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Introduction

The current situation in particle physics is quite peculiar. For many years, experimentalists have been on
the lookout for what could be the next step in determining the fundamental constituents of matter and their
interactions. This search for the next step has been done having certain guidelines from experiment about what
to look for (in terms of energy and processes), as the observed phenomena were not well explained with the
already known particles and interactions. This was the case for instance for Deep Inelastic Scattering probing
the theory of strong interactions and supporting the physical existence of quarks and gluons, later on, looked for
in jet events in e+e− collisions. Similarly, Flavour Changing Neutral Currents provided a test for the structure
of electroweak interactions and an indication for vector bosons that were, later on, looked for through direct
production in pp̄ collisions. However, since the discovery of the Higgs boson in 2012, the Standard Model is now
“complete”, meaning that it is very well understood and well tested in all scales and sectors, making the next
step unclear.

Several reasons lead us to believe that the Standard Model is not the final answer, the most obvious one being
that gravity is not explained by it and it cannot be easily reconciled with it. This implies the breakdown of the
Standard Model and General Relativity at least when energies close to the Planck mass are reached. However,
several more subtle problems of the Standard Model and indications of New Physics exist which will suggest that
we can expect to find new particles at a lower scale. For instance, some of these hints are related to astrophysical
and cosmological observations, which suggest the existence of Dark Matter without which the formation and
dynamics of large scale structures (galaxies, clusters) cannot be explained in a satisfying way. Additionally, new
sources of CP-violation are required to explain the baryon asymmetry needed to explain cosmological data which
is much larger than the one predicted by the Standard Model. Furthermore, if no new particles are present close
to the electroweak scale, high levels of fine-tuning are required to explain the mass of the Higgs boson, which is
often referred to as the Hierarchy problem.

Unfortunately, no new particles have yet been found by direct search at the Large Hadron Collider, which
indicates that the energy of these new particles might be too high or their couplings to SM particles might be
too weak to be detected by current experiments. Furthermore, these particles should in principle appear in
indirect searches if these are precise enough since they would induce quantum corrections to the SM predictions
of many processes. In fact, indirect searches at lower energies predicted in the past the existence of heavier
particles, for instance, the charm quark was predicted by the Glashow-Iliopoulos-Maiani mechanism in kaon
mixing, and the top quark mass was also constrained by B − B̄ mixing.

The next step may be difficult to identify currently, but there are a few experimental clues worth considering.
This is in particular the case of the so-called b-quark anomalies (or flavour anomalies), which are one of the few
deviations from SM predictions that have been observed. These anomalies, affecting two different transitions
b → c`ν̄ and b → s`+`−, started with the measurement of an excess in the B → D∗τ ν̄ branching fraction by
BaBar in 2012 and with the measurement of deviations in the angular observables of B → K∗µ+µ− by LHCb
in 2013, since then triggering an intense activity both in the theory community and in several experimental
collaborations. Nowadays, these deviations arise in a series of observables measured both at the B-factories Belle
and BaBar, and at the Large Hadron Collider experiments, LHCb, CMS and ATLAS showing fairly consistent
deviations in b-hadron semileptonic decays.

The most robust of these deviations are found in the Lepton Flavour Universality Ratios, RD(∗) which
compare the branching fraction of B → D(∗)`ν̄ for τ and light leptons and RK(∗) which compare the branching
fraction of B → K(∗)`+`− for muons and electrons, presenting tensions of over 3σ on both sides. Further
deviations have been observed for the branching fractions and angular observables of several decay modes with
different New Physics sensitivity leading to an overall picture of Lepton Flavour Violating New Physics affecting
these decays.

Global analyses of the observables of both of these transitions have been performed in the model-independent
framework of Effective Field Theories, showing a coherence between the different observables studied and a
trend suggesting the presence of Lepton Flavour Universality Violating New physics with vector-like couplings,
however leaving room for other types of couplings. In fact, some simplified models can explain these anomalies
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(either separately or together), generally include new vector bosons, scalar leptoquarks, or vector leptoquarks.
These simplified models however require to be embedded into a wider ultraviolet-complete model, opening the
possibility for a new sector to be experimentally explored.

In this manuscript, we will discuss the current situation of the flavour anomalies and we will propose new
benchmarks to test the anomalies both in b→ c`ν̄ and b→ s`+`− and also in related modes. We will see that
several New Physics scenarios are possible with current data, especially since certain directions in the space of
parameters are only loosely constrained by data. We would like then to narrow down the possibilities by finding
new modes and new observables that probe different directions in the parameter space enabling us to disentangle
the different New Physics scenarios. Additionally, these new modes have different theoretical and experimental
systematics, allowing for cross-checks of the current explanations. We can also consider other decay processes
(involving other quarks and/or other leptons) which are connected with these anomalies in many specific New
Physics models and which are thus worth investigating experimentally as they may exhibit further deviations.

In Part I we will introduce the main concepts and tools that are required to describe b-quark semileptonic
decays. These decays are fairly complex as they involve both the Electroweak interaction and Quantum
Chromodynamics which require different treatments. This complexity requires a separation of the different
energy scales of the problem through the factorisation of these processes and the introduction of several Effective
Field Theories which allow us to understand these decays. This effective approach additionally allows for
a model-independent approach for New Physics analyses which is fundamental for the study of the flavour
anomalies.

In Part II we will discuss in detail the current flavour anomalies; the different observables that can be
measured, their main theoretical uncertainties, and their current experimental determinations. Furthermore, we
will perform a global fit to the parameters of the Effective Field Theory obtaining a model-independent study of
the possible New Physics behind these anomalies. We will then discuss specific New Physics models which could
be responsible for these anomalies as they can be easily connected with the model-independent analysis.

In Part III we will present new benchmarks to study the b→ s`+`− transition, both in the currently measured
mode B → K`+`− through a time-dependent analysis that relies on the B − B̄ and K − K̄ mixing and in the
new baryonic mode Λb → Λ∗`+`− through a full angular analysis of this mode. These results provide interesting
observables that could constrain the complex structure of the possible NP behind the anomalies.

In Part IV we will similarly present new benchmarks to study the b → c`ν̄ transition. In the one case,
we consider the angular distribution of B → D∗`ν̄ and we propose interesting cross-checks of experimental
measurements of angular observables and different ways to probe New Physics relying on symmetries of the
angular distribution. In the other case, we provide new ways of probing the inclusive Lepton Flavour Universality
ratios R(X)τ` through the direct use of Υ(4S) decays, which as opposed to previous methods is done through a
truly inclusive method.

In Part V we will discuss the possible connections of the b-anomalies with other closely related modes under
fairly general assumptions, namely the neutrino modes b → sνν̄ and s → dνν̄; and the non-leptonic mode
Bd(s) → K∗0K̄∗0. In the first case we get bounds for these modes through simple principles of Minimal Flavour
Violation and in the second we find a new potential anomaly in hadronic modes.

We will finally conclude this manuscript by giving an outlook of directions that these anomalies might take
in the future, new results that might help to disentangle them, and studies helping to make this picture even
more robust.



Part I

Theoretical framework
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Chapter 1

The Standard Model

The Standard Model (SM) of particle physics [1–4] is the theory used to describe and classify all known elementary
particles and three of the four the interactions in between them, the electromagnetic, weak and strong interactions.
In the SM, the first of these interactions, which can be described by the theory of quantum electrodynamics
(QED), unifies with the weak interaction and together they can be described by the electroweak (EW) theory.
The remaining interaction can be described through the theory of Quantum Chromodynamics (QCD). These
theories are constructed under the paradigm of a Quantum Field Theory (QFT), which allows the combination
of quantum mechanics and special relativity, where particles appear as excitations of the quantum fields.

1.1 The Standard Model and its gauge structure
The elementary particles that compose the SM are shown in Fig. 1.1 together with their quantum numbers.
These particles can be divided according to their spin into bosons (integer spin) and fermions (half integer spin).
Spin 1 bosons are the carriers of the three different forces1, gluons (g) carry the strong force, photons (γ) carry
the electromagnetic force, the weak force is carried by the W± and Z bosons, while the spin 0 Higgs boson (H)
is the excitation of the Higgs doublet field, whose non vanishing vacuum expectation value is responsible for the
electroweak symmetry breaking. On the fermionic side we have quarks, which interact through all three forces,
and leptons, which are blind to the strong force (and also to the electromagnetic force in the case of neutrinos).
The fermions of the SM are organised in a 3-fold family structure, with a mass hierarchy between the families as
shown in Fig. 1.1. Each of these families or generations contains two flavours for each fermion, for instance, the
first generation is composed of the u and d quarks.

It is worth mentioning at this stage that, due to the confinement occurring in QCD (described in Section 1.4),
quarks are not be observed freely. Hadrons, which are composed of quarks and gluons, are the actual physical
states that we observe.

The SM is constructed upon symmetries under the gauge group

Ggauge
SM = SU(3)C × SU(2)L ×U(1)Y (1.1)

where each gauge group corresponds to a different gauge symmetry, or invariance under local transformations.
Each of these symmetries is related to a different gauge interaction. The strong interaction for SU(3)C , the
weak interaction for SU(2)L and “hypercharge” interaction for U(1)Y

2.
The SM Lagrangian can be divided in 4 parts

LSM = Lgauge + Lfermion + LHiggs + LYukawa , (1.2)

The first term corresponds to the kinematic term for the gauge fields

Lgauge = −1

4

∑
A

F aµνF
aµν , F aµν = ∂µA

a
ν − ∂νA

a
µ + gfabcAbµA

c
ν , (1.3)

where the sum is over the SM gauge fields; the gluon fields Aa
µ (a = 1, ..., 8), related to SU(3)C gauge symmetry,

and the electroweak gauge bosons ~Wµ (3 components) and Bµ before the symmetry breaking, which are
1The fourth interaction missing in the SM is the gravitational force, the carrier of which would be the graviton. While a theory

of quantum gravity is yet not established, if we assume it can be treated as a QFT at low energies in the context of an effective field
theory, it shows no actual impact at the energies considered here.

2The weak and hypercharge interactions are usually grouped and called the electroweak interaction.
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Figure 1.1: Schematic of the Standard Model after the electro-weak symmetry breaking. In the columns from
left to right, 1st,2nd and 3rd generation of fermions, gauge bosons and lastly the Higgs Boson. On the top left of
each box it can be seen the mass the electric charge and the spin of each particle. It is interesting to notice the
mass hierarchy of the fermions, with masses ranging from less than 1.1 eV for the neutrinos, to the top mass of
around 172.8GeV, more than 1011 times larger. Adapted from Ref. [5], with updated values for the masses [6].
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respectively related to the SU(2)L and U(1)Y gauge symmetries. For each of the gauge fields Aaν , F aµν is the
field strength tensor, g is the coupling constant for the interaction in question (gs, g and g′ for Aa

µ, ~Wµ and Bµ
respectively) and fabc are the structure constants of the gauge group in question (0 in the case of U(1)Y ).

The second term in Eq. (1.2) corresponds to the kinematic term for the fermion fields, and their coupling to
the gauge bosons which is obtained through the minimal coupling prescription (i.e. ∂ → D)

Lfermion =
∑
ψ,I

ψ̄I(i /D)ψI , (1.4)

where I = 1, 2, 3 is the the flavour index and ψ = LL, QL, `R, uR, dR are the left-handed and right-handed
fermion fields3. They transform under SU(2)L respectively as doublets and singlets

LL =

(
νL
`L

)
, QL =

(
uL
dL

)
, `R, uR, dR , (1.5)

where we omit the flavour index I. The covariant derivative depends on the quantum numbers of the field ψ in
question and it takes the following form

Dµ = ∂µ − igsT
a
ψAaµ − ig~τψ · ~Wµ − ig′

Yψ
2
Bµ , (1.6)

where (T aψ , ~τψ, Yψ) are the Ggauge
SM generators for the field ψ, presented in Table 1.1 related to its quantum

numbers. The third term in Eq. (1.2) corresponds to the kinematic term for the Higgs doublet Φ and the Higgs

Matter Ggauge
SM T aψ ~τψ Yψ GF B L

QL (3,2)+1/3 : +λa/2 ~σ/2 +1/3 (3,1,1,1,1) 1/3 0

u†R (3,1)−4/3 : −λa/2 0 −4/3 (1,3,1,1,1) −1/3 0

d†R (3,1)+2/3 : −λa/2 0 +2/3 (1,1,3,1,1) −1/3 0
LL (1,2)−1 : 0 ~σ/2 −1 (1,1,1,3,1) 0 1

`†R (1,1)+2 : 0 0 +2 (1,1,1,1,3) 0 −1
Φ (1,2)+1 : 0 ~σ/2 +1 (1,1,1,1,1) 0 0

Table 1.1: Quantum numbers and Ggauge
SM generators of the fermion fields of the SM and the Higgs doublet Φ.

From left to right, the fermion field, the representation of the field under the SM gauge group Ggauge
SM , the SU(3)C

generator T aψ , the SU(2)L generator ~τψ, the weak hypercharge Yψ, the representation of the field under the flavour
symmetry group GF , the baryon number B and lastly the lepton number L. λa are the Gell-Mann matrices
and ~σ the Pauli matrices. The electric charge is defined as Q = τ3 + Y/2 where τ3 is the weak isospin (+1/2
for upper component of the SU(2)L doublet, −1/2 for the lower component and 0 for the singlets). Modified
version of Table 1.1 in Ref. [7]

potential V (Φ) (which we will discuss in Section 1.2)

LHiggs = (DµΦ)
†(DµΦ)− V (Φ) . (1.7)

One can notice that the covariant derivatives are actually independent of the family of the fermions. In other
words, the gauge, fermion and Higgs sectors of the Lagrangian are invariant under independent global unitary
transformations among different families of each of the 5 fermion fields

GF ≡ U(3)5 = U(3)QL
×U(3)uR

×U(3)dR ×U(3)LL
×U(3)`R , (1.8)

where there is one U(3) group symmetry for each fermion field which transform as 3 under their respective U(3)
as shown in Table 1.1. This symmetry is not fully realized in the SM as it is broken explicitly (and exclusively)
by the couplings of the fermion fields to the Higgs doublet Φ (i.e. the Yukawa couplings), present in the last
term of Eq. (1.2)

LYukawa = −Y IJu Q̄ILiσ2Φ
∗uJR − Y IJd Q̄ILΦd

J
R − Y IJe L̄ILΦe

J
R + h.c. , (1.9)

where Y IJf are 3 × 3 matrices, called the Yukawa matrices. This breaking of GF gives rise to a SM flavour
structure, which is characterized by the different fermion masses and the quark mixing which we will discuss in
Section 1.2.2.

3In this manuscript, we consider no right-handed neutrinos νR and neutrino masses are neglected.
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Two important symmetries of the SM worth mentioning, which are not imposed but appear as a consequence
of gauge symmetry and the choice of charges of the fermion fields, are baryon number (B) and lepton number
(L`) conservation. Indeed, thanks to gauge invariance, the SM respects an accidental global symmetry under

Gglobal
SM = U(1)B ×U(1)Le ×U(1)Lµ ×U(1)Lτ (1.10)

where U(1)B is the baryon number symmetry and U(1)Le,µ,τ are the lepton number symmetries associated with
each lepton flavour. The baryon and lepton numbers of an outgoing or incoming state are defined as

B =
1

3
(nq − nq̄) , L` = (n` − n¯̀) , (1.11)

where nq and nq̄ correspond to the number of quarks and antiquarks in the state respectively, and n` and
n¯̀ corresponds to the number of leptons and anti-leptons of flavour ` in the state. The total lepton number
L = Le + Lµ + Lτ is then also a symmetry of the SM. All of these numbers are conserved in the SM with
massless neutrinos, but flavour specific lepton number conservation is violated when neutrino masses and mixing
are introduced in the SM. For practical purposes of the discussion we will neglect this, since lepton flavour
violation through neutrino mixing is not strong enough to affect the modes that are studied and discussed in
this manuscript (at least with the current experimental sensitivity).

1.2 Electroweak Symmetry Breaking

1.2.1 The Higgs Mechanism
The gauge symmetry group of the Standard Model Ggauge

SM , or more precisely the SU(2)L×U(1)Y symmetry, does
not allow for mass terms for the fermions and weak gauge bosons in the Lagrangian. In other words, in a theory
in which this symmetry is fully realized all matter is massless. This is of course, incompatible with experience,
reason why this SU(2)L group needs to be somewhat broken. This is solved by having a spontaneously broken
symmetry through the addition of a self-interacting complex scalar SU(2)L doublet, the Higgs doublet (Φ). This
spontaneous symmetry breaking is done through the presence of the Higgs potential given by

V (Φ) = m2Φ†Φ+ λ(Φ†Φ)2 , Φ ≡ 1√
2

( √
2φ+

φ0 + ia0

)
, (1.12)

where φ+ is the complex charged component of the Higgs doublet and φ0 and a0 are respectively the CP -even
and CP -odd neutral components. When the mass term takes negative values (i.e. m2 < 0), the vacuum
expectation value (vev) of the Higgs doublet will be different from 0, and can always be brought, through SU(2)L
rotations, to the following form

〈Φ〉 = 1√
2

(
0
v

)
(1.13)

where v = |m|√
λ
= 246.22GeV [6]. This will induce the spontaneous symmetry breaking of the SM gauge group

Ggauge
SM defined in Eq. (1.1) into SU(3)C ×U(1)em. Although the Lagrangian of the SM is invariant under Ggauge

SM

the ground state is not. One can parametrise the Φ field, in a fully general way, as [8]

Φ = ei~π(x)·~τ
1√
2

(
0

v +H(x)

)
(1.14)

with four real fields H(x), ~π(x) each corresponding to one of the four degrees of freedom of the Higgs Doublet.
The first one, the field H(x) is a gauge-invariant fluctuation of the vacuum state and corresponds to the physical
Higgs field.

The three remaining degrees of freedom are not gauge invariant, and thanks to the local SU(2)L gauge
invariance of the Lagrangian, by choosing the unitarity gauge [9], one can “rotate away” the ~π(x) fields.

For a global symmetry, the spontaneous symmetry breaking would give rise to massless states (Goldstone
theorem), but in the case of a local (gauge) symmetry this gives masses to gauge bosons through the Higgs
mechanism [10–15]. From the four generators of the SU(2)L ×U(1)Y gauge symmetry, three are spontaneously
broken, which will grant a mass to three (Z, W±) of the four physical EW gauge bosons; three degrees of
freedom of the Higgs doublet (~π(x)) will now correspond to the longitudinal polarisation of the massive gauge
fields. The remaining U(1)em symmetry is associated to the fourth unbroken generator and the corresponding
gauge field, the photon (γ), which will thus remain massless. The masses of the Higgs and the gauge bosons, at
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tree level, are given in the following

mH =
√
2λv , (1.15)

mW =
gv

2
=

ev

2 sin θW
, (1.16)

mZ =
√
g2 + g′2

v

2
=

ev

2 cos θW sin θW
, (1.17)

mγ =0 , (1.18)

where e = g sin θW is the positron electric charge and θW = tan−1(g′/g) is the weak mixing angle.
The interaction Lagrangian between the fermions and the gauge fields after the symmetry breaking takes the

following form

Lint =− g

2
√
2

∑
Ψ=QL,LL

Ψ̄γµ(1− γ5)(τ+W+
µ + τ−W−

µ )Ψ

−
∑
ψ

eQψψ̄γ
µψAµ +

g

2 cos θW
ψ̄γµ(gψV − gψAγ

5)ψZµ ,
(1.19)

where ψ = LL, QL, `R, uR, dR and τ± = τ1 ± iτ2 is the isospin raising (lowering) operator. Furthermore the
axial and vector Z couplings are

gψV = τ3ψ − 2Qψ sin2 θW , (1.20)
gψA = τ3ψ , (1.21)

where τ3ψ and Qψ the weak isospin and the electrical charge of the fermion ψ as given in Table 1.1
The electroweak symmetry breaking will also generate a mass term and an interaction with the Higgs field H

for fermions through the Yukawa interactions, with the Lagrangian taking the following form

LSM ⊃ − v√
2

(
ūIRY

IJ
u uJL + d̄IRY

IJ
d dJL + ēIRY

IJ
e eJL

)(
1 +

H

v

)
+ h.c. , (1.22)

where the Yukawa couplings are a priori, non diagonal matrices. It is important to mention that the electroweak
symmetry breaking does not provide an explanation of the underlying reason for the, rather unnatural, large
variety of fermion masses of the standard model, or an explanation of the mixing between them. It merely
transfers the large number of free parameters that are the fermion masses and mixing parameters into the
Yukawa couplings.

However it does provide us with interesting predictions that can be tested. First of all, the existence of
the Higgs boson, whose mass was first indirectly constrained by global electroweak fits at the Large Electron
Positron Collider (LEP) at CERN, and it was latter discovered at the CMS and ATLAS experiments at the
Large Hadron Collider (LHC) at CERN . Secondly, the properties of the Higgs field and its interaction with
other SM particles. Particularly interesting are the tests of the Higgs couplings to fermions and EW bosons,
which are expected to be directly proportional to the particles masses. This prediction as been tested at CMS
and ATLAS as shown in Fig. 1.3. Lastly, the consistency of the Electroweak global fits as shown in Fig. 1.4,
which show that the SM provides an excellent overall description of the physics at least around the EW scale.

Moreover, New Physics (NP) searches at the LHC have not yet found additional heavy degrees of freedom
through direct searches at the CMS and ATLAS experiments. The bounds for the masses of new hypothetical
particles, depending on their couplings, starts to approach the TeV scale as shown in Fig. 1.2.

This lack of discovery of new particles through direct searches has lead us to look for NP through indirect
searches in processes which could be mediated by NP particles. One of these processes, in which we will focus
because of their sensitivity to new physics, are the flavour changing currents which we will discuss in Section 1.3.
With that end in mind, we will now discuss the flavour structure of the SM after the electroweak breaking in
more detail.

1.2.2 Cabibbo-Kobayashi-Maskawa Matrix
As mentioned before, fermionic matter is organized in a 3-fold family structure both for the lepton side and the
quark side. This family structure will come together with an EW structure for all fermions and a color structure
for quarks. Fermions will organize in SU(2)L doublets and singlets. The left-handed fermion fields of each family
transform as doublets while the right-handed ones as singlets

LL =

(
νL
`−L

)
, QEW

L =

(
uEW
L

dEW
L

)
, `−R, uEW

R , dEW
R , (1.23)
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ADD GKK + g/q 0 e, µ 1 − 4 j Yes 36.1 n = 2 1711.033017.7 TeVMD

ADD non-resonant γγ 2 γ − − 36.7 n = 3 HLZ NLO 1707.041478.6 TeVMS

ADD QBH − 2 j − 37.0 n = 6 1703.091278.9 TeVMth

ADD BH high
∑
pT ≥ 1 e, µ ≥ 2 j − 3.2 n = 6, MD = 3 TeV, rot BH 1606.022658.2 TeVMth

ADD BH multijet − ≥ 3 j − 3.6 n = 6, MD = 3 TeV, rot BH 1512.025869.55 TeVMth

RS1 GKK → γγ 2 γ − − 36.7 k/MPl = 0.1 1707.041474.1 TeVGKK mass

Bulk RS GKK →WW /ZZ multi-channel 36.1 k/MPl = 1.0 1808.023802.3 TeVGKK mass

Bulk RS GKK →WV → ℓνqq 1 e, µ 2 j / 1 J Yes 139 k/MPl = 1.0 2004.146362.0 TeVGKK mass

Bulk RS gKK → tt 1 e, µ ≥ 1 b, ≥ 1J/2j Yes 36.1 Γ/m = 15% 1804.108233.8 TeVgKK mass

2UED / RPP 1 e, µ ≥ 2 b, ≥ 3 j Yes 36.1 Tier (1,1), B(A(1,1) → tt) = 1 1803.096781.8 TeVKK mass

SSM Z ′ → ℓℓ 2 e, µ − − 139 1903.062485.1 TeVZ′ mass

SSM Z ′ → ττ 2 τ − − 36.1 1709.072422.42 TeVZ′ mass

Leptophobic Z ′ → bb − 2 b − 36.1 1805.092992.1 TeVZ′ mass

Leptophobic Z ′ → tt 0 e, µ ≥ 1 b, ≥ 2 J Yes 139 Γ/m = 1.2% 2005.051384.1 TeVZ′ mass

SSM W ′ → ℓν 1 e, µ − Yes 139 1906.056096.0 TeVW′ mass

SSM W ′ → τν 1 τ − Yes 36.1 1801.069923.7 TeVW′ mass

HVT W ′ →WZ → ℓνqq model B 1 e, µ 2 j / 1 J Yes 139 gV = 3 2004.146364.3 TeVW′ mass

HVT V ′ →WV → qqqq model B 0 e, µ 2 J − 139 gV = 3 1906.085893.8 TeVV′ mass

HVT V ′ →WH/ZH model B multi-channel 36.1 gV = 3 1712.065182.93 TeVV′ mass

HVT W ′ →WH model B 0 e, µ ≥ 1 b, ≥ 2 J 139 gV = 3 CERN-EP-2020-0733.2 TeVW′ mass

LRSM WR → tb multi-channel 36.1 1807.104733.25 TeVWR mass

LRSM WR → µNR 2 µ 1 J − 80 m(NR) = 0.5 TeV, gL = gR 1904.126795.0 TeVWR mass

CI qqqq − 2 j − 37.0 η−
LL 1703.0912721.8 TeVΛ

CI ℓℓqq 2 e, µ − − 139 η−
LL CERN-EP-2020-06635.8 TeVΛ

CI tttt ≥1 e,µ ≥1 b, ≥1 j Yes 36.1 |C4t | = 4π 1811.023052.57 TeVΛ

Axial-vector mediator (Dirac DM) 0 e, µ 1 − 4 j Yes 36.1 gq=0.25, gχ=1.0, m(χ) = 1 GeV 1711.033011.55 TeVmmed

Colored scalar mediator (Dirac DM) 0 e, µ 1 − 4 j Yes 36.1 g=1.0, m(χ) = 1 GeV 1711.033011.67 TeVmmed

VVχχ EFT (Dirac DM) 0 e, µ 1 J, ≤ 1 j Yes 3.2 m(χ) < 150 GeV 1608.02372700 GeVM∗
Scalar reson. φ→ tχ (Dirac DM) 0-1 e, µ 1 b, 0-1 J Yes 36.1 y = 0.4, λ = 0.2, m(χ) = 10 GeV 1812.097433.4 TeVmφ

Scalar LQ 1st gen 1,2 e ≥ 2 j Yes 36.1 β = 1 1902.003771.4 TeVLQ mass

Scalar LQ 2nd gen 1,2 µ ≥ 2 j Yes 36.1 β = 1 1902.003771.56 TeVLQ mass

Scalar LQ 3rd gen 2 τ 2 b − 36.1 B(LQu
3 → bτ) = 1 1902.081031.03 TeVLQu

3
mass

Scalar LQ 3rd gen 0-1 e, µ 2 b Yes 36.1 B(LQd
3 → tτ) = 0 1902.08103970 GeVLQd

3
mass

VLQ TT → Ht/Zt/Wb + X multi-channel 36.1 SU(2) doublet 1808.023431.37 TeVT mass

VLQ BB →Wt/Zb + X multi-channel 36.1 SU(2) doublet 1808.023431.34 TeVB mass

VLQ T5/3T5/3 |T5/3 →Wt + X 2(SS)/≥3 e,µ ≥1 b, ≥1 j Yes 36.1 B(T5/3 →Wt)= 1, c(T5/3Wt)= 1 1807.118831.64 TeVT5/3 mass

VLQ Y →Wb + X 1 e, µ ≥ 1 b, ≥ 1j Yes 36.1 B(Y →Wb)= 1, cR (Wb)= 1 1812.073431.85 TeVY mass

VLQ B → Hb + X 0 e,µ, 2 γ ≥ 1 b, ≥ 1j Yes 79.8 κB= 0.5 ATLAS-CONF-2018-0241.21 TeVB mass

VLQ QQ →WqWq 1 e, µ ≥ 4 j Yes 20.3 1509.04261690 GeVQ mass

Excited quark q∗ → qg − 2 j − 139 only u∗ and d∗, Λ = m(q∗) 1910.084476.7 TeVq∗ mass

Excited quark q∗ → qγ 1 γ 1 j − 36.7 only u∗ and d∗, Λ = m(q∗) 1709.104405.3 TeVq∗ mass

Excited quark b∗ → bg − 1 b, 1 j − 36.1 1805.092992.6 TeVb∗ mass

Excited lepton ℓ∗ 3 e, µ − − 20.3 Λ = 3.0 TeV 1411.29213.0 TeVℓ∗ mass

Excited lepton ν∗ 3 e,µ, τ − − 20.3 Λ = 1.6 TeV 1411.29211.6 TeVν∗ mass

Type III Seesaw 1 e, µ ≥ 2 j Yes 79.8 ATLAS-CONF-2018-020560 GeVN0 mass

LRSM Majorana ν 2 µ 2 j − 36.1 m(WR ) = 4.1 TeV, gL = gR 1809.111053.2 TeVNR mass

Higgs triplet H±± → ℓℓ 2,3,4 e,µ (SS) − − 36.1 DY production 1710.09748870 GeVH±± mass

Higgs triplet H±± → ℓτ 3 e,µ, τ − − 20.3 DY production, B(H±±
L
→ ℓτ) = 1 1411.2921400 GeVH±± mass

Multi-charged particles − − − 36.1 DY production, |q| = 5e 1812.036731.22 TeVmulti-charged particle mass

Magnetic monopoles − − − 34.4 DY production, |g | = 1gD , spin 1/2 1905.101302.37 TeVmonopole mass
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ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits
Status: May 2020

ATLAS Preliminary∫
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*Only a selection of the available mass limits on new states or phenomena is shown.

†Small-radius (large-radius) jets are denoted by the letter j (J).

Figure 1.2: Summary plot for NP searches at the ATLAS detector [16] at the LHC. The current bound for most
NP particles is around or higher than 1TeV. Similar results are obtained from the CMS detector[17].
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where we add the EW subscript to emphasize that they are written in the EW basis. Then, after the EW
breaking the Lagrangian for the quark sector takes the following form4

LSM ⊃ − v√
2
(d

EW

Li Y
d
ijd

EW
Rj + uEW

Li Y
u
iju

EW
Rj )− g√

2
uEW
Li γ

µW−
µ d

EW
Li + h.c. (1.24)

where Y f with f = u, d are the Yukawa matrices. These matrices are both at the origin of the quarks masses
and mixing. Then the fermion mass eigenstates can be obtained through the diagonalisation of the Yukawa
matrices through a singular value decomposition by four unitary matrices V fL(R)

Mf =
v

2
V fL YfV

f†
R , f = u, d, e , (1.25)

where Mf are diagonal matrices in flavour space and we also include the lepton ones.
We can then perform a change of basis to define dL(R)i and uL(R)i, the mass eigenstates

dLi ≡ (V d†L )ijd
EW

Lj , dRi ≡ (V dR)ijd
EW
Rj , (1.26)

uLi ≡ (V u†L )iju
EW
Lj , uRi ≡ (V uR )iju

EW
Rj . (1.27)

The quark sector of the SM Lagrangian in the mass basis takes the following form

LSM ⊃ −dLiMd
ijdRj + dLiM

u
ijuRj −

g√
2
uLiγ

µW−
µ (V uL V

d†
L )ij︸ ︷︷ ︸

VCKM

dLj + h.c. (1.28)

where we identify VCKM, the Cabibbo-Kobayashi-Maskawa (CKM) Matrix. Since there is an ambiguity in the
definition of the original SU(2)L doublets due to flavour symmetry, one could have performed a rotation of the
doublet beforehand and define the left handed mass eigenstates as QL

dLi ≡ dEW
Lj , uLi ≡ (V †

CKM)iju
EW
Lj (1.29)

This is the most common way of defining the mass eigenstates since it only involves the CKM matrix and not
the unitary matrices V fL and we will use it from now on.

The interactions vertices in Eq. (1.28) are represented in Fig. 1.5 and they have important consequences.
Since the rotations for u-type and d-type quarks are different, a mixing is induced between the different families.

4We focus here only on the mass term and the weak charged current since they are the relevant elements to understand the
flavour mixing.
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Figure 1.5: Interaction vertices of the W boson after the EW breaking showing the family mixing. Each vertex
is accompanied of a CKM factor.

This mixing is mediated by the W bosons through charged currents, which after this rotation, not only change
the flavour of the quarks, but they connect quarks from the different families.

In the case of the Z boson and the photon, since their interactions only include one type of quark (either
u-type or d-type), they are independent of the choice of basis. For instance, if we explicitly perform the change
of basis to the QL photon coupling in Eq. (1.19)

QQL
QLγ

µQLAµ =+ 2/3uEW
L γµuEW

L Aµ − 1/3d
EW

L γµdEW
L Aµ

+ 2/3uLγ
µ VCKMV

†
CKM︸ ︷︷ ︸

I3×3

uLAµ − 1/3dLγ
µdLAµ . (1.30)

Because of this, in the SM there are no tree-level flavour changing neutral currents.
The CKM matrix encodes all the information related to the mixing of the different quark families in the SM

5. We will usually write as follows

VCKM ≡ V uL V
d†
L =

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 . (1.31)

Since VCKM is the product of unitary matrices it is itself unitary

VCKMV
†
CKM = I3×3 , (1.32)

and it can be parametrised by only three mixing angles and a CP -violating phase [20], through the redefinition
of the global phases of the quark fields.

Several different parametrisations exist in the literature for the CKM matrix, we will use two of them.

Standard Parametrisation

This parametrisation [21] is obtained by the product of three (complex) rotation matrices, characterized by the
mixing angles between each generation θ12, θ13 and θ23, and one overall CP-Violating phase δ.

VCKM =

 1 0 0
0 c23 s23
0 −s23 c23

 c13 0 s13e
−iδ

0 1 0
−s13eiδ 0 c13

 c12 s12 0
−s12 c12 0
0 0 1


=

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13

 (1.33)

where cij = cos θij , sij = sin θij for i < j = 1, 2, 3. This parametrisation strictly satisfies the unitarity relation
in Eq. (1.32).

5In the case of the leptons, due to the absence of right handed neutrinos in the SM, the diagonalization of Ye is not an
issue. However, in the case of massive ν, a similar matrix to the CKM exists for the case of lepton (neutrino) mixing called
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) Matrix, although the nature of this matrix is not strictly defined as it depends on the
nature of neutrino masses (i.e. whether neutrinos are Dirac or Majorana particles). In this manuscript we will always work on the
approximation where we neglect the effects coming from neutrino masses and thus mixing.
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Wolfenstein Parametrisation

The Wolfenstein parametrisation [22] is an alternative parametrisation for VCKM which exploits the empirical
hierarchy6 of the CKM elements s13 � s23 � s12 � 1. This parametrisation was originally introduced as a
Taylor expansion in λ = Vus ∼ 0.225 to order O(λ4) [22] taking the following form

VCKM =

 1− λ2/2 λ Aλ3(ρ− iη)
−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4). (1.34)

One of the issues of this parametrisation is that the definition of the parameters λ, A, ρ, η is ambiguous after
order O(λ4) and unitarity is only ensured to this order. One possible extension of this parametrisation that
preserves the unitarity relation in Eq. (1.32) to all orders was then introduced by Ref. [23], where the following
definitions are given to all orders in λ

s12 = λ, (1.35)
s23 = Aλ2, (1.36)

s13e
−iδ = Aλ3(ρ− iη) =

Aλ3(ρ̄+ iη̄)
√
1−A2λ4√

1− λ2(1−A2λ4(ρ̄+ iη̄))
. (1.37)

where ρ̄ and η̄ are phase convention independent and defined as ρ̄+ iη̄ = −VudV
∗
ub

VcdV ∗
cb

. Under this parametrisation,
the expansion up to order O(λ9) can be found in Ref. [24].

The unitarity triangle

The CKM unitarity relation in Eq. (1.32) leads to the following explicit relations∑
m=u,c,t

VmjV
∗
ml = δjl with j, l ∈ {d, s, b} , (1.38)

∑
n=d,s,b

VinV
∗
kn = δik with i, k ∈ {u, c, t} , (1.39)

of which the 6 non-diagonal terms (i.e. the vanishing components) can be represented as triangles of the same
area in the complex plane. Their area corresponds to half of J , the Jarlskog invariant [25], defined by

Im[VijVklV
∗
ilV

∗
kj ] = J

∑
m,n

εikmεjln . (1.40)

The most commonly used of these triangles is the b→ d unitarity triangle shown in Fig. 1.6, where the unitarity
relation is normalised by VcbV ∗

cd, giving

VudV
∗
ub

VcdV ∗
cb

+
VtdV

∗
tb

VcdV ∗
cb

+ 1 = 0 . (1.41)

Useful definitions

We define the following combinations of CKM parameters since they will be used repeatedly throughout the
manuscript.

λ
(q)
U ≡ VUbV

∗
Uq , (1.42)

βs ≡ arg

(
− VtsV

∗
tb

VcsV ∗
cb

)
= − arg

(
−λ

(s)
t

λ
(s)
c

)
, (1.43)

βd ≡ β ≡ arg

(
−VcdV

∗
cb

VtdV ∗
tb

)
= − arg

(
−λ

(d)
c

λ
(d)
t

)
, (1.44)

for U = u, c, t and q = d, s 7. It is important to note that, λ(q)c for both q = d, s is real to a very good
approximation, i.e the imaginary part is suppressed compared to the real part by O(λ4) and O(λ6) respectively.

6This hierarchy comes solely out of experimental measurements and in the SM there is nothing that enforces it.
7One should be careful with this definition since, often in the literature, VUdV

∗
Us is also referred to as λU .
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Figure 1.6: On the left a sketch from Ref. [6] showing the b → d unitarity triangle and the definition of its
sides and vertices. The angles of the triangle α, β, γ are commonly used to parametrise the phases of the CKM
elements. On the right, the experimental constraints on the values of the CKM parameters of this unitarity
triangle [24].

These implies that βd,s are to a good approximation, the mixing angles present in b→ s transitions, which we
will discuss in more detail later.

Using the definitions in Eq. (1.42) the VUb unitarity relations can be written in the following form

λ(q)u + λ(q)c + λ
(q)
t = 0 . (1.45)

1.3 Flavour changing currents in the SM

As mentioned in the previous section, since the discovery of the Higgs Boson, no new particles have been found
through direct searches. However, powerful tests of the SM, and indirect probes of NP, can be obtained by
studying transitions from one flavour to another.

Flavour changing charged currents

In the SM any Flavour changing process will be mediated by a W boson, either if it is on a tree level or at
higher orders. These tree level currents are often referred to as Flavour Changing Charged Currents (FCCC)
as they are mediated by the exchange of a charged gauge boson (see Fig. 1.7). On the quark side, they will
manifest as transition between up-type and down-type quarks and on the lepton sector between charged leptons
and neutrinos. Due to the misalignment of the electroweak basis and the mass basis for the quark fields, these
transitions will be able to change quark flavours and they will carry a CKM element in each vertex. On the other
side, if we neglect neutrino masses, there is no misalignment for the lepton sector and lepton flavour is expected
to be conserved by them. Furthermore the electroweak couplings of leptons are universal in the Standard Model
which is usually referred to as Lepton Flavour Universality (LFU). In the SM, the violation of LFU happens
only through kinematic/mass effects.

Generally we can distinguish between 3 kinds of decays happening through Flavour changing charged currents:
fully leptonic decays like µ→ eν̄eνµ, semileptonic decays like B → D`ν̄` and non-leptonic decays like B → Dπ.

The first group of processes like τ → ντeνe, τ → ντµνµ and µ → νµeνe are natural processes to test LFU
and they have been extensively tested, together with leptonic gauge boson decays and leptonic decays of light
pseudoscalar mesons [26].

The second group of decays, semileptonic decays, are not only good test of LFU, but in general, good probes
of the SM. The CKM matrix and its consistence, can by tested by semileptonic decays through the extraction of
the CKM parameters, and the SM predictions can be tested by the measurement of their branching fractions
and angular observables. Furthermore, even if in the SM they probe the same vertex as the fully-leptonic modes,
in scenarios of new physics, they can probe SM deviations coming from other kind of particles (for example
leptoquarks which we will discuss later).

Their amplitude will come accompanied by one CKM element and it will factorise into a leptonic and hadronic
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Figure 1.7: Diagrams contributing to FCCCs in the leptonic and semileptonic cases.

part, for instance for B → D`ν̄

M(B → D`ν̄) =4
GF√
2
Vcb〈D`ν̄|c̄γµPLb¯̀γµPLν|B〉

4
GF√
2
Vcb〈`ν̄|¯̀γµPLν|0〉 〈D|c̄γµPLb|B〉︸ ︷︷ ︸

Hadronic Matrix Element

(1.46)

where PL = 1−γ5
2 and GF is the Fermi constant.

The third group of decays, non-leptonic decays, no longer probe LFU as there are no leptons involved in the
process and, due to non-pertubative QCD effects, require a more complex treatment.

Flavour Changing Neutral Currents

Other decays, that are in some ways more attractive, are the decays through Flavour Changing Neutral Currents
(FCNCs). We can distinguish in between three different types: radiative, semileptonic and non leptonic (purely
leptonic currents are not flavour changing). FCNC semileptonic decays, often referred to as semileptonic rare
decays, correspond for instance to the B → K`+`− decay, and the radiative decays to B → K∗γ. The non
leptonic currents can be further divided into ∆F = 2 and ∆F = 1. The first ones, correspond to decays in which
the change is in flavour is of two units, for instance, B − B̄ mixing. In the second ones, the flavour changes by
only one unit, for instance, the B → Kπ decay.

FCNCs are loop suppressed in the SM since they do not appear at tree level as already discussed in the
previous section. The semileptonic ones, at first order, happen through the penguin and box diagrams shown in
Fig. 1.8. Compared to FCCCs, the rates of FCNCs are certainly small (the suppression is of the order of 10−5

when comparing B → D`ν with B → K`` [6]), making them more complex to detect. However, in the case of
charged leptons, their decay products are easier to detect since the lack of neutrinos (i.e. missing energy) makes
these modes cleaner and gives them a higher experimental efficiency. In the case of semileptonic FCNCs into
neutrinos, this is however not longer the case, making these decays experimentally challenging.

This makes these decays rather interesting since they could happen at the tree level in some New Physics
models, giving them a good sensitivity to possible New Physics.

These decays experience a further suppression than the loop suppression due to CKM unitarity, first proposed
by Glashow, Iliopoulos and Maiani in Ref. [27] and usually referred to as the GIM mechanism. In order to
simplify the picture, we will not do the full computation of the FCNCs but rather explain the idea behind. When
computing the amplitude for an FCNC, for example b→ s`` as shown in Fig. 1.8, the loop integration over the
u type quark loop and the two W insertions give the following

M(b→ s``) ∝ I =
∑

i=u,c,t

VibV
∗
isF (xi) , with xi =

m2
i

m2
W

, (1.47)

where F(x) is a function describing the dependence on the internal up-type quark masses resulting from the loop
integral calculation including QCD corrections.

For low quark masses this function has the following behaviour [28]

F (x) ∼ x ln(x) , for x� 1 , (1.48)

and
F (xc)/F (xt) ≈ O(10−3) , (1.49)
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2nd/3rd gen 1st/3rd gen
CKM Loop CKM Loop

b→ s ∼ 1 O(10−3) ∼ 2× 10−2 O(10−8)

b→ d ∼ 1 O(10−3) ∼ 0.4 O(10−8)

s→ d ∼ 6× 102 O(10−3) ∼ 6× 102 O(10−8)

c→ u ∼ 103 O(10−3) ∼ 103 O(10−5)

Table 1.2: We show the weights for the CKM suppression and the quark mass loop suppression for each of the
semileptonic FCNCs depending on the quark that runs on the loop (1st or 2nd generation) and normalised to
the 3rd generation weight (top or bottom depending on the FNCN) for comparison. For instance, for the b→ s
transition, the first column compares the charm quark vs the top quark running on the loop and the second
column compares the up with the top. On the left of the first column we show

∣∣∣VcbVcs

VtbVts

∣∣∣ and on the right F (xc)
F (xt)

where F is the function in Eq. (1.47).

b s

`

`
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`

`

u, c, t

ν

W W

Figure 1.8: Diagrams contributing to the b→ s`+`− FCNC transition in the SM.

which is often referred to as the hard GIM suppression. Then, using the CKM unitarity relation VtbV
∗
ts =

−VcbV ∗
cs − VubV

∗
us we can write Eq. (1.47) as

I = −VcbV ∗
cs (F (xt)− F (xc))− VubV

∗
us (F (xt)− F (xu)) . (1.50)

and using mu,c � mW together with the relations above

I ≈ VtbV
∗
tsF (xt) . (1.51)

This makes the t quark the main contribution in the FCNC loop for b→ s decays with a CKM suppression of
|VtbVts| ≈ 0.04.

In the case of b → d decays the hierarchy is similar, but they are further suppressed by CKM since
|VtbVtd| ≈ 0.009.

In the case of s→ d decays, this is no longer true because of the |VcsVcd| ≈ |VusVud| ≈ 0.2 � |VtsVtd| ≈ 0.0004,
and the CKM suppression compensates for the value of F (xc) suppression shown in Eq. (1.49) making the charm
contribution of a similar order to the top contribution.

Lastly in the case of c → u, the situation is similar to s → d and |VcsVus| ≈ |VcdVud| ≈ 0.2 � |VcbVcu| ≈
0.00015, making the strange quark the main contribution. In Table 1.2 we show the CKM suppression and the
suppression due to the value of F for each of the FCNCs and each of the loop quarks.

The CKM suppression, on one side is a problem, since these decays get lower decay rates. On the other hand,
the fact that the main contribution is expected to be the one from the top quark in b→ s/d is actually positive
since the top quark loop is not expected to be dominated by long-distance QCD effects. In the case of s→ d
and c→ u, this is no longer the case, where the dominance of charm and strange quarks makes these modes very
complicated to predict accurately.

As we have seen, flavour changing currents are interesting test of the SM model, and furthermore, interesting
probes of NP. However, in order to discuss this transition in detail, we need to discuss some other elements first.
The first of these, is the fact that quark transitions do not happen free, they happen through QCD bound-states
called hadrons which make the prediction of this decays slightly more challenging. With this in mind we will
now discuss the theory of QCD, already introduced at the beginning of the chapter, in further detail.
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q q

Figure 1.9: Interaction vertices from QCD, from left to right, the quark-gluon vertex, the 3-gluon vertex and the
4-gluon vertex.

1.4 Quantum Chromodynamics
QCD is a gauge field theory that describes the strong interactions between quarks and antiquarks with gluons.
It is a non-abelian gauge theory with the SU(3)C group, where C stands for colour, as its gauge or symmetry
group. Quarks transform under the fundamental representation of SU(3)C , whereas gluons transform under the
adjoint representation.

The expanded QCD Lagrangian reads

LQCD =− 1

4
(∂µAa

ν − ∂νAa
µ)(∂

µAaν − ∂νAaµ) + q̄α(i/∂ −mq)qα

− gsq̄αT
a
αβγ

µqβAa
µ +

gs
2
fabc(∂µAa

ν − ∂νAa
µ)AbµAcν

− g2s
4
fabef cdeAa

µAb
νAcµAdν

(1.52)

where we omit the part relative to ghosts and the sum over the possible flavours q = u, d, s, c, b, t. We implicitly
sum over the Lorentz indices µ, ν and the colour indices α, β, a, the first two running from 1 to NC = 3, the
number of colours, and the last one from 1 to (N2

C − 1) = 8. The T aαβ are 3× 3 matrices corresponding to the
generators of SU(3)C and the commutator of them

[T a, T b] = ifabcT c , (1.53)

is given by the structure constants fabc of SU(3)C .
The terms in the first line of Eq. (1.52) correspond to the dynamics of the gluons fields and the quark fields.

The terms in the second line give rise to two interaction vertices of QCD, the quark-gluon vertex and the 3-gluon
interaction, while the last line corresponds to the 4-gluon interaction, all shown in Fig. 1.9.

For practical purposes we will refer to αs = g2s
4π as the strong coupling constant (as opposed to gs), since it is

the relevant quantity when computing physical processes.
It is important to emphasize that gluons will only interact with coloured particles (i.e. themselves and the

quark fields), leaving all of the other SM particles free of QCD interactions. This will be important in the
following as it helps to factorize QCD interaction in some EW decays.

In the following, we will not give a detailed description of QCD as it is not the objective of this manuscript,
but we will discuss some elements that are important for the following chapters. Indeed, several important issues
like the gauge transformation of the fields, the gauge fixing conditions and the quantization of the quark and
gluon fields (and the auxiliary ghost fields) will not be discussed, however they can be found in many textbooks
and reviews like Refs. [29, 30].

1.4.1 Renormalisation and running of the QCD coupling constant
Similarly to QED, QCD is a renormalisable theory, meaning that the ultraviolet (UV) divergences, appearing in
higher-order loop diagrams of the theory perturbation, can all be absorbed into a redefinition of the theory’s
fields and parameters; in this case, a redefinition of the normalisation of the quark qα and gluon Aa

µ fields, of
the coupling constant αs and of the quark masses mq. In order to absorb the UV divergences, one requires
a regularisation and a renormalisation schemes, both of which can be chosen depending on the calculation at
hand. The most common ones are dimensional regularisation and the modified minimal subtraction scheme (MS),
which we use in this manuscript unless explicitly mentioned. The relevant divergences induced by the loops are
logarithmic, so that after regularisation and renormalisation, the residual contributions of the loop diagrams (to
a fixed order) will introduce a logarithmic dependence on a new arbitrary scale µ called the renormalisation scale.
This will manifest in a scale dependence of the renormalised coupling “constant” αs(µ), of the renormalised quark
masses (mq(µ)) and several other objects that will, to the same fixed order, cancel the logarithmic dependence
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of the amplitudes on the renormalisation scale introduced by the loop diagrams. This leads to predictions for
observables that are, in principle, independent of the renormalisation scale8.

This is often referred to as the “running” of the coupling constant and quark masses.
The scale dependence of the coupling constant is given by the β-function of QCD

β(αs(µ)) = µ
dαs(µ)

µ
, (1.54)

defining the Renormalisation Group Equation (RGE). The β-function can be expand in power of αs in the
following way

β(αs(µ)) = −2αs

∞∑
n=0

βn

(αs
4π

)n+1

. (1.55)

To the first order in this expansion, the RGE solution is given by the Gross-Wilczek-Politzer [31, 32] formula,
which relates αs(µ) at two different scales:

αs(µ) =
αs(µ0)

1 + αs(µ0)
4π β0 ln

µ2

µ2
0

, β0 = 11− 2

3
Nf > 0 . (1.56)

The first term in β0 comes from the gluonic self-interaction and the second from the quark gluon interaction,
being Nf ≤ 6 the number of active quark flavours9.

To obtain a value of αs(µ) at a given scale µ through Eq. (1.56), one requires the value of the coupling
constant at a set scale. The value of reference that is more commonly used, coming from Z decays, can be found
in Ref. [6] and corresponds to

αs(mZ) = 0.1179± 0.0010 . (1.57)
One should notice that Eq. (1.56) does not only include the corrections of order O(αs(µ0)) to αs(µ), in fact,

by performing a Taylor expansion of Eq. (1.56), we find

αs(µ) = αs(µ0)

(
1− αs(µ0)

4π
β0 ln

µ2

µ2
0

+

(
αs(µ0)

4π
β0 ln

µ2

µ2
0

)2

− ...

)
, (1.58)

where we have an infinite series on
(
αs(µ0)

4π β0 ln
µ2

µ2
0

)
. If µ ∼ µ0 we can truncate this series and keep only the

O(αs) term. However, if the difference in between µ and µ0 is large enough, truncation is no longer an option,
since the expansion parameter becomes larger than 1.

This logarithmic dependency, residual of the loop induced divergences, needs to be taken into account to
all orders in αs, or more precisely, all orders in

(
αs(µ0)
16π β0 ln

µ2

µ2
0

)n
need to be included. Luckily, this is exactly

what is done through the resolution of the RGE given in Eq. (1.54). We will then say that the solution in
Eq. (1.56), is given to leading logarithm or leading-log order (LL). This differs from the leading order expression
(LO) where only O(αs) are taken into consideration. The next to leading-log (NLL) order will correspond to
αs(µ0)

(
αs(µ0)
16π β0 ln

µ2

µ2
0

)n
.

Until now, the decision of working at the scale µ rather than the scale at which is extracted (for instance
mZ), might seem unjustified given that the amplitudes are in theory independent of the choice of factorisation
scale. However, when computing the amplitude of a specific process with a characteristic scale E, logarithms of
the kind

(
αs ln

(
µ
E

))n will appear to all orders in n. When computing this amplitude to a fix order on αs, these
logarithms will cancel to that fix order on αs but not to all orders in

(
αs ln

(
µ
E

))
.

For instance for a process with characteristic scale around mb and a renormalisation scale µ = mZ these
logarithms are considerably big

(
αs ln

(
mZ

mb

))
∼ O(1) putting in risk the perturbative expansion.

By choosing the renormalisation scale to be close to the characteristic scale µ ∼ E , one avoids the presence
of large logarithms of the form ln

(
µ
E

)
in the amplitude , by shifting them into ln

(
µ
µ0

)
. However, as discussed

above, these second sets of logarithms, through the use of the RGE, are ressumed to all orders to all orders in
O((αs ln[µ])

n). This perturbative treatment, where we take into account the RGE evolution to get rid of large
logarithms, is called the Renormalisation Group Improved Perturbation Theory and it is a fundamental tool for
the perturbative treatment of QFTs.

8More precisely, the observables will be independent of the renormalisation scale up to the order of perturbation theory in which
the computation is performed.

9This corresponds to the number of quarks that have a mass lower than the scales taken into account, and are thus accounted for
in the loops. Depending on the renormalisation scheme, this might require a matching procedure when crossing a quark mass (which
is the case of the MS scheme).
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Figure 1.10: Running coupling constants on the MS scheme computed in perturbation theory as a function of
the renormalisation scale µ. On the left the strong coupling constant αs(µ) and on the right the electromagnetic
one α(µ).

One fundamental aspect of QCD is that, with the number of quark flavours of the SM, β0 takes a positive
value. This gives QCD a peculiar running of its coupling constant. The coupling constant grows (decreases)
logarithmically as we go to lower (higher) energies, in other words the strong interaction grows stronger (weaker)
at longer (shorter) distances. This behaviour is opposed to the one of the QED coupling constant as it can be
seen in Fig. 1.10. Furthermore αs(µ) asymptotically vanishes when µ → ∞. This is often referred to as the
phenomenon of “asymptotic freedom” of QCD, implying that at high energies, quarks and gluons act as free
particles.

On the other end, when a value of µ = ΛQCD, defined by the condition

αs(µ0)

4π
β0 ln

Λ2
QCD

µ2
0

= −1 , (1.59)

is reached, the coupling constant diverges. This means that, since the coupling constant is actually the
perturbation parameter of the theory, when going to low enough energies (µ ∼ ΛQCD) the coupling constant
grows too large to have a perturbative treatment of the theory, entering the so-called non-perturbative regime.

The ΛQCD scale allows us to classify quarks (together with hadrons) in two categories: light quarks, where
mq < ΛQCD, corresponding to the u, d and s quarks and heavy quarks where mq > ΛQCD, corresponding to the
c, b and t quark. This classification is not purely arbitrary, since the ΛQCD scale is the relevant scale in QCD,
and will dictate the behaviour of the hadrons at hand. In practice, this allows us to define different effective field
theories, that we will discuss later, to treat these two different types of quarks. The top quark is sometimes also
refereed as a super-heavy quark, because of its extremely heavy mass and because of its extremely short lifetime.

In the low energy QCD regime we require to use different, non-perturbative, methods to understand QCD.
The most common and powerful of them is lattice QCD, consisting of a discrete numerical treatment of QCD
which we will further discuss in Section 1.6. In Fig. 1.11 we can see the quark-antiquark static potential computed
on the lattice as a function of the distance.

The linear growth of this potential with the distance yields another consequence of QCD, the phenomenon
of “colour confinement” [34], which implies that at low energies coloured-charged particles such as quark and
gluons cannot be directly observed as free coloured states but rather as colourless (white) bound-states. 10

These white bound-states are called hadrons and they can be divided into two kinds depending on their spin
and baryon number; mesons, which have integer spin (i.e. they are bosons) and baryon number 0; and baryons
which have half integer spin (i.e. they are fermions) and baryon number 1. Leaving exotic states 11 aside, mesons

10One can see that the quark masses, are not actually observables of the theory, due to confinement, which allows the quark mass
to have a scale dependence as shown in Eq. (1.62).

11Exotic white-bound states, can correspond, for example, to pentaquarks (3 quarks 2 antiquarks), tetraquarks (2 quarks 2
antiquarks) and glueballs (purely gluonic white state).
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Figure 1.11: Lattice QCD determination of the static quark-antiquark potential from Ref. [33].

are composed of a quark-antiquark pair, while baryons are composed of three quarks (or three antiquarks). They
can be composed of quarks of all families with the exception of the t quark which, because of its high mass,
decays before being able to hadronise (the lifetime of the top quark is about a twentieth of the hadronisation
time scale). The full zoology of hadron states can be found in Ref. [6], together with their characteristics.

The renormalised quark masses mq(µ) at two different scales will be related by the following RGE

µ
dmq(µ)

µ
= γm(αs(µ))mq(µ) , (1.60)

where γm(αs(µ)) is the quark mass anomalous dimensions which we expand in power of αs

γm(αs(µ)) =

∞∑
n=0

γnm

(αs
4π

)n+1

(1.61)

similarly to the β-function for αs. At leading-log, the solution of the RGE above is given by the following
formula:

mq(µ) = mq(µ0)

(
αs(µ)

αs(µ0)

)− γ0
m

2β0

(1.62)

where γ0m = −6CF = −8. The presence of large logarithms can be also made explicit for the quark mass by
replacing αs(µ) by its leading-log expression and expanding Eq. (1.62)

mq(µ) = mq(µ0)

(
1 +

αs(µ0)

4π
β0 ln

µ2

µ2
0

) γ0
m

2β0

= mq(µ0)

(
1 +

γ0m
2

αs(µ0)

4π
ln
µ2

µ2
0

+
γ0m(γ0m − 2β0)

8

[
αs(µ0)

4π
ln
µ2

µ2
0

]2
+ . . .

) (1.63)

1.5 Non-perturbative inputs: Hadronic Form factors and decay con-
stants

As discussed in the previous section, QCD cannot be treated in a fully perturbative way, which means that we
need to separate the parts that can be computed perturbatively and the parts that cannot. In the case of weak
hadron decays, as shown in Eq. (1.46), the amplitude will sometimes be factorised into a hadronic matrix element
with a corresponding current insertion, the gauge boson propagator, and the gauge boson decay. This process
of factorisation will generally require the parametrisation of the non-perturbative elements of QCD. These
correspond to hadronic matrix elements of different currents, with hadrons or the vacuum as external states
computed within QCD. We will discuss three kinds of non pertubative inputs illustrated in Figs. 1.12 and 1.15:
decay constants, hadron form factors, and distribution amplitudes. A very complete review on non-perturbative
elements in QCD is given in Ref. [35] from which we will borrow some elements.
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1.5.1 Meson decay constants
A quantity that we will often encounter are the meson decay constants, they correspond to the parametrisation
of the local matrix element of the transition between a meson and the vacuum through a certain current. For
a pseudoscalar meson P composed of a quark antiquark pair (P = (q̄1, q2)), the decay constant fP is defined
through the matrix element of the axial current between a P-meson of 4-momentum pµ and the vacuum [6] in
the following form

〈0|q̄1(0)γµγ5q2(0)|P (p)〉 = ipµfP . (1.64)
Interestingly, the pseudoscalar meson decay constant is a scale independent quantity, this is, for instant, consistent
to the fact that fπ, the pion decay constant, determines the width of the pion, which being an observable
quantity, needs to be independent of the renormalisation scale.

Equivalently to the pseudoscalar case, the longitudinal fV,‖ and transverse fV,⊥ decay constants of a vector
meson (V = (q̄1, q2)) of 4-momentum kµ, polarization vector ε and mass mV are defined as [36]

〈0|q̄1γµq2|V (k, ε)〉 =− ifV,‖mV ε
∗
µ , (1.65)

〈0|q̄1σµνq2|V (k, ε)〉 =fV,⊥(µ)(kµε∗ν − kνε
∗
µ) , (1.66)

where in this case, the transverse decay constant is no longer a scale independent quantity and depends on the
scale µ, which usually will be taken as a hadronic factorisation scale. The scale dependence of fV,⊥ at leading
order is given by

fV,⊥(µ) = fV,⊥(µ0)

(
αs(µ)

αs(µ0)

)CF
β0

(1.67)

where CF = (N2
C − 1)/(2NC) = 8/6.

Decay constant can be thought as the “wavefunction overlap” of the valence quark and the antiquark, or as a
measurement of how probable it is for these quarks to annihilate through the correspondent current. They will
appear, for instance, in the description of processes like Bs → µ+µ− where the quark anti-quark pair annihilate
into an axial current or in non-leptonic decays in the framework of QCD factorisation [37].

Figure 1.12: Schematics representing different non-perturbative elements. On the left, decay constant of a
meson connected to a fermion pair in grey through the current insertion. On the right, form factors of a meson
connected to a fermion pair in grey through the current insertion.

1.5.2 Hadron Form factors
Hadron form factors correspond to the parametrisation of the local matrix element of a transition between two
hadrons through a certain current. Given a transition between an initial state hadron H1 and a final state
hadron H2 of 4-momenta pµ and kµ respectively, through a current J , we can parametrise its matrix element as

〈H2(k)|J (0)|H1(p)〉 =
∑
i

fJi (q2)Ki , i = 1, ..., n , (1.68)

where each Ki is a kinematical Lorentz structure which together form a basis of all the allowed Lorentz structures,
and fJi are the hadron form factors of this transition. These are scalar functions of q2 (where qµ = pµ − kµ is
the momentum transfer), which essentially depend on how the momentum is distributed between the hadron’s
constituents. The Lorentz structures available depend on the spin and parity of the hadrons involved and on
the current at hand. The amount of form factors grows with the spin, as more structures, like the polarization
vector, become available.

We will now look explicitly at the form-factor’s parametrisations relevant in heavy to light hadron transitions,
as these are the matrix elements we encounter in the rest of the manuscript.
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Figure 1.13: B → K form factors coming from Ref. [39] obtained using light-cone sum rules and Lattice QCD
(see Section 1.6). The purple, red and orange curves correspond to the f0(q2), f+(q2), fT (q2) form factors
respectively.

B → P (S) form factors

We will start by considering the form factors for a B̄-meson (b q̄′) of 4-momentum pµ decaying into a pseudoscalar
meson P (q q̄′) of 4-momentum kµ . The relevant currents that respect parity are J = q̄b, q̄γµb, q̄σµνqνb,
respectively the scalar, vector and tensor currents.

In the case of the vector and tensor current which contain one Lorentz index the available structures are only
the 4-momenta of both mesons, pµ and kµ12. In the case of the scalar current the only option is to have a purely
scalar function.

In order to simplify the expressions of the decay amplitudes, some kinematical factors are added, leading to
the following expressions for the B → P form factors [38]

〈P (k)|q̄γµb|B̄(p)〉 = f+(q
2)

[
pµ + kµ − m2

B −m2
P

q2
qµ
]
+ f0(q

2)
m2
B −m2

P

q2
qµ , (1.69)

〈P (k)|q̄σµνqνb|B̄(p)〉 = ifT (q
2)

mB +mP

[
q2(pµ + kµ)− (m2

B −m2
P )q

µ
]
, (1.70)

for the vector and tensor form factors, where mB and mP are the masses of the B̄-meson and the pseudoscalar
meson respectively. In the case of the scalar matrix element, through the application of the equations of motion
of the quark fields to Eq. (1.69), one obtains the following relation

〈P (k)|q̄b|B̄(p)〉 = m2
B −m2

P

mb −mq
f0(q

2) , (1.71)

where mb and mq are the masses of the quarks in the current. With this parametrisation, the matrix elements
defined in Eq. (1.69) apparently exhibits an unphysical singularity at q2 = 0 , which is removed by the identity

f+(q
2 = 0) = f0(q

2 = 0) . (1.72)

For illustration, the three form factors for the B → K transition are shown in Fig. 1.13.
Equivalently, in the case of the decay of a B̄-meson into a scalar meson S, the form factors are defined in the

following way

〈S(k)|q̄γµγ5b|B̄(p)〉 = −i
[
f+(q

2)

(
pµ + kµ − m2

B −m2
S

q2
qµ
)
+ f0(q

2)
m2
B −m2

S

q2
qµ
]
, (1.73)

〈S(k)|q̄σµνγ5qνb|B̄(p)〉 = − fT (q
2)

mB +mS

[
q2(pµ + kµ)− (m2

B −m2
S)q

µ
]
, (1.74)

〈S(k)|q̄γ5b|B̄(p)〉 = −im
2
B −m2

S

mb −mq
f0(q

2) . (1.75)

for the axial, pseudotensor and pseudoscalar currents respectively.
12For the tensor current, there is actually only one form factor due to the antisymmetric nature of the σµν tensor, leading to the

following constraint 〈P (k)|q̄σµνqνb|B̄(p)〉qµ = 0.
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B → V form factors

As mentioned before, in the case of a B̄-meson decaying into a vector meson V, the situation gets slightly
more complex since also the polarization vector εµ of the vector meson is available, and contractions with the
Levi-Civita symbol13 are now possible. The vector and axial form factors for the B → V transition are thus
defined as

〈V (k, ε∗)|q̄γµb|B̄(p)〉 = 2iV (q2)

mB +mV
εµνρσε∗νp

′
ρpσ , (1.76)

〈V (k, ε∗)|q̄γµγ5b|B̄(p)〉 =2mVA0(q
2)
ε∗ · q
q2

qµ + (mB +mV )A1(q
2)

[
ε∗µ − ε∗ · q

q2
qµ
]

−A2(q
2)

ε∗ · q
mB +mV

[
pµ + kµ − m2

B −m2
V

q2
qµ
]
,

(1.77)

and the tensor and pseudotensor as 14

〈V (k, ε∗)|q̄σµνqνb|B̄(p)〉 =2T1(q
2)εµνρσε∗νpρp

′
σ , (1.79)

〈V (k, ε∗)|q̄σµνγ5qνb|B̄(p)〉 = − iT2(q
2)
[
(m2

B −m2
V )ε

∗µ − (ε∗ · q)(pµ + kµ)
]

− iT3(q
2)(ε∗ · q)

[
qµ − q2

m2
B −m2

V

(pµ + kµ)

]
,

(1.80)

where mV is the mass of the vector meson.
These form factors are related at q2 = 0, on one side to remove the unphysical apparent singularity in

Eq. (1.77) and on other hand due to the algebraic relation between σµν and σµνγ5, which leads to the following
relations

A0(q
2 = 0) = A3(q

2 = 0) , T1(q
2 = 0) = T2(q

2 = 0) , (1.81)
where

A3(q
2) =

mB +mV

2mV
A1(q

2)− mB −mV

2mV
A2(q

2) . (1.82)

This seemingly complicated parametrisation is not purely arbitrary; its objective is to simplify the expressions
appearing when computing the amplitude for the process. More precisely, they simplify the helicity amplitudes,
which correspond to projections of the matrix elements in states of given helicity. We will discuss this further
when applying this method to the Λb → Λ∗`+`− decay in Chapter 5.

Baryon form factors

One cannot only define form factors in the case of meson transitions but also, in the case of baryons. As opposed
to mesons which have integer spins, baryons have half-integer spins. This means that even the lowest spin baryon
(spin 1/2) already has a more complicated spin structure than the lowest spin mesons (spin 0). This shows up in
the need of bispinors to characterise the external baryon states and the additional Dirac structures that come
with them.

Let us consider the simplest case, a transition from a spin 1/2 baryon Bi of 4-momentum pµ to a spin 1/2
baryon Bf of 4-momentum kµ. These baryons will be described by two bispinors ūBf

(k), uBi
(p) which satisfy

the Dirac equations

(/p−mBi)uBi(p) = 0 , ūBf
(k)(/k −mBf

) = 0 . (1.83)
The 4-vectors constructed from two bispinors will take the general form ūBf

(k)V µuBi
(p) where

V µ = γµ, pµ, kµ . (1.84)

All the other possible combinations of contracted 4-momentum with gamma matrices like

γµ/p , γ
µ/k , pµ/p , . . . , (1.85)

13The sign convention for the Levi-Civita symbol is such that ε0123 = −ε0123 = −1.
14Although the proper definition of the tensor and pseudotensor form factors should involve the 〈V (k, ε∗)|q̄σµν(γ5)b|B̄(p)〉 matrix

elements, due to the algebraic relation
σµνγ5 =

i

2
σαβε

αβµν , (1.78)

there is only 3 independent form factors which can be equivalently defined using the 〈V (k, ε∗)|q̄σµν(γ5)qνb|B̄(p)〉 matrix elements.
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Figure 1.14: Diagrams for the fusion of two virtual photons into a neutral pion. On the left, first order in the
twist expansion. On the right, corrections of twist-3.

when sandwiched between the bispinors, will reduce to one of the V µ 4-vectors and mass factors of the external
states thanks to the Dirac equations of Bi and Bf .

Then, for instance the vector form factors for the transition described above can be simply parametrized in
the following way

〈Bf (k)|γµ|Bi(p)〉 = ūBf
(k)
[
γµF1(q

2) + pµF2(q
2) + kµF3(q

2)
]
uBi

(p) . (1.86)
In the case of baryon form factors, there exist more than one parametrisation that is often used. For example in
the case of the nucleon form factors one commonly used parametrisation can be found in many textbooks like
Ref. [29], and in the case of Λb → Λ decays the most common parametrisation is given in Ref. [40]. As in the
case of B → V , one will prefer helicity based parametrisations like the one in Ref. [40], which will prove useful
to project the amplitudes into states of given helicity.

In the case of a transition involving higher spin states, we will require the introduction of generalized
Rarita-Schwinger (RS) spinor tensors [41] and new Lorentz invariant structures. For instance, one of the form
factor parametrisation for decays of spin 1/2 baryons to spin 3/2 and spin 5/2 is given in [42]. The case of spin
3/2 baryons will be discussed in more detail in Chapter 5.

1.5.3 Distribution amplitudes
While meson decay constants are related to the probability of finding both valence quarks in the same space-time
point, distribution amplitudes (DAs) are their generalisation in the case of non-local matrix elements. For light
mesons, they are related to the probability of finding a set of partons with a given collinear momenta in an
energetic meson (see Fig. 1.15). Since DAs are slightly more complicated objects, we will start by giving an
example of a process in which they play a role, to then explain the framework where they appear, which is the
light cone operator product expansion. We will closely follow Ref. [35].

Let us consider the process shown in Fig. 1.14, of a fusion of two virtual photons of four-momenta q and
(p− q) (where q2 < 0 and (p− q)2 < 0) into a neutral pion of four-momentum p

γ∗(q)γ∗(p− q) → π0(p) . (1.87)

The amplitude for this process, which appears in the e+e− → π0e+e− electromagnetic scattering, is given by

Mµν(p, q) =
4παem

(p− q)2q2
× i

∫
d4xe−iq·x〈0|T{jemµ (x)jemν (0)}|π0(p)〉 , (1.88)

where T is the time ordered product and jemµ (x) =
∑
q Qq q̄(x)γµq(x) is the electromagnetic current. We will

focus on the hadronic non-local matrix element

i

∫
d4xe−iq·x〈0|T{jemµ (x)jemν (0)}|π0(p)〉 . (1.89)

The integral in Eq. (1.89) will be dominated by the regions where q · x . O(1) and outside of this region fast
oscillations will suppress the integrand. In the case of large (and different) photon virtualities, this region will
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Figure 1.15: Schematics representing different meson distribution amplitudes. On the left, the twist-2 quark-
antiquark DA, p is the momentum of the meson, and 0 < u < 1 and ū = 1− u are the momentum fractions of
each parton. On the right, the twist three quark-gluon-antiquark DA where in here the momentum is divided in
3 partons and the momentum fractions are such that

∑
i αi = 1 and 0 < αi < 1.

correspond to the light-cone region x2 ∼ 0. This phenomenon is called light-cone dominance [43–46] and we will
thus focus on the amplitudes of light-cone dominated processes. In these processes, we can neglect the transverse
momenta of the partons and just consider their collinear components.

The phenomenon of light-cone dominance will allow us to construct an expansion of non-local matrix elements
near the light-cone, called the light-cone expansion, in terms of hadron light-cone DAs. For instance, near the
light-cone, the time ordered product in Eq. (1.89) can be expanded in

T{jemµ (x)jemν (0)} =

∞∑
t=tmin

[Ct(x)Ot(x, 0)]µν (1.90)

an infinite series of non local operators Ot(x, 0) composed of the parton fields multiplied by a coefficient function
Ct(x2).15 Due to large virtualities, the Ct(x2) coefficients can be computed in terms of perturbative QCD and,
due to the light cone dominance, the series is expected to be convergent. Its important to mention two differences
that the light-cone OPE has with respect to a regular local OPE. First, the operators of the expansion are not
local operators and second, the index t (i.e. the expansion order) is not simply the dimension of the operator as
it is in a local operator, but rather its twist.

The twist (t) of an operator can be understood 16 as the difference between the dimension and spin of the
operator t = d − s. In the light-cone expansion, twist determines the relevance of an operator, lower twist
operators will be the most relevant operators.

The sandwiched bilocal operators 〈0|Ot(x, 0)|π0(p)〉 can be expressed through the light cone DAs. The
light-cone DAs of a meson correspond to the Fourier Transform of the vacuum-to-meson matrix elements
expanded on the light-cone (i.e. x2 → 0). For example, in the case of a pseudoscalar meson P (qq̄′) and the
γµγ5 current, we can define the ϕP (u) DA through the following relation

〈0|q̄(x1)γµγ5[x1, x2]q′(x2)|P (p)〉x2→0 = −ipµfP
∫ 1

0

du eiu(p·x1)+iū(p·x2)ϕP (u) , (1.91)

where ū ≡ 1− u and x1,2 = ξ1,2x being ξ1,2 arbitrary numbers such that x1 and x2 are collinear.
The gauge link appearing in Eq. (1.91), which we will now omit for simplicity, is defined as

[x, y] = P

{
exp

[
i

∫ 1

0

du (x− y)µAµ(ux+ (1− u)y)

]}
, (1.92)

where P is the path-ordering operation (see for example [29, 35]).
In the x1 = x2 = 0 limit the matrix element in Eq. (1.91) is reduced to the meson decay constant fP , implying

the following normalisation ∫ 1

0

duϕP (u) = 1 . (1.93)

This function ϕP (u) is called the twist-2 light-cone distribution amplitude of the P meson. Twist-2 is the first
order in the light-cone expansion and the only DA of twist-2 is the one given in Eq. (1.91).

15The Lorentz indices in Eq. (1.90) are on the parenthesis as they can distribute in between the operators and the coefficients
which are not necessarily simple scalar coefficients.

16The full definition is slightly more complicated and the determination of the twist of an arbitrary operator is not straightforward
in every case. A systematic light-cone expansion of the quark and gluon fields in the transverse and longitudinal components is
needed (see Refs. [47, 48]).
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The next order in the light-cone expansion is twist-3, where the quark-antiquark DAs (φp3P , φσ3P ) are defined
as it follows

〈0|q̄(x1)iγ5q′(x2)|P (p)〉x2→0 = fPµP

∫ 1

0

du eiu(p·x1)+iū(p·x2)φp3P (u) , (1.94)

〈0|q̄(x1)σµνγ5q′(x2)|P (p)〉x2→0 = i [pµ(x1 − x2)ν − pν(x1 − x2)µ]

× fPµP
6

∫ 1

0

du eiu(p·x1)+iū(p·x2)φσ3P (u) ,
(1.95)

where
µP =

m2
P

mq +mq′
. (1.96)

Starting from twist-3 multi-parton DAs can be defined, for instance, at twist 3 the first quark-gluon-antiquark
DAs shown in Fig. 1.15 appears. At higher twist, one can systematically include more partons in the DAs. A
detailed study on higher twist DAs for pseudoscalar mesons can be found in Ref. [49].

In the case of vector mesons we can in a similar way define the light-cone DAs which, like in the case of the
vector decay constants, will take a slightly more complicated shape due to the spin structure (i.e. the presence
of the polarition vector). Their definitions until twist-4 can be, for instance, found in Refs. [47, 48, 50, 51].

Light-cone distribution amplitudes have also been generalized to the case of baryons, more details can be
found in Refs. [52, 53].

Going back to the simpler case, the twist-2 light-cone distribution amplitude ϕP (u) is expected to have a
scale dependence on the renormalisation scale µ. It turns out that ϕP (u) does not have a simple multiplicative
renormalisation with a correspondent anomalous dimension like the quark masses. Luckily, one can do a
polynomial expansion of ϕP (u) whose coefficients have a simple multiplicative renormalisation at the one-loop
renormalisation level17. This polynomial expansion takes the following form

ϕP (u) = 6uū

[
1 +

∑
n

aPn (µ)C
3/2
n (u− ū)

]
, (1.97)

where C3/2
n (u − ū) are the Gegenbauer polynomials and aPn (µ) are the Gegenbauer moments of the DA. The

one-loop running of the Gegenbauer moments is given by

aPn (µ) = aPn (µ0)

(
αs(µ)

αs(µ0)

) γn
β0

(1.98)

where β0 is defined in Eq. (1.56) and γ1 = 32
9 , γ2 = 50

9 [35]. In the case of the pion only the even Gegenbauer
moments are non vanishing due to the isospin symmetry, in which limit the following relation holds

ϕπ(u) = ϕπ(ū) , (1.99)

leading to a symmetric DA as opposed to the kaon DA, both shown in Fig. 1.16 following the determinations of
Refs. [49, 55].

1.6 Non perturbative QCD methods
There are several methods used to treat QCD in the non-perturbative regime and to describe the bound states
of quarks and gluons, which are the incoming and outgoing states of the theory at low energies. These methods
can be used to compute the hadronic inputs discussed in the previous section and, in general, each of them
works on specific kinematical regions.

1.6.1 Quark Models
Probably the first of these methods to be developed were the Quark Models[56–58]. These are phenomenological
wave function models based mainly on quantum mechanics, which in general cannot be systematically derived
from QCD, but they take some ingredients from QCD and/or data. Many different quark models exist, however
they usually bear some common ingredients: a confining interaction like a harmonic oscillator potential , different

17This expansion is actually inspired by the conformal symmetry [54] in which this expansion always has a simple multiplicative
renormalisation, remarkably this still holds for the one-loop renormalisation in QCD
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Figure 1.16: On the left (right) we show the twist-2 DA for the pion (kaon) at 2GeV. The solid blue (green) line
corresponds to the Lattice results from Ref. [55] and the dot-dashed orange (red) line corresponds to QCD sum
rules results coming from Ref. [49].

types of spin-dependent interactions such as the hyperfine and spin-orbit interactions and of course the different
quark masses. Usually the parameters of these elements are then fitted to either the experimental spectrum of
hadron states. They have been mainly used to predict the hadron spectrum, however they can also be used to
obtain hadronic quantities describing the meson dynamics such as form factors. Even though precision cannot
be expected from them, they provide an overall understanding when no more precise option is available.

1.6.2 Lattice QCD

One of the most successful of the non-perturbative methods is Lattice QCD (LQCD) [59–62] which corresponds
to a numerical evaluation of the path integral that defines QCD on a discrete finite volume Euclidean space-time
lattice. The main limitation of LQCD, although not the only one, is the computational power needed to obtain
precise results. Another limitation is the quantities that are accessible on the lattice; since we work on an
Euclidean space-time, correlators need to be extrapolated to the Minkowskian region, which can sometimes
prove impossible due to the analytic structure of the correlator.

The main applications of LQCD are the predictions of the hadron spectrum, the computation of the strong
decay constant, quark masses, decay constants, bag parameters and form factors. Calculations of more complex
correlators (i.e. involving multiple hadrons) are still facing computational limitations that might however be
solved in the near future due to increasing computational power and conceptual limitations that may (or may
not) be solved in the future.

In general, LQCD results come with two kinds of errors, a statistical error related to the use of Monte Carlo
technique to perform the integration over the lattice, and a systematic error due to the continuum extrapolation,
the infinite volume extrapolation and the use of “unphysical” quark masses. The first of these systematic errors
is related to the lattice spacing (a) which sets the “granularity” of the discretisation and acts as a cut-off for the
momenta (1/a). Physical results are obtained in the limit that the lattice spacing goes to zero, which is done
trough a process of extrapolation. Discretisation errors are expected to be larger when large energy scales are
involved. The second of these errors arises because LQCD calculations need to be carried out in finite volume
“space-time-boxes”. These are treated by performing calculations in multiple volumes and for large enough
volumes are usually exponentially suppressed.

The last of these errors is related to the use of lower values for the quark masses (or equivalently the pion
mass) since performing the lattice computations at physical masses is usually more resource consuming. However
in the case of light quarks, due to the evolution of computational resources in the last decade, computations are
often performed close to physical pion masses, reducing enough these kind of errors to make them sub-leading.

Computations on the lattice require also to carry out the renormalisation of the lattice QCD results (which
is more complicated than in the continuum due to the breakdown of Lorentz-Poincaré symmetry). Another
limitation is that of the accessible range : the size of the volume and the lattice spacing means that we cannot
access all kinematic configurations. In general, we can only simulate “slow-moving” hadrons, leading typically to
result in low-recoil configurations.
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1.6.3 Sum Rules

Another highly successful non-perturbative technique, or rather family of techniques, are the sum rules based
methods. These were first developed in Ref. [63], where they introduced the method of QCD Sum Rules often
called SVZ Sum Rules for the names of their authors Shifman, Vainshtein and Zakharov. The basic principle for
all Sum Rules is the same, first we construct a correlation function that we can extract in a given kinematic
region, then we consider it in a different kinematic region where we can apply some sort of operator product
expansion (OPE). Short- and long-distance interactions are separated, having a part computed in perturbative
QCD and another part which is parametrised in terms of universal quantities, which are the vacuum condensates
describing the non-perturbative structure of QCD vacuum. The two representations are then matched using a
dispersion integral obtained thanks to the analytic structure of the correlator. This allows us to express non
perturbative quantities in term of the OPE of the correlator which involve a simpler set of universal quantities
(vacuum condensates).

Another version of these sum rules correspond to the Light-Cone Sum Rules (LCSR) [64–66]. The philosophy
is similar to that of QCD sum rules, but it is applied in a different kinematic regime 18, corresponding to the case
of an energetic meson in the final state. The non-perturbative quantities appearing are not vacuum condensates
but light-cone wave functions of increasing twist, being more adapted to the kinematics of exclusive processes
with large momentum transfer. Light-cone sum rules have been applied to many exclusive processes, and more
recently to heavy-to-light meson processes, which will make them an important source of information for us.

1.6.4 Effective Theory methods

Another tool to tackle QCD in the non-perturbative regime is provided by Effective Field Theories of QCD. We
will describe some of them in more detail in the last part of Chapter 2, but a few comments are in order here.

Theses approaches are not able to compute fully QCD matrix elements. However, they allow for a breakdown
of the matrix elements into simpler non-perturbative blocks through a systematic expansion on small parameters.
The simplified blocks will still require a “truly” non-perturbative treatment. However, important information of
the relations in between different non-perturbative elements will be obtained from these theories.

The small expansion parameter, specific of each effective theory, and the theory itself will generally depend
on the kinematics of the decays in question. For instance, one of these theories, which will be used to describe
light hadrons at low energies, is Chiral Perturbation Theory (ChPT) [69]. It corresponds to an expansion around
the chiral limit. The parameters of the expansion are quark masses and hadron momenta, in the region where
they are small compared to the scale of chiral symmetry breaking.

Two theories that will be of used in the following are the Heavy quark effective theory (HQET) [70, 71] and
the Soft collinear effective theory (SCET) [72–76]. We will discuss both of them in more detail in Section 2.5.
The first one corresponds to an effective theory in the heavy quark limit (i.e. an expansion on 1/mQ), where
gluon interactions are soft with respect to the heavy quark masses. It works well for heavy hadron decays in
regions where the momentum transfer is large. The second one corresponds to an effective theory in which
interactions are either soft (with respect to the fermion masses) or collinear to a preferred direction. It is
also used in the context of heavy hadrons, but in regions in which the momentum transfer is small, since the
parameter of expansion of the theory corresponds the inverse of it.

1.6.5 Comments

In this manuscript we will work in the context of heavy hadron decays and as a consequence of this and its
kinematics we will mainly use results coming from LQCD, LCSR, HQET and SCET.

Due to the finite volume of the lattice form factors results will be more precise in the region where the
momentum transfer is large, usually called low recoil regions as the final state hadron moves slowly away from the
decaying hadron (see Fig. 2.5). Because of this, LQCD results will usually be complemented by other methods
like LCSR (see Fig. 1.13), which provide precise results at the region of small momentum transfer, usually called
large recoil region.

As we will see in the next chapter, HQET and SCET will relate different form factors up to corrections of a
small parameter, in the low- and large-recoil regions respectively, providing a powerful cross-check of LQCD and
Sum Rules results.

When none of these methods are available, we will turn to quark models.

18Sum rules can also be applied in other theories than QCD, which is the case of SCET sum rules [67, 68], in which the light-cone
sum rules are written already in the framework of an effective theory of QCD called Soft-Collinear Effective Theory, which we
describe in Section 2.5.2.
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1.7 Summary
We started this chapter by introducing the Standard Model and discussing the breakdown of the electroweak
symmetry. One of the consequences of the electroweak breaking is the mixing among different generations. We
re-expressed electroweak interactions taking into account this mixing, and we discussed the status of flavour-
changing currents in this context. In the case of charged currents, we discussed briefly the structure and impact
of the generation-mixing matrices, focusing on the CKM quark-mixing matrix which is well constrained through
various experimental tests. In the case of neutral currents, we saw that there is no mixing among generations
in the Standard Model and that they are generated only at loop level. This indicates that both transitions
are interesting tests of the SM. We then discussed the potential as NP probes and tests of the SM of these
currents which will be at the center of the following chapters. We then discussed important details of QCD
and the non perturbative elements of it, which will play an important role in the study of flavour changing
currents. This indicates that flavour-changing transitions involving both quarks and leptons can provide a
very interesting environment to test the SM, as they may be tested in various hadronic environments with a
reasonable theoretical control of non-perturbative QCD effects. Moreover, the universality of couplings in the
SM can be probed in particular through tests of Lepton Flavour Universality. In the following chapter, we will
set the theoretical framework to study flavour changing currents in heavy hadron decays, which corresponds to
the framework of effective field theories.
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Chapter 2

Flavour Physics and its different energy
scales

Throughout this manuscript we will study the weak decays of heavy hadrons. It is then important to understand
the energy scales related to the process in hand will occur. The main two transitions that we will be studying
are b → s`+`− and b → c`ν̄. There are 3 different energy scales that are relevant for this kind of processes,
which are represented in Fig. 2.1. First of all, the characteristic energy scale of the process in hand which will
correspond to our renormalisation scale µ = mb. Secondly the Electroweak scale (µEW) which corresponds to
the mass scale of the mediator of the interaction in play, the W boson. And lastly, the QCD scale (ΛQCD) at
which hadronisation will occur and at which QCD becomes a non-perturbative theory. These energy scales are
roughly of the following size

O(ΛQCD) ∼ 0.2GeV, O(mb) ∼ 4GeV, O(µEW) ∼ 80GeV. (2.1)

An extra high energy scale (ΛNP) can also be taken into account corresponding to the energy scale in which
NP could appear and we will assume this scale to be higher than µEW since direct searches at the LHC have not
yet found new degrees of freedom pushing NP to 1TeV or more (see Fig. 1.2). This defines an energy hierarchy

ΛQCD � mb � µEW � ΛNP (2.2)

that will allow us to separate/factorise the processes that are happening at each of these scales. One of the main
reasons to require this factorisation is the the confinement of QCD, which cannot be treated perturbatively at
low energies.Another important reason to factorise the processes, is the need to avoid large logarithms of the
different scales in hand through the use of RGE improved perturbation theory. In order to do this we will work
in the framework of effective field theories which will take advantage of of the natural energy hierarchy.

2.1 Effective Field Theories
Effective Field Theories (EFTs) are a fundamental tool in the study of multi-scale QFTs. Let us consider a QFT
which has a high energy scale M (for instance the mass of a heavy field) which we want to describe at a lower
energy scale E such that E �M . One can define a cut-off scale µ, such that E � µ < M , which can be used to
divide the fields into high energy modes and low energy modes. While low energy modes are the relevant external
states at the energy scale E, the high energy modes do not propagate on long distances, they only appear as
virtual particles and can be “removed” from the theory. This is done by performing the path integral over these
modes, usually referred as “integrating them out” (A more detailed explanation of this procedure can be for
instance found in Refs. [77, 78]). However, this leads to a theory which is non-local on scales ∆xµ ∼ 1

M because
of the fluctuations of the high energy modes. Nonetheless, the resulting non-local theory can be expanded, in
powers of 1/M , into a theory of local operators Oi, containing only the low-energy modes of the effective theory.
This expansion is described by an effective Lagrangian

Leff =
∑
i

1

Mdi−4
Ci(µ)Oi(µ) , (2.3)

where each operator comes accompanied by a coefficient Ci, coming from the short-distance dynamics that has
been integrated out, usually referred as a Wilson coefficient and a power of Mdi−4 determined by the mass
dimension of the operator [Oi] = di such that the Wilson coefficients are dimensionless. Thus, one can hope that

33
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ΛNP
μEWΛQCD

μQ=mQ

Integrated out

Figure 2.1: Different scales present in flavour physics.

the Wilson coefficients are of O(1). The theory described by Eq. (2.3) is independent of the value of the scale µ
to be chosen. Due to quantum effects, the value of the Wilson coefficients depend logarithmically on µ and their
dependence (encoded in anomalous dimensions) can be determined through RGE like in the case of QCD.

At low energy, the contribution of each operator Oi to an observable is expected to scale as

(
E

M

)di−4

=

 � 1 if di < 4 ,
O(1) if di = 4 ,
� 1 if di > 4 ,

(2.4)

hence, the relevance of the operator at low energies is determined by its dimension and a systematic expansion on
E
M can be performed by the truncating the series in Eq. (2.3) at a given operator dimension. At each dimension
the number of operators is finite.

At this point, the EFT can be interpreted in two different approaches, a top-down and a bottom-up. In the
first one, the full theory including the high energy modes is known and we can derive the value of the Wilson
coefficients from the it, allowing us to treat low energy processes in a simpler theory. In the second one, the high
energy modes of the full theory are unknown but its structure at low energies is fully determined at a given order
in E

M by the allowed local operators which include only the low energy modes and that respect the symmetries
of the theory.

Different EFTs are interesting at different regions of Fig. 2.1

• When µEW < µ < ΛNP, the adequate framework is the Standard Model Effective Field Theory (SMEFT)
which is constructed with the fields of the Standard Model as “light” degrees of freedom and considers
operators that preserve the symmetries of the SM1.However, since we do not work in this framework, we
will not go into any further details.

• When mb < µ < µEW, the appropriate EFT is the Weak Effective Theory (WET) that we will present
in the following section. This EFT is used to describe the decays of heavy hadrons, and it is sometimes
complemented by the SMEFT in order to connect different modes.

• When ΛQCD < µ < mb, EFTs of strongly interacting heavy quarks can be used, we will describe in
Section 2.5.

This framework is often used also in the context of heavy hadron decays as it allows to connect different decay
modes and can be of course matched to the WET. However, since we do not work in this framework, we will not
go into any further details.

Other EFTs which profit of the large mass of heavy quarks will also have a place in the description of heavy
hadron decays and will be thus discussed in the following section (Section 2.5).

2.2 WET: Weak Effective Theory
The best suited framework to describe heavy hadron weak decays at the scale µ = mQ is the Weak Effective
Theory (WET), also called the Weak Effective Hamiltonian (WEH) [28, 79]. Since the top quark and the W±,
Z and Higgs bosons are highly massive with respect to the hadron mass, i.e. mHad � mW±,Z,H,t the heavy
degrees of freedom related to them can be integrated out and reduced to two sets of scale dependents objects: a
set of local effective operators Oi(µ) and a set of Wilson coefficients Ci(µ) as shown diagrammatically in Fig. 2.2
in the case of Fermi Theory.

This set of local operators can be classified by their dimension di = [Oi]. We will restrict ourselves to the
first order in the local operator expansion, thus we truncate this expansion at di = 6.

1One could of course expect to find NP particles that violate the symmetries of the SM. However, if new particles where to
appear at an energy scale close to the EW scale and strongly violate these symmetries, hints of violations of these symmetries would
have been already seen. In any case, an EFT of this kind needs to be accompanied by a search of violations of the SM symmetries.
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Figure 2.2: EW vs Fermi theory, the W boson does not propagate at the energies of interest. Then the W
coupling and expansion of its propagator on 1/MW leads to Fermi constant which acts as Wilson coefficient
containing parameters of the underlying theory (couplings and mass).

This leads to the following effective hamiltonian2

Heff =
∑
i

Ci(µ)Oi(µ) , (2.5)

where the normalisation in Eq. (2.5) is arbitrary and can change depending on the convention and the process in
hand, here it is absorbed in the Ci (making the Wilson coefficients dimensionful). However, the normalisation
will in general contain GF making the Wilson coefficients dimensionless and the relevant elements of the CKM
matrix involved in the transition.

The arbitrary scale µ appearing in Eq. (2.5) plays two different roles in the effective theory. On one side, µ
plays the role of a renormalisation scale, on the other side, the role of a factorisation scale to differentiate in
between the low and high energy modes.

Then, for example, the amplitude for a transition between two states A → B at first order in the WET
formalism will read

M(A→ B) = 〈B|Heff |A〉 =
∑
i

Ci(µ)〈B|Oi|A〉(µ) . (2.6)

We can thus separate the computation of the amplitude on two parts: A first part related to, obtaining
〈B|Oi|A〉(µQ) through non perturbative methods (cf. Sections 1.5 and 1.6), and a second one related to the
computation of the Wilson coefficients Ci(µ).

In decay processes A corresponds to a single-particle state, however B is a multi-particle state making
slightly more complex to obtain 〈B|Oi|A〉(µQ). We will usually face decays of a single hadron into multi-particle
states composed either purely from hadrons or also containing leptons or photons. Often, one will perform
an additional step of factorisation of the 〈B|Oi|A〉(µQ) matrix element, in order to reduce it into the simple
structures discussed in Section 1.5. This additional factorisation might prove challenging in some transitions like
non-leptonic decays, or (up to now) impossible for final states containing many hadrons. We will discuss this
further in Sections 2.6 and 2.8.

The computation of the Wilson coefficients is done in two steps: A first step of computing the Wilson
coefficient at a high scale (µEW), and a second step of running the Wilson coefficient to a low scale (µb).

The first step is done through a process called matching, in which we will “match” the amplitudes in the full
theory (SM) and the effective theory (WET).This process is at an arbitrary matching scale µ that we choose
to be the electroweak scale µEW in order to avoid that logarithms of the form ln(MW /µ) become large. More
precisely, the matching consist in computing the amplitudes for several processes, first in the full theory and
then the effective theory and “choose” the value of the Wilson coefficients that make these amplitudes equal.
The choice of processes is such that all Wilson coefficients are determined after the matching. Since the Wilson
coefficients contain the short-distance dynamic, one can simply compute the “non-physical” amplitudes at the
quark level to perform the matching. Typically, the exchange of a heavy particle of mass M with coupling g
mediating the interaction represented at low energies by a four-fermion operator will have a typical contribution
g2/M2 to the Wilson coefficient at the matching scale. This matching processes, initially performed at the tree
level, can be systematically performed at higher loop orders. More details about the matching procedure in the
WET can be found in Ref. [28].

The computation of the Wilson coefficients running is done through the renormalisation of the WET, which
we will now discuss.

2The convention to use an effective Hamiltonian instead of an effective Lagrangian (Leff = −Heff) is purely historical.
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2.2.1 Renormalisation of the WET
The renormalisation of the effective theory has many similarities to the renormalisation of QCD, but some new
aspects that were not discussed in Section 1.4 appear, namely the mixing in between different operators through
running.

In order to discuss this, let us look at the renormalisation group evolution of a complete set 3 of n local
operators {Oi}i=1,...,n. Due to the renormalisation scale invariance of the amplitudes

dM
d lnµ

=
d

d lnµ

∑
i

Ci(µ) 〈Oi(µ)〉 = 0 . (2.7)

The running of the operators

d

d lnµ
〈Oi(µ)〉 = −

∑
j

γij(µ) 〈Oj(µ)〉 , i = 1, . . . , n , (2.8)

is given by the anomalous dimension matrix γij(µ), which is obtained from the coefficient of the 1/ε pole term
in the renormalisation factors of the local operators (see for example Refs. [28, 30, 80]). Reexpressing Eq. (2.8)
in matrix form

d

d lnµ
〈O(µ)〉 = −γ(µ) 〈O(µ)〉 , (2.9)

we obtain the following relation
d

d lnµ
C(µ) = γT (µ)C(µ) , (2.10)

for the Wilson coefficients. This implies that if γ is not a diagonal matrix, which is in general the case, there will
be a mixing in between different operators. Then, for instance, a Wilson coefficient that vanishes at a certain
scale, can get a non-vanishing value at a different scale.

The general solution to Eq. (2.10) can be found in Ref. [80] and, at leading order, we obtain a

C(µ) ≈ exp

[
− γT0
2β0

ln
αs(µ)

αs(µEW)

]
C(µEW) (2.11)

which, for the simple case of a single operator O, takes the same form as the quark mass running in Eq. (1.62),
and can be thus written as

C(µ) ≈
(

αs(µ)

αs(µEW)

)− γ0
2β0

C(µEW) . (2.12)

The decision of working in an effective field theory at the characteristic scale µ and performing the matching at
a high scale µEW rather than working directly at the electroweak scale or the low scale is justified in a similar
way to the choice of renormalisation scale in QCD. Any of these two choice will generate large logarithms that
would not be accounted for.

This can be seen explicitly by replacing αs(µ)
αs(µEW) in Eq. (2.12) by the leading-log expression given in Eq. (1.56)

C(αs(µ)) ≈
(
1 +

αs(µ)

4π
β0 ln

µ2
EW

µ2

)− γ0
2β0

C(αs(µEW)) . (2.13)

and then expanding this expression

C(αs(µ)) ≈

(
1− γ0

2

αs(µ)

4π
ln
µ2
EW

µ2
+
γ0(γ0 + 2β)

8

(
αs(µ)

4π
ln
µ2
EW

µ2

)2

+ . . .

)
C(αs(µEW)) . (2.14)

If one were to perform the NLO matching at the low scale µ, only the first two terms Eq. (2.14) will be taken
into account, and all the other terms (which as discussed in the previous chapter are O(1)) would be neglected.
Fortunately, performing the matching at high-scale plus the leading order RGE allows for the resummation of
leading logarithms to all orders , as explicitly shown in Eq. (2.14).

It is maybe important to mention one small detail regarding the running of the effective theory. When
discussing the running above, we assumed that the scale µ was somewhere in between the electroweak scale µEW

and the mass of the b-quark mb. However, one might want to consider processes in which the characteristic
3Here, by complete we mean that the running does not produce mixing with operators external to the set. For instance, this is

the case of operators of the same dimension, for which dimensional regularization ensures independent runnings between different
dimension operators [80].
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energy is below mb, like in the case of c-meson and light meson decays. This will require an intermediate step
when changing the number of active flavours Nf , or in other words when crossing one of the quark masses. For
instance, for values of µ ∼ mc we have Nf = 4 (i.e. the u, d, s and c quarks) and the relevant effective theory
will have the b-quark integrated out. This will then also require a matching of both theories at the quark mass
creating a series of WET with different number of active quark flavours.

2.2.2 Extending the Weak Effective Hamiltonian to NP
One of the benefits of the EFT framework is how easily NP contributions can be taken into consideration. As
discussed at the beginning of the chapter, if one considers NP appearing at a scale higher than the EFT’s
matching scale, NP particles do not appear as external states in the EFT and they “do not propagate” (i.e. their
interactions can be approximated through local operators). This means that they can be integrated out together
with the rest of the full theory and expanded in a tower of local operators. Then NP can be taken into account
in a model-independent way by adding a NP contribution to each Wilson coefficient. However, this is only valid
when the NP in hand generates the same long-distance structures present in the SM. In order to include all
possible NP contributions, one needs to add all the allowed operators at a given dimension which have the “low
energy” SM fields as external states. In general, we will thus extend the Hamiltonian in Eq. (2.5) into

Heff =
∑
i∈I

Ci(µ)Oi(µ) +
∑
j∈J

CNP
j (µ)ONP

j (µ) , (2.15)

where the set I corresponds to the indices of the local operators to which have SM-like structures and the set
J corresponds to the indices of the EFT operators which appear purely through NP operators. The Wilson
coefficients Ci = in the first set of operators is composed by both a SM and NP contributions such that
Ci = CSM

i + CNP
i .

Low-energy experiments will allow us to constrain the Wilson coefficients at the low scale. In general, one
can run these constraints up to a high scale of New Physics and determine in this way the potential models
that could match these constraints. If the NP contributions to Wilson coefficients are due to the exchange of a
particle, the contributions read typically as g2NP/Λ

2
NP. Depending on the assumptions made on the size of the

NP couplings (of order 1, suppressed or proportional to SM couplings due to symmetry arguments), this allows
one to determine the typical mass scale of the (lightest) NP heavy degrees of freedom contributing to the Wilson
coefficients.

This has been done for neutral-meson mixing [81] and can be done for other processes. In the following, we
will illustrate this for b→ c`ν̄ and b→ s`+`− processes.

2.3 ∆B = 1, ∆C = 1 WET for the b → c`ν̄ transition
Assuming that there are no light right-handed neutrinos, the effective Hamiltonian for the b→ c`ν̄ transition
takes the following form:

Heff =
√
2GFVcb

[
(1 + gV )(c̄γµb)(¯̀Lγ

µνL) + (−1 + gA)(c̄γµγ5b)(¯̀Lγ
µνL)

+ gS(c̄b)(¯̀RνL) + gP (c̄γ5b)(¯̀RνL)

+ gT (c̄σµνb)(¯̀Rσ
µννL) + gT5(c̄σµνγ5b)(¯̀Rσ

µννL)
]
+ h.c.

(2.16)

One may also use the equivalent notation of Refs. [82, 83]

Heff = 4
GF√
2
Vcb
[
(1 + gVL

)(c̄LγµbL)(¯̀Lγ
µνL) + gVR

(c̄RγµbR)(¯̀Lγ
µνL)

+ gSL
(c̄RbL)(¯̀RνL) + gSR

(c̄LbR)(¯̀RνL) + gTL
(c̄RσµνbL)(¯̀Rσ

µννL)
]
+ h.c.

(2.17)

with the corresponding effective coefficients

gV,A = gVR
± gVL

, gS, P = gSR
± gSL

, gT = −gT5 = gTL
. (2.18)

The SM tree level contribution (Fermi Theory) is recovered by taking all the effective coefficients gV,A, S, P, T, T5

to 0. Up to electroweak corrections, the renormalisation of the operators in Eqs. (2.16) and (2.17) can be found
in Ref. [84].



38 Chapter 2. Flavour Physics and its different energy scales

2.4 ∆B = 1, ∆S = 1 WET for b → s transitions
When applying the EFT formalism described before to b→ s transitions the WET takes the following form:4

Heff =
4GF√

2

[
λ(s)c (Cc1(µ)Oc

1 + Cc2(µ)Oc
2) + λ(s)u (Cu1 (µ)Ou

1 + Cu2 (µ)Ou
2 )

− λ
(s)
t

∑
i∈I

Ci(µ)Oi

]
,

(2.19)

where λ(s)q = VqbV
∗
qs as defined in Eq. (1.42) and I = {3, 4, 5, 6, 7, 8, 9, 10, 7γ, 8g, 9`, 10`}. The local operators

present in the SM , which come from the non local high energy structures shown in Fig. 2.3, are the following:

Current-Current operators:

Oq
1 = [q̄αPLbβ ][s̄βPLqα] (2.20)

Oq
2 = [q̄αPLbα][s̄βPLqβ ] , (2.21)

QCD Penguins:

O3 = [s̄αPLbα]
∑
q=u,d,
s,c,b

[q̄βPLqβ ] , (2.22)

O4 = [s̄αPLbβ ]
∑
q=u,d,
s,c,b

[q̄βPLqα] , (2.23)

O5 = [s̄αPLbα]
∑
q=u,d,
s,c,b

[q̄βPRqβ ] , (2.24)

O6 = [s̄αPLbβ ]
∑
q=u,d,
s,c,b

[q̄βPRqα] , (2.25)

EW Penguins:

O7 =
3

2
[s̄αPLbα]

∑
q=u,d,
s,c,b

eq[q̄βPRqβ ] , (2.26)

O8 =
3

2
[s̄αPLbβ ]

∑
q=u,d,
s,c,b

eq[q̄βPRqα] , (2.27)

O9 =
3

2
[s̄αPLbα]

∑
q=u,d,
s,c,b

eq[q̄βPLqβ ] , (2.28)

O10 =
3

2
[s̄αPLbβ ]

∑
q=u,d,
s,c,b

eq[q̄βPLqα] , (2.29)

Electromagnetic dipole and chromomagnetic penguin operators:

O7γ =
e

16π2
mb[s̄ασ

µνPRbα]Fµν , (2.30)

O8g =
g

16π2
mb[s̄ασ

µνPRT
a
αβbβ ]G

a
µν , (2.31)

4In several references[28, 30], the normalisation does not include the factor 4 in the numerator, this is compensated by the
preference for the left and right handed projectors PL,R defined in Eq. (2.34) instead of the V ±A structures, i.e. 1± γ5, in the
definition of the Wilson operators. Then the normalisation of the Wilson coefficients is the same.
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SM Wilson Coefficients (at µ = 4.8 GeV)
C1 C2 C3 C4 C5 C6 Ceff

7γ Ceff
8g C9` C10`

−0.2632 1.0111 −0.0055 −0.0806 0.0004 0.0009 −0.2923 −0.1663 4.0749 −4.3085

Table 2.1: Values for the SM Wilson Coefficients at NNLO coming from Ref. [87]. In the case of the electromagnetic
dipole and the chromomagnetic penguin operators we give the value of the effective Wilson coefficients Ceff

7γ,8g

discussed in Section 2.7. The value for both Cc1,2 and Cu1,2 is the same in the SM so we omit the index c and u.
The values for the EW penguin operators can be found in Table 10.A.1 at NLO.

Figure 2.3: SM diagrams contributing to b→ s transitions. Adapted from Ref. [88].

Semileptonic operators:

O9` =
e2

16π2
[s̄αγµPLbα][¯̀γ

µ`] , (2.32)

O10` =
e2

16π2
[s̄αγµPLbα][¯̀γ

µγ5`] , (2.33)

where
PL,R = (1∓ γ5)/2 (2.34)

and mb ≡ mb(mb) denotes the running b quark mass in the MS scheme.
In the SM, regarding the 4-quark operators, Cc2 = Cu2 is the largest coefficient and it corresponds to the

colour-allowed tree-level contribution from the W exchange, whereas Cc1 = Cu1 is colour suppressed. QCD-penguin
operators are numerically suppressed, and the electroweak operators even more so.

A similar weak effective theory can be written for the b→ d transition by performing the trivial replacement
s→ d. Neglecting the difference of mass between the d and s quarks, the SM values of the Wilson coefficients
are identical in both cases. Whenever the distinction is necessary, we will add a d or s subscript in the operators
and Wilson coefficients.

We work in the naive dimensional regularisation (NDR) and MS schemes, for which the parameters of the
running of the operators of the WET (i.e. the anomalous dimension matrix and the evolution matrix) can be
found in Refs. [28, 30] and electroweak corrections to them can be found in Refs. [85, 86]. The values for the SM
Wilson coefficients can be found in Table 2.1.

NP contributions could either modify the value of the short-distance Wilson coefficients Ci, or make other
operators contribute in a significant manner, such as the chirality-flipped operators O′

i or other operators (scalar,
pseudoscalar, tensor). Since the list of NP operators that can affect any b→ s transition is quite long, we will
only present the ones relevant for the transitions that we will discuss in the following chapters.

2.4.1 NP in semileptonic and radiative b → s decays
When working on either radiative or semi-leptonic decays we generally neglect small corrections proportional to
λ
(s)
u in the SM 5, since they are strongly CKM suppressed as discussed in Section 1.3 as well as EW penguins

5This corresponds to doing the replacement λ(s)c Oc
i → −λ(s)t Oc

i = (λ
(s)
c + λ

(s)
u )Oc

i and λ
(s)
u Ou

i → 0 to Eq. (2.19).



40 Chapter 2. Flavour Physics and its different energy scales

Figure 2.4: Diagrams of the Weak Effective Theory contributions to b→ s`+`−. These diagrams are obtained
through contractions of the diagrams in Fig. 2.3. Adapted from Ref. [88].

which have small Wilson coefficients. We will also consider NP structures not present in the SM. Then the
effective Hamiltonian will take the following form:

Heff = −4GF√
2
λ
(s)
t

∑
i∈I

Ci(µ)Oi, (2.35)

Where I = {1c, 2c, 3, 4, 5, 6, 7(′)γ, 8g, 9(′)`, 10(′)`, S(′)`, P (′)`, T (′)`} and i = 1c(2c) refers to Oc
1(2). The main

diagrams contributing to the b→ s`+`− transition are shown in Fig. 2.4. The Scalar, Pseudoscalar, Tensor and
Chirally flipped SM operators are defined in the following way:

Chirally flipped SM operators:

O7′γ =
e

16π2
mb[s̄ασ

µνPLbα]Fµν , (2.36)

O9′` =
e2

16π2
[s̄αγµPRbα][¯̀γ

µ`] , (2.37)

O10′` =
e2

16π2
[s̄αγµPRbα][¯̀γ

µγ5`] , (2.38)

Tensor and (Pseudo)Scalar Semileptonic operators:

OS(′)` =
e2

16π2
[s̄αPR(L)bα][ ¯̀̀ ] , (2.39)

OP (′)` =
e2

16π2
[s̄αPR(L)bα][¯̀γ5`], (2.40)

OT (′)` =
e2

16π2
[s̄ασµνPR(L)bα][¯̀σ

µν`], (2.41)

Since for semileptonic decays we do not consider the electroweak penguin operators O7−10 we will often omit
the index γ in the radiative operator and the index ` in semileptonic operators. However, the ` index will only
be omitted if the context is clear enough to determine whether we consider a generic lepton or a specific case
like ` = µ.

2.4.2 NP in non-leptonic b → s decays
In the case of non-leptonic decays, we will consider only NP entering the Wilson coefficients associated with the
SM operators Oi or the chirally-flipped ones Õi as defined in Ref. [89] by exchanging PL and PR in the all quark
bilinears constituting the operators.
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Chirally flipped Current-Current operators:

Õq
1 = [q̄αPRbβ ][s̄βPRqα] (2.42)

Õq
2 = [q̄αPRbα][s̄βPRqβ ] , (2.43)

Chirally flipped QCD Penguins:

Õ3 = [s̄αPRbα]
∑
q=u,d,
s,c,b

[q̄βPRqβ ] , (2.44)

Õ4 = [s̄αPRbβ ]
∑
q=u,d,
s,c,b

[q̄βPRqα] , (2.45)

Õ5 = [s̄αPRbα]
∑
q=u,d,
s,c,b

[q̄βPLqβ ] , (2.46)

Õ6 = [s̄αPRbβ ]
∑
q=u,d,
s,c,b

[q̄βPLqα] , (2.47)

Chirally flipped EW Penguins:

Õ7 =
3

2
[s̄αPRbα]

∑
q=u,d,
s,c,b

eq[q̄βPLqβ ] , (2.48)

Õ8 =
3

2
[s̄αPRbβ ]

∑
q=u,d,
s,c,b

eq[q̄βPLqα] , (2.49)

Õ9 =
3

2
[s̄αPRbα]

∑
q=u,d,
s,c,b

eq[q̄βPRqβ ] , (2.50)

Õ10 =
3

2
[s̄αPRbβ ]

∑
q=u,d,
s,c,b

eq[q̄βPRqα] , (2.51)

Chirally flipped Chromomagnetic Penguin:

Õ8g =
g

16π2
mb[s̄ασ

µνPLT
a
αβbβ ]G

a
µν , (2.52)

2.5 Effective theories of QCD in the Heavy Quark Limit
In the previous sections we made use of the energy hierarchy shown in Fig. 2.1 in order to write an effective
theory for Weak Hadron Decays. However, there is still a part of this energy hierarchy that we have not used. In
the case of heavy-quark systems, the hierarchy mQ � ΛQCD provides another natural separation scale. On one
hand, heavy hadrons are composed of a heavy quark of mass mQ, on the other hand, the hadronisation process
occur at scales around ΛQCD.

This will allow us to perform an expansion on 1
mQ

which at its first order will correspond to the Heavy Quark
Limit (mQ → ∞) However, the separation of scales is slightly less trivial than before. Since the heavy quark is
an external state of the decays that we are interested in, we cannot simply integrate it out. Nonetheless, not
all of the degrees of freedom of the heavy quark are relevant in these decays. In fact, we can actually separate
the heavy quark into its hard and soft degrees of freedom and integrate out the former together with the hard
gluons. These procedure can be done in two different kinematical regimes schematically shown in Fig. 2.5.

The first one, corresponds to processes where all incoming and outgoing particles have limited energy. In
this case all of the degrees of freedom of the process (other than the heavy quark) are soft. For example, in the
case of semileptonic heavy hadron decays, this corresponds to the situation where the hadronic decay products
are not boosted with respect to the heavy hadron (low-recoil of the emitted hadron), which is consistent with
the zone of high lepton invariant mass (q2 ≈ q2max). In this regime we can construct an effective theory of soft
interactions of the heavy quark called Heavy Quark Effective Theory (HQET).
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Figure 2.5: Schematical view of a semileptonic B-meson decay in two different kinematical regimes, the large
and low recoil limits. In the first one (left) the emmited hadron is highly energetic in the B-meson rest frame, in
the second one (right) the emmited hadron is almost at rest in the B-meson rest frame.

The second regime, corresponds to processes where all incoming and outgoing particles are either soft or very
energetic (i.e. they have almost light-like 4-momenta). In this case, not only soft degrees of freedoms are present
but also collinear degrees of freedom. Giving the same example as above, this corresponds to the situation when
the hadronic decay products are highly boosted with respect to the heavy hadron (large-recoil of the emitted
hadron), which is consistent with the zone of low lepton invariant mass (q2 ≈ 0). In this second regime we can
construct an effective theory of soft and collinear interactions of the heavy quark called Soft Collinear Effective
Theory (SCET).

In both of these frameworks it will be important to have a clear distinction or treatment of heavy and light
quarks. Light quarks will correspond to the quarks whose mass vanishes in the heavy quark limit and heavy
quarks to the ones whose masses are taken to infinity. In order to make a distinction in between different heavy
quarks, in the Heavy Quark limit, the ratio of masses of two heavy quarks will stay fixed (in practice mc/mb

stays fixed when the charm quark is treated as heavy).

2.5.1 Heavy Quark Effective Theory
We start by considering a heavy hadron of momentum pH and mass mH which contains a heavy quark interacting
through soft gluons with a soft light-quark. Since a softly interacting heavy quark is nearly on-shell its momentum
can be decomposed in the following way

pµQ = mQv
µ + kµ (2.53)

where v is the 4-velocity of the heavy hadron v = pH
mH

(v2 = 1) and k � mQv is the residual momentum of the
heavy quark 6. Changes on the residual momentum, resulting from the soft interaction of the heavy quark with
the light components of the hadron, are such that ∆k ∼ ΛQCD � mQv. In this near on-shell setting, the heavy
quark spinor Q(x) can be decomposed into two large and two small components

hv(x) = eimQv·x 1 + /v

2
Q(x) , (2.54)

Hv(x) = eimQv·x 1− /v

2
Q(x) , (2.55)

such that
Q(x) = e−imQv·x [hv(x) +Hv(x)] . (2.56)

These components follow the projection relations

/vhv(x) = hv(x) , (2.57)
/vHv(x) = −Hv(x) , (2.58)

6This requires to be placed in a reference frame where v = O(1)
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leading to the following Lagrangian for the kinetic fermion term [90]

LQ = Q̄(i /D −mQ)Q

= h̄viv ·Dhv − H̄v(−iv ·D − 2mQ)Hv + . . .
(2.59)

where the ellipsis stands for interaction terms between both components. The Lagrangian above can be interpreted
as, the kinetic term of a massless fermion hv and of a fermion Hv of mass 2mQ. This separation of the heavy
quark spinor corresponds then to the separation of the “light” and “heavy” degrees of freedom. We will therefore,
integrate out the “heavy” field Hv (and the hard gluons), leaving only the “light” field hv as a degree of freedom
of the theory.

This leads to the HQET Lagrangian

LHQET = h̄viv ·Dshv +O
(
ΛQCD

mQ
, αs

)
(2.60)

where the covariant derivative iDµ
s = i∂µ + gsA

µ
s contains only the soft gluon field, we omit the light quark and

soft gluons kinetic terms and we only show the leading order term in O
(

ΛQCD

mQ
, αs

)
. This theory is relevant only

if the dynamics of the heavy meson is dominated by the soft component hv of the heavy quark, which occurs
when the interactions with the heavy quarks occur only through soft gluons. At leading order in O

(
ΛQCD

mQ

)
this

Lagrangian shows a SU(2nQ) spin-flavour symmetry, where nQ is the number of heavy quarks described. This
can be interpreted as the fact that QCD properties of heavy hadron are independent of the spin and flavour [78].
For instance, in the heavy quark limit, the properties of different heavy mesons (i.e. B, B∗, D, D∗) will be
related.

Moreover, in the heavy quark limit, different QCD quark currents can be related though the heavy quark
spin symmetry featured in HQET. This has important consequences on the structure of the heavy hadron decays,
more precisely, it yields important relations between the form factors that parametrise the different matrix
elements of these transitions. This will relate either form factors involving different heavy hadrons or different
form factors involving the same heavy hadron.

For instance, in the case of heavy-to-heavy transitions, the form factors for the B → D(∗) transition introduced
in Section 1.5 reduce to a single form factor ξ(v · v′), called the Isgur-Wise function [91–93].

In the case of heavy-to-light form factors, relations in between the form factors coming from HQET only
hold in the low recoil limit. These relations take the following form in the case of B → P [94, 95]

fT (q
2) =

mB(mB +mP )

q2
f+(q

2) +O
(
ΛQCD

mb
, αs

)
, (2.61)

f0(q
2) = 0 +O

(
ΛQCD

mb
, αs

)
, (2.62)

which in the low recoil region (q2 ∼ (mB −mP )
2) leads to fT (q2)/f+(q2) ≈ 1 as it can be appreciated in Fig. 2.6

for B → K.
In the case of B → V form factors, where V is a light meson, the following relations are obtained [94, 97, 98]

T1(q
2) =V (q2) +O

(
ΛQCD

mb
, αs

)
,

T2(q
2) =A1(q

2) +O
(
ΛQCD

mb
, αs

)
,

T3(q
2) =A2(q

2)
m2
B

q2
+O

(
ΛQCD

mb
, αs

)
.

(2.63)

Unfortunately, the flavour spin symmetry is only preserved at leading order and it will be broken by operators
arising at next to leading order O

(
ΛQCD

mQ

)
in Eq. (2.60). However, improved relations can be obtained at higher

orders on O
(

ΛQCD

mb

)
, by the inclusion of subleading HQET form factors. In the case of heavy-to-light form

factors these corrections can be found in [95, 97–100].
In general, the HQET framework will allow us to obtain similar Isgur-Wise relations for all Heavy Hadron

decays (mesons and baryons), leading to slightly different results whether we consider Heavy to Heavy form
factors or Heavy to Light Form Factors.

These relations of course are a good approximation at the low recoil region, where HQET is valid, but they
break down out of these region. Similar relations can be obtained at the large recoil limit, in the framework of
Soft Collinear Effective Theory which we will now discuss.



44 Chapter 2. Flavour Physics and its different energy scales

� � �� �� ��

���

���

���

���

���

���

���

���

Figure 2.6: f0/f+ (purple) and fT /f+ (orange) form factors ratios for B → K with a lattice QCD and LCSR
combination from Ref. [39] and fT /f+ (blue) coming from Ref. [96]. The HQET and SCET behaviours in
Eqs. (2.61) and (2.74) can be appreciated. In the low recoil region fT (q

2)/f+(q
2) ≈ 1 and f0(q

2)/f+(q
2) ≈ 0,

while in the large recoil region fT (q
2)/f+(q

2) ≈ f0(q
2)/f+(q

2) ≈ 1

2.5.2 Soft Collinear Effective Theory

In the previous section, we studied the HQET used to describe the behaviour of heavy hadrons in the low recoil
limit.

Heavy to light hadron decays can be treated exclusively with HQET only when the four-momenta of the
light degrees of freedom are small compared to mQ. A natural factorisation of these process arises due to the
clear energy separation, mQ � ΛQCD, between the heavy hadrons and the soft light degrees of freedom.

However, when looking at regions of the phase space in which the light hadrons decay products are highly
energetic (i.e. large recoil), this energy separation becomes more complicated. For example, in the case of
semileptonic FCNCs B-decays the energy of the light meson E at low dilepton invariant masses is of order O(mb).
In this situation, the light hadron that we want to describe has almost collinear quarks and antiquarks inside.
These can interact through collinear gluons (which can also be seen as partons of the energetic light mesons)
which are “highly energetic”. Then, the energetic gluon cannot be absorbed in a short-distance contribution ,
since it interacts with the energetic quarks inside the emitted hadrons. We want then to know if in this context
there is still a separation/factorisation in the interaction of the various types of gluons with soft and collinear
quarks.

First attempts to develop a theory for these highly energetic processes lead to the Large Energy Effective
Theory (LEET) [101, 102], which describes the interaction of very energetic quarks with soft gluons. However,
this theory did not include the important degrees of freedom, namely the collinear gluons, which entailed the
failure to reproduce the IR behaviour of QCD[75, 76, 103, 104] at the loop level. The inclusion of these collinear
degrees of freedom together with the soft degrees of freedom lead to the development of the Soft Collinear
Effective Theory (SCET) [72–76]. There exist two formulations or “versions” of SCET, SCETI and SCETII,
which depend on the level of off-shellness allowed for the various degrees of freedom. The first one is commonly
used for the study of jets, where SCET had great success. In the case of heavy to light transitions, both versions
are used. We will focus on the latter and briefly describe it, for which we borrow some elements of Refs. [105–107].

Although SCET was conceived to study heavy to light transitions, it has found applications on many other
fields, namely jet physics. Let us consider a semileptonic decay of a B-meson like B → K`` in the large recoil
limit (q2 ≈ 0). It is convenient to work in the B-meson rest frame and choose the K three-momentum ~k in the
z-direction. We can then define two light-like vectors nµ = (1, 0, 0, 1), pointing in the direction of the outgoing
meson, and n̄µ = (1, 0, 0,−1), pointing in the opposite direction. These vectors satisfy n2 = n̄2 = 0 and n · n̄ = 2.
Then the kaon momentum can be written as

kµ = Enµ +O
(
m2
K

4E

)
(2.64)

where E =
m2

B+m2
K−q2

2mB
= O(mB) is the energy of the K meson. The momentum kµ is then almost light-like,

up to O(
Λ2

QCD

E ) corrections. In the two-parton picture of the meson state, the final state quark and antiquark
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outgoing momenta kµ1,2 hadronised into the light-meson can be written as

kµ1,2 = x1,2En
µ ± kµ⊥ +O

(
m2
K

4E

)
(2.65)

where x1,2 are the longitudinal momentum fractions (such that x1 + x2 = 1) and the transverse momentum kµ⊥
is of order O(ΛQCD)

It is convenient, in order to account for the different scaling on E of the momenta components to systematically
decompose the 4-vectors in the light-cone basis defined by nµ and n̄µ . The light-cone decomposition of an
arbitrary 4-vector pµ reads

pµ = (n · p) n̄
µ

2
+ (n̄ · p) n

µ

2
+ pµ⊥ ≡ pµ+ + pµ− + pµ⊥ , (2.66)

where p⊥ · n = p⊥ · n̄ = 0. We will then represent the scaling of a momenta or a field as the scaling properties of
the components (n · p, n̄ · p, p⊥). In general, the relevant expansion parameter in SCET is λ = ΛQCD/E and, for
instance, the scaling on this parameter of the kaon momenta is kµ ∼ E(1, λ2, λ2) and in the case of the final
state quark and antiquark momenta defined above it is kµ1,2 ∼ E(1, λ2, λ).

The relevant degrees of freedom of the external hadronic state in SCET are the soft, collinear or soft-collinear
degrees of freedom. More precisely they are classified by the scaling of the relevant momenta: soft momenta
pµs ∼ E(λ, λ, λ), collinear momenta pµc ∼ E(λ2, 1, λ) and soft collinear-momenta pµsc ∼ E(λ2, λ, λ).

In the case of the effective-theory fields, they are separated into: h soft heavy quark, qs soft light quark, Aµs
soft gluon, ξ collinear quarks, and Aµc collinear gluon.

Here we use the identity n · n̄ = 2 to decompose the Dirac field ψc of a collinear quark into two 2-component
spinors

ξ =
/n/̄n

4
ψc , and η =

/̄n/n

4
ψc , (2.67)

where ψc = ξ + η and the components of η are suppressed with respect to those of ξ by a factor λ and are
integrated out in the construction of the SCET.

Fields that are both soft and collinear need to be taken into account as well, having soft-collinear quark
θ and the soft collinear gluons Aµsc. The latter are usually referred to as gluon “messenger fields” since they
have couplings to both soft and collinear fields. A similar decomposition to the one done for collinear fields
is performed for the Dirac field ψsc of a soft-collinear quark, leaving only the θ = /n/̄n

4 ψsc field after having
integrated out the suppressed components.

The two-component spinor that describe the collinear and soft-collinear quark fields fulfil /n ξ = 0 and /n θ = 0,
similarly to the heavy-quark field described in the previous section, which fulfils /v h = h.

The SCET Lagrangian can be split up as

LSCET = Ls + Lc + Lsc + L(0)
int + . . . , (2.68)

where the dots represent power-suppressed interactions. The first three terms correspond respectively to the
kinetic terms of soft, collinear and soft-collinear fields respectively and can be written, omitting purely gluonic
terms, as

Ls = q̄s i /Ds qs + h̄iv ·Ds h , (2.69)

Lc = ξ̄
/̄n

2
in ·Dc ξ − ξ̄ i /Dc⊥

/̄n

2

1

in̄ ·Dc
i /Dc⊥ ξ , (2.70)

Lsc = θ̄
/̄n

2
in ·Dsc θ − θ̄ i /Dsc⊥

/̄n

2

1

in̄ ·Dsc
i /Dsc⊥ θ , (2.71)

where iDµ
s,c,sc ≡ i∂µ+ gAµs,c,sc is the covariant derivative built using soft, collinear or soft-collinear gauge fields 7.

The leading order interaction term in Eq. (2.68), omitting purely gluonic terms, is given by

L(0)
int(x) = q̄s(x)

/n

2
gn̄ ·Asc(x+) qs(x) + h̄(x)

n · v
2

gn̄ ·Asc(x+)h(x)

+ ξ̄(x)
/̄n

2
gn ·Asc(x−) ξ(x) .

(2.72)

7One can now understand the scaling properties of the effective-theory fields, by the scaling of their momenta and by ensuring
that the kinetic terms of the Lagrangian are O(1). Their scaling is then given by: h ∼ λ3/2 for soft heavy quarks, qs ∼ λ3/2 for
soft light quarks, Aµ

s ∼ (λ, λ, λ) for soft gluons, ξ ∼ λ for collinear quarks, and Aµ
c ∼ (λ2, 1, λ) for collinear gluons, θ ∼ λ2 for

soft-collinear quarks and Aµ
sc ∼ (λ2, λ, λ3/2) for soft-collinear gluons.
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where due to momentum conservation soft-collinear gluons cannot interact with both collinear and soft quark
fields at the same time.

The Lagrangian in Eq. (2.72) shows that not all modes are interacting which other, allowing their separation
in (potentially complicated) amplitudes mixing various modes and energy. The redefinition of the fields involving
Wilson lines similar to those introduced in Eq. (1.92) allows one to illustrate more explicitly this separation of
interactions, providing the grounds for factorisation formulae.

For instance, the heavy to light B → K form factors be represented by

〈K(k)|s̄Γb|B(p)〉 = 〈K(En+)|ξ̄Γh|B(mbv)〉+O
(
ΛQCD

mb
, αs

)
(2.73)

since E = O(mb).
This leads to the following relations for the B → K (or B → P in general) form factors

f+(q
2) ≈ M

2E
f0(q

2) ≈ mB

mB +mK
fT (q

2) ≈ ξP (E) +O
(
ΛQCD

mb
, αs

)
, (2.74)

which had been previously derived on the LEET [38, 102]. These relations reduce the pseudoscalar form factors
to a a single soft form factor ξP (E). Neglecting the light meson mass and at the large-recoil limit (q2 = 0), these
relations are reduced to f+(0) ≈ f0(0) ≈ fT (0) which can be appreciated in Fig. 2.6.

In the case of B → V form factors, where V is a light meson, the following relations are obtained

mB

mB +mV
V (q2) =

mB +mV

2E
A1(q

2) = T1(q
2) =

mB

2E
T2(q

2) = ξ⊥(E), (2.75)

mV

E
A0(q

2) =
mB +mV

2E
A1(q

2)− mB −mV

mB
A2(q

2) =
mB

2E
T2(q

2)− T3(q
2) = ξ‖(E) , (2.76)

where the vector form factors are reduced to two soft form factors ξ⊥,‖(E). In the case of heavy to heavy form
factors (i.e. b→ c decays) the relations reduce to same relations obtained in HQET Ref. [38].

These relations can be then systematically improved through power corrections thanks to the framework of
SCET and like for HQET, similar relations can be obtained for all heavy hadrons. For instance, the expressions
for the B → P (V ) form factors at next to leading order can be found in Ref. [106]. In the case of baryons,
expression for the Λb → Λ form factors at leading order can be found in Ref. [40].

Determinations of the soft form factors appearing in Eqs. (2.74) and (2.75) have been determined through the
use of SCET sum rules [40, 67, 68], where the sum rules are directly applied within the Soft-Collinear Effective
Theory framework, instead of the light-cone expansion of QCD. These results can be, for instance, compared
with the heavy-quark limit of LCSR form factor determinations.

Another natural place to apply SCET, are non-leptonic B-decays into two light mesons. It turns out that
this separation allows one to recover results derived in QCD factorisation, expressing the amplitude in terms of
a limited number of hadronic inputs, as discussed briefly in Section 2.8

2.6 Factorisation of semi-leptonic decays
When thinking about semi-leptonic decays and, in general, of processes involving quarks, we are interested in
being able to separate the contributions from the various energy scales and factorise them. A separation in
between the (non-perturbative) QCD part (see Section 1.4) and the EW part (see Section 1.2) is necessary
to be able to treat them in different frameworks. If factorisation is possible, we will then be able to use the
hadronic non-perturbative inputs discussed in Section 1.5 to compute the amplitude. In this section, we start
by discussing the factorisation process in purely leptonic decays to then discuss the factorisation process in
semileptonic decays in which we are interested. The situation in non-leptonic decays is more complex and its
discussion will be left for later (see Section 2.8).

2.6.1 Factorisation of FCCCs: b → c`ν̄

In order to understand the process of factorisation, we will start by looking at the processes involving leptonic
charged electroweak currents, like the muon decay shown in Fig. 1.7. To treat this decay we will use the
equivalent of WET for leptonic processes, i.e. the Fermi theory (see Fig. 2.2). The amplitude of this process
trivially factorizes (at the leading order in QED) in the following way

M(µ→ eν̄eνµ) ∝ GF 〈eν̄eνµ|ν̄µγα(1− γ5)µν̄eγ
β(1− γ5)e|µ〉 ,

∝ GF 〈νµ|ν̄µγα(1− γ5)µ|µ〉〈eν̄e|ν̄eγβ(1− γ5)e|0〉 .
(2.77)
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Figure 2.7: Schematic representing the low energy structure of the vectorial contribution in b→ c`ν transitions.
Soft gluons coming from the decaying hadron cannot connect to the external lepton legs allowing for the
factorisation of these contributions. The picture is similar for all the other operators in Eq. (2.16). Taken from
Ref. [26]

This corresponds to the factorisation of the four fermion local operator into two distinct lepton currents. In
the case of fully leptonic decays like the one above, this trivial factorisation relies on the fact that this process
can be treated in a fully perturbative way and radiative corrections can be accounted for systematically.

A slightly less trivial scenario is the case of charged current semi-leptonic decays like b → c`ν̄ for which
a schematic is shown in Fig. 2.7. In this case, QCD is involved, so the decay cannot be treated in a fully
perturbative way. However, at tree level, a factorisation of the process is possible in the following way

〈D`ν|c̄γµPLbν̄γνPL`|B〉 = 〈D|c̄γµPLb|B〉︸ ︷︷ ︸
Hadronic matrix element

〈`ν|ν̄γνPL`|0〉︸ ︷︷ ︸
Leptonic matrix element

. (2.78)

This is because semileptonic operators, as opposed to 4-quark operators, have leptons as external states, and
since leptons are blind to coloured interactions, low energy gluons cannot connect the two factorised parts of the
process 8.

The leptonic matrix element can be easily computed perturbatively and the hadronic matrix element is the
only piece that needs to be treated in a non-perturbative fashion. This hadronic matrix element is parametrised
through the form factors described in Section 1.5.

2.6.2 Factorisation of FCNCs: b → s`+`−

In the case of FCCCs, as described in the previous section, factorisation is rather straightforward and does not
require much more discussion. Different is the case of FCNCs where the contribution of 4-quark operators are
relevant for the transition. We will illustrate this discussion in the b→ s`+`− case.

The amplitude for a semileptonic decay of a b-hadron Hb into a light strange hadron H in the SM can be
then written as [108, 109]

A(Hb → H`+`−) ∝

[
1

q2

{
C7γ2imb〈H|s̄σµνqνPRb|Hb〉+ 16π2HHb→H

µ

}
+C9`〈H|s̄γµPLb|Hb〉

]
ū`γ

µv`

+C10`〈H|s̄γµPLb|Hb〉ū`γµγ5v` ,

(2.79)

where HHb→H
µ contains the non-local contributions and is defined as

HHb→H
µ ≡ i

∫
d4xeiq·x〈H|T{jemµ (x), (C1O1c + C2O2c)(0)}|Hb〉 (2.80)

where T is the time ordered product and jemµ (x) =
∑
q Qq q̄(x)γµq(x) with q = u, d, s, c, b is the electromagnetic

current.
8Non factorisable contributions could of course appear at loop level, but the loop suppression is enough to neglect the

non-resonant contributions compared to the uncertainties of the tree level contribution which are generally dominated by the
knowledge of the form factors. In the case of resonant contributions like B → Dπ(→ `ν̄), they could contribute at the 10% order
(B(B → Dπ)B(π → `ν̄) ≈ 0.1× B(B → D`ν)) but they can be dealt with through experimental cuts.
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increasing dilepton mass

increasing hadronic recoil

Figure 2.8: Illustration of the dilepton invariant mass squared q2 dependence of the differential decay rate of
B → K∗`+`− decays. The different contributions to the decay rate are also illustrated. For B → K`+`+−
decays there is no photon pole enhancement due to angular momentum conservation. Adapted from Ref. [88].
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Figure 2.9: Schematic representing the low energy structure of the contributions from semileptonic operators
in b → s`` transitions. Soft gluons coming from the decaying hadron cannot connect to the photon in O7 or
the external lepton legs in both diagrams, allowing for the factorisation of these contributions. On the left the
contribution from O7 and on the right contributions from O9`,10`. Taken from Ref. [26]

The main contributions come from the semileptonic and radiative operators O7γ,9`,10`, which are q2 dependent,
having different regions in which they dominate as seen in Fig. 2.8 for B → K∗`+`−.

The contribution of semi-leptonic operators and from the electromagnetic dipole operator will be easily
factorised into a form factor and a leptonic current as shown in Eq. (2.79) and Fig. 2.9, similarly to the situation
in FCCCs.

However contributions from non-leptonic operators (i.e. 4-quark and chromomagnetic operators) play also an
important role, through photon line insertions, and cannot be neglected. For instance, the relevant diagrams are
shown at leading order in Fig. 2.10 and at next-to-leading order in Fig. 2.11.

In Eq. (2.80) we omit the terms containing other operators than the O1c(2c) operators, since they have the
small coefficients in the SM. The contribution of the O1c(2c) operators is often called “cc̄ contribution” or “charm
loop effect”. As mentioned before, similar contributions from the uū are controlled due to their double Cabibbo
suppression and tt̄ contributions are already accounted for at the level of the matching of the effective theory.

These contributions can be divided into short and long distance contributions. While the former can be
easily computed in perturbation theory, the latter are more complicated to estimate.
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Figure 2.10: Leading order contribution of 4 quark operator to radiative and semileptonic decays. For semileptonic
decays the photon line needs to be connected to a lepton pair. Similar diagrams can be obtained by connecting
the photon line in other legs of the diagrams.

Figure 2.11: Example of diagrams contributing at next-to-leading order to radiative and semileptonic decays
through 4 quark operators and the chromomagentic operator. For semileptonic decays the photon line needs to
be connected to a lepton pair. Similar diagrams can be obtained by connecting the photon line in other fermion
legs of the diagrams.

2.7 Non leptonic operators contributions: Charm-loop effect
2.7.1 Short distance contributions
For radiative decays, the short distance contributions can be expressed as an effective Wilson coefficient Ceff

7γ [110]
9

Ceff
7γ = C7γ −

1

3
C3 −

4

9
C4 −

20

3
C5 −

80

9
C6 +O(αs) . (2.81)

such that at leading order

A(b→ sγ) = −4GF
2

λ
(s)
t

∑
i

Ci 〈Oi〉 = −4GF
2

λ
(s)
t Ceff

7γ 〈O7γ〉 . (2.82)

Similarly for semileptonic decays, these short distance contributions can be included into an effective Wilson
coefficients Ceff

9` (q
2) [28, 97, 111]. At leading order, these contributions are perturbatively computed leading to

the process independent expression
Ceff
9` (q

2) = C9` + Y (q2) (2.83)

where Y (q2) can be for instance found in Ref. [111].
Subleading short distance contributions can been taken into consideration at the large recoil in a similar

framework to QCD factorisation (which we will later discuss in Section 2.8). These corrections are however
process dependent, which is expressed on their dependence on the LCDA of the mesons [111]. In the case of
B → V ``, they can be found in Ref. [111].

2.7.2 Long distance contributions
In the case of long-distance contributions, external legs of 4-quark operators can be connected via soft-gluons to
the decaying hadron. More precisely soft gluons coming from the decaying hadron can connect to the cc̄ loop
shown in Fig. 2.12. Long distance contributions are q2 dependent and they depend on the external states (for
instance on the helicity).

Near the masses of charmonia (J/Ψ, Ψ(2S), . . . ), the long distance contribution becomes resonant and it
dominates the decay (as shown in Fig. 2.8). Near the poles of the charmonia resonances, NP is expected to
be substantially suppressed with respect to SM contributions, allowing these regions to be used for different
cross checks. For instance, experimentally they are used to suppress systematic errors and theoretically they are
used to have a better understanding of the long distance contributions [109, 112]. When enough phase space is
available, the resonances divide the spectrum of the dilepton invariant mass in two regions (see Fig. 2.8): the
“low-q2” region found below the cc̄ threshold, i.e. q2 � 4m2

c ant the “high-q2” region, in which numerous cc̄
resonances are present and one can consider using quark-hadron duality to approximate them using perturbative

9One can similarly define Ceff
8g
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Figure 2.12: Schematic representing the non-local contributions of 4-quark operators in b → s`` transitions.
Gluons coming from the decaying hadron can connect to the cc̄ loop which then decays into a lepton pair through
a photon. Similar contributions from the uū are controlled due to their double Cabibbo suppression. Taken
from Ref. [26]

QCD. Estimations of long-distance contributions in the low-recoil region, which rely on quark-hadron duality,
indicate that corrections to the quark level computations are of the order of 10% [113]. This is in line with
O(Λ/mb) suppressed effects, but it should be highlighted that this estimate was obtained only for B → K∗`+`−

branching ratio using a single model of cc̄ resonances. This question was also discussed in Ref. [114].
In the large-recoil region, long-distance contributions have been estimated, for B → K, B → K∗ and Bs → φ,

through approaches that use analyticity and dispersion relations [109, 112, 115, 116]. Determinations in this
region rely on the light-cone OPE of the non-local operators and they are performed at values of q2 ensuring a
rapid convergence of the expansion (q2 . −1GeV2). The matrix elements of the LCOPE are computed through
non-perturbative methods, namely through the use of LCSR, and they are then extrapolated to the regions of
interest q2 > 0, through dispersion relations and assumptions on the analyticity structure of the correlator Hµ

defined in Eq. (2.80).
The first determination of the subleading operator of soft gluon emission from the cc̄ pair was obtained

through LCSR in Ref. [115], where they extrapolate their results to the positive q2 region through dispersion
relations and a resonance model. Further attempts to enhance the extrapolation on q2 where done in Refs.
[109, 112] through the use of experimental data at the J/Ψ and Ψ(2S) poles (turning the extrapolation into an
interpolation). Furthermore, the authors of Ref. [109] update the LCSR results of Ref. [115], obtaining results for
the subleading corrections two times smaller. They also improve the analytic continuation of the non-local effects
and bound the truncated terms of the analytical continuation through the introduction of a new parametrisation
of the matrix element.

In general, we will express long distance contributions as an additional contribution to C9`

Ceff
9` (q

2) → Ceff
9` (q

2) + ∆CLD
9` (q2) (2.84)

where ∆CLD
9` (q2) is different for different helicities and external states.

For the B → K decay, long distance contributions are found to be of around 5% (∆CLD
9` (q2) ≈ 0.05Ceff

9` (q
2))

in Ref. [115], which together with short distance contributions are found to be of around 10% in Ref. [116]. In
the case of B → K∗ they are found to be around 20% [115], the difference being mainly caused by the soft-gluon
contribution.

In practice, in this thesis, we will have to parametrise this effect in different cases. For global fits of b→ s`+`−

data (see Chapter 4), we will follow the same line as in Ref. [108], taking Ref. [115] as an order of magnitude
estimate. For the prediction of observables, (Chapters 5 and 6) we will take a rougher estimate of 10% that will
be described in detail in the corresponding chapters.

Further discussion on this topic can be found in Refs. [117–137].

2.8 Factorisation of non leptonics decays
Non-leptonic decays, as opposed to semi-leptonic decays, undoubtedly suffer from more intricate QCD effects.
Although the underlying weak decay can be easily treated in the effective Hamiltonian framework discussed in
the precedent sections, these decays are complicated on account of strong-interaction effects. However, a good
understanding of these effects would largely enhance our ability to prove the SM and would be complementary
to semi-leptonic decays.
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The simplest case of non-leptonic decays, is the case of two-body B-meson decays (like B → ππ). In these
decays, the factorization is not evident since low energy gluons, that require a non-perturbative treatment,
can connect the two sides of the electroweak decay and prevent us from factorising the amplitude into simpler
hadronic inputs.

We will focus in the decays in which the B-meson decays into two light mesons M1 and M2.
The amplitude for a B →M1M2 decay can be expressed in terms of the general Weak Effective Hamiltonian

as
A(B →M1M2) =

∑
i

Ci(µ) 〈M1M2|Oi|B〉(µ), (2.85)

where the computation of these matrix elements is the main theoretical problem.
The framework that we will consider to compute these matrix elements is the one of of QCD factorisation

(QCDF) [36, 86, 138, 139], which reduces these matrix elements into perturbative objects that are simpler in
structure and/or universal (process independent). Its arguments make extensive use of the heavy-quark limit,
similarly to SCET since for non-leptonic decays a large momentum is transferred to at least one of the final-state
mesons. Before the development of QCDF, several efforts had been put into obtaining a factorization of this
kind of non-leptonic processes, we will start by briefly discussing two of them that are at the origin of QCD
factorisation.

The first one is the naive factorisation approach [140, 141], in which the matrix element in Eq. (2.85) is
simply replaced by the product of two dissociated currents, for instance for a left handed current in B → π+π+

〈π+π−|ūγµPLbd̄γνPLu|B̄〉 → 〈π−|d̄γνPLu|0〉〈π+|ūγµPLb)|B̄〉 . (2.86)
Here the exchange of gluons with virtualities below µ ∼ mb between the π− and the (B̄ π+) system are assumed
to be negligible, assumption which is in general not justified.

The second approach is the hard-scattering approach [142, 143], where the decay is assumed to be dominated
by hard gluon exchange. In this approach the decay amplitude is simply expressed as a convolution of a
hard-scattering factor T with the light-cone distribution amplitudes of the participating mesons ΦM , for the
same example above

〈π+π−|ūγµPLbd̄γνPLu|B̄〉 →
∫ 1

0

dξdudvΦB(ξ)Φπ(u)Φπ(v)T (ξ, u, v;mb) . (2.87)

This approach works in processes in which the short-distance dominance is ensured. This is the case for
hard processes involving only light hadrons in which soft contributions are powered suppressed. However in
the case of heavy-hadron decays, soft contributions are not power suppressed and they are one of the main
contributions [138].

2.8.1 QCD Factorisation
In non-leptonic decays the term “factorization” generally refers to the concept of naive factorisation described
above. Corrections to this approximation are called “non-factorizable”. QCD factorisation makes use of the
Heavy Quark Expansion in order to obtain its main general result: in two body decays B-meson decays as the
one in Eq. (2.85), these “non-factorisable” corrections are dominated by hard gluon exchanges and the soft
contributions that remain in the heavy-quark limit are confined to two body systems (B −M1) and (B −M2).

The above result is expressed in terms of a factorisation formula, up to power corrections of order O
(

ΛQCD

mb

)
[138] which reads

〈M1M2|Oi|B̄〉 =
∑
j

FB→M1
j (m2

2)

∫ 1

0

duT Iij(u)ΦM2
(u) + (M1 ↔M2)

+

∫ 1

0

dξdudv T IIi (ξ, u, v)ΦB(ξ)ΦM1(v)ΦM2(u) ,

(2.88)

where m1,2 corresponds to the mass of the M1,2 meson. When M2 cannot absorb the spectator quark the
(M1 ↔ M2) term is absent. Three different class of elements appear in the above formulas: the form factors
for the B →M transition FB→M

j , the light-cone distribution amplitudes for the three mesons ΦB(ξ), ΦM1
(v),

ΦM2
(u), and the hard-scattering kernels T Iij(u), T IIi (ξ, u, v).

The first and the second classes have been discussed in Section 1.5 with the exceptions of the B-meson light
cone DAs which require a special treatment due to the the heavy nature of the meson. In principle, the B-meson
has no preferred direction (contrary to the light mesons), however the final states have naturally light-like
directions which define the relevant direction for the definition of the B-meson light cone DAs (we refer the
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Figure 2.13: Graphical representation of the factorisation formula in Eq. (2.88). The (M1 ↔ M2) is not
shown [138].

Figure 2.14: Leading order contribution to the hard scattering kernel T Iij(u).

reader to Ref. [138] for more details). The last class of elements, the hard-scattering kernels T Iij(u), T IIi (ξ, u, v)
are perturbatively calculable functions.

We will refrain from giving explicit expressions for the hard-scattering kernels and their corrections, for which
we refer the reader to Refs. [37, 138, 144]. However, we will qualitatively discuss the different topologies of the
contributing diagrams, a more detailed explanation of the arguments given here can be found in Ref. [138].

The main contribution (O(1)) to the hard scattering kernel comes from the diagram in Fig. 2.14 and goes
into T Iij(u). When neglecting all O

(
αs,

ΛQCD

mb

)
corrections, the hard scattering kernel is then only given by

this diagram, which will be u-independent and will reduce Eq. (2.88) to the naive factorisation result given in
Eq. (2.86).

The diagrams in Fig. 2.15 correspond to factorisable contributions which can be separated into a hard and a
soft part, taken into consideration in the matching and the non-pertubative inputs respectively.

The O(αs) corrections to the hard-scattering kernels, correspond to “non factorisable” contributions. In the
case of these contributions it is fundamental that in the heavy quark limit, the soft part of them are suppressed.

There are two groups of “non factorisable” diagrams contributing to T Iij(u), the vertex correction diagrams
shown in Fig. 2.16 and the penguin and chromomagnetic diagrams shown in Fig. 2.17. The “non factorisable”
diagrams contributing to T IIij (ξ, u, v) can also be divide in two groups, the spectator interactions shown in
Fig. 2.18 and the weak annihilation diagrams shown in Fig. 2.19.

Higher order αs corrections to the hard scattering kernels have been computed in Ref. [144] and higher orders
in ΛQCD

mb
have been computed in Ref. [37]. One comment about this higher order corrections is required and it is

regarding to particular situations in which these corrections contain infrared divergences. Hard-gluon exchanges
with the spectator quark and weak annihilation feature 1/mb-suppressed contributions exhibiting infrared
divergences related to the endpoint of the meson twist-3 light-cone distribution amplitudes. These divergences
put in risk the factorisation if not treated, however they are expected to be of the order ln (mb/ΛQCD). We will
thus parametrise them, by two, a priori external state dependent, coefficients XH and XA [37], representing the
uncertainty over these terms. The first one characterises the divergences arising from the spectator interaction

Figure 2.15: Next to leading order corrections which are already accounted for in the DAs and the form factors.
They will thus not contribute to the hard scattering kernels.
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Figure 2.16: “Non factorisable” vertex corrections which contribute to the T Iij(u) hard-scattering kernel.

Figure 2.17: Penguin contribution on the left and the chromomagnetic operator contribution on the right, both
of which contribute to the T Iij(u) hard-scattering kernel.

diagrams and the second one from annihilation diagrams. In this thesis we will model them in the same manner
as in Ref. [37]. We take the following parametrisation, assuming XH,A to be universal for all channels:

XH,A = (1 + ρH,Ae
iϕH,A) ln

(
mB

Λh

)
. (2.89)

where Λh = 0.5GeV. We take ρH,A ∈ [0, 1] and ϕH,A ∈ [0, 2π] with flat distributions. This translates into
assigning a 100% uncertainty to the magnitude of such corrections.

A comment regarding the treatment of non-leptonic decays in general might be important. At the base
of the QCDF treatment is the fact that the decay products of the B-meson are highly energetic, which bares
certain similarities with the SCET framework. In fact, these results have been studied in the SCET framework,
leading to similar results to the ones obtained in QCDF, leading to a reinterpretation of QCDF in terms of
SCET [144–148].

2.8.2 B → PP , B → PV and B → V V

One important point that we have not mentioned yet, is the dependence on the spin nature of the mesons in
hand. The results of QCDF will differ slightly in the case of them pseudoscalar mesons or vector mesons. In the
case of B → PP and B → PV decays, an in-depth analysis can be found in Ref. [37], in the case of B → V V
one can refer to Refs. [89, 139, 149].

The first two cases are rather straight forward since in the first (S-wave) both meson have spin 0 and on the
second (P-wave) the helicity of the vector meson is fixed by the spin of the B and P mesons. However, in the
case of B → V V decays different helicities are allowed for the vector mesons. We will know discuss the relative
scaling of these amplitudes which will be relevant in Chapter 10.

The decay amplitude of a B-meson decay into two light vector mesons can decomposed into three scalar
amplitudes S1,2,3

AB→V1V2
= iη∗µε∗ν

(
S1 gµν − S2

pµpν
m2
B

+ S3 iεµνρσ
pρ1p

σ
2

p1 · p2

)
. (2.90)

where p, p1 and p2 are the four momenta of the B-meson and the 2 vector mesons V1 and V2 respectively, mB ,
m1 and m2 their masses and η∗ and ε∗ the polarization vectors of the vector mesons. These amplitude can be

Figure 2.18: “Non factorisable” spectator corrections contributing to the T IIi (ξ, u, v) hard-scattering kernel.
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Figure 2.19: Annihilation contribtuions to the T IIi (ξ, u, v) hard-scattering kernel.

more simply described in a basis of definite helicity for the final states

A0 = A(B → V1(p1, η
∗
0)V2(p2, ε

∗
0)) =

im2
B

2m1m2

(
S1 −

S2

2

)
A± = A(B → V1(p1, η

∗
±)V2(p2, ε

∗
±)) = i (S1 ∓ S3).

(2.91)

where, in the B meson rest frame, p1 is chosen to be directed in the positive z-direction and since both vector
mesons have large momenta p2 is collinear with p1 up to m1,2

mb
corrections. In this frame the polarisation

four-vectors are given by εµ± = ηµ∓ = (0,±1, i, 0)/
√
2, and εµ0 = pµ2/m2, ηµ0 = pµ1/m1.

A naive factorisation analysis indicates a hierarchy of helicity amplitudes [139]

A0 : A+ : A− = 1 :
ΛQCD

mb
:

(
ΛQCD

mb

)2

(2.92)

for B-meson decays, which means that only A0 (longitudinal polarisation) can be predicted meaningfully in
QCD factorisation. This structure is due to the left-handedness of weak interactions and to the fact that
helicity is conserved in short-distance QCD interactions [28]. In the case of B̄-meson decays the A+ and A− are
exchanged.
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Chapter 3

Flavour Anomalies and NP models

In the recent years several hints of a tension with respect to Standard Model expectations have appeared
concerning two different classes of b-quark semileptonic decays. These series of hints of NP, usually referred as
the flavour anomalies or the b-anomalies, have appeared both in the charged and neutral current semileptonic
b-decays. On the one hand, charged-current b → c`ν̄ transitions have exhibited deviations in observables
comparing ` = τ and lighter leptons (` = µ, e) showing hints of Lepton Flavour Universality Violation (LFUV).
On the other hand, neutral current b→ s`+`− transition have similarly shown deviations in LFUV observables
comparing muons and electrons, but also a consistent pattern of deviations in branching fractions and angular
observables in the case of muons.

In this chapter, we will present the different accessible observables on these modes, discussing their theoretical
predictions and the existing experimental results for them. In Section 3.1 we start by discussing the b→ c`ν̄
observables and its theoretical predictions including branching fractions, angular observables and Lepton Flavour
Universality (LFU) ratios. We then present the available experimental results and an overview of the current
results of global fits performed on current data in the EFT framework discussed in the previous chapter. We will
follow this by a similar discussion in for the b→ s`+`− transition in Section 3.2 where we will also discuss the
use of optimized angular observables in order to suppress hadronic uncertainties. Unlike the case of b→ c`ν̄, we
will not discuss global fits for the b→ s`+`− transition in this chapter, since we will dedicate a full chapter to
this transition (see Chapter 4). We will finish this chapter in Section 3.3, by a overview of several NP models
that can potentially account for these deviations, both in the charged and neutral currents.

3.1 The b → c`ν̄ flavour anomalies

3.1.1 Theoretical predictions in b → c`ν̄

We will discuss now the main elements that go into the theoretical predictions of b → c`ν̄ modes and their
cleanness. We will mainly focus on the B → D(∗)`ν̄ modes, as they are the most experimentally accessible
modes, and since the treatment of the other meson modes like Bc → J/Ψτ ν̄ and Bs → D

(∗)
s `ν̄ is similar. Some

other modes, like the baryonic modes Λb → Λc`ν̄ or the purely leptonic Bc → `ν̄, which might be also accessed
in the future, will then be briefly discussed.

Branching Fractions and LFU ratios

The branching fractions of b→ c`ν̄ modes depend mainly on two elements, the form factors for the specific mode
and the CKM element Vcb introduced in Section 1.2.2.

• The B → D transition, similarly to Bs → Ds, is described by 3 form factors f0,+,T (defined in Eqs. (1.69)
and (1.70)) and the B → D∗ transition, similarly to Bs → D∗

s and Bc → J/Ψ, is described by 7 form
factors V , A0,1,2 and T1,2,3 (defined in Eqs. (1.76), (1.77), (1.79) and (1.80)). However, the B(s) → D

(∗)
(s)

form factors possess an interesting property, as they are all related through HQET and reduced to a single
form factor ξ(v · v′), called the Isgur-Wise function [91, 92] (see Section 2.5.1), in the Heavy Quark Limit
(mb,mc → ∞). Corrections to this limit have been computed in Ref. [150] for B → D(∗), where corrections
to order O(αs,

1
mb
, 1
m2

c
) are taken into consideration. The parameters (non-perturbative HQET elements)

of this expansions are then obtained through the use of a combination of Lattice QCD, LCSR, QCDSR
and unitarity bounds [150] and indicate a good convergence of the Heavy Quark Expansion.

57
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LFU Ratio SM Prediction Observation Tension
RD 0.299(3)[158] 0.340(30)[158] 1.4σ
RD∗ 0.258(5)[158] 0.295(14)[158] 2.5σ
RJ/Ψ 0.2582(38)[159] 0.71(26)[160] 1.8σ
RDs

0.2993(46)[161] - -
RD∗

s
0.2442(86) [162] - -

RΛc 0.333(13)[163, 164] - -

Table 3.1: We show the SM prediction, experimental values and the individual tensions of several LFU ratios in
b→ c`ν̄ as defined in Eq. (3.1). For the SM prediction of RD(∗) we quote the value from [158], however results
from Refs. [150, 165] suggest slightly lower values and reduced uncertainties for RD∗ which enhance further the
tension with the experimental measurement.

• The second main element entering the branching fractions is the CKM element Vcb [6, 151]. The treatment
of this element is not trivial, as its main exclusive determinations come from processes with light leptons,
i.e. from the B → D(∗)`ν̄ decays with ` = µ, e. Furthermore, a historical tension has existed between the
exclusive and inclusive Vcb determinations. This tension is still an open subject, however some elements
might lead to believe that this tension is related to an underestimation of the systematic errors of these
determinations (both theoretical and experimental) rather than NP. Several studies on the possible NP
explanations of this tension exist in the literature [152–155], however, the latest results on the angular
distributions of B → D∗`ν̄ imply that simple NP explanations do not improve significantly the agreement
between in inclusive and exclusive determinations of Vcb [155]. Furthermore, the most recent determination
of the B → D(∗) form factors [150] suggest a higher value for the exclusive determination of Vcb, which is
both compatible with the Vcb inclusive determination and previous exclusive determinations. We will thus
assume that no NP is present in the light lepton b → c`ν̄ modes 1, so that NP will be discussed at the
level of the heavy mode b→ cτ ν̄τ .

The branching fractions for the light leptons cannot be used for NP searches, but we may exploit the light lepton
modes as a normalisation to get rid of Vcb by defining the LFU ratios

RHc
=

Γ(Hb → Hcτ ν̄τ )

Γ(Hb → Hc`ν̄`)
` ∈ {e, µ} , (3.1)

for any Hb → Hcτ ν̄τ mode. The numerator and denominator can be expressed very simply as sums of (squared
moduli of) amplitudes. Using the weak effective Hamiltonian approach of Section 2.3, these amplitudes are
linear combinations of Wilson coefficients and form factors (coming from hadronic matrix elements). The ratios
RHc

are interesting probes of LFUV and are very precisely predicted (to the percent level) in the SM, as shown
in Table 3.1. This is due to the cancellation to a certain extent of the hadronic uncertainties from the form
factors, which are correlated as shown by the HQET relations at leading order in Section 2.5.1

Angular Observables

Angular observables correspond to the observables that can be measured by looking at the angular distribution
of the particles involved in the decay. At the theoretical level, they correspond to interferences between the
amplitudes describing the decay, of the form Re[AB∗] or Im[AB∗], where A and B are linear combinations of
Wilson coefficients and form factors.

As an example we will discuss the differential decay width of B → D`ν̄ which is defined by 3 q2-dependent

1Interestingly, a recent study [156] found discrepancies between the muon and electron mode forward backward asymmetry in
B → D∗`ν̄ at the level of 4σ by a reanalysis of Belle data [157], which could invalidate this hypothesis. However this might be
related to inconsistencies found in the correlation matrices of the data published by Belle, so no conclusions should be drawn before
further studies of the data are performed.
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angular coefficients

d2Γ

dq2d cos θ`
= aθ`(q

2) + bθ`(q
2) cos θ` + cθ`(q

2) cos2 θ` , (3.2)

aθ`(q
2) = N

[∣∣∣h̃−0 ∣∣∣2 + m2
`

q2

∣∣∣h̃t∣∣∣2] , (3.3)

bθ`(q
2) = 2N m2

`

q2
Re
[
h̃+0 h̃

∗
t

]
, (3.4)

aθ`(q
2) = N

[∣∣∣h̃−0 ∣∣∣2 − m2
`

q2

∣∣∣h̃+0 ∣∣∣2] , (3.5)

where N is a q2 dependent normalisation, containing the phase space and the CKM matrixelement, and θ` is the
angle of the charged lepton in its rest frame with respect to the direction of the D meson in the B rest frame
(both the normalisation N and the explicit definition of θ` can be found for instance in Ref. [166]). The three
amplitudes h̃+0 , h̃−0 , h̃t, usually called the helicity amplitudes of the decay, are linear combinations of Wilson
coefficients and form factors as mentioned above and they can be found in Ref. [166]. For instance, the first of
them is given by

h̃+0 (q
2) = (1 + gV )

√
λBD(q2)

q2
f+(q

2) + 2

√
q2

m`
(gT − gT5)

√
λBD(q2)

mB +mD
fT (q

2) , (3.6)

where λBD(q2) = m4
B +m4

D + q4 − 2(m2
Bm

2
D +m2

Bq
2 +m2

Dq
2), illustrating the fact that the amplitudes are

linear combinations of Wilson coefficients and form factors.
These angular coefficients can be recast into easily accessible quantities, the differential decay width dΓ

dq2 (q
2)

plus two other q2 dependent observables: the forward backward asymmetry AFB(q
2) = b(q2)

dΓ/dq2(q2) and a
“convexity” coefficient Aπ/3 = c(q2)

2dΓ/dq2(q2) [167]. In the case in which the polarization of the τ can be measured,
more angular observables can be built taking into account this polarisation, and for instance, the polarisation
asymmetry Aλ`

(q2) can also provide interesting information.
The angular observables are generally normalised to the branching fraction of the decay which in the case of

b→ c`ν̄ decays makes them particularly interesting. Due to the existence of HQET relations reducing the form
factors to a single function at leading order, one can see that hadronic uncertainties from the form factors are
suppressed in AFB and Aπ/3 since the function ξ cancels in the heavy-quark limit, in a similar fashion to LFU
ratios leading to uncertainties as low as a few percent [166] depending on the mode.

In the case of B → D∗`ν̄ [166–168], the decay has a richer structure due to the higher spin of the D∗ meson.
The differential decay width is in this case defined by twelve q2-dependent angular coefficients normalised to the
branching fraction (described in detail in Chapter 7), including the longitudinal D∗ polarisation FD

∗

L and the
lepton polarisation PD

∗

τ . A similar cancellation of the function ξ occurs for these observables as in the case of
B → D.

Other modes

Other modes involving the b→ c`ν̄ transition than the above mentioned B → D(∗)`ν̄ can also be studied. For
instance, the Bc → J/Ψ`ν̄ form factors have been studied on the lattice in Ref. [159] and the Bs → D

(∗)
s `ν̄ form

factors in Refs. [161, 162], however these studies are less advanced than the ones in B → D(∗). Theoretical
studies of the baryonic modes Λb → Λ

(∗)
c `ν̄ have been carried out in Refs. [163, 164, 169, 170], which would

complement the results on the meson side if measured.
In the case of Bc → `ν̄, the only observable is the branching ratio, with an accurate prediction depending on

a single hadronic input, the Bc meson decay constant fBc . Predictions for the SM branching fraction of this
decay based on the latest lattice QCD results [171, 172] for fBc can be found in Ref. [173] leading to a value
slightly smaller than 2% a relative uncertainty at the 5% level.

3.1.2 Experimental results in b → c`ν̄

We will now discuss the different observables experimentally accessible in b → cτ ν̄τ , of which an overview is
shown in Table 3.2.
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Observables B ` = τ R Angular Observables
B → D`ν̄ 3 3 7

B → D∗`ν̄ 3 3 3†

Bc → J/Ψ`ν̄ 7 3 7

Bc → `ν̄ 3‡ 7 7
Bs → Ds`ν̄ 7 7 7
Bs → D∗

s`ν̄ 7 7 7
Λb → Λc`ν̄ 7 7 7

Table 3.2: Observables experimentally available in b→ c`ν̄ modes. †: Only the Longitudinal D∗ polarization FL
and the τ polarization Pτ are available. ‡: Although this decay has not been yet measured, constraints on its
branching fraction exist, coming from the Bc lifetime.

Δ

Figure 3.1: Combination of (R(D), R(D∗)) results showing a tension with the SM predictions of 3.1σ [158].

LFU Ratios

The LFU ratios R(Hc) defined in Eq. (3.1) have been of huge interest in the past few years as a number
of experiments have observed hints of LFUV in several of them [158, 174–182], with enhancements of the τ
branching fractions with respect to the light lepton ones. Their experimental measurements can be found in
Table 3.1. The Heavy Flavour Averaging Group (HFLAV) [158] currently reports a combined tension of ∼ 3.1σ
for RD and RD∗ (see Fig. 3.1), with some of the latest SM predictions reaching a tension of 3.8σ [150, 165] due
to slightly lower values for RSMD∗ and reduced uncertainties. A related 1.8σ tension has also been reported in the
Bc → J/ψ`ν̄ decay branching ratio [160]. No measurement on the baryon side has been reported yet.

Other Observables

Currently none of the angular observables of B → Dτν have been measured and only two of the twelve angular
observables available have been experimentally measured for B → D∗τ ν̄τ ; on one side, the lepton polarization
(Pτ ) for B → D∗τ ν̄ was measured to be compatible with the SM at < 1σ [178, 179] and, on the other side,
the longitudinal polarization (FL) was measured to be compatible with SM at 1.7σ [183]. Experimentally, the
reconstruction of this angular distribution is not straightforward because the neutrino is not detected, however a
method for an unbiased measure of these observables has been proposed in Ref. [184].

On the side of Bc → τ ν̄, the branching ratio is not measured yet, but it cannot be larger than 100% and
thus a bound is obtained through the B−

c lifetime [185]. This can be further constraint by considering the
branching fractions for Bc that have been already measured. Conservative estimates of this bound yield a value
of B(Bc → τ ν̄) . 30%[186] and up to B(Bc → τ ν̄) . 10% with more liberal approaches. This bound has been
fundamental to constrain NP global fits as we will see now.



3.1. The b→ c`ν̄ flavour anomalies 61

gi gi

gi gi

gVL gVR gSR gSL gTL

Figure 3.2: Dependence of the RD, RD∗ , PD∗

τ and FD
∗

L observables on the individual variation of each Wilson
coefficients of the effective Hamiltonian of b→ c`ν̄. The horizontal bands (orange, gray) correspond the 1σ/2σ
ranges for the deviations observed with respect to SM expectations. The solid (dashed) lines show the parameter
space allowed by the constraint B(Bc → τ ν̄) < 10%(30%), whereas the faint lines show the predictions without
taking into account this constraint. Adapted from Ref. [187]

3.1.3 Global Fits
Noticeably, the amount of observables available in the b→ c`ν̄ transition is not overwhelming. In fact, a whole
family of angular observables for B → D∗τ ν̄ decays are yet to be measured which could provide a hold on the
nature of the possible NP behind the deviations on the LFU ratios [156, 166, 188, 189]. However, the current
constraints already provide some insight on the NP explanations allowed.

Global fits to the Wilson coefficients of the b→ cτ ν̄τ WET (see Eqs. (2.16) and (2.17)) have been performed
by several groups [82, 83, 165, 166, 187], generally favouring a NP contribution through a real gVL

for b→ cτ ν̄τ
(see Fig. 3.4), as it allows one to modify the tauonic branching ratios involved in RD and RD∗ by the same
amount without altering the angular observables nor exhibiting any tension with the loose bounds on the Bc
lifetime as it can be seen in Figs. 3.2 and 3.3. Of course, an enhancement of FD∗

L would be desirable as it would
reduce the tension with the relatively high value, compared to the SM prediction, measured by Belle. However
this appears difficult to accommodate in simple NP scenarios (with a main real NP contribution in a single
Wilson coefficient) while respecting the Bc lifetime constraint as shown in Figs. 3.2 to 3.4.

For real contributions, scenarios based purely on scalar and pseudoscalar contributions exhibit some tension
with the Bc lifetime as their contributions are enhanced compared to the helicity-suppressed contribution
from the SM. The tension depends on the relative size of the contribution allowed for Bc → τ ν̄τ in the total
lifetime, which requires the pseudoscalar contribution to be somewhat small [185, 186, 190]. Similarly, real tensor
contributions are disfavoured, as they tend to drastically lower the longitudinal polarisation of the D∗ meson
compared to the SM [166], when the first measurement from the Belle experiment indicated a value higher than
SM expectations [183]. If gVL

is allowed as well as contributions of other operators, the former is the largest
NP contribution and the other operators (scalar, pseudoscalar, tensors) are subleading [82, 83, 166]. Other
constraints on b → cτ ν̄τ come from direct searches at LHC involving mono-τ jets [191]. The corresponding
bounds are again much tighter on tensor operators than on vector or scalar operators.
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Figure 3.3: Values of RD and RD∗ by including New physics in each of the Wilson coefficients in the b→ c`ν̄
global fit. The orange ellipses correspond the 1σ, 2σ and 3σ ranges for the deviations observed with respect
to SM expectations. The solid lines show the parameter space allowed by the constraint B(Bc → τ ν̄) < 10%,
whereas the dashed lines show the predictions without taking into account this constraint. Adapted from Ref.
[165]
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Figure 3.4: ∆χ2 for the different 1D global fit of the b → c`ν̄ transition performed in Ref. [83], different
B(Bc → τ ν̄) constraints for the scalar scenarios are shown by the dashed lines. Adapted from Ref. [83].
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Turning now to scenarios with complex coefficients, some allow large imaginary parts [82, 83, 166], with a
similar hierarchy of scenarios as in the real case. However, one must take into account that such large imaginary
parts are allowed due to the limited number of observables. Additional observables, in particular CP asymmetries,
could bring a dramatic modification of the landscape of the allowed scenarios, restricting the possible size of
imaginary parts and the applicability of scenarios currently viable severely. Indeed some of the NP scenarios
favour large imaginary parts so that there are no interferences between the SM and NP contributions, which
add up in quadrature only (see for instance the scenario of a purely imaginary gSL

discussed in Ref. [192]).
Restricting the size of these imaginary parts would enhance the interferences between SM and NP parts and
would restrict the viability of the NP models where these interferences are negative.

This trend is confirmed by model-dependent analyses which we will discuss in Section 3.3.

3.2 The b → s`+`− flavour anomalies
3.2.1 Theoretical predictions in b → s`+`−

Similarly to the last section, we will discuss now the main elements that go into the theoretical predictions of
b → s`+`− modes and the cleanest observables available. We will first focus on the branching fractions and
the LFU ratios, and then discuss the angular observables available. We will discuss several different modes,
starting with the B → K(∗)`+`− and Bs → φ`+`− modes then discussing the baryonic mode Λb → Λ`+`−

which offers a different theoretical and experimental environment. Finally we will briefly discuss the purely
leptonic Bs → `+`− and the radiative modes B → K∗γ, Bs → φγ and B → Xsγ. Due to the difficulties of τ
reconstruction, experimental results for b → sτ+τ− decays are not yet available (although there are existent
bounds), so we will focus on b→ sµ+µ− and b→ se+e− decays.

As discussed in Chapter 2, the amplitude of b→ s`+`− is determined by 4 main elements: a CKM factor,
the short-distance Wilson coefficients (potentially containing NP contributions), the hadronic form factors for
the corresponding hadron states and a non-factorisable contribution.

• Contrary to b → c`ν̄, since b → s`+`− transition is a loop suppressed transition, the Vtb and Vts CKM
elements present in it are not constrained through b→ s`+`−, but through other processes measured in
more detail and better understood theoretically (VtbV ∗

ts is determined mainly from Bs meson mixing).
However, if NP is present, it may interfere also with the processes used for the determination of CKM
matrix elements. For instance, a NP model contributing to ∆F = 1 transitions like b → s`+`− is very
likely to also contribute to ∆F = 2 transitions (i.e. Bs − B̄s mixing). However, since no inconsistency has
been found in global CKM fits within the SM (see Ref. [151]), we may assume that shifts due to NP in
∆F = 2 are either small or have SM-like flavour structure 2 and that they are thus not a major issue for
the separation between CKM determination and NP searches.

• The Wilson coefficients are systematically computed in the SM and in NP models without posing a main
issue (see Chapter 2). As discussed before, the main contributions in the SM come from C7γ , C9`, C10` and
their respective influence in the different q2 regions is shown in Fig. 2.8.

• Form factors are determined through the same methods as in b→ c`ν̄ with varying precision depending on
the mode at hand and the kinematic region considered, usually being an important source of uncertainty,
reason why one would like to suppress their contributions. As opposed to the situation in b → c`ν̄, the
form factors describing the b→ s`+`− transition, do not in general reduce to a single form factor like the
Isgur-Wise function. However, as we discussed in Section 2.5, in the low- and large-recoil limits, relations
between the form factors can be derived up to O(ΛQCD/mb) corrections.

• Non-factorisable contributions (related to charm loops) are an extra issue of this transition, they are
computed perturbatively to LO, i.e. up to O(αs,ΛQCD/mb) corrections which are harder to compute
and their uncertainties harder to estimate. Soft gluon corrections to non-factorisable contributions have
been determined in Refs. [109, 112, 115, 116] B → K∗`+`− mode together with the B → K`+`− and
Bs → φ`+`− modes as discussed in Section 2.7. Non-factorisable contributions also become large in the
regions where the invariant dilepton mass q2 is close to cc̄ resonances like the J/Ψ or the Ψ(2S) as shown
in Fig. 2.8. These regions are harder to predict and are dominated by non-perturbative QCD, reason why
we will refrain to use them for studying possible NP, but we can still exploit these regions to cross-check
our understanding of the QCD dynamics at work. For instance, they are used to extrapolate results
of non-factorisable contributions from LCSR to the region of interest of the invariant mass [109, 112].
On the experimental side they are also used as normalisations to calibrate the assessment of systematic
uncertainties and cross-check the selection of the events.

2This is usually referred to as a Minimal Flavour Violation structure, which we will discuss at the end of this chapter.
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LFU Ratio SM Prediction Observation Tension

R
[1.1,6]
K 1.00(1) 0.846+0.06

−0.06 2.5σ

R
[0.045,1.1]
K∗ 0.92(2) 0.66+0.11

−0.08 2.1σ

R
[1.1,6]
K∗ 1.00(1) 0.69+0.12

−0.09 2.4σ

R
[0.1,6]
pK 0.99† 0.85+0.14

−0.13 1σ

Table 3.3: We show the SM prediction [204, 205], experimental values and the individual tensions of several
LFU ratios in b→ s`+`− as defined in Eq. (3.7) for two different bins of q2. Experimental values come from the
LHCb collaboration [206, 207] as they are the most precise results to date. †: Naive estimation including only
the phase space.

Because of the above, several observables in which hadronic contributions are suppressed have been developed,
which we will discuss below. The aim of this section is only to provide an overview of the observables considered
and we will not yet discuss the global fits to the b → s`+`− transition, since the next chapter, will be fully
devoted to the b→ s`+`− global fit, and will provide more detail on these anomalies.

Branching fractions and LFU Ratios

In principle, branching fractions are the less clean observables available, since hadronic contributions are not
suppressed. However there has been big efforts in the last few years to extract the form factors corresponding
to these branching fractions more precisely and to estimate the non-factorisable contributions as discussed in
the previous chapter. This has lead to relatively precise (30% uncertainty) theoretical predictions for several
modes which are of the same order as the current experimental uncertainties, which can be seen for instance in
Table 4.A.1 where we show the SM predictions and the experimental measurement for several of these branching
fractions.

The simplest semileptonic exclusive b→ s`+`− decay corresponds to the B → K`+`− decay, it is described
by 3 form factors which have been determined through Lattice QCD and LCSR in Refs. [39, 96, 193, 194]. Due
to its large phase space, extending largely above the first cc̄ resonances, the B → K`+`− decay provides a
good probe of the b → s`+`− transition in the low-recoil region, allowing for an integration over multiple cc̄
resonances which is required for the validity of the quark-hadron duality argument discussed in Section 2.7. The
B → K∗`+`− and Bs → φ`+`− modes are more complicated and involve 7 form factors which have also been
determined in different kinematic ranges through Lattice QCD and LCSR in Refs. [39, 109, 195].

It is also interesting to consider b → s`+`− hadronic decays involving baryons instead of mesons. Indeed
LHCb provides information on decays not only of mesons but also of baryons containing a quark b, in particular
Λb decays, which might in principle be produced in polarized states. The theoretical analysis of these decays
does not stand at the same level as for meson decays (in particular for the determination of the form factors
and the estimation of charm-loop contributions) but it can provide interesting cross checks of the results
obtained in the meson sector. A first step in this direction has been attempted through the study of the decay
Λb → Λ(→ Nπ)µ+µ− which has been investigated in Refs. [196–202]. Determinations for the 8 Λb → Λ form
factors have been obtained on the lattice in Ref. [203] and through SCET sum rules in Ref. [40].

In a similar way to b→ c`ν̄, the ratio of branching fractions

RHs
=

Γ(Hb → Hsµ
+µ−)

Γ(Hb → Hse+e−)
(3.7)

will be a very interesting observable. In this case, we not only get rid of the CKM factor but of practically all
SM uncertainties. Since LFU is conserved in the SM up to corrections of the lepton masses, these ratios will be 1
up to kinematic corrections of order O(mµ/

√
q2) which are however computable to a very good accuracy as

show in Table 3.3, leading to accuracies on the percent level. This makes the RHs
ratios extremely clean probes

of LFUV NP.
One decay in which the situation is slightly different for the branching fraction, is the purely leptonic mode

Bs → `+`−. In this decay, similarly to Bc → `ν̄, the hadronic uncertainties of the branching fraction are reduced
since it depends on a single hadronic parameter, the Bs decay constant fBs

. Recent estimations [208, 209] for
the branching fraction of this decays suggest a value of

B(Bs → µ+µ−)SM = (3.6± 0.17)× 10−9 (3.8)

Contrary to Bc → `ν̄ and thanks to Bs − B̄s mixing, an extra observable can be defined for this mode
corresponding to the Bs → `+`− effective lifetime discussed in Ref. [210]. One interest feature of purely leptonic
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b → s`+`− modes is that they are helicity suppressed in the SM, suppression which could be lifted in NP
scenarios with new (pseudo)scalar particles, making them good probes for these kind of NP.

The branching fractions of the exclusive radiative modes B(B → K∗γ), B(Bs → φγ) and inclusive radiative
mode B(B → Xsγ) are important observables that constrain the contribution from the electromagnetic dipole
operator and its chirally flipped partner (O7γ and O7′γ). The exclusive modes however suffer from large hadronic
uncertainties, making the inclusive radiative mode B(B → Xsγ), the most constraining mode as it can be seen in
Fig. 3.8. The most accurate predictions to date for this mode Ref. [211]. A general discussion of the theoretical
prediction and the constraints on NP coming from radiative modes can be found in Ref. [212].

Angular distributions and optimized observables

Unlike b → c`ν̄, in b → s`+`− angular observables normalised to the branching ratio do not have a natural
suppression of hadronic uncertainties, as they depend on several form factors which cannot always be correlated
using EFTs of QCD (HQET or SCET). Indeed, depending on the spins of the hadrons involved, different relations
between the form factors can be obtained in the low- and large-recoil regions, as can be illustrated by considering
B → K versus B → K∗. In the case of B → K, all form factors are reduced to a single form factor at leading
order (O(ΛQCD/mb)) in both limits, although in a different way for f0 in both limits (see Section 2.5). These
makes all angular observables normalised to the branching ratio optimized in both limits in the sense that both
numerator and denominator of these observables involve a single form factor, which cancels, up to O(ΛQCD/mb)
corrections (typically of order 10%). However this is no longer the case for B → K∗ in which full QCD form
factors only reduce to two different form factors (ξ⊥,‖, see Eq. (2.75)) in SCET, i.e. in the large-recoil limit, and
into four independent form factors in HQET, i.e. in the low-recoil limit. One has then to carefully design specific
ratios of angular observables involving only subsets of these form factors. In these ratios, called “optimized
observables”, the soft form factors defined in the EFT cancel in the heavy-quark limit, leaving O(ΛQCD/mb)
corrections which are again, typically at the order of 10%.

The angular distribution of B → K`+`− is described by 3 angular observables [213]: the differential decay
width itself dΓ/dq2, the forward backward asymmetry AFB and lastly FH . AFB vanishes in the SM, making it a
good null test, and FH is suppressed by the lepton mass. Since we are dealing with the light lepton modes, the
polarisation of the leptons is not easily experimentally accessed as it is in the case of b→ cτ ν̄τ .

In the case of B → K∗`+`− and Bs → φ`+`− the angular distribution is described by 12 angular observables
that reduce to 9 in the massless lepton limit including the so “optimized observables” Pi and P ′

i introduced
in Refs. [87, 214]. The Pi observables are designed to suppress the LO hadronic uncertainties both in the
low- and large-recoil limits and the P ′

i observables have the advantage of being experimentally cleaner, while
being optimized at large-recoil, however at low-recoil [215, 216] their cleanness requires further assumptions [87].
Furthermore, observables to compare the muon and electron decays, called Qi, have been defined based on the
Pi observables, by taking the differences in between the two modes (Qi = Pµi − P ei ) [136]. These observables are
thus optimised LFUV angular observables, with an interesting sensitivity to NP effects.

The treatment of the neutral modes like Bd → K0`+`−, Bd → K∗0`+`− and Bs → φ`+`− is slightly different
than the charged modes due to neutral meson mixing.

For instance, in the case of Bd → K0`+`− both the Bd and B̄d mesons can decay into any of the two kaon
CP-eigenstates KS,L making the decay non self-tagging 3.

Contrary to the pseudoscalar meson mode, the vector meson mode B → K∗0`+`− can be self-tagging or
not [217] depending on the decay of the K∗0 (self-tagging : K±π∓ or not self-tagging : KSπ

0) since there is no
mixing of K∗0.

The description of the the Bs → φ`+`− decay is similar to B → K∗0`+`− with the small caveat that this
decay is not self-tagging (since φ is a ss̄ state) [217].

For the non-self-tagging modes we can consider two possibilities :

• Take into account the B − B̄ mixing, by performing a time dependent analysis leading to new observables
at the price of requiring higher statistics and a good experimental ability to analyse the time evolution of
the B-meson.

• Ignore the mixing by integrating over time and performing an average over B and B̄. Because of the
obligation of choosing a singular angle convention for both B and B̄, some angular observables will
correspond to CP averages while others will be CP asymmetries, finally obtaining only half of the
observables that can be accessed in the self-tagging case.

We will discuss this further in Chapter 6.
3A neutral B-decay is said to be self-tagging when one can know whether the decaying state is a B or a B̄ by its decay products.

In the charged case (B+ → K+`+`−), this is possible by looking at the charge of the K meson. However in the case of the neutral
B decay, since both B and B̄ decay into KS,L the distinction between B and B̄ becomes impossible.
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Modes/Observables B ` = µ R Angular Observables ` = µ Angular Observables ` = e

B → K`+`− 3 3 3 7

B → K∗`+`− 3 3 3 3†

Bs → φ`+`− 3 7 3 7
Bs → `+`− 3 7 - -
Λb → Λ`+`− 3 7 3 7

Λb → pK`+`− 3 3 7‡ 7‡

Table 3.4: Observables experimentally available in b→ s`+`− modes. †: Only a fraction of these observables
are measured. ‡: The measurement of angular observables of the Λb → pK`+`− directly would not provide any
relevant information as the contribution of multiple Λ resonances is involved.
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Figure 3.5: Measured values of the RK (left) and RK∗ (right) LFU ratios by the LHCb [206, 207], Belle [219,
220] and BaBar [221] collaborations. Taken from Ref. [222].

The angular distribution of the Λb → Λ(→ Nπ)µ+µ− decay is given by 10 angular observables, through
which we can define a single optimized observable in the low-recoil limit [197]. However, in the case large recoil
limit, any ratio of angular observables is optimized thanks to SCET relations between the form factors, which
reduce all 8 form factors into a single soft form factor [197]. The possible polarisation of the Λb baryon, could
allow for an even richer angular distribution [201], however, measurement of the Λb polarisation at LHCb shows
values compatible with 0 [218].

3.2.2 Experimental results in b → s`+`−

We will now present the main experimental results available in the b → s`+`− transition. The amount of
b → s`+`− observables currently available is rather large compared to b → c`ν̄. In the case of the b → s`+`−

transition, all angular observables are binned according to the dilepton invariant mass q2, and not integrated
over the full q2 range, in order to avoid the region of the lighter charmonium resonances. Moreover, the large
amount of data currently available, allows one to separate the observables in several q2 bins in order to have
a hold on the q2 dependence of this observables. An overview of the observables available in the b → s`+`−

transition is shown in Table 3.4 and the measured values of the majority of them can be found in Appendix 4.A
together with their theoretical predictions.

LFU ratios

We start this discussion with the LFU ratios RHs defined in Eq. (3.7), in which notable deviations from the SM
predictions have appeared over the past few years. The LFU ratios RK and RK∗

RK(∗) =
B(B → K(∗)µ+µ−)

B(B → K(∗)e+e−)
, (3.9)

have been measured by the LHCb, Belle and BaBar collaborations as shown in Fig. 3.5. The most precise of these
results, obtained for two different q2 bins ([0.045, 1.1] and [1.1, 6] GeV2), come from the LHCb collaboration and
they are largely dominated by statistical uncertainties. They show individual tensions with the SM predictions
ranging from 2.1σ to 2.5σ as shown in Table 3.3, showing all a tendency towards lower branching fractions



3.2. The b→ s`+`− flavour anomalies 67

for muons compared to electrons. These measurements correspond to one of the main flavour anomalies in
b→ s`+`− decays and without a doubt, the cleanest of them.

Recently, the LHCb experiment has also measured the ratio RpK−

RpK− =
B(Λb → pK−µ+µ−)

B(Λb → pK−e+e−)
(3.10)

for a squared dilepton invariant mass, q2, between 0.1 and 6 GeV2/c4 and a pK− invariant mass below 2.6
GeV/c2 [223]. This result, shown in Table 3.3, is compatible with SM expectations, but it suggests a suppression
of B(Λb → pK−µ+µ−) compared B(Λb → pK−e+e−), similarly to RK and RK∗ . However, the interpretation
of this result would require a precise theoretical knowledge of the various excited Λ states contributing in this
large pK− region (hadronic form factors, interference patterns). A deeper understanding could be achieved by
focusing on a single of these resonances as an intermediate state, which we will discuss further in Chapter 5.

Differential decay width

The differential decay width for exclusive semileptonic b→ s`+`− decays has been measured for several modes
which we show in Fig. 3.6, the most precise measurements coming from the LHCb collaboration. These modes
show a tension with the SM prediction in several bins of the branching fraction with values going from 1σ to as
high as 3.6σ

The first of these modes is the B → Kµ+µ− mode, for which the LHCb measurements [224] show consistently
lower values than the SM prediction of the branching fraction at the large-recoil region. The first low q2 bin is
compatible with the SM, suggesting a SM-like C7γ contribution whereas the low value of the other bins suggest
a possible NP contribution to C9µ. The measurement of the B → K∗µ+µ− branching fraction also lie slightly
below the SM predictions in the low q2 region, however still compatible with the SM with tensions only slightly
higher than 1σ.

In the case of Bs → φµ+µ−, its differential decay width has been measured [225] to be lower than the SM
expectations in the low q2 region, following the trend of B → Kµ+µ− and showing the highest tension with the
SM prediction, reaching a value of 3.6σ in the q2-region between 1.1 and 6.0 GeV2.

The Λb → Λ(→ Nπ)µ+µ− differential decay width was measured by the LHCb collaboration in Ref. [226] .
There seems to be a trend for the branching ratio to be lower than the SM expectations at large-Λ recoil and
larger at low-Λ recoil (although compatible within errors). It is important to mention that these results are to be
carefully interpreted, since the normalisation used in Ref. [226] relies on the measurement of f(b→ Λb), which
presented some issues due to a strong dependence on the b-quark transverse momentum and the production
processes. This issue is discussed in Ref. [227] where also a corrected approach is presented. The corrected
differential decay width for this mode is shown in Fig. 3.6 suggesting a deviation at low-recoil.

The Bs → µ+µ− branching fraction and effective lifetime have been measured by the LHCb, CMS, and
ATLAS collaborations. The joint measurement [233] for the branching fraction is shown in Fig. 3.7 together with
the current limits on the B → µ+µ− branching fraction. These results correspond to a branching fraction of

B(Bs → µ+µ−)exp = 2.69+0.37
−0.35 × 10−9 (3.11)

which shows a tension of 2.2σ4 with the SM prediction in Eq. (3.8).
The branching fractions for the exclusive radiative modes B → K∗γ, Bs → φγ have been measured by the

BaBar [234], Belle [235, 236] and LHCb [237] collaborations, showing results compatible with the SM predictions.
The world average for the inclusive mode B → Xsγ, which is also compatible with its SM prediction, can be
found in Ref. [158]. The constraints on the C7γ Wilson coefficient derived from the radiative modes can be seen
in Fig. 3.8.

Angular observables

The angular distribution of the B → Kµ+µ− decay have been analysed by several collaborations, with the most
precise results coming from LHCb [238]. These measurements do not show deviations from the SM expectations.

The most precise measurements of the angular observables of the B → K∗µ+µ− mode come from the LHCb
collaboration [239, 240]. While most of the observables are compatible with their SM predictions, the optimised
observable P ′

5 shows consistent deviations from the SM predictions for both the charged and neutral modes
(i.e. B+ → K∗+µ+µ− and B0 → K∗0µ+µ−) as shown in Fig. 3.9. In the case of the charged mode, deviations

4This tension is however mainly driven the results from the ATLAS collaboration which are in slight tension with the LHCb
and CMS results. Furthermore, even though the ATLAS collaboration has not yet found evidence for the B0 → µ+µ− decay, they
include the fit result of the B0 → µ+µ− branching fraction (which takes a negative unphysical central value in the fit) into the
combination, which has a large weight in the tension of the average with the SM.
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Figure 3.6: SM predictions and measurements of the differential branching fraction of the exclusive semileptonic
b → sµ+µ− modes in several bins of the invariant dilepton mass q2. From left to right and top to bottom,
B+ → K+µ+µ−, B0 → K∗0µ+µ− , Bs → φµ+µ− and Λb → Λ(→ Nπ)µ+µ− as measured by the LHCb [224–226,
228, 229], CMS [230], Belle [231], BaBar [221] and CDF [232] collaborations. Taken from Refs. [222, 225].

have been also found in the P2 optimised observable. When a 1D fit is performed to the angular observables
allowing for real NP contributions to C9µ, a tension of 3.1σ and 3.4σ is found for the charged and neutral modes
respectively.

Angular observables for the B → K∗e+e− mode have been also been measured, in the low q2 region by
LHCb [241] 5. However, only a reduced amount of them has been obtained due to the lower efficiency of LHCb
to measure electrons (compared to muons).

The P ′
4,5 observables have been also measured by Belle [242] for both the muon and electron modes shown

some deviations for the muon mode for P ′
5µ similarly to LHCb. From these observable they have extracted for

the first time the LFU angular observables Q′
4,5 showing the same deviations that appear in P ′

5µ when comparing
them with the extremely accurate SM predictions for these observables.

The LHCb collaboration has recently updated the angular analysis for the Bs → φµ+µ− mode [229, 243,
244], where they perform a time integrated angular analysis. They measure the CP-averaged angular observables
FL and S3,4,7 and the CP-asymmetries ACP

FB and A5,8,9 obtaining results compatible with the SM.
The Λb → Λ(→ Nπ)µ+µ− angular observables were measured by the LHCb collaboration in Refs. [226, 247].

The measured angular observables at low-Λ recoil did not indicate any deviation from the SM expectations and
they are compatible with a non-polarized Λb.6 These angular observables seemed to be deviating to unphysical
regions (incompatible with value of the Λ → pπ− asymmetry parameter at the moment), however this was fixed
by the newly updated measurement of the Λ → pπ− asymmetry parameter by the BESIII collaboration [248]7.
After this is taken into consideration, these angular observables show no significant deviations from their SM
expectations.

5These low q2 region have been used to constraint the electromagnetic dipole operator and its chirally flipped partner (O7γ and
O7′γ) as shown in Fig. 4.13.

6One should be careful that the results for the forward-backward asymmetries presented in Ref. [226] contain a mistake, the
reported value correspond to the CP-asymmetry of these observables instead of the CP-average, this is corrected in Ref. [247].

7A discussion on this issue can be found in Ref. [227]
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3.3 NP explanations for the b-anomalies
We will know briefly discuss some of the simple NP models that can explain the observed flavour anomalies.
We will not present here a full zoology of models, but rather discuss the most common explanations through
“simple models” that have arisen in the past and their status with current data. Here, “simple” refers to models
involving a small amount of mediators (usually one) coupling only to the relevant fermions. For instance, one
can imagine a new neutral vector boson (Z ′) which has only bsZ ′ and µµZ ′ vertices in order to explain the
b→ s`+`− anomalies (see Fig. 3.10).

Having such an ad hoc and simple model can seem unappealing and would be in many cases UV incomplete,
however this kind of particles could be embedded into a larger model, being these only the lightest degrees
of freedom of a new sector beyond the SM. Regarding the flavour structure, a coupling only to the fermions
involved in the anomalies seems also unappealing and in a general model one would like to consider a complete
favour structure for the couplings between the various families.

Tight bounds on specific NP models are often obtained from flavour observables (in particular neutral meson
mixing such as K − K̄ [7]) in the case where the flavour structure of the theory exhibits no hierarchical structure.
On the contrary, models with a SM-like flavour structure might face less severe constraints. Moreover, in the
context of the anomalies, the SM Yukawa couplings already have a flavour structure which is only of order 1
for the third generation, so NP models which bear the same flavour structure could likely have large effects
on b → s`+`− and b → c`ν̄. Such a hierarchy is also important since the NP involved must provide 10-20%
corrections to a tree-level SM process for b→ cτ ν̄τ , but to a loop-level SM process for b→ sµ+µ−, which are
rather different in size.
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NP mediators.

Having this in mind we will first discuss the simple models (with simple couplings) that could generate the
flavour anomalies and then discuss more general flavour structures that could be behind these models, allowing
us to understand how they would appear in different modes like b→ d, b→ u, s→ d, etc.

3.3.1 Simple EFT connections
In order to discuss NP that connect both the b→ c`ν̄ and b→ s`+`− sectors, it is natural to consider an EFT
framework that respects the SM symmetries in a similar approach to SMEFT.

As discussed in Section 3.1.3, a good solution to the b→ c`ν̄ anomalies is through the addition of left handed
vector currents (i.e. gVL

). Furthermore, in the case of b→ s`+`− (as we will discuss in the next chapter), the
anomalies observed can also be explained through the addition of left handed vector currents where we have
C9µ = −C10µ.

Since both LFU deviations are well explained by a NP vector contribution to left-handed fermions, Ref. [249]
studies the effective Lagrangian [249–251]

Leff. = LSM − 1

v2
λqijλ

`
αβ

[
CT
(
Q̄iLγµσ

aQiL
) (
L̄αLγ

µσaLβL

)
+ CS

(
Q̄iLγµQ

i
L

) (
L̄αLγ

µLβL

)]
, (3.12)

as an intermediate step in between the concrete NP models and the WET framework. The Lagrangian above,
which respect the SU(2)L gauge symmetry, is written in the down-quark and charged lepton mass basis (see
Section 1.2)

QiL = (V CKM∗
ji ujL, d

i
L)
T , LαL = (ναL , `

α
L)
T , (3.13)

and the flavour structure of the NP is contained in λqij and λ`αβ which are fixed in Ref. [249] on the basis of a
U(2) flavour symmetry to account for the hierarchy of couplings between the third generation and the lighter
ones.

This Lagrangian is of course not general and will not include all models that could explains the anomalies.
However, it gives a simple framework in which one can easily test some NP scenarios that can properly describe
data on b→ c`ν̄ and b→ s`+`−. Different mediators may lead to the operators shown in Eq. (3.12): colour-singlet
vectors B′

µ and ~W ′
µ, colour-triplet scalars S1 and S3 and colour-triplet vectors Uµ1 and Uµ3 .
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Figure 3.11: Fit to semi-leptonic and purely leptonic observables related to the b→ s`+`− and b→ c`ν̄ transition
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The lines show the correlations among triplet and singlet operators in single-mediator models. Colour-less vectors
are shown in green, coloured scalars in blue, while coloured vectors in red. Electroweak singlet mediators are
shown with the solid lines while triplets with dashed lines. Taken from Ref. [249].

Through a simple flavour structure [249] given both by the SM flavour hierarchy and the hints of LFUV
one can study the possible solutions to the anomalies in the CS − CT plane as shown in Fig. 3.11 8, where the
allowed regions for (CS , CT ) are displayed. The fitness of single mediator models can then be simply studied by
matching them to the EFT in Eq. (3.12)

3.3.2 Simple models
The EFT analysis shown before indicates that one or two mediators leading to left-handed vector operators
are sufficient to explain the deviations observed. More generally, one can think of either colourless or coloured
mediators to generate the NP contributions to WET operators. In the case of coloured particles, leptoquarks are
favoured and more flexible in terms of couplings to different fermion generations, compared to massive gauge
mediators. In the case of colourless particles, heavy vector bosons are favoured and may come from additional
SU(2) or U(1) gauge symmetries, although one could also consider additional scalar bosons coming, for instance,
from Two-Higgs-doublet models (2HDMs) [252]. We will discuss some examples of such theories, without trying
to be exhaustive.

Leptoquarks

Leptoquarks are coloured-triplet bosons which carry a lepton and baryon numbers, having couplings that allow a
decay into leptons and quarks (see Fig. 3.10). They can be classified by their quantum numbers into six different
types of representations [253]: three scalar (S1, R2, S3) and three vector (U1, V2, U3) leptoquarks. They differ by
their SU(2)L representations, where S1 and U1 are singlets, R2 and V2 are doublets and S3 and U3 are triplets,
with all of them being triplets under SU(3)C . These type of particles naturally appear in some UV complete
models like composite Higgs models [254, 255], the Pati-Salam model [256] and supersymmetric models with
R-parity violation[257].

We will focus only in some of them as not all are capable of explaining RK(∗) and RD(∗) as shown in Table 3.5.
The vector U1 leptoquark, coupled to the left-handed quark and lepton currents, as it can be seen in Fig. 3.11,

is the best candidate for explaining the flavour anomalies as it can explain both the b → s`+`− and b → c`ν̄
anomalies and it does not yield tree level contribution to neutral meson mixing and to B → K∗νν. However,
the addition of a vector leptoquark requires a UV completion to yield a consistent theory and the loop-level
contributions to neutral meson mixing depend strongly on this UV completion [249, 258].

8Since the publication of Ref. [249], some of the numerical inputs have changed (for instance the deviation of RD and RD∗ has
slightly decreased), which should lead to an overall better fit of the data, but the overall conclusions concerning single mediators
should not be modified.
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Model RK(∗) RD(∗) RK(∗) & RD(∗)

S3 (3̄,3, 1/3) 3 7 7

S1 (3̄,1, 1/3) 7 3 7

R2 (3,2, 7/6) 7 3 7

U1 (3,1, 2/3) 3 3 3

U3 (3,3, 2/3) 3 7 7

Table 3.5: Summary of the leptoquark models which can accommodate RK(∗) (first column), RD(∗) (second
column), and both RK(∗) and RD(∗) (third column), without being in conflict with existing constraints. Taken
from Ref. [258].

Additionally, the best scalar leptoquark solution for explaining the b→ s`+`− deviations is the S3 leptoquark,
which however cannot accommodate the b→ c`ν̄ anomalies [258]. Nonetheless, the combination of it with the
S1 scalar leptoquark (which yields a contribution to gVL

and gSL
= −4gT ) is often cited in the literature [249,

258] as they can together accommodate for the anomalies in both sectors (This can be seen in Fig. 3.11 as the
combination of both leptoquarks can span the CS −CT plane). A second possibility is the combination with the
R2 scalar leptoquark which yields a contribution to b→ c`ν̄ through gSL

= 4gT which can explain the values of
RD(∗) through complex couplings [259].

Vector bosons

One can consider different types of new vector bosons, in particular singlets B′ and triplets ~W ′, which appear
in several NP models such as 331 models [260–262], SU(2) × SU(2) × U(1) models [263] and models where
the difference Lµ − Lτ is promoted into a gauge symmetry [264]. Singlets could only explain the b → s`+`−

anomalies while triplets can contribute at tree level to b → c`ν̄ through the charged W ′± and to b → s`+`−

through the neutral component (i.e. the Z ′).
However, these vector bosons would also contribute to four-quark and four-lepton operators. A particular

constraining process for the four quark operators is given by B(s) − B̄(s) mixing, as illustrated for instance in
Ref. [249]. Additionally, bounds from high pT tau lepton searches and bounds to the τ → 3µ branching fraction
at the LHC [265, 266] also strongly constrain these models as they constrain b→ cτ ν̄τ operators. In the case
of single B′ or ~W ′ mediators with the flavour structure of Ref. [249], the regions of the parameter space that
respect the high energy bounds lead to large values for the mixing which overwhelmingly exceed the experimental
constraints and vice versa.

This can be solved by strongly fine tuning (10−4) the parameters to avoid neutral meson mixing or through
the addition of additional interaction terms with the Higgs which can relax the high energy bounds at the cost
of some milder tuning [249].

Two-Higgs-doublet models

Two-Higgs-doublet models are simple NP models in which a second scalar SU(2)L doublet is added to the SM,
leading to the addition of a neutral CP-even scalar H0, a neutral CP-odd scalar A0 and a charged scalar H±.
This addition comes with a whole new family of Yukawa couplings and in order to restrain the number of new
parameters and also to prevent from the appearance of FCNC at tree level it is common to assume a specific
pattern of Yukawa couplings. Under these assumptions, four types of 2HDMs are usually studied, called Type I,
II, X (Lepton Specific) and Z (Flipped) 2HDM [252]. One of the benefits (and sometimes also their doom) of
some of the 2HDMs (like the type II) is that they have few parameters, making them very predictive models.

In the case of the b→ c`ν̄ it could be possible to consider a charged scalar mediating this decay at the tree
level, however this explanation is not currently favoured by global fits [82, 83, 165, 166, 187] and suffers from
constraints due to the Bc lifetime [186] and high pT tau lepton searches at LHC [265, 266].

In the case of b→ s`+`− a possible contribution from additional scalars would be through a neutral scalar
which could have a tree level contribution to b→ s`+`−. However this is not preferred by the global fits which
do not favour scalar contributions [267] and it is strongly constrained by Bs − B̄s mixing as a neutral scalar
would also produce a tree level contribution to the mixing. Another option, is an explanation through a loop
contribution of a charged scalar to this decay [268, 269]. However, without the inclusion of heavy right-handed
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neutrinos, this only allows for sizeable contributions through penguin diagrams which are LFU. Only through
the addition of right-handed neutrinos, a charged scalar can provide, through a box diagram, sizeable LFUV
contributions to b→ s`+`−.

In conclusion, 2HDMs suffer from strong experimental constraints, and thus struggle to explain both
b→ s`+`− and b→ c`ν̄ anomalies.

3.3.3 Flavour structure and MFV
As discussed at the beginning of this section, models where the NP degrees of freedom couple only to a few
specific fields chosen to accommodate the deviations observed are not a very appealing explanation. The
complete absence of some couplings which are not forbidden in principle but could contradict earlier experimental
measurements is not very natural. One would expect NP degrees of freedom to have a rich flavour structure.
On the other hand, one can notice that the deviations appear in b-decays into quarks of the second generation
and leptons of the second or third generation, whereas lighter quarks and leptons do not seem affected at the
same extent. This could support the existence of a flavour hierarchy among the NP couplings and we would
like to provide these models with a more elaborate flavour hierarchy of couplings, in order to see how different
generations may be involved through NP interactions.

As discussed in Chapter 1, the SM itself, partially respects a flavour symmetry under the flavour group

GF ≡ U(3)5 = U(3)QL
×U(3)uR

×U(3)dR ×U(3)LL
×U(3)`R , (3.14)

discussed in Section 1.1. This flavour symmetry is only broken by the Yukawa couplings, which define the SM
hierarchy of flavour.

One could in principle consider two options for the NP new degrees of freedom:

1. They have a new arbitrary flavour structure which has a different origin from the SM.

2. They have a flavour structure which is similar to the SM hierarchy or at least has a similar origin to the
flavour hierarchy of the SM.

The first option presents several problems. On one side, an arbitrary flavour structure would have a strong
effect in flavour observables that are well constrained by experimental measurements, like neutral meson mixing,
pushing the energy scale of NP to high values (& 102 − 104 TeV [7, 270]). On the other side, a new arbitrary
flavour structure would introduce multiple sources of CP violation, since the complex phases involved in this
new structure cannot be absorbed at the same time as the SM complex phases into the redefinition of the
fields. This would spoil the consistency shown by the fits determining the CKM matrix (seeSection 1.2.2.) by
providing inconsistent information on the amount of CP-violation encoded in the unitarity triangle. The concept
of NP having a very similar flavour structure to the SM is thus supported by the very stringent is quite logical
considering the stringent tests that the SM has passed until now. So this arbitrary structure, is somewhat
bounded to be aligned with the SM one, with only small departures from it being allowed.

The second option is a more minimalistic approach, in which no new source of flavour symmetry violation is
introduced. This approach, is generally refereed as Minimal Flavour Violation (MFV)[250, 270]. The principle
behind MFV starts by restoring the flavour symmetry of the SM under GF . This is done by promoting the
Yukawa couplings to spurions, or in other words by treating them as fields with the proper transformation
properties such that the SM Lagrangian is invariant under GF . The transformation required for the Yukawa
fields is given by

Yu ∼ (3̄, 3̄,1,1,1)GF : Yu
GF−−→ g†QL

Yug
†
uR
, (3.15)

Yd ∼ (3̄,1, 3̄,1,1)GF : Yd
GF−−→ g†QL

Ydg
†
dR
, (3.16)

Ye ∼ (1,1,1, 3̄, 3̄)GF : Ye
GF−−→ g†LL

Yeg
†
eR , (3.17)

where gX ∈ U(3)X .
Then the flavour structure can be recovered by setting the fields to the “physical” values (sometimes referred

as “freezing the fields”) corresponding to SM Yukawa couplings

vYu →MuVCKM vYd →Md vYe →Me (3.18)

The interest of this approach, is that one can create new operators invariant under GF which involve the spurions
and would lead to a flavour structure compatible with the breaking of GF within the SM upon freezing of the
fields. We will focus on the flavour structure of the quark sector, as MFV cannot yield a flavour structure on the
lepton sector without first defining a mass mechanism for neutrinos.

In the language of spurions that we have just discussed, MFV can be defined by two principle or conditions:
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• First, flavour couplings need to be invariant under GF with the only flavour structure coming from the
freezing of the Yukawa spurions. This requirement does not yield only the flavour structure of operators
already present in the SM : however this flavour structure needs to be written as a polynomial of the
allowed spurions. For instance for an operator involving the quark bilinear Cij d̄iRγµd

j
R, the flavour coupling

coefficient Cij needs to transform as C GF−−→ g†dRCgdR and can thus be written as

C = f(Yu, Yd) = z1I3×3 + z2YdY
†
d + z3YdY

†
uYuY

†
d + z4YdYuY

†
uY

†
d + . . . . (3.19)

Nonetheless, without a further assumption, this idea is not very interesting as polynomials of the Yukawa
spurions can span the full flavour space.

• This leads to the second condition which is that all coefficients zi that appear in these polynomials have to
be natural (i.e. . O(1)), which will avoid interaction terms that are largely misaligned with SM flavour
structure.

These conditions however leaves us with an infinite series of polynomials on the Yukawa couplings, that can be
treated in two different ways, yielding two different realisation of MFV. Let us rewrite the polynomial expansion
on the Yukawa expansion in Eq. (3.19) by introducing two parameters εu,d such that C = f(εuYu, εdYd) and
assume that all coefficients z are of order O(1) such the convergence of the expansion is given by the values
of εu,d. This kind of expansion could be for instance motivated by the conception that the spurions could be
actual dynamical fields that acquire a non vanishing vacuum expectation value through a dynamical process
(similar to the case of electroweak symmetry breaking), in which every addition of extra fields Yu,d would come
accompanied by a coupling constant related to εu,d. In this case we have two options:

• The first option is that εu,d � 1 in which case only first order terms in spurions are relevant. This
realisation of MFV is called linear MFV as it keeps only the first order terms (which are not necessarily
linear in the spurions). This would correspond, for instance, to taking only z1 and z2 in Eq. (3.19).

• The second option is that εu,d ∼ O(1) and the expansion cannot be truncated. In this case all order terms
are relevant, however this is only due to the size of the top and bottom Yukawa couplings yt,b (∼ O(1)
for yt), which dominate the flavour breaking. An approach to deal with MFV in this case was proposed
in [270], where they separate the flavour breaking into two different parts. First a breaking of the quark
sector of GF into

H = U(2)QL
×U(2)uR

×U(2)dR ×U(1)3 (3.20)

where the light quark fields (u, d, s, c) still preserve a U(2) 9. This subgroup is then broken by (smaller)
terms responsible for flavour symmetry breaking for the the first and second generations. This structure of
breaking allows one to treat these two stages differently and perform a expansion on the small parameters
of the Yukawa matrices related to the light quarks, while keeping the expansion to all orders in the large
Yukawas. This realisation of MFV is called General Minimal Flavour Violation (GMFV) or Non-linear
MFV (NLMFV) [270] as the breaking from GF to H is parametrised in a non-linear fashion, whereas the
breakdown of H can be described in a linear way. As can be guessed from their names, GMFV keeps more
terms in the spurion expansion than LMFV.

3.4 Conclusion
The flavour anomalies observed in semileptonic B meson decays constitute one of the most promising hints of
New Physics (NP) found at LHC and B-Factories. Although global fits to the b→ c`ν̄ transition show a certain
preference for vector currents, the present constraints are not sufficient to determine the nature of the NP that
could be behind these anomalies. In the case of b → s`+`−, more experimental measurements are available,
however the theoretical predictions suffer from slightly bigger uncertainties. Furthermore, the complex phases of
the Wilson coefficients describing the b→ s`+`− transition are not yet well constrained. It is thus particularly
important to probe these transitions (both b→ c`ν̄ and b→ s`+`−) with a higher experimental and theoretical
accuracy, but also to provide new modes and observables constraining NP scenarios in different ways.

We discussed the NP models that could be at the source of the b-anomalies, finding that simple models can
explain each of the b-anomalies, but that the discussion of a full flavour structure for the models discussed is
slightly more difficult.

9This structuration of flavour breaking in two steps, conserving first a U(2) symmetry and then breaking this second symmetry
has also been used in NP models out of the context of MFV in order to constrain their flavour structure even extending this
formalism to the lepton sector [271–273].
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In the next chapter we will discuss in detail the global fit of the Wilson coefficients describing the b→ s`+`−

to better understand the NP that might be behind these anomalies through an EFT framework. In the following
chapters, we will propose new ways of testing the b-anomalies, starting by new modes and observables that will
help better understand the b → s`+`− transition to then discuss interesting new ways to probe the b → c`ν̄
transition.
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Chapter 4

Global analysis of b → s`+`−

Since the first works showing a deviation from the SM in the B → K∗µ+µ− angular observables measured by
LHCb [274], there has been a growing evidence of experimental deviations (as discussed in Chapter 3) and a
parallel theoretical discussion of the possible sources of these deviations. In particular, global fits to b→ s`+`−

data have tried to identify if the deviations exhibit a consistency compatible with simple NP scenarios within an
EFT framework.

In this chapter we present a discussion of the status of such a global analysis of the b→ s`+`− transition 1 .
The results presented here follow closely Ref. [275] and correspond to the latest update to Refs. [108, 132, 134,
135].

First, we describe the main experimental results and the main elements of the theoretical predictions required
to perform this analysis. In Section 4.1 we discuss the observables that compose the different fits. In Section 4.2
we present the theoretical inputs required to predict the SM values as well as an analysis of the main uncertainties
and the choices that we make in order to estimate them in a conservative fashion. In Section 4.3 we discuss the
SM and NP Wilson coefficients that are the most relevant to these transitions, which correspond to C7(′) ,C9(′) and
C10(′) . We then briefly describe in Section 4.4 the statistical framework used, the treatment of both experimental
and theoretical uncertainties and how confidence regions for the Wilson coefficients are obtained.

We continue by presenting the results of the global fits, their statistical significance and the new emerging
patterns of NP spanned by the effective operators driven by data within two different types of NP scenarios. First,
following Ref. [135] we assume in Section 4.5.1 that NP affects only muons and is thus purely Lepton-Flavour
Universality Violating (LFUV). In Section 4.5.2 we follow the complementary approach discussed in Ref. [134],
where we consider the consequences of removing the frequently made hypothesis that NP is purely LFUV. We
then explore the implications of allowing both LFU and LFUV NP contributions to the Wilson coefficients C9(′)
and C10(′) .

In Section 4.6.1 we discuss the favoured scenarios of the global fits and some of models that motivate them
and can explain the b-anomalies complementing Section 3.3. In Section 4.6.2, we focus on a particular scenario
(scenario 8) which can, within an EFT framework, link the flavour anomalies in b→ s`+`− and b→ c`ν processes.
Some models that motivate the different fit scenarios in Sections 4.5.1 and 4.5.2 and can explain the b-anomalies
are discussed briefly in Section 4.6.1 complementing Section 3.3.

In Section 4.7 we discuss the results of other groups performing global fits to b→ s`+`− data and compare
these results to ours. Finally, we sum up our results in Section 4.8 and we conclude this chapter by commenting
on the impact that new measurements could have on our analysis. An appendix (Appendix 4.A) is devoted to
include the list of observables included in the fit (Table 4.A.1) and an exhaustive list of the 1D patterns and
their bfps.

4.1 Experimental inputs
The experimental results on these modes have been discussed in the previous chapter and they have been
measured mainly by the LHCb, CMS, ATLAS, Belle and BaBar collaborations. In the fits, we will compare
the experimental results for B → K(∗)`+`−, Bs → φ`+`−, B → K(∗)γ, Bs → φγ and Bs → µ+µ− with their
theoretical predictions in terms of the WET. For each of these modes we include the branching fractions, LFU

1The radiative mode b→ sγ is also taken into account in order to constrain C7(′) . We consider only the semileptonic and radiative
modes, as opposed to all of b→ s transitions, because, as discussed in the previous chapters, in these modes we can benefit from
factorisation and from the knowledge on form factors to get accurate predictions. In purely hadronic modes factorisation is far
more complicated, QCD Factorisation (Section 2.8) can be used to predict these modes, but its accuracy is far from the one of the
semileptonic and radiative modes. An example will be given in Chapter 10.

77



78 Chapter 4. Global analysis of b→ s`+`−

Observables included in the Global Fit “LFUV ”

RK [LHCb] SM Experiment [277] Pull
[1.1, 6.] 1.00± 0.00 0.85± 0.04 +3.5

RK [Belle] SM Experiment [220] Pull
[1., 6.] 1.00± 0.00 1.03± 0.28 −0.1

[14.18, 22.9] 1.00± 0.00 1.16± 0.30 −0.5

RK∗ [LHCb] SM Experiment [207] Pull
[0.045, 1.1] 0.91± 0.02 0.66± 0.11 +2.2
[1.1, 6.] 1.00± 0.01 0.69± 0.12 +2.6

RK∗ [Belle] SM Experiment [219] Pull
[0.045, 1.1] 0.92± 0.03 0.52± 0.36 +1.1
[1.1, 6.] 1.00± 0.01 0.96± 0.46 +0.1
[15., 19.] 1.00± 0.00 1.18± 0.53 −0.3

Q′
4(B → K∗) [Belle] SM Experiment [242] Pull

[0.1, 4.] 0.03± 0.01 1.46± 1.39 −1.0
[4., 8.] 0.00± 0.00 −0.90± 0.80 +1.1

[14.18, 19.] 0.00± 0 −0.08± 1.14 +0.1

Q′
5(B → K∗) [Belle] SM Experiment [242] Pull

[0.1, 4.] −0.02± 0.01 −0.10± 0.62 +0.1
[4., 8.] −0.00± 0.00 0.50± 0.42 −1.2

[14.18, 19.] −0.00± 0.00 0.78± 0.51 −1.5

105 ×B(B0 → K∗0γ) [PDG] SM Experiment [6] Pull
4.65± 5.41 4.18± 0.25 +0.1

105 ×B(B+ → K∗+γ) [PDG] SM Experiment [6] Pull
4.62± 5.59 3.92± 0.22 +0.1

105 ×B(Bs → φγ) [PDG] SM Experiment [6] Pull
4.86± 1.29 3.40± 0.40 +1.1

Table 4.1: List of observables included in the fit “LFUV”, with their SM prediction, experimental measurements
and the pull of this measurement. The sign of the pull value represents whether the observable theoretical
prediction is above (+) or below (−) the experimental measurement.

ratios and angular observables 2 discussed in the previous chapter. We consider only CP-averaged quantities
(and accordingly we will not consider scenarios with CP-violating NP). The following measured experimental
results are excluded from this fit and will be included in the future: all the results on the baryonic b-decays [223,
226, 247], the latest measurement of B → K∗µ+µ− from CMS [276], and the latest updates of LHCb on the
Bs → φµ+µ− mode [225, 243].

We will consider two different sets of observables:

• On one side, we will perform a fit with all of the observables coming from the modes mentioned above. We
call this the “All” fit, and the full list of the 246 observables included in this fit is given in Table 4.A.1.

• On the other side, we will consider a reduced amount of observables, which have two interesting properties.
First, they are tests of Lepton Flavour Universality (LFU) and secondly, they have reduced uncertainties
in the SM since they come only from Lepton Flavour Universality Violation (LFUV). The list of the 22
observables included in this fit, to which we will refer as the “LFUV" fit, is given in Table 4.1.

We will consider only Gaussian uncertainties, as discussed in Section 4.4. In the case of asymmetric uncertainties
(such as RK), in order to be conservative, we symmetrise the uncertainties by taking the largest uncertainty.

2Our treatment for the Belle observables within the global fit follows the same strategy as described in Ref. [135] for Q4,5 =
P ′
4µ,5µ − P ′

4e,5e which were isospin averaged and where we introduced a nuisance parameter accounting for the relative weight of
each isospin component.
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4.2 Important aspects of the theoretical predictions
4.2.1 Choice of the form factors
We now discuss the explicit choice of form factors that enter into our predictions for different b → s`+`−

observables. We start with the B → K mode, for which we use the form factors from Ref. [115] at large-recoil
and the purely lattice results from Ref. [193] at low-recoil. In the case of B → K∗ we use the results from Ref.
[115] at large-recoil and the purely lattice results from Ref. [195] at low-recoil, while for Bs → φ we use the
results from Ref. [278] at large-recoil and the purely lattice results from Ref. [195] at low-recoil.

The form factors obtained through LCSR (see Section 1.6) we consider include two different types of LCSR:
in the case of Ref. [278] the expansion is chosen so that the form factors are either written in terms of the
light-meson DA while in the case of Refs. [39, 109, 115] they are written in terms of the B-meson DA. The two
LCSR differ through the initial correlator and the kinematics chosen to perform the light-cone expansion. We
prefer to use B-meson DA to be more conservative as they have larger uncertainties than the results in terms of
the light-meson DA.

A more recent determination of these form factors through LCSR with B-meson DA has been performed
on Refs. [39, 109], that we have not used yet, however we plan to include them in future works. In Refs. [39,
109, 278] LCSR at low q2 are combined with lattice results at high q2. Results are compatible with each other,
bearing however different uncertainties.

4.2.2 Form factors at large-recoil
Form factors are one of the main theoretical inputs that go into the prediction of branching fractions and angular
observables. While in the branching fractions the uncertainties of the form factors contribute directly to the
theoretical predictions, in angular observables, or more precisely in the optimized angular observables, the
form factors are cancelling in the heavy quark limit so that their contribution to the hadronic uncertainties of
optimised observables is suppressed. It is thus important to verify that the results obtained either from LQCD or
from LCSR, respect the relations that are expected from HQET and SCET that we have discussed in Section 2.5
up to corrections in agreement with the O(αs,ΛQCD/mb) suppression. This can be explicitly verified by using a
different parametrisation of the form factors highlighting the power corrections to the large-recoil limit. Two
different types of factorisable corrections will affect the soft form factors defined in SCET

F (q2) = F∞(ξ⊥(q
2), ξ‖(q

2)) + ∆Fαs(q2) + ∆FΛ(q2) (4.1)

where F∞(ξ⊥(q
2), ξ‖(q

2)) represents the correspondent soft form factor combination (see Section 2.5.2), ∆Fαs(q2)
and ∆FΛ(q2) represent the factorisable αs and ΛQCD/mb corrections to the leading order respectively. While
the former can be computed in QCDF [38], the latter cannot. We thus parametrise them as an expansion in q2

m2
B

following Ref. [279]

∆FΛ(q2) = aF + bF
q2

m2
B

+ cF

(
q2

m2
B

)2

+ . . . (4.2)

These contributions are important to take into account, since the symmetries that protect the optimised
observables are broken by this corrections making them the main source of hadronic uncertainties related to the
form factors for the optimised observables.

The definition of the soft form factors is a priori arbitrary since one can make variations of O(αs,
q2

m2
B
) to its

definition. The choice of the soft form factor definition is done by fixing the soft form factor to be equal to a
certain combination of the full form factors to all orders and this defines a choice of scheme for the soft form
factors. Within a certain scheme, one can fit the values of the aF , bF , cF defined above for each of the form
factors. One can thus check that the size of the coefficients are in agreement with SCET expectations.

In the past, there were doubts that some choices of scheme could lead to large uncertainties [279, 280] but it
turned out to be due to choices of schemes enhancing artificially the uncertainties [137]. We choose the following
scheme

ξ⊥(q
2) ≡ mB

mB +mV
V (q2) (4.3)

ξ‖(q
2) ≡ mB +mV

2E
A1(q

2)− mB −mV

mB
A2(q

2) (4.4)

where these coefficients have their expected values in SCET leading to a typical 10% correction from power
corrections at large recoil. More details and the numerical values that the power corrections take in our analysis,
can be found in Ref. [137].
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4.2.3 Non-local hadronic contributions at large-recoil
The treatment of non-local contributions used in this global analysis is based on the discussion in Refs. [108,
137], where more details can be found. As discussed in Section 2.7, non-local contributions can be split into hard
and soft gluon contributions.

Hard gluon contributions

The contributions from non-local contributions can already be analysed in terms of QCD factorisation, which
goes beyond the perturbative QCD contributions by considering additional hard-gluon exchanges. In Refs. [111,
281] the matrix element 〈K∗γ∗|Heff |B〉 is decomposed in terms of three hadronic form factors Ti(q2), which
reduce to only two in SCET. These hadronic form factors are re-expressed in terms of Wilson coefficients, soft
form factors (ξ‖,⊥), light-cone sum rules and hard-scattering kernels using QCD factorisation [281]

T (i)
a = ξa C

(i)
a +

π2

Nc

fBfa
MB

Ξa
∑
±

∫
dω

ω
ΦB,±(ω)

∫ 1

0

du φa(u)T
(i)
a,±(u, ω). (4.5)

and correspond at leading-order in αs to the perturbative correction induced by the function Y (q2) introduced
in Eq. (2.83).

We could have considered these results directly to take into account O(αs) corrections only to these formulae.
We have however to take also into account O(1/mb) corrections coming from power-suppressed effects (soft
gluons, higher-twist DA effects...). We can modify this expression to enlarge the uncertainties focusing on the
contributions affecting cc̄ contributions. In each of the amplitudes, we single out the hadronic contribution
that is not related to the radiative Wilson coefficients by taking the limit T had

i = Ti|C
7(′)→0. In order to be

conservative, we multiply each of the hadronic amplitudes with a complex q2-dependent factor such that

T had
i →

(
1 + ri(q

2)
)
T had
i , (4.6)

where
ri(s) = rai e

iφa
i + rbi e

iφb
i (s/m2

B) + rci e
iφc

i (s/m2
B)

2 . (4.7)

We define the central values as the ones with ri(s) ≡ 0, and estimate the uncertainties from non-factorizable
power corrections by varying ra,b,ci ∈ [0, 0.1] and φa,b,ci ∈ [−π, π] independently, corresponding to a ∼ 10%
correction with an arbitrary phase modifying the QCD factorisation results to take into account soft-gluon
contributions.

Soft gluon contributions

We have already treated the hard-gluon contributions, and modify it to include power-suppressed effects that
include soft-gluon contributions. However, as there have been many interrogations on our ability to properly
assess the size of soft-gluon contributions to cc̄ loops at low q2 [119, 123, 127, 282], we will add a further source
of theoretical uncertainty (admittedly with the risk of overestimating the theoretical uncertainties attached to
this effect). In order to take into account soft-gluons from a different source than QCD factorisation, we make
use of the non-local contribution H in Eq. (2.80) which can be estimated in LCSR at q2 slightly negative [109,
115]. One has then to perform the extrapolation to the physical low-q2 region using either a model [115] or
experimental data [109, 112]. For B → K∗`+`− we will take the results of Ref. [115], subtract the hard-gluon
contribution at LO and parametrise the remaining contribution ∆CLD

9` (q2) defined in Eq. (2.84) as done in Ref.
[108]. We then consider three different helicity dependent parametrisations

δCLD,0
9` (q2) =

a0 + b0(q2 + s0)(c
0 − q2)

(q2 + s0)(c0 − q2)
(4.8)

δCLD,‖
9` (q2) =

a‖ + b‖q2(c‖ − q2)

q2(c‖ − q2)
(4.9)

δCLD,⊥
9` (q2) =

a⊥ + b⊥q2(c⊥ − q2)

q2(c⊥ − q2)
(4.10)

corresponding to the contributions to the longitudinal amplitude A0 and the 2 transverse amplitudes respectively
A‖,perp which we are shown in Fig. 4.1. The ai, bi and ci parameters are tuned to cover the results from Ref.
[115] and we set s0 = 1GeV in the longitudinal contribution which does not exhibit a pole at q2 = 0 [108].

It is important to mention that the soft-gluon contribution computed in Ref. [115] induces a positive
contribution to Ceff

9` whose effect is to further enhance the anomaly. Ref. [109] has reassessed the LCSR evaluation
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Figure 4.1: Parametrisation of cc̄ contributions defined in Eq. (4.8) for transverse (left) and longitudinal (right)
of B → K∗`+`− amplitudes. Taken from Ref. [108]

of Ref. [115] using the complete set of higher-twist B-meson LCDAs.. The results from Ref. [109] a significantly
smaller contribution than Ref. [115] at q2 < 0, however the effect of the extrapolation at low q2 still has to be
discussed fully to determine the final impact of the soft-gluon contribution. In order to be conservative, we
consider the results obtained in Ref. [115] as an order of magnitude estimation by introducing three independent
parameters si = 0± 1 with i = 0, ‖,⊥, such that

∆CLD
9` (q2) → siδCLD,i

9` (q2) . (4.11)

In the case of Bs → φ`+`−, long distance contributions will be treated in the same way as B → K∗`+`−, how-
ever with independent parameters, meaning that we consider no correlation between long distance contributions
between these modes.

In the case of B → K`+`−, these contributions are neglected since they are found to be small [109, 115, 116]
compared to our main uncertainties.

4.2.4 Form factors and non local contributions at low-recoil
In the low-recoil region, one could in principle perform a similar expansionof the form factors in terms of an
OPE and HQET, however we refrain from this and we simply use the full lattice form factors [195]. However,
non-local contributions still need to be taken into account, in fact this region is afflicted by the presence of cc̄
resonances structure, which prevents us from taking small bins. However when observables are integrated into a
large energy ranges, quark-hadron duality is a good approximation. In Refs. [97, 113] a quantitative estimate of
duality violation is given, showing an impact of a few percent at the level of the branching ratio (estimated to
5% Ref. [97] or 2% in Ref. [113]) when integrating over a large energy range with a dependency on the exact
position where the bin ends. These estimations are however unavoidably model dependent and it remains to be
determined if these estimates hold in the case of the angular observables. Nonetheless, we add a contribution
of O(10%) (with an arbitrary phase) to the term proportional to Ceff

9` for each transversity amplitude of the
different transitions, in order to take into account effects of duality violation.

4.3 Relevant operators
In our fits, we will discuss the b→ s`+`− and b→ sγ transitions on the WET framework introduced in Section 2.4
at the relevant scale (µb = 4.8GeV) and we allow for NP to appear only on vector and axial semileptonic
operators (C9(′)`, C10(′)`) and the electromagnetic dipole operator (C7(′)`).

We will not consider NP on the 4-quark operators O1−6 or on the gluon magnetic penguin O8g for the
following reasons:

• They only appear as loop suppressed contributions, which in practice implies that the amount of NP
required to explain the deviations seen in b→ sµ+µ− through C1−6 is of the order of their SM value.

• They would appear as LFU contributions which do not allow to explain the LFUV deviations seen in
RK(∗) .

• They would be hard to distinguish from hadronic uncertainties or in other words, they would only appear
in observables that are sensitive to hadronic uncertainties.
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The reader is referred to Refs. [114, 283] for the potential room left for NP in 4-quark operators, as well as
Chapter 10.

In the case of (pseudo)scalar contributions CS and CP , they are fairly constrained by Bs → µµ and they do
not ameliorate substantially the tensions present in the b→ s`+`− transition. In the case of (pseudo)tensors,
the same is true regarding the tensions present and because of the running a (pseudo)tensor contribution at the
NP scale will generate a (pseudo)scalar contribution suffering the same constraints through Bs → µµ. As will be
discussed in Section 4.7, other groups have tried to include these contributions without finding the need for NP
contributions to these Wilson coefficients.

4.4 Statistical framework
We will know describe briefly the method used to fit the experimental data. We perform this analysis in a
frequentist framework and we treat theoretical and experimental uncertainties in the same way (i.e. we treat
theoretical inputs and experimental measurements on the same footing, taking them as random variables). We
follow the method of maximum likelihood (ML) in the Gaussian approximation. A more detailed explanation of
this method is given in the Statistics review in Sec. 40 of Ref. [6].

4.4.1 Observables, predictions and measurements
We consider a set of observables (measurable quantities) O = O1, ..., Onobs

, where nobs is the number of
observables included in the fit. This set of observables corresponds to a set of random variables. Each of these
observables has an experimental value and a theoretical prediction. We denote Oexp

i the central values of the
experimental measurements. The theoretical predictions (Oth(ν,C)) are functions of two set of parameters:

• First, the NP contributions to the Wilson coefficients C. Our objective is to estimate this set of parameters 3,
which we will do through the maximum likelihood method.

• Secondly, the nuisance parameters ν, which correspond to any input of the theoretical predictions: the
masses of the particles, the SM values of the Wilson coefficients, the form factor parameters, etc. For
simplicity, the nuisance parameters will be treated as random variables. In other words, each one of this
parameters has an associated distribution, which in general will simply correspond to a normal distribution.
We denote pdfν the multivariate probability distribution function for the nuisance parameters. We then
denote the mean of the theoretical predictions for a given value of the Wilson coefficients as

Oth(C) ≡ E
[
Oth(ν,C)

∣∣∣C] = ∫ duOth(u,C)pdfν(u) . (4.12)

The set of observables O is then distributed under an a priori unknown distribution of which the central value
is given by Oth(C) and depends on the Wilson coefficients C. In the Gaussian approximation, the distribution of
the set O, is given by a multinormal distribution centered at Oth(C) where the covariance matrix is defined as

Cov ≡ Covth +Covexp . (4.13)

The covariance in between experimental measurements is given in (Covexp) where the measurements are
assumed uncorrelated when the values are not quoted. The theoretical covariance matrix Covth is obtained
through Monte Carlo sampling of the nuisance parameters ν 4.

The likelihood function L(C) assesses how well a hypothesis for the theoretical distribution of the observables
can explain data for given values of the unknown parameters. In this case the unknown parameters are the Wilson
coefficients of which the likelihood is a function. More precisely the likelihood corresponds to the probability of
obtaining the measurements Oexp

i for a given set of C. In the Gaussian approximation the likelihood function is
simply given by the χ2-statistic defined as

χ2(C) =
nobs∑
i=1

nobs∑
j=1

(Othi (C)−Oexpi )Cov−1
ij (Othj (C)−Oexpj ) , (4.14)

3In the literature [6, 284] the parameters to be estimated are usually denoted as θ and their estimators as θ̂. Since in our case
these parameters always correspond to the NP contributions to the Wilson coefficients, we will systematically call these parameters
C and their estimators Ĉ

4For numerical purposes we will assume the Covariance matrix to be independent of the parameters C (or relatively flat). This
assumption is of course violated for some observables, but it will allow us to obtain a fit in a reasonable time. We will then verify if
this assumption is reasonable by redoing the fit, using the Covariance matrix at the bfps for the NP Wilson coefficients C, and
comparing the new best fit points with the ones previously obtained. For the practical applications considered here, it has been
checked for several different fits and with different theoretical and statistical approaches by various groups.
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where Cov−1 is the inverse of the full covariance matrix defined above and with the following relation defined
the likelihood L from χ2

− 2 lnL(C) + constant = χ2(C) . (4.15)

4.4.2 Goodness of fit
We would like to use this likelihood to estimate the parameters of the theory, however this only makes sense
when the theory considered can actually describe the data. In order to do this we need to test the goodness
of fit, in other words, how accurately can the model being tested (i.e. the hypothesis) predict data. For this
one looks at the χ2

min = minC χ
2(C) value , which is expected to be distributed as a χ2 distribution with ndof

degrees of freedom, where the number of degrees of freedom of the fit is defined as

ndof = nobs − npars , (4.16)

and npars corresponds to the “fit dimension”, i.e. the number of parameters that are being estimated. This
assumes the fact that the observables have a similar sensitivity to all parameters, and that the linear (Gaussian)
approximation is appropriate to deal with this problem (Wilks’ theorem [285]). In the case of a hypothesis which
does not depend on any parameter (like the SM hypothesis in this framework) we simply take npars = 0. If the
model provides a good fit, one would expect a χ2

min value close to ndof . A value smaller than this does not mean
that the model does not provide a good fit, but it might suggest an over-estimation of the errors. A value much
larger than this suggests that the hypothesis should be doubted. In order to do this one usually quotes the
significance level (p-value), which corresponds to the probability of obtaining a worse χ2 value than the value
obtained from the fit, assuming that the hypothesis is true. It is defined as

p = 1− CDFχ2(ndof )(χ
2
min) (4.17)

where CDFχ2(ndof ) is the cumulative distribution function of the χ2 distribution with ndof degrees of freedom.
This p-value is then what should be used as a criterion to decide when one should disregard a model to explain
the data. A high χ2 (i.e. a low p-value) indicates that a statistical fluctuation leading to the data observed
is rather unlikely within the hypothesis assumed, and it can thus be considered as an indication against this
hypothesis.

4.4.3 Comparing different hypotheses
In addition to the goodness of fit, one might want to test not only the compatibility of one hypothesis and the
data, but also how different hypothesis compare and if one explains significantly better the data than another.
To this end, we will use a statistical tool usually referred to as Pull which measures how much better a hypothesis
fares compared to another one in explaining the data.

For two different parametric nested hypotheses H0 and H1 where H0 ⊂ H1 (i.e. H0 is part of the family
of parametrisations that H1 describes) we refer to the minimum values of the χ2 statistic for each hypothesis
as χ2

min,H0
and χ2

min,H1
. The Pull between the two hypotheses is directly related to the difference ∆χ2

H0,H1
=

χ2
min,H0

− χ2
min,H1

in the linear (Gaussian) approximation. This difference follows a χ2 distribution with

ndof = nH0

dof − nH1

dof (4.18)

degrees of freedom.
It is common to present the Pull in units of Gaussian standard deviations “σ”. Then, the Pull of hypothesis

H1 over H0 is defined as

PullH0,H1 ≡ −CDF−1
N (0,1)

(
1− CDFχ2(ndof )

(
∆χ2

H0,H1

)
2

)
, (4.19)

where CDFχ2(ndof ) is the Cumulative Distribution Function of a χ2-distribution with ndof degrees of freedom,
CDF−1

N (0,1) the inverse of the Cumulative Distribution Function of the Normal distribution with (µ, σ) = (0, 1).
The hypothesis H0, is commonly referred as the null hypothesis and when it corresponds to the SM, we refer

to the Pull as "PullSM" .

4.4.4 Pull for experimental data
For each experimental observable a Pull is also defined to quantify its deviation from the SM prediction, the
interpretation of this value is slightly different. When considering the Pull of an observable we do not compare
two different hypotheses, but rather compare two different datasets. This can be done in two different ways
which aim at measuring different things:
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Observable SM Experiment Pull
RK [1.1, 6.0] [LHCb] +1.00± 0.00 +0.85± 0.04 [277] +3.5
P ′
5(B

0 → K∗0µµ) [6.0, 8.0] [LHCb] −0.94± 0.08 −0.58± 0.09 [287] −2.9
P2(B

+ → K∗+µµ) [6.0, 8.0] [LHCb] −0.38± 0.06 +0.06± 0.14 [240] −2.9
107 ×B(B0 → K∗0µµ) [15.0, 19.0] [LHCb] +2.46± 0.21 +1.74± 0.14 [228] +2.8
P ′
4(B

0 → K∗0µµ) [4.0, 6.0] [ATLAS] +0.82± 0.16 −1.28± 0.75 [246] +2.7
P2(B

0 → K∗0µµ) [0.1, 0.98] [LHCb] +0.12± 0.02 +0.00± 0.04 [287] +2.7
P ′
5(B

0 → K∗0µµ) [4.0, 6.0] [LHCb] −0.82± 0.08 −0.44± 0.12 [287] −2.7
P ′
5(B

0 → K∗0µµ) [4.0, 6.0] [ATLAS] −0.82± 0.08 +0.26± 0.39 [246] −2.7
107 ×B(B+ → K∗+µµ) [15.0, 19.0] [LHCb] +2.65± 0.23 +1.60± 0.32 [224] +2.7
P ′
5(B → K∗µµ) [4.0, 8.0] [Belle] −0.89± 0.08 −0.03± 0.32 [242] −2.6
RK∗ [1.1, 6.0] [LHCb] +1.00± 0.01 +0.69± 0.12 [207] +2.6
107 ×B(Bs → φµµ) [15.0, 18.8] [LHCb] +2.26± 0.15 +1.62± 0.20 [229] +2.5

Table 4.2: Observables included in the fit with a pull > 2.5. This table is an extract of Table 4.A.1. The
sign of the pull value represents whether the observable theoretical prediction is above (+) or below (−) the
experimental measurement.

• First, by defining the Pull of a observable on its own. For instance for an observable O, a theoretical
prediction Oth with a standard deviation σ and a experimental observation Oexp the pull is defined as

Pullexp ≡ −CDF−1
N (0,1)

1− CDFχ2(1)

((
Oexp−Oth

σ

)2)
2

 =

∣∣∣∣Oexp −Oth

σ

∣∣∣∣ . (4.20)

This pull defines simply the tension of the observable with the SM, but not how it affects the fit.

• Secondly, by defining the Pull of the observable as a part of the full dataset of a fit. This is done by
comparing the χ2

min value when the measurement of this observable is included and when it is not, similarly
to Eq. (4.19). This measures the tension between the observable at hand and both the SM prediction and
the other observables. It represents thus the influence that the observable has on a fit, rather than the
tension with the SM as opposed to the first definition. Certain subtleties exist in this definition and they
are for instance discussed in Ref. [286].

Both of these definitions are similar when observables are not correlated, but different when they are. The value
of the Pullexp for each observable of the fit (with the first definition) is given in Table 4.A.1 and an extract of
the observables with the highest Pulls is given in Table 4.2. One can see that RK and RK∗ exhibit deviations,
but also some optimised angular observables, in particular P ′

5 and P2, as well as a few branching ratios both at
low and high q2.

4.4.5 Estimation of parameters
The maximum likelihood method is used to find the best estimators of the theory parameters C for a set of
experimental measurements Oexp

i .
In order to estimate C we maximize the likelihood, obtaining the so called ML estimators of C, which we

simply refer as the best fit points (bfps). The ML estimators (Ĉ) are defined as

Ĉ ≡ argmax (lnL(C)) . (4.21)

In practice it is the χ2(C) function that we will minimize as this is by construction equivalent to maximizing
the likelihood. This is also referred in the literature (for example Sec. 40.2.3 of Ref. [6]) as the method of least
squares (LS). Then we obtain the bfps of C through the LS method, where the LS estimators, equivalent to the
ML estimators, are defined as

Ĉ ≡ argmin
(
χ2(C)

)
, χ2

min = χ2(Ĉ) (4.22)
However, it is not sufficient to determine the bfps we require also to asses the errors and correlations of our

bfps estimation which we will due through the definition of confidence regions.
The information on the error and correlation of the bfps is contained in the likelihood function and it we

extract it by the determination of confidence intervals (CI) or confidence regions (CR), for multidimensional
estimators, which correspond to a geometrical way of understanding the uncertainty on the estimators Ĉ.
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nσ 1− γ
Qα

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

1σ 0.683 1.0 2.3 3.5 4.7 5.9 7.0
2σ 0.955 4.0 6.2 8.0 9.7 11.3 12.8
3σ 0.997 9.0 11.8 14.2 16.3 18.2 20.1
4σ 0.99994 16.0 19.3 22.1 24.5 26.8 28.9
5σ 0.9999994 25.0 28.7 31.8 34.6 37.1 39.5

Table 4.3: Quantiles of the χ2 distribution Qγ;n = CDF−1
χ2(n)(1− γ) for different confidence levels 1− γ and for

different number of fitted parameters n. The choice of values of 1− γ is such that they are equivalent to the
usually quoted “σ tensions".

In general, a confidence region is constructed to contain the true value of the parameter with a certain
probability, usually called coverage probability. In the case of 1D regions, we will say that a CI [Ĉ − δ−, Ĉ + δ+]
is central when the probability of the true value being out of the CI is evenly distributed between the external
regions (i.e ]∞, Ĉ − δ−] and [Ĉ + δ+,∞[).

In the case of a Gaussian estimator, a central confidence interval [Ĉ − δ−, Ĉ + δ+] can by determined through
the following relations

lnL(Ĉ+δ+
−δ− ) = lnLmax −

Qγ;1
2

, (4.23)

χ2(Ĉ+δ+
−δ− ) = χ2

min +Qγ;1 , (4.24)

where Qnγ corresponds to the quantiles of the χ2 distribution

Qγ;n = CDFχ2(n)(1− γ) , (4.25)

which can be found for certain values of 1− γ in Table 4.3. In the case of a non-Gaussian estimator, in the large
sample limit, the above definitions will also hold. We will thus generalize this definition for a n-dimensional
confidence region as the points C for which

lnL(C) ≥ lnLmax −
Qγ;n
2

, (4.26)

χ2(C) ≤ χ2
min +Qγ;n . (4.27)

These regions will have in general a complicated geometry, but in the large sample limit they will approach an
n-dimensional hyper-ellipsoid, in which the covariance matrix is encoded. An example of this can be seen in
the (CNP

9µ vs C9′µ) plot in Fig. 4.3 where even though the confidence regions for single experiments (i.e. Belle,
CMS and ATLAS) do not have an ellipse shape, the LHCb and “All” fit do resemble more to an ellipse since
the number of samples is higher. We will in general refer to this confidence intervals/regions by their coverage
probability in terms of standard deviations (i.e. the size of the interval in standard deviations for a similar
coverage probability in the Gaussian case), so we will, as shown in Table 4.3 refer to a 68.3% confidence interval
as a 1σ interval/region and so on.

4.5 Fit results
As can be seen in the previous section, the global fits considered require the minimisation of a likelihood and an
analysis of the shape of this likelihood around this minimum, in a multi-dimensional space spanned by the NP
contributions to Wilson coefficients. This is done through a proprietary code developed over the years in Refs.
[108, 132, 134, 135, 275]. Results from alternative codes will be discussed in Section 4.7.

4.5.1 Global fits in presence of LFUV NP
We start by considering the fits for NP scenarios which affect muon modes only. Tables 4.4 to 4.6 and Figs. 4.2
and 4.3 show the resulting bfps and the confidence regions for the most significant NP hypotheses based on
fits to the full set of data (“All", 246 observables) or restricted to quantities assessing LFUV (“LFUV”, 22
observables). The hierarchy of the results with all of the current data is similar to the one in Ref. [132] with
slightly higher Pulls, while the SM hypothesis p-value is notably reduced to 1.1% for the fit “All" and 1.4% for
the fit LFUV (around 2.5σ).
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The different NP hypotheses are either motivated by NP models (see Sections 3.3 and 4.6.1) or by the
data itself. The most prominent 1D scenarios (Table 4.4) correspond to a contribution to CNP

9µ which can come
accompanied by contributions to CNP

10µ, C9′µ. The scenarios with the biggest significance have Pulls of 6− 7σ for
the “All” fit while for the “LFUV” fit they are around 4σ. A few comments are in order:

1. The scenario CNP
9µ has the largest p-value in the “All" fit while CNP

9µ = −CNP
10µ has the largest p-value in

the LFUV fit, a difference which can be solved through the introduction of LFU NP (see Ref. [134] and
Section 4.5.2).

2. The scenario CNP
9µ = −C9′µ, has a reduced relative significance in the “LFUV" fit compared to the “All” fit

since it favours a SM-like value of R[1.1,6]
K [133, 134].

3. The best-fit point for the all scenarios shown are 1-sigma compatible for the “All" and LFUV fits.

4. The scenario with only CNP
10µ has a relatively low Pull in the “All" fit (compared to the highest Pulls) of

only 4.5σ level while for the LFUV fit it has a strong Pull of 4.5σ.

5. As amply discussed since Ref. [288] a significant NP contribution to CNP
9µ (around 1/4 of the SM contribution)

is required in all favoured NP scenarios.

All LFUV
1D Hyp. Best fit 1 σ/2 σ PullSM p-value Best fit 1 σ/ 2 σ PullSM p-value

CNP
9µ -1.06 [−1.20,−0.91] 7.0 39.5 % -0.82 [−1.06,−0.60] 4.0 36.0 %

[−1.34,−0.76] [−1.32,−0.39]

CNP
9µ = −CNP

10µ -0.44 [−0.52,−0.37] 6.2 22.8 % -0.37 [−0.46,−0.29] 4.6 68.0 %
[−0.60,−0.29] [−0.55,−0.21]

CNP
9µ = −C9′µ -1.11 [−1.25,−0.96] 6.5 28.0 % -1.61 [−2.13,−0.96] 3.0 9.3 %

[−1.39,−0.80] [−2.54,−0.41]

Table 4.4: Most prominent 1D patterns of NP in b→ sµ+µ−. PullSM is quoted in units of standard deviation.
The p-value of the SM hypothesis is 1.1% for the fit “All" and 1.4% for the fit LFUV.

All LFUV
2D Hyp. Best fit PullSM p-value Best fit PullSM p-value

(CNP
9µ , CNP

10µ) (−1.00,+0.11) 6.8 39.4 % (−0.12,+0.54) 4.3 65.6 %
(CNP

9µ , C7′) (−1.06,+0.00) 6.7 37.8 % (−0.82,−0.03) 3.7 32.6 %
(CNP

9µ , C9′µ) (−1.22,+0.56) 7.2 49.8 % (−1.80,+1.12) 4.1 53.6 %
(CNP

9µ , C10′µ) (−1.26,−0.35) 7.4 55.9 % (−1.82,−0.59) 4.7 84.1 %
Hyp. 1 (−1.21,+0.28) 7.2 48.6 % (−1.62,+0.30) 4.1 55.5 %
Hyp. 2 (−1.11,+0.09) 6.3 28.8 % (−1.95,+0.25) 3.4 22.5 %
Hyp. 3 (−0.44,+0.03) 5.9 21.4 % (−0.37,−0.15) 4.3 64.6 %
Hyp. 4 (−0.48,+0.11) 6.0 24.0 % (−0.46,+0.15) 4.5 74.5 %
Hyp. 5 (−1.26,+0.25) 7.4 55.8 % (−2.08,+0.51) 4.7 86.0 %

Table 4.5: Most prominent 2D patterns of NP in b → sµ+µ−. The last five rows correspond to Hypothesis
1: (CNP

9µ = −C9′µ, CNP
10µ = C10′µ), 2: (CNP

9µ = −C9′µ, CNP
10µ = −C10′µ), 3: (CNP

9µ = −CNP
10µ, C9′µ = C10′µ), 4:

(CNP
9µ = −CNP

10µ, C9′µ = −C10′µ) and 5: (CNP
9µ , C9′µ = −C10′µ).

CNP
7 CNP

9µ CNP
10µ C7′ C9′µ C10′µ

Best fit +0.01 -1.21 +0.15 +0.01 +0.37 -0.21
1 σ [−0.02,+0.04] [−1.38,−1.01] [+0.00,+0.34] [−0.02,+0.03] [−0.12,+0.80] [−0.42,+0.02]
2 σ [−0.04,+0.06] [−1.52,−0.83] [−0.11,+0.49] [−0.03,+0.05] [−0.51,+1.12] [−0.60, 0.23]

Table 4.6: 1 and 2 σ confidence intervals for the NP contributions to Wilson coefficients in the 6D hypothesis
allowing for NP in b→ sµ+µ− operators dominant in the SM and their chirally-flipped counterparts, for the fit
“All”. The PullSM is 6.6σ and the p-value is 49.9%.
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α0µ α1µ α2µ α3µ α4µ α5µ α6µ α7µ α8µ α9µ α10µ

4.00 0.92 0.12 0.92 0.12 0.24 -1.06 0.12 -1.06 0.12 0.25
α0e α1e α2e α3e α4e α5e α6e α7e α8e α9e α10e

3.99 0.92 0.12 0.92 0.12 0.24 -1.05 0.12 -1.05 0.12 0.24

Table 4.7: Coefficients for the polynomial parameterisation of the numerator and denominator of R[1.1,6]
K in the

vicinity of the SM point.

Scenario Best-fit point 1 σ 2 σ PullSM p-value

Scenario 5
CV
9µ −0.67 [−1.12,−0.24] [−1.58,+0.18]

6.6 38.6 %CV
10µ +0.42 [+0.01,+0.77] [−0.54,+1.08]

CU
9 = CU

10 −0.31 [−0.68,+0.17] [−0.97,+0.65]

Scenario 6 CV
9µ = −CV

10µ −0.52 [−0.60,−0.44] [−0.68,−0.36] 6.8 40.1 %CU
9 = CU

10 −0.41 [−0.54,−0.28] [−0.66,−0.15]

Scenario 7 CV
9µ −0.76 [−1.00,−0.52] [−1.25,−0.30] 6.9 41.7 %CU
9 −0.39 [−0.68,−0.09] [−0.94,+0.19]

Scenario 8 CV
9µ = −CV

10µ −0.30 [−0.39,−0.21] [−0.47,−0.13]
7.3 53.8 %CU

9 −0.92 [−1.10,−0.72] [−1.27,−0.51]

Scenario 9 CV
9µ = −CV

10µ −0.51 [−0.64,−0.39] [−0.77,−0.28] 6.0 24.2 %CU
10 −0.27 [−0.49,−0.05] [−0.69,+0.16]

Scenario 10 CV
9µ −1.02 [−1.18,−0.85] [−1.32,−0.68] 6.9 42.8 %CU
10 +0.27 [+0.11,+0.44] [−0.04,+0.60]

Scenario 11 CV
9µ −1.12 [−1.28,−0.95] [−1.43,−0.78] 7.1 48.4 %CU
10′ −0.31 [−0.46,−0.15] [−0.60,−0.01]

Scenario 12 CV
9′µ −0.22 [−0.37,−0.06] [−0.51,+0.09] 2.7 2.3 %CU
10 +0.46 [+0.29,+0.64] [+0.13,+0.82]

Scenario 13

CV
9µ −1.22 [−1.37,−1.05] [−1.50,−0.87]

7.0 52.6 %CV
9′µ +0.59 [+0.31,+0.84] [+0.03,+1.04]

CU
10 +0.27 [+0.07,+0.48] [−0.13,+0.69]

CU
10′ −0.04 [−0.23,+0.16] [−0.43,+0.37]

Table 4.8: Most prominent patterns for LFU and LFUV NP contributions from Fit “All”. Scenarios 5 to 8 were
introduced in Ref. [134]. Scenarios 9 (motivated by 2HDMs [269]) and 10 to 13 (motivated by Z ′ models with
vector-like quarks [289]) were introduced in Ref. [132].
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Figure 4.2: From left to right: Allowed regions in the (CNP
9µ , CNP

10µ) and (CNP
9µ , C9′µ = −C10′µ) planes for the

corresponding 2D hypotheses, using all available data (fit “All”) upper row or LFUV fit lower row. Dashed lines
represent the 3 σ regions while the solid lines represent 1, 2 and 3 σ regions.

Concerning the 2D scenarios collected in Table 4.5, a similar picture to the 1D scenarios arises. Small
contributions to RHC seem slightly favoured (C9′µ > 0, C10′µ < 0)5. Indeed, these RHC contributions tend
to increase the value of R[1.1,6]

K while CNP
9µ < 0 tend to decrease it as can be seen from the explicit expression

of R[1.1,6]
K = Aµ/Ae where the numerator and the denominator can be given by an approximate polynomial

parametrisation near the SM point

A` = α0` + α1` CNP
9` + α2`

(
CNP
9`

)2
+ α3` C9′` + α4` (C9′`)

2
+ α5` CNP

9` C9′`

+ α6` CNP
10` + α7`

(
CNP
10`

)2
+ α8` C10′` + α9` (C10′`)

2
+ α10` CNP

10`C10′`
(4.28)

with the coefficients provided in Table 4.7 (for linearised expressions, see Refs. [134, 290]).
The comparison between Hyps. 4 and 5 shows that the scenario C9′µ = −C10′µ (left-handed lepton coupling

for right-handed quarks) prefers to be associated with CNP
9µ (vector lepton coupling for left-handed quarks) rather

than CNP
9µ = −CNP

10µ (left-handed lepton coupling for left-handed quarks). Finally, no significant changes are
observed in the 6D fit compared to previous results [132, 135], except for the slight increase in the PullSM, see
Table 4.6.

One can see that the main Wilson coefficient deviating in the 6D fit is C9µ with a deviation well over 3σ
while the other Wilson coefficients are all compatible at the 1σ level with their SM value being C10µ and C10′µ
the ones more distant from their prediction. This in agreement with the scenarios already discussed, where the
main NP contribution is C9µ.

4.5.2 Global fits in presence of LFUV and LFU NP
We turn to scenarios that allow also for the presence of LFU NP [132–134] (in addition to LFUV contributions
to muons only), leading to the value of the Wilson coefficients

Cie = CU
i , Ciµ = CU

i + CV
i . (4.29)

5Interestingly, these small contributions also reduce slightly the mild tension between P ′
5 at large and low recoils pointed out in

Ref. [133] compared to the scenario with only CNP
9µ .
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Figure 4.3: From left to right: Allowed regions in the (CNP
9µ , C10′µ) and (CNP

9µ , C9′µ) planes for the corresponding
2D hypotheses, using all available data (fit “All”) upper row or LFUV fit lower row. Dashed lines represent the
3 σ regions while the solid lines represent 1, 2 and 3 σ regions.

(with i = 9, 10) for b→ se+e− and b→ sµ+µ− transitions respectively.
In many NP models, a universal contribution could be expected through the mixing of NP operators with the

SM ones via electromagnetic (radiative) corrections [291] as shown in Fig. 4.10 in the case of a U1 leptoquark.
The results for different scenarios including both lepton flavour universal and violating contributions are

presented in Table 4.8 and the allowed regions in Fig. 4.4. Concerning new directions in parameter space we
allow for RHC, motivated by the results of Section 4.5.1, and focus on scenarios that could be fairly easily
obtained in simple NP models.

With the updated experimental inputs, we confirm earlier results [132, 134] that a LFUV left-handed lepton
coupling structure (corresponding to CV

9 = −CV
10 and preferred from a model-building point of view) yields a

better description of data with the addition of LFU-NP in the coefficients C9,10, as shown by the scenarios 6,8 in
Table 4.8 with p-values larger than 40%.

The comparison of scenarios 10 and 12 illustrates that CV
9µ plays an important role in LFU NP scenarios and

cannot be swapped for its chirally-flipped counterpart without consequences.

4.5.3 Hadronic contributions to cc̄ versus NP
Clearly, in all viable NP scenarios presented above, CNP

9µ plays a very significant role. For quite some time it
has been under discussion [119, 123, 127, 282] that the flavour anomalies, specially since they can be explained
by a change on C9 (through which the charm-loop contributes), could have an origin of purely hadronic effects
that might not be as well understood as we think. In these works, they considered only B → K∗µ+µ− and
they included a set of 9 (18) independent parameters to parametrise each of the 3 different helicity hadronic
contributions through an order 2 (complex) polynomial in q2, which are then fitted from data, either within the
SM or together with NP contributions to Wilson coefficients. The inclusion of such a large set of parameters
inevitably allows more freedom in the agreement between the data and the SM expectations. In Ref. [127], the
authors argued that large higher-order coefficients were found for some of their fits, which could not be mimicked
by NP changes in CN7 P and CN9µP . They considered this as an indication that large non-local contributions were
needed to explain the data. However, the fits used to obtain such large effects were criticised in Ref. [205] and
confirmed in Refs. [119, 123] as using an improprer parametrisation and exploiting only part of the experimental
and theoretical information available. The consideration of alternative, more complete, fits did not indicate any
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Figure 4.4: From left to right : Allowed regions for the 2D scenarios presented in Table 4.8. Scenarios 6 and 7
on the upper row, 8 and 9 in the middle row and 10 to 12 in the bottom row using all available data (fit “All”).
Dashed lines represent the 3 σ regions while the solid lines represent 1, 2 and 3 σ regions.

strong q2 dependence that could be attributed to a hadronic effect, and the size of the parameters are in perfect
agreement with the parametrisations used in the literature for non-local effects, up to a constant contribution to
CN9µP .

Furthermore a comparison of different determinations of the hadronic uncertainties [292] for the branching
fraction and the P ′

5 optimised observable for the B → K∗µ+µ− decays is displayed in Fig. 4.6, showing a good
agreement between the different determinations.

The discussion has naturally changed after the measurements of RK and RK∗ have hinted at LFUV NP,
since their measured value cannot be explained by hadronic contributions which are LFU. Nonetheless, one
could think that the universal contribution to CU9 discussed before could still have a hadronic origin. However,
these hadronic contributions, would be expected to yield a q2 dependent CU9 contribution. This possibility
was analysed in Ref. [132] showing no signs of q2-dependence for binned determinations of CU9 (see Fig. 4.5).
Nonetheless, the binning of the data to compute CU9 reduces the sensitivity of the fit and could still hide some
slight q2 dependence, however the result shown in Fig. 4.5 suggests that hadronic contributions do not drive
alone this contribution.

At this stage, we have thus no indication from the fits that the non-local contributions from cc̄ loop are not
well controlled theoretically. Naturally, a better theoretical control of this effect will be needed to exploit fully
the data as more and more precise information will be gathered from the LHCb and Belle II experiments, see
Refs. [109, 112] for progress in this direction.
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Figure 4.5: Determination of the CU9 Wilson coefficient, setting the LFUV coefficients CV9µ = −CV10µ to their
values at the best-fit point of the All fit, in a bin-by-bin fit using only LHCb data on optimized observables,
branching ratios and radiative decays. Each box correspond to the 1σ confidence interval obtained in this bin.
The band corresponds to the 2σ interval obtained from the fit of the NP hypothesis to the All data set. This
exercise was done with an earlier set of data (in Ref. [132]), but are not any indications that this could change
much with the current set of data.
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Figure 4.7: Values of 〈Q5〉[1.1,6], 〈RK〉[1.1,6], 〈RK∗〉[1.1,6] in the SM and nine different scenarios: SM (black), CNP
9µ

(orange), (CNP
9µ , C9′µ) (yellow), (CNP

9µ , C10′µ) (light green), (CNP
9µ = −C9′µ, CNP

10µ = C10′µ) (dark green), (CNP
9µ , C9′µ =

−C10′µ) (light blue), (CV
9µ = −CV

10µ, CU
9 ) (dark blue), (CV

9µ, CU
10) (purple), (CV

9µ, CU
10′) (pink), (CV

9µ, CV
9′µ, CU

10, CU
10′)

(red). The boxes correspond to the predictions of the 1 σ regions at the b.f.p. value of the Wilson coefficients in
each of the scenarios for the fit to the "All" data set.

4.6 Interpretations

4.6.1 Favoured scenarios and connection with NP explanations
Several scenarios (CNP

9µ , CNP
9µ = −CNP

10µ, (CNP
9µ , CNP

9′µ = −CNP
10µ), (CV9 = −CV10,CU9µ)) exhibit a significant improvement

in the description of the data compared to the SM. Fig. 4.7 shows the predictions for the observables Q5, RK
and RK∗ in several of these scenarios. The large uncertainties for RK∗ in most NP scenarios come from the
presence of three different helicity amplitudes involving different combinations of form factors: if the SU(2)L
symmetry of the SM is respected, one amplitude dominates leading to reduced uncertainties for the prediction
of RK∗ , but in other cases, the presence of several helicity amplitudes leads to larger uncertainties. Fig. 4.9a
illustrates the importance of RK and P ′

5 in highlighting the favoured scenarios compared to others considered in
the previous section.

In Fig. 4.8 we show the impact of the favoured NP scenarios on the observable P ′
5. The CNP

9µ scenario, the
scenario 8 and Hyp. 5 cluster together showing a good agreement with the experimental measurement, while the
CNP
9µ = −CNP

10µ and CNP
10µ scenarios cluster close to the SM predictions, showing no relief of the tension present in

P ′
5 with respect to the SM.

One can also notice that Q5 is able to separate three cases of interest: the SM, the scenario 8 (CU
9 , CV

9µ = −CV
10µ),

and the scenarios with right-handed couplings and a large negative contribution to C9µ. It will be thus very
interesting to see if Belle II can obtain further information on Q5.

With the updated data, little change is observed among the preferred 2D NP models discussed in Section 3.3.
Nevertheless, with an R[1.1,6]

K value closer to one, scenarios with right-handed currents (RHC), namely (CNP
9µ , C9′µ)

and (CNP
9µ , C10′µ), seem to emerge. The first scenario is naturally generated in a Z ′ model with opposite couplings

to right-handed and left-handed quarks and was proposed in Ref. [264] within the context of a gauged Lµ − Lτ
symmetry with vector-like quarks.

Scenario 8, which exhibits one of the most significant Pulls with respect to the SM, can actually be realized
via off-shell photon penguins [291] in a leptoquark model explaining also b→ cτ ν̄τ data (we will return to this
point in Section 4.6.2).

The scenarios 9–13 are characterized by a CU
10(′)

contribution. This arises naturally in models with modified Z
couplings (to a good approximation CU

9(′)
can be neglected). The pattern of scenario 9 occurs in Two-Higgs-Doublet
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models where this flavour universal effect can be supplemented by a CV
9 = −CV

10 effect [269].
In case of scenarios 11 to 13, one can invoke models with vector-like quarks where modified Z couplings are

even induced at tree level. The LFU effect in CU
10(′)

can be accompanied by a CV
9,10(′)

effect from Z ′ exchange [289].
Vector-like quarks with the quantum numbers of right-handed down quarks (left-handed quarks doublets)
generate effect in CU

10 and CV
9′ (CU

10(′)
and CV

9 ) for a Z ′ boson with vector couplings to muons [289].
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Figure 4.8: Impact of favoured NP scenarios on the observable P ′
5. Only central values for the NP scenarios are

displayed. The most interesting scenarios cluster together while traditional scenarios like CNP
9µ = −CNP

10µ or the
scenario CNP

10µ considered in Ref. [128] fail to explain this anomaly.

4.6.2 Model-independent connection to b → c`ν̄

In complement with the above EFT analysis, we focus now on the NP interpretation of scenario 8. Indeed, this
scenario allows for a model-independent connection between the anomalies in b→ s`+`− and those in b→ cτν,
which are at the 3.1σ level [158].

Such a correlation arises in the SMEFT scenario where CS = CT expressed in terms of the Lagrangian
introduced in Eq. (3.12). This scenario stems naturally from models with an SU(2) singlet vector leptoquark [265,
293, 294] (see Section 3.3). The operator involving-third generation leptons (λq32λ`ττ ) explains RD(∗) and the one
involving the second generation (λq32λ`µµ) gives a LFUV effect in b → sµ+µ− processes. The constraint from
b → cτν and SU(2)L invariance leads generally to large contributions to the operator s̄γµPLbτ̄γµPLτ , which
enhances b→ sτ+τ− processes [295], but also mixes it into O9 generating a CU

9 contribution at µ = mb [291] as
shown in Fig. 4.10 6.

Therefore, scenario 8 is reproduced in this setup with an additional correlation between CU
9 and RD(∗) .

Assuming a generic flavour structure so that small CKM elements can be neglected [291, 295], we get

CU
9 ≈7.5

(
1−

√
RD(∗)

RD(∗)SM

)(
1 +

log(Λ2/(1TeV2))

10.5

)
. (4.30)

where Λ is the typical scale of NP involved. Realizations of this scenario in specific NP models yield also an
effect in C7 generally [291]. However, since this effect is model dependent (and in fact small in some UV complete
models [298, 299]), we neglect it here.

We show the global fit of Scenario 8 without and with the additional input on RD(∗) from Ref. [158] in
Fig. 4.9b, taking the scale Λ = 2 TeV. The best-fit point for (CU

9 , CV
9µ = −CV

10µ) is (−0.74,−0.36), with 1-σ
intervals [−0.86,−0.61] and [−0.43,−0.28] respectively. The agreement among all data is very good, shown by
the fact that the scenario 8 supplemented with RD(∗) exhibits a Pull with respect to the SM of 8.1 σ and p-value

6Note that not all models addressing the charged and neutral current anomalies simultaneously have an anarchic flavour structure.
In fact, in the case of models with a flavour structure that does not produce tree level FCNC [296, 297], one does not find large
effects in b→ sτ+τ− or CU

9 .
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Figure 4.9: Left: 〈RK〉[1.1,6] versus 〈P ′
5〉[4,6] in five different scenarios: CNP

9µ (blue), CNP
9µ = −CNP

10µ (orange), and
(CV

9µ = −CV
10µ, CU

9 ) (red), (CNP
9µ , CNP

9′µ = −CNP
10′µ) (black), and CNP

10µ (purple). The curves correspond only to the
predictions for central values. In the 2D scenarios (red and black) the Wilson coefficient on the right (i.e. CU

9

and CNP
9′µ = −CNP

10′µ) is set to its bfp value. The current experimental values from the LHCb collaboration are also
indicated (orange horizontal and green vertical bands respectively). The dots correspond to the b.f.p. values of
the corresponding scenario for the fit to the "All" data set. Right: Preferred regions at the 1, 2 and 3σ level
(green) in the (CV

9µ = −CV
10µ, CU

9 ) plane from b → s`+`− data. The red contour lines show the corresponding
regions once RD(∗) is included in the fit (for Λ = 2 TeV). The horizontal blue (vertical yellow) band is consistent
with RD(∗) (RK) at the 2σ level and the contour lines show the predicted values for these ratios.

of 51.4%. An even better agreement could be reached if RD(∗) is slightly further away from the SM expectations,
or if the scale of New Physics is increased.

4.7 Comparison with other works

4.7.1 Global fits by other groups
We will now discuss some of the other results available in the literature and how they compare with our results.

We start by looking at the results of the analysis performed in Ref. [267] through a similar frequentist
approach using the open-source software flavio [300]. Compared to our results, they use the form factors from
Ref. [278] for both B → K∗ and Bs → φ and use a simple polynomial order-of-magnitude estimate for the cc̄
contributions. In spite of these differences their fit shows similar overall results to the ones discussed above. One
difference, is that they generally obtain reduced tensions compared to ours. This reduction is mainly driven
by the fact that they don not include bins of q2 > 6GeV2 which show certain tension with the SM. This is
also responsible for the slight difference in hierarchy regarding C9µ vs C9µ = −C10µ where in Ref. [267] the
C9µ = −C10µ scenario has the highest pull and in our fits the C9µ scenario shows the highest pull. This can more
clearly be understood when comparing the bfps and confidence regions in the 2D fits (C9µ, C10µ) as shown in
Fig. 4.11. Two interesting points about the results in Ref. [267] are that:

• First, they also test the inclusion of scalar currents, finding as expected, that they cannot relieve the
tension with experimental measurements.

• Secondly, they have tested whether the dependence of the covariance matrix on the Wilson coefficients has
an effect on the results of the fits and include for some of the observables experimental non-Gaussianities
in their likelihood, showing that this does not significantly affect the results. This confirms that our
approximation of computing the covariance matrix only once at the SM is valid.
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Figure 4.10: Universal contribution to b → s`+`− (left) from a U1 leptoquark through the same vertex that
induces the b→ c`ν̄ anomalies (right).

Results in Ref. [301] present a good agreement with our results and even better agreement with results in
Ref. [267]. However the compatibility between results in Refs. [267, 301] is not surprising since both fits are
performed using the same python package (flavio [300]).
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Figure 4.11: Comparison of the allowed regions in the (CNP
9µ , CNP

10µ) plane obtained by us (left) and the one in Ref.
[267] (right). Details on the left plot can be found in Fig. 4.2 and of the right one in the original work [267].

The analysis performed in Ref. [302] is performed using the FlavBit module of the GAMBIT package, with
which they obtain the likelihoods both with a frequentist and bayesian approaches, dealing practically identical
results. They use the form factors from Ref. [278] for both B → K∗ and Bs → φ similarly to Ref. [267], and non
local hadronic contributions are included as power corrections with coefficients treated as uncorrelated complex
nuisance parameters. This analysis yields a 3D confidence region in the (CNP

7µ , CNP
9µ , CNP

10µ). However, they find the
CNP
7µ and CNP

10µ coefficients to be small and compatible with SM hypothesis. Although we do not perform a 3D fit
to these coefficients, this result can be compared to our CNP

9µ 1D fit and the (CNP
7µ , CNP

9µ ) and (CNP
9µ , CNP

10µ) 2D fits,
showing compatible results with Ref. [302].

The possibility of complex Wilson coefficients has been studied in Refs. [267, 303], finding a large room
allowed for imaginary parts in them as show in Fig. 4.12 for the case of a complex CNP

9µ coefficient. This is mainly
due to the small amount of observables available testing CP violation in the b→ s`+`− transition.

In addition to global fits, it is interesting to recall more specific studies :

• A Bayesian study of the full angular distribution of the Λb → Λ(→ pπ−)µ+µ− decay measured by the
LHCb collaboration [247] was performed in Ref. [227] using the EOS software [304]. Here they updated the
results from Ref. [305] including the newly updated measurement of the Λ → pπ− asymmetry parameter
by the BESIII collaboration [248], an extension of the results presented in Ref. [226], and lattice inputs
for the Λb → Λ(1116) form factors [203]. Due to the large uncertainties present in the LHCb results, this
studies favours both the SM and the best fit points (CNP

9µ , CNP
10µ) obtained above and in similar works.

• A analysis of the possibility of NP in the electromagnetic dipole operator and its chirally flipped counterpart
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Figure 4.12: Allowed regions for a complex CNP
9µ coefficient in the b→ s`+`− transition as computed in Ref. [267].

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

Re(CNP
7 )

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

R
e(
C
′N

P
7

)

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

Re(C ′NP
7 )

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

Im
(C
′ 7
)

branching ratios

A∆Γ(Bs → φγ)

〈P1〉(B0 → K∗0e+e−)

SK∗γ

〈AIm
T 〉(B0 → K∗0e+e−)

global

Figure 4.13: Constraints on CNP
7 and CNP

7′ from b → sγ observables and the low q2 bin of b → se+e− angular
analyses. Taken from Ref. [212]

CNP
7 and CNP

7′ was performed in Ref. [212] showing no signs for NP in these operators (see Fig. 4.13). This
analysis was performed using the flavio [300] and the HEPfit [306] open-source software.

4.7.2 Statistical interpretation of the p-values
One comment should be said regarding the significance of the p-values and the pulls given in this chapter for each
of the different fits. All our fits, the statistical interpretation of these statistical parameters and the possibility
to reject (or not) specific scenarios (including the SM) are done within some specific assumptions.

In 1D fits, pulls assess how well the WET can explain data compared to the SM under the assumption of the
presence of NP contribution to a single Wilson coefficient. Similarly in the case of multidimensional fits, they
asses this under the assumption of the presence of NP contributions to several Wilson coefficients. In both cases,
we restrict NP to a specific subset of Wilson coefficients.

These are of course not the most general assumptions, reason why its significance cannot be treated as a
statistical indicator assessing the need of NP to describe the b→ s`+`− anomalies. One option to this would be
to perform a multidimensional fit that includes all possible NP contributions discussed in Section 2.4 However
this significance still needs to be treated carefully.

First of all, our scenarios are defined within the context of an EFT, which already considers certain
assumptions; for instance, the absence of light degrees of freedom and the omission of higher dimension operators.
Nonetheless, the estimation of the b → s`+`− significance of the flavour anomalies given these assumptions
remains undoubtedly interesting.

Secondly, before we assumed the fact that all observables have a similar sensitivity to all parameters, and
that the linear approximation is appropriate to deal with this problem (Wilks’ theorem [285]). However, as
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pointed out in Ref. [307], the set of observables is not “fully sensitive” to all Wilson coefficients. This exactly the
reason why one may prefer to consider NP only in a subset of Wilson coefficients rather than allowing all of
them to receive NP contributions. If the latter is allowed, the true number of degrees of freedom needs to be
reassessed through Monte-Carlo sampling to take into account the different sensitivity to the observables. This
can be seen in Figure 2 of Ref. [307] where they show that the difference χ2

min − χ2
SM of the hypothesis tested

does not distribute like a χ2 distribution with npars degrees of freedom as defined in Eq. (4.19) but rather a
smaller number of effective degrees of freedom due to the lack of sensitivity to these parameters. For 9 (5) Wilson
coefficients the effective degrees of freedom is as low as 5.6 (3.3) in Ref. [307]. This effect can thus only enhance
a naive estimation of a global significance in the linear approximation, as we compute the pull by interpreting
the difference of χ2

min with too many "apparent" degrees of freedom, when we should use a much lower "effective"
number of degrees of freedom.

Let us add that this effect should be investigated in more detail, since Ref. [307] considers only a limited
subset of observables and samples and it treats the cc̄ contribution as a constant nuisance parameter common to
all decays. A more complete study could help to understand better this effect and disentangle the effect of the
various hypotheses considered in Ref. [307] so that we could interpret the statistical significance of the p-values
and the pulls of these global fits more accurately.

4.8 Conclusion
In this chapter we presented a global analysis of the b→ s`+`− transitions experimental data and the so called
b-anomalies in terms of the WET introduced in Section 2.4.We discussed the various elements entering the
theoretical predictions for the modes considered and the procedure used to assess various NP hypotheses and
constrain their parameters, i.e. NP contributions to Wilson coefficients of the WET.

Our results show that NP can explain the b → s`+`− anomalies, where NP contributions to the Wilson
coefficients of the muon mode are required to explain the data. Lepton-flavour universal contributions (or NP
contributions in the electron mode), although not required, are allowed. The results discussed in this chapter
reaffirm the viability of the NP models discussed in Section 3.3.

Furthermore, several scenarios can explain the data being CNP
9µ , CNP

9µ = −CNP
10µ, (CNP

9µ , CNP
9′µ = −CNP

10µ) and
(CV9 = −CV10,CU9µ) the favoured ones. One common feature of this scenarios is the presence in all of them of a
significant NP contribution to CNP

9µ (around 1/4 of the SM contribution).
Our results are compatible with the results of several other groups [267, 301–303] with the tensions varying

slightly. This agreement is remarkable given that other groups have different approaches regarding the statistical
framework (bayesian vs frequentist), non-local contributions, form factors and the experimental data taken into
consideration.

One would ideally like to disentangle the different NP scenarios in order to find a single NP solution. However,
current data does not yet allow us to disentangle all of the possible scenarios, this is partially because the most
precise observables are sensitive to the same combinations of Wilson coefficients and the observables that could
disentangle this are not yet precise enough. The study of new observables and the measurement of already
proposed observables which have not yet been measured could help the situation . We discuss the different
observables that can help this disentangling of NP being P ′

5, Q′
5 and RK complementary in this task in the case

of real Wilson coefficients.
Clearly additional modes and observables would be useful to make progress here. On one hand, baryon modes

are not very much represented although they are accessible at LHCb, and we will study some of their rare decays
in Chapter 5. Further observables would also be needed to properly study the possibility of complex Wilson
coefficients. Indeed, imaginary parts of Wilson coefficients are still only loosely constrained as shown in Refs.
[267, 303], so the measurement of new observables to constrain this complex phases (like the ones we will discuss
in Chapter 6) is fundamental to understand the structure of the NP that could be behind the flavour anomalies.
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Appendices

4.A Observables included and exhaustive results of the global fits

Observables included in the Global Fit “All”

107 ×B(B+ → K+µµ) [LHCb] SM Experiment [224] Pull
[0.1, 0.98] 0.32± 0.10 0.29± 0.02 +0.3
[1.1, 2.] 0.33± 0.10 0.21± 0.02 +1.2
[2., 3.] 0.36± 0.11 0.28± 0.02 +0.7
[3., 4.] 0.36± 0.11 0.25± 0.02 +0.9
[4., 5.] 0.35± 0.12 0.22± 0.02 +1.1
[5., 6.] 0.35± 0.12 0.23± 0.02 +1.0
[6., 7.] 0.35± 0.12 0.25± 0.02 +0.8
[7., 8.] 0.35± 0.13 0.23± 0.02 +0.9
[15., 22.] 1.00± 0.13 0.85± 0.05 +1.1

107 ×B(B+ → K+µµ) [Belle] SM Experiment [220] Pull
[1., 6.] 1.79± 0.56 2.30± 0.41 −0.7

[14.18, 22.9] 1.21± 0.16 1.34± 0.24 −0.4

107 ×B(B0 → K0µµ) [LHCb] SM Experiment [224] Pull
[0.1, 2.] 0.64± 0.19 0.23± 0.11 +1.8
[2., 4.] 0.67± 0.21 0.37± 0.11 +1.2
[4., 6.] 0.66± 0.22 0.35± 0.11 +1.3
[6., 8.] 0.65± 0.23 0.54± 0.12 +0.4
[15., 22.] 0.93± 0.12 0.67± 0.12 +1.6

107 ×B(B0 → K0µµ) [Belle] SM Experiment [220] Pull
[1., 6.] 1.66± 0.52 0.62± 0.44 +1.5

[14.18, 22.9] 1.13± 0.15 0.98± 0.44 +0.3

AFB(B
+ → K+µµ) [CMS8] SM Experiment [308] Pull

[1., 2.] 0± 0 0.08± 0.23 −0.4
[2., 4.3] 0± 0 −0.04± 0.14 +0.3
[4.3, 8.68] 0± 0 0± 0.04 +0
[16., 18.] 0± 0 0.04± 0.06 −0.7
[18., 22.] 0± 0 0.05± 0.05 −0.9

FH(B+ → K+µµ) [CMS8] SM Experiment [308] Pull
[1., 2.] 0.05± 0.00 0.21± 0.49 −0.3
[2., 4.3] 0.02± 0.00 0.85± 0.37 −2.2
[4.3, 8.68] 0.01± 0.00 0.01± 0.04 +0.0
[16., 18.] 0.01± 0.00 0.07± 0.10 −0.6
[18., 22.] 0.01± 0.00 0.10± 0.13 −0.7

FL(B
0 → K∗0µµ) [LHCb] SM Experiment [287] Pull

[0.1, 0.98] 0.23± 0.25 0.26± 0.03 −0.1
[1.1, 2.5] 0.68± 0.27 0.66± 0.05 +0.1
[2.5, 4.] 0.77± 0.23 0.76± 0.05 +0.0
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[4., 6.] 0.71± 0.28 0.68± 0.04 +0.1
[6., 8.] 0.63± 0.33 0.65± 0.03 −0.0
[15., 19.] 0.34± 0.03 0.35± 0.02 −0.1

P1(B
0 → K∗0µµ) [LHCb] SM Experiment [287] Pull

[0.1, 0.98] 0.03± 0.08 0.09± 0.12 −0.5
[1.1, 2.5] −0.01± 0.06 −0.62± 0.30 +2.0
[2.5, 4.] −0.00± 0.06 0.17± 0.37 −0.4
[4., 6.] 0.02± 0.12 0.09± 0.24 −0.2
[6., 8.] 0.02± 0.14 −0.07± 0.21 +0.4
[15., 19.] −0.64± 0.05 −0.58± 0.10 −0.6

P2(B
0 → K∗0µµ) [LHCb] SM Experiment [287] Pull

[0.1, 0.98] 0.12± 0.02 0.00± 0.04 +2.7
[1.1, 2.5] 0.44± 0.03 0.44± 0.10 −0.0
[2.5, 4.] 0.23± 0.13 0.19± 0.12 +0.2
[4., 6.] −0.19± 0.11 −0.11± 0.07 −0.6
[6., 8.] −0.38± 0.07 −0.21± 0.05 −2.1
[15., 19.] −0.36± 0.02 −0.36± 0.02 −0.1

P3(B
0 → K∗0µµ) [LHCb] SM Experiment [287] Pull

[0.1, 0.98] −0.00± 0.00 −0.07± 0.06 +1.3
[1.1, 2.5] 0.00± 0.01 −0.32± 0.15 +2.2
[2.5, 4.] 0.00± 0.01 −0.05± 0.20 +0.3
[4., 6.] 0.00± 0.01 0.09± 0.14 −0.6
[6., 8.] 0.00± 0.00 0.07± 0.10 −0.6
[15., 19.] 0.00± 0.02 −0.05± 0.05 +1.0

P ′
4(B

0 → K∗0µµ) [LHCb] SM Experiment [287] Pull
[0.1, 0.98] −0.50± 0.16 −0.27± 0.24 −0.8
[1.1, 2.5] −0.08± 0.16 0.16± 0.29 −0.7
[2.5, 4.] 0.52± 0.21 0.87± 0.35 −0.9
[4., 6.] 0.82± 0.16 0.62± 0.23 +0.7
[6., 8.] 0.93± 0.12 1.15± 0.19 −1.0
[15., 19.] 1.28± 0.02 1.28± 0.12 +0.0

P ′
5(B

0 → K∗0µµ) [LHCb] SM Experiment [287] Pull
[0.1, 0.98] 0.67± 0.14 0.52± 0.10 +0.9
[1.1, 2.5] 0.19± 0.12 0.37± 0.12 −1.0
[2.5, 4.] −0.47± 0.12 −0.15± 0.15 −1.7
[4., 6.] −0.82± 0.08 −0.44± 0.12 −2.7
[6., 8.] −0.94± 0.08 −0.58± 0.09 −2.9
[15., 19.] −0.58± 0.05 −0.67± 0.06 +1.2

P ′
6(B

0 → K∗0µµ) [LHCb] SM Experiment [287] Pull
[0.1, 0.98] −0.06± 0.02 0.02± 0.09 −0.7
[1.1, 2.5] −0.07± 0.03 −0.23± 0.13 +1.2
[2.5, 4.] −0.06± 0.03 −0.16± 0.15 +0.6
[4., 6.] −0.04± 0.02 −0.29± 0.12 +2.2
[6., 8.] −0.02± 0.01 −0.16± 0.10 +1.4
[15., 19.] −0.00± 0.07 0.07± 0.07 −0.8

P ′
8(B

0 → K∗0µµ) [LHCb] SM Experiment [287] Pull
[0.1, 0.98] 0.02± 0.02 0.01± 0.24 +0.0
[1.1, 2.5] 0.04± 0.03 0.73± 0.32 −2.2
[2.5, 4.] 0.05± 0.03 −0.07± 0.34 +0.4
[4., 6.] 0.03± 0.02 −0.33± 0.25 +1.4
[6., 8.] 0.02± 0.01 0.26± 0.20 −1.2
[15., 19.] −0.00± 0.03 −0.02± 0.14 +0.1

FL(B
0 → K∗0µµ) [ATLAS] SM Experiment [246] Pull
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[0.04, 2.] 0.32± 0.29 0.44± 0.11 −0.4
[2., 4.] 0.76± 0.23 0.64± 0.12 +0.5
[4., 6.] 0.71± 0.28 0.42± 0.18 +0.9

P1(B
0 → K∗0µµ) [ATLAS] SM Experiment [246] Pull

[0.04, 2.] 0.02± 0.08 −0.05± 0.31 +0.2
[2., 4.] −0.00± 0.05 −0.78± 0.61 +1.3
[4., 6.] 0.02± 0.12 0.14± 0.50 −0.2

P ′
4(B

0 → K∗0µµ) [ATLAS] SM Experiment [246] Pull
[0.04, 2.] −0.36± 0.15 −0.62± 0.89 +0.3
[2., 4.] 0.43± 0.21 1.52± 0.75 −1.4
[4., 6.] 0.82± 0.16 −1.28± 0.75 +2.7

P ′
5(B

0 → K∗0µµ) [ATLAS] SM Experiment [246] Pull
[0.04, 2.] 0.51± 0.11 0.67± 0.31 −0.5
[2., 4.] −0.36± 0.13 −0.33± 0.34 −0.1
[4., 6.] −0.82± 0.08 0.26± 0.39 −2.7

P ′
6(B

0 → K∗0µµ) [ATLAS] SM Experiment [246] Pull
[0.04, 2.] −0.06± 0.02 −0.18± 0.21 +0.6
[2., 4.] −0.06± 0.03 0.31± 0.34 −1.1
[4., 6.] −0.04± 0.02 0.06± 0.30 −0.3

P ′
8(B

0 → K∗0µµ) [ATLAS] SM Experiment [246] Pull
[0.04, 2.] 0.03± 0.02 0.58± 1.03 −0.5
[2., 4.] 0.05± 0.03 −2.14± 1.13 +1.9
[4., 6.] 0.03± 0.02 0.48± 0.86 −0.5

FL(B
0 → K∗0µµ) [CMS8] SM Experiment [230] Pull

[1., 2.] 0.63± 0.29 0.64± 0.12 −0.0
[2., 4.3] 0.76± 0.24 0.80± 0.10 −0.2
[4.3, 6] 0.71± 0.29 0.62± 0.12 +0.3
[6, 8.68] 0.62± 0.33 0.50± 0.08 +0.3
[16., 19.] 0.34± 0.03 0.38± 0.07 −0.6

P1(B
0 → K∗0µµ) [CMS8] SM Experiment [245] Pull

[1., 2.] −0.00± 0.07 0.12± 0.48 −0.2
[2., 4.3] −0.00± 0.05 −0.69± 0.62 +1.1
[4.3, 6] 0.02± 0.12 0.53± 0.38 −1.3
[6, 8.68] 0.02± 0.14 −0.47± 0.31 +1.4
[16., 19.] −0.69± 0.05 −0.53± 0.25 −0.7

P ′
5(B

0 → K∗0µµ) [CMS8] SM Experiment [245] Pull
[1., 2.] 0.33± 0.12 0.10± 0.33 +0.7
[2., 4.3] −0.41± 0.13 −0.57± 0.38 +0.4
[4.3, 6] −0.84± 0.08 −0.96± 0.33 +0.3
[6, 8.68] −0.95± 0.08 −0.64± 0.23 −1.3
[16., 19.] −0.53± 0.04 −0.56± 0.14 +0.2

FL(B
0 → K∗0µµ) [CMS7] SM Experiment [309] Pull

[1., 2.] 0.63± 0.29 0.60± 0.34 +0.1
[2., 4.3] 0.76± 0.24 0.65± 0.17 +0.4
[4.3, 8.68] 0.65± 0.32 0.81± 0.14 −0.5
[16., 19.] 0.34± 0.03 0.44± 0.08 −1.3

AFB(B
0 → K∗0µµ) [CMS8] SM Experiment [230] Pull

[1., 2.] −0.20± 0.19 −0.27± 0.41 +0.2
[2., 4.3] −0.08± 0.08 −0.12± 0.18 +0.2
[4.3, 6.] 0.09± 0.12 0.01± 0.15 +0.4
[6., 8.68] 0.22± 0.21 0.03± 0.10 +0.8
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[16., 19.] 0.34± 0.03 0.35± 0.07 −0.1

AFB(B
0 → K∗0µµ) [CMS7] SM Experiment [309] Pull

[1., 2.] −0.20± 0.19 −0.29± 0.41 +0.2
[2., 4.3] −0.08± 0.08 −0.07± 0.20 −0.0

[4.3, 8.68] 0.18± 0.19 −0.01± 0.11 +0.9
[16., 19.] 0.34± 0.03 0.41± 0.06 −1.1

107 ×B(B0 → K∗0µµ) [LHCb] SM Experiment [228] Pull
[0.1, 0.98] 0.92± 0.82 0.89± 0.09 +0.0
[1.1, 2.5] 0.56± 0.36 0.46± 0.06 +0.3
[2.5, 4.] 0.58± 0.41 0.50± 0.06 +0.2
[4., 6.] 0.91± 0.68 0.71± 0.07 +0.3
[6., 8.] 1.13± 0.90 0.86± 0.08 +0.3
[15., 19.] 2.46± 0.21 1.74± 0.14 +2.8

107 ×B(B0 → K∗0µµ) [CMS8] SM Experiment [230] Pull
[1., 2.] 0.42± 0.27 0.46± 0.08 −0.1
[2., 4.3] 0.89± 0.62 0.76± 0.12 +0.2
[4.3, 6.] 0.79± 0.59 0.58± 0.10 +0.3
[6., 8.68] 1.57± 1.27 1.26± 0.13 +0.2
[16., 19.] 1.70± 0.14 1.26± 0.13 +2.3

107 ×B(B0 → K∗0µµ) [CMS7] SM Experiment [309] Pull
[1., 2.] 0.42± 0.27 0.48± 0.15 −0.2
[2., 4.3] 0.89± 0.62 0.87± 0.18 +0.0

[4.3, 8.68] 2.36± 1.84 1.62± 0.35 +0.4
[16., 19.] 1.70± 0.14 1.56± 0.23 +0.5

FL(B
+ → K∗+µµ) [LHCb] SM Experiment [240] Pull

[0.1, 0.98] 0.24± 0.26 0.34± 0.12 −0.4
[1.1, 2.5] 0.69± 0.27 0.54± 0.19 +0.5
[2.5, 4.] 0.77± 0.23 0.17± 0.24 +1.8
[4., 6.] 0.72± 0.28 0.67± 0.14 +0.1
[6., 8.] 0.63± 0.33 0.39± 0.21 +0.6
[15., 19.] 0.34± 0.03 0.40± 0.13 −0.4

P1(B
+ → K∗+µµ) [LHCb] SM Experiment [240] Pull

[0.1, 0.98] 0.03± 0.08 0.44± 0.41 −1.0
[1.1, 2.5] −0.00± 0.06 1.60± 4.93 −0.3
[2.5, 4.] 0.00± 0.06 −0.29± 1.45 +0.2
[4., 6.] 0.02± 0.12 −1.24± 1.21 +1.0
[6., 8.] 0.02± 0.14 −0.78± 0.70 +1.1
[15., 19.] −0.64± 0.05 −0.70± 0.44 +0.1

P2(B
+ → K∗+µµ) [LHCb] SM Experiment [240] Pull

[0.1, 0.98] 0.12± 0.02 0.05± 0.12 +0.6
[1.1, 2.5] 0.44± 0.02 0.28± 0.45 +0.4
[2.5, 4.] 0.21± 0.12 −0.03± 0.28 +0.8
[4., 6.] −0.20± 0.11 0.15± 0.21 −1.5
[6., 8.] −0.38± 0.06 0.06± 0.14 −2.9
[15., 19.] −0.36± 0.02 −0.34± 0.10 −0.2

P3(B
+ → K∗+µµ) [LHCb] SM Experiment [240] Pull

[0.1, 0.98] −0.00± 0.00 0.42± 0.22 −1.9
[1.1, 2.5] 0.00± 0.01 0.09± 1.01 −0.1
[2.5, 4.] 0.00± 0.01 0.45± 0.65 −0.7
[4., 6.] 0.00± 0.01 0.52± 0.83 −0.6
[6., 8.] 0.00± 0.00 −0.17± 0.34 +0.5
[15., 19.] 0.00± 0.02 0.07± 0.13 −0.5
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P ′
4(B

+ → K∗+µµ) [LHCb] SM Experiment [240] Pull
[0.1, 0.98] −0.49± 0.17 0.18± 0.76 −0.9
[1.1, 2.5] −0.07± 0.16 −1.16± 1.26 +0.9
[2.5, 4.] 0.53± 0.20 1.62± 2.20 −0.5
[4., 6.] 0.82± 0.15 1.58± 0.96 −0.8
[6., 8.] 0.93± 0.11 0.86± 0.91 +0.1
[15., 19.] 1.28± 0.02 0.78± 0.47 +1.1

P ′
5(B

+ → K∗+µµ) [LHCb] SM Experiment [240] Pull
[0.1, 0.98] 0.67± 0.14 0.51± 0.32 +0.4
[1.1, 2.5] 0.16± 0.12 0.88± 0.72 −1.0
[2.5, 4.] −0.50± 0.11 −0.87± 1.68 +0.2
[4., 6.] −0.84± 0.08 −0.25± 0.41 −1.4
[6., 8.] −0.95± 0.08 −0.15± 0.41 −1.9
[15., 19.] −0.58± 0.05 −0.24± 0.17 −1.9

P ′
6(B

+ → K∗+µµ) [LHCb] SM Experiment [240] Pull
[0.1, 0.98] −0.05± 0.03 −0.02± 0.40 −0.1
[1.1, 2.5] −0.06± 0.03 0.25± 1.32 −0.2
[2.5, 4.] −0.05± 0.03 −0.37± 3.91 +0.1
[4., 6.] −0.03± 0.02 −0.09± 0.41 +0.1
[6., 8.] −0.02± 0.01 −0.74± 0.40 +1.8
[15., 19.] −0.00± 0.07 −0.28± 0.19 +1.3

P ′
8(B

+ → K∗+µµ) [LHCb] SM Experiment [240] Pull
[0.1, 0.98] 0.08± 0.03 −0.90± 1.02 +1.0
[1.1, 2.5] 0.07± 0.03 −0.24± 1.52 +0.2
[2.5, 4.] 0.05± 0.03 −0.24± 15.80 +0.0
[4., 6.] 0.03± 0.02 0.30± 0.97 −0.3
[6., 8.] 0.02± 0.01 0.78± 0.78 −1.0
[15., 19.] −0.00± 0.03 0.22± 0.38 −0.6

FL(B
+ → K∗+µµ) [CMS8] SM Experiment [276] Pull

[1., 8.68] 0.68± 0.30 0.60± 0.34 +0.2
[14.18, 19.] 0.35± 0.04 0.55± 0.14 −1.4

AFB(B
+ → K∗+µµ) [CMS8] SM Experiment [276] Pull

[1., 8.68] 0.08± 0.10 −0.14± 0.39 +0.5
[14.18, 19.] 0.37± 0.03 0.33± 0.12 +0.3

107 ×B(B+ → K∗+µµ) [LHCb] SM Experiment [224] Pull
[0.1, 2.] 1.40± 1.09 1.12± 0.27 +0.3
[2., 4.] 0.84± 0.57 1.12± 0.32 −0.4
[4., 6.] 0.99± 0.73 0.50± 0.20 +0.6
[6., 8.] 1.22± 0.97 0.66± 0.22 +0.6
[15., 19.] 2.65± 0.23 1.60± 0.32 +2.7

P ′
4(B → K∗µµ) [Belle] SM Experiment [242] Pull

[0.1, 4.] −0.06± 0.16 0.76± 1.03 −0.8
[4., 8.] 0.88± 0.13 0.14± 0.66 +1.1

[14.18, 19.] 1.26± 0.03 0.20± 0.79 +1.3

P ′
5(B → K∗µµ) [Belle] SM Experiment [242] Pull

[0.1, 4.] 0.16± 0.10 0.42± 0.41 −0.6
[4., 8.] −0.89± 0.08 −0.03± 0.32 −2.6

[14.18, 19.] −0.60± 0.05 −0.13± 0.39 −1.2

P1(Bs → φµµ) [LHCb] SM Experiment [229] Pull
[0.1, 2.] 0.11± 0.08 −0.13± 0.33 +0.7
[2., 5.] −0.10± 0.10 −0.38± 1.47 +0.2
[5., 8.] −0.20± 0.11 −0.44± 1.27 +0.2
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[15., 18.8] −0.69± 0.03 −0.25± 0.34 −1.3

P ′
4(Bs → φµµ) [LHCb] SM Experiment [229] Pull

[0.1, 2.] −0.29± 0.14 −1.35± 1.46 +0.7
[2., 5.] 0.78± 0.12 2.02± 1.84 −0.7
[5., 8.] 1.06± 0.06 0.40± 0.72 +0.9

[15., 18.8] 1.30± 0.01 0.62± 0.49 +1.4

P ′
6(Bs → φµµ) [LHCb] SM Experiment [229] Pull

[0.1, 2.] −0.06± 0.02 0.10± 0.30 −0.5
[2., 5.] −0.06± 0.02 −0.06± 0.49 +0.0
[5., 8.] −0.02± 0.01 0.08± 0.40 −0.2

[15., 18.8] −0.00± 0.07 0.29± 0.24 −1.1

FL(Bs → φµµ) [LHCb] SM Experiment [229] Pull
[0.1, 2.] 0.42± 0.09 0.20± 0.09 +1.7
[2., 5.] 0.77± 0.05 0.68± 0.16 +0.6
[5., 8.] 0.62± 0.06 0.54± 0.10 +0.7

[15., 18.8] 0.36± 0.02 0.29± 0.07 +0.9

107 ×B(Bs → φµµ) [LHCb] SM Experiment [229] Pull
[0.1, 2.] 1.60± 0.35 1.11± 0.16 +1.3
[2., 5.] 1.43± 0.30 0.77± 0.14 +2.0
[5., 8.] 1.73± 0.36 0.96± 0.15 +2.0

[15., 18.8] 2.26± 0.15 1.62± 0.20 +2.5

FL(B
0 → K∗0ee) [LHCb] SM Experiment [241] Pull
[0.0008, 0.257] 0.03± 0.06 0.04± 0.03 −0.2

P1(B
0 → K∗0ee) [LHCb] SM Experiment [241] Pull
[0.0008, 0.257] 0.03± 0.08 0.11± 0.10 −0.6

P2(B
0 → K∗0ee) [LHCb] SM Experiment [241] Pull
[0.0008, 0.257] 0.01± 0.00 0.03± 0.04 −0.5

P3(B
0 → K∗0ee) [LHCb] SM Experiment [241] Pull
[0.0008, 0.257] −0.00± 0.00 0.01± 0.05 −0.2

P ′
4(B → K∗ee) [Belle] SM Experiment [242] Pull

[0.1, 4.] −0.10± 0.15 −0.68± 0.93 +0.6
[4., 8.] 0.88± 0.13 1.04± 0.48 −0.3

[14.18, 19.] 1.26± 0.03 0.30± 0.82 +1.2

P ′
5(B → K∗ee) [Belle] SM Experiment [242] Pull

[0.1, 4.] 0.18± 0.10 0.51± 0.47 −0.7
[4., 8.] −0.89± 0.08 −0.52± 0.28 −1.3

[14.18, 19.] −0.60± 0.05 −0.91± 0.36 +0.8

RK [LHCb] SM Experiment [277] Pull
[1.1, 6.] 1.00± 0.00 0.85± 0.04 +3.5

RK [Belle] SM Experiment [220] Pull
[1., 6.] 1.00± 0.00 1.03± 0.28 −0.1

[14.18, 22.9] 1.00± 0.00 1.16± 0.30 −0.5

RK∗ [LHCb] SM Experiment [207] Pull
[0.045, 1.1] 0.91± 0.02 0.66± 0.11 +2.2
[1.1, 6.] 1.00± 0.01 0.69± 0.12 +2.6

RK∗ [Belle] SM Experiment [219] Pull
[0.045, 1.1] 0.92± 0.03 0.52± 0.36 +1.1
[1.1, 6.] 1.00± 0.01 0.96± 0.46 +0.1
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[15., 19.] 1.00± 0.00 1.18± 0.53 −0.3

105 ×B(B0 → K∗0γ) [PDG] SM Experiment [6] Pull
4.65± 5.41 4.18± 0.25 +0.1

105 ×B(B+ → K∗+γ) [PDG] SM Experiment [6] Pull
4.62± 5.59 3.92± 0.22 +0.1

105 ×B(Bs → φγ) [PDG] SM Experiment [6] Pull
4.86± 1.29 3.40± 0.40 +1.1

Table 4.A.1: List of observables included in the fit “All", with their SM prediction, experimental measurements
and the pull of this measurement. The sign of the pull value represents whether the observable theoretical
prediction is above (+) or below (−) the experimental measurement.

Coefficient Best fit 1σ 2σ PullSM p-value (%)
CNP
7 −0.02 [−0.04,−0.00] [−0.06, 0.02] 1.1 1.11

CNP
9µ −1.06 [−1.20,−0.91] [−1.34,−0.76] 7.0 39.50

CNP
10µ 0.52 [0.41, 0.64] [0.29, 0.76] 4.7 7.72

CNP
7′ −0.00 [−0.02, 0.01] [−0.04, 0.03] 0.3 0.98

CNP
9′ −0.17 [−0.31,−0.03] [−0.45, 0.11] 1.2 1.14

CNP
10′ 0.03 [−0.07, 0.13] [−0.16, 0.23] 0.3 0.98

CNP
9µ = CNP

10µ −0.02 [−0.15, 0.12] [−0.27, 0.27] 0.1 0.97

CNP
9µ = −CNP

10µ −0.44 [−0.52,−0.37] [−0.60,−0.29] 6.2 22.78

CNP
9µ = CNP

10′ −0.51 [−0.62,−0.40] [−0.73,−0.29] 4.7 7.40

CNP
9′ = CNP

10′ −0.10 [−0.24, 0.04] [−0.37, 0.17] 0.7 1.03

CNP
9′ = −CNP

10′ −0.05 [−0.11, 0.01] [−0.17, 0.08] 0.8 1.03

CNP
9µ = −CNP

9′ −1.11 [−1.25,−0.96] [−1.39,−0.80] 6.5 27.98

CNP
9µ = −CNP

10µ

= −CNP
9′ = −CNP

10′
−0.42 [−0.50,−0.34] [−0.59,−0.26] 5.8 16.55

CNP
9µ = −CNP

10µ

= CNP
9′ = −CNP

10′
−0.18 [−0.13,−0.13] [−0.09,−0.09] 4.2 5.37

Table 4.A.2: Exhaustive list of 1D patterns of NP in b → sµ+µ− and their bfps for the fit “All”. PullSM is
quoted in units of standard deviation.
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Coefficient Best fit 1σ 2σ PullSM p-value (%)
CNP
7 0.00 [−0.02, 0.59] [−0.03, 0.59] 0.2 0.98

CNP
9µ −0.82 [−1.06,−0.60] [−1.32,−0.39] 4.0 35.99

CNP
10µ 0.62 [0.48, 0.77] [0.35, 0.93] 4.7 70.46

CNP
7′ −0.03 [−0.08, 0.02] [−0.14, 0.08] 0.6 1.06

CNP
9′ −0.41 [−0.60,−0.23] [−0.79,−0.06] 2.3 4.01

CNP
10′ 0.09 [−0.03, 0.21] [−0.15, 0.33] 0.7 1.12

CNP
9µ = CNP

10µ 0.47 [0.29, 0.66] [0.11, 0.85] 2.6 5.76

CNP
9µ = −CNP

10µ −0.37 [−0.46,−0.29] [−0.55,−0.21] 4.6 67.96

CNP
9µ = CNP

10′ −0.37 [−0.52,−0.21] [−0.68,−0.06] 2.4 4.43

CNP
9′ = CNP

10′ −0.21 [−0.37,−0.04] [−0.54, 0.12] 1.3 1.49

CNP
9′ = −CNP

10′ −0.11 [−0.19,−0.04] [−0.27, 0.04] 1.5 1.77

CNP
9µ = −CNP

9′ −1.61 [−2.13,−0.96] [−2.54,−0.41] 3.0 9.28

CNP
9µ = −CNP

10µ

= −CNP
9′ = −CNP

10′
−0.35 [−0.44,−0.26] [−0.54,−0.17] 4.1 38.21

CNP
9µ = −CNP

10µ

= CNP
9′ = −CNP

10′
−0.16 [−0.11,−0.11] [−0.07,−0.07] 3.5 18.05

Table 4.A.3: Exhaustive list of 1D patterns of NP in b→ sµ+µ− and their bfps for the fit “LFUV”. PullSM is
quoted in units of standard deviation.
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Chapter 5

Angular analysis of Λb → Λ∗(→ pK)`+`−

As discussed in Chapters 3 and 4, it is of primary interest to confirm and constrain the scenarios of New Physics
in b→ s`+`− transitions. On one side, this can be done by sharpening the theoretical predictions and collecting
more data for the modes already studied. On the other side, one can study new observables in either totally new
modes, or on modes that are not fully studied yet. In this chapter and the following we will do exactly this. We
will start in this chapter by discussing the study of observables of the new mode Λb → Λ∗(→ pK)`+`−, and in
Chapter 6 we will discuss a time-dependent analysis of B → K`+`−.

As mentioned in Section 3.2 it is of interest to further study the b → s`+`− transition in other hadronic
decays than the mesonic decays which have been deeply studied. An interesting way of doing this consists in
investigating Λb decays which offer completely different theoretical and experimental environments and can be
currently studied at LHCb. A first step in this direction has been attempted through the study of the decay
Λb → Λ(1116)(→ Nπ)µ+µ− (see Section 3.2).

Another promising possibility consists in looking at decays of the Λb baryon into excited Λ states through
the decay chain Λb → Λ∗(→ pK−)`+`−. Due to the higher mass of the excited states, they can decay under
strong interaction into pK− as opposed to the ground state which decays into pπ under the weak interaction.
However, compared to the ground state decay, the interpretation of a measurement of the observables of
Λb → Λ∗(→ pK−)`+`− over the full pK− invariant mass (mpK−) spectrum requires a precise theoretical
knowledge of the various excited Λ states contributing to the mpK− spectrum (hadronic form factors, interference
patterns).

Interestingly, the LHCb search for pentaquarks states in Λb → pK−J/ψ provides information on Λb → Λ(→
pK−)`+`− for a dilepton invariant mass q2 around the J/ψ mass, where Λ is any intermediate baryon with
the appropriate quantum numbers. As indicated in Fig. 5.1, the dominant contribution comes from Λ(1520)
(JP = 3/2−), which is reasonably narrow. For a pK− invariant mass around 1.5 GeV, there is a contamination
coming from two other states, Λ(1405) (with a mass below the NK̄ threshold, but sufficiently wide to provide a
contribution to this decay) and Λ(1600). Following the LHCb analysis, these two states contribute at similar
levels and they might be discriminated from Λ(1520) thanks to their different spin and parity (JP = 1/2± rather
than 3/2−) – for instance, this could be implemented through an angular analysis, although this demanding
approach would require a significant number of events. This dominance of Λ(1520) for a pK− invariant mass
around 1.5 GeV, which has been observed for q2 = m2

J/ψ, may hold for other values of the dilepton invariant
mass. For instance, the Λb → pK−γ decay has been investigated to learn its potential in determining the
polarisation of the photon in the b→ sγ transition using polarised Λb baryons [310, 311]. These studies involve
models for the pK− invariant mass spectrum where Λ(1520) is again prominent, but this time for q2 = 0 (see
Fig. 5.2). One may thus hope that for a large range for the dilepton invariant mass q2, the contribution from
Λ(1520) remains important. This is confirmed by the mpK− spectrum in Ref. [223] (see Fig. 5.3) over the q2
bin [0.1, 6]GeV2. Then the Λb → Λ(1520) (→ NK)`+`− decay should be accessible, from the signal observed in
Λb → pK−µ+µ− [223, 312], and could be studied in detail at LHCb, both for the branching ratio and for the
angular observables.

Compared to Λ(1116), a decay involving Λ(1520) (from now on denoted as Λ∗) feature two main differences:
the spin of the intermediate Λ∗ state is higher (JP = 3/2− rather than 1/2+) and the Λ∗ decays into pK− under
the strong interaction (rather than into pπ under the weak interaction). Obviously the same issues exist in
both intermediate states concerning the uncertainties on hadronic contributions [205], the determination of form
factors and of non-local contributions. Concerning the form factors, a lattice determination of them already
exists, but it is constrained to the high-q2 region (see Refs. [314, 315]); some efforts are still needed to obtain a
determination over the whole q2 range. Form factors could be determined in the large-recoil region through the
use of light-cone sum rules [316] or SCET sum rules as done for the ground state intermediate state in Ref. [40],
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Figure 5.1: Measured mpK− spectrum for the Λb → pK−J/ψ decay in black (squares) obtained by LHCb’s
pentaquark searches and shown in Fig. 3 of Ref. [313]. A fit is shown in red (full circles) performed to measure
the contribution of each Λ∗ resonance and two pentaquark states. Each Λ∗ component is also shown where the
Λ(1520) resonance correspond to the blue dashed curve (empty circles).
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Figure 5.2: Approximate mpK− spectrum from Λb → pK−γ decays, obtained by adding up non-relativistic
Breit-Wigner forms presented in Fig. 1 of Ref. [310]. The interference effect are neglected as also is a possible non-
resonant contribution. The relative contribution of each resonance is derived from simple kinematic suppression.
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Figure 5.3: mpK− spectrum, measured by LHCb [223], for the Λb → pK−µ+µ− decay in the [0.1, 6.0]GeV2

q2 bin. In red is shown the region corresponding to the Λ(1520) resonance. Modified version of Fig. 9 in
supplementary material of Ref. [223].

but this has yet to be explored. The question of non-local (charm) contributions could be understood based on
data-driven methods similar to Refs. [112, 317], involving light-cone sum rules similar to Refs. [40, 115, 116,
318]. It is thus already interesting to discuss the general structure of this decay and the observables that can be
obtained, even before these issues are completely resolved.

This chapter, based on Refs. [319, 320], is organised in the following way. We discuss the specific effective
Hamiltonian (see Section 2.4) framework used in this study and the kinematics of Λb → Λ∗(→ NK̄)`+`− with
NK̄ = pK−, nK̄0 in Section 5.1. We consider different hadronic inputs for this transition in Section 5.2, namely
the Λb → Λ∗ form factors and the description of the Λ∗ → NK̄ decay. We compute the helicity amplitudes and
the angular observables and discuss phenomenology aspects of this decay in Section 5.3, assuming unpolarised Λb
baryons and neglecting the lepton mass. In Section 5.4, as there is currently no determination of the form factors
available from lattice simulations or light-cone sum rules for the whole q2 range, we perform a first illustration of
the sensitivity of some observables to New Physics contributions using hadronic inputs from quark models. We
then present in Section 5.5 prospects of an experimental study of this decay at the LHCb experiment in the near
future before drawing a few conclusions in Section 5.6. Technical considerations concerning the kinematics and
the free solutions in several rest frames as well as cross checks of our results with earlier work are collected in
Appendices 5.A to 5.D.

5.1 General framework

As discussed in Section 2.4 it is possible to analyse b → s`+`− decays using a model-independent approach,
namely the effective Hamiltonian Eq. (2.35) where heavy degrees of freedom have been integrated out in
short-distance Wilson coefficients Ci, leaving only a set of operators Oi describing the physics on long distances.
In the SM, three operators play a leading role in the discussion, namely the electromagnetic operator O7 and
the semileptonic operators O9` and O10`, differing with respect to the chirality of the emitted charged leptons.
NP contributions could either modify the value of the short-distance Wilson coefficients C7,9,10, or make other
operators contribute in a significant manner, such as the chirality-flipped operators O7′,9′,10′ defined above,
or other operators (scalar, pseudoscalar, tensor). In this study we focus on the effect of SM operators and
their chirality-flipped counterparts, although we will discuss the impact of the other SM operators (four-quark
operators O1−6 and O8g) briefly in Section 5.3.
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Figure 5.4: Schematics of the kinematics and the treatment of the four-body Λb → Λ∗(→ NK̄)`+`− decay. The
angles are defined in the corresponding rest frames, indicated in colours. In green, the parts of the treatment
related to the separation of scales. In red, the treatment of the Λ∗ propagation and decay. In blue, the treatment
of the leptonic amplitudes.

5.1.1 Kinematics
We consider the decay chain with the corresponding momenta for the various particles and their spin projections
along the z-axis of the rest frame of the decaying particle

Λb(p, sΛb
) → Λ∗(k, sΛ∗)`+(q1)`

−(q2),

Λ∗(k, sΛ∗) → N(k1, sN )K(k2) (NK̄ = pK−, nK̄0),
(5.1)

where we denote Λ∗(1520) as Λ∗ and we have

qµ = qµ1 + qµ2 , kµ = kµ1 + kµ2 , pµ = qµ + kµ. (5.2)

We can introduce the same kinematics as for semileptonic four-body B-meson decays, leading to four independent
variables chosen as the dilepton invariant mass q2, the angles θp and θ` with respect to the z axis and the angle
between the hadronic and leptonic planes φ, following the same LHCb conventions as for Λb → Λ(→ Nπ)`+`− [201,
226, 247] (up to the identifications θp = θb and φ = χ) recalled in Fig. 5.4. The CP-conjugate mode can also be
described using the same formalism, where an appropriate redefinition of the angle ensures that the angular
observables will have the same form, up to the complex conjugation of the weak phases [201, 321].

The differential decay rate can be written

dΓ =
|M|2

2mΛb

dΦ4(p; k1, k2, q1, q2), (5.3)

where the phase space

dΦn(P ; p1, . . . , pn) = (2π)4 δ(4)(P −
∑
i

pi)
∏
i

d3pi
(2π)32Ei

, (5.4)

can be decomposed iteratively as [322]∫
dΦ4

|M|2

2mΛb

=

∫
dq2

2π

dk2

2π
dΦ2(k; k1, k2)dΦ2(q; q1, q2)dΦ2(p; q, k)

|M|2

2mΛb

, (5.5)

with the two-body phase space of the form∫
dΦ2(k; k1, k2)X(k; k1, k2) =

∫
dΩk
4π

1

8π

√
λ(k2, k21, k

2
2)

k2
X(k; k1, k2), (5.6)
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with dΩk the element of integration of the the solid angle for k and the Källén function is

λ(k2, k21, k
2
1) = k4 + k41 + k42 − 2k2k21 − 2k2k22 − 2k21k

2
2. (5.7)

The re-expression of the two-body phase space differential elements yields∫
dΦ4

|M|2

2mΛb

=
1

(2π)2(8π)4

∫
dk2 (βΛb

βNK̄β`) (dq
2 d cos θ` d cos θp dφ)

|M|2

2mΛb

, (5.8)

with

βΛb
=

√
λ(m2

Λb
, k2, q2)

m2
Λb

, βNK̄ =

√
λ(k2,m2

N ,m
2
K̄
)

k2
, β` =

√
1−

4m2
`

q2
. (5.9)

5.1.2 Helicity amplitudes
It is well known that such a decay chain is best analysed by performing a decomposition according to helicity
amplitudes, as discussed in Ref. [323] and illustrated for b→ s`+`− decays in Ref. [321]. In particular, it proves
very useful to introduce a vector basis which can be seen as the polarisation of an intermediate virtual boson
decaying into the dilepton pair1, defined in the dilepton rest frame as

εµ(0) =


0
0
0
1

 , εµ(+) =
1√
2


0
−1
−i
0

 , εµ(−) =
1√
2


0
1
−i
0

 , εµ(t) =


1
0
0
0

 . (5.10)

in agreement with Ref. [323]. Boosts can be used to define this basis in other reference frames. We can also
easily define the scalar and time-like vectors in a general way as

εµ(0) =
eµ√
|e2|

, εµ(t) =
qµ√
q2
, eµ = pµ + kµ − qµ

q2
(m2

Λb
−m2

Λ∗), (5.11)

with e2 = −λ(m2
Λb
,m2

Λ∗ , q2)/q2.
We have the completeness and orthogonality relations for λ, λ′ = t, 0,+,−

ε∗µ(λ)εµ(λ
′) = gλλ′ ,

∑
λ,λ′=t,0,+,−

ε∗µ(λ)εν(λ′)gλλ′ = gµν , (5.12)

where g is defined as diagonal in the polarisation space, with gtt = −g00 = −g++ = −g−− = 1. Assuming
factorisation between the hadronic and the leptonic parts, and focusing on operators with a single Lorentz index,
we have for the Λb → Λ∗`+`− part of this decay chain

〈Λ∗`+`−|OHµ OL;µ|Λb〉 =〈Λ∗|OHµ |Λb〉gµν〈`+`−|OLν |0〉

=
∑

λ=t,0,+,−

gλλ′(ε∗µ(λ)〈Λ∗|OHµ |Λb〉)(εν(λ)〈`+`−|OLν |0〉)

=
∑

λ=t,0,+,−

gλλ′

∑
i

f iλ (ūαΛ∗ε∗µ(λ)ΓHiµαuΛb
) (ū`−ε

ν(λ)ΓLν v`−),

(5.13)

which defines the hadronic and leptonic helicity amplitudes of interest, where we express the results in terms of
the solutions for free fermions u and v (see Appendix 5.A for explicit expressions) and the helicity form factors
f iλ to be defined in more detail in Section 5.2.

5.1.3 Propagation and decay of Λ∗

Once Λb → Λ∗`+`− has been described, we still have to include the propagation and the decay of the Λ∗ baryon,
which has the quantum numbers JP = 3/2−. This is usually done in the Rarita-Schwinger framework [41], with
a field ψαa combining a spinor index a and a vector index α (in the following, the spinor index a will often be
kept implicit for simplicity). The corresponding free Lagrangian reads

L = ψ̄µ
i

2
{σµν , (i/∂ −mΛ∗)}ψν . (5.14)

1This interpretation is discussed in detail in Ref. [321], where it is shown to be valid in full generality in the absence of tensor
operators in the effective Hamiltonian.
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The solutions uαa (k, sΛ∗) obey then the following properties:

/kuα = mΛ∗uα, γαu
α = 0, kαu

α = 0. (5.15)

Following Ref. [324], one can determine the explicit solutions for sΛ∗ = −3/2,−1/2, 1/2, 3/2 as

uαa (k, sΛ∗) =
∑

λ=−1,0,1

∑
r=−1/2,1/2

δλ+r,sΛ∗

〈
1, λ;

1

2
, r

∣∣∣∣1, 12 , 32 , sΛ∗

〉
εαλ(k)u

r
a(k), (5.16)

where ura(k) are regular Dirac spin-1/2 spinors and a similar construction can be found for the anti-fermion
solutions. This is used in Appendix 5.A to determine the appropriate solutions of the Λ∗ equation of motion in
both Λb and Λ∗ rest frames.

The free propagator derived from Eq. (5.14) reads

Gµν =
i(/k +mΛ∗)∆µν

k2 −m2
Λ∗

, ∆µν = gµνId− 1

3
γµγν − 2kµkν

3m2
Λ∗

− γµkν − γνkµ

3mΛ∗
, (5.17)

where Id denotes the identity matrix in the Dirac matrix space. We checked that the summation formula
expected from general unitarity arguments (see for instance Ref. [325])

3/2∑
sΛ∗=−3/2

uµa(k, sΛ∗)ūνb (k, sΛ∗) = −(/k +mΛ∗)∆µν
ab , (5.18)

is indeed satisfied by the solution Eq. (5.16) given in Appendix 5.A.
One should note that the tensor ∆µν involved in the propagator is not the projector on the spin-3/2 component

given by
Pµν = gµν − 1

3
γµγν − 1

3m2
Λ∗

(/kγµkν + kµγν/k). (5.19)

By construction, a field of the form ψαa contains both spin-1/2 and spin-3/2 components: only 4 components of
the 16-component field ψαa are actually needed to describe the spin-3/2 part. Even though the Rarita-Schwinger
construction aims at describing a spin-3/2 object only, it turns out that one cannot modify the kernel in Eq. (5.14)
to keep only on the spin-3/2 component of the field, as the projected kernel cannot be inverted [326]. Attempts
to enforce the projection at the level of the propagator led to theories with unwanted properties, such as spurious
poles affecting higher orders in perturbation theory [327–329]. In practice, the quantisation must be performed
with the whole field ψαa , in the presence of constraints that will ensure that only the spin-3/2 component of the
field is actually physical [330].

The problem is even made more acute in the case of an interacting spin-3/2 theory, as the interaction term
should be compatible with the quantisation of the theory. This led to a significant amount of debate concerning
the description of the πN∆ interaction at low energies, which can be used as a template to describe the KNΛ∗

interaction (the quantum numbers are the same, apart from the opposite parity of the ∆ and Λ∗ fermions). A
first type of effective interaction at low energies was proposed (here translated to the KNΛ∗ case) [331]

L1 = gmΛ∗ ψ̄µ(g
µν + aγµγν)γ5Ψ∂νφ+ h.c., (5.20)

where Ψ denotes the spin-1/2 N field and φ the spin-0 K field (coming with a derivative due to the pseudo-
Goldstone nature of the kaon), and a is an off-shell parameter that is relevant only for loop computations.

As discussed in Ref. [330], this interaction is simple, but once used to build an interacting theory, it involves not
only the physical spin-3/2 components of the Rarita-Schwinger field ψµ, but also unphysical spin-1/2 components,
leading to problems of causality and to a significant contribution from spin-1/2 background underneath the Λ∗

(or ∆) resonance. In Ref. [330], an alternative interaction has been proposed

L2 = gεµναβ(∂µψ̄ν)γαΨ∂βφ+ h.c. (5.21)

This choice is suggested by the invariance of the free massless theory under gauge transformations of ψµ: it is
compatible with the quantisation of the theory under constraints, and using the projector Eq. (5.19) and the
propagator Eq. (5.17), it can be shown easily that it involves only the spin-3/2 part of ψα.

Fortunately, we do not have to take sides on this issue here. Indeed, these two choices of interaction term will
yield actually the same result for the branching ratio of interest here. This is in agreement with the fact that
we use these interactions only for a tree-level interaction with on-shell particles, and it will provide a further
cross-check of our results.
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5.1.4 Narrow-width approximation

The Λ∗ propagation and decay can thus be included in the description Eq. (5.13) as

M =〈(NK̄)Λ∗`+`−|OHµ OL;µ|Λb〉

=i
∑

λ=t,0,+,−

∑
i

∑
sΛ∗

ūNGuΛ∗
i

k2 −m2
Λ∗

(ūαΛ∗(ε
∗µ
λ ΓHiµα)uΛb

) f iλ (ū`−(ε
ν
λΓ

L
ν )v`−),

(5.22)

where G is a momentum-dependent quantity defined as 〈NK|Li|Λ∗〉 = ūNG(k1, k2)uΛ∗ from the interaction
Lagrangians in Eq. (5.20) or Eq. (5.21). The decay rate can be computed as

∫
dΓ =

∫
dΦ4

|M|2

2mΛb

, |M|2 =
1

2

∑
sΛb

∑
sN

|M|2, (5.23)

where we summed over the final spins and averaged over the initial spins, assuming that the Λb baryon is
produced essentially in an unpolarised way at the LHC [218, 332].

Following Ref. [333], we modify the propagator of the Λ∗ baryon to take into account the width of the
resonance, but treat it as narrow (ΓΛ∗ � mΛ∗)

∫
dΦ4

|M|2

2mΛb

=

∫
dΦ̃ dk2

|N |2

(k2 −m2)2

→
∫
dΦ̃ dk2

|N |2

(k2 −m2)2 + (mΛ∗ΓΛ∗)2

→
∫
dΦ̃ dk2|N |2 π

mΛ∗ΓΛ∗
δ(k2 −m2

Λ∗) =

∫
dΦ̃|N |2k2=m2

Λ∗

π

mΛ∗ΓΛ∗
,

(5.24)

where dΦ̃ describes the phase space without the integration with respect to dk2 as shown in Eq. (5.8), and N is
defined from the matrix element M in Eq. (5.22) as

N = (k2 −m2
Λ∗)M. (5.25)

Up to a phase space, the branching ratio is the product of three matrix elements corresponding to the helicity
amplitude for the leptonic part, the helicity amplitude for the Λb → Λ∗ hadronic part and the matrix element
for the Λ∗ → NK̄ decay. We finally obtain

∫
dΓ =

∫
dq2d cos θ`d cos θpdφ

1

215π5mΛb
mΛ∗ΓΛ∗

(βΛb
βNK̄β`)|N |2

∣∣∣∣
k2=m2

Λ∗

. (5.26)

5.2 Hadronic matrix elements

Since the general framework of the kinematics and helicity amplitudes has been set up, we can turn to the
description of the hadronic part of the decay through form factors.

5.2.1 Λb → Λ∗ vector form factors

The hadronic matrix elements can be decomposed using the spinors for Λb and Λ∗, and inserting all the possible
Dirac structures taking into account the parity and the e.o.m constraints. In the case of the vector form/axial
operators, there are four structures, and thus four form factors, once the equations of motion for Λb and Λ∗

are taken into account [42]. As seen before, they are better defined using helicity form factors [40, 197], which
corresponds to choosing combinations of these Dirac matrices so that they are orthogonal to the polarisation
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eigenvectors defined in Eq. (5.10). This leads to the following definition

〈Λ∗|s̄γµb|Λb〉 =ūα(k, sΛ∗)

{
pα
[
fVt (q2)(mΛb

−mΛ∗)
qµ

q2

+ fV0 (q2)
mΛb

+mΛ∗

s+
(pµ + kµ − qµ

q2
(m2

Λb
−m2

Λ∗))

+ fV⊥ (q2)(γµ − 2
mΛ∗

s+
pµ − 2

mΛb

s+
kµ)

]
+ fVg (q2)

[
gαµ +mΛ∗

pα

s−

(
γµ − 2

kµ

mΛ∗
+ 2

mΛ∗pµ +mΛb
kµ

s+

)]}
u(p, sΛb

),

〈Λ∗|s̄γµγ5b|Λb〉 =− ūα(k, sΛ∗)γ5
{
pα
[
fAt (q2)(mΛb

+mΛ∗)
qµ

q2

+ fA0 (q2)
mΛb

−mΛ∗

s−
(pµ + kµ − qµ

q2
(m2

Λb
−m2

Λ∗))

+ fA⊥ (q2)(γµ + 2
mΛ∗

s−
pµ − 2

mΛb

s−
kµ)

]
+ fAg (q2)

[
gαµ −mΛ∗

pα

s+

(
γµ + 2

kµ

mΛ∗
− 2

mΛ∗pµ −mΛb
kµ

s−

)]}
u(p, sΛb

).

(5.27)

We have introduced
s± = (mΛb

±mΛ∗)2 − q2. (5.28)

We have used similar normalisations to the Λb → Λ(1116) form factors chosen in Refs. [40, 197] for ft, f0, f⊥ so that
in the limit where the three form factors are set to 1, one recovers a point-like behaviour ūα(k, sΛ∗)pαγµ(γ5)u(p, sΛb

).
However, in the Λ∗ case, a fourth form factor, fg, arises [42, 334, 335]. Further constraints arise by considering
the limit q2 → 0: since there are no physical states with s̄b quantum numbers and a vanishing mass, the matrix
elements cannot exhibit any singularity at q2 = 0, which leads to the constraints in this limit

fVt (q2)− fV0 (q2) = O(q2), fAt (q2)− fA0 (q2) = O(q2), (5.29)

fVt (q2) = O(1), fV0 (q2) = O(1), fV⊥ (q2) = O(1), fVg (q2) = O(1),

fAt (q2) = O(1), fA0 (q2) = O(1), fA⊥ (q2) = O(1), fAg (q2) = O(1).
(5.30)

Some conditions should also obeyed by the form factors for q2 = (mΛb
−mΛ∗)2, where additional s− factors arise

from the normalisation of the free Dirac solutions u and ūα, see Appendix 5.A. We finally obtain the following
constraints in this limit

fVt (q2) = O
(

1√
s−

)
, fV0 (q2) = O

(
1
s−

)
, fV⊥ (q2) = O

(
1
s−

)
, fVg (q2) = O(1),

fAt (q2) = O
(

1
s−

)
, fA0 (q2) = O

(
1√
s−

)
, fA⊥ (q2) = O

(
1√
s−

)
, fAg (q2) = O

(
1√
s−

)
.

(5.31)

At both endpoints, the conditions indicated above are sufficient to ensure the absence of unphysical poles in the
hadronic matrix elements, but obviously, form factors exhibiting less singular behaviours are also acceptable.

The choice of helicity form factors means that the matrix elements for each polarisation correspond to a very
simple expression in terms of form factors for the vector part

HV
t (sΛb

, sΛ∗) ≡ ε∗µ(t)〈Λ∗(k, sΛ∗)|s̄γµb|Λb(p, sΛb
)〉

= fVt (q2)
mΛb

−mΛ∗√
q2

ūα(k, sΛ∗)pαu(p, sΛb
),

HV
0 (sΛb

, sΛ∗) ≡ ε∗µ(0)〈Λ∗(k, sΛ∗)|s̄γµb|Λb(p, sΛb
)〉

= −fV0 (q2)
mΛb

+mΛ∗

s+

√
|e2|ūα(k, sΛ∗)pαu(p, sΛb

),

HV
± (sΛb

, sΛ∗) ≡ ε∗µ(±)〈Λ∗(k, sΛ∗)|s̄γµb|Λb(p, sΛb
)〉

=

(
fV⊥ (q2) + fVg (q2)

mΛ∗

s−

)
ūα(k, sΛ∗)pα/ε

∗(±)u(p, sΛb
) + fVg (q2)ūα(k, sΛ∗)ε∗α(±)u(p, sΛb

),

(5.32)
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and for the axial part

HA
t (sΛb

, sΛ∗) ≡ ε∗µ(t)〈Λ∗(k, sΛ∗)|s̄γµγ5b|Λb(p, sΛb
)〉

= −fAt (q2)
mΛb

+mΛ∗√
q2

ūα(k, sΛ∗)γ5pαu(p, sΛb
),

HA
0 (sΛb

, sΛ∗) ≡ ε∗µ(0)〈Λ∗(k, sΛ∗)|s̄γµγ5b|Λb(p, sΛb
)〉

= fA0 (q2)
mΛb

−mΛ∗

s−

√
|e2|ūα(k, sΛ∗)γ5pαu(p, sΛb

),

HA
±(sΛb

, sΛ∗) ≡ ε∗µ(±)〈Λ∗(k, sΛ∗)|s̄γµγ5b|Λb(p, sΛb
)〉

=

(
fA⊥ (q2)− fAg (q2)

mΛ∗

s+

)
ūα(k, sΛ∗)pα/ε

∗(±)γ5u(p, sΛb
)− fAg (q2)ūα(k, sΛ∗)ε∗α(±)γ5u(p, sΛb

),

(5.33)

where e is the vector defined in Eq. (5.11). Using the expression for the spinor matrix elements given in
Appendix 5.A, we obtain for the non-vanishing amplitudes in the vector part

HV
t (+1/2,+1/2) = HV

t (−1/2,−1/2) = fVt (q2)
mΛb

−mΛ∗√
q2

s+
√
s−√

6mΛ∗
,

HV
0 (+1/2,+1/2) = HV

0 (−1/2,−1/2) = −fV0 (q2)
mΛb

+mΛ∗√
q2

s−
√
s+√

6mΛ∗
,

HV
+ (+1/2,−1/2) = HV

− (−1/2,+1/2) = −fV⊥ (q2)
s−

√
s+√

3mΛ∗
,

HV
+ (−1/2,−3/2) = HV

− (+1/2,+3/2) = fVg (q2)
√
s+,

(5.34)

and for the axial part

HA
t (+1/2,+1/2) = −HA

t (−1/2,−1/2) = fAt (q2)
mΛb

+mΛ∗√
q2

s−
√
s+√

6mΛ∗
,

HA
0 (+1/2,+1/2) = −HA

0 (−1/2,−1/2) = −fA0 (q2)
mΛb

−mΛ∗√
q2

s+
√
s−√

6mΛ∗
,

HA
+ (+1/2,−1/2) = −HA

−(−1/2,+1/2) = fA⊥ (q2)
s+

√
s−√

3mΛ∗
,

HA
+ (−1/2,−3/2) = −HA

−(+1/2,+3/2) = −fAg (q2)
√
s−.

(5.35)

5.2.2 Λb → Λ∗ tensor form factors
A similar discussion takes place in the case of the tensor form factors. The relevant matrix elements are the
following, once again defined in order to have structures orthogonal to the polarisation vectors Eq. (5.10)

〈Λ∗|s̄iσµνqνb|Λb〉 =− ūα(k, sΛ∗)

{
pα
[
fT0 (q2)

q2

s+
(pµ + kµ − qµ

q2
(m2

Λb
−m2

Λ∗))

+ fT⊥(q2)(mΛb
+mΛ∗)(γµ − 2

mΛ∗

s+
pµ − 2

mΛb

s+
kµ)

]
+ fTg (q

2)

[
gαµ +mΛ∗

pα

s−

(
γµ − 2

kµ

mΛ∗
+ 2

mΛ∗pµ +mΛb
kµ

s+

)]}
u(p, sΛb

),

〈Λ∗|s̄iσµνγ5qνb|Λb〉 =− ūα(k, sΛ∗)γ5
{
pα
[
fT5
0 (q2)

q2

s−
(pµ + kµ − qµ

q2
(m2

Λb
−m2

Λ∗))

+ fT5
⊥ (q2)(mΛb

−mΛ∗)(γµ + 2
mΛ∗

s−
pµ − 2

mΛb

s−
kµ)

]
+ fT5

g (q2)

[
gαµ −mΛ∗

pα

s+

(
γµ + 2

kµ

mΛ∗
− 2

mΛ∗pµ −mΛb
kµ

s−

)]}
u(p, sΛb

).

(5.36)

We have again used similar normalisations to the Λb → Λ(1116) form factors chosen in Refs. [40, 197] for f0, f⊥,
so that in the limit where the two form factors are set to 1, one recovers a point-like behaviour. In the Λ∗ case,
there is again an additional form factor to be taken into account [42, 334, 335].
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As in the vector/axial case, the matrix elements cannot exhibit a singularity at q2 = 0 nor q2 = (mΛb
−mΛ∗)2,

which yields the following constraints for q2 → 0 (see Appendix 5.C for further detail)

fT⊥(q2) = O(1), fT0 (q2) = O(1), fTg (q
2) = O(1),

fT5
⊥ (q2) = O(1), fT5

0 (q2) = O(1), fT5
g (q2) = O(1),

(5.37)

and the following constraints for q2 → (mΛb
−mΛ∗)2

fT⊥(q2) = O
(

1
s−

)
, fT0 (q2) = O

(
1
s−

)
, fTg (q

2) = O(1),

fT5
⊥ (q2) = O

(
1√
s−

)
, fT5

0 (q2) = O
(

1√
s−

)
, fT5

g (q2) = O
(

1√
s−

)
.

(5.38)

These conditions are sufficient to ensure the absence of unphysical poles in the hadronic matrix elements,
but once again, form factors exhibiting less singular behaviours are also acceptable. Moreover, the equality
σµνγ5 = iεµνρσσ

ρσ/2 yields the following constraints for the values of the tensor form factors at q2 = 0

fT5
⊥ (0) = fT⊥(0), fT5

g (0) = fTg (0)
mΛb

+mΛ∗

mΛb
−mΛ∗

. (5.39)

As can be seen by comparing with the previous section, the situation is slightly different from the vector/axial
case: there is no form factor corresponding to the time-like polarisation (or qµ), the normalisation of the Lorentz
structures is different, and the resulting constraints at q2 = 0 are different.

This leads to the helicity amplitudes

HT
t (sΛb

, sΛ∗) ≡ ε∗µ(t)〈Λ∗(k, sΛ∗)|s̄iσµνqνb|Λb(p, sΛb
)〉 = 0,

HT
0 (sΛb

, sΛ∗) ≡ ε∗µ(0)〈Λ∗(k, sΛ∗)|s̄iσµνqνb|Λb(p, sΛb
)〉

= fT0 (q2)
q2

s+

√
|e2|ūα(k, sΛ∗)pαu(p, sΛb

),

HT
±(sΛb

, sΛ∗) ≡ ε∗µ(±)〈Λ∗(k, sΛ∗)|s̄iσµνqνb|Λb(p, sΛb
)〉

= −
(
fT⊥(q2)(mΛb

+mΛ∗) + fTg (q
2)
mΛ∗

s−

)
ūα(k, sΛ∗)pα/ε

∗(±)u(p, sΛb
)

− fTg (q
2)ūα(k, sΛ∗)ε∗α(±)u(p, sΛb

),

HT5
t (sΛb

, sΛ∗) ≡ ε∗µ(t)〈Λ∗(k, sΛ∗)|s̄iσµνqνγ5b|Λb(p, sΛb
)〉 = 0,

HT5
0 (sΛb

, sΛ∗) ≡ ε∗µ(0)〈Λ∗(k, sΛ∗)|s̄iσµνqνγ5b|Λb(p, sΛb
)〉

= fT5
0 (q2)

q2

s−

√
|e2|ūα(k, sΛ∗)γ5pαu(p, sΛb

),

HT5
± (sΛb

, sΛ∗) ≡ ε∗µ(±)〈Λ∗(k, sΛ∗)|s̄iσµνqνγ5b|Λb(p, sΛb
)〉

=

(
fT5
⊥ (q2)(mΛb

−mΛ∗)− fT5
g (q2)

mΛ∗

s+

)
ūα(k, sΛ∗)pα/ε

∗(±)γ5u(p, sΛb
)

− fT5
g (q2)ūα(k, sΛ∗)ε∗α(±)γ5u(p, sΛb

).

(5.40)

We recall that eµ has been defined in Eq. (5.11). As expected, there is no contribution from the time-like
polarisation in the case of the tensor form factors. One obtains the following non-vanishing amplitudes

HT
0 (+1/2,+1/2) =HT

0 (−1/2,−1/2) = fT0 (q2)
√
q2
s−

√
s+√

6mΛ∗
,

HT
+(+1/2,−1/2) =HT

−(−1/2,+1/2) = fT⊥(q2)(mΛb
+mΛ∗)

s−
√
s+√

3mΛ∗
,

HT
+(−1/2,−3/2) =HT

−(+1/2,+3/2) = −fTg (q2)
√
s+,

HT5
0 (+1/2,+1/2) =−HT5

0 (−1/2,−1/2) = −fT5
0 (q2)

√
q2
s+

√
s−√

6mΛ∗
,

HT5
+ (+1/2,−1/2) =−HT5

− (−1/2,+1/2) = fT5
⊥ (q2)(mΛb

−mΛ∗)
s+

√
s−√

3mΛ∗
,

HT5
+ (−1/2,−3/2) =−HT5

− (+1/2,+3/2) = −fT5
g (q2)

√
s−.

(5.41)
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5.2.3 Λb → Λ∗`+`− decay amplitudes
Considering the effective Hamiltonian Eq. (2.19) with only contributions from C7, C9`, C10` and their chirality-
flipped counterparts and neglecting the lepton mass, we obtain the following decomposition:

M(sΛb
, sΛ∗) ≡ N1〈Λ∗(sΛ∗)`+`−|

∑
i

CiOi|Λb(sΛb
)〉 (5.42)

M(sΛb
, sΛ∗) =

N1

2

{∑
L(R)

LµL(R)

×
[
HV
µ CL(R)

9,10,+ −HA
µ C

L(R)
9,10,− − 2mb

q2
{
HT
µ (C7 + C7′) +HT5

µ (C7 − C7′)
} ]}

, (5.43)

where the leptonic and hadronic helicity amplitudes read

LµL(R) = ū(k2, s`−)γ
µ(1± γ5)v(k1, s`+), HX

µ = 〈Λ∗|s̄ΓXµ b|Λb〉, (5.44)

with the various Dirac matrices ΓV (A)
µ = γµ(γ5) and Γ

T (T5)
µ = σµνq

ν(γ5). The combinations of Wilson coefficients
are defined as

CL(R)
9,10,+ = (C9` ∓ C10`) + (C9′` ∓ C10′`), CL(R)

9,10,− = (C9` ∓ C10`)− (C9′` ∓ C10′`), (5.45)

and the normalization reads
N1 =

4GF√
2
VtbV

∗
ts

α

4π
. (5.46)

We can perform the helicity amplitude decomposition discussed in Section 5.1.2, exploiting the expression of the
hadronic helicity amplitudes in terms of the form factors described in Section 5.2 and using the explicit solutions
of the Dirac equation in Appendix 5.A in order to determine the leptonic helicity amplitudes. The resulting
expressions are given in Table 5.1, with the corresponding hadronic transversity amplitudes

B
L(R)
⊥1 =+

√
2N

(
CL(R)
9,10,+H

V
+ (−1/2,−3/2)− 2mb(C7 + C7′)

q2
HT

+(−1/2,−3/2)

)
,

B
L(R)
‖1 =−

√
2N

(
CL(R)
9,10,−H

A
+ (−1/2,−3/2) +

2mb(C7 − C7′)
q2

HT5
+ (−1/2,−3/2)

)
,

A
L(R)
⊥1 =+

√
2N

(
CL(R)
9,10,+H

V
+ (+1/2,−1/2)− 2mb(C7 + C7′)

q2
HT

+(+1/2,−1/2)

)
,

A
L(R)
‖1 =−

√
2N

(
CL(R)
9,10,−H

A
+ (+1/2,−1/2) +

2mb(C7 − C7′)
q2

HT5
+ (+1/2,−1/2)

)
,

A
L(R)
⊥0 =+

√
2N

(
CL(R)
9,10,+H

V
0 (+1/2,+1/2)− 2mb(C7 + C7′)

q2
HT

0 (+1/2,+1/2)

)
,

A
L(R)
‖0 =−

√
2N

(
CL(R)
9,10,−H

A
0 (+1/2,+1/2) +

2mb(C7 − C7′)
q2

HT5
0 (+1/2,+1/2)

)
.

(5.47)

The normalisation factor N , related to the 4-body phase space of this decay, is defined as

N = N1

√√√√q2
√
λ(m2

Λb
,m2

Λ∗ , q2)

3 · 210m3
Λb
π3

. (5.48)

We have used the relations Eqs. (5.34), (5.35) and (5.41)) in order to express H− amplitudes in terms of H+.
We notice that there are no contributions from Ht here: the tensor hadronic amplitudes vanish exactly, whereas
the vector/axial hadronic amplitudes are multiplied by the leptonic helicity amplitude εµ(t)Lµ,L(R) which are
proportional to m2

`/
√
q2 (and neglected here) due to the lepton equation of motion.

5.2.4 Λ∗ → NK̄ decay
The Λ∗ → NK̄ decay rate2 can be computed using

Γ(Λ∗ → NK̄) =
βNK̄

16πmΛ∗
|MΛ∗ |

2
, (5.49)

2We have not been specific whether we perform the sum over the two isospin states or select only one of them. This has no
impact on the computation as long as the same definition is used for Λ∗ → NK̄ and Λb → Λ∗(→ NK̄)`+`−.
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sΛb
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2 + 1

2
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‖0
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L(R)
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A
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]
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− 1
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√
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A
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‖1

]
ū/ε(−)PL(R)v

− 1
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2
√
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[
B
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ū/ε(+)PL(R)v

+ 1
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2
√
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∑
L(R)
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B
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]
ū/ε(−)PL(R)v

Table 5.1: Λb → Λ∗`+`− decay amplitudes in terms of hadronic transversity amplitudes

We can consider either of the two interaction terms discussed in Section 5.1.3, corresponding to

MΛ∗

1 (m, s) =gmΛ∗kµ2 ū
sγ5U

m
µ ,

MΛ∗

2 (m, s) =gεµναβkµk2β ū
sγαU

m
ν ,

(5.50)

These two alternative choices for the interaction terms describe the same physical decay for on-shell particles,
and we checked explicitly that these two choices are equivalent and lead to the same final results in the following.
From Eqs. (5.22) and (5.26), we see that the computation of the Λb → Λ∗(→ NK̄)`+`− decay rate will require
the interference terms between matrix elements with different Λ∗ polarisations, which can be defined as

Γ2(s
a
Λ∗ , sbΛ∗) ≡

√
r+r−

16πm3
Λ∗

∑
sN

M(saΛ∗ , sN )M(sbΛ∗ , sN )∗, (5.51)

where r± = (m2
Λ∗ ±m2

N )−m2
K̄

. The normalisation for Γ2 in Eq. (5.51) comes from the phase space, which is
present both in Λ∗ → NK̄ and Λb → Λ∗(→ NK̄)`+`−. This definition is such that the Λ∗ → NK̄ decay reads

Γ(Λ∗ → NK̄) =
∑
sΛ∗

Γ2(sΛ∗ , sΛ∗)

4
. (5.52)

Using the explicit expression of the solutions in Appendix 5.A, we obtain

Γ2 =
3BΛ∗ΓΛ∗

2


sin2(θp)

e−iφ sin(2θp)√
3

− e−2iφ sin2(θp)√
3

0
eiφ sin(2θp)√

3

cos(2θp)
2 + 5

6 0 − e−2iφ sin2(θp)√
3

− e2iφ sin2(θp)√
3

0
cos(2θp)

2 + 5
6 − e−iφ sin(2θp)√

3

0 − e2iφ sin2(θp)√
3

− eiφ sin(2θp)√
3

sin2(θp)

 , (5.53)

with rows and columns corresponding to values of sa, sb = −3/2,−1/2, 1/2, 3/2. We denote BΛ∗ ≡ B(Λ∗ →
K−p) = B(Λ∗ → K̄0n) and ΓΛ∗ is the inclusive decay width of the Λ∗ baryon.
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5.3 Phenomenology
5.3.1 Angular observables
Combining all the above elements, we obtain finally the differential decay rate

L(q2, θ`, θp, φ) =
8π

3

d4Γ

dq2d cos θ`d cos θpdφ

=cos2 θp
(
L1c cos θ` + L1cc cos

2 θ` + L1ss sin
2 θ`
)

+ sin2 θp
(
L2c cos θ` + L2cc cos

2 θ` + L2ss sin
2 θ`
)

+ sin2 θp
(
L3ss sin

2 θ` cos
2 φ+ L4ss sin

2 θ` sinφ cosφ
)

+ sin θp cos θp cosφ(L5s sin θ` + L5sc sin θ` cos θ`)

+ sin θp cos θp sinφ(L6s sin θ` + L6sc sin θ` cos θ`),

(5.54)

with the angular coefficients L that are interferences between the various helicity amplitudes defined in Table 5.1:

L1c =− 2BΛ∗

(
Re(AL⊥1A

L∗
‖1 )− (L↔ R)

)
,
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(5.55)

where we have neglected the lepton masses3. The expressions including the lepton mass can be found in Ref.
[336]. The corresponding CP-conjugate mode will involve Ā and B̄ amplitudes, where only the weak phases are
taken to their opposite, as already discussed in Section 5.1.1.

We provide further cross-checks of these expressions in Appendix 5.B by comparing our results with general
expectations from the partial-wave analysis of four-body b → s`+`− decays [321], and in Appendix 5.C by
checking the agreement with the expressions for Λb → Λ∗(→ KN)γ [310, 311].

5.3.2 Derived observables
One can define derived observables using a particular weight ω to integrate the differential decay rate over the
whole phase space

X[ω](q2) ≡
∫

d4Γ

dq2d cos θ`d cos θpdφ
ω(q2, θ`, θp, φ)d cos θ`d cos θpdφ. (5.56)

3In the framework we consider this angular coefficient are not linearly independent: L2ss = L1ss/4 + L2cc/2− L1cc/8− L3ss/2
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The differential decay width is

dΓ

dq2
= X[1] =

1

3
[L1cc + 2L1ss + 2L2cc + 4L2ss + 2L3ss]

= |AL||0|
2 + |AL⊥0|2 + |AL||1|

2 + |AL⊥1|2 + |BL||1|
2 + |BL⊥1|2 + (L↔ R),

(5.57)

which we can use to normalise the CP-averaged angular observables and the corresponding CP-asymmetries

Si =
Li + L̄i

d(Γ + Γ̄)/dq2
, Ai =

Li − L̄i
d(Γ + Γ̄)/dq2

. (5.58)

One can similarly define the transverse and longitudinal polarization of the dilepton system [197]

F1 =X

[
5 cos θ2` − 1

dΓ/dq2

]
=

2(L1cc + 2L2cc)

L1cc + 2(L1ss + L2cc + 2L2ss + L3ss)
,

F0 =1− F1 = 1− 2(L1cc + 2L2cc)

L1cc + 2(L1ss + L2cc + 2L2ss + L3ss)
.

(5.59)

One can also define a forward-backward asymmetry with respect to the leptonic scattering angle normalised to
the differential rate

A`FB = X

[
sgn[cos θ`]
dΓ/dq2

]
=

3(L1c + 2L2c)

2(L1cc + 2(L1ss + L2cc + 2L2ss + L3ss))
. (5.60)

Due to the strong decay of the Λ∗, it is no surprise that the analogous asymmetries for the hadronic system
vanish

AΛ∗

FB = X

[
sgn[cos θp]
dΓ/dq2

]
= 0, A`Λ

∗

FB = X

[
sgn[cos θp cos θ`]

dΓ/dq2

]
= 0. (5.61)

5.3.3 Low- and large-recoil limits
As seen before, the description of this decay involves 8 vector/axial form factors and 6 tensor form factors. This
large number of (poorly known) form factors could be tackled by taking the heavy-quark limit mb → ∞. Two
different kinematic situations can be considered: either the outgoing Λ∗ baryon is soft (low-recoil limit), where
HQET can be applied (see Section 2.5.1), or it is energetic (large-recoil limit), where SCET can be applied
Section 2.5.2.

In the low-recoil limit, one can use the heavy-baryon velocity vµ = pµ/mΛb
to project the the b-quark field

onto its large-spinor component hv = /vhv:

〈Λ∗|s̄Γb|Λb〉 → ūαΛ∗vα[ζ1 + /vζ2]ΓuΛb
, (5.62)

where Γ is any Dirac matrix, ζ1 and ζ2 are the only two form factors that should be present at leading order
in αs and ΛQCD/mb according to HQET [337]. These two form factors are functions of q2 or equivalently
v · v′ (where v′ = k/mΛ∗ is the velocity of the light baryon). We can take the heavy-quark limit (neglecting
ΛQCD/mb contributions) in the definition of the form factors Eqs. (5.27) and (5.36) and identify the results with
Eq. (5.62). This is performed (with slightly different definitions of the form factors) in Refs. [40, 197, 338], and
the corresponding expressions yield at low recoil:

fV⊥ = fV0 = fAt = fT⊥ = fT0 =(ζ1 − ζ2)/mΛb
,

fA⊥ = fA0 = fVt = fT5
⊥ = fT5

0 =(ζ1 + ζ2)/mΛb
,

fVg = fAg = fTg = fT5
g =0.

(5.63)

It is also possible to perform a similar analysis in the large-recoil limit where SCET holds. Following Refs. [40,
197, 338], one can see that the SCET analysis yields:

〈Λ∗|s̄Γb|Λb〉 → ξūαΛ∗vαΓuΛb
, (5.64)

where Γ is any Dirac matrix, ξ is the only form factor that should be present at leading order in αs and ΛQCD/mb

according to SCET. These form factors are functions of q2 or equivalently n+ · k (where n+ is a light-like vector
orthogonal to k). One can see that formally, the expression for SCET Eq. (5.64) will be obtained from the
HQET expression Eq. (5.62) by identifying ζ1 to ξ and setting ζ2 to 0, leading to the equality at large recoil:

fVt = fV⊥ = fV0 = fAt = fA⊥ = fA0 = fT⊥ = fT0 = fT5
⊥ = fT5

0 = ξ/mΛb
, (5.65)
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whereas all fg form factors vanish also in the large-recoil limit.
The methods used in Refs. [40, 338] could be used to analyse higher-order corrections to these relations (in

powers of αs and ΛQCD/mb) but this is out of the scope of the present work. From Eq. (5.47), we see that all the
hadronic amplitudes A⊥ involve ζ1 − ζ2, whereas A|| involve ζ1 + ζ2. All B⊥ and B|| amplitudes, corresponding
to transitions to a Λ∗ with helicity 3/2, vanish in both limits because they only depend on fg form factors. In
simple words, the heavy-quark limit allows one to consider the angular momentum of the heavy-quark b and
that of the light quarks as good quantum numbers to describe the Λb state and its transitions. Since the light
quarks are in a spin-0 diquark state and the heavy quark carries a spin 1/2, the b→ s`+`− transition can never
yield a Λ with a helicity 3/2 in this limit [40, 337].

Using the equalities in Eq. (5.63) (which are also compatible with the equalities in Eq. (5.65)), we obtain

L1c → α(ζ21 − ζ22 ), L2c →
1

4
L1c,

L1cc → α′(ζ1 − ζ2)
2 + β′(ζ1 + ζ2)

2, L2cc →
1

4
L1cc,

L1ss → α′′(ζ1 − ζ2)
2 + β′′(ζ1 + ζ2)

2, L2ss →
1

4
L1ss,

(5.66)

whereas the rest of the angular observables (L3ss, L4ss, L5s, L5sc, L6s, L6sc) vanishes. The α and β coefficients
combine Wilson coefficients and kinematic factors. Considering the relations in Eq. (5.66), we can see that we
cannot build in a straightforward manner optimised observables similar to the B → K∗`+`− channel [87, 214]
where the form factors will cancel out and non-trivial information on the Wilson coefficients can be obtained (up
to ΛQCD/mb and αs corrections).

In the case of the large-recoil limit, the three independent observables L1c, L1cc, L1ss only depend on ξ. Then
the uncertainties coming from the form factors of any ratio of these observables are suppressed by ΛQCD/mb. In
both HQET and SCET limits, the angular distribution simplifies substantially

8π

3

d4Γ

dq2d cos θ`d cos θpdφ
' 1

4
(1 + 3 cos2 θp)

(
L1c cos θ` + L1cc cos

2 θ` + L1ss sin
2 θ`
)
, (5.67)

where all three angular observables are independent. The forward-backward asymmetry becomes:

A`FB ' 3L1c

2(L1cc + 2L1ss)
. (5.68)

In these limits, we notice that the angular distribution Eq. (5.67) factorises into the product of two terms, leaving
only a trivial dependence on the angle describing the hadronic final state but a non trivial dependence on the
angle describing the leptonic final state.

This discussion leads us not to consider further the possibility of optimised observables and to focus on the
normalised CP-averaged angular observables S.

5.4 Numerical Results
We consider now numerical results for the various angular coefficients described above. This should be considered
as a preliminary study, as we are going to make several simplifications that should be reassessed carefully if one
wants to provide accurate predictions for this decay. We focus on the muon case (` = µ in the following) and on
the contributions coming from O7,9,10,7′,9′,10′ .

5.4.1 Form factors
A complete analysis would require a precise knowledge of the 14 form factors described in Section 5.2 and their
correlations. A lattice determination of the form factors currently exist, but it is constrained to the high-q2
region (see Ref. [314]). Several efforts are currently under development to obtain a determination over the full,
or at least a larger, q2 range. On one side, lattice form factors could be extended to a lower q2 region through
the use of the moving-NRQCD action [314, 339]. Also these form factors have been studied further in the HQET
limit in Refs. [336, 340] finding some tension in between the lattice determinations in the low-recoil region and
the heavy quark expansion based predictions.

Since the full q2 range results are not available yet, we will present a numerical illustration based on the
MCN quark model of Ref. [42], in order to get an idea of the sensitivity of the angular coefficients to different NP
scenarios. The form factors obtained through the MCN quark model are shown in Fig. 5.6 in the basis chosen in
Sections 5.2.1 and 5.2.2. A comparison between the MCN model and the lattice QCD determination [314] in
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the high q2 region is shown in Fig. 5.5. While they do not perfectly agree, they show reasonable agreement on
the q2 dependence and on the order of magnitude. Let us add that the results of Ref. [42] obey rather well the
HQET relations Eq. (5.63), but do not follow the SCET expectations very well Eq. (5.65).

Due to the lack of accurate estimates of the uncertainties for the various hadronic inputs, we present only a
very crude estimate of the uncertainties, assuming uncorrelated 10% uncertainties for the f0,⊥,t form factors and
uncorrelated 30% uncertainties for the fg form factors.

5.4.2 Non-local charm-loop contributions
It is important that the contributions of non-leptonic operators, discussed in Section 2.7, are taken into account.
Between these, the long-distance contributions of the charm loops are specially difficult to estimate. Contrary to
B → K(∗)`+`− decays, where several estimates based on different theoretical approaches are available [109, 112,
115, 116, 126, 205, 292, 317], non-local contributions to baryonic modes are yet to be estimated. They could be
tackled by data-driven methods similar to Refs. [112, 317], involving light-cone sum rules similar to Refs. [40,
109, 115, 116, 318], although this is not as simple as extending the results on the meson side, since new issues
appear on these modes [341]. On one side, hard spectator interactions have not yet been computed for these
modes, and on the other side, baryon LCDA, which start at 3-particle LCDA, are not as well understood as
meson LCDA [40].

Since this is a preliminary study, we will content ourselves with obtaining a rough estimate of the size of
these contributions. Focusing on the large recoil region first, we will consider an estimate for the charmonium
contribution inspired by estimates for B → K(∗)`+`− [109, 112, 115, 116, 205] at large recoil. Their results
suggest a contribution of order 10% of C9 with a moderate dependence on q2 in the large-recoil region. For
instance, in the estimate from light-cone sum-rules of Ref. [116] for B → K`+`− within [1, 6] GeV2 , the range
of variation remains within:

LCSR contrib. for q2 ∈ [1, 6] GeV2 : Re Ccc̄9 = −0.26± 0.10 , Im Ccc̄9 = −0.49± 0.27 . (5.69)

These results are similar in size (' 10%) to the expected impact of charmonium resonances at low K-recoil of a
few percent based on quark-hadron duality [113]. They are also in line with the dimensional estimates based
on the 1/mb suppression of these contributions. These results can be compared with the results obtained by
considering only the perturbative part of the cc̄ contribution in Eq. (2.83), for instance

Perturbative contrib. at q2 = 1 GeV2 :Re Ccc̄9 = 0.16, Im Ccc̄9 = 0.17 .

q2 = 6 GeV2 :Re Ccc̄9 = 0.11, Im Ccc̄9 = 0.17 .
(5.70)

to which we do not attempt to assign a meaningful theoretical uncertainty.
We will thus consider two different approaches,
• An estimate for the SM value of C9 including the effect of cc̄ resonances both at low- and large-recoil:

Our estimate : CSM
9 = CHeff

9 (1 + ρeiφ) , ρ ∈ [0, 0.1] , φ ∈ [0, 2π] , (5.71)

where CHeff
9 corresponds to the Wilson coefficient appearing in Eq. (2.35).

• And a purely perturbative approach where we consider only the factorisable quark-loop contributions
including them into the effective Wilson coefficients Ceff

7 and Ceff
9 (q2) [38, 111] introduced in Eqs. (2.81)

and (2.83). This means that we take into account only the charm-loop contributions derived from
perturbation theory (taking mc = 1.3 GeV for illustration).

We consider both of these approaches as the first one allows us to estimate the size of theoretical uncertainties
and the second one corresponds to the information currently available for the Λb → Λ∗`+`− decay. Admittedly,
this first proposal is only a rough attempt at obtaining at estimating this effect, as it includes no dependence
on q2 nor on the spins of the baryons and its size is guesstimated. However, since no better estimates are yet
available, we will content ourselves with this order-of-magnitude estimation of the size of these contributions.
Obviously, non of these models hold in the charmonium resonance region, where the cc̄ pair becomes resonant
and yields contributions that are much larger [114].

An extension of the long distance contribution estimates to the Λb → Λ∗(→ pK−)`+`− decay would be
highly commendable and it will be needed in the future once measurements are available and can be interpreted
within an effective theory approach, but it is clearly out of the scope of the present study. This said, since we
want to discuss the potential of experimental measurements, we need to consider at least a rough estimate of the
main theoretical uncertainties.

Taking all of this into consideration, the first approach is used in Section 5.5, Table 5.2, and Figs. 5.11 to 5.13
where we try to asses the possible sensitivity of a future study by LHCb and the second approach is used in
Figs. 5.7 to 5.10 where we content ourselves with the information currently available for baryonic decays.
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Figure 5.5: Comparison between the MCN model determination [42] and the lattice QCD determination [314] for
the form factors of the Λb → Λ∗ transition. For easy comparison, the form factors are shown in the basis of Ref.
[314] where the endpoint divergences are removed. The equivalence to the form factors defined in Sections 5.2.1
and 5.2.2 and used throughout this chapter can be found in Appendix A.2 of Ref. [314].
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Figure 5.6: Form factors for Λb → Λ∗ on the basis introduced in Sections 5.2.1 and 5.2.2 as a function of q2
coming from the MCN quark model of Ref. [42]. The vector (axial) form factors are shown on the top left
(right), and the tensor (pseudotensor) form factors are shown on the bottom left (right). As an illustration, a
10% uncertainty is considered for all form factors except for fg where a 30% uncertainty is considered.
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Figure 5.7: Top: Differential decay rate (normalised to the total Λb decay width) in the SM case and three NP
scenarios. Only short-distance contributions from charm loops are included. Bottom: For illustration only, we
also show the effect of a model for charmonium resonances in the SM case [42].

5.4.3 Numerical illustrations

First we show the differential decay rate (normalised to the total Λb decay width) and the lepton forward-
backward asymmetry as functions of the dilepton invariant mass in Figs. 5.7 and 5.8 in the context of the SM
and several NP models inspired by the global fit to b→ s`+`− transitions discussed in Chapter 4: CNP

9µ = −1.11,
CNP
9µ = −CNP

9′µ = −0.62, CNP
9µ = −CNP

10µ = −0.62. We see that the normalisation of the branching ratio is
significantly affected by the presence of NP, while keeping a similar shape in all cases. The lepton forward-
backward asymmetry exhibits a zero at large recoil whose position depends on the scenario considered. The
mild kink at q2 = 4m2

c corresponds to the opening of the cc̄ threshold, appearing at the perturbative level as an
imaginary part in Ceff

9 (q2) for q2 ≥ 4m2
c .

The corresponding error bar for each observable is shown in the case of the SM predictions, but it is a
rather conservative error, as we do not take into account the fact that the various form factors are significantly
correlated, as illustrated in both HQET and SCET limits. In order to keep our figures simple to read, we do not
show the uncertainties for the various NP models, which are of the same order as in the SM case (see Section 5.5
for more discussion of the uncertainties).

For illustrative purposes, we also show the impact of a naive model of charmonium resonances in the SM
case [42], confirming that the impact of charm loops remains quite small below 8 GeV2 in general, and that the
lepton forward-backward asymmetry is much less affected as soon as the resonance region is left. In Figs. 5.7
and 5.8, the window at low recoil between the ψ(2S) resonance (above 15 GeV2) and the endpoint is rather
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Figure 5.8: Top: A`FB in the SM case and three NP scenarios. Only short-distance contributions from charm
loops are include. Bottom: For illustration only, we also show the effect of a model for charmonium resonances
in the SM case [42].
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Figure 5.9: Variation of S1c (top) and S2cc − S1cc/4 (bottom) with respect to the dilepton invariant mass, in the
case of the SM and three NP scenarios.
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Figure 5.10: Variation of S3ss (top) and S5sc (bottom) with respect to the dilepton invariant mass, in the case
of the SM and three NP models.
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small, which may affect the application of quark-hadron duality. In the large-recoil region, the main issue is
related to non-local contributions from charm loops, which may affect significantly the decay rate but cancels
mostly in the lepton forward-backward asymmetry.

We now move to the normalised angular coefficients defined in Eq. (5.58). We do not consider the CP-
asymmetries A, or the rates S which involve the imaginary part of the products of amplitudes, as these quantities
are very dependent on assumptions about the phase of these amplitudes, and in particular the charm-loop
contributions. We show the most interesting remaining observables in Figs. 5.9 and 5.10. We see that these
normalised angular coefficients are sensitive to the scenario with right-handed contributions CNP

9µ = −CNP
9′µ, but

the sensitivity is more limited for scenarios with NP contributions in CNP
9µ only or in CNP

9µ = −CNP
10µ. S1c exhibits

some sensitivity to these scenarios, with a q2-dependence very similar to A`FB (the two quantities are actually
identical in both HQET and SCET limits).

As expected from HQET and SCET expectations, the form factors fg do not contribute much to the amplitudes
apart from the vicinity of the low-recoil endpoint. In particular, B is small compared to the amplitudes A, which
explains that most of the angular coefficients have a very similar behaviour, see Eq. (5.66). Moreover, in the SM
and in the NP models with no right-handed currents (NP in CNP

9µ only or in CNP
10µ = −CNP

9µ ), the four dominant
amplitudes A are the left-handed ones (AL⊥,||), with contributions all proportional to CL9,10,± = C9µ−C10µ. These
contributions are all modified in the same proportion in the presence of NP in C9µ and/or C10µ. The dependence
on the Wilson coefficients cancels out between the numerator and the denominator of the normalised angular
coefficients Si, which have thus the same q2-dependence for all these scenarios, as can be seen in Figs. 5.9
and 5.10. This conclusion holds for most of the physical domain, apart from a region at very small q2 where the
photon pole is dominant. Subdominant variations related to the interference between the left-handed contribution
CL9,10,± and the other amplitudes (photon pole C7 ± C7′ , right-handed contributions CR9,10,±) can be seen for S1c

and S5sc at large recoil.
On the other hand, the scenario with right-handed contributions CNP

9µ = −CNP
9′µ will affect differently CL9,10,+

and CR9,10,+, which are the dominant contributions in the normalised angular coefficients. It is thus not surprising
that the q2-dependence of these coefficients is rather different for this NP scenario with right-handed couplings,
as can be seen from the curves in Figs. 5.9 and 5.10 that differ significantly from the SM case.

At the low-recoil endpoint for q2 → (mΛb
− mΛ∗)2, the situation is slightly different and it depends on

the behaviour of the form factors. In this region, the model of form factors in Ref. [42] is less singular than
requested from Eqs. (5.31) and (5.38). By inspecting Eqs. (5.34), (5.35), (5.41) and (5.47), one can see that only
the contributions from fVg and fTg form factors survive in the various helicity amplitudes, so that the angular
coefficients L1c, L2c, L4ss, L5s, L6sc vanish. If we neglect the (very small) contribution from the photon pole (i.e.
we take C7, C7′ → 0), we obtain the following results for the other observables at the low-recoil endpoint

S1c → 0, S2cc − S1cc/4 → 3/8, S3ss → −1/4, S5sc → −1/2. (5.72)

Apart from S1c which vanishes, these values are significantly larger than those obtained over the rest of the
physical region. Indeed, as fVg and fTg are the only non-vanishing contributions, the normalised differential
decay rate dΓ/dq2/N (with N defined in Eq. (5.48)) becomes smaller by several orders of magnitudes when
q2 → (mΛb

−mΛ∗)2 and enhances the values of S2cc − S1cc/4, S3ss and S5sc at that endpoint compared to the
rest of the physical range for the dilepton invariant mass.

5.4.4 Comments
Our study is of course very preliminary and should be refined in several ways in order to provide accurate
predictions beyond this exploratory work: we have no inputs on the form factors determined from lattice
simulations or light-cone sum rules, we have included no correlations among the uncertainties on these form
factors even though they are correlated in both SCET and HQET limits. Moreover, we do not attempt a
proper assessment of the charmonium contribution. All these issues should be discussed before drawing definite
conclusions concerning the sensitivity of these observables to NP contributions. However subsequent studies
of this mode [336, 340, 342] have confirmed our expressions and started to work towards a more complete
description of this decay.

In Section 5.4, the sensitivity of the angular observables of the Λb → Λ∗`+`− decay on hadronic uncertainties
and on NP contributions was investigated. Several of them were shown to exhibit sensitivity with respect to NP
contributions currently favoured by global fits to the b→ s`+`− data.

Interestingly, the branching ratio for Λb → Λ∗`+`− for ` = µ decreases for the NP scenarios favoured to
explain the deviations observed in the meson sector. This agrees perfectly with the trend shown by the recent
LHCb measurement of RpK− [223]

RLHCb
pK− = 0.86+0.14

0.11 ± 0.05 . (5.73)
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Indeed this measurement involves several intermediate Λ resonances, but with a prominent contribution of the
Λ(1520) baryon. If one assumes that this measurement is indeed dominated by the contribution of Λ(1520) and
one neglects long-distance cc̄ contributions at large Λ recoil, we can get the measured central value of RpK− = 0.86
for the following three NP points: CNP

9µ = −0.76, CNP
9µ = −CNP

10µ = −0.29, or CNP
9µ = −CNP

9′µ = −0.99 (in each
scenario, all the other Wilson Coefficients are purely SM). These points are in remarkable agreement with the
results of global fits to b→ s`+`− and b→ sγ transitions in B meson decays (see Chapter 4). This exercise is
obviously purely illustrative and its significance should not be overstated, but it shows the interest of identifying
the fraction due to the Λ(1520) excited state in RpK− , and to measure the angular distribution of the decay
Λb → pK−`−`− through this specific baryon intermediate state.

5.5 Prospects for Λb → Λ∗(→ pK)`+`−

In this section we present the prospects of an angular analysis of the Λb → Λ∗`+`− decay. Using the expected
yield in the current dataset collected at the LHCb experiment, as well as the foreseen ones after the LHCb
upgrades4, sensitivity studies are presented to determine the experimental precision on angular observables
related to the lepton distribution and their potential to identify New Physics. The forward-backward lepton
asymmetry at low dilepton invariant mass is particularly promising. NP scenarios favoured by the current
anomalies in b→ s`+`− decays can be distinguished from the SM case with the data collected between the Run
3 and the Upgrade 2 of the LHCb experiment.

The Λb → Λ∗`+`− decay width and angular coefficients can be conveniently accessed experimentally in bins or
regions of q2. Due to the available phase space in this decay, and avoiding the region dominated by the charmonia
resonances, the studies are performed in three regions: [0.1, 3], [3, 6] and [6, 8.68] GeV2/c4. Additionally, a
broader bin covering the central q2 region, [1, 6] GeV2/c4, is added to improve the experimental sensitivity in this
region and as a more conservative choice regarding cc̄ contributions. As a first exercise to grasp the potential of
an angular analysis of the Λb → Λ∗`+`− decay and due to the limited statistics available for this mode, sensitivity
studies are performed using the simplified expression of the angular distribution presented in Eq. (5.67) and only
CP-averaged observables are considered. We choose the CP-averaged forward-backward asymmetry in the lepton
sector, A`FB , and the S1cc coefficient as the observables of interest and fix the normalisation by 1

2L1cc+L1ss = 1.
The SM predictions for these angular observables are extracted in the q2 bins of interest and shown in Table 5.2,
together with the differential decay width. Besides the scenario of uncertainties used in Section 5.4, which we
will refer as the “conservative” scenario, the theoretical precision obtained assuming a 5% uncertainty on the
form factors due to foreseeable improvements in lattice QCD studies [314] and light cone sum rules is also given,
which we refer to as the “liberal scenario”. To illustrate the sensitivity of these observables to the effect of NP,
the predictions of a scenario with a NP contribution CNP

9µ = −1.11 are also computed.

5.5.1 Experimental simulation

In the recent test of LFU in Λb → pK`+`− decays by LHCb [223], around 400 Λb → pKµ+µ− and 100
Λb → pKe+e− signal events were observed in the q2 region [0.1, 6]GeV2 and m(pK−) < 2600MeV, in a dataset
corresponding to 3 fb−1 recorded at 7 and 8 TeV and 1.7 fb−1 recorded at 13 TeV . The main difference
between the muon and electron modes arises from the trigger and selection efficiencies in the experimental
study. In the following, we focus on the muon mode due to the larger experimental yields but the results can be
directly extrapolated to the electron case by scaling the yields accordingly. LHCb also published the background
subtracted invariant mass of the hadronic system for Λb → pKµ+µ− candidates (available in the supplementary
material of Ref. [223]), from where we estimate that roughly around 90 events correspond to the Λb → Λ∗µ+µ−

decay. The LHCb experiment has already recorded a total of 6 fb−1 at 13 TeV and will accumulate a total
of 23 and 50 fb−1 after Run 3 and Run 4 of the LHC, respectively. Moreover, it has been proposed to install
an upgraded detector to take data during the High-Luminosity phase of the LHC to collect 300 fb−1 [343]. A
summary of the completed and planned LHCb running periods is provided in Table 5.3. Table 5.4 collects the
estimated yields of Λb → Λ∗µ+µ− decays in the different q2 bins and running periods, extrapolated from the
published LHCb data and the SM prediction for the q2 distribution. These numbers are used to estimate the
sensitivity to NP of an angular analysis of this decay mode. For the electron case, fewer events are expected [223],
although the trigger-less readout foreseen for LHCb from Run 3 onwards should allow a higher experimental
efficiency for this mode.

4The definition of the LHCb run periods and upgrades, as well as the size of the collected and expected datasets can be found in
Ref. [343].
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Observable [0.1,3] [3,6] [6,8.68] [1,6]
dΓ/dq2/ΓΛb

[10−9]
SM 0.397 ± 0.054 1.29 ± 0.18 3.22 ± 0.42 0.95 ± 0.13
SM - 5% 0.397 ± 0.032 1.29 ± 0.11 3.22 ± 0.28 0.95 ± 0.08
NP 0.337 ± 0.042 1.04 ± 0.13 2.58 ± 0.32 0.77 ± 0.10
NP - 5% 0.337 ± 0.023 1.04 ± 0.08 2.58 ± 0.20 0.77 ± 0.06

A`FB
SM 0.048 ± 0.018 -0.127 ± 0.033 -0.235 ± 0.040 -0.098 ± 0.031
SM - 5% 0.048 ± 0.013 -0.127 ± 0.020 -0.235 ± 0.022 -0.098 ± 0.019
NP 0.098 ± 0.022 -0.059 ± 0.034 -0.166 ± 0.041 -0.031 ± 0.032
NP - 5% 0.098 ± 0.016 -0.059 ± 0.026 -0.166 ± 0.030 -0.031 ± 0.025

S1cc

SM 0.181 ± 0.031 0.242 ± 0.042 0.361 ± 0.051 0.221 ± 0.038
SM - 5% 0.181 ± 0.019 0.242 ± 0.021 0.361 ± 0.026 0.221 ± 0.020
NP 0.240 ± 0.038 0.263 ± 0.042 0.371 ± 0.050 0.246 ± 0.039
NP - 5% 0.240 ± 0.024 0.263 ± 0.022 0.371 ± 0.026 0.246 ± 0.021

Table 5.2: Theory predictions for A`FB and S1cc in the SM and in a NP model with CNP
9µ = −1.11. As

an illustration of the expected precision of the theory predictions, these are given both using “conservative”
uncertainties of 10%(30%) for the f0,⊥,t (fg) form factors and assuming “liberal” uncertainties of 5% for all form
factors. In both cases an uncertainty of 10% (see Eq. (5.71)) is included on CSM

9µ to account for cc̄ contributions.

Run period Run 1 – 2 Run 3 Run 4 Run 5
Start date 2010 2022 2027 2032
End date 2018 2024 2030 2035

Center-of-mass energy 7, 8, 13 TeV 13–14 TeV 14 TeV 14 TeV
Luminosity 9 fb−1 23 fb−1 50 fb−1 300 fb−1

Table 5.3: Completed and planned LHC runs, corresponding start and end dates, center-of-mass pp collision
energy and accumulated integrated luminosity expected to be recorded at LHCb.

Angular acceptance

The angular distributions of the Λb → Λ∗µ+µ− decay are distorted by the geometrical acceptance of the detector,
the trigger and the selection requirements [239]. The shapes of the acceptance have been estimated using a
stand-alone fast simulation software called RapidSim [344] by applying the LHCb geometrical acceptance and
transverse momentum (p2T) requirements, as needed for the track reconstruction and background rejection, on
the final-state particles. These are known to be the dominant effects in shaping the acceptance distributions. In
particular, the p2T of the muons is required to be larger than 400MeV. Using the simplified angular distribution
of Eq. (5.54) there is no need to model the angular acceptances of the φ and cos θp variables since they only
appear as a common scale factor in the probability density function (PDF).

The cos θ` acceptance curve is expected to be symmetric due to the symmetry between the two leptons in
the decay with a loss of events for large | cos θ`| values due to the muon p2T requirement. This last characteristic
is mainly visible in the low-q2 region as shown in Appendix 5.D.

Experimental sensitivity

The sensitivity of the differential measurement of the Λb → Λ∗µ+µ− decay width and angular observables to NP
effects is studied comparing the theoretical predictions for these observables in the SM and the NP scenario
to the expected experimental precision. The experimental sensitivity to the decay width is directly extracted
from the expected signal yield in each bin given in Table 5.4, assuming poisonian uncertainties on the yields and
neglecting the effect of potential backgrounds, which are observed to be very small in this decay mode [223]. One
of the main experimental challenges in the selection of Λb → Λ∗`+`− decays is the contamination from other Λ∗

resonances that overlap in the pK− spectrum with the Λ(1520) state. In the amplitude analysis of the related
Λb → pKJ/ψ mode [313] three other resonances were observed to contribute to the pK− mass region around the
Λ(1520) state, namely Λ(1405), Λ(1600) and Λ(1800). However, all these resonances have spin 1/2, in contrast
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q2 bin
Dataset 9 fb−1 23 fb−1 50 fb−1 300 fb−1

[0.1, 3]GeV2 50 140 300 1750
[3, 6]GeV2 150 400 900 5250

[6, 8.68]GeV2 400 1100 2400 14000
[1, 6]GeV2 190 510 1140 6650

Table 5.4: Extrapolated Λb → Λ∗µ+µ− signal yields in each q2 bin for the accumulated luminosity expected at
LHCb at the end of Run 2, Run 3, Run 4 and HL− LHC.

Observable 9 fb−1 23 fb−1 50 fb−1 300 fb−1

dΓ/dq2/ΓΛb
[10−9]

[0.1, 3] 0.060 0.036 0.024 0.010
[3, 6] 0.106 0.064 0.043 0.018
[6, 8.68] 0.176 0.107 0.072 0.030
[1, 6] 0.070 0.042 0.029 0.012

A`FB
[0.1, 3] 0.140 0.079 0.053 0.022
[3, 6] 0.061 0.037 0.025 0.010
[6, 8.68] 0.036 0.022 0.015 0.006
[1, 6] 0.058 0.035 0.023 0.010

S1cc

[0.1, 3] 0.241 0.148 0.099 0.041
[3, 6] 0.104 0.062 0.041 0.017
[6, 8.68] 0.061 0.036 0.024 0.010
[1, 6] 0.100 0.060 0.040 0.017

Table 5.5: Estimated experimental uncertainties for the differential decay width, dΓ/dq2/ΓΛb
(top), A`FB (middle)

and S1cc (bottom) for different data-taking scenarios in the considered q2 bins in GeV2.

to the 3/2 spin of Λ(1520), which gives place to a different angular distribution that should allow to disentangle
them, following a similar strategy to the one used in the angular analysis of Bd → K∗µ+µ− to account for the
S-wave contribution [287].

The experimental sensitivity to the angular observables is studied with pseudoexperiments. Events are
generated according to a PDF that is the product of Eq. (5.67) and the experimental acceptance described
above. Distributions of the cos θ` variable are generated using both the SM and NP predictions for the angular
parameters and are fitted back with the same PDF, letting the A`FB and S1cc parameters float. A large number of
experiments is generated for all the q2 bins and expected signal yields in the different data-taking periods of LHC.
The resulting distributions for the parameters, their uncertainties and pull distributions are examined. Small
biases on the central values of the parameters in the low and central q2 bins are observed in the low-statistics
scenarios corresponding to the datasets expected in Run 2 and 3 of LHCb. The effect is larger on S1cc and
in the SM case but it is always below 20% of the statistical uncertainty and can be added as a systematic to
the measurement. The fit uncertainty is checked to provide good coverage in all the cases so it is taken as the
experimental sensitivity to the angular observables.

Potential biases arising from the usage of the simplified angular PDF in Eq. (5.67) are checked by generating
a large number of pseudoexperiments with the full PDF, Eq. (5.54), and fitting the observables of interest, A`FB
and S1cc, with the simplified PDF. At small signal yields no effect can be observed, while a small bias is found,
which is less than 10% of the statistical uncertainty, with the events expected during Upgrade 2 of LHCb. This
study confirms that Eq. (5.67) is a safe approximation to apply at least until 300 fb−1 have been recorded by
LHCb.

5.5.2 Comparison with theory
The sensitivity for different accumulated statistics is compared to the theoretical predictions in Figs. 5.11 to 5.13
for the dΓ/dq2/ΓΛb

, A`FB and S1cc observables, respectively, for the three narrow q2 bins. The values for all
the bins are also reported in Table 5.5, where one can observe the experimental improvement in the broader
[0.1, 6]GeV2 bin. With the conservative theoretical uncertainties the decay width provides little sensitivity to
separate the SM from the NP scenario studied. However, with the improved uncertainties on the form factors at
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Figure 5.11: Theory predictions for dΓ/dq2 in the considered q2 bins in the SM (blue area) and the NP
scenario with CNP9µ = −1.11 (red area), using the nominal theory uncertainties (left) and improved ones with 5%
uncertainties on the form factors (right). In both cases an uncertainty of 10% (see Eq. (5.71)) is included on C9
to account for cc̄ contributions. The expected LHCb sensitivity with the full Run 2, Run 3, Run 4 and Upgrade
2 samples is shown by grey-scale markers in increasing sensitivity. The bottom plots show the relative values
with respect to the SM prediction in each bin (µ) for all the q2 bins considered ([0.1, 3],[3, 6],[6, 8.68],[1, 6]).

the level of 5%, one can disentangle with precision the two scenarios in the q2 bins [1, 6] and [6, 8.68]GeV2. For
a better visualisation, the relative values with respect to the SM prediction in each bin are shown in the bottom
plots of Fig. 5.11 for all the q2 bins considered. In this case, the bin number, which follows the order presented
in Tables 5.2, 5.4 and 5.5 is used in the x-axis. For the angular observables, while S1cc exhibits a poor sensitivity
to NP, A`FB is more promising. In the conservative scenario for theory uncertainties, one could statistically
separate the SM and the studied NP model with the data sample collected by LHCb after Upgrade 2. If the
theory uncertainties on the form factors can be reduced down to 5%, a good separation is already achieved after
Run 3 in the q2 bins [1, 6] and [6, 8.68] GeV2.

5.6 Conclusion
The persistent patterns of deviations from SM expectations in b→ sµ+µ− decays and the hints of violation of
lepton-flavour universality between electrons and muons in these modes provide a strong incentive to look for
confirmations using other modes with different theoretical and experimental uncertainties. We have investigated
the rare decay Λb → Λ∗(→ NK̄)`+`− as a new source of information, in addition to the meson channels already
studied at B factories and the LHC. We gave a detailed description of the kinematics of the decay and emphasised
the issues related to the propagation and the strong decay of the spin-3/2 Λ∗ baryon. We computed the decay
rate within the effective Hamiltonian approach, considering only SM and chirality-flipped operators, taking the
narrow-width approximation for the Λ∗ baryon. The involvement of spin-1/2 and spin-3/2 states yields a fairly
complicated differential decay rate which is expressed in terms of 12 angular observables that depend on the
dilepton invariant mass q2. Each observable can be seen as the sum of interference terms among 12 helicity
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Figure 5.12: Theory predictions for A`FB in the considered q2 bins in the SM (blue area) and the NP scenario with
CNP

9µ = −1.11 (red area), using the nominal theory uncertainties (left) and improved ones with 5% uncertainties
on the form factors (right). In both cases an uncertainty of 10% (see Eq. (5.71)) is included on C9 to account for
cc̄ contributions. The expected LHCb sensitivity with the full Run 2, Run 3, Run 4 and Upgrade 2 samples is
shown by the grey-scale markers in increasing sensitivity.

amplitudes, which can be expressed in terms of short-distance Wilson coefficients and hadronic transition form
factors defined in a helicity basis. We checked that our result is in agreement with general expectations from the
helicity amplitude formalism, and we also checked that our expressions exhibit the expected behaviour in the
real-photon limit q2 → 0 in order to recover the branching ratio for Λb → Λ∗γ. We discussed the simplifications
arising in the limit of an infinitely heavy b-quark: depending on the kinematics (low or large Λ∗ recoil, i.e.,
large or small q2), the Heavy Quark Effective Theory and the Soft-Collinear Effective Theory can be used to
express all the form factors in terms of 2 or 1 reduced form factors at leading order (i.e up to corrections of
order αs and ΛQCD/mb). As there is currently no determination of the form factors over the whole q2 range
available from lattice simulations or light-cone sum rules, we performed a first illustration of the sensitivity of
the observables to New Physics contributions using hadronic inputs from quark models. We considered several
NP scenarios favoured by the anomalies observed recently in b → s`+`− decay modes and we compared the
results obtained using the whole set of form factors or exploiting the HQET/SCET relations among the form
factors. We discussed the phenomenological consequences for some observables. We noticed that the differential
decay rate is quite sensitive to the specific NP scenario considered, both at low and large recoils. On the other
hand, the angular coefficients normalised to this decay rate show fewer variations. Indeed, in the case of NP
scenarios with moderate contributions to CNP

9µ and/or CNP
10µ, the four numerically significant amplitudes (AL⊥,||)

are dominated by a single combination of Wilson coefficients which cancel between the numerator and the
denominator of the angular coefficients S normalised with respect to the branching ratio. In the very large-recoil
region, the interference with the photon pole allows for some discrimination between the NP scenarios for some
of the observables. On the other hand, these angular coefficients turn out to be quite sensitive to the presence of
right-handed contributions CNP

9′µ which affect differently the various dominant transversity amplitudes.
We then presented the prospects of angular analyses of Λb → Λ∗`+`− decays, motivated in particular by

recent results on lepton-flavour universality in Λb → pK−`+`− at LHCb. Using the expected yield from the
data to be collected at the LHCb experiment in a near future, sensitivity studies were presented to determine
the experimental precision on angular observables related to the lepton distribution and their potential to
identify New Physics. We studied the impact of acceptance effects on the extraction of these angular observables
using published LHCb data together with the fast simulation software RapidSim. The lepton forward-backward
asymmetry A`FB seems particularly promising: depending on the progress made in reducing the uncertainties
on the theory predictions, at some point between Run 3 and Upgrade 2, one could use this observable at low
dilepton invariant mass to distinguish between the SM and a scenario with NP contributions to CNP

9µ supported by
the current b→ s`+`− data. We checked that our conclusions were not biased by the significant simplifications
of the angular distribution that we proposed based on the heavy-quark limit and supported by phenomenological
estimates. The angular distribution then factorises into the product of two terms, i.e. a trivial dependence on the
angle describing the hadronic final state and a non trivial dependence on the angle describing the leptonic final
state. The three observables can be reexpressed as the branching ratio, the lepton forward-backward asymmetry
and a third angular observable S1cc. The first two observables present some sensitivity to NP contributions to
the short-distance Wilson coefficient CNP

9µ for b→ sµ+µ− transitions.
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Figure 5.13: Theory predictions for S1cc in the considered q2 bins in the SM (blue area) and the NP scenario with
CNP

9µ = −1.11 (red area), using the nominal theory uncertainties (left) and improved ones with 5% uncertainties
on the form factors (right). In both cases an uncertainty of 10% (see Eq. (5.71)) is included on C9 to account for
cc̄ contributions. The expected LHCb sensitivity with the full Run 2, Run 3, Run 4 and Upgrade 2 samples is
shown by the grey-scale markers in increasing sensitivity.

Future experimental information on these observables could thus provide complementary information the
on-going search for new physics from b → s`+`− transitions. However, several issues must be solved before
this mode can be competitive compared to B → K(∗)`+`− and even Λb → Λ(→ Nπ)`+`− decays. Indeed, the
theoretical determination of hadronic contributions, local (form factors) and non-local (charm loops) has to be
performed accurately. In principle, one could also exploit the polarisation of the initial and final state to build
further observables, similarly to Ref. [201] in the Λb → Λ`+`− case. These aspects should be investigated and
solved (partially or fully) in the future. This would open the possibility for a study of Λb → Λ∗(→ NK̄)`+`− at
LHC that could complement other modes in the ongoing quest for New Physics in b→ s`+`− transitions.
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Appendices

5.A Notation

5.A.1 Kinematics
In agreement with the general analysis in terms of helicity amplitudes [321, 323], we consider the kinematics of
the decay in each of the relevant rest frames, which also provides a definition of the angles of interest. In the Λb
rest frame, we have

qµ =


m2

Λb
+q2−m2

Λ∗

2mΛb

0
0

− 1
2mΛb

√
λ(m2

Λb
,m2

Λ∗ , q2)

 , kµ =


m2

Λb
+m2

Λ∗−q2

2mΛb

0
0

1
2mΛb

√
λ(m2

Λb
,m2

Λ∗ , q2)

 . (5.74)

In the dilepton rest frame (where the basis of polarisation vector ε is also defined), we have

qµ1 =


E`

−E`β` sin θ`
0

−E`β` cos θ`

 , qµ2 =


E`

E`β` sin θ`
0

E`β` cos θ`

 , (5.75)

where

E` =

√
q2

2
, β` =

√
1−

4m2
`

q2
. (5.76)

In the Λ∗ rest frame we have

kµ1 =


m2

Λ∗+m
2
N−m2

K̄

2mΛ∗
mΛ∗
2 βNK̄ sin θp cosφ

mΛ∗
2 βNK̄ sin θp sinφ
mΛ∗
2 βNK̄ cos θp

 , kµ2 =


m2

Λ∗+m
2
K̄
−m2

N

2mΛ∗

−mΛ∗
2 βNK̄ sin θp cosφ

−mΛ∗
2 βNK̄ sin θp sinφ
−mΛ∗

2 βNK̄ cos θp

 , (5.77)

where
βNK̄ =

1

m2
Λ∗

√
λ(m2

Λ∗ ,m2
N ,m

2
K̄
). (5.78)

These definitions agree with the LHCb convention for Λb → Λ(→ Nπ)`+`− [201, 226, 247] (up to the
identifications θp = θb and φ = χ) and they also agree with the LHCb convention for B → K∗(→ Kπ)`+`−

decays [321, 345] up to the identification {B0,K∗0,K+, π−} → {Λb,Λ∗, p,K−}.

5.A.2 Free solutions in the Λb rest frame
For the leptons, we can use the well-known expressions for the spin-1/2 case, see for instance Ref. [323] where the
application to helicity amplitudes is discussed. We have the following solutions for Λb for different values for sΛb

uΛb
(+1/2) =


√
2mΛb

0
0
0

 , uΛb
(−1/2) =


0√

2mΛb

0
0

 . (5.79)
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Following Ref. [324] as discussed in Section 5.1.3, we have the solutions for different values for sΛ∗

uΛ∗(−3/2) =
1

2
√
mΛb


0 0 0 0
0

√
s+ 0 −√

s−
0 −i√s+ 0 i

√
s−

0 0 0 0

 ,

uΛ∗(−1/2) =

√
s−s+

4
√
3m

3/2
Λb
mΛ∗


0 2

√
s+ 0 −2

√
s−

2mΛ∗mΛb√
s−

0
2mΛ∗mΛb√

s+
0

− 2imΛ∗mΛb√
s−

0 − 2imΛ∗mΛb√
s+

0

0 s−+s+√
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s+
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√
s−s+

4
√
3m

3/2
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mΛ∗


2
√
s+ 0 2

√
s− 0

0 − 2mΛ∗mΛb√
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0
2mΛ∗mΛb√
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2
√
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0 0 0 0

−√
s+ 0 −√

s− 0
−i√s+ 0 −i√s− 0

0 0 0 0

 ,

(5.80)

where the matrix notation corresponds to the vector and the spinor indices of the solutions uαΛ∗,a.

5.A.3 Free solutions in the Λ∗ rest frame
We have the following solutions for Λ∗ for different values for sΛ∗

uΛ∗(−3/2) =
√
mΛ∗


0 0 0 0
0 1 0 0
0 −i 0 0
0 0 0 0

 , uΛ∗(−1/2) =

√
mΛ∗

3


0 0 0 0
1 0 0 0
−i 0 0 0
0 2 0 0

 ,

uΛ∗(+1/2) =

√
mΛ∗

3


0 0 0 0
0 −1 0 0
0 −i 0 0
2 0 0 0

 , uΛ∗(+3/2) =
√
mΛ∗


0 0 0 0
−1 0 0 0
−i 0 0 0
0 0 0 0

 .

(5.81)

We have the following solutions for N for different values for sN

uN (+1/2) =
1√

2mΛ∗


√
r+ cos

θp
2√

r+ sin
θp
2 e

iφ

√
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√
r+ cos
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2√
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2 e
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2

 . (5.82)

5.A.4 Dilepton rest frame
We have the following solutions for `− for different values for s`−

u`−(+1/2) =


√
E` +m` cos

θ`
2√

E` +m` sin
θ`
2√

E` −m` cos
θ`
2√
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2
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−
√
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θ`
2√
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θ`
2√
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2
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√
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θ`
2

 , (5.83)

and for `+ for different values for s`+

v`+(+1/2) =


√
E` −m` cos

θ`
2√

E` −m` sin
θ`
2

−
√
E` +m` cos

θ`
2

−
√
E` +m` sin

θ`
2

 , v`+(−1/2) =


√
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−
√
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θ`
2√
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2

−
√
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2

 . (5.84)
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5.B Cross check of the angular decomposition
The structure of the differential decay rate obtained in Section 5.3.1 can be checked against the general analysis
in terms of helicity amplitudes performed in Ref. [321]. Following the arguments presented there, taking into
account the spins of the initial, intermediate and final states as well as the absence of spin-2 operators in the
effective Hamiltonian, we expect the differential decay rate to be organised as

L ∝Re

2JΛ∗∑
LΛ∗=0

2Jγ∑
L`=0

min(LΛ∗ ,L`)∑
M=0

GLΛ∗ ,L`

M (q2)ΩLΛ∗ ,L`

M (ΩΛ∗ ,Ω`)

∝Re[G0,0
0 Ω0,0

0 +G0,1
0 Ω0,1

0 +G0,2
0 Ω0,2

0

+G2,0
0 Ω2,0

0 +G2,1
0 Ω2,1

0 +G2,1
1 Ω2,1

1 +G2,2
0 Ω2,2

0 +G2,2
1 Ω2,2

1 +G2,2
2 Ω2,2

2 ].

(5.85)

The index LΛ∗ corresponds to the NK̄ system, L` to the dilepton system, and M to the φ-component of both
partial waves. In our case we have JΛ∗ = 3/2 and Jγ = 1, which is the maximal spin of the virtual gauge boson
induced by the operators of the effective Hamiltonian in the absence of tensor contributions, as discussed in
detail in Ref. [321]. G are angular coefficients depending on the invariant mass of the dilepton pair. The angular
functions are given by the product of Wigner D functions

ΩLΛ∗ ,L`

M (ΩΛ∗ ,Ω`) = DΛ∗

M,0(φ, θp,−φ)D
L`

M,0(0, θ`, 0). (5.86)

The second helicity index of both Wigner functions in the angular distribution is zero, i.e. the difference of
the helicities of the final-state particles (summed incoherently), and the first index, identical for both Wigner
functions, contains the helicities of the internal particles (summed coherently).

Although the sum with respect to LΛ∗ in the first line of Eq. (5.85) goes from 0 to 2JΛ∗ , the second line of
Eq. (5.85) contains only the sum over even values of LΛ∗ : this is due to the fact that the decay of the Λ∗ baryon
is strong and conserves parity, so that it should be invariant under θp → θp + π, which eliminates odd-LΛ∗

partial waves5. In addition, some of the Wigner functions are real and L is the real part of the product of these
functions with the angular coefficients G, which means that only the following 12 angular coefficients are involved

Re G0,0
0 →1

9
(L1cc + 2L1ss + 2L2cc + 4L2ss + 2L3ss),

Re G0,1
0 →1

3
(L1c + 2L2c),

Re G0,2
0 →2

9
(L1cc − L1ss + 2L2cc − 2L2ss − L3ss),

Re G2,0
0 →2

9
(L1cc + 2L1ss − L2cc − 2L2ss − L3ss),

Re G2,1
0 →2(L1c − L2c)

3
,

Re G2,1
1 →2L5s√

3
, Im G2,1

1 → −2L6s√
3
,

Re G2,2
0 →2

9
(2L1cc − 2L1ss − 2L2cc + 2L2ss + L3ss),

Re G2,2
1 →2L5sc

3
, Im G2,2

1 → −2L6sc

3
,

Re G2,2
2 →4L3ss

3
, Im G2,2

2 → −4L4ss

3
,

(5.87)

where we have indicated the equivalence with the angular coefficients defined in Eq. (5.54).

5.C Connection with Λb → Λ∗(→ NK̄)γ

5.C.1 Tensor form factors
The expressions for Λb → Λ∗(→ NK̄)`+`− contain a pole at q2 = 0, which is related to the decay Λb → Λ∗(→
NK̄)γ. The matrix element responsible for the photon contribution to Λb → Λ∗`+`− will have the structures

5Similarly, the decay B → K∗(→ Kπ)`+`− involves a sum over even values of JK∗ in Eq. (28) of Ref. [321] since K∗ decays
strongly, whereas Λb → Λ(→ Nπ)`+`− involves a sum over odd and even values of JΛ in Eq. (E.3) of Ref. [321] as Λ(1150) decays
weakly. This is related to the P -conserving or violating nature of the decay of the intermediate hadron, and not to the nature of the
final state (as stated in Ref. [321]).
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ε∗µM
µ and ε∗µM

µ
5 with

Mµ = ūαΓ
αµu, Mµ

5 = ūαγ
5Γαµ5 u, (5.88)

with the general form factor decomposition

Γαµ(5) = qαγµG
(′)
1 + qα(p+ k)µG

(′)
2 + qαqµG

(′)
3 − gαµG

(′)
4 . (5.89)

The gauge condition qµΓ
αµ
(5) = 0 implies that

G4 = (mΛb
−mΛ∗)G1 + (m2

Λb
−m2

Λ∗)G2 + q2G3,

G′
4 = (mΛb

+mΛ∗)G′
1 + (m2

Λb
−m2

Λ∗)G′
2 + q2G′

3,
(5.90)

leading to the expressions

Γαµ = [qαγµ − gαµ(mΛb
−mΛ∗)]G1 + [qα(p+ k)µ − gαµ(m2

Λb
−m2

Λ∗)]G2 + [qαqµ − gαµq2]G3, (5.91)

Γαµ5 = [qαγµ − gαµ(mΛb
+mΛ∗)]G′

1 + [qα(p+ k)µ − gαµ(m2
Λb

−m2
Λ∗)]G′

2 + [qαqµ − gαµq2]G′
3. (5.92)

Focusing on the tensor form factors fTi needed for the contribution of C7 + C7′ given in Eq. (5.36), we can see
that we have the identification

G1 → −(mΛb
+mΛ∗)fT⊥ − mΛ∗

s−
fTg , (5.93)

G2 → − q2

s+
fT0 +

(mΛb
+mΛ∗)2

s+
fT⊥ +

mΛb
(mΛb

+mΛ∗)− q2

s+s−
fTg , (5.94)

G3 →
(m2

Λb
−m2

Λ∗)

s+
[fT0 − fT⊥ ]−

m2
Λb

+mΛb
mΛ∗ + 2m2

Λ∗ − q2

s+s−
fTg . (5.95)

Similarly we have the identification for the pseudotensor form factors fT5
i for C7 − C7′

G′
1 → −(mΛb

−mΛ∗)fT5
⊥ +

mΛ∗

s+
fT5
g , (5.96)

G′
2 → − q2

s−
fT5
0 +

(mΛb
−mΛ∗)2

s−
fT5
⊥ +

mΛb
(mΛb

−mΛ∗)− q2

s+s−
fT5
g , (5.97)

G′
3 →

(m2
Λb

−m2
Λ∗)

s−
[fT5

0 − fT5
⊥ ]−

m2
Λb

−mΛb
mΛ∗ + 2m2

Λ∗ − q2

s+s−
fT5
g . (5.98)

If we want to have three independent form factors G(′)
1 , G(′)

2 , G(′)
3 with a finite limit at q2 → 0, it is sufficient to

request that fT (5)
⊥ , f

T (5)
0 , f

T (5)
g tend all to a finite value in this limit, see Eq. (5.37). Let us emphasise that these

conditions are obtained by considering solely the behaviour of the amplitude at q2 → 0 in QCD, so that O(1)
means O((q2)0) here. The SCET limit, though related, is slightly different, taking q2 = O(Λ2

QCD), mb → ∞ and
ΛQCD/mb → 0. Eq. (5.65) obtained in the SCET limit shows that the condition for fT (5)

g should be understood
as fT,T5

0 (q2) = O(Λ2
QCD/m

2
b) then.

Moreover, it is possible to determine relations between some of the tensor form factors at q2 = 0. Indeed, the
two matrix elements used in Eq. (5.36) can be obtained from the matrix element 〈Λ∗|s̄iσµνb|Λb〉 thanks to the
identity σµνγ5 = iεµνρσσ

ρσ/2. The latter matrix element can be parametrised in terms of six form factors given
in Ref. [42], which can be used to express all the form factors in Eq. (5.36). These relations yield in particular
the very simple relationships at q2 = 0

G2 = G′
2, G1 = G′

1 − 2mΛ∗G′
2, (5.99)

leading to the following relations between the form factors in Eq. (5.36)

fT5
⊥ (0) = fT⊥(0), fT5

g (0) = fTg (0)
mΛb

+mΛ∗

mΛb
−mΛ∗

, (5.100)

5.C.2 Branching ratio
The branching ratio for radiative decay Λb → Λ∗γ is proportional to

lim
q2→0

(q2
∑

X=A,B

|X|2), (5.101)
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sΛb
sΛ∗ HV,A HT,T5 A,B

±1/2 ±1/2 1√
q2

√
q2 aC9` + bC10,` + cC7

±1/2 ∓1/2 1 1
√
q2
[
a′C9` + b′C10,` + c′ C7

q2

]
±1/2 ±3/2 1 1

√
q2
[
a′′C9` + b′′C10,` + c′′ C7

q2

] (5.102)

Table 5.C.1: Behaviour of the amplitudes for Λb → Λ∗(→ NK̄)`+`− in the q2 → 0 limit in the SM. a, b are
generic numbers coming from the kinematics and the form factors.

where the sum goes over the 12 transversity amplitudes in Eq. (5.47). If we consider the transversity amplitudes
of interest6, we see that we have the behaviours given in Table 5.C.1 for q2 → 0 in the SM. From Table 5.C.1, we
can see that the only contributions to the radiative decay comes from the. C7, C7′ operators for the transitions
±1/2 → ∓1/2 and ±1/2 → ±3/2, whereas the branching ratio Λb → Λ∗γ gets no contributions from the
transitions ±1/2 → ∓1/2. This situation is naturally reminescent of B → K∗γ [333] that gets contributions
from the amplitudes with transverse polarisations, but not from longitudinal polarisation, as can be seen as the
level of the transversity amplitudes (1/q2 pole in A⊥,|| but not in A0).

This pattern is in agreement with the general arguments developed in Refs. [310, 311] for Λb → Λ∗(→ NK̄)γ.
We can therefore link our results further with the expressions in Ref. [310]. The latter are given with respect to
an arbitrary quantisation axis, which we have identified with the z-axis defined along the Λ∗ momentum in the
Λb rest frame (meaning θp = 0 and φΛ arbitrary, to be integrated over, in the notation of Ref. [310]) and for an
arbitrary Λb polarisation which we take PΛb

= 0, leading to a decay rate proportional to:

2[|C1/2,1|2 + |C−1/2,−1|2] cos2 θp +
1

2
[3|C3/2,1|2 + 3|C−3/2,−1|2 + |C1/2,1|2 + |C−1/2,−1|2] sin2 θp. (5.103)

We can make contact with our expressions by integrating Eq. (5.54) over θ` and φ, leading to a decay rate
proportional to

(L1cc + 2L1ss) cos θ
2
p + (L2cc + 2L2ss + L3ss) sin θ

2
p, (5.104)

so that it appears that up to a common normalisation we have the identifications

|C1/2,1|2 + |C−1/2,−1|2 ↔|AL||0|
2 + |AL⊥0|2 + |AL||1|

2 + |AL⊥1|2 + (L↔ R),

|C3/2,1|2 + |C−3/2,−1|2 ↔|BL||1|
2 + |BL⊥1|2 + (L↔ R),

(5.105)

in agreement with the definitions of A and B amplitudes that involve 3/2 and 1/2 Λ∗ polarisations respectively.

5.C.3 Matching of the form factors
A final comment is in order concerning the comparison of our formulae with Ref. [311]. There are three form
factors contributing to ε∗µMµ at q2 = 0. However the computation in Ref. [311] involve only the values of two
form factors at q2 = 0. Indeed, the computation of the branching ratio amounts to summing over the physical
polarisations, leading to the computation of MµM∗

µ. Since the three tensors involved in Mµ are all transverse
with respect to qµ, one can check that G1 and G2, but not G3, will contribute to the branching ratio Λb → Λ∗γ.
Comparing the expressions of the matrix elements 〈Λ∗|s̄σµνqνb|Λb〉 and 〈Λ∗|s̄σµνγ5qνb|Λb〉 in Eq. (5.36) and in
Ref. [311] at q2 = 0, we obtain the relationships

i
f1

2mΛb

= −fT⊥(0)− fTg (0)
mΛb

(mΛb
−mΛ∗)(m2

Λb
−m2

Λ∗)

= −fT5
⊥ (0)− fT5

g (0)
mΛb

(mΛb
+mΛ∗)(m2

Λb
−m2

Λ∗)
,

if2 = (mΛb
+mΛ∗)fT⊥(0) + fTg (0)

mΛ∗

(mΛb
−mΛ∗)2

= (mΛb
+mΛ∗)fT5

⊥ (0) + fT5
g (0)

mΛ∗

m2
Λb

−m2
Λ∗

(5.106)

which agree with the constraints in Eq. (5.100). We thus check that only two constants arise for Λb → pK−γ,
as proposed in Ref. [311]. The identification of f1, f2 with the values of the tensor form factors actually yields

6The vector/axial form factors are expected to have a finite limit at q2 = 0 with specific linear combinations of fVt , fV⊥ and
fAt , f

A
⊥ expected to vanish, as indicated in Section 5.2.
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further cross-checks with this reference in the SCET limit. Using the relations in Eq. (5.65), we see that the
contribution proportional to f̃T0 (0) can then be neglected, leading to the relation f1 = −2f2mΛb

/(mΛb
+mΛ∗)

given in Ref. [311]. As discussed in this reference, in the same SCET limit, the amplitudes C±3/2,±1/2 indeed
vanish, since they correspond to B⊥1 and B||1, proportional to fg and fTg .

5.D Angular acceptance
The µ+ and µ− efficiencies, introduced by the selection requirements discussed in Section 5.5 being the same,
give the acceptance shown in Fig. 5.D.1, that can be modelled by an even function of Legendre polynomials:

ε(cos θ`) = 1
+ c2/2(3 cos

2 θ` − 1)
+ c4/8(35 cos

4 θ` − 30 cos2 θ` + 3)
+ c6/16(231 cos

6 θ` − 315 cos4 θ` + 105 cos2 θ` − 5).
The parameters ci are fitted in simulation and used throughout the sensitivity studies.

Figure 5.D.1: Acceptance shapes for cos θ` for q2 in [0.1, 3], [3, 6], [6, 8.68], and [1, 6]GeV2 respectively.



Chapter 6

Time-dependent angular analysis of
Bd → KS`

+`−

In addition to investigating hadronic decays not yet measured (like in the prevous chapter), one can probe
New Physics in b->sll through additional observables for decays already measured. An interesting way of
building new observables has been discussed in Ref. [217] by exploiting neutral B-meson mixing and considering
time-dependent observables. This possibility has been discussed in Refs. [217, 346] for light vector resonances
into CP eigenstates such as Bd → K∗0(→ KSπ

0)µµ and Bs → φ(→ KK)µµ. The general discussion of CP
violation comparing time-integrated and time-dependent observables sheds some light on the interest of the
new observables obtained in Ref. [217]: they assess CP violation in the interference between decay and mixing,
they contain additional information not present in time-integrated observables (in particular concerning CP-odd
“weak” phases) and they are not sensitive to the same hadronic uncertainties. In the context of B → K∗µµ,
they lift some of the degeneracies among (time-integrated) angular observables that prevent us from separating
the contributions from various helicity amplitudes [214].

In this chapter, based on Ref. [347], we apply the same idea to a final state with a spin-0 meson rather than a
spin-1 vector, focusing on the time-dependent analysis of Bd → KS`

+`− taking into account the time-evolution
of the Bd meson and its mixing into B̄d. We discuss the angular conventions required to define the angular
observables in a transparent way with respect to CP conjugation. Although our formalism is general, we will
consider mainly Bd → KSµµ for illustration, since the (time-integrated) angular analysis of this decay has
already been performed by LHCb using 3 fb−1 of integrated luminosity [238].

The inclusion of time evolution allows us to identify six new observables, out of which three could be accessed
from a time-dependent tagged analysis. We also show that these observables could be obtained by time-integrated
measurements in a hadronic environment if flavour tagging is available. We provide simple and precise predictions
for these observables in the SM and in NP models with real contributions to SM and chirally flipped operators.
In these cases, the very simple structure of these observables will allow us to show that they are very well
determined and independent of form factors and charm-loop contributions.

As such, these observables will provide robust and powerful cross-checks of the NP scenarios currently
favoured by global fits to b→ s`+`− data. In addition, we will discuss the sensitivity of these observables with
respect to NP scenarios involving scalar and tensor operators, or CP-violating phases. We will then illustrate how
these new observables can provide a benchmark to discriminate among the various NP scenarios in b→ sµ+µ−.

In Section 6.1, we recall the angular analysis of B → K`+`− without mixing, i.e. the charged case, highlighting
the angular convention required to connect CP-conjugate modes and the status of the hadronic inputs needed for
the theoretical computation. In Section 6.2, we extend the discussion to the neutral case with mixing, discussing
the CP-parity of the final state and deriving the 6 new time-dependent observables that can be measured in
principle. In Section 6.3, we focus on three of these new observables which are very precisely determined in
the SM and can be used to probe various NP hypotheses (scalar and tensor contributions, NP “weak” phases),
before concluding in Section 6.4. In a first appendix, we show that our conclusions are not affected by the choice
of a specific model for charm-loop contributions. In a second appendix, we discuss the case of Bs decays into
f0, η or η′ mesons showing that similar observables can be defined and computed.
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6.1 Angular analysis of B± → K±`+`−

6.1.1 Amplitude analysis

The b→ s`+`− transitions as discussed in Section 2.4 are described by the usual weak effective theory (WET),
with SM operators plus (potentially) NP operators with a chirally-flipped, scalar or tensor structure. The main
operators of interest for this analysis are O7(′),9(′),10(′),S(′),P (′),T (′) .

Contributions from the semileptonic operators are factorizable and their matrix elements can be written as

〈K`+`−|Osl|B〉 = 〈K|ΓA|B〉〈`+`−|Γ′
A|0〉 , (6.1)

where A denotes a collection of Lorentz indices and Γ,Γ′ are Dirac matrices. It is clear that all hadronic, dipole,
and semileptonic contributions can be recast as decays of the form

B → KN(→ `+`−) , (6.2)

where N has the quantum numbers of a boson, whose coupling pattern is determined by the operators arising in
the effective Hamiltonian. In the SM, the structure of O7,O9,O10 shows that N are spin-1 particles, coupling to
both left- and right-handed fermions. This is in agreement with the presence of γ∗ and Z penguin contributions,
but it is also able to reproduce the contribution from box diagrams involving two W bosons and a neutrino
((V −A)(V −A) structure in the SM). In an extension of the SM yielding scalar (tensor) operators, one should
add N bosons with spin 0 (spin 2 respectively) [321].

We can exploit Ref. [321] in order to extract information starting with the charged decay. The angular
distribution for B− → K−`+`− is

d2Γ(B− → K−`+`−)

dq2 d cos θ`
= Ḡ0(q

2) + Ḡ1(q
2) cos θ` + Ḡ2(q

2)
1

2
(3 cos2 θ` − 1) =

∑
i=0,1,2

Ḡi(q
2)Pi(cos θ`) (6.3)

where Pi denotes the i-th Legendre polynomial in terms of the angle θ` describing the emission of one of the
charged leptons (its precise definition will be discussed in the following) and q = pB − pK is the momentum
transfer. We have

Ḡ0 =
4

3

(
1 + 2m̂2

`

) ∣∣h̄V ∣∣2 + 4

3
β2
`

∣∣h̄A∣∣2 + 2β2
`

∣∣h̄S∣∣2 + 2
∣∣h̄P ∣∣2

+
8

3

(
1 + 8m̂2

`

) ∣∣h̄Tt

∣∣2 + 4

3
β2
`

∣∣h̄T ∣∣2 + 16m̂` Im
[
h̄V h̄

∗
Tt

]
,

Ḡ1 =− 4β`

(
2m̂`Re

[
h̄V h̄

∗
S

]
− Im

[
2h̄Tt

h̄∗S +
√
2h̄T h̄

∗
P

])
,

Ḡ2 =− 4β2
`

3

(∣∣h̄V ∣∣2 + ∣∣h̄A∣∣2 − 2
∣∣h̄T ∣∣2 − 4

∣∣h̄Tt

∣∣2) ,
(6.4)

where we have used the notation:

m̂` =
m`√
q2
, β` =

√
1− 4m̂2

` . (6.5)

The matrix elements relevant to B̄ → K̄ transition yield the following form factors in the standard
parametrisation:

〈K−(p)|s̄γµb|B−(pB)〉 =(pB + p)µ f+(q
2) +

m2
B −m2

K

q2
qµ
(
f0(q

2)− f+(q
2)
)
,

〈K−(p)|s̄σµνb|B−(pB)〉 =i
[
(pB + p)µ qν − (pB + p)ν qµ

] fT (q
2)

mB +mK
,

〈K−(p)|s̄b|B−(pB)〉 =
m2
B −m2

K

mb −ms
f0(q

2) ,

(6.6)
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We find

h̄V =N
√
λB

2
√
q2

(
2mb

mB +mK
(C7 + C7′)fT + (C9 + C9′)f+

)
,

h̄A =N
√
λB

2
√
q2

(C10 + C10′)f+ ,

h̄S =N m2
B −m2

K

2

(
(CS + CS′)

mb −ms

)
f0 ,

h̄P =N m2
B −m2

K

2

(
(CP + CP ′)

mb −ms
+

2m`

q2
(C10 + C10′)

)
f0 ,

h̄T =− iN
√
λB√

2 (mB +mK)
(CT − CT ′) fT ,

h̄Tt =− iN
√
λB

2 (mB +mK)
(CT + CT ′) fT ,

(6.7)

with the normalisation factor N ,

N = −αGF
π

V ∗
tsVtb

√
q2β`

√
λB

210π3m3
B

, (6.8)

where λB ≡ λ(m2
B ,m

2
K , q

2) (with λ(a, b, c) is the Källén-function) is related to the absolute value of the three-
momentum of the K∗. Note that the normalisation factor N disagrees with (the square root of) the normalisation
factor of Ref. [321] by a factor 2

√
2, but it is in agreement with Refs. [213, 348].

Following Ref. [321], we use the LHCb conventions for the charged case, so that θ` is defined as the
angle between the `− three-momentum and the opposite of the B− three-momentum in the dilepton rest
frame in the case of B− → K−`+`−, but `+ and B+ in the case of B+ → K+`+`−. With this convention,
d2Γ(B+ → K+`+`−)/(dq2 d cos θ`) has the same expression as d2Γ(B− → K−`+`−)/(dq2 d cos θ`) above, up to
the replacement of the angular coefficients Ḡ depending on h̄ by G depending on h. The h amplitudes are
obtained from the h̄ amplitudes by performing a complex conjugation of all the weak phases (this applies to N
but also to the weak phases in the Wilson coefficients in the case of CP-violating New Physics). On the other
hand, strong phases, in particular those stemming from charm loops generated by the four-quark operators and
combining with C9 in the expressions of the angular observables, are the same in h and h̄. If all CP violating
effects are neglected, one gets Gi = Ḡi.

6.1.2 Hadronic inputs
In order to compute the amplitudes and the angular observables defined above, we need hadronic inputs for f+,0,T .
We may use the form factors obtained in Ref. [96] (for f+ and fT ) and Ref. [39] (for f+, f0 and fT ). Both perform
light-cone sum rules determinations at low q2, using sum rules based on light-meson and B-meson distribution
amplitudes, respectively. The authors of Ref. [39] combine their results with lattice QCD determination at high
q2 (coming from Ref. [349]). The observables built as ratios of angular coefficients Gi depend actually on the
ratios of form factors f0/f+ and fT /f+ shown in Fig. 2.6. It turns out that fT /f+ has little q2-dependence and
is very close to 1 within the uncertainties quoted, in agreement with the earlier discussion in Ref. [348] and with
the expectations SCET and HQET discussed in Section 2.5. On the other hand f0/f+ has a linear dependence
on q2, so that a noticeable q2 dependence of ratios of angular observables Gi could be the sign of significant
scalar/pseudoscalar contributions.

We have not explicitly indicated the contribution from cc̄ loops which adds a q2-dependent contribution to
the coefficient C9, which features both a real and an imaginary part coming from strong phases. Due to the
nature of this analysis, we are interested in the effect that possible strong phases can introduce. We will thus, in
the following, take the estimate presented in Eq. (5.71) for the SM value of C9 both at low and large K-recoil.
The alternative estimates Eqs. (2.83) and (5.69) will be used only to check that our results depend only very
mildly on the model used for charm-loop contribution.

6.1.3 Observables
The angular observables Gi can be recast into more traditional forms. In addition to the decay rate and the
forward-backward asymmetry, a third observable can be built from the B± → K±`+`− angular analysis [213].
The corresponding CP-averaged observables have the following expressions in terms of the angular coefficients:

Γ` = G0 + Ḡ0 , A`FB =
G1 + Ḡ1

2(G0 + Ḡ0)
, F `H = 1 +

G2 + Ḡ2

G0 + Ḡ0
, (6.9)
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Bd → KS(L)`
+`− parameters

η(KS) η(KL) φ ∆Γ x = ∆m/Γ y = ∆Γ/(2Γ) τBd
[ps]

1 -1 −2β ' 0 0.769± 0.004 0.0005± 0.005 1.519± 0.004

Bs → f0(η, η
′)`+`− parameters

η(f0) η(η, η′) φ ∆Γ x = ∆m/Γ y = ∆Γ/(2Γ) τBs
[ps]

1 -1 2βs 6= 0 26.81± 0.08 0.0675± 0.004 1.515± 0.004

CKM parameters
sin(−2β) sin(2βs) Re[Vts] Im[Vts] · 103 Vtb

−0.71± 0.01 0.0371± 0.0007 −0.0407± 0.0004 −0.75± 0.02 0.99913± 0.00002
λ A ρ̄ η̄

0.22493± 0.00016 0.819± 0.010 0.159± 0.008 0.351± 0.007

Masses [GeV]
m̄b(mb) m̄s(mb) mµ

4.18± 0.03 0.078± 0.007 0.106

Table 6.1: Input parameters used to determine the SM predictions. Decay parameters are from Ref. [6]. The
CKM values are obtained from the symmetrised confidence intervals for the Wolfenstein parameters λ,A, ρ̄, η̄
given in Ref. [24], while for mb and ms we use the MS masses at mb [6]. The SM Wilson coefficients can be
found in Table 2.1. The form factors (not recalled here) are taken from Ref. [39].

leading to

d2Γ(B− → K−`+`−)

dq2 d cos θ`
+
d2Γ(B+ → K+`+`−)

dq2 d cos θ`
= 2Γ`

[
1

2
F `H +A`FB cos θ` +

3

4
(1− F `H)(1− cos2 θ`)

]
. (6.10)

As can be seen from the above equations, in the absence of tensor and scalar contributions and neglecting
m̂` corrections which are relevant only at very low q2, one has the simple relations

Ḡ0 = −Ḡ2 + 2|h̄P |2 ' −Ḡ2 , Ḡ1 = 0 (6.11)

(and the same for Gi). The observable F `H is proportional to (G0 + Ḡ0) + (G2 + Ḡ2), and thus probes the first
relation in Eq. (6.11). A non-vanishing value of F `H can be attributed to NP in tensor and/or scalar contributions.
On the other hand, a non-vanishing A`FB, related to G1 + Ḡ1, probes the second relation in Eq. (6.11) and
would be a clear signal of New Physics from scalar or tensor contributions, but we can see from Eq. (6.4)
that they should correspond to very large scalar contributions (to beat the m`-suppressing factors) and/or to
(pseudo)tensor and (pseudo)scalar contributions.

One can also think of building CP-violating observables of the form

Ai =
Gi − Ḡi
Gi + Ḡi

. (6.12)

Neglecting again m`-suppressed contributions, we see that these observables probe differences of the form
|hX |2 − |h̄X |2, which vanish unless both strong and weak phases are present. Assuming that NP contributions
do not yield any significant strong phases in the short-distance Wilson coefficients, it can be easily seen that
only hV involves strong phases (due to the cc̄-loops) and thus only the presence of CP-violating NP phases in
C7,7′ and C9,9′ can be probed by these observables.

In Appendix 6.A we provide predictions for these observables in the SM and in a few NP scenarios. It is
quite clear that they yield rather similar central values in all scenarios, with hadronic uncertainties that are
rather large compared to the sensitivity to NP contributions. This makes the NP interpretation of deviations in
the measurement of these observables rather challenging.

As a conclusion, the CP-averaged observables built from the angular analysis of B+ → K+`+`− have
interesting abilities to probe scalar and tensor NP contributions, but if deviations from the SM are observed,
these observables are not sufficient to pin down the actual source of the contributions. The CP asymmetries
associated with the same observables probe only the presence of NP phases in a limited subset of Wilson
coefficients.
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6.2 Angular analysis of Bd → KS`
+`−

6.2.1 From the charged case to the neutral one
Before analysing the impact of time evolution and mixing, we must first determine how the above formulae
must be adapted to the neutral case if mixing were neglected. We must perform the changes in the equations of
Section 6.1.1:

B− → B̄d , B+ → Bd , K− → K̄0 , K+ → K0 . (6.13)

We have then to consider the CP-eigenstates rather than the flavour eigenstates for the kaon with the following
phase convention:

|K0〉 ∼ ds̄ , |K̄0〉 ∼ sd̄ , |K+〉 ∼ us̄ , |K−〉 ∼ sū , (6.14)

so that
|KS〉 ∼

|K0〉+ |K̄0〉√
2

, |KL〉 ∼
|K0〉 − |K̄0〉√

2
, (6.15)

where we have neglected the small amount of CP violation in the kaon system leading to CP |K0〉 = |K̄0〉 (and
similarly CP |Bd〉 = |B̄d〉).

The expressions for h̄X(B̄d → KS`
+`−) and hX(Bd → KS`

+`−) are obtained from h̄X(B̄d → K̄0`+`−) and
hX(Bd → K0`+`−) by dividing the normalisation N by

√
2 in both cases1. The latter are equal to the charged

amplitudes described in the previous section in the isospin limit, so that we have

h̄X(B̄d → KS`
+`−) =

1√
2
h̄X(B− → K−`+`−) hX(Bd → KS`

+`−) =
1√
2
hX(B+ → K+`+`−) (6.16)

Following Ref. [217], the discussion of Bd → KS`
+`− requires the same convention for both Bd and B̄d, since

the decay is not flavour specific. Before taking into account mixing, and following the arguments of Ref. [217]
that we will discuss extensively below, we define θ` as the angle between `− and KS (similarly to the case of
B+ → K+`+`−) for both Bd and B̄d decays. This yields

d2Γ[Bd → KS`
+`−]

ds dcos θ`
=
∑
i

Gi(s)Pi(cos θ`) , (6.17)

d2Γ[B̄d → KS`
+`−]

ds dcos θ`
=
∑
i

ζiḠi(s)Pi(cos θ`) , (6.18)

where ζ0,2 = 1 and ζ1 = −1 and the Gi (Ḡi) are defined in terms of hX(Bd → KS) (h̄X(B̄d → KS)). In the
absence of CP violation, we would have Gi = Ḡi.

We stress that Eqs. (6.17) and (6.18) arise just from the identification of kinematics of CP-conjugate decays,
and do not rely on any intrinsic CP-parity of the initial or final states involved. We will see now that this choice
of conventions is justified by the analysis of the properties of the amplitudes under CP conjugation.

6.2.2 CP-parity of the final state
We now turn to the case of decays into CP eigenstates: B → fCP . In this context, it is useful to define two
different angular coefficients G̃i, Ḡi which are CP conjugates of Gi:

• the angular coefficients G̃i formed by replacing AX by ÃX ≡ AX(B̄d → fCP ) (without CP-conjugation
applied on fCP ), which appear naturally in the study of time evolution due to mixing, where both B and
B̄ decay into the same final state fCP .

• the angular coefficients Ḡi, obtained by considering ĀX ≡ AX(B̄d → fCP ) (with CP-conjugation applied
to fCP ), which can be obtained from AX by changing the sign of all weak phases, and arise naturally when
discussing CP violation from the theoretical point of view.

In the case of interest, we have to consider the transversity amplitudes:

ĀX ≡ AX(B̄ → M̄`+`−) , ÃX ≡ AX(B̄ →M`+`−) , (6.19)

where X = V,A, S, P, T, Tt, and we have ĀX = h̄X . These two sets of amplitudes are related by

ÃX = ηXĀX , (6.20)
1For KL, we would obtain the amplitudes by dividing the normalisation N by −

√
2 and by

√
2, respectively.
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X η(N) τ(N) ηX
S 1 0 η
P −1 0 −η
V 1 1 −η
A 1 1 −η
T −1 1 η
Tt 1 1 −η

Table 6.2: Quantum numbers and CP-parities associated with the B →M`+`− transversity amplitudes. We
have defined η = η(M). For Bd → KS`

+`−, we have η = η(KS) = 1.

where ηX are the CP-parities associated to the different transversity amplitudes. We follow the arguments
of Refs. [217, 350] in order to determine the value of ηX . Adapting the arguments of Ref. [350] to the decay
B →MN , where M is stable (under the strong interaction) and N decays into the dilepton pair, leads to

ηX = η(M)η(N)(−1)τ(N) , (6.21)

where M = KS here. The assignment of the CP-parity η(N) and the transversity τ(N) requires some discussion.
Concerning the CP-parity η(N), we can start from the helicity amplitude analysis performed in Ref. [321],

associating the lepton matrix elements 〈`−(λ1)`+(λ2)|¯̀ΓX`|0〉 to the amplitudes hX :

ΓS = 1, ΓP = γ5 , ΓV = γµωµ(λ) , ΓA = γµγ5ωµ(λ) , ΓT = σµνω1λ
µν , ΓTt = σµνωtλµν , (6.22)

where λ = λ1 − λ2 (equal to −1, 0 or 1). The polarisation vectors ωµ(λ) form the usual basis for λ = t, 0,+1,−1,
with ωµ(t) = qµ/

√
q2. The rank-2 polarisation tensors ωJλµν are less familiar objects, but they correspond to

products of polarisation vectors. On one hand, we have ωtλµν = ωµ(t)ων(λ) and on the other hand ω1λ
µν is a linear

combination of products of polarisation vectors ωµ(λ1)ων(λ2) with λ1 and λ2 being either 0,−1 or 1, but not
timelike. This formulation allows us to determine the parity η(N): since we assume that CP-parity is conserved
through the decay, we can determine the CP-parity of N through that of the lepton matrix element it couples to,
taking into account the sign difference between the time-like polarisation and the space-like polarisations. The
corresponding parities of the fermion bilinears with different Dirac matrices can easily be found in the discussion
of the Dirac algebra in textbooks on quantum field theory, for instance Ref. [29].

Concerning the transversity τ(N), we can then use the following two statements: first, the helicity of N
is λ(N) = 0 since both B and M are spin-0 mesons, and second, the antisymmetric structure of the tensor
operators means that they are set in a spin-1 representation [321]. We have thus to determine the transversity
of the intermediate state N with λ = 0, with a spin equal either to 0 (scalar, pseudoscalar) or 1 (vector, axial,
tensors) and λ = 0. Following Ref. [350], it is trivial to see that τ(N) = 0 for spin 0. For spin 1, one can see
that the λ = 0 state is a superposition of states with τ = +1 and τ = −1, meaning that one can set τ(N) = 1
for spin 1.

Putting these elements together yields the results collected in Table 6.2, leading to the following CP-parities
associated to the different transversity amplitudes

ηS = ηT = η(M) = η , ηV = ηA = ηP = ηTt = −η(M) = −η . (6.23)

where we have defined η = η(M). In the Bd → KS`
+`− case, we have η(M) = η(KS) = 1.

Coming back to the definition of Ḡi, we see that the two types of angular coefficients are related through

G̃i = ζiḠi . (6.24)

The number ζi (defined in Section 6.2.1 to perform the identification of the kinematics between CP-conjugate
decays) corresponds here to the product of the CP-parities of the amplitudes involved in the interference term
Gi, for i = 0, 1, 2.

6.2.3 CP-averaged and CP-violating angular observables
We can now check the consistency of the kinematics chosen for CP-conjugate modes in Section 6.2.1. Indeed,
since the decay is not flavour specific, an untagged measurement of the differential decay rate (e.g. at LHCb,
where the asymmetry production is tiny) yields:

dΓ(Bd → KS`
+`−) + dΓ(B̄d → KS`

+`−)

ds dcos θ`
=
∑
i

[Gi + G̃i]Pi(cos θ`) =
∑
i

[Gi + ζiḠi]Pi(cos θ`) , (6.25)
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if we still neglect for the moment the effects of neutral-meson mixing. The difference between the two decay
rates (which can be measured only through flavour-tagging) involves:

dΓ(Bd → KS`
+`−)− dΓ(B̄d → KS`

+`−)

ds dcos θ`
=
∑
i

[Gi − G̃i]Pi(cos θ`) =
∑
i

[Gi − ζiḠi]Pi(cos θ`) . (6.26)

A slightly counter-intuitive consequence of the identification of the angles between the two CP-conjugates mode
is that the CP-asymmetry for G1 is measured in the CP-averaged rate, and vice-versa. This situation is well
known in the case of the angular distribution of other modes that are not self-tagging, such as Bs → φ`+`− [217,
229, 346].

We see now that the convention chosen in Eqs. (6.17) and (6.18) for flavour-tagging modes allows one to treat
on the same footing the modes with flavour tagging and the modes with final CP-eigenstates, since the same
combinations of angular coefficients occur in both cases when one considers the CP-average or the CP-asymmetry
in the decay rate.

Let us stress again that this results from a conventional identification between CP-conjugate decays in
the case without mixing. This freedom in the angular convention for CP-conjugate flavour-specific modes is
not present in the presence of mixing where both decays result in the same final state, which must always be
described with the “same” kinematic convention, in the sense of a convention that depends only on the final state,
without referring to the flavour of the decaying B meson (see Ref. [217]). The convention chosen in Section 6.2.1
obeys indeed this requirement and it is thus an appropriate choice even in the presence of mixing.

6.2.4 Time-dependent angular distribution of B → KS`
+`−

We can now add the effect of neutral-meson mixing. Indeed, in the case of B decays into CP-eigenstates, where
the final state can be produced both by the decay of B or B̄ mesons, the mixing and decay processes interfere,
inducing a further time dependence in physical amplitudes. These time-dependent amplitudes are given by

AX(t) = AX(B(t) → fCP `
+`−) = g+(t)AX +

q

p
g−(t)ÃX , (6.27)

ÃX(t) = AX(B̄(t) → fCP `
+`−) =

p

q
g−(t)AX + g+(t)ÃX , (6.28)

where the absence of the t argument denotes the amplitudes at t = 0, i.e. in the absence of mixing, and we have
introduced the usual time-evolution functions

g+(t) =e
−imte−Γt/2

[
cosh

∆Γt

4
cos

∆mt

2
− i sinh

∆Γt

4
sin

∆mt

2

]
, (6.29)

g−(t) =e
−imte−Γt/2

[
− sinh

∆Γt

4
cos

∆mt

2
+ i cosh

∆Γt

4
sin

∆mt

2

]
, (6.30)

with ∆m = MH − ML and ∆Γ = ΓL − ΓH (detailed definitions can be found in Refs. [351, 352], which
must be adapted to our choice concerning CP-conjugation in neutral meson systems: CP |Bd〉 = |B̄d〉 and
CP |K0〉 = |K̄0〉).

In the presence of mixing, the coefficients of the angular distribution also depend on time, as they involve the
time-dependent amplitudes given in Eqs. (6.27) and (6.28). This evolution can be simplified by noting that CP
violation in Bq − B̄q mixing is negligible for all practical purposes2, and we will assume |q/p| = 1, introducing
the mixing angle φ:

q

p
= eiφ . (6.31)

This mixing angle is large in the case of the Bd system but tiny for Bs, see Table 6.1.
The angular coefficients are obtained by replacing time-independent amplitudes with time-dependent ones:

Gi(t) = Gi
(
AX → AX(t)

)
, G̃i(t) = Gi

(
AX → ÃX(t)

)
. (6.32)

We consider the combinations Gi(t)± G̃i(t) appearing in the sum and difference of time-dependent decay rates
in Eqs. (6.25) and (6.26). From Eqs. (6.27), (6.28) and (6.32), we get

Gi(t) + G̃i(t) =e
−Γt
[
(Gi + G̃i) cosh(yΓt)− hi sinh(yΓt)

]
, (6.33)

Gi(t)− G̃i(t) =e
−Γt
[
(Gi − G̃i) cos(xΓt)− si sin(xΓt)

]
, (6.34)

2The current world averages are |q/p|Bd
= 1.0010± 0.0008 and |q/p|Bs = 1.0003± 0.0014 [6, 158]
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where x ≡ ∆m/Γ, y ≡ ∆Γ/(2Γ), and we have defined a new set of angular coefficients si, hi related to the
time-dependent angular distribution. The coefficients Gi, G̃i can be determined from flavour-specific decays.

The expressions for si and hi are

s0 =2Im

[
eiφ
[
4

3

(
1 + 2m̂2

`

)
h̃V h

∗
V +

4

3
β2
` h̃Ah

∗
A + 2β2

` h̃Sh
∗
S + 2h̃Ph

∗
P (6.35)

+
8

3

(
1 + 8m̂2

`

)
h̃Tth

∗
Tt

+
4

3
β2
` h̃Th

∗
T

]]
− 16m̂`Re

[
eiφh̃V h

∗
Tt

− e−iφhV h̃
∗
Tt

]
,

s1 =− 4β`

(
2m̂`Im

[
eiφh̃V h

∗
S − e−iφhV h̃

∗
S

]
(6.36)

+Re
[
eiφ[2h̃Tth

∗
S +

√
2h̃Th

∗
P ]− e−iφ[2hTt h̃

∗
S +

√
2hT h̃

∗
P ]
])

,

s2 =− 8β2
`

3
Im
[
eiφ
[
h̃V h

∗
V + h̃Ah

∗
A − 2h̃Th

∗
T − 4h̃Tt

h∗Tt

]]
, (6.37)

and

h0 =2Re

[
eiφ
[
4

3

(
1 + 2m̂2

`

)
h̃V h

∗
V +

4

3
β2
` h̃Ah

∗
A + 2β2

` h̃Sh
∗
S + 2h̃Ph

∗
P (6.38)

+
8

3

(
1 + 8m̂2

`

)
h̃Tth

∗
Tt

+
4

3
β2
` h̃Th

∗
T

]]
+ 16m̂` Im

[
eiφh̃V h

∗
Tt

+ e−iφhV h̃
∗
Tt

]
,

h1 =− 4β`

(
2m̂`Re

[
eiφh̃V h

∗
S + e−iφhV h̃

∗
S

]
(6.39)

−Im
[
eiφ[2h̃Tt

h∗S +
√
2h̃Th

∗
P ] + e−iφ[2hTt

h̃∗S +
√
2hT h̃

∗
P ]
])

,

h2 =− 8β2
`

3
Re
[
eiφ
[
h̃V h

∗
V + h̃Ah

∗
A − 2h̃Th

∗
T − 4h̃Tth

∗
Tt

]]
. (6.40)

The time-dependent angular distributions therefore contain potentially new information encoded in the new
angular observables si and hi, similarly to the ones derived in Ref. [217] for B → K∗`+`− and Bs → φ`+`−.
These observables measure the interference between Bd-mixing and B → K`+`− decay, and they contain
therefore additional information compared to the angular observables presented in Section 6.1.3.

Let us stress that these observables are accessible by combining the angular distributions for Bd(t) → KS`
+`−

and B̄d(t) → KS`
+`−, thus requiring flavour tagging. The coefficients hi seem very difficult to extract, since

they are associated with sinh(yΓt) with y vanishing at the current accuracy. The coefficients s0 and s2 are
associated with the CP asymmetry of angular coefficients: Gi − Ḡi, whereas s1 is associated with CP-averaged
angular coefficients: G1 + Ḡ1. The information on New Physics contained in the coefficients si will be the focus
of the rest of this work.

6.2.5 Time-integrated observables
As discussed in Refs. [217, 353, 354], time integration should be performed differently in the context of hadronic
machines and B-factories. The time-dependent expressions in Eqs. (6.33) and (6.34) are written in the case of
tagging at a hadronic machine, assuming that the two b-quarks have been produced incoherently, with t ∈ [0,∞).
In the case of a coherent BdB̄d pair produced at a B-factory, one must replace exp(−Γt) by exp(−Γ|t|) and
integrate over t ∈ (−∞,∞) [353]. Interestingly, the integrated versions of CP-violating interference terms are
different in both settings, and the measurement at hadronic machines involves an additional term compared to
the B-factory case:

〈Gi + G̃i〉Hadronic =
1

Γ

[
1

1− y2
× (Gi + G̃i)−

y

1− y2
× hi

]
, (6.41)

〈Gi − G̃i〉Hadronic =
1

Γ

[
1

1 + x2
× (Gi − G̃i)−

x

1 + x2
× si

]
, (6.42)

〈Gi + G̃i〉B−factory =
2

Γ

1

1− y2
[Gi + G̃i] , (6.43)

〈Gi − G̃i〉B−factory =
2

Γ

1

1 + x2
[Gi − G̃i] . (6.44)

Making contact with experimental measurements requires to consider the total time-integrated decay rate:〈
d(Γ + Γ̄)

dq2

〉
=

1

Γ(1− y2)
〈I〉 , (6.45)
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〈I〉Hadronic =2(G0 + Ḡ0 − y h0) , (6.46)

〈I〉B−factory =2〈I〉Hadronic(h = 0) , (6.47)

where I is the usual normalisation considered in analyses of the angular coefficients. The factor of 2 arising from
the time integration in the case of B-factories (correcting a mistake in Ref. [217]) comes from the consideration
of entangled BB̄ pairs, leading to twice as many possibilities to observe the decay of interest compared to the
hadronic case. The normalised time-integrated angular coefficients at hadronic machines or B-factories are
therefore:

〈Σi〉Hadronic ≡
〈Gi + G̃i〉Hadronic

〈d(Γ + Γ̄)/dq2〉Hadronic
=

(Gi + G̃i)− y × hi
〈I〉Hadronic

, (6.48)

〈Σi〉B−factory ≡ 〈Gi + G̃i〉B−factory

〈d(Γ + Γ̄)/dq2〉B−factory
= 〈Σi〉Hadronic(h = 0) , (6.49)

〈∆i〉Hadronic ≡
〈Gi − G̃i〉Hadronic

〈d(Γ + Γ̄)/dq2〉Hadronic
=

1− y2

1 + x2
× (Gi − G̃i)− x× si

〈I〉Hadronic
, (6.50)

〈∆i〉B−factory ≡ 〈Gi − G̃i〉B−factory

〈d(Γ + Γ̄)/dq2〉B−factory
= 〈∆i〉Hadronic(h = s = 0) . (6.51)

We see that the interpretation of the time-integrated measurements 〈Σi〉 from dΓ(Bd → KS`
+`−)+dΓ(B̄d →

KS`
+`−) is straightforward in terms of the angular coefficients at t = 0. The smallness of y means that hi will

have only a very limited impact. The time-integrated terms 〈∆i〉 from dΓ(Bd → KS`
+`−)− dΓ(B̄d → KS`

+`−)
are subject to two different effects. On one side, they receive contributions proportional to x corresponding to
different combination of interference terms (in the case of a measurement at a hadronic machine). On the other
hand, they are multiplied (in all experimental set-ups) by a factor (1− y2)/(1 + x2).

We see therefore that 〈Σi〉 contain essentially the same information as (Gi + G̃i), whereas 〈∆i〉 have a
potentially richer interpretation due to the si contribution. This contribution can be separated by comparing the
time-integrated difference dΓ(B → K`+`−) − dΓ(B̄ → K`+`−) in the case with mixing (Bd → KS`

+`−) and
the case without mixing (B+ → K+`+`−). We have indeed (neglecting y)

〈∆i〉KS

Hadronic ≡
〈Gi − G̃i〉KS

Hadronic

〈d(Γ + Γ̄)/dq2〉KS

Hadronic

=
(Gi − G̃i)− xsi

2(1 + x2)(G0 + Ḡ0)
(6.52)

leading to
〈∆i〉KS

Hadronic =
1

1 + x2
〈∆i〉K

±
− x

1 + x2
σi σi =

si
2Γ`

i = 0, 1, 2 . (6.53)

We have [6]
1

1 + x2
= 0.6284(24) ,

x

1 + x2
= 0.4832(6) , (6.54)

showing that there is a good sensitivity to σi using time-integrated observables. We will show that in the SM and
in any NP extension with SM operators and chirally flipped operators, we obtain a very precise prediction for
the σi. Therefore, also the relation between 〈∆i〉KS

Hadronic and 〈∆i〉K
± can be predicted with high precision which

is a very powerful and generic test of the structure of the operators contributing (real, no scalars, no tensors).
Let us add that these time-integrated observables still require a flavour tagging to separate the decays

originating from a Bd meson from the ones starting from a B̄d-meson, i.e. dΓ(Bd → KS`
+`−) and dΓ(B̄d →

KS`
+`−). Therefore, this approach enables one to bypass the study of the time dependence, but it still requires

initial-state flavour tagging (with the associated effective loss of statistical power).

6.2.6 Extension to other Bd and Bs decays into light spin-0 mesons
Our analysis applies to any B → P`+`− decay where the initial neutral meson mixes with its antimeson and the
final meson P is a (scalar or pseudoscalar) spin-0 CP eigenstate.

Another mode that could be considered is Bd → KL`
+`−. The opposite intrinsic parity of KL with respect

to KS means that G̃i = −ζiḠi and

dΓ(Bd → KL`
+`−)± dΓ(B̄d → KL`

+`−)

ds dcos θ`
=
∑
i

[Gi ± G̃i]Pi(cos θ`) =
∑
i

[Gi ∓ ζiḠi]Pi(cos θ`) , (6.55)

where the Gi (Ḡi) are defined in terms of hX(Bd → KL) (h̄X(B̄d → KL)). In the absence of CP violation, we
would have Gi = −Ḡi due to the different normalisation for hX(Bd → KL) and h̄X(B̄d → KL). The discussion
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concerning time-dependent observables is unchanged. We see that the most promising observables s0,1,2 can still
be accessed through the difference dΓ(Bd → KL`

+`−) − dΓ(B̄d → KL`
+`−). However, due to the additional

experimental difficulties related to the identification of the KL meson, we will focus on the KS case in the
following.

One can also consider Bs decays. The mixing parameters are different from the Bd case since x is much larger
(whereas y is small but not vanishing) and the mixing angle 2βs is very small [6]. In this case, the coefficients hi
are difficult to extract, since they are associated with sinh(yΓt) with y small, but at least not vanishing, meaning
that an extraction of hi is possible in this case. The si coefficients are certainly easier to access, but they are
different from zero only if there are large NP phases or large tensor contributions, which are not needed in the
current global fits to b→ s`+`− transitions (see for instance Ref. [132]).

One may consider Bs → f0(980)`
+`− with η(f0) = η(KS) = 1 and Bs → η(′)`+`− with η(η(′)) = −1. The

determination of the form factors is quite challenging in all three cases, as their exact nature and mixing with
other states are not known precisely yet. This translates into a significant spread of results for the form factors.
We will thus focus in the following on Bd → KSµµ which is better understood from the theory point of view,
but we will give a few results for the Bs to f0, η, η′ decays in Appendix 6.B.

6.3 New observables in Bd → KSµµ as probes of new physics

6.3.1 Real NP contributions to SM and chirally flipped Wilson coefficients
We will now consider the normalised observables

σi =
si

2(G0 + Ḡ0)
=

si
2Γ`

, ρi =
si

2(Gi + Ḡi)
, i = 0, 1, 2 , (6.56)

where the normalisation comes from the CP-averaged decay rate Γ` = G0+ Ḡ0. We set y = 0 and we will neglect
the tiny weak phase in VtbV

∗
ts in the following.

We start by considering scenarios where NP enters only as real shifts to the Wilson coefficients for SM and
chirally flipped operators (C7,7′,9,9′,10,10′). This case includes naturally the SM, but it also covers many NP
scenarios currently favoured by global fits to b → s`+`− data [132]. In this case, we have only contributions
from the amplitudes hV , hA and hP . Neglecting the (tiny) weak phase in VtbV

∗
ts, gives h̃V,A,P = −hV,A,P and

Gi = Ḡi (i = 0, 1, 2).
The si observables then become very simple, leading to3

ρ0 = ρ2 = σ0 = − sinφ

2
, σ1 = 0 , φ = −2β . (6.57)

We stress that these relations neither depend on a specific choice of form factors nor on assumptions made on
charm-loop contributions. The only hypothesis required is that NP enters as real contributions to the SM Wilson
coefficients. Therefore, a measurement of these observables would constitute a significant cross-check of the
NP scenarios currently favoured by global fits to b→ s`+`− data [132]. Moreover, the only parameter with a
non-trivial but very small q2-dependence at the kinematic endpoints is σ2, such that the relations Eq. (6.57) can
be checked by integrating over any kinematic q2 range. On the other hand, a deviation from these values would
constitute a very simple and powerful test of the presence of scalar/tensor operators or that of CP-violating NP
phases. We discuss these two cases next.

6.3.2 Real NP contributions including scalar and tensor operators
Considering still real NP contributions, but adding possible scalar and tensor contributions, changes the above
situation. The expressions for Gi and si can be reduced in the following way (neglecting m` effects for simplicity):

G0(= Ḡ0) '
4

3

∣∣h̄V ∣∣2 + 4

3

∣∣h̄A∣∣2 + 2
∣∣h̄S∣∣2 + 2

∣∣h̄P ∣∣2 + 8

3

∣∣h̄Tt

∣∣2 + 4

3

∣∣h̄T ∣∣2 ,
G1(= Ḡ1) ' 0 ,

G2(= Ḡ2) ' −4

3

(∣∣h̄V ∣∣2 + ∣∣h̄A∣∣2 − 2
∣∣h̄T ∣∣2 − 4

∣∣h̄Tt

∣∣2)
' −G0 + 2

∣∣h̄S∣∣2 + 2
∣∣h̄P ∣∣2 + 8

∣∣h̄Tt

∣∣2 + 4
∣∣h̄T ∣∣2 ,

(6.58)

3If we neglect the lepton mass, we have also σ2 = −σ0.
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leading to

s0 '− 2 sinφ

(
G0 − 4

∣∣h̄S∣∣2 − 16

3

∣∣h̄Tt

∣∣2) ,

s1 '8 sinφ
(
−2Im[h̄Tt ]h

∗
S +

√
2Im[h̄T ]h

∗
P

)
,

s2 '− 2 sinφ

(
G2 −

32

3

∣∣h̄Tt

∣∣2) ,

(6.59)

Observing how these observables depend on the different scalar, pseudoscalar and tensor contribution allows us
to define new observables separating these contributions:

RS ≡ 2

sinφ
(−σ2 + 2σ0)− F `H + 3 ' 16

|h̄S |2

Γ`
, (6.60)

RTt ≡
2

sinφ
σ2 + F `H − 1 ' 64

3

|h̄Tt
|2

Γ`
. (6.61)

These observables could be obtained from a joint study of the charged and neutral B → K`+`− decays. Neglecting
m`-suppressed contributions, RS and RTt allow for a neat separation of the scalar and tensor contributions,
contrary to the CP-averaged observables, and in this limit, these two observables must be positive in the absence
of NP complex phases.

The combination

RW ≡ RS + 3RTt =
4

sinφ
(σ0 + σ2) + 2F `H

=
2

sinφΓ`
[s0 + s2 + sinφ(G0 + Ḡ0 +G2 + Ḡ2)] '

16

Γ`
[|h̄S |2 + 4|h̄Tt |2]

(6.62)

is also interesting. It vanishes exactly in the limit where m` = 0 and CS = CP = CT = CTt
= 0, no matter what

the values (real or complex) for C7,7′,9,9′,10,10′ . Indeed, in this limit, G0 = −G2, Ḡ0 = −Ḡ2 and s0 = −s2, as
can be checked explicitly from Eqs. (6.4), (6.35) and (6.37). One can thus expect that the deviations of RW
from zero should be rather sensitive to the presence of scalar and tensor contributions.

When accounting for m` and the tiny imaginary part of Vts, these new observables do not vanish any more
in the SM. We give their SM values in Table 6.3 over the bin in q2 from 1 to 6 GeV2 using the inputs specified
in Table 6.1. SM predictions at different values of q2 or specific bins can easily be obtained using the above
equations. We give in Table 6.A.1 the results using alternative models for the charm-loop contribution, showing
a very good stability of our results with respect to the change of model, covered by our theoretical uncertainties4

The sensitivity to NP scalar and tensor contributions of these observables is

RS = 0.028|CS + CS |2 ,
RTt

= 0.019|CT + CT ′ |2 ,
RW = 0.028|CS + CS′ |2 + 0.056|CT + CT ′ |2 .

(6.63)

Currently, the bounds on scalar contributions are quite loose. Ref. [120] suggest |CSµ| < 0.1 and 0 < CS′µ < 0.2
obtained for NP models containing also SM-like and chirally flipped operators with real Wilson coefficients. We
are not aware of studies giving bounds on tensor operators, probably due to the fact there are currently no
indication of a need for such contributions in global fits.

In order to illustrate the effect of new scalar or tensor contributions, we consider two NP scenarios with
CS = 0.2 and CT = 0.2, respectively. Although RS and RTt

are in principle sensitive to scalar and tensor
operators, we see that the changes are rather small, as is expected from (6.63). The situation is different for
RW , which is constructed such that it vanishes exactly in the absence of scalar and tensor corrections in the
limit m` = 0. The SM value is different from zero due to m`-suppressed corrections, but its value is known very
precisely, and it deviates from this value when scalar and/or tensor contributions are present.

Given the accuracy of the theory predictions, it seems thus possible to gain information on scalar and tensor
contributions from RS , RTt

and RW if they are measured precisely, in complement with the information provided
by F `H .

4Neglected doubly Cabibbo suppressed contributions with relative size of O(λ2) ' 4% are not included in our estimate of the
uncertainties, but they do not affect our conclusions concerning the capacity of theses observables to discriminate NP scenarios.
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Observable SM Scen. 1 Scen. 2 Scen. 3 CS = 0.2 CT = 0.2
σ0 0.368(5) 0.273(6) 0.402(5) 0.43(1) 0.368(5) 0.368(5)
σ2 −0.359(5) −0.266(6) −0.392(4) −0.415(9) −0.359(5) −0.357(5)
RS −0.107(4) 0.69(2) −0.39(2) −0.59(9) −0.105(4) −0.107(4)
RTt

0.035(1) −0.225(8) 0.128(7) 0.19(3) 0.035(1) 0.036(1)
RW × 102 −0.179(8) 1.09(4) −0.63(4) −1.0(1) −0.01(1) 0.04(3)

Table 6.3: Values of the observables in the SM, for the three different scenarios with new complex Wilson
coefficients defined in Eq. (6.64) and for the scenarios with CS(T ) = 0.2. All quoted values are for Bd → KSµµ

and are binned in q2 over [1, 6]GeV2. The inputs are taken from Table 6.1 (neglected doubly Cabibbo-suppressed
contributions are not included in our error estimates). A more comprehensive list of results is given in Table 6.A.1.
Values for other fixed q2 values of specific bins can be easily obtained from our expressions.

6.3.3 Complex NP contributions
The equalities in Eq. (6.57) do not hold in the presence of complex NP contributions. In principle, these
contributions can be constrained by measuring Γ` and A`FB , but their effect in those observables is suppressed by
m`. Besides, such NP effects would show up in the direct CP-asymmetries A0 and A2 but due to the interferences
between weak and strong phases in those observables the interpretation is less clear. Moreover, as can be seen in
Appendix 6.A, hadronic uncertainties are significant for these observables compared to their sensitivity to NP, so
that it is difficult to interpret a deviation from the SM expectations5.

Our new observables si correspond to an interference between mixing and decay, and thus are sensitive to
NP phases coming from all the amplitudes hX and all Wilson coefficients. As an illustration of the added power
of these observables, we can use Ref. [303] where the following scenarios obtain a good description of the data
with the following best-fit points:

Scenario 1 : CNP
9µ = −1.12 + i1.00 ,

Scenario 2 : CNP
9µ = −1.14− i0.22 , CNP

9′µ = 0.40− i0.38 ,

Scenario 3 : CNP
9µ = −1.13− i0.12 , C9′µ = 0.52− i1.80 , CNP

10µ = 0.41 + i0.13 ,

(6.64)

In these scenarios, we have still σ1 = ρ1 = 0, but the situation is rather different for the cases of σ0,2. The
resulting predictions integrating over the bin in q2 from 1 to 6 GeV2 are given in Table 6.3 using in addition the
inputs in Table 6.1, i.e. including m` = mµ and the imaginary part of Vts. In addition, we give the values for
RS , RTt

and RW for the three NP scenarios in (6.64). We give in Appendix 6.A the results using alternative
models for the charm-loop contribution, showing a very good stability of our results with respect to the change
of model. Moreover, our uncertainties cover the small changes in the central values when we consider different
models for the cc̄ contributions. The values in Table 6.3 serve as an illustration of the sensitivity of our observables
to the three new physics scenarios: using our expressions, values for different q2 ranges can be easily obtained.
We point out that the uncertainties in Table 6.3 for σ0 and σ2 are fully dominated by the uncertainty on 2β.

We observe that although σ0 and σ2 are sensitive to the three NP scenarios, in fact RS and RTt
are even more

sensitive. The deviations of the latter two observables from their SM expectation values allows for a distinction
between the three different NP scenarios, even once hadronic uncertainties are taken into account. RS and RTt

are thus interesting probes for these new weak phases, whereas RW is still very small in these scenarios (it would
vanish in the limit where m` vanishes).

We emphasize that the above scenarios only serve as a benchmark to indicate the sensitivity of the observ-
ables to new phases. Once experimental measurements of these observables are available, performing a more
sophisticated NP analysis, including scalar, tensor and complex phases would be interesting.

6.3.4 New physics benchmarking from Bd → KSµµ

We have seen that a time-dependent angular analysis of Bd → KSµµ leads to 6 new observables, measuring CP
violation in the interference between decay and mixing. They can be obtained from:

dΓ(Bd(t) → KS`
+`−)− dΓ(B̄d(t) → KS`

+`−)

ds dcos θ`

= [G0 − G̃0](t) + [G1 − G̃1](t) cos θ` + [G2 − G̃2](t)
1

2
(3 cos2 θ` − 1)

(6.65)

5It was recently proposed to consider the CP asymmetries in the vincinity of charmonium resonances to enhance their values [355],
but the interpretation of a non-vanishing CP-asymmetry in the charmonium region requires a precise knowledge of the strong
dynamics of the resonances.
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with the time dependence described in Eq. (6.34):

Gi(t)− G̃i(t) = e−Γt
[
(Gi − G̃i) cos(xΓt)− si sin(xΓt)

]
, (6.66)

We also showed that time-integrated angular observables could also provide a good sensitivity on the coefficients
s0,1,2, by comparing neutral and charged modes at hadronic machines. These observables can be predicted
accurately. Depending on the NP scenario, their theoretical predictions have little to no sensitivity to the specific
choices for the form factors or the charm-loop contributions.

These three observables can be combined with the usual angular observables for B → K`+`− to obtain the
observables σ0,1,2, ρ2 and RS,Tt,W defined in Eqs. (6.56) and (6.60) to (6.62), respectively. These quantities
can be computed very precisely theoretically (see Table 6.3). If measured precisely, these observables provide
powerful probes for New Physics scenarios:

• Do σ0, σ1, ρ2 obey the simple relations in Eq. (6.57), directly related to Bd-B̄d mixing?
If yes, NP enters only the SM and chirally flipped operators O7(′),9(′),10(′) with real contributions, in
agreement with the NP scenarios currently favoured by global fits to b→ s`+`− data.

• Do σ0, σ2, RS and/or RTt deviate from their SM expectations?
If yes, it means that NP enters with imaginary contributions, odd under CP-conjugation.

• Does RW deviate from its SM expectation, but are σ0, σ2, RS and RTt
close to the SM?

If yes, it means that NP enters through scalar and tensor contributions. Complementary information is
then obtained through F `H .

We thus see that the time-dependent angular analysis of Bd → KSµµ yields interesting observables for the
discrimination among NP scenarios, if they can be measured with a sufficient precision6. This could be achieved
in particular at LHCb, where the time-integrated observables have already been measured [238] and Belle II,
following the measurements of branching ratios already performed at Belle [220]. Determining the potential of
these two experiments for theses measurements is an interesting question which we leave for future work.

As already been discussed in Section 6.2.6, a similar approach could be used for Bs decays such as Bs → f0µµ,
Bs → ηµµ, Bs → η′µµ. The theoretical determination of the relevant form factor becomes complicated due to
the debated structure of these mesons, but we discuss a few results regarding these decays in Appendix 6.B.

6.4 Conclusions
An interesting to probe b→ sµ+µ− transitions further consists in using neutral-meson mixing and time-dependent
analysis in order to define new observables for Bd and Bs decays. This was applied to Bd → K∗µµ and Bs → φµµ
in Ref. [217]. In this chapter, we considered the same idea in the simpler case of Bd → KSµµ. The charged
mode B± → K±µµ has a much simpler angular structure, with only three observables which provide interesting
but limited constraints on scalar and tensor contributions. The hadronic inputs (form factors and charm-loop
contributions) are also much more simple to handle and analyse. We discussed the benefits of a time-dependent
angular analysis of this mode.

After recalling the formalism in the absence of mixing (charged case), we turned to the neutral case. It
required a careful definition of the kinematics of the mode to connect CP-conjugate decays that are now related
through Bd mixing into B̄d. A time-dependent angular analysis leads to 6 new observables, measuring CP
violation in the interference between decay and mixing. Three of these observables, denoted s0,1,2, seem rather
promising, and they can also be obtained from time-integrated angular observables by comparing neutral and
charged modes at hadronic machines if initial-state flavour tagging is available. These 3 observables s0,1,2 have
simple expressions in terms of the transversity amplitudes given in Eqs. (6.35) to (6.37). They can be combined
with the usual angular observables for B → K`+`− to obtain the observables σ0,1,2, ρ2 and RS,Tt,W defined in
Eqs. (6.56) and (6.60) to (6.62).

Very interestingly, we showed that σ0 and ρ2 are very precisely known in the Standard Model and in New
Physics scenarios with real contributions to SM and chirally-flipped operators. They depend only on the
Bd-mixing angle, i.e. the CKM angle β, see Eq. (6.57), and they are valid for any value of the dilepton invariant
mass q2. We stress that these predictions are very robust, as they hold no matter what the assumptions on form
factors and charm-loop contributions are. Therefore they constitute very powerful probes of the NP scenarios
currently favoured by the global fits to b→ s`+`− data.

We have then investigated two NP cases where these predictions are modified. We showed that RS , RT and
RW can probe other NP scenarios, namely scalar and tensor operators (with real contributions) and complex

6We have focused the discussion on Bd → KSµµ due to the current hints of New Physics in b→ sµ+µ− transitions, but similar
measurements in the electron sector would also be of interest to probe lepton flavour universality.
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NP contributions entering with a CP-odd “weak” phase. The sensitivity of these observables to each scenario is
different, and the theoretical uncertainties attached to the theoretical predictions are small, which allows us to
provide a benchmark of NP scenarios hinging on the measurements of s0,1,2. We also briefly discussed similar
Bs decay modes such as Bs → f0µµ, Bs → ηµµ and Bs → η′µµ.

In conclusion, the simplicity of the underlying B → Kµµ decay has allowed us to provide a detail analysis of
the flavour-tagged time-dependent analysis of Bd → KSµµ. These new observables provide powerful cross checks
of the various NP hypotheses. They may also contribute to global fits to b→ s`+`− in a useful way, providing
constraints of a different type on the short-distance physics encoded in Wilson coefficients.
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6.A Predictions for Bd → KSµµ observables in SM and NP scenarios

SM Scenario 1 Scenario 2 Scenario 3 CS = 0.2 CT = 0.2

Br × 108
O.E. 8.4± 1.5 6.8± 1.2 7.2± 1.2 7.4± 1.3 8.4± 1.5 8.4± 1.5

LCSR 7.9± 1.3 6.5± 1.0 6.9± 1.1 7.0± 1.1 7.9± 1.3 8.0± 1.3
PQCD 8.6± 1.4 7.0± 1.1 7.4± 1.2 7.6± 1.2 8.6± 1.4 8.7± 1.4

F `H × 102
O.E. 2.48± 0.04 2.50± 0.04 2.50± 0.04 2.48± 0.03 2.52± 0.04 3.05± 0.05

LCSR 2.49± 0.04 2.51± 0.04 2.50± 0.04 2.48± 0.03 2.53± 0.04 3.05± 0.05
PQCD 2.49± 0.03 2.51± 0.04 2.50± 0.04 2.48± 0.03 2.53± 0.03 3.05± 0.05

A0 × 102
O.E. 0 0.0± 2.3 0.0± 1.3 0.± 4. 0 0

LCSR 0 3.9± 2.1 −2.2± 1.2 −7.± 4. 0 0
PQCD 0 −1.285± 0.005 0.729± 0.003 2.27± 0.01 0 0

σ0 × 10
O.E. 3.68± 0.05 2.73± 0.06 4.02± 0.05 4.3± 0.1 3.68± 0.05 3.68± 0.05

LCSR 3.68± 0.05 2.77± 0.06 3.99± 0.04 4.15± 0.04 3.68± 0.05 3.68± 0.05
PQCD 3.68± 0.05 2.73± 0.06 4.03± 0.04 4.29± 0.01 3.68± 0.05 3.68± 0.05

σ2 × 10
O.E. −3.59± 0.05 −2.66± 0.06 −3.92± 0.04 −4.15± 0.09 −3.59± 0.05 −3.57± 0.05

LCSR −3.59± 0.05 −2.69± 0.05 −3.89± 0.04 −4.05± 0.04 −3.59± 0.05 −3.57± 0.05
PQCD −3.59± 0.05 −2.66± 0.05 −3.92± 0.04 −4.18± 0.01 −3.59± 0.05 −3.57± 0.05

RS × 10
O.E. −1.07± 0.04 6.9± 0.2 −3.9± 0.2 −5.9± 0.9 −1.05± 0.04 −1.07± 0.04

LCSR −1.07± 0.04 6.6± 0.2 −3.7± 0.2 −5.0± 0.5 −1.05± 0.04 −1.07± 0.04
PQCD −1.07± 0.04 6.9± 0.1 −4.0± 0.1 −6.2± 0.4 −1.05± 0.04 −1.07± 0.04

RTt
× 10

O.E. 0.35± 0.01 −2.25± 0.08 1.28± 0.07 1.9± 0.3 0.35± 0.01 0.36± 0.01
LCSR 0.35± 0.01 −2.16± 0.06 1.21± 0.05 1.7± 0.2 0.35± 0.01 0.36± 0.01
PQCD 0.35± 0.01 −2.27± 0.05 1.30± 0.05 2.0± 0.1 0.35± 0.01 0.36± 0.01

RW × 102
O.E. −0.179± 0.008 1.09± 0.04 −0.63± 0.04 −1.0± 0.1 −0.01± 0.01 0.04± 0.03

LCSR −0.179± 0.008 1.05± 0.03 −0.60± 0.03 −0.83± 0.08 0.000± 0.009 0.05± 0.03
PQCD −0.179± 0.008 1.10± 0.02 −0.65± 0.02 −1.01± 0.07 −0.013± 0.008 0.03± 0.03

Table 6.A.1: Bd → KSµµ observables integrated from 1 − 6 GeV2 for different parametrisations of the cc̄
model contribution associated with C9 (Our Estimate (O.E.), Light-Cone Sum Rules (LCSR), Perturbative
QCD (PQCD)). The results are given in the SM case, for several NP scenarios with weak phases (Scenarios
1,2,3) and with contribution to scalar and tensor contributions (CS , CT ). Neglected doubly Cabibbo-suppressed
contributions are not included in our error estimates.

We give in Table 6.A.1 our predictions for the various observables of interest, integrated over the bin [1,6]
GeV2 for the dimuon invariant mass. We compute their values within the SM and several different scenarios of
NP, described in Sections 6.3.2 and 6.3.3. We neglect doubly Cabibbo-suppressed contributions with relative size
of O(λ2) ' 4%, which are not included in our error estimates.

We take into account the various sources of uncertainties (CKM, form factors, charm-loop contributions)
and combine them in quadrature. We illustrate the impact of the model used for charm-loop contributions by
considering three models described in Section 6.1.2:

• O.E.: Our estimate, corresponding to Eq. (5.71),

• LCSR: A range inspired by the Light-Cone Sum Rule Estimate of Ref. [116], given in Eq. (5.69),

• PQCD: The short-distance charm-loop contribution obtained from perturbative QCD given in Eq. (2.83),
without attaching any uncertainty to the result.
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As can be seen, our estimate is conservative as far as uncertainties are concerned. These uncertainties cover the
central values of the other two models, and they do not hinder the discrimination among different NP scenarios
for σ0, σ2, RS , RTt

, RW .

6.B Bs decays
We can consider Bs → f0(980)µµ and Bs → η(′)µµ decays following the same formalism as Bd → K(S,L)µµ, up
to a few changes:

• the width difference y 6= 0 means that it becomes possible in principle to access hi coefficients,

• the Bs mixing phase is much smaller than in the Bd case and is thus competing with the decay phase from
Vts,

• the form factors describing these decays are not known as well as for B → K transitions, due to our limited
knowledge of the structure of the f0, η and η′ mesons and their mixing with other states.

The expressions of the relevant form factors and matrix elements for Bs → η(′) can be translated directly from
the expressions in the Bd → KS case described above. The matrix elements relevant to B̄ → f0 transition can
be defined as [356]

〈f0(p)|s̄γµγ5b|B̄s(pB)〉 =− i

[
(pB + p)µ f+(q

2) +
m2
Bs

−m2
f0

q2
qµ
(
f0(q

2)− f+(q
2)
)]

,

〈f0(p)|s̄σµνγ5b|B̄s(pB)〉 =−
[
(pB + p)µ qν − (pB + p)ν qµ

] fT (q
2)

mBs
+mf0

,

〈f0(p)|s̄γ5b|B̄s(pB)〉 =− i
m2
Bs

−m2
f0

mb −ms
f0(q

2) ,

(6.67)

leading to the amplitudes

h̄V =iN
√
λBs

2
√
q2

(
2mb

mBs
+mf0

(C7 − C7′)fT + (C9 − C9′)f+
)
,

h̄A =iN
√
λBs

2
√
q2

(C10 − C10′)f+ ,

h̄S =− iN
m2
Bs

−m2
f0

2

(
(CS − CS′)

mb −ms

)
f0 ,

h̄P =− iN
m2
Bs

−m2
f0

2

(
(CP − CP ′)

mb −ms
+

2m`

q2
(−C10 + C10′)

)
f0 ,

h̄T =N
√
λBs√

2 (mBs
+mf0)

(CT + CT ′) fT ,

h̄Tt =N
√
λBs

2 (mBs
+mf0)

(CT − CT ′) fT ,

(6.68)

where λBs ≡ λ(m2
Bs
,m2

f0
, q2). The amplitudes hX for Bs → f0 transitions can be obtained from h̄X by taking

the complex conjugate for all weak phases present in the amplitudes. We use the following form factors:

• For Bs → η and Bs → η′, we use the updated results of Ref. [357]. In particular, we use updated
values [358]

α+
Bsη

= 0.5055± 0.0195 , α+
Bsη′

= 0.4928± 0.0284 . (6.69)

We stress that the values for α0,T in Refs. [357, 358] only include errors from varying b2. However, currently
full errors are not available. Note that also the central value for α+

Bsη′
in Eq. (6.69) from Ref. [358] differs

from that quoted in Ref. [357]. We stress that the Bs → η form factor at q2 = 0, i.e. fi(0) is negative due
to η-η′ mixing. We are not aware of other determinations for these form factors.

• For Bs → f0, we use the Table I of Ref. [356] as a reference. We take their results from Table I (f+ = F1)
with the parametrisation

fi(q
2) =

fi(0)

1− aiq2/m2
Bs

+ bi(q2/m2
Bs

)2
, (6.70)
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SM Scenario 1 Scenario 2 Scenario 3 CS = 0.2 CT = 0.2
Br × 108 4.8± 1.7 3.9± 1.4 3.4± 1.2 3.3± 1.2 4.8± 1.7 4.8± 1.7
F `H × 102 2.47± 0.08 2.48± 0.09 2.49± 0.10 2.48± 0.09 2.51± 0.08 3.20± 0.26
A0 × 102 0 0.0± 2.2 0.0± 0.4 0.± 4. 0 0
σ0 × 102 0.00± 0.05 −9.65± 0.70 −1.45± 0.16 −12.7± 1.9 0.00± 0.05 0.00± 0.05
σ2 × 102 0.00± 0.06 9.46± 0.70 1.41± 0.15 12.4± 1.7 0.00± 0.06 0.00± 0.06
θ0 × 10 −5.00± 0.00 −4.61± 0.02 −4.989± 0.001 −3.70± 0.07 −5.00± 0.00 −4.997± 0.002
θ2 × 10 4.876± 0.001 4.50± 0.02 4.864± 0.005 3.61± 0.07 4.874± 0.004 4.85± 0.01

Table 6.B.1: Values of the observables in the SM, for the three different scenarios with new complex Wilson
coefficients defined in Eq. (6.64) and for the scenarios with CS(T ) = 0.2. All quoted values are for Bs → f0µµ and
are binned in q2 over [1, 6]GeV2. The inputs are taken from Table 6.1. Neglected doubly Cabibbo-suppressed
contributions are not included in our error estimates.

SM Scenario 1 Scenario 2 Scenario 3 CS = 0.2 CT = 0.2
Br × 108 7.2± 1.2 5.8± 1.0 6.2± 1.0 6.3± 1.1 7.2± 1.2 7.2± 1.2
F `H × 102 2.59± 0.02 2.63± 0.03 2.62± 0.03 2.57± 0.02 2.63± 0.03 3.22± 0.09
A0 × 102 0 0.0± 2.2 0.0± 1.2 0.± 4. 0 0
σ0 × 102 0.00± 0.05 9.70± 0.60 −6.36± 0.26 −22.5± 0.6 0.00± 0.05 0.00± 0.05
σ2 × 102 0.00± 0.05 −9.47± 0.60 6.21± 0.27 22.0± 0.7 0.00± 0.05 0.00± 0.05
θ0 × 10 5.00± 0.00 4.62± 0.02 4.87± 0.01 3.69± 0.08 5.00± 0.00 5.00± 0.00
θ2 × 10 −4.871± 0.001 −4.49± 0.02 −4.74± 0.01 −3.59± 0.08 −4.869± 0.001 −4.844± 0.003

Table 6.B.2: Values of the observables in the SM, for the three different scenarios with new complex Wilson
coefficients defined in Eq. (6.64) and for the scenarios with CS(T ) = 0.2. All quoted values are for Bs → ηµµ and
are binned in q2 over [1, 6]GeV2. The inputs are taken from Table 6.1. Neglected doubly Cabibbo-suppressed
contributions are not included in our error estimates.

with i = 0,+, T . We should however be careful that there is a large spread of the theoretical estimates of
these form factors, as illustrated by Table 1 of Ref. [359]. In case of asymmetric errors, we conservatively
take the largest.

We can define the normalised angular observables:

σi =
si
2Γ`

, θi =
hi
2Γ`

, (6.71)

considering also hi observables since y 6= 0. In principle, we could build equivalent quantities to RS , RTt
and

RW defined in Eqs. (6.60) to (6.62) to isolate scalar and tensor amplitudes, but they would be affected by large
uncertainties, as they would require dividing angular observables by sinφ where φ is the small Bs mixing angle.
We will thus consider only σi and θi, which we provide in the various scenarios of interest in Tables 6.B.1 to 6.B.3
for the three Bs decays, using our estimate (O.E.) for charm loops.

Similarly to the Bd → KS`
+`− case, we can derive general relations in the case of real NP contributions to

SM and chirally flipped Wilson coefficients. The amplitudes hX can be simplified exactly as in Section 6.3.1. If
we take into account the different CKM coefficients (and different CP parities in some cases), we obtain for Bs
decays

σ0 = σ2 = 0 θ0 = −θ2 = −1

2
η(M) , (6.72)

up to O(λ2) corrections (were we neglect the lepton mass to obtain the expression of θ2).
The results illustrate the dependence of the angular observables on the NP scenario and the interest of

measuring these quantities. Let us however that one should add to these results an additional theoretical
systematic uncertainty reflecting our limited understanding of the form factors for these final states. Moreover,
we neglected doubly Cabibbo-suppressed contributions with relative size of O(λ2) ' 4%, which are not included
in our error estimates.
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SM Scenario 1 Scenario 2 Scenario 3 CS = 0.2 CT = 0.2
Br × 108 9.1± 1.9 7.4± 1.5 7.8± 1.6 8.1± 1.7 9.1± 1.9 9.2± 1.9
F `H × 102 2.64± 0.04 2.70± 0.04 2.68± 0.04 2.63± 0.03 2.69± 0.04 3.29± 0.11
A0 × 102 0 0.0± 2.3 0.0± 1.3 0.± 4. 0 0
σ0 × 102 0.00± 0.05 9.7± 0.6 −6.3± 0.3 −22.5± 0.7 0.00± 0.05 0.00± 0.05
σ2 × 102 0.00± 0.05 −9.5± 0.6 6.2± 0.3 21.9± 0.6 0.00± 0.05 0.00± 0.05
θ0 × 10 5.00± 0.00 4.62± 0.02 4.87± 0.01 3.69± 0.08 5.00± 0.00 5.00± 0.00
θ2 × 10 −4.868± 0.002 −4.49± 0.02 −4.74± 0.01 −3.59± 0.08 −4.867± 0.002 −4.841± 0.004

Table 6.B.3: Values of the observables in the SM, for the three different scenarios with new complex Wilson
coefficients defined in Eq. (6.64) and for the scenarios with CS(T ) = 0.2. All quoted values are for Bs → η′µµ and
are binned in q2 over [1, 6]GeV2. The inputs are taken from Table 6.1. Neglected doubly Cabibbo-suppressed
contributions are not included in our error estimates.
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Chapter 7

Symmetries in B → D∗`ν̄ angular
observables

As discussed in Chapter 3, charged-current b→ c`ν̄ transitions exhibit deviations in LFUV observables comparing
` = τ and lighter leptons. In some of the NP models explaining these deviations, there is a natural connection
with the deviations of the b→ s`+`− mode. It is thus interesting to further investigate these deviations. In this
chapter and the following, we will propose two different alternate tests for the b→ c`ν̄ deviations which might
help to elucidate the situation.

The first one of these tests is developed in this chapter, based on Ref. [360], where we apply the formalism of
amplitude symmetries to the angular distribution of the decays B → D∗`ν for ` = e, µ, τ . Depending on the NP
hypotheses chosen, we will identify a set of symmetries for the massless (electron and muon) and massive (tau)
distributions that will lead us to find a set of dependencies or relations among the angular coefficients of the
distribution. A similar exercise was done in Refs. [361–363] for the case of the decay mode B → K∗µµ. Here we
will follow closely the detailed work in Ref. [361] to use the symmetries of the distribution in order to show that
depending on the assumptions of the type of NP at work and the mass of the leptons, not all angular coefficients
are independent.

These relations can be used in the case of the B → D∗`ν decay as a way of cross-checking the consistency
of the measurements of angular observables 1, but also to provide orientation on which kind of NP can be
responsible for deviations with respect to the SM observed in these observables. For instance, these relations
among the observables yield a combination of angular coefficients equivalent to the longitudinal polarisation FD∗

L .
This can provide a different handle for experimentalists to cross-check the polarisation fraction and confirm or not
its high value, which appears difficult to accommodate with NP scenarios. Such a cross-check of the longitudinal
D∗ polarisation can also be useful if instabilities occur when extracting the p.d.f. of angular observables due to
values of FD∗

L beyond physical boundaries for instance 2.
We will provide general expressions for the relations among observables but we will focus mainly on a baseline

case without tensor contributions 3 . On the other hand, we will consider the contribution of the pseudoscalar
operator that can help to increase FD∗

L and bring it closer to the Belle measurement, as found in Ref. [166]. We
will also discuss the simplified case where there are no large NP phases in the Wilson coefficients, i.e. when we
assume the coefficients are real or the NP phases are small.

In Section 7.1 we recall the structure of the angular distribution and define the most relevant observables
following Ref. [166]. In Section 7.2 we describe the formalism and explain how to count the number of symmetries
and dependencies for each particular case and we work out the dependencies in the massless and massive cases,
paying special attention to the presence of pseudoscalar operators. In Section 7.3 these dependencies are used
to determine FD∗

L (or equivalently FD∗

T ) in terms of the other observables in various ways and we discuss the
impact of binning when using these relations. In Section 7.4 the expected experimental sensitivity of forthcoming
experiments is discussed. We give our conclusions in Section 7.5. In Appendix 7.A some details on the derivation
of the exact massive dependencies are provided and in Appendix 7.B we give illustrations of the binning effects

1An alternative approach is illustrated in Ref. [364] in the case of B → ρ(a1)`ν semileptonic decays where the study of specific
NP operators extending the SM effective hamiltonian and the large-energy limit of form factors allows one to disentangle the role of
the possible new structures in the differential 4-body distribution.

2This problem has already occurred in the case of the angular analysis of B → K∗µ+µ−: the fit to CMS data [365] used to
extract P1, P ′

5 and FL altogether from the data has exhibited instabilities that forced the authors of Ref. [365] to include additional
information on FL rather than leave it free in the fit.

3For the benchmark points analysed in Ref. [166], the presence of tensor operators decreases the value of FD∗
L for B → D∗τν

substantially, increasing the discrepancy with the measured value. See Ref. [366] for the impact of tensor operators on RD∗ and
other observables.
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for the relations discussed in this analysis. Finally, in Appendix 7.C we discuss a possible signature of the
presence of light right-handed neutrinos in the absence of tensors and imaginary contributions using the different
“determinations” of FD∗

L .

7.1 B̄ → D∗`ν̄ angular distribution
7.1.1 Effective Hamiltonian and angular observables
The angular distribution for B → D∗`ν has been extensively studied in the literature [184, 188, 367–371]. We
base this Chapter on the studies in Ref. [166].

The distribution can be computed in the weak effective Hamiltonian framework using the Hamiltonian in
Eq. (2.16) or Eq. (2.17) depending on the basis choice for the operators.

The resulting angular distribution is
d4Γ

dq2d cos θDd cos θ`dχ
=

9

32π

{
I1c cos

2 θD + I1s sin
2 θD +

[
I2c cos

2 θD + I2s sin
2 θD

]
cos 2θ`

+
[
I6c cos

2 θD + I6s sin
2 θD

]
cos θ` +

[
I3 cos 2χ+ I9 sin 2χ

]
sin2 θ` sin

2 θD

+
[
I4 cosχ+ I8 sinχ

]
sin 2θ` sin 2θD +

[
I5 cosχ+ I7 sinχ

]
sin θ` sin 2θD

}
,

(7.1)

where the angular coefficients Ii ≡ Ii(q
2) are given in Ref. [166]:

I1c = 2N

[
|H̃−

0 |2 + m2
`

q2
|H̃+

0 |2 + 2
m2
`

q2
|H̃t|2

]
, (7.2)

I1s =
N

2

[
3
(
|H̃−

+ |2 + |H̃−
− |2
)
+
m2
`

q2
(
|H̃+

+ |2 + |H̃+
− |2
)]
, (7.3)

I2c = 2N

[
−|H̃−

0 |2 + m2
`

q2
|H̃+

0 |2
]
, (7.4)

I2s =
N

2

[
|H̃−

+ |2 + |H̃−
− |2 − m2

`

q2
(
|H̃+

+ |2 + |H̃+
− |2
)]
, (7.5)

I3 = −2N Re

[
H̃−

+ H̃
−∗
− − m2

`

q2
H̃+

+ H̃
+∗
−

]
(7.6)

I4 = N Re

[
(H̃−

+ + H̃−
− )H̃−∗

0 − m2
`

q2
(H̃+

+ + H̃+
− )H̃+∗

0

]
(7.7)

I5 = 2N Re

[
(H̃−

+ − H̃−
− )H̃−∗

0 − m2
`

q2
(H̃+

+ + H̃+
− )H̃∗

t

]
, (7.8)

I6c = 8N
m2
`

q2
Re
[
H̃+

0 H̃
∗
t

]
, (7.9)

I6s = 2N
(
|H̃−

+ |2 − |H̃−
− |2
)

(7.10)

I7 = 2N Im

[
(H̃−

+ + H̃−
− )H̃−∗

0 − m2
`

q2
(H̃+

+ − H̃+
− )H̃∗

t

]
, (7.11)

I8 = N Im

[
(H̃−

+ − H̃−
− )H̃−∗

0 − m2
`

q2
(H̃+

+ − H̃+
− )H̃+∗

0

]
(7.12)

I9 = −2N Im

[
H̃−

+ H̃
−∗
− − m2

`

q2
H̃+

+ H̃
+∗
−

]
(7.13)

where N is a normalisation

N = BD∗→Dπ
G2
F |Vcb|2

48(2π)3m3
B

q2λ
1/2
BD∗(q

2)

(
1− m2

`

q2

)2

, (7.14)

with λBD∗(q2) = m4
B +m4

D∗ + q4 − 2(m2
Bm

2
D∗ +m2

Bq
2 +m2

D∗q2) and the amplitudes H̃ correspond to linear
combinations of transversity amplitudes for various currents. We can write them in the following way to make
the dependence on m` explicit:

H̃+
i = Hi − 2

√
q2

m`
HT,i H̃−

i = Hi − 2
m`√
q2
HT,i H̃t =

√
q2

m`
H̃P (7.15)
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where i = 0,+,− and Hi correspond to vector and axial currents whereas HT,i correspond to tensor currents,
and H̃P combines two amplitudes Ht and HP :

H̃P =
m`√
q2
Ht +HP (7.16)

The Hi amplitudes depend on form factors and on q2, but not on the lepton mass. In particular, the presence of
1/m` in H̃+

i means that the discussion of the limit m` → 0 should be considered after expressing all the angular
coefficients in terms of Hi.

7.1.2 Observables
Contrary to B → K∗`` [87, 214], there are no specific discussions to consider concerning the possibility of
optimised observables, since all B → D∗ form factors either vanish or yield the same Isgur-Wise function ξ in the
heavy quark limit (see Section 2.5.1), so any ratio of angular observables is appropriate to reduce uncertainties
from form factors. We thus take almost the same list as Ref. [166] for the 12 observables that form a basis4:

Oi =
{
A0, A3, A4, A5, A6s, A7, A8, A9, AFB, RA,B , F

D∗

L , dΓ/dq2
}

(7.17)

Compared to Ref. [166], we do not include the observable Aλ`
in this list because it is related to the τ polarisation

and requires one coefficient not included in the angular distribution. Instead we must introduce an additional
observable (not included in Ref. [166]) so that the numbers of angular coefficients and observables match. We
may choose for instance:

A0 =
1

dΓ/dq2
(I1c + I1s) (7.18)

We recall here the definition of the observables defined in Ref. [166] that play an important role in this analysis:

• The differential decay rate
dΓ

dq2
=

1

4
(3I1c + 6I1s − I2c − 2I2s) (7.19)

• The longitudinal and transverse D∗ polarisation decay rates:

FD
∗

L =
dΓL/dq

2

dΓ/dq2
=

1

dΓ/dq2
1

4
(3I1c − I2c) (7.20)

FD
∗

T = 1− FD
∗

L =
dΓT /dq

2

dΓ/dq2
=

1

dΓ/dq2
1

2
(3I1s − I2s) (7.21)

In order to make a more explicit contact with the integrated longitudinal polarisation we also introduce
F̃D

∗

L = (dΓL/dq
2)/Γ and F̃D

∗

T = (dΓT /dq
2)/Γ, where Γ = Γ(B → D∗`ν) with ` = τ, µ, e.

• The ratio RA,B describing the relative weight of the various angular coefficients in the partial differential
decay rate with respect to θ`, in analogy with the longitudinal polarisation fraction

RA,B(q
2) =

dΓA/dq
2

dΓB/dq2
=

1

2

(I1c + 2I1s − 3I2c − 6I2s)

(I1c + 2I1s + I2c + 2I2s)
(7.22)

Eqs. (7.19) to (7.21) are the “standard definitions" of dΓ/dq2, FD∗

L and FD
∗

T respectively, and they are used to
determine these observables with this particular functional dependence of the angular coefficients I.

Similarly to the discussion in Ref. [373], the definition of observables integrated over a bin (or over the whole
phase space) requires some care. Experimentally, the measurement yields the integrated angular coefficients
〈Ik〉` with the definition5

〈X〉` =
∫ (mB−mD∗ )2

m2
`

dq2X (7.23)

where the subscripts ` and 0 indicate the massive case (with m`) and the massless case respectively. We can
then define the “standard" integrated longitudinal and transverse polarisations

〈F̃D
∗

L 〉` =
1

4Γ
(3〈I1c〉` − 〈I2c〉`) (7.24)

4Further discussions of this differential decay rate can be found in Ref. [372] including CP-violating observables and in Ref. [189]
when D∗ subsequently decays either to Dπ or to Dγ.

5Notice that the definition of 〈Ii〉 in Ref. [166] is normalised with Γ(B → D∗`ν), while we prefer to keep the dependence on
Γ(B → D∗`ν) explicit.
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m` Tensor ops. Pseudoscalar op. Coefficients Dependencies Amplitudes Symmetries
0 No No 11 6 3 1
0 No Yes 11 5 4 2
0 Yes No 11 0 6 1
0 Yes Yes 12 0 7 2

6= 0 No No 12 5 4 1
6= 0 No Yes 12 5 4 1
6= 0 Yes No 12 0 7 2
6= 0 Yes Yes 12 0 7 2

Table 7.1: Symmetries and dependencies among the B → D∗`ν angular observables depending on the mass of
the lepton and the contribution of tensor and pseudoscalar operators.

〈F̃D
∗

T 〉` =
1

2Γ
(3〈I1s〉` − 〈I2s〉`) (7.25)

The Belle measurement is actually 〈F̃D∗

L 〉Belle
τ = 0.60± 0.09.

At this stage, a brief comment on the possible NP contributions is useful. Most models discussed in
Section 3.1.3 that explain the data in b → c`ν through single-particle exchanges do not generate tensor
contributions. The exception to this is the scalar SU(2)L-doublet leptoquark R2 (as illustrated, for instance, in
Ref. [374]) which however generates much larger contributions to gSL

(i.e. gS and gP ) than to gTL
(i.e. gT and

gT5). This effect is enhanced by the running from the NP scale (1 TeV) down to the mb scale (reducing the
tensor contribution by ∼ 20% and increasing the scalar contribution by ∼ 80%), so that scalar contributions are
likely to be larger than the tensor contributions if the latter are present [82]. In Refs. [82, 83], a model with a
single R2 leptoquark with complex couplings was shown to have a lower SM-pull than other NP scenarios once
the constraint from the Bc lifetime was taken into account. In Ref. [192], a viable model with the R2 leptoquark
was proposed in combination with the S1 leptoquark, leading to (large real) vector couplings as well as (large
imaginary) scalar and (smaller imaginary) tensor couplings.

Although some scenarios might allow for large imaginary contributions, this is mainly due to the limited
number of observables currently available that constrain them.

We will thus consider as a baseline scenario that tensor contributions are subleading compared to other
operators. We will also consider that the imaginary parts of the amplitudes can be neglected. In the SM as well
as in the case of real NP, the only phase comes from the CKM matrix element, and it is actually the same for all
the amplitudes. Under our baseline scenario, for instance, the angular coefficients corresponding to imaginary
parts (I7,8,9) are either small or vanishing, as well as any imaginary contribution. For completeness we will
provide full expressions for the relations among the coefficients including these terms (see Appendix 7.A for the
general expressions in the massive case).

7.2 Relations among angular coefficients
7.2.1 Symmetries and dependencies
The decay B → D∗`ν has a rich angular structure, and it is interesting to investigate whether all the angular
observables defined in the previous section are independent, following the same steps as in Refs. [214, 361–363]
for B → K∗``. We can consider the angular coefficients as being bilinears in

A = {Re[H0], Im[H0],Re[H+], Im[H+],Re[H−], Im[H−],

Re[HT,0], Im[HT,0],Re[HT,+], Im[HT,+],Re[HT,−], Im[HT,−],Re[H̃P ], Im[H̃P ]}
(7.26)

An infinitesimal transformation will be given by

A′ = A+ δ (7.27)

For the infinitesimal transformation to leave the coefficients I unchanged, the vector δ has to be perpendicular
to the hyperplane spanned by the set of gradient vectors ∇Ii (with the derivatives taken with respect to the
various elements of A). If the Ii are all independent, the gradient vectors should span the whole space available
for the coefficients, i.e. the dimension of the space for the gradient vectors should be identical to the number of
angular coefficients.

One can define:
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• The number of coefficients nc, given directly by the angular distribution

• The number of dependencies nd, given by the difference between the number of angular coefficients Ii and
the dimension of the space given by the gradient vectors (provided by the rank of the matrix Mij = ∇iIj)

• The number of helicity/transversity amplitudes nA, leading to 2nA real degrees of freedom

• The number of continuous symmetries ns explaining the degeneracies among angular coefficients

One has the following relation
nc − nd = 2nA − ns (7.28)

which we can investigate in various cases for B → D∗`ν summarised in Table 7.1.
As discussed above, the assumption of no tensor contributions seems favoured by the current global fits

and we will stick to this assumption. In this case it is expected according to Table 7.1 the existence of 5 or 6
relations. The presence or absence of the pseudoscalar operator does not modify the outcome of the analysis and
the number of dependencies in the massive case due to Eq. (7.16). However, we find interesting to discuss its
effect separately as it was found in Ref. [166] that such a pseudoscalar contribution can help to alleviate the
tension in FD

∗

L for B → D∗τν.
We can now explore the dependence relations between angular coefficients, depending on the lepton mass,

the presence of pseudoscalar and tensor operators. These relations can be used as a consistency test among the
observables if all of these observables are measured in order to check the very general assumptions made to derive
them. If these relations are not fulfilled, it means that there is an issue with one or more of the measurements
or that some of the underlying assumptions (negligible NP in tensor operator, negligible imaginary parts) are
not correct. Such tests are completely independent of any assumption on the details of the NP model or the
hadronic inputs.

7.2.2 Massless case with no pseudoscalar operator and no tensor operators
The expressions for the angular observables become in terms of the amplitudes themselves

I1c =2N × |H0|2 (7.29)

I1s =
N

2
× 3

[
|H+|2 + |H−|2

]
(7.30)

I2c =2N × (−1)|H0|2 (7.31)

I2s =
N

2

[
|H+|2 + |H−|2

]
(7.32)

I3 =− 2N × Re[H+H
∗
−] (7.33)

I4 =N
[
Re[H0H

∗
+ +Re[H0H

∗
−]
]

(7.34)
I5 =2N

[
Re[H0H

∗
+ − Re[H0H

∗
−]
]

(7.35)
I6c =0 (7.36)
I6s =2N

[
|H+|2 − |H−|2

]
(7.37)

I7 =2N
[
−Im[H0H

∗
+]− Im[H0H

∗
−]
]

(7.38)
I8 =N

[
−Im[H0H

∗
+] + Im[H0H

∗
−]
]

(7.39)
I9 =− 2N × Im[H+H

∗
−] (7.40)

In this case, the only continuous symmetry that can be found is simply

H0 → eiαH0 , H− → eiαH− , H+ → eiαH+ (7.41)

and only 5 of the 11 observables 6 are independent and 6 dependencies are found. Consequently, one can
invert the system to determine the value of the real and imaginary parts of the amplitudes in terms of some of
the angular coefficients, and re-express the other ones in terms of the same angular coefficients leading to the
following relations:

I1c = −I2c (7.42)
6Notice that there are 11 coefficients in this case: I6c = 0 and consequently there are 11 observables since AFB and A6s are

proportional.
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I1s = 3I2s (7.43)
−4I3I2c = −4I24 + I25 − I27 + 4I28 (7.44)
−2I9I2c = I5I7 − 4I4I8 (7.45)

−4I2c

(
1

2
I6s +

2

3
I1s

)
= (2I4 + I5)

2 + (I7 + 2I8)
2 (7.46)

−4I2c

(
−1

2
I6s +

2

3
I1s

)
= (−2I4 + I5)

2 + (I7 − 2I8)
2 (7.47)

These relations can be used as a consistency test among the observables if all of these observables are measured,
under the hypothesis that we have outlined (negligible lepton mass, negligible pseudoscalar and tensor operators).

Another way of exploiting these equations consists in combining the non-trivial relations Eqs. (7.44) to (7.47)
under the assumption that I7,8,9 = 0 (taking all imaginary parts to be zero). For future use under this assumption
we reorganise these equations, allowing us to make contact with the massive ones later on:

I23 =
4

9
I21s −

1

4
I26s (7.48)

I24 = −1

3
I1sI2c +

1

2
I2cI3 (7.49)

I25 = −2

3
I2c(2I1s + 3I3) (7.50)

One of the dependencies disappears once I7,8,9 = 0 is taken.

7.2.3 Massless case with pseudoscalar operator but no tensor operators
The same relations between angular observables and amplitudes hold as in the previous case, apart from

I1c = 2N
[
|H0|2 + 2|HP |2

]
(7.51)

One can see that the two symmetries are

H0 → eiαH0 , H− → eiαH− , H+ → eiαH+ , HP → eiβHP , (7.52)

Again, by inverting the system one can obtain the same relations as in the massless case without pseudoscalar
contributions, see Eqs. (7.43) to (7.47), except for Eq. (7.42) which is not fulfilled.

Like in the previous case, these relations can be used as a consistency test among the observables if all of
these observables are measured, under the hypothesis that we have outlined (negligible lepton mass, negligible
tensor operators).

7.2.4 Massive case with pseudoscalar operator but no tensor operators
The symmetries in the massive case with pseudoscalar operator but no tensors are in principle a simple extension
of the analogous massless case. However, obtaining the expression of the dependencies in the massive case
is a rather non-trivial task. The absence of tensors implies that there is no distinction between “+” and “-”
components of H̃+

i and H̃−
i (see Eq. (7.15)) and the only surviving symmetry in this case is

H0 → eiαH0 , H− → eiαH− , H+ → eiαH+ , Ht → eiαHt , HP → eiαHP (7.53)

One finds five dependencies in this case, which are identified by solving the system of non-linear equations. The
first one is trivial:

0 = I1s

(
1− m2

`

q2

)
− I2s

(
3 +

m2
`

q2

)
(7.54)

and the other exact four non-trivial dependencies are detailed in Appendix 7.A.
We will consider the simplifying case where all Wilson coefficients are real so that I7,8,9 and all imaginary

contributions can be neglected (see Appendix 7.A for the general case without these assumptions). The remaining
four dependencies are then simplified substantially

I23 =

(
1− m2

`

q2

)2
[(

2I1s
3 +m2

`/q
2

)2

− I26s
4

]
(7.55)

I24 =
I2c(2I1s(m

2
` − q2) + I3(m

2
` + 3q2))

2(m2
` + 3q2)

(7.56)
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I25 =
[
−4I2cI6cI6s(m

2
` − q2)2(m2

` + 3q2) + I26c(m
2
` − q2)2

[
2I1s(m

2
` − q2) + I3(m

2
` + 3q2)

]
−16I22cq

4
[
2I1s(−m2

` + q2) + I3(m
2
` + 3q2)

]]
/
[
8I2c(m

2
` − q2)2(m2

` + 3q2)
] (7.57)

I26c = −8m2
`

[
I1cI2c(−m2

` + q2) + I22c(m
2
` + q2)

]
/
[
(m2

` − q2)2
]

(7.58)

The first three equations above are the generalisation of Eqs. (7.48) to (7.50) in the massive case while the
last equation is new: it would vanish in the massless limit with no tensors. These relations can be used as a
consistency test among the observables if all of these observables are measured, under the hypothesis that we
have outlined (no tensor operators, imaginary contributions negligible).

The last two equations can be combined to get rid of the I26c term and obtain the massive counterpart of
Eq. (7.50):

I25 =
[
4(m2

` − q2)2I1s(m
2
`(I1c − I2c)− 2q2I2c) + 2(m2

` + 3q2)(m4
`(I1c − I2c)− 2q4I2c

−m2
`q

2(I1c + I2c))I3 − (m2
` − q2)2(m2

` + 3q2)I6cI6s
]
/
[
2(m2

` − q2)2 (m2
` + 3q2)

] (7.59)

Eq. (7.58) has obviously no counterpart in the massless case, as it vanishes then 7.

7.2.5 Cases with tensor operators
In the massive case with tensors the degeneracy between the H̃+

i and H̃−
i is broken and two symmetries are

identified. The symmetries are better described in terms of the tilde-fields:

H̃−
i → eiαH̃−

i , H̃+
i → eiβH̃+

i , H̃t → eiβH̃t . (7.60)

Unfortunately there are no dependencies in this case. The same is true in the massless case.

7.3 Expressions of the D∗ polarisation
In the previous section, we have obtained several relationships between the angular coefficients under various
hypotheses, assuming that tensor contributions are negligible. In Sections 7.3.2 to 7.3.4, we will provide these
exact relationships in their binned form, but the corresponding unbinned versions have exactly the same form.

7.3.1 Massless case without pseudoscalar operator
For completeness we discuss the case with zero mass and no pseudoscalar operator, but still including all
imaginary terms. Eqs. (7.42) and (7.43) are trivial. Eqs. (7.44) to (7.47) can be rewritten in terms of observables
providing different determinations of FD∗

L :

πA3F
D∗

L =
2

9
(A2

5 −A2
7)−

1

8
π2(A2

4 −A2
8) (7.61)

πA9F
D∗

L =
4

9
A5A7 +

1

4
π2A4A8 (7.62)

(FD
∗

L )2 =

[
8

9
(A2

5 +A2
7) +

1

2
π2
(
A2

4 +A2
8

)]
RA,B (7.63)

AFBF
D∗

L = π (A4A5 −A7A8) (7.64)

We recall that Ai are defined from the angular observables up to a numerical normalisation given in Ref. [166].
A similar set of expressions can be written for F̃D∗

L , Ãi and ÃFB rather than FD∗

L , Ai and AFB , respectively, by
substituting the normalization in terms of dΓ/dq2 by the integrated decay rate Γ. These expressions can then be
binned trivially, however they are rather cumbersome to use. In the following two subsections we will restrict to
the case of removing any imaginary contribution corresponding to our baseline scenario that will be relevant to
the extraction of FD∗

L .

7In the massive case, this relation provides access to a sum of two related observables A6s and AFB :

2〈A6s〉` + 9〈AFB〉` =
27

2
√
2

1

Γ
m` 〈

1

q2 −m2
`

√
I1cI2c(m2

` − q2)− I22c(m
2
` + q2)〉`
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7.3.2 Massless case without imaginary contributions
Using Eqs. (7.43) and (7.48) we obtain one of the important results of this chapter:

〈F̃D
∗

T 〉0 =
1

Γ
〈2
√
I23 +

1

4
I26s〉0 where 〈F̃D

∗

T 〉0 = 1− 〈F̃D
∗

L 〉0 (7.65)

This relation can be used as a cross-check of the FD∗

L determination in the massless case (without imaginary
contributions but allowing for the presence of pseudoscalars).

This expression can be generalised to the case of smaller bins spanning only part of the whole kinematic
range, leading to

〈F̃D
∗

T 〉i0 =
1

Γ
〈2
√
I23 +

1

4
I26s〉i0 (7.66)

where i means that the integral in Eq. (7.23) is taken over the bin i with a narrower [q2i,min, q
2
i,max] range 8.

If we restrict further to the case without pseudoscalars (in this case I1c = −I2c is fulfilled), we obtain further
expressions using Eqs. (7.49) and (7.50):

〈F̃D
∗

L 〉0 =
1

Γ
〈I

2
5 − 4I24
4I3

〉0 (7.67)

=
1

Γ
〈RA,B

(
I3 +

√
4
I24

RA,B
+ I23

)
〉0 =

1

Γ
〈RA,B

(
−I3 +

√
I25

RA,B
+ I23

)
〉0 (7.68)

where RA,B is positive and non-vanishing by construction.

7.3.3 Massive case with pseudoscalar operator but without imaginary contributions
In this case, we focus on Eqs. (7.54) to (7.56) to derive equivalences to FD∗

L since Eq. (7.57) is too involved to
provide a useful relation to FD∗

L . Eqs. (7.54) and (7.55) yield:

〈F̃D
∗

T 〉` =
1

Γ
〈
√
(AI3)

2
+

1

4
(B I6s)

2 〉` where 〈F̃D
∗

T 〉` = 1− 〈F̃D
∗

L 〉` (7.69)

where we define the auxiliary kinematic quantities (whose value in the massless case is two)

A =
m2
` + 2q2

q2 −m2
`

B = 2 +
m2
`

q2
(7.70)

One can write an equivalent equation to Eq. (7.69) for narrower q2 bins similary to the previous section. In the
case of Eq. (7.56) we do not substitute I2c, leading to:

〈F̃D
∗

T 〉` = 1− 〈F̃D
∗

L 〉` =
1

Γ
〈A
(
I3 − 2

I4
2

I2c

)
〉` (7.71)

Relating this equation with the massless case is not straightforward given that in the massless case I2c was
substituted (before integrating) in terms of FD∗

L and RA,B .

7.3.4 Cases with pseudoscalar operator and imaginary contributions
This corresponds to the most complete expression allowing for the presence of pseudoscalars and also imaginary
parts, but no tensors. This can be achieved, as in the previous section, by using I1s and I2s instead of I1c and
I2c as a starting point. The corresponding expression in the massless case is:

〈F̃D
∗

T 〉0 =
1

Γ
〈2
√
I23 + I29 +

1

4
I26s〉0 where 〈F̃D

∗

T 〉0 = 1− 〈F̃D
∗

L 〉0 (7.72)

and in the massive case

〈F̃D
∗

T 〉` =
1

Γ
〈
√
(AI3)

2
+ (AI9)

2
+

1

4
(B I6s)

2 〉` where 〈F̃D
∗

T 〉` = 1− 〈F̃D
∗

L 〉` (7.73)

8Notice that 〈F̃D∗
L 〉0+〈F̃D∗

T 〉0 = 1 holds because the integration is performed over the whole kinematic range. For the observables
〈F̃D∗

L 〉i0 and 〈F̃D∗
T 〉i0 shown in Figs. 7.1, 7.2, 7.B.1 to 7.B.6 and 7.3, this is no longer the case due to the normalisation of F̃D∗

L and
F̃D∗
T : 〈F̃D∗

L 〉i0 + 〈F̃D∗
T 〉i0 = 〈dΓ/dq2〉i0/Γ < 1. It is trivial to check that a different normalisation for F̃D∗

L and F̃D∗
T would only affect

the normalisation 1/Γ appearing in the binned expressions.
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Similar expressions can be written for 〈F̃D∗

T 〉i` defined for narrower q2 bins. These expressions represent the
most general relations with the massless and massive polarisation fractions. Compared to the previous case, one
can see that the presence of imaginary contributions comes simply from the additional I9 term in Eqs. (7.72)
and (7.73), see also Eq. (7.110) in Appendix 7.A.

Within this more general framework, Eqs. (7.54) and (7.110) yield the following simple relation among the
observables defined in Section 7.1.2:

〈x1(F̃D
∗

T )2〉` = 〈x2
(
Ã2

3 + Ã2
9

)
+ x3

(
Ã6s

)2
〉` (7.74)

where Ãi stands for the observables Ai normalised to Γ rather than dΓ/dq2, x1 = (m2
`−q2)2, x2 = 4π2(m2

`+2q2)2

and x3 = 4x1x2/(729π
2q4) (A9 vanishes in the absence of large imaginary contributions). This relation implies

that the large (small) value of FD∗

L (FD∗

T ) requires a corresponding suppression in A2
3 +A2

9, in A6s or both. For
this reason it would be particularly interesting to have available predictions in specific models for this couple of
observables in case that the unexpectedly large value of this polarisation fraction remains.

7.3.5 Binning
We have obtained these equivalent expressions for 〈F̃D∗

L 〉` (or 〈F̃D∗

T 〉`) assuming that there are no tensors and
(in some cases) no large imaginary contributions at short distances. From now on we introduce the notation
〈F̃D∗ alt
T 〉` (or 〈F̃D∗ alt

L 〉`) to refer to Eq. (7.73) as the coefficient combination equivalent to FD∗

T (or FD∗

L ) which
we refer to as the “alternative determination of FD∗

T (or FD∗

L ). In the absence of imaginary contributions we
will use the notation 〈F̃D∗ alt

T 〉I9=0
` corresponding to Eq. (7.69). In the massless case we denote 〈F̃D∗ alt

T 〉0 for
Eq. (7.72) and 〈F̃D∗ alt

T 〉I9=0
0 for Eq. (7.65).

Experimentally we have to consider binned versions of these expressions, which are nonlinear functions of
the angular coefficients. Since the binned angular coefficients are the only quantities measured, we should be
careful that f(〈Ik〉`) 6= 〈f(Ik)〉` when f is non-linear. From an experimental perspective there are two ways to
proceed: i) measure the coefficients I3 and I6s of the massless or massive distribution in very small bins in order
to reconstruct a q2 dependence of these functions, so that we can perform the integration in Eq. (7.65) for the
massless case or in Eq. (7.69) in the massive case (or their counterparts including imaginary parts Eq. (7.72)
and Eq. (7.73)); ii) use an unbinned measurement method (as was done for B → K∗µµ [375]) to determine
the q2 dependence of the coefficients and introduce the obtained expressions inside Eq. (7.65) or Eq. (7.69) as
explained above.

Both approaches are however difficult to implement when the statistics is low, and one has to choose between
the extraction of the whole angular distribution and the study of the q2 dependence of simpler observables like
the decay rate. Currently, the measurements are integrated over the whole kinematic range, which constitutes a
single bin for the analysis.

By comparing with our exact results, we will thus investigate the accuracy of the approximation f(〈Ik〉`) =
〈f(Ik)〉`, which requires the following transformation on the unbinned expressions:

dΓX/dq
2 → 〈dΓX/dq2〉 Ii → 〈Ii〉 wIi → 〈wIi〉 wI2i → 〈

√
|w|Ii〉2 (7.75)

where w stands for any positive weight depending on m and q2. This leads to the following “approximate
formulae” in the massless case, starting from Eq. (7.72):

〈F̃D
∗ alt

T 〉0 ' 1

Γ
2

√
〈I3〉20 + 〈I9〉20 +

1

4
〈I6s〉20 (7.76)

and in the massive case, starting from Eq. (7.73):

〈F̃D
∗ alt

T 〉` '
1

Γ

√
〈AI3〉2` + 〈AI9〉2` +

1

4
〈B I6s〉2` (7.77)

In the massive case, one should measure the Ii and multiply each event by a numerical factor A for I3, I9 and B
for I6s.

Similarly, in the absence of imaginary parts, we obtain the approximate binned expression, starting from
Eq. (7.69):

〈F̃D
∗ alt

T 〉I9=0
` ' 1

Γ

√
〈AI3〉2` +

1

4
〈B I6s〉2` (7.78)

and the approximate expression for 〈F̃D∗

T 〉` starting from Eq. (7.71)

1

Γ
〈A
(
I3 − 2

I4
2

I2c

)
〉` '

1

Γ

[
〈AI3〉` − 2

〈AI4〉2`
〈AI2c〉`

]
(7.79)
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All these expressions have a corresponding expression for 〈F̃D∗

T 〉i` for narrower bins where 〈〉` is transformed into
〈〉i` corresponding to the integration over the narrow bin i.

In order to get an idea of the accuracy of these approximate relations, we perform the following numerical
exercise. We consider a set of benchmark points corresponding to the global fit best-fit-points of the 1D and
2D NP hypotheses in Refs. [82, 83]. Among the 1D hypotheses, the most favoured one is assuming NP in gVL

,
followed by NP in gSR

(see Eq. (2.17)). Specifically we will take for this numerical analysis as benchmark points
the best-fit-points of the following four different NP hypotheses (in each case, the remaining couplings are set to
zero):

(R1) : gVL
= 0.07 (7.80)

(R2) : gSR
= 0.09 (7.81)

(R3) : gSL
= 0.07 (7.82)

(R4) : gSL
= 4gT = −0.03 (7.83)

where the values are given at the scale µ = 1 TeV, and we run them down to the scale µ = mb [82–84]. For 2D
hypotheses, there is a wider range of relevant possibilities, and we select the following ones 9:

(R5) :(gVL
, gSL

= −4gT ) = (0.10,−0.04) (7.84)
(R6)− (R7) :(gSR

, gSL
) = (0.21,−0.15) or (−0.26,−0.61) (7.85)

(R8) :(gVL
, gSR

) = (0.08,−0.01) (7.86)
(C0)− (C0)∗ :gSL

= 4gT = −0.06± i 0.31 (7.87)

where once again we run these coefficients down to µ = mb.
In Ref. [166], a set of benchmark points is determined by considering the best-fit points of different scenarios

with one free complex parameter. The resulting 2D benchmark points (in each case, the remaining couplings are
set to zero) at the scale µ = mb are:

(C1) : gVL
= 0.07− i0.16 (7.88)

(C2) : gVR
= −0.01− i0.39 (7.89)

(C3) : gSL
= 0.29− i0.67 (7.90)

(C4) : gSR
= 0.19 + i0.08 (7.91)

(C5) : gT = 0.11− i0.18 (7.92)

Using the operator basis in Eq. (2.16), alternative benchmark points are found to be 10:

(C6) : gV = 0.20 + i0.19 (7.93)
(C7) : gA = 0.69 + i1.04 (7.94)
(C8) : gS = 0.17− i0.16 (7.95)
(C9) : gP = 0.58 + i0.21 (7.96)

In the following we will check the relations given in the previous sections against these benchmark scenarios. We
have used the binned approximation of the relations using 6 bins of equal length as shown in Fig. 7.1. On the one
hand, this allows us to test the quality of the binned approximation. On the other hand, we can check the impact
of the assumptions used in order to derive the various relations: for instance, checking the expressions obtained
for real NP contributions in Section 7.3.3 in the case of the scenarios (C0) − (C9) with complex parameters
provides an estimate of the impact of realistic NP imaginary contributions on these expressions.

We need to choose a set of form factors to evaluate the hadronic contributions and to be able to test how
accurate the relations remain within the binned approximation discussed above, taking into account possible
unexpected NP contributions (imaginary parts, tensor contributions). Since our goal is only to check the accuracy
of this approximation for the various NP benchmark points it is enough to work using a simplified setting. For
this reason, we refrain from using form factors obtained by elaborate combinations of heavy-quark effective
theory [91, 92, 376, 377] sum rules and lattice simulations [39, 82, 154, 166, 378–384] and we stick to the simpler
quark model in Ref. [385] without attempting to assign uncertainties to these computations.

A sample of the results is shown in Figs. 7.1 to 7.3 to illustrate the accuracy of the determinations from
Eq. (7.77), taking into account the contribution from imaginary parts, and Eqs. (7.78) and (7.79), neglecting this

9Even though (C0) and (C0)∗ are formally different scenarios corresponding to opposite imaginary parts, they yield the same
results for our observables which are not sensitive to the sign of the imaginary part.

10For completeness, we quote (C8) although this NP scenario has no impact on B → D∗`ν and is thus equivalent to the SM for
our purposes.
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contribution. Additional scenarios are considered in Appendix 7.B. In order to be more precise, the relative errors
of the approximate binned expression for F̃D∗alt

T with respect to F̃D∗

T are given in Tables 7.B.1 and 7.B.2. Let
us add that the Ii are integrated with the kinematical weight A or B defined in Eq. (7.70) for the evaluation of
the massive expressions whenever needed. We obtain the following results for the benchmark points considered:

• The binned approximation works very well in all cases when testing the relations in the case of scenarios
where they are expected to hold. Conversely, when one considers a NP scenario with significant tensor
contributions (like (C0) or (C5)) in which the relations are not expected to hold, the expressions are off
by ∼ 70% in the worst cases. Only when the NP contribution to the tensor coefficients is very small
(|gT | � 1), the expressions work quite well, for example ∼ 5% for (R4).

• When we consider NP scenarios for the τ lepton with complex values for the Wilson Coefficients but
without tensor contributions, i.e. (C1)− (C4) and (C6)− (C9), the expressions hold with errors at the
percent level. This occurs even when we consider the expressions meant for real coefficients (Section 7.3.3).
We stress again that this does not apply to scenarios with tensor contributions such as (C0) and (C5).

• We also tested the massless expressions in the case of NP scenarios affecting light leptons at the same level
as the τ lepton. Such scenarios are ruled out by the current data, but they provide a further check of the
robustness of our expressions. In these cases, the expressions that do not contain the angular coefficients
containing imaginary parts of the amplitudes (I7,8,9) (Section 7.3.2) are off by ∼ 20% at worst. The
agreement can be restored once we generalise the corresponding expressions so that they include these
angular coefficients (Section 7.3.4), where we find a perfect agreement.

• In the first bin of most of the massless expressions, the relations are not completely fulfilled, with a
difference up to 10% due to binning effects enhanced at the endpoint of the massless distribution.

This study shows that the expressions derived above under the assumption of no imaginary NP contributions
and no tensor contributions in Sections 7.3.2 and 7.3.3 work very well even in the binned approximation. They
are very accurate even in the presence of imaginary NP contributions. Their simple generalization including
imaginary parts in Section 7.3.4 are as expected to be even more accurate also in the binned approximation.
Finally, all relations fail in the presence of large tensor contributions.

7.3.6 Decision Tree
We have proposed different ways of determining FD∗

L (or FD∗

T ) which can be compared to the usual definition,
based on the existing symmetries if additional assumptions are made about the nature of NP (no tensors,
real contributions). One may then wonder how to interpret the situation when the determination of FD∗

T in
a narrow bin in the case of the tau lepton yields different results from Eq. (7.69) and from the traditional
determination. While we have provided different possible determinations we will focus on Eq. (7.69) because it
includes pseudoscalar contributions and it is easily generalised in the presence of phases, see Eq. (7.73). There
are three possible conclusions:

1) Our first hypothesis is the absence (or negligible size) of tensors. In the presence of tensors, there are no
dependencies among the angular observables, and we cannot use Eq. (7.69) to determine FD∗

T . This first
hypothesis seems to be in agreement with the study in [166] that shows that tensors tend to substantially
worsen the situation reducing even further the value of FD∗

L (or increasing FD∗

T ). If needed, this question
can be tested by probing the relationships shown in Section 7.2 among the angular coefficients.

2) The second hypothesis is the absence of large imaginary parts. In this case one can generalise the expression
Eq. (7.69) to the presence of imaginary parts to get Eq. (7.73), simply substituting:

(AI3)
2 → (AI3)

2
+ (AI9)

2 (7.97)

and similarly for the massless case. This simple substitution covers the presence of large phases but of
course at the cost of measuring also I9. Alternatively one can also measure I7,8,9 which are sensitive to
large imaginary parts and determine if they differ from zero in a significant way.

3) The third option is the presence of an experimental issue in the determination of FD∗

L in the traditional
way for B → D∗τν. The equivalences proposed here could help to determine the problem to be fixed and
whether this second determination is also in disagreement not only with the SM but also with NP models.
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Figure 7.1: Illustration of the errors induced by binning on the relation in Eq. (7.77). The orange dashed curve
corresponds to the standard definition of F̃D∗

T , whereas the blue one corresponds to F̃D∗ alt
T . The orange bins

in this plot are obtained using the binning form of the “standard” expression for F̃D∗

T while the blue ones are
obtained using the approximate binned expression of F̃D∗ alt

T in Eq. (7.77). The plots labelled SM correspond to
the case m` = me and m` = mτ in the SM and the other plots correspond to F̃D∗

T in B → D∗τν in different
NP scenarios described in the text. The differences come from the presence of tensor currents for (C0) or from
binning effects for the SM case.
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Figure 7.2: Same as Fig. 7.1 for Eq. (7.79).
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Figure 7.3: Same as Fig. 7.1 for Eq. (7.78).
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7.4 Experimental sensitivity
Our analysis is based on the possibility of performing a full angular analysis of the B → D∗`ν with a reasonable
accuracy to check the relationships derived among angular observables. There is a major experimental challenge
associated to the difficulty of measuring angular distributions of semitauonic decays due to the loss of the two
neutrinos, one from the B decay and the other from the subsequent τ decay, making it difficult to reconstruct
the τ direction. This problem arises both when the τ decays into a pion or a lepton [369, 370]. A novel
approach [184] has been proposed using the three-prong τ+ → π+π+π−ν̄τ decay instead of the muonic τ decay
and a multidimensional template fit able to measure the coefficients of the angular distribution. We can use the
numerical results from Ref. [184] to compare the expected experimental sensitivity of FD∗

L using the standard
definition in Eq. (7.25) with the one using the equivalent expression in Eq. (7.69).11

Taking the results of the template fit for the 50 fb−1 collider scenario given in Tab. 11 and Fig. 10 of
Ref. [184] and applying the transformation described in Eq. (7.75) we can obtain a rough estimate of the
sensitivity of 〈F̃D∗ alt

L 〉I9=0
τ . Obtaining this estimate is not straightforward since 〈F̃D∗ alt

L 〉I9=0
τ includes not only

the angular observables I3 and I6s but also the kinematic factors A and B. As mentioned in Section 7.3.5,
experimentalists can measure directly AI3, and B I6s following the same binning as the angular observables
arising in the differential branching ratio. In order to get a rough idea of these quantities in the absence
of a dedicated experimental study including estimates of AI3 and BI6s, we study the ratios 〈AI3〉/〈I3〉 and
〈B I6s〉/〈I6s〉 and how they change in the presence of NP. Scanning the parameter space, we find these ratios to
be rather independent of the NP considered. We find that 〈AI3〉/〈I3〉 ≈ 4.1 and 〈BI6s〉/〈I6s〉 ≈ 2.4, leading to
our approximate determination of the binned observables

〈AI3〉exp ≈ 4.1〈I3〉exp 〈B I6s〉exp ≈ 2.4 〈I6s〉exp (7.98)

It is important to emphasise that this approximation would not be needed for future experimental measurements
as long as AI3, AI9 and B I6s are measured directly.

Under these approximations and considering the uncertainties and correlations given for the 50 fb−1 collider
scenario in Ref. [184], we obtain the following rough estimate for the alternative determination for the SM case
considered in this reference

〈F̃D∗ alt
L 〉I9=0

50 fb−1 = 0.47± 0.12 (7.99)
to be compared with the standard determination

〈F̃D∗
L 〉50 fb−1 = 0.45± 0.01 (7.100)

The alternative determination suffers from the larger errors of the angular observables involved in its definition,
in comparison with the standard determination which is dominated by I1s with a smaller uncertainty than the
other angular observables, as show in Fig. 10 of Ref. [184].

These uncertainties would be enough to identify discrepancies coming from tensor contributions, such as our
scenario C5. The smaller differences between the two determinations coming from other types of scenarios (such
as Wilson coefficients with imaginary parts) could not be distinguished and the two determinations should yield
similar results. Conversely, it means that our relations will provide a non-trivial experimental cross-check of the
angular analyses projected in Ref. [184], unless large tensor contributions are present.

7.5 Conclusions
As we discussed in Chapter 3, the charged-current B → D∗`ν transition has been under scrutiny recently, as it
exhibited a deviation from the SM in the LFUV ratio RD∗ comparing the branching ratios ` = τ and lighter
leptons. Moreover, the polarisation of both the D∗ meson and the τ lepton have been measured for B → D∗τν.
If the latter agrees with the SM within large uncertainties, the Belle measurement of FD∗

L yields a rather high
value compared to the SM prediction, which appears difficult to accommodate with NP scenarios.

We could understand better this situation by considering in more detail the angular observables that could
be extracted from the differential decay rate, as described in Ref. [166]. We applied the formalism of amplitude
symmetries of the angular distribution of the decays B → D∗`ν for ` = e, µ, τ . We showed that the set of
angular observables used to describe the distribution of this class of decays are not independent in absence of
NP contributing to tensor operators. We derived sets of relations among the angular coefficients of the decay
distribution for the massless and massive lepton cases. These relations can be used to probe in a very general
way the consistency among the angular observables and the underlying NP at work, and in particular whether it
involves tensor operators or not.

11We refrain from using the more complete equivalent expression in Eq. (7.73) because the ratio 〈AI9〉/〈I9〉 necessary to get the
rough estimate described in the text is not properly defined in the SM.



180 Chapter 7. Symmetries in B → D∗`ν̄ angular observables

We used these relations to access the integrated longitudinal polarisation fraction of the D∗ using different
angular coefficients from the ones used by Belle experiment. This in the near future can provide a measurement
equivalent to FD

∗

L for B → D∗τν to understand the relatively high value measured by Belle. We presented
expressions in Eqs. (7.72) and (7.73) for the massless and massive case that cover the most general NP scenario
including also pseudoscalars and imaginary contributions, with the only exception of tensor contributions.

We then studied the accuracy of these expressions if only binned observables are available, or if they are
used in the case of scenarios beyond the assumptions made in their derivation (imaginary contributions, tensor
contributions). We used several benchmark points corresponding to best-fit points from global fits to b→ cτν
observables, relying on a simple quark model for the hadronic form factors for this exploratory study. The
expressions derived under the assumption of no imaginary NP contributions and no tensor contributions work
very well even in the binned approximation. They are very accurate even in the presence of imaginary NP
contributions. As expected, their generalisations, derived assuming the presence of imaginary contributions, are
very well behaved also in the binned approximation. All relations fail in the presence of large tensor contributions,
where no dependencies can be found among the angular observables.

Besides presenting the most general expressions for FD∗

L in the massless and massive case, we also derived a
relation among observables (Ã3,9,6s and FD

∗

L ) that are potentially interesting from the NP point of view if the
deviation in FD∗

L is confirmed. Having specific model building predictions for these observables would be highly
interesting. We also discussed the impact of the presence of light right-handed neutrinos. We showed that we
could test their presence in some specific cases under the hypothesis that there are no tensor nor imaginary
contributions, by comparing our two determinations of FD∗

L . Moreover, under this hypothesis, the sign of the
difference between the two determinations is fixed.

We have explored equivalences of FD∗

L based on our symmetries. In the absence of tensor contributions, these
determinations based on other angular observables are fulfilled very accurately. This provides an important cross
check for the experimental measurements: if our relations are not fulfilled by the experimental measurements,
this would mean either a problem on the experimental side or the presence of large tensor contributions. Using
recent projections on the experimental prospects for the measurements of angular observables, we find that
these relations could be checked with an accuracy of 10% in the scenario of a 50 fb−1 hadron collider, which
would be enough to spot a scenario with tensor contributions and would provide an interesting cross-check of
the determination of the angular observables.

These additional measurements needed for this extraction make obviously this determination more challenging
experimentally, but they can help to corner the kind of NP responsible for this high value or to understand the
experimental problem responsible for this unexpected value of the D∗ polarisation.



Appendices

7.A Explicit dependencies in the massive case
In this appendix we provide the detailed methodology followed and the full expressions of the dependencies
among the angular coefficients in the massive case with no tensor contributions. It is useful to define the following
four combinations in order to obtain compact expressions:

Rs,d = Re(H+)± Re(H−) , Is,d = Im(H+)± Im(H−) (7.101)

One can solve the system of equations in terms of the variables defined above and find a twofold solution:

Rs =
1

H0

I4q
2

q2 −m2
`

(7.102)

Id =
1

H0

I8q
2

q2 −m2
`

(7.103)

Rd = (−1)n
q2
(
I4I8q

2 +H2
0I9(q

2 −m2
`)
)√

H2
0 (q

2 −m2
`)

2
√
−I24q4 +H2

0 (m
2
` − q2)

[
(|H−|2 + |H+|2)(m2

` − q2) + I3q2)
] (7.104)

Is = (−1)n

√
−I24q4 +H2

0 (m
2
` − q2)

[
(|H−|2 + |H+|2)(m2

` − q2) + I3q2)
]√

H2
0 (q

2 −m2
`)

2
(7.105)

with n = 0, 1. However, this sign ambiguity product of the twofold nature of the solution can be fixed, since
physical combinations prevent interference terms that could be problematic. This set of solutions can be used to
determine the square of the four amplitudes once H0 is fixed to be real and positive through the symmetry of
the angular distribution. One can also rewrite the real and imaginary parts of Ht in terms of the variables in
Eq. (7.101) and H0:

Re(Ht) = −
q2
[
I7 Is + I5Rd − 2H0(I

2
s +R2

d)
]

2m2
` (IdIs +RsRd)

(7.106)

Im(Ht) =
q2 [−I5Id + I7Rs + 2H0(IdRd −RsIs)]

2m2
` (IdIs +RsRd)

(7.107)

With these definitions, one can find the whole set of dependencies among angular coefficients. Besides the trivial
dependency Eq. (7.54), there are four more relations which are obtained by taking combinations of the modulus
of H+, H− and Re(Ht), Im(Ht).

The first non-trivial relation can be derived from the sum |H+|2 + |H−|2:

0 =
m2
` − q2

2a

{
− 4I21sI2c(m

2
` − q2)2 + 4I1s(I

2
4 + I28 )(m

2
` − q2)(m2

` + 3q2)

+
[
−2I3I

2
4 + 2I3I

2
8 − 4I4I8I9 + I2c(I

2
3 + I29 )

]
(m2

` + 3q2)2
} (7.108)

where
a = (m2

` − q2)2(m2
` + 3q2)

[
2I1sI2c(m

2
` − q2) + (I2cI3 − 2I24 )(m

2
` + 3q2)

]
(7.109)

From |H+|2|H−|2 one can obtain the second dependency:

0 = −I23 − I29 +

(
1− m2

`

q2

)2
[(

2I1s
3 +m2

`/q
2

)2

− I26s
4

]
(7.110)
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The third one follows from [Re(Ht)]
2:

0 =
8q4

a

[
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(7.111)

with a defined in Eq. (7.109).
Finally, the last dependency is related to [Im(Ht)]

2:

0 = 256I26s(I4I7 − I5I8)
2(m2

` − q2)4q12

×
[
I26c(m

2
` − q2)2 + 8I1cI2cm

2
`(−m2

` + q2) + 8I22cm
2
`(m

2
` + q2)

]
+
[
64b− 64(I4I7 − I5I8)

2(m2
` − q2)2q8 + I26s(m

2
` − q2)2q4(I26c(m

2
` − q2)2

+ 8I1cI2cm
2
`(−m2

` + q2) + 8I22cm
2
`(m

2
` + q2))

]2
(7.112)

with
b =

2q12(2I1sI2cI4(m
2
` − q2) + (−2I4(I

2
4 + I28 ) + I2c(I3I4 + I8I9))(m

2
` + 3q2))2
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(7.113)

As a final comment, let us remark that these dependencies among angular coefficients yield Eqs. (7.55)
to (7.58) when one considers only real Wilson coefficients, so that all imaginary contributions and I7,8,9 can be
neglected.

7.B Comparison of the binned expressions in benchmark NP scenar-
ios

Following the setup of Section 7.3.5, we illustrate in Fig. 7.B.1 to Fig. 7.B.6 the errors induced on the binning by
the approximation in Eq. (7.75) on relations derived using the amplitude symmetries under various assumptions
on the NP scenario in the τ lepton case. We follow same convention as in Fig. 7.1.

We provide the relative errors for selected scenarios in Tables 7.B.1 and 7.B.2.
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Figure 7.B.1: Study of binning effects for Eq. (7.78) for benchmark NP scenarios with real contributions.
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Figure 7.B.2: Study of binning effects for Eq. (7.78) for benchmark NP scenarios with complex contributions.
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Figure 7.B.3: Study of binning effects for Eq. (7.79) for benchmark NP scenarios with real contributions.
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Figure 7.B.4: Study of binning effects for Eq. (7.79) for benchmark NP scenarios with complex contributions.
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Figure 7.B.5: Study of binning effects for Eq. (7.77) for benchmark NP scenarios with real contributions.
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Figure 7.B.6: Study of binning effects for Eq. (7.77) for benchmark NP scenarios with complex contributions.
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7.C Impact of the presence of light right-handed neutrinos
In this appendix we turn to the analysis of a case beyond the framework considered in Chapter 7, namely, the
presence of light right-handed neutrinos (RHN) entering the decay b→ cτ ν̄. The inclusion of light RHN was
discussed in Refs. [187, 370, 386–394] as a way to obey all phenomenological constraints as well as cosmological
and astrophysical limits. Here we will follow closely the recent discussion in Ref. [187] and we will use the results
presented there to generalise our expressions.

If one neglects neutrino masses, the b → cτ ν̄ decay probability is given by an incoherent sum of the
contributions from left- and right-handed neutrinos. This introduces a substantial change in the structure of the
angular distribution, requiring a separate discussion.

The inclusion of RHN leads to a more general dimension-six effective Hamiltonian (see Ref. [187] for the
definitions of the operators):

Heff =
4GFVcb√

2

OVLL +

A,B=L,R∑
X=S,V,T

CXABOX
AB

 (7.114)

The Wilson coefficients are defined in such a way that CXAB = 0 in the SM. Eq. (17) of Ref. [187] provides a
translation table between our helicity basis and the transversity basis used in that reference.

The inclusion of RHN requires us to consider left and right chiralities of the leptonic current, while the
hadronic current is not modified. Consequently the coefficients of the angular distribution get modified (see Ref.
[187]):

Ij → Ij(L)± Ij(R) (7.115)

where the relative sign depends on the angular observable considered, and Ij(L) and Ij(R) involve different
helicity amplitudes including CL and CR Wilson coefficients respectively. The total number of amplitudes
entering the distribution gets thus enlarged from 7 to 14 (two of the helicity amplitudes always come in the
same combination).

We can now discuss the impact of RHN on our previous discussion. Let us assume that there are neither
tensor nor imaginary contributions, but that RHN are indeed present. We can compare the two determinations
of F̃D∗

T : the standard definition in Eq. (7.25) and the alternative determination in Eq. (7.69). The following
relation holds:

〈(F̃D∗

T )
2 − (F̃D

∗ alt, I9=0
T )

2
〉τ

〈 ˜(BA6s)2〉τ
=∆F ≡ 64

729

(CVLR(1 + CVLL)− CVRLC
V
RR)

2

((1 + CVLL)
2 − CVLR

2 − CVRL
2
+ CVRR

2
)2

(7.116)

where Ã6s refers to the observable including left and right components defined by

〈Ã6s〉τ = −27

8

1

Γ
〈I6s〉τ (7.117)

In order that the previous expression becomes useful we have checked that Eq. (7.116) still holds in the following
binned form:12

(〈F̃D∗

T 〉τ )
2 − (〈F̃D∗ alt

T 〉I9=0
τ )

2

〈 ˜BA6s〉2τ
'∆F (7.118)

Notice that given that ∆F is always positive, Eq. (7.118) implies that an experimental determination using
〈F̃D∗ alt
T 〉I9=0

τ should always be found equal or smaller than the “standard” 〈F̃D∗

T 〉τ in absence of tensors and
imaginary contributions.

We derived this expression assuming the hypotheses above and using the fact that Eq. (7.54) is valid in
presence of RHN while Eq. (7.55) holds if the constraint

CVLR(1 + CVLL)− CVRLC
V
RR = 0 (7.119)

is imposed. In other words, only if this constraint is fulfilled, 〈F̃D∗ alt
T 〉τ can be interpreted as the physical

transverse polarization fraction.
In Ref. [187] several interesting scenarios are identified which are able to fulfill the constraints from BBc→τν̄ ,

RD,D∗ , FD∗

L and PD∗

τ :
12We have scanned over a range of values of the RHN coefficients CV

LL,LR,RL,RR to compare Eqs. (7.116) and (7.118). The result
of this test clearly indicates that for combinations of RHN resulting in reasonably small values of ∆F < 1, the two expressions agree
up to O(10−3) corrections in all bins.
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1) The scenario with the highest pullSM corresponds to scenario 3 (Vµ) with NP only in CVRR. Since
CVLL = CVLR = CVRL = 0 in this scenario, Eq. (7.119) is fulfilled and ∆F = 0. However, in this scenario the
NP contributions to FD∗

L cancel exactly and the tension with the experimental value is not relaxed.

2) A second interesting scenario is called 4b (Φb) in Ref. [187]. This scenario can be generated by a two Higgs
doublet model and it yields non-zero values for CSX with X = LL,LR,RL,RR. Assuming BBc→τν̄ < 30%,
this scenario is able to relax the tensions of all observables including FD∗

L . Since this scenario yields NP
contributions only in CSi it fulfills automatically the constraint, leading to ∆F = 0.

3) In scenario 1 of Ref. [187], there are two solutions with non-vanishing values for CVLL,LR,RR as well as
CSLR,RR and CTRR. One of the two solutions has a tensor contribution compatible with zero at 1σ. If we
take this solution to remain under our initial hypothesis of the absence of tensor contributions we obtain
∆F ∼ 10−3 (central value of b.f.p) if CVRL = 0, which, obviously, cannot be detected. In Ref. [187] the
coefficient CVRL is neglected because it is lepton-flavour universal within SMEFT and it cannot help to
accommodate any of the deviations observed with LFUV observables. However, assuming the best-fit point
of this scenario does not change when non-vanishing values of CVRL are allowed, we find that ∆F can be
much larger when CVRL approaches ±

√
(1 + CVLL)

2 − CVLR
2
+ CVRR

2, leading to a rather visible effect.

In summary, a difference between the two measurements of FD∗

T (or FD∗

L ) in absence of tensors and imaginary
contributions could be attributed, barring experimental issues, to contributions coming from RHN. For some
RHN scenarios, this would generate a non-zero value for ∆F .
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Chapter 8

Testing Lepton Flavour Universality in
Υ(4S) Decays

In the previous chapter, we presented additional tests of the b → c`ν̄ transitions at the level of the already
measured angular distribution of B → D∗`ν̄, providing tests of consistency among angular observables as well as
potential indications about the nature of NP in case of discrepancies. Another possibility consists in considering
new channels which have not been considered yet to probe NP, and in particular LFU violation, in b → c`ν̄
transitions. Indeed, in light of the observations of hints of LFUV in the b→ cτ ν̄τ decays discussed in Chapter 3,
several associated tests of LFU have been proposed, for instance, tests of LFU in Λb → Λ

+(∗)
c decays [164, 335].

Following the proposal in Ref. [395], the BaBar collaboration has recently measured the lepton flavour
universality (LFU) ratio in Υ(3S) decays [396]

R
Υ(3S)
τ/µ ≡ B(Υ(3S) → τ+τ−)

B(Υ(3S) → µ+µ−)
= 0.966± 0.008± 0.014 , (8.1)

where the first (second) uncertainty estimate is due to statistics (systematics). The measured value is within
1.8σ of the SM prediction [R

Υ(3S)
τ/µ ]SM = 0.9948(1) [395]. This measurement is probing the RD(∗) LFU anomaly

through bb̄→ `+`− transitions [397].
In the following we propose a related but potentially more direct test through inclusive di-leptonic Υ(4S)

decays (see Fig. 8.1) by defining
BΥ(4S)
``′ ≡ B(Υ(4S) → `+`′−X) , (8.2)

as the inclusive dileptonic branching fraction for Υ(4S) decays to a pair of opposite charged leptons of different
flavours, where X denotes all the other (hadronic) activity and missing momentum in the event.

This fully inclusive measurement exploits several key capabilities of the Belle II experiment as well as some
specific features of Υ(4S) and b-hadrons decays. On the experimental side, the excellent beam energy calibration
of Super KEK-B can ensure that the Υ(4S) resonance is produced on shell even if its invariant mass is not
reconstructed explicitly from the final state. This also allows the non-resonant background to be well estimated
from sideband measurements. On the theory side, this inclusive decay is almost entirely saturated by decays
into BB̄ final states. Moreover, one can analyse the production of the leptons either from an initial b-quark
decay or from subsequent parts of the decay chain in detail. All in all, ratios of the form

R
Υ(4S)
``′ ≡

BΥ(4S)
`′′`

BΥ(4S)
`′′`′

, (8.3)

where `, `′, `′′ are three different flavours of leptons e, µ, τ , provide a very interesting ground to probe lepton
flavour universality with an inclusive measurement at Belle II1, complementary to exclusive measurements
accessible to both Belle II and LHCb experiments. In particular, under suitable experimental conditions one can
relate

R
Υ(4S)
τ` = R(X)τ` + . . . (8.4)

where ` = e, µ and R(X)τ` ≡ Γ(B → Xτν)/Γ(B → X`ν) is the inclusive B decay LFU ratio, which can be
precisely computed in the SM as R(X)τ` = 0.223(4) [398]. The dots denote corrections due to neutral B meson
mixing effects and charm pollution. We propose to tame the first effect using a cut in the time difference between
the two B-mesons decaying and we estimate the impact of this cut. The second effect is harder to mitigate

1In principle, a similar test could be envisioned using ψ(3770) at BESIII since B(ψ(3770) → DD̄) ∼ 93% [6].
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Figure 8.1: Diagram of inclusive di-leptonic Υ(4S) decays. The X represent all activity other than the lepton
pair. Since the neutrinos go undetected, we will also consider them as part of X.

theoretically, and we will see that it requires additional experimental analyses to avoid a significant charm
pollution.

This chapter is structured in the following way: In Section 8.1 we start by discussing the decays of the Υ(4S)
meson into a BB̄ pair. In Section 8.2 we discuss the subsequent decays of the BB̄ system into lepton pairs and
how they can be used to define the RΥ(4S) LFU ratios. We then discuss the sources of possible contamination
that these ratios can suffer that need to be dealt with experimentally. In Section 8.3 we discuss the B − B̄
mixing effects, in Section 8.4 we discuss the pollution originated due to charm decays and in Section 8.5 we
discuss the contamination of decays in which both leptons originate from a single B-meson. Lastly in Section 8.6,
we finished the chapter with some conclusions regarding this analysis.

8.1 Υ(4S) decay
Let us start with the decay of the Υ(4S) resonance and estimate the amount of pollution from final states
other than BB̄. The Υ(4S) resonance overwhelmingly decays into BB̄ final states. In particular, there is an
experimental bound B(Υ(4S) → BB̄) > 0.96 [6] but B(Υ(4S) → BB̄) could actually be even much closer to
one.

Indeed the dominant non-BB̄ final states are expected to consist in light hadrons mediated by Υ(4S) → 3g
decays as well as decays to lighter bottomonium states, in particular, Υ(4S) → (Υ(n′S), hb(n

′′P ))(ππ, η, η′) with
n′,′′ < 4.

Experimental measurements already exist for the latter contributions, in particular B(Υ(4S) → Υ(1S)+X) <
4× 10−3, B(Υ(4S) → Υ(2S)π+π−) = 8.2(8)× 10−5, B(Υ(4S) → hb(1P )η) = 2.18(21)× 10−3 with other known
modes below the 10−4 level [6]. In total we thus estimate B(Υ(4S) → bottomonia) < 7× 10−3. On the other
hand, the Υ(4S) → 3g decay width can be estimated in NRQCD [399]. At leading order in velocity and QCD
expansion, it is given by [400]

Γ(Υ → 3g) = 0.0716
α3
s〈O1〉Υ
m2
b

. (8.5)

Both leading velocity and QCD corrections are of negative sign and thus serve to decrease the above estimate [400].
We thus take it as a conservative upper bound. Using αs = 0.22, mb = 4.6 and the upper estimate on
〈O1〉Υ(4S) . 〈O1〉Υ(3S) = 1.279GeV3 [401] we obtain B(Υ(4S) → 3g) . 2× 10−3 . In total we thus estimate that
B(Υ(4S) → BB̄) & 0.99 .

8.2 Lepton production
Having established that Υ(4S) decays almost only into pairs of B mesons, we consider their subsequent decays
inclusively, focusing on final states containing leptons `(′) = e, µ, τ in the final state. We can differentiate between
several measurable inclusive dilepton signatures such as

Υ(4S) → e±µ∓X , Υ(4S) → µ±τ∓hadX , Υ(4S) → e±τ∓hadX , (8.6)
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where τhad denotes a τ lepton reconstructed from its hadronic decays (e.g. τ → 3πν)2. We will thus define

RΥ(4S)
τhade

≡ BΥ(4S)
µτhad

BΥ(4S)
µe

and RΥ(4S)
τhadµ

≡ BΥ(4S)
eτhad

BΥ(4S)
µe

. (8.7)

To relate these ratios to inclusive B-decay LFU ratios, we need to isolate contributions where each of the two
leptons is produced in a separate B-meson decay and suppress backgrounds where one or both leptons do
not originate from a direct semileptonic B decay. Requiring different opposite-sign lepton flavour final states
removes such contributions from Υ(4S) → X + ((b̄b) → `+`−), b→ q((cc̄) → `+`−) as well as from rare FCNC
(semileptonic) B and charm decays.3

This approach is however not effective against contamination from b → q(c → q′`+ν)(c̄ → q′′`′−ν) and
b→ (c→ q`+ν)`′−ν) transitions, which we will address in Section 8.5.

For the moment we assume that each of the two different lepton tags originates from a separate B-meson
decay pattern. We will focus on R

Υ(4S)
τhadµ for the time being, but a very similar analysis can be performed

for RΥ(4S)
τhade swapping muons and electrons in the discussion. The single hadronic tau can be produced in the

quark-level transition chains

b→ qτν ,

b→ qq̄′(c→ q′′τν) .
(8.8)

On the other hand a single muon (or equivalently electron) can originate from

b→ qµν ,

b→ qq̄′(c→ q′′µν) ,

b→ q(τ → µνν)ν ,

b→ qq̄′(c→ q′′(τ → µνν)ν) .

(8.9)

Inclusive semileptonic b-hadron decays (i.e. b→ q`ν) are well under theoretical control and thus the associated
rates can be well predicted, including possible effects of LFU violation [398]. The same cannot necessarily be
said for inclusive semileptonic charm decays [403] , which thus represent a challenging background. One could
imagine that the charge of the leptons could help us to disentangle the origin of the lepton, either from a b or
from a c-quark. However, one should take into account that in approximately half of the cases, the Υ(4S) decays
into neutral B mesons, which can oscillate and spoil the identification between the charge of initial quark and
that of the lepton. We discuss strategies how to mitigate this effect next.

8.3 Mixing effects
We first define the amplitudes A(B0 → `−X), A(B0 → `+X), A(B̄0 → `+X), A(B̄0 → `−X) embedding the
complete meson decay chains (for instance it may contain B → Dπ followed by D → `X), so that the lepton is
not necessarily produced by the decay of the b-quark. However, it is not produced by the decay of the light
quark in the B, which means that in the isospin limit, we have equalities of the type:

A(B0 → `−X) = A(B+ → `−X) = A`−

A(B̄0 → `−X) = A(B− → `−X) = Ā`−

...

(8.10)

where the presence/absence of the bar indicates the charge of the b-quark inside the B-meson and the subscript
denotes the charge and flavour of the lepton.

If we look for Υ(4S) → `1`2X (with 1 and 2 being different, either by flavour or charge) through an
intermediate B0B̄0 state, we can use the description introduced for the study of CP violation from the production
of an intricated B-meson pair (sec 1.2.3 in Ref. [353]), leading to the time-dependent rate where one of the two
B mesons decay into a state containing `1 at a time t1 and the other one into a state containing `2 at a time t2,
leading to

R(t1, t2) = Ce−Γ(t1+t2)

[
I − cos(∆m(t1 − t2))C + 2 sin(∆m(t1 − t2))S

]
, (8.11)

2These hadronic tau lepton decays need to be efficiently disentangled from backgrounds like hadronic B decays involving three or
more charged pions.

3The exceptions with `± = τ± where one of the taus decays leptonically and the other hadronically, leading to a final state with a
hadronic tau and a lighter lepton, turn out to be numerically negligible as they are suppressed by small Υ(4S) → X+bottomonium,
B → X+charmonium [6], and B → Xτ+τ− [402] branching ratios, respectively.
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Figure 8.2: Relative branching fraction (blue solid) and mixing effect (yellow dashed) as a function of the cut
parameter α.

where C is a normalisation coming from angular integration, ∆m is the difference of mass between the two mass
eigenstates, Γ is their average width, the approximations |q/p| = 1 and ∆Γ = 0 have been used, and we have

I =

[
(|A1|2 + |Ā1|2)(|A2|2 + |Ā2|2)− 4Re

(
q

p
A∗

1Ā1

)
Re

(
q

p
A∗

2Ā2

)]
, (8.12)

C =

[
(|A1|2 − |Ā1|2)(|A2|2 − |Ā2|2) + 4Im

(
q

p
A∗

1Ā1

)
Im

(
q

p
A∗

2Ā2

)]
, (8.13)

S =

[
Im

(
q

p
A∗

1Ā1

)
(|A2|2 − |Ā2|2) + (|A1|2 − |Ā1|2)Im

(
q

p
A∗

2Ā2

)]
, (8.14)

where Ai ≡ A`i for i = 1, 2.
In order to prevent too large effects from mixing, one could consider cutting too large time differences |t1− t2|,

so that there has not been enough time for the evolution to take place. Cutting at |t1 − t2| = α/∆m (where α is
the cut parameter) leads to

Rα
B0B̄0 ≡

∫ α/∆m

−α/∆m
R(t′)dt′ =

2C

Γ2

[
(1− e−

α
x )I − 1− e−

α
x (cosα− x sinα)

1 + x2
C

]
, (8.15)

where x = ∆m/Γ ' 0.769 [158]. In the case of B+B−, where no mixing is involved, we have

RαB+B− ≡
∫ α/∆m

−α/∆m
R(t′)

∣∣∣
∆m=0

dt′ =
2C

Γ2
(1− e−

α
x )(I − C) . (8.16)

Denoting the result without cut in the time difference as RBB ≡ R∞
BB, we see then that the effect of mixing

corresponds to

Rα
B0B̄0 −RαB+B− =

(
1− e−

α
x (1 + x2 − cosα+ x sinα)

x2

)
(RB0B̄0 −RB+B−) , (8.17)

whereas we have
RαB+B− = (1− e−

α
x )RB+B− , (8.18)

In Fig. 8.2, we illustrate the impact of the cut on the branching fraction of the decay into B+B− and on the
mixing effect. We see that this cut can efficiently suppress the impact of mixing while keeping a large fraction of
the B+B− signal.

We can study the impact of this cut on the Υ(4S) decay rate. Introducing ρ = B(Υ(4S) → B+B−) =
0.514 ± 0.006 [158], we have B(Υ(4S) → B0B̄0) = 0.486 ± 0.006 = 1 − ρ − ε with ε < 0.01 according to our
estimates. We have then the total rate R = B(Υ(4S) → BB)

R = ρRB+B− + (1− ρ− ε)RB0B̄0 = (1− ε)RB+B− + (1− ρ− ε)(RB0B̄0 −RB+B−) , (8.19)
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where the first term corresponds to the rate without mixing (in the isospin limit) and the second term to the
contamination due to mixing. Cutting |t1 − t2| ≤ α/∆m, we have

Rα = (1− ε)RαB+B− + (1− ρ− ε)(RαB0B̄0 −RαB+B−)

= (1− ε)(1− e−
α
x )RB+B− + (1− ρ− ε)

(
1− e−

α
x (1 + x2 − cosα+ x sinα)

x2

)
(RB0B̄0 −RB+B−) .

(8.20)

The first term in Eq. (8.20) goes like O(α) whereas the second term goes like O(α3). Moreover, (RB0B̄0 −RB+B−)
is equal to

RB0B̄0 −RB+B− =
2C

Γ2

x2

1 + x2
C , (8.21)

so it goes like O(x2) and it is isospin suppressed. Then the second term in Eq. (8.20), corresponding to the
mixing effects, is suppressed significantly.

From Fig. 8.2, we see that α = 0.53 would ensure that the second contribution is O(1%) of RB+B− , taking
into account the suppressions by the α-dependent factor, by x2/(1+x2) and by 1−ρ (but not taking into account
the isospin suppression, which would further suppress this term). On the other hand, the first contribution
in Eq. (8.20) would be half of RB+B− (essentially R without the effect of mixing in the isospin limit). More
generally, a fit to Rα as a function of α would allow one to put a bound on (RB0B̄0 −RB+B−) and to extract
RB+B− directly.

8.4 Charm pollution
As shown in the previous section, cutting on the time difference of the two decaying B mesons can suppress
mixing effects and allow one to distinguish leptons originating from B and charm decays by charge. However, we
still need to quantify the expected initial amount of charm contamination. Under the assumption that each
tagged lepton originates from a separate B decay chain (which we will relax in the next section), the ratio RΥ(4S)

τhadµ

can be conveniently expressed in terms of

[RΥ(4S)
τhadµ

]−1 =
B(B → Xµν) + B(B → X(hc → X ′µν))

B(B → Xτhadν) + B(B → X(hc → X ′τhadν))
+

B(τ → µνν̄)

B(τ → τhad)
, (8.22)

where hc denotes any weakly decaying charmed hadron, i.e. D+, D0, Ds, Λc and their charge conjugates. As
discussed above, using charge ID, but also possibly a cut on leptons not originating from the secondary vertex
(i.e. from B decays), it should be possible to suppress contributions where the leptons originate from secondary
charm or, in the case of muons, tau decays, by efficiency factors ε(i) � 1. This allows us to simplify the above
expression and write it in terms of the inverse of the inclusive ratio R(X)τµ. We obtain

[RΥ(4S)
τhadµb

]−1 =

{
[R(X)τµ]

−1

[
1− ε(3)

B(B → X(hc → X ′τν))

B(B → Xτν)

]

+ ε(1)B(τ → µνν̄) + ε(2)
B(B → X(hc → X ′µν))

B(B → Xτν))

}
[B(τ → τhad)]

−1 ,

(8.23)

where µb denotes muons consistent with originating from the secondary (i.e. b-decay) vertex and we have already
used the fact that B(B → Xτν) � B(B → X(hc → X ′τν)) , which we verify below.

We can estimate the size of all three corrections on the right-hand side of Eq. (8.23) (up to the ε(i) efficiencies)
based almost purely on experimental information. Starting with the ε(1) term, B(τ → µν̄ν) = (17.39±0.04)% [6]
we see, that even without cuts (for ε(1) ' 1) it leads to an order 4% (computable) systematic effect in R(X)τµ.

We estimate the second and third term thanks to the identity

B(B → X(hc → X ′`ν)) = B(B → Xc)
∑
i

f(c→ h(i)c )B(h(i)c → X`ν) , (8.24)

where the sum runs over all weakly decaying charmed hadrons and f(c→ h
(i)
c ) are the corresponding fragmentation

functions. We use Ref. [404] for the charm-inclusive decay branching ratio B(B → Xc) = (97± 4)% and Ref.
[405] for the charm fragmentation functions. Note that the above estimate relies on factorization of the inclusive
B-decay amplitudes and is thus subject to related theoretical uncertainties. In addition, the application of
charm fragmentation functions extracted from high energy e+e− and ep collision data to B decays carries further
systematic errors. Consequently, our background evaluations should be taken as order-of-magnitude estimates,
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which are however sufficient for our purpose. For B(Ds → Xµν) we use values measured by CLEO for the
electron in the final state [406] B(Ds → Xeν) = (6.52 ± 0.39 ± 0.15)% which can serve as an effective upper
bound on B(Ds → Xµν) assuming e− µ LFU in charm decays. We also use B(D+ → Xeν) = 0.1607± 0.0030
and B(D0 → Xeν) = 0.0649± 0.0011 [6]. Finally, we obtain

B(B → X(hc → X ′µν)) = B(b→ Xc){f(c→ D0)B(D0 → Xµν) + f(c→ D+)B(D+ → Xµν)

+ f(c→ Ds)B(Ds → Xµν) + f(c→ Λc)B(Λc → Xµν) + . . .} . 0.088 ,
(8.25)

B(B → X(hc → X ′τν)) = B(b→ Xc){f(c→ D+)B(D+ → τν) + f(c→ Ds)B(Ds → τν) + . . .}
' 0.0067 .

(8.26)

These values are to be compared with the LEP experimental determination of B(b→ qτν) ' B(B → Xτν) =
(2.41± 0.23)% [398]. In particular, before cuts and without lepton charge ID (for ε(2) ' 1) the second term in
Eq. (8.23) would represent a dominant 80% systematic effect in the determination of R(X)τµ. Finally, the effect
of the ε(3) term before cuts (for ε(3) ' 1) represents a relative 28% systematic effect on the determination of
R(X)τµ.

In summary, the term with ε(1) is small thanks to the low value of B(τ → µν̄ν), whereas the factors of ε(2)
and ε(3) have large values but are related to charm pollution, which (hopefully) can be reduced thanks to charge
ID leading to small efficiencies ε(2,3).

8.5 Leptons emitted from the same B-meson
Lastly we need to consider backgrounds where both leptons are of different charge and flavour, but originate
from the same B-decay chain, corresponding to the parton-level chain

b→ q(c→ q′`+ν)(c̄→ q′′`′−ν) and b→ (c→ q`+ν)`′−ν . (8.27)

Denoting these processes collectively as B → X``′, and assuming they can be suppressed by cutting on leptons
not originating from the secondary vertex (i.e. from b decays), we can again write the relative correction to
Eq. (8.23) due to these contributions expanded to leading order in all ε(i) as

[RΥ(4S)
τhadµb

]−1 =[R(X)τµB(τ → τhad)]
−1

×
[
1− ε(4)

B(B → X)B(B̄ → Xτe)

B(B → Xτν)B(B̄ → Xeν)
+ ε(5)

B(B → X)B(B̄ → Xµe)

B(B → Xµν)B(B̄ → Xeν)

]
+ . . .

(8.28)

where the inclusive hadronic B-decay branching ratio is denoted as

B(B → X) . 1−
∑
`

B(B → X`ν) ' 0.76 , (8.29)

we take B(B → Xceν) ' B(B → Xcµν) ' 0.11 [6], and the ellipsis denotes the remaining corrections on the right-
hand side of Eq. (8.23). Using the numerical values given above we obtain for the relevant b→ (c→ q`+ν)`′−ν
transitions

B(B → X(hc → X ′eν)τν) =

B(B → Xcτν)[f(c→ D0)B(D0 → Xeν) + f(c→ D+)B(D+ → Xeν)

+ f(c→ Ds)B(Ds → Xeν) + f(c→ Λc)B(Λc → Xeν) + . . .] ' 0.0021 ,

(8.30)

B(B → X(hc → X ′τν)eν) = B(B → Xceν)f(c→ Ds)B(Ds → τν) ' 0.00042 , (8.31)

B(B → X(hc → X ′eν)µν) =

B(B → Xcµν)[f(c→ D0)B(D0 → Xeν) + f(c→ D+)B(D+ → Xeν)

+ f(c→ Ds)B(Ds → Xeν) + f(c→ Λc)B(Λc → Xeν) + . . .] ' 0.0095

(8.32)

B(B → X(hc → X ′µν)eν) =

B(B → Xceν)[f(c→ D0)B(D0 → Xµν) + f(c→ D+)B(D+ → Xµν)

+ f(c→ Ds)B(Ds → Xµν) + f(c→ Λc)B(Λc → Xµν) + . . .] . 0.010.

(8.33)
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Finally, for the decay chain b→ qcc̄(c→ q`ν)(c̄→ q′`′ν), using B(B → Xcc̄) ' 22% [407] and after including
c→ q`ν and c̄→ q′`′ν transition rates, we find

B(B → X(hc → X ′eν)(hc̄ → X ′′τν)) =

B(B → Xcc̄)f(c̄→ D̄s)B(D̄s → τν)

×
[
f(c→ D0)B(D0 → Xeν) + f(c→ D+)B(D+ → Xeν)

+f(c→ Ds)B(Ds → Xeν) + f(c→ Λc)B(Λc → Xeν)] ' 0.0001 ,

(8.34)

B(B → X(hc → X ′eν)(hc̄ → X ′′µν)) =

B(B → Xcc̄)
[
f(c→ D0)B(D0 → Xµν) + f(c→ D+)B(D+ → Xµν)

+f(c→ Ds)B(Ds → Xµν) + f(c→ Λc)B(Λc → Xµν)]

×
[
f(c→ D0)B(D0 → Xeν) + f(c→ D+)B(D+ → Xeν)

+f(c→ Ds)B(Ds → Xeν) + f(c→ Λc)B(Λc → Xeν)] ' 0.0018 .

(8.35)

Putting these values together we observe that these backgrounds are individually comparable in size to the
signal (i.e. they would represent approximately 80% and 150% relative corrections, respectively) in absence
of cuts to suppress them (for ε(4,5) ' 1). While they are similar in magnitude, they are highly correlated and
contribute with opposite signs, so that they tend to cancel to a degree for ε(4) ' ε(5). In fact, the two terms
become exactly equal in the limit where one can neglect charm decays to muons and taus (in the ratio RΥ(4S)

τe

these would be charm decays to electrons and taus). On the other hand, contrary to the corrections outlined in
Eq. (8.23), the corrections considered in this section cannot be suppressed using only lepton charge ID. This
highlights the crucial importance of discriminating against leptons originating from the same B-decay chain, for
instance through geometrical considerations. An alternative strategy could consist in discriminating leptons
arising from the secondary (B-decay) vertices from those arising further down in the decay chains. A quantitative
assessment of the feasibility of either of the two approaches through an appropriate experimental analysis would
require a dedicated experimental study and is beyond the scope of this work.

8.6 Conclusions
Relying on the specific properties of B-factories and in particular the Belle II experiment, we have proposed
to compare the inclusive rates of Υ(4S) → e±µ∓X, Υ(4S) → µ±τ∓hadX and Υ(4S) → e±τ∓hadX. This inclusive
measurement can be related to the ratio R(X)τ` ≡ Γ(b → Xτν)/Γ(b → X`ν) (` = e or µ), once appropriate
experimental cuts are applied to suppress the effects of neutral B mixing and leptons emitted from rare FCNC
(semileptonic) B decays, as well as secondary charmonium, charm and tau decays. The feasibility of our proposal
crucially assumes that hadronically decaying tau leptons originating from the B decay vertices can be efficiently
disentangled from backgrounds (e.g. from hadronic B decays involving three or more charged pions) at Belle II.
A dedicated experimental study of this is however beyond the scope of this work. Remarkably, this alternative
determination of R(X)τ` is a truly inclusive determination, contrary to the current one which corresponds to a
sum of different exclusive modes.

We have focused on the case of RΥ(4S)
τµ ' R(X)τµ, but our discussion applies equally well to the tau-electron

combination, swapping the roles played by electrons and muons. The current deviations in B → D∗`ν and
B → D`ν when τ channels are compared to electronic or muonic modes are at the level of 10% (for the LFU
ratios of branching ratios) and provide a benchmark for the target sensitivity of our proposal. This is illustrated
by the very simple case where NP mimics the V − A structure of b → cτν currents in the SM, leading to a
universal rescaling of all b→ cτν branching ratios which would therefore impact the inclusive ratios R(X)τ` in
the same way as the exclusive measurements for RD and R∗

D. Interestingly, the theoretical approach and the
experimental environment are rather different in exclusive and inclusive measurements, and our proposal could
provide very interesting cross-checks of the deviations currently seen in exclusive decays.

Given our estimates, the systematic uncertainties in the determination of R(X)τ` from a measurement of
R

Υ(4S)
τ` could be brought below a given value (εsys) provided that (1) cuts on the B − B̄ impact parameter

difference can suppress the neutral B meson mixing effects below εsys combined with an efficient lepton charge ID
to suppress semileptonic charm-decay contamination; (2a) multiple leptons originating from the same B decay
chain can be suppressed to better than εsys or alternatively (2b) leptons arising from the secondary (B-decay)
vertices can be discriminated against those arising further down in the decay chains to roughly better than εsys.
Further dedicated experimental studies are needed to establish the actually attainable precision by Belle II. If
this measurement turns out to be possible and accurate, one could imagine using the same OPE techniques as in
the SM case to determine the sensitivity of the ratios R(X)τ` to New Physics and to constrain the NP operators
using this inclusive measurement.
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In summary, we have proposed a novel method to test the persistent hints of violation of LFU observed in
semileptonic B decays. This measurement would constitute an additional and potentially competitive probe of
LFU violations in b→ c`ν transitions, complementary to exclusive measurements and accessible in the Belle II
environment.
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Chapter 9

Implications of the flavour anomalies in
B → K(∗)νν̄ and K → πνν̄

In this chapter and in the following, we are going to look for potential implications of the b→ s`+`− anomalies
in other modes. We will keep the discussion at a general level, relying on EFT arguments, instead of discussing
specific connections in New Physics models. In this chapter, we investigate the consequences of deviations from
the Standard Model observed in b→ sµ+µ− transitions for flavour-changing neutral-current processes involving
down-type quarks and neutrinos, i.e. b→ sνν̄ and s→ dνν̄, under generic assumptions concerning the structure
of NP. We derive the relevant Wilson coefficients within an effective field theory approach respecting the SM
gauge symmetry, including right-handed currents, assuming a flavour structure based on approximate U(2)
symmetry, and considering only SM-like light neutrinos. We will discuss assumptions that can be made on
the flavour structure of the theory to relate transitions among different families, to then discuss correlations
among B → K(∗)νν̄ and K → πνν̄ branching ratios in the case of linear Minimal Flavour Violation and in a
more general framework, highlighting in each case the role played by various New Physics scenarios proposed to
explain b→ sµ+µ− deviations.

As discussed in Chapter 3, recent experimental data in B physics hint towards deviations from Lepton Flavour
Universality (LFU) in semi-leptonic b-quark decays. These deviations can be interpreted model-independently
in terms of specific contributions to short-distance Wilson coefficients Ci of the weak effective Hamiltonian
Eq. (2.35).

The global fits to b→ s`+`− data (see Chapter 4) show that these deviations exhibit a consistent pattern
favouring a significant additional New Physics (NP) contribution to Cµ9 (of the order of 25% of the SM contribution)
together with smaller contributions to Cµ10 and/or Cµ9′ . Among the scenarios improving by over 6σ the description
of the data compared to the SM, one can find the one-dimensional scenarios (Cµ,NP

9 , (Cµ,NP
9 = −Cµ,NP

10 ) and
(Cµ,NP

9 = −Cµ,NP
9′ ) shown in Table 4.4. Two-dimensional scenarios achieving similarly high pulls with respect to

the SM are obtained for NP contributions to (Cµ,NP
9 , Cµ,NP

10 ) and (Cµ,NP
9 , Cµ,NP

9′ ) with negative Cµ,NP
9 and positive

Cµ,NP
10 and Cµ,NP

9′ (see Table 4.5). Small contributions to electron operators Ce,NP
9(′),10(′) are allowed by the data, but

they are not required to achieve a good description. On other side, contributions to scalar and tensor operators
do not enhance the description of the data [120, 128, 303, 408, 409].

9.1 Neutrino FCNCs
The SM neutrinos reside in the same leptonic weak doublets as the left-handed charged leptons. Therefore,
FCNC decay modes with neutrinos in the final state offer complementary probes of NP in b→ s`+`−. However,
FCNCs involving neutrinos bear important differences with their charged lepton equivalents.

We consider here only (SM-like) left-handed neutrinos, leading to only vector and axial structures for the
lepton currents. Furthermore the charm loop contributions are very suppressed, since the coupling with the
neutrinos is through a Z boson rather than a photon (see Fig. 9.1). Then, hadronic issues are limited to the
question of form factors leading to very clean modes that can be predicted accurately.

9.1.1 B decays
In particular, decays B → hsνν̄, with hs standing for hadronic states of strangeness equal to 1, are known for
their NP sensitivity [410].
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b/s s/d

W

Z

𝜈

𝜈

Figure 9.1: Penguin diagram for the flavour changing neutral currents in the SM into a pair of neutrinos.
Opposed to the charged lepton case the coupling with the neutrinos is exclusively through a Z boson.

The effective Lagrangian for b→ sνν̄ transitions can be written as [411]

Leff(b→ sνν̄) =
4GF√

2
V ∗
tbVts

∑
L,R

CναL(R)O
να
L(R) with α = e, µ, τ , (9.1)

where the local operators are

Oνα
L(R) =

α

4π
(s̄L(R)γµbL(R))(ν̄

αγµ(1− γ5)ν
α) (9.2)

and in the SM Cνα, SMR vanishes to a good approximation and Cνα, SML = − Xt

s2W
≈ −6.38. sW is given by the weak

mixing angle
sW ≡ sin θW ' 0.48 , cW ≡ cos θW , (9.3)

and Xi are defined in Ref. [412], numerically obtaining Xt = 1.469(17) [412].
In the SM, branching ratios are found to be [413]

B(B → K(∗)νν̄)SM = (9.6± 0.9)× 10−6 , (9.4)
B(B+ → K+νν̄)SM = (5.6± 0.5)× 10−6 . (9.5)

The Belle collaboration has produced limits at 90% Confidence Level (CL)[414]

B(B0 → K∗0νν̄)exp < 1.8× 10−5 , (9.6)
B(B+ → K∗+νν̄)exp < 6.1× 10−5 , (9.7)
B(B+ → K+νν̄)exp < 1.9× 10−5 . (9.8)

The Belle II collaboration plans to observe these three decay modes with about 10 ab−1 of data, while the
sensitivities to the SM branching ratio will reach a precision of about 10% with 50 ab−1 [413].

9.1.2 Kaon decays
In the kaon sector K → πνν̄ decays arguably offer the best sensitivity to NP [30], so we focus on these modes.

In the case of the s→ dνν̄ transition, the effective Lagrangian can be written in a similar form to b→ sνν̄

Leff(s→ dνν̄) =
4GF√

2

∑
L,R

CναL(R),sd

α

4π
(d̄L(R)γµsL(R))(ν̄

αγµ(1− γ5)ν
α) (9.9)

where we absorb the CKM factor in the Wilson coefficient since both VtsVtd and VcsV
∗
cd contribute. However,

since we only look at decays of pseudoscalar mesons into pseudoscalar meson (i.e. K → π), the only quark current
allowed by parity is the vector current. This allows us to write the Wilson coefficients above as a single effective
Wilson coefficient Cναsd = CναL,sd+C

να
R,sd. The SM value of this coefficient is Cνα,SMsd = VtsV

∗
tdXt+(Xc+δXc,u)VcsV

∗
cd

where (Xc + δXc,u) = 0.00106(6) [415, 416].
The experimental limits at 90% CL for the branching ratios were obtained by the E949 experiment [417, 418]

B(K+ → π+νν̄)exp < 3.35× 10−10 , (9.10)

while the NA62 collaboration has announced a 3.4σ evidence very recently for this decay [419]

B(K+ → π+νν̄)exp = (1.06+0.40
−0.34 ± 0.9)× 10−10 . (9.11)
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On the other hand, KOTO [420] as set an upper limit 1 for the KL → π0νν̄ at 90% Confidence Level (CL)
B(KL → π0νν̄)exp < 4.9× 10−9 . (9.13)

The corresponding SM values [422] are
B(K+ → π+νν̄)SM = (9.31± 0.76)× 10−11 , (9.14)

and
B(KL → π0νν̄)SM = (3.74± 0.72)× 10−11 , (9.15)

both in good agreement with the results from NA62 and KOTO.
We recall that these two branching ratios should obey the Grossman-Nir bound

B(KL → π0νν̄) ≤ 4.3B(K+ → π+νν̄) , (9.16)
in which the numerical factor results from the difference in the total decay widths of KL and K+, isospin
breaking effects, and QED radiative corrections [423]. In particular, the Grossman-Nir bound constitutes an
additional very strong theoretical constraint on B(KL → π0νν̄). The experiment NA62 is planning to eventually
measure the rate of K+ → π+νν̄ with O(10%) precision [424]. For the neutral decay mode KL → π0νν̄ KOTO
and KLEVER also aim at making significant progress [425].

Precise results for all these rare semileptonic b → s and s → d transitions will allow to get much better
insight into possible NP effects observed in RK(∗) . Particularly interesting is the question whether NP is only
present in b→ s transitions or also in other Flavour-Changing Neutral Currents (FCNC). The measurements
of s→ dνν̄ and b→ sνν̄ rates should help to differentiate among NP models with different flavour and chiral
structures in both the quark and lepton sectors. This issue has been already raised in many studies which mostly
relied on particular models of NP [410, 426–429]. The main goal of our approach is to determine the impact of
RK(∗) on future measurements of B → K(∗)νν̄ and K → πνν̄ in a general effective theory framework and to
illustrate the potential correlations among these measurements.

9.2 EFT approach to NP in FCNC
9.2.1 NP in semileptonic FCNC decays
We will assume that the NP contributions will follow the symmetries of the SM in a similar approach to SMEFT.
When considering b→ s semileptonic FCNCs in general for both charged leptons and neutrinos, possible heavy
NP contributions that respect the SU(2)L gauge symmetry should be written in terms of SU(2)L gauge invariant
operators [249–251], e.g.

Leff. = LSM − 1

v2
λqijλ

`
αβ

[
CT
(
Q̄iLγµσ

aQiL
) (
L̄αLγ

µσaLβL

)
+ CS

(
Q̄iLγµQ

i
L

) (
L̄αLγ

µLβL

)
+ C ′

RL

(
d̄iRγµd

i
R

) (
L̄αLγ

µLβL

)
+C ′

LR

(
Q̄iLγµQ

i
L

) (
¯̀α
Rγ

µ`βR

)
+ C ′

RR

(
d̄iRγµd

i
R

) (
¯̀α
Rγ

µ`βR

)]
, (9.17)

where we choose to write the operators in the down-quark and charged lepton mass basis (see Section 1.2)
QiL = (V CKM∗

ji ujL, d
i
L)
T , LαL = (ναL , `

α
L)
T . (9.18)

This Lagrangian, extending the one considered in Ref. [249] to include right-handed charged fermions, is chosen
to reproduce the results of the global fits to b→ s`+`− data discussed in Chapter 4. The latter favour scenarios
limited to NP contributions to vector and axial operators O`

9(′),10(′), without scalar or tensor contributions. If
the purely left-handed operators proportional to CS and CT were not included, the Lagrangian would yield the
scenario Cµ,NP

9 = Cµ,NP
10 , see Eqs. (9.26) to (9.29) below, which is ruled out by the b→ s`+`− data, as shown in

Table 4.A.2 and in Fig. 4.22. We have added right-handed operators compared to Ref. [249] to accommodate the
NP scenarios involving right-handed currents also favoured in global fits.

The presence of operators with lepton doublets in Eq. (9.17) is the basis for the connection between flavour-
changing neutral currents involving charged and neutral leptons that we explore in the following. Following
Refs. [249, 426, 430] we assume that the same flavour structure encoded in λqij and λ`αβ holds for all operators.

1Previous preliminary results from KOTO [421] indicated a value of

B(KL → π0νν̄)exp = 2.1
+2.0(+4.1)
−1.1(−1.7)

× 10−9 . (9.12)

which would violate the Grossman-Nir bound in Eq. (9.16). However this result was finally attributed to background effects [420]
that had been neglected, leading to a final result compatible with the Grossman-Nir bound.

2We explicitly checked that the updated analysis presented in Chapter 4 yields a pull of only 0.3 σ for the one-dimensional
scenario Cµ,NP

9 = Cµ,NP
10 compared to the SM, with values for the NP contribution compatible with zero at 68% CL.
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9.2.2 Flavour Structure in the quark sector
We need to connect the transitions among various quarks assuming a flavour structure for λqij . This can be done
using flavour symmetries, generally inspired by the pattern of flavour symmetry breaking in the Standard Model.
One can in particular consider that only the top-quark Yukawa is large and assume a U(2) symmetry preventing
the first two generations from acquiring large Yukawas. In this case, we classify the NP flavour structures in
terms of an approximate U(2)q=QL,D flavour symmetry acting directly on the quark fields, under which two
generations of quarks form doublets, while the third generation is invariant (see also [273, 431–435] for related
work)

q ≡ (q1L, q
2
L) ∼ (2,1) , d ≡ (d1R, d

2
R) ∼ (1,2) , d3R, q

3
L ∼ (1,1) . (9.19)

In the exact U(2)q limit only λq33 and λq11 = λq22 in Eq. (9.17) are non-vanishing. Since a specific pattern of
U(2)q breaking (by the SM Yukawas) is required to accommodate the first two generation quark masses and
the CKM matrix, there is an ambiguity in the definition of the singlet field with respect to the down-quark
mass basis, which, if chosen arbitrarily, may still result in unacceptably large mixing among generations. To
avoid excessive effects in neutral kaon oscillation observables, we thus furthermore impose the leading NP U(2)q
breaking to be aligned with the SM Yukawas, which is often referred to as a Minimal Flavour Violating (MFV)
or General Minimal Flavour Violating (GMFV) [270] NP structure (see Section 3.3.3) Often the term MFV is
used to refer to the limited case of linear MFV in which only first order terms on the Yukawa spurions are kept,
we will use the term “(G)MFV” for the general type of MFV and the term “linear MFV” for the reduced one.
In general, there is some arbitrariness in the choice of the U(2)q singlet, which can in principle mix the third
generation singlet with the first and second generation doublets. In the case of (G)MFV and stopping at leading
order in symmetry breaking, the form of the singlet is constrained to [249]

q3L =

(
V ∗
jbu

j
L

bL

)
+ θqe

iφq

[
Vtd

(
V ∗
jdu

j
L

dL

)
+ Vts

(
V ∗
jsu

j
L

sL

)]
. (9.20)

where θq and φq are fixed but otherwise arbitrary numbers.3 Therefore respecting the U(2)q symmetry with
(G)MFV breaking, for the down-type quarks, one has

d3L = bL + θqe
iφq (VtddL + VtssL) . (9.21)

The linear MFV limit [270] is recovered by taking θq = 1 and φq = 0. Note that within the linear MFV
regime, owing to its rigid flavour breaking structure, the flavour construction in Eq. (9.17) does not imply
extra assumptions, since any additional flavour re-scalings of individual operators can be absorbed into the
definition of flavour universal Ci’s. In (G)MFV, right-handed FCNCs among down-type quarks are suppressed
so that we may set C ′

RL = C ′
RR = 0 then. Departures from the (G)MFV limit may manifest through additional

explicit U(2)q breaking effects appearing as λqi 6=j 6= 0 and we normalise such effects by the U(2)q symmetric
(λq33) contribution by defining rij = λqij/λ

q
33.

9.2.3 Flavour Structure in the lepton sector
For the lepton sector we assume an approximate U(1)3` symmetry (broken only by the neutrino masses) yielding
λ`i6=j ' 0 as required by stringent limits on lepton flavour violation [6, 293, 436–443]. As already discussed, current
(LFU) NP hints in rare semileptonic B decays only indicate significant non-standard effects in muonic final states.
While a smaller effect in electrons is not excluded, b→ sτ+τ− transitions are at present only poorly constrained
and could in principle exhibit even much larger deviations than those observed in RK(∗) [295]. However, the
corresponding neutrino flavours are not tagged in current and upcoming rare meson decay experiments. In order
to correlate FCNC processes involving charged leptons and neutrinos we need to assume specific ratios of U(1)3`
charges (λ`). In the following we will consider three well known examples from the existing literature:

1. The simplest λ`ee = λ`ττ = 0 scenario implies significant NP effects only in muonic final states. Correspond-
ingly only a single neutrino flavour ν (e.g. in the sums of Eqs. (9.35) and (9.37)) receives NP effects. This
is usually assumed in model-independent EFT analyses.

2. The anomaly-free assignment λ`µµ = −λ`ττ and λ`ee = 0 allows for gauging of the leptonic flavour symmetry
and is thus well suited for UV-complete model building [264, 444]. In this case two of the neutrino flavours
in Eqs. (9.35) and (9.37) receive NP effects, equal in magnitude, but opposite in sign.

3Note that in general θq , φq could be operator specific. However in practice this does not lead to loss of generality of our main
findings and results.
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3. The hierarchical charge scenario λ`ee � λ`µµ � λ`ττ is motivated by models of partial lepton compositeness
and flavour models accounting for hierarchical charged lepton masses [255, 445]. In this case NP effects
in Eqs. (9.35) and (9.37) are again dominated by a single (τ) neutrino flavour, however the effects can
be much larger than indicated by the deviations in RK(∗) . For concreteness in the following we consider
λ`ττ/λ

`
µµ = mτ/mµ and again neglect the small effects in λ`ee for this scenario.

9.3 Matching
In order to relate the effective Lagrangian in Eq. (9.17) with the results of the b→ s`+`− Global fits, we need
to match the Wilson coefficients in Eq. (9.17) with the ones in Eq. (2.35). Similarly, in order to extract the
observables for the b → sνν̄ and s → dνν̄ transitions, we match Eq. (9.17) with the effective Lagrangians
commonly used to describe this transitions. For this we expand the left-handed doublet bilinears in Eq. (9.17)
onto the relevant fields, leading to

λqij
(
Q̄iLγµQ

i
L

) (
L̄αLγ

µLβL

)
→
(
λq33θqe

−iφqV ∗
tss̄LγµbL + λq23s̄LγµbL + λq12d̄LγµsL

+ λq33θ
2
qV

∗
tdVtsd̄LγµsL

)
× (¯̀αLγ

µ`βL + ν̄αLγ
µνβL) , (9.22)

and

λqij
(
Q̄iLγµσ

aQiL
) (
L̄αLγ

µσaLβL

)
→
(
λq33θqe

−iφqV ∗
tss̄LγµbL + λq23s̄LγµbL + λq12d̄LγµsL

+ λq33θ
2
qV

∗
tdVtsd̄LγµsL

)
× (¯̀αLγ

µ`βL − ν̄αLγ
µνβL) , (9.23)

whereas for the right-handed singlet

λqij
(
d̄iRγµd

i
R

) (
L̄αLγ

µLβL

)
→
(
λq23s̄RγµbR + λq12d̄RγµsR

)
(¯̀αLγ

µ`βL + ν̄αLγ
µνβL) . (9.24)

9.3.1 b → sµ+µ−

Expanding Eq. (9.17) and keeping only the terms relevant for b→ s`+`− we obtain

LNP(b→ sµ+µ−) = −
λq33λ

`
µµ

v2

{(
θqe

−iφqV ∗
ts + r23

)
×
[
(CT + CS)(s̄LγµbL)(µLγµµL) + C ′

LR(s̄LγµbL)(µRγµµR)
]

+ r23C
′
RL(s̄RγµbR)(µLγµµL) + r23C

′
RR(s̄RγµbR)(µRγµµR)

}
.

(9.25)

The matching of the Wilson coefficients of Eq. (2.35) and Eq. (9.17) is then, to linear order in U(2)q breaking,
given by

Cµ,NP
9 = − π

αemVtbV ∗
ts

λq33λ
`
µµ[V

∗
tsθqe

−iφq + r23]

× (CT + CS + C ′
LR) ,

(9.26)

Cµ,NP
10 = − π

αemVtbV ∗
ts

λq33λ
`
µµ[V

∗
tsθqe

−iφq + r23]

× (−CT − CS + C ′
LR) ,

(9.27)

Cµ,NP
9′ = − π

αemVtbV ∗
ts

λq33λ
`
µµr23 (C

′
RR + C ′

RL) , (9.28)

Cµ,NP
10′ = − π

αemVtbV ∗
ts

λq33λ
`
µµr23 (C

′
RR − C ′

RL) , (9.29)

where the SM component of the Wilson coefficients can be found in Table 2.1.

9.3.2 b → sνν̄

Expanding Eq. (9.17) and keeping only the terms relevant for b→ sνν̄ we obtain

LNP(b→ sνν̄) = −λ
q
33λ

`
αα

2v2

{(
θqe

−iφqV ∗
ts + r23

)
(−CT + CS)(s̄LγµbL)(ν̄

αγµ(1− γ5)ν
α)

+ r23C
′
RL(s̄RγµbR)(ν̄

αγµ(1− γ5)ν
α)
}
.

(9.30)
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The matching of the Wilson coefficients of Eq. (9.1) and Eq. (9.17) is then, including leading U(2)q breaking
effects, given by

Cνα,NP
L = − π

αemVtbV ∗
ts

λq33λ
`
αα[V

∗
tsθqe

−iφq + r23][CS − CT ] , (9.31)

Cνα,NP
R = − π

αemVtbV ∗
ts

λq33λ
`
ααr23C

′
RL . (9.32)

9.3.3 s → dνν̄

The expansion of Eq. (9.17) into the s→ dνν̄ mode reads

LNP(s→ dνν̄) = −λ
q
33λ

`
αα

2v2

{(
θ2qVtsV

∗
td + r∗13θqe

iφqVts + r23θqe
−iφqV ∗

td + r12

)
× (−CT + CS)(s̄LγµbL)(ν̄

αγµ(1− γ5)ν
α)

+ r12C
′
RL(d̄RγµsR)(ν̄

αγµ(1− γ5)ν
α)
}
,

(9.33)

leading to the following effective NP Wilson coefficient

Cνα,NP
sd =

πs2W
αem

λq33λ
`
αα[θ

2
qVtsV

∗
td (CS − CT )

+ θq(Vtse
iφqr∗13 + V ∗

tde
−iφqr23) (CS − CT )

+ r12 (CS − CT + C ′
RL)] .

(9.34)

Since s → d transitions only appear at quadratic order in (G)MFV breaking of U(2)q, in this case we have
included up to quadratic U(2)q breaking terms, but at the same time kept only the linear U(2)q breaking
contributions beyond (G)MFV, since these suffice for our following discussion.

9.4 Observables

9.4.1 b → sνν̄

The rare B decays B → K(∗)νν̄ can be conveniently expressed in presence of NP of the form in Eq. (9.17) as [410,
411]

B(B → Kνν̄) =(4.5± 0.7)× 10−6 1

3

∑
ν

(1− 2ην)ε
2
ν ,

B(B → K∗νν̄) =(6.8± 1.1)× 10−6 1

3

∑
ν

(1 + 1.31ην)ε
2
ν ,

B(B → Xsνν̄) =(2.7± 0.2)× 10−5 1

3

∑
ν

(1 + 0.09ην)ε
2
ν ,

〈FL〉 =(0.54± 0.01)

∑
ν(1 + 2ην)ε

2
ν∑

ν(1 + 1.31ην)ε2ν
, (9.35)

where 1.31 and 0.09 corresponds to an evaluation of the balance between helicities/states with different parities.
〈FL〉 is the longitudinal K∗ polarisation fraction in B → K∗νν̄ decays. For each flavour of neutrino ν = νe, νµ, ντ ,
the two NP parameters can in turn be expressed as

εν =

√
|CνL|2 + |CνR|2

|CνSM|
, ην =

−Re(CνLC
ν∗
R )

|CνL|2 + |CνR|2
, (9.36)

where CνL,R = Cν,SML,R + Cν,NP
L,R , Cν,NP

L,R are given in Eq. (9.31) and Cν,SML = −6.38 and Cν,SMR = 0 at µ = mb.
Note that any deviations from SM in 〈FL〉 or non-universal deviations in B(B → (K,K∗, Xs)νν̄)/B(B →

(K,K∗, Xs)νν̄)SM would signal the presence of right-handed quark currents (C ′
RL 6= 0) and thus departures from

the (G)MFV limit.



9.5. Results in the linear MFV case 209

9.4.2 s → dνν̄

Similarly, the rare kaon decays K+ → π+νν̄ and KL → π0νν̄ can be conveniently expressed in presence of NP
of the form in Eq. (9.17) as [427, 446]

B(K+ → π+νν̄(γ)) = (8.4± 1.0)× 10−11 1

3

∑
ν

∣∣∣∣∣1 + Cν,NP
sd

VtsV ∗
tdXt + (Xc + δXc,u)VcsV ∗

cd

∣∣∣∣∣
2

,

B(KL → π0νν̄) = (3.4± 0.3)× 10−11 1

3

∑
ν

1 + Im
(
Cν,NP
sd

)
Im (VtsV ∗

tdXt)

2

,

(9.37)

where Cν,NP
sd is given in Eq. (9.34). .

A short comment regarding the correlation in between KL → π0νν̄ and K+ → π+νν̄ is at hand. As it can
be seen in Eq. (9.37), without CPV NP these modes are fully correlated. We note that new CP phases in
s→ d transitions, necessary to to break this correlation, only appear beyond the (G)MFV limit [270]. In the
case of K → πνν̄ decays we can see this explicitly in Eq. (9.34) since only terms proportional to rij may carry
additional phases. These terms should thus dominate over the first row indicating large departures from the
(G)MFV limit. Unfortunately, little can be said about the implications of b→ sµ+µ− data model independently
in this part of parameter space. A potential future experimental confirmation of Cµ,NP9′ 6= 0 could at best provide
circumstantial evidence for the presence of U(2)q breaking beyond (G)MFV.

9.5 Results in the linear MFV case
We first consider the limit of linear MFV in which b→ sνν̄ and s→ dνν̄ FCNC transitions are rigidly correlated
via the corresponding CKM prefactors in Eqs. (9.31) and (9.34) and C ′

RL = C ′
RR = 0. Even before considering

the implications of RK(∗) , this immediately implies a very general correlation between B → hsνν̄ and K → πνν̄
rates, driven by the combination of Wilson coefficients CS − CT in Eq (9.17). For conciseness, we consider the
branching ratios normalised to their SM values by introducing

R(i→ f) ≡ B(i→ f)/B(i→ f)SM . (9.38)

The allowed region for these ratios is shown shaded in darker (2ν) and lighter (3ν) grey in Fig. 9.2, where
arbitrary MFV NP effects in two (2ν) or three (3ν) neutrino flavours (with arbitrary varying λq33λ`) have been
considered, respectively. The two ratios R are bounded by the same minimal value (1−Nν/3) where Nν is the
number of neutrino flavours affected by NP. Also shown are the present experimental constraints coming from
NA62 [447, 448] and B-factories [414] respectively. An interesting observation is that a pair of future B → hsνν̄
and K → πνν̄ rate measurements outside of this (albeit large) region would be a clear indication of non-MFV
NP. On the same plot we also superimpose the three specific U(1)3` scenarios (i.e. fixed λq33λ

`).
In the b→ s`+`− analysis, the (G)MFV limit corresponds to the (Cµ,NP

9 , Cµ,NP
10 ) scenario. In terms of the

EFT operator basis in Eq (9.17) RK(∗) measurements (and more generally b → s`+`− data) favour non-zero
values for both CS + CT and C ′

LR. Since B → hsνν̄ and K → πνν̄ depend on the orthogonal CS − CT
combination, interesting implications can only be derived in specific scenarios allowing us to convert the
information from b→ s`+`− observables into a constraint on CS and CT . The simplest possibilities (CS = 0 or
CT = 0) are indicated in Fig. 9.2 for U(1)3` scenarios 1 and 3 respectively. On the other hand, in scenario 2, no
significant deviations are expected in either case. We observe that the pure SU(2) triplet (CS = 0) scenario 3
(λ`ττ/λ`µµ = mτ/mµ) was already close to being probed by searches for B → K(∗)νν̄ at the B-factories and that
both pure SU(2) triplet (CS = 0) and singlet (CT = 0) limits of scenario 3 are currently outside the 68% CL
preferred region of the recent B(K+ → π+νν̄) measurement. The final projected sensitivity of Belle II could be
sufficient to eventually also distinguish between the pure SU(2) triplet (CS = 0) and singlet (CT = 0) limits of
scenario 1.

9.6 Results with right-handed currents
Beyond the MFV limit any correlation between b → s and s → d FCNCs is lost in general. Nonetheless, the
potential presence of right-handed b→ s FCNCs in the (Cµ,NP

9 , Cµ,NP
9′ ) scenario4 as well as the leptonic flavour

structure of NP can both still be probed using correlations among two B → hsνν̄ modes, as shown in Fig. 9.3
4Note that the additional inclusion of Cµ,NP

10 to this NP scenario does not alter our conclusions, as it corresponds to the addition
of C′

LR which is not involved in b→ sνν̄.
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Figure 9.2: Correlation between the ratios R(B → hsνν̄) (hs = K,K∗, Xs) and R(K+ → π+νν̄) in the linear
MFV limit. The SM value is represented by the black square. The region allowed for arbitrary NP effects in
νµ and ντ only (all three neutrino flavours) is show in dark grey (light grey respectively). Curves are drawn
for the specific U(1)3` scenarios 1 (NP only in muons, red), 2 (opposite NP effects in muons and taus, purple)
and 3 (hierarchical NP effects according to the generation, dashed brown). Scenarios with CS = 0 or CT = 0
are indicated as black × and + respectively in the inset plot for scenario 1 and brown ♦ or 4 respectively
for scenario 3. The vertical bands correspond to the 90 % CL limits on the observables for R(B → K∗νν̄)
(green) and R(B → Kνν̄) (orange) [414], while the horizontal blue region indicates the recent B(K+ → π+νν̄)
measurement [447, 448].

for the case R(B → Kνν̄) vs. R(B → K∗νν̄). These results are obtained by varying all the relevant model
parameters in Eqs. (9.26) and (9.28), while the different lepton flavour (U(1)3` charge) assignments are shown in
different contours.

First note that in the MFV limit relative NP effects in both modes are expected to be identical as indicated
by the diagonal blue line. Beyond MFV however, any deviation from the diagonal would indicate the presence of
right-handed currents and the amount of deviation from the diagonal would directly indicate the number of
lepton flavours affected by NP.

In scenario 1 (where only muons couple significantly to NP) and scenario 2 (where muons and taus have
opposite NP couplings) the b→ s`+`− fit for (Cµ,NP

9 , Cµ,NP
9′ ) (see Chapter 4) singles out a narrow region around

the diagonal in this plane, whereas scenario 3 leaves a much larger region allowed. Conversely, a measurement of
the two b→ sνν̄ modes outside of the region for scenario 1 would indicate significant (right-handed FCNC) NP
couplings to other neutrino species, e.g. ντ .

In absence of information on the size of the right-handed FCNCs from the b→ sµ+µ− modes in principle
the whole region within the grey 1ν contour could be accessible, with limits corresponding ην = −1/2 and +1/2
(MFV corresponding to ην = 0). In presence of significant couplings also to tau neutrinos as e.g. in scenario 3,
the whole region within the grey dashed 2ν contour is possible, even when the existing constraints coming from
b→ sµ+µ− modes are taken into account.

Finally, in presence of significant right-handed FCNCs coupling to all three neutrino flavours the whole region
within the grey dotted 3ν contour would be possible in principle.

9.7 Conclusions
In this chapter, we have investigated the consequences of deviations from the SM observed in b → sµ+µ−

transitions for FCNC processes involving down-type quarks and neutrinos. Motivated by the results from the
global fits to b→ s`+`− observables as well as measurements and bounds on FCNC processes with neutrinos, we
have considered a general EFT description of FCNC transitions in terms of SU(2)L gauge invariant operators
including those with right-handed quarks and charged leptons. This allowed us to describe with the same
short-distance Wilson coefficients b→ sµ+µ−, b→ sνν̄ and s→ dνν̄.

We have briefly touched upon the status of KL → π0νν̄ and its correlation with K+ → π+νν̄, which is only
modified by CPV NP, which requires new flavour dynamics beyond (G)MFV. In this case, there is no clear
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Figure 9.3: Correlation between the ratios R(B → Kνν̄) and R(B → K∗νν̄) in the presence of NP in b→ sµ+µ−

transitions through (Cµ,NP
9 , Cµ,NP

9′ ). The diagonal blue line corresponds to the (G)MFV case (Cµ,NP
9′ = 0). The

1 σ region allowed by b → sµ+µ− transitions yields an allowed region depending on the assumption on the
couplings to leptons, inside the solid green line for scenario 1 (NP only in muons), dashed purple for scenario 2
(opposite NP effects in muons and taus) and dot-dashed red for scenario 3 (hierarchical NP effects according to
the generation). Without information on the size of the right-handed FCNCs from b → sµ+µ−, the allowed
region assuming significant NP couplings to 1, 2, 3 neutrinos is above and on the right of the solid, dashed,
dotted grey contours, respectively. The horizontal and vertical bands correspond to the 90 % CL limits on the
observables for R(B → K∗νν̄) (orange) and R(B → Kνν̄) (blue) [414].

correlation with the other FCNC modes discussed here. Assuming (G)MFV in the quark sector, we have studied
the correlation between the branching ratios for B → hsνν̄ and K+ → π+νν̄. Such a correlation is already
present without assuming any definite structure for the neutrino NP couplings, but it can be made even more
precise once particular NP scenarios assign specific values to these couplings. Moreover, for scenarios with no
triplet (CT = 0) or singlet (CS = 0) contributions, the fits to (Cµ,NP

9 , Cµ,NP
10 ) can be immediately converted into

predictions for these two branching ratios in terms of

Rνν ≡ [R(B → hsνν̄), R(K
+ → π+νν̄)] . (9.39)

In scenario 1 where NP couples only to muons, we find

Rνν ' (0.95, 0.97) if CS = 0 , (9.40)
Rνν ' (1.05, 1.03) if CT = 0 . (9.41)

In scenario 2 where muons and taus have opposite couplings, the values remain very close to the SM. In scenario
3 where NP hierarchical couplings proportional to the lepton mass are assumed, we find

Rνν ' (0.64, 0.65) if CS = 0 , (9.42)
Rνν ' (2.40, 1.80) if CT = 0 . (9.43)

Both limits are already in slight tension with the recent measurement of B(K+ → π+νν̄).
Moving beyond the (G)MFV limit, we have investigated the correlation between B → Kνν̄ and B → K∗νν̄,

in particular showing that depending on the NP lepton couplings also the scenario with NP in (Cµ,NP
9 , Cµ,NP

9′ ) can
yield a tight correlation between the two modes when the b→ s`+`− measurements are taken into account. For
instance, in scenarios 1 and 2, the ratio R(B → Kνν̄)/R(B → K∗νν̄) cannot deviate from unity by more than
8%. More generally, such measurements could establish NP flavour breaking beyond (G)MFV as well indicate
the number of lepton flavours affected by NP. For example, the measurements of the two ratios R(B → Kνν̄)
and R(B → K∗νν̄) outside the diagonal could be interpreted as the presence of right-handed currents in both
b→ sνν̄ and b→ s`+`−. Our work shows therefore that fairly general information on the pattern of NP could
be obtained from the forthcoming measurements of K → πνν̄ and B → K(∗)νν̄.
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Chapter 10

A new B-flavour anomaly in
Bd,s → K∗0K̄∗0: anatomy and
interpretation

If NP is indeed at the origin of the anomalies in semileptonic B decays, it is natural to expect signals in other
observables involving b → s transitions (see Fig. 10.1 for instance). A natural place to explore the possible
existence of these signals are non-leptonic B decays. This type of decays suffer from larger uncertainties
compared to semileptonic B decays and are therefore more difficult to compute with a high accuracy. In
particular, branching ratios and polarisation fractions receive contributions that suffer from large uncertainties
due to power-suppressed but infrared-divergent weak annihilation and hard-spectator scattering [139, 149]. In
this sense a deviation with respect to the SM prediction in non-leptonic B decays requires one to be much more
conservative regarding these uncertainties than in the case of semileptonic B decays.

In this chapter, based on Ref. [449], we will follow a similar strategy to the one used in Refs. [87, 214] for
semileptonic rare B decays. In b→ s`` decays, one can build two different kinds of observables with a reduced
sensitivity to hadronic uncertainties: on the one hand, angular observables from decays involving muons in the
final state [87, 373] constructed exploiting heavy quark symmetry and on the other hand, ratios of branching
ratios with muons versus electrons in the final state that test LFUV and where the dependence on the form
factors cancels almost exactly in the SM [450]. There are tensions in observables involving leptons of the second
family (for the former) and between the second and the first family of leptons (for the latter).

In this chapter we explore the parallel approach of using non-leptonic B decays rather than semileptonic ones,
comparing quark transitions involving quarks of the second and first families instead of muons and electrons.
More specifically, we compare transitions involving s-quarks and d-quarks to benefit from the approximate
U -spin symmetry of the Standard Model in analogy with Lepton-Flavour Universality used to build the LFUV
ratios in b → s`` decays. The analogy has evident limitations: since both symmetries are broken by fermion
mass effects, the size of the corrections is easier to compute or estimate for LFU (involving mainly QED) than
for U -spin (involving QCD). However, even in the nonleptonic case it is well known that ratios of this type offer
many advantages in reducing hadronic uncertainties, explaining for instance the popularity of the ratio ξ to
describe neutral-meson mixing in lattice QCD [59] and phenomenological studies of the CKM matrix [24, 151].

We may reach an even better control of hadronic uncertainties by combining several approaches. In Refs.
[354, 451, 452] it was shown that the specific structure of penguin-mediated non-leptonic B-decays could lead

Z ′

b

s

`+

`−

Z ′

b

s

q

q̄

Figure 10.1: Diagrams of the b→ s`` and b→ sqq̄ contributions of a Z ′ NP model shown as an illustration of
possible connections in between these modes.
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to a better theoretical control on combinations of hadronic matrix elements within factorisation approaches.
In the case of vector final states, it is also known that the decays into longitudinally polarised light mesons
can be described more precisely than the transverse ones within these factorisation approaches, providing a
further guide to build optimised observables (in analogy with the angular observables in semileptonic decays).
Finally, if the Bd-meson decays have been studied at B-factories extensively, LHCb is now able to provide
accurate measurements for many Bs-meson decays with the possibility to assess the correlation between Bd
and Bs mesons decaying into the same final state [158].In particular, it is very interesting to notice the ratio of
longitudinal polarisations [453, 454]

fL(Bd → K∗0K̄∗0)

fL(Bs → K∗0K̄∗0)
= 0.33± 0.06 (10.1)

which is rather different from the U-spin expectation to be close to 1. With this particular decay in mind, we will
consider a type of observables for penguin-mediated non-leptonic decays of B mesons into two vector particles,
that we will refer as L-observables. These correspond essentially to the Rsd observable introduced in Ref. [354]
in the case of Bd,s → K∗0K̄∗0 (up to a phase space). We present here a detailed and complete anatomy of this
observable in the SM, updating the SM prediction and observing an increase in the tension with the experimental
measurement compared to Ref. [354]. We then discuss NP explanations for the tension observed. We also point
out possible improvements of the theoretical prediction of this observable.

In Section 10.1 we develop the theoretical framework that will be used to compute the L observable. We
put a particular emphasis on the sources of hadronic uncertainties coming from infrared divergences that affect
mostly branching ratios and polarisations. In Section 10.2 we construct this observable and we compute it. Then
using the data of the previous section we determine its experimental value and the pull. In Section 10.3 we
explore possible solutions in terms of NP shifts to Wilson coefficients in a model-independent EFT approach,
before considering particular models illustrating the difficulty to explain this non-leptonic anomaly together with
the b→ s`` anomalies in Section 10.4. We finally conclude in Section 10.5.

Appendices 10.A to 10.C are devoted to a discussion of the QCD factorisation relevant elements, the
semi-analyical description of relevant hadronic matrix elements, and complementary material concerning the
sensitivity of L to different sources of NP.

10.1 Theoretical framework
10.1.1 Helicity amplitudes
We start by considering the theoretical description of BQ → V V with Q = d, s before focusing on Bd,s → K∗0K̄∗0

more specifically. Since the initial state has spin 0, the two vector mesons must have the same helicity, leading
to a description of the decay in terms of three helicity amplitudes A0, A+ and A−. In naive factorisation one
expects a hierarchy of the type: Ā0 > Ā− > Ā+ for a B̄ → V V decay and A0 > A+ > A− for a B → V V decay.
This hierarchy with a dominance of longitudinal amplitudes is easy to understand by means of the V-A structure
of the SM [89]. Each amplitude is suppressed with respect to the previous one by O(Λ/mb) due to helicity
suppression [149]. The longitudinal amplitude in a b → s transition is dominant as compared to the positive
helicity: the s quark is produced with an helicity −1/2 by weak interactions (in the limit ms → 0), which is not
affected by the strong interactions, then the strange quark combines with the light spectator quark to form a V
with a helicity which can reach 0 or −1 but not +1. In Ā−, a light-quark helicity flip is required to obtain both
vector mesons with a negative helicity, whereas in Ā+, two helicity flips are required to reach a positive helicity
for both vector mesons. Each of these helicity flips yields a suppression by a factor O(Λ/mb), as expected in
naive factorisation (see Section 2.8).

10.1.2 Hadronic matrix elements
For a B̄Q meson decaying through a b→ q penguin-mediated process into a V1V2 state with a definite polarisation,
the decomposition

Āf ≡ A(B̄Q → V1V2) = λ(q)u Tq + λ(q)c Pq , (10.2)

is always possible, with the CKM factors λ(q)U defined in Eq. (1.42). We denote by Tq and Pq the matrix elements
accompanying the λ(q)u and λ

(q)
c CKM factors respectively. In the SM, Pq is usually associated to penguin

topologies, whereas Tq receives contributions from tree topologies (but it can also contain only penguin topologies
in some decays). As discussed above, if we consider the longitudinal polarisation, Tq and Pq can be computed
using factorisation approaches based on a 1/mb expansion (see Appendix 10.A). In QCD factorisation [86], Tq
and Pq are affected by possibly large long-distance 1/mb-suppressed effects that we discussed in Section 2.8. In
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the case of penguin mediated decays like B(d,s) → K∗0K̄∗0, it was observed [451, 452] that the same type of
(long-distance) infrared divergences affect both Pq and Tq, so one can construct

∆q = Tq − Pq , (10.3)

free from these next-to-leading-order infrared divergences encoded in XA and XH (see Section 2.8).
Using the unitarity relation in Eq. (1.45), we can write Eq. (10.2) in terms of λ(q)u and λ

(q)
t

Āf = λ(q)u ∆q − λ
(q)
t Pq . (10.4)

The weak phases in λ(q)t are given by βq, as defined in Eq. (1.42) whereas λ(q)c is real to a very good approximation
for both q = d, s, and λ

(q)
u = −λ(q)c − λ

(q)
t . The CP-conjugate amplitude is given by

Af̄ = (λ(q)u )∗Tq + (λ(q)c )∗Pq = (λ(q)u )∗∆q − (λ
(q)
t )∗Pq . (10.5)

If f = V1V2 is a CP-eigenstate, note that Af̄ is different from A = A(B → V1V2), even though the two types of
amplitudes are related:

Ā = Āf A = ηfAf̄ , (10.6)
where ηf is the CP-parity of the final state, given for j = 0, ||,⊥ respectively as η, η,−η where η = 1 if V1 is the
charge conjugate of V2 (this is the case for K∗0K̄∗0).

10.2 The L-observable for BQ → K∗0K̄∗0

10.2.1 Definition and experimental determination
The 2019 LHCb analysis with 3 fb−1 data measured the ratio of the untagged and time-integrated decay
rates [454]

BBd→K∗0K̄∗0

BBs→K∗0K̄∗0
= 0.0758± 0.0057 stat± 0.0025 syst± 0.0016

(
fs
fd

)
, (10.7)

The longitudinal polarisation of both modes has been measured as well. The average of Bd → K∗0K̄∗0 from
LHCb [454] and BaBar [453]

fLHCb
L (Bd → K∗0K̄∗0) =0.724± 0.051± 0.016, (10.8)
fBaBar
L (Bd → K∗0K̄∗0) =0.80+0.10

−0.12 ± 0.06, (10.9)

yields
fL(Bd → K∗0K̄∗0) = 0.73± 0.05, (10.10)

whereas the polarisation for the Bs → K∗0K̄∗0 mode is [454]:

fL(Bs → K∗0K̄∗0) = 0.240± 0.031 stat± 0.025 syst . (10.11)

Most of the experimental determinations are made assuming no direct CP-violation; however, the ones
searching for CP violation found no hint in these decays [455].

One can notice already that the longitudinal polarisations are very different for these two modes, although
they are related by U -spin symmetry in its most obvious form, i.e. the d↔ s exchange. In the SM, U -spin is
broken only by the quark masses, and it is thus expected to be fairly well obeyed (up to a 20-30% correction).
We propose to define an observable that will be sensitive to this effect but with a cleaner theoretical prediction:

LV1V2
=

Bb→s

Bb→d

gb→df
b→s
L

gb→sf b→d
L

=
|As0|2 + |Ās0|2

|Ad0|2 + |Ād0|2
, (10.12)

where Bb→q (f b→q
L ) refers to the branching ratio (longitudinal polarisation) of the B̄Q → V1V2 decay governed

by a b→ q transition. Aq0 and Āq0 are the amplitudes for the BQ and B̄Q decays governed by b→ q with final
vector mesons being polarised longitudinally and

gb→q = ω

√[
M2
BQ

− ΣV1V2

] [
M2
BQ

−∆V1V2

]
, (10.13)

stands for the phase space factor involved in the corresponding branching ratio, with

ω = τBQ
/(16πM3

BQ
) , Σab = (ma +mb)

2 , ∆ab = (ma −mb)
2 , (10.14)
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and all quantities are CP-averaged.
This observable is defined such that the dependence on the troublesome transverse (parallel and perpendicular)

amplitudes entering the branching ratio and longitudinal polarisation fraction cancel and it is close to the
observable Rsd for the case of Bd,s → K∗0K̄∗0 up to a phase space factor [354].

Being purely sensitive to the longitudinal amplitudes, L is less affected by the hadronic uncertainties which
impact the transverse polarisation amplitudes significantly and which are difficult to estimate within QCD
Factorisation (see Section 2.8) or other approaches based on a 1/mb expansion. The choice of this observable
thus avoids the difficulties encountered in the interpretation of low longitudinal polarisation fractions observed
in some non-leptonic modes [149]. We will now only focus on:

LK∗K̄∗ =
BBs→K∗0K̄∗0

BBd→K∗0K̄∗0

gb→df
Bs

L

gb→sf
Bd

L

=
|As0|2 + |Ās0|2

|Ad0|2 + |Ād0|2
, (10.15)

where the spectator quark Q of the initial b-flavoured meson and the quark q from the b→ q transition coincide.
In the definition of LK∗K̄∗ and its connection with the longitudinal amplitudes |Aq0|2 in Eq. (10.15), we have

not included the effect of Bs-meson mixing that arises in branching ratios when measured at hadronic machines.
This effect of time integration at hadronic machines generates a correction of O(∆Γ/(2Γ)) discussed in Refs.
[354, 456], which would multiply the last term in Eq. (10.15) by:

1 +As∆Γys
1 +Ad∆Γyd

1− y2d
1− y2s

, (10.16)

where yq = ∆ΓBq
/(2ΓBq

) is well measured (yd is negligible and ys ' 0.065) and the asymmetries −1 ≤ Aq∆Γ ≤ 1
combining CP violation in mixing and decay are difficult to estimate theoretically, leading to a correction of at
most 7%.

Since we use the LHCb measurement Eq. (10.7) and since there are other sources of (theoretical and
experimental) uncertainties, we treat Eq. (10.16) as a systematic uncertainty of 7% combined in quadrature with
the other uncertainties, leading to the experimental value:

Exp : LK∗K̄∗ = 4.43± 0.92. (10.17)

10.2.2 Theoretical prediction in the SM and comparison with data
On the theory side, we have

Aq0 =(λ(q)∗c + λ(q)∗u ) [Pq + (αq)∗∆q] ,

Āq0 =(λ(q)c + λ(q)u ) [Pq + αq∆q] ,
(10.18)

where αq = λqu/(λ
q
c + λqu). We thus get

LK∗K̄∗ = κ

∣∣∣∣PsPd
∣∣∣∣2
 1 + |αs|2

∣∣∣∆s

Ps

∣∣∣2 + 2Re
(

∆s

Ps

)
Re(αs)

1 + |αd|2
∣∣∣∆d

Pd

∣∣∣2 + 2Re
(

∆d

Pd

)
Re(αd)

 , (10.19)

with the combinations of CKM factors (estimated using the summer 2019 CKMfitter update [24, 286, 457] (see
Table 10.A.1):

αd =(−0.0136+0.0095
−0.0096) + i(0.4181+0.0085

−0.0064), (10.20)
αs =(0.00863+0.00040

−0.00036) + i(−0.01829+0.00037
−0.00042), (10.21)

κ =

∣∣∣∣λsc + λsu
λdc + λdu

∣∣∣∣2 = 22.92+0.52
−0.30. (10.22)

From QCD factorisation (see Section 2.8 and Appendix 10.A) together with the WET (see Section 2.4) and
the discussion in Section 10.1, we have

∆d

Pd
=(−0.16± 0.15) + (0.23± 0.20)i, (10.23)

∆s

Ps
=(−0.15± 0.22) + (0.23± 0.25)i, (10.24)
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so that the brackets in Eq. (10.19) are very close to 1, with the main uncertainty of 1% from the term proportional
to |αd|2 (which will be included in the theoretical uncertainties below). The leading uncertainty in the theoretical
evaluation of LK∗K̄∗ comes thus from the ratio |Ps/Pd|, which we can attempt to estimate in different ways. A
naive SU(3) approach would consist in assuming

naive SU(3) :

∣∣∣∣PsPd
∣∣∣∣ = 1± 0.3 , (10.25)

while a naive factorisation approach would rather yield

fact SU(3) :

∣∣∣∣PsPd
∣∣∣∣ = f = 0.91+0.20

−0.17 , (10.26)

where the SU(3)-breaking ratio related to the form factors of interest is given by

f =
As
K∗K̄∗

Ad
K∗K̄∗

=
m2
Bs
ABs→K∗

0 (0)

m2
Bd
ABd→K∗

0 (0)
, (10.27)

and we used the values of Ref. [278] for the form factors to estimate f . A last possibility amounts to using QCD
factorisation. Using the same inputs as before, we obtain

QCD fact :

∣∣∣∣PsPd
∣∣∣∣ = 0.92+0.20

−0.18 . (10.28)

The QCD factorisation-based prediction follows the theoretical computations of the different contributions
to the amplitudes from Refs. [37, 139]. The numerical values of the input parameters used are updated with
respect to the ones in Ref. [37] and can be found in Table 10.A.1 of Appendix 10.A.

Observable 1σ 2σ
LK∗K̄∗ [12.7, 28.8] [7.5, 43]

Table 10.1: 1σ and 2σ confidence intervals for the SM prediction of LK∗K̄∗ within QCD factorisation.

We propagate the uncertainties by varying each input (given in Table 10.A.1) entering the penguin ratios in
Eqs. (10.25), (10.26) and (10.28) and the CKM contribution κ following Eq. (10.22), using Gaussian distributions.
We determine then the distribution of L in each case, leading to the 1σ ranges:

naive SU(3) : LK∗K̄∗ =23+16
−12 1.9σ , (10.29)

fact SU(3) : LK∗K̄∗ =19.2+9.3
−6.5 3.0σ , (10.30)

QCD fact : LK∗K̄∗ =19.5+9.3
−6.8 2.6σ , (10.31)

where we put the level of discrepancy with experiment, in units of σ. We stress that these discrepancies are
obtained using symmetric confidence intervals and the whole distribution for L and not just the 1σ confidence
intervals in the Gaussian approximation (see Table 10.1 for the 1 and 2σ confidence intervals). In Table 10.2 we
present the error budget for LK∗K̄∗ in the SM. The comparison with the error budget of |Pd,s|2 shows that the
impact of XA (XH), introduced above Eq. (2.89), is reduced from 18% (2%) in |Pd,s|2 to 4% (0.2%) in LK∗K̄∗ .
A similar reduction is observed for other inputs such as fK∗ , showing the benefit of defining the ratio LK∗K̄∗ .
It also indicates that the accuracy of the theoretical prediction of LK∗K̄∗ could be improved significantly by
determining the correlations among the relevant B → K∗ form factors in order to compute the associated SU(3)
breaking. Moreover, the impact of the weak annihilation and hard-scattering divergences on the uncertainty
is subdominant and would not be affected strongly by using a different approach for these power-suppressed
infrared divergences.

From the comparison of the SM predictions in Eqs. (10.29) and (10.31) with the experimental result in
Eq. (10.17), we see that all our theoretical estimates point towards a deficit in the b→ s transition compared to
the b→ d one for these penguin-mediated modes, in analogy with the deficit observed in semileptonic decays to
muons versus the decay to electrons in b→ s`` decays.

10.3 Model-independent NP analysis
10.3.1 NP structures considered
Even though the deviation in LK∗K̄∗ is not yet at the level of a troublesome discrepancy with the SM, its
potential connection with other B-flavour anomalies makes it interesting to investigate it further in terms
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Relative Error
Input LK∗K̄∗ |Ps|2 |Pd|2

fK∗ (−0.1%,+0.1%) (−6.8%,+7.1%) (−6.8%,+7%)

ABd
0 (−22%,+32%) − (−24%,+28%)

ABs
0 (−28%,+33%) (−28%,+33%) −

λBd
(−0.6%,+0.2%) (−4.6%,+2.1%) (−4.1%,+1.9%)

αK
∗

2 (−0.1%,+0.1%) (−3.6%,+3.7%) (−3.6%,+3.6%)
XH (−0.2%,+0.2%) (−1.8%,+1.8%) (−1.6%,+1.6%)
XA (−4.3%,+4.4%) (−17%,+19%) (−13%,+14%)
κ (−1.4%,+2.2%) − −

Others (−1.3%,+1.1%) (−2.7%,+2.5%) (−1.6%,+1.6%)

Table 10.2: Error budget of LK∗K̄∗ and |Pd,s|2. The relative error of each theoretical input is obtained by varying
them individually. The main sources of uncertainty are the form factors, followed by weak annihilation at a
significantly smaller level.

of possible SU(3)-breaking NP contributions. We may explore in a model-independent way how to explain
this anomaly via contributions only to the Wilson coefficients of the b→ s transition (Cis), while keeping the
corresponding b→ d (Cid) SM-like (or with opposite NP contributions).

This can be performed by using the weak effective theory introduced in Section 2.4. Note that in the presence
of generic NP, the basis of operators must be extended since we expect this NP contribution to couple with
different strength to different flavours (and in particular to d and s quarks), there is no a priori reason for it to
yield “strong” and “electroweak” penguin operators with sums over all quark flavours following the same pattern
as in the SM [458].

However, for simplicity, and in parallel with the results of the global fits for NP in b→ s`` decays favouring SM
operators or chirally-flipped versions of it, we consider here only NP entering the Wilson coefficients associated
with the SM operators Oi or the chirally-flipped ones Õi as defined in Section 2.4.2 by exchanging PL and PR
in all quark bilinears constituting the operators. These right-handed currents would modify the longitudinal
amplitude by adding contributions that are functions of CNP

i −C̃i (where C̃i is the coefficient of the chirally-flipped
operator) leading to the structure A0[CSM

i ] + A0[CNP
i − C̃i]. In practice this means that the NP contribution

to each coefficient entering the longitudinal amplitude should be interpreted as stemming not only from the
standard operators but also from the chirally flipped ones (with an opposite sign).

In this chapter, the Wilson coefficient basis differs slightly with the one in Section 2.4 by the exchange of C1s
and C2s. This is done to have a compatible convention with Refs. [37, 86, 139], from where QCDF results come
from. The values of the SM values for the Wilson coefficients can be found in Table 10.A.1.

10.3.2 Sensitivity to individual Wilson coefficients
We consider the sensitivity of LK∗K̄∗ on each Wilson coefficient. We want to determine if there is a dominant
operator that can naturally explain the low experimental value of LK∗K̄∗ , as it happens for b→ s`` with O9`.
We assume that NP enters as described above with the further requirement that there are no additional NP
phases, leading to real-valued Wilson coefficients. We can then compute the hadronic matrix elements within
QCD factorisation exactly like in the SM. In Appendix 10.B we provide semi-analytical expressions for Pd
and Ps, needed to compute LK∗K̄∗ in terms of Wilson coefficients. We provide the explicit dependence on the
infrared divergences XA and XH although their numerical impact on the uncertainty is limited. Let us note in
passing that the quantity ∆q is still protected from infrared divergences in this NP extension: the structure of
the longitudinal hadronic amplitudes T and P is unchanged, and only the numerical values of Wilson coefficients
are modified compared to the SM (the protection of ∆ from infrared divergences would not necessarily hold in
more general NP extensions).

Considering the sensitivity of LK∗K̄∗ on each Wilson coefficient of the weak effective theory individually, we can
determine the coefficients where a limited NP contribution would be sufficient to explain the discrepancy observed.
We thus identify three dominant coefficients: Cc1q, C4q and Ceff

8gq (see Figs. 10.3 and 10.C.1 in Appendix 10.C).
The strong dependence on these coefficients with respect to the others can be seen already in the explicit form of
Pd,s:

Ps =(1.98− 5.04i) + (2.37− 1.65i)Cc,NP
1s + (9.98 + 148.76i)CNP

4s − 7.98iCeff,NP
8gs + . . . (10.32)
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Figure 10.2: Reduction of the SM penguin b→ sqq̄ into O1s,4s,8gs in the WET.
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Figure 10.3: The tension between the theoretical prediction (blue) and the experimental value (orange) is reduced
below 1σ for CNP

4s ' 0.25CSM
4s (upper plot) or Ceff,NP

8gs ' −Ceff,SM
8gs (lower plot). The predictions are given for CNP

4s

and Ceff,NP
8gs for a range corresponding to 100% of their respective SM values. The plots for the remaining Wilson

coefficients can be found in Appendix 10.C.

Pd =(2.17− 5.49i) + (2.60− 1.80i)Cc,NP
1d + (10.95 + 161.74i)CNP

4d − 8.76iCeff,NP
8gd + . . . (10.33)

which translates into a dominant contribution for LK∗K̄∗ as well.
The reason behind this strong dependence on these coefficients can be understood in the following way. Let

us consider a penguin-mediated decay, so that the SM tree-level operator Cc1s contributes through a closed cc̄
loop to the decay, putting its contribution at the same level as the “strong" penguin operators i = 3 . . . 6 in the
SM. A very similar contribution at the level of the underlying SM diagrams comes thus from both Cc1s and C4s,
as can be seen from the V −A structure of the operators, which is also the case for Ceff

8gs with the emission of a
gluon coupling to a qq̄ pair (see Fig. 10.2). The effect of the diagrams is similar in the SM, but the separation
between long and short distances in the weak effective theory yields C4s and Ceff

8gs much smaller than Cc1s, which
must be compensated by larger weights in Eqs. (10.32) and (10.33). The other penguin operators are suppressed
either because of colour suppression (C3, thus associated with 1/Nc factors in the QCD factorisation formula) or
helicity suppression (C5 and C6, which yield a vanishing contribution in the naive factorisation approach as they
must be “Fierzed” into (pseudo)scalar operators with vanishing matrix elements). In the SM, the “electroweak”
penguins i = 7 . . . 10 are suppressed. Their contributions might be very significantly enhanced by NP which
would not require such an electromagnetic suppression, although it would be difficult to obtain then “electroweak”
operators at the mb-scale since they involve explicitly the quark electric charges. If we nevertheless allowed for
such very large contributions for the electroweak part (which we will discard in the following), the same argument
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would apply as in the case of the “strong” penguins, so that the leading contribution from the “electroweak”
penguins would be C10q.

As can be seen in Fig. 10.C.1, the coefficient Cc1s requires a very large NP contribution w.r.t. the SM of order
60% to reduce this discrepancy at 1σ. We will not pursue the possibility of a contribution to Cc1q, as the size
of the effect being so large at an absolute scale is in conflict with recent analyses of the global constraints on
this coefficient [283] that suggest that the room for NP contributions is of O(10%) of the SM. Dijet angular
distributions [459], together with flavour bounds following from SU(2)L gauge invariance, suggest bounds which
are even tighter.

The penguin coefficient C4s requires a NP contribution of order 25% (which is incidentally similar to the NP
contribution needed in C9 for b→ sµµ) in order to reduce the discrepancy in LK∗K̄∗ at 1σ. The NP contribution
needed is thus quite large but not significantly constrained from other non-leptonic decays where many other
coefficients enter [86].

Finally, Ceff
8gs would require a NP contribution of order 100% of the SM in order to obtain a similar reduction

of the discrepancy. Although it might seem a large contribution, it is actually very difficult to obtain a precise
bound on this effective coefficient which combines C8gs with some Wilson coefficients of four-quark operators.

To sum up, in Fig. 10.5 we show the 1σ-range for the NP contribution to each Wilson coefficient that is able
to explain the experimental value of LK∗K̄∗ , normalised to its SM value.

Due to QCD loop effects, the constraint from b → sγ is actually on a linear combination of the Wilson
coefficients Ceff

7γs and Ceff
8gs at the scale µb [211]. Therefore, an effect in Ceff

8gs can always be cancelled by an effect
in Ceff

7γs so that the experimental bound from b→ sγ is obeyed (the same is also true for b→ dγ [460]). Even
without such a cancellation from Ceff

7γs, the current measurements can accommodate a NP contribution to Ceff
8gs of

the order of the SM. Another more direct bound on Ceff
8gs is provided by the b → sg contribution to inclusive

non-leptonic charmless decays. The current bound on the b→ sg branching ratio in Ref. [6] is at the level of
6.8%, whereas the SM contribution [461] is estimated at the level of 0.5%, leaving room for a NP contribution to
Ceff
8gs up to three times as large as the SM one.

Naturally, in each case, if we allow for NP in both Cis and Cid, we may get the same reduction of the
discrepancy by assigning half of the NP contribution (with opposite signs) to both coefficients, as illustrated for
C4 in Fig. 10.4. Thus, allowing NP in b → d transitions in addition to b → s transitions requires smaller NP
contributions in each type of transition, and allows one to evade some of the bounds discussed above as they
applied only to b→ s transitions (e.g. C8gs). C8gd is constrained from b→ dγ.

10.4 Simplified NP models
Our model-independent analysis showed that LK∗K̄∗ is mostly sensitive to colour-octet operators and to a lesser
extent to the chromomagnetic operator. In the following, we will consider NP models able to generate such
contributions, and for concreteness, present the formula for the case of b→ s transitions.

Concerning C4s, it is natural to search for a tree-level explanation in terms of NP and a massive SU(3)c
octet vector particle, i.e. a Kaluza-Klein (KK) gluon [462], also called axi-gluon, comes naturally to mind. We
parametrise its couplings to down quarks of different flavours as

L = ∆L
sbs̄γ

µPLT
abGaµ +∆R

sbs̄γ
µPRT

abGaµ . (10.34)

with ∆L,R
sb assumed real. We also define from Eq. (10.34) analogous flavour diagonal couplings which we will

denote as ∆L,R
qq .

We may consider the constraints from neutral-meson mixing through the effective Hamiltonian of Ref. [463]

H∆F=2
eff =

5∑
j=1

CBsB̄s
j OBsB̄s

j +

3∑
j=1

C̃BsB̄s
j ÕBsB̄s

j , (10.35)

OBsB̄s
1 = [s̄αγ

µPLbα] [s̄βγµPLbβ ] , (10.36)

OBsB̄s
4 = [s̄αPLbα] [s̄βPRbβ ] , (10.37)

OBsB̄s
5 = [s̄αPLbβ ] [s̄βPRbα] , (10.38)

where only the operators relevant for the discussion are displayed and where the operators with a tilde are
obtained by exchanging the chirality projectors PL and PR. We get the matching contributions

CBsB̄s
1 =

1

2m2
KK

(
∆L
sb

)2 1

2

(
1− 1

NC

)
, (10.39)
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C̃BsB̄s
1 =

1

2m2
KK

(
∆R
sb

)2 1
2

(
1− 1

NC

)
, (10.40)

CBsB̄s
4 = − 1

m2
KK

∆L
sb∆

R
sb , (10.41)

CBsB̄s
5 =

1

NCm2
KK

∆L
sb∆

R
sb , (10.42)

where mKK is the mass of the KK gluon. Using the two-loop Renormalisation Group Equations of Refs. [464,
465] and the bag factors of Ref. [59] this translates to

∆MNP
Bs

∆MSM
Bs

× 10−10 =
(
1.1(CBsB̄s

1 + C̃BsB̄s
1 ) + 8.4CBsB̄s

4 + 3.1CBsB̄s
5

)
GeV2 , (10.43)

for a NP scale around 5 TeV. This has to be compared with the outcome of global fits allowing for NP in
mixing [466, 467], favouring a value slightly above 1 for the ratio ∆M exp

Bs
/∆MSM

Bs
. Encompassing the results

obtained from these recent fits in a conservative manner, we consider here

∆M exp
Bs

∆MSM
Bs

= 1.11± 0.09 . (10.44)

We obtain the allowed region shown in blue in Fig. 10.6 for real values of the Wilson coefficients and neglecting
the bag factor uncertainties related to CBsB̄s

4,5 .
Assuming that the KK gluon has universal flavour-diagonal coupling to the first two generations of quarks,

which is also needed to avoid unacceptably large effects in K − K̄ and/or D0 − D̄0 mixings [468], our model
generates 1 a NP contribution to C4s given at the matching scale by

C4s = −1

4

∆L
sb∆

L
qq√

2GFVtbV ∗
tsm

2
KK

, (10.45)

(and similarly for C̃4s with L replaced by R). The couplings ∆L,R
sb are defined in Eq. (10.34) while ∆L,R

qq stand
for the corresponding flavour-diagonal couplings to up and down quarks of the first two generations.

However, couplings of first generation quarks to KK gluons are strongly constrained by di-jet searches [469]:
(∆L

qq/mKK)2 < (2.2/(10TeV))2. Allowing for NP also in b→ d transitions could increase the effect in LK∗K̄∗ ,
but since here the effect is bounded by Bd − B̄d mixing, whose constraints are of the same order as Bs − B̄s
mixing, one can only gain a factor ≈ 2. Using this maximal coupling for the ∆L

qq couplings and setting the ∆R
qq

couplings to zero, we can see from Fig. 10.6 that a significant amount of fine-tuning is needed to account for
LK∗K̄∗ .

Alternatively, one could try to explain LK∗K̄∗ with a NP contribution in the chirally-flipped coefficient
C̃4s, given by Eq. (10.45) with the ∆L

sb and ∆L
qq couplings replaced by ∆R

sb and ∆R
qq, respectively. In principle,

one could exploit the fact that the couplings do not have to respect an U(2) flavour symmetry (since up- and
down-type quark couplings are not related via SU(2)L), so that couplings to first-generation quarks could be
avoided, which would relax LHC bounds and reduce the fine-tuning needed in Bs − B̄s mixing. However, as in
the previous case, flavour universality for diagonal couplings to quarks is needed to be able to make use of our
expressions for LK∗K̄∗ . Moreover, according to QCD factorisation, the dominant leading-order effect in LK∗K̄∗

originates from the term in O4s with down quarks in the bilinear summed over flavours. Therefore, (dominant)
right-handed couplings cannot be used to evade LHC bounds and still fine-tuning in Bs − B̄s mixing, like in the
case of left-handed couplings, is needed.

As indicated earlier, one could also try to explain LK∗K̄∗ with the Wilson coefficient of the chromomagnetic
operator O8gs. Here an effect of the order of the SM contribution is required. C8gs can only be generated at the
loop level and involves necessarily coloured particles for which strong LHC limits exist. Therefore, a value of the
order of the SM contribution can only be obtained thanks to chiral enhancement.

A simplified model fulfilling these requirements features two vector-like quarks, one SU(2)L doublet and one
SU(2)L singlet (with a large coupling λ to the SM Higgs doublet) and an additional neutral scalar particle [470].
In this setup, C8gs receives a contribution which scales like λ/(mb/v)× v2/M2 w.r.t. the SM, where M is the
NP scale. Inevitably an effect in C7γs is generated at the matching scale M which however has free sign and
magnitude as it depends on the (not necessarily quantized) electric charges of the new fermions and scalar inside
the loop. Therefore, the electric charges of the new particles can be chosen in such a way that in C7γs (at the mb

1Note that our model is only flavour universal with respect to four but not five flavours and does not fulfill the requirements of
Section 10.3. However, the effect of bottom quarks within the O4s operator in LK∗K̄∗ is O(αs)-suppressed within QCD factorisation
and thus the impact of our model on LK∗K̄∗ can be mimicked by a shift in C4s to a good approximation.
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scale) the NP contributions to C7γs and C8gs (taken at the matching scale) cancel. As we need a NP contribution
to C8gs of the order of the SM one, and C7γs at the low scale is known at the 5% level, a tuning of the order of
1/20 is necessary here.

Both simplified models allow for the possibility of a connection with the b→ s`+`− anomalies. On the one
hand, the KK gluon may be part of the particle spectrum of a composite/extra-dimensional model and is then
accompanied by a Z ′ boson. This could explain b→ s`+`− without violating LHC di-lepton bounds [471] due to
the large sb coupling of the Z ′ needed to explain LK∗K̄∗ , leading to NP contributions with the correct sign in
both types of anomalies. On the other hand, the model generating a large effect in C8g could easily be extended
by a vector-like lepton in order to account for b→ s`+`− [470].

10.5 Conclusions
We have analysed the non-leptonic penguin decays Bd → K∗0K̄∗0 and Bs → K∗0K̄∗0, where recent LHCb
results indicate striking differences in the longitudinal polarisation of these two modes. This is unexpected since
they are related by U -spin and should thus have a similar QCD and EW dynamics (up to tiny corrections due to
the down and strange quark masses).

We introduced the L-observable as a combination of polarisation fractions and branching ratios in order to
compare the longitudinal amplitudes in both modes, as they can be computed with better theoretical control in
a 1/mb expansion such as QCD factorisation. We exploited the fact that these penguin-mediated decays exhibit
very similar hadronic matrix elements for the “tree” and “penguin” contributions in the usual decomposition
based on CKM factors, so that these contributions are very strongly correlated. This means that the L-observable
is a measure of U -spin breaking between the penguin contributions to Bd and Bs decays, with a deviation
from the SM expectation between 2σ and 3σ depending on the specific theoretical framework considered. This
observation reinforces and puts on a firmer ground the hint for NP already suspected by considering the difference
between the longitudinal polarisation fractions in these two modes. We performed a detailed error budget
analysis for LK∗K̄∗ and we found a relatively small impact of infrared divergences coming from weak annihilation
and hard-spectator scattering, compared to observables like branching ratios or polarisation fractions involving
troublesome transverse amplitudes.

We then interpreted this deviation in a model-independent approach using the weak effective theory. For
simplicity, we allowed NP only in SM Wilson coefficients or their chirally-flipped counterparts. We identified
three operators which could accommodate the deviation with NP contributions at most as large as the SM.
While C1q is already very significantly constrained by other nonleptonic modes and LHCb bounds (up to the
point of excluding this solution), the situation is less constrained for the strong penguin coefficient C4q and the
chromomagnetic one Ceff

8gq where NP contributions of a similar size to the SM one are allowed and could explain
the deviation in LK∗K̄∗ . We discussed examples of simplified NP models that could provide large contributions,
at the price of accepting fine tuning to accommodate the bounds on Bs − B̄s mixing and b→ sγ. Interestingly,
within a general composite or extra-dimensional model [472], the Kaluza-Klein gluon contribution to the b→ s
amplitude in Bs → K∗0K̄∗0 has the same sign as the Z ′ contribution to b→ s`+`− w.r.t the SM. Therefore, if
one accepts the fine-tuning in Bs − B̄s mixing, such models can provide a common explanation of LK∗K̄∗ and
b→ s`+`− data.

This hint of NP in LK∗K̄∗ could be sharpened with a precise estimate of U -spin breaking in the form factors
involved, as they drive the theoretical uncertainty of the SM prediction and their correlation is not known
precisely. A comparison of the theoretical and experimental information on the polarisations in Bs → K∗φ and
Bd → K∗φ could also be valuable to check whether a similar tension arises. Complementary information could
be obtained also from pseudoscalar-vector and pseudoscalar-pseudoscalar penguin-mediated modes [158, 354,
451, 452] (K0K̄∗0 and K0K̄0). Moreover, if the same source of NP is responsible for the suppression of b→ sqq̄
versus b→ dqq̄ and b→ sµ+µ− versus b→ se+e−, it would be certainly interesting to perform a thorough study
of b→ d`+`− modes compared to b→ s`+`− ones, which should be accessible with more data from the LHCb
and Belle II experiments.
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Figure 10.4: 1σ and 2σ CL regions from LK∗K̄∗ allowing NP contributions to both C4s and C4d.
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Figure 10.5: 1σ intervals for the NP contribution to Wilson coefficients needed to explain LK∗K̄∗ , normalised to
their SM value.
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Appendices

10.A QCD factorisation for Bd,s → K̄∗0K∗0

As discussed in Section 2.8, QCD factorisation relies on the weak effective theory to compute non-leptonic
B-decay hadronic matrix elements, by performing a further separation of scales between mb and the typical
QCD scale, later reinterpreted in terms of a Soft-Collinear Effective Theory (SCET). Following Refs. [37, 139]
and using the same notation as in this reference, we have for the vector modes for a given polarisation:

T (B̄d → K̄∗0K∗0) = AK̄∗K∗ [αu4 − 1

2
αu4,EW + βu3 + βu4 − 1

2
βu3,EW − 1

2
βu4,EW ]

+AK∗K̄∗ [βu4 − 1

2
βu4,EW ] ,

P (B̄d → K̄∗0K∗0) = AK̄∗K∗ [αc4 −
1

2
αc4,EW + βc3 + βc4 −

1

2
βc3,EW − 1

2
βc4,EW ]

+AK∗K̄∗ [βc4 −
1

2
βc4,EW ] ,

T (B̄s → K̄∗0K∗0) = AK̄∗K∗ [βu4 − 1

2
βu4,EW ]

+AK∗K̄∗ [αu4 − 1

2
αu4,EW + βu3 + βu4 − 1

2
βu3,EW − 1

2
βu4,EW ] ,

P (B̄s → K̄∗0K∗0) = AK̄∗K∗ [βc4 −
1

2
βc4,EW ]

+AK∗K̄∗ [αc4 −
1

2
αc4,EW + βc3 + βc4 −

1

2
βc3,EW − 1

2
βc4,EW ] .

(10.46)

The coefficients α and β are a parametrisation of the different QCDF contributions. They correspond to a
convolution of the hard scattering kernels and the mesons DAs and form factors multiplied by the corresponding
Wilson coefficient. The contributions of the hard scattering kernels T Iij(u) and T IijI(ξ, u, v) (introduced in
Section 2.8), are contained in α and β respectively. The difference between αui and αci occurs from the O(αs)
penguin contractions in P p4 and P p6 , and specifically from the loops with u or c quarks and a W exchange
(so that these contributions come with factors αs/(4π) and Cc1). This comes from the fact that the effective
Hamiltonian has a specific structure in the SM: only two types of four-fermion operators Op1 and Op2 (p = u, c)
involve explicitly different λ(q)p , whereas the other operators treat all quarks on the same footing, they come
from top loops and are accompanied with a CKM term λ

(q)
t = −λ(q)u − λ

(q)
c leading to an identical contribution

to T and P .
As discussed in Refs. [354, 451, 452], this explains why the quantity ∆ defined in Eq. (10.3) can be computed

safely within QCD factorisation for penguin mediated decays because of the cancellation of long-distance
contributions. As a consequence of this cancellation, only penguin contractions contribute to ∆, as can be seen
by inspection of the formulae above, leading to the following very simple expression within QCD factorisation:

∆ = AQM1M2

CFαs
4πN

C1[ḠM2(m
2
c/m

2
b)− ḠM2(0)] , (10.47)

where the normalisation AQM1M2
is defined as:

AQM1M2
=
GF√
2
m2
Bq
fM2

ABq→M1(0) , (10.48)

and ḠM2 is the penguin function defined in Ref. [451].
10.B Semi-analytical expressions
In the following we provide the key elements to construct a semi-analytical expression of LK∗K̄∗ . Specifically we
give Ps and Pd in terms of Wilson coefficients and the parameters XH and XA. κ is given in Eq. (10.22) and
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Bd,s Distribution Amplitudes (at µ = 1 GeV) [473, 474]
λBd

[GeV] λBs
/λBd

σB
0.383± 0.153 1.19± 0.14 1.4± 0.4

K∗ Distribution Amplitudes (at µ = 2 GeV) [475]
αK

∗

1 αK
∗

1,⊥ αK
∗

2 αK
∗

2,⊥
0.02± 0.02 0.03± 0.03 0.08± 0.06 0.08± 0.06

Decay Constants (at µ = 2 GeV) [59, 278, 476]
fBd

fBs/fBd
fK∗ f⊥K∗/fK∗

0.190± 0.0013 1.209± 0.005 0.204± 0.007 0.712± 0.012

Bd,s → K∗ form factors [278] and B-meson lifetimes (ps)
ABs

0 (q2 = 0) ABd
0 (q2 = 0) τBd

τBs

0.314± 0.048 0.356± 0.046 1.519± 0.004 1.515± 0.004

Wolfenstein parameters [24]
A λ ρ̄ η̄

0.8235+0.0056
−0.0145 0.22484+0.00025

−0.00006 0.1569+0.0102
−0.0061 0.3499+0.0079

−0.0065

QCD scale and masses [GeV]
m̄b(m̄b) mb/mc mBd

mBs mK∗ ΛQCD

4.2 4.577± 0.008 5.280 5.367 0.892 0.225

SM Wilson Coefficients (at µ = 4.2 GeV)
C1 C2 C3 C4 C5 C6

1.082 -0.191 0.013 -0.036 0.009 -0.042
C7/αem C8/αem C9/αem C10/αem Ceff

7γ Ceff
8g

-0.011 0.058 -1.254 0.223 -0.318 -0.151

Table 10.A.1: Input parameters used to determine the SM predictions. The SM Wilson Coefficients are
compatibles with the NLO results of Ref. [86], whit only slight numerical differences. We insist on the fact that
the basis of Wilson coefficients in this chapter differs of the basis given in Section 2.4 by an exchange of C1s
and C2s in order to be compatible with the convention of Ref. [86]. The slightly different values for the SM
Wilson coefficients with respect to Table 2.1 comes from the different choice of renormalisation scale µ = 4.2GeV
and because in this chapter we omit NNLO corrections for simplicity, as we explicitly vary the scale µ when
performing the error budget.

the last bracket in Eq. (10.19) has a negligible impact and can be taken to be conservative 0.99± 0.01. We have
followed the corrected expression of Ref. [477] for the modelling of the weak annihilation in terms of XA.

107 × Pd = i0.076Ceff
7γ − i8.8Ceff

8g + ((2.6− i1.8) + i0.13XA − i0.041X2
A − i0.025XH)Cc1

+ ((−0.045 + i0.39)− i0.61XA + i0.16X2
A + i0.035XH)Cc2

+ ((15.5 + i38.9) + i0.31XA + i0.25X2
A + i3.8XH)C3

+ ((11.0 + i156.9) + i0.25XA + i0.96X2
A − i0.54XH)C4

+ ((−7.4− i7.2) + i9.2XA − i3.3X2
A + i0.11XH)C5

+ ((11.0− i19.9) + i27.7XA − 8.9X2
A + i0.24XH)C6

+ ((3.7 + i3.8)− i4.7XA + i1.7X2
A + i0.00042XH)C7

+ ((i6.9)− i15.7XA + i5.0X2
A − i0.008XH)C8

+ ((−6.4− i19.4)− i0.55XA − i0.041X2
A − i1.9XH)C9

+ (−i81.9− 1.4XA − i0.15X2
A + i0.32XH)C10 ,

(10.49)
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107 × Ps = i0.069Ceff
7γ − i8.0Ceff

8g + ((2.4− i1.7) + i0.16XA − i0.049X2
A − i0.026XH)Cc1

+ ((−0.041 + i0.45)− i0.74XA + i0.1X2
A + i0.037XH)Cc2

+ ((14.2 + i36.4) + i0.37XA + i0.3X2
A + i3.9XH)C3

+ ((10.0 + i142.7) + i0.31XA + i1.2X2
A − i0.56XH)C4

+ ((−6.7− i7.7) + i11.1XA − i3.9X2
A + i0.11XH)C5

+ ((10.0− i21.7) + i33.5XA − 10.8X2
A + i0.25XH)C6

+ ((3.4 + i4.0)− i5.7XA + i2.0X2
A + i0.00043XH)C7

+ ((i8.3)− i19.0XA + i6.0X2
A − i0.008XH)C8

+ ((−5.8− i18.1)− i0.66XA − i0.049X2
A − i2.0XH)C9

+ (−i74.3− 1.7XA − i0.18X2
A + i0.33XH)C10 .

(10.50)

10.C Sensitivity to New Physics
We show how NP contributions can help to reduce the tension between theory and experiment for LK∗K̄∗ ,
completing the results shown in Fig. 10.3 discussed in Section 10.3.
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Figure 10.C.1: Sensitivity of LK∗K̄∗ to individual contributions of NP in all different CNP
is . For each coefficient,

the range of variation considered for the NP contribution corresponds to 100% of its SM value.



Conclusion

In this manuscript we carefully discussed the flavour anomalies observed in the semileptonic b decays b→ s`+`−

and b → c`ν̄. We first introduced the necessary framework for this analysis, then we discussed the current
status of the experimental measurements and the related theoretical predictions with a brief explanation of
the overall framework and the hadronic inputs required for these predictions. Furthermore we analysed these
decays in the model-independent framework of Effective Field Theories (EFTs) which allowed us to constrain
the different potential New Physics (NP) scenarios that can be behind the deviations in the two kinds of decays.
Subsequently, we studied new observables and new modes that could be measured in the future for each of these
transitions. Finally, we discussed other related modes involving other quarks and/or leptons, which could be
expected to exhibit related deviations in simple NP models and which are worth investigating both theoretically
and experimentally.

We specially focused on the b→ s`+`− mode, in which deviations do not appear only in a single or a few
observables but as a set of coherent deviations. This showed the need of new modes and new observables to
further reinforce the conclusions of the current global analyses and to better constrain the EFT parameter space,
which is still unconstrained in several directions. Indeed we expect that different modes give new information,
either through different systematics that will allow to see the coherence of these flavour anomalies or through
different NP sensitivity that will help to better pinpoint the NP structure. We thus proposed the study of
the baryonic Λb → Λ∗`+`− mode leading to angular observables that we analysed in detail, assessing their
theoretical uncertainties, showing their sensitivity to right handed currents and discussing their measurement in
upcoming LHCb runs. Similarly, we proposed to perform a time-dependent analysis of Bd → KSµ

+µ−, with
additional observables probing interferences between mixing and decay. These observables are free from hadronic
contributions in the Standard Model (SM) and several NP scenarios and can strongly help to constrain the
CP-violating (complex) NP contributions to Wilson coefficients and in a smaller degree the scalar and tensor NP
currents. Due to the potential of b→ s`+`− transitions to open windows of the physics beyond the Standard
Model, it is clear that the determination and measurement of new observables will remain a topic of intense
discussion both experimentally and theoretically in the coming years, and we hope that Λb → Λ∗`+`− and
Bd → KSµ

+µ− (and similar Bs decays) will contribute to the field in a useful manner.
We then considered b→ c`ν̄ transitions. Using symmetries of its angular distribution, we provided relations

between the angular observables of the B → D∗`ν̄ decay that asses the presence of possible NP with tensor-like
couplings and at the same time test the coherence of the experimental measurements. We checked that even
binned observables must fulfil these very general relations. We expect that the results of Chapter 7 will be of
particular interest once the LHCb and Belle II experiments are able to analyse the B → D∗`ν̄ decays in more
detail. We then proposed a new method for the measurement of the inclusive Lepton Flavour Universality (LFU)
ratios R(X)τ` through the direct use of Υ(4S) decays. We showed that one can systematically suppress the
pollution induced by B− B̄ mixing by cutting on the time difference between the B-meson decays. We factorised
the different contributions from charm decays that can affect this measurement and estimate them to be either
smaller or of the same order of magnitude than the signal indicating that additional experimental cuts must
be applied and studied in detail. If they are efficient enough, this could provide an alternative, truly inclusive
determination of LFU in b→ c`ν̄, as opposed to the current one which relies on the sum of different exclusive
modes.

We finally looked at other modes that may be closely related to the semileptonic b → s`+`− mode as
illustrated by many NP models. On one side we studied how we can correlate the anomalies that we see in
the charged lepton mode b→ s`+`− with the neutrino modes b→ sνν̄ and s→ dνν̄ finding that under simple
and motivated assumptions on the New Physics flavour structure we can correlate these modes. Through these
correlation we can find bounds for the branching fractions of these modes that are currently being probed by
B-factories and Kaon experiments. Our results strengthen the case for more accurate measurements of b→ sνν̄
and s → dνν̄ modes, in order to determine which direction should be followed to develop viable NP models
describing the deviations in b→ sµ+µ− and providing a connection with other quark generations at the same
time. On the other side we studied the non-leptonic Bd(s) → K∗0K̄∗0 modes which present strong deviations
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from naive SU(3) expectations concerning their longitudinal polarisations. We introduced the LK∗K̄∗ observable,
protected from long-distance hadronic uncertainties and built using the longitudinal polarisation amplitudes
leading to a tension of 2.6σ with the experimental measurements. We could not easily explain this tension with
simplified NP models without significant fine tuning. The interplay between non-leptonic and semileptonic rare
decays could prove highly beneficial to identify new B-flavour anomalies and understand their actual origin in
terms of physics beyond the SM.

After these illustrations of various avenues to exploit the b-quark anomalies currently observed, it is worth
discussing problems that could become relevant in a near future. The question of the statistical significance
of the anomalies and their interpretation are still relatively open questions that might change the picture in
the next few years. It is important to clarify the criteria under which the SM hypothesis will be considered
statistically as unable to explain the data on the basis of indirect measurements as no clear consensus exist
on this subject at the moment. Other important step related to the statistical treatment might be the proper
inclusion of non-gaussianities and correlations in both experimental data and theoretical predictions, which are
often neglected nowadays but might become important as more precise data is available. Ideally, collaborations
should provide the full likelihood obtained through their measurements and the global fit analyses should be able
to take into account these elements of information as well as assess the impact of the treatment of systematic
uncertainties.

In the near future, new information should be available: LHCb will keep on taking data and exploring these
transitions, CMS is expected to explot their so called “parked data” soon and Belle II will provide new insight
on several modes, including b → s`+`− and b → c`ν̄ but also the neutrino modes b → sνν̄ with completely
different systematics in particular for LFU measurements due to its methods for lepton identification totally
different from the LHCb case. This additional data should be matched with an improvement in theoretical
uncertainties as the future experimental precision will require more precise determinations of form factors, a
better understanding of hadronic non-factorisable corrections and of electromagnetic corrections. Concerning
the form factors we can expect new and more precise theoretical predictions from Lattice QCD, which continue
to evolve due to the growth of computational power. Additionally a better understanding of the systematics of
Light Cone Sum Rules, which are far from being as well understood as the uncertainties in Lattice QCD, will be
required. Furthermore, the charm loop contributions need to still be studied in further detail, an improvement
in the computation of this effect is essential to reduce its uncertainties and assess more precisely the systematics
attached to the computations : this is a question for the computation using light-cone sum rules, but also for the
models used to extrapolate or interpolate the results obtained in the large-recoil region to the whole q2 range.

In the years to come this new experimental and theoretical information should provide a better understanding
of the anomalies, for instance, excluding some of the NP scenarios currently allowed by the data and providing
constraints on complex CP-violating NP contributions. Presumably, we should see a better connection with
specific NP models that can explain these anomalies, which are constrained by direct searches from LHC and can
lead to connections with other modes involving up-type quark decays and Flavour Changing Neutral Currents
into τ leptons, allowing us to close in on the nature of these deviations. Potential links with other flavour
anomalies (like (g − 2)µ or |Vud|) should also be very active research fields, using specific models or in EFT
approaches. The inclusion of these related new modes requires the use of a broader framework than the Weak
Effective Theory, namely the treatment in the Standard Model Effective Field Theory framework. This long-term
effort of both experimental and theoretical communities will hopefully help us to understand better the true
nature of these tantalising deviations, with the hope to identify the next step to take, beyond the Standard
Model, and thus to determine the New Physics behind the b-quark anomalies.
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Résumé en français

La situation actuelle de la physique des particules est assez particulière. Depuis des nombreuses années, les
expérimentateurs sont à l’affût de ce qui pourrait être la prochaine étape dans la détermination des constituants
fondamentaux de la matière et de leurs interactions. Cette recherche de l’étape suivante s’est faite en ayant
certaines directives de l’expérience sur ce qu’il faut chercher (en termes d’énergie et de processus), car les
phénomènes observés n’étaient pas bien expliqués avec les particules et les interactions déjà connues. C’était le
cas, par exemple, de la diffusion inélastique profonde, qui a permis de sonder la théorie des interactions fortes et
de confirmer l’existence physique des quarks et des gluons, que l’on a ensuite recherchés dans les événements de
jet des collisions e+e−. De même, les courants neutres changeant de saveur (FCNC) ont fourni un test pour
la structure des interactions électrofaibles et une indication pour les bosons vectoriels qui ont été, plus tard,
recherchés par production directe dans les collisions pp̄. Cependant, depuis la découverte du boson de Higgs en
2012, le modèle standard (SM) est désormais “complet”, c’est-à-dire qu’il est très bien compris et bien testé à
toutes les échelles et dans tous les secteurs, ce qui rend la prochaine étape peu claire.

Plusieurs raisons nous amènent à penser que le SM n’est pas la réponse finale, la plus évidente étant que la
gravité ne s’explique pas par lui et qu’il n’est pas facile de la réconcilier avec lui. Cela implique l’effondrement
du SM et de la relativité générale, au moins lorsque des énergies proches de la masse de Planck sont atteintes.
Cependant, il existe plusieurs problèmes plus subtils du SM et des indices de Nouvelle Physique (NP) qui
suggèrent que nous pouvons nous attendre à trouver de nouvelles particules à une échelle inférieure. Par exemple,
certains de ces indices sont liés aux observations astrophysiques et cosmologiques, qui suggèrent l’existence de la
matière noire sans laquelle la formation et la dynamique des structures à grande échelle (galaxies, amas) ne
peuvent être expliquées de manière satisfaisante. De plus, de nouvelles sources de violation de CP sont nécessaires
pour atteindre l’asymétrie des baryons nécessaire pour expliquer les données cosmologiques qui est beaucoup
plus grande que celle prédite par le SM. En outre, si aucune nouvelle particule n’est présente à proximité de
l’échelle électrofaible, des niveaux élevés de réglage fin sont nécessaires pour expliquer la masse du boson de
Higgs, ce que l’on appelle souvent le problème de la hiérarchie.

Malheureusement, aucune nouvelle particule n’a encore été découverte par recherche directe au Grand
collisionneur de hadrons, ce qui indique que l’énergie de ces nouvelles particules pourrait être trop élevée ou
que leurs couplages aux particules SM sont trop faibles pour être détectés par les expériences actuelles. En
outre, ces particules devraient en principe apparaître dans les recherches indirectes si celles-ci sont suffisamment
précises, car elles induiraient des corrections quantiques aux prédictions SM de nombreux processus. En fait, les
recherches indirectes à des énergies plus basses ont prédit dans le passé l’existence de particules plus lourdes, par
exemple, le quark charmé a été prédit par le mécanisme de Glashow-Iliopoulos-Maiani dans le mélange de kaons,
et la masse du quark top a également été limitée par le mélange B − B̄.

La prochaine étape peut être difficile à identifier actuellement, mais il existe quelques indices expérimentaux
qui méritent d’être pris en compte. C’est notamment le cas des anomalies dites du quark b (ou anomalies de
saveur) qui constituent l’une des rares déviations des prédictions du SM qui aient été observées. Ces anomalies,
qui affectent deux transitions différentes, b→ c`ν̄ et b→ s`+`−, ont commencé avec la mesure d’un excès dans
le rapport de branchement B → D∗τ ν̄ par BaBar en 2012 et avec la mesure de déviations dans les observables
angulaires de B → K∗µ+µ− par LHCb en 2013, déclenchant depuis lors une activité intense à la fois dans la
communauté théorique et dans plusieurs collaborations expérimentales. Aujourd’hui, ces déviations apparaissent
dans une série d’observables mesurées à la fois dans les usines à B, Belle et BaBar, et dans les expériences du
Large Hadron Collider, LHCb, CMS et ATLAS, montrant des déviations assez cohérentes dans les désintégrations
semi-leptoniques du quark b.

Cadre théorique
Dans la première partie du manuscrit, nous présentons les principaux concepts et outils nécessaires à la description
des désintégrations semi-leptoniques du quark b. Nous commençons par décrire le SM et discutons de la rupture de
la symétrie électrofaible et de ses conséquences. L’une des conséquences de la rupture de la symétrie électrofaible
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est le mélange entre les différentes générations qui sont à l’origine des courants dits de changement de saveur.
Dans le cas des courants chargés, nous discutons brièvement de la structure et de l’impact des matrices de mélange
de générations, en nous concentrant sur la matrice de mélange des quarks de Cabibbo-Kobayashi-Maskawa qui
est bien contrainte par divers tests expérimentaux. Dans le cas des courants neutres, nous verrons qu’il n’y a pas
de mélange entre les générations dans le SM et qu’ils sont générés uniquement au niveau de boucle. Cela indique
que les deux transitions sont des tests intéressants du SM.

Nous discutons ensuite du potentiel de ces courants en tant que sondes NP et tests du SM, qui est au
centre du manuscrit. Nous discutons des détails importants de la QCD et de ses éléments non perturbatifs, qui
jouent un rôle important dans l’étude des courants à changement de saveur. Cela indique que les transitions
de changement de saveur impliquant à la fois les quarks et les leptons peuvent fournir un environnement très
intéressant pour tester le SM, car elles peuvent être testées dans divers environnements hadroniques avec un
contrôle théorique raisonnable des effets non perturbatifs de la QCD. De plus, l’universalité des couplages dans
le SM peut être sondée en particulier par des tests de l’universalité de la saveur des leptons. Nous établissons
ensuite le cadre théorique pour étudier les courants de changement de saveur dans les désintégrations des
hadrons lourds. Ces désintégrations sont assez complexes car elles impliquent à la fois l’interaction électrofaible
et la chromodynamique quantique qui nécessitent des traitements différents. Cette complexité nécessite une
séparation des différentes échelles d’énergie du problème. Cela nécessite une factorisation de ces processus et
l’introduction de plusieurs théories de champ effectives grâce auxquelles nous sommes en mesure de comprendre
ces désintégrations. Cette approche effective permet en outre une approche indépendante du modèle pour les
analyses NP, ce qui est fondamental pour l’étude des anomalies de saveur.

Anomalies de saveur
Dans la partie suivante de ce manuscrit, nous discutons en détail des anomalies de saveur actuelles : les
différentes observables qui peuvent être mesurées, leurs principales incertitudes théoriques, et leurs déterminations
expérimentales actuelles. Les anomalies de saveur observées dans les désintégrations semi-leptoniques des mésons
B constituent l’un des indices les plus prometteurs de NP découverts au LHC et dans les usines à B. Les plus
robustes de ces déviations se situent dans les rapports d’universalité de la saveur des leptons, RD(∗) qui compare
le rapport de branchement de B → D(∗)`ν̄ pour le lepton τ et les leptons légers et RK(∗) qui compare le rapport
de branchement de B → K(∗)`+`− pour les muons et les électrons, présentant des tensions de plus de 3σ des
deux côtés. D’autres déviations ont été observées pour les rapports de branchement et les observables angulaires
de plusieurs modes de désintégration avec une sensibilité différente à la NP, ce qui conduit à une image globale
de NP violant la saveur du lepton affectant ces désintégrations.

Nous présentons ensuite une analyse globale des données expérimentales des transitions b→ s`+`− et des
anomalies dites b en termes de la théorie effective faible (WET). Nous discutons les différents éléments entrant
dans les prédictions théoriques pour les modes considérés et la procédure utilisée pour évaluer les différentes
hypothèses de NP et contraindre leurs paramètres, c’est-à-dire les contributions de NP aux coefficients de Wilson
de la WET.

Nos résultats montrent que la NP peut expliquer les anomalies b→ s`+`−, où les contributions de NP aux
coefficients de Wilson du mode muon sont nécessaires pour expliquer les données. Les contributions universelles
à la saveur lepton (ou les contributions de NP dans le mode électron), bien que non requises, sont autorisées.

En outre, plusieurs scénarios peuvent expliquer les données, etant

CNP
9µ , CNP

9µ = −CNP
10µ, (CNP

9µ , CNP
9′µ = −CNP

10µ) et (CV9 = −CV10, CU9µ)

les plus favorisés. Une caractéristique commune de ces scénarios est la présence dans tous d’une contribution de
NP significative à CNP

9µ (environ 1/4 de la contribution SM).
Des analyses globales ont également été réalisées dans le cas de la transition b → c`ν̄. Les deux analyses

globales montrent une cohérence entre les différentes observables étudiées et une tendance suggérant la présence
d’une nouvelle physique violant l’universalité de la saveur du lepton avec des couplages de type vectoriel,
cependant les contraintes actuelles ne sont pas suffisantes pour déterminer la nature de la NP qui pourrait être à
l’origine de ces anomalies. Dans le cas de b→ c`ν̄, seulement quelques mesures expérimentales sont disponibles,
ce qui rend difficile la détermination de la nature de la NP en jeu. Dans le cas de b → s`+`−, davantage de
mesures expérimentales sont disponibles, mais les prédictions théoriques souffrent d’incertitudes légèrement plus
importantes. De plus, les phases complexes des coefficients de Wilson décrivant la transition b→ s`+`− ne sont
pas encore bien contraintes.

Il est donc particulièrement important de sonder ces transitions (à la fois b → c`ν̄ et b → s`+`−) avec
une plus grande précision expérimentale et théorique, mais aussi de fournir de nouveaux modes et observables
contraignant les scénarios de NP de différentes manières. Nous discutons ensuite des modèles spécifiques de
NP qui pourraient être à la source des anomalies de quark b, en constatant que des modèles simples peuvent
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expliquer chacune de ces anomalies. En fait, certains modèles simplifiés qui peuvent expliquer ces anomalies
(séparément ou ensemble), incluent généralement de nouveaux bosons vectoriels, des leptoquarks scalaires ou des
leptoquarks vectoriels. Ces modèles simplifiés nécessitent toutefois d’être intégrés dans un modèle plus large,
complet dans l’ultraviolet, ce qui ouvre la possibilité d’explorer expérimentalement un nouveau secteur.

Nouveaux tests de la physique à l’oeuvre dans b → s`+`−

L’idéal serait de pouvoir démêler les différents scénarios de NP afin de trouver une solution de NP unique.
Cependant, les données actuelles ne nous permettent pas encore de démêler tous les scénarios possibles, en partie
parce que les observables les plus précises sont sensibles aux mêmes combinaisons de coefficients de Wilson et que
les observables qui pourraient démêler cela ne sont pas encore assez précises. L’étude de nouvelles observables et
la mesure d’observables déjà proposées qui n’ont pas encore été mesurées pourraient améliorer la situation. Nous
discutons les différentes observables qui peuvent aider à ce démêlage de NP étant P ′

5, Q′
5 et RK complémentaires

dans cette tâche dans le cas de coefficients de Wilson réels.
Il est clair que des modes et des observables supplémentaires seraient utiles pour progresser dans ce domaine.

D’une part, les modes baryoniques ne sont pas très représentés bien qu’ils soient accessibles à LHCb. D’autres
observables seraient également nécessaires pour étudier correctement la possibilité de coefficients de Wilson
complexes. En effet, les parties imaginaires des coefficients de Wilson ne sont encore que faiblement contraintes,
donc la mesure de nouvelles observables pour contraindre ces phases complexes est fondamentale pour comprendre
la structure de NP qui pourrait être derrière les anomalies de saveur.

Par conséquent, nous présentons de nouveaux repères pour étudier la transition b→ s`+`−, à la fois dans le
mode actuellement mesuré B → K`+`− par une analyse en fonction du temps qui repose sur le mélange B − B̄
et K − K̄ et dans le nouveau mode baryonique Λb → Λ∗`+`− par une analyse angulaire complète de ce mode.
Ces résultats fournissent des observables intéressants qui pourraient contraindre la structure complexe des NP
possibles derrière les anomalies.

Analyse angulaire de Λb → Λ∗(→ pK)`+`−

Les modèles persistants d’écarts par rapport aux attentes du SM dans les désintégrations b → sµ+µ− et les
indices de violation de l’universalité des saveurs leptoniques entre les électrons et les muons dans ces modes
incitent fortement à chercher des confirmations en utilisant d’autres modes avec des incertitudes théoriques et
expérimentales différentes. Nous étudions la désintégration rare Λb → Λ∗(→ NK̄)`+`− comme une nouvelle
source d’information, en plus des canaux mésoniques déjà étudiés dans les usines à B et au LHC. Nous donnons
une description détaillée de la cinématique de la désintégration et mettons l’accent sur les questions liées à la
propagation et à la désintégration forte du baryon Λ∗ de spin 3/2. Nous calculons le taux de désintégration dans
le cadre de l’approche hamiltonienne effective, en ne considérant que les opérateurs SM et à chiralité inversée, en
prenant l’approximation de largeur étroite pour le baryon Λ∗. L’implication des états de spin 1/2 et de spin
3/2 donne un taux de désintégration différentiel assez compliqué qui est exprimé en termes de 12 observables
angulaires qui dépendent de la masse invariante du dilepton q2. Chaque observable peut être considérée comme
la somme des termes d’interférence entre 12 amplitudes d’hélicité, qui peuvent être exprimées en termes de
coefficients de Wilson à courte distance et de facteurs de forme de transition hadronique définis dans une base
d’hélicité. Nous vérifions que notre résultat est en accord avec les attentes générales du formalisme de l’amplitude
d’hélicité, et nous vérifions également que nos expressions présentent le comportement attendu dans la limite de
photons réels q2 → 0 afin de récupérer le rapport de branchement pour Λb → Λ∗γ.

Nous discutons des simplifications qui apparaissent dans la limite d’un quark b infiniment lourd : en fonction
de la cinématique (faible ou grand recul de Λ∗, c’est-à-dire grand ou petit q2), la théorie effective du quark lourd
(HQET) et la théorie effective molle et colinéaire (SCET) peuvent être utilisées pour exprimer tous les facteurs
de forme en termes de facteurs de forme réduits 2 ou 1 à l’ordre principal (c’est-à-dire jusqu’à des corrections
d’ordre αs et ΛQCD/mb). Comme il n’y a actuellement aucune détermination des facteurs de forme sur tout
l’ensemble des valeurs de q2 disponible à partir de simulations sur reseaux ou de règles de somme sur le cône
de lumière, nous effectuons une première illustration de la sensibilité des observables aux contributions NP en
utilisant des entrées hadroniques provenant de modèles de quark. Nous considérons plusieurs scénarios NP
favorisés par les anomalies observées récemment dans les modes de désintégration b→ s`+`− et nous comparons
les résultats obtenus en utilisant l’ensemble des facteurs de forme ou en exploitant les relations HQET/SCET
entre les facteurs de forme. Nous discutons des conséquences phénoménologiques pour certaines observables.
Nous avons remarqué que le taux de désintégration différentiel est assez sensible au scénario NP spécifique
considéré, à la fois pour les faibles et les grands reculs. D’autre part, les coefficients angulaires normalisés à ce
taux de désintégration montrent moins de variations. En effet, dans le cas de scénarios NP avec des contributions
modérées à CNP

9µ et/ou CNP
10µ, les quatre amplitudes numériquement significatives (AL⊥,||) sont dominées par une
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seule combinaison de coefficients de Wilson qui s’annulent entre le numérateur et le dénominateur des coefficients
angulaires S normalisés par rapport au rapport de branchement. Dans la région de grand recul, l’interférence
avec le pôle du photon permet une certaine discrimination entre les scénarios NP pour certaines des observables.
D’autre part, ces coefficients angulaires s’avèrent assez sensibles à la présence de contributions droites CNP

9′µ qui
affectent différemment les diverses amplitudes de transversalité dominantes.

Nous présentons ensuite les perspectives d’analyses angulaires des désintégrations Λb → Λ∗`+`−, motivées en
particulier par les résultats récents sur l’universalité de la saveur leptonique dans Λb → pK−`+`− au LHCb.
En utilisant le rendement attendu des données qui seront collectées par l’expérience LHCb dans un avenir
proche, nous présentons des études de sensibilité afin de déterminer la précision expérimentale sur les observables
angulaires liées à la distribution leptonique et leur potentiel d’identification des NP. Nous étudions l’impact des
effets d’acceptation sur l’extraction de ces observables angulaires en utilisant les données LHCb publiées ainsi que
le logiciel de simulation rapide RapidSim. L’asymétrie avant-arrière des leptons A`FB semble particulièrement
prometteuse : en fonction des progrès réalisés dans la réduction des incertitudes sur les prédictions de la théorie,
à un moment donné entre le Run 3 et le Upgrade 2, on pourrait utiliser cette observable à faible masse invariante
des dileptons pour distinguer entre le SM et un scénario avec des contributions NP à CNP

9µ soutenu par les données
actuelles de b → s`+`−. Nous avons vérifié que nos conclusions n’étaient pas biaisées par les simplifications
importantes de la distribution angulaire que nous avons proposées sur la base de la limite des quarks lourds et
soutenues par les estimations phénoménologiques. La distribution angulaire se factorise alors en un produit de
deux termes, à savoir une dépendance triviale de l’angle décrivant l’état final hadronique et une dépendance
non triviale de l’angle décrivant l’état final leptonique. Les trois observables peuvent être réexprimées comme le
rapport de branchement, l’asymétrie avant-arrière des leptons et une troisième observable angulaire S1cc. Les
deux premières observables présentent une certaine sensibilité aux contributions des NP au coefficient de Wilson
à courte distance CNP

9µ pour les transitions b→ sµ+µ−.
Les futures informations expérimentales sur ces observables pourraient donc fournir des informations complé-

mentaires à la recherche en cours de nouvelle physique pour les transitions b→ s`+`−. Cependant, plusieurs
questions doivent être résolues avant que ce mode puisse être comparé de manière compétitive aux désintégra-
tions B → K(∗)`+`− et même Λb → Λ(→ Nπ)`+`−. En effet, la détermination théorique des contributions
hadroniques, locales (facteurs de forme) et non-locales (boucles de charme) doit être effectuée avec précision. En
principe, on pourrait également exploiter la polarisation de l’état initial et de l’état final pour construire d’autres
observables, de manière similaire aux etudes realisés sur la transition Λb → Λ`+`−. Ces aspects devraient
être étudiés et résolus (partiellement ou totalement) à l’avenir. Cela ouvrirait la possibilité d’une étude de
Λb → Λ∗(→ NK̄)`+`− au LHC qui pourrait compléter d’autres modes dans la quête actuelle de NP dans les
transitions b→ s`+`−.

Analyse angulaire en fonction du temps de Bd → KS`
+`−

Une façon intéressante de sonder davantage les transitions b→ sµ+µ− consiste à utiliser le mélange de mésons
neutres et l’analyse en fonction du temps afin de définir de nouvelles observables pour les désintégrations Bd et
Bs. Ceci a déjà été appliqué à Bd → K∗µµ et Bs → φµµ dans le passé. Nous considérons la même idée dans le
cas plus simple de Bd → KSµµ. Le mode chargé B± → K±µµ a une structure angulaire beaucoup plus simple,
avec seulement trois observables qui fournissent des contraintes intéressantes mais limitées sur les contributions
scalaires et tensorielles. Les entrées hadroniques (facteurs de forme et contributions de la boucle de charme) sont
également beaucoup plus simples à manipuler et à analyser. Nous avons discuté des avantages d’une analyse
angulaire en fonction du temps de ce mode.

Après avoir rappelé le formalisme en l’absence de mélange (cas chargé), nous nous sommes intéressés au cas
neutre. Cela a nécessité une définition minutieuse de la cinématique du mode pour connecter les désintégrations
CP-conjuguées qui sont maintenant liées par le mélange de B − B̄. Une analyse angulaire dépendant du temps
conduit à 6 nouvelles observables, mesurant la violation de CP dans l’interférence entre la désintégration et le
mélange. Trois de ces observables, notées s0,1,2, semblent plutôt prometteuses, et elles peuvent également être
obtenues à partir d’observables angulaires intégrées dans le temps en comparant les modes neutres et chargés
dans les machines hadroniques si le étiquetage de la saveur de l’état initial est disponible. Ces 3 observables
s0,1,2 ont des expressions simples en termes d’amplitudes de transversalité. Elles peuvent être combinées avec les
observables angulaires habituelles pour B → K`+`− pour obtenir les observables σ0,1,2, ρ2 et RS,Tt,W .

De manière très intéressante, nous montrons que σ0 et ρ2 sont très précisément connus dans le SM et dans
les scénarios de NP avec des contributions réelles aux opérateurs SM et chiralement retournés. Ils ne dépendent
que de l’angle de mélange Bd, c’est-à-dire de l’angle CKM β, et ils sont valables pour toute valeur de la masse
invariante du dilepton q2. Nous soulignons que ces prédictions sont très robustes, car elles sont valables quelles
que soient les hypothèses sur les facteurs de forme et les contributions de la boucle de charme. Par conséquent,
elles constituent des tests très puissantes des scénarios NP actuellement favorisés par les ajustements globaux
aux données de la transition b→ s`+`−.
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Nous étudions ensuite deux cas de NP où ces prédictions sont modifiées. Nous montrons que RS , RT et RW
peuvent sonder d’autres scénarios NP, à savoir des opérateurs scalaires et tenseurs (avec des contributions réelles)
et des contributions NP complexes entrant avec une phase CP-impair “faible”. La sensibilité de ces observables à
chaque scénario est différente, et les incertitudes théoriques attachées aux prédictions théoriques sont faibles, ce
qui nous permet de fournir une référence des scénarios NP reposant sur les mesures de s0,1,2. Nous discutons
également brièvement de modes de désintégration Bs similaires tels que Bs → f0µµ, Bs → ηµ et Bs → η′µ.

En conclusion, la simplicité de la désintégration sous-jacente B → Kµµ nous a permis de fournir une
analyse détaillée de l’analyse en fonction du temps de Bd → KSµµ avec étiquetage de la saveur. Ces nouvelles
observables fournissent de puissantes vérifications croisées des différentes hypothèses de NP. Elles peuvent
également contribuer de manière utile aux ajustements globaux de b→ s`+`−, en fournissant des contraintes
d’un type différent sur la physique à courte distance encodée dans les coefficients de Wilson.

Nouveaux tests de la physique à l’oeuvre dans b → c`ν̄

Nous présentons également de nouveaux repères pour étudier la transition b→ c`ν̄. Dans le premier cas, nous
considérons la distribution angulaire de B → D∗`ν̄ et nous proposons des verifications intéressantes des mesures
expérimentales des observables angulaires et différentes manières de sonder la NP en s’appuyant sur les symétries
de la distribution angulaire. Dans le deuxième cas, nous fournissons de nouveaux moyens de sonder les rapports
inclusifs d’universalité de la saveur des leptons R(X)τ` par l’utilisation directe des désintégrations du meson
Υ(4S), ce qui, contrairement aux méthodes précédentes, se fait par une méthode véritablement inclusive.

Symétries dans les observables angulaires de B → D∗`ν̄

Nous appliquons le formalisme des symétries d’amplitude de la distribution angulaire des désintégrations
B → D∗`ν pour ` = e, µ, τ . Nous montrons que l’ensemble des observables angulaires utilisées pour décrire la
distribution de cette classe de désintégrations ne sont pas indépendantes en l’absence de NP contribuant aux
opérateurs tensoriels. Nous dérivons des ensembles de relations entre les coefficients angulaires de la distribution
des désintégrations pour les cas de leptons massifs et non massifs. Ces relations peuvent être utilisées pour
sonder d’une manière très générale la cohérence entre les observables angulaires et la NP sous-jacente à l’oeuvre,
et en particulier si elle implique des opérateurs tenseurs ou non.

Nous utilisons ensuite ces relations pour accéder à la fraction de polarisation longitudinale intégrée du D∗ en
utilisant des coefficients angulaires différents de ceux utilisés par l’expérience Belle. Dans un futur proche, cela
peut fournir une mesure équivalente à FD∗

L pour B → D∗τν afin de comprendre la valeur relativement élevée
mesurée par Belle. Nous présentons des expressions pour le cas massif et sans masse qui couvrent le scénario le
plus général de NP incluant également les pseudoscalaires et les contributions imaginaires, avec la seule exception
des contributions tensorielles.

Nous étudions ensuite la précision de ces expressions si seules des observables binées sont disponibles, ou si
elles sont utilisées dans le cas de scénarios dépassant les hypothèses faites dans leur dérivation (contributions
imaginaires, contributions tensorielles). Nous utilisons plusieurs points de référence correspondant aux points les
mieux ajustés des ajustements globaux aux observables b→ cτν, en nous appuyant sur un modèle simple de quark
pour les facteurs de forme hadroniques pour cette étude exploratoire. Les expressions dérivées sous l’hypothèse
de l’absence de contributions imaginaires NP et de contributions tensorielles fonctionnent très bien, même dans
l’approximation binée. Elles sont très précises même en présence de contributions NP imaginaires. Comme
prévu, leurs généralisations, dérivées en supposant la présence de contributions imaginaires, se comportent très
bien également dans l’approximation binée. Toutes les relations échouent en présence de grandes contributions
tensorielles, où aucune dépendance ne peut être trouvée parmi les observables angulaires.

En plus de présenter les expressions les plus générales de FD∗

L dans le cas massif et sans masse, nous dérivons
également une relation entre les observables (Ã3,9,6s et FD∗

L ) qui sont potentiellement intéressantes du point
de vue de la NP si la déviation de FD∗

L est confirmée. Avoir des prédictions spécifiques de construction de
modèle pour ces observables serait très intéressant. Nous discutons également de l’impact de la présence de
neutrinos légers droitiers. Nous montrons que nous pouvons tester leur présence dans certains cas spécifiques sous
l’hypothèse qu’il n’y a pas de contributions tensorielles ou imaginaires, en comparant nos deux déterminations
de FD∗

L . De plus, sous cette hypothèse, le signe de la différence entre les deux déterminations est fixé.
En utilisant des projections récentes sur les perspectives expérimentales pour les mesures des observables

angulaires, nous trouvons que ces relations pourraient être vérifiées avec une précision de 10% dans le scénario
d’un collisionneur de hadrons de 50 fb−1, ce qui serait suffisant pour repérer un scénario avec des contributions
tensorielles et fournirait une contre-vérification intéressante de la détermination des observables angulaires.

Ces mesures supplémentaires nécessaires pour cette extraction rendent évidemment cette détermination plus
difficile expérimentalement, mais elles peuvent aider à coincer le type de NP responsable de cette valeur élevée
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ou à comprendre le problème expérimental responsable de cette valeur inattendue de la polarisation du D∗.

Tester l’universalité des saveurs de lepton avec les désintégrations du meson Υ(4S)

En nous appuyant sur les propriétés spécifiques des usines à B et en particulier sur l’expérience Belle II, nous
proposons de comparer les taux inclusifs de Υ(4S) → e±µ∓X, Υ(4S) → µ±τ∓hadX et Υ(4S) → e±τ∓hadX. Cette
mesure inclusive peut être reliée au rapport R(X)τ` ≡ Γ(b→ Xτν)/Γ(b→ X`ν) (` = e ou µ), une fois que les
coupures expérimentales appropriées sont appliquées pour supprimer les effets du mélange de B neutre et des
leptons émis par les désintégrations FCNC (semileptoniques) rares de B, ainsi que les désintégrations secondaires
du charmonium, du charme et du tau. La faisabilité de notre proposition suppose de manière cruciale que les
leptons tau à désintégration hadronique provenant des sommets de désintégration B peuvent être efficacement
démêlés du bruit de fond (par exemple, des désintégrations B hadroniques impliquant trois pions chargés ou plus)
à Belle II. Une étude expérimentale dédiée à ce sujet dépasse toutefois le cadre de ce travail. Il est remarquable
que cette détermination alternative de R(X)τ` soit une détermination réellement inclusive, contrairement à la
détermination actuelle qui correspond à une somme de différents modes exclusifs.

Nous nous sommes concentrés sur le cas de RΥ(4S)
τµ ' R(X)τµ, mais notre discussion s’applique tout aussi

bien à la combinaison tau-électron, en intervertissant les rôles joués par les électrons et les muons. Les déviations
actuelles de B → D∗`ν et de B → D`ν lorsque les canaux τ sont comparés aux modes électroniques ou muoniques
sont de l’ordre de 10% (pour les rapports LFU des rapports de branchement) et fournissent un point de référence
pour la sensibilité cible de notre proposition. Ceci est illustré par le cas très simple où la NP imite la structure
V − A des courants b → cτν dans le SM, conduisant à une remise à l’échelle universelle de tous les rapports
de branchement b→ cτν qui aurait donc un impact sur les rapports inclusifs R(X)τ` de la même manière que
les mesures exclusives pour RD et R∗

D. Il est intéressant de noter que l’approche théorique et l’environnement
expérimental sont assez différents dans les mesures exclusives et inclusives, et notre proposition pourrait fournir
des contre-vérifications très intéressantes des déviations actuellement observées dans les désintégrations exclusives.

Compte tenu de nos estimations les incertitudes systématiques dans la détermination de R(X)τ` à partir
d’une mesure de RΥ(4S)

τ` pourraient être ramenées en dessous d’une valeur donnée (εsys) à condition que (1) les
coupures sur la différence de paramètre d’impact B − B̄ peuvent supprimer les effets de mélange des mésons
neutres B en dessous de εsys, combinés à une ID de charge leptonique efficace pour supprimer la contamination
par désintégration semi-leptonique du charme; (2a) les leptons multiples provenant de la même chaîne de
désintégration B peuvent être supprimés à un niveau supérieur à εsys ou alternativement (2b) les leptons
provenant des sommets secondaires (désintégration B) peuvent être distingués de ceux provenant des chaînes
de désintégration inférieures à un niveau à peu près supérieur à εsys. D’autres études expérimentales dédiées
sont nécessaires pour établir la précision réellement atteignable par Belle II. Si cette mesure s’avère possible
et précise, on pourrait imaginer utiliser les mêmes techniques OPE que dans le cas du SM pour déterminer la
sensibilité des rapports R(X)τ` au NP et contraindre les opérateurs NP à l’aide de cette mesure inclusive.

En résumé, nous avons proposé une nouvelle méthode pour tester les indices persistants de violation du LFU
observés dans les désintégrations semi-leptoniques de B. Cette mesure constituerait une sonde supplémentaire et
potentiellement compétitive des violations de l’universalité de la saveur leptonique dans les transitions b→ c`ν,
complémentaire aux mesures exclusives et accessible dans l’environnement Belle II.

Autres modes associés
Dans la dernière partie de ce manuscrit, nous discutons des connexions possibles des anomalies du quark b avec
d’autres modes étroitement liés sous des hypothèses assez générales, à savoir les modes de neutrino b→ sνν̄ et
s→ dνν̄ ; et le mode non-leptonique Bd(s) → K∗0K̄∗0. Dans le premier cas, nous obtenons des limites pour ces
modes grâce à des principes simples de violation minimale de la saveur (MFV) et, dans le second, nous trouvons
une nouvelle anomalie potentielle dans les modes hadroniques.

Implications des anomalies de saveur dans B → K(∗)νν̄ et K → πνν̄

Nous étudions les conséquences des déviations du SM observées dans les transitions b→ sµ+µ− pour les processus
FCNC impliquant des quarks et des neutrinos de type down. Motivés par les résultats des ajustements globaux
aux observables b → sµ+µ− ainsi que par les mesures et les limites des processus FCNC avec des neutrinos,
nous considérons une description EFT générale des transitions FCNC en termes d’opérateurs invariants de jauge
SU(2)L, y compris ceux avec des quarks droitiers et des leptons chargés. Cela nous permet de décrire avec les
mêmes coefficients de Wilson à courte distance b→ sµ+µ−, b→ sνν̄ et s→ dνν̄.

Nous abordons brièvement le statut de KL → π0νν et sa corrélation avec K+ → π+νν, qui est seulement
modifié par la NP si elle comporte des nouvelles sources de violation de CP, ce qui nécessite une nouvelle
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dynamique des saveurs au-delà de MFV. Dans ce cas, il n’y a pas de corrélation claire avec les autres modes
FCNC discutés ici. En supposant MFV dans le secteur des quarks, nous étudions la corrélation entre les rapports
de branchement pour B → hsνν̄ et K+ → π+νν̄. Une telle corrélation est déjà présente sans supposer une
structure définie pour les couplages NP des neutrinos, mais elle peut être rendue encore plus précise une fois que
des scénarios NP particuliers attribuent des valeurs spécifiques à ces couplages.

Au-delà de la limite MFV, nous étudions la corrélation entre B → Kνν̄ et B → K∗νν̄, en montrant
notamment que, selon les couplages leptoniques NP, le scénario avec NP dans (Cµ,NP

9 , Cµ,NP
9′ ) peut donner une

corrélation étroite entre les deux modes lorsque les mesures b → s`+`− sont prises en compte. Ces mesures
pourraient établir la rupture de saveur NP au-delà de MFV et indiquer le nombre de saveurs de leptons affectées
par la NP. Par exemple, les mesures des deux rapports R(B → Kνν̄) et R(B → K∗νν̄) en dehors de la diagonale
pourraient être interprétées comme la présence de courants droitiers dans b→ sνν̄ et b→ s`+`−. Notre travail
montre donc que des informations assez générales sur le modèle de NP pourraient être obtenues à partir des
mesures à venir de K → πνν̄ et B → K(∗)νν̄.

Une nouvelle anomalie de saveur B dans Bd,s → K∗0K̄∗0 : anatomie et interprétation

Nous analysons ensuite les désintégrations pingouines non leptoniques Bd → K∗0K̄∗0 et Bs → K∗0K̄∗0, où les
récents résultats du LHCb indiquent des différences frappantes dans la polarisation longitudinale de ces deux
modes. Ceci est inattendu puisqu’ils sont liés par le U -spin et devraient donc avoir des dynamiques QCD et
electrofaible similaires (jusqu’à d’infimes corrections dues aux masses des quark down et strange).

Nous introduisons l’observable L comme une combinaison de fractions de polarisation et de rapports de
branchement afin de comparer les amplitudes longitudinales dans les deux modes, car elles peuvent être calculées
avec un meilleur contrôle théorique dans une expansion 1/mb telle que la factorisation QCD. Nous exploitons
le fait que ces désintégrations médiées par les pingouins présentent des éléments de matrice hadroniques très
similaires pour les contributions “arbre” et “pingouin” dans la décomposition habituelle basée sur les facteurs
CKM, de sorte que ces contributions sont très fortement corrélées. Cela signifie que l’observable L est une mesure
de la rupture de U -spin entre les contributions pingouins aux désintégrations Bd et Bs, avec une déviation par
rapport à l’attente SM entre 2σ et 3σ selon le cadre théorique spécifique considéré. Cette observation renforce
et met sur une base plus solide l’indice de NP déjà suspecté en considérant la différence entre les fractions de
polarisation longitudinale dans ces deux modes. Nous effectuons une analyse détaillée du budget d’erreur pour
LK∗K̄∗ et ne trouvons qu’un impact relativement faible des divergences infrarouges provenant de l’annihilation
faible et de la diffusion de spectateurs durs, par rapport à des observables comme les rapports de branchement
ou les fractions de polarisation impliquant des amplitudes transversales gênantes.

Nous interprétons ensuite cette déviation dans une approche indépendante du modèle en utilisant la théorie
effective faible. Pour des raisons de simplicité, nous n’autorisons la NP que dans les coefficients de Wilson de la
SM ou leurs contreparties chirales. Nous avons identifié trois opérateurs qui pourraient accommoder la déviation
avec des contributions de NP au plus aussi importantes que celles du SM. Alors que C1q est déjà très fortement
contraint par d’autres modes nonleptoniques et par les limites du LHCb (au point d’exclure cette solution), la
situation est moins contrainte pour le coefficient pingouin C4q et le coefficient chromomagnétique Ceff

8gq où des
contributions NP d’une taille similaire à celle du SM sont autorisées et pourraient expliquer la déviation dans
LK∗K̄∗ . Nous discutons des exemples de modèles NP simplifiés qui pourraient fournir de grandes contributions,
au prix de l’acceptation d’un réglage fin pour tenir compte des limites sur le mélange Bs − B̄s et b → sγ. Il
est intéressant de noter que dans un modèle composite ou extradimensionnel général, la contribution du gluon
de Kaluza-Klein à l’amplitude b→ s dans Bs → K∗0K̄∗0 a le même signe que la contribution Z ′ à b→ s`+`−

par rapport au SM. Par conséquent, si l’on accepte le réglage fin du mélange Bs − B̄s, de tels modèles peuvent
fournir une explication commune des données de LK∗K̄∗ et de b→ s`+`−.

Ce soupçon de NP dans LK∗K̄∗ pourrait être affiné avec une estimation précise de la rupture de U -spin
dans les facteurs de forme impliqués, car ils sont à l’origine des incertitudes théoriques de la prédiction SM et
leur corrélation n’est pas connue précisément. Une comparaison des informations théoriques et expérimentales
sur les polarisations dans Bs → K∗φ et Bd → K∗φ pourrait également être utile pour vérifier si une tension
similaire apparaît. Des informations complémentaires pourraient également être obtenues à partir des modes
manchots à médiation pseudoscalaire-vecteur et pseudoscalaire-pseudoscalaire (K0K̄∗0 et K0K̄0). De plus, si la
même source de NP est responsable de la suppression de b→ sqq̄ par rapport à b→ dqq̄ et de b→ sµ+µ− par
rapport à b→ se+e−, il serait certainement intéressant de réaliser une étude approfondie des modes b→ d`+`−

par rapport aux modes b → s`+`−, ce qui devrait être accessible avec davantage de données provenant des
expériences LHCb et Belle II.
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Perspective
Nous conclurons enfin ce manuscrit en donnant une perspective des directions que ces anomalies pourraient
prendre dans le futur, des nouveaux résultats qui pourraient aider à les démêler, et des études contribuant à
rendre cette image encore plus robuste.

Après ces illustrations des différentes voies d’exploitation des anomalies du quark b actuellement observées, il
convient de discuter des problèmes qui pourraient devenir pertinents dans un avenir proche. La question de la
signification statistique des anomalies et leur interprétation sont encore des questions relativement ouvertes qui
pourraient changer la donne dans les prochaines années. Il est important de clarifier les critères selon lesquels
l’hypothèse SM sera considérée statistiquement comme incapable d’expliquer les données sur la base de mesures
indirectes, car il n’existe pas de consensus clair sur ce sujet pour le moment. Une autre étape importante liée au
traitement statistique pourrait être la prise en compte correcte des non-gaussianités et des corrélations dans les
données expérimentales et les prédictions théoriques, qui sont souvent négligées de nos jours mais pourraient
devenir importantes à mesure que des données plus précises sont disponibles. Idéalement, les collaborations
devraient fournir toute la vraisemblance obtenue par leurs mesures et les analyses d’ajustement global devraient
pouvoir prendre en compte ces éléments d’information ainsi qu’évaluer l’impact du traitement des incertitudes
systématiques.

Dans un avenir proche, de nouvelles informations devraient être disponibles : LHCb continuera à recueillir
des données et à explorer ces transitions, CMS devrait bientôt publier ses données dites "parquées" et Belle
II fournira de nouvelles informations sur plusieurs modes, y compris les modes b → s`+`− et b → c`ν̄ mais
aussi les modes neutrinos b → sνν̄ avec des systématiques complètement différentes, en particulier pour les
mesures de l’universalité de la saveur leptonique en raison de ses méthodes d’identification des leptons qui
sont totalement différentes de celles de LHCb. Ces données supplémentaires devraient être assorties d’une
amélioration des incertitudes théoriques, car la précision expérimentale future nécessitera des déterminations
plus précises des facteurs de forme, une meilleure compréhension des corrections hadroniques non factorisables et
des corrections électromagnétiques. En ce qui concerne les facteurs de forme, nous pouvons nous attendre à
de nouvelles prédictions théoriques plus précises de la QCD sur reseaux, qui continuent d’évoluer en raison de
la croissance de la puissance de calcul. En outre, une meilleure compréhension de la systématique des règles
de somme sur le cône de lumière, qui sont loin d’être aussi bien comprises que les incertitudes de la QCD sur
reseaux, sera nécessaire. En outre, les contributions de la boucle de charme doivent encore être étudiées plus
en détail, une amélioration du calcul de cet effet est essentielle pour réduire ses incertitudes et évaluer plus
précisément les systématiques attachées aux calculs : c’est une question pour le calcul utilisant les règles de
la somme du cône de lumière, mais aussi pour les modèles utilisés pour extrapoler ou interpoler les résultats
obtenus dans la région de grand recul à tout l’ensemble des valeurs de q2.

Dans les années à venir, ces nouvelles informations expérimentales et théoriques devraient permettre de mieux
comprendre les anomalies, par exemple en excluant certains des scénarios de NP actuellement autorisés par les
données et en fournissant des contraintes sur les contributions complexes de NP violant CP. Vraisemblablement,
nous devrions voir une meilleure connexion avec des modèles NP spécifiques qui peuvent expliquer ces anomalies,
qui sont contraintes par des recherches directes du LHC et peuvent conduire à des connexions avec d’autres
modes impliquant des désintégrations de quark de type up et des courants neutres changeant de saveur dans des
leptons τ , nous permettant de nous rapprocher de la nature de ces déviations. Les liens potentiels avec d’autres
anomalies de saveur (comme (g − 2)µ ou |Vud|) devraient également être des domaines de recherche très actifs,
en utilisant des modèles spécifiques ou dans des approches EFT. L’inclusion de ces nouveaux modes associés
nécessite l’utilisation d’un cadre plus large que la théorie effective faible, à savoir le traitement dans le cadre de
la théorie effective des champs du SM (SMEFT). Cet effort à long terme des communautés expérimentale et
théorique nous aidera, nous l’espérons, à mieux comprendre la véritable nature de ces déviations, dans l’espoir
d’identifier la prochaine étape à franchir, au-delà de la SM, et donc de déterminer la NP derrière les anomalies
du quark b.
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Titre: Nouvelle physique dans les désintégrations rares du quark b : contraintes théoriques et con-
séquences phénoménologiques

Mots clés: Physique des saveurs, Theorie effective des champs, Anomalies du quark b, Nouvelle Physique,
Factorisation QCD, Desintegrations rares

Résumé: Ces dernières années, des écarts par rapport
aux prévisions du modèle standard sont apparus dans
les désintégrations semi-leptoniques des mésons b, entre
lesquels, plusieurs indices de violation de l’universalité
de la saveur leptonique (LFU). Ces déviations, appelées
anomalies du quark b, sont apparues de manière prédom-
inante dans deux types différents de transitions, b → c`ν̄
et b → s``.

Le traitement de ces désintégrations se fait dans le
cadre des théories effectives des champs ou plus précisé-
ment, dans le cadre du hamiltonien effectif faible. Dans
ce cadre, les contributions de nouvelle physique se reflè-
tent dans les changements des coefficients de Wilson de
courte distance. Dans ce manuscrit, nous analysons ces
écarts des points de vue théorique et phénoménologique.

Après avoir résumé les caractéristiques importantes
du modèle standard, nous introduisons le cadre théorique
pertinent des théories effectives des champs et les ré-
sultats expérimentaux associés à ces désintégrations
semileptoniques.

Nous effectuons d’abord une analyse globale de la
transition b → s`` où nous ajustons les coefficients de
Wilson du hamiltonien effectif faible aux données expéri-
mentales. Nous étudions la signification statistique de
ces écarts, illustrant la cohérence globale des scénarios de
Nouvelle Physique émergeant de cette analyse indépen-
dante du modèle.

Nous présentons ensuite plusieurs nouveaux tests de
la physique à l’oeuvre pour les transitions b → s``. Tout
d’abord, nous discutons de l’analyse angulaire de la tran-

sition Λb → Λ(1520)(→ pK)`` du point de vue théorique,
et nous donnons des projections quant à la sensibilité at-
tendue de l’expérience LHCb. Deuxièmement, nous dis-
cutons du potentiel d’une analyse angulaire dépendante
du temps du mode B → KS``, qui offre des sondes in-
téressantes des contributions complexes de la Nouvelle
Physique aux coefficients de Wilson.

Nous discutons aussi des tests de Nouvelle Physique
pour les transitions b → c`ν̄. Tout d’abord, nous met-
tons en évidence l’utilisation des symétries entre les ob-
servables angulaires de la désintégration B → D∗`ν̄, con-
duisant à des relations entre ces observables qui testent
les contributions tensorielles. Nous proposons ensuite
un nouveau test d’universalité de la saveur leptonique à
travers les désintégrations de Υ(4S) dans les usines à B,
à condition que la pollution par le charme puisse être
contrôlée expérimentalement.

Enfin, nous étudions les connexions potentielles des
anomalies du quark b avec d’autres modes. D’une part,
en utilisant des hypothèses minimales sur les symétries
de saveur auxquelles la Nouvelle Physique doit obéir,
nous connectons ces anomalies aux désintégrations b →
sνν̄ et s → dνν̄ avec des perspectives expérimentales
prometteuses. D’autre part, nous étudions les modes
non-leptonique de type pingouins Bd/s → K∗0K∗0 qui
pourraient être reliés aux modes b → s`` dans des mod-
èles spécifiques de la nouvelle physique et nous discutons
d’une éventuelle nouvelle anomalie de saveur de l’ordre
de 2,6 écarts-type par rapport aux données de LHCb.
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Abstract: In recent years, deviations from Standard
Model predictions have appeared in b-meson semilep-
tonic decays, with several hints of violation of Lepton
Flavour Universality (LFU). These deviations, usually
called the b-anomalies, have appeared prominently in two
different types of transitions, b → c`ν̄ and b → s`` .

The treatment of these decays is done in the con-
text of Effective Field Theories or more precisely, in the
framework of the Weak Effective Hamiltonian. In this
framework, New physics contributions are reflected in
changes in the short distance Wilson coefficients. In this
manuscript, we analyse these deviations from the theo-
retical and phenomenological points of view.

After summarising important features of the Stan-
dard Model, we introduce the relevant theoretical frame-
work of effective field theories and the experimental re-
sults associated with these semileptonic decays.

We first perform a global analysis of the b → s`` tran-
sition where we fit the Wilson coefficients of the Weak Ef-
fective Hamiltonian to the experimental data. We study
the statistical significance of these deviations, illustrat-
ing the global consistency of the pattern of New Physics
emerging from this model-independent analysis.

We then present several New physics benchmarks for
b → s`` transitions. First, we discuss the angular anal-

ysis of the Λb → Λ(1520)(→ pK)`` transition from the
theoretical point of view, and we give projections for the
sensitivity of the LHCb experiment. Secondly, we discuss
the potential of a time-dependent angular analysis of the
B → KS`` mode offering interesting probes of complex
New Physics contributions to Wilson Coefficients.

We discuss also probes of New Physics for the b →
c`ν̄ transitions. First, we highlight the use of symmetries
between the angular observables of the B → D∗`ν̄ de-
cay, leading to relations among these observables, which
probe tensor contributions. We then propose a new test
of lepton flavour universality through Υ(4S) decays at
B-factories, provided that charm pollution can be con-
trolled experimentally.

Finally, we study the potential connections of these
b-anomalies with other modes. On one hand, using min-
imal assumptions on flavour symmetries obeyed by New
Physics, we connect these anomalies to b → sνν̄ and
s → dνν̄ decays with promising experimental prospects.
On the other hand, we study the non-leptonic penguin
modes Bd/s → K∗0K∗0 which could be connected to
b → s`` modes in specific New Physics models, and we
discuss a possible new flavour anomaly at the order of
2.6 standard deviations from the LHCb data.
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