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Abstract

Time-dependent domains are encountered in a vast category of fluid mechanics applications.
Such problems are often characterised by complex geometries and physical phenomena. The
aim of the present dissertation is the development of an accurate and reliable methodology
to investigate compressible flows with time-dependent geometries. To this end, we combine
ideas from Isogeometric Analysis (IGA) and high-order numerical schemes for fluid dynamics,
specifically Discontinuous Galerkin (DG) methods.

We start by discussing the implementation details of the Isogeometric DG method. To this
end, we introduce the DG scheme for conservation laws and the fundamentals of IGA. The
mathematical representation of Computer Aided Design (CAD) is explained and some impor-
tant geometry manipulation algorithms are presented. We then show how a DG-compatible
description can be extracted starting from a CAD object, allowing us to employ a geometri-
cally exact DG discretisation to solve the equations of fluid mechanics. Finally, we conduct
two simple numerical experiments to illustrate the impact of the boundary representation on
flow simulations.

We then proceed to extend the Isogeometric DG methodology to deformable domains
using the Arbitrary Lagrangian-Eulerian (ALE) formalism. After an analysis of the existing
ALE-DG schemes, we propose an ALE formulation using the Isogeometric framework. The
CAD basis functions are also adopted to deform the mesh, leading to a fully unified description
of the simulation variables. Besides, we show how the proposed grid velocity algorithm can
be seamlessly coupled with Adaptive Mesh Refinement (AMR). The presented approach is
firstly validated with two analytical problems, showing optimal convergence rates. Then, we
simulate the flows past an oscillating cylinder and a pitching airfoil to prove the robustness of
the methodology. We conclude by demonstrating the capabilities of the developed ALE-AMR
coupling algorithm using the pitching airfoil benchmark.

Secondly, we propose to employ sliding grids for flows with rotating components, as an
alternative to the deformation-based ALE technique. Using the CAD basis functions, circular
interfaces can be exactly represented. Therefore, it is possible to develop a high-order and
fully conservative sliding mesh formulation. We begin by detailing the treatment of the
sliding interface geometry and the computation of the numerical fluxes. Then, we show the
optimal convergence of the implemented approach using an analytical problem. We further
characterise the behaviour of the sliding interface considering the flow past a pitching ellipse.
We show that the sliding mesh technique and the deformation-based ALE methodology are
equivalent in terms of accuracy. Finally, a vertical axis wind turbine is simulated to present
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a more topologically complex test case.
Lastly, we apply the proposed ALE formulation to a flow control problem. In particular,

we consider a dynamic trailing edge morphing actuation to control the separation of the
laminar boundary layer around a NACA 6-series airfoil. Using the proposed mesh deformation
algorithm, we develop a high-order accurate trailing edge morphing model. In order to find
the optimal set of control parameters, the flow solver is coupled with a Bayesian optimisation
algorithm. Thanks to the strong coupling between the geometry description and the numerical
schemes, the resulting design chain is fully automated. The capabilities of the proposed
framework are explored considering both single-objective and multi-objective optimisation
problems.

Keywords: Computational Fluid Mechanics, Discontinuous Galerkin, Isogeometric Analysis,
Arbitrary Lagrangian-Eulerian Formulation, Sliding Meshes
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Résumé

Les domaines dépendant du temps sont rencontrés dans une vaste catégorie d’applications
de la mécanique des fluides. De tels problèmes sont souvent caractérisés par des géométries
et des phénomènes physiques complexes. L’objectif de cette thèse est de développer une
méthodologie précise et fiable pour étudier les écoulements compressibles avec des géométries
dépendant du temps. Ainsi, nous combinons des idées provenant de l’Analyse Isogéométrique
et des schémas numériques d’ordre élevé pour la dynamique des fluides, en particulier les
méthodes de Galerkin Discontinues (GD).

Nous commençons par discuter les détails de mise en œuvre de la méthode GD Isogéométri-
que. Ainsi, nous introduisons le schéma DG pour les lois de conservation et les principes
fondamentaux de l’Analyse Isogéométrique. La représentation mathématique de la Concep-
tion Assistée par Ordinateur (CAO) est expliquée et des algorithmes de manipulation de la
géométrie sont présentés. Nous montrons ensuite comment une description compatible avec
la méthode GD peut être extraite à partir de la CAO, ce qui nous permet d’employer une
discrétisation GD géométriquement exacte pour résoudre les équations de la mécanique des
fluides. Enfin, nous réalisons deux expériences numériques simples pour illustrer l’impact de
la représentation des frontières sur les simulations d’écoulement.

Nous étendons ensuite la méthodologie GD Isogéométrique aux domaines déformables en
utilisant le formalisme Lagrangien-Eulérien Arbitraire (ALE). Après une analyse des schémas
ALE-GD existants, nous proposons une formulation ALE utilisant le cadre Isogéométrique.
Les fonctions de base de la CAO sont également adoptées pour déformer le maillage, ce qui
conduit à une description entièrement unifiée des variables de simulation. En outre, nous
montrons comment l’algorithme de déformation de maillage proposé peut être couplé de
manière transparente avec le Raffinement de Maillage Adaptatif (AMR). L’approche présen-
tée est d’abord validée avec deux problèmes analytiques, montrant des taux de convergence
optimaux. Ensuite, nous simulons les écoulements à travers un cylindre oscillant et un profil
aérodynamique pour prouver la robustesse de la méthodologie. Nous concluons en démontrant
les capacités de l’algorithme de couplage ALE-AMR développé.

Deuxièmement, nous proposons d’utiliser des maillages glissants pour les écoulements avec
des composantes en rotation, comme alternative à la technique ALE basée sur la déformation.
En utilisant les fonctions de base de la CAO, les interfaces circulaires peuvent être représentées
exactement. Par conséquent, il est possible de développer une formulation de glissement de
maillage d’ordre élevé et entièrement conservative. Nous commençons par détailler le traite-
ment de la géométrie de l’interface de glissement et le calcul des flux numériques. Ensuite,
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nous montrons la convergence optimale de l’approche implémentée en utilisant un problème
analytique. Nous caractérisons ensuite le comportement de l’interface de glissement en consid-
érant l’écoulement autour d’un obstacle elliptique oscillant. Nous montrons que la technique
de maillage glissant et la méthodologie ALE basée sur la déformation sont équivalentes en
termes de précision. Enfin, une éolienne à axe vertical est simulée pour présenter un cas
d’essai plus complexe sur le plan topologique.

Enfin, nous appliquons la formulation ALE proposée à un problème de contrôle d’écoule-
ment. En particulier, nous considérons un actionnement dynamique de morphing du bord
de fuite pour contrôler la séparation de la couche limite laminaire autour d’un profil NACA.
En utilisant l’algorithme de déformation de maillage proposé, nous développons un modèle
de morphing de bord de fuite d’ordre élevé. Afin de trouver le jeu optimal de paramètres de
contrôle, le simulateur d’écoulements est couplé à un algorithme d’optimisation Bayésienne.
Grâce au couplage fort entre la description de la géométrie et les schémas numériques, la chaîne
de conception résultante est entièrement automatisée. Les possibilités du cadre proposé sont
explorées en considérant des problèmes d’optimisation simple-objectifs et multi-objectifs.

Mots clés: Mécanique des Fluides Numérique, Galerkin Discontinue, Analyse Isogéométrique,
Formulation Lagrangienne-Eulerienne Arbitraire, Maillages Glissants
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Introduction

In the last 20 years, Computational Fluid Dynamics (CFD) has become a standard tool for
aerodynamic analysis and design. In this context, the issue of a better integration of CFD
solvers in complex multidisciplinary analysis chains has emerged. In particular, the lack of
integration between Computer Aided Design (CAD) and CFD software regarding the treat-
ment of the geometry has been reported. This difficulty is mainly due to the fact that, in
most industrial cases, the grid generation process is not fully automated yet and requires
several geometrical transformations, such as defeaturing and geometry repair, that are still
carried out by hand. In the context of multidisciplinary design chain, it is vital to have
a high degree of automation in order to efficiently search for the optimal design. In order
to facilitate the integration between CAD and simulation, Hughes et al. (1) introduced the
concept of Iso-Geometric Analysis (IGA), whose formulation relies on Non-Uniform Rational
B-Splines (NURBS), the standard mathematical representation of modern CAD (2). Essen-
tially, IGA consists in a continuous finite element method in which both the geometry and
the solution are described by NURBS functions. It is well known, however, that Continu-
ous Galerkin (CG) schemes need to be stabilised in order to deal with convection dominated
problems (3; 4). Furthermore, additional stabilisation is required to properly capture discon-
tinuities (5). Due to the mentioned difficulties, the application of IGA to compressible fluid
mechanics has been so far very limited. An investigation of Lagrangian hydrodynamics has
been conducted by Bazilevs et al. (6) using the IGA framework. Möller et al. (7) recently
presented a stabilised Isogeometric CG scheme for the compressible Euler equations. On
the other hand, IGA has been successfully employed to simulate incompressible flows with
complex geometries (8; 9; 10). Nevertheless, some limitations are still encountered in gen-
erating NURBS-based grids for complex topologies. However, new approaches are emerging
to construct NURBS-based parameterizations of computational domains, inspired by both
structured (11) and unstructured (12; 13; 14) mesh generation techniques.

Meanwhile, the CFD community has developed a growing interest in high-order schemes
for conservation laws (15). The majority of the production-level CFD simulations is car-
ried out with finite volume discretisations based on linear reconstruction, hence second-order
schemes. When high mesh resolutions are required, such solvers can become inefficient with
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respect to more accurate schemes. In order to improve finite volume discretisations, Harten
et al. (16) introduced Essentially Non-Oscillatory (ENO) reconstructions, which were later
extended by Liu et al. (17) to construct the family of Weighted ENO (WENO) schemes. How-
ever, the implementation and parallelisation of WENO reconstructions on unstructured grids
is not trivial, due to the non-compact stencil. Such issues led to the study and development of
compact high-order discretisations, such as the Discontinuous Galerkin (DG) scheme. Oden
et al. (18) presented the first application of discontinuous finite elements to inviscid com-
pressible flows and the extension to Navier-Stokes equations was first proposed by Bassi et
al. (19). Thanks to the combination of stability and high-order accuracy, DG schemes have
been employed in a variety of complex CFD applications. For example, the simulation of a
flapping wing was performed in (20). Luo et al. (21) illustrated the capabilities of the DG
schemes for flows with shocks and performed a simulation of a full aircraft geometry in tran-
sonic flight conditions. A DG discretisation of the Reynolds Averaged Navier-Stokes (RANS)
equations has been employed for the simulation of a turbine cascade by Bassi et al. (22) and
an aircraft wing-body configuration by Hartmann et al. (23). Moreover, the low numerical
dissipation and dispersion of DG schemes are suitable characteristics to efficiently simulate
turbulent flows (24; 25) and aeroacoustic problems (26).

However, as shown by several authors, the use of piecewise-linear geometry descriptions
in high-order CFD solvers may lead to non-physical phenomena in numerical solutions (19;
27; 28) and generally limits the accuracy of such schemes to second order for problems with
curvilinear geometries. This observation justified the development of a new generation of high-
order solvers, capable of handling CAD geometries natively. One can refer for instance to the
NURBS-Enhanced Finite Element Method (NEFEM) (29) and its Discontinuous Galerkin
counterpart (27), in which the NURBS representations are only employed for the geometry
of the boundaries. Similarly, an extension of the residual distribution scheme for NURBS
geometries has been proposed (30). More recently, two DG schemes inspired by IGA have
been developed: the Blended-Isogeometric Discontinuous Galerkin (BIDG) method (31) which
relies on nodal elements whose geometry is defined by NURBS in the whole computational
domain, and its fully isogeometric counterpart which uses NURBS for both the geometry
and the solution (32). All these approaches have demonstrated the interest of using high-
order boundary representations in terms of accuracy for some selected test-cases governed by
compressible or incompressible flow models. Besides, the DG framework may alleviate the
mentioned difficulties of generating NURBS-based grids, thanks to the higher flexibility of
the DG method in handling non-conformities and local refinement (33).

At the same time, complex flows often involve time-dependent geometries or moving inter-
faces. We illustrate in Fig. 1 some sample applications in which the computational domain
is time-dependent. As a first example, we consider the aerodynamics of modern civil air-
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crafts, which are characterised by extremely flexible and lightweight structures, thanks to the
widespread use of composite materials. As a consequence, it is critical to take into account
the deflection of the wings in order to accurately predict the airflow and correctly design
the lifting surfaces. Another key application is represented by turbomachinery, in which it is
necessary to compute the flow about rotating geometries. Besides, rotors are usually followed
by stators, meaning that the numerical solver has to deal with a rapidly rotating component
in close proximity of a fixed geometry. Similar challenges are encountered in the numerical
simulation of wind turbines. Furthermore, other examples of flows with time-dependent ge-
ometries can be found in civil engineering, where the effects of wind plays a fundamental
role in the design of slender structures, like skyscrapers and long-span bridges. Being able
to predict the interaction between the structure and the wind is essential in order to prevent
catastrophic failures, such as the infamous collapse of the Tacoma Narrows bridge. Another
important application of Fluid-Structure Interaction (FSI) is haemodynamics, in which it
is crucial to consider the deformation of vessels to estimate the bloodstream. Lastly, time-
dependent domains are also used to simulate multi-material flows, which are characterised by
multiple immiscible fluids separated by a certain number of moving interfaces. Multi-material
flow formulations are often used to model explosion problems. Although not exhaustive, the
provided list of examples covers a wide range of significantly different disciplines.

(a) Flexible aircraft structures (b) Jet engines

(c) Wind turbines (d) Skyscrapers (e) Long-span bridges

Figure 1: Example applications of time-dependent domains in engineering. Authors of the
pictures: (a) Andrew W. Sieber, (b) Sanjay Acharya, (c) David Clarke, (d) Fred Hsu, (e)
Fred Romero
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Given the number and the impact of the possible applications, numerical algorithms for
flows with time-dependent domains play a major role in CFD. Furthermore, such applications
are often characterised by complex geometries and highly non-linear physical phenomena, as
testified by the mentioned examples. In this context, the adoption of high-order numerical
schemes can provide significant advantages with respect to traditional second-order solvers.
Firstly, the faster convergence allows to reduce the number of degrees of freedom required to
properly resolve complex flow fields. Secondly, improving the description of the geometry is
certainly beneficial, in particular because the displacement of the boundary may amplify the
spurious phenomena generated by a low-order geometry representation. Therefore, simulating
flows while accounting exactly for CAD geometries should be an advantage over traditional
approaches where the moving boundaries are piecewise linear. This has been illustrated for
FSI problems in the context of classic IGA (34; 35). The aim of the present work is therefore
the development of a reliable and accurate methodology for the solution of compressible flows
with time-dependent domains. The proposed framework is based on the Isogeometric Discon-
tinuous Galerkin (32), thanks to which a tight coupling between geometry and simulation is
achieved.

In order to analyse their properties, we classify the existing methodologies for the solution
of conservation laws on time-dependent domains into three categories: Eulerian, Lagrangian
and Arbitrary Lagrangian-Eulerian (ALE) algorithms. In the first family, the Eulerian form
of the equation of fluid mechanics is solved and the mesh is fixed. Such an approach is natural
when the boundary of the computational domain is not moving, as the mesh can be boundary-
fitted. In order to extend the Eulerian viewpoint with time-dependent domains, the Immersed
Boundary method was proposed by Peskin (36). In this framework, the boundary of the fluid
domain is immersed within the cells of the computational mesh. The main advantage of such a
methodology is the possibility of using Cartesian grids (37; 38), allowing to drastically reduce
the cost of mesh generation. Moreover, immersed boundary techniques can be easily used
to simulate large domain deformations, since the mesh is not boundary-fitted. On the other
hand, the position of immersed interface with respect to the grid has to be re-estimated at
each time iteration. Besides, spurious phenomena can be induced by an inaccurate treatment
of the immersed boundary, causing non-physical oscillations in the predicted aerodynamic
forces (39). In the context of DG schemes, the cut-cell immersed boundary method has
been successfully employed to simulate both compressible (40; 41) and incompressible flows
(42). A DG discretisation of the penalised Navier-Stokes equations has been adopted for
the investigation of a screw compressor in (43). Lastly, Kamensky et al. (44) proposed to
adopt a CAD-consistent representation in the immersed boundary framework. The developed
approach, named Immersogeometric Analysis, relies on a second-order stabilised CG solver for
the incompressible flow and on a weak imposition of the boundary conditions on the immersed
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CAD surface. The extension of the Immersogeometric methodology to compressible flow
problems has been presented and applied to the simulation of a rotorcraft by Xu et al. (45).

The antithetical approach consists in the use of the Lagrangian viewpoint, in which the
computational grid exactly follows the movement of the fluid. Since the Lagrangian form
of the conservation laws is employed, the convective term is absent. As a consequence, the
discretisation is less complex with respect to Eulerian schemes and, ideally, the resulting
algorithm is not affected by numerical dissipation. Such characteristics make Lagrangian
methods extremely effective for tracking moving boundaries, interfaces and discontinuities. In
an effort to develop high-order Lagrangian schemes, several DG formulations were proposed
and studied for hydrodynamics problems (46; 47; 48). Moreover, since the mesh is forced
to move at the same speed as the fluid particles, the use of piecewise-linear grids limits
Lagrangian schemes to second-order accuracy. This justified the development of curvilinear
finite elements in Lagrangian algorithms (49). Bazilevs et al. (6) demonstrated the benefits of
IGA for Lagrangian hydrodynamics, and, in the same field, a Finite Volume method based on
conical cells has been presented in (50). As a drawback, the Lagrangian description can lead
to highly distorted grids. For this reason, mesh-based Lagrangian methods are not usually
employed for the computation of vortical flows.

In order to combine the best features of the two classical viewpoints, the ALE frame-
work was developed. The ALE methodology represents a generalisation of the Eulerian and
Lagrangian descriptions and allows to perform simulations with meshes that deform in an ar-
bitrary way. Considering the case of a moving boundary, ALE algorithms permit the adoption
of a Lagrangian description for the boundary region and an Eulerian viewpoint for the far-
field, with a smoothly deformed transition zone. Thanks to this capability, ALE methods are
commonly used for CFD applications that present time-dependent domains. For this reason,
various ALE-DG schemes have been proposed for the solution of the Navier-Stokes equations
with application to external flows (20; 51; 52). Developing a robust methodology to deform
curvilinear grids is not straightforward, therefore, this first generation of ALE-DG solvers
still relied on piecewise-linear grids. More recently, however, a family of ALE algorithms with
high-order mesh deformations has been proposed for both WENO and DG schemes (53; 54).
Such approaches have demonstrated the interest in using moving curvilinear grids for flows
with strong discontinuities. Similarly, Anderson et al. (55) showed the advantages of curvi-
linear ALE to track multi-material flow interfaces. Although more flexible with respect to
Lagrangian methods, ALE algorithms based purely on mesh deformation still have difficulties
in coping with large displacements of the boundary. In order to guarantee the best possible
grid quality over time, a remeshing step can be added (56; 57; 58). On the other hand, when-
ever the grid topology is updated, the numerical solution has to be remapped from the old
to the new mesh, with a possible loss of conservativity. An alternative to the ALE-remeshing
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coupling is the use of space-time DG formulations (59; 60; 61), in which the topology change
can be performed via a proper construction of the space-time mesh.

Another alternative to remeshing is the use of overset and sliding grids. Both approaches
have been successfully employed for problems characterised by large displacements of the
boundaries (62; 63; 64; 65). In particular, overset grids are especially effective for CFD sim-
ulations of multi-body systems, since each component can be meshed independently. The
main technical difficulties are represented by the computation of the overlap regions between
the independent grids and the evaluation of the fluxes in the overlap band. The first DG
method with overset meshes has been proposed by Galbraith et al. (66; 67) for fixed bound-
aries. Subsequently, DG solvers with overlapping grids and time-dependent domains have
been presented in (68; 69). Lastly, sliding meshes can be seen as the limit case of the overset
approach, with an overlap region constituted exclusively by the sliding interface. The main
applications of sliding techniques are flows with rotating components, in which it is natural
to subdivide the computational domain into a fixed and a rotating region separated by a
circular interface. Bazilevs et al. (70) exploited the properties of IGA to develop an efficient
sliding mesh algorithm. In the DG framework, Ferrer et al. (71) developed the first sliding
grid solver for incompressible Navier-Stokes equations, whereas an algorithm for compressible
flow was illustrated in (72).

In this work we focus on the ALE methodology. In order to allow the investigation a
wide range of problems, we develop two complementary approaches, the first one is based
on mesh deformation, whereas the second relies on sliding grids. The primary goal is to
demonstrate the potential of IGA and the benefits of using a high-order accurate boundary
representations for applications with time-dependent domains. The second aim is to propose
an efficient aerodynamic design methodology exploiting the tight coupling between geometry
and simulation provided by the Isogeometric paradigm. The manuscript is organised as
follows. In chapter 1 we present the fundamentals of the Isogeometric DG schemes for Navier-
Stokes equations. Chapter 2 is dedicated to the development and validation of the ALE
formulation and the mesh deformation algorithm. In chapter 3 we propose a high-order
accurate sliding grid technique. In chapter 4 we apply the developed ALE methodology to a
flow control problem and we carry out an optimisation study. Lastly, the main outcomes and
perspectives are discussed in the conclusion.

Open source code

All the methodologies presented in this dissertation are implemented in the Igloo software
suite, developed at Inria. The source code is available, under the GNU General Public Licence
v3, at the following repository: https://gitlab.inria.fr/igloo/igloo/-/wikis/home.
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Chapter 1

Isogeometric DG scheme

In this chapter, we illustrate the main ideas behind the Isogeometric Discontinuous Galerkin
scheme. We briefly introduce the well-known DG method for a generic system of conservation
laws. We then present some of the mathematical concepts of the CAD representation along
with some useful geometry manipulation algorithms. Next, the Isogeometric DG method is
detailed and two test cases are discussed.

1.1 Discontinuous Galerkin method

We consider, for the sake of generality, a system of conservation laws of the following form:
∂W
∂t

+ ∇ · F = 0, (1.1)

with W being the vector of conservative variables and F the physical flux. The computational
domain Ω is discretized using a set of elements Ωj , j = {1, 2, ..., Nel}. In order to discretise
eq. (1.1) using a DG scheme, the numerical solution wh is expressed in each element of index
j as:

wj
h =

Np∑
i=1

φj
i (x) wj

i , (1.2)

with φj
i being a generic set of basis functions and wj

i the Np degrees of freedom, defined on
the j-th element. The weak formulation is obtained multiplying eq. (1.1) by a basis function
φk and integrating over the elemental domain Ωj :

ˆ
Ωj
φk
∂wh

∂t
dΩ +

ˆ
Ωj
φk∇ · F dΩ = 0. (1.3)

Note that the index j on the basis functions and the discrete solution has been dropped to
ease the notation. Then, integrating by parts, the classic DG discretisation is found:ˆ

Ωj
φk
∂wh

∂t
dΩ =

ˆ
Ωj

∇φk · F dΩ −
˛

∂Ωj
φkF∗ dΓ. (1.4)
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Since the discrete solution admits multiple values across elements boundaries, the physical flux
in the surface integral is replaced by a numerical flux F∗(w+

h ,w
−
h ,n), which is computed with

a consistent Riemann solver, according to the values of the solution w+
h and w−

h that prevail
at each side of the interface and the unitary normal vector n, as in finite volume methods.
Depending on the choice the basis functions, different DG methods can be developed. In
particular, the family of nodal DG schemes (73) relies on Lagrange polynomials, whereas,
modal DG approaches are based on a set of orthogonal basis functions (25). In this work, we
employ a DG discretisation with a CAD-consistent representation.

1.2 Fundamentals of CAD representations

Before detailing the implementation of the Isogeometric DG, a brief introduction to the math-
ematical foundations of CAD is needed. The present section is thus dedicated to illustrate
the main features of the CAD representation.

1.2.1 Bézier curves

The construction of a CAD-consistent scheme necessarily relies on bases used in CAD. The
first approach to interactive geometric design consisted in the use of Bézier curves, defined as
(2):

C(ξ) =
p+1∑
i=1

Bp
i (ξ) xi, (1.5)

where xi are the control points, and Bp
i are the Bernstein polynomials of degree p:

Bp
i (ξ) =

(
p

i− 1

)
ξi−1(1 − ξ)p−i−1, (1.6)

with ξ ∈ [0, 1]. An example of cubic Bézier curve is represented in Fig. 1.1, where the black
dots represents the control points of the curve. The polygon defined by the control points,
represented by the dashed black lines, is known as control polygon.

Polynomial curves are not able to exactly represent conic sections, therefore, in order to
overcome this limitation, rational Bernstein functions were introduced (74):

Rp
i (ξ) = Bp

i (ξ)ωi∑p+1
j=1 B

p
j (ξ)ωj

, (1.7)

with the coefficients ωi being positive real numbers called weights. Since Bernstein poly-
nomials are a partition of unity, Rp

i (ξ) coincides with Bp
i (ξ) when the weights are uniform.

Rational Bézier surfaces are defined as:

C(ξ) =
p+1∑
i=1

Rp
i (ξ) xi. (1.8)
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Figure 1.1: Example of cubic Bézier curve with associated basis functions

The Bézier representation possesses several interesting mathematical properties (74), among
which we cite:

• non-negativity: Rp
i (ξ) ≥ 0, ∀i, p and ∀ξ ∈ [0, 1];

• convex hull property: the curve C is always contained in the convex hull defined by the
control points xi;

• affine invariance: applying an affine transformation (rotation, translation and scaling,
etc.) to the control polygon is equivalent to applying an affine transformation to the
entire curve.

1.2.2 B-Splines and NURBS curves

Complex geometries require a high-degree basis when represented using functions defined on
a single support, leading to several drawbacks from the numerical point of view. Therefore,
as explained in (1), CAD software representations are commonly based on B-Splines, rather
than Bézier curves. To introduce B-Splines, we consider the parametric domain = [ξ1, ξl],
discretized by the knot vector Ξ = {ξ1, . . . , ξi, . . . , ξl}. B-Spline functions of degree p are
evaluated recursively:

N0
i (ξ) =

⎧⎨⎩1 if ξi ≤ ξ < ξi+1

0 otherwise
(1.9)
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Np
i (ξ) = ξ − ξi

ξi+p − ξi
Np−1

i (ξ) + ξi+p+1 − ξ

ξi+p+1 − ξi+1
Np−1

i+1 (ξ). (1.10)

The number of basis functions is determined by both the number of knots l and the degree:

n = l − p− 1. (1.11)

Conventionally, the i-th knot span is defined as the half-open interval [ξi, ξi+1). One of the
main characteristic of the B-Spline basis is the local support property: each basis function Np

i

is non-zero exclusively on the interval [ξi, ξi+p+1), implying that at most p+1 basis functions
are non-zero on each knot span. It is important to note that knots can be repeated and
zero length knot spans are possible. The multiplicity of a knot plays an essential role in the
regularity of B-Spline functions. In fact, if we denote s as the multiplicity of a generic knot
ξi, the basis functions Np

i are Cp−s regular at ξi. Commonly, in CAD representations, open
knot vectors are employed, i.e., the multiplicity of the first and last knots is equal to p+1. In
this work we will exclusively employ open knot vectors.

Figure 1.2: Example of cubic B-Spline curve with associated basis functions

Non-Uniform Rational B-Splines (NURBS) functions are defined as the rational extension
of B-Splines:

Rp
i (ξ) = Np

i (ξ)ωi∑n
j=1N

p
j (ξ)ωj

. (1.12)

As for Bézier geometries, NURBS curves are represented by means of control points:

C(ξ) =
n∑

i=1
Rp

i (ξ)xi. (1.13)
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An example of cubic NURBS curve with knot vector {0, 0, 0, 0, 1, 2, 4, 4, 4, 4} is illustrated in
Fig. 1.2. The previously cited properties of Bézier curves are valid for NURBS representations
as well.

1.2.3 CAD surfaces

The description of multidimensional CAD objects usually relies on tensor product represen-
tations (2). Polynomial tensor product surfaces based on the Bernstein basis are defined as
follows:

S(ξ, η) =
p+1∑
i1=1

p+1∑
i2=1

Bp
i1

(ξ)Bp
i2

(η) xi1i2 , (1.14)

where the control points xi1i2 form a bidirectional net, as in the example provided in fig. 1.3.
In order to describe rational patches, we first define the bivariate rational Bernstein functions:

Rp
i1i2

(ξ, η) =
Bp

i1
(ξ)Bp

i2
(η)ωi1i2∑p+1

j1=1
∑p+1

j2=1B
p
j1

(ξ)Bp
j2

(η)ωj1j2

. (1.15)

The expression of a rational Bézier surface is then:

S(ξ, η) =
p+1∑
i1=1

p+1∑
i2=1

Rp
i1i2

(ξ, η) xi1i2 . (1.16)

Figure 1.3: Example of quadratic Bézier surface
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The construction of NURBS surfaces is based on the same principles we illustrated for
Bézier representations. Two separate knot vectors can be employed to build the B-Spline
basis in the ξ and η directions, providing a lot of flexibility. Both Bézier and NURBS surfaces
inherit the mathematical properties mentioned in section 1.2.1.

1.2.4 Knot insertion

An important geometry manipulation technique is the knot insertion algorithm. Let us con-
sider a B-Spline curve C with knot vector Ξ = {ξ1, . . . , ξl} and control points x. Thanks
to the properties of the B-Spline basis, a new knot ξ̄ can be added to Ξ without altering
the geometry of the curve (74). As a consequence of the additional knot, the spline space is
enriched and the curve is represented with one more control point. The updated knot vector
can be written as Ξ̄ = {ξ1, . . . , ξq, ξ̄, ξq+1, . . . , ξl} and the curve can be represented as:

C(ξ) =
n∑

i=1
Np

i (ξ) xi =
n+1∑
i=1

N̄p
i (ξ) x̄i, (1.17)

where N̄p
i is the set of B-Spline functions defined by the knot vector Ξ̄. The control points of

the new representation can be explicitly computed with the following formula:

x̄i = (1 − αi)xi−1 + αixi, αi =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if i ≤ q − p

ξ̄ − ξi

ξi+p + ξi
if q − p+ 1 ≤ i ≤ q

0 if i ≥ q + 1

(1.18)

(a) Original curve (b) Refined curve

Figure 1.4: Example of knot insertion
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When a NURBS curve is considered, the knot insertion formula (1.18) cannot be im-
mediately applied. First, the d-dimensional rational curve must be represented as a (d+1)-
dimensional polynomial curve using homogenous coordinates (74). Defining ω as:

ω =
n∑

i=1
Np

i (ξ)ωi, (1.19)

then, in the case of a bidimensional curve, we can write:

Cω(ξ) =

⎛⎜⎜⎝
xω

yω

ω

⎞⎟⎟⎠ =
n∑

i=1
Np

i (ξ)

⎛⎜⎜⎝
xiωi

yiωi

ωi

⎞⎟⎟⎠ =
n∑

i=1
Np

i (ξ) xω
i (1.20)

The updated coordinates and weights are obtained by applying eq. (1.18) to xω
i :

x̄ω
i = (1 − αi)xi−1 + αixω

i , (1.21)

using the previously defined αi coefficients. Then, the enriched (d+1)-dimensional polynomial
curve is transformed back to a d-dimensional rational curve to obtain the updated control
points. The knot insertion algorithm is widely used in Isogeometric Analysis as it allows to
enrich the approximation space without altering the geometry of the domain. Thus, it can
be interpreted as the equivalent of the h-refinement for NURBS representations (1).

1.2.5 Bézier extraction

Bézier curves can be seen as a special case of NURBS curves defined over a single knot interval.
Indeed, it can be shown that Bernstein polynomials of degree p can be expressed as B-Spline
basis functions computed using the following knot vector:

Ξ = {0, . . . , 0  
p+1

, 1, . . . , 1  
p+1

}. (1.22)

As a consequence, it is possible to convert a CAD object described using NURBS functions to
a set of independent Bézier patches, without altering the geometry. The procedure is known
as Bézier extraction.

If we consider a single NURBS curve of degree p, built using a knot vector Ψ containing m
non-zero knot spans, a set of m independent Bézier curves is obtained by applying the knot
insertion algorithm until the multiplicity of every internal knot of Ψ is equal to p+1. The
procedure can be extended to NURBS surfaces, by applying the extraction algorithm to each
NURBS curve of the tensor product representation. We report in Fig. 1.5 the extraction of 4
independent Bézier surfaces starting from a single quadratic NURBS patch with knot vector
{0, 0, 0, 1, 2, 2, 2} in both directions ξ and η.
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(a) Single NURBS patch (b) Extracted Bézier patches

(c) B-Spline basis (d) Bernstein basis

Figure 1.5: Bézier extraction

The Bézier extraction algorithm is fundamental as it allows to construct a CAD-consistent
DG representation (32). Indeed, traditional Isogeometric Analysis approaches adopt B-Spline
and NURBS as a basis for the Galerkin method (1). Since the spline basis is continuous,
inside each NURBS patch a CG scheme has to be employed. On the contrary, polynomial
and rational Bernstein functions can be employed as a basis for a DG discretization, thanks
to the capability of generating discontinuous solutions on the extracted set of Bézier patches.

1.2.6 Degree elevation

Another useful geometry manipulation is the degree elevation, thanks to which it is possible
to implement p-refinement techniques for finite element discretizations. Since our numerical
scheme relies on Bézier patches, we limit our description to the degree elevation of a Bézier
representation. The algorithm for NURBS patches is considerably more complex, due to the
spline nature of the basis functions. The reader may refer to Piegl et al. (74) for more details.
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(a) Original quadratic curve (b) Elevated curve

Figure 1.6: Example of degree elevation

Let us consider a rational Bézier curve C of degree p. Using the homogeneous coordinate
notation, the degree elevation problem can be expressed as:

Cω(ξ) =
p+1∑
i=1

Bp
i (ξ) xω

i =
p+2∑
i=1

Bp+1
i (ξ) x̄ω

i , (1.23)

where x̄ω
i represents the control points of the (d+1)-dimensional polynomial curve. It could

be possible to write the problem as a linear system of equations and solve to obtain the
new set of control points x̄ω

i . However, exploiting the definition of Bernstein polynomials an
explicit solution can be obtained (74), and the updated control points are computed thanks
to the following formula:

x̄ω
i = (1 − αi)xω

i + αixω
i−1, (1.24)

with:
αi = i− 1

p+ 1 , i = 1, . . . , p+ 2. (1.25)

Again, the elevated polynomial curve is reverted to a rational representation to obtain the
updated set of control points in the physical space.

1.3 Isogeometric DG formulation

As the fundamentals of the CAD representation have been illustrated, we focus in this sec-
tion on the Isogeometric DG method. We assume that, in general, the physical flux of the
considered system of conservation laws can be expressed as:

F = Fc(W) − Fv(W,∇W) (1.26)
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where Fc is the convective flux and Fv is the viscous flux. G = ∇W is the gradient of the
conservative variables. The second order derivatives are discretized with the Local Discon-
tinuous Galerkin (LDG) approach (75). We thus rewrite eq. (1.1) as a system of first order
equations:

⎧⎪⎨⎪⎩
∂W
∂t

+ ∇ · Fc(W) − ∇ · Fv(W,G),

G − ∇W = 0.
(1.27)

Figure 1.7: representation of a bidimensional Bézier element

In the Isogeometric DG framework, each element is a rational Bézier patch, as represented
in figure 1.7. The geometry x and the local solution fields wh and gh are expressed using the
same basis functions:

⎛⎜⎜⎝
x

wh

gh

⎞⎟⎟⎠ =
(p+1)2∑

i=1
Ri(ξ, η)

⎛⎜⎜⎝
xi

wi

gi

⎞⎟⎟⎠ , (1.28)

where Ri(ξ, η) are the rational Bernstein functions Rp
i1,i2

(ξ, η) with a trivial index change and
omission of degree p. The isogeometric paradigm is adopted to extend the classic DG scheme
(1.4) and discretize eq. (1.27). Using the map defined by the rational Bézier functions on
each element Ωj , the integrals are transposed from the physical space to the parametric unit
square Ω̂ = [0, 1]2, obtaining the Isogeometric DG formulation:⎧⎪⎪⎪⎨⎪⎪⎪⎩

dwi

dt

ˆ
Ω̂
RkRi |JΩj | dΩ̂ =

ˆ
Ω̂

∇Rk ·
(
Fc − Fv

)
|JΩj | dΩ̂ −

˛
∂Ω̂
Rk

(
F∗

c − F∗
v

)
|JΓj | dΓ̂,

gi

ˆ
Ω̂
RkRi |JΩj | dΩ̂ =

ˆ
Ω̂

∇Rkwh |JΩj | dΩ̂ −
˛

∂Ω̂
RkW∗ |JΓj | dΓ̂.

(1.29a)

(1.29b)
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With respect to the original method, the integrals in (1.29) contain the additional metric
terms |JΩj | and |JΓj |. In particular, JΩj is the Jacobian matrix of the coordinate transforma-
tion defined by equation (1.28):

JΩj =

⎛⎜⎜⎜⎝
∂x

∂ξ

∂x

∂η

∂y

∂ξ

∂y

∂η

⎞⎟⎟⎟⎠ =
(p+1)2∑

i=1

⎛⎜⎜⎜⎝
∂Ri

∂ξ
(ξ, η)xi

∂Ri

∂η
(ξ, η)xi

∂Ri

∂ξ
(ξ, η) yi

∂Ri

∂η
(ξ, η) yi

⎞⎟⎟⎟⎠ , (1.30)

whereas |JΓj | is the Jacobian of the map between the reference interval Γ̂ = [0, 1] and each
edge of the elements:

|JΓj | =

√(∂x
∂ξ

)2
+
(
∂y

∂ξ

)2
=

√( p+1∑
i=1

∂Ri

∂ξ
(ξ)xi

)2

+
( p+1∑

i=1

∂Ri

∂ξ
(ξ) yi

)2

. (1.31)

Furthermore, the gradient of the basis functions on each element Ωj , in the physical space, is
computed by means of JΩj :

∇Rk = J−T
Ωj ∇̂Rk, (1.32)

where ∇̂Rk is the gradient of the basis function in the parametric domain. The Gauss-
Legendre quadrature rule is employed to approximate the integrals. The convective numerical
flux F∗

c is computed with a consistent Riemann solver. The viscous numerical fluxes F∗
v and

W∗ are computed with the LDG approach (75):

⎧⎨⎩F∗
v = Fv

(
w+

h ,g
+
h

)
,

W∗ = w−
h .

(1.33)

Equation (1.29b) does not contain a time derivative, therefore it can be solved separately from
eq. (1.29a) within each time iteration. The system of equations (1.29) can be thus rewritten
in a compact form:

Mdw
dt = R(wh), (1.34)

where the residual R is the right-hand side of eq. (1.29a) and M is the block-diagonal mass
matrix.

1.4 Equations of fluid mechanics

The applications presented in this work mainly concern flows governed by the two-dimensional
Navier-Stokes equations. Using the formalism of equation (1.27), the conservative variables
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and the physical fluxes are:

W =

⎛⎜⎜⎜⎜⎜⎝
ρ

ρu1

ρu2

ρe

⎞⎟⎟⎟⎟⎟⎠ , Fc,i =

⎛⎜⎜⎜⎜⎜⎝
ρui

ρu1ui + pδ1i

ρu2ui + pδ2i

ρui
(
e+ p

ρ

)

⎞⎟⎟⎟⎟⎟⎠ , Fv,i =

⎛⎜⎜⎜⎜⎜⎝
0
τ1i

τ2i

ukτki − qi

⎞⎟⎟⎟⎟⎟⎠ , (1.35)

where ui are the components of the fluid velocity vector, ρ is flow density and e is the total
energy. The relation between the thermodynamic pressure p and the conservative variables
is given by the ideal gas model:

ρe = p

γ − 1 + 1
2ρ
(
u2

1 + u2
2
)

(1.36)

with γ = 1.4. The viscous stress tensor τij and the thermal conduction flux qi are:

τij = µ

(
∂ui

∂xj
+ ∂uj

∂xi

)
− 2

3µ
∂uk

∂xk
δij , (1.37)

qi = −γ µ

Pr

∂e

∂xi
, (1.38)

where Pr = 0.72 and µ is the dynamic viscosity coefficient. When Euler equations are
considered, the viscous flux Fv is set equal to 0 and the numerical algorithm just solves eq.
(1.29a).

1.5 Shock capturing

Compressible flows are characterized by the presence of shocks. It is therefore critical for a
robust numerical algorithm to be able to accurately capture discontinuities. Two approaches
are commonly used for DG schemes. The first method consists in introducing an artificial
viscosity term in the conservation law (76; 77), whereas the second technique is inspired by
Finite Volume slope limiting (78; 79). The approach employed here adapts the original idea
presented in (76) to rational elements, and it was tested in the context of the proposed method
in (32), on a simple problem with a fixed geometry. A constant by element artificial viscosity
ε is added to µ in eq. (1.37), when a shock is detected in the element. Its value is computed
with the following smooth function:

ε =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 if sj ≤ s0 − κ,

ε0
2

(
1 + sin π(sj − s0)

2κ

)
if s0 − κ < sj < s0 + κ,

ε0 if sj ≥ s0 + κ,

(1.39)
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where ε0 = d/(p + 1), κ = s0 and s0 = s̃0/(p + 1)2. The shock sensor sj gives a measure of
the oscillatory nature of the solution in each element, and it is based on the total variation
of the control points of the density field in the two directions (32):

si2
ξ =

⎛⎝ p∑
i1=1

| ρ i1+1, i2 − ρ i1, i2 |

⎞⎠ − | ρ p+1, i2 − ρ 1, i2 | , (1.40)

si1
η =

⎛⎝ p∑
i2=1

|ρ i1, i2+1 − ρ i1, i2 |

⎞⎠ − |ρ i1, p+1 − ρ i1, 1| . (1.41)

The sensor for a given element is finally defined as:

sj = 1
2(p+ 1)

⎛⎝ p+1∑
i2=1

si2
ξ +

p+1∑
i1=1

si1
η

⎞⎠ 1
ρ̄
, (1.42)

where ρ̄ is the average density and s̃0 is a user-defined parameter to adjust the sensitivity of
the shock capturing algorithm.

1.6 Boundary conditions

The treatment of boundary conditions has to be examined in order to conclude the analysis
of the space discretisation. The imposition of the boundary conditions in DG schemes is
performed by means of the numerical fluxes F∗

c and F∗
v. Following the terminology adopted

by Mengaldo et al. (80), two approaches can be distinguished: weak Riemann and weak
prescribed. In the first technique a numerical flux is computed using the inner conservative
variables win and a properly computed mirror state wout. In this work, we adopt the weak
Riemann approach in three different cases: analytical problems, far field boundaries and slip
walls (or flow tangency condition). In the first situation, wout is computed using the exact
solution. When far field conditions are considered, the mirror state wout is computed by
combining the Riemann invariants of the Euler equations evaluated with the inner variables
win and the known freestream state w∞. Lastly, the mirror state for the slip wall condition
is defined as:

wout =

⎛⎜⎜⎜⎜⎜⎝
ρin

ρin u1,m

ρin u2,m

ρin ein

⎞⎟⎟⎟⎟⎟⎠ , (1.43)

where Vm =
(
u1,m, u2,m

)
is computed by means of the inner fluid velocity Vin =

(
u1,in, u2,in

)
and the boundary velocity Vb =

(
u1,b, u2,b

)
:

Vm = Vin − 2
[(

Vin − Vb

)
· n
]
n. (1.44)
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In this chapter, the boundary is fixed, therefore Vb = 0. Using eq. (1.44), we force the average
between Vm and Vin to be tangential to the wall. When viscous problems are considered,
the weak Riemann approach requires to compute the LDG flux at the boundary. This is done
by means of the inner auxiliary state gin:⎧⎨⎩F∗

v = Fv
(
win,gin

)
,

W∗ = wout.
(1.45)

Conversely, in the weak prescribed approach, the value of the boundary flux is directly
imposed by means of the physics of the boundary condition. We adopt this technique for
adiabatic no-slip wall conditions. The convective numerical flux F∗

c is computed using the
convective physical flux Fc of eq. 1.35:

F∗
c = Fc

(
wwall

)
, (1.46)

with the following boundary state:

wwall =

⎛⎜⎜⎜⎜⎜⎝
ρin

ρin u1,b

ρin u2,b

ρin ein

⎞⎟⎟⎟⎟⎟⎠ . (1.47)

Concerning the computation of the LDG numerical flux, W∗ = wwall, whereas, for the
evaluation of F∗

v, the viscous stress tensor has to be estimated by means of gin and the
adiabaticity condition is imposed by ignoring the conduction flux vector q.

1.7 Time integration

In order to solve the system of ordinary differential equations (1.34) resulting from the space
discretisation, a suitable time integration method has to be adopted. In this manuscript we
consider explicit Runge-Kutta (RK) schemes. Considering an initial value problem of the
form: ⎧⎪⎨⎪⎩

dz
dt = h(t, z),

z(0) = z0,

(1.48)

the formulation of a generic explicit RK scheme is:

zn+1 = zn + ∆t
s∑

i=1
biki, (1.49)

where ∆t is the time step, s is the number of stages and ki:

ki = h

(
tn + ci∆t, yn + ∆t

i−1∑
j=1

aijkj

)
. (1.50)
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The coefficients aij , bi and ci allow to define RK integrators with different characteristics,
especially in terms of numerical stability. It is possible to summarise the coefficients of each
RK method using the Butcher tableau:

0
c2 a21

c3 a31 a32
...

... . . .
cs as1 as2 as,s−1

b1 b2 · · · bs−1 bs

(1.51)

In order to achieve high accuracy in time, we employ the classic 4th-order explicit RK method
(81), with coefficients:

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6

(1.52)

Alternatively, when flows with shocks are considered, we employ the Strong Stability Pre-
serving (SSP) 3rd-order RK method of Gottlieb et al. (82), defined by the following Butcher
tableau:

0
1 1

1/2 1/4 1/4
1/6 1/6 2/3

(1.53)

Lastly, the time step ∆t has to be determined. In this work we adopt the following
empirical rule:

∆t = min
i

C

λ̂i
di

+ 2ν
d2
i

, (1.54)

where C is a user defined constant, λ̂i is the maximum wavespeed in the i-th element, and
di = 2hi/(1 + 2p), as proposed by Cockburn et al. (83), with hi being the characteristic size
of the i-th element.

1.8 Cylinder flow

In order to characterise the Isogeometric DG method, we consider a couple of problems with
fixed geometries before treating the extension to time-dependent domains. As a first test
case, we investigate the laminar flow around a circular cylinder. Thanks to the proposed
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formulation, it is possible to exactly represent the computational domain, in fact, the circular
boundary can be perfectly described by means of 4 rational Bézier arcs, from which a very
coarse baseline grid is generated. Local refinement is then applied to the initial patches to
obtain the computational mesh without the necessity of refitting the curved boundary. The
cylinder of diameter D is centered at the origin (0,0) and the domain is delimited by the
rectangle [−25D, 100D] × [−25D, 25D], the freestream Mach number is 0.2 and the Reynolds
number is equal to 500.

(a) Baseline mesh (b) Coarse mesh

(c) Intermediate mesh (d) Fine mesh

Figure 1.8: Different refinement levels for the cylinder simulation

Rational shape functions based on polynomials of degrees from 3 to 5 are tested, and, for
each degree, the simulations are carried out with 3 different refinement levels:

• coarse: 1065 elements, with 16 Bézier arcs on the boundary,

• intermediate: 2145 elements, with 32 Bézier arcs on the boundary,

• fine: 4455 elements, with 64 Bézier arcs on the boundary.

The different mesh levels are represented in Fig. 1.8. For each combination of degree and grid
refinement, we compare the results obtained with curved and linear boundaries, as it can be
observed in Fig. 1.9, in order to assess the gain given by the NURBS-based representation.
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(a) Curved mesh (b) Linear mesh

Figure 1.9: Close-up view of streamwise velocity field, coarse mesh, p = 5

(a) Vortex shedding pattern (b) Drag coefficient convergence

(c) Lift coefficient convergence (d) Strouhal number convergence

Figure 1.10: Cylinder flow, numerical results. The continuous lines represent results ob-
tained with curved boundaries, whereas dashed lines are used for those obtained with linear
boundaries.

As we can observe in Fig. 1.10a, the solution is characterized by the well known vortex
shedding pattern. The average drag coefficient C̄d, the peak lift coefficient Ĉl and the Strouhal
number St are calculated, and, for each basis degree, we study their evolution over the different
refinement levels. In Fig. 1.10, it is possible to observe that, for all the tested degrees, the
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same converged solution is found, and, as expected, the convergence is faster for higher
order basis functions, but only when curved boundaries are used, indeed, the approximated
geometry acts as a source of error, lowering the convergence rate even if the solution field is
represented with a high-order basis. In table 1.1 we report the comparison of the Strouhal
number obtained with the present methodology with reference data from the literature.

St

Present work 0.225
Blackburn et al. (84) 0.228

Lu et al. (85) 0.222
Nguyen (52) 0.218

Roshko (Experimental) (86) 0.20 - 0.22

Table 1.1: Comparison of Strouhal number with reference data

1.9 NACA airfoil flow

The inviscid flow around a NACA 0012 airfoil at zero incidence is studied as a second appli-
cation. A freestream Mach number equal to 0.15 is considered. The shape of the airfoil is
defined by:

y = 5t
(
0.2969

√
x− 0.1260x− 0.3516x2 + 0.2843x3 − 0.1036x4), (1.55)

with t = 0.12 and x ∈ [0, 1]. Using Bernstein polynomials it is possible to exactly represent
the boundary by means of the following parameterisation:⎧⎨⎩x = ξ2,

y = 5t
(
0.2969ξ − 0.1260ξ2 − 0.3516ξ4 + 0.2843ξ6 − 0.1036ξ8), (1.56)

with ξ ∈ [0, 1]. However, adopting a Bézier representation of degree 8 for the numerical
scheme would not be practical. As a consequence, we recur to least square B-Spline fitting
to represent the boundary. Depending on how the knot vector is chosen, different B-Spline
basis can be generated. The goal of the present test case is to better understand the nature
of the numerical error introduced by the fitting of the boundary. To this end, we generate
a coarse baseline mesh starting from the fitted boundary and we do not refit the geometry
during the mesh refinement procedure. The mesh for the simulation is reported in Fig. 1.11
together with the converged density field. As the steady state solution is reached, the curve
of the pressure coefficient over the airfoil is computed.

The fitting algorithm is controlled by means of three parameters: the basis degree p, the
regularity of the curve and the number of knot spans m, which corresponds to the amount
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(a) Mesh (b) Density field

Figure 1.11: Mesh and solution, inviscid NACA airfoil flow

(a) m = 4, p = 3, C2 (b) m = 4, p = 3, C0 (c) m = 8, p = 3, C2

(d) m = 8, p = 3, C1 (e) m = 8, p = 3, C0 (f) m = 8, p = 4, C0

Figure 1.12: Comparison of Cp curve for different choices of fitting

of Bézier elements generated after the extraction procedure. As previously mentioned, the
regularity is determined by the multiplicity of the internal knots of the knot vector. The
effect of the regularity of the boundary is twofold. On one hand, a smooth representation
implies a better regularity of the boundary conditions. On the other hand, for a given value
of m, each continuity constraint reduces the degrees of freedom of the curve, leading to a less
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accurate fitting. This phenomenon can be observed in Fig. 1.12: C2 boundary representations
present a higher pressure errors with respect to the corresponding C0 approximation, which
are conversely affected by strong oscillations due to the discontinuous boundary derivatives
between the elements. It is also possible to observe that using a cubic basis with 4 knot spans
is not enough to obtain satisfying results. A significant improvement is noticed using 8 knot
spans. Even better results are observed with a quartic basis and 8 knot spans. In this case,
the error induced by the geometric approximation is negligible.

1.10 Conclusion

In this chapter we presented the Isogeometric DG framework. We showed how the CAD
representation can be manipulated to obtain a DG compatible description. The proposed
numerical algorithm has been employed to solve the compressible Navier-Stokes equations
and two benchmark problems were analysed. In particular, we investigated the effects of the
boundary representation on the flow solution. The results obtained in the proposed test cases
allowed to characterise the behaviour of the Isogeometric DG scheme with fixed boundaries.
In the following chapter we will thus focus on the extension the Isogeometric DG methodology
to problems with time-dependent domains by means of an ALE formulation.
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Chapter 2

ALE formulation

ALE algorithms can be classified into two categories: direct methods (54; 20), in which
the ALE form of the conservation laws is solved, and indirect methods (55; 58), which are
characterised by a pure Lagrangian computation, followed by a rezoning and a remapping
phase. The present work is focused on direct ALE approaches. In particular, several ALE
formulations have been proposed in the context of DG methods. A review of the possible
direct ALE techniques is therefore carried out in section 2.1 and two categories of approaches
are identified. In the first family of methods, the conservation laws are effectively solved
in the moving domain (20; 52), whereas, in the second class of schemes, the equations are
solved in a fixed reference domain thanks to the introduction of a map (51; 47). The main
characteristics of the various approaches are discussed and, in particular, the respect or the
violation of the Discrete Geometric Conservation Law (DGCL) is examined in each case. For
the sake of simplicity, the proposed analysis is limited to method of lines DG discretisations.
It is however worth mentioning that interesting results have also been obtained with space-
time ALE-DG schemes, either in fully implicit form (59) or, more recently, in the ADER
(Arbitrary high-order schemes using DERivatives) framework (54; 61).

The most suitable ALE formulation for NURBS representation is selected, and its ex-
tension to rational Bézier elements is detailed in section 2.2. Secondly, we explain how the
regularity and hierarchy properties of NURBS can be exploited to define a very smooth mesh
deformation algorithm, even in presence of large boundary displacements. Next, we present
an effective ALE-AMR coupling technique to perform adaptive simulations with deforming
meshes. In section 2.5, a rigorous verification of the methods is presented using two prob-
lems with analytic solutions governed by linear advection and compressible Euler equations.
Then, three more complex test-cases are considered to assess the capabilities of the proposed
methodologies. The compressible Navier-Stokes equations are first solved for an oscillating
cylinder and a systematic grid refinement study is carried out to assess the accuracy of the
computations and compare the results obtained with reference data from the literature. As
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a second problem, we consider the subsonic flow around a pitching airfoil. Here, we focus
on quantifying the impact of using curved grids, in comparison with classical piecewise-linear
meshes, in order to highlight the gain obtained by improving the geometry description in
the context of deformable domains. We then investigate the pitching airfoil flow in transonic
conditions, with the goal of assessing the robustness of the developed scheme in presence of
shocks. The chapter ends with a demonstration of the ALE-AMR coupling algorithm using
the pitching airfoil benchmark.

2.1 ALE formulations for Discontinuous Galerkin

In continuum mechanics, motion is usually described using either the Lagrangian or the
Eulerian viewpoint. In the first approach, equations of motion describe the trajectory of
every material particle X, whose ensemble represents the material domain. In Lagrangian
algorithms, each node of the computational grid corresponds to one single material particle,
hence, the mesh moves following the same law as the material points. As a consequence,
Lagrangian formulations do not present convective terms to discretise, but, as a drawback,
they can lead to highly distorted meshes. On the other hand, the Eulerian viewpoint uses
a fixed reference frame and the equations of motion describe the evolution of the physical
system in each point x of the spatial domain. Since the mesh is fixed, complex motion can be
easily simulated with the Eulerian description. The mathematical relation between the two
formulations is given by the material derivative:

∂f

∂t

⏐⏐⏐⏐
X

= ∂f

∂t

⏐⏐⏐⏐
x

+ V · ∇xf (2.1)

One of the main shortcoming of the Eulerian framework is the difficulty in dealing with
moving interfaces and boundaries. Arbitrary Lagrangian-Eulerian methods have been devel-
oped to overcome the limitations of the classical viewpoints, introducing a referential domain
χ, that moves with an arbitrary velocity Vg, in which the equations of motion are solved.
Material, spatial and referential domain are related by the fundamental ALE equation:

∂f

∂t

⏐⏐⏐⏐
X

= ∂f

∂t

⏐⏐⏐⏐
χ

+
(
V − Vg

)
· ∇xf (2.2)

As shown by Donea et al. (87) and by Venkatasubban (88), using relation (2.2), it is possible
to write conservation laws, such as (1.1), into their respective ALE form:

∂W
∂t

+ ∇ · F − Vg · ∇W = 0, (2.3)

where ∂/∂t is the time derivative in the referential domain.
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In a first family of ALE-DG approaches, the weak form of the conservation law is solved
in the referential domain. The weak formulation is obtained multiplying eq. (2.3) by a basis
function φk and integrating over the elemental domain Ωj :ˆ

Ωj
φk
∂wh

∂t
dΩ +

ˆ
Ωj
φk∇ · F dΩ −

ˆ
Ωj
φkVg · ∇wh dΩ = 0. (2.4)

After integration by parts, one obtains:ˆ
Ωj
φk
∂wh

∂t
dΩ +

ˆ
Ωj

∇φk·F dΩ −
ˆ

Ωj
∇ ·

(
φkVg

)
wh dΩ

+
˛

∂Ωj
φk

(
F∗ − Vgw∗) · n dΓ = 0, (2.5)

where F∗(w+
h ,w

−
h ,n) is a consistent Riemann solver and w∗(w+

h ,w
−
h ) is the solution of the

associated Riemann problem at the element interface. Manipulating equation (2.5) it is
possible to derive several ALE-DG schemes, that are equivalent from a continuous point
of view, but not at a discrete level. Indeed, constant solutions may not be preserved by
the discrete scheme due to the mesh movement, as discussed in (20). In order to ensure
an exact preservation of constant solutions, an ALE method has to satisfy the so-called
Discrete Geometric Conservation Law (DGCL), which is specific to each numerical scheme,
as explained by Guillard et al. (89).

Applying again integration by parts to the second and third terms of eq. (2.5), the ALE-
DG scheme of Lomtev et al. (20) is found:ˆ

Ωj
φk
∂wh

∂t
dΩ +

ˆ
Ωj
φk

(
∇ · F − Vg · ∇wh

)
dΩ

+
˛

∂Ωj
φk

[
F∗ − F − Vg

(
w∗ − wh

)]
· n dΓ = 0. (2.6)

This formulation can be interpreted as the ALE extension of the strong form DG, presented
in (73). Provided that the numerical fluxes F∗ and w∗ are consistent, eq. (2.6) always
preserves constant solutions exactly. However, the implementation is substantially different
with respect to the more commonly used DG method in weak form. In order to find an
alternative formulation, we rewrite eq. (2.5) as:ˆ

Ωj
φk
∂wh

∂t
dΩ +

ˆ
Ωj
φkwh∇ · Vg dΩ −

ˆ
Ωj

∇φk ·
(
F − Vgwh

)
dΩ

+
˛

∂Ωj
φk

(
F∗ − Vgw∗) · n dΓ = 0. (2.7)

Introducing F∗
ale = F∗ − Vgw∗ and applying the Reynolds transport theorem for moving

control volumes, the following ALE-DG scheme is found:
d
dt

ˆ
Ωj
φkwh dΩ −

ˆ
Ωj

∇φk ·
(
F − Vgwh

)
dΩ +

˛
∂Ωj

φkF∗
ale dΓ = 0. (2.8)
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From a practical point of view, F∗
ale(w+

h , w
−
h ,Vg,n) is computed with a numerical flux function

that satisfies the modified consistency property:

F∗
ale

(
w0,w0,Vg,n

)
= F

(
w0
)

· n −
(
Vg · n

)
w0. (2.9)

The formulation (2.8) was first introduced by Nguyen (52) and represents an elegant extension
to moving domains of the classic DG method in weak form. One can show that this scheme
exactly preserves constant solutions if the following identity is verified at the discrete level:

˛
∂Ωj

φkVg · n dΓ −
ˆ

Ωj
∇φk · Vg dΩ = 0, (2.10)

which means that the numerical quadrature has to be sufficiently accurate to exactly compute
the terms of the identity. As a consequence, constant solutions may not be exactly preserved
for elements of general shape, such as curvilinear elements, and for arbitrary grid velocity
fields.

In a second family of ALE approaches the conservation law (1.1) is mapped to a fixed
reference domain by means of a function G that transforms a point x̂ in the reference domain
into the corresponding point x in the physical space: x(t) = G

(
x̂, t
)
. It has been shown in

(90; 51) that the equivalent of equations (1.1) in the reference domain can be written as:

∂Ŵ
∂t

+ ∇̂ · F̂ = 0, (2.11)

where ∇̂ is the vector of partial derivatives with respect to the reference coordinate frame,
and the transformed conservative variables Ŵ and corresponding flux vector F̂ are defined
as:

Ŵ = |JG| W, F̂ = |JG| J−1
G

(
F − VM W

)
, (2.12)

where JG is the Jacobian matrix of the map and VM is the map velocity:

VM = ∂G
∂t
. (2.13)

The mapped ALE technique consists in solving the transformed system of conservation laws
(2.11) in the reference domain. The mapped ALE-DG method has been introduced by Persson
et al. (51) in the context of compressible fluid mechanics. The reference domain is discretised
and the basis functions are defined in the reference space on each element Ω̂j . Then, a DG
discretization is applied to (2.11), obtaining:

d
dt

ˆ
Ω̂j
φkwh |JG| dΩ̂ −

ˆ
Ω̂j

∇̂φk · J−1
G

(
F − VM wh

)
|JG| dΩ̂

+
˛

∂Ω̂j
φkJ−1

G F∗
ale |JG| dΓ̂ = 0, (2.14)
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where the map G is assumed to be C1. It is worthwhile noting that, even though the mapped
ALE approach is significantly different, many similarities can be observed comparing equa-
tions (2.14) and (2.8). Due to the presence of the metric terms of the map within the discrete
equations, this method violates the DGCL in general. However, as explained in (51), the
preservation of constant solutions can be enforced by slightly modifying eq. (2.11) and adding
a scalar conservation equation that has to be solved with the same DG scheme, see (51) for
more details. Since arbitrary maps can be employed, the mapped ALE approach yields an
extremely flexible method and allows high-order domain deformations. On the other hand,
computing the map function may not be straightforward when the movement law is not known
a priori. After this synthesis on ALE methods for DG, we describe in the following section
how to adapt one of the analysed schemes to CAD-consistent representations.

2.2 Isogeometric ALE-DG formulation

The rational Bernstein functions (1.15) are defined on a parametric domain, therefore, as in
Isogeometric Analysis, the elements are mapped from the physical space to the parametric
domain. In this context, a mapped ALE approach would require an additional map function
to simulate the moving domain, resulting in a complex and cumbersome implementation. For
this reason we opt to solve the equations in the moving referential domain. In particular, the
formulation (2.8) is chosen, as the implementation of the strong form ALE-DG scheme (2.6)
would represent a major redesign of the framework we illustrated in chapter 1.

In order to adopt the LDG approach, we rewrite eq. (2.3) as a system of first order
equations: ⎧⎪⎨⎪⎩

∂W
∂t

+ ∇ · Fc(W) − ∇ · Fv(W,G) − Vg · ∇W = 0,

G − ∇W = 0.
(2.15)

The isogeometric paradigm is adopted to extend the scheme (2.8) and discretise eq. (2.15).
Using the map defined by the rational Bézier functions on each element Ωj , the integrals are
transposed from the physical space to the parametric unit square Ω̂ = [0, 1]2. The isogeometric
ALE-DG formulation is thus obtained:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

d
dt

(
wi

ˆ
Ω̂
RkRi |JΩj | dΩ̂

)
=
ˆ

Ω̂
∇Rk ·

(
Fc − Fv − Vgwh

)
|JΩj | dΩ̂

−
˛

∂Ω̂
Rk

(
F∗

ale − F∗
v

)
|JΓj | dΓ̂,

gi

ˆ
Ω̂
RkRi |JΩj | dΩ̂ =

ˆ
Ω̂

∇Rkwh |JΩj | dΩ̂ −
˛

∂Ω̂
RkW∗ |JΓj | dΓ̂.

(2.16a)

(2.16b)

For the evaluation of the numerical flux function F∗
ale, an already existing Riemann solver

can be modified to comply with the consistency condition (2.9). It is indeed possible to write

31



CHAPTER 2. ALE FORMULATION

the Jacobian matrix of the convective physical flux in the direction τ as:

Jale · τ = JF · τ −
(
Vg · τ

)
I, (2.17)

with JF being the Jacobian of the convective flux on the fixed mesh and I the identity matrix.
It is thus trivial to show that the eigenvectors of Jale are invariant with respect to the grid
velocity, whereas for the eigenvalues the following relation holds:

Sale = S0 − Vg · τ , (2.18)

where S0 are the eigenvalues computed without mesh movement. It is thus possible to obtain
a consistent numerical flux for moving meshes using the modified wave speeds computed with
eq. (2.18) and adding the flux contribution generated by mesh movement to the fixed grid
Riemann solver. Two examples will be provided in section 2.5. It is important to remark that,
since the grid velocity Vg alters the wave speeds of the equations, the stability condition for
explicit time integration depends on Vg. As a consequence, the time step used for the RK
integration is a function of the mesh movement.

Equation (2.16b) is identical to its fixed mesh counterpart. The system of equations (2.16)
can be rewritten in a compact form:

d
dt
(
Mw

)
= R(wh,Vg), (2.19)

where the residual R is the right-hand side of eq. (2.16a). The system of ODEs (2.19) is
integrated with explicit RK methods. Since the elements are deforming, the mass matrix M is
not constant in time. Therefore, M has to be updated in each iteration of the RK algorithm.
It is however possible to simplify the time integration scheme when the mesh movement is
rigid. Indeed, it is trivial to show that the mass matrix is constant in time when the elements
are rotating and translating. We thus obtain:

Mdw
dt = R(wh,Vg). (2.20)

In this case, the mesh movement contributions are limited to the flux terms due to the grid
velocity Vg. Integrating equation (2.20) is significantly less expensive from the computational
standpoint, as the inverse of the mass matrix is computed in the pre-processing phase.

One can observe that, due to the introduction of the isogeometric map, the mathematical
structure of the proposed formulation (2.16) is nearly identical to that of the mapped ALE-
DG scheme (2.14). However, in our approach the map is local to each element and it is only
used to transform the integrals of the weak formulation. On the other hand, in the technique
proposed by Persson et al. (51), the map is global and it is applied to modify the conservation
laws at the continuous level. Similarly to eq. (2.14), the proposed scheme (2.16) violates the
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DGCL in the general case. Indeed, the equivalent of the identity (2.10) for equation (2.16a)
is: ˛

∂Ω̂
RkVg · n |JΓj | dΓ̂ −

ˆ
Ω̂

J−T
Ωj ∇̂Rk · Vg |JΩj | dΩ̂ = 0. (2.21)

When the basis functions Rk are rational, an exact integration is not achievable by means
of Gauss-Legendre quadrature. In the case of uniform weights, Rk is a polynomial, and the
products |JΓj |n and |JΩj |J

−T
Ωj are polynomials as well. Therefore, the integrals in (2.21) can be

exactly computed by means of numerical quadrature. As a consequence the DGCL is satisfied
when the weights are uniform. We decide to not enforce the DGCL for rational functions as,
in the majority of applications, uniform weights are employed. When it is not the case, the
use of rational functions is usually limited to very small regions around the boundary, and
polynomial Bézier elements are used in the rest of the computational domain. Moreover, as
demonstrated in (51), the preservation of constant solutions is not a necessary condition for
stability and high-order accuracy.

2.3 Mesh movement technique

The second key ingredient of an ALE method is the mesh movement algorithm. Traditional
ALE approaches for CFD applications are based on rectilinear grids. Therefore, the grid
velocity in each element is defined by the velocities of its vertices, usually computed via
elastic analogy (91) or graph theory based methods (20). On the contrary, our formulation
is based on a high-order geometric representation, enabling more control over the shape of
the elements. Therefore, a wider range of mesh velocities can be employed with respect to
traditional approaches. We decide to adopt the isogeometric paradigm to define the grid
velocity field Vg in each element:

Vg =
(p+1)2∑

i=1
Ri(ξ, η)vg,i , (2.22)

with vg,i being the velocity of the control point xi. Obviously, we constrain the velocities to
exactly match at the interface between two elements in order to avoid discontinuous move-
ments. This choice leads to a completely unified description of all the variables appearing in
the ALE formulation: the solution fields, the geometry and the mesh velocity. Thus, the time
evolution of the control point net is determined by:

dxi

dt
= vg,i. (2.23)

Given the distribution of control point velocities, the eq. (2.23) is integrated with the same
Runge-Kutta method employed for the DG formulation. In the present work, we analyse cases
where the mesh movement is imposed in the whole computational domain. We also assume
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that no topology change occurs during the movement. The control point velocities are thus
explicitly assigned in each time step.

(a) Initial (b) Deformed

Figure 2.1: Mesh movement example

The proposed technique is capable of generating arbitrarily high-order mesh deformations.
Moreover, we can take advantage of regularity properties of Bézier surfaces, such as the convex
hull property, to preserve the mesh quality over time and avoid tangling. The velocity field Vg

inside each element is always C∞ thanks to the definition (2.22), whereas, across the element
boundaries, the derivatives can be discontinuous. In order to enhance the regularity at element
interfaces, the hierarchical construction of the computational domain can be exploited. As
previously explained, the elements are obtained by recursive splitting of a few baseline NURBS
patches. When internal knots multiplicities are equal to 1, the inner geometric regularity of
these patches is Cp−1. The control points velocities v0

g of the baseline patches are computed
by means of an explicit function of space and time. Thus, the resulting baseline velocity field
exhibits also a Cp−1 regularity. The control point velocities vg of the final DG elements can
be obtained by applying the recursive splitting to v0

g:

vg = B v0
g , (2.24)

where B is the matrix that contains the weights of the Bézier extraction and splitting op-
erators. As result, the mesh velocity field Vg computed with this algorithm possess a Cp−1

regularity. Moreover, the hierarchical splitting of the geometrical elements allows to easily
deform non-conformal meshes. Indeed, a naive application of any non-linear deformations
would generate gaps between elements in the proximity of hanging nodes. The splitting en-
sures the continuity of the mesh deformation in the proximity of hanging nodes, by imposing
the same velocity for the refined and the coarse elements.

Furthermore, the hierarchical definition of the mesh velocity facilitates the avoidance of
tangling: thanks to the convex hull property (74), an element remains admissible as long as
its control points are not overlaid. By applying the velocity function at the coarsest level,
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this admissibility criterion can be easily imposed because the distance between the control
points at this level is usually far larger than the displacement. Fig. 2.1 illustrates the mesh
deformation for a large amplitude movement. The potential and the flexibility of the proposed
mesh movement algorithm are also demonstrated in sections 2.5, 2.6, and 2.7.

2.4 ALE-AMR coupling

Adaptive Mesh Refinement (AMR) techniques allow to optimise the grid at runtime by choos-
ing the appropriate resolution for each region of the computational domain. It is thus inter-
esting to use adaptive meshes for flows around moving and deforming obstacles, where highly
unsteady physical phenomena occurs, such as moving shocks or complex vortical wakes. The
generation of an optimal grid in these cases heavily relies on user experience and knowledge of
the flow physics. Using adaptive meshes is therefore a crucial step towards user-independent
unsteady CFD simulations.

Figure 2.2: Quadtree-like splitting of a Bézier patch

The AMR methodology for the Isogeometric DG has been presented and validated in
(33). We summarise here the main features and we then focus on the coupling with the
ALE formulation. A quadtree-like approach is adopted to refine the rational Bézier patches.
Whenever an element of Level-k is marked for refinement, it is split into 4 child elements
of Level-(k+1) by repeatedly inserting knots at ξ = 0.5 and η = 0.5, as in Fig. 2.2. The
parent element is stored and it can be recovered if its child elements are tagged for coarsening.
Thanks to the isogeometric paradigm, the numerical solution are split using the same knot
refinement algorithm used to split the geometry.

In order to select which elements should be refined, an error estimator has to be defined.
The natural choice is to exploit the discontinuities of the solution fields due to the DG
formulation. Indeed, regions of under-resolution are characterized by strong inter-element
jumps. For each element Ωj , the total jump at the interface between Ωj and the neighbouring
elements is computed:

εj =
∑

k ∈ Nj

ˆ
Γjk

∥ w+
h − w−

h ∥ dΓ, (2.25)
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where Nj represents the set of elements around Ωj and Γjk the interface between Ωj and Ωk.
Then, the element Ωj is flagged for refinement if:

εj > εr ε̄, (2.26)

or, similarly, the element is flagged for coarsening if:

εj < εc ε̄, (2.27)

where εc and εr are user-defined thresholds and ε̄ is the average value of the indicator εj .
When the mesh is coarsened, the solution field in the parent element is reconstructed from
the data located in the four sons elements. This is achieved by using an average preserving
least-squares projection, as detailed in (33).

(a) Level-0 mesh (b) Deformed Level-0 mesh (c) Refined deformed mesh

Figure 2.3: Example of adaptive refinement with mesh deformation

When an adapted mesh is subject to non-linear deformations, the refinement operation
might become irreversible. In fact, parent elements are not capable of exactly representing
their deformed child elements, yielding possible holes within the mesh. The issue can be
avoided by applying the mesh movement to the Level-0 elements and then propagate the
velocity field and the deformation to the higher levels of the tree by means of the knot
insertion procedure, as illustrated in Fig. 2.3. This can be accomplished thanks to the mesh
movement technique presented in section 2.3. The main difference is that, since the refinement
is dynamic, the matrix B of eq. (2.24) is time dependent and has to be recomputed after
each step of the AMR algorithm.

2.5 Verification

2.5.1 Advection equation

The proposed approach is firstly tested on the scalar advection equation in ALE form:
∂w

∂t
+ (V − Vg) · ∇w = 0, (2.28)
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where w is the scalar variable and V is the advection velocity, that we assume constant in
space. As numerical flux function we adopt a modified Local Lax-Friedrichs flux that suits
the Arbitrary Lagrangian-Eulerian formulation:

F∗
ale

(
w+, w−,Vg,n

)
= 1

2
(
w+ + w−)(V − Vg

)
· n

+ 1
2
⏐⏐(V − Vg

)
· n
⏐⏐(w+ − w−). (2.29)

It is straightforward to verify that the proposed numerical flux complies with the consistency
condition (2.9). A convergence analysis is performed on the following test case:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
w
(
x, 0

)
= exp

(
− (x− 2)2 − y2 ),

u1(t) = −4π sin(2πt),

u2(t) = 4π cos(2πt).

(2.30)

The initial solution is advected along an anticlockwise circle of radius 2, thus, the analytic
solution is:

w
(
x, t
)

= exp
(

− [x− 2 cos(2πt)]2 − [y − 2 sin(2πt)]2
)
. (2.31)

(a) Fixed mesh (b) Rotating mesh (c) Deforming mesh

Figure 2.4: Advection test case, solution at t=0.25, p=5

The computational domain is [−4, 4] × [−4, 4], discretised with a Cartesian grid, and the
boundary numerical fluxes are computed by means of the exact solution. The error in L2-
norm is evaluated using numerical quadrature after one rotation period. In order to assess
the accuracy of the numerical scheme, two mesh velocity laws are tested, as illustrated in
Fig. 2.4, a rigid clockwise rotation about the origin and a sinusoidal deformation where the
control points move with the following velocity:

ug(x, t) = vg(x, t) = sin
(
Nxπ

Lx
x

)
sin
(
Nyπ

Ly
y

)
sin(2πt). (2.32)
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(a) p = 1 (b) p = 2

(c) p = 3 (d) p = 4

(e) p = 5

Figure 2.5: Convergence analysis, 2D advection equation

We compare the results obtained with the 3 configurations. Polynomials up to fifth degree
are tested and optimal convergence rates are verified for each degree, as shown in figure 2.5. It
is also possible to observe that results on rigidly moving mesh do not substantially differ from
the fixed domain simulation, whereas the error increases when the mesh deforms over time,
especially for high polynomial degrees. Defining rd as the ratio between the errors computed
respectively on the deforming and the fixed mesh:

rd = εdeforming

εfixed
, (2.33)

the maximum value of rd for cubic functions is around 1.8, whereas for quartic polynomials
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a factor 3.2 is found in the worst case and for the quintic basis a value of 7.4 is reached.
This steep increase is caused by the loss of accuracy of the Bézier approximation on distorted
elements. Indeed, as proved by Bazilevs et al. (8), the norm of the truncation error depends
on the Jacobian matrix of the isogeometric map.

2.5.2 Euler equations

In order to validate the proposed approach for non-linear problems, we consider the com-
pressible Euler equations for the second test case. The numerical flux is computed using the
HLL Riemann solver (92), which has been adapted to take into account the mesh movement
flux:

F∗
ale =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

F−
ale = F

(
w−

h

)
−
(
Vg · n

)
w−

h if S−
ale ≥ 0

S+
aleF−

ale − S−
aleF+

ale + S+
aleS

−
ale

(
w+

h − w−
h

)
S+

ale − S−
ale

if S−
ale ≤ 0 ≤ S+

ale

F+
ale = F

(
w+

h

)
−
(
Vg · n

)
w+

h if S+
ale ≤ 0

(2.34)

where S−
ale and S+

ale are respectively the minimum and the maximum wave speeds computed
with the two states w−

h and w+
h . The proposed numerical flux function (2.34) respects the

consistency condition (2.9). The advection of an isentropic vortex (73) is considered, with
the following analytic solution:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ =
(

1 − γ − 1
16γπ2β

2e2(1−r2)
) 1
γ−1

u1 = 1 − β
y − y0

2π e1−r2

u2 = β
x− t− x0

2π e1−r2

p = ργ

(2.35)

where r =
√

(x− t− x0)2 + (y − y0)2, with x0 = 5, y0 = 0 and β = 5. The computational
domain is [0, 10] × [−5, 5] and the boundary conditions are weakly imposed using the analytic
solution. The simulation is run on a fixed Cartesian grid and on a deforming mesh, whose
control points follow the sinusoidal law (2.32) used for the advection test case.

We compute the L2-norm of the error of the total energy at time t = 2. Polynomials
up to fifth degree are tested. Optimal convergence rates are verified in both cases for each
degree as it is shown in Fig. 2.7, where it is also possible to compare the error levels between
the two setups. The evolution of the ratio rd (2.33) confirms the results obtained for the
advection equation: for cubic polynomials the maximum ratio is around 1.8, whereas for the
quartic basis a factor 3.5 is found in the worst case and for quintic functions a value of 6 is
reached. The sensitivity with respect to mesh deformation is a natural consequence of the
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(a) Fixed mesh (b) Deforming mesh

Figure 2.6: Isentropic vortex, energy, t=1.25, p=3

truncation error, as already evidenced for the advection problem. The proposed numerical
scheme is hence capable of accurately solving non-linear conservation equations on moving
meshes, preserving the high-order convergence rate of the DG discretization.

(a) Fixed mesh (b) Deforming mesh

Figure 2.7: Convergence analysis, Euler equations, L2-error of total energy

2.6 Oscillating cylinder

In the next example we simulate the bidimensional viscous flow around a circular cylinder
oscillating in the crossflow direction. This case study has been widely investigated in the lit-
erature, using both experimental and numerical techniques (52; 93; 84). It is characterised by
complex non-linear physics, such as the lock-in phenomenon, that consists in the synchronisa-
tion of the vortex shedding with the oscillation of the body. Due to its non-linear nature, the
problem is extremely sensitive to acoustic perturbations, therefore, it is important to avoid
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the interference between the acoustic waves possibly reflected at the boundaries and the flow
in the vicinity of the cylinder. This is achieved by choosing a sufficiently large computational
domain and a layer of coarse cells in the proximity of the external boundaries. Moreover, the
implemented far-field boundary conditions reduce spurious reflection effects thanks to the use
of Riemann invariants. The cylinder surface is modelled as an adiabatic no-slip wall and a
weakly prescribed boundary condition is employed. The initial state corresponds to uniform
fields, whose values are determined according to the freestream Mach number.

We perform a convergence analysis with the grids presented in chapter 1, using rational
functions built from polynomials of degrees from 3 up to 6. We consider a freestream Mach
number equal to 0.2, in order to avoid strong compressibility effects, and a Reynolds number
of 500 with respect to the diameter. The cylinder motion is given by:

y = A sin(2πft), (2.36)

with A = 0.25D and f = 0.875fsh, with fsh being the vortex shedding frequency of the
fixed cylinder at equal Mach and Reynolds numbers. The chosen configuration of A and f

lies in the lock-in range. For each combination of degree and refinement level the oscillation
frequency f is determined from the value of fsh obtained with the corresponding fixed mesh
simulation.

(a) Strouhal number (b) Average drag coefficient

(c) Peak lift coefficient (d) Energy transfer coefficient

Figure 2.8: Oscillating cylinder flow, convergence study
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A first set of results, shown in Fig. 2.8, is obtained by running the test case with a
rigid mesh movement law, in which the entire grid moves at the velocity of the cylinder.
Once a periodic solution is established, we examine more precisely the peak lift coefficient Ĉl,
the average drag coefficient C̄d, and the energy transfer coefficient E, which quantifies the
mechanical work done by the fluid on the cylinder over a lock-in cycle:

E = 1
1
2ρ∞u2

∞D
2

˛
f · dx =

˛
L

1
2ρ∞u2

∞D
d
( y
D

)
=
˛
Cl dα, (2.37)

where f is the force vector, x the displacement, L the lift force and α the dimensionless
displacement in the y direction. The convergence of the Strouhal number of the fixed cylinder
is illustrated for the sake of completeness. The lock-in limit cycle is well reproduced with all
the basis degrees and a faster convergence is observed with functions of degree 4,5 and 6. Note
that using high-order bases on the coarsest mesh does not lead to significant improvements.
In order to estimate E with sufficient precision, it is necessary to use at least the intermediate
refinement level. Hence, increasing the basis degree on coarse grids becomes inefficient, indeed,
the increased number of quadrature points and the severe stability restrictions imposed by the
explicit time stepping significantly raise the computational costs without benefits in terms of
accuracy. Therefore, a combination of h and p refinements has to be used in order to optimise
the computational cost, for a given level of accuracy. The numerical solution of the lock-in
limit cycle is compared to the results provided by Blackburn et al. (84). The comparison is
presented in Fig. 2.9b, the lift-displacement curve obtained with the proposed scheme is in
close comparison with the reference cycle.

(a) Density, p=4, fine mesh (b) Lock-in limit cycle

Figure 2.9: Numerical solution of the oscillating cylinder test case

The proposed test case is also used to evaluate the influence of the grid movement law in
the presence of moving walls. Therefore, the results obtained with rigid mesh displacements
are compared to the simulations performed with a smooth deformation velocity field, where
the control point net moves with the following law:
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vg(x, t) = vc(t) e−ψ2(x,t)
d2 (2.38)

where vc(t) is the velocity of the cylinder, ψ(x, t) is the distance of the point x from the
cylinder surface at time t and d is a characteristic length, that controls the propagation of
the boundary displacement within the domain. As shown in Fig. 2.10b, this profile allows
the elements close to the wall to move almost rigidly, preserving the initial mesh quality. At
the same time, thanks to the exponential decay far from the cylinder, only a small portion of
the domain is deformed.

In Fig. 2.10a and 2.10b the comparison of the density field in the periodic regime for
the rigid and deforming mesh movement laws is presented for the intermediate mesh level
and quintic basis. The two solutions are nearly identical and, for the deforming mesh, no
spurious effects generated by the lack of freestream preservation can be observed, even if the
numerical quadrature of rational functions is less accurate. The same conclusion is obtained
by comparing the evolution of the aerodynamic coefficients, reported in Fig. 2.10c for the
same mesh and basis configuration.

(a) Density field, rigid mesh (b) Density field, deforming mesh

(c) Force coefficients

Figure 2.10: Comparison of movement laws, p=5, intermediate mesh
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An extensive comparison of the two mesh movement techniques has been carried out,
for all the combination of meshes and basis degrees. We report in table 2.1 the energy
transfer coefficient, as this quantity is more sensitive than the force coefficients. For a given
basis degree, a discrepancy in the third significant figure can be observed for coarse meshes.
However, both values are significantly far from the converged result. Refining the grid, the
difference between the two movement techniques becomes smaller and the predicted values
are equally accurate.

Rigid Deformation
degree coarse intermediate fine coarse intermediate fine

3 0.1265 0.1084 0.1149 0.1298 0.1086 0.1151
4 0.1553 0.1144 0.1146 0.1566 0.1150 0.1148
5 0.1559 0.1159 0.1141 0.1590 0.1154 0.1141
6 0.1455 0.1145 0.1141 0.1422 0.1145 0.1141

Table 2.1: Energy transfer coefficient for different mesh movement laws

2.7 Pitching airfoil in subsonic flow

In the second case study, the subsonic flow around a pitching NACA 0012 airfoil is investi-
gated. We employ a cubic Bernstein basis for both the geometry and the solution fields. The
goal of the proposed test case is to assess the impact of using curved grids. This is achieved via
a double convergence study: the first is performed using the high-order boundary represen-
tation, whereas a piecewise linear approximation is used for the second. For each refinement
level, the low-order grid is obtained by linearizing the respective curved mesh. Both inviscid
and viscous flow models are considered, as shown in Fig. 2.11.

(a) Inviscid flow, streamwise momentum (b) Laminar flow, density

Figure 2.11: Pitching airfoil, solution fields
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The airfoil is subject to a pure pitching motion about mid-chord. The angle of attack
oscillates in time with a sinusoidal law:

α(t) = −A sin(2πft), (2.39)

with A and f being respectively the pitch amplitude and frequency. The rotation of the airfoil
is transferred to the mesh through a piecewise defined velocity field:⎧⎨⎩ug(x, t) = −ω̃ (y − yc)

vg(x, t) = ω̃ (x− xc)
(2.40)

where (xc, yc) is the mid-chord position and ω̃ = α̇ σ(x, t), with σ being a blending function
of the following form:

σ(x, t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1, if R ≤ Rint

1
2

[
1 + cos

(
π
R−Rint

Rext −Rint

)]
, if Rint < R < Rext

0, if R ≥ Rext

(2.41)

with R the distance with respect to the mid-chord position. The blending function divides
the domain into 3 regions, the internal one, delimited by a circle of radius Rint, moves rigidly
with the airfoil, while the area outside the circle of radius Rext is fixed. The 2 regions are
connected by a deforming transition ring. The proposed function (2.41) is C1, in order to
have a smoother deformation profile, however a C0 class function could be employed as well.

The proposed problem is first studied using an inviscid flow model, based on the com-
pressible Euler equations, and then with a viscous model, based on compressible Navier-Stokes
equations. In both cases, the initial state corresponds to uniform fields, defined according to
the freestream Mach number. For the inviscid example, the slip wall boundary condition is
adopted, whereas, the adiabatic no-slip wall is employed in the viscous case.

2.7.1 Inviscid flow

We first consider an inviscid flow configuration, the freestream Mach number M∞ is set to 0.2,
a pitch amplitude of 5o is considered, with a reduced frequency k = πfc/U∞ of 0.25, where
c is the chord length and U∞ the freestream flow velocity. The streamwise momentum field
ρu is illustrated in Fig. 2.11a. The main physical feature is the slip line that develops from
the trailing edge of the airfoil due to the pitching motion. Once the transitory effects have
vanished, the solution converges to a periodic flow regime, it is hence possible to compute an
average drag coefficient C̄d and a peak lift coefficient Ĉl. The meshes adopted for the inviscid
test case are reported in Fig. 2.12.

In Fig. 2.13 we compare the results obtained using the high-order and piecewise linear
grids. In particular, the density fields are presented in Fig. 2.13a and 2.13b for the coarsest
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(a) Level 1 (b) Level 2

(c) Level 3 (d) Level 4

Figure 2.12: Meshes for the inviscid test case

(a) Density field, curved mesh (b) Density field, linear mesh

(c) Convergence of average drag coefficient (d) Convergence of peak lift coefficient

Figure 2.13: Influence of the geometry, inviscid flow

46



CHAPTER 2. ALE FORMULATION

mesh. The spurious effects introduced by the piecewise linear mesh can be easily noticed,
non-physical expansions develop at each boundary vertex, generating further numerical oscil-
lations. On the contrary, the high-order mesh guarantees a physically coherent solution even
when the mesh is very coarse. The strong influence of the geometry description is caused by
the flow-tangency boundary condition, which depends on the normal vector. For piecewise
linear approximations, the normal vector is piecewise constant, therefore, across each element
the boundary condition presents a discontinuity that creates the non-physical oscillations.
This behaviour has already been evidenced in (27; 32). The observations are confirmed by
the convergence study, illustrated in Fig. 2.13c and 2.13d for C̄d and Ĉl. The aerodynamic
coefficients converge considerably faster when the curved boundary representation is adopted.
Moreover, the error decreases monotonically for the high-order mesh.

2.7.2 Laminar flow

In the second part of the case study, we repeat the convergence analysis for a viscous fluid.
The Reynolds number with respect to the chord length is equal to 1000. The freestream Mach
number and the pitching frequency are unchanged, whereas the pitch amplitude is increased
to 20o, in order to generate a massively separated flow. Indeed, the considered setup leads
to a dynamic stall of the airfoil with a periodic shedding of vortex pairs, as shown in Fig.
2.11b, where the density field is represented. The meshes adopted for the laminar test case
are reported in Fig. 2.14.

In Fig. 2.15a and 2.15b it is possible to compare the density fields computed with the high-
order and the linearized mesh. Despite the low grid resolution, only very small discrepancies
between the two solutions can be spotted, on the suction side of the airfoil close to the leading
edge, but, overall, the two fields are very similar. The aerodynamic forces obtained with the
linearized geometry are comparable to those computed using the curved boundary too. Even
for the coarsest mesh, the values of the aerodynamic coefficients are nearly identical, as
reported in Fig. 2.15c and 2.15d.

With respect to the inviscid configuration, the high-order boundary representation seems
to play a smaller role. This effect is caused by the different nature of the no-slip boundary
condition, which is solely a function of the position. In contrast to the flow tangency condition
used for Euler equations, the no-slip boundary condition is continuous across each element,
therefore it introduces less numerical error. Furthermore, the physical viscosity regularizes the
solution field, damping the artificial oscillations. It is thus possible that the influence of the
boundary representation increases for higher Reynolds numbers, also due to the development
of thin boundary layers and turbulent phenomena. However, such an investigation is beyond
the scope of the present manuscript.
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(a) Level 1 (b) Level 2

(c) Level 3 (d) Level 4

Figure 2.14: Meshes for the laminar test case

(a) Density field, curved mesh (b) Density field, linear mesh

(c) Convergence of average drag coefficient (d) Convergence of peak lift coefficient

Figure 2.15: Influence of the geometry, laminar flow
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2.8 Pitching airfoil in transonic flow

In the third case study, we validate the shock capturing capability of the proposed scheme by
investigating the transonic flow around a pitching NACA 0012 airfoil. The angle of attack
evolves with the following law:

α(t) = α0 + ∆α sin(2πft), (2.42)

where α0 = 0.016◦, ∆α = 2.51◦ and the reduced frequency k = 0.0814. The airfoil oscillates
about the quarter-chord and the mesh movement technique is the same used in the previous
case study. The freestream Mach number is equal to 0.755, in order to create a transonic flow
over the airfoil. An inviscid fluid is considered, therefore µ = 0. However, due to the presence
of the artificial viscosity, the Navier-Stokes equations are solved. A uniform flow field is used
as initial condition and a slip wall model is used for the airfoil surface. The results presented
here are obtained using a quartic polynomial approximation with 3790 elements.

(a) Density field (b) Artificial viscosity

Figure 2.16: Transonic pitching airfoil, solution at α = 2.25◦, descending phase

Transonic flows around pitching airfoils are a challenging benchmark for shock capturing
algorithms, as the discontinuity position and intensity vary with the angle of attack. The
density field and the artificial viscosity at α = 2.25◦ are reported in Fig. 2.16. The shock is
well detected by the sensor, thus, the artificial viscosity is added only in the cells that require
stabilization. It can also be observed that, due to a slight under-resolution, some artificial
viscosity is added around the trailing edge.

In Fig. 2.17 we propose a comparison with the numerical results of Ren et al. (94) and the
experimental data of Landon (95). The curve of the pressure coefficient Cp, presented in Fig.
2.17a, correlates very well with both the experimental and numerical references. Moreover,
it is possible to appreciate the precision of the developed shock capturing technique. In Fig.
2.17b the evolution of the pitching moment coefficient over an oscillation cycle is presented.
Even though a small discrepancy can be observed, the obtained curve is comparable to the
numerical reference and it is in line with the majority of the experimental measurements.
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(a) Cp curve at α = 2.34◦, ascending phase (b) Cm curve over a limit cycle

Figure 2.17: Transonic pitching airfoil, comparison with reference data

The deviations with respect to the wind tunnel data can be imputed to the impossibility to
exactly reproduce the experimental conditions, characterized by a very high Reynolds number
(5.5 · 106).

2.9 Pitching airfoil with adaptive mesh

The potential of developed ALE-AMR coupling technique is demonstrated by repeating the
experience of the pitching airfoil, both in the laminar condition and in the transonic configu-
ration. We first construct a different baseline mesh for each flow condition, as shown in Fig.
2.18. In the baseline grid for the laminar flow, each side of the airfoil is described with 9
Bézier curves and the elements close to the wall are anisotropic for an optimal boundary layer
resolution. On the other hand, the baseline mesh for the transonic case is characterized by
isotropic elements and 16 Bézier arcs are employed for a smooth approximation of the airfoil.
A polynomial representation of degree 3 is employed for both configurations.

(a) Laminar flow (b) Transonic flow

Figure 2.18: Baseline meshes for adaptive pitching airfoil simulation

A comparison between non-adaptive and adaptive grids is carried out. In order to provide
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a fair evaluation, we adopt the same refinement levels for both grids. The adaptive simulation
is performed using 2 levels of dynamic quadtree refinement. Similarly, the non-adaptive mesh
is obtained by twice refining the baseline using rectangular boxes to select the regions where a
higher resolution is desired. This ensures that the size of the smallest elements is the identical
for both simulations.

2.9.1 Laminar flow

The laminar configuration allows to test the AMR capabilities for massively separated flows.
As shown in Fig. 2.19, the dynamic mesh adaptation procedure is capable of capturing the
formation of the vortices at the leading edge of the airfoil and following the complex wake
pattern induced by the pitching motion. The advantage in terms of the number of elements
is represented in Fig. 2.20a, one can observe that after an initial peak, the adaptive mesh has
nearly three times less elements than the non-adaptive grid. In Fig. 2.20b we report the time
evolution of the aerodynamic force coefficients Cd and Cl. The curves obtained with the two
meshes are superposed, meaning that the reduction in the number of elements has very little
impact on the accuracy of the simulation. As shown in Fig. 2.19, the solution fields are in
close agreement as well.

(a) Time = 75 (b) Time = 75, adaptive mesh

(c) Time = 87.5 (d) Time = 87.5, adaptive mesh

Figure 2.19: Laminar pitching NACA airfoil, comparison of the density field
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(a) Evolution of the number of elements (b) Evolution of the aerodynamic coefficients

Figure 2.20: Laminar pitching NACA airfoil, results comparison

2.9.2 Transonic flow

Simulating unsteady transonic flows with high-order solvers can be challenging, indeed, the
presence of moving shocks requires a very fine grid around the airfoil and a robust shock
capturing algorithm. In this context, the use of AMR allows to have the necessary mesh
resolution around the shock while keeping a very coarse grid in the other regions of the airfoil,
as shown in Fig. 2.21. This is obviously possible thanks to the high order representation of the
boundary. The time evolution of the pitching moment coefficient Cm is reported in Fig. 2.22b
for both meshes, the two curves are comparable, but a slight discrepancy can be observed.
Indeed, the mesh adaptation interacts with the shock sensor, thus altering the quantity of
artificial viscosity introduced to capture the discontinuity. The density fields obtained with
the two approaches are comparable as well, as shown in Fig. 2.21, and the gain in terms of
number of elements, illustrated in Fig. 2.22a, is considerable.

2.10 Conclusion

In this chapter we investigated the use of NURBS-based grids in the context of moving
computational domains. Different possible approaches to account for moving meshes in a DG
formulation were analysed, in the perspective of implementing a scheme for moving rational
Bézier elements. The proposed formulation combines an isogeometric approach for DG with
the ALE description, leading to a unified representation of the geometry, the grid velocity
and the solution variables.

Firstly, the accuracy of the method was verified on two problems with analytical solutions,
exhibiting optimal convergence rates for rigidly moving or deforming grids. As expected,
large grid deformations cause an increase of the error, due to the loss of the accuracy of
the approximation on distorted elements. The discrete geometry conservation law is satisfied
when polynomial Bézier patches are considered. On the contrary, constant solutions are not
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exactly preserved when rational elements are used, due to the approximation introduced by
the numerical quadrature.

(a) Time = 170 (b) Time = 170, adaptive mesh

(c) Time = 185 (d) Time = 185, adaptive mesh

Figure 2.21: Transonic pitching NACA airfoil, comparison of the density field

(a) Evolution of the number of elements (b) Evolution of the pitching moment coefficient

Figure 2.22: Transonic pitching NACA airfoil, results comparison

We then considered three more demanding test-cases, involving inviscid and viscous flows
around an oscillating cylinder and a pitching airfoil. The results confirmed the robustness
of the proposed scheme in presence of high-order mesh deformations. Moreover, a faster
convergence of the flow characteristics thanks to the use of curved grids was clearly established,
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in the context of moving bodies. It was also noted that inviscid flows are particularly sensitive
to the lack of regularity in the geometry, due to the slip boundary condition at wall. Finally,
we showed the robustness of the present methodology in presence of shocks, using a transonic
benchmark problem.

Furthermore, we proposed a simple yet effective strategy to couple AMR and ALE using
the hierarchical properties of NURBS. The dynamic mesh deformation-adaptation was tested
on the pitching airfoil benchmark in two different flow configurations. The obtained results
show the interest of the ALE-AMR coupling. A significant reduction in the number of elements
can be obtained without losing accuracy, thanks to the dynamic mesh refinement, which is
capable of capturing the most prominent features of unsteady flows, such as moving shocks
and complex wakes.
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Sliding meshes

One of the principal limitations of ALE approaches is the necessity of remeshing when con-
fronted with large displacements of the boundary. For this reason, the simulation of flows
involving rotating objects is often carried out using sliding grids, in which the computational
domains is subdivided into a fixed and a rotating region. The discontinuous mesh movement
between the fixed and the moving subdomain generates hanging nodes along the sliding inter-
face. In this context, DG schemes are natively capable of handling geometric non-conformities.
Ferrer et al. (71) proposed the first DG method with sliding grids for incompressible flows.
Similarly, a DG discretization can be employed in IGA, when non-matching parameterisa-
tion are encountered (96). Moreover, thanks to the rational representation, NURBS are
capable of exactly representing circular interfaces. In particular, Bazilevs et al. (70) com-
bined a quadratic NURBS representation with a DG discretization of the sliding interface
to solve the incompressible Navier-Stokes equations. An alternative strategy is to employ
mortars to deal with the hanging nodes. The mortar approach is based on projections and
it was first introduced in the context of spectral element methods to treat non-conforming
meshes (97; 98). More recently, the mortar method has been adopted to simulate compressible
flows with sliding meshes, combined with compact high-order discretizations (99; 72). Mor-
tar based methods, however, suffer from loss of conservativity when dealing with curvilinear
sliding interfaces, due to the nature of the projections (72). Moreover, as evidenced in (100),
interpolation based DG methods are significantly less expensive than mortar approaches.

In this chapter we develop a fully conservative DG method for compressible flows with
sliding meshes. The proposed algorithm is explained in details in section 3.1. The properties
of the NURBS representation are employed to subdivide the sliding interface and compute
the flux integrals. The developed methodology is then validated using a classic benchmark for
compressible flows and a thorough error analysis is conducted. Section 3.3 is dedicated to the
investigation of the viscous flow around a pitching ellipse, with the aim of testing the sliding
mesh algorithm on a more demanding test case. In particular, a mesh sensitivity analysis
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is performed, with respect to the grid refinement level, the basis degree and the position of
the sliding interface. Moreover, a comparison with the previously developed ALE approach
is presented. We also simulate the pitching ellipse in a supersonic flow condition to test
the robustness of the sliding mesh algorithm in presence of strong shocks. Lastly, in order
to prove the potential of the Isogeometric DG framework for more complex geometries, a
3-bladed vertical axis wind turbine configuration is considered in section 3.4. The generation
of a suitable computational grid is discussed and a flow simulation is carried out.

3.1 Sliding mesh algorithm

In this section we explain in details the treatment of sliding meshes. The algorithm is char-
acterized by three phases. First, the geometry is updated and the control points of the mesh
are moved. As the movement is performed, the connectivity between the interface elements
is checked and updated. Once the grid connectivity is established, the interface is subdivided
into smaller arcs shared by only two elements. Lastly, a special treatment of the sliding faces
is required in order to accurately compute the flux integrals.

3.1.1 Mesh movement and connectivity update

For the sake of simplicity, we analyse the case of a single rotating subdomain Ωr surrounded
by a fixed region Ωf . The sliding interface is thus defined as I = ∂Ωr ∩ ∂Ωf . Using the
ALE framework we proposed in chapter 2, the mesh velocity is described as a DG field. As a
consequence, it is naturally possible to represent discontinuous displacements, which is par-
ticularly useful in the context of sliding meshes. Indeed, the sliding interface is characterized
by a discontinuity of the tangential velocity Vg · t. On the other hand, the normal compo-
nent Vg · n must be continuous, in order to keep the mesh watertight. For perfectly circular
interfaces, the control point velocities

(
ug,i, vg,i

)
can be easily computed thanks to the affine

invariance property of Bézier patches (74). Defining the angular velocity ω and the axis of
rotation O = (x0, y0), we have, for each control point

(
xi, yi

)
in the rotating subdomain Ωr:⎧⎨⎩ug,i = −ω(yi − y0),

vg,i = ω(xi − x0).
(3.1)

Since the mesh movement is piecewise rigid for perfectly circular interfaces, we can adopt eq.
(2.20) to perform time integration and the mass matrix does not need to be recomputed for
each time step.

Assuming that the elements are initially aligned, the discontinuity in the mesh movement
generates hanging nodes along the sliding interface, as it can be observed in Fig. 3.1. Con-
sequently, the degrees of freedom of the elements adjacent to the interface are not aligned.
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(a) Domain subdivision (b) Degrees of freedom along the interface

Figure 3.1: Generation of hanging nodes due to the sliding movement

As the inner domain rotates, the position of the hanging nodes changes as well. In order to
update the mesh connectivity, we rely on the computation of two angles, as represented in
Fig. 3.2. ∆θ0 is the angular amplitude of the element edge between x1 and x2, whereas ∆θs

is the angular amplitude of the circular arc between x1 and the hanging node xs. We then
define the ratio s as:

s = ∆θs

∆θ0
. (3.2)

The connectivity is valid when 0 < s < 1, whereas it must be updated when the angular ratio
s becomes negative or greater than the unity.

Figure 3.2: Definition of the angles for connectivity update

3.1.2 Interface splitting

The second step of the sliding algorithm is the subdivision of the interface into the elemental
faces, which are shared uniquely by two elements. Let us name Ω0 the rotating element, Ω1

and Ω2 the corresponding fixed elements, as illustrated in Fig. 3.3. The elemental sliding faces
are therefore Γ1 = ∂Ω0 ∩ ∂Ω1 and Γ2 = ∂Ω0 ∩ ∂Ω2. We also define Γ0 = ∂Ω0 ∩ I = Γ1 ∪ Γ2.
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Figure 3.3: Splitting procedure in the parametric and physical spaces

The splitting procedure relies on the properties of the NURBS representation. Indeed,
we recall that a Bézier curve of degree p defined on the parametric interval [0, 1] can be
interpreted as a NURBS curve with a the following knot vector:

Ξ = {0, . . . , 0  
p+1

, 1, . . . , 1  
p+1

}. (3.3)

Let us define the splitting parameter σ as the value of ξ0 that corresponds to the physical
position of the hanging node xs on the face Γ0. It is then possible to divide Γ0 into the two
elemental faces, Γ1 and Γ2, by applying (p + 1)-times the knot insertion algorithm at the
parametric coordinate ξ0 = σ. We thus obtain two Bézier curves with the following knot
vectors:

Ξ1 = {0, . . . , 0  
p+1

, σ, . . . , σ  
p+1

}, Ξ2 = {σ, . . . , σ  
p+1

, 1, . . . , 1  
p+1

}. (3.4)

The control points of the new curves are obtained by recursively using p times the knot
insertion formula, specialized here for Bézier representations:

xr+1
i = (1 − αr

i )xr
i−1 + αr

i xr
i , αr

i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if i ≤ r + 1

σ if r + 2 ≤ i ≤ p+ 1

0 if i ≥ p+ 2

(3.5)

with r = 0, . . . , (p − 1). The result of the splitting procedure is illustrated in Fig. 3.3 for a
quadratic representation.

In order to adopt the described splitting algorithm, the value of σ must be known. Due to
the rational nature of Bézier representation, computing σ is not trivial. The procedure that
allows to determine the parameter corresponding to a given point of a Bézier curve is the
point inversion algorithm (74). If we denote C as the Bézier representation of the Γ0 curve,
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we can write:

C(σ) =
∑p+1

i=1 B
p
i (σ)ωi xi∑p+1

j=1 B
p
j (σ)ωj

= xs, (3.6)

where ωi and xi are respectively the weights and the control points of the considered edge.
The problem of determining σ is solved by minimizing the square of the distance between the
curve C and the hanging node:

g(ξ0) = ||C(ξ0) − xs||2. (3.7)

Imposing g′(σ) = 0, one obtains:

f(σ) = C′(σ) ·
(
C(σ) − xs

)
= 0. (3.8)

The solution of eq. (3.8) is achieved by means of an iterative algorithm. Piegl et al. (74)
adopted the Newton algorithm to solve the point inversion problem. Such an approach re-
quires to analytically compute the first derivative of f , which contains the second derivative
of the Bézier curve C. In order to avoid the costly computation of C′′, we employ the secant
algorithm, which results in the following recursive formula:

σi = σi−2f(σi−1) − σi−1f(σi−2)
f(σi−1) − f(σi−2) , (3.9)

and we initialise the algorithm taking σ1 equal to the angular ratio s used to update the
connectivity, and σ0 is equal to the splitting parameter computed for the previous time step.
The convergence conditions to stop the secant iterations are:⎧⎨⎩f(σi) ≤ 10−15,

|σi − σi−1| ≤ 10−14.
(3.10)

Since the values used to initialise the algorithm already provide a close estimate of the actual
splitting parameter, few iterations are required. In practice, we observed that the convergence
conditions are always satisfied in less than 5 iterations.

3.1.3 Flux computation

Once the interface is split into the elemental faces, it is possible to compute the flux integrals
of the DG scheme. For each elemental segment of the interface, two integrals have to be
computed, one for the rotating element and one for the fixed element. The difficulty of
computing the flux integrals is due to the non-matching parameterisation on the two sides
of the interface. Indeed, due to the lack of alignment of the elements between Ωr and Ωf ,
the face Γ1 is described using two different parameterisations and the same is true for Γ2, as
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presented in Fig. 3.3. If we focus on Γ1, the flux integrals for a numerical flux function F∗

are:
f−
1 =

ˆ
Γ1

Rk

(
ξ1)F∗(w−

h (ξ1), w+
h (η1),n

)
dΓ1, (3.11)

f+
1 =

ˆ
Γ1

Rk

(
η1)F∗(w−

h (ξ1), w+
h (η1),n

)
dΓ1. (3.12)

One could naively try to use as quadrature points the Gauss-Legendre nodes on the interval
ξ1 ∈ [0, σ] for f−

1 and on the interval η1 ∈ [1 − σ, 1] for f+
1 . However, the positions of

the integration points in the physical space do not match, due to the non-linearity of the
coordinate transformation, resulting in a locally non-conservative scheme. The effect of the
loss of conservativity is presented in Fig. 3.4a for a freestream preservation problem. We can
clearly observe the spurious oscillations around the sliding interface.

(a) Non-conservative interface (b) Fully conservative interface

Figure 3.4: Freestream preservation with non-conservative and conservative sliding interfaces

We can instead obtain a fully conservative scheme by computing both flux integrals on
the parametric interval ξ1 ∈ [0, σ]. We therefore rewrite f−

1 and f+
1 as:

f−
1 =

ˆ σ

0
Rk

(
ξ1)F∗(w−

h (ξ1), w+
h

(
η1(ξ1)

)
,n
)

|JΓ1 | dξ1, (3.13)

f+
1 =

ˆ σ

0
Rk

(
η1(ξ1)

)
F∗(w−

h (ξ1), w+
h

(
η1(ξ1)

)
,n
)

|JΓ1 | dξ1, (3.14)

where |JΓ1 | is the Jacobian of the map between ξ1 and Γ1. In order to approximate ex-
pressions (3.14) and (3.13) with numerical quadrature, the reparameterisation η1(ξ1) has to
be computed for the quadrature points. If we denote ξ1

gp as the parametric coordinate of a
generic Gauss-Legendre point, then its physical coordinate is equal to:

xgp =
∑p+1

i=1 B
p
i (ξ1

gp)ωi xi∑p+1
j=1 B

p
j (ξ1

gp)ωj

=
∑p+1

i=1 B
p
i (η1

gp) υi yi∑p+1
j=1 B

p
j (η1

gp) υj

, (3.15)
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where xi and ωi are the control points and weights of the elemental face, whereas yi and υi

are the control points and weights of the edge of Ω1. The reparameterisation η1
gp is found by

solving eq. (3.15) with the point inversion algorithm described in the previous section. The
same treatment is then repeated for the integrals over the face Γ2:

f−
2 =

ˆ 1

σ
Rk

(
ξ2)F∗(w−

h (ξ2), w+
h

(
η2(ξ2)

)
,n
)

|JΓ2 | dξ2, (3.16)

f+
2 =

ˆ 1

σ
Rk

(
η2(ξ2)

)
F∗(w−

h (ξ2), w+
h

(
η2(ξ2)

)
,n
)

|JΓ2 | dξ2. (3.17)

In order to show the effectiveness of the proposed strategy, we report in Fig. 3.4b the result of
the freestream preservation test and compare it with non-conservative integral computation.
We can observe that the spurious oscillation around the interface are absent and that the
constant solution is well preserved.

3.2 Verification: isentropic vortex

The developed sliding mesh technique is firstly tested on the isentropic vortex test case already
used to validate the ALE formulation in chapter 2, section 2.5. The computational domain
is [2.5, 10] × [−2.5, 2.5] and the boundary fluxes are computed using the exact solution 2.35.

(a) Baseline mesh (b) Mesh and solution field at t=1.2

Figure 3.5: Isentropic vortex, setup

The computational domain is divided into two regions, a rotating one and a fixed one, as
illustrated in Fig. 3.5. The radius of the sliding interface is equal to 1.5, the centre of rotation
of the inner region corresponds to the axis of the vortex, and a unitary rotational frequency is
adopted. The core of the vortex is therefore inside the rotating subdomain in the initial phase
of the simulation. As the vortex is advected downstream, it crosses the sliding interface to
enter the fixed subdomain, as it can be observed in Fig. 3.5b. The proposed test case allows
to investigate how well the sliding interface is capable of preserving the flow characteristics.
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In order to perform a rigorous error analysis, a convergence study is carried out. Starting
from the baseline mesh presented in Fig. 3.5a, isotropic refinement is applied to obtain four
different levels of mesh resolution. Quadratic, cubic and quartic basis functions are tested.
For each combination of degree and mesh level, a simulation is performed considering a fixed
inner subdomain as well. By comparing the results obtained with the two approaches, it
is possible to quantify the error introduced by the computation of the flux integrals on the
sliding interface. The L2-norm of the error for the total energy field is evaluated at t = 2
using numerical quadrature. The results of the convergence analysis are presented in Fig.
3.6. It can be observed that optimal convergence rates are obtained for all basis degrees for
both fixed and sliding meshes. Furthermore, roughly the same errors are obtained with the
two techniques, meaning that the error generated by the sliding interface is negligible and
flow structures are perfectly preserved.

(a) p = 2 (b) p = 3 (c) p = 4

Figure 3.6: Isentropic vortex, error analysis

3.3 Case study: pitching ellipse flow

The second test case concerns the bidimensional flow around a pitching ellipse. Thanks to
the use of rational Bézier functions, the ellipse can be exactly represented. Thus, there is no
additional error introduced by the discretization of the computational domain. The aspect
ratio of the ellipse is equal to 12 and its angle of attack evolves in time with the following
law:

α(t) = −A sin(2πft), (3.18)

with reduced frequency k = πfc/U∞ = 0.5π and amplitude A = 30◦. The ellipse is pitching
about its center. We consider a laminar subsonic flow condition with freestream Mach number
equal to 0.2 and a Reynolds number of 500. The flow configuration is characterized by a
periodic vortical wake generated by the dynamic separation of the boundary layer around
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the ellipse. Therefore, the aim of the proposed test case is to study the behaviour of the
developed sliding mesh technique for complex unsteady flows.

(a) Baseline mesh (b) Level 1 mesh

(c) Level 2 mesh (d) Level 3 mesh

Figure 3.7: Different refinement levels for the ellipse simulation

3.3.1 Mesh convergence

Firstly, a mesh convergence study is conducted. We consider a large computational domain,
delimited by the rectangle [−30c, 60c] × [−30c, 30c], with c being the major axis of the ellipse.
The far-field boundary conditions are weakly imposed using Riemann invariants. On the
ellipse surface, a weakly prescribed no-slip adiabatic wall boundary condition is adopted. Since
the isogeometric approach allows an exact representation of the boundary, an extremely coarse
baseline mesh can be generated. As represented in Fig. 3.7, the meshes adopted for the actual
computations are obtained applying a hierarchical refinement to the baseline configuration.
The convergence analysis is carried out using 3 mesh refinement levels:

• level 1: 1464 total elements, 16 of which on the ellipse boundary,

• level 2: 2406 total elements, 32 of which on the ellipse boundary,

• level 3: 5046 total elements, 64 of which on the ellipse boundary.
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The study is performed using rational basis defined using quadratic, cubic and quartic poly-
nomials. The radius of the sliding interface is equal to 0.75c, meaning that the minimum
distance between the ellipse and the interface is of a quarter of the major axis length c.

The initial condition of the simulations corresponds to the uniform freestream flow state.
After a numerical transient, the solution converges to a stable limit cycle in which the flow
fluctuations are synchronized with the pitching movement of the ellipse. We present in Fig.
3.8 the evolution of the aerodynamic coefficients over one pitching cycle. We compute, for
each cycle, the average drag coefficient C̄d, the peak lift coefficient Ĉl and the energy transfer
coefficient E. The latter being defined as the area delimited by the Cm − α curve:

E = 1
1
2ρ∞u2

∞c
2

˛
Mz dα =

˛
Cm dα, (3.19)

where Mz is the moment of the aerodynamic forces with respect to the pitching axis. The
simulations are stopped when the considered coefficients are sufficiently converged in time.

(a) Drag coefficient (b) Lift coefficient (c) Moment coefficient

Figure 3.8: Pitching ellipse, limit cycle solution, cubic level 2 mesh

The results of the mesh convergence analysis are reported in Fig. 3.9. All the tested
configurations of degrees and refinement levels are able to reproduce the synchronization
between the flow and the pitching movement. As expected, a significantly faster convergence
is observed when the degree of the basis is increased. At the same time, the coarsest mesh
is not capable of predicting with accuracy all the coefficients, even with quartic polynomials.
Indeed, the level 2 grid with a cubic representation provides a better estimation of C̄d, with
a similar number of degrees of freedom. Therefore, we conclude that the cubic level 2 mesh
represents the best compromise between accuracy and computational cost. In general, we can
say that the best trade-off is found by combining h and p refinement, as we already observed
in chapter 2. We can also remark that the value of E is negative, which means that, from a
physical point of view, the energy is transferred from the ellipse to the fluid.
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(a) Average drag (b) Peak lift (c) Energy transfer

Figure 3.9: Pitching ellipse, convergence of the aerodynamic coefficients

3.3.2 Comparison with deforming mesh

In the second part of the ellipse case study, we compare the sliding mesh approach with the
ALE technique that we developed and validated in chapter 2. Since the pitching amplitude is
limited to 30◦, it is still possible to continuously deform the computational domain without
incurring into an excessive distortion of the mesh, which could potentially decrease the accu-
racy of the solution. In order to compare the two techniques, we repeat the convergence study
with the grids of Fig. 3.7 using the ALE methodology. The mesh velocity field Vg for the
ALE computations is defined via the approach proposed in chapter 2, section 2.7. To compute
the blending function (2.41), the distance Rint is equal to the radius of the sliding interface
and Rext = 4c. Intuitively, the sliding mesh movement can be interpreted as the limit case
where Rext = Rint. We illustrate in Fig. 3.10 the differences between the deforming and the
sliding meshes. Besides, we can observe that, despite the significant differences between the
two grids, the density fields obtained with the two approaches are visually identical.

(a) Sliding mesh (b) Deforming mesh

Figure 3.10: Comparison of sliding and deforming meshes, density field, quartic level 2 mesh
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In order to better compare the two approaches, C̄d, Ĉl and E are computed for the
deforming mesh as well. The numerical values of the three aerodynamic coefficients are
reported in Tables 3.1, 3.2 and 3.3 respectively. We can observe that the same converged
values are obtained with both the techniques. Therefore, we conclude that the proposed
sliding mesh approach is correctly capable of simulating complex flows. Although some small
discrepancies are observed between the values obtained using the level 1 meshes, there is no
evidence to infer that one methodology is more accurate than the other. However, the sliding
approach is less expensive from a computational point of view, because the mass matrix is
constant in time.

Sliding Deformation
Degree Level 1 Level 2 Level 3 Level 1 Level 2 Level 3

2 0.4924 0.4846 0.4839 0.4916 0.4833 0.4838
3 0.4882 0.4837 0.4841 0.4835 0.4836 0.4841
4 0.4827 0.4840 0.4840 0.4820 0.4840 0.4840

Table 3.1: Average drag coefficient for sliding and deforming meshes

Sliding Deformation
Degree Level 1 Level 2 Level 3 Level 1 Level 2 Level 3

2 2.694 2.623 2.623 2.691 2.619 2.622
3 2.645 2.624 2.626 2.630 2.624 2.626
4 2.627 2.626 2.626 2.624 2.626 2.626

Table 3.2: Peak lift coefficient for sliding and deforming meshes

Sliding Deformation
Degree Level 1 Level 2 Level 3 Level 1 Level 2 Level 3

2 -0.7207 -0.7070 -0.7055 -0.7204 -0.7059 -0.7054
3 -0.7114 -0.7053 -0.7055 -0.7065 -0.7052 -0.7055
4 -0.7054 -0.7054 -0.7054 -0.7047 -0.7054 -0.7054

Table 3.3: Energy transfer coefficient for sliding and deforming meshes

3.3.3 Influence of the sliding interface radius

We then employ the ellipse case study to investigate the effect of the placement of the sliding
interface on the numerical results. Low-order sliding mesh approaches can introduce numerical
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artifacts in the approximate solution, due to loss of conservativity and poor interpolation.
Ideally, the sliding interface should not be in close proximity of the boundary in order to
limit the effects of the spurious phenomena on the aerodynamic coefficients. On the other
hand, a smaller rotating region allows to reduce the computational costs, because the smaller
tangential velocity of the mesh allows to increase the time step. Therefore, the generation
of meshes with sliding interfaces is the result of a trade-off and the process heavily relies on
user experience. In this context, the use of a geometrically exact movement coupled with a
high-order interpolation can significantly improve the accuracy of sliding grids and simplify
the mesh generation task.

(a) r/c = 0.625 (b) r/c = 0.75

(c) r/c = 1.00 (d) r/c = 1.50

Figure 3.11: Meshes with different sliding interface placements

The previous convergence analysis was carried out considering a sliding interface radius
equal to 0.75c. By slightly modifying the baseline grid 3.7a, we were able to obtain three
additional meshes, with different placements of the interface: one with a smaller radius of
0.625c, and two with a larger rotating region, with r equal to c and 1.5c, as illustrated in
Fig. 3.11. In order to provide a fair comparison, the refinement process has been adapted to
obtain a similar resolution in the wall area for all the considered grids. A cubic representation
is employed and the overall mesh resolutions are comparable to the level 2 refinement adopted
in the convergence study.

The values of C̄d, Ĉl and E obtained for the different positions of the sliding interface are
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reported in Table 3.4. We do not observe a significant variation of the aerodynamic coefficients
with respect to the radius of the interface. One can notice that the most sensitive quantity is
the average drag coefficient. However, the relative variation between the maximum and the
minimum value is less than 0.13%, which is completely negligible in a practical application.
We can therefore state that, thanks to the accuracy of the developed sliding mesh technique,
the results are nearly independent with respect to the position of the sliding interface. This
simplifies the mesh generation problem, as the subdivision of the computational domain will
be primarily dictated by the geometrical features of the boundary.

r/c 0.625 0.75 1.00 1.50
C̄d 0.4834 0.4837 0.4839 0.4840
Ĉl 2.6246 2.6244 2.6248 2.6247
E -0.7052 -0.7053 -0.7054 -0.7054

Table 3.4: Variation of the aerodynamic coefficients with respect to r/c

3.3.4 Supersonic flow

We conclude the ellipse case study with a simulation in the supersonic regime. The amplitude
of the pitching motion is reduced to A = 15◦ and a freestream Mach number equal to 2 is
considered. The computation is performed using quadratic rational basis functions and the
level 3 mesh, illustrated in Fig. 3.7d. The simulation of supersonic flows requires robust nu-
merical algorithms, because of the presence of strong shocks. Furthermore, non-conservative
schemes can lead to incorrect estimations of the shock velocity.

(a) α = 0◦, ascending phase (b) α = 15◦ (c) α = 7.5◦, descending phase

Figure 3.12: Supersonic pitching ellipse flow, density fields

The considered flow is characterised by a bow shock in front of the ellipse. As the angle
of attack α oscillates, the shape and intensity of the bow shock evolve. The density fields for
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three different values of α are illustrated in Fig. 3.12. As we can observe, the discontinuity is
well resolved and the sliding interface does not interfere with the movement of the shock, since
there is no loss of conservativity. As in the subsonic case, the solution converges to a stable
limit cycle after the initial transient. In Fig. 3.13 we report the limit cycle curves for the
aerodynamic coefficients Cl, Cd and Cm. We also estimate C̄d, Ĉl and E for the supersonic
flow condition. The results are: C̄d = 0.223, Ĉl = 0.532, and E = −0.0146.

(a) Drag coefficient (b) Lift coefficient (c) Moment coefficient

Figure 3.13: Supersonic pitching ellipse flow, limit cycle solution

3.4 Application: vertical axis wind turbine

Sliding meshes are commonly employed to simulate rotating machinery such as helicopter
rotors (62), axial compressors (65) and wind turbines (101). These kind of applications are
characterized by complex geometries and topologies. For this reason the present section is
dedicated to the investigation of a more challenging test case. In particular, we consider a
Vertical Axis Wind Turbine (VAWT).

3.4.1 Construction of the computational domain

The first challenge of the proposed application is the generation of a suitable mesh to perform
the flow simulation. We start by defining the geometry of the turbine. Among the several
possible VAWT designs, we consider an H-Darrieus rotor type (102) with three NACA 0018
blades. Being N the number of blades, the radius of the turbine R and the chord of the
blades airfoils c are defined by means of the solidity σ = Nc/R, which is equal to 0.5 for our
application. A cylindrical mast of radius r = 0.2c completes the geometry of the rotor. The
outer boundaries are sufficiently far from the turbine in order to allow the development of the
wake and to avoid unwanted acoustic perturbations due to spurious reflections. As for the
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ellipse case study, the far-field boundary conditions are based on Riemann invariants and the
rotor surfaces are considered to be adiabatic no-slip walls.

(a) Baseline mesh (b) First refinement step (c) Smoothed mesh

Figure 3.14: Initial VAWT mesh, refinement and smoothing. The colorscale represents the
Jacobian of the Isogeometric map.

A rational quadratic representation is adopted for the rotor geometry and the sliding
interface. The mast is therefore exactly described, whereas the NACA airfoil is approximated
via least square fitting. In order to generate the mesh, we exploit the periodic pattern of
the geometry. We first create a very coarse block-structured grid, presented in Fig. 3.14a.
The baseline grid must respect the constraint of having a uniform subdivision of the sliding
interface. Moreover, due the scale differences between the mast radius, the blade chord and
turbine diameter, the initial patches are visibly irregular. We illustrate in Fig. 3.14b the
mesh obtained after one isotropic refinement step and the Jacobian of the isogeometric map.
It can be observed that strong discontinuities in the value of the Jacobian are present between
the mesh blocks.

In order to improve the mesh regularity, we adopt a simple elliptic relaxation technique.
The developed approach is an adaptation to high-order Bézier grids of the barycentric smooth-
ing algorithm described by Falsafioon et al. (103). In each step of the relaxation procedure,
the updated position of the j-th control point is equal to the barycentre of the neighbouring
control points:

xk+1
j = 1

n

n∑
i=1

xk
i , (3.20)

with n being the number of neighbours of xj . The sequence defined by eq. (3.20) converges
towards the solution of the Laplace equation for the coordinate fields. The mesh illustrated in
Fig. 3.14c is obtained applying the barycentric smoothing algorithm for 50 iterations starting
from the grid of Fig. 3.14b. We notice that the regularity is significantly improved and that
the gradient of the Jacobian is globally reduced. The mesh used for the actual computations
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is obtained by ulteriorly refining the smoothed grid in the rotor region, in particular around
the mast and the blades, as presented in Fig. 3.15. The resulting grid consists of 18545
elements in total.

(a) Final rotor mesh (b) Detail of the mast region (c) Detail of the blade region

Figure 3.15: Final VAWT mesh

(a) Overall view (b) Zoom on blade 1

(c) Zoom on blade 2 (d) Zoom on blade 3

Figure 3.16: VAWT simulation, velocity field
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3.4.2 Flow simulation

The typical working conditions of VAWTs are characterized by turbulent flows. Indeed, the
blades need to have a sufficiently high lift-to-drag ratio to generate power, meaning that the
flow regime of the airfoil has to be at least transitional. Simulating such a flow configuration
requires turbulence modelling, high mesh resolution and implicit time integration, in order to
keep the computational costs reasonable. For these reasons, the present simulation is carried
out in the laminar regime, instead of considering realistic flow conditions.

Figure 3.17: VAWT simulation, evolution of the aerodynamic coefficients

The freestream Mach number is equal to 0.1 to avoid unwanted compressibility effects.
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The rotational speed ω of the turbine is defined using the tip-speed ratio λ = ωR/u∞. For
the present simulation λ = 2, meaning that the tangential velocity of the blades is twice the
freestream speed. The Reynolds number Re rotor computed using u∞ and the turbine radius
is equal to 3000. In order to estimate the flow regime around the airfoils, we can consider
the maximum possible relative velocity of the blades with respect to the freestream condition
and compute:

Re blade = c (u∞ + ωR)
ν

= σ

N
(λ+ 1)Re rotor = 1500. (3.21)

The flow around the blades is therefore laminar. In a realistic condition Re blade ≈ 105 at
least. The result of the laminar regime is the separation of the blades boundary layer very
close to the leading edge and the consequent formation of large vortical structures, as it can
be observed in Fig. 3.16. As the large structures are advected, interactions occur between the
eddies and both the mast and the blades, resulting in a complex chaotic flow. A total of 10
revolutions are simulated. The evolution of the power coefficient Cp and of the aerodynamic
force coefficients of the turbine are reported in Fig. 3.17. Due to the chaotic nature of
the solution it is not possible to extract a periodic pattern for the Cp curve. Indeed, the
interactions between the rotor and the vortical structures generates strong fluctuations in
the power coefficient. Also, we can notice that the value of Cp is negative, meaning that
the movement of the turbine is absorbing energy. This is a direct consequence of the poor
aerodynamic performance of the blades in the laminar regime.

3.5 Conclusion

In this chapter we developed a high-order accurate sliding mesh technique for compressible
flows. Then, starting from the general ALE framework developed in chapter 2, we detailed the
treatment of the sliding interface. In particular, the properties of the NURBS representations
were employed to implement an accurate and fully conservative sliding mesh algorithm.

The proposed approach has been firstly validated on a classic benchmark problem for
inviscid flows and optimal convergence rates were observed for all the tested basis degrees.
Furthermore, the comparison with an equivalent fixed grid showed that the error introduced
by the sliding interface is negligible. As a second test case, we studied the viscous flow
around a pitching ellipse, and the obtained results confirmed the precision and robustness of
the sliding algorithm. We were able to compare the sliding mesh technique with a previously
validated ALE formulation based on mesh deformation. We then showed that the outcome of
the simulation is independent with respect to the position of the sliding interface. Lastly, we
proved the robustness of the developed methodology considering a supersonic flow condition.

As last case study, we simulated the flow around a 3-blade VAWT configuration, allowing
us to evaluate the potential of the proposed approach on a more complex geometry. We
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especially focused on the construction of the computational grid, starting from a set of coarse
Bézier patches. In order to obtain a better quality mesh, a smoothing algorithm had to
be employed, showing that the use of ideas taken from unstructured grid generation can be
beneficial in the context of isogeometric analysis as well.
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Chapter 4

Aerodynamic optimisation of a
morphing airfoil

Thanks to the inherent coupling between geometry and simulation, Isogeometric Analysis
constitutes the ideal framework for shape optimisation problems. So far, the main applications
field of Isogeometric optimisation has been structural mechanics (104; 105; 106). In the
context of fluid dynamics, only a few examples of shape optimisation studies are available
in the literature. Nørtoft et al. (107) presented the first results on simple steady laminar
flows combining a spline discretization of the incompressible Navier-Stokes equations with a
gradient descent algorithm. A low fidelity aeroelastic optimisation method has been proposed
in (108), relying on a potential flow model solved using an Isogeometric Boundary Element
Method. Lastly, Wang et al. (109) adopted the Isogeometric DG method to solve Euler
equations and optimise airfoil shapes using an adjoint technique.

In the recent years, a revived interest in bio-inspired flight mechanisms has been observed.
The fixed wing design is indeed well adapted to high-speed flying vehicles of large dimension,
but, with the development of Micro Aerial Vehicles (MAV), different solutions are being ex-
plored to improve the aerodynamic performance in the low Reynolds regime. To this end,
Platzer et al. (110) conducted an aerodynamic analysis of multiple flapping wing configura-
tions. A bat-inspired drone design with flexible multi-body wings has been studied by Joshi
et al. (111). An increasingly popular bio-inspired technique is the aerodynamic morphing,
which can be defined as a smooth adaptation of the wing shape. The morphing concept takes
inspiration from the birds’ feathers, thanks to which birds can control the geometry of their
wings. Thanks to morphing, it is possible to obtain optimal aerodynamic performance for
multiple flight conditions. For this reason, several morphing prototypes have been studied
over the years (112). A multi-point optimisation study of a morphing airfoil has been carried
out by Fincham et al. (113). The benefits of trailing edge morphing for a transonic wing
design have been proved in (114). A leading edge morphing actuation has been studied by
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Kang et al. (115) for laminar flow conditions. Lastly, promising results have been obtained
by using a vibrating trailing edge to control the wake of an A320 wing section (116; 117; 118).

In the present chapter we investigate a trailing edge morphing technique to control the
boundary layer separation in the laminar regime. The first aim of the study is to prove the
benefits of using the Isogeometric framework for flow problems with deforming geometries.
We therefore exploit the properties of NURBS to develop an accurate morphing model and
deform the computational mesh accordingly. The second goal of the investigation is to de-
velop a proof-of-concept aerodynamic design chain entirely based on the CAD representation.
The Isogeometric ALE-DG is thus combined with a Bayesian optimisation algorithm to find
the best suitable morphing configuration with respect to a given criterion. Since a unique
geometry description is adopted in all the stages of the design process, the proposed approach
is particularly efficient and presents a high degree of automation. The chapter is organised
in the following manner: section 4.1 is dedicated to the description of the morphing model.
Then, the considered airfoil is characterised and a mesh sensitivity analysis is performed. In
section 4.4 we describe the optimisation algorithm and the design process in its entirety. Two
single-objective optimisation studies are then performed in sections 4.5 and 4.6. Lastly, a
multi-objective example is illustrated in section 4.7.

4.1 Morphing model

The study presented in this chapter is carried out considering a NACA 631 − 412 airfoil. The
NACA 6-series of airfoils is widely employed for aircraft wings and wind turbine blades (119)
and it was originally designed with the aim of maximizing the region of laminar flow around
the airfoil. The considered geometry is characterized by a maximum thickness equal to 12%
of the chord length. Using least-square fitting, we obtain a B-Spline description of the NACA
631 − 412 airfoil, as reported in Fig. 4.1a. We adopt a knot vector defined by 15 non-zero
knot spans and a cubic representation. The multiplicity of each internal knot vector is equal
to 2, meaning that the obtained B-Spline curve is C1.

(a) Normal (b) Morphed

Figure 4.1: B-Spline representation of the NACA 631 − 412 airfoil

Starting from the B-Spline representation, it is possible to define the modes of deformation
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of the airfoil. A general technique would consist in choosing to move each control point
independently without a global movement law. However, the number of degrees of freedom
would be too large and the cost of the optimisation would be unreasonable with such approach.
For this reason, we impose a predefined global deformation function. Similarly to the work
of Simiriotis et al. (116), we adopt a quadratic morphing law. The movement of each control
point of the B-Spline airfoil is given by:⎧⎨⎩x

s
i (t) = xs

i,0 + as
x,i sin

(
2πft

)
,

ys
i (t) = ys

i,0 + as
y,i sin

(
2πft

)
,

(4.1)

where xs
i,0 =

(
xs

i,0, y
s
i,0
)T are the control points of the original B-Spline, f is the frequency,

as
x,i = 0 and as

y,i is determined by:

as
y,i =

⎧⎪⎪⎨⎪⎪⎩
0, if xs

i,0 < x0

A

(
xs

i,0 − x0

1 − x0

)2
, if xs

i,0 ≥ x0
(4.2)

where A is the amplitude of the oscillation of the trailing edge and x0 = 1 − L, with L

being the controlled fraction of the airfoil surface. Using the proposed deformation law, the
morphing is controlled by just 3 parameters: L, A and f . An example of morphed B-Spline
airfoil is illustrated in Fig. 4.1b.

(a) Normal (b) Morphed

Figure 4.2: Bézier representation of the NACA 631 − 412 airfoil

The Bézier extraction is then employed to obtain a DG compliant representation of the
airfoil:

xb
0 = B xs

0, (4.3)

where xb
i,0 =

(
xb

i,0, y
b
i,0
)T are the control points of the Bézier airfoil, presented in Fig. 4.2a

and B is the extraction operator. The morphing of the Bézier geometry is thus given by:⎧⎨⎩x
b
i(t) = xb

i,0 + ab
x,i sin

(
2πft

)
,

yb
i (t) = yb

i,0 + ab
y,i sin

(
2πft

)
,

(4.4)

where the amplitudes are computed using the same extraction operator:

ab = B as. (4.5)
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The morphed Bézier airfoil computed with this approach is reported in Fig. 4.2b. We remark
that, since the extraction operation preserves the B-Spline geometry, the Bézier curve of the
morphing airfoil is C1 at all times, as we explained in chapter 2.

(a) Normal (b) Morphed

Figure 4.3: Morphing of the baseline mesh

We construct a very coarse C-H type mesh using the extracted Bézier airfoil. The mesh is
illustrated in Fig. 4.3a and contains 65 cubic elements. The morphing movement is transferred
from the boundary to the mesh using cubic functions, defined such that only the first layer of
patches around the airfoil is deformed, as shown in Fig. 4.3b. Since the baseline discretization
is coarse, the elements are easily deformed, without incurring in inadmissible shapes.

(a) Normal (b) Morphed

Figure 4.4: Morphing of the refined mesh

In order to perform the flow simulations, the baseline mesh needs to be refined. The
control points of the final grid are computed by recursive splitting of the baseline elements:

x0 = R xb
0. (4.6)

Therefore, the movement of the refined mesh is given by:

x(t) = x0 + a sin
(
2πft

)
, (4.7)
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with:
a = R ab. (4.8)

Hence, the control point velocities required for the ALE formulation are:

vg(t) = 2πfa sin
(
2πft

)
. (4.9)

In Fig. 4.4 it is possible to observe an example of morphing for a sample refined mesh. We
can compare Fig. 4.4b with Fig. 4.3b to notice that the geometry is perfectly preserved.
We remark that, in the practical implementation, the operators B and R are never explicitly
computed. The extraction and refinement procedures are carried out by recursive application
of the knot insertion formula (1.18). The amplitude field a is thus computed during the mesh
generation process and then stored as a DG field to be used by the flow solver.

4.2 Airfoil characterisation

We consider a subsonic laminar flow condition in which the freestream Mach number is equal
to 0.2 and the Reynolds number with respect to the airfoil chord is equal to 5000. In order
to choose a suitable flow configuration to control using the morphing technique, we first
characterise the airfoil for different values of the angle of attack α. In particular, we trace
the curves of the aerodynamic coefficients with respect to α and we observe the variations of
the boundary layer and wake structures.

Figure 4.5: Airfoil characterization study, aerodynamic coefficient curves

Since the aim of the characterisation study is to have a rough estimate of the behaviour
of the airfoil, we adopt a coarse grid to reduce the computational time. The mesh employed
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for this study is illustrated in FIg. 4.4a. We consider values of α between −5◦ to 15◦, with a
step of 1◦. The curves of the aerodynamic coefficients are reported in Fig 4.5 together with
the polar curve. The velocity fields for some sample values of α are illustrated in Fig. 4.6.
For negative values of α the behaviour of the airfoil is totally non-linear. We can observe that
at zero incidence the lift coefficient Cl is negative and that the flow is already separated. The
recirculation bubble is stable and vortex shedding does not occur. For positive α the growth
of Cl is linear even if the flow is separated. We can observe that the boundary layer separation
point progressively moves towards the leading edge as α increases. The recirculation bubble
is unstable and a periodic vortex shedding is observed. Non-linearities start to appear in the
Cl − α curve for α ≥ 8◦ as the recirculation region becomes larger. The Cd curve shows the
characteristic quadratic growth for positive angles of attack. In terms of lit-to-drag ratio, the
best performance is found for α between 2◦ and 4◦. For higher values of the angle-of-attack
the growth of Cd is significantly faster than the linear increase of the lift coefficient.

(a) α = 0◦ (b) α = 2◦ (c) α = 4◦

(d) α = 6◦ (e) α = 8◦ (f) α = 10◦

Figure 4.6: Influence of the angle of attack on the velocity field
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4.3 Mesh sensitivity study

Since the flow is already separated for low value of α and the region of maximum aerodynamic
performance is within 2◦ and 4◦, we adopt an angle of attack of 3◦ to investigate the morphing
technique. Before running the optimisation, we carry out a mesh sensitivity study. Starting
from the baseline mesh illustrated in Fig. 4.3a, we obtain four meshes by refinement of the
initial Bézier patches. In order to increase the regularity of the refined grid, we employ the
barycentric smoothing algorithm presented in chapter 3.

(a) Coarse (b) Medium

(c) Fine (d) Optimised

Figure 4.7: Refinement levels for mesh sensitivity study

Nel C̄l C̄d C̄m St

1810 0.2145 0.0641 -0.0261 1.9366
3512 0.2212 0.0644 -0.0266 1.9843
7864 0.2225 0.0645 -0.0267 2.0009
2414 0.2215 0.0645 -0.0267 1.9858

Table 4.1: Rigid airfoil, convergence of the aerodynamic coefficients

The four meshes are presented in Fig. 4.7. The coarse, medium and fine grids are hier-
archically computed and contain 1810, 3512 and 7864 elements respectively. The optimised
mesh is characterised by the same resolution level of the medium mesh around the airfoil
with a much coarser discretization of the far wake area. The optimised mesh contains 2414
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elements. We first conduct the analysis considering the rigid airfoil, without morphing. We
compute for each grid the average values of the lift, drag and pitching moment coefficients
and the Strouhal number. The results are reported in table 4.1. The considered quantities
are already well estimated using the coarse mesh. The results obtained with the optimised
grid are in line with those predicted with the medium refinement level.

Figure 4.8: Morphing airfoil, evolution of the aerodynamic coefficients

The mesh sensitivity analysis is then repeated considering the trailing edge morphing.
For this analysis, the controlled fraction of the airfoil surface is equal to 50%, the morphing
frequency is equal to the shedding frequency and the amplitude is equal to a third of the airfoil
thickness. The control parameters are thus L = 0.5, A = 0.04, f = 0.4, considering a unitary
chord length. After the initial transient, a periodic flow condition is found. We report in Fig.
4.8 the evolution of the aerodynamic coefficients for the last 4 computed oscillation periods.
The power coefficient CP quantifies the amount of power necessary actuate the morphing,
and it is defined as:

CP = 1
1
2ρ∞U3

∞c

˛
∂Ωa

(
pn − τ · n

)
· Vg dΓ, (4.10)

where p is the pressure, τ is the viscous stress tensor and ∂Ωa is airfoil surface. Using the 4 last
converged oscillation periods we compute the average values of the aerodynamic coefficients,
which are reported in table 4.2 for each mesh. As for the rigid airfoil, the flow solver is
already capable of predicting the correct flow physics using the coarse mesh and a sufficiently
accurate estimate of the quantities of interest. The results computed with the optimised mesh
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are in line with the medium mesh, except for the average lift coefficient C̄l, which is slightly
underestimated. This effect may be caused by the reduced resolution in the wake region.

Nel C̄l C̄d C̄m C̄P Tc

1810 0.7471 0.0564 -0.1225 0.0859 197
3512 0.7420 0.0572 -0.1204 0.0855 872
7864 0.7438 0.0577 -0.1205 0.0844 4301
2414 0.7393 0.0572 -0.1200 0.0855 656

Table 4.2: Morphing airfoil, mesh sensitivity study

(a) Density field, rigid airfoil (b) Velocity field, rigid airfoil

(c) Density field, morphing airfoil (d) Velocity field, morphing airfoil

Figure 4.9: Comparison of rigid and morphing airfoil flows, fine grid

Comparing the aerodynamic coefficients for the rigid and the morphing airfoil, we can
notice that the average lift and pitching moment are significantly increased, whereas the drag
is slightly reduced. However, strong oscillations are observed in the instantaneous lift and the
minimum value of Cl is negative. In Fig. 4.9, a comparison of the density and velocity fields
for the rigid and morphing airfoil is illustrated. A significant difference in the separation of
the boundary layer is found. For the morphing airfoil the recirculation bubble is concentrated
in a thin region close to the wall, and a reattachment of the boundary layer is observed at the
trailing edge. As a consequence of the behaviour of the boundary layer, the vortical structures
in the wake are significantly different.
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As we previously mentioned, the goal of the mesh sensitivity analysis is the determination
of a suitable mesh to compute the objective functions for the optimisation. From the results
of table 4.2, we could assume that the coarse mesh provides a sufficiently reliable estimate of
the aerodynamic coefficients. However, for some combinations of the morphing parameters,
the simulation performed with the coarse mesh does not converge, due to a lack of resolution
of the boundary layer close to the leading edge. The medium grid has the adequate resolu-
tion close to the wall, but the flow computation would be too expensive. The computational
costs are reported in table 4.2 in terms of total CPU time Tc, expressed in hours. It can
be observed that, with the optimised mesh, the computational time is reduced by 25% com-
pared to the medium refinement level, while maintaining the same wall resolution. Since the
relative difference between the Cl computed with the two grids is less than 1%, we conclude
that the optimised mesh provides a reasonable compromise between accuracy, reliability and
computational cost.

4.4 Optimisation algorithm

In this chapter, we deal with optimisation problems of the following form:

min
z∈D

g(z),

subject to h(z) ≤ 0,
(4.11)

where g is the cost, or objective, function and h is the constraint function. The design
variables z constitute a d-dimensional vector contained in the design space D ⊂ Rd.

In aerodynamic optimisation problems, the relation between the design parameters and
the objective function cannot be expressed in closed-form. Using gradient-based minimisation
algorithms is therefore not straightforward. Adjoint techniques are commonly employed to
compute the flow sensitivities with respect to the design variables (120; 121; 122). The
drawbacks of the adjoint framework are represented by the complexity of the implementation
and the heavy memory usage due to the backward time integration of the adjoint equations
for time-dependent flows (123). Moreover, flow control problems often present non-linear
behaviours, which may lead to multi-modal cost functions. In this context, it is desirable
to adopt a global optimisation technique. A possible approach would be the use of Genetic
Algorithms (GA) (124). Although very accurate, GAs require a high number of evaluations
to converge. For this reason, the present work relies on the Efficient Global Optimisation
(EGO) framework of Jones et al. (125; 126). In the recent literature, it is common to refer to
EGO as Bayesian optimisation (127).

The EGO method belongs to the family of metamodel-based optimisation techniques (128),
in which a surrogate model is used to approximate the flow response as a function of the design
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variables. In particular, the EGO is built upon a probabilistic description and the associated
metamodel is computed using a Gaussian process regression, also known as Kriging. Thanks
to the probabilistic representation, Kriging also provides an estimate of the uncertainty of the
surrogate model. In order to select a set of parameters to carry out the successive evaluations,
a merit function is employed. The metamodel is then recalibrated using the new evaluation
and the process is repeated until convergence is reached. Thanks to their computational
efficiency and ability of finding global optima, Kriging-based algorithms have been success-
fully employed in flow control applications (129; 130) and aerodynamic design (131). As the
present manuscript is not dedicated to the development of EGO algorithms, we explain in
the present section only the main features. For a more detailed discussion, the reader may
refer to (126; 127).

4.4.1 Kriging model

Kriging is a powerful non-linear regression method with a probabilistic formulation. Suppos-
ing that a set of observation Gn = (g1, g2, . . . , gn) are available at the corresponding points
Zn = (z1, z2, . . . , zn), with zi ∈ D. We assume that the response Gn is the realisation of a
Gaussian process with the following likelihood function:

p(Gn) =
exp

(
− 1

2G
T
n C−1

n Gn
)√(

2π
)n |Cn|

, (4.12)

where Cn ∈ Rn×n is the correlation matrix, whose terms are computed by means of a covari-
ance kernel, which we express here as:

Ci,j(h,Θ) = σ2
d∏

k=1
c(hk, θk), (4.13)

where c(h, θ) is the one-dimensional correlation function, h = zi − zj , σ is the standard
deviation of the process, and Θ = (θ1, θ2, . . . , θd) is the set of hyperparameters. Several
functions can be employed for the one-dimensional covariance kernel (132). In this work, we
adopt the Matérn class function with ν = 5/2:

c(h, θ) =
(

1 +
√

5|h|
θ

+ 5h2

3θ2

)
exp

(
−

√
5|h|
θ

)
. (4.14)

The hyperparameters are computed by maximising the probability density p(Gn), which is
equivalent to minimising the log-likelihood function (126):

L = GT
n C−1

n Gn + log |Cn|, (4.15)

ignoring the constant terms in eq. (4.12). For the construction of Kriging models, we em-
ploy the DiceKriging library1. For more details on the algorithms, the reader can refer to
Roustant et al. (132).

1https://cran.r-project.org/web/packages/DiceKriging
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The Kriging model is then used as a predictor to estimate the value of g for points of
the domain D that are not contained in the set of observations. Considering a point xn+1,
the vector Gn+1 = (g1, g2, . . . , gn, gn+1) is still assumed to be the realisation of a Gaussian
process with likelihood function equal to:

p(Gn+1) =
exp

(
− 1

2G
T
n+1C−1

n+1Gn+1
)√(

2π
)n+1 |Cn+1|

, (4.16)

where the new correlation matrix can be written as:

Cn+1 =

⎡⎣Cn k

kT κ

⎤⎦ , (4.17)

where κ = Cn+1,n+1 and k is a column vector with components kj = Cj,n+1. Using the
conditional probability rule, the likelihood of gn+1, knowing the observations Gn, is equal to:

p(gn+1|Gn) = p(Gn+1)
p(Gn) . (4.18)

It is thus possible to show that the resulting probability density function is Gaussian (126;
130):

p(gn+1|Gn) = 1√
2π σ̂n+1

exp
[

− (gn+1 − ĝn+1)2

2 σ̂2
n+1

]
(4.19)

with mean value ĝn+1:

ĝn+1 = kTC−1
n Gn, (4.20)

and standard deviation σ̂n+1:

σ̂n+1 = κ− kTC−1
n k. (4.21)

The Kriging predictor thus provides an estimate of the value g(zn+1), which corresponds to
the mean value ĝn+1, and a measure of the uncertainty, given by the standard deviation σ̂n+1.
Under suitable hypothesis, the real value of g(zn+1) is contained in a range of 3σ̂n+1 from
ĝn+1 with a 99.7% probability. We hence designate [ĝ− 3σ̂, ĝ+ 3σ̂] as the confidence interval.

4.4.2 Merit functions

The constructed stochastic metamodel is then used to steer the optimisation process. It can
be shown that just using the information about the mean value ĝ(z) does not guarantee the
convergence towards the global optimum (126). Indeed, Torn et al. (133) demonstrated that
the sequence of evaluations must be dense in order to achieve global convergence. This can
be achieved by taking into account the uncertainty of the model to drive the search of the
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optimal design. Therefore, both the mean and the standard deviation are used to compute a
merit function, which is either maximised or minimised to select the next evaluation point.
The most immediate approach consists in minimising a statistical lower bound, defined as:

LB(z) = ĝ(z) − βσ̂(z), (4.22)

with β being a positive constant. The lower bound has been successfully employed in fluid
dynamics applications(134; 129). However, Jones (126) provided a counterexample in which
the lower bound technique fails.

(a) First iteration (b) Third iteration

(c) Fourth iteration (d) Sixth iteration

Figure 4.10: Example of EGO on a 1D function

A more robust methodology consists in maximising the Expected Improvement (126), as
shown in the example in Fig. 4.10. Considering a random variable G(z), the improvement is
defined as:

I = max(gmin −G(z), 0), (4.23)

where gmin is the minimum observed value of the cost function. Since we are considering a
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Gaussian process model, the probability density function of the improvement is:

p(I) = 1√
2π σ̂(z)

exp
{

− [gmin − I − ĝ(z)]2

2 σ̂2(z)

}
. (4.24)

Thus, the Expected Improvement is:

EI =
ˆ ∞

0
I p(I) dI =

ˆ ∞

0

I√
2π σ̂(z)

exp
{

− [gmin − I − ĝ(z)]2

2 σ̂2(z)

}
dI. (4.25)

After integration by parts, eq. (4.25) reduces to:

EI = σ̂(z)
[
uΦ(u) + Ψ(u)

]
, (4.26)

with:

Φ(u) = 1
2

[
1 + erf

(
u√
2

)]
, Ψ(u) = 1√

2π
exp

(
− u2

2

)
, u = gmin − ĝ(z)

σ̂(z) . (4.27)

In the example of Fig. 4.10 it is possible to observe that the EI effectively takes into account
both the mean value and the standard deviation, leading to a dense sequence of evaluations.
Under some mild assumptions on the covariance kernel, Vazquez et al. (135) effectively proved
that the EI approach converges towards the global optimum.

Figure 4.11: Hypervolume improvement criterion

The Expected Improvement function does not take into account the constraints. However,
the approach can be easily generalized for constrained optimisation (125). The cost and
constraint responses are treated as independent stochastic processes. Therefore, two separated
Kriging models are computed. The merit function for the constrained problem is the product
of the EI and the probability of respecting the constraint:

EFI(z) = EI(z)P
(
h(z) ≤ 0

)
, (4.28)
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where EFI stands for Expected Feasible Improvement. The computation and maximisation
of the EFI function is carried out with the DiceOptim package2 of Roustant et al. (132).

The methodology can be extended to multi-objective optimisation as well. We consider,
for the sake of simplicity, an unconstrained multi-objective problem of the form:

min
z∈D

(g1(z), g2(z), . . . , gm(z)). (4.29)

Similarly to the constrained optimisation algorithm, the m objective responses are considered
as uncorrelated processes, therefore m independent Kriging models are constructed. Since it is
usually not possible to minimise all the objectives at the same time, the goal of multi-objective
optimisation is to find the Pareto front, defined as the set of non-dominated points. Starting
from the available observations, an initial Pareto front is computed. As represented in Fig.
4.11, when a new non-dominated point is added, the feasible objective space is enlarged. It
is then possible to evaluate the hypervolume improvement, defined as the measure of the
increase in the feasible region, illustrated in orange in Fig. 4.11. Similarly to the single-
objective EGO, an Expected Hypervolume Improvement EHI can be computed using the
stochastic representation (136). The EHI is then maximised to determine the design point
for the successive evaluation. For the multi-objective EGO, we rely on the GPareto package3

of Binois et al. (137).

Figure 4.12: Optimisation workflow

4.4.3 Optimisation chain

The optimisation algorithm is completed by coupling the EGO technique with the flow solver.
An initial set of evaluations is needed to initialise the Kriging models. Therefore some prelim-
inary flow computations have to be realised to produce the initial database. This preparatory
phase is known as Design of Experiment (DOE). The distribution of the DOE points in the

2https://cran.r-project.org/web/packages/DiceOptim
3https://cran.r-project.org/web/packages/GPareto
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design space is computed using the Latin Hypercube Sampling algorithm (138), unless oth-
erwise specified. Once the DOE database is complete, the EGO iterations can start. The
Gaussian process surrogate is constructed and the merit function is used to select the design
variables. In order to generate the input for the CFD solver, the chosen set of parameters
is processed in the case generator. This pre-processing step is necessary to compute the
amplitudes a of the morphing deformation. The flow simulation is then performed and the
aerodynamic forces are post-processed to evaluate the cost and constraint functions. Lastly,
the database is enriched with the data from the new evaluation and the updated Kriging
models can be computed for the next iteration. The entire workflow is presented in Fig. 4.12.
Due to the dense search pattern and the non-monotonic convergence of the EGO algorithm, it
is not trivial to determine an effective stopping criterion. The decrease of the maximum value
of EI can be used as to estimate the convergence. However, since unsteady simulations are
computationally expensive, the total number of evaluations is mainly determined by fixing
a reasonable computational budget. In any case, if the convergence of the optimum is not
satisfactory, the process can be easily restarted using the database from the last iteration.

(a) Instantaneous lift coefficient

(b) Average lift coefficient

Figure 4.13: Time analysis of the lift coefficient

We underline that a particular attention should be given to the post-processing step.
Indeed, the computation of the average aerodynamic coefficients can be an important source
of noise. The results contained in section 4.3 are computed considering only the last oscillation
period. Since the simulation is sufficiently converged in time and the flow is synchronised with
the morphing movement, the values of table 4.2 are time-accurate. However, we cannot assume
the flow to be locked-in for all the configurations contained in the design space. Therefore,

90



CHAPTER 4. AERODYNAMIC OPTIMISATION OF A MORPHING AIRFOIL

we have to compute the average coefficients over several morphing cycles. Considering, for
example, the lift coefficient, we evaluate:

C̄l = 1
Tf − Tw

ˆ Tf

Tw

Cl(t) dt, (4.30)

where Tf is the final simulation time and Tw is the initial time of the averaging window. In Fig.
4.13 we illustrate the time history of the lift coefficient for the example configuration used for
the mesh sensitivity study. The red curve in Fig. 4.13b represents the value of C̄l computed
with eq. (4.30) as a function of Tw. The average is underestimated when Tw < 130 because the
window contains part of the initial transient. On the other hand, as Tw tends toward Tf , the
oscillations of the value of C̄l become stronger. Values of Tw ≈ 150 provide the best estimate
of the average with the least noise. A further reduction of the oscillation would be desirable
to make the evaluation of C̄l more robust. However, reaching statistical convergence would
be too costly. Therefore, we filter the oscillation of C̄l with an additional averaging step. We
consider M equally spaced values of Tw contained in the interval ∆ = [T̄w − δt, T̄w − δt] and
we compute M values of C̄l. The final average lift coefficient is the arithmetic average:

C̄l = 1
M

M∑
i=1

1
Tf − Tw,i

ˆ Tf

Tw,i

Cl(t) dt. (4.31)

The blue curve in fig. 4.13b is computed using eq. (4.31) with M = 20 and δt = 2.5 for
different values of T̄w. We can observe that the filtered C̄l provides a more reliable estimate
of the true average, provided that T̄w is sufficiently far from Tf and that the initial transient
is discarded.

4.5 Single-objective optimisation: first run

We carry out a single-objective optimisation, considering the following design space:

D =
{

(L,A, f) : L ∈ [0.3, 0.9], A ∈ [0.01, 0.06], f ∈ [0.2, 1.0]
}
. (4.32)

The chosen design space permits a large variation of the morphing parameters. In particular,
the maximum amplitude is equal to 50% of the airfoil thickness and the maximum oscillation
frequency is twice the natural vortex shedding frequency fs = 0.4. The aim of the optimi-
sation is to find the configuration that maximise the average lift. Since the employed EGO
algorithm solves minimisation problems, the objective function is the opposite of the average
lift coefficient:

g(L,A, f) = −C̄l. (4.33)

The drag of the morphing configuration used for the mesh sensitivity study is inferior with
respect to the rigid airfoil. We thus choose the following constraint function:

h(L,A, f) = C̄d − Cd,ref , (4.34)
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where Cd,ref = 0.0645 is the average drag coefficient of the rigid airfoil. The design of exper-
iment contains 8 points and 32 EGO iterations are performed, for a total of 40 evaluations.
Each flow simulation is carried out using 80 parallel cores for an average wall-clock time of 8
hours.

Figure 4.14: First run, DOE and EGO iterations

Figure 4.15: First run, scatter plots of cost and constraint functions

In Fig. 4.14 we report the evolution of the objective and constraint functions for all the
iterations. We can observe that for nearly all the explored configurations the constraint is
satisfied and the average lift is significantly improved with respect to the rigid airfoil. Some
promising configurations are already found in the DOE. The optimisation algorithm is thus
able to quickly determine the region where the improvement is maximised and, after 13 EGO
iterations, the optimal configuration is found, with C̄l = 1.0465 and design parameters equal
to (0.9, 0.06, 0.7511). As illustrated in Fig. 4.15, the best values of C̄l are associated with high
morphing amplitudes and lengths. Interesting results are found for frequencies higher than
fs and the optimal frequency range lies in the interval [0.71, 0.76]. The best improvements
in terms of average drag are observed in the region of optimal C̄l. For higher frequencies,
two configurations characterised by negative values of C̄d and C̄l are found. In particular,
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C̄l = −0.2382 is obtained for the set of parameters (0.9, 0.06, 0.8019), representing the worst
design point.

Figure 4.16: First run, contour plots of the mean values of the final Kriging models. The
black dot represents the optimal design.

We can remark that the optimal configuration is in close proximity of the worst one.
This phenomenon is probably caused by a flow instability. Due to the sudden variation of
the objective and constraint functions, the Kriging algorithm struggles to find a correlation
between the design points and the hyperparameters θi of the covariance kernel tend towards 0.
We can observe this behaviour in Fig. 4.16, where the mean value of the final Kriging models
are illustrated for L = 0.9. Each point in the design space has a small region of influence.
As a consequence, the obtained meta-model is not capable of predicting the behaviour of the
cost and constraint functions with sufficient fidelity.

Optimised mesh Fine mesh
Ns L A f C̄d C̄l C̄P C̄d C̄l C̄P

17 0.9 0.06 0.4428 0.0250 0.9066 0.8560 0.0261 0.9214 0.8506
21 0.9 0.06 0.7511 0.0275 1.0465 3.5135 -0.0144 1.9887 3.4720
25 0.9 0.06 0.8019 -0.0197 -0.2382 4.1810 -0.0088 -0.2382 4.1754

Table 4.3: First run, comparison with fine mesh

In order to validate the obtained results, we repeat, for some sample configurations, the
simulation using the fine mesh of Fig. 4.7. The chosen configurations are:

• Ns = 17: high C̄l, with f close to shedding frequency,

• Ns = 21: optimal design,

• Ns = 25: worst design.
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We then compare the numerical values obtained with the two meshes. The results are sum-
marized in table 4.3. For configuration 17 and 25, the aerodynamic coefficients obtained with
the optimised and fine meshes are comparable. On the contrary, a completely different flow
field is found for the optimal design when using the fine mesh, as illustrated in Fig. 4.17,
resulting in a much higher C̄l with respect to the coarser mesh used for the optimisation.
Since L = 0.9, almost the entire surface of the airfoil is deformed, causing several laminar
separation bubbles, which are only resolved using the fine mesh. As a consequence of the
different boundary layer separation mechanism, the wake structure is significantly altered
as well. Lastly, we analyse the time evolution of the lift coefficient for the selected design
points. In all three cases, the vortex shedding is synchronised with the morphing oscillation.
We report in Fig. 4.18 the curves of Cl for the rigid airfoil and the three configurations of
interest. We can observe that the morphing actuation induces strong oscillations of lift and
that the minimum value of the lift coefficient is strongly negative.

(a) Optimised mesh (b) Fine mesh

Figure 4.17: First run, optimal configuration, velocity field

Figure 4.18: First run, comparison with rigid airfoil
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To conclude, configurations with high amplitudes and lengths are researched by the EGO
algorithm with the aim of finding the best possible average lift value. However, the mentioned
region of the design space is characterised by highly non-linear and unstable physical phe-
nomena and the resulting Kriging model is not reliable. Furthermore, the computed optimal
design is not robust, since a variation of the flight conditions could induce an abrupt change
in the flow physics.

4.6 Single-objective optimisation: second run

In order to avoid the region of chaotic phenomena, we restrict the design space. Particularly,
we limit the upper bound of the amplitude to a third of the airfoil thickness and the maximum
morphing length to 60% of the chord:

D =
{

(L,A, f) : L ∈ [0.2, 0.6], A ∈ [0.005, 0.040], f ∈ [0.2, 1.0]
}
. (4.35)

The frequency range is unchanged as well as the objective function:

g(L,A, f) = −C̄l. (4.36)

As illustrated in Fig. 4.18, morphing can induce strong oscillations of lift, which are undesir-
able. Therefore, we force the lift to remain positive during the whole morphing oscillation by
employing the following constraint function:

h(L,A, f) = −Čl, (4.37)

where Čl is the minimum value of Cl contained in the averaging window. We perform 40 total
simulations, with 8 points for the DOE and 32 EGO iterations.

Figure 4.19: Second run, DOE and EGO iterations

The evolution of the cost and constraint functions is illustrated in Fig. 4.19. We can
remark that the constraint plays a significant role in the EGO iterations. Among the 8
DOE points, only 2 respect the constraint. For nearly half of the 40 simulations a negative
value of Čl is found. Moreover, the first EGO iterations that present an improvement of the
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average lift coefficient do not satisfy the constraint and are therefore discarded. Indeed, the
maximum lift configuration is characterised by C̄l = 0.8469 and Čl = −1.6007, meaning that
strong lift oscillations occur. As the Kriging models are enriched, the EGO algorithm is able
to identify the region where the constraint is satisfied and the cost function is minimised. A
first significant improvement is found for the fourth EGO step, then some slightly improved
configurations are obtained, until the optimum is found after 21 EGO iterations. The optimal
set of morphing parameters is (0.2312, 0.0394, 0.7197), with C̄l = 0.7975 and Čl = 0.0027.

Figure 4.20: Second run, scatter plots of cost and constraint functions

In Fig. 4.20 we can observe the distribution of the investigated configurations in the
design space. The maximum value of average lift is found at high values of amplitude and
length, where the constraint is not satisfied due to the strong fluctuations in the flow field.
The design points added by the EGO algorithm are condensed towards the lower bound of
the length interval and the maximum value of the morphing amplitude. Indeed, the best
values of Čl are found for L = 0.2. Very few points are present towards the lower bounds of
the amplitude and frequency intervals, as the region is characterised by low values of average
lift.

In order to better appreciate the effect of the parameters on the objective and constraint
functions, we report in Fig. 4.21 the final Kriging models computed with the EGO procedure.
We can observe that increasing the amplitude A clearly leads to a decrease of the cost function.
The impact of the length L on C̄l is more subtle, especially for low amplitudes and frequencies.
For A > 0.025 and f ∈ [0.6, 0.9], increasing L enhances the average lift. However, the
morphing length has a significant influence on the constraint function. Indeed, the parameter
L allows to deeply alter the camber of the airfoil. Therefore, large oscillations of lift are
induced for high values of L. We can thus observe that, for a given frequency, the maximum
C̄l is found on the corner of maximum values of A and L, where the constraint is violated.
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The optimal condition is found decreasing L until Čl ≈ 0. For a wide range of frequencies,
the lift is improved with respect to the rigid airfoil. The optimal value of f is roughly 1.8
times the shedding frequency. The best values of the constraint functions are localized at the
lower bound of L, around A ≈ 0.025 for frequencies contained in [0.5, 0.7].

Figure 4.21: Second run, contour plots of the mean values of the final Kriging models. The
black dot represents the optimal design.
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We then validate the results of the optimisation by performing a comparison with the fine
mesh. To this end, we select three relevant configurations:

• Ns = 26: best trade-off between C̄l and Čl,

• Ns = 29: optimal design,

• Ns = 39: best value of Čl.

We report in table 4.4 the results of the validation test. Some small variations of the aerody-
namic coefficients are registered between the two grids. However, for all the selected design
points the results obtained with the fine mesh are in line with the predictions of the optimi-
sation loop and, more importantly, the flow physics is not altered when the mesh is refined.

Optimised mesh Fine mesh
Ns L A f C̄d C̄l Čl C̄P C̄d C̄l Čl C̄P

26 0.200 0.031 0.662 0.060 0.742 0.313 0.056 0.060 0.741 0.324 0.054
29 0.231 0.039 0.720 0.056 0.798 0.002 0.178 0.057 0.801 0.020 0.174
39 0.200 0.026 0.518 0.066 0.642 0.341 0.014 0.067 0.633 0.342 0.014

Table 4.4: Second run, comparison with fine mesh

Figure 4.22: Second run, comparison with rigid airfoil

In Fig. 4.22 we illustrate the evolution of the lift coefficient for the selected configurations
in comparison with the rigid airfoil. The lock-in phenomenon occurs for the three design
points, therefore the lift coefficient oscillates at the same frequency of the morphing actuation.
We can observe that the optimal design induces the strongest oscillations of lift, even though
the constraint is respected. If we instead consider the configuration 39, characterised by
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the best value of Čl found by the EGO procedure, the value of lift of the morphing airfoil is
always greater than the lift of the rigid airfoil. The best trade-off is found for configuration 26.
Moreover, we can observe in table 4.4 that the average power required to actuate the morphing
decreases for higher Čl. The flow fields of the three selected design points are illustrated in
Fig. 4.23. For the sake of comparison, all the snapshots are taken at the peak of the morphing
movement and the same colour scale is employed. The wake is formed by the sequence of
vortex pairs shed during each morphing oscillation. We can remark that configurations with
higher values of Čl appear to be correlated with stronger disparities between the intensities of
the two paired vortices. Among the three configuration, the optimal design is characterised
by the most intense density fluctuations.

(a) Configuration 26, density (b) Configuration 26, velocity

(c) Configuration 29, density (d) Configuration 29, velocity

(e) Configuration 39, density (f) Configuration 29, velocity

Figure 4.23: Second run, solution fields
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To summarise, the optimisation process is able to identify the region of interest where the
C̄l is improved and determine an optimal design. Moreover, thanks to the dense exploration
pattern of the EGO algorithm, some sub-optimal configurations with desirable properties are
found. In particular, it is possible to enhance both C̄l and Čl with a careful choice of the
morphing parameters, as shown by configuration 26 and 39. However, we underline that
the best found value of Čl may not be optimal, since the cost function only considers C̄l.
Therefore, we recur to multi-objective optimisation to further explore the design space.

4.7 Multi-objective optimisation

Using the data collected in the second single-objective study as a Design of Experiment, we
perform 40 more iterations considering a multi-objective criterion. The first objective is still
the maximisation of the average lift coefficient. In order to further control the time evolution
of the lift, we maximise Čl as well. In contrast, high values of C̄l appears to be characterised
by elevated power consumptions of the morphing actuation. It is thus interesting to minimise
the average power coefficient C̄P to find the most energetically efficient morphing design.
Therefore, we adopt the following set of cost functions:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
g1(L,A, f) = −C̄l,

g2(L,A, f) = −Čl,

g3(L,A, f) = C̄P .

(4.38)

Figure 4.24: Multi-objective optimisation, scatter plots of the objective functions

We report in Fig. 4.24 the scatter plots of the three objective functions for all the morphing
configurations investigated by the multi-objective EGO algorithm, together with the points
from the DOE. Comparing the distribution of the evaluations in the design space with Fig.
4.20, we can observe the influence of the additional objectives on the optimisation iterations.
A cluster of points is added on the L = 0.2 plane because the second cost function improves
for low values of the morphing length. Similarly, many evaluations with low amplitude and
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frequency are present since, intuitively, C̄P is minimal for such configurations. As a result,
no region of the design domain is left totally unexplored and a more complete overview of the
physical behaviour of the system is given. We can also observe that the most energetically
efficient design is found when the morphing frequency matches the natural vortex shedding
frequency.

Figure 4.25: Visualisation of the Pareto front

Figure 4.26: Bi-objective scatter plots

The distribution of the evaluations in the objective space is shown in Fig. 4.25. The Pareto
set is coloured in violet, whereas the dominated points are represented in yellow. Among the 80
observations, 32 are on the Pareto front. Interestingly, all of the three configurations analysed
in Table 4.4 are Pareto optimal. For a better interpretation of the shape of the Pareto front,
we compare each pair of objectives in Fig. 4.26. We can clearly observe that two extreme
configurations stand out from the rest, with high average lift, but very poor performance in
terms of the other two objectives. In the design space, the two said observations are close
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to the upper amplitude, length and frequency bound, meaning that the fluid receives a large
amount of energy from the deformation of the airfoil, causing large oscillations of lift. We
can also observe that the infeasible region constitutes a large portion of the objective space:
configurations with low g2 and high g3 are not observed and the minimums of g2 and g3 almost
coincide. It is thus possible to prioritize objectives g1 and g2 (or g1 and g3) to find an initial
compromise and only then use the remaining objective to further refine the design.

Optimised mesh Fine mesh
Ns L A f C̄l Čl C̄P C̄l Čl C̄P

1 0.2134 0.0111 0.4013 0.3591 0.2754 0.00077 0.3539 0.2701 0.00078
11 0.5472 0.0379 0.8108 0.8469 -1.601 0.7950 0.8878 -1.535 0.7844
58 0.2000 0.0219 0.5850 0.6235 0.3710 0.0139 0.6117 0.3672 0.0136
76 0.2000 0.0178 0.4721 0.5057 0.3413 0.0035 0.4947 0.3351 0.0034

Table 4.5: Multi-objective optimisation, comparison with fine mesh

Figure 4.27: Multi-objective optimisation, comparison with rigid airfoil

We then select the four following points from the Pareto set:

• Ns = 1: best C̄P for which C̄l is improved w.r.t. the rigid airfoil;

• Ns = 11: best C̄l, worst Čl and C̄P ;

• Ns = 58: best Čl;

• Ns = 76: balanced trade-off between the three objectives.

The flow computations for the considered observations are validated using the fine mesh. We
can remark in table 4.5 that no significant discrepancies are found when the mesh is refined. In
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Fig. 4.27 we present the comparison between the instantaneous lift coefficients of evaluation
1, 58, 76 and the rigid airfoil. We can see that both Čl and C̄l are enhanced with respect
to the rigid airfoil for all the analysed morphing designs. The smallest improvement is found
for NS = 1, which, on the other hand, is extremely efficient in terms of power consumption.
Configuration 76 performs well in all the three objectives, requiring 4 times less actuation
power than NS = 58, for only 1.25 times less average lift.

(a) Configuration 1, density (b) Configuration 1, velocity

(c) Configuration 58, density (d) Configuration 58, velocity

(e) Configuration 76, density (f) Configuration 76, velocity

Figure 4.28: Multi-objective optimisation, solution fields

Finally, we illustrate the flow fields of the three analysed configurations in Fig. 4.28. It is
clearly possible to observe the effect of the morphing frequency on the spacing of the vortex
pairs forming the wake. Moreover, a significantly larger recirculation region is found for

103



CHAPTER 4. AERODYNAMIC OPTIMISATION OF A MORPHING AIRFOIL

NS = 1, probably due to the smaller amplitude and frequency. Once more, the configuration
with the strongest oscillations of lift (NS = 58) is associated with larger density and velocity
gradients.

4.8 Conclusion

In this chapter we demonstrated the capabilities of the implemented ALE methodology in a
flow control application and we exploited the Isogeometric framework to conceive an efficient,
reliable and fully automated aerodynamic optimisation chain. To this end, the flow solver has
been coupled with an EGO library, which allows to easily treat unconstrained, constrained
and multi-objective optimisation problems.

Using the mesh deformation paradigm we proposed in chapter 2, we developed a high-
order morphing model, which has been employed to control the characteristics of the laminar
boundary layer separation around the NACA 631−412 airfoil. Then, a rigorous mesh sensitiv-
ity study has been performed to choose the suitable mesh for the aerodynamic optimisation.
The selected grid is the result of a compromise between accuracy, robustness and computa-
tional cost.

We then proceeded to perform a first single-objective optimisation run, with the aim of
improving the average lift of the morphing airfoil without increasing the drag with respect
to the rigid configuration. We found that the optimal solution features large lift oscillations
and is located in a region of unstable flow phenomena. In order to avoid such undesirable
characteristics, we reduced the design space and we imposed a positivity constraint on the
instantaneous lift and we carried out another single-objective optimisation run. Thanks to
such adjustments, we were able to find a more robust optimal design. To prove the reliability
of the optimisation process, some sample configurations were validated using a finer mesh.
We observed a significant improvement of the aerodynamic performance with respect to the
rigid airfoil and we were able to find some sub-optimal designs with interesting properties.

Lastly, we employed multi-objective optimisation to better explore the design possibilities.
In particular, we added an energy minimisation criterion to find the most efficient morphing
configuration. We were able to estimate the Pareto front and some trade-off solutions were
found and analysed. Overall, the developed methodology proved to be an effective tool for
complex aerodynamic design problems.

104



Conclusion

In this dissertation, we investigated the use of IGA in the context of compressible flows
with time-dependent domains. The proposed approach relies on a DG scheme with a CAD-
consistent rational Bézier representation. In order to take into account the movement of the
computational domain, an ALE formulation with high-order mesh deformations was devel-
oped. In particular, the proposed grid velocity algorithm exploits the hierarchical properties
of NURBS to achieve smooth curvilinear mesh movements, which can be seamlessly coupled
with dynamic adaptive refinement. The implemented ALE methodology has been verified
and tested on a selection of benchmark problems in compressible fluid mechanics and proved
to be both accurate and robust. The results presented in the present work are limited to
bi-dimensional problems. However, the extension of the formulation to tri-dimensional appli-
cation is currently in development.

As an alternative to the mesh deformation strategy, we developed a sliding grid algorithm
that allows to simulate flows with rotating components. Thanks to the rational representation
and its geometry manipulation algorithms, a fully conservative high-order discretisation of
the sliding interface can be obtained. We showed on an analytical problem that the error
introduced by the computation of the numerical fluxes on the sliding interface is negligible.
As a consequence, the sliding mesh and the deformation-based ALE solvers are equivalent in
terms of accuracy, as proved by the pitching ellipse test case. Finally, a vertical axis wind
turbine geometry was considered to present an application with a more complex topology.

Lastly, we demonstrated the potential of IGA for aerodynamic design with an optimisa-
tion study of a flow control problem. In particular, we employed a trailing edge morphing
actuation to control the laminar boundary layer separation on a reference airfoil. To this
end, the previously developed ALE formulation has been coupled with a Bayesian optimi-
sation algorithm. In this context, the Isogeometric framework allows the implementation of
a fully automated design chain, whose building blocks share the same representation of the
geometry. We employed both single-objective and multi-objective criteria to find the most
efficient morphing configuration and we were able to significantly improve the aerodynamic
performance with respect to the baseline rigid airfoil.

Starting from the results illustrated in the present manuscript, several research axes can
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be explored. The first possibility is the extension of the proposed methodology to multidis-
ciplinary problems, such as aeroelasticity. Indeed, the tight geometry-simulation coupling
provided by the Isogeometric framework would allow to easily model the interaction between
the structure and fluid. To this end, the ALE-DG flow solver could be combined with a
NURBS-based CG scheme for the equations of elasticity. Since one of the limitations of the
proposed formulation is the use of explicit time stepping, another perspective is represented
by the implementation of an efficient time integration technique. Even though high-order
explicit RK were employed, the numerical stability condition imposes very small time steps,
especially for high basis degree. In order to be able to simulate turbulent flow problems,
implicit time integration is probably required, since the size of boundary layer mesh would
lead to prohibitively small time steps. Furthermore, reducing the number of time iterations
would have a huge impact in the context of ALE simulations, since the mesh metrics have
to be updated for each time iteration. Lastly, the ongoing extension of the numerical scheme
to three-dimensional demands the development of a general algorithm to automatically build
volume meshes starting from NURBS surfaces. So far, IGA has suffered from the lack of a
general methodology to build computational domains for complex topologies. It is thus criti-
cal to further enhance the available geometry manipulation tools. An interesting perspective
arises from the recent development of triangular Bézier grids (13), thanks to which IGA can
be combined with unstructured grid generation techniques. Therefore, it would be possible
to generate hybrid grids that would be extremely efficient for CFD applications.
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