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Probabilistic segmentation modelling and deep
learning-based lung cancer screening

Abstract: This thesis is structured around two research themes dedicated to proba-
bilistic image segmentation and lung cancer screening.

First, we focus on the problem of controlling the spatial regularity of segmentations.
Enforcing a certain extent of regularization is important in order to guarantee the
spatial consistency of the segmented structures and to control the smoothness of the
segmentation boundaries. We investigate several probability distributions allowing spatial
regularization to be enforced a priori in Bayesian segmentation models. Theses priors
are incorporated into a common variational inference framework and compared with
respect to several criteria, including their regularization strength, the complexity of their
inference, their local adaptivity or their impact on uncertainty quantification.

In a second step, we address the challenge of controlling the quality of image
segmentations in large databases when no reference segmentation is available. We
propose a novel approach for unsupervised quality control based on a probabilistic model
built on simple smoothness and intensity assumptions. Our method allows suspicious
cases to be extracted from segmentation datasets and produces interpretable outputs
enabling potential errors to be localized in the image.

Third, we develop a new approach for the fusion of continuous segmentation maps.
By allowing a consensus between several experts or algorithms to be estimated, our
method represents a new solution to tackle the problem of inter-rater variability. Our
method, based on heavy-tailed distributions, allows for local variations in the raters’
performances thus leading to a more robust consensus estimate. In addition, the concept
of mixture of consensuses is introduced and its application to the clustering of raters is
investigated.

The second focus of this thesis is dedicated to lung cancer screening from computed
tomography images. We propose a fully automated pipeline based on deep learning.
We provide an extensive analysis of the results of the pipeline on several datasets. In
particular, we study the impact of training with subjective radiological labels, i.e. without
any histopathologic ground truth, on the performances when applying the pipeline on
real-life screening data.

Keywords: medical imaging, image segmentation, artificial intelligence, machine
learning, deep learning, lung cancer.
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Modèles probabilistes pour la segmentation d’images et
dépistage du cancer du poumon par apprentissage profond

Résumé: Cette thèse s’articule autour de deux axes de recherche consacrés à la
modélisation probabiliste de la segmentation d’images et au dépistage du cancer du
poumon.

Dans un premier temps, nous nous intéressons au problème du contrôle de la régula-
rité spatiale des segmentations d’images. Imposer un certain niveau de régularisation est
important afin de garantir l’homogénéité des structures segmentées et de contrôler le
lissage de leurs contours. Nous étudions différentes distributions de probabilité permet-
tant d’imposer une régularisation spatiale a priori dans des modèles de segmentation
probabilistes. Ces distributions sont regroupées au sein d’un même schéma d’optimisation
basé sur l’inférence variationnelle, et sont comparées entre elles par rapport à plusieurs
critères dont leur capacité à régulariser, la complexité de leur inférence, leur adaptabilité
locale ou encore leur impact sur la quantification de l’incertitude.

Dans un deuxième temps, nous abordons le défi que constitue le contrôle de la qualité
des segmentations au sein de grandes bases de données lorsqu’aucune segmentation
de référence n’est disponible. Nous proposons une nouvelle approche pour le contrôle
non supervisé reposant sur un modèle probabiliste construit sur des hypothèses simples
d’intensité et de régularité. Notre méthode permet d’identifier des cas suspects et génère
des sorties interprétables permettant de localiser dans l’image les erreurs potentielles.

Dans un troisième temps, nous développons une nouvelle approche pour la fusion de
cartes de segmentation continues. En permettant d’estimer un consensus entre plusieurs
experts ou algorithmes, notre méthode représente un nouveau levier face au problème
de la variabilité pouvant être observée entre annotateurs. Notre approche, basée sur
des distributions de probabilité à queue lourde, tient compte des variations locales des
performances des annotateurs, ce qui permet d’obtenir une estimation plus robuste du
consensus. De plus, le concept de consensus multiples est introduit et son application au
regroupement des évaluateurs est étudiée.

Le second axe de cette thèse est dédié au dépistage du cancer du poumon à partir
d’images tomodensitométriques. Nous proposons une chaîne de traitement entièrement
automatisée utilisant l’apprentissage profond. Une analyse complète des résultats de la
chaîne de traitement est réalisée sur plusieurs ensembles de données. En particulier, nous
étudions l’impact sur les performances d’un entraînement réalisé uniquement avec des
annotations radiologiques, c’est-à-dire sans vérité histopathologique, lors de l’application
de la chaîne sur des données réalistes de dépistage.

Mots clés : imagerie médicale, segmentation d’images, intelligence artificielle, appren-
tissage artificiel, apprentissage profond, cancer du poumon.
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Chapter 1
Introduction

Contents
1.1 Context of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 List of publications . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Context of the thesis

In this section, we introduce the motivations of the thesis structured around two main
research themes. The first part is dedicated to image segmentation while the second
focuses on lung cancer screening.

Image segmentation consists in assigning labels to pixels and results in a meaningful
partition of the image into several homogeneous regions. It is a major image processing
task, with applications in various domains, such as robotics and autonomous vehicles
for object recognition and visual scene understanding [Cordts et al., 2016], agriculture
for fertilization planning [Wang et al., 2013] but also, importantly, medical imaging.
For instance, image segmentation plays a significant role in oncology, in particular in
radiotherapy whose objective is the destruction of malignant cells by irradiation while
preserving the normal tissues. Its planning involves the delineation of the gross tumor
volume, which is a critical image segmentation step as it directly influences the extent
of the radiation doses that will be administered to the patient [Mazzara et al., 2004].
Image segmentation is also used for screening purposes and its relevance for the diagnosis
of COVID-19 has for example been demonstrated [Shi et al., 2021]. Computer-aided
surgery relies also heavily on image segmentation for the detection and tracking of
instruments in operation [Bodenstedt et al., 2018]. More generally, image segmentation is
the cornerstone of many models or tools developed for patient monitoring and prognosis
prediction [Sun et al., 2019; Ferdinand Christ et al., 2017; Liu et al., 2010].

A wide range of approaches has been proposed for automatic image segmentation,
such as deep learning approaches [Garcia-Garcia et al., 2017], deformable models [Cre-
mers et al., 2007], atlas-based methods [Iglesias & Sabuncu, 2015] or methods based on
a probabilistic modelling of the image segmentation problem. Probabilistic segmentation
models have several attractive properties. They rely on a few simple assumptions, leading
to explainable outputs. It is a desirable property as interpretability is considered as essen-
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tial, especially in the medical domain. Moreover, despite their apparent simplicity, these
models provide good results and their relevance for brain segmentation has for example
been demonstrated [Greenspan et al., 2006]. They may not not require any annotated
training set, and their probabilistic nature allows uncertainty to be estimated.

Assuming some level of spatial regularization in the segmentation is one of the basic
hypotheses commonly used in Bayesian segmentation modelling. Spatial regularization
is important in order to take into account the spatial correlations between pixels, to
guarantee the consistency of the final segmentation mask, but also to control the smooth-
ness of the segmentation boundaries. The automatic estimation of the regularization
parameters, the scalability of the approach to large images, and its local adaptivity are
open challenges for research, and are the main topics of the third chapter of this thesis.

Moreover, the last few years have seen the rise of deep learning that now achieves state
of the art performances in many computer vision tasks, including image segmentation
[Kamnitsas et al., 2018; Chen et al., 2020]. Convolutional neural networks (CNNs) are
specifically tailored to handle image inputs and have demonstrated a tremendous ability
to extract automatically relevant features for the task of interest [LeCun et al., 2015].
Their architecture relies on a stack of layers where a set of local and non-linear operations
are performed, such as convolution, pooling or up-sampling. These operations involve
a large number of parameters, which are optimized during the training phase of the
algorithm, by stochastic gradient error back-propagation.

CNNs realize their best performances in the supervised setting, which requires the
availability of large amounts of labelled data. In the non-medical domain, several
breakthroughs in performances could not have been achieved without the development
of large-scale databases, such as the PASCAL Visual Object Classes (PASCAL VOC)
dataset [Everingham et al., 2010] or the Common Objects in COntext (Coco) dataset
[Lin et al., 2014], containing 9993 and more than 200K images, respectively. Providing
ground truth annotations for so many images is a real challenge, addressed by leveraging
crowd-sourcing for the COCO dataset.

Challenges are even greater in medical imaging, considering the legal obstacles to data
collection and sharing, and the high level of expertise required for adding the annotations.
Creating annotations is in addition time-consuming, because of the significant size (often
3D) and complexity of medical images. Yet, the development of large and completely
annotated datasets is recognized as essential to enable the exploitation of the full potential
of deep learning-based approaches in medical imaging [Langlotz et al., 2019; Willemink
et al., 2020].

With the development of large datasets, annotation quality control is an issue of
rising importance. Noisy segmentation labels lead to a severe drop in the performances
of algorithms [Heller et al., 2018], and may also impact their evaluation and comparison.
More generally, image segmentation is often only the pre-processing step of complex
pipelines, whose outputs depend critically on the outcome of the segmentation [Unkelbach
et al., 2014]. The question of ground truth quality control is also relevant for datasets
annotated by medical experts. Manual delineations are indeed known to suffer from
potentially large inter-rater variability [Louie et al., 2010; Genovesi et al., 2011; Nakamura
et al., 2008]. If discrepancies between raters might reflect the uncertainty around the
structure boundaries, they might also be the consequence of human errors, due, for
example, to differences in levels of experience [Jeanneret-Sozzi et al., 2006; Kristensen
et al., 2017]. Moreover, the segmentation of 3D images is often performed in 2D with
a slice by slice approach, which can lead to inconsistencies after assembling the whole
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volume [Crowe et al., 2017]. Yet, given the size of the datasets, visual inspection cannot
be considered for reviewing all segmentation labels. Therefore, there is a crucial need
in the development of automatic tools for quality control of image segmentation. In
particular, there is a lack in generic and unsupervised methods that could be deployed
on a wide range of image types in a convenient manner.

Image segmentation quality control can be a first step to mitigate the inter-rater
variability issue. Another approach is to estimate a consensus between raters, using an
appropriate data fusion method. The main objective of data fusion is to lead to a more
robust estimate of the segmentation, which can be, for example, critical in radiotherapy
planning [Li et al., 2009]. The estimation of a consensus between raters is a solution to
the inter-rater variability issue, and has been well studied in the binary setting, where
segmentations are discrete-valued maps. The most well-known algorithm is perhaps the
Simultaneous Truth and Performance Level Estimation (STAPLE) algorithm [Warfield
et al., 2004], which builds a consensus as a weighted combination of the raters’ inputs,
depending on their respective performances. In contrast, the continuous setting has
received less attention, despite the fact that the interest of fusing multiple segmentation
outputs produced by different algorithms, typically continuous, has been demonstrated,
notably for deep learning outputs [Menze et al., 2015].

Given this context, two objectives of this thesis, investigated in the fourth and fifth
chapters, are to explore novel approaches for segmentation quality control and robust
consensus estimation. In particular, we investigate methods based on a probabilistic
modelling of the image segmentation problem, applying the methodology developed in
the third chapter.

The second main research theme of the thesis is related to lung cancer screening.
Lung cancer is the leading cause of death by cancer in the world, with 1.8 millions
of deaths worldwide in 2020, according to the World Health Organization1. It is thus
considered as a major public health problem, with economic and social consequences.
Lung cancer can be defined as an uncontrolled growth of tumor cells that originate in
lung tissue. As for other cancers, the stage of the disease at diagnosis is critical and
directly influences the chance of survival of the patient. Yet, many lung cancers are
currently detected at late stages, due to the late onset of symptoms. Moreover, the
limited understanding of the tumor biology and the lack of effective treatments are also
factors explaining the poor prognosis of lung cancer. According to the National Cancer
Institute2, the 5-year survival rate is 20.5% in the United States. There is therefore a
need in screening strategies to enable early lung cancer detection.

Two large studies, the American National Lung Screening Trial (NLST) and the
Dutch-Belgian NELSON trial have highlighted the potential of medical imaging, in
particular low-dose computed tomography (LDCT), for lung cancer screening, with
a reduction of 20% in mortality [NLST, 2011; Koning et al., 2020]. LDCT screening
is a radiological task consisting in the examination of a 3D image in search of small
pulmonary abnormalities, a.k.a. nodules, suspicious for lung cancer. Yet, a thoracic
LDCT scan contains typically several millions of pixels, making the search of nodules
one of the most difficult and time-consuming task for radiologists.

1https://gco.iarc.fr/today/data/factsheets/cancers/15-Lung-fact-sheet.pdf, accessed April
3, 2021.

2https://seer.cancer.gov/statfacts/html/lungb.html, accessed April 3, 2021.
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With the implementation of LDCT screening at large scales, such as in the United
States [Wood et al., 2018], there is a need in the development of automatic tools to
assist the radiologist in the CT scan examination. In particular, the detection and the
characterization of nodules are two challenging computer vision tasks. In the literature,
several approaches have already been proposed, either for the detection of nodules or
their classification. However, less results have been reported regarding the integration of
the two tasks in fully automated pipelines.

Moreover, current state of the art methods are based on deep learning [Liao et
al., 2019]. Yet, they are often trained and evaluated on datasets with uneven label
quality. For instance, the subject cancer status or reliable nodule labels are sometimes
missing, as in the widely used publicly available LIDC-IDRI dataset [Armato III et
al., 2011]. Therefore, there is also a need in assessing the performance of these algorithms
on independent datasets, where reliable annotations are provided. This issue constitutes
the core of the study reported in the last chapter of this thesis.

1.2 Objectives of the thesis

We now summarize the main objectives of this thesis, given the context described above.
The first is to explore approaches for enforcing spatial regularization inside probabilistic
image segmentation models. The second is to propose novel ideas to unsupervised
segmentation quality control and robust consensus estimation. Finally, the thesis aims at
investigating the relevance of a fully automated lung screening pipeline based on LDCT.
These objectives are associated to the following questions:

• How to control the regularity of a segmentation in a data-driven way? In particular,
how to enforce spatial regularization within a Bayesian segmentation framework?

• How to assess the annotation quality of an image segmentation dataset, containing
potentially a very large number of cases, without any prior knowledge about the
segmented structures?

• How to fuse several continuous input maps into a consistent and robust consensus?

• What are the real performances of a deep learning-based lung screening pipeline,
solely trained with subjective radiological labels?

1.3 Thesis overview

In chapter 2, we discuss some methodological tools used in the remainder of the thesis.
In particular, we introduce the rationale of variational inference. We also present a
general overview of lung cancer.

In chapter 3, we focus on a Bayesian formulation of the binary image segmentation
problem, leading to a probabilistic output. Bayesian segmentation models are commonly
based on the combination of appearance and spatial regularization terms. We study the
properties of several probabilistic smoothness label priors. A comparison is performed
according to several criteria, such as the complexity of their inference, their regularization
strength, and their influence on the model uncertainty estimation. In particular, all
priors are unified into a common inference framework relying on variational methods.
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In chapter 4, we focus on the important problem of the quality assessment of image
segmentations. We propose a novel automated approach, based on a generic probabilistic
model, enabling to identify difficult, potentially suspicious, segmentation cases within
a large dataset. In particular, our proposed approach is unsupervised, meaning that
it is not specific to the structure being segmented and can be applied conveniently on
any database with segmentation labels. Moreover, we show that the approach is highly
interpretable and allows potential errors to be localized within the image, which is of
high interest for the medical domain, given the large sizes of the medical images.

In chapter 5, we propose a novel approach to the fusion of probabilistic maps. We
address several limitations of previous works in continuous consensus estimation. The
novelty of our method lies in the introduction of heavy-tailed distributions, enabling
the evaluation of the raters’ performances to be spatially adaptive. Moreover, a novel
approach for the clustering of raters is investigated, based on the original concept of
mixture of consensuses.

In chapter 6, we analyse the performances of a fully automated lung screening
pipeline based on LDCT. Our framework relies entirely on deep learning and is composed
of 3 networks, corresponding to the 3 following steps: lung parenchyma segmentation,
nodule detection, and nodule characterization. We investigate the impact of unreliable
labels by training our pipeline on the publicly available LIDC-IDRI dataset and then by
conducting an analysis of its performances on several independent test sets, including
real life screening data with high quality annotations.

Finally, in chapter 7, we summarize the main contributions of the thesis. We
conclude with a discussion of potential future work and perspectives.
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Chapter 2
Background and preliminaries

Contents
2.1 Brief introduction to variational inference . . . . . . . . . . . . 7
2.2 Brief introduction to lung cancer . . . . . . . . . . . . . . . . . . 10

This introductory chapter develops important concepts relevant for the remaining of
the thesis. In particular, the first section recalls the basics of variational inference, a
framework enabling the tractability of probabilistic models that will be leveraged in the
next 3 chapters of the thesis. The second section focuses on lung cancer and discusses
the etiology, the diagnostic and the current treatment protocols.

2.1 Brief introduction to variational inference

As presented in the introduction, the first research theme of the thesis is related to image
segmentation and, in particular, to probabilistic segmentation modelling. A Bayesian
model classically involves observed variables, hidden variables, and some hyperparameters
θ. In an image segmentation context, the observed variables, that will be referred to
as I, represent image-derived information, typically the image intensity. In contrast,
the values of the hidden variables, also called latent variables, denoted here as W, are
unknown.

The main objective is then to estimate the hidden variables according to the available
data. In other terms, one wants to compute the posterior probability p(W|I, θ) of the
hidden variables given the observed ones. The relationship between variables is described
by the well-known Bayes’ theorem:

p(W|I, θ) = p(I|W)p(W|θ)
p(I|θ) , (2.1)

where p(I|W, θ) is the likelihood specifying how I relates to W, p(W|θ) is the prior and
p(I|θ) is the model evidence. The prior is intended to reflect some initial knowledge that
one might have about the model output. A wide range of priors have been developed
for image segmentation, introducing for example constraints related to the shape of the
segmented structure [Nosrati & Hamarneh, 2016]. In particular, the third chapter of this
thesis is dedicated to the investigation of priors enforcing spatial regularization, thus
controlling the smoothness of the final mask. The model evidence can be re-written as∫

W p(I|W)p(W|θ)dW, which explains why it is also called marginal likelihood. The
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model evidence can indeed be seen as a likelihood function in which some latent variables
have been marginalized.

In many cases, the main obstacle to the evaluation of the posterior is the intractability
of the model evidence. In other words, the computation of the integral does not lead to
a closed-form analytical solution and therefore requires to be approximated. Methods to
approximate the posterior are generally divided in 2 categories, depending on whether
they are based on deterministic or stochastic approaches [Bishop, 2006].

Markov Chain Monte Carlo (MCMC) is a typical example of a stochastic approach
allowing the posterior to be approximated. It relies on an iterative sampling scheme
that leads theoretically to the exact posterior density. In comparison, deterministic
approaches are based on the optimization of an explicit objective, the marginal likelihood,
and are more efficient in most cases [Salimans et al., 2015].

The Laplace method is the most simple but widely used deterministic approach,
which performs a second-order Taylor expansion at the posterior mode leading to a
Gaussian approximation. The approximation is valid locally around the mode, which can
be found with numerical optimization techniques. The approach of alternating between
a Laplace approximation step for the posterior and a maximization step of the marginal
likelihood to estimate the model hyperparameters θ is known as the evidence framework
or empirical Bayes, or also as the type-II maximum likelihood method [Bishop, 2006;
MacKay, 1999].

Variational inference is another major deterministic method to approach the posterior.
The rationale of variational inference arises when decomposing the log marginal likelihood
as follows:

log p(I|θ) =
∫

W
q(W) log p(I,W|θ)

q(W) dW︸ ︷︷ ︸
L(q)

+
∫

W
q(W) log q(W)

p(W|I, θ)dW︸ ︷︷ ︸
KL[q(W)||p(W|I,θ)]

, (2.2)

where q(W) denotes any probability distribution defined over the latent variables. The
second term in Eq. 2.2 is the Kullback-Leibler (KL) divergence between the distribu-
tion q(W) and the posterior p(W|I, θ). By definition of a KL divergence, we have
KL[q(W)||p(W|I, θ)] ≥ 0 with equality if and only if the two distributions are equal.
Thus, the best approximation q∗(W) to the true posterior is obtained when the di-
vergence vanishes. One can note that this is what happens during the maximization
step of the expectation-maximization (EM) algorithm: the approximation by a Dirac
distribution (point estimation) is updated by computing the true posterior. However, we
consider here more general cases for which the true posterior is intractable and therefore
for which the EM procedure is not appropriate.

The KL divergence being always positive, the first term in Eq. 2.2 is a lower bound
over the log marginal likelihood and is therefore sometimes referred to as the Evidence
Lower Bound (ELBO). As the log marginal likelihood log p(I|θ) is not a function of q(W),
one can see that maximizing the ELBO with respect to q(W) amounts to minimize the
KL divergence. This is exactly the objective of variational inference: instead of trying
to minimize directly the KL divergence, it maximizes the lower bound, which can be
computed for well-chosen families of probability distributions and enables actually to
solve the same problem [Bishop, 2006].

An alternative to variational inference is the expectation-propagation (EP) algorithm
that seeks to minimize the reverse KL divergence, which is written KL[p(W|I, θ)||q(W)].
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However, this approach can lead to a poor approximation if the true posterior is
multimodal, as the EP method tries to capture all the modes of the distribution. In
contrast, variational inference concentrates the probability mass of the approximation
such that it matches the regions with high probability mass of the true posterior. This
leads to better results for multimodal distributions, which are very common in practice.

The variational approach is based on the tractability of the evidence lower bound.
This tractability can be guaranteed by introducing some assumptions regarding the form
of the approximate distribution, q(W), that was for now unconstrained. In particular,
variational inference restricts the space of possible probability distributions to some
chosen families that lead to closed-form solutions [Blei et al., 2017]. The objective is
then to find the member of these families that approximates the best the true posterior
p(W|I, θ).

The mean field approximation is an example of hypothesis that can be made about
the approximate posterior and that is widely used in practice. Consider a model with
N latent variables, i.e. W = {wi}1≤i≤N . The mean field approximation assumes a
factorization of the approximate posterior with respect to each hidden variable, such
that:

q(W) =
N∏
i=1

qi(wi) . (2.3)

Note that this is the only assumption made about the approximate distribution. In
particular, no further conditions are imposed on the form of each individual factor
qi(wi).

After the insertion of the factorized form in the lower bound, the analysis proceeds
by examining one of the factor qj(wj) while considering the others constant. Noting
Wi = {wi}i 6=j , the lower bound can be re-written as:

L(q) =
∫

W
qj(wj)

∏
i 6=j

qi(wi)
[

log p(I,W)− log qj(wj)
]
dW + cst ,

=
∫
wj

qj(wj)
[( ∫

Wi

∏
i 6=j

qi(wi) log p(I,W)dWi

)
− log qj(wj)

]
dwj + cst ,

=
∫
wj

qj(wj) log
expEqi6=j [log p(I,W)]

qj(wj)
dwj + cst ,

= −KL
(
qj(wj)|| expEqi6=j [log p(I,W)]

)
+ cst ,

(2.4)

where Eqi 6=j [log p(I,W)] is the expectation of the model log joint probability with respect
to the distribution ∏i 6=j qi(wi) containing N−1 factors. Because the divergence is always
positive, the minimum of the lower bound with respect to qj(wj) is achieved when it
vanishes, leading to the following important result:

log q∗j (wj) = Eqi 6=j [log p(I,W)] + cst . (2.5)

This analysis is valid for any factors and leads to an iterative algorithm in which the
posterior approximations of the latent variables are optimized in turn, while considering
the others constant. Convergence to a local optimum is guaranteed because of the
convexity of the lower bound with respect to each of the factors. Each iteration
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corresponds to an increase in the lower bound, which can be computed to assess the
convergence and to perform model selection [Blei et al., 2017].

2.2 Brief introduction to lung cancer

The human body has 2 lungs, a right lung and a left lung, located on either side of the
mediastinum inside the thoracic cavity, as shown in Fig. 2.1. The right and left lungs
are further divided into 3 and 2 territories, called lobes. The lungs are part of the lower
respiratory tract that begins with the trachea. After the bronchi, the airways ramify
into smaller and smaller ducts up to the alveoli, where the gas exchange takes place.
The lungs are isolated from the thoracic cage by the pleura, a membrane enabling to
reduce the frictions caused by the respiratory motion.

The lung tissues are a complex community of cells playing a vital role in the respiration.
Yet, this environment is fragile and sensitive to toxic agents. An accumulation of
alterations over the years can lead to the onset of an uncontrolled growth of tumor cells,
and thus to cancer. Lung cancer is a major health problem in the world, representing
11.4% of the new cancer cases and 18% of the deaths by cancer in 2020, according to
World Health Organization1. The highest incidence rates are found in North America,
Europe and eastern Asia, but data are difficult to compare due to the lack of reporting
in some countries.

(a) (b)

Fig. 2.1: Representation of the general anatomy of the lungs and airways (2.1a). Focus on the
respiratory zone (2.1b). (Figures from [Betts et al., 2013], CC-By license.)

Lung cancer incidence is relatively low before 40 years old, then increases slowly to
peak between 65 and 84 years old. In the United States, the median age at diagnosis is
71 years old [Duma et al., 2019]. The advanced age of the population at risk is often
associated with multiple comorbidities, which makes the management of the patient
more difficult.

The primary risk factor for lung cancer is active or passive smoking: it is estimated
that 80% of men and 50% of women diagnosed with lung cancer have a smoking history
[Gridelli et al., 2015]. Nonetheless, around 10% of lung cancer patients in the United
States are never smokers [Couraud et al., 2012]. Exposure to air pollution and toxic
substances such as radon, asbestos, cooking fumes, is known to be an increased risk factor.

1https://gco.iarc.fr/today/data/factsheets/cancers/15-Lung-fact-sheet.pdf, accessed April
3, 2021
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More generally, family history and living conditions may influence the development of
lung cancer.

A majority of lung cancer cases are diagnosed in symptomatic patients. Common
symptoms are cough, chest pain, dyspnea, weight loss and hemoptysis. Exact diagnosis
requires imaging and tissue sampling for pathological analysis.

Computed tomography (CT) is currently the imaging gold standard for lung cancer
diagnosis [Tsim et al., 2010]. This method is based on measuring the absorption of
X-rays in the tissues, which varies according to the type of tissue. Absorption levels are
recorded from different angles and then processed by algorithms to reconstruct a 3D
image. The voxel intensity reflects the degree of X-rays absorption of the corresponding
volume in the body and is measured in Hounsfield units. The Hounsfield scale ranges
from −1000 HU for the air to +1000 HU for dense bone, with 0 HU being the attenuation
value of water. CT scans offer a high spatial resolution, enabling a precise estimation
of the tumor size, a search for any mediastinal or vascular invasion, or for lymph node
involvement [Tsim et al., 2010]. Moreover, it provides valuable anatomical information
for planning an eventual surgical resection.

Other imaging techniques include the positron emission tomography (PET) and
the magnetic resonance imaging (MRI). The former uses a radioactive tracer to detect
regions of abnormally high metabolic activity, typical of cancer cells. Its spatial resolution
is however significantly lower than CT. A combination of the two (PET-CT) can be
considered to obtain both metabolic and morphological data [Kaseda, 2020]. MRI is
based on the measurement of signals related to the nuclear magnetic resonance of atoms
in the body. Its application to lung cancer detection is limited because of its sensitivity
to the respiratory motion and the low proton density of lung parenchyma leading to a
lower signal-to-noise ratio [Kumar et al., 2016]. However, MRI is recommended in lung
cancer patients for the detection of brain metastases.

Fig. 2.2: Lung cancer classification.

Imaging and tissue samples are essential for a precise characterization of the tumor
and staging of the disease. Lung cancer presents indeed a high level of heterogeneity with
several histologic subtypes detailed in Fig. 2.2. The classification is based on the histologic
origin of the tumor cells. Non-small cell lung cancer (NSCLC) is the most common type
of lung cancer and can itself be divided into 3 subtypes [Zheng, 2016]. Adenocarcinoma
originates in cells of the smaller airway epithelium with a glandular differentiation.
Squamous cell carcinoma arises from cells with a squamous differentiation located in the
central lung or in the major airways. The third subtype, large cell carcinoma, is used to
regroup poorly differentiated tumors.
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The staging of lung cancer is based on the tumor node metastasis (TNM) system,
which provides a score reflecting the extent of the primary tumor and of metastases
in other parts of the body [Tsim et al., 2010]. It relies on 3 criteria, namely the
characteristics of the primary tumor, the involvement of lymph nodes and the presence
of metastases. Accurate staging is important, as it impacts the treatment options and
the management of the patient.

Early stage patient without any contraindication can be offered surgical resection.
However, the surgical approach remains highly complex and patient dependent. Other
possibilities include radiotherapy and chemotherapy, the latter being particularly suitable
to target distant metastases sites. Treatment of later stages is more complex and has
for a long time been associated with a poor prognosis. In the last few years, targeted
therapy and immunotherapy have revolutionized the treatment of cancers and offered
new perspectives [Duma et al., 2019]. The former relies on drugs that target proteins
playing a role in cancer development in order to inhibit their activity. The latter aims at
re-activating the immune defense against malignant cells. However, the effect of targeted
therapy is often limited by the development of drug resistance over time. Moreover,
immunotherapy may lead to serious adverse effects and benefits durably to only a small
minority of patients. The mechanisms behind these limitations are not fully understood
and are an active topic of research.

Despite recent advances in treatment, the prognosis for late stages patients remains
low with a 5-year survival rate of 5% in the United States2. Thus, being able to detect
lung cancer early before the onset of symptoms is critical.

(a) (b) (c)

Fig. 2.3: Illustration of the variety of nodule appearances: example of a ground-glass nodule
(2.3a), of a part-solid nodule (2.3b) and of a solid nodule (2.3c). (Figures adapted
from [Snoeckx et al., 2018], CC-By license.)

Low-dose computed tomography (LDCT) has been demonstrated to be effective
for lung cancer screening and is now recommended by the United States Preventive
Services Task Force (USPSTF) for subjects at risk [USPSTF, 2021]. Radiation doses
in LDCT are reduced in comparison with conventional CT to limit the exposure while
maintaining an acceptable image quality [Rampinelli et al., 2013]. Lung cancer screening
by LDCT involves to look for nodules and assess their malignancy. The detection of
lesions is a first challenge: nodules are lung opacities up to 3 cm in diameter, thus very
small compared to the whole image. Assessing their malignancy from the image is even
more difficult: many factors other than cancer can lead to the apparition of nodules

2https://seer.cancer.gov/statfacts/html/lungb.html, accessed April 3, 2021.
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(a) (b) (c)

Fig. 2.4: Illustration of the variety of nodule margins: example of a smooth margin (2.4a), of
a spiculated margin (2.4b) and of a lobulated margin (2.4c). (Figures adapted from
[Snoeckx et al., 2018], CC-By license.)

and the majority are benign. Nevertheless, several features have been reported as being
associated with increased likelihood of malignancy [Snoeckx et al., 2018; MacMahon
et al., 2005; Erasmus et al., 2000]. For example, nodules are commonly divided into
3 classes depending on their attenuation values, as shown in Fig. 2.3, and part-solid
nodules are more suspicious for lung cancer.

Moreover, large diameters are also recognized as an increased risk factor. The
diversity of the nodule margins, illustrated in Fig. 2.4, may also be taken into account:
nodules presenting patterns of lobulation or spiculation are more likely to be malignant.
However, the main limitation of these features is their limited specificity: two nodules
may share the same morphological characteristics despite opposite malignancy status.
LDCT screening remains therefore one of the most challenging radiological task: the
detection of lesions is tedious and time-consuming, while the malignancy assessment is
complex and subjective, which requires years of experience.
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Image segmentation is a key image processing task resulting in the partition of an
image into multiple regions. It is especially important in the medical domain as a starting
point for many clinical downstream applications. We focus in this chapter on a Bayesian
formulation of the binary image segmentation problem that leads to a probabilistic output.
The Bayesian setting combines image-driven information with spatial regularization
terms, because spatial consistency is generally considered as a desirable property for image
labels. The objective of the chapter is to study the properties of several probabilistic
smoothness label priors defined on a discrete or continuous domain. We also introduce a
novel label prior based on Gaussian processes, whose inference is made tractable due to
the periodic or separable nature of the covariance matrices. We compare these priors
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with respect to several criteria including the complexity of their inference, their ability
to spatially regularize image labels, and their impact on uncertainty quantification. We
propose a common tractable inference scheme based on variational Bayes methods and
the maximization of well-chosen local lower bounds over the log likelihood. We show how
this generic framework can be used for post-processing regularization after any image
segmentation algorithm but also as a standalone segmentation method. In particular,
we introduce a novel segmentation strategy, based on the evolution of an isoprobability
surface inside a narrow band.

3.1 Introduction

Image segmentation is one of the most studied problems in computer vision and a large
range of frameworks has been proposed to handle this task [Nosrati & Hamarneh, 2016].

Building a proper image partition requires taking into account the relationships
between pixels. Indeed, the output of a segmentation algorithm is expected to present
some level of spatial homogeneity reflecting the consistency of the real object. In practice,
the regularization strategy can vary depending on the segmentation framework. For
instance, the level-set approach [Chan & Vese, 1999] introduces spatial smoothness by
penalizing the segmentation area and the length of the segmentation boundaries. More
recently, deep learning-based methods have met with considerable success, mainly in
supervised image segmentation [Litjens et al., 2017]. Classical losses such as cross entropy
or soft Dice do not explicitly constraint spatial consistency. The model is expected
to learn the correct level of spatial regularization from the training database and by
involving convolution kernels in the neural networks.

Another issue of increasing importance in image segmentation is the quantification of
the uncertainty in the estimation of segmented structure boundaries. This is especially
true in the medical domain as segmentation results impact decisions that may be made
about the patient. For instance, in radiotherapy planning, the delineation of tumor
lesions directly influences the extent of the dose delivered to the patient. Also, the
RECIST criteria in oncology that guide the monitoring of patients with detected tumor
lesions are based on the evolution of their estimated volumes. In this case, a realistic
uncertainty estimate can be obtained by generating plausible segmentation samples and
then computing a distribution of their volumes. Approaches relying on level sets or graphs
[Boykov & Jolly, 2001; Rother et al., 2004] only give the most probable segmentation and
therefore do not allow new samples to be generated. deep learning-based methods have
achieved considerable success in supervised and unsupervised image segmentation [Litjens
et al., 2017] and Monte Carlo dropout has been proposed to perform stochastic sampling
through random perturbations of the weights in the network [Gal & Ghahramani, 2016;
Nair et al., 2020]. Yet, a proper assessment of the uncertainty in the results remains an
open question [Jungo & Reyes, 2019].

In this chapter, we focus on probabilistic approaches of the image segmentation
problem. Those methods allow for a data-driven estimation of their parameters, as is
the case for deep learning algorithms. However, their restricted number of parameters
make them able to process images with little or no supervision, thus avoiding the need
for annotating large image databases. In generative probabilistic models, the parameters
can be fully interpreted which is a major advantage for detecting any algorithm failure.
Another interesting feature of probabilistic models is that the Bayesian setting allows
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for a proper uncertainty assessment by estimating the posterior probability of its output.
In addition, the estimation of marginal likelihood enables model selection, i.e., selecting
the model which best suits the data. Yet, the inference of those probabilistic models
for image segmentation is relatively slow compared to the execution of a trained neural
network. Furthermore, the definition of hand-crafted imaging features in probabilistic
models is complex and often less discriminative than a supervised convolutional neural
network (CNN). This is why there is active research towards the development of Bayesian
neural networks [Wang & Yeung, 2016] to limit the overfit typical of classical CNNs, to
train networks with less annotated data, to decrease the size of networks or to have a
better estimation of their uncertainty.

Probabilistic models for image segmentation classically include a first component
describing the appearance of the region of interest and a second constraining its shape.
A wide range of priors has been proposed for image segmentation, relying for instance
on knowledge of the appearance or the shape of the segmented structure [Nosrati
& Hamarneh, 2016]. We focus in this chapter on regularization strategies for image
segmentation where the objective is to enforce the connectivity or smoothness of the
segmented structures in images. The investigation of spatial priors for image segmentation
is performed within the framework of variational Bayesian methods and is motivated
by the several challenges. The first challenge is to perform the inference of all model
parameters in an efficient way that can scale easily with the image size. In particular,
all proposed models lead to closed-form update formulas that can be easily implemented
and contribute to the interpretability of those algorithms. The second challenge is to
efficiently constrain the smoothness of recovered segmented structures in a data-driven
way. In particular, it is expected that, depending on the image content, several levels
of regularization can be achieved. The third challenge is to allow realistic uncertainty
quantification both in terms of local and global segmentation measurements.

In this chapter we investigate six generic priors that allow spatial regularization. Five
of these were proposed in previous works, while the sixth is based on a Gaussian process
and, to the best of our knowledge, is novel. In particular, we compare the classical
Markov random field (MRF) prior based on connectivity, and its conditional random
field (CRF) variant, to its continuous counterpart, which penalizes the total variations
(TV) of the prior label map or the squared norm of its derivatives. The latter will be
denoted by FDSP (Finite Difference Spatial Prior) throughout the chapter. MRF priors
are widespread and can be found for instance in [Held et al., 1997; Warfield et al., 2004;
Xu et al., 2010]. A CRF prior is used by the well-known GrabCut algorithm [Rother
et al., 2004] to regularize the segmentation, while [Bioucas-Dias & Figueiredo, 2016;
Babacan et al., 2008; Babacan et al., 2009] are examples of works employing a TV
prior. The FDSP prior was introduced in a previous work of the authors [Audelan
& Delingette, 2020]. It is related to the Gauss-Markov random field prior developed
in [Figueiredo, 2005b], which is a straightforward extension of the MRF prior to the
continuous case and will not be analysed in this chapter.

Furthermore, we introduce a spatial prior defined through a Gaussian process, which
has, to the best of our knowledge, never been proposed before. Optimization techniques
are provided to address the well-known memory and computational burdens associated
with the storage and inversion of the Gaussian process covariance matrix. In addition,
we discuss its relation to another prior defined as a generalized linear model of basis
functions spread over the image grid, denoted by GLSP (Generalized Linear Spatial
Prior). The GLSP prior was also introduced in a previous work of the authors [Audelan
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& Delingette, 2019]. A supplementary inference strategy is provided for the GLSP prior
in this chapter, based on a Laplace approximation of the lower bound. We develop
an approach which generalizes the fast relevance vector machine (RVM) proposed by
Tipping and Faul [Tipping & Faul, 2003] and leads to an incremental algorithm capable
of selecting the most relevant basis from a user defined dictionary. Thus, this extension
allows the regularization to be automatically spatially adaptive in a data-driven fashion.

We restrict the analysis to binary image segmentation, although we show at the end
of the chapter that the extension to multiple classes is straightforward. The appearance
component of segmentation models is not the main focus of this study. In the remainder,
we model the image likelihood of each region as mixtures of Gaussian distributions. The
framework therefore corresponds to a mixture of mixtures model, known to increase the
robustness with respect to outliers [Malsiner-Walli et al., 2017; Orbanz & Buhmann, 2005;
Li et al., 2015]. Moreover, a Dirichlet prior is introduced over the mixing coefficients of the
appearance models allowing the appropriate number of components to be automatically
selected, leading to a more robust description.

A contribution of the chapter is to unify the aforementioned spatial priors into a
common inference scheme based on variational calculus. Variational inference is based
on the maximization of a lower bound over the data marginal likelihood and learns
probability distributions, thus allowing uncertainty to be quantified. Convergence is also
guaranteed, as each iteration corresponds to an increase in the data marginal likelihood.
The lower bound is also a useful tool to perform model selection, by comparing the values
reached after convergence. Finally, but also importantly, variational inference allows
an automatic data-driven estimation of the parameters, including in some cases those
controlling the level of regularization. In addition to performing classical mean-field
approximations assuming factorized approximate posterior distributions, we also make
use of local variational bounds [Bishop, 2006; Murphy, 2012] which ensure the tractability
of closed-form updates despite using nonconjugated distributions. After convergence,
the generative nature of the model allows new plausible segmentation samples to be
generated.

Finally, we also introduce a formalization of the segmentation problem based on the
evolution of a narrow band along the foreground boundaries at each iteration as in the
level-set algorithm. The prior label map of the segmentation is initialized by a seed
provided by the user. The algorithm alternates between two steps, one that estimates
the appearance parameters and the other that performs the spatial regularization. The
latter focuses at each iteration on the segmentation boundaries, leading to an evolution
of the structure by shrinking or expansion. The process is repeated until convergence.

We summarize the main contributions of the chapter below:

• A common inference scheme based on variational inference is provided for several
spatial priors.

• A novel spatial prior based on a Gaussian process is introduced, together with
some optimization methods based on Fourier transform or Kronecker products
allowing the approach to scale to the segmentation of large images.

• An incremental algorithm is proposed for the GLSP based on sparse Bayesian
learning.

• A formulation is given of the algorithm, based on a narrow band evolution.
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The rest of the chapter is organized as follows. Section 3.2 presents the probabilistic
segmentation framework with the intensity model. In section 3.3, we present the
different spatial priors and the optimization techniques required for the Gaussian process.
Section 3.4 develops the common inference scheme, based on variational inference, and
gives details specific to each spatial prior. Finally, the last section shows some results
and comparisons using medical imaging data.

3.2 Probabilistic segmentation framework

We consider the segmentation of an image, I, made of N voxels with intensities In ∈ RD,
n = 1, . . . , N into K = 2 regions. We introduce for each voxel a binary hidden random
variable Zn ∈ {0, 1} with Zn = 1 if voxel n belongs to the structure of interest.

Appearance models. The foreground and background regions are defined by the two
image likelihoods p(In|Zn = 1, θ0

I ) and p(In|Zn = 0, θ1
I ), respectively, where θ0

I and θ1
I are

parameters governing those models. At this point, two situations can arise [Figueiredo,
2005b]. In a supervised setting, the image likelihoods are given, for instance by neural
networks, and the objective is to regularize the segmentation. On the other hand, the
unsupervised setting aims to learn the intensity parameters θI jointly with the level of
regularization. In fact, the supervised setting can be considered as a special case of the
second one, with the intensity parameters being fixed. In this chapter, we will consider
parametric appearance models based on mixtures of Gaussian distributions:

p(In|Znk = 1) =
Mk∑
m=1

πkmN (In;µkm,Λ−1
km) , (3.1)

where Mk is the number of mixture components in region k and πk are the mixing
coefficients, with the constraint ∑Mk

m=1 πkm = 1. We introduce a new categorical variable
Γ which is a binary 1-of-Mk encoding such that Γnkm = 1 if voxel n belongs to the m-th
component of region k, and ∑m Γnkm = 1. It leads to the following likelihood:

p(In|Γn, Zn) =
K∏
k=1

 Mk∏
m=1
N (In;µkm,Λ−1

km)Γnkm

Znk . (3.2)

In order to obtain a robust description, a sparsity-inducing Dirichlet prior is chosen
over the mixing coefficients π:

p(π) =
K∏
k=1

Dir(πk; γk0) =
K∏
k=1

C(γk0)
Mk∏
m=1

πγk0−1
km

 , (3.3)

where C(γ) is the normalization constant. Depending on the value of the hyperparameter
γ0, this prior will favor sparse representation allowing unnecessary components to be
removed from the model. In order to get a fully Bayesian approach, the mean and
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precision of each mixture component are equipped with a Gaussian-Wishart prior such
that:

p(µ,Λ) = p(µ|Λ)p(Λ) ,

=
K∏
k=1

Mk∏
m=1
N (µkm;mk0, (βk0Λkm)−1)W(Λkm;Wk0, νk0) .

(3.4)

In

Γn

π

γ0

ZnSPθSP µ

m0

β0

Λ

ν0W0

N

Fig. 3.1: Graphical model of the probabilistic framework. SP denotes the spatial prior and θSP
its hyperparameters.

Fig. 3.1 shows a graphical representation of the probabilistic framework. SP denotes
the spatial prior introduced to impose smoothness over the label map Z. The different
spatial priors and their hyperparameters are presented in the next section.

3.3 Spatial smoothness priors

Spatial priors are required to enforce the spatial consistency of the segmented structure.
In this chapter, four classes of spatial priors are investigated.

3.3.1 MRF/CRF priors
A classical approach to enforce spatial smoothness is to define a Markov random field
(MRF) prior over the label map. Its simple and straightforward formulation made it
widely popular, for example [Held et al., 1997; Warfield et al., 2004; Woolrich et al., 2009;
Xu et al., 2010]. This prior is essentially based on a discrete representation of an image
where pixels are connected through a graph. It thus enforces the connectivity among
voxels and reflects the prior assumption that it is likely that two neighboring voxels also
share the same label. A natural way to represent the interactions between neighboring
voxels is the Ising model for the binary case, extended to the multi-class setting by the
Potts model. The label prior probability is then defined as:

p(Z|β) = 1
T (β) exp

β
2

N∑
n=1

∑
i∈δ(n)

1∑
k=0

ZnkZik

 , (3.5)
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where β ≥ 0 is the hyperparameter controlling the strength of the regularization and
T (β) is the partition function. δ(n) are the neighboring voxels of n. A β value close to
zero amounts to a model without regularization, while large values encourage neighboring
voxels to belong to the same region.

The main limitation of the MRF is the intractability of the normalization constant
T (β), needed for the automatic estimation of the hyperparameter, as it requires consid-
ering all possible configurations of the MRF, which is computationally impossible for
large lattices. Adaptive estimation of the hyperparameter β is an open field of research
[Woolrich et al., 2005; Woolrich & Behrens, 2006; Pereyra & McLaughlin, 2017], but in
this chapter we restrict the analysis to the case where β is given by the user.

The MRF prior relies solely on connectivity assumptions and does not take image
features into account. Conditional random fields (CRF) are a variant of MRF priors
that incorporate intensity information. Thus the prior probability no longer depends
only on the label of neighboring voxels, but also on the variation in intensity across these
voxels. The contrast-sensitive prior can be written as [Boykov & Jolly, 2001; Rother et
al., 2004]:

p(Z|β) = 1
T (β, γ) exp

β
2

N∑
n=1

∑
i∈δ(n)

1∑
k=0

ZnkZik
exp

(
−γ(In − Ii)2)
dist(n, i)

 , (3.6)

where dist(x, y) is the Euclidean distance between voxels. γ ≥ 0 is a new hyperparameter
controlling the importance of the intensity part of the prior: with γ = 0 the prior
is identical to Eq. 3.5. Again, γ cannot be learnt automatically and is fixed to γ =(
2〈(Ii − Ij)2〉

)−1, where 〈.〉 is the expectation over the image [Rother et al., 2004].

3.3.2 TV/FDSP priors
The MRF and CRF priors are defined directly on the label field Z. The discrete nature
of the variable makes it more difficult to manipulate and leads to complex combinatorial
optimization problems, in particular for the computation of the partition function.
Another approach is to introduce a new continuous hidden variable W = [w1, . . . , wN ]T
related to the label via the sigmoid function σ(x) = 1/(1 + e−x):

p(Z|W) =
N∏
n=1

[σ(wn)]Zn [σ(−wn)]1−Zn . (3.7)

Priors defined over W can then be used to enforce spatial consistency. In [Bioucas-
Dias & Figueiredo, 2016; Babacan et al., 2008; Babacan et al., 2009], the prior penalizes
the total variation (TV) of the continuous field:

p(W|α) = 1
T (α) exp

−α N∑
n=1

√√√√ D∑
d=1

(wn − wδd(n))2

 , (3.8)

where α controls the amount of spatial regularization and δd(n) denotes the nearest
neighbor of voxel n in the dimension d. For a two-dimensional image (D = 2), δd(n)
represents the first neighbor to the left or above for d = 0 and d = 1, respectively. The
function h(x) = ∑

n

√∑
d(xn − xδd(n))2 is 1-homogenous and therefore the normalization
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factor can be written T (α) = cα−N , where c does not depend on α [Pereyra et al., 2015].
This prior is known for not over-penalizing discontinuities in the image while enforcing
spatial coherence [Babacan et al., 2009].

However, a downside of the TV approach is the presence of the square root function
requiring special treatment to ensure tractability. In [Audelan & Delingette, 2020], we
proposed another prior imposing smoothness by penalizing the squared norm of the
derivatives of order p of the vector W. It is denoted by Finite Difference Spatial Prior
(FDSP) and is written:

p(W|α) = 1
T (α) exp

(
−α

∑
n

||∆p(wn)||2
)
. (3.9)

∆p(wn) is the central finite difference operator of order p at wn. In this paper, we
consider only first order derivatives (p = 1) and the prior is written:

p(W|α) = 1
T (α) exp

(
−α4

N∑
n=1

D∑
d=1

(wδd(n+1) − wδd(n−1))2
)
, (3.10)

where δd(n+ i) represents the neighbor with index i of voxel n in the dimension d. The
quantity h(x) = ∑

n ||∆p(wn)||2 is 2-homogenous and the normalization factor has the
form T (α) = cα−N/2 [Pereyra et al., 2015]. Another way to see this is to note that
p(W|α) is a zero mean Gaussian distribution whose precision matrix ΛFDSP consists of
difference operators. Therefore, in contrast to the TV prior, the normalization constant
can be fully expressed, leading to T (α) = (4π)N/2α−N/2|ΛFDSP|−1/2 for the case p = 1.

3.3.3 GP prior
As in the previous section, we use a continuous hidden field W to enforce the spa-
tial consistency of the label variable, leading to the same label prior p(Z|W) =∏N
n=1[σ(wn)]Zn [σ(−wn)]1−Zn . However, we replace the TV/FDSP priors penalizing

the continuous field by a regularizer formulated as a Gaussian process. Gaussian pro-
cesses (GP) are a generalization of Gaussian multivariate distributions [Rasmussen &
Williams, 2005]. They provide a framework to define a prior over spatially correlated
variables in a straightforward manner. A zero mean Gaussian prior is chosen for the
vector W with a covariance matrix encoding the spatial relationships between voxels:

p(W|θGP) = N (W; 0,ΣGP) . (3.11)

In this chapter, we consider the squared exponential function with hyperparameters
ω0 and ω1:

∀ a, b ∈ RD, ΣGP(a, b) = ω2
0 exp

(
−||a− b||

2

ω2
1

)
. (3.12)

ω0 controls the amount of variability in the continuous field defined by W, while ω1 is
the characteristic length scale representing the typical correlation length between two
voxels.

A well-known difficulty of GP is their poor scalability to high dimensional datasets, in
particular images. The size of the covariance matrix (N2) makes the GP computationally
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and memory intensive at the same time [Rasmussen & Williams, 2005]. However,
optimization techniques exist when the covariance matrix is stationary (i.e., invariant by
translation) and when the points lie on a regular grid, which is the case for images.

A first approach assumes periodic boundary conditions on the image [Kozintsev,
1999]. ΣGP is then a symmetric Block Circulant matrix with Circulant Blocks (BCCB
matrix) such that each column is a periodic shift of the first column. The first column
contains all the information which limits the storage to a vector of size N . Moreover,
theoretical results on BCCB matrices allow us to write ΣGP = F−1∆F , where ∆ is the
diagonal matrix of eigenvalues and F is the N ×N discrete Fourier transform matrix
[Kozintsev, 1999]. Computations involving ΣGP are then performed very efficiently in
the Fourier domain.

The periodic boundary conditions assumption can be a limitation, especially for
small images or strong spatial regularization. In these cases, another approach based on
the separability of the covariance function may be more suitable [Saatchi, 2011]. The
squared exponential kernel can be factorized along the image dimensions:

∀ a, b ∈ RD, ΣGP(a, b) = w0

D∏
d=1

exp
(
−||ad − bd||

2

ω2
1

)
. (3.13)

The GP matrix can then be written as a Kronecker product of the D covariance
matrices along each dimension: ΣGP = ⊗D

d=1 Σd
GP. In practice, the full GP matrix is

never constructed and only the smaller Σd
GP of sizes Nd × Nd are stored. Moreover,

an efficient framework was developed in [Saatchi, 2011] for fast computations of ma-
trix/vector products. This optimization approach is valid for any length-scale values,
including large ones, thus allowing long range correlations to be efficiently taken into
account. It is an advantage compared to the MRF/CRF priors, for which the modelling
of large-range interactions involves the consideration of larger neighborhoods and thus
leads to increased complexity [Bouman & Shapiro, 1994].

3.3.4 GLSP prior
The last prior investigated in this chapter was introduced in a previous work of the
authors [Audelan & Delingette, 2019] and is denoted by Generalized Linear Spatial Prior
(GLSP). The label prior is still defined as a Bernoulli distribution, but its parameter is
now a spatially random function specified as a generalized linear model:

p(Zn = 1|W) = σ

(
L∑
l=1

Φl(xn)wl
)
, (3.14)

where xn ∈ RD denotes the position of voxel n. The basis {Φl(x)} are L functions
of space, typically radial basis functions (for instance, Gaussian functions) defined on
a regular grid. Each basis function has an associated weight wl ∈ W, now of size L.
It is clear that the prior probabilities of two geometrically close voxels are related to
each other through the smoothness of the label field parameterized by the function
f(xn) = ∑L

l=1 Φl(xn)wl = ΦT
nW, writing ΦT

n = [Φ1(xn), · · · ,ΦL(xn)]. The L basis
functions {Φl(x)} are commonly uniformly spread over the image domain and their
choice influences the strength of the spatial regularization. The key parameters are the
spacing s between the basis centers, the standard deviations (or radii) r of the Gaussian

3.3 Spatial smoothness priors 23



functions and the position of the origin basis. Together, they influence the amount of
smoothing produced by the label prior, large spacing and standard deviations leading to
smoother prior probability maps.

Fig. 3.2: Example of a grid of basis functions used as input by the GLSP prior.

The level of regularization is also controlled by the prior defined over the weights.
To obtain a robust description, the vector W is equipped with a prior of the form:

p(W|α) ∝ exp
(
−α2 WTRW

)
. (3.15)

Depending on the precision matrix R, a wide variety of priors can be encoded. For
instance, by setting R = IL, we obtain a zero mean Gaussian prior with precision matrix
αIL. It constrains the values of W by penalizing the vector norm. Alternatively, R
can be designed such that it penalizes the magnitude ||f ||2 of the prior label field or of
its derivatives [Le Folgoc et al., 2017] using reproducing kernel Hilbert space (RKHS)
methods. Details of the computation of the coefficients of the matrix R can be found in
appendix A.3.

In addition, a non-informative uniform prior is chosen for the hyperparameter α, i.e.,
p(α) ∝ 1.

Finally, note that it is possible to establish a connection between the GLSP prior
and the one based on a GP. If R is chosen as the identity matrix, the GLSP prior
is then just a transfer of the Relevance Vector Machine (RVM) framework [Tipping
& Faul, 2003] for binary classification to the image segmentation setting. In the case
of a noise-free regression model, one can write the RVM as a GP after marginalizing
out the weight variable [Tipping, 2001; Rasmussen & Williams, 2005]. The covariance
function is then k(a, b) = ∑L

l=1 α
−1φl(a)φl(b) and clearly has a finite number of nonzero

eigenvalues, meaning that it is degenerate. On the contrary, the squared exponential
kernel is nondegenerate [Rasmussen & Williams, 2005] with an associated feature space
of infinite dimension. It confers higher expressiveness to the GP model than is the case
in the basis functions framework, which can suffer from limited flexibility. However, the
latter is more efficient in terms of computation and memory, because usually L << N .

The graphical model associated with each spatial prior is given in Fig. 3.3.
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Fig. 3.3: Graphical models of the probabilistic framework with a MRF prior (3.3a), a CRF
prior (3.3b) a TV or FDSP priors (3.3c), a GLSP prior (3.3e) and finally a GP
prior (3.3d). The prior parameters of the appearance variables are not shown to keep
the representation uncluttered.

3.4 Model inference

We propose a common inference framework based on variational calculus allowing the
appearance and regularization parameters U = {Z,Γ,W, µ,Λ, π} to be learnt. (For an
MRF or CRF prior, the variable W is ignored.) The objective is to maximize the data log
marginal likelihood, log p(I), while approximating the true posterior distribution, p(U |I),
by a chosen family of distributions, q(U). An increase in the data log likelihood can
be achieved by minimizing the Kullback-Leibler divergence between the true posterior,
p(U |I), and the approximation, q(U), or equivalently by maximizing the lower bound,
L(q):

log p(I) =
∫
U
q(U) log p(I, U)

q(U)︸ ︷︷ ︸
L(q)

+KL[q(U)||p(U |I)]︸ ︷︷ ︸
≥0

. (3.16)

We further assume that the approximation of the posterior factorizes with respect to
each variable (mean field approximation) such that:

q(U) = q(Z)q(Γ)q(W)q(µ,Λ)q(π) . (3.17)
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With θI = {µ,Λ, π} gathering the intensity variables, the lower bound can then be
rewritten as:

log p(I) ≥ L(q) =
∑
Z

∑
Γ

∫
W

∫
θI

q(Z)q(Γ)q(W)q(θI)

log p(I, Z,Γ,W, θI)
q(Z)q(Γ)q(W)q(θI)

dWdθI .

(3.18)

If qi denotes any of the factors in Eq. 3.17 and q−i the product of the remaining
factors, we know by variational calculus that the distribution q∗i maximizing Eq. 3.18
has the form:

log q∗i = Eq−i [log p(I, U)] + cst , (3.19)

when fixing the other distributions q−i. This results leads to an iterative algorithm
where the lower bound is optimized with respect to each approximate distribution qi
in turn. In the following sections we present the main results for each of the posterior
distribution approximations; details of the derivations can be found in appendix A.1.

3.4.1 Label posterior approximation
The update of the label posterior approximation is equivalent to the expectation step
in an Expectation-Maximization (EM) algorithm. Eq. 3.19 applied to q(Zn) leads to a
Bernoulli distribution of parameters ηn0 and ηn1 with ηnk = ρnk/

∑
k ρnk for k ∈ {0, 1}

and:

log ρnk =
Mk∑
m=1

E[Γnkm]
[
−D2 log(2π) + 1

2E[log |Λkm|]

−1
2E[(In − µkm)TΛkm(In − µkm)] + E[log πkm]

]
+Rnk .

(3.20)

Rnk is the regularization term that varies depending on the spatial prior:

• Rnk = β
∑
j∈δ(n) ηjk for the MRF prior.

• Rnk = β
∑
j∈δ(n) ηjk exp

(
−γ(In − Ij)2) /dist(n, j) for the CRF prior.

• Rnk = kE[wn] for the TV, FDSP and GP priors.

• And finally, Rnk = kE[ΦT
nW] for the GLSP prior.

The update for the MRF and CRF priors involves a fixed-point equation, the new values
ηi+1
n at iteration i+ 1 are obtained from the values of the same Bernoulli distribution
parameters at iteration i.

3.4.2 Appearance parameters
This section gives the posterior approximations for the variables Γ, π, µ and Λ. We chose
to model the appearance of both regions using mixtures of Gaussian distributions and
Γ represents the component of each voxel in each region. The posterior approximation
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q(Γnk) is a multinomial distribution with parameters δnkm = τnkm/
∑
m τnkm for 1 ≤

m ≤Mk and:

log τnkm = ηnk

[
−D2 log(2π) + 1

2E[log |Λkm|]

−1
2E[(In − µkm)TΛkm(In − µkm)] + E[log πkm]

]
.

(3.21)

Updates for the remaining variables are classical results for variational mixtures of
Gaussian distributions [Bishop, 2006]. q(πk) is thus a Dirichlet distribution Dir(πk; γk),
γk = {γk1, . . . , γkMk

} and γkm = ∑N
n=1 ηnkδnkm + γk0 = Nkm + γk0. q(µkm,Λkm) follows

a Gaussian-Wishart distribution N (µkm;mkm, (βkmΛkm)−1)W(Λkm;Wkm, νkm), with
parameters given by:

βkm = β0 +Nkm , (3.22)

mkm = 1
βkm

(β0m0 +NkmIkm) , (3.23)

W−1
km = W−1

0 +NkmSkm + β0Nkm

β0 +Nkm
(Ikm −m0)(Ikm −m0)T , (3.24)

νkm = ν0 +Nkm . (3.25)

Ikm and Skm are defined as:

Ikm = 1
Nkm

N∑
n=1

ηnkδnkmIn , (3.26)

Skm = 1
Nkm

N∑
n=1

ηnkδnkm(In − Ikm)(In − Ikm)T . (3.27)

3.4.3 Regularization variables

In this section, we propose some strategies to learn the posterior approximation q(W) of
the spatial regularization variable. It does not concern the MRF and CRF priors, as
in these cases the regularization is applied directly on the discrete variable Z and not
through the continuous variable W.

If we apply Eq. 3.19 to W, we get log q∗(W) = E [log (P (Z|W)p(W))]. A first
problem common to all priors arises with the expectation taken over the label prior.
Indeed, p(Z|W) is a Bernoulli distribution whose parameters involve the sigmoid function,
making the expectation intractable. Regarding the expectation over the continuous
variable W, it involves a Gaussian distribution for the FDSP, GP and GLSP priors and
is easy to compute. However, there is an issue with the square root function in the TV
prior which makes the integral intractable.

To obtain a tractable approximation, we propose to use an approach based on local
variational bounds as an alternative to the Laplace approximation. A new bound is
introduced over the problematic distributions. The objective of maximizing the data
log likelihood then becomes one of optimizing a new lower bound over the lower bound
L(q).
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Lower bound over the square root function

We follow the approach of [Babacan et al., 2008; Babacan et al., 2009] who use the
following bound over the square root function:

∀x ≥ 0, ∀y > 0,
√
x ≤ x+ y

2√y . (3.28)

The initial formulation of the TV prior is then replaced by L(W, α, u) according to
the following inequality:

p(W|α) ≥ L(W, α, u) = cαN exp
(
−α2

N∑
n=1

∑D
d=1(wn − wδd(n))2 + un√

un

)
. (3.29)

The prior is now a Gaussian distribution and the expectation E[log p(W|α)] is now
tractable. The variables u are additional variational parameters that can be estimated.

JJ bound over the label prior

The intractability problem is caused by the sigmoid function in the parameters of the
Bernoulli distribution. We follow the approach introduced by [Jaakkola & Jordan, 2000]
in the context of logistic regression and replace the sigmoid function according to this
inequality: σ(x) > l(x, ξ) = σ(ξ) exp

[
(x− ξ)/2− λ(ξ)(x2 − ξ2)

]
. ξ is an additional

variational parameter and λ(ξ) = tanh(ξ/2)/(4ξ). The spatial prior p(Z|W) can thus
be approximated by F (Z,W, ξ) = ∏

n [l(yn, ξn)]Zn [l(−yn, ξn)]1−Zn , with yn = ΦT
nW for

the GLSP prior and wn otherwise. This approach will be referred to as the JJ bound
after its inventors, as done in [Murphy, 2012].

This approximation leads to a new lower bound J (q) on the lower bound L(q):

log p(I) > L(q) > J (q) =
∑
Z

∑
Γ

∫
W

∫
θI

q(Z)q(Γ)q(W)q(θI)

log p(I|Γ, Z, θI)p(Γ|Z, θI)p(θI)F (Z,W, ξ)p(W)
q(Z)q(Γ)q(W)q(θI)

dWdθI .

(3.30)

p(W) is further replaced by L(W, α, u) for the TV prior. The new lower bound J (q)
is now tractable. Note that the use of the JJ bound is possible here because we consider
in this chapter binary segmentation problems and the sigmoid function is a classical
way to define the parameters of the Bernoulli distribution. In the multi-class setting
however, we would use a multinomial logistic regression framework with the softmax
function σ(x)i = exi/

∑
j e

xj which also causes tractability issues. Nonetheless, we can
keep the local variational bound approach using a bound on the LogSumExp function,
for example, the Böhning bound [Böhning, 1992].

Applied to the GLSP prior, the JJ bound leads to a Gaussian distribution
N (W;µW,ΣW) for q(W) with parameters given by:

ΣW =
[
ΦBΦT + αR

]−1
, (3.31)

µW = ΣW

N∑
n=1

(
ηn1 −

1
2

)
Φn . (3.32)
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where Φ is the L × N matrix obtained by stacking the vectors Φ1, . . . ,ΦN and B =
diag([2ξ1, . . . , 2ξN ]). For the TV and FDSP priors, we further assume the factorization
q(W) = ∏

n q(wn). The variational optimization for q(wn) yields a normal distribution
N (wn;µwn ,Σwn). The parameters for the TV prior are given by:

Σwn =
[
2λ(ξn) +

∑
d

α
√
un

+
∑
d

α
√uξd(n)

]−1

, (3.33)

µwn = Σwn

[
ηn1 −

1
2 + α
√
un

∑
d

E[wδd(n) ] + α
∑
d

E[wξd(n) ]
√uξd(n)

]
. (3.34)

ξd(n) denotes the voxel whose neighbor in dimension d is the voxel n. Likewise, we get a
Gaussian distribution for the FDSP prior with parameters as follows:

Σwn =
[
2λ(ξn) + 2

∑
d

α

2

]−1

, (3.35)

µwn = Σwn

[
ηn1 −

1
2 + α

2
∑
d

(
E[wδd(n+2)] + E[wδd(n−2)]

)]
. (3.36)

We recall that for the FDSP prior δd(n+ i) represents the neighbor of index i of voxel n
in the dimension d.

Finally, we get also a normal distribution for the GP prior. The covariance ΣW is
written

[
B + Σ−1

GP

]−1
, where B = diag([2ξ1, . . . , 2ξN ]) is defined as above. Its size is

N ×N , which is much larger than the L× L GLSP covariance matrix. To be able to
handle such large matrices, we proposed in section 3.3.3 two optimization techniques
based on Kronecker products or periodic boundary conditions. Using one of these
methods, Σ−1

GP can be computed and stored efficiently. However, the computation of ΣW
adds a nonconstant perturbation to the main diagonal, which leads to the loss of the
BCCB structure or prevents a factorization in Kronecker products. We therefore propose
to use another bound for the GP prior, in order to be able to use the optimization
methods.

Böhning bound for the GP prior

The Böhning bound [Böhning, 1992] is a bound over the LogSumExp function lse(x) =
log(1 + ex) as follows: lse(x) ≤ ax2/2 − bx + c, where a = 1/4, b = aξ − g(ξ) and
c = aξ2/2− g(ξ)ξ + lse(ξ). ξ is again an additional variational parameter and g is the
gradient of the LogSumExp function. The Böhning bound is plotted with the JJ bound
in Fig. 3.4. The JJ bound is tighter than the Böhning bound [Murphy, 2012], but here
we are interested in the fact that the coefficient associated with the quadratic term is a
constant, whereas it depended on ξ for the JJ bound, which will allow the optimization
methods to be used. q(W) is then also a Gaussian distribution, but the parameters are
this time:

ΣW =
[1

4IN + Σ−1
GP

]−1
, (3.37)

µW = ΣW [η1 +B] , (3.38)

3.4 Model inference 29



where η1 = [ηn1, . . . , ηN1]T and B = [b1, . . . , bN ]T . Taking the inverse of a matrix
preserves the BCCB structure, as well as adding a constant value to the diagonal
[Kozintsev, 1999]. If periodic boundary conditions are assumed, ΣW is then also a
BCCB matrix. Only the eigenvalues are stored and computations are made in the
Fourier domain. If we use the second optimization method, we rely on the fact that
ΣGP = (⊗dQd) ∆

(⊗
dQ

T
d

)
, where ∆ is the diagonal matrix of eigenvalues. As the

perturbation of the diagonal is constant, it is possible to write ΣW = (⊗dQd) [1/4IN +
∆−1]−1

(⊗
dQ

T
d

)
. Again, only the eigenvalues are stored and matrix/vector products

involving ΣW, for instance Eq. 3.38, are computed efficiently following [Saatchi, 2011].

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

0.0

0.2

0.4

0.6

0.8

1.0 σ(x)

JJ bound
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Fig. 3.4: Visualization of the JJ and Böhning bounds with respect to the sigmoid function, for
ξ = 5. The JJ bound is tighter than the Böhning bound.

Update of prior parameters

The prior parameters are α for the TV, FDSP and GLSP priors and ω0 and ω1 for the
GP prior. Assuming q(α) to be a Dirac distribution, we apply Eq. 3.19 to q(α) and take
the derivatives which leads to the following update formula:

α = L

E[WTRW] for the GLSP prior, (3.39)

α−1 = 1
2N

N∑
n=1

∑D
d=1 E[(wn − wδd(n))2] + un

√
un

for the TV prior, (3.40)

α−1 = 1
2N

N∑
n=1

D∑
d=1

E
[
(wδd(n+1) − wδd(n−1))2

]
for the FDSP prior. (3.41)

We could use the same approach to optimize the parameters of the GP covariance
matrix. However in this case, it does not lead to closed-form solutions. Numerical
optimization was very unstable in practice, therefore we consider the parameters to be
fixed, as in the MRF and CRF cases.
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Update of the parameters of the local lower bounds

The tightness of the local bounds depends on additional parameters which can be
optimized following the same approach as for the prior parameters [Bishop, 2006].
The JJ bound and the Böhning bound introduced the parameters ξ, while the bound
over the square root function for the TV prior introduced the additional parameter
u. We get therefore ξ2

n = E[(ΦT
nW)2] for the GLSP prior, ξ2

n = E[w2
n] for the FDSP

and TV priors and ξ = E[W] for the GP prior, noting ξ = [ξ1, . . . , ξN ]T . Finally,
un = ∑

d E[(wn − wδd(n))2].

3.4.4 An incremental and sparse algorithm for the GLSP prior

In section 3.3.4, we established a connection between the GLSP prior and the Relevance
Vector Machine (RVM) framework. The RVM was introduced for regression or binary
classification and is an example of sparse Bayesian learning. The RVM also defines a
zero mean Gaussian prior over W with a diagonal covariance matrix. However, in this
case, each weight is associated with its own precision parameter αl, instead of sharing
the same α as in Eq. 3.15, for R = IL. In practice during inference, many of the αl
tend to infinity meaning that the associated basis functions are irrelevant and can be
removed from the model [Tipping, 2001]. Therefore adopting a diagonal instead of a
spherical covariance leads to a selection of the most relevant basis. However, initializing
with the full set of basis functions as proposed by the first RVM algorithm leads to a
high computational cost due to the matrix inversion steps.

After a careful analysis of the log marginal likelihood, Tipping and Faul suggested a
far more efficient algorithm [Tipping & Faul, 2003] which constructs the set of relevant
basis functions in an incremental manner. It is initialized with a small number of active
basis functions, and then adds or removes basis functions at each iteration, selecting
the action leading to the largest increase in log marginal likelihood. This strategy
enables keeping a reasonable number of relevant basis functions at all times, leading
to faster computations and sparser solutions [Tipping & Faul, 2003]. In [Sabuncu &
Van Leemput, 2012], the first greedy RVM algorithm was extended to the context of
image-based prediction and image classification. In this section, we generalize the more
efficient framework of Tipping and Faul to the domain of image segmentation, which
has, to the best of our knowledge, never been proposed before.

The level of regularization depends on some characteristics of the basis functions, such
as the spacing between their centers or their radii. In the variational approach presented
earlier, all basis functions are present in the model and no selection is performed, leaving
the decision to the user, for example guided by grid-search. The rationale behind the
sparse extension is thus to allow a better, automatic and data-driven, selection of the
relevant basis functions.

To this end, we no longer wish to maximize the data log likelihood (Eq. 3.16), but
the following log joint probability:

log p(I,W|α) = log p(I|W) + log p(W|α) ,
≥ L(q) + log p(W|α) ,

(3.42)
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where α = [α1, . . . , αL]T and the lower bound L(q) is now written:

L(q) =
∑
Z

∑
Γ

∫
θI

q(Z)q(Γ)q(θI) log p(I, Z,Γ, θI |W)
q(Z)q(Γ)q(θI)

dθI . (3.43)

Instead of relying on variational calculus, the weight posterior approximation q(W)
is computed using a Laplace approximation, corresponding to a second-order Taylor
expansion of the lower bound around the mode µW maximizing Eq. 3.42:

log q(W) = logL(q, µW) + log p(µW|α)− 1
2(W− µW)TΣ−1

W(W− µW) + cst . (3.44)

The mode µW and the Hessian matrix at the mode are found through a Gauss-Newton
optimization formulated as an iterative reweighted least squares (IRLS) algorithm. This
leads to the following expression for the covariance:

ΣW = [ΦBΦT + A]−1 , (3.45)

where B = diag([−g′′1(ΦT
1 W), . . . ,−g′′N (ΦT

NW)]) is a diagonal matrix, g′′n being the
second derivative of the function defined as gn(x) = ηn1 log σ(x) + (1− ηn1) log σ(−x).
Furthermore, A = diag(α).

The precision parameters α are updated by following a type-II maximum likelihood
approach, which corresponds to maximizing Eq. 3.43 after marginalization of the variable
weights, giving: L(α) =

∫
W L(q) + log p(W|α)dW. Introducing the matrix C = B−1 +

ΦTAΦ and t̂ = ΦTµW+B−1g′ where g′ = [g′1(ΦT
1 W), . . . , g′N (ΦT

NW)]T , we can compute
the derivative ∂L(α)

∂αl
in closed-form as a function of αl, of C−l computed with the already

selected basis and of t̂. We can use this relation to evaluate the gain in lower bound
associated with each basis function and select the one leading to the largest gain [Tipping
& Faul, 2003]. As for the RVM, three actions are then possible with respect to the
candidate: if the basis function is already in the model, it can be either removed or
its precision parameter re-estimated. If the basis function is not yet in the model, it is
added to the set of active basis functions. A more detailed derivation of the incremental
algorithm can be found in appendix A.4.

The resulting algorithm is efficient since it is constructive and causes a selection of a
small subset of basis functions from the initial user-defined dictionary.

3.5 Results

3.5.1 Implementation of the algorithm
The proposed segmentation algorithm can be used to segment a whole image and gather
voxels according to their appearance and localization. When the spatial smoothness
is induced by an MRF prior, it is then a simple extension of the neighborhood EM
algorithm introduced in [Ambroise et al., 1997], with mixtures of Gaussians instead of a
unique component to model the appearance of each region, and with a full variational
inference approach allowing posterior distributions over the intensity parameters to be
estimated.

Furthermore, we also consider the case where an initial prior probability is provided.
This corresponds to the situation for instance where the user knows where the structure
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to be segmented is located in space. The user provides a subset of marked voxels acting as
foreground seeds. The label prior for these voxels is fixed to 1. Elsewhere, it is initialized
to 0, except on a narrow band of width r defined by the user along the foreground region.
Here, the label prior goes from 1 for the voxels along the foreground to 0 for those along
the background region.

Algorithm 1: Bayesian image segmentation
Initialization:

- Initialize label prior p(Z)
- Initialize appearance parameters θI

while not converged do
E-Step: Compute q(Z) following Eq. 3.20
MI-Step: Update q(Γ) and q(θI) from Eq. 3.21 and 3.22 to 3.25
MP-Step:
if narrow band then
Update the narrow band from q(Z)

end
Update q(W), q(ξ) and prior hyperparameters

end

The label posterior q(Zn) is then trivial for the regions where p(Zn) ∈ {0, 1}. It only
needs to be computed for voxels on the narrow band during the E-step. Before updating
the posterior approximations for the regularization variables, a new narrow band NBnew
of width r is defined along the isoprobability surface 0.5 of the label posterior q(Z).
Spatial regularization is then performed only on the narrow band during the MP-step,
while the label prior for voxels outside of the narrow band remains unchanged. These
steps are summarized in Fig. 3.5.

Fig. 3.5: Update of the narrow band for the algorithm initialized with a user prior.

In this way, the foreground region will grow or shrink at each iteration until con-
vergence, reached when the narrow band stops evolving. This approach is similar to
the fast level set method proposed by [Adalsteinsson & Sethian, 1995], where only the
voxels close to the zero-level set are used for the computations. The sketch of the two
approaches (whole-image and narrow-band-based evolution) are summarized in Alg. 1.

Finally, the algorithm can also be used in a supervised way. The intensity pa-
rameters are given and the objective is to regularize the segmentation in space. The
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variational approach leads to an iterative estimate of the label posterior q(Z) and the
prior parameters.

3.5.2 Whole image vs narrow band evolution
In this section we provide a visual comparison between the whole-image approach and
the algorithm based on an evolving narrow band for two segmentation cases, focusing
either on a lung nodule or on a kidney. The first case was extracted from the LIDC
dataset [Armato III et al., 2011], which is a publicly available database of pulmonary
CT scans with lung nodule annotations. The kidney CT image was obtained from the
dataset of the QUBIQ challenge [Menze et al., 2020].

The two examples are presented in Fig 3.6 and Fig. 3.7, respectively. The first one
is regularized with a TV prior while the second is using a GLSP prior. The contour
provided by the user to initialize the narrow band algorithm is shown in the upper
right image for both cases. The whole-image approach is initialized using the K-means
algorithm.

Fig. 3.6: Comparison between the narrow band algorithm and the whole-image approach on an
image from the LIDC dataset. Both are fitted with a TV prior.

Results show that the narrow band algorithm is better suited for segmenting a
particular structure in the image. Indeed, if the appearance models of the two regions
are sufficiently different, the narrow band stops its evolution after reaching the structure
boundaries, thus producing a proper segmentation. On the contrary, the whole-image
approach produces a segmentation leaking outside of the object if the image contains
other regions with intensity patterns similar to the structure of interest. For instance, the
segmentation produced by the whole-image approach leaks outside the lung nodule on
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Fig. 3.6 and outside of the kidney on Fig. 3.7. Appearance models of the foreground and
background regions learnt by the narrow band algorithm for the kidney segmentation
are shown in Fig. 3.8.

Fig. 3.7: Comparison between the narrow band algorithm and the whole-image approach on an
image from the LIDC dataset. Both are fitted with a GLSP prior.

The lower bound J (q) can be computed for the whole-image approach and is used
as a stopping criterion. Details about the computation are given in appendix A.2. Its
evolution is shown on the two figures for both cases. As it cannot be computed with
the narrow band approach, the algorithm is stopped in this case when the narrow band
stops evolving.

3.5.3 Spatial priors comparison
In this section, we analyse the influence of the priors over the segmentation smoothness
and the effect of the prior hyperparameters. The comparison is performed on the kidney
CT scan from the QUBIQ dataset. A whole-image approach is used, with one mixture
component in each region.

Fig. 3.9 presents the results for the six spatial priors: the MRF, CRF, TV, FDSP,
GP (with two optimization strategies) and GLSP priors. Each column corresponds to
one parameter setting defined by the user. The 0.5 isoprobability contour of the label
prior is shown next to the one of the label posterior approximation, when possible.

We use a 4-connectivity neighborhood for the MRF and CRF priors in both parameter
settings, which differ with respect to the value of the parameter β. For β = 0.4, the
segmentation with a CRF prior exhibits smoother contours than the one obtained with
an MRF. The increase in β mainly has an impact on the MRF segmentation, with a
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(a) (b)

Fig. 3.8: Gaussian mixtures of the foreground (3.8a) and background regions (3.8b) of the
kidney segmentation by the narrow band algorithm.

stronger regularization then leading to smoother contours, comparable to those of the
CRF. The difference between the two priors is explained by the fact that the MRF is
purely based on connectivity and does not take contrast information into account.

The TV and FDSP priors lead to similar posterior maps. No parameter needs to
be set by the user, thus the second column is left blank. Unlike the MRF and CRF
priors, the hyperparameter α is adjusted automatically during the inference. Given the
influence that β has on the result’s smoothness, it is a great advantage here to be able
to learn the appropriate level of regularization from the data.

The next two rows are results with a GP prior but with two different optimization
approaches. The length scale ω1 is increased from 2 to 5 between the two columns leading
again to a stronger regularization. The hypothesis of periodic boundary conditions for
the Fourier optimization strategy has no impact here as the length-scale remains small in
comparison with the image size. The two strategies lead, therefore, to very similar results.
This may be different, however, for smaller images or larger length scales; in these cases
the exact approach based on Kronecker products is preferable. The lower bound is
tractable here (Fig. 3.10), making it possible to implement a grid search approach to set
the parameters.

Finally, the last row shows results with a GLSP prior. The matrix R is chosen to
be the identity IL. The two parameter settings correspond to two different spacings,
s, between the basis function centers and two different radii, r, larger values giving
smoother results. Though the hyperparameter α is tuned during the inference, the user
still needs to provide the dictionary of basis functions. One solution is to perform a grid
search as for the GP prior, or to use the incremental algorithm. A comparison between
the greedy and incremental approaches will be presented in section 3.5.5.

An attractive property of variational inference methods is the possibility to monitor
the convergence of the model by following the evolution of the lower bound. Moreover,
the lower bound can also be used to perform model selection by comparing the values
reached after convergence. However, this implies to be able to take all constant terms into
account, which is not possible for the TV, MRF and CRF priors due to the intractability
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Fig. 3.9: Visual comparison of the different spatial priors with two parameter settings. The
label posterior isoline q(Z) = 0.5 is shown in red, together with the label prior contour
p(Z) = 0.5 in yellow when possible.
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of their normalization factors. For the others, the constants are known and a comparison
can be made. Fig. 3.10 compares the values reached by the lower bound at convergence
for the FDSP, GP and GLSP priors. We can observe that the GLSP prior leads to higher
lower bound values than the GP prior. In section 3.3.4, we discussed how the two are
related. By defining basis functions, the GLSP is performing a subsampling of the image
grid, leading to a sparser model than the GP, which is working with a full covariance
matrix. The difference in lower bound could then be explained by the Ockham’s razor
principle, stating that the less complex models should be favoured.

Regarding the computation time, results are presented in Fig. 3.11. Convergence is
assumed when the increase in lower bound between 2 iterations falls below a defined
threshold. The GLSP is the most time-consuming prior and the inference time depends
heavily on the number of basis functions inside the model (2400 and 380 for the first and
second setting, respectively). The other priors have fast and comparable computational
times. For larger images, the GP prior optimized with the Fourier approach will be
faster than the one based on Kronecker products.
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Fig. 3.10: Lower bound values after convergence for several spatial priors and two parameters
settings.

3.5.4 Uncertainty quantification
Being able to assess the uncertainty of a segmentation is of particular interest, especially
for medical applications. With a generative model, one solution is to produce new
segmentation samples allowing the regions with higher variability to be identified.

The mean field variational inference learns a label posterior approximation that
factorizes over the pixels in the image: q(Z) = ∏

n q(Zn). The simplest approach
to generate new segmentation maps is to sample the Bernoulli distributions q(Zn)
independently for each pixel. MCMC approaches like Gibbs sampling produce more
accurate samples by taking into account the spatial interactions between pixels [Morris
et al., 1997]. However, these methods also have their limitations, because they require
a large number of iterations to be able to take into account long range correlations
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Fig. 3.11: Computation times for several spatial priors and two parameter settings.

[Stoehr, 2017]. On the other hand, a third solution exists for the GLSP and GP priors
as the posterior approximation does not factorize over the vector W. It allows new prior
samples to be generated that take into account the spatial correlations between pixels.
Posterior samples are then obtained by applying Bayes’ theorem.
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Fig. 3.12: Uncertainty quantification. (3.12b) Label prior contour. (3.12c). Label posterior
contour. (3.12a) Area distribution over 500 samples.

In this section, we compare the simplest sampling approach that assumes inde-
pendence between pixels with the Bayesian approach on an image extracted from the
LIDC dataset. The model is fitted with a GLSP prior. In order to focus on the effect
of the prior, the comparison is performed within a supervised framework with fixed
intensity parameters. The label prior and posterior contours are shown in Fig. 3.12a and
Fig. 3.12b, respectively. Four samples obtained by sampling the Bernoulli distributions
are shown in Fig. 3.13. The irregular contours and numerous isolated pixels show that
the independence hypothesis is a limitation. Conversely, first sampling q(W) and then
computing the posterior through Bayes’ rule leads to smoother and more plausible
samples as shown in Fig. 3.13.
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Fig. 3.13: Samples generated by sampling the Bernoulli distributions are less realistic than
those obtained after sampling the prior distribution.

3.5.5 GLSP incremental algorithm

Finally, we compare the greedy GLSP algorithm with the incremental one. All results
presented before with the GLSP prior were produced using only one basis function setting
at each time, i.e., only one spacing s and only one radius r. Yet, we demonstrated in
section 3.5.3 the influence of these parameters over the level of regularization. To find the
appropriate combination, one can perform a grid search and select the values maximizing
the lower bound at convergence. A more elegant approach is to use the incremental
algorithm introduced in section 3.4.4 which performs an automatic, data-driven, selection
of the basis functions maximizing the lower bound.

An image from the LIDC dataset is once again used to perform the comparison, and
we define two categories of basis functions differing in their spacing and radius values,
{s = 10 px, r = 20 px} or {s = 20 px, r = 50 px}, respectively. The basis functions are
spread over a regular grid in the image, leading to a total of 218 basis functions. The
image, with a visualization of the radii, is presented in Fig. 3.14.

Fig. 3.14: Visualization of the radii r of the basis functions used for comparison between the
incremental and the greedy GLSP algorithm.
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Label posterior 0.5 contours for both algorithms fitted on the whole image are shown
in Fig. 3.15. The first observation is that the two contours are very close. In the
greedy algorithm, all basis functions are active, meaning that L = 218 all the time. In
contrast, the incremental algorithm performs a selection, as can be seen in Fig. 3.15b.
At convergence, there are 58 relevant basis functions, i.e., 27% of the total dictionary.
We can see that basis functions with large radii are selected in wide areas of uniform
intensity contrast while smaller radii are preferred along the posterior boundaries.

q(Z)

s = 10 and r = 20

s = 20 and r = 50

(a)

q(Z)

s = 10 and r = 20

s = 20 and r = 50

(b)

Fig. 3.15: Comparison between the greedy (3.15a) and incremental (3.15b) algorithms using
the GLSP prior. The circles indicate the position of the centers of the active basis
functions after convergence.

Regarding the computation time, the greedy algorithm is faster than the incremental
one for this particular case. The main burden for the greedy algorithm is the inversion
of the covariance matrix defined in Eq. 3.31. Here, the total number of basis functions is
not too high, leading to a reasonable computation cost. On the contrary, several steps
in the IRLS procedure are required to approach the mode of the Laplace approximation,
penalizing the incremental algorithm.

Finally, we analyse the effect of changing the regularizer encoded in the matrix
R when using the greedy approach. Previously, we were penalizing the Euclidean
squared norm of the vector W by setting R = IL. Instead, we can choose to penalize
the magnitude of the derivatives of the prior label field ||Dif ||2, where D is a linear
differential operator.

Fig. 3.16: Prior label field obtained with several regularizers. The evolution of the field along
the dashed line is plotted in Fig. 3.17.
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Fig. 3.16 provides a visual comparison between the label prior fields f = ΦTW
obtained for i = 0, 1, 2 or 3, on an LIDC image. Again, we use a supervised setting to
focus on the regularization part. We can observe that we get smoother results with higher
derivatives. The field also takes larger absolute values which will push the prior p(Z)
closer to 0 or 1 after applying the sigmoid. The evolution of the field along the dashed
line is shown in Fig. 3.17. One can observe that penalizing the Euclidean squared norm
of the weights vector already provides good smoothing properties, similar to penalizing
the second derivatives.
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Fig. 3.17: Prior label field evolution along a row of the image for several regularizers.

Moreover, changing the regularizer does not affect the main boundaries in the image.
Instead, it mostly changes the slope of the transition between regions, which has in
practice little effect on the label posterior after applying the sigmoid and combining with
the intensity likelihood.

3.6 Conclusion

Image segmentation is a key pre-processing task in computer vision. A natural Bayesian
approach to image segmentation is to combine image-derived information with some
prior knowledge regarding the result. In this chapter, we focused on priors enforcing
spatial consistency, in order to be able to capture the spatial correlations that exist
intrinsically between pixels of an image. Four families of priors were reviewed, including
the classical MRF and a prior based on a GP formulation, which has, to the best of our
knowledge, never been proposed before.

We suggested a common inference scheme based on variational calculus and local
variational bounds allowing the prior formulation to be conveniently changed. The
framework can be used as a standalone segmentation method, either to perform spatial
clustering on a whole image or to segment a particular structure. For the latter case,
we introduced a method based on the evolution of a narrow band, starting from a user
input. The scheme can also be used in a supervised fashion, to regularize a segmentation
when the appearance models are given.
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We provided a visual comparison between the different priors and showed the influence
of their hyperparameters on the regularization level. Although the priors performed in
a similar way, three of them, the TV, FDSP and GLSP priors, have the advantage of
having their hyperparameter α being adjusted automatically by the model. The TV
prior does not have any parameter requiring to be fixed by the user. However, this is
explained by the fact that the size of the neighborhood taken into account at each pixel
location is fixed, by definition of the total variations. In contrast, for the FDSP prior
for example, it depends on the derivative order that the user chooses to consider. The
incremental version of the algorithm for the GLSP prior enables somehow to let some
parameters be chosen by the model and allows the regularization level to be adapted
locally, but it remains computationally slower than the greedy formulation.

If the user wants to enforce a high level of regularization in the segmentation, the
TV and FDSP priors are not the most suitable priors as they consider by definition a
small neighborhood around each pixel. To take into account longer-range correlation,
a solution for the FDSP is to penalize higher derivatives. For the other priors, such
correlation can be achieved by simply increasing the neighborhood radius of the MRF or
CRF priors, the length scale of the GP or the set spacing/radius for the GLSP.

Proper quantification of the segmentation uncertainty is enabled by the generative
nature of the model. In particular, the GLSP and GP priors allow efficient sampling
of the label posterior without resorting to slower MCMC approaches while taking into
account the spatial correlations between pixels.

The main characteristics of each prior are summarized in Tab. 3.1.

Tab. 3.1: Comparison summary of the six spatial priors.

MRF CRF TV FDSP GP GLSP
Computation time ++ ++ ++ ++ + +++

# of user-fixed parameters 2 3 0 1 2 2
Tractable lower bound 7 7 7 3 3 3

Regularization power +++ ++ + ++ +++ +++
Non-diagonal covariance matrix 7 7 7 7 3 3

Locally adaptive regularization 7 7 7 7 7 3

Only binary segmentation problems were considered in this chapter, but working
with several classes may be interesting for a whole-image approach. The extension to the
multi-class setting is straightforward, and involves replacing the sigmoid link function
by the softmax function and using the Böhning bound in all cases. In addition, the
problem of choosing the right number of classes can be addressed with a Dirichlet process
which allows the appropriate number of clusters to be automatically selected [Orbanz &
Buhmann, 2008].

Furthermore, one must note that the list of spatial priors detailed in this chapter is
not exhaustive. Other formulations exist, for instance based on wavelet decomposition
[Figueiredo, 2005a].

Finally, an interesting future perspective would be to consider nonstationary co-
variance functions for the GP prior. The GLSP incremental algorithm already allows
the level of regularization to be adapted depending on the location in the image, by
placing basis functions with large scales in uniform areas and smaller scales close to the
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transitions. Allowing the GP prior to be locally adaptive while preserving the scalability
is an open challenge for future work.
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Chapter 4
Unsupervised quality control of
segmentations based on a smoothness
and intensity probabilistic model
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Monitoring the quality of image segmentation is key to many clinical applications.
This quality assessment can be carried out by a human expert when the number of cases is
limited. However, it becomes onerous when dealing with large image databases, so partial
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automation of this process is preferable. Previous works have proposed both supervised
and unsupervised methods for the automated control of image segmentations. The former
assume the availability of a subset of trusted segmented images on which supervised
learning is performed, while the latter does not. In this chapter, we introduce a novel
unsupervised approach for quality assessment of segmented images based on a generic
probabilistic model. Quality estimates are produced by comparing each segmentation
with the output of a probabilistic segmentation model that relies on intensity and
smoothness assumptions. Ranking cases with respect to these two assumptions allows
the most challenging cases in a dataset to be detected. Furthermore, unlike prior
work, our approach enables possible segmentation errors to be localized within an
image. The proposed generic probabilistic segmentation method combines intensity
mixture distributions with spatial regularization prior models whose parameters are
estimated with variational Bayesian techniques. We introduce a novel smoothness prior
based on the penalization of the derivatives of label maps which allows an automatic
estimation of its hyperparameter in a fully data-driven way. Extensive evaluation of
quality control on medical and COCO datasets is conducted, showing the ability to isolate
atypical segmentations automatically and to predict, in some cases, the performance of
segmentation algorithms.

This chapter corresponds to the following publications:

• [Audelan & Delingette, 2021] B. Audelan and H. Delingette. Unsupervised quality
control of segmentations based on a smoothness and intensity probabilistic model.
In Medical Image Analysis, 68, 2021, p. 101895.

• [Audelan & Delingette, 2019] B. Audelan and H. Delingette. Unsupervised
Quality Control of Image Segmentation Based on Bayesian Learning. In Medical
Image Computing and Computer Assisted Intervention – MICCAI 2019, pp. 21–29.

4.1 Introduction

Semantic segmentation of an image is the process of associating a label to every pixel
in an image. This task is particularly important in a medical context since it impacts
downstream algorithms using image segmentations as input, but also the decisions that
clinicians may make about the patient. For instance, in radiotherapy planning, the
delineations of tumor lesions directly influence the extent of the dose delivered around
the tumor. Also, obtaining reliable image segmentations is mandatory to use image
derived biomarkers in a clinical setting [Keshavan et al., 2018]. Finally, the development
of supervised learning for image segmentation requires the accumulation of potentially
large sets of manually or semi-manually segmented image databases that need to be
quality controlled. Such segmentations are prone to inter-rater variability [Visser et
al., 2019] in addition to plain errors. It is therefore of great importance to automatically
detect possible failed segmentation cases, whether those segmentations are generated
by an algorithm or a human rater. The challenge is to perform this monitoring in the
absence of ground truth segmentations.

In prior work, evaluation methods can be categorized either as supervised or as
unsupervised, depending on whether a reference segmentation is required or not [Zhang
et al., 2008]. A first set of supervised methods is based on a classifier which accepts
or rejects the proposed segmentation based on combined features. For instance, in
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[Hui Zhang et al., 2006], decision trees based on handcrafted features depending on the
image (texture, color space...) and on the geometry of the segmented region (perimeter,
compactness...) are combined in a single classifier.

In [Shamir & Bomzon, 2019], a decision tree predicts the Dice score of head segmen-
tations with an application to the treatment of brain tumors. In [Xu et al., 2009], a
framework to detect failures in cardiac segmentation based on a shape parameter and
an intensity feature has been proposed. The number of features taken into account
is increased in [Kohlberger et al., 2012], where the model decision relies on 42 shape
and appearance features. They are combined in an SVM classifier regressing the Dice
coefficient between the given segmentation and the unknown ground truth. While in [Xu
et al., 2009] the features were specific to cardiac segmentation, the approach taken in
[Kohlberger et al., 2012] is more generic and was trained on segmentations of 8 different
organs.

Reverse Classification Accuracy (RCA) has also been proposed for quality control
assessment in [Valindria et al., 2017]. Assuming the availability of a set of trusted
images with ground truth, the proposed segmentation on a new image is compared
to the predicted one based on those reference images, which can result in rejection if
discrepancies are too large. This approach was tested on larger databases in [Robinson
et al., 2019] where the authors showed the ability of the method to highlight poor quality
segmentations but pointed out the relatively long computation times as a bottleneck.

Another family of supervised approaches uses deep learning to estimate the quality
of a segmentation. For instance, in [Robinson et al., 2018], a neural network is trained to
predict the Dice coefficient of cardiac segmentations. The Jaccard index (intersection over
union) is predicted by neural networks in [Arbelle et al., 2019; Huang et al., 2016; Shi et
al., 2017] where the original image and the proposed segmentation mask are provided as
input. Some authors have proposed exploiting the uncertainty of segmentations in order
to assess their quality, within a deep learning framework. Uncertainty quantification also
adds some interpretability to the quality assessment as it provides information about
the location of possible errors. Bayesian QuickNat proposed by [Roy et al., 2019] uses
Monte Carlo dropout at test time to generate several segmentation samples. The average
over the samples gives the final segmentation map while variability across the different
samples gives an estimate of the uncertainty of the segmentation. The authors show a
good correlation between the measured uncertainty and the Dice coefficient between the
segmentation and the unknown ground truth. Other methods to evaluate the uncertainty
were explored in [Jungo & Reyes, 2019] and the results suggest that none is superior to
the others. Finally in [DeVries & Taylor, 2018], a first network outputs a segmentation
map and an uncertainty map at the pixel level, which are then taken as inputs by a
second network which regresses a quality score at the image level.

A limitation shared by these methods is their supervised design, meaning that they
require the extraction of a subset of segmented data that is considered to be “ground
truth”. This trusted subset is used by the models to learn how a “good” segmentation
looks. The resulting decision rules making a new segmentation acceptable or not may thus
be biased by the composition of the trusted set, which must be large enough for training
a deep-learning-based framework. Further, access to large annotated datasets remains an
issue in many domains including medical imaging. Finally, supervised methods often lack
generality as their performance depends on the type of images and segmented structures
in the training set.
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In contrast, unsupervised approaches do not rely on a subset of trusted images
but rather on assumptions about the appearance and shape of the foreground and
background regions [Rosenberger et al., 2006; Zhang et al., 2008]. These assumptions
are then translated into a set of segmentation metrics. For instance, common hypothesis
is that a “good” segmentation exhibits high levels of intra-region homogeneity and
inter-region heterogeneity [Johnson & Xie, 2011], and several handcrafted features have
been proposed to measure them [Chabrier et al., 2006; Gao et al., 2017; Johnson &
Xie, 2011; Zhang et al., 2008]. The main limitation of these approaches is that it is
difficult to design discriminative indices and to find a proper way to combine them.
Moreover, as mentioned by [Zhang et al., 2008], most of those metrics assume a single
underlying intensity distribution, typically Gaussian, in both foreground and background
regions which is overly simplistic and sensitive to outliers.

Last but not least, interpretability is a desirable property, as knowing the problematic
regions could facilitate the segmentation curation. However, it is often an issue since
many of the previous methods, supervised or not, are black boxes outputting a simple
score, which does not help to understand why a segmentation has failed.

In this chapter, we propose a novel unsupervised approach for automated quality
assessment of image segmentations. It is based on the comparison between a proposed
segmentation S produced by an algorithm or a human rater and the segmentationM given
by a generic probabilistic segmentation model. The generic model is based on two simple
intensity and smoothness assumptions, the underlying hypothesis being that explainable
segmentations correspond to clearly visible boundaries in the image well captured by M .
On the contrary, segmentations far from M are categorized as difficult or challenging
as they would require priors other than intensity and smoothness to be explained. The
quality assessment of a set of segmented images is then performed by studying how
the distance between the proposed segmentation S and the modelled segmentation M
varies within the dataset. Segmentations that are lying on the tails of this distance
distribution are considered to be atypical and are candidates for manual verification. We
show the effectiveness of this approach to extract suspicious segmentations on various
public datasets ranging from photographic images for object detection and segmentation
(COCO dataset) to lung and brain medical images (LIDC and BRATS datasets). We
also show that this approach can be used in some cases to predict the performance of
segmentation algorithms.

Our main contributions are twofold:

• Instead of relying on an arbitrary subset of selected segmentations as a training set,
we propose an unsupervised approach based on intensity and smoothness hypotheses
without any prior knowledge of the structure to be segmented. It removes the
bias related to the selection of the reference images and allows the quality of
segmentations to be assessed when few or even no other segmentations are available
from a database. Our method differs from previous unsupervised segmentation
quality indices with a more complex and robust approach to modeling the intensity
of the different regions in the image. In addition, it allows a combination of the key
factors defining a “good” segmentation (i.e., the intra-region homogeneity and the
inter-region heterogeneity) in a data-driven way. Last but not least, our method
is visually interpretable. For instance, when dealing with 3D medical images, it
allows automatic retrieval of the slices with suspicious segmentations. Finally, the
result can be useful to guide the manual correction of poorly segmented cases.
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• We provide different spatial regularization strategies to enforce the spatial continuity.
In particular, we introduce a novel prior, denoted by FDSP (Finite Difference
Spatial Prior), based on the penalization of the squared norm of the derivatives of
the prior label map, which allows an adaptative learning of the hyperparameter.
It is compared to the classical Markov random field (MRF) and another spatial
prior based on a weighted combination of spatially smooth kernels introduced in
an earlier work of the authors [Audelan & Delingette, 2019], which will be denoted
by GLSP (Generalized Linear Spatial Prior) throughout the chapter.

This chapter expands [Audelan & Delingette, 2019] by proposing a different spatial
regularization strategy for which the hyperparameter can be estimated. In addition,
the novel regularization prior can be entirely inferred with a variational Bayes method
(no Laplace approximation needed) and leads to much faster computations. We also
provide more extensive experiments on different datasets and added a qualitative and
quantitative comparison with unsupervised segmentation quality control indices proposed
in prior works. The code with the different regularization strategies is available in this
repository: https://gitlab.inria.fr/epione/unsegqc.

The rest of the chapter is organized as follows. Section 4.2 presents the general
framework of our unsupervised quality control assessment. In section 4.3, we present
our appearance model and the spatial priors. Section 4.4 describes the model inference
depending on the regularization. Finally, we show in section 4.5 the relevance of our
approach for segmentation quality control on several datasets.

4.2 Unsupervised quality control workflow

Fig. 4.1: Unsupervised segmentation quality control workflow.

Supervised segmentation quality control methods require the existence of a trusted
subset of data from which quality assessment is learned. Instead, we follow an unsu-
pervised approach (see Fig. 4.1) based on a probabilistic segmentation model relying
only on two simple smoothness and intensity assumptions. Its great advantage is that
it is agnostic with respect to the structure to be segmented and therefore can be run
automatically even in the absence of ground truth.

4.2.1 Input segmentation
The input of the proposed method is a binary segmentation S on an image I into
foreground and background regions for which we would like a quality estimate. There
are no restrictions regarding the origin of S as it can have been created by an algorithm
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or a human rater. Note that this is in contrast to several other methods that require the
input segmentation to have been generated by a specific algorithm, like the uncertainty-
based methods in deep learning [DeVries & Taylor, 2018; Jungo & Reyes, 2019; Roy et
al., 2019].

4.2.2 Probabilistic model
Given the segmentation S, we produce a smooth contour or surface M close to S which
is mostly aligned with visible contours in the image. We stress that the objective is not
to build a surrogate ground truth, but instead to use M only as a comparison tool.

Intensity assumption. The first hypothesis of our approach is that intensity dis-
tribution variations in the image can help to understand segmentations. Given the
segmentation S, two intensity models are built for the foreground and background
regions.

Spatial smoothness assumption. The second hypothesis relies on the generally
accepted assumption that two neighbouring voxels share a higher probability of belonging
to the same label region. This is classically enforced by the use of discrete priors such as
MRF. In [Audelan & Delingette, 2019], we proposed a regularization strategy based on
a combination of spatially smooth kernels (GLSP). In addition to these two possibilities,
we introduce in this chapter a novel way to take into account the spatial organization
of the voxels, which we call the Finite Difference Spatial Prior (FDSP). This approach
allows full tractability of the hyperparameter in an efficient manner which is not possible
for the MRF and GLSP formulations.

The two assumptions are combined into a probabilistic model that outputs a new
segmentation map M . By construction, M is typically a smooth contour which is mostly
aligned with the visible intensity boundaries in the image. Again, M should only be
seen as a representation used to benchmark the input segmentation S.

To measure the adequacy of S with respect to M , we employ the average asymmetric
surface error (ASE) defined as ES = d(S,M) = 1

∂S

∑
x∈∂S miny∈∂M d(x, y) where ∂

denotes the segmentation surface. We discard the metric d(M,S) as being uninformative
since M is not a surrogate ground truth. An alternative measure to the ASE used in
this chapter is the Dice score computed between the segmentations M and S.

4.2.3 Detection of challenging cases
Segmentations S close to M are identified as being explained by the model. In that
case, the two intensity and spatial smoothness assumptions upon which the probabilistic
model is based are sufficient to understand the contours. However, segmentations S
far from M are classified as unexplained or challenging. Typically, contours crossing
large regions of uniform intensity distribution would be identified as unexplained by
our model. It is important to note that having an unexplained segmentation does not
imply that this segmentation is wrong. It simply means that other priors besides those
of smoothness and intensity are required to understand its boundaries.
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4.2.4 Use case
We believe our approach is particularly interesting when dealing with a whole set of
segmentations. For instance, say we are given a set of images with corresponding
annotations. The comparison of adequacies between S and M for all images allows the
detection of atypical cases which behave differently from the majority of the distribution,
and for which a visual inspection might be worthy. On the contrary, applying the method
on a single image is not the ideal use case as the analysis of the result is difficult without
any comparison with similar images.

Our approach is unsupervised, generic, and based on few simple assumptions. However
this comes with intrinsic limitations. For instance, any irrelevant contour following visible
intensity boundaries will not be considered as suspicious. This limitation is common to
all previously proposed unsupervised methods. More generally, the proposed method is
not intended to return all erroneous segmentations inside a dataset (which is expected
from a supervised approach) but instead to extract some suspicious cases when limited
information is available.

4.3 Method

In this section, we review the details of our probabilistic model. We consider a binary
image segmentation problem for isolating a single structure from an image I made of N
voxels in a grid of dimension D (D = 2, 3) having intensity In ∈ Rv, n = 1, . . . , N , where
v ≥ 1 (v = 1, 3 and 4 in practice). We introduce for each voxel a binary hidden random
variable Zn ∈ {0, 1} with Zn = 1 if voxel n belongs to the structure of interest.

4.3.1 Mixtures of multivariate Student’s t-distributions
Appearance models of the foreground and background regions of S are defined respec-
tively by the two image likelihoods p(In|Zn = 1, θ1

I ) and p(In|Zn = 0, θ0
I ) where θ0

I , θ
1
I

are parameters governing those models. In this chapter, we consider generic parametric
appearance models as variational mixtures of multivariate Student’s t-distributions [Ar-
chambeau & Verleysen, 2007]. The Student’s t generalizes the Gaussian distribution
with heavy tails and leads to robust mean and covariance estimates. The number of
components in the mixture is automatically estimated by using a sparsity-inducing
Dirichlet prior over the mixture proportions which automatically prunes the components
with a small number of samples. Finally, we introduce the appearance probability ratio
rn defined as:

rn(I, θ0
I , θ

1
I ) ,

p(In|Zn = 1, θ1
I )

p(In|Zn = 0, θ0
I ) + p(In|Zn = 1, θ1

I )
, (4.1)

which is the posterior label probability with a non-informative prior (p(Zn = 1) = 0.5).

4.3.2 Spatial smoothness prior
The spatial smoothness prior allows the spatial organization between voxels to be taken
into account and a certain degree of continuity to be enforced. To this end, different
strategies can be employed. In this chapter, we propose to compare one discrete prior
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(MRF) with two continuous priors (GLSP and FDSP), the third one being novel to the
best of our knowledge.

MRF prior

The classical MRF formulation relies on labels of neighbouring voxels. In a binary
segmentation problem, a natural way to enforce spatial smoothness is the Ising model.
Assuming β to be the hyperparameter of the MRF, the label prior probability is given
by:

p(Z|β) = 1
T (β) exp

β2
N∑
i=1

∑
j∈δi

ZiZj

 , (4.2)

where δi are the neighbouring voxels of i and T (β) is the partition function. In practice,
we consider 4- and 6-connectivity neighborhoods for 2D and 3D images, respectively.
The value of β represents the strength of association between neighbouring voxels: β = 0
corresponds to a model with no spatial prior, while large positive values encourage
neighbouring voxels to have the same label. The Ising model may be replaced by an
image contrast sensitive prior as performed for instance in the GrabCut algorithm [Rother
et al., 2004].

The computation of the partition function T (β), needed for an automatic estimation
of the model’s hyperparameter β, requires considering all possible configurations of the
MRF which is not computationally tractable for large lattices. Therefore, β has to be
fixed by the user.

Generalized Linear Spatial Prior

In [Audelan & Delingette, 2019], we proposed a continuous label prior denoted by
Generalized Linear Spatial Prior (GLSP) to enforce the spatial continuity. The prior is
defined through a generalized linear model of spatially smooth functions. More precisely,
the prior probability p(Zn = 1) is defined as a Bernoulli distribution whose parameter is
a spatially random function specified as a generalized linear model:

p(Zn = 1|W) = σ

(
L∑
l=1

Φl(xn)wl
)
, (4.3)

where xn ∈ RD is the voxel position in an image of dimension D and the link function
σ(u) is the sigmoid function σ(f) = 1/(1 + exp(−f)).

The basis {Φl(x)} are L functions of space, typically radial basis functions (for
instance, Gaussian functions) defined on a regular grid, and wl ∈ W are weights
considered as random variables. Thus the prior probabilities of two geometrically
close voxels are related to each other through the smoothness of the function f(xn) =∑L
l=1 Φl(xn)wl = ΦT

nW, writing ΦT
n = [Φ1(xn), · · · ,ΦL(xn)].

The smoothness of the label prior σ (f(xn)) depends on the choice of the L basis
functions {Φl(x)} which are commonly uniformly spread over the image domain. The
key parameters are the spacing between the basis centers, the standard deviations (or
radii) r of the Gaussian functions and the position of the origin basis. Together, they
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influence the amount of smoothing brought by the label prior, large spacing and standard
deviations leading to smoother prior probability maps.

To obtain a robust description, the weight vector W = [w1, . . . , wL]T is fitted
with a zero mean Gaussian prior parameterized by the diagonal precision matrix αIL:
p(W) = N (0, α−1IL). Finally, a non-informative prior is chosen for α, p(α) ∝ 1. In
contrast to the MRF formulation, a Bayesian inference of the hyperparameter is possible
here, as shown in section 4.4.2.

Finite Difference Spatial Prior

As a third regularization strategy, we introduce in this chapter the Finite Difference
Spatial Prior (FDSP). The prior probability p(Zn = 1) is again defined as a Bernoulli
distribution whose parameter belongs to a spatially smooth random field:

p(Zn = 1|W) = σ (wn) , (4.4)

where σ(u) is once more the sigmoid function. The smoothness of the label field is caused
by a prior applied to the vector W = [w1, . . . , wn]T penalizing the squared norm of its
derivatives of order p:

p(W|α) = 1
T (α) exp

(
−α

N∑
n=1
‖∆p(wn)‖2

)
, (4.5)

where ∆p(wn) is the p order central finite difference operator at wn and T (α) is the
normalization factor. The quantity ∆p(wn) is a tensor of order p approximating the
p-order derivatives of the scalar field defined by wn. Since the function h(x) = ‖∆p(x)‖2
is 2-homogenous, we know that the normalization factor has the form T (α) = cα−N/2

where c is constant independent of α [Pereyra et al., 2015]. One can easily show that
p(W|α) is a zero mean Gaussian distribution whose precision matrix consists of difference
operators. The value of the parameter α controls the amount of the spatial regularization
applied to the weights W.

In this chapter, we consider only first order derivatives (p = 1) corresponding to the
discretization of the Dirichlet energy. In that case Eq. 4.5 is written:

p(W|α) = cα
N
2 exp

(
−α4

N∑
n=1

D∑
d=1

(wδd(n+1) − wδd(n−1))2
)
, (4.6)

where δd(n+ i) represents the neighbor of index i of voxel n in the dimension d.
The graphical models of the different segmentation frameworks are shown in

Fig. 4.2.

4.3.3 Implementation
The algorithm scheme is similar regardless of the spatial prior (Fig. 4.3). The first
remark is that it is of little interest to work with the whole image and computationally
inefficient. The analysis is thus restricted inside a narrow band of width typically between
10 and 30 voxels defined around the boundaries of the foreground region of the input
segmentation S.
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Fig. 4.2: Graphical model of the framework with a discrete MRF prior (4.2a), a GLSP prior
(4.2b) or a FDSP prior (4.2c).
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Fig. 4.3: Quality control workflow on a glioblastoma segmentation from the BRATS 2017
dataset with FDSP regularization. (4.3a) Original image. (4.3b) Input segmentation
S. (4.3c) Narrow band along the ground truth boundary with foreground (in red) and
background (in blue) regions. (4.3d) Appearance ratio, label spatial prior and label
posterior. (4.3e) Evolution of the lower bound J (q).
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The method starts with the estimation of the appearance probability ratio rn for
each voxel n. Two variational mixture models of Student’s t-distributions are fitted, one
for the foreground region of S and the other for the background.

Once the rn are known, the second step is to compute the posterior P (Zn|In)
which involves solving an inference problem depending on the choice of spatial prior.
After convergence of the probabilistic model, a new segmentation M is generated by
thresholding the posterior p(Zn|In) at the level 0.5.

4.4 Probabilistic inference

4.4.1 MRF regularization

A classical way to maximize the log likelihood log p(I) with an MRF prior is to use
variational inference with a mean field approximation [Ambroise & Govaert, 1998; Roche
et al., 2011]. The label posterior distribution q(Z) is assumed to factorize as ∏i qi(Zi),
which leads to the following fixed-point equation for voxel i at iteration m+ 1:

qm+1
ip =

ri exp{β∑j∈δi q
m
jp}∑1

k=0 r
k
i (1− ri)1−k exp{β∑j∈δi q

m
jk}

, (4.7)

where p ∈ {0, 1}, qik represents qi(Zi = k), ri is the appearance probability ratio for
voxel i and β is fixed by the user.

4.4.2 GLSP regularization

A type-II maximum likelihood approach is used to estimate the model parameters. A
Gaussian approximation for the weights posterior distribution is found by computing a
Laplace approximation through iterative reweighted least squares. The parameter α is
then updated by maximizing the marginal likelihood. We refer to the original paper for
more details [Audelan & Delingette, 2019].

4.4.3 FDSP regularization

We propose a variational inference scheme to estimate prior and hyperprior parameters
U = {Z,W, α}. Variational inference approximates the true posterior p(U |I) by a
chosen family of distributions q(U). Maximizing the data log likelihood log p(I) implies
minimizing the Kullbach-Leibler divergence between q(U) and p(U |I) or equivalently
maximizing the lower bound L(q):

log p(I) =
∫
U
q(U) log p(I, U)

q(U) dU︸ ︷︷ ︸
L(q)

+ KL [q(U)||p(U |I)] . (4.8)
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We assume that the approximation of the posterior can be factorized as q(U) =
qZ(Z)qW(W)qα(α). The lower bound can thus be re-written as:

log p(I) > L(q) =
∑
Z

∫
α

∫
W
qZ(Z)qW(W)qα(α)

log p(I|Z)p(Z|W)p(W|α)
qZ(Z)qW(W)qα(α) dWdα .

(4.9)

We can further expand the factors defining the joint probability: p(I|Z) = ∏
n r

Zn
n (1−

rn)1−Zn . The spatial prior p(Zn|W) can be likewise written as [σ(wn)]Zn [σ(−wn)]1−Zn
and the weights prior p(W|α) is given by (4.6) for first order derivatives.

However, the right hand side of (4.9) is intractable because the spatial prior
does not belong to the exponential family (due to the sigmoid function). As an
alternative to the Laplace approximation, we use a local variational bound as in-
troduced in [Jaakkola & Jordan, 2000] in the context of logistic regression. In
this case, we replace the sigmoid function with a well-chosen lower bound: σ(x) >
g(x, ξ) = σ(ξ) exp

[
(x− ξ)/2− λ(ξ)(x2 − ξ2)

]
. ξ is a variational parameter and

λ(ξ) = tanh(ξ/2)/(4ξ). The spatial prior p(Z|W) can thus be approximated by
F (Z,W, ξ) = ∏

n [g(wn, ξn)]Zn [g(−wn, ξn)]1−Zn . This approximation leads to a new
lower bound J (q) on the lower bound L(q):

log p(I) > L(q) > J (q) =
∑
Z

∫
α

∫
W
qZ(Z)qW(W)qα(α)

log p(I|Z)F (Z,W, ξ)p(W|α)
qZ(Z)qW(W)qα(α) dWdα .

(4.10)

This new lower bound J (q) is now tractable and the optima q∗ for each of the
variational posteriors can be derived by variational calculus (See appendix B.2 for
details of the derivations). q∗Z(Z) is therefore given by q∗Z(Z) = ∏

n η
Zn
n1 η

1−Zn
n0 with

ηnk = ρnk/
∑
k ρnk for k ∈ {0, 1} and:

ρnk = rkn(1− rn)1−kσ(ξn) exp
[
(−1)1−kE[wn]

2

−ξn2 − λ(ξn)(E[w2
n]− ξ2

n)
]
.

(4.11)

By further assuming that qW(W) = ∏
n qwn(wn), the variational optimization for

qwn(wn) yields a normal distribution of the form q∗wn(wn) = N (µwn ,Σwn). A fixed-point
equation is found for updating the mean. For first order derivatives, we have:

Σwn =
[
2λ(ξn) + 2

∑
d

α

2

]−1

, (4.12)

µwn = Σwn

[
ηn1 −

1
2 + α

2
∑
d

(
µwδd(n+2) + µwδd(n−2)

)]
. (4.13)
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The variational posterior qα(α) is assumed to be a Dirac distribution which leads to the
following update:

α−1 = 1
2N

∑
n

D∑
d=1

E
[
(wδd(n+1) − wδd(n−1))2

]
. (4.14)

Finally, following [Bishop, 2006], maximizing (4.10) with respect to ξn gives an
update formula of the form:

ξ2
n = E[w2

n] . (4.15)

To compute (4.11), (4.14) and (4.15), we need the expectations E[wn],
E
[
(wδd(n+1) − wδd(n−1))2

]
and E[w2

n] with respect to the variational distribution qwn .
They can be easily evaluated to give E[wn] = µwn , E[w2

n] = Σwn + µ2
wn and

E
[
(wδd(n+1) − wδd(n−1))2

]
= µ2

wδd(n+1)
+ µ2

wδd(n−1)
− 2µwδd(n+1)µwδd(n−1) + Σwδd(n+1) +

Σwδd(n−1) .
After convergence, the variational distribution qZ(Z) gives an approximation to

the posterior label probability p(Zn = 1|I,W), which combines prior and intensity
likelihoods. Finally, the maximum a posteriori estimate of the segmented structure is
obtained as the isosurface p(Zn = 1|I,W) = 0.5.

This approach has some advantages in comparison with the first two. First, it allows
an automatic estimation of all its parameters. For the MRF, the user needs to fix β
and for the GLSP, the layout of the basis functions and their radii are also user-defined.
Moreover, a lower bound (Fig. 4.3e) on the marginal likelihood can be computed in
this case, which can be used to monitor the convergence and is helpful to compare
segmentation results. The computation of the lower bound is given in appendix B.3.

4.5 Results

4.5.1 Datasets
The proposed method was evaluated on four publicly available datasets: the BRATS
2017 training and validation datasets [Menze et al., 2015], the LIDC dataset [Armato III
et al., 2011], the training data from the MSSEG challenge [Commowick et al., 2018] and
finally the COCO 2017 validation dataset [Lin et al., 2014].

The BRATS 2017 datasets consist of multisequence preoperative MR images of
patients diagnosed with malignant brain tumors. It includes 285 patients for the training
dataset and 46 for the validation set. Four MR sequences are available for each patient:
T1-weighted, post-contrast (gadolinium) T1-weighted, T2-weighted and FLAIR. All
the images have been pre-processed: skull-stripped, registered to the same anatomical
template and re-sampled to 1 mm3 resolution. Ground truth segmentations of the brain
tumors are provided only for the training set.

The LIDC dataset comprises 1018 pulmonary CT scans with 0.6 mm to 5.0 mm
slice thickness. The in-plane pixel size ranges from 0.461 mm to 0.977 mm. Each scan
was reviewed by 4 radiologists who annotated lesions of sizes ranging from 3 mm to
30 mm. Annotations include localization and manual delineations of the nodules. Up
to 4 segmentations can be available for the same nodule, depending on the number of
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radiologists who considered the lesion to be a nodule. In this chapter, all scans were
first re-sampled to 1 mm3 resolution as pre-processing step, and we restrict the analysis
to nodules of diameter above 20 mm, i.e. 309 segmentations.

The MSSEG training dataset contains MR data from 15 multiple sclerosis (MS)
patients. Manual delineations of lesions were performed on the FLAIR sequence by seven
experts.

Finally, COCO is a large-scale object detection and segmentation dataset of real
world images. The 2017 validation set contains 5000 images with 80 object categories,
ground truth object classification, object localization and segmentation. To annotate
such a large number of images, the authors resorted to a crowd-sourcing annotation
pipeline.

4.5.2 Unsupervised indices
As discussed in section 4.1, different indices have been proposed in prior works for
unsupervised segmentation evaluation. We selected 4 of them in order to provide
a qualitative and quantitative comparison with our approach. They all involve the
computation of 2 metrics, the former measuring the intra-region uniformity while the
latter gives an estimate of the inter-region disparity.

Three out of the four indices are taken from [Zhang et al., 2008]: Zeb, η and FRC.
The last one was introduced in [Johnson & Xie, 2011] and is denoted by GS in this
chapter. Formula are given in appendix B.1.

4.5.3 Setting hyperparameters
Width of the narrow band

As noted in section 4.3.3, the analysis is restricted to a narrow band alongside the
input segmentation’s contour. The width of this narrow band controls the extent of the
region taken into account for learning the appearance models for both background and
foreground and fitting the regularization model.

We assessed the sensitivity of the results to this hyperparameter on the BRATS
training set and LIDC dataset. We applied the algorithm for several narrow band widths
using FDSP as a spatial prior. Different ASE values were obtained for each segmentation
depending on the narrow band setting. We then analysed the stability of the sets made
by the 40 segmentations with the largest ASE values by computing pairwise intersection
over union (IoU) coefficients. A value of 1.0 indicates that the 40 images are the same
for a pair of narrow band widths. The outcome is shown in Fig. 4.4.

While the sets from the BRATS training set are rather stable, those from the LIDC
dataset show some variability. An explanation of the sensitivity of LIDC segmentations
to the narrow band width can be found in Fig. 4.5. If the narrow band is too wide, the
high intensity differences between the pleura and the lung parenchyma lead appearance
models of nodules close to the pleura to leak outside the lung.

In brief, the sensitivity of the algorithm with respect to the narrow band’s width varies
from case to case. As the computation time is not a bottleneck for FDSP regularization,
we propose in practice to perform the analysis with different width settings and then
choose the one leading to the most stable and reasonable results.
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Fig. 4.4: Sensitivity analysis of the narrow band width for the BRATS and LIDC datasets
with our approach using FDSP as a spatial prior (first row) or with the unsupervised
indicator GS (second row). Matrices show IoU scores computed between the sets
made of the 40 segmentations with largest ASE (first row) or largest GS score (second
row).

We would also like to underline that previously published unsupervised indices are
likewise sensitive to the width of the narrow band. An example is shown in Fig. 4.4
for the indicator GS. In order to provide a fair comparison between approaches, the
computations of the selected unsupervised indices are always performed on the same
narrow band as the one used for our method.

Other hyperparameters

Among the parameters that need to be defined by the user is the number of components
for the mixtures of multivariate Student’s t-distributions. It is fixed to 7 in all our
experiments. This parameter is not so sensitive as unnecessary components will be
pruned by the Dirichlet prior and removed from the model.

The number of remaining parameters depends on the chosen spatial prior. For an
MRF prior, the user needs to provide a value for β, which controls the strength of the
regularization. We tested 3 values for this hyperparameter throughout our experiments:
0.2, 1 and 3. For a GLSP regularization, the user has to define a dictionary of basis
functions whose key parameters are the step between each basis function and their radii.
They likewise control the amount of regularization. In this chapter, we set the step to
6 vx and the radius to 17 vx, except for the LIDC dataset for which the step was set
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Fig. 4.5: Example of a nodule segmentation from LIDC where the result of the quality assessment
is different depending on the narrow band width. If too large, the appearance model
of the foreground leaks inside the pleura leading to an irrelevant result.

to 4 vx and the radius to 12 vx. Finally, for the regularization using an FDSP prior,
no further parameter needs to be set by the user as the model’s hyperparameters are
all learnt automatically, which is a great advantage in comparison with the first two
approaches.

4.5.4 Qualitative analysis
In the case of segmentations produced by human raters, possibly with the help of
interactive annotation tools, it is very useful to be able to rank segmentations, highlight
potentially difficult segmentations and track possible errors in large databases.

In this section we present some results from two datasets of medical images, whole
brain tumor segmentations from the BRATS 2017 training set and pulmonary nodule
segmentations from the LIDC dataset. On average, one minute is required to complete
the quality control workflow for a 3D image from the BRATS dataset using an MRF
or FDSP regularization. The inference time increases to 4 minutes for a model with a
GLSP prior. The computation time of course also depends on the size of the segmented
structure and on the extent of the narrow band.

Computation of the ASE for each segmentation allows the distribution for the whole
dataset to be drawn. Histograms obtained with FDSP regularization are shown in
Fig. 4.6. They present a similar shape, with a short left tail, a single peak and a heavier
right tail. Cases in the right tail isolated from the rest of the distribution are atypical and
possibly include errors. Samples from the left and right tail are shown in Figs. 4.7 and
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Fig. 4.6: ASE distributions for the analysis of ground truth segmentations from the BRATS
(4.6a) and LIDC datasets (4.6b). Samples from the left tail are identified as explained
by the model while samples from the right tail are classified as challenging.

4.8, respectively. For both datasets, cases with larger ASE are clearly more challenging
than the cases taken from the left tail.

Fig. 4.7: Segmentations with the smallest ASE taken from the left tail of the distributions.
Cases are ranked according to their ASE value (Largest values to the right) and slices
with largest ground truth area are shown. The width of the narrow band is 30 vx for
BRATS and 10 vx for LIDC.

Furthermore, one can see that contours in the right tail samples from BRATS are
more irregular and that intensity variations in some regions are very weak making their
accuracy questionable. Those contours were probably extracted through thresholding
instead of being manually drawn as was permitted in the annotation process [Jakab, 2012;
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Fig. 4.8: Segmentations with the largest ASE taken from the right tail of the distributions.
Cases are ranked according to their ASE value (Largest values to the right) and slices
with largest ground truth area are shown. The width of the narrow band is 30 vx for
BRATS and 10 vx for LIDC.

Menze et al., 2015]. Similarly, some contours in the right tail samples from LIDC cross
regions of uniform intensity and therefore require other priors like shape to be explained.
Yet, the contours are far from obvious in some areas in comparison with the left tail
samples. Therefore, our approach fulfills its role of extracting challenging, possibly
suspicious, cases within a dataset.

We present in Fig. 4.9 a qualitative comparison between the spatial priors proposed
for our approach and the unsupervised indices presented in section 4.5.2. Each dataset
was sorted according to those indices and the 40 segmentations with largest ASE/score
were extracted. The variability of this set of suspicious segmentations across unsupervised
methods was studied by computing the pairwise IoU.

First, we note that our approaches and the unsupervised indices yield different sets
of suspicious segmentations, as the IoU score is always less than 0.4. Furthermore, the
unsupervised indices lead to inconsistent results on both datasets which make their
performance highly unreliable on medical images. One possible explanation is that those
methods were designed for 2D color images with large contrast and may not scale well
to 3D medical images.

If we now compare the different regularization strategies proposed for our approach,
we observe that the level of regularization has some impact. Indeed, there is a significant
variability of results with the value of β for the MRF prior. This observation supports
using the last regularization strategy proposed, the FDSP prior, as in this case all
hyperparameters are learnt in a data-driven way.
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Fig. 4.9: Comparison of different approaches on the BRATS training set (4.9a) and LIDC (4.9b).
The 40 segmentations with largest ASE or indicator score are compared using IoU.
The width of the narrow band is 30 vx for BRATS and 10 vx for LIDC.

4.5.5 Quantitative analysis
In order to perform a quantitative comparison of the different methods, we need to have
a grading of the quality of all segmentations. As they are easier to obtain for real world
images than medical images, we propose to conduct this quantitative assessment on the
COCO dataset which contains real world pictures with a large variability among them,
with grayscale or color images, segmented structures of variable sizes and large ranges of
noise level.

Quality grading process

Seven object categories from the COCO dataset were selected for the quantitative
assessment: airplane, bear, dog, snowboard, couch, bed and handbag (see Fig 4.10). Each
segmentation was ranked according to the different methods, leading to 9 distributions
for each object category: FDSP, GLSP, MRF with 3 values of β and the 4 unsupervised
indices. The width of the narrow band was set to 30 px (pixels) for all approaches. Since
grading the entire set of images would have been too time-consuming, we chose to focus
on the right tails of the distributions (segmentations with largest ASE or indicator score)
where the suspicious cases are expected to lie.

For each distribution, we extracted segmentations from the right tail corresponding
to 20% of the total distribution. If the number of extracted segmentations was larger
than 40, only the 40 cases with largest ASE/score were retained. All segmentations were
pooled leading to a total of 703 delineations.

Six raters were then recruited in order to grade each segmented image as good or
poor through a custom application presenting the segmentations in a random order.
Raters were asked to repeat the annotation twice in order to estimate the intra-rater
variability. The intra-rater variability was found to be slightly lower than the inter-rater
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Fig. 4.10: Examples of ground truth segmentations from the COCO dataset representing the 7
selected object categories.

variability, with a mean rate of identical responses of 83% for the former and of 73% for
the latter.

Performance comparison

The objective is to compare the segmentation quality among the right tails of the
distributions given by the different approaches. These tails correspond to segmentations
with the largest ASE or index score. The percentage of cases rated as poor by the raters
strongly depends on the size of the set of segmentations extracted from the right tail
of each distribution. Yet, it is useful to compare two quality control algorithms since a
better algorithm is expected to have a greater proportion of segmentations annotated as
poor by the raters than a worse one.

Each segmentation was assigned to a quality category, good or poor, after taking
the mean across the raters’ responses. Proportions of poor segmentations per approach
were then derived for each object category. Distributions of these proportions over the
7 object categories are shown in Fig. 4.11. Two observations can be made. First, our
approaches show competitive results as they lead to higher mean and median proportions
of poor segmentations than the unsupervised indices. Second, no regularization strategy
seems better than the others. In particular, variations of the value of β do not affect the
results very much for the MRF.

Fig. 4.12 is obtained after pooling all object categories. To assess the robustness of
the results, different thresholds are used to select the segmentations taken into account,
depending on the level of agreement among raters’ responses. Fisher’s exact test is used
to assess the difference between the proportion for a given approach and the one obtained
with an FDSP prior. Three unsupervised indices η, Zeb and GS, are found to give
significantly different results than our approach with FDSP regularization, regardless
of the threshold. More generally, our approaches always lead to a higher percentage
of poor segmentations than the indices. Again, all regularization strategies seem to be
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Fig. 4.11: Distribution of the proportion of poor segmentations over the 7 object categories
for each approach. The mean over the raters is taken as the final label for each
segmentation.

appropriate. The results seem to be stable with respect to the level of regularization
enforced by β.
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Fig. 4.12: Proportion of poor segmentations after pooling all object categories. Only seg-
mentations with a raters’ agreement above a given threshold are retained in the
computation of the proportion. Results found to be significantly different from the
ones given by the FDSP prior with Fisher’s exact test at significance level 0.05 are
marked with star symbols ?.

Comparison with inter-rater variability

Assessing the quality of segmentations inside a medical imaging dataset is difficult
without any expert knowledge. However, some datasets provide several segmentations of
the same image produced by different experts. For instance, up to four segmentations
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are available for each nodule in the LIDC dataset and MS lesions in the MSSEG training
dataset were delineated by seven radiologists. The inter-rater variability measures the
level of agreement between the experts. It is reasonable to assume that images for which
there is a low level of agreement between the experts are more challenging than others.
Therefore we study in this section the relationship between inter-rater variability and
the score produced by our unsupervised model.

Tab. 4.1: Values of the correlation coefficient between the inter-rater variability and the average
score given by different methods on the LIDC dataset. The width of the narrow band
is 10 vx and FDSP was used as a spatial prior for our model.

Inter-rater variability
Avg Dice score Avg HD Avg 95% HD

Avg FRC 0.11 0.05 -0.03
Avg Zeb -0.34 0.12 0.2
Avg η 0.13 -0.18 -0.12
Avg GS 0.01 0.03 0.05

Avg Dice score
between S and M

0.47 -0.32 -0.39

Avg ASE
between S and M

0 0.05 0.03

Tabs. 4.1 and 4.2 show the correlation coefficient between the inter-rater variability
and the Dice score or ASE produced by our model on the LIDC and MSSEG datasets,
respectively. We also compare with the four unsupervised indices selected earlier. The
inter-rater variability was quantified in three manners: by computing the average Dice
score between all pairs of experts, the average pairwise Hausdorff distance (HD) and the
average 95% percentile of the pairwise Hausdorff distance (95% HD). It is compared to
the average score computed on the different raters’ segmentations for each unsupervised
method. For the LIDC dataset, we discarded all nodules annotated by a single radiologist,
leaving a total of 87 nodules.

Tab. 4.2: Values of the correlation coefficient between the inter-rater variability and the average
score given by different methods on the MSSEG dataset. The width of the narrow
band is 20 vx and FDSP was used as a spatial prior for our model.

Inter-rater variability
Avg Dice score Avg HD Avg 95% HD

Avg FRC 0.17 -0.21 -0.36
Avg Zeb -0.72 0.14 0.44
Avg η -0.55 0.03 0.32
Avg GS 0.06 -0.19 -0.25

Avg Dice score
between S and M

0.81 -0.49 -0.7

Avg ASE
between S and M

-0.64 0.47 0.67
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Better correlations are achieved on the MSSEG dataset than on the LIDC dataset.
Furthermore, our approach differs significantly from the other unsupervised indices with
much larger correlation values. The others (except Zeb) exhibit indeed coefficients close
to zero.

We further analyse the link with inter-rater variability by showing some examples
from both datasets on Fig. 4.13. The first row presents results on the MSSEG dataset,
where the correlation is quite good (0.81). Case A has a high inter-rater variability and
is labelled as challenging by our model (low average Dice between the inputs and the
model). Indeed, only three raters out of seven considered that some lesions were visible
on the slice presented in Fig. 4.13b. Moreover, the low intensity contrast does not help
to understand the segmentations. On the other hand, case B is better explained by the
model with a good agreement between the experts, as shown in Fig. 4.13c.

The bottom row shows poorer results on the LIDC dataset. Two contradictory cases
are highlighted. The first one, case C, has a low inter-rater variability but is predicted
as challenging by our model (low average Dice score between S and M). The two
radiologists are indeed giving close contours (Fig. 4.13e) but it is also clear that the
case is challenging according to the assumptions of our model. In the image regions
highlighted by the arrows, the contours are indeed crossing areas of uniform intensity
distribution, which make them more difficult to understand. On the other hand, case D
is a typical case illustrating the limitations of our model (Fig. 4.13f). Raters disagree
about the extent of the nodule, but all segmentations correspond to visible boundaries
and match the assumptions of our model. One possible explanation for the poorer
correlation obtained on the LIDC dataset is that the annotations were made in two
stages, the second stage allowing radiologists to see the annotations made by the other
experts in the first stage. This may have led to a decrease in inter-rater variability.

This analysis shows that in some cases, the inter-rater variability may not be a good
surrogate of the difficulty of a segmentation. Raters may provide similar segmentations
despite the fact that they are not close to visible boundaries (Case C in Fig. 4.13e)
in the image. In that case, a low inter-rater variability is associated with a difficult
segmentation.

4.5.6 Results interpretability
The previous section demonstrated how well our approach performed in extracting
suspicious segmentations from a dataset in an unsupervised manner. However, it also
differs from approaches proposed in the literature regarding the output of the algorithm.
For instance, the unsupervised indices output only a scalar score as a ratio of 2 metrics
measuring the intra-region homogeneity and the inter-region dissimilarity. In our case,
the output of the algorithm is a new segmentation used as a comparison tool. Although
this segmentation must not be seen as a surrogate ground truth, it can help to visually
understand why a segmentation is considered atypical, that is, has a large ASE, which is
not possible with the indices.

Voxels lying on the input segmentation border can thus be colored depending on their
distance to the model segmentation contour, as shown in Fig. 4.14. When dealing with
3D medical images with a large number of slices, it is useful to be able to retrieve quickly
the most problematic regions according to the model. Identifying the most suspicious
slices is not possible with approaches outputting a simple score. Last but not least, the
model segmentation could also be used as a guide for the correction of poor cases.
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Fig. 4.13: Correlation between the inter-rater variability and the difficulty of a segmentation as
predicted by our model on the MSSEG dataset (top row) and LIDC dataset (bottom
row).
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Fig. 4.14: Interpretability of the result given by our approach on a brain tumor segmentation
from BRATS. (4.14a) Ground truth segmentation and label posterior given by the
probabilistic model with FDSP regularization. (4.14b) Coloring of voxels lying on
the ground truth border depending on their distance to the ouput of the probabilistic
model.
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Fig. 4.15: Real Dice coefficient versus Dice score between the prediction S of the CNN and the
probabilistic segmentation M with FDSP prior exhibiting good correlation. Results
are shown for a narrow band width of 30 vx on 3 tumor compartments.
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Fig. 4.16: Values of the correlation coefficient between the real Dice and estimated Dice score
for different regularization strategies and different widths of the narrow band.

4.5.7 Surrogate segmentation performance
In this section we investigate if metrics estimated by our segmentation quality assessment
algorithm can be correlated with the overall segmentation performance of an algorithm.
In particular, we consider the segmentations generated by a convolutional neural network
(CNN) detailed in [Mlynarski et al., 2019] on 46 test images of the BRATS 2017 challenge.
The Dice score computed between the predicted segmentation S and the one obtained
by thresholding the posterior map, M , is then compared to the true Dice index obtained
by uploading the generated segmentation on the evaluation website of the challenge. In
other words, we want to assess if the Dice score between S and M can be predictive of
the real segmentation performance of the algorithm.

Correlations obtained with an FDSP prior on a narrow band of width 30 vx are given
in Fig. 4.15 for the 3 different tumor compartments and are all above 0.69 with few
outliers. Fig. 4.16 present correlation coefficients with all regularization strategies and
for different values of the narrow band width. The coefficients are very similar across
the approaches and are little affected by the variations of the narrow band width.

However, we do not find that this approach always predicts the performance of
segmentation algorithms well. For instance, we have noticed poor predictions for
most categories in the COCO dataset. This can be explained by the fact that good
performance predictions can only be obtained when the segmented structure follows
the model assumptions, that is, the background and foreground regions have different
mixtures of Student’s t-distributions.
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4.5.8 Discussion
The proposed unsupervised quality control method was shown to efficiently and auto-
matically isolate challenging or atypical segmentation cases from a whole dataset. It
was shown to outperform four previously introduced segmentation quality indices on
the COCO dataset. Furthermore, those four indices do not provide stable results on
the LIDC and BRATS medical datasets. The proposed algorithm does not produce a
classification between good or poor segmentations but rather a ranking between cases
within a dataset.

The genericity of the algorithm allows it to work on any type of object category or
image (2D RGB or 3D grayscale images). We demonstrated the ability of the method
to handle a wide range of segmentations, from small structures (lung nodules) to large
brain tumor delineations. Yet, the approach is not suited for very tiny objects since
a reasonable size is required to have a reliable estimation of the intensity parameters.
Also, the spatial prior is likely to wipe out the segmentation if its area is really too small.
Furthermore, the genericity of the algorithm may also be considered as a limitation when
focusing on a specific structure of interest. For instance, if we aim at segmenting objects
from the car category on the COCO dataset, a contour perfectly following intensity
boundaries but around another object category would not be identified as atypical. To
this end, one would need to also monitor several specific features of that structure such
as its color, size or shape, which amounts to performing a supervised quality control
as in [Xu et al., 2009]. This limitation is shared by all unsupervised quality control
methods.

Another limitation is the difficulty to distinguish boundaries in areas with low
intensity contrast. Our method is based on mixtures of Student’s t-distributions, which
is already a far more general assumption than some previous unsupervised approaches
that hypothesize a unique Gaussian distribution in each region [Zhang et al., 2008].
Furthermore, our Bayesian formulation integrates intensity and smoothness assumptions
into a single probabilistic model, as opposed to previous unsupervised methods, which
require weighting of the heterogeneity and homogeneity terms.

Different spatial regularization strategies are proposed and tested in this chapter.
Quantitative assessment on COCO seems to indicate that all approaches lead to similar
results. However, the FDSP prior based on derivative penalization does not require any
hyperparameters to be set while keeping the computation time low, supporting its use
in preference to the others.

Finally, compared to learning-based approaches such as [Kohlberger et al., 2012] or
[Robinson et al., 2018] and also to previous unsupervised indices which only output a
score, our method provides an explanation for the mismatches between the posterior
probabilities M and the input segmentation S. This is a major advantage considering
the growing importance of providing interpretable models.

4.6 Conclusion

Image segmentation is an important task in medical image analysis and computer
vision. Quality control assessment of segmentations is therefore crucial, but the trend
towards the generation of large databases makes any human-based monitoring onerous
if not impossible. This chapter introduces a new framework for generic quality control
assessment which relies on a simple and unsupervised model. It has the advantage
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of not requiring a priori any knowledge about the segmented objects nor a subset of
trusted images to be extracted. This is especially suited to the monitoring of manually
created segmentations, where potential errors can be found, as shown by our results. Its
application to segmentations generated by algorithms is also of great interest and in
some cases can be used as a surrogate for segmentation performance.

The proposed generic segmentation model produces contours of variable smoothness
that are mostly aligned with visible boundaries in the image. Three regularization
strategies were proposed in this chapter and produced similar results. However, the
prior based on derivative penalization has the great advantage of allowing an automated
estimation of all hyperparameters with variational Bayesian inference, which is not
possible within the classical MRF framework.

Extensive testing has been performed on different datasets containing various types
of images and segmented structures, showing the ability of the method to isolate atypical
cases and therefore to perform quality control assessment. Comparison with unsupervised
indices from the literature proved our approach to be effective and competitive. Coping
with multiple foreground labels may be an interesting extension to process multiple
regions of interest jointly rather than sequentially. Finally, an interactive use of the
proposed algorithm during the manual delineation of structures in images is an exciting
perspective to help reduce the inter-rater variability in the context of crowdsourcing.
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The fusion of probability maps is required when trying to analyse a collection of
image labels or probability maps produced by several segmentation algorithms or human
raters. The challenge is to weight the combination of maps correctly, in order to
reflect the agreement among raters, the presence of outliers and the spatial uncertainty
in the consensus. In this chapter, we address several shortcomings of prior work in
continuous label fusion. We introduce a novel approach to jointly estimate a reliable
consensus map and to assess the presence of outliers and the confidence in each rater.
Our robust approach is based on heavy-tailed distributions allowing local estimates
of raters performances. In particular, we investigate the Laplace, the Student’s t and
the generalized double Pareto distributions, and compare them with respect to the
classical Gaussian likelihood used in prior works. We unify these distributions into a
common tractable inference scheme based on variational calculus and scale mixture
representations. Moreover, the introduction of bias and spatial priors leads to proper
rater bias estimates and control over the smoothness of the consensus map. Finally,
we propose an approach that clusters raters based on variational boosting, and thus
may produce several alternative consensus maps. Our approach was successfully tested
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on MR prostate delineations and on lung nodule segmentations from the LIDC-IDRI
dataset.

This chapter corresponds to the following publications:

• Robust Bayesian fusion of continuous segmentation maps. In preparation for
submission to a journal.

• [Audelan et al., 2020] B. Audelan, D. Hamzaoui, S. Montagne, R. Renard-
Penna and H. Delingette. Robust Fusion of Probability Maps. In Medical Image
Computing and Computer Assisted Intervention – MICCAI 2020, pp. 259–268.

5.1 Introduction

The fusion of probability maps is necessary to solve at least two important problems
related to image segmentation. The first is to establish the underlying ground truth
segmentation given several binary or multi-class segmentations provided by human raters
or segmentation algorithms (e.g., in the framework of multi-atlas segmentation [Sabuncu
et al., 2010]). This is especially important in the medical domain, where manual contour
delineations are known to suffer from potentially large inter-observer variability, due to
objective factors like the image quality, but also to more subjective ones, such as the
observer level of expertise [Joskowicz et al., 2019]. The generated segmentation masks
might have a direct impact on clinical decisions, for example in cancer radiotherapy
planning where delineation discrepancies could result in significant differences regarding
the definition of the target region [Petersen et al., 2007]. Moreover, in the computer
vision domain, accurate consensus estimations are needed for the performance assessment
of segmentation algorithms, as comparison with expert delineations is the gold standard
in the absence of physical or virtual phantoms. Indeed, the data fusion method used
to build the reference can significantly impact the ranking result when comparing
several segmentation algorithms [Lampert et al., 2016]. Another domain requiring robust
segmentation estimation is radiomics analysis. For instance, radiomics models can be used
to make predictions about a tumor. These predictions are based on features extracted
from the tumor region in the image, which is typically defined by the segmentation.
It has been shown that variations in the delineation of the tumor volume lead to a
poor reproducibility of the radiomics results [Kocak et al., 2019], thus highlighting the
importance of robust consensus estimation to mitigate the adverse effects of inter-rater
variability.

The second related problem is the fusion of probability maps that are outputted
by several segmentation algorithms such as neural networks. For instance, in [Wang et
al., 2019], a 3D segmentation is obtained from several 2D maps generated by a neural
network using a statistical fusion approach. Similarly, data fusion is needed in [Tang
et al., 2021] to aggregate results obtained at a patch level into a final segmentation.
Finally, it has also been shown experimentally that combining the outputs of several
segmentation algorithms often leads to improved performances [Menze et al., 2015]. One
can note that this problem is related to Bayesian model averaging, which consists in
making predictions according to a weighted combination of models instead of relying on
a single one, thus reducing the risk of overconfidence [Hoeting et al., 1999].

Prior work has mainly focused on the fusion of binary masks. Majority voting is per-
haps the most simple method and consists in choosing pixel-wise the most predominant
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label among raters. A major limitation of this approach is the equal contribution of all
raters to the consensus thus neglecting their potentially varying levels of performance.
One of the most well known method proposed to address this issue is the STAPLE algo-
rithm [Warfield et al., 2004]. It implements a weighting strategy based on the estimated
level of performance of each expert. In this case, the raters’ binary segmentations are
described by Bernoulli distributions and an expectation-maximization (EM) scheme
allows a consensus to be built and the raters’ performances to be assessed at the same
time. Spatial correlation between voxels is taken into account by the introduction of a
Markov random field (MRF) prior over the consensus segmentation.

Among the known shortcomings of STAPLE, there is the constraint of having only
global performance estimations of raters, and thus ignoring local variations [Commowick
et al., 2012; Asman & Landman, 2012; Asman & Landman, 2011]. One proposed
solution [Commowick et al., 2012] is to apply STAPLE in a sliding window fashion or to
extend the performance parameters to the pixel level [Asman & Landman, 2012]. Another
limitation is that STAPLE only considers binary masks as input and is thus agnostic
to the image content and especially to the presence of large image gradients [Asman &
Landman, 2013; Liu et al., 2013; Akhondi-Asl et al., 2014]. In [Liu et al., 2013], the
authors proposed to include in the STAPLE approach simple appearance models, such
as Gaussian distributions for the background and foreground, but this approach is only
applicable to simple salient structures. Other extensions of STAPLE consider the case of
missing data or repeated labels [Landman et al., 2012; Commowick & Warfield, 2010].

A first extension of the STAPLE algorithm for continuous inputs, which is the focus
of this chapter, was proposed in [Warfield et al., 2008]. Raters’ performances were
captured by a set of biases and variances while assuming a Gaussian distribution for
their continuous labels. This model was further studied in [Xing et al., 2016] and the
authors demonstrated that to properly estimate rater bias, the introduction of a bias
prior was required. An additional limitation of this model is the absence of a spatial
prior for regularizing the consensus estimate. Furthermore, rater performances are not
estimated locally but assumed to be global for the whole image, which was a limitation
also shared by its binary counterpart, as noted above. Another model developed for
probabilistic maps is PSTAPLE proposed by [Akhondi-Asl & Warfield, 2013]. This
approach is closer to the binary STAPLE formalism than [Warfield et al., 2008] and also
uses an MRF prior to regularize the consensus. However, raters performances are again
estimated globally for the whole image.

In this chapter, we introduce a comprehensive probabilistic framework that addresses
many shortcomings of approaches proposed in the literature for the fusion of continuous or
categorical labels. Our baseline is the continuous STAPLE model introduced in [Warfield
et al., 2008]. First, we propose replacing the Gaussian likelihood with heavy-tailed
distributions to model the rater input maps. In this chapter, heavy-tailed distributions
are broadly defined as distributions whose tails decline more slowly than the Gaussian
distribution. Heavy-tailed distributions, unlike the Gaussian, are not very sensitive
to outliers and, importantly, allow a spatial assessment of rater performances. Thus,
image regions that differ greatly from the consensus segmentation will be considered
as outliers and the contribution of that rater to the consensus will be reduced in the
problematic area. In particular, the Laplace, Student’s t and generalized double Pareto
distributions are investigated. These distributions were used in prior works for their
attractive robustness and sparsity-inducing properties. For instance, the Bayesian lasso
that enables variable selection is based on the Laplace distribution [Park & Casella, 2008].
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A robust Bayesian clustering approach was proposed in [Archambeau & Verleysen, 2007]
using Student’s t-distributions and a framework based on the generalized double Pareto
distribution was developed for compressive sensing in [Sadeghigol et al., 2016]. In this
chapter, we employ these distributions in a multivariate setting, which has never been
done before for the generalized double Pareto distribution, to the best of our knowledge.
In addition, we introduce a bias prior and take into account spatial correlation between
voxels with a label smoothness prior, defined as a generalized linear model of spatially
smooth kernels. We propose a common inference scheme based on variational calculus
that allows the latent posterior distributions and the model parameters to be estimated
in a data-driven fashion. Tractability is ensured for all heavy-tailed distributions by the
use of scale mixture representations.

Last but not least, we address the unexplored issue of dissensus rather than consensus
among raters. Indeed, fusing several probability maps into a single consensus map may
not be meaningful when consistent patterns appear among raters. In [Langerak et al.,
2010], the worse performing raters’ masks were removed from the consensus estimation
process at each iteration. In [Commowick & Warfield, 2009], a comparison framework
for the raters’ maps based on the continuous STAPLE parameters was developed. In the
approach presented in this chapter, several consensuses are iteratively estimated through
a technique similar to variational boosting [Miller et al., 2017] and clusters of raters are
identified.

Finally, although our framework is particularly suitable for the fusion of continuous
probability maps generated as is by segmentation algorithms, it can also be used for
merging binary masks once they are transformed to the continuous domain using, for
instance, signed distance maps [Pohl et al., 2007].

We summarize the main contributions of our work below:

• The classical Gaussian likelihood used in prior work is replaced by heavy-tailed
distributions to model the input rater maps. This allows raters’ performances to
vary locally and their contributions to the consensus to be weighted differently
depending on the region in the image.

• Heavy-tailed distributions are employed in a multivariate setting, which is novel
for the generalized double Pareto distribution, to the best of our knowledge.

• Bias and spatial priors are introduced, allowing a proper bias estimation and a
control over the smoothness of the consensus map.

• Tractability is ensured with a common variational inference scheme and scale
mixture representations.

• The concept of a mixture of consensuses is introduced with a proper model and
inference framework.

This chapter is built upon an earlier work of the authors [Audelan et al., 2020]. The
initially proposed framework relying on a Student’t-distribution is expanded with the
introduction of two other heavy-tailed distributions, namely the Laplace and generalized
double Pareto distributions. The relationships between these distributions is discussed
and a common inference framework is proposed. Moreover, we also provide more
extensive experiments and further analysis. In particular, we investigate for the mixture
of consensuses a new application to raters clustering. The code used to perform the
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experiments reported in this chapter is available in this repository: https://gitlab.
inria.fr/epione/promfusion.

The rest of the chapter is organized as follows. Section 5.2 begins with the intro-
duction of the robust probabilistic framework and the presentation of the heavy-tailed
distributions investigated. Then, the common inference scheme based on variational
calculus is developed, with details specific to each distribution. Section 5.3 explores
the concept of a mixture of consensuses with a novel fusion algorithm similar to varia-
tional boosting. Finally, the last section gives qualitative and quantitative results on
two datasets of prostate and lung nodule segmentations. We show that local varia-
tions in rater performance were successfully identified and that improved segmentation
performances were obtained after fusing probability maps.

5.2 Robust estimate of consensus probability maps

5.2.1 Baseline probabilistic framework

The starting point of our work is the probabilistic framework proposed in [Warfield et
al., 2008]. We are given as input a set of P probability maps Dp

n, each map consisting
of N categorical probability values in K classes, i.e. Dp

n ∈ SK−1 ∈ RK where SK−1

is the K unit simplex space such that ∑K
k=1 Dp

nk = 1. P is the number of raters. In
this chapter, a rater denotes either a human expert or a segmentation algorithm. Our
objective is to estimate a consensus probability map Tn ∈ SK−1 over the input maps.

Each probability map is supposed to be derived from a consensus map through
a random process. Let F be a link function F (p) ∈ RK , where p ∈ SK−1, which
maps probability SK−1 space into Euclidean space, and its inverse F−1(r) such that
F−1(F (p)) = p. We write D̃p

n = F (Dp
n) and T̃n = F (Tn). In this chapter, we follow

[Pohl et al., 2007] and consider the logit function and its inverse as link functions. For
instance, we have for K = 2:

F ((p1,p2)T ) =
(

log p1
1− p1

, log p2
1− p2

)T
, (5.1)

F−1((r1, r2)T ) =
(

σ(r1)
σ(r1) + σ(r2) ,

σ(r2)
σ(r1) + σ(r2)

)T
, (5.2)

where σ(x) = 1/(1 + exp(−x)) is the sigmoid function.
Our baseline model follows prior works [Warfield et al., 2008; Xing et al., 2016] and

assumes that the observed rater probability maps D̃p are Gaussian distributed with a
mean given by the consensus plus a rater bias:

p(D̃p
n|T̃p

n,bp,Σp) = N
(
D̃p
n; T̃n + bp,Σp

)
. (5.3)

The rater bias bp and variance Σp do not depend on the location in the image.
Together, they characterize the rater performance at the whole image level, large biases
and variances being associated with poor performances.
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In [Xing et al., 2016], the authors demonstrated that the absence of a bias prior leads
to an indeterminate estimation. Therefore, we define a zero mean Gaussian prior over
the bias, with precision β:

p(bp|β) = N (b; 0, β−1IK) . (5.4)

Moreover, spatial smoothness is generally considered as a desirable characteristic
of segmentation maps. In the binary case [Warfield et al., 2004], a Markov random
field (MRF) prior was introduced to allow a connectivity-based regularization of the
discrete consensus map. Spatial consistency was also enforced through an MRF prior in
PSTAPLE [Akhondi-Asl &Warfield, 2013], which is another approach extending STAPLE
to continuous inputs. The main limitation of MRF priors is the impossibility of a data-
driven estimation of the MRF hyperparameter β controlling the level of regularization.
Because inference cannot be done in closed-form, it has to be set manually. In the context
of our probabilistic framework, prior works [Warfield et al., 2008; Xing et al., 2016] did
not include any smoothness prior.

In our model, spatial regularity of the consensus map is enforced by a smoothness
prior defined as a generalized linear model of a set of L spatially smooth functions
{Φl(x)}, whose hyperparameters can be estimated. Let xn ∈ RD be the position of voxel
n, where D is the image dimension. Then the prior on the variables T̃n is defined as:

p(T̃n|Wl) = N
(

T̃n;
L∑
l=1

Φl(xn)Wl; ΣT IK

)
, (5.5)

where Wl are vectors of size K and where ΣT ∈ R+ is the prior variance. For com-
putational convenience, we write the prior using Wk ∈ RL, such that p(T̃nk|Wk) =
N (T̃nk; WT

kΦn,ΣT ) where ΦT
n = [Φ1(xn), · · · ,ΦL(xn)]. The weights Wk are placed in

a weight matrix W ∈ RK×L such that we can write more compactly:

p(T̃n|W) = N (T̃n; WΦn; ΣT IK) (5.6)

To obtain a robust description, the weights Wk are equipped with a zero mean
Gaussian prior and precision α:

p(Wk|α) = N (Wk; 0, α−1IL) . (5.7)

The spatial prior will be denoted by GLSP (Generalized Linear Spatial Prior) in the
remainder of the chapter. The graphical model of this baseline framework is shown in
Fig. 5.1.

D̃p
n

T̃n

bp Σpβ

Wlα ΣT

N P

L

Fig. 5.1: Graphical representation of the baseline model with a Gaussian likelihood.
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5.2.2 Heavy-tailed distributions and scale mixture representation
The main limitation of the baseline model presented in the last section is the global
estimation of rater performances, thus neglecting local variations. In this chapter, we
address this issue by replacing the Gaussian distribution with heavy-tailed likelihoods.
More specifically, we propose the Laplace, Student’s t and generalized double Pareto
(GDP) distributions as substitutes.

A relationship between these distributions can be established by first introducing
the power exponential distribution, also known as generalized Gaussian distribution
[Pascal et al., 2013; Gómez et al., 1998]. The density function of a multivariate power
exponential distribution is written:

PE(x; τ,M, θ) = |M |−
1
2hθ,τ ((x− µ)TM−1(x− µ)) , (5.8)

for x ∈ RK where M is a K ×K covariance matrix, θ > 0, τ > 0, and

hθ,τ (y) =
θΓ
(
K
2

)
π
K
2 Γ
(
K
2θ

)τ K2θ exp
(
−τyθ

)
. (5.9)

Power exponential scale mixtures are distributions that can be represented in a
hierarchical fashion using a scale mixture as follows:

pX(x) =
∫
τ
pX|τ (x)pτ (τ)dτ =

∫
τ

PE(x; τ,M, θ)pτ (τ)dτ . (5.10)

Depending on the choice of parameter θ and mixing density pτ (τ), various distribu-
tions can be obtained. In this chapter, we consider the case where the mixing density is
a Gamma distribution pτ (τ) = Ga(τ ; ν, ν) with shape and scale parameter ν > 0:

Ga(x; ν, ν) = νν

Γ(ν)x
ν−1 exp (−νx) . (5.11)

Then, the resulting distribution pX(x) obtained after marginalization of τ is a
generalized t distribution [Giri, 2016] whose density function is given by:

pX(x) =
θΓ
(
K
2

)
νν

π
K
2 B

(
ν, K2θ

) |M |− 1
2 × 1(

ν + ((x− µ)TM−1(x− µ))θ
)ν+K

2θ
, (5.12)

where Γ(x) and B(a, b) are the Gamma and Beta functions, respectively [Arslan, 2004].
Depending on the values of θ and ν, different situations can arise [Giri, 2016]:

• If θ = 1, we get a multivariate Student’s t-distribution. Moreover, if ν −→∞ then
we recover the multivariate Gaussian.

• If θ = 1
2 , we obtain a multivariate generalized double Pareto distribution. Moreover,

if ν −→∞ then we recover the multivariate Laplace distribution.

Together, the θ and ν parameters control the shape of the distribution tails. Large
parameters values lead to thinner tails while smaller values lead to heavier tails [McDonald
& Newey, 1988]. Fig. 5.2 shows the four distributions and compares the tails for different
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parameter values. The Laplace distribution spikes at zero and has fatter tails than the
baseline Gaussian. The Student’s t and GDP distributions have with the parameter
ν a supplementary degree of freedom in comparison with the Gaussian and Laplace
distributions, allowing the level of robustness to be adapted.

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

0.0

0.1

0.2

0.3

0.4

0.5 Gaussian

Student’s t - ν = 2

Laplace

GDP - ν = 2

(a)
8 9 10 11 12 13 14 15

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040 Gaussian

Student’s t - ν = 2

Laplace

GDP - ν = 2

(b)

Fig. 5.2: Density plot of the zero-mean heavy-tailed distributions (5.2a), with a focus on the
tail behaviors (5.2b).

Interestingly, the three heavy-tailed distributions can all be written as Gaussian scale
mixtures, namely pX(x) =

∫
τ N

(
x;µ, Mτ

)
pτ (τ)dτ . This re-writing is attractive for 2

reasons. First, it enables the model tractability by leading to closed-form analytical
solutions within a variational Bayes framework. Second, it introduces a new variable,
the scale factor τ , that can be used to make the rater variance dependent on the location
in the image.

The derivation of the scale mixture for the Student’s t is straightforward as the power
exponential distribution of Eq. 5.10 amounts to a Gaussian for θ = 1. The same equation
for θ = 1

2 corresponds to a Laplace scale mixture. Yet, [Gómez-Sánchez-Manzano et
al., 2008] showed that for any θ ∈]0, 1], the power exponential can be written as a
Gaussian scale mixture. However, as the mixing densities involve stable distributions,
they cannot generally be written analytically, except for a few cases and in particular
for θ = 1

2 . The Laplace and generalized double Pareto distributions can thus be written
as Gaussian scale mixtures, with an additional level of hierarchy for the latter.

Tab. 5.1 summarizes how the rater input map distributions, p(D̃p
n), are written as

scale mixtures after replacement of the Gaussian with the heavy-tailed distributions. The
corresponding graphical models are presented in Fig. 5.3. The scale factors {τpn} ∈ R+N

are additional latent variables not present in the Gaussian model, that separately weight
each data point D̃p

n, allowing local variations in the performance of rater p to be taken
into account. The degree of freedom ν−1

p characterizes the number of data outliers that it
is necessary to discard in the estimation of the consensus, i.e., a small degree of freedom
νp indicates that rater p contributes a lot of outliers.

One can note that prior knowledge could be incorporated over the model parameters
α and β by introducing, for example, Gamma hyperpriors. However, this is not the
choice made in this chapter, where we consider a simpler situation with uniform priors.
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Tab. 5.1: Heavy-tailed distributions and scale mixture representations. Spn = {τpn} for the
Student’s t and Laplace distributions, and Spn = {τpn, zpn} for the generalized double
Pareto distribution.

Likelihood Parameters p(D̃p
n|T̃n,bp,Σp, S

p
n)

Student’s t θ = 1
ν > 0

∫
τp

n

N
(

D̃p
n; T̃n + bp,

Σp

τpn

)
Ga
(
τpn; νp2 ,

νp
2

)
dτpn

Laplace θ = 1
2

ν −→∞

∫
τp

n

N
(

D̃p
n; T̃n + bp,

Σp

τpn

)
InvGa

(
τpn; K + 1

2 ,
1
8

)
dτpn

GPD θ = 1
2

ν > 0

∫
τp

n

∫
zp

n

N
(

D̃p
n; T̃n + bp,

Σp

τpn

)
InvGa

(
τpn; K + 1

2 ,
(zpn)2

2

)
Ga (zpn; νp, νp) dzpndτpn

D̃p
n

T̃n

τpn

bp Σpβ

Wlα

νp

ΣT
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Fig. 5.3: Graphical models of the probabilistic framework with a Student’s t-distribution (5.3a),
a Laplace distribution (5.3b) and a generalized double Pareto distribution (5.3c).

5.2.3 Model inference

To estimate the consensus, previous works used an EM algorithm. However, this approach
does not lead to closed-form solutions after replacing the Gaussian with heavy-tailed
distributions. Instead, we propose a common inference framework based on variational
calculus (a.k.a. variational Bayes) allowing the true posterior distribution p(U |D̃)
of the model variables U = {T̃,b, S,W} to be approximated by a chosen family of
distributions q(U). We recall that S = {τ} for the Student’s t and Laplace distributions,
and S = {τ, z} for the generalized double Pareto distribution.
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The objective is to maximize the marginal log likelihood of the data by minimizing the
Kullback-Leibler divergence between the true posterior p(U |D̃) and the approximation
q(U), or equivalently by maximizing the lower bound L(q):

log p(D̃) =
∫
U
q(U) log p(D̃, U)

q(U)︸ ︷︷ ︸
L(q)

+KL[q(U)||p(U |D̃)]︸ ︷︷ ︸
≥0

. (5.13)

Furthermore, we assume a mean field approximation leading to a factorization of the
posterior approximation as follows:

q(U) = q(T̃)q(b)q(S)q(W) . (5.14)

The lower bound can be re-written as:

log p(D̃) ≥ L(q) =
∫

T̃

∫
b

∫
S

∫
W
q(T̃)q(b)q(S)q(W)

log p(D̃, T̃,b, S,W)
q(T̃)q(b)q(S)q(W)

dT̃ db dS dW .
(5.15)

If qi denotes any of the factors in Eq. 5.14 and q−i the product of the remaining
factors, we know by variational calculus that the distribution q∗i maximizing Eq. 5.15
has the form:

log q∗i = Eq−i [log p(D̃, U)] + cst , (5.16)

when fixing the other distributions q−i.
This results leads to an iterative algorithm where the lower bound is optimized

with respect to each approximate distribution qi in turn. We present in the following
sections the main results for each posterior distribution approximation. Details about
the derivations can be found in appendix C.1 and the values of some expectations are
compiled in appendix C.3.

Consensus posterior approximation.

Using Eq. 5.16, the consensus posterior approximation is found to be Gaussian distributed
N (T̃n;µT̃n

,ΣT̃n
), with parameters given by:

ΣT̃n
=

 P∑
p=1

E[τnp]Σ−1
p + Σ−1

T IK

−1

, (5.17)

µT̃n
= ΣT̃n

 P∑
p=1

E[τnp]Σ−1
p

(
D̃p
n − E[bp]

)
+ Σ−1

T E[W]Φn

 . (5.18)

With a Gaussian likelihood, the consensus mean vector at voxel n was given by µT̃n
=

ΣT̃n

[∑P
p=1 Σ−1

p

(
D̃p
n − E[bp]

)
+ Σ−1

T E[W]Φn

]
. Thus, the consensus is now computed

as a weighted mean of the raters’ values corrected with the bias, where the weights vary
spatially through the variable τ according to the raters’ local performances.
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Rater bias posterior approximation.

The posterior approximation of the rater bias is also a Gaussian distribution
N (bp;µbp ,Σbp), whose parameters are given below:

Σbp =
[
βIK +

N∑
n=1

E[τnp]Σ−1
p

]−1

, (5.19)

µbp = Σbp

N∑
n=1

E[τnp]Σ−1
p

(
D̃p
n − E[T̃n]

)
. (5.20)

Posterior approximations of the scale variables.

The scale mixture representation introduced supplementary latent variables, the scale
factor τ common to the three distributions and, in addition, z for the generalized double
Pareto distribution.

Applying Eq. 5.16 for the first scale factor leads to a Gamma distribution for the
Student’s t framework and to an inverse Gaussian distribution for the other two. Formula
are given in Tab 5.2.

Tab. 5.2: Posterior approximation of the scale factor τ depending on the chosen likelihood. E
is given by E = E[(D̃p

n − T̃n − bp)TΣ−1
p (D̃p

n − T̃n − bp)].

Likelihood q(τpn) Density Parameters

Student’s t Ga(τpn; anp, bnp)
xanp−1b

anp
np

Γ(anp)
exp(−bnpx) anp = νp+K

2 , bnp = νp

2 + E
2

Laplace IG(τpn;µnp, λnp)
√

λnp
2πx3 exp

(
−λnp(x− µnp)

2

2µ2
npx

)
µnp = 1

2
√
E
, λnp = 1

4

GDP IG(τpn;µnp, λnp)
√

λnp
2πx3 exp

(
−λnp(x− µnp)

2

2µ2
npx

)
µnp =

√
E[(zp

n)2]
E , λnp = E[(zpn)2]

The GDP model has a supplementary level of hierarchy with the other scale variable z.
Eq. 5.16 leads to the following equation for q∗(zpn):

q∗(zpn) =
(T pn )

K+νp+1
2 (zpn)K+νp exp

(
−νpzpn −

(zpn)2

2 T
p
n

)
Γ(K + νp + 1) exp( ν2

p

4T pn
)D−K−νp−1

(
νp√
T pn

) , (5.21)

where T pn stands for E
[

1
τpn

]
= 1

µnp
+ 1

λnp
and Dν is the parabolic cylinder function of

order ν ∈ R. The expectations E[zpn] and E[(zpn)2] can be computed and are given in
appendix C.1.
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Spatial regularization variable.

We now present the posterior approximation for the variable Wk which controls
the smoothness of the k-th consensus map. q∗(Wk) is a Gaussian distribution
N (Wk, µWk

,ΣWk
) whose parameters are:

ΣWk
=
[
Σ−1
T

(
N∑
n=1

ΦnΦT
n

)
+ αIL

]−1

, (5.22)

µWk
= ΣWk

[
N∑
n=1

ΦnΣ−1
T E[T̃nk]

]
. (5.23)

Update of the model parameters.

Finally, a data-driven estimation of the model parameters can be performed. The
parameters in question are α, which controls the extent of the spatial regularization, ΣT ,
the covariance of the consensus prior, β, the precision of the prior defined over the rater
bias, Σp, the rater variance and lastly νp, the degree of freedom of the Student’s t and
GDP distributions.

We assume that the posterior approximation of these parameters is a Dirac distri-
bution. Applying Eq. 5.16 and taking the derivatives, we obtain the following update
formula:

α = LK∑K
k=1 µ

T
Wk

µWk
+ Tr(ΣWk

)
, (5.24)

ΣT =
∑N
n=1

∑K
k=1(µT̃nk

− µTWk
Φn)2 + ΣT̃nk

+ Tr(ΦnΦT
nΣWk

)
NK

, (5.25)

β = KP∑P
p=1 µ

T
bpµbp + Tr(Σbp)

, (5.26)

Σp = 1
N

N∑
n=1

(
(D̃p

n − µT̃n
− µbp)E[τpn](D̃p

n − µT̃n
− µbp)T

+ E[τpn](ΣT̃n
+ Σbp)

)
.

(5.27)

Finally, finding the mode of q∗(νp) leads to the following equation when the likelihood
is a Student’s t-distribution:

N∑
n=1
−ψ

(
νp
2

)
+ log νp2 + 1 + E[log τpn]− E[τpn] = 0 , (5.28)

with ψ being the digamma function. In practice, the νp are updated by solving the
equation numerically. A similar approach could be implemented for optimizing the degree
of freedom of the GDP distribution. However in practice, the numerical optimization is
very unstable and we decided to set this parameter manually in the remainder of the
chapter.
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5.3 Mixture of consensuses

5.3.1 Probabilistic framework
We also investigate the issue of dissensus rather than consensus among raters and propose
a novel probabilistic framework that allows a mixture of consensuses to be estimated.

We now assume that the rater maps are derived not from a single map but from M
consensus maps. We introduce for each rater a new binary latent variable Zpm ∈ {0, 1},∑
m Zpm = 1, specifying from which consensus a rater map is generated. The associated

component prior is given by the mixing coefficients πm such that p(Zpm = 1) = πm.
Moreover, we consider a simpler model than in the previous section, by removing the
rater bias and assuming that the rater input probability maps are Gaussian distributed,
i.e.:

p(D̃p|T̃) =
M∏
m=1
N (D̃p; T̃m,Σp)Zpm . (5.29)

The graphical model of the mixture of consensuses is presented in Fig. 5.4.

D̃p
n

T̃nm

Zpm

πm

Σp

P

N

Fig. 5.4: Graphical model of the mixture of consensuses

5.3.2 Model inference
As for the robust probabilistic framework, we use variational inference to infer the con-
sensus and model parameters. A naive solution would compute the posterior component
probabilities, rpm (a.k.a. the responsibilities), as a classical Gaussian mixture clustering
problem with multivariate Gaussians of dimension N , thus leading to dubious results
due to the curse of dimensionality (high dimension, few samples).

Instead, we propose to first reduce the dimension of each rater input map by applying a
principal component analysis (PCA) and then to cluster the maps in this low-dimensional
space. The resulting consensus maps are obtained by applying the inverse mapping from
the component weights to the original space.

We assume again a mean field approximation implying that the approximation of
the posterior factorizes as q(U) = q(Z)q(T̃) with U = {Z, T̃}. The optimal approximate
distribution q∗i maximizing the lower bound is given as before by Eq. 5.16. The following
sections present the main results for each variational update; details of the derivations
can be found in appendix C.1.
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Label posterior approximation.

The variable Z indicates from which consensus each rater input map is generated.
Eq. 5.16 applied to q(Zp) leads to a categorical distribution of parameters rpm, with
rpm = ρpm/

∑
m ρpm for 1 ≤ m ≤M , and:

log ρpm = log πm +
N∑
n=1

(
− K

2 log(2π)− 1
2 log |Σp|

− 1
2E[(D̃p

n − T̃nm)TΣ−1
p (D̃p

n − T̃nm)]
)
.

(5.30)

Consensus posterior approximation.

There is no longer a unique consensus but M consensuses to estimate. The approximate
posterior distribution for each of them is a Gaussian distribution N (T̃nm;µT̃nm

,ΣT̃nm
),

whose parameters are written below:

ΣT̃nm
=

 P∑
p=1

rpmΣ−1
p

−1

, (5.31)

µT̃nm
= ΣT̃nm

P∑
p=1

rpmΣ−1
p D̃p

n . (5.32)

The raters contributions to the consensus m are now weighted by the responsibilities
rpm, i.e, the posterior probabilities of being generated from the consensus in question for
each rater.

Update of the model parameters.

The model parameters are the mixing coefficients πm and the rater variance Σp. The
former is updated with the following formula:

πm =
∑P
p=1 rpm

P
, (5.33)

and the latter according to:

Σp = 1
N

( N∑
n=1

M∑
m=1

rpm
(
(D̃p

n − µT̃nm
)(D̃p

n − T̃nm)T + ΣT̃nm

))
. (5.34)

The inference has been found experimentally to be very sensitive to the initial
values. To increase its stability, we follow an incremental scheme inspired by variational
boosting [Miller et al., 2017]. We introduce one consensus map at a time and the
distribution parameters of components included in the previous iterations are not
updated. Initialization is performed at each iteration by summing the absolute value
of the residuals resp = ∑

n,m |D̃p
n − T̃nm| and setting the responsibility for the new

component to resp∑
p

resp
for rater p. Other responsibilities are uniformly initialized such

that ∑m rpm = 1. In practice, the algorithm is stopped when no rater is added to
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Algorithm 2: Mixture of consensuses
Inputs:

• D̃ // raters continuous segmentation maps
• Mcons // maximum number of consensuses

D̃ = PCA(D̃) // dimensionality reduction
m = 0 // current number of consensuses in the model
while m < Mcons do

m←− m+ 1
while not converged do

for 1 ≤ i ≤ m, 1 ≤ p ≤ P do
Estimate rpi and πi from Eq. 5.30 and Eq. 5.33
Estimate Σp from Eq 5.34

end
for 1 ≤ n ≤ N , i = m do

// distribution parameters of components already in the
model at m− 1 are not updated
Update ΣT̃ni

and µT̃ni
from Eq. 5.31 and Eq. 5.32

end
end
if πm < 10−10 then

m = Mcons // stop when the new component is empty
end

end
µT̃ ←− PCA−1(µT̃) // return to the original space
return µT̃

the newly introduced component after convergence. The sketch of the approach is
summarized in Alg. 2.

5.4 Results

5.4.1 Material
We investigate our approach on prostate and nodule segmentations. Two types of
experiments were conducted, depending on the nature of the segmentations used as
input.

In the first case, we used binary segmentations drawn by medical experts as inputs.
The binary masks were first transformed into probabilistic segmentations computed
as the sigmoid of a Euclidean signed distance map, whose 0 level corresponds to the
segmentation boundaries. The sigmoid function is defined as σ(x) = 1/(1 + exp(−λsx)),
where λs controls the slope of the transition between regions. Small lambda values are
associated with increased uncertainty along the segmentation border.

In the second case, the inputs were continuous segmentations produced by several
neural networks, trained beforehand by cross-validation on an independent training
set. The consensus estimated between the neural networks was then compared to a
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surrogate ground truth defined as a majority vote of the medical experts’ delineations.
All networks used in this chapter have a classical U-net architecture [Ronneberger et
al., 2015].

The prostate dataset is a private collection of 40 MRI exams performed at 3 tesla
(SIGNATM Architect, GE Healthcare, Chicago, IL and MAGNETOMTM Skyra, Siemens
Healthcare, Erlangen, Germany). All MRI protocols included 3D T2 weighted images
with 0.5 mm to 1.0 mm slice thickness. The in-plane pixel size ranges from 0.4 mm to 0.8
mm. The dataset includes manual prostate delineations from 7 radiologists, whose levels
of experience are dissimilar: three are considered as experts, two have an intermediary
level, and the remaining two are junior radiologists with less experience. This dataset,
with binary segmentations, will be denoted latter as ProstateBin.

Moreover, 5 neural networks were trained by 5-fold cross-validation on a subset
of 98 3D T2 weighted images selected from the publicly available SPIE-AAPM-NCI
PROSTATEx dataset [Litjens et al., 2014], and for which [Meyer et al., 2019] released
ground truth segmentations made by an expert urologist. The performances of the
networks were then evaluated on 7 unseen test scans extracted from the private dataset
of 40 images described above. This set composed of 7 images and of the associated
predictions of the 5 neural networks, will be referred to as ProstateNet.

The nodule dataset is the publicly available LIDC-IDRI database of lung CT scans [Ar-
mato III et al., 2011]. It contains nodule delineations drawn by 4 radiologists. The
raw CT images were re-sampled in a pre-processing step to obtain a common spatial
resolution of 1 mm in all directions. A first set was constituted by considering the 20
largest nodules annotated by all radiologists. This set, containing 20 lesions and binary
segmentations, will be denoted as NoduleBin in the remainder of the chapter. The
LIDC-IDRI dataset was furthermore separated into a training and a testing set. The
former was used to train 9 neural networks by 9-fold cross validation. The networks were
then evaluated on the 34 nodules of the test set having a 10 mm minimum diameter.
The set composed of the 34 test cases and the associated networks predictions will be
referred to as NoduleNet in the remainder.

Tab. 5.3 summarizes the characteristics of the datasets used in the experiments. All
results reported in this chapter were obtained in 3D. The size of the inputs depends
on the dataset. For the experiments on the nodule datasets, we used a cube of size
48 × 48 × 48 centered at each nodule location. Computations were performed on the
entire image for the prostate datasets. The typical image size in the prostate datasets
was 160× 500× 500.

Tab. 5.3: Characteristics of the datasets used for the experiments. (MV: majority vote.)

ProstateBin ProstateNet NoduleBin NoduleNet
# of cases 40 7 20 34
# of experts 7 5 4 10

Expert category Radiologists Neural
networks

Radiologists Neural
networks

Segmentation type Binary Continuous Binary Continuous
Surrogate

ground truth
NA MV of 7

radiologists
NA MV of 4

radiologists
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5.4.2 Robust probabilistic framework
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Fig. 5.5: Robust fusion of prostate binary segmentation masks using the Laplace distribution.
(5.5a) Raters’ manual delineations and estimated consensus shown on an axial T2
weighted image. (5.5b) Evolution of the lower bound.

Qualitative analysis.

First, we demonstrate the effectiveness of our proposed robust probabilistic model in
taking into account the spatially varying performances of the raters. We consider the
fusion of 7 binary prostate delineations from the ProstateBin dataset drawn by human
experts into a single consensus using a framework based on the Laplace distribution
fitted in 3D. The coefficient λs of the sigmoid function used to convert the input masks
to probabilities was arbitrarily set to 5. The 7 raters segmentations and the estimated
consensus are shown in Fig. 5.5a. During the inference, we maximize the lower bound,
L(q), on the marginal log likelihood of the data. The evolution over the iterations is
plotted in Fig. 5.5b.

It can be seen that rater 3 seems to be an outlier with respect to the other raters
at the bottom of the image, although they agree elsewhere. This local variation of the
rater performance is successfully captured by the scale factor τpn that spatially modulates
the contribution of each rater to the consensus. In areas of poor rater performance, τ
exhibits lower values which correspond to larger rater variance. Locally, raters with
weak confidence will not contribute as much as others to the consensus. This is shown
in Fig. 5.6a and 5.6b, where rater 3 has smaller τn values than rater 0 at the bottom of
the image in the region highlighted by the black arrows.

The trace of the matrix ΣT̃n
represents the uncertainty associated with the consensus.

Low trace values correspond to a high confidence in the consensus and are typically
found in area where all raters agree, as shown in Fig. 5.7a. One can observe that
the highest uncertainty is not located at the bottom of the image, where there is a
disagreement between rater 3 and the others, but in the image regions indicated by the
white arrows. This somewhat counter-intuitive result is explained by the fact that the
consensus uncertainty is estimated as a combination of the raters’ precisions, weighted
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Fig. 5.6: The outlier, rater 3, exhibits locally poor performances linked to lower values of τpn,
in particular at the bottom of the image in the region indicated by the black arrow
(5.6a). In contrast, rater 0 shows higher τpn values in the same area (5.6b).
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Fig. 5.7: Uncertainty map of the consensus (5.7a). Comparison of the raters precisions (5.7b).

by the scale factor τpn, as shown in Eq. 5.17. Rater 3 is considered by the model to
present poorer performances in comparison to the others, which corresponds to low scale
factor and precision values, as shown in Fig. 5.6a and Fig. 5.7b. Thus, rater 3 is barely
taken into account for the consensus uncertainty estimation, which relies much more on
the other experts. One can note that, in the Gaussian baseline model, there are no scale
variables. The consensus uncertainty is a simple combination of the raters’ precisions
and is thus constant within the image. In particular, regions of disagreement between
raters have the same level of uncertainty as regions where all raters agree. Therefore,
our robust approach leads to a more realistic estimate of the consensus uncertainty, by
allowing variations in the image depending on the level of agreement between raters.

The possibility of localizing visually, in a convenient manner, the most unreliable
regions of the consensus is an advantage of our model in comparison to the Gaussian
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baseline model, but also to the classical binary STAPLE algorithm, which does not
provide any estimate of the uncertainty associated with the consensus.

Fig. 5.8: Impact of the spatial prior on the smoothness of the consensus map obtained with the
Laplace distribution on a nodule segmentation case on CT scan from the NoduleBin
dataset.

One contribution of our work is the introduction of a spatial regularization prior over
the consensus map. In the discrete setting, the spatial consistency of the consensus was
enforced with an MRF prior, for example in [Warfield et al., 2004]. In our continuous
approach, spatial correlations between voxels are taken into account by the definition
of a GLSP prior over the consensus map. The key parameters are the spacing, s,
between the basis function centers, the standard deviations (or radii), r, of the Gaussian
functions and the position of the origin basis function. Together, they influence the
level of regularization of the consensus map, large spacing and radii being associated
with smoother outputs. Fig. 5.8 compares the consensuses, obtained for a nodule of the
NoduleBin dataset with or without spatial regularization, in a model where the input
rater maps are assumed to follow a Laplace distribution. For the model fitted with
spatial regularization, the spacing, s, was set to 4 and the radius was equal to 12. The
influence of the prior is clearly visible with far smoother contours.

We provide a visual comparison between the heavy-tailed distributions and the
Gaussian reference in Fig. 5.9 on a nodule segmentation example from the NoduleBin
dataset. The models are fitted in 3D with same spatial regularization parameters for all
distributions. The inputs are the four radiologists’ binary segmentations transformed
to probabilities, using as before λs = 5 for the sigmoid function. The four manual
delineations are given in the first column and the associated consensuses in the second
one. It can be seen that the Student’s t and GDP distributions give similar results. Both
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Fig. 5.9: Comparison of the heavy-tailed distributions on a nodule segmentation case extracted
from the NoduleBin dataset.

have an additional degree of freedom in comparison with the Laplace and Gaussian,
which allows the shape of the tail of the distribution to be adapted to the data. For
this case, the mean degree of freedom νp between raters is 0.3 after convergence for the
Student’s t. It was manually set to 2 for the GDP. These values lead to heavier tails
than the Laplace and Gaussian, which could explain the similar results.

The possibility of locally varying rater contributions to the consensus for the robust
model leads to rater performance estimates different from those obtained with a global
estimation, as for the Gaussian baseline. In Fig. 5.10, we compare the variances (Σp)0,0
corresponding to the foreground region obtained with a Gaussian or Laplace distributions.
(Σp)0,0 and (Σp)1,1 can be considered the counterparts of the sensitivity and the specificity
estimated in the binary setting by the STAPLE algorithm. In our framework, a large
variance corresponds to poor rater performance. One can observe that the ranking
between raters is close between the two distributions. However, the orders of magnitude
are different with smaller variances for the robust approach. This can be explained by
the fact that the experts agree in most of the image regions. The discrepancies, which
contribute to poor rater performances, lie only on a small narrow band along the nodule
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Fig. 5.10: Raters variances (Σp)0,0 corresponding to the foreground region for the models based
on a Gaussian and Laplace distributions.

boundary. The local estimation of the performances allows this to be taken into account
by the robust approach, which leads logically to smaller variances.

The objective of variational inference is the maximization of a lower bound over the
data marginal likelihood. This lower bound can be computed to monitor the model
convergence but also to provide a criteria for model selection [Blei et al., 2017]. Fig. 5.11
compares the lower bound values reached after convergence and the inference time for
the different distributions on the 20 nodules from the NoduleBin dataset. The Student’s
t seems to lead to the highest lower bound values. This distribution has, with the GDP,
an additional degree of freedom allowing the shape of the distribution to be modified
and better fitted to the data. Because of numerical instabilities, this parameter is
fixed manually for the GDP, whereas it is learnt automatically for the Student’s t in
a data-driven way. This could explain the higher lower bound values reached by the
Student’s t.

Regarding the computational times, the Gaussian baseline model seems to be faster,
but with fewer parameters and variables to estimate. For the GDP, the expectations
involving the scale factor z are evaluated with Lentz’s algorithm as shown in appendix C.1,
which logically leads to longer computation times.

Fig. 5.12 provides a visual comparison between our robust approach based on a
Laplace distribution and models proposed in previous works. In particular, we compare
our model with the original STAPLE algorithm introduced in [Warfield et al., 2002],
which does not include any spatial regularization of the consensus. We also compare it
to two extensions of STAPLE for continuous inputs, namely, to PSTAPLE, introduced
in [Akhondi-Asl & Warfield, 2013], which uses an MRF as regularization prior, and to
the continuous STAPLE algorithm, proposed in [Warfield et al., 2008], from which our
approach was developed. The comparison is performed on a nodule segmentation case
from the NoduleBin dataset. The inputs are therefore the delineations drawn by the
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Fig. 5.11: Lower bound values reached after convergence (5.11a) and computation times obtained
on the 20 nodules from NoduleBin dataset (5.11b).

radiologists and transformed to continuous maps, except for the STAPLE algorithm which
handles binary inputs. For the MRF prior of PSTAPLE, a 4-connectivity neighborhood
is considered, and β, the MRF hyperparameter, is set to 2. Regarding the GLSP prior
used in our model, the parameters are the same as used previously.

One can observe that STAPLE and PSTAPLE lead to similar results, which could
be expected as the latter is a direct extension of the former for probabilistic inputs. The
effect of the MRF prior can be noted, with slightly smoother contours for PSTAPLE.
The continuous STAPLE and the robust approach based on a Laplace likelihood also
produce similar maps. However, our approach includes a spatial regularization prior
which logically leads to smoother outputs. Moreover, the hyperparameter of the spatial
prior is learnt automatically in our approach, which is an advantage in comparison with
the MRF prior. Our approach is also more robust with respect to the outlier rater 1, in
particular compared to the STAPLE algorithm.

Quantitative analysis.

The main difficulty when assessing the performances of data fusion algorithms is the
absence of an unequivocal ground truth, which prevents any accurate quantitative
comparison. This is particularly true in the medical imaging domain, where the inter-
rater variability can be large.

In this section, we provide a quantitative comparison framework between our robust
probabilistic approaches and methods proposed in previous works, including the most
simple one, i.e., majority voting. We now consider probabilistic segmentations generated
by several neural networks trained by cross-validation and tested on the NoduleNet and
ProstateNet datasets, as detailed in section 5.4.1. The data fusion approaches are used
to estimate a consensus between the predictions made by the different neural networks.
Therefore, in contrast to the previous section, the inputs are already continuous. They
need to be binarized only for the STAPLE and majority voting algorithms.

The consensuses are compared to a surrogate ground truth defined as a majority
vote of the human raters’ segmentations of the test set. We emphasise that, while
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Fig. 5.12: Comparison of the robust model using a Laplace distribution with approaches
proposed in previous works on a nodule segmentation case from the NoduleBin
dataset.
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Fig. 5.13: Dice score (5.13a) and Hausdorff distance (5.13b) distributions over the NoduleNet
dataset. Distributions marked with a ? are found to be significantly different from
the majority voting baseline with the Wilcoxon signed-rank test at significance level
0.05.
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Fig. 5.14: Dice score (5.14a) and Hausdorff distance (5.14b) distributions over the ProstateNet
dataset.

this reference overcomes the absence of real ground truth, it is also a limitation of the
comparison. We use the Dice score and the Hausdorff distance as performance metrics
for the comparison. The former is a region-based metric and the latter a distance-based
metric. Evaluating the performance of segmentation algorithms is a difficult task [Fenster
& Chiu, 2005], and defining proper metrics remains an open challenge. Therefore, the
Dice score and the Hausdorff distance may themselves be a limitation of the comparison
and this should be kept in mind when analysing the results.

Regarding the lung nodules, the NoduleNet dataset contains 34 lesions, all of diameter
greater than 10 mm. Smaller nodules were excluded from the analysis. The ensemble of
raters is composed of 9 neural networks, whose performances on the test set in terms of
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Dice score and Hausdorff distance are presented in Fig. 5.13. The Wilcoxon signed-rank
test was used to compare distributions with the majority voting baseline. For the prostate
dataset, 5 neural networks were used to produce probabilistic segmentations of a test set
of 7 images. Thus, the prostate and nodule datasets allow us to perform a comparison
between the data fusion approaches on two different structures of interest, but also with
a different number of rater input maps. Fig. 5.14 shows the Dice scores and Hausdorff
distances distributions for the prostate. Due to the small sample size, differences between
distributions and the majority voting baseline were not tested.

First, we can observe that the neural networks of the NoduleNet dataset have more
homogenous performances than those of the ProstateNet dataset. The latter were trained
with a much smaller number of cases, which may explain the larger discrepancies.

Tab. 5.4: Mean Dice scores and Hausdorff distances computed between the consensuses esti-
mated with different methods from several neural network outputs, and the reference
defined as a majority vote of experts on the NoduleNet dataset.

Dice score Hd (mm) Hd 95% (mm)
Majority vote 0.83 (±0.08) 4.05 (±3.3) 2.09 (±2.29)

STAPLE 0.83 (±0.07) 4.01 (±3.36) 2.14 (±2.3)
PSTAPLE 0.83 (±0.07) 3.9 (±3.23) 2.07 (±2.25)

Continuous STAPLE 0.83 (±0.08) 3.91 (±2.97) 2.19 (±2.38)
Gaussian 0.82 (±0.08) 3.86 (±2.97) 2.18 (±2.35)
Laplace 0.83 (±0.08) 3.51 (±2.27) 1.81 (±1.3)

Student’s t 0.79 (±0.17) 3.56 (±2.08) 1.81 (±1.02)
GDP 0.81 (±0.09) 3.61 (±2.08) 1.76 (±1.05)

Tab. 5.5: Mean Dice scores and Hausdorff distances computed between the consensuses esti-
mated with different methods from several neural network outputs, and the reference
defined as a majority vote of experts on the ProstateNet dataset.

Dice score Hd (mm) Hd 95% (mm)
Majority vote 0.9 (±0.03) 8.9 (±4.49) 4.32 (±1.6)

STAPLE 0.9 (±0.04) 9.21 (±3.77) 4.68 (±2.27)
PSTAPLE 0.9 (±0.04) 9.14 (±3.69) 4.66 (±2.24)

Continuous STAPLE 0.9 (±0.03) 8.65 (±3.82) 4.26 (±1.54)
Gaussian 0.89 (±0.04) 9.11 (±4.57) 4.79 (±2.46)
Laplace 0.9 (±0.03) 8.6 (±3.75) 4.22 (±1.5)

Student’s t 0.9 (±0.03) 9.06 (±3.81) 4.23 (±1.55)
GDP 0.9 (±0.03) 8.86 (±4.39) 4.27 (±1.61)

Second, the differences between methods are small and almost never statistically
significant. This is also visible in Tab. 5.4 and 5.5, which give the mean Dice score
and mean Hausdorff distance for each method on the nodule and prostate datasets,
respectively. In particular, the simple majority voting approach already gives good
results, even better than those produced by the more complex STAPLE algorithm.
Regarding our framework, better Dice scores seem to be obtained with a Gaussian
distribution than with a Student’s t or GDP likelihoods. In contrast, the latter two
lead to smaller Hausdorff distances. The model based on a Laplace distribution appears
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to be the most complete, as it produces balanced results between the region- and the
distance-based metrics. In particular, it leads to the largest Dice scores and smallest
Hausdorff distances on both datasets.

Although the differences are not statistically significant, these experiments show that
our robust probabilistic framework achieves state-of-the-art results and even seems to
lead to slightly better performances when the model uses a Laplace distribution.

5.4.3 Mixture of consensuses
In this last result section, we provide examples of mixtures of consensuses in Fig. 5.15 and
5.16. The inputs are the probabilistic segmentations produced by the neural networks
trained by cross-validation. The mixture model is fitted on two examples extracted from
the ProstateNet and NoduleNet datasets.

Fig 5.15b and 5.16b show the consensuses obtained after convergence. In both cases,
three relevant contours are found. Without the mixture approach, only one consensus
corresponding to the first component would have been obtained, and the regions indicated
by arrows would have been ignored.
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Fig. 5.15: Mixture of consensuses on a prostate segmentation example from the ProstateNet
dataset. Input probabilistic segmentations produced by neural networks (5.15a).
Estimated consensuses (5.15b). Responsibilities with 3 relevant components (5.15c).

The responsibilities are presented in Fig 5.15c and 5.16c. They indicate from which
consensus each network segmentation map was generated. Thus, this method provides a
novel way to cluster raters depending on their segmentations for a given image.

We now explore the idea of clustering raters over a batch of images, in particular
over the 34 and 7 images of the NoduleNet and ProstateNet datasets. For each image
of these two test sets, mixtures of consensuses were estimated and the networks were
assigned to the consensus corresponding to their highest responsibility. This leads to a
first clustering of the raters at the image level. Results are then aggregated over the
whole test sets using hierarchical clustering with a complete-linkage approach, based on
the following distance: d(x, y) = N −Nxy, where x and y denotes two raters, N is the
number of segmentation cases in the dataset and Nxy is the number of segmentation
cases where rater x and rater y are assigned to the same consensus. At each step, the two
clusters having the most consensuses in common are combined. Results are presented in
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Fig. 5.16: Mixture of consensuses for a lung nodule from the NoduleNet dataset. Input proba-
bilistic segmentations produced by neural networks (5.16a). Estimated consensuses
(5.16b). Responsibilities with 3 relevant components (5.16c).

Fig. 5.17. It shows, for example, that the network 6 is assigned to the same consensus as
networks 4 and 5 in at least 41.2% of the nodule segmentation cases.
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Fig. 5.17: Complete-linkage clustering of the networks based on the percentage of membership
of the same consensus for the NoduleNet (5.17a) and ProstateNet (5.17b) datasets.

Although the networks seem to have similar performances on the NoduleNet dataset,
as shown in Fig. 5.13, this approach allows two main clusters to be extracted. The
group composed of networks 4, 5 and 6 appears to have a significantly different behavior
than the others, as they only share 32.4% of the consensuses on the whole dataset. This
difference can be visually assessed in Fig. 5.16a, where networks 4, 5 and 6 lead to a
larger segmented region than the others.

The differences between networks are smaller on the ProstateNet dataset. Networks
3, 4 and 5 are always assigned to the same consensuses. In contrast, networks 1 and
2 are isolated in 14.3% of the cases. According to the results presented in Fig. 5.14,
they seem to exhibit poorer performances than the others. This difference appears to be
confirmed by the clustering approach.

Finally, we study the application of the mixture of consensuses for the clustering
of raters for whom only binary segmentations are available. In particular, we apply
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Fig. 5.18: Complete-linkage clustering of the human raters on the ProstateBin dataset, based
on the percentage of membership of the same consensus, for two values of the
coefficient λs of the sigmoid function used to convert the binary segmentation masks
to continuous maps.

the approach to the segmentations drawn by the 7 radiologists on the images of the
ProstateBin dataset. For each of the 40 images, a mixture of consensuses model is fitted
after converting the binary segmentation masks to probabilities. We study the influence
of the coefficient λs of the sigmoid function by presenting results for λs = 5, which
assumes sharp transitions between image regions, and for λs = 1, which corresponds to
a scenario with more uncertainty along the segmentation boundaries. Dendograms for
the two λs values are shown in Fig. 5.18.

First, one can observe that the number of clusters increases with smaller λs values.
Moreover, for λS = 5, 6 raters out of 7 are always grouped together over the 40 images.
Rater 6 is the only one to be isolated, and only on 2 images of the dataset. This may be
related to the rater lack of experience, as he/she is one of the two junior radiologists of
the panel. For λs = 1, two other raters are extracted by the clustering approach. One
has an intermediary level of experience, but the other one is considered as an expert.
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This result demonstrates the applicability of our approach for studying the inter-rater
variability.

5.5 Discussion

Estimating a consensus between raters is an important task in the medical imaging
domain. Our work focuses on the specific problem of fusing continuous segmentation
maps. It addresses three major limitations of approaches proposed in previous works,
namely the estimation of the rater bias, the regularization of the consensus map and the
local assessment of the rater performances.

Comparison with state-of-the-art methods showed the effectiveness of our approach.
However, a limitation of the study is the definition of the ground truth used to evaluate
and compare the data fusion methods. The use of majority voting in this chapter is
arbitrary, and the resulting surrogate reference may actually be a flawed estimate of
the real ground truth. This limitation is not specific to this chapter. It is a general
problem when comparing segmentation algorithms. Yet, [Lampert et al., 2016] showed
that the approach used to form the ground truth highly influences the ranking between
algorithms. This problem is particularly important for medical imaging, because of
the difficulty in collecting high-quality ground truths and because of the inter-rater
variability. Even when the ground truth is available, for instance in the presence of
numerical or physical phantoms, the metric used to assess the performances may impact
the result [Fenster & Chiu, 2005; Taha & Hanbury, 2015]. How to properly evaluate the
quality of segmentations remains an open issue and an interesting challenge for future
work.

One contribution of our work is the introduction of a spatial prior to regularize the
consensus map. In this chapter, the spatial regularity was enforced using a GLSP prior,
but there are alternatives for the regularization of continuous fields. One possibility is, for
example, to define a prior penalizing the total variations in the consensus map [Babacan
et al., 2008]. Although specifically designed for continuous inputs, our data fusion
approach can handle binary segmentations, once they are converted to probabilities.
In this chapter, we used a transformation based on a Euclidean distance map and the
sigmoid function. Varying the value of the parameter λs of the sigmoid leads to different
consensus estimates by allowing various levels of uncertainty to be simulated. It is an
advantage in comparison to the discrete data fusion methods, which neglect uncertainty
by always assuming sharp transitions between image regions. However, one limitation
of the approach followed in this chapter is that the coefficient is independent of the
location, leading to equal levels of uncertainty along the segmentation boundaries in all
image regions. It could be improved by varying the slope of the transitions depending
on the location and contrast in the image, allowing, for example, more uncertainty to be
assumed in areas where raters disagree.

Our approach provides a statistical framework for assessing the performances of the
raters. In particular, the mixture of consensuses model is a novel approach to study
the inter-rater variability, cluster raters and detect outliers. The approach, inspired by
variational boosting, allows the appropriate number of consensuses to be estimated in a
data-driven way. It requires a reduction of dimension, performed in this chapter by PCA.
This method maximizes the variance of the data projected in the latent space, which is
an attractive property when the objective is to identify patterns among raters. However,
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other reduction techniques could be used, and their investigation represents an avenue
for future work. Moreover, the mixture of consensuses was only tested with a simplified
model assuming a Gaussian likelihood and no rater bias. This model could be extended
by adding a bias for the raters and replacing the Gaussian with a robust distribution.
However, in contrast to the classical robust model, the rater bias would not be directly
related to over- or under-segmentation anymore, because of the projection into the latent
space. Similarly, it would not be possible to connect in a straightforward manner the
variations in the scale factor to specific locations in the image, making the model less
interpretable. Furthermore, the mixture of consensuses with a Gaussian distribution is
already more robust than the Gaussian model with a unique component, in particular by
allowing outliers to be isolated. We note that a related approach for outlier detection was
proposed by [Commowick & Warfield, 2009]. However, it is purely based on a statistical
comparison of the raters’ biases and variances and does not allow several consensuses to
be generated.

Another interesting topic of research is the evaluation of the intra-rater variability,
which reflects the consistency of a rater when segmenting the same image several times.
This could be assessed using our model, by fusing the different segmentations of an
image produced by a rater and sharing the variance Σp between the input maps. After
convergence, this parameter would give an estimate of the intra-rater variability.

Moreover, the experiments in this chapter were designed such that the raters perfor-
mances were evaluated independently from one image to another. Yet, it is reasonable
to assume that part of a rater’s performance does not depend on a given image. For
example, errors related to a lack of experience may be repeated over a whole set of
images. In order to take this observation into account, one possibility would be to add a
prior over the rater performance parameters, and then learn the prior hyperparameters
using several segmentation cases. One can assume that this strategy would lead to a
more robust estimate of the raters’ performances.

This approach could also be followed to constrain the scale factor to take more
uniform values between the raters. Indeed, we can see on Fig. 5.6 that, although raters
0 and 3 agree in the corner of the image, their τpn values are not equal. This does not
mean that they do not contribute equally to the consensus in these image regions, as
each rater contribution also depends on the rater variance. However, more uniform scale
factor values could be obtained by the introduction of a prior and sharing its parameters
between the raters.

5.6 Conclusion

Consensus estimation between raters is an important but difficult problem. The main
challenge is to assess the performance of each rater and the associated uncertainty
properly. Many approaches have been proposed to address this challenge for discrete
inputs. In contrast, the continuous setting has received less attention.

In this chapter, we focused on this latter case and proposed a novel robust Bayesian
framework for the fusion of continuous segmentation maps based on heavy-tailed dis-
tributions. A major contribution of our work is the local assessment of the raters
performances, which were only estimated globally in previous approaches. These locally
varying performances are made possible by the writing the heavy-tailed distributions as
Gaussian scale mixtures. Moreover, the spatial consistency of the consensus is enforced by
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the introduction of a regularization prior. We propose a convenient inference framework
based on variational calculus that allows the model variables and parameters to be
estimated in a data-driven way.

Consensuses obtained with the heavy-tailed distributions were visually compared
and this qualitative comparison demonstrated that the distributions lead to different
segmentation results. A quantitative comparison with methods proposed in previous
works was performed using probabilistic segmentations generated by neural networks.
We showed that our approaches achieved state-of-the-art results. In particular, the model
fitted with a Laplace distribution led to slightly better performances, both for the region-
and distance-based metrics.

This chapter also explores the novel concept of mixtures of consensuses. Unlike
classical approaches, several consensuses can be obtained, which highlight the potential
presence of several patterns among raters. This model also provides a novel way to
cluster raters, allowing outliers to be extracted.

Several ideas to extend our framework were developed in the discussion. In particular,
applying our framework to several segmentations generated by a rater on the same image
to study the intra-rater variability seems to be a promising research avenue for future
work.

In conclusion, we believe our method may be a useful tool to estimate a consensus
between several segmentation maps, and the approach could be of interest in other fields
of application where data fusion is required.
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Chapter 6
End-to-end analysis of a
computerized lung cancer screening
pipeline based on LDCT
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Lung cancer is the leading cause of death by cancer. Large scale studies have shown
the potential of low-dose computed tomography (LDCT) screening with a reduction
in lung cancer mortality. Yet, lung nodule detection is one of the most tedious and
time-consuming task for radiologists. There is therefore a need in developing automated
tools, not to replace but to assist the radiologists, in order to enable the implementation
of lung cancer screening policies at large scales. An automated lung screening pipeline
is usually composed of a few steps, starting with the nodule detection followed by a
false positive reduction step, the characterisation of the detected candidates and finally
a prediction at the scan level. The development of methods corresponding to each of
these steps has been fostered by the public release of the LIDC-IDRI database, which
led to major advances in the field of computer-aided lung cancer screening. However,
most of prior works are dedicated to a particular task, focusing on the specific challenges
associated with it, but few present results after integrating the whole pipeline. The
first objective of this chapter is to provide a comprehensive analysis of a computerized
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lung cancer screening pipeline, from the detection and characterization of nodules to the
final prediction at the patient level. Moreover, most of prior results were obtained on
the LIDC-IDRI database, which became a popular benchmark for the comparison of
algorithms. Yet, this LIDC-IDRI dataset has itself some limitations due to the annotation
process, which raises the question of the true performances on real life clinical data. The
second objective of this chapter is to investigate this generalization issue by applying our
pipeline trained solely on the LIDC-IDRI data on three independent test sets, i.e., on a
subset derived from the NLST database, on the training data of the 2017 Data Science
Bowl, and on a private database of COPD patients.

Part of this chapter corresponds to the following publication:

• [Audelan et al., 2021] B. Audelan, S. Lopez, P. Fillard, Y. Diascorn, B. Padovani
and H. Delingette. Validation of lung nodule detection a year before diagnosis in
NLST dataset based on a deep learning system. Submitted to ERS International
Congress 2021.

6.1 Introduction

In 2020, lung cancer was responsible for 135720 deaths in the United States, far ahead
from the other types of cancer for both men and women [Siegel et al., 2020]. In France,
there was 33117 deaths by lung cancer in 2018 [Defossez et al., 2019]. It is a major
public health problem in the world with economical consequences. If smoking remains
the main risk factor for lung cancer, other factors such as exposition to air pollution are
now commonly admitted [Barta et al., 2019]. Patient prognosis heavily depends on the
time of detection, as early stage diagnosis improves dramatically the chances of survival
[Torre et al., 2016].

Two large randomized controlled studies, the American National Lung Screening
Trial (NLST) and the Dutch-Belgian NELSON trial, revealed the effectiveness of lung
cancer screening with low-dose computed tomography (LDCT), with a positive impact
on overall survival [NLST, 2011; Koning et al., 2020]. These results were confirmed by
the 39% reduction in lung cancer mortality observed more recently in the Multicentric
Italian Lung Detection (MILD) trial [Pastorino et al., 2019]. Lung cancer screening
in LDCT scans involves to detect and characterize lung nodules, i.e. to evaluate their
malignancy. Lung nodules are small, approximately round, lesions of diameter less than
3 cm [Ost et al., 2003]. They are common findings in chest CT scans in practice, and if
some of them may be suspicious for lung cancer, the majority are benign. For instance,
an analysis of the results of 8 large screening trials performed by [Wahidi et al., 2007]
showed that up to 51% of the participants presented nodules, but that the prevalence of
lung cancer in subjects with nodules was at most 12%. Therefore, the small size of the
lesions in comparison with the scan volume and the high rate of false positives make the
detection and characterization of nodules one of the most challenging radiological task
[Rubin, 2015]. Moreover, this task is associated to a high inter-rater variability and a
sensibility dropping significantly for small diameter nodules [Rubin, 2015].

LDCT is already the cornerstone of lung cancer screening in the United States
[Wood et al., 2018]. It follows that, with the implementation of LDCT screening at
large scales, there is a need to develop computer-aided methods in order to assist
clinicians. The LIDC-IDRI database was released in order to encourage the development
of automatic tools for lung cancer detection [Armato III et al., 2011]. More than a
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thousand computed tomography (CT) scans were made publicly available, along with
annotations provided by radiologists. This release led to major advances and resulted
in numerous publications [Pehrson et al., 2019]. In particular, it allowed the LUNA16
challenge to be organized, which used the LIDC-IDRI data to provide a comparison
framework for detection algorithms [Setio et al., 2017]. The value of the LIDC-IDRI
dataset lies in the detailed annotations provided by 4 radiologists that include the spatial
coordinates of the lesions, a characterization of their appearance and an assessment of
their malignancy. The multiplicity of experts allows moreover the inter-rater variability
to be estimated. However, the main limitation of these annotations is that they are purely
based on radiological criteria and were not confirmed by any histopathological analysis.
As highlighted above, the radiological evaluation of nodules is a very difficult task, prone
to the reader’s subjectivity. This is particularly the case for the malignancy assessment
because of significant overlaps in features characterizing benign and malignant lesions
[Erasmus et al., 2000; Snoeckx et al., 2018]. This limitation is moreover exacerbated by
the absence of a ground truth cancer status for the subjects [Armato III et al., 2011].

A computer-aided lung screening pipeline is usually made of several steps. It starts
with the pulmonary nodule detection, which involves to examine the CT scan looking
for abnormalities. Most lesions not being cancerous, the challenge is to achieve a high
level of sensitivity while keeping the false positive rate at a reasonable level [Ost et
al., 2003]. The second challenge is the small size of the structures to be detected: with
a diameter up to 30 mm but mostly lower than 10 mm, they usually represent less
than 0.013% of the image volume, making their detection subtle [Gould et al., 2007;
Rubin, 2015]. A wide range of approaches has been proposed for automatic lung nodule
detection, including feature-based algorithms [Naqi et al., 2018; Bai et al., 2015; Shaukat
et al., 2017] or deep learning-based methods [Jaeger et al., 2018; Winkels & Cohen, 2019;
Xie et al., 2019a]. For a detailed survey of nodule detection methods applied to the
LIDC-IDRI database, see [Pehrson et al., 2019].

Among the candidates extracted by the nodule detection step, many are generally
false positives. An efficient lung cancer screening pipeline is expected to achieve a high
level of sensitivity to retrieve all cancer cases, while not neglecting the specificity in
order to avoid any unnecessary anxiety related to false positive candidates. Therefore,
the detection is usually followed by a false positive reduction step to filter out the wrong
candidate locations. The difficulty now lies in the wide variety of nodules, in terms of
appearance (ground-glass, part-solid or solid classification) but also of morphological
characteristics (size, shape, margin), which are highly variable [Gould et al., 2007]. In
addition, there are many lung structures resembling nodules making the differentiation
challenging. Several works focusing on the false positive reduction task have been
published, proposing feature or deep learning-based approaches [Ge et al., 2005; Setio et
al., 2016; da Silva et al., 2018].

The final step of the pipeline is the classification of the selected candidates depending
on their suspected malignancy. The malignancy assessment of a nodule is a challenging
task and only biopsy can provide a definitive diagnosis. However, some characteristics
like spiculated margins, wall thickness or large diameters are rather associated with
malignant patterns whereas others like calcification are indicators of benign lesions [Ost
et al., 2003]. Classification frameworks were for instance proposed in [Xie et al., 2019b;
Xie et al., 2018; Wu et al., 2018; Causey et al., 2018].

Last but not least, the final step is the assembling of the whole pipeline, which starts
with a CT scan as input and outputs the suspicious nodules, if any. The aggregation of
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the results at the nodule level allows then finally to produce a decision at the patient level.
In the automated lung cancer screening literature, most works, including for instance
those cited above, do not implement all steps. Instead, they focus on a particular task and
the challenges associated with it. However, to be able to consider real-life applications,
a proper end-to-end assessment of the framework is necessary, as the performance of
each step also depends strongly on the preceding results. In contrast to the numerous
papers addressing a specific task, few are analysing the impact of combining all of them,
in particular on the LIDC-IDRI dataset, as noted by [Bonavita et al., 2020].

One objective of this chapter is to fill this gap by providing a comprehensive analysis
of an end-to-end lung screening pipeline. [Zhu et al., 2018; Bonavita et al., 2020; Ozdemir
et al., 2020; Ardila et al., 2019; Zhang et al., 2019; Liao et al., 2019] are related works
that also propose complete pipelines and are discussed hereinafter.

In [Zhu et al., 2018], the authors propose a framework trained and evaluated on the
LIDC-IDRI dataset. They use the lung segmentations provided by the LUNA16 challenge
[Setio et al., 2017], thus ignoring potential problems due to the lung segmentation step in
the final analysis. Moreover, results are solely given in terms of accuracy. Yet, accuracy
is not an appropriate measure of performance for extremely imbalanced datasets [He &
Garcia, 2009], which is the case here with a minority of true positive cancer cases.

[Bonavita et al., 2020] introduces another pipeline also trained and tested exclusively
on the LIDC-IDRI data. The decision at the scan level involves training another classifier
in addition to the nodule characterization model, making the whole framework more
complex and the final decision less interpretable. In contrast, in [Zhu et al., 2018], a scan
was automatically considered as a cancer case as soon as one nodule was identified as
suspicious. Moreover, an important limitation shared by [Zhu et al., 2018] and [Bonavita
et al., 2020] is the absence of any independent test set with unequivocal annotations. As
mentioned above, the malignancy scores provided in the LIDC-IDRI database are only
based on a radiological assessment that was not confirmed by biopsy, and the cancer
status of the subjects is not available.

In [Liao et al., 2019; Ozdemir et al., 2020], pipelines are evaluated on the stage 2
data of the Data Science Bowl (DSB) 2017 competition [DSB, 2017], after being trained
on a combination of the LIDC-IDRI data and of the DSB stage 1 data. Thus, even if
the DSB images originate from multiple sources, the evaluation is not performed on a
completly independent test set. Moreover, the DSB data provides a label at the scan
level but none at the nodule level, which prevents any complete comparison.

Finally, [Zhang et al., 2019] pre-trained their framework using the LIDC-IDRI and
the DSB data and performed the evaluation on an independent proprietary dataset.
[Ardila et al., 2019] trained and tested their method on data from the NLST and on an
independent test set. However, both of them do not provide a detailed result analysis of
the nodule detection and characterization steps.

In this chapter, we conduct a comprehensive analysis of a lung cancer screening
pipeline. Using the widely used data splitting approach proposed by the LUNA16
challenge, we present cross-validation results on the LIDC-IDRI dataset, up to the
patient level which was, to the best of our knowledge, never proposed before. As pointed
out previously, the radiological nature of the annotations are a limitation of the LIDC-
IDRI data when it comes to the nodule characterization and the scan label. Therefore,
we also evaluate our pipeline trained on the full LIDC-IDRI dataset on three independent
test sets: the DSB stage 1 data containing images of 1595 subjects, a subset of the NLST
database corresponding to 1179 patients [NLST, 2011] and a private database of 610
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patients with chronic obstructive pulmonary disease (COPD), denoted as AIR [Leroy et
al., 2017].

In contrast to [Liao et al., 2019; Ozdemir et al., 2020], we use the DSB stage 1 data
only for testing. The availability of the cancer status enables an evaluation of the pipeline
prediction at the scan level. The second test set is a subset of 1179 patients from the
NLST study, for which 2 CT scans are available one year apart. The diagnosis for the
cancer cases was established in the last year, thus enabling to apply the pipeline both
on the image at diagnosis and on the image one year before, and therefore to evaluate
the algorithm ability to make predictions one year before the radiologists. In addition
to the subject cancer status, the NLST data provides nodule level annotations which
include the localization of the lesions and their malignancy classification confirmed by
biopsy. This allows us to study the generalization capability of a framework trained
only on radiological annotations to real life screening data. The third test set is also the
most recent. It is a collection of LDCT scans of subjects with COPD, a chronic disease
corresponding to an inflammation of the bronchii. It leads to a progressive obstruction of
the airways and a deterioration of the lungs, causing difficulties in breathing. It has been
reported as a potential increased risk factor of lung cancer [Durham & Adcock, 2015].
This test set enables to evaluate the robustness of the pipeline to more recent images
and to study the impact of lung comorbidities on the detection results.

Our pipeline, entirely based on deep learning, is composed of three steps, each one
associated with a specific network. The number of steps and models involved is smaller
than what was proposed in some previous works, for instance in [Bonavita et al., 2020;
Ardila et al., 2019]. It allows the framework to be trained more easily and also more
interpretable.

The main contributions of this chapter are summarized below:

• First, we provide a comprehensive analysis of an end-to-end lung screening pipeline
on the LIDC-IDRI dataset using cross-validation.

• Second, we apply our framework trained on the LIDC-IDRI dataset on three inde-
pendent test sets, including NLST data. It enables us to study the performance of
a pipeline trained solely on radiological annotations on data with biopsy-confirmed
labels. We also present results on images one year before the clinical diagnosis, and
test the robustness of the pipeline to images of patients with lung comorbidities.

The rest of the chapter is organized as follows. In section 6.2, we introduce the
datasets used for training, validating and testing our lung screening pipeline. Section 6.3
begins with an overview of the whole lung screening pipeline and then provides a more
detailed description of each step. Finally, section 6.4 gathers the experiments and
results.

6.2 Material

6.2.1 Training and validation: the LIDC-IDRI dataset
Our proposed lung screening pipeline was trained and validated using the publicly
available LIDC-IDRI database. The dataset is a retrospective collection of 1018 LDCT
scans with 0.6 to 5.0 mm slice thickness, coming from a collaboration between 7 medical
centers and 8 medical imaging companies. The in-plane pixel size ranges from 0.5 to 1.0
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mm. Inclusion criteria were based on the image quality and are detailed in [Armato III
et al., 2004].

Each scan in the LIDC-IDRI database was reviewed by 4 radiologists in a 2 stage
annotation procedure described in [McNitt-Gray et al., 2007]. Annotations for lesions
of sizes ranging from 3 mm to 30 mm include localization, manual delineation and
characterization with respect to several properties, in particular malignancy and texture,
each noted between 1 and 5. All annotations are solely based on radiological criteria
and do not include any histological analysis.

Among the annotations, the malignancy score sm aims to estimate the malignancy
likelihood of the nodule between 1 (highly unlikely) and 5 (highly suspicious). It is
a subjective assessment from the radiologists and was not confirmed by biopsy. The
texture score st classifies the nodule appearance from ground-glass to solid. Examples of
nodules exhibiting various texture and malignancy scores are presented in Fig. 6.1 and
6.2.

Fig. 6.1: Texture characterization of nodules: examples of ground-glass, part-solid and solid
nodules.

Fig. 6.2: Malignancy characterization of nodules: examples of benign and suspicious nodules.

In this chapter, we worked with a refined version of the LIDC-IDRI data defined in
the LUNA16 challenge dedicated to the automatic detection of pulmonary nodules [Setio
et al., 2017]. Scans with a slice thickness larger than 3 mm, with inconsistent spacing
or missing slices, were excluded by the organizers, leading to a total of 888 CT scans.
Nodule annotations were clustered using the pylidc API [Hancock & Magnan, 2016]
giving a total of 2281 nodules.
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To deal with the inter-rater variability, feature consensuses between the 4 radiologists
were obtained by averaging the scores and rounding to the nearest integer. Moreover,
we followed the reference standard of the LUNA16 challenge and kept only nodule
annotations accepted by at least 3 out of 4 radiologists, which reduced the total number
of nodules to 1186.

Fig. 6.3: Normalized histograms of the nodule diameter in the LIDC-IDRI dataset for the 3
malignancy classes.

Regarding the malignancy assessment, nodules with an intermediate malignancy score,
2 < sm < 4, are considered as ambiguous (undetermined malignancy) and were not taken
into account when evaluating the cancer predictions of the pipeline. Others are classified
into benign or suspicious depending on their score, if sm ≤ 2 or sm ≥ 4, respectively. The
distribution of the nodule diameters for the 3 malignancy classes (suspicious, benign and
undetermined) is shown in Fig. 6.3. Large diameters are associated with an increased
likelihood of malignancy. Nodules within the range 2 to 15 mm are the most challenging
to evaluate with an overlap of the 3 classes.

Cancer diagnoses at the patient level are not provided in the LIDC-IDRI database.
In order to perform a complete analysis of our pipeline, we propagated labels from the
nodule level to the scan level according to the following rule: a scan is labelled as cancer
if at least one of its associated nodules was identified as suspicious by the radiologists.
This rule, used to establish the subject cancer status, together with the absence of biospy-
confirmed labels for nodules, are limitations of the study on the LIDC-IDRI dataset. A
summary of the LIDC-IDRI data used in this chapter is presented in Fig. 6.4.

Our lung screening pipeline was trained and validated on the LIDC-IDRI dataset
following the widely used 10-fold cross-validation scheme proposed by the LUNA16
challenge. This scheme splits the data into ten subsets of equal size on a patient level,
and enables comparison with existing results.
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Fig. 6.4: Description of the LIDC-IDRI dataset used to train and validate the lung screening
pipeline.

6.2.2 Independent test sets

The NLST subset.

The American National Lung Screening Trial (NLST) was a large randomized controlled
study whose objective was to determine the effectiveness of computed tomography for
lung cancer screening in comparison with chest radiography. 53454 participants were
enrolled in the United States between 2002 and 2004 according to the following eligibility
criteria: being aged between 55 and 74 years old, with a smoking history of at least 30
pack-years, and, if former smoker, having quitted smoking within the last 15 years.

26722 subjects were randomly assigned to the LDCT arm of the study, and underwent
three screening tests at one year of interval, denoted as T0, T1 and T2, between 2002
and 2007.

In this chapter, we consider a subset of the NLST dataset composed of 1179 patients
from the LDCT arm of the trial, including 177 lung cancer cases, all diagnosed at T1 or
T2. A scan one year before diagnosis is therefore available for all cancer patients. In this
subset, the slice thickness varies between 0.02 to 5.0 mm. The in-plane pixel size ranges
from 0.5 to 0.9 mm.

This subset is used to perform two experiments. First, we evaluate the performance
of the pipeline on the T2 image of the 1002 cancer-free subjects, and on the image at
diagnosis (T1 or T2) for the 177 cancer patients. 2352 nodules were identified by the
radiologists on this set of 1179 images, including 177 lesions confirmed to be malignant
after biopsy. In a second step, the pipeline is applied on the image one year before
diagnosis for the cancer patients, in order to evaluate its ability to detect cancer one
year before radiologists.
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Tab. 6.1: Summary of the main characteristics of the 4 databases used in this chapter.

LIDC-IDRI NLST DSB stage 1 AIR
Used for Training and

validation
Testing Testing Testing

Acquisition date NA 2002 - 2007 NA 2015 - 2018
# of subjects 888 1179 1595 610

# of cancer patients 254 177 495 22
# of nodules 1186 2352 NA NA

# of malignant nodules 3271 1772 NA NA
1 Based on a subjective radiological assessment.
2 Confirmed by biopsy.

The DSB stage 1 data.

The second test set is the training data from the 2017 Data Science Bowl (DSB), denoted
as stage 1. It contains 1595 CT scans of high-risk patients, coming from multiple sources,
including the NLST database. The slice thickness and the in-plane pixel size range from
0.6 to 2.5 mm and from 0.5 to 1.0 mm, respectively. Among the 1595 subjects, 495 are
labelled as cancer. The subject cancer status is the only annotation provided in this
dataset.

The AIR cohort.

The last test set is a private database denoted as AIR. The AIR project was a prospective
study conducted by 21 medical centers in France between 2015 and 2018, with the
objective of assessing the role of chest CT and circulating tumor cells in lung cancer
screening. Eligible participants were above 55 years old, had a smoking history and
suffered from chronic obstructive pulmonary disease (COPD).

Participants were invited to undergo 3 screenings at one year of interval. However,
we consider in this chapter only the scans collected during the first screening test, where
22 subjects were diagnosed with lung cancer. The slice thickness and the in-plane pixel
size range from 0.3 to 4 mm and from 0.3 to 1.0 mm, respectively. As for the DSB stage
1 data, the subject cancer status is the only available annotation.

The main characteristics of the 4 datasets used in this chapter are reported in Tab. 6.1.
One can observe that the combined test datasets are larger than the LIDC-IDRI training
set and correspond to distinct populations. A graphical representation of our training
and testing framework is proposed in Fig. 6.5.

6.3 Lung cancer screening pipeline

6.3.1 Framework overview
The proposed lung screening pipeline is composed of the following steps:

1. Image pre-processing,

2. Lung segmentation,
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Fig. 6.5: Training and testing approach: the pipeline is trained and validated on the LIDC-IDRI
dataset using 10-fold cross-validation, and tested on the NLST dataset, Kaggle and
AIR datasets.

3. Nodule detection,

4. Nodule characterization and outcome at the scan level.

A global overview of the pipeline is given in Fig. 6.6.

Fig. 6.6: Overview of the lung screening pipeline composed of 3 steps: lung segmentation,
nodule detection and nodule characterization.

The image pre-processing step is simple and involves a re-sampling of the raw CT
scans to obtain a common spatial resolution of 1 mm in all directions. Intensity values
are clipped between −1200 and 600 HU and then linearly transformed to the range
[−1, 1].
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The second step is the deep learning-based segmentation of the lung parenchyma
with a first network whose details are given is section 6.3.2. The segmentation masks
of the right and left lungs will be used to remove the false positive nodule candidates
located outside the pulmonary region.

Nodules are detected using a second network described in section 6.3.3. Outputs are
bounding box coordinates associated with a confidence score. These results are then
filtered with the lung segmentation mask.

Finally, each nodule proposal is analysed by a third network presented in section 6.3.4.
The characterization includes a texture classification (ground-glass, part-solid or solid)
and a malignancy assessment. Results at the nodule level are aggregated in a simple
manner to produce an evaluation at the scan level: a scan is labelled as cancer once
one nodule is identified as suspicious. The malignancy confidence of the most suspicious
nodule is reported as the final cancer probability of the scan.

Our pipeline is thus entirely based on deep learning and includes a total of three
networks. The decision rule at the scan level is more straightforward than what was
proposed in [Ozdemir et al., 2020; Bonavita et al., 2020], where the k most suspicious
nodules are fed into a final classifier predicting cancer at the patient level. The latter
strategy imposes to have reliable scan labels, which is not the case for the LIDC-
IDRI dataset. Their pipeline is also more complex and the outcome less intuitive and
interpretable than our decision rule, solely based on the predictions of the characterization
network.

6.3.2 Lung segmentation network
Lung parenchyma segmentation is performed in 2D with a network presenting a classical
U-net architecture [Ronneberger et al., 2015], depicted in Fig. 6.7. Inputs are 2D axial
slices resized to 240× 240. At test time, the network outputs pixel-wise probabilities of
belonging to one of the three following classes: background, left lung or right lung.

The network is trained with a cross entropy loss which penalizes the output of the
final layer performing the classification:

Loss = − 1
N

N∑
n=1

K∑
k=1

δ(Gn, k) log pkn , (6.1)

where N is the total number of pixels, K is the number of classes, and δ denotes the
Kronecker delta. pkn is the classification softmax score for pixel n. The cross entropy loss
is computed with respect to the ground truth lung mask G provided by the LUNA16
challenge. These masks were themselves obtained using an automatic segmentation
algorithm proposed in [Rikxoort et al., 2009] and may contain errors. Therefore, we
stress that this first network is not intended to produce the most accurate segmentation,
but rather an acceptable enough mask in order to be able to filter out the false positive
nodule candidates located outside the lungs.

Weights are initialized at random and the network is trained for 50 epochs with
stochastic gradient descent (SGD). Initial learning rate is set to 0.001, batch size to 50,
momentum to 0.9 and weight decay to 0.0001. The learning rate is decreased to 10−4

and 10−5 after 35 and 45 epochs, respectively.
During the training phase, 50 axial slices of every scan in the dataset are seen by the

network at each epoch. Slices are selected randomly, with larger weights given to those
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located at the base or the apex of the scan. We also use data augmentation, with elastic
deformation and scaling.

Fig. 6.7: Lung segmentation network. A softmax function is applied after the final layer to pro-
duce pixel-wise probabilities corresponding to the three following classes: background,
left lung and right lung.

6.3.3 Nodule detection network
Deep learning-based object detectors can be divided in two categories depending on the
number of steps of the process [Zhao et al., 2019]. If two stages approaches achieved in
the first place better performances, it has also been shown that one stage detectors can
lead to competitive results while being faster and simpler to train [Jaeger et al., 2018].
In this chapter, we chose to implement a one stage nodule detection network, inspired
by the work of the DSB winning team [Liao et al., 2019]. We followed the same training
procedure but we modified the network architecture, shown in Fig. 6.8 and 6.9, which
led to improved performances.

The network of the DSB winning team, denoted as DSBWT, had a U-net-like archi-
tecture with an encoder-decoder path involving 4 max pooling layers and 2 deconvolution
layers. In contrast, the number of max pooling layers is reduced to 2 in our approach, and
no up-sampling is performed at the end of the network. Moreover, with a large number
of shortcuts, our architecture leverages the concept of skip connections introduced in the
residual networks [He et al., 2016], that prevent the problem of vanishing gradients.

The detection is performed in 3D and a patch-based approach is implemented to cope
with the GPU memory limitation. Inputs are patches of size 64× 96× 96, cropped such
that they contain at least one nodule in 70% of the cases. Otherwise, they are centered
around a location selected at random in the CT scan. Moreover, the LIDC-IDRI dataset
is imbalanced with respect to the nodule diameter: small nodules are over-represented
in comparison to larger ones. We mitigate this issue by multiplying by 2 and 6 the
sampling frequencies of nodules larger than 30 and 40 mm, respectively.
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Fig. 6.8: Nodule detection network. Outputs are bounding box coordinates associated with
a confidence score. Na = 3 is the number of anchors centered at each voxel in the
output cube.

Fig. 6.9: Architecture of a residual block.

The last layer of the network is similar to those of the region proposal networks
(RPN) [Ren et al., 2017]. It performs nodule detection based on a dictionary of cubic
reference bounding boxes, also denoted as anchor boxes, characterized by their position
Ax,y,z and their side length Al. In practice, 3 anchors with side lengths of 10, 30 and
60 mm are centered at each voxel of the output map. The multi-scale approach allows
nodules of different sizes to be detected.

For each anchor, the network predicts a confidence score, p̂, and 4 location parameters,
t̂x, t̂y, t̂z and t̂l, leading to an output map of size 16 × 24 × 24 × 3 × 5. A sigmoid
function is applied to the confidence score, such that it represents the probability that
the predicted position matches with that of a nodule. The location parameters are an
estimate of the offset between the anchor and the ground truth bounding box, G.

During training, the classification label p ∈ {0, 1} of each anchor is defined by
computing the intersection over union (IoU) with the ground truth bounding boxes of
the nodules. Anchors with an IoU result larger than 0.5 are considered as positive, with
p = 1. In contrast, negative samples, with p = 0, present an IoU score lower than 0.2.
Other anchors are not taken into account in the training process.
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Fig. 6.10: 2D representation of the anchor framework. The output feature map grid of size
3 × 4 is superimposed over an example input image. 3 anchors of different sizes
are centered at each output pixel but are shown only once for clarity. The network
objective is to learn a scale-invariant transformation of the offset between anchors
and the ground truth bounding boxes. In our network, this approach is implemented
in 3D.

We follow [Girshick et al., 2014] for the parametrization of the regression targets tx,
ty, tz and tl, which leads to:

tx = (Gx −Ax)/Al , (6.2)
ty = (Gy −Ay)/Al , (6.3)
tz = (Gz −Az)/Al , (6.4)
tl = log(Gl/Al) , (6.5)

where Gx, Gy and Gz are the coordinates of the nodule ground truth bounding box, and
Gl its side length.

The training loss is composed of two parts: a binary cross entropy loss for the
classification term and a smooth L1 penalty for the regression parameters. It is written:

Loss = − 1
NNa

N∑
n=1

Na∑
a=1

[
pna log p̂na + (1− pna) log(1− p̂na)

− pna
∑

s∈{x,y,z,l}
d
(
tsna, t̂

s
na

) ]
,

(6.6)

where N is the number of voxels of the output map, Na is the number of anchor side
lengths, and d(x, y) is the smooth L1 loss defined as:

d(x, y) =
{

(x−y)2

2 , if |x− y| < 1.
|x− y| − 1

2 , otherwise.
(6.7)
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In object detection, the number of negative samples is typically higher than the
number of positive ones, which leads to difficulties in training the network. This is
particularly true for nodule detection, as they represent a very small fraction of the CT
volume. To cope with this imbalance, a hard negative mining approach is implemented,
following [Liao et al., 2019]. When computing the loss, the negative anchors are sorted
according to their confidence score, and only the top-k candidates are taken into account,
the others being discarded. These anchors, which present the largest confidence scores,
are denoted as the hard negatives. They correspond to the negative positions which
confuse the most the network, because of their resemblance to nodules.

Weights are initialized randomly and the model is trained with a SGD optimizer
for 150 epochs with an initial learning rate of 0.01 and a batch size set to 25. The
momentum and weight decay are set to the same values as in previous section. The
learning rate is reduced linearly to reach the value 0 at the final iteration. Image scaling
and rotations are used to perform data augmentation during training.

6.3.4 Characterization network
In [Kim et al., 2019], authors introduced a network architecture for nodule candidate false
positive reduction showing competitive results. We re-implemented the same network
with some small modifications to perform nodule texture and malignancy classification.
An overall representation of the network is presented in Fig. 6.11. A strength of the
approach proposed by [Kim et al., 2019] is the multi-scale view of the network. Several
patches of different sizes are cropped around the nodule candidate center location and
fed into the network in a hierarchical fashion, as shown in Fig. 6.12. Thus, the network
is able to capture sharp details while also taking into account larger range contextual
information.

Fig. 6.11: Characterization network. A softmax and sigmoid functions are applied after the
final fully connected layer to generate the texture and malignancy probabilities,
respectively.

In comparison with the original approach, we modified the input patch sizes and
parameters of the layers to perform the convolutions in 3D. Moreover, instead of a unique
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binary output, the network now predicts the probabilities of belonging to one of the tree
texture classes, together with a malignancy assessment.

(a) (b)

Fig. 6.12: Inputs of the characterization network (6.12a) and architecture of the zoom-in and
zoom-out streams (6.12b).

The training dataset is composed of the LIDC-IDRI nodule ground truth bounding
boxes plus false positive candidates generated by the detection network on its training
data. The network is trained with 2 cross entropy losses penalizing the malignancy and
texture scores produced by the final layer of the network:

Loss = − 1
N

N∑
n=1

[
αmn log m̂n + (1−mn) log(1− m̂n)

+ λn

3∑
k=1

wkδ(Tn, k) log pkn
]
,

(6.8)

where N is the total number of nodule locations of the training set and δ denotes the
Kronecker delta. mn and m̂n are the ground truth malignancy label and the network
prediction for the n-th bounding box, respectively. The detection false positives used to
extend the training data are labelled as non cancer, i.e., m = 0. Furthermore, they are
not taken into account in the texture loss computation by setting λ = 0. This coefficient
is otherwise set to 1 for the LIDC-IDRI ground truth bounding boxes. The texture loss
is computed between the ground truth texture label, denoted as T , and the classification
softmax score pk produced by the network.

Ground-glass, part-solid and malignant nodules are under-represented in the training
data. A solution to alleviate this issue is to compute a weighted cross entropy loss, by the
introduction of the parameters α and w for the malignancy and texture classifications,
respectively. These parameters are set such that all classes contribute equally to the loss
function.

An SGD optimizer is again used to train the network for 80 epochs. The initial
learning rate is set to 0.003 and reduced linearly to reach the value 0 at the final
iteration. Weights are initialized as previously and the momentum and weight decay
remain unchanged.
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6.4 Results

6.4.1 Cross-validation results on the LIDC-IDRI dataset
In this section, we perform an end-to-end analysis of our lung screening pipeline on the
LIDC-IDRI dataset based on a 10-fold cross-validation procedure. Results presented
here are derived from the aggregation of those obtained on each of the 10 folds.

Lung segmentation.

The first step of the pipeline is the segmentation of the lung parenchyma, whose mask is
used afterwards to remove false positive candidates. Two examples of results generated
by the 2D U-net are presented in Fig. 6.13, together with the segmentation provided by
the LUNA16 challenge. The latter was used as a surrogate ground truth to train the
network, although it was itself generated by an automatic algorithm and contains errors,
for instance visible in the second example in Fig. 6.13.

Fig. 6.13: Visualization of some lung segmentation results. The second example is a case where
the LUNA16 segmentation contains errors, highlighted by the arrows.

Fig. 6.14 shows quantitative results computed with respect to the LUNA16 segmen-
tation. They are presented for information purpose only as the LUNA16 segmentation
cannot be considered as ground truth. Nevertheless, we obtain median Dice scores above
0.98 for both lungs.

Nodule detection.

Fig. 6.15 summarizes the detection results obtained with 10-fold cross-validation on the
LIDC-IDRI database, after removal of false positives located outside the lung region
using the segmentation mask generated in the previous section. A candidate bounding
box is considered as a true positive if its center of coordinates (Cx, Cy, Cz) falls within the
sphere centered at the nodule ground truth location, i.e., if ∑s∈{x,y,z}(Cs −Gs)2 < G2

l ,
where (Gx, Gy, Gz) and Gl are the nodule ground truth bounding box coordinates and its
side length, respectively. This decision rule is the same as the one used in the LUNA16
challenge.
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Fig. 6.14: Quantitative segmentation results with respect to the LUNA16 segmentation.

1138 nodules were correctly identified out of 1186 annotated by at least 3 radiologists.
8912 locations were wrongly extracted by the network, leading to a sensitivity of 96%
for 10 false positive candidates per scan in average. Examples of true positive bounding
boxes are shown in Fig. 6.16, and Fig. 6.17 presents false positive candidates randomly
selected.

Fig. 6.15: Nodule detection results obtained on the LIDC-IDRI dataset with 10-fold cross-
validation.

Fig. 6.16: Example of 6 nodules correctly identified by the nodule detector with their texture
and malignancy characteristics.
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Fig. 6.17: Visualization of 6 false positive candidate locations randomly selected.

The network missed 48 nodules, 6 of whom were identified as suspicious by the
radiologists and are shown in Fig 6.18, top row. The mean diameter of the false negatives
is 7.4 mm.

Fig. 6.18: Visualization of the 6 suspicious false negatives (top row), together with 3 benign
and 3 undetermined nodules randomly selected among the missed lesions (bottom
row).

The free response operating characteristic (FROC) curve is the counterpart of the
ROC curve for object detection. Variations of the sensitivity of the detector with respect
to the average number of false positive per scan are obtained by changing the detection
threshold. The FROC curves of the DSBWT baseline and of our network are plotted
in Fig. 6.19a. This figure takes into account all nodule candidates extracted by the
detector. A different approach was followed in the LUNA16 challenge, which established
a list of excluded annotations regrouping non-nodules, nodules of size below 3 mm or
annotated only by one or two radiologists. Candidates matching excluded annotations
are then removed from the analysis. The consequence is a decrease in the number of false
positives, as shown in Fig. 6.19b. From an object detection viewpoint, these findings are
not totally irrelevant as they were identified by at least one radiologist, which explains
the approach proposed by the LUNA16 challenge [Setio et al., 2017]. However, they
have to be taken into account when analysing a whole pipeline, which is the aim of this
chapter.

In comparison to the DSBWT network, our approach achieves better performances
with higher sensitivities, thus demonstrating the relevance of our proposed architecture.

Nodule characterization.

In this section, nodule candidates identified by the detector are characterized by the
last network in terms of texture and malignancy. True nodule locations missed by the
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Fig. 6.19: FROC curve results, considering all nodule candidates (6.19a) or removing those
matching excluded annotations, as proposed by the LUNA16 challenge (6.19b).

detection network are not taken into account in the results presented in this section, as
they are not seen by the characterization network. However, they will be considered for
the result aggregation at the scan level presented in the next section.
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Fig. 6.20: Confusion matrices (CM) for the malignancy characterization of the nodule candidates.
(6.20a) CM of the false positives of the detection step. (6.20b) CM of the true positives
of the detection step, which were identified as benign of suspicious by the radiologists.
(6.20c) CM of the true positives of the detection step with an ambiguous malignancy
score. Their true label is set to benign arbitrarily.

Fig. 6.20 presents the confusion matrices obtained for the malignancy assessment.
False positives of the detection step are wrong nodule locations proposed by the detector
and 99% of them are correctly classified as benign by the characterization network. We
then separated the results between true positives of the detection step with a reliable
malignancy score and those with an ambiguous one. The ground truth label for the latter
is arbitrarily set to benign. Because of their unreliable label, these nodules were not
taken into account when computing the ROC curve and the metrics shown in Fig. 6.21a
and Tab. 6.2, respectively. The good AUC score has to be qualified because of the class
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imbalance and the large number of true negatives. False negative and positive examples
are presented in Fig. 6.22 and 6.23, respectively.

(a) (b)

Fig. 6.21: (6.21a) ROC curve of the nodule candidate characterization. Nodules with ambiguous
malignancy ground truth label are excluded from the analysis. (6.21b) Confusion
matrix for the texture classification of the true positives of the detection step.

Fig. 6.22: Example of 6 suspicious nodules wrongly classified as benign.

Fig. 6.23: Example of 6 benign locations wrongly classified as suspicious.

In addition to providing a malignancy assessment, the second objective of the
characterization network is to describe the lesion appearance. The confusion matrix
related to this characterization is presented in Fig. 6.21b. False positives of the detection
step are excluded from the analysis. Most of the nodules were annotated as solid by
the radiologists and are correctly identified as such by the network. However, despite
the class imbalance, 80% of the ground-glass nodules are rightly classified. Metrics
corresponding to the texture assessment are presented in Tab. 6.2.
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Tab. 6.2: Results of the characterization of the candidate lesions identified by the nodule
detector, obtained by 10-fold cross-validation on the LIDC-IDRI dataset. Nodules
with ambiguous malignancy score are removed from the malignancy analysis. Texture
results are obtained by computing the metrics globally over the 3 classes.

Precision (%) Recall (%) F1-score (%)
Malignancy 63.8± 4.9 78.0± 8.7 69.9± 5.0
Texture 95.1± 1.6 95.1± 1.6 95.1± 1.6

Prediction at the patient level.

Finally, the last step of the pipeline is a cancer assessment at the scan level. This is
done simply in our case by aggregating results at the nodule level according to the rule
stated in section 6.3.1.
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Fig. 6.24: Results at the patient level, in terms of ROC curve (6.24a), precision-recall curve
(6.24b) and confusion matrix (6.24c).

The confusion matrix, precision-recall (PR) and ROC curves associated to the
prediction at the scan level are visible in Fig. 6.24. 209 cases out of 254 are correctly
identified as cancer, with 68 false positives. Performance metrics are given in Tab. 6.3:
the precision for the subject cancer classification is of 75%, and the recall of 82%.

Tab. 6.3: Cancer classification results at the patient level obtained with 10-fold cross-validation
on the LIDC-IDRI dataset.

Precision (%) Recall (%) F1-score (%)
75.4± 7.8 82.6± 7.4 78.4± 5.1

6.4.2 Tests on independent datasets
The main limitation of the LIDC-IDRI database is the absence of nodule malignancy
labels confirmed by biopsy, raising the question of the performances of the pipeline on
images for which the patient cancer status is available. We investigate this issue by
applying our pipeline trained on the full LIDC-IDRI database on the three independent
test sets presented in section 6.2. In addition, these datasets allow the generalisation
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capabilities of the pipeline to be tested, particularly to images corresponding to different
populations and obtained by different devices.

Results on the NLST dataset

In a first experiment, we apply the detection network on the T2 image of the cancer-free
subjects, and on the image at diagnosis for the cancer patients. On this set of 1179
images, 2352 nodules were annotated by the radiologists, including 177 malignant lesions.
The annotations of the radiologists include localization informations, but no details
regarding the size of the lesions are provided. Thus, we modify the detection decision
rule: a candidate bounding box is now considered as positive if∑s∈{x,y,z}(Cs−Gs)2 < d2,
where d is a distance threshold.

With a 1 cm threshold, our system detected 75% of all annotated nodules, including
1730 benign nodules out of 2352 (73%), and 170 malignant nodules out of 177 (96%), for
12 false positives per scan in average. With a 3 cm threshold, the sensitivity is increased
with 172 malignant nodules detected (97%). The 5 undetected lesions were located next
to the mediastinum.

In a second step, we apply our detection algorithm on the CT scan collected one
year before the diagnosis for the cancer patients. Out of the 177 malignant lesions, 20
are not visible one year before. Among the 157 already visible lesions, 152 (97%) were
successfully detected by our network.

The characterization of the detected nodules and the predictions at the scan level
were still ongoing at the time of writing. Therefore, no results related to these steps of
the pipeline on NLST can be presented yet.

Results on the DSB stage 1 dataset

In contrast to the NLST dataset, annotations regarding the localization and the charac-
terization of nodules are not provided in the DSB stage 1 dataset. The only available
information is the cancer status at the scan level, which prevents any evaluation of the
detection and characterization steps of the pipeline.

The predictions of the pipeline at the subject level for the DSB stage 1 data are
presented in Fig. 6.25. This dataset contains 1595 CT scans, and 419 of which are
cancer patients. 298 (71%) cancer cases are successfully identified by our system. 283
cancer-free subjects out of 1176 (24%) are wrongly classified as positive. The AUC and
average precision scores are 0.8 and 0.58, respectively. Performance metrics are given in
Tab. 6.4.

Tab. 6.4: Cancer classification results at the patient level obtained on the DSB stage 1 dataset.

Precision (%) Recall (%) F1-score (%)
51.3 71.1 59.6

Results on the AIR cohort

As for previous section, the cancer status of the subject is the only available information
in the private database of COPD patients. Predictions results at the scan level are
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Fig. 6.25: ROC curve (6.25a), precision-recall curve (6.25b) and confusion matrix (6.25c) for
the predictions at the patient level on the DSB stage 1 dataset.

presented in Fig. 6.26. Among the 610 subjects of the cohort, 22 were diagnosed with
cancer. 13 (59%) are correctly detected, and 125 cancer-free subjects out of 588 (21%)
are miss-classified by the pipeline. The AUC and average precision scores are 0.78 and
0.14, respectively. Performance metrics are given in Tab. 6.5.
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Fig. 6.26: ROC curve (6.26a), precision-recall curve (6.26b) and confusion matrix (6.26c) for
the predictions at the patient level on the AIR dataset.

Tab. 6.5: Cancer classification results at the patient level obtained on the AIR dataset.

Precision (%) Recall (%) F1-score (%)
9.4 59.1 16.2

Tab. 6.6 summarizes the performances of the pipeline obtained on the LIDC-IDRI
dataset by cross-validation and on the test sets.

6.5 Discussion

One of the main contributions of this chapter is the evaluation up to the patient level
of a lung cancer screening pipeline. Direct comparison with previous works is difficult
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Tab. 6.6: Performance results (in %) for the cancer prediction at the patient level on the
LIDC-IDRI dataset and on the test sets. In all cases, the pipeline was solely trained
using LIDC-IDRI data. Results for the NLST subset were not yet available at the
time of writing. (CV: cross-validation.)

LIDC-IDRI
(10-fold CV)

DSB stage 1 AIR

Precision 75.4± 7.8 51.3 9.4
Recall

(Sensitivity)
82.6± 7.4 71.1 59.1

F1-score 78.4± 5.1 59.6 16.2
Specificity 89.3± 4.0 75.9 78.7

because of the variations in data sources, in training and validation procedures, and
in the quality of annotations. Regarding the predictions at the patient level, [Zhang
et al., 2019] reported a recall score of 84% obtained by 10-fold cross-validation on a
proprietary dataset, but the precision score is not given. [Bonavita et al., 2020] obtained
on a small subset of the LIDC-IDRI dataset a precision and recall scores of 84% and
80%, respectively, but these results were not validated on external datasets. [Liao et
al., 2019] and [Ozdemir et al., 2020] achieved both a 0.87 AUC on the DSB stage 2
dataset, but their networks were not trained only on the LIDC-IDRI dataset, but also on
the DSB stage 1 data. A 0.94 AUC was obtained by [Ardila et al., 2019], with a system
trained and tested on the NLST database. Therefore, our results are in the same order
of magnitude as those reported in previous works.

One can note that all systems, including ours, achieve good, even excellent, AUC
scores. These results might however be misleading due to the heavily imbalanced nature
of the data. Cancer-free subjects are indeed much more numerous in all datasets than
lung cancer patients, which represent only 30 and 15% of the subjects in the DSB stage
1 and NLST datasets, respectively. In case of such imbalance, it has been reported that
scores like accuracy and AUC tend to be over optimistic with respect to the prediction
performances [Davis & Goadrich, 2006]. This can be explained by the fact that a naive
approach classifying correctly all negative subjects would already lead to good accuracy
results. In contrast, recall (a.k.a. the sensitivity) and precision focus on the predictions
related to the minority class, which is often the group of interest, in particular in the
medical domain [He & Garcia, 2009].

The discrepancies between the AUC scores and the precision-recall results are clearly
visible when comparing the ROC and PR curves obtained on the DSB stage 1 data,
shown in Fig. 6.25. The ROC analysis leads to a rather good AUC score of 0.8, while the
average precision result is poorer (0.58), but reflects certainly better the real performances
of the pipeline. Comparison of these results with previous work is difficult as theses
metrics are often not provided. In particular, the excellent AUC scores reported by
[Ardila et al., 2019] on the NLST dataset would have benefited from a confirmation by a
precision-recall analysis.

The main limitation of the cross-validation results on the LIDC-IDRI dataset is the
absence of ground truth cancer status, both at the nodule and scan levels. Moreover,
little information is provided for lung masses despite their relevance for lung cancer
screening. Furthermore, the LIDC-IDRI annotations are not claimed to be extensive,
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and some lesions may have been missed. Yet, the annotation quality has a direct impact
on the algorithm training and on its performance evaluation. In addition to the absence
of cancer status labels, the LIDC-IDRI annotations exhibit a high level of inter-rater
variability. There has been a consensus between 3 or 4 radiologists for only 52% of all
annotated lesions. Nodules identified by only 1 or 2 radiologists, so-called irrelevant
findings in the LUNA16 challenge, were not taken into account for the training of
the pipeline and were then considered as false positives during the evaluation. Yet,
they constitute pulmonary abnormalities that could be of significance for lung cancer
detection. Interestingly, among the nodules annotated by only 1 or 2 experts, 104 present
a malignancy score above 4, and would have thus been considered as suspicious within
our framework.

Moreover, the LIDC-IDRI malignancy score is purely based on the subjective eval-
uation of the image by the radiologists. Yet, in the NLST study, 96.4% of the scans
identified as positive turned out to be false positives [NLST, 2011]. Direct extrapolation
of this result to the LIDC-IDRI database is not possible, as the NLST scans were
analyzed in real life clinical conditions, whereas a two steps annotation procedure was
established for the LIDC-IDRI dataset [McNitt-Gray et al., 2007]. Nevertheless, the
high false positive rate in the NLST study shows that the malignancy scores need to be
considered with caution.

Another important contribution of our work is the evaluation of our pipeline, only
trained on the LIDC-IDRI dataset, on three independent test sets, where the subject
cancer status is known. At the time of writing, the complete analysis was not not yet
available for the NLST dataset. Nevertheless, a part of the DSB stage 1 data is derived
from the NLST study. Therefore, results obtained on the DSB stage 1 data provides an
insight of the performances that could be achieved on the NLST dataset.

Regarding the detection step of the pipeline, the average number of candidates per
scan identified by the detector varies little across the 4 datasets: 12, 14, 13 and 13 on
the LIDC-IDRI, the NLST, the DSB stage 1 and the AIR datasets, respectively. The
undetected nodules on the NLST were all located next to the mediastinum. This region
is particularly challenging with the presence of the bronchii, which could explain the
network failure for these cases. Moreover, the second experiment conducted on the
NLST data demonstrated the ability of the network to detect malignant nodules one
year before diagnosis.

In addition to the comparison with existing computerized screening frameworks,
another important question is the performance of the pipeline compared to that of the
radiologists. The confusion matrix summarizing the performances of the radiologists
in the NLST trial is shown in Fig. 6.27. It is obtained by pooling the results of the
LDCT arm of the trial over the three screening rounds, T0, T1 and T2. In the NLST
study, a scan was identified as positive if a lesion above 4 mm was detected, or any other
lung abnormalities relevant for lung cancer. 75126 screenings were performed over the
three rounds of the trial. 18146 were marked as positive, but only 649 were confirmed as
lung cancer cases. In addition, 44 false negatives were missed by the radiologists. The
corresponding precision, recall, and F1 scores are 3.6%, 93.7% and 6.9%, respectively.
Thus, the screening by the radiologists in the NLST study exhibits a good recall, but
also a high number of false positives. Yet, beside detecting all cancer cases, keeping
the false positive rate low is essential in screening. False positives lead to additional
costs, unnecessary anxiety for the patient, and potential increased morbidity due to
the screening side effects [Patz et al., 2014; USPSTF, 2021]. Specificity results of the
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Fig. 6.27: Confusion matrix describing the performances of the radiologists in the NLST study.
Results were pooled over the three screening rounds T0, T1 and T2. These results
do not take into account cancer cases either identified after the end of the screening
period or diagnosed in participants who missed the screening.

radiologists on the NLST study and of our pipeline on the DSB stage 1 dataset are
76.5% and 75.9%, respectively, while the sensitivities are 93.7% and 71.1%. Therefore,
our pipeline achieves a specificity close to that of the radiologists, but a lower sensitivity,
even though the differences in image sources and fraction of cancer cases between the
two datasets limit the comparison. Nevertheless, it shows that the performances of our
pipeline are encouraging, in particular given all the limitations related to the training
database, mentioned above. One might expect improved performances after re-training
on data with higher quality labels, but this will need to be confirmed by future work.

Fig. 6.28: Normalized histograms of the intensity in the lungs for the AIR, LIDC-IDRI and
DSB stage 1 datasets. The AIR images present a larger fraction of low attenuation
values, as indicated by the black arrow.
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Despite close AUC scores, results are poorer on the AIR cohort, in particular for the
precision. The percentage of wrongly classified cancer-free subjects (21%) is however
similar to the one obtained on the DSB stage 1 data (24%). On the AIR data, the
difficulty is thus the identification of the true cancer cases. Several factors might explain
the discrepancy with the other datasets. First, the AIR images were collected between
2015 and 2018 whereas all the NLST scans were acquired before 2007 and those of the
LIDC-IDRI probably around the same period, as the complete dataset was released in
2011. The AIR database is thus composed of more recent images, certainly acquired
with more recent devices, which could be a reason of the drop in performances. It could
also be explained by differences in the kernels used for the image reconstruction. Indeed,
in computed tomography, images are obtained by processing the raw attenuation data by
algorithms [Seeram, 2016]. This reconstruction process involves convolution kernels that
have an impact on the amount of noise in the image and therefore on the appearance of
the image structures [Neubauer et al., 2016]. In particular, it has been demonstrated
that these kernels may alter the performances of downstream algorithms applied on
the reconstructed image [Jacobs et al., 2016]. Finally, the AIR cohort corresponds
to a specific population with subjects diagnosed with COPD. This disease leads to a
progressive deterioration of the lungs and modifies their appearance by increasing the
proportion of regions with low attenuation values [Thurlbeck & Müller, 1994]. There is no
information regarding the presence of COPD patients in the other datasets. Nevertheless,
Fig. 6.28 shows that the average distribution of the intensity in the lungs in the AIR
dataset is different to those of the LIDC-IDRI and DSB stage 1 datasets. In particular,
the AIR images have clearly a larger number of low attenuation values, as indicated by
the black arrow. Thus, the presence of COPD is another possible explanation of the
lower performances of the pipeline on the AIR data.

6.6 Conclusion

In this chapter, we provide a complete analysis of an end-to-end lung cancer screening
pipeline, fully automated. The framework was trained only on the LIDC-IDRI dataset,
for which only limited annotations are available. Nevertheless, it showed compelling
results, close to state of the art, on independent test sets. In particular, better results
reported in previous works were obtained with pipelines trained on larger datasets with
higher quality labels.

Moreover, our study highlights the limitations of lung cancer pipeline comparisons
solely based on the AUC score, and demonstrated the relevance of precision-recall
analyses.

Our framework, entirely based on deep learning, remains a black box with a lack of
interpretability. Yet, interpretability has become a desirable property, especially in the
medical domain, where the algorithm output may impact the decisions made about the
patient. Making our pipeline more interpretable would be an interesting but difficult
challenge, because of the number of networks and steps depending on each other.

The step dedicated to nodule characterization is critical. The NLST study has
demonstrated the difficulty of the task, revealed to be challenging even for radiologists.
The lack of consensus in the definition of a nodule and the subjectivity of the image-
based malignancy assessment are limitations that need to be addressed to improve
the performances of automated lung screening pipelines. In particular, annotations
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provided only at the scan level limit the training possibilities of the algorithms and
prevent the complete understanding of their predictions at test time, when evaluating
their performances.

Fig. 6.29: The future of lung cancer screening: combining different data sources.

Besides re-training our pipeline on data with higher quality annotations, better
performances may be achieved by taking into account the evolution of the lesions over
time. For example, our pipeline could leverage the scans acquired one year apart for each
subject in the NLST dataset. Moreover, some works have demonstrated the application
of recent advances in image inpainting for synthetic lung nodule generation [Yang et al.,
2019; Jin et al., 2018; Kommrusch & Pouchet, 2019; Xu et al., 2019]. These approaches
could be explored to augment the training datasets, and to increase in particular the
fraction of malignant nodules, in order to alleviate the lack in high quality annotated
data.

Finally, one can note that imaging is only one of the numerous approaches explored
for lung cancer screening. In particular, there are concerns related to long term radiation
exposure in LDCT screening. In contrast, circulant miRNAs, for example, can be easily
collected by non-invasive liquid biopsy and their use as a potential biomarker for lung
cancer screening is investigated in the appendix of this chapter. In fact, the future of
lung cancer screening lies certainly in the combination of different data sources, such
as imaging, biological data, and clinical data, as shown in Fig. 6.29. Combining such
variable sources would be a challenge regarding the collection, the annotation and the
analysis of the data, but is a promising research avenue for future work.
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7.1 Main contributions

We summarize in this section the main contributions of the thesis.
Three of the four main chapters were related to the general topic of probabilistic

image segmentation modelling. In chapter 3, we developed some theoretical aspects of
the Bayesian formulation of the image segmentation problem, with a specific focus on
the question of the spatial regularization. In particular, we introduced a novel prior
based on a Gaussian process, together with optimization techniques allowing the method
to scale to large images. This new prior was compared to 5 other priors, i.e. the MRF,
CRF, TV, FDSP and GLSP priors, within a common Bayesian image segmentation
model based on variational inference. The model tractability was achieved by leveraging
the concept of local lower bounds on the marginal likelihood. Comparison of the selected
spatial priors was performed with respect to several criteria, including the complexity of
their inference, their regularization strength, the possibility to estimate automatically all
hyperparameters and their impact on uncertainty quantification. Moreover, we showed
how our framework may be used to segment specific structures in an image using a narrow
band approach. In addition, we introduced an incremental algorithm for the GLSP prior
inspired from sparse Bayesian learning allowing the level of spatial regularization to be
adapted locally in the image in a data-driven way. To the best of our knowledge, this
incremental algorithm is the first attempt to make the level of spatial regularization
dependent on the location within the image.

In chapter 4, we proposed a direct application of the methodology developed in
the first chapter for unsupervised quality control of image segmentation. Our
approach is based on a simple probabilistic model that integrates appearance and
regularization assumptions in a data-driven way, in contrast to previous unsupervised
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methods requiring the user to define a trade-off between the two terms. Our framework
does not require any training set or any prior knowledge regarding the segmented
structures and provides a result that is visually interpretable. Its effectiveness to extract
atypical cases was demonstrated on several large photographic and medical datasets. In
particular, it was shown to outperform the classical score-based unsupervised methods.

In chapter 5, we developed a new robust approach to estimate a consensus
from several continuous segmentation maps produced by different experts or
algorithms. The originality of our approach lies in the replacement of the classical
Gaussian distribution by heavy-tailed distributions. The possibility to represent these
distributions as Gaussian scale mixtures makes our method tractable and, importantly,
enables a local assessment of the raters’ performances. Therefore, in contrast to the
classical Gaussian model, the raters’ contributions to the consensus are not uniform in
the image but may vary spatially depending on the local performances of the raters.
Moreover, we introduced the concept of mixture of consensuses, which is another approach
for robust consensus estimation and allows outliers among raters to be identified. In
addition, we demonstrated the relevance of the mixture model to cluster the raters over
a batch of images.

The last part of the thesis was dedicated to lung cancer screening by LDCT. We
proposed a fully automated pipeline for lung cancer screening based on deep
learning which takes a chest CT scan as input and outputs the associated lung cancer
probability. Our pipeline is composed of 3 neural networks corresponding to the 3
following steps: lung segmentation, nodule detection and nodule characterization. The
results at the nodule level are then aggregated in a simple manner to produce a prediction
at the scan level. Our pipeline was trained on the LIDC-IDRI database, with subjective
radiological annotations, and tested on three independent test sets, for which reliable
labels were available. Despite the numerous limitations of the training set, our pipeline
led to close to state of the art results on the test sets. Moreover, our nodule detector
showed a good ability to detect lesions one year before radiologists and we obtained a
final specificity close to that of radiologists.

7.2 Perspectives

We discuss in this last section some perspectives for an extension of the approaches
developed in the thesis.

7.2.1 Spatial regularization in neural networks
Chapters 4 and 5 are direct examples of application of the methodology developed
in chapter 3. A remaining important question is the local adaptivity of the spatial
regularisation. We began to explore this issue with the introduction of the incremental
algorithm proposed for the GLSP prior. The approach, inspired from sparse Bayesian
learning, selects automatically the most relevant basis functions thus adapting locally
the level of regularization. The method is nonetheless specific to the GLSP prior and
the question of local adaptivity is still open for the other priors.

Moreover, state of the art segmentation performances are now achieved by deep
learning-based approaches. Common losses used for image segmentation such as soft
Dice or cross entropy do not enforce explicitly spatial regularization. Theoretically,
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given unlimited training resources, we could expect the network to learn the appropriate
level of spatial regularization automatically. Yet, networks often suffer in practice from
limited expressiveness and it is known that, in such cases, the introduction of explicit
constraints in the loss function can lead to better results and faster convergence. For
instance, [Dong et al., 2020] added a texture term to the classical soft Dice loss, enabling
to constrain the appearance along the segmentation boundaries. The proposed loss
led to improved performances for gastric antrum segmentation on ultrasound images.
In [Clough et al., 2020], the loss is designed to incorporate prior knowledge about the
topology of the structures to be segmented, and was demonstrated to achieve better
segmentation accuracy on cardiac images.

More generally, there is a rising interest of the computer vision community in moving
towards an integration of classical and deep learning-based methods, in particular to
improve the interpretability and the uncertainty assessment of deep learning results. A
promising avenue for future work would therefore be to explore the generalization of the
methodology developed for Bayesian spatial regularization to neural networks. One can
note that a related work has recently been proposed by [Liu et al., 2020]. They introduce
a variational interpretation of the softmax function, which is typically used after the last
layer in neural networks to produce pixel-wise segmentation probabilities. They show how
this re-formulation enables to enforce explicitly spatial and shape regularization. The
approach was successfully tested on skin lesions segmentation, as shown in Fig. 7.1, which
demonstrates again the relevance of incorporating prior knowledge in loss functions.

Fig. 7.1: Influence of adding spatial and topological constraints to the training loss on the
segmentation results of skin lesions [Liu et al., 2020].

7.2.2 Unsupervised quality control of bounding boxes
A first possibility to extend the framework proposed in chapter 4 for unsupervised quality
control of segmentations would be to change the model assumptions. For example, the
spatial smoothness hypothesis could be combined with a prior constraining the shape of
the segmented structure. This could lead to improved performances when dealing with
the segmentation of specific objects. However, the model would loose its genericity and
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require a set of trusted segmentations for the configuration of the shape prior parameters.
We would then move away from the initial objective, which was to study unsupervised
methods.

A second extension possibility would be the correction of segmentations, which is
the next step after the detection of suspicious cases. We have shown that two great
advantages of our method in comparison to score-based approaches are its interpretability
and the possibility to localize potential errors within the image. Our approach could be
extended to propose an interactive procedure for the manual delineation of structures in
an image, that would automatically assess the quality of the segmentation and suggest
alternatives for suspicious segments.

Furthermore, although we restrained the analysis to segmentation labels in this thesis,
we believe that our approach could be used on other types of annotations. In particular,
it could be of interest for the quality control of bounding box annotations. It is an
important issue in the computer vision domain as flawed labels can affect the training
and the final performances of deep learning-based detectors. Drawing bounding boxes
around objects to be detected is a tedious and time-consuming task. Several approaches
have been proposed to alleviate the labelling burden, for instance strategies leveraging
crowd-sourcing [Su et al., 2012; Lin et al., 2014], automated approaches [Wu et al., 2020]
or new training procedures incorporating a human verification step [Papadopoulos et
al., 2016]. Importantly, all require the implementation of a proper quality control, which
can be challenging depending on the size of the datasets.
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Fig. 7.2: IoU distribution for the analysis of 2D ground truth bounding boxes from the LUNA16
dataset.

Despite its relevance, the question of automatic quality control of bounding box
annotations has received little attention. Fig. 7.2 and 7.3 present some preliminary
results highlighting the potential of our method for the unsupervised quality control of
bounding box labels. The inputs are the nodule bounding box annotations of the LUNA16
challenge [Setio et al., 2017], that was introduced in chapter 6. These annotations include
the coordinates of the center of the lesion and its diameter. The approach is tested here
in 2D on the middle axial slice of the 127 nodules having a minimum 15 mm diameter.
The appearance model of the foreground region is fitted on the image region defined
by the input bounding box. The background model is learnt on a tight narrow band
surrounding the input bounding box. Our probabilistic model generates a segmentation
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used to define a new bounding box, which is compared to the input by computing an
intersection over union (IoU) score.

Fig. 7.3: Bounding boxes with the smallest and largest IoU taken from the left and right tails of
the distribution, respectively. Cases are ranked according to their IoU value (Largest
values to the right).

The analysis is then carried out as for the segmentation labels. The right tail of
the histogram in Fig. 7.2 contains cases with the largest IoU scores that are explained
by our model. In contrast, left tail samples are characterized by discrepancies between
the LUNA16 bounding box and the one produced by our model. As shown in Fig. 7.3,
these samples indeed appear to be more suspicious than cases from the right tail. These
exploratory results are compelling and demonstrate that the quality control of bounding
box annotations is another promising application perspective for our unsupervised
framework.

7.2.3 Consensus estimation in a supervised learning setting
Several extensions possibilities for the robust consensus estimation model have already
been discussed at the end of chapter 5. The important remark is that our model is not
specific to image segmentation and could find an application in other domains where
continuous data fusion is required, eventually by adapting the prior defined over the
consensus map.
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In the thesis, the robust model was mainly explored for the estimation of a consensus
between several experts or segmentation algorithms. However, another interesting feature
of the framework is its ability to parametrize the raters’ performances. This could be
used to address a crucial question that arises when developing segmentation algorithms,
i.e. how comparable are their performances to those of human experts? More precisely,
our model could be applied over a set of images to jointly estimate the performances of
the algorithm and of the experts. The next step would then consist in a variance analysis
to determine if the average performance of the algorithm lies within the variance of the
raters’ performances.

Moreover, as for chapter 3, an interesting research perspective would be to study how
our framework could be translated to the supervised learning setting, and in particular
be used to improve the performances of deep learning-based approaches. Multiple labels
can indeed have adverse effects during training and there is no consensus yet regarding
the best way to treat them. [Zhang et al., 2020] proposed recently a novel training
procedure towards this direction. Inspired by the binary STAPLE algorithm, their
framework is composed of 2 networks, shown in Fig. 7.4, that jointly estimate the
consensus segmentation and the raters’ performances, leading to better results than
the commonly used majority voting approach. In contrast to the classical STAPLE
algorithm, this deep learning-based approach leverages the whole training set to learn the
raters’ performances and is thus able to take correlations between images into account.

Fig. 7.4: Deep learning framework allowing the performances of annotators and the true seg-
mentation map to be estimated at the same time [Zhang et al., 2020].
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7.2.4 Towards an integrative analysis of chest CT scans
Our work on lung cancer screening highlighted the need in datasets with high quality
annotations. This obstacle would need to be addressed to enable the improvement of
computerized pipelines, but also their fair evaluation reflecting the real performances.
The characterization of nodules on LDCT has been demonstrated to be a very difficult
task. Combining LDCT with other imaging modalities could be a possibility to identify
more specific features associated with malignancy. A monitoring over time would also
certainly lead to a finer characterization, as it would allow the growth of the lesion
to be taken into account. The latter is indeed a key parameter often associated with
malignancy that cannot be assessed with only one time point.

Moreover, as discussed at the end of chapter 6, the future of lung cancer screening
certainly lies in the combination of multiple data sources, for instance, imaging resources
and biological samples [Benzaquen et al., 2019]. How to integrate such heterogeneous
data sources in a same model to predict lung cancer is an open challenge for future
work.

Furthermore, the consequences of the current COVID-19 pandemic on lung cancer
patients is not fully known. Some results already indicate that the presence of lung cancer
is an increased risk factor for developing a severe form of COVID-19 [Luo et al., 2020] but
the underlying relationships between the two diseases need to be established, especially
to assess the long-term impact of COVID-19 on lung cancer. In addition, the pandemic
has created serious disruptions in the lung cancer screening programs [Van Haren et
al., 2021], and there are also concerns that COVID-19 might affect the detection of lung
cancer based on LDCT. [Calabrò et al., 2020] mentioned indeed that COVID-19 may
lead to patterns similar to those found in some lung cancer patients on chest CT scans.
The impact of this potential overlap of features between COVID-19 and lung cancer on
the performances of computerized screening pipelines will need to be investigated.

Finally, it would be ineffective to reduce the CT scan examination to lung cancer
detection, since it may contain information relevant for other lung diseases. In the long
term, one could expect a lung cancer screening pipeline to be able not only to detect
lung cancer cases but also to notify potential abnormalities pertinent for the general
health of the patient.
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Appendix A
Spatial priors for Bayesian image
segmentation
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A.1 Variational updates

In this section, we give the derivations of the variational updates formula. We focus on
the label and spatial smoothness variables, since formulas for the appearance parameters
are classical solutions of variational Gaussian mixtures (more details can be found for
instance in [Bishop, 2006]). The model log joint probability p(I, Z,Γ,W, θI) factorizes
as p(I|Z,Γ, θI)p(Γ|Z, θI)p(θI)p(Z|W)p(W).

A.1.1 Update of q(Z)

Eq. 3.19 applied to the label posterior approximation gives:

log q∗(Z) = E[log p(I|Z,Γ, θI) + log p(Γ|Z, θI) + log p(Z|W)] + cst . (A.1)
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Developing the first term, we get:

E[log p(I|Z,Γ, µ,Λ)] =
N∑
n=1

1∑
k=0

ZnkE

 Mk∑
m=1

Γnkm logN (In;µkm,Λkm)

 ,
=

N∑
n=1

1∑
k=0

Znk

Mk∑
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δnkm

[
−D2 log(2π) + 1

2E[log |Λkm|]

−1
2E[(In − µkm)TΛkm(In − µkm)]

]
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(A.2)

with E[log |Λkm|] = ∑D
d=1 ψ

(
νkm+1−i

2

)
+D log 2+log |Wkm| and E[(In−µkm)TΛkm(In−

µkm)] = Dβ−1
km + νkm(In −mkm)TWkm(In −mkm).

The second term leads to:

E[log p(Γ|Z, π)] =
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1∑
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 Mk∑
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Γnkm log πkm

 ,
=

N∑
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Mk∑
m=1

δnkmE[log πkm] ,

(A.3)

with E[log πkm] = ψ(γkm)− ψ(γ̂k), where γ̂k = ∑
m γkm.

The last term involves the label prior which leads to:

E[log p(Z|W)] =
N∑
n=1

E
[
log

(( 1
1 + exp yn

)1−Zn ( exp yn
1 + exp yn

)Zn)]
,

= ZnE [yn] .
(A.4)

where yn is equal to wn for the TV, FDSP and GP priors, and yn = ΦT
nW for the GLSP

prior.

Summing the three expectations A.2, A.3 and A.4 and taking the exponential, we
get q∗(Z) ∝ ∏n ρ

1−Zn
n0 ρZnn1 , where the expressions for ρn0 and ρn1 are given by Eq. 3.20.

We finally obtain a product of Bernoulli distributions with parameters ηn0 and ηn1, such
that q∗(Z) = ∏

n η
1−Zn
n0 ηZnn1 .

A.1.2 Update of q(W)

Eq. 3.19 applied to the posterior approximation of the weights gives:

log q∗(W) = E[log p(Z|W) + log p(W)] + cst ,

> E[logF (Z,W, ξ) + log p(W)] + cst .
(A.5)
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JJ bound

For the GLSP, TV and FDSP priors, F is obtained through the JJ bound. Discarding
the terms independent with respect to W, logF (Z,W, ξ) is written:

logF (Z,W, ξ) =
N∑
n=1
−λ(ξn)y2

n + yn

(
ηn1 −

1
2

)
+ cst , (A.6)

where cst is a constant independent of W, and with yn = wn for the TV and FDSP
priors or yn = ΦT

nW for the GLSP prior.

The second term in Eq. A.5 depends on the spatial prior. For the GLSP, E[log p(W)] =
−α

2 WTRW, which leads to:

log q∗(W) = −1
2WT

[
ΦBΦT + αR

]
W +

N∑
n=1

(
ηn1 −

1
2

)
ΦT
nW + cst . (A.7)

By identifying the quadratic and linear terms in W, we recognize a Gaussian distribution
of parameters given by Eq. 3.31 and Eq. 3.32.

For the TV and FDSP priors, we further assume a factorization between the q(wn).
Keeping the terms involving wn, we get for the TV prior:

log q∗(wn) = −1
2w

2
n

(
2λ(ξn) +

∑
d

α
√
un
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)
+ cst .

(A.8)

We recognize again a Gaussian distribution whose parameters are given by Eq. 3.33 and
Eq. 3.34. Following the same approach for the FDSP prior, we have:

log q∗(wn) = −1
2w

2
n

(
2λ(ξn) +

∑
d

α

2 +
∑
d

α

2

)

+ wn

(
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2 + α

2
∑
d

E[wδd(n+2)] + α

2
∑
d

E[wδd(n−2)]
)

+ cst .

(A.9)

Thus q∗(W) is also a Gaussian distribution whose parameters are given by Eq. 3.35 and
Eq. 3.36.

Böhning bound

Following the same approach, we can write for the Böhning bound:

logF (Z,W, ξ) =
N∑
n=1
−1

2aw
2
n + wn(bn + ηn1) + cst . (A.10)
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Adding the prior term, we finally obtain:

q∗(W) = −1
2WT

(
aIN + Σ−1

GP

)
W + W[η1 +B] + cst , (A.11)

which leads to Eq. 3.37 and Eq. 3.38.

A.1.3 Update of α
α is the hyperparameter of the TV, FDSP and GLSP priors and controls the strength of
the regularization. It can be estimated automatically in a data-driven way. Considering
α as a variable, we note q(α) the approximation of its posterior distribution, assumed to
be a Dirac distribution. The mode of q(α) is found by maximizing Eq. 3.19, which leads
to the update formula Eq. 3.39, Eq. 3.40 and Eq. 3.41.

A.1.4 Update of ξ and u
ξ is the additional variational parameter introduced by the local variational bounds. We
follow the same approach as for α and assume q(ξn) to be a Dirac distribution. Eq. 3.19
applied to q(ξn) gives for the JJ bound:

log q∗(ξn) = log σ(ξn)− ξn
2 − λ(ξn)(E[y2

n]− ξ2
n) . (A.12)

Taking the derivative with respect to ξn and setting it to zero gives λ′(ξn)(E[y2
n]−ξ2

n) = 0.
As λ′(ξn) ≤ 0, we obtained the formula reported in section 3.4.3.

Similarly, we have for the Böhning bound:

log q∗(ξ) = [14INξ − g(ξ)]TE[W]− 1
8ξ

T ξ + g(ξ)T ξ − lse(ξ) . (A.13)

Zeroing the derivatives leads to the update of ξ for the Böhning bound reported in
section 3.4.3.

Finally, u is introduced by the bound over the square root function that allows the
TV prior to be tractable. Taking the derivative of Eq. 3.19 applied to q(un) gives:

un −
∑D
d=1 E[(wn − wδd(n))2]

2un
√
un

= 0 . (A.14)

It therefore leads to the update presented in section 3.4.3.

A.2 Lower bound

In this paper, variational inference is used to estimate the model parameters and to
maximize a lower bound L(q) over the data log likelihood. Computing the lower bound
is interesting for several reasons. First, it allows the convergence of the model to be
assessed in a convenient manner. Second, it provides a way to implement a quality check
as each iteration of the model should correspond to an increase in the lower bound.
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Finally, the lower bound is also a useful tool to perform model selection by comparing
the values reached after convergence. However, performing model selection requires to
be able to compute the lower bound with the constants included, while the latter may
be neglected for a simple convergence monitoring. In particular, this is not possible for
the TV, MRF and CRF priors due to the intractability of their normalization constants.
In this case, the lower bound can only be computed up to a constant, which prevents
any application to model selection.

For the MRF and CRF priors, the lower bound can be rewritten as:

L(q) = E[log p(I|Γ, Z, θI)] + E[log p(Γ|Z, θI)] + E[log p(θI)] + E[logP (Z)]
− E[log q(Z)]− E[log q(Γ)]− E[q(θI)] .

(A.15)

For the other priors, Eq. 3.30 leads to:

J (q) = E[log p(I|Γ, Z, θI)] + E[log p(Γ|Z, θI)] + E[log p(θI)]
+ E[logF (Z,W, ξ)] + E[log p(W)]
− E[log q(Z)]− E[log q(Γ)]− E[q(W)]− E[q(θI)] .

(A.16)

We recall that θI = {µ,Λ, π} represents the intensity variables. Therefore, E[log p(θI)]
and E[log q(θI)] can be expanded as E[log p(µ|Λ)] + E[log p(Λ)] + E[log p(π)] and
E[log q(µ|Λ)] + E[log q(Λ)] + E[log q(π)], respectively.

The values of the different expectations are reported in the following sections.

A.2.1 Expectations involving appearance parameters

Formula given in this section are classical results for variational mixtures of Gaussian
distributions. More details can be found in [Bishop, 2006].

E[log p(I|Z,Γ, µ,Λ)] = 1
2

1∑
k=0

Mk∑
m=1

Nkm

[
E[log |Λkm|]−

D

βkm
− νkm Tr(SkmWkm)

− νkm(Ikm −mkm)TWkm(Ikm −mkm)−D log(2π)
]
.

(A.17)

E[log p(Γ|Z, π)] =
N∑
n=1

1∑
k=0

Mk∑
m=1

ηnkδnkmE[log πkm] . (A.18)

E[log p(π)] =
1∑

k=0

logC(γk0) + (γk0 − 1)
Mk∑
m=1

E[log πkm]

 . (A.19)
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E[log p(µ,Λ)] =
1∑

k=0

1
2

Mk∑
m=1

[
D log βk0

2π + E[log |Λkm|]−
Dβk0
βkm

− βk0νkm(mkm −mk0)TWkm(mkm −mk0)
]

+Mk logB(Wk0, νk0)

+νk0 −D − 1
2

Mk∑
m=1

E[log |Λkm|]−
1
2

Mk∑
m=1

νkm Tr(W−1
k0 Wkm)

 ,

(A.20)

where B(W, ν) = |W |−ν/2
(
2νD/2πD(D−1)/4∏D

i=1 Γ
(
ν+1−i

2

))−1
.

The entropic terms are given by:

E[log q(Γ)] =
N∑
n=1

1∑
k=0

Mk∑
m=1

δnkm log δnkm . (A.21)

E[log q(π)] =
1∑

k=0


Mk∑
m=1

((γkm − 1)E[log πkm]) + logC(γk)

 , (A.22)

where C(γk) = Γ(∑m γkm)/∏m Γ(γkm).

E[log q(µ,Λ)] =
1∑

k=0

Mk∑
m=1

1
2E[log |Λkm|] + D

2 log
(
βkm
2π

)
− D

2 −H[q(Λkm)] , (A.23)

where H[Λ] = − logB(W, ν)− ν−D−1
2 E[log |Λ|] + νD

2 .

A.2.2 Expectations involving the label variable

The expectation of the label prior E[log p(Z)] leads to β
2
∑N
n=1

∑
i∈δ(n)

∑1
k=0 ηnkηik +

cst and β
2
∑N
n=1

∑
i∈δ(n)

∑1
k=0 ηnkηik

exp(−γ(In−Ii)2)
dist(n,i) + cst for the MRF and CRF priors,

respectively. The constants cannot be computed because of the intractability of the
partition functions of the priors.

For the other priors, the expectation of the label prior E[log p(Z|W)] is replaced by
a local variational bound E[logF (Z,W, ξ)] to allow tractability. For the JJ bound, we
have:

E[logF (Z,W, ξ)] =
N∑
n=1

E[yn]
(
ηn1 −

1
2

)
+ log σ(ξn)− ξn

2 − λ(ξn)(E[y2
n]− ξ2

n) , (A.24)
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where yn = wn for the TV and FDSP priors, and yn = ΦT
nW for the GLSP prior. We

use the Böhning bound for the GP prior which leads to:

E[logF (Z,W, ξ)] = −1
2aTr(ΣW) +

N∑
n=1

ηn1µWn −
1
2aµ

2
Wn

+ bnµWn − cn , (A.25)

with a = 1/4, bn = aξn − g(ξn) and cn = aξ2
n/2− g(ξN )ξn + lse(ξn). We recall that g is

the gradient of the LogSumExp function.
The entropic term is always given by:

E[log q(Z)] =
N∑
n=1

ηn1 log ηn1 + (1− ηn1) log(1− ηn1) . (A.26)

A.2.3 Expectations involving the spatial smoothness variables
The expectation of the prior over W depends on the chosen spatial regularization. For a
TV prior, the expectation can only be computed up to an additive constant because of
the intractability of the normalization constant, which leads to E[log p(W)] = N(logα−
1) + cst. In contrast, we have E[log p(W)] = 1

2 (−N log 4π +N logα+ log |ΛFDSP| −N)
for a FDSP prior and E[log p(W)] = 1

2(L logα+ log |R|−L log 2π−L) for a GLSP prior.
Finally, with a GP prior N (W; 0,ΣGP) we obtain:

E[log p(W)] = −N2 log 2π − 1
2 log |ΣGP| −

1
2
[
Tr
(
Σ−1

GPΣW
)

+ µTWΣ−1
GPµW

]
. (A.27)

The entropic term is written E[log q(W)] = −1
2 (L log 2π + log |ΣW|+ L) and

E[log q(W)] = −1
2 (N log 2π + log |ΣW|+N) for the GP and GLSP priors, respectively.

For the TV and FDSP priors, it is E[log q(W)] = −1
2(N log 2π +N +∑N

n=1 log |Σwn |),
because we further assume that q(W) = ∏

n q(wn).

A.3 RKHS regularizers for the GLSP prior

In this section, we show how to obtain regularizers of the label field based on RKHS
(reproducing kernel Hilbert space) methods. We recall that the label field f : RD 7−→ R
is given by:

∀x ∈ RD, l(x) =
L∑
l=1

Φl(x)wl . (A.28)

Let S be a D × D symmetric positive definite matrix, KS(x, y) = exp−1
2(x −

y)TS−1(x − y) a translation invariant kernel and K̂S =
∫
RD e

−ixξKS(x)dx its Fourier
transform. The space HKS consisting of integrable d-vector fields g : RD −→ R such
that:

||g||2KS = 1
(2π)D

∫
RD

|ĝ(ξ)|2

K̂S(ξ)
dξ < +∞ , (A.29)
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endowed with the inner product:

〈g, h〉HKS = 1
(2π)D

∫
RD

ĝ(ξ)ĥ(ξ)∗

K̂S(ξ)
dξ , (A.30)

is an RKHS with KS as the reproducing kernel. Due to the reproducing property, the
following inequality holds for any g ∈ HKS and any x, x′ ∈ RD:

|g(x)− g(x′)| ≤ ||g||HKS ||KS(x)−KS(x′)||HKS . (A.31)

The RKHS norm, ||.||HKS , thus controls the variations of the function with respect to
the geometry induced by the kernel, KS . Moreover, the partial derivatives of f ∈ HKS
exist and all lie in HK [Zhou, 2008].

The label field f is a linear combination of Gaussian basis functions Φk that are
in HKS . Therefore, penalizing the RKHS norm of the label field or of its derivatives
encourages the function to present smooth variations over the image, which is the desired
output. Let D be a linear differential operator and j a non-negative integer. We can
then write:

〈Djf,Djf〉HKS = 〈
∑
l

wlD
jΦl,

∑
k

wkD
jΦk〉HKS ,

= WTRW ,

(A.32)

where R is an L × L matrix whose k, l coefficient is 〈DjΦk, D
jΦl〉HKS and can be

computed in closed form.

From Eq. A.30 and recalling that Φk(x) = Φ(x− xk), we can write:

Rkl = 1
(2π)D

∫
RD

D̂jΦk(ξ)D̂jΦl(ξ)∗K̂S
−1(ξ)dξ ,

= F−1
[
D̂jΦ(ξ)D̂jΦ

∗
(ξ)K̂S

−1(ξ)
]

(xk − xl) ,
(A.33)

where F−1 is the inverse Fourier transform.

In the chapter, we consider the cases where D = ∇s, where s = 0, 1, 2 or 3.
Recall that for any multi-index α = (α1, . . . , αD), F

[(
∂
∂x

)α
g
]

(x) = (iξ)αĝ(ξ) =
i|α|ξα1

1 ξα2
2 · · · ξ

αD
D ĝ(ξ), where |α| = ∑

k αk. Thus for any g ∈ HKS , we can write:

F [∇g] = iξĝ(ξ) ,

F
[
∇2g

]
= −||ξ||2ĝ(ξ) ,

F
[
∇3g

]
= −i||ξ||2ξĝ(ξ) .

(A.34)

Furthermore, the Fourier transform of a normalized Gaussian basis such that it
takes the value 1 at the origin Φk(x) = exp−1

2(x − xk)TS−1
k (x − xk) is given by

F [Φk](x) = |2πSk|1/2 exp(−iξTxk) exp
(
−1

2ξ
TSkξ

)
. Combining this expression together

150 Appendix A Spatial priors for Bayesian image segmentation



with Eq. A.34 in Eq. A.33, we derive a closed-form expression for the k, l coefficient of
the matrix R for normalized Gaussian basis for s = 0, 1, 2 or 3:

Rkl =
∣∣∣∣ SkSl
S(Sk + Sl − S)

∣∣∣∣1/2 (−∆)sKSk+Sl−S(xk − xl) . (A.35)

The above expression involves powers of the Laplacian of a Gaussian kernel, that
can be computed to give:

∆KS(x) =
{
xTS−2x− Tr(S−1)

}
KS(x) , (A.36)

∆2KS(x) =
{(

Tr(S−1)− xTS−2x
)2

+ 2 Tr(S−2)− 4xTS−3x

}
KS(x) , (A.37)

∆3KS(x) =
{(

Tr(S−1)− xTS−2x
) [
−
(
Tr(S−1)− xTS−2x

)2
− 6 Tr(S−2)

+ 12xTD−3x
]

+ 24xTS−4x− 8 Tr(S−3)
}
KS(x) .

(A.38)

A.4 Derivation of the incremental algorithm for the
GLSP prior

The incremental algorithm [Tipping & Faul, 2003] is based on a second order Taylor
expansion of the lower bound L(q) + log p(W|α). Keeping only the terms that depend
on W, gives:

L(q) + log p(W|α) =
N∑
n=1

∑
Zn

q(Zn) log p(Z|W) + log p(W|α) + cst ,

=
N∑
n=1

ηn1 log σ(ΦT
nW) + (1− ηn1) log σ(−ΦT

nW)− 1
2WTAW + cst .

(A.39)

The function optimized by the RVM when the likelihood is a Bernoulli distribution
is exactly the same, except that the binary classification targets tn ∈ {0, 1} are replaced
here by the “soft” labels ηn1 ∈ [0, 1].

Let gn be the function defined as gn(x) = ηn1 log σ(x) + (1−ηn1) log σ(−x). Eq. A.39
can then be rewritten as:

L(q) + log p(W|α) =
N∑
n=1

gn(ΦT
nW)− 1

2WTAW + cst . (A.40)
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Furthermore, we have g′n(x) = (ηn1 − σ(x)) and g′′n(x) = (σ(x)− 1)σ(x). Therefore,
differentiating Eq. A.40 twice gives:

∂(L(q) + log p(W|α))
∂W =

N∑
n=1

Φng
′
n(ΦT

nW)−AW = Φg′ −AW , (A.41)

∂2(L(q) + log p(W|α))
∂W2 =

N∑
n=1

Φng
′′
n(ΦT

nW)ΦT
n −A = −[ΦBΦT + A] . (A.42)

This leads to the covariance of the Gaussian approximation of the weights posterior
reported in Eq. 3.45. In addition, the gradient (Eq. A.41) equals zero at the mode,
leading to Φg′ −AµW = 0. Introducing the covariance and rearranging, we can finally
write the mode as µW = ΣWΦBt̂ with t̂ = B−1g′ + ΦTµW.

The αl are updated by maximizing L(α) obtained after marginalizing out the weight
variable from Eq. A.40, the integral being tractable with the Laplace approximation:

L(α) =
∫

W
L(q) + log p(W|α)dW ,

≈ L(q, µW) + log p(µW|α) + L

2 log 2π + 1
2 log |ΣW| .

(A.43)

Introducing the matrix C = B−1 + ΦTAΦ, one can show that L(α) and F(α) =
−1

2

{
log 2π + log |C|+ t̂TC−1t̂

}
have the same derivative with respect to αl. The second

expression is convenient to estimate the contribution of a particular basis l to the lower
bound. All the expressions presented in [Tipping & Faul, 2003] can be used at each
iteration to select the basis function with the largest gain in lower bound and the
appropriate action to apply (re-estimation, addition or deletion). We refer to the original
paper for more details.
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Appendix B
Unsupervised quality control of
segmentations based on a smoothness
and intensity probabilistic model
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B.1 Unsupervised indices

We give in this section the formula used to compute the unsupervised indices. We denote
by R the number of regions inside an image (typically 2 here, for the foreground and
background regions). Rj denotes the set of voxels in region j and |Rj | is the number of
voxels in region j. Each indicator requires the computation of an intra-region uniformity
metric IU and an inter-region disparity metric ID.

B.1.1 Zeb [Zhang et al., 2008]

IUj = 1
|Rj |

∑
s∈Rj

max {contrast(s, t), t ∈W (s) ∩Rj} , (B.1)
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where W (s) is the neighborhood of voxel s and:

contrast(s, t) = 1
ν

ν∑
i=1

∣∣∣Iis − Iit ∣∣∣ . (B.2)

IDj = 1
|b(Rj)|

∑
s∈b(Rj)

max {constrast(s, t), t ∈W (s), t /∈ Rj} , (B.3)

where b(Rj) is the set of pixels on the border of Rj .

The final indicator is given by:

Zeb = IU
ID =

∑
j IUj∑
j IDj

. (B.4)

B.1.2 FRC [Zhang et al., 2008]

IU = 1
R

R∑
j=1

|Rj |
N

e2(Rj) , (B.5)

where:

e2(Rj) = 1
ν

ν∑
i=1

∑
s∈Rj

(
Iis − ÎiRj

)2
. (B.6)

ÎiRj is defined for 1 ≤ i ≤ ν by:

ÎiRj = 1
|Rj |

∑
s∈Rj

Iis . (B.7)

ID = 1
R

R∑
j=1

|Rj |
N

 1
|W (Rj)|

∑
t∈W (Rj)

D(Rj , Rt)

 , (B.8)

where W (Rj) is the set of neighboring regions of Rj and:

D(Rj , Rt) = 1
ν

∑
i

|ÎiRj − Î
i
Rt | . (B.9)

The final indicator is given by:

FRC = IU− ID . (B.10)
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B.1.3 η [Zhang et al., 2008]

The background is denoted here by b, while f denotes the foreground.

IU = Nb

N
e2(Rb) + Nf

N
e2(Rf ) , (B.11)

where Nb and Nf are the number of voxels in the background and foreground, respectively,
and e2(Rj) is defined as previously.

ID = NbNf

N2

(
ÎRf − ÎRb

)2
, (B.12)

where ÎRj = 1
ν

∑ν
i=1 Î

i
Rj
.

The final indicator is given by:

η = IU
ID . (B.13)

B.1.4 GS [Johnson & Xie, 2011]

IU =
∑
j |Rj |Vj∑
j |Rj |

, (B.14)

where Vj is the variance of region j.

The inter-region disparity metric used is the Global Moran’s I, defined as:

ID = R∑
i

∑
j 6=iwij

∑R
i=1

∑R
j=1wij(yi − y)(yj − y)∑R

i=1(yi − y)2
, (B.15)

where wii = 0, wij = 1 if Ri and Rj are neighbors and 0 otherwise. yi is the mean
intensity value of region Ri and y is the mean intensity value of the image.

The final indicator is given by:

GS = IU + ID . (B.16)

B.2 FDSP prior - variational inference

We present in this section the derivation of the variational update formula (4.11),
(4.12), (4.13), (4.14) and (4.15). The likelihood of the model p(I, Z,W, α) factorizes as
p(I|Z)p(Z|W)p(W|α)p(α).
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B.2.1 Update of q∗Z(Z)

log q∗Z(Z) = EW,α[log p(I|Z) + log p(Z|W)] + cst ,

> EW,α[log p(I|Z) + logF (Z,W, ξ)] .
(B.17)

Recalling that p(I|Z) = ∏
n r

Zn
n (1− rn)1−Zn , we have:

EW,α[log p(I|Z)] =
∑
n

Zn log rn + (1− Zn) log(1− rn) . (B.18)

The prior p(Z|W) = ∏
n[σ(wn)]Zn [σ(−wn)]1−Zn is lower bounded by F (Z,W, ξ) to

give:

EW,α[logF (Z,W, ξ)] =
∑
n

Zn[log σ(ξn) + (E[wn]− ξn)/2

− λ(ξn)(E[w2
n]− ξ2

n)] + (1− Zn)[log σ(ξn)
− (E[wn] + ξn)/2− λ(ξn)(E[w2

n]− ξ2
n)] .

(B.19)

Summing (B.18) and (B.19) and taking the exponential, we have q∗Z(Z) ∝∏
n ρ

1−Zn
n0 ρZnn1 where the expressions of ρn0 and ρn1 are given by (4.11). With the nor-

malization constraint, we finally obtain q∗Z(Z) = ∏
n η

Zn
n1 η

1−Zn
n0 with ηnk = ρnk/

∑
k ρnk

for k ∈ {0, 1}.

B.2.2 Update of q∗W(W)

log q∗W(W) = EZ,α[log p(Z|W) + log p(W|α)] + cst ,

> EZ,α[logF (Z,W, ξ) + log p(W|α)] .
(B.20)

With the expression of p(W|α) given in (4.5) and assuming that qW(W) =∏
n qwn(wn), we obtain:

log q∗wn(wn) =− 1
2

[
2λ(ξn)

(
wn −

1
2λ(ξn)

(
ηn1 −

1
2

))2
]

− 1
2Ewj , j 6=n

[
α

2
∑
d

(wn − wδd(n−2))2 + (wn − wδd(n+2))2
]
.

(B.21)

By identifying the quadratic and linear terms in wn, we obtain the formula for Σwn

and µwn given in (4.12) and (4.13).
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B.2.3 Update of q∗α(α)

log q∗α(α) = EW[log p(W|α)] + cst ,

= EW

[
N

2 logα− α

4
∑
n

D∑
d=1

(wδd(n+1) − wδd(n−1))2
]

+ cst .
(B.22)

Assuming q∗α(α) to be a Dirac distribution, we take the derivative of (B.22) with
respect to α which leads to the update formula given in (4.14).

B.2.4 Update of q∗ξn(ξn)

log q∗ξn(ξn) = EZ,W[logF (Z,W, ξ)] + cst ,

= log σ(ξn)− ξn
2 − λ(ξn)(E[w2

n]− ξ2
n) + cst .

(B.23)

Taking the derivative with respect to ξn and setting it equal to zero gives
λ′(ξn)(E[w2

n] − ξ2
n) = 0. As λ′(ξn) > 0, we finally obtain the formula reported in

(4.15).

B.3 FDSP prior - lower bound

The lower bound on the log-likelihood is used as a stopping criterion. To compute J (q),
we need to evaluate the right hand side of (4.10):

J (q) = E[log p(I|Z)] + E[logF (Z,W, ξ)] + E[log p(W|α)]
− E[log qZ(Z)]− E[log qW(W)] .

(B.24)

The values of the different expectations can be computed and are reported below.

E[log p(I|Z)] =
∑
n

ηn1 log rn + ηn0 log(1− rn) . (B.25)

E[logF (Z,W, ξ)] =
∑
n

ηn1E[wn] + log σ(ξn)

− E[wn] + ξn
2 − λ(ξn)(E[w2

n]− ξ2
n) .

(B.26)

E [log p(W|α)] = N

2 (logα− 1) + cst . (B.27)
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E [log qZ(Z)] =
∑
n

ηn1 log ηn1 + ηn0 log ηn0 . (B.28)

E [log qW(W)] = −1
2
∑
n

log Σwn + cst . (B.29)
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Appendix C
Robust Bayesian fusion of continuous
segmentation maps
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C.1 Variational updates

Derivations of the variational update formula are given in this appendix, for the robust
probabilistic framework of section 5.2 that uses heavy-tailed distributions, and for the
mixture of consensuses model of section 5.3.

C.1.1 Robust probabilistic framework

The log joint probability of the heavy-tailed probabilistic model p(D̃, T̃,b,W, S) factor-
izes as p(D̃|T̃,b, S)p(b)p(T̃|W)p(W)p(S).

Update of q(T̃).

Eq. 5.16 applied to the consensus posterior approximation gives:

log q∗(T̃) = E[log p(D̃|T̃,b, S) + log p(T̃|W)] + cst ,

= E[log p(D̃|T̃,b, τ) + log p(T̃|W)] + cst .
(C.1)
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p(D̃|T̃,b, τ) is a Gaussian distribution according to the scale mixture representation.
Discarding the terms independent of T̃n, E[log p(D̃n|T̃n,b, τn)] is written:

E[log p(D̃n|T̃n,b, τn)] = −1
2T̃T

n

 P∑
p=1

Σ−1
p E[τpn]

 T̃n

+ T̃T
n

 P∑
p=1

Σ−1
p E[τpn](D̃p

n − E[bp])

+ cst .

(C.2)

The second term in Eq. C.1 is due to the spatial regularization and can be expressed
as follows:

E[log p(T̃n|W)] = −1
2T̃T

nΣ−1
T IKT̃n + T̃T

nΣ−1
T E[W]Φn + cst . (C.3)

After regrouping and identifying the quadratic and linear terms in T̃n, we recognize
a Gaussian distribution of parameters given by Eqs. 5.17 and 5.18.

Update of q(b).

Following the same approach, we have for the rater bias:

log q∗(b) = E[log p(D̃|T̃,b, τ) + log p(b|β)] + cst . (C.4)

Considering rater p, the first term of Eq. C.4 gives:

E[log p(D̃p|T̃,bp, τp)] = −1
2bTp

(
N∑
n=1

Σ−1
p E[τpn]

)
bp

+ bTp

(
N∑
n=1

Σ−1
p E[τpn](D̃p

n − E[T̃n])
)

+ cst ,

(C.5)

and the second term can be written as E[log p(bp|β)] = −β
2 bTp bp + cst. Combining the

two and rearranging leads to the Gaussian distribution described by Eqs. 5.19 and 5.20.

Update of q(τ).

We now present the derivations for the posterior approximation of the scale factor τ .
Discarding the terms independent of τpn, Eq. 5.16 gives:

log q∗(τpn) = E[log p(D̃p
n|T̃,bp, τpn) + log p(τpn)] + cst . (C.6)

The results for the different distributions are reported below.
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Student’s t-distribution. The prior over the scale factor follows a Gamma distribution.
Eq. C.6 can then be re-written as follows:

log q∗(τpn) =
(
K + νp

2 − 1
)

log τpn

− 1
2τ

p
n

(
E[(D̃p

n − T̃n − bp)TΣ−1
p (D̃p

n − T̃n − bp)] + νp
)

+ cst .

(C.7)

We recognize a Gamma distribution of parameters K+νp
2 and νp+E

2 as given in Tab. 5.2,
with E = E[(D̃p

n − T̃n − bp)TΣ−1
p (D̃p

n − T̃n − bp)].

Laplace distribution. In this case, the prior is defined as an inverse Gamma distribution
of parameters K+1

2 and 1
8 . Eq. C.6 leads to:

log q∗(τpn) = K

2 log τpn −
τpn
2 E −

K + 3
2 log τpn −

1
8τpn

+ cst ,

= −3
2 log τpn −

1
2

(
E

τpn

(
τpn −

1√
4E

)2
)

+ cst ,

(C.8)

where E is defined above.

Thus, the scale factor posterior approximation is an inverse Gaussian distribution
whose parameters are given in Tab. 5.2.

GDP distribution. The prior over the scale factor is also an inverse Gamma distribution,
but of parameters K+1

2 and (zpn)2

2 . Thus, we have:

log q∗(τpn) = K

2 log τpn −
τpnE

2 − K + 3
2 log τpn −

E[(zpn)2]
2τpn

+ cst ,

= −3
2 log τpn −

1
2

E

τpn

τpn −
√

E[(zpn)2]
E

2
+ cst .

(C.9)

Therefore, Eq. 5.16 again yields an inverse Gaussian distribution with the parameters
given in Tab. 5.2.

Update of q(z).

This section gives the derivations for the additional scale factor z which appears when
the generalized double Pareto distribution is written as a Laplace scale mixture. Eq. 5.16
applied to q(zpn) gives:

log q∗(zpn) = (K + 1) log zpn − T pn
(zpn)2

2 + (νp − 1) log zpn − νpzpn + cst ,

= (K + νp) log zpn −
1
2
(
(zpn)2T pn + 2νpzpn

)
+ cst ,

(C.10)
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where T pn = E
[

1
τpn

]
. The normalization constant of Eq. 5.21 can be obtained by integration

of Eq. C.10. Let J+(p, q, r) be the following integral:

J+(p, q, r) =
∫ ∞

0
xp exp(qx− rx2)dx , (C.11)

with p ≥ 0, −∞ < q <∞ and r > 0.
It can then be shown [Neville, 2013] that:

J+(p, q, r) = (2r)−
p+1

2 Γ(p+ 1) exp
(
q2

8r

)
D−p−1

(
− q√

2r

)
, (C.12)

where Dν is the parabolic cylinder function of order ν ∈ R.
From Eq. C.10, we have that q∗(zpn) ∝ (zpn)K+νp exp

(
− (zpn)2

2 T
p
n − νpzpn

)
. Therefore,

using Eq. C.12 with p = K + νp, q = −νp and r = T pn
2 , we get the density of Eq. 5.21. In

practice, we only need E[zpn] and E[(zpn)2] to perform the inference. These expectations
can be computed using the same approach. For E[zpn], we use Eq. C.12 with p = K+νp+1,
q = −νp, and r = T pn

2 which gives:

E[zpn] =
(K + νp + 1)D−K−νp−2

(
νp√
T pn

)
√
T pnD−K−νp−1

(
νp√
T pn

) . (C.13)

Likewise, we have p = K + νp + 2 with same q and r for E[(zpn)2], which yields:

E[(zpn)2] =
(K + νp + 1)(K + νp + 2)D−K−νp−3

(
νp√
T pn

)
T pnD−K−νp−1

(
νp√
T pn

) . (C.14)

The function Rν(x) defined as Rν(x) = D−ν−2(x)
D−ν−1

(x) leads to underflow problems for
large x or ν. Therefore, we follow [Neville, 2013] and compute the ratio using Lentz’s
algorithm, which is based on the continued fraction representation of the function.

Update of q(W).

Eq. 5.16 applied to Wk gives:

log q∗(Wk) = E[log p(T̃k|Wk) + log p(Wk)] + cst ,

= −1
2WT

k

(
Σ−1
T

N∑
n=1

ΦT
nΦn

)
Wk

+ WT
k

(
Σ−1
T

N∑
n=1

ΦnE[T̃nk]
)
− α

2 WT
kWk + cst .

(C.15)

Regrouping the quadratic and linear terms in Wk, we obtain a Gaussian distribution
whose parameters are given by Eqs. 5.22 and 5.23.
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Update of the remaining parameters.

The update formulas for α, ΣT , Σp, β and νp are obtained by considering these parameters
as variables and assuming that their posterior approximation q(.) is a Dirac distribution.
The mode of the posterior distribution approximation is found by maximizing Eq. 5.16,
which leads to Eqs. 5.24–5.28.

C.1.2 Mixture of consensuses
The model log joint probability p(D̃, T̃, Z) factorizes as p(D̃|T̃, Z)p(Z).

Update of q(Z).

Eq. 5.16 applied to the variable Z leads to:

log q∗(Z) = E[log p(D̃|T̃, Z) + log p(Z)] + cst . (C.16)

The first term can be developed to give:

E[log p(D̃|T̃, Z)] =
P∑
p=1

M∑
m=1

zpm

( N∑
n=1
−K2 log(2π)− 1

2 log |Σp|

− 1
2E[(D̃p

n − T̃nm)TΣ−1
p (D̃p

n − T̃nm)]
)
,

(C.17)

and the second term is equal to ∑P
p=1

∑M
m=1 zpm log πm.

Summing the two expectations and taking the exponential, we get q∗(Z) ∝∏
p

∏
m ρ

Zpm
pm , where the expression of ρpm is given by Eq. 5.30. We finally obtain a product

of categorical distributions with parameters rpm, such that q∗(Z) = ∏
p

∏
m r

Zpm
pm .

Update of q(T̃).

Applying Eq. 5.16 to the consensus posterior approximation and discarding the terms
independent with respect to the mth map leads to:

log q∗(T̃nm) = −1
2T̃T

nm

 P∑
p=1

rpmΣ−1
p

 T̃nm + T̃T
nm

 P∑
p=1

rpmΣ−1
p D̃p

n

+ cst . (C.18)

We recognize a Gaussian distribution whose parameters are given by Eq. 5.31 and
Eq. 5.32.

Update of the model parameters.

The update formulas for Σp and πm are obtained by considering them as variables whose
approximate posterior is a Dirac distribution. We find the mode of each distribution
by maximizing Eq. 5.16 and using the fact that ∑m πm = 1 for the mixing coefficients,
which leads to Eqs. 5.33 and 5.34.
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C.2 Lower bound

In this chapter, we propose a variational inference scheme to estimate the posterior
approximations. It is based on the maximization of a lower bound L(q) over the data
marginal log likelihood. The lower bound can be computed and is used in practice as a
stopping criterion, except when the framework is based on a GDP distribution, because
of the long computation time.

C.2.1 Robust probabilistic framework

We can re-write Eq. 5.15 as follows:

L(q) = E[log p(D̃|T̃,b, S)] + E[log p(S)] + E[log p(b)]
+ E[log p(T̃|W)] + E[log p(W)]
− E[log q(S)]− E[log q(b)]− E[log q(T̃)]− E[log q(W)] .

(C.19)

The values of the different expectations are reported bellow.

Expectations involving the scale factors.

We first focus on the expectations involving the scale factors τ and z. E[log p(τpn)] is
given in Tab. C.1 and E[log q(τpn)] is given in Tab. C.2.

Tab. C.1: Formula giving E[log p(τpn)] for the three heavy-tailed likelihoods. The values of the
constants for the Laplace and GDP distributions are given by CL = −K+1

2 log 8−
log Γ

(
K+1

2
)
and CGDP = −K+1

2 log 2− log Γ
(
K+1

2
)
, respectively.

Likelihood E[log p(τpn)]

Student’s t − log Γ
(νp

2

)
+ νp

2 log νp2 +
(νp

2 − 1
)
E[log τpn]− νp

2 E[τpn] (C.20)

Laplace −K + 3
2 E[log τpn]− 1

8E
[

1
τpn

]
+ CL (C.21)

GDP (K + 1)E[log zpn]− K + 3
2 E[log τpn]− 1

2E[(zpn)2]E
[

1
τpn

]
+ CGDP (C.22)

Tab. C.2: Formula giving E[log q(τpn)] for the three heavy-tailed likelihoods. anp and bnp are
given in Tab. 5.2.

Likelihood E[log q(τpn)]

Student’s t − log Γ(anp) + anp log bnp + (anp − 1)E[log τpn]− bnpE[τpn] (C.23)

Laplace −3
2E[log τpn]− 1

2 log(8π)− 1
2 (C.24)

GDP 1
2 log E[(zpn)2]

2π − 3
2E[log τpn]− 1

2 (C.25)
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For the GDP likelihood, there is the additional latent variable z. Expectations
involving this scale factor are given below.

E[log p(zpn|νp)] = (νp − 1)E[log zpn] + νp log νp − log Γ(νp)− νpE[zpn] . (C.26)

E[log q(zpn)] = K + νp + 1
2 log T pn + (K + νp)E[log zpn]− νpE[zpn]

− T
p
n

2 E[(zpn)2]− log Γ(K + νp + 1)−
ν2
p

4T pn
− logD−K−νp−1

(
νp√
T pn

)
,

(C.27)

where T pn = E
[

1
τpn

]
.

Appendix C.1 explains how to compute E[zpn] and E[(zpn)2]. The expectation E[log zpn]
vanishes when computing E[log p(τpn)] + E[log p(zpn)]− E[log q(zpn)] with Eq. C.22, C.26
and C.27 and it does not need to be evaluated in practice. Other expectations are given
in appendix C.3.

Remaining expectations.

E[log p(D̃|T̃, τ,b)] =
N∑
n=1

P∑
p=1

(
− 1

2 log |Σp|+
K

2 E[log τpn]

− 1
2

[
(D̃p

n − µT̃n
− µbp)TE[τpn]Σ−1

p (D̃p
n − µT̃n

− µbp)

+ E[τpn]
(

Tr(Σ−1
p Σbp) + Tr(Σ−1

p ΣT̃n
)
)])

+ cst .

(C.28)

E[log p(T̃|W)] =
N∑
n=1

(
− K

2 log ΣT −
1
2
[
(µT̃n

− µWΦn)TΣ−1
T IK(µT̃n

− µWΦn)

+ Σ−1
T Tr(ΣT̃n

) + Σ−1
T

K∑
k=1

Tr(ΦnΦT
nΣWk

)
])

+ cst .

(C.29)

E[log p(b)] =
P∑
p=1

K

2 log β − β

2
[
µTbpµbp + Tr(Σbp)

]
+ cst . (C.30)

E[log p(W)] =
K∑
k=1

L

2 logα− α

2
[
µTWk

µWk
+ Tr(ΣWk

)
]

+ cst . (C.31)
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Finally, E[log q(T̃)], E[log q(b)] and E[log q(W)] are given by:

E[log q(T̃)] =
N∑
n=1
−1

2 log |ΣT̃n
|+ cst , (C.32)

E[log q(bp)] =
P∑
p=1
−1

2 log |Σbp |+ cst , (C.33)

E[log q(W)] =
K∑
k=1
−1

2 log |ΣWk
|+ cst . (C.34)

C.2.2 Mixture of consensuses

The lower bound for the mixture of consensuses model can be written as follows:

L(q) = E[log p(D̃|T̃, Z)] + E[log p(Z)]− E[log q(T̃)]− E[log q(Z)] . (C.35)

Developing each term, we obtain:

E[log p(D̃|T̃, Z)] =
N∑
n=1

M∑
m=1

P∑
p=1

rpm

[
− K

2 log 2π − 1
2 log |Σp|

− 1
2
(
(D̃p

n − µT̃nm
)TΣ−1

p (D̃p
n − µT̃nm

) + Tr(Σ−1
p ΣT̃nm

)
)]
,

(C.36)

E[log p(Z)] =
P∑
p=1

M∑
m=1

rpm log πm , (C.37)

E[log q(T̃)] =
N∑
n=1

M∑
m=1
−1

2 log |ΣT̃nm
|+ cst , (C.38)

E[log q(Z)] =
P∑
p=1

M∑
m=1

rpm log rpm . (C.39)

C.3 Additional expectations

In this last section, we gather together some useful expectations involved in the variational
updates or in the evaluation of the lower bound.
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C.3.1 Robust probabilistic model

E[bp] = µbp . (C.40)
E[T̃n] = µT̃n

. (C.41)
E[T̃nk] = µT̃nk

. (C.42)
E[Wk] = µWk

. (C.43)
E[(D̃p

n − T̃n − bp)TΣ−1
p (D̃p

n − T̃n − bp)] =
(D̃p

n − µT̃n
− µbp)TΣ−1

p (D̃p
n − µT̃n

− µbp) + Tr(Σ−1
p Σbp) + Tr(Σ−1

p ΣT̃n
) .

(C.44)

Moreover, E[W] corresponds to the gathering of the expectations E[Wk] given above in
a matrix of size K × L.

Regarding the scale factor τ , we need the expectations E[τpn] and E[log τpn] for the
Student’s t-distribution. There are given by:

E[τpn] = anp
bnp

, (C.45)

E[log τpn] = ψ(anp)− bnp , (C.46)

where anp and bnp are the parameters of the Gamma distribution described in Tab. 5.2
and ψ is the digamma function. For the Laplace and GDP distributions, we have to
evaluate E[τpn] and E

[
1
τpn

]
. The latter is notably involved in the estimation of the degree

of freedom. They can be written as follows:

E[τpn] = µnp , (C.47)

E
[ 1
τpn

]
= 1
µnp

+ 1
λnp

, (C.48)

where µnp and λnp are the parameters of the inverse Gaussian distributions given in
Tab. 5.2.

Moreover, a third expectation, E[log τpn], appears in some terms of the lower bound.
In contrast to the Gaussian case, it does not have a closed-form formula for the Laplace
or GDP distributions. However, this is not a problem in practice as it vanishes when
gathering the different parts, in particular after summation of Eqs. C.21, C.24 and C.28
for the Laplace distribution, and summation of Eqs. C.22, C.25 and C.28 for the GDP
distribution.

C.3.2 Mixture of consensuses

E[(D̃p
n − T̃nm)TΣ−1

p (D̃p
n − T̃nm)] = (D̃p

n − µT̃nm
)TΣ−1

p (D̃p
n − µT̃nm

) + Tr(Σ−1
p ΣT̃nm

) .
(C.49)
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D.1 Circulant miRNAs as potential biomarkers for lung
cancer detection

D.1.1 Introduction

A key factor of lung cancer prognosis is the time of detection, as chances of survival
drop drastically for late stage diagnostic. The implementation of large scale screening
programs requires the development of markers for lung cancer early detection. In this
chapter, we focused on imaging markers, whose effectiveness has been demonstrated
by large scale screening trials, leading LDCT to become the cornerstone of the United
States lung cancer screening policy.

However, LDCT screening has also some limitations, including the substantial cost of
the equipment required for the image acquisition, the challenges related to the analysis of
the scans, the high rate of false positives, but also the concerns about the impact of long
term radiation exposure [Wood et al., 2018; McCunney & Li, 2014]. In contrast, blood-
derived biomarkers, such as circulant miRNAs, can be easily collected by non-invasive
liquid biopsy.

miRNAs are very short (about 20 nucleotides) non coding and single-stranded RNA
molecules. Their synthesis begins in the nucleii of the cells and requires the intervention
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of an RNA polymerase. The miRNAs precursors are subsequently transported to the
cytoplasm where they acquire their mature form [Iqbal et al., 2019].

They play an important role in gene expression regulation by binding to the target
region of some messenger RNAs (mRNAs), which induces their degradation or inhibits
the translation, leading to post-transcriptional gene silencing. However, miRNAs are
also suspected to contribute to the activation of the expression of some genes, either
directly or indirectly.

In recent years, the profiling of miRNA expression has been an active topic of
research, as many miRNAs have been reported as being associated with human diseases,
suggesting their potential as new biomarkers. In particular, some miRNAs exhibit
enhanced expression levels in lung cancer cases. Some appear to be specifically related to
certain subtypes of lung cancer, or to be involved in the differentiation process between
subtypes. Others seem to contribute to the regulation of tumor suppressor genes, found
to be inactivated in some lung cancer cases [Iqbal et al., 2019].

Various factors, such as mutations, epigenetic modifications, transcriptional repression
or defective biogenesis, are suggested to explain the changes in expression level observed
for some miRNAs in cancer cases. Interestingly, this deregulation can also be detected in
circulating miRNAs. These molecules, also denoted as cell-free miRNAs, are circulating
in the body fluids in exosomes, which are small membrane vesicles involved in the
cell-to-cell communication [Fortunato et al., 2019]. Exosomes can be realeased by
different cell types, including within the tumor environment. The attractive property
of circulating miRNAs is their simple collection by non-invasive liquid biopsy which
make them particularly suitable for the screening of diseases and the monitoring of
their progression. This potential has been investigated by a large number of studies for
different types of cancer, including breast cancer [Madhavan et al., 2016], gastric cancer
[Huang et al., 2017], colorectal cancer [Huang et al., 2010] and lung cancer [Montani et
al., 2015; Shen et al., 2011; Sozzi et al., 2014].

D.1.2 Data collection and pre-processing
A common approach to assess the concentration of a specific miRNA in a blood sample
is the reverse transcriptase quantitative polymerase chain reaction (RT-qPCR). The
serum, obtained after clotting and centrifugation, is purified to isolate and concentrate
the ARN molecules. The latter are then converted in complementary DNA (cDNA) by
a reverse transcriptase.

A PCR reaction is used to amplify the DNA sequences with target-specific primers
labelled with markers emitting fluorescence only after hybridization. Real-time follow-up
of the fluorescence intensity enables to estimate the sample DNA quantity, which doubles
theoretically at each PCR cycle during the exponential phase. However, in practice,
this depends on the PCR reaction efficiency, denoted as E, leading to the following
equation:

Xn = X0(1 + E)n , (D.1)

where Xn is the DNA quantity at cycle n. The cycle threshold, denoted as CT , is the
number of PCR cycles required by a given miRNA to reach a pre-defined fluorescence
intensity value. It is inversely proportional to the input copy number, as small initial
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concentrations lead to larger CT values, and conversely. Exemples of RT-qPCR curves
are shown in Fig. D.1.

Fig. D.1: Fluorescence intensity curves for 4 miRNAs by RT-qPCR. ł

In practice, two methods are used to analyse RT-qPCR results. Absolute quantifica-
tion allows the initial input copy number to be estimated, but requires the obtention
of standard curves by dilution. In contrast, relative quantification compares the CT
values between samples. However, normalization is necessary to remove biases due to
the quality of samples and the experimental conditions.

Many data normalization strategies have been proposed [Meng et al., 2017; Cheng et
al., 2016; Schwarzenbach et al., 2015], but there is still no consensus about the optimal
method. A common approach uses a reference gene r to assess the concentration of a
target t. Reference genes, also denoted as housekeeping genes, are genes selected for
their expression stability across the entire dataset and with respect to the experimental
parameters. When the fluorescence curve reaches the intensity threshold, the following
equality holds between the target and the reference: Xt

0(1 + E)CT t = Xr
0(1 + E)CT r ,

where we assume identical PCR reaction efficiencies. This leads to:

Xt
0

Xr
0

= (1 + E)−∆CT , (D.2)

where ∆CT = CT t − CT r. Biomarker candidates are miRNAs presenting significant
differences in ∆CT values between cancer cases and controls.

D.1.3 Experiments on the COSMOS dataset

We now present some results obtained on the publicly available data of the Continu-
ous Observation of Smoking Subjects (COSMOS) study, a lung cancer screening trial

D.1 Circulant miRNAs as potential biomarkers for lung cancer
detection

171



Tab. D.1: 5-fold cross-validation results for different classifiers on the COSMOS data.

Precision (%) Recall (%) F1-score (%) AUC

LDA 88.8 (±6.4) 73.3 (±13.1) 79.0 (±6.6) 0.97 (±0.02)

QDA 85.3 (±8.4) 66.6 (±7.3) 74.5 (±5.2) 0.95 (±0.04)

Logistic regression 83.3 (±9.6) 67.3 (±18.3) 72.8 (±10.3) 0.98 (±0.02)

SVM 78.6 (±9.8) 79.1 (±9.5) 77.8 (±4.2) 0.98 (±0.01)

RVMf
1 76.4 (±7.3) 62.9 (±12.8) 67.9 (±8.5) 0.98 (±0.01)

RVMs
2 84.6 (±12.2) 64.4 (±8.5) 72.7 (±8.2) 0.98 (±0.02)

1 Relevance Vector Machine - feature selection.
2 Relevance Vector Machine - sample selection.

conducted in Italy and involving high-risk subjects above 50 years old with a smoking
history [Montani et al., 2015].

This cohort was augmented with lung cancer patients diagnosed outside of the
study, and then divided into a calibration and a validation sets of 24 and 1008 subjects,
respectively. The total number of lung cancer cases is 48. The expressions of 34 miRNAs
were quantified by RT-qPCR on the calibration set. Normalization with respect to 6
housekeeping genes leads to the definition of a signature of 13 miRNAs whose expression
levels were found significantly different between the control and cancer cases. This
signature was used to build a Diagonal Linear Discriminant Analysis (DLDA) classifier
for lung cancer prediction on the calibration set. This model was then independently
evaluated on the validation set, leading to an AUC, precision, recall and F1 scores of
0.85, 0.38, 0.78 and 0.51, respectively.

The normalized CT values of the 13-miRNA signature were made publicly available
for both sets and were used in this section to compare different classifiers, including
the Linear Discriminant Analysis (LDA), the Quadratic Discriminant Analysis (QDA),
the logistic regression with a L1 penalty, the Support Vector Machine (SVM) and the
Relevance Vector Machine (RVM) introduced in [Tipping & Faul, 2003]. Results obtained
by 5-fold stratified cross-validation are presented in Tab. D.1.

The regularization parameters of the logistic regression and SVM were optimized by
grid-search on each training set. The SVM is fitted with a squared exponential kernel.
The logistic regression and the RVM are sparse methods allowing the most relevant
features to be identified, leading to an additional selection among the 13 miRNAs.
Moreover, the RVM fitted with a squared exponential kernel can also be used to perform
sample selection, i.e. to select the most relevant subjects for the classification task.
Denoted as relevant vectors, they are the counterpart of the SVM support vectors.

First, one can observe that all methods are equivalent with respect to the AUC
criterion. However, there are discrepancies for the F1-score. The reason is that the
dataset is heavily imbalanced with 1008 controls and only 48 cancer cases, a situation
where the AUC score tends to be over-optimistic [Davis & Goadrich, 2006]. In contrast,
the F1-score, which is the harmonic mean of precision and recall, enables to focus on the
performances of the classifiers on the minority class [He & Garcia, 2009].
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The best F1-scores are obtained with the LDA and SVM classifiers. LDA is the
simplest of the investigated models, and assumes Gaussian distributions for both classes
with a shared covariance matrix. In contrast, there is no such assumption of identical
covariance matrix in QDA analysis, but the model leads to poorer performances.

SVM gives close results to LDA, with 46 subjects out of 856 selected on average on
each training set. The RVM with a squared exponential kernel leads to an even sparser
solution, with 6 relevant vectors in average. These two methods allow typical subjects
for both classes to be identified.

Finally, the logistic regression and the RVM for feature selection give the poorest
results, but they perform a further selection among the 13-miRNA signature. On average,
the logistic regression and RVM decision rules use 11 and 6 miRNAs, respectively. Being
able to identify the most relevant miRNAs is an important problem in the perspective
of real life applications, as screening is easier to implement with a reduced number of
molecules to be tested. It would have been interesting to evaluate the RVM and the
logistic regression on the initial set of 34 miRNAs, in order to compare their miRNA
selections to the current signature, but this set was not made publicly available.

D.1.4 Conclusion
Circulant miRNAs are promising biomarkers for lung cancer detection because of their
easy collection and good prediction results. However, several limitations need to be
addressed. First, there is a lack of reproducibility between studies, because of the
absence of universally accepted protocol for the miRNA extraction, and because of the
problems related to the data pre-processing, including the choice of normalization strategy.
External validations on larger datasets are also required before real life applications.
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