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“Je laisse Sisyphe au bas de la montagne ! On retrouve toujours son fardeau. Mais Sisyphe enseigne
la fidélité supérieure qui nie les dieux et soulève les rochers. Lui aussi juge que tout est bien. Cet
univers désormais sans maître ne lui paraît ni stérile, ni futile. Chacun des grains de cette pierre,
chaque éclat minéral de cette montagne pleine de nuit, à lui seul forme un monde. La lutte en elle-
même vers les sommets suffit à remplir un cœur d’homme. Il faut imaginer Sisyphe heureux.”

“I leave Sisyphus at the foot of the mountain! One always finds one’s burden again. But Sisyphus
teaches the higher fidelity that negates the gods and raises rocks. He too concludes that all is well.
This universe henceforth without a master seems to him neither sterile nor futile. Each atom of that
stone, each mineral flake of that night filled mountain, in itself forms a world. The struggle itself
toward the heights is enough to fill a man’s heart. One must imagine Sisyphus happy.”

ALBERT CAMUS, Le mythe de Sisyphe



Abstract

Black holes are the central engines of many high-energy astrophysical phenomena, such as
active galactic nuclei (AGN). Black-hole activity often manifests itself through the launch-
ing of a relativistic jet filled with energetic particles. How jets form and accelerate particles
remains poorly understood. Although black holes can only be observed indirectly through
their impact on their environment, the situation has dramatically evolved in recent years
due to formidable progress in astronomical instrumentation. The advent of ground-based
Cherenkov telescopes proved that AGN could produce highly variable flares of non-thermal
very high-energy radiation. Besides, the GRAVITY collaboration reported the detection of
a flaring hot spot orbiting near the supermassive black hole Sgr A*, whereas radio interfer-
ometers have been able to track the jet emitted by the supermassive black hole M87* almost
down to the event horizon. Then, in April 2019, the Event Horizon Telescope collaboration
released the first image of the “shadow” of M87*. For the first time, the immediate vicinity
of the black hole was spatially resolved.

To account for this activity, one of the most promising scenarios (the Blandford-Znajek
mechanism) involves a rapidly spinning black hole immersed in a large-scale magnetic field.
The dragging of spacetime and magnetic field lines by the black hole induces a potential
drop between its poles, which can power an electromagnetic outflow and trigger particle
acceleration. Thanks to the recent growth of computing power, it is now possible to test this
scenario in great detail. Up to now, the magnetohydrodynamic approach has been mainly
used to model black-hole magnetospheres. Such simulations have confirmed that the ro-
tational energy of black holes can be electromagnetically extracted. However, they are un-
able to study particle acceleration by construction. Instead, we employ the “particle-in-cell”
(PIC) approach to model a plasma from first principles. All the plasma processes involved
in particle acceleration can be captured without physical approximations. This approach is
relevant to collisionless plasmas, such as found near the supermassive black hole at the cen-
ter of our Galaxy. PIC simulations have been successfully used to study particle acceleration
in pulsar magnetospheres, but they had never been employed in this context.

In this thesis, I have used the general relativistic PIC code Zeltron, which is the first
multidimensional kinetic code capable of evolving particles and fields in curved spacetime.
I have upgraded Zeltron by including the possibility to track individual photons and
implemented Monte-Carlo modules to treat radiative transfer accurately. I present global
simulations of gaps in a black-hole magnetosphere, which prove that the Blandford-Znajek
mechanism can indeed be activated self-consistently. I have pinpointed the location of the
spark gaps and shown that pair creation occurs intermittently on scales smaller than the
radius of the black hole. I also present simulations in a more realistic magnetic configura-
tion, proving that magnetospheres can dissipate electromagnetic energy efficiently through
magnetic reconnection. Besides, to bridge the gap between simulations and observations, I
have coupled Zeltron with a ray-tracing code, allowing me to directly use the outcome of
kinetic simulations to produce synthetic light curves and images.



Résumé

Les trous noirs sont à l’origine de nombreux phénomènes astrophysiques de haute énergie,
tels que les noyaux actifs de galaxie (AGN). L’activité des trous noirs se manifeste souvent
par le lancement d’un jet relativiste de particules énergétiques. Cependant, les mécanismes
de formation des jets et d’accélération de particules restent mal compris. Si les trous noirs
ne peuvent être observés qu’indirectement, à travers leur impact sur leur environnement,
la situation a considérablement évolué ces dernières années grâce aux récents progrès in-
strumentaux. Des télescopes Tcherenkov ont détecté des éruptions de rayonnement non
thermique de très haute énergie et variant sur de faibles échelles de temps en provenance
d’AGN. Par ailleurs, la collaboration GRAVITY a rapporté la présence d’un point chaud en
orbite près du trou noir supermassif Sgr A*, tandis que le jet émis par le trou noir supermas-
sif M87* a pu être observé par interférométrie radio jusqu’à des échelles proches de l’horizon
des événements du trou noir. Finalement, en avril 2019, la collaboration Event Horizon Tele-
scope a publié la première image de « l’ombre » de M87*. Pour la première fois, le voisinage
immédiat du trou noir a pu être résolu spatialement.

Pour modéliser cette activité, l’un des scénarios les plus prometteurs implique un trou
noir en rotation rapide immergé dans un champ magnétique à grande échelle: c’est le mé-
canisme de Blandford-Znajek. L’entraînement de l’espace-temps et des lignes de champ
magnétique par le trou noir induit une différence de potentiel entre ses pôles, pouvant ali-
menter un vent électromagnétique et déclencher l’accélération de particules. Les excellentes
performances des supercalculateurs les plus récents permettent désormais de tester ce scé-
nario dans les moindres détails. Jusqu’à présent, seule l’approche magnétohydrodynamique
a été utilisée pour modéliser les magnétosphères de trous noirs. Ces simulations ont mon-
tré avec succès la viabilité du mécanisme d’extraction électromagnétique de l’énergie de
rotation du trou noir. Cependant, elles demeurent incapables d’étudier l’accélération de
particules énergétiques. Nous utilisons plutôt l’approche « particle-in-cell » (PIC), afin de
modéliser un plasma à partir de principes fondamentaux. Tous les processus plasma im-
pliqués dans l’accélération des particules peuvent être simulés sans aucune approximation
physique. Une telle approche est justifiée lorsque le plasma est non collisionnel, comme aux
environs du trou noir supermassif au centre de notre galaxie. Les simulations PIC ont été
utilisées avec succès pour étudier l’accélération de particules dans les magnétosphères de
pulsars, mais elles n’avaient jamais été employées dans ce contexte.

Dans cette thèse, j’ai utilisé le code PIC Zeltron, qui est le premier code cinétique mul-
tidimensionnel incluant complètement la relativité générale. J’ai amélioré Zeltron en y in-
cluant la possibilité de suivre des photons individuels, et j’ai implémenté un module Monte-
Carlo afin de traiter rigoureusement le transfert radiatif. Je présente des simulations globales
de gaps dans une magnétosphère de trou noir, qui prouvent que le mécanisme de Blandford-
Znajek peut effectivement être activé de manière auto-cohérente. J’ai localisé la position
de ces gaps et montré que la création de paires se produit de manière intermittente, sur
des échelles inférieures au rayon du trou noir. Je présente également des simulations dans
une configuration magnétique plus réaliste, prouvant que l’énergie électromagnétique peut
être dissipée très efficacement par reconnexion magnétique. Finalement, afin de combler le
fossé entre les simulations et les observations, j’ai couplé Zeltron avec un code de tracé de
rayons, ce qui me permet d’utiliser directement les résultats de simulations cinétiques pour
produire des courbes de lumière et des images synthétiques.
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Foreword

It has recently become especially rewarding and exciting to work in the field of relativis-
tic astrophysics. In the last five years, several researchers were awarded a Nobel prize in
physics for their studies on black holes. In 2017, Rainer Weiss, Barry C. Barish, and Kip S.
Thorne received awards for their decisive contribution, within the LIGO collaboration, to
the observation of gravitational waves. This detection has notably confirmed the existence
of stellar-mass black holes. In 2020, Roger Penrose won the Nobel prize for his theoretical
work on black holes as a prediction of the general theory of relativity, whereas Reinhard
Genzel and Andrea Ghez were awarded for finding observational evidence of the presence
of a supermassive black hole at the center of our galaxy. These awards illustrate how the
scientific community has come to acknowledge the importance of black-hole physics.

Besides, the Event Horizon Telescope collaboration published in 2019 the first direct ob-
servation, at millimeter wavelengths, of “the shadow” of a black hole. This “photography”
has aroused considerable interest in the world. The scientific communication surrounding
this publication was impressive: the image was released during six simultaneous press con-
ferences in America, Asia, and Europe. Thereafter, it was on the front page of most daily
newspapers in the world. Aside from the scientific value of this observation, on which
we will come back later, this media coverage highlights the public’s interest in black holes.
These objects seem to hold a special place in the collective imagination and popular culture,
as their properties defy one’s intuition.

Considering black holes as astrophysical objects has not always been self-evident. Even
if the general theory of relativity has successfully passed many experimental tests, it was
long believed that black holes were not a physical prediction of this theory. Starting from
the first results of Albert Einstein and Karl Schwarzschild in 1915, it took several decades
for the community to undergo a paradigm shift and to take black holes seriously despite
their extreme properties. As Edwin Salpeter once said while the identification of the Cyg
X-1 source was still controversial, in many cases the existence of a black hole must now be
considered as “the most conservative hypothesis". It is precisely from this paradigm shift
that the field of relativistic astrophysics was born.

In order to determine the nature of a light source in the sky, it is necessary to understand
how this object interacts with its environment and to model accurately the radiation that it
emits. It is one of the main themes of relativistic astrophysics to understand “what a black
hole looks like”, depending on its environment. Far from being “cosmic vacuum clean-
ers" swallowing everything around them without leaving any observable trace, black holes
power some of the most luminous sources in the observable universe. In particular, they
are capable of producing plasma jets that can reach relativistic velocities and may extend
over thousands of light-years. Future advances in astronomical instrumentation promise to
unveil more details on their environment and to better constrain existing theoretical mod-
els. This thesis is part of an ongoing effort to interpret black hole observations by the means
of numerical simulations. The observational and theoretical motivations of this thesis are
outlined in Part I.



Avant-propos

Depuis quelques années, le domaine de l’astrophysique relativiste est en effeverscence. Au
cours des cinq dernières années, plusieurs prix Nobel de physique ont été décernés à des
chercheurs et chercheuses pour leurs travaux sur les trous noirs. En 2017, Rainer Weiss,
Barry C. Barish and Kip S. Thorne ont reçu un prix Nobel pour leur contribution décisive,
au sein de la collaboration LIGO, à la détection d’ondes gravitationnelles. Cette détection
a notamment confirmé l’existence des trous noirs de masse stellaire. En 2020, Roger Pen-
rose a été distingué pour ses travaux théoriques sur les trous noirs en tant que prédiction de
la théorie de la relativité générale, tandis que Reinhard Genzel et Andrea Ghez ont été ré-
compensés pour avoir apporté des preuves observationnelles de la présence d’un trou noir
supermassif au centre de notre galaxie. Ces prix illustrent la reconnaissance par la commu-
nauté scientifique de l’importance de la physique des trous noirs.

Par ailleurs, la collaboration Event Horizon Telescope a publié en 2019 la première ob-
servation directe, dans le domaine millimétrique, de « l’ombre » d’un trou noir. Cette « pho-
tographie » a suscité un intérêt considérable dans le monde. La communication autour de
cet évènement a été particulièrement soignée, l’image ayant été dévoilée lors de six con-
férences de presse simultanées en Amérique, en Asie et en Europe. Elle a ensuite fait la
une de presque tous les quotidiens du monde. Au-delà de l’intérêt scientifique de cette
découverte, sur lequel nous reviendrons plus loin, cette couverture médiatique souligne
l’intérêt également porté par le grand public aux trous noirs. Ceux-ci semblent occuper une
place à part dans l’imaginaire collectif et la culture populaire, tant leurs propriétés défient
l’intuition.

Considérer les trous noirs comme des objets astrophysiques n’est pas allé de soi. Si la
théorie de la relativité générale a passé avec succès une grande quantité de tests expérimen-
taux, on a longtemps pensé que les trous noirs n’en étaient pas une prédiction physique.
À partir des premiers résultats d’Albert Einstein et Karl Schwarzschild en 1915, il a ainsi
fallu plusieurs décennies pour qu’un changement de paradigme s’opère, et que les trous
noirs soient pris au sérieux malgré leurs propriétés extrêmes. Comme l’a dit Edwin Salpeter
alors que l’identification de la source Cyg X-1 était encore controversée, dans bien des cas,
l’existence d’un trou noir doit désormais être considérée comme « l’hypothèse la plus con-
servatrice ». C’est justement de ce changement de paradigme qu’est né le domaine de
l’astrophysique relativiste.

Afin de déterminer la nature d’une source lumineuse dans le ciel, il est nécessaire de
comprendre comment cet objet interagit avec son environnement et de modéliser précisé-
ment la radiation qu’il émet. C’est l’un des thèmes principaux de l’astrophysique relativiste
que de comprendre « à quoi ressemble » un trou noir, en fonction de son environnement.
Loin d’être des « aspirateurs cosmiques », avalant tout ce qui se trouve autour d’eux sans
laisser aucune trace observable, les trous noirs sont à l’origine des sources parmi les plus
lumineuses de l’Univers observable. En particulier, ils sont capables de produire des jets de
plasma pouvant atteindre des vitesses relativistes et s’étendant sur des milliers d’années-
lumière. Les progrès à venir en instrumentation astronomique promettent de fournir plus
de détails sur leur environnement, et donc de mieux contraindre les modèles théoriques ex-
istants. Cette thèse s’insère dans cet effort d’interprétation des observations en provenance
de trous noirs, au moyen de simulations numériques. Les motivations observationnelles et
théoriques de cette thèse sont décrites dans la partie I.



Conventions and notations

In this thesis, I work in Gaussian-cgs units. Vectors appear in boldface, and the nabla vec-
tor differential operator is noted ∇. I use the Einstein summation convention for implicit
summation over the values taken by an index appearing in an upper position and a lower
one. For brevity, in in-line math mode, I write a fraction as a/bc instead of a/(bc). In special
relativity, the timelike coordinate is noted x0 = ct and has the dimension of a length.

Red blocks contain technical developments on side concepts or derivations of results
from the main body of the text. They can be omitted at first reading.

I provide below a list of the notations and values (in cgs units) for the physical constants
which will be used throughout the text.

c Speed of light in vacuum 2.998× 1010 cm·s−1

me Electron mass 9.109× 10−28 g

mp Proton mass 1.673× 10−24 g

e Electron charge 4.803× 10−10 g1/2 ·cm3/2 ·s−1

h Planck constant 6.626× 10−27 erg·s−1

G Gravitational constant 6.674× 10−8 cm3 ·g−1 ·s−2

M� Solar mass 1.988× 1033 g





Part I

Introduction: context and motivations



- Mais c’est quoi tout ça ?! C’est pas un rapport ! Y a combien de pages ?
- Non mais ce qu’il y a de bon, c’est qu’il y a de tout là-dedans. Comment fabriquer un avion...
L’itinéraire des bus de nuit... En y regardant bien, il doit même y avoir la recette de la tarte tatin.

- What kind of report is this?! How many pages are there?
- On the bright side, you can find a bit of everything in there. How to build an airplane... The routes
of night buses... Upon closer look, there must even be a tarte tatin recipe.

LANZAC & BLAIN, Quai d’Orsay, chroniques diplomatiques, tome 2



Chapter 1

A brief history of black holes

The concept of black holes is one of a kind. The discovery of most concepts in physics
is driven by experiments, while theory lags behind, working to design a unified and con-
sistent view of the observed phenomena. On the opposite, black holes were conceived in
purely theoretical ways. This solution behaved in such peculiar ways that it was almost im-
mediately rejected and deemed unphysical. It took several decades, some very bright minds
and a fantastic wealth of observations to comprehend the astrophysical relevance of black
holes. In this section, my goal is to describe this realization from an astrophysical point of
view. The material in this section relies on the historical accounts in the books by Thorne
(1995) and Begelman & Rees (2009), which I can only recommend.

1.1 A theoretical concept

1.1.1 The premises

A prehistoric version of black holes had been suggested in the 1780’s by John Michell and
Pierre-Simon de Laplace. In view of the corpuscular theory of light that held sway at the
time, they figured that according to Newton’s laws, an object could become so massive
that the escape velocity from this object would be greater that the speed of light (Michell,
1784). Back then, nothing prevented one from increasing indefinitely the compactness of an
object. These proto-black holes were dubbed “dark stars”, but the concept did not survive
long after Thomas Young’s wave description of light was published and generally accepted.
Thereafter, the concept remained dormant until the beginning of the 20th century, when
Albert Einstein published his theory of general relativity.

The first hint of black holes appeared in the first solution of Einstein’s equations for a
spherically symmetric object, derived by Karl Schwarzschild in 1915 (Schwarzschild, 1916).
This concrete solution revived the idea that the propagation of light could be modified in
a gravitational field. At the time, scientists were inclined to study the consequences of this
solution in the weak-field limit, that is, provided the masssive object had a radius much
larger than the Schwarzschild radius rs = 2GM/c2 (with M the mass of the object). How-
ever, they did not take seriously its extreme predictions in the case of a very compact object
with a radius close to rs. There was a sort of tension between the acceptance of the general
theory of relativity, due to its first experimental successes, and the widespread reluctance
to take what was then called “Schwarzschild singularities” seriously. Even Albert Einstein
wrote that “Schwarzschild singularities do not exist in physical reality” as the conclusion of
a paper (Einstein, 1939).

In the late 1920’s, the dominant astrophysical puzzle was white dwarfs, which have
masses close to the solar mass M� but much smaller radii. In particular, this means that
white dwarfs are made of extremely dense matter, much denser than what could be found
on Earth. Because they are so dense, there must be a source of pressure much stronger than
thermal gas pressure counteracting the strong squeeze of gravity, but the origin of this pres-
sure was unknown. Subrahmanyan Chandrasekhar showed, by inserting special relativistic
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FIGURE 1.1: Stellar mass-radius diagram after Chandrasekhar’s discovery. As they age,
stars move leftward in the course of their lifetimes. Stars with mass greater than MC cannot

reach equilibrium as a white dwarf. Figure taken from Thorne (1995).

arguments to the newly founded quantum mechanics, that the counteracting force was due
to the degeneracy pressure of electrons. More importantly, he showed that if the star got
too massive, even this strong degeneracy pressure could not withstand the pull of grav-
ity, thereby placing an upper limit MC on the mass of white dwarfs (Chandrasekhar, 1931).
Using realistic equations of state for white dwarf matter, he found the upper limit (Chan-
drasekhar, 1935)

MC ' 1.4M�. (1.1)

As a regular star ages, it radiates and cools down. As a consequence, in order to maintain the
pressure/gravity balance, stars must shrink gradually. When a star less massive than MC

completes burning its nuclear fuel, so that the thermal pressure cannot resist gravity at all,
it shrinks suddenly until the degeneracy pressure takes on (see Fig. 1.1). But what happens
to stars initially more massive than MC was the question that no one really wanted to ask.
The mental block at the time was the impossibility to conceive that stars could implode.

1.1.2 The fate of massive stars

Neutron stars have been hypothesized by Franck Zwicky (and independently by Lev Lan-
dau) in the 1930’s, shortly after the discovery of the neutron, to account for the enormous
power emitted in supernovæ (Baade & Zwicky, 1934). They provided a convenient way out
of the fact that stars could shrink indefinitely at the end of their lives. If objects could be
mostly made up of neutrons, then a combination of neutron degeneracy pressure and nu-
clear force could take over the electron degeneracy pressure at greater masses, and prevent
the collapse of the star to a black hole. So the question amounted to determining whether
neutron stars existed at all, and if they did, whether they could be arbitrarily massive. This
problem was investigated by Richard Tolman, George Volkoff and Robert Oppenheimer,
who derived the famous TOV equation for the radial structure of a star in general relativ-
ity. They were able to show that there is indeed a maximum mass MTOV for neutron stars,
although the exact value, of the order of several solar masses, depends on unknown nu-
clear forces and remained uncertain (Oppenheimer & Volkoff, 1939). On top of that, Robert
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Oppenheimer and Hartland Snyder performed idealized modeling of the collapse of spheri-
cally symmetric, presssureless stars, in full general relativity (Oppenheimer & Snyder, 1939).
They studied the implosion both from the point of view of an external observer and one
falling with the star, which allowed scientists to apprehend the collapse of a dying star. This
study was the first to show the physical consequences of the Schwarzschild singularity at rs

(for example, the extreme time dilation that makes the star appear frozen to an observer at
infinity); it pointed that physics do not break down as the observer passes the Schwarzschild
radius.

This led to the conclusion that nothing could prevent stars initially more massive than
MTOV from collapsing to black holes, unless there should exist yet another “graveyard”
between black holes and neutron stars. The latter idea was dismissed by John Wheeler, who
worked out the equation of state of cold matter for a very wide range of densities, bridging
the gap between neutron stars and white dwarfs (Wheeler, 1966). They combined it with
the TOV equation to compute the relation between the mass and radius of cold stars (see
Fig. 1.2). Although the equation of state of neutron stars is probably much more complicated
than that of cold matter, there did not seem to be a way to produce arbitrarily massive
neutron stars. Nothing can prevent the implosion of massive stars.

Even today, the neutron star equation of state is not fully understood. It is still possible to show
that the mass of a neutron star cannot be above ' 3M� (Rhoades & Ruffini, 1974). More details
about neutron star models can be found in the textbook by Shapiro & Teukolsky (1983).

The last loophole to prevent the formation of black holes would be if the star somehow
ejected a significant fraction of its mass ahead of the complete collapse. After World War
2, computing capabilities and understanding of the physics at play in stars had both made
such progress that realistic simulations of collapsing stars could be carried out (Colgate &
White, 1966). These confirmed Oppenheimer’s idealized calculations (Podurets, 1964; May
& White, 1966), making the idea of black holes even firmer on astrophysical grounds. Be-
sides, on the theoretical field, analytical extensions of the Schwarzschild metric were found,
highlighting the fact that the Schwarzschild singularity was really just a coordinate singu-
larity, so that both the interior and the exterior of the object can be described jointly (Finkel-
stein, 1958; Kruskal, 1960). It was shortly thereafter that John Wheeler coined the term “black
holes”, which quickly took hold in the community.

FIGURE 1.2: Extended stellar mass-radius diagram, after it was realized neutron stars have
a maximum mass. Figure taken from Thorne (1995).
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About the fate of massive stars, Eddington said during a talk to the Royal Astronomical Society
in 1935 that “the star will go on radiating and radiating and contracting and contracting, until, I
suppose, it gets down to a few kilometers radius, when gravity becomes strong enough to hold
in the radiation, and the star can at last find peace”. All in all, these were quite prescient words,
although Eddington remained skeptical about black holes until the end.

1.1.3 Academical black holes

In the 1960’s, everyone was finally convinced that black holes were perfectly plausible ob-
jects which did not break the laws of physics. After struggling with the complexities of
general relativity, theoreticians realized that black holes were conceptually quite simple ob-
jects. Let us present a short list of the main results of this decade.

I Another solution, describing a rotating black hole, was found by Kerr (1963) (see
Chap. 4).

I Black holes inevitably enclose a singularity, no matter the degree of symmetry of the
initial collapse (Penrose, 1965).

I Energy can be extracted from a rotating black hole (see Sec. 4.2.2).

I Black holes can pulsate, and by doing so they radiate away any inhomogeneity in the
spacetime metric (Price, 1972a,b). Such pulsations extract gravitational energy from
the black hole, but they are stable and die out with time (Press & Teukolsky, 1973).

I The Schwarzschild and Kerr metric are unique solutions (see Sec. 4.1.2).

I The no-hair theorems were proved (see Sec. 6.1.2): black holes radiate away any de-
gree of freedom other than their mass, electric charge and angular momentum.

It is worth noting that the acceptance of black holes was a “collective” effort, in that
various areas of physics were involved. The development of this concept is intertwined with
the flourishing and understanding of quantum mechanics, nuclear forces, gas dynamics...
These theories were developed at roughly the same time and contributed to making the
idea of black holes plausible.

1.2 The astrophysical age: stellar-mass black holes

So far, black holes had remained abstract, idealized entities, in the hands of theoreticians.
This was all well and good, but the question of their observability remained. By nature,
black holes cannot be observed as they do not cast any light (putting Hawking’s radiation
aside). The only hope was to detect them through their impact on their close environment.
The first scientists to lay out astrophysicallly realistic scenarios where black holes could
leave an observable signature were Edwin Salpeter and Yakov Zel’dovitch (Salpeter, 1964;
Zel’dovich, 1964) in the late 1960’s. Among other ideas, they figured that binary systems
composed of a star and a black hole could shine in X-ray. They were the first to point out
that accreting systems could present very high luminosities.

1.2.1 Accretion

Accretion means the accummulation of gas toward a central massive object by the pull of
gravity (Longair, 2011). It is one of the most efficient ways to convert mass into energy.
Let us consider the accretion of matter onto an object of mass M and radius R. A proton
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initially at rest at infinity has a kinetic energy E = GMmp/R when it reaches the surface of
the object. If the accretion rate is ṁ, then the rate of energy deposited onto the surface of the
object is

L =
GMṁ

R
=
rg

R
ṁc2, (1.2)

where rg = GM/c2 is the gravitational radius of the object. Traditionally, we write

L = ηṁc2, (1.3)

with η the radiative efficiency of conversion from kinetic energy to radiation. At first sight, L
is all the larger as the compacity of the object increases, that is, as R approaches rg. General
relativity states that the most compact objects are black holes, with R lying between rg and
2 rg depending on their spin. Neutron stars come quite close to this limit, with rg/R ' 0.15.

Now, if the object is a white dwarf or a neutron star, then the kinetic energy of the ac-
creted material is deposited to the stellar surface, heating it. In that case, Eq. (12.5) gives
the total luminosity of the object. The radiative efficiency of these objects is almost precisely
equal to their compactness: η ' rg/R. In contrast, black holes lack a material surface. As
a result, the kinetic energy of the inflowing gas must be emitted before it reaches the event
horizon. The radiative efficiency of black holes is therefore smaller than rg/R. For example,
spherically symmetric, radial accretion is unlikely to produce significant emission.

Because the compact object is so small with respect to the large size of the accreting mate-
rial reservoir, infalling matter almost necessarily retains a certain amount of specific angular
momentum. As the gas rotates around the black hole, friction tends to flatten it in the direc-
tion of its total angular momentum, until it forms an accretion disk. Its angular momentum
prevents it from falling in the perpendicular directions. In such a disk, the gas’ angular
velocity depends on the distance to the central object: the disk is in differential rotation. It
follows that a massive particle is unable to flow toward the black hole unless it loses angular
momentum. Transport of angular momentum is necessary in order for accretion to occur.
This transfer of angular momentum can operate precisely because of differential rotation.
The nature of this interaction causing this transfer is still a matter of debate.

The luminosity of the object cannot be arbitrarily large. If the accretion rate is too high,
radiation pressure from the inner parts of the disk will be able to push back the infalling
material. The upper limit on the luminosityLEdd is obtained by balancing radiation pressure
and gravitational force. Under the simplifying assumption that Thomson scattering brings
the main contribution to the radiation pressure, we obtain the Eddington luminosity

LEdd =
4πGMmpc

σT
=

4πrgmpc
3

σT
= 1.3× 1038

(
M

M�

)
erg·s−1. (1.4)

This is an estimate of the upper limit on the luminosity of accreting systems, and it provides
an order of magnitude of their typical luminosity. Note that this calculation is highly ide-
alized: spherical accretion is assumed, and the opacity of the gas to photons is only due to
Thomson scattering. Some systems can be super-Eddington, with L > LEdd, but this is more
the exception than the rule.

As said earlier, the kinetic energy of the gas must be converted into radiation before
it reaches the event horizon. Let us assume that the conversion into heat is very efficient
(η ' 1), and that the disk radiates like a blackbody (in that case, it is said to be optically
thick: photons can only escape from the disk at the surface). From the Stefan-Boltzmann
law, we can estimate the temperature T of the inner parts of the disk:



8 Chapter 1. A brief history of black holes

4πr2
gσBT

4 ' LEdd ⇒ T ' 107

(
M�
M

)1/4

K, (1.5)

where σB = 5.670× 10−5 erg·cm−2 ·s−1 ·K−4 is the Stefan-Boltzmann constant. This means
that the disk emits most of its energy in the X-rays.

Much more accurate calculations can be carried out in order to obtain the structure of
the disk and the dependence of the total spectrum with the parameters ṁ or M . The ac-
cretion disk model was first studied by Lynden-Bell (1969), and then in much more detail
by Shakura & Sunyaev (1973) (in flat spacetime) and by Novikov & Thorne (1973) (in the
Kerr metric).

Radiative efficiency

Massive particles in circular orbits around a black hole cannot remain stable arbi-
trarily close to the black hole. Stable timelike circular trajectories are bound by the
innermost stable circular orbit (ISCO) at r = rISCO. For a non-spinning black hole,
the ISCO is located at rISCO = 6 rg. Gas in an accretion disk settles into circular or-
bits around the compact object, and slowly gains energy as it drifts inwards. The
maximum binding energy mc2 − E, where E is the energy of the particle, is reached
when the particle is at rISCO. This is unlike a material compact object, where all the
gravitational potential energy of the particle would be retrieved at the surface. For a
Schwarzschild black hole, the maximum radiative efficiency is (Shapiro & Teukolsky,
1983)

ηmax = 1− Emin

mc2
= 1− 2

√
2

3
' 5.7%. (1.6)

If the black hole is spinning, the prograde ISCO can get much closer to the event
horizon, thus increasing the maximum radiative efficiency. In that case, the maximum
efficiency can reach ' 40% (Shapiro & Teukolsky, 1983).

1.2.2 X-ray astronomy

Until the 1950’s, the astronomers’ view of the sky was basically limited to the optical wave-
lengths, although radio astronomy was starting to flourish (more details in Sec. 1.3.1). The
1960’s finally saw the rise of X-ray astronomy, which opened brand new perspectives and
paved the way for modern astronomy (Begelman & Rees, 2009). Since X-rays cannot pen-
etrate the Earth’s atmosphere, X-ray detectors must be launched in orbit. The first X-ray
detectors were launched in 1962 on a rocket by a group led by Riccardo Giacconi. They had
very poor angular resolution and gathered little data, but they identified an unexpectedly
bright X-ray source in the constellation of Scorpius (Sco X-1), along with a diffuse back-
ground (Giacconi et al., 1962). This came as a surprise, as everyone expected the brightest
source in the sky to be the Sun. This prompted research into more resolved X-ray detectors,
which were mounted on satellites this time. The first X-ray satellites were Uhuru in 1970
and Einstein in 1978. We now know that the sky is filled with unresolved, pointlike X-ray
sources (see Fig. 1.3).

Different kinds of sources were spotted. Some pulsated quite regularly, while others
like Cyg X-1 flickered very quickly, on timescales of tens of milliseconds (Cui et al., 1997;
Pottschmidt & Konig, 1997). This is shown in Fig. 1.4(a). In the first case, the compact
object is a neutron star, with a pulse period consistent with the rotation period of the star.
In the second case, there is no clear time signature. However, causality constraints place
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FIGURE 1.3: Image of the sky in X-ray, taken by the XMM-Newton space telescope. The
different colors correspond to different energy intervals. Image taken from Hasinger et al.

(2007).

an upper bound on size of the emitting region. For an emitting region of size R, setting
relativistic boosting aside (see Sec. 2.1), significant variations in the light curve cannot occur
on timescales shorter than the light-crossing time tg = R/c. In the case of a black hole of
radius R = rg, this translates into

tg ' 10−5

(
M

M�

)
s ' 10−5

(
M

M�

)
s. (1.7)

This is the typical timescale which can be associated with a black hole of mass M .
Cyg X-1 was the first candidate to be a stellar mass black hole, the natural product of the

collapse of a massive star. Such sources, comprising a star and a compact object surrounded
by an accretion disk, are called X-ray binaries. The gas in the accretion disk originates from
the companion star. This source displayed variability consistent with an accreting system
powered by a stellar-mass black hole, according to Eq. (1.7). However, it is a priori not
possible to reject a neutron star as the compact object powering this source, although no
pulsations are seen, on the sole basis of its flickering. In both cases, most of the energy is
expected to be converted before reaching the surface, so the radiative features should be
similar. How to determine unequivocally the nature of the central object from its spectral
and timing properties is still an open problem (Barret et al., 1996; Titarchuk & Shaposhnikov,
2005).

In order to discriminate between neutron stars and black holes, in the absence of regu-
lar pulses, the least equivocal way is to determine independently the mass of the compact
object. In most cases, this is very challenging, due to the unknown inclination of the bi-
nary or the faintness of the companion star. Yet, in the case of Cyg X-1, this was done by
measuring the orbital period and speed of the companion star (Webster & Murdin, 1972;
Bolton, 1972; Sowers et al., 1998), through the Doppler shift of its optical emission lines as
it revolves around the compact object (see Fig. 1.4(b)). Astronomers found that the mass of
the compact object was at least 3.5M�, which is more than the maximum mass of neutron
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FIGURE 1.4: (a) X-ray light curve of Cyg X-1, taken by the EXOSAT X-ray satellite. Figure
taken from (Pottschmidt & Konig, 1997). (b) Radial velocity of the companion star of Cyg
X-1 against orbital phase. The solid line shows the best fit for a circular motion. Figure

taken from Sowers et al. (1998).

stars. Hence, it became very likely that Cyg X-1 harbours a black hole. The modern esti-
mate for the mass of the black hole has recently been improved; it was previously estimated
at ' 15M� (Orosz et al., 2011), but a recalibration of the distance to the system changed
it to ' 21M� (Miller-Jones et al., 2021). About 20 other X-ray binaries in our galaxy were
thought to host a black hole on such basis. Remarkably, all their luminosities lie approxi-
mately below 1039 erg·s−1 (Corral-Santana et al., 2016), which is the Eddington luminosity
with M ' 100M� (see Eq. (1.4)). This dynamical measurement is often hard to perform, as
the secondary star can be too faint for us to detect its radial velocity.

In the 1970’s, the status of the compact object in Cyg X-1 was so uncertain that Stephen Hawking
bet against Kip Thorne that the compact object was not a black hole.

Since then, the existence of stellar-mass black holes has also been vividly demonstrated
by the detection of gravitational waves (Abbott et al., 2016). See Abbott et al. (2017) for a
pedagogical interpretation of the implications of this detection. Interestingly, efforts have
been made to infer the presence of an event horizon in stellar mass black holes being part
of X-ray binaries. Comparing the luminosity of black-hole X-ray binaries with neutron-star
X-ray binaries for similar accretion rates seems to show the following trend: black-hole X-
ray binaries are less luminous than their neutron-star counterparts (Narayan & Heyl, 2002;
McClintock et al., 2003, 2004). This would be explained naturally by the loss of material
inside the event horizon, compared to the accreting material hitting and heating the surface
of the neutron star.

1.3 The astrophysical age: supermassive black holes

A detailed history of the discovery of active galactic nuclei is given by Shields (1999).

1.3.1 Radio astronomy

We saw in the previous section how how X-ray astronomy changed our view of the sky,
and made the discovery of stellar-mass black holes possible. Similarly, the discovery of su-
permassive black holes was due in large part to the advent of radio astronomy. The first
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detection of galactic radio waves was made by Karl Janksy in 1931, in the context of transat-
lantic telecommunications. He noticed that the brightest sources were originating from the
Milky way, rather than the Solar system (Jansky, 1933). His work was followed more than
ten years later by Grote Reber, a radio amateur who looked for cosmic radio signals and
published the first radio maps of the sky (Reber, 1944), shown in Fig. 1.5 (see Kellermann
(1999) for a historical discussion on this pioneering work).

One of the brightest radio sources, Cyg A, was located in the constellation of Cygnus.
Unfortunately, because of the large wavelengths employed, radio telescopes had very poor
angular resolution. This prevented any identification of radio sources with their optical
counterparts. The discovery of radio interferometry allowed significant progress in the
1950’s, with the key realization that arrays of radio dishes could be used to increase the
angular resolution, taking advantage of the Earth’s rotation to reconstruct images. The an-
gular resolution was improved by a factor 10 to 100 in a mere decade, and the localization
of the radio source Cyg A could be probed with sufficient accuracy for the astronomers to
conduct an optical survey of the region. Walter Baade was eventually able to identify Cyg
A with a distant faint galaxy, with redshift 0.05 (Baade & Minkowski, 1954). The contrast
between the faintness of the optical emission and the intensity of the radio emission was
particularly striking. Following on this, and after another improvement of the angular reso-
lution of their radio array, Jennison & Das Gupta (1953) showed that the radio emission from
Cyg A originated from two huge lobes, symetrically disposed with respect to a central radio
source (see Fig. 1.6). Comparison with the optical data showed that the galaxy coincided
with the central radio source. This strongly suggested that the central galaxy was at the
source of the radio emission, and pointed toward a new kind of galactic activity: galaxies
do not simply emit through the combined light of their stars. These objects became known
as “radio galaxies”.

It had already been recognized by Ginzburg (1982) that galactic radio emission was likely
due to synchrotron emission from relativistic electrons (see Sec. 8.3), due to the power-law
form of the spectrum and the high degree of polarization. Inferring the distance from Earth
to Cyg A, by measuring its redshift and radio luminosity, allowed to provide an estimate
of the energy budget. Geoffrey Burbridge showed that the total energy content of the ra-
dio lobes was of the order of 1059 erg, with a power ' 1044 erg·s−1 (Burbidge, 1956, 1959).
Somehow, galaxies were able to deliver enormous outputs of energy into the intergalactic
medium, in the form of relativistic electrons and magnetic fields. The origin of this energy
was not understood at the time.

FIGURE 1.5: Lines of constant intensity in the radio sky. Figure taken from Reber (1944).
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FIGURE 1.6: Radio image at 5 GHz of the source Cyg A (Carilli & Barthel, 1996). Courtesy
of NRAO/AUI/NSF.

1.3.2 Active galaxies and the discovery of quasars

Optical astronomers had also made progress on their own in the studies of galaxies. They re-
alized that galactic nuclei were unexpectedly blue and luminous. This was seen in both spi-
ral galaxies, in the 1940’s (Seyfert, 1943), but also in elliptical galaxies in the 1960’s (Markar-
ian, 1967). The spectra of these bright nuclei was not so starlike. They showed intense and
broad emission lines, the Doppler broadening corresponding to much higher velocities than
ordinary gas motion in a galaxy. On the opposite, galaxy spectra usually display stellar
absorption lines, along with narrow emission lines from star-forming regions. Besides, the
nuclear optical continuum emission was detected to be variable on timescales of days (Fitch
et al., 1967). Theses galaxies were coined “Seyfert galaxies”, a subclass of “active galaxies”.
In visible light, they looked very much like normal galaxies, but it was later realized that the
total bolometric luminosity of their cores was of comparable intensity to the combined lumi-
nosity of the stars compounding it. These nuclei also showed signs of non-thermal activity
in radio or X-ray. There again, this new type of activity remained mysterious.

The major breakthrough came from a joint effort of radio and optical astronomers and
the discovery of quasars. Unlike Cyg A, several radio sources (3C 48 for instance) were
found to be pointlike, and remained unresolved even with the increasing angular resolution
of radio arrays. They were associated with optical sources characterized by strange spec-
tra, with emission lines at unknown wavelengths (Matthews & Sandage, 1963). Then, the
radio source 3C 273 was pinpointed with excellent accuracy at the location of an unusu-
ally bright optical source (Hazard et al., 1963). Maarten Schmidt recognized that although
the absolute wavelengths corresponded to no known element on Earth, the relative wave-
lengths matched hydrogen emission lines, but shifted with a redshift of 0.16 (Schmidt, 1963).
The cosmological origin of this redshift (due to the expansion of the universe, according to
Hubble’s law) was not immediately accepted, but no other realistic explanation came up.
To detect an optical source 2 billion light-years away from Earth was unprecedented: the
source 3C 273 was the brightest source ever found (see Fig. 1.7(a)). The previously found
pointlike sources were also found to match this pattern, with emission lines compatible with
large redshifts. Even larger redshifts were found shortly afterwards.

Those objects were named “quasars”, after their first appearance as quasi-stellar radio
sources. They resembled stars superficially, and had appeared on optical sky surveys much
sooner, but had only been investigated closely when identified with bright radio sources.
Later on, radio-quiet counterparts were discovered, and it was realized that they were much
more common than radio-loud quasars (Sandage, 1965). Systematic, large-scale searches for
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(a) (b)

FIGURE 1.7: (a) Image from the quasar 3C 273 taken with the Hubble telescope. The diffrac-
tion spikes show that the quasar is truly pointlike. Credits: ESA/Hubble. (b) Image of
the same object from Hubble Space Telescope’s Advanced Camera for Surveys (ACS) (Mar-
tel et al., 2003). The ACS’ coronograph blocks the light of the central nucleus, allowing to

visualize the quasar’s host galaxy. Credits: NASA/ESA.

quasars were performed, and the quasars’ luminosity function was computed as a function
of redshift z, and was found to match smoothly that of Seyfert galaxies at z = 0. Kristian
(1973) showed that quasars events could be found in the nuclei of galaxies by imaging the
host surrounding galaxy on optical plates (see Fig. 1.7(b) for modern data in the case of 3C
273), whereas Gunn (1971) proved that clusters of galaxies containing quasars had the same
redshift than these quasars. These gradual discoveries allowed the astrophysical community
to remove their mental block and accept the cosmological origin of quasar redshifts. They
also supported the fact that Seyfert galaxies and quasars (and, in general, all active galaxies)
could be unified under a common paradigm: a galaxy comprising an active nuclei. The
nature of the active nuclei is the subject of the next section.

1.3.3 Identification with supermassive black holes

Aside from their huge energy outputs, active galactic nuclei (hereafter, AGN) and quasars
in particular have other striking features. Their light curves in optical or X-ray display very
rapid variability, up to timescales of hours. As said earlier, this places stringent constraints
on the size of the emitting region (see Eq. (1.7)). AGN must be extremely compact. Besides,
they are found to emit radiation over a very broad range of frequencies, from the radio band
to the very high-energy gamma rays. This indicates that highly non-thermal processes are
at play. Finally, AGN involve gas motions at velocities close to c, as can be deduced from
the Doppler broadening of emission lines.

AGN must be powered by a central, compact object. Once again, the birth of this idea
owes much to radio astronomy. Indeed, it was realized that, in powerful and resolved radio
sources such as Cyg A, the central galaxy was also shining in radio. Even better, improved
radio arrays showed that a thin straight line of radio emission linked the lobes to the galaxy,
highly suggesting that it was the central radio galaxy which furnished energy to the radio
lobes (see Fig. 1.6). Energy had to originate from the compact nucleus, and be transferred to
the lobes by the means of jets carrying enormous power. From there, it became obvious that
the power supply of AGN could only be of gravitational origin, by the means of accretion
onto the central compact object. The requirements in luminosity and Doppler broadening
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could be combined to determine the masses of AGN. This analysis was performed by (Wan-
del & Mushotzky, 1986) for instance. They estimated the mass from Doppler broadening of
the lines, which yielded the typical velocity v of the moving emitting gas. The distance of
the gas to the central object r could be obtained from the ionization parameter, so that the
mass of the compact object was given by v2r/G. The inferred masses ranged from 106M�
to 109M�. The vast majority of AGN remains below the Eddington luminosity, with typical
efficiencies of 1% to 10%. What is more, mass estimates obtained from the causality con-
straints of time variability (Eq. (1.7)) pointed toward masses in the same interval. No other
alternative to black holes as the compact objects powering AGN could really pass the test of
time: either such an object could not remain stable over millions of years (supermassive star,
very dense cluster of stars), or its size would be too large to provide sufficient radiative ef-
ficiency η (see Eq. (1.3)). Lynden-Bell (1969) had put forward, as early as in 1969, that AGN
could be powered by supermassive black holes, but this was largely ignored at the time.
The discovery of X-ray binaries (see Sec. 1.2), and the slowly mounting body of observa-
tional evidence and theoretical arguments, along with the lack of viable alternatives, drove
the community to accept the supermassive black hole model (Rees, 1984). The differences
between galaxies as powerful as quasars and less luminous active galaxies is likely due to
environmental factors.

Furthermore, the huge size and impressive straightness of the jets implied that the orig-
inal power source had to remained steady for very long periods of time. This can be ex-
plained within the context of supermassive black holes. In the case where gas is accreting
toward a spinning black hole, the angular momenta of the accretion flow and the black hole
can be misaligned. Actually, the spinning black hole has the ability to warp the accretion
disk, so that in the inner regions of the flow, the tilted disk lies in the equatorial plane of the
black hole. This is called the Bardeen-Petterson effect (Bardeen & Petterson, 1975), a spe-
cial case of frame dragging by Kerr black holes (see Chap. 4). Spinning black holes behave
like stable gyroscopes. Another qualitative feature of AGN which is nicely accounted for by
black holes is their excess luminosity in the optical and ultraviolet bands (Malkan & Sargent,
1982), as shown in Fig: 1.8. We have given in Eq. (1.5) a crude estimate of the temperature of
the inner regions of an accretion disk surrounding a black hole with mass M . For a super-
massive black hole withM = 108M�, this yields T ' 105 K, so that the associated blackbody

FIGURE 1.8: Optical spectrum of the quasar 3C 273, showing a fit of the continuum emission
with a blackbody component in the UV. Figure taken from Malkan & Sargent (1982).
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spectrum peaks in the UV.
All in all, the black-hole paradigm is consistent with most observational properties of

AGN. There is an extended zoology of active galaxies, and one major challenge is to unify
their various features under the black-hole paradigm, by adjusting environmental factors
and our line of sight toward the galaxy. However, as we will see in Chap. 2, this paradigm
alone is by no means sufficient to understand the whole multi-wavelength emission from
AGN. A detailed model of AGN is still lacking, and this has been a major topic of research
in the last decades. Besides, unlike stellar-mass black holes, the origin and formation of
supermassive black holes is still an open problem. They might have formed by accretion
of matter during a billion years or so, during their active quasar phase, or by successive
mergers with other black holes (Soltan, 1982; Kulier et al., 2015).

1.4 Evidence for supermassive black holes in galactic nuclei

Direct evidence for supermassive black holes was still missing. Just like stellar mass black
holes, this was mainly by lack of a better alternative. Nevertheless, it became important
to find more direct observations of supermassive black holes, at least in the case of nearby
galaxies, to test the black hole paradigm. Since all galaxies are not active, it is interesting to
know whether even inactive galaxies harbour supermassive black holes.

1.4.1 Stellar dynamics

A general idea is to probe the dynamics of stars in galactic nucleus (Begelman & Rees, 2009).
Unlike stars in galactic disks, these move in random directions, just like stars in globular
clusters. Their formidable kinetic energy balances the pull of gravity. If a galaxy hosts a
black hole, then the stellar average speed must increase near the center. The presence of a
black hole should also increase the central concentration of stars, trapped in the black hole’s
gravitational sphere of influence. There should be an increase in starlight near the galactic
center, although this fact alone does not imply the presence of a black hole (Kormendy &
Richstone, 1995). Much information can be obtained from the spectrum of the combined stel-
lar light: the redshift of the emission lines is used to detect regular circular motion, whereas
the width of the lines is used to detect random motions and measure the dispersion in ve-
locity σ0. The cusp in the brightness generally matches the dynamical center. From these
quantities, using the collisionless Boltzmann equation for a self-gravitating system, the mass
inside a spherical region of radius r can be obtained (Longair, 2011). A crude estimate of the
mass M is provided by the virial theorem: M ' rσ0

2/G. A review of this technique, and
some associated caveats and preexisting assumptions, is given by Kormendy & Richstone
(1995). In the end, a nearly conclusive proof that the galaxy hosts a supermassive black hole
is if the mass-to-luminosity ratio increases toward the center to values which are unreach-
able by stellar clusters, and confined to radii too small for clusters of brown dwarfs or dead
stars to be stable, with central masses of a few billion solar masses.

These methods have been pioneered by Young et al. (1978) and Sargent et al. (1978) in
the case of M87. Firmer detections have followed, in M31 for example (Kormendy & Ben-
der, 1999). This technique allowed to build an extensive list of several dozen galaxies with
central massive objects believed to be supermassive black holes, bringing evidence that su-
permassive black holes are actually very common objects in galactic nuclei. Masses ranging
from millions to billions of solar masses have been inferred. This allowed to highlight a cor-
relation between the black hole’s mass and that of the galactic bulge, but also between the
black hole’s mass and the velocity dispersion of the bulge component of the galaxy (Gül-
tekin et al., 2009). This illustrates the strong influence of the black hole on its surroundings,
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although the difference in scale and mass between the central object and the bulge is enor-
mous.

1.4.2 Gas dynamics

M87 is one of the nearest elliptical galaxies, and one of the most massive in the nearby
universe, located in the constellation Virgo. Stellar dynamics measurements happened to
be very difficult in this specific case. A complementary approach was to detect gas flows
orbiting the central object, and measure their circular velocities. Ford et al. (1994) discovered
a disk of ionized gas close to the nucleus of M87 with the Hubble telescope. The jet was seen
to be parallel to the disk axis, which suggested that this disk was in the galactic plane, in
Keplerian rotation around the nucleus. Measurements of the gas velocity showed that the
nucleus hosted an object with mass ' 3× 109M�.

A caveat of this approach is that it is often hard to find tracers close enough to the dy-
namical center. Besides, gas responds more strongly to non-gravitational forces (such as
radiation pressure). Better angular resolution was obtained in the case of NGC 4258 using
water-maser emission at 1.3 cm, observed with the VLBA (Miyoshi et al., 1995; Moran et al.,
1999). Another benefit from this approach was that water-maser lines are very narrow, so
the orbital velocities of the water clouds could be determined very accurately. In this case,
so many emitting clouds have been detected that the velocity of the clouds could be plot-
ted against the distance to the center, and a Keplerian disk was found to fit the data with
exquisite precision (see Fig. 1.9). The central mass was computed to be ' 3.6 × 107M�.
The excellent quality of the fit indicates that this mass must lie within the innermost de-
tected cloud. The inferred density and compactness can only be consistent with a black
hole. Again, the radio jets emitted by this active galaxy are found to be perpendicular to
the disk plane. Unfortunately, detecting maser emission requires very specific conditions of
observation (in NGC 4258, the disk is seen almost edge-on). Overall, this method is not as
prolific as stellar dynamics.

Another method relies on the observations of broad iron lines in X-ray (Tanaka et al.,
1995). These lines, when emitted by the inner parts of the accretion disk, look asymmet-
ric and skewed, as a result of Doppler boosting and gravitational redshift (Fabian et al.,
2000). From these, it is possible to estimate the velocity of the emitting gas and the associ-
ated emission region, giving contraints on the mass contained inside that region. Iron line
diagnostics also turned out to be a powerful diagnostic to estimate the spin of black holes
for instance (Reynolds, 2020). This method depends on the presence of a geometrically thin
accretion disk (see Sec. 2.2.1).

Finally, the reverberation mapping technique allows to estimate the masses of AGN in
which “broad line regions” (BLR) are directly observable (Blandford & McKee, 1982; Peter-
son & Bentz, 2006). BLR are interpreted as gas clouds lying close to the black hole, which are
photoionized by its continuum light. Their velocities are quite large (' 106 m·s−1), resulting
in broad emission lines. Reverberation mapping consists in measuring the light travel time
between the central object and the BLR. Because the intensity of the continuum varies on
timescales of a few days, these variations are later echoed by the BLR. The measured time
delay can be converted into the distance from the black hole to the BLR. Combining this
with the line-of-sight velocity of the BLR, one can obtain the mass of the central object using
techniques similar to those described in Sec. 1.4.1. This method is superior to the stellar
dynamics measurements, in that it probes much more compact regions (about 103 rg).
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FIGURE 1.9: Line-of-sight velocity of the emitting clouds against distance along the major
axis. The continuous line shows the Newtonian prediction for a central point mass of 3.6×

107M�. Figure taken from Miyoshi et al. (1995).

1.4.3 Modern perspectives

For a long time, despite these estimates, the firmest proof of the existence of black holes
remained the high mass of the companion on X-ray binaries. In the 1990’s, however, obser-
vations of individual stellar trajectories in the Galactic center confirmed the presence of a
supermassive black hole at the center of our Galaxy (Genzel et al., 2010). The motions and
emission properties of the stars in the intense gravitational field of the black hole were con-
firmed by the GRAVITY collaboration (Gravity Collaboration et al., 2018b, 2020a). This will
be described in more detail in Sec. 2.3.1. More recently, in 2019, the Event Horizon Telescope
was able to observe the shadow a the supermassive black hole in the M87 galaxy, providing
spectacular evidence in favor of supermassive black holes in galactic nuclei. More details
will be given in Sec. 2.2.4.

In a relatively near future, ESA plans to launch the first space-based gravitational wave
observatory: LISA (Amaro-Seoane et al., 2017). This mission will broaden the range of mea-
surable gravitational wave frequencies. LISA should have a high sensitivity from 10−4 Hz
to 10−1 Hz. This is complementary with the current ground-based observatories LIGO and
Virgo, which are sensitive to higher frequencies, and are consequently more suited to the
study of stellar-mass black hole mergers. In particular, LISA should be sensitive to the late
stages of supermassive black holes inspirals, which will give insight into the formation and
evolution of supermassive black holes (Katz et al., 2020).



Chapter 2

Multi-wavelength observations of su-
permassive black holes

In this section, we review some important properties of AGN cores and jets, with a focus on
two of the most studied examples: M87* and Sgr A*. The main questions arising from these
observations are summarized in Sec. 2.5.

Active galaxies represent about 10% of all galaxies. Their defining characteristic is their
broad spectral energy distribution (SED) (Elvis et al., 1994), from radio to gamma rays, as-
sociated with strong variability. This is very much unlike non-active galaxies. An exhaus-
tive review of their observational properties can be found in Padovani et al. (2017). Fo-
cusing first on luminous, “regular” objects, AGN emit roughly equal amounts of energy
in each frequency range. All other things being equal, their radio emission can vary by
more than two orders of magnitude, defining the two classes of radio-quiet and radio-loud
objects. The radio emission is of synchrotron origin. The infra-red emission can often be
interpreted as thermal radiation from dust which is ionized by the UV light emitted by the
nucleus (Hughes et al., 1993). Their large UV flux probably comes from an optically thick
accretion disk. Besides, almost all AGN are found to emit significantly in X-ray. The primary
process is thought to be inverse Compton scattering of photons emitted by an accretion disk
by a population of relativistic electrons, located in a “corona” (Haardt & Maraschi, 1993),
which might be powered by magnetic reconnection (Beloborodov, 2017). This X-ray emis-
sion can be reprocessed on the accretion disk. The X-ray luminosity is found to be strongly
correlated with the accretion-disk emission (Lusso & Risaliti, 2016), illustrating a physical
relation between the X-ray emission mechanism and the accretion disk. The gamma-ray
emission will be described in more detail in Sec. 2.4. Beyond these generalities, AGN come
in very different flavours and have given rise to a rich phenomenology.

By convention, if M87 denotes a particular galaxy, M87* refers to the compact object at its core.

2.1 Observations of jets

Yet another small fraction (less than 10%) of active galaxies are radio-loud, betraying the
presence of a jet (Padovani et al., 2017). All galaxies are sources of radio emission, but radio
galaxies and radio quasars can outmatch regular galaxies by eight orders of magnitude in
this waveband. The powerful radio emission is due to the emission of powerful jets, colli-
mated outflows of matter and electromagnetic fields at relativistic velocities. An excellent
review of observational jet properties can be found in Blandford et al. (2019).

Kinetic jet powers can be obtained, for example, by estimating the age of the radio lobes
and the energy stored in them (Rawlings & Saunders, 1991; Reynolds et al., 1996). Sev-
eral other techniques are described in Prieto et al. (2016). Jet powers are often found to
be of the same order of magnitude than the total bolometric luminosity of the AGN. For
radio-loud objects which are known to display jets, the radio luminosity traces the jet ki-
netic power. Indeed, a correlation between the jet power or the radio luminosity and the



2.1. Observations of jets 19

bolometric luminosity (a proxy for the latter being the infra-red or the X-ray luminosity)
has been found (Rawlings & Saunders, 1991; Merloni et al., 2003; Fernandes et al., 2011),
indicating a physical relationship between the jet power and the accretion power. This is
the accretion-ejection paradigm, a connection between the disk and the jet (this relationship
extends to stellar-mass black holes in X-ray binaries). The jet power still has to be greater
than its associated radio luminosity, otherwise it would quickly decelerate instead of power-
ing radio lobes. Jets can remain very stable when propagating on distances of several Mpc.
They can show complex sub-structures. For example, the jet from M87 extends up to 100 kpc
but has structure below the parsec (see Fig. 2.2(a)). Measurements of transverse gradients
in Faraday rotation in jets provided supporting evidence for toroidal magnetic field in the
jet (Wardle, 2018), implying that strong poloidal currents flow through the jet.

A very important feature of jets from AGN is that the gas moves at relativistic bulk
velocities. This is inferred from the two following striking observations.

I Although some jets have two symmetrical components, as the one in Cyg A, some jets
are one-sided. More specifically, the counter-jet is much dimmer than the direct jet. A
prominent example is the jet from M87, at any observation frequency (see Fig. 2.2(a)
and 2.2(b)).

I In some jets, sub-structures seem to move at superluminal velocities (see Fig. 2.2(c)).
The apparent velocity is measured using the distance to the active galaxy, estimated
by the redshift if the galaxy. Apparent velocities up to ' 40 c have been observed.

It is unlikely that one-sidedness should be a generally intrinsic feature of jets. More
likely is that this is a consequence of relativistic beaming (see the box in the next page),
which enhances the intensity of radiation emitted from matter moving toward the observer
at relativistic speeds. A neat confirmation of this model was provided by the realization that
in radio galaxies, the direct jet shows less depolarization by the ambient medium than the
counter-jet (Laing, 1988; Garrington et al., 1988). This shows that the brighter jet is always
the one coming toward us, disproving the one-jet hypothesis.

Superluminal expansion is also an aberration effect, occurring when the emitting region
moves at relativistic velocities with a low angle with respect to our line of sight. Relativistic
motion had first been invoked by Rees (1966) to explain very high brightness temperature in
some AGN, and was later confirmed by the discovery of superluminal motion in the quasar
3C 273 using VLBI (Pearson et al., 1981). With time, it became possible to make a statistical
survey of superluminal sources (Cohen et al., 2007), showing that superluminal motion is
a common feature of AGN, and inferring relativistic outflows (with an upper bound on
the bulk Lorentz factor ' 50). These considerations have given credit to the unification
schemes, namely the idea that all AGN essentially contain an accreting supermassive black
hole surrounded by a torus of dust. AGN observed with different viewing angles can have
very different appearences.
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Special relativistic effects

Consider an emitting blob at a great distance, moving with velocity V = βc and
Lorentz factor Γ =

(
1− β2

)−1/2 � 1, ejected with some angle θ with respect to our
line of sight. The apparent velocity, projected on a plane perpendicular to our line of
sight, is (Longair, 2011)

βapp = β
sin θ

1− β cos θ
(2.1)

The maximum apparent velocity is Γβ, for cos θ = β. Thus, for ultra-relativistic mo-
tion and a small viewing angle, one can perfectly have βapp � 1 (see Fig. 2.1(a)).

Another important special relativistic effect is the Doppler beaming. Let us define
the beaming factor

δ =
1

Γ (1− β cos θ)
. (2.2)

In the following, primed quantities refer to the measurements performed by the ob-
server, and unprimed quantities to the properties in the emitter’s frame. The fre-
quency ν of the emission is Doppler-shifted according to ν ′ = δν, and the intensity
(power per unit frequency and solid angle) is transformed as I ′ = δ3I . Therefore, in
the simple case where the emitted spectrum is flat, the counter-jet is dimmer than the
direct jet by a factor ((1 + β cos θ) / (1− β cos θ))3. For cos θ & β, which is equivalent
to having θ . 1/Γ � 1, one has 1 ≤ δ ≤ 2Γ, whereas one has δ ' 1/Γ outside of this
interval. This is illustrated in Fig. 2.1(b).

Similarly, special relativistic effects can affect estimates of the size due to causality
constraints. The typical timescale in the emitter’s frame ∆t′ is related to the observed
variability timescale ∆t by ∆t′ = δ∆t. Therefore, the size R of the emitting region is
constrained to be smaller than c∆t′ = δ (c∆t), relaxing the constraint on the size by
a factor δ. Note that for a source at cosmological distance, with redshift z, the size
estimate becomes R ≤ δ (c∆t) / (1 + z).
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FIGURE 2.1: Apparent velocity βapp (a) and beaming factor δ (b) as a function of the view-
ing angle θ, for various values of Γ. In the left panel, the shaded region corresponds to

superluminal apparent motion.
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(a) (b) (c)

FIGURE 2.2: (a) Image of the M87 galaxy taken with the Hubble telescope. Credits:
NASA/ESA. (b) Radio image of the jet emerging from the radio galaxy 3C 31. Credits:
NRAO/AUI/NSF. (c) Radio image of the jet from the quasar 3C 279, over a six-year period.

A blob moves at apparent superluminal speed. Courtesy of NRAO and AUI.

In the case of M87, the jet can be observed in the optical, UV, X-ray and radio-mm bands
(see Fig. 2.2(a)). It is one-sided because of relativistic beaming. The jet is limb-brightened,
with a spine-sheath structure: a mildly relativistic layer envelops a relativistic, accelerat-
ing core jet (Walker et al., 2018). It makes an angle θ ' 18◦ with respect to our line of
sight (Mertens et al., 2016; Walker et al., 2018). The jet was tracked down to less than
7 rg (Kim et al., 2018), suggesting that the supermassive black hole at the center must be
powering the jet. Besides, proper motions of sub-structures show that the acceleration is
steady from the core to about 105 rg, where a stationary knot is observed (HST-1) (Asada
et al., 2014; Mertens et al., 2016). Downstream of this knot, the jet slowly decelerates. The
large bulk Lorentz factors of jets are not reached at a short distance from the black hole, but
rather result from a steady accelerating process. This suggests that the jets are initially elec-
tromagnetically dominated (Poynting-dominated), and that this electromagnetic energy is
dissipated and converted into kinetic energy (Mertens et al., 2016). Such arguments require
relatively low initial mass loading to explain the high terminal velocities of the jets. This
argument is in line with what happens in pulsar nebulæ: an initially Poynting-dominated
wind is dissipated before the termination shock (Kirk et al., 2009).

There exists an important difference between the the two situations. In pulsar winds, the flow
propagates spherically, basically unimpended, and converts most of its energy into particle ther-
mal energy (Cerutti et al., 2020). The acceleration of the pulsar wind is due to ideal processes. In
jets, the interaction of the outflow with the ambient medium cannot be neglected, and probably
contributes to the jet collimation. Electromagnetic energy is mainly converted into bulk kinetic
energy (Lyubarsky, 2009).

2.1.1 Launching mechanism

The launching mechanism is a question of utmost importance. Jets are also found in pro-
tostellar systems or microquasars (X-ray binaries with jets imaged in radio), advocating for
a common formation mechanism. The necessary ingredients seem to be an accretion disk
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threaded by an ordered, large-scale, poloidal magnetic field, and/or a central compact spin-
ning object. Such poloidal fields have been seen to build up in the inner regions in nu-
merical general relativistic magnetohydrodynamics (GRMHD) simulations, starting from
initial poloidal field configurations (Tchekhovskoy et al., 2011) or toroidal field configura-
tions (Liska et al., 2020). A first possibility is that the jet is powered by accretion itself,
following a “magnetocentrifugal” mechanism (Blandford & Payne, 1982; Lesur, 2020). If the
plasma in the accretion disk is sufficiently ionized, magnetic field lines are dragged by the
differential rotation of the Keplerian disk. Considering initially vertical field lines, a radial
component is induced by inwards radial accretion, which generates a toroidal component
at the disk surface when this radial magnetic field is sheared. The toroidal magnetic field
removes angular momentum from the disk, which is then progressively used to accelerate
an outflow. As the toroidal field is exhausted in this process, a gradient of toroidal magnetic
pressure forms, pushing the outflow vertically. It is the magnetic torque exerted on the disk,
due to the Lorentz force, which brakes the disk and allows radial accretion by removing
angular momentum. In this picture, the disk acts like a dynamo, generating a system of
electric currents which extracts energy and angular momentum from the disk. More will be
said about this analogy in Sec. 7.2.3. The luminosity that can be produced by this process
can account for the luminosities of AGN (Livio et al., 1999). In this framework, the energy
is transported in the form of a magnetically driven wind. The energy output is originally
coming from the accreting material, and the luminosity of the disk cannot exceed ηṁc2.

On the other hand, independent estimates of the jet power and bolometric luminosities
seem to indicate efficiencies η of order 1 (Rawlings & Saunders, 1991; Ghisellini et al., 2010;
Fernandes et al., 2011; Ghisellini et al., 2014). In other words, the power of the jet exceeds
ṁc2 (see Fig. 2.3). This can only occur if there is another source of energy. However, a non-
spinning black hole has η < 10% and cannot accommodate such high efficiencies. Hence,
there must be another energy reservoir. Besides, observations of X-ray spectra in Seyfert

FIGURE 2.3: Jet power plotted against the accretion power for a sample of 217 blazars. The
accretion power assumes an efficiency of 30%. The different symbols correspond to different
ways of measuring the disk luminosity. The black line is the best fit, and the yellow stripe

corresponds to equal jet and accretion powers. Figure taken from Ghisellini et al. (2014).
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galaxies have also suggested that a central, compact source of X-rays should illuminate the
disk (Wilms et al., 2001), which is inconsistent with a pure accretion disk model. This points
toward the central object providing some extra power.

In the following, the “magnetosphere” of a compact object refers to the inner, magneti-
cally dominated regions in the close vicinity of this object. In the case of a black hole, the
magnetic field must be generated by external currents in the accretion flow and cannot be
supported by the black hole itself (we will come back to this point later). It has been pro-
posed by Blandford & Znajek (1977) that energy can be extracted from a spinning black
hole threaded by a poloidal magnetic field, and embedded in a force-free magnetosphere.
The electrodynamics of black-hole magnetospheres and the derivation of the Blandford-
Znajek mechanism will be the main focus of Chap. 6 and 7. In this second paradigm, the
jet is powered by the central compact object rather than the disk. A priori, this would mean
that the accretion disk and the jet would have different energy sources, decoupling them in
some sense, and contradicting the aforementioned correlation between the jet and accretion
power. But the extraction of energy requires a magnetic field, which can be generated by
dynamo, so that accretion ultimately provides the necessary means for the rotational energy
to be extracted. Such a jet would initially be Poynting-dominated, which is consistent with
the picture of a jet slowly converting its electromagnetic energy.

Currently, it is still a very lively debate whether jets are disk-driven or black hole-driven.
Finding a correlation between the spin of the black hole and the power of the jet would help,
but measurements of black-hole spins are still very uncertain. Another idea would be to
probe the matter content of the jets. The Blandford-Znajek mechanism is electromagnetically
dominated, with initially just enough charges to screen the electric field. The charge loading
of the jet is expected to be the result of electron/positron pair creation by photon-photon
annihilation. Henceforth, conversion of electromagnetic energy would also result in a mass
loading of the jet with fresh pairs. Conversely, in the Blandford-Payne model, the mass of
the jet should mainly be carried by protons. Unfortunately, this question is not settled.

One approach is to estimate the kinetic power of the jet. At fixed jet power and bulk
Lorentz factors, a change in the matter composition can change the required plasma den-
sity in the jet by two orders of magnitude. Constraints imposed by the radio luminosity
then allow to discriminate between the two. Using such arguments, Reynolds et al. (1996)
made the case for an electron/positron jet in M87, whereas Celotti & Fabian (1993) rather
favored an electron/proton jet. The latter would require that the population of synchrotron-
emitting electrons should have a very high cut-off at low energies (γmin & 100) otherwise
the jet would have too much kinetic energy. On the other hand, in the case of an electron/
positron jet, the pair spectrum can extend down to mildly relativistic energies (γmin & 1).
Unfortunately, the lowest energy leptons are not directly observable, because their radiation
is self-absorbed. Another approach was taken by Wardle et al. (1998), who noted that the
strong linear polarization observed in jets limits the amount of Faraday rotation suffered
by the synchrotron emission, which is mainly due to low-energy electrons. This provided
a way to determine the low-energy cut-off of the emittting population and discriminate
between the two models. They measured the fraction of circularly polarized radiation, pre-
sumably produced by Faraday conversion of linear polarization. In the case of the quasar
3C 279, they found that the distribution of radiating particles extended to ' 1, implying an
electron/ positron jet. Hirotani et al. (1999) confirmed this prediction by kinetic arguments
similar to those of Reynolds et al. (1996). However, the debate is still open, and there are
sound arguments against pure electron/positron jets (Sikora & Madejski, 2000). Obviously,
it is very likely that both processes operate. For instance, the dense magnetically driven
wind of electron/proton plasma could be responsible for the collimation of the tenuous pair
plasma jet. This is the two-flow model originally advocated by Sol et al. (1989) and Henri &
Pelletier (1991).
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2.2 The case of M87*

2.2.1 Low-luminosity AGN

The M87 galaxy, first mentioned in Sec. 1.4.2, hosts one of the most massive known black
holes, of several billion solar masses. It is a prominent radio source. What is more, it
shows spectacular activity, with a one-sided jet visible in optical and radio, and non-thermal
emission from the nucleus. But despite its huge mass and activity, M87* radiates at a
low rate with respect to its associated Eddington luminosity. Its bolometric luminosity is
LM87 ' 1042 erg·s−1 (Owen et al., 2000; Prieto et al., 2016), so that we haveLM87/LEdd ' 10−6

forM ' 109M�. This issue was first raised by Fabian & Canizares (1988). One of the reasons
invoked to explain this low luminosity is an accretion rate much smaller than the Eddington
accretion rate ṁEdd, defined as

ṁEdd =
LEdd

ηc2
. (2.3)

For a black hole with radiative efficiency η ' 10%, this represents the maximum accretion
rate, beyond which the luminosity is larger than the Eddington luminosity. In the case of
active galaxies, accretion should at least occur by interstellar gas falling toward the central
black hole. The minimal accretion rate should thus be given by the Bondi accretion rate (see
the block below).

Bondi accretion

The simplest model of accretion onto a compact object of mass M is the Bondi ac-
cretion (Bondi, 1952), which assumes spherical accretion of a uniform fluid at rest at
infinity, in a hydrodynamical description. With these hypotheses, up to a numerical
factor of order 1, accretion should occur at the Bondi accretion rate, given by

ṁB =
ρG2M2

c3
s

, (2.4)

where ρ is the mass density at infinity, and cs the sound speed at infinity. Accretion be-
comes supersonic from the Bondi radius rB = 2GM/c2s . The Bondi radius is generally
considered as the boundary of the accretion flow: below this radius, the gravitational
pull is stronger than the adiabatic expanding motion of the medium.

Chandra observations of M87 in X-ray were able to probe the gas temperature and den-
sity profiles at the Bondi radius rB ' 230 pc. The X-ray emission from this hot gas is thought
to be thermal Bremsstrahlung. The Bondi accretion rate was estimated at ṁ ' 0.1M�/year '
10−4ṁEdd (Di Matteo et al., 2003). This is the rate of mass that is a priori supplied to the ac-
cretion flow. With a canonical radiative efficiency of ' 10%, this would yield a luminosity
of 1044 erg·s−1, which is still much higher than the actual bolometric luminosity of M87.

These results prompted the community to believe that the radiative efficiency of the ac-
cretion flow was smaller than expected. They searched for accretion flow solutions depart-
ing from the standard picture of geometrically thin, optically thick disks, which can only be
applied successfully to luminous sources accreting close to their Eddington accretion rates.
A huge literature has been devoted to sub-Eddington radiatively inefficient accretion flows
(RIAF), prime examples of which being advection-dominated accretion flows (Narayan &
Yi, 1994, 1995; Reynolds et al., 1996), adiabatic inflow-outflow solutions (Blandford & Begel-
man, 1999) or convection-dominated accretion flows (Quataert & Gruzinov, 2000b). See Yuan
& Narayan (2014) for a review on hot accretion flows. The underlying principle is that in
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usual geometrically thin accretion disks (Shakura & Sunyaev, 1973), the accreting material
can cool efficiently, so that all energy liberated by dissipative interactions can be radiated
locally. In the opposite case, the gravitational potential energy must be stored as thermal en-
ergy, and the cooling cannot keep up with the heating (Quataert, 2003). This results in very
hot accretion flows, which have a tendency to expand vertically until they are geometrically
thick. Pressure forces become more important and the flow is no longer Keplerian; accretion
occurs almost spherically. Thermal energy is advected toward the horizon.

It is also possible that all the mass accreting through the Bondi radius does not end up in
the black hole’s close environment. This means that the accretion rate must be considered as
a function ṁ(r) of radius, decreasing with decreasing r. As it happens, the Bondi estimate
neglects the angular momentum of the infalling gas, which can very well be ejected by
outflows beforehand. That way, the mass accretion rate can be much lower than the initial
lower bound ṁB. In that case, the plasma is so underdense that it is unable to convert its
gravitational potential energy efficiently. So little interactions occur that the flow cannot
become an optically thick disk, so that RIAF models should apply. In any case, determining
the actual accretion rate onto the compact object is crucial in the prospect of discriminating
between the different types of RIAFs. Numerical simulations of rotating RIAFs show that
the hypothesis of an extremely low accretion rate is closest to the truth: little mass available
at large radii (i.e. at the Bondi radius) actually accretes onto the black hole (Stone et al., 1999;
Stone & Pringle, 2001).

In the case of M87, estimates of the accretion rate toward closer regions than the Bondi
radius could be obtained recently. Prieto et al. (2016) find an accretion rate in quiescence
ṁ ' 10−4M�/year, using the spectral energy distribution (SED) of M87, whereas Kuo
et al. (2014) constrain the mass accretion rate to be less than 10−3M�/year at a distance
of ' 40 rg from the black hole, using Faraday rotation measurements in order to probe the
electron density and the magnetic field component along the line of sight (as first suggested
by Quataert & Gruzinov 2000a). This confirms the results of the numerical experiments
mentioned previously. All in all, the accretion flow around M87 is most likely geometri-
cally thick, optically thin, with a mass accretion rate much smaller than the Bondi estimate.
Accretion rate measurements in AGN are hard to conduct; there are only a few AGN close
enough for us to resolve the Bondi radius. Aside from M87, the Bondi radius could also be
resolved in Sgr A* (see Sec. 2.3.2), NGC 3115 (Wong et al., 2011) and NGC 1600 (Runge &
Walker, 2021). These observations all tell the same story: the mass accretion rate at the Bondi
radius is much lower than the Eddington accretion rate, and the density profile below the
Bondi radius shows that the accretion rate is probably even smaller at the event horizon.

2.2.2 Spectral energy distribution

Interestingly, low-luminosity AGN lack a “blue bump” excess at UV wavelengths (Ho,
1999), which we had interpreted as the blackbody spectrum radiation from an optically
thick accretion disk. This supports the fact that low-luminosity AGN are surrounded by ge-
ometrically thick accretion flows. In low-luminosity AGN, due to their very high brightness
temperature, it was realized that the radio core emits synchrotron self-absorbed emission
(see the block in the next page) (Blandford & Königl, 1979; Ho, 1999).
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Synchrotron self-absorbed radiation

If synchrotron emission is emitted by a population of a power-law distribution of rel-
ativistic leptons, with the number density of leptons of Lorentz factor γ being ∝ γ−p,
the spectrum of the combined synchrotron emission also follows a power-law, so that
the SED reads Fν ∝ ν−(p−1)/2 (Rybicki & Lightman, 1986). In the optically thin regime,
this emitted spectrum equals the observed spectrum. However, this cannot be the
case for abitrarily low frequencies. The synchrotron emission process necessarily
comes with its inverse absorption process: synchrotron self-absorption. At low en-
ergies, as a photon propagates through the synchrotron-emitting magnetized lepton
plasma, it may be absorbed by this reverse process. Therefore, all emitted synchrotron
radiation does not reach the observer.
One can show that the synchrotron absorption cross section increases with increas-
ing wavelength λ (i.e. decreases with increasing frequency ν). For a given size of the
source, at sufficiently low energies, the synchrotron emission is actually completely
“thermalized”, and the source is in an “optically thick” regime. As the observing fre-
quency increases, photons coming from deeper and deeper regions are able to escape,
until the optically thin regime is reached and we recover the power law distribution
∝ ν−(p−1)/2.
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In this optically thick regime, one can
show that the energy spectrum of the
source follows the power-law Fν ∝
ν5/2 (Longair, 2011). The spectrum rises
steeply at low frequencies, until the mean
free path of the synchrotron photons be-
comes greater than the size of the source
at frequency νabs. The typical radio spec-
trum of synchrotron self-absorbed sources
with a power-law electron distribution is
shown in the figure on the right for p = 2.

FIGURE 2.4: Simultaneous SED of the core region of M87. Note that for the millimeter and
radio emission, the size of the resolved emission zone varies with observing frequency, and

is labeled on the data points. Figure taken from Algaba et al. (2021).
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SEDs of the cores of low-luminosity AGN are hard to study because of contamination
by the host galaxy. The one from the core of M87 is shown in Fig. 2.4 (Algaba et al., 2021).
The transition between the optically thick and optically thin synchrotron regime happens
for wavelengths close to 1 mm (frequencies close to 100 GHz).

2.2.3 The radio core of M87

Recent advances in VLBI have allowed to study the jet with superb resolution, down to
the radio core. Observations have been performed with increasing frequency, starting from
the GHz range, probing the synchrotron self-absorbed emission. With increasing frequency,
one transitions from the optically thick to the optically thin regime, and the photosphere
becomes more and more compact. At νabs, the radio core becomes entirely optically thin.
Thus, increasing the frequency allows to probe regions that are closer and closer to the event
horizon of the black hole, along with a better angular resolution. A montage illustrating
this fact is shown in Fig. 2.5. The structure of the radio core has been studied at various
wavelengths using VLBI by Mertens et al. (2016), Walker et al. (2018) and Kim et al. (2018).

Given a model for the geometry of the jet, a central prediction from the synchrotron
self-absorbed nature of the emission is that the location of the radio core should depend on
the observing frequency (Blandford & Königl, 1979). At a given frequency, the core emis-
sion corresponds to the photosphere of the synchrotron self-absorbed emission, so that the
central engine is shifted from the radio core. This shift should decrease at increasing fre-
quency, transitioning to an optically thin regime, and the radio core should move toward
the jet’s upstream side, to the central engine. This core-shift effect was observed by Hada
et al. (2011), and is represented in Fig. 2.6. In particular, Hada et al. (2011) showed that the
core position converges at increasing frequency, so that it should coincide with the central
engine at millimeter wavelengths. See Algaba et al. (2021) for more recent observations.

2.2.4 The shadow of M87

We have come to the conclusion that the emitting region close to the event horizon of the
black hole could be imaged with VLBI, provided observations were performed at millimeter
wavelengths and with sufficient angular resolution, with sufficiently long baselines. Those
two objectives were reached by the Event Horizon Telescope (EHT) Collaboration. The su-
permassive black hole M87* is one of the largest known and happens to be close to us.

FIGURE 2.5: Images of the jet from M87 at increasing frequency, from the outer lobes to the
smallest scales, taken at λ = 90 cm, 20 cm, 20 cm, 7 mm and 3 mm respectively. Image taken

from Blandford et al. (2019).
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FIGURE 2.6: (a) Position of the radio core for increasing frequency, superimposed on the
emission map at 43 GHz. (b) Right ascension offset from the core at 43 GHz, as a function
of frequency. The dashed line shows the asymptotic behavior of the best fit. Figures taken

from Hada et al. (2011).

Consequently, its angular size is the largest in the sky, which made it an ideal target for the
EHT observation campaign. They gathered an array of telescopes throughout the globe ob-
serving at 1.3 mm, allowing them to reach an angular resolution of ' 20 µas (Event Horizon
Telescope Collaboration et al., 2019a).

At the event horizon scale, general relativistic effects become important in determining
the properties of the emission. If a black hole is embedded in an optically thin accretion
flow, it is expected that the black hole should cast a “shadow”, such that a central dark
region would appear in the image formed by an observer at infinity (Luminet, 1979; Falcke
et al., 2000). Light emitted by the flow is gravitationally lensed by the black hole. The shape
of this shadow is not expected to depend much on the black hole’s spin or the details of the
accretion flow (see Sec. 14.3.2 for more details). In the simple case of a Schwarzschild black
hole with radius rs = 2rg = 2GM/c2, surrounded by a spherically symmetric accretion flow,
the shadow comes with a bright emission ring, located at

rph =
√

27rg ' 5.2
GM

c2
. (2.5)

This expression is derived in the Appendix 14.A. Modern mass measurements by stellar and
gas dynamics were in a slight tension, with respective estimates of 6.6 × 109M� (Gebhardt
et al., 2011) and 3.5 × 109M� (Walsh et al., 2013). Combined with the distance to M87 D '
16.8 Mpc, this yields an expected angular size θph = 2rph/D of the emission ring seen from
Earth between 20 and 40 µas. Thus, provided the mass of M87* lies closer to the higher
estimate than the lower, the EHT has sufficient resolution to image the black hole shadow.

The image obtained by the EHT is shown in Fig. 2.7(a). The central compact radio source
of M87 is resolved, and shows a circular ring of emission with a diameter (42± 3) µas, which
encompasses a depression in brightness. The asymmetry of the ring is likely due to Doppler
boosting of material orbiting the black hole. The resolution is too low to make strong tests
of general relativity or accretion flow models (see Event Horizon Telescope Collaboration
et al. (2019b) for a discussion and Vincent et al. (2021) for images of hot accretion flows in
alternative metrics). The inferred mass is M = (6.5± 0.7)× 109M�, closer to the stellar dy-
namics estimates (Event Horizon Telescope Collaboration et al., 2019c). This image makes
a strong case for a supermassive black hole at the core of M87. In 2021, the EHT collab-
oration released polarized data (Event Horizon Telescope Collaboration et al., 2021a,b), a
significant linear polarization fraction being expected due to the synchrotron nature of the
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(a) (b)

FIGURE 2.7: (a) Image of M87* from the observations of April 11, 2017, in units of brightness
temperature. The circle shows the angular resolution. Image adapted from Event Horizon
Telescope Collaboration et al. (2019a). (b) Same image in gray scale, with ticks showing
the direction of the electric vector position angle. The tick color indicates the amplitude of
the fractional linear polarization, whereas the length indicates the amplitude of the linear

polarization. Image adapted from Event Horizon Telescope Collaboration et al. (2021a).

emission. This showed that the magnetic field structure in the emitting region is predomi-
nantly poloidal, implying that magnetic fields should be dynamically important. They were
also able to obtain estimates of the electron density, mass accretion rate and magnetic field
B ' 10 G in this region.

2.3 The center of the Milky way: Sgr A*

2.3.1 Astrometry at the Galactic center

Obviously, the closest galactic nuclei is at the center of the Milky Way, located in the con-
stellation Sagittarius at a distance of 8.2 kpc from Earth, and it has been studied extensively
at all wavelengths. Since our Solar System lies in the Galactic plane, the optical and UV
light from the Galactic center is obscured by gas and dust. However, we can still get a plain
view in radio, infra-red and X-ray. The Galactic center turns out to be a crowded place, with
a dense nuclear cluster of stars, radio-emitting filaments and plumes of X-ray, all of this
embedded in the large scale Galactic bulge. At the dynamical center of the Milky Way (de-
termined with infra-red measurements) lies a compact and variable radio source dubbed Sgr
A*, which shows practically no intrinsic motion (Reid et al., 1999; Reid & Brunthaler, 2004,
2020). Gas dynamics (Lacy et al., 1980) and stellar dynamics (Genzel et al., 1996; Haller et al.,
1996) suggested the presence of a supermassive black hole of about 3×106M�, but the bolo-
metric luminosity of Sgr A* was extremely low, casting doubt on the black hole hypothesis.

Eventually, progress in adaptive optics made it possible to track the motions of individ-
ual stars close to the Galactic center (Ghez et al., 2000; Gillessen et al., 2009). This showed
that the motion of the most central stars seemed to be caused by a high concentration of
mass whose location is coincident with the radio source Sgr A* (see Fig. 2.8(a)). One star
(S2), in particular, showed a highly elliptical orbit with a short orbital period (' 15 years)
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FIGURE 2.8: (a) Stellar orbits in the vicinity of Sgr A*. Image taken from Gillessen et al.
(2009). (b) Projected orbit of the star S2 and position of the radio source Sgr A*. Image

adapted from Gravity Collaboration et al. (2018b).

observable on a lifetime scale, as can be seen in Fig. 2.8(b) (Schödel et al., 2002). The distance
of closest approach of this star to Sgr A* was measured to be 5× 10−4 pc ' 200 rg. The low
luminosity of the nucleus, its high mass and compactness are strongly indicative of the pres-
ence of a supermassive black hole. New instruments, such as GRAVITY, have used interfer-
ometry techniques in addition to adaptive optics to improve the resolution even more and
probe general relativistic effects in the S2 orbit (Gravity Collaboration et al., 2018b, 2020a).
An exhaustive review of the search for a supermassive black hole at the center of the Milky
Way can be found in Genzel et al. (2010).

2.3.2 Quiescence

The material accreted by Sgr A* probably originates in the stellar winds of central mas-
sive stars. The bolometric luminosity of Sgr A* is LSgrA∗ ' 1036 erg·s−1. The emission
is predominant at radio and infra-red wavelengths (Genzel et al., 2010). For a black hole
with mass M ' 4.3× 106M�, this means that the ratio of its luminosity to its maximum
Eddington luminosity is extremely low: LSgrA∗/LEdd ' 10−8. This classifies Sgr A* as an
(extremely) low-luminosity, almost quiescent AGN (see Sec. 2.2.1). Just like in the case of
M87*, accretion through the Bondi radius was estimated using X-ray data, yielding ṁ '
10−6M�/year (Baganoff et al., 2003). With this mass accretion rate and a canonical radiative
efficiency η ' 10%, the expected luminosity is much higher than the actual luminosity. Mea-
surements of Faraday rotation by Marrone et al. (2007) and Goddi et al. (2021) restricted the
accretion rate to even lower values (around 10−8M�/year). Again, the angular momentum
of the inflowing gas and outflows prevents all the gas accreting through the Bondi radius to
make it to the black hole.
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FIGURE 2.9: SED of Sgr A*. In X-ray, the quiescent and flaring emission are both shown.
Image taken from (Gravity Collaboration et al., 2020b).

The SED of Sgr A* is shown in Fig. 2.9; it is typical of low-luminosity AGN and similar
to that of M87*. Despite its faintness and the interstellar extinction, Sgr A* is detectable at
all times in radio, infra-red and X-ray. The X-ray emission has a spatial extent of roughly the
Bondi radius. The radio spectrum is due to synchrotron self-absorbed emission emitted by
thermal electrons; it peaks at sub-mm wavelengths and is partly linearly polarized.

Observations of Sgr A* are made harder by interstellar scattering, which needs to be
corrected. Radio interferometry at millimeter wavelength has resolved the radio core: it is
extremely compact, of the scale of the event horizon (Doeleman et al., 2008). At these wave-
lengths, just like in the case of M87*, the regions closest to the event horizon are probed.
The low luminosity, mass and compactness of Sgr A* have been used to infer the presence
of an event horizon (Broderick et al., 2009). If the central compact object possessed a hard
material surface, matter accreting from larger radii would deposit all its energy on the sur-
face, which would produce unseen blackbody radiation peaking in the infra-red. Besides,
a preliminary, incomplete version of the EHT array observed polarized emission from Sgr
A* (Johnson et al., 2015). They measured significant polarization fractions remaining stable
in time, suggesting the existence of ordered magnetic fields in the vicinity of Sgr A*, with
intensity ' 10 G. Given the mass M ' 4.3× 106M� of the supermassive black hole, its an-
gular size in the sky is θ ' 20 µas, which makes it of comparable size as M87*. Sgr A* was
also a target of the 2017 EHT observation campaign; however the variability of Sgr A* is
much more pronounced than that of M87*. As a result, it is harder to interpret the recorded
data, taken with exposure times & rg/c.

2.3.3 Variability and flares

Sgr A* shows stochastic variability in radio and infra-red, with fluctuations described by a
red noise. More importantly, it exhibits strong flares, where the intensity can increase by
factors of 10 to 100. X-ray outbursts were observed by Baganoff et al. (2003) and Neilsen
et al. (2013), with a frequency of one flare per day on average. Infra-red flares are routinely
observed (Eckart et al., 2006), at a rate of four flares per day. They are generally highly lin-
early polarized, and the polarization angle has been observed to swing significantly in the
course of a flare (Trippe et al., 2007). Notably, almost every flare in X-ray has a counterpart
in infra-red (Hornstein et al., 2007; Dodds-Eden et al., 2009). Some infra-red flares have no
X-ray counterpart, due to a much better sensitivity in infra-red. Ponti et al. (2017) report
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the first simultaneous detection of the spectra of the infra-red and X-ray emissions (it is de-
noted as the “bright flare” state in Fig. 2.9). The spectral slopes in both wavebands strongly
support a synchrotron origin of the emission, with a cooling break. Typical rising times can
be as short as minutes, both in infra-red (Dodds-Eden et al., 2009) and X-ray (Barrière et al.,
2014). Note that the light-crossing time of Sgr A* is rg/c ' 20 s. The radio emission is largely
unaffected during flares.

The GRAVITY collaboration made a breakthrough when they detected the clockwise
circular motion of a flaring hot spot around Sgr A*, shown in Fig. 2.10(a) (Gravity Collab-
oration et al., 2018a). For the first time, infra-red flares could be spatially and temporally
resolved. Further analysis (Gravity Collaboration et al., 2020c,d) confirmed the following
features of these flares.

I All flares are consistent with a circular orbit of the centroid, at a distance of approxi-
mately ' 9 rg from the black hole.

I The low Doppler beaming in the course of the orbit indicates that the orbital plane is
seen almost face-on, with an inclination ' 140◦ (the motion is clockwise).

I The emitting region must be compact, with diameter less than ' 5 rg, otherwise it
would have been quickly destroyed by Keplerian shear.

I The polarization angle rotates continuously along the orbit (see Fig. 2.10(b)). This
indicates that the magnetic field at the flaring region has a strong poloidal component.
This conclusion is similar to the subsequent EHT observations of M87* (Sec. 2.2.4): to
retain a poloidal component in the toroidal sheared velocity flow, the magnetic field
should be dynamically important.

The lack of sub-mm counterpart implies that flares result from synchrotron non-thermal
radiation emitted by transiently accelerated electrons, to Lorentz factors' 103 (Dodds-Eden
et al., 2009). The physical mechanism which powers these flares is still unknown, although
some scenarios have been suggested in the context of MAD simulations (Ripperda et al.,
2020; Dexter et al., 2020; Porth et al., 2021). The innermost flares could also result from a
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FIGURE 2.10: (a) Projected orbit of the flare centroid on the sky (grey crosses) and position
of Sgr A* (orange cross). The best fit for circular motion is shown (solid blue line). Adapted
from Gravity Collaboration et al. (2018a). (b) Evolution of the polarization state of the flare
in the plane of normalized Stokes parameters. The red arrows show the polarization direc-

tions. Image taken from Gravity Collaboration et al. (2018a).



2.4. Very high-energy radiation from AGN 33

connection between the disk and the central compact object. The proximity of Sgr A* and
the absence of a jet make it an ideal laboratory to observe processes in the close environment
of black holes. It would have been difficult to resolve these flares in infra-red or X-ray in
more distant AGN.

2.4 Very high-energy radiation from AGN

2.4.1 Gamma-ray astronomy and blazars

The gamma-ray band is conventionally split between the high-energy (HE) band between
30 MeV and 30 GeV, and the very high-energy (VHE) band beyond 30 GeV. A review of
gamma-ray astronomy can be found in Madejski & Sikora (2016). Gamma-ray photons ini-
tiate particle showers when interacting with the atmosphere, which can be detected at the
Earth surface for photons in the VHE band. Ground-based telescopes are able to track VHE
photons by measuring the Cherenkov light of the ultra-relativistic leptons produced in the
shower. Current operating Cherenkov telescopes are MAGIC, HESS or VERITAS. In the
HE band, the showers are too faint to be detected at ground level. Therefore, HE detectors
operate in space, above the atmosphere, using electron-positron pair production to capture
gamma rays. The first gamma-ray satellites were launched in 1967.

Most of the gamma-ray emission originates from our Galaxy, due to pulsars or super-
nova remnants for example. At higher galactic latitudes, a majority of gamma-ray sources
are extra-galactic. Most of these sources were found to be coincident with radio-loud AGN,
many of which exhibit superluminal motion. No radio-quiet object has been detected in
gamma rays. Actually, the vast majority of AGN detected in gamma ray are blazars (Made-
jski & Sikora, 2016; Padovani et al., 2017), which are AGN observed with a small viewing an-
gle, for which Doppler boosting effects are particularly large. Doppler boosting of the non-
thermal emission from the jet accommodates the very high luminosities and fast variability
of blazars. Their gamma-ray emission is produced by Doppler-boosted inverse Compton
scattering of synchrotron photons or external photons, depending on the object (Sikora et al.,
1994; Madejski & Sikora, 2016).

Some extreme variability has been observed on timescales of minutes, as in the case
of the blazars PKS 2155-304, observed by HESS (Aharonian et al., 2007) (see Fig. 2.11), or
Mrk 501 with MAGIC (Albert et al., 2007). During rapid flares, VHE flux variations can be
of one order of magnitude. The timescales of these flares are quite smaller than the light-
crossing time of the event horizon, suggesting a compact emission region. On the other
hand, stringent conditions on this size are set by the condition that the gamma-ray photons
must escape from the flaring region: if the zone (with size R) is too compact, the opacity is
too high and gamma rays are absorbed by photon-photon annihilation. Indeed, in the refer-
ence frame of the emitting region, the optical depth to pair production reads τγγ ' n′σγγR,
with n′ ' L′/4πR2cε the density of target photons of characteristic energy ε (set by the lumi-
nosity L′ of the region) and σγγ the cross-section for pair creation. Gamma rays can escape
if τγγ . 1, which is all the more difficult as R decreases. Relativistic beaming again comes to
the rescue, because it relaxes the constraints on R set by the variability and on the emitted
luminosity L′. To account for the variability, the energetics of the emission and the possibil-
ity for gamma rays to escape, bulk Lorentz factors greater than 50 are needed (Aharonian
et al., 2007; Begelman et al., 2008). Such high Lorentz factors are problematic. For example,
this is in conflict with statistical studies: in the unification scheme, the fraction of blazars
with respect to the population of unbeamed sources should be equal to the fraction of solid
angle for which Doppler boosting leads to such enhancement of the variability. This also
contradicts the moderate superluminal motion in these blazars and the measured bright-
ness temperatures, which favour modest Lorentz factors Γ . 10 (Henri & Saugé, 2006). As
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FIGURE 2.11: VHE gamma-ray light curve of the blazar PKS 2155-304 during a flare in 2006.
Figure taken from Aharonian et al. (2007).

of today, this controversy is not fully solved yet, and the extreme time variability remains
challenging to current theoretical models, although the estimate of the optical depth given
previously is likely to be too basic.

2.4.2 Flares from radio galaxies

It came as a surprise that, among the vast number of sources detected at VHE energies, sev-
eral non-blazar nearby radio galaxies were also detected: Cen A (Aharonian et al., 2009),
NGC 1275 (Aleksić et al., 2012; MAGIC Collaboration et al., 2018), PKS 0625-35 (HESS Col-
laboration et al., 2018), IC 310 (Aleksić et al., 2014), 3C 264 (Archer et al., 2020), and (as
always) M87 (Aharonian et al., 2006; Aliu et al., 2012). All of these galaxies have also been
detected in the HE range by Fermi (Sahakyan et al., 2018), but it still remains unclear whether
the HE and VHE components are distinct. A review of these observations is given in Rieger
& Levinson (2018). In the unification scheme of radio-loud AGN, radio galaxies and blazars
are objects of similar properties but viewed at different inclinations (Urry & Padovani, 1995).
Depending on the structure of their jets, radio galaxies have been classified as FR I or FR II
sources: the former are less luminous, with jets getting fainter and more distorted with in-
creasing distance from the source, whereas the latter are straighter and more luminous, and
particularly bright at their radio lobes. FR I are probably low-luminosity AGN accreting at a
small rate with respect to ṁEdd (see Sec. 2.2.1). FR I galaxies are thought to accrete through a
radiatively inefficient accretion flow, whereas FR II galaxies would accrete with a standard,
optically thick accretion disk.

The classification as a radio galaxy or blazar can be a bit vague, especially when the jet’s inclina-
tion cannot be measured. In this case, there is some doubt as to the nature of PKS 0625-35 (HESS
Collaboration et al., 2018) and IC 310 (Kadler et al., 2012), which probably lie at the frontier
between the two classes (Rieger & Levinson, 2018).

Radio galaxies show misalignments with our line of sight & 10◦, greatly reducing the
relativistic boosting effect. The dependence of δ on θ is dramatic: for θ = 0◦, we have
δ = 2Γ, whereas for θ = 10◦, the beaming factor cannot be greater than δ ' 6. Boosted
synchrotron-self-Compton radiation cannot account for this VHE emission with such low
beaming factors, so that these detections might highlight new physical phenomena. Inter-
estingly, these radio galaxies are all of a FR I type (or close to this type for PKS 0625-35
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FIGURE 2.12: (a) Gamma-ray light curve of M87 during a VHE flare. The shaded regions
show exponential fits for the rising and decaying phases. Figure taken from Aliu et al.
(2012). (b) Gamma-ray light curve of NGC 1275 during a VHE flare. The dashed line shows
an exponential fit for the rising phase. Image taken from MAGIC Collaboration et al. (2018).

and IC 310), which means that they are low-luminosity AGN. We had already M87 on the
account of its low accretion rate; similarly low estimates of the accretion rate could be ob-
tained for Cen A (Evans et al., 2004). Besides, very rapid variability has been measured in
M87, NGC 1275 and IC 310 (see Fig. 2.12), although the other VHE radio galaxies are much
less variable. This suggests that VHE flares are a widespread feature in radio-loud objects,
not just blazars. The flares of M87 and NGC 1275 show flux rises of an order of magnitude
on timescales of days, comparable to their light-crossing times rg/c. M87 has experienced
several VHE flares in the last decades. The Galactic center is also a source of GeV and TeV
emission (Acero et al., 2010; Archer et al., 2014). However, the angular resolution of these
observations is too poor to resolve the compact source, and these gamma rays could not be
conclusively be associated with the supermassive black hole Sgr A*.

M87, in particular, has attracted considerable attention, because it can be probed at other
wavelengths with excellent resolution. As a result, sub-structures in the jet can be probed in
X-ray, optical and radio wavebands, while the resolution of Cherenkov telescopes is too low
to allow such precise identification. It is characterized by weak beaming factor δ . 3 (Dod-
son et al., 2006; Wang & Zhou, 2009). Its VHE spectrum extends beyond 10 TeV (Aharonian
et al., 2006). Acciari et al. (2009) performed observations of M87 in all these wavelengths,
and noticed a brightening of the radio core shortly after a VHE flare, whereas the flux from
the knot HST-1 remained unchanged and the nucleus was in a high X-ray state (see Fig. 2.13).
Such a concurrence in all wavebands was deemed unlikely to happen by chance (Acciari
et al., 2009), favoring a connection between VHE flares and processes at play in the close
vicinity of the central supermassive black hole M87*.

2.5 Summary

AGN produce intense activity, often in the form of powerful flares of non-thermal emission,
implying that particle acceleration is triggered. The fast variability of these flares imply
that this acceleration occur on very small scales. GRAVITY observations teach us that the
close environment of black holes is very dynamic. At the same time, radio interferometers
have been able to track the jet emitted by the supermassive black hole M87* almost down
to the event horizon. The observations of VHE flares in misaligned radio galaxies have
far-reaching consequences, and challenge conventional models of AGN.
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radio (bottom panel) ranges. The shaded horizontal area shows the typical radio flux before

the flare. Image taken from (Acciari et al., 2009).

On the other hand, polarimetric observations by GRAVITY and the EHT strongly suggest
the presence of dynamically important poloidal magnetic fields in the vicinity of the black
hole. This supports the dominant role of magnetic fields in the launching of the jet. It
seems that to produce sufficiently powerful jets, extraction of energy from the black hole is
compulsory. As we already pointed out, this requires continuous injection of plasma into
the magnetosphere. The origin of this plasma supply is still unknown. It is possibly related
to the nature of the accretion flow (radiatively inefficient, geometrically thick, optically thin)
which was confirmed by the EHT image of M87*.

This body of evidence points toward magnetospheric processes, occuring in the close
environment of supermassive black holes, as the source of this activity.



Chapter 3

State of the art

In this section, I describe in more detail magnetospheric processes which can be responsible
for VHE flares from radio galaxies, and describe the state of the art in numerical simulations
of plasmas around black holes. Although I will adopt magnetospheric processes as a work-
ing hypothesis, it should be pointed out that alternative scenarios have been put forward
to explain VHE flares, such as the jet-in-jet model (Giannios et al., 2009, 2010). Reviews of
these mechanisms are provided by Rieger & Aharonian (2012), Aharonian et al. (2017) and
Rieger & Levinson (2018) for example.

3.1 Magnetospheric gap models

3.1.1 Particle acceleration

As we will see in Sec. 6.1.3, spinning black holes threaded by poloidal magnetic fields in vac-
uum produce intense electric fields parallel to the magnetic field lines. In reality, the magne-
tosphere is most likely not vacuum, and the electric field could be screened by the plasma.
The question amounts to whether the black-hole environment can produce plasma in suf-
ficient amounts to screen the electric field everywhere, at all times. The minimum number
density required to completely screen the electric field is the Goldreich-Julian density nGJ

(see Sec. 6.2 for more details). If the plasma density falls short of the Goldreich-Julian den-
sity, gaps can form in the magnetosphere where the electric field is not screened. This electric
field can then accelerate particles to very high energies. Ultimately, it is the rotational energy
of the black hole which is extracted that way. This mechanism had first been suggested in
the context of pulsar magnetospheres (Sturrock, 1971; Ruderman & Sutherland, 1975). Vac-
uum breakdown in this context of this thesis was originally considered as a possible plasma
source by Blandford & Znajek (1977).

For a black hole with spin parameter a, the maximum energy that a charged particle
can be accelerated to is roughly given by Emax = qaB0rg, if the particle exploits the full
potential drop that has formed in a gap of characteristic size rg, with B0 the typical mag-
netic strength. The latter can be estimated by assuming equipartition between the magnetic
pressure B0

2/8π and the accreting gas pressure ṁc/r2
g, which yields (Hirotani & Pu, 2016)

B0 ' 104

(
109 M�
M

)1/2(
ṁ

ṁEdd

)1/2

G. (3.1)

This yields lepton energies up to 1020 eV (Levinson, 2000), making it possible to produce
VHE flares by inverse Compton scattering for example (see the next section). Of course,
the magnetic strength will be smaller if the black hole does not accrete at the Eddington
rate, and the gap size can also be smaller than rg. In addition, the maximum energy can be
limited by radiative losses, so Emax is a conservative upper limit.
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3.1.2 Gap formation

The next question to address is whether spark gaps can actually form in the magnetosphere.
Let us assume that the magnetosphere is initially filled with plasma. As we will see in
Sec. 7.2.4, plasma close to the black hole must necessarily be sucked by the black hole,
whereas an outflow develops at larger distance. Gaps will form perforce, unless plasma
is perpetually replenished within the magnetosphere. Direct feeding of the polar regions of
the magnetosphere by the accreting plasma is unlikely, because of the high magnetization at
high latitudes, which pushes material to the equatorial plane, and the centrifugal force bar-
rier. As a result, in the absence of an external plasma source, the polar funnel can become
quickly depleted.

A possibility is plasma supply through photon-photon annihilation of thermal MeV pho-
tons emitted by the hot accretion flow (see Sec. 8.2). The resulting number density was eval-
uated by Levinson & Rieger (2011) and Hirotani & Pu (2016), who found that this density
is lower than the Goldreich-Julian density for accretion rates below ' 10−4ṁEdd. This is a
necessary condition for spark gaps to form, which can only be satisfied in low-luminosity
AGN. As was shown in Sec. 2.2.1, this condition is readily verified in the case of M87*.

Since pair production by annihilation of MeV photons cannot screen the gap in low-
luminosity AGN, these are able to accelerate particles. Levinson (2000) showed that unlike
in the case of pulsar magnetospheres, here, vacuum breakdown does not occur by the emis-
sion of curvature photons, since that would require magnetic fields stronger than what is
observed in AGN. Neronov & Aharonian (2007) also noted that gamma-ray emission from
accelerated protons would be in tension with observations. On the other hand, they hy-
pothesized that high-energy electrons or positrons could produce high-energy radiation by
inverse Compton scattering of low-energy photons emitted by the accretion flow. They also
checked that radiative losses of accelerated particles under the effect of curvature radia-
tion and inverse Compton scattering still allowed a gamma-ray spectrum extending beyond
10 TeV. Hirotani et al. (2016) found that the resulting gamma-ray fluxes could be observable
for nearby AGN.

3.1.3 The importance of gaps

TeV photons interact preferentially with infra-red photons of energy ' 1 eV (see Eq. (8.30)).
Consequently, they can interact with eV photons emitted by the accretion flow, and trig-
ger pair production by photon-photon annihilation. That way, the gamma-ray radiation
can exert a backreaction on the gap by providing a plasma supply which could screen the
electrostatic field. This question is of paramount importance in the context of black-hole
magnetospheres. Blandford & Znajek (1977) realized that the magnetosphere had to be pop-
ulated with plasma in order to extract energy from the rotating black hole. This necessity
will be justified in detail in Sec. 6.2. They considered vacuum breakdown as a means to fill
the magnetosphere with pair plasma. In order to efficiently extract energy from the black
hole, there should be a continuous plasma source in the polar regions at least, in order to
avoid complete depletion, as mentioned earlier. This is a necessary condition to activate the
Blandford-Znajek process. Levinson & Rieger (2011) showed that this process could provide
plasma in sufficient amounts so as to screen the electric field above the gap and activate the
Blandford-Znajek mechanism. It follows from this picture that spark gaps could be a neces-
sary feature of AGN models. They are not only invoked to explain VHE emission, but they
also provide the crucial plasma supply which allows the black hole to power the jet.

The question of whether the produced gamma rays can come out of the emitting region
finally comes up. Internal absorption of gamma rays is precisely due to pair creation, which
could prevent them from leaving the magnetosphere. Let us assume that gamma rays and
soft photons both originate from a spherical zone of radius RIR, and let us denote LIR the
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luminosity in the IR band. The number density of target soft photons of energy ε is nIR '
LIR/4πRIR

2cε. The cross section for pair production is of the order of σT, so that the optical
depth for gamma rays reads

τγγ ' nIRσTRIR '
LIRσT

4πcRIRε
. (3.2)

In the case of M87*, for an infra-red luminosity LIR ' 1041 erg·s−1 (Whysong & Antonucci,
2004) and for TeV gamma rays, we have ε ' 1 eV and τγγ ' 102 (rg/RIR) (Neronov &
Aharonian, 2007). The size of the infra-red source on M87* is hard to constrain, but it is
unlikely to be much smaller than 102rg. This would imply that gamma rays are actually
able to escape from the magnetosphere. This conclusion can be generalized to supermassive
black holes accreting in a radiatively inefficient way, for which LIR is much smaller than
LEdd (Wang et al., 2008; Levinson & Rieger, 2011; Rieger & Aharonian, 2012). However, it is
very sensitive to the accretion rate and the spin of the black hole, or the exact model for the
RIAF. On the opposite, gamma rays could not escape if the black hole accreted through a
standard thin disk (Brodatzki et al., 2011): this might explain why VHE emission is a feature
of low-luminosity radio-galaxies.

3.1.4 Gap dynamics

The first gap models assumed stationarity. The gap was taken to be a small localized per-
turbation of the magnetosphere, where the electric field was not screened. Let us suppose
that the magnetosphere rotates at an angular velocity Ω and that the magnetic field is close
to monopolar. In the laboratory frame, the rotationally induced electric field is orthoradial
everywhere, but a radial component may arise in the gap. For clarity, we neglect general
relativistic corrections. Noting E′ the electric field measured in the frame rotating with
magnetosphere, Maxwell-Gauss’ law reads (Rieger & Levinson, 2018)

∇ ·E′ = 4π (ρ− ρGJ) , (3.3)

where ρ is the electric charge density and ρGJ = −Ω ·B/2πc is the Goldreich-Julian density
(see Sec. 6.2). No radial electric field is induced if ρ = ρGJ. The Goldreich-Julian density
depends on the magnetic geometry. At the inner and outer gap boundaries, the electric field
should be screened, so that E′ vanishes. This implies that the radial component E′r has a
maximum or a minimum inside the gap, and that ρ − ρGJ has opposite signs at the two
boundaries (Katsoulakos & Rieger, 2018).

As it happens, in a spinning black-hole magnetosphere, even if the magnetic field is
radial everywhere, there can be a “null surface” where ρGJ = 0 (it is shown in red in
Fig. 3.1(a)). This is a purely general relativistic effect. It has been argued that because the gap
is charge-starved, a change of sign of ρ − ρGJ happens preferentially at a null surface (Be-
skin et al., 1992; Hirotani & Okamoto, 1998; Hirotani & Pu, 2016). The behavior of these
quantities is shown in Fig. 3.1(b). A similar line of reasoning had been followed in the con-
text of pulsar gap emission (Cheng et al., 2000), the existence of a null surface being due to
the dipolar magnetic geometry this time. This location was especially appealing, as it al-
lowed for the construction of stationary gap models. The radiative properties and structure
of the gap have been studied analytically and numerically with this preliminary assump-
tion (Neronov & Aharonian, 2007; Vincent & LeBohec, 2010; Ptitsyna & Neronov, 2016; Kat-
soulakos & Rieger, 2018, 2020). The emitted spectrum includes a component from curva-
ture emission around ' 1 GeV and an inverse Compton component centered on ' 10 TeV.
Alternatively, the MHD stagnation surface separating inflow and outflow in single-fluid
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FIGURE 3.1: (a) Sketch of a black-hole magnetosphere in the poloidal plane, in a monopole
magnetic configuration (solid gray lines) and with a spin parameter a = 0.998. The yellow
lines indicate the inner and outer light surfaces. The dashed lines are contour levels of ρGJ,
with the red line showing the null surface (ρGJ = 0). The MHD stagnation surface is shown
in green. Figure taken from Katsoulakos & Rieger (2020). (b) Distribution of charge density
(red solid line, upper panel) and parallel electric field (lower panel) along a magnetic field
line, in the case of a gap located at the null surface. The Goldreich-Julian density is also

shown in the upper panel (black solid line). Figure taken from Hirotani & Pu (2016).

MHD (Takahashi et al., 1990) has been suggested as a plausible position for the gap (Broder-
ick & Tchekhovskoy, 2015). This surface corresponds to a force balance between the gravita-
tional, centrifugal and electromagnetic stresses. Its location depends on the plasma loading
of the field lines (Globus & Levinson, 2013). This surface is also shown in green in Fig. 3.1(a).

In contrast, Levinson & Segev (2017) argued against stationary gaps. They found that
steady-state solutions are inconsistent with the presence of a stagnation surface. Besides,
stationarity implies that every accelerated lepton only creates one pair (the “closure” con-
dition). This places an upper bound on the accretion rate which is too low to match ob-
servational constraints. Hence, spark gaps are likely to be intermittent, setting them out of
reach of analytical computations. In addition to that, Levinson et al. (2005) studied the time-
dependent dynamics of spark gaps, and showed that the response of the electric field to a
burst of pair creation was oscillatory in nature, due to a time-varying electric current. They
suggested that steady-state gaps were unstable to temporal perturbations. This work had
put the emphasis on pulsar magnetospheres, but it represents fairly well the gap oscillatory
dynamics, as we will see in Chap. 12.

3.2 Numerical modeling

3.2.1 The need for simulations

In the previous section, we have discussed how the local gaps can have a global impact
on the magnetosphere, as they control the plasma supply. Conversely, the global magneto-
spheric structure affects the gap. It is crucial to determine this structure in order to interpret
the multi-wavelength emission from AGN and to understand how jets are formed. The
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natural framework to study black-hole magnetospheres as a whole has long been the force-
free approximation, which consists in neglecting the plasma inertia. This is the approach
taken by Blandford & Znajek (1977) and MacDonald & Thorne (1982), which is described in
Chap. 6 and 7. Unfortunately, only a restricted number of solutions can be found this way.
Even the exact solution from Blandford & Znajek (1977) is only valid at low spin parame-
ter. What is worse, it is not clear whether the force-free approximation is valid in the first
place. For example, it was challenged by Punsly & Coroniti (1990a,b) and Punsly (2001),
who claimed that particle inertia could not be overlooked. They also questioned the role of
the event horizon in the Blandford-Znajek, as well as the long-term stability of this solution
(more details can be found in Chap. 7). Instead, they proposed a model in which particle
inertia was a key ingredient. Besides, as will be shown in 6.2, the force-free appoximation
must itself break down in a current sheet, casting doubt on the relevance of this approach.

Numerical simulations of a black-hole magnetosphere became possible in the 2000’s,
with the increase in computational power. A first step was taken by Komissarov (2001) and
Komissarov & McKinney (2007) who showed by the means of GR force-free simulations
that the Blandford-Znajek solution was actually asymptotically stable. The structure of the
a force-free simulation is shown in Fig. 3.2(a). This confirmed that the Blandford-Znajek
solution was valid, but the question of the importance of particle inertia remained. In par-
ticular, force-free codes cannot handle dissipative current sheets well.

3.2.2 MHD simulations

Ideal GRMHD techniques have been developed to simulate the close environment of black
holes (e.g., Gammie et al., 2003). Komissarov (2004b) performed GRMHD simulations of a
monopole magnetosphere and retrieved the results of GR force-free simulations to an ex-
cellent degree (see Fig. 3.2(b)). Koide (2003) and Komissarov (2005) have simulated black
holes in an initially vertical magnetic field, and find that a stable equatorial current sheet

(a) (b)

FIGURE 3.2: (a) Steady-state force-free simulation of a black hole immersed in a vertical
magnetic field. The magnetic flux is pulled onto the event horizon. (b) Quasi-steady state
of a GRMHD simulation of an accretion flow around a Kerr black hole with a = 0.999. The
solid lines show poloidal magnetic field lines. Figures taken from Komissarov & McKinney

(2007).
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naturally develops. GRMHD simulations of the close magnetosphere seem to validate the
Blandford-Znajek process and confirm the validity of the force-free framework, without any
imperious need for particle inertia.

Such simulations have then been used to simulate accretion flows more realistically (De
Villiers et al., 2003; McKinney & Gammie, 2004). The underlying assumptions of these simu-
lations are that radiation can be neglected, and that the plasma can be treated as a fluid rather
than as a collisionless plasma. In accreting low-luminosity AGN, the dynamical effect of ra-
diation is subdominant by definition, so that one can afford to discard radiation from the
simulation. This kind of accretion flows is easier to simulate than optically thick, geometri-
cally thin accretion disks. Most of these simulations start with a magnetized thick torus in
equilibrium, which is destabilized by the magnetorotational instability (MRI). The accretion
flow is optically thin and geometrically thick. Matter then accretes toward the black hole,
transporting magnetic flux to the event horizon. These simulations demonstrated clearly the
activation of the Blandford-Znajek mechanism (Tchekhovskoy et al., 2011), and the launch-
ing of large-scale Poynting-dominated jets (McKinney, 2006).

Ideal GRMHD simulations are scale-free. One of the most important dimensionless pa-
rameters is the magnetic flux threading the black hole Φ when the simulation reaches a
steady state. The magnetic energy density becomes comparable with the accretion energy
density when B2/8π '

(
ṁ/4πr2

gc
)
c2. Thus, the normalized magnetic flux φ should be de-

fined as

φ =
Φ√
ṁr2

gc
. (3.4)

The final magnetic flux φ is controlled by the initial magnetization of the torus. If the mag-
netic field supplied to the black hole is too strong, φ is found to saturate at values ' 50.
The MRI has little effect on the dynamics of the flow. This is often called the “magnetically
arrested disk” (MAD) configuration. In this case, the magnetic field is dynamically impor-
tant and impacts the dynamics of the inflow (Narayan et al., 2003; Tchekhovskoy et al., 2011;
McKinney et al., 2012). Recently, the MAD state has been observed to arise from a a new
set of initial conditions, drawn from larger-scale MHD simulations (Ressler et al., 2020), or
from a non-rotating flow with an initially uniform magnetic field (Ressler et al., 2021). This
suggests that the MAD configuration can develop quite naturally in more general setups.
All in all, the gas reaching the event horizon carries a small amount of angular momentum
but a large amount of magnetic flux. Otherwise, if φ does not saturate and remains close to
1, the disk does not become magnetically arrested, in what is called the “standard and nor-
mal evolution” (SANE) model. In such accretion flows, the MRI is very active. Both models
have been extensively used to produce synthetic images of black-hole magnetospheres and
interpret the EHT data (Event Horizon Telescope Collaboration et al., 2019b).

On the other hand, the second core assumption of GRMHD simulations is likely to fail
in low-luminosity AGN. The mean free path le for electron-electron Coulomb collisions is
given in terms of the plasma parameter Λ and the plasma frequency ωp by (Fitzpatrick, 2015)

le '
Λ

ln (Λ)

c

ωp
; Λ =

(kBT )3/2

e3
√
n

; ωp =

√
4πne2

me
, (3.5)

with T the temperature and n the density of the plasma. Numerical application in the case
of M87*, with T ' 1010 K and n ' 104 cm−3, yields ln (Λ) ' 40, so that le/rg ' 105 � 1. Be-
cause the accretion rate is so low, the plasma is so hot and tenuous that it is collisionless, and
the electron or proton mean free path is much larger than the typical size of the system. The
situation might be less dire as it seems, as other physical processes (such as wave-particle
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interactions; see Kunz et al., 2014) can isotropize the system. Promising efforts have been
made to include nonideal effects and radiative cooling into GRMHD simulations (Foucart
et al., 2016; Sądowski et al., 2017; Ryan et al., 2018). Nonetheless, the fluid description is not
adequate for dealing with hot accretion flows.

The MHD approach suffers from several other shortcomings. The funnel region, close
to the polar axis of the black hole, is predicted to have very small densities compared to
the accretion flow. This is because the angular momentum of matter is generally small in
this region, and plasma is either sucked in or ejected in an outflow. Besides, the funnel
is generally highly magnetized (Porth et al., 2019), so that plasma from the accretion flow
cannot penetrate it, and its density and pressure can be very low. This is very challenging
for MHD numerical schemes, which are often forced to employ density floors to prevent
vacuum from forming (McKinney & Gammie, 2004; Porth et al., 2019). Hence, although
there have been attempts to evaluate pair production from radiative GRMHD simulations
in post-processing (Mościbrodzka et al., 2011; Wong et al., 2021), these simulations cannot
model self-consistently the plasma supply in the jet region, which is probably induced by the
presence of spark gaps in the inner parts of the magnetosphere. Besides, fluid simulations
cannot constrain particle acceleration and nonthermal radiation, because the dynamics of in-
dividual particles are not followed. Because the microphysics of the plasma is not included,
dissipative regions (such as the equatorial current sheet, see Chap. 13) are often governed
by numerical resistivity (however, see Ripperda et al. 2020 for recent resistive GRMHD sim-
ulations).

3.2.3 Kinetic simulations

Force-free analytical approaches and GRMHD simulations teach us a great deal about the
global dynamics of the system, and the large-scale magnetic configuration. Yet, in order to
interpret the nonthermal emission from AGN, it seems necessary to go beyond and treat
the problem from first principles. Particle-in-cell (PIC) methods are ab initio kinetic plasma
simulations, which can include self-consistently a variety of physical phenomena. They will
be described in detail in Chap. 9. Several crucial steps were taken very recently in the mod-
eling of this problem, in order to go beyond standard plasma simulations. First, radiative
transfer processes must be implemented. This had already been done in 1D simulations of
pulsar polar cap discharges (Timokhin, 2010; Timokhin & Arons, 2013; Cruz et al., 2021), in-
cluding curvature emission and pair production by magnetic conversion. Chen et al. (2018)
performed 1D simulations in flat spacetime with the adequate radiative processes: inverse
Compton scattering and pair production by photon-photon annihilation.

Then, general relativity must be included. Levinson & Cerutti (2018) used the first gen-
eral relativistic PIC simulations in 1D, with inverse Compton scattering and pair production
to study the discharge of an initially empty gap. They treated the gap as a small perturba-
tion of a global magnetosphere, and found that the gap evolved to a quasi-steady state where
the parallel electric field was kept at a very small amplitude and varied randomly. Chen &
Yuan (2020) performed similar simulations, with ρ = ρGJ initially everywhere in the gap,
but arrived at a different conclusion. They found a cyclic behavior, where a gap periodically
opened at the null surface. Kisaka et al. (2020) extended the range of parameters and ini-
tial conditions investigated by Levinson & Cerutti (2018) using the same code, with much
longer integration times. In the case of a global current consistent with the large-scale mag-
netospheric configuration, they also found that the electric field opened periodically at the
null surface, although the resulting plasma density seemed stationary. All these 1D simula-
tions focused on a single radial field line in a monopolar magnetic configuration. Note that
1D simulations are purely electrostatic, and only evolve the radial component of the electric
field. The gap is assumed to be embedded in a force-free, stationary magnetosphere, which
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imposes external conditions on the gap. It is considered as a small perturbation, which
controls plasma supply without affecting its global properties. For example, in 1D GRPIC
simulations, the current flowing through the gap and the angle of the single simulated field
line are free parameters.

These simulations are able to capture the dynamics of the gaps, but must be educated
with the global structure. In parallel, Parfrey et al. (2019) presented the first global 2D, fully
general relativistic PIC code. The foundations of their code are described in Chap. 10. They
simulated a black hole in a vertical magnetic field, with the aim of retrieving a nearly force-
free magnetosphere. To that end, they used a particular plasma injection method, similar to
that used by Belyaev (2015b). They evaluated the local magnetization and the normalized
unscreened electric field D · B/B2. Wherever the unscreened electric field was above a
critical value εth (typically between 10−2 and 10−3) and the magnetization was not too low,
plasma was injected with a density

δn ' 1

4πerg

D ·B
B

. (3.6)

This choice of injection method allowed them to mimic pair creation by vacuum breakdown,
when the unscreened electric field became too large. Their results are shown in Fig. 3.3. In
addition to reproducing aspects of force-free magnetospheres, they were able to model fea-
tures only accessible to kinetic simulations: the reconnecting current sheet and the impact

FIGURE 3.3: Steady-state density, energy-at-infinity and radial 3-velocity for electrons (left)
and positrons (right) from the global general relativistic kinetic simulations by Parfrey et al.
(2019). The upper panel shows a simulation with εth = 10−3, whereas the lower panel has

εth = 10−2. All distances are in units of rg. Figure taken from Parfrey et al. (2019).
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of negative-energy particles, for instance. Importantly, they showed how the solution de-
pended on the physical parameter εth, which is in principle governed by radiative transfer
physics. In the case of a high threshold εth, the funnel became charge-starved, and pair cre-
ation occured intermittently. However, their simplified choice of injection method precluded
any chance of seeing a gap develop, as plasma supply was not treated self-consistently.

3.3 Objectives of this thesis

Plasmas around AGN are collisionless and optically thin. Their dynamics and nonthermal
emission cannot be well captured by fluid simulations, and instead require a kinetic treat-
ment, which can account for the presence of gaps, in particular. Unlike previous simulations
of magnetospheric gaps, I aim for global simulations, relaxing the need for prescriptions en-
coding the external environment. From the state-of-the-art kinetic simulations described
in Sec. 3.2.3, my goal is to take the next logical step, and implement global, radiative, and
general relativistic 2D PIC simulations of black-hole magnetospheres. In order to take full
advantage of these simulations in interpreting observations of AGN, I also devise a method
to obtain synthetic observables from my simulations, by coupling the PIC code to a ray-
tracing code and tracking the emitted photons from the magnetosphere to the observer.
Probably too ambitiously, the ultimate objective of this thesis would be to address some of
the following questions, which are currently out of reach of numerical simulations.

1. Can the Blandford-Znajek mechanism be activated in simulations including ab initio
plasma supply?

2. Where do gaps and particle acceleration take place in the magnetosphere?

3. What is the radiative signature of black-hole magnetospheres in the very high-energy
range?

4. Can the EHT and GRAVITY observations be produced by pure magnetospheric pro-
cesses?

This thesis is outlined as follows. The motivations, observational context and numer-
ical state of the art relevant to this thesis have been presented in this part (Part I). Part II
deals with the theoretical foundations of this thesis and the technicalities. The 3 + 1 formal-
ism of general relativity, black-hole electrodynamics, its application to the Blandford-Znajek
mechanism, and ubiquitous radiative processes in active galactic nuclei are outlined. Part III
contains a description of the numerical techniques used in this thesis. The now well estab-
lished PIC methods are summarized. The general relativistic specificities are described in
detail. Although I did not design the GRZeltron version in the first place, these details and
derivations have not been published yet. I also describe the radiative transfer algorithm
that I designed for the study of spark gaps. In Part IV, I present the results of my simula-
tions, along with the observational consequences. These results have mostly been published
in Crinquand et al. (2020) and Crinquand et al. (2021). A summary of my findings and some
perspectives are given in Part V.





Part II

Foundations



“Le principe consista d’abord dans votre conviction que nous n’atteindrons jamais le fond des choses,
non en vertu d’une malédiction ou de la faiblesse de nos facultés, mais pour la raison définitive et
radicale que les choses n’ont pas de fond.”

“The principle first consisted in your belief that we will never get to the bottom of things, not for
some curse or the weakness of our abilities, but for the definitive and radical reason that things have
no bottom.”

JÉRÔME FERRARI, Le principe



Chapter 4

Kerr black holes

According to the no-hair theorem, black holes are characterized by a very limited number
of parameters: their mass, electric charge and angular momentum. It is generally believed
that astrophysical black holes carry a negligible charge, in the sense that the characteristic
associated length scale rQ = Q2G/4πc4 is small with respect to the graviational radius rg =
GM/c2, for a black hole of massM and chargeQ. This is because significantly charged black
holes would be able to accrete a preferred sign of charges, until it gets neutralized. Angular
momentum, on the other hand, cannot be so easily removed.

Studying spinning black holes not only has theoretical foundations, but also observa-
tional motivations. Most stellar-mass black holes are the remnants of massive stars. Thus,
they are expected to inherit some of the angular momentum of the primary star. Even if a
black hole is originally formed without angular momentum, it can spin up during its sub-
sequent evolution, as a result of accretion, or after coalescence with another compact object.
Unfortunately, measuring the spin of a black hole is a huge endeavour, and there exists only
a few trustworthy measurements. In this field, theoretical modeling precedes compelling
observations, but great progress has been made. Different measurements techniques are
described in the reviews by Reynolds (2013, 2020).

Spinning black holes are oft-referred to as “Kerr” black holes, in honor of the mathe-
matician Roy Kerr, who was the first to derive an exact solution for black holes possessing
angular momentum. Black-hole spin can actually have a significant effect on astrophysical
phenomena, the most striking example being the possibility to produce a jet by tapping the
black-hole rotational energy. Thereby, the title of this thesis is a testament to the importance
of Kerr black holes and the need to understand their specificities.

The basics of general relativity covered in this section were mostly drawn from the text-
books by Frolov & Zelnikov (2011) and Carroll (2003), along with the most excellent online
lecture notes by Blau (2018). The reader is referred to these sources for further insight.

4.1 Spinning black holes

4.1.1 The many facets of the Schwarzschild event horizon

A black hole can be loosely defined as a “localized region of spacetime from which neither
massive particles nor massless ones can escape” (Gourgoulhon, 2021). This object must
possess a boundary, the event horizon, which no particle initially inside it can cross: it is
a one-way membrane. Besides, its mass must lie entirely within the event horizon. The
simplest black hole is described by the Schwarzschild solution. However, the definition of
the event horizon of a Schwarschild black hole can be ambiguous. Our goal is to compare
the special surfaces of a Kerr black hole compared to a Schwarzschild black hole, in order to
better understand the specificities of Kerr black holes.

Let M be the mass of a Schwarzschild black hole, and rs = 2GM/c2 = 2rg be the
Schwarzschild radius. The metric gµν of the spacetime reads, in the standard Schwarzschild
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coordinates (t, r, θ, ϕ) and with a (−,+,+,+) signature:

ds2 = −f(r)c2 dt2 + f(r)−1 dr2 + r2
(
dθ2 + sin2 θ dϕ2

)
, (4.1)

where f(r) = 1 − 2rg/r. Two things of interest happen at r = rs, which is the only root of
the function f :

1. gtt(rs) = f(rs) = 0;

2. grr(rs) = 1/grr(rs) = f(rs) = 0.

Condition 1, which is a priori coordinate-dependent, can be interpreted in the following
way. Static observers at fixed (r, θ, ϕ), which have a 4-velocity u ∝ ∂t, can only exist for
r > rs. Indeed, the 4-vector ∂t becomes null if gtt = 0, and remains timelike for r > rs.
The hypersurface H defined by r = rs is the limit surface for static observers. Incidentally,
it is also an infinite redshift surface. Condition 2 means that the vector N = ∂r, which is
normal to surfaces of constant r, is null at r = rs and becomes timelike for r < rs. H is a null
hypersurface, which can therefore only be crossed once by a timelike wordline.

In a Schwarzschild black hole, these two properties of the surfaceH coincide. This would
also be true if the black hole had a significant electric charge; however we will see that they
differ for a spinning black hole.

4.1.2 The Kerr metric

This metric describes a stationary (but not static) spacetime. In the Boyer-Lindquist coordi-
nates (t, r, θ, ϕ), the line element of the Kerr metric reads

ds2 = −
(

1− 2rgr

Σ

)
c2 dt2 −

4ar2
gr sin2 θ

Σ
cdt dϕ+

Σ

∆
dr2 + Σ dθ2 +

A sin2 θ

Σ
dϕ2, (4.2)

where

Σ = r2 + a2r2
g cos2 θ ; ∆ = r2 − 2rgr + a2r2

g ; A =
(
r2 + a2r2

g

)2 − a2r2
g∆ sin2 θ. (4.3)

The Boyer-Lindquist coordinates reduce to spherical coordinates as r → +∞. The Kerr
metric depends on two parameters only: the gravitational radius rg and the spin parameter
a. It reduces to the Schwarzschild metric when a→ 0. The presence of a non-zero gtϕ breaks
the symmetry by reflection of time t → −t, but retains the symmetry (t→ −t ; ϕ→ −ϕ).
The physical meaning of a can be understood by looking at the weak-field limit. For r � rg,
the metric expand to lowest order in rg/r as

ds2 ' −
(

1− 2rgr

Σ

)
c2 dt2−

4ar2
gr sin2 θ

Σ
cdt dϕ+

(
1 +

2rgr

Σ

)(
dr2 + r2 dθ2 + r2 sin2 θ dϕ2

)
.

(4.4)
This is precisely the metric of the spacetime surrounding a slowly rotating massive sphere,
of mass M and angular momentum J , where the spin parameter is related to J by

a =
Jc

GM2
. (4.5)

Hence, one can interpret the spin parameter a that characterizes the Kerr metric as the nor-
malized angular momentum of the black hole. It is complex to define properly the angular
momentum of a black hole (see Sec. 6.1.3).
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The Kerr metric is one of the most important solutions of Einstein’s equations, for astro-
physical purposes. This comes from several uniqueness theorems of paramount importance.
Provided the black hole is uncharged, and some regularity assumptions are made, one can
show the following theorems (see Chruściel et al. 2012 for an extended discussion).

I Any static vacuum solution of Einstein’s equations in an asymptotically flat spacetime
is spherically symmetric and coincides with the Schwarzschild metric (Israel, 1967).

I Any stationary and axially symmetric vacuum solution of Einstein’s equations in an
asymptotically flat spacetime is described by the Kerr metric. In particular, it is uniquely
described by the values of two parameters (mass and angular momentum) (Carter,
1971; Robinson, 1975).

The Kerr metric can be generalized into the Kerr-Newman metric, to account for the pres-
ence of electric and magnetic charges. The solution can be found in Frolov & Novikov (1998).
We also give the expression of the coefficients of the inverse metric in BL coordinates:

g00 = − A

∆Σ
, grr =

∆

Σ
, gθθ =

1

Σ
, g0ϕ = −

2ar2
gr

∆Σ
, gϕϕ =

∆− a2r2
g sin2 θ

∆Σ sin2 θ
. (4.6)

4.1.3 Ergosphere

Just like in Sec. 4.1.1, the limit of static observers can be found by determining when ∂t
becomes null, that is, by determining the zeros of gtt. We find that

gtt(r, θ) = 0 ⇐⇒ Σ− 2rgr = r2 − 2rgr + a2r2
g cos2 θ = 0, (4.7)

so that the limit of static observers is defined by

re(θ) = rg

(
1 +

√
1− a2 cos2 θ

)
. (4.8)

The surface S defined by Eq. (4.8) is called the ergosphere, which borders the ergoregion (see
the solid line in Fig. 4.1).

This surface was named after the ancient Greek word ergon, meaning “work”. This denomina-
tion is related to the special role that the ergosphere plays in the Penrose process (see Sec. 4.2.2).

Since the metric is invariant by translations of both t and ϕ (it possesses two Killing
vectors η = ∂t and ψ = ∂ϕ, see Sec. 4.2.1), one can define a more general class of stationary
observers who remain at constant (r, θ), but rotate in the ϕ direction with constant angular
velocity Ω. Their 4-velocity can be expressed as

u = ut
(
η +

Ω (r, θ)

c
ψ

)
. (4.9)

To be a little more precise, Ω gives the rate of variation of ϕ with respect to t, but not with
respect to the proper time of the observer τ . To see this, one must recall from the definition
of the 4-velocity that uϕ = dϕ/dτ and ut = dt/dτ . Along the wordline of the observer, we
have dϕ/dt = uϕ/ut = Ω. Ω can also be interpreted as the angular velocity of the observer
measured by a static observer at infinity, because its proper time matches t.

While static observers cannot exist within the ergoregion, stationary ones could. Such
observers can exist if η+ (Ω(r, θ)/c)ψ is timelike, which translates into the following condi-
tion:
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FIGURE 4.1: Poloidal cut of a the event horizon (black disk) and ergosphere (blue solid line)
for a = 0.6 (a) and a = 0.99 (b).

f(Ω, r, θ) = g00 + 2
Ω

c
g0ϕ +

Ω2

c2
gϕϕ < 0. (4.10)

The solution of this quadratic inequality in Ω leads to

Ω−(r, θ) < Ω < Ω+(r, θ), (4.11)

where

Ω± = c
−g0ϕ ±

√
g2

0ϕ − g00gϕϕ

gϕϕ
. (4.12)

The situation is pictured in the (r,Ω) diagram of Fig. 4.2, for θ = π/2, which shows which
positions and angular velocities are permitted for a stationary observer. On the ergosphere
S, we have gtt = 0 by definition, so that Ω− = 0: Ω− is negative outside the ergosphere, and
positive inside. This means that stationary observers can exist even within the ergosphere,
but to do so they must rotate with the black hole (Ω− > 0), whereas outside the ergosphere
they can also rotate against it. In that sense, it is often said that spinning black holes “drag”
spacetime around them. This notion, sometimes called the Lense-Thirring effect, will be
crucial to get an intuitive understanding of black-hole electrodynamics.

Besides, we note that the ergosphere is not a null surface. Actually, it is a timelike surface,
and it cannot be a one-way membrane. Its normal vector has covariant components nµ =
(0, 1,−dre/dθ, 0), so that is norm is nµnµ = grr + gθθ(dre/ dθ)2 =

(
∆ + (dre/ dθ)2

)
/Σ ≥ 0:

n is spacelike. All in all, the ergosphere is very different from the definition that we gave of
an event horizon.

The condition Ω− > 0 continues to hold even if the observer has a momentum in the r or θ
direction (Frolov & Zelnikov, 2011). Particles inside the ergosphere can move both at increasing
or decreasing r as long as Ω > Ω−.
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(a) (b)

FIGURE 4.2: Map of the light surface function f (Eq. (4.10)) in the (r,Ω) plane, at a given
angle θ = π/2 for a = 0.7 (a) and a = 0.99 (b). In the blue hatched region, rotation at
angular velocity Ω is subluminal (f < 0), whereas red color means that it is superluminal
(f > 0). The black region indicates the black hole interior, whereas the vertical line marks
the position of the ergosphere at θ = π/2. The dotted line shows the evolution of Ω+(r, π/2),

whereas the dashed line marks Ω−(r, π/2).

4.1.4 The Kerr event horizon

The other condition met by the Schwarzschild event horizon is grr = 0. For the Kerr metric,
one has grr = ∆/Σ, so that

grr(r, θ) = 0 ⇐⇒ ∆(r) = r2 − 2rgr + a2r2
g = 0 ⇐⇒ r = rg

(
1±

√
1− a2

)
. (4.13)

We are only interested in the positive root rh = rg

(
1 +
√

1− a2
)
≤ re(θ), which intersects

the ergosphere at the poles θ = 0, π only (see Fig. 4.1). The hypersurfaceH defined by r = rh

is therefore a null surface. What is more, one can prove the following equality in Boyer-
Lindquist coordinates: g2

0ϕ − g00gϕϕ = ∆ sin2 θ. Consequently, within r = rh, Eq. (4.10) no
longer has any real solution, and there can be no stationary observer. H is the true event
horizon of a Kerr black hole (see the black circle in Fig. 4.1).

At the event horizon, we have Ω− = Ω+ = −cg0ϕ/gϕϕ. As a result, the quantity

ωh = −c g0ϕ(rh)

gϕϕ(rh)
=

ac

2rh
(4.14)

is identified with the angular velocity of the black hole. For a low spin parameter a� 1 we
have ωh ' (a/4)(c/rg), whereas ωh → c/(2rg) for a→ 1.

An important takeway from this calculation is that the event horizon only exists if |a| ≤
1. A Kerr black hole with |a| > 1 would present a naked singularity, visible to distant
observers. It is thought that a naked singularity cannot result from a regular initial state of
the system through physically reasonable processes. This statement was formulated by R.
Penrose as the weak cosmic censorship conjecture (see a discussion in Penrose 2002), and
has not been proved so far. Therefore, we will consider a = 1 as the maximum possible
value of the spin parameter.
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4.1.5 Light surfaces

Kerr black holes exhibit another set of characteristic surfaces. Consider a point orbiting a
Kerr black hole with angular velocity Ω ∈ [0, ωh]: its rotation is timelike (subluminal) if
the function f , defined in Eq. (4.10), is negative, and spacelike (superluminal) when f is
positive. For a given Ω, the surfaces separating subluminal and superluminal rotation are
the light surfaces, defined by f(Ω, r, θ) = 0. These light surfaces, parametrized by rl(θ),
will also have a special significance in this thesis, so it is useful to outline some of their
properties. Their proofs can be found in Komissarov (2004a).

I There exist two light surfaces: the inner one is located between the ergosphere and the
event horizon, whereas the outer one is outside the ergosphere.

I The inner and outer light surfaces never intersect.

I For the inner light surface, rl(θ) increases as θ goes from 0 to π/2. The opposite holds
for the outer light surface.

These surfaces are represented in Fig. 4.3. The outer light surface is very much similar to
the light cylinder in pulsar magnetosphere theory, where Ω would be the pulsar’s angular
velocity. This can be seen in the non-relativistic limit: if Ω� c/rg and r � rg, the function f
reduces to f(Ω, r, θ) = −1 + Ω2r2 sin2 θ/c2. In this limit, the light surface has the equation

rl(θ) sin θ =
c

Ω
: (4.15)

(a) (b)

FIGURE 4.3: Spatial map of the light surface function f (Eq. (4.10)) for a = 0.99 and fixed
Ω = 0.4ωh (a) and Ω = 0.7ωh (b).
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this is precisely the equation of the cylinder of radius c/Ω. Outside the outer light surface,
the rotation of the particle would be superluminal. Contrarily, the inner light surface is a
peculiarity of Kerr black-hole magnetospheres, and has no classical counterpart. Inside the
inner light surface, the motion of the particle would also be timelike (because Ω < Ω−): the
rotation of the particle is made somehow “too slow” because of the black hole’s frame drag-
ging. The importance of the light surfaces, and their relation to the Alfvén critical surfaces,
will be described in Sec. 7.2.4.

4.2 Energy extraction

The goal of this section is to highlight another stark difference between Schwarzschild and
Kerr black holes. To do so, we must first do a quick theoretical aside to define the conserved
quantities of a test particle.

4.2.1 Killing vectors and conserved quantities

One of the most fecund ideas in theoretical physics is symmetries. In general relativity, this
idea can be encompassed in the notion of Killing vectors, which generate isometries of the
metric. A vector field Kµ is a Killing vector if it satisfies the condition

∇µKν +∇νKµ = 0. (4.16)

In particular, if the components of the metric are all independent of a particular coordinate
x, thenK = ∂x is a Killing vector associated with translational symmetry in the x direction.
In this case, the system of coordinates is said to be adapted to the symmetries of the metric.
This is the most straightforward way to derive Killing vectors, although in general it is
impossible to find a coordinate system in which all Killing vectors have this form.

In classical physics, we know by Noether’s theorem that symmetries of a system spawn
the existence of conserved quantities. In this context, this is also the case: symmetries of the
metric give rise to conserved charges, which can be defined thanks to the Killing vectors.
Let Kµ be a given Killing vector field and xµ(τ) a geodesic, parametrized by its proper time
τ , and let us define the charge Q = Kµẋ

µ. Then Q is conserved along the geodesic.

Proof

It suffices to show that the directional derivative along the geodesic vanishes:

dQ
dτ

= ẋµ∇µ (Kν ẋ
ν) (4.17)

= ẋµKν∇µẋν + ẋµẋν∇µKν (4.18)
= ẋµẋν∇µKν (4.19)

=
1

2
ẋµẋν (∇µKν +∇νKµ) = 0 (4.20)

The third equality results from the geodesic equation ẋµ∇µẋν = 0, and the final equal-
ity from the definition (4.16) of a Killing vector field.

Eq. (4.16) is equivalently linked to generating isometries of the metric and producing
conserved charges. This can be understood intuitively. Loosely speaking, the metric is in-
variant in the direction given by Kµ, so a particle flowing in this direction experiences no
“force” and conserves its momentum ẋµ along this direction.
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The flat Minkowski spacetime has 10 independent Killing vectors, corresponding to a
maximally symmetric space. The Kerr metric only possesses two straightforward Killing
vectors η = ∂t and ψ = ∂ϕ, since all its components are independent of t and ϕ. Therefore,
for a given test particle (massive or massless) of momentum pµ, one can define a conserved
energy , associated with time translational invariance:

E = −cpµηµ, (4.21)

and a conserved angular momentum, associated with rotational invariance with respect to
the black hole’s spin axis:

L = pµψµ. (4.22)

If ηµ were the 4-velocity of a given observer, Eq. (4.21) would match the usual definition
of the energy of a particle in special relativity. Thus, the conserved energy E is commonly
denoted “energy-at-infinity”, since it only achieves a physical meaning when measured by
an observer at infinity with 4-velocity η. Note that in general, E is not the energy that would
be measured by a physical observer. In particular, inside the ergosphere, η is spacelike so it
cannot be the 4-velocity of an observer. E is also sometimes called the “redshifted” energy.

4.2.2 Penrose process

As we saw, a Kerr black hole has the special property that the Killing vector field ηµ becomes
spacelike within the ergosphere, although particles in the ergoregion can still make it to
infinity. Outside the ergosphere, pµ being timelike and future-oriented, E has to be positive,
but this is no longer the case in the ergoregion: there can be particles of negative energy.
Such thing would have no meaning for an observer at infinity, so particles of negative energy
must unavoidably fall into the black hole ordrop their negative energy.

The existence of these particles in a region outside the event horizon makes the following
process possible: a particle with momentum pµ0 and energy-at-infinity E0 could enter the
ergosphere, then decay into a pair of particles with momenta pµ1 and pµ2 , so that particle 2 has
negative energy-at-infinity E2 < 0 (see Fig. 4.4). If particle 1 escapes from the ergosphere,
its energy-at-infinity will be E1 = E0 − E2 > E0. Therefore, the outgoing particle has more
energy than the ingoing one. The difference in energy must necessarily be provided by
the black hole itself. Let us define the 4-vector lµ = ηµ + Ωhψ

µ; l is a null vector on the
event horizon of the black hole. The scalar product of a future-oriented null vector with
a future-oriented timelike vector is always negative (Gourgoulhon, 2010). Thus, we have
lµp2µ = −E2 + ΩL2 ≤ 0⇒ L2 ≤ E2/Ω. This implies that

L1 − L0 = −L2 ≥ −
E2

Ω
> 0. (4.23)

Consequently, there has also been an extraction of angular momentum. Then, it is sensi-
ble to interpret this process as the extraction of rotational energy from the Kerr black hole.
This provides a physical interpretation as to why no such process can be carried out for
Schwarzschild black holes.

From Eq. (4.23), one can deduce that the change in the black-hole mass M and angular momen-
tum J verifies δM ≥ (Ω/c2)δJ . This is reminiscent of the second law of thermodynamics, which
indicates a preferred direction of evolution for the system.

Unlike Schwarzschild black holes, it is possible to extract energy from a spinning black
hole. Only a fraction of its mass is there for the taking, “reducible”. The specific process
that was previously outlined was first suggested by Penrose (Penrose & Floyd, 1971), but
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1

0

2

FIGURE 4.4: Illustration of the Penrose process in the θ = π/2 equatorial plane. A particle
with momentum p0 breaks up at A into two particles with momenta p1 and p2, with only
one of which escaping to infinity. The gray shaded area represents the ergoregion. Figure

adapted from Gourgoulhon (2021).

practical astrophysical implementations seem hard to devise. There is an analog of the Pen-
rose process, known as “superradiance”, which is based on wave amplification (Misner,
1972; Press & Teukolsky, 1972), but which also seems somehow implausible. The Blandford-
Znajek mechanism is a more feasible way to extract energy from the black hole, by the means
of electromagnetic fields.

4.A Appendix: Kerr-Schild coordinates

It has been underlined that the metric written in Boyer-Lindquist (hereafter, BL) coordi-
nates presents a singularity at the event horizon. Just like in the Schwarzschild solution,
this is merely a coordinate singularity. Nevertheless, such a singularity is inconvenient, for
instance in the context of numerical simulations. It is possible to remove this coordinate
singularity by a clever choice of coordinate transformation. The new coordinates, known as
the Kerr-Schild (hereafter, KS) coordinates and denoted (t̃, r̃, θ̃, ϕ̃), are the ones used in the
general relativistic code Zeltron that I have used in my simulations (see Sec. 10). Recalling
∆ = r2 +2rrg +a2r2

g, KS coordinates are defined by the following transformation (Font et al.,
1999; McKinney & Gammie, 2004):





cdt̃ = cdt+
2rgr

∆
dr;

dϕ̃ = dϕ+
arg

∆
dr;

dr̃ = dr;

dθ̃ = dθ.

(4.24a)

(4.24b)

(4.24c)

(4.24d)

Integrating Eq. (4.24a) and (4.24b) provides the full expression of the new KS coordinates:




ct̃ = ct+ rg ln (∆) +
rg√

1− a2
ln



r − rg

(
1 +
√

1− a2
)

r − rg

(
1−
√

1− a2
)


 ,

ϕ̃ = ϕ+
a

2
√

1− a2
ln



r − rg

(
1 +
√

1− a2
)

r − rg

(
1−
√

1− a2
)


 ,

(4.25a)

(4.25b)
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along with r̃ = r and θ̃ = θ. The Jacobian matrix J µ̃ν =
(
∂x̃µ̃/∂yν

)
and its inverse are given

by

J µ̃ν =




1 2rgr/∆ 0 0
0 1 0 0
0 0 1 0
0 arg/∆ 0 1


 ;

(
J−1

)µ
ν̃

=




1 −2rgr/∆ 0 0
0 1 0 0
0 0 1 0
0 −arg/∆ 0 1


 . (4.26)

In these KS coordinates, the metric reads (Komissarov, 2004a; Takahashi, 2007):

ds2 = g0̃0̃c
2 dt̃2 + 2g0̃ϕ̃cdt̃dϕ̃+ 2g0̃r̃cdt̃dr̃+ gr̃r̃ dr̃2 + gθ̃θ̃ dθ̃2 + gϕ̃ϕ̃ dϕ̃2 + 2gr̃ϕ̃ dr̃ dϕ̃, (4.27)

where

g0̃0̃ = g00 = z − 1; g0̃ϕ̃ = g0ϕ = −argz sin2 θ; g0̃r̃ = z; (4.28)

gr̃r̃ = 1 + z; gθ̃θ̃ = gθθ = Σ; gϕ̃ϕ̃ = gϕϕ =
A sin2 θ

Σ
; gr̃ϕ̃ = −arg sin2 θ (1 + z) . (4.29)

For conciseness, we have defined z = 2rgr/Σ. The inverse components of the metric in the
KS coordinates are (Takahashi, 2007)

g0̃0̃ = 1 + z; g0̃ϕ̃ = 0; g0̃r̃ = z (4.30)

gr̃r̃ =
∆

Σ
; gθ̃θ̃ =

1

Σ
; gϕ̃ϕ̃ =

1

Σ sin2 θ
; gr̃ϕ̃ =

arg

Σ
. (4.31)

A useful identity is hrϕhϕϕ+hrϕh
rr = 0. This transformation has allowed us to get rid of the

coordinate singularity at r = rh (which was due to the presence of ∆), both in gµ̃ν̃ and in gµ̃ν̃ .
Unfortunately, the coordinates (r̃, θ̃, ϕ̃) are no longer orthogonal, so that extra care is needed
in order to interpret quantities in the KS coordinates. One can check that the determinant g̃
of the metric in these coordinates has the same expression than in BL coordinates:

√
−g̃ = Σ sin θ =

√−g. (4.32)

Under this change of coordinates, a 4-vector Xµ is transformed as follows (using X µ̃ =

J µ̃νXν):




X 0̃ = X0 +
2rgr

∆
Xr

X r̃ = Xr

X θ̃ = Xθ

X ϕ̃ = Xϕ +
arg

∆
Xr

(4.33a)

(4.33b)

(4.33c)

(4.33d)

Likewise, a 1-form Xµ transforms as follows (using Xµ̃ =
(
J−1

)µ
ν̃
Xν):





X0̃ = X0

Xr̃ = Xr −
2rgr

∆
X0 −

arg

∆
Xϕ

Xθ̃ = Xθ

Xϕ̃ = Xϕ

(4.34a)

(4.34b)

(4.34c)
(4.34d)
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Only the r component of a 1-form is transformed. Similarly, a (0, 2) tensor Fµν transforms
as Fµ̃ν̃ =

(
J−1

)µ
µ̃

(
J−1

)ν
ν̃
Fµν . Inserting Eq. (4.26), it follows that all components Fµν for

µ 6= r and ν 6= r are invariant under the coordinate transformation. The light surface
function f , defined in Eq. (4.10), has the same expression in BL and KS coordinates, because
its definition does not involve any component of the metric with r.



Chapter 5

3 + 1 electrodynamics

The goal of this chapter is to derive a convenient formulation of electrodynamics in curved
spacetime. Carrying out this task requires a different formulation of general relativity. The
classical formulation is usually expressed in a frame-independent way, and deals with 4-
dimensional objects to represent physical quantities. This is very much the spirit of the
theory, and it is highly justified when dealing with dynamical spacetimes. Unfortunately,
its connection with an already complex theory makes it harder to rely on physical intuition.
By contrast, the 3 + 1 formulation of electrodynamics, introduced by Thorne & MacDon-
ald (1982) and MacDonald & Thorne (1982), introduces an “absolute” 3-dimensional space
and an “absolute” time. This makes a connection with classical physics much easier to estab-
lish. Not only does this decomposition make electrodynamics more tractable, with 3-vectors
representing the electromagnetic fields, but it is also very well suited for computational pur-
poses, as quantities can be evolved with respect to this absolute time. We will see in Chap. 9
and 10 how this formalism allows us to rely on the architecture of codes initially designed
in flat spacetime. This approach is appropriate when one deals with stationary spacetime,
as is the case in this thesis.

The 3+1 formalism of general relativity was first developed by mathematicians, such as Yvonne
Choquet-Bruhat in the 1950’s. Nowadays, this is the main approach in solving Einstein’s equa-
tions numerically.

5.1 3 + 1 formulation of general relativity

Most of the material in this section is covered in a very thorough way in the exhaustive
textbook by Gourgoulhon (2012). A simpler introduction can be found in Dodin & Fisch
(2010). In this section, Greek indices span from 0 to 3 and Latin indices from 1 to 3. Vectors
will be written in bold, unlike 1-forms. In the following, we assume a stationary spacetime.

5.1.1 Hypersurfaces

First, we focus on how to switch from 4-dimensional objects, defined in a 4-manifold, to
3-dimensional objects, defined on spacelike hypersurfaces. These spacelike hypersurfaces
can constitute what can be thought of as “space”. Let us define a 3-dimensional spacelike
hypersurface Σ. The proper definition of a hypersurface is related to the involved notion of
“embedding”: that is, how a given 3-manifold is defined with respect to the 4-dimensional
spacetime. In particular, a hypersurface can be intrinsically flat (vanishing Riemann tensor),
but have an extrinsic curvature due to the way it is embedded in spacetime. In the following,
we will pass over these mathematical sophistications.
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Example

Let us simply provide an example to
give the reader a sense of this notion: a
cylinder of radius R and symmetry axis
(Oz) in R3 is defined by the equation√
x2 + y2 = R. The cylindrical coordi-

nates ϕ and z map entirely the cylinder.
In this system, the line element on the
cylinder reads ds2 = R2 dϕ2 + dz2, so
that the metric is flat. Yet, the cylinder
has extrinsic curvature due to how its
normal vector varies along its surface.

We assume that Σ is the level surface of some scalar field t, then by definition the 1-
form ∇t is normal to Σ. Σ is spacelike if the dual vector ∇t is timelike. In that case, let
us define n = −α∇t as a unit normal vector of Σ, such that nµnµ = −1. All 4-vectors can
be decomposed as the sum of a vector in Σ and one colinear to n. Let us introduce the
symmetric tensor

hµν = δµν + nµnν , (5.1)

where δµν is the Kronecker tensor. h is the orthogonal projector on Σ. Indeed, it satisfies
hµνnν = 0, and hµνXν = Xµ for all vector X tangent to Σ.

Let us also introduce three arbitrary vectors ei forming an orthonormal basis of Σ, so that
(n, ei) forms an orthonormal basis of the spacetime. We define the projection Xµ

= hµν ·Xν

of a 4-vector X : its component along n is zero. Because it is a tensor contraction, Xµ must
transform as vector components, and so do the Xi components. Therefore, X = X

i
ei can

be considered as a spatial 3-vector in Σ.
Likewise, this projector can be extended to act upon 1-forms and tensors. In particular,

the line element dx · dx in Σ reads

dx · dx = dxi dxi (5.2)
= dxµ dxµ (5.3)
= hµν dxµ dxν (5.4)

= hij dxi dxj , (5.5)

with hµν = gµνh
µ
ν . The first equality can be seen as the definition of the line element, for

a small 3-vector element dx in Σ; the second equality is due to the component along n of
dx being zero; the third equality consisted in lowering indices for the h operator. Therefore,
the spatial part of the orthogonal projector h can be seen as the spatial part of the metric on
the hypersurface Σ. Formally, it is the metric “induced” on Σ by the 4-metric g, where the
covariant components of h are

hµν = gµν + nµnν . (5.6)

Now the hypersurface is endowed with a metric, induced by the properties of the global
spacetime.
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5.1.2 Foliation of spacetime

In the last section we have focused on the geometry of a single hypersurface. The key idea of
the 3+1 formalism is to define a foliation of spacetime by a continuous set of hypersurfaces.
We define a regular scalar field t on the spacetime (such that ∇t ·∇t 6= 0 everywhere), and
define each hypersurface Σt as a spacelike level surface of t. Different hypersurfaces of the
foliation cannot intersect because t is regular (see Fig. 5.1).

Now we need to introduce coordinates on the spacetime. First we define a coordinate
system (xi) which varies smoothly between different hypersurfaces. The associated coordi-
nate basis is ei = ∂i, where the ei are tangent to the hypersurfaces. In addition to these, we
add a fourth coordinate x0 = t associated with the time vector e0 = ∂t. We have already
defined the unit vector n = −α∇t, which is timelike, future-oriented and normal to the
hypersurface. α is generally called the “lapse” function, for reasons which will appear later.
In order to complete the description of the foliation, one has to parametrize this vector e0.
Importantly, e0 is not necessarily timelike. By construction, it is only required to remain
tangent to lines of constant xi.

Any infinitesimal 4-vector can be written as dx = dxiei + dte0. Because ∇t is normal to
Σt, this yields ∇t · dx = (∇t · e0) dt. But since we also have dt = ∇t · dx, both equations
combine to yield ∇t · e0 = 1, which amounts to saying that the 1-form ∇t is dual to the
vector ∂t. Given a choice of lapse function α, we deduce that

n · e0 = −α, (5.7)

which is the only requirement on e0. The time vector e0 = ∂t does not have to be normal to
Σ, as long as Eq.(5.7) is satisfied. All in all, the general form of the time vector is

e0 = αn+ β, (5.8)

where β is tangent to Σt (because from Eq. (5.7) we have n ·β = 0). β was coined the “shift”
vector. From Eq. (5.8), we see that β = βiei is the projection of e0 onto Σ. Also, the square
norm of e0 is e0 · e0 = −α2 + β2, so that e0 does not have to be timelike (as pointed out
earlier). The lapse function α and the shift vectors β are used to parametrize the foliation
of spacetime, and thus specify the metric. The geometry of the foliation is represented in
Fig. 5.2.

FIGURE 5.1: Sketch of the foliation of spacetime into hypersurfaces Σt of constant t. n is a
unit vector normal to the hypersurface Σt. Figure adapted from Gourgoulhon (2012).
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α

FIGURE 5.2: Geometry of the foliation. The red solid line is a line of constant coordinates
xi. The time vector e0 = ∂t is tangent to this line. Figure adapted from Gourgoulhon (2012).

5.1.3 Interpretation of the lapse function and shift vectors

n is a timelike vector, so it can be considered as the normalized 4-velocity of a local observer.
Such observers are denoted “fiducial observers” (FIDOs). The 3 + 1 formalism has the ben-
efit of naturally introducing a class of privileged observers. Since n is normal to Σt, this
hypersurface is locally the set of simultaneous events of this observer.

Eq. (5.8) allows to write down the components of n in the coordinate basis (eα) = (∂α):

nµ =

(
1

α
,−β

i

α

)
. (5.9)

The covariant components of n (or equivalently, the components of its 4-momentum) in the
dual basis dxα are obtained similarly, by noting that n = −α∇t⇒ n = −α∇t, so that

nµ = (−α, 0i) . (5.10)

Let us consider two points M and M ′ on the worldline of a given FIDO, on two hyper-
surfaces labeled by t and t′ = t + δt respectively. To evaluate the proper time δτ measured
by the FIDO between these two events, we need to find the length of the infinitesimal vector
δx separating M and M ′. This vector must be colinear to the 4-velocity of the FIDO, so we
write δx = Nδtn, with N to be determined. The difference in t can be rewritten as

t′ − t = δt = ∇t · δx = N∇t · nδt. (5.11)

But we know that n = −α∇t and α2 = −∇t · ∇t, so that this equation yields N = α.
Therefore, the infinitesimal proper time measured by the FIDO is

δτFIDO =
√
−gµνδxµxν/c2 = αδt. (5.12)

This justifies the name “lapse function” given to α, relating the physical proper time with the
coordinate time t. In this formalism, t can be seen as a universal “absolute” time, parametriz-
ing the hypersurfaces Σt, which define an “absolute” space.

Likewise, one can see from Eq. (5.9) that the shift vector β can be regarded as the FIDO’s
spatial velocity (up to a proportionality factor). We also note that the spatial components of
the FIDO’s momentum are zero: the FIDO can be seen as at rest with respect to the absolute
space. Then, βi is rather the rate at which the coordinate system on each hypersurface (the
lines of constant xi) is shifting with respect to the FIDO’s wordline.
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In particular, since we have n · ψ = 0, FIDOs have vanishing angular momentum: they
are also “zero-angular momentum observers” (ZAMOs). Nevertheless, FIDOs are not iner-
tial observers, their 4-acceleration being non-zero.

5.1.4 Metric

Finally, since α and β fully determine the metric, it is useful to write the components of the
metric with this choice of foliation. Each component can be computed as follows:

g00 = g(e0, e0) = e0 · e0 = −α2 + β · β (5.13)
g0i = g(e0, ei) = (αn+ β) · ei = β · ei = βi (5.14)
gij = g(ei, ej) = hij . (5.15)

For compactness, we can write

gµν =

(
−α2 + β2 βj

βi hij

)
. (5.16)

The line element can be written as

ds2 =
(
β2 − α2

)
c2 dt2+2βi dxicdt+hij dxi dxj = −α2c2 dt2+hij

(
dxi + βicdt

) (
dxj + βjc dt

)
,

(5.17)
which is convenient to determine quickly the lapse function and shift vector if the metric is
given. The inverse metric components are:

gµν =

(
−1/α2 βj/α2

βi/α2 hij − βiβj/α2

)
, (5.18)

where hij is the inverse matrix of hij .
We will also derive a useful relationship between the determinants of the 4-metric g and

the spatial 3-metric h. Note that g and h depend on the choice of coordinates, and are not
scalar quantities. By Cramer’s rule, the (0, 0) element of the inverse metric is related to the
minor (0, 0) M00 of gµν by g00 = M00/g. But thanks to Eq. (5.16), M00 is also the determinant
of the 3-metric h, so that g00 = h/g. Using the explicit value of g00, we find

√−g = α
√
h. (5.19)

In BL coordinates, the shift vector is purely azimuthal: we get from βi = g0i that

βBL = βϕBL∂ϕ, βϕBL =
g0ϕ

gϕϕ
. (5.20)

The BL FIDO has a purely azimuthal motion relative to the coordinate grid, with a constant
angular velocity ω = −cβϕ. From g00 = −1/α2, we obtain the lapse function:

αBL =

√
∆Σ

A
. (5.21)

On the other hand, in KS coordinates, the lapse function takes a simpler form:

αKS =
1√

1 + z
, (5.22)
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where z = 2rgr/Σ. Because βi = g0iα2, we see that the shift vector is purely radial:

βKS = βrKS∂r, βrBL =
z

1 + z
. (5.23)

The KS FIDO slides radially toward the true singularity at r = 0. Because this physical
observer is able to cross the event horizon, there can be no coordinate singularity at the
event horizon as seen by the FIDO (see the Appendix 4.A). Note however that βϕ 6= 0.

5.2 Maxwell’s equations in general relativity

We can start by reviewing Maxwell’s equations in special relativity, then promote them to a
generally covariant form by minimal coupling.

Basically, to obtain equations which are valid in any gravitational field, one must write down
Lorentz invariant equations, then promote them by replacing the Minkowski metric by the
spacetime metric and partial derivatives by covariant derivatives, in order to get fully covariant
equations. This is known as the minimal coupling procedure.

The basic dynamical field is the vector potentialAµ, which allows us to define the Maxwell
field strength (Blau, 2018)

Fµν = ∂µAν − ∂νAµ = ∇µAν −∇νAµ, (5.24)

where the first equality is the definition of Fµν and the second equality results from the
spacetime having no torsion. The generally covariant Maxwell’s equations are (Gourgoul-
hon, 2010; Blau, 2018)




∇µF νµ =

4π

c
Iν

∇µ∗F νµ = 0,

(5.25a)

(5.25b)

where ∗F is the Hodge dual of the Maxwell tensor, whose components are defined by
∗Fαβ = (1/2)eαβµνF

µν and ∗Fαβ = (1/2)eαβµνFµν . We have used the Levi-Civita tensor
eαβµν introduced in the Appendix 5.A.1. Iν is the 4-electric current vector. Eq. (5.25b) is also
often written into the (less compact) form∇αFβγ +∇βFγα+∇γFαβ = 0, whereas Eq. (5.25a)
implies charge conservation∇µIµ = 0.

Proof

Indeed, we have

∇µF νµ =
1√−g∂µ

(√−gF νµ
)
⇒ ∇νIν =

1

4π
√−g∂ν∂µ

(√−gF νµ
)

= 0, (5.26)

where the last equality comes from the antisymmetry of Fµν . In this equation, we
have used the identities (5.80) and (5.81).

The covariant equivalent of the Lorenz gauge for the vector potential is∇µAµ = 0. Writ-
ten in terms of Aµ, Maxwell’s equations now read

∇µFµν = ∇µ (∇µAν −∇νAµ) = �Aν −RνµAµ =
4π

c
Iν , (5.27)
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where Rµν is the Ricci tensor of the metric and � = ∇µ∇µ is the d’Alembert (“box”) oper-
ator. This reformulation of Maxwell’s equations will be used to find an analytical solution
for the electromagnetic field around a Kerr black hole.

It is interesting to underline the asymmetry between the two Maxwell’s equations (5.25a)
and (5.25b): one involves a source term (electric charges) while the other one does not, due
to the absence of magnetic charges in nature. However, they become symmetrical in the
absence of source terms. The duality between the two equations is performed by the action
of the Hodge operator ∗. As a result, the Hodge dual ∗Fµν of a solution of the vacuum
Maxwell’s equations Fµν is also a solution of these equations. Basically, going from Fµν to
∗Fµν amounts to switching the electric and magnetic fields. We will make use of this fact in
Sec. 6.1.2 in order to derive the expression for a magnetic monopole in Kerr spacetime. Let
us also recall that for a p-form $, we have ∗∗$ = (−1)p+1$, so that ∗∗F = −F .

5.3 3 + 1 reformulation of Maxwell’s equations

This reformulation of Maxwell’s equations has been introduced in Komissarov (2004a).

5.3.1 Derivation

As promised in the introduction of this chapter, we will rewrite the generally covariant
Maxwell’s equations (5.25a) and (5.25b) in the 3 + 1 formalism. The coordinates (xµ) that
we use to map the spacetime are now (t, xi), with t a universal time coordinate and (xi) a
coordinate system adapted to the foliation. Using the identities (5.80) and (5.19), Eq. (5.25b)
can be split into a time part and a spatial part:

∂i

(
α
√
h ∗F ti

)
= 0 (5.28)

1

c
√
h
∂t

(
α
√
h ∗F it

)
+

1√
h
∂j

(
α
√
h ∗F ij

)
= 0. (5.29)

Let us define the spatial 3-vectors Bi = α∗F i0 and Ei = hijEi, with Ei = (1/2)αeijk∗F jk.
The covariant component Ei can actually be rewritten as Ei = Fi0.

Proof

Ei =
1

2
α
√
hεijk∗F jk (5.30)

=
1

2
α
√
hεijk

1

2
√−g ε

µνjkFµν (5.31)

=
1

2
εijk

(
ε0ljkF0l + εl0jkFl0

)
(5.32)

=
1

2
εijkε

jklFl0 = δ li Fl0 = Fi0, (5.33)

where we have used the contraction (5.73).

Similarly, Bi could be rewritten as Bi = (1/2)eijkFjk. Using the identity (5.80), Eq. (5.28)
can be recast in the form ∇ · B = 0. The first term in Eq. (5.29) is the i component of the
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vector ∂t
(√

hB
)
/c
√
h, whereas the second term can be rewritten as

1√
h
∂j

(
α
√
h∗F ij

)
=

1

2
√
h
εijµν∂jFµν =

1

2
√
h

(
εij0k∂jF0k + εijk0∂jFk0

)
=

1√
h
εijk∂jFk0.

(5.34)
Thus, the second term is actually the i component of the curl ∇×E (see the definition (5.71)),
so that the spatial part of Eq. (5.25b) actually reads

1√
h

∂
√
hB

∂t
+ c∇×E = 0. (5.35)

The same procedure applies to Eq. (5.25a), so we will simply state the result. We define
the 3-vectors Di = αF 0i and H i = hijHj , with Hi = (1/2)αeijkF

jk, and the charge density
ρ = αI0/c = αIt and current density J i = αIi. The time part of Eq. (5.25a) gives ∇·D = 4πρ,
whereas the spatial part is the i component of

1√
h

∂
√
hD

∂t
= c∇×H − 4πJ . (5.36)

If we further assume the metric is stationary, we end up with the following set of 3 + 1
Maxwell’s equations:





∇ ·D = 4πρ,

∂D

∂t
= c∇×H − 4πJ ,

∇ ·B = 0,

∂B

∂t
= −c∇×E.

(5.37a)

(5.37b)

(5.37c)

(5.37d)

The 3 + 1 version of the charge conservation equation is obtained by applying the diver-
gence operator to Eq. (5.37b), which yields using Eq. (5.37a) the usual law: ∂tρ+ ∇ · J = 0.
The 4-vector potential can also be split into a time and spatial part. Let us define the scalar
potential φ = −A0 and the 3-vector potential Ai = hijAj . Then, using the definition of the
Maxwell field strength, we have

Ei = Fi0 = ∂iA0 −
1

c
∂tAi ⇒ E = −1

c
∂tA−∇φ, (5.38)

Bi =
1

2
eijkFjk =

1

2
√
h
εijk (∂jAk − ∂kAj) =

1√
h
εijk∂jAk ⇒ B = ∇×A. (5.39)

It is instructive to show that just like in flat spacetime, if the electromagnetic fields are
invariant by rotation around the z axis, Aϕ supports a nice physical interpretation as a flux
function. Suppose that we compute the magnetic flux through a spherical cap at a given
radius r0, from θ = 0 to θ = Θ. Details on the covariant definition of surface fluxes in
general relativity are given in the Appendix 5.B. Using Eq. (5.39), the magnetic flux reads

Φ =

ˆ Θ

θ=0

ˆ 2π

ϕ=0
Br
√
hdθ dϕ = 2π

ˆ Θ

θ=0
∂θAϕ dθ = 2π (Aϕ(r0, θ = Θ)−Aϕ(r0, θ = 0)) . (5.40)

Since the 4-potential is defined up to a constant value, most of the time one can choose
Aϕ(r, 0) = 0 without loss of generality. Up to a factor 2π, Aϕ is interpreted as the magnetic
flux through this spherical cap.
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Another convenient property of Aϕ is that it remains constant along poloidal magnetic field
lines (it is also sometimes called stream function), if the fields are axisymmetric. To show this,
one simply needs to check that Bp ·∇Aϕ = 0, with Bp the poloidal magnetic field. This is true
because Br = ∂θAϕ/

√
h and Bθ = −∂rAϕ/

√
h.

5.3.2 Interpretation

Equations (5.37a), (5.37b), (5.37d) and (5.37c) are identical in form to Maxwell’s equations
in matter (Bertin et al., 1996). In that case, the field D is the electric displacement which
includes a contribution from the density of bound charges due to the polarization of mat-
ter, and H is the magnetizing field, which includes a contribution of the magnetization of
matter. If the medium is linear, isotropic and instantly-responding, there can exist propor-
tionality relations between D = εE (ε being the electric permittivity of the material), and
B = µH (µ being the magnetic permeability of the material) between these fields. These
relations are the constitutive relations of the medium.

We can draw an analogy with electromagnetism in curved spacetime by deriving similar
constitutive relations. We can prove, using the definitions of E, D, B and H through the
Maxwell tensor, that these relations are

{
E = αD + β ×B,
H = αB − β ×D.

(5.41a)
(5.41b)

Proof

We will simply prove Eq. (5.41a), the proof of Eq. (5.41b) being very similar. Using
Eq. (5.18) and the definitions Di = αF 0i, Ei = Fi0, we find that

Di = αg0µgiνFµν = −nµgiνFµν (5.42)

=
1

α

(
−giνF0ν + giνβjFjν

)
(5.43)

=
1

α

(
−gijF0j + gi0βjFj0 + gikβjFjk

)
(5.44)

=
1

α

(
−hijF0j +

βiβj

α2
(F0j + Fj0) + βjhikFjk −

βi

α2
βjβkFjk

)
(5.45)

=
1

α

(
Ei − βjhikFkj

)
. (5.46)

In the last equality, the second and fourth terms are zero due to the antisymmetry of
Fµν . Finally, using the Levi-Civita contraction (5.72), we note that

(β ×B)i =
√
hεijkβ

jBk (5.47)

=
1

2
βjεijkε

kmnFmn (5.48)

=
1

2
βj
(
δ mi δ n

j − δ ni δ m
j

)
Fmn = βjFij ; (5.49)

this is precisely the covariant component of the last term in Eq. (5.46). We conclude
that αDi = Ei − (β ×B)i.
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Eq. (5.41a) and (5.41b) can be interpreted as the instantaneous response of curved space-
time, which differs from pure vacuum. For instance, an electric field can be “inductively”
generated by the cross-product of the shift vector β and the magnetic fieldB.

There remains to give a physical interpretation of these fields. Let us define the 4-vectors
Bµ = −∗Fµνnν and Dµ = Fµνnν . These vectors verify Bt = 0, Dt = 0 and Bi = Bi, Di = Di,
using Eq. (5.10). These 4-vectors are tangent to hypersurfaces Σ and reduce to the spatial
3-vectors B and D. Because their definition matches the ones of the electric and magnetic
fields in special relativity from the Maxwell tensor, as measured by an observer with velocity
nµ, we conclude thatB andD are respectively the magnetic field and electric field measured
by FIDOs (Thorne & MacDonald, 1982). They have a clear physical meaning. On the other
hand, H and E are simply auxiliary fields, which can be interpreted as the magnetic field
and electric field measured on the grid.

Similarly, the charge density is related to the 4-vector Iµ by ρ = −Iµnµ, so that ρ is also
the charge density as measured by FIDOs. However, the 3-vector J cannot be identified
with the current density measured by a FIDO. Actually, the 3-current density measured by
a FIDO jµ is the projection of Iµ on a hypersurface orthogonal to nµ: jµ = Iµ + (nνI

ν)nµ.
This yields

ji = Ii − βi

α
nνI

ν ⇒ j =
J + cρβ

α
. (5.50)

The second term accounts for the fact that the coordinate grid is sliding with respect to
FIDOs.

The difference between j and J reflects the difference between the velocity of a particle as mea-
sured by a FIDO V , and as measured with respect to the coordinate grid v. We will show in
Sec. 10.1.1 that for a particle with charge q and position x0, the current density that this particle
generates is

J = qvδ (x− x0) , j = qV δ (x− x0) . (5.51)

5.3.3 Energetics

Finally, we need to evaluate the energy carried by the electromagnetic field. The energy-
momentum tensor of the sole electromagnetic field, obtained via the minimal coupling pro-
cedure, reads

Tµν =
1

4π

(
FµαFνα −

1

4

(
FαβF

αβ
)
δµν

)
. (5.52)

This tensor is constructed to verify the conservation of energy-momentum:

∇µTµν = −FναIα. (5.53)

In this case, it is a little trickier to derive a transparent conservation equation, but this still
works nicely for the time part, which is the energy conservation law. By performing a 3 + 1
splitting of Eq. (5.52) we obtain the following equation:

∂te+ ∇ ·Π = −E · J , (5.54)

where
e = −αT 0

0 =
1

8π
(E ·D +B ·H) , Πi = −cαT i0 =

c

4π
(E ×H)i . (5.55)
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Proof

The covariant derivative in Eq. (5.52) can be expanded using the Christoffel symbols,
using again Eq. (5.80):

∇µTµν = ∂µT
µ
ν + ΓµµλT

λ
ν − ΓλνµT

µ
λ =

1√−g∂µ
(√−gTµν

)
− ΓλµνT

λµ, (5.56)

where we have used the symmetry of the energy-momentum tensor T λµ = Tµλ and
the symmetry of the Christoffel symbols Γλµν = Γλνµ. Unlike the 3 + 1 splitting of
Maxwell’s equations, here the second term does not vanish a priori. We use the fact
that the Christoffel symbols verify the identity Γλµν + Γµλν = ∂νgµλ to get

ΓλµνT
λµ =

1

2
(Γλµν + Γµλν)T λµ =

1

2
T λµ∂νgλµ. (5.57)

Using Eq. (5.19), this allows us to rewrite Eq. (5.53) as

1√
h
∂µ

(
α
√
hTµν

)
=

1

2
αT λµ∂νgλµ − αFµνIν . (5.58)

Now in the special case of a stationary metric, we have ∂tgµν = 0, so that in the time
part of this equation the first term on the right-hand side vanishes. This way, we
indeed obtain Eq. (5.54) by defining e = −αT 0

0 and Πi = −cαT i0 .

Eq. (5.54) is the 3 + 1 equivalent of Poynting’s theorem, where e is the volume density
of electromagnetic energy-at-infinity and Π is the surface flux of energy-at-infinity (i.e. the
Poynting flux). Note that these quantities are not measured by FIDOs.

Finally, let us stress that the Maxwell tensor is associated with Lorentz invariants FµνFµν

and ∗FµνFµν . The latter, in particular, can be rewritten as a function of the 3-spatial fields:

∗FµνFµν =
1

2
eµναβFµνFαβ (5.59)

=
1

2
√−g4ε0ναβF0νFαβ (5.60)

= − 4

2α
√
h
εijkF0iFjk (5.61)

=
4

α
Fi0

1

2
eijkFjk = 4

1

α
EiB

i, (5.62)

where we used Ei = Fi0, Bi = (1/2)eijkFjk and ε0123 = −1 = −ε0123. Finally, using
Eq. (5.41a), we obtain

∗FµνFµν = 4D ·B. (5.63)

The second Lorentz invariant has a clear interpretation as the electric field parallel to the
magnetic field lines (the “parallel electric field” in the following), as measured by FIDOs.
Similarly, the other Lorentz invariant is FµνFµν = 2

(
B2 −D2

)
. These invariants have the

same expression in flat spacetime.
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5.A Appendix: Useful notions on tensor analysis

5.A.1 Levi-Civita tensor

This section relies heavily on Blau (2018) and Gourgoulhon (2010).

Definition

The Levi-Civita symbol εµνρσ is totally antisymmetric: it takes value 0 if two of the four
indices (µ, ν, ρ, σ) are equal, 1 if (µ, ν, ρ, σ) can be deduced from (0, 1, 2, 3) by an even per-
mutation, and −1 otherwise. It is merely a symbol, and has the same components in all
coordinate systems. For this reason, it is not a tensor.

Consider a direct orthonormal basis of the spacetime (e∗i ), associated with an inertial
coordinate system (xi). In 4 dimensions, there is but one 4-form e which is totally antisym-
metric and verifies

e (e∗0, e
∗
1, e
∗
2, e
∗
3) = +1. (5.64)

The 4-form e is the Levi-Civita tensor. Let us determine its components in any coordinate
system (yi), associated with the natural basis (ei). The change-of-basis matrix from (e∗i ) to
(ei) is the Jacobi matrix with elements Jµν = ∂xµ/∂yν , so that eν = Jµν e∗µ. Now, because e
is a 4-linear form we have

e(e0, e1, e2, e3) = Jµ0J
ν
1J

α
2J

β
3 e(e

∗
0, e
∗
1, e
∗
2, e
∗
3) (5.65)

=
∑

σ

(−1)k(σ)J
σ(0)

0J
σ(1)

1J
σ(2)

2J
σ(3)

3 = det J, (5.66)

where the sum is on all permutations of 4 elements, and k(σ) is the signature of the permu-
tation σ. To conclude, we simply need to relate the determinant of the Jacobi matrix with
that of the metric. A component of the metric can be written as

gαβ = eα · eβ = JµαJ
µ
β e
∗
µ · e∗ν . (5.67)

Because (e∗i ) is an orthonormal basis, it is associated with the Minkowski matrix, with de-
terminant −1. Therefore we deduce g = − (det J)2 ⇒ e(e0, e1, e2, e3) =

√−g. This also
shows that for any coordinate systems, g is negative. All in all, the Levi-Civita tensor has
components

eµνρσ =
√−gεµνρσ. (5.68)

From what we have already shown, it is straightforward to prove that the Levi-Civita tensor
defined by Eq. (5.68) indeed transforms as a tensor under a change of coordinates (xµ) → (yν),
that is,

eµ′ν′α′β′ = Jµ
′
µJ

ν′
ν J

α′
αJ

β′

β eµναβ (5.69)

Likewise, it is possible to define the totally antisymmetric (4, 0) tensor eµνρσ = εµνρσ/
√−g,

with εµνρσ the totally antisymmetric symbol with ε0123 = −1 = −ε0123. All the notions have
been introduced in a 4-dimensional spacetime, but are also valid on a 3-dimensional mani-
fold. In particular, a Levi-Civita tensor can also be defined on a particular spacelike hyper-
surface of a foliation (see Sec. 5.1.2), where the determinant of the induced spatial metric
h > 0 should be used instead of −g. Incidentally, we have also shown that upon such a
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coordinate change with Jacobi matrix J , the determinant of the matrix transforms as
√
−g′ = |det J |√−g. (5.70)

This will be useful when trying to define generally covariant integration in Sec. 5.B.

Curl of a vector

The Levi-Civita tensor can be used to define the curl ∇× V of a 3-vector V :

(∇× V )i = eijk∂jVk = eijk∇jVk =
1√
h
εijk∂jVk. (5.71)

The second equation results from the symmetry of the Christoffel symbols and the antisym-
metry of the Levi-Civita tensor.

Useful contractions

Finally, let us state two useful contractions of the Levi-Civita symbol in 3 dimensions:

εjkiε
imn = δ m

j δ n
k − δ n

j δ
m
k (5.72)

εkijε
ijn = 2δ n

k . (5.73)

5.A.2 Covariant divergence

The divergence of a 4-vector Vµ can be defined as∇µV µ = ∂µV
µ+ΓµµνV ν , where Γαβγ is the

Christoffel symbol associated with the metric. One can show the following useful identity:

Γµµλ =
1√−g∂λ

√−g. (5.74)

Proof

The contracted Christoffel symbol can be expressed as

Γµµλ =
1

2
gµν∂λgµν . (5.75)

The determinant of the metric can be written as

g =
1

4!
εαβγδεµνρσgαµgβνgγρgδσ. (5.76)

In this equation, εµνρσ is the Levi-Civita symbol. Therefore, a small variation of g,
viewed as a smooth function of the coefficients gµν , reads

δg =
1

3!
εαβγδεµνρσgαµgβνgγρδgδσ (5.77)

= 4

(
1

4!
εαβγδεµνρσgαµgβνgγρgδσ

)
gδσ

4
δgδσ (5.78)

= ggδσδgδσ, (5.79)

where we used gµνgµν = 4. It follows that ∂λg = ggµν∂λgµν , and then ∂λ
√−g =

(1/2)
√−ggµν∂λgµν . Inserting this into Eq. (5.75) yields the result of Eq. (5.74).
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Thus, the covariant divergence can be rewritten as

∇µV µ =
1√−g∂µ

(√−gV µ
)
. (5.80)

This identity is part of the reason why the determinant of the metric is an important quantity;
it is the only quantity needed to compute the divergence of a vector field. This formula is
useful to find the expression of the divergence in various coordinate systems (cylindrical,
spherical), even in flat space.

This result can also be used to simplify the expression of the divergence of an antisym-
metric tensor. For a (2, 0) antisymmetric tensor Tµν for instance, we have

∇µTµν = ∂µT
µν + ΓµµλT

λν + ΓνµλT
µλ =

1√−g∂µ
(√−gTµν

)
, (5.81)

because in the last term on the right-hand side, the contraction of the symmetric Christoffel
symbol with the antisymmetric tensor Tµλ is zero.

5.B Appendix: Covariant integration

The goal is to find a generally covariant definition of the integration of a scalar field over
some volume, or the flux of a vector field across a surface. The first thing to notice is that the
infinitesimal volume element is not itself invariant under a coordinate transformation: for a
transformation (xµ)→ (yν) parametrized by the Jacobian matrix J , we have

d4y =

∣∣∣∣det

(
∂yν

∂xµ

)∣∣∣∣ d4x =
1

|det J | d
4x. (5.82)

However, we noted in Sec. 5.A.1 that the determinant transforms as
√−g′ = |det J |√−g

under such a transformation. Therefore, the way to measure a volume in a coordinate-
independent manner is to define the volume element as

√−g d4x, which is invariant under
a general coordinate transformation. For a given volume V in spacetime, we define the
integration of a scalar field f over V as

ˆ
V
f =

ˆ
V
f(xµ)

√−g d4x. (5.83)

Similarly, it is possible to perform the integration of a scalar over a spacelike hypersurface
Σ. If hij is the metric on Σ induced by the metric of the spacetime gµν and yi is a coordinate
system on Σ, one must simply replace

√−g d4x by
√
hd3y in Eq. (5.83).

Now, we might want to compute integrals of other quantities than just scalar fields;
for exemple the flux of the magnetic field through the event horizon of the black hole, or
through any sphere of constant radius r. The goal of this section will be to provide a way to
compute such fluxes in a covariant way. Let us denote S the 2-dimensional boundary hyper-
surface of a volume V , which we assume spacelike. S is endowed with the 2-dimensional
induced metric ρab, and coordinates ξi. Let Jµ be a vector field. We can make use of the
identity (5.80) to derive the relativistic analog of Gauss’ theorem. Using the definition (5.83)
one has ˆ

V
∇µJµ

√
hd3y =

ˆ
V
∂µ

(√
hJµ

)
d3y. (5.84)

Now the right-hand side is the integral of an ordinary total derivative.
We assume that we are working with an adapted coordinate system yi = (S, yj), such

that the boundary S has the equation S = cst. In particular, it is so for our case of interest: a



74 Chapter 5. 3 + 1 electrodynamics

sphere of constant radius r = R. In the following we will assume S = r, but one can choose
an adapted coordinate system for any surface. Thus we have

ˆ
V
∇µJµ

√
hd3y =

ˆ
S
Jr
√
hd2ξ. (5.85)

Eq. (5.85) shows that the quantity
´
S J

r
√
hd2ξ appearing on the right-hand side is a gener-

ally covariant definition of a flux integral over a surface of constant r. This also provides a
convenient way to compute such a flux, using this generalization of Gauss’ theorem, if the
divergence of the vector field is known. It is not a priori obvious that the

√
h factor should

be in this definition, instead of the determinant ρ of the 2-dimensional metric on S. This
expression is the most convenient, and we will use it extensively.

In fact, it is possible to make a connection with the 2-metric ρab, which allows to define
an oriented surface element on Σ. One can define a vector normal to the surface S, defined
by r = cst, by noting that a vector field tangent to S must verify V i∂ir = 0 (r does not vary
along directions tangent to S). Therefore, a normal vectorN to S has components

Ni =
∂ir√

hij∂ir∂jr
=

∂ir√
hrr

, N i =
hir√
hrr

. (5.86)

In particular, we have Nr = 1/
√
hrr. In addition to that, one can use Cramer’s rule just like

in Sec. 5.1.4 to express hrr as hrr = ρ/h. We conclude that

ˆ
V
∇µJµ

√
hd3y =

ˆ
S
Jr
√
hd2ξ (5.87)

=

ˆ
S

hir√
hrr

Ji
√
ρd2ξ (5.88)

=

ˆ
S
N iJi

√
ρ d2ξ =

ˆ
S
NiJ

i√ρd2ξ. (5.89)

This is the most proper version of Gauss’ theorem, as it equates a manifestly covariant vol-
ume integral and a manifestly covariant surface integral. The oriented surface element of S
can be defined as

dSi =
√
ρN i d2ξ. (5.90)

Example

As an example, we will use these notions to compute the surface area of a Kerr black
hole (Bicak & Janis, 1985). In the Boyer-Lindquist coordinates, the metric ρab induced
on the 2-sphere, spanned by the coordinates (θ, ϕ) and defined by t = cst and r = rh,
is given by

ds2 = Σ dθ2 +
A sin2 θ

Σ
dϕ2. (5.91)

The determinant of the metric is ρ = ρθθρϕϕ. At the event horizon, we have ∆(rh) = 0,
so that ρ =

(
r2

h + a2r2
g

)2
sin2 θ. The total surface area of the event horizon is

S =

ˆ 2π

0

ˆ π

0

√
ρdθ dϕ = 4π

(
r2

h + a2r2
g

)
. (5.92)
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Black-hole electrodynamics

Now that we have formulated electrodynamics in the language of general relativity, our
goal will be to derive several solutions of Maxwell’s equations around a black hole. This
is no easy task, and we will be able to find only a few solutions. In Sec. 6.1, we will first
derive vacuum electromagnetic fields, which will give us insight to study the main topic of
interest: how such fields interact with plasma. In Sec. 6.2 we will see how magnetospheres
are modified by the presence of plasma in the force-free limit. The present chapter sets the
stage for Chap. 7, in which we will describe the Blandford-Znajek solution in the force-free
limit. In all this work, we neglect the backreaction of the energy and momentum of the
electromagnetic field on the metric itself.

6.1 Vacuum solutions

6.1.1 Killing vectors and Maxwell’s equations

Our first goal is to construct solutions of Maxwell’s equations in vacuum, by deriving the
4-potential Aµ. Actually, such vacuum solutions can be constructed from the Killing vectors
of the Kerr spacetime. Let us first prove a useful identity relating the derivatives of a Killing
vector Kµ to the curvature Riemann tensor Rρλµν (Blau, 2018):

∇µ∇νKρ = RσµνρKσ. (6.1)

Proof

By definition of the Riemann tensor, we have [∇µ,∇ν ]Vλ = −RρλµνVρ for any 1-form
Vµ (noting [∇µ,∇ν ] = ∇µ∇ν − ∇ν∇µ). A Killing vector is defined by Eq. (4.16), so
we get∇µ∇νKρ +∇µ∇ρKν = 0. Combinations of this identity obtained by switching
indices yield:

0 = (∇µ∇νKρ +∇µ∇ρKν)− (∇ρ∇µKν +∇ρ∇νKµ)

+ (∇ν∇ρKµ +∇ν∇µKρ)− (∇µ∇νKρ +∇µ∇ρKν). (6.2)

This can be rewritten as

0 = ∇µ∇νKρ −∇µ∇ρKν + [∇µ,∇ρ]Kν + [∇ν ,∇ρ]Kµ + [∇ν ,∇µ]Kρ. (6.3)

The first two terms are identical because K is a Killing vector. We finally obtain

∇µ∇νKρ =
1

2
(Rσνµρ +Rσµνρ +Rσρνµ)V σ = RσµνρK

σ = RσµνρKσ, (6.4)

where we used the cyclic permutation symmetry of the Riemann tensor: Rα[βγδ] = 0.



76 Chapter 6. Black-hole electrodynamics

Now we can contract Eq. (6.1) over µ and ρ to get∇ρ∇νKρ = RµνKµ, with Rµν the Ricci
tensor. Using again the definition ∇µKν +∇νKµ = 0, we see that Killing vectors obey the
two following equations:

∇µKµ = 0; ∇ν∇νKµ = −RµνKν . (6.5)

On the other hand, if Aµ is a solution of the vacuum Maxwell’s equations (with Iν = 0), we
know from Eq. (5.27) that it must verify, in the Lorenz gauge,

∇µAµ = 0; ∇ν∇νAµ = RµνA
ν . (6.6)

The sign of the Ricci tensor is different in Eq. (6.5) and (6.6), but this difference disappears
with vanishing Ricci tensor, that is, outside of any matter source. In that case, Kµ and Aµ

verify the exact same equations. Therefore, any Killing vector is a solution of the vacuum
Maxwell’s equations in a gravitational field, by identifying the potential vector Aµ with Kµ.

Example

The resulting electromagnetic field may sometimes be trivial. In flat spacetime, a
general Killing vector has the form Kα = ωαβx

β + bα, with ωαβ = −ωβα (which can
readily be seen from solving ∂aKb + ∂bKa = 0). The associated Maxwell tensor is
Fαβ = ∂αKβ − ∂βKα = −2ωαβ . The four translational Killing vectors bα generate no
electromagnetic field. The three spatial rotations generate the three components of a
uniform magnetic field, whereas the three boosts generate the three components of a
uniform electric field.

As said earlier, the Kerr spacetime possesses a timelike Killing vector η = ∂t and an axial
Killing vector ψ = ∂ϕ.

6.1.2 Multipoles

Electric monopole

Let us first investigate the electromagnetic field generated by η, in BL coordinates. Its co-
variant components are

ηµ = (gtt, 0, 0, gtϕ) =

(
2rgr

Σ
− 1, 0, 0,−

2ar2
gr sin2 θ

Σ

)
. (6.7)

To describe the qualitative properties of the field, let us look at the Schwarzschild limit
a = 0: the components ηµ reduce to ηµ = (2rg/r − 1, 0, 0, 0). The associated “electric field” is
Ei = ∂iηt = −

(
2rg/r

2
)
δri . We see that this electric field is that of a point charge at r = 0,−ηt

being the “electric potential”. The timelike Killing vector η generates the field of an electric
monopole.

Thus, we can make the guess that the 4-potential Aη, associated with the Maxwell tensor
Fηµν , with components

Aηµ = − Q

2rg
ηµ = − Q

2rg

(
2rgr

Σ
− 1, 0, 0,−

2ar2
gr sin2 θ

Σ

)
, (6.8)

describes an electric monopole supported by a Kerr black hole with charge Q (the constant
−1 term is irrelevant and could be dropped). To check this, we need to unambiguously
compute the charge carried by the black hole, and not just rely on the Schwarzschild limit.
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Let us define a closed 2-sphere Sr of radius r, at constant t, centered on r = 0, enclosing
the volume Vr. The electric charge Qη enclosed by this sphere can be computed by Gauss’
theorem. Using Eq. (5.37a), Eq. (5.85) and the definition Di = αF ti, we have

4πQη =

ˆ
Vr

(∇ ·D)
√
hdr dθ dϕ (6.9)

=

ˆ
Sr
Dr
√
hdθ dϕ (6.10)

=

ˆ
Sr
F trη
√−g dθ dϕ =

ˆ
Sr
∗F ηθϕ dθ dϕ, (6.11)

where we used the definition of the Hodge dual ∗Fµν = (1/2)eµναβF
αβ ⇒ ∗F ηθϕ =

√−gF tr.
Although Eq. (6.11) is not manifestly covariant, it is indeed invariant under a change of co-
ordinates due to Fη being antisymmetric.

This integral is actually related to the Komar mass, which can be used to define the black hole’s
mass. Because the field strength Fη derives from a Killing vector, it is possible to show that
this integral does not depend on the specific choice of the surface Sr, as long as all matter is
contained in this surface (Gourgoulhon, 2012). For this reason, the Komar mass is a global
quantity, an intrinsic property of spacetime.

To simplify the calculation of this integral, we will suppose that the radius of the sphere
is much larger than rg, since the result should not depend on r. Using the expressions of the
coefficients of the inverse metric and the determinant, the component ∗F ηθϕ reads

∗F ηθϕ =
√−g

(
g00grrF0r + g0ϕgrrFϕr

)
(6.12)

= Σ sin θ

(
− A

∆Σ

∆

Σ

(
−∂rAη0

)
−

2r2
gra

∆Σ

∆

Σ

(
−∂rAηϕ

))
(6.13)

= sin θ

(
A

Σ
∂rAη0 +

2r2
gra

Σ
∂rAηϕ

)
. (6.14)

In the limit r � rg, we have A/Σ ' r2 and ∂rAη0 ' Q/r2, whereas the second term on the
right-hand side vanishes as r → +∞. We have finally

ˆ
Sr
∗F ηθϕ dθ dϕ =

ˆ π

θ=0

ˆ 2π

ϕ=0
Q sin θ dθ dϕ⇒ Qη = Q. (6.15)

Similarly, the magnetic charge Pη associated with the 4-potential Aη can be computed. We
use the magnetic version of Gauss’ theorem, using Br = (1/2)erjkFηij = Fηθϕ/

√
h:

4πPη =

ˆ
Vr

∇ ·B
√
hdr dθ dϕ (6.16)

=

ˆ
Sr
Br
√
hdθ dϕ (6.17)

=

ˆ
Sr
Fηθϕ dθ dϕ. (6.18)
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This equality underlines the duality between electric and magnetic fields via the Hodge dual
operation. We have

Fηθϕ = ∂θAηϕ = −2Qargr cos θ sin θ
r2 + a2r2

g

Σ2
. (6.19)

The integral of Fηθϕ over θ vanishes for all r. Consequently, the field generated byAη carries
no magnetic charge. Now we know that the 4-potential Aη describes a stationary, axisym-
metric field which has charge Q, no magnetic monopole and vanishes asymptotically. A
special case of the no-hair theorem actually assures that this solution is unique (Ipser, 1971;
Wald, 1972):

Theorem 6.1.1. Let F be the Maxwell tensor of a stationary, axisymmetric, vacuum black hole
space time. If F is stationary, axisymmetric and nonsingular at the event horizon, vanishes at large
distances and has no electric charge or monopole moment, then F = 0.

There can be at most one stationary, axisymmetric, vacuum solution of Maxwell’s equa-
tions endowing the black hole with a chargeQ and no magnetic charge. Aη is the 4-potential
of an electrically charged Kerr-Newman black hole. The electric field reduces to that of a
point charge if the spin parameter is zero. That being said, if a 6= 0, a dipolar magnetic field
arises due to the dragging of inertial frames into rotation, just like a charged conducting
sphere would have an induced magnetic moment if it were forced to spin.

Magnetic monopole

Altough magnetic charges most likely do not exist, it will come in handy to have an exact
solution for a magnetic monopole in Kerr spacetime, as a test case for the code’s electromag-
netic solver. In order to construct the solution for a magnetic monopole, it seems logical to
take the dual of Fη, which is also a solution of the vacuum Maxwell’s equations (the Hodge
dual of a 2-form is another 2-form). The calculation of the different components of ∗F η
are lengthy and not particularly illuminating. We will simply give the expressions of the
non-vanishing components, where the electric charge Q is replaced by a magnetic charge P :

∗Fηθϕ =
√−g F 0r

η = P
sin θ

Σ2

(
r2 + a2r2

g

) (
r2 − a2r2

g cos2 θ
)

(6.20)

∗Fη0r =
√−g F θϕ = P

2argr cos θ

Σ2
(6.21)

∗Fη0θ = −√−g F rϕ = −P arg sin θ

Σ2

(
r2 − a2r2

g cos2 θ
)

(6.22)

∗Fηrϕ = −√−g F 0θ = P
2a2r2

gr cos θ sin2 θ

Σ2
(6.23)

Since this is a solution of the vacuum Maxwell’s equations, ∗Fη must derive from a 4-
potential Aµ. Integrating the components of ∗F η in r and θ, one can find that it derives
from the following 4-potential,

Aµ = P

(
arg cos θ

Σ
, 0, 0,− cos θ

r2 + a2r2
g

Σ

)
. (6.24)

To interpret this new solution, let us look at the Schwarzschild limit a = 0: the 4-potential re-
duces to Aµ = P (0, 0, 0,− cos θ). In this case, up to an additive constant, Aϕ = P (1− cos θ)
is indeed the flux function of a monopole with charge P . Another way to realize this is
to compute the components of the magnetic field: Br = ∂θAϕ/

(
r2 sin θ

)
= P/r2, Bθ = 0,
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FIGURE 6.1: Magnetic field lines of a magnetic monopole in a Kerr spacetime with a = 0.99,
described by Eq. (6.24).

Bϕ = 0. Since we have already computed the electric and magnetic charges of the field
Fη, it is straightforward to compute those associated with ∗F η: the magnetic charge is
P =

´
∗F ηθϕ dθ dϕ/4π = P , whereas the electric charge is Q =

´
∗∗F ηθϕ dθ dϕ/4π =

−
´
Fηθϕ dθ dϕ/4π = 0. Again, thanks to the uniqueness theorem 6.1.1, we are assured that

we have derived the only stationary, axisymmetric, vacuum solution of Maxwell’s equa-
tions with no electric charge and a magnetic charge P . The magnetic field lines of the Kerr
monopole are represented in Fig. 6.1. We used this solution to test the electromagnetic solver
of GRZeltron, and as an initial condition in the simulations described in Chap. 12.

Dipoles and higher order

The “no-hair” theorem (as coined by J. A. Wheeler) states that a stationary black hole is only
determined by its mass, angular momentum and electric charge (and its magnetic charge
if such thing exists). The idea behind it is that any additional physical field is subject to
stringent conditions, in order to reach equilibrium despite the tremendous gravity at the
event horizon. Any perturbation will result in the black hole radiating away energy, so that
the black hole rearranges itself until it reaches a stationary state (Frolov & Novikov, 1998).
The only fields that remain are those subject to a conservation law and can be measured by
a distant observer. So a “hair” actually means a configuration of the electromagnetic and
gravitational fields which requires additional parameters to be described. Note that this
theorem only applies to electromagnetic and gravitational fields: some unifying theories
were able devise scalar fields that do not follow this property.

Still, black holes cannot support non-monopolar magnetic fields by their own. Implod-
ing stars must lose their magnetic fields as they collapse through dipolar radiation. This
does not contradict the presence of a magnetic moment carried by an electrically charged
Kerr black hole, as the magnetic moment is in this case proportional to the electric charge
and is not an independent parameter. However, black holes can live with non-monopolar
magnetic fields supported by external currents, flowing outside of the event horizon. In that
sense, black holes are very different from pulsars, which carry their own magnetic fields are
can produce plasma by themselves.



80 Chapter 6. Black-hole electrodynamics

6.1.3 Wald’s solution

A special case of utmost importance consists in a black hole embedded in an external,
asymptotically uniform magnetic field. This is an example of great astrophysical signifi-
cance: one can expect that currents located in a remote accretion disk produce a large-scale
magnetic field which is almost uniform at the scale of the central compact object. The vac-
uum solution was derived by Wald (1974) in the case of an external field aligned with the
spin axis of the black hole. It was generalized to arbitrary inclinations by Bicak & Janis
(1985).

In Sec. 6.1.2, we have studied the electromagnetic field generated by the timelike Killing
vector η, but the same can be done for ψ. The covariant components of ψ are

ψµ = (g0ϕ, 0, 0, gϕϕ) =

(
−

2ar2
gr sin2 θ

Σ
, 0, 0,

A sin2 θ

Σ

)
. (6.25)

In the distant limit r � rg, these components reduce to ψµ '
(
0, 0, 0, r2 sin2 θ

)
. The associ-

ated magnetic field has components Br ' 2 cos θ and Bθ ' −2 sin θ/r (with
√
h ' r2 sin θ).

Their form is more transparent in an orthonormal basis eî = ∂i/
√
hii. In the basis eî, the

components of the magnetic field are Br̂ = 2 cos θ and Bθ̂ =
√
hθθB

θ = rBθ = −2 sin θ.
Therefore, the 4-potential Aψµ = (B0/2)ψµ generates an asymptotically uniform magnetic
field of strength B0. In order to make use of the uniqueness theorem 6.1.1, it is necessary to
compute the electric and magnetic charges associated with this field. The electric charge Qψ
enclosed in the sphere Sr is given by

4πQψ =

ˆ
Sr
∗Fψθϕ dθ dϕ, (6.26)

where ∗Fψθϕ is determined just like in Eq. (6.14):

∗Fψθϕ =
√−gFψ0r =

√−g
(
g00grrFψ0r + g0ϕgrrFψϕr

)
(6.27)

= sin θ

(
A

Σ
∂rAψt +

2r2
gra

Σ
∂rAψϕ

)
. (6.28)

At the lowest order in r, we have A/Σ ' r2, 2ar2
gr/Σ ' 2ar2

g/r and

∂rAψ0 ' B0

ar2
g sin2 θ

r2
, ∂rAψϕ ' B0r sin2 θ. (6.29)

This yields
∗Fψθϕ ' B0ar

2
g sin3 θ + 2B0ar

2
g sin3 θ = 3B0ar

2
g sin3 θ. (6.30)

All in all, the electric charge associated with Aψ is

Qψ =
1

4π

ˆ π

θ=0

ˆ 2π

ϕ=0
3B0ar

2
g sin3 θ dθ dϕ = 2aB0r

2
g. (6.31)

Similarly, this integral is related to the Komar angular momentum, which is a global quantity of
the spacetime and does not depend on the choice of Sr (Gourgoulhon, 2012). This is one of the
most proper ways to define the angular momentum of spacetime.
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The magnetic charge associated with Aψ is given by 4πPψ =
´
Sr Fψθϕ dθ dϕ. With Fψθϕ =

(B0/2)∂θψϕ = B0r
2 sin θ cos θ, we see that the integral in θ vanishes. So the field Aψ has no

magnetic charge and an electric charge 2aB0r
2
g.

We are interested in constructing a stationary, axisymmetric electromagnetic field which
tends to a uniform magnetic field of strength B0 at infinity but carries neither an electric
charge nor a magnetic charge. Thanks to the uniqueness theorem, we know that this solution
is unique. To “cancel” the charge of Aψ, we add a contribution from Aη, and define AW =
Aψ +Aη, with the constant factor Q to be adjusted. AW tends to a uniform magnetic field at
infinity, and its charge is 2aB0r

2
g + Q according to the Eq. (6.15) and (6.31). For the electric

charge to vanish, we must have Q = −2aB0r
2
g. All in all, using the expressions of Aη and

Aψ, the sought-after 4-potential is

AWµ =
B0

2
(ψµ + 2argηµ) =

B0

2
(g0ϕ + 2argg00, 0, 0, gϕϕ + 2argg0ϕ) . (6.32)

This solution was derived in the BL coordinates, but remains the same in KS coordinates,
sinceAr = Aθ = 0. The covariant components of the 4-potential areAW

µ = B0 (arg, 0, 0, 1/2).

6.1.4 Properties of the Wald solution

Meissner effect

As we will see, a crucial quantity in order to determine how much energy is extracted from
the black hole is the magnetic flux through one hemisphere of the event horizon Φ. Recalling
Eq. (5.40), we have Φ = 2πAWϕ (rh, π/2). Computing the coefficients of the metric at r = rh

and θ = π/2, and using the identity r2
h−2rgrh+a2r2

g = 0, we find that gϕϕ (rh, π/2) = 4r2
g and

gtϕ (rh, π/2) = −2ar2
g/rh. This yields Φ = πB0r

2
g

(
4− 4a2rg/rh

)
. This can be reorganized in

a perhaps more transparent form, using r4
h = (2rgrh − a2r2

g)2 = 4r2
hr

2
g + a4r4

g − 4a2rhr
3
g:

4− 4a2 rg

rh
=

4r2
h − 4a2rgrh

r2
h

=
r4

h − a4r4
g

r2
hr

2
g

. (6.33)

The flux through the upper hemisphere of the black hole reads

Φ = πB0r
2
h

(
1− a4

(
rg

rh

)4
)
. (6.34)

This result was first derived by King et al. (1975), in a rather involved manner. As the spin
parameter a increases to its maximum value 1, the flux Φ tends to zero (rh = rg for a = 1,
rh = 2rg for a = 0). For maximally rotating black holes, the magnetic field lines are totally
expelled from the black hole, and they remain tangent to the event horizon (see Fig. 6.2).
This is reminiscent of the Meissner effect: the expulsion of magnetic field lines from a su-
perconductor that reaches a temperature below its critical temperature (see Collectif Jolidon
2021 for a pedagogical experimental realisation). This “Meissner” effect was invoked to dis-
miss the validity of the Blandford-Znajek mechanism (Bičák et al., 2007). As we will see
later, this effect does not hold in the presence of plasma (Komissarov & McKinney, 2007).

Unscreened electric field

The spin of the black hole has an important consequence on the relative strengths of the
electric and magnetic fields. In the Schwarzschild case, the electromagnetic field reduces to
a vertical uniform magnetic field, since AWµ = (B0/2) (0, 0, 0, gϕϕ) =

(
0, 0, 0, B0r

2 sin2 θ/2
)
.

In particular, the electric field E vanishes, so thatD = −β ×B/α andD ·B = 0. Although
there might be an electric field as seen by FIDOs, depending on the choice of coordinates
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(a) (b)

FIGURE 6.2: Parallel electric fieldD ·B for a Kerr black hole with a = 0.8 (a) and a = 0.999
(b) in the Wald configuration, described by Eq. (6.32). The black solid lines are magnetic

field lines.

and the shift vector, there can never be a parallel electric field. On the other hand, if a 6= 0,
the components F0r, F0θ, Frϕ and Fθϕ do not vanish, so that the invariant

∗FµνFµν =
1

2
√−g (F0rFθϕ − F0θFrϕ) = 4D ·B (6.35)

does not vanish either (it is tedious, but possible, to check that there is no exact unfortunate
compensation between F0rFθϕ and F0θFrϕ; the components Fµν for the Wald solution are
given in BL coordinates by Bicak & Janis (1985) for example). The parallel electric field
D ·B is shown in Fig. 6.2. Thus, another major feature of the Wald solution is the occurrence
of gravitationally induced electric fields which have a component parallel to the magnetic
field, capable of accelerating particles and driving currents.

6.2 The importance of plasma in the force-free approximation

Let us reiterate the assumption of axisymmetry and time independence, that has already
been essential in deriving the 3+1 field equations. Under such conditions, a vacuum magne-
tosphere is characterized by ∇×H = 0 and ∇×E = 0. Both these equations, supplemented
with axisymmetry, imply Hϕ = Eϕ = 0. But we know from Eq. (5.55) that the Poynting flux
is Π = (c/4π)E ×H . If Hϕ = Eϕ = 0, then the poloidal component of Π vanishes, and
there can be no extraction of energy from the black hole. We conclude that in order to extract
energy from the black hole, the electromagnetic fields must be modified by electric charges
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and currents. Not only are realistic astrophysical environments filled with plasma, but the
presence of currents is compulsory in order to extract energy from the black hole. In this
section, we will investigate how plasma impacts the properties of the magnetosphere.

6.2.1 The force-free approximation

An analytically convenient framework to alleviate the complexities of plasma behaviour is
the force-free approximation, which is based on two opposite requirements. On the one
hand, it is assumed that the density of the plasma is sufficiently high to screen all parallel
electric fields. The requirement that the electric field should be entirely screened can be used
to prove that the plasma density must be at least equal to the “Goldreich-Julian density".
Anticipating a little bit, let us define as Ω the angular velocity of the magnetic field lines (a
proper definition will be given later): the typical Goldreich-Julian charge density is defined
as

nGJ = −Ω ·B
2πec

, (6.36)

with e the elementary charge. The ratio κ = n/nGJ is called the “multiplicity” of the plasma.
Electric screening requires charge separation of the plasma; however in the case of high mul-
tiplicities κ � 1, the plasma can be assumed quasi-neutral while the electric field remains
screened.

On the other hand, the plasma is assumed to be so diffuse that its inertia is negligible.
It is completely dominated by the Lorentz force, so that at equilibrium the volume Lorentz
force must vanish. This translates into the requirement that the plasma magnetization σ
should be very high, where σ is defined by

σ =
B2

8πnγmc2
, (6.37)

In this equation, γ is the typical bulk Lorentz factor of the plasma and m the mass of the
charged particles. A high magnetization implies that the plasma mass energy density is
much lower than the electromagnetic energy density. The two force-free conditions

{
κ� 1

σ � 1

(6.38a)
(6.38b)

must be met so the plasma can be considered force-free, but they have conflicting depen-
dences with n. We need to know whether both conditions can be met, regardless of the
plasma production mechanism for now. Let us evaluate an order of magnitude of σ for
n = κnGJ, in a mildly relativistic flow of electron/positron pairs of mass me. Assuming
assuming Ω ' c/rg and γ ' 1, we find

σ ' B2
0

8πκnGJmec2
' B0e

κmecΩ
' B0erg

κmec2
. (6.39)

Typical parameters for the supermassive black hole M87* are B0 ' 10 G and rg ' 1015 cm,
which yields σ ' 1013/κ. Therefore, it is very possible to have both κ� 1 and σ � 1, if the
magnetic field close to the magnetosphere is sufficiently strong.

6.2.2 Force-free electrodynamics

Assuming that the plasma conditions (6.38a) and (6.38b) are satisfied, we can write down
the implications regarding the electromagnetic fields. The covariant force-free condition
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reads (Blandford & Znajek, 1977; Komissarov, 2002b)

FµνI
ν = 0. (6.40)

By very similar calculations as those from Sec. 5.3.1, one finds that the 3 + 1 splitting of this
equation is

E · J = 0, (6.41)

ρE +
1

c
J ×B = 0, (6.42)

or equivalently

D · j = 0, (6.43)

ρD +
1

c
j ×B = 0. (6.44)

The first equation states that there is no dissipation of electromagnetic energy: the elec-
tric field does not transfer energy to the plasma, and there is no particle acceleration. The
second equation states that hydrodynamic forces are negligible, so that the volume Lorentz
force vanishes. Taking the scalar product of this equation withB shows thatE ·B = D ·B =
0. The electric field is screened, and has no component along the magnetic field. Recall
that the screening occurs in the frame of a moving plasma element; in a laboratory frame
there can be an inductive electric field due to the plasma motion across magnetic field lines.
Eq. (6.44) also yields the poloidal FIDO-measured current density

j⊥ = cρ
D ×B
B2 . (6.45)

This equation expresses that the perpendicular current is solely supported by the E × B
drift of the charge-separated plasma. For these currents to be carried by a charge-separated
plasma flowing at subluminal velocities, the current density must satisfy j2

⊥ < ρ2c2. Given
thatD ·B = 0, this leads to

B2 −D2 > 0. (6.46)

This condition can also be expressed with the 3+1 form of the other Lorenz invariant associated
with the Maxwell tensor: FµνFµν > 0.

In other words, the electromagnetic field must be magnetically dominated. If it were
not, one could find a frame in which the electromagnetic field would be purely electric. The
force-free approximation would break down: either the electric field would also vanish, or
it would accelerate particles and induce currents across magnetic field lines (in the force-free
framework, poloidal currents must flow along poloidal magnetic field lines).

Axisymmetry and time independence imply that Eϕ = 0. As a result, bothE and J ×B
are in the poloidal plane, and we know that E ·B = D ·B = 0. Therefore, one can define a
3-vector Ω = Ω∂ϕ such that

E = −1

c
Ω×B. (6.47)

Ω is the angular velocity of the field lines, measured by an observer at infinity. This definition
implies

D = − 1

α

(
Ω

c
+ β

)
×B. (6.48)
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Because ω = −cβϕ is the angular velocity of a BL FIDO, this last equation allows us to state
that the angular velocity of field lines as measured by FIDOs is Ω− ω.

To better grasp the definition (6.47) of Ω, let us look at the flat spacetime limit, for which hϕϕ '
r2 sin2 θ. In the orthonormal spherical basis eî, the electric field (6.47) reads

E = −Ω

c

√
hϕϕeϕ̂ ×B = −Ωr sin θ

c
eϕ̂ ×B = −1

c
(Ωeẑ × r)×B. (6.49)

This means that E is determined by the flux freezing condition, with its drift velocity being the
usual rigid rotation velocity Ωeẑ × r, at the angular velocity Ω. In other words, any observer
moving at angular velocity Ω sees a vanishing electric field.

A priori, Ω is an arbitrary function of r and θ. However, in steady state, it follows
from Eq. (5.37d) that ∇ × (Ω×B) = 0. With the vector calculus identity ∇ × (Ω×B) =
Ω (∇ ·B)−B (∇ ·Ω) + (B ·∇) Ω− (Ω ·∇)B, Eq. (5.37c) and the independence ofB and
Ω with ϕ, there only remains

B ·∇Ω = 0. (6.50)

Therefore, Ω is constant along magnetic field lines. This fact is known as Ferraro’s isoro-
tation law: if it were violated, field lines would wind up and violate the assumption of
axisymmetry. Ω does not necessarily correspond to any material angular velocity.

Finally, it is possible to derive another quantity which is invariant along magnetic field
lines in the force-free approximation. Inserting the fact that (J ×B)ϕ = 0 into Eq. (5.37b)
leads to ((∇×H)×B)ϕ = (4π/c) (J ×B)ϕ = 0, which means that

B ·∇Hϕ = 0. (6.51)

The quantity Hϕ has a nice physical interpretation. Using Ampère’s law in steady state
∇×H = 4πJ/c, we can compute from the Stokes’ theorem the current I flowing through a
circle C of radius r, subtending an angle θ with the spin axis:

I =

¨
J · dS =

c

4π

ˆ
C
H · dl =

c

2
Hϕ. (6.52)

Hϕ is proportional to the poloidal current through C: the electric currents flow in magnetic
field tubes. This high number of invariants along field lines is what makes the force-free
framework quite tractable and powerful. In particular, it allows one to reduce the steady-
state problem to a single partial derivative equation on Aϕ (the Grad-Shafranov equation).
We will see in Sec. 7.1 a special case of Grad-Shafranov equation in the absence of gravity.



86 Chapter 6. Black-hole electrodynamics

Example

Let us come back to Eq. (6.36), now that all notions have been properly defined.
The Goldreich-Julian density was introduced in the context of pulsar magnetospheres
by Goldreich & Julian (1969). In flat spacetime, in the limit where the corotation speed
is not relativistic, the electric charge density needed to screen the electric field is

ρGJ =
∇ ·E

4π
= −∇ ·

(
Ωr sin θ

4πc
eϕ̂ ×B

)
= −Ωeẑ ·B

2πc
. (6.53)

Eq. (6.53) also informs us of which sign of charge is needed, depending on the mag-
netic field configuration. For instance, if B is a dipolar field, negative charges are
needed near the rotation axis and positive charges at the equator.
This electric charge density is associated with the minimal plasma number density
nGJ = ρGJ/e needed to screen the parallel electric field. Eq. (6.36) provides a satis-
factory order of magnitude for the Goldreich-Julian plasma density. It is also possible
to derive an expression in full general relativity, but Eq. (6.36) is sufficient for our
purposes.

6.2.3 Gravitationally induced electric fields

We saw that currents must be driven in the magnetosphere to induce energy extraction. In
order to drive such currents, for the vacuum to break down (via processes which will be
described in Sec. 8), either the electromagnetic field should be purely electric (FµνFµν < 0),
or the electric field should not be screened (∗FµνFµν 6= 0). This allows us to understand the
importance of the Wald solution: this is a vacuum, non-monopolar magnetic configuration
of a Kerr black hole with a parallel electric field being produced naturally. This feature of
the particular Wald’s solution is actually more general, as proven by Komissarov (2004a).

Theorem 6.2.1. There are no steady-state axisymmetric vacuum electromagnetic fields around a
black hole, supported by external currents, which satisfy both D · B = 0 and B2 − D2 > 0
everywhere along the magnetic field lines penetrating the ergosphere of the black hole.

Let us assume that the first of these conditions is met (D · B = 0) everywhere around
the black hole, and let us prove that in that case the second one must fail. The magnetic
field is generated by external distant sources, which are essentially not rotating around the
black hole. Since Ω is constant along magnetic field lines, this means that E = 0 along
field lines penetrating the ergosphere, and D = −β × B/α. A FIDO-measured electric
field is generated even if the sources do not rotate. In BL coordinates, β = (0, 0, g0ϕ/gϕϕ)
is azimuthal and Bϕ = Hϕ/α = 0. This implies that D2 = β2B2/α2 since β and B are
orthogonal. Then we have

B2 −D2 =
α2 − β2

α2
B2. (6.54)

The ergoregion, bounded by the limit of static observers, is defined by g00 > 0. According
to Eq. (5.13), the ergoregion is characterized by g00 = −α2 + β2 > 0. Consequently, inside
the ergosphere we have B2 −D2 < 0, completing the proof. The gravitationally induced
vacuum electric field has to be stronger than the magnetic field, no matter the strength of
the magnetic field.

Regardless of the structure of the magnetic field created by the distant sources, we
showed that around a stationary vacuum black hole, either the electric field is unscreened
and capable of driving currents in the magnetosphere, or the electromagnetic field is purely
electric.
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6.2.4 The role of plasma

Let us now relax the vacuum assumption, and work in the force-free framework. This dis-
cussion follows closely Komissarov (2004a) and Toma & Takahara (2014). There can be
an azimuthal magnetic field generated by poloidal currents and field line rotation. From
D = − (Ω/c+ β)×B/α = − (Ω− ω)ψ ×B/cα, we get

D2 = hϕϕ

(
Ω− ω
cα

)2 (
BrB

r +BθB
θ
)

= hϕϕ

(
Ω− ω
cα

)2 (
B2 −BϕBϕ

)
. (6.55)

Noting that the light surface function f (Eq. (4.10)) can be rewritten as f(Ω, r, θ) = g00 +
2g0ϕΩ/c + gϕϕΩ2/c2 = −α2 + hϕϕ (ω − Ω)2 /c2, and that Bϕ = Hϕ/α in BL coordinates, we
conclude that the Lorentz invariantB2 −D2 is given, in the force-free regime, by

α2
(
B2 −D2

)
= −B2f (Ω, r, θ) +

(
(Ω− ω)Hϕ

cα

)2

. (6.56)

Let us start in a state with Ω = 0 and Hϕ = 0. As stated in Sec. 6.2.3, this means that
B2 − D2 is negative everywhere in the ergosphere. Consequently, for field lines which
penetrate the ergosphere, poloidal currents are generated (the term Hϕ in Eq. (6.56)), giving
rise to an azimuthal magnetic field and allowingB2−D2 to be positive. The strong electric
field, by a process which will be described later, injects charges which help screen the electric
field. Yet, so far,D2 has not decreased.

When Hϕ is non-zero, it is possible to show that this induces a flux of angular momen-
tum along the magnetic field lines (Komissarov, 2004a), which inevitably results in rotation
of the plasma and of the field lines. There cannot be a steady state with Hϕ 6= 0 and Ω = 0.
As Ω grows, from Eq. (6.55), we see that eventually the strength of the electric field decreases.
Also, the light surface function f departs from −α2 + β2 when Ω is non-zero. However, for
angular velocities Ω which remain below ωh, there always remains a zone in the ergosphere
where f (Ω, r, θ) > 0 (see Fig. 4.2), which makes the generation of poloidal currents compul-
sory. All in all, we see that poloidal currents and azimuthal magnetic field are properties of
the steady-state magnetosphere. Due to the presence of plasma, Hϕ and E no longer van-
ish, so there can be energy extraction from the black hole. It should be pointed out that Hϕ,
which is constant along magnetic field lines, is only generated on field lines that penetrate
the ergosphere. In other field lines, even though the initial electric field has an unscreened
component, it is not strong enough to drive currents.

We also note that because the electric current distribution is invariant by reflection across
the equatorial plane, according to Eq. (5.37b) H must be orthogonal to this plane, so that
Hϕ = 0 vanishes at the equatorial plane. There, the force-free conditionB2−D2 > 0 cannot
hold. Any force-free magnetosphere must present a current sheet, allowing to close the
electric current circuit, but where the force-free approximation which has made it appear in
the first place breaks down. A sketch of the steady-state force-free magnetospheric structure
is given in Fig. 6.3. Negative poloidal currents flow at high latitudes, producing a negative
Hϕ. The sign of Hϕ allows extraction of energy. The electrical circuit is closed by the current
sheet, which supports positive currents. These currents flow along the last field lines which
cross the ergosphere.
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FIGURE 6.3: Electric current system in a steady-state magnetosphere. j denotes the electric
current density, Hϕ the toroidal magnetic field and Bp the poloidal magnetic field. Figure

taken from Komissarov (2004a).



Chapter 7

The Blandford-Znajek mechanism

Although we have derived several exact solutions of vacuum Maxwell’s equations around
a black hole, we have not been so prolific in the force-free case. As a matter of fact, only
a few force-free solutions in a Kerr black hole magnetosphere exist. The Blandford-Znajek
one is arguably the most consequential. Realizing the similarity between a Kerr black-hole
and a neutron-star magnetosphere, they derived a solution in the limit of weak spin |a| � 1.
Importantly, their solution allows the launch of an electromagnetically driven wind from
the black hole, which extracts its energy and angular momentum. At last, the Penrose pro-
cess got an astrophysically realistic implementation. In Sec. 7.1, we give a short overview of
Michel’s solution of a force-free pulsar magnetosphere. Aside from giving insight into the
Blandford-Znajek solution, this flat spacetime solution will be used to derive some proper-
ties of the black-hole solution in Sec. 7.2.

7.1 Michel’s solution of a force-free pulsar magnetosphere

Unlike black holes, neutron stars carry their own magnetic field, which is dipolar in a first
approximation (although see Bilous et al. 2019). Besides, neutron stars are incredibly con-
ductive, whereas black holes have no material surface and cannot anchor magnetic field
lines. However, these two compact objects share a common feature: just like black holes
embedded in an external uniform magnetic field, rotating neutron stars can develop strong
unscreened electric fields in vacuum. Such electric fields are thought to lift charges from
the neutron star surface. Then, pair creation can occur copiously by magnetic conversion or
photon-photon annihilation (Harding & Lai, 2006). This motivates the use of the force-free
framework to deal with pulsar magnetospheres.

Let us assume that the symmetry axis of the magnetosphere eẑ matches the spin axis of
the neutron star. In this section, it turns out that cylindrical coordinates (R,ϕ, z) are more
convenient. Even though we have already introduced some of the following concepts in
Sec. 6.2.2, we will use the standard notations in this context. Because we assume axisym-
metry, the magnetic field can be written in the orthonormal cylindrical basis

(
eR̂, eϕ̂, eẑ

)

as

B =
1

R
∇Ψ× eϕ̂ +

I

R
eϕ̂, (7.1)

where Ψ denotes the flux function. In our previous notations, Ψ is simply Aϕ, and we know
that it remains constant on magnetic field lines. On the other hand, using Ampère’s law,
we see that the poloidal current flowing through a surface lying on a circle of radius R, at
height z, centered on the symmetry axis, is cI/2. As a result, I is nothing but Hϕ, and is also
considered as a function of Ψ. Because Hϕ is constant along magnetic field lines, which can
equivalently be labeled by Aϕ, we will consider I as a function of Ψ rather than of R and z.

The statement that the magnetic field lines corotate at angular velocity Ω reads E =
− (Ωeẑ × r)×B/c. Ω is a priori dependent on Ψ, or on the latitude. For all field lines cross-
ing the stellar surface, the angular velocity must be equal to the stellar angular velocity Ωs
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(excluding a differential rotation of the star). Inserting Eq. (7.1) into the force-free condition
ρE+J ×B = 0, along with Maxwell’s equations yields the pulsar equation (Michel, 1973a;
Scharlemann & Wagoner, 1973; Endean, 1974):

(
1− R2

R2
LC

)(
∂2Ψ

∂R2
+
∂2Ψ

∂z2

)
−
(

1 +
R2

R2
LC

)
1

R

∂Ψ

∂R
= − I(Ψ)

∂I

∂Ψ
, (7.2)

where RLC = c/Ωs is the light cylinder of the neutron star, beyond which corotation at
angular velocity Ωs is superluminal. This equation is singular at the light cylinder R =
RLC. Some solutions can be found for I = 0, but they come with vanishing currents and
energy flux. In order to extract energy from the neutron star, the solution must have electric
currents which cross the light cylinder and connect the two domainsR < RLC andR > RLC.
However, Michel (1973b) found another remarkable non-trivial solution, searching for a
monopole configuration of the field lines, valid for θ ∈ [0, π/2[.

Derivation of Michel’s solution

Let us assume that Ψ(θ) = − cos θ = −z/
√
R2 + z2. After computing the partial

derivatives, the terms involving Ψ in Eq. (7.2) read

∂2Ψ

∂R2
+
∂2Ψ

∂z2
=

z

(R2 + z2)3/2
=

1

R

∂Ψ

∂R
. (7.3)

The pulsar equation reduces to

(
R

RLC

)2 2z

(R2 + z2)3/2
= I

∂I

∂Ψ
. (7.4)

We know that I , hence the left-hand side too, only depends on Ψ. One can then realize
that the left-hand side can be expressed as

I
∂I

∂Ψ
=

2

R2
LC

cos θ sin2 θ = − 1

R2
LC

2Ψ
(
1−Ψ2

)
. (7.5)

From this, we obtain the current function: I(Ψ) =
(
Ψ2 − 1

)
/RLC ⇒ I(θ) =

− sin2 θ/RLC (the sign of I is enforced by Ω ·B > 0 in the upper hemisphere).

From the functions Ψ(θ) = − cos θ, Ω(θ) = Ωs and I(θ) = −Ωs sin2 θ/c, the electromag-
netic field can be entirely reconstructed. Going back to an orthonormal spherical basis, their
components read (with B0 the magnetic strength at the stellar radius r0)





Br̂ = B0
r2

0

r2
;

Bθ̂ = 0;

Bϕ̂ =
I

R
= −B0

r0

RLC

r0

r
sin θ =

r sin θ

RLC
Br̂;

(7.6a)

(7.6b)

(7.6c)

whereas the electric field is simply E = Bϕ̂eθ̂.
This solution is quite simple; the poloidal component is unchanged from an unrotating

monopole. Magnetic field lines in the equatorial plane are spirals that wind up around the
pulsar (see Fig. 7.1(a)). The toroidal field dominates over the radial field beyond the light
cylinder. To satisfy ∇ ·B = 0, this solution can only be valid in the upper hemisphere, the
solution in the lower hemisphere being obtained via the transformationB → −B,E → −E.
The reversal of the magnetic field across the equator implies the presence of an equatorial
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(a) (b)

FIGURE 7.1: (a) Magnetic field lines in the analytical monopole solution. The green arrow is
the rotation axis. Red lines represent outgoing field lines whereas blue lines are ingoing field
lines. Figure taken from Cerutti & Beloborodov (2017). (b) Features of the split monopole
solution. Magnetic field lines are solid black lines, whereas the electric current density is

pictured by contour arrows. Figure taken from Beskin (2010).

current sheet. The current flowing in both hemispheres is negative, the closure of the circuit
being allowed by this current sheet. The global structure of the magnetosphere is repre-
sented in Fig. 7.1(b). More importantly, this solution has a non-vanishing poloidal Poynting
flux Πr = cE θ̂Bϕ̂/4π, with a total electromagnetic luminosityLs = (2/3)Ω2

sB
2
0r

4
0/c (Cerutti &

Beloborodov, 2017). In this case, it is the conductive nature of the star surface that generates
an electromotive force and allows this winding of field lines, hence this energy extraction.

Let us highlight an crucial point: although the plasma energy density is much smaller
than the magnetic energy density, its presence is of utmost importance. The structure of the
the fields in the far zone is strongly influenced by the currents the plasma carries. As the
magnetic field is frozen in the plasma, which cannot rotate with superluminal velocity, field
lines beyond the light cylinder are wrapped backwards with respect to the rotation of the
star. It is the poloidal currents carried by the plasma which produce this toroidal field.

7.2 The Blandford-Znajek solution

7.2.1 A slowly rotating monopole

Michel’s solution is an exact solution for any angular velocity of the neutron star. It can be
easily extended to a Schwarzschild black hole; however, without rotation, no energy can be
extracted. The goal of Blandford & Znajek (1977) was to find a similar energy-extracting
solution in a Kerr black-hole force-free magnetosphere. Such a promising solution could
not be found in the Kerr spacetime. Nonetheless, the similarities between black-hole and
neutron star magnetospheres were striking, prompting Blandford and Znajek to investigate
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a possible solution through a perturbative method. They expanded the field equations in
powers of a. In the following, we will retain terms up to second order in a.

The most systematic approach would be to derive the general relativistic analog of the
pulsar equation for Ψ (a Grad-Shafranov equation), then solve it for small a. We will take a
more straightforward path, although less powerful mathematically. We know that Michel’s
solution must be valid in the flat spacetime limit, far from the black hole, with the caveat
that the angular velocity of the field lines Ω is unknown. One needs to match this solution
with what happens close to the black hole.

Znajek (1977) showed that on the event horizon, the toroidal field Hϕ (Aϕ) must satisfy
the following condition, valid for any spin parameter a:

Hϕ (rh, θ) =
Ω− ωh

c

2rhrg sin θ

Σ (rh, θ)
∂θAϕ. (7.7)

A proof is provided in the Appendix 7.A. Although this condition looks like a boundary
condition, it is actually a regularity condition, which can be understood in several ways. The
only thing needed to derive it is the requirement that the fields, as measured by the FIDOs,
should be regular at the event horizon, as they should since there is no true singularity at r =
rh (Komissarov, 2004a). Alternatively, in the force-free limit, the event horizon matches the
critical surface of fast magnetosonic waves (Uzdensky, 2004, 2005), so the Znajek condition
can also be seen as a regularity condition at the fast critical point. Znajek’s condition could
also be derived by requiring that the radial derivatives ofAϕ should be finite at rh, and inject
this condition in the general relativistic Grad-Shafranov equation.

Now, let us assume that the poloidal magnetic field is close to monopolar (we restrict
ourselves to the domain θ ∈ [0, π/2[): the flux function is Aϕ = B0r

2
g

(
1− cos θ +O

(
a2
))

.
The sign of a does not impact the poloidal magnetic field, so there are no even powers of
a in the expansion. The associated poloidal magnetic field lines are straight lines emerging
from the horizon, with magnetic field Br = ∂θAϕ/

√
h = B0 sin θr2

g

(
1 +O

(
a2
))
/
√
h. This

implies that ∂θAϕ = Br
√
h is constant on all magnetic field lines, to second order in a. Then,

Eq. (7.7) reads

Hϕ (rh, θ) =
Ω− ωh

c
sin θ

(
Br
√
h
)

(rh, θ)
(
1 + o

(
a2
))
, (7.8)

because 2rhrg/Σ ' 2rg/rh ' 1 for a � 1 and (Ω− ωh) (rg/c) is of the order a. Eq. (7.8)
is a priori only valid on the event horizon. However, because Ω, sin θ and Br

√
h are all

constant on magnetic field lines, which all cross the event horizon in this case, this equation
is actually valid for all r. We conclude that the current function Hϕ is completely prescribed
by the regularity condition on the horizon. On the other hand, there is no such prescription
for the angular velocity of the field lines Ω (Aϕ). The angular velocity is actually determined
by the torque balance along the flux tube (see MacDonald & Thorne 1982 for a discussion).

In the theory of pulsar magnetospheres, it is quite the opposite: the angular velocity of the field
lines is fixed by the rotation of the star, whereas the current has to adjust to external conditions.

To determine the angular velocity Ω, we demand that this solution should match Michel’s
solution, which is valid in flat spacetime, at infinity. We found thatBϕ̂ = Bϕ̂ = −r sin θ (Ω/c)Br̂.
At infinity, we have

√
h ' r2 sin θ and Bϕ̂ = Hϕ̂ in an orthonormal basis. Finally, Hϕ̂ is re-

lated to the component in the natural coordinate basis Hϕ by Hϕ =
√
hϕϕHϕ̂ ' r sin θHϕ̂.

Thus, Michel’s solution can be expressed in the coordinate basis as

Hϕ (r → +∞, θ) = −Ω

c
sin θBr

√
h
(
1 + o

(
a2
))
. (7.9)
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Matching Eq. (7.8), valid everywhere, and Eq. (7.9), valid at infinity, leads to

Ω =
1

2
ωh + o

(
a2 c

rg

)
' 1

2
ωh. (7.10)

The angular velocity of the field lines is found to be uniform to second order in ac/rg. This
is the condition under which the field lines can remain monopolar, and our solution can be
considered global. Other solutions exist (Thoelecke et al., 2019), but those remain valid in
limited regions only. We are searching for a solution which matches Michel’s, since we are
interested in a black hole which emits an energy outflow to infinity. Interestingly, Ω does
not match the angular velocity of the black hole, as a symptom of the black hole’s lack of a
material surface. The toroidal field finally reads

Hϕ = −1

2

ωh

c
B0r

2
g sin2 θ. (7.11)

7.2.2 Energy extraction

As we mentioned, in a force-free magnetosphere, extraction of energy requires poloidal cur-
rents. Let us compute the total electromagnetic energy flux. The Poynting vector reads
(Eq. (5.55)):

Π =
c

4π
E ×H = − 1

4π
(Ω×B)×H =

1

4π
((H ·B) Ω− (H ·Ω)B) , (7.12)

so that the poloidal Poynting flux reads

Πp = − 1

4π
ΩHϕBp. (7.13)

Note that we need to evaluate the flux of energy-at-infinity, in order to explain how energy is
transferred from the black hole to infinity. As a matter of fact, the Poynting flux measured by a
BL FIDO (c/4π)D×B at the event horizon is directed toward the black hole (Komissarov, 2009;
Beskin, 2010).

Let us evaluate the Poynting flux at the event horizon. That way, we only need to eval-
uate Hϕ at r = rh, so we can afford to be agnostic about how the solution behaves at in-
finity and about the selected Ω. We can also assume the fields are reversed in the domain
θ ∈]π/2, π], so that we can integrate the Poynting vector from 0 to π, ignoring the current
sheet. From Eq. (7.13) and (7.8), we get the total Blandford-Znajek luminosity

LBZ =

ˆ π

θ=0

ˆ 2π

ϕ=0
Πr (rh, θ)

√
hdθ dϕ (7.14)

=
1

2c

ˆ π

0
Ω (ωh − Ω) sin θ

(
Br
√
h
)2

dθ (7.15)

=
r4

g

2c
B2

0Ω (ωh − Ω)

ˆ π

0
sin3 θ dθ (7.16)

=
2

3

r2
g

c2
Ω (ωh − Ω) B2

0cr
2
g. (7.17)

This equation is accurate to second order in a. This means that energy can be extracted from
the black hole through this process if and only if Ω ∈ [0, ωh]. If the disk were to rotate faster
than ωh, or to counterrotate, it would deliver energy to the black hole. This is considered
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unphysical, since energy would flow from infinity to the black hole. Besides, among all
values of Ω which permit energy extraction, the one selected by the matching with Michel’s
solution allows for maximal LBZ. For Ω = ωh/2, the Blandford-Znajek power reads

LBZ =
1

6

(ωhrg

c

)2
B2

0cr
2
g (7.18)

Expansions of the Blandford-Znajek power to higher orders of a have been derived in the lit-
erature and confirmed numerically (McKinney & Gammie, 2004; Tchekhovskoy et al., 2010;
Pan & Yu, 2015). The second-order expansion that we have derived here, however, has been
shown to be surprisingly accurate up to values of a very close to 1 (Tchekhovskoy et al.,
2010). It will prove sufficient to our purpose.

Some other solutions were derived in the literature (Menon & Dermer, 2007), but those cannot
extract energy from the black hole.

All in all, Blandford & Znajek (1977) found an astrophysical way to extract energy from
a rotating black hole, provided it is embedded in a force-free magnetosphere. Let us give an
order of magnitude for LBZ for a� 1 (ωh ' ac/4rg), working out the numbers:

LBZ =
1

96
a2B2

0c

(
GM

c2

)2

= 6.8× 1040a2

(
M

109 M�

)2( B0

102 G

)2

erg·s−1. (7.19)

This energy output from supermassive black holes is large enough to account for the energy
of the jets, and their radiation. We took a field strength consistent with observations in
M87* (Neronov & Aharonian, 2007; Event Horizon Telescope Collaboration et al., 2019b).

All in all, the split monopole magnetic configuration is extremely similar to the simple
picture we drew in Sec. 7.1. A toroidal field develops in both hemispheres with opposite
signs. The discontinuity in Hϕ is supported by an equatorial current sheet, where the mag-
netic field almost vanishes and the force-free approximation breaks down. The Poynting
flux is directed outward in both hemispheres.

Interestingly, numerical studies show that this magnetic configuration is quite general.
In particular, all field lines which cross the ergosphere end up crossing the event hori-
zon (Komissarov & McKinney, 2007). At ergospheric scales, the magnetic configuration
around the black hole is very close to a split monopole, regardless of the initial structure.
This can be seen as a consequence of hoop stresses arising from the toroidal magnetic field.
This is also consistent with the fact, proved in Sec. 7.2.4, that all field lines which cross the
inner light surface cannot turn back, and must cross the event horizon. This is because field
lines are frozen in the plasma, which can only flow toward the black hole within the inner
light surface. We can conclude that the effect of the highly conductive plasma in the mag-
netosphere is to nullify the Meissner effect: magnetic field lines actually thread the black
hole radially, and the magnetic flux through the upper hemisphere of the black hole does
not vanish (although the magnetic flux through the entire event horizon is zero). The for-
mula (7.18) that we derived is valid for a low spin, and for the specific case of a monopolar
magnetic configuration. In general, one can write

LBZ = ck
(ωhrg

c

)2
Φ2, (7.20)

where k is a numerical constant, which depends on the field line geometry, and Φ ' 2πr2
gB0

is the magnetic flux through the upper hemisphere. This expression highlights the impor-
tance of the poloidal magnetic flux through the black hole (Tchekhovskoy et al., 2010; Parfrey
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et al., 2015). The Blandford-Znajek solution with monopolar magnetic field lines is retrieved
for k = 1/(24π2) ' 4.2× 10−3.

7.2.3 Interpretation

A reasonably useful analogy to grasp the extraction of energy and angular momentum from
astrophysical rotators is the Faraday disk, which is an unipolar inductor. Consider a conduc-
tive metal disk of radius R, immersed in a magnetic field B0 along its symmetry axis, with
electric wires connected to its axis and the rim of the disk1 (see a sketch in Fig. 7.2). Let us
suppose at first that the electrical circuit is open. As the conducting rotator is set in motion
to the angular velocity Ω, its charge carriers (usually electrons in a metal, but in a plasma
positive charges can participate too) are forced into rotation by collisions with the lattice, so
they experience an unbalanced Lorentz force. Alternatively, in the rotating frame, one can
consider that they experience an inductive electric field E′ = V × B0/c, with V = Ω × r
(primed quantities denote quantities measured in the rotating frame of the conductor, while
unprimed quantities are measured in the laboratory frame). This is a consequence of the
transformation of an electric field under a change of frames (Garing, 1999). This electromo-
tive force induces a charge redistribution, with positive charges concentrating toward the
rim, and negative charges converging at the axis. This motion stops when the electric field
induced by the charge separation exactly compensates the Lorentz force, which occurs when
the total electric field in the rotating frame vanishes: E′ = E + V ×B0/c = 0. An electric
field E arises in the laboratory frame, so a potential difference U develops between the axis
and the rim.

Note that despite the its denomination as a Faraday disk, the principle of a unipolar inductor
is not Faraday’s law (an electromotive force induced by variations of magnetic flux through a
closed loop). The “inducing” is done by Lorentz forces in this case. Useful discussions can be
found in Michel & Li (1999) and Beskin (2010).

Now let us short out the circuit by electrically connecting the axis and the rim (so it
becomes “unipolar”). Charges are free to flow from one end to the other. Forcing the rotation
keeps inducing an electromotive force, which keeps driving currents. These currents are
dissipated elsewhere in the system, thus extracting rotational energy from the disk. Let
us give an order of magnitude for the dissipated energy: the electromotive force e = −U
is obtained by integration the electromotive field along any line between the axis and the
rim (Garing, 1999)

e =
1

c

ˆ rim

axis
V ×B · dl = − 1

2c
ΩR2B0. (7.21)

The actual numerical prefactor is unimportant. The total dissipated power isP = e2/R, with
R the resistance of the system. For simplicity, let us assume thatR = 4π/c is the impedance
of free space; this is the most natural choice in the absence of any physical models, and this
is the resistance which is ascribed to the event horizon in the membrane paradigm (Thorne
et al., 1986). Then the dissipated power is

P =
c

4π
e2 ∝ Ω2B2

0R
4

c
. (7.22)

Up to a numerical factor, this is exactly the output electromagnetic power from a force-
free neutron-star magnetosphere, or the Blandford-Znajek power (7.13). In this analogy,
the conducting disk is replaced by the rotating, magnetized compact object. The highly
conductive plasma serves to close the electrical circuit. The disk is submitted to a braking

1An example of practical implementation of a Faraday disk is the Barlow wheel.
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B
U

FIGURE 7.2: Sketch of a unipolar inductor. A conducting disk is threaded by magnetic field
lines (blue dashed lines). As it is spun, the free charges in the disk redistribute (yellow and
red circles), so that a potential drop U develops between the edge of the disk and its axis.

torque M ∝ −ΩB2
0R

4/c, due to the Lorentz force exerted on the currents flowing on its
surface, and must provide the power P = −MΩ.

There are additional subtleties in the case of black holes, though. Black holes lack a mate-
rial surface to anchor the magnetic field lines. The electromotive force cannot be interpreted
as being due to charge separation in a rotating material conductor. Instead, spacetime itself
is rotating. What drives the currents is the electric field generated gravitationally, rather than
rotationally (see Eq. (5.41a)), by the black hole immersed in a magnetic field. The presence
of the ergoregion is key to this process, a zone where it is impossible for the magnetic field to
be stronger than the electric field. To develop currents and an electromagnetic energy out-
flow, what matters is whether field lines cross the ergosphere or not. The ergosphere would
be the actual unipolar inductor, in this picture. Field lines which do not cross the ergosphere
are not set into rotation at all.

Besides, the dependence in Ω in Eq. (7.17) is peculiar, and different from that of pul-
sars. This equation states that the extraction of energy is possible only if 0 < Ω < ωh. The
black hole is submitted to a “torque”M ∝ − (ωh − Ω)B2

0r
2
g/c, with a different dependence

on Ω than in the neutron star/Faraday disk case. The difference is that spacetime itself is
already rotating at the angular velocity ' ωh. If Ω ' 0, no electromotive force is induced
“seen from infinity”, although a FIDO could measure one. On the other hand, if Ω ' ωh,
no poloidal currents need develop because the field lines are at rest with respect to space-
time. Eq. (7.17) takes both effects into account, so that the energy transfer is maximal for an
intermediate angular velocity, with field lines lagging behind the black hole. This bizarre be-
haviour is another side effect of spacetime dragging, which makes classical analogies break
down somehow. MacDonald & Thorne (1982) give another classical interpretation in terms
of an electrical circuit.

7.2.4 The importance of light surfaces

Before moving on to the next chapter, we will reinterpret the energy extraction condition 0 <
Ω < ωh in a way that highlights the essential role of light surfaces (introduced in Sec. 4.1.5)
in the structure of the magnetosphere. A magnetized plasma usually supports three kind of
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waves: slow magnetosonic, Alfvén and fast magnetosonic waves. In the force-free limit, the
velocity of slow waves goes to zero because the plasma has vanishing inertia, whereas fast
waves travel at the speed of light. As mentioned earlier, the critical surface of fast waves is
therefore located at the event horizon. The velocity of Alfvén waves travelling along the unit
vector n in the force-free limit, either parallel or antiparallel to n, is (Komissarov, 2002b)

v± =
c

B2

(
D ×B ±

√
B2 −D2B

)
· n. (7.23)

We have already proved in Sec. 6.2.4 that α2
(
B2 −D2

)
= −B2f (Ω, r, θ)+H2

ϕ (ω − Ω) /c2α2.
In addition to that, from D = (ω − Ω) (ψ ×B) /cα, one obtains the expression of the cross
product D ×B = (Ω− ω)

(
B2ψ −BϕB

)
/cα, with Bϕ = Hϕ/α in BL coordinates. Restrict-

ing ourselves to the case of a direction of propagation n in the poloidal plane, we get the
expression of v±:

v± =
c

B2 (n ·B) η±, η± =
ω − Ω

c

Hϕ

α2
±
√(

(ω − Ω)Hϕ

cα2

)2

− B
2

α2
f (Ω, r, θ). (7.24)

Now, let us assume a fixed outgoing direction for the poloidal field B: the condition
n ·B 6= 0 tells us that Alfvén waves propagate along poloidal field lines. A critical Alfvén
surface is defined as the locus where either v+ or v− changes sign. From Eq. (7.24), recalling
that Hϕ < 0, one sees that v+ becomes negative below the inner light surface, because in
this region f (Ω, r, θ) > 0 and Ω < ω (see Fig. 4.2). Similarly, v− becomes positive beyond
the outer light surface, because in this region f (Ω, r, θ) > 0 and Ω > ω. This means that
in the force-free limit, the light surfaces exactly match the Alfvén surfaces. Beyond the
outer critical surface, all Alfvén waves must propagate outward, whereas all Alfvén waves
emitted below the inner light surface propagate toward the black hole.

This is a stark difference with pulsar magnetospheres, which only have one critical sur-
face (the outer light cylinder). The Blandford-Znajek solution in the Kerr metric possesses
two critical surfaces, so it must describe both an outgoing and an ingoing wind. An impor-
tant consequence of this fact is that there must be a plasma injection mechanism, overlooked
in this section, which replenishes the magnetosphere with fresh plasma so it can remain
force-free. This injection must take place between the two light surfaces, whereas in neutron

FIGURE 7.3: Sketch of the flow structure along a radial magnetic field line. A plasma source
must lie between the two light surfaces. Figure taken from Globus & Levinson (2013).
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star magnetospheres it could be injected from the stellar surface. This situation is sketched
in Fig. 7.3. More will be said about this plasma supply mechanism in Sec. 12.1.

Furthermore, causality requires that the driving force responsible for launching the winds
should be able to communicate with both the ingoing and outgoing winds. Punsly (2001)
and Komissarov (2002a) showed that fast waves alone are not sufficient to build the poloidal
current structure, and that the communication takes place by the means of both fast waves
and Alfvén waves. We have already identified the ergosphere as the driving force of the en-
ergy extraction mechanism: poloidal currents must develop only on field lines which cross
the ergosphere. Following on this idea, Takahashi et al. (1990) proved, in the MHD frame-
work, the following theorem (see also Levinson 2006 for a discussion):

Theorem 7.2.1. There can be rotational energy extraction from the black hole only if the inner Alfvén
surface is located in the ergoregion.

This is the case in Fig. 4.3. However, it turns out that if Ω < 0, the inner light surface
lies outside the ergosphere (see Fig. 7.4(a)). Rrecall that for Ω = 0, the inner light surface
is the ergosphere. On the other hand, if Ω > ωh, then the inner and outer light surfaces
merge (see Fig. 7.4(b)). From Eq. (7.24), we see that v± is negative everywhere: Ω is greater
than the velocity of the FIDO ω (see Fig. 4.2 for Ω > ωh) and Hϕ is positive. Consequently,
there can be no outflow of energy. So actually, in the force-free limit, the theorem 7.2.1 is
equivalent to the energy extraction condition that was already derived: 0 < Ω < ωh. This
allows us to interpret this condition as the necessary condition for there to be a causal con-
nection between the ergosphere and the ingoing and outgoing outflows (the only exception

(a) (b)

FIGURE 7.4: Spatial map of the light surface function f (Eq. (4.10)) for a = 0.99 and fixed
Ω = −0.2ωh (a) and Ω = 1.2ωh (b).
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is the polar direction θ = 0, where the inner light surface intersects the ergosphere, but the
Poynting flux vanishes at θ = 0).

Incidentally, we proved that if energy is extracted from the black hole, its event horizon is
causally disconnected from the outgoing wind. This renders any interpretation of the Blandford-
Znajek mechanism as a mechanical exerted on the event horizon improper, although this would
be a valid interpretation of the spindown of neutron stars. Actually, Lasota et al. (2014) proved
that tapping the rotational energy requires that the black hole should absorb a negative energy
flux, making the Blandford-Znajek process the electromagnetic version of the Penrose process.

7.A Appendix: Proof of the Znajek regularity condition

Let us derive Eq. (7.7) in the 3+1 formalism, as the original proof from Znajek (1977) required
an advanced formalism. The goal will be to express the r and ϕ components of B along a
magnetic field line, using the quantities Hϕ and Ω which we proved to be invariant on a
single field line. Then we will ask that there should be no singularity at r = rh. For this
procedure to be valid, the coordinate system that we use must not itself be singular at the
event horizon; therefore we will carry out this calculation in the KS coordinate system (see
the Appendix 4.A). Recall that in this system, the shift vector is purely radial: β = βr∂r,
with βr = z/(1 + z), z = 2rgr/Σ. In the following of this section, we will keep rg = 1 and
c = 1 for the sake of conciseness, and we will denote the KS coordinates (t, r, θ, ϕ), without
the hats.

Inserting Eq. (6.48) in Eq. (5.41b), we obtain

H = αB +
(
(β ·B) Ω− β2B − (β ·Ω)B + (β ·B)β

)
/α. (7.25)

This allows us to get expressions for Hϕ and Hr, using β · Ω = hijβ
iΩj = hrϕβ

rΩ =
−a zΩ sin2 θ, β2 = hrrβ

r2 = z2/ (1 + z) andβ·B = hrrβ
rBr+hrϕβ

rBϕ = z
(
Br − a sin2 θBϕ

)
:

Hϕ = αBϕ +
1

α
Ω z Br − 1

α

z2

1 + z
Bϕ; (7.26)

Hr = αBr +
1

α
aΩ z sin2 θBr − 1

α

z2

1 + z
a sin2 θBϕ. (7.27)

Using α = 1/
√

1 + z in KS coordinates, the covariant component Hϕ can then be recon-
structed:

Hϕ = hϕϕH
ϕ + hϕrH

r (7.28)

=
A sin2 θ

Σ

(
Bϕ

√
1 + z

+ Ωz
√

1 + zBr −Bϕ z2

√
1 + z

)

− a sin2 θ (1 + z)

(
Br

√
1 + z

+ a z
√

1 + z sin2 θBrΩ− a
√

1 + z sin2 θ
z2

1 + z
Bϕ

)
(7.29)

= Bϕ
√

1 + z sin2 θ

(
A

Σ
(1− z) + a2 sin2 θz2

)

+Br
√

1 + z sin2 θ

(
Ωz

(
A

Σ
− a2 sin2 θ (1 + z)

)
− a
)

(7.30)

This expression can be simplified, by making use of the identity
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A =
(
r2 + a2

)2 − a2∆ sin2 θ = Σ
(
r2 + a2

)
+ 2a2r sin2 θ. (7.31)

This allows us to rewrite the coefficient of Bϕ in Eq. (7.30) on the right-hand side as

A

Σ
(1− z ) =

1

Σ2

(
A (Σ− 2r) + 4a2r2 sin2 θ

)
(7.32)

=
1

Σ

(
r4 + a2r2 cos2 θ − 2r3 + a2r2 + a4 cos2 θ − 2a2r cos2 θ

)
(7.33)

=
1

Σ

(
r2 − 2r + a2

) (
r2 + a2 cos2 θ

)
= ∆. (7.34)

Using the identity Eq. (7.31), one finds similarly the coefficient of Br in Eq. (7.30):

Ωz

(
A

Σ
− a2 sin2 θ (1 + z)

)
− a = Ω

2r

Σ2

(
A− (Σ + 2r) a2 sin2 θ

)
− a (7.35)

= Ω
2r

Σ2

(
Σ
(
r2 + a2

)
− Σa2 sin2 θ

)
− a = 2rΩ− a. (7.36)

Now we can write the relation between Br and Bϕ on a given field line, with fixed Ω and
Hϕ:

Bϕ∆ sin2 θ = αHϕ −Br sin2 θ (2rΩ− a) . (7.37)

Although the coefficients of the metric are not singular at the event horizon, ∆(r) vanishes
for r = rh. For Bϕ to remain finite, the right hand-side of Eq. (7.37) must vanish as well,
leading to

Hϕ (rh, θ) =
sin2 θ

α (rh, θ)
(2rhΩ− a)Br (rh, θ) . (7.38)

This expression can still be made more convenient. We recall that the ϕ component of a 1-
form is invariant under a change from BL to KS coordinates; however Eq. (7.38) is only true
in KS coordinates. This means that Hϕ and Aϕ have the same expression in BL and KS coor-
dinates (r and θ are also left unchanged). Br can be expressed asBr = erjk∂jAk = ∂θAϕ/

√
h.

We use Eq. (5.19) to express the determinant h as a function of α. In KS coordinates, the de-
terminant of the metric has the same expression −g = Σ2 sin2 θ than in BL coordinates.
Using the expression of the angular velocity of the black hole Eq. (4.14), and putting back
the dimensional factors, we finally arrive at the Znajek condition (Znajek, 1977):

Hϕ (rh, θ) =
Ω− ωh

c

2rhrg sin θ

Σ (rh, θ)
∂θAϕ. (7.39)

This condition is also valid in BL coordinates.
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Radiative processes

In the previous sections, we have deliberately ignored the important question of the origin
of the plasma in a black-hole magnetosphere. In pulsars, free charges are supplied by the
stellar surface, but in the present case there is no such obvious plasma source. Blandford
& Znajek (1977), in their seminal paper, suggested that photon-photon annihilation could
provide the right number of charges so as to reach the Goldreich-Julian density. Note that
the detection of the 511 keV electron/positron annihilation line is evidence for the produc-
tion of positrons in the Galaxy. In this section, we will describe several radiative processes
which will be crucial to our work. Inverse Compton scattering is responsible for the pro-
duction of high-energy photons, which can then produce electron/positron (hereafter, e±)
pairs. Synchrotron radiation probably produces most of the emission that we detect from
AGN in radio and millimeter wavelength.

8.1 Inverse Compton scattering

8.1.1 Kinematics

Compton scattering describes the following free-free process between an electron (or a positron)
and a photon:

γ + e− → γ + e−. (8.1)

Inverse Compton scattering is predominant in astrophysical environments, when both high-
energy electrons/positrons and intense external radiation fields are present and share the
same volume. In inverse Compton scattering, high-energy electrons scatter off low-energy
photons, boosting them to higher energies. Instead of the photon losing energy, as would be
the case in direct Compton scattering, here the electron loses energy. Let us denote, in the
observer frame R, by γ0 (resp. γ1) the Lorentz factor of the electron before (resp. after) the
scattering, and similarly the energies ε0 and ε1 of the photon before and after the scattering.
Primed quantities will be used to denote quantities defined in the electron rest frameR′. For
simplicity, let us assume that the electron moves along the z axis, in a frame with spherical
coordinates (r, θ, ϕ) defined with respect to this axis. We also suppose the electron collides
the photon with an angle θ0 in the observer frame. The convention we use for the angles is
shown in Fig. 8.1.

The photon energy in R′ is ε′0 = γ0ε0 (1− β cos θ0), with β2
0 =

(
γ2

0 − 1
)
/γ2

0 . The angle of
incidence θ′0 in the frameR′ is related to θ by the relativistic aberration formulae:

sin θ′0 =
sin θ0

γ0 (1− β0 cos θ0)
, cos θ′0 =

cos θ0 − β0

1− β0 cos θ0
. (8.2)

For very high Lorentz factors γ0 � 1, this shows that |sin θ′0| � 1 and cos θ′0 ' −1, so
that θ′0 ' π. Even if the photon field is close to isotropic, in the rest frame of sufficiently
energetic electrons, the emission is strongly beamed in the electronic direction of motion.
This is another occurrence of relativistic beaming. In the following, we will always assume
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γ0 � 1. Photons arriving with θ0 ' 0 have small energies in R′ The largest photon energies
are produced by head-on collisions θ0 ' π.

Inverse Compton scattering can actually be interpreted as direct Compton scattering
in the electron rest frame. We can use the standard formula of direct Compton scattering
(which can be proved using the conservation of 4-momentum), giving the energy of the
scattered electron as a function of ε′0 and the angle between the scattered electron momen-
tum and scattered photon momentum Θ′:

ε′1 =
ε′0

1 +
ε′0
mec2

(1− cos Θ′)

. (8.3)

Since we assume γ0 � 1, relativistic beaming implies that Θ′ ' π − θ′1 and cos Θ′ = − cos θ′1
(see Fig. 8.1). Now it is possible to express the energy of the scattered photon by transform-
ing back into the observer frame, with β0 ' 1:

ε1 = γ2
0ε0

(1− β0 cos θ0) (1 + β0 cos θ′1)

1 +
ε′0
mec2

(1 + cos θ′1)

(8.4)

From these equations, two limiting cases can be defined.

e−

θ1 ' 0

θ′1

θ′0 ' π

Θ′ ' π − θ′1

(a)

(b)

θ0

FIGURE 8.1: Scattering of a photon by an electron in the laboratory frame (a) and in the
electron rest frame (b). The incident photon is pictured in blue, the scattered one in yellow.
The red arrow shows the initial electron momentum. Angles are measured with respect to

the initial direction of the electron.
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I If the energy of the photon in the electron rest frame is much smaller than mec
2, then

we have ε′1 ' ε′0 from Eq. (8.3). The recoil of the electron is negligible, and the photon
is scattered with practically the same energy (the collision is elastic). This is known as
the Thomson regime.

I If the energy of the photon ε′0 is much larger thanmec
2, the recoil of the electron cannot

be ignored, and a consequent fraction of the electron energy is passed on to the photon
(the collision is deeply inelastic). This is known as the Klein-Nishina regime.

In the Klein-Nishina regime γ0ε0 � mec
2, the maximal energy of the scattered photon is

ε1,max . γ0mec
2. In the Thomson regime γ0ε0 � mec

2, we know from Eq. (8.4) that the
maximal energy is

ε1,max ' 2γ0ε
′
1,max ' 4γ2

0ε0. (8.5)

This corresponds to a head-on collision, with θ0 ' π and θ′1 ' 0. In the Thomson regime,
the characteristic energy of the scattered photon, although much larger than ε0, is still small
with respect to γ0mec

2.

Order of magnitude

The rest mass of the electron is mec
2 = 511 keV. This corresponds to a photon at the

transition between hard X-rays and soft gamma rays, with frequency ν ' 1020 Hz
and a wavelength λ ' 10−10 cm. For example, a photon in the near infra-red with
energy ε0 = 1 eV, upscattered by an electron with Lorentz factor 104, would reach the
gamma-ray band with a typical energy ε1 ' 100 MeV. This scattering would operate
in the Thomson regime, since γ0ε0/mec

2 ' 0.02� 1.

8.1.2 Cross-section

The Thomson regime can be related to the classical scattering of an electromagnetic wave by
an electron. The total cross-section of the Thomson scattering is constant, and given by

σT =
8π

3
r2

e = 6.652× 10−25 cm2, (8.6)

with re = e2/mec
2 the classical radius of the electron. This does not depend on the polariza-

tion state of the incoming radiation. In this low-energy regime, one can afford to neglect the
corrections from quantum electrodynamics (QED) that occur as x = ε′0/mec

2 approaches 1.
The total cross-section of inverse Compton scattering in any regime is (Rybicki & Lightman,
1986)

σIC(x) =
3

4
σT

(
1 + x

x3

(
2x(1 + x)

1 + 2x
− ln (1 + 2x)

)
+

1

2x
ln (1 + 2x)− 1 + 3x

(1 + 2x)2

)
. (8.7)

It reduces to σIC(x) ' σT for x � 1. In the Klein-Nishina regime, the cross section drops:
interactions cost more energy to the electron but they occur less frequently. For x � 1, the
cross section can be approximated by

σIC(x) ' 3

8x
σT

(
ln (2x) +

1

2

)
. (8.8)

The total cross section is sketched in Fig. 8.2.
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FIGURE 8.2: Cross section of the inverse Compton scattering process as a function of
x = ε′0/mec

2. At low x, it can be approximated with σT, whereas Eq. (8.8) is a decent
approximation at large x (dashed lines).

In the rest frame of the electron, the exact differential cross section is given by the Klein-
Nishina formula:

dσ

dΩ′1 dε′1
=

3

16π
σT

(
ε′1
ε′0

)2(ε′1
ε′0

+
ε′0
ε′1
− sin2 Θ′

)
, (8.9)

where ε′0 is implicitly prescribed by Eq. (8.3) (this expression has the benefit of compactness).
It is a measure of the probability that a photon should get scattered within the solid angle
dΩ′1, with energy in [ε′1, ε

′
1 + dε′1]. In the Thomson regime, we have ε′0 ' ε′1, so that the

differential cross section reduces to

dσ

dΩ′1 dε′1
' 3

16π
σT

(
1 + cos2 Θ′

)
, (8.10)

which is exactly the expression of the Thomson cross section of unpolarized radiation. There
again, Klein-Nishina effects act mainly to reduce the probability of interaction. The radiation
pattern of the differential cross section is represented in Fig. 8.3. At low energies, in the
Thomson regime ε′0 � mec

2, the angular dependence is dipolar and matches that of the
Thomson differential cross section (Eq. (8.10)). The scattering is symmetry with respect to
Θ′: forward and backward scatterings are equally likely. This symmetry is broken at higher
energies, and forward scatterings (Θ′ ' 0) are favored.

8.1.3 Electron interacting with a photon field

Let us consider the interaction between a single electron and a photon field characterized
by the photon number density n(ε): n(ε) dε corresponds to the number of photons with
energy in [ε, ε + dε]. We assume that the photon field is isotropic in the laboratory frame.
The cooling rate of the electron is dE/dt, with E = γ0mec

2. Because time and energies
transform the same way under a Lorentz boost, the cooling rate is a Lorentz invariant and
we have dE/dt = dE′/dt′.



8.1. Inverse Compton scattering 105

0◦

45◦

90◦

135◦

180◦

225◦

270◦

315◦

(dσIC/dΩ′1) /σT

ε′0 = 0.01mec
2

ε′0 = 0.10mec
2

ε′0 = 0.50mec
2

ε′0 = 20.0mec
2

FIGURE 8.3: Angular dependence of the differential Klein-Nishina cross section, for differ-
ent incident photon energies ε′0. The polar angle is Θ′.

Thomson limit

In the Thomson limit, we know the expression of the radiated power measured in the rest
frame of the electron, so that the cooling rate is

dE′

dt′
= −σTcE ′, (8.11)

where E ′ =
´
ε′ dn′ is the total photon energy density in R′. In the relativistic limit γ0 � 1,

if the photon field is isotropic, one can show that E ′ is related to E in the observer frame by
E ′ = (4/3)γ2

0E (Blumenthal & Gould, 1970). This yields the cooling rate of the electron

dE

dt
= −4

3
σTcγ

2
0E . (8.12)

In the Thomson regime, the cooling rate is independent of the photon spectrum. The asso-
ciated characteristic cooling time in the Thomson regime is

tIC = − E

dE/dt
= − 1

γ0

3mec

4σTE
. (8.13)

From now on, let us assume for simplicity that the photon field is monoenergetic at energy
ε0, and has constant, uniform density n0. In that casen E is simply E = n0ε0. The subse-
quent results are easily generalized by replacing n0 by n(ε0) dε0 and integrating on ε0. The
spectrum of photons that it produces is given by the following expression (Jones, 1968):

dNγ

dtdε1
=

3

4
cσT

n0

γ2
0ε0

(
2x ln (x) + x+ 1− 2x2

)
, x =

ε1
4γ2

0ε0
. (8.14)

This function is represented in Fig. 8.4 (the blue solid line for Γε � 1). In the Thomson
limit, the maximal energy of a scattered photon is 4γ2

0ε0, so that x is contained in [0, 1]. The
spetrum is peaked at the low-energy end.
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FIGURE 8.4: Spectrum of photons scattered by a single electron with Lorentz factor γ0 trav-
eling in a monoenergetic (at energy ε0, isotropic and uniform bath. The spectrum, generally
given by Eq. (8.17), depends on the parameter Γε = 4ε0γ0/mec

2. At low Γε, the spectrum
matches the prediction from the Thomson regime (Eq. (8.14)). Note that the energies on
the x axis are normalized by the maximum energy ε1,max, which increases as Γε increases,

allowing to show the different regimes on the same axis.

Klein-Nishina limit

Let us define the parameter Γε = 4ε0γ0/mec
2. The Thomson regime is characterized by

Γε � 1, the Klein-Nishina regime by Γε & 1. Let us rewrite Eq. (8.4) into the following form:

ε1 = γ0mec
2 Γε (1− β0 cos θ0) (1 + β0 cos θ′1) /4

1 + Γε (1− β0 cos θ0) (1 + β0 cos θ′1) /4
. (8.15)

Since (1− β0 cos θ0) (1 + β0 cos θ′1) /4 lies between 0 and 1, this equation implies that the
maximal energy of a scattered photon is exactly

ε1,max = γ0mec
2 Γε
1 + Γε

. (8.16)

As expected, this reduces to ε1,max ' 4ε0γ
2
0 for Γε � 1 and ε1,max ' γ0mec

2 for Γε � 1. The
spectrum of scattered photons, in the general case, was also computed by Jones (1968):

dNγ

dt dε1
=

3

4
cσT

n0

γ2
0ε0

(
2q ln (q) + (1 + 2q) (1− q) +

1

2

(Γε)
2

1 + Γε
(1− q)

)
, (8.17)

where q = ε1/
(
Γε
(
γ0mec

2 − ε1
))

. For Γε � 1, this function approaches Eq. (8.14). For
Γε � 1, the spectrum is strongly peaked near the maximal photon energy (see Fig. 8.4). This
means that large energy losses are predominant.
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FIGURE 8.5: Typical evolution of the Lorentz factor of an energetic charged particle, first
cooling in the Klein-Nishina regime, in logarithmic scale. Figure taken from Blumenthal &

Gould (1970).

From Eq. (8.17), it is possible to derive a characteristic cooling rate, just like in the Thom-
son regime. However, since the scattering produces very high-energy photons in the Klein-
Nishina regime, in general only a few encounters between the electron and surrounding
photons are needed to cool the electron down. Its energy goes down by discrete steps, so
a cooling rate is not particularly relevant. By contrast, because the cross section drops by a
factor ' γ0ε0/mec

2, the mean free path of an ultra-relativistic electron increases by the same
amount. The typical evolution of the energy of an electron which cools down in the Klein-
Nishina regime, is shown in Fig. 8.5. At first, energy losses are discrete, occuring upon each
scattering. Then the electron cools in the Thomson regime, where energy losses are more
frequent and occur continuously.

Optical depth

By definition of the cross section, as the electron propagates along a distance dl, the number
of scattered photons is related to the scattering rate r by dN = r dt. Since the electron moves
at a speed close to c, we have dN = r dl/c. Let us define τ the optical depth of the medium
as the rate of absorption of the electron per unit of length l, that is,

dτ

dl
=
r

c
. (8.18)

The optical depth can be physically interpreted as follows: the probability that the electron
interacts with the photon field over a length dl is dτ , so that the probability that it does
not interact is 1 − dτ . Hence, over a macroscopic length L, the probability that the electron
travels a distance L without being scattered is exp (−τ), with τ =

´
dτ =

´ L
0 (dτ/ dl) dl.

Let us assume that the photon field is monoenergetic, but anisotropic in general. In order
to compute the optical depth, we need to determine the scattering rate r. To do so, we move
to the rest frame of the electron. By definition of the cross section, the scattering rate is

r′ =
dN ′

dt′
= c

ˆ
σ dn′, (8.19)

where we integrate over all possible directions of incoming photons. To switch back to
the observer frame, we use the result, proved by Blumenthal & Gould (1970), that dn/ε is
a Lorentz invariant, so that dn′ = (ε′/ε) dn. Using the Lorentz boost of the energy ε′0 =
ε0γ0 (1− β0 cos θ0), and the time dilation dt = γ0 dt′, we finally obtain
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r =
1

γ0
r′ = c

ˆ
(1− β0 cos θ0)σ

(
ε′0
) dn

dΩ0
dΩ0, (8.20)

with Ω0 = sin θ0 dθ0 dϕ0 the infinitesimal solid angle around a photon direction in the ob-
server frame. Note that even if σ is the full cross section, it depends on θ0 via the boosted
energy energy ε′0. Now, in the Thomson limit, σ is independent of ε′0 and θ0. If n is isotropic
(dn/ dΩ0 = n0/ (4π)), then the cos θ0 term integrates to zero, and we find the usual relation
r = cσTn0.

The difference with Eq. (8.20) comes essentially from the 1−β0 cos θ0 factor. Its physical meaning
is that for relativistic electron speeds, this factor incorporates the fact that the relative velocity
of the electron and the photon along the direction of the electron motion different than c.

From this, we can compute the optical depth of the electron traversing a distance L in
the photon field:

τ =
n0σT

2

ˆ L

l=0

ˆ π

θ0=0

σIC (ε′0)

σT
(1− β0 cos θ0) sin θ0 dθ0 dl. (8.21)

In the context of black-hole magnetospheres, the characteristic optical depth of the medium
over a characteristic length scale rg is τ0 = n0σTrg. It is customary to introduce the opacity
κIC (γ0), which depends on the Lorentz factor of the incoming electron, as

τ =

ˆ L

0
κIC dl, κIC (γ0) =

τ0

2rg

ˆ π

0

σIC (ε′0)

σT
(1− β0 cos θ0) sin θ0 dθ0. (8.22)

The optical depth, and the probability of interaction of the electron, depend on this Lorentz
factor with the total cross section. The electron performs a random walk in the photon field,
associated with a mean free path λ ' 1/ (σTn0) in the Thomson regime.

8.2 Photon-photon annihilation

8.2.1 Kinematics

Photon-photon annihilation describes the following interaction between two photons:

γ + γ → e+ + e−. (8.23)

Unlike Compton scattering, it cannot be described classically, even in a low-energy regime:
it is entirely a QED process. For this process to happen, the energy of the photons must be
of the order of the rest mass energy of an e± pair1. We can give a more precise sense to this
statement.

Let us assume that the two photons, colliding with an angle θ0, actually have enough
energy to produce a pair, which has 4-momenta p0, p1 in the observer frame. The situation is
pictured in Fig. 8.6. In this case, it is possible to define a center-of-mass (CM) frame, in which
the produced pair has zero 3-momentum. Let us also denote k0 and k1 the 4-momenta of
the two incident photons. The primed quantities will denote quantities measured in the CM
frame. By conservation of the 4-momentum, we have kµ0 +kµ1 = pµ0 +pµ1 , so that (k0 + k1)2 =
(p0 + p1)2 = (p′0 + p′1)2. Denoting ε0 and ε1 the energies of the photons in the observer frame,
E′− = E′+ = E′ the energies of the electron and positron in the CM frame, and p′− = −p′+

1This process can be seen as an extreme illustration of the mass-energy equivalence, describing how light
alone can produce matter.
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e+

(a)

γ(ε1)

e−

θ′

θ1 ' 0

(b)

γ(ε0)

θ0

e−

e+

FIGURE 8.6: Production of a e± pair as seen from the center of mass frame (a) and the
observer frame (b), in the case where the photon 1 is much more energetic than the other
one (ε1 � ε0). The dashed black line marks the direction of the momentum of the center of

mass, which is close to the direction of the momentum of photon 1.

the 3-momenta of the electron and positron in the CM frame, we obtain by developing the
square:

2ε0ε1 (1− cos θ0) = 2m2
ec

4 + 2
(
E2 + p′−

2
)
. (8.24)

The threshold for pair creation is reached when the produced leptons have zero momentum
in the CM frame. This yields the following necessary condition for the annihilation of the
two photons into a e± pair:

s =
1

2
ε0ε1 (1− cos θ0) ≥

(
mec

2
)2
. (8.25)

This condition is all the easier to satisfy as θ0 approaches π: a head-on collision is more likely
to produce a pair, and the threshold condition reduces to ε0ε1 ≥

(
mec

2
)2. The quantity s is

actually the Lorentz invariant s = (k0 + k1)2 /4. We notice that (k0 + k1)2 = 4E′2, so that the
Lorentz factor of the pair in the CM frame is

γ′ =
E′

mec2
=

√
s

mec2
. (8.26)

Exactly at the pair creation threshold, we have s =
(
mec

2
)2, so β′ = 0 and γ′ = 1.

Even if a single photon in free space has enough energy to produce a pair, such event is un-
physical because it would violate the conservation of momentum. However, it might occur in
ultra-strong magnetic fields, which is a plausible pair plasma source in pulsar magnetospheres.
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Eventually, we aim to reconstruct quantities in the observer frame. Hence, it is impor-
tant to be able to transform from the observer frame to the CM frame, and vice versa. Let us
determine the velocity βCM (and the associated Lorentz factor γCM) of the CM frame with
respect to the observer frame (Cerutti, 2010). This is easier if we make the additional as-
sumption that ε1 � ε0 (the second case in Sec. 8.2.2). In that case, the momentum of the
photons is primarily carried by the photon 1, so that the momentum of the center of mass
of the produced pair will be practically aligned with the momentum of photon 1 p1 (see
Fig. 8.6). Consequently, the angle θ1 between p1 and the momentum of the pair is negli-
gible, and we can apply the following Lorentz boost to the energies of the incoming pho-
tons: ε′1 ' γCM (1− βCM) ε1 and ε′0 ' γCM (1− βCM cos θ0) ε0. At the same time, since the
3-momentum of the two photons vanishes in the CM frame, we know that ε′0 = ε′1. Using
the definition of s (Eq. (8.25)), this yields

βCM '
ε1 − ε0

ε1 − ε0 cos θ0
' 1− 2s

ε12
; γCM =

ε1
2
√
s
. (8.27)

8.2.2 Cross sections

The total cross section for the photon-photon annihilation, expressed as a function of the

velocity of the pair in the CM frame β′ =
√

1− 1/γ′2 =

√
1− (mec2)2 /s, is given by Gould

& Schréder (1967):

σ
(
β′
)

=
3

16
σT

(
1− β′2

)((
3− β′4

)
ln

(
1 + β′

1− β′
)
− 2β′

(
2− β′2

))
. (8.28)

The cross section is represented as a function of s/(mec
2)2 = 1/(1 − β′2) in Fig. 8.7. As

expected, it vanishes below the pair creation threshold s = 1. The cross section peaks at
σγγ ' 0.25σT, and the peak is reached very close to the pair creation threshold. Assuming
an isotropic photon field and averaging over θ0, this means that on average pair creation
occurs mostly when

100 101 102 103

s/
(
mec

2
)2
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100

σ
γ
γ
/
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FIGURE 8.7: Cross section for pair creation by photon-photon annihilation as a function of
s/
(
mec

2
)2, where s is given by Eq. (8.25).
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ε0ε1 ' 4m2
ec

4. (8.29)

Given Eq. (8.29), there are in general two situations in which photons can produce pairs.
Either the two photons have similar energies ε0 ' ε1 ' 2mec

2, or one photon is much more
energetic than the other (ε1 � ε0). In the following, we will make this approximation, which
applies to our astrophysical context. This also ensures the validity of Eq. (8.27).

Order of magnitude

Given a photon with energy ε0, the photons with which it is the most likely to interact
have the energy

ε1 ' 1

(
1 TeV

ε0

)
eV. (8.30)

In the first case, this means that there can be annihilation of two soft gamma ray pho-
tons, with energies of roughly 1 MeV. In the second case, very high-energy photons
with ε1 ' 1 TeV can interact with soft near-infrared photons with ε0 ' 1 eV.

The differential cross section in the CM frame, as a function of β′ and of the angle θ′

between the produced pair and the incident photons in the CM frame (see Fig. 8.6), is given
by Bonometto & Rees (1971)

dσγγ
d(cos θ′)

=
3

16
σTβ

′
(

1− β′2
)



1− (β′ cos θ′)4 + 2
(

1− β′2
)
β′2
(
1− cos2 θ′

)

(
1− (β′ cos θ′)2

)2


 . (8.31)

Its radiation pattern is represented in Fig. 8.8. Close to the pair creation threshold (β′ ' 0),
the distribution is almost isotropic. On the other hand, as β′ approaches 1, the differential
cross sections peaks at θ′ = 0 and π. In that case, the pair is most likely emitted along the
direction of the momentum of the center of mass, that is, the direction of the most energetic
photon. The differential cross section is always symmetric with respect to cos θ′ = 0.

Eq. (8.27) allows us to reconstruct the energiesE± of the pair in the observer frame, using
the backwards Lorentz transformation:

E− = γCME
′ + γCMβCME

′β′ cos θ′ = γCM

(√
s+ βCM cos θ′

√
s− (mec2)2

)
. (8.32)

The energy of the positron is retrieved by the conservation of energy:

E+ = ε1 + ε0 − E− ' ε1 − E−. (8.33)

Note that although the electron and the positron have the same energies in the CM frame,
they do not necessarily do in the observer frame because θ′1 is a random variable. We chose
to pick the energy of the electron first, but because the differential cross section is symmetric
in cos θ′, there is no asymmetry between the two species. Indeed, for cos θ′ = 0, we have
E− = γCME

′ = ε1/2, and E+ ' ε1 − E− ' ε1/2 ' E−. The Lorentz factor of the CM frame
is always much larger than 1 in the case ε1 � ε0. This implies that regardless of the angle θ′,
the electron and positron will be emitted in a direction very close to the momentum of the
center of mass, because of relativistic beaming (this is pictured in Fig. 8.6).
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FIGURE 8.8: Angular dependence of the differential pair production cross section, for differ-
ent velocities of the produced pair β′ in the CM frame. The polar angle is the angle between

the produced pair and the incoming photons in the CM frame θ′.

It seems that pair production has different properties depending on how far from the
pair creation threshold the system is. To illustrate this, let us give the expression of the
spectrum of electrons produced by an energetic photon with energy ε1, propagating in an
isotropic, monoenergetic and uniform photon field with energy ε0 in the observer frame and
densiy n0, which reads (Aharonian et al., 1983; Zdziarski, 1988)

dNe−

dt dE−
=

3

4
cσTn0

1

ζε1

(
1

2

(
E−
E+

+
E+

E−

)
−
(

2 +
1

2

(
E−
E+

+
E+

E−

))
χ

ζ
+ 2

(
χ

ζ

)2

+ 2
χ

ζ
ln

(
ζ

χ

))
,

(8.34)
where

ζ =
ε0ε1

(mec2)2 , χ =
ε1

2

4E−E+
, E+ = ε1 − E−. (8.35)

E+ = ε1 − E− is the energy of the associated positron. This spectrum is represented in
Fig. 8.9 for different values of the parameter ζ. As expected, the spectrum is invariant under
the exchange between electron and positron energies E− ↔ E+. Close to the pair creation
threshold (ζ ' 1), the energy of the photon 1 is shared evenly between the electron and the
positron (E− ' E+ ' ε1/2). As ζ increases, the energy of the photon tends to be mainly
passed to one of the produced leptons (E+ 6= E−).

Finally, the optical depth for a high-energy photon propagating in this photon field can
be computed in very much the same way as in the inverse Compton case:

τ =

ˆ L

0
κγγ dl, κγγ (ε1) ' τ0

2rg

ˆ π

0

σγγ (β′)

σT
(1− cos θ0) sin θ0 dθ0. (8.36)

The integration is carried over all possible collision angles θ0 between the soft photon 0 and
the high-energy photon 1. We also assumed βCM ' 1 for simplicity, which is valid if ε1 � ε0.
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FIGURE 8.9: Energy spectrum of the electrons produced by a high-energy photon of energy
ε1 propagating in a uniform, isotropic and monoenergetic (with energy ε0) bath of soft pho-
tons, in the limit ε1 � ε0. The spectrum depends on the parameter ζ = ε0ε1/(mec

2)2. The
electron energy is bounded by ε1.

In the following of this thesis, we will not be concerned with the inverse process: the pair re-
combination e+ + e− → γ + γ, despite the fact that this process is not limited by a threshold.
This is because we will assume very energetic leptons with Lorentz factors much larger than 1.
In this ultra-relativistic limit, the pair annihiliation cross section is very well approximated by
(Dirac, 1930; Svensson, 1982)

σe+e− '
3

8
σT

ln (2γ0)− 1

γ0
, (8.37)

where γ0 is the Lorentz factor of the pair in the CM frame. The cross section drops considerably
for γ0 � 1, and only the direct process is relevant in our context.

8.3 Synchrotron radiation

Synchrotron radiation is emitted by relativistic electrons or positrons spiralling around mag-
netic field lines. We will review some useful results, especially in the case where the emitting
particles are also submitted to an electric field. Most of the material covered in this section
can be found in much more detail in Ginzburg & Syrovatskii (1965), Blumenthal & Gould
(1970) and Rybicki & Lightman (1986). We will simply use a classical treatment of the syn-
chrotron radiation, without including QED effects.

8.3.1 Emitted power

In a uniform magnetic field B = Bez , with zero electric field, an electron moves in a spiral
path at the gyrofrequency

νg =
eB

2πcmeγ
, (8.38)

with γ the Lorentz factor of the particle. Let us consider a trajectory with a pitch angle α
between the velocity of the particle and the magnetic field. The associated Larmor radius
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is rL = v⊥/ (2πνg) = γmec
2β sinα/(eB). In the non-relativistic limit, the gyrofrequency

reduces to the Larmor frequency νc = eB/ (2πcme). In this limit, the usual Larmor formula
gives the radiation loss rate:

PLarmor =
2e2a2

3c3
, (8.39)

where a is the 3-acceleration of the particle. A covariant generalization for a particle of
4-momentum pµ is given by

Prad =
2e2

3m2
ec

3

dpµ
dτ

dpµ

dτ
. (8.40)

This is independent of the underlying acceleration mechanism. From Eq. (8.40), one can
prove that a particle linearly accelerated will radiate less than a particle in uniform circular
motion by a factor γ2, for a given magnitude of applied force (Jackson, 1998). As a result, if
the particle is energetic enough, it will be assumed to move instantaneously along a circular
path. The covariant Larmor formula for such Larmor gyrations yields

Prad =
2e4

3m2
ec

3
β2γ2B2 sin2 α =

1

4π
cσTβ

2γ2B2
⊥, (8.41)

where we defined the perpendicular magnetic field B⊥ = B sinα. This formula is valid for
a fixed pitch angle. For a large population of high-energy particles, the distribution of pitch
angles is likely to be isotropic. These particle have a characteristic cooling time scale tsync,
which is obtained by averaging Eq. (8.41) over the pitch angles θ. With 〈sin2 θ〉 = 2/3, and
introducing UB = B2/(8π) as the volume density of electromagnetic energy, we find

〈Prad〉 =
4

3
cσTUBβ2γ2 ⇒ tsync =

γmec
2

Prad
=

1

γ

3mec

4σTUB
. (8.42)

We notice that this expression is extremely similar to the cooling time by inverse Compton
scattering, where we replaced the radiation energy density by the magnetic energy density2.

The dependence of the radiated power and the cooling time on the mass of the particle for both
inverse Compton scattering and synchrotron radiation shows that electrons cool much more
efficiently than protons.

8.3.2 Effective perpendicular magnetic field

If the particle propagates in both a magnetic and an electric field, Eq. (8.40) actually turns
into

Ptot =
1

4π
cσTβ

2γ2
(

(E + β ×B)2 − (β ·E)2
)
. (8.43)

This equation reduces to Eq. (8.41) if E = 0. If B = 0, we find the power radiated by an
electron lineraly accelerated by an electric field, which is indeed reduced by a factor γ2. In
most cases, the term β ×B dominates. The similarity between Eq. (8.41) and Eq. (8.43) can
be made more apparent by defining the field (Cerutti et al., 2016)

B̃⊥ = E + β ×B − (β ·E)β. (8.44)

One can check that β · B̃⊥ = 0 and B̃
2
⊥ = (E + β ×B)2 − (β ·E)2 in the relativistic limit

β2 ' 1. This allows us to rewrite Eq. (8.43) as

2Synchrotron radiation can be viewed as inverse Compton scattering by the spiralling electron of virtual
photons associated with the magnetic field (Blumenthal & Gould, 1970).
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Ptot =
1

4π
cσTβ

2γ2B̃2
⊥, B̃⊥ =

√
B̃

2
⊥ (8.45)

When an electric field is present, the perpendicular magnetic field in Eq. (8.41) must simply
be replaced by B̃⊥. This allows us to interpret B̃⊥ as the effective perpendicular magnetic
field. Another illuminating way to understand this effective field is to look at the equations
of motion of a particle with velocity cβ (Kelner et al., 2015):

d(γβ)

dt
=

q

mec
(E + β ×B) (8.46)

dγ

dt
=

q

mec
(E · β) . (8.47)

Expanding the left-hand side of Eq. (8.46) and inserting Eq. (8.47) yields

dβ

dt
=

q

γmec
(E + β ×B − (β ·E)β) , (8.48)

while in the absence of electric field, since the Lorentz factor of the particle remains constant,
the equation of motion reduces to dβ/ dt = (β ×B) / (γmec). This means that B̃⊥ is indeed
the perpendicular magnetic field in the general case.

8.3.3 Spectrum emitted by a gyrating particle

As mentioned earlier, we focus on the case of a particle having its velocity and accelera-
tion perpendicular. In the rest frame of the particle, the radiation pattern of the accelerated
charge is dipolar: we have

dP ′rad

dΩ′
=
e2a′2

4πc3
sin2 Θ′, (8.49)

where the primed quantities are measured in the rest frame of the particle and where Θ′

is the angle between its acceleration and the direction of emission. On the other hand, the
received radiated power is strongly beamed toward its direction of motion in the observer
frame, due to relativistic effects. This is illustrated in Fig. 8.10. A major part of the energy
is emitted in a cone with semi-aperture angle 1/γ � 1. This has dramatic consequences
concerning the spectrum of synchrotron radiation measured by an observer at rest in the
observer frame.

Let us consider how the emitted radiation and its spectrum evolve as the Lorentz fac-
tor of the particle γ increases. At low energies, the received intensity varies sinusoidally,
precisely because the radiation pattern of the particle is dipolar. The spectrum consists of
a single line at the Larmor frequency νc = qB/ (2πmec): this is often named cyclotron ra-
diation. As γ increases, higher harmonics of the fundamental frequency νg = νc/γ of the
motion appear in the spectrum, because relativistic beaming distorts the observed angular
distribution of the intensity from a sin2 θ law. At relativistic velocities, the spectrum involves
a large number of harmonics which contribute significantly to the emitted power. The spec-
tral lines broaden due to Doppler effects, aberration effects, or because there is a spread in
the energies of the electron population. The broadening being proportional to the emission
frequency, except at frequencies close to the fundamental, the emission spectrum becomes
continuous (see Fig. 8.11(a)). The envelope of all these harmonics is the spectrum. Details
on cyclo-synchrotron spectrum can be found in Bekefi (1966). In the ultra-relativistic limit
γ � 1, the enveloppe of the spectral power reads
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FIGURE 8.10: Radiation pattern of an accelerated charge with velocity V orthogonal to its
acceleration. The diagram for V = 0.9c was rescaled by a factor 1/1000 to fit in the figure.
The emission cone gets narrower as V approaches c. Figure taken from Gourgoulhon (2010).
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FIGURE 8.11: (a) Spectrum of the first twenty synchrotron harmonics and cumulative spec-
trum from mildly relativistic charged particles. Figure taken from Bekefi (1966). (b) Syn-

chrotron kernel F (x), given in Eq. (8.50).

dPrad

dν
=

√
3e3B⊥
mec2

F

(
ν

νs

)
, F (x) = x

ˆ +∞

x
K5/3(y) dy, νs =

3eB⊥γ
2

4πmec
. (8.50)

The graph of the function F is shown in Fig. 8.11(b). Importantly, the characteristic fre-
quency of the spectrum is νs ' γ3νg � νg. The distribution is peaked at ν ' 0.29 νs. Most of
the power is emitted at ν � νg, so that the spectrum can be considered smooth and contin-
uous. In the case where an electric field is present, one simply needs to replace B⊥ by B̃⊥ in
Eq. (8.50).
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Order of magnitude

The numerical value of the characteristic synchrotron frequency is

νs = 4.2

(
B⊥
1 G

)
γ2MHz. (8.51)

For field strengths B⊥ ' 102 G, the synchrotron emission is in the radio-mm band for
moderately relativistic electrons.

8.3.4 Radiation reaction force

Since the motion of charged particles perforce involves the emission of radiation, carrying
energy and momentum, the radiation must have a feedback on the motion of the particle.
This self-consistent problem is in general very difficult to solve: radiated electromagnetic
fields brake the particle, which affects the radiation itself. The equation of motion of the
particle is in general

duµ

dτ
=

e

mec
Fµνuν + gµ, (8.52)

where Fµν is the Maxwell tensor, uµ the 4-velocity of the particle and gµ the sought reaction
force.

In the rest frame of the particle, the reaction force must match the Abraham-Lorentz force
F =

(
2q2/3c

)
β̈ (Jackson, 1998; Landau & Lifshitz, 1980). This expression of the force leads

to contradictions in the absence of external electromagnetic fields, as the free particle could
increase its own energy. Actually, this expression for F is only valid in the limit where the
radiation force is small with respect to the external Lorentz force. Denoting λ the wavelength
of the fields and B their characteristic strength, this leads to the self-consistency conditions

B � Bc =
m2

ec
4

e3
, λ� e2

mec2
= re. (8.53)

In the rest frame of the particle, classical electrodynamics break down when the magnetic
field strength exceeds the “critical” magnetic field Bc = 6.0× 1015 G, or when distances
shorter than the classical radius of the electron are probed by the fields. WhenB approaches
Bc, the Larmor radius rL = mec

2/eB of a particle approaches the classical radius re. Beyond
this regime, classical electrodynamics are inconsistent.

Actually, QED effects become important for magnetic field strengths above BQED = m2
ec

3/e~ =
4.4× 1013 G. When B approaches BQED, the Larmor radius of the particle approaches the
Compton wavelength λc = h/mec, and the typical energy of a synchrotron photon hνs ' γ2hνc
is similar to the particle energy γmec

2. In some way, since BQED � Bc, quantum effects protect
classical electrodynamics from its own inconsistencies. In the quantum regime, just like in the
Klein-Nishina regime, synchrotron photons are emitted in discrete steps and carry a sizeable
portion of the particle energy.

Landau & Lifshitz (1980) derived a covariant generalization of the previous results, valid
in any frame, in the relativistic case. A general expression for the radiation force is:

gµ =
2q2

3c3

d2uµ

dτ2 −
Ptot

c2
uµ, (8.54)

which satisfies the requirements that gµuµ = 0, that gi reduces to F i in the non-relativistic
limit, and that it gives the correct radiated power. The associated 3-force is
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g =
2q3

3mec3
γ ((∂t + cβ ·∇)E + β × (∂t + cβ ·∇)B)

+
σT

4π
((E + β ×B)×B + (β ·E)E)− σT

4π
γ2
(

(E + β ×B)2 − (β ·E)2
)
β. (8.55)

In the following, we will be concerned with relativistic particles with γ � 1. In that case, the
last term is the leading term (although the second term can be necessary to correctly include
curvature radiation; see Cerutti et al. 2016). The radiation reaction force reduces to

g ' −σT

4π
γ2
(

(E + β ×B)2 − (β ·E)2
)
β = −Ptot

c
β. (8.56)

The reaction force indeed acts like a drag in the direction opposite to the particle velocity.
We have pointed out that this procedure is only applicable if the strength of the fields

in the rest frame of the particle are small with respect to Bc. Let us denote B the typical
strength of the fields in the observer frame: this means that the fields have the strength γB
in the rest frame of the particle. Therefore the domain of validity of Eq. (8.56) is (Landau &
Lifshitz, 1980; Blumenthal & Gould, 1970; Cerutti et al., 2012)

γB � Bc. (8.57)

This is the condition under which the reaction force is negligible in the particle rest frame.
Interestingly, even if this condition is satisfied, the magnitude of the 3-force can exceed the
Lorentz force in the observer frame, because the ratio of the two is roughly γ2 (B/Bc).



Part III

Numerical techniques



“M. Fourier avait l’opinion que le but principal des mathématiques était l’utilité publique et l’explication
des phénomènes naturels; mais un philosophe comme lui aurait dû savoir que le but unique de la sci-
ence, c’est l’honneur de l’esprit humain, et que sous ce titre, une question de nombres vaut autant
qu’une question du système du monde.”

“Mr. Fourier had the opinion that that the main purpose of mathematics was public utility and
explanation of natural phenomena; but a philosopher of such distinction should have known that the
sole end of science is the honor of the human mind, and that under this title a question about numbers
is worth as much as a question about the system of the world.”

CARL GUSTAV JAKOB JACOBI, lettre à André-Marie Legendre, 2 juillet 1830



Chapter 9

Particle-in-cell simulations

We have exhibited in Part. II a large number of phenomena: general relativity, electrody-
namics, plasma behaviour, radiative processes. It looks hopeless to treat this intricate and
nonlinear problem other than numerically. In this section, I will describe a specific numeri-
cal technique designed for numerical simulations of plasmas: the particle-in-cell (hereafter,
PIC) method. Although the basic laws governing the plasma are Newton’s and Maxwell’s
equations, solving them for a macroscopic number of particles is extremely challenging.
The principles of special relativistic PIC methods will be presented for simple geometries.
Some excellent material on PIC codes and plasma simulations can be found in the text-
books by Birdsall & Langdon (1985) and Hockney & Eastwood (1988), to which the reader
is referred for advanced aspects. The numerical aspects of general relativity are deferred to
Chap. 10.

There is a great variety of PIC algorithms, for almost as many simulations methods (implicit/
explicit integration schemes, grid interpolation procedures,...). In this chapter, we only describe
and justify the choices made in the Zeltron code; other choices make perfect sense in other
contexts.

9.1 Principles

In the introduction, we detailed why traditional MHD methods are ill-advised in the context
of this thesis. One of the prime reasons is that we aim to simulate a collisionless plasma.
Such a plasma is most generally characterized by the distribution function fs (x,p, t) (for
each species s), the evolution of which is ruled by Vlasov’s equation:

∂fs
∂t

+ v ·∇fs + qs(E +
v

c
×B) ·∇pfs = 0, (9.1)

with p = γmsv the momentum of the particle, qs and ms the charge and mass of the species
s. These equations must be solved concurrently with Maxwell’s equations. It is possible to
solve directly the Vlasov equation, treating the distribution in phase space as a fluid and
employing hydrodynamic solvers. The upside is the very low level of noise, which is con-
venient in order to capture low-amplitude effects, the linear growth of instabilities, or broad
distribution functions. In addition, important inhomogeneities in density cause no issue.
On the other hand, these solvers are very demanding computationally, because the Vlasov
equation is 6-dimensional. See Palmroth et al. (2018) for a review, or Umeda et al. (2009) for
an example of implementation.

Straightforward integration the Vlasov equation is often too challenging. The number
of degrees of freedom can be reduced through the gyrokinetic approximation, which can
be applied to highly magnetized plasmas, with slow dynamics compared to the cyclotron
motion with small departure from the equilibrium (Howes et al., 2006). The idea is to aver-
age the Vlasov equation over the Larmor gyrations of the particles. Relaxing the constraint
of resolving Larmor orbits is very beneficial in the case of extremely magnetized plasmas.
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These codes have long been used in the context of fusion plasmas, but they have also been
recently applied to high-energy astrophysical problems (Numata et al., 2010).

Another idea is to solve the Vlasov equation indirectly. In the particle approximation,
the plasma is treated as a set of charged macroparticles. Integrating the discrete particle
trajectories can be shown to be equivalent to solving the full kinetic collisionless Vlasov
equation along characteristic curves (Sironi & Cerutti, 2017). In this approach, the distribu-
tion function for N macroparticles with positions rk(t) and momenta pk(t) is approximated
by

fs (r,p, t) =
N∑

k=1

wkδ(r − rk(t))δ(p− pk(t)). (9.2)

In Eq. (9.2), the coefficient wk is called the weight of the particle. This prefactor aims at com-
pensating for the low number of numerical particles (at most 1012 in large simulations) with
respect to the actual number of particles in the plasma (from 106 to 1010 particles per Debye
sphere, Fitzpatrick, 2015). Using a large weight, numerical macroparticles represent a very
large number of physical particles with the same charge-to-mass ratio, so they follow the
same phase space trajectories. The main drawback of this approach comes with its discrete
nature: the phase space is much harder to resolve, which leads to shot noise.

Even though the plasma is collisionless, macroparticles feel long-range binary interac-
tions, and a brute force approach would require the computation of N(N − 1)/2 ∝ N2

interactions, which would be too expensive. Instead, the electromagnetic fields are com-
puted on a mesh, and then interpolated back to the particles. This is the heart of the PIC
method (a “particle-mesh” method), which reduces the number of operations per time step
to ∼ N logN (Pritchett, 2003), and eliminates fluctuations on a scale smaller than the grid
spacing. Not only is this convenient numerically, but this is also a defining feature of colli-
sionless plasma physics: the dynamics of particles are driven by collective processes, oper-
ating through the electromagnetic fields, rather than by individual collisions which are not
resolved by the PIC method. Incidentally, this also removes the matter of the singularities
in Coulomb’s law: plasma physics are only relevant at scales larger than the Debye length.
In PIC simulations, resolving the microscopic kinetic scales is absolutely necessary.

The scale of the downsampling needed to go from physical plasmas to numerical plasmas is
so large that one may question the relevance of plasma simulations. Birdsall & Langdon (1985)
and Hockney & Eastwood (1988) showed that for PIC algorithms, the plasma parameter Λ (the
number of particles per Debye sphere) need actually be only of a few.

Most plasma simulations simulate an electron/ion plasma, which are characterized by
a large mass ratio between the two species. Some hybrid models have been developed
to retain some aspects of collisionless plasma physics, while gaining orders of magnitude
in resolution or in the duration of the simulation by adding some fluid description. Most
of the time, the physics at the electronic scale is discarded, whereas ions are still described
kinetically. In the hybrid-PIC method for instance, electrons are considered massless, so they
constitute a perfectly conducting fluid (Winske et al., 2003). An MHD-PIC approach has also
been developed to treat kinetically one species (e.g., cosmic rays), and study the interaction
between this collisionless plasma and a thermal plasma (Bai et al., 2015; Mignone et al., 2018;
van Marle et al., 2018). We will be concerned with relativistic e± plasmas, so PIC methods
are very well suited for this problem.

Just like any other plasma code, a PIC code must solve self-consistently Maxwell’s equa-
tions for the electromagnetic fields (E,B) and Newton’s equations for the particles. These
equations are discretized in time, with a time step ∆t. During one time step, three dis-
tinct operations must be performed. First the positions and velocities of the particles are
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Newton's
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FIGURE 9.1: Typical threefold computation procedure of PIC algorithms per time step. Fig-
ure taken from Sironi & Cerutti (2017).

evolved, then the electromagnetic source terms (charge and current densities) are collected
on the grid, and finally fields are updated by solving Maxwell’s equations on the grid. This
procedure is depicted in Fig. 9.1.

9.2 Particle motion

9.2.1 Leapfrog algorithms

In choosing the integration scheme for the particles, there must be a compromise between
efficiency (the equations of motion are solved at each time step for every of theN particles in
the simulation, with N ' 108), computer storage capacity (high-order integration schemes
can store several particles coordinates per time step), and accuracy. A very appropriate
choice is the leapfrog scheme (Feynman et al., 1963). Let us illustrate the principle on the
simple case of a one-dimensional particle, submitted to a velocity-independent force F (x).
Position and velocities are staggered on the time axis by half a timestep ∆t/2: positions are
defined at tn = n∆t and velocities/momenta at tn+1/2 = (n + 1/2)∆t. At the time step n,
the basic integration formula for the leapfrog algorithm is

xn+1 = xn +
∆t

ms
pn+1/2, (9.3)

pn+3/2 = pn+1/2 + ∆tF
(
xn+1

)
. (9.4)

This finite difference scheme is time-centered, so it is time-reversal invariant. As a result, one
can prove by Taylor expansion in ∆t that this scheme is accurate to second order. Besides,
unlike the second-order Runge-Kutta method for instance, it requires only one evaluation of
the function F per time step. The initialization of the scheme seems problematic, as for given
initial position and momentum (x0, p0), one must compute p1/2. This induces a first-order
error, but this does not matter since it only has to be done once. A minor downside of this
scheme is that positions and velocities are never known at the same time step, which might
be inconvenient for a variety of diagnostics. This is easily remedied by a minor modification
of the leapfrog algorithm, which turns into the “velocity Verlet” algorithm (Verlet, 1967;
Swope et al., 1982):
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pn+1/2 = pn +
∆t

2
F (xn) , (9.5)

xn+1 = xn +
∆t

ms
pn+1/2, (9.6)

pn+1 = pn+1/2 +
∆t

2
F
(
xn+1

)
. (9.7)

This scheme is actually equivalent to the leapfrog algorithm, once suitable initial conditions
are supplied. Note that the force in Eq. (9.7) needed to compute pn+1 is the same as the one
needed in Eq. (9.5) to compute pn+3/2, so that the Verlet algorithm also necessitates only one
computation of F per time step. The principle of the leapfrog is represented in Fig. 9.2.

This is all well and good, but the main upside of leapfrog algorithms is its symplectic-
ity (Young, 2013; Springel, 2016). The time evolution of the phase space coordinates can be
seen as a flow in phase space. Let us follow two trajectories initially infinitesimally close,
with initial conditions

(
x0, p0

)
and

(
x0 + δx0, p0 + δp0

)
. The coordinate intervals evolve as

(
δxn+1

δpn+1

)
= J

(
δxn

δpn

)
. (9.8)

Eq. (9.8) is actually the discretized version of a coordinate transformation, and J can be seen
as the Jacobian of the transformation. An algorithm is said to be symplectic if its Jacobian is
symplectic:

JT
(

0 I
−I 0

)
J =

(
0 I
−I 0

)
, (9.9)

where I is the identity matrix. Symplecticity is a property of all Hamiltonian flows (Gold-
stein et al., 2012). This property implies that the area of a given volume of phase space under
the flow of the algorithm is preserved (this is Liouville’s theorem). In this simple 1D case,
we have dV = dx dp ' δxnδpn at the time step n. Hence, the algorithm preserves phase
space volume if

det J = 1. (9.10)

This condition is met by the leapfrog and Verlet algorithms (Young, 2013; Springel, 2016).
This implies that they possess global stability. Because phase space conservation is satisfied,
there can be no secular trend, and global conserved quantities (energy, angular momentum)

rn−1

tn tn+1/2tn−1/2

pn−1/2, γn−1/2

t

tn−1
tn+1

rn pn+1/2, γn+1/2

F n

FIGURE 9.2: Illustrative diagram of the leapfrog scheme for the particles. The positions are
defined at integer time steps, whereas the velocities are defined at half-integer time steps.
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are usually bounded (Hairer et al., 2005). On the contrary, such trends can be oberved on
long time scales even in very accurate non-symplectic schemes, such as the fourth order
Runge-Kutta scheme.

The leapfrog and velocity Verlet algorithm that we have presented are accurate to second order.
A fourth-order symplectic algorithm has been devised by Forest & Ruth (1990). For the purpose
of our simulations, the second-order leapfrog algorithm is sufficient.

9.2.2 Equations of motion

Let us define the particle’s 3-velocity v and normalized momentum u = γv/c = p/msc. The
special relativistic versions of Newton’s equations read

dr

dt
= v = c

u

γ
(9.11)

du

dt
=

qs
msc

(
E +

u

γ
×B

)
+ g, (9.12)

where γ =
√

1 + u2 is the Lorentz factor of the particle, and g is the backreaction radiation
force (see Eq. (8.56)), if synchrotron radiation is included in the simulation. Let us momen-
tarily ignore this reaction force. In the spirit of the leapfrog algorithm, these equations are
discretized as

rn+1 − rn
∆t

= c
un+1/2

γn+1/2
, (9.13)

un+1/2 − un−1/2

∆t
=

qs
msc

(
En +

1

2γn

(
un+1/2 + un−1/2

)
×Bn

)
. (9.14)

The Lorentz force F = qs (E + (u/γ)×B) must be evaluated at integer time steps n ∈
N (see Fig. 9.2), so the mean velocity un '

(
un+1/2 + un−1/2

)
/2 is employed. Besides,

the fields appearing in these equations are evaluated at the particle’s position. A linear
interpolation from the grid to the particle’s position works fine for this purpose.

Still, one difficulty remains, because the Lorentz force is velocity-dependent. A practical
implementation of the particle mover is the Boris push (Boris, 1970; Birdsall & Langdon,
1985), which splits the effects of the electric and magnetic force. With the knowledge of rn
and un−1/2, we define

u− = un−1/2 +
qs∆t

2cms
En, (9.15)

u+ = un+1/2 − qs∆t

2cms
En, (9.16)

which allows us to rewrite the momentum equation into

u+ − u−
∆t

=
qs

2mscγn
(u+ + u−)×Bn. (9.17)

The physical interpretation of Eq. (9.15), (9.16) and (9.17) is the following. In a time-centered
fashion, the particle is linearly accelerated by the electric field for half a time step, then has
its velocity precessing around the magnetic field by an angle ' ωg∆t (where ωg = qB/γmsc
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u+

u−

θ

u+ + u+

u+ − u+

u′

b, t, s

u− × t

FIGURE 9.3: Geometrical construction of the Boris push. For simplicity, the velocity vectors
are assumed to be perpendicular to the magnetic field b. The goal is to reconstruct u+,

starting from u−. Figure inspired by Birdsall & Langdon (1985).

is the relativistic cyloctron angular frequency), and then reaccelerated for the remaining half
time step. All that remains is to get an explicit expression for u+ as a function of u−.

The geometrical construction is represented in Fig. 9.3, in the simple case where B ⊥ u.
From Eq. (9.17), we see that the half-angle of rotation is given by

t = tan
θ

2
= −‖u

+ − u−‖
‖u+ + u−‖ = − qsB∆t

2mscγn
= −ωg∆t

2
, (9.18)

where γn =
√

1 + u2
−. This matches the physical rotation angle if ωg∆t� 1 only, indicating

that the cyclotron frequency must be time-resolved by the simulation to follow accurately
the motion of particles. Finally, we define the unit vector b = B/B and the auxiliary vectors
t = − tan(θ/2)b = −tb and s = 2t/

(
1 + t2

)
. Using the tangent half-angle formulas, we

have sin θ = 2t/
(
1 + t2

)
and cos θ =

(
1− t2

)
/
(
1 + t2

)
. Then, one can check that the vector

u′ = u− + u− × t, (9.19)

is orthogonal to u+ − u−, and consequently, parallel to u+ + u−. Since u+ − u− is parallel
to u′ ×B, u+ can eventually be expressed as

u+ = u− + u′ × s, (9.20)

which fulfills the requirement that ‖u+‖ = ‖u−‖. All in all un+1/2 can be expressed as a
function of un−1/2 in the leapfrog scheme.

Other Lorentz force pushers have been implemented; a comprehensive review can be
found in Ripperda et al. (2018). In particular, Ripperda et al. (2018) show that the Boris
push only conserves the total numerical energy in the absence of an electric field. Actually,
the Boris push is not symplectic. Yet, it performs outstandingly even in the presence of an
electric field, because it still preserves phase space volume (Qin et al., 2013). This brings
long-term stability to the Boris push.

The radiation-reaction force is included using the scheme detailed in Tamburini et al.
(2010). The full leapfrog time step is

un+1/2 − un−1/2

∆t
= F n

L + gn. (9.21)

The scheme consists in pushing the momentum of the particle independently with the Lorentz
force F L and the reaction force g, with
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u
n+1/2
L − un−1/2

∆t
=

1

msc
F n

L;
u
n+1/2
R − un−1/2

∆t
=

1

msc
gn. (9.22)

and then to reassemble the full updated momentum un+1/2 = u
n+1/2
L + u

n+1/2
R − un−1/2 =

u
n+1/2
L + gn∆t/msc. The Boris push can still bu used to evolve the momentum under the

action of the Lorentz force. In order to estimate gn, the Lorentz factor of the particle at
an integer time step is needed. The total momentum at tn = n∆t is estimated as un '
(u

n+1/2
L + un−1/2)/2.

9.2.3 Source terms

In order to solve Maxwell’s equations, the source terms are yet to be computed. The charge
density and current density are determined by the particle contributions:

ρ(r) =

N∑

k=1

qkwkδ(r − rk), (9.23)

j(r) =
N∑

k=1

qkwkvkδ(r − rk). (9.24)

Then, the values of the source terms must be deposited on the grid nodes, so they can be
injected on the spatially discretized Maxwell’s equations. There exist several interpolation
schemes, but a linear one is sufficient most of the time. In 2D Cartesian coordinates (x, y), if
a macroparticle with charge q and weight w is located between the nodes x ∈ [xi, xi+1] and
y ∈ [yj , yj+1], then the charge that is deposited on each node is

qi,j = (1− fx)(1− fy) q w, qi,j+1 = (1− fx)fy q w, (9.25)
qi+1,j = fx(1− fy) q w, qi+1,j+1 = fxfy q w, (9.26)

where fx and fy are defined as

fx =
x− xi
xi+1 − xi

, fy =
y − yj

yj+1 − yj
. (9.27)

This has been dubbed an “area weighting” procedure, since the weights fx and fy are given
by the ratio of the surfaces linearly defined by the position of the particle within the cell
(see Fig. 9.4). It gives the particles an effective size, which amounts to replacing the Dirac
function in Eq. (9.23) and (9.24) by a wider shape function which smooths the source terms.
For example, a first-order interpolation scheme involves a triangular shape function. Due to
this procedure, scales smaller than the grid resolution cannot be resolved. The same linear
interpolation is used in the Boris push to interpolate the fields from the grid to the location
of the particles.

9.3 Field evolution

Now that the source terms have been updated, the last step consists in evolving the fields
using Ampère’s and Faraday’s equations:
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FIGURE 9.4: Area-weighting procedure on the case of a 2D Cartesian grid. The fractional
charge of a particle at P is deposited on the four surrounding nodes in proportion to the

colored shaded areas. Figure adapted from Sironi & Cerutti (2017).

∂E

∂t
= c∇×B − 4πJ (9.28)

∂B

∂t
= −c∇×E. (9.29)

The most common approach in PIC codes is the finite difference time domain method (Yee,
1966). Let us illustrate this method in the case of a 2D Cartesian grid (x, y), assuming invari-
ance along the third z axis.

9.3.1 Time discretization

Like the particle pushers, a time-centered leapfrog method is preferable for the time evo-
lution of the fields. The joint evolution of the particles and fields is shown in Fig. 9.5. In
order to advance the particles, the electric and magnetic fields must be known at the same
time. This is precisely the case where the velocity Verlet algorithm comes in handy, since
it allows us to know both E and B at all integer time steps (taking the momentum for the
magnetic field and the position for the electric field). The magnetic field is first advanced
only by half a time step ∆t/2, so the particle motion can be computed. Then, the magnetic
field is once again advanced by ∆t/2, completing the Verlet algorithm. Assuming En and
Bn are initially known, the various steps read

1. un−1/2 → un+1/2 with En andBn.

2. rn → rn+1 with un+1/2.

3. Bn+1/2 = Bn − c∆t

2
(∇×E)n.

4. En+1 = En + c∆t (∇×B)n+1/2 − 4π∆tJn+1/2.

5. Bn+1 = Bn+1/2 − c∆t

2
(∇×E)n+1.
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FIGURE 9.5: Simultaneous leapfrogs for the electromagnetic fields and the particles. The
Lorentz force F is computed from the fields to push the particles.

The only overlooked subtlety here has been the knowledge of the current density at the time
step n+ 1/2. Jn+1/2 is computed as the average betwwen J

(
rn,un+1/2

)
(before the coordi-

nates of the particles are updated) and J
(
rn+1,un+1/2

)
(after the coordinates are updated).

9.3.2 Spatial discretization

The curl and divergence of the electromagnetic fields are estimated by a centered finite-
difference method, so this method has second-order accuracy. The key idea is to stagger the
different components of the fields on different nodes of the grid, as pictured in Fig. 9.6 for a
2D Cartesian grid, with regular spacing ∆x and ∆y. This spatial staggering is often dubbed
the “Yee grid”. For example, the components of Eq. (9.29) discretized in this fashion are

(Bx)
n+1/2
i,j+1/2 − (Bz)

n−1/2
i,j+1/2

∆t
= −c

(Ez)
n
i,j+1 − (Ez)

n
i,j

∆y
, (9.30)

(By)
n+1/2
i+1/2,j − (By)

n−1/2
i+1/2,j

∆t
= c

(Ez)
n
i+1,j − (Ez)

n
i,j

∆x
, (9.31)

(Bz)
n+1/2
i+1/2,j+1/2 − (Bz)

n−1/2
i+1/2,j+1/2

∆t
= −c

(Ey)
n
i+1,j+1/2 − (Ey)

n
i,j+1/2

∆x

+ c
(Ex)ni+1/2,j+1 − (Ez)

n
i+1/2,j

∆y
, (9.32)

where the upper index denotes the time step and the lower index denotes the spatial position
on the Yee grid.

What about the two other Maxwell’s equations? One of the major benefit of employing
the Yee grid is that the equation ∇ · B = 0 is automatically satisfied to machine roundoff
precision, provided the simulation is initialized with a divergence-free magnetic field.
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FIGURE 9.6: 2D Cartesian Yee grid. The red arrows denote the components of the electric
fields, the blue ones denote the magnetic fields. The positions on the mesh are labelled by

the indices i in the x direction and j in the y direction.

Proof

The discretized divergence ofB is given by

(∇ ·B)
n+1/2
i+1/2,j+1/2 =

(Bx)
n+1/2
i+1,j+1/2 − (Bx)

n+1/2
i,j+1/2

∆x
+

(By)
n+1/2
i+1/2,j+1 − (By)

n+1/2
i+1/2,j

∆y
. (9.33)

Let us compute the variation δ (∇ ·B) = (∇ ·B)
n+1/2
i+1/2,j+1/2−(∇ ·B)

n−1/2
i+1/2,j+1/2, using

the discretized equations (9.30), (9.31) and (9.32):

δ (∇ ·B) =
(Bx)

n+1/2
i+1,j+1/2 − (Bx)

n−1/2
i+1,j+1/2

∆x
−

(Bx)
n+1/2
i,j+1/2 − (Bx)

n−1/2
i,j+1/2

∆x

+
(By)

n+1/2
i+1/2,j+1 − (By)

n−1/2
i+1/2,j+1

∆y
−

(By)
n+1/2
i+1/2,j − (By)

n−1/2
i+1/2,j

∆y
(9.34)

=
c∆t

∆x∆y
(− (Ez)

n
i+1,j+1 + (Ez)

n
i+1,j + (Ez)

n
i,j+1 − (Ez)

n
i,j

+ (Ez)
n
i+1,j+1 − (Ez)

n
i,j+1 − (Ez)

n
i+1,j + (Ez)

n
i,j ) (9.35)

= 0. (9.36)

As a result, the divergence of B is constant. It remains zero if it is initialized at zero.
This result holds only in a spatially and time centered scheme.

Unfortunately, this scheme does not enforce Maxwell-Gauss’ equation ∇ ·E = 4πρ, and
the electric charge deposited on the grid is not exactly conserved. If this is left untended,
small errors can accumulate and lead to unphysical charge densities. Therefore, the electric
field has to be periodically corrected (Birdsall & Langdon, 1985; Hockney & Eastwood, 1988),
a method called “divergence cleaning”. Let E0 be the electric field provided by the field
solver, and ρ the charge density. The corrected electric field isE = E0 −∇φ, where φ obeys
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Poisson’s equation ∆φ = −4πρ + ∇ · E0. The electric potential is defined at the nodes
(i, j). Denoting Si,j the source term on the right-hand side, the discretized form of Poisson’s
equation is

φi+1,j + φi−1,j − 2φi,j

∆x2 +
φi,j+1 + φi,j−1 − 2φi,j

∆y2 = Si,j , (9.37)

which can be recast into

φi,j =
∆y2 (φi+1,j + φi−1,j) + ∆x2 (φi,j+1 + φi,j−1)

2
(
∆x2 + ∆y2

) − ∆x2∆y2

2
(
∆x2 + ∆y2

)Si,j . (9.38)

This equation yields an implicit value for φi,j . To solve it, a computationally easy way is to
use an iterative method. The most basic one is the Jacobi method (Press et al., 1992). After an
initial guess φ[0]

i,j , an updated potential is obtained by applying Eq. (9.38), so that the estimate
of φi,j after k iterations is

φ
[k]
i,j =

∆y2
(
φ

[k−1]
i+1,j + φ

[k−1]
i−1,j

)
+ ∆x2

(
φ

[k−1]
i,j+1 + φ

[k−1]
i,j−1

)

2
(
∆x2 + ∆y2

) − ∆x2∆y2

2
(
∆x2 + ∆y2

)Si,j . (9.39)

It can be shown that for this particular problem, the procedure converges for any initial
guess (LeVeque, 2007). A number of iterations between 5 and 10 is usually enough. This
method has the benefit of allowing generalizations to more involved geometries (cylindrical
or spherical for example). There exist some schemes to reconstruct charge-conserving ρ
and J (Villasenor & Buneman, 1992; Esirkepov, 2001), but they are limited to Cartesian
geometries for now.

9.3.3 Grid resolution

A question that remains to be adressed is the choice of ∆t and the grid resolution. A
general method to assess the stability of a numerical sheme consists in evaluating the be-
haviour of plane waves (Birdsall & Langdon, 1985). Injecting the fields (E,B)(t, r) =
(E0,B0) exp(i(ωt− k · r)) into the discretized versions of Eqs. (9.28) and (13.10), one finds:

(
sin(ω∆t/2)

c∆t

)2

=

(
sin(kx∆x/2)

∆x

)2

+

(
sin(ky∆y/2)

∆y

)2

. (9.40)

More details on this derivation are given in the general case in Sec. 10.2.4. This dispersion
relation determines the frequency ω of the wave as a function of the wave vector. It reduces
to the light wave dispersion relation ω = kc for ∆t → 0. The scheme is stable if and only if
ω is real, which yields the Courant-Friedrichs-Levy (CFL) condition (Pritchett, 2003; Sironi &
Cerutti, 2017):

C = (c∆t)2

(
1

∆x2
+

1

∆y2

)
< 1, (9.41)

with C the CFL number. Usually, the grid resolution is given by the user, and Eq. (9.41) is
used to prescribe the time step a posteriori with a CFL number lower than 1. The most critical
necessity is that the Debye length, which is just the skin depth de in relativistic plasmas,
should be resolved. For a plasma of typical density n0, the skin depth reads

de =

√
msc

2

4πn0qs2
. (9.42)
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Spatially resolving the skin depth is equivalent to resolving the plasma frequency in the
time domain. Failure to do so results in the appearance of spurious electric fields, which can
accelerate particles and heat the plasma. Basically, the initial assumption of the PIC method
that all physics below the Debye scale could be neglected breaks down. The Larmor radius
of particles should also be resolved, although the consequences are less dramatic if it is not.

9.4 Parallelization

The most common parallelization strategy is to use a grid-based domain decomposition,
applied through the Message Passing Interface (MPI), which ensures the communication
between the different cores. The simulation box is divided into smaller domains, following
a Cartesian topology. Each of the N CPUs is assigned to a single domain, its task being to
evolve the fields on the sub-grid, and to push the particles propagating within the domain.
Each CPU goes through all the previously described steps of the PIC algorithm. At the
end of each step, it must communicate with its neighbours several pieces of information:
which particles have left its domain, which particles are entering the domain, and what
are the updated values of the fields at the boundaries of the domain. In a Cartesian 2D
decomposition, the bulk domains have 8 neighbours.

Communication of the grid values is performed through the intermediary of “ghost
cells”, which are organized as shown in Fig. 9.7 in a 1D geometry. Let us consider a do-
main which is not in contact with the boundary of the global simulation box, with its nodes
labeled from 1 toN (Proc. 2 in the figure). The nodes 1 andN are out of the physical domain.
Loops in spatial indices (in the field pusher for example) run from 2 to N − 1. To compute
the finite-difference expressions at the nodes 2 and N −1, the values of the fields are needed
at 1 and N . These values are provided by the neighboring domains (Proc. 1 and 3 in the
figure): the domains overlap in such a way that they share a ghost cell. In the figure, at the
end of the loops, the node 1 of Proc. 2 is updated by the updated value at the node N − 1
of Proc. 1, while the node N of Proc. 1 is updated using the updated value at the node 2 of
Proc. 2.

PIC simulations are very easily scalable to a large number of cores: aside from what
happens at the boundaries of the domains, all operations can be performed indepently. This
makes them useful for astrophysical simulations, which are plagued by a catastrophically
large separation of scales, from the microscopic kinetic scales to the largest scales associated
with the global system. In a typical run, most of the computation time is spent pushing the
particles. As a result, load balancing issues can occur if a small number of CPUs have to take
care of the majority of the particles. This is a major downside of grid-based decompositions.

Proc. 2

Proc. 1 Proc. 3

1 2 N − 1 N... ...

FIGURE 9.7: Diagram illustrating the communication between neighboring 1D domains.
The fields are defined at the edges, with N nodes per domain. As an example, the blue
arrow indicates that the field value at node 1 in Proc. 2 is assigned the value from node

N − 1 in Proc. 1. The darker cells are the “ghost cells”.
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For this parallelization technique to work efficiently, particles have to be distributed quite
uniformly across all domains. This must be taken into account when designing the geometry
of the domain decomposition.

Some PIC codes, such as Smilei, use involved techniques to avoid load balancing issues (Der-
ouillat et al., 2018). Examples are dynamic load balancing, or the use of the OpenMP library to
benefit from the shared memory within one node.



Chapter 10

The GRZeltron upgrade

We have seen in Sec. 9 the basics of PIC simulations. The first PIC code which is both
multidimensional and capable of fully handling general relativity was written by Kyle Par-
frey, Sasha Philippov and Benoît Cerutti. General relativity is encoded in the 3 + 1 formal-
ism, which has allowed them to rely heavily on the architecture of the previously existing
special-relativistic version of Zeltron, one of the few PIC codes designed for non-Cartesian
geometries. GRZeltron was first introduced in Parfrey et al. (2019), although no descrip-
tion of the underlying numerical methods has been published so far. In this section, I present
some of the core ideas and numerical methods used in GRZeltron, which is the code that I
have used throughout my thesis.

The code works in spherical KS coordinates (t, r, θ, ϕ), because these encode the spheri-
cal symmetry of the problem and remain regular at the event horizon, unlike spherical BL
coordinates. All quantities in the code are invariant by rotation around the spin axis of the
black hole. In that sense, although particles move in a 3D space, the fields are defined by 2D
arrays. Such axisymmetric simulations are often called “2.5D”.

10.1 Particle solver

10.1.1 Equations of motion

We need to derive a geodesic equation for charged massive particles which can fit with the
3+1 formulation used in the code. The objective is to take advantage of the methods already
implemented in special relativistic PIC codes, so we seek first-order equations as similar as
possible to Eq. (9.11) and (9.12). With this in mind, a sensible idea is to use a Hamiltonian
formalism and massage Hamilton’s equations into a tractable form: this is done in the Ap-
pendix 10.A. The equations of motion ensuing from this procedure for particles of mass me

and charge q are:

1

c

dxi

dt
=
α

Γ
hijuj − βi (10.1)

1

c

dui
dt

= −Γ∂iα+ uj∂iβ
j − α

2Γ
ujuk∂ih

jk +
q

mec2
α

(
hijD

j + eijk
hjlul

Γ
Bk

)
. (10.2)

These equations have been derived by direct manipulations of the geodesic equation (see
Eq. (10.47)) in the case of massless particles by Hughes et al. (1994). Dodin & Fisch (2010) de-
rived the equations for charged particles in a quite different form. The Hamiltonian formal-
ism was used by Bacchini et al. (2018, 2019) to design a symplectic and energy-conserving
particle pusher. The last term on the right-hand side of Eq. (10.2) is the Lorentz force F
exerted on the particles, written in terms of the fields measured by FIDOs.

The first three terms on the right-hand side of Eq. (10.2) are of gravitational origin, arising
from to the curvature of spacetime. In the weak-field limit, the linearized version of this
equation supports a “gravitomagnetic” interpretation: α behaves as a scalar potential and
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β as a vector potential. In this limit, α is analog to the gravitational potential, whereas β
causes a deflection of particle trajectories, the smoking gun of frame dragging.

Eq. (10.1) highlights the difference between the physical velocity of the particle, mea-
sured by the FIDO, and the velocity as measured on the grid (see Vincent et al. 2012 for a
discussion). By definition, the 3-velocity v in the global coordinate basis has components

vi =
dxi

dt
; (10.3)

it is the rate of change of the coordinates of the particle with respect to the grid. The 3-
velocity V measured by the FIDO is

V i =
dli

dτFIDO
, (10.4)

where li is the displacement vector of the particle with respect to the FIDO, and dτFIDO is
the increment of the FIDO’s proper time between t and t + dt. The situation is represented
in Fig. 10.1. Now, if a 4-vector Xµ is projected onto a hypersurface with the orthogonal
projector hµν (see Eq. (5.1)), its components become Xµ

= hµνXν =
(
0, Xi + βiX0

)
. From

the vantage point of the FIDO, the origin of the coordinate system is shifted by an amount
cβi dt. Consequently, the displacement vector measured by the FIDO between t and t + dt
is dli = dxi + βicdt. Using the relation between the FIDO’s proper time and the universal
time dτFIDO = α dt (Eq. (5.12)), we find

V i =
1

α

(
vi + cβi

)
⇐⇒ vi = αV i − cβi. (10.5)

We notice that this is precisely the first equation of motion (10.1), with V i = hijujc/Γ. In
particular, the Lorentz force can be written more compactly as

F = q (D + V ×B) , (10.6)

completing the reformulation of the equations of motion into a form similar to the ones in

α

x

FIGURE 10.1: Diagram illustrating the construction of the 3-velocity measured by a FIDO
V i, and its relation to the coordinate-basis velocity vi = dxi/ dt. P is the wordline of the

particle, and OE is that of the FIDO. Figure adapted from Vincent et al. (2012).
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flat spacetime. This is the usual expression of the Lorentz force, where the electric field, mag-
netic field and velocity are all measured by the FIDO. Eq. (10.5) also implies that the electric
current density measured by the FIDO J is related to the one measured in the coordinate
basis j by j = αJ − cρβ, as mentioned earlier (see Eq. (5.50)).

10.1.2 Splitting

Unlike the special relativistic case (Eq. (9.12)), the evolution equation of the momentum (10.2)
involves two very different terms : the gravitational force operatorOg and the Lorentz force
operator Oem, which both depend on the momentum itself. Instead of straightforwardly
solving the full system, the philosophy of our code is to retain most of the Zeltron archi-
tecture, in particular the excellent features of the Boris pusher. To do so, we split the sys-
tem into two evolution operators (Hairer et al., 2005). The general evolution of the system
U = [u1, u2, u3] is written as

U (t+ ∆t) = Otot
∆t [U (t)] (10.7)

The crudest idea to solve the joint evolution would be to solve first for Og during ∆t, then
for Oem during ∆t, so that the full evolution would read

U (t+ ∆t) =
(
Oem

∆t ◦ Og
∆t

)
[U (t)] . (10.8)

This is called Lie-Trotter splitting (Trotter, 1959). This is only a first-order scheme, and the
error with respect to the true evolution is O

(
∆t2

)
(Springel, 2016). This poor performance

was readily hinted by the lack of symmetry between Og and Oem in Eq. (10.8), whereas
Eq. (10.7) is symmetric. An improvement of this scheme is the Strang splitting (Strang,
1968), which is a symmetrized version of Eq. (10.8):

U (t+ ∆t) =
(
Oem

∆t/2 ◦ O
g
∆t ◦ Oem

∆t/2

)
[U (t)] . (10.9)

The Strang splitting has an error O
(
∆t3

)
with respect to the true evolution (Springel, 2016).

Example

This splitting is more easily illustrated in the case where the two operators are linear:
let us call A the matrix of the gravitational operator and B the matrix of the electro-
magnetic operator, in the basis [u1, u2, u3]. The exact evolution of the system is

U̇ = AU +BU ⇒ U (t+ ∆t) = Otot
∆tU (t) = exp ((A+B) ∆t)U (t) . (10.10)

The Lie-Trotter splitting consists in approximating U1 (t+ ∆t) by
exp (A∆t) exp (B∆t)U (t), whereas the Strang splitting defines the evolved vec-
tor as U2 (t+ ∆t) ' exp (A∆t/2) exp (∆tB) exp (A∆t/2)U (t). The relative error in
the the evolved vector in the case of the Lie-Trotter splitting is

U2 (t+ ∆t)− U1 (t+ ∆t)

U (t)
= exp (A∆t) exp (B∆t)− exp ((A+B) ∆t) (10.11)

' 1

2
∆t2 (AB −BA) . (10.12)

In the Strang splitting, the second-order term cancels (this can be seen using the
Baker-Campbell-Haussdorf formula expanding exp ((A+B) ∆t)).
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Note also that the Verlet algorithm (Eq. (9.5), (9.6), (9.7)) was already a special case of
Strang splitting, where the vector U was (x, p), with the evolution of x and p being split.

10.1.3 Time evolution

The Boris pusher solves the electromagnetic part Oem. The coordinate push is done simul-
taneously with the momentum push under the action of the gravitational operator Og. Be-
cause the two equations of motion are not separable, the standard leapfrog method cannot
be used: dxi/ dt depends on xi and ui both for example. Instead, we use the implicit mid-
point method, which is also second-order accurate. We have a system of ordinary differen-
tial equations U̇ = f (U) governing the evolution of the vector U = [x1, x2, x3, u1, u2, u3].
The implicit midpoint method reads

Un+1 = Un + ∆tf
(
Un+1/2

)
, (10.13)

where Un+1/2 is estimated as

Un+1/2 =
1

2

(
Un + Un+1

)
. (10.14)

This is an implicit method, becauseUn+1 is not known at the time of the calculation. Eq. (10.13)
is solved iteratively, with the estimation of Un+1[k] being

Un+1[k]
= Un + ∆tf

(
1

2

(
Un + Un+1[k−1]

))
. (10.15)

The method generally converges well after 10 iterations. The derivatives of the coefficients
of the metric at xi are computed numerically by finite differences centered on xi. All in
all, combined with the Strang splitting of the equations of motion, the time evolution of a
particle with coordinates

(
xi
n
, ui

n
)

at the time step n reads as follows.

1. uin
Oem

∆t/2−−−−→ ui1
n+1/2 at position xin, using the Boris push.

2. xin → xi
n+1 and ui1n+1/2

Og
∆t−−→ ui2

n+1/2 using the implicit midpoint method.

3. ui2n+1/2
Oem

∆t/2−−−−→ ui
n+1 at position xin+1, using the Boris push.

10.1.4 Tetrads

The Boris pusher was designed to work with Cartesian coordinates in flat spacetime. How-
ever, all tensor quantities in the code are expressed in the spherical KS coordinate basis.
In order to preserve the Boris pusher, it is necessary to go from the coordinate basis to a
Cartesian basis. To do so, we will use the concept of tetrads (Blau, 2018). From the natural
coordinate basis dxµ of 1-forms, a general change of basis reads

eâ = eâµ dxµ ⇐⇒ dxµ = eµâe
â, (10.16)

where eâµ is invertible, and eµâ is the inverse matrix of eâµ (eâµe
µ

b̂
= δâ

b̂
, eµâe

â
ν = δµν ).

The matrix eâµ is called a tetrad, and eµâ is the inverse tetrad. Importantly, the new base(
eâ
)

is not a coordinate basis in general. If it were, one could write eâµ = ∂yâ/∂xµ for some
coordinate system yâ, which would imply ∂νeâµ = ∂µe

â
ν : this is not true in general. This

operation is a change of basis, not a coordinate transformation. Similarly, the associated
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transformation in the vector basis reads

eâ = e µ
â ∂µ ⇐⇒ ∂µ = e â

µ eâ. (10.17)

From Eq. (10.16), we can write the metric gµν in the new basis:

gâb̂ = gµνe
µ
âe
ν
b̂
. (10.18)

A special choice of basis corresponds to the metric in the new frame being the Minkowski
metric gâb̂ = ηâb̂ = diag (−1, 1, 1, 1). The corresponding basis eâ is called an orthonormal
frame. There again, in general, the new basis cannot be a coordinate basis, otherwise the
metric of the spacetime would be equivalent to the Minkowski metric by coordinate trans-
formation and spacetime would be flat. Also, note that such orthonormal bases are not
unique: they are defined up to a Lorentz transformation, which preserves the Minkowski
metric by definition.

This hints toward a procedure to apply the flat spacetime Boris pusher. The components
of the momentum ui and the fields Bi, Di are defined in the spherical coordinate basis
∂i. They are initially transformed to the orthonormal basis eâ and eâ, with â = x, y or z,
according to

uâ(t) = e i
â ui(t), Bâ = eâiB

i, Dâ = eâiD
i. (10.19)

Then the Boris push is applied using the orthonormal coordinates: uâ(t) → uâ(t + ∆t/2).
At the end of the pusher, the components of the momentum are transformed back to the
coordinate basis with ui (t+ ∆t/2) = eâiuâ(t+∆t/2). The radiation reaction force, if present,
is computed and added to the dynamics of the particle the same way. The orthonormal
tetrads in KS coordinates and the transformation of 3-vectors and 1-forms, which are used
in the code, are given in the Appendix 10.B.

10.1.5 Charge deposition

The charge deposition scheme is similar to the special relativistic version, and we use a
2D linear interpolation scheme. The proportion of a charge which is deposited on a given
node is is determined by the volume defined by the position of the particle in the cell (see
Fig. 10.2) (Cerutti et al., 2015, 2016). If a macroparticle with charge q and weight w is located
between the nodes r ∈ [ri, ri+1] and θ ∈ [θj , θj+1], then the charge deposited on each node is

qi,j =
Vi+1,j+1

V
q w, qi,j+1 =

Vi+1,j

V
q w, (10.20)

qi+1,j =
Vi,j+1

V
q w, qi+1,j+1 =

Vi,j
V

q w. (10.21)

where the volume of the cell V is

V =

ˆ ri+1

ri

ˆ θj+1

θj

√
hdr dθ. (10.22)

The volume Vi,j , for instance, reads

Vi,j =

ˆ r

ri

ˆ θ

θj

√
hdr dθ. (10.23)

The different volumes can be evaluated by numerical integration.
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FIGURE 10.2: Volume weighting procedure in spherical coordinates. Figure taken
from Cerutti et al. (2015).

10.2 Electromagnetic solver

10.2.1 Spatial discretization

The staggering of the different components of the fields is different in spherical coordi-
nates. A spherical Yee grid for special relativistic simulations was designed independently
by Cerutti et al. (2015) and Belyaev (2015a), and by Cerutti et al. (2016) in 3D. It can be
generalized to encompass the 4 fieldsD,B, E andH , as sketched in Fig. 10.3.

Working in the coordinate basis has its perks: the discrete forms of the curl and diver-
gence of a vector field are easier to derive and write down in that basis than in the orthonor-
mal spherical basis (see the intricate expressions in Cerutti et al. (2015)). Since the quantity√
h is often involved in these expressions, it must be stored by the code separately on every

node of the spherical Yee mesh. For illustrative purposes, we provide here the discretized
expression of the different components of (∇×E)i = εijk∂jEk/

√
h, denoting ∆r and ∆θ

the local grid spacing in r and θ:

(∇×E)ri,j+1/2 =
(Eϕ)i,j+1 − (Eϕ)i,j

∆θ
√
hi,j+1/2

, (10.24)

(∇×E)θi+1/2,j = −
(Eϕ)i+1,j − (Eϕ)i,j

∆r
√
hi+1/2,j

, (10.25)

(∇×E)ϕi+1/2,j+1/2 =
(Eθ)i+1,j+1/2 − (Eθ)i,j+1/2

∆r
√
hi+1/2,j+1/2

−
(Er)i+1/2,j+1 − (Eθ)i+1/2,j

∆θ
√
hi+1/2,j+1/2

. (10.26)

Note that we reserve the possibility of using grids unevenly spaced in r and θ. It can be
appropriate to use a radial grid equally spaced in log (r) to increase the size of the simulation
domain at a reduced computational cost, or an orthoradial grid equally spaced in cos θ to
increase the resolution in the equatorial plane. In that case, the spacing ∆r and ∆θ does not
remain constant. In the above equations and in the following, it is implicit that ∆r and ∆θ
are centered on the computed node. For instance, we use ∆θj+1/2 = θj+1 − θj in Eq. (10.24)
but ∆θj = θj+1/2 − θj−1/2 in Eq. (10.26). Besides, in KS coordinates, the determinant h of
the spatial metric reads

√
h = Σ sin θ/α. This can lead to divergences close to the axis, as
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(i, j)

(i, j + 1/2)

(i + 1/2, j)

(i + 1/2, j + 1/2)

Dϕ, Eϕ, J
ϕ, ρ

Dθ, Eθ, J
θ

Dr, Er, J
r

Bϕ, Hϕ,∇ ·B

Bθ, Hθ

Br, Hr

FIGURE 10.3: Yee grid in spherical coordinates. The red arrows denote the components of
the electric fields, the blue ones denote the magnetic fields. The positions on the mesh are

labelled by the indices i in the radial direction and j in the orthoradial direction.

sin θ → 0. For this reason, the denominator in Eq. (10.24) for instance is rewritten in the code
as
√
h∆θ =

√
h′|∆ cos θ|, with h′ = h/ sin2 θ.

This staggering on the spherical Yee grid automatically enforces the conservation of mag-
netic flux ∇ ·B = 0, just like in the Cartesian case.

10.2.2 Time evolution

The code evolves Maxwell’s equations (5.37b) and (5.37d) for the fields B and D, supple-
mented with the constitutive relations (5.41a) and (5.41b) which prescribe E and H . These
relations come with their own challenges, since the 4 fields must be evolved while keeping
a time-centered leapfrog architecture. The algorithm designed by Parfrey et al. (2019) goes
as follows. Let us assume thatB is known at the time steps n− 1 and n, andD is known at
the time steps n− 1/2 and n+ 1/2. Our goal is first to deriveBn+1.

1. Compute the meansBn−1/2 ' (Bn−1 +Bn)/2 andDn ' (Dn−1/2 +Dn+1/2)/2.

2. En = αDn + β ×Bn.

3. Bn−1/2 → Bn+1/2 with (∇×E)n.

4. En+1/2 = αDn+1/2 + β ×Bn+1/2.

5. Bn → Bn+1 with (∇×E)n+1/2.

Now the second step consists in pushing the particles, in order to get the electric current
density needed to evolveD.

6. Compute the arithmetical meanBn+1/2.

7. xin → xi
n+1 and ui

n → ui
n+1, using Bn+1/2 and Dn+1/2 in the two runs of the Boris

push.
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8. Compute the updated source terms ρ
(
xi
n+1

, ui
n+1
)

, J
(
xi
n+1

, ui
n+1
)

.

Now theD field can be computed, through steps very similar to the five first steps forB.

9. Compute the arithmetical mean Jn+1/2.

10. Hn+1/2 = αBn+1/2 − β ×Dn+1/2.

11. Dn →Dn+1 with (∇×H)n+1/2 and Jn+1/2.

12. Hn+1 = αBn+1 − β ×Dn+1.

13. Dn+1/2 →Dn+3/2 with (∇×H)n+1 and Jn+1.

Preserving the leapfrog sheme has come at a cost: twice as many leapfrog pushes are
needed in order to evolve the fields, compared to the special relativistic version. Indeed, in
this case, the fields must be computed for all integer and half-integer time steps. In addition,
several computations of the auxiliary fields must be performed. This algorithm is more
expensive computationally. It reduces to the standard leapfrog scheme in the limit α = 1,
β = 0, with a time step ∆t/2 instead of ∆t. Besides, the fields B and D must be stored for
two successive time steps, occupying more memory space.

Several other hidden steps are involved. To illustrate this, let us look at the evolution
equation for Br, which reads

(Br)n+1
i,j+1/2 − (Br)ni,j+1/2

c∆t
=

(Eϕ)ni,j+1 − (Eϕ)ni,j

|∆ cos θ|
√
h′i,j+1/2

. (10.27)

In this push, the value of Eϕ can be obtained by computing

Eϕ = αDϕ +
√
hβrBθ. (10.28)

The first subtlety lies in the fact that B and E are not located at the same nodes on the Yee
grid. To preserve second-order accuracy, the magnetic field is defined by a centered spatial
average. In the previous example, Bθ (defined at (i+ 1/2, j)) is computed at (i, j) using

Bθ
i,j =

√
hi+1/2,jB

θ
i+1/2,j −

√
hi−1/2,jB

θ
i−1/2,j√

hi+1/2,j +
√
hi−1/2,j

. (10.29)

The weights
√
h are necessary in order to keep second-order accuracy.

Besides, the covariant components ofE are needed to evolveB, yet only the contravari-
ant components of D are stored and evolved. In the previous example, the covariant com-
ponent Dϕ must first be computed from Di with Di = hijD

j :

Dϕ = hϕϕD
ϕ + hrϕD

r. (10.30)

Recall that in the KS coordinates, hij is not diagonal and β is purely radial. The same issue
can be raised in Eq. (10.30): Dr is defined on the node (i+ 1/2, j) instead of (i, j), so it must
also be averaged before the computation of Dϕi,j .

10.2.3 Divergence cleaning

Like in the special-relativistic version, Maxwell-Gauss equation ∇ ·D = 4πρ is not enforced
by the field pusher, so divergence cleaning must be periodically performed. Poisson’s equa-
tion ∆φ = ∇ ·D− 4πρ must be solved. Using the general definition of the gradient and the
divergence, the Laplacian of φ (defined at the nodes (i, j)) reads
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∆φ =
1√
h
∂k

(√
hhkl∂lφ

)
. (10.31)

The source term on the right of Poisson’s equation is discretized as

Si,j =

(
Dr
√
h
)
i+1/2,j

−
(
Dr
√
h
)
i−1/2,j

∆r
√
hi,j

+

(
Dθ
√
h
)
i,j+1/2

−
(
Dθ
√
h
)
i,j−1/2

∆θ
√
hi,j

−4πρi,j . (10.32)

Noting (∇φ)i = ∂iφ the covariant components of the gradient of φ, we can discretize the
Laplacian as

(∆φ)i,j =
1√
hi,j

(√
h (∇φ)r

)
i+1/2,j

−
(√

h (∇φ)r
)
i−1/2,j

∆r
(10.33)

+
1√
hi,j

(√
h (∇φ)θ

)
i,j+1/2

−
(√

h (∇φ)r
)
i,j−1/2

∆θ
. (10.34)

Discretizing the gradient, with (∇φ)ri+1/2,j = hrri+1/2,j (φi+1,j − φi,j) /∆r for instance, leads
to

(∆φ)i,j =
1√
hi,j

(C1 (φi+1,j − φi,j) + C2 (φi−1,j − φi,j) + C3 (φi,j+1 − φi,j) + C4 (φi,j−1 − φi,j)) ,
(10.35)

where the weight coefficients area

C1 =

√
hi+1/2,jh

rr
i+1/2,j

∆r2 , C2 =

√
hi−1/2,jh

rr
i−1/2,j

∆r2 , (10.36)

C3 =

√
hi,j+1/2h

θθ
i,j+1/2

∆θ2 , C4 =

√
hi,j−1/2h

θθ
i,j−1/2

∆θ2 . (10.37)

Eventually, we can express implicitly φi,j as

φi,j =

√
hi,jSi,j

C1 + C2 + C3 + C4
+
C1φi+1,j + C2φi−1,j + C3φi,j+1 + C4φi,j−1

C1 + C2 + C3 + C4
. (10.38)

Although the discretization is slightly different, the iterative Jacobi method can again be
used to find φi,j , so the corrected electric field becomesD = D0 −∇φ.

10.2.4 CFL condition

In order to derive the CFL condition in this geometry, the same method than in the Carte-
sian geometry can be applied. Let us consider a single Fourier component of the fields of
frequency ω and wave vector k, which reads

Xn
l,m = X0 exp (i (ωn∆t+ lkr∆r +mkθ∆θ)). (10.39)
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The covariant components of the wave vector are involved in the scalar product k ·x = kix
i.

Our goal is to derive the dispersion relation for a light wave in vacuum. Inserting Eq. (10.39)
into Eq. (5.37d), we find the discretized equation

ΩB = −K ×E, (10.40)

where

Ω =
sinω∆t/2

c∆t/2
, Ki =

sin ki∆x
i/2

∆xi/2
= ki

sin ki∆x
i/2

ki∆xi/2
. (10.41)

The “discretized” Ki components transform as a 1-form. In this equation, the phase factors
have been absorbed in the complex amplitude of the fields. Similarly, Maxwell-Ampère’s
equation is transformed into ΩD = K ×H .

From the previous discretized equations forB andD, it follows thatK ·B = K ·D = 0.
Now, combining Eq. (10.40) with the constitutive relation defining E (see Eq. (5.41a)) we
obtain ΩB = −αK×D−K×(β ×B). Expanding the double cross product withK ·B = 0
leads to

(Ω−K · β)B = −αK ×D. (10.42)

Similarly, the other equation ΩD = K ×H can be combined with the constitutive relation
(5.41b) into (Ω−K · β)D = αK ×B. All in all, we get

(Ω−K · β)2B = −α2K × (K ×B) = α2
(
KiK

i
)
B. (10.43)

Hence, the dispersion relation can be put into the following form:

(
sinω∆t/2

cα∆t/2
− βi

α

sin ki∆x
i/2

∆xi/2

)2

= hrr
(

sin kr∆r/2

∆r/2

)2

+ hθθ
(

sin kθ∆θ/2

∆θ/2

)2

. (10.44)

The CFL condition finally reads, with β = βr∂r in KS coordinates:

1

cα∆t
<

βr

α∆r
+

√
hrr

∆r2
+
hθθ

∆θ2
. (10.45)

In flat spacetime and with β = 0, this reduces to the more standard CFL condition in spher-
ical coordinates (Cerutti et al., 2015).

10.A Appendix: Derivation of the 3 + 1 equations of motion

10.A.1 Neutral particle

The Lagrangian of a particle (massive or massless) in general relativity reads (Blau, 2018)

L =
1

2
gµν

dxµ

dλ

dxν

dλ
, (10.46)

where λ parametrizes the wordline. For a massive particle, λ can be taken to be the proper
time along the wordline. The Euler-Lagrange equations with this choice of Lagrangian in-
deed yield the famous geodesic equation

d2xµ

dλ2 + Γµαβ
dxα

dλ

dxβ

dλ
=

dxν

dλ
∇ν

dxµ

dλ
= 0. (10.47)
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Because by definition, the tangent vector ẋµ = dxµ/dλ is parallel-transported along a geodesic,
the Lagrangian (10.46) possesses the pleasant property of being conserved along a geodesic.
This preserves the nature (timelike, spacelike or null) of the wordline. As a consequence,
one can choose a suitable parametrization so as to impose

gµν ẋ
µẋν = cst (10.48)

at all times, the constant being zero for a massless particle. The associated action is

S [xµ (λ)] =

ˆ
1

2
gµν ẋ

µẋν dλ. (10.49)

The canonical momentum conjugated to xµ are pµ = ∂L/ẋµ = gµν ẋ
ν , and the Hamiltonian

is defined by the Legendre transformation

H (xµ, pν) = pµ
dxµ

dτ
− L =

1

2
gµνpµpν . (10.50)

The Hamiltonian is conserved and actually does not depend on λ. It must be viewed as a
function of the phase space coordinates of the spacetime (xµ, pν).

These Lagrangian, action and Hamiltonian are manifestly covariant. However, they are
quite inconvenient in the sense that every particle has its own affine parameter λ. We would
like to have a single time t = x0/c, our global universal coordinate time in the 3 + 1 for-
malism, to parametrize all geodesics. We need to define a Hamiltonian which is a function
of
(
xi, pj

)
, the coordinates of the phase space restricted to a hypersurface of the foliation.

Actually, the action (10.49) can be rewritten as a functional of the phase space trajectory in
the hypersurface:

S
[
xj(t), pi(t)

]
=

1

2

ˆ
pµ dxµ =

1

2

ˆ (
cp0 + pi

dxi

dt

)
dt. (10.51)

The new Lagrangian is L = cp0 + dxi/ dt. Another Legendre transformation yields the
Hamiltonian of the particle: H

(
xi, pi

)
= −cp0. This quantity is actually the conserved en-

ergy, arising from time translational invariance (see Eq. (4.21)).
Let us now express this Hamiltonian as a function of xi and pi. According to Eq. (10.48),

the affine parameter is defined so that the following relation holds along the geodesic:

gµνpµpν = −m2c2ε, (10.52)

where ε = 1 if the particle has mass m, and ε = 0 if the particle is massless. Expanding this
equation, we find in the 3 + 1 formalism:

p0
2 − 2

(
βipi

)
p0 +

(
βipi

)2 − α2hjkpjpk − α2m2c2ε = 0. (10.53)

This is a quadratic equation in p0, which allows us to write p0 as a function of pi. In the
case of a massive particle (ε = 1), the reduced discriminant is α2m2c2Γ2, where we have
defined the normalized momentum ui = pi/mc and the Lorentz factor of the particle Γ =√

1 + hjkujuk. The sign of the solution is determined by the flat-spacetime limit (βi → 0,
α→ 1). All in all, the 3 + 1 Hamiltonian of a massive particle reads

H
(
xj , pi

)
= −cp0 = αmc2

√
1 + hjk

pjpk
m2c2

− cβipi = mc2
(
αΓ− βiui

)
. (10.54)



10.A. Appendix: Derivation of the 3 + 1 equations of motion 145

Now we can write down Hamilton’s equations for the evolution of the particle coordi-
nates xi and normalized momentum ui:

1

c

dxi

dt
=

1

c

∂H
∂pi

=
α

Γ
hijuj − βi, (10.55)

1

c

dui
dt

= − 1

mc2

∂H
∂xi

= −Γ∂iα+ uj∂iβ
j − α

2Γ
ujuk∂ih

jk. (10.56)

This procedure is valid only if extremizing the action in Eq. (10.49) with respect to all possible
wordlines xµ (λ), for an affine parameter λ, is equivalent to extremizing the action in Eq. (10.51)
with respect to all trajectories in phase space

(
xi(t), pi(t)

)
. The proof is rather involved, and can

be found in Bertschinger (1999).

10.A.2 Charged particle

We include the effect of an electromagnetic field with 4-potential Aµ by the means of a min-
imal coupling procedure. Minimal coupling prescribes the following conjugate momentum
for a particle of charge q:

Πµ = pµ +
q

c
Aµ = mc

(
uµ +

q

mc2
Aµ

)
. (10.57)

The normalized conjugate momentum is defined as πµ = Πµ/mc. By minimal coupling, the
Hamiltonian of the charged particle is

H
(
xi,Πj

)
= −cΠ0 = −cp0 − qA0, (10.58)

where −cp0 is the Hamiltonian that we have already derived (Eq. (10.54)). In terms of Πi =
mcπi, the 3 + 1 Hamiltonian reads

H(xi,Πj) = mc2

(
α

√
1 + hij

(
πi −

q

mc2
Ai

)(
πj −

q

mc2
Aj

)
− βi

(
πi −

q

mc2
Ai

)
− q

mc2
A0

)
.

(10.59)
This Hamiltonian reduces to (10.54) for Aµ = 0. The equations of motion are again derived
from Hamilton’s equations, reinserting ui = πi − (q/mc2)Ai after derivating:

1

c

dxi

dt
=
α

Γ
hijuj − βi, (10.60)

1

c

dπi
dt

= −Γ∂iα+ uj∂iβ
j − α

2Γ
ujuk∂ih

jk +
q

mc2

(
∂iA0 +

α

Γ
hjkuj∂iAk − βk∂iAk

)
. (10.61)

The first equation is the same as before. The time derivatives of ui and πi are related by

dui
dt

=
dπi
dt
− q

mc2
∂tAi −

q

mc2

dxj

dt
∂jAi =

dπi
dt
− q

mc2
∂tAi −

q

mc2

α

Γ
hjkuk∂jAi +

q

mc2
βk∂kAi.

(10.62)
The time derivative of ui therefore reads
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1

c

dui
dt

= −Γ∂iα+ uj∂iβ
j − α

2Γ
ujuk∂ih

jk

+
q

mc2

(
∂iA0 − ∂0Ai +

α

Γ
hjkuj (∂iAk − ∂kAi)− βk (∂iAk − ∂kAi)

)
. (10.63)

We recognize the components of the Maxwell tensor Fµν = ∂µAν − ∂νAµ. Besides, the
last term can be removed by rewriting the term hjkuk. The contravariant time component
of uµ reads u0 = −u0/α

2 + βiui/α
2 = Γ/α, according to Eq. (10.54). Besides, the spatial

contravariant components are ui = gijuj = hijuj − βiβjuj/α
2 + βiu0/α

2. Inserting the
expression of u0 yields ui = hijuj − βiΓ/α (recall that uµ is not a 3-vector on a hypersurface
of the foliation). All in all, we have

1

c

dui
dt

= −Γ∂iα+ uj∂iβ
j − α

2Γ
ujuk∂ih

jk +
1

mc2
Fi, Fi = q

α

Γ
Fiµu

µ, (10.64)

where F is the Lorentz force exerted by the fields on the particle. This expression of F is
very reminiscent of the special-relativistic Lorentz force. All that remains is to rearrange it
in terms of the electromagnetic fields D and B. Using Bi = eijkFjk/2 ⇒ Fij = eijkB

k and
u0 = Γ/α, we have

Fiµu
µ = Fi0u

0 + Fiju
j (10.65)

= Eiu
0 + eijku

jBk (10.66)

=
(
αDi + eijkβ

jBk
)
u0 + eijk

(
hjlul − u0βj

)
Bk (10.67)

= ΓDi + eijkh
jlulB

k. (10.68)

This finally yields the expression of the Lorentz force as a function of the fields measured by
the FIDO:

Fi = qα

(
hijD

j + eijk
hjlul

Γ
Bk

)
. (10.69)

10.A.3 Massless particle

The derivation is completely similar for the gedoesic of a photon (massless particle), remov-
ing the Lorentz force and enforcing

gµνpµpν = 0. (10.70)

In this case, the 3 + 1 Hamiltonian reads

H
(
xj , pi

)
= −cp0 = cα

√
hjkpjpk − cβipi. (10.71)

We define E = c
√
hjkpjpk as the FIDO-measured energy of the photon. The equations of

motion of the photon are

1

c

dxi

dt
= c

α

E h
ijpj − βi, (10.72)

1

c

dpi
dt

= −1

c
E∂iα+ pj∂iβ

j − cα

2E pjpk∂ih
jk. (10.73)
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10.B Appendix: Orthonormal tetrads in KS coordinates

The easiest way to derive the expression of the orthonormal tetrads is to rewrite the metric
gµν in a way that resembles the Minkowski metric, then to perform the appropriate transfor-
mation of 1-forms. Namely, according to Eq. (5.17), the line element in KS coordinates can
be rewritten as

ds2 = −α2c2 dt2 + hij
(
dxi + βicdt

) (
dxj + βjcdt

)
(10.74)

= −α2c2 dt2 + hrr (dr + βrcdt)2 + hθθ dθ2 + hϕϕ dϕ2 + 2hrϕ (dr + βrcdt) dϕ (10.75)

= −α2c2 dt2 + hrr (dr + βrcdt)2 + hθθ dθ2

+ hϕϕ

(
dϕ+

hrϕ
hϕϕ

(dr + βrcdt)

)2

− hrϕ
2

hϕϕ
(dr + βrcdt)2 (10.76)

= −α2c2 dt2 + hθθ dθ2 +
1

A2
(dr + βrc dt)2 + hϕϕ

(
dϕ+

hrϕ
hϕϕ

(dr + βrcdt)

)2

. (10.77)

We have introduced the convenient notation A =
√
hϕϕ/

(
hrrhϕϕ − hrϕ2

)
=
√
hrr. The last

equality comes from h = hθθ
(
hrrhϕϕ − hrϕ2

)
and Cramer’s rule hrr = hθθhϕϕ/h. Conse-

quently, by defining et̂ = α dt, ex̂ = (dr + βrc dt) /A, eŷ =
√
hθθ dθ and eẑ =

√
hϕϕ dϕ +(

hrϕ/
√
hϕϕ

)
(dr + βrcdt), one indeed finds the Minkowski metric

ds2 = −c2et̂
2

+ ex̂
2

+ eŷ
2

+ eẑ
2
. (10.78)

As a result, an orthonormal basis is given in KS coordinates by:

et̂ =
1

α
(∂t − cβr∂r) , ∂t = αet̂ +

cβr

A ex̂ + cβr
hrϕ√
hϕϕ

eẑ, (10.79)

ex̂ = A
(
∂r −

hrϕ
hϕϕ

∂ϕ

)
, ∂r =

1

Aex̂ +
hrϕ√
hϕϕ

eẑ, (10.80)

eŷ =
1√
hθθ

∂θ, ∂θ =
√
hθθeŷ, (10.81)

eẑ =
1√
hϕϕ

∂ϕ, ∂ϕ =
√
hϕϕeẑ. (10.82)

This yields the following tetrad and inverse tetrad:

(
eµâ
)

=




et
t̂

etx̂ etŷ etẑ
er
t̂

erx̂ erŷ erẑ
eθ
t̂

eθx̂ eθŷ eθẑ
eϕ
t̂
eϕx̂ eϕŷ eϕẑ


 =




1/α 0 0 0
−βr/α A 0 0

0 0 1/
√
hθθ 0

0 −Ahrϕ/hϕϕ 0 1/
√
hϕϕ


 ; (10.83)

(
e â
µ

)
=




e t̂t e x̂t e ŷt e ẑt
e t̂
r e x̂

r e ŷ
r e ẑ

r

e t̂
θ e x̂

θ e ŷ
θ e ẑ

θ

e t̂
ϕ e x̂

ϕ e ŷ
ϕ e ẑ

ϕ


 =




α βr/A 0 βrhrϕ/
√
hϕϕ

0 1/A 0 hrϕ/
√
hϕϕ

0 0
√
hθθ 0

0 0 0
√
hϕϕ


 . (10.84)

These tetrads can be found in Komissarov (2004a) and Takahashi (2007). We simply work
in the 3-basis (ex̂, eŷ, eẑ), since we only transform 3-vectors. In practice, transforming ui and
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Bi into an orthonormal frame can be done as

Bx̂ = ex̂rB
r =

1

AB
r, ux̂ = e r

x̂ ur + e ϕ
x̂ uϕ = Aur −A

hrϕ
hϕϕ

uϕ, (10.85)

Bŷ = eŷrB
θ =

√
hθθB

θ, uŷ = e θ
ŷ uθ =

1√
hθθ

uθ, (10.86)

Bẑ = eẑrB
r + eẑϕB

ϕ =
hrϕB

r

√
hϕϕ

+
√
hϕϕB

ϕ, uẑ = e ϕ
ẑ uϕ =

1√
hϕϕ

uϕ. (10.87)



Chapter 11

Radiative transfer module

In the first part of my thesis, I have included two of the radiative processes described in Sec. 8
into GRZeltron: inverse Compton scattering and photon-photon pair production. In this
section, I present these radiative transfer modules, which are in some sense a generalization
of the algorithm presented in Levinson & Cerutti (2018), although the specifics differ. This
section is partly adapted from the supplemental material in Crinquand et al. (2020).

11.1 Principles

We assume that the magnetosphere is embedded in a soft radiation field, which is emitted by
the accretion flow. High-energy particles can upscatter soft photons to very high energies,
promoting them to the gamma-ray band. Besides, gamma-ray photons can annihilate with
these soft photons and produce pairs. In this case, pair production occurs in a regime where
the two photons have very different energies ε1 � ε0, so that the simulation is in the domain
of validity of the results outlined in Sec. 8.2. Gamma-ray photons are included in the code as
a neutral third species which follows null geodesics (see the Appendix 10.A.3). We assume
that the plasma is optically thin, so that the only source of opacity for the photons is photon-
photon annihilation.

Instead of simulating the individual photons composing the soft radiation field, we con-
sider that electrons, positrons and high-energy photons are propagating in a continuous,
opaque medium. Besides, we take advantage of the fact that FIDOs are locally inertial ob-
servers, so that the laws of special relativity can be applied, provided we only use FIDO-
measured physical quantities. For simplicity, we assume that the radiation field is time-
independent, uniform, isotropic and monoenergetic, with energy ε0 and density n0 in the
frame of the FIDO. This is an approximation, as we ignore the redshift of photons as mea-
sured by the FIDO. Nevertheless, ignoring this physical ingredient preserves the simplicity
and efficiency of the algorithm.

We do not include any feedback of the simulation on this radiation field. The upscat-
tered photons and created leptons are assumed to propagate along the same direction as
their high-energy parents, reflecting strong relativistic beaming. The fiducial optical depth
of both processes is τ0 = n0σTrg. We also neglect pairs that would be produced by the an-
nihilation of the soft background radiation field on itself, i.e. due to MeV emission from
the radiatively-inefficient flow. The density of pairs created through this process is usually
expected to be much smaller than the Goldreich-Julian density, and therefore too low to
screen the gap, for the very low accretion rate found for M87* (Levinson & Rieger, 2011;
Mościbrodzka et al., 2011).

Let us consider a particle (lepton or photon) which propagates into this opaque medium.
We have defined in Sec. 8 the optical depth τ traversed by the particle, such that the prob-
ability that the particle interacts with the medium is 1 − exp (−τ). At every time step, we
compute the infinitesimal optical depth

δτ = κδl, (11.1)
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where κ is the opacity for inverse Compton scattering (Eq. (8.22)) if the particle is a lepton,
or the opacity of photon-photon annihilation (Eq. (8.36)) if the particle is a photon. δl =√
hij dxi dxj is the proper length traveled by the particle whose spatial coordinates have

changed by an amount dxi. Then, a number p is randomly drawn with uniform probability
between 0 and 1. A scattering event occurs if the condition p < 1−exp (−δτ) is satisfied. For
a lepton, a new high-energy photon is created along the same direction of motion, and the
algorithm described in Sec. 11.2 is applied to determine its energy. For a photon, a new e±

pair is created along the same direction of motion, and the algorithm described in Sec. 11.3
is applied to determine its energy.

At the beginning of the simulation, the opacities κIC (γ0) and κγγ (ε1) are computed and
stored. They are used to compute, for each particle and at every time step, the optical depth
traversed by the particle as a function of the Lorentz factor (for a lepton) or the energy (for
a photon).

11.2 Inverse Compton scattering

11.2.1 Kinematics

We consider, in the FIDO frame, an ultra-relativistic lepton of energy γ0mec
2 (γ0 � 1) in-

teracting with a soft photon of energy ε0. The photon makes angles (θ0, ϕ0) with the lep-
ton velocity. We employ the same notations as in Sec. 8.1. In particular, quantities de-
fined in the lepton rest frame will be primed. After the scattering, the photon energy is
ε1. The energy of the photon in the lepton rest frame is given by the Lorentz transformation
ε′0 = ε0γ0(1 − β0µ0), where µ0 = cos θ0 and β0 = (1 − γ−2

0 )1/2. The energy of the scattered
photon in the lepton rest frame is

ε′1 =
ε′0

1 +
ε′0
mec2

(1− cos Θ′)

, (11.2)

where cos Θ′ = µ′0µ
′
1 +

√
1− µ′20

√
1− µ′21 cos (ϕ′1 − ϕ′0), Θ′ being the angle between the in-

coming and the scattered photon directions in the lepton rest frame. We have µ′0 ≈ −1
by virtue of relativistic beaming, so we can approximate cos Θ′ ≈ −µ′1. The energy of the
scattered photon in the lepton rest frame ε′1 is determined using the full inverse Compton
differential cross section from QED (see Sec. 11.2.3). Given ε′1, the scattering angle in this
frame is deduced using Eq. (11.2):

µ′1 =
mec

2

ε′1
− mec

2

ε′0
− 1. (11.3)

Finally, another Lorentz transformation gives the energy of the scattered photon back in the
FIDO frame:

ε1 = γ0(1 + β0µ
′
1)ε′1. (11.4)

Thus, once the angle of the incoming photon θ0 is randomly drawn, we only need to draw
the energy of the scattered photon in the lepton rest frame ε′1. Let us summarize the Monte-
Carlo scheme for IC scattering.

1. Compute the FIDO-measured Lorentz factor γ0 =
√

1 + hjkujuk.

2. Compute δτ and determine whether the lepton scatters a soft photon or not.

3. Draw uniformly the random variable µ0 ∈ [−1, 1] (because the radiation field is as-
sumed to be isotropic).
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4. Compute ε′0 = ε0γ0(1− β0µ0).

5. Draw the scattered photon energy ε′1 (see Sec. 11.2.3).

6. Compute µ′1 using Eq. (11.3).

7. Deduce the energy of the scattered photon in the FIDO frame using Eq. (11.4).

8. Update the energy of the incident lepton to γ0mec
2 + ε0 − ε1, by the conservation of

energy.

In the code, we create a high-energy photon at the location of the scattering lepton, with
energy ε1. Assuming strong relativistic beaming again, the direction of the scattered photon
in the FIDO frame is the same as that of the scattering lepton.

11.2.2 Drawing a random variable from a probability distribution function

The essence of a Monte-Carlo method is to sample quantities from their normalized proba-
bility distribution functions (PDF). Let us sample a quantity X ∈ [a, b], with PDF P defined
on [a, b], and define the cumulative distribution function (CDF) as

P (x) =

ˆ x

a
P (X) dX. (11.5)

P is monotonic, strictly increasing, and ranges from 0 to 1 for x ∈ [a, b]. P (x) represents the
probability that the random variable X should lie in [a, x].

Let us state an important result in the context of Monte-Carlo algorithms. If ξ is a random
variable uniformly distributed in [0, 1], then there exists x ∈ [a, b] such that ξ = P (x). The
fundamental principle states that x is distributed from the PDF P (Kalos & Whitlock, 2008).

Proof

Let ξ be a uniformly distributed variable on [0, 1]. Because ξ is uniform, for any real
y ∈ [0, 1], the probability that ξ < y is y, which we write P [ξ < y] = y. Applying this
equality with y = P(x), and using the fact that P and its inverse P−1 are monotonic
and increasing, we find that P(x) = P [ξ < P(x)] = P

[
P−1 (ξ) < x

]
. By definition,

this means that P is the CDF of the random variable P−1 (ξ). As a result, x = P−1 (ξ)
is distributed from the PDF P .

This method is used to draw the initial angular particle distribution, or the energies of
the particles if the particle population is chosen to be thermal. Sampling from a given PDF
requires to invert the equation ξ = P(x). This can be done by interpolation, if a table of P
has already been computed.

11.2.3 Drawing the energy

So far we have only written down the “kinematic” steps of the inverse Compton algorithm,
overlooking the probabilistic part of the interaction. Probabilities come into play when de-
termining the energy of the scattered photon ε′1. By definition of the differential cross sec-
tion, the number of scattered photons with an energy ∈ [ε′1, ε

′
1 + dε′1] and within a solid angle

∈ [Ω′1,Ω
′
1 + dΩ′1] in the lepton rest frame is

dN ′

dt′ dε′1 dΩ′1
= cn0

dσIC

dε′1 dΩ′1
. (11.6)



152 Chapter 11. Radiative transfer module

The probability that a scattered photon has its energy ∈ [ε′1, ε
′
1 + dε′1] is

P
(
ε′1
)

=

´
dΩ′1 dσIC/dε′1 dΩ′1´

dε′1 dΩ′1 dσIC/ dε′1 dΩ′1
=

´
dΩ′1 dσIC/ dε′1 dΩ′1

σIC
. (11.7)

We need to sample the energy ε′1 from this PDF, at fixed ε′0. To do this, we apply the method
described in the previous section, and compute the CDF. Let us define the parameter y =
ε′1/ε

′
0. Integrating the differential cross section over the angles will remove the Dirac function

δ


ε
′
1 −

ε′0

1 +
ε′0
mec2

(1− cos Θ′)


 =

mec
2

ε′1
2 δ

(
cos Θ′ − 1− mec

2

ε′0
+
mec

2

ε′1

)
. (11.8)

The differential cross section (Eq. (8.9)) is rearranged as

dσ

dΩ′1 dε′1
=

3σT

16π

mec
2

ε′0
2

(
y +

1

y
− 1 + cos2 Θ′

)
δ

(
cos Θ′ − 1− mec

2

ε′0

(
1 +

1

y

))
, (11.9)

so that the PDF P reads (up to a proportionality factor), after integration:

P (y) ∝ y +
1

y
+

1

ε̃20

(
1− 2

y
+

1

y2

)
+

2

ε̃0

(
1− 1

y

)
. (11.10)

For conciseness, we have defined ε̃0 = ε′0/mec
2 (which was noted as x in Sec. 8.1). Discarding

the proportionality factor, a primitive of f is

F (y) = − 1

yε̃20
+ y

(
1

ε̃20
+

2

ε̃0

)
+
y2

2
+ ln (y)

(
1− 2

ε̃0
− 2

ε̃20

)
. (11.11)

Before computing PIC, we also need to determine the support of the PDF. The range of
permitted y is determined by −1 ≤ cos Θ′ ≤ 1, which yields

1

1 + 2ε̃0
≤ y ≤ 1. (11.12)

The CDF PIC can be expressed as

PIC(y) =
F (y)− F (1/ (1 + 2ε̃0))

F (1)− F (1/ (1 + 2ε̃0))
. (11.13)

It is shown in Fig. 11.1 for several values of ε′0.
We need to invert Eq. (11.13) in order to express y as a function ofPIC. Unfortunately, this

is impossible to do analytically. Because computing the energy is a very frequent operation
in the code (it must be performed for a significant fraction of leptons at almost every time
step), this step need to be done as efficiently as possible. For that reason, rather than to invert
the equation numerically, we decide to approximate the CDF, so we can invert it analytically.
In the limit ε′1 � ε′0, the primitive F reduces to F (y) ' ln (y). In this limit, the CDF reads

PIC(y) ' ln (y) + ln (1 + 2ε̃0)

ln (1 + 2ε̃0)
. (11.14)

The approximated CDF is also shown in Fig. 11.1 (see the black lines). We see that this
approximation improves as ε̃0 decreases, but it remains acceptable even for large ε̃0 and y.
Eq. (11.14) has the benefit of being easily invertible. In order to sample the scattered particle
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FIGURE 11.1: Analytical CDF for inverse Compton scattering, given by Eq. (11.13), for dif-
ferent values of ε′0. The approximated CDF from Eq. (11.14) are also shown (black lines).

energy, we draw a random variable ξ uniformly distributed in [0, 1], and obtain the scattered
photon energy from

ε′1 = ε′0 exp

(
(ξ − 1) ln

(
1 +

2ε′0
mec2

))
. (11.15)

I have run sanity checks for the implementation of the algorithm in the code, by starting
with a monoenergetic population of electrons and positrons with a FIDO-measured Lorentz
factor γ0, immersed into the soft radiation field. I compute the normalized spectrum of the
high-energy photons after one time step, and plot it against the analytical solution given by
Eq. (8.17), for different parameters Γε. The result is shown in Fig. 11.2. The agreement is
good in the Thomson regime and in the Klein-Nishina regime, so we are confident that all
qualitative features of inverse Compton scattering are captured by the algorithm. The small
discrepancies between the exact solution and our model are completely washed out when
considering broader distributions of leptons in energy.
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FIGURE 11.2: Simulated high-energy photon spectrum (black dots) for monoenergetic elec-
trons and positrons propagating in a monoenergetic soft radiation field, for Γε = 0.1 (a),
Γε = 4 (b) and Γε = 20 (c). The analytical prediction for the spectrum (Eq. (8.17)) is also

shown as a blue solid line.
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11.3 Pair production

11.3.1 Kinematics

We consider a high-energy photon of energy ε1 � ε0 in the FIDO frame, colliding with a soft
photon with an angle θ0. We use the same notations as in Sec. 8.2; quantities defined in the
center-of-mass (CM) frame of the pair will be primed. The Monte-Carlo algorithm for pair
production goes as follows.

1. Compute the FIDO-measured energy of a gamma photon ε1 =
√
hjkpjpk.

2. Draw uniformly the random variable µ0 = cos θ ∈ [−1, 1] (because the radiation field
is assumed to be isotropic).

3. Compute the Lorentz invariant s = ε0ε1(1 − µ0)/2. If s ≤ (mec
2)2, the photons are

below the pair creation threshold: no pair is created and nothing happens.

4. Compute δτ and determine whether the photon interacts with a soft photon or not.

5. If an interaction event occurs, compute γCM = ε1/2
√
s, βCM = 1 − 2sε1

2, and the
velocity of the pair in the CM frame β′.

6. Draw the angle µ′ = cos θ′ between the direction of the outgoing pair and the direc-
tion of motion of the center of mass, using the QED differential cross-section for pair
creation (see Sec. 11.3.2).

7. Discard the high-energy photon from the simulation.

8. Compute the energies of the electron and the positron E± according to Eq. (8.32) and
(8.33), and create a e± pair at the location of the high-energy photon with energies E±.

We take the direction of propagation of the created pair to be along that of the primary
gamma-ray. This approximation is valid provided γCM � 1, which always holds since
ε1 � ε0.

11.3.2 Drawing the angle

The probabilistic nature of the interaction is also involved when drawing the angle θ′ be-
tween the outgoing pair and the center-of-mass momentum in the CM frame. According to
Eq. (8.31), the probability that the pair makes an angle θ′ such that cos θ′ ∈ [µ′, µ′ + dµ′] at
fixed β′ is

P
(
µ′
)

=
dσγγ/ dµ′

σγγ
=

3

16

σT

σγγ (β′)
β′
(

1− β′2
) 1− (β′µ′)4 + 2

(
1− β′2

)
β′2
(

1− µ′2
)

(
1− (β′µ′)2

)2 .

(11.16)
The CDFPγγ can be computed numerically from this PDF by integration and normalization;
it is shown in Fig. 11.3 for various values of β′. We notice that the CDF has a behaviour very
similar to the x 7→ arctanh (x) function. Let us try to find a good approximation of Pγγ
which can be inverted analytically, and write

Pγγ
(
µ′
)
' p1 + p2 arctanh (p0x), (11.17)
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FIGURE 11.3: Analytical CDF for pair production given by Eq. (11.16), for different values
of β′. The approximated CDF from Eq. (11.17) are also shown (black lines).

with three free parameters p1, p2 and p0. We require that Pγγ(0) = 1/2 because the distri-
bution is symmetrical with respect to µ′ = 0, and Pγγ(1) = 1 by definition of the CDF. This
yields

Pγγ
(
µ′
)

=
1

2

(
1 +

arctanh (p0x)

arctanh (p0)

)
. (11.18)

The parameter p0 determines the slope of Pγγ at the origin d = P ′γγ(0), which is d =
p0/2 arctanh (p0) in this approximation. Since the CDF is nothing but the derivative of the
normalized PDF, the slope at the origin is

d = P (0) =
3

16

σT

σγγ (β′)
β′
(

1− β′2
)(

1 + 2β′
2 − 2β′

4
)
. (11.19)

The exact slope at the origin, given by Eq. (11.19) is plotted in Fig. 11.4 against the approxi-
mated slope p0/2 arctanh (p0) for the simple choice p0 = β′. We notice that the two plots are
quite similar, suggesting that the choice p0 = β′ leads to a very decent approximation of the
CDF by Eq. (11.17). All in all, we estimate the CDF for the angle µ′ as

Pγγ
(
µ′
)
' 1

2

(
1 +

arctanh (β′x)

arctanh (β′)

)
. (11.20)

The approximated CDF is also shown in Fig. 11.3 (see the black lines): it reproduces well
the features of the exact CDF. Here again, we have chosen simplicity over the accuracy. It
is possible to check that computing the exact analytical slope (Eq. (11.19)) and inserting it
into Eq. (11.17) leads to an estimate of the CDF almost indistinguishable from the exact one.
However, we find that this computation is heavier, and the essential features of the pair
production are modeled with our simpler choice of slope. Eq. (11.17) can be easily inverted
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FIGURE 11.4: Exact slope at the origin of the pair production CDF (Eq. (11.16)), given by
Eq. (11.19) (solid line). The approximation d = β′/2 arctanh (β′) is also shown as a dotted

line.

analytically. In order to sample the outgoing angle of the pair, we draw a random variable ξ
uniformly distributed in [0, 1], and obtain the variable µ′ from

µ′ =
1

β′
tanh

(
(2ξ − 1) arctanh (β′)

)
. (11.21)

I have also run sanity checks for the pair production algorithm. Starting with a monoen-
ergetic population of high-energy photons, with a FIDO-measured energy ε1, immersed into
the soft isotropic and monoenergetic radiation field, we compute the energy spectrum of the
electrons after one time step. The solution should match the analytical prediction given in
Eq. (8.34). The result is shown in Fig. 11.5 for two values of the parameter ζ. The agreement
is good both close to the pair creation threshold (ζ ' 1), where the electron and the positron
have the same energy in the FIDO frame, and far from the threshold (ζ � 1), where the
pair’s energy is asymmetric.
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FIGURE 11.5: Simulated energy spectrum (black dots) of electrons produced by pair cre-
ation of monoenergetic photons propagating in a monoenergetic soft radiation field, for
ζ = 1.1 (a) and ζ = 10 (b). The analytical prediction (Eq. (8.34)) is also shown as a red solid

line.
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“S’il n’y a pas de solution, c’est qu’il n’y a pas de problème.”

“If there is no solution, then there is no problem.”

JACQUES ROUXEL, Proverbe Shadok



Chapter 12

Simulations of pair discharges

In this section, I present 2D global GRPIC simulations of a black-hole magnetosphere carried
out using the GRZeltron (see Chap. 10) code supplemented with the radiative transfer
module (see Chap. 11). My aim is to study the spark gap dynamics by performing self-
consistent global simulations of pair cascades in a black-hole magnetosphere, in the context
of low-luminosity AGN, and to evaluate whether it is possible to fill the magnetosphere and
activate the Blandford-Znajek process.

This chapter is partly adapted from my paper “Multidimensional Simulations of Ergo-
spheric Pair Discharges around Black Holes”, published in Physical Review Letters in 2020 (Crin-
quand et al., 2020). I presented these results at the “Simulating the evolution and emission
of relativistic outflows” workshop in Meudon, in November 2019, and at the “Texas Sym-
posium on Relativistic Astrophysics” in Portsmouth, in December 2019.

12.1 Preliminaries

12.1.1 Numerical setup

In this work, the black hole is endowed with a monopole magnetic field. The initial magnetic
configuration is fully determined by the 4-potential Aµ, which is prescribed by Eq. (6.24).
Although unphysical, this magnetic configuration has several upsides.

I The results can be directly compared to the Blandford-Znajek analytical solution, which
assumes a magnetic monopole.

I The intrinsic physical properties of the spark gaps can be captured without interfer-
ence from more complex structures, such as current sheets.

I A split monopole is a realistic model for the field lines penetrating the ergosphere
on each hemisphere, irrespective of the magnetosphere’s large-scale structure (Komis-
sarov & McKinney, 2007; Parfrey et al., 2019). This is because field lines threading the
event horizon are transported by the inflowing plasma inside the inner light surface.

The differences between simulating a full monopole and a split monopole mostly amount
to the presence of an equatorial current sheet. Its impact will be explored in Chap. 13. The
numerical setup is represented in Fig. 12.1. The location of the gap is represented as a priori
unknown. The simulation domain is r ∈ [rmin = 0.9 rh, rmax = 16 rg], θ ∈ [0, π]. The inner
boundary rmin is put well within the event horizon, so the boundary conditions for the fields
at r = rmin do not impact the simulation. The spatial grid points are uniformly spaced in
log (r) and θ, so the polar axes are well resolved, as well as the high-density regions close to
the black hole. We mimic an open outer boundary using an absorbing layer from rabs = 15 rg

to the end of the box at rmax (Cerutti et al., 2015). In this layer, a resistivity term is imple-
mented in order to damp the electromagnetic waves arriving at rabs. For example, in this
layer, Maxwell-Faraday’s equation becomes
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FIGURE 12.1: Numerical setup of the simulation. The shaded zone represents the absorbing
layer, whereas the blue thick arrow represents the black hole spin.

∂tB = −c∇×E − λ (r)B, (12.1)

where the resistivity profile λ (r) = λ0 (r − rabs)
3 (for r ≥ rabs) is chosen so as to avoid

reflections of waves.
Particles are removed if r ≤ rh or r ≥ rabs. The runs have a grid resolution 2040 (r) ×

2048 (θ), with the requirement that the plasma skin depth is resolved everywhere. This
is tested a posteriori, since the plasma density is one of the unknowns. Unless specified
otherwise, all our simulations were run with the spin parameter set at a = 0.99, in order
to maximize the magnitude of the electric field, the spatial extent of the ergosphere and the
magnitude of energy extraction.

12.1.2 Parameters

Electrons, positrons and gamma-ray photons interact with a background radiation field of
soft photons. For simplicity, it is assumed that the radiation field is time-independent, uni-
form, isotropic and mono-energetic, with energy ε0 and density n0. There is no feedback of
the simulation on this radiation field. The upscattered photons and created leptons are as-
sumed to propagate along the same direction as their high-energy parents, reflecting strong
relativistic beaming. The fiducial optical depth of both processes is τ0 (see Chap. 8).

The normalized magnetic field is B̃0 = rg(eB0/mec
2), and the normalized energy of

background photons is ε̃0 = ε0/mec
2. B̃0 is the ratio between the gravitational radius of
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the black hole and the fiducial Larmor radius of particles. For a plasma multiplicity κ ' 1
and a close to 1, the fiducial plasma magnetization is σ0 = B2

0/4πnGJmec
2 ' B̃0. Hence,

the plasma is very magnetized, and flows approximately along magnetic field lines. The
simulations start by having high-energy photons distributed uniformly and isotropically
from r = rh to r = 4 rg, with the energy ε1 ' mec

2/ε̃0. The photons quickly pair produce,
“igniting” the cascade. From there, the system takes around 50 to 100 light-crossing times
rg/c to reach a steady state, as determined by the total number of particles in the box. To
save computation time, photons with energy below the pair creation threshold are discarded
from the simulation. Indeed, they are no longer able to participate in the dynamics.

Three dimensionless parameters define the physical conditions around the black hole:
B̃0, ε̃0 and τ0. In M87*, the magnetic field at the event horizon is estimated to be B0 '
10−100G (Neronov & Aharonian, 2007; Event Horizon Telescope Collaboration et al., 2019b),
which translates into B̃0 ' 1013−14. The soft background photon field peaks at ε0 ' 1 meV,
so that ε̃0 ' 10−9 (Prieto et al., 2016). The peak opacity for gamma-ray photons is at the
energy ε ' 103 TeV. The optical depth at the target energy 1 eV is uncertain, but is likely to
be . 103 (Levinson & Rieger, 2011; Mościbrodzka et al., 2011). The typical density needed
to screen the vacuum parallel electric field is the Goldreich-Julian number density nGJ =
B0ωBH/(4πce) (see Eq. (6.36)), with ωBH the angular velocity of the black hole.

Let us denote as γ the typical Lorentz factor of a pair-producing lepton. In order for
vacuum to break down, gamma-rays produced by inverse Compton scattering must verify
ε̃1ε̃0 & 1. This implies that inverse Compton scattering must occur in the Klein-Nishina
regime. Indeed, this regime is characterized by a scattered energy ε1 ' γmec

2 and ε0
′ &

mec
2. The latter equality implies ε0 & mec

2/γ, so that the condition for vacuum breakdown
ε̃1ε̃0 & 1 is satisfied. Photons scattered in the Thomson regime are not energetic enough to
produce pairs. The typical behavior of an electron is shown in Fig. 12.2. In Fig. 12.2(a), the
Lorentz factor shows steep drops at first, indicative of Klein-Nishina losses. When the elec-
tron has slowed down sufficiently, its cooling is more continuous, operating in the Thomson
regime. As can be seen in Fig. 12.2(b), the electron was emitted in the ergoregion and accel-
erated during its outward flight.
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FIGURE 12.2: (a) FIDO-measured Lorentz factor Γ of a single electron, normalized by B̃0,
as a function of its distance to the black hole. (b) Trajectory of the same electron in the

simulation box.
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12.1.3 Downscaling

Let us assume that an electron is accelerated in a gap of size H by some unscreened elec-
trostatic field. In a quasi force-free magnetosphere, one does not expect large unscreened
electric fields parallel to the magnetic field. We can take B0 as an upper limit on the parallel
electric field, in the case of high spins a ' 1. We can also assume that the gap has macro-
scopic size, so that H is a significant fraction of rg. Consequently, the maximum Lorentz
factor γmax that leptons can reach is of the order of B̃0. We also define γs as the typical
Lorentz factor of secondary particles that have been pair produced, and γe − 1 the binding
energy necessary for particles to escape the magnetosphere, with γe not much larger than 1.
We focus our work on AGN characterized by the following separation of scales:

γe � γs � γmax. (12.2)

The first inequality states that the bulk of pair-produced particles should be energetic enough
to from escape the black hole, whereas the second one indicates that leptons can scatter pho-
tons in the Klein-Nishina regime, above the pair creation threshold.

The cross-section of γγ pair production peaks near the pair creation threshold, so the
bulk of pairs is created at γs ' 1/ε̃0. The greater the ratio γmax/γs ' B̃0ε̃0 gets, the higher
the resulting plasma multiplicity κ will be (Timokhin & Harding, 2019). That is because an
energetic lepton roughly loses an amount ∼ γsmec

2 of energy every time a pair is created.
This means that the parameter B̃0ε̃0 must be chosen as large as possible to increase the
multiplicity.

The typical cooling timescale of a lepton in the Thomson regime is given by tIC ' rg/cτ0.
The fiducial optical depth τ0 cannot be taken too high, otherwise the cooling would be so
strong that particles could never reach the pair creation threshold and pair produce. How-
ever, this result is modified in the Klein-Nishina regime. We saw that the Klein-Nishina
cross-section can be approximated by σIC ∝ σT/(ε0

′/mec
2). Evaluating the photon energy

in the electron rest frame by ε0′ ' γε0, we obtain a scaling for the cooling time tKN in the
Klein-Nishina regime:

tKN '
γε̃0
τ0

rg

c
. (12.3)

If the optical depth is sufficently low, particle can leave the electrostatic gap without inter-
acting with the soft photons.

It is impossible in practice to use realistic values for the parameters B̃0 and ε̃0. Indeed,
increasing the field strength implies increasing nGJ and decreasing the skin depth de =√
mec2/4πκnGJe2, so that the resolution would need to go up. It is therefore challenging

to find a part of the parameter space (B̃0, ε̃0, τ0) that is both accessible to simulations, and
that has a large enough separation of scales to be relevant to the study of AGN. We have
to reduce the separation of scales to computationally feasible ranges, while retaining the
physical ordering given by Eq. (12.2). Altogether, we must choose ε̃0 as low as possible, but
B̃0ε̃0 large enough so the inequality B̃0ε̃0 � 1 is satisfied. In practice we chose B̃0 = 5× 105

and ε̃0 = 5 × 10−3. The product B̃0ε̃0 = 2500 is still somewhat below a realistic value,
which would be closer to 104 or 105, but we observed that this is sufficient to trigger time-
dependent behavior and capture the physics of spark gaps. We ran four simulations for τ0

going from 5 to 30. In this range of opacities, particles are not limited by radiative inverse
Compton losses and can reach the pair creation threshold. Each simulation takes about
40 000 CPU hours.
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12.2 Results

12.2.1 Structure of the simulation

We first focus on a fiducial simulation at τ0 = 30. The magnetic structure of this simulation
is shown in Fig. 12.3. A negative toroidal magnetic field develops, while currents flow from
the upper hemisphere (cos θ > 0) to the lower hemisphere (cos θ < 0). This is as it should
be: these simulations have Ω ·B > 0 in the upper hemisphere and Ω ·B < 0 in the lower
one, where Ω is the black-hole angular velocity vector. In order to screen the electric field,
the black-hole magnetosphere requires a negative poloidal current in the upper hemisphere
and a positive current in the lower hemisphere.

The first question to address is whether the magnetosphere has reached a force-free state.
To evaluate this, we verify some predictions made in Chap. 7 concerning force-free magne-
tospheres with a monopolar magnetic field. In the limit |a| � 1, both Eq. (7.10) and Eq. (7.11)
should be valid. The toroidal magnetic field Hϕ is a direct output of the code, whereas the
angular velocity of the field lines is reconstructed using Eq. (6.47):

Ω = −c Eθ√
hBr

. (12.4)

These quantities are shown in Fig. 12.4. The agreement is very good, although some discrep-
ancies can be observed at the poles and in the equatorial plane. The discontinuities in Ω at
the poles are likely to result from the boundary conditions for the fields. The slightly over-
estimated value of the force-free model for Hϕ at θ = π/2 could be due to a deficit in plasma

FIGURE 12.3: Snapshots of the normalized electric current density Jr/ecnGJ (left panel)
and normalized toroidal field Hϕ/B0rg (right panel) for the simulation at τ0 = 30. The
black solid lines on the right panel are poloidal magnetic field lines. The thick dashed line

indicates the ergosphere.
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FIGURE 12.4: (a) Angular dependence of the normalized toroidal field Hϕ/B0rg averaged
over time and radius (solid line), and the analytical prediction from Eq. (7.11) (dashed line).
(b) Angular dependence of the normalized angular velocity of the field lines Ω/ωh averaged
over time and radius. The dashed line indicates the analytical prediction from Eq. (7.10)

Ω = ωh/2 everywhere.

(see Fig. 12.5). Indeed, as we will see, the pair discharge mechanism is most efficient at inter-
mediate latitudes. The angular velocity is practically constant over the simulation domain:
all field lines are set into rotation at about ωh/2. Because both Hϕ and Ω are nonzero, energy
can be extracted from the black hole, as we will see in Sec. 12.2.4.

The electron and positron densities are shown in Fig. 12.5. Particles flow mainly radially,

FIGURE 12.5: Snapshot of the steady-state normalized densities for positrons (left panel)
and electrons (right panel), compensated by r2. The thick dashed line indicates the ergo-

sphere.
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along the magnetic field lines. One species in the upper hemisphere has the same behav-
ior as its anti-species in the lower hemisphere. Even if only electrons are required in the
upper hemisphere and positrons in the lower hemisphere in order to carry the electric cur-
rent and screen the electric field, both signs of charge are successfully ejected from the two
hemispheres, filling the magnetosphere. It results that the electronic density is greater than
the positron density for z > 0, and lower for z < 0. Still, the plasma remains quasi-neutral
during the simulation: the plasma density is significantly larger than ρGJ/e. A striking fea-
ture of Fig. 12.5 is that the plasma density is very clumpy, exhibiting shreds of pair plasma
ejected intermittently. This is a smoking gun for variability in the pair creation process.

Fig. 12.6 shows the direction of motion of the electrons and positrons, measured using
the grid-measured 3-velocity vr, as well as the two light surfaces. The light surfaces are
computed using the simulated angular velocity obtained with Eq. (12.4). Their shapes are
consistent what was found in Sec. 4.1.5 in the case of a uniform angular velocity Ω. The size
of the simulation box was set so as to include both light surfaces. This is crucial is order to
get an outflowing solution.

Let us focus on the upper hemisphere. There is an electronic separation surface located
exactly at the inner light surface. This is in line with the analysis from Sec. 7.2.4: below
the inner light surface, all particles flow toward the black hole, whereas electrons above this
surface flow out. There is no such clear distinction for positrons. As we will see, the direction
of motion of the positrons depends on the sign of the parallel electric fieldD ·B. In any case,
all particles within the inner light surface fall back to the black hole, whereas all particles
beyond the outer light surface flow out. The situation is symmetric (switching positrons and
electrons) in the lower hemisphere. The high-opacity simulations present similarities with
the low plasma supply simulation in Parfrey et al. (2019), in particular regarding the role
of the light surface. However, in our simulations all particles fly away from the black hole

FIGURE 12.6: Snapshot of the steady-state normalized radial momentum flux nvr/nGJc
for positrons (left panel) and electrons (right panel). The thick dashed line indicates the

ergosphere. The solid lines show the two time-averaged light surfaces.
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outside of the outer light surface, as a consequence of the different magnetic configuration
used. We ran a simulation at τ0 = 30 but with spin a = 0.75 and confirmed that the inner
light surface retains the same role.

12.2.2 Dynamics of the gap

To better understand the dynamics of the gap, we plot several snapshots of the radial phase
space (r, vr) for electrons and positrons in Fig. 12.7, to illustrate how a pair creation burst
develops. This phase space samples particles near θ0 = π/4 in the upper hemisphere. At
this latitude, electrons are preferentially extracted from the magnetosphere to conduct the
required current.

An electrostatic gap, characterized by a non-vanishing parallel electric field (as mea-
sured by FIDOs), opens exactly at the inner light surface. The typical normalized value of
the unscreened electric fieldD ·B/B2 ranges between 10−3 and 10−2, which is similar to the
ad hoc values used in Parfrey et al. (2019). This triggers particle acceleration, first in oppo-
site directions, producing in turn high-energy photons that soon pair produce high-energy
particles. As these secondary particles are created, they create a strong current which grad-
ually screens the electric field parallel to the field lines. This screening process generates
fluctuations of the parallel electric field. Importantly, the parallel electric field displays a
positive overshoot in the course of the screening, which results in the outward acceleration
of positrons too. This behavior had been derived by Levinson et al. (2005) in their study of
pair creation oscillations, and was also seen by Philippov et al. (2020) in pulsar polar cap
discharges. The intensity and duration of the bursts are highly variable. They have a spatial
extent of a fraction of rg (see Fig. 12.7), which is promising in the prospect of interpret-
ing ultra-fast variability of AGN. At such high optical depth, the gap is narrow and very
intermittent.

FIGURE 12.7: Snapshots of a phase space plot for electrons (black dots) and positrons (red
triangles) sampled at θ0 = π/4 ± 0.02 during a burst, for τ0 = 30. Particles are denoted
by sgn(vr) log10(Γ − 1), where Γ is its FIDO-measured Lorentz factor and vr its radial 3-
velocity. The blue solid line is the normalized unscreened electric field profile at θ0. The
vertical dashed line indicates the location of the light surface at θ0. For clarity, only 20% of

the particles are displayed.
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As the gap opens, a burst of unscreened electric field either plunges inside the hole or
moves outward. Subsequent pair creation occurs in this burst as it propagates, populat-
ing the magnetosphere with pair plasma. This is even more visible in the upper panel in
Fig. 12.8, which shows a spacetime diagram and a 2D map of the pair creation rate. This
highlights the variability of the gap as well as its small spatial extent. The inner light surface
is the separation surface for the created pairs. Pair creation mainly takes place in the close
magnetosphere, although it can extend beyond the ergosphere, as the screening of the out-
flowing troughs in the parallel electric field goes on. We note that the period of gap openings
at the inner light surface is much smaller than the light-crossing time of the simulation box,
so this is unlikely to be a numerical effect.

In this fiducial simulation, pairs are created at low altitudes so the gap can be screened
efficiently. After a burst of pair creation, both electrons and positrons are expelled. The
multiplicity κ of the plasma flow is high in the gap (around 10), and reaches 2 outside of
a burst. We were unable to reproduce the very large multiplicities (' 103) expected on
theoretical grounds by Levinson & Rieger (2011). While this could be an effect of the reduced
separation of scales, we observed no significant trend in the multiplicity when varying the
parameters B̃0, ε̃0 and τ0.

The null surface, where the general relativistic Goldreich-Julian charge density vanishes,
had been proposed as as plausible gap position (Chen & Yuan, 2020; Kisaka et al., 2020).

FIGURE 12.8: Top panel: spacetime diagram of the pair creation rate at θ0 = π/4 for τ0 = 30,
in arbitrary units. The white solid line indicates the location of the inner light surface at
θ = π/4. Although pair creation is continuous in time in the simulations, trajectories look
discretized because of downsampling. Bottom panel: 2D map of the time-averaged pair
creation rate. The white solid line marks the time-averaged light surfaces, whereas the

dashed line shows the ergosphere.
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However, we find that it is irrelevant for the pair discharge, and that the inner light surface
is where the gap forms. The specific location of the plasma supply in our simulations, which
is imposed by the global structure of the magnetosphere, enforces the separation surface for
electrons and positrons to lie close to the inner light surface. The effect of these surfaces can
be most consistently taken into account in global 2D simulations.

12.2.3 Dependence on parameters

So far, we have focused on what could be called the high-opacity regime with τ0 = 30. The
picture changes qualitatively as the parameter τ0 is decreased, and we observe a transition
between two regimes, illustrated in Fig. 12.9. The high-opacity solution is very close to
being force-free, and the gaps opening at the inner light surface constitute a small correc-
tion to the structure of the magnetosphere. At low optical depths (τ0 . 10), pair formation
occurs far from the black hole, resulting in a macroscopic low-density zone close to the hori-
zon. The electric field remains unscreened in this zone, so a large and steady gap forms (see
Fig. 12.9(a)). This causes large departure from the force-free behavior. Particles experience
a large fraction of the full vacuum potential, which puts them deep into the Klein-Nishina
regime. This results in a drop in the scattering cross section, pushing inverse Compton emis-
sion, and hence pair production, even further outward, outside of the acceleration zone. As
τ0 decreases, the location where the electric field is finally screened is pushed further and
further from the black hole. This pushes the separation surface of positrons (in the upper
hemisphere) further as well. In this regime, acceleration and pair creation are spatially de-
coupled. At even lower opacity the gap is so large and the particle energy so high that
all particles escape the simulation before significantly pair producing. Intermediate opac-
ity simulations display an intermediate regime: high-latitude field lines support a large and
steady gap, whereas field lines close to the equator show the same time-dependent behavior
as the high-opacity run.

We find that the gap size is controlled by the inverse Compton mean free path. At high
opacity, the gap width is comparable to the mean free path in the Thomson regime rg/τ0.

(a) (b)

FIGURE 12.9: (a) Normalized parallel electric field D · B/B2, rescaled by a factor 103, in
the low-opacity case (left) and high-opacity case (right). The dashed line indicates the er-
gosphere and the solid line the inner light surface. (b) Logarithm of the normalized density

compensated by r2, in the low-opacity case (left) and high-opacity case (right).
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The gap width H , measured using the unscreened electric field, is H ' 0.06 rg at τ0 = 30.
At low opacity, the mean free path and the gap width become comparable to rg. Particles
reach high Lorentz factors in the gap, so the inverse Compton cross section drops, further
increasing the mean free path. The optical depth is effectively lower than τ0 close to the
black hole.

It is also interesting to study a case where the inequality (12.2) is not well satisfied. We
ran simulations with τ0 = 30, B̃0 = 103 and ε̃0 = 0.1, an example of which is represented in
Fig. 12.10. With this set of parameters, the inequality (12.2) reduces to 1� 10� 103. In this
case, there is no outflow of positrons in the upper hemisphere, no outflow of electrons in the
lower hemisphere. All the created leptons are carrying the Goldreich-Julian current. The
density is barely high enough to screen the electric field: the gap is never totally screened,
and there are no wiggles in the electric field which can help to eject the other sign of charge.
The magnetosphere does not reach a force-free state. This is because the produced pairs are
not very energetic: barely enough particles make it into the deep Klein-Nishina regime and
are able to pair produce significantly.

12.2.4 Energetics

The total Poynting flux of electromagnetic energy-at-infinity, which is the luminosity L of
the black hole, can be extracted from the simulations according to Eq. (5.54):

LEM(r) = 2π

ˆ π

0
Πr (r, θ)

√
hdθ. (12.5)

The Poynting vector Π is given by Eq. (5.55), so that we have

Πr =
c

4π
√
h

(EθHϕ − EϕHθ) . (12.6)

FIGURE 12.10: Snapshots of the steady-state normalized radial momentum flux nvr/nGJc
for positrons (right panel) and of the normalized parallel electric fieldD ·B/B2 (left panel)

for a simulation at reduced separation of scales, with τ0 = 30, B̃0 = 103 and ε̃0 = 0.1.
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Fig. 12.11(a) shows the evolution of the electromagnetic luminosity (12.5) with the radius
of the integration sphere. We find that the rate of energy extraction is consistent with the
prediction LBZ from the Blandford-Znajek mechanism, given by Eq. (7.18), at all opacities
τ0. This supports the role of the Blandford-Znajek mechanism in powering AGN jets and the
possibility that inverse Compton scattering and photon-photon pair production processes
can supply sufficient plasma to activate this mechanism.

We also observe that the luminosity decreases with increasing radius r, unlike what
would happen in a perfectly force-free, ideal magnetosphere. This implies the presence
of dissipation in the magnetosphere. The flux of energy-at-infinity of the particles in the
simulation domain (electrons, positrons, and high-energy photons above the pair creation
threshold) is shown in Fig. 12.11(b). At low opacity, a sizeable fraction of the Poynting flux
(around 20%) is dissipated within the simulation domain, with about 1% being transferred
to the simulated particles. At higher opacity, dissipation is smaller (around 5%) since the gap
is narrow. The energy flux carried by particles is smaller by an order of magnitude. Dissipa-
tion increases with decreasing τ0, because it scales approximately with the size of the gap.
The bulk energy-at-infinity of the leptons within the ergosphere can be negative, but we find
that they contribute little to the extraction of energy from the black hole in these simulations.
This does not contradict the conclusions of Parfrey et al. (2019), because in their study most
of the negative-energy electrons were located in an equatorial current sheet, while there is
none in our simulations.

Note that the energy from photons below the pair creation threshold is lost to the simula-
tion. Hence, most of the dissipated energy must rather be deposited in these particles. From
Eq. (5.54), we can still estimate the power that they carry by integrating the dissipation rate
E ·J over the whole simulation box. At high optical depths, the dissipated power is around
3% of the output Poynting flux, approximately matching the decrease in the Poynting flux
from rh to rmax. Hopefully, this energy can be tapped into in order to power VHE flares.
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FIGURE 12.11: Total flux of electromagnetic energy-at-infinity LEM (a) and particle flux of
energy-at-infinity Lpart (b) through a sphere of radius r, for τ0 = 10, 20 and 30. The particle
flux comprises the contributions of electrons, positrons and high-energy photons above the

pair creation threshold.
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12.3 Discussion

Our results show some similarities with 1D models, but also important differences which
justify the need for multi-dimensional simulations. Similarly to Chen & Yuan (2020), we
find that the gap opens quasi-periodically. However, unlike them, we find that discharges
happen at the inner light surface, whereas the null surface seems to play no role. Addition-
ally, while their gap has a size & rg, we find that the gap size is much smaller than the black
hole size in the high-optical depth regime (although it remains much larger than the plasma
skin depth). A major difference between 1D and 2D is that field lines do not all behave as
a coherent entity. Therefore, the pair creation bursts have a smaller spatial extent and the
time variability is higher in our simulations than in 1D models. On the other hand, we do
not observe the quasi-steady, noisy state obtained by Levinson & Cerutti (2018), or by Chen
& Yuan (2020) at low resolution. This might be because field lines can still weakly interact
through the electric field in the (θ, ϕ) plane, retaining some coherence at small scale.



Chapter 13

Dynamics of the current sheet

In Chap. 12, I described the results of global multidimensional simulations of a black-hole
magnetosphere, with a realistic treatment of radiative transfer. I was able to capture the
intrinsic activity of spark gaps. However, as pointed out in Sec. 6.2, the magnetic structure
was very simplistic. In the case of “isolated” magnetospheres, more realistic configurations
with large-scale poloidal magnetic field should display an equatorial current sheet. This
current sheet originates in the need to close the electric current system, since negative cur-
rents flow from both poles (if the spin axis is aligned with the magnetic field). It is unclear
how such a current sheet can affect the pair discharge mechanism, and what are the relative
contributions of the polar cap and the current sheet emissions.

It is still unclear what the geometry of the accretion flow and the magnetosphere looks
like in the inner regions. At the very least, a situation with such a long-lived equatorial
current sheet could come up if the accretion flow was truncated at large radius, so that
accretion paused for a while. This is what happens in magnetically arrested disk simula-
tions (Narayan et al., 2003). Still, large-scale and intermittent ergospheric current sheets
are expected to develop naturally in accreting black-hole magnetospheres as well (Ripperda
et al., 2020), highlighting the need to understand their importance. In this chapter, I explore
more realistic magnetic configurations, no longer neglecting the equatorial reconnection ac-
tivity.

This chapter is adapted from my paper “Synthetic gamma-ray light curves of Kerr black
hole magnetospheric activity from particle-in-cell simulations”, published in Astronomy &
Astrophysics (Crinquand et al., 2021). I presented these results at the “Understanding the
Most Energetic Cosmic Accelerators: Advances in Theory and Simulation” online work-
shop, organized in October 2020 by the PCTS at Princeton.

13.1 Numerical setup

13.1.1 Magnetic configuration

We saw that a large-scale poloidal magnetic configuration is favored by observations of the
EHT and GRAVITY. Besides, it is the natural configuration to study the development of the
Blandford-Znajek process and the launching of a jet. In this work, we will simulate a generic
magnetic configuration with large-scale poloidal field.

By contrast, Parfrey et al. (2015) and Mahlmann et al. (2020) have shown using general rela-
tivistic force-free simulations that this is not a necessary condition for efficient extraction of the
black hole’s energy. They were able to produce jets by the accretion of magnetized loops from
the accretion disk, with zero net magnetic flux.

General relativistic magnetohydronamics (GRMHD) simulations of accretion flows also
hint toward a paraboloidal geometry of the magnetic field lines (Komissarov & McKinney,
2007; McKinney et al., 2012). The initial poloidal magnetic field in the magnetosphere is
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defined for θ ≤ π/2 by the following flux function (Tchekhovskoy et al., 2010)

Aϕ(r, θ) = B0r
2
g

(
r + r0

rh + r0

)ν
(1− cos θ), (13.1)

where r0 and ν are free parameters. The field lines have the opposite polarity in the lower
hemisphere. We chose r0 = 10 rg and ν = 3 in our runs. The geometry of the initial magnetic
field lines is shown in Fig. 13.1(a). It allows a current sheet to develop in the equatorial plane,
without constraining its length a priori.

13.1.2 Conducting disk

A magnetosphere with such an initial magnetic field quickly dies out after a few tens of rg/c.
This lies in the fact that the current sheet extends to the outer boundary of the box, which is
endowed with open boundary conditions. Magnetic reconnection at the current sheet ejects
plasmoids and magnetic flux from the simulation box. Too much energy and magnetic flux
are lost by the simulation box, so that the black hole almost completely expels the magnetic
field lines threading it. Unlike pulsars for instance, black holes do not have a conducting
surface and cannot sustain a magnetic field on their own. It is challenging to design a setup
allowing the study of a non-vanishing current sheet in this context.

Therefore, I implemented a static and perfectly conducting disk as a boundary condition
for the electromagnetic fields in the equatorial plane. This disk extends from its inner radius
r = rin to the outer boundary of the box, for θ ∈ [π/2− θ0, π/2 + θ0], and we fixed rin = 6 rg

and θ0 = 0.02 in all simulations. The resulting setup is represented in Fig. 13.1(b). This
amounts to the condition of infinite conductivity given by Eq. (6.47), which was derived
earlier, with Ω = 0 in the case of a non-rotating disk. Once E is prescribed by the infinite
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Reconnecting
current sheet
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FIGURE 13.1: (a) Initial poloidal magnetic field lines, according to Eq. (13.1). (b) Schematic
steady-state configuration of the simulations. Poloidal magnetic field lines are shown in red
solid lines, except the last closed magnetic field line (in black). The equatorial current sheet
(blue shaded area) is prone to the plasmoid instability. The conducting disk, represented by
the shaded trapezoidal shape, extends from rin to the outer edge of the simulation box. Two
emitting zones are highlighted: the polar cap (low inclination with respect to the spin axis)

and the current sheet.
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conductivity condition, D is obtained from Eq. (5.41a). Denoting the initial magnetic field
asBin, the following conditions are enforced inside the disk:

Er = Eθ = Eϕ = 0; (13.2)

Dr =
1

α
Er = 0; (13.3)

Dθ =
1

α

(
Eθ +

√
hβrBϕ

)
=
βr

α

√
hBϕ

in; (13.4)

Dϕ =
1

α

(
Eϕ −

√
hβrBθ

)
= −β

r

α

√
hBθ

in; (13.5)

Bθ = Bθ
in; (13.6)

Hθ = αhθθB
θ
in +
√
hβrDϕ. (13.7)

Importantly, only the θ components of the magnetic fields B and H should be prescribed,
otherwise the system is over-constrained and does not remain stable.

Magnetic field lines crossing this disk are frozen-in. With the addition of the conducting
disk, the magnetic flux cannot escape the numerical domain, preventing our simulations
from decaying entirely. Note that we exclude the study of the magnetic linkage that can ex-
ist between the black hole and the disk: no field lines connect the black hole to the disk. We
do not claim to simulate a realistic accretion disk, but rather to provide physical conditions
suitable to the study of the intrinsic behavior of the magnetosphere. The disk is merely in-
cluded as a boundary condition for the fields: we are not interested in the zone surrounding
the disk and focus on the magnetosphere itself, that is, the zone enclosed by the field lines
crossing the ergosphere. For this reason, in all subsequent figures, we choose to leave the
inner radius of the disk out of the represented domain. We also checked that there was no
significant numerical diffusion, and hence no unphysical slippage of the field lines.

The numerical domain extends from rmin = 0.9 rh to rmax = 10 rg. The spin parameter a
is fixed at 0.99. Here, we focus on the high-optical depth regime, and run simulations with
τ0 = 30, 50 and 80. We keep B̃0 = 5 × 105 and ε̃0 = 5 × 10−3 fixed in all simulations. Each
simulation takes about 60 000 CPU hours.

13.2 Results

We first describe the general features of our simulations, before addressing the influence of
magnetic field transport and the long-term evolution of the magnetosphere.

13.2.1 General features

The structure of the magnetosphere is shown in Fig. 13.2; it is consistent with the general pic-
ture that was drawn in Sec. 6.2.4. The right panel shows Hϕ, which quantifies the poloidal
current. This toroidal field is nonzero on the field lines connected to the black hole, pene-
trating the ergosphere; therefore a nonvanishing flux of energy and angular momentum can
flow along those lines. The left panel shows the radial component of the current density. The
electric current system is consistent with what is expected for a black-hole magnetosphere
in the force-free regime with a > 0. Our simulations have Ω ·B > 0 in both hemispheres.
In the upper hemisphere, an electric field pointing toward the black hole is gravitationally
induced by the frame-dragging of magnetic field lines. Negative poloidal currents are gen-
erated, which help screen the initial nonzero D ·B, thus giving rise to a negative Hϕ. The
situation is opposite in the lower hemisphere. By symmetry, Hϕ must vanish in the equato-
rial plane. The subsequent current sheet carries a positive electric current, closing the electric
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FIGURE 13.2: Left panel: time-averaged normalized electric current density Jr/ (cenGJ).
Right panel: time-averaged normalized toroidal componentHϕ/B0. Poloidal magnetic field
lines are represented by black solid lines. The dashed red line indicates the surface of the

ergosphere.

current system. This positive current flows along the separatrix, i.e. the last magnetic field
line connected to the black hole, which defines the magnetospheric boundary.

The equatorial current sheet is prone to the plasmoid instability, which mediates fast
magnetic reconnection. More details on fast reconnection are provided in the Appendix 13.A.
Magnetic energy is dissipated and deposited into particles, leading to intense pair creation.
Fig. 13.3 shows a snapshot of the photon density above the pair-creation threshold and parti-
cle density, both in logarithmic scale. The mechanism described in Chap. 12 is still operating
in this new configuration. Bursts of pair creation occur in an intermittent manner near the
inner light surface at intermediate latitudes. This fresh plasma mostly follows the magnetic
field lines, therefore it mainly flows close to the magnetospheric boundary. Inside the bursts,
the plasma density is marginally denser than the Goldreich-Julian density, and the outflow-
ing plasma is highly magnetized. Pair creation is almost quenched near the rotation axis.
We checked that in this zone the 4-current is null, although it is spacelike near the horizon at
intermediate latitudes. In addition, the acceleration of particles in the X-points of the current
sheet triggers pair creation and high-energy photon emission. The plasma density can reach
103nGJ in the current sheet plasmoids.

The magnetosphere displays an interesting dynamical phenomenon, responsible for the
replenishment of the magnetic field threading the black hole, which is represented in Fig. 13.4.
Starting from an initial state similar to that shown in Fig. 13.2, plasma accumulates near the
Y-point of the magnetosphere (defined as the point of the current sheet most distant to the
black hole, where the two separatrices diverge from the equator). This plasma is supported
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FIGURE 13.3: Snapshot of the simulation with τ0 = 50 and V0/c = 0.05. Left panel: Loga-
rithm of the density of photons above the threshold, normalized by nGJ. Poloidal magnetic
field lines are represented by white solid lines. Right panel: Logarithm of the plasma den-
sity, normalized by nGJ. The dashed black line indicates the surface of the ergosphere, and

the yellow solid line on the right panel shows the inner light surface.

by the magnetic pressure inside the magnetosphere. When the magnetosphere can no longer
sustain the plasma, which roughly occurs when the particle energy density exceeds the mag-
netic energy density, a giant plasmoid forms and suddenly plunges into the black hole. This
corresponds to the breakdown of the force-free approximation. The weakly magnetized
plasma plunges due to the gravitational pull of the black hole, and works against the mag-
netic tension of field lines. As this giant plasmoid rushes inward, it pulls inward vertical
magnetic field lines that were not crossing the event horizon initially. This replenishes the
magnetic flux of the black hole. After the black hole swallows the giant plasmoid, the mag-
netosphere goes back to its initial state, until a new giant plasmoid is formed.

13.2.2 Long-term evolution

The outcome of the simulation is shown by the black and blue curves in Fig. 13.5, which
represent the evolution of the magnetic flux Φ through the upper hemisphere of the event
horizon with time. The magnetosphere experiences the dynamic cycles described in the
previous section for about 300 rg/c, but the magnetic flux Φ decays secularly. It settles at
a steady value after a time ' 500 rg/c. The steady state of the simulation resembles the
Wald setup described by Parfrey et al. (2019), as can be seen in Fig. 13.6. The field lines are
much more vertical and, more importantly, the Y-point is located very close to the boundary
of the ergosphere. In this steady state, there are no more giant plasmoid accretion cycles.
The current sheet is still disrupted by the tearing instability, so that small plasmoids fall
toward the black hole. The magnetic flux escape by magnetic reconnection is exactly bal-
anced by the supply of magnetic flux caused by the inflowing plasmoids pulling vertical
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FIGURE 13.4: Snapshots of the logarithm of σ = B2/
(
8πnmec

2Γ
)

from a simulation with
τ0 = 50. The zones with σ ' 1 are in white. Poloidal magnetic field lines are represented by

black solid lines. The dashed white line indicates the surface of the ergosphere.

field lines. Therefore, without external forcing, the only stable configuration for the mag-
netosphere is Wald-like. This is reminiscent of pulsar magnetospheres, where the Y-point
naturally migrates toward an equilibrium position at the light cylinder (Spitkovsky, 2006).
This configuration is close to force-free, except in the current sheet.

It should be noted that because the magnetic field strength has dropped significantly,
the maximum Lorentz factor particles can achieve is no longer much larger than the pair-
creation threshold. Being slightly starved, large gaps can momentarily open up. This is
merely an effect of our limited scale separation, and does not affect the general conclusion.
We also note that the final value for the magnetic flux does not depend on τ0, in the range of
parameters we have tested. If the opacity of the medium is high enough, the magnetosphere
can reach a state close to force-free, irrespective of the plasma supply details.

We also ran simulations with no conducting disk. In these simulations, the equatorial
current sheet quickly extends across the whole box. The initial magnetic energy is quickly
dissipated, whereas the mechanism previously analyzed cannot take place: there is no avail-
able vertical magnetic flux that could compensate for this decay. The simulation is exhausted
of particles and dies out (see Sec. 13.4).
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FIGURE 13.6: Steady state of the simulation with τ0 = 50 and V0 = 0. Left panel: Logarithm
of the photon density, normalized by nGJ. Poloidal magnetic field lines are represented by
white solid lines. Right panel: Logarithm of the plasma density, normalized by nGJ. The

dashed black line indicates the surface of the ergosphere.

13.3 Magnetic field transport

We are interested in maintaining the dynamic state and impeding magnetic field decay,
since this variable state is promising for the prospect of high-energy flares. Therefore, we
have added the possibility of supplying magnetic flux to the central black hole, in order
to study the response of the magnetosphere either free or forced. To this end, we do not
inject magnetic flux in the whole simulation box, but rather advect the frozen-in field lines
that are initially crossing the perfectly conducting disk. We add a small toroidal electric
field Eacc = − (V 0/c) ×B only in the conducting disk. In concrete terms, this amounts to
enforcing

Eϕ =
V0

c
Bθ

in (13.8)

inside the disk (which also impacts howDθ is prescribed). We run another set of simulations
with various values of τ0, with V0/c = 0.05 this time. This setup can mimic inward magnetic
flux transport in accretion flows (Lubow et al., 1994). We use a value of V0 that is consistent
with ideal MHD simulations of accretion disks (Jacquemin-Ide et al., 2021).

By virtue of Faraday’s law, applied to a loop of radius r = rin in the equatorial plane (see
Eq. (13.10)), the magnetic flux through a surface enclosed by this loop must increase steadily
for V0 6= 0, and remain constant for V0 = 0. In other words, magnetic field lines that have
been transported below r = rin at θ = π/2 must remain below rin from then on. This is why
we place the inner boundary of the conducting disk at sufficient distance rin = 6 rg from the
black hole. We choose not to run simulations with V0 6= 0 for as long as simulations with
V0 = 0, because the magnetic flux within r = rin would accumulate near the ergosphere.
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This would not occur in real systems, as there would be a way for the magnetic flux to flow
back from the magnetosphere to the disk.

In the presence of magnetic field line transport (V0 6= 0), the magnetosphere is able to
remain in a dynamic state of periodic giant plasmoid accretion events (see the yellow curve
in Fig. 13.5). The inflow of magnetic flux compresses the magnetosphere and compensates
the secular decay. The evolution of Φ in this dynamic state is represented in the upper panel
in Fig. 13.8 for different optical depths, with the four black dots representing successive
snapshots relative to Fig. 13.4. As a magnetized giant plasmoid is swallowed by the black
hole, the magnetic flux experiences a sharp rise. Between two successive giant plasmoid
accretion events, the magnetic flux decays almost exponentially with time due to magnetic
reconnection. We observed that the characteristic decay time of Φ barely depends on τ0. On
the other hand, the frequency of these accretion cycles is controlled by the fiducial optical
depth τ0: it increases with increasing τ0. This is because mass loading at the Y-point is more
efficient at high optical depths, which results in more frequent cycles of accretion. These
cycles are illustrated in Fig. 13.7, which represents a spacetime diagram of the flux function
Aϕ in the equatorial plane. They occur with a period of around 15 rg/c. The slow transport
of magnetic field lines from the conducting disk to the black hole is also visible between 3 rg

and 4 rg.
The lower panel in Fig. 13.8 shows the time evolution of the Poynting flux through the

event horizon for the simulations with magnetic field transport, computed using Eq. (12.5)
and (12.6). We also observe sharp rises in the Poynting flux, synchronized with those in Φ.
This comes as no surprise, since the output power is expected to scale as Φ2 if the Blandford-
Znajek process is activated (see Eq. (7.20)). In the case of a pure split-monopole magneto-
sphere, the total Poynting luminosity is still given by Eq. (7.18). We find that the measured
luminosity is lower than this estimate. This is because some flux is removed from the event
horizon during an initial transient, due to the initial conditions not being an equilibrium
state. This also explains why Φ is consistently below 2πrg

2B0.
It is likely that these results would slightly differ in 3D, since nonaxisymmetric modes

would also allow interchange of tenuous magnetospheric plasma with dense, unmagnetized
plasma at the Y-point. In particular, it is possible that Φ would not experience sharp and
periodic peaks. Nonetheless, this mechanism should still hold and allow the black hole to
retain a significant magnetic flux and luminosity on a timescale longer than the characteristic
reconnection decay time T .

FIGURE 13.7: Spacetime diagram of Aϕ in the equatorial plane θ = π/2 for the simulation
with τ0 = 50 and V0/c = 0.05. The black solid lines are the contours of Aϕ, which represent

poloidal magnetic field lines.
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integrated over the event horizon, for these same three simulations.

13.4 Toy model for magnetic flux decay

The decay of the magnetic flux Φ through the event horizon, in the absence of any source
term due to inflowing plasmoids, is a consequence of dissipation of magnetic energy by
magnetic reconnection (see the Appendix 13.A). Let us provide a toy model to account for
the order of magnitude of the characteristic decay time T , assuming axisymmetry. Following
Eq. (5.40), the magnetic flux Φ through the upper hemisphere of the event horizon can be
expressed as

Φ =

¨
Br
√
hdθ dϕ = 2πAϕ(rh, π/2). (13.9)

Faraday’s law allows us to express the time derivative of Φ as the circulation of E along a
loop of radius rh in the equatorial plane:

dΦ

dt
= 2π∂tAϕ(rh, π/2) = −2πcEϕ(rh, π/2). (13.10)

In a purely axisymmetric and stationary magnetosphere, we have Eϕ = 0 everywhere. Yet,
this component arises in and near the current sheet because there is an inflow of plasma
at velocity V in = Vin∂θ toward the reconnection region. Just above and below the current
sheet, the electric field reads E = − (V in/c)×B. At such high magnetizations, the outflow
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velocity is very close to c. Thence, we define a global dimensionless reconnection rate R as

R =
|Vin|
c

=
rgEϕ√
h|Br|

, (13.11)

where h is evaluated at r = rh and θ = π/2. Here, Vin is not measured by the FIDO but
with respect to the grid. We also assume that the configuration of field lines at the event
horizon is close to a split monopole, so that Br(r = rh) does not depend much on θ in a
given hemisphere. The magnetic flux can be written as Φ = Br(rh)S, where S is half the
area of the event horizon, which we have already computed (see Eq. (5.92)). Ultimately, the
evolution of the magnetic flux is governed by

dΦ

dt
= −2π

√
h

S
c

rg
RΦ. (13.12)

If the global reconnection rate is time-independent, the magnetic flux decreases exponen-
tially with a characteristic decay time

T =
S

2π
√
h

1

R
rg

c
' 1

R
rg

c
(13.13)

From Fig. 13.8 and 13.5, we measure the slope of the exponential decay, and obtain a
reconnection rate R = 0.02 ± 0.002, corresponding to a decay time T ' 50 rg/c. We also
measured the local reconnection rate using Eq. (13.11). The time-averaged result is shown
in Fig. 13.9 for the simulation at τ0 = 30 and V0 = 0. The reconnection plasma inflow is
characterized by R 6= 0, which is true above and below the current sheet. The out-of-plane
electric field is generally especially intense at the X points, where the electromagnetic field
is electrically dominated. In addition to that, the out-of plane is nonzero in a thick sheath
around the reconnection layer, which is visible in Fig. 13.9. This has been observed in local
simulations of relativistic magnetic reconnection (Cerutti et al., 2013). We find that typical
values ofR range from 0.02 to 0.04, which is consistent with the flux decay time. This model
naturally explains why the characteristic decay time is the same in all simulations.

FIGURE 13.9: Time-averaged local reconnection rateR for τ0 = 30 and V0 = 0.
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The local reconnection rate in collisionless relativistic reconnection in pair plasmas has
been determined by several numerical studies (Kagan et al., 2013; Sironi & Spitkovsky,
2014), with typical values between 10−2 and 10−1. To compare with the decay time T (mea-
sured by an observer at infinity), one needs to take into account gravitational dilation. As-
suming the current sheet is roughly comoving (radially inward) with the Kerr-Schild FIDO
at r = rh and θ = π/2, by definition of the lapse function α, the local reconnection rate can
be estimated as R/α ' 1.66R. Our value of R is consistent with measurements of the local
collisionless reconnection rate, although slightly low.

13.A Appendix: Relativistic magnetic reconnection

13.A.1 Introduction

Magnetic reconnection is an ubiquitous phenomenon in astrophysical plasmas (see Zweibel
& Yamada 2009 and Yamada et al. 2010 for reviews). This phenomenon can be defined as a
change in the topology of the magnetic field lines. Because most astrophysical plasmas are
highly conductive, magnetic field lines are usually frozen in the plasma and cannot change
their topology: this is the regime of ideal MHD. Only if nonideal effects (such as resistiv-
ity) are significant can there be magnetic reconnection. In most astrophysical plasmas, the
resistivity is so small that other nonideal effects first come into play: electron inertia, Hall
effects, finite-Larmor radius effects... The frozen-flux condition breaks down in the recon-
nection zone. Magnetic reconnection requires multiple spatial scales: a small diffusive scale
at which ideal MHD is not valid, and a large region providing plasma. Solar flares or mag-
netospheric storms are probably powered by magnetic reconnection.

If the plasma magnetization σ, defined as the ratio of the magnetic energy density and
the total particle enthalpy density, is much larger than 1, magnetic reconnection is said to
occur in the relativistic regime. Most of the magnetic energy is transferred to the plasma, so
that the plasma outflow powered by reconnection is relativistic. In this regime, the Alfvén
speed of the plasma is close to the speed of light (Lyutikov & Uzdensky, 2003):

vA =

√
σ

1 + σ
c ' c. (13.14)

Relativistic reconnection is thought to operate in pulsar winds (Coroniti, 1990), accret-
ing black-hole coronæ (Goodman & Uzdensky, 2008) or gamma-ray bursts (Drenkhahn &
Spruit, 2002) for instance. A review of relativistic magnetic reconnection can be found in Ka-
gan et al. (2015). It is now firmly established that magnetic reconnection is efficient at dissi-
pating magnetic free energy and converting it into thermal or kinetic energy in a fast way.
It leads to strong particle acceleration and can produce very hard spectra, in particular in
magnetically dominated systems (Sironi & Spitkovsky, 2014; Werner et al., 2016).

13.A.2 Steady-state reconnection

Let us describe a 2D configuration for simplicity. Magnetic reconnection involves a change
of polarity in the magnetic field, with a plasma current sheet inbetween. This situation is
represented in Fig. 13.10, the reconnecting fields being anti-parallel and of equal strength
B0, along ex. The situation is invariant by translation along the z axis.

The reconnecting field is allowed to diffuse through the current sheet, and reconnects
at an X-point. Plasma flows toward the elongated current sheet at low speed and is ejected
sideways at the Alfvén speed, as field lines snap and reconnect. The outflow is a conse-
quence of the magnetic tension of the highly bent reconnected field lines. Outside of the
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current sheet, the nonideal effects are negligible, so that the electric field E is related to the
magnetic fieldB by

E +
1

c
V in ×B = 0, (13.15)

with V in the inflow bulk velocity. The electric field is out-of-plane (along ez). In a steady-
state configuration,E must be uniform, so that it is also nonzero in the current sheet (where
B can vanish), where it is related to nonideal effects. Ultimately, this electric field originates
from magnetic flux variations and Faraday’s law, as magnetic field lines are pushed toward
the current sheet. Reconnection occurs when this electric field can drive out-of-plane cur-
rents through nonideal effects, which modify the magnetic topology by inducing magnetic
fields in the ey direction. Whether the electric field first grows in the current sheet or in
the ideal region depends on whether reconnection is externally driven or spontaneous. The
reconnection rate R is defined as the ratio of the inflow to the outflow velocity. In the rel-
ativistic limit, it is defined as R = Vin/c. From Eq. (13.15), we see that it can be recast into
R = Ez/Bx.

The canonical reconnection configuration is the Sweet-Parker model (Parker, 1957; Sweet,
1958), in the MHD framework. It was described in the relativistic regime by Lyubarsky
(2005). Let us denote δ the width of the current sheet and L its length. The width of the
current sheet is determined by nonideal processes and by the reconnection rate, which de-
pends on microphysics. From mass conservation, the reconnection rate is directly given by
the aspect ratio of the layer: Vin/c = δ/L. In the Sweet-Parker model, the reconnection rate
is given by

R =
δ

L
=

1√
S

; S =
4πcL

η
, (13.16)

with S the Lundquist number and η the resistivity of the plasma. If L is taken to be the
typical size of the system, S is usually tremendously high (S ' 1020 is typical), so that
reconnection occurs at a very low rate. This is at odds with observations of solar flares, for
instance. Yet, evidence for fast reconnection is conspicuous. If the Sweet-Parker model is
right, as laboratory measurements (Ji et al., 1999) and numerical simulations of collisional
plasmas (Uzdensky & Kulsrud, 2000) seem to suggest, the length of the reconnecting current
sheet must be drastically smaller than the size of the system.

Eϕ, jϕ

vA ' c

Vin

x

y

z

Vin

FIGURE 13.10: Sketch of the Sweet-Parker model. Plasma inflows toward the reconnecting
layer, of length L and thickness δ, with velocity Vin. An electric field develops perpendicu-

larly to the plane of the figure. Plasma is ejected sideways with the Alfvén speed.
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13.A.3 Fast reconnection

A review of the recent progress on magnetic reconnection can be found in Schekochihin
(2020). Let us consider two adjacent regions of opposite magnetic polarities, with a typi-
cal spatial scale ∆ for the variation of the magnetic field. A current sheet such as the one
discussed in the previous section can be the result of external forcing, with a plasma flow
pushing the two magnetic polarities together, but it can also arise spontaneously. In the
absence of forcing, this magnetic configuration is liable to the tearing instability (Schekochi-
hin, 2020). In the nonlinear stage of this instability, magnetic islands of size ' ∆ separated
by X-points are formed. These X-points are then found to collapse (Loureiro et al., 2005),
leading to the formation of a current sheet with sideways Alfvénic outflows.

Let us assume that a current sheet is readily formed, irrespective of the outer environ-
ment. Sweet-Parker reconnection could a priori occur at a rate given by Eq. (13.16), but it was
realized that the aspect ratio of the sheet δ/L could not be arbitrarily small. In the frame-
work of resistive MHD, analytical calculations (Loureiro et al., 2007) and numerical simu-
lations (Samtaney et al., 2009) showed that a current sheet with small aspect ratio broke up
into a chain of magnetic islands, or “plasmoids”. They also found that the critical aspect
ratio was δ/L ' 10−2, corresponding to S ' 104. If S < 104, the Sweet-Parker current sheet
was found to be stable. Numerical simulations of collisionless plasmas also indicate a sim-
ilar trend, with the critical aspect ration being δ/L ' 0.1 (Sironi et al., 2016). Interestingly,
this plasmoid instability has a growth rate much larger than the characteristic outflow time
L/c, so that secondary current sheets are formed between the plasmoids.

From these observations, Uzdensky et al. (2010) proposed the following model of fast
magnetic reconnection. A current sheet with an aspect ratio beyond the critical aspect ratio
breaks up into plasmoids, a process which happens sufficiently fast for the nonlinear stage
of the plasmoid instability to develop before the plasmoids are ejected. Secondary current
sheets are formed between these plasmoids. Plasmoids are ejected sideways, stretching the
current sheets and making them plasmoid-unstable themselves. A hierarchy of plasmoids
can be found in the reconnecting region. The process repeats until the smallest secondary
current sheets are sufficiently short that they are no longer plasmoid-unstable. At this stage,
Sweet-Parker reconnection can proceed. The reconnection rate becomes independent of the
global Lundquist number, and only depends on the critical aspect ratio. Hence, reconnection
occur in a relatively fast regime, with a global effective rate close to 0.01 for resistive MHD
and of the order 0.1 for collisionless plasmas. These values are measured in various regimes
and configurations, and can be regarded as “universal”.
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Synthetic observables

As discussed previously, high-energy photons below the pair creation threshold are dis-
carded from the simulation, as they do not participate in the simulation. Yet, in order to
reconstruct the radiative signature of the magnetosphere, it is crucial to save the informa-
tion that they carry. Given their initial positions, directions and emission times, my goal
is to reconstruct light curves for different viewing angles (with respect to the spin axis).
This task has already been performed in flat spacetime, in the context of pulsar magneto-
spheres (Cerutti et al., 2016). Here, this approach must be generalized to photons propagat-
ing in a curved spacetime.

Beyond a given radius rout, photons can be considered to propagate in straight lines.
However, relativistic effects cannot be neglected, as the photons are emitted close to the
black hole. In order to compute their final directions, times of flight, and impact param-
eters, it is compulsory to integrate the null geodesics of the photons from their emission
points up to r = rout. Keeping these photons in the simulation box and integrating their
equations of motion with the PIC algorithm, even with a looser constraint on the time step,
would be too demanding computationally. As it happens, there is no need to solve the en-
tire geodesic, since the only relevant information is the initial and final coordinates (t, r, θ, ϕ)
of the photons. Instead, I have used the public ray-tracing code geokerr (Dexter & Agol,
2009), which is optimized to numerically integrate null geodesics in the Kerr metric.

This method has allowed me to build both light curves and images. The former are rele-
vant in the context of VHE emission. Moreover, photons emitted by synchrotron process can
be a good proxy for the millimeter emission from M87*. Our goal is to model the optically
thin millimeter emission, in order to evaluate the contribution of magnetospheric processes
to the image observed by the EHT. Indeed, the close environment of black holes cannot be
captured by GRMHD simulations. This is exemplified by the fact that in the post-processing
radiative transfer models used to interpret the image, the funnel is cut out (Event Horizon
Telescope Collaboration et al., 2019b, 2021b). It is not clear what is the main emission sites
of the photons that make up the image.

In Sec. 14.1, I briefly describe the theory of null geodesics in Kerr spacetime and how I
coupled GRZeltron with geokerr. The resulting light curves and images are presented in
Sec. 14.2 and 14.3 respectively. The section on the light curves is adapted from Crinquand
et al. (2021), whereas the results on the images are only preliminary and have not been
published yet.

14.1 Null geodesics in Kerr spacetime

In this section, we employ BL coordinates.

14.1.1 Equations of motion

Since the wavelength of the light of interest is much smaller than the radius of the black
hole, we can work in the geometric optics limit, so that photons follow null geodesics. Let
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us consider a photon with 4-momentum pµ. Geodesic motion in Kerr spacetime possesses
the pleasant property of being completely integrable, since three conserved quantities can
be attributed to each geodesic. These constants are:

I the energy E = −pt = −cp0;

I the angular momentum L = pϕ;

I the Carter constant Q (Carter, 1968), defined as

Q = pθ
2 − cos2 θ

(
a2
E2r2

g

c2
− L2

sin2 θ

)
. (14.1)

The first two constants are related to the Killing vectors of the Kerr spacetime (see Sec. 4.2.1).
These equations are supplemented with the massless constraint pµpµ = 0, which makes
geodesic motion fully integrable by providing a fourth equation. It is convenient to define
the dimensionless parameters ` = cL/Erg and q2 = Qc2/E2r2

g. The Carter constant is related
to the orthoradial momentum pθ, but is not always positive. If a photon reaches spatial
infinity,E is its energy as measured by an observer at infinity, which is redshifted and differs
from the emitted photon energy.

The existence of this third Carter constant is a stroke of luck, which is not related to any obvious
symmetry of spacetime.

From the constants of motion and the constraint pµpµ = 0, the contravariant components of
the photon momentum can be reconstructed (Bardeen et al., 1972):

Σ

r2
g

cpr

E
= ±

√
R(r), (14.2)

Σ

rg

cpθ

E
= ±

√
Θ(θ), (14.3)
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∆
, (14.4)
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)
, (14.5)

where the radial potentialR and angular potential Θ are given by

R(r) =
(
r2/r2

g + a2 − a`
)2 − ∆

r2
g

(
q2 + (a− `)2

)
, (14.6)

Θ(θ) = q2 + a2 cos2 θ − `2 cotan2 θ. (14.7)

This can be easily generalized to timelike geodesics, with pµpµ = −m2c2.
From these equations, it is readily seen that geodesic motion does not depend on the

energy (or the wavelength) of the photon: gravity is “achromatic”. Note that Eq. (14.2) and
(14.3) are defined up to a choice of sign. This means that for a given set of constants of motion(
`, q2

)
, two geodesics are associated with these parameters (determined by the choice of one

of these two signs), whereas the other choice of sign determines the direction of travel along
that geodesic. These contravariant components pµ are actually the derivatives pµ = dxµ/ dλ,
where λ is an affine parameter along the geodesic. Therefore, the zeros of the potentials R
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and Θ correspond to turning points in the trajectories, with a subsequent sign flip in (14.2)
and (14.3).

14.1.2 Impact parameters

Let us assume that a geodesic with parameters (`, q2) reaches spatial infinity. In order to
reconstruct observables, it is very useful to look at its behavior at spatial infinity. Let us
assume that the photon is captured by a remote detector located at a point (rf , θf , ϕf = 0),
with rf � rg. In this limit, Eq. (14.3), (14.4) and (14.5) become:

cpθ

E
' rg

r2
f

√
q2 + a2 cos2 θf − `2 cotan2 θf ;

cpϕ

E
' `rg

r2
f sin2 θf

;
cp0

E
' 1. (14.8)

From this, the rates of change of ϕ and θ at the observers’s location can be obtained:

dθ

dt
= c

pθ

p0
' ±crg

r2
f

√
q2 + a2 cos2 θf − `2 cotan2 θf ;

dϕ

dt
= c

pϕ

p0
' crg

rf

`

rf sin2 θf
. (14.9)

A quantity of interest is the final 3-velocity vî of the photon in an orthonormal basis, since
u = v/c is the unit vector tangent to the photon trajectory. For rf � rg, we get from
Eq. (14.9):

vθ̂ = rf
dθ

dt
= ±crg

rf

√
q2 + a2 cos2 θf − `2 cotan2 θf , (14.10)

vϕ̂ = rf sin θf
dϕ

dt
= c

rg

rf

`

sin θf
, (14.11)

vr̂ = ±
√
c2 − vθ̂2 − vϕ̂2

. (14.12)

Obviously, if the photon makes it to infinity, its velocity is bound to become purely radial,
so that vr̂ → c and vθ̂, vϕ̂ → 0 as rf → +∞.

Now let us assume that a distant observer captures photons reaching a spherical screen
rf = rout, and aims to determine the photon’s outgoing direction, and to produce an image
of all the photons propagating in a given direction α. The observer is equipped with a
screen, represented in Fig. 14.1(a), the center of which lies on the black hole. The screen
is perpendicular to the line of sight of the distant observer to the black hole, which has an
inclination α with respect to the spin axis (see Fig. 14.1(b)). It is tangent to the spherical
screen centered on the black hole. The impact parameters of a given photon on this screen
are denoted as (X,Y ). The impact parameter Y is the apparent displacement of the photon
in the direction parallel to the spin axis of the black hole (the projected arrow in Fig. 14.1(a)),
whereasX is the apparent displacement in the direction perpendicular to the projected axis.

The impact parameters of a given photon parametrized by (`, q2) can be obtained geo-
metrically (Cunningham & Bardeen, 1973; Frolov & Zelnikov, 2011). An algebraic proof is
also given by Gralla et al. (2018). This is illustrated in the simple case of a photon with ` = 0
in Fig. 14.1(b). If rf � rg, the angle at which the photon reaches the external screen θf is
very close to α, which is the angle that its outgoing direction u makes with the spin axis.
The apparent displacement Y can be related to the small orthoradial velocity of the photon.
Defining the angle χ = α − θf , we have sinχ = Y/rf = uθ̂ = vθ̂/c (see Fig. 14.1(b)), so that
the impact parameter reads
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FIGURE 14.1: (a) Observer’s screen, centered on the black hole (black disk). The disk is
seen face-on, and is normal to the line of sight of the observer, with inclination α. The arrow
represents a projection of the black-hole spin, which defines the Y direction. The yellow ring
represents the equatorial plane of the black hole, in order to illustrate its inclination. Figure
inspired by Cunningham & Bardeen (1973). (b) Situation seen edge-on. The blue rectangle
is the observer’s screen as seen from the edge. A photon is emitted in the vicinity of the
black hole (at the yellow star) and reaches the distant spherical screen r = rf at θ = θf . This
photon escapes toward the observer, its direction u making an angle α with the spin axis
(red arrow). The magnitude of the angle χ has been exaggerated for illustrative purposes.

Y

rg
' ±

√
q2 + a2 cos2 α− `2 cotan2 α = ±

√
Θ(α). (14.13)

Recall that there is freedom in the chosen sign for the orthoradial direction. The same line of
reasoning can be carried out for the X parameter, which is related to the azimuthal velocity
by X/rf = vϕ̂/c, so that we have

X

rg
= − `

sinα
. (14.14)

The minus sign comes from the reversed view of the observer, just like East and West are
reversed on a sky chart. All in all, for a given photon detected at (rf , θf) with known param-
eters (`, q2), as well as two signs defining whether θ and r initially increase or decrease, it is
possible to retrieve the impact parameters at a given viewing angle α.

14.1.3 Ray tracing codes

Because accretion flows in low-luminosity AGN are optically thin, the observed light can
originate from the innermost regions, where relativistic effects are important. General rela-
tivistic ray tracing must be carried out in order to trace the light from its emission region to
the observer and to compute the observed intensity. There currently exists a variety of ray
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tracing codes in Kerr spacetime, or in any input metric (Vincent et al., 2011; Kuchelmeister
et al., 2012; Chan et al., 2013). Most of these perform backward ray tracing. Photons are sent
from the observer’s screen and integrated backward in time, to the emitting region. This
is usually very efficient, as most photons emitted by the object do not end up hitting the
observer’s screen. Unfortunately, here we track photons in situ, so that we must resort to
forward ray tracing. I chose to use the public ray tracing code geokerr, designed by Dex-
ter & Agol (2009). This code performs geodesic integration in Kerr spacetime only, which
is enough for my purpose. This restriction allowed its developers to use a semi-analytic
approach, by reducing the equations of motion to tabulated integrals. Thus, this ray tracing
code shows excellent performance, both in speed and accuracy.

The procedure goes as follows. A given photon trajectory is defined by the values of `, q2,
the initial radius r0, the final radius rf , the initial angle θ0, and the initial signs of dr/dt and
dθ/dt. It is also possible to prescribe the final angle instead of the final radius. Integrating
Eq. (14.2) and (14.3) eliminates the affine parameter λ, so that the geodesic equation reduces
to quadratures (Cunningham & Bardeen, 1973; Gralla et al., 2018):

ˆ rf

r0

dr/rg

±
√
R(r)

=

ˆ θf

θ0

dθ

±
√

Θ(θ)
. (14.15)

This integral should be understood as a line integral along the trajectory, with sign flips
when the geodesic arrives at a turning point in r or θ. This is the equation that the geodesic
connecting the point (r0, θ0) to (rf , θf) must verify, allowing to determine θf . Knowing both
rf and θf , the variations of ϕ and t can then be obtained by integrating Eq. (14.4) and (14.5).
Since all equations of motion are handled in an integrated form, the need to “spatially re-
solve” the geodesic is relaxed. Indeed, all we need to compute the times of flight and the
impact parameters is the final angle θf . Consequently, this procedure is very efficient in our
case: we do not need to compute a large number of points on the geodesic. This is unlike ra-
diative transfer codes, which integrate the emissivity of the medium surrounding the black
hole and must resolve the entire geodesic.

14.1.4 Coupling with geokerr

Let us describe how to use geokerr for our purposes, first focusing on gamma rays. At
every time step, if a high-energy photon produced by inverse Compton scattering is mea-
sured to be under the pair creation threshold, there is a probability f that its information is
dumped to an external file. This file is later to be processed by geokerr. Then, the photon
is discarded. That way, we save the information of a fraction f = 10% of photons below the
threshold. To save computation time, we determine in advance whether a photon travels on
a geodesic onto spatial infinity or onto the black hole. Our goal is to only dump photons that
will reach the observer at infinity. This can be done by determining the roots of the radial
potentialR, as explained in the block below.
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Method

R is a quartic polynomial with no third power of r. One can check that R(rh) > 0,
R(0) < 0, and thatR is positive at±∞. As a result, it has at least two real roots and no
more than four real roots. Because the sum of all four roots must be zero and R(rh)
is positive, there has to be two real roots smaller than rh, which have no physical
significance. If the two remaining roots are complex, the photon trajectory extends
from rh to infinity. If they are real, denoted as r1 and r2 ≥ r1, they lie in [rh,+∞[. The
different cases depend on the existence of the real roots r1 and r2, the photon’s initial
position r0 and its initial velocity vr.

1. There are no real roots in [rh,+∞[. The photon reaches infinity only if vr > 0.

2. There are two real roots r1 ≤ r2 in [rh,+∞[.

(a) If r0 < r1, the photon falls to the black hole, even if vr > 0.

(b) If r0 > r2, the photon escapes to infinity, even if vr < 0.

In any case, the radial motion has no more than one turning point (Dexter & Agol,
2009; Frolov & Zelnikov, 2011).

The code evolves the position xi and components of the momentum pi of a given pho-
ton according to Eq. (10.72) and (10.73). From Eq. (10.71), the energy-at-infinity E can be
deduced from xi and pi as

E = α(xi) E − cβi(xi) pi, (14.16)

where E = c
√
hjkpjpk is the FIDO-measured energy. This allows us to compute the dimen-

sionless numbers ` = cpϕ/rgE and q2 (Eq. (14.1)). Each photon dumped in the geokerr
input file is characterized by the following information:

I the parameters ` and q2,

I the initial position r0 and θ0,

I the terminal radius rf , chosen at a spherical screen rf = rout = 200 rg � rg,

I the initial signs of dr/dt and dθ/dt,

I the weight of the particle and its energy-at-infinity E,

I the initial time of emission t0 and azimuthal angle ϕ0.

The last two items are not needed by geokerr, but are used to reconstruct the light curves
and images. This code is written in BL coordinates, unlike GRZeltron which works in KS
coordinates. As a result, when dumping t0 and ϕ0, the values from GRZeltron should
be converted using Eq. (4.25a) and (4.25b). This procedure provides us a list of photons
with all the necessary information to reconstruct their full trajectories. All diagnostics can
be performed in post-processing. Then, geokerr is run on this input file. The output file
provides, for each photon, the terminal angle θf at which the photon reaches rf , as well as
the time of flight ∆tf and the azimuthal variation ∆ϕf .

Actually, geokerr works with the variables 1/r and cos θ rather than r and θ, but this does not
change the discussion.
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14.1.5 Observables

For rf � rg, as said earlier, the outgoing direction α of the photon should be close to θf .
However, since rf is finite, it is slightly more accurate to compute α as

cosα = u · ez = cos θfu
r̂ − sin θfu

θ̂, (14.17)

where ez is the unit vector along the spin axis of the black hole. As expected, increasing
rf makes α tend to θf . Photons are then sent to different bins according to their outgoing
direction α. We use an angular resolution of ∆α = π/24. Eventually, images and light curves
can be reconstructed. The impact parameters of each photon can be computed according to
Eq. (14.13) and (14.14), before stacking all the photons on the observer’s screen to build an
image. The screen resolution is ∆X = ∆Y = 0.05 rg. Since the simulation is axisymmetric,
we collect all photons regardless of their outgoing azimuthal velocity.

To build light curves, one must know the time delay from the emission of the photon to
the observer. This delay includes the time ∆tf that it takes to reach rout, and a geometrical
delay δt from r = rout to the observer’s plane (see Fig. 14.2). Let us define a Cartesian basis
(ex, ey, ez), where ez is aligned with the spin axis of the black hole and where ϕ is measured
in the (ex, ey) plane with respect to ex. In this basis, the final outgoing direction of a photon
is defined by its co-latitude α and its azimuth ψ: cosα = u · ez and cosψ = u · ex (see
Fig. 14.2). This time delay is computed as (Cerutti et al., 2016)

c δt = rout − rf (sinα sin θf cos (ϕ0 + ∆ϕf − ψ) + cosα cos θf) , (14.18)

as can be seen on the geometrical construction in Fig. 14.2. Note that even if we have a
“ring” of observers at fixed angle α, and all photons are collected regardless of ψ, the angle
ψ intervenes because of the finite propagation time from the sphere at rout to the observer’s
plane. The total time delay, from emission to collection by the observer, is tdelay = ∆tf + δt.
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All in all, photons observed at infinity with an angle α are staggered on a time grid according
to their time of arrival. We use a time resolution of ∆t = 0.02 rg/c. Each photon contributes
to the luminosity per unit solid angle as

dL

dΩ
=

E

2π sinα∆α∆t
. (14.19)

We do not keep any spectral information in the gamma-ray emission because of the low sep-
aration of scales. Our light curves are integrated over all photon energies. The information
of around 104 photons per time step is saved.

Because geokerr was designed for backward ray tracing, a few adjustments had to be
made to the code, allowing it to correctly pick the right geodesic given the photon param-
eters listed above. I verified that the two codes matched to high accuracy, regardless of the
complexity of the geodesic (number of turning points in r or θ) or the number of points
computed on the geodesic by geokerr. A typical photon trajectory is shown in Fig. 14.3(a),
where the dashed line represents the trajectory of a photon computed by Zeltron, whereas
the yellow solid line is an output from geokerr (for which a high number of points along
the geodesic were computed to allow comparison). While geokerr conserves the constants
of the motion to machine precision by construction, Zeltron does not. The energy-at-
infinity, angular momentum and Carter constant along the Zeltron geodesic are shown
as a function of the integration time pictured in Fig. 14.3(b), for the specific photon of
Fig. 14.3(a). In general, the Zeltron particle pusher conserves E and Q to a relative ac-
curacy of 10−8 at worst, which is very satisfying. Note that L is exactly conserved, because
the simulation is axisymmetric: pϕ is not evolved by the PIC code.

14.2 Light curves

14.2.1 Results

As we saw in Chap. 13, the equatorial current sheet is prone to magnetic reconnection. This
process has been invoked to be responsible for the very rapid flares in blazars or pulsar
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FIGURE 14.3: (a) Trajectory of a photon evolved by Zeltron (yellow solid line), compared
with the reconstruction by geokerr using the photon’s initial parameters (black dashed
line). (b) Time evolution of the conserved quantities E, L and Q for this photon, as evolved

by Zeltron.
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wind nebulæ (Cerutti et al., 2012; Christie et al., 2019; Mehlhaff et al., 2020). It is intermit-
tent and can accelerate particles very efficiently. Therefore, one might expect the dynamic
current sheet from the paraboloid simulations in Chap. 13 to produce flares of VHE emis-
sion. This is also suggested by the strong variations in the magnetic flux and electromag-
netic luminosity (see Fig. 13.8). It is possible to assess this scenario by investigating the
synthetic light curves from these simulations, assimilating VHE emission to inverse Comp-
ton emission. We applied the previously outlined procedure to our three simulations with
V0/c = 0.05, along with the highest opacity monopole simulation presented in Chap. 12
(which had B̃0 = 5× 105, ε̃0 = 5× 10−3 and τ0 = 30).

The time-averaged luminosity corresponds to the total energy extracted from the black
hole by the Blandford-Znajek process, while a fraction of it is channeled into gamma-ray
photons. We define the time-averaged luminosity 〈LEM〉, and compute the energy flux per
unit of solid angle using the method outlined in Sec. 14.1.5. The angle-resolved light curves
are normalized by 〈LEM〉/∆Ωobs, where ∆Ωobs = 2π sinα∆α is the solid angle in which
originate the photons contributing to the light curve at viewing angle α.

Light curves extracted from the monopole simulation at τ0 = 30 are shown in Fig. 14.4(a).
There is only a weak dependence on the viewing angle, especially at intermediate lati-
tudes. This is expected, since the monopole simulations show little structure in the or-
thoradial direction, and photons are mainly emitted radially by particles flowing along
the magnetic field lines. The bolometric inverse Compton luminosity of this simulation
is 〈Lγ〉 = 〈

´
(dLγ/dΩ) dΩ〉 ' 0.04 〈LEM〉. This is consistent with the dissipation rate of elec-

tromagnetic energy measured in Sec. 12.2.4, confirming that the dissipated Poynting flux is
mainly transferred to high-energy photons below the pair creation threshold. Although the
light curve shows signs of rapid variability, which is consistent with the small size of the
gap, it exhibits no flare. The incoherent process of pair creation along various magnetic field
lines hinders the occurrence of large amplitude flares.

The situation is rather different for the paraboloid simulations with external forcing
(Fig. 14.4(b), 14.4(c) and 14.4(d)). These light curves show pronounced differences if viewed
face-on (line of sight close to the spin axis, low α) or edge-on (line of sight close to the equato-
rial plane, α ' π/2). At low α, they exhibit stronger variability. During a “flaring” event, the
flux doubles within a rising time ' 2 rg/c. The periodicity of these flares is around 10 rg/c,
in agreement with the periodicity of the giant plasmoid accretion cycles. Conversely, light
curves observed at α close to π/2 are remarkably smooth, with no short-scale variability.
In order to understand these qualitative differences, we have constructed two light curves,
associated with the sites of emission of the photons. We have distinguished the polar cap as
the zone defined by θ ∈ [0, π/3] ∪ [2π/3, π], and the current sheet, defined by θ ∈ [π/3, 2π/3]
and r ∈ [rh, 5 rg] (see the sketch in Fig. 14.5). The distinct light curves of these two zones are
shown in Fig. 14.6. Unsurprisingly, photons emitted in the polar cap mainly contribute to
the emission at low viewing angles, whereas the emission at α ' π/2 is mainly due to the
current sheet.

The fiducial optical depth τ0 mainly impacts the intensity of the current sheet emission.
In the simulations with external forcing, the average bolometric luminosity 〈Lγ〉 goes from
0.1 〈LEM〉 at τ0 = 30 to nearly 0.5 〈LEM〉 for τ0 = 80. Therefore, a very significant frac-
tion of the electromagnetic power extracted from the black hole is converted to gamma-
ray luminosity. The radiative efficiency is much higher than in the monopole simulations.
Importantly, regardless of τ0, the bolometric luminosity of photons emitted in the polar
cap remains around 5% of the Blandford-Znajek luminosity. This fraction is similar to the
monopole total high-energy bolometric luminosity, although the polar cap emission is much
more variable in the paraboloid simulations. The excess luminosity entirely originates from
the current sheet, which dissipates around 30% to 40% of the electromagnetic luminosity.
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FIGURE 14.4: Light curves for the monopole simulation at τ0 = 30 (a), and for the
paraboloid simulations with V0/c = 0.05 and τ0 = 30 (b), τ0 = 50 (c) and τ0 = 80 (d). The
blue solid lines denote low viewing angles, with the black hole seen face-on. The yellow

dashed lines denote high viewing angles, with the black hole seen edge-on.
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FIGURE 14.5: Sketch of the “polar cap” and “current sheet” zones. The gray shaded rectan-
gles represent the conductive disk.

We can conclude unambiguously that high variability should not be expected from mag-
netospheres observed edge-on. This could stem from the fact that the formation of plas-
moids in the current sheet, and the subsequent emission of high-energy photons, is inher-
ently incoherent. However, several local studies of relativistic magnetic reconnection in a
Harris sheet setup have posited that this process could induce strong flares. On the other
hand, photons emitted in this region travel along complex null geodesics, which can have
several turning points in θ. These geodesics are likely to differ significantly from simple ra-
dial rays; this makes the current sheet emission lose time coherence, which smears out any
strong variability. Photons emitted from the polar cap follow more direct geodesics toward
the observer at infinity, such that the variability of the primary process is imprinted in the
light curve. Also, it should be noted that the polar cap shows more pronounced variability in
these simulations than in the monopole case. This indicates that the gap dynamics cannot be
studied with no consideration for the global magnetospheric structure: the magnetospheric
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dynamics enhance the activity of the gap.
The power spectral densities of the light curves at α = 11.2◦ for the simulations with

V0/c = 0.05, computed using the stingray package (Huppenkothen et al., 2019), are
shown in Fig. 14.7 (after logarithmic rebinning). At frequencies 0.1 c/rg . f . 2 c/rg, it
is well described by a red-noise power law ∝ f−p, with p = 2.00 ± 0.13. A spectral break
is visible around 0.1 c/rg. The spectral break frequency is consistent with the characteristic
timescale associated with giant plasmoid accretion events. Resolving this spectral break ob-
servationally would require data acquisition for much longer than 10 rg/c (more than 4 days
in the case of M87*). Beyond 2 c/rg, the power spectra are rather similar to a white noise.
Most of the power is distributed at lower frequencies: flux variations on long timescales
dominate those on short timescales. The value of the index p is in agreement with that
measured by Aharonian et al. (2007) from the AGN PKS 2155-304, although this measure
may depend on whether the AGN is in a flaring state or not (H. E. S. S. Collaboration et al.,
2017). We find that the value of p does not depend much on τ0. The characteristic value
of the plasma frequency νp = ωp/2π =

√
8πe2〈n/Γ〉/me/2π is 50 c/rg, and lies beyond the

frequency range presented on the spectrum.

14.2.2 Discussion

We find that a substantial fraction of the Blandford-Znajek electromagnetic luminosity is
channeled into inverse Compton photons. This high radiative efficiency is the most salient
feature of these paraboloid simulations, especially in the presence of external forcing V0 6= 0.
It confirms the view adopted in Chap. 12 that the dissipated electromagnetic energy was
largely transmitted to gamma-ray photons. We emphasize that emission from equatorial
latitudes is smoothed out, so that high-energy variability should primarily be expected from
the polar caps. Variability from the polar caps is enhanced with respect to the monopole
simulations. We also observe that in the absence of magnetic flux supply, the magnetosphere
reaches a somewhat quiescent state and cannot produce flares. This is consistent with the
recent resistive GRMHD simulations of Ripperda et al. (2020), who found that only in the
magnetically arrested disk setup could there be a flaring state, during which plasmoids
formed in an equatorial current sheet are heated to relativistic temperatures.
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FIGURE 14.7: Power spectral density of the light curves at viewing angle αobs = 11.2◦, for
the simulations with V0/c = 0.05, as a function of the frequency f . The black dashed line
shows the red-noise scaling f−2, down to a spectral break located close to 0.1 c/rg. The

shaded areas indicate the error bars on the power spectra.
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However, even with constant external forcing, the intrinsic activity of a steady-state
black-hole magnetosphere does not reproduce the most dramatic features of AGN flares: a
flux-doubling time below rg/c and an increase in the flux by a factor of at least 5, rather than
2 in our modeling. The variability seems to be well characterized by a red-noise power law,
down to' 2 c/rg. Because of the nonaxisymmetric modes mentioned earlier, 3D simulations
are likely to show even less variability. It should also be pointed that in our simulations, the
background radiation field is mono-energetic. Using a more realistic power law would have
reduced the variability in the gap screening, because the pair creation threshold would not
have been defined at a single photon energy. This makes it even less likely that realistic
gamma-ray flares can be accommodated with our numerical setup.

If of magnetospheric origin, rather being a manifestation of the intrinsic variability due
to the pair production mechanism, flares could be interpreted as the fast response of a black-
hole magnetosphere to a sudden change in the external parameters. This conclusion was
also reached by Levinson & Cerutti (2018) and Kisaka et al. (2020), through radiative 1D
GRPIC simulations. For example, a variation in the accretion rate would cause the density
of soft photons to increase, leading to an increase in τ0. The velocity of magnetic field trans-
port could also change, should a very magnetized plasma blob accrete toward the magneto-
sphere. In that sense, black-hole magnetospheres differ fundamentally from pulsar magne-
tospheres: pulsar activity is determined by parameters that are characteristic to the pulsar
itself, and therefore remains quite stable.

14.3 Images

14.3.1 Synchrotron radiation

Very much like we used inverse Compton emission as a proxy for VHE radiation, we assume
that millimeter wavelengths are adequately modeled by optically thin synchrotron emission.
Quantum effects are neglected, so that we can work in the approximation where synchrotron
photons are emitted continuously by gyrating particles, with energies much smaller than
their parent particle’s energy. Also, unlike gamma-ray photons, we do not track synchrotron
photons in the PIC simulations. Rather, at each time step, we compute the parameters of the
photons emitted by a fixed fraction f = 1% of all electrons and positrons, and dump them
to an external file for later geokerr treatment.

At each time step, a macro-photon emitted by a charged particle carries the total power
Ptot emitted by the particle, which is given by Eq. (8.43). We make the delta approxima-
tion, approximating the power spectrum of the macro-photon with Ptotδ (ν − νs), where νs

is the characteristic synchrotron frequency (see Eq. (8.50)). This approximation is valid if the
spread in the emitting particle spectrum is much larger than the width of the synchrotron
kernel, given in Eq. (8.50).

The synchrotron photons are assumed to be emitted along their parent particle’s mo-
mentum, in the ultra-relativistic limit. First, the effective perpendicular magnetic field (see
Eq. (8.44)) is computed at the emitting particle’s location. It is used to compute the emitted
frequency νs and the power Ptot of the macro-photon. The photon frequency measured by
an observer at infinity ν∞ is related to the emitted frequency νs as in Eq. (14.16). It is an
output parameter dumped in a text file, but it is not used by geokerr. The synchrotron
power is encoded in the weight of the photon. A single time-averaged image, for a chosen
viewing angle, is made of around 107 photons.
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14.3.2 Test cases

We tested the image reconstruction procedure against several test cases. Our goal is to nu-
merically retrieve the black-hole shadow. If a Kerr black hole is backlit by a distant source
of light of angular size much larger than the black hole, it will cast a shadow on the screen
of the observer. The interior of the shadow corresponds to unstable orbits which end up in
the black hole, resulting in a dark region on the observer’s screen. The size of the shadow
is larger than rh because of strong light bending. The rim of the shadow on the screen is
hit by photons which have circled the black hole many times, on bound, marginally stable
orbits. An implicit expression for the rim of the black-hole shadow and a physical interpre-
tation its the dependence with a can be found in the Appendix 14.A. This special curve was
alternatively dubbed the “critical curve” by Gralla et al. (2019).

In the case of a Schwarzschild black hole, the shape of the shadow does not depend on
the viewing angle. It is a circle of radius rph =

√
27 rg. As shown by Luminet (1979), if

the black hole is backlit by a plane-parallel beam of light, the image presents a dark disk of
radius rph. rph is the critical impact parameter below which back-traced photons would be
captured by the black hole. Gralla et al. (2019) noted that the image of a black hole lit by a
distant spherical screen would present the same feature. Falcke et al. (2000) and Narayan
et al. (2019) have designed semi-analytical models to compute the image of a black hole sur-
rounded by a spherically symmetrical, optically thin accretion flow, up to the event horizon.
This case is less straightforward, because some photons can have impact parameters smaller
than rph but still escape to infinity, since they are not emitted infinitely far from the black
hole. Hence, the “shadow” is not exactly dark. However, the region inside rph still shows
a deficit in brightness, because a larger fraction of photons is captured by the black hole.
Besides, those photons experience a stronger redshift, leading to a lower contribution to the
intensity on the image. For spherically symmetric accretion flows, the image is quite insen-
sitive to the details of the plasma emission properties, and matches the analytical shadow.

In our setup, the simplest test case is to embed the black hole in a spherically symmetric
region populated by synchrotron photons, from rh to 10 rg. The radiation field is uniform,
isotropic and mono-energetic. An example of resulting image is shown in Fig. 14.8(a). The
analytical prediction for the rim of the shadow is shown as a dashed line. For all viewing
angles, we find a circular dark region centered on (X = 0, Y = 0). Fig. 14.8(b) shows the
radial intensity profile, averaged on the viewing angle α. The intensity peaks close to the
prediction rph ' 5.2 rg. As noticed earlier, the intensity is not zero inside the shadow. The
shape of the intensity profile is similar to that found by Narayan et al. (2019), although the
emissivity profile is different in their case.

The reasoning is similar for a Kerr black hole. Since the black hole will capture most
photons orbiting within the marginally stable circular orbits, if it is embedded in a spher-
ically symmetric accretion flow, its image should show a brightness depression consistent
with the shadow (Falcke et al., 2000). As can be seen in Fig. 14.8(c) and 14.8(d), we indeed
observe such a shadow. Its rim is consistent with the analytical prediction. Note that while
the shadow is shifted to the right on the X axis, with respect to the black hole’s direction,
the diameter of the shadow barely depends on a (Johannsen & Psaltis, 2010), making the
diameter of the shadow a reliable marker of the black hole’s mass. The emission on the left
of the image is brighter because of Doppler beaming.

14.3.3 Results

In more complex configurations than an spherical accretion flow, the image does not neces-
sarily display a clean shadow. Luminet (1979) constructed, for the first time, the image of
a geometrically thin and optically thick accretion disk around a Schwarzschild black hole.
More systematic studies have been performed to study the looks of a thin disk (Gralla et al.,
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FIGURE 14.8: (a) Image of a Schwarzschild black hole with a viewing angle θ0 = 82.5◦.
(b) Radial intensity profile of the black-hole shadow with a = 0, averaged over θ0, for
the images at a = 0. (c) Image of a Kerr black hole with a = 0.99 with a viewing angle
θ0 = 22.5◦. (d) Same as (c) with θ0 = 85.5◦. The intensity is in arbitrary units. The blue

dashed curve denotes the analytical rim of the shadow.

2019), a moderately thick disk (Vincent et al., 2021) or a conical jet (Vincent et al., 2019).
Bronzwaer et al. (2021) studies in detail which conditions must be met by the black-hole
environment for the image to display the analytically predicted shadow.

On the other hand, no study has so far tried to model the contribution of the inner mag-
netosphere, especially from ab initio simulations. I have applied the image reconstruction
technique described in the previous section to the simulation with τ0 = 50 and V0/c = 0.05,
presented in Chap. 13. The images depend little on the observing frequency, except for fre-
quencies much smaller than νc = eB0/mec, at which smaller magnetic fields are probed,
resulting in a much larger and more diffuse emission zone. We are interested in optically
thin emission, which generally occurs at frequencies larger than the cyclotron frequency. In
the case of the EHT for example,we have νc ' 1 GHz, which is much smaller than the ob-
serving frequency 230 GHz. As a result, we will study images averaged in frequency over a
bandwidth [0.1νc, 10νc]. We will also focus on time-averaged images. The resulting images
are shown for various viewing angles in Fig. 14.9. Several features can be distinguished.
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FIGURE 14.9: Time-averaged images seen at various viewing angles θ0 from 0 to π/2 for
the paraboloid simulations with τ0 = 50 and V0/c = 0.05, in arbitrary units, averaged over

ν ∈ [0.1 νc, 10 νc]. The blue cross indicates the center of the image.

There is a central hot spot close to the center of the image at low viewing angles, which
turns into two bright zones symmetric with respect to the X axis at larger α. These bright
spots are surrounded by several lensed rings. In order to determine the physical origin of
these different components, we applied the same decomposition as in Sec. 14.2, separat-
ing the emission from the current sheet and the polar cap. These two emission zones were
sketched in Fig. 14.5.

The distinct emission from the current sheet is shown in Fig. 14.10(a), whereas that from
the polar cap is shown in Fig. 14.10(b). This decomposition separates unambiguously the
different components in the image. The central hot spot at low viewing angles originates
solely from the polar cap. It is the direct image of the upper photons emitted in the polar cap
by pair discharges. The surrounding ring is the direct image from the lower polar cap, on
the opposite side of the black hole, which is strongly lensed. We checked that the photons
from this ring crossed the equatorial plane once, whereas the ones from the hot spot did
not. At larger α, the contributions from the two sides of the black hole tend to be axially
symmetric.

The current sheet emission is negligible at very low α. At intermediate viewing angles,
the image displays a central moderately thick ring and a wider thin ring. The rings’ bright-
ness is larger on the left side of the image, as a result of Doppler beaming. The inner ring is
the direct image of the radiating current sheet, whereas the outer ring is the secondary im-
age which has been lensed by the black hole. The shape and location of the outer ring match
the analytical rim of the shadow. Close to an edge-on view (α ' π/2), the current sheet can
be directly seen from the edge as emission on the X axis, and indirectly in a surrounding
ring. This is not unlike the image of an optically thin accretion disk (Luminet, 1979).
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(a)

(b)

FIGURE 14.10: Contribution from the polar cap (a) and the current sheet (b), as defined in
Fig. 14.5, to the image in Fig. 14.9.
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14.3.4 Toy models

The morphologies of these images can help us constrain the physics of the emission. I
built toy models of synchrotron emission around the black hole, which are represented in
Fig. 14.11(a) and 14.11(b), with a = 0.99. Toy model 1 consists in polar cap emission from a
zone delimited by r ∈ [rh, 2.5 rg] and |θ| ≤ 0.4, |π − θ| ≤ 0.4 (see Fig. 14.11(a)). Toy model
2 (resp. 3) models current sheet emission from a zone delimited by |π/2 − θ| ≤ 0.05 and
r ∈ [rh, 2 rg] (resp. r ∈ [rh, 6 rg]) (see Fig. 14.11(b)). We filled these zones with a uniform,
isotropic and mono-energetic synchrotron radiation field, as in the test cases (Sec. 14.3.2).
The images associated with model 1 are shown in Fig. 14.12(a), whereas the images from
model 2 are shown in Fig. 14.12(b).

The images from toy model 1 are exactly consistent with the polar cap emission, con-
firming that the magnetosphere presents bright emission spots at the poles of the black hole.
The case of the current sheet emission is more interesting. It is not clear a priori what the size
and extent of the equatorial emission are. In the case of the toy model 2, where the emission
extends to 2 rg and is concentrated at the innermost regions, the images show distinctly one
direct ring and one secondary ring (see Fig. 14.12(b)). This is precisely what is observed in
Fig. 14.10(b). On the other hand, if the equatorial emission zone extends up to 4 rg or 6 rg,
the direct emission is more diffuse (see Fig. 14.13). The differences between the two models
are most pronounced for intermediate viewing angles, at which the two rings can no longer
be distinguished. At edge-on view or face-on views, their predictions are similar. There-
fore, in our simulations, a major fraction of the current sheet image must originate from a
very compact zone, probably within 2 rg. Another teaching from such toy models is that the
equatorial origin of the emission ensures the existence of the central brightness depression.
We checked that with a thicker emission zone, the inner dark region shrinks.
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FIGURE 14.11: Sketch of the emitting zone in the different toy models (yellow area). (a)
Polar cap emission model. (b) Current sheet emission model; in model 2 the emitting zone

extends to 2 rg (solid line), whereas it extends to 6 rg in model 3 (dashed line).
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(a)

(b)

FIGURE 14.12: Images from the toy model 1 (a) and 2 (b) at various viewing angles, in
arbitrary units. The blue cross indicates the center of the image.
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FIGURE 14.13: Same as Fig. 14.12 for the toy model 3, with a current sheet emission up to
6 rg.

14.3.5 Interpretation and application to M87*

In order to apply these findings to the EHT images of M87*, let us assume that the spin of the
black hole is aligned with the large-scale jet, so that it makes an angle α ' 18◦with our line of
sight (Walker et al., 2018). In the sixfold image panels presented so far, the EHT data should
be compared to the top-middle images. The main discrepancy between the images produced
by our simulations and the ones observed by the EHT is the central bright spot. However, it
is possible that the intense synchrotron emission from the polar cap is overestimated in our
simulations, due to the absence of synchrotron cooling. Particles accelerated at the X-points
in the current sheet are propagating in a zone where the magnetic strength is very low by
construction, implying that they can suffer only moderate synchrotron losses. In contrast,
the magnetic strength is high at all times in the polar caps, so that accelerated particles
should cool quickly. Therefore, we expect the current sheet emission to dominate the image
in the presence of synchrotron cooling. It is one of my main upcoming objectives to find out
whether this hypothesis is valid, by including a radiation reaction force in the simulation
(see Sec. 8.3.4).

Let us make the assumption that the main contribution to the image seen at α = 18◦

comes from the current sheet. From this magnetospheric model, we can make the predic-
tion that when the EHT reaches a finer resolution, it will resolve two distinct rings. Fig. 14.14
shows two images of the current sheet emission from our simulation seen at α = 18◦,
blurred with a Gaussian kernel with two different standard deviations σ (in the case of
M87*, 5.2 rg ' 20 µas). The brightness asymmetry and morphology of the blurred images
are consistent with the EHT observations. The originality of the magnetospheric model is
to include equatorial emission up to the event horizon, whereas most models either assume
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(a) (b)

FIGURE 14.14: Image produced by the current sheet region from the paraboloid simulation
with τ0 = 50 and V0/c = 0.05, observed with α = 18◦, in arbitrary units, blurred with a
Gaussian kernel at σ = 2.6 rg (a) and 5.2 rg (b). The white cross indicates the center of the

image.

that the emission zone is truncated at some larger radius, or that it is almost spherically sym-
metric. Instead, we find that if the polar caps are indeed quenched by synchrotron cooling,
a compact and annular emission zone close to the event horizon can account for the EHT
images at current angular resolution. In this case, the central brightness depression is well
within the photon ring. If the current sheet emission brings the dominant contribution to
the EHT image, this could readjust the estimation of the mass of M87*.

In this preliminary work, I have only discussed the morphologies of the synthetic im-
ages, without estimating the fraction of the electromagnetic luminosity that is actually con-
verted into synchrotron radiation. It will be important to compare the synchrotron luminos-
ity in my simulations to the brightness temperatures from the EHT observations, in order to
test the magnetospheric scenario. This will also require the inclusion of synchrotron cooling
in the code.

14.A Appendix: Black-hole shadow

In this appendix, we aim to derive an analytical expression for the rim of the shadow as
a function of the spin parameter a and the viewing angle α. Let us trace back a photon
with impact parameters (X,Y ) to the source; it must have a radial turning point. A photon
orbiting exactly at a radial turning point has ṙ = 0 and stays at constant t, on a “circular”
orbit. What we must do is find the characteristics of the marginally stable circular orbits and
relate them to the impact parameters. The properties of circular photon orbits in the Kerr
metric are studied in detail by Bardeen et al. (1972) and Teo (2003). A construction of the
shadow is provided by Frolov & Zelnikov (2011).

The marginally stable circular orbits correspond to the critical case, when two real roots
ofR coincide. Such an orbit with radius r0 is defined by

R(r0) = 0,
dR
dr

∣∣∣∣
r0

= 0. (14.20)
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These two equations allow us to express ` and q2 as a function of the radius of the orbit r0,
fully parametrizing the shadow on the observer’s screen according to Eq. (14.13) and (14.14).
They yield two classes of solutions:

` =
r2 + a2

a
, q2 = −r

4

a2
; (Class 1) (14.21)

` = −r
3 − 3r2 + a2r + a2

a (r − 1)
, q2 = −r3 r

3 − 6r2 + 9r − 4a2

a2 (r − 1)2 ; (Class 2) (14.22)

with r = r0/rg. Actually, the first class given by Eq. (14.21) is unphysical. For the geodesic to
be physical, the angular potential Θ must be positive (see Eq. (14.3)). Here we have q2 < 0,
so that for Θ = q2 +a2 cos2 θ−`2 cotan2 θ to be positive, the condition a2−q2−`2 > 0 must be
satisfied. However, inserting Eq. (14.21) into this condition leads to a2− q2− `2 = −2r2 < 0.
In the second class, one can check that a2 − q2 − `2 < 0 in general, implying that it yields
physical solutions only if q2 > 0. Solving the cubic equation, one can show that q2 is positive
for r ∈ [r−, r+], where

r± = 2rg

(
1 + cos

(
2

3
arccos (±|a|)

))
. (14.23)

All bound orbits lie at a fixed radius r0, which must lie in [r−, r+]. Importantly, an orbit
which remains in the equatorial plane θ = π/2 must have q2 = 0. Therefore, such equatorial
circular orbits can only exist at r0 = r+ or r0 = r−. Although photon orbits around a
Schwarzschild black hole are all confined to a plane passing through its center, it is not the
case in the Kerr metric. There exists spherical orbits with constant radius r0 which are not
confined to the equatorial plane. However, such orbits are bound to remain in the radial
shell [r−, r+].
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FIGURE 14.15: Rim of the shadow of a Kerr black hole with spin parameter a = 0.8 (a) and
a = 0.999 (b) on the observer’s screen with coordinates (X,Y ), for several viewing angles
α. The shadow of the Schwarzschild black hole (circle centered on (0, 0) with radius 3

√
3 rg)

is also shown (black solid line).
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The rim of the shadow at observing angle α can be eventually be obtained by tracing the
parametric curve

X(r0) = −rg
`(r0)

sinα
; Y (r0) = ±rg

√
q2(r0) + a2 cos2 α− `2(r0) cotan2 α, (14.24)

where `(r0) and q2(r0) are given by Eq. (14.22), for r0 ∈ [r−, r+]. Each r0 parametrizes a
circular (or rather, spherical) orbit of radius r0. The resulting shadows for various angles
and spin parameters are shown in Fig. 14.15.

In the limit a = 0, we find using Eq. (14.24) that X2 + Y 2 = r2
g

(
q2 + `2

)
. Besides, in

this case, the radial potential reads R(r0) = r4 −
(
q2 + `2

) (
r2 − 2r

)
. Implementing the

conditions given by Eq. (14.20) with this potential yields r0 = 3 rg and q2 + `2 = 27. All in
all, in the Schwarzschild limit, marginallly stable circular orbits all have radius r0 = 3 rg,
and the resulting shadow is a circle radius 3

√
3rg, regardless of the observer’s inclination

(see Sec. 2.2.4). The Schwarzschild shadow is also represented in Fig. 14.15 for comparison.
Let us interpret the shadow of a Kerr black hole close to maximal spin parameter (see

Fig. 14.15(b)). Rays propagating in the α = 0 direction have ` = 0. This uniquely determines
the radius of the spherical orbits which contribute to this image. Therefore, the shadow as
seen by a face-on observer is a circle. As α gets closer to π/2, the circle shifts to the right
and gets flattened at its left edge. The shift is largest for α = π/2 and a = 1. A physical
explanation of this shift is illustrated in Fig. 14.16. Corotating photon orbits are stabilized
by frame-time dragging, so that the marginally stable circular photon orbits happen to be
located closer to the black hole as a increases. The effect is opposite for counter-rotating
orbits. Photons with positive impact parameters X have ` < 0, so they were in counter-
rotation with respect to the black hole, whereas photons with negative impact parameters
were in corotation. Thus, the rim of the shadow is shifted to the right (in the X direction)
for both corotating and counter-rotating photons.

FIGURE 14.16: Photons hitting the left of the rim were propagating on corotating, close
orbits, whereas photons hitting the right of the rim were propagating on counter-rotating,

more distant orbits. Figure taken from Frolov & Zelnikov (2011).
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Conclusion



“The only principle that does not inhibit progress is: anything goes.”

“Le seul principe qui n’entrave pas le progrès est : tout est bon.”

PAUL FEYERABEND, Against method



Chapter 15

Conclusion and perspectives

General relativistic kinetic simulations are a very recent tool, yet they have already offered
new perspectives on the modeling of black-hole magnetospheres. Crucially, they can model
properly the tenuous and magnetized funnel regions where plasma injection is supposed to
take place. Using this tool, it is possible to include ab initio pair creation, radiative processes,
and nonideal effects. Including general relativity and radiative processes in this problem
proved to be a necessary step, both to model the dynamics of the plasma and to reproduce
observables.

In this thesis, I have presented global simulations of the intrinsic activity of spark gaps
in the magnetosphere (Chap. 12). They have proved that the Blandford-Znajek mechanism
can indeed be activated self-consistently in a magnetic monopole configuration. This re-
inforces the status of this process as a plausible energy extraction mechanism, a currently
debated issue in the scientific community. I have also been able to pinpoint the location of
the spark gaps and the separation surface of the electron/positron flow at the inner light
surface, thereby answering a long-standing question in this field. These simulations have
shown that pair creation occurs intermittently on small spatial scales. I have also performed
simulations in a more realistic magnetic configuration, with paraboloidal field lines switch-
ing polarity at the equator (Chap. 13). These simulations display a reconnecting current
sheet, allowing me to understand how the spark gap activity is affected. They have shown
that magnetospheres can dissipate electromagnetic energy very efficiently through magnetic
reconnection. Finally, I have coupled the kinetic code Zeltron to a public ray-tracing code,
in order to produce synthetic gamma-ray lightcurves and millimeter images (Chap. 14).
This has enabled me to bridge the gap between magnetospheric models and observations.
I have found that although most of the dissipated energy is converted into observable in-
verse Compton radiation, no flare as intense as those observed in AGN can be reproduced.
High-energy flares, if of magnetospheric origin, could therefore result from the response of
the magnetosphere to external changes. I have also shown that the morphology of the EHT
synchrotron images is consistent with a magnetospheric origin.

These studies still need improvements to yield conclusive answers. One issue in my gap
simulations is the crude model of the ambient emission field. Not only does a realistic ra-
diation field have a broad spectrum, but the isotropy hypothesis is also likely to be false, as
FIDOs move at relativistic speeds and should observe beamed soft emission. It will be inter-
esting to see whether a more realistic soft radiation field alters our findings. A bigger issue
regarding these simulations is the limited separation of scales. Increasing it will be chal-
lenging, but it will allow me to ascertain my important conclusions, such as the role of the
light surface. Performing a more extensive parameter study might help to understand the
physics of pair production, depending on the optical depth and the spin of the black hole.
In parallel, it might be instructive to downscale current 1D kinetic simulations of spark gaps
in order to compare their results to my 2D radiative simulations. Indeed, there is currently
tension regarding the roles of the null surface and inner light surface.
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Concerning my paraboloid simulations, a major step forward will be to extend these
models to 3D, in order to understand whether the cyclic dynamics of the current sheet can
be sustained in a more realistic setup. Importantly, simulations with variable external pa-
rameters (the optical depth or the magnetic strength) should be investigated to see if they
can reproduce flares. Rapid changes in the external conditions might result in stark rises in
the high-energy luminosity, which is all the more likely as we have proved that the radiative
efficiency of the current sheet is very high.

With recent EHT breakthroughs, such as the ability to perform polarization-sensitive
measurements, and with the expectations of future improvements in the angular resolution
of the observations, it will become even more important to predict finer features of the syn-
chrotron images. Furthermore, the EHT collaboration has already recorded data from the
supermassive black hole Sgr A*. This data has proved hard to analyze because of a large
time variability and has not been released yet. Yet, dynamical imaging techniques are being
developed to overcome this issue, so the importance of time-dependent predictions is grow-
ing. I intend to refine and develop the black-hole images produced by my magnetospheric
simulations. I plan to study the time variability of these images and to include the transport
of the Stokes parameters in the ray-tracing treatment, in order to produce polarized images.
This will allow me to perform more decisive tests of the magnetospheric model. I also want
to check the hypothesis that synchrotron cooling can successfully quench the polar cap hot
spots, and more generally, whether synchrotron losses can affect the dynamics of the simu-
lations.

So far, I have studied magnetic configurations in which the black hole and the accre-
tion disk are disconnected, with a focus on the former. However, such configurations are
disfavored by the recent GRAVITY observations of a hot spot orbiting Sgr A*, which are
reminiscent of a solar flare. The black hole and the disk can be magnetically linked, in an
analogous way to a young star and its protoplanetary disk. Magnetic reconnection between
field lines connected to the black hole and open field lines threading the disk could produce
a burst of energetic particles that would stream down the magnetic field lines and bombard
the accretion disk, heating it and generating flares. In the future, I would like to reproduce
these GRAVITY observations by studying a configuration with a magnetic linkage between
the black hole and the accretion disk. The accretion flow can be simply modeled as a thin
and perfectly conducting equatorial disk since it is not necessary to know the full dynamics
of the flow in this problem. 2D axisymmetric solutions can be used to evaluate how much
energy extracted from the black hole is transferred to the disk, depending on the spin of the
black hole. To compare with GRAVITY observations, I will take advantage of my experience
with ray tracing to reconstruct infra-red lightcurves. This specific problem will require 3D
simulations.

To go even further in modeling the phenomenology of accreting black holes from first
principles, I would also like to apply the techniques presented in this thesis to black-hole
coronæ. Hard X-ray emission from X-ray binaries is thought to result from inverse Comp-
ton scattering of thermal soft X-rays by a hot and tenuous plasma. What mechanism heats
this corona is still not completely understood, but magnetic reconnection is a serious candi-
date (Beloborodov, 2017). In this environment, reconnection could be driven by the dynam-
ics of twisted magnetic loops with footpoints anchored in the disk (Uzdensky & Goodman,
2008). Configurations with twisted magnetic field lines are ubiquitous in high-energy astro-
physical systems. Theoretical and numerical studies in the MHD framework have shown
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that when a flux tube is twisted so that the toroidal and poloidal components of its mag-
netic field become comparable, it becomes unstable and gets disrupted. This twist can occur
spontaneously (e.g., through the kink instability), but in this context, it can be triggered by
the relative motions of the footpoints. As the field lines break up and reconnect, magnetic
reconnection is triggered, dissipating magnetic energy and ejecting hot plasma and ener-
getic particles. In a previous study of interacting pulsar magnetospheres, I was already
confronted withs twisted magnetic fields (Crinquand et al., 2019), but I was unable to fully
capture the consequences of that twist at the time, as I was performing axisymmetric simu-
lations. In the longer term, my goal will be to perform 3D simulations of a black-hole corona,
in order to test this magnetic reconnection scenario.

The main shortcoming of general relativistic global kinetic simulations is their relatively
poor separation of scales, which is limited by the need to resolve plasma kinetic scales. This
fact makes it clear that future breakthroughs in numerical modeling of black-hole magneto-
spheres will involve a coupling between kinetic and fluid/force-free approaches, which are
cruder but computationally much cheaper. That will allow to scale up simulations to more
realistic dynamic ranges. Such an approach was initiated by Makwana et al. (2017) but has
not been applied to global simulations yet. Ultimately, this might establish a connection be-
tween numerical simulations of accretion flows (electron/proton plasma, large scales) and
the inner magnetosphere (pair plasma, inner scales). Achieving the ambitious goals previ-
ously outlined will necessitate a future increase in computer power. With the performances
of single-core CPUs currently reaching a plateau, this will probably require porting astro-
physical codes to GPU-based architectures.

From the observational point of view, there are several milestones ahead of us. In the
VHE band, the future CTA observatory will be able to detect much fainter sources with im-
proved angular resolution. This might allow us to resolve the VHE source in the Galactic
center and to broaden our sample of VHE-loud radio galaxies. Besides, the initial achieve-
ments of the EHT collaboration are very promising for the prospects of high-resolution radio
interferometry. When analyzed and released, observations from Sgr A* will offer a glimpse
of the time variability of black-hole magnetospheres. Besides, as more radio telescopes will
join the array and with improved frequency and resolution, it will become possible to image
both the inner magnetosphere and the launching region of the jet on the same image. Hope-
fully, this will allow us to grasp the long-sought connection between the black hole and the
jet, for instance by comparing the outgoing direction of the jet at the scale of the magneto-
sphere with the large-scale jet. In retrospect, I can only stand by what I said in the opening
foreword: right now, it is extremely exciting to work in the field of relativistic astrophysics.
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Tarte tatin (Conticini et al., 2012)

Ingredients (6 servings)

• 1 sheet all-butter puff pastry

• 6 apples

• 100 g golden caster sugar

• 85 g unsalted butter

Instructions

1. Roll the pastry to a 3 mm-thick round on a lightly floured surface and cut a 24 cm
circle, using a plate as a guide.

2. Poke holes all over with a fork, place on a baking sheet, then set aside.

3. Heat oven to 180◦ C.

4. Peel, quarter and core the apples.

5. In a large saucepan, over medium heat, pour the sugar and 3 tablespoons of water
evenly and cook until light amber in color, stirring to help melt any lumps, during
about 5-7 minutes. Add the butter, stirring constantly until the color is a creamy light
brown.

6. Add the apples, stirring until they are coated in a thick layer of caramel. Cook for
about 15-20 minutes, turning the apples constantly so that they bathe in the caramel.
Remove from the heat when the caramel has reduced and little remains in the bottom
of the pan.

7. Arrange the apple quarters very tightly in a circle around the edge of the dish first,
then fill in the middle in a similar fashion. Gently press with your hands to ensure
there are no gaps. Pour the remaining caramel over the top.

8. Lay the circle of puff pastry on top. Tuck the puff pastry down the sides of the pan.
Bake for 45-50 minutes, until the pastry is golden brown and firm.

9. Allow to cool to room temperature for 1 hour before running a knife around the edge
of the dish and inverting it onto a large serving plate that is deep enough to contain
the juices. Serve with crème fraîche or vanilla ice cream.
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