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CHAPTER 1

INTRODUCTION

1.1 Context and motivation

A problem is said to be a "multi-scale" problem when it has di�erent natural length-

scales. Composite materials for example are heterogeneous materials made of di�erent

constituents to obtain new properties (see Figure 1.1). They are used in the industry

to make cars, planes, prothesis, or sport equipment. When an object has two sepa-

rate scales (see Figure 1.2), a micro-scale and a macro-scale, it is not easy to deduce

its macro-properties, such as its mechanical response to external loads, from its mi-

crostructure.

Figure 1.1: A composite material (from http://en.wikipedia.org/wiki/Composite_material)

The behaviour of a material, whether mechanical or thermal, is generally modeled

by a partial di�erential equation (PDE). When the material has a micro-structure of

size ε, the coe�cient of the PDE Aε is rapidly oscillating. Therefore, the solution of

the PDE uε is also oscillating. One way to approximate this solution is to study the

limit u? of the solution uε of the PDE when the size of the micro-structure goes to

0. This is the core of the "homogenization theory", that has been developed since the

seventies (see Section 1.2). The function u? is itself solution to a PDE with (in general)

a non-oscillating coe�cient A?, called the "homogenized equation". The function u?
provides an e�ective behaviour of the material, and A? can be understood as a model

of a homogeneous (or slowly varying), e�ective material.
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Figure 1.2: A multi-scale material (from [86])

If geometrical assumptions on the material are made, A? has an explicit expression

and can be computed. It is the case when the micro-structure is periodic, or follows a

probability law that is ergodic and stationary. When this is the case, u? can be com-

puted. In the periodic case, "corrector" terms can be added to u? to approximate the os-

cillations at the micro-scale of uε, giving an accurate approximation of∇uε. However,

no real material is perfectly periodic. Even in arti�cial materials, defaults can appear

during the manufacturing process. Without geometrical assumptions, homogenization

theory ensures the existence of the homogenized problem under mild assumptions, but

no practical way to compute it. In this case, uε has to be approached by a numerical

method.

The Finite Element Method (FEM) is the most widely used numerical method to

compute solutions of PDEs. It is however not adapted to multi-scale materials. Indeed,

to have an accurate approximation of the solution, the problem has to be solved at the

micro-scale, which can lead to high computational costs. To tackle this problem, multi-

scale numerical methods have been developed in the last decades. In particular we are

interested in the Multi-scale Finite Element Method (MsFEM, see Section 1.3). The

MsFEM is a Galerkin method, where the basis of the approximation space is composed

of oscillating functions. Those functions are de�ned as solutions to local PDEs, and are

adapted to the problem of interest. As the oscillations of the solution are captured by

the basis functions of the approximation space, there is no need to have a mesh smaller

than the microstructure, hence a signi�cant computational gain. The method consists

of two steps: an "o�ine step", to compute the basis of the approximation space, and

an "online step" to solve the Galerkin problem. For a periodic material, it is possible to

prove an a priori error estimate. When the material is not periodic, there is no estimate

but the method still provides accurate numerical results.

In this thesis we are in particular interested in composite plates. A composite plate

is a material that is thin along one direction and has a micro-structure. Therefore, there

are three scales in the problem: the size of the material, its thickness η, and the size of

the micro-structure ε (see Figure 1.3). Plates have been studied as speci�c mechanical

objects for more than two centuries. The goal of a "plate theory" is to construct 2D

models that describe the behaviour of 3D plates accurately (see Section 1.4). It makes

it possible to have a better understanding of plates, and helps to reduce computational

costs. Originally, plate models were derived with the help of geometrical intuition.

Mathematicians have also studied plate models with the tools of asymptotic analysis.

This method is similar to homogenization, so this framework is particularly suited for

the study of heterogeneous plates.

Our goal in this thesis is to adapt the MsFEM to the case of plates (see Chapter 3).
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Figure 1.3: An heterogeneous plate

In order to establish error bounds for this method, we use the existing work on hetero-

geneous plates and prove an additional convergence result (see Section 1.6 and Chap-

ter 2).

Another topic studied in this thesis is shape optimization, which is the study of

methods that allows to �nd shapes that minimize a criterion while satisfying given

constraints (see Section 1.5). The criterion can be the weight or the compliance of the

object. The constraint can be the response to a given load. These problems are rele-

vant for example to the aircraft industry, which needs objects that are simultaneously

light and reliable. Classical computations show that the solution to a shape optimiza-

tion problem is usually a composite. Shape optimization thus has a natural link with

homogenization. The problem is often split in two subproblems: the optimization of

the macro-behaviour of the material over a set of homogenized composites, and the

de�nition of a real composite whose homogenized behaviour well approximates the

optimal behaviour identi�ed in the �rst step.

With the MsFEM it is possible to solve e�ciently multi-scale problems on plates

(and thus to simultaneously perform the above two steps). Our second goal is to use

the MsFEM to solve a problem of shape optimization on plates, where the optimization

is directly performed on a set of microstructures where the characteristic size ε of the

oscillations is �xed (see Section 1.6 and Chapter 4).

1.2 Classical homogenization theory

We brie�y present the classical homogenization theory for a scalar di�usion equation.

Such a presentation, which is of course very classical, should be considered as a �rst

step toward our main object of interest, namely elastic heterogeneous plates. Most

of this section considers the case of materials with a periodic micro-structure. Some

other cases will be mentioned in Section 1.2.6. We refer to [1], [12], [58] or [63] for a

comprehensive exposition of the theory.



4 Chapter 1. Introduction

1.2.1 Presentation of the problem

Let Ω be an open, smooth bounded domain of Rn
. Let f be a function of L2(Ω). We

want to �nd uε in H1(Ω) so that{
− div (Aε∇uε) = f on Ω

uε = 0 on ∂Ω.
(1.1)

For the problem to be well posed, we suppose that Aε is elliptic in the sense that

∃c−, c+ > 0, ∀ξ ∈ Rn,∀x ∈ Ω, c−|ξ|2 ≤ Aε(x)ξ · ξ ≤ c+|ξ|2. (1.2)

We suppose that the constants c− and c+ are independent of ε. For the sake of sym-

plicity, we also suppose that Aε is a symmetric matrix.

If Aε has oscillation at the scale ε, it is natural to suppose that uε will also oscillate

at this scale. Homogenization is the study of the limit behaviour of uε. The simplest

case is the case of periodic oscillations. We introduce Y := (0, 1)n and suppose that

there is an application A from Rn
to the set of elliptic matrices that is Y -periodic, is

such that

∃c−, c+ > 0, ∀ξ ∈ Rn,∀x ∈ Rn, c−|ξ|2 ≤ A(x)ξ · ξ ≤ c+|ξ|2,

and such that, for any ε > 0 and any x in Ω, Aε(x) = A
(
x
ε

)
. In this case the problem

(1.1) is to �nd uε in H1(Ω) so that{
− div

(
A
(
x
ε

)
∇uε

)
= f on Ω,

uε = 0 on ∂Ω.
(1.3)

The weak formulation of (1.3) is: �nd uε in H1
0 (Ω), such that for any v in H1

0 (Ω)∫
Ω

A
(x
ε

)
∇uε · ∇v =

∫
Ω

fv.

Using (1.2) and (1.3) we show that there exists C > 0 independent of ε so that

‖uε‖H1(Ω) ≤ C,

and we thus deduce that there is some u? in H1
0 (Ω) so that

uε ⇀
ε→0

u? in H1(Ω)

up to a subsequence extraction. The Figure 1.4 shows an example of such a conver-

gence.

To identify who is u?, we proceed by considering the one-dimensional case �rst,

because everything is explicit. Then we consider the multidimensional case.

1.2.2 The one-dimensional case

In the one-dimensional case, we set Ω = (0, 1) and the problem (1.3) reads as

− d

dx

(
A
(x
ε

) d

dx
uε

)
= f on (0, 1) with uε(0) = uε(1) = 0.

Integrating once, we get

A
(x
ε

) d

dx
uε = −F + Cε
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Figure 1.4: Solution of (1.3) in the one-dimensional case when Aε(x) = 1.1 + sin
(

2πx
ε

)
(from [86])

where, for any x in (0, 1), F (x) =
∫ x

0
f . Then, we get

uε(x) = −
∫ x

0

1

A
(
t
ε

)F (t)dt+ Cε

∫ x

0

1

A
(
t
ε

)dt. (1.4)

Because of the condition uε(1) = 0, we compute

Cε =

(∫ 1

0

1

A
(
t
ε

)dt)−1 ∫ 1

0

F (t)

A
(
t
ε

)dt.
To identify the limit of uε, we use the following lemma, written in the multidimen-

sional context.

Lemma 1.1. Let b in L∞(Rn) be a Y -periodic function. Then for any φ in L1(Rn),∫
Rn
b
(x
ε

)
φ(x)dx →

ε→0
< b >

∫
Rn
φ

where < b >:=

∫
Y

b.

We deduce that uε converges to u?, solution to

u? = −
〈

1

A

〉∫ x

0

F (t)dt+ x

〈
1

A

〉∫ 1

0

F (t)dt.

Thus, u? is the solution of the following problem:

− d

dx

(
< A−1 >

−1 d

dx
u?

)
= f on (0, 1) with u?(0) = u?(1) = 0.

It is important to note that for any A that is not a constant, < A−1 >
−1 6=< A >,

therefore it would be a mistake to think that homogenizing a material is simply aver-

aging it. Also, it is worth noting that uε and u? are solutions of the same type of PDE.

This is not true for any homogenization problem, but is rather a speci�city of (1.3).
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1.2.3 The two scale expansion

We now turn to the multidimensional case. The classical way of identifying the limit

problem for an oscillating problem is to suppose that the function uε has the form of

an expansion in power of ε (see [63]), with functions that have two "scales", 1 and ε.
Such an expansion reads

uε(x) = u0

(
x,
x

ε

)
+ εu1

(
x,
x

ε

)
+ ε2u2

(
x,
x

ε

)
+ . . . (1.5)

where ui (i ≥ 0), are assumed to be periodic with respect to their second variable. The

key to this formal computation is to suppose that the scales 1 and ε are su�ciently

separated so that the variables x and

x

ε
can be viewed as independent variables, x and

y. The link between the variables is kept in the di�erentiation of the function:

∇x

[
ui

(
x,
x

ε

)]
= ∇xui

(
x,
x

ε

)
+

1

ε
∇yui

(
x,
x

ε

)
,

thus∇ is replaced by ∇x +
1

ε
∇y.

Using this rule, inserting (1.5) in (1.3) yields a cascade of equations linking the ui
one to each other.

The �rst equation implies that ∇yu0 = 0, i.e. the limit function is not oscillating.

The second equation links u0 and u1. For any x in Ω, y in Y , it yields that

u1(x, y) =
n∑
i=1

wi(y)∂iu0(x)

where the wi are called correctors. They are solutions of the following PDE:{
− div (A(∇wi + ei)) = 0 on Rn

wi is Y -periodic,

(1.6)

where the vectors (ei)i are the canonical basis of Rn
. The third equation gives the limit

PDE on u0, that we detail in the following.

1.2.4 The homogenization theorem

The two scale expansion is a formal computation that helps to guess the homogeniza-

tion theorem. We now state the rigorous theorem, whose proof can be found e.g. in

[1].

Theorem 1.2 (Homogenization theorem). Under the above assumptions onA, f and Ω,
the solution uε to (1.3) converges weakly in H1(Ω), strongly in L2(Ω) to u?, which is the
unique solution in H1

0 (Ω) of
− divA?∇u? = f (1.7)

where the homogenized matrix A? is given, for i, j = 1 . . . n, by

A?ei · ej =

∫
Y

A(∇wi + ei) · (∇wj + ej). (1.8)

Note that the whole sequence (uε)ε>0 converges, and not only a subsequence.



1.2. Classical homogenization theory 7

1.2.5 The strong convergence theorem

The homogenization theorem provides a way to identify u?, an approximation of uε.
However, the convergence of ∇uε to ∇u? is only a weak convergence. Indeed, the

function ∇uε oscillates with a period of the order of ε and an amplitude independent

of ε, whereas ∇u? does not oscillate.

The ansatz (1.5) gives again a good intuition of the problem. A formal di�erencia-

tion shows that

∇uε(x) ≈ ∇xu?(x) +∇yu1

(
x,
x

ε

)
,

with

u1(x, y) =
n∑
i=1

wi(y)∂iu?(x).

This expression is a motivation for the name "correctors" given to the functions wi.
They "correct" the mistake made when uε is approximated by u?. The proof of this can

be found e.g. in [58]. Let

uε,1 := u? + ε
n∑
i=1

wi

( ·
ε

)
∂iu?. (1.9)

Theorem 1.3 (Strong convergence theorem). Suppose the above assumptions on A, f
and Ω holds. Suppose that u? ∈ W 2,∞(Ω) and that for any i, wi ∈ W 1,∞(Y ). Then,

‖uε − uε,1‖H1(Ω) ≤ C
√
ε‖∇u?‖W 1,∞(Ω)

where C is independent of ε and u?.

When a material has a periodic microstructure, these results give a way to compute

an approximation in H1
norm of uε:

(i) solve n PDEs on Y (1.6) to compute the correctors wi, 1 ≤ i ≤ n;

(ii) compute A? with (1.8) and solve the homogenized PDE (1.7);

(iii) compute uε,1 with (1.9).

This method however only works in the periodic case. In the Section 1.3, we present

numerical methods that work for non-periodic materials. We conclude this section

with general results on the homogenization of non-periodic PDEs.

1.2.6 Non-periodic homogenization

More general results have been proven by Spagnolo, and Murat and Tartar [80], who

have introduced H-convergence and G-convergence. They proved that, if the coe�-

cient Aε is elliptic and bounded, up to a subsequence extraction the sequence of prob-

lems converges to an asymptotic problem of the form (1.7). This result does not give an

explicit formula for A?, nor a quantitative estimate on the approximation but proves

that A? is independent from f (there thus exists a homogenized material). Another

method called Γ-convergence (see [27]), introduced by De Giorgi [30], gives results by

treating the solution of the PDE as the minimizer of an energy that converges to the

minimizer of an asymptotic energy.



8 Chapter 1. Introduction

In a di�erent direction, stochastic homogenization has been developped by Jikov,

Papanicolaou and Varadhan to tackle the problem of stochastic coe�cients of the form

Aε(x, ω) (see [58]).

A perturbative approach by Blanc, Le Bris, Lions and Josien (see [15], [13] or [14])

tackles the problem of a coe�cient which is the sum of a periodic coe�cient and of

defects. This model is deterministic and leads to more a�ordable computations than a

stochastic model. In addition, it allows for a more realistic modelling of materials than

the periodic setting.

1.3 Multi-Scale Finite Element Method

The homogenization theory presented in Section 1.2 provides approximations of the

function uε and quantitative results, in the case of a periodic micro-structure. With-

out such geometrical assumptions on Aε (which can be restrictive in practice) there

is no such results. The only practical way of approaching uε is to rely on a numer-

ical method. In this section, we motivate and explain the Multi-Scale Finite Element

Method (MsFEM), a numerical method dedicated to multiscale problems. At this end

of the section, we will mention some other methods addressing this problem (see Se-

cion 1.3.6).

1.3.1 Motivation

The most widely used numerical method to solve PDEs is the Finite Element Method

(FEM). If we were to use it to solve (1.1) with a basis of P1
functions, the theory would

give us the following error estimate (see [40]):

‖uε − uH‖H1(Ω) ≤ CH‖uε‖H2(Ω),

where H is the size of the mesh and uH the FEM approximation. The Figure 1.5 shows

the in�uence of the size of the meshH on the error of the approximation of the Poisson

problem (in blue) and a multi-scale problem (in green). It is obvious that the quality of

the approximation is much worse in the latter case.
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Figure 1.5: H1
error for the 1D heterogeneous problem (in green) and Poisson problem

(in blue) as a function of
1
H

(from [86])



1.3. Multi-Scale Finite Element Method 9

To better understand the problem it is useful to go back to the 1D case, where

everything is explicit. Di�erenciating the function uε given by (1.4) twice shows that

d2

dx2uε = Aε + Bε
ε

where Aε and Bε are two bounded functions. The error estimate of

the FEM thus yields that

‖uε − uH‖H1(Ω) ≤ C
H

ε
.

It means that in the case of multi-scale materials, a mesh of size H � ε is required

by the FEM in order to provide a good approximation. In the one-dimensional case,

Figure 1.6 shows that if H is not small enough, the solution uε is not approximated by

the method. As ε is supposed to be small for multi-scale materials, it can be computa-

tionally prohibitive (especially in 2D or 3D problems) to manipulate a mesh of size H
smaller than ε.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.00

0.05

0.10

0.15

0.20

0.25

y

H=1/512

H=1/64

H=1/32

H=1/16

Figure 1.6: Solution of the problem (1.3) with FEM for di�erent values ofH (from [86])

1.3.2 Principle

The MsFEM has been introduced by Hou and Wu ([55], [54], see also [36]) to compute

solutions of oscillating PDEs.

The MsFEM proceeds in two steps. First, a basis of oscillating functions is com-

puted. Then, the basis is used as the approximation space in a Galerkin method to

approximate uε.
The method relies on two meshes: a coarse mesh of sizeH and a �ne mesh of size h

of each element of the coarse mesh. The size of the �ne mesh h must be small enough

to capture the oscillations of the problem. The size of the coarse mesh H should be

larger than ε so that the resolution of a Galerkin problem with this mesh is not too

expensive. We hence consider the regime

h� ε < H.

The coarse mesh is used to de�ne the basis of oscillating functions, the �ne mesh is

used to compute these basis functions.
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1.3.3 Analysis of the method

Let T HΩ be a conformal mesh of Ω of typical size H . Let (ψi)i be the canonical basis of

the set of functions of H1
0 (Ω) that are a�ne on every element of T HΩ . On T ∈ T HΩ we

de�ne the basis function ψiε as the solution to the following PDE (see Figure 1.7):{
− divAε∇ψiε = 0 in T

ψiε = ψi on ∂T.
(1.10)

Figure 1.7: An element of the mesh K of size H , the oscillating function ψiε and the

a�ne function ψi (from [86])

Let V ε
H := Span {ψεi }i, and uH the Galerkin’s approximation of uε in V ε

H . For any

v in V ε
H , ∫

Ω

Aε∇uH · ∇v =

∫
Ω

fv.

To analyse the method, we make the same assumptions as in Theorem 1.3, in par-

ticular we suppose that Aε is periodic. Hence, the results of the previous section can

be used.

Theorem 1.2 states that ψiε converges weakly in H1(T ) to some ψi? which is a so-

lution to {
− divA?∇ψi? = 0 in T

ψi? = ψi on ∂T.

This problem is well posed, and since A? is constant and ψi is a�ne on T its unique

solution is ψi? = ψi. Theorem 1.3 states that

ψiε ≈ ψi + ε

n∑
j=1

wj

( ·
ε

)
∂jψ

i.

The MsFEM method works because the correctors in this expression are the same

as the correctors in the expression of uε,1:

uε ≈ uε,1 := u? + ε
n∑
j=1

wj

( ·
ε

)
∂ju?.

In a sense, the a�ne elements ψi capture the e�ective behaviour of uε which is u?, and

the term ε
∑n

j=1wj
( ·
ε

)
∂jψ

i
captures the oscillations of uε.

The complete numerical analysis can be found in e.g. [36].
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Theorem 1.4 (MsFEM error estimate). Assuming that Aε = A
( ·
ε

)
for some periodic

function A and under some regularity assumptions on u? and the correctors, it holds that

‖uε − uH‖H1(Ω) ≤ C

(
H +

√
ε+

√
ε

H

)
for a constant C independent of ε and H .

For values of ε small enough to ensure that

√
ε +

√
ε
H
� H , the error can be

roughly written as

‖uε − uH‖H1(Ω) ≤ CH.

This dependence of the error with respect to the size of the mesh is similar to the FEM

in the non-oscillating case.

1.3.4 Implementation of the MsFEM

The interesting feature of the MsFEM is that the problem (1.10) only depends on Aε,
but not on f . Thus, the method can be split in two steps. The �rst is called the "o�ine"

step and is the most expensive:

(i) compute the functions ψiε solutions to (1.10) (in practice using a �ne mesh to

discretize it);

(ii) assemble the sti�ness matrix K de�ned by Kij =
∫

Ω
Aε∇ψiε · ∇ψjε .

The second step is the "online" step and is computationally much less expensive (recall

that the number of degrees of freedom, i.e. the dimension of V ε
H , is limited):

(iii) assemble the vector B de�ned by Bi =
∫

Ω
f · ψiε;

(iv) solve the problem KU = B.

1.3.5 Variants of MsFEM

Because of the boundary conditions of the problem (1.10), the oscillating basis func-

tions ψiε are linear on the boundaries of the elements of the mesh. This is why the

method we have presented in this section is called "linear MsFEM". This method is not

very accurate because the numerical solution uH is a�ne on the edges of the coarse

mesh, whereas the actual solution uε is of course not.

Other choices of boundary conditions have been proposed yielding non-conformal

methods such as the "oversampling MsFEM" ([55]) and "MsFEM à la Crouzeix-Raviart"

([64], [65]). A variant of the linear MsFEM where the linear boundary conditions are

replaced by higher order polynomials is studied in [86].

1.3.6 Other numerical homogenization methods

There exist other numerical approaches for multi-scale problems. We present here the

Heterogeneous Multi-scale Method (HMM) and the Local Orthogonal Decomposition

(LOD).
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HMM

The HMM was introduced by E and Engquist in [33] and analysed in [35].

In a standard Finite Element Method with a mesh of size H and a basis of P1
ele-

ments (ψi)i integrals of the form

∫
Ω
Aε∇ψ · ∇ψ are numerically computed. The value

of this integral is approximated by a quadrature formula on the points xk with the

weights wk: ∫
Ω

Aε∇ψ · ∇ψ ≈
∑
k

wk (Aε∇ψ · ∇ψ) (xk).

The core of the HMM is to replace the evaluation of Aε(xk) by an e�ective coe�cient

AHMM
? (xk). A small patch ωk is de�ned around each point xk and meshed on a �ne

scale h. Then,

AHMM
? (xk)∇ψ · ∇ψ ≈

1

|ωk|

∫
τk

Aε∇wk · ∇wk

where the function wk is solution to{
− div(Aε∇wk) = 0 in ωk

wk = ψ on ∂ωk.

The solution of the FEM where Aε(xk) is replaced by AHMM
? (xk) is called uHMM .

Theorem 1.5. Assume that Aε(x) = A
(x
ε

)
where A is periodic. Let u? be the solution

to (1.7) and assume that u? is inH2(Ω). Then, there is a constant C independent of ε and
H such that

‖u? − uHMM‖H1(Ω) ≤ C(ε+H)

Note that uHMM is not an approximation of the solution to (1.1). The computations

on the small scale h are only done on the small patchs ωk and can be parallelized.

LOD

The LOD was introduced by Målqvist and Peterseim in [74]. Similarly to the MsFEM,

the core of the LOD is the design of an approximation space to be used in a Galerkin

method for the equation (1.1).

Let TH be a triangulation of Ω, and let IH be the following interpolant. For xk a

node of TH and ψk the P1
function associated to this node, let for any u in H1

0 (Ω)

IH(u)(xk) :=

∫
Ω
uψk∫

Ω
ψk

.

Let V 0 := {f ∈ H1
0 (Ω), IH(f) = 0} be the kernel of the interpolant. Typically, a

function that oscillates around 0 on a scale smaller than H could be in this kernel. If

Aε is symmetric, then the bilinear form aε : (u, v) 7→
∫

Ω

Aε∇u · ∇v de�nes a scalar

product on H1
0 (Ω). Thus we de�ne V H

LOD as the orthogonal complement of V 0
with

respect to aε:
H1

0 (Ω) = V 0 ⊕ V H
LOD.

We do not detail here how to construct a basis ofV H
LOD. We denote by uLOD the solution

of the Galerkin approximation of (1.1) on the approximation space V H
LOD. Then the

following result holds (see [74]).

Theorem 1.6. If Aε is in L∞(Ω), symmetric, bounded from above and below, then

‖uε − uLOD‖H1(Ω) ≤ CH‖f‖L2(Ω)

where C is a constant independent of ε and H .
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1.4 Plates theory

We now turn to the main object of interest in this thesis, namely heterogeneous plates.

We denote by "plate" a 3D object that is thin along one dimension. The goal of plate

theory is to replace a 3D model by a 2D model, while keeping a precise description of

the plate.

There are two ways to �nd such a model. The �rst is axiomatic. The idea is to

make ad-hoc assumptions on the 3D displacement �eld and separate the in-plane and

out-of-plane coordinates. The second one is asymptotic. The idea is to take a 3D model

with a scaling parameter ε and study what happens when ε goes to 0.

In this section we give a brief introduction to the axiomatic derivation of plate

models, and review some results in the asymptotic derivation of plate models for ho-

mogeneous and heterogeneous plates. A comprehensive review can be found in [23].

In this section the computations are made for a plate in R3
. Everything would re-

main true for a plate in Rn
for n ≥ 2, where the plate is thin along the n-th dimension.

1.4.1 Axiomatic derivation

Kircho�-Love plate theory

The �rst broadly used axiomatic derivation was made by Kircho�, and completed by

Love in 1888 [72]. It is now known as the "Kircho�-Love" theory. The assumptions

made in this theory are:

(i) the displacement of the plate is uniform through the thickness;

(ii) the normal line to the midsurface remains normal through the transformation

(see Figure 1.8).

Figure 1.8: Displacement of the midsurface of a plate and of a normal line to the mid-

surface (from http://en.wikipedia.org/wiki/Plate_theory)
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From those axioms, the displacement of the plate can be caracterized. Let u =
(u1, u2, u3) be the displacement of the plate, x = (x1, x2, x3) a point of the plate. Let

x = (x1, x2, 0) a point on the midsurface, and û = (û1, û2, û3) the displacement of the

midsurface. The assumption (i) means that

u3(x1, x2, x3) = û3(x1, x2).

To use assumption (ii) let us look at the rotation of the midsurface. Let θ1 be the

rotation around the axis x1 and θ2 the rotation around the axis x2 (see Figure 1.9). The

displacement u can be written as

u(x) =

û1(x1, x2) + x3θ2(x1, x2)
û2(x1, x2)− x3θ1(x1, x2)

û3(x1, x2)

 .

û?3

û?3 û?3

θ1

θ2

θ1θ2

Figure 1.9: Rotation of the midsurface of a plate (from

http://en.wikipedia.org/wiki/Plate_theory)

In the regime of small deformations,

tan θ1 = ∂2û3, tan θ2 = −∂1û3.

Also, in the regime of small deformations θ1 � 1 and θ2 � 1, thus tan θ1 ≈ θ1 and

tan θ2 ≈ θ2. Then:

θ1 ≈ ∂2û3, θ2 ≈ −∂1û3.

The displacement can thus be written as

u(x) =

û1(x1, x2)− x3∂1û3(x1, x2)
û2(x1, x2)− x3∂2û3(x1, x2)

û3(x1, x2)

 .

The linearized strain tensor e(u), where eij = 1
2

(∂iuj + ∂jui), can also be derived

from those axioms. Because of assumption (i), e33(u) = 0, and because of assumption

(ii) e13(u) = e23(u) = e31(u) = e32(u) = 0. This derivation of the strain tensor might

be incorrect because the shear strain is neglected and the out of plane Poisson e�ect

as well.

Reissner-Mindlin plate theory

An extension of the Kircho�-Love theory that addresses this problem is the Reissner-

Mindlin theory. It was proposed by Reissner in 1945 [85] and by Mindlin in 1951 [77]
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to relax the assumption (ii) of the Kircho�-Love theory (and thus to better capture the

shear strain and the shear stress). The idea is to suppose that the normal line to the

midsurface remains straight through the transformation, but not necessarily normal

to the transformed midsurface. The axioms of Mindlin are:

(i) the transverse displacement of the plate is uniform through the thickness;

(iii) the variation of the in-plane displacement in the thickness is linear.

From those two axioms, the displacement �eld u can be written as

u(x) =

û1(x1, x2)− x3φ1(x1, x2)
û2(x1, x2)− x3φ2(x1, x2)

û3(x1, x2)

 .

The Kircho�-Love theory is a particular case of the Reissner-Mindlin theory, where

φ1 = ∂1û3 and φ2 = ∂2û3. The derivation of the strain tensor now shows that

e13(u) =
1

2
(∂1û3 − φ1), e23(u) =

1

2
(∂2û3 − φ2).

The shear strain is not neglected in this theory. The Reissner-Mindlin plate theory is

the most widely used plate theory for homogeneous plates.

Bending-Gradient theory

The Bending-Gradient theory has been developped by Lebée and Sab in [68] and [69].

It is an extension of the work of Reissner in [85]. The approach is axiomatic, but can be

justi�ed by formal asymptotic methods (see [70]). The Bending-Gradient theory adds

degrees of freedom in the derivation of the shear stress for laminated plates, involving

the gradient of the bending moment.

1.4.2 Asymptotic derivation of the homogeneous plate model

If the plate is heterogeneous, for example if the material is periodic in the in-plane

directions, it is more complicated to guess the relevant axioms to derive a model. In

this case, it is easier to use an asymptotic derivation [18]. The idea of an asymptotic

derivation is to start from the 3D linear elasticity problem on a domain whose thickness

is a small parameter ε, and make this parameter go to 0. To illustrate our arguments,

we show here the calculations that lead to the model in the case of a homogeneous

plate.

The plate model

εΩε
ω

Figure 1.10: The plate Ωε := ω ×
(
−ε

2
,
ε

2

)
Let ω be the midsurface of the plate and Ωε := ω ×

(
−ε

2
,
ε

2

)
be the plate (see

Figure 1.10). Let A be the elasticity tensor, ũε the displacement �eld, σ̃ε the stress



16 Chapter 1. Introduction

tensor and f̃ ε be a constant external load. Then, the linear elasticity problem reads as
− div σ̃ε = f̃ ε on Ωε

σ̃ε = A : e(ũε) on Ωε

ũε = 0 on ∂ω ×
(
− ε

2
, ε

2

)
σ̃ε · e3 = 0 on ω ×

{
± ε

2

}
where e(ũε) =

1

2

(
∇ũε +

(
∇ũε

)T)
is the strain tensor. If the plate is clamped, the

solution is in the space

V ε :=
{
v ∈ H1(Ωε)3, v = 0 on ∂ω ×

(
−ε

2
,
ε

2

)}
.

We also suppose thatA is a symmetric tensor, in the sense that for any i, j, k, l in 1, 2, 3,

Aijkl = Ajikl = Aijlk = Aklij.

The weak formulation of this problem is: �nd ũε in V ε
such that for any v in V ε

,∫
Ωε
Ae(ũε) : e(v) =

∫
Ωε
f̃ ε · v.

For any ε > 0, this problem is well posed (upon standard assumptions on A) and has

a unique solution. The di�culty to study the limit behaviour when ε → 0 is that the

solutions ũε are de�ned on di�erent domains Ωε
. It is thus convenient to rescale the

problem so that we only have one domain, Ω := Ω1
. We de�ne the functions uε and

f , such that for any x = (x1, x2, x3) in Ω,

uε(x) :=

 ũε1
ũε2
εũε3

 (x1, x2, εx3) and f :=

 f̃1

f̃2

εf̃3

 .

Note the multiplying factor ε for the third component of uε and f . Recall also that we

have supposed f̃ ε to be constant. We also assume from now on that f is independent

of ε. We can de�ne a rescaled symmetric gradient eε, such that

eε(v) =

 e11(v) e12(v) ε−1e13(v)
e21(v) e22(v) ε−1e23(v)

ε−1e31(v) ε−1e32(v) ε−2e33(v)

 .

This de�nition ensures that, for any x in Ω, eε(uε)(x) = e(ũε)(x1, x2, εx3). Then, the

weak formulation of the rescaled problem is: �nd uε in V := V 1
such that for any v in

V , ∫
Ω

Aeε(uε) : eε(v) =

∫
Ω

f · v. (1.11)

Using a Korn inequality, we deduce that eε(uε) is bounded in (L2(Ω))
3×3

(therefore

e(uε) is also bounded in (L2(Ω))
3×3

) and that uε is bounded in (L2(Ω))
3
. This implies

two results:

(1) there exists a function u? in V ⊂ (H1(Ω))
3

such that uε ⇀
ε→0

u? weakly in

(H1(Ω))
3

(up to a subsequence extraction);

(2) e13(uε) →
ε→0

0, e23(uε) →
ε→0

0, and e33(uε) →
ε→0

0 in L2(Ω).
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From those results, we deduce that e13(u?) = e23(u?) = e33(u?) = 0. Thus there

exists some û? in (H1(ω))
3

such that, for any x = (x1, x2, x3) in Ω,

u?(x) =

û?1(x1, x2)− x3∂1û
?
3(x1, x2)

û?2(x1, x2)− x3∂2û
?
3(x1, x2)

û?3(x1, x2)

 .

Note that û? only depends on x1 and x2 and not x3. It is exactly the form of dis-

placement derived by the Kircho�-Love theory. The asymptotic analysis states that

the approximation is correct (at least in the L2
norm) for a plate that is in�nitely thin,

but a priori not for ε > 0.

We de�ne the set of functions that are a Kircho�-Love displacement as

VKL :=
{
v ∈

(
H1(Ω)

)3
, ∃v̂ ∈

(
H1

0 (ω)
)2 ×H2

0 (ω), v = v̂ − x3∇v̂3

}
,

where we note that the last component of ∇v̂3 vanishes because v̂3 only depends on

x1 and x2 (and therefore v3 = v̂3). For any v in VKL, we have

e(v) =

e11(v̂) e12(v̂) 0
e21(v̂) e22(v̂) 0

0 0 0

− x3

∂11v̂3 ∂12v̂3 0
∂21v̂3 ∂22v̂3 0

0 0 0

 . (1.12)

We now proceed with the computations that lead to the 2D plate model, in the case

of an isotropic homogeneous 3D thin structure. There are multiple ways to present

those computations, and we follow here the presentation of [47]. The isotropy hy-

pothesis is classical and means that

Aijkl = λδijδkl + µ(δikδjl + δilδjk),

where λ and µ are the Lamé coe�cients.

We de�ne the function yε, such that for any x = (x1, x2, x3) in Ω,

yε1(x) := ε−1uε1(x) +

∫ x3

− 1
2

ε−1∂1u
ε
3(x1, x2, t)dt−

∫ 1
2

− 1
2

[
ε−1uε1(x) +

∫ x3

− 1
2

ε−1uε3(x1, x2, t)dt

]
dx3

yε2(x) := ε−1uε2(x) +

∫ x3

− 1
2

ε−1∂2u
ε
3(x1, x2, t)dt−

∫ 1
2

− 1
2

[
ε−1uε2(x) +

∫ x3

− 1
2

ε−1∂2u
ε
3(x1, x2, t)dt

]
dx3

yε3(x) := ε−2uε3(x)−
∫ 1

2

− 1
2

ε−2uε3(x)dx3.

This de�nition ensures that

eε(uε) =

e11(uε) e12(uε) 1
2
∂3y

ε
1

e21(uε) e22(uε) 1
2
∂3y

ε
2

1
2
∂3y

ε
1

1
2
∂3y

ε
2 ∂3y

ε
3

 =: e(uε, yε). (1.13)

In addition, for any (x1, x2), the mean of yε(x1, x2, ·) vanishes. Since eε(uε) is bounded

in L2(Ω)3×3
, the function yε is bounded in

[
L2
(
ω,H1

(
−1

2
, 1

2

))]3
and is such that for

any (x1, x2) inω,

∫ 1
2

− 1
2

yε(x1, x2, t)dt = 0 therefore it weakly converges in

[
L2
(
ω,H1

(
−1

2
, 1

2

))]3
to some y? in

[
L2
(
ω,H1

(
−1

2
, 1

2

))]3
. It implies that

eε(uε) = e(uε, yε) ⇀
ε→0

e(u?, y?) weakly in L2(Ω)3×3. (1.14)
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Let v be a function in VKL, and z a function in V . Let vε be de�ned by

vε = v + ε

 z1

z2

εz3

 .

We note that vε ∈ V , and that with e(·, ·) de�ned by (1.13),

eε(vε) = e(v, z) +O(ε).

In order to establish the limit problem solved by u?, we take vε as a test function in

(1.11) and we pass to the limit ε→ 0:∫
Ω

Aeε(uε) : eε(vε) →
ε→0

∫
Ω

Ae(u?, y?) : e(v, z) and

∫
Ω

f · vε →
ε→0

∫
Ω

f · v,

thus, for any v ∈ VKL and z ∈ V ,∫
Ω

Ae(u?, y?) : e(v, z) =

∫
Ω

f · v. (1.15)

Because of the assumption on the isotropy of A, the left handside reads as∫
Ω

Ae(u?, y?) : e(v, z) =

∫
Ω

λ(tr e(u?) + ∂3y
?
3)(tr e(v) + ∂3z3) + 2µ (e(u?) : e(v) + ∂3y

? · ∂3z) .

To eliminate y? from (1.15), let v = 0 and z = z3e3. Then∫
Ω

[λ tr e(u?) + (λ+ 2µ)∂3y
?
3] ∂3z3 = 0.

This implies that ∂3y
?
3 = − λ

λ+ 2µ
tr e(u?), because it is true for any z3 inL2

(
ω,H1

(
−1

2
, 1

2

))
.

Taking now z = 0 in (1.15), we get

∀v ∈ VKL,
∫

Ω

λ(tr e(u?) + ∂3y
?
3) tr e(v) + 2µe(u?) : e(v) =

∫
Ω

f · v

and thus, using the above expression for ∂3y
?
3 , we obtain

∀v ∈ VKL,
∫

Ω

λ? tr e(u?) tr e(v) + 2µe(u?) : e(v) =

∫
Ω

f · v (1.16)

where

λ? =
2λµ

λ+ 2µ
. (1.17)

The problem (1.16) is well posed onVKL and thus completely characterizes the function

u?. We note that the whole sequence (uε)ε>0 (and not just a subsequence) therefore

converges to u?. In addition, we observe that the limit material is again isotropic (but

with di�erent Lamé coe�cients).
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An alternative proof with strong convergence

We now provide another proof, suggested to us by Annie Raoult, for the above results.

Using (1.11) and the Korn inequality, we see that eε(uε) is bounded in (L2(Ω))
3×3

.

This implies that there exists a function κ in (L2(Ω))
3×3

sur that eε(uε) ⇀
ε→0

κ weakly

in (L2(Ω))
3×3

(up to a subsequence extraction).

For v ∈ V , it implies that∫
Ω

Aeε(uε) : ε2eε(v) →
ε→0

∫
Ω

(Aκ)33∂3v3.

Thus, because of (1.11)

∫
Ω

(Aκ)33∂3v3 = 0. It is true for any v3 in L2
(
ω,H1

(
−1

2
, 1

2

))
,

thus (Aκ)33 = 0. For v ∈ V , such that v = (v1, v2, 0) it also implies that∫
Ω

Aeε(uε) : εeε(v) →
ε→0

∫
Ω

(Aκ)α3∂3vα.

Thus, because of (1.11) it stands that

∫
Ω

(Aκ)α3∂3vα = 0, and for α = 1, 2, (Aκ)α3 = 0.

Now, for v ∈ VKL, ∫
Ω

Aeε(uε) : e(v) →
ε→0

∫
Ω

(Aκ)αβeαβ(v).

Thus, because of (1.11) it stands that∫
Ω

(Aκ)αβeαβ(v) =

∫
Ω

f · v. (1.18)

For an isotropic material, we have (Aκ)33 = λκαα + (λ + 2µ)κ33, hence κ33 =
− λ
λ+2µ

καα. Thus

(Aκ)αβ = λδαβ(κττ + κ33) + 2µκαβ

= λ?δαβκττ + 2µκαβ,

where λ? = 2λµ
λ+2µ

. As uε weakly converges in (H1(Ω))
3

to u?, for α, β = 1, 2 καβ =

eαβ(u?). Thus, (1.18) can be writen as

∀v ∈ VKL,
∫

Ω

λ? tr e(u?) tr e(v) + 2µe(u?) : e(v) =

∫
Ω

f · v,

which is exactly (1.16).

We now prove a result of strong convergence. For a matrix ξ, we de�ne the norm

‖ξ‖A =
∫

Ω
Aξ : ξ. Note that (1.11) implies that ‖eε(uε)‖A =

∫
Ω
f ·uε.We have already

shown that for i = 1, 2, 3, κi3 = 0, then

‖κ‖A =

∫
Ω

(Aκ)αβκαβ =

∫
Ω

(Aκ)αβeαβ(u?) =

∫
Ω

f · u?

The function uε weakly converges in (L2(Ω))
3

to u?, then

‖eε(uε)‖A =

∫
Ω

f · uε →
ε→0

∫
ω

f · u? = ‖κ‖A.

We showed that eε(uε) ⇀
ε→0

κ weakly in (L2(Ω))
3×3

and that ‖eε(uε)‖A →
ε→0
‖κ‖A. It

implies that ‖eε(uε)− κ‖A →
ε→0

0. It thus stands that ‖eε(uε)− κ‖(L2(Ω))3×3 →
ε→0

0. For
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α, β = 1, 2 it implies that eαβ(uε) →
ε→0

καβ = eαβ(u?) in L2(Ω). Hence, we showed

that

uε →
ε→0

u? strongly in

(
H1(Ω))

)3
.

Note that we showed a result on the strong convergence of e(uε), but not on the strong

convergence eε(uε).

The membrane/bending distinction

We now revisit the asymptotic process (of passing to the limit of a very thin plate)

under some symmetry assumptions that are weaker than the above isotropic assump-

tion. These symmetry assumptions enable us to split the problem in two independent

problems, which are commonly called in the literature membrane and bending.

More precisely, let us de�ne

E :=

{
v ∈ L2(Ω), s.t. for almost any x′ ∈ ω,

(
−1

2
,
1

2

)
3 x3 7→ v(x′, x3) is even

}
O :=

{
v ∈ L2(Ω), s.t. for almost any x′ ∈ ω,

(
−1

2
,
1

2

)
3 x3 7→ v(x′, x3) is odd

}
.

We point out that

L2(Ω)3 = (E2 ×O)⊕ (O2 × E).

This orthogonal decomposition has the following consequences: it holds that

VKL = VMKL ⊕ VBKL (1.19)

where

VMKL := H1
0 (ω)2 × {0} ⊂ E2 ×O

and

VBKL :=

v ∈ (H1(Ω)
)3
, ∃v̂3 ∈ H2

0 (ω), v =

−x3∂1v̂3

−x3∂2v̂3

v̂3

 ⊂ O2 × E .

From now on, we make the following additional assumptions on the tensor-valued

�eld A: for all 1 ≤ α, β, γ, δ ≤ 2,

Aαβγδ, Aαβ33, Aα3β3, A3333 ∈ E ,
Aα333, Aαβσ3 ∈ O.

(1.20)

Remark 1.7. In the case when the plate is composed only of isotropic phases, the as-
sumption (1.20) amounts to assuming that the material is symmetric with respect to its
medium plane.

Remark 1.8. In the case when the plate is homogeneous, (1.20) simply means that some
of the components of A vanish: [et la, tu ecris Aα333 = Aαβσ3 = 0.

In view of (1.19), the function u? can be decomposed as u? = u?B + u?M with u?B in

VBKL and u?M in VMKL. It holds that

u?B =

−x3∂1û
?
3

−x3∂2û
?
3

û?3

 and u?M =

û?1û?2
0

 .
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Recalling that the function f is constant, it can also be decomposed as f = fB + fM

with fB =

 0
0
f3

 and fM =

f1

f2

0

.

For the sake of simplicity, we go back to the isotropic case, but a similar result holds

for the more general case of (1.20). The equation (1.16) can then be decoupled using

(1.12) into two equations, the membrane equation∫
ω

λ? tr e(u?M) tr e(vM) + 2µe(u?M) : e(vM) =

∫
ω

fM · vM, (1.21)

and the bending equation

1

12

∫
ω

λ?∆û?3∆v̂3 + 2µ∇2û?3 : ∇2v̂3 =

∫
ω

fB · vB (1.22)

for any vM in VMKL and v̂3 in H2
0 (ω). Note that the equations are posed on ω.

Error estimates

The derivation of plate models provides a way to characterize u?, which is the limit of

uε when the thickness ε of the plate goes to 0. However the convergence of uε to u? is

only a weak convergence in H1
and no quantitative estimation of error is given.

In [32], Destuynder gives an error estimate for the approximation of σε = Aeε(uε)
by its weak limit σ? = Ae(u?, y?) (see (1.14)) under assumption (1.20) (we recall that,

in this section, A is homogeneous). It actually turns out that, in this particular homo-

geneous case, the convergence of σε to σ? is strong.

Theorem 1.9. Under some regularity assumptions on f , there is a constant C indepen-
dent of ε such that for any α, β in {1, 2},

‖σεαβ − σ?αβ‖L2(Ω) ≤ C
√
ε

‖σεα3 − σ?α3‖L2((− 1
2
, 1
2),H−1(ω)) ≤ C

√
ε

‖σε33 − σ?33‖L2((− 1
2
, 1
2),H−2(ω)) ≤ C

√
ε.

In [28], Dauge and Gruais give stronger results and show (with an arbitrarely small

error) that the function uε can be approximated arbitrarely close by an expansion in

power of ε similar to the expansion (1.5) of the homogenization theory.

Theorem 1.10. Under some regularity assumptions on f ,∥∥∥∥∥uε −
N∑
i=0

εiui + χ
N∑
i=1

εiwi

∥∥∥∥∥
H1(Ω)3

≤ CεN+ 1
2

The functions ui, i ≥ 0 are solutions to PDEs posed on Ω and the functions χ
and wi, i ≥ 0 are functions that correct the error made on the boundary and whose

de�nition is out of the scope of this introduction. Of course, the leading order term is

u0 = u? solution to (1.16).

In Chapter 2 we get a result somehow similar to Theorem 1.9 in the case of hetero-

geneous plates (see also Section 1.6). It will not be a generalization in the sense that,

in the heterogeneous case we will consider there, σε does not strongly converge to σ?.
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1.4.3 Asymptotic derivation of the heterogeneous plate model

If the plate is heterogenous, it is easier to use an asymptotic derivation to obtain a

plate model than an axiomatic derivation, for which a good intuition may be di�cult

to have. The elasticity tensor Aε of the rescaled problem (posed on Ω) now depends

on ε. For the problem to be well posed, we suppose that Aε is elliptic in the sense that

∃c−, c+ > 0, ∀ξ ∈ R3×3, ∀x ∈ Ω, c−|ξ|2 ≤ Aε(x)ξ : ξ ≤ c+|ξ|2. (1.23)

We suppose that the constants c− and c+ are independent of ε. We also suppose that

Aε is a symmetric tensor, in the sense that for any i, j, k, l in 1, 2, 3,

Aεijkl = Aεjikl = Aεijlk = Aεklij. (1.24)

We describe here the derivation of the plate model in two cases: when the hetero-

geneities are "in-plane" and periodic [18] and when the heterogeneities are "out-of-

plane" [47].

In-plane heterogeneities

In this section are presented results that can be found in [18] and whose proofs will

be recalled in Chapter 2. The �rst author of [18] has performed the same work for a

di�usion equation in [17].

The case of "in-plane" heterogeneities corresponds to the Figure 1.3. We introduce

Y := (0, 1)2
, Y := Y ×

(
−1

2
,
1

2

)
and suppose that there exists an application A from

R2
to the set of elliptic tensor that is periodic (of period Y ) with regards to its two �rst

variables, such that for any x = (x1, x2, x3),

Aε(x) = A
(x1

ε
,
x2

ε

)
and

∃c−, c+ > 0, ∀ξ ∈ R3×3, ∀x ∈ R2, c−|ξ|2 ≤ A(x)ξ : ξ ≤ c+|ξ|2. (1.25)

Remark 1.11. The assumption that the size of the heterogeneities and the thickness of
the plate are both of the same order of magnitude (and equal to ε) can be relaxed. In [17]
and [18], the authors have studied the case of a plate of thickness µ with heterogeneities
of size ε, in three di�erent regimes: µ� ε, ε� µ and ε = λµ for some λ > 0.

The derivation of the plate model in the last case is similar to the derivation when
λ = 1 that we are going to describe here. The other two cases (ε � µ and ε � µ) can
then be obtained by taking respectively λ→∞ or λ→ 0 in the plate model.

Remark 1.12. In [61] and [62] the authors have studied the case of a plate which is
homogeneous but whose thickness has variations. In their study, the plate is de�ned by

Ωε :=
{
x ∈ R3, (x1, x2) ∈ ω, |x3| <

ε

2
h
(x1

εa
,
x2

εa

)}
,

for some periodic function h and some real positive number a. They present three limit
models for variations of the thickness slower than (a < 1), on the order of (a = 1), and
faster than (a > 1) the mean value of the thickness ε.
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The weak formulation of the problem is: �nd uε in V such that for any v in V ,∫
Ω

A
(x1

ε
,
x2

ε

)
eε(uε) : eε(v) =

∫
Ω

f · v. (1.26)

Using a Korn inequality, we deduce that eε(uε) is bounded in (L2(Ω))
3×3

(therefore

e(uε) is also bounded in (L2(Ω))
3×3

) and that uε is bounded in (L2(Ω))
3
. This implies

that there exists a function u? in (H1(Ω))
3

such that uε ⇀
ε→0

u? weakly in (H1(Ω))
3

up

to the extraction of a subsequence.

The procedure to identify the limit problem is similar to the classical periodic ho-

mogenization case (see Section 1.2). The function uε is supposed to have the form of

an expansion in power of ε, with functions that have two scales, 1 and ε. Such an

expansion reads

uε(x) = u0
(
x,
x1

ε
,
x2

ε

)
+ εu1

(
x,
x1

ε
,
x2

ε

)
+ . . . (1.27)

where the ui functions are assumed to be periodic with respect to their last two vari-

ables. The key to this formal computation is to suppose that the scales 1 and ε are suf-

�ciently separated so that the variables x = (x1, x2, x3) and

(x1

ε
,
x2

ε

)
can be viewed

as independent variables. Inserting (1.27) in (1.26) yields a cascade of equations linking

the ui one to each other.

Similarly to the classical homogenization case, the procedure leads to introduce

functions called "correctors". Let

W(Y) :=

{
v ∈

(
H1
loc

(
R2 ×

(
−1

2
,
1

2

)))3

,∀z ∈
(
−1

2
,
1

2

)
, v(·, z) is Y -periodic and

∫
Y
v = 0

}
.

For α, β in {1, 2}, let wαβM be the unique solution inW(Y) to{
− divA(e(wαβM) + eα ⊗ eβ) = 0

A(e(wαβM) + eα ⊗ eβ) · e3 = 0 on Y±
(1.28)

where Y± := Y ×
{
±1

2

}
are the top and bottom faces of the cell Y .

For α, β in {1, 2}, let wαβB be the unique solution inW(Y) to{
− divA(e(wαβB )− x3eα ⊗ eβ) = 0

A(e(wαβB )− x3eα ⊗ eβ) · e3 = 0 on Y±.
(1.29)

We recall that the spaces VBKL and VMKL useful in the theorem below, have been de-

�ned in (1.19). For the sake of simplicity, f is supposed to be a constant. The functions

fB and fM are de�ned as fB = f3e3 and fM = f1e1 + f2e2.

Theorem 1.13. Under the above assumptions on Aε (including (1.20)), f and Ω, the
solution uε to (1.26) converges weakly in (H1(Ω))

3 to some function u? which belongs
to VKL. The function u? can be decomposed as u? = u?M+u?B, and the functions u

?
M and

u?B are the unique solutions (respectively in VMKL and VBKL) to

∀φ ∈ VMKL,
∫
ω

A?Me(u
?
M) : e(φ) =

∫
ω

fM · φ

and
∀φ ∈ VBKL,

∫
ω

A?B∇2 (u?B)3 : ∇2φ3 =

∫
ω

fB · φ.
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The homogenized tensor A?M and A?B are de�ned as follows: for α, β, σ, τ in {1, 2}

A?Meα ⊗ eβ : eσ ⊗ eτ :=

∫
Y
A
(
e
(
wαβM

)
+ eα ⊗ eβ

)
: (e (wστM) + eσ ⊗ eτ )

A?Beα ⊗ eβ : eσ ⊗ eτ :=

∫
Y
A
(
e
(
wαβB

)
− y3eα ⊗ eβ

)
: (e (wστB )− y3eσ ⊗ eτ ) .

By construction, A?M and A?B are symmetric and coercive.

Note that the whole sequence (uε)ε converges, and not only a subsequence.

Remark 1.14. In contrast to the classical periodic homogenization, the limit problem in
the bending case does not have the same form as the original problem.

Remark 1.15. If A is a constant isotropic tensor, it is possible to compute the solutions
of (1.28) and (1.29) analyticaly. For α, β in {1, 2}, we have

wαβM = −x3
λ?

λ
δαβe3 and wαβB =

1

2

(
x2

3 −
1

12

)
λ?

λ
δαβe3,

where λ? is given by (1.17). Then, Theorem 1.13 yields (1.21) and (1.22), that we previously
obtained by a di�erent computation. Hence, even if the material is homogeneous and
isotropic, the correctors do not vanish. This implies that eeps(ueps)− eeps(u?) does not
strongly converge to 0 and hence that the Kircho�-Love theory, which computes u?, does
not provide an accurate approximation of the heterogeneous stress.

Remark 1.16. In the case of Remark 1.15, note that for α, β in {1, 2},

e(wαβB ) = −x3e(w
αβ
M).

Then,

e
(
wαβM

)
eαβ (u?M) + e

(
wαβB

)
∂αβ (u?B)3 = e

(
wαβM

)
eαβ (u?M)− x3e

(
wαβM

)
∂αβ (u?B)3

= e
(
wαβM

)
eαβ (u?)

= −λ
?

λ
div u?e3 ⊗ e3.

This computation is wrong in general and allows for many simpli�cations in the homo-
geneous isotrope case.

Out-of-plane heterogeneities

In this section are presented results that can be found in [47]. The authors of [47] have

performed the same work for a di�usion equation in [46].

The case of "out-of-plane" heterogeneities corresponds to the case of a strati�ed ma-

terial. We suppose that the tensorAε only depends on x3. The computations are similar

to the computations presented in Section 1.4.2 for the homogeneous case, with an ad-

ditional di�culty. In the homogeneous case, the convergence of eε(uε) to e(u?, y?)
implied the convergence of Aeε(uε) to Ae(u?, y?). When the tensor Aε depends on ε,
this result does not hold.

The bounds on Aε ensure that

σε := Aεeε(uε) ⇀
ε→0

σ? weakly in L2(Ω)3×3.

The link between σ? and e(u?, y?) is not obvious, because the convergence of Aε and

eε(uε) are weak. In [78], Murat and Tartar proved that under additional assumptions,

the product of two weakly converging sequences converges to the product of the limits.

We recall this result:
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Theorem 1.17 (Compensated compactness). Let Ω be an open set of Rd. Let

X(Ω) :=
{
u ∈ L2(Ω)d, div u ∈ L2(Ω)

}
Y (Ω) :=

{
v ∈ L2(Ω)d, rot v ∈ L2(Ω)d

}
equiped with the norms

‖u‖2
X(Ω) := ‖u‖2

L2(Ω)d + ‖ div u‖2
L2(Ω),

‖v‖2
Y (Ω) := ‖v‖2

L2(Ω)d + ‖ rot v‖2
L2(Ω)d .

Let (un)n∈N and (vn)n∈N be two sequences such that

(un)n∈N is bounded in X(Ω) and un ⇀
n→∞

u weakly in L2(Ω)d,

(vn)n∈N is bounded in Y (Ω) and vn ⇀
n→∞

v weakly in L2(Ω)d.

Then it holds that
unvn →

n→∞
uv in D′(Ω)

In [25], Courilleau and Mossino proved a variant of this result suited for dimension

reduction. This result is next used in [47] to prove that

σ? = A?e(u?, y?),

where A? is analytically de�ned. As in the "in-plane" case, it is then possible to de�ne

a membrane problem which is a second order PDE, and a bending problem which is a

fourth order PDE.

1.4.4 Numerical methods for homogeneous plates

We now return to the homogeneous plate case, and discuss its discretization. The

goal is to �nd a numerical method to approximate the solution of (1.11). There is a

rich literature on Finite Element Methods for thin plates. The most widely encoutered

problem is "numerical locking" which generally occurs when the convergence of the

FEM depends on the small parameter ε. For a review of the problem and of the solutions

that have been considered, we refer the reader to [21], [19] or [20]. In this introduction,

we choose to focus on the work [84] of Paumier and Raoult, which will be relevant in

Chapter 3.

The goal of the article is to approximate the solution of (1.11) by functions that

have a polynomial dependency in x3, i.e. of the form uε ≈ u0 + x3u1 + x2
3u2 + . . .

where the functions ui are independent of x3. Let W be a subspace of V which will be

the approximation space. The Galerkin approximation of (1.11) in W is the solution

to: �nd wε in W such that for any v in W ,∫
Ω

Aeε(wε) : eε(v) =

∫
Ω

f · v. (1.30)

Following the same arguments as in Section 1.4.2, we know that there exists a function

w? in H1(Ω)3
such that (up to a subsequence extraction)

wε ⇀
ε→0

w? weakly in H1(Ω)3.

The reduced model is said to be consistent if u? and w? coincide. The case where W
contains functions that are polynomial in x3 is particularly interesting for us. For any

vector space H ⊂ H1
0 (ω), let
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Pk(H) :=

{
w : Ω→ R,∀x = (x1, x2, x3) ∈ Ω, w(x) =

k∑
j=0

xj3wj(x1, x2), wj ∈ H

}
and

Pm,n(H) := Pm(H)× Pm(H)× Pn(H).

Theorem 1.18. Assume thatW = Pm,n(H1
0 (ω)). Then l(u? − w?) = 0 for any linear

form l in the dual space of VKL if and only ifm ≥ 1 and n ≥ 2.

Note that even though VKL ⊂ P1,0(H1
0 (ω)), the space P1,0(H1

0 (ω)) is "too small"

(in this sense of consistency) to be a good reduced model of a plate. Solving (1.11)

with a standard FEM implies the computation of three functions de�ned on a three

dimensional domain. On the other hand, solving (1.30) withW = P1,2(H1
0 (ω)) implies

the computations of seven functions de�ned on a two dimensionnal domain, which is

less expensive from a computational point of view. The next step of the discretization

procedure is then classical: it consists of meshing the two-dimensional domain ω and

introducing approximation spaces (e.g. �nite element spaces) of H1
0 (ω).

1.5 Shape optimization

A part of the work performed during this thesis is concerned with shape optimization

of thin heterogeneous structures (see Chapter 4). In this section, we present here a

short introduction to shape optimization methods, largely inspired by the work of Al-

laire in [1] and [5]. We explain the broad principles of shape optimization, and describe

some numerical methods.

1.5.1 Principles of shape optimization

A problem of shape optimization is generally de�ned by three speci�cations:

(i) a mechanical model: we choose here to limit ourselves to linear elasticity;

(ii) a set of admissible shapes: for example, it could be the set of connected shapes

of a prescribed volume;

(iii) an objective function which has a vocation to be optimized: for example, the

compliance of an object.

Let U be the set of admissible shapes, u(Ω) a physical value (for example, the dis-

placement �eld of the object under some load), and J be the objective function. The

problem of shape optimization is de�ned as

min
Ω∈U

J(u(Ω)). (1.31)

The choice of U allows to classify shape optimization problems into three cate-

gories:

(i) parametric shape optimization. The shapes inU are de�ned by a few parameters.

(ii) geometrical optimization. The admissible shapes are obtained by moving the

boundary of an initial shape. The topology of the shape does not change, in

particular the number of holes remains constant.

(iii) topology optimization. It is the most general type of shape optimization.
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1.5.2 An example of shape optimization

In order to understand the link between shape optimization and composite materials,

we describe here a classical example of shape optimization (see [5]).

Let Ω := (0, 1)2
and χ be an indicator function de�ned on Ω. LetAα andAβ be two

constant elasticity tensors representing two materials with di�erent propreties. LetAχ
be the elasticity tensor representing the inclusion of the material α into the material

β, such that for any x in Ω,

Aχ(x) = Aαχ(x) + Aβ(1− χ(x)).

Let Γ be the right boundary of the square Ω, i.e. Γ := {1}×(0, 1). A constant force

is applied on this part on the boundary, so that the displacement �eld uχ is solution to

the following problem: 
− div(Aχe(uχ)) = 0 in Ω
Aχe(uχ) · n = e2 on Γ

Aχe(uχ) · n = 0 on ∂Ω \ Γ
(1.32)

The shape optimization problem consists in minimizing the compliance of the ob-

ject

J(χ) =

∫
Γ

uχ · e2

over the function χ, where uχ is solution to (1.32). More precisely, the proportion of

material α and β are supposed to be �xed, so the set of admissible shapes is de�ned by

U =

{
χ ∈ L∞(Ω, {0, 1}),

∫
Ω

χ = θ

}
for some θ in (0, 1). The problem is therefore a problem of repartition of the material

α in the material β. It can be written as

min {J(χ), χ ∈ U} .

The precise analysis of this problem is out of the scope of this introduction and is

detailed in [5]. We only provide here an intuition of the problem.

The load applied on the material is horizontal, therefore the principal direction

of the stress will also be horizontal. Then, the best repartition of α and β will be an

alternation of horizontal inclusions of α and β. It is possible to show that, for any

size of inclusions, a smaller size of inclusions lowers the objective function. Hence,

the optimal material is not composed of a �nite number of inclusions and cannot be

represented by an indicator function, but is a composite material in the sense of a

mixing of α and β in proportion θ and 1− θ.

We can draw two observations from this example. First, shape optimization prob-

lems are often ill-posed, in the sense that they do not have a minimizer in U . Many

techniques have been developed to ensure that the solution of a shape optimization

problem exists (see [51], [6] or [90]). Second, composite materials naturally appear in

shape optimization problems.

1.5.3 Numerical methods for shape optimization

We brie�y present four widely used methods for shape optimization: the level-set

method, the SIMP method, the homogenization method and multiscale methods.
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Level-set method

The level-set method has been introduced by Osher in [82]. We refer the reader to [81]

for a complete overview, and to [4] for a description of the numerical implementation

of the method.

In the level-set method, the shape is represented by a function ψ de�ned on a do-

main Ω. The interior of the shape corresponds to the set {x ∈ Ω, ψ(x) < 0}, its

exterior to the set {x ∈ Ω, ψ(x) > 0}, and its boundary to the set {x ∈ Ω, ψ(x) = 0}.
The optimization uses a gradient-descent method. The computation of the deriva-

tive of the cost function with respect to ψ gives a vector �eld de�ned on Ω. The bound-

ary of the shape is moved accordingly to this vector �eld.

SIMP method

The Solid Isotropic Material with Penalization (SIMP) method was introduced by Bend-

søe in [9]. We refer the reader to [11] for a complete overview.

The shape that is optimized is made of a material represented by a constant elastic-

ity tensor A. The core of the method is to introduce a function θ in L∞(Ω, (0, 1)).

For an integer p > 0, the elasticity tensor θpA represent a material that lies be-

tween the "real" material (θ ≡ 1) and void (θ ≡ 0). The problem (1.32) is replaced

by − div θpAe(uθ) = 0 with appropriate boundary conditions.

The cost function is optimized with respect to θ. In order to have a "real" material

as a result, the values of θ that are neither 0 nor 1 are penalized. One possibility to

penalize those values is to progressively increase the value of p during the optimization

process.

Homogenization method

Homogenization methods for shape optimization have been introduced in [73], [79]

and [60]. We refer the reader to [1] for a complete overview.

The homogenization method tackles the problem of optimizing shapes that have a

microstructure. The cost of a computation involving a multi-scale material is avoided

by replacing this material by its homogenized limit (see Section 1.2). The optimization

is thus performed on a set of homogenized materials.

Once the optimal homogenized material is found, the di�culty is to build a "real"

multi-scale material, which correspond to the homogenized material. This problem

has been studied in [83], [3] and [43]. We also refer to [48] or [88].

Multi-scale methods

Multi-scale methods also tackle the optimization of shapes with a microstructure. To

simplify the problem, instead of using homogenization theory, the set of admissible

shapes is reduced to a set of shapes with a parametrized microstructure. We refer to

[10], [94], [29] or [42] for examples. The micro-structure is either the same all over the

structure [71] or varies on large length scales [59].

1.6 Main contributions

We collect here the main contributions of this thesis.



1.6. Main contributions 29

1.6.1 Two scale expansion of the displacement �eld

Presentation of the di�culty

Homogenization and plate theory describe what happens in the case of in-plane het-

erogeneities when the size of the microstructure and the thickness of the plate ε goes

to 0. The displacement �eld of the plate uε can be approximated by the homogenized

displacement u?. As often the case in homogenization, the convergence of uε to u? is

a weak convergence in H1
. As a consequence,

(i) eε(u?) does not approximate the oscillations of eε(uε);

(ii) the shear stress is neglected: eε13(u?) = eε23(u?) = eε33(u?) = 0, whereas eε13(uε), eε23(uε)
and eε33(uε) are a priori not small.

This problem is already present in the classical homogenization theory recalled in

Section 1.2. It is adressed by considering a relevant two-scale expansion (see (1.9) and

Theorem 1.3).

There is however a major di�erence between plate homogenization and classical

homogenization. In the case of bending, that is when f ∈ O2 × E , the oscillatory

problem is a vectorial second order elliptic equation on a three dimensional domain,

namely

− divε (Aεeε(uε)) = f on Ω

whereas the homogenized equation is a scalar fourth order elliptic equation on a 2D

domain:

∇2
(
A?B∇2û?3

)
= f on ω.

The nature of the homogenized equation is thus di�erent from the nature of the oscil-

latory problem. Furthermore, in general the limit displacement u? belongs to a space,

the so-called Kircho�-Love space VKL, that is not dense in (H1(Ω))
3

for the H1
norm.

In contrast to the standard proof establishing the H1
convergence (see Theorem 1.3),

we cannot take uε as a test function in the variational formulation of the homogenized

problem. This is why new ideas are required to handle that case.

Our approach to the di�culty

For x = (x1, x2, x3) in Ω, let

uε,1M(x) :=

û?1û?2
0

 (x1, x2) + ε

2∑
α,β=1

 [wαβM ]1
[wαβM ]2
ε[wαβM ]3

(x1

ε
,
x2

ε
, x3

)
eαβ(û?)(x1, x2)

and

uε,1B (x) :=

−x3∂1û
?
3

−x3∂2û
?
3

û?3

 (x1, x2) + ε
2∑

α,β=1

 [wαβB ]1
[wαβB ]2
ε[wαβB ]3

(x1

ε
,
x2

ε
, x3

)
∂αβû

?
3(x1, x2).

Note that the correctors for the �rst two coordinates of the displacement are multiplied

by ε, whereas it is multiplied by ε2
in the third coordinate . It ensures that

eε(uε,1M) =
(
e
(
wαβM

)(x1

ε
,
x2

ε
, x3

)
+ eα ⊗ eβ

)
eαβ(û?) +O(ε) (1.33)
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and

eε(uε,1B ) =
(
e
(
wαβB

)(x1

ε
,
x2

ε
, x3

)
− x3eα ⊗ eβ

)
∂αβû

?
3 +O(ε). (1.34)

The de�nition ofuε,1B anduε,1M are deduced from the two scale formal expansion (1.27).

Note that the formal expansion shows that there is some additional terms in VKL that

are multiplied by ε. They are neglected here, because for any v in VKL, eε(εv) = O(ε).

Our goal is to show that uε,1B + uε,1M is a good approximation of uε.
A central ingredient of our proof is to de�ne a homogenized-like limit problem

written as a variational formulation, and for which the test function can be chosen in

the whole space (H1(Ω))
3

and not only on VKL.

We brie�y explain this here. The homogenization theorem shows that

σε := Aεeε(uε) ⇀
ε→0

σ? =

σ?11 σ?12 0
σ?21 σ?22 0
0 0 0

 weakly in

(
L2(Ω)

)3×3
.

The �rst step of our argument consists in showing that when the stress σε is prop-

erly rescaled, it converges to a non-trivial limit:

Σε :=

 σε11 σε12 ε−1σε13

σε21 σε22 ε−1σε23

ε−1σε31 ε−1σε32 ε−2σε33

 ⇀
ε→0

Σ? :=

Σ?
11 Σ?

12 Σ?
13

Σ?
21 Σ?

22 Σ?
23

Σ?
31 Σ?

32 Σ?
33

 . (1.35)

By construction, the oscillatory problem (1.26) yields that

∀v ∈ V,
∫

Ω

Σε : e(v) =

∫
Ω

f · v.

Using the above weak limit, we obtain that

∀v ∈ V,
∫

Ω

Σ? : e(v) =

∫
Ω

f · v

and therefore

∫
Ω

Σε : e(v) =

∫
Ω

Σ? : e(v) for any v in V and any ε > 0. Furthermore,

if v is in VKL,∫
Ω

Σ? : e(v) =

∫
ω

A?B∇2û?3 : ∇2v and

∫
Ω

f · v =

∫
ω

f3v3.

This limit problem does not de�ne Σ?
, but is an important step in our computations.

It allows us to show that∫
Ω

Aεeε(uε − uε,1) : eε(uε − uε,1) ≈
∫

Ω

Zαβ

(x1

ε
,
x2

ε
, x3

)
∂αβû

?
3 : eε(uε − uε,1),

where

Zαβ = A
(
e
(
wαβB

)
− x3eα ⊗ eβ

)
−
∫
Y

A
(
e
(
wαβB

)
− x3eα ⊗ eβ

)
.

The remainder of the proof consists in showing that Zαβ

(x1

ε
,
x2

ε
, x3

)
which is a

divergence-free, Y -periodic function is small, in a relevant sense. We refer to Chapter 2

for more details.

For the theorems below, we recall that for any x in Ω, Aε(x) = A
(x1

ε
,
x2

ε

)
where

A is Y -periodic and satisfy assumptions (1.20), (1.2), and (1.24).
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Theorem 1.19 (Membrane case). Assume that f = f1e1 +f2e2 is a constant. Let us also
assume that u? ∈ W 2,∞(ω)3 and that, for α, β in {1, 2} we have wαβM ∈ W 1,∞(R2 ×(
−1

2
, 1

2

)
)3. Then, there exists a constant C > 0 independent of ε and ω such that

‖eε
(
uε − uε,1M

)
‖L2(Ω)3×3 ≤C

√
ε|ω|

1
2‖e(u?)‖L∞(ω)3×3

+Cε
(
|ω|

1
2‖∇2u?‖L∞(ω)3×3×3 + ‖f‖L2(Ω)3

)
.

(1.36)

We did not manage to give a full proof for such a two-scale strong convergence

theorem in the bending case. We nevertheless managed to obtain such a result, to the

price of making a conjecture which we are not able to prove, but which, we strongly

believe it, should be true. We give evidence in Chapter 2, based both on theoretical and

numerical arguments, why such a conjecture should hold true. This conjecture can be

stated as follows:

(CB) For all 1 ≤ α, β ≤ 2,

Σ?
αβ = eα ⊗ eβ :

∫
Y

A(e(wγδB )− xdeγ ⊗ eδ)∂γδu?d. (1.37)

Theorem 1.20 (Bending case). Assume conjecture (CB). Assume that f = f3e3 is a
constant. Let us also assume that u? ∈ W 3,∞(ω)3 and that, for α, β in {1, 2} we have
wαβB ∈ W 1,∞(R2 ×

(
−1

2
, 1

2

)
)3. Then, there exists a constant C > 0 independent of ε and

ω such that

‖eε
(
uε − uε,1B

)
‖L2(Ω)3×3 ≤C

√
ε|ω|

1
2‖e(u?)‖L∞(ω)3×3

+Cε
(
|ω|

1
2‖∇3u?‖L∞(ω)3×3×3×3 + ‖Σ?‖L2(Ω)

)
.

The function Σ? is de�ned in (1.35).

Remark 1.21. For ε � |ω| 12 , the rate of convergence of the approximation is
√
ε. This

rate is determined by the correction of the error made on the boundary ∂ω ×
(
−1

2
,
1

2

)
because uε,1 is not in V (because it does not vanish on ∂ω ×

(
−1

2
,
1

2

)
).

Remark 1.22. The explicit dependence in |ω| in the right hand side of the theorems above
is interesting for the numerical analysis in Chapter 3.

It is important to prove the approximation results for the rescaled gradient eε(uε)
and not only for e(uε). Indeed, we have ‖eε(uε)‖L2(Ω)3×3 = ‖e(ũε)‖L2(Ωε)3×3 and there-

fore the bounds of Theorem 1.19 and Theorem 1.20 directly translate as bounds on the

strain in the original plate problem. For ε � 1, it would be weaker to prove a result

on ‖e(uε)‖(L2(Ω))3×3 .

1.6.2 MsFEM for plates

This section summarizes the results presented in Chapter 3. Our goal is to propose a

method similar to the MsFEM presented in Section 1.3 in the case of thin materials.

The speci�city of the plate problem is that it is a three dimensional PDE whose

solution is close to the solution of a two dimensional PDE, in a sense explained in

Section 1.4. This speci�city is captured in the mesh that we use in this method. Despite
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being the mesh of the 3D domain Ω, the number of elements scales as H−2
, where H

is their typical size.

Let us assume that ω is a polyhedral, connected and bounded open subset of R2

and let T Hω be a conforming discretization of ω. Let us now de�ne

T HΩ =

{
τ ×

(
−1

2
,
1

2

)
, τ ∈ T Hω

}
.

Then, T HΩ obviously de�nes a conforming discretization of Ω (see Figure 1.11).

Figure 1.11: Coarse mesh T HΩ built on the basis of a coarse mesh of ω

Similarly to the MsFEM method presented in Section 1.3, the basis functions of

our approach for plates are solutions to local PDEs, and are harmonic for the operator

divεAεeε. The choice of the boundary conditions is dictated by the results of plate

homogenization (see Section 1.4.3).

• In the membrane case, let VMH be the space of functions of H1
0 (ω)2

with values

in R2
that are a�ne on every element of T Hω , and let (φi)i be its canonical base.

For any φi, let ψi :=

(
φi
0

)
.

• In the bending case, let V BH be the space of scalar valued functions of H2
0 (ω) that

are cubic on every element of T Hω , and let (φi)i be its canonical base. For any φi,

let ψi :=

(
−x3∇′φi

φi

)
, where∇′φi =

(
∂1φi
∂2φi

)
.

On any T ∈ T HΩ of the form T = τ ×
(
−1

2
,
1

2

)
, we de�ne the oscillatory

basis function ψεi associated to the single-scale basis function ψi as the solution to the

following problem: 

− divεAεeε(ψεi ) = 0 in T,

ψεi = ψi on ∂τ ×
(
−1

2
,
1

2

)
,

Aεeε(ψεi ) · e3 = 0 on τ ×
{
±1

2

}
.

(1.38)

Let V ε
H := Span{ψεi } and uεH be the Galerkin’s approximation of uε in V ε

H .

The results of plate homogenization (see Section 1.4.3) and Theorems 1.19 and 1.20

imply that, for x = (x1, x2, x3) in Ω, in the membrane case

eε(ψεi )(x) ≈
(
e
(
wαβM

)(x1

ε
,
x2

ε
, x3

)
+ eα ⊗ eβ

)
eαβ(φi)(x1, x2)
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and in the bending case

eε(ψεi )(x) ≈
(
e
(
wαβB

)(x1

ε
,
x2

ε
, x3

)
− x3eα ⊗ eβ

)
∂αβφi(x1, x2).

This is similar to the values of eε(uε,1M) (see (1.33)) and eε(uε,1B ) (see (1.34)), and a central

ingredient to the proof of the following results.

For the theorems below, we recall that for any x in Ω, Aε(x) = A
(x1

ε
,
x2

ε

)
where

A is Y -periodic and satis�es assumptions (1.20), (1.2), and (1.24).

Theorem 1.23 (Membrane case). Assume that we are in the membrane case, namely
that f ∈ E2 × O. Assume that u? ∈ (W 2,∞(ω))

3 and that for any α, β in {1, 2}, we
have wαβM ∈ (W 1,∞(R3))

3. Then

‖eε(uε − uεH)‖L2(Ω)3×3 ≤ C

(
H +

√
ε+

√
ε

H

)
‖u?M‖W 2,∞(ω)3 ,

where C is a constant independent of ε and H .

Theorem 1.24 (Bending case). Assume conjecture (CB). Assume that we are in the bend-
ing case, namely that f ∈ O2 × E . Assume that u?3 ∈ W 4,∞(ω) and that for any α, β
in {1, 2}, we have wαβB ∈ (W 1,∞(R3))

3. Then

‖eε(uε − uεH)‖L2(Ω)3×3 ≤ C

(
H2 +

√
ε+

√
ε

H

)
‖û?3‖W 4,∞(ω),

where C is a constant independent of ε and H .

The power in H in the estimation is related to the regularities of the functions u?B
and u?M and to the order of the PDEs of which they are solutions, hence the di�erence

H (in Theorem 1.23) vs H2
(in Theorem 1.24).

1.6.3 Shape optimization for heterogeneous plates

This section summarizes the results presented in Chapter 4. Our goal is to present a

shape optimization method that uses the MsFEM functions presented in Chapter 3.

The main idea is to modify equation (1.26) by replacing the periodic tensor Aε by

a tensor Aε,φ de�ned for a function φ : ω 7→ ω that is a C1
-di�eomorphism and for

x = (x1, x2, x3) in Ω by

Aε,φ(x) = A

(
φ(x1, x2)

ε
, x3

)
.

The same assumptions are made on A as for (1.26). The function φ modulate locally

the size of the oscillations of the elasticity tensor. The equation writes as

∀v ∈ V,
∫

Ω

A

(
φ(x1, x2)

ε
, x3

)
eε(uε,φ) : eε(v) =

∫
Ω

f · v. (1.39)

In order to have bounds on the size of the oscillations of Aε,φ, the choice of φ is

limited to the set

U :=
{
φ : ω → ω, C1

-di�eomorphism, c− ≤ ‖∇φ‖L∞(ω) ≤ c+

}
.
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Then, the characteristic size of oscillations of Aε,φ are between

ε

c+

and

ε

c−
. The objec-

tive function is the compliance, de�ned by

F ε(φ) =

∫
Ω

f · uε,φ.

Therefore, the optimization problem reads as

inf
{
F ε(φ), φ ∈ U , uε,φ solution of (1.39)

}
. (1.40)

The "naive" way of solving (1.40) would be to solve (1.39) at each iteration of the

minimization. It is impossible in practice because solving (1.39) is costly from a com-

putational point of view because of the di�erence in scale between |ω|
1
d−1 and ε, as

explained in Chapter 3. This is the reason why we introduced the Multiscale Finite

Element Method (MsFEM). However, it is not directly appropriate here because the

basis functions of the MsFEM are solutions to PDEs that depends on Aε,φ, thus on φ.

In means that the "o�ine" phase of the MsFEM, that is expensive, would be done at

each step of the optimization.

Our strategy is to choose a family (φi)1≤i≤Nb ⊂ U for some large Nb and compute

the corresponding MsFEM basis. Then, a reduced order model method, the proper

orthogonal decomposition, is used to compute a reduced subspace of approximation

that will be used at each step of the minimization procedure. The obtained subspace

has a dimension which is much smaller than the dimension of the vector space spanned

by the reunion of the MsFEM basis for (φi)1≤i≤Nb . Then, a gradient descent method is

used to solve the resulting problem which approximates of (1.40).

On numerical examples made in two dimensions, we show that

(1) the solution of the Galerkin approximation problem of (1.39) where the approx-

imation space is computed with our reduced order model method is a good ap-

proximation of the solution of (1.39);

(2) the compliance F ε
is noticeably reduced (by a factor of 40% on some examples)

when the approximation of problem (1.40) is solved.



CHAPTER 2

CONVERGENCE OF A TWO-SCALE EXPANSION FOR

ELASTIC HETEROGENEOUS PLATES

This chapter corresponds to a manuscript in preparation [AL1], co-authored with

V. Ehrlacher, A. Lebée and F. Legoll.

The aim of this article is to prove strong convergence results on the di�erence

between the solution to highly oscillatory problems posed in thin domains and its

two-scale expansion. We consider the linear di�usion equation and the linear elastic-

ity problem. While such results can be fully proved in the di�usion case, the linear

elasticity case in its full generality raises challenging di�culties. Under some classical

assumptions on the symmetries of the elasticity tensor, the problem can be split under

two independent problems, namely the membrane problem the bending problem. The

membrane case is actually quite similar to the di�usion case. However, in the bend-

ing case, the scheme of the proof used in the membrane and di�usion cases cannot be

adapted straightforwardly. We show here how to obtain strong convergence results in

the bending case, using di�erent arguments, up to the price of a conjecture. We give

theoretical and numerical arguments supporting our belief that this conjecture should

hold true.

2.1 Introduction

In this article, we consider highly oscillatory problems posed in thin domains of Rd
.

These problems typically read as

− div (Aε∇ũε) = f in Ωε, (2.1)

where the matrixAε (which is – uniformly in ε – bounded from below and from above,

to ensure ellipticity of the problem and thus its well-posedness) varies at the small

characteristic length-scale ε. We concurrently consider two types of PDEs: (i) the

di�usion equation (2.1), where Aε is a Rd×d
matrix and ũε is scalar-valued and (ii) the

linear elasticity problem, which can again be written in the form (2.1) where Aε is a

now a fourth-order tensor and ũε is vector-valued.

The domain Ωε
is thin, in the sense that its width ε in the d-direction is small. A

typical example is when

Ωε = ω × (−ε/2, ε/2) , (2.2)
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where ω is a bounded open subset of Rd−1
. Note that the width of the domain Ωε

is here equal to the characteristic length-scale of Aε. Other choices could have been

made, as discussed in Remark 2.1 below. For simplicity, we have assumed in (2.1) that

the right-hand side f does not depend on ε. More general cases are considered below.

Of course, Problem (2.1) should be complemented by appropriate boundary conditions,

that are also made precise below.

The question we consider here is to identify the limit of ũε when ε go to zero. In

the case when the domain Ω on which the equation is posed actually does not depend

on ε, this is a very classical question of homogenization theory (see e.g. the classical

textbooks [12, 58], [1, Chapter 1] and also [39, 63]). For a simple di�usive equation

such as (2.1), and assuming for instance homogeneous Dirichlet boundary conditions

on ∂Ω and periodicity of the matrixAε (that isAε = Aper(·/ε) for a �xed periodic ma-

trix Aper), it is well-known that ũε ∈ H1
0 (Ω) converges to some ũ? ∈ H1

0 (Ω), solution

to a homogenized problem of the same form with a di�usion coe�cient A? which is

constant. The value of A? can easily be computed using the so-called corrector func-
tions, which are solutions of some auxiliary problems posed over the unit periodic cell.

The convergence of ũε to ũ? is strong in L2(Ω) and weak in H1(Ω). It is furthermore

possible to introduce a two-scale expansion ũε,1, explicitly built using the homoge-

nized solution ũ? and the corrector functions, so that the di�erence ũε − ũε,1 strongly
converges to 0 in H1(Ω) when ε → 0. Similar results have been obtained for many

di�erent equations (besides the simple di�usion equation (2.1)), and in particular for

linear elasticity problems, of speci�c interest in this work.

In this article, we consider the situation where the domain Ωε
on which the oscil-

latory problem is posed actually depends on ε and is given by (2.2). In other words,

we study problems posed on plates composed of an heterogeneous medium, where

the typical size of the heterogeneities is of the same order as the (small) thickness

of the plate (see Figure 2.1). For such problems, the homogenized limit of (2.1)–(2.2)

has been identi�ed (both for the di�usion equation and the linear elasticity problem)

in various cases, including the strati�ed case [46, 47, 76] (that is when Aε only de-

pends on xd ∈ (−ε/2, ε/2)), and the case of periodic heterogeneities in the trans-

verse, in-plane directions [17, 18] (that is when Aε is εZd−1
-periodic with respect to

(x1, . . . , xd−1) ∈ ω), to name but a few. We also refer to [75, 91, 53] for recent homog-

enization results on plates with more general heterogeneities. Results have also been

obtained for nonlinear problems: we refer e.g. to [52, 92] for nonlinear elasticity mod-

els. In all these works, the weak convergence of ũε to the solution ũ? to a homogenized

problem has been established.

Following the general path of homogenization theory, the next step is to obtain a

strong convergence (say inH1
), that is to build a relevant two-scale expansion ũε,1 and

to prove that the di�erence ũε − ũε,1 strongly converges to 0 in H1
when ε → 0 (of

course, since the domain Ωε
on which the oscillatory equation is posed depends itself

on ε, the domain on which the H1
norm is considered should be carefully chosen).

Surprisingly, this question has been addressed for very few cases, at least up to our

knowledge. In that direction, strong convergence results have been obtained for ho-
mogeneous plates in [24, 32, 28]. In this article, we focus on the case where the plate has

periodic heterogeneities in its in-plane directions, which is a setting similar to the one

considered in [17, 18] and for which weak convergence results have been established.

At �rst sight, it may be thought that such strong convergence results may easily

be obtained by extending standard arguments used in the classical case (i.e. when the

domain on which the equation is posed does not depend on ε). This is indeed the case

for the di�usion (scalar-valued) equation. However, the analysis that we present here
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Figure 2.1: The plate and its microstructure for d = 3.

shows that this is not always the case for the linear elasticity (vector-valued) problem,

and that additional di�culties may arise.

As the title of this article suggests, we are mainly interested in the linear elastic-

ity problem. However, to proceed in a pedagogical manner, we �rst consider the case

of the di�usion equation in Section 2.2. In that �rst case, strong convergence results

(such as Theorem 2.5, our main result in that case) can indeed be obtained by using

standard arguments. The situation turns out to be di�erent in the case of linear elastic-

ity, which we address in Section 2.3. We assume there that the mechanical composition

of the heterogeneous material is symmetric with respect to its medium plane, which

corresponds to assuming that the components of the elasticity tensor are either odd

or even functions with respect to xd (see (2.49) below). This assumption is classical in

the literature, and is in particular satis�ed by isotropic materials. Under this assump-

tion, we distinguish two situations, depending on the symmetries of the loading (i.e.

the function f in the right-hand side of the PDE) imposed on the plate: the membrane
case and the bending case. The membrane case can again be analyzed using similar

arguments as for di�usion problems (our main result in that case is Theorem 2.21).

However, in the bending case, the standard proof does not go through. The analysis

of this bending case turns out to actually require speci�c arguments, inspired by some

ideas present in [32] to handle homogeneous plates, but the adaptation of which to

the heterogeneous case is far from immediate. Actually, we were not able to obtain a

complete proof of the desired result in this case, and had to rely on a conjecture stated

in Section 2.3.5 (see (2.74)) to prove Theorem 2.25, our main result in the bending case.

Theoretical and numerical evidence are gathered in Section 2.3.6 to support our strong

belief that the conjecture should hold true.

Obtaining a strong convergence result as discussed above is of course interesting

from the theoretical viewpoint, since it provides an accurate description of the solu-

tion to the oscillatory problem in its natural energy norm. It is also helpful for proving

numerical analysis results. In particular, this type of results is a key ingredient to

prove error bounds for the Multiscale Finite Element Method (MsFEM). This numer-

ical approach, which is dedicated to approximating the solution to highly oscillatory

problems of the type (2.1) (for a small, but not asymptotically small, scale ε), proceeds

by performing a variational approximation of (2.1) using pre-computed basis func-
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tions that are adapted to the problem (we refer to [36] and references therein). They

are indeed solutions to local problems de�ned using the same di�erential operator as

the problem of interest. Using these problem-speci�c basis functions, the MsFEM ap-

proach yields an accurate approximation of the oscillatory solution using only a limited

number of degrees of freedom, in contrast to standard Finite Element approaches. In

addition, the MsFEM approach is applicable in general situations, and is not limited

to the case when the highly oscillatory coe�cient of the equation is periodic. In our

companion article [AL2], we introduce several variants of the MsFEM approach for the

case of elastic heterogeneous plates, and establish error bounds for these. The strong

convergence results shown here are pivotal for their numerical analysis.

2.2 The di�usion case

Let ω ⊂ Rd−1
be a open bounded and smooth domain and Ω := ω ×

(
−1

2
,
1

2

)
. For a

small parameter ε > 0, we introduce Ωε := ω ×
(
−ε

2
,
ε

2

)
. The domain Ωε

is called a

"plate" because ε is small compared to the characteristic size of ω (see Figure 2.2). We

also denote by n (respectively nε) the outward normal unit vector to ∂Ω (respectively

∂Ωε
).

εΩε
ω

Figure 2.2: Schematic representation of the plate Ωε
.

Let (ei)1≤i≤d be the canonical basis of Rd
. For any x = (xi)1≤i≤d ∈ Rd

, we set

x′ := (xi)1≤i≤d−1 ∈ Rd−1
. For any M := (Mij)1≤i,j≤d ∈ Rd×d

, we set M ′ :=
(Mij)1≤i,j≤d−1 ∈ R(d−1)×(d−1)

. The set of d × d symmetric matrices is denoted by

Rd×d
s and c−, c+ > 0 are some �xed positive constants. We also de�ne the periodic

cells

Y := (0, 1)d−1
and Y := Y ×

(
−1

2
,
1

2

)
.

For any f : Rd−1 ×
(
−1

2
,
1

2

)
→ Rp

, we denote by

m(f)(x′) :=

∫ +1/2

−1/2

f(x′, xd) dxd

the mean of f over its last variable.

Throughout the article, we use the Einstein summation convention. Latin letters

are used for indices running between 1 and d and greek letters for indices running

between 1 and d− 1.

2.2.1 De�nition of the plate problem

The notations we introduce now are speci�c to the di�usion case (i.e. to the current

Section 2.2). We refer to Section 2.3.1 for similar notations for the elasticity case. We

denote byM⊂ Rd×d
s the set of symmetric matrices M such that

∀ξ ∈ Rd, |Mξ| ≤ c+|ξ| and ξ>Mξ ≥ c−|ξ|2.
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Let A : Rd−1 ×
(
−1

2
,
1

2

)
→ M be a matrix-valued �eld such that, for any xd ∈(

−1

2
,
1

2

)
, the function x′ ∈ Rd−1 7→ A(x′, xd) is Y -periodic. For any x ∈ Ω, we set

Aε(x) = A

(
x′

ε
, xd

)
. (2.3)

In addition, we de�ne Aε by

∀x ∈ Ωε, Aε(x) := Aε
(
x′,

xd
ε

)
= A

(
x′

ε
,
xd
ε

)
.

We set

V ε :=
{
v ∈ H1(Ωε), v = 0 on ∂ω ×

(
−ε

2
,
ε

2

)}
.

A function in V ε
thus vanishes on the lateral boundary of Ωε

(see Figure 2.2).

For any ε > 0, let f̃ ε ∈ L2(Ωε), gε ∈ H1(ω) and hε± ∈ L2(ω). We consider the

following di�usion problem: �nd ũε ∈ V ε
such that− div(Aε∇ũε) = f̃ ε + div(Aε∇gε) in Ωε,

Aε∇ũε · nε = εhε± −Aε∇gε · nε on ω ×
{
±ε

2

}
.

(2.4)

In (2.4), f̃ ε is the load imposed in Ωε
. The function gε is inserted as a possible extension

of a non-trivial Dirichlet boundary condition (so that ũε + gε does not necessarily

vanish on ∂ω× (−ε/2, ε/2)). A motivation for considering this general case is the fact

that we use these strong convergence results in our companion contribution [AL2] for

the numerical analysis of MsFEM approaches, where such general Dirichlet boundary

conditions appear. Note that gε does not depend on xd. The function hε± plays the role

of a Neumann boundary condition on the top and bottom faces of the plate Ωε
.

Remark 2.1. As is obvious on (2.4), the thickness (denoted η in this remark) of the plate
is equal to the characteristic length-scale ε of variations of Aε in the in-plane directions.
As pointed out above, di�erent regimes for η vs ε have been considered in the literature
(e.g. sending η to 0 before or after sending ε to 0). We refer e.g. to [17, 46, 45] for such
studies.

Since our goal is to study the asymptotic behaviour of ũε when ε goes to 0, it is

convenient to rescale the problem and recast (2.4) as a problem set on Ω, a domain

independent of ε. This is of course a standard step when studying plate problems.

Ωε ε 1
Ω

Figure 2.3: Rescaling of the domain

For any u ∈ D′(Rd) and any T ∈ (D′(Rd))d, we set

∇′u = ∂αu eα =
d−1∑
α=1

∂αu eα.
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We next introduced scaled operators as

∇εu := ∂αu eα +
1

ε
∂du ed =

d−1∑
α=1

∂αu eα +
1

ε
∂du ed

and

divε T := ∂αTα +
1

ε
∂dTd =

d−1∑
α=1

∂αTα +
1

ε
∂dTd.

We introduce

V :=

{
v ∈ H1(Ω), v = 0 on ∂ω ×

(
−1

2
,
1

2

)}
. (2.5)

It can be easily checked that problem (2.4) is equivalent to �nding uε ∈ V such that
− divε(Aε∇εuε) = f ε + divε(Aε∇εgε) in Ω,

Aε∇εuε · n = εhε± − Aε∇εgε · n on ω ×
{
±1

2

}
,

(2.6)

where Aε is given by (2.3) and where

uε(x) = ũε(x′, ε xd) and f ε(x) = f̃ ε(x′, ε xd). (2.7)

Note that, since gε does not depend on xd, the same function appears in (2.4) and (2.6).

The variational formulation of (2.6) reads as follows: �nd uε ∈ V such that

∀v ∈ V, aε(uε, v) = bε(v) (2.8)

where, for all u, v ∈ V ,

aε(u, v) :=

∫
Ω

Aε∇εu · ∇εv (2.9)

and

bε(v) :=

∫
Ω

f ε v −
∫

Ω

Aε∇εgε · ∇εv +

∫
ω

hε+ v

(
·, 1

2

)
+

∫
ω

hε− v

(
·,−1

2

)
. (2.10)

The coercivity of the bilinear form aε (with a constant which is uniform with respect

to ε) is an easy consequence of the following Poincaré inequality and of the fact that

‖∇u‖L2(Ω) ≤ ‖∇εu‖L2(Ω) for any u ∈ V . Using the Lax-Milgram theorem, we deduce

that there exists a unique solution to (2.8).

Lemma 2.2. Let V be de�ned by (2.5). There exists a constant C(Ω) > 0 such that

∀u ∈ V, ‖u‖L2(Ω) ≤ C(Ω) ‖∇u‖L2(Ω).

2.2.2 Homogenization result: weak convergence

We �rst establish a priori bounds on uε. Taking v = uε in (2.8), using the fact that gε

is independent of xd (so that∇εg = ∇g) for the second term and a trace inequality for

the last term, we get

c−‖∇εuε‖2
L2(Ω) ≤ ‖f ε‖L2(Ω)‖uε‖L2(Ω)+c+‖gε‖H1(ω)‖∇εuε‖L2(Ω)+C‖hε±‖L2(ω)‖uε‖H1(Ω).
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Using Lemma 2.2 and next the fact that ‖∇uε‖L2(Ω) ≤ ‖∇εuε‖L2(Ω), we deduce that

c−‖∇εuε‖2
L2(Ω) ≤ C‖f ε‖L2(Ω)‖∇uε‖L2(Ω) + c+‖gε‖H1(ω)‖∇εuε‖L2(Ω) + C‖hε±‖L2(ω)‖∇uε‖L2(Ω)

≤ C‖f ε‖L2(Ω)‖∇εuε‖L2(Ω) + c+‖gε‖H1(ω)‖∇εuε‖L2(Ω) + C‖hε±‖L2(ω)‖∇εuε‖L2(Ω),

and hence

‖∇εuε‖L2(Ω) ≤ C
(
‖f ε‖L2(Ω) + ‖gε‖H1(ω) + ‖hε+‖L2(ω) + ‖hε−‖L2(ω)

)
, (2.11)

for some constant C independent of ε. Using again Lemma 2.2, this implies that

‖uε‖H1(Ω) ≤ C
(
‖f ε‖L2(Ω) + ‖gε‖H1(ω) + ‖hε+‖L2(ω) + ‖hε−‖L2(ω)

)
, (2.12)

for some constant C independent of ε.

From now on in Section 2.2, we assume that there exist f ∈ L2(Ω), g ∈ H1(ω) and

h± ∈ L2(ω) such that, for all ε > 0,

f ε = f, gε = g and hε± = h±. (2.13)

Remark 2.3. Note that, in Theorem 2.4 below, it would be su�cient to assume that the
sequence (f ε)ε>0 (respectively (hε±)ε>0) weakly converges to f (respectively h±) in L2(Ω)
(respectively in L2(ω)).

Under the assumption (2.13), we infer from (2.12) that there exists u? ∈ V such

that, up to the extraction of a subsequence,

uε ⇀
ε→0

u? weakly in H1(Ω).

The bound (2.11) will also be useful below.

We now recall the well-known homogenization result of [17]. To that aim, we

introduce the corrector functions associated to the problem. Let

W(Y) :=

{
v ∈ H1

loc

(
Rd−1 ×

(
−1

2
,
1

2

))
,∀z ∈

(
−1

2
,
1

2

)
, v(·, z) is Y -periodic and

∫
Y
v = 0

}
.

For all 1 ≤ α ≤ d− 1, let wα ∈ W(Y) be the unique solution to the problem

∀v ∈ W(Y),

∫
Y
A(∇wα + eα) · ∇v = 0. (2.14)

Then, the function wα ∈ W(Y) is equivalently the unique solution inW(Y) to{
− divA(∇wα + eα) = 0 in Y ,
A(∇wα + eα) · ed = 0 on Y+ ∪ Y−,

(2.15)

where Y± := Y ×
{
±1

2

}
is the top (resp. bottom) face of Y . We are now in position

to state the homogenization theorem for the plate problem, which was proved in [17].

Theorem 2.4 (from [17]). Under the above assumptions, the sequence (uε)ε>0 solution
to (2.8) weakly converges to u? in H1(Ω) as ε goes to 0, where the function u? does not
depend on xd, belongs to H1

0 (ω) and is the unique solution to

∀φ ∈ H1
0 (ω),

∫
ω

A?∇′u? · ∇′φ =

∫
ω

(
m(f) + h+ + h−

)
φ−

∫
ω

A?∇′g · ∇′φ (2.16)

where A? := (A?αβ)1≤α,β≤d−1 is the homogenized matrix de�ned by

A?αβ :=

∫
Y
A(∇wα + eα) · (∇wβ + eβ).

By construction, A? is symmetric and coercive.

For the sake of completeness, we provide a proof of this result in Appendix 2.C,

using the method of the oscillating test function.
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2.2.3 Strong convergence of the two-scale expansion

For any function u of H1(Ω), we de�ne the norm

‖u‖H1
ε (Ω) :=

√
‖u‖2

L2(Ω) + ‖∇εu‖2
L2(Ω). (2.17)

This is indeed the relevant energy norm for (2.8). In addition, for any uε de�ned

on Ω and any ũε de�ned on Ωε
that are related one to each other by (2.7), we have

‖uε‖H1
ε (Ω) = ‖ũε‖H1(Ωε).

The aim of this section is to prove that the classical two-scale expansion, built upon

the homogenized solution and the correctors, yields an approximation of uε which is

converging in the H1
ε (Ω) norm as ε goes to 0. More precisely, we are now in position

to state our main result for the di�usion problem.

Theorem 2.5. Let us assume that f does not depend on xd (thus f ∈ L2(ω)), g ∈
W 2,∞(ω), u? ∈ W 2,∞(ω) and that, for any 1 ≤ α ≤ d−1, we havewα ∈ W 1,∞(Rd−1×(
−1

2
, 1

2

)
). Then, introducing the two-scale expansion

uε,1 := u? + εwα
( ·
ε
, ·
)
∂α(u? + g),

it holds that

‖uε − uε,1‖H1
ε (Ω) ≤C

√
ε
(
|ω|

d−2
2d−2‖∇(u? + g)‖L∞(ω)

+C
√
ε|ω|

1
2‖∇2(u? + g)‖L∞(ω) +

√
ε‖h±‖L2(ω)

)
for some constant C > 0 independent of ε and of the domain ω.

Tracking the dependency of the constant in the above right-hand side with re-

spect to ω is important for our applications to MsFEM approaches considered in [AL2],

where we write the above estimate for problems posed on local elements (and where

|ω| is thus directly related to the size of the coarse mesh).

The rest of this section is devoted to the proof of this result, which requires some

preliminary lemmas stated below. Lemma 2.6 states a Poincaré estimate and a trace

result for the norm ‖ · ‖H1
ε (Ω) de�ned in (2.17).

Lemma 2.6. There exist two constants C1 > 0 and C2 > 0 independent of ε and ω such
that

∀u ∈ V, ‖u‖L2(Ω) ≤ C1 max
(
ε, |ω|

1
d−1

)
‖∇εu‖L2(Ω) (2.18)

and

∀u ∈ V,
∥∥∥∥u(·,±1

2

)∥∥∥∥
L2(ω)

≤ C2 max
(
ε, |ω|

1
d−1

)
‖∇εu‖L2(Ω). (2.19)

Proof of Lemma 2.6. For any smooth bounded domain ω̃ ⊂ Rd−1
, we denote by

V (Ω̃) :=

{
v ∈ H1(Ω̃), v = 0 on ∂ω̃ ×

(
−1

2
,
1

2

)}

where Ω̃ := ω̃ ×
(
−1

2
,
1

2

)
.
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Let ω̂ := (0, 1)d−1
and Ω̂ := ω̂ ×

(
−1

2
,
1

2

)
. Using the Poincaré inequality, there

exists some constant CP (Ω̂) such that

∀u ∈ V (Ω̂), ‖u‖2
L2(Ω̂)

≤ CP (Ω̂)2‖∇u‖2
L2(Ω̂)

. (2.20)

We next proceed by scaling. Let us introduce ωK := (0, K)d−1
and ΩK := ωK ×(

−1

2
,
1

2

)
for some K > 0. For any u ∈ V (Ω̂), the function uK : ωK 3 x 7→

u

(
x′

K
, xd

)
belongs to V (ΩK). A simple computation shows that

‖uK‖2
L2(ωK) = Kd−1‖u‖2

L2(ω̂),

‖∇′uK‖2
L2(ΩK) = Kd−3‖∇′u‖2

L2(Ω̂)
,

‖ε−1∂duK‖2
L2(ΩK) = Kd−1‖ε−1∂du‖2

L2(Ω̂)
.

Recalling (2.20), we thus get that

‖uK‖2
L2(ΩK) ≤ C(Ω̂)

(
K2‖∇′uK‖2

L2(ΩK) + ε2‖ε−1∂duK‖2
L2(ΩK)

)
≤ C(Ω̂) max(K2, ε2) ‖∇εuK‖2

L2(ΩK).

Since K = |ωK |
1
d−1 , we get

‖uK‖L2(ΩK) ≤ C(Ω̂) max
(
|ωK |

1
d−1 , ε

)
‖∇εuK‖L2(ΩK)

which proves (2.18) in the case ω = ωK . In the case of a more general, shape regular

domain ω, the proof can be performed using the same argument. The inequality (2.19)

is proved following the same lines. This concludes the proof of Lemma 2.6.

We now proceed with a form a Poincaré-Wirtinger inequality.

Lemma 2.7. Let h ∈ L2(ω) and v ∈ V . Then, for any z ∈
[
−1

2
, 1

2

]
, we have∣∣∣∣∫

ω

(v(·, z)−m(v))h

∣∣∣∣ ≤ ε‖h‖L2(ω)‖∇εv‖L2(Ω).

Proof of Lemma 2.7. Let v ∈ V and let (vn)n∈N be a regularization of v such that, for

all n ∈ N, we have vn ∈ C∞(Ω) and vn −→
n→+∞

v strongly in H1(Ω).

For all n ∈ N, the function vn belongs to C∞(Ω), and thus, for any z ∈
[
−1

2
, 1

2

]
, we

have

|vn(·, z)−m(vn)| =

∣∣∣∣∣
∫ + 1

2

− 1
2

(
vn(·, z)− vn(·, t)

)
dt

∣∣∣∣∣
=

∣∣∣∣∣
∫ + 1

2

− 1
2

∫ z

t

∂dvn(·, s) ds dt

∣∣∣∣∣
≤ ε

∫ + 1
2

− 1
2

∣∣∣∣1ε∂dvn(·, s)
∣∣∣∣ ds.
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It follows that

‖vn(·, z)−m(vn)‖2
L2(ω) =

∫
ω

|vn(·, z)−m(vn)|2

≤ ε2

∫
ω

∣∣∣∣∣
∫ + 1

2

− 1
2

∣∣∣∣1ε∂dvn(·, s)
∣∣∣∣ ds
∣∣∣∣∣
2

≤ ε2

∥∥∥∥1

ε
∂dvn

∥∥∥∥2

L2(Ω)

≤ ε2‖∇εvn‖2
L2(Ω).

For any z ∈
[
−1

2
, 1

2

]
, we now write∣∣∣∣∫

ω

(v(·, z)−m(v))h

∣∣∣∣ ≤ ‖h‖L2(ω) ‖v(·, z)−m(v)‖L2(ω)

and bound from above the right-hand side using that

‖v(·, z)−m(v)‖L2(ω) ≤ ‖vn(·, z)−m(vn)‖L2(ω) + ‖v(·, z)− vn(·, z)‖L2(ω)

+ ‖m(v)−m(vn)‖L2(ω)

≤ ε‖∇εvn‖L2(Ω) + C‖v − vn‖H1(Ω) + ‖v − vn‖L2(Ω)

where we use the above inequality for vn for the �rst term, and the trace inequality

for the second term. Passing to the limit n → ∞ yields the result and concludes the

proof of Lemma 2.7.

Lemma 2.8 is an adaptation of a technical result, already present in [58, p. 27], to

the case of plates.

Lemma 2.8. Let V be de�ned by (2.5). Let Z ∈
(
L2

loc

(
Rd−1 ×

(
−1

2
,
1

2

)))d
be a

vector �eld such that

(i) for almost all z ∈
(
−1

2
,
1

2

)
, the function Z(·, z) is Y -periodic;

(ii)
∫
Y
Z = 0;

(iii) divZ = 0 in D′
(
Rd−1 ×

(
−1

2
,
1

2

))
;

(iv) Z · ed = 0 on Rd−1 × {−1/2} and on Rd−1 × {+1/2}.

Then, there exists some C such that

∀ϕ ∈ W 1,∞(ω), ∀v ∈ V,
∣∣∣∣∫

Ω

ϕZ
( ·
ε
, ·
)
· ∇εv

∣∣∣∣ ≤ Cε|ω|
1
2‖∇ϕ‖L∞(ω)‖∇εv‖L2(Ω).

Remark 2.9. We recall that for any function inHdiv(D) :=
{
Z ∈ L2(D)d, divZ ∈ L2(D)

}
(for any smooth domain D ⊂ Rd) has a well-de�ned normal trace on ∂D (see Ap-
pendix 2.A for details). Assumption (iv) in Lemma 2.8 thus makes sense.

The proof of Lemma 2.8 requires the following lemma (see [58, p. 6]). We recall

that L2
per(Rd) =

{
f ∈ L2

loc(Rd), f is (0, 1)d-periodic

}
.
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Lemma 2.10. Let p ∈ {q ∈ (L2
per(Rd))d, div q = 0 in Rd}. Then there exists J ∈(

H1
per(Rd)

)d×d which is skew symmetric and such that

∀1 ≤ j ≤ d, pj −
∫

(0,1)d
pj = ∂iJij,

∫
(0,1)d

Jij = 0.

Proof of Lemma 2.8. Let Z be the periodic extension of Z in the ed direction. We then

have Z ∈ (L2
per(Rd))d. Let us prove that divZ = 0 in D′(Rd). Let ψ ∈ D(Rd).

There exists a compact set K ⊂ Rd−1
and an integer m ∈ N?

such that Suppψ ⊂
K × [−m− 1/2;m+ 1/2]. We compute

〈div Z,ψ〉D′(Rd),D(Rd) = −
∫
K×(−m−1/2;m+1/2)

Z · ∇ψ

=
m∑

k=−m

−
∫
K×(k−1/2;k+1/2)

Z · ∇ψ

=
m∑

k=−m

−
∫
K×(−1/2;1/2)

Z · ∇ψ(·+ k ed).

Using Assumptions (iv) and that ψ(·+ k ed) = 0 on ∂K × R, we compute that∫
K×(−1/2;1/2)

Z · ∇ψ(·+ k ed) = −
∫
K×(−1/2;1/2)

ψ(·+ k ed) divZ.

Using Assumption (iii), we deduce that

∫
K×(−1/2;1/2)

Z · ∇ψ(· + k ed) = 0. We thus

obtain that divZ = 0 in D′(Rd).

We are thus in position to use Lemma 2.10 for Z . Since

∫
Y
Z = 0, we know that

there exists a skew symmetric matrix-valued �eld J ∈
(
H1

per(Rd)
)d×d

such that Zj =
∂iJij .

Let ϕ ∈ W 1,∞(ω). Denoting J·j = (Jij)1≤i≤d ∈ Rd
, we compute, for any xd in(

−1
2
, 1

2

)
, [

Z
( ·
ε
, xd

)
ϕ
]
j

=
[
Z
( ·
ε
, xd

)
ϕ
]
j

= ∂iJij

( ·
ε
, xd

)
ϕ

= ε divε
[
J·j

( ·
ε
, xd

)]
ϕ

= ε divε
[
J·j

( ·
ε
, xd

)
ϕ
]
− εJ·j

( ·
ε
, xd

)
· ∇εϕ

= εB̃j(·, xd)− εBj(·, xd)

where B̃j(·, xd) := divε
[
J·j
( ·
ε
, xd
)
ϕ
]

and Bj(·, xd) := J·j
( ·
ε
, xd
)
· ∇εϕ. Note that

divε(B̃)

= divε
(
∂α

[
Jαj

( ·
ε
, xd

)
ϕ
]
ej +

1

ε
∂d

[
Jdj

( ·
ε
, xd

)
ϕ
]
ej

)
= ∂βα

[
Jαβ

( ·
ε
, xd

)
ϕ
]

+
1

ε

(
∂dα

[
Jαd

( ·
ε
, xd

)
ϕ
]

+ ∂βd

[
Jdβ

( ·
ε
, xd

)
ϕ
])

+
1

ε2
∂dd

[
Jdd

( ·
ε
, xd

)
ϕ
]

= 0 [ because J is skew symmetric]. (2.21)
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We now write that, for any v in V ,∫
Ω

ϕZ
( ·
ε
, ·
)
· ∇εv = ε

∫
Ω

B̃ · ∇εv − ε
∫

Ω

B · ∇εv. (2.22)

We bound the �rst term of (2.22). By de�nition B̃ is in L2(Ω) and divε(B̃) is also

in L2(Ω), in view of (2.21). We thus note that B̃ has a well de�ned normal trace.

Using (2.21) and an integration by part, we obtain∫
Ω

B̃ · ∇εv =
1

ε

∫
ω

B̃

(
·, 1

2

)
· ed v

(
·, 1

2

)
− 1

ε

∫
ω

B̃

(
·,−1

2

)
· ed v

(
·,−1

2

)
. (2.23)

It holds that, for any xd in

(
−1

2
, 1

2

)
,

B̃ =
1

ε
Z
( ·
ε
, xd

)
ϕ+ J

( ·
ε
, xd

)
∇εϕ.

Since ϕ ∈ W 1,∞(ω), it holds that ∇εϕ = ∇ϕ = (∇′ϕ, 0) ∈ L∞(ω). Besides, since

J ∈
(
H1

per(Rd)
)d×d

, we have

J

(
·
ε
,−1

2

)
∇εϕ = J

(
·
ε
,
1

2

)
∇εϕ = J

(
·
ε
,
1

2

)
∇ϕ ∈ L2(ω).

Assumption (iv) implies that

B̃

(
·,±1

2

)
· ed = eTd J

(
·
ε
,
1

2

)
∇ϕ.

We hence deduce from (2.23) that∣∣∣∣∫
Ω

B̃ · ∇εv

∣∣∣∣ =
1

ε

∣∣∣∣∫
ω

eTd J

(
·
ε
,
1

2

)
∇ϕ

[
v

(
·, 1

2

)
− v

(
·,−1

2

)]∣∣∣∣
=

∣∣∣∣∣
∫
ω

∫ 1/2

t=−1/2

1

ε
∂dv(x′, t) eTd J

(
x′

ε
,
1

2

)
∇ϕ(x′) dt dx′

∣∣∣∣∣
≤ ‖∇εv‖L2(Ω)

∥∥∥∥J ( ·ε, 1

2

)∥∥∥∥
L2(ω)

‖∇ϕ‖L∞(ω)

≤ C|ω|
1
2‖∇εv‖L2(Ω)

∥∥∥∥J (·, 1

2

)∥∥∥∥
L2(Y )

‖∇ϕ‖L∞(ω)

≤ C|ω|
1
2‖∇εv‖L2(Ω)‖J‖H1(Y)‖∇ϕ‖L∞(ω). (2.24)

We now bound the second term of (2.22):∣∣∣∣∫
Ω

B · ∇εv

∣∣∣∣ =

∣∣∣∣∣
∫
ω

∫ 1/2

−1/2

J

(
x′

ε
, xd

)
∇εv(x′, xd) · ∇εϕ(x′) dx′dxd

∣∣∣∣∣
≤ ‖∇ϕ‖L∞(ω)‖∇εv‖L2(Ω)

∥∥∥J ( ·
ε
, ·
)∥∥∥

L2(Ω)

≤ C|ω|
1
2‖∇ϕ‖L∞(ω)‖∇εv‖L2(Ω)‖J‖L2(Y). (2.25)

Collecting (2.22), (2.24) and (2.25), we have shown that∣∣∣∣∫
Ω

ϕZ
( ·
ε
, ·
)
· ∇εv

∣∣∣∣ ≤ Cε|ω|
1
2‖∇ϕ‖L∞(ω)‖∇εv‖L2(Ω).

This concludes the proof of Lemma 2.8.
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We are now in position to prove Theorem 2.5.

Proof of Theorem 2.5. The proof falls in four steps. In the �rst step, we correct for the

boundary mismatch between uε and its approximation uε,1. In Steps 2 and 3, we show

that our approximation is accurate in the suitable norm inside the domain. In Step 4,

we collect all the estimates to reach the conclusion.

Step 1. Let τε ∈ D(ω) such that 0 ≤ τε ≤ 1, and such that τε(x
′) = 1 for any

x′ ∈ ω such that dist(x′, ∂ω) ≥ ε. Since ω is smooth, we can choose τε such that

ε‖∇τε‖L∞(ω) ≤ C with C > 0 independent of ω and ε. We de�ne ωε := {x′ ∈
ω such that dist(x′, ∂ω) ≥ ε} and Ωε := ωε×

(
−1

2
, 1

2

)
. Note that |Ω\Ωε| ≤ Cε |ω|

d−2
d−1 .

We introduce the function vε,1 de�ned for x ∈ Ω by

vε,1(x) := u?(x′) + ετε(x
′)wα

(
x′

ε
, xd

)
∂α(u?(x′) + g(x′)).

By de�nition of τε, we have vε,1 ∈ V and vε,1 = uε,1 in Ωε.

We begin with an estimation of ‖uε,1 − vε,1‖H1(Ω). We compute that ∇εuε,1 −
∇εvε,1 = Eε

0 − Eε
1 + εEε

2 , where

Eε
0 = (1− τε)∇wα

( ·
ε
, ·
)
∂α(u? + g),

Eε
1 = ε∇ετεw

α
( ·
ε
, ·
)
∂α(u? + g),

Eε
2 = (1− τε)wα

( ·
ε
, ·
)
∇ε∂α(u? + g).

We bound the above three terms in L2(Ω) norm, using that wα ∈ W 1,∞
, 0 ≤ τε ≤ 1

and that ε‖∇τε‖L∞(ω) ≤ C . Note that by de�nition ∂dτε = 0 therefore ∇ετε = ∇τε.
Likewise, ∇ε∂α(u? + g) = ∇∂α(u? + g). We thus have

‖Eε
2‖2

L2(Ω) ≤ C sup
1≤α≤d−1

‖wα‖2
L∞‖∇2(u? + g)‖2

L2(Ω)

≤ C|ω|
(
‖∇2u?‖2

L∞(ω) + ‖∇2g‖2
L∞(ω)

)
,

‖Eε
1‖2

L2(Ω) ≤ C sup
1≤α≤d−1

‖wα‖2
L∞‖∇(u? + g)‖2

L∞(ω)|Ω \ Ωε|

≤ Cε|ω|
d−2
d−1

(
‖∇u?‖2

L∞(ω) + ‖∇g‖2
L∞(ω)

)
,

‖Eε
0‖2

L2(Ω) ≤ C|Ω \ Ωε| sup
1≤α≤d−1

‖∇wα‖2
L∞‖∇(u? + g)‖2

L∞(ω)

≤ Cε|ω|
d−2
d−1

(
‖∇u?‖2

L∞(ω) + ‖∇g‖2
L∞(ω)

)
.

We thus obtain

‖∇εvε,1 −∇εuε,1‖2
L2(Ω) ≤ C

(
ε|ω|

d−2
d−1‖∇u?‖2

L∞(ω) + ε2|ω|‖∇2u?‖2
L∞(ω)

)
. (2.26)

Step 2. We now bound vε := uε − vε,1. Thanks to the coercivity of A, we write

c−‖∇εvε‖2
L2(Ω) ≤

∫
Ω

∇εvε · Aε∇εvε.

We next split the right-hand side as∫
Ω

∇εvε ·Aε∇εvε =

∫
Ω

∇εvε ·Aε∇ε(uε− uε,1) +

∫
Ω

∇εvε ·Aε∇ε(uε,1− vε,1), (2.27)
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and bound the second term of (2.27) using (2.26):∫
Ω

∇εvε · Aε∇ε(uε,1 − vε,1) ≤ C‖∇ε(uε − vε,1)‖L2(Ω)‖∇ε(uε,1 − vε,1)‖L2(Ω)

≤
(√

ε|ω|
d−2
2d−2‖∇u?‖L∞(ω)

+ε|ω|
1
2‖∇2u?‖L∞(ω)

)
‖∇ε(uε,1 − vε,1)‖L2(Ω).

For the �rst term of (2.27), we write∫
Ω

∇εvε · Aε∇ε(uε − uε,1) =

∫
Ω

Aε∇ε(uε + g) · ∇εvε −
∫

Ω

Aε∇ε(uε,1 + g) · ∇εvε.

We recast those terms as∫
Ω

Aε∇ε(uε + g) · ∇εvε =

∫
Ω

[∫
Y
A(eα +∇wα)

]
∂α(u? + g) · ∇εvε +Rε

1 (2.28)

and∫
Ω

Aε∇ε(uε,1 +g) ·∇εvε =

∫
Ω

Aε
(
eα +∇wα

( ·
ε
, ·
))

∂α(u?+g) ·∇εvε+Rε
2. (2.29)

where Rε
1 and Rε

2 are remainder terms precisely de�ned by (2.28) and (2.29). We thus

have∫
Ω

∇εvε · Aε∇ε(uε − uε,1)

=

∫
Ω

[∫
Y
A(eα +∇wα)dy − Aε(eα +∇wα))

]
∂α(u? + g) · ∇εvε +Rε

1 +Rε
2.

We now consider the �rst term of the above equation and introduce

Zα :=

∫
Y
A(eα +∇wα)− A (eα +∇wα) .

Because of the de�nition of wα solution to (2.14), Zα satis�es the assumptions of

Lemma 2.8. The function ∂α(u? + g) belongs to W 1,∞(ω) and uε − vε,1 belongs to

V . We are thus in position to use Lemma 2.8. For any 1 ≤ α ≤ d− 1, it holds that∣∣∣∣∫
Ω

Zα

( ·
ε
, ·
)
∂α(u? + g) · ∇εvε

∣∣∣∣ ≤ Cε|ω|
1
2‖∇2(u? + g)‖L∞(ω)‖∇εvε‖L2(Ω).

At this point, we have shown that

‖∇εvε‖2
L2(Ω) ≤ C

(√
ε|ω|

d−2
2d−2‖∇u?‖L∞(ω) + ε|ω|

1
2‖∇2u?‖L∞(ω)

)
‖∇εvε‖L2(Ω)+|Rε

1|+|Rε
2|.

(2.30)

Step 3. We now show estimates onRε
1 andRε

2, de�ned by (2.28) and (2.29). The bound

on Rε
2 stems from the de�nition of uε,1:

|Rε
2| =

∣∣∣∣∫
Ω

Aε
[
∇ε(uε,1 + g)−

(
eα +∇wα

( ·
ε
, ·
))

∂α(u? + g)
]
· ∇εvε

∣∣∣∣
=

∣∣∣∣∫
Ω

Aε
[
εwα

( ·
ε
, ·
)
∇∂α(u? + g)

]
· ∇εvε

∣∣∣∣
≤ Cε‖∇2(u? + g)‖L2(Ω)‖∇εvε‖L2(Ω)

≤ Cε|ω|
1
2‖∇2(u? + g)‖L∞(Ω)‖∇εvε‖L2(Ω).
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Let us now boundRε
1. We use the variational formulation (2.8) and the fact that uε−vε,1

belongs to V in order to write∫
Ω

Aε∇ε(uε + g) · ∇εvε =

∫
Ω

f vε +

∫
Γ±
h± v

ε,

where Γ± = ω ×
{
±1

2

}
. Since the function ṽ : Y 3 y 7→ yd belongs to the space

W (Y), it is an admissible test function for (2.14). Thus, we obtain that

∫
Y
A(eα +

∇wα) · ed = 0 for all 1 ≤ α ≤ d− 1. We thus write∫
Ω

[∫
Y
A(eα +∇wα)

]
∂α(u? + g) · ∇εvε =

∫
Ω

A?∇′(u? + g) · ∇′vε

=

∫
ω

A?∇′(u? + g) · ∇′m(vε).

Using the variational formulation (2.16) of the homogenized problem, the fact that

m(vε) belongs toH1
0 (ω) (and is thus an admissible test function for (2.16)) and the fact

that f does not depend on xd yields that∫
ω

A?∇′(u? + g) · ∇′m(vε) =

∫
ω

(f + h±) m(vε) =

∫
Ω

(f + h±)vε.

Thus

Rε
1 =

∫
Ω

[∫
Y
A(eα +∇wα)

]
∂α(u? + g) · ∇εvε −

∫
Ω

Aε∇ε(uε + g) · ∇εvε

=

∫
ω

h±v
ε −

∫
Γ±
h±v

ε.

Using Lemma 2.7, we get

|Rε
1| ≤ ε‖h±‖L2(ω)‖∇εvε‖L2(Ω).

As a consequence,

|R1
ε|+ |R2

ε| ≤ Cε
(
|ω|

1
2‖∇2(u? + g)‖L∞(Ω) + ‖h±‖L2(ω)

)
∇εvε‖L2(Ω).

Thus, we deduce from (2.30) that

‖∇εvε‖L2(Ω) ≤ C
(√

ε|ω|
d−2
2d−2‖∇(u? + g)‖L∞(ω) + ε|ω|

1
2‖∇2(u? + g)‖L∞(ω) + ε‖h±‖L2(ω)

)
.

(2.31)

Step 4. Using (2.26) and (2.31), it holds that

‖∇ε(uε − uε,1)‖L2(Ω) ≤ ‖∇ε(uε − vε,1)‖L2(Ω) + ‖∇ε(vε,1 − uε,1)‖L2(Ω)

≤ C
(√

ε|ω|
d−2
2d−2‖∇(u? + g)‖L∞(ω) + ε|ω|

1
2‖∇2(u? + g)‖L∞(ω) + ε‖h±‖L2(ω)

)
.

To conclude the proof, we use the Poincaré inequality stated in Lemma 2.6, which

yields that

‖uε−uε,1‖H1
ε (Ω) ≤ C

√
ε
(
|ω|

d−2
2d−2‖∇(u? + g)‖L∞(ω) + C

√
ε|ω|

1
2‖∇2(u? + g)‖L∞(ω) +

√
ε‖h±‖L2(ω)

)
.

This concludes the proof of Theorem 2.5.
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2.3 The elasticity case

We now turn to the linear elasticity problem.

2.3.1 De�nition of the plate problem

We use here the same notations as introduced at the beginning of Section 2.2. We

furthermore introduce some notations speci�c to the elasticity case considered in this

Section 2.3. We denote byM the set of tensors M ∈ Rd×d×d×d
such that

∀y ∈ Rd×d
s , |My| ≤ c+|y| and y>My ≥ c−|y|2,

where we recall that Rd×d
s is the set of symmetric matrices of size d × d, and which

have the following symmetries:

∀1 ≤ i, j, k, l ≤ d, Mijkl = Mjikl = Mijlk = Mklij.

For A,B ∈ Rd×d
we denote by A : B = Aij Bij . Let us point out here that, in

particular, for any 1 ≤ i, j ≤ d and any A ∈ Rd×d
, A : (ei ⊗ ej) = eTi Aej .

Let A : Rd−1 ×
(
−1

2
, 1

2

)
→ M be such that, for any xd ∈

(
−1

2
, 1

2

)
, the function

x′ 7→ A(x′, xd) is Y -periodic. For all x ∈ Ω, we set

Aε(x) = A

(
x′

ε
, xd

)
.

In addition, we de�ne Aε by

∀x ∈ Ωε, Aε(x) := Aε
(
x′,

xd
ε

)
= A

(
x′

ε
,
xd
ε

)
.

We denote by

V ε :=
{
v ∈

(
H1(Ωε)

)d
, v = 0 on ∂ω ×

(
−ε

2
,
ε

2

)}
.

Let f̃ ε ∈ (L2(Ωε))
d
, g̃ε ∈ (H1(Ω))

d
and h̃ε± ∈ (L2(ω))

d
.

For any u ∈ (H1(Ω))
d
, let e(u) denote the symmetric gradient of u, i.e. e(u) :=

1
2

(
∇u+∇uT

)
. The plate linear elasticity problem reads as follows: �nd ũε ∈ V ε

such

that − div(Aεe(ũε)) = f̃ ε + div(Aεe(g̃ε)) in Ωε,

Aεe(ũε) · nε = h̃ε± −Aεe(g̃ε) · nε on ω ×
{
±ε

2

}
.

(2.32)

Similarly as in the plate di�usion problem (2.4), f̃ ε in (2.32) is the load imposed in Ωε
.

The function g̃ε is inserted as a possible extension of a non-trivial Dirichlet boundary

condition (so that ũε + g̃ε does not necessarily vanish on ∂ω × (−ε/2, ε/2)). The

function h̃ε± plays the role of a Neumann boundary condition (i.e. a traction boundary

condition for this elasticity problem) on the top and bottom faces of the plate Ωε
.

As already pointed out in Section 2.2, we consider the case of non-homogeneous

Dirichlet boundary conditions and we track below the dependency of our estimates

with respect to the size of ω since we have in mind the application of these results to

the numerical analysis of MsFEM approaches (see [AL2]), where these two points are

needed.
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To simplify the analysis, it is classical to change the scale of the problem in the d-

direction (as we did for the di�usion problem), in order to work with problems posed

on a domain Ω independent of ε (recall Figure 2.3).

For any u ∈
(
D′(Rd)

)d
and T ∈

(
D′(Rd)

)d×d
, we de�ne the operators eε and divε

by

eεαβ(u) := eαβ(u), eεαd(u) :=
1

ε
eαd(u) and eεdd(u) :=

1

ε2
edd(u)

and

divε(T )α := ∂βTαβ +
1

ε
∂dTαd and divε(T )d :=

1

ε
∂βTdβ +

1

ε2
∂dTdd

for any 1 ≤ α, β ≤ d− 1.

We denote by

V :=

{
v ∈

(
H1(Ω)

)d
, v = 0 on ∂ω ×

(
−1

2
,
1

2

)}
. (2.33)

It can then be easily seen that problem (2.32) is equivalent to �nding uε ∈ V such that
− divε(Aεeε(uε)) = f ε + divε(Aεeε(gε)) in Ω,

Aεeε(uε) · n =

(
ε(hε±)′

ε2(hε±)d

)
− Aεeε(gε) · n on ω ×

{
±1

2

}
,

(2.34)

with

• uεα(x) = ũεα(x′, ε xd), uεd(x) = ε ũεd(x
′, ε xd),

• f εα(x) = f̃ εα(x′, ε xd), f εd(x) = ε−1 f̃ εd(x′, ε xd),

• hεα(x′) = h̃εα(x′), hεd(x
′) = ε−1 h̃εd(x

′),

• gεα(x) = g̃εα(x′, ε xd), gεd(x) = ε g̃εd(x
′, ε xd),

where, in the third line, we have written h as a short-hand for h±.

The variational formulation of (2.34) reads as:

Find uε ∈ V such that ∀v ∈ V, aε(uε, v) = bε(v), (2.35)

where

aε(uε, v) :=

∫
Ω

Aεeε(uε) : eε(v)

and

bε(v) :=

∫
Ω

f ε · v −
∫

Ω

Aεeε(gε) : eε(v) +

∫
ω

hε+ · v
(
·, 1

2

)
+

∫
ω

hε− · v
(
·,−1

2

)
.

We are going to use the following Korn inequality (see [22]), a proof of which is given

in Appendix 2.B (see Lemma 2.29): there exists C(Ω) such that

∀u ∈ V, ‖u‖(H1(Ω))d ≤ C(Ω) ‖e(u)‖(L2(Ω))d×d . (2.36)

Using this inequality and the Lax-Milgram theorem, one easily obtains that there exists

a unique solution to (2.35).
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We now establish a priori bounds on uε. Taking v = uε in (2.35) and using a trace

inequality, we get

c−‖eε(uε)‖2
(L2(Ω))d×d

≤ ‖f ε‖(L2(Ω))d‖u
ε‖(L2(Ω))d

+ c+‖eε(gε)‖(L2(Ω))d×d‖e
ε(uε)‖(L2(Ω))d×d + C‖hε±‖(L2(ω))d‖u

ε‖(H1(Ω))d .

Using (2.36) and next the fact that ‖e(uε)‖(L2(Ω))d×d ≤ ‖eε(uε)‖(L2(Ω))d×d , we deduce

that

c−‖eε(uε)‖2
(L2(Ω))d×d

≤ C‖f ε‖(L2(Ω))d‖e
ε(uε)‖(L2(Ω))d×d

+ c+‖eε(gε)‖(L2(Ω))d×d‖e
ε(uε)‖(L2(Ω))d×d + C‖hε±‖(L2(ω))d‖e

ε(uε)‖(L2(Ω))d×d

and thus

‖eε(uε)‖(L2(Ω))d×d ≤ C
(
‖f ε‖(L2(Ω))d + ‖eε(gε)‖(L2(Ω))d×d + ‖hε±‖(L2(ω))d

)
(2.37)

for some constant C > 0 independent of ε. Using again (2.36), we infer that

‖uε‖(H1(Ω))d ≤ C
(
‖f ε‖(L2(Ω))d + ‖eε(gε)‖(L2(Ω))d×d + ‖hε±‖(L2(ω))d

)
(2.38)

for some constant C > 0 independent of ε.

To obtain bounds independent of ε > 0 on

(
‖uε‖(H1(Ω))d

)
ε>0

and

(
‖eε(uε)‖(L2(Ω))d×d

)
ε>0

,

we need to assume that the sequences

(
‖f ε‖(L2(Ω))d

)
ε>0

,

(
‖eε(gε)‖(L2(Ω))d×d

)
ε>0

and(
‖hε±‖(L2(ω))d

)
ε>0

are bounded.

From now on in this Section 2.3, we assume that there exist f ∈ (L2(Ω))d and

h± ∈ (L2(ω))d such that, for all ε > 0,

f ε = f and hε± = h±. (2.39)

We postpone the precise assumption we make on the sequence (gε)ε>0 to Section 2.3.2.

Provided that the sequence

(
‖eε(gε)‖(L2(Ω))d×d

)
ε>0

is bounded, we infer from (2.38)

that, up to the extraction of a subsequence, there exists u? ∈ (H1(Ω))
d

such that

uε ⇀
ε→0

u? weakly in

(
H1(Ω)

)d
.

The bound (2.37) is also useful in the sequel.

2.3.2 Homogenization and dimension reduction: weak conver-

gence

The aim of this section is to recall the result of [18], where the homogenized limit

of (2.35) has been identi�ed. We introduce the set

W(Y) :=

{
v ∈

(
H1

loc

(
Rd−1 ×

(
−1

2
,
1

2

)))d
,

∀z ∈
(
−1

2
,
1

2

)
, v(·, z) is Y -periodic and

∫
Y
v = 0

}
.
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Let wαβ ∈ W(Y) be the solution to the problem

∀v ∈ W(Y),

∫
Y
A(e(wαβ) + eα ⊗ eβ) : e(v) = 0 (2.40)

for any 1 ≤ α, β ≤ d − 1. The function wαβ is equivalently the unique solution in

W(Y) to {
− divA(e(wαβ) + eα ⊗ eβ) = 0

A(e(wαβ) + eα ⊗ eβ) · ed = 0 on Y±

where Y± := Y ×
{
±1

2

}
.

Let Wαβ ∈ W(Y) be the solution to the problem

∀v ∈ W(Y),

∫
Y
A(e(Wαβ)− xdeα ⊗ eβ) : e(v) = 0 (2.41)

for any 1 ≤ α, β ≤ d − 1. The function Wαβ
is equivalently the unique solution in

W(Y) to {
− divA(e(Wαβ)− xdeα ⊗ eβ) = 0

A(e(Wαβ)− xdeα ⊗ eβ) · ed = 0 on Y±.

We de�ne the set of the Kircho�-Love displacements as follows:

VKL :=
{
v ∈

(
H1(Ω)

)d−1 ×H2
0 (ω), ∃v̂ ∈

(
H1

0 (ω)
)d−1 ×H2

0 (ω), vα = v̂α − xd∂αv̂d, vd = v̂d

}
,

where H2
0 (ω) is the closure of D(Ω) in H2(ω). For any v ∈ VKL, we use the notation

v̂ to denote the corresponding element of (H1
0 (ω))

d−1 ×H2
0 (ω).

Let us also denote by

GKL :=
{
g ∈

(
H1(Ω)

)d−1 ×H2(ω), ∃ĝ ∈
(
H1(ω)

)d−1 ×H2(ω), gα = ĝα − xd∂αĝd, gd = ĝd

}
.

For all g ∈ GKL, we denote by ĝ the corresponding element of (H1(ω))
d−1 ×H2(ω).

It then holds thatVKL ⊂ GKL and that, for any g ∈ GKL, the sequence

(
‖eε(g)‖(L2(Ω))d×d

)
ε>0

is bounded. Observe indeed that

∀g ∈ GKL, ∀1 ≤ i ≤ d, eεid(g) = 0,

and therefore eε(g) = e(g) for any g ∈ GKL. We thus make from now on the assump-

tion that the function gε appearing in the linear form bε of (2.35) is such that

there exists g ∈ GKL such that, for all ε > 0, we have gε = g. (2.42)

We recall the following result from [18] (a proof of Theorem 2.11, using the method

of the oscillating test function, is recalled in Appendix 2.C for the sake of complete-

ness).

Theorem 2.11 (from [18]). Under the above assumptions, the sequence (uε)ε>0 solution
to (2.35) weakly converges to u? in (H1(Ω))

d, where the function u? belongs to VKL and
is the unique solution to

∀φ ∈ VKL,
∫
ω

K?Pu? : Pφ =

∫
ω

(m(f)+h±)·φ̂−
∫
ω

m(xdfα) ∂αφ̂d−
∫
ω

K?Pg : Pφ
(2.43)
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where the homogenized tensor is given by

K? :=

(
K?

11 K?
12

(K?
12)T K?

22

)
,

where each subtensor is de�ned as follows: for all 1 ≤ α, β, γ, δ ≤ d− 1,

(K?
11)αβγδ :=

∫
Y
A(e(wαβ) + eα ⊗ eβ) : (e(wγδ) + eγ ⊗ eδ),

(K?
12)αβγδ :=

∫
Y
A(e(wαβ) + eα ⊗ eβ) : (e(W γδ)− xdeγ ⊗ eδ),

(K?
22)αβγδ :=

∫
Y
A(e(Wαβ)− xdeα ⊗ eβ) : (e(W γδ)− xdeγ ⊗ eδ), (2.44)

((K?
12)T )αβγδ := (K?

12)γδαβ,

and where

P :


GKL → L2

(
ω;
(
R(d−1)×(d−1)
s

)2
)

v 7→
(

e′(v̂′)
∇2
d−1v̂d

) .

By construction, K? is symmetric and coercive.

In the de�nition ofP , let us recall that v̂ =

(
v̂′

v̂d

)
and that e′(v̂′) is a (d−1)×(d−1)

symmetric matrix, with

[
e′(v̂′)

]
αβ

= eαβ(v̂). In addition,∇2
d−1v̂d is a (d− 1)× (d− 1)

symmetric matrix, with

[
∇2
d−1v̂d

]
αβ

= ∂αβ v̂d.

2.3.3 Strong convergence result of a two-scale expansion in the

membrane and bending case

The aim of this section is to state some strong convergence results similar to Theo-

rem 2.5 in the elasticity case. Let us mention here that, in the case of homogeneous

plates, expansions at an arbitrary order in ε were studied in [28].

We �rst present some preliminary lemmas in Section 2.3.3. Then, in Section 2.3.3,

we present the symmetry assumptions on the elasticity tensor A needed to state our

results and present in details the membrane and bending case. We �nally state our main

results in Section 2.3.4 for the membrane case and in Section 2.3.5 for the bending case.

We stress here the following point: while the proof of the strong convergence result

in the membrane case follows similar lines as the one in the di�usion case, the proof

in the bending case is much more involved and requires a di�erent strategy of proof.

We will discuss this in more details at the beginning of Section 2.3.5.

Preliminary lemmas

The aim of this section is to prove some auxiliary lemmas which are useful in the

sequel.

Lemma2.12. LetV be de�ned by (2.33). LetZ = (Zij)1≤i≤d ∈
(
L2

loc

(
Rd−1 ×

(
−1

2
, 1

2

)))d×d
be a matrix �eld such that

(i) for almost all z ∈
(
−1

2
, 1

2

)
, Z(·, z) is Y -periodic;
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(ii)
∫
Y Z = 0;

(iii) divZ = 0 in
(
D′
(
Rd−1 ×

(
−1

2
, 1

2

)))d;
(iv) Z · ed = 0 on Rd−1 × {−1/2} and on Rd−1 × {+1/2};

(v) Z is symmetric in the sense that, for all 1 ≤ i, j ≤ d, Zij = Zji.

Then, there exists some C such that

∀ϕ ∈ W 1,∞(ω), ∀v ∈ V,
∣∣∣∣∫

Ω

ϕZ
( ·
ε
, ·
)

: eε(v)

∣∣∣∣ ≤ Cε|ω|
1
2‖∇ϕ‖L∞(ω)‖eε(v)‖L2(Ω).

Proof of Lemma 2.12.

Remark 2.13. The jury found an error in the proof. The correct proof will be published
in [AL1].

The result is a direct consequence of Lemma 2.8. Let v := (vi)1≤i≤d ∈ V . Using the

symmetry of Z , and denoting by Zi the ith column of Z for 1 ≤ i ≤ d, it holds that

∫
Ω

ϕZ
( ·
ε
, ·
)

: eε(v)

=

∫
Ω

ϕZij

( ·
ε
, ·
)
eεij(v)

=
1

2

∫
Ω

ϕZαβ

( ·
ε
, ·
)

(∂βvα + ∂αvβ) +
1

2ε

∫
Ω

ϕZαd

( ·
ε
, ·
)

(∂dvα + ∂αvd) +
1

ε2

∫
Ω

ϕZdd

( ·
ε
, ·
)
∂dvd

=

∫
Ω

ϕZα

( ·
ε
, ·
)
· ∇εvα +

1

ε

∫
Ω

ϕZd

( ·
ε
, ·
)
· ∇εvd.

Then, applying Lemma 2.8 and using Korn inequality, we obtain the obtain the exis-

tence of a constant C > 0 such that∣∣∣∣∫
Ω

ϕZα

( ·
ε
, ·
)

: ∇εvα +
1

ε

∫
Ω

ϕZd

( ·
ε
, ·
)

: ∇εvd

∣∣∣∣
≤ Cε|ω|

1
2‖∇ϕ‖L∞(ω)

[∑
α

‖∇εvα‖L2(Ω) +
1

ε
‖∇εvd‖L2(Ω)

]
≤ Cε|ω|

1
2‖∇ϕ‖L∞(ω)‖eε(v)‖L2(Ω).

The concludes the proof of Lemma 2.12.

We also need the following lemma.

Lemma 2.14. Let h ∈ (L2(ω))d and v ∈ V . Then, for any z ∈
[
−1

2
, 1

2

]
, we have∣∣∣∣∫

ω

h · (v(·, z)−m(v))

∣∣∣∣ ≤ ε‖h‖L2(ω)‖eε(v)‖L2(Ω).

The proof of Lemma 2.14 is an easy adaptation of the proof of Lemma 2.7 and we

therefore skip it.

Lemma 2.15 states some estimates on theL2
norm of the trace on Γ± = ω×

{
±1

2

}
of a function v ∈ L2(Ω) such that ∂dv ∈ L2(Ω).
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Lemma 2.15. Let v ∈ L2(Ω) such that ∂dv ∈ L2(Ω). Then we have

‖v‖L2(Γ±) ≤
√

2
(
‖v‖L2(Ω) + ‖∂dv‖L2(Ω)

)
. (2.45)

Proof. It holds that, for almost all (x′, z) ∈
(
−1

2
, 1

2

)
× ω, we have

v

(
x′,±1

2

)
= v(x′, z) +

∫ ± 1
2

z

∂dv(x′, t) dt.

This implies that, for almost all z ∈
(
−1

2
, 1

2

)
,∫

Γ±
|v|2 =

∫
ω

∣∣∣∣v(x′,±1

2

)∣∣∣∣2 dx′
≤ 2

∫
ω

|v(x′, z)|2 dx′ +
∫
ω

∣∣∣∣∣
∫ ± 1

2

z

∂dv(x′, t) dt

∣∣∣∣∣
2

dx′


≤ 2

(∫
ω

|v(x′, z)|2 dx′ +
∫
ω

∫ 1
2

− 1
2

|∂dv(x′, t)|2 dt dx′
)

≤ 2

(∫
ω

|v(x′, z)|2 dx′ +
∫

Ω

|∂dv|2
)
.

Integrating the above inequality over z in

(
−1

2
, 1

2

)
yields that

‖v‖2
L2(Γ±) ≤ 2

(
‖v‖2

L2(Ω) + ‖∂dv‖2
L2(Ω)

)
,

and thus the claimed result.

Lastly, we need the following inequalities of Poincaré type.

Lemma 2.16. Let V be de�ned by (2.33) and z = ±1
2
. Then, there exists two constants

C1 > 0 and C2 > 0 independent of ε and ω such that, for any u in V ,

‖u‖L2(Ω) ≤ C1 max
(

1, |ω|
1
d−1

)
max

(
|ω|

1
d−1 , ε2|ω|−

1
d−1

)
‖eε(u)‖L2(Ω), (2.46)

and

‖u(·, z)‖L2(ω) ≤ C2 max
(

1, |ω|
1
d−1

)
max

(
|ω|

1
d−1 , ε2|ω|−

1
d−1

)
‖eε(u)‖L2(Ω). (2.47)

Proof of Lemma 2.16. Let ω̂ := (0, 1)d−1
and Ω̂ := ω̂ ×

(
−1

2
, 1

2

)
. Using the Korn in-

equality, we obtain that there exists some constant CK(Ω̂) such that

∀u ∈ V (Ω̂), ‖u‖2
L2(Ω̂)

≤ CK(Ω̂)2‖e(u)‖2
L2(Ω̂)

, (2.48)

where

V (Ω̂) :=

{
v ∈

(
H1(Ω̂)

)d
, v = 0 on ω̂ ×

{
±1

2

}}
.

To prove (2.46), we proceed by scaling. Introduce ωK := (0, K)d−1
and ΩK := ωK ×(

−1
2
, 1

2

)
for K > 0. For any u ∈ V (Ω̂), we de�ne the function uK so that, for x in ΩK ,

uK,α(x) = K−1 uα

(
x′

K
, xd

)
, uK,d(x) = ud

(
x′

K
, xd

)
.
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The function uK belongs to V (ΩK) :=
{
v ∈ (H1(ΩK))

d
, v = 0 on ωK ×

{
±1

2

}}
.

Simple computations lead to

‖uK‖2
L2(ΩK) = Kd−1

(
K−2‖u′‖2

L2(Ω̂)
+ ‖ud‖2

L2(Ω̂)

)
,

‖eεαβ(uK)‖2
L2(ΩK) = Kd−5‖eαβ(u)‖2

L2(Ω̂)
,

‖eεαd(uK)‖2
L2(ΩK) = Kd−3ε−2‖eαd(u)‖2

L2(Ω̂)
,

‖eεdd(uK)‖2
L2(ΩK) = Kd−1ε−4‖edd(u)‖2

L2(Ω̂)
.

Recalling (2.48), we get that

‖uK‖2
L2(ωK) ≤ Kd−3 max

(
1, K2

)
‖u‖2

L2(Ω̂)

≤ CK(Ω̂)Kd−3 max
(
1, K2

)
‖e(u)‖2

L2(Ω̂)

≤ CK(Ω̂) max
(
1, K2

)
max

(
K2, ε2, ε4K−2

)
‖eε(uK)‖2

L2(ΩK)

≤ CK(Ω̂) max
(
1, K2

)
max

(
K2, ε4K−2

)
‖eε(uK)‖2

L2(ΩK),

where we have used that, for any θ ∈ R, max(1, θ2, θ4) = max(1, θ4). Using the fact

that K = |ωK |
1
d−1 , we �nally obtain that

‖uK‖L2(ωK) ≤ CK(Ω̂) max
(

1, |ω|
1
d−1

)
max

(
|ω|

1
d−1 , ε2|ω|−

1
d−1

)
‖eε(uK)‖L2(Ω),

which proves the inequality (2.46) in the case when ω = ωK . In the case of a more

general, shape regular domain ω, the proof can be performed using the same argument.

The inequality (2.47) is proved following the same lines.

Use of symmetries

In all what follows, we make additional symmetry assumptions on the problem. These

symmetry assumptions enable us to split the problem into two independent problems,

which are commonly called in the literature as the membrane case and the bending case.
More precisely, let us de�ne

E :=

{
v ∈ L2(Ω) s.t., for almost any x′ ∈ ω,

(
−1

2
,
1

2

)
3 xd 7→ v(x′, xd) is even

}
O :=

{
v ∈ L2(Ω) s.t., for almost any x′ ∈ ω,

(
−1

2
,
1

2

)
3 xd 7→ v(x′, xd) is odd

}
.

Let us point out that

(L2(Ω))d = (Ed−1 ×O)⊕ (Od−1 × E).

This orthogonal decomposition has the following consequence: it holds that

VKL = VMKL ⊕ VBKL

where

VMKL := (H1
0 (ω))d−1 × {0} ⊂ Ed−1 ×O

and

VBKL :=
{
v ∈

(
H1(Ω)

)d−1 ×H2
0 (ω), ∃v̂d ∈ H2

0 (ω), vα = −xd∂αv̂d, vd = v̂d

}
⊂ Od−1×E .
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Similarly, we have

GKL = GMKL ⊕ GBKL
where

GMKL := (H1(ω))d−1 × {0} ⊂ Ed−1 ×O

and

GBKL :=
{
v ∈

(
H1(Ω)

)d−1 ×H2(ω), ∃v̂d ∈ H2(ω), vα = −xd∂αv̂d, vd = v̂d

}
⊂ Od−1×E .

From now on, we make the following additional assumptions on the tensor-valued

�eld A: for all 1 ≤ α, β, γ, δ ≤ d− 1,

Aαβγδ, Aαβdd, Aαdβd ∈ E ,
Aαddd, Aαβσd ∈ O.

(2.49)

This is a classical assumption for plate problems (see e.g. [18, Section 7]).

Remark 2.17. In the case when the plate is composed only of isotropic materials, the
assumption (2.49) amounts to assuming that the material is symmetric with respect to its
medium plane {x ∈ Ω, xd = 0}.

We also distinguish two di�erent sets of assumptions on the data of the problem,

namely f , g, h− and h+
:

• Membrane case:

f ∈ Ed−1×O, g ∈ GMKL, h+
α = h−α for all 1 ≤ α ≤ d−1 and h+

d = −h−d ; (2.50)

• Bending case:

f ∈ Od−1×E , g ∈ GBKL, h+
α = −h−α for all 1 ≤ α ≤ d−1 and h+

d = h−d ; (2.51)

We then have the following proposition, which states the symmetry properties of

the solution uε to the variational problem (2.35) in the membrane or bending case.

Lemma 2.18. Let us assume that A satis�es assumptions (2.49). Then, in the membrane
case, uε ∈ Ed−1 ×O, whereas in the bending case, uε ∈ Od−1 × E .

Proof. The result is an immediate consequence of the fact that the spacesV ∩(Ed−1×O)
and V ∩ (Od−1 × E) are orthogonal for the bilinear forms de�ned on V by

V × V 3 (u, v) 7→
∫

Ω

u v, (u, v) 7→ −
∫

Ω

eε(u) : eε(v) and (u, v) 7→
∫

Γ±
u v.

For v ∈ Od−1×E , we can check that eαβ(v) ∈ O, eαd(v) ∈ E and edd(v) ∈ O. For u ∈
Ed−1×O, we have eαβ(u) ∈ E , eαd(u) ∈ O, and edd(u) ∈ E . Using assumptions (2.49),

we obtain that, for any u in V ∩ (Ed−1 ×O) and any v in V ∩ (Od−1 × E),∫
Ω

Aεeε(u) : eε(v) = 0.

Thus, the spaces V ∩ (Ed−1 × O) and V ∩ (Od−1 × E) are orthogonal for the scalar

product de�ned by aε. The �nal result is obtained using the form of the variational

problem (2.35).
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Let us mention that the assumptions made on the symmetry ofA imply the follow-

ing symmetry properties on the corrector functions.

Lemma 2.19. Let us assume thatA satis�es assumptions (2.49). Then, for all 1 ≤ α, β ≤
d−1, wαβ ∈ Ed−1×O andWαβ ∈ Od−1×E . In addition, for all 1 ≤ α, β, γ, δ ≤ d−1,
it holds that

(K?
12)αβγδ = 0

where the tensor K?
12 is de�ned in Theorem 2.11.

The proof of Lemma 2.19 follows similar lines as the proof of Lemma 2.18 and we

omit it here for the sake of brevity.

We �nally have a last lemma which characterizes the symmetry properties of the

solution u? to the homogenized problem (2.43).

Lemma 2.20. Consider �rst the membrane case, when f ∈ Ed−1×O, g ∈ GMKL, h+
α = h−α

for all 1 ≤ α ≤ d− 1 and h+
d = −h−d . Then u? = (û?, 0) where û? ∈ (H1

0 (ω))d−1 is the
unique solution to

∀v̂ ∈ (H1
0 (ω))d−1,

∫
ω

K?
11e
′(û?) : e′(v̂) =

∫
ω

(
m(f ′)+(h+)′+(h−)′

)
·v̂−
∫
ω

K?
11e
′(g) : e′(v̂).

(2.52)

We thus have that u? ∈ VMKL.

Consider next the bending case, when f ∈ Od−1 × E , g ∈ GBKL, h+
α = −h−α for all

1 ≤ α ≤ d − 1 and h+
d = h−d . Then u

? = (−xd∇′û?d, û?d) where û?d ∈ H2
0 (ω) is the

unique solution to

∀vd ∈ H2
0 (ω),

∫
ω

K?
22∇2û?d : ∇2vd =

∫
ω

(
m(fd)+h

+
d +h−d

)
vd−

∫
ω

m(xdf
′)·∇′vd−

∫
ω

K?
22∇2gd : ∇2vd.

(2.53)

We thus have that u? ∈ VBKL.

For anyu ∈ (H1(Ω))d, we de�ne the norm ‖u‖H1
ε (Ω)d as follows (compare with (2.17)):

‖u‖2
H1
ε (Ω)d := ‖u‖2

(L2(Ω))d + ‖eε(u)‖2
(L2(Ω))d×d .

This is indeed the relevant energy norm for (2.35).

2.3.4 The membrane case

In this section, we assume that we are in the membrane case, i.e. that f ∈ Ed−1 × O,

g ∈ GMKL, h+
α = h−α for all 1 ≤ α ≤ d − 1 and h+

d = −h−d . The aim of this section

is to prove the following strong convergence result, which is our main result in the

membrane case.

Theorem 2.21. Assume that we are in the membrane case (2.50). For any 1 ≤ γ ≤ d−1,
let

uε,1γ := u?γ + εwαβγ

( ·
ε
, ·
)
eαβ(u? + g)

and
uε,1d := ε2wαβd

( ·
ε
, ·
)
eαβ(u? + g).
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We also assume that u?, g ∈ (W 2,∞(ω))d and that, for any 1 ≤ α, β ≤ d − 1, we have
wαβ ∈

[
W 1,∞ (Rd−1 ×

(
−1

2
, 1

2

))]d. Then, there exists a constant C > 0 independent of
ε and ω such that

‖uε − uε,1‖H1
ε (Ω)d ≤ C

(
1 + max

(
1, |ω|

1
d−1

)
max

(
|ω|

1
d−1 , ε2|ω|−

1
d−1

))
×
(√

ε|ω|
d−2
2d−2‖e(u? + g)‖L∞(ω) + ε|ω|

1
2‖∇2(u? + g)‖L∞(ω) + ε

(
‖h±‖L2(ω) + ‖f‖L2(Ω)

))
.

The proof of this result follows similar lines as the proof of Theorem 2.5. For the

sake of completeness, we detail the proof below.

Proof of Theorem 2.21. The proof falls in four steps. In the �rst step, we correct for the

boundary mismatch between uε and its approximation uε,1. In Steps 2 and 3, we show

that the approximation is close to uε inside the domain Ω. The desired conclusion is

obtained in Step 4.

Step 1. Let τε ∈ D(ω) such that 0 ≤ τε ≤ 1, and, for any x′ ∈ ω, τε(x
′) = 1 if

dist(∂ω, x′) ≥ ε. Since ω is smooth, we can choose τε such that ε‖∇τε‖L∞(ω) ≤ C
with C > 0 independent of ω and ε. We de�ne ωε := {x′ ∈ ω, dist(∂ω, x′) ≥ ε} and

Ωε := ωε ×
(
−1

2
, 1

2

)
. Note that |Ω \ Ωε| ≤ Cε |ω|

d−2
d−1 .

For all 1 ≤ γ ≤ d− 1, let

vε,1γ := u?γ + ετεw
αβ
γ

( ·
ε
, ·
)
eαβ(u? + g),

vε,1d := ε2τεw
αβ
d

( ·
ε
, ·
)
eαβ(u? + g).

Then, it holds that vε,1 ∈ V . In addition, we have that eε(uε,1 − vε,1) = Eε
0 +Eε

1 +Eε
2

where

Eε
0 := (1− τε)e(wαβ)

( ·
ε
, ·
)
eαβ(u? + g),

Eε
1 := ε∇τε ⊗ wαβ

( ·
ε
, ·
)
eαβ(u? + g),

Eε
2 := ε(1− τε)wαβ

( ·
ε
, ·
)
⊗∇(eαβ(u? + g)).

We bound the above terms in theL2(Ω) norm, using the fact thatwαβ ∈
[
W 1,∞ (Rd−1 ×

(
−1

2
, 1

2

))]d
,

u?, g ∈ (W 2,∞(ω))d, 0 ≤ τε ≤ 1 and ε‖∇τε‖L∞(ω) ≤ C . We thus obtain that

‖Eε
2‖2

L2(Ω) ≤ Cε2 sup
1≤α,β≤d−1

‖wαβ‖2
L∞‖∇2(u? + g)‖2

L2(Ω)

≤ Cε2|ω| ‖∇2(u? + g)‖2
L∞(ω),

‖Eε
1‖2

L2(Ω) ≤ C sup
1≤α,β≤d−1

‖wαβ‖2
L∞‖∇(u? + g)‖2

L∞(ω)|Ω \ Ωε|

≤ Cε|ω|
d−2
d−1‖∇(u? + g)‖2

L∞(ω),

‖Eε
0‖2

L2(Ω) ≤ C|Ω \ Ωε| sup
1≤α,β≤d−1

‖∇wαβ‖2
L∞‖∇(u? + g)‖2

L∞(ω)

≤ Cε|ω|
d−2
d−1‖∇(u? + g)‖2

L∞(ω).

This implies that

‖eε(vε,1 − uε,1)‖2
L2(Ω) ≤ C

(
ε|ω|

d−2
d−1‖∇(u? + g)‖2

L∞(ω) + ε2|ω| ‖∇2(u? + g)‖2
L∞(ω)

)
.

(2.54)
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Step 2. Let us now bound vε := uε− vε,1. On the one hand, using the coercivity of Aε,
we have

c−‖eε(vε)‖2
L2(Ω) ≤

∫
Ω

Aεeε(vε) : eε(vε).

On the other hand, it holds that∫
Ω

Aεeε(vε) : eε(vε) =

∫
Ω

Aεeε(uε − uε,1) : eε(vε) +

∫
Ω

Aεeε(uε,1 − vε,1) : eε(vε).

Using (2.54), we obtain the bound∣∣∣∣∫
Ω

Aεeε(uε,1 − vε,1) : eε(vε)

∣∣∣∣
≤ C

(√
ε|ω|

d−2
2(d−1)‖∇(u? + g)‖L∞(ω) + ε|ω|1/2‖∇2(u? + g)‖L∞(ω)

)
‖eε(vε)‖L2(Ω).

In addition, it holds that∫
Ω

Aεeε(uε − uε,1) : eε(vε) =

∫
Ω

Aεeε(uε + g) : eε(vε)−
∫

Ω

Aεeε(uε,1 + g) : eε(vε).

Let us now de�ne

Rε
1 :=

∫
Ω

Aεeε(uε + g) : eε(vε)−
∫

Ω

∫
Y
A
(
eα ⊗ eβ + e(wαβ)

)
eαβ(u? + g) : eε(vε),

(2.55)

and

Rε
2 :=

∫
Ω

Aεeε(uε,1+g) : eε(vε)−
∫

Ω

Aε
(
eα ⊗ eβ + e(wαβ)

( ·
ε
, ·
))

eαβ(u?+g) : eε(vε).

(2.56)

It then holds that∫
Ω

Aεeε(uε − uε,1) : eε(vε) = Rε
1 +Rε

2

+

∫
Ω

[∫
Y
A
(
eα ⊗ eβ + e(wαβ)

)
− Aε

(
eα ⊗ eβ + e(wαβ)

( ·
ε
, ·
))]

eαβ(u?+g) : eε(vε).

We now bound the �rst term of the above equality. In Step 3, we show that Rε
1 +Rε

2 =
O(ε) because of the assumptions made on the data.

Introduce

Zαβ :=

∫
Y
A(eα ⊗ eβ + e(wαβ))− A

(
eα ⊗ eβ + e(wαβ)

)
.

Because of the de�nition of wαβ solution to (2.40), Zαβ satis�es the assumptions of

Lemma 2.12. The function eαβ(u? + g) belongs to W 1,∞(ω) and uε − vε,1 belongs to

V . We are thus in position to use Lemma 2.12. For any 1 ≤ α, β ≤ d− 1, it holds that∣∣∣∣∫
Ω

Zαβ

( ·
ε
, ·
)
eαβ(u? + g) · eε(vε)

∣∣∣∣ ≤ Cε|ω|
1
2‖∇2(u? + g)‖L∞(ω)‖eε(vε)‖L2(Ω).

This yields that

‖eε(vε)‖2
L2(Ω) ≤ C

(
ε|ω|

1
2‖∇2(u? + g)‖L∞(ω) +

√
ε|ω|

d−2
2d−2‖∇(u? + g)‖L∞(ω)

)
‖eε(vε)‖L2(Ω)

+ |Rε
1|+ |Rε

2|. (2.57)
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Step 3. We now show estimates onRε
1 andRε

2, de�ned by (2.55) and (2.56). The bound

on Rε
2 comes from the de�nition of uε,1. We hence write

|Rε
2| :=

∣∣∣∣∫
Ω

Aε
[
eε(uε,1 + g)−

(
eα ⊗ eβ + e(wαβ)

( ·
ε
, ·
))

eαβ(u? + g)
]
· eε(vε)

∣∣∣∣
=

∣∣∣∣∫
Ω

Aε
[ε

2

[
wαβ

( ·
ε
, ·
)
⊗∇(eαβ(u? + g)) +∇(eαβ(u? + g))⊗ wαβ

( ·
ε
, ·
)]]
· eε(vε)

∣∣∣∣
≤ Cε‖∇2(u? + g)‖L2(Ω)‖eε(vε)‖L2(Ω)

≤ Cε|ω|
1
2‖∇2(u? + g)‖L∞(Ω)‖eε(vε)‖L2(Ω).

We now bound Rε
1. Using the variational formulation (2.35) and the fact that vε =

uε − vε,1 belongs to V , we obtain∫
Ω

Aεeε(uε + g) · eε(vε) =

∫
Ω

f · vε +

∫
Γ±
h± · vε.

For all 1 ≤ i ≤ d, the function vi : Rd−1 ×
(
−1

2
, 1

2

)
3 y 7→ ydei belongs to the space

W (Y). The function vi can thus be used as an admissible test function in (2.40). We

therefore obtain that, for all 1 ≤ α, β ≤ d− 1,

∫
Y
A(eα⊗ eβ + e(wαβ)) · ed = 0. Thus,

using the fact that u? ∈ VMKL and that g ∈ GMKL, we obtain that∫
Ω

[∫
Y
A(eα ⊗ eβ + e(wαβ))

]
eαβ(u? + g) · eε(vε) =

∫
Ω

K?
11e
′(u? + g) · e′(vε)

=

∫
ω

K?
11e
′(u? + g) · e′(m(vε)).

Using the variational formulation (2.52) of the homogenized problem, the fact that

m(vε) belongs to (H1
0 (ω))d (thus m((vε)′) is an admissible test function for (2.52)), the

fact that h+
d = −h−d and the fact that fd ∈ O, we obtain that∫

ω

K?
11e
′(u? + g) · e′(m(vε)) =

∫
ω

(
m(f ′) + (h+)′ + (h−)′

)
·m((vε)′)

=

∫
Ω

f ′ ·m((vε)′) +

∫
ω

(h+ + h−) ·m(vε)

=

∫
Ω

f ·m(vε) +

∫
ω

(h+ + h−) ·m(vε). (2.58)

As a consequence,

Rε
1 =

∫
Ω

[∫
Y
A(eα ⊗ eβ + e(wαβ))

]
eαβ(u? + g) · eε(vε)−

∫
Ω

Aεeε(uε + g) · eε(vε)

= −
∫

Ω

f · (vε −m(vε)) +

∫
ω

(h+ + h−) ·m(vε)−
∫

Γ+

h+ · vε −
∫

Γ−
h− · vε.

Using Lemma 2.14, we get∣∣∣∣∫
ω

h± ·m(vε)−
∫

Γ±
h± · vε

∣∣∣∣ ≤ ε‖h±‖L2(ω)‖eε(vε)‖L2(Ω).

In addition, using again Lemma 2.14 and the Cauchy-Schwarz inequality, we get∣∣∣∣∫
Ω

f · (vε −m(vε))

∣∣∣∣ ≤ ∫ 1/2

−1/2

∣∣∣∣∫
ω

f(·, z) · (vε(·, z)−m(vε))

∣∣∣∣ dz
≤ ε

∫ 1/2

−1/2

‖f(·, z)‖L2(ω)‖eε(vε)‖L2(Ω),

≤ ε‖f‖L2(Ω)‖eε(vε)‖L2(Ω).
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Thus,

|R1
ε| ≤ ε

(
‖h+‖L2(ω) + ‖h−‖L2(ω) + ‖f‖L2(Ω)

)
‖eε(vε)‖L2(Ω).

This yields that

|R1
ε|+|R2

ε| ≤ Cε
(
|ω|

1
2‖∇2(u? + g)‖L∞(Ω) + ‖h+‖L2(ω) + ‖h−‖L2(ω) + ‖f‖L2(Ω)

)
‖eε(vε)‖L2(Ω).

We thus deduce from (2.57) that

‖eε(vε)‖L2(Ω) ≤ C
(√

ε|ω|
d−2
2d−2‖∇(u? + g)‖L∞(ω) + ε|ω|

1
2‖∇2(u? + g)‖L∞(ω)

+ ε
(
‖h+‖L2(ω) + ‖h−‖L2(ω) + ‖f‖L2(Ω)

) )
. (2.59)

Step 4. Using (2.54) and (2.59), we write

‖eε(uε − uε,1)‖L2(Ω) ≤ ‖eε(uε − vε,1)‖L2(Ω) + ‖eε(vε,1 − uε,1)‖L2(Ω)

≤ C
(√

ε|ω|
d−2
2d−2‖∇(u? + g)‖L∞(ω) + ε|ω|

1
2‖∇2(u? + g)‖L∞(ω)

+ ε
(
‖h±‖L2(ω) + ‖f‖L2(Ω)

) )
.

To conclude the proof, we use the Poincaré inequality stated in Lemma 2.16, which

yields that

‖uε − uε,1‖H1
ε (Ω)d ≤ C

(
1 + max

(
1, |ω|

1
d−1

)
max

(
|ω|

1
d−1 , ε2|ω|−

1
d−1

))
×
(√

ε|ω|
d−2
2d−2‖e(u? + g)‖L∞(ω) + ε|ω|

1
2‖∇2(u? + g)‖L∞(ω) + ε

(
‖h±‖L2(ω) + ‖f‖L2(Ω)

))
.

The concludes the proof of Theorem 2.21.

2.3.5 The bending case

Stating a similar strong convergence result in the bending case appears to be a much

more intricate task than in the membrane case. We want to stress here the fact that

the arguments used for the proof of Theorem 2.5 and Theorem 2.21 cannot be applied

here. Indeed, notice that in the proof of Theorem 2.21, and more precisely in (2.58), we

used m((vε)′) as a test function in the variational formulation (2.52). However, in the

bending case, it is not clear how to construct from vε an admissible test function for

problem (2.53) which would enable to proceed with the same arguments and obtain a

similar two-scale strong convergence result.

We did not manage to obtain a complete proof for such a two-scale strong conver-

gence result in the bending case. We have however managed to obtain such a result

(see Theorem 2.25), by using a completely di�erent proof strategy inspired by some

arguments of [32], at the price of making a conjecture detailed below (see (2.74)). In

Section 2.3.6, we provide evidence, based both on theoretical and numerical arguments,

for why such a conjecture should hold true. We also mention that the complete adap-

tation to the heterogeneous case of the arguments of [32], which were developed for

homogeneous plates, is far from being trivial.

To state the conjecture and our main result for the bending case (namely Theo-

rem 2.25), we �rst need to state some intermediate results.

Let ε > 0 and let us de�ne

σε := Aεeε(uε + g). (2.60)
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Using (2.39) and assumption (2.42) (which implies that eε(g) = e(g)), we infer from (2.37)

that there exists a constant C > 0 independent of ε such that

‖σε‖(L2(Ω))d×d ≤ C
(
‖f‖(L2(Ω))d + ‖e(g)‖(L2(Ω))d×d + ‖h±‖(L2(ω))d

)
. (2.61)

Theorem 2.11 actually provides information (in terms of u?) about the limit of

∫
Ω

σε :

eε(v) as ε goes to 0 only when v ∈ VKL. To state the strong convergence theorem, we

need to identify the limit of

∫
Ω

σε : eε(v) for any v ∈ V . To this aim, we introduce the

following quantities, for any 1 ≤ α, β ≤ d− 1:

Σε
αβ := σεαβ, Σε

αd :=
1

ε
σεαd and Σε

dd :=
1

ε2
σεdd. (2.62)

Then, for all v ∈ V , we have

∫
Ω

σε : eε(v) =

∫
Ω

Σε : e(v). The main idea of the

following lemmas is to show that there exists some Σ?
regular enough such that

∀v ∈ V,
∫

Ω

Σε : e(v) =

∫
Ω

Σ? : e(v)

and to relate some components of Σ?
with u?.

Lemma 2.22. There exists a symmetric matrix-valued �eld Σ? :=
(
Σ?
ij

)
1≤i,j≤d such

that, for all 1 ≤ α, β ≤ d− 1, we have

Σ?
αβ ∈ L2(Ω), Σ?

αd ∈ L2

((
−1

2
,
1

2

)
, H−1(ω)

)
and Σ?

dd ∈ L2

((
−1

2
,
1

2

)
, H−2(ω)

)
and such that, up to the extraction of a subsequence,

Σε
αβ ⇀

ε→0
Σ?
αβ weakly in L2(Ω), (2.63)

Σε
αd ⇀

ε→0
Σ?
αd weakly in L2

((
−1

2
,
1

2

)
, H−1(ω)

)
, (2.64)

Σε
dd ⇀

ε→0
Σ?
dd weakly in L2

((
−1

2
,
1

2

)
, H−2(ω)

)
. (2.65)

Furthermore, for any v := (vi)1≤i≤d ∈
(
C∞
([
−1

2
, 1

2

]
,D(ω)

))d, it holds that∫
Ω

Σε : e(v) =
∑

1≤α,β≤d−1

〈Σ?
αβ, eαβ(v)〉L2(Ω)

+
∑

1≤α≤d−1

〈Σ?
αd, eαd(v)〉L2((− 1

2
, 1
2),H−1(ω)),L2((− 1

2
, 1
2),H1

0 (ω))

+ 〈Σ?
dd, edd(v)〉L2((− 1

2
, 1
2),H−2(ω)),L2((− 1

2
, 1
2),H2

0 (ω)). (2.66)

In addition, there exists a constant C > 0 independent of ε and ω such that∑
1≤α,β≤d−1

∥∥Σ?
αβ

∥∥
L2(Ω)

+
∑

1≤α≤d−1

‖Σ?
αd‖L2((− 1

2
, 1
2),H−1(ω)) + ‖Σ?

dd‖L2((− 1
2
, 1
2),H−2(ω))

≤ C
(
‖f‖(L2(Ω))d + ‖e(g)‖(L2(Ω))d×d + ‖h±‖(L2(ω))d

)
.
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Proof. We know from (2.61) that the sequence (σε)ε>0 is bounded in (L2(Ω))d×d. Thus,

for all 1 ≤ α, β ≤ d− 1, there exists Σ?
αβ ∈ L2(Ω) such that, up to the extraction of a

subsequence,

Σε
αβ ⇀

ε→0
Σ?
αβ weakly in L2(Ω).

Now, let us prove that the sequence (Σε
αd)ε>0 is bounded in L2

((
−1

2
, 1

2

)
, H−1(ω)

)
for

any 1 ≤ α ≤ d − 1. Using (2.35), it holds that, for all v = (vi)1≤i≤d ∈ V such that

vd = 0, ∫
Ω

Σε
αd ∂dvα =

∫
Ω

fα vα +

∫
Γ±
h±α vα −

∫
Ω

σεαβ eαβ(v). (2.67)

Let now w = (wα)1≤α≤d−1 ∈
(
L2
((
−1

2
, 1

2

)
, H1

0 (ω)
))d−1

. For all 1 ≤ α ≤ d− 1, let us

de�ne vwα on Ω by

∀(x′, z) ∈ ω ×
(
−1

2
,
1

2

)
, vwα (x′, z) :=

∫ z

−1/2

wα(x′, t) dt (2.68)

and set vwd = 0. It then holds that vw = (vwi )1≤i≤d belongs to V , and that it can be used

as a test function in (2.67). We then obtain that∫
Ω

Σε
αdwα =

∫
Ω

fα v
w
α +

∫
Γ±
h±α v

w
α −

∫
Ω

σεαβ eαβ(vw). (2.69)

Using the fact ‖vwα‖L2(Ω) ≤ ‖wα‖L2(Ω) and that ‖∂βvwα‖L2(Ω) ≤ ‖∂βwα‖L2(Ω) together

with Lemma 2.15, we obtain that there exists a constant C > 0 independent of ε and

ω such that∣∣∣∣∫
Ω

Σε
αdwα

∣∣∣∣ ≤ ‖fα‖L2(Ω)‖vwα‖L2(Ω) + ‖h+
α‖L2(ω)‖vwα‖L2(Γ+) + ‖h−α‖L2(ω)‖vwα‖L2(Γ−)

+
1

2

∑
1≤α,β≤d−1

‖σεαβ‖L2(Ω)

(
‖∂αvwβ ‖L2(Ω) + ‖∂βvwα‖L2(Ω)

)
≤ ‖fα‖L2(Ω)‖vwα‖L2(Ω) +

√
2
(
‖h+

α‖L2(ω) + ‖h−α‖L2(ω)

) (
‖vwα‖L2(Ω) + ‖∂dvwα‖L2(Ω)

)
+

1

2

∑
1≤α,β≤d−1

‖σεαβ‖L2(Ω)

(
‖∂αvwβ ‖L2(Ω) + ‖∂βvwα‖L2(Ω)

)
≤ ‖fα‖L2(Ω)‖wα‖L2(Ω) + 2

√
2
(
‖h+

α‖L2(ω) + ‖h−α‖L2(ω)

)
‖wα‖L2(Ω)

+
1

2

∑
1≤α,β≤d−1

‖σεαβ‖L2(Ω)

(
‖∂αwβ‖L2(Ω) + ‖∂βwα‖L2(Ω)

)
≤ C

(
‖f‖(L2(Ω))d + ‖e(g)‖(L2(Ω))d×d + ‖h±‖(L2(ω))d

)
‖w‖

L2((− 1
2
, 1
2),H1

0 (ω))
d−1 .

This implies that there exists a constant C > 0 independent of ε and ω such that∑
1≤α≤d−1

‖Σε
αd‖L2((− 1

2
, 1
2),H−1(ω)) ≤ C

(
‖f‖(L2(Ω))d + ‖e(g)‖(L2(Ω))d×d + ‖h±‖(L2(ω))d

)
.

Hence, for all 1 ≤ α ≤ d− 1, there exists Σ?
αd ∈ L2

((
−1

2
, 1

2

)
, H−1(ω)

)
such that, up

to the extraction of a subsequence,

Σε
αd ⇀

ε→0
Σ?
αd weakly in L2

((
−1

2
,
1

2

)
, H−1(ω)

)
and∑
1≤α≤d−1

‖Σ?
αd‖L2((− 1

2
, 1
2),H−1(ω)) ≤ C

(
‖f‖(L2(Ω))d + ‖e(g)‖(L2(Ω))d×d + ‖h±‖(L2(ω))d

)
.
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We next turn to Σε
dd. For all v := (vi)1≤i≤d ∈ V such that vα = 0 for all 1 ≤ α ≤

d− 1, we have, using (2.35),∫
Ω

Σε
dd∂dvd =

∫
Ω

fdvd +

∫
Γ+

h+
d vd +

∫
Γ−
h−d vd −

∫
Ω

Σε
αd∂αvd. (2.70)

Let now wd ∈ L2
((
−1

2
, 1

2

)
, H2

0 (ω)
)
. We de�ne vwd on Ω by

∀(x′, z) ∈ ω ×
(
−1

2
,
1

2

)
, vwd (x′, z) :=

∫ z

−1/2

wd(x
′, t) dt (2.71)

and set vwα = 0 for all 1 ≤ α ≤ d − 1. For all 1 ≤ α ≤ d − 1, we have ∂αvd ∈
L2
((
−1

2
, 1

2

)
, H1

0 (ω)
)
. Then, it holds that vw := (vwi )1≤i≤d ∈ V and can thus be used

as a function test in (2.70). Following similar arguments as above, we obtain∣∣∣∣∫
Ω

Σε
ddwd

∣∣∣∣ ≤ ‖fd‖L2(Ω)‖vwd ‖L2(Ω) + ‖h+
d ‖L2(ω)‖vwd ‖L2(Γ+) + ‖h−d ‖L2(ω)‖vwd ‖L2(Γ−)

+
∑

1≤α≤d−1

‖Σε
αd‖L2((− 1

2
, 1
2),H−1(ω))‖∂αv

w
d ‖L2((− 1

2
, 1
2),H1

0 (ω))

≤ C
(
‖f‖(L2(Ω))d + ‖e(g)‖(L2(Ω))d×d + ‖h±‖(L2(ω))d

)
‖wd‖L2((− 1

2
, 1
2),H2

0 (ω)),

for some constantC > 0 independent ofω and ε. Thus, there exists Σ?
dd ∈ L2

((
−1

2
, 1

2

)
, H−2(ω)

)
such that, up to the extraction of a subsequence,

Σε
dd ⇀

ε→0
Σ?
dd weakly in L2

((
−1

2
,
1

2

)
, H−2(ω)

)
and

‖Σ?
dd‖L2((− 1

2
, 1
2),H−2(ω)) ≤ C

(
‖f‖(L2(Ω))d + ‖e(g)‖(L2(Ω))d×d + ‖h±‖(L2(ω))d

)
.

On the one hand, we thus obtain that, for all v ∈
(
C∞
([
−1

2
, 1

2

]
,D(ω)

))d
,∫

Ω

Σε : e(v)−→
ε→0

∑
1≤α,β≤d−1

〈Σ?
αβ, eαβ(v)〉L2(Ω)

+
∑

1≤α≤d−1

〈Σ?
αd, eαd(v)〉L2((− 1

2
, 1
2),H−1(ω)),L2((− 1

2
, 1
2),H1

0 (ω))

+ 〈Σ?
dd, edd(v)〉L2((− 1

2
, 1
2),H−2(ω)),L2((− 1

2
, 1
2),H2

0 (ω)). (2.72)

On the other hand, since

(
C∞
([
−1

2
, 1

2

]
,D(ω)

))d ⊂ V , we have, in view of (2.35), that∫
Ω

Σε : e(v) =

∫
Ω

σε : eε(v) =

∫
Ω

f · v +

∫
Γ+

h+ · v +

∫
Γ−
h− · v. (2.73)

In view of (2.73), we see that the left hand side of (2.72) is actually independent of ε.
We thus deduce (2.66). This concludes the proof of Lemma 2.22.

We now state the conjecture on which we build the proof of the strong convergence

of the two-scale expansion. This conjecture reads as follows:

(CB)

For all 1 ≤ α, β ≤ d− 1,

Σ?
αβ = (eα ⊗ eβ) :

[∫
Y

A
(
e(W γδ)− xdeγ ⊗ eδ

)]
∂γδ(u

?
d + gd).

(2.74)
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We postpone to Section 2.3.6 the discussion about the theoretical and numerical evi-

dence supporting (2.74). Let us only mention here that one consequence of this con-

jecture (together with the fact that u?d and gd do not depend on xd and of (2.44)) is the

identity

∀1 ≤ α, β ≤ d− 1, m
(
−xd Σ?

αβ

)
= (K?

22)αβγδ ∂γδ(u
?
d + gd). (2.75)

While we are not able to prove (2.74), it turns out that we can rigorously prove (2.75), as

shown in Section 2.3.6 (see Lemma 2.26). Furthermore, we also discuss in Section 2.3.6

some numerical evidence supporting (2.74).

Under some stronger regularity assumptions on A, f and g and under Conjec-

ture (CB), the following lemma states that Σ?
is actually more regular than stated in

Lemma 2.22.

Lemma 2.23. Assume Conjecture (CB) and that

(A1) A ∈
(
C∞
(
Rd−1 ×

(
−1

2
, 1

2

)))d×d×d×d;
(A2) fα ∈ L2

((
−1

2
, 1

2

)
, H1(ω)

)
for all 1 ≤ α ≤ d− 1 and fd ∈ L2(Ω);

(A3) gd ∈ H4(ω);

(A4) h±α ∈ H1(ω) for all 1 ≤ α ≤ d− 1 and h±d ∈ L2(ω).

Then, it holds that, for all 1 ≤ α, β ≤ d− 1,

Σ?
αβ ∈ L2

((
−1

2
,
1

2

)
, H2(ω)

)
, Σ?

αd ∈ L2

((
−1

2
,
1

2

)
, H1(ω)

)
and Σ?

dd ∈ L2 (Ω) .

Proof. We start by proving that u?d ∈ H4(ω). Using Lemma 2.20, it holds that

∇2 : K?
22∇2u?d = m(fd) + h±d + div′ (m(xdf

′))−∇2 : K?
22∇2gd in D′(ω).

The assumptions (A2), (A3) and (A4) on f , g and h± imply that

∇2 : K?
22∇2u?d ∈ L2(ω)

and we furthermore have u?d ∈ H2
0 (ω). Thus, by standard elliptic regularity, we obtain

that u?d ∈ H4(ω). In addition, we have also assumed that gd ∈ H4(ω). Using now

Conjecture (CB), we deduce that Σ?
αβ ∈ L2

((
−1

2
, 1

2

)
, H2(ω)

)
for all 1 ≤ α, β ≤ d− 1.

We next prove that Σ?
αd ∈ L2

((
−1

2
, 1

2

)
, H1(ω)

)
for all 1 ≤ α ≤ d − 1. Pass-

ing to the limit ε → 0 in (2.69) and using (2.64) and (2.63), it holds that, for all

w ∈
(
L2
((
−1

2
, 1

2

)
, H1

0 (ω)
))d−1

,∫
Ω

Σ?
αdwα =

∫
Ω

fα v
w
α +

∫
Γ±
h±α v

w
α −

∫
Ω

Σ?
αβ eαβ(vw)

=

∫
Ω

fα v
w
α +

∫
Γ±
h±α v

w
α +

∫
Ω

∂βΣ?
αβ v

w
α [since vw vanishes on ∂ω × (−1/2, 1/2)]

=

∫
Ω

wα(x′, z)

(∫ 1/2

z

(
fα(x′, ·) + ∂βΣ?

αβ(x′, ·)
))

dx′ dz +

∫
Ω

wα(x′, z)h+
α (x′) dx′ dz,

where vw is de�ned by (2.68) (and thus vanishes on Γ−). This implies that

Σ?
αd(x

′, z) = h+
α (x′) +

∫ 1/2

z

(
fα(x′, ·) + ∂βΣ?

αβ(x′, ·)
)

in D′(Ω). (2.76)
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Since Σ?
αβ ∈ L2

((
−1

2
, 1

2

)
, H2(ω)

)
for all 1 ≤ α, β ≤ d − 1 and in view of the

regularity (A4) on h±, we infer from (2.76) that Σ?
αd ∈ L2

((
−1

2
, 1

2

)
, H1(ω)

)
for all

1 ≤ α ≤ d− 1.

Let us �nally prove that Σ?
dd ∈ L2(Ω). Letwd ∈ L2

((
−1

2
, 1

2

)
, H2

0 (ω)
)

and consider

vw de�ned by (2.71). Passing to the limit ε→ 0 in (2.70) and using (2.65) and (2.64), we

obtain that∫
Ω

Σ?
ddwd =

∫
Ω

fd v
w
d +

∫
Γ+

h+
d v

w
d +

∫
Γ−
h−d v

w
d −

∫
Ω

Σ?
αd ∂αv

w
d

=

∫
Ω

wd(x
′, z)

(∫ 1/2

z

(
fd(x

′, ·) + ∂αΣ?
αd(x

′, ·)
))

dx′ dz +

∫
Ω

wd(x
′, z)h+

d (x′) dx′ dz,

which implies that

Σ?
dd(x

′, z) = h+
d (x′) +

∫ 1/2

z

(
fd(x

′, ·) + ∂αΣ?
αd(x

′, ·)
)

in D′(Ω).

Since Σ?
αd ∈ L2

((
−1

2
, 1

2

)
, H1(ω)

)
for all 1 ≤ α ≤ d− 1, we deduce that Σ?

dd ∈ L2(Ω).

This concludes the proof of Lemma 2.23.

A consequence of Lemmas 2.22 and 2.23 is the following result.

Lemma 2.24. Under the same assumptions as in Lemma 2.23, it holds that

∀v ∈ V,
∫

Ω

(Σε − Σ?) : e(v) = 0.

We emphasize that this result holds without taking the limit ε→ 0. This is critical,

since we will use that equality later on for functions v that depend on ε.

Proof. Let ε > 0 and v ∈ V . Since the space

(
C∞
([
−1

2
, 1

2

]
,D(ω)

))d
is dense in

V , there exists a regularization of v, namely φn ∈
(
C∞
([
−1

2
, 1

2

]
,D(ω)

))d
such that

‖eε(v − φn)‖(L2(Ω))d×d ≤ 1/n for any n ∈ N?
.

Then, using Lemma 2.22, it holds that∫
Ω

Σε : e(v) =

∫
Ω

Σε : e(φn) +

∫
Ω

Σε : e(v − φn)

=
∑

1≤α,β≤d−1

〈Σ?
αβ, eαβ(φn)〉L2(Ω)

+
∑

1≤α≤d−1

〈Σ?
αd, eαd(φn)〉L2((− 1

2
, 1
2),H−1(ω)),L2((− 1

2
, 1
2),H1

0 (ω))

+ 〈Σ?
dd, edd(φn)〉L2((− 1

2
, 1
2),H−2(ω)),L2((− 1

2
, 1
2),H2

0 (ω)) +

∫
Ω

Σε : e(v − φn).

Using now Lemma 2.23 (and hence the fact that all components of Σ?
belong toL2(Ω)),

we get∫
Ω

Σε : e(v) =

∫
Ω

Σ? : e(φn) +

∫
Ω

Σε : e(v − φn)

=

∫
Ω

Σ? : e(v) +

∫
Ω

Σ? : e(φn − v) +

∫
Ω

Σε : e(v − φn). (2.77)
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Moreover, it holds that∣∣∣∣∫
Ω

Σε : e(v − φn)

∣∣∣∣ =

∣∣∣∣∫
Ω

σε : eε(v − φn)

∣∣∣∣ ≤ 1

n
‖σε‖(L2(Ω))d×d

and likewise∣∣∣∣∫
Ω

Σ? : e(φn − v)

∣∣∣∣ ≤ ‖Σ?‖(L2(Ω))d×d‖eε(v − φn)‖(L2(Ω))d×d ≤
1

n
‖Σ?‖(L2(Ω))d×d .

Thus, letting n go to +∞ in (2.77), we obtain that∫
Ω

Σε : e(v) =

∫
Ω

Σ? : e(v).

This concludes the proof of Lemma 2.24.

We are now in position to state and prove our main result.

Theorem 2.25. Assume that we are in the bending case (2.51) and that (CB) holds to-
gether with assumptions (A1)-(A4). Assume in addition that fα = 0 for all 1 ≤ α ≤ d−1
and that fd does not depend on xd. For all 1 ≤ γ ≤ d− 1, let

uε,1γ := u?γ + εWαβ
γ

( ·
ε
, ·
)
∂αβ (u?d + gd) = −xd∂γu?d + εWαβ

γ

( ·
ε
, ·
)
∂αβ (u?d + gd)

and
uε,1d := u?d + ε2Wαβ

d

( ·
ε
, ·
)
∂αβ (u?d + gd) .

We also assume that u?d, gd ∈ W 3,∞(ω) and that, for any 1 ≤ α, β ≤ d − 1, we have
Wαβ ∈

(
W 1,∞ (Rd−1 ×

(
−1

2
, 1

2

)))d. Then, there exists a constant C > 0 independent of
ε and ω such that∥∥uε − uε,1∥∥

H1
ε (Ω)d

≤ C max
(

1, |ω|
1
d−1

)
max

(
|ω|

1
d−1 , ε2|ω|−

1
d−1

)
×
(√

ε|ω|
d−2

2(d−1)
∥∥∇2(u?d + gd)

∥∥
L∞(ω)

+ ε|ω|1/2
∥∥∇3(u?d + gd)

∥∥
L∞(ω)

+ ε‖Σ?‖L2(Ω)

)
.

Proof. The proof falls in four steps.

Step 1: Let τε ∈ D(ω) be such that 0 ≤ τε ≤ 1, and such that τε(x
′) = 1 for any

x′ ∈ ω such that dist(x′, ∂ω) ≥ ε. Since ω is a regular domain, τε can be chosen

so that ε‖∇τε‖L∞(ω) ≤ C for some positive constant C independent of ε and ω. We

de�ne ωε := {x′ ∈ ω such that dist(x′, ∂ω) ≥ ε} and Ωε := ωε ×
(
−1

2
, 1

2

)
. Note that

|Ω \ Ωε| ≤ Cε|ω|
d−2
d−1 .

For all 1 ≤ γ ≤ d− 1, let

vε,1γ := u?γ + ετεW
αβ
γ

( ·
ε
, ·
)
∂αβ (u?d + gd) ,

vε,1d := u?d + ε2τεW
αβ
d

( ·
ε
, ·
)
∂αβ (u?d + gd) .

It then holds that vε,1 ∈ V . We then compute that eε(uε,1 − vε,1) = Eε
0 + Eε

1 + Eε
2

where

Eε
0 := (1− τε)e

(
Wαβ

) ( ·
ε
, ·
)
∂αβ (u?d + gd) ,

Eε
1 := ε∇τε ⊗Wαβ

( ·
ε
, ·
)
∂αβ (u?d + gd) ,

Eε
2 := ε(1− τε)Wαβ

( ·
ε
, ·
)
⊗∇ (∂αβ (u?d + gd)) .
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Using the fact that Wαβ ∈
(
W 1,∞ (Rd−1 ×

(
−1

2
, 1

2

)))d
, that u?d, gd ∈ W 3,∞(ω), that

0 ≤ τε ≤ 1 and ε‖∇τε‖L∞ ≤ C , we obtain that

‖Eε
0‖

2
L2(Ω) ≤ C|Ω \ Ωε| max

1≤α,β≤d−1

∥∥∇Wαβ
∥∥2

L∞

∥∥∇2 (u?d + gd)
∥∥2

L∞(ω)

≤ Cε|ω|
d−2
d−1

∥∥∇2 (u?d + gd)
∥∥2

L∞(ω)
,

‖Eε
1‖

2
L2(Ω) ≤ C max

1≤α,β≤d−1

∥∥Wαβ
∥∥2

L∞
‖∂αβ (u?d + gd)‖2

L∞(ω) |Ω \ Ωε|

≤ Cε|ω|
d−1
d−2 ‖∂αβ (u?d + gd)‖2

L∞(ω) ,

‖Eε
2‖

2
L2(Ω) ≤ Cε2 max

1≤α,β≤d−1

∥∥Wαβ
∥∥2

L∞

∥∥∇3 (u?d + gd)
∥∥2

L∞(ω)

≤ Cε2|ω|
∥∥∇3 (u?d + gd)

∥∥2

L∞(ω)
.

This implies that∥∥eε(uε,1 − vε,1)
∥∥2

L2(Ω)
≤ C

(
ε2|ω|

∥∥∇3 (u?d + gd)
∥∥2

L∞(ω)
+ ε|ω|

d−2
d−1

∥∥∇2 (u?d + gd)
∥∥2

L∞(ω)

)
.

(2.78)

Step 2: Let vε := uε − vε,1. On the one hand, using the coercivity of A, we have

c− ‖eε(vε)‖2
L2(Ω) ≤

∫
Ω

Aεeε(vε) : eε(vε). (2.79)

On the other hand, it holds that∫
Ω

Aεeε(vε) : eε(vε) = T1 + T2, (2.80)

where

T1 :=

∫
Ω

Aεeε(uε − uε,1) : eε(vε) and T2 :=

∫
Ω

Aεeε(uε,1 − vε,1) : eε(vε).

Using (2.78), we obtain that

|T2| ≤ C
(
ε|ω|1/2

∥∥∇3 (u?d + gd)
∥∥
L∞(ω)

+
√
ε|ω|

d−2
2(d−1)

∥∥∇2 (u?d + gd)
∥∥
L∞(ω)

)
‖eε(vε)‖L2(Ω) .

(2.81)

We now turn to bounding T1. We write

T1 =

∫
Ω

Aεeε(uε + g) : eε(vε)−
∫

Ω

Aεeε(uε,1 + g) : eε(vε).

Let Σ̃? :=
(

Σ̃?
ij

)
1≤i,j≤d

be de�ned by

Σ̃?
αβ = Σ?

αβ for any 1 ≤ α, β ≤ d− 1 and Σ̃?
id = Σ̃?

di = 0 for any 1 ≤ i ≤ d.

Moreover, let us introduce

Rε
1 :=

∫
Ω

Aεeε(uε + g) : eε(vε)−
∫

Ω

Σ̃? : eε(vε) (2.82)

and

Rε
2 :=

∫
Ω

Aεeε(uε,1+g) : eε(vε)−
∫

Ω

Aε
(
−xdeα ⊗ eβ + e

(
Wαβ

) ( ·
ε
, ·
))

∂αβ(u?d+gd) : eε(vε).

(2.83)
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It then holds that

T1 = Rε
1 +Rε

2 +Rε
3 (2.84)

with

Rε
3 =

∫
Ω

[
Σ̃? − Aε

(
−xdeα ⊗ eβ + e

(
Wαβ

) ( ·
ε
, ·
))

∂αβ(u?d + gd)
]

: eε(vε).

In Step 3, we will show that Rε
1 +Rε

2 = O(ε) because of the assumptions made on the

data. We thus presently estimate Rε
3.

For all 1 ≤ α, β ≤ d− 1, let us de�ne

Zαβ :=

[
eγ ⊗ eδ :

∫
Y

A
(
−xdeα ⊗ eβ + e

(
Wαβ

))]
eγ⊗eδ−A

(
−xdeα ⊗ eβ + e

(
Wαβ

))
.

In view of Conjecture (CB), we have that

Rε
3 =

∫
Ω

Zαβ

( ·
ε
, ·
)
∂αβ(u?d + gd) : eε(vε).

By the de�nition of Wαβ
and its parity properties, it holds that Zαβ satis�es the as-

sumptions of Lemma 2.12. In addition, the function ∂αβ(u?d + gd) belongs to W 1,∞(ω)
and uε − vε,1 belongs to V . Thus, we obtain that, for all 1 ≤ α, β ≤ d− 1,

|Rε
3| =

∣∣∣∣∫
Ω

Zαβ

( ·
ε
, ·
)
∂αβ(u?d + gd) : eε(vε)

∣∣∣∣ ≤ Cε|ω|1/2
∥∥∇3(u?d + gd)

∥∥
L∞(ω)

‖eε(vε)‖L2(Ω) .

(2.85)

Step 3: We now show estimates onRε
1 andRε

2 respectively de�ned by (2.82) and (2.83).

The bound on Rε
2 comes from the de�nition of uε,1. We compute

|Rε
2| =

∣∣∣∣∫
Ω

Aε
[
eε(uε,1 + g)−

(
−xdeα ⊗ eβ + e

(
Wαβ

) ( ·
ε
, ·
))

∂αβ(u?d + gd)
]

: eε(vε)

∣∣∣∣
=

∣∣∣∣∫
Ω

Aε
[ε

2

[
Wαβ

( ·
ε
, ·
)
⊗∇ (∂αβ(u?d + gd)) +∇ (∂αβ(u?d + gd))⊗Wαβ

( ·
ε
, ·
)]]

: eε(vε)

∣∣∣∣
≤ Cε

∥∥∇3(u?d + gd)
∥∥
L2(ω)

‖eε(vε)‖L2(Ω)

≤ Cε|ω|1/2
∥∥∇3(u?d + gd)

∥∥
L∞(ω)

‖eε(vε)‖L2(Ω) .

Let us now bound Rε
1. To this aim, we use the same notation as in Lemmas 2.22, 2.23

and 2.24. Since the function vε belongs to V , using Lemma 2.24, we obtain that∫
Ω

Aεeε(uε + g) : eε(vε) =

∫
Ω

Σε : e(vε) =

∫
Ω

Σ? : e(vε).

Moreover, we easily deduce of the de�nition of Σ̃?
that∣∣∣∣∫

Ω

Σ? : e (vε)−
∫

Ω

Σ̃? : eε(vε)

∣∣∣∣ =

∣∣∣∣∫
Ω

Σ?
αd eαd(v

ε) +

∫
Ω

Σ?
dd edd(v

ε)

∣∣∣∣
=

∣∣∣∣ε ∫
Ω

Σ?
αd e

ε
αd(v

ε) + ε2

∫
Ω

Σ?
dd e

ε
dd(v

ε)

∣∣∣∣
≤ Cε‖Σ?‖L2(Ω) ‖eε(vε)‖L2(Ω) .
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As a consequence, we obtain that

|Rε
1| =

∣∣∣∣∫
Ω

(
Σ̃? − Aεeε(uε + g)

)
: eε(vε)

∣∣∣∣
=

∣∣∣∣∫
Ω

(
Σ̃? − Σε

)
: eε(vε)

∣∣∣∣
=

∣∣∣∣∫
Ω

(
Σ̃? − Σ?

)
: eε(vε)

∣∣∣∣
≤ Cε‖Σ?‖L2(Ω) ‖eε(vε)‖L2(Ω) .

We thus deduce that

|Rε
1|+ |Rε

2| ≤ Cε
(
|ω|1/2

∥∥∇3(u?d + gd)
∥∥
L∞(ω)

+ ‖Σ?‖L2(Ω)

)
‖eε(vε)‖L2(Ω) .

Collecting (2.79), (2.80), (2.81), (2.84), (2.85) and the above bound, we obtain

‖eε(vε)‖L2(Ω) ≤ C
(√

ε|ω|
d−2

2(d−1)
∥∥∇2(u?d + gd)

∥∥
L∞(ω)

+ ε|ω|1/2
∥∥∇3(u?d + gd)

∥∥
L∞(ω)

+ ε‖Σ?‖L2(Ω)

)
. (2.86)

Step 4: Collecting (2.86) and (2.78), we obtain that∥∥eε(uε − uε,1)
∥∥
L2(Ω)

≤
∥∥eε(uε − vε,1)

∥∥
L2(Ω)

+
∥∥eε(uε,1 − vε,1)

∥∥
L2(Ω)

≤ C
(√

ε|ω|
d−2

2(d−1)
∥∥∇2(u?d + gd)

∥∥
L∞(ω)

+ ε|ω|1/2
∥∥∇3(u?d + gd)

∥∥
L∞(ω)

+ ε‖Σ?‖L2(Ω)

)
.

To conclude the proof, we make use of the Poincaré inequality stated in Lemma 2.16

to �nally obtain

∥∥uε − uε,1∥∥
H1
ε (Ω)
≤ C max

(
1, |ω|

1
d−1

)
max

(
|ω|

1
d−1 , ε2|ω|−

1
d−1

)
×
(√

ε|ω|
d−2

2(d−1)
∥∥∇2(u?d + gd)

∥∥
L∞(ω)

+ ε|ω|1/2
∥∥∇3(u?d + gd)

∥∥
L∞(ω)

+ ε‖Σ?‖L2(Ω)

)
.

This concludes the proof of Theorem 2.25.

2.3.6 Evidence supporting Conjecture (CB)

The aim of this section is to present theoretical and numerical evidence supporting

Conjecture (CB).

Theoretical evidence

We have pointed out above that Conjecture (CB) implies the identity (2.75) for the

quantity m
(
xd Σ?

αβ

)
. It turns out that we are able to directly prove (2.75), as shown in

Lemma 2.26 below. We also recall that, using the symmetries of the bending case, Σ?
αβ

is known to be an odd function with respect to the dth variable, and thus

∀p ∈ N, m
(
x2p
d Σ?

αβ

)
= 0.
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Lemma 2.26. Assume that we are in the bending case, that (A1)-(A4) are satis�ed, and
that Wαβ ∈

[
W 1,∞ (Rd−1 ×

(
−1

2
, 1

2

))]d. Assume in addition that fα = 0 for all 1 ≤
α ≤ d− 1 and that fd does not depend on xd. Then, it holds that

m
(
xd Σ?

αβ

)
= m

(
xd eα ⊗ eβ :

[∫
Y

A(e(W γδ)− xdeγ ⊗ eδ)
]
∂γδ(u

?
d + gd)

)
.

To prove this result, we follow a strategy inspired by the proof of homogenization

using the celebrated div-curl lemma.

Proof. Since u?d and gd do not depend on xd, we �rst observe that the above right-hand

side reads as

m

(
xd eα ⊗ eβ :

[∫
Y

A(e(W γδ)− xdeγ ⊗ eδ)
]
∂γδ(u

?
d + gd)

)
= ∂γδ(u

?
d + gd)

∫
Y

(
xd eα ⊗ eβ : A(e(W γδ)− xdeγ ⊗ eδ)

)
.

Let p be a d× d matrix such that pid = pdi = 0 for any 1 ≤ i ≤ d and let W ∈ W(Y)
be the unique solution to the corrector problem

∀v ∈ W(Y),

∫
Y
A(e(W )− xdp) : e(v) = 0.

The matrix p is a linear combination of the matrices eα ⊗ eβ (for 1 ≤ α, β ≤ d − 1),

and W is likewise a linear combination of the correctors Wαβ
solution to (2.41).

For all y ∈ Y and x ∈ Ω, we de�ne

T (y) = A(y) (e(W )(y)− ydp) and T ε(x) = T

(
x′

ε
, xd

)
.

For any symmetric matrix M ∈ Rd×d
, let

ξε(M) :=

(
M ′ ε−1Mαd

ε−1Mαd ε−2Mdd.

)
.

Note that for any symmetric matrix M ∈ Rd×d
and any function v ∈ H1(Ω), it holds

that

M : eε(v) = ξε(M) : e(v). (2.87)

We recall (see (2.60)) that σε = Aεeε(uε + g). The matrix Σε
de�ned by (2.62) satis�es

Σε = ξε(σε) and we denote by Sε := ξε(T ε).

For all x ∈ Ω, we de�ne ν(x) := xTpx/2. We then of course have ∇2ν = p.

Introduce vε := (vεi )1≤i≤d de�ned by

vεα(x) = εWα

(
x′

ε
, xd

)
− xd ∂αν(x) for all 1 ≤ α ≤ d− 1,

vεd(x) = ε2Wd

(
x′

ε
, xd

)
+ ν(x).

By construction, we have

eε(vε)(x) = e(W )

(
x′

ε
, xd

)
− xd p.
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Then, by de�nition, it holds that

σε : eε(vε) = Aεeε(uε + g) :

[
e(W )

(
x′

ε
, xd

)
− xd p

]
= T ε : eε(uε + g). (2.88)

The sequel of the proof falls in two steps, and follows the lines of the classical proof

of homogenization using the div-curl lemma. In Step 1, we identify the limit of the

left-most term in the above relation (2.88). This is not simple, since both terms only

weakly converge. But we are going to use that (up to some scaling) the second factor

eε(vε) is a symmetrized gradient, while the �rst factor σε is divergence-free (thanks

to the equation satis�ed by uε). In Step 2, we identify the limit of the right-most term

in the above relation (2.88), using again the fact that it is a product of a symmetrized

gradient by a divergence-free factor (thanks to the corrector equation). The fact that

the two limits are equal then yields the claimed result.

Step 1: Let φ ∈ D(ω). Using (2.87), we write∫
Ω

σε : eε(vε)φ =

∫
Ω

Σε : e(vε)φ = −
∫

Ω

Σε∇φ · vε −
∫

Ω

div Σε · vεφ.

The boundary term in the above integration by part vanishes because φ vanishes on ω
and because of the Neumann boundary conditions satis�ed by Σε

on Γ±. The function

φ being independent of xd, this leads to∫
Ω

σε : eε(vε)φ = −
∫

Ω

σεαβ∂αφv
ε
β − ε−1

∫
Ω

σεαd∂αφv
ε
d −

∫
Ω

div Σε · vεφ. (2.89)

We are going to successively pass to the limit ε → 0 in the three terms of the right-

hand side of (2.89). Using the equation satis�ed by uε and the assumption that fα = 0
for any 1 ≤ α ≤ d− 1, we obtain for the third term that

−
∫

Ω

div Σε · vεφ =

∫
Ω

f · vεφ −→
ε→0

∫
ω

fdνφ. (2.90)

For the �rst term of (2.89), we know that, for all 1 ≤ α, β ≤ d − 1, (σεαβ)ε>0 weakly

converges in L2(Ω) to Σ?
αβ and that (vεβ)ε>0 strongly converges in L2(Ω) to −xd∂βν.

This implies that

−
∫

Ω

σεαβ∂αφv
ε
β −→
ε→0

∫
Ω

Σ?
αβ∂αφxd∂βν.

Using next an integration by part, we deduce that

lim
ε→0
−
∫

Ω

σεαβ∂αφv
ε
β = −

∫
Ω

φ∂αΣ?
αβxd∂βν −

∫
Ω

φΣ?
αβxd∂αβν

= −
∫
ω

m
(
xd∂αΣ?

αβ

)
∂βνφ+

∫
ω

m (−xdΣ?) : pφ. (2.91)

We eventually turn to the second term of (2.89). By de�nition of vεd and Σε
, it holds

that

−ε−1

∫
Ω

σεαd∂αφv
ε
d = −ε−1

∫
Ω

σεαd∂αφν − ε
∫

Ω

σεαd∂αφWd

(
x′

ε
, xd

)
= −

∫
Ω

Σε
αd∂αφν − ε

∫
Ω

σεαd∂αφWd

(
x′

ε
, xd

)
. (2.92)
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Since the function Wd is in L∞(Y), we obtain that

ε

∫
Ω

σεαd∂αφWd

(
x′

ε
, xd

)
−→
ε→0

0. (2.93)

In addition, the sequence (Σε
αd)ε>0 weakly converges in L2

((
−1

2
, 1

2

)
, H−1(ω)

)
to Σ?

αd.

This yields that

lim
ε→0
−
∫

Ω

Σε
αd∂αφν =− 〈Σ?

αd, ∂αφν〉L2((− 1
2
, 1
2),H−1(ω)),L2((− 1

2
, 1
2),H1

0 (ω))

= 〈∂αΣ?
αd, νφ〉L2((− 1

2
, 1
2),H−2(ω)),L2((− 1

2
, 1
2),H2

0 (ω))

+ 〈Σ?
αd, ∂ανφ〉L2((− 1

2
, 1
2),H−1(ω)),L2((− 1

2
, 1
2),H1

0 (ω))

= 〈m (∂αΣ?
αd) , νφ〉D′(ω),D(ω) + 〈m (Σ?

αd) , ∂ανφ〉D′(ω),D(ω) . (2.94)

Collecting (2.89), (2.90), (2.91), (2.92), (2.93) and (2.94), we have thus shown that, in the

sense of distributions,

m (σε : eε(vε)) −→
ε→0

m (−xdΣ?) : p−m
(
Σ?
αd − xd∂βΣ?

αβ

)
∂αν + m (∂αΣ?

αd + fd) ν.

(2.95)

Let us now prove that m
(
Σ?
αd − xd∂βσ?αβ

)
∂αν and m (∂αΣ?

αd + fd) ν actually vanish.

Since we know that div Σε + f = 0 in D′(Ω), and that Σε −→
ε→0

Σ?
in D′(Ω), we obtain

that div Σ? + f = 0. Then,

−〈m (∂αΣ?
αd + fd) , νφ〉D′(ω),D(ω) = 〈m (∂dΣ

?
dd) , νφ〉D′(ω),D(ω) [since ∂iΣ

?
di + fd = 0]

= 0

because of the Neumann boundary conditions satis�ed by Σ?
on Γ± (which is remi-

niscent of that satis�ed by Σε
). Similarly, since fα = 0 for all 1 ≤ α ≤ d − 1, we

write

−
〈
m
(
Σ?
αd − xd∂αΣ?

αβ

)
, ∂βνφ

〉
D′(ω),D(ω)

= −〈m (Σ?
αd + xd∂dΣ

?
αd) , ∂ανφ〉D′(ω),D(ω)

= −〈m (∂d (xdΣ
?
αd)) , ∂ανφ〉D′(ω),D(ω)

= 0.

We thus deduce from (2.95) that, for any φ ∈ D(ω),∫
Ω

σε : eε(vε)φ −→
ε→0
〈m (−xdΣ?) : p, φ〉D′(ω),D(ω) . (2.96)

Step 2: We now study the convergence of T ε : eε(uε + g). Considering again some

φ ∈ D(ω) (a function which, in particular, is independent of xd), we have∫
Ω

T ε : eε(uε + g)φ =

∫
Ω

T ? : eε(uε + g)φ+

∫
Ω

(T ε − T ?) : eε(uε + g)φ, (2.97)

where T ?(xd) :=

∫
Y

T (y′, xd)dy
′

for all xd ∈ (−1/2, 1/2). We note that, because of

the de�nition of the corrector W , we have T ?ed = 0 and eTd T
? = 0. We know that uε

weakly converges to u? in (H1(Ω))d, hence eαβ(uε + g) weakly converges in L2(Ω) to
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eαβ(u? + g) = −xd∂αβ(u?d + gd), the last relation stemming from the fact that u? and

g belong to VBKL. We hence obtain, for the �rst term of (2.97), that∫
Ω

T ? : eε(uε + g)φ =

∫
Ω

(T ?)′ : e′(uε + g)φ

−→
ε→0

∫
Ω

(T ?)′ :
(
−xd∇2(u?d + gd)

)
φ =

∫
ω

m (−xd(T ?)′) : ∇2(u?d + gd)φ. (2.98)

We now prove that the second term of (2.97) tends to 0 as ε goes to 0. By de�nition of

W , we know that

• div(T − T ?) = 0,

•

∫
Y(T − T ?) = 0,

• for any yd in

(
−1

2
,
1

2

)
, the function y′ 7→ (T − T ?)(y′, yd) is Y -periodic,

• (T − T ?) · ed = 0 on Y ×
{
±1

2

}
.

As a consequence, using Lemma 2.12, we obtain that∣∣∣∣∫
Ω

(T ε − T ?) : eε(uε + g)φ

∣∣∣∣ ≤ Cε‖∇φ‖L∞(ω)‖eε(uε + g)‖L2(Ω) −→
ε→0

0. (2.99)

Collecting (2.97), (2.98) and (2.99), we deduce that∫
Ω

T ε : eε(uε + g)φ −→
ε→0

∫
ω

m (−xd(T ?)′) : ∇2(u?d + gd)φ. (2.100)

Conclusion: Collecting (2.88), (2.96) and (2.100), we infer that

m (−xdΣ?) : p = m (−xd(T ?)′) : ∇2(u?d + gd),

which yields the claimed result, since the matrix p is arbitrary (among d× d matrices

such that pid = pdi = 0). This concludes the proof of Lemma 2.26.

In view of this result, it is tempting to try to prove that, for all p ∈ N?
,

m
(
−x2p+1

d Σ?
αβ

)
= m

(
−x2p+1

d eα ⊗ eβ :

[∫
Y

A(e(W γδ)− xdeγ ⊗ eδ)
]
∂γδu

?
d

)
.

Since a result would fully prove Conjecture (CB). Unfortunately, this appears to be a

delicate task, which we did not yet achieve.

Numerical evidence

We now present some numerical evidence for Conjecture (CB). More precisely, we

consider here the case when g = 0, and we show numerical results consistent with the

fact that, under the assumptions of Theorem 2.25,

‖eε(uε)− eε(uε,1)‖(L2(Ω))d×d →ε→0
0. (2.101)

If (2.101) holds true, then the proof of the conjecture (in the case g = 0) is straightfor-

ward. Indeed, we have

σε = Aεeε(uε) = Aεeε(uε,1) + Aεeε(uε − uε,1)
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with

Aεeε(uε,1) ⇀
ε→0

[∫
Y

A
(
e(Wαβ − xdeα ⊗ eβ)

)]
∂αβu

?
d weakly in L2(Ω)d×d

and Aεeε(uε − uε,1) →
ε→0

0 strongly in L2(Ω)d×d. We therefore have

σε ⇀
ε→0

[∫
Y

A
(
e(Wαβ − xdeα ⊗ eβ)

)]
∂αβu

?
d weakly in L2(Ω)d×d,

which is exactly our conjecture (2.74).

We now present numerical tests illustrating (2.101), which have been performed

using FreeFem++ [49]. We consider a problem in dimension d = 2, for which ω =
(0, 1). The periodic elasticity tensor is de�ned by

∀1 ≤ i, j, k, l ≤ 2, ∀y ∈ Y , Aijkl(y) := λ(y)δijδkl + µ(y)(δikδjl + δilδjk),

where

λ(y) :=
νE(y)

(1 + ν)(1− 2ν)
and µ(y) :=

E(y)

2(1 + ν)
,

with

E(y) = 4.5 sin(2πy) + 5.5 and ν = 0.3.

As mentioned above, we consider the case g = 0, and set f = −e2 and h± = 0.

The reference variational formulation (2.35) is discretized using a P1 �nite ele-

ment method with a triangular mesh where the typical diameter of each element is

of the order of h = 1/400. We can only consider values of ε of the order of (or larger

than) h, otherwise the reference problem is not accurately solved. The corrector equa-

tion (2.41) is solved on a triangular mesh whose typical size is H . The homogenized

equation (2.43), which is posed on the one-dimensional domain ω, is solved by a �nite

di�erence scheme on a grid of size H . Of course, these two discretizations introduce

some error related to the choice of H .

The obtained results are shown on Figure 2.4. We indeed observe that ‖eε(uε) −
eε(uε,1)‖(L2(Ω))d×d decreases when ε decreases, until some plateau seems to be reached.

When H takes smaller values, this plateau seems to be reached for smaller values of ε
(and corresponds to a smaller value of the error), a behavior which is consistent with

the fact that this plateau is reminiscent of a discretisation error related to H .

2.A Hdiv space

We recall here some results about the Hdiv space. Let Ω ⊂ Rd
be a bounded regular

subdomain of Rd
. We de�ne the space

Hdiv(Ω) :=
{
v ∈ (L2(Ω))d, div v ∈ L2(Ω)

}
,

which is a Hilbert space for the scalar product

∀v, w ∈ Hdiv(Ω), 〈v, w〉 =

∫
Ω

v · w +

∫
Ω

(div v) (divw).

The space

(
C∞(Ω)

)d
is dense in Hdiv(Ω). Let us consider the normal trace application

γν :

{ (
C∞(Ω)

)d → H−1/2(∂Ω)
v 7→ (v · ν)|∂Ω

,
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Figure 2.4: ‖eε(uε)− eε(uε,1)‖(L2(Ω))d×d as a function of ε, for di�erent values of H .

where ν denotes the unit exterior normal vector to ∂Ω. The application γν can be

uniquely extended as a continuous application from Hdiv(Ω) to H−1/2(∂Ω), and the

following Stokes formula holds:

∀v ∈ Hdiv(Ω), ∀w ∈ H1(Ω),

∫
Ω

v·∇w+

∫
Ω

w div v = 〈γν(v), γ0(w)〉H−1/2(∂Ω),H1/2(∂Ω),

where γ0 denotes the trace application from H1(Ω) to H1/2(∂Ω).

2.B Korn inequalities

For the sake of completeness, we provide here a proof of the Korn inequality we have

stated in (2.36). We start by recalling a well-known result:

Lemma 2.27 (Korn’s inequality in H1
, see [22]). Let Ω ⊂ Rd be a bounded regular

domain. Then, there exists a constant C(Ω) > 0 such that, for any u ∈ (H1(Ω))d, we
have

‖u‖2
(H1(Ω))d ≤ C(Ω)

(
‖u‖2

(L2(Ω))d + ‖e(u)‖2
(L2(Ω))d×d

)
.

In the speci�c case of functions which vanish at the boundary, we have the follow-

ing result.

Lemma 2.28 (Korn’s inequality in H1
0 , see [22]). Let Ω ⊂ Rd be a regular domain. For

any u ∈ (H1
0 (Ω))d, we have

‖∇u‖(L2(Ω))d×d ≤
√

2 ‖e(u)‖(L2(Ω))d×d .
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In this work, we need a slightly modi�ed version of Lemma 2.28, since we work in

V and not in (H1
0 (Ω))d.

Lemma 2.29. Let V be given by (2.33). Then, there exists a constant C such that

∀u ∈ V, ‖u‖(H1(Ω))d ≤ C‖e(u)‖(L2(Ω))d×d . (2.102)

Proof. We argue by contradiction and assume that (2.102) does not hold. Then, for all

n ∈ N?
, there exists un ∈ V such that

‖un‖(H1(Ω))d = 1, ‖e(un)‖(L2(Ω))d×d ≤
1

n
‖un‖(H1(Ω))d . (2.103)

Since un is bounded in (H1(Ω))d, there exists u ∈ (H1(Ω))d such that, up to the

extraction of a subsequence, un ⇀
n→+∞

uweakly in (H1(Ω))d. Thus, un −→
n→+∞

u strongly

in (L2(Ω))d and e(un) ⇀
n→+∞

e(u) weakly in (L2(Ω))d×d. The estimate (2.103) yields

that ‖e(un)‖(L2(Ω))d×d −→
n→+∞

0, which implies that e(u) = 0 and thus that u is a rigid

displacement. In addition, u ∈ V , and therefore u = 0. Using Lemma 2.27, we also

deduce from (2.103) that

‖un‖2
(L2(Ω))d ≥

1

C(Ω)
− 1

n2
.

Passing to the limit n → ∞ and using the fact that un strongly converges to u in

(L2(Ω))d, we obtain that ‖u‖2
(L2(Ω))d ≥ 1/C(Ω), which provides a contradiction with

the fact that u = 0.

2.C Proofs of the homogenization results

In this section, for the sake of completeness, we provide a proof of Theorem 2.4, resp.

Theorem 2.11. Note that these results were proved in [17], resp. [18]. We will use

below the following well-known lemma.

Lemma 2.30. Let B a function in L2
loc

(
Rd−1 ×

(
−1

2
,
1

2

))
such that, for any z ∈(

−1

2
,
1

2

)
, the function B(·, z) is Y -periodic. Then, for any z ∈

(
−1

2
,
1

2

)
and any

ω ⊂ Rd−1,

B
( ·
ε
, z
)
⇀
ε→0

1

|Y |

∫
Y

B(y′, z)dy′ weakly in L2(ω).

2.C.1 Proof of Theorem 2.4

To identify the homogenized problem, we use the oscillating test function method. Let

φ ∈ D(ω) and v(x) := φ(x′) + εwα
(
x′

ε
, xd

)
∂αφ(x′). By de�nition, v ∈ V and it is

thus an admissible test function in (2.8). We note that∇εv = ∇φ+∇wα
( ·
ε
, ·
)
∂αφ+

εwα
( ·
ε
, ·
)
∇∂αφ. Using this function v as test function in (2.8), we get

cε(uε, φ) + rε(uε, φ) = dε(φ) + sε(φ), (2.104)



80 Chapter 2. Two-scale expansion for elastic heterogeneous plates

where

cε(uε, φ) :=

∫
Ω

Aε∇εuε ·
(
∇wα

( ·
ε
, ·
)

+ eα

)
∂αφ,

rε(uε, φ) := ε

∫
Ω

wα
( ·
ε
, ·
)
Aε∇εuε · ∇∂αφ,

dε(φ) := bε(φ)−
∫

Ω

Aε∇εg · ∇wα
( ·
ε
, ·
)
∂αφ,

sε(φ) := ε

∫
Ω

fwα
( ·
ε
, ·
)
∂αφ− ε

∫
Ω

wα
( ·
ε
, ·
)
Aε∇εg · ∇∂αφ+ ε

∫
Γ±
h±w

α∂αφ.

The following limits are immediate in view of (2.11) (which states that ‖∇εuε‖L2(Ω) is

bounded) and of the fact that∇εg = ∇g (because g does not depend on xd):

rε(uε, φ) →
ε→0

0 and sε(φ) →
ε→0

0.

Let us now identify the limit of cε(uε, φ). Using the Rellich theorem, it holds that, up

to the extraction of a subsequence, (uε)ε>0 converges strongly in L2(Ω) to u?. Besides,

since ‖∇εuε‖L2(Ω) is bounded, we have that ‖ε−1∂du
ε‖L2(Ω) is bounded, and therefore

∂du
? = 0. Since u? ∈ V , we thus get that u? ∈ H1

0 (ω). Using an integration by parts,

and the fact that φ ∈ D(ω), we obtain that

cε(uε, φ) =

∫
Ω

Aε∇εuε ·
(
∇wα

( ·
ε
, ·
)

+ eα

)
∂αφ

=

∫
Ω

∇εuε · Aε
(
∇wα

( ·
ε
, ·
)

+ eα

)
∂αφ [since A is symmetric]

= −
∫

Ω

uε divε
[
Aε
(
∇wα

( ·
ε
, ·
)

+ eα

)
∂αφ

]
+

1

ε

∫
Γ±
uε
[
Aε
(
∇wα

( ·
ε
, ·
)

+ eα

)
∂αφ

]
· ed

= −
∫

Ω

uεAε
(
∇wα

( ·
ε
, ·
)

+ eα

)
· ∂α∇φ [by de�nition of wα].

Thanks to Lemma 2.30 and the strong convergence of (uε)ε>0 to u? inL2(Ω), we deduce

that

cε(uε, φ) →
ε→0

c?(u?, φ) := −
∫

Ω

u?
[∫

Y

A(y′, ·) (∇wα (y′, ·) + eα) dy′
]
· ∂α∇φ.

Using that u?, φ ∈ H1
0 (ω) yields that

c?(u?, φ) = −
∫
ω

u?
[∫
Y
A (∇wα + eα)

]
· ∂α∇φ [u? and φ ind. of xd]

=

∫
ω

[∫
Y
A (∇wα + eα)

]
∂αu

? · ∇φ

=

∫
ω

A?∇′u? · ∇′φ.

The last equality stems from the fact that

A?αβ =

∫
Y
A (∇wα + eα) · eβ =

∫
Y
A (∇wα + eα) ·

(
∇wβ + eβ

)
.

We next turn to the term dε(φ). Using again Lemma 2.30 and similar arguments as

above, it holds that

lim
ε→0

dε(φ) =

∫
ω

(m(f) + h±)φ−
∫
ω

[∫
Y
A (∇wα + eα)

]
∂αg · ∇φ

=

∫
ω

(m(f) + h±)φ−
∫
ω

A?∇′g · ∇′φ.
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The coercivity of A? can be obtained by standard arguments. This proves that the

homogenized problem is well-posed, and hence u? is uniquely de�ned. The whole

sequence uε (and not only a subsequence) therefore converges to u?. This concludes

the proof of Theorem 2.4.

2.C.2 Proof of Theorem 2.11

We begin by showing that u? belongs to VKL. We recall (2.37), which states that

‖eε(uε)‖(L2(Ω))d×d is bounded. This implies that ‖ε−2∂du
ε
d‖L2(Ω) ≤ C . The function

uε converges to u? weakly in (H1(Ω))
d
, therefore ∂du

?
d = 0.

From the bound on ‖eε(uε)‖(L2(Ω))d×d , we also get that ‖∂duεα + ∂αu
ε
d‖L2(Ω) ≤ Cε.

Using again that uε converges to u? weakly in (H1(Ω))
d
, we deduce that ∂du

?
α+∂αu

?
d =

0. Since ∂du
?
d = 0, there exists some ũ? in (H1(ω))

d
such that u?α = ũ?α − xd∂αũ?d and

u?d = ũ?d.

The function uε belongs to V and converges to u? weakly in (H1(Ω))
d
. We thus

obtain that m(uε) ∈ H1
0 (ω)d and m(uε) ⇀

ε→0
m(u?) = ũ? weakly in (H1(ω))

d
. We

hence have ũ? ∈ H1
0 (ω)d. Since xd∇ũ?d = ũ?− u?, we have∇ũ?d = 0 on ∂ω×

(
−1

2
, 1

2

)
and ∇ũ?d ∈ (H1

0 (ω))d. We have shown previously that ũ?d ∈ H1
0 (ω), and thus u?d ∈

H2
0 (ω). We hence have that u? ∈ VKL. As for any element of VKL, we can associate to

u? a function û? ∈ (H1
0 (ω))

d−1 ×H2
0 (ω), and this element turns out to be û? = ũ?.

To identify the homogenized limit of (2.35), we make use of the oscillating test

function method. Let φ̂ ∈ (D(ω))d. By de�ning φ as φα = φ̂α − xd∂αφ̂d and φd = φ̂d,
we get that φ ∈ VKL. Let us de�ne, for all 1 ≤ γ ≤ d− 1,

vγ := φγ + ε
[
wαβγ

( ·
ε
, ·
)
eαβ(φ̂) +Wαβ

γ

( ·
ε
, ·
)
∂αβφ̂d

]
,

vd := φd + ε2
[
wαβd

( ·
ε
, ·
)
eαβ(φ̂) +Wαβ

d

( ·
ε
, ·
)
∂αβφ̂d

]
.

By de�nition, v belongs to V and is thus an admissible test function in (2.35). We note

that

eε(v) =
[
eα ⊗ eβ + e(wαβ)

( ·
ε
, ·
)]
eαβ(φ̂)+

[
−xdeα ⊗ eβ + e(Wαβ)

( ·
ε
, ·
)]
∂αβφ̂d+εR

ε,

where ‖Rε‖(L2(Ω))d×d ≤ C . Using v as a test function in (2.35), we get

cε(uε, φ) + rε(uε, φ) = dε(φ) + sε(φ), (2.105)

where

cε(uε, φ) :=

∫
Ω

Aεeε(uε) :
([
eα ⊗ eβ + e(wαβ)

( ·
ε
, ·
)]
eαβ(φ̂) +

[
−xdeα ⊗ eβ + e(Wαβ)

( ·
ε
, ·
)]
∂αβφ̂d

)
,

rε(uε, φ) := ε

∫
Ω

Aεeε(uε) : Rε,

dε(φ) :=

∫
Ω

f · φ+

∫
ω

h± · φ
(
·,±1

2

)
−
∫

Ω

Aεeε(g) :
([
eα ⊗ eβ + e(wαβ)

( ·
ε
, ·
)]
eαβ(φ̂) +

[
−xdeα ⊗ eβ + e(Wαβ)

( ·
ε
, ·
)]
∂αβφ̂d

)
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and

sε(φ) := ε

∫
Ω

fγ

[
wαβγ

( ·
ε
, ·
)
eαβ(φ̂) +Wαβ

γ

( ·
ε
, ·
)
∂αβφ̂d

]
+ ε2

∫
Ω

fd

[
wαβd

( ·
ε
, ·
)
eαβ(φ̂) +Wαβ

d

( ·
ε
, ·
)
∂αβφ̂d

]
+ ε

∫
Γ±

(h±)γ

[
wαβγ

( ·
ε
, ·
)
eαβ(φ̂) +Wαβ

γ

( ·
ε
, ·
)
∂αβφ̂d

]
+ ε2

∫
Γ±

(h±)d

[
wαβd

( ·
ε
, ·
)
eαβ(φ̂) +Wαβ

d

( ·
ε
, ·
)
∂αβφ̂d

]
− ε

∫
Ω

Aεeε(g) : Rε.

The following limits are immediate in view of (2.37):

rε(uε, φ) →
ε→0

0 and sε(φ) →
ε→0

0.

We now identify the limit of cε(uε, φ). Using the Rellich theorem, (uε)ε>0 converges

strongly to u? in (L2(Ω))
d
. Since A is symmetric in the sense that Aijkl = Aklij , we

compute

cε(uε, φ)

=

∫
Ω

Aεeε(uε) :
([
eα ⊗ eβ + e(wαβ)

( ·
ε
, ·
)]
eαβ(φ̂) +

[
−xdeα ⊗ eβ + e(Wαβ)

( ·
ε
, ·
)]
∂αβφ̂d

)
=

∫
Ω

eε(uε) : Aε
([
eα ⊗ eβ + e(wαβ)

( ·
ε
, ·
)]
eαβ(φ̂) +

[
−xdeα ⊗ eβ + e(Wαβ)

( ·
ε
, ·
)]
∂αβφ̂d

)
.

Using an integration by parts and the fact that φ̂ ∈ (D(ω))d, we obtain

cε(uε, φ)

=−
∫

Ω

uε · divε
[
Aε
([
eα ⊗ eβ + e(wαβ)

( ·
ε
, ·
)]
eαβ(φ̂) +

[
−xdeα ⊗ eβ + e(Wαβ)

( ·
ε
, ·
)]
∂αβφ̂d

)]
+

∫
∂ω×(− 1

2
, 1
2)

uε n · Aε
([
eα ⊗ eβ + e(wαβ)

( ·
ε
, ·
)]
eαβ(φ̂) +

[
−xdeα ⊗ eβ + e(Wαβ)

( ·
ε
, ·
)]
∂αβφ̂d

)
+

∫
Γ+

uεed · Aε
([
eα ⊗ eβ + e(wαβ)

( ·
ε
, ·
)]
eαβ(φ̂) +

[
−xdeα ⊗ eβ + e(Wαβ)

( ·
ε
, ·
)]
∂αβφ̂d

)
−
∫

Γ−
uεed · Aε

([
eα ⊗ eβ + e(wαβ)

( ·
ε
, ·
)]
eαβ(φ̂) +

[
−xdeα ⊗ eβ + e(Wαβ)

( ·
ε
, ·
)]
∂αβφ̂d

)
.

Since φ̂ ∈ (D(ω))d, it holds that∫
∂ω×(− 1

2
, 1
2)
uε n · Aε

([
eα ⊗ eβ + e(wαβ)

( ·
ε
, ·
)]
eαβ(φ̂) +

[
−xdeα ⊗ eβ + e(Wαβ)

( ·
ε
, ·
)]
∂αβφ̂d

)
= 0.

Besides, since for all 1 ≤ α, β ≤ d− 1 we have

A(e(wαβ) + eα ⊗ eβ) · ed = A(e(Wαβ)− xdeα ⊗ eβ) · ed = 0 on Y±,

we obtain that

ed·Aε
([
eα ⊗ eβ + e(wαβ)

( ·
ε
, ·
)]
eαβ(φ̂) +

[
−xdeα ⊗ eβ + e(Wαβ)

( ·
ε
, ·
)]
∂αβφ̂d

)
= 0 on Γ±



2.C. Proofs of the homogenization results 83

where we recall that Γ± = ω ×
{
±1

2

}
. We thus obtain that

cε(uε, φ)

= −
∫

Ω

uε · divε
[
Aε
([
eα ⊗ eβ + e(wαβ)

( ·
ε
, ·
)]
eαβ(φ̂) +

[
−xdeα ⊗ eβ + e(Wαβ)

( ·
ε
, ·
)]
∂αβφ̂d

)]
= −

∫
Ω

uε · Aε
([
eα ⊗ eβ + e(wαβ)

( ·
ε
, ·
)]
∇eαβ(φ̂) +

[
−xdeα ⊗ eβ + e(Wαβ)

( ·
ε
, ·
)]
∇∂αβφ̂d

)
where we have used the de�nitions of wαβ and Wαβ

.

Using Lemma 2.30 and the fact that uε converges strongly to u? in (L2(Ω))
d
, we

deduce that

cε(uε, φ) →
ε→0

c?(u?, φ)

with

− c?(u?, φ) =

∫
Ω

u? ·
[{∫

Y

A(·, xd)
(
eα ⊗ eβ + e(wαβ) (·, xd)

)}
∇eαβ(φ̂)

+

{∫
Y

A(·, xd)
(
−xdeα ⊗ eβ + e(Wαβ) (·, xd)

)}
∇∂αβφ̂d

]
.

We have shown that u? = û?− xd∇û?d with û? independent of xd. Using that φ̂ is also

independent of xd, we deduce that

−c?(u?, φ) =

∫
Ω

(û? − xd∇û?d) ·
[{∫

Y

A(·, xd)
(
eα ⊗ eβ + e(wαβ) (·, xd)

)}
∇eαβ(φ̂)

+

{∫
Y

A(·, xd)
(
−xdeα ⊗ eβ + e(Wαβ) (·, xd)

)}
∇∂αβφ̂d

]
=

∫
ω

(û?)γ

[
(k?11)αβγδ ∂δeαβ(φ̂) + (k?12)αβγδ ∂δ∂αβφ̂d

]
− ∂γû?d

[
(k?21)αβγδ ∂δeαβ(φ̂) + (k?22)αβγδ ∂δ∂αβφ̂d

]
+

∫
ω

(û?)d

[
(k?11)αβdδ ∂δeαβ(φ̂) + (k?12)αβdδ ∂δ∂αβφ̂d

]
(2.106)

with

(k?11)αβγδ :=

∫
Y
eTγ

{
A(e(wαβ) + eα ⊗ eβ)

}
eδ,

(k?12)αβγδ :=

∫
Y
eTγ

{
A(e(Wαβ)− xdeα ⊗ eβ)

}
eδ,

(k?22)αβγδ :=

∫
Y
eTγ

{
A(e(Wαβ)− xdeα ⊗ eβ)

}
xd eδ,

(k?21)αβγδ :=

∫
Y
eTγ

{
A(e(wαβ) + eα ⊗ eβ)

}
xd eδ

and likewise when γ is replaced by d.

Using (2.40), we now see (using that wγδ ∈ W(Y)) that

(K?
11)αβγδ =

∫
Y
A(e(wαβ) + eα ⊗ eβ) : eγ ⊗ eδ = (k?11)αβγδ
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and (using that Wγδ ∈ W(Y)) that

(K?
12)αβγδ = −

∫
Y
xdA(e(wαβ) + eα ⊗ eβ) : eγ ⊗ eδ = −(k?21)αβγδ.

Similarly, we deduce from (2.41) (using that Wγδ ∈ W(Y)) that

(K?
22)αβγδ = −

∫
Y
xdA(e(Wαβ)− xdeα ⊗ eβ) : eγ ⊗ eδ = −(k?22)αβγδ.

Using that A is symmetric (i.e. Aijkl = Aklij), we also write that

(K?
12)αβγδ =

∫
Y
A(e(Wγδ)− xdeγ ⊗ eδ) : (e(wαβ) + eα ⊗ eβ)

=

∫
Y
A(e(Wγδ)− xdeγ ⊗ eδ) : eα ⊗ eβ

= (k?12)γδαβ.

We also claim that, for any 1 ≤ α, β, δ ≤ d− 1, we have

(k?11)αβdδ = (k?12)αβdδ = 0. (2.107)

Indeed, since X : Rd 3 x 7→ xd eδ is an admissible test function in (2.40), we can write

0 =

∫
Y
A(e(wαβ) + eα ⊗ eβ) : e(X)

=
1

2

∫
Y
A(e(wαβ) + eα ⊗ eβ) : (eδ ⊗ ed + ed ⊗ eδ)

=

∫
Y
A(e(wαβ) + eα ⊗ eβ) : ed ⊗ eδ [A is symmetric: Aijkl = Ajikl]

=

∫
Y
eTd

{
A(e(wαβ) + eα ⊗ eβ)

}
eδ

= (k?11)αβdδ.

Likewise, since X is also an admissible test function in (2.41), we can write

0 =

∫
Y
A(e(Wαβ)− xdeα ⊗ eβ) : e(X)

=
1

2

∫
Y
A(e(Wαβ)− xdeα ⊗ eβ) : (eδ ⊗ ed + ed ⊗ eδ)

=

∫
Y
A(e(Wαβ)− xdeα ⊗ eβ) : ed ⊗ eδ [A is symmetric: Aijkl = Ajikl]

=

∫
Y
eTd

{
A(e(Wαβ)− xdeα ⊗ eβ)

}
eδ

= (k?12)αβdδ.

This hence proves (2.107).

We thus infer from (2.106) that

− c?(u?, φ) =

∫
ω

(û?)γ

[
(K?

11)αβγδ ∂δeαβ(φ̂) + (K?
12)γδαβ ∂δ∂αβφ̂d

]
+ ∂γû

?
d

[
(K?

12)αβγδ ∂δeαβ(φ̂) + (K?
22)αβγδ ∂δ∂αβφ̂d

]
.
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Using the symmetry properties ofK?
11 andK?

22 (i.e. (K?
11)αβγδ = (K?

11)γδαβ), we recast

the above as

− c?(u?, φ) =

∫
ω

(û?)γ

[
(K?

11)γδαβ ∂δeαβ(φ̂) + (K?
12)γδαβ ∂δ∂αβφ̂d

]
+ ∂γû

?
d

[
((K?

12)T )γδαβ ∂δeαβ(φ̂) + (K?
22)γδαβ ∂δ∂αβφ̂d

]
. (2.108)

We next note that, by simple tensor algebra,

(û?)′ · (K?
11 : eα ⊗ eβ)∇′eαβ(φ̂) = (û?)γ (K?

11 : eα ⊗ eβ)γδ ∂δeαβ(φ̂)

= (û?)γ (K?
11)γδαβ ∂δeαβ(φ̂).

We thus deduce from (2.108) that

− c?(u?, φ) =

∫
ω

(û?)′ ·
[
(K?

11 : eα ⊗ eβ)∇′eαβ(φ̂) + (K?
12 : eα ⊗ eβ)∇′∂αβφ̂d

]
+∇′û?d ·

[
((K?

12)T : eα ⊗ eβ)∇′eαβ(φ̂) + (K?
22 : eα ⊗ eβ)∇′∂αβφ̂d

]
.

Using an integration by parts and the symmetry of the matrix K?
11 : eα ⊗ eβ , we

compute

c?(u?, φ) =

∫
ω

eαβ(φ̂)
[
(K?

11 : eα⊗eβ) : ∇′(û?)′
]

+∂αβφ̂d

[
(K?

12 : eα⊗eβ) : ∇′(û?)′
]

+ eαβ(φ̂)
[
((K?

12)T : eα ⊗ eβ) : ∇2
d−1û

?
d

]
+ ∂αβφ̂d

[
(K?

22 : eα ⊗ eβ) : ∇2
d−1û

?
d

]
.

Note that the boundary term in the integration by parts vanishes because φ̂ ∈ (D(ω))d.
We thus deduce that

c?(u?, φ) =

∫
ω

(
K?

11 : e′(φ̂′)
)

: ∇′(û?)′ +
(
K?

12 : ∇2
d−1φ̂d

)
: ∇′(û?)′

+
(

(K?
12)T : e′(φ̂′)

)
: ∇2

d−1û
?
d +

(
K?

22 : ∇2
d−1φ̂d

)
: ∇2

d−1û
?
d

=

∫
ω

(
K?

11 : e′(φ̂′)
)

: e′((û?)′) +
(
K?

12 : ∇2
d−1φ̂d

)
: e′((û?)′)

+
(

(K?
12)T : e′(φ̂′)

)
: ∇2

d−1û
?
d +

(
K?

22 : ∇2
d−1φ̂d

)
: ∇2

d−1û
?
d

=

∫
ω

K?Pu? : Pφ.

Recalling (2.105), we have now identi�ed the limit when ε→ 0 of the two terms on

the left-hand side and of sε(φ) on the right-hand side. We are thus left with identifying

the limit of

dε(φ) =

∫
Ω

f · φ+

∫
ω

h± · φ
(
·,±1

2

)
− cε(g, φ).

Use again Lemma 2.30 for the �rst two terms and similar computations as above, we

obtain that

lim
ε→0

dε(φ) =

∫
ω

(m(f) + h±) · φ̂−
∫
ω

m(xdfα) ∂αφ̂d −
∫
ω

K?Pg : Pφ.

We have thus shown that, for any φ̂ ∈ (D(ω))d, we have∫
ω

K?Pu? : Pφ =

∫
ω

(m(f) + h±) · φ̂−
∫
ω

m(xdfα) ∂αφ̂d −
∫
ω

K?Pg : Pφ.
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This result holds for any v in VKL. Indeed, for any v in VKL,

‖Pφ− Pv‖2

(L2(ω))(2d−2)×(d−1) =
∥∥∥e′(φ̂′)− e′(v̂′)∥∥∥2

(L2(ω))(d−1)×(d−1)
+
∥∥∥∇2φ̂d −∇2v̂d

∥∥∥2

(L2(ω))(d−1)×(d−1)

≤
∥∥∥φ̂′ − v̂′∥∥∥2

(H1(ω))d−1
+
∥∥∥φ̂d − v̂d∥∥∥2

H2(ω)
.

The density of (D(ω))d−1
in (H1(ω))

d−1
for the H1

norm and of D(ω) in H2(ω) for

the H2
norm allows us to conclude.

We eventually show that K?
is coercive. Let σ and τ be in R(d−1)×(d−1)

s . Then

K?

(
σ
τ

)
:

(
σ
τ

)
=

∫
Y
A (e(wσ) + σ + e(W τ )− xdτ) : (e(wσ) + σ + e(W τ )− xdτ)

[where wσ := σαβw
αβ

and W τ = ταβW
αβ

]

=

∫
Y
Aξ : ξ [where ξ := e(wσ) + σ + e(W τ )− xdτ ]

≥ c−|ξ|2.

This shows that K?
is non-negative. We now show that ξ = 0 implies that σ = τ = 0.

Let x 7→ v(xd) be in D(Y). Then∫
Y
vξ = 0

=

∫
Y
v(σ − xdτ) [because of the Y -periodicity of wσ and W τ

]

= σ

∫
Y
v − τ

∫
Y
xdv.

Successively taking v = 1 and v = xd, we get σ = τ = 0. This thus shows that

K?
is coercive. As a consequence, the homogenized problem is well-posed, and thus

the homogenized limit u? is uniquely de�ned. This hence shows that the whole se-

quence uε (and not only a subsequence) converges to u?. This conclude the proof of

Theorem 2.11.



CHAPTER 3

MULTISCALE FINITE ELEMENT METHODS FOR

ELASTIC HETEROGENEOUS PLATES

This chapter corresponds to a manuscript in preparation [AL2], co-authored with

V. Ehrlacher, A. Lebée and F. Legoll.

3.1 Introduction

In this article, we consider elasticity problems posed on heterogeneous plates. These

problems typically read as

− div (Aεe(ũε)) = f̃ ε in Ωε,

where e(ũε) is the symmetric gradient of the displacement ũε, and where the elasticity

tensor Aε varies at the small characteristic length-scale ε. The domain Ωε
is thin, in

the sense that its width ε in the d-direction is small. A typical example is when

Ωε = ω ×
(
−ε

2
,
ε

2

)
, (3.1)

where ω is a bounded open subset of Rd−1
(see Figure 3.2 below). The dependency of

the right-hand side f̃ ε with respect to ε, as well as the choice of appropriate boundary

conditions, will be made precise below. SinceAε varies at the small scale ε, standard �-

nite element methods for plates cannot be used. They would indeed lead to prohibitive

computational costs. Our aim in this article is to introduce and analyse multiscale nu-

merical approaches, in the vein of the Multiscale Finite Element Method (MsFEM), to

address this type of problems.

The principle of the MsFEM approach, originally introduced in [55] (see [36] for a

comprehensive review), is to discretize the domain occupied by the heterogeneous ma-

terial using a coarse mesh, where the typical size of each element, denoted H , can be

chosen independently of the typical size ε of the heterogeneities. The method relies on

the idea of using speci�c basis functions, which are not as generic as the standard �nite

element functions (like P1 �nite element functions for instance), but are on the con-

trary well-adapted to the heterogeneities of the material. More precisely, the method

proceeds in two steps. In an o�ine phase, some basis functions are computed as so-

lutions to local problems de�ned on each element of the coarse mesh. The di�erential

operator which is used is very similar (if not identical) to the di�erential operator of

the global problem. It is thus expect that these basis functions appropriately encode
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the oscillations of the exact solution. These basis functions are computed in paral-

lel and independently from one another. They do not depend on the right-hand side

of the problem. They are expensive to compute (because one has to use a �ne mesh

on each coarse element to resolve the oscillations of Aε), but this computation is lo-

cal, and only performed once. These basis functions generate a discretization space

of limited dimension, which is well-adapted to the problem at hand. Next, in an on-

line phase, a global Galerkin approximation of the problem of interest is performed,

on the discretization space introduced in the o�ine stage. Since the dimension of the

discretization space is limited, the online phase is inexpensive.

Several variants of the method have been proposed, to address problems posed on

domains Ω with oscillatory coe�cients. These variants di�er in the choice of bound-

ary conditions for the local problems de�ning the oscillatory basis functions. We refer

to [55, 56] for the initial variant with linear boundary conditions, to [55, 38] for the

so-called oversampling variant where local problems are posed on a enlarged element,

to [56] for a variant with oscillatory boundary conditions, to [64] for Crouzeix-Raviart

type boundary conditions, to name but a few. MsFEM approaches have also been in-

troduced for problems with slowly-varying coe�cients posed on multiscale domains,

such as perforated domains (see e.g. [65, 66]).

Our aim in this work is to introduce and analyze a MsFEM-type approach for prob-

lems posed on heterogeneous plates whose thickness is comparable to the typical size

of the heterogeneities, i.e. in the case when the domain on which the problem is posed

is of the form Ωε
given by (3.1). We focus on a linear elasticity problem (rather than a

more simple scalar-valued di�usion equation) because our work [AL1] has shown that

this former model raises speci�c di�culties in the regime ε � 1, in contrast to the

latter problem. In what follows, we are going to introduce a method where the dimen-

sion of the discretization space is proportional to the number of nodes of a coarse mesh

of the d − 1 dimensional domain ω. More precisely, in the method we present here,

only a few multiscale basis functions are de�ned on each extruded element of the form

τ × (−1/2, 1/2), where τ ⊂ ω is an element of the coarse mesh of ω (see Figure 3.1).

The computational cost is thus very limited.

Figure 3.1: Extruded (coarse) mesh for the plate

In the case when the coe�cient Aε satis�es some geometric assumptions (such as

periodicity), homogenization theory for plates can of course be used. The asymptotic

behavior of homogeneous plates has been studied in [24, 32, 28, 45] (for this homoge-

neous case, we also wish to mention [84], where the authors have studied the minimal

order of polynomial functions to be used in a Galerkin approximation, so that the nu-

merical solution remains asymptotically consistent with the asymptotic behavior of
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the exact solution). In the case of heterogeneous plates, the weak convergence of the

solution ũε to the solution of an associated homogenized problem has been proved

when the plate is strati�ed [46, 47, 76] or has periodic heterogeneities [17, 18]. We

also refer to [75, 91, 53] for recent homogenization results on heterogeneous plates

with more general heterogeneities. However, as always for homogenization, explicit

expressions of the homogenized problem can only be obtained under some geometric

assumptions (such as periodicity) on the oscillatory coe�cient. The MsFEM approach

is built in order to address problems beyond this type of assumptions: no geometric

assumption is required on the coe�cient Aε to put the approach in practice.

Our aim in this article is twofold. First, we numerically compare the performance

of several MsFEM variants for elastic heterogeneous plates (some of these variants be-

ing inspired by the work [84] on homogeneous plates), for problems with oscillatory

coe�cients that are not necessarily periodic (see Section 3.4.1 for a description of our

test cases). Second, we establish bounds quantifying the error in terms of the coarse

mesh size H and the typical scale ε of the heterogeneities. This numerical analysis (as

any numerical analysis of MsFEM approaches known to date) is performed under the

assumption that heterogeneities are periodic. We cannot emphasize enough the fact

that the approach can in practice be applied to more general cases (as we do in Sec-

tion 3.4), and that its performances are robust. The numerical analysis is based on a

triangle inequality, where we bound the error by the sum of two terms, �rst the di�er-

ence between the exact solution and its two-scale expansion and second the di�erence

between the two-scale expansion and the numerical solution. Homogenization results

quantifying the �rst term are hence pivotal. In the case of elastic heterogeneous plates,

we have established such results in our companion work [AL1], and we are going to

use them in the numerical analysis presented here.

The article is organized as follows. In Section 3.2, we present the problem and

the main theoretical results that we need. We next present the MsFEM approach in

Section 3.3 and establish two error estimates, one for the so-called membrane case

(Theorem 3.11) and the other one for the so-called bending case (Theorem 3.12). The

proofs of these results are postponed until Appendix 3.A. Extensive numerical results

comparing the di�erent MsFEM variants are presented in Section 3.4.

3.2 Presentation of the problem and former results

Let ω ⊂ Rd−1
be a open, bounded and smooth domain. We set Ω := ω ×

(
−1

2
,
1

2

)
,

choose a small parameter ε > 0 and set Ωε := ω ×
(
−ε

2
,
ε

2

)
. The domain Ωε

is called

a “plate” because ε is small compared to the characteristic size of ω (see Figure 3.2). We

also denote by n (respectively nε) the outward normal unit vector to ∂Ω (respectively

∂Ωε
).

εΩε
ω

Figure 3.2: Domain Ωε
occupied by the plate

Let (ei)1≤i≤d be the canonical basis of Rd
. For any x = (xi)1≤i≤d ∈ Rd

, we

set x′ := (xi)1≤i≤d−1 ∈ Rd−1
. For any M = (Mij)1≤i,j≤d ∈ Rd×d

, we set M ′ :=
(Mij)1≤i,j≤d−1 ∈ R(d−1)×(d−1)

.
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The set of d × d symmetric matrices is denoted by Rd×d
s and c−, c+ > 0 are some

�xed positive constants. We denote byM the set of tensors M ∈ Rd×d×d×d
such that

∀ξ ∈ Rd×d
s , |Mξ| ≤ c+|ξ| and ξTMξ ≥ c−|ξ|2,

and which have the following symmetries:

∀1 ≤ i, j, k, l ≤ d, Mijkl = Mjikl = Mijlk = Mklij.

For A,B ∈ Rd×d
, we set A : B =

d∑
i,j=1

Aij Bij . In particular, we point out that, for any

1 ≤ i, j ≤ d and any A ∈ Rd×d
, A : (ei ⊗ ej) = eTi Aej .

We also de�ne the periodic cells in dimension d− 1 and d by

Y := (0, 1)d−1
and Y := Y ×

(
−1

2
,
1

2

)
.

For any f : Rd−1 ×
(
−1

2
,
1

2

)
→ Rp

, we denote by

m(f)(x′) :=

∫ +1/2

−1/2

f(x′, xd) dxd

the mean of f over its last variable. For any vector-valued function u, let e(u) denote

the symmetric gradient of u, namely e(u) :=
1

2

(
∇u+∇uT

)
.

Throughout the article, we use the Einstein summation convention. Latin letters

are used for indices running between 1 and d and greek letters for indices running

between 1 and d− 1.

3.2.1 De�nition of the plate problem

The original problem

Let Aε : ω ×
(
−1

2
,
1

2

)
→ M be a tensor-valued �eld such that, for any xd ∈(

−1

2
,
1

2

)
, the function x′ ∈ ω 7→ Aε(x′, xd) is thought to be heterogeneous and

have a characteristic scale of variation of the order of ε. For instance, one could think

(but the method carries over to more general cases) thatAε(x) = A

(
x′

ε
, xd

)
for some

�xed function A which is Zd−1
periodic with respect to its �rst argument. In addition,

we de�ne the tensor Aε on Ωε
by

∀x ∈ Ωε, Aε(x) := Aε
(
x′,

xd
ε

)
.

We introduce

V ε :=
{
v ∈

(
H1(Ωε)

)d
, v = 0 on ∂ω ×

(
−ε

2
,
ε

2

)}
.

A function in V ε
thus vanishes on the lateral boundary of Ωε

(see Figure 3.2).
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For any ε > 0, let f̃ ε ∈ (L2(Ωε))
d
, g̃ε ∈ (W 2,∞(Ω))

d
and h̃ε± ∈ (L2(ω))

d
. We

consider the following linear elasticity problem, posed on the plate Ωε
: �nd ũε ∈ V ε

such that − div(Aεe(ũε)) = f̃ ε + div(Aεe(g̃ε)) in Ωε,

Aεe(ũε) · nε = h̃ε± −Aεe(g̃ε) · nε on ω ×
{
±ε

2

}
.

(3.2)

In (3.2), f̃ ε is the load imposed in Ωε
. The function g̃ε is inserted as a possible extension

of a non-trivial Dirichlet boundary condition (so that ũε + g̃ε does not necessarily

vanish on ∂ω× (−ε/2, ε/2)). The function h̃ε± plays the role of a Neumann boundary

condition (i.e. a traction boundary condition for this elasticity problem) on the top and

bottom faces of the plate Ωε
.

The rescaled problem

To simplify the analysis, it is classical to change the scale of the problem in the d-

direction, in order to work with problems posed on a domain Ω independent of ε (see

Figure 3.3). We thus introduce

V :=

{
v ∈

(
H1(Ω)

)d
, v = 0 on ∂ω ×

(
−1

2
,
1

2

)}
. (3.3)

Ωε ε 1
Ω

Figure 3.3: Rescaling of the domain

For any u ∈
(
D′(Rd)

)d
and T ∈

(
D′(Rd)

)d×d
, we de�ne the operator eε by

eεαβ(u) := eαβ(u), eεαd(u) :=
1

ε
eαd(u) and eεdd(u) :=

1

ε2
edd(u),

and the operator divε by

divε(T )α := ∂βTαβ +
1

ε
∂dTαd and divε(T )d :=

1

ε
∂βTdβ +

1

ε2
∂dTdd,

for any 1 ≤ α, β ≤ d− 1.

It can then be easily checked that problem (3.2) is equivalent to �nding uε ∈ V
such that

− divε(Aεeε(uε)) = f ε + divε(Aεeε(gε)) in Ω,

Aεeε(uε) · n =

(
ε(hε±)′

ε2(hε±)d

)
− Aεeε(gε) · n on ω ×

{
±1

2

}
,

(3.4)

with, for any 1 ≤ α ≤ d− 1,

uεα(x) = ũεα(x′, ε xd), uεd(x) = ε ũεd(x
′, ε xd),

f εα(x) = f̃ εα(x′, ε xd), f εd(x) = ε−1 f̃ εd(x′, ε xd),

hεα(x′) = h̃εα(x′), hεd(x
′) = ε−1 h̃εd(x

′),

gεα(x) = g̃εα(x′, ε xd), gεd(x) = ε g̃εd(x
′, ε xd),
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where, in the third line, we have written h as a short-hand for h±. Note the rescaling

factor ε on the d-th components of the various vectors.

We assume that, after this rescaling, the functions f ε, hε± and gε are all independent

of ε. We thus have, for any ε > 0, that

f ε = f ∈
(
L2(Ω)

)d
, gε = g ∈

(
W 2,∞(Ω)

)d
, hε± = h± ∈

(
L2(ω)

)d
.

The variational formulation of (3.4) reads as

Find uε ∈ V such that, for any v ∈ V , aε(uε, v) = bε(v) (3.5)

where

aε(uε, v) :=

∫
Ω

Aεeε(uε) : eε(v)

and

bε(v) :=

∫
Ω

f · v −
∫

Ω

Aεeε(g) : eε(v) +

∫
Γ±
h± · v,

where Γ± = ω × {±1/2}. Using the Lax-Milgram theorem and the Korn inequality

(see e.g. [22]), we obtain that there exists a unique solution to (3.5).

Taking v = uε in (3.5), we get (we refer to [AL1, Section 3.1] for details) that

‖eε(uε)‖(L2(Ω))d×d ≤ C
(
‖f‖(L2(Ω))d + ‖eε(g)‖(L2(Ω))d×d + ‖h±‖(L2(ω))d

)
(3.6)

and hence

‖uε‖(H1(Ω))d ≤ C
(
‖f‖(L2(Ω))d + ‖eε(g)‖(L2(Ω))d×d + ‖h±‖(L2(ω))d

)
(3.7)

for some constantC independent of ε. Provided that the sequence

(
‖eε(g)‖(L2(Ω))d×d

)
ε>0

is bounded (in Section 3.2.2 below, we will make an assumption (3.8) on g that directly

implies this bound), we infer from (3.7) that, up to the extraction of a subsequence,

there exists u? ∈ (H1(Ω))
d

such that

uε ⇀
ε→0

u? weakly in

(
H1(Ω)

)d
.

The bound (3.6) is also useful in the sequel.

3.2.2 Decomposition of the problem

Kircho�-Love displacements

To describe u?, we de�ne the set of the Kircho�-Love displacements as follows:

VKL :=
{
v ∈

(
H1(Ω)

)d−1 ×H2
0 (ω), ∃v̂ ∈

(
H1

0 (ω)
)d−1 ×H2

0 (ω) s.t. vα = v̂α − xd∂αv̂d, vd = v̂d

}
,

where H2
0 (ω) is the closure of D(Ω) in H2(ω). For any v ∈ VKL, we now use the

notation v̂ to denote the corresponding element of (H1
0 (ω))

d−1 ×H2
0 (ω).

Let us also denote by

GKL :=
{
g ∈

(
H1(Ω)

)d−1 ×H2(ω), ∃ĝ ∈
(
H1(ω)

)d−1 ×H2(ω) s.t. gα = ĝα − xd∂αĝd, gd = ĝd

}
.
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For any g ∈ GKL, we denote by ĝ the corresponding element of (H1(ω))
d−1 ×H2(ω).

It holds thatVKL ⊂ GKL and that, for any g ∈ GKL, the sequence

(
‖eε(g)‖(L2(Ω))d×d

)
ε>0

is bounded. We assume throughout this article that the function g which appears in

the linear form bε of (3.5) belongs to GKL:

g ∈ GKL. (3.8)

We recall the following result from [18] (see also [AL1, Theorem 3.1]).

Proposition 3.1. Under the above assumptions, the homogenized limitu? of Problem (3.5)
belongs to VKL.

To better understand elements in VKL, we note that any v ∈ VKL is the sum of two

contributions, �rst the function

(x′, xd) 7→
(
v̂′(x′)

0

)
,

which is a lateral displacement independent of xd, and second the function

(x′, xd) 7→
(
−xd∇′v̂d(x′)

vd(x
′)

)
which is a vertical displacement coupled with a rotation of the normal vector toω×{0}.

Symmetries of the problem

In the above section, we have introduced the Kircho�-Love displacements, and ex-

plained how they could be “split” in two independent parts. We now explain that,

under some symmetry assumptions on the elasticity tensor, we can decompose the

problem into two simpler and independent problems.

Let us de�ne the spaces

E :=
{
v ∈ L2(Ω) s.t., for almost any x′ ∈ ω, the function xd 7→ v(x′, xd) is even

}
O :=

{
v ∈ L2(Ω) s.t., for almost any x′ ∈ ω, the function xd 7→ v(x′, xd) is odd

}
.

We suppose hereafter that the elasticity tensor Aε satis�es

Aεαβστ , A
ε
αβdd, A

ε
αdβd ∈ E ,

Aεαddd, A
ε
αβσd ∈ O.

(3.9)

This assumption is classical in the literature for plate problems (see e.g. [18, Section 7]).

It is for instance satis�ed by any material that is isotropic and admits xd = 0 as a plane

of symmetry.

In the sequel, we split the plate problem into two problems, the membrane problem

and the bending problem, using the fact that

(L2(Ω))d =
(
Ed−1 ×O

)
⊕
(
Od−1 × E

)
.

We write the same decomposition for the Kircho�-Love space:

VKL = VMKL ⊕ VBKL
where

VMKL := (H1
0 (ω))d−1 × {0} ⊂ Ed−1 ×O

and

VBKL :=
{
v ∈

(
H1(Ω)

)d−1 ×H2
0 (ω), ∃v̂d ∈ H2

0 (ω), vα = −xd∂αv̂d, vd = v̂d

}
⊂ Od−1×E .

The membrane and the bending problems are de�ned as follows.
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Proposition-De�nition 3.2. If f, g ∈ Ed−1 × O and h+
α = h−α , h

+
d = −h−d , then the

solution uε to (3.5) belongs to Ed−1×O, its homogenized limit u? belongs to VMKL and the
problem is said to be a membrane problem.

If f, g ∈ Od−1 × E and h+
α = −h−α , h+

d = h−d , then the solution uε to (3.5) belongs
to Od−1 × E , its homogenized limit u? belongs to VBKL and the problem is said to be a
bending problem.

The proof derives directly from a computation of (3.5) taking into account the sym-

metries and can be found e.g. in [AL1, Section 3.3.2].

Rescaled norm and Poincaré inequality

We started our analysis by rescaling the problem, going from an equation posed on

Ωε = ω ×
(
− ε

2
, ε

2

)
to an equation posed on Ω = ω ×

(
−1

2
, 1

2

)
. In the same spirit, we

replace theH1
norm by a norm that gives a di�erent ponderation to the d-th derivative

and d-th coordinate, and which is the natural energy norm for (3.5).

De�nition 3.3. For any function u ∈ (H1(Ω))d, let

‖u‖2
H1
ε (Ω)d := ‖u‖2

(L2(Ω))d + ‖eε(u)‖2
(L2(Ω))d×d .

The following Poincaré inequality is useful below, where we keep explicit the de-

pendence of the constant with respect to ω and ε (see [AL1, Lemma 3.5]).

Lemma 3.4. Let V be de�ned by (3.3). There exists some constant C > 0 independent of
ε and ω such that

∀u ∈ V, ‖u‖(L2(Ω))d ≤ C max
(

1, |ω|
1
d−1

)
max

(
|ω|

1
d−1 , ε2|ω|−

1
d−1

)
‖eε(u)‖(L2(Ω))d×d .

(3.10)

3.2.3 Former results

We now recall the homogenization theorems established in [18] and the strong con-

vergence results shown in [AL1] in the periodic case, that is when the elasticity tensor

Aε in (3.4) is given by

Aε(x) = A

(
x′

ε
, xd

)
(3.11)

for some �xed functionAwhich is Zd−1
periodic with respect to its �rst argument, i.e.

such that the function x′ ∈ Rd−1 7→ A(x′, xd) is Y -periodic for any xd ∈ (−1/2, 1/2).

De�nition of the correctors

We �rst de�ne two families of correctors functions, which all belong to the space

W(Y) :=

{
v ∈

(
H1

loc

(
Rd−1 ×

(
−1

2
,
1

2

)))d
,

∀z ∈
(
−1

2
,
1

2

)
, v(·, z) is Y -periodic and

∫
Y
v = 0

}
.

Lemma 3.5 (Membrane correctors). Let wαβM ∈ W(Y) be the solution to the problem

∀v ∈ W(Y),

∫
Y
A(e(wαβM) + eα ⊗ eβ) : e(v) = 0 (3.12)
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for any 1 ≤ α, β ≤ d−1. The function wαβM is equivalently the unique solution inW(Y)
to {

− divA(e(wαβM) + eα ⊗ eβ) = 0,

A(e(wαβM) + eα ⊗ eβ) · ed = 0 on Y±,

where Y± := Y ×
{
±1

2

}
. In addition, we have

wαβM ∈ E
d−1 ×O.

Lemma 3.6 (Bending correctors). Let wαβB ∈ W(Y) be the solution to the problem

∀v ∈ W(Y),

∫
Y
A(e(wαβB )− xdeα ⊗ eβ) : e(v) = 0 (3.13)

for any 1 ≤ α, β ≤ d−1. The function wαβB is equivalently the unique solution inW(Y)
to {

− divA(e(wαβB )− xdeα ⊗ eβ) = 0,

A(e(wαβB )− xdeα ⊗ eβ) · ed = 0 on Y±,

where again Y± := Y ×
{
±1

2

}
. In addition, we have

wαβB ∈ O
d−1 × E .

Homogenization theorems

We now recall the homogenized limit of (3.5), considering �rst the membrane case (for

which the homogenized problem is again a second order PDE) and second the bending

case (for which the homogenized problem turns out to be a fourth order PDE). We recall

from Proposition 3.1 that u? ∈ VKL. There thus exists some û? ∈ (H1
0 (ω))

d−1×H2
0 (ω)

such that u?α = û?α − xd∂αû?d and u?d = û?d.

Theorem 3.7 (Homogenized limit, the membrane case). Assume that we are in the
membrane case in the sense of De�nition 3.2. Under the above assumptions, the homog-
enized limit u? does not depend on xd, is such that u?d = 0 and u? = (û?, 0) where û? is
the unique solution in (H1

0 (ω))d−1 to

∀φ ∈ (H1
0 (ω))d−1,

∫
ω

A?M e′(û?) : e′(φ) =

∫
ω

(m(f ′) + h′±) · φ−
∫
ω

A?M e′(g) : e′(φ)

(3.14)

where
(A?M)αβστ :=

∫
Y
A(e(wαβM) + eα ⊗ eβ) : (e(wστM) + eσ ⊗ eτ ).

Theorem 3.8 (Homogenized limit, the bending case). Assume that we are in the bend-
ing case in the sense of De�nition 3.2. Under the above assumptions, we have u? =
(−xd∇′û?d, û?d) where û?d is the unique solution in H2

0 (ω) to

∀φ ∈ H2
0 (ω),

∫
ω

A?B∇2û?d : ∇2φ =

∫
ω

(m(fd)+h
±
d )φ−

∫
ω

m(xdf
′)·∇′φ−

∫
ω

A?B∇2gd : ∇2φ

(3.15)

where

(A?B)αβστ :=

∫
Y
A(e(wαβB )− yd eα ⊗ eβ) : (e(wστB )− yd eσ ⊗ eτ ).
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Strong convergence theorem

To perform the numerical analysis of the MsFEM approach we introduce below, we

need a stronger result, namely an estimate in the H1
norm of the di�erence between

uε and its corresponding two-scale expansion. This strong convergence result is stated

in the following theorem for the membrane case (see [AL1, Theorem 3.10]).

Theorem 3.9 (Strong convergence result, the membrane case). Assume that we are in
the membrane case. Let

uε,1σ := û?σ + ε eσ · wαβM
( ·
ε
, ·
)
eαβ(û? + g),

uε,1d := ε2 ed · wαβM
( ·
ε
, ·
)
eαβ(û? + g).

Assume that u? ∈ (W 2,∞(ω))d and that wαβM ∈
[
W 1,∞ (Rd−1 ×

(
−1

2
, 1

2

))]d for any
1 ≤ α ≤ d− 1. Then

‖uε − uε,1‖H1
ε (Ω)d ≤ C

(
1 + max

(
1, |ω|

1
d−1

)
max

(
|ω|

1
d−1 , ε2|ω|−

1
d−1

))
×
(√

ε|ω|
d−2
2d−2‖e(u? + g)‖L∞(ω) + ε|ω|

1
2‖∇2(u? + g)‖L∞(ω) + ε

(
‖h±‖L2(ω) + ‖f‖L2(Ω)

))
for some C > 0 independent of ε and ω.

In the bending case, the situation is slightly more delicate. We introduce

σε := Aεeε(uε + g). (3.16)

Using assumption (3.8) (which implies that eε(g) = e(g)), we infer from (3.6) that

σε is bounded in (L2(Ω))d×d. We next introduce the matrix Σε
de�ned by, for any

1 ≤ α, β ≤ d− 1,

Σε
αβ := σεαβ, Σε

αd :=
1

ε
σεαd and Σε

dd :=
1

ε2
σεdd. (3.17)

It can be shown (see [AL1, Lemma 3.11]) that Σε
αβ , Σε

αd and Σε
dd are bounded in (re-

spectively) L2(Ω), L2
((
−1

2
, 1

2

)
, H−1(ω)

)
and L2

((
−1

2
, 1

2

)
, H−2(ω)

)
, and therefore

weakly converge (up to a subsequence extraction) to some Σ?
αβ , Σ?

αd and Σ?
dd. In the se-

quel, we make the following assumption, which is comprehensively discussed in [AL1]:

(CB)

For all 1 ≤ α, β ≤ d− 1,

Σ?
αβ = (eα ⊗ eβ) :

[∫
Y

A
(
e(wγδB )− xdeγ ⊗ eδ

)]
∂γδ(u

?
d + gd).

(3.18)

This assumption in particular implies that the whole d × d matrix Σ?
belongs to

(L2(Ω))d×d. We are now in position to state a strong convergence result in the bending

case (see [AL1, Theorem 3.14]).

Theorem 3.10 (Strong convergence result, the bending case). Assume that we are in
the bending case. Let

uε,1σ := −xd∂σu?d + ε eσ · wαβB
( ·
ε
, ·
)
∂αβ(u?d + gd),

uε,1d := u?d + ε2 ed · wαβB
( ·
ε
, ·
)
∂αβ(u?d + gd).
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Assume that u?d, gd ∈ W 3,∞(ω) and that wαβB ∈
[
W 1,∞ (Rd−1 ×

(
−1

2
, 1

2

))]d for any
1 ≤ α ≤ d − 1. We also assume that A, f , g and h± are su�ciently regular, and that
Assumption (CB) holds. Then

∥∥uε − uε,1∥∥
H1
ε (Ω)d

≤ C max
(

1, |ω|
1
d−1

)
max

(
|ω|

1
d−1 , ε2|ω|−

1
d−1

)
×
(√

ε|ω|
d−2

2(d−1)
∥∥∇2(u?d + gd)

∥∥
L∞(ω)

+ ε|ω|1/2
∥∥∇3(u?d + gd)

∥∥
L∞(ω)

+ ε‖Σ?‖L2(Ω)

)
for some C > 0 independent of ε and ω.

3.3 De�nition and numerical analysis of the MsFEM

The MsFEM approach has been introduced by Hou and Wu in [55] as a discretization

method for oscillatory elliptic PDEs. Instead of using for example a FEM discretization

approach with generic (say P1
) basis functions (see Figure 3.4), the idea of MsFEM is to

introduce oscillatory basis functions which are well adapted to the problem of interest

(see Figure 3.5).

The oscillating functions are solutions to local PDEs posed on the elements of the

coarse mesh. They are precomputed during an o�ine phase (by using in practice a

�ne mesh of each coarse element). These basis functions only depend on the elasticity

tensor Aε, and not on the right-hand side f or the boundary conditions imposed on

the problem of interest. During the online phase, a Galerkin approximation of the

global problem is introduced, where the discretization space is the one spanned by the

precomputed oscillating basis functions. Whenever the functions f , g and h± change,

the o�ine phase does not have to be repeated, hence a computational gain in a multi-

query context.

Figure 3.4: A P1
element in 1D

Figure 3.5: An oscillating basis function

in 1D

3.3.1 De�nition of the method

Let us assume that ω is a polyhedral, connected and bounded open subset of Rd−1
and

let T Hω be a conforming discretization of ω. Let us now de�ne

T HΩ =

{
τ ×

(
−1

2
,
1

2

)
, τ ∈ T Hω

}
.
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Figure 3.6: Coarse mesh T HΩ of Ω obtained by extrusion of a coarse mesh T Hω of ω.

Then, T HΩ obviously de�nes a conforming discretization of Ω (see Figure 3.6).

To de�ne the multiscale basis functions, we consider either the membrane or the

bending case:

• in the membrane case, letVMH be the space of functions which belong to (H1
0 (ω))d−1

and which are piecewise a�ne on each element of T Hω . We denote (φi)i the

canonical basis of VMH . For any φi, let ψi :=

(
φi
0

)
. We observe that ψi ∈ VMKL.

• in the bending case, let V BH be the space of functions which belong toH2
0 (ω) and

which are piecewise cubic on each element of T Hω . We denote (φi)i the canonical

basis of V BH . For any φi, let ψi :=

(
−xd∇′φi

φi

)
. We observe that ψi ∈ VBKL.

On any element T = τ×
(
−1

2
,
1

2

)
of the coarse mesh T HΩ of Ω, we de�ne the oscil-

latory basis function ψεi associated to the single-scale basis function ψi as the solution

to the following problem:

− divεAεeε(ψεi ) = 0 in T,

ψεi = ψi on ∂τ ×
(
−1

2
,
1

2

)
,

Aεeε(ψεi ) · ed = 0 on τ ×
{
±1

2

}
.

(3.19)

We then introduce the MsFEM discretization space as V ε
H := Span{ψεi } and let uεH

be the Galerkin’s approximation of uε in V ε
H . It is the unique solution in V ε

H to the

following variational formulation, which is the Galerkin approximation of (3.5):

Find uεH ∈ V ε
H such that, for any v ∈ V ε

H , aε(uεH , v) = bε(v).

3.3.2 Error estimates

As pointed out above, the MsFEM approach can be put in action for a large variety of

heterogeneous materials. Its numerical analysis is however, to date, restricted to the

periodic case (3.11). We have the following error estimate:
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Theorem 3.11 (Membrane case). Assume that we are in the membrane case. Under the
assumptions of Theorem 3.9, we have

‖uε − uεH‖H1
ε (Ω) ≤ C

(
H +

√
ε+

√
ε

H

)
‖u?‖H2(ω)

where C is a constant independent of ε and H .

Theorem 3.12 (Bending case). Assume that we are in the bending case. Under the as-
sumptions of Theorem 3.10 and the additional assumption that u?d ∈ H4(ω), we have

‖uε − uεH‖H1
ε (Ω) ≤ C

(
H2 +

√
ε+

√
ε

H

)
‖u?d‖H4(ω)

where C is a constant independent of ε and H .

The proofs of Theorems 3.11 and 3.12 are based on Theorems 3.9 and 3.10. They

are postponed until Appendix 3.A.

3.4 Numerical results

The numerical tests of the MsFEM has two goals. First, we wish to check that our

MsFEM approach provides accurate results. Second, we wish to check if the assump-

tions on the regularity ofAε can be relaxed. Indeed, real materials are not smooth, and

we would like our method to be able to tackle them. The numerical tests reported on

below have been performed using FreeFEM++ [49].

3.4.1 Presentation of the test case

The numerical tests have been performed in dimension d = 2, with ω = (0, 1) and

Ω = (0, 1)×
(
−1

2
, 1

2

)
. The periodic cells are thus Y := (0, 1) and Y = (0, 1)×

(
−1

2
, 1

2

)
.

We consider four periodic isotropic elasticity tensors and two non periodic ones. For

0 ≤ q ≤ 3, we de�ne Aper,q on Y by: for any y in Y ,

Aper,q(y) := Eper,q(y)

(
ν

(1 + ν)(1− 2ν)
δijδkl +

1

2(1 + ν)
(δikδjl + δilδjk)

)
ei⊗ej⊗ek⊗el.

Each of these four elasticity tensors has a constant Poisson coe�cient ν = 0.3 (which

is e.g. close to the value of the Poisson coe�cient of stainless steel). The di�erent

tensors are then characterized by their Young modulus. The four cases are

• a homogeneous tensor with Eper,0(y) := 1;

• a smooth periodic tensor with Eper,1(y) := 4.5 cos(2πy1) + 5.5 (see Figure 3.7);

note that this is a lamellar case;

• a discontinuous periodic tensor with Eper,2(y) := 101Y1(y1) + 1Y2(y1) where

Y1 :=
[
0, 1

4

]
∪
[

3
4
, 1
]

and Y2 :=
[

1
4
, 3

4

]
(see Figure 3.8); note that this is again a

lamellar case;

• a second discontinuous and periodic tensor given by Eper,3(y) := 101Y1(y) +
1Y2(y) where Y2 :=

[
1
4
, 3

4

]
×
[

1
4
, 3

4

]
and Y1 := Y \Y2 (see Figure 3.9); in contrast

to Eper,2, this case is not a lamellar case.
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Figure 3.7: Plot of y 7→ Eper,1(y)

Figure 3.8: Plot of y 7→ Eper,2(y)

Figure 3.9: Plot of y 7→ Eper,3(y)



3.4. Numerical results 101

In addition, we consider two non periodic tensors which are given by

Aq(y) := Eq(y)

(
ν

(1 + ν)(1− 2ν)
δijδkl +

1

2(1 + ν)
(δikδjl + δilδjk)

)
ei⊗ ej ⊗ ek ⊗ el

with two possible choices for the Young modulus, namelyE2 andE3. The non periodic

case E2 (resp. E3) is obtained as a modi�cation of the discontinuous and periodic case

Eper,2 (resp. Eper,3). In each periodic cell of the material, we draw a random number

θ ∼ U ([−0.2, 0.2]) (independently from one cell to another) and de�ne Ei in that cell

as Ei(y) = Eper,i(y1 − θ, y2).

The elasticity tensor Aε of (3.4) is then given by Aε(x) = A(x′/ε, xd), where A is

either of the six above choices.

The elasticity tensors Aper,0 and Aper,1 satisfy the assumptions of Theorems 3.9

and 3.10. The other tensors do not. We show below that, in the latter case, our MsFEM

approach provides qualitative results similar to those of the former case, although of

lower accuracy.

We choose two simple loads for the tests:

• f0 : x 7→ e1 ∈ E × O for the membrane case;

• f1 : x 7→ e2 ∈ O × E for the bending case.

3.4.2 Meshes and alternative MsFEM variants

The coarse mesh has been described in Section 3.3.1. In 2D, the coarse mesh is simple.

We choose some H > 0, and

T HΩ :=

{
Ti := τi ×

(
−1

2
,
1

2

)
, τi := (iH, (i+ 1)H)

}
.

Every element of the coarse mesh is next meshed with a �ne triangular mesh of typical

size h� H .

In order to get some intuition on the MsFEM approach introduced in Section 3.3.1,

we momentarily consider the following test case. The plate is assumed to be of thick-

ness ε = 1, to occupy the domain Ω = Ωε = ω ×
(
−1

2
, 1

2

)
with ω = (0, 10), to be

modelled by the homogeneous elasticity tensor Aper,0 and to be submitted to the load

f0 (thus corresponding to a membrane test case). We mesh ω = (0, 10) by 11 coarse

elements of identical size, which yields the mesh T HΩ of Ω. An appropriate �ne mesh

of each coarse element is introduced.

On Figure 3.10 (resp. Figure 3.11), we plot the reference solution (resp. the MsFEM

solution) for that problem, in the sense that we represent the action of Ω 3 x 7→

x +

(
uε1

5× uε2

)
(x) on the mesh to highlight qualitatively the di�erences between the

two solutions. Signi�cant qualitative errors can be observed, which are due to the fact

that, in the membrane case, the exact displacement in the d-direction is small (of the

order of ε2
in the L2(Ω) norm, see Theorem 3.9) but does not vanish. In contrast, in

the numerical solution, it identically vanishes on the edges of each coarse element.

Such a mismatch thus introduces numerical errors close to the boundaries of each

coarse element. In order to address this problem, we consider two alternative MsFEM

variants, an enriched variant and a non-conform variant.
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Figure 3.10: Reference solution.

Figure 3.11: Numerical solution with the MsFEM approach of Section 3.3.1.

Enriched MsFEM variant

The �rst idea is to keep the MsFEM basis functions de�ned by (3.19) and to enrich the

discretization space with new basis functions. This strategy is inspired by [84], where

the authors approximate the coordinates of the displacement vector (for an elasticity

problem posed in an isotropic and homogeneous plate) by functions of the formw(x) =
N∑
i=0

(xd)
iwi(x′), where the functions wi are independent of xd and chosen in relevant

functional spaces. The article [84] states that, if one wants the approximation to be

consistent (in a sense de�ned in the article), then the degree of the polynomial function

in xd has to be N = 1 for the d − 1 �rst coordinates of the displacement vector and

N = 2 for the d-th coordinate. Due to the symmetries of the membrane case, this

implies that the d− 1 �rst coordinates of the displacement should be approximated by

functions independent of xd, while the d-th coordinate should be approximated by a

function which is linear in xd.
The motivation of the MsFEM approach is of course to address heterogeneous

problem, but we want the method to also be adequate for homogeneous cases. In

the isotropic and homogeneous case, the solution to (3.19) is not independent of xd
because of the Neumann conditions on τ ×

{
±1

2

}
. However, if we only look close

enough to the boundary of each element, the function appears to be almost indepen-

dent of xd because of the Dirichlet conditions on ∂τ ×
(
−1

2
, 1

2

)
. This motivates us to

add basis functions (in the MsFEM discretization space) whose d-th coordinate is linear

with respect to xd close to the boundary of the coarse elements.

For the same reason, in the bending case, we should add functions whose d-th

coordinate is quadratic in xd close to the boundary.

We thus introduce a so-called enriched MsFEM variant, where the discretization

space is spanned by basis functions de�ned by (3.19) and by the additional basis func-

tions {ψεi }i we de�ne now as follows, in the two-dimensional case.

Additional basis function (EnrichedMsFEM,membrane case): The functionψεi
is supported in Ti ∪ Ti+1, where we recall that Tj = τj ×

(
−1

2
, 1

2

)
and τj = (jH, (j +
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1)H) for any j. It satis�es the following local problems:



− divεAεeε(ψεi ) = 0 in Ti,

ψεi (iH, x2) = 0,

ψεi ((i+ 1)H, x2) = x2 e2,

Aεeε(ψεi ) · e2 = 0 on τi ×
{
±1

2

} and



− divεAεeε(ψεi ) = 0 in Ti+1,

ψεi ((i+ 1)H, x2) = x2 e2,

ψεi ((i+ 2)H, x2) = 0,

Aεeε(ψεi ) · e2 = 0 on τi+1 ×
{
±1

2

}
.

(3.20)

Additional basis function (Enriched MsFEM, bending case)

− divεAεeε(ψεi ) = 0 in Ti,

ψεi (iH, x2) = 0,

ψεi ((i+ 1)H, x2) = x2
2 e2,

Aεeε(ψεi ) · e2 = 0 on τi ×
{
±1

2

} and



− divεAεeε(ψεi ) = 0 in Ti+1,

ψεi ((i+ 1)H, x2) = x2
2 e2,

ψεi ((i+ 2)H, x2) = 0,

Aεeε(ψεi ) · e2 = 0 on τi+1 ×
{
±1

2

}
.

(3.21)

The numerical analysis we made for the MsFEM method introduced in Section 3.3.1

uses the fact that the boundary conditions imposed in (3.19) are Kircho�-Love dis-

placements. We are thus in position to use Theorems 3.9 and 3.10, where we recall

that the function g (which stands for possible non-homogeneous Dirichlet boundary

conditions) belongs to GKL (see assumption (3.8)). The situation is di�erent for the ad-

ditional basis functions de�ned by (3.20) and (3.21). In particular, there is no function

in VKL whose d-th coordinate has a trace on ∂τ ×
(
−1

2
, 1

2

)
which is a linear function

of xd. We thus cannot use Theorems 3.9 and 3.10 to identify the homogenized limit

of (3.20) and (3.21). The numerical analysis of this enriched MsFEM variant is thus

challenging. At least, since we are enlarging the discretization space (in comparison

to that of the MsFEM method introduced in Section 3.3.1) and since the approxima-

tion remains conform, the estimates of Theorems 3.11 and 3.12 are still valid, although

maybe not sharp.

To get some intuition on that enriched MsFEM variant, we again perform the test

(for a homogeneous plate) described at the beginning of Section 3.4.2. The result for

the enriched MsFEM variant is shown on Figure 3.12 (we recall that the reference so-

lution is shown on Figure 3.10 and that the numerical solution obtained by the MsFEM

approach is shown on Figure 3.11). We observe that adding those basis functions al-

lows (at least in the membrane considered here) to signi�cantly reduce the error at the

boundaries of the coarse elements (compare e.g. Figures 3.12 and 3.11).

Figure 3.12: Numerical solution with the enriched MsFEM approach of Section 3.4.2.
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Non-conform MsFEM variant

The second idea is to change the de�nition of the MsFEM basis functions, and hence to

not consider at all the functions de�ned by (3.19). The boundary errors arise because

of the homogeneous Dirichlet boundary condition on the d-th component of ψεi . It

is therefore natural to consider a problem similar to (3.19), but where the boundary

condition is somewhat relaxed. More precisely, the d-th component of ψεi remains free

on ∂τ ×
(
−1

2
, 1

2

)
, and the Dirichlet boundary condition is repllaced by a homogeneous

Neumann boundary condition. The resulting basis functions do not belong to H1(Ω),

hence yielding a non conforming approach that we call the non-conformMsFEM variant

in the sequel.

In dimension d = 2, and for the membrane case, the basis functions ψεi are sup-

ported in Ti ∪ Ti+1, and are solutions to the following local problem on Ti:

− divεAεeε(ψεi ) = 0 in Ti,

ψεi · e1 = φi · e1 on ∂τi ×
(
−1

2
,
1

2

)
,

Aεeε(ψεi ) : (e2 ⊗ e2) = 0 on ∂τi ×
(
−1

2
,
1

2

)
,

Aεeε(ψεi ) · e2 = 0 on τi ×
{
±1

2

}
(3.22)

and, on Ti+1, 

− divεAεeε(ψεi ) = 0 in Ti+1,

ψεi · e1 = φi · e1 on ∂τi+1 ×
(
−1

2
,
1

2

)
,

Aεeε(ψεi ) : (e2 ⊗ e2) = 0 on ∂τi+1 ×
(
−1

2
,
1

2

)
,

Aεeε(ψεi ) · e2 = 0 on τi+1 ×
{
±1

2

}
.

(3.23)

Recall that the functions φi form a basis for the space VMH of functions which belong

to (H1
0 (ω))d−1

and which are piecewise a�ne on each element of T Hω .

We have not found a meaningful equivalent of these basis functions for the bending

case.

We again perform the test (for a homogeneous plate) described at the beginning of

Section 3.4.2. The result for the non-conform MsFEM variant is shown on Figure 3.13

(we recall that the reference solution is shown on Figure 3.10, that the numerical solu-

tion obtained by the MsFEM approach is shown on Figure 3.11 and that the numerical

solution obtained by the enriched MsFEM approach is shown on Figure 3.12). We ob-

serve that this non-conform variant yields a numerical solution with small errors at

the boundaries of the coarse elements.

3.4.3 Numerical results

There are three regimes for MsFEM approaches, depending on the relative values of ε
and H . When H � ε, we can recast Theorem 3.11 for the membrane case as

‖uε − uεH‖H1
ε (Ω) ≤ CH‖u?1‖H2(ω)
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Figure 3.13: Numerical solution with the non-conform MsFEM approach of Sec-

tion 3.4.2.

and Theorem 3.12 for the bending case as

‖uε − uεH‖H1
ε (Ω) ≤ CH2‖u?2‖H4(ω).

When H ≈ ε, MsFEM approaches often show a plateau in the convergence plot. The

last regime is when H � ε, a regime we do not consider since it leads in practice to

prohibitively expensive computations.

Convergence of the error when H varies

We begin our numerical investigations by �xing the value of ε and varying the coarse

mesh size H . The values of H we consider range from values much larger than ε to

values slightly smaller than ε. We successively discuss the behavior of the error for

the various elastic materials described in Section 3.4.1.

Homogeneous and smooth periodic cases. Figures 3.14 and 3.15 show the H1
ε

relative error in the homogeneous case and in the smooth periodic case. Those are the

cases where the hypothesis of Theorems 3.11 and 3.12 are met.

In the regime H � ε, we observe for the MsFEM approach that the error varies

with respect to H as predicted by our theoretical estimate, i.e. essentially in a linear

manner. This is also the case for the two variants we have next introduced, which give

results very close to the MsFEM. We also note that the threshold value of H (below

which the behavior changes) is larger in the bending case than in the membrane case.

When H is close to ε, the error of the MsFEM method does not decrease anymore

when H decreases. A plateau seems to be reached. The enriched variant performs

much better than the original approach. In the membrane case, it yields an error

which remains linear in terms of H , even in the regime H ≈ ε. This could mean

that the boundary error identi�ed on Figure 3.11 has been successfully corrected. In

the bending case, the behavior of the enriched MsFEM (although better than the Ms-

FEM approach) is not as good as in the membrane case. It is unclear to us whether

there could be other simple ways to enrich the MsFEM in the bending case in order

to remove the plateau. Except for the very speci�c case of a homogeneous plate, the

non-conform MsFEM method performs similarly to the MsFEM.

Discontinuous periodic cases andnonperiodic cases. Figures 3.16 and 3.17 show

theH1
ε relative error in the periodic discontinuous cases, and in the non periodic cases.

Those cases do not meet the hypothesis of Theorems 3.11 and 3.12, but they may be

more realistic from an engineering point of view. The behavior of MsFEM and its vari-

ants is essentially the same in these cases as in the previous cases. In particular, in

the membrane case, the enriched variant outperforms the two other approaches. In

the bending case, this is not the case, and the enriched variant performances are very

close to those of MsFEM.
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Figure 3.14: H1
ε relative error in log-log scale, for ε = 1/40, h = 1/768, f = f0

(membrane case), Aε = Aper,0(·/ε, ·) (left) and Aε = Aper,1(·/ε, ·) (right)

Figure 3.15: H1
ε relative error in log-log scale, for ε = 1/40, h = 1/768, f = f1

(bending case), Aε = Aper,0(·/ε, ·) (left) and Aε = Aper,1(·/ε, ·) (right)

Figure 3.16: H1
ε relative error in log-log scale, for ε = 1/40, h = 1/768, f = f0

(membrane case), Aε = Aper,2(·/ε, ·) (left) and Aε = A2(·/ε, ·) (right)
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Figure 3.17: H1
ε relative error in log-log scale, for ε = 1/40, h = 1/768, f = f1

(bending case), Aε = Aper,3(·/ε, ·) (left) and Aε = A3(·/ε, ·) (right)

Robustness of the error when ε varies

In this section, we �x the coarse mesh size, and we investigate the behavior of the ap-

proaches when ε varies. Results are shown on Figures 3.18, 3.19, 3.20 and 3.21. Our �rst

observation is that the error does not blow up when ε goes to 0 (in sharp contrast with

what would happen for a standard Finite Element approach). Our second observation

is that the enriched variant performances are always similar (if not better) than those

of the two other variants. These superior performances are observed irrespectively

of the material (should it be periodic or not, smooth or not) and of the loading type

(membrane or bending).

Figure 3.18: H1
ε relative error in log scale, forH = 1/32, h = 1/768, f = f0 (membrane

case), Aε = Aper,0(·/ε, ·) (left) and Aε = Aper,1(·/ε, ·) (right)

3.5 Conclusion

In this article, we have introduced several MsFEM approaches to approximate the so-

lution of elasticity problems posed on thin plates. We have also established error esti-

mates for one of these approaches. The performances of these approaches have been

investigated on several two-dimensional test cases. We have observed that, in the prac-

tically relevant regime when ε � 1 and ε < H , the rate of convergence of the error

estimate is sharp. The enriched variant, motivated by heuristic observations of some

shortcomings for the original MsFEM approach, appears to be a competitive method,

which performs very well in the bending case, and extremely well in the membrane

case. The performances of all the approaches seem to be very robust with respect to
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Figure 3.19: H1
ε relative error in log scale, for H = 1/32, h = 1/768, f = f1 (bending

case), Aε = Aper,0(·/ε, ·) (left) and Aε = Aper,1(·/ε, ·) (right)

Figure 3.20: H1
ε relative error in log scale, forH = 1/32, h = 1/768, f = f0 (membrane

case), Aε = Aper,2(·/ε, ·) (left) and Aε = A2(·/ε, ·) (right)

Figure 3.21: H1
ε relative error in log scale, forH = 1/32, h = 1/768, f = f0 (membrane

case), Aε = Aper,3(·/ε, ·) (left) and Aε = A3(·/ε, ·) (right)
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the possible lack of periodicity of the microstructure, and possible discontinuities in

the coe�cients.

3.A Proof of the error estimates

We collect here the proofs of Theorems 3.11 and 3.12.

3.A.1 Membrane case

Before giving the proof of Theorem 3.11, we prove the following lemma.

Lemma 3.13. Let ψεi be de�ned by (3.19). Then, for any T ∈ T HΩ , we have ψεi ⇀
ε→0

ψi in

H1(T ).

Proof. Using Theorem 3.7, we know that ψεi ⇀
ε→0

ψ?i in H1(T ) where ψ?i is the solution

to {
− divA?Me(ψ

?
i ) = 0 in τ,

ψ?i = ψi on ∂τ.

The problem is well posed and has a unique solution which is ψi.

Proof of Theorem 3.11. The proof falls in three steps.

Step 1. Let H := |τ |
1
d−1 . We have assumed that u? ∈ W 2,∞(ω). It is thus possible to

approximate u? using elements of P1(ω) (see e.g. [89]):

∃(αi)i<N , ‖u? − αiψi‖H1(ω) ≤ CH‖u?‖H2(ω)

where C is independent of ε and H . The functions u? and ψi are in VKL, thus it is

equivalent to write

‖u? − αiψi‖H1
ε (Ω) ≤ CH‖u?‖H2(ω). (3.24)

Let (ψεi )i be the set of functions de�ned by (3.19). Because of Lemma 3.13 and Theo-

rem 3.10 we know that

ψεi = ψi + εwαβ

( ·
ε
, ·
)
eαβ(ψi) + θεi ,

and thus 
ψεi · eσ = ψi · eσ + εwαβ

( ·
ε
, ·
)
· eσ eαβ(ψi) + θεi · eσ,

ψεi · ed = ε2wαβ

( ·
ε
, ·
)
· ed eαβ(ψi) + θεi · ed,

with

‖θi‖H1
ε (T ) ≤ C

√
εH

d−2
2 ‖e(ψi)‖L2(τ) + CεH

d−1
2 ‖∇2ψi‖L2(τ).

In the sequel we assume that

√
Hε� 1, thus

‖θi‖H1
ε (T ) ≤ C

√
εH

d−2
2 ‖e(ψi)‖L2(T ).

Let uεH be the Galerkin approximation of uε in V ε
H . Let vε := αiψ

ε
i . By de�nition,

vε ∈ V ε
H . Then, using Céa’s lemma, we have

‖uε − uεH‖H1
ε (Ω) ≤ C‖uε − vε‖H1

ε (Ω)

≤ C‖uε − uε,1‖H1
ε (Ω) + C‖uε,1 − vε‖H1

ε (Ω). (3.25)
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The �rst term is bounded with Theorem 3.10:

‖uε − uε,1‖H1
ε (Ω) ≤ C

√
ε‖∇u?‖L2(ω). (3.26)

Step 2. We now bound the second term of (3.25). Let Θε := αiθ
ε
i . By de�nition of uε,1

and vε,

uε,1 − vε = u? − αiψi + εwαβ

( ·
ε
, ·
)

(eαβ(u?)− αieαβ(ψi))−Θε

and

eε(uε,1 − vε) =
(
eα ⊗ eβ + e(wαβ)

( ·
ε
, ·
))

(eαβ(u?)− αieαβ(ψi))

+ εwαβ

( ·
ε
, ·
)
e(eαβ(u?)− αieαβ(ψi))− eε(Θε).

The functions (ψεi )i are de�ned as solutions to a PDE posed on each element of the

mesh. We will then use the results of the asymptotic analysis on each element:

‖eε(uε,1 − vε)‖2
L2(Ω) =

∑
T∈T HΩ

‖eε(uε,1 − vε)‖2
L2(T ). (3.27)

First, we split this term in three parts that we will tackle separately:

‖eε(uε,1 − vε)‖L2(T ) ≤
∥∥∥(eα ⊗ eβ + e(wαβ)

( ·
ε
, ·
))

(eαβ(u?)− αieαβ(ψi))
∥∥∥
L2(T )

+ ε
∥∥∥wαβ ( ·

ε
, ·
)
e(eαβ(u?)− αieαβ(ψi))

∥∥∥
L2(T )

+ ‖eε(Θε)‖L2(T ). (3.28)

The �rst term of (3.28) is bounded because of (3.24) and of the regularity of the correc-

tors, which are supposed to be in W 1,∞ (Rd−1 ×
(
−1

2
, 1

2

))
:∥∥∥(eα ⊗ eβ + e(wαβ)

( ·
ε
, ·
))

(eαβ(u?)− αieαβ(ψi))
∥∥∥2

L2(T )
≤ C ‖e′(u?)− αie′(ψi)‖2

L2(T )

≤ CH2‖u?‖H2(T ). (3.29)

We also use the regularity of the correctors to bound the second term of (3.28):

ε2
∥∥∥wαβ ( ·

ε
, ·
)
e(eαβ(u?)− αieαβ(ψi))

∥∥∥2

L2(T )
≤ Cε2‖∇2u? − αi∇2ψi‖2

L2(T )

= Cε2‖∇2u?‖2
L2(T ), (3.30)

where the last equality comes from the fact that the ψi are a�ne.

We have to be careful with the remaining term. Indeed it is possible to bound

separately the θεi , but αi are dependent of H . We note that on each T , vε is solution to

− divεAεeε(vε) = 0 in T,

vε = αiψi on ∂τ ×
(
−1

2
,
1

2

)
,

Aεeε(vε) · ed = 0 on τ ×
{
±1

2

}
.

Because of Theorem 3.10, we know that

‖Θε‖H1
ε (T ) =

∥∥∥∥vε − αiψi − ε( w′αβ
εwαβ · ed

)( ·
ε
, ·
)
eαβ(αiψi)

∥∥∥∥
H1
ε (T )

≤ C
√
ε|T |

d−2
2d−2‖αie(ψi)‖W 1,∞(τ).
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The ψi are a�ne functions, therefore ‖αie(ψi)‖W 1,∞(τ) = 1

|τ |
1
2
‖αie(ψi)‖L2(τ). Then

‖Θε‖H1
ε (T ) ≤ C

√
ε|τ |−

1
2d−2‖αie(ψi)‖L2(τ).

Yet |τ | = Hd−1
then |τ |−

1
2d−2 = 1√

H
, thus

‖Θε‖H1
ε (T ) ≤ C

√
ε

H
‖αie(ψi)‖L2(τ).

We use (3.24) to recast this term as

‖αie(ψi)‖L2(τ) ≤ ‖αie′(ψi)− e′(u?)‖L2(τ) + ‖e′(u?)‖L2(τ)

≤ CH + ‖u?‖H1(τ)

≤ ‖u?‖H1(τ) for H small enough,

and thus

‖Θε‖H1(T ) ≤ C

√
ε

H
‖u?‖H1(τ). (3.31)

Collecting (3.27), (3.26), (3.28), (3.29), (3.30) and (3.31),

‖eε(uε,1 − vε)‖2
L2(Ω) ≤ C

(
H2 + ε2 +

ε

H

) ∑
τ∈T Hω

‖u?‖2
H2(τ)

≤ C
(
H2 + ε2 +

ε

H

)
‖u?‖2

H2(ω)

because we supposed that u? ∈ W 2,∞(ω) ⊂ H2(ω). We use the Poincaré inequality of

Lemma 3.4 to write

‖uε,1 − vε‖H1
ε (Ω) ≤ C

(
H + ε+

√
ε

H

)
‖u?‖H2(ω). (3.32)

Step 3. Using (3.25), (3.32) and Theorem 3.9, we have shown that

‖uε,1 − uεH‖H1
ε (Ω) ≤ C

(
H +

√
ε+

√
ε

H

)
‖u?‖H2(ω).

This concludes the proof of Theorem 3.11.

3.A.2 Bending case

Before giving the proof of Theorem 3.12, we prove the following lemma.

Lemma 3.14. For any T ∈ T HΩ , we have ψεi ⇀
ε→0

ψi in H1(T ).

Proof. Using Theorem 3.8, we know that ψεi ⇀
ε→0

ψ?i inH1(T ), where ψ?i is the solution

to 
∇2A?B∇2(ψ?i )d = 0 in τ,

(ψ?i )d = (ψi)d on ∂τ,

∇(ψ?i )d = ∇(ψi)d on ∂τ.

The problem is well posed and has a unique solution which is (ψi)d.
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Proof of Theorem 3.12. The proof falls in three steps.

Step 1. Let H := |τ |
1
d−1 . We have assumed that u?d ∈ W 3,∞(ω). It is thus possible to

approximate u?d using elements of P3(ω) (see e.g. [89]):

∃(αi)i<N , ‖u?d − αi(ψi)d‖H2(ω) ≤ CH2‖u?‖H4(ω),

whereC is independent of ε andH . The functions u? and ψi are in VBKL, thus it implies

that

‖eε(u? − αiφi)‖L2(ω) =
1

12
‖∇2(u?d − αi(φi)d)‖2

L2(ω) ≤ CH2‖u?‖H4(ω)

and that

‖u? − αiφi‖H1
ε (Ω) ≤ CH2‖u?‖H4(ω). (3.33)

Let (ψεi )i be the set of functions de�ned by (3.19). Because of Lemma 3.14 and Theo-

rem 3.10 we know that
ψεi · eσ = ψi · eσ + εwαβB

( ·
ε
, ·
)
· eσ eαβ(ψi) + θεi · eσ,

ψεi · ed = ψi · ed + ε2wαβB

( ·
ε
, ·
)
· ed eαβ(ψi) + θεi · ed,

with

‖θi‖H1
ε (T ) ≤ C

√
εH

d−2
2 ‖e(ψi)‖L2(τ) + CεH

d−1
2 ‖∇2ψi‖L2(τ).

In the sequel we assume that

√
Hε� 1, thus

‖θi‖H1
ε (T ) ≤ C

√
εH

d−2
2 ‖e(ψi)‖L2(T ).

Let uεH be the Galerkin approximation of uε in V ε
H . Let vε := αiψ

ε
i . By de�nition,

vε ∈ V ε
H . Then, using Céa’s lemma, we have

‖uε − uεH‖H1
ε (Ω) ≤ C‖uε − vε‖H1

ε (Ω)

≤ C‖uε − uε,1‖H1
ε (Ω) + C‖uε,1 − vε‖H1

ε (Ω). (3.34)

The �rst term is bounded with Theorem 3.10:

‖uε − uε,1‖H1
ε (Ω) ≤ C

√
ε‖∇u?‖L2(ω). (3.35)

Step 2. We now bound the second term of (3.34). Let Θε := αiθ
ε
i . By de�nition of uε,1

and vε,

eε(uε,1 − vε) =
(
−xdeα ⊗ eβ + e(wαβB )

( ·
ε
, ·
))

(∂αβ(u?d)− αi∂αβ(ψi)d)

+ εwαβB

( ·
ε
, ·
)
e(∂αβ(u?d)− αi∂αβ(ψi)d)− eε(Θε).

The functions (ψεi )i are de�ned as solutions to a PDE posed on each element of the

mesh. We will then use the results of the asymptotic analysis on each element:

‖eε(uε,1 − vε)‖2
L2(Ω) =

∑
T∈T HΩ

‖eε(uε,1 − vε)‖2
L2(T ). (3.36)

First, we split this term in three parts that we will tackle separatly:

‖eε(uε,1−vε)‖L2(T ) ≤
∥∥∥(−xdeα ⊗ eβ + e(wαβB )

( ·
ε
, ·
))

(∂αβ(u?d)− αi∂αβ(ψi)d)
∥∥∥
L2(T )

+ ε
∥∥∥wαβB ( ·ε, ·) e(∂αβ(u?d)− αi∂αβ(ψi)d)

∥∥∥
L2(T )

+ ‖eε(Θε)‖L2(T ). (3.37)
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The �rst term of (3.37) is bounded because of (3.33) and of the regularity of the correc-

tors, which are supposed to be in W 1,∞ (Rd−1 ×
(
−1

2
, 1

2

))
:∥∥∥(−xdeα ⊗ eβ + e(wαβB )

( ·
ε
, ·
))

(∂αβ(u?)d − αi∂αβ(ψi)d)
∥∥∥2

L2(T )
≤ C

∥∥∇2u?d − αi∇2(ψi)d
∥∥2

L2(T )

≤ CH4‖u?d‖H4(T ).
(3.38)

We also use the regularity of the correctors to bound the second term of (3.37):

ε2
∥∥∥wαβB ( ·ε, ·) e(∂αβ(u?)d − αi∂αβ(ψi)d)

∥∥∥2

L2(T )
≤ Cε2‖∇3u? − αi∇3ψi‖2

L2(T )

= Cε2‖∇3u?‖2
L2(T ) (3.39)

where the last equality stems from the fact that the functions ψi are cubic.

We have to be careful with the remaining term. Indeed it is possible to bound

separately the θεi , but αi are dependent of H . We note that on each T , vε is solution to

− divεAεeε(vε) = 0 in T,

vε = αiψi on ∂τ ×
(
−1

2
,
1

2

)
,

Aεeε(vε) · ed = 0 on τ ×
{
±1

2

}
.

Because of Theorem 3.10, we know that

‖Θε‖H1
ε (T ) =

∥∥∥∥vε − αiψi − ε( (wαβB )′

εwαβB · ed

)( ·
ε
, ·
)
∂αβ(αiψi)d

∥∥∥∥
H1
ε (T )

≤ C
√
ε|T |

d−2
2d−2‖αi∇2(ψi)d‖W 1,∞(τ).

The functions ψi are cubic, therefore ‖αi∇2(ψi)d‖W 1,∞(τ) = 1

2|τ |
1
2
‖αi∇2(ψi)d‖L2(τ).

Then

‖Θε‖H1
ε (T ) ≤ C

√
ε|τ |−

1
2d−2‖αi∇2(ψi)d‖L2(τ).

Yet |τ | = Hd−1
then |τ |−

1
2d−2 = 1√

H
, thus

‖Θε‖H1
ε (T ) ≤ C

√
ε

H
‖αi∇2(ψi)d‖L2(τ).

We use (3.33) to bound this term as

‖αi∇2(ψi)d‖L2(τ) ≤ ‖αi∇2(ψi)d −∇2u?d‖L2(τ) + ‖∇2u?d‖L2(τ)

≤ CH + ‖u?d‖H2(τ)

≤ C‖u?d‖H2(τ) for H small enough,

which implies that

‖Θε‖H1
ε (T ) ≤ C

√
ε

H
‖u?d‖H2(τ). (3.40)

Collecting (3.36), (3.35), (3.37), (3.38), (3.39) and (3.40), we deduce that

‖eε(uε,1 − vε)‖2
L2(Ω) ≤ C

(
H4 + ε2 +

ε

H

) ∑
τ∈T Hω

‖u?d‖2
H4(τ)

≤ C
(
H4 + ε2 +

ε

H

)
‖u?d‖2

H4(ω),
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because we have supposed that u?d ∈ W 4,∞(ω) ⊂ H4(ω). We use the Poincaré in-

equality of Lemma 3.4 to write

‖uε,1 − vε‖H1
ε (Ω) ≤ C

(
H2 + ε+

√
ε

H

)
‖u?d‖H3(ω). (3.41)

Step 3. Using (3.34), (3.35), (3.41) and Theorem 3.10, we have shown that

‖uε,1 − uεH‖H1
ε (Ω) ≤ C

(
H2 +

√
ε+

√
ε

H

)
‖u?d‖H3(ω).

This concludes the proof of Theorem 3.12.



CHAPTER 4

SHAPE OPTIMIZATION OF PLATES

4.1 Introduction

The aim of this chapter is to present a shape optimization method in order to optimize

the microstructure of an heterogeneous thin plate together with preliminary numerical

results.

The principle of the method is the following. Let us consider a miscrostructured

plate, composed of a mixture of linear elastic materials, the thickness of which is order

ε, for some �xed value of ε > 0. Let d = 2 or 3 and let us assume that this plate occu-

pies a physical domain Ωε := ω × (−ε/2, ε/2) for some bounded regular subdomain

of Rd−1
.

We denote byM the set of tensors M ∈ Rd×d×d×d
such that

∀y ∈ Rd×d
s , |My| ≤ c+|y| and y>My ≥ c−|y|2,

where Rd×d
s denotes the set of symmetric matrices, and which have the following sym-

metries:

∀1 ≤ i, j, k, l ≤ d, Mijkl = Mjikl = Mijlk = Mklij.

ForA,B ∈ Rd×d
we denote byA : B = AijBij . Let us point out here that, in particular,

for any 1 ≤ i, j ≤ d and any A ∈ Rd×d
, A : ei ⊗ ej = eTi Aej . We also de�ne

Y := (0, 1)d−1
and Y := Y ×

(
−1

2
,
1

2

)
.

Let us assume in addition that the typical size of the microstructures in the trans-

verse direction is also of order ε. Let us denote byAε : Ωε →M the application which

associates to all x ∈ Ωε
the value of the linear elastic tensor Aε(x) ∈ M of the plate

at point x.

If the plate is composed of a periodic microstructured material, as in the preceding

chapters, there exists an application A : Rd−1 ×
(
−1

2
, 1

2

)
→ M such for any xd ∈(

−1
2
, 1

2

)
, the function x′ 7→ A(x′, xd) is Y -periodic, and such that

Aε(x) = A

(
x′

ε
,
xd
ε

)
, ∀x = (x′, xd) ∈ Ωε = ω × (−ε/2, ε/2) .
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The shape optimization problem we consider here consists in optimizing some

given objective functional over the set of microstructured thin plates whose linear

elastic tensor can be written under the form

Aψ,ε(x) = A

(
ψ(x′)

ε
,
xd
ε

)
,

for some �xed reference periodic tensor-valued application A, some �xed value of

ε, and for some regular di�eormorphism ψ : ω → ω which has the vocation to be

optimized. In other words, the set of admissible microstructures we are considering

here can be seen as macroscopic deformations of a reference periodic microstructure.

In addition, let

V ε :=
{
v ∈ H1(Ωε)d, v = 0 on ∂ω ×

(
−ε

2
,
ε

2

)}
.

We consider here a compliance optimization problem which may be written as follows.

Let f̃ ε ∈ L2(Ω)d and, for any regular di�eomorphism ψ : ω → ω, consider ũψ,ε ∈ V ε

the unique solution to the linear elastic problem{
− divAψ,εe(ũψ,ε) = f̃ ε in Ωε,
Aψ,εe(ũψ,ε) · n = 0 on ω ×

{
±1

2

}
,

(4.1)

where e(u) denotes the symmetric gradient of a vector �eld u ∈ H1(Ω)d and n denotes

the unit outward normal vector to Ωε
.

Our aim in this chapter is to propose some numerical methods in order to approx-

imately solve an optimization problem of the form

inf
ψ∈U
J̃ ε(ψ), (4.2)

where U is a given set of regular di�eomorphisms from ω to ω, to be precised later,

and where

J̃ ε(ψ) :=

∫
Ωε
f̃ ε · ũψ,ε.

We are left at this point with two di�culties. The �rst di�culty lies in the char-

acterization of a set of regular di�eomorphisms U which enables to consider a large

enough set of microstructures and can lead to computable numerical scheme. Such a

question is de�nitely not trivial in the case when d = 3 since ω is then a subset of R2
.

In the preliminary study presented in this chapter, we leave this important question

aside for future research work and focus our attention on the more simple case where

d = 2, so that ω is simply a subinterval of R, which we �x to be equal to (0, 1). The

precise choice of optimization set U is detailed in Section 4.2, together with the choice

of the reference periodic tensor-valued application A.

In addition, since the value of ε has the vocation to be small, the cost of the numeri-

cal resolution of problem 4.1 for any ψ ∈ U is extremely high if standard �nite element

methods are used. To circumvent this bottleneck, we study and compare two alterna-

tives. The �rst approach consists by replacing problem 4.1 by its homogenized limit

obtained as ε goes to 0, and optimize the compliance of the homogenized problem. The

second alternative consists in approximating the solution of 4.1 using multiscale �nite

element methods to alleviate the computational burden. However, the optimization

procedure would require in principle to recompute at each stage of the optimization
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process to recompute the MsFEM basis for each new value of ψ ∈ U , which would

still lead to very costly simulations. Here again, we consider an approach in order to

reduce the computational cost where the multiscale �nite element functions are cho-

sen to be approximated in a reduced approximation space, obtained by the mean of

an appropriate Proper Othogonal Decomposition (POD) method. We present the two

resulting optimization procedures in full details in Section 4.3.

Numerical results obtained on di�erent test cases illustrate the comparison be-

tween these two approaches in Section 4.4.

4.2 Choice of optimization set for di�eomorphisms

and reference periodic tensor

As mentioned in the introduction, in this preliminary study, we restrict ourselves to

the more simple situation where d = 2 and ω = (0, 1). We introduce a uniform

discretization grid of the interval (0, 1) where the typical size of the subintervals is

equal to Hdiff = 1
Ndiff

for some Ndiff ∈ N∗ and de�ne

UHdiff :=

{
ψ : (0, 1)→ (0, 1), continuous, increasing and piecewise a�ne

on each subinterval (iHdiff , (i+ 1)Hdiff) for all 0 ≤ i ≤ Ndiff − 1

}
.

(4.3)

For all 0 ≤ i ≤ Ndiff , let us denote by xi := iHdiff and by ψi : (0, 1) → R the

standard hat element function centered on the point xi, i.e. de�ned such that

∀x ∈ (0, 1), ψi(x) :=

{
1− |x−xi|

Hdiff
if x ∈ (xi −Hdiff , xi +Hdiff),

0 otherwise.

Then, it holds that the set UHdiff
can be equivalently characterized as

UHdiff =

{
ψ =

Ndiff∑
i=0

aiψi, (ai)0≤i≤Ndiff
⊂ [0, 1], a0 = 0 < a1 < · · · < aNdiff−1 < aNdiff

= 1

}
.

The strict inequalities which appear in the de�nition of the set UHdiff
are not easy

to handle from a numerical point of view when it comes to optimizing an objective

functional over the set UHdiff
. To this aim, for 1 > η > 0 we introduce the subset

UHdiff ,η ⊂ UHdiff
de�ned by

UHdiff ,η :=

{
ψ =

∑Ndiff

i=0 aiψi, (ai)0≤i≤Ndiff
⊂ [0, 1], a0 = 0 < a1 < · · · < aNdiff−1 < aNdiff

= 1,
1
η
≥ ai+1−ai

Hdiff
≥ η, ∀0 ≤ i ≤ Ndiff − 1

}
.

(4.4)

The set UHdiff ,η
is then a closed convex subset, and is the set of di�eomorphisms ψ

we are going to consider to de�ne the shape optimization problem. The smaller the

value of the parameter η, the larger the set UHdiff ,η
since UHdiff ,η1 ⊂ UHdiff ,η2

for all

0 < η2 ≤ η1 < 1. Thus, the parameter η has the vocation to be small in practice. The

precise values of η and Hdiff chosen in our numerical tests are precised in Section 4.4.

In practice, in the numerical tests presented in Section 4.4, the reference peri-

odic tensor-valued application A is chosen so that for all (x′, xd) ∈ Rd−1 ×
(
−1

2
, 1

2

)
,

A(x′, xd) is an isotropic linear tensor, i.e. for all 1 ≤ i, j, k, l ≤ d,

Aijkl(x
′, xd) = λ(x′, xd)δijδkl + µ(x′, xd)(δikδjl + δilδjk),
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where λ and µ are the values the Lamé coe�cients of the material, that are supposed

to be of the form We suppose that the is constant, thus only the Young modulus E is

a function of x ∈ Ω. It means that for any x in Ω,

λ(x′, xd) =
νE(x′, xd)

(1 + ν)(1− 2ν)
and µ(x′, xd) =

E(x′, xd)

2(1 + ν)

for a �xed value of the Poisson coe�cient ν and a varying Young modulus function

E : Rd−1 ×
(
−1

2
, 1

2

)
→ R such that for all xd ∈

(
−1

2
, 1

2

)
, Rd−1 3 x′ 7→ E(x′, xd) is

Y -periodic.

Let us denote by the function Eψ,ε
de�ned such that for all (x′, xd) ∈ ω×

(
−1

2
, 1

2

)
Eψ,ε(x′, xd) := E

(
ψ(x′)

ε
, xd

)
.

The objective of Figure 4.1 is to illustrate the values ofEψ,ε
when ω = (0, 1) (hence

d = 2), for di�erent choices of ψ ∈ UHdiff
for Hdiff = 1

8
, where ε = 1

10
and

E(x′, xd) =

{
1 if 0.25 ≤ x′ − [x′] < 0.75,
10 otherwise,

where for all x′ ∈ R, [x′] denotes the integer part of x′.

4.3 Two optimization approaches

In this section, we present the two optimization procedures we propose, based on ho-

mogenization theory and multiscale �nite element methods, for the approximative res-

olution of problem 4.2. Here, and in all the sequel, we keep the notation U to denote

the chosen of optimization set of di�eomorphisms of ω. We remind the reader that in

practice, in the case when d = 2, the set U will be chosen as UHdiff ,η
de�ned in (4.4)

for some positive values of Hdiff and η.

4.3.1 Rescaled version of the plate problem

In this section, we introduce a rescaled version of problem (4.1) and problem (4.2),

de�ned on a domain independent of ε > 0, which are more convenient to handle in

the sequel. Let Ω := ω ×
(
−1

2
, 1

2

)
and let

V :=

{
v ∈ H1(Ω), v = 0 on ∂ω ×

(
−1

2
,
1

2

)}d
. (4.5)

For all ψ ∈ U , let us introduce uψ,ε ∈ V and f ε ∈ L2(Ω)d de�ned such that for all

(x′, xd) ∈ ω ×
(
−1

2
, 1

2

)
and all 1 ≤ α ≤ d− 1,

• uψ,εα (x) = ũψ,εα (x′, ε xd), u
ψ,ε
d (x) = εũψ,εd (x′, ε xd);

• f εα(x) = f̃ εα(x′, ε xd), f
ε
d(x) = ε−1f̃ εd(x′, ε xd).

For any u ∈ D′(Rd)d and T ∈ D′(Rd)d×d, we de�ne the operators eε and divε by

eεαβ(u) := eαβ(u), eεαd(u) :=
1

ε
eαd(u) and eεdd(u) :=

1

ε2
edd(u)
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Figure 4.1: Plots of Eψ,ε
and ψ for di�erent functions ψ in UHdiff

.
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and

divε(T )α := ∂βTαβ +
1

ε
∂dTαd and divε(T )d :=

1

ε
∂βTdβ +

1

ε2
∂dTdd

for any 1 ≤ α, β ≤ d− 1.

Then uψ,ε is the unique solution in V to
− divε(Aψ,εeε(uψ,ε)) = f ε in Ω

Aψ,εeε(uψ,ε) · n = 0 on ω ×
{
±1

2

}
,

(4.6)

where for all (x′, xd) ∈ ω ×
(
−1

2
, 1

2

)
,

Aψ,ε(x′, xd) := A

(
ψ(x′)

ε
, xd

)
. (4.7)

The variational formulation of (4.6) reads:

Find uψ,ε ∈ V such that ∀v ∈ V, aψ,ε(uψ,ε, v) = bε(v) (4.8)

where

aψ,ε(uψ,ε, v) :=

∫
Ω

Aψ,εeε(uψ,ε) : eε(v)

and

bε(v) :=

∫
Ω

f ε · v.

Let us then remark that for all ψ ∈ U , J̃ ε(ψ) = εJ ε(ψ) where J ε(ψ) :=
∫

Ω
uψ,ε ·

f ε. This implies that problem (4.2) is equivalent to the optimization problem

inf
ψ∈U
J ε(ψ). (4.9)

4.3.2 Homogenization approach

In this section and the rest of the chapter, we are going to assume that there exists a

function f ∈ L2(Ω)d such that f ε = f independently of ε.

We begin by introducing the homogenized problem associated to (4.6). We de�ne

the set of the Kircho�-Love displacements as follows:

VKL :=
{
v ∈

(
H1(Ω)

)d−1 ×H2
0 (ω), ∃v̂ ∈

(
H1

0 (ω)
)d−1 ×H2

0 (ω), vα = v̂α − xd∂αv̂d, vd = v̂d

}
,

where H2
0 (ω) is the closure of D(Ω) in H2(ω). For v ∈ VKL, we now use the notation

v̂ to denote the corresponding element of (H1
0 (ω))

d−1 ×H2
0 (ω) entering in the above

de�nition. We also introduce the set

W(Y) :=

{
v ∈

(
H1

loc

(
Rd−1 ×

(
−1

2
,
1

2

)))d
,

∀z ∈
(
−1

2
,
1

2

)
, v(·, z) is Y -periodic and

∫
Y
v = 0

}
.

For any g ∈ L2(Ω), we also de�ne for all x′ ∈ ω,

m(g)(x′) :=

∫ 1
2

xd=− 1
2

g(x′, xd) dxd.
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For any u in

(
D′
(
Rd
))d

and any invertible matrix G ∈ R(d−1)×(d−1)
, we de�ne the

quantity eG(u) as follows: for all y ∈ Rd
,

eG(u)(x′, xd) :=
1

2

[(
G 0
0 1

)
∇u(y) +

((
G 0
0 1

)
∇u(y)

)T]
.

For any invertible matrix G ∈ R(d−1)×(d−1)
and 1 ≤ α, β ≤ d − 1, we introduce

wαβ,G ∈ W(Y) the unique solution to the corrector problem

∀v ∈ W(Y),

∫
Y
A(eG(wαβ,G) + eα ⊗ eβ) : eG(v) = 0 (4.10)

for any 1 ≤ α, β ≤ d − 1. We also introduce Wαβ,G ∈ W(Y) the unique solution to

the problem

∀v ∈ W(Y),

∫
Y
A(eG(Wαβ,G)− xdeα ⊗ eβ) : eG(v) = 0 (4.11)

for any 1 ≤ α, β ≤ d− 1.

We then de�ne for all 1 ≤ α, β, γ, δ ≤ d− 1,

(K?,G
11 )αβγδ :=

∫
Y
A(eG(wαβ,G) + eα ⊗ eβ) : (eG(wγδ,G) + eγ ⊗ eδ),

(K?,G
12 )αβγδ :=

∫
Y
A(eG(wαβ,G) + eα ⊗ eβ) : (eG(W γδ,G)− xdeγ ⊗ eδ),

(K?,G
22 )αβγδ :=

∫
Y
A(eG(Wαβ,G)− xdeα ⊗ eβ) : (eG(W γδ,G)− xdeγ ⊗ eδ),

((K?,G
12 )T )αβγδ := (K?,G

12 )γδαβ,

Let ψ : ω → ω be a C1
-di�eomorphism. Under appropriate assumptions on ψ,

which we do not detail here, it can be proved that the family

(
uψ,ε

)
ε>0

weakly con-

verges to a limit uψ,? ∈ VKL which is the unique solution of the following homogenized

problem:

∀v ∈ VKL,
∫
ω

K?Puψ,? : Pv =

∫
ω

m(f) · v̂ −
∫
ω

m(xdfα) ∂αv̂d, (4.12)

where for all x′ ∈ ω,

K?(x′) :=

(
K
?,∇ψ(x′)
11 K

?,∇ψ(x′)
12

(K
?,∇ψ(x′)
12 )T K

?,∇ψ(x′)
22

)
, (4.13)

and where

P :


VKL → L2

(
ω;
(
R(d−1)×(d−1)
s

)2
)

v 7→
(

e′(v̂′)
∇2
d−1v̂d

) . (4.14)

We do not give the detailed proof of this convergence result here for the sake of

brievity, since the main focus of this chapter is to propose numerical methods for shape

optimization problems. Note that if ψ ∈ UHdiff
for some Hdiff > 0, with UHdiff

de�ned
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by (4.3), there always exists a unique solution uψ,? ∈ VKL to problem (4.12), even

though ψ may not satisfy all the necessary assumptions for the convergence of the

family

(
uψ,ε

)
ε>0

to uψ,? to hold weakly inH1(Ω)d (in particular, any elementψ ∈ UHdiff

may not be C1
).

Nevertheless, the �rst approach we propose in order to approximate optimization

problem (4.9) is to consider an optimization problem where the homogenized problem

(4.12) is solved instead of problem (4.6). More precisely, we consider the optimization

problem

inf
ψ∈U
J ?(ψ), (4.15)

where

J ?(ψ) :=

∫
Ω

f · uψ,?.

In practice, in the case where d = 2, ω = (0, 1), (4.12) is solved using a standard

Galerkin method where for all 1 ≤ α ≤ d1, ûψ,?α belongs to the space of P1 �nite

element functions and ûψ,?d belongs to the space of cubic spline functions associated

to a uniform discretization grid of (0, 1) of typical mesh size denoted by Hhomog. In

addition, the corrector problems (4.10) and (4.11) are solved using a P1 �nite element

mesh the typical mesh size of which is denoted by Hcorr.

4.3.3 Multiscale �nite element approach

The aim of this section is to introduce a second approach to e�ectively compute a

numerical approximation of a solution to (4.9) relying on the use of Multiscale Fi-

nite Element methods, simmilar to the one introduced in the preceding chapter of this

manuscript.

The principle of the MsFEM approach, originally introduced in [55] (see [36] for

a comprehensive review), is to discretize the domain occupied by the heterogeneous

material using a coarse mesh, where the typical size of each element, denoted H , can

be chosen independently of the typical size ε of the heterogeneities. The method relies

on the idea of using speci�c basis functions, which are not as generic as the standard

�nite element functions (like P1 �nite element functions for instance), but are on the

contrary well-adapted to the heterogeneities of the material.

More precisely, the method usually proceeds in two steps. In an o�ine phase, some

basis functions are computed as solutions to local problems de�ned on each element

of the coarse mesh. The di�erential operator which is used is very similar (if not iden-

tical) to the di�erential operator of the global problem. It is thus expect that these

basis functions appropriately encode the oscillations of the exact solution. These basis

functions are computed in parallel and independently from one another. They do not

depend on the right-hand side of the problem. They are expensive to compute (because

one has to use a �ne mesh of each coarse element to resolve the oscillations of Aψ,ε),
but this computation is local, and only performed once. These basis functions gener-

ate a discretization space of limited dimension, which is well-adapted to the problem

at hand. Next, in an online phase, a global Galerkin approximation of the problem of

interest is performed, on the discretization space introduced in the o�ine stage. Since

the dimension of the discretization space is limited, the online phase is inexpensive.

In our speci�c context, the MsFEM method works as follows. Let us assume that

ω is a polyhedral, connected and bounded open subset of Rd−1
and let T Hω be a con-
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Figure 4.2: A P1
element in 1D

Figure 4.3: An oscillating basis function

in 1D

forming discretization of ω. Let us now de�ne

T HΩ =

{
τ ×

(
−1

2
,
1

2

)
, τ ∈ T Hω

}
.

Then, T HΩ obviously de�nes a conforming discretization of Ω (see Figure 4.4).

Figure 4.4: Coarse mesh T HΩ

To de�ne the multiscale basis functions, we consider two di�erent discretizations

spaces, which we call hereafter the membrane space and the bending space .

Membrane space: Let VMH be the space of functions of H1
0 (ω)d−1

that are piece-

wise a�ne on every element of T Hω , let NMH be its dimension and let (φMi )1≤i≤NMH
be

its canonical base. For any 1 ≤ i ≤ NMH , let ϕMi :=

(
φMi
0

)
∈ VKL.

Bending space: Let V BH be the space of functions of H2
0 (ω) that are piecewise

cubic on every element of T Hω , and let NBH be its dimension and let (φBj )1≤j≤NBH
be its

canonical base. For any 1 ≤ j ≤ NBH , let ϕBj :=

(
−xd∇φBj

φBj

)
.

For all ψ ∈ U , on any T ∈ T HΩ of the form T = τ ×
(
−1

2
,
1

2

)
, we de�ne the

membrane oscillatory basis function ϕψ,ε,Mi for all 1 ≤ i ≤ NMH as the solution of the
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following problem 

− divεAψ,εeε
(
ϕψ,ε,Mi

)
= 0 in T,

ϕψ,ε,Mi = ϕMi on ∂τ ×
(
−1

2
,
1

2

)
,

Aψ,εeε
(
ϕψ,ε,Mi

)
· ed = 0 on τ ×

{
±1

2

}
,

(4.16)

where Aψ,ε is de�ned in (4.7). Similarly, we de�ne the bending oscillatory basis func-

tion ϕψ,ε,Bj for all 1 ≤ j ≤ NBH as the solution of the following problem

− divεAψ,εeε
(
ϕψ,ε,Bj

)
= 0 in T,

ϕψ,ε,Bj = ϕBj on ∂τ ×
(
−1

2
,
1

2

)
,

Aψ,εeε
(
ϕψ,ε,Bj

)
· ed = 0 on τ ×

{
±1

2

}
.

(4.17)

We then de�ne the multiscale �nite element space associated to ψ ∈ U as follows

V ψ,ε
H := Span{ϕψ,ε,Mi , ϕψ,ε,Bj , 1 ≤ i ≤ NMH , 1 ≤ j ≤ NBH}.

and denote by uψ,εH be the Galerkin’s approximation of uψ,ε in the discretization

space V ε
H . In practice, problems (4.16) and (4.17) are solved using a P1 �nite element

method associated to a triangular mesh with typical mesh size h� H .

A �rst version of the multiscale �nite element approach for the approximation of

problem (4.9) is to consider the following alternative optimization problem

inf
ψ∈U
J ε,H (ψ) , (4.18)

where

J ε,H (ψ) :=

∫
Ω

f · uψ,εH .

The main advantage of such a method over the homogenized approach presented

in Section 4.3.2 is that the approximation uψ,εH of uψ,ε obtained by the multiscale �nite

element method is in principle more accurate than its homogenized approximation

uψ,?. Thus, there is good hope that considering (4.18) instead of (4.15) should provide

better di�eomorphisms ψ ∈ U in the sense of the original optimization problem (4.9).

However, solving an optimization problem of the form (4.18) would require to com-

pute, at each step of the optimization procedure, the solution of theNMH +NBH MsFEM

problems (4.16) and (4.17) for each new value of ψ ∈ U , which would lead to very

heavy computational costs. Hence, we rather consider an approach where we com-

pute a global reduced multiscale �nite element space obtained via the Proper Orthogonal

Decomposition of basis functions of V ψ,ε
H for randomly selected values of ψ ∈ U .

We detail this reduced multiscale �nite element method in the next section.

4.3.4 Reduced multiscale �nite element approach

The reduced multiscale �nite element we propose works as follows. Assume that we

randomly select M ∈ N∗ elements U , which are denoted hereafter by (ψm)1≤m≤M .
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In a �rst step, for all 1 ≤ m ≤ M , the multiscale basis functions ϕψm,ε,Mi and

ϕψm,ε,Bj are computed for all 1 ≤ i ≤ NMH and 1 ≤ j ≤ NBH .

In a second step, the Proper Orthogonal decomposition of the family of functions(
ϕψm,ε,Mi

)
1≤m≤M,1≤i≤NMH

(respectively

(
ϕψm,ε,Mj

)
1≤m≤M,1≤j≤NBH

) is computed. The

resulting singular values are denoted (in decreasing order) by

(
σMk
)

1≤k≤KM (respec-

tively

(
σBk
)

1≤k≤KB ) and the corresponding POD modes by

(
ξMk
)

1≤k≤KM (respectively(
ξBk
)

1≤k≤KB ) where KM := MNMH (respectively KM := MNBH ). Note that the POD

decompositions are computed with respect to the scalar product 〈·, ·〉V on V de�ned

by

∀v, w ∈ V, 〈v, w〉V =

∫
Ω

e(v) : e(w).

The associated norm is denoted hereafter by ‖ · ‖V .

In a third step, an integerNr is chosen so thatNr � max(KM, KB), and a reduced
multiscale �nite element space V ε,red

H,Nr
is constructed as follows:

V ε,red
H,Nr

:=
{
ξMk , ξBk , 1 ≤ k ≤ Nr

}
.

The motivation for considering such a reduced space stems from the optimal approx-

imability properties of the POD decomposition. For all �nite-dimensional subspace

X ⊂ V , let us denote by ΠV
X the orthogonal projection of V onto X . Then, it holds

that the family

(
ξMk
)

1≤k≤Nr
is a minimizer to the optimization problem

min
(ξk)1≤k≤Nr∈V

NMH∑
i=1

M∑
m=1

∥∥∥ϕψm,ε,Mi − ΠV
Span{(ξk)1≤k≤Nr}ϕ

ψm,ε,M
i

∥∥∥2

V
.

In other words, the vectorial space spanned by the POD modes

(
ξMk
)

1≤k≤Nr
is one

of the best Nr-dimensional vector space which approximates the family of functions(
ϕψm,ε,Mi

)
1≤m≤M,1≤i≤NMH

over all Nr-dimensional subspace X ⊂ V in the sense of

the average error

NMH∑
i=1

M∑
m=1

∥∥∥ϕψm,ε,Mi − ΠV
Xϕ

ψm,ε,M
i

∥∥∥2

V
.

Naturally, similar approximability properties hold for the family of functions

(
ξBk
)

1≤k≤Nr
.

For all ψ ∈ U , we then denote by uψ,ε,red
H,Nr

the Galerkin approximation of uψ,ε in

the discretization space V ε,red
H,Nr

. The reduced multiscale �nite element optimization ap-

proach to problem (4.9) we suggest consists in considering the optimization problem

inf
ψ∈U
J red,Nr(ψ), (4.19)

where

J red,Nr(ψ) :=

∫
Ω

f · uψ,ε,red
H,Nr

.

Let us detail here the precise random selection procedure of the set of functions

(ψm)1≤m≤M that we use in practice in the case where d = 2, ω = (0, 1) andU = UHdiff ,η

for some η,Hdiff > 0.

Each function ψ ∈ UHdiff ,η
is randomly dranw following the following procedure.

A family ofNHdiff
−1 random independent numbers are drawn according to a uniform
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distribution law and then ordered in order to form a family of non-decreasing numbers

(ai)1≤i≤NHdiff
−1. If this family satis�es the property

∀0 ≤ i ≤ NHdiff
− 1,

1

η
≥ ai+1 − ai

Hdiff

≥ η, (4.20)

with a0 = 0 and aNdiff
= 1, then an element ψ is built as

ψ =

Ndiff∑
i=0

aiψi.

Otherwise, a new family of random numbers is chosen and the procedure is iterated

until the property (4.20) is satis�ed.

4.4 Numerical results

In this section, we present some numerical results illustrating the di�erent approaches

we propose. We recall that we stick here to cases where d = 2, ω = (0, 1) and the set

U is chosen to be equal to UHdiff,η
for some values Hdiff,η > 0. In all the presented test

cases, we only consider loading cases where

f(x′, x2) =

{
0 if x′ < 1

2

−e2 if x′ ≥ 1
2

,

and where the Young modulus function E(x′, x2) is even with respect to the x2 vari-

able. Hence, all the numerical results presented here are obtained in purely bending

cases. As a consequence, in the multiscale �nite element approach described in Sec-

tion 4.3.3 and Section 4.3.4, only bending multiscale �nite element functions are com-

puted.

4.4.1 Approximability properties of the reduced multiscale �-

nite element space

Our �rst set of numerical results concerns the approximability properties of the re-

duced space V ε,red
H,Nr

de�ned in Section 4.3.4.

In this test, we �x two cases:

(a) ε = 1
10

, H = 1
8
, Hdiff = 1

8
, h = 1

64
, η = 1

10
and M = 100;

(b) ε = 1
20

, H = 1
16

, Hdiff = 1
16

, h = 1
128

, η = 1
10

and M = 100.

The value of the Young modulus function E is chosen to be equal to

E(x′, x2) = 4.5 cos(2πx′) + 5.5.

Figure 4.5 illustrates the decay rate of the singular values

(
σBk
)

1≤k≤KB in two cases

corresponding (a) and (b). Figure 4.5 shows that the decrease of the singular values is

almost exponential with respect to k in both cases. For example, we see that

σB0
σB10

≈ 102
and

σB0
σB20

≈ 104.
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Figure 4.5: Decay of the singular value σBk as a function of k in case (a) (left) and case

(b) (right).

Figure 4.6: Decay of the singular value σBk as a function of k in case (a) for di�erent

values of Nb.

Of course, these numerical results do not enable to conclude the decrease of the sin-

gular values would decay at the same rate for any smooth Young modulus function

E, but it shows the relevance of the approach in this particular situation. Figure 4.6

shows the in�uence of the choice of Nb on the decrease of the singular values in case

(a).

These numerical results lead us to think that, at least in this particular example,

the vector-valued function uψ,ε,red
H,Nr

should be a reasonably good approximation of uψ,ε

for any ψ ∈ UHdiff ,η
for small values of Nr. To this aim, we randomly draw an element

ψ ∈ UHdiff ,η
according to the random selection procedure detailed at the end of Sec-

tion 4.3.4 so that ψ /∈ {ψm, 1 ≤ m ≤M}. In other words, ψ does not belong to the set

of di�eomorphisms which have been used to compute the POD modes (ξk)1≤k≤Nr . In

Figure 4.7 are plotted the relative errors in compliance

∣∣∣J ε(ψ)−J red,Nr (ψ)
J ε(ψ)

∣∣∣ as a function

of Nr in cases (a) and (b). We observe in these cases that this relative error is lower

than 10−2
as soon as Nr is greater than 10. The approximation of the solution uψ,ε to
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problem (4.6) is computed using a standard P1 �nite element method associated to a

�ne discretization mesh whose typical mesh size is chosen to be equal to href = 1
64

in

case (a) and href = 1
128

in case (b).

Figure 4.7: Relative error

∣∣∣J ε(ψ)−J red,Nr (ψ)
J ε(ψ)

∣∣∣ as a function of Nr in case (a) (left) and (b)

(right)

4.4.2 Optimization results

The aim of this section is to illustrate the di�erent optimization approaches introduced

in Section 4.3. The di�erent optimization problems were solved using standard pro-

jected gradient descent algorithms. In the tests of this section, we �x two cases: In this

test, we �x two cases:

(a) ε = 1
10

, H = 1
8
, Hdiff = 1

8
, h = 1

64
, η = 1

10
, M = 100 and Nr = 8;

(b) ε = 1
20

, H = 1
16

, Hdiff = 1
16

, h = 1
128

, η = 1
10

, M = 100 and Nr = 8.

The value of the Young modulus function E is chosen to be equal to

E(x′, x2) = 4.5 cos(2πx′) + 5.5.

The reference values of the compliance J ε(ψ) for any ψ ∈ UHdiff ,η
are computed

using a P1 �nite element method for the resolution of problem 4.6 associated to a �ne

discretization mesh, the typical mesh size of which is given by href = 1
64

in case (a) and

href = 1
128

in case (b).

We are plotting in Figures 4.8 and 4.9 di�erent values of compliances as a function

of the iterations of di�erent optimization procedures.

We �rst consider the numerical resolution of the homogenized optimization prob-

lem (4.15) starting from the initial choice ψinit = Id (see Figures 4.10 and 4.11). The

blue dots represents the evolution ofJ ?(ψ) as a function of the number of iterations of

the optimization procedure. For the sake of comparison, for each value of ψ given by

this optimization procedure, we compute the reference value of the compliance J ε(ψ)
in green triangles. We denote by ψ?opt the optimized value of ψ obtained at the end of

this numerical procedure. In this test case, we obtain in case (a) that

J ?(ψ?opt) = 1.78× 10−4
and J ε(ψ?opt) = 1.42× 10−4,

and in case (b) that

J ?(ψ?opt) = 1.81× 10−4
and J ε(ψ?opt) = 1.57× 10−4.
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Figure 4.8: Evolution in case (a) of J ε(ψ) with the homogenized optimization problem

(4.15) starting from the initial choice ψinit = Id (blue triangles, mixed up with the

green triangles until iteration 50), with the reduced multiscale optimization problem

(4.19) starting from the initial choice ψinit = Id (red triangles, stopping at iteration 20),

and with the reduced multiscale optimization problem (4.19) starting from the initial

choice ψinit = ψ?opt (green triangles).

Let us also mention here that the reference value of the compliance for a perfectly

periodic material is equal in case (a) to

J ε(Id) = 2.48× 10−4.

and in case (b) to

J ε(Id) = 2.23× 10−4.

We then consider the numerical resolution of the reduced multiscale optimization

problem (4.19) starting from the initial choice ψinit = Id (see Figure 4.12 and 4.13).

The red crosses represents the evolution of J red,Nr(ψ) as a function of the number of

iterations of the optimization procedure. For the sake of comparison, for each value of

ψ given by this optimization procedure, we compute the reference value of the com-

pliance J ε(ψ) in red triangles. We denote by ψred,1
opt the optimized value of ψ obtained

at the end of this numerical procedure. In this test case, we obtain that in case (a)

J red,Nr(ψred,1
opt ) = 1, 65× 10−4

and J ε(ψred,1
opt ) = 1, 71× 10−4,

and in case (b)

J red,Nr(ψred,1
opt ) = 1, 37× 10−4

and J ε(ψred,1
opt ) = 1, 53× 10−4,

We �nally consider the numerical resolution of the reduced multiscale optimization

problem (4.19) starting from the initial choice ψinit = ψ?opt (see Figures 4.14 and 4.15).

The blue dots represent the evolution of J?(ψ) and the orange crosses represents the

evolution of J red,Nr(ψ) as a function of the number of iterations of the optimization

procedure. For the sake of comparison, for each value of ψ given by this optimization

procedure, we compute the reference value of the complianceJ ε(ψ) in green triangles.
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Figure 4.9: Evolution in case (b) of J ε(ψ) with the homogenized optimization prob-

lem (4.15) starting from the initial choice ψinit = Id (blue triangles), with the reduced

multiscale optimization problem (4.19) starting from the initial choice ψinit = Id (red

triangles, stopping at iteration 5), and with the reduced multiscale optimization prob-

lem (4.19) starting from the initial choice ψinit = ψ?opt (green triangles,mixed up with

the blue triangles until iteration 50).

We denote by ψred,2
opt the optimized value of ψ obtained at the end of this numerical

procedure. In this test case, we obtain in case (a) that

J red,Nr(ψred,2
opt ) = 1, 13× 10−4

and J ε(ψred,2
opt ) = 1, 16× 10−4,

and in case (b) that

J red,Nr(ψred,2
opt ) = 1, 20× 10−4

and J ε(ψred,2
opt ) = 1, 30× 10−4.

We thus obtain the following compliance reduction for the three di�erent optimiza-

tion procedures in case a:

J ε(Id)− J ε(ψ?opt)

J ε(Id)
= 0.42,

J ε(Id)− J ε(ψred,1
opt )

J ε(Id)
= 0.31,

J ε(Id)− J ε(ψred,2
opt )

J ε(Id)
= 0.53;

and in case (b):

J ε(Id)− J ε(ψ?opt)

J ε(Id)
= 0.30,

J ε(Id)− J ε(ψred,1
opt )

J ε(Id)
= 0.31,

J ε(Id)− J ε(ψred,2
opt )

J ε(Id)
= 0.42;
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Figure 4.10: Evolution in case (a) of J ?(ψ) (blue dots) and Jε(ψ) (green triangles)

as a function of the number of iterations of the optimization procedure during the

resolution of the homogenized optimization problem (4.15) starting from the initial

choice ψinit = Id.

On these plots, we observe that, along the iterations of the optimization procedures,

the approximated values of the compliance given by the reduced multiscale approach

J red,Nr(ψ) are closer to the corresponding reference values J ε(ψ) than the approx-

imation J ?(ψ) obtained with a homogenized model. Hence, the proposed reduced

multiscale �nite element approach seems to yield more faithful approximations of the

compliance of the actual material than a homogenized model.

In addition, we observe that the reference compliance of J ε(ψred,2
opt ) is lower than

J ε(ψred,1
opt ) or J ε(ψ?opt). This numerical observation leads us to think that the general

strategy which consists in �rst solving the homogenized optimization problem, and

use the obtained optimal di�eomorphism as a starting guess for the resolution of the

reduced multiscale optimization problem yields to actual materials the reference com-

pliance of which is signi�cantly lower than what would have been obtained with the

only use of a homogenized model.

In Figures 4.16 and 4.17 are plotted the functions ψ?opt, ψ
red,1
opt and ψred,2

opt . The val-

ues of
ν

(1+ν)(1−2ν)
Eψ?opt,ε,

ν
(1+ν)(1−2ν)

Eψred,1
opt ,ε

and
ν

(1+ν)(1−2ν)
Eψred,2

opt ,ε
are plotted in Fig-

ures 4.18 and 4.19.



132 Chapter 4. Shape optimization of plates

Figure 4.11: Evolution in case (b) of J ?(ψ) (blue dots) and Jε(ψ) (green triangles)

as a function of the number of iterations of the optimization procedure during the

resolution of the homogenized optimization problem (4.15) starting from the initial

choice ψinit = Id.

Figure 4.12: Evolution in case (a) of J red,Nr(ψ) (red crosses) and Jε(ψ) (green trian-

gles) as a function of the number of iterations of the optimization procedure during

the resolution of the reduced multiscale optimization problem (4.19) starting from the

initial choice ψinit = Id.
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Figure 4.13: Evolution in case (b) of J red,Nr(ψ) (red crosses) and Jε(ψ) (green trian-

gles) as a function of the number of iterations of the optimization procedure during

the resolution of the reduced multiscale optimization problem (4.19) starting from the

initial choice ψinit = Id.

Figure 4.14: Evolution in case (a) of J ?(ψ) (blue dots) and Jε(ψ) (green triangles)

as a function of the number of iterations of the optimization procedure during the

resolution of the homogenized optimization problem starting from the initial choice

ψinit = Id, then of J red,Nr(ψ) (red crosses) and Jε(ψ) (green triangles) as a function

of the number of iterations of the optimization procedure during the resolution of the

reduced multiscale optimization problem (4.19) starting from the initial choice ψinit =
ψ?opt.
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Figure 4.15: Evolution in case (b) of J ?(ψ) (blue dots) and Jε(ψ) (green triangles)

as a function of the number of iterations of the optimization procedure during the

resolution of the homogenized optimization problem starting from the initial choice

ψinit = Id, then of J red,Nr(ψ) (red crosses) and Jε(ψ) (green triangles) as a function

of the number of iterations of the optimization procedure during the resolution of the

reduced multiscale optimization problem (4.19) starting from the initial choice ψinit =
ψ?opt.

Figure 4.16: Plots of the functions ψ?opt, ψ
red,1
opt and ψred,2

opt in case (a)
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Figure 4.17: Plots of the functions ψ?opt, ψ
red,1
opt and ψred,2

opt in case (b)

Figure 4.18: Plots of the function
ν

(1+ν)(1−2ν)
Eψ?opt,ε,

ν
(1+ν)(1−2ν)

Eψred,1
opt ,ε

and

ν
(1+ν)(1−2ν)

Eψred,2
opt ,ε

in case (a)
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Figure 4.19: Plots of the function
ν

(1+ν)(1−2ν)
Eψ?opt,ε,

ν
(1+ν)(1−2ν)

Eψred,1
opt ,ε

and

ν
(1+ν)(1−2ν)

Eψred,2
opt ,ε

in case (b)
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