabetic Retinopathy Study (ETDRS) is probably 

the most commonly used [34, 35]. The ETDRS charts represent letters, numbers or drawings, 

depending on the age and the educational level of the patient, of decreasing sizes. Patients 

are placed in front of the chart and the visual acuity is determined by the smallest symbol 

correctly red [36].  
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In order to estimate the visual acuity in an objective way, the recording of Visually-Evoked 

Potentials (VEP) and the stimulation of the optokinetic nystagmus (OKN, mostly used in 

infants) are suitable. To record VEP, electrodes are placed on the scalp at the level of the right 

and left occipital lobes and the retina is stimulated through pattern stimulus. Recordings are 

then made directly at the level of the visual occipital areas. Finally, to elicit the OKN a rotating 

stripe drum is shown to the patient. First, the eye will follow the direction of the stimulus then 

it will go back to the primary position to finally start again to follow the stimulus. If there is an 

abnormal visual acuity, the nasal-to-temporal stimulus will not be effective to elicit OKN [37]. 

In mice, several tests can be used to investigate the visual response. Similarly to the OKN in 

human patients, optomotor test can be performed on mice [38]. To elicit head movements, 

mice are placed on a platform at the center of a striped drum that turns at a speed of two 

revolutions per minute, clockwise or anti-clockwise (Fig.12). The visual perception of the mice 

is then measured by the number of head movements in a specific frame of time with a given 

optomotor frequency. 

 

Figure 12: Schema schematic of the optomotor test performed on mice seen from above. When spun clockwise, a mouse 
with normal vision follows the movement of the stripes, towards the right. Conversely, it follows the movement towards 
the left when the spinning observes an anti-clockwise sense. 

 
3. FULL-FIELD ELECTRORETINOGRAM (FF-ERG) 

The Full-field electroretinogram (ff-ERG) is an ophthalmological exam which assesses the 

retinal function by recording the response of the retina to light flashes. Using different types 

of electrodes such as Dawson Trick Litzkow (DLT) fibers [39] or contact lenses at the surface 

of the cornea, the ERG records the variation of retinal potentials upon stimulation which is 

then transferred to the cornea. The International Society for Clinical Electrophysiology of 
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Vision (ISCEV) established standardized protocols which are minimum testing to precisely 

document retinal function upon specific light stimulation which are suited to diagnosed most 

generalized retinal disorders [40]. This exam can also be performed in mice even though there 

is no standardized protocol. Dark-adapted ERG can also be referred as ERG in scotopic 

condition and light-adapted ERG as ERG in photopic condition. After a dark-adaptation of at 

least 20 minutes in human and usually overnight in mice, eyes are submitted to low intensity 

flashes (0.01 cd.s/m²) to elicit rod-driven responses. Increasing intensities, 3.0 then 10.0 

cd.s/m², allow the recording of mixed rod and cone responses, even though dominated by 

rods which outnumber the cones. These recordings are referred as dark-adapted or scotopic 

ERG. A light-adaptation of at least 10 minutes is usually done to ensure the saturation of rods 

and therefore elicit responses initiated by cones (light-adapted or photopic ERG). Two types 

of recordings are performed in this condition: a single flash of 3.0 cd.s/m² intensity and about 

2 Hz frequency and a 3.0 cd.s/m² 30Hz flicker to induce responses of L- and M-cone-driven 

ON- and OFF-pathways (Table1). This kind of protocol can be used in mice with some 

adjustments in flash intensities or time of dark/light adaptation.  

 
Table 1: Cellular origins of the two major components of the ERG relying on the ISCEV protocol [39] 

ERG test  

ISCEV protocol 
a-wave b-wave 

DA 0.01 ERG No RBCs 

DA 3.0 ERG 

Combined rod-cone response 

dominated by rods with neglectable 

contribution of OFF-CBC 

ON-BCs with neglectable 

contribution of OFF-CBCs 

DA 10.0 ERG Driven by rods and cones ON-BCs with some OFF-CBCs 

LA 3.0 ERG Cone response along with OFF-CBCs ON-CBCs then OFF-CBCs 

LA 30Hz flicker L- and S-cone driven ON- and OFF-CBCs 

 

Two major features prevail in the ERG: the a-wave, transposing the hyperpolarization of the 

membrane of photoreceptors in response to the flash (see Rod phototransduction cascade); 

and the b-wave due to the depolarization of ON-BCs once photoreceptors decreased their 
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glutamate release (See ON-pathway) (Fig.13). In addition, small wavelets can be seen at the 

ascending limb of the b-wave, under both scotopic and photopic conditions, called oscillatory 

potentials. They can be isolated in modifying the recording bandwidth and are thought to be 

at least partially generated at the level of the amacrine cells [41, 42]. Several other ERG waves 

initiated from different cell types are distinguishable on the ERG but very rarely used due to 

their high variability such as the c-wave initiated by RPE cells [43, 44], the d-wave 

corresponding to the response of OFF-BCs [45].  

 

 

Figure 13: Representation of the cellular origin of the a- and b-wave of the ERG. On the left, schematic representation of 
the retinal structure, on the right representative trace of the mixed rod-cone responses under dark-adapted conditions. 

 
4. MULTI-ELECTRODE ARRAY (MEA)  RECORDINGS 

To assess the transmission of the visual signal through ON- and OFF-pathways directly at the 

level of RGCs,  multi-electrode array (MEA) recordings can be performed on ex vivo retina [46]. 

The retina is flat-mounted pressed on the MEA which is composed of a chip containing 256 

electrodes while being perfused with heated oxygenated medium to keep it alive (Fig.14A&B). 

As for the ERG, light stimulus elicits the response of RGCs that is recorded as spikes (Fig.14C). 

At light onset, ON-RGCs will spike while OFF-RGCs will be activated at light off-set. The full-

field light stimuli can be modulated; multiple wavelengths and intensities can be used along 

with different frequencies. 
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Figure 14: Multi-electrode array set-up and results. (A) MEA set-up seen from above, the retina is maintained in a heated 
and oxygenated medium while pressed on the electrodes. (B) MEA set-up laterally, RGCs are in direct contact with the 
electrodes and the stimulating light passes through the retinal layers as physiologically. (C) Spiking activity of RGCs, the 
grey rectangle represents the duration of the light stimulus. ON-RGCs are spiking at light onset while OFF-RGCs are spiking 
at light offset; modified from [47]. 

  



 

27 
 

II. BIPOLAR CELL SIGNALING DEFECT: CSNB AND MAR 

 

Revealed by the ERG examination, some patients display a “no b-wave” phenotype, outlining 

a probable transmission defect between photoreceptors and BCs. Among others, two major 

causes can explain such a phenotype. The first one is an inherited retinal disorder named 

congenital stationary night blindness (CSNB). The second is a paraneoplastic syndrome 

associated with ON-BC dysfunction and often called melanoma-associated retinopathy (MAR). 

 

A. CONGENITAL STATIONARY NIGHT BLINDNESS (CSNB) 

 

Congenital Stationary Night Blindness (CSNB) is a non-degenerative inherited retinal disorder. 

CSNB can be associated with fundus abnormalities or relatively preserved fundi [17]. 

Furthermore, it can be separated in two classes: the Riggs-type and the Schubert-Bornschein 

type of CSNB [48, 49]. Most people suffering from this disease present impairment of night 

vision in early childhood, preserved retina structure and normal fundi (Fig. 15A, B and C).  

 

Figure 15: Congenital Stationary Night Blindness phenotype. (A) Representation of the vision of CSNB patients. Contrasts 
are not well perceived. (B) Normal SD-OCT. (C) Normal fundus. Both (B) and (C) were modified from [29] 

 

Riggs type of CNSB  

The Riggs type of CSNB is very rare and most likely overlooked.  At low light intensities under 

dark adaptation (DA 0.01) the b-wave is severely reduced near absent, both a-wave and b-
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wave are reduced to a bright flash (DA 3.0 and DA 10.0 ERG) while the light-adapted responses 

seem to be normal (LA 3.0) confirming normal cone function. These results are consistent with 

isolated rod photoreceptor dysfunction [48]. Riggs patients present normal visual acuity and 

visual fields but have problems to orientate during dim light conditions. This particular type of 

CSNB is found in patients with preserved fundi and mutations in RHO [50], PDE6B [51, 52], 

GNAT1 [53] and SLC24A1 [54, 55] (Fig.15). In addition, this particular type of CSNB is also found 

in patients with Fundus Albipunctatus and Oguchi disease due to mutations in RDH5 [56, 57], 

and either SAG or GRK1 [58-60], respectively (Fig. 17). 

Schubert and Bornschein type of CSNB  

Patients with the most frequent form of CSNB, the so-called Schubert-Bornschein type of 

CSNB, have an electronegative ERG, which means that, in dark-adapted conditions the a-wave 

is preserved and the b-wave is extremely reduced (DA 3.0 and DA 10.0 ERG) in keeping with 

post-photoreceptoral dysfunction. This class of CSNB can be further subdivided in two forms: 

complete CSNB (cCSNB) and incomplete CSNB (icCSNB) [61]. 

1. INCOMPLETE CSNB  ( ICCSNB) 

Patients with the incomplete type of CSNB (icCSNB) do not always report night blindness, even 

though they might be suffering from it, but most commonly complain of light sensitivity, have 

nystagmus, and may show strabismus variable degrees of myopia and/or hyperopia [17, 62, 

63]. Under dark-adapted conditions (DA 0.01 ERG) the ERG b-wave is detectable but delayed 

and of subnormal amplitude thus, the term incomplete. With a bright-flash (DA 3.0 and 10.0 

ERG) only the b-wave is reduced. In light-adapted conditions (LA 3.0 ERG) the b/a ratio is 

reduced [17]. Both ON- and OFF responses are affected, as shown by long-duration 

stimulation [64], in this particular sub-form of Schubert-Bornschein CSNB. icCSNB is caused by 

mutations in genes localized at the photoreceptor synapse: mainly in CACNA1F [65, 66] and 

very rarely in CABP4 [67] and in CACNA2D4 [68], with the latter showing finally a distinct 

phenotype, closer to a cone dystrophy [68, 69](Fig.17). 

2. COMPLETE CSNB  (CCSNB) 

Herein, due to the topic of my thesis, I will concentrate on cCSNB describing the phenotype, 

genetics, animal models and pathogenic mechanisms in more details. 
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Figure 16: Schematic representation of the ERG phenotypes of Riggs-type CSNB, incomplete CSNB, complete CSNB and unaffected individual. These ERG defects are due to a cellular 
dysfunction, which is explained by mutations in the corresponding genes. The expression and localization of LRIT3 is not certain yet; here it is depicted as having solely an effect on ON-BCs.
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cCSNB phenotype 

Patients affected with the complete type of CSNB (cCSNB) report  night blindness more 

consistently than patients with icCSNB, frequently have a nystagmus, severe myopia and may 

show strabismus [17, 62, 63]. In dark-adapted conditions, there is no detectable b-wave to 

dim flash on the ERG (DA 0.01 ERG): thus, the term complete. The a-wave is normal presuming 

a normal rod photoreceptor function but the b-wave is severely absent leading to an 

electronegative waveform in keeping with post-photoreceptoral dysfunction (DA 3.0 and 10.0 

ERG). At light adapted conditions (LA 30 Hz ERG), the ERG response is usually of normal 

amplitude, but has a pathognomonic flattened trough and an implicit time shift.  The single-

flash cone ERG (LA 3.0) displays normal amplitude of the a-wave with a broadened trough; the 

waveform has a sharply rising b-wave with no oscillatory potentials and a reduced b/a ratio. 

Unlike icCSNB, only ON-responses are affected in the complete form as shown by long 

duration stimuli [64, 70] (Fig. 16).  

 

Genes involved in cCSNB 

cCSNB is a genetically heterogenous inherited retinal disorder. The five genes affected in 

cCSNB code for proteins involved in the signaling cascade between photoreceptors and ON-

BCs triggered by glutamate release (Fig.7 & Fig.16). These genes were identified through 

classical linkage [71, 72], candidate gene approach using existing animal models [73-77] or 

whole exome sequencing (WES) [78, 79]. The most prevalent gene affected in cCSNB is NYX 

coding for nyctalopin [17, 71, 72]. Mutations in NYX are the only ones leading to X-linked 

cCSNB [71, 72], all other genes lie on autosomes and mutations in these are inherited as a 

recessive trait [17, 73-80]. The second most prevalent gene mutated in cCSNB is TRPM1 which 

codes for the Transient Receptor Potential channel subfamily M member 1 (TRPM1) [73-75]. 

Thirdly, GRM6 codes for the metabotropic glutamate receptor 6 (mGluR6) [76, 77]. Fourthly, 

GPR179 codes for an orphan seven transmembrane G-protein coupled receptor [78]. LRIT3, 

finally, is the less prevalent gene with to date six mutations described leading to cCSNB [17, 

79, 81] (Fig.17).  



 

31 
 

 

Figure 17: Prevalence of the gene defects underlying cCSNB, modified from [17] 

 
Animal models for cCSNB 

Several animal models, either spontaneous or genetically modified, have been described as 

displaying the CSNB phenotype, showing an electronegative ERG-phenotype. These models 

served my host laboratory as candidate genes to identify the gene defect for the human 

pathology [67, 68, 73, 77], help to better understand the pathophysiology and develop 

therapies [17]. Especially, in cCSNB ERG findings under scotopic conditions pinpoint to 

similarities between the animal model and the human phenotype. Under photopic conditions, 

a higher variability can be noted (Fig. 18).  Other differences may be due to physiological 

species differences or different ERG protocols used. Four species have been used as models: 

horses, dogs, zebrafishes and mice, and their ERG-phenotypes are described below.   

Horses with cCSNB 

Previously, Appaloosa horses showing a specific skin pattern (leopard-spotting complex LSC) 

and a Tennessee walking horse were diagnosed by electroretinography with CSNB [82-84]. 

Linkage and expression analyses for the Appaloosa horses or whole genome sequencing for 

the Tennessee walking horse, revealed a homozygous endogenous retroviral long-terminal 

repeat insertion in TRPM1 [85, 86] and a missense mutation in GRM6 [84]respectively, as 

disease causing. As in patients, strabismus was identified in a few TRPM1-/- horses [87], while 

the retinal structure was well preserved [82]. The Tennessee walking horse had navigation 

difficulties in dim-light condition. Under scotopic conditions to both dim- and bright flash, 

these CSNB horses displayed an electronegative ERG. Under photopic conditions for the 

Appaloosa horse, the a-wave has a greater amplitude than unaffected horses and there is a 

reduced b/a ratio [87](Fig. 18).  

NYX

TRPM1

GRM6

GPR179

LRIT3



 

32 
 

Beagle dogs with cCSNB 

Recently, a cCSNB phenotype was also observed in beagle dogs [88, 89]. One of the studies 

revealed a 1-bp-deletion in LRIT3 found by whole genome sequencing, confirming the cCSNB 

phenotype of these animals [90]. As CSNB patients, the retinal structure is preserved in the 

affected dogs. On the ERG, under scotopic condition to dim flashes, the b-wave was absent in 

affected dogs with a preserved a-wave. With a brighter flash, e.g. when responses are driven 

by both rods and cones, a very small inflection is noticed in affected dogs while the b-wave is 

recordable in wild-type animals [88]. Under photopic conditions at low light intensities, the a- 

and b-waves were quite similar between unaffected and affected dogs while the b-wave is 

severely reduced at brighter intensities along with an absence of oscillatory potentials in the 

cCSNB dogs [88] (Fig. 18). The time-course of the disease seems to be also stationary because 

the ERG did not change in a four-year course [88].  

Zebrafish models of cCSNB 

Three zebrafish models of CSNB were described using morpholinos for Nyx, Grm6 or Gpr179. 

All models presented a reduction of the b-wave upon ERG measurements [80, 91, 92] (Fig. 18). 

Mouse models of cCSNB 

Several mouse models for all genes involved in cCSNB have been described. The global retinal 

morphology of these mouse models is well preserved. Under scotopic conditions, no b-wave 

is detectable in mutant mice and the a-wave is preserved. Under photopic conditions, most 

mouse models reveal a lack of the b-wave while it is always present in cCSNB patients. 

Together, these clinical characteristics of the mouse models for cCSNB highlight the 

similarities in respect to the retinal structure and ERG-findings under scotopic conditions, but 

depict also the limitations of these models to mimic the human phenotype under photopic 

conditions [17, 93] (Fig. 18, Table 2). 

Almost all mouse models do not produce the corresponding protein and most of the time 

other proteins of the cascade or lead to a mislocalization of these partners [17] (Table 2). The 

acute characterization of these models is primary; in order to further investigate the signaling 

cascade of ON-BCs and the pathogenic mechanisms underlying cCSNB.
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Figure 18: Schematic representation of ERG recordings of five different species known displaying a cCSNB phenotype.   Figures were adapted from Audo et al., 2009 (for human CSNB, patient with 
mutations in TRPM1) from Sandmeyer et al., 2007 (for the TRPM1-/- Appaloosa horse ERG), from Kondo et al., 2015 (for the LRIT3-/- Beagle dog ERG), from Pardue et al., 1998 (for the Nyx-/- mouse 
ERG) and from Peachey et al., 2012 (for the MO-gpr179 zebrafish ERG). 
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Table 2: Mouse models of cCSNB. *: proteins which are only missing in CBCs 

Gene Name Mutation Designed/Spontaneous ERG Phenotype Missing or mislocalized 
proteins First publication 

Nyx nob Deletion in exon 4 Spontaneous 
Both scotopic and 

photopic ERG: no b-
wave 

Nyctalopin, TRPM1[23, 
94] 

Pardue 1998[93] 
Gregg 2003 [95] 

Trpm1 

Trpm1tm1Lex/tm1Lex Deletion of exons 
4 to 6 Designed 

Both scotopic and 
photopic ERG: no b-

wave 

TRPM1[21-23, 94, 96, 
97] 

Koike 2009[96], 
Morgans 2009[21], 

Shen 2009[98] 

Trpm1tvrm27 

ENU induced 
missense 

mutation in exon 
23 

Designed 
Both scotopic and 

photopic ERG: no b-
wave 

 Peachey 
2012a[99] 

Grm6 

Grm6tm1Nak 
Insertion of 

neomycin cassette 
in exon 8 

Designed 
Both scotopic and 

photopic ERG: no b-
wave 

mGluR6[23, 94, 100-
102], reduced 

TRPM1[101], RGS7[94], 
RGS11[94, 101], reduced 

Gβ5[101], R9AP[94], 
GPR179 (this study) 

Masu 1995[100] 

nob3 Mutation in exon 
2 Spontaneous 

Both scotopic and 
photopic ERG: no b-

wave 

mGluR6[103], 
GPR179[104], 

TRPM1[104, 105] 
Maddox 2008[103] 

nob4 

ENU induced 
missense 

mutation in exon 
3 

Designed 
Both scotopic and 

photopic ERG: no b-
wave 

mGluR6[106, 107], 
TRPM1[105], reduced 

RGS7[108], RGS11[106, 
108], Gβ5[108], 

R9AP[108] 

Pinto 2007[107] 

nob7 
Missense 

mutation in exon 
8 

Spontaneous 
Both scotopic and 

photopic ERG: no b-
wave 

mGluR6 Qian 2015[109] 
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Gene Name Mutation Designed/Spontaneous ERG Phenotype Missing or mislocalized 
proteins First publication 

Grm6 nob8 Missense 
mutation Spontaneous Reduced b-wave Reduced mGluR6 Peachey 2017 

[110] 

Gpr179 nob5 Transposon 
insertion in exon 1 Spontaneous 

Scotopic ERG: no b-
wave and photopic 

ERG: severely reduced 
nay missing 

GPR179[22, 80, 94, 111-
113], RGS7[94, 111], 

RGS11[94, 112], 
Gβ5[112], R9AP[94, 112] 

Peachey 
2012b[80] 

Lrit3 

nob6 (Lrit3-/-) 
Insertion cassette 
between exon 3 

and 4 
Designed 

Scotopic ERG: no b-
wave and photopic 

ERG: severely reduced 
nay missing 

LRIT3, TRPM1, mGluR6*, 
GPR179*, RGS7*, 

RGS11*, Gβ5* 
Neuillé 2014[114] 

Lrit3tvrm257 

ENU induced 
missense 

mutation in exon 
2 

Designed 
Both scotopic and 

photopic ERG: no b-
wave 

 Charette 
2016[115] 

Lrit3emrgg1 
ZFN targeting of 
exon 2 leading to 

40bp deletion 
Designed 

Both scotopic and 
photopic ERG: no b-

wave 

LRIT3, Nyctalopin, 
GPR179*, mGluR6*, 

RGS7*, RGS11*, Gβ5*, 
R9AP*, TRPM1 

Hasan 2020[116] 
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Pathogenic mechanism underlying cCSNB 

In vitro and in vivo studies of gene defect causing cCSNB showed that most likely all of them 

lead to a loss of function of the protein. These similarities are in accordance with the 

comparable complete lack of b-wave phenotypes under scotopic conditions in patients with 

cCSNB [17]. 

In vitro and in vivo studies revealed that NYX (nyctalopin) is crucial for the correct localization 

of TRPM1, along with LRIT3 [23, 24]. Therefore, it is most likely that the cCSNB phenotype in 

cases of NYX mutations is due to the mislocalization of TRPM1 [23]. TRPM1 intronic mutations 

seem to lead to the absence of the protein or an abnormal protein production while missense 

mutations cause a mislocalization explaining a loss of function of TRPM1 [117]. Nonsense and 

frameshift mutations of GRM6 are probably leading to nonsense mediated mRNA decay 

(NMD) or a non-functional truncated receptor. In vitro studies revealed that missense 

mutations in different domains of the protein lead to a trafficking defect [118]. As mentioned 

before, mGluR6 plays a major role at the initiation of the ON-BCs cascade and is central for 

the regulation and correct localization of other partners of the cascade such as regulatory 

proteins [94]. GPR179 nonsense and frameshift mutations most likely lead to a loss of function 

of the protein or the elimination of the mutated mRNA through NMD. GPR179 is important 

for the correct localization of regulatory proteins but not directly for the proper localization 

of TRPM1 [104]. Mutations in LRIT3 seem to abolish the production of the LRIT3 protein which 

interacts with nyctalopin with the latter probably holding TRPM1 in place at the dendritic tips 

of ON-BCs [24].  

 
B. FURTHER INSIGHT IN TWO cCSNB PROTEINS: MGLUR6 AND LRIT3 

 
In this thesis project we decided to concentrate on two genes/proteins leading to cCSNB when 

mutated: mGluR6 and LRIT3/LRIT3. Several reasons guided this choice: albeit mutations in NYX 

represent a major cause of cCSNB and the size of the gene accommodates with the packaging 

capacity of adeno-associated virus (AAV) vector (4.7 kb [119]), the respective mouse model, 

nob, is not freely accessible. In addition, an antibody directed against the respective mouse 

nyctalopin protein is not available. The second most prevalent gene defect underlying cCSNB 

are mutations in TRPM1. However, as mentioned above, the maximum size of a gene to be 
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encapsidated in an AAV vector is 4.7 kb and TRPM1 is 5.4 kb in size, which makes gene 

replacement therapy impossible with AAV vectors. Therefore, we chose to focus on GRM6 (2.6 

kb RefSeq NM_000843.4), which is the third most prevalent mutated gene in cCSNB, small 

enough to fit in an AAV vector, with the mouse model available in our laboratory. In addition, 

LRIT3 has been chosen because of its small size (approximately 2 kb RefSeq NM_198506.3), 

because of previous interest of our lab to elucidate the function of this particular protein and 

the availability of a mouse model in our laboratory. 

1. GRM6/MGLUR6 

GRM6 is a gene located on chromosome 5 (5q35). It is composed of 10 exons and codes for a 

protein of 877 amino acids [120]. Its structure is divided in an extracellular region with ligand-

binding domains and cysteine-rich domains, seven transmembrane regions and a cytoplasmic 

region (Fig.19). 

 

GRM6 mutations lead to cCSNB 

Different mutations have been identified including frameshift, nonsense and missense 

mutations. All frameshift and nonsense mutations are predicted to lead to the absence of a 

functional protein [76, 77]. Interestingly, all investigated missense mutations in GRM6 lead to 

a trafficking defect of the mGluR6 proteins to the membrane [118]. Together, these mutations 

may lead to an absence of the protein or a misfolding of mGluR6 and subsequently to the 

incorrect uptake of glutamate, leading to the absent b-wave in the ERG. 
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Figure 19: Schematic drawing of the mGluR6 protein (UniProtKB/Swiss-Prot protein O15303) along with the localization 
of the different mutations causing cCSNB, modified from [17] 

 

mGuR6 is the key component of the ON-bipolar cell pathway 

mGluR6 is a metabotropic G-coupled receptor composed of 7 transmembrane domains [18, 

19, 100]. The mGluR6 protein is the sensor of the glutamate released by photoreceptors in 

the synaptic cleft and triggers the signaling cascade at the dendritic tips of ON-BCs [18]. It is 

essential for the proper localization of other proteins of the cascade such as TRPM1 and 

regulatory proteins (RGS7, RGS11, Gβ5 and R9AP). It has been demonstrated that deletion of 

mGluR6 inactivates the cation channel TRPM1 [101].  

 

The synaptic organization between photoreceptors and bipolar cells involves mGluR6 

It has been shown that ON-BCs are normally distributed in the mouse retina in absence of 

mGluR6 [102]. However, it seems that mGluR6 plays a role at the photoreceptor to bipolar cell 

synapse. Indeed, invaginating dendrites of RBCs are larger and often contain ectopic ribbons 

while the number of invaginating dendrites of cone ON-BCs and ribbons decrease at the cone 

pedicles in the Grm6tm1Nak mouse model [121, 122]. Finally, Tummala and colleagues showed 

that mGluR6 had also a role pre-synaptically as several presynaptic matrix-associated proteins 
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such as pikachurin, dystrophin and dystroglycan are reduced at the rod-to-RBC synapse in the 

same mouse model [123]. 

 
2. LRIT3 

LRIT3 is a gene located on chromosome 4 (4q25). It is composed of four exons and codes for 

a protein of 679 amino acids. LRIT3 codes for the Leucine rich-repeat, immunoglobulin-like, 

transmembrane domain 3 (Fig. 20). Previously it was reported that LRIT3 can influence the 

maturation and signaling of FGFR1 [124]. However, its role in the retina is not entirely 

understood. 

 

cCSNB can be caused by mutations in LRIT3 

More recently it was shown by our group that LRIT3 mutations lead to cCSNB [79]. To date, 

seven mutations in LRIT3 leading to cCSNB have been described: four mutations in the fourth 

exon (c.983G>A p.Cys328Tyr, c.1151C>G p.Ser384*, c.1318C>T p.Arg440*, c.1538_1539del 

p.Ser513Cysfs*59 [79], one in the second exon ((c.345T>A p.Asn115Lys) [17], one on the start 

codon (c.1A>G p.0?) [81] and a seventh mutation was found in the third exon (c.608G>T p. 

Trp203Leu) [81]. To date, the seven reported LRIT3 pathogenic mutations are localized in 

different domains of the protein: in the leucine-rich domains, a disulfide bond or the serine-

rich domain for example (Fig.20). Together, these mutations may lead to absence of the 

protein, misfolding or disrupted interaction with a putative scaffolding protein and therefore 

to the lack of TRPM1 channel at the membrane leading to the absent b-wave in the ERG. 

  



 

40 
 

 
Figure 20: Mutations in LRIT3 causing cCSNB. (A) Exonic localization of the LRIT3 mutations. (B) Proteic localization of the 
LRIT3 mutations. LRRNT: Leucine-Rich Repeat N-terminal; LRRCT: LRR C-terminal; Ig-like: Immunoglobulin-like domain; Ser-
rich: Serine-rich domain; FNIII: Fibronectin type 3 domain; TM: trans-membrane domain. 

 

LRIT3 is involved in the localization of TRPM1 

Immunolocalization studies in the human retina identified LRIT3 in the OPL [79]. As mentioned 

before, the phenotype of patients with mutations in LRIT3 resemble the one of patients with 

mutations in other genes coding for proteins of the ON-BC signaling cascade [79]. These 

observations suggested that LRIT3 might as well be present at the dendritic tips of RBCs and 

CBCs [79]. In the Lrit3-/- mouse, an abolishment of TRPM1 cation channel was observed at the 

dendritic tips of both, rod and cone ON-BCs. In contrast immunolocalization of TRPM1 in the 

cell bodies of ON-BCs was not affected [125]. When quantified, the total amount of TRPM1 in 

the Lrit3-/- retina was the same as in Lrit3+/+ mice [125], as observed in the LRIT3-CSNB canine 

model [90], consistent with a trafficking defect of TRPM1. Therefore, these results suggest a 

role of LRIT3 in the trafficking of TRPM1 and its maintenance at the membrane of the dendritic 

tips of ON-BCs. Similarly, nyctalopin was shown to be essential for the proper localization of 

TRPM1 [23]. However, it was suggested that nyctalopin alone might not be sufficient to bring 

TRPM1 to the membrane as nyctalopin is mainly an extracellular protein [23]. Since LRIT3 

harbors a PDZ-binding motif, it was suggested that it corresponds to the molecule which 

interacts with intracellular scaffolding complexes to bring the TRPM1 channel to the dendritic 

tips of ON-BCs. Subsequently, together, nyctalopin and LRIT3 may hold the channel in this 

form. Recently, it was shown that LRIT3 is also required for nyctalopin localization at the 

dendritic tips of ON-BCs [116]. Thus the authors concluded that the loss of TRPM1 at the 

dendrites of ON-BCs is due to the absence of nyctalopin induced by the abolishment of LRIT3, 
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leading to the no b-wave phenotype, as studied in the Lrit3emrgg1  mouse [116]. In addition, the 

localization of LRIT3 in ON-BCs was lately questioned since its expression in rods led to a 

restoration of the cCSNB phenotype [126] and a single-cell transcriptomic analysis showed a 

strong expression of LRIT3 in photoreceptors and a mild expression in BCs [127]. 

 

LRIT3 plays a role at the cone synapse 

Another major role for LRIT3 has been identified through the Lrit3-/- mouse and confirmed by 

the LRIT3-CSNB canine model. As shown before, LRIT3 has a role in the correct localization of 

TRPM1 to the dendritic tips of ON-BCs, contacting both rod and cone photoreceptors. 

Furthermore, postsynaptic clustering of other mGluR6 cascade components such as mGluR6, 

GPR179 and regulatory proteins are selectively eliminated at the dendritic tips of cone ON-

BCs suggesting a role for LRIT3 in the cone synapse formation [24]. This hypothesis was 

confirmed by electron microscopy showing a decreased number of invaginating contacts 

made by cone ON-BCs in the cone pedicle and a striking decrease in the number of triads [47]. 

Normal cone pedicles were also observed indicating that LRIT3 is not essential for the natural 

formation of the cone-to-cone BC synapse but plays a major role in this process [47]. 

Furthermore, peanut agglutinin (PNA) staining is abolished in the OPL of Lrit3-/- mice [24]. 

Similar findings were described in the LRIT3-dog model [90]. Interestingly, altered PNA 

staining was impaired in the affected dog retina meaning that the architecture of cones and 

cone-BCs is deformed and that the conformation of the synapse is distorted in these animals 

[90]. 

 

C. PARANEOPLASTIC BIPOLAR CELL DYSFUNCTION (OFTEN REFERRED AS MELANOMA-

ASSOCIATED RETINOPATHY OR MAR) 

 

Similar as found in patients with CSNB, patients with paraneoplastic ON-BCs dysfunction 

reveal an absence of the b-wave upon ERG under scotopic conditions leading to an 

electronegative waveform. 
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Phenotype of melanoma-associated retinopathy patients 

Two major types of paraneoplastic retinopathies with an initial normal fundus have been 

reported: (1) cancer-associated retinopathy (CAR), which leads to a rapid and severe visual 

dysfunction with primary photoreceptor alterations and is most commonly associated with 

small-cell carcinomas of the lung and less frequently associated with breast, endometrial and 

other cancers [128, 129]; (2) melanoma-associated retinopathy (MAR), traditionally 

associated with metastatic melanoma [130] but now well recognized in association with other 

cancers such as carcinomas [131-134]. As in CSNB patients, patients affected with MAR also 

suffer from night blindness, and a decreased visual acuity. Constriction of the visual fields and 

photopsias are also key symptoms in MAR patients. Similarly to patients presenting a CSNB 

phenotype with normal fundi, most patients with MAR have a normal fundus (Fig.21 A and B). 

The ff-ERG is critical for the proper diagnosis of MAR and typically shows ON-bipolar cell 

dysfunction resembling the ERG abnormalities seen in cCSNB [17, 49, 61, 130]. Under dark 

adapted conditions, there is no detectable response to a dim flash (DA 0.01 ERG). The 

responses to a bright flash (DA 3.0 and 10.0 ERG) have an electronegative waveform with a 

normal negative a-wave, reflecting the normal hyperpolarization of photoreceptors. In 

contrast, the b-wave is severely reduced in keeping with ON-bipolar cell dysfunction (Fig. 21C). 

Light adapted responses (LA 3.0 ERG) are also abnormal, as notable by the squared shape of 

the a-wave, and the sharply arising b-wave resulting in a reduced b/a ratio, due to cone-ON-

BCs alterations (Fig. 21C). 
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Figure 21: Usual retinal phenotype of patients affected by paraneoplastic retinopathy associated with ON-bipolar cell 
dysfunction. (A) Normal fundus of a CAR patient, R: right, L: left. (B) Normal SD-OCT of a CAR patient, R: right, L: left. (C) 
ERG findings of an unaffected individual (left) and a CAR patient (right), the b-wave is absent under scotopic condition. All 
figures were modified from [133]. 

 

Anti-TRPM1 autoantibodies 

The retinal phenotype of MAR patients is explained by the presence of auto-antibodies 

targeting retinal proteins. Interestingly, anti-TRPM1 autoantibodies have been reported in the 

serum of different MAR patients [133-146] and the mutated form of TRPM1 leads to cCSNB 

[73-75]. To summarize, in both cases an inactivation of TRPM1 explains the absence of b-wave 

on the ERG in scotopic conditions and under photopic conditions either through inactivation 

by autoantibodies (MAR) or due to TRPM1 mutations leading to the loss of function of the 

protein. TRPM1 is not only localized in retinal ON-BCs but also in melanocytes where it plays 

a role in pigmentation and melanocyte proliferation [147, 148], connecting melanoma and 

retina in MAR patients. Interestingly, no skin phenotype has yet been documented in TRPM1-

related cCSNB [73-75].  
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III. GENE THERAPY FOR INHERITED RETINAL DISORDERS (IRDS) 

A. PRINCIPLE OF GENE THERAPY 

 
Many ocular disorders are due to mutations in specific genes. New gene identification 

techniques such as next generation sequencing (NGS), whole exome sequencing (WES) or 

whole genomes sequencing (WGS) solved the genetic defect of many different disorders 

[149]. This helps to better diagnose patients but also to identify new targets to be treated by 

gene therapy. Indeed, several clinical trials involving gene therapy are ongoing (Fig. 22, Table 

3).  

 

Figure 22: Gene therapy milestones, adapted from [150]. DNA: Deoxyribonucleic acid; ADA: Adenosine deaminase 
deficiency; LCA: Leber Congenital Amaurosis; siRNA: small interfering ribonucleic acid; nAMD: neovascular Age-related 
Macular Degeneration; ZFN: Zinc Finger Nuclease; HIV: Human Immunodeficiency Virus; CHM: Choroideremia; LHON: Leber 
Hereditary Optic Neuropathy; SMD: Stargardt Macular Degeneration; RP: Retinitis Pigmentosa; EMA: European Medicines 
Agency; FDA: Food and Drug Administration; SCID: Severe Combined Immunodeficiency 

 
Gene therapy consists in replacing, augmenting or repairing the gene defects by providing the 

correct DNA sequence of the gene or genetic tools to correct the causative mutation to the 

cell to allow it to produce the right protein and therefore restore its function. The eye has 

many advantages as gene therapy target organ. First, the well-known anatomy of the eye is a 

true asset and its limited size allows the use of relatively low doses of vector. Secondly, retinal 

cells do not proliferate after birth which should allow a sustained expression of the transgene 

[5]. Furthermore, an injection of vector into the eye will not induce a systemic release and 

possibly a generalized immune response as the blood-retinal barrier prevents the circulation 

of molecules between the retina and the blood flow. This feature makes the eye an immune-

privileged tissue [151]. 
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Gene addition/ Gene replacement 

One way to apply gene therapy is to deliver the wild-type copy of the defective gene directly 

into the cell that expresses it (Fig.23). This type of gene therapy can only be applied to gene 

defect leading to a loss of function. In diseases with gain of function mutations, as it is the case 

in certain autosomal dominant gene defect, delivery of the wild-type copy of the gene will not 

be sufficient to induce a correction of the phenotype [152]. This approach was used in the 

clinical trial for RPE65-related Leber Congenital Amaurosis (LCA) and is suitable for most forms 

of CSNB [17, 153-155]. 

 

 

Figure 23: Schema of the gene augmentation strategy using an AAV vector. (1) The viral capsid binds its cellular receptor. 
(2) Endocytosis of the virus by the cell. (3) The virus is confined in endosome. (4) The virus enters the Golgi. (5) The capsid 
enters in the nucleus. (6) Capsid proteins are dissembled released the viral genetic information. (7) The viral DNA passes 
from single-stranded (ssDNA) to double-stranded (dsDNA). (8) The viral DNA is transcripted. (9) The final protein is 
translated in the cellular cytoplasm. 
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Gene editing 

In autosomal dominant cases of inherited disorders with a dominant negative effect, editing 

the existing copy of the mutated gene is a feasible approach to correct the phenotype. Using 

several techniques such as Zinc-Finger Nucleases (ZFN), TALENs or, more recently, CRISPR-

Cas9, specific editing can be induced in the gene to correct the mutation [156]. For the CRISPR-

Cas9 system, a localized double-stranded break is caused by the Cas9 protein. The cell can 

then either use a template DNA delivered in the cell to repair the double-stranded break by 

homology directed repair (HDR) or repair the break by non-homologous end joining (NHEJ). If 

the template DNA is the wild-type copy of the mutated region, the mutation will then be 

corrected (Fig. 24). Nevertheless, serious drawbacks as OFF-target effect, which can cause 

undesired cuts elsewhere in the genome, have to be considered. To date, only one clinical trial 

involving CRISPR-Cas9 for an inherited retinal disorder is ongoing (NCT03872479) but 16 

registered clinical trials using CRISPR-Cas9 are currently running for other diseases such as 

cancer or beta thalassemia (clinicaltrials.gov).  

 

Figure 24: CRISPR-Cas9 system mechanism. A single guide RNA (sgRNA) recognizes a genomic sequence followed by 5’-
NGG-3’ proto-spacer adjacent motif (PAM) site, which recruits the Cas9 DNA endonuclease. This introduces a double-
stranded break that is repaired by either non-homologous end joining (NHEJ), which might result in the creation of InDels 
that can disrupt the gene, or by homology directed repair (HDR) in the presence of a donor DNA, used as a template to 
repair the break. 
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Anti-sense oligonucleotide (AON)-based therapy 

In cases of mutations altering the normal splicing of the pre-mRNA, a strategy aiming to rescue 

the aberrant pre-mRNA in place of addition of a normal copy of the mutated gene cDNA can 

be applied. AON are small and adaptable molecule that are complementary to a target mRNA 

and can modulate this mRNA splicing or stability. Indeed, AON have the capacity to inflect on 

splicing by targeting regions promoting or blocking the splicing or by masking splice sites [157]. 

The use of AON managed to induce exon skipping in cases of Duchenne Muscular Dystrophy, 

in order to restore the reading of the dystrophin mRNA [158], but can also lead to insertions 

of over-spliced exons. The use of AON has also been demonstrated in LCA due to mutations in 

CEP290, in which a recurrent intronic mutation induces the insertion of a pseudo-exon causing 

a premature stop-codon in 50 to 75% of transcripts. AON targeting the mutation led to the 

restoration of the normal splicing of CEP290 transcripts in fibroblasts of LCA patients [159, 

160]. This approach was recently tested in patients that presented no adverse effect an 

improved visual acuity three months after treatment [161]. 

Viral vectors 

To deliver the gene or the editing tools to the targeted cells, different vectors can be used: 

lentiviruses, adenoviruses, adeno-associated viruses (AAV) or non-viral vectors as liposomes 

for instance.  The majority of clinical trials for inherited retinal disorders involve AAVs (68%) 

[150] (Fig.25). AAVs are the preferred vectors in gene therapy for such diseases for several 

reasons. They are small, non-pathogenic, single-stranded DNA viruses which can transduce 

non-dividing cells without integrating in the genome and exist in different serotypes [162]. In 

particular, the AAV2 serotype is the most frequently used (73%) [150] because it can transduce 

multiple retinal cell types according to the site of injection [163]. In addition, AAV capsids can 

be modified and selected through directed evolution to enhance the transduction of specific 

cells by this vector. For instance, the AAV2-7m8 serotype displays an efficient delivery of the 

transgene through intravitreal injection in the rd12 mouse model of LCA, the first ocular 

inherited disorder to have an approved and commercially available genetic therapy [164]. 

Furthermore, the transgene endures a long-term expression through AAV delivery, which is a 

strong benefit.  
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Figure 25: Proportion of types of viral vectors and the ratio of the various AAV serotypes used in ocular gene therapy, 
modified from [150] 

 

Mode of administration 

Two routes of administration can be used to inject the viral vector targeting the retina in the 

eye. Usually, the route of administration determines which cells will be in contact with the 

vectors and that will most likely be the only ones targeted. Consequently, targeting 

photoreceptors or RPE cells generally requires an injection in the subretinal space [163, 165]. 

To do so, a bleb must be created beneath the retina, just between the retina and the RPE. This 

transitory retinal detachment will allow the delivery of the vector directly in contact with the 

retina. On the other hand, for an efficient transduction of RGCs or BCs, intravitreal (IVT) 

injections are more suitable as the vectors will be delivered in closer apposition to these cells. 

As its name suggests, the intravitreal injection consists on the delivery of the vectors directly 

in the vitreous, where it will diffuse across the INL to finally reach the retina [166] (Fig.26). 

However, performing subretinal injections in cases of retinal degeneration is not ideal due to 

the fragility of the retina, so the challenge in this case is to target photoreceptors from 

intravitreal injections [163].  
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Figure 26: Schematic representation of the two modes of administration for ocular gene therapy. To perform intravitreal 
delivery a needle containing the vectors has to pass through the ora serrata then, the vectors are directly injected in the 
vitreous. It is more suitable for a transduction of RGCs or BCs. Subretinal delivery is performed through a bleb between 
the retina and the RPE. The vectors are then by delivered in direct contact with the retina. 

 
B. MAJOR GENE THERAPY AUGMENTATION TRIALS FOR IRDS 

2017 marked the most important step in the field of gene therapy as it is the first time that a 

gene therapy treatment for a blinding disorder was approved by the USA Food and Drug 

Administration (FDA). However, it took about twenty years from the first attempts to this 

achievement.  

This major break-through is the treatment of LCA due to RPE65 mutations via gene therapy 

[153-155]. LCA is a form of inherited childhood blindness caused by, among others, mutations 

in the RPE65 gene [167]. It is usually referred as the most severe and earliest form of IRDs 

which starts with severe visual impairment or complete blindness at birth followed by a slow 

degeneration of the photoreceptors and severely reduced or non-detectable ERG responses 

[168]. Restoration of the visual pigment and function in a mouse model of LCA was obtained 

by oral administration of retinoid [169], however, the first attempt of gene therapy for LCA 

was a proof-of-concept in a naturally occurring dog model of LCA, the RPE65-/- dog, using an 

AAV vector injected subretinally [170]. The researchers assessed a functional rescue by 

performing ERGs before and after treatment. Furthermore, the pupillary constriction was 
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improved in RPE65-/- following treatment. A long-term follow-up showed sustained 

restoration of the visual function in the treated dogs [171, 172]. This successful approach in a 

large model led to the elaboration of three clinical trials in infants affected with LCA [153-155]. 

A recombinant AAV2 has been injected subretinally, containing the RPE65 coding sequence to 

young adults LCA patients. Treated patients showed strong visual improvements following the 

treatment, as improvement of visual acuity, pupillometry or better navigation between 

obstacles, above all in dim light conditions. The delivery of the transgene in the contralateral 

eye of patients has also been tested, conducting to improvements in mobility but not visual 

acuity up to three years [173]. The success of this gene therapy approach has several 

explanations: RPE65 is a relatively small gene (2.8 kb [174]) and RPE cells are easily transduced 

by AAVs through subretinal injections [175].  

However, in 2 clinical trials for LCA out of 3, the visual improvements were not stable, showing 

that the treatment did not completely abolish the degeneration course [176, 177]. Two major 

hypotheses are currently studied to improve this approach: the vector dose and the time-

window of treatment. A higher dose might be required to ensure sustainable improvements; 

higher doses were actually tested and resulted in better visual sensitivity compared to patients 

with lower doses up to three years, however with a decline after one year of treatment [177]. 

Furthermore, the investigation of the photoreceptor loss in treated patients and in treated 

dogs was made. Treatment in patients started after the beginning of the degeneration process 

and did not change the natural degeneration course found in LCA [178]. However, when dogs 

were treated before the degeneration process was initiated, a significant rescue of the 

degeneration was noticed, raising the question of the treatment-window, even in slowly 

degenerative disorders [178].  

In addition, gene therapy for other retinal disorders led to, to date, safe and efficient 

treatments such as for choroideremia. Indeed, it showed a high degree of safety following 

subretinal injections targeting the fovea and improvements of the visual acuity in patients 

[179, 180]. More than forty registered clinical trials are ongoing to either prove the safety or 

the efficacy of the treatment of various retinal disorders such as Stargardt disease or Aged-

related Macular Degeneration (Table 3,[152]). 
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Table 3: Gene therapy clinical trials for retinal diseases using recombinant viruses, adapted from [141] 

Disorder 
Causative 

gene 

Proof of concept in animal 

models 
Viral vector used 

Mode of 

administration 

Most advanced clinical trial 

phase 

Achromatopsia 

CNGB3 
Komaromy et al., 2010 [181] 

CNBG3m/m & CSNB3-/- dog 
AAV2/AAV8 Subretinal I/II 

CNGA3 
Alexander et al., 2007 [182] 

Cpfl3 mouse 
AAV2   

Choroideremia REP1 
Seabra et al., 2009 

Conditional KO mouse of CHM 
AAV2 Subretinal II 

LCA2 RPE65 
Acland et al., 2001 [170] 

RPE65-/- dog 
AAV2/AAV4/AAV5 Subretinal III 

LHON ND4 Ellouze et al., 2008 / rat [183] AAV2 Intravitreal III 

Retinitis 

pigmentosa 

MERTK Smith et al., 2003 / RCS rat [184] AAV2 Subretinal I 

RLBP1 
Choi et al., 2015 [185] 

RLBP1-/- mouse 
AAV8 Subretinal I/II 

PDE6B 
Bennett et al., 1996 / rd mouse 

[186] 
AAV5 Subretinal I/II 

Stargardt disease ABCA4 
Allocca et al., 2008 [187] 

Abca4-/- mouse 
LV Subretinal I/II 
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Disorder 
Causative 

gene 

Proof of concept in animal 

models 
Viral vector used 

Mode of 

administration 

Most advanced clinical trial 

phase 

USH1B MYO7A 
Hashimoto et al., 2007 [188] 

Myo7a-/- mouse 
LV Subretinal I/II 

X-linked RP RPGR 
Hong et al., 2005 [189] 

Rpgr-/- mouse 
AAV Subretinal I/II 

X-linked 

retinoschisis 
RS1 

Zeng et al., 2004 / Rs1h-/- mouse 

[190] 
AAV Intravitreal I/II 
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C. CSNB GENE THERAPY 

CSNB is yet an incurable disorder. Gene therapy seems particularly suitable to treat CSNB since 

it represents a non-degenerative stationary disease. Since this implies that the structure of 

the retina is globally well preserved, patients could be in theory treated at any age. As for 

other retinal disorders, the eye is an easily AAV-transducable tissue. Furthermore, proof-of-

concept of gene therapy for CSNB could provide further insight on the treatment of other 

inherited retinal disorders involving synaptic defects. 

Treating icCSNB 

All proteins involved in the icCSNB were found to be localized pre-synaptically in the 

photoreceptors [17]. CACNA1F is one of the genes leading to icCSNB when mutated [65] and 

codes for the calcium channel Cav1.4. It has been previously showed that Cav1.4 plays a role 

in the synaptic development and maintenance since the loss of this calcium channel at the 

synapse provokes gross morphological abnormalities of the presynaptic terminal, like shorten 

ribbons [191-193]. Two strategies were studied to restore the synaptic structure in CACNA1F 

KO mice [194]. First, plasmids encoding the wild-type copy of CACNA1F were electroporated 

in P0 KO mice, which rescued rod synaptic terminal morphology and mature ribbons when 

studied at P21. Secondly, another plasmid with the wild-type copy of CACNA1F controlled by 

a Cre recombinase was electroporated in P0 mice, followed by tamoxifen induction of the Cre 

at P28. Again, it led to the restoration of rod synaptic terminal and ribbons structure. A few 

treated animals actually passed the vision guided water maze as it took them less time than 

KO animals to reach the platform. However, no conclusive ERG responses were measurable 

probably because of a high number of retinal detachments in the treated animals and the few 

likely induced electroporated cells [194]. This study suggests that rod synaptic terminals 

maintain a strong regenerative capacity as the treatment led to improvements even in mature 

rods (P28). 

Treating cCSNB 

Nyxnob mouse model 

The first report of an attempt to rescue the cCSNB phenotype was in the Nyxnob mouse model 

by the expression of a fusion protein YFP-Nyctalopin in a transgenic Nyxnob mouse which led 
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to an expression of the protein in ON-BCs and a functional rescue [195]. Recently, a gene 

therapy approach using an AAV2 able to transduce most retinal cells from an intravitreal 

delivery [196] combined with a promoter targeting BCs [197] aimed to specifically drive the 

expression of Nyx fused with YFP in ON-BCs in P2 and P30 Nyxnob mice was described. 

Following the assessment of the production of nyctalopin in the treated retinas, ERG 

measurements in both scotopic and photopic conditions in mice injected at either P2 or P30 

revealed partial rescue of the ERG b-wave under scotopic conditions along with an even 

slighter rescue under photopic conditions was noted, but only in P2 treated mice. Lack of ERG 

rescue was noted for the P30 injected mice. In ON-BCs expressing nyctalopin and YFP, the 

function of the TRPM1 channel was rescued as assessed by patch-clamp recordings. 

Interestingly, the expression of the transgene was higher in P30 treated animals than in P2. 

Fluorescence was also noted in the P30 injected retina while no functional rescue could be 

measured, suggesting that the hurdle to obtain an efficient rescue in P30 animals might be 

post-transcriptional [198]. 

Lrit3emrgg1 mouse model 

Previous studies concerning LRIT3 suggested that it localizes at the dendritic tips of ON-BCs 

[17, 24, 79, 116]. Interestingly, it was shown recently that after intravitreal injection of an AAV 

vector driving the expression of Lrit3 by a rhodopsin promoter, therefore specifically targeting 

rods, TRPM1 was relocalized to the dendritic tips of ON-BCs in Lrit3emrgg1 retinas. Recordable 

ERG b-waves in scotopic conditions were obtained in P5 treated retinas with a milder 

improvement in P35 injected animals. Furthermore, this restoration of the ON-pathway was 

also measurable at the level of RGCs in P5 treated mice. However, no improvement was 

detected in photopic conditions in P5 and P35 treated retinas [126]. This study raises the 

question if LRIT3 is also or only expressed in photoreceptors to act trans-synaptically on the 

ON-BCs. 

  
D. OTHER INNOVATIVE THERAPIES FOR IRDS 

 
In cases of progressive retinal disorders which are usually characterized by a photoreceptor 

loss, gene therapy using gene augmentation or gene editing might not be the appropriate 

approach. Other innovative approaches to treat progressive inherited disorders will be 
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discussed below. Furthermore, these approaches are independent of the causative gene 

defect. 

1. NEUROPROTECTION  

In order to slow down the degeneration of photoreceptors, the intake of neurotrophic factors 

to the retina via AAVs has been studied. Several virally delivered neurotrophic factors have 

been tested in animal models such as: the ciliary neurotrophic factor (CNTF) [199], glial cells 

derived neurotrophic factors [200, 201], the Rod-derived Cone Viability Factor (RdCVF) [202, 

203] or an X-linked inhibitor of apoptosis [204]. However, only CNTF-mediated 

neuroprotection has yet been tested in patients with mild benefits [205].  

2. OPTOGENETICS 

Optogenetics is a therapeutic approach for patients affected with progressive retinal disorders 

at later stages, when photoreceptor cells are gone. Here, gene augmentation therapies will 

not rescue the phenotype. The principle of optogenetics is to transform the remaining 

neurons of the inner retina (HCs, BCs or RGCs) photosensitive (Fig.27). Several light-sensitive 

microbial opsins have been identified such as the channelrhodopsin or halorhodopsin [206, 

207]. By the injection of AAVs coding for the microbial opsin and targeting BCs or RGCs in 

animal models of retinal degeneration, light sensibility of the inner retina was obtained [46, 

206-208]. However, these microbial opsins have a low light sensitivity therefore their efficient 

excitation demands high levels of blue-light stimuli, which can be damaging to the retina and 

the RPE [152]. To overcome this issue, a red-shifted version of channelrhodopsin, which has a 

lower risk of photochemical damage, has already been tested in mice and postmortem 

macaques and human retinae [209]. It led to a restoration of light responses in the mouse 

using orange light intensities stimuli that are not damageable for the human retina. Spike 

responses were also recorded in macaque and human RGCs [209].  

Furthermore, the targeting of foveal cones [210], BCs or HCs [46, 208, 211] instead of RGCs 

might be even better as targeting RGCs bypasses the normal propagation of the light signal 

through the inner retina.  
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Figure 27: Schematic representation of the optogenetic principle. In cases of retinal degeneration, the outer segments (OS) 
of the photoreceptors are the first to degenerate followed by the nuclei. The optogenetic purpose is to transduce ON-BCs 
or RGCs with vectors encoding for an opsin to make these cells photosensitive. 

 

3. CELL THERAPY  

Another way of bypassing the progressive retinal degeneration in patients with inherited 

retinal disorders is through cell therapy or cell transplantation. Recent achievements in the 

field of stem cells led to in vitro production of photoreceptors, RGCs or RPE cells [212]. 

Bioengineering of RPE cell sheets proved its efficacy in rescuing photoreceptor loss and visual 

acuity in the Royal College of Surgeon (RCS) rat model, following transplantation [213]. This 

type of stem cell-derived RPE cell sheets transplantation has been validated in primate retina 

[214] and is now currently involved in a clinical trial (NCT03963154). In vitro production of 

photoreceptors from induced Pluripotent Stem (iPS) cells and their transplantation in rat 

retina has been studied, leading to the survival and maturation of the transplanted 

photoreceptors [215]. Finally, a combination of optogenetics and cell therapy has recently 

been investigated by the transplantation in late stage retinal degeneration mouse models of 

optogenetically modified photoreceptors. This pioneer approach led to a restoration of the 

visual function in the transplanted animals [216]. Another source of stem cells for cell therapy 

relies on Müller cells which have a regenerative potency and have been proved to restore 

vision after their differentiation in photoreceptors directly in the retina [217]. The therapies 

based on these stem cells whether genetically modified or not, are a valuable alternative to in 

vivo gene delivery. 
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Aim of this study 
ON-BCs dysfunction either due to cCSNB or paraneoplastic retinopathy is a disabling condition 

affecting diurnal and nocturnal vision. In both cases, proteins of the signaling cascade at the 

synapse between photoreceptors and ON-BCs are implicated. Albeit in the recent years, gene 

identification, in vitro and in vivo functional analyses contributed a lot to further decipher this 

cascade, the function of known and many other molecules remains to be understood. Indeed, 

one of the most recent identified genes implicated in cCSNB was LRIT3 and TRPM1 

autoantibodies were found to be responsible for the ON-BCs dysfunction in paraneoplastic 

retinopathy for less than a decade. By studying these two conditions, several objectives were 

established for this thesis project: 

Examination of three patients affected with MAR 

- Study the phenotype of three new cases of MAR 

- Identify the antigen recognized by the autoantibodies present in the sera of these 

patients 

- Investigate the reactivity of these autoantibodies towards the three different isoforms 

of TRPM1 through immunolocalization and western blot studies 

Assessment of the feasibility of gene addition to restore the phenotype in Grm6-/- mice 

- Examine the impact of mGluR6 on the localization of its signaling partners 

- Test two strategies to recover mGluR6 localization by either targeting ON-BCs 

specifically or all retinal cells 

- Investigate the relocalization of the proteins of the signaling cascade following 

treatment 

- Study the functional restoration after injection 

Development of a treatment for cCSNB in the Lrit3-/- mouse model 

- Design different constructs in order to target both sides of the photoreceptor to ON-

BC synapse 

- Investigate the feasibility of treatment at an adult age in this model 

- Explore the restoration of the phenotype through immunolocalization studies, ERG 

recordings, MEA analysis and optomotor responses 

- Assess the durability of the restoration through time  
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Results 

I. IDENTIFICATION AND CHARACTERIZATION OF NOVEL TRPM1 AUTOANTIBODIES FROM 

SERUM OF PATIENTS WITH MELANOMA-ASSOCIATED RETINOPATHY 

Anti-TRPM1 autoantibodies have previously been described in sera of patients affected by 

melanoma-associated retinopathy (MAR). At least three different isoforms of TRPM1 are 

expressed in the retina. Here, we studied three new patients with MAR and reported their 

ERG phenotypes. The presence of anti-TRPM1 autoantibodies in the sera of these three new 

MAR cases was tested by immunolocalization studies on overexpressing cells, by western blot 

analysis and by immunolocalization studies on Trpm1+/+ and Trpm1-/- mouse retinal 

cryosections. In addition, their affinity towards the three isoforms of TRPM1 was investigated. 

The three MAR patients studied herein presented ON-BCs dysfunction as shown by the 

absence of the ERG b-wave in scotopic conditions, consistent with previous reports of MAR 

patients displaying anti-TRPM1 autoantibodies. In addition, this work led to the identification 

and characterization of novel TRPM1 autoantibodies in these three MAR patients. These anti-

TRPM1 autoantibodies were recognizing the three different TRPM1 isoforms with variable 

binding affinity. Most likely, the anti-TRPM1 autoantibodies of different patients vary in 

affinity and concentration. In addition, the binding of autoantibodies to TRPM1 may be 

conformation-dependent, with epitopes being inaccessible in some constructs (truncated 

polypeptides versus full-length TRPM1) or applications (western blotting versus 

immunohistochemistry). However, we were able to conclude that all MAR patients recognized 

the three isoforms of TRPM1. Therefore, the combination of multiple analyses should be done 

to ensure the diagnosis of anti-TRPM1 autoantibodies presence in the serum of MAR patients. 

These findings were published in PlosOne. 

Varin J, Reynolds MM, Bouzidi N, Tick S, Wohlschlegel J, Becquart O, Michiels C, Dereure O, 

Duvoisin RM, Morgans CW, Sahel JA, Samaran Q, Guillot B, Pulido JS, Audo I, Zeitz C. 

Identification and characterization of novel TRPM1 autoantibodies from serum of patients 

with melanoma-associated retinopathy. PLoS One. 2020 Apr 23;15(4):e0231750. 
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Abstract

Melanoma-associated retinopathy (MAR) is a rare paraneoplastic retinal disorder usually

occurring in the context of metastatic melanoma. Patients present with night blindness,

photopsias and a constriction of the visual field. MAR is an auto-immune disorder character-

ized by the production of autoantibodies targeting retinal proteins, especially autoantibodies

reacting to the cation channel TRPM1 produced in melanocytes and ON-bipolar cells.

TRPM1 has at least three different isoforms which vary in the N-terminal region of the pro-

tein. In this study, we report the case of three new MAR patients presenting different anti-

TRPM1 autoantibodies reacting to the three isoforms of TRPM1 with variable binding affin-

ity. Two sera recognized all isoforms of TRPM1, while one recognized only the two longest

isoforms upon immunolocalization studies on overexpressing cells. Similarly, the former two

sera reacted with all TRPM1 isoforms on western blot, but an immunoprecipitation enrich-

ment step was necessary to detect all isoforms with the latter serum. In contrast, all sera

labelled ON-bipolar cells on Tprm1+/+ but not on Trpm1-/-mouse retina as shown by co-

immunolocalization. This confirms that the MAR sera specifically detect TRPM1. Most likely,

the anti-TRPM1 autoantibodies of different patients vary in affinity and concentration. In

addition, the binding of autoantibodies to TRPM1may be conformation-dependent, with epi-

topes being inaccessible in some constructs (truncated polypeptides versus full-length

TRPM1) or applications (western blotting versus immunohistochemistry). Therefore, we
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propose that a combination of different methods should be used to test for the presence of

anti-TRPM1 autoantibodies in the sera of MAR patients.

Introduction

Paraneoplastic retinopathies are rare retinal disorders usually associated with the presence of

autoantibodies against retinal proteins following the development of a primary tumor or a

metastasis [1–5]. Two major types of paraneoplastic retinopathies with an initial normal fun-

dus have been reported: (1) cancer-associated retinopathy (CAR), which leads to a rapid and

severe visual dysfunction with primary photoreceptor alterations and is most commonly asso-

ciated with small-cell carcinomas of the lung and less frequently associated with breast, endo-

metrial and other cancers [6,7]; (2) melanoma-associated retinopathy (MAR), traditionally

associated with metastatic melanoma [2] but now well recognized in association with other

cancers such as carcinomas [8–11]. Patients presenting with MAR usually experience recent

night blindness, photopsias (various perception of flickering lights), decreased vision and alter-

ations of the visual field. The fundus examination in patients with MAR is usually normal but

may show some degrees of vitritis and vasculitis [12–14]. Cases of disc pallor, vascular attenua-

tion and pigment mottling with time [15] or small choroidal scars [16] have also been

reported. The full-field electroretinogram (ff-ERG) is critical for the proper diagnosis of MAR

and typically shows ON-bipolar cell dysfunction resembling the ERG abnormalities seen in a

sub-group of congenital stationary night blindness (CSNB), the complete form of Schubert-

Bornschein, cCSNB [2,17–19]. In this condition, while applying the International Society for

Clinical Electrophysiology of Vision (ISCEV) recommended protocol [20], in MAR patients

and in cCSNB patients, ff-ERG abnormalities are as follows: under dark adapted (DA, scoto-

pic) conditions, there is no detectable response to a dim (0.01 cd.s.m-2) flash. The responses to

a bright flash (3.0 and 10.0 cd.s.m-2) have an electronegative waveform with a normal negative

a-wave, reflecting the normal hyperpolarization of photoreceptors, and severely reduced b-

wave in keeping with ON-bipolar cell dysfunction. Light adapted (LA, photopic) responses are

also abnormal due to cone-ON-bipolar alterations: a square-shaped a-wave, a sharply arising

b-wave and a reduced b/a ration are recorded in response to a single 3.0 cd.s.m-2 flash while

the 30 Hz response is delayed. Aside mutations in other genes, mutations in TRPM1 lead to

cCSNB [21–30]. The transient receptor potential cation channel subfamily Mmember 1

(TRPM1) is thought to mediate the depolarization of ON-bipolar cells in response to light,

underlying the ERG b-wave [19,31,32]. TRPM1 is not only localized in retinal ON-bipolar

cells but also in melanocytes where it plays a role in pigmentation and melanocyte prolifera-

tion [33,34]. However, no skin phenotype has been documented in TRPM1-related cCSNB

[21–23]. Recently, autoantibodies against TRPM1 were identified in patients with MAR, as

well as in a few patients with other neoplasms [10,11,35–46]. Despite the fact that anti-TRPM1

autoantibodies have been mostly reported in cases of metastatic melanoma, other groups have

also reported patients with carcinoma. Interestingly those also revealed a MAR-like ON-bipo-

lar cell dysfunction on ERG and anti-TRPM1 autoantibodies documented by western blot and

immunofluorescence on monkey retina tissue [10,44]. Consequently, as patients with carci-

noma can present an ON-bipolar cell dysfunction, a better classification of these two types of

paraneoplastic syndromes would be paraneoplastic with photoreceptor defect (usually

addressed as CAR) and paraneoplastic with ON-bipolar defect (usually addressed as MAR)

[47]. Intravitreal injection of sera from patients with MAR into monkey and mouse eyes
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resulted in a cCSNB-like ERG phenotype [37,38,48]. TRPM1 localization in ON-bipolar cells,

and its implication in cCSNB when mutated, supports the conclusion that paraneoplastic reti-

nopathies showing ON-bipolar cell dysfunctions are caused by autoantibodies binding

TRPM1 and blocking its channel function. Whether these anti-TRPM1 antibodies cause other

phenotypes such as thinning of the choroid [41] or retinal degeneration is a matter of debate

[46,49]. In addition, the ocular phenotype is variable depending on the persistence or not of

anti-TRPM1 autoantibodies [44,45]. Indeed, Ueno and colleagues reported clearance of auto-

antibodies following treatment in a patient with paraneoplastic retinopathy and ON-bipolar

cell dysfunction whose ERG responses did not recover while other patients with MAR or CAR

regained normal ERG responses after clearance of anti-TRPM1 antibodies [45] or following

rituximab treatment [44], respectively. An interesting hypothesis to explain the occurrence of

paraneoplastic retinopathy has been proposed in a case with a primary photoreceptor paraneo-

plastic retinopathy (referenced there as a case of CAR). Indeed, anti-recoverin antibodies have

been identified as reacting to the ectopic expression of recoverin [50]. TP53, encoding the

tumor suppressor protein P53, is located in the vicinity of recoverin. A mutation in TP53

would give an aggressive advantage to the tumor, leading to the ectopic expression of recoverin

and subsequently the development of autoantibodies cross-reacting with the retinal protein

[50]. Similarly, a sequence in intron 8 of TRPM1 encodes the tumor suppressor miR-211

which is downregulated in aggressive tumor. An alternative splicing would decrease miR-211

expression and lead to aberrant immunogenic TRPM1 promoting the development of autoan-

tibodies [43,51–55]. While auto-antibodies against TRPM1 have been implicated in paraneo-

plastic ON-bipolar cell dysfunction, further studies have analyzed their specific target. Epitope

mapping studies suggest that the autoantibodies target the N-terminal, intracellular domain of

TRPM1 [37,43]. Besides, Oancea et al. reported three different TRPM1 isoforms resulting

from alternative splicing (i.e. 70+TRPM1, 92+TRPM1 and 109+TRPM1), which differ in the

length of their N-terminus, while the transmembrane domains and the C-terminus are con-

served [33]. They demonstrated that the three different transcripts of TRPM1 were expressed

in the retina using amplification by PCR on retinal cDNA. When expressed in human embry-

onic kidney (HEK) cells, isoforms 92+TRPM1 and 109+TRPM1 are expressed as full-length

cation channels as suggested by western blot. However, the 92+TRPM1 isoform was poorly

expressed in the retina while the 70+TRPM1 was well represented in the retina (no data for the

109+TRPM1 isoform). Moreover, our group identified a mutation in the exon coding for the

92+TRPM1 isoform [21]. Duvoisin and colleagues mapped the epitope recognized by MAR

sera and defined its coding region from the exons 9 to 10 of TRPM1 which is common to these

three isoforms. To our knowledge, it is not known whether the anti-TRPM1 autoantibodies in

MAR patients react differentially towards these distinct N-terminal isoforms. Therefore, in

accordance with the literature, the purpose of this study was to detect and further investigate

the immunoreactivity of anti-TRPM1 autoantibodies towards the three different isoforms of

TRPM1, in three patients with a clinical diagnosis of MAR.

Material andmethods

Clinical investigation and patient sera

This study was approved by the Comité de Protection des Personnes Ile-de France V and by

the institutional review board of the Mayo Clinic, Rochester, MN, USA. All procedures

adhered to the Tenets of Helsinki. Three patients with a clinical diagnosis of MAR, two from

the Mayo Clinic in Rochester, Minnesota (referred as MAR1 and MAR2) and one from the

Centre Hospitalier National d’Ophtalmologie of the Quinze-Vingts hospital, in Paris, France

(referred as MAR3) underwent extensive clinical examination to confirm the diagnosis.
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Testing included: assessment of best corrected visual acuity (BCVA) using the Early Treatment

Diabetic Retinopathy Study (EDTRS) chart, kinetic and static perimetry. Full-field electroreti-

nogram (ff-ERG) were performed with DTL recording electrodes and incorporated the ISCEV

standard (Veris II for full-field ERG and multifocal ERG for both MAR1 and MAR2 patients

while Espion2 Diagnosys1 was used for ff- ERG and mfERG for the MAR3 patient). Clinical

assessment was completed with fundus autofluorescence imaging (FAF) and optical coherence

tomography (OCT) (HRAII1 and Spectralis1OCT, Heidelberg Engineering, Dossenheim,

Germany) [56]. Sera from peripheral blood of the above patients were collected on dry tubes,

centrifuged at 2,000 g for 10 minutes and stored at -80˚C.

Animals

Mice were maintained on a 12-hour light-dark cycle. Trpm1+/+ and Trpm1-/- animals have

been previously described by Morgans and colleagues [31]. All experiments were conducted in

accordance with National Institutes of Health guidelines and approved by the Institutional

Animal Care and Use Committees at Oregon Health & Science University.

Immunolocalization studies in TRPM1 overexpressing mammalian cells

COS-7 cells, seeded on glass slides coated with 200μg/cm2 poly-D-lysine and 1μg/cm2 laminin

(Sigma-Aldrich, St. Louis, MO, USA), were transfected with plasmids encoding the three dif-

ferent isoforms of human V5-tagged TRPM1 (70+TRPM1: 1603 amino acids encoded by 4812

bp, 92+TRPM1: 1625 amino acids encoded by 4878 bp and 109+TRPM1: 1642 amino acids

encoded by 4929 bp; Source Bioscience ImaGenes, Berlin, Germany) using 2 M CaCl2 and 2X

Hepes Buffered Saline. The medium was changed 24 hours after transfection and immunofluo-

rescent studies were performed 48 hours post-transfection. The V5-tag was present between

amino acid residues 807 and 811, 832 and 833, 849 and 850 of each TRPM1 isoform, respec-

tively, a region predicted to be localized extracellularly by in silico analysis (UniProtKB-Swiss-

Prot). Cells were fixed (AntigenFix, Diapath, Martinengo, Italy) and permeabilized with PBST

(PBS, 1% BSA, 0.1% TritonX-100), and proteins were detected with the following primary

antibodies: mouse anti-V5 (1:250, Invitrogen, ThermoFisher Scientific, Waltham, MA, USA),

rabbit anti-human TRPM1 (1:250, HPA014785, Sigma-Aldrich) and sera from patients

(1:250). Primary antibodies were incubated for 1 hour at room temperature and after three

PBS washes, slides were incubated with anti-mouse (Alexa Fluor 488), anti-rabbit (Alexa Fluor

488) or anti-human (Alexa Fluor 594) secondary antibodies (1:1000, Jackson ImmunoRe-

search, West Grove, PA, USA) for 30 minutes at room temperature. Cells were fixed a second

time and finally washed with PBS. The slides were then cover-slipped (Vectashield, Vector

Laboratories, Burlingame, USA) and air-dried overnight. Fluorescent images of transfected

cells were acquired with a confocal microscope (FV1000, Olympus, Hamburg, Germany).

Images brightness and contrast were adjusted for publication using the ImageJ Software

(Bethesda, MD, USA).

Preparation of retinal sections

Four Trpm1+/+ and four Trpm1-/- animals [31] were sacrificed by CO2 inhalation followed by

cervical dislocation. Eyes were removed and dissected to keep the posterior part of the eyes

which were then fixed in ice-cold 4% paraformaldehyde for 20 minutes. Subsequently, eye-cups

were washed in ice-cold PBS and cryoprotected by increasing concentrations of sucrose in 0.12

M phosphate buffer (10% and 20% sucrose incubation for 1 hour each at 4˚C and 30% sucrose

under agitation overnight at 4˚C). Subsequently, eye-cups were embedded in 7.5% gelatine—

10% sucrose and the blocks frozen at -40˚C in isopentane and kept at -80˚C until sectioning.
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Fourteen-μm sections were prepared using a cryostat (MICROMHM 560™, ThermoFisher Sci-

entific) and mounted on glass slides (Superfrost1 Plus, ThermoFisher Scientific).

Ex vivo immunolocalization studies

Mouse retinal sections were blocked for 1 hour at room temperature in blocking solution

(PBS, 10% Donkey Serum (v/v), 0.3% Triton X-100). Primary antibodies and the dilutions

used were: human MAR sera (MAR1 1:500, MAR2 1:250 and MAR3 1:250), sheep anti-

TRPM1 (1:500; Cao et al [57]), and mouse anti-PKCα (1:1,000; P5704 Sigma-Aldrich, Darm-

stadt, Germany). The sections were incubated with primary antibodies diluted in blocking

solution overnight at room temperature. After three washes with PBS, the sections were incu-

bated with anti-human, anti-sheep and anti-mouse secondary antibodies coupled to Alexa

Fluor 488, Alexa Fluor 594, or Cy3 (Jackson ImmunoResearch) along with 4’,6-diamidino-

2-phenylindole (DAPI), all used at 1:1000, for 1.5 hours at room temperature. Subsequently,

the sections were cover-slipped with mounting medium (Mowiol, Merck Millipore, Billerica,

MA, USA). Fluorescent images of retinal sections were acquired with a confocal microscope

(FV1000, Olympus). Images for figures were adjusted for publication using Image J.

Western blot analysis

COS-7 cells were transfected with 70+TRPM1, 92+TRPM1, 109+TRPM1 plasmids or not

transfected. After 48 hours, cells were dissociated by sonication in lysis buffer (Tris 50mM

pH7.5, NaCl 150 mM, Triton X-100 1%) along with a combination of anti-protease and anti-

phosphatase (Phosphatase Inhibitor Cocktail, Sigma-Aldrich) on ice for 30 minutes. Lysates

were cleared by centrifugation at 13,800 x g for 10 minutes at 4˚C. Protein extracts from trans-

fected and untransfected cells were separated by SDS-Page on a 4–15% pre-cast gel (Mini-

PROTEAN1 TGX™ Precast Protein Gels, Bio-Rad, Hercules, CA, USA) and subsequently

transferred on nitrocellulose membranes (Trans-Blot1 Turbo™Midi Nitrocellulose Transfer

Packs, Bio-Rad). Membranes were blocked in milk for an hour and then incubated overnight

at 4˚C with the patients’ sera (1:5,000–1:50,000) or serum from a non-MAR patient (1:50,000)

and anti-V5 antibody (1:5,000, Invitrogen, ThermoFisher Scientific). The membranes were

then incubated with horseradish peroxidase (HRP)-conjugated donkey anti-human or anti-

mouse IgG (1:10,000, Jackson ImmunoResearch) as secondary antibody for 1 hour at room

temperature. Bands were revealed using an HRP substrate for chemiluminescence (Pierce™

ECLWestern Blotting Substrate, ThermoFischer).

Immunoprecipitation

Following protein extraction, magnetic beads (Dynabeads Protein G, ThermoFischer Scien-

tific) were incubated with 2 μg anti-V5 antibody (Invitrogen, ThermoFisher Scientific) for 1.5

hours at 4˚C. Thereafter, tubes containing the beads covered with anti-V5 antibody were

placed on a magnet and the unbound antibody containing solution was removed. The protein

extract was incubated with the anti-V5-coated magnetic beads overnight at 4˚C. Subsequently,

beads were washed to remove the excess of protein and re-suspended in Laemmli buffer (2X

SDS Urea) at 95˚C for 5 minutes. The protein solution was then used for western blotting.

Results

ON-bipolar cell dysfunction in three patients with MAR

All patients had biopsy-proven malignant melanoma and ocular findings consistent with clas-

sic MAR. Briefly, the first patient (MAR1 patient, Fig 1) was a 63-year-old female with a stage
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III metastatic malignant melanoma from an unknown primary tumor. She presented with a

BCVA of 20/40 in the right eye, which decreased over 1.5 years to 20/200, while the BCVA of

20/40 in the left eye stayed stable. Visual fields showed some mild constriction of the right eye

relative to the left eye. The DA 0.01 ERG response was undetectable whereas the DA 3.0 ERG

revealed an electronegative response (Fig 1). Photopic responses also showed typical alter-

ations to a single flash with a square-shaped a-wave, a delayed b-wave with however preserved

amplitudes as well as a delayed 30 Hz flicker with a squared trough. The photopic ERG was

unchanged at the last visit. In addition, this patient revealed also autoantibodies against car-

bonic anhydrase and enolase.

Ff-ERG responses to a 3.0 cd.s.m2 flash under dark-adapted (DA) conditions from an unaf-

fected subject and the three patients with a clinical diagnosis of melanoma-associated retinopa-

thy (MAR). All three patients had a severely reduced b-wave with an electronegative response.

The second patient (MAR2 patient, Fig 1) was a 77-year-old female presenting with a meta-

static cutaneous malignant melanoma of the foot with metastases to the right inguinal lymph

node and left upper arm. Her BCVA was 20/20 in the right and 20/40 in the left eye. Her visual

field appeared constricted bilaterally. In both eyes, the DA 0.01 ERG responses were undetect-

able with an electronegative response to the DA 3.0 ERG (Fig 1). This patient also displayed a

square-shaped a-wave at the photopic ERG responses with a reduced b/a ratio. Multiple auto-

antibodies were identified in this patient’s serum including anti-GAPDH and anti-enolase

antibodies.

The third patient (MAR3 patient, Fig 1) was a 66-year-old female with malignant mela-

noma of the upper right eyelid that had been excised in 2013. BCVA was 20/160 in the right

eye and 20/100 in the left. FAF and spectral domain-OCT were normal. Ff-ERG showed typi-

cal ON-bipolar cell dysfunction: there was a severely reduced b-wave to the DA 0.01 ERG

responses. The DA 3.0 and DA 10.0 ERG responses showed a normal a-wave but a delayed

and severely reduced b-wave leading to an electronegative ERG waveform in accordance with

rod-ON bipolar cell dysfunction (Fig 1). Photopic responses were also abnormal with the LA

3.0 ERG showing a square-shaped a-wave with a sharply rising b-wave and a reduced b/a ratio

typical of cone-ON bipolar defect.

Presence of TRPM1 antibodies in all MAR sera as shown by different
detection methods

In order to prove the presence of anti-TRPM1 autoantibodies in the sera of these three new

cases of MAR, immunolocalization studies on overexpressing cells or mouse retinal cryosec-

tions were performed, along with western blot analysis.

MAR1 andMAR2 sera detect all isoforms of TRPM1, while MAR3 does not
react with the short isoform of TRPM1 by immunolocalization studies in
overexpressing cells

Because of the previous findings that autoantibodies against TRPM1 were found in the serum

of patients with MAR, the sera of the three MAR patients (MAR1-3) reported herein were

tested on COS-7 cells overexpressing the different isoforms of human TRPM1 (70+TRPM1, 92

+TRPM1 and 109+TRPM1). While MAR1 and MAR2 revealed typical TRPM1 staining for all

three different isoforms as shown by co-staining with a commercially available antibody

against TRPM1 (Fig 2A and 2B), MAR3 labelled the 92+TRPM1 and the 109+TRPM1 iso-

forms, but did not detect the shortest isoform of TRPM1: 70+TRPM1 (Fig 2C).
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MAR1, MAR2 and MAR3 sera detect all isoforms of TRPM1 by western
blot analysis

MAR sera were tested for their ability to detect TRPM1 following the over-expression of the

three different isoforms of V5-tagged human TRPM1 (70+TRPM1, 92+TRPM1 and 109

+TRPM1) in COS-7 cells by western blot analyses. As expected, MAR1 and MAR2 sera both

detected all three isoforms of TRPM1 at the expected size of about 180 kDa (Fig 3). MAR1 and

MAR2 displayed comparable reactivity to 109+TRPM1 as the commercial V5 and TRPM1

antibodies, indicating that the fainter bands for this sample are due to lower expression of the

longest isoform. The serum of a non-MAR patient did not lead to any staining. Under the

same conditions, the MAR3 serum staining was inconclusive, as no bands were detected.

Fig 1. Full-field ERG recordings (DA 3.0).

https://doi.org/10.1371/journal.pone.0231750.g001
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Thus, to obtain a specific staining, protein extracts from COS-7 cells over expressing the three

TRPM1 isoforms were immunoprecipitated with the anti-V5 antibody. Subsequently, the

MAR3 serum detected all three isoforms of TRPM1. Thus, by western blot analyses, the three

MAR sera reacted with all three different TRPM1 isoforms.

Immuno blots of COS-7 cells transfected with the three isoforms of TRPM1 using several

antibodies: an anti-TRPM1 antibody, an anti-V5 antibody, MAR1 and MAR2 sera, MAR3 sera

after immunoprecipitation using an anti-V5 antibody and a control serum. All antibodies rec-

ognized the 70+TRPM1, 92+TRPM1 and 109+TRPM1 isoforms (~180-200kDa). No signal was

obtained with protein extracted from untransfected cells.

MAR1, MAR2 and MAR3 sera stain ON-bipolar cells on mouse retinal
cryosections

To further confirm the results obtained in vitro, we tested the three sera on wild-type (Trpm1+/

+) and knock-out TRPM1 (Trpm1-/-) mouse retinal cryosections. As expected, the three sera

Fig 2. Immunolocalization studies using the MAR sera and anti-TRPM1 antibody in COS-7 cells overexpressing
the three isoforms of TRPM1. (A) MAR1 (red) staining colocalized (yellow, merge) with TRPM1 (green) staining in
COS-7 overexpressing all three isoforms of TRPM1. (B) MAR2 (red) staining colocalized (yellow, merge) with TRPM1
(green) staining in COS-7 overexpressing all three isoforms of TRPM1. (C) MAR3 (red) staining colocalized (yellow,
merge) with TRPM1 (green) staining only in COS-7 overexpressing the 92+TRPM1 and the 109+TRPM1 isoform.
Scale bars: 10μm.

https://doi.org/10.1371/journal.pone.0231750.g002
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reacted with a protein localized at the dendritic tips and around ON-bipolar cells (Fig 4A, 4B

and 4C). This immunolabelling of dendritic tips and around the soma of ON-bipolar cells with

all three sera was comparable to the one obtained with an anti-TRPM1 antibody, while such

staining was absent using a serum from a subject with no ocular disorder (Fig 4D). This stain-

ing was absent in Trpm1-/-mice confirming the presence of TRPM1-dependent autoantibodies

in all three sera. Immunolabelling was also observed in other retinal layers with these three

sera in both wild-type and Trpm1-/- mice, most likely due to autoantibodies not directed

towards TRPM1 (S1 Appendix).

Discussion

In this study, we report three novel cases with MAR being in fact females. It has been suggested

that MAR is more prevalent in male [8], due to melanoma being more prevalent in male

patients, especially after 50 years [58,59]. However, our studied cases were all female patients.

We are not aware about the presence of a higher frequency of male or female patients with

MAR investigated in the respective hospitals. Interestingly it was previously shown that the

average age of patients affected with paraneoplastic retinopathy is 62 [60], which is consistent

with our study. Indeed, our patients were between 63 and 77 years old.

Fig 3. Western blot analysis of TRPM1 isoforms with MAR sera.

https://doi.org/10.1371/journal.pone.0231750.g003
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The presence of anti-TRPM1 autoantibodies in the sera of these new cases of MAR was vali-

dated in mammalian cells overexpressing TRPM1 by immunolocalization, western blot analy-

sis and by immunofluorescence on mouse retinal cryosections. The human TRPM1 exists in

three isoforms which differ in their N-terminus [33]. Therefore, we investigated the reactivity

of the anti-TRPM1 autoantibodies of our MAR patients towards all TRPM1 isoforms. All

three sera contained antibodies reacting to the three isoforms of TRPM1, albeit with different

apparent sensitivity. In previous reports, it has been suggested that all anti-TRPM1 autoanti-

bodies in MAR patients recognize the same epitope located at the N-terminal, intracellular

region of the protein encoded by exons 9 and 10, which is common to all three isoforms

[37,43]. For our MAR patients, anti-TRPM1 autoantibodies recognized an epitope that is com-

mon to all three TRPM1 isoforms, encoded some place after exon 2, consistent with the litera-

ture, but the sensitivity to detect TRPM1 was different and was method-dependent. This was

especially true for the anti-TRPM1 autoantibodies present in MAR3, which failed to label the

shortest isoform of TRPM1 in the overexpressing cell system by immunofluorescence, yet

detected it by western blot after enrichment, and labelled TRPM1 robustly on mouse retinal

sections.

Several hypotheses can be proposed to explain this variability: the epitope recognized by the

autoantibodies may vary between patients either because of the tumor type or their immune

system specificities or both. In addition, the protein folding may be different depending on the

TRPM1 isoforms, not allowing the anti-TRPM1 autoantibodies of the MAR3 patient to bind

Fig 4. Immunolocalization on Trpm1+/+ and Trpm1-/-mouse retinal cryosections. (A) TRPM1 (red) staining
colocalized (yellow, merge) with MAR1 (green) in Trpm1+/+ and both staining were absent in Trpm1-/-mouse. (B)
TRPM1 (red) staining colocalized (yellow, merge) with MAR2 (green) in Trpm1+/+ and both staining were absent in
Trpm1-/-mouse. (C) TRPM1 (red) staining colocalized (yellow, merge) with MAR3 (green) in Trpm1+/+ and both
staining were absent in Trpm1-/-mouse. (D) No TRPM1 (red) staining was observable in Trpm1+/+ and Trpm1-/-

mouse and the same observation was made with a control serum. Scale bars: 10μm.

https://doi.org/10.1371/journal.pone.0231750.g004
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to the same epitope as in MAR1 and MAR2. Variability in binding might also be explained by

distinct antibody titers towards specific isoforms or differences in antibody affinity. As various

results were obtained with the same serum depending on the experiment, we suggest to com-

bine multiple tests to assess with certainty the presence of anti-TRPM1 autoantibodies even

though in a study by Dalal et al., immunofluorescence on tissue sections and cells were suffi-

cient to validate the presence of anti-TRPM1 autoantibodies in a patient with MAR [39]. In

our opinion, western blotting should be the first test to be performed to decipher the presence

or absence of anti-TRPM1 as the denaturing conditions might promote epitope accessibility

for the autoantibodies. Immunoprecipitation prior to western blotting should also be consid-

ered as the titer of the autoantibodies in the sera may vary. Finally, if the western blot analysis

is inconclusive, other tests, as immunolocalization, should be performed.

In patients affected with MAR, the ERG phenotype is similar to those found in cCSNB,

with a severely decreased b-wave, indicating an ON-bipolar cell dysfunction [33,34] as present

in the subjects reported in this study. Other laboratories have studied the impact of intravitreal

injection of sera from patients with paraneoplastic retinopathy on mouse [37,38] or monkey

ERGs [48]. Ueno and colleagues [38] described a reduction of the scotopic b-wave with a rela-

tive preserved a-wave, as was also observed by Xiong et al [37]. Similarly, on the monkey ERG,

the serum suppressed the photopic b-wave, but the effect on the a-wave was similar to the one

obtained with a non-MAR serum [48]. The variable sensitivity in the three sera to detect

TRPM1 herein could have also different consequences of the clinical course of the patients

ERGs, as some patients recovered after diagnosis and some others deteriorated as previously

described [45]. However, a follow-up of the patients studied herein is not available.

Of note, paraneoplastic syndromes can sometimes be more complex due to the occurrence

of multiple autoantibodies in the same patient [16]. This may explain additional retinal alter-

ations reported in MAR patients such as choroidal atrophy [41] and MAR patients with other

clinical abnormalities [15] which may not be solely explained by anti-TRPM1 antibodies.

However, as anti-TRPM1 autoantibodies are the most commonly reported autoantibodies in

cases of MAR [35], the search for these other retinal autoantibodies might not have been done.

The sera of our three MAR patients were found to specifically label not only the dendritic tip

of ON-bipolar cells in wild-type mouse but also other retinal layers in both, wild-type and

TRPM1 knock-out mouse retina, suggesting the presence of autoantibodies to multiple retinal

targets. The sera of MAR1 and MAR2 patients have been tested for other autoantibodies and

were positive for anti-enolase, anti-carbohydrase, and anti-GAPDH antibodies. The presence

of anti-α enolase has been associated with normal to severe cone loss [61]. It is however

unclear if this autoantibody had a functional impact on the clinical presentation of our patient.

Additionally, anti-carbonic anhydrase autoantibodies have been studied by Adamus et al.,

showing their detrimental effect on a retinal cell line, leading to cell death [62]. To our knowl-

edge, the role of anti-GAPDH autoantibodies remains unclear. Furthermore, the identification

and characterization of autoantibodies responsible of the retinal phenotype of patients with

paraneoplastic syndromes with either photoreceptors defect or ON-bipolar cell defect can help

to establish the proper treatment for these patients. For instance, Roels and colleagues [44]

reported the case of a patient with CAR and presenting anti-TRPM1 autoantibodies. Following

the treatment of this patient with rituximab in order to decrease the immune response, the

serology proved the clearance of the anti-TRPM1 autoantibodies. This led to a normalization

of the ERG and an improvement of the symptoms in this patient.

The conclusion of our study is that it might be crucial to use different methods to determine

which antigen is recognized by the autoantibodies present in MAR serum. Indeed, a combina-

tion of in vitro and ex vivomethods seems to be the most efficient way to identify
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autoantibodies in the serum of MAR patients. Moreover, multiple autoantibodies can be impli-

cated in the phenotype of patients with autoimmune retinopathy.

Supporting information

S1 Appendix. Immunolocalization on Trpm1+/+ and Trpm1-/-mouse retinal cryosections.

Sera fromMAR patients (green) stain ON-bipolar cells along with a fainter staining in the

inner plexiform layer and the ganglion cell layer in both Trpm1+/+ and Trpm1-/- animals. Scale

bars: 10μm.
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Correction: Identification and characterization
of novel TRPM1 autoantibodies from serum of
patients withmelanoma-associated
retinopathy

The PLOSONE Staff

The following information is missing from the Funding statement: JV, NB, JW, CZ, IA, JAS:

IHU FOReSIGHT (ANR-18-IAHU-0001) supported by French state funds managed by the

Agence Nationale de la Recherche within the Investissements d’Avenir program.

The legends for Figs 1 and 3 mistakenly appear in the body of the article. There is an error

in the legend for panel B of Fig 4. Please see the complete, correct legends for Figs 1, 3 and 4 here.

Fig 1. Full-field ERG recordings (DA 3.0). Ff-ERG responses to a 3.0 cd.s.m2 flash under dark-adapted (DA)
conditions from an unaffected subject and the three patients with a clinical diagnosis of melanoma-associated
retinopathy (MAR). All three patients had a severely reduced b-wave with an electronegative response.
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Fig 3. Western blot analysis of TRPM1 isoforms with MAR sera. Immuno blots of COS-7 cells transfected with the
three isoforms of TRPM1 using several antibodies: an anti-TRPM1 antibody, an anti-V5 antibody, MAR1 andMAR2
sera, MAR3 sera after immunoprecipitation using an anti-V5 antibody and a control serum. All antibodies recognized
the 70+TRPM1, 92+TRPM1 and 109+TRPM1 isoforms (~180-200kDa). No signal was obtained with protein extracted
from untransfected cells.

https://doi.org/10.1371/journal.pone.0233424.g002
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The citation for reference 20 is incomplete. The complete reference is: McCulloch DL, Mar-

mor MF, Brigell MG, Hamilton R, Holder GE, et al. (2015) ISCEV Standard for full-field clini-

cal electroretinography (2015 update). Doc Ophthalmol 130: 1–12. pmid: 25502644

The publisher apologize for the errors.
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Fig 4. Immunolocalization on Trpm1+/+ and Trpm1-/-mouse retinal cryosections. (A) TRPM1 (red) staining
colocalized (yellow, merge) with MAR1 (green) in Trpm1+/+ and both staining were absent in Trpm1-/-mouse. (B)
TRPM1 (red) staining colocalized (yellow, merge) with MAR2 (green) in Trpm1+/+ and both staining were absent in
Trpm1-/-mouse. (C) TRPM1 (red) staining colocalized (yellow, merge) with MAR3 (green) in Trpm1+/+ and both
staining were absent in Trpm1-/-mouse. (D) TRPM1 (red) staining was present in Trpm1+/+ and absent in Trpm1-/

-mice. Control serum did not reveal any staining. Scale bars: 10μm.
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Results 

II. RESTORATION OF MGLURR6 LOCALIZATION FOLLOWING AAV-MEDIATED DELIVERY IN 

A MOUSE MODEL OF CONGENITAL STATIONARY NIGHT BLINDNESS 

To date, treatment for cCSNB is unavailable. Gene replacement strategy might be a suitable 

approach to treat cCSNB since it represents a stationary non-degenerative disorder and the 

genetics of this disorder is well characterized. Mutations in GRM6 are the third most prevalent 

cause of cCSNB. The Grm6tm1Nak (referred as Grm6-/-) mouse model mimics the phenotype 

observed in patients and has been studied to understand the ON-BCs signaling cascade. The 

aim of this study was to restore protein localization and function in Grm6-/- mice using an AAV-

based approach with two different promotors, either targeting specifically ON-BCs (GRM6) or 

the entire retina (CAG).  

Following treatment, mGluR6 was relocalized at the dendritic tips of ON-BCs using both 

constructs. The efficiency of mGluR6-transduced retinas in the OPL was 2.5% versus 11% when 

the GRM6-Grm6 and CAG-Grm6 were used, respectively. Relocalization of TRPM1, GPR179 

and Gβ5 was also noted using both constructs. However, the restoration of the localization of 

RGS7 and RGS11 was more evident in GRM6-Grm6 than in CAG-Grm6 treated retinas. 

Functional rescue after treatment as measured by ERG failed to appear. These findings give 

hope that by improving the vector-constructions the efficiency of transduction will be 

improved and cCSNB due to mutations in GRM6 could be treated.   

These findings will be submitted to the journal of Investigative Ophthalmology and Visual 

Science (IOVS) 

Varin J, Bouzidi N, Dias MS, Pugliese T,  Michiels C, Robert C, Desrosiers M, Sahel JA, Audo I, 

Dalkara D, Zeitz C. Restoration of mGluR6 localization following AAV-mediated delivery in a 

mouse model of congenital stationary night blindness. IOVS (to be submitted) 
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Abstract (250 words) 

Purpose: Complete congenital stationary night blindness (cCSNB) is an incurable inherited 

retinal disorder characterized by an ON-bipolar cell (ON-BC) defect. GRM6 mutations are the 

third most prevalent cause of cCSNB. The Grm6
-/-

 mouse model mimics the human 

phenotype showing no ON-BC responses upon electroretinogram (ERG), loss of mGluR6 and 

other proteins of the same cascade at the outer plexiform layer (OPL). Our aim was to 

restore protein localization and function in Grm6
-/- 

mice. 

Methods: Adeno-associated virus-constructs using two different promoters (GRM6-Grm6 

and CAG-Grm6) were injected intravitreally in P15 Grm6
-/-

 mice. ERG recordings at 2 and 4 

months were performed in Grm6
+/+

 Grm6
-/- 

and Grm6
-/- 

treated mice. Similarly, 

immunolocalization studies were performed on retinal slices before or/and after treatment 

using antibodies against mGluR6, TRPM1, GPR179, RGS7, RGS11 and Gβ5. 

Results: Following treatment, mGluR6 was relocalized at the dendritic tips of ON-BCs using 

both constructs. The efficiency of mGluR6-transduced retinas in the OPL was 2.5% versus 

11% when the GRM6-Grm6 and CAG-Grm6 were used, respectively. Relocalization of 

TRPM1, GPR179 and Gβ5 was also noted using both constructs. However, the restoration of 

the localization of RGS7 and RGS11 was more evident in GRM6-Grm6 than in CAG-Grm6 

treated retinas. Functional rescue after treatment as measured by ERG failed to appear.  

Conclusions: Our findings show the potential of treating cCSNB with GRM6-mutations. 

However, to restore visual function the transduction rate of both constructs needs to be 

improved.



 

Introduction 

Congenital stationary night blindness (CSNB) is a non-progressive retinal disorder 
1
. Patients 

suffering from this disease often present an impairment of night vision, delayed dark-to-light 

adaptation and difficulties to sense contrasts properly in dim-light conditions. It is also often 

associated with high myopia, strabismus and nystagmus
2
. Considering the retinal response 

on the electroretinogram (ERG), CSNB has been divided in two groups: the Riggs-type 
3
 of 

CSNB, associated with a rod-photoreceptor defect and the Schubert-Bornschein type 
1
 of 

CSNB in which the underlying defect relies in the signal transmission from photoreceptors to 

bipolar cells 
4
. The Schubert-Bornschein type of CSNB can be classified in the incomplete 

CSNB (icCSNB) and the complete CSNB (cCSNB) 
4
. We will focus on the latter one in this 

study. Patients with cCSNB show an electronegative ERG, representing normal a-wave 

amplitudes with severely or absent b-waves under scotopic conditions, hence the 

denomination complete. Photopic responses are less altered
2
.  More specifically, ON-

responses are affected, while OFF- responses remain globally normal
2
. This ERG profile is 

consistent with a transmission defect between photoreceptors and ON-bipolar cells (ON-

BCs). cCSNB is due to mutations in NYX
5, 6

, TRPM1
7-9

, GRM6
10, 11

, GPR179
12, 13

 and LRIT3
14

. All 

code for proteins involved in the signaling cascade at the photoreceptor to ON-BC synapse. 

Mutations in GRM6 are the third most prevalent cause of cCSNB
2
. GRM6 codes for a 

metabotropic receptor that mediates glutamate synaptic transmission between 

photoreceptors and ON-BCs
15

. In the retina, mGluR6 is exclusively localized in ON-BCs
16

. In 

absence of light, glutamate released at the synaptic cleft activates mGluR6, which initiates 

the ON-BC signaling cascade 
17

  leading to the closure of the cation channel TRPM1
18

. In 

contrast, in response to light, less glutamate binds to mGluR6 leading to the opening of the 

TRPM1 channel
19

. Thus, ON-BCs are depolarized leading to the b-wave, which is severely 



 

reduced or absent in cCSNB. Five mouse models with a Grm6 defect have been described: 

Grm6
tm1Nak

 (will be further referred as Grm6
-/-

), nob3, nob4, nob7 and nob8
20-24

. Of those, 

four including Grm6
-/- 

show a similar ERG-phenotype as patients with cCSNB under scotopic 

conditions, namely an absent b-wave, while the a-wave appears normal. Furthermore, in 

these four models, mGluR6 is abolished. It has been also described that mGluR6 is important 

for the proper localization of other proteins of the cascade such as regulatory of G protein 

signaling (RGS) proteins (RGS7, RGS11, Gβ5 and R9AP)
25, 26

, and TRPM1 
25

 at the dendritic 

tips of ON-BCs. The absence of TRPM1 at the dendritic tips of ON-BCs renders this channel 

non-functional
25

. The interdependence of GPR179 on mGluR6, important for the targeting 

and/or maintaining of the RGS proteins
27

 has found to be model and condition-

dependent
28,29

. Albeit the gross morphology of the retina in patients and mice lacking 

mGluR6 is not affected, detailed clinical examinations and morphological studies detected 

differences compared to unaffected retinas. Indeed, three patients harboring mutations in 

GRM6 exhibited reduced retinal thickness in the extrafoveal region as revealed by SD-OCT 

measurements
30

. Furthermore, in mice lacking Grm6, invaginating dendrites of rod-bipolar-

cells (RBCs) are larger and often contain ectopic ribbons while the number of invaginating 

dendrites of cone ON-BCs and ribbons decrease at the cone pedicles in the Grm6
-/-

 mouse 

model
31

. Tummala and colleagues
32

 showed that mGluR6 has also a role pre-synaptically as 

several presynaptic matrix-associated proteins are reduced at the rod-to-rod bipolar cell 

synapse in the same Grm6
-/-

 model. To date, no treatment is available for cCSNB. Gene 

replacement strategy might be a suitable approach to treat cCSNB since it represents a 

stationary non-degenerative disorder and the genetics of this disorder is well characterized
2
. 

Two different approaches targeting two genes involved in cCSNB, Nyx and Lrit3, reported a 

partial restoration of the function upon protein relocalization in mouse models
33, 34

. 



 

However, this partial rescue was mainly obtained at a very young age (P2 or P5) and only 

under scotopic condition. These two strategies aiming to treat cCSNB show the challenge to 

obtain a functional rescue in adult cCSNB mice. Our study aimed to restore the protein 

localization, along with its missing partners, and ERG phenotype, by treating P15 Grm6
-/-

 
20

 

mice with an AAV-mediated intravitreal delivery of the transgene. In order to compare their 

efficacy, two different promoters were used: a Grm6-200bp/SV40 promoter, specifically 

targeting ON-BCs and a CAG promoter driving ubiquitous expression of the transgene. 

Transgene expression, protein localization and functional rescue were investigated. 

  



 

Material and methods 

Ethical statement 

All animal procedures were performed according to the Council Directive 2010/63EU of the 

European Parliament and the Council of September 22, 2010, on the protection of animals 

used for scientific purposes, with the National Institutes of Health guidelines and with the 

ARVO Statement for the Use of Animals in Ophthalmic and Vision Research. They were 

approved by the French Minister of National Education, Superior Education and Research 

(authorization delivered on January 21, 2019). 

Intravitreal injections 

Mice were anesthetized by isoflurane inhalation (5% in oxygene for induction and 2% for 

maintenance). Intravitreal injections were performed at 15 (P15) days of age. Pupils were 

dilated (0.5% mydriaticum) and a 33-gauge needle was passed through the sclera at the ora 

serrata level. 1 µL of a viral stock solution at a concentration of 1.6 10
13

 vg/ml (CAG-Grm6 

construct) and 5.8 10
13

 vg/ml (GRM6-Grm6) maximum was injected directly in the vitreous 

cavity of eight Grm6
-/-

 mice for each promoter. Viral vectors were produced as described in 

Macé et al., 2015
35

. 

Immunolocalization studies 

Animals were sacrificed by CO2 inhalation followed by cervical dislocation. Eyes were 

removed and dissected to keep the posterior part of the eyes which were then fixed in ice-

cold 4% paraformaldehyde for 20 minutes. Subsequently, eye-cups were washed in ice-cold 

PBS and cryoprotected by increasing concentrations of sucrose (ranging from 10% to 30%) in 

water and 0.24 M phosphate buffer for 1 hour at 4°C for 10% sucrose and 20% sucrose 

solutions and overnight at 4°C under agitation for the 30% sucrose solution. The eye-cups 

were then embedded in 7.5% gelatin - 10% sucrose and the blocks frozen at -40°C in 



 

isopentane and kept at -80°C until cutting. Sections of 12 µm were generated using a 

cryostat (MICROM HM 560™, ThermoFisher Scientific, Waltham, MA, USA) and mounted on 

glass slides (Superfrost® Plus, ThermoFisher Scientific). Mouse retina sections were blocked 

for 1 hour at room temperature in PBS1X 10% Donkey Serum (v/v), 0.1% Triton X-100. 

Primary antibodies and the dilutions used were: sheep anti-TRPM1 (1:500, Cao et al 
36

), 

guinea pig anti-mGluR6 (1:15000; AP20134SU-N, Acris, Herford, Germany), rabbit anti-Gβ5 

(1:500, C16068, Antibodies Online), goat anti-RGS11 (1:300, sc-9725, Santa-Cruz, Dallas, 

USA), rabbit anti-RGS7 (1:100, Cao et al, 
37

) or mouse anti-GPR179 (1:200, AB0887-YOM, 

Primm, Cambridge, MA, USA). The sections were incubated with primary antibodies diluted 

in PBS1X 2% Donkey Serum, 0.1% Triton X-100 for 1 hour at room temperature. After washes 

with PBS1X, 0.1% Triton X-100, the sections were incubated with anti-human, anti-guinea 

pig, anti-goat, anti-rabbit or anti-mouse secondary antibodies or peanut agglutinin (PNA-

488, L21409, Waltham, MA, USA) coupled with Alexa Fluor 488, 594 or Cy3 (Jackson 

ImmunoReserach) along with 4’,6-diamidino-2-phenylindole (DAPI), all used at 1:1000, for 

0.5 hours at room temperature. Subsequently, the sections were cover-slipped with 

mounting medium (Mowiol, Merck Millipore, Billerica, MA, USA). Fluorescence images 

retinal sections were acquired with a confocal microscope (FV1000, Olympus). Images for 

figures were handled with the Image J software (ImageJ Software). 

ERG recordings 

ERG recordings were performed in accordance with the description in Neuillé et al., 2014 
38

. 

All scotopic ERG were made first using six increasing light-intensity of flashes ranging from 

0.003 to 30.0 cd.s/m². To ensure a saturation of rod photoreceptors and the recording of 

cone-driven responses, a 10-minutes light-adaptation step at 20cd/m² was done. All data 

were analyzed with GraphPad Prism v.6 (GraphPad Software, La Jolla, CA, USA). 



 

Results 

Herein, to rescue the phenotype in the Grm6
-/-

 mouse model, two different constructs were 

designed using two different promoters. To drive expression of the transgene specifically to 

ON-bipolar cells, the Grm6 promoter was used
35

. To drive ubiquitous expression of the 

transgene throughout the retina the CAG promoter was used
39

. These two constructs were 

encapsidated in the AAV2-7m8 serotype
39

 and will be referred as GRM6-Grm6 or CAG-Grm6. 

mGluR6 relocalizes at the dendritic tips of ON-BCs following treatment 

In Grm6
-/-

 mice, mGluR6 production is completely abolished in the OPL
20

 (Figure 1A). Its 

localization at the dendritic tips of ON-BCs is essential to ensure a proper transmission of the 

visual information between photoreceptors and ON-BCs. The relocalization of mGluR6 at the 

dendritic tips of ON-BCs five months following treatment was investigated through 

immunolocalization studies. Grm6
-/-

-GRM6-Grm6 retinas treated at P15 displayed areas 

where mGluR6 was present in the OPL which was absent in untreated Grm6
-/- 

retinas (Figure 

1A, n=8). We also noticed that ON-BCs bodies were sometimes stained (Figure 1B, stars). 

However, mGluR6 staining was only present in small areas of the retina (~2.5% of the OPL 

presented an mGluR6 staining, Figure 2C, red arrows). Similarly, Grm6
-/-

-CAG-Grm6 retinas 

treated at P15 displayed mGluR6 staining in the OPL (Figure 1A), which seemed to be 

stronger and more homogeneously distributed (Figures 1B and 1C) compared to Grm6
-/-

-

GRM6-Grm6 treated retinas (~11% of the OPL presented an mGluR6 staining, Figure 1C, red 

arrows). In addition, for the latter construct a staining was also noted in some areas in the 

inner plexiform layer (IPL) (Figure 1B). Furthermore, this mGluR6 staining seemed more 

diffuse in several areas (Figure 1B). Using either CAG-Grm6 or GRM6-Grm6 constructs, 

mGluR6 staining was absent at the dendritic tips of cone ON-BCs.  

 



 

Signaling partners of mGluR6 are relocalized at the dendritic tips of ON-BCs 

It was previously described that several molecules involved in the signaling cascade of ON-

BCs were impacted by the absence of mGluR6
2
. This is consistent with our finding, showing 

reduced or abolished staining of molecules of the same cascade including TRPM1, RGS7, 

RGS11 and Gβ5 (Figure 2 and 3, second column). Although different observation of the 

dependance of GPR179 on mGluR6 
28, 29

 were described, herein we observed a severe 

decrease in the localization of GPR179 at the dendritic tips of ON-BCs in Grm6
-/-

 mice (Figure 

3). Grm6
-/-

-GRM6-Grm6 and Grm6
-/-

-CAG-Grm6 retinas revealed restoration of TRPM1, Gβ5 

and GPR179 localization at the dendritic tips of ON-BCs after treatment (Figure 2 and 3). In 

addition, a restoration of the localization of RGS7 and RGS11 was noted, which was more 

evident in GRM6-Grm6 than in CAG-Grm6 treated retinas (Figure 3).  

mGluR6 protein restoration does not induce a functional rescue 

Due to the disruption of the signal transmission between photoreceptors and ON-BCs in the 

Grm6
-/-

 mouse model, the b-wave is abolished in both scotopic and photopic conditions 

(Figure 4). In order to study the functional restoration of the phenotype ERG-measurements 

were performed on P15-treated mice at two time-points: two- and four-months post-

injection (n= 8). At both time points, none of the treated animals revealed restoration of the 

b-wave neither at scotopic nor photopic conditions using intravitreal injections of either, 

CAG-Grm6 and or GRM6-Grm6 treated mice (Figure 4). 

  



 

Discussion 

GRM6 is the first element of the signaling cascade at the dendritic tips of ON-BCs, 

responsible for the transmission of the signal from photoreceptors to ON-BCs. When GRM6 

is mutated it leads to cCSNB. Patients displaying cCSNB have night blindness, high myopia, 

nystagmus and sometimes strabismus, which influence the quality of life during day and 

night-time. The disease can be correctly diagnosed by measuring the electroretinogram 

(ERG). Patients as well as mice with this gene defect show loss of mGluR6 function and 

reveal an electronegative ERG in which the a-wave is preserved while the b-wave is absent
20, 

40
. In addition, mice lacking Grm6 are characterized through the absence of the respective 

protein, and several other proteins of the same cascade being mislocalized, abolished or 

reduced at the dendritic tips of ON-BCs: GPR179 and TRPM1 are reduced along with the RGS 

proteins (Gβ5, RGS7 and RGS11) being abolished 
26

. We investigated the localization of these 

proteins in Grm6
-/-

 mice and compared our findings, with reported studies. Herein we 

showed that, in Grm6
-/-

 mice GPR179 localization at the dendritic tips of ON-BCs is 

dramatically reduced but still present. Ray and co-workers reported no difference in GPR179 

localization in Grm6
-/-

 mice upon immunolocalization studies but using western blot analysis 

estimated a decrease in GPR179 of ~50% in Grm6
-/-

 retinas
29

. In contrast, Orlandi and co-

workers reported similar than us a dramatic reduction of GPR179 at the dendritic tips of ON-

BCs in a mouse model lacking Grm6 (nob3). Indeed, in contrast to Ray and co-workers the 

group by Orlandi and us used the same antibody. Further investigations need to be 

performed to explain these different observations. However, since GRP179 is only reduced 

but not completely abolished at the dendritic tips of ON-BCs in Grm6
-/-

 mice, it indicates that 

mGluR6 plays a major role in the proper localization of GPR179 at the dendritic tips but is 

not essential to this process.  



 

To date, for most IRDs, treatment is unavailable. However, a gene addition approach 

mediated by AAV for Leber Congenital Amaurosis (LCA) was validated by the Food and Drug 

Administration in the US three years ago, paving the way of treatment of IRDs by gene 

therapy
41-44

. CSNB is a rare heterogenous group of retinal disorders and yet incurable
2
. Two 

gene therapy approaches for cCSNB have been reported so far, one targeting Nyx 
33

 and the 

other one Lrit3
34

. In both strategies, the wild-type copy of the gene was delivered in 

newborn (P2 or P5) and adult (P30 or P35) CSNB mice. A partial rescue of the scotopic ERG 

was obtained mainly in treated newborn mice, under scotopic conditions
33, 34

. To our 

knowledge, a gene therapy approach to rescue the phenotype due to the GRM6-gene defect 

is unavailable. Mutations in GRM6 were found to be the third most prevalent gene defect 

causing cCSNB 
2
. To restore the phenotype of mice lacking mGluR6, a combination of the 

AAV2.7m8 capsid along with either the GRM6-200bp/SV40 promoter to drive the expression 

of Grm6
35

 (referred as GRM6-Grm6) or a CAG promoter
39

 (CAG-Grm6) were chosen. 

Although the functional restoration stayed out, intravitreal injections of adult mice revealed 

relocalization of mGluR6 and its signaling partners. Furthermore, the specificity of the 

GRM6-Grm6 construct was higher than the CAG-Grm6 combination, with however a milder 

transduction rate.  

Studying the expression of the transgene by RNA in situ hybridization would explain whether 

the low production of GRM6 in the treated mice is due to a mild transduction or a problem 

of the ON-BCs in producing the protein from the transgene. The lack of functional rescue and 

relatively low transduction efficiency of our approach may be due to the size and structure 

of mGluR6. Substantial limitation of AAV vectors is their small packaging capacity that is 

generally considered to be <5 kb 
45

. Our constructs were 3.5 kb and 3.8 kb in size for the 

GRM6-Grm6 and for the CAG-Grm6 constructs, respectively of which the coding sequence of 



 

Grm6 is 2.6 kb. Together, these constructs are in the range <5 kb so the encapsidation of 

those should not pose any problem. Successful gene therapies with partial functional 

restoration for nyctalopin 
33

 and LRIT3 
34

 (Varin et al., submitted) using similar vectors 

focused on even smaller genes (1.4 and 2 kb respectively) encoding small and structurally 

simpler proteins than mGluR6. Perhaps, it is still more complicating to produce slightly larger 

proteins, like mGluR6 composed of seven transmembrane domains, than smaller molecules. 

In addition, the constructs used may need to be improved. Of course, using the full promoter 

and intronic regions enhancing and controlling the expression and protein production would 

most likely improve the efficacity of the treatment 
46

. However, the size of such a transgene 

is too large to be encapsidated by our used approach. Oversized AAV-vectors encapsidating 

up to 9 kb of transgene were shown to be not validated for clinical use since gene 

fragmentation occurs. As an alternative to the oversized AAV approach, different research 

groups have tested the use of dual and triple AAV vector systems showing, however here as 

well very low levels of protein expression 
47

. Recently, Lu and co-workers tested different 

modulations of the Grm6 promoter in order to increase its efficiency and finally described 

two promoters with a high specificity and a higher expression of the transgene than our used 

GRM6-200bp/SV40 promoter
48

 by using the endogenous promoter of Grm6. The added 

sequence is only ~300 bp larger compared to our GRM6-Grm6 construct and thus could be 

easily used for a gene therapy approach to restore the mGluR6 phenotype. Compared with 

the construct used by us, the fluorescence intensity of mCherry under the control of this 

new promoter was ~5 times higher
48

. However, the number of transduced cells was not 

significantly improved with this promoter compared to ours. It remains questionable if this 

new promoter would be enough to increase the transduction efficiency to obtain a 

homogeneous protein immunolocalization and functional rescue. This shows that efficient 



 

transduction of ON-BCs with no off-target is still difficult to obtain. In order to overcome this 

issue, other improved AAV-promoter combinations could be tested. 

To test the efficiency of those different promoters, fluorescent proteins such as GFP or 

mCherry are often used
35, 48

. However, these promotors used in combination with these 

genes will localize the respective protein in ON-BCs but not specifically at the dendritic tips 

of ON-BCs where mGluR6 should be localized
35, 48

. Thus, the obtained transduction efficiency 

of those vectors may not indicate if trafficking to the dendritic tips of ON-BCs can be 

achieved. It has been previously reported that the targeting of transmembrane proteins to 

neuronal dendrites was myosin-dependent
49

. Therefore, we tried to improve this trafficking 

to the dendritic tips by adding a myosin-binding domain (MBD) to Grm6. However, this did 

not result on further improvement concerning the transduction efficiency nor restoration of 

the phenotype (data not shown). We also decided to wait several months after injection to 

record ERGs and perform immunolocalization studies since it has been shown that the peak 

of transgene expression is at 6-to-8 weeks after injection
50

. However, even four months after 

treatment, the phenotype of treated animals could not be restored. 

As previously described, proteins involved in cCSNB also have a role in synapse formation 

and/or maintenance. Indeed, in Lrit3
-/-

 mice, a decreased number of invaginating contacts 

made by cone ON-BCs in the cone pedicle and a striking decrease in the number of triads 
51

 

was observed. Normal cone pedicles were also noted indicating that LRIT3 is not essential 

for the natural formation of the cone-to-cone BC synapse but plays a major role in this 

process
51

. The same observation was made in Gβ5
-/-

 mice where there is a significant 

reduction of the number of triads in the OPL of these mice 
52

. Finally, it was also described 

that mGluR6 seems to play a role at the photoreceptor to bipolar cell synapse. Indeed, 



 

invaginating dendrites of RBCs are larger and often contain ectopic ribbons while the 

number of invaginating dendrites of cone ON-BCs and ribbons decrease at the cone pedicles 

in the Grm6
-/-

 mouse model 
31, 53

. In conclusion, there are strong indications that proteins at 

the synapse between photoreceptors and ON-BCs also have a structural role. Similar, 

structural alterations were noted in patients
30

. This could explain the lack of functional 

rescue in our Grm6
-/-

 treated mice, as applying such treatment in adult mice, when the 

synapse is fully formed, might not restore the signal transmission between photoreceptors 

and ON-BCs if the synapse is constitutively diminished. In addition, it has been pointed out 

that mGluR6 was detectable in the rat retina 6-to-8 days post-natal, dispersely distributed in 

the somata and dendrites of the INL cells
54

. It might be essential to provide Grm6 as early as 

P6 to ensure a correct synaptogenesis and later a functional restoration.  

Finally, regulatory proteins that are abolished at the dendritic tips of ON-BCs (RGS7, RGS11 

and Gβ5) when mGluR6 is absent were back at the dendritic tips when mGluR6 was 

observable at the OPL when the retina was treated with GRM6-Grm6 construct but it was 

less evident using the CAG-Grm6 construct. This might partially explain why even if the 

transduction rate was increased by using a CAG promoter, still no functional rescue was 

observed in these treated mice as RGS11 and RGS7 are involved in the sensitivity and time-

course of light-evoked responses
37

.  

We showed here for the first time restoration of mGluR6 localization at the dendritic tips of 

ON-BCs following a gene addition strategy in P15-treatred Grm6
-/-

 mice. This restoration led 

to the relocalization of other partners of the cascade such as TRPM1, GPR179, RGS7, RGS11 

and Gβ5. However, functional rescue after treatment as measured by ERG failed to appear. 

These findings give hope that by improving the vector-promoter combination the efficiency 



 

of ON-BCs transduction will be improved and cCSNB due to mutations in GRM6 could be 

treated.  
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Figure legends 

Figure 1: GRM6 localization after treatment 

A) Representative confocal images of cross-sections centered on the OPL of Grm6
+/+

, Grm6
-/-

, 

Grm6
-/-

-GRM6-Grm6 and Grm6
-/-

-CAG-Grm6 retinas stained with an antibody against GRM6 

(red). Scale bar, 10 µm. B) Specific features of Grm6
-/-

-GRM6-Grm6 (top row, asterisks 

represent putative somas of ON-BCs) and Grm6
-/-

-CAG-Grm6 (bottow row, diffuse staining) 

retinas. ONL: outer nuclear layer, OPL: outer plexiform layer, INL: inner nuclear layer, IPL: 

inner plexiform layer, GCL: ganglion cell layer. Scale bar, 10µm. C) Representative confocal 

images of cross-sections of the entire retina of Grm6
-/-

-GRM6-Grm6 and Grm6
-/-

-CAG-Grm6 

treated mice. Red arrows point GRM6 staining. Scale bar, 100µm. 

Figure 2: Localization of TRPM1 after treatment 

Representative confocal images of cross-sections centered on the OPL of Grm6
+/+

, Grm6
-/-

, 

Grm6
-/-

-GRM6-Grm6 and Grm6
-/-

-CAG-Grm6 retinas co-stained (yellow, merge) with an 

antibody against GRM6 (red) and TRPM1 (green). Scale bar, 10 µm. 

 

Figure 3: Localization of proteins of the ON-BCs signaling cascade after treatment 

Representative confocal images of cross-sections centered on the OPL of Grm6
+/+

, Grm6
-/-

, 

Grm6
-/-

-GRM6-Grm6 and Grm6
-/-

-CAG-Grm6 retinas co-stained (yellow, merge) with an 

antibody against GRM6 (red) and either GPR179, RGS11, RGS7 or Gβ5 (green). Scale bar, 10 

µm. 

Figure 4: ERG recordings  

A) Representative scotopic ERG traces at 2 months post-injection for Grm6
+/+

 (green line), 

Grm6
-/-

 (red line), Grm6
-/-

-GRM6-Grm6 (black line) and Grm6
-/-

-CAG-Grm6 (blue line) at a 



 

flash intensity of 0.03 cd.s/m² under scotopic conditions (left) and of 3.0 cd.s/m² under 

photopic conditions (right). B) Representative scotopic ERG traces at 4 months post-injection 

for a flash intensity of 0.03 cd.s/m² (left) and photopic ERG traces for a flash intensity of 3.0 

cd.s/m² (right).  
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Results 

III. RESTORATION OF NIGHT VISION IN ADULT MICE WITH CONGENITAL STATIONARY NIGHT 

BLINDNESS 

As mentioned before, cCSNB is yet incurable. A suitable approach to treat cCSNB might be 

gene addition. Recently, two reports documented on a partial restoration of the phenotype 

using a gene therapy approach in cCSNB mice lacking nyctalopin and LRIT3. Despite the 

stationary course of the disease, in both reports, a functional rescue was mainly found in 

newborn or very young mice (P2 or P5) while no or a milder rescue was obtained in adult mice 

(P30 orP35). Here, we studied the possibility to induce a functional rescue in adult mice lacking 

Lrit3, and displaying cCSNB, by using three different approaches targeting either ON-BC, 

photoreceptors or both. 

For all three constructs, LRIT3 was produced and well localized in the OPL and this restoration 

allowed the proper relocalization of the channel TRPM1 at the dendritic tips of ON-BCs. 

Protein localization of LRIT3 and TRPM1 at the dendritic tips of ON-BCs, functional rescue 

under scotopic conditions and ON-responses at the ganglion cell level was achieved in a 

limited number of mice when ON-BCs were targeted. Similarly, a few treated adult Lrit3-/- mice 

revealed partial functional restoration when both, ON-BC and photoreceptors were targeted. 

More importantly, significant number of treated adult Lrit3-/- mice revealed high ERG b-wave 

recovery under scotopic conditions, improved optomotor responses and on-time ON-

responses at the ganglion cell level when photoreceptors were targeted. Functional rescue 

was maintained four-month after treatment.  

These findings will be submitted to the journal Molecular Therapy 

Varin J, Bouzidi N, Gauvain G*, Joffrois C*, Desrosiers M, Robert C, Dias MS, Neuillé M, 

Michiels C, Nassisi M, Sahel JA, Audo I, Dalkara D, Zeitz C. Restoration of night blindness in 

adult mice with congenital stationary night blindness. Molecular Therapy (to be submitted) 
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Abstract 

Complete congenital stationary night blindness (cCSNB) due to mutations in TRPM1, GRM6, 

GPR179, NYX or LRIT3 is an incurable inherited retinal disorder characterized by an ON-

bipolar cell (ON-BC) defect. Since the disease is non-degenerative and stable, treatment 

could be administrated at any time making it an attractive target for gene therapy. However, 

until now AAV-mediated therapies lead to functional improvements only in newborn cCSNB 

mice. Here we aimed to restore protein localization and function in adult Lrit3
-/-

 mice. LRIT3 

resides in the outer plexiform layer, is crucial for TRPM1 localization at the dendritic tips of 

ON-BCs and the electroretinogram (ERG)-b-wave. AAV2-7m8-Lrit3 intravitreal injections 

were performed targeting either ON-BCs, photoreceptors (PRs) or both by co-injection. 

Protein localization of LRIT3 and TRPM1 at the dendritic tips of ON-BCs, functional rescue of 

scotopic responses and ON-responses at the ganglion cell level were achieved in a limited 

number of mice when ON-BCs or both PRs and ON-BCs, were targeted. More importantly, a 

significant number of treated adult Lrit3
-/- 

mice revealed an ERG b-wave recovery under 

scotopic conditions, improved optomotor responses and on-time ON-responses at the 

ganglion cell level when PRs were targeted. Functional rescue was maintained for at least 

four-months after treatment.   



Introduction 

Congenital stationary night blindness (CSNB) is a heterogeneous group of non-progressive 

rare inherited retinal disorders (IRD)
1
. The most frequent type of CSNB is the Schubert-

Bornschein-type, which  is due to a disruption of the signal transmission between 

photoreceptors (PR) and ON-bipolar cells (ON-BCs)
1,2

. It can be further subdivided in two 

forms: incomplete CSNB (icCSNB) and complete CSNB (cCSNB)
3
. Here we focus on the latter 

one. cCSNB-affected subjects are mainly characterized by impairment of night vision, 

decreased visual acuity, severe myopia, nystagmus and sometimes strabismus. cCSNB is a 

largely non-degenerative disease with normal fundus. Clinically, it can be diagnosed by full-

field electroretinogram (ERG) recording showing an isolated ON-BC defect 
4
. At low light 

intensities in dark-adapted (DA, scotopic) conditions, the b-wave is absent. With a brighter 

flash, the a-wave is normal, representing normal rod and cone function, while the b-wave is 

absent in keeping with a transmission defect between PRs and ON-BCs. In light-adapted (LA, 

photopic) conditions, the responses to a single flash reveal a sharply arising b-wave with no 

oscillatory potentials and variable but often decreased b/a ratio indicating cone ON-BC 

dysfunction 
2
. This is in accordance with the expression of the genes mutated in patients 

with cCSNB including NYX 
5, 6

, TRPM1 
7-9

, GRM6 
10, 11

, GPR179 
12, 13

 and LRIT3 
14

. Indeed, these 

genes code for proteins localized in the outer plexiform layer (OPL) affecting signal 

transmission between PR and ON-BCs 
2
. Several animal models of cCSNB have been 

described, including Appaloosa horses with a TRPM1 defect, beagle dogs with an LRIT3 

defect and different mouse models lacking genes implicated in cCSNB 
2, 15-17

. All display an 

ERG in scotopic conditions, similar to those of patients: while the a-wave is preserved, the b-

wave is absent. Under photopic conditions Appaloosa horses with the TRPM1 defect and 

beagle dogs with the LRIT3 defect, resemble also the cCSNB phenotype observed in patients 



showing an altered but present b-wave. In contrast, all mouse models for cCSNB show a 

significantly different phenotype than patients showing also a complete absence of the b-

wave under photopic conditions. Herein, we focus on cCSNB due to mutations in LRIT3 that 

codes for the Leucine-rich Repeat Immunoglobulin-like Transmembrane Domain 3 (LRIT3) 

protein and the respective mouse model (nob6 also called Lrit3
-/-

) 
14, 18

. Lrit3
-/-

 mice are 

characterized by the absence of LRIT3 in the OPL, a lack of the ERG b-wave under both 

scotopic and photopic conditions, altered optomotor responses under scotopic conditions 

and abolished ON-responses at the retinal ganglion cell level 
18, 19

. Albeit the role of LRIT3 

has not been completely elucidated, we showed that LRIT3 is crucial for the correct 

localization of TRPM1 at the dendritic tips of all ON-BCs
20

 and that it is a key actor of the 

cone synapse formation/maintenance 
21

. Recently it was suggested that LRIT3 is essential for 

the localization of nyctalopin, encoded by NYX, and that the loss of TRPM1 in mice lacking 

LRIT3 was due to the loss of nyctalopin 
22

. Several gene therapies for IRDs have been 

developed over the years 
23

. However, treatment for CSNB patients is yet unavailable. The 

most suitable treatment for cCSNB appears to be gene replacement therapy. Indeed, cCSNB 

represents a non-progressive disorder, in which retinal morphology is well preserved
 18

, 

genes underlying this disorder have been identified and specific targeting of ON-bipolar cells 

in primate retinas with AAV-vectors has been demonstrated 
24

. Due to this stable non-

degenerative condition, treatment could be in theory administrated at any time. However, 

recent findings revealed functional restoration mainly in very young mice 
25, 26

. Indeed, a 

partial functional rescue of the b-wave under scotopic conditions using an intravitreal AAV-

mediated gene replacement approach has been obtained in mice lacking Nyx, when treating 

mice at P2 and targeting only the bipolar cells 
25

. Similar observations were made in mice 

lacking Lrit3, when mice were injected at P5 or P35 and targeting rod PRs, with more 



significant restoration at P5 
25

. In addition, restoration of the respective proteins, TRPM1 

was also relocalized 
25, 26

. However, restoration of the b-wave under photopic conditions 

could not be obtained 
18, 25, 26

. The aim of our study was to restore the production and 

function of LRIT3 in the adult nob6 mouse model.  



Results 

Immunolocalization studies in human and mouse retinas showed LRTI3 protein in the outer 

plexiform layer (OPL) 
14, 20, 26

. It is a matter of debate whether this correlates with post-

synaptic localization at the dendritic tips of ON-BCs or/and a presynaptic localization at the 

synapse of PRs. Herein, to rescue the phenotype in the nob6 mouse model (referred later as 

Lrit3
-/-

), two different constructs were designed using two different promoters: the 200 bp 

enhancer of the mouse Grm6 gene fused to the SV40 promoter (referred as GRM6 

promoter) that has been shown to drive expression of the transgene specifically to ON-BCs 
24

 

and the hGRK promoter which promotes expression in both, rod and cone PRs 
27

. These two 

constructs were encapsidated in the AAV2-7m8 serotype 
28

 and either injected alone or 

mixed at a ratio of 1:1. Mice injected with the Grm6 promoter construct will be noted as 

Lrit3
-/-

-BC-Lrit3, mice treated with the GRK promoter construct will be referred as Lrit3
-/-

-PR-

Lrit3 and mice injected with both constructs will be named Lrit3
-/-

-OPL-Lrit3 (Figure 1). 

Transgene expression rescues LRIT3 localization at the dendritic tips of ON-BCs 

In the Lrit3
-/-

 mice, LRIT3 production is abolished in the OPL in both rod-to-rod BC and cone-

to-cone BC synapses
20

. The restoration and proper localization of LRIT3 following treatment 

was investigated through immunolocalization studies. All treated retinas, Lrit3
-/-

-BC-Lrit3, 

Lrit3
-/-

-OPL-Lrit3 and Lrit3
-/-

-PR-Lrit3, injected at P30, displayed LRIT3 immunostaining in the 

OPL which is absent in untreated Lrit3
-/- 

retinas. The majority of LRIT3 staining appeared at 

rod-to-rod ON-BC synapses (arrow, Figure 2, LRIT3 left), with fewer LRIT3 staining at cone-to-

cone ON-BC synapses (arrow-head, Figure 2, LRIT3 left) in Lrit3
-/-

-PR-Lrit3 retinas (Figure 2, 

Supplementary Figure 1).  

 



TRPM1 relocalizes to the dendritic tips of rod ON-BCs following treatment  

To ensure correct ON-BC signal transmission, the correct localization of TRPM1 at the 

dendritic tips of ON-BCs is essential. In the Lrit3
-/-

 mouse model, albeit TRPM1 is still present 

in the cell bodies of ON-BCs, the dendritic tip staining at the ON-BCs is abolished in these
 

mice
20

 (Figure 2, TRPM1, right). The relocalization of TRPM1 following treatment in either 

PRs or ON-BCs was investigated through immunolocalization studies. In all treated retinas, 

Lrit3
-/-

-BC-Lrit3, Lrit3
-/-

-OPL-Lrit3 and Lrit3
-/-

-PR-Lrit3, TRPM1 was relocalized at the dendritic 

tips of rod ON-BCs (arrow, Figure 2, TRPM1, right) after treatment:  TRPM1 staining at the 

dendritic tips of cone ON-BCs was undetectable. These results indicate that restoration of 

the signaling cascade was selective for the rod-to-rod ON-BC synapse.   

AAV-mediated LRIT3 expression in the OPL restores the ERG b-wave up to four months 

In Lrit3
-/-

 animals, the transmission of the visual signal between PRs and ON-BCs is disrupted 

as shown by the absence of the b-wave on the ERG under scotopic and photopic conditions
18

 

(Figure 3). ERG recordings performed two months after treatment on Lrit3
-/-

-BC-Lrit3 mice 

injected at P30 revealed a partial rescue of the b-wave under scotopic conditions (Figure 3A, 

left) with the highest restoration at the lowest flash intensity. The amplitude of the b-wave 

corresponded to a rescue of 45% compared to the b-wave amplitudes of Lrit3
+/+

 mice (Figure 

3C). No improvement of the photopic b-wave was recorded in the Lrit3
-/-

 treated mice 

(Figure 3B). However, these results were obtained in a non-significant number of Lrit3
-/-

-BC-

Lrit3 mice. Similarly, ERG recordings in Lrit3
-/-

-OPL-Lrit3 mice treated at P30 also presented a 

b-wave (Figure 3A, middle) which amplitude corresponded to 45% of Lrit3
+/+

 mice at the 

lowest light intensity (Figure 3C). As Lrit3
-/-

-BC-Lrit3 mice, the scotopic b-wave was the 

highest at low flash-intensities and the restoration was only observed under scotopic 

conditions (Figure 3A, 3B and 3C). Only a few treated mice revealed this functional 



restoration. Strikingly, partial restoration was obtained in Lrit3
-/-

-PR-Lrit3 animals (N = 4) 

treated at P30 under scotopic conditions (Figure 3A, right). The amplitude of the b-wave was 

rescued at 58% compared to the b-wave amplitude of Lrit3
+/+

 mice (Figure 3C), but again 

only under scotopic conditions (Figure 3B). To monitor the supposedly sustained partial 

rescue, a follow-up ERG recording was made up to four months post-injection. In all animals 

presenting a b-wave, independently of the construct used, the b-wave was still recordable, 

and of sustained amplitude, four months after treatment (Figure 3D).  

ON-BCs signaling pathway restoration recovers ON-responses in RGCs 

As previously described, in Lrit3
-/-

 mice ON-responses are also abolished at the level of 

retinal ganglion cells (RGCs)
19

 (Figure 4). LRIT3 proper localization is mandatory for TRPM1 

localization and function and therefore for the further propagation of the visual signal 

towards ON-ganglion cells. To confirm the functional rescue following treatment, we used 

256 channel multi-electrode array (MEA-256) to record light-evoked responses in isolated 

retinas from Lrit3
+/+

, Lrit3
-/-

, Lrit3
-/-

-BC-Lrit3, Lrit3
-/-

-OPL-Lrit3 and Lrit3
-/-

-PR-Lrit3 retinas to 

measure the potential ON-responses rescue on ganglion cell level. In contrast with Lrit3
+/+

 

retinas, in untreated Lrit3
-/-

 retinas we observed ON responses with small amplitude and 

high temporal variability (Figure 4A and B). Indeed, in untreated Lrit3
-/-

 retinas only ~5% of 

recorded electrodes displayed ON responses (ON + ON-OFF: 86/1663 responsive electrodes, 

figure 4C). In comparison, RGCs from Lrit3
-/-

-BC-Lrit3 retinas displayed ~40% of ON-

responses: (ON + ON-OFF: 33/85 responsive electrode), but all ON-responses recorded were 

delayed, with an average peak firing rate at 674 ms after light onset. Strikingly, in Lrit3
-/-

-

OPL-Lrit3 and Lrit3
-/-

-PR-Lrit3 retinas, peak firing rate for ON-responses were significantly 

closer to the stimulus onset ( Lrit3
-/-

-OPL-Lrit3 = 454 ms, n= 206, Lrit3
-/-

-PR-Lrit3 = 350 ms, n= 

261, compared to Lrit3
-/-

-BC-Lrit3, p<0.0001). Concerning the number of responsive 



electrodes displaying ON-responses, both Lrit3
-/-

-OPL-Lrit3 and Lrit3
-/-

-PR-Lrit3 retinas 

showed an increase in the proportion of ON-responses in the overall RGCs population 

recorded (Lrit3
-/-

-OPL-Lrit3: ~22%, 206/903 and Lrit3
-/-

-PR-Lrit3: ~32%, 261/801). To establish 

if the rescued ON-responses observed here are due to the restoration of the mGluR6 

signaling, we performed experiments with bath application of the mGluR6 agonist (L-AP4) on 

our different conditions (Supplementary Figure 2). Surprisingly, if L-AP4 blocked the ON-

responses observed in Lrit3
-/-

-OPL-Lrit3 and Lrit3
-/-

-PR-Lrit3 retinas, with reduced firing rate 

and fewer electrodes recording ON-responses, it does not seem to affect the ON-responses 

recorded in Lrit3
-/-

-BC-Lrit3 retinas.  

LRIT3 partial rescue improved optomotor responses in treated mice 

It has been shown that the transmission defect between PRs and ON-BCs in the Lrit3
-/-

 

mouse had an impact on the visual perception of these mice
18

. Thus, treated animals with a 

partial functional rescue observed by ERG recordings and MEA were investigated by 

measurements of optomotor responses. For the two types of treated mice, Lrit3
-/-

-BC-Lrit3 

and Lrit3
-/-

-OPL-Lrit3, optomotor reflexes seemed to be improved compared to untreated 

Lrit3
-/- 

mice, however as specified above only few animals were tested. Strikingly, the Lrit3
-/-

-

PR-Lrit3 mice revealed a significant improvement of the optomotor responses, compared to 

untreated Lrit3
-/- 

mice (n=8), for the two lowest spatial frequencies under scotopic 

conditions (n=4, p=0.006 for the first optometer and p=0.03 for the second, Figure 5). Under 

photopic conditions, Lrit3
-/-

 mice presented diminished optomotor responses compared to 

Lrit3
+/+ 

mice (p=0.001). Under photopic conditions, there was no statistically significant 

improvement of optomotor responses in Lrit3
-/-

-PR-Lrit3 mice compared to untreated Lrit3
-/- 

mice (Figure 5).   



Discussion 

Over 2 million people worldwide are affected by IRDs, yet no treatment is available for most 

cases. A FDA approved gene therapy product has been put on the market for three years to 

treat one of the most severe IRD, Leber Congenital Amaurosis (Luxturna, Sparks 

Therapeutics), due to mutations in RPE65 opening the way for the development of new gene 

therapies for other well characterized IRDs
29-33

. Today, it is still challenging to treat retinal 

disorders involving PR loss, since the therapeutic window is small as the degeneration of PRs 

is taking place 
34

. Thus, to ensure proper targeting of PRs and to increase efficient and 

ongoing treatment, patients need to be treated at early stages of the disease before PR 

degeneration has advanced
23, 34

. In addition, albeit the structure and function of most genes 

in animals are homologous to those in humans and can thus serve as good models to test 

therapeutic approaches, their physiology is often different
35

. Although dogs lacking 

functional RPE65 and treated with a RPE65-gene replacement therapy revealed partial 

restoration of the ERG phenotype, no ERG improvements were recorded in LCA patients 

treated with the same construct 
31, 36

. Here we aimed to restore the cCSNB phenotype, 

another IRD. As the name implicates, cCSNB is present since birth, does not evolve over time 

and represents a signal transmission defect between PRs and ON-BCs 
2
. In addition, the 

retinal structure is preserved, e.g. the morphology of PR and BCs are largely normal; hence, 

treatment should be applicable at adult ages
2
. In contrast, two previously reported gene 

therapy approaches for cCSNB described partial functional rescue mainly in newborn mice 

(P2 or P5 vs. P30)
25, 26

. It was suggested that supplementation of an ON BC-specific transgene 

is most effective when delivered while bipolar cells are still differentiating explaining the lack 

of efficient rescue in adult mice
25, 37, 38

. The lack of efficient therapy in adult nob mice, 

lacking Nyx was thought to be post-transcriptional. Although efficient transgene transcript 



was produced, the protein could not be produced to restore the phenotype in adult mice 
25

. 

Lower treatment efficacy in adult mice, lacking Lrit3 was thought to be also due to the 

function of LRIT3 itself, being most likely important for the development of synapses 
19

. 

Indeed, at P35 synapses are already formed and the therapy would not be as effective as in 

retinas were this process is not completed yet. In addition, AAVs are thought to favor 

immature retinas to mature ones, in keeping with more efficient treatment at P5 than P35 

old mice 
26

. In addition, the strength of the promoter and the specificity of the vectors used 

may influence the efficiency to transfect bipolar cells at different ages. Since a gene therapy 

approach in new born patients is less applicable than in adults and keeping in mind the non-

degenerative nature of the cCSNB disease course, we aimed to restore the cCNSB phenotype 

in adult Lrit3
-/-

 mice (P30). Our study shows for the first time that is it indeed possible to 

obtain a partial rescue of the phenotype, at the protein level and at the functional level, in 

adult CSNB mice, most likely due to the use of a highly specific AAV capsid (AAV2-7m8) 

which has already been shown to efficiently transduce all retinal layers
28

.  

Previously, LRIT3 was thought to be localized post-synaptically at the dendritic tips of ON-

BCs in the OPL due to the isolated ON-BC defect observed in cCSNB patients 
14

 and other 

proteins involved in cCSNB, localizing at the ON-BCs dendritic tips
2
. However, expression 

data 
39

 and recent findings 
26

 suggest PR expression of Lrit3 and presynaptic localization. 

Hence, the pre- or post-synaptic localization of LRIT3 is still not clearly elucidated, but it is 

certainly present in the OPL in human and mouse retina 
14, 21, 22, 26

. Thus, different vector-

promoter combinations were applied to drive efficient OPL-LRIT3 localization in the Lrit3
-/-

 

mice. Our findings using the different approaches clearly revealed partial restoration of the 

cCNSB phenotype, but the question of the exact Lrit3 expression in one or the other retinal 

cell type and if LRIT3 is localized pre- or/and postsynaptically remains unresolved. Indeed, 



partial restoration was obtained when ON-BCs, both ON-BCs and PRs and solely PRs, were 

targeted. However, this rescue could be only shown in a significant number of animals when 

PR cells were targeted. These findings indicate that LRIT3 either targeted to the ON-BCs or 

PR cells can partially restore the localization of LRIT3 and TRPM1 and the visual function, but 

the exact cellular expression and localization is yet not solved. Thus, it seems to be more 

important that LRIT3 can be targeted efficiently to the OPL, than targeting a specific cell 

type. Different reasons may account for the fact that restoration was only obtained in a 

significant number of animals when PR cells were targeted. This might be indeed due to the 

predominant expression of Lrit3 in PRs and thus targeting PRs re-establishes the normal 

pathway. However, our studies showed as well a partial restoration when ON-BCs were 

targeted, although only in few animals. This might be due the fact that BCs are more difficult 

to target than PRs 
40

. In case of co-injection to target both ON-BC and PRs, a stronger 

effectiveness was expected since both sides of the synaptic cleft were targeted; however, 

this was not the case. The effect of each construct might have been decreased by the co-

injection, since each vector was diluted at 50% to have the same injection volume, compared 

to injection of only one construct. One way to circumvent this issue might be to have in the 

same construction Lrit3 under the control of both promoters, hGRK1 and GRM6.  

Interestingly, ERG rescue and improved optomotor responses were only obtained under 

scotopic conditions, indicating that solely night vision was partially restored. In the study 

from Scalabrino and colleagues
25

 partial restoration of the scotopic b-wave was obtained 

while the restoration of the photopic response was less evident, although the authors 

concluded that the photopic ERGs “included components that resemble WT, including a 

waveform ‘deflection’ (oscillatory potential)”. Recently, Lrit3 knock-out mice intravitreally 

injected with an AAV-vector targeting rod-PRs using a rhodopsin promoter revealed partial 



restoration under scotopic but not photopic conditions 
26

. The authors argued that this 

might be due to the fact that only rod but not cone PRs were targeted
26

. However, our study 

using a GRK promoter, targeting both, rod and cone PRs still did not restore the function 

under photopic conditions as shown by ERG and behavioral tests. Previously it was shown 

that cone synapses of Lrit3
-/-

 mice have significantly less invaginating cone ON-BC dendrites 

compared to wild-type animals, indicating a role for LRIT3 in the development and or 

maintenance of the cone synapse
19

. A hypothesis explaining the lack of photopic restoration 

might be that applying such treatment in adult mice, when the synapse is fully formed, will 

not restore the cone-mediated pathway as the transmission between cones and cone ON-

BCs is constitutively diminished. Cone initiate ribbon synapse formation between P4 and P5 

in mice 
41

, and the cone synaptogenesis is completed by P14 to P15
41, 42

. Indeed, although 

our studies revealed LRIT3 relocalization in treated animals, the staining was more present in 

the OPL close to rods than cones. In addition, it did not seem that TRPM1 localization at the 

dendritic tips of cone ON-BCs was restored conversely to rod BCs. This implication of CSNB 

proteins in synaptic development was also noticed in the Grm6
tm1Nak

 mouse, in which 

invaginating dendrites of rod-BC are larger and often contain ectopic ribbons while the number of 

invaginating dendrites of cone ON-BCs and ribbons decrease at the cone pedicle 43, as observed in 

the Lrit3
-/- mouse model 19. Other molecules, implicated in the development of the ribbon 

synapse might be influenced at an early developmental stage by the absence of LRIT3 and 

thus will not be restored when treatment occurs at an adult stage. Treatment at a younger 

age using a promoter targeting cone PRs and delivery of other molecules influenced by the 

absence of LRIT3 might rescue the photopic phenotype in Lrit3
-/- 

mice. However, in general 

the photopic phenotype of cCSNB mice models is more severe than the one of patients or 

larger animal models: no b-wave is observed in photopic conditions in any of the cCSNB 



mouse models 
2
 while cone-driven responses are comparable between CNSB dogs, horses 

and patients e.g. mildly reduced 
2, 15, 16, 44

; scotopic ERG responses are similar in all models 
2
. 

This difference of the cone ERG b-wave might be explained by the different cellular 

contribution that was noted between rodents and primates. For example, in the latter, OFF-

BCs contribute to a large proportion to the cone ERG b-wave responses 
45

 while in the mouse 

cone ERG, only a small contribution of the OFF-BCs was noted 
46

. Therefore, different 

pathways may be implicated in cCSNB mouse model, explaining the absence of functional 

restoration under photopic conditions. Consequently, using a mouse model of CSNB 

displaying a more severe photopic phenotype than patients might therefore not be the ideal 

way to assess cone-driven pathway restoration following treatment. The gene therapy 

approach described in this study should be further tested on larger animal models such as 

the CSNB beagle dog affected by LRIT3 mutations 
47

 in order to more precisely evaluate the 

photopic phenotype. To conclude, this study reports a restoration of night vision in adult 

mice displaying congenital stationary night blindness as assessed by immunolocalization 

studies, ERG recordings, MEA analysis and optomotor responses measurements. 

  



Material & Methods 

Ethical statement 

All animal procedures were performed according to the Council Directive 2010/63EU of the 

European Parliament and the Council of September 22, 2010, on the protection of animals 

used for scientific purposes, with the National Institutes of Health guidelines and with the 

ARVO Statement for the Use of Animals in Ophthalmic and Vision Research. They were 

approved by the French Minister of National Education, Superior Education and Research 

(authorization delivered on January 21, 2019). 

AAV production 

The production of recombinant AAVs was made by following the plasmid cotransfection 

method
48

. Lysates were then purified using iodixanol gradient ultracentrifugation as 

previously described: 40% iodixanol fraction was concentrated and buffer exchanged using 

Amicon Ultra-15 Centrifugal Filter Units (Merck Millipore, Billerica, MA, USA). Real-time PCR 

was used to titer the vector stocks for DNase-resistant vector genomes relatively to a 

standard 
49

. 

Intravitreal injections 

Mice were anesthetized by isoflurane inhalation (5% in oxygen for induction and 2% for 

maintenance). Intravitreal injections were performed at 2 (P2) or 30 (P30) days of age. Pupils 

were dilated (0.5% mydriaticum) and a 33-gauge needle was passed through the sclera at 

the ora serrata level. 1 µl of a viral stock solution at a concentration of 1.73 10
14

 vg/ml 

maximum was injected directly in the vitreous cavity. 



Electroretinogram 

Mice were dark-adapted overnight before performing the ERG recordings. They were 

anesthetized by ketamine (80mg/kg) and xylazine (8mg/kg) and eye drops were used to 

dilate their pupils (0.5% mydriaticum 5% neosynephrine) and anesthetize the cornea (0.4% 

oxybuprocaine chlorohydrate). Mice corporal temperature was maintained through a 

heating pad along the test. Upper and lower eyelids were retracted to keep the eyes opened 

and bulging. Corneal lenses (Mayo Corporation, Japan) were applied on corneal surface to 

record the ERG. A reference electrode was placed on the nose while the ground electrode 

was placed above the tail. Recordings from both eyes were made in parallel. All scotopic ERG 

were made first using six increasing light intensity of flashes ranging from 0.003 to 30.0 

cd.s/m². Each trace corresponding to one light-intensity results from the average of five 

traces originating from five flashes. To ensure a saturation of rod PRs and the recording of 

cone-driven responses, a 10-minutes light-adaptation step at 20 cd/m² was done. Following 

this light-adaptation step, photopic ERGs were recorded first at 3.0 cd.s/m² and at the same 

intensity; 5 Hz and 10 Hz flickers were also checked. All data were analyzed with GraphPad 

Prism v.6 (GraphPad Software, La Jolla, CA, USA) 

Optomotor test 

Optomotor test was performed as described previously 
18

. Mice were dark-adapted 

overnight before the optomotor test. Ten wild-type animals and ten knock-out animals of 

each lineage were studied along with the treated animals. Mice were placed on a grid 

platform (11.5 cm diameter, 19 cm above the bottom of the drum) at the center of a 

motorized drum (29 cm diameter) covered by vertical black and white stripes of a defined 

spatial frequency (0.063, 0.125, 0.25, 0.5 and 0.75 cycles per degree). A five minutes break 



was made before the test so the animal gets used to its new environment. The stripes were 

rotated for 1 minute clockwise and 1minute counter-clockwise at a speed of 2 rotations per 

minute. An interval of 10 sec was made after the first minute. Each test was recorded with a 

digital infrared camera to count head movements of the mice. Tests were firstly performed 

under scotopic conditions then in photopic condition after 5 minutes of light adaptation 

(two lamps of 60 Watts). Head movements in both directions were considered to obtain the 

number of head movements per minute. 

MEA 

After overnight dark adaptation, mice were sacrificed by CO2 inhalation followed by cervical 

dislocation. Retinas were carefully dissected under dim-red light and conserved in Ames 

medium (Sigma-Aldrich, St. Louis, MO, USA) oxygenated with 95% oxygen and 5% CO2. 

Retinas were placed on a Spectra/Por membrane (Spectrum Laboratories, Rancho 

Dominguez, CA, USA) previously coated with poly-D-lysine and gently pressed against an 

MEA (MEA256 100/30 iR-ITO; Multi Channel Systems MCS, Reutlingen, Germany) using a 

micromanipulator, RGCs facing the electrodes. Retinas were continuously perfused with 

bubbled Ames medium at 348C at a rate of 1 to 2 ml/min and let to rest for 45 minutes 

before the recording session. Under dark conditions, 10 repeated full-field light stimuli at a 

450 nm wavelength were applied to the samples at 1014 photons/cm2/s for 2 seconds with 

10-second interval by using a Polychrome V monochromator (Olympus, Hamburg, Germany) 

driven by an STG2008 stimulus generator (MCS). Raw RGC activity recorded by MEA was 

amplified (gain 1000–1200) and sampled at 20 kHz by using MCRack software (MCS). 

Resulting data were stored and filtered with a 200-Hz high-pass filter. Raster plots were 

obtained by using a combination of threshold detection, template matching, and cluster 

grouping based on principal component analysis using Spike2 v.7 software (CED Co., 



Cambridge, UK). Peristimulus time histograms were plotted with a bin size of 50 ms by using 

a custom-made script in MATLAB v.R2014b (MathWorks, Inc., Natick, MA, USA). Only RGCs 

with a mean spontaneous firing frequency superior to 1 Hz were considered. We 

subsequently determined for each sorted RGC the maximum firing frequency in an interval 

of 2 seconds after light onset (for ON-responses) and in an interval of 2 seconds after light 

offset (for OFF-responses). These values were normalized to the mean spontaneous firing 

frequency of the corresponding RGC. Considering that significant responses have a 

maximum firing frequency that is superior to the mean spontaneous firing frequency þ 5 SD, 

we determined the time at which these significant frequencies were reached after the light 

onset for ON-responses and after the light offset for OFF-responses. The histograms were 

traced with GraphPad Prism v.6 (GraphPad Software, La Jolla, CA, USA).  

Immunolocalization studies 

Animals were sacrificed by CO2 inhalation followed by cervical dislocation. Eyes were 

removed and dissected to keep the posterior part of the eyes which were then fixed in ice-

cold 4% paraformaldehyde for 20 minutes. Subsequently, the eye cups were washed in ice-

cold PBS and cryoprotected by increasing concentrations of sucrose (ranging from 10% to 

30%) in water and 0.24 M phosphate buffer for 1 hour at 4°C for 10% sucrose and 20% 

sucrose solutions and overnight at 4°C under agitation for the 30% sucrose solution. The eye-

cups were then embedded in 7.5% gelatin - 10% sucrose and the blocks frozen at -40°C in 

isopentane and kept at -80°C until cutting. Sections of 12 µm were generated using a 

cryostat (MICROM HM 560™, ThermoFisher Scientific, Waltham, MA, USA) and mounted on 

glass slides (Superfrost® Plus, ThermoFisher Scientific). Mouse retina sections were treated 

to decrease background noise (Antigen Retrieval Reagent, Biotechne, Minneapolis, MN, USA) 

for 4 minutes at 92°C and subsequently blocked for 1 hour at room temperature in PBS1X 



10% Donkey Serum (v/v), 0.1% Triton X-100. Primary antibodies and the dilutions used were: 

rabbit anti-LRIT3 (1:200, Neuillé et al., 2015) and sheep anti-TRPM1 (1:500; Cao et al). The 

sections were incubated with primary antibodies diluted in PBS1X 2% Donkey Serum (v/v), 

0.1% Triton X-100 for 1 hour at room temperature. After washes with PBS1X 0.1% Triton-

X100, the sections were incubated with anti-rabbit and anti-sheep secondary antibodies 

coupled with Alexa Fluor 488, or Cy3 (Jackson ImmunoReserach) along with 4’,6-diamidino-

2-phenylindole (DAPI), all used at 1:1000, for 0.5 hours at room temperature. Subsequently, 

the sections were cover-slipped with mounting medium (Mowiol, Merck Millipore, Billerica, 

MA, USA). Fluorescence images retinal sections were acquired with a confocal microscope 

(FV1000, Olympus). Images for figures were handled with the Image J software (ImageJ 

Software). 

  



Figure legends 

Figure 1: Schematic representation of the cellular targets of the three constructs. 

PR-Lrit3 construct targeting both, rod (grey) and cone (blue, green and red) PRs, the BC-Lrit3 

construct targeting both, rod (dark orange) and cone ON-BCs (light orange) and the OPL-Lrit3 

construct targeting both, rod and cone PRs and ON-BCs by co-injection of the PR-Lrit3 and 

BC-Lrit3 constructs. 

Figure 2: Localization of LRIT3 and TRPM1  

Representative confocal images of cross-sections centered on the OPL of Lrit3
+/+

, Lrit3
-/-

, 

Lrit3
-/-

-BC-Lrit3, Lrit3
-/-

-OPL-Lrit3 and Lrit3
-/-

-PR-Lrit3 retinas stained with an antibody against 

LRIT3 (green) and TRPM1 (red). Scale bar, 10 µm. 

Figure 3: ERG recordings. 

A) Representative scotopic ERG traces at 2 months post-injection for Lrit3
+/+

 (green line), 

Lrit3
-/-

 (red line), Lrit3
-/-

-BC-Lrit3 (blue line), Lrit3
-/-

-OPL-Lrit3 (purple line) and Lrit3
-/-

-PR-Lrit3 

(black line) mice, values on the right of the row of waveforms specify the flash intensity in 

log cd.s/m². B) Representative photopic ERG traces at 2 months post-injection for a flash 

intensity of 3.0 cd.s/m². C) Average amplitude of the scotopic ERG b-wave at 2 months post-

injection. D) Comparison between the average amplitude of the scotopic ERG b-wave at 2 

months (filled) and 4 months (hatched) post-injection for Lrit3
-/-

-BC-Lrit3 (blue), Lrit3
-/-

-OPL-

Lrit3 (purple) and Lrit3
-/-

-PR-Lrit3 (black) mice, no statistically significant difference between 

2 and 4 months for the Lrit3
-/-

-PR-Lrit3 mice (Wilcoxon statistical test, p=0.8). 

Figure 4: ON responses in treated retinas using MEA-256 recordings.  



A) Spike density function for all responsive electrodes displaying an ON component (ON only 

and ON-OFF) recorded on all treated retina (1 Lrit3
-/-

-BC-Lrit3 (85 responsive electrodes), 1 

Lrit3
-/-

-OPL-Lrit3 retina, 4 Lrit3
-/-

-PR-Lrit3 retina, 7 Lrit3
-/-

 retina and 6 Lrit3
+/+

 retina). Light 

stimuli is indicated as a black bar and light grey area, responses recorded at individual 

electrode are displayed as grey line (average of 10 repetitions), the peak firing rate 

amplitude and latency is overlaid with the traces as colored open circle. Lrit3
+/+

recording 

have a different scaling (upper left) than all other conditions (middle). B) ON peak firing rate 

(up) and ON peak latency (bottom) for all responsive electrodes in the different conditions. 

Horizontal black bar represent the average value, and vertical black bar the mean +/- SD. C) 

Fraction of the electrode population displaying ON, ON-OFF or OFF profile of response. 

Unresponsive electrodes are electrodes where spontaneous activity is recorded without 

light-evoked spiking. 

Figure 5: Optomotor responses under both scotopic and photopic conditions   

The number of head movements per minute was obtained under both scotopic and photopic 

conditions with spatial frequencies of 0.063 and 0.125 cycles/degree (scotopic) or 0.063 

alone (photopic) for Lrit3
-/-

-BC-Lrit3 (blue), Lrit3
-/-

-OPL-Lrit3 (purple) and Lrit3
-/-

-PR-Lrit3 

(black) mice and compared using Mann-Whitney statistical test with representative Lrit3
+/+

 

(green) and Lrit3
-/-

 (red) mice. The star indicates a significant test (p<0.05).  

 

Figure S1: Localization of LRIT3  

Representative confocal images of cross-sections of Lrit3
-/-

-BC-Lrit3, Lrit3
-/-

-OPL-Lrit3 and 

Lrit3
-/-

-PR-Lrit3 retinas stained with an antibody against LRIT3 (green). Scale bar, 10 µm. 

 



Figure S2: L-AP4 treatment reduce restored ON responses. 

A- Spike density function for all recorded electrodes with ON responses (grey), before 

(control), during (L-AP4), and after (Washout) perfusion of L-AP4. Peak indicated on 

individual traces during the light stimulation (light grey area). B- Peak firing rate for the 

different condition during the pharmacological experiment. C- Evolution of the number of 

electrodes with a ON response with the addition and removal of L-AP4 in the solution.  
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Discussion & Perspectives 
Congenital stationary night blindness (CSNB) is a clinically and genetically heterogenous 

inherited retina disorder [17]. My PhD thesis mainly concentrated on the complete form of 

CSNB (cCSNB). This form is the only retinal disorder which solely affects the function of ON-

BCs. However, ON-BC defects have already been associated with other clinical features as in 

Duchenne Muscular Dystrophy [218] and more importantly for this work, in paraneoplastic 

retinopathy (PR) and frequently in melanoma associated retinopathy (MAR) [219]. 

Interestingly, both, mutations in TRPM1 or abolishment of TRPM1 due to anti-TRPM1 

autoantibodies present in patients with PR lead to this ON-BC defect. In this thesis, we focused 

on both conditions affecting the ON-BC function. 

I. IDENTIFICATION OF AUTOANTIBODIES INVOLVED IN PARANEOPLASTIC RETINOPATHY 

ASSOCIATED WITH ON-BCS DYSFUNCTION: FUNDAMENTAL AND THERAPEUTIC 

INTEREST 

As mentioned before, mutations in TRPM1 is one cause of cCSNB [71-80] and was identified 

by a candidate gene approach by comparing the ON-BC defect observed in Appaloosa horses 

with patients with cCSNB. Indeed, TRPM1, also known as Melastatin (MLSN1) was significantly 

down-regulated in the retina and the skin in affected animals [86]. Thus it was proposed that 

TRPM1 is responsible for altering BC signaling but also melanocyte function causing both CSNB 

and the coat color phenotype in  those horses [220]. The insertion of 1kb in the first exon of 

TRPM1 causing CSNB and LSC in Appaloosa horses leads to the disruption of the transcription 

by premature poly-adenylation[86]. In TRPM1-related cCSNB in patients, no skin phenotype 

has been documented [73-75]. However, my host laboratory recognized in some patients with 

TRPM1 mutations [73] specific skin features (unpublished data, Table 4). In other families 

either no data about the skin pigmentation was available or patients did not show any striking 

differences or this phenotype did not co-segregate with the mutation. A more systematic 

study is needed to evaluate if TRPM1 mutations are indeed associated with pigmentation in 

humans. 
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Table 4: Patients harboring mutations in TRPM1 leading to cCSNB and which presented unusual skin features 

Reference 

number of 

the patients 

Nucleotide 

exchange 

Allele 

state 
Protein effect 

Ocular 

phenotype 

Skin 

features 

4497 
Tuebingen, 

Germany 

c.31C>T 

c.296T>C 

het 

het 

p.Gln11Stop 

p.Leu99Pro 

cCSNB 

nystagmus 

myopia 

mild vitiligo 

8214 
Tuebingen, 

Germany 

 

c.1197G>A 

c.3491delA 

het 

het 

c.Pro399Pro/splice 

defect? 

p.Gln1164ArgfsX31 

cCSNB 

myopia 

strabismus 

psoriasis 

CIC00612 

Paris, France 

c.215A>G 

c.3094G>T 

het 

het 

p.Tyr72Cys 

p.Glu1032Stop 

cCSNB 

myopia 

nystagmus 

strabismus 

freckles in 

1 het and 1 

homo for 

normal 

alleles 

D0704708 
Ghent, Belgium 

/27533 
Zurich, 

Switzerland 

c.1-27C>T 

(70+TRPM1) 

alternatively: 

c.40C>T 

(92+TRPM1) 

homo 

5’UTR 

 

 

p.Arg14Trp 

cCSNB 

strabismus 

hypermetropia 

2 of 4 het 

have pale 

skin with 

freckles 

 

The goal of my work was to identify autoantibodies in three females affected with cutaneous 

melanoma which presented an ON-BC defect upon ERG. Using immunolocalization studies, 

western blot analysis and immunofluorescence on wild-type and Trpm1-/- mice retinal 

cryosections, we validated the presence of anti-TRPM1 autoantibodies in the sera of these 

new cases of MAR. Furthermore, as the human TRPM1 exists in three isoforms which differ in 

their N-terminus [147], we investigated the reactivity of these autoantibodies towards all 

TRPM1 isoforms. All three sera contained antibodies reacting to the three isoforms of TRPM1, 

albeit with different apparent sensitivity. They presumably recognized an epitope that is 

common to all three TRPM1 isoforms, encoded some place after exon 2, consistent with the 

literature [143]. The sensitivity to detect the different isoforms of TRPM1 was different and 
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was method-dependent. This was especially true for the anti-TRPM1 autoantibodies present 

in MAR3, which failed to label the shortest isoform of TRPM1 in the overexpressing cell system 

by immunofluorescence, yet detected it by western blot after enrichment, and labelled 

TRPM1 robustly on mouse retinal sections. 

Paraneoplastic syndromes can sometimes be more complex due to the occurrence of multiple 

autoantibodies in the same patient [221] or autoantibodies targeting different retinal proteins 

in different patients [219]. Indeed, reports mentioned autoantibodies against TRPM1 but also 

Bestrophin, aldolase A and C or interphotoreceptor retinoid-binding protein in patients with 

MAR. Studying the reactivity of the autoantibodies of patients with paraneoplastic 

retinopathy associated ON-BC dysfunction could reveal new proteins involved in the signaling 

cascade of ON-BCs. This identification and characterization of the causing autoantibodies can 

help to establish the proper treatment for these patients. For instance, Roels and colleagues 

[144] reported the case of a patient with CAR and presenting anti-TRPM1 autoantibodies. 

Following the treatment of this patient with rituximab in order to decrease the immune 

response, the serology proved the clearance of the anti-TRPM1 autoantibodies. This led to a 

normalization of the ERG and an improvement of the symptoms in this patient [144].  

Following this identification of autoantibodies in the sera of three new MAR cases and the 

subsequent publication [222], we became a reference center to analyze the sera of patients 

displaying an ON-BC defect associated with different types of cancer. 

II. TREATING CSNB THROUGH GENE THERAPY 

In this thesis we developed two gene therapy strategies to treat cCSNB either due to 

mutations in LRIT3 or GRM6. In both we succeeded to relocalize mGluR6 or LRIT3 at the OPL 

while they were absent in Grm6-/- and Lrit3-/- mice, respectively. However, we managed to 

obtain a functional rescue only for the LRIT3 approach and under scotopic conditions.  

Efficient ON-BCs targeting 

For both project we used the AAV2.7m8 serotype combined with different promoters: the 

Grm6-200bp/SV40 promoter [46] to target ON-BCs, the CAG promoter [164] to induce a wide 

expression of mGluR6 in the retina and the hGRK1 promoter to target photoreceptors in the 

LRIT3 gene therapy. These choices were made in collaboration with Dr. Deniz Dalkara. Indeed, 
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the AAV2.7m8_Grm6-200bp/SV40 combination used by Macé and colleagues, led to an 

expression of GFP in about 52 to 74% of ON-BCs in 4- to 8-weeks-old rd1 mice [46]. These 

proportions were of interest for our project since we wanted to test a gene therapy approach 

for cCSNB in adult mice. However, only a few mice injected with the construct targeting ON-

BCs responded to the treatment in the LRIT3 approach while only ~2.5% of the OPL presented 

an mGluR6 staining in treated Grm6-/- mice vs. ~11% with a CAG promoter. Therefore, it 

appears that the transduction of ON-BCs was a limitation in both projects. 

The two reports of AAV-mediated gene therapy for CSNB used different AAV serotypes and 

promoters than the ones used in this thesis (Table 5, grey lines). However, Scalabrino and 

colleagues aimed also to target ON-BCs to relocalize nyctalopin at the dendritic tips of ON-

BCS. They reported a production of the protein in about 21% of ON-BCs and a much lower 

percentage in P30 injected mice [198]. Functional rescue was investigated and scotopic ERG 

responses showed a partial rescue of the b-wave and photopic responses had “components 

that resembled the one found in wild-type” but in P30 injected mice no improvement was 

observed [198]. The low percentage of ON-BCs expressing the protein might be one reason 

explaining the mild functional rescue is these cCSNB mice, as in our mGluR6 approach.  

Over the years, different AAV_promoter combinations have been identified and modified in 

order to increase the transduction efficiency of the retina [152]. Table 5 summarizes the 

different AAV serotypes and promoters described to target ON-BCs through intravitreal or 

subretinal injections. During this thesis, new promoters targeting ON-BCs were reported as 

inducing an increase in ON-BCs targeting compared to the AAV2.7m8_Grm6-200bp/SV40. The 

AAV2.7m8-Y444F_ In4s-In3-200En-mGluR500P combination was described as inducing 

increasing transduction efficiency compared to AAV2.7m8_Grm6-200bp/SV40, however, with 

an expression predominantly in RBCs [223] and the AAV2.7m8_770En_454P(hGRM6) 

displayed a 70.6% ± 5% specificity towards ON-BCs in 12-weeks-old wild-type mice [224]. 

Using these constructs to try to increase the production of mGluR6 in Grm6-/- mice and restore 

a functional rescue should be investigated. 
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Table 5: AAV serotypes and promoters used to target ON-BCs in the retina 

AAV serotype Promoter Targeted cells 
Route of 

administration 
In vivo validation First publication 

AAV2.7m8 
GRM6-200bp/SV40 ON-BCs IVT Mouse Macé et al 2015 

770En_454P(hGRM6) ON-BCs IVT Mouse Hulliger 2020 

AAV2 

(Y252,272,444,500, 

700,730F) 

GRM6/svV40 ON-BCs 
Subretinal and 

IVT 
Mouse Van Wyck 2015[225] 

AAV2/2-Y444F 

mGluR500P Mostly RBCs IVT Mouse Lu 2016 

200En-SV40 Mostly RBCs IVT Mouse Lu 2016 

In4s-In3-200En-mGluR500P ON-BCs IVT Mouse and marmoset Lu 2016 

AAV2.7m8-Y444F In4s-In3-200En-mGluR500P ON-BCs IVT Mouse and marmoset Lu 2016 

AAV2/8BP2 4xGRM6-SV40 ON-BCs 
Subretinal and 

IVT 
Mouse Cronin 2014[226] 

AAV2(quadY-F+T-V) Ple155 BCs IVT Mouse Scalabrino 2015 

AAV2/2[MAX] RHO Rods IVT Mouse Hasan 2019 
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Timing of treatment 

cCSNB is congenital and stationary and yet no treatment is available. Gene therapy seems 

the best approach and should be, in theory, applicable at any age. 

The first attempt to restore the cCSNB phenotype was done in the nob model, lacking Nyx. 

Gregg and colleagues generated transgenic mice through pronuclear injection of a transgene 

consisting of a promoter fragment of the GABACρ1 gene, to drive the expression of the gene 

in BCs, and the cDNA of the murine Nyx gene fused to EYFP. These animals were bred with 

Nyxnob/nob mice leading to heterozygous mice producing the EYFP-Nyx protein, and called “nob 

rescued”. EYFP-Nyx was localized to the dendritic tips of ON-BCs in these nob-rescued mice, 

along with ERG responses under both scotopic and photopic conditions and RGCs ON-

responses [195]. This study showed that a wild-type copy of nyctalopin expressed in BCs was 

sufficient to restore the cCSNB phenotype in nob mice, when introduced prior to birth. 

In the first LRIT3 gene therapy proof-of-concept, a stronger functional rescue was obtained in 

P5 injected mice (about 45% of the b-wave amplitude found in wild-type) compared to P35 

injected mice (about 20%). Similarly, no functional rescue was obtained for the Nyx gene 

therapy approach in P30 treated animals while a partial rescue of the scotopic b-wave was 

observed in P2 treated animals [198]. In parallel, we decided to try to restore LRIT3 expression 

in P30 Lrit3-/- mice. When targeting photoreceptors, we managed to partially restore the ERG 

b-wave under scotopic conditions in adult Lrit3-/- mice in an even better proportion than in P5 

animals as described by Hasan and coworkers [126]. In regard to these three studies, the 

choice of the AAV/promoter is decisive to ensure an efficient transduction of the adult retina. 

However, in the Nyx approach, photopic responses rescue was mild and was described as 

having “components that resembled the one found in wild-type”.  In the study by Hasan and 

colleagues, at both ages, no photopic ERG responses were recorded, probably due to the use 

of the rhodopsin promoter which is supposed to drive the expression of the transgene in rod 

photoreceptors [126]. In our LRIT3 approach, no photopic restoration was noted even in mice 

that presented a strong rescue under scotopic conditions. These gene therapy approaches for 

cCSNB point out the fact that photopic restoration is harder to achieve than scotopic rescue.  
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Photopic rescue 

It has been shown that proteins involved in either icCSNB or cCSNB also have a role in synapse 

formation and/or maintenance. Indeed, in Lrit3-/- mice, a decreased number of invaginating 

contacts made by CBCs in the cone pedicle and a striking decrease in the number of triads 

[47]. Normal cone pedicles were also observed indicating that LRIT3 is not essential for the 

natural formation of the cone-to-cone BC synapse but plays a major role in this process [47]. 

Furthermore, peanut agglutinin (PNA) staining is abolished in the OPL of Lrit3-/- mice [24] and 

LRIT3 mutated dogs [90], meaning that conformation of the synapse is distorted in these 

animals [90]. It was also described that that mGluR6 seems to play a role at the photoreceptor 

to BC synapse. Indeed, invaginating dendrites of RBCs are larger and often contain ectopic 

ribbons while the number of invaginating dendrites of cone ON-BCs and ribbons decrease at 

the cone pedicles in the Grm6tm1Nak mouse model [121, 122]. The same observation was made 

in Gβ5-/- mice where there is a significant reduction of the number of triads in the OPL of these 

mice [227]. Finally, it has been previously showed that Cav1.4, encoded by CACNA1F which 

mutations induce icCSNB, plays a role in the synaptic development and maintenance since the 

loss of this calcium channel at the synapse provokes gross morphological abnormalities of the 

presynaptic terminal, like shorten ribbons [191-193]. In conclusion, there are strong indicators 

that proteins at the synapse between photoreceptors and ON-BCs also have a structural role. 

This would explain the lack of photopic rescue in our Lrit3-/- treated mice, as applying such 

treatment in adult mice, when the synapse is fully formed, might not restore the cone-

mediated pathway as the transmission between cones and cone ON-BCs is constitutively 

diminished. Cone initiate ribbon synapse formation between P4 and P5 in mice [228], and the 

cone synaptogenesis is completed by P14 to P15[228, 229]. It would also clarify why P2 

animals in the NYX gene therapy better responded to the treatment than P30 mice, and 

consistent with normal photopic responses noted in “nob rescued” animals [195]. Expression 

studies of the different proteins of the ON-BCs signaling cascade throughout the development 

of the retina would be interesting to perform. It also cannot be excluded that these proteins 

are important for synaptogenesis in mice but might not be in humans. Therefore, for the LRIT3 

project, it would be interesting to perform injections with our construct targeting both rods 

and cones in younger mice, to decipher if the lack of photopic rescue is solely due to the timing 

of treatment. 
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However, in general the photopic phenotype of cCSNB mice models is more severe than the 

one of patients or larger animal models: no b-wave is observed in photopic conditions in any 

of the cCSNB mice models [17] while cone-driven responses are comparable between CNSB 

dogs, horses and patients e.g. mildly reduced [17, 82, 87, 88]; scotopic ERG responses are 

similar in all models [17]. Different cellular contribution in the origin of the photopic b-wave 

noted between rodents and primates might explain this difference of the cone ERG b-wave. 

For example, in the mouse cone ERG, only a small contribution of the OFF-BCs to the photopic 

b-wave was noted [230] while OFF-BCs contribute to a large proportion to the cone ERG b-

wave responses in primates [231]. Therefore, different pathways may be implicated in cCSNB 

mouse model, explaining the absence of functional restoration under photopic conditions. 

Consequently, using a mouse model of CSNB displaying a more severe photopic phenotype 

than patients might therefore not be the ideal way to assess cone-driven pathway restoration 

following treatment. Recently a CSNB beagle dog affected by LRIT3 mutations was described 

[88, 90] and the testing of the gene therapy approach described in this thesis on this large 

animal model would probably evaluate more precisely the photopic phenotype restoration 

after treatment. 

III. WHAT IS LEFT TO DECIPHER 

Following the testing of two different promoters to drive the expression of Lrit3 either in ON-

BCs or in photoreceptors as described in this thesis, the exact localization of LRIT3 is still 

puzzling. Previously, LRIT3 was thought to be localized post-synaptically at the dendritic tips 

of ON-BCs in the OPL due to the isolated ON-BC defect observed in cCSNB patients [79] and 

other proteins involved in cCSNB localize at the ON-BCs dendritic tips [17]. However, 

expression data [127] and recent findings [126] suggest photoreceptor expression of Lrit3 and 

presynaptic localization. Hence, the pre- or post-synaptic localization of LRIT3 is still not clearly 

elucidated, but it is certainly present in the OPL in human and mouse retina [79, 116, 125, 

126] . We also obtained a restoration of the functional phenotype when targeting ON-BCs, PRs 

or both. One way to decipher the exact localization of LRIT3 would be through expansion 

microscopy [232]. This technique allows much a higher-resolution than regular light 

microscopy. Following staining of LRIT3, this technique would allow observing the synapse 

between photoreceptors and ON-BCs in a much precise way and concluding on the localization 

of LRIT3. 
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TRPM1 is the second most prevalent gene causing cCSNB, is expressed by both melanocytes 

and ON-BCs and is crucial for the proper signal transmission between photoreceptors and ON-

BCS [147]. Yet, TRPM1 gene therapy has not been tested. Indeed, its relatively big size (5.4 kb) 

prevents its encapsidation in AAVs. This issue, encountered in several other IRDs like 

Stargardt’s disease (STGD1) or Usher Syndrome type 1B (USH1B), could in theory be overcame 

by the use of the dual AAV technique or lentiviral vectors. Dual AAVs can be used to each one 

encapsidate one part of the gene that will, once injected, reconstitute the gene by splicing, 

homologous recombination or a combination of both. This technique has already been 

validated in mice models of STGD1 or USH1B after subretinal injection [233]. However, the 

studies published about dual AAVs so far did not described expression levels that matched the 

ones obtained with a single AAV vector [234-236]. Lentiviral vectors (LV) are less efficient in 

photoreceptor transduction than AAVs [237]. However, the EIAV LV subtype of LV showed 

photoreceptors transduction in the macaque retina after subretinal injection [238]. To date, 

none of these approaches have been tested using intravitreal injection to target ON-BCs. 
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