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In the Semantic Web era, Linked Open Data (LOD) is its most successful implementation, which currently contains billions of RDF (Resource Data Framework) triples derived from multiple, distributed, heterogeneous sources. The role of a general semantic schema, represented as an ontology, is essential to ensure the correctness and consistency in LOD and make it possible to infer implicit knowledge by reasoning. The growth of LOD creates an opportunity for the discovery of ontological knowledge from its raw RDF data itself to enrich relevant knowledge bases. In this work, we aim at discovering schema-level knowledge in the form of axioms encoded in OWL (Ontology Web Language) from RDF data. The approaches to automated generation of the axioms from recorded RDF facts on the Web may be regarded as a case of inductive reasoning and ontology learning. The instances, represented by RDF triples, play the role of specific observations, from which axioms can be extracted by generalization.

Based on the insight that discovering new knowledge is essentially an evolutionary process, whereby hypotheses are generated by some heuristic mechanism and then tested against the available evidence, so that only the best hypotheses survive, we propose a model applying Grammatical Evolution, one type of evolutionary algorithm, to mine OWL axioms from an RDF data repository. In addition, we specialize the model for the specific problem of learning OWL class disjointness axioms, along with the experiments performed on DBpedia, one of the prominent examples of LOD.

Furthermore, we use different axiom scoring functions based on possibility theory, which are well-suited to the open world assumption scenario of LOD, to evaluate the quality of discovered axioms. Specifically, we proposed a set of measures to build objective functions based on single-objective and multi-objective models, respectively.

Finally, in order to validate it, the performance of our approach is evaluated against subjective and objective benchmarks, and is also compared to the main state-of-the-art systems.
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Context

Today, we witness the explosion of information over the Web which can supply knowledge and information for users to learn about a variety of topics or questions.

In reality, there are powerful search engines which support for finding specific information from the Web based on keyword criteria. However, the organization of information on the Web is maintained in human-readable form only, which reduces the effectiveness of these search tools. For instance, only a few results of thousands of matches typically returned by search engines is truly relevant content.

Some contents are hidden within the identified pages as well as classification and generalization of identifiers are irrelevant to the searching context. Thus, extending the current Web with the information given well-defined meaning that enables
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computers to be easier in processing data in order to turn it into highly relevant information and knowledge is an expected development direction.

In May 2001, Tim Berners-Lee introduced the idea [BHL01] of an extension of the World Wide Web (WWW), called the Semantic Web (SW) [START_REF]Semantic Web[END_REF], which can create a better environment for computers and people to work in cooperation. The Semantic Web may be viewed as the movement from the Web of documents to the Web of data [START_REF] Shadbolt | The Semantic Web Revisited[END_REF] in which information of the current Web 2.0, expressed in the form of unstructured or semi-structured data, is converted into structured format that machines can understand. In fact, the SW provides a standardized framework (introduced in Section 2.2) for describing a domain of interest with machineprocessable information, known as machine-interpretable metadata, embedded within Web content. Among these metadata, URIs (Uniform Resource Identifiers) (presented in Section 2.2.1) are used to uniquely identify abstract or physical resources. For easy sharing, exposing and connecting data, information and knowledge, the SW uses a common standard framework for representing resources which is RDF (Resource Description Framework) [W3C14a], based on the notion of a triple (subject, predicate, object), i.e. an RDF triple. Each element of a triple is bound with a URI that performs a referential function, enabling it to be both human readable and machine processable. Any object of an RDF triple can become the subject of another triple, making chains of relationships and representing knowledge in the form of a graph or network.

Furthermore, the information available on the Web is fragmented from different data sources, thus, the data should be connected to generate a huge web corpus of domain datasets which can contribute to the global knowledge commons. The common principles in data integration have relied on specific applications to consolidate data from disparate sources into a single dataset within common data models. However, in the Web-scale data integration from a too large variety sources, the traditional model is not effective. In order to address this challenge, in 2006, Tim

Berners-Lee recommended a set of best practises for publishing and interlinking data on the Web using URI and HTTP called Linked Data. Linked Data (LD) [START_REF] Linkeddata | W3[END_REF] is 1. Introduction defined as a method to create a Web of data through linking datasets over the Web; in this case, we talk about linking RDF datasets, using the structured model of the SW. LD comprises a set of principles for sharing machine-readable interlinked data on the Web [Ber] which relies on a set of standards of the SW technologies as follows:

1. Use URIs (or IRIs) to name things.

2. Use HTTP URIs (or HTTP IRIs) so that those names can be looked up.

3. Use the standard format RDF to represent information and use SPARQL to query it.

4. Include links to other URIs to connect the data between data sources so that connected information can be discovered

For the purpose of being freely available for sharing and reuse, LD is associated with Open Data constituting Linked Open Data(LOD). In 2010, Tim Berners-Lee proposed the star scheme to rate the availability of LD as LOD. Each star (i.e., rating) stands for a property added to the properties of the previous rating:

Data is available on the web in any format but with an open licence.

Data is available and structured in the machine-readble form.

Data format is non-proprietary

Use open standards from W3C: URIs to identify things, RDF to represent data and SPARQL to query data Link datasets to other people's datasets to provide context.

In reality, the LOD community project works [START_REF]Linking Open Data[END_REF] aim at publishing open RDF datasets on the Web and establishing RDF links between entities from different datasets. This project has also published a cloud diagram visualizing available datasets illustrated in Figure 1.1. At this time, the volume of LOD has reached the status of "big RDF data". Indeed, in May 2020, the number of datasets increased to 

Motivations

The noticeable point is that the organization of LOD refers not only to linking "raw" RDF triples but also to embedding formal semantics for the triples through semantic schema captured in the concept of ontology (introduced in Section 2.1.1).

In this sense, LOD contains a collection of RDF knowledge bases (RDF KBs) which

integrates both schema-level knowledge represented in ontologies and assertional knowledge (assertions) given by RDF triples. In reality, RDF data published in LOD are mostly extracted and generated from different unstructured or semistructured data sources, e.g. DBpedia extracted from Wikipedia, where there can exist incompleteness or that can be ridden with inconsistencies and errors in the information generated arbitrarily by the users. As a result, extracted data which can be erroneous, noisy or insufficient are added into KBs of LOD. Hence, the existence of ontologies, in particular, axioms expressing constrains, is critical to detecting data errors in LOD KBs. In addition, LOD KBs are only rich in factual information, i.e. raw RDF data, which is relatively abundant and easy to capture, but poor in knowledge models, i.e. ontologies, that make it limited to infer implicit knowledge by reasoning. This raises the demand of ensuring a co-evolution of ontologies and RDF data in KBs of LOD.

The common approach in the organization is to construct or reuse ontologies before filling data in them. This process is similar to the case when a database schema must be designed before a database can be populated. Nevertheless, this approach has some limitations. It is dogmatic in the knowledge organization. More specifically, obtained knowledge models in ontologies can be incomplete when they often do not provide all aspects that are required for specific domains of knowledge.

Also, it does not represent a collaborative effort with actual populated data later.

Objectives

In the context mentioned in Section 1.1 and based on the motivations explained in Section 1.2, a conclusion is derived that it is increasingly important to enhance 1. Introduction ontological knowledge, i.e., schema-level knowledge, for RDF KBs of LOD. Ideally, these new knowledge should respect the existing knowledge along with the data in order to be maximally informative and avoid contradictions. In this sense, another more effective way is to use the facts themselves in LOD to learn new ontological knowledge which is able to account for them. The overall objective of this thesis is to tackle the challenges of learning new ontological knowledge from RDF datasets of LOD. The main research objective raises multiple specific research questions that need to be answered:

• Research Question 1 (RQ 1 ): What kinds of ontological knowledge need to be learned?

• Research Question 2 (RQ 2 ): Which method is optimal to learn this kind of knowledge from RDF data?

• Research Question 3 (RQ 3 ): How is the quality of learned knowledge evaluated?

• Research Question 4 (RQ 4 ): How to evaluate the effectiveness of learning methods?

Contributions

The contributions of this thesis consist of a number of answers to the above research questions:

• Regarding the first question RQ 1 , this thesis is to address the problem of learning axioms which specify constrains describing the relationships between conceptual elements in ontologies and also supporting for reasoning activities.

Axioms are considered as the theory derived from axiomatic statements describing the truth in the particular domain. In the Semantic Web, these axioms are expressed in OWL (Web Ontology Language) so called OWL axioms (introduced in Section 2.2.3). Specially, in the experiments we mainly
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focus, for reasons that will be explained in Chapter 6, on the problem of mining OWL axioms describing the disjointness between classes.

• In order to answer the RQ 2 , after considering the limitations of existing learning methods in general, we propose a completely novel learning model exploiting ideas from a heuristic approach of Evolutionary Computation.

Specifically, we use Grammatical Evolution to learn OWL axioms from LOD.

In particular, we apply this model to mining class disjointness axioms.

• Regarding the third question RQ 3 , we exploit a possibilistic evaluation framework to measure the quality of discovered axioms, that is suitable to comply with the Open World Assumption (OWA) scenario. More specifically, we offer axiom scoring functions based on possibility theory.

• Regarding the fourth question RQ 4 , we built two benchmarks: the subjective and the objective in order to measure the effectiveness of the learning method.

The subjective benchmark is called Gold Standard that is constructed by knowledge engineers. The objective one is developed based on the trainingtesting model in which the test dataset is considered as an objective benchmark.

Publications

Work on this thesis has led to the following publications:

1. 

Thesis Outline

This document is essentially split into three parts. The first part consists of three chapters presenting the basic knowledge and literature review involving the thesis topic. The second part comprises Chapter 4 and Chapter 5 providing formal models used in the thesis; Chapter 6 and Chapter 7 describing a detailed discussion of the contributions of the thesis. The last part is Chapter 8 comprising the conclusions of the thesis and perspectives. The content of the next chapters of the thesis are summarized as follows:

• Chapter 2 introduces the basic concepts relating to the thesis. This includes concepts and notations in terms of ontologies and the Semantic Web technologies.
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• Chapter 3 provides a literature review for this thesis. The content of this chapter is composed of three main parts: (i) ontology learning including recent learning techniques in the context of LOD (ii) the recent studies of axiom learning (ii) mining RDF data.

• Chapter 4 provides a general model based on an instance of an Evolutionary Algorithm, namely Grammatical Evolution(GE), to learn OWL axioms.

• Chapter 5 introduces various evaluation frameworks to axiom scoring, specifically, probabilistic and possibilistic methods.

• Chapter 6 shows the implementations of Chapter 4 and Chapter 5. In particular, two specialized models to discover OWL class disjointness axioms are given. Also, the chapter introduces two benchmarks to evaluate the performance of learning models.

• Chapter 7 introduces a multi-objective extension to the learning models in Chapter 6 called MOGE.

• Chapter 8 summarizes the contributions of the thesis and provides perspectives and future works. Originated in the research problems and the research questions presented in the previous chapter, we investigate essential background to possibly capture the whole content of the thesis. In this chapter, we initially study ontology-based knowledge representation in Section 2.1. Specifically, we investigate the specification of ontologies and a popular language for ontology formalisation, called Description Logics. Section 2.2 presents the concepts and notations concerning the Semantic Web which is the basis for research problem.
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Ontology based Knowledge Representation

Ontologies

Ontologies are considered as conceptual models of things in several domains transformed into machine-interpretable form by means of knowledge representation(KR)

techniques. The term "Ontology" was derived from philosophy where ontology is considered as a philosophical investigation of existence [START_REF] Craig | Ontology[END_REF]. In computer science, there are various definitions of an ontology listed and compared in [START_REF] Guarino | What Is an Ontology? Handbook on Ontologies[END_REF] but the most popular one being known is the definition of Gruber [START_REF] Thomas | Toward principles for the design of ontologies used for knowledge sharing?[END_REF]: "An ontology is a formal, explicit specification of shared conceptualization". In terms of this definition, there are several characteristics of an ontology as follows:

• formality: An ontology provides a formal semantics which is machine-processable and is being interpreted in a well-defined way.

• explicitness: An ontology defines knowledge explicitly to make it accessible for machines.

• sharebility: An ontology captures consensual knowledge, that is, it is accepted by a group

In terms of KR, the conceptualization in the definition refers to knowledge of a domain represented in a declarative formalism, whereas explicit specification reflects in the representational terms for the respective domain of interest [START_REF] Grimm St Stephan | Knowledge Representation and Ontologies[END_REF].

An ontology can be referred to as a formal representation of a shared domain knowledge [START_REF] Lehmann | Perspectives on Ontology Learning[END_REF].

An ontology can be defined as a quadruple 

DLs Knowledge Base

A SROIQ knowledge base (KB) [START_REF] Rudolph | Foundations of Description Logics[END_REF] defined by tuples K = (A, T , R) consists of a set of axioms classifying into three groups:

• Assertional axioms (ABox A): describe a specific state of affairs of an application domain in terms of concepts and roles, i.e assertions about named individuals. They can be concept assertions, e.g. Father(Jim) states that Jim is a father or role assertions, e.g. fatherOf(Jim,John) states that Jim is John's father.

• Terminological axioms (TBox T ): describe the relationships between concepts.

In the most general cases, TBox axioms are divided into two kinds: inclusions and equalities. For example, Mother Parent states the fact that all mothers are parents, while Person ≡ Human states that the two concepts have the same instances. • Relational axioms (RBox R): describe the relationships between relations.
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As for concepts, DLs support role inclusion and role equivalence axioms. For example, the inclusion brotherOf siblingOf states that brotherOf is a subrole of siblingOf. In addition, RBox axioms include role disjointness, e.g. Disjoint(parentOf,childOf) states that nobody can be both a parent and a child of the same named individual. Role inclusion axioms can be complex role inclusion axioms containining role composition, e.g. brotherOf • parentOf uncleOf. More RBox axioms include role characteristeristics such as reflexivity, symmetry and transitivity of roles [START_REF] Hoekstra | Ontology Representation -Design Patterns and Ontologies that Make Sense[END_REF] A pairs of TBox and RBox is the structural and intensional component of conceptual relationships (concepts and roles) as conceptual schemas. Meanwhile, the ABox specifies knowledge at extensional level containing the facts about specific individuals.
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DLs Semantics

The semantics of DLs is defined in a model-theoretic way based on interpretations.

Instead of using default assumptions to fully define one particular interpretation for an ontology [START_REF] Krötzsch | A Description Logic Primer[END_REF], i.e. Closed World Assumption (CWA), where complete information about a given state affairs is provided [START_REF] Keet | Closed World Assumption[END_REF], the DLs semantics refer to all possible situations where the axioms of an ontology would hold, i.e., Open World Assumption (OWA), that relevant to incomplete information about a given state of affairs [START_REF] Dubitzky | Open World Assumption[END_REF]. An interpretation [START_REF] Kazakov | An Extension of Complex Role Inclusion Axioms in the Description Logic SROIQ[END_REF] is a pair I=(∆ I , .I ) where ∆ I is a non-empty set called the domain of interpretation and .I is the interpretation function that maps individual names to elements in the domain. The semantics of complex concepts and roles formalizing the meaning of the SROIQ constructors are listed in the third column of Table 2.2.

Reasoning in DLs

• Satisfaction of Axioms: An interpretation I satisfies an axiom α, i.e., α holds in I (written: I |= α), if it makes the axiom α true (the corresponding condition in Table 2.3 is met) and is considered as a model of that axiom α.

Conversely, an axiom is unsatisfiable if none of the interpretations makes it true.

• Models -An interpretation I is a model of TBox T (written: I |= T ) if it satisfies every axiom in T .

-An interpretation I is a model of RBox R (written: I |= R) if it satisfies every axiom in R.

-An interpretation I is a model of ABox A (written: I |= A) if it satisfies every assertional axiom in A.

-An interpretation I is a model of a knowledge base K (written: I |= K) if it satisfies every axiom in K. • Satisfiability or Consistency:

-A concept C is satisfiable or consistent if it has at least a model.

-K is satisfiable or consistent if it has at least a model.

• Entailment:

-An axiom α is called a logical consequence of a TBox T , i.e., T entails α, if every model of T satisfies α (written: T |= α), i.e. α holds in all the interpretations that satisfy T -An axiom α is called a logical consequence of a RBox R, i.e., R entails α, if every model of R satisfies α (written: R |= α), i.e. α holds in all the interpretations that satisfy R -An axiom α is called a logical consequence of a knowledge base K, i.e., K entails α, if every model of K satisfies α (written: K |= α), i.e. α holds in all the interpretations that satisfy K
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The Semantic Web

A set of technologies, tools and standards of the Semantic Web is organised into the so called Semantic Web stack. Figure 2.1 illustrates different layers of the SW architecture. The tasks and features of each layer are describes as follow:

• The bottom layers focus on the syntactic interoperability by using Unicode, URI and XML.

• The middle layers concern technologies to enable building semantic web applications such as a standard model for data interchange on the Web RDF, ontology languages RDFs and OWL, a query languages SPARQL used to query any RDF-based data and rule languages RIF/SWRL. One notable point is the role of ontologies in this critical layer. Functionally, ontologies provide data schemas and a set of conceptual vocabularies with explicit semantics which fit the goal of SW in terms of comprehensive and transportable machine understanding.

• The top layers include Logic, Proof and Trust, are currently being researched and are being constructed. In this, the Logic layer enables intelligent reasoning by creating logical relations that cannot be defined in OWL. The Proof layer concerns the rules and evaluates cooperating with the Trust layer to define the credibility of the given proof.

Next, we consider in detail technologies for representing resources and knowledge in the Semantic Web: Uniform Resource Identifiers (URIs), Resource Description Framework (RDF), RDF Schema (RDFS) and Web Ontology Language (OWL).

Afterwards, the query language SPARQL is also explained.

Uniform Resource Identifiers (URIs)

In the SW, each entity is defined by a specific name identified, i.e. URI (Uniform

Resource Identifier).

A URI [START_REF] Berners-Lee | RFC3986 -Uniform Resource Identifiers(URI): Generic Syntax[END_REF] consisting of a string of characters can be identified as a locator (URL-Uniform Resource Locator), a name (URN-Uniform Using URIs to identify entities and relations between them is essential for a global and unique namespace. The use of such a scheme greatly reduces the ambiguity, e.g. homonym problem, due to distributed data representation in the traditional databases like relational databases.
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Resource Description Framework

Resource Description Framework (RDF) [W3C14a] [PF02] is mainly a data model of SW for semantically representing resources on the Web. RDF is a Web-oriented framework and identifies resources and relationships between them, i.e. properties, using URIs [START_REF] Fabien | Semantic Annotation and Retrieval: RDF[END_REF]. In terms of the structure, RDF uses as , where:

• the subject is a URI or a blank node.

• the predicate is a URI.

• the object is a URI, a literal or a blank node.

The RDF data model can be presented in the form of a directed-labeled graph, i.e. RDF graph1 Example 2.2.1 : The content of the sentence "The 1997 film Titanic was produced by James Cameron" can be expressed in machine-accessible form as an RDF statement as follow:

• the subject is "Film_Titanic_1997"

• the predicate is "hasProducer"

• the object is "James_Cameron" Each part of the statement can be described in the form of URIs.

• the subject is "http://dbpedia.org/resource/Titanic_(1997_film)"

• the predicate is "http://dbpedia.org/ontology/producer"

• the object is "http://dbpedia.org/resource/James_Cameron"
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or in the shorter representation associated with the prefix aliases,2 PREFIX dbr: http://dbpedia.org/resource/ PREFIX dbo: http://dbpedia.org/ontology/ • the subject is "dbr:Titanic_(1997_film)"

• the predicate is "dbo:producer"

• the object is "dbr:James _Cameron" A notable point is that RDF triples are interpreted according to the open-world assumption (OWA). In this sense, the RDF semantics assumes that whatever is not explicitly stated could be true [START_REF] Krummenacher | The Resource Description Framework and its Schema[END_REF]. In Example 2.2.1, the fact in RDF triple indicates that "Titanic was produced by James Cameroon" does not mean that only James Cameroon is the producer; it only means that there is at least one named producer.

Ontology Modeling Languages: RDFS and OWL

RDF Schema (RDFS)

RDFS [W3C14b] is a set of of data-modelling vocabularies for RDF data which is a semantic extension of RDF. RDFS is used to declare and describe the resource types , i.e. classes and resource relationship, and attribute types, i.e. properties, and to organise them in hierarchies [START_REF] Fabien | Semantic Annotation and Retrieval: RDF[END_REF]. These schema are also published and exchanged in RDF. However, RDFS has expressive limitations compared with other ontology model languages like OWL in that it lacks some schema definitions in RDFS such as equality of individuals, equivalence or disjointness of properties and classes which restrict in reasoning. Hence, RDFS is used to define simple ontologies, i.e. lightweight ontologies [START_REF] Volz | Views for Light-weight Web Ontologies[END_REF].
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Web Ontology Language (OWL)

OWL [W3C04b][W3C12a] is a family of knowledge representation languages for publishing and sharing ontologies. OWL is a vocabulary extension of RDF and RDFS but much more expressive regarding the description of classes and properties.

OWL is based on DLs and its profile or sub-languages or species (see below) have been defined as syntatic variants of certain DLs.

OWL Syntaxes

OWL supports a variety of syntaxes which cover from the high level syntaxes aimed to the structural specification, e.g., functional style syntax, to exchange syntaxes for general use, e.g., Manchester OWL syntax, OWL/XML, RDF Turtle and RDF/XML. The description of syntaxes is illustrated in Table 2.4. In the 

OWL Versions

Following W3C recommendations, two versions of OWL, namely OWL 1 [W3C04a] and OWL 2 [W3C12c], have been proposed in which not only inherit a number of vocabularies from RDFS but also provide new sophisticated terms to automated reasoning support. The first version of OWL can be classified into three sublanguages called"profiles" corresponding to the degree of expresiveness: OWL 1 Full, OWL 1 DL and OWL 1 Lite. Each of these species is a syntactic extension of its simpler predecessor and also RDFS. The differences between three variants of OWL 1 are listed as follow:

• OWL 1 Lite is the syntactically simplest species of 

Syntaxes

Specification

Examples [W3C12b] Functional Style is a concrete syntax for OWL ontologies which closely obeys the structural specification and is used in the definitions of the semantics of OWL 2 ontologies [START_REF] W3c | Structural Specification and Functional-Style Syntax[END_REF].

EquivalentClasses( :Mother ObjectIntersectionOf(:Woman :Parent)

)
Manchester OWL is a user-friendly syntax used to describe OWL ontologies.

It is based on a single construct known as frame containing all information about particular class, property or individual [START_REF]OWL 2 Web Ontology Language Manchester Syntax[END_REF]. 
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• OWL 1 DL is much more expressive than OWL Lite and is equivalent to SHOIN (D) in DLs. It includes all OWL constructors used only under some restrictions, e.g. type separation in which a class cannot also individual or property and a property can not also be an individual or class. Also, it allows cardinality statements for arbitrary non-negative integers. OWL 1 DL supports automated reasoning, i.e. possible to automatically compute the classification hierarchy and check for inconsistencies in an ontology.

• OWL 1 Full is the most expressive OWL 1 sub-language. It is used in the situation referring to very high expressiveness but no computational guarantees. Thus, it is not possible to perform automated reasoning on OWL 1 Full ontologies.

Although OWL 1 has been successful, there have been several limitations in its design [START_REF] Cuenca | OWL 2: The next step for OWL[END_REF]:

• OWL 1 lacks expressivity, i.e., the absence of some constructors for modeling complex domains, e.g. constructors for qualified cardinality restrictions, or the absence of relational expressivity in properties, datatype or key constrains on data properties.

• OWL 1 has syntax issues in using two syntaxes: abstract syntax and OWL 1 RDF that their relationship is rather complex causing problems in transforming an ontology from one syntax into the other, e.g. RDF represents everything using triples to specify relationships between pairs of objects, whereas, many OWL 1 constructs cannot be represented using triples without the introduction of new objects.

• OWL 1 disallows the usage of annotation properties in OWL 1 DL axioms.

Also, OWL 1 does not allow some important axioms to be annotated, for instance, to represent provenance information, e.g., who wrote a particular axiom, or for language extensions, e.g., to represent the confidence in the validity of axioms.
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• 
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• OWL 2 DL is defined as the primitives for OWL 2 and is backward compatible with OWL 1 DL. In DLs, it corresponds to SROIQ(D), which encompasses SHOIN (D), i.e. OWL 2 DL contains OWL 1 DL. OWL 2 DL is considered as a very expressive language with high computational complexity of reasoning.

• OWL 2 Full, like the previous version OWL Full, is not decidable and rarely used in modelling ontologies.

• OWL 2 RL, also called OWL-based rule language, which provides restrictions on OWL 2 using rule based technologies such as DBMS, Jess and Prolog.

• OWL 2 EL, based on the EL + + DL, defines restrictions on classes used in axioms. It provides polynomial-time reasoning for schema and data based on terminological expressivity. OWL 2 EL is particularly suitable for ontologies with a large TBox, i.e. large concept part.

• OWL 2 QL is relevant to a standard relational query language, i.e. SQL rewriting on RDBMS for query answering. It is useful for lightweight ontologies where there is a large ABox, i.e. large number of individuals.

In this thesis, we investigate OWL 2 DL, which is often used for OWL 2 ontologies, and the designation OWL 2 DL will be shortened to OWL 2.

The model-theortic semantics of the various constructors in OWL 2, i.e., OWL 2 DL, is shown in Table 2.5. In this table, the first column presents OWL 2 expressions in the functional style syntax, the second column contains their corresponding SROIQ(D) DLs syntax, and the last column shows their semantics.

OWL Axioms

In contrast to a DL knowledge base, where conceptual and instance level statements are usually split into, respectively, a set of TBox-RBox axioms and a set of ABox assertions, an OWL 2 ontology consists of a single set of axioms known as OWL 2 axioms that includes both conceptual (in terms of classes and properties) and instance (in terms of intances of classes and properties) level statements. There are The general SPARQL queries comprise three major parts [START_REF] Hitzler | Foundations of Semantic Web Technologies -Chapter 7: Query Language[END_REF]:

Foundation

Foundation

• The first one specifies a set of namespace prefix, defined by the keyword PREFIX.

• The second one defines the query form with four different types:

-SELECT query form is used to return variables and their bindings in a query pattern match.

-CONSTRUCT query form builds an RDF graph constructed by replacing variables in a set of triple templates.

-DESCRIBE query form returns the description of query pattern resource found.

• The third one is the WHERE clause which initiates the actual query, i.e. query graph pattern, containing a BGP and enclosed in curly braces.

We consider an example of the structure of SPARQL query illustrated in Figure . 2.3: Along with BGPs, SPARQL allows us to build more complex graph patterns(CGPs)

combining multiple BGPs to construct various query graph pattern of WHERE clause:

• The query graph pattern can be a union of BGPs: P1 UNION P2, where P1, P2 are BGPs.

• The query graph pattern have optional BGPs which are not required but they can allow the results of mandatory patterns, i.e. patterns without OPTIONAL operators, to be extended with additional information: P1 OPTIONAL P2, where P1, P2 are BGPs.

• The graph pattern contains several restrictions on the patterns results by using operator FILTER: P FILTER (E), where P is a BGP and E are restriction expressions.

Also, SPARQL provides several operators to modify the query results:

• DISTINCT operator is used to eliminate duplicate solutions from the solution set.

• REDUCED operator is used to permit duplicate results to be eliminated.

• ORDER BY operator is used to order the solutions following to a set of expression and an optional order modifier, i.e. either ascending by ASC() or descending by DESC().

• OFFSET operator is used to split all solutions into a number of solution subsets with a specific size.

• LIMIT is used to give the largest number of solutions to be allowed to return.

• REGEX operator is used to match a text against a regular expression.

In As the main research topic of this thesis dissertation is to learn new ontological knowledge, i.e., schema-level knowledge, for KBs of LOD from their RDF datasets themselves, in this chapter we provide an overview of the research directions concerning learning ontological knowledge from LOD, in particular, from RDF data. In the first part (Section 3.1), we offer a view of the learning of ontologies, in particular, in the context of LOD and then adopt recent popular learning techniques.

In Section 3.2, we review recent various studies of learning separately schema-level axioms as a little step for enriching the entire ontology. In Section 3.3, we survey the studies concerning mining RDF data for new knowledge.

Literature Review

Ontology learning

In reality, the development (construction or enhancement) of ontologies is an attracting research problem which concerns the activities of knowledge acquisition from various sources (human knowledge, diverse data sources or different existing knowledge sources, etc.). However, this process is limited by the obstacles arising from the requirement of involving domain experts and knowledge engineers, which is highly expensive and time-consuming. These obstacles known as knowledge acquisition bottleneck [START_REF] Lehmann | Perspectives on Ontology Learning[END_REF] may be tackled by the set of methods and techniques that go under the name of ontology learning.

Ontology learning [MS01; MS04] is the field of research aiming to automatically extract formal schema information from scratch or from existing ontologies.

Methods and techniques in ontology learning, by adopting learning algorithms from several existing knowledge and information sources, can help alleviate the overall cost of ontology construction by reducing or eliminating altogether the efforts of domain experts. Ontology learning may be viewed as a special case of knowledge discovery from data (KDD) or data mining in which ontological elements (conceptual knowledge) are extracted from data and an ontology is constructed from them.

Ontology learning in the LOD context

An interesting research direction considered as a little step in ontology learning involves the tasks of ontology alignment and matching. These tasks concern the process of determining correspondences between concepts in independent ontologies of LOD. Specifically, they include finding schema alignments [Jai+11; ZI11; SAS11; SE11; Hec+15; SK17] or finding alignments between concepts defined as disjunctions of conjunctions of (RDF) types and value restrictions [START_REF] Parundekar | Discovering Concept Coverings in Ontologies of Linked Data Sources[END_REF] when links between the datasets of LOD are almost exclusively on the level of instances and schemalevel information is being ignored [START_REF] Jain | Ontology Alignment for Linked Open Data[END_REF].

In addition, due to the lack of sophisticated schemata, the focus of ontology learning spins around enriching schemata for existing KBs known as knowledge base enrichment (or ontology enrichment). Having such schemata allows more powerful 3. Literature Review querying, consistency checking and debugging as well as improved inference [START_REF] Bühmann | Pattern Based Knowledge Base Enrichment[END_REF].

Ontology enrichment is a sub-discipline of ontology learning which typically uses already existing data, i.e., RDF datasets, as input to detect hidden schemata, i.e., schema-level axioms, to refine an existing ontology. This process of enrichment begins with the learning step concerning the discovery of schema-level axioms before performing the placement step in terms of finding the appropriate place to use them in the original ontology [START_REF] Idoudi | Association rules-based Ontology Enrichment[END_REF]. This thesis only focuses on the former step involving learning schema-level axioms. 

Learning techniques

Literature Review

In general, although ILP-based approaches perform very well in the generation of highly axiomatized ontologies, they are less scalable and robust when they need to handle the huge data of LOD. One of the reasons stems from their dependency on reasoning techniques. In addition, most ILP-based approaches are supervised, which requires determining positive and negative examples. This faces several obstacles when working on semantic KBs in OWA where the absence of instances can not be used as negative examples either. A classic statistic-based approach was proposed on statistical correlation analysis to learn disjointness axioms [START_REF] Fleischhacker | Inductive Learning of Disjointness Axioms[END_REF]. Later approaches employed statistical schema induction (SSI) via Association Rule Mining (ARM) to learn concept-centric [VN11;

Statistic-based Methods

Statistic

VFS15] and property-centric [START_REF] Fleischhacker | Mining RDF Data for Property Axioms[END_REF] axioms from association rules. Specifically, instance data contained in LOD are translated into transaction tables. Association rules are discovered from these databases via ARM methods which point out certain conditions to hold in the data. These approaches rely on the assumption that the data contained in the RDF repository obeys the rules of a schema whose semantics are found in the patterns of its usage in the repository, i.e. the Closed World Assumption (CWA). This approach focuses on weakly expressive languages.

The restrictions of this approach are its CWA and mutual interactions between discovered axioms, since they are induced independently.

Schema-level axiom learning

In ontology learning, enriching schema-level knowledge for RDF knowledge bases 

Property Axiom Learning

An increasing amount of research concentrates on discovering different types of property axioms. [START_REF] Fleischhacker | Mining RDF Data for Property Axioms[END_REF] applied statistical schema induction via association rule mining to discover property axioms (subsumption, disjointness, transitivity, domain, range, symmetry, asymmetry, inverse, functionality, inverse functionality, reflexivity and irreflexivity) from RDF data. Also, some of works concentrate on discovering simple subsumption axioms used for the hierarchy organization in the ontology and equivalent axioms aiding for matching and aligning across ontologies mentioned above. PARIS [START_REF] Suchanek | PARIS: Probabilistic Alignment of Relations, Instances, and Schema[END_REF] proposed a probabilistic model for discovering equivalent predicates (i.e., equivalence properties axioms) across two datasets based

Literature Review

on estimating the overlap between instances of two properties in the datasets.

[KPV17] proposed a supervised machine learning approach for relation alignment, called SORAL, based on the overlap of instances across disparate linked datasets and different schemas to discover subsumption and equivalent property axioms.

Concerning the problem of defining the domain and range of properties used in multi-context, [START_REF] Tonon | Fixing the Domain and Range of Properties in Linked Data by Context Disambiguation[END_REF] induce domain and range restrictions from RDF data used to improve the correctness of domain and range in LOD. The occurrences of an original property can be replaced by using the new sub-properties corresponding to particular contexts. Similarly, Topper et al. [START_REF] Töpper | DBpedia ontology enrichment for inconsistency detection[END_REF] proposed a method based on the class types of the instances in the subject and object of a property to suggest the domain and range of properties in LOD.

Class Axiom Learning

Similarly to property axioms, a large number of approaches concerns discovering Other works include Redescription Mining (RM) [START_REF] Reynaud | Redescription Mining for Learning Definitions and Disjointness Axioms in Linked Open Data[END_REF] based on mining alternate descriptions from two datasets related to the same set of individuals, in order to discover definitions of classes ( i.e. equivalent axioms) and incompatibility (i.e., disjointness axioms) between classes or [START_REF] Rizzo | Terminological Cluster Trees for Disjointness Axiom Discovery[END_REF] which provided an unsupervised approach to disjointness learning based on terminological cluster trees.

RDF Mining

Under the different point of view of the field of KDD and data mining, ontology learning from RDF data of LOD can be regarded as "RDF mining" with the A considerable number of research involving Association Rule Mining (ARM) [START_REF] Agrawal | Fast Algorithms for Mining Association Rules in Large Databases[END_REF] aims at finding out frequent patterns or interesting relations between variables from given datasets using some measures of interestingness. Accordingly, association rules (ARs) will satisfy the prior minimum support and confidence from a given

dataset. An ARM problem can be divided into two tasks: (i) finding itemsets whose occurrences exceed a prior threshold in the datasets; those itemsets are One notable point is that RDF data can also be regarded as an oriented, labeled multi-graphs. As a consequence, there have been efforts in mining RDF graphs. This research direction focuses on using data mining methods for extracting complex graph patterns known as graph pattern mining from RDF graphs. Mined graphs [Zha+12; Ram+05; Bas+10] characterize instance-level data but do not support any inferential mechanism on data. For example, [START_REF] Zhang | Mining Link Patterns in Linked Data[END_REF] allows to detect interesting associations between elements in RDF graphs or [START_REF] Ramakrishnan | Discovering informative connection subgraphs in multi-relational graphs[END_REF][START_REF] Basse | DFS-based frequent graph pattern extraction to characterize the content of RDF Triple Stores[END_REF] detect informative structures within RDF graphs. In addition, there are a few studies that refer to mining different types of restrictions axioms based on knowledge graphs like [START_REF] Potoniec | Mining Cardinality Restrictions in OWL[END_REF], involving the extraction of cardinality restrictions in order to extend an ontology describing the graph or [START_REF] Ell | Statistical Induction of Coupled Domain/Range Restrictions from RDF Knowledge Bases[END_REF], inducing independent domain and range restrictions as well as coupled domain/range restrictions from an RDF graph. However, the focus of this thesis is not on the graph structure of the knowledge, i.e., knowledge graph using the RDF formalism but on its semantics and on the logical schema-level knowledge.

Summary

In this chapter, we provided a broader view of ontology learning in the context of LOD. Specifically, we studied recent learning and mining techniques from RDF data. Also, we reviewed recent works concerning learning various types of schemalevel axioms. In reality, recent approaches focus on the use of inductive learning methods for discovering various ontological knowledge from the linked data itself, thus avoiding a manual creation. In addition, each ontology learning approach outperforms others in different aspects. There is no approach that covers all 3. Literature Review of the following capabilities: handling the massive data of LOD, using highly expressive languages like semantic OWL, not requiring the supervision of domain experts, handling uncertainty of data under the OWA, etc... In this thesis we refer to the model of inductive learning of rich representations, along with the ability of handling massive datasets.

4

Learning OWL Axioms From RDF data 

Introduction

With respect to the target of our research, we adopt the discovery of general OWL axioms, which can be considered as a generalization of all the learning targets from RDF data. The efforts towards discovering knowledge from RDF data may be regarded as a form of inductive reasoning, in that it proceeds from specific instances of concept and relations (RDF triples) to broader generalizations (OWL 2 axioms).

In Machine Learning (ML), a computer system can be viewed as an inductive machine which is a device used to perform inductive inferences, i.e., inductive 4. Learning OWL Axioms From RDF data learning. At this time, ML provides the theoretical and practical framework within which the task of inductive learning from different datasets is addressed algorithmically. The problem we study may be stated in the view of ML as the learning task of axioms from RDF data sources in which axioms are expressed in the form of logical programs in OWL (introduced in Section 2.2.3). This task is viewed as an inductive synthesis of logic programs, which can be found in recent problems of ILP. In terms of ILP learning settings, the learning from entailments is the most appropriate for our case. In the context of the imperfection of RDF data repository containing noisy and incomplete data, axioms will be regarded as a tentative explanation of how knowledge may be expanded through the observation of facts. Precisely, the entire RDF repository is considered as a set of interpretations that agree with the facts contained in it.

However, induction in ML does not only consider the inference from observations to induce hypotheses and strive to justify them from the test but also includes the search for hypotheses in a large set of possibilities [START_REF] Bergadano | The Problem of Induction and Machine Learning[END_REF]. In this sense, axiom induction is also regarded as a search problem, whereby a hypothesis space is traversed to find plausible axioms. Thus, the settings of learning algorithms are essentially to select an effective searching algorithm. In reality, the simplest approach is based on deterministic generate-and-test methods, which essentially perform an exhaustive search. Nevertheless, such methods are computationally too expensive to deal with massive datasets [START_REF] Philip | Scaling Up Inductive Logic Programming: An Evolutionary Wrapper Approach[END_REF]. Several proposals coupled with heuristic pruning or syntactic biases have been used to handle the complexity of the search in structuring and traversing the hypothesis space, but they limit the search exploration and may give rise to the problem of local optima. Although the expressive power of the representation is taken into account in ILP, more powerful search methods are required for handling the large search space and for inducing more complex axioms. Another line of research is the grammar-based GP methods that are developed on the ideas of declarative description for the search space which are represented in traditional GP or grammatical biased ILP [START_REF] Cohen | Grammatically Biased Learning: Learning Logic Programs Using an Explicit Antecedent Description Language[END_REF]. Specifically, grammars are used to guide the formation of a hypothesis in the form of programs or to direct the search for programs in the hypothesis space, i.e. the search bias. In particular, context-free grammars were used in [START_REF] Whigham | Inductive bias and genetic programming[END_REF][START_REF] Whigham | Search Bias, Language Bias and Genetic Programming[END_REF] to control the search algorithm of GP, known as context-free grammar genetic programming (CFG-GP).

Another combination of GP and ILP based on a formalism of a logic grammar in LOGENPRO [START_REF] Leung | Combining genetic programming and inductive logic programming using logic grammars[END_REF][START_REF] Leung | Applying logic grammars to induce sub-functions in genetic programming[END_REF] was proposed to induce logic programs from imperfect data. Instead of using any specific algorithms of ILP, it imitates the mechanism of logic programming to describe the grammar, but does not possess any characteristics completely concerning logic programming environment.

A recent idea of using grammar-based GP also known as Grammatical Evolution In this chapter, we first explore the fundamental characteristics of GE introduced in Section 4.2. Then, the deployment of GE to develop a general model in terms of automatically discovering OWL axioms from RDF datasets of LOD is introduced in
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Section 4.3. In it, we investigate how to formulate axioms in OWL language based on the grammar in addition to an evolutionary search of OWL axioms.

Grammatical Evolution

Grammatical Evolution (GE for short) [OR01; DOB09; RCO98] is known as a relatively new Evolutionary Computation (EC for short) technique pioneered by Michael O'Neill and his collaborators. It is a grammar-based form of Genetic Programming (GP for short) [Koz92; VP12] that allows the exploration of the space of computer programs and differs from traditional GP in that it distinguishes the search space from the solution space, through the use of a grammar-mediated representation. At the starting point of the GE process, known as an initialization, a population consisting of individuals maintained within the search space are randomly initialized, which are then translated into corresponding programs based on a given grammar. The generated programs are then "bred" using iterative improvement of a population of programs, known as an evolutionary process. This process will stop when it meets the termination criterion. An illustration of the GE mechanism is shown in Figure 4.1

Grammar-mediated Representation

In GE, the search space contains variable-length binary strings, i.e., genotypic individuals or genotypes, which are decoded to generate programs (hypotheses), viewed as phenotypic solutions or phenotypes in the solution space through a transformation called mapping process. According to it, the variable-length binary string genomes, or chromosomes, are split into consecutive groups of bits, called codons, representing an integer value, used to select, at each step, one of a set of production rules, from a formal grammar, typically in Backus-Naur form (BNF), which specifies the syntax of the desired programs.

•A BNF grammar is a context-free grammar consisting of terminals and nonterminals. A grammar can be represented in the form of a four-tuple {N, T, P, S}, where •During the mapping process, codons are used consecutively to choose production rules from P in the BNF grammar according to the function: The genome is traversed consecutively by this procedure until eventually there is no non-terminal left in the expression.

production = codon
During the mapping process, it is possible for individuals to run out of codons. In this case, codons can be reused two or more times, a technique called wrapping [OR01; DOB09]. A wrapping operator is applied and the reading of codons will repeat from the beginning of the chromosome, until the maximum allowed number of wrapping events is reached. An incomplete mapping will happen when the threshold on the number of wrapping events is reached but the individual is still not completely mapped. Such individual is considered invalid and is assigned the lowest possible fitness.

Evolutionary Process

After the initialization of a population of individuals, an evolutionary process is iteratively refined with a series of operations in order to identify a set of highest level of individuals. The evolutionary process repeats until the termination criterion can be met as follows:

• reaching a pre-defined maximum number of generations, i.e. iterations. The best solution in the final generation is considered as the optimal solution.

• meeting the optimal solutions.

In practice, there are many different variants of the algorithmic elements used for GE.

However, we are not ambitious in traversing all their variants but only follow some particular variants to solve the problem of axiom discovery, described in Section 4.3.

Terminology

• Population is a subset of all individuals that are then decoded into programs, i.e., solutions (hypotheses), to the given problem.

• Generation is a complete cycle corresponding to an iteration step of the evolutionary process which consists of the reproduction and evaluation of individuals.

• Codon is a consecutive group of 8 bits representing an integer value
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• Chromosome is a variable length binary string that is used to represent individuals. A chromosome is made up of a sequence of codons.

• Genotype is a solution representation in the search space in which the solution is represented in a way that can be easy for a machine to process and compute.

• Phenotype is a solution representation in the solution space in which the solution is represented in the form of programs mapped from the individual's genotype through a mapping operation.

• Crossover, known as one type of variation operator, is a form of recombination where two parents (individuals) exchange genes to produce two offspring (new individuals) according to a given probability distribution. Crossover in GE can be applied at the genotypic level as the standard crossover of EA, or at the phenotypic level, like the sub-tree crossover of GP.

• Mutation is a variation operator which changes the information contained in the genome of a parent according to a given probability distribution.

• Fitness is an evaluation of the quality of individuals based on a set of objective values representing a function also called fitness function. This operation applies directly to the phenotypic solutions.

Grammatical Evolution Implementations

Currently, there exist some publicly available implementations of GE, namely AGE 

Grammatical Evolution to Search for OWL Axioms

Once presented the GE framework above, we formulate OWL axiom discovery from a given RDF dataset as a GE problem where the definition of "programs"

or "phenotypic solutions" in GE are OWL axioms whose syntax is defined by a BNF grammar. The first essential task before performing the GE process is to construct a BNF grammar for structuring well-designed axioms in OWL, explained in Section 4.3.1. A description of the GE framework involving discovering OWL axioms is then presented.

Grammar Construction

The syntax of the logical language from which the axioms are to be generated in OWL is given by a functional style grammar expressed in the extended BNF notation used by W3C [START_REF] W3c | Structural Specification and Functional-Style Syntax[END_REF]. The grammar specifications of OWL and its fragments are published by W3C in the standard notation obeying the conventions indicated in Table 4.1. However, only a part of productions of the W3C grammar is considered in 

Axiom := ClassAxiom | ObjectPropertyAxiom | DataPropertyAxiom | HasKey | Assertion
Each category of axioms consists of different types of axioms expressed in the axioms-level productions: All productions are related to formulating expressions, data ranges, individuals are categorized to the expression-level productions.

ClassAxiom := SubClassOf | EquivalentClasses | DisjointClasses | DisjointUnion ObjectPropertyAxiom := SubObjectPropertyOf | EquivalentObjectPropertyOf | DisjointObjectPropertyOf | ObjectPropertyDomain | ObjectPropertyRange | InverseObjectProperties | FunctionalObjectProperty | InverseFunctionalObjectProperty | ReflexiveObjectProperty | IrreflexiveObjectProperty | SymmetricObjectProperty | AsymmetricObjectProperty | TransitiveObjectProperty DataPropertyAxiom := SubDataPropertyOf | EquivalentDataPropertyOf | DisjointDataPropertyOf |

Example 4.3.2 An instance of the expression-level productions concerning Class-Expression:

ClassExpression := Class | ObjectIntersectionOf | ObjectUnionOf | ObjectComplementOf | ObjectOneOf | ObjectSomeValuesFrom | ObjectAllValuesFrom | ObjectHasValue | ObjectHasSelf | ObjectMinCardinality | ObjectMaxCardinality | ObjectExactCardinality | DataSomeValuesFrom | DataAllValuesFrom | DataHasValue | DataMinCardinality | DataMaxCardinality | DataExactCardinality

Dynamic Productions

Dynamic productions are production rules for the low level non-terminals, which we called primitives. These primitives can be:

• Class -the IRI of a class mentioned in the RDF store, including owl:Thing.

• ObjectProperty -the IRI of an object property used in the RDF store.

• DataTypeProperty -the IRI of a data type property used in the RDF store.

• NamedIndividual -the IRI of an individual appearing in the RDF store.

• Literal -any literal apprearing in the RDF store These production rules are automatically built at run-time by querying the SPARQL endpoint of the RDF repository at hand as follow: In addition, in order to combat the loss of fittest axioms as a result of the application of the variation operators, an elitism selection can be also applied to copy a small proportion pElite of the best axioms into the next generation (line 7-8 of Algorithm 1). In the remaining part of the population, the elimination of duplicates is carried out to ensure only distinct individuals will be included in the candidate list for parent selection. 

Variation Operators

• Crossover: We consider two standard variants employed for the function Crossover(parent1, parent2) (line 16 of Algorithm 1) in terms of GE, namely single-point crossover [START_REF] Michael | Crossover in Grammatical Evolution: The Search Continues[END_REF] and sub-tree crossover as follows:

-Single-point crossover can be employed in the search space of genotypes, whereby one crossover point on the chromosomes of both parents is chosen Random crossover points are picked up from the chromosomes. The tree-nodes are relevant to the chosen crossover points in the chromosomes. The random point chosen from the second chromosome is only a starting point from which a matching type with the random point of the first one will be searched. The search runs right and left of the point on the second chromosome evenly on both sides to find the nearest type that matches. As the crossover-point is chosen from the list of used codons, this will always find the node in the tree, otherwise, this will find the tree-node nearest to the chosen crossover point that has the same type. The crossover swaps selected sub-trees of the same type in parent-trees with probability pCross to create two offspring-trees.

The offspring trees are then serialized back to the original representation of genotypes.

• Mutation: a standard single-point mutation in Mutation(of f spring) operator (line 17 of Algorithm 1) is applied to the offspring genotypes of crossover with probability pMut. In the selected individual for the mutation, a codon is selected at random, then is replaced with a new randomly generated codon.

After carrying out variant operators (crossover and mutation), well-formed individuals will then be generated syntactically from the new genotypes in the genotype-to-phenotype mapping process. Specifically, the transformations from offspring genotypes into phenotypic axioms in OWL are performed by executing the Create_New_Axiom() operator (Algorithm 2) again multiple times with the offspring chromosomes as input.

Replacement

In order to preserve population diversity and prevent premature convergence, a variant using the Crowding method is embedded in the survival selection. In terms of the properties of the Crowding method, there are two main steps, namely repairing and replacing. In the repairing phase, new individuals, i.e. offsprings, are paired with individuals in the current population, i.e. parents, according to a similarity metric. Specifically, the distances between parents and children in a family are computed. In the replacement phase, each offspring competes with its most similar peers to be selected for inclusion in the population of the next generation. Specifically, we follow the representative Crowding method called Deterministic Crowding (DC) method [START_REF] Samir | Crowding and Preselection Revisited[END_REF] developed by Mahfoud. In DC method, the replacement rule is deterministic, and always picks the individuals with the higher fitness scores. Algorithm 3 describes this approach in detail.
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Algorithm 3: Crowding (parent1, parent2, offspring1, offspring2) Input: parent1, parent2, child 1, child 2 : a crowd of individual axioms Output: A: A: ListWinners-a list containing two winners of individuals

1 d1 ← Distance(parent1, child1) + Distance(parent2, child2) 2 d2 ← Distance(parent1, child2) + Distance(parent2, child1) 3 if d1 > d2 then 4 ListW inners[0] ← Compare(parent1, child1) 5 ListW inners[1] ← Compare(parent2, child2) 6 else 7 ListW inners[0] ← Compare(parent1, child2) 8 ListW inners[1] ← Compare(parent2, child1) 10 10 return ListW inners
The Distance(parent, child) operator (line 1-2 of Algorithm 3) define the distinct between individuals in the pair (parent, child) which can be defined for genotypic or phenotypic distance. According to this, the genotypic distance between individuals can be quantified as the Hamming distance [START_REF] Hamming | Error detecting and error correcting codes[END_REF], which is much faster and easier to compute. On the other hand, computing distance at the phenotypic level can be based on the computation of Levenshtein distance (Edit distance) [START_REF] Vladimir I Levenshtein | Binary Codes Capable of Correcting Deletions, Insertions and Reversals[END_REF] with the expectation of obtaining more accurate results. The Compare(parent, child) operator (line 3-4 and 6-7 of Algorithm 3) defines which individual in the pair of (parent, child) has the higher fitness value.

Fitness Evaluation

Fitness evaluation is determined in different quality criteria. The relations between different quality measurements are represented through a fitness function used to quantify the fitness of individuals. In general, a high fitness indicates that an axiom is meaningful (general and accurate) , thus, a fitness function is used for scoring axioms through at least two metrics of generality and accuracy, which are based on the evidence available in the form of a set of facts contained in a chosen RDF dataset, known as axiom testing. A detailed description of various evaluation frameworks for candidate OWL axioms will be introduced in next Chapter 5.

Summary

This chapter provides a formal GE framework for discovering OWL axioms. It formally defines a learning model from the perspective of the GE approach. Chapter 6 and Chapter 7 later will specialize this framework and incorporate it into a multi-objective optimization framework, respectively, to apply to learning OWL class disjointness axioms. 

Learning OWL Axioms

Introduction

Along with the discovery of OWL axioms, there exists a need for evaluating the quality of discovered axioms. On the one hand, the evaluation of induced axioms can be verified by looking at their interactions with the background knowledge (TBox) and also mutual interactions between them. Some logical quality measures proposed in [SSB15; SS17] involve this evaluation model as follow:

• consistency: verifying whether axioms are consistent with the background knowledge.

Axiom Evaluation

• redundancy: verifying whether axioms are redundant with respect to the existing knowledge.

• logical strength: verifying whether a set of axioms is weaker (more general) than another set of axioms.

• dissimilarity: measuring how "dissimilar" axioms are with respect to the TBox. The more dissimilar they are, the more interesting the axioms are for the TBox.

• complexity: measuring the complexity of TBox added by the new axiom, compared to the old TBox, by quantifying how many entailments the new TBox has.

In addition, the quality of generated axioms also depends on the data, which can be incorrect, noisy and incomplete. In reality, in [SSB15; SS17] statistical quality criteria consisting of the support, the coverage, the contradiction were also proposed to measure how well the data in the ABox supporting axioms take the background knowledge in the TBox into account. However, the evaluation models based on the mentioned quality measures critically rely on the reasoning mechanism which would be expensive. Also, the background knowledge (terminology) can be incomplete, thus, using it to evaluate new induced axioms respecting the OWA can lead to misleading results. Hence, ignoring the use of reasoning and the existence of prior knowledge, the validation process of candidate axioms should consist of automatically checking whether they fit or explain the available RDF repository, known as axiom testing against RDF data [START_REF] Andrea | Possibilistic testing of OWL axioms against RDF data[END_REF], which would provide a cheap and scalable assistance. This approach corresponds to the hypothetico-deductivism1 method of hypothesis testing which is used to assess hypotheses in the light of empirical data, i.e., RDF data. According to this approach, evidence e confirms a hypothesis, i.e., an axiom, h if the latter entails it, i.e h |= e, and dis-confirms it if the former entails the negation of the latter, i.e. e |= ¬h.

Axiom Evaluation

In addition, confirmation and falsification are strategies for testing hypotheses and describing the results of those tests. More specifically, confirmation is the act of using evidence to verify that a hypothesis is true or approximately true, whereas falsification is the act of defining that a hypothesis is false in the light of observations. In terms of confirmation versus falsification, one of the most influential and controversial views was given by Karl Popper (1902Popper ( -1994) ) [START_REF] Popper | Logik der Forschung[END_REF], which seems particularly well-suited to the context of axiom induction from incomplete RDF repositories. In his view, all theories are hypotheses and may be overthrown.

More important, he proposed the principle of falsifiability, in which all scientific knowledge, i.e., theories, is provisional, conjectural, hypothetical, and we can merely (provisionally) confirm or (conclusively) refute them. Back to our problem of axiom induction, we can consider axioms as conjecturing hypotheses that can potentially be refuted by facts contained in the RDF repository known as contradicting evidence,

i.e., counterexamples. The facts recorded in the RDF triples satisfying axioms are known as supporting evidence, i.e. confirmations. In epistemology, the term "confirmation"is used whenever observational data and evidence are "in favor of" or support hypotheses. Testing a single axiom involves checking whether the formulas entailed by it are confirmed or falsified by the facts contained in RDF datasets.

Furthermore, the validation of an axiom also requires an axiom scoring framework computed based on the available evidence and a set of measures.

In this section, we first investigate the principles of testing a single OWL axiom agianst a given RDF dataset introduced in Section 5.2. Then, we consider two axiom scoring frameworks, based on probability and possibility theory in Section 5.3, which are the bases to develop the functions for evaluating the fitness of discovered axiom, as it will become clear in the following chapters.

OWL Axiom Testing

General Principles

In order to test an axiom against a given RDF dataset, Tettamanzi et al. [START_REF] Andrea | Possibilistic testing of OWL axioms against RDF data[END_REF] proposed the definition of the development of an OWL axiom with respect to The transformation of SubClassOf axiom can be defined following the principle of [START_REF] Andrea | Possibilistic testing of OWL axioms against RDF data[END_REF] as follows:

• t(C 1 C 2 , x, y) = ∀x(¬t(C 1 , x, y) ∨ t(C 2 , x, y))
, where the first argument is axiom C 1 C 2 with C 1 , C 2 as classes(concepts).

• t(C, x, y) = C(x), where the first argument is entity C as an atomic class (concept).

As a result, the transformation of axiom φ into FOL formula is defined as follows:

t(φ; x, y) = t(SubClassOf(dbo:Fish dbo:Animals), x, y) = ∀x(¬t(dbo:Fish, x, y) ∨ t(dbo:Animals, x, y)) = ∀x(¬(dbo:Fish(x) ∨ (dbo:Animals(x))

The development of axiom φ with respect to RDF dataset K, noted by D K (φ), can be transformed either into conjunctive normal form or into disjunctive normal form of the ground formulas ψ i , i.e. D K (φ)= i ψ i or D K (φ)= i ψ i , respectively.

These ground formulas ψ i are called basic statements, which are tested against the available facts in RDF data. EquivalentObjectP roperties(R

1 ...Rn) R 1 ≡ R 2 t(R 1 ≡ R 2 ; x, y) = ∀x∀y((t(R 1 ; x, y) ∧ t(R 2 ; x, y)) ∨ (¬t(R 1 ; x, y) ∧ ¬t(R 2 ; x, y))) DisjointObjectP roperties(R 1 ...Rn) Dis(R 1 ...Rn) t(Dis(R 1 ...Rn; x, y)) = n i=1 n j=i+1 (¬t(R i ; x, y) ∨ ¬t(R j ; x, y)) ObjectP ropertyDomain(R C) ≥ 1R C t(≥ 1R C; x, y) = ∀x∀y(¬t(R; x, y) ∨ t(C; x, y)) ObjectP ropertyRange(R C) ∀R.C t( ∀R.C; x, y) = ∀x∀y(¬t(R; x, y) ∨ t(C; y, z)) InverseObjectP roperties(S R) S ≡ R - t(S ≡ R - ; x, y) = ∀x∀y((t(S; x, y) ∧ t(R; y, x)) ∨ (¬t(S; x, y) ∧ ¬t(R; y, x))) F unctionalObjectP roperty(R) F un(R) t(F un(R); x, y) = ∀x∀y∀z(¬t(R; x, y) ∨ ¬t(R; x, z) ∨ y = z) InverseF unctionalObjectP roperty(R) F un(R - ) t(F un(R); x, y) = ∀x∀y∀z(¬t(R; x, y) ∨ ¬t(R; z, y) ∨ x = z) Ref lexiveObjectP roperty(R) Ref (R) t(Ref (R); x, y) = ∀x(t(R; x, x))
Irref lexiveObjectP roperty(R) 

Irr(R) t(Irr(R); x, y) = ∀x(¬t(R; x, x)) SymmetricObjectP roperty(R) Sym(R) t(Sym(
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As we can observe in example 5.2.1, the axiom translates into the FOL formula ∀x(¬(dbo:Fish(x) ∨ (dbo:Animals(x)) and is developed according to the RDF dataset K into: D K (φ)= r∈I(K) (¬(dbo:Fish(r) ∨ (dbo:Animals(r)) where

I(K)
is the set of resources (individuals) occurring in K.

The set of all basic statements ψ i of D K (φ) is defined as the content of axiom φ, which serves as the foundation of axiom testing.

Definition 5.2.1: Content of an Axiom [TFG17]

Let φ be an OWL axiom that we wish to test (i.e., theory). Let K be a RDF dataset. The content of an axiom φ is defined as a set of logical consequences D K (φ) obtained through the instatiation of φ to the vocabulary of K:

content(φ) = {ψ : φ |= ψ}
The content of axiom φ in example 5.2.1 can be expressed as follows:

content K (φ) = {¬dbo:Fish(r)∨dbo:Animals(r)} : r is a resource occurring in K.

Definition 5.2.2: Confirmation and Counterexample of an Axiom

Let ψ be a formula in the content of axiom φ with respect to a given RDF dataset K, i.e. ψ ∈ content K (φ) .

• ψ is a confirmation of axiom φ if K |= ψ.

• ψ is a counterexample of axiom φ if K |= ¬ψ.

• ψ is neither a confirmation nor a counterexample of axiom φ if K |= ψ and K |= ¬ψ.

In order to refine ψ for the content of axiom φ, the concept of selective confirmation, proposed by Scheffer and Goodman [START_REF] Scheffler | Selective Confirmation and the Ravens: A Reply to Foster[END_REF], is applied. Selective confirmation of a hypothesis involves an evidence which not merely confirms the hypothesis but also dis-confirms its contrary. The definition of content(φ) restricts to ψ which can be counterexamples of φ and leaves out simpliciter confirmation. In In order to quantify the notions in terms of the content, confirmations and counterexamples of an axiom, some concepts were also introduced in [TFG17] as follows:

• The support of an axiom φ is defined as the cardinality of the content of φ:

u φ = content(φ)
• The number of confirmations u + φ of an axiom φ: is defined as the number of basic statements ψ that are satisfied by the RDF dataset (confirmations).

• The number of counterexamples u - φ of an axiom φ: is defined as the number of basic statements ψ that are falsified by the RDF dataset (counterexamples).

The Computational Definitions of Evidences

In order to measure the quantities relevant to evidence for an axiom, like the support, the number of confirmations and the number of counterexamples, the translation of the axiom into the corresponding SPARQL queries to count them is performed. Axioms are composed of expressions which will be translated into SPARQL graph patterns before formalizing SPARQL queries for each axiom. We consider the studies proposed by Lorenz Buhmann and Jens Lehmann [START_REF] Lorenz Bühmann | OWL Class Expression to SPARQL Rewriting[END_REF] and Tettamanzi et al. [START_REF] Andrea | Possibilistic testing of OWL axioms against RDF data[END_REF] to construct graph patterns that are a direct mapping of the expressions of the OWL axiom considered.

Let E be an expression in an axiom φ and x, y be formal parameters which can be the name of a SPARQL variable, a resource identifier, or a literal as value. A mapping
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Q(E, x, y) involves transforming OWL expression E into a graph pattern which is used to take the relevant set of all resources occurring in a given RDF repository. Q(E, x, y) is defined depending on the type of expression E depicted in Table 5.2. The query SELECT DISTINCT ?x ?y WHERE { Q(E, ?x, ?y) }

(5.1)

returns the extension of expression E which is equivalent to the semantics of E, i.e. E I .

However, the table does not contain the case of concept of negation Q(¬C, ?x, ?y)

which is slightly more complicated due to the absence of negation expressed in RDF.

Hence, we will consider three definitions with respect to the concept negation:

1. The graph pattern proposed by Buhmann and Lehmann, which is used for the CWA, in which the negation is considered as a failure:

Q(¬C, ?x, ?y) = ?x ?p ?o. FILTER NOT EXISTS Q(C, ?x, ?y)}(5.2)

2. Another graph pattern is proposed for the case of open-world semantics, in which the concept negation Q(¬C ?x ?y) consists of all individuals x of the concepts that are disjoint from C: Q(¬C, ?x, ?y) = { ?x a ?dc) FILTER NOT EXISTS { ?z a ?dc. Q(C, ?z, ?y1)}}.

(5.3)

In this case, testing the disjointness of two concepts is required but it is based on negation as failure as in the first option.

3. One way to define whether two concepts are disjoint is to find a disjointness axiom involving classes in the ontology, i.e. owl:disjointWith. In this sense, the concept negation Q(¬C, ?x, ?y) will be defined as: 

d n )
where d i is a literal with i = 1...n.

Intersection (ObjectIntersectionOf) Q(C 1 ... C n , ?x) = Q(C 1 , ?x)...Q(C n , ?x) where C i is a class expression with i = 1...n Union (ObjectUnionOf) Q(C 1 . . . C n , ?x, ?y) = {Q(C 1 , ?x)} UNION • • • UNION {Q(C n , ?x)}.
where Q(¬C, ?x, ?y) = { ?x a ?dc) ?dc owl:disjointWith C }.

(5.4)

In term of the real extension of ¬C, i.e., ¬C I , the first case presented in Equation (5.2) will regard all individuals a for which "a a C" is not found in RDF repository as the instances of ¬C I . In this sense, the extension of ¬C I is overestimated. For the second case, the extension of ¬C I only consists of all individuals a such that "a a C" is not known, but there is some classes D for which "b a D" is known and no instance of D is known to be also an instance of C. The extension of C is still overestimated but is reduced significantly. The third option is restricted to atomic concepts which directly appear in the graph pattern, i.e., C, instead of in the form of Q(C ?x ?y), thus, it cannot be extended to complex concepts. Indeed, if there does not exist any declaration of disjointness axioms in the RDF repository, Q(¬C ?x ?y) in Equation (5.4) returns an empty set, which might underestimate the extension of ¬C, i.e., ¬C I . Also, an individual is an instance of C even though it does not belong to any disjoint class with C. Among the above three options, we refer to the second one with Equation (5.3) which is suitable in the context of an open-world dataset, e.g. DBpedia, not too optimistic as in Equation (5.2)

and not too pessimistic as in Equation (5.4).

Regardless of the kind of axioms, the support u φ of an axiom φ composed of a set of concept expressions or relation expressions E 1 , ..., E n is defined in the following SPARQL query:

SELECT( count (DISTINCT ?x) AS ?u) WHERE {Q(E 1 , ?x) UNION • • • UNION Q(E n , ?x)}.
(5.5)

Conversely, there are various patterns of SPARQL queries for each type of axioms to measure the quantities supporting evidence (confirmations) u + φ and refuting evidence (counterexamples) u - φ stored in the RDF triple repository. We will consider the semantics of different axioms introduced in Table 2.6 as the basis for defining evidence and developing specific computational definitions for testing them.

As for defining evidences for the group of subsumption axioms, the general principle for this axiom group is the following: let be E sub , E super the extension of the subsumed expression and the subsuming expression, respectively, which are retrieved by executing the relevant SPARQL queries. Let (5.7)
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, respectively.

In this thesis, we are not ambitious to cover the computational definitions for all kinds of axioms. Instead, we only set out to develop a general testing model for the case of disjointness axioms which will be mentioned below and will be applied in practice in the next chapters. Intuitively, expressions in a disjointness axiom will be divided into left-hand side and right-hand side whose extensions are noted E rs and E ls , respectively. The confirmations and counterexamples are defined as follow:

• confirmations are those individuals x such that either x ∈ E l s and x ∈ E ¬ rs or x ∈ E ¬ ls and x ∈ E rs .

• counterexamples are those individual x such that either x ∈ Ers and x ∈ E ls .

Counting the counterexamples of a disjoint axiom DisjointClasses(C 1 , C 2 , ..., C n ) will be done simply with the following conjunctive SPARQL query: Based on the above definition of confirmations, counting the confirmations for a disjointness axiom involving two concepts C i and C j , i.e., DisjointClasses(C i C j ), is translated into the SPARQL query as follows: (5.9)
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We can represent the above query in a simpler format using the following graph pattern:

Q Dis (C j | C i , ?
x, ?y) = { ?x a ?dc1 ?z1 a ?dc1 Q(¬C i , ?z1, ?y1) FILTER NOT EXISTS { ?z2 a ?dc1. Q(C j , ?z2, ?y2) } }

(5.10)

The query is shortened as follows:
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SELECT (count (DISTINCT ?x) AS ?numberOfConfirmations) WHERE

{ { Q(C 1 , ?x, ?y) Q Dis (C 2 | C 1 , ?x, ?y) . . . Q Dis (C n | C 1 , ?x, ?y) } UNION { Q(C 2 , ?x, ?y) Q Dis (C 1 | C 2 , ?x, ?y) Q Dis (C 3 | C 2 , ?x, ?y) . . . Q Dis (C n | C 2 , ?x, ?y) } UNION . . . UNION { Q(C n , ?x, ?y) Q Dis (C 1 | C n , ?x, ?y) . . . Q Dis (C n-1 | C n , ?x, ?y) } }
(5.12)

Axiom Scoring Frameworks

Scoring an axiom φ is defined based on a corpus of evidence computed on the facts stored in RDF repositories of LOD. Yet, as a result of the incompleteness (due to the lack of information) and the noise (due to the heterogeneous and collaborative character) of the LOD, these facts contain uncertain and imprecise
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information items known as imperfect information [START_REF] Smets | Imperfect Information: Imprecision and Uncertainty[END_REF]. Accordingly, imprecision involves the content of information which is not sufficient to answer a question of interest due to missing or erroneous information. Also, uncertainty concerns a property that represents the relation between the world and the statement about the world [START_REF] Smets | Imperfect Information: Imprecision and Uncertainty[END_REF] when it cannot induce a decision about the truth of the statement due to the lack of information, known as incomplete knowledge. In order to deal with the representation of imperfect information, there are two basic frameworks:

probability theory and possibility theory. Probability theory is a traditional approach to formalizing the ontic uncertainty typical of random processes; as such, it is appropriate for the situations where all evidence is available. On the other hand, possibility theory determines a sort of epistemic uncertainty which is well-suited to incomplete knowledge. In this section, we restrict our attention in investigating these two frameworks in terms of scoring discovered axiom from the RDF repository.

Probabilistic Evaluation of Axioms

In axiom scoring method, probability is defined as a logical relation between a

proposition (an axiom) and a corpus of evidence in which an axiom is expressed as being probable with respect to current evidence. A method based on the probabilistic estimation to measure the credibility of an axiom is mentioned in the work [START_REF] Bühmann | Universal OWL Axiom Enrichment for Large Knowledge Bases[END_REF] of Buhmann and Lehmann in which experiments are performed to check whether its logical consequences confirmed by the facts stored in the RDF repository. Possible outcomes for each trial are success or failure which imply the confirmations and the counterexample, respectively. The probability of success or failure is the same for each observation which is statistically independent. In view of the CWA, the approach expresses that the probability of confirmation of an axiom φ can be simply estimated by pφ = u + φ /u φ . According to this, the parameter estimation is performed by a statistical inference with a confidence interval for it.

In this approach, probabilistic measure is merely based on the supporting evidence, i.e., confirmations, and the absence of confirmations induces a failure in the calculation of the confidence interval. This is only proper under the CWA where the total of the probability of finding confirmations and the probability of finding counterexamples is equal to 1. Yet, as mentioned in Section 5.2.2, there are cases in the incomplete RDF repository, in which some resources should be treated as neither confirmations nor counterexamples. As a result, there is always a non-zero probability for every potential assumption of an axiom. In order to suit for this open-world assumption, in [START_REF] Andrea | Possibilistic testing of OWL axioms against RDF data[END_REF] Tettamanzi et al. proposed the correction of the probabilistic scoring method by using the following proportion:

p * φ = u + φ /(u + φ + u - φ ) instead of p.
The likelihood of an axiom φ, i.e., φ is true, is computed on a posterior or conditional probability when given evidence e as follow: P r(φ|e) = P r(e|φ)P r(φ) P r(e) (5.13) However, evidence may be logical consequence of the content of axiom φ with respect to the given RDF repository or it may be not. Hence, the probability P r(e) is calculated by adding up the condition that axiom φ holds which obeys the extended Bayes' theorem as follow [START_REF] Andrea | Possibilistic testing of OWL axioms against RDF data[END_REF]:

P r(φ|e) = P r(e|φ)P r(φ) P r(e|φ)P r(φ) + P r(e|¬φ)P r(¬φ)

(5.14)

Such conditional probability can be computed at least on the estimation of probabilities as follow:

• the probability that a fact confirming φ exists in the repository, i.e., given that axiom φ holds.

• the probability that a fact contradicting φ exists in the repository in error, i.e.

given that axiom φ holds.

• the probability that a fact confirming φ exist in the repository in error, i.e., given that φ does not hold.

• the probability that a fact contradicting φ exist in the repository, i.e. given that φ does not hold.
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Estimating the above probabilities involves subjective or, in other words, qualitative properties of uncertainty which are linked to the subjective opinion (the prior) about the true value of facts as derived from the available RDF repository. In reality, estimating these probabilities is hard and requires the consideration of all available evidence. Otherwise, a large number of experiments is performed whose results would be hard to generalize [START_REF] Andrea | Possibilistic testing of OWL axioms against RDF data[END_REF]. In addition, with respect to incomplete RDF data, the facts contained in RDF repositories, e.g. DBpedia, cannot be representative of all possible facts that could be recorded, unless that RDF stores are the results of a planned and well-designed effort aimed at building a knowledge base providing uniform coverage of a specific domain. Hence, the results of favour cannot increase the probability of a hypothesis, i.e., an axiom. In order to use the number of facts supporting a hypothesis to estimate its probability, we have to make sure that the finite number of recorded facts can be randomly extracted according to a uniform distribution from the infinite number of all facts of the real world. However, adopting a probabilistic approach can fail due to the lack of fullfiled conditions.

Possibilistic Evaluation of Axioms

Derived from the obstacles mentioned in the previous probabilistic model, we turn to consider another heuristic evaluation framework which is expected to be a more promising solution for incomplete RDF datasets. We exploit preliminarily the concept of degree of verisimilitude proposed by Popper, which is used to determine the truth-likeness of a hypothesis which will be encountered in the similar idea of the possibility theory introduced later. Accordingly, the level of verisimilitude of hypotheses is always defined insufficiently and the finite amount of data cannot confirm any scientific theory, they only can falsify the theory. This means that a hypothesis is more verisimilar when it could be closer to the truth, i.e., it has passed the test even though it is false. In addition, there is a clear distinction between the verisimilitude and the probability of a hypothesis. In which, the results in favour cannot increase the probability of a hypothesis, i.e., an axiom, but only increase the "degree of corroboration" or shortly "corroboration". This
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term "degree of corroboration" here corresponds to the possibilty of an axiom against the attempts to falsify it.

In this section, we first investigate the essential background for introducing the heuristic evaluation model, namely fuzzy sets and possibility theory, before deploying it in the specific problem of axiom scoring. We harness the ideas from a series of studies of Tettamanzi et al. in terms of possibilistic axiom scoring [START_REF] Andrea | Dynamically Time-Capped Possibilistic Testing of SubClassOf Axioms Against RDF Data to Enrich Schemas[END_REF][START_REF] Andrea | Possibilistic testing of OWL axioms against RDF data[END_REF] which obtained some promising results in evaluating candidate OWL axioms.

Fuzzy Sets and Possibility theory

• Fuzzy Sets Definition

5.3.1: A Fuzzy Set [DP80; Zim96]

Let U be a classical set called the universe defined as a collection of generic elements x:

U = {u|u ∈ U }
A fuzzy set F is a subset of U defined by a value set in the real interval [0,1]. A is characterized by ordered pairs:

F = {(x, µ F (u))|u ∈ U }
in which:

µ F (u) is called a membership function of u in F that maps U to the membership space containing points in the interval of [0,1]:

µ F (u) : U - → [0, 1] µ F (u) is the grade of membership of u in F
when the membership space contains only two point 0 or 1, F is a non-fuzzy set ,i.e., classic set, and µ F (u) is a characteristic function of a classic set.

-Set theoretic operations for fuzzy sets [START_REF] Goguen | Fuzzy sets[END_REF]: 

Given
N (X) = 1 -Π(X) = inf u / ∈X {1 -π(u)} (5.19)
While the possibility measure of X, Π(X), is equivalent to the greatest degree of possibility associated to its elements, the necessity measure of X, N (X) corresponds the impossibility of its complement X. In others words, Π(X)

evaluates to what extent X is logically consistent with π, whereas N (X)

evaluates to what extent X is certainly implied by π. Some basic properties with respect to possibility and necessity measures are induced by a normalized possibility distribution on a finite universe of discourse U as follows [START_REF] Dubois | Practical Methods for Constructing Possibility Distributions[END_REF]:
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Meanwhile, axiom φ is more necessary as it is explicitly supported by facts and not contradicted by any fact [START_REF] Andrea | Dynamically Time-Capped Possibilistic Testing of SubClassOf Axioms Against RDF Data to Enrich Schemas[END_REF]. In the specific case of D(φ) being conjunctive, if there is only one counterexample to φ in the RDF dataset, the degree of necessity of axiom φ will be zero, i.e. N (φ) = 0. Otherwise, if the number of confirmations increases and no counterexamples are found, N (φ) -→ 0 strictly monotonically. The possible mathematical definitions for N (φ) are given correspondingly in the case of u φ > 0 as follows:

• if D(φ) is in conjunctive normal form:

N (φ) =        1 - u φ -u + φ u φ 2 , if u - φ = 0, 0, if u - φ > 0.
(5.22)

• if D(φ) is in disjunctive normal form:

N (φ) = 1 - u φ -u + φ u φ 2 (5.23)
We can derive three extreme epistemic attitudes pertaining to an axiom φ also found in the certainty of an information item in [START_REF] Thierry Denoeux | Representations of Uncertainty in Artificial Intelligence: Probability and Possibility[END_REF] as follows:

• the certainty that φ is true:

N (φ) = 1, hence Π(φ) = 1;
• the certainty that φ is false: Π(φ) = 0, hence N (φ) = 0;

• ignorance pertaining to φ: Π(φ) = 1 and N (φ) = 0 when u φ = 0, given that no evidence is available in the RDF dataset to assess the credibility of φ..

In principle, the combined values of necessity N (φ) and possibility Π(φ) of axiom φ is considered as representative of its degree of credibility which the fitness functions later for axiom evaluation should be directly proportional to.
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Summary

As an alternative to statistics-based heuristics applied in probabilistic evaluation framework, possibilistic approach is currently preferable in the condition of an incomplete RDF repository. We will investigate the implementation of this framework in terms of class disjointness axiom testing against the DBpedia database in the next chapters.

6

Grammatical Evolution Models toward Class Disjointness Axiom Discovery 

GE Models toward Class Disjointness Axiom Discovery

Introduction

The different types of negation are one of the requirements for expressive ontologies [START_REF] Flouris | Inconsistencies, Negations and Changes in Ontologies[END_REF]. Unfortunately, ontology languages based on DLs are not expressive enough to express axiom negations. Among different types of axioms, class disjointness axioms, which, despite their importance, are little used in knowledge bases, express the incompatibility between pairs of concepts known as concept disjointness based on negation. Even though class disjointness axioms are supported by ontology languages, e.g. OWL with the keyword owl:disjointWith, disjointness information is often neglected when building logical modeling [START_REF] Rudolph | Foundations of Description Logics[END_REF], and one can find only a few axioms of this type currently in existing ontologies. For example, in the DBpedia ontology, the query SELECT ?x ?y { ?x owl:disjointWith ?y } 
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disjointness between classes Mother and Man, i.e., as this statement can be expressed in DLs: Mother ¬Man, is added, the reasoner will be able to reveal an error in the modeling of such a knowledge base. As a consequence, logical inconsistencies of facts can be detected and excluded-thus enhancing the quality of ontologies.

In reality, learning implicit knowledge in terms of class disjointness axioms from a LOD repository in the context of the Semantic Web has been the object of research in several different approaches which are introduced in Section 6.2. Along the line of the general GE model to axiom discovery evaluation introduced in Chapter 4, we develop specific models for mining different types of class disjointness axioms from RDF datasets described in Section 6.3 and Section 6.4. In the functional-style syntax of OWL2 , class disjointness axioms have the form

DisjointClasses(C 1 C 2 ...C n ).
In order to simplify our discussion and without loss of generality, we can only focus on binary axioms such as DisjointClasses(C 1 C 2 ), where C 1 and C 2 can be atomic expressions or complex expressions. In addition, the idea of axiom evaluation arising in Chapter 5 is applied to develop different evaluation frameworks to assess the certainty level of induced axioms. Finally, we conclude this chapter by pointing out the major contributions of the developed models in Section 6.5.

Related Works

The Another procedure for extracting disjointness axioms [START_REF] Rizzo | Terminological Cluster Trees for Disjointness Axiom Discovery[END_REF] requires a Terminological Cluster Tree (TCT) to search for a set of pairwise disjoint clusters. A decision tree is built and each node in it corresponds to a concept with a logical formula. The tree is traversed to create concept descriptions collecting the concepts installed in the leaf-nodes. Then, by exploring the paths from the root to the leaves, intensional definitions of disjoint concepts are derived. Two concept descriptions are disjoint if they lie on different leaf nodes. An important limitation of the method is the time-consuming and computationally expensive process of growing a TCT.

A small change in the data can lead to a large change in the structure of the tree. Also, like other intensional methods, that work relies on the services of a reasoning

GE Models toward Class Disjointness Axiom Discovery

component, but suffers from scalability problems for the application to large datasets, like the ones found on the LOD, caused by the excessive growth of the decision tree.

Learning Atomic and Complex Axioms involving Union and Intersection Operators

Preliminarily, we only focus on mining class disjointness axioms containing atomic expressions, e.g. DisjointClasses(Film WrittenWork), or complex expressions in the cases of relational operators, i.e., intersection and union, e.g. DisjointClasses(Film ObjectIntersectionOf(Book ObjectUnionOf(Comics MusicalWork))). The learning method which we use in the following is based on the general GE model for axiom discovery introduced in Chapter 4, with specific settings.

GE Characteristics

BNF Grammar Pattern

According to the method for BNF grammar construction introduced in Section 4. The production rules of the primitive Class in the dynamic part will be filled by using the SPARQL queries mentioned in Equation (4.2) to extract the IRI of a class mentioned in the RDF store.
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be replaced by the value of ObjectUnionOf. The mapping goes on like this until eventually there is no non-terminal left in the expression. Not all codons were required and extra codons have been simply ignored in this case.

In the mapping process based on Grammar 6.3.1 and Equation (4.1), the production rule for ClassExpression is recursive and may lead to a large fan-out. In order to alleviate this problem and promote "reasonable" axioms, one of the solutions is to increase the probability of obtaining a successful mapping to complex axiom expressions. In practice, we enforce doubling the appearance probability of nonterminal ClassExpression. Rule (r4) in the grammar is modified to

(r4) ClassExpression := Class (0) | Class (1) | ObjectUnionOf (2) | ObjectIntersectionOf (3)

Evolutionary Process

• Initialization: The initial population is seeded with popSize random chromosomes of initlenChrom codons uniformly distributed over {0, . . . , maxValCodon-1}.

• Genotype-to-Phenotype Mapping: The standard genotype-to-phenotype mapping is used, with at most maxWrap wrapping events. In case of an unsuccessful mapping (because after the maximum allowed number of wrapping events the individual is not yet completely mapped), the individual is assigned a fitness of zero, i.e., the lowest possible fitness.

• Parent selection: We use the parent selection mechanism described in Section 4.3.

• Variant operators: The single-point crossover operator is applied to genotypes, with probability pCross. The standard mutation operator is also applied with probability pMut. implementing the Deterministic Crowding method to improve the diversity of the population. In it, the comparison is performed at the genotypic level to decide whether an individual is to be selected for inclusion in the population of the next generation. The genotypic distance between individuals is computed as their Hamming distance, with the expectation of obtaining more accurate results.

• Fitness Functions: In order to build the fitness functions, we follow the possibilistic approach to axiom scoring presented in Section 5.3.2. In practice, what we are looking for is not only credible axioms, but also general ones.

Hence, the credibility of an axiom should be directly proportional to its necessity N (φ), its possibility Π(φ), whereas the generality g φ of an axiom is based on the support of the axiom, u φ .

Deriving from those basic ideas, we propose the first version of the fitness function as follows:

Fitness Function 1

f (φ) = u φ • Π(φ) + N (φ) 2 , ( 6.1) 
As mentioned in Section 5.2.1, the transformation of a disjointness class axiom is based on the definition indicated in Table 5.1. We compact it to suit for the binary class disjointness axioms Dis(C 1 , C 2 ) as follows:

t(Dis(C 1 , C 2 ), x, y) = ∀x(¬t(C 1 , x, y) ∨ ¬t(C 2 , x, y)) in which C 1 , C 2 are class expressions (concepts).
In addition, the development of class disjointness axiom φ with respect to RDF dataset K, noted D K (φ), is transformed into conjunctive normal form, i.e. D K (φ)= i ψ i in which ψ i are basic statements which are tested against the available facts in RDF data. Thus, the possibility measure Π(φ) and the necessity measure N (φ) of axiom φ are defined by Equation (5.20) and Equation (5.22), respectively. Whereby, these quantities are measured by defining the number of confirmations and the number of counterexamples. According
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Q Dis (C | D, ?x, ?y) = { ?x a ?dc1 ?z1 a ?dc1 Q(¬D, ?z1, ?y1) FILTER NOT EXISTS { ?z2 a ?dc1. Q(C, ?z2, ?y2) } } (6.4)

Q Dis (D | C, ?x, ?y) = {
?x a ?dc1 ?z1 a ?dc1 Q(¬C, ?z1, ?y1) FILTER NOT EXISTS { ?z2 a ?dc1. Q(D, ?z2, ?y2) } } (6.5) However, it should be noticed that negation is not supported by RDF. Negated assertions can of course be expressed using the vocabulary of OWL, but then the services of an OWL reasoner would have to be used to infer the negation of an assertion thus expressed; however, that would be way more expensive than using SPARQL to query the dataset and also of little use, since very few or no negated assertions at all do occur in real-world RDF datasets.

As a result, an RDF dataset will naturally provide counterexamples for the disjointness axioms (e.g., an individual that is asserted to belong to two supposedly disjoint classes). On the other hand, confirmations, which should take the form of negated assertions, like "such individual, which belongs to either of the supposedly disjoint classes, does not belong to the other", will be completely missing. The simple solution of taking the absence of a counterexample as a confirmation u + Dis(C,D) can be as follows: and use it instead of u φ in Equation (6.1), with the following SPARQL queries.

u + Dis(C,D) = u Dis(C,D) -u - Dis(C,D) (6 
SELECT( count (DISTINCT ?x) AS ?u_C) WHERE {Q(C, ?x)} SELECT( count (DISTINCT ?x) AS ?u_D) WHERE {Q(D, ?x)} (6.10) Also, the solution for counting confirmations as in Equation (6.6) would betray the open-world hypothesis that underlies the SW. Hence, this problem can be overcome by actually scoring axioms based on counterexamples only, which is, after all, much in agreement with the falsificationist approach that underlies the current practice in Science (to corroborate a hypothesis, one
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should not look for easy confirmations, but should rather try hard to find counterexamples). Since the number of confirmations u + φ only appears in the definition of N (φ), we can safely drop N (φ) from the fitness function. This yields the following improved second definition of the fitness function,

Fitness Function 2 f (φ) = g φ • Π(φ), (6.11) 
We will run two independent experiments with the two above fitness functions.

Gold Standard toward a Subjective Benchmark

In order to evaluate the effectiveness of our method in discovering disjointness class axioms, we use a subjective benchmark called the Gold Standard, created by domain experts and knowledge engineers.

Gold Standard Construction

The process of creating the Gold Standard was carried out by both manual and automatic mechanisms depending on the evaluation results of prior pairs of classes.

In general, the Gold Standard construction consists of two phases, illustrated in Figure 6.2.

In the first phase, the disjointness of the top-most classes to their siblings was assessed manually. As a result, two sibling classes being disjoint will automatically imply the disjointness of their corresponding pairs of subclasses. This process was repeated in the same way on the next level of concepts.

The second phase consisted in manually annotating the disjointness for the 

Gold Standard based Performance Assessments

In compliance with the Gold Standard thus constructed, we measure the quality of class disjointness axioms involving both atomic and more complex types, i.e. involving the intersection and union operators. Algorithm 4 describes in detail how a complex axiom is assessed using the Gold Standard. Specifically, this depends on considering whether its class expressions, i.e. axiom arguments, are mutually disjoint or not. A recursive method is applied to check disjointness between two class expressions, namely expr 1 and expr 2 . The base steps (lines 1-4) involve the case when expr 1 and expr 2 are atomic classes in which the disjointeness between them is defined by looking up the Gold Standard, i.e. the function CheckDisjointAtomicClasses. The recursive steps (lines 6-13) occur if at least one expression is complex involving relational operators, i.e., union or intersection. In
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this case, checking the complex expressions can be solved by converting them into the simpler ones, i.e. containing at least one atomic expression, until the base case is reached. The union operator refers to the sum of the recursive cases while the intersection operator corresponds to their multiplication. 

Experimental Protocol

We apply the GE approach with the settings introduced in Section 6. Although the desirable purpose of our research is to focus on exploring complex disjointness axioms (atomic axiom can be considered as a special case of complex ones), we also performed experiments to generate axioms involving atomic classes only, for comparison purpose. In that case, Rule (r4) is simplified to only one option ClassExpression := Class .

We set up two different sets of the algorithm parameters summarized in Table 6.1 and Table 6.2 involving the first fitness function (6.1) and the second one (6.11), respectively, which were empirically determined by performing a systematic exploration of a grid of possible settings.

A prototype system of the proposed method was developed in Java, using Apache Jena to interface with SPARQL endpoints and GEVA4 v.2.0 , a Java implementation 
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g φ • Π(φ)
of GE. In order to avoid overloading DBpedia's SPARQL endpoint, we set up a local mirror5 using the Virtuoso Universal Server.

All the experiments have been performed on a HP ZBook 15 G3 Mobile Workstation equipped with an eight-core Intel i7 CPU 6820HQ processor at 2.7GHz clock speed, with 32 GB RAM, 1 TB of disk space under the Ubuntu 16.04 LTS 64-bit operating system.

Results & Discussions

For both indicated sets of GE parameters above, we ran the GE for axiom discovery by repeating the sample procedure of Algorithm 1 for each run with the same parameters of each case. 
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The first set of GE parameter values

The chart in Figure 2 illustrates the average diversity of the population of axioms over the generations of the evolutionary process. It shows how many different "species" of axioms are contained in the population, i.e., axioms that cover different aspects of the known facts. One of the remarkable points here is that there is a more rapid loss of diversity in the phenotype axioms compared with this decrease in the genotype ones. The use of the Crowding method on genotypes instead of phenotypes can be the reason of this difference. Likewise, a set of codons of two parent chromosomes which are used for the mapping to phenotypes can fail to be swapped in the single-point crossover operator. From the chart in Figure 3, we can observe a gradual increase in the quality of discovered axioms over generations. The precision and recall are computed by comparison to the Gold Standard.

Regarding to atomic axioms, the results in Table 6.3 confirm the high accuracy of our approach in discovering class disjointness axioms (Precision = 0.95 ± 0.02).
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The recall value is higher than the value in GoldMiner [START_REF] Völker | Automatic acquisition of class disjointness[END_REF]. In addition, there are a number of discovered class disjointness axioms being absent in the result of GoldMiner. For instance, there are no axioms relevant to class Archive in the axioms generated by GoldMiner.

In the case of more complex axioms, there is a smaller degree of precision (Precision = 0.867 ± 0.03). The reason may stem from the complexity in the content of generated axioms which is relevant to more different classes. We do not present the recall for the case of complex axioms, since the discovery process of this type of axioms cannot define how many of the complex axioms should have been generated. After 20 runs, from 10,000 candidate individual axioms, we got 5,728 qualified distinct complex axioms. We performed an analysis of the discovered axioms and found some noticeable points. Almost all generated axioms have high fitness values with millions of support instances from the DBpedia dataset, which witness the generality of the discovered axioms. However, we found some having 5,037,468 triples in its support. However, according to the Gold Standard, these two classes should not be disjoint. The main reason for such erroneous axioms may lie in the inconsistencies and errors in the DBpedia dataset. Another possible cause is the subjectiveness of Gold Standard to some extent, thus, the evaluation of axioms is quite sensitive to this benchmark. Specifically, the method we used to build it is too simplistic based on human experts and possibly fails to capture some disjointness axioms.

The second set of GE parameters

The results, shown in Table 6.4, confirm that the accuracy and the coverage of the second parameter settings in Table 6.2 in extracting atomic axioms are higher than the results of the first setting in Table 6.1 and GoldMiner. In terms of generating complex axioms, we witness a quite higher accuracy than in the first parameter settings involving the fitness function described in Equation (6.1) and a superiority of our method compared with GoldMiner. In the recall comparison for the case of atomic axioms, we can also observe that the coverage of the set of generated atomic axiom in each run is much higher than the result in 6.1. The recall value in GoldMiner is constant, namely 0.38, because that algorithm is deterministic.

Meanwhile, the overall recall value of our method gets much higher, namely 0.323 over 3 runs but ours is stochastic, and would easily overtake the results of GoldMiner and the parametter setting in Table 6.1 simply by executing more runs. Therefore, the comparison in this case is unnecessary.

We do not present the recall for complex axioms, because it is not clear how the cardinality of the set of all true complex axioms should be computed; under the most general assumptions, this set is infinite, although enumerable.
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Gold Standard, which is directly proportional to the number of concepts. Hence, the extracted axioms are limited to the classes relevant to a small scope of topics, namely the Work topic of DBpedia. Also, complex axioms are defined with the help of relational operators of intersection and union, which can also be mechanically derived from the known atomic axioms.

Learning Complex Axioms containing Value and Existential Restriction

In order to overcome the above limitations as well as to enhance the diversity of discovered types of axioms indicated in previous experiments, we propose a new approach. In detail, we develop an objective benchmark introduced in Section 6.4.2

for evaluating the effectiveness of the system which is bound by applying a trainingtesting model. Additionally, the type of class disjointness axioms is extended to include existence restriction ∃r.C and value restriction operators ∀r.C, where r is a property and C a class, which cannot be mechanically derived from a given set of atomic axioms. In particular, we only consider the case of binary axioms such as DisjointClasses(C 1 C 2 ) where C 1 and C 2 can be atomic or complex classes like DisjointClasses(Building ObjectSomeValuesFrom(hasWings Animals)). It is important to mention that, to the best of our knowledge, no other method has been proposed so-far in the literature to mine the Web of data for class disjointness axioms involving complex class expressions with existential and value restrictions in addition to conjunctions.

The grammar is updated to suit these changes. A set of candidate axioms is also improved in the evolutionary process through the use of evolutionary operators of crossover and mutation. Finally, the final population of generated axioms is evaluated on the full RDF dataset, specifically the whole DBpedia, which can be considered as the objective benchmark eliminating the need of domain experts to evaluate the ability of generating axioms on a wider variety of topics. The evaluation of generated axioms in each generation of the evolutionary process is thus performed
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on a reasonably sized data sample, which alleviates the computational cost of query execution and enhances the performance of the method.

GE Characteristics

BNF Grammar Pattern

As we did for the construction of the BNF grammar pattern 6.3.1, we follow the approach proposed in Section 4.3.1 to structure another BNF grammar pattern which still ensures that changes in the contents of RDF repositories do not require the grammar to be rewritten. However, we specify it to mine only disjointness axioms involving at least one complex axiom, containing a relational operator of Let r be an initial resource for the extraction process, e.g., http://dbpedia. org/ontology/Plant; 1% of the RDF triples having r as subject, of the form r p r , and 1% of the triples having r as object, of the form r p r , will be randomly extracted from DBpedia. Then, the same will be done for every resource r and r mentioned in the extracted triples, until the size of the training dataset reaches 1% of the size of DBpedia. If the number of triples to be extracted for a resource is less than 1 (following the 1% proportion), we round it to 1 triple. In practice, we applied the proposed mechanism to extract a training dataset containing 6,739,240 connected RDF triples with a variety of topics from DBpedia. 
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Experimental Protocol

We use the BNF grammar pattern 6.4.1 introduced in Section 6.4.1. Given how the grammar was constructed, the mapping of any chromosome of length ≥ 6 will always be successful. Hence, we can safely set maxWrap = 0. Furthermore, in order to investigate the ability of the method to discover class disjointness axioms for different parameter settings, we ran our algorithm in 20 different runs for each of 4 distinct population sizes, namely 1,000; 2,000; 5,000 and 10,000 individuals, respectively. In addition, to make fair comparisons possible, a set of milestones of total effort k (defined as the total number of fitness evaluations) corresponding to each population size are also recorded for each run, namely 100,000; 200,000; 300,000 and 400,000, respectively. The maximum numbers of generations maxGenerations (used as the stopping criterion of the algorithm) are automatically determined based on the values of the total effort k so that popSize • maxGenerations = k. Also, we reuse the improved fitness function indicated in Equation (6.11). The parameters are summarized in Table 6.5. 

Results & Discussions

We ran the GE method 20 times with the parameters shown in Table 6.5 on the BNF grammar 6.4.1. Full results are available online.7 

The number of valid distinct axioms, i.e., axioms φ such that Π(φ) > 0 and g φ > 0, discovered is listed in Table 6.6 and demonstrated in Figure 6.8. 

Statistical Analyses

We have statistically compared the number of distinct valid axioms using different settings of popSize and total effort k. Overall, we can see a trend whereby the number of discovered axioms increases steadily during the early stage of evolution, i.e. for low values of k, before gradually decaying at the end of the process. This trend is most clearly visible when popSize = 2, 000 and popSize = 5, 000. This phenomenon may be due to the prevalence of exploration in the early phases of the evolutionary process, as opposed to exploitation, when the population, despite our efforts to preserve diversity, begins to converge towards few axioms with particularly high fitness. Depending on the population size, this may happen before reaching the first milestone of total effort k = 100, 000 (as it is the case for popSize = 1000) or in the generations following the last milestone, as one could expect to observe for popsize = 10, 000, if the evolutionary process were allowed to continue.

In terms of the accuracy measurement of the results, given that the discovered axioms come with an estimated degree of possibility (introduced Section 5. Given a countable universe set ∆, the cardinality of a fuzzy set F is defined as follows:

F = x∈∆ F (x), (6.12) 
In our case, we may view Π(φ) as the degree of membership of axiom φ in the We also see that the accuracy remains stable across different values of total effort k in the case of large populations like popSize = 10, 000, whilst there is an opposite trend in the case of smaller populations, where the values decrease slightly as the total effort k increases. This surprising behavior suggests that the method tends to overfit individuals in the population after a high number of generations (reflected by the values of total effort). This overfitting may be the only way to achieve higher fitness values (as computed against the training set), whereas the evaluated axioms
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actually turn out to be incorrect when evaluated against the test dataset, i.e the full DBpedia. We can witness this phenomenon more clearly from the plots illustrating the distribution of axioms in terms of possibility and generality shown in Table 6.8.

Even though most discovered axioms are highly possible (Π(φ) close to 1), the number of highly general axioms possessing a lower possibility increases slightly as total effort k increases. This suggests that the evolutionary process should be stopped early before axioms begin overfitting the training dataset. Indeed, with the same value of total effort, the larger populations, which correspond to a lower number of generations, as it is the case for popSize = 10, 000, allow the method to discover axioms that correctly generalize to the full DBpedia and the evidence of the precision values in Table 6.7 seems to confirm this hypothesis.

Analyses of Axiom Contents

In order to obtain a more objective evaluation, we analyze in detail the axioms discovered by the algorithm with this best setting. First, we witness that together with the mandatory class expression containing the ∀ or ∃ operator, most extracted disjointness axioms contain an atomic class expression. This may be due to the fact that the support of atomic classes is usually larger than the support of a complex class expression. We also analyse axioms containing complex expressions in both their members. These axioms are less general, even though they are completely possible.

An example is the case with DisjointClasses(ObjectAllValuesFrom(dbprop:author dbo:Place) ObjectAllValuesFrom(dbprop:placeofBurial dbo:Place))(Π(φ) = 1.0 ; g φ = 4), which states that "what can only be buried in a place cannot be what can only have a place as its author".

We also observe that some discovered axioms have a particularly high generality, as it is the case with DisjointClasses(dbo:Writer ObjectAllValuesFrom(dbo:writer dbo:Agent)) (Π(φ) = 0.982; g φ = 79, 464). This can be explained by the existence of classes supported by a huge number of instances (like dbo:Agent or dbo:Writer). From it, we might say that it is quite possible that "writers are never written by agents". Another similar case is axiom DisjointClasses(dbo:Journalist
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ObjectAllValuesFrom(dbo:distributor dbo:Agent)) (Π(φ) = 0.992 ; g φ = 32, 533) whereby in general "journalists are not distributed by agents", although it would appear that some journalists are! Finally, we analyze an example of a completely possible and highly general axiom, DisjointClasses(dbo:Stadium ObjectAllValuesFrom(dbo:birthPlace dbo:Place))

(Π(φ) = 1.0 ; g φ = 10, 245), which we can paraphrase as "stadiums cannot have a place as their birthplace". Knowing that Stadium and Place are not disjoint, this axiom states that Stadium and ∀birthPlace.Place are in fact disjoint; in addition, ∀.birthPlace.Place, i.e., "(people) whose birthplace is a place" is a class with many instances, hence the high generality of the axiom.

Generally, the experimental results confirm that the proposed method is capable of discovering highly accurate and general axioms containing the relational operators of existential quantification ∃ and value restriction ∀ on a wide variety of topics from DBpedia. A training-testing approach is also implemented to solve current limitations of performance and obtain a fair and objective assessment of its accuracy.

Summary

The works in this section aim at mining axioms in term of both atomic and complex axiom containing different types of relational operators. Two variants of the fitness function are proposed which ensure the obtained axioms being highly credible and general. In addition, two evaluation benchmarks, namely subjective and objective, are deployed to evaluate the performance of the models. 1,000 2,000 5,000 10,000

Introduction

Within the evolutionary process, the evaluation framework quantifies the quality of axioms, which is the base for selecting individuals (solutions) for the recombination, mutation, and replacement phases. In the previous chapter, the evaluation framework based on possibility theory is introduced to determine the fitness values of generated axioms in the evolutionary cycle, i.e. the credibility and generality of axioms. However, the selection pressure in each phase of the evolutionary process 

Evolutionary Multi-Objective Optimization

Multi-Objective Optimization

A Multi-objective Optimization (MOO) [START_REF] Kalyanmoy | Multi-objective Optimisation Using Evolutionary Algorithms: An Introduction[END_REF] problem involves a number of objective functions constituting a multi-dimensional objective space, in addition to the decision variable space. Specifically, a solution to a MOO problem is a vector of decision variables x = (x 1 , x 2 , ...., x n ) T in the decision space X. For each x, there

A MOGE Approach to Class Disjointness Axioms Discovery

exists an objective vector y = (y 1 , y 2 , ...., y n ) T in the objective space Y mapped by a function f : X → Y with y = f (x) = (f 1 (x), f 2 (x), ..., f n (x)). The term domination is used for the situation of comparing two solutions x (1) and x (2) defined as follow:

Definition 7.2.1: Domination A solution x (1) dominates the other solution x (2) (x (1) x (2) ) if and only if x (1) is no worse than x (2) in all objectives (e.g., for a minimization problem ∀i ∈ [1.

.n] y

(1) i ≤ y

(2) i

where y (1) = f i (x (1) ) and y (2) = f i (x (2) )) and x (1) is strictly better than x (2) in at least one objective (i.e., ∃i ∈ [1..n]y

(1) i < y (2) i ).
The set of optimal solutions in the decision space X is called as Pareto-optimal solutions or Pareto set. In addition, there are corresponding optimal objective vectors, i.e. points, in the objective space Y , called as Pareto-optimal front or non-domination front. In MOO, all objectives are equally important, i.e., finding the optimum solution cannot be based on one objective alone while skipping other objectives. The goal of MOO is to find multiple solutions representing the possible non-dominated trade-offs among the objective functions, i.e., a set of solutions lying on the Pareto-optimal front. In addition, a set of obtained solutions is sought for that is also diverse enough to represent the entire range of the Pareto-optimal front. An illustration of Pareto front for a minimization problem containing a set of solutions set that are not dominated by any other feasible solutions, i.e., Pareto optimal solutions, is indicated in Figure 7.1. In it, the blue points represent feasible choices in which the smaller values are preferred to the larger ones. Points x (1) and x (2) are in vector x of decision variables in the decision space X. A point as point x (m) is not on the Pareto frontier because it is dominated by both other points x (1) and point x (2) . Points x (1) and x (2) are not strictly dominated by any other in all objectives represented in a objective vector y = (y 1 , y 2 ) in the objective space Y , where y 1 = f 1 (x), y 2 = f 2 (x), thus, do lie on the Pareto front.

Multi-objective Evolutionary Algorithms

Evolutionary multi-objective optimization (for short, EMO) involving Multi-objective evolutionary algorithms (for short, MOEA) [Deb11; ZLB04] is one of engineering approximation, with respect to the trade-off among objectives. Also, it provides operators, i.e., recombination and mutation operators, to constantly improve the evolving non-dominated points. MOEA can lessen the computational complexity resulting in the expensive cost in generating Pareto set. They may not reach the optimal trade-offs, but try to find a set of good approximating solutions whose vectors are not too far away from the optimal objective vectors.

The fundamental goals of MOEA are not only to guide the search toward the Pareto set but also to maintain the diversity of the set of non-dominated solutions.

While the former concerns mating selection (i.e., parent selection mentioned in Section 4.3.2) in which the assignment of fitness values refer to satisfying multiple optimization criteria, the latter is relevant to selection in general with respect to avoiding the convergence in the population with respect to both the objective space and decision space, i.e., limiting the identical solutions in the population. In order to deal with the first task, the studies in terms of fitness assignment and selection In reality, MOEA have been developing with the presence of various algorithms.

The development of phases of MOEA is divided into different phases depicted in [START_REF] Huang | Survey on Multi-Objective Evolutionary Algorithms[END_REF]. Also, a survey of MOEA based on their own characteristics is introduced in [VDP15]. We will not discuss all algorithms here in detail which is not necessary for the purpose of application to solve our specific problem later. Instead of that, we only investigate one of the well-known MOEA, NSGA-II which concentrates on finding non-dominated solutions in addition to elitist and diversity preserving mechanisms.

NSGA-II

The non-dominated sorting genetic algorithm, for shortly, NSGA-II [START_REF] Deb | A fast and elitist multiobjective genetic algorithm: NSGA-II[END_REF] being an improved version of NSGA [START_REF] Srinivas | Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms[END_REF], is one of the most efficient MOEA proposed by K.Deb, which is suitable for the application in complex and real-world MOO problems. NSGA-II alleviates the obstacles in the previous version of NSGA in
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terms of high computational complexity of non-dominated sorting, lack of elitism strategies and the need of sharing parameters [START_REF] Deb | A fast and elitist multiobjective genetic algorithm: NSGA-II[END_REF]. In particular, NSGA-II provides a better sorting algorithm, incorporates an elitist principle and no sharing parameter needs to be chosen a priori. In order to obtain a uniformly spread of the Pareto-optimal front, NSGA-II also employs a fast density estimation in terms of computing the crowding distance of solutions in their own front and crowded comparison operators to guide the selection in each phase of the algorithm. The general principle of NSGA-II can be presented as follows:

1. Population Initialization: A population P 0 of size n is initialized based on the problem range and constraints.

2. Non-dominated Sorting: Evaluating the objective functions for the initial population. Each solution is assigned a fitness value according to its nondomination level.

3. Genetic Operation: Binary tournament selection, crossover and mutation are applied on P 0 . Offspring population Q 0 of size n is created.

Population Combination:

The combination of the offspring and parent population, i.e., R i = P i ∪ Q i is performed to maintain the best solutions for the new population, i.e., elitism. 

Non-dominated

Practical MOEA Framework

In reality, there are various practical frameworks developed for MOEA. One of them is a free and open source Java library for developing and experimenting with MOEA published on the site http://moeaframework.org/, which is an extensible framework for rapidly designing, developing, executing, and statistically testing MOEA. We exploit the advantages of this library, incorporated with GE, to develop a Multi-objective GE for discovering axioms.
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Multi-Objective GE for Axiom Discovery

As a particular case of MOEA, the approach we propose comprises the integration of GE in MOEA, in particular, using NSGA-II for axiom discovery, which we call Multi-Objective GE (MOGE). Basically, the mechanism of MOGE is quite similar to the one of MOEA, except that we define multi-objective problems using integer arrays called codons as decision variables. The codons do not define axioms, i.e., the programs, themselves, but provide instructions for deriving axioms using the BNF grammar through the mapping process, as explained in Section 4.3. In practice, we focus on discovering axioms containing relational operators defined by the grammar 6.4.1. In addition, we will not pay attention to the description of the changes of codes in terms of GE embedding into NSGA-II of a given practical MOEA framework. Instead, we aim at enhancing several points in terms of the evaluation framework, whose results directly influence the non-dominated sorting.

Multi-Objective Evaluation Framework

The goodness of an axiom is determined by its dominance, whereby it obtains a score on each objective that is not dominated by the corresponding score of another axiom. To derive such axioms, we extend the classic GE approach presented in the previous chapters to MOGE. More importantly, we develop separate objective functions to evaluate the fitness of each axiom. In order to ensure the diversity of the obtained axioms, a scoring of the similarity of each axiom to the other axioms in the population (essentially, a local phenotypic crowding measure) is also considered in the evaluation framework. In addition to the use of axiom scoring according to possibility and generality, applied in Chapter 6, we add a new scoring, called similarity. Then, we propose two objective functions for this MOGE model.

Similarity measure

This measure characterizes the similarity of an axiom φ, s(φ), to the population of n axioms which is quantified by the average of similarity metrics s(φ, a i ) between
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axiom φ and each axiom a i in the population:

s(φ) = 1 n -1 n i=1;a i =φ s(φ, a i ) (7.1)
In order to measure the similarity coefficient s(φ) as in the above formula, the similarities s(φ, a i ) need to be computed. As mentioned in Section 6. between expressions, e.g., s(A, C), is performed on the corresponding binary trees t 1 and t 2 . Binary trees are traversed simultaneously and each pair of corresponding nodes (p j , q j ) in both trees, i.e., p j in t 1 and q j in t 2 , is compared to each other and the value returned is the similarity between two nodes, i.e., s(p j , q j ), according to 

s(A, C) = 1 k k j=1 s(p j , q j ) (7.3)
where k is the number of pairs defined by the number of nodes in the smallest tree. 

Results & Discussions

We ran the MOGE method for 20 distinct runs for each of the different parameter settings summarized in Table 7.2, using the BNF grammar defined in Section 6.4.1.

The full set of valid distinct axioms, i.e., axioms φ such that Π(φ) > 0 and g φ > 0 discovered are available online.1 Statistics for automatically generated axioms are presented in Table 7.3. In addition, we can see in Figure 7.3 that the number of valid distinct axioms for most parameter settings, i.e., population size popSize and total effort k, mined by MOGE is significantly greater than those mined by the single-objective GE method. This means that the diversity of an extracted set of axioms is considerably enhanced when we use the MOGE method. Furthermore, we follow the use of the fuzzy extension of the usual definition of precision in Section 6.4.1 to measure the accuracy of our results. The results shown in Table 7.4 confirm the high accuracy of the proposed MOGE method. The precision values are quite equivalent to the figures of GE method with the range from 0.984 to 0.996 for all the different considered population sizes and different numbers of generations (reflected through the values of total effort).

Figure 7.4 illustrates the distribution of axioms having Π(φ) > 2 3 in terms of the two objectives, i.e. possibility and generality, compared with the singleobjective GE methods. We perform the comparison based on the results of the best setting, i.e., those yielding the largest number of obtained distinct axioms and the highest accuracy, for either method, i.e., {popSize = 10, 000; k = 200, 000} and {popSize = 5, 000; k = 300, 000}, respectively. We can observe that the number of highly qualified axioms (Π(Φ) > 2 3 and g Φ > 100)) is maintained in the MOGE The range of similarity scores recorded for these axioms lies below 0.35, which indicates a good diversity of the classes and properties in the components of axioms.

Based on the given grammar, one part of the axioms is forced to contain a relational operator, i.e. ∃, ∀, or , hence the overlap of the operators in the axioms does not allow the similarity score to be zero.

According to the results, we consider in detail the axioms discovered by the algorithm with this best setting. First, we witness that the number of obtained axioms containing the ∃ operator is slightly larger than the one of those with the ∀ operator, namely 40,122 and 36,682 axioms, respectively. However, together with the mandatory class expression containing the ∀ or ∃ operator, most extracted class disjointness axioms contain an atomic class expression. This may be due to the fact that the support of atomic classes is usually larger than the support of a complex class expression. Specifically, we obtain 7 axioms containing complex expressions in both their members. These axioms are less general, even though they are completely possible.

An example is the case with DisjointClasses(ObjectAllValuesFrom(dbprop:operation dbo:MilitaryConflict) ObjectAllValuesFrom(dbprop:order dbo:MIlitaryUnit))(Π(φ) = 1.0

; g φ = 1). Also, we analyze an example of a completely possible and highly general axiom, DisjointClasses(dbo:District ObjectSomeValuesFrom(dbo:birthPlace dbo:Place))

(Π(φ) = 1.0 ; g φ = 8, 483), which we can paraphrase as "districts cannot have a place as their birthplace". Knowing that District and Place are not disjoint, this axiom states that District and ∃birthPlace.Place are in fact disjoint; in addition, ∃birthPlace.Place, i.e., "(people) whose birthplace is a place" is a class with many instances, whence, the high generality of the axiom.

Summary

In this chapter, we presented a multi-objective extension to a grammar-based genetic programming approach to axiom discovery which consists of using two objectives plus a "similarity" score, which is in fact a sort of local phenotypic crowding factor.

The experimental results confirm that the proposed method is capable of discovering This chapter presents the outcomes of this thesis and develops some future directions. In the conclusions presented in Section 8.1, we highlight the main results relevant to OWL axioms discovery from RDF data. The chapter closes with several directions for future work in Section 8.2.

Conclusions

Along with the rapid extension of LOD consisting of an increasing number of new RDF data instances, the existing ontologies used as its schema-level knowledge model also need to be co-evolved. This involves the enrichment of ontologies with new knowledge defined in terms of axioms to enhance data quality and data cleaning in LOD. Exploiting ontological axioms in the form of logical assertions to be added
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to an existing ontology can be useful for the automatic discovery of errors and inconsistencies in the structure of the ontology as well to infer new facts, thus increasing the deductive power of populated ontologies (or knowledge graphs).

In this thesis, we merely focus on the automated learning of axioms from recorded RDF facts which can be viewed as the first step of the enrichment process, i.e., learning steps whose outputs is the input for replacement steps applied to the existing ontologies. The process of learning from RDF data is viewed as a case of inductive reasoning and ontology learning. Based on the insight of Karl Popper [START_REF] Popper | Logik der Forschung[END_REF] that discovering new knowledge is essentially an evolutionary process, whereby hypotheses are generated by some heuristic mechanism and then tested against the available evidence, so that only the best hypotheses survive, we employed Grammatical Evolution, one type of evolutionary algorithm, to build the models for mining OWL axioms from an RDF data repository. While other methods are incapable of scaling up when the space of hypotheses, i.e. the axioms, becomes too large, and, as a consequence, their applicability is restricted to the discovery of relatively simple axioms, the application of an evolutionary heuristic method in our research overcome the limitations of other methods; specifically, it can handle the search for more complex axioms, whose search space is incomparably larger.

The main results of this thesis can be summarized into four aspects, presented in the next sections (from Section 8.1.1 to Section 8.1.4).

A General GE Framework of OWL Axioms Discovery from RDF data

We formalized a general framework for learning OWL axioms using GE, presented in Chapter 4. First, the construction of a BNF grammar for structuring OWL axioms is explained in Section 4.3.1. In order to avoid rewriting the whole grammar when there is any change in the contents of RDF repositories, the structure of the grammar is split into two parts: static and dynamic, respectively, with distinguished

specifications. An evolutionary model for searching OWL axioms is then proposed (see Section 4.3.2) in which a population of candidate axioms is maintained by
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Algorithm 1 and iteratively refined to find axioms with the highest level of credibility and generality. In addition to the standard implementation of GE found in the GEVA framework, we carried out different specific adaptations to the model by a series of algorithms. Initially, we built Algorithm 2 to generate a population containing a defined number of OWL axioms from integer strings with the initialized length.

In order to avoid the loss of the fittest axioms, elitism selection was applied in the parent selection mechanism to keep the best axioms in the next generation. In order to maintain the diversity of the population and prevent the premature convergence, we used the deterministic crowding model (Algorithm 3) in survival selection.

Evaluation Frameworks for Discovered OWL Axioms

We used the model known as axiom testing against RDF data (see Section 5.2) [START_REF] Andrea | Possibilistic testing of OWL axioms against RDF data[END_REF] to check discovered axioms whether they fit or explain the available RDF repository.

This approach eliminated the reasoning tasks and the requirements of background knowledge which can be the obstacles in dealing with the big data of LOD. In addition, we adopted an axiom scoring heuristic based on possibility theory which is well-suited to the OWA where there is uncertain and insufficient information. We employed two measures in terms of the possibilistic framework (see Section 5.3.2), namely, possibility and necessity, to assess the credibility of axioms in addition to the generality measure defined through their extensions. We developed various functions to assess the fitness of OWL axioms based on the above measures. The computation of these measures is defined through performing the corresponding SPARQL queries.

• Single-objective framework: we developed two fitness functions based on the single-objective models which refer to finding the best axioms for a specific single criterion. Unlike the first function (see Equation (6.1)) involving both necessity and possibility, the second fitness function (see Equation (6.11))

dropped the necessity measure. Also, in order to remove the case of the components of an axiom being not supported by any facts, we modified the computational definition of the generality in the second fitness function as the minimum of the cardinality of the extensions instead of their total one.
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Based on the experimental results (see Section 6.3.4), it is clear that the second fitness function outperforms the former. However, the disadvantages of both single-objective functions include the overfitting problem, whereby some axioms would be discovered possessing a high fitness but invalid.

• Multi-objective framework: We built a multi-objective framework (see Section 7.3.1) consisting of using two objectives plus a "similarity" score which refers to finding axioms satisfying the possible non-dominated trade-offs among the objective functions and enhancing the diversity of obtained axioms in the population. We built two objective functions (see Equation (7.4)) aiming at discovering axioms that maximize the values of possibility and generality while not being too similar among themselves. This framework reduced the problem of overfitting of the previous single-objective GE models.

Toward Learning OWL Class Disjointness Axioms

• In order to apply the general OWL axiom discovery framework using GE (presented in Chapter 4) to the specific problem of discovering OWL class disjointness, we developed two learning models (see Chapter 6). We developed the first model involving learning atomic and complex axioms containing union and intersection operators and involving topic 'Work' in DBpedia (see Section 6.3). We used the two versions of the fitness function obeying the mentioned single-objective model for evaluating the discovered OWL axioms.

In terms of atomic axioms, we compared our system to GoldMiner [START_REF] Völker | Acquisition of OWL DL Axioms from Lexical Resources[END_REF],

which is a related system outperforming other state of-the-art systems in terms of discovering class disjointness axioms. The advantages of this model are the high accuracy and the wider coverage than the GoldMiner when there are a number of discovered atomic axioms that cannot be mined by GoldMiner. For the case of complex axioms, the results are slightly less accurate compared with the case of discovering atomic ones, but still considerably precise. Although the first model is effective in discovering axioms containing both conjunctions and disjunctions, its limitations are that this kind of axioms can also be
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mechanically derived from the known atomic axioms and the extracted axioms are limited to the classes relevant to a small scope of topics, namely the Work topic of DBpedia.

• In the second model of the GE approach described in Section 6.4, we turned to discovering OWL class disjointness axioms involving value and existential restrictions in addition to conjunctions on a wider variety of topics, which are hard or impossible to be manually induced from atomic axioms.

The experimental results confirm that the proposed method is capable of discovering highly accurate and general axioms with the wider range of topics from DBpedia.

• We extended the above GE approach as a multi-objective problem, i.e., MOGE, by combining GE with the NSGA-II algorithm and using the multi-objective evaluation framework. The experimental results (see Section 7.3.3) confirmed the increased effectiveness of the framework, when compared to the above single-objective GE models.

Based on all the experimental results from both GE and MOGE, we found that the GE and MOGE approach are currently the best methods for discovering OWL class disjointness axioms. Furthermore, the MOGE outperformed GE in discovering larger number of axioms. In addition, there are no other methods proposed so-far in the literature to mine complex axioms of the same kind.

Performance Evaluation Frameworks

We developed two frameworks categorized into subjective (i.e., Gold Standard)

and objective (i.e., training-testing model) for evaluating the performance of the learning models.

• Gold Standard: we created a matrix called Gold Standard created by humans, The advantages of this benchmark is to overcome the limitation of performance and to provide a more objective assessment of the accuracy.

Future Work

From the point of view of evolutionary computation, the way in which we have used grammar-based genetic programming in this thesis is somehow atypical and demonstrates how evolutionary algorithms can profitably serve as tools to explore a huge search space to discover multiple interesting solutions (the more, the better!), rather than finding a single "best" solution. In other words, while the common practice in the field of evolutionary computation is to view evolutionary algorithms as very powerful, albeit somehow slow, global optimization methods, and devise clever ideas to make them converge faster and consistently to the global optimum, our work provides an alternative type of problems where exploration and "divergence", as it were, is the real name of the game and suggests that it is exactly for problems of this kind that evolutionary algorithms might give the best of themselves. Investigating in depth such a perspective on evolutionary algorithms and all of its consequences may thus be viewed as one possible extension of this work.

In addition, there are many ways in which the research we have initiated with this thesis might be extended. The following list of directions for further work is thus far from exhaustive and focuses on the most immediate issues or opportunities that our results bring about:

• Enhancing computing speed: The computation of the complex SPARQL queries in our axiom evaluation framework in general is still rather slow, which
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required hours or days of CPU time, depending on the type of axioms and the relevant parameter settings. It would thus be interesting to study promising performance improvements that lend themselves to massive parallelization, of the kind offered by general-purpose GPUs. In addition, we could study the use of the parallelized MapReduce and Hadoop framework that can reduce the processing time of the big datasets like LOD.

• Exploring various possible combinations of the promising measures: A possible direction to follow in the future is to extend the evaluation of candidate axioms with the inclusion of some measures of relevant to the structure of axioms.

For example, we could study the complexity within the axiom contents to define their interestingness. The more the axiom is complex, the higher the computational cost. In the case when axioms are too complex and the computation is over the allowed threshold, they should be less expected to be mined.

• Exploiting our method to clean datasets and improve ontology-based data access (OBDA): The application of our results for providing issuing warnings in the datasets when inconsistencies are discovered would be the base for the further direction in handling inconsistencies and fixing errors in datasets involving the problem of data quality and data cleaning in OBDA [START_REF] Xiao | Ontology-Based Data Access: A Survey[END_REF].

• Extending the types of axioms that need to be mined: Another way to 
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  with billions RDF triples compared only 12 in 2007. Additionally, published datasets already cover diverse topics such as life science, linguistics, social networking, geography, publication, media, etc. Some prominent representatives of the LOD are DBpedia 1 (a rather rich collection of facts extracted from the Wikipedia), Freebase (linked dataset used by Google) or YAGO (linked dataset extracted from sources such as Wikipedia and WordNet). LOD is considered as the massive deployment
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 21 Figure 2.1:The Semantic Web Layer Architecture[START_REF] Grimm | Introduction to the Semantic Web Technologies[END_REF] 
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 22 Figure 2.2: An RDF graph

  OWL 1 and corresponds to SHIF(D) in DLs. It is used in conceptually simple hierarchies and simple constraints. It has fewer constructs compared other species. For examples, it does not support explicit negation, union, nominal operators or only cardinality values of 0 or 1 are allowed.
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 23 Figure 2.3: An example of the structure of a SPARQL query

  -based methods are merely based on instance data in the repository. The difference of most statistic-based techniques with respect to ILP-based techniques is that they do not rely on reasoning tasks to be performed on the instances of a knowledge base, but involve data mining approaches. These research directions have been mentioned in the collection of works developed by Volker et al., which focus on mining the Semantic Web to enrich the schema of ontologies [Ret+12].

(

  KBs) published in LOD concerns axiomatizing the concepts and relationships to induce different types of schema-level axioms. Learning these axioms is also one of the critical tasks in the entire ontology learning which is called schema-level axiom learning. In the SW, schema-level axioms (also called conceptual axioms) are classified into class axioms and properties axioms possibly represented in OWL (explained in Section 2.2.3, corresponding to TBox and RBox axioms in DLs, respectively (explained in Section 2.1.1). Subsumption or equivalence axioms can be derived from the Horn rules mined on large RDF knowledge bases by AMIE[START_REF] Antonio | AMIE: association rule mining under incomplete evidence in ontological knowledge bases[END_REF] and its extension AMIE+[START_REF] Galárraga | Fast rule mining in ontological knowledge bases with AMIE+[END_REF]. Similarly, role transitivity, symmetry, role/concept subsumption axioms can be suggested from multi-relation rules discovered from assertional knowledge given by RDF data[START_REF] Amato | Ontology enrichment by discovering multirelational association rules from ontological knowledge bases[END_REF][START_REF] Claudia D'amato | Evolutionary Discovery of Multi-relational Association Rules from Ontological Knowledge Bases[END_REF][START_REF] Minh | An evolutionary algorithm for discovering multirelational association rules in the semantic web[END_REF].[START_REF] Saıs | Inferring the evolution of ontology axioms from RDF data dynamics[END_REF] detected the evolution of axioms concerning four types of OWL axioms, namely, DataPropertyAxiom, ObjectPropertyAxiom, ClassAxiom and HasKey based on the needed part of the RDF data changed (updated or modified) which is relevant to not only extracting additional axioms for the ontology but also defining axioms needed to be deleted from the existing ontology. A recent work[START_REF] Li | Mining RDF Data for OWL2 RL Axioms[END_REF] proposed a parallel mining of OWL2 RL axioms from LOD.

  class subsumption axioms [SAS11; GPS13] and specialized form with respect to restriction classes [VN11]. Considered as a pillar type of axioms characterizing the rich expressiveness and ensuring the quality of ontologies, discovering disjointness axioms between two classes is increasingly getting attention. A set of tools developed by Volker et al. [VHC07; FV11; VFS15], specifically, are LeDA [FV11], acquiring disjointness by supervised machine learning, and GoldMiner, [VFS15] using unsupervised machine learning to automatically extract class disjointness axioms.

  data of RDF triples. RDF mining is a close relative to the fields of Linked Data mining[START_REF] Ristoski | Mining the Web of Linked Data with RapidMiner[END_REF] and Semantic Web mining [Ret+12; QS13; TRa16], where Linked Data and Semantic Web data, including also themselves RDF triples, are used as the input for mining patterns and knowledge. RDF mining generally involves the discovery of meaningful patterns and correlations within RDF data, which is achieved via various data mining techniques.

called

  frequent itemsets; (ii) extracting ARs from those frequent itemsets under some constraints of minimal confidence. A group of ARM works [NB10; BBL17; Gal+13; Gal+15; TEE20] was proposed in the Semantic Web which concerns mining Semantic Web data (including RDF data).[START_REF] Nebot | Mining Association Rules from Semantic Web Data[END_REF] proposed a method to efficiently extract items and transactions suited for traditional association rules mining algorithms. SWARM[START_REF] Barati | Mining Semantic Association Rules from RDF Data[END_REF] extracted common behavioural patterns associated with knowledge at both the instance-level and schema-level, i.e., semantic ARs. A similar work[START_REF] Thamer | A Semantic Approach for Extracting Medical Association Rules[END_REF] concerning the use of schema-level knowledge in the mining process is the extraction of ARs in the medical field based on ontologybased Apriori algorithm. In addition, AMIE[START_REF] Antonio | AMIE: association rule mining under incomplete evidence in ontological knowledge bases[END_REF] proposed a formal model for rule mining under the OWA with a novel measure to simulate counterexamples thanks to the partial completeness assumption (PCA) and a scalable algorithm for the faster mining. An extension of AMIE, known as AMIE+[START_REF] Galárraga | Fast rule mining in ontological knowledge bases with AMIE+[END_REF], improves its performance by adding a series of pruning and query rewriting techniques that are used to discover Horn rules on large RDF knowledge bases. Claudia d'Amato et al.[START_REF] Amato | Ontology enrichment by discovering multirelational association rules from ontological knowledge bases[END_REF][START_REF] Claudia D'amato | Evolutionary Discovery of Multi-relational Association Rules from Ontological Knowledge Bases[END_REF][START_REF] Minh | An evolutionary algorithm for discovering multirelational association rules in the semantic web[END_REF] also proposed two algorithms, namely a level-wise generated-and-test algorithm and an evolutionary algorithm, to discover multi-relational association rules encoded in the Semantic Web rule language 3. Literature Review (SWRL), by exploiting the evidence coming from the assertional data in KBs (i.e., RDF data). Some association rules mined from published RDF data can be exploited for the later creation of schema-level knowledge for ontologies like rules possibly translated into OWL 2 EL subsumption and equivalence axioms[START_REF] Antonio | AMIE: association rule mining under incomplete evidence in ontological knowledge bases[END_REF][START_REF] Galárraga | Fast rule mining in ontological knowledge bases with AMIE+[END_REF] or transitivity and symmetry of a role, and/or concept/role inclusion axioms[START_REF] Amato | Ontology enrichment by discovering multirelational association rules from ontological knowledge bases[END_REF][START_REF] Claudia D'amato | Evolutionary Discovery of Multi-relational Association Rules from Ontological Knowledge Bases[END_REF][START_REF] Minh | An evolutionary algorithm for discovering multirelational association rules in the semantic web[END_REF].

  Among the techniques proposed to ensure scalability in the context of an ever expanding volume of RDF triples, Evolutionary approach (EA), i.e., Evolutionary Computation (EC) inspired by natural selection, is a potential search solution for this purpose. Along with global optimization capabilities, EA is less sensitive to 4. Learning OWL Axioms From RDF data local optima and can adapt with both symbolic and numerical data. However, in the traditional EA like in Genetic Algorithms (GA), the representation of knowledge is syntactically restricted. Although Genetic Programming (GP) [Koz93; Lan+08] allows the exploration of computer programs, it encounters the closure problem that requires the validation of generated programs. The trade-off between the expressiveness of representation and the performance of the search has been the subject of numerous works [Div06; DM05; Div10; TM00; TM02]. These approaches aiming to combine EC with ILP have been investigated to alleviate expensive computation arising from inductive learning of rich representations.

(

  GE) was invented by Michael O'Neill et al. [RCO98; OR01]. Instead of changing the paradigm of traditional tree-based GP as in LOGENPRO, GE uses the mapping process from genotype to phenotype. The grammars are designed to encode domain knowledge in any language, e.g. programs, whereas the search is itself driven by traditional evolution.
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 41 Figure 4.1: Grammatical Evolution mechanism
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 42 Figure 4.2: An illustration of a mapping process

  DataPropertyDomain | DataPropertyRange | FunctionalDataProperty HasKey := 'Haskey''('ClassExpression'('ObjectPropertyExpression')' '('DataPropertyExpression')'')' Assertion := SameIndividual | DifferentIndividual | ClassAssertion | ObjectPropertyAssertion | NegativeObjectPropertyAssertion 4. Learning OWL Axioms From RDF data The remaining axiom-level productions are written according to the definition of each type of axioms. With the exception of two assertions of individuals as SameIndividual and DifferentIndividuals, each type of axioms consists of expressions formulating classes, object properties or data properties. Expressions can contain logical operators such as conjunction, disjunction, etc. Example 4.3.1 An instance of the axiom-level productions concerning Disjoint-Classes: DisjointClassess := 'DisjointClasses''('ClassExpression''ClassExpression {''ClassExpression } ')'

  executing the parent selection, the axioms in the population are evaluated and ranked in descending order of their fitness. The parent selection mechanism often amounts to choosing the fittest individuals from the population for reproduction.
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 43 Figure 4.3: An illustration of the parent selection mechanism.

  Figure 4.3. illustrates the process of selecting potential candidate solutions for recombination following elitism selection, i.e., generating a list of parents. The top proportion pselectSize of distinct individuals in the candidate list is selected and it is replicated to maintain the size popSize of population. The list of parents is shuffled (line 12 of Algorithm 1) and the individuals are paired in order from the beginning to the end of the list.
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  Learning OWL Axioms From RDF data randomly. The sets of codons beyond those points are exchanged between the two parents with probability pCross. The result of this exchange is two offspring genotypes. An illustration of a single point crossover mechanism is depicted in Figure 4.4.
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 44 Figure 4.4: An illustration of a single-point crossover
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  addition, depending on the form of the axiom, the definition of content(φ) refined by the principle of selective confirmation is different. For example, in the case of DisjointClasses(C D) axiom, all ψ involving the occurrence of a resource r will be confirmations when there is at least K |= C(r) or K |= D(r) or both,5. Axiom Evaluationi.e. K |= ψ and K |= ¬ψ. Such ψ is only simpliciter confirmation and there is no selective confirmation in the case of DisjointClasses axiom. Therefore, the presence of confirmations of DisjoinClasses axiom is not very interesting and necessary in the content of DisjointClasses(C D). As an example in the case ofSubClassOf (C D), all ψ involving K |= C(r) (if K |= D(r)) or confirmation K |= ψand K |= ¬ψ will be trivial confirmations, i.e. not selective ones, and should be left out of the content SubClassOf (C D). As a result, content(φ) and the number of ψ that need to be checked are greatly lessened.

  Figure 5.1: A schematic illustration of the disjointness of two classes C i and C j

-

  A, B -fuzzy sets. * The membership function µ A∩B (u) of the intersection A ∩ B is defined by µ A∩B (u) = min(µ A (u), µ B (u)), ∀u ∈ U (5.15) * The membership function µ A∪B (u) of the union A ∪ B is defined by µ A∪B (u) = max(µ A (u), µ B (u)), ∀u ∈ U (5.16) * The membership function of the complement of a normalized fuzzy set A, µ A (u), is defined by µ A (u) = 1 -µ A (u), ∀u ∈ U (5.17) • Possibility theory -Possibility theory is also an uncertainty theory used for the handling of incomplete information which stands at the cross-road between fuzzy set and probability theory [DP93]. It is comparable to probability theory because it is bound on set functions. However, it uses two dual measures, namely possibility and necessity in order to model available information whereas probability theory uses only one, namely probability measure being additive. Possibility distribution: There is a relation between possibility theory and fuzzy sets expressed in the concept of a possibility distribution [Zad99]. According to it, a possibility distribution is defined as a fuzzy restriction, i.e. an elastic constraint, on the values assigned to a variable. Let A be a fuzzy set of a universe of discourse U = {u} characterizing membership function µ A and x be a variable taking values in U . A possibility distribution π x can be defined as an interpretation of the membership function µ A of a fuzzy set A by the elastic restriction: ∀u ∈ U, π X (u) = µ A (u). In which, π x (u) represents the possibility of x taking value u in U and the membership function µ A (u) represents the degree of compatibility of the value u with the fuzzy set A. Definition 5.3.2: Possibility distribution A possibility distribution on a universal U is a mapping π : U -→ [0, 1] In terms of the representation of an imperfect knowledge, U stands for a (mutually exclusive) set of states of affairs and a possibility distribution π represents the state of affairs u ∈ U . It is used for distinguishing the plausibility, 5. Axiom Evaluation i.e. the possibility, of the different states. In addition, it represents a flexible restriction on what is the actual state with the following conventions [DP15]: * π(u) = 0 means that state u (i.e., x = u) is totally impossible * π(u) = 1 means that state u (i.e., x = u) is completely possible, i.e. plausible, which is said to be normalized -Possibility and Necessity measures: denoted by Π and N , respectively, are built from a possibility distribution π. Both measures apply to a subset of states X ⊆ U and are defined as follows: Π(X) = sup u∈X π(u) (5.18)
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  executed on March 09, 2021 returned only 27 solutions, whereas the realistic number of class disjointness axioms that one would expect to hold among the hundreds of classes in DBpedia (738 classes in DBpedia version 2015-04, 760 classes in DBpedia version 2016-04) 1 must be much larger, in the order of thousands or tens of thousands. This type of axiom is essentially useful for checking data quality, in particular, for testing the logical consistency and for detecting the undesired usage patterns or incorrect assertions. The definition of concept disjointness with respect to an interpretation I is given as follow: Definition 6.1.1: Concept Disjointness [Rud11] Given C, D are concepts. Two concepts C and D are disjoint with respect to an intepretation I if they do no possess any common individual according to their extensions, i.e. C I ∩ D I = ∅. A simple example can demonstrate the potential advantages obtained by the addition of this kind of axioms to an ontology. A knowledge base (KB) defining terms of classes like Mother, Man and asserting that individual Tyler is both a Mother, i.e., Mother(Tyler), and a Man, i.e., Man(Tyler), would be logically consistent, without any errors being recognized by a reasoner. Yet, if a constraint of

  most prominent related work relevant to learning disjointness axioms consists of the contributions by Johanna Völker and her collaborators [Völ+07; FV11; VFS15]. In early work, Völker developed supervised classifiers from LOD incorporated in the LeDA tool [FV11]. However, the learning algorithms need a set of labeled data for training that may demand expensive work by domain experts. In contrast to LeDA, statistical schema induction via association rule mining [VFS15] was given in the tool GoldMiner, where association rules are representations of implicit patterns extracted from large amount of data and no training data is required. Association rules are compiled based on statistical analysis of a transaction table, which is built from the results of SPARQL queries. That research only focused 6. GE Models toward Class Disjointness Axiom Discovery on generating axioms involving atomic classes, i.e., classes that do not consist of logical expressions, but only of a single class identifier. Another relevant research is the one by Lorenz Bühmann and Jens Lehmann, whose proposed methodology is implemented in the DL-Learner system [Leh09] for learning general class descriptions (including disjointness) from training data. Their work relies on the capabilities of a reasoning component, but suffers from scalability problems for the application to large datasets like LOD. Also, a recent contribution of Reynaud et al. [RTN19] uses Redescription Mining (RM) to learn class equivalence and disjointness axioms with the ReReMi algorithm.RM is about extracting a category definition in terms of a description shared by all the instances of a given class, i.e. equivalence axioms, and finding incompatible categories which do not share any instance, i.e. class disjointness axioms. Their method, based on Formal Concept Analysis (FCA), a mathematical framework mainly used for classification and knowledge discovery, aims at searching for data subsets with multiple descriptions, like different views of the same objects. While category redescriptions, i.e., equivalence axioms, refer to complex types, defined with the help of relational operators like A ≡ ∃r.C or A ≡ B ∃r.C, in the case of incompatible categories, the redescriptions are only based on the set of attributes with the predicates of dct:subject, i.e. axioms involving atomic classes only.

  3.1,we initially build a BNF grammar pattern for generating this kind of class disjointness axioms consisting of two parts, namely static part and dynamic part as follows: ObjectUnionOf := 'ObjectUnionOf' '(' ClassExpression ' ' ClassExpression ')' (r6) ObjectIntersectionOf := 'ObjectIntersectionOf' '(' ClassExpression' 'ClassExpression ')'% Dynamic part -Primitives(r7) Class := % production rules are constructed by using SPARQL queries
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 61 Figure 6.1: An illustration of mapping process to an expression of class disjointness axiom

  .6) 6. GE Models toward Class Disjointness Axiom Discovery Also, based on Equation (5.5), the support u Dis(C,D) of Dis(C, D) the cardinalities of the extension of the two classes C and D is computed with the following SPARQL query: SELECT( count (DISTINCT ?x) AS ?u) WHERE {Q(C, ?x) UNION Q(D, ?x)} (6.7) In addition, a second refinement of the definition of fitness stems from the observation that, for a disjointness axiom of the form Dis(C, D), a better measure of its generality would be given by the minimum of the cardinalities of the extensions of the two classes involved, C and D, in the RDF dataset, whereas u Dis(C,D) is the cardinality of the extension of C D. Let us denote by [C] the extension of class C in the RDF dataset at hand: this is the set of instances of C returned by a SPARQL query of the form SELECT DISTINCT ?x WHERE { ?x a C} (6.8) We will define the generality of axiom Dis(C, D) as g Dis(C,D) = min{ [C] , [D] } (6.9)
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 62 Figure 6.2: The process of Gold Standard creation
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 46 CheckDisjoint(expr1(n),expr2(m)) Input: expr 1 (n), expr 2 (m): class expressions being arguments in axiom; n,m: the numbers of the classes contained in the class expressions; n, m: the numbers of the classes contained in the class expressions; G: matrix of Gold Standard Output: R: results of disjointness -returns a non-negative integer value; if the return value is greater than 0, expr1(n) and expr2(m) are disjoint; if the return value equals 0, expr1(n) and expr2(m) are non-disjoint 1 if both classexpr 1 (n) and classexpr( 2 (m) are atomic expressions then 2expr 1 (1) ← expr 1 (n) 3 expr 2 (1) ← expr 2 (m) 4 R ← CheckDisjointAtomicClasses(expr 1 [1], expr 2 [1])/* CheckDisjointAtomicClasses(expr 1 , expr 2 ) scans in the matrix G and returns 0, i.e. non-disjoint or 1, i.e disjoint.*expr 1 (n) is a complex expression containing union operator then 7 ← CheckDisjoint(expr 1 [1], expr 2 (m)) + CheckDisjoint(expr 1 (n -1), expr 2 (m))8 if expr 1 (n)is a complex expression containing intersection operator then 9 ← CheckDisjoint(expr 1 [1], expr 2 (m)) * CheckDisjoint(expr 1 (n -1), expr 2 (m)) 10 if expr 2 (m) is a complex expression containing union operator then 11 R ← CheckDisjoint(expr 1 [n], expr 2 (1)) + CheckDisjoint(expr 1 (n), expr 2 (m -1)) 12 if expr 2 (m) is a complex expression containing intersection operator then 13 R ← CheckDisjoint(expr 1 [n], expr 2 (1)) * CheckDisjoint(expr 1 (n), expr 2 (m -1)) 14 return R Example 6.3.3 Based on the complex axiom generated from mapping process in Example 6.3.2. ClassDisjointness(ObjectUnionOf(dbo:WrittenWork dbo:Book)) dbo:MusicalWork) The steps of the Algorithm 4 to validate the axiom based on the Gold Standard are as follows: 1. R ← CheckDisjoint(ObjectUnionOf(dbo:WrittenWork dbo:Book)), dbo:MusicalWork) 2. R ← CheckDisjoint(dbo:WrittenWork, dbo:MusicalWork) + CheckDisjoint(dbo:Book, dbo:MusicalWork) 6. GE Models toward Class Disjointness Axiom Discovery 3. Because dbo:Book, dbo:MusicalWork dbo:WrittenWork are atomic classes, CheckDisjoint will call the base function CheckDisjointAtomicClasses. The returning values of the base function are scanned through the matrix of Gold Standard. 1 ← CheckDisjointAtomicClasses(dbo:Book, dbo:MusicalWork) 1 ← CheckDisjointAtomicClasses(dbo:WrittenWork, dbo:MusicalWork) 4. R = 1 + 1 = 2. R > 0 means that the axiom is disjoint based on the validation of the Gold Standard.

  3.1, to mine class disjointness axioms. The axioms involving atomic or complex expressions of union and intersection relevant to topic Work are systematically generated and then evaluated on DBpedia version 2015-04 in English as the reference RDF fact repository. Of 62 classes about the Work topic in DBpedia 2015-04, 53 classes with 5,195,019 instances are relevant to our experiments. The data used in this experiment are represented by RDF triples, as in Example 6.3.1. We use the BNF grammar pattern 6.3.1 of disjointness axioms with the double appearance probability of non-terminal ClassExpression in Rule (r4).
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 63 Figure 6.3: The diversity of axioms over generations
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 64 Figure 6.4: The growth of average fitness over generations

  deficiencies in determining the disjointness of classes. As in the case of axiom Disjoint-Classes(dbo:MovingImage ObjectUnionOf(dbo:Article dbo:ObjectUnionOf(dbo:Image dbo:MusicalWork ))), 4,839,992 triples in DBpedia confirm that this class disjointness axiom is valid. However, according to the Gold Standard, these two classes should not be disjoint a priori. Indeed, the class MovingImage can be assessed as a subclass of Image, which makes the disjointness between class MovingImage and any complex 6. GE Models toward Class Disjointness Axiom Discovery class expression involving relational operator union of class Image altogether impossible. Another similar case is the axiom DisjointClasses(ObjectUnionOf(dbo:Article ObjectUnionOf(ObjectUnionOf(ObjectUnionOf (ObjectUnionOf(dbo:TelevisionShow, dbo:WrittenWork) dbo:MusicalWork) dbo:Image) dbo:Film)) dbo:UndergroundJournal),

  existence restriction ∃ or value restriction ∀, i.e., of the form ∃r.C or ∀r.C, where r is a property and C is an atomic class. The remaining class expression can be an atomic class or a complex class expression involving an operator out of , ∃ or ∀. The BNF grammar pattern is thus structured as follows: ObjectIntersectionOf := 'ObjectIntersectionOf' '(' Class ' ' Class ')' (r7) ObjectSomeValuesFrom := 'ObjectSomeValuesFrom' '(' ObjectPropertyOf ' ' Class ')' (r8) ObjectAllValuesFrom := 'ObjectAllValuesFrom' '(' ObjectPropertyOf ' ' Class ')' % Dynamic part -Primitives (r9) Class := % production rules are constructed by using SPARQL queries (r10) ObjectPropertyOf := % production rules are constructed by using SPARQL queries The production rules for the two primitives in dynamic part, namely Class and ObjectPropertyOf, are filled by the SPARQL queries mentioned in Equations (4.2) and 4.3, respectively, to extract atomic classes and properties (represented by their IRI) from the RDF dataset.to eliminating the subjective intervention of human experts and to enhancing for the scalability of our implementation.
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 66 Figure 6.6: Workflow of class disjointness axioms discovery using GE in the trainingtesting model
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 67 Figure 6.7: An illustration of the Training Dataset sampling procedure
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 68 Figure 6.8: Number of axioms discovered over 20 runs.

  3.2), which is essentially a fuzzy degree of membership, we propose to use a fuzzy extension of the usual definition of precision. According to which, the precision values are computed based on the following definition of a fuzzy set cardinality introduced by De Luca et al. in [DT72] as follows:

(

  fuzzy) set of the "positive" axioms. The value of precision can thus be computed against the test dataset, i.e. DBpedia 2015-04 according to the formula precision = true positives discovered axioms = φ Π DBpedia (φ) φ Π T D (φ) , (6.13) where Π T D and Π DBpedia are the possibility measures computed on the training dataset and DBpedia, respectively. The results in Table6.7 confirm the high accuracy of our axiom discovery method with a precision ranging from 0.969 to 0.998 for all the different considered sizes of population and different numbers of generations (reflected through the values of total effort).
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  . A MOGE Approach to Class Disjointness Axioms Discoverytends naturally to drive the diversity of the population down. In addition, there possibly exist candidate axioms in the population which have the high fitness values, but are invalid following the benchmarks (i.e., Gold Standard or testing dataset).This can be derived from unsuited fitness function in evaluation framework which based on a single criterion. In reality, the experimental analyses are specific evidence for these phenomena. A possible solution which aims at enhancing the capability to explore the diverse regions of the solution (axiom) space is to use multiple objectives optimized at one time known as Multi-objective optimization (for shortly, MOO). The goal of MOO is to find multiple solutions representing the possible non-dominated trade-offs among the objective functions known as a set of solutions lying on the optimal front. In addition, a set of obtained solutions is sought for that is also diverse enough to represent the entire range of the front known as the Paretooptimal front. In this chapter, we first investigate the concepts and characteristics in terms of MOO and its variant in a heuristic approach of evolutionary algorithms known as Evolutionary multi-objective optimization (for shortly, EMO)[START_REF] Kalyanmoy | Multi-objective Optimisation Using Evolutionary Algorithms: An Introduction[END_REF][START_REF] Zitzler | A Tutorial on Evolutionary Multiobjective Optimization[END_REF]. Along the lines of the studies using GE to mine class disjointness axioms, we extend the single-objective GE approach introduced in the previous chapter as a multi-objective problem called multi-objective GE (for shortly, MOGE) described in Section 7.3. Specifically, we use MOGE to refine the evaluation of candidate axioms satisfying a trade-off between a set of objectives that improves the adaptive fit of a population of candidate axioms constrained by two independent criteria, i.e. the credibility and generality. The experiments and results are also performed based on the new MOGE model. Conclusions are provided in the last section of the chapter.
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 71 Figure 7.1: An illustration of Pareto front for a minimization problem

7

  . A MOGE Approach to Class Disjointness Axioms Discovery in multi-objective optimization problems are investigated, in particular, both must satisfy multiple objectives with multi-criteria optimization problem. In general, there are different strategies [ZLB04] in terms of fitness assignment including aggregationbased [HL92; IM98], criterion-based [Sch85; Kur91] and Pareto-based [Deb+02; FF93; GH88; ZLT01; ZT99]. Meanwhile, the tasks involving the second goal focus on enhancing the diversity issue of the current Pareto set approximation of nondominated solutions. In fact, there are various techniques in order to solve this task, e.g., Kernel methods [Sil86], fitness sharing [FF93; HNG94; SD94a], and nearest neighbor techniques [KC99; ZT99]. In addition, the studies addressing both tasks concern elitism that in this particular case is applied to preventing nondominated solution from being lost. Elitist MOEA mostly obey the combination of the domination criterion and additional information to select the individuals for the elitist group at each generation. In terms of the domination criterion, the elitist group only consists of the current approximation of the Pareto set, i.e., dominated solutions are eliminated, which ensures non-dominated solution are preferable to dominated ones. Also, additional information concerns the density or the time when the individual put into the elitist group.

  Sorting: All individuals in the combined population R i are sorted by using the fast non-dominant sorting algorithm which returns a list of the non-dominated fronts according to ranking levels F = (F 1 , F 2 , F 3 , ...F n ) of the population R i . 6. Crowding Distance Calculation: The crowding distance in fronts F of the sorted population R i is calculated based on the Euclidean distance between the specific individuals and two adjacent individuals in each front based on the objectives. 123 7. A MOGE Approach to Class Disjointness Axioms Discovery 7. Selection and Offspring Population Generation: The new population P i+1 is generated by adding the individuals from the first front until the population size exceeds n. Then, the individuals in the last accepted front are sorted according to front ranking and the first n individuals are picked. Tournament selection is used to choose the parents, whose selection criterion is based on crowded comparison operators. Crossover and mutation are performed on the selected parents in order to create a new offspring population Q i+1 of size n.It is important to note that, the first three steps (1-3) appear only once in the random initial phase, while the remaining steps (4-7) are performed iteratively from the first generation on. An illustration of the above NSGA-II procedure is given in Figure7.2.
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 72 Figure 7.2: NSGA-II mechanism

  4.1, class disjointness axioms are structured in the form of binary axioms of the form φ ≡ DisjointClasses(A, B) and a i ≡ DisjointClasses(C, D) where A, B, C, D can be atomic expressions or complex expressions containing relational operators. We define the similarity between two axioms based on the similarities between pairs of expressions as s(φ, a i ) = max{s(A, C), s(A, D), s(B, C), s(B, D)} (7.2) Expressions in each axiom are represented in the form of binary trees where each node can be an atomic class or a relational operator, namely existential quantification (∃), value restriction (∀), or intersection ( ) operators. Determining each similarity

Example 7.3. 1 (

 1 Similarity Degree Between Two Axioms) Given two axioms φ 1 and φ 2 where Table 7.1: Matrix for the comparison between nodesIn order to be more convenient for the explanation later, we use symbols A, B, C, D to stand for the expressions of the axioms as follow:• A =ObjectiveSomeValuesFrom(dbo:industry dbo:Work) • B =ObjectiveSomeValuesFrom(dbo:director dbo:Plant) • C =ObjectiveAllValuesFrom(dbo:artist dbo:Work) • D =ObjectiveIntersectionOf(dbo:Animal dbo:Plant) In order to compute the similarity degree between φ 1 and φ 2 , we need to define the similarity scores of the expression pairs (A, C), (A, D), (B, C), (B, D), respectively. As in the case for the pair (A, C), the binary trees representing the expressions A and C are built, whose each node can be a relational operator, class or relation. Then, the comparisons between pairs of nodes are carried out based on the matrix in
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 73 Figure 7.3: Statistical comparison about the number of axioms discovered over 20 runs between GE and MOGE method.
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 74 Figure 7.4: Possibility and generality distribution of the discovered axioms with Π(φ) > 2 3
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 75 Figure 7.5: The distribution of the discovered axioms in terms of measures (Π(φ) > 2 3 )
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  i.e., three domain experts. This matrix contains binary values representing the disjointness evaluation between 3,844 pairs of classes relevant to the topic8. Conclusions & PerspectivesWork of DBpedia. The disadvantages of this benchmark is the dependence on the human assessment, which can be subjective and incorrect in addition to the limitation of the scabability, i.e. only relevant to the small scope of the topic Work.• Training-Testing model: we begun developing the training-testing model by generating the training dataset containing RDF data extracted from DBpedia.

  extend our results would be to concentrate on mining different types of axioms relevant to broader topics or discovering axioms at instance-level. For instance, one can learn entity axioms consisting of three following axioms: HasKey, SameIndividual, and Dif f erentIndividuals which concern the problem of discovering "same" entities in different data sets, i.e., instance-level equivalences. Whereby, if two distinct resource names linking to the same real-world object is verified, i.e., if they are synonyms, is one of the hardest problems, which is closely linked to defining what is a legal representative (i.e., key in the database sense) for an entity. This task is related to the problem The execution of the designed queries returns the list of their super-classes (lines 3-4) Algorithm 5: Check_Siblings(cl1, cl2) Input: cl1, cl2: classes need to be checked Output: results: the result of checking siblings -returns to boolean value; if the return value is true: cl1 and cl2 are siblings; otherwise: cl1 and cl2 are not siblings. query1 ← Query(cl1) query2 ← Query(cl1) /* Query(class), in which class ={cl1, cl2} is formed in Equation (A.2) */ listsuperclass1 ← ResultQuery(query1) listsuperclass2 ← ResultQuery(query2) /* ResultQuery(query), in which query ={query1, query2}, returns the results of query containing super-classes of given class, i.e., class1 or class2 */ result ← f alse if listsuperclass 1 and listsuperclass 2 are the same and not empty then result ← true return result
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 2 

.1 illustrates the labels for a logic expressivity in DLs. In this thesis, we investigate SROIQ, which is one of the most expressive DLs and serves as the logical basis of ontology language OWL 2 DL (see in Section 2.2.3).

Constitution

DLs are based on three disjoint sets of primal elements [Rud11]: • The set N C of concept names contains names referring to categories, types or classes of entities in a domain of interest, e.g. Person, Country, City, ... • The set N R of role names describes binary relations between the individuals of a domain, e.g. isFatherOf, isPlaceOF, is ConnectedTo, ... • The set N I of individual names describes single individuals, singular entities, in a domain, e.g. the sun, Nice, Finland, ...

In addition, DLs can include concepts and roles containing a variety of different constructors, i.e., concept expressions (also called complex concepts) and role expressions (also called complex roles) for the description of more complex situations.

The two first columns of Table

2

.2 present SROIQ constructors, their syntax and semantics.
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 2 

		.1: Naming convention in DLs
		Attribute language allowing atomic negation, concept intersection,
	AL	concept intersection, universal restrictions, limited existential
		quatification
	EL	Existential language allowing concept intersection, existential restrictions
	FL	Frame based description language containing concept intersection, universal restrictions, limited existential quantification, role restriction
	F	Functional properties
	E	Full existential qualification
	U	Concept union
	C	Complex concept negation
	H	Role hierachy
	R	Complex role inclusion axioms, role disjointness, reflexitivity and irreflexitivity
	O	Nominals
	I	Inverse properties
	N	Cardinality restrictions
	Q	Qualified cardinality restrictions
	(D)	

Used of datatype properties, data values or data types S

An abbreviation for ALC with transitive roles EL ++ Alias for ELRO

Table 2 . 2 :

 22 SROIQ constructors[START_REF] Krötzsch | A Description Logic Primer[END_REF] 

Table 2 . 3 :

 23 SROIQ axioms[START_REF] Krötzsch | A Description Logic Primer[END_REF] 

Table 2 .4: OWL syntaxes
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  OWL 1 DL and OWL 1 Lite were designed, on the one hand, as annotational variants of the expressive description logic SHOIN (D) and SHIF(D),

	respectively; on the other hand, it requires the compatibility of OWL 1
	with existing Semantic Web languages such as RDF. Semantic differences
	between SHOIN (D) or SHIF(D) and RDF made it difficult to satisfy both
	requirements.
	In order to address the limitations of OWL 1, the second version of OWL (OWL
	2) has been proposed as an extension and revision of OWL 1 by adding new
	functionalities, new constructors and offering new expressivity presented in some
	examples as follows [CB15]:
	• OWL 2 constructs qualified cardinality restrictions and annotation proper-
	ties, e.g. owl:minQualifiedCardinality, maxQualifiedCardinality and
	owl:qualifiedCardinality.
	• OWL 2 adds property chains and keys, e.g. owl:propertyChainAxiom and
	owl:hasKey.
	• OWL 2 provides constructors expressing for new characteristics of properties,
	e.g. owl:ReflexiveProperty, owl:IrreflexiveProperty, owl:Assymm-
	etricProperty, annotation properties, e.g. owl:priorVersion or incom-
	patibility of properties, e.g. owl:propertyDisjointWith.
	• OWL 2 provides new datatypes, e.g. owl:real and new construct to define
	data types rdfs:DataType and restriction definitions, combination of data
	ranges, e.g. owl:IntersectionOf, owl:unionOf and owl:complementOf.
	Along with using the RDF/XML and Manchester exchange syntaxes, OWL 2 uses
	a functional-style syntax which replaces the abstract syntax of OWL 1. In addition
	to OWL 2 DL and OWL 2 Full, OWL 2 provides three new tractable profiles:
	OWL 2 RL, OWL 2 EL and OWL 2 QL. Like OWL 1, all sub-languages of OWL
	2 can reuse some vocabularies in respect of RDFs. The characteristics of each
	profile is briefly presented in the following:

Table 2 .5: OWL 2 constructors [TFG17] 32 types of OWL 2 axioms, listed in Table 2.6. The structure of the table is similar to the previous table of OWL 2 constructors except for the first columns showing OWL 2 axioms in the functional style syntax. All axioms whose semantics share the

 2 

	same characteristics in terms of theoretic set will be grouped together as follows:
	• Assertions involve named individuals or literals: ClassAssertion, Object-
	PropertyAssertion, NegativeObjectPropertyAssertion, DataProperty-
	Assertion and NegativeDataPropertyAssertion.
	• Subsumption axioms include axioms whose semantics are expressed in terms
	of set inclusion: SubClassOf, SubObjectPropertyOf, SubDataProperty,
	ObjectPropertyDomain, ObjectPropertyRange, SymmetricObjectProperty,
	AsymmetricObjectProperty, TransitiveObjectProperty, DataProperty-

2.2.4 The SPARQL Query Language SPARQL [W3C08] [W3C13], an acronym for SPARQL Protocol And RDF Query Language is a structured and semantic query language for RDF knowledge bases.

  

	SPARQL can be considered as an interface to access knowledge on the Web of
	Data. A SPARQL query contains a set of triple patterns called basic graph patterns
	(BGPs) used to match a subset or a sub-graph from the queried RDF data or
	RDF graph. The results of SPARQL queries can be sets or RDF sub-graphs. Each
	triple pattern in BGP are RDF triples where subject, predicate and object can be
	unknown or replaced by a variable with a question mark, e.g. ?p in which p is a
	variable. The conjunctions and the disjunctions of triple patterns are performed
	in the graph pattern match to provide the results.
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Inductive Logic Programming (ILP)

  

	3. Literature Review
	ontologies or to solve problems similar to those in ILP. The component of learning
	algorithm in DL-Learner is based on a combination of using top-down refinement
	operators for the most fundamental DLs ALC [LH08] and a search algorithm,
	i.e., genetic programming. [LH10] extended DL-Learner with a concept learning
	algorithm based on refinement operators for the DLs ALCQ including support for
	concrete roles. The aim of DL-Learner is to find concepts and their descriptions
	covering as many positive examples while only applying to as few as possible negative
	examples. For this purpose, refinement operators are used to explore the search
	space of possible concept descriptions following the structure of a tree where child
	nodes are representing concept descriptions that are more specific than the class
	expression of their parent nodes. In order to reduce the number of steps required
	ILP [MR94] techniques characterize the combination of machine learning and logical to find the final results, a heuristic was used to guide the search. A big obstacle
	programming in which logic programs are derived from examples (i.e., assertions) of ILP-based approaches in DL-Learner is its dependency on reasoning techniques,
	and background knowledge. In the ILP setting, background knowledge consists of which is hardly applicable to the very large KBs like LOD. One temporary solution
	logical formulations and examples classified into positive and negative examples. The was proposed in [HLA09] to increase the scalability of OWL learning algorithm
	relationship between a hypothesis and an example, whereby the example provides on very large KBs through intelligent pre-processing. Instead of considering the
	evidence supporting the hypothesis is encompassed in the definition of coverage. complete knowledge bases, a knowledge fragment selection procedure was applied to
	Specifically, a hypothesis H covers an example E with respect to the background select a piece of relevant knowledge that holds enough information to induce good
	B if B H |= E where '|=' is the symbol of logical entailment. The aim of ILP results and allow efficient reasoning. Another prominent system, DL-FOIL [FdE08],
	is to find hypotheses (H) covering all positive examples(E + ), i.e., B H |= E + , developed a method derived from the FOIL algorithm [Qui90] (used to learn Horn
	and not covering any negative example (E -), i.e., B H clauses from data expressed as relations) to learn concept descriptions expressed in E -, with respect to
	a given background knowledge (B). In general, ILP based approaches obey the expressive DLs supporting OWL-DL. Its main components are represented by a set of
	model of inductive reasoning that build general conclusions from specific instances, refinement operators derived from other systems like DL-Learner and by a different
	assuming that the latter exemplify a general truth. gain function involving the OWA. A revised algorithm implemented in a new release
	Along with the adoption of OWL and DL in knowledge representation, ILP of DL-FOIL [Fan+18] adapted the original approach by exploiting a refinement
	based methods with DLs settings have successfully been applied to learning concepts operators and a heuristic to select among candidate specializations the one that
	and their descriptions. For this purpose, a comprehensive collection of algorithms is able to better approximate a target concept. In addition, ILP-based methods
	developed by Jens Lehmann et al. is included in the DL-Learner system [Leh09], are successfully investigated on learning onto-relational rules that complement and
	which provides a framework for learning concepts and their descriptions in description extend ontologies on the Semantic Web [Lis12] or learning multi-relation association
	logics and OWL, whereby learned concepts are used to construct and maintain OWL rules in SWRL that may suggest new axioms at schema level [dAm+16].
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Learning OWL Axioms From RDF data terms

  of GE. The advantages of GEVA are the organization of the algorithms in the form of modules which can be combined with one another into pipelines.

	1 ,
	GEVA 2 [ONe+08], PonyGE 3 [Fen+17], gramEvol [NSL16],... In this thesis, we only
	focus on using GEVA, which is a GE framework developed by the Natural Computing
	Research & Applications group at University College Dublin. The latest version is

2.0. The framework provides both command line tools and a Java source library in 4.

Table 4 .1:

 4 The conventions of W3C grammar notation

	Construct	Syntax	Example
	production	:=	Class:=IRI
	non-terminal symbol boldface	ClassExpression
	terminal symbol	single quoted	'DisjointClasses'
	zero or more	curly braces	{ClassExpression}
	zero or one	square brackets [ClassExpression]
	alternative	vertical bar	SubClassOf | DisjointClasses
	grouping	parentheses	(ClassExpression ' ' ClassExpression)

order to generate OWL axiom. The aim is to generate well-defined axioms describing the facts contained in a given RDF triple store, thus, only resources that actually occur in the RDF dataset should be generated. In order to ensure that the changes 4.

Learning OWL Axioms From RDF data in

  the contents of RDF repositories will not require to rewrite the grammar, the BNF grammar is organized into two main parts, as static and dynamic productions.Static productions are high-level production rules used to define the structure of the axioms and do not depend on the content of RDF repositories. Different static productions will generate different kinds of axioms. Static productions are loaded from a hand-crafted text file. In the case of OWL axioms, the static productions are designed based on the production rules extracted from normative grammar of OWL 2 given in the appendix of W3C as an extended BNF grammar 4 . Following

	Static Productions

W3C, OWL axioms are divided into eight groups. However, axiom annotations and declarations are not the targets to generate, thus, all symbols and productions related to annotations and declarations have been ignored. Also, since we only consider built-in datatypes and datatypes used in RDF repository, there are no productions relevant to the definition of new datatypes, i.e., datatype definition in the grammar. The target production of axioms is thus alleviated to five categories corresponding to the following static production:

2 An Evolutionary Model to Search for OWL Axioms

  

	• For the Class primitive:	
	SELECT DISTINCT ?class WHERE { ?subj a ?class }	(4.2)
	• For the ObjectProperty primitive, we select the properties whose fillers are
	individual, i.e. RDF resources represented by IRIs:	
	SELECT DISTINCT ?prop WHERE { ?subj ?prop ?obj. FILTER ( isIRI(?obj)) }	(4.3)
	To include the properties whose fillers are blank nodes, the filter has to be
	changed into isIRI(?obj)) || isBlank(?obj))	

• For the DataProperty primitive, we select the properties whose values are literals: SELECT DISTINCT ?prop WHERE { ?subj ?prop ?obj. FILTER ( isLiteral(?obj)) } (4.4) • For the NameIndividual primitive, we select all RDF resources as the individuals of classes which appear as the subject x in a triple of the form x rdf:type class SELECT DISTINCT ?ind WHERE { ?ind a ?class. FILTER ( isIRI(?ind)) } (4.5) • For the Literal primitive, we select the objects whose values are literals: SELECT DISTINCT ?obj WHERE { ?subj ?prop ?obj. FILTER ( isLiteral(?obj)) } (4.6) The results s 1 , s 2 ,...,s n returned by the above queries for each primitive P are added into the grammar as new productions: P := s 1 | s 2 | ... |s n 4.3.This section introduces an evolutionary model on Grammatical Evolution (GE) to mine an RDF repository for axioms. A population of candidate axioms is maintained by a GE algorithm and iteratively refined to find axioms that are both general and credible (two key quality measures for discovered knowledge). The quality of 4.

Learning OWL Axioms From RDF data the

  generated axioms can be improved gradually during the evolutionary process by applying standard genetic operators (crossover and mutation) on genotypic axioms. The overall flow of such GE algorithm is shown in Algorithm 1. Our model to axiom learning relies on a quite standard implementation of GE. In particular, we have adopted the reference implementation found in the GEVA framework. In this section, we only focus on different specific adaptations of the standard model to the problem at hand.

Initialization

In order to initialize a population of OWL axioms with the size popSize, a set of popSize chromosomes, i.e., genotypic individuals, are randomly initialized once and for all (line 2 of Algorithm 1). Each chromosome Chr is a set of integers with the initialized length initlenChrom. Its length can be extended to the scope of the maximum wrapping times maxWrapping. The transformation of genotypes into OWL axioms by means of the mapping process is based on the input BNF grammar Gr. The population of axioms is created by iterating popSize times the CreateNewAxiom() operator described in Algorithm 2. Algorithm 2: Create_New_Axiom() Input: Chr: Chromosome -a set of integers; Gr: BNF grammar Output: A: a new axiom individual 1 maxlenChrom ← initlenChrom * maxW rap 2 V alCodon ← random(maxV alCodon) 3 Set up Chr as input genotype gp used in mapping proccess to axiom A while (Chr.length ≤ maxlenChrom) && (incomplete mapping) do 4 mapping from input genotype gp to output phenotype of individual axiom according to grammar Gr

From RDF data Algorithm 1: GE for discovering axioms from an RDF dataset Input:

  T : RDF triples data; Gr: BNF grammar; popSize: the size of the population; initlenChrom: the initialized length of chromosome; maxW rap: the maximum number of wrapping; pElite: elitism propotion; pselectSize: parent selection propotion; pCross: the probability of crossover; pM ut: the probability of mutation. Output: P op: a set of axioms discovered based on Gr 1 Initialize a list of chromosomes L of length initlenChrom. Each codon value in chromosome is an integer. 2 Create a population P of size popSize mapped from list of chromosomes L on grammar Gr by iterating Create_New_Axiom() described in Algorithm 2 3 Compute the fitness values for all axioms in Pop.

	Compute fitness values for child1, child2	
	Select w1, w2 -winners of competition between parents and offspring
	w1, w2 ← Crowding(parent1, parent2, child1, child2)	
	/* Crowding(parent1, parent2, child1, child2) is described in	
	Algorithm 3	*/
	Add w1, w2 to new population newP op	
	P op = newP op	
	Increase the number of current generation by 1: curGeneration + +	
	return P op	

4 Initialize current generation number: currentGeneration = 0 5 while currentGeneration < maxGenerations do 6 Sort P op by descending fitness values 7 Create a list of elite axioms listElites with the propotion pElite of fittest axioms in P op 8 Add all axioms of listElites to a new population newP op 9 Select the remaining part of population after elitism selection: Lr ← P op\listElites Eliminate the duplicates in Lr Create a list of axioms listCrossover used for crossover operation with the propotion pselectSize of the number of the fittest individuals in Lr Shuffle listCrossover for (i = 0, 1....listCrossover.length -2) do parent1 ← listCrossover[i] parent2 ← listCrossover[i + 1] child1, child2 ← Crossover(parent1, parent2) with the probability pCross for each of f spring {child1, child2} do Mutation(of f spring)

5. Axiom Evaluation a

  RDF dataset developed on Hempel's proposal in terms of the development of hypothesis, whereby an OWL axiom can be translated into a first order logic (FOL) formula used for querying the RDF dataset later. The development of OWL axiom φ with respect to RDF dataset K is the formula D K (φ), such that φ |= D K (φ) is defined recursively, whose notion relies on a transformation t(., x, y) into a FOL formula based on the set-theoretic formulas of OWL direct semantics (introduced in Tables 2.5, 2.6). The authors gave the definition of a transformation which is relevant to the development of an axiom. In particular, t(φ, x, y) is the translation from axiom φ into a FOL formula which is recursively defined in such a way that the resulting formulae involves two variables x, y. The translation of different types of axioms into FOL is depicted in Table5.1.

Example 5.2.1 Let an OWL axiom φ =SubClassOf(dbo:Fish dbo:Animals).

Table 5 .1:

 5 Translation of OWL axioms into FOL[START_REF] Andrea | Possibilistic testing of OWL axioms against RDF data[END_REF] 

				n j=i+1 (¬t(C			
	Translation into FOL	t(C D; x, y) = ∀(x(¬t(C; x, y))		n t(Dis(C i=1		t(S
	DL syntax	C D		Dis(C 1 , ..., Cn)	C ≡ C	S 1 ...Sn R
	OWL axioms (Functional-style)	SubClassOf (C D)	EquivalentClasses(C D)	DisjointClasses(C 1 ...Cn)	DisjointU nion(C C 1 ...Cn)	SubObjectP ropertyOf (nR) , with	n = ObjectP ropertyChain(S 1 ...Sn)

C ≡ D t(C ≡ D; x, y) = ∀(t(; x, y) ∧ (D; x, y) ∨ (¬t(C; x, y) ∧ ¬t(D; x, y))) 1 , ..., Cn); x, y) = i ; x, y) ∨ ¬t(C j ; x, y)) 1 ... Cn and Dis(C 1 , ..., Cn) t(C ≡ C 1 ... Cn, Dis(C 1 , ..., Cn); x, y) = t(C ≡ C 1 ... Cn; x, y) ∧ t(Dis(C 1 , ..., Cn); x, y)) SubObjectP ropertyOf (S R) S R t(S R; x, y) = ∀x∀y(¬t(S; x, y) ∨ t(R; x, y)) 1 ...Sn R; x, y) = ∀x∀z 1 ....∀z n-1 ∀y(¬t(S 1 ; x, z 1 ) ∨ ¬t(S 2 ; z 1 , z 2 ) ∨ ... ∨ ¬t(Sn; z n-1 , y) ∨ t(R; x, y)

Table 5 . 2 :

 52 Formal relationships between class expressions and their SPARQL queries

	SPARQL Graph Partern	Q(A, ?x, ?y) = ?x a A. where A is a valid IRI.	Q(S, ?x, ?y) = ?x S ?y. where S is a valid IRI.	Q(D, ?x, ?y) = ?x ?p ?y. FILTER (datatype(?x) = D).	where D is a valid datatype IRI	Q(R -, ?x, ?y) = Q(R, ?x, ?y) where R is a simple relation	a n ) Q({a 1 , .., (a 1 , .., a = ?x ?p ?o. FILTER ?x IN n }, ?x, ?y)	= 1...n. where a i is a valid IRI with i	Q({d 1 , .., d
		Atomic Concept	Simple Relation	Datatype	Inverse Relation	(ObjectInverseOf)	Extensional Concept	(ObjectOneOf)	Extensional Concept	(DataOneOf)
	Expression		Atomic Expression						Complex Expression

n }, ?x, ?y) = ?x ?p ?o. FILTER ?x IN(d 1 , ..,

Table 6 . 1 :

 61 The first set of GE parameter values with Fitness Function 1 (6.1)

	Parameter	Value
	popSize	500
	numGenerations	30
	initlenChrom	20
	maxWrap	2
	pCross	80%
	pMut	1%
	pselectSize	70%
	pElite	2%
	f (φ)	u φ • Π(φ)+N (φ) 2

Table 6 . 2 :

 62 The second set of GE parameter values with Fitness Function 2 (6.11)

	Parameter	Atomic Axioms Complex Axioms
	popSize	2,000	2,000
	numGenerations	25	5
	initLenChrom	5	30
	maxWrap	2	2
	pCross	80%	80%
	pMut	1%	1%
	pselectSize	70%	70%
	pElite	2%	2%
	f (φ)		

Table 6 .3: Experimental results

 6 

		Our approach	GoldMiner
		Complex axioms Atomic axioms Atomic axioms
	Precision (per run)	0.867 ± 0.03	0.95 ± 0.02	0.95
	Recall (per run)	N/A	0.15 ± 0.017	0.38
	Recall (over 20 runs)	N/A	0.54	0.38

Table 6 . 5 :

 65 Parameter values for GE.

	Parameter	Value
	Total effort k	100,000; 200,000; 300,000; 400,000
	initLenChrom	6
	pCross	80%
	pMut	1%
	popSize	1000; 2000; 5000; 10000
	Fitness function f	f (φ) = g φ • Π(φ)

Table 6 . 6 :

 66 Number of valid distinct axioms discovered over 20 runs.

	P k P P 100000 P P popSize P P P P	1000 8806	2000 11389	5000 4684	10000 4788
	200000	6204	13670	10632	9335
	300000	5436	10541	53021	14590
	400000	5085	9080	35102	21670

Table 6

 6 

		.7: Average precision per run (±std)
	P P k 100,000 P P P popSize P P P P	1,000 0.981 ± 0.019 0.999 ± 0.002 0.998 ± 0.002 0.998 ± 0.003 2,000 5,000 10,000
	200,000	0.973 ± 0.024 0.979 ± 0.011 0.998 ± 0.001 0.998 ± 0.002
	300,000	0.972 ± 0.024 0.973 ± 0.014 0.993 ± 0.007 0.998 ± 0.001
	400,000	0.972 ± 0.024 0.969 ± 0.018 0.980 ± 0.008 0.998 ± 0.001

Table 6 . 8 :

 68 Possibility and generality distribution of the discovered axioms for different population sizes (columns) and total efforts k = 100, 000, . . . , 400, 000 (rows).

Table 7 .

 7 1. One notable point is that if both nodes represent atomic classes, the value returned is 1 if the two nodes represent the same class; otherwise the value returned is 0. Each similarity between expressions, e.g. s(A,C), is defined as

Table 7 .1 and illustrated below: 7. A MOGE Approach to Class Disjointness Axioms Discovery (

 7 used as the stopping criterion for the algorithm) are automatically determined based on the values of the total effort k, thus popSize • maxGenerations = k. The parameters listed in Table7.2 are like the GE parameters in Table6.2.

Table 7 . 2 :

 72 Parameter values for MOGE.

	Parameter	Value
	Total effort k 100,000; 200,000; 300,000; 400,000
	initLenChrom	6
	pCross	80%
	popSize	1000; 2000; 5000; 10000

Table 7 . 3 :

 73 Number of valid distinct axioms discovered over 20 runs

	P k P P 100000 P P popSize P P P P	1000 8084	2000 16085	5000 41320	10000 50535
	200000	8713	17400	41813	76804
	300000	7970	17680	40303	70562
	400000	8457	16258	40656	67722

Table 7 .

 7 

			GE			MOGE	
	P k P 100,000 P P P popSize P	1,000 0.981 0.019	2,000 0.999 ±0.002	5,000 0.998 ±0.002	10,000 0.998 ±0.003	1,000 0.988 ±0.007	2,000 0.990 ±0.005	5,000 0.989 ±0.003	10,000 0.996 ±0.001
	200,000	0.973 ±0.024	0.979 ±0.011	0.998 ±0.001	0.998 ±0.002	0.989 ±0.007	0.990 ±0.004	0.987 ±0.004	0.988 ±0.004
	300,000	0.972 ±0.024	0.973 ±0.014	0.993 ±0.007	0.998 ±0.001	0.989 ±0.007	0.989 ±0.003	0.986 ±0.004	0.986 ±0.003
	400,000	0.972 ±0.024	0.969 ±0.018	0.980 ±0.008	0.998 ±0.001	0.989 ±0.008	0.990 ±0.003	0.985 ±0.004	0.984 ±0.004

4: Average precision per run (±std)
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Axiom Evaluation

SELECT (count (DISTINCT ?x) AS ?numberOfConfirmations) WHERE { { Q(C i , ?x, ?y) Q Dis (C j | C i , ?x, ?y) } UNION { Q(C j , ?x, ?y) Q Dis (C i |C j , ?x, ?y) } }

(5.11)

The query for testing a disjointness axiom involving a number of classes (concepts), i.e., DisjointClasses(C 1 C 2 ...C n ) with n the number of classes will be generalized as follows:

Possibility and Necessity Score of an Axiom

The conjunctive or disjunctive form in the development of an axiom φ, D(φ) (see Section 5.2.1), will influence the use of confirmations and counterexamples to verify and refute an axiom. More specifically, there are two cases as follows:

1. When the development of axiom φ, D(φ), is in conjunctive normal form: only one counterexample is enough to falsify an axiom, i.e., axiom φ becomes totally impossible, regardless of the number of confirmations.

2. When the development of axiom φ, D(φ), is in disjunctive normal form: a single confirmation is enough to verify an axiom, i.e., axiom φ is completely possible or plausible, regardless of the number of counterexamples.

These are the basic principles for establishing a set of measures for an axiom in terms of a possibilistic framework, namely possibility and necessity of an axiom.

According to the presence of any evidence in the RDF repository (u φ > 0), the possibility of an axiom φ involves the absence of counterexamples to φ in the RDF dataset. Axiom φ is more possible as it is not contradicted by any fact. The degree of possibility of an axiom φ equals to 1, i.e., Π(φ) = 1, means that it is completely possible, i.e. plausible, is not contradicted by facts in the knowledge base. When the number of counterexamples u - φ increases, Π(φ) -→ 0 strictly monotonically. Possibly formalize the description of the above intuitions in the variant of mathematical definitions for Π(φ) with u φ > 0 as follows:

(5.21) 

Limitations

The proposed model is capable of discovering highly accurate and general axioms, however, the dependence on SPARQL endpoints (i.e., query engines) for testing mined axioms against facts, i.e. instances, in large RDF repositories limits the performance of the method. In addition, evaluating the effectiveness of the method requires the participation of experts in specific domains, in particular, the use of a 

GE Models toward

From A Training-Testing Model toward An Objective Benchmark

In order to evaluate the effectiveness of the system, we organize the dataset following the "training-testing" model shown in Figure 6.6. Specifically, the learning process is performed with the input data source derived from a training dataset consisting of RDF triples, in particular, a random sample of DBpedia version 2015-04 in English (the extraction for it will be presented in the later of this section). On the other hand, the evaluation of discovered axioms is based on a testing dataset, in particular, the entire DBpedia version 2015-04 in English(which contains 665,532,306 RDF triples). This testing dataset is considered as an objective benchmark which refers
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Then, the similarity degree of the pair is induced by applying Equation (7.3) as follows:

Similarly, we calculate the similarity degrees of the remaining pairs (A, D), (B, C) and (B, D) as follows:

Finally, we apply Equation (7.2) to compute the similarity score between φ 1 and φ 2 as follows:

Objective Functions

We propose two objective functions, f 1 and f 2 , used in our approach, which aim at obtaining axioms φ that maximize the value of possibility Π(φ) and generality g(φ) while not being too similar among themselves, i.e., minimize the similarity score s(φ), as follows:

Where 0 ≤ Π(φ) ≤ 1; g φ ≥ 0 ; 0 < s(φ) < 1 (7.4)

Experimental Protocol

As mentioned above, we follow the BNF grammar pattern 6.4.1 for generating class disjointness axioms involving complex restriction expressions. In order to make fair comparisons possible with the previous study introduced in Section 6.4.1, which only applies a single-objective approach, i.e. the GE method, a set of milestones of total effort k (defined as the total number of fitness evaluations) corresponding to each population size are also recorded for each run, namely 100,000; 200,000; 300,000 and 400,000, respectively. The maximum numbers of generations, maxGenerations highly accurate and general axioms and is more effective when compared to the single-objective methods of the previous chapter.

Appendices

A

Appendix-Gold Standard