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Abstract

In signal processing, the theory behind compressive sensing presented a successful sampling
technique in various fields. Using a small number of measurements for the acquisition improves
the efficiency of storage, memory, and transmission of signals. Since numerous signals in nature
can be represented as sparse in some representation domain, the technique showed massive
potential in many areas such as medicine, telecommunications, radar, and sonar systems.
Although very successful, compressive sensing is not yet fully developed and implemented in
underwater acoustics. Acoustic signals transmitted through water introduce many complex
characteristics making their analysis challenging and difficult. The process of transmitting and
receiving signals through shallow water environment is a representative example of a signal
transmission through dispersive channel. The non-stationary nature of such signals leads to
the time-frequency signal analysis as well developed theory suitable for non-stationary signal
processing. Within the compressive sensing framework, it is important to emphasize that
the non-stationary signals are only approximately sparse or nonsparse in the corresponding
transformation domain. Since the compressive sensing reconstruction methods intrinsically
relies on the sparsity, the reconstruction of approximately sparse or non-sparse signals will
produce an error that should be considered in the calculations and applications. The main
contributions of this thesis are in extending and adjusting the compressive sensing methods
and results to the non-stationary signals, with application to the acoustic and sonar signals.
This can include dispersive media propagation. In particular, the exact expected error of
the reconstruction of non-stationary signals in time-frequency analysis using the compressive
sensing methods is derived. The decomposition and reconstruction of signals in sonar systems
and dispersive underwater channels using time-frequency approaches are presented. Various
sequences used in the sonar imaging are considered from the point of the compressive sensing
based reconstruction, including a reduced set of measurements or highly corrupted samples and
real-world scenario setup. All of the presented theoretical results are followed by numerous
examples. Application of the proposed methods and obtained theoretical results to image
reconstruction and denoising problems is also presented as an example that developed tools
and theoretical results are important not only for underwater acoustic systems. The algorithms
used to achieve the main results in the thesis are given in the Appendix.
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Introduction

In recent years, compressive sensing had an enormous breakthrough in the signal processing
community as a successful sampling and reconstruction method for signals in various areas.
The idea of using a small number of randomly positioned observations for signal acquisition
improves efficiency od signal processing systems in terms of storage, memory, and transmis-
sion. Accurate recovery of signals with a reduced set of measurements is the primary goal of
compressive sensing and sparse signal processing. Defining the domain of sparsity of a signal
is the first step to be considered for application of compressive sensing to specific signal. Each
of the signals and their sparsity domains has characteristics that are important for defining
the method that should be used for their proper recovery. Many signals can be represented
as sparse in some representation domain, resulting in compressive sensing showing a huge
potential originally in medicine, and then later in many other fields, such as communications,
meteorology, remote sensing, image processing, and radar and sonar systems.

Although very successful, the idea of compressive sensing is still challenging for research
and developing in many application areas, including the underwater acoustics field. Acoustic
signals transmission through the water introduce many complex characteristics that are very
difficult for analysis. Most of the problems occur in the process of transmitting and receiving
signals in water due to its dispersive media properties. This is especially exhibited in shallow
water environments, as a representative example of dispersive channels. The dispersivity
produces multiple nonlinear components, changing the very nature of the original transmitted
signals. The non-stationary nature of such signal components makes them suitable for the
analysis using time-frequency tools.

In the compressive sensing sense, non-stationary signals are only approximately sparse or
nonsparse in the most of the common transformation domains. Such signals, when recon-
structed under the sparsity assumption, will produce errors in the reconstruction procedure.
This error highly depends on the sampling method and the sparsity domain of the analyzed
signal. The exact error is of great importance for further improvement of the reconstruction
performance in prospective. Except for the dispersive systems, time-varying nonsparse signals
can also be found in the processing of many other areas, such as audio signals, images, radar
systems, and wideband sonar images, where the processing under the sparsity assumption
requires appropriate analysis of the reconstruction results.

The problem of approximative sparsity is intrinsically built in the area of compressive
sensing based reconstruction of targets in sonar images. In real-world cases, the sonar signals
are positioned off-grid in the transformation domain, which makes them nonsparse in their
nature. The problem of finding a sequence suitable for the transmission, as well as developing
the proper theory behind the detection and reconstruction of targets, is a topic of great
importance for theory and practice in sonar systems. Considering that only a few target points
(or few targets) commonly are of the interest in the sonar images, the idea of compressive
sensing can successfully be applied in their reconstruction. The compressive sensing methods
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2 Introduction

can be suited and used for effective localization of the underwater targets in sonar systems.

The dispersive characteristics of the underwater environment is of crucial importance in
the underwater acoustics and signal processing. A typical example of a dispersive media
is the shallow water environment since most activities are performed in waters with deep
less than 200 meters. From the signal processing view, a dispersive channel introduces many
complex nonstationary components during the signal transmission. It is essential to recognize,
decompose, and reconstruct such components (modes) truthfully, for a better understanding
of the environment in which the signal is transmitted. Although challenging, the theory of
compressive sensing with appropriate transformation domain, adjusted to the complex nature
of the signal modes, can provide an effective reconstruction of the strongest modes.

Three key problems which are considered in this thesis are:

1. exact error calculation in the reconstruction procedure in compressive sensing (only error
bound were given in the existing literature);

2. reconstruction of sonar images within the compressive sensing framework using various
sequences for transmitted signal (so far only basic sequence forms were used in the
literature, applied on the real data);

3. the problem of decomposition of signals in dispersive channels (with a robust method
for such an requirement).

One of the aims of this thesis is to fulfill the gaps of using the compressive sensing tech-
niques in underwater acoustic and sonar systems with appropriate and exact reconstruction
performance analysis, which can also serve as a basis for a further direction in implementation
of these techniques in other signal processing fields.

The contribution of this thesis can be divided into three major parts:

• Analysis of nonsparsity – Many signals, especially non-stationary and signals arriving
from a dispersive environment are not strictly sparse in their corresponding transforma-
tion domains. They should be considered as approximately sparse or nonsparse signals,
meaning that all components cannot be exactly reconstructed with compressive sensing
methods. The expected reconstruction error caused by the nonreconstructed compo-
nents is derived and exactly calculated. This helps further investigation on the quality
of the reconstruction of various signals. The problem of quantization (digitization) of
measurements is considered within the context of additive noise and signal nonsparsity.

• Reconstruction of sonar signals – The wideband sonar images can be reconstructed
using different sequence forms. An extensive analysis of different sequence forms within
the compressive sensing reconstruction framework is done with appropriate comparison
and directions how to achieve an improved recovery of sonar images. The time-varying
cross-range, as a challenging topic that causes sonar image smearing, was additionally
analyzed, as a complex parameter in the analysis of such signals. Gathering of real data
and their reconstruction helped further justification of the presented analysis.
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• Sparse decomposition of signals in dispersive channels – A novel approach to the
decomposition of signals received in the dispersive channel is introduced. The method
is based on the time-frequency representations derived from polynomial extension of
Fourier transform. High-resolution and model-based techniques are considered for the
analysis of received signals in such channels.

The methods presented for sonar imaging can be applied to general problems in image
processing. A method for denoising and reconstruction of sparse images based on a gradient-
descent algorithm is developed as an example. Unlike common image reconstruction methods,
the advantage of this method is that the uncorrupted pixels remain unchanged in the recon-
struction process. The noisy pixels are blindly detected and reconstructed using compressive
sensing approach by assuming (and not explicitly imposing) the image sparsity.

The thesis is organized as follows. The background theory on signal processing and the
compressive sensing theory are presented in Chapter 2. The analysis of nonsparsity, together
is presented in Chapter 3. Chapter 4 presents the analysis of different sequences and their
application in compressive sensing, for a successful reconstruction of sonar signals. The back-
ground of shallow water environment, together with the techniques for sparse decomposition
of the received signals in dispersive channels is analyzed in Chapter 5. Additional work on the
topic of image denoising using compressive sensing techniques is introduced in the Chapter 6.
Chapter 7 concludes the thesis, with the brief description of presented results and discussion
on future work.
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Signal processing, as such, was introduced in the 1960s, and became one of the most
important tools for the analysis of signals and corresponding information. Although introduced
in the 20th century, the basics on which the analysis lies are known mathematical formulations
for many centuries earlier. Its use is mostly related to the introduction of computers we know
today (such as the Fourier series and transform). However, due to their rapid development,
the digitalization of the world is inevitable. The data which should be stored became massive.
That is why the techniques developed earlier are helpful, yet not enough. In recent years, it
has be seen that numerous signals are of sparse nature in a specific representation domain.
New technologies have been introduced, based on compressing those signals and trying to keep
the original information in their full meaning. These technologies can be summarized under
the theory of compressive sensing, which is based on sparse signal processing.

In this Chapter the fundamental theory and notations used throughout this thesis are
presented. The basics of signals and their representations in a transformation domain are
introduced with the method of time-varying signals. It also introduces the background of
compressive sensing and sparse signal processing. A basic yet effective reconstruction algo-
rithm, which will be used through the thesis, is explained. Finally, the conditions necessary
for a successful and unique reconstruction of sparse signals are presented.

5
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1.1 Signal representation

Consider a time-domain signal x(t) of duration Ts. Its samples x(n∆t) are within the sampling
interval ∆t = Ts/N . The sampling interval satisfies the traditional sampling theorem. The
traditional sampling theorem was introduced in few occasions [1–4], and states that a signal
can be fully recovered if its sampling frequency fs is at least twice as high as the maximum
signal frequency fmax, i.e.

fs > 2fmax. (1.1)

Any discrete one-dimensional signal x(n) = x(n∆t) of length N , n = 0, 1, . . . , N − 1, can be
written in the vector form as

x = [x(0), x(1), . . . , x(N − 1)]T , (1.2)

where T is the transpose operation. Examples of one-dimensional signals can be found in a
large number of everyday applications, including audio, speech, sonar, radar, various envi-
ronment sensing and biomedical signals (such as the electrocardiogram - ECG and electroen-
cephalogram - EEG).

The sampling theory can be extended to two-dimensional signals. Examples of two-
dimensional signals are photos, radar/sonar images, biomedical images (such as magnetic
resonance imaging - MRI), and many others. A two-dimensional signal of size N × M is
represented in a matrix form as

x =


x(0, 0) x(0, 1) · · · x(0,M − 1)

x(1, 0) x(1, 1) · · · x(1,M − 1)
...

...
. . .

...
x(N − 1, 0) x(M − 1, 1) · · · x(N − 1,M − 1)

 . (1.3)

In the two-dimensional case, the sampling frequency has to satisfy the sampling relation for
each considered sampling direction.

In the theory, signals are commonly analyzed and processed in a certain representation
(transformation) domain. Depending on its nature, the transform is suited for a specific type
of the signal. The most common transformation domains are the discrete Fourier transform
(DFT), discrete wavelet transform (DWT), and discrete cosine transform (DCT). For the case
of radar and sonar signals, the representation domains are related to specific sequences that
will be explained along with this application field.

In general, the transformation of a one-dimensional signal from one domain to another one
can be presented using the matrix relations

X = Φx (1.4)

where Φ is the transformation matrix and X is the signal transform vector

X = [X(0), X(1), . . . , X(N − 1)]T , (1.5)
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considering the length to be N . The inverse transform provides the relation between the
transformation and the signal as

x = ΨX = Φ−1X (1.6)

with the common orthonormal transformation domains relation Φ−1 = ΦH , where H is the
complex-conjugate and transpose (Hermitian) matrix. In general, the full transformation and
inverse transformation matrices are given by

Φ =


φ0(0) φ1(0) · · · φN−1(0)

φ0(1) φ1(1) · · · φN−1(1)
...

...
. . .

...
φ0(N − 1) φ1(N − 1) · · · ψN−1(N − 1)

 , (1.7)

and

Ψ =


ψ0(0) ψ1(0) · · · ψN−1(0)

ψ0(1) ψ1(1) · · · ψN−1(1)
...

...
. . .

...
ψ0(N − 1) ψ1(N − 1) · · · ψN−1(N − 1)

 . (1.8)

These matrices depend on the type of the transformation used for a particular signal.

1.1.1 Discrete Fourier transform (DFT)

The most frequently used transformation domain in the field of signal processing is the dis-
crete Fourier transform, named after the mathematician Joseph Fourier (1768–1830). The
basis functions are harmonic signals, allowing analysis of signals in the corresponding spectral
domain. The DFT form, for a discrete-time signal x(n), is given by

X(k) =
N−1∑
n=0

x(n)φk(n) =
N−1∑
n=0

x(n)e−j2πnk/N . (1.9)

Its inverse is

x(n) =
1

N

N−1∑
k=0

X(k)ψn(k) =
1

N

N−1∑
k=0

X(k)ej2πnk/N . (1.10)

Note that the relation between the DFT and the inverse DFT coefficients is given by ψn(k) =

φ∗k(n)/N or Ψ = ΦH/N .

The two-dimensional extension of the DFT is defined by

X(k, l) =
N−1∑
n=0

M−1∑
m=0

x(n,m)e−j2πnk/Ne−j2πml/M (1.11)

with the corresponding inverse transform

x(n,m) =
1

N

1

M

N−1∑
k=0

M−1∑
l=0

X(k, l)ej2πnk/Nej2πml/M . (1.12)
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The transformation coefficients e−j2πnk/Ne−j2πml/M are four-dimensional, since they de-
pend on four indices (n,m, k, l). In order to use the standard derivations and optimization
algorithms, as well as for notation simplification, the two-dimensional signals and transfor-
mation matrices are commonly rearranged into column matrices by layering its columns after
each other in a way that

x(n+N(m− 1)) = x(n,m), (1.13)

X(k +M(l − 1)) = X(k, l), (1.14)

where n = 0, 1, . . . , N − 1, m = 0, 1, . . . ,M − 1, k = 0, 1, . . . , N − 1, and l = 0, 1, . . . ,M − 1.
Then, the four-dimensional transformation forms of coefficients are rewritten as large two-
dimensional matrices.

1.1.2 Time-varying signals

The signals whose spectral content change happens through time, are considered as time-
varying or non-stationary signals [5–7]. Audio signals or signals transmitted through a dis-
persive channel are representative examples of time-varying signals. For their analysis, more
complex transforms than the standard DFT must be used. These transforms should adapt for
signal changes in both time and frequency domain, simultaneously.

Consider a time-varying signal x(n) with C components,

x(n) =

C∑
c=1

xc(n), (1.15)

where xc(n), c = 1, 2, . . . , C, are the non-stationary signals. Commonly, time-varying signals
are localized in time by using a window function defined by w(nw). The basic linear time-
frequency representation is a direct extension of the DFT of a windowed signal, and it is
referred to as the short-time Fourier transform (STFT). It is calculated as the standard DFT
applied to the windowed signal around the instant n. That is, the signal x(n+ nw) at n (and
around it) is multiplied by a window w(nw). Its DFT is then found as

SSTFT (n, k) = DFT{x(n+ nw)w(nw)} =

Nw/2−1∑
nw=−Nw/2

x(n+ nw)w(nw)e−j2πnwk/Nw (1.16)

positioned at an instant n, a frequency k, windowed by w(nw) of length Nw. The window
function can be a rectangular, Hamming, Hanning, or any other window introduced in the
literature [8]. The indices nw that vary from −Nw/2 to Nw/2−1 will be used. Similar results
would be obtained when the index values vary from 0 to Nw−1 (due to the DFT periodicity).
If the STFT, for a given instant n, is arranged into a vector form, the coefficients can be
denoted by SSTFT (n).

The STFT represents a simple and robust tool for time-varying signal analysis. As men-
tioned, the main difference from the standard DFT is in introducing the time localization
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window. If this window is narrow, then more localized properties in the time domain, around
the considered instant n, are obtained. However, narrow windows have poor frequency reso-
lution, meaning that a compromise should be made. Many efforts have be done in literature
to find the optimal window width for a given signal which would produce a good localization
in the time domain, with a sufficiently high frequency resolution. For more complex signals,
with fast changes of the spectral content, a suitable window can be found using, for example,
the approach presented in [9]. In order to elevate the resolution problem more sophisticated
quadratic representations are introduced in time-frequency analysis. The goal of those repre-
sentations is to track spectral changes more accurately, preferably without using a localization
window.

The most prominent representation of quadratic time-frequency representations is the
Wigner distribution whose discrete-time form is calculated as

S(n, k) = 2

N/2∑
nw=−N/2

x(n+ nw)x∗(n− nw)e−j4πnwk/N . (1.17)

It can track linear changes in the frequency of signal components without any window. In
order to limit the computation interval, a window is introduced in this distribution as well.
This distribution is then defined as the pseudo Wigner distribution (PWD) of the form

SPWD(n, k) = 2

N/2∑
nw=−N/2

w(nw/2)w(−nw/2)x(n+ nw)x∗(n− nw)e−j4πnwk/N . (1.18)

Although a window is present (as in the case of STFT), its only purpose in PWD is to limit the
calculation interval. This means that the window is not crucial for the spectral localization of
the presentation. For such reasons, the PWD is used for signals with fast spectral variations.
However, the PWD is a quadratic distribution since it is calculated as the DFT of the product
x(n+nw/2)x∗(n−nw/2). For a multicomponent signal, we will have the product of different
components xc(n+nw/2)x∗s(n−nw/2) for c 6= s. The DFT of these products will appear in the
time-frequency representation as new components (cross-terms) and can sometimes overlap
with desirable auto-terms.

A simple way to keep the good properties of the PWD, while avoiding or reducing cross-
terms can be achieved by using the S-method (SM)

SSM (n, k) =

LSM∑
p=−LSM

SSTFT (n, k + p)S∗STFT (n, k − p) (1.19)

where 2LSM+1 is the width of the window in the spectral domain. Two of the most widely used
representations (STFT and PWD) can be obtained from the S-method as its special cases [9].
That is, when LSM = 0, the squared modulus of the standard STFT (i.e. spectrogram), is

Sspectrogram(n, k) = |SSTFT (n, k)|2, (1.20)

while for 2LSM + 1 = Nw the standard PWD is obtained. The optimal representation is
obtained by adding the terms for p = 0,±1,±2, . . . which improve the representation from the
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STFT toward the PWD, until the cross-terms start to appear [9]. This effect can be detected
by using measures of concentration of time-frequency representations. One such measure
was based on norm-one and was introduced for measuring and optimizing time-frequency
representation finding the minimum of

||SSTFT (n, k)||1 =

N−1∑
k=0

|SSTFT (n, k)| (1.21)

with respect to the window length. In this case

minNw,LSM ||SSM (n, k)||1 (1.22)

produces optimal representation. It is interesting to note that this kind of minimization is
used in compressive sensing for sparse signal reconstruction [10–13]. This will be reviewed in
the next section.

1.2 Compressive sensing and sparse signal processing

Many signals in the nature exhibit sparsity property in a transformation domain. This fact
brought the idea of developing the compressive sensing technique, which was introduced in
data processing as such by Donoho, Candes, and Baraniuk [14–18].

A signal wtih small number of nonzero component, in comparison to the total length of
the signal, in a transformation domain is described as sparse. It is defined by Definition 1.1.

Definition 1.1
A signal x(n) of length N is K-sparse in a transformation domain if it consists of K nonzero
components in the corresponding domain, K � N , at positions K ∈ {k1, k2, . . . , kK}, and
zero-valued components everywhere else,

X(k) =

{
Ak 6= 0, for k ∈ K
0, otherwise

(1.23)

where Ak are the amplitudes of the components at positions k ∈ K.

1.2.1 Measurements of sparse signals

Unlike the traditional sampling theorem, one of the main advantages of sparse signal process-
ing is that such signals can be recovered using a reduced number of NA observations. The
measurements are defined in Definition 1.2.

Definition 1.2
A measurement of sparse coefficients X(k), k = 0, 1, . . . , N − 1, is obtained as their linear
combination

y(i) =
N−1∑
k=0

ak(i)X(k), (1.24)
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Figure 1.1: The difference betweeen traditoinal sampling theorem and compressive sensing:
traditional Shannon-Nyquist sampling (top); compressive sensing sampling (bottom).

where ak(i), k = 0, 1, . . . , N − 1, are the weighting coefficients for the i-th measurement,
i = 0, 1, . . . , NA − 1.

The aim of recovering sparse signals with a reduced set of sam-
ples/measurements/observations had a wide range of interest in the recent literature [19–23].
The theory stating this fact is known as compressive sensing (CS), developed under the
framework of sparse signal processing (SSP). Notice that we can relate the general form of
measurements, defined by (1.24), with signal samples defined by (1.10). Comparing these two
relations, we can state that a signal sample, at one instant ni, can be seen as the measurement
of X(k) with

y(i) = x(ni) =

N−1∑
k=0

e−j2πnik/NX(k), (1.25)

where the weighting coefficients are the DFT transform coefficients, i.e.

ak(i) = e−j2πnik/N . (1.26)

A reduced set of measurements, within this context, can be considered as the reduced
number of signal samples. The difference between the sampling by the traditional sampling
theorem and by compressive sensing is shown in Fig. 1.1, where only NA = 32 samples are
used for the analysis, instead of the full set of measurements N = 128.

The main objective of CS and SSP is to desirably reduce the number of acquisition sam-
ples/observations/measurements used for the signal sensing, transmission, and storying. Be-
sides that, the small number of available measurements or signal samples can be the conse-
quence of other physical restrictions in the considered system. It could also be a result of
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unavailable samples due to high corruption of some signal samples or parts of the signal. All
of these scenarios will be considered in the thesis, since the formal mathematical framework
is similar.

1.2.2 Measurement matrix

The measurement matrix consists of the coefficients used to form measurements of a sparse
signal with elements X(k). In the case that the signal samples are used as the measurements,
the measurement matrix is defined based on the transformation matrix for the considered
domain of the signal sparsity.

The NA available samples y(i) at the positions defined by the set

NA = {n1, n2, . . . , nNA},

can be written as

y = [y(0), y(1), . . . , y(NA − 1)]T = [x(n0), x(n1), . . . , x(nNA−1)]T . (1.27)

The measurements, which are the linear combinations of the inverse transform coefficients,
are presented in a matrix form as

y = AX, (1.28)

where A is a measurement matrix of size NA×N obtained by keeping the rows of the inverse
transformation matrix Ψ, which correspond to the instants ni, i = 0, 1, . . . , NA − 1, of the
available samples/measurements

A =


ψ0(n0) ψ1(n0) · · · ψN−1(n0)

ψ0(n1) ψ1(n1) · · · ψN−1(n1)
...

...
. . .

...
ψ0(nNA−1) ψ1(nNA−1) · · · ψN−1(nNA−1)

 . (1.29)

Using the notation ak(i) = ψk(ni) we can write a more general form of the measurement
matrix as

A =


a0(0) a1(0) · · · aN−1(0)

a0(1) a1(1) · · · aN−1(1)
...

...
. . .

...
a0(NA − 1) a1(NA − 1) · · · aN−1(NA − 1)

 . (1.30)

Depending on the particular application, several measurement matrices other than the
partial DFT, are frequently used in compressive sensing. An example of a widely used mea-
surement matrix is the Gaussian measurement matrix, where the weighting coefficients are
the Gaussian distributed random numbers

ak(i) ∼ N (0, 1/NA), (1.31)
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with zero mean and variance 1/NA. The weighting coefficients can also be uniformly dis-
tributed random numbers, or random numbers assuming values +1 or −1 (i.e. Bernoulli
measurement matrix).

Note that randomness is a desirable property of the measurement matrices. Considering
the DFT, the randomness can be increased by sampling the signal at an arbitrary instant ti
instead of the regularly defined Nyquist samples at i∆t. This case will be also examined.

1.2.3 Problem formulation

In the mathematical sense, the objective of the CS based approach is to reconstruct the N
unknown elements of a sparse signal using only the NA < N available samples y. Reduction
in the number of available measurements will result in a system of NA equations, whose
matrix form is AX = y. Since there are N > NA unknown variables in X, the system is
under-determined and cannot be solved uniquely, without additional constraints.

The primary and most crucial constraint in CS is that the signal is sparse. If this constraint
is satisfied, the solution is obtained by minimizing the sparsity of the signal X, given the
measurement equations. Firstly, in order to minimize the sparsity, the sparsity measure must
be defined. The most straightforward sparsity measure is the L0-norm, which counts the
nonzero values in the transformation domain. The L0-norm of X with K nonzero elements is

‖X‖0 = K. (1.32)

The problem formulation, using the L0-norm, is then

min ‖X‖0 subject to y = AX. (1.33)

This is a direct and basic way to minimize sparsity. However, it is an NP-hard (NP – non-
deterministic polynomial-time) combinatorial problem. Also, it is sensitive to noise and not
feasible for computational purposes, having

(
N
K

)
possible combinations for a viable solution.

This is why more practical cases, such as the closest convex cost function, the L1-norm, are
used

min ‖X‖1 subject to y = AX. (1.34)

In theory, it has been proved that the minimization of the L1-norm will have the same solu-
tion as the minimization of the L0-norm following particular conditions [24]. The L1-norm
minimization allows the application of linear programming methods for convex function min-
imization.

1.3 Problem solutions

The CS theory has produced a vast number of methods to find the unique solution to the previ-
ously stated problem. These can be divided into three broad groups of algorithms minimizing
the signal sparsity:
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• L0-based reconstruction algorithms, solving Eq. (1.33), such as

– Orthogonal matching pursuit (OMP) [25–27],

– Compressive sampling matching pursuit (CoSaMP) [28],

• L1-based reconstruction algorithms, solving Eq. (1.34), such as

– LASSO minimization [29–32],

– Gradient-based reconstruction [33,34]

– Total variations [35–37],

– Iterative hard thresholding (IHT) [38–40].

• Bayesian-based reconstruction [41,42].

The summary of some of these algorithms can be found in Appendix 1. In the next
subsection, the OMP and its iterative extension will be further detailed.

1.3.1 Reconstruction algorithm

In all reconstruction methods, the initial estimate plays a crucial role. It is not only a starting
point for all of them, but contains information about the solution existence as well. The initial
estimation gives a good insight of the reconstruction performance which could be expected.

Initial estimate

The available samples (measurements) are used to estimate the initial values of the sparse
coefficients X(k), k = 0, 1, 2, . . . , N . The values of the initial estimate will be denoted by
X0(k), k = 0, 1, 2, . . . , N , or in a vector form as X0. The initial estimate can be considered
as a back-projection of the measurements to the matrix A,

X0 = AHy. (1.35)

The elements of this initial estimate can be written as

X0(k) =

NA−1∑
i=0

ak(i)y(i). (1.36)

From Eq. (1.35), using y = AX, the relation between the initial estimate with the true
coefficients (the actual solution of our problem) is

X0 = AHAX. (1.37)

Note that if AHA is an identity matrix, i.e., AHA = I, then the initial estimate would be
equal to the correct coefficients X, resulting in the solution of our problem. However, this is
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impossible to achieve when a reduced set of measurements is available (when the measurement
matrix is of size NA×N). The off-diagonal elements in the matrix AHA cannot be zero. The
maximal value of these elements, denoted by µ (discussed later in Section 1.3.2.), satisfies the
Welch upper bound [43,44], meaning that

µ ≥

√
N −NA

NA(N − 1)
. (1.38)

From this inequality, we see that the maximal off-diagonal element must be greater than zero
when NA < N . Only if all signal samples are available (when NA = N), then it is possible to
get the bound equal to zero and AHA = I. This is an expected result when the reconstruction
process reduces to the inverse signal transform. Then, the measurements would be equal to
the full set of signal samples y = x.

Since the properties of the initial estimate will be crucial throughout this thesis, its form
for a sparse signal will be presented in detail. The measurements in (1.24) for a sparse signal
with nonzero coefficients X(k) at k ∈ {k1, k2, . . . , kK} = K, can be written as

y(i) =

K∑
l=1

akl(i)X(kl), (1.39)

The initial estimate elements from (1.36) is of the form

X0(k) =

NA−1∑
i=0

ak(i)y(i) =

NA−1∑
i=0

ak(i)
( K∑
l=1

akl(i)X(kl)
)

(1.40)

or, by changing the order of summation,

X0(k) =
K∑
l=1

X(kl)
(NA−1∑

i=0

ak(i)akl(i)
)

=
K∑
l=1

X(kl)µ(k, kl), (1.41)

where

µ(k, kl) =

NA−1∑
i=0

ak(i)akl(i). (1.42)

This relations will be used for the analysis of the reconstruction accuracy. Note that the value
of µ(k, kl) is equal to the element of matrix AHA at the position (k, kl).

OMP reconstruction algorithm

For most of the presented results, an iterative variant of the OMP reconstruction algorithm
[19,28], will be used. This algorithm belongs to the group of implicit zero-norm minimization
solutions, since it is based on counting and minimizing the number of nonzero elements in
X(k). Most of the results presented in the thesis are valid for other CS algorithms as far the
conditions for unique reconstruction are satisfied.

The reconstruction algorithm is implemented in two main steps:
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1. estimation of the set of positions K of the nonzero components in X, and

2. reconstruction of the element X(k) values using the measurements/available samples
with the estimated nonzero positions.

In order to find the positions of nonzero elements, the initial estimate from (1.35) is
calculated and used. Two of the methods are considered, an one-step reconstruction and the
iterative version of this algorithm. Note that, the hardware realization of the algorithm in the
Field Programmable Gate Arrays (FPGA) circuit is shown in [45]. More architectures for CS
methods can be used, as presented in [46,47].

One-step OMP

The simplest case is when we can expect that the number nonzero coefficients of the initial
estimate X0(k) at k ∈ K are notably greater in comparison to all other elements at k /∈ K.
In this case, matrix AHA should be such that X0 contains K coefficient much higher than
the other coefficients. The position detection of the nonzero component is done by finding the
positions of the K largest components in X0, that is

K = {k1, k2, . . . kK} = arg{max |X0|}. (1.43)

Taking the positions of theK largest components forming the set K in (1.35) the amplitude
reconstruction is performed. As it has been stated before, if AHA were an identity matrix,
X0 would be identical to the exact solution X. However, with a reduced set of samples, the
Welch lower bound prevents this. Nevertheless, it is important to achieve that the diagonal
elements of AHA are more significant regarding the other non-diagonal elements.

For the second part of the algorithm, let consider that all K positions are found cor-
rectly. Then, the values in X(k) at k /∈ {k1, k2, . . . , kK} are set to zero, and the vector
XK = [X(k1), X(k2), . . . , X(kK)]T is with unknown nonzero values that should be found
(reconstructed). Note that this assumption transforms the initial under-determined system
y = AX with NA equations and N unknowns in X to an over-determined system of NA

equations with K unknowns (X(k1), X(k2), . . . , X(kK)). The new set of equations now reads

y = AKXK . (1.44)

This system can be solved for the nonzero spectral values XK at the estimated positions K.
The matrix AK is an NA × K sub-matrix of A, keeping only the columns of the nonzero
elements positions in X(k)

AK =


ak1(0) ak2(0) · · · akK (0)

ak1(1) ak2(1) · · · akK (1)
...

...
. . .

...
ak1(NA − 1) ak2(NA − 1) · · · akK (NA − 1)

 . (1.45)

The smallest number of measurements needed to recover K coefficients at the known
positions is NA = K < N . However, for an accurate estimation of the nonzero positions,
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a much larger number of measurements is needed according to the reconstruction conditions
(which will be discussed in the next section). When NA > K, the system is over-determined,
and the solution is found in the mean squared error (MSE) sense. The solution is

XK = (AH
KAK)−1AH

Ky = pinv(AK)y, (1.46)

where pinv(AK) = (AH
KAK)−1AH

K is a matrix AK pseudo-inverse and AH
KAK is called a

K ×K Gram matrix of AK .

Iterative OMP

The OMP procedure considers the criteria when the K components are larger than the
initial value coefficients at originally zero-coefficient positions. That condition can be relaxed
by using the iterative version of the method. In order to estimate the position of the largest
nonzero component, only its value must be larger than the values at the originally zero-valued
coefficient positions. The position of the largest component is found as

k1 = arg max{X0}. (1.47)

Its amplitude value is estimated using Eq. (1.46) as it were the only nonzero coefficient.
It is reconstructd using the sub-matrix A1. Then, this component is subtracted from the
measurements, i.e., y−A1X1, and the procedure is continued by estimating the next largest
coefficients with the new measurements. After the initial estimate is calculated with these
samples, its largest value position is found as k2, and the new set of two nonzero positions
is formed as {k1, k2}. Matrix A2 is formed with these two positions and (1.46) is solved for
X2. After the two largest coefficients are detected and estimated, they are removed from the
measurements as y −A2X2.

If these new measurements are equal to zero after the subtraction, it means that we
have solved the problem and that signal is K = 2 sparse. If this not the case, the new
measurements (removing the two largest coefficients) are used for the next initial estimate
and the third largest coefficient position detection. The procedure is iteratively continued
until some desired stopping criterion is achieved. The simplest measure for it can be that
the new measurement matrix, after K steps, calculated as y−AKXK , is equal to zero or its
energy is bellow a defined small accuracy level.

1.3.2 Conditions for reconstruction

Having the condition of sparsity fulfilled, additional criteria should be satisfied for a successful
and unique reconstruction with a reduced number of samples. These criteria are intensively
studied and they are commonly expressed using the coherence index of a measurement matrix
or the restricted isometry property (RIP) of this matrix.

Coherence index

The most widely used criterion for a successful reconstruction is based on the coherence
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index of the measurement matrix A. Consider an NA×N measurement matrix A and denote
its columns by vectors ai, i = 0, 1, . . . , N − 1, that is

A = [a0,a1, . . . ,aN−1]. (1.48)

The scalar product of two columns of this matrix, k and i, is defined by

〈aHk ,ai〉 =

NA−1∑
p=0

ai(p)a
∗
k(p). (1.49)

Notice that this product is, by definition, equal to the (k, i) element of matrix AHA.

Definition 1.3
The coherence index of a measurement matrix is defined as the maximal value of the nor-
malized scalar product

µ = max |µ(i, k)| = max

∣∣∣∣∣ 〈aHk ,ai〉〈aHk ,ak〉

∣∣∣∣∣ = max

∣∣∣∣∣
∑NA−1

p=0 ai(p)a
∗
k(p)∑NA−1

p=0 |ai(p)|2

∣∣∣∣∣, (1.50)

for i 6= k. For the normalized measurement matrices
∑NA−1

p=0 |ai(p)|2 = 1, the coherence index
is defined by

µ = max |µ(i, k)| = max
∣∣∣〈aHk ,ai〉∣∣∣ = max

∣∣∣NA−1∑
p=0

ai(p)a
∗
k(p)

∣∣∣. (1.51)

This value is an important parameter in choosing the measurement matrix which will be
further discussed by Statement 1.

Statement 1: A K-sparse signal can be reconstructed from the measurements in a unique
way if the cohrence index of the matrix A satisfies the condition

K <
1

2

(
1 +

1

µ

)
. (1.52)

A smaller coherence index means that signal with larger sparsity values K can be recon-
structed. The relation can be derived considering the initial estimate as

X0(k) =

K∑
l=1

X(kl)µ(k, kl). (1.53)

Without loss of generality, assume that the largest coefficient value is X(k1) = 1. The
largest disturbance to this coefficient estimation is if the remaning (K−1) nonzero coefficients
are almost equally strong, i.e., close to 1. Then the initial estimate would be

X0(k) =
K∑
l=1

µ(k, kl). (1.54)
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Since µ(k, kl) ≤ µ, the largest possible value at the original zero coefficient position is |X0(k)| ≤
Kµ. At the largest coefficient position, k = k1, the worst case is if all other (K− 1) terms are
maximal (equal to µ) but with opposite sign than its value, that is X0(k1)| > 1 − (K − 1)µ.
The detection of the largest element is successful if its worst case initial estimate is greater
than the worst case value at zero coefficient positions

1− (K − 1)µ > Kµ (1.55)

Note that, if this relation is satisfied for the largest coefficient, then, after it is successfully
detected, reconstructed and removed, the relation holds for the signal with lower (K − 1)-
sparsity.

Restricted isometry property (RIP)

The restricted isometry property is another way to define a condition which the measure-
ment matrix should satisfy in order to uniquely reconstruct a signal under the CS approach.

Firstly, a K sparse signal is uniquely reconstructed if the size of the smallest nonsingular
sub-matrix of A (spark) is such that

spark{A} > 2K. (1.56)

This condition means that all submatrices of A with order lower than 2K are nonsingular.

Statement 2: AK-sparse signal can be uniquely reconstructed using the measurement matrix
A, if the RIP condition

1− δ2K ≤
‖A2KX2K‖22
‖X2K‖22

≤ 1 + δ2K , (1.57)

holds for all its sub-matrices A2K of order 2K, where δ2K is the isometric constant in the
range 0 ≤ δ2K < 1. The constant δ2K can be calculated as

δ2K = max{1− λmin, λmax − 1} (1.58)

where λmin and λmax correspond to the minimum and the maximum eigenvalue of AT
2KA2K ,

respectively.

The RIP condition ensures that the solution of the Eq. (1.33) and Eq. (1.34) give the
identical results, meaning that the results of the approximation are close to the true values [24].
It is seen that, in the case of Eq. (1.34), the isometric constant is in the range 0 ≤ δ2K <

√
2−1.

Although these conditions are fundamental for obtaining a successful and unique recon-
struction of a sparse signal, it is interesting to note that they are very conservative for real-
world sparse signals. Without loss of generality, we can assume that the reconstruction con-
ditions are met and the practical guidelines are satisfied (that the number of measurements is
significantly higher than the sparsity).
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The compressive sensing framework assumes sparse signals. However, due to their nature,
many real signals (particularly non-stationary signals) are only approximately sparse or not
sparse at all. Additionally, the sparsity condition can be distorted due to many other reasons.
The most evident one is the additional noise in signals. Moreover, a very simple, yet an
immense real-world problem, is the analysis of signals which are not on the sparsity domain
grid. This includes signals which are not on grid frequencies. These signals can be analyzed
and processed within the compressive sensing framework assuming that they are sparse under
natural circumstances. The influence of their nonsparsity will result in the error through the
reconstruction. For such signals, only the limit bounds of the reconstruction error were derived
in the literature [15,24,48–50]. The main contribution of this Chapter is the calculation of the
precise expected squared reconstruction error in time-varying signals. The STFT is assumed
as the sparsity domain of the analysis. The reconstruction of nonsparse signals constrained
with a sparsity coindition will be examined and compared to the statistical error calculation.

In the first part of the Chapter, the properties of the initial estimate in the reconstruction
procedure will be explained as the basis to the error derivation. The noise in the initial
estimate will be calculated on uniformly and randomly sampled signals. These results will
support the error calculation in the STFT domain. The result will be generalized for cases
when the signal is nonuniformly sampled [51] as a consequence of sampling jitter or intentional
sampling deviations. Since most of the real systems are implemented in hardware using finite

21



22 Chapter 2. Reconstruction error of non-stationary signals

length registers, a specific form of noise, the quantization noise, is also present in signals [52],
and it will be also analyzed in this Chapter. At the end, the effect of noise folding will
be considered, which will conclude the effectiveness of the error calculation in many real
circumstances of signals nature.

2.1 Initial estimate analysis for uniform sampling

The initial estimate X0 from Eq. (1.35) is the key for deriving the exact error of an ap-
proximately sparse or nonsparse signal. It can be understood as the back-projection of the
samples on the measurement matrix, which is defined as the matched filtering. It is the first
important step for the analysis and reconstruction of a signal. The available data are back-
projected to the measurement matrix and used in all reconstruction algorithms. Moreover,
the back-projection relation contains more properties of the desired sparse signal than being
used just as its initial estimate. In Section 1.3.3. it was shown that the key criteria for the
signal reconstruction can be related to the back-projection relation and initial estimate (e.g.
the coherence index).

The initial estimate can be rewritten as

X0(k) =
∑
ni∈NA

x(ni)φni(k). (2.1)

If all measurements are available, the initial estimate of an originally sparse signal X(k)

will be sparse and equal to the original signal transform. However, if the set of available
measurements is reduced, the missing samples will produce noise in the initial estimate and
cause its deviation from the original transform. Having less available samples will make the
signal in the transformation domain more noisy, as illustrated in Fig. 2.1.

For an easier understanding, let us consider the STFT calculated at one instant using a
rectangular window. The analysis of the transform then reduces to the DFT analysis of the
signal samples within the window. For the DFT case, the Eq. (2.1) reads

X0(k) =
∑
ni∈NA

x(ni)e
−j2πnik/N . (2.2)

Firstly, let assume a simple single-component signal, i.e. K = 1, with amplitude A0 at a
position k0,

X0(k) =
∑
n∈NA

A0e
j 2π
N

(k−k0)n. (2.3)

The expected value of X0(k), i.e., E
{
X0(k)

}
, denoted by µX0(k) is equal to

µX0(k) = A0

∑
n∈NA

E
{
ej

2π
N

(k−k0)n
}
. (2.4)

In [8, 53], it has be shown that the expected value is

E
{
ej

2π
N

(k−k0)n
}

= δ(k − k0), (2.5)
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Figure 2.1: Initial estimate noise illustration: time domain (left); frequency domain (right).
Top - signal with full set of measurements. Middle - signal with 50% of available samples with
corresponding DFT. Bottom - signal with 25% of available measurements with corresponding
spectrum. Red dots represent true values, black lines present available values.

where δ(k − k0) = 1 for k = k0, and δ(k − k0) = 0 for k 6= k0. Since there are NA terms in
(2.4), we get

µX0(k) = A0NAδ(k − k0). (2.6)

For the calculation of variance, the value at the position of the component, i.e. k = k0,
is σ2

X0(k) = 0. For the case when k 6= k0, the variance of the initial estimate will be nonzero,
while the mean value is zero. The variance is calculated using

σ2
X0(k) =

∑
n∈NA

∑
m∈NA

|A0|2E
{
ej

2π
N

(k−k0)(n−m)
}
. (2.7)
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It has been previously confirmed in [53] that, for random n 6= m and k 6= k0, variables
ej

2π
N

(k−k0)n are equally distributed, producing expectation equal to

E
{
ej

2π
N

(k−k0)(n−m)
}

= − 1

N − 1
. (2.8)

For n = m, the complex sinusoid is deterministic, and the relation E
{
ej

2π
N

(k−k0)(n−m)
}

= 1

holds.

Note that, in (2.7), there are NA terms when n = m, and NA(NA− 1) terms when n 6= m.
Therefore, for k 6= k0, the DFT coefficient variance becomes

σ2
X0(k) = |A0|2

NANQ

N − 1
. (2.9)

In the general case, i.e. when K > 1, the initial estimate is a summation of independent
random variables

X0(k) =
∑
n∈NA

K∑
l=1

Ale
j 2π
N

(k−kl)n. (2.10)

According to (2.6), the mean value of a K > 1 sparse signal is then

µX0(k) = NA

K∑
l=1

Alδ(k − kl). (2.11)

Since the random value at k = kl, l = p, does not contribute to the noise, the variance of X(k)

will be

σ2
X0(k) =

K∑
l=1
l 6=p

NA|Al|2
NANQ

N − 1
. (2.12)

This analysis can be applied on sparse time-varying signals in the joint time-frequency
domain. The total variance of a STFT signal will be the average sum of the variances of each
windowed instant of DFT.

2.2 Initial estimate analysis for random sampling

In some practical scenarios, signals are randomly sampled due to intentional strategy to in-
crease randomness in sampling or due to the effect of high jitter in sampling. The jitter can
be caused by lack of synchronisation, hardware or transmission problems. Random sampling
affects the processing of signals under the CS framework, since the sample values are not on
the grid anymore, i.e., at random positions 0 < tn < N . Then, the initial estimate of a signal
with available samples at random positions tn ∈ NA = {t1, t2, . . . , tNA} is

X0(k) =
∑
n∈NA

x(tn)e−j2πtnk/N . (2.13)
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The mean value of such signal remains the same as for the uniform sampling case, i.e. the
mean value is equal to the one from Eq. (2.11).

In the case of random sampling, it is interesting to notice that, unlike when the signal is
uniformly sampled on the grid, the variance at the signal component of a signal will not be
zero even when N signal samples are available. This will conclude that the all components in
the initial estimate X0(k) are affected by a noise. The noise has a variance

σ2
X0(k) =

K∑
l=1

NAA
2
l [1− δ(k − kl)]. (2.14)

2.3 Error in time-frequency signal reconstruction

Intuitively, it can be seen that this idea is closely related to finding the exact error of the
reconstruction of approximately sparse or nonsparse signals when they are reconstructed under
the assumption that their nature is originally sparse. For a signal x(n), with the corresponding
transformationX(k), k = 0, 1, . . . , N−1, the definitions of approximately sparse and nonsparse
signals are given next.

Definition 2.1
An approximately sparse signal, of length N , is a signal which consists of K significant
non-zero components at k ∈ K = {k1, k2, . . . , kK} and N − K small non-zero components
k /∈ K , i.e.

min
{
|X(k1)|, X(k2)|, . . . , |X(kK)|

}
� max

{
|X(kK+1)|, |X(kK+2)|, . . . |X(kK+N )|

}
(2.15)

Definition 2.2
A nonsparse signal, of length N , is a signal which consists of N non-zero components of
the same order of amplitude.

Since the signal is considered as originally sparse in its nature, the reconstruction is per-
formed under the constraint that it is K-sparse. This results that the remaining N − K

components, that are not reconstructed, will impact on the error of the reconstructed com-
ponents. An analysis of the error in the reconstructed signal caused by this effect will be
analyzed.

For the analysis, recall a time-varying x(n), with a STFT of SN (n), and its windowed
version x(n, nw) of length Nw, as

SN (n, k) = DFT{x(n+ nw)w(nw)} =

Nw/2−1∑
nw=−Nw/2

x(n+ nw)w(nw)e−j2πnwk/Nw . (2.16)

Assuming sparsityK, the signal is reconstructed using the available measurements at positions
n+ nw ∈ NA. Consequently, the number of missing measurements is NQ = N −NA.
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Notice that using any CS reconstruction method (assuming that conditions for a successful
and unique reconstruction are met), we detect and reconstruct K coefficients, with Al(n) cor-
responding to the reconstructed amplitudes at k ∈ K. The amplitudes of the nonreconstructed
components generate noise in the reconstructed coefficients SR(n). The noise variance caused
by the components that are not reconstructed is obtained from the variance of the initial
estimate, given by Eq. (2.14) as

|Al(n)|2
NANQ

N − 1
. (2.17)

The amplitude values at the positions of the original nonzero coefficient in the initial estimate
SN0(n) are proportional to NA. In the reconstruction process, the amplitudes should be
reconstructed to their true values (i.e., when the full measurement set is available). Thus, the
values of the recovered amplitudes should be proportional to N , instead of NA. resulting in the
scaling factor to be N/NA. Therefore, the noise variance scaling factor in the reconstructed
coefficients is (N/NA)2. Hence, the noise variance caused by one nonreconstructed component
to the reconstructed coefficient will be

|Al(n)|2 N
2

N2
A

NANQ

N − 1
∼= |Al(n)|2N

NQ

NA
. (2.18)

The noise energy in the K components of SR(n) is the summation of the K variances of each
reconstructed coefficient. The total energy of noise in the reconstructed coefficients generated
by the N −K nonreconstructed components is

‖SNR(n)−SNK(n)‖22 = KN
NQ

NA

N∑
l=K+1

|Al(n)|2 , (2.19)

where SNR(n) is obtained from SR(n) by adding zero values at the pisitions k /∈ K. The
energy of the nonreconstructed elements in the STFT can be written as

‖SN (n)−SNK(n)‖22 =
N∑

l=K+1

|NAl(n)|2 , (2.20)

where SNK(n) is a signal of length N , which represents the amplitudes of SN (n) at positions
K, and is zero-valued everywhere else. From (2.19) and (2.20), it can be concluded that
the energy of error in the reconstructed components is proportional to the energy of the
nonreconstructed components of the nonsparse signal in the form

‖SNR(n)−SNK(n)‖22 = K
NQ

NAN
‖SN (n)−SNK(n)‖22 . (2.21)

Note that, in the case when a randomly sampled signal is considered, the error is

‖SNR(tn)−SNK(tn)‖22 =
K

NA
‖SN (tn)−SNK(tn)‖22 . (2.22)

If the signal is strictly sparse, we can conclude there is no reconstruction error, i.e.

‖SNR(tn)−SNK(tn)‖22 = 0, (2.23)
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meaning that SN (tn) = SNK(tn), whether the signal is sampled uniformly or randomly.

For uniformly sampled signal, the reconstruction error is zero-valued when all samples are
available, i.e. NA = N and NQ = 0.

2.3.1 Additive input noise

In a more realistic case, the received measurements are usually with some additive noise

y + ε = AX, (2.24)

where ε is the additive noise with variance σ2
ε . Having noisy measurements will provide that

the initial estimate of the signal, SN0(tn, k), is with an additional noise component as well.
The variance in SN0(tn, k), caused by the measurements input noise, is

σ2
SN0(tn,k) = NAσ

2
ε . (2.25)

In the reconstruction process, as mentioned, the initial estimate is scaled by the factor N/NA.
The noise variance in one reconstructed component is then

var{SNR(tn, k)} = NAσ
2
ε

( N
NA

)2
=
N2

NA
σ2
ε . (2.26)

That will result in the total MSE in K reconstructed coefficients, due to to the additive noise

‖SNR(tn)− SNK(tn)‖22 = K
N2

NA
σε

2. (2.27)

The error energies, caused by the nonsparsity effects and the additive input noise indepen-
dently, can be summed to produce a general relation for the expected squared error including
both effects. The equation for the noisy and nonsparse signals case is given by [54]

‖SNR(tn)−SNK(tn)‖22 = KCK ‖SN (tn)−SNK(tn)‖22 +K
N2

NA
σ2
ε , (2.28)

with CK = NQ/NAN for uniform sampling (tn = n∆t) and CK = 1/NA for random sampling.

The accuracy of the theoretic result in Eq. (2.28) will be validated on different signals.
The result for the error calculation will be compared with a statistically calculated error,

Estatistical = 10 log(||SNK(tn)− SNR(tn)||22) (2.29)

where SNK(tn) is the original K-sparse signal at positions k ∈ K and SNR(tn) is the recon-
structed signal at k ∈ K.



28 Chapter 2. Reconstruction error of non-stationary signals

2.3.2 Error calculation examples

Example 1: Uniform sampling. Let assume a signal consisting of two main components
which are linear frequency modulated (LFM)

x(t) = 1.3e
jπ

(
52 t
N

+32( t
N

)2+2πφ1

)
+ 2.1e

jπ

(
4 t
N
−20( t

N
)2+2πφ2

)
, (2.30)

with N = 1024. The values φ1 and φ2 are the random phases in the signal. The cases of
uniform and random sampling are considered. The signal is sampled with sampling interval
∆t = 1. The STFT of the signal with full set of measurements at t = n∆t and with Hamming
window of length Nw = 256 is presented in Fig 2.2 (top left).

A reduced number of available measurements/samples is considered next. The available
samples are affected by a random Gaussian noise with zero-mean and variance σε = 0.1.
The STFT with the set of available samples of size NA = 2N/3 is presented in Fig. 2.2
(top right). From the Figures it is seen that the signal is non-stationary, thus it is not
strictly sparse. The reconstruction with sparsity level of K = 8, 16, 32, 48 is presented in
the remaining subplots of Fig. 2.2, respectively. It is interesting to note that, by using only
K = 8 the weakest component is not reconstructed. When K = 16, only few parts of the
component are reconstructed. Only by using K = 32 or more we can get the recovery of all
three components.

Using the calculation from Eq. (2.28), the theoretical error is calculated as

Etheoretical = 10 log
(
K

NQ

NAN
‖SN (n)−SNK(n)‖22 +K

N2

NA
σ2
ε

)
. (2.31)

The total reconstruction error assuming different number of available measurements NA

and various sparsities K is illustrated in Fig. 2.3. The results are averaged in 100 realizations.
The statistical error is presented with the dots, while the theoretical error is shown with lines.
The filled dots present that the reconstruction is performed successfully with high probability.
In this case, the condition to consider a successful reconstruction is when NA > 4K.

Example 2: Random sampling. Assume a LFM signal with three main components

x(t) = x1(t) + x2(t) + x3(t) (2.32)

where

x1(t) = 0.7e
jπ

(
52 t
N

+32( t
N

)2+2πφ1

)
(2.33)

x2(t) = 1.3e
jπ

(
113 t

N
+46( t

N
)2+2πφ2

)
(2.34)

x3(t) = e
jπ

(
446 t

N
−54( t

N
)2+2πφ3

)
(2.35)
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Figure 2.2: Sparse STFT reconstruction when signal is uniformly sampled: STFT with the
full set of measurements (top left); STFT with the reduced set of noisy measurements with
variance σε = 0.1 (top right), the reconstruction with K = 8, 16, 32, 48 (remaining subplots).

with N = 1024 and random phases φ1, φ2, and φ3.

In this case, a random set of NA available samples at 0 ≤ tn ≤ 1024 is considered. The
STFT, when the full set of measurements is considered, is shown in 2.4 (top left). It can be
observed that random sampling of the signal adds to the nonsparsity of the signal, together
with the reduced number of available samples, Fig. 2.4 (top right). The signal is reconstructed
with assumed sparsity levels of K = 16, 24, 32, 48.
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Figure 2.3: Total averaged reconstruction error asuming different number of available mea-
surements NA and various sparsity levels K. The error is averaged over 300 realizations. The
signal is uniformly sampled. Lines present the theoretical results, while the dots are the sta-
tistical values. The filled dots show when the recovery is performed with a high probability,
i.e. for NA > 4K.

Using the calculation from Eq. (2.28), the theoretical error is

Etheoretical = 10 log
(

(
K

NA
+ 1) ‖SN (n)−SNK(n)‖22 +K

N2

NA
σ2
ε

)
. (2.36)

The total reconstruction error when NA = N/2, 2N/3, 3N/4 is presented in Table 2.1.
The total error is averaged in 100 realizations. The statistical results are presented with dots,
and the theoretical error is presented with the lines. The filled dots present the results when
the reconstruction success is of high probability. Note that the error in the random sampling
case is larger than the one received in the uniform case. It is due to the fact that it causes
higher nonsparsity than in the uniform sampling. Additionally to that, noise increases the
nonsparsity in the signals. Our goal, however, is to find the exact error which is produced
by the reconstruction. The statistical and the theoretical error show high agreement in the
reconstruction, proving the exactness of the derivation.

Example 3: Application on audio signals. The audio signal “Train”, included in the
MATLAB software, is considered. Its original STFT, with full set of samples, is presented
in Fig. 2.5 (top left). The STFT is perormed using a Hanning window with a 50% overlap,
which allowes simple and direct reconstruction of the audio signal. Assume that the sparsity
of the signal is K = 55 and that only half of the measurements are available. The STFT of
the signal with the available set of measurements is presented in Fig. 2.5 (top right). The
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Figure 2.4: Sparse STFT reconstruction of a randomly sampled signal: STFT with the full set
of measurements (top left); STFT with the reduced set of noisy measurements with variance
σε = 0.1 (top right), the reconstruction with K = 8, 16, 32, 48 (remaining subplots).

reconstructed STFT assuming the sparsity K = 10 is illustrated in Fig. 2.5 (bottom left).
The reconstructed STFT with sparsity K = 50 is presented in Fig. 2.5 (bottom right).

Also, an audio signal with the words “You and I” is recorded. It was recorded on a
MacBook Air laptop using the MATLAB software. The signal was sampled at a frequency
fs = 44.1 kHz, with 16-bit A/D conversion and single-channel mode. Assume that 50% of the
samples are unavailable. Two sparsities are assumed, K = 30 and K = 80. The four subplots
in Fig. 2.6 present the original STFT, the STFT with a reduced number of measurements, the
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Table 2.1: Total averaged reconstruction error in the reconstructed coefficients (in dB) for
NA = N/2, 2N/3, 3N/4, and sparsity levels K = {16, 24, 32, 48} when randomly sampled
signal is used.

NA = N/2 K = 16 24 32 48

Theory −0.23 −0.58 −0.83 −1.07

Statistics −0.35 −0.74 −1.01 −1.23

NA = 2N/3

Theory −0.50 −0.93 −1.25 −1.57

Statistics −0.61 −1.00 −1.28 −1.61

NA = 3N/4

Theory −0.54 −0.96 −1.35 −1.64

Statistics −0.65 −1.03 −1.37 −1.57
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Figure 2.5: The recovery of the audio signal “Train”: STFT with full set of measurements (top
left); STFT with 50% of available samples (top right); Reconstructed STFT with K = 10

(bottom left); Reconstructed STFT with K = 50.
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Figure 2.6: The recovery of the recorded audio signal “You and I”: STFT with full set of
measurements (top left); STFT with 50% of available samples (top right); Reconstructed
STFT with K = 30 (bottom left); Reconstructed STFT with K = 80.

STFT reconstruction with K = 30, and the STFT reconstruction with K = 80, respectively.

The total error of the reconstruction using different sparsities K for the two audio signals
is shown in Fig. 2.7. The error is calculated according to 100 realizations. The black solid line
presents the the theoretical error. The red circles are the statistical results. We can conclude
that in both cases, the results are similar, proving that the exact error equation is found and
statistically confirmed.

Example 4: Radar signals. Another suitable application for the recovery of nonsparse
signals assuming sparsity constraint is inverse synthetic aperture radar (ISAR) imaging [55–
60]. In general, ISAR images require only few components for transmission and reception,
which is sufficient for obtaining information the range and cross-range of a target. That
makes them usually sparse in the 2D-DFT domain. Assuming sampling on the grid, an ISAR
signal, of size N ×M , has reconstruction error

Etheoretical = 10 log
(
K

NQ

NANM
‖SN (n)−SNK(n)‖22 +K

(NM)2

NA
σ2
ε

)
. (2.37)

where NQ = NM −NA.

The ISAR image of an airplane MIG-25 is considered [61]. It is approximately sparse in
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Figure 2.7: Total error in dB after the reconstruction in 100 realizations of “Train” (left) and
“You and I” (right), with various sparsity levels. Black line represent the theoretical results,
red circles is the statistical estimation.

the 2D-DFT domain. The ISAR image is shown in the top left subplot of Fig. 2.8. In the
logarithmic scale (top right subplot), the nonsparsity is noticeable. Sparse reconstructions
from NA = NM/2 available samples, with K = 50, 150, 250, 350 are shown in the remaining
four subplots of Fig. 2.8. The error calculation, according to Eq. (2.37), is presented in Table
2.2.

Table 2.2: The error in the ISAR reconstructed coefficients for MIG data for assumed sparsities
K = {50, 150, 250, 350}.

NA = NM/2 K = 50 150 250 350

Theory −20.92 −24.72 −28.71 −31.60

Statistics −20.19 −24.36 −28.17 −30.34

NA = 2NM/3 K = 50 150 250 350

Theory −16.36 −17.87 −20.12 −20.12

Statistics −17.85 −19.32 −21.58 −21.58

2.4 Sampling generalization

For uniform sampling, the considered instants in the reduced set of measurements are defined
by sampling theorem and a random subset of all such instants. The random sampling is
done at a set of fully random instants within the considered time interval. These two cases
can be considered as the special cases of the nonuniform (jittered) sampling at the instants
tn = n + νn, where νn it the random variable causing the shift in the uniform sampling at
instant n (unit sampling interval is assumed without loss of generality). the random variable
(jitter) with a uniform distribution −∆/2 ≤ νn ≤ ∆/2 is assumed. The two special cases of
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Figure 2.8: Reconstruction of the ISAR MIG 25 image: Original ISAR (top left); Original
ISAR in dB (top right); the reconstruction with K = 50, 150, 250, 350.

this nonuniform sampling are: (i) the uniform sampling (when ∆ = 0) and (ii) the random
sampling (when ∆ is large). The resulting reconstruction depends on the degree of randomness
in the nonuniform sampling, as it will shown next.

The general form of the expected squared error in the reconstructed coefficients is obtained
using the initial estimate. Having a signal x(tn) sampled at tn = n + νn, its initial estimate
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can be written as

X0(k) =
∑
n∈NA

A0e
j 2π
N
ktn =

∑
n∈NA

A0e
j 2π
N
knej

2π
N
kνn . (2.38)

The initial estimate of a single-component x(tn), with amplitude A0 at k0, will then be

X0(k) =
∑
n∈NA

A0e
j 2π
N
knej

2π
N

(k−k0)νn . (2.39)

The mean value of X0(k) becomes

µX0(k) = A0

∑
n∈NA

E{ej
2π
N

(k−k0)n}E{ej
2π
N

(k−k0)νn}. (2.40)

We have seen that for the first term, A0
∑

n∈NA E{e
j 2π
N

(k−k0)n}, the mean value is µX0(k) =

A0NAδ(k− k0). For the second term, caused by a random sampling jitter, the expected value
is calculated as

µν = E{ej
2π
N

(k−k0)νn} =

∫ ∆/2

−∆/2
p(Θ)ej

2π
N

(k−k0)ΘdΘ

=
sin(π(k−k0)∆

N )
π(k−k0)∆

N

= sinc
(π(k − k0)∆

N

)
. (2.41)

The probability density function p(Θ) = 1
∆ is used for the uniform random variable Θ = νn,

within the interval [− 1
∆ ,

1
∆ ]. When k − k0 = 0, the expected value in Eq. (2.41) is 1.

The variance is calculated as,

σ2
X0(k) =

∑
n∈NA

∑
m∈NA

|A0|2E{ej
2π
N

(k−k0)(n−m)}E{ej
2π
N

(k−k0)(νn−νm)}. (2.42)

For k 6= k0, n 6= m, the second term is written as

E{ej
2π
N

(k−k0)(νn−νm)} = E{ej
2π
N

(k−k0)νn}E{ej
2π
N

(k−k0)νm}, (2.43)

which, obviously, is equal to µ2
ν , as the expectations over statistically independent νn and νm.

For n = m, Eq. (2.43) produces the result equal to 1.

When all the available samples are considered, there are NA terms in the sum whenm = n,
and NA(NA − 1) terms when n 6= m. In the multicomponent case, i.e. K > 1, the variance is
a sum of individual variances of each noise-only component k 6= kl.

For K > 1, kl = k1, k2, . . . , kK , the generalized variance of the components at kl 6=
k1, k2, . . . , kK will be

σ2
X0(k) =

K∑
l=1

NA|Al|2
[
1− NA − 1

N − 1
sinc2

(π(k − kl)∆
N

)]
[1− δ(k − kl)]. (2.44)
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The variance is frequency dependent. Its mean can be estimated as a frequency independent
parameter

G(∆) =
1

N

N∑
k=1

sinc2
(πk∆

N

)
. (2.45)

Note that, in the same manner as in the analysis for the partial uniform DFT and the
partial random DFT, we can define variances in other measurement matrices.

Example: Generalization. The nonuniform distribution analyzes the case when the
signal is close to the uniform sampling, with a small-offset of the true value. This is known as
the jittering effects, which affects many real-signals in their transmission.

Consider an approximately sparse signal in the DFT domain,

X(kl) =

{
1 + κ(l), for l = 1, 2, . . . ,K,

−3l/2K, for l = K + 1,K + 2, . . . , N.
(2.46)

The sparsity level K = 7 and κ(l) is a random variable. It is uniformly distributed between
0 and 0.4. The error in the reconstructed coefficients is calculated and given in Fig. 2.9. The
cases withNA = 2N/3 andNA = 3N/4 available samples are considered. The error calculation
is analyzed for the cases when ∆ = 0 (uniform sampling), ∆ = 1 (nonuniform sampling) and
∆ � 0 (random sampling). The assumed sparsity is varied SK = 1, 2, . . . , 15. Black color
represents the statistical values

Estatistical = 10 log
(
||XK −XR||22

)
, (2.47)

while red color represents the theoretical results,

Etheoretical = 10 log
( K
NA

[
1−NA − 1

N − 1
G(∆)

]
‖X−XK0‖22

)
. (2.48)

We can see that, in all three cases, the error significantly drops when the assumed sparsity
is SK = 7 reached the signal approximate sparsity. The uniform sampling produces the best
reconstruction results in all considered cases, while an increased randomness results in a higher
reconstruction error. The theoretical and statistical results highly agree, proving that, in the
general case, the accuracy of the derived error.

2.5 Quantization error in compressive sensing

So far, it has been assumed that the measurements can take as many bits as needed for their
representation. If a non-quantized signal is strictly sparse, the error, calculated as a differ-
ence between the original and reconstructed signal, will be zero or negligible. However, the
reconstruction will produce some error if a signal is reconstructed from quantized (digitized)
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Figure 2.9: Reconstruction error as a function of various sparsity levels K for different values
∆: for NA = 2N/3 of available samples (left) and for NA = 3N/4 of available samples (right).
Values for ∆ used are ∆ = 0 (lower lines), ∆ = 1 (middle lines), and ∆� 0 (higher lines).

measurements. After quantization, the input signal will be corrupted with uniform additive
noise, whose values are between the bounds of the quantization levels.

Despite the effects the quantization is exploiting, it is of great importance in the hardware
implementation. The samples measurements are stored into registers of (B+ 1) bits, where B
bits are for the measurement absolute value and the additional bit is for its sign. The samples
are formed as

yB = digitalB{AX} (2.49)

or for complex-valued case, where both real and imaginary parts are quantized, as

yB = digitalB{<{AX}}+ jdigitalB{={AX}}, (2.50)

Considering the quantized measurements, the transformation coefficients X(k) are recon-
structed with the quantization error that depends on number of bits and number of mea-
surements.

When a signal is quantized in the amplitude, the error which produced by the quantization
is the quantization noise within the limits

|e(ni)| < ∆q/2, (2.51)

where ∆q is related to B as
∆q = 2−B. (2.52)

To achieve appropriate analysis, the quantization error of is assumed to be an uniformly
distributed white noise, which affects the measurements in the form

y = yB + e, (2.53)

where e is the vector of the quantization noise with elements e(ni). Note that the quantization
errors must be uncorrelated with each other nor with the considered signal.
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By definition, the mean and variance of that noise is [8]

µe = E{e} = 0, (2.54)

σ2
e = ∆2

q/12. (2.55)

When a complex-valued signal is analyzed, both real and imaginary parts of samples add to
the noise, resulting in a variance

σ2
e = 2∆2

q/12 = ∆2
q/6. (2.56)

As mentioned in Section 2.3.1. (Additive noise), noisy y will lead to noisy X0(k) with
variance σ2

X0(k) = σ2
e. The noise variance of the reconstructed signal is then

σ2
XR(k) = σ2

e. (2.57)

The energy of the reconstruction error in the K reconstructed components is

‖XR −XK‖22 = Kσ2
e. (2.58)

In this interesting to note that, the energy of error in the reconstructed components will
remain unchanged if [52]

Kσ2
e = K

2−2B

6
= const. (2.59)

That is, reducing the number of B bits to B − 1 bits will require reducing the number of
sparsity components from K to K/4. The logarithmic expression of the error cane be written
as

e2 = 10 log
(
‖XR −XK‖22

)
= 3.01 log2K − 6.02B − 7.78. (2.60)

2.5.1 Quantization effect analysis

The effect of quantization will be examined in the next two examples.

Example 1: Sparse signal quantization error. The sparse signal reconstruction
analysis is performed in this example. The signal is of the form

X(kl) =

{ √
NA
K (1− κ(l)), for l = 1, . . . ,K

0, for l = K + 1, . . . , N,
(2.61)

with length N = 256 and the random changes of coefficient amplitudes is uniformly distributed
in between 0 ≤ κ(l) < 0.2. It is considered that NA = 128 available measurements are
quantized. The quantization levels to bits B ∈ {4, 6, 8, 10, 12, 14, 16, 18, 20, 24} and sparsity
levels K ∈ {3, 8, 13, 18} are analyzed.

The average statistical and theoretical signal-to-nose ratios SNRst and SNRth values are
shown in Fig. 2.10. The results are averaged over 300 realizations. The statistical error SNRst
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Figure 2.10: Average reconstruction SNR of sparse signals with quantized measurements as
a function of number of bits B, for various numbers of measurements and sparsity levels
K ∈ {3, 8, 13, 18}. The statistical error is presented with dots and the theoretical results
are presented by dot-dashed lines: when the signal is uniformly sampled (left); nonuniformly
sampled (middle); randomly sampled (right).

is presented with black dots, and the dash-dot lines are the theoretical errors, SNRth. It can
be concluded that the results are of high agreement.

Example 2: Nonsparse signal quantization error. The signal is modeled as

X(kl) =


√
NA
K (1− κ(l)), for l = 1, . . . ,K
√
NA
K exp(−l/8K), for l = K + 1, . . . , N.

(2.62)

The length of the signal is N = 256 and the andom uniform changes of coefficient amplitudes
is assumed to be between 0 ≤ κ(l) < 0.2. In order to reduce its influence to the quantization
level, the amplitudes of the coefficients X(k) for kl /∈ K are X(kl) = exp(−l/(8K)). In that
case, the effect of quantization influences the reconstruction procedure when up to B = 14

bits are used. The enery cause by the nonsparsity is dominant for the case when B ≥ 16. The
results are presented in Fig. 2.11, proving a similar results of the statistical results with the
theoretical error.

2.6 Noise folding

Another important issue is the analysis of the quantization noise in the transform coefficients
prior to taking the measurements [62]. This noise is called the quantization noise folding and
it will be denoted by z. Then, the measurements are of the form

yB + e = A(X + z), (2.63)

which can be rewritten in the form of

yB + v = AX (2.64)
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Figure 2.11: Average SNR of the reconstruction of nonsparse signals with quantized measure-
ments as a function of number of bits B, for various numbers of measurements and sparsity
levels K ∈ {3, 8, 13, 18}. The statistical error is presented with dots and the theoretical results
are presented by dot-dashed lines: when the signal is uniformly sampled (left); nonuniformly
sampled (middle); randomly sampled (right).

where v = e − Az. The value e is the quantization noise which affects the signal samples
with covariance σ2

eI. The noise vector z is random whose covariance is σ2
zI. Note that it is

independent of e. Thus, the covariance matrix of the noise v is

C = σ2
eI + σ2

zAAH . (2.65)

For the partial DFT matrix, the relation AAH = N
NA

I holds. The variance of v is then

σ2
v = σ2

e +
N

NA
σ2
z, (2.66)

with the covariance matrix C = σ2
vI.

However, when sparse signalas are considered, the quantization error only affects the K
nonzero components of X. It means that the noise Az variance is K

NA
σ2
e or

‖XR −XK‖22 = Kσ2
e +

K

NA
σ2
z. (2.67)

Finally, for the nonsparse partial DFT matrix case, the error is calculated as

‖XR −XK‖22 = Kσ2
e +

K

NA
σ2
z +

K

NA

[
1− NA − 1

N − 1
G(∆)

]
‖X−XK‖22 . (2.68)

We assume that the quantization of the K main components in X moslty influences the
corresponding part of the error calculation. This relation is statistically checked in the next
example.

Example: Error calculation with noise folding. The simulation with nonsparse
signals affects by noise folding is repeated for 300 realizations using the formulation from Eq.
(2.68). The results are presented in Fig. 2.12, proving a close agreement theoretical and
statistical results.
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Figure 2.12: Average SNR of nonsparse signals reconstruction with noise folding when various
number of available measurements is considered, for different sampling methods. Top subplots
- NA = N/4 available samples, middle subplots - NA = N/2, bottom subplots - NA = 3N/4.
Left subplots - uniform sampling, middle subplots - nonuniform sampling when ∆ = 1, left
subplots - random sampling when ∆� 0.
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Wideband sonar signal reconstruction
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Many radar systems are based on a few targets in the signal, showing the potential of using
the compressive sensing algorithms for their processing. The idea of importing the CS theory
to the detection of targets and their successful recovery in the radar systems was discussed
previously in the literature [55,63–66]. In the research, indeed, the CS framework is seen as a
useful tool for the reconstruction of sparse radar signals. Even though radar and sonar systems
have many common basic principles, yet the application of CS techniques is still relatively new
in sonars. Despite the similarity in the rules, there are specific characteristics of the sonar
systems that need to be considered for a successful analysis. The main difference is the envi-
ronment in which they operate, mainly due to entirely different propagation characteristics.
This will be discussed in more detail later in this thesis.

The complexity of the problem made it difficult for the transmitted signals to be anything
more than basic forms of sonar signals to be analyzed and used in the recent literature. The
usage of specific sequence form of these signals has already produced promising results in
the reconstruction of sonar images. The implementation of CS idea to the underwater sonar
signals was initially discussed in [67,68]. However, only the Alltop sequence was considered a
sequence used to form the transmitted signal and reconstruct the sonar image with a reduced
number of measurements. In [69], the results in sonar imaging were improved using the M
sequence, as an excellent alternative to the Alltop sequence, in forming the transmitted signal
waveform.

43
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In this Chapter, we will consider a whole spectrum of various sequences in the sonar
imaging within the CS to find the best solution to the sonar signal reconstruction problem.
The considered sequences are the random binary sequence, the random Gaussian, Bjorck, and
Zadoff-Chu sequence, in addition to the Alltop and maximum length sequence (M sequence).
All these sequences are studied and compared concerning the performances notable for sonar
imaging within the CS framework.

The implementation of the radar systems was also expanded from narrowband [63] to
wideband [66]. Although the Alltop and the M sequences were considered theoretically, in
practice, only the basic forms were considered due to their simpler hardware implementation
[70]. This challenge will also be taken into account in the analysis of real data in the next
sections. The main results presented in this Chapter were published in [71–74]. In the analysis,
it is common to consider the targets on the grid. However, in practice, they are off-grid, causing
even the targets with a small number of reflecting points to be only approximately sparse when
considered in sonar signals. This effect of image leaking due to the off-grid impacts influences
the CS reconstruction. It has been examined by extending the analysis of approximately
sparse and nonsparse signals from the previous section.

We tackle one more problem in this Chapter: the decomposition of two misaligned receivers
for two close components. It will be shown that the problem can be successfully surpassed
using high-resolution techniques in time-frequency analysis.

3.1 General sonar signal modelling

A typical model of a transmitted wideband sonar signal is of form

x(t) = s
( t
λ

)
exp (j2πfct), (3.1)

where s
(
t
λ

)
is the transmitted form of the sequence. The sequence is coded within the width

λ, 0 ≤ t < Nλ, and modulated with the carrier frequency fc. The received signal is a delayed
and attenuated version of x(t). If one target is considered, i.e., if K = 1, the received (echoed)
signal is formed as

r1(t) = g s

(
c+ν
c−ν (t− τ)

λ

)
exp

(
j2πfc

c+ ν

c− ν
(t− τ)

)
, (3.2)

where v is the velocity of the target, c is the underwater speed of sound, and g is a complex-
valued scattering coefficient. Due to the Doppler effect, the received signal is scaled in fre-
quency for (c+ v)/(c− v). Additionally, it is shifted in time for a value τ .

The signal is sampled according to the sampling theorem at instants n∆t, with ∆t being
the sampling interval. The discrete received signal, when K > 1 targets are considered, is the
sum of K received discretized components of form (3.2). That is

r(n) =
K∑
i=1

gkis(n− dki) exp
(
jωkin

)
, (3.3)
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where s(n − dki) is the circular shift of the sequence. The parameter dki presents the time
delay τ which is defined by the range of the targets. The parameter ωki corresponds to the
cross-range of targets corresponding to the frequency shift. If we consider the targets to be
on the grid, the coordinates are then taken from the finite set

(dp, ωq) ∈ {d1, d2, . . . , dN} × {ω1, ω2, . . . , ωN} (3.4)

where dp takes values from dp ∈ {d1, d2, . . . , dN} and ωq ∈ {ω1, ω2, . . . , ωN}, making it a
total of N2 of possible positions of the targets. If the targets are off-grid, they will spread
over several points, with the most significant influence on a few neighboring grid points. The
off-grid effects cause the analyzed signals to be only approximately sparse. In the analysis
we will first assume that the targets are on the grid, as it is common in literature, and then
analyze the effects of sparsity degradation due to off-grid sampling.

For a pair (dp, ωq) =
(
p, 2π

N q
)
, the basis function can be calculated as

φp,q(n) = s(n− p) exp
(
j2πq

n

N

)
. (3.5)

and received is the signal

r(n) =
K∑
i=1

gkiφpi,qi(n). (3.6)

of the k-th scatterer. The relation between the indices for the scatterer k, and range and
cross-range positions p and q is

k = p+Nq,

p = k −Nbk/Nc, (3.7)

q = bk/Nc,

where p = 0, 1, . . . , N − 1, q = 0, 1, . . . , N − 1, k = 1, 2, . . . , N2− 1, and bk/Nc presenting the
rounding of k/N to the closest lower integer value.

The periodic autocorrelation (AC) function of the sequence s(n) is defined as

Rs(n) =

N∑
m=1

s(n+m)s∗(m) (3.8)

Note that the AC function is associated to the coherence index µ from Eq. (1.50), as it will
be seen later in the chapter.

3.1.1 Relation to compressive sensing

Taking into account the nature of the received signal, it can be analyzed as a signal in the
representation domain with basis functions

φk(n) = s(n− dk) exp
(
jωkin

)
, (3.9)
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and rewritten as

r(n) =
K∑
i=1

gkiφki(n) (3.10)

or in matrix form

r = Φg, (3.11)

The vector r is the received column vector of the echoed signal, and Φ is the matrix with
basis functions. The scattering coefficients g(k) = gk are within the column vector g =

[g(0), g(1), . . . , g(N2 − 1)]T .

In the compressive sensing sense, if the signal g consists of only few target points, it means
that there are only K nonzero coefficients in the full N ×N matrix, with K � N . Then, the
signal is considered as sparse. Since it is sparse, it can be recovered from the received samples
y

y = [r(n1), r(n2), . . . , r(nNA)]T (3.12)

or

y = Ag (3.13)

where the elements of A are from (3.5), i.e.,

ak,l = s(nl − dp) exp
(
jωqnl

)
, (3.14)

For a given scattering k, dp corresponds to the rearranged range coefficients and ωq is for
the rearranged cross-range coefficients. Note that, since N samples are transmitted, and the
results lies in the area of N ×N points, the number of measurements is naturally NA = N .

As mentioned in previous chapters, the initial estimation of the signal is performed using
the available observations

g0 = AHy (3.15)

or in element-wise form
g0(k) =

∑
ni∈NA

r(ni)a
∗
k,ni

. (3.16)

If r(ni) is replaced according to (3.10), we get

g0(k) =
∑
ni∈NA

K∑
i=1

gkiφpi,qi(ni)a
∗
k,ni

. (3.17)

Denoting the terms
∑

ni∈M φpi,qi(ni)a
∗
k,ni

by µ(k, ki)

µ(k, ki) =
∑
ni∈NA

φpi,qi(ni)a
∗
k,ni

=
∑
ni∈NA

s(ni − dk)s∗(ni − pi)ej2π(qi−q)ni/N , (3.18)
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the initial estimate will be

g0(k) =

K∑
i=1

gkiµ(k, ki). (3.19)

For a random set of measurements, the values µ(k, ki) and g0(k) are random variables
[53,75]. If the calculation is performed over all samples, i.e., ni = 0, 1, 2, . . . , N − 1, we get

µ(k, ki) =

N−1∑
n=0

s(n− dk)s∗(n− pi)ej2π(qi−q)n/N . (3.20)

It is important to note that, even by taking all samples, the set with measurements is small.
That demands the use of CS based reconstruction algorithms since the number of possible
target positions is N ×N = N2 � NA = N .

The maximal absolute value µ(k, ki), for k 6= ki, is associated to the coherence index of
the measurement matrix from (1.50), which, as mentioned, defines the condition for a unique
signal reconstruction. The uniqueness condition, as seen in (1.52) is K < (1 + 1/µ)/2.

In the case when all samples are taken, the analysis of the maximal absolute value µ(k, ki)

for qki = qk is reduced to the analysis of the AC function (3.8)

µ(k, ki) =

N−1∑
n=0

s(n− dk)s∗(n− pi), for qi = q. (3.21)

A good reconstruction performance in the compressive sensing sense can be expected when
the maximum absolute value of side lobes of the AC function |

∑N−1
n=0 s(n− dk)s∗(n− pi)| are

minimized (for dk 6= pi). Although strict, the coherence index µ(k, ki) can indicate the quality
of recovery we may expect from a certain sequence.

The whole expression for µ(k, ki) and k 6= ki reduces to the analysis of the ambiguity
function (AF) [76] which is defined as

AF (n, r) =
N−1∑
m=0

s(n+m)s∗(m)ej2πrm/N , (3.22)

for all n and r. It can be seen that (3.22) equals the AF of the Rihaczek distribution of the
sequence [5,6]. Then, the analysis of µ(k, ki) reduces to the estimation of the maximum value
of |AF (n, r)| for (n, r) 6= (0, 0), For (n, r) = (0, 0), the results is AF (0, 0) = µ(k, k) = 1. This
step will be important in the case of time-varying signals, which is discussed in Section 3.4.

3.1.2 Sequence forms and properties

In the literature, only the basic signal processing forms are used, such as the LFM signal, for
underwater transmission [70]. Instead of the basic forms, there are a vast of other sequence
forms which can be used for the transmission in sonar systems. Some of them will be repre-
sented with their key properties and further examined for the usefulness in the transmission.
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Six of them are presented in the next definitions. Discrete-time sequence, of length N , is
denoted by s(n), n = 0, 1, . . . , N − 1.

Definition 3.1
The Gaussian sequence is formed as

s(n) ∼ 1√
N
N (0, 1). (3.23)

The Gaussian sequence is one of the most commonly used sequence forms, whose properties
are well known in the literature. The auto-correlation (AC) of the Gaussian sequence is

Rs(n) = E{s(n+m)s(m)} = δ(n−m). (3.24)

Note that the AC function takes an approximative form for finite-duration sequences.

Definition 3.2
The binary Gaussian sequence is formed as [77]

s(n) ∼ 1√
N

sign(N (0, 1)). (3.25)

The signum of the Gaussian sequence is a simpler yet effective form of the Gaussian
sequence, resulting in only the sign part of the measurement. It may be considered as a
binary random sequence.

Definition 3.3
The Alltop sequence is first presented in [63,67]. It is formulated in the form of

s(n) =
1√
N
ej2π

n3

N . (3.26)

The property of this sequence is the small intensity of the side lobes in the auto-correlation
function, which are in the order of 1/

√
L. For the aperiodic AC function, the side lobes are

approximately similar to 1/
√
L as well.

Definition 3.4
The Bjorck sequence, for a prime number N > 2, N ≡ 1( mod 4), is formulated as [78,79]

s(n) =
1√
N

exp
(
j[(n/N)] arccos

( 1

1 +
√
N

))
, (3.27)

where [(n/N)] is the Legendre symbol that takes values ±1 and 0 as

[(n/N)] =


0, for n = 0 mod N

+1, for n is a qudratic residue mod N
−1, for n is a qudratic nonresidue mod N.



3.1. General sonar signal modelling 49

The Bjorck sequence, for a prime number N > 2, N ≡ 3( mod 4), is formulated as
[78,79]

s(n) =

 1√
N

exp
(
j arccos

(
1−N
1+N

))
, if [(n/N)]= −1

1, otherwise.
(3.28)

Definition 3.5
The maximum length sequence (or M sequence) is a pseudo-random binary sequence,
generated with linear-shift register using the recursive formula [80]

s(n) =
N∑
m=1

cms(n−m). (3.29)

The M sequence is a commonly used tool in the area of spread spectrum techniques in
digital communication systems. The two most frequently used systems are the direct-sequence
and frequency-hopping spread spectrum. Usually, it is normalized to get the energy in the N
samples equal to one. The values of the M sequence, −1/

√
N and 1/

√
N , occur approximately

equal times. For the sequence of length N = 2m−1 the number of 1/
√
N values is N/2, while

the number of −1/
√
N values is N/2− 1.

The periodic AC function of the M sequence is of the form

Rs(n) =

{
1, for n = kN

−1/N, elsewhere.
(3.30)

In the CS theory sense, the coherence indices of the measurement matrices formed from
the M sequences and the Alltop sequence are identical.

Definition 3.6
The Zadoff-Chu sequence is formed as [81,82]

s(n) =


1√
N

exp
(
− j 2πγ

N
n(n+2Q)

2

)
, N even,

1√
N

exp
(
− j 2πγ

N
n(n+1+2Q)

2

)
, N odd.

. (3.31)

where γ is integer such that the greatest common divisor gcd(γ,N) = 1 and Q is arbitrary
integer.

The discrete sequence forms in one cycle are shown in Figure 3.1 (left). Their main
properties depend on their AC functions, shown in Fig. 3.1 (right). Note that, except for
the Bjorck sequence (where the imaginary part is taken), we take the real part of all of them.
Also note that, the Bjorck and Zadoff-Chu are part of the group of the so-called constant
amplitude zero auto-correlation (CAZAC) sequences, since the side lobes of their periodic
auto-correlation function are almost zero-valued [83,84].

The absolute values of the ambiguity functions of the six sequences are shown in Fig.
3.2 (left). Even though Zadoff-Chu is a CAZAC sequence, showing good AC properties, it
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Figure 3.1: The transmitted disrete-time sequence forms s(n) (left); The corresponding auto-
correlation functions of the six sequences (right).
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produces values AF (m, r) = 1 for (m, r) 6= (0, 0). It can be seen from Fig. 3.2 that it cannot
be used for the analysis in the wideband sonar signal case. This will be further discussed. The
sequence forms with a reduced set of measurements is shown in Fig. 3.2 (middle) and their
corresponding AFs are shown in Fig. 3.2 (right).

3.2 Sequence selection

The selection of the sequences will be decided upon their reconstruction performances in var-
ious cases with different exhaustive statistical parameters. The sonar signal is represented by
various number of components (sparsity level K) and different number of available measure-
ments in a signal. Five cases for statistics were considered before taking the decision of the
most convenient sequence form.

Case 1: Percentage of detected targets.

Since our goal is the right targetting of the objects, the first experiment is based on the
precentage of detected components in the signals. Consider 1000 repetitions of the experiment
using the signal of the form (3.1). We consider that the transmitted signal is of length N = 31,
which is the equivalent to the number of available samples, i.e. NA = N . The number of target
components (which is equivalent to the sparsity level) is in the range 1 ≤ K ≤ 20.

This case experimentally shows that the Zadoff-Chu sequence is not suitable for the detec-
tion of components. In the case when a small noise is present in the signals, the Bjorck and
the M sequence show better results. In the case when the noise is high (i.e. SNR= 5dB and
SNR=0dB), all sequences show similar results.

Case 2: Error calculation.

Many problems which can arise in practice will cause a signal to be nonsparse. The most
realistic case is that the received signal is off the grid, making the targets randomly positioned.
According to Chapter 2, for the sonar signal case, the theoretical error is

Et = 10 log
(( K
NA

+ 1
)
‖g−gK‖

2
2 +K

N

NA
σ2
ε

)
. (3.32)

where gK is the vector of the same length as g, with the K nonzero targets at their positions
and zero-valued everywhere else. The statistical error is calculated as

Es = 10 log
(
‖g−gR‖

2
2

)
. (3.33)

The test is performed with 100 random realizations of nonsparse images. The signal length
is N = 31 withK = 5 target points. The available number of measurements is NA = N . Table
3.1 presents the statistical and theoretical results for each sequence form and two different
noise levels.
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Figure 3.2: The ambiguity functions of the full sequences (left); Transmitted sequence forms
with a reduced set measurements NA < N (middle); The AFs of the sequences with reduced
set of available samples (right).
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Table 3.1: Average reconstruction error of nonsparse images with K = 5 target points, NA =

N = 31 and SNR= 20, 5dB.

SNR= 20dB Gaussian Binary M seq. Alltop Bjorck
Statistics −12.43 −12.35 −13.57 −13.42 −12.62

Theory −12.35 −12.42 −13.62 −13.69 −12.88

SNR= 5dB Gaussian Binary M seq. Alltop Bjorck
Statistics −0.96 −0.88 −1.52 −1.37 −0.83

Theory −0.83 −0.93 −1.61 −1.92 −1.01

Case 3: Robustness on number of available measurements.

In the previous cases we use NA = N . Here, we will consider the number of available
samples NA that can be higher or lower than the length of the transmitted signal N . That is,
we consider the case when NA 6= N . Assume N = 31, with NA varying as NA = 8, . . . , 3N ,
taking the prime numbers. The results in 100 realizations for the Bjorck, Alltop and M-
sequence, are shown in Fig. 3.4, Fig. 3.5, and Fig. 3.6, respectively. For each sequence, noise
levels of SNR= 20, 5, 0 dB are considered.

Case 4: Randomly positioned targets.

The three most robust sequence from the previous cases, Alltop, maximum-length and
Bjorck, are further analyzed. Consider that six real targets are positioned randomly in an
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Figure 3.4: Successful reconstruction performance of the Bjorck sequence for different sparsity
levels K, number of measurements taken NA and noise levels with SNRs= 20, 5 dB (upper
row) and SNR=0 dB (lower row).

area of interest. More false targets are arriving due to different reasons, making the area
nonsparse by nature. Additionally, the environment is noisy the level of SNR=10 dB. The
noisy and nonsparse interest area is presented in Fig. 3.7 (top left). The reconstruction using
the Bjorck sequence is illustrated in Fig. 3.7 (top right). The reconstruction when M sequence
and Alltop sequences are used are presented in Fig. 3.7 (bottom).

Case 5: Real-world set-up.

In Fig. 3.8 (top left) an underwater boat set-up is modeled. We assume the sparsity level
is the number of target points needed to model the boat. Assume the number is K = 14, as
counted in Fig. 3.8 (top). Since the number of points is high, the sequence of length N = 31

cannot be used. The next available sequence length, satisfying the conditions for all three
considered sequences (Alltop, Bjorck and M sequence) is N = 127. Assume a noise level of
SNR=15 dB. The reconstruction when the M sequence is used is presented in Fig. 3.8 (top
right). The reconstruction results with the Alltop and Bjorck sequences are shown in Fig. 3.8
(bottom).
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Figure 3.5: Successful reconstruction performance of the Alltop sequence for different sparsity
levels K, number of measurements taken NA and noise levels with SNRs= 20, 5dB (upper
row) and SNR=0dB (lower row).

3.3 Real-data reconstruction

In this section, the challenge of the real data is analyzed. In summary of Section 3.2, consid-
ering all cases, the Bjorck sequence resulted in the best solution for further work. Therefore,
it will be used for the next experiments. It is concluded that the Zadoff-Chu sequence, due
to its quadratic nature, failed in the reception and reconstruction. Also, the Alltop and M
sequence performed very good and gave similar results. Therefore, for the practicality in the
implementation, the Alltop and Bjorck sequences will be used for the next experiments.

An underwater experimental setup is created in the rooms of the GIPSA Laboratory at INP
Grenoble. A water tank of 2 cubic meters was used for the experiment. An interferometer
transducer is used for the transmission and reception of signals. The interferometer was
supplied by the “ITER Systems” company from Annecy, France, with the operating frequency
of 468 kHz, and 100 kHz bandwidth. Note that the sequences are modulated to satisfy the
operating frequency range of the transducer. The transducer has one transmitter sensor and
four receiver sensors. However, since the goal is to examine the robustness of the CS theory
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Figure 3.6: Successful reconstruction performance of the M sequence for different sparsity
levels K, number of measurements taken NA and noise levels with SNRs= 20, 5dB (upper
row) and SNR=0dB (lower row).

to the real data, the results will be analyzed from only one receiver. The transducer was
fixed under the angle of 30o close to the water surface. The setup of the water tank, and the
individual instruments used for the experiment are presented in Fig. 3.9. The block diagram
followed for the experiment is illustrated in Fig. 3.10. According to the block diagram, the
setup includes steps such as the interpolation, modulation, filtering, and power amplifying of
the sequence. When the signal is received, the CS methods are applied.

The target as in Fig. 3.9 (bottom left) was put at the tank floor. The position of the target
to the transducer is illustrated in Fig. 3.11 and the real setup is shown in Fig. 3.9 (bottom
right). The Alltop and the Bjorck sequences are transmitted, modulated and interpolated, as
in Fig. 3.12. The received signals, when Alltop and Bjorck sequences are used, are shown in
Fig. 3.13 (first two rows). For comparison, a chirp sequence as in [70] is transmitted also. The
result, when the chirp sequence is used, is shown in Fig. 3.13 (third row). The reconstruction
using the matched filter (MF) is shown in Fig. 3.13 (middle column). The reconstruction
using the iterative version of the OMP algorithm is shown in Fig. 3.13 (right column).
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Figure 3.7: The reconstruction of a noisy nonsparse target area, with noise level of SNR=10dB
and target points K = 6: The nonsparse area of interest (top right); Reconstruction when
Bjorck sequence is used (top right), when M sequence is used (bottom left), and when Alltop
sequence is used (top right).

3.4 Time-varying cross-range detection

In the examples considered in previous sections, the velocity is defined as constant, and there-
fore stationary. In more realistic cases, the cross-range (velocity) is varying and has to be
detected so that the target can be successfully and truthfully found under this setup. If the
cross-range parameter is misdetected, the exact position and velocity of the target will not be
estimated accurately, leading to an incorrect reconstruction.

The time variations of target velocity can be written as ν+αt. Target velocity corresponds
to the cross-range of the received signal. Having the received signal in the form

r(n) =

K∑
i=1

gkiφki(n) (3.34)

will have the basis functions as

φki(n) = s(n− dki) exp
(
jωkin+ jαkin

2
)
. (3.35)
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Figure 3.8: The reconstruction of an underwater boat set-up, with noise level of SNR=15dB
and target points K = 14: The modelled area of interest (top right); Reconstruction when
M sequence is used (top right), when Bjorck sequence is used (bottom left), and when Alltop
sequence is used (top right).

According to (3.5), the basis function is

φp,q(n) = s(n− p) exp
(
j2πq

n

N
+ jαn2

)
. (3.36)

for (dp, ωq) = (p, 2π
N q). The elements of the measurement matrix are then

ak,l = s(nl − dp) exp
(
jωqnl + jαn2

l

)
. (3.37)

3.4.1 Decomposition and reconstruction

The technique for decomposition of targets in sonar signals is inspired by the idea of decom-
position of time-varying signals using the polynomial Fourier transform (PFT) in [85]. The
estimation of the parameter corresponding to the cross-range in wideband sonar signaks is the
aim of this analysis. When αi = α, the CS reconstruction will be successful. The parameter
α̃ ∈ a in µ(k, ki) is varied until the signal is maximally concentrated, i.e.,

α̃ = arg max
(k,α)
|g0α(k)|. (3.38)
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Figure 3.9: Real water tank setup: Water tank (top left); Transducer (top right); The shape
of the target (bottom left); Position of the target and transducer in the water (bottom right).

Figure 3.10: General block diagram of the experimental setup.

The solution of (3.38) is when α̃ is equal or close to the true value of α. The set a represents
the set of possible values for α̃.

For more target points (K > 1), the procedure is as follows:

• The set of possible parameters a is defined.

• The initial estimate, g0(k), is calculated for each value α̃ ∈ a.
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Figure 3.11: Illustration of the water tank setup: the position of the target to the transducer,
with an elevation angle of 30o.
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Figure 3.12: Real transmitted sequence forms, interpolated and modulated to operate under
the transducer characteristics: Alltop sequence (left), and Bjorck sequence (right)

• The parameter α̃ is found in such a way that the initial estimate is concentrated the
best by using (3.38).

• The value of µ(k, ki) is calculated using the determined parameter.

• The first component of gR is reconstructed with y and µ(k, ki).

• The reconstructed component is removed from the initial estimate, g0 − gR.

• The previous steps are repeated with the reconstructed component removed from y,
until all the parameters are determined and all K elements are reconstructed.

As an example, the analysis is performed using the Alltop sequence. The area of interest
is nonsparse and noisy, with K = 6 important target points and SNR of 10 dB. The procedure
is shown in Fig. 3.14. The original interest area is shown in Fig. 3.14 (top left). The recon-
struction result is illustrated in Fig. 3.14 (bottom right). The steps of the initial estimates
for each target point are presented in the remaining subplots of Fig. 3.14.
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Figure 3.13: Received signal - real data: Received signals with different sequence forms (left),
reconstruction with matched filter (middle), reconstruction with compressive sensing (right);
when the Alltop sequence is transmitted (top); when the Bjork sequence is transmitted (mid-
dle); when the chirp sequence is transmitted (bottom).

3.5 High-resolution decomposition

Another issue in the decomposition of signals is the separation of closed components (targets).
This can be solved by using high-resolution techniques developed for that matter. In practice,
the high-resolution techniques are frequenlty used in the direct-of-arrival (DOA) estimation
in the field of array signal processing [7, 85]. They can also be used in various engineering
problems [7, 86–89], such as the misalignment of the sensors [90]. Two of the methods, which
have shown in the literature to produce reliable results in separation, are Capon’s method and
Music Signal Classification (MUSIC) technique. They will be presented in the form that is
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Figure 3.14: The reconstruction of a nonsparse target area, with K = 6 main target points..
The noise level of the area is SNR=10dB: Original nonsparse area (top left); Reconstructed
target area (bottom right); Initial estimations for each target points (remaining subplots).
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adjusted for implementation using the time-frequency representations.

3.5.1 Problem formulation

Consider a LFM signal as a common case of a transmitted signal form

s(t) = A(t) exp
(
j2π(Ω0t+ cht

2)
)

(3.39)

where A(t) is the amplitude (slow-varying), Ω0 is the initial frequency and ch is the chirp rate.
The discrete signal s(n) with sampling interval ∆t is of the form

s(n) = A(n∆t) exp
(
j2π(nΩ0∆t+ n2ch(∆t)2)

)
. (3.40)

In Fig. 3.15, two schemes are presented. When the receiver is properly aligned with
transmitter, as shown in Fig. 3.15 (a), the received signal will be an attenuated and delayed
version of the transmitted signal. The problem arises when the receiver is not properly aligned
with the transmitter. This is shown in Fig. 3.15 (b). The solid line represents how the signal
was received, while the dashed line illustrates how the signal was supposed to be received.

Figure 3.15: The positions of the sensor: when the sensor is properly aligned with the receiver
(top); when the sensor is misaligned (bottom). Solid line represents the actually received
signal.

The misalignment causes false estimation of positions of the physical sensors [90]. Also,
vibrations in the environment can cause the sensors to misalign. The signal will then change
through the channel due to the dispersive nature. The received signal will change in both
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Figure 3.16: Transmitted signal with its spectrum (top); The received signal when the sensors
are misaligned (bottom).

time and frequency. If the received signal is assumed from two propagation paths, it will be
received as

r(n) = sr(n) ∗ h1(n) + sr(n) ∗ h2(n) (3.41)

where ′∗′ is the convolution of sr(n) with two transfer functions h1(n) and h2(n), coming from
the two propagation paths, respectively.

In general case, for two transfer functions, the received signal consists of two components.
For t1 ≈ t2, the recieved signal is a modulated version of the transmitted signal, i.e.,

r(t) ≈ 2A(t) cos
(
2πc(t1 − t2)t+ φ1

)
cos
(
2π(Ωt+ ct2)

)
. (3.42)

A special case is when the recieved signal is consists of two time-shifted versions of the trans-
mitted signal

r(t) = sr(t− t1) + sr(t− t2). (3.43)

The signal, with its corresponding spectrum, is presented in Fig. 3.16 (top). The received
signal and its corresponding DFT domain, are shown in Fig. 3.16 (bottom). As seen, the
two received components are closely positioned in both time and frequency. The aim is to
separate them in order to successfully reconstruct the original (transmitted) signal. Note that
the signal attenuation is neglected since our main interet is the signal form, which will make
the calculation of the attenuation caused during the transmission easier.
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3.5.2 High-resolution techniques

Recall the normalized STFT with a rectangular window of the width N

STFT (ω, n) =
1

N

N−1∑
m=0

x(n+ nw)e−j
2π
N
nwω =

1

N
aH(ω)x(n), (3.44)

where the vector notation of the basis functions and the signal are

a(ω) = [1, e−jω, e−2jω, . . . , e−(N−1)jω]T

x(n) = [x(n), x(n+ 1), . . . , x(n+N − 1)]T .

Note that the value ω is introduced instead of 2π
N k to increase the frequency axis density in

order to achieve high resolution.

Definition 3.7
The averaged Capon’s STFT is defined as [91,92]

SCAPON (n, ω) =
1

aH(ω)R̂−1
x (n)a(ω)

(3.45)

where
R̂x(n) =

1

N

∑
n

x(n)xH(n), (3.46)

is the autocorrelation matrix over N samples (ergodicity over N samples around n is assumed),
which comes from the power of the signal in the STFT representation domain.

By the eigenvector decomposition, the autocorrelation matrix can be written as

R̂x(n) =
1

N

∑
n

x(n)xH(n) = Λ(n)VH(n), (3.47)

where Λ(n) is the diagonal matrix with eigenvalues on its diagonals and V(n) is the matrix
whose columns are eigenvectors of the matrix R̂x(n).

Definition 3.8
The averaged MUSIC STFT is defined as [93]

SMUSIC(n, ω) =
1

aH(ω)VH
Se

(n)VSe(n)a(ω)
(3.48)

where VSe(n) is the eigenvector matrix with Se eigenvectors with lowest Se eigenvalues.

For a signal with time-varying component, the local form of the PFT and corresponding
STFT (local polynomial FT - LPFT) should be used with any of the high-resolution techniques
[7]. Let us consider a signal with quadratic phase

x(n) = Aej(α0n2+ω0n+φ0). (3.49)
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As in the case of polynomial Fourier transform, the Capon high-resultion method can
be further expanded to the LPFT by calculating the autocorrelation matrix with a signal
multiplied by an exponential factor exp(−jαn2

w), i.e.

xα(nw) = x(nw)e−jαn
2
w . (3.50)

The parameter α is estimated as the maximal concentration value of

LPFTα(k, n) =
1

N
aH(ω)xα(n) (3.51)

as
α = arg max

α
|LPFTα(ω, n)|. (3.52)

For the optimization of the parameter, we can use the concentration measures such as α =

arg minα ||LPFTα(ω, n)||1. Since the LPFT is biased in amplitude when greatly concentrated,
it would not be appropriate to use it for the concentration comparison of different parameters
α. Therefore, for the comparison, the standard LPFT is used. The local AC function is
calculated using a sliding window function with the optimally found parameter α

R̂x(n,Nw, α) =
1

Nw + 1

n+Nw/2∑
nw=n−Nw/2

xα(nw)xα
H(nw) (3.53)

where Nw is the width of a symmetric sliding window.

Definition 3.9
The optimal local Capon’s representation is defined by [7,92]

LPFTCAPON (n, ω) =
1

aH(k)R̂−1
x (n,Nw, α)a(ω)

. (3.54)

In the same way, the local representation of the MUSIC algorithm can be presented by
using the eigenvectors of the autocorrelation function of the windowed signal x(nw).

3.5.3 Examples

Assume that a signal of the form (3.40) is transmitted, with frequency range between fmin = 40

Hz and fmax = 98 Hz, sampled at frequency fs = 1024 Hz. The decomposition of the signal
is performed and compared using the standard, Capon’s and MUSIC spectrogram, together
with their local forms. A rectangular window is used for the analysis of local forms. The
window is of length Nw = 64. For the MUSIC calculation, we have used the Se = 100 lowest
eigenvectors for the STFT decomposition, and Se = 2 for each windowed function in the
LPFT decomposition. The decomposition of the signal is presented in Fig. 3.17. An one
time-instant of Fig. 3.17 is presented in Fig. 3.18, where it is visible that the two components
can be separated using the local forms of Capon’s and MUSIC high-resolution techniques.

From Fig. 3.17, it can be seen that two components are successfully separated by the local
forms of the high-resolution techniques, i.e. Capon’s and MUSIC, while other approaches
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Figure 3.17: Decomposition of the signal using high-resolution techniques: standard STFT,
i.e., the spectrogram (top left), standard LPFT (top right), Capon’s STFT (middle left),
and Capon’s LPFT (middle right), standard MUSIC STFT (bottom left), and MUSIC LPFT
(bottom right).

result in aa modulated single component signal. The local MUSIC representation shows the
best result in the sense of distinguishing the two components. However, the local Capon’s
representation is much stronger and computationally more efficient for any further analysis.
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local Capon’s representation (middle) and in the local MUSIC representation (bottom).
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The decomposition and reconstruction of signals transmitted through a dispersive channels
are analyzed in this Chapter. Dispersive channels are characterized by multi-component and
multi-phase signals, even when the transmitted signal is of a simple form. The problem of the
decomposition and localization of signal component in dispersive channels is an intensively
studied research topic. The warping techniques have showed interesting and promising results
in the decomposition and reconstruction of normal modes of the signal. The characterization
of the signal propagating trough dispersive channels was also analyzed in [94]. The problem
of localization of these signal using the phase-continuity of the signals was studied in [95].

After the transmission through a dispersive environment, the signal consists of several
components called modes. These modes are non-stationary due to frequency dependent prop-
erties of the media for signal propagation. Therefore, the standard Fourier transform is not
suitable for the implementation on such signals. Since the frequency variations can be ap-
proximated by a polynomial function, the natural choice for the methods developed in this
thesis is the polynomial Fourier transform (PFT). Since the number of important modes is
small, the non-stationary signals in dispersive channels can be considered as sparse in the
PFT domain. The analysis of the sparse signals in the PFT domain is quite specific since
the transformation basis functions are not orthogonal [96]. After the PFT analysis, it has be
found that the dual form of the PFT is a more appropriate domain for the analysis of the

69
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signal in dispersive channels. This form of the PFT is examined and the sparsity property is
employed reconstructing the signal with a small number of available samples.

Since the dual PFT is only an approximation of the signal modes, the next step was to use
the exact normal mode form as the sparsity domain and the domain of analysis of dispersive
channel signals. Therefore, the second considered approach is based on the decomposition of
the exact modes of the dispersive channel signals. The modal-function based decomposition
is adapted and used in the analysis at last.

4.1 Shallow water theory and dispersive channels - background

Shallow waters are of great research interest for many years [94, 97–108]. Typically, shallow
waters are defined by the depth of the sea/ocean which is not greater than D = 200 meters.
Also, signals traveling through water have a faster speed than signal traveling through air
(where the speed is c = 380m/s). The exact speed of sound in water depends on many factors
such as the salinity or the temperature of the water, but it can be generally approximated at
c = 1500m/s. This, consequently, makes their wavelengths λ much shorter, usually D � λ,
with D being the shallow water channel depth. The reason they attract the researches is the
extremely complex analysis of such setups.

The complexity of the problem depends on many factors, such as the volume and bottom
properties. Further, the noise in shallow water occurs due to the many activities happening
on the coastlines and surface of the sea, which causes cavitations in the sea itself. Thus, it can
be concluded that shallow waters are more dispersive than deep waters. Dispersivity occurs in
underwater channels due to the roughness of the bottom, the strength of the waves, the cavity
level of the water and many other reasons. The main characteristics of dispersive channels is
that they are frequency dependent. The frequency characteristics (phase and spectral content)
change during the transmission of the signal.

The propagation of sound in shallow water environment is mathematically represented
by the wave equations. For the analysis, let consider the wave equation of the displacement
potential ψ in free space [99,109]

∇2ψ +
1

c2

∂ψ

∂t2
= 0, (4.1)

where∇ presents the Laplacian operator for the considered coordinate system. If the Cartesian
coordinate r = (x, y, z) system is assumed, the Laplacian operator is defined by

∇2ψ =
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
. (4.2)

Accordingly, for the cylindrical coordinates system, with coordinates (r, θ, z), the Laplacian
operator will be

∇2 =
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2

∂2

∂θ2
+

∂2

∂z2
. (4.3)
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It is usual in the theory that the displacement potential is not azimuth dependent, reducing
the analysis from (r, θ, z) to (r, z).

If we assume a pressure term of a point source (for example, an underwater source, i.e., a
target), the wave equation becomes inhomogeneous

∇2ψ(r, t)− 1

c2

∂2ψ(r, t)

∂t2
= f(r, t), (4.4)

where f(r, t) presents the volume injection in coordinate system r at time t. Using the Fourier
transform pair

f(t) =
1

2π

∫ ∞
−∞

F (ω)e−jωtdω (4.5)

F (ω) =

∫ ∞
−∞

f(t)ejωtdt (4.6)

we can get a frequency and space domain wave equation

∇2Ψ(r, ω) +
ω2

c2
Ψ(r, ω) = F (r, ω), (4.7)

where Ψ(r, ω) is the Fourier transform of ψ(r, t) and F (r, ω) is the Fourier transform of f(r, t).
Note that the Fourier transform of ∂

2ψ(r,t)
∂t2

is equal to −ω2Ψ(r, ω). Using the notation

k =
ω

c
, (4.8)

the Helmholtz equation
∇2Ψ(r, ω) + k2Ψ(r, ω) = F (r, ω), (4.9)

is obtained.

As an example, we can consider a plane in the Cartesian coordinates along x-axis, which
does not depend on the coordinates x and z, when the wave equation Eq. (4.9) with F (r, ω) =

0, assumes the form
∂2Ψ(x, ω)

∂x2
+ k2Ψ(x, ω) = 0. (4.10)

It results in the solution
Ψ(x, ω) = Aejkx +Be−jkx (4.11)

where k = ω/c is the wave vector as in Eq. (4.8). When B = 0, the wave is propagating
directly in direction of r. When A = 0, the wave propagates against the direction r [99, 109].

In the cylindrical case, if we assume that only the range r changes, the homogeneous wave
equation reduces to [1

r

∂

∂r

(
r
∂

∂r

)
+ k2

]
Ψ(r, ω) = 0 (4.12)

resulting in Bessel functions

Ψ(x, ω) = AJ0(kr) +BY0(kr) (4.13)
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The result can be related to the Hankel functions as

Ψ(x, ω) = CH
(1)
0 (kr) +DH

(2)
0 (kr) (4.14)

= C[J0(kr) + jY0(kr)] +D[J0(kr)− jY0(kr)], (4.15)

where

H
(1)
0 (kr) ≈

√
2

πkr
ej(kr−π/4) (4.16)

H
(2)
0 (kr) ≈

√
2

πkr
e−j(kr−π/4). (4.17)

These results can be approximated as

Ψ(r, ω) = A
ejkr

r
+B

e−jkr

r
. (4.18)

Assuming only direct wave (when B = 0), we can write that

Ψ(r, ω) = A
ejkr

r
, (4.19)

and, by using the derivation of the surface displacement [99], calculate that

Ψ(r, ω) = −Sω
ejkr

4πr
, (4.20)

where Sω is the strength of the source. Note that

gω(r, 0) =
ejkr

4πr
(4.21)

is the definition of the Green’s function. For a source at rt = (rt, zt), the general Green’s
function is defined by

gω(r, rt) =
ejk|r−rt|

4π|r− rt|
. (4.22)

4.1.1 Normal mode solution

In the underwater acoustics, there are four main methods of deriving the solution for a wave
equation: fast field program, normal modes, ray theory, and the parabolic equation model
[99,104]. In this thesis, normal mode solution will be analyzed, as one of the most widely used
solutions in underwater acoustics. It is based on solving depth-dependent equations using the
method of variable separation.

The general model of the environment is presented in Fig. 4.1. The boundary of the
bottom depends on the nature of the ocean, such as the roughness, depending on the weather
conditions and different environment in the ocean itself. This will introduce more layers of the
seabed. Also, the scattering of the transmitted signal can cause a non-ideal environment for
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the analysis. The isovelocity waveguide model, which is presented in Fig. 4.2, characterizes
a rigid boundary of the seabed. This yields to an ideally spread velocity of c. All channel
models are based on the fact that the structure of the channel is a waveguide, with multiple
normal-modes received, representing delayed versions of the transmitted signal. The goal is
to estimate and decompose the received signal, by finding each mode separately.

Figure 4.1: The general model of a shallow water environment [106].

Figure 4.2: The isovelocity model of a shallow water environment [106].

The one-point received pressure field y from a point source located at depth zt and range
r = 0 is defined by the Helmoltz equation

1

r

∂

∂r

(
r
∂y

∂r

)
+ ρ(z)

∂

∂z

( 1

ρ(z)

∂y

∂z

)
+

ω2

c2(z)
y = −δ(r)δ(z − zt)

2πr
. (4.23)

Using the method of variable separation, we can write the pressure as product of two functions
one dependent on range r and another one dependent on depth z

y(r, z) = Q(r)G(z). (4.24)
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By substituting this form into Eq. (4.23) and considering only its homogeneous part, we get

1

Q

[
1

r

(
r
dQ

dr

)]
+

1

G

[
ρ(z)

d

dz

(
1

ρ(z)

dG

dz

)
+

ω2

c2(z)
G}

]
= 0. (4.25)

Note that this equation has two terms 1
Q

[
1
r

(
r dQdr

)]
and 1

G

[
ρ(z) ddz

(
1
ρ(z)

dG
dz

)
+ ω2

c2(z)
G}
]
. The

first term is a function of coordinate r only, while the second term is a function of coordinate
z only. Their sum can be zero only if both of them are constant and do not depend on r and
z. This constant is called the separation constant and denoted by k2

rm, where m presents the
mode index.

Now, by equating the second part of the last wave equation with this constant k2
rm we get

1

Gm

[
ρ(z)

d

dz

(
1

ρ(z)

dGm
dz

)
+

ω2

c2(z)
Gm

]
= k2

r(m,ω) (4.26)

or

ρ(z)
d

dz

[
1

ρ(z)

dGm(z)

dz

]
+

[
ω2

c2(z)
− k2

r,m(m,ω)

]
Gm(z) = 0. (4.27)

Note that G(0) = 0 and dG
dz |z=D = 0, where D is the ideal rigid bottom. It is interesting to

note that the modal equation is a Sturm-Liouville problem [110] whose properties are well-
studied. The modes are orthogonal and the pressure function can be written as their sum

y(r, z) =

∞∑
m=1

Qm(r)Gm(z). (4.28)

The modal equation, for this sum of the modes, can be written as

∞∑
m=1

{
1

r

d

dr

(
r
dQm(r)

dr

)
Gm(z) + k2

r(m,ω)Qm(r)Gm(z)

}
= −δ(r)δ(z − zt)

2πr
. (4.29)

By multiplying this equation with Gn(z) and using the property that the modes are normal
for the considered interval of z, the following equation is obtained

1

r

d

dr

(
r
dQn(r)

dr

)
+ k2

r(n, ω)Qn(r) = −δ(r)Gn(zt)

2πr
. (4.30)

Its solution is given by the Hankel function

Qn(r) =
j

4ρ(zt)
Gn(zt)H

(1,2)
0 (kr(n, ω)r). (4.31)

Ignoring the time dependence for now, we can conclude that

y(r, z) =
j

4ρ(zt)

∞∑
m=1

Gm(zt)Gm(z)H
(1)
0 (kr(m,ω)r). (4.32)
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By approximating the Hankel function, the final value for pressure will be

y(r, z) ≈ j

4ρ(zt)
√

8πr
e−jπ/4

∞∑
m=1

Gm(zt)Gm(z)
ejkr(m,ω)r√
kr(m,ω)

. (4.33)

In terms of signal processing [105, 106], considering the time dependence of the solution,
with a source pressure field x(t), the normal-mode solution to the Helmholtz equation in Eq.
(4.23) can be rewritten for the pressure release as

∇

(
1

ρ(z)
∇y(r, z, t)

)
− 1

ρ(z)c2(z)

∂2y(r, z, t)

∂t2
= −x(t)

δ(r)δ(z − zt)
2πr

. (4.34)

When the range and the depth parameters are known, the acoustic pressure of the received
signal can be reduced to y(t). Following the approximation of the Hankel function to the
received pressure in Eq. (4.33), the corresponding FT is

Y (ω) = X(ω)
C

ρ(zt)

∞∑
m=1

Cm(ω)
ejkr(m,ω)r√
kr(m,ω)r

. (4.35)

where the constant C is
C =

j

4
√

8πr
e−jπ/4 (4.36)

and the frequency-dependent shape function Cm(ω) is

Cm(ω) = Gm(zt)Gm(z). (4.37)

since Gm(zt), Gm(z) are dependent on ω. In the isovelocity case, the general solution is

Gm(z) = A sin(kzz) +B cos(kzz), (4.38)

where

kz =

√(ω
c

)2
− k2

r , (4.39)

is the vertical wavenumber. The aim of this thesis is to introduce a novel approach of decom-
position, reconstruction and analysis of the modes using techniques of compressive sensing,
described in Chapter 2.

4.2 Problem formulation - signal processing approach

For the practical setup, it is assumed that the transmitter is placed in water at the depth zt.
This wave is assumed to be transmitted through an isovelocity channel as in [94,95,97,101–103].
The setup is presented in Fig. 4.3. The receiver is places at zr meters in water. The value r
presents the distance from the transmitter to the receiver. Considering the received spectrum
Eq. (4.35), the transfer function of the channel in the normal-mode case is

H(ω) =
+∞∑
m=1

Gm(zt)Gm(zr)
exp(jkr(m,ω)r)√

kr(m,ω)r
=

+∞∑
m=1

At(m,ω) exp
(
jkr(m,ω)r

)
, (4.40)
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where Gm(zt) is the transmitter modal function of the m-th mode and Gm(zr) is the modal
function of the m-th mode corresponding to the receiver [95,105,111]. The rate of attenuation
is At(m,ω) = A(m,ω)/

√
r. The multi-component structure of the transfer function depends

on the number of modes. Note that the dispersive characteristic of the signal depends on the
wavenumbers kr(m,ω) kr(m,ω) [95]

k2
r(m,ω) =

(ω
c

)2
−
(

(m− 0.5)
π

D

)2
. (4.41)

The speed of sound in underwater communications is c = 1500 m/s. The response to a
monochromatic signal,

s(n) = exp(jω0n) (4.42)

at the m-th mode, is

sm(n) ≈ At(m,ω0) exp(jω0n− jkr(m,ω0)r). (4.43)

Figure 4.3: The isovelocity setup under water with depth D. The transmitter is located at
position zt, the receiver is positioned at zr, with the transmitter-receiver range r [95].

The phase velocity of this signal is

νm =
ω

kr(m,ω)
=

ω√(
ω
c

)2 − ((m− 0.5) πD
)2 , (4.44)

and presents the horizontal velocity of the corresponding phase in the representation of the
m-th mode.

The group velocity represents the energy propagation of the component of the signal.
Considering the time dependence of the signal,

y(t) =

∫ ω+ε

ω−ε
Y (ω)e−j[ωt−kr(m,ω)r]dω, (4.45)
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and the fact that the phase must stay the same in order to have the signal remain unchanged
through the whole time interval, the group velocity is defined as

um =
dr

dt
=

dω

dkr(m,ω)
=

1
dkr(m,ω)

dω

=
1

d
dω

√(
ω
c

)2 − ((m− 0.5) πD
)2 . (4.46)

Since the received signal can be written in the Fourier transform domain as

X(ω) = S(ω)H(ω), (4.47)

where H(ω) is the transfer function of the channel in the normal-mode form and S(ω) is the
transmitted signal Fourier transform, within signal processing framework the time-domain
form of the received signal is then equal to the convolution of the transmitted signal and the
impulse response of (4.40), that is

x(n) = s(n) ∗ h(n), (4.48)

where h(n) is the impulse response of (4.40).

Amplitude of the first four modes of the impulse response of a dispersive channel environ-
ment and its ideal time-frequency representation is calculated and shown in Fig. 4.4. Our first
goal is to present efficient tools for decomposition of mode functions. This will help to easier
detect and estimate the signal parameters. The detection approaches related to this kind of
problems will be introduced in the next sections.
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Figure 4.4: The ideal response of the four considered modes.

4.3 Polynomial Fourier transform (PFT)

The standard Fourier transform is spread in the frequency domain for the signal with polyno-
mial phase function. The idea behind the polynomial Fourier transform (PFT) is to introduce
a polynomial function in the Fourier transform whose adjustment would improve a polynomial
phase signal concentration in the frequency domain.
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Let assume a polynomial phase signal (PPS). The signal is of order P , presented in the
form of

x(n) = Aej
2π
N

∑P
l=1 aln

l
. (4.49)

The standard Fourier transform of x(n) is

X(k) =
∑
n

x(n)e−j
2π
N
kn, (4.50)

would contain all frequencies defined by the instantaneous frequency variations of the polyno-
mial phase signal.

Definition 4.1
The PFT is defined starting from DFT and introducing an additional polynomial phase pa-
rameters [112–114]

Xα2,α3,...,αP (k) =
∑
n

x(n)e−j
2π
N

(α2n2+α3n3+...+αPn
N )e−j

2π
N
kn. (4.51)

The PFT parameters are denoted by α2, α3, ..., αP .

The aim is to estimate the parameters α2, α3, ..., αP when the transformation of the signal
is largely concentrated. The signal components can be extracted and localized following this
procedure [7, 85].

When the largest component of the transform is found, the signal will be maximally concen-
trated in the PFT representation domain. That is, when the PFT signal is best concentrated,
we can find optimal PFT parameters as

(â2, â3, ..., âP ) = arg max
(k,α2,...,αP )

|Xα2,...,αP (k)|. (4.52)

to achieve the maximum sparsity. In the ideal scenario, the PFT of x(n) will have the highest
concentration when (α2, ..., αP ) = (a2, ..., aP ). In reality, the goal is to calculate the values to
be as close as possible to the ideal parameters, i.e., a2 ≈ â2, . . . , aP ≈ âP .

4.3.1 Local polynomial Fourier transform (LPFT)

For time-varying signals, when the parameters may change in time, a localized versions of the
PFT is introduced in the same way as the STFT is defined by using the Fourier transform.
Spectral localization of the signal is achieved applying a window and calculating the PFT of
the windowed signal to get the local PFT (LPFT).

Definition 4.2
The LPFT is defined as [7,115]

Xα2,α3,...,αP (k, n) =
∑
m

x(n+m)w(nw)e−j
2π
N

(knw+α2n2
w+...+αPn

N
w ). (4.53)

where w(nw) is the window function for the localized signal analysis.
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In the same way as for the PFT, the maximum of LPFT is achieved when

(â2, â3, ..., âP ) = arg max
(k,α2,...,αP )

|Xα2,...,αP (k, n)|, (4.54)

where α2, α3, ..., αP are the parameters that can now be adapted for each considered instant
n. However, in order to simplify the notation we will not use argument n in the parameters
in this case.

4.4 Dual form of PFT (DPFT)

The dual form of PFT (DPFT) is introduced as a more suitable representation for the de-
composition of signals when their spectral content is localized within a short time-interval,
while the changes of their spectral content are significant. As it is the case for both PFT and
LPFT, the idea is to estimate the parameters where the maximal concentration of the DPFT
is calculated.

The signal model is a polynomial-phase in the frequency domain,

X(k) = Ae−j
2π
N

∑P
l=1 blk

l
. (4.55)

The discrete DPFT will then be

xβ2,β3...,βP (n) =
∑
k

X(k)ej
2π
N

(nk+β2k2+...+βP k
P ). (4.56)

The maximum of DPFT is achieved when

(b̂1, b̂2, ..., b̂P ) = arg max
(n,β2,...,βP )

|xβ2,...,βP (n)|. (4.57)

The highest concentration is calculated when the estimated values are equal to the true
ones, i.e., (β2, ..., βP ) = (b2, ..., bP ). For a successful decomposition, the parameters should be
estimated such that b̂2 ≈ b2, . . . , b̂P ≈ bP .

Note that a local version of the DPFT may be used for the analysis of more complex
time-varying signals. The local DPFT uses a window in the frequency domain W (k) and it is
defined as

xβ2,β3...,βP (n, k) =
∑
l

W (l)X(k + l)ej
2π
N

(nl+β2l2+...+βP l
P ). (4.58)

4.4.1 Sparsity in DPFT

Signals with a small number of polynomial phase components, considered in the previous sec-
tion, may be considered as sparse in the DPFT. These signals can be efficiently decomposed
and analyzed using the compressive sensing methods. Note that the CS approach can be
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applied even in the cases when not all signal samples in the Fourier transform are available,
allowing application in denoising of acoustic signals corrupted with high sinusoidal interfer-
ences (clutter). These frequency samples are removed, declared as unavailable, and the signal
is reconstructed using the undisturbed frequency values, as it will be shown in the examples.

Consider that the Fourier transform of a signal X has a reduced number of available
samples, for example, due to denoising procedure on harmonic disturbances. Let consider the
PPS from (4.55)

X(k) = Ae−j
2π
N

∑P
l=1 blk

l
= Ae−j

2π
N

(b1k+b2k2+···+bP kP ) (4.59)

and its samples at k ∈ {k1, k2, . . . , kNA} = NA. The initial estimate of the P -order DPFT of
a signal whose Fourier transform is X(k), using a reduced set of its samples, is

xβ2,...,βP (n) =
∑
k∈NA

X(k)ej
2π
N

(nk+β2k2+···+βP kP ) (4.60)

Assume that the parameters β2, β3, . . . , βP are correctly estimated, so that the DPFT
achieves the maximum concentration. The DPFT of a single-component signal is then

xb2,...,bP (n) =
∑
k

Aej
2π
N
k(n−b1) = Aδ(n− b1). (4.61)

Having only one component, with the rest of the spectrum being zero-valued, we can conclude
that it is sparse. In the multicomponent signals case

X(k) =

M∑
m=1

Ame
−j(b1mk+b2mk2+···+bPmkP ), (4.62)

set of parameters is iteratively estimated separately for each component individually. Without
loss of generality, we consider that the component amplitudes are decreasing, i.e. A1 > A2 >

· · · > AM . The first component is matched with

(β21, . . . , βP1) = (b21, . . . , bP1). (4.63)

After the first match, other components are considered as insignificant. The measurements
matrix is found from (4.60) assuming only the available samples at k ∈ NA. The relation for
various values of n is 

xb21,...,bP1
(n1)

xb22,...,bP2
(n2)

...
xb2K ,...,bPK (nK)

 = AH
K


X(k1)

X(k2)
...

X(kNA)

 (4.64)

where the matix AK is defined by

AK =


e−j

2π
N

(n1k1+φ1) · · · e−j
2π
N

(nKk1+φ1)

...
. . .

...
e−j

2π
N

(n1kNA+φNA ) · · · e−j
2π
N

(nKkNA+φNA )

 (4.65)
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with
φi = k2

i b21 + · · ·+ kPi bP1 (4.66)

for i = 1, . . . , NA. Using the available coefficients of X(k), k ∈ NA, the nonzero values in time
[xb21,...,bP1

(n1), xb22,...,bP2
(n2), . . . , xb2K ,...,bPK (nK)] are reconstructed using the CS algorithm

from Section 1.3.1. The first component is calculated as

x1 = (AH
1 A1)−1AH

1 y. (4.67)

When the first DPFT component at n1 is recovered, the remaining coefficients of X(k) are
estimated for the first element. Then, the first component is deleted from the set of available
measurements and the algorithm is repeated for the next coefficient. After its parameters are
found and denoted by (β22, . . . , βP2) = (b22, . . . , bP2), both the first and second component
are reconstructed simultaneously. The components are reconstructed using

(β21, . . . , βP1) = (b21, . . . , bP1), and (β22, . . . βP2) = (b22, . . . , bP2) (4.68)

and the components are removed for the further estimation of the remaining components. The
procedure is repeated for all ni. Note that, if the DPFT values are off-grid, we may use few
samples around the position ni for a more accurate reconstruction. The stopping criterion of
the reconstruction is defined by the desired error rate.

The results of the decomposition are single components of a non-stationary signal. The
analysis of the signal will be done in the frequency domain, using the dual version of the
STFT, since all examined modes are spread over a broad spectrum of frequencies. The dual
STFT is defined by

STFTD(k, n) =

Ns/2−1∑
p=−Ns/2

X(p− k)W (p)ej
2π
Ns
pn. (4.69)

where Ns is the length of the window in the frequency domain.

Following the form of the S-method (1.19), the dual S-method is then

SMD(k, n) =
L∑

i=−L
STFTD(k, n+ i)STFT ∗D(k, n− i). (4.70)

4.4.2 Results

Three examples, showing the efectivness of the proposed method, are presented. The algorithm
used for the reconstruction is the OMP algorithm explained in Section 2.1.

Example 1: Ideal polynomial phase signal with sinusoidal disturbances.

Let consider the case when the polynomial phase structure of signal is fully satisfied (4.55).
Assume that the received signal consists of four components (modes).

X(k) = X1(k) +X2(k) +X3(k) +X4(k), (4.71)
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where

X1(k) = ej
2π
N

(150k+0.06k2),

X2(k) = ej
2π
N

(180k+0.015k2+0.00009k3),

X3(k) = ej
2π
N

(300k+0.00008k3),

X4(k) = ej
2π
N

(480k+0.035k2+0.0001k3).

The frequency index range is k = 0, . . . , N − 1 with N = 1024. The time domain of the signal
is presented in Fig. 4.5 (top left). The corresponding frequency domain of the signal (4.71),
is shown in Fig. 4.5 (top right). Assume that NQ = 256 of samples in the frequency domain
are corrupted by strong sinusoids, resulting in the signal

xd(n) = x(n) +

NQ∑
l=1

Bie
j(ωln+ψl). (4.72)

Time and frequency domains of the corrupted signal are illustrated in Fig. 4.5 (middle). The
first goal is to detect and remove the strong periodic disturbances from the signal. In order
to filter the signal, a simple notch filter is used to set to zero the disturbed components (i.e.,
hard thresholding). The filtered signal, in time and frequency domain, is illustrated in Fig.
4.5 (bottom).

The decomposition is performed using the DPFT according to the definition (4.60), assum-
ing the third-order DPFT. The parameter β2 is varied between −0.2 to 0.2 and β3 between
−0.3 to 0.3. The parameter values where the DPFT gives the best concentration for each
mode are detected in an iterative way. When the first set of parameters β2, β3 is found, the
peak in the DPFT corresponds to a single component with these parameters. The component
can be dismissed from the DPFT and the estimation of the remaining components is contin-
ued. The DPFT decomposition of the four modes is shown in Fig. 4.6, with the estimated
β2, β3 presented in Table 4.1.

Table 4.1: Parameters β2, β3 for each mode corresponding to the DPFT where the maximal
concentration is achieved in the ideal case.

Parameters/Mode 1 2 3 4

β2 0.1232 0.1888 0.0600 0.1536
β3 0.0132 0.0168 0.0000 0.0144

For the TF representation, we have used the S-method with L = 31 and Hanning window
of length Nw = 256. The S-method of the received signal is showin in Fig. 4.7 (top left).
The decomposition of the four reconstructed components in the S-method represantion is
presented the next four subplots of Fig. 4.7. The sum of the normalized representations of the
four modes is presented in Fig. 4.7 (bottom right). For the comparison, the original (without
noise) and the reconstructed signal in time-domain are shown in Fig. 4.8.
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Figure 4.5: Ideal case scenario: Time domain received signal (left); received signal in the
frequency domain (right): the recieved signal without disturbance (top), the recieved signal
with disturbance (middle), the signal with filtered disturbances (bottom).

Example 2: Decomposition of a simulated acoustic signal.

The acoustic signal, interpreted in Section 4.2. will be used for the decomposition. Note
that this signal is not characterized by the ideal polynomial phase structure, but rather it can
be approximated by a polynomial phase signal.

A simple one-component LFM as in (4.42) is transmitted over a dispersive media. The
dispersive channel consists of M = 4 modes. The received signal is of form (4.48). It depends
on (4.40) and (4.41). The amplitude attenuates by Am = (6 −m)W (f), where W (f) is the
frequency response of the Hanning window of length Nw = 256. The depth of the dispersive
channel is assumed to be D = 20 meters. The distance between the transmitter and receiver
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Figure 4.6: Decomposition of the components using DPFT in the ideal case.

is r = 2350 meters. The frequency range is fmin = 195 Hz and fmax = 430 Hz. The received
signal is presented in Fig. 4.9 (top left).

The DPFT of the third order is used for the analysis, and the parameters β2, β3 are varied
between −0.2 to 0.2 and −0.3 to 0.3, respectively. The estimated parameters are presented
in the Table 4.2. The DPFT mode decomposition is illustrated in Fig. 4.9.

Table 4.2: Parameters corresponding to the maximal DPFT values for each mode in the
simulated acoustic case without disturbances.

Parameters/Mode 1 2 3 4

β2 -0.0380 -0.0400 0.1780 0.1240
β3 -0.0180 -0.0420 -0.1530 -0.2340

The Hanning window of size Nw = 512 is used for the dual STFT, while for the dual S-
method L = 63 is used. The S-method of the received modes is shown in Fig. 4.10 (top left).
The sum of the four normalized component representations is presented in Fig. 4.10 (bottom
right). The S-method decomposition of the four modes, obtained by the DPFT before the CS
theory, is presented in the remaining subplots of Fig. 4.10.

Example 3: Acoustic signal with strong disturbances.

Assume the signal Example 2, affected by high sinusoidal interferences according to (4.72).
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Figure 4.7: S-method decomposition of the components in the ideal case.
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Figure 4.8: Comparison of the signals in the ideal case: The original signal (left); the recon-
structed signal (right).
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Figure 4.9: Time-domain mode decomposition: Received signal (top left); Sum of the recon-
structed modes (bottom right); Optimal DPFT estimation for each mode separately (remain-
ing subplots). Red circles - samples related to the corresponding mode.

Assume the case same as in previous example, with Am = 1. The received signal without
intereferences is illustrated in Fig. 4.11 (top). It is assumed that the received signal has
high-impulse intereferences in the frequency domain in 25% of the spectrum. The corrupted
received signal is shown in Fig. 4.11 (middle).

As in Example 1, the affected components are removed using hard thresholding, and the
corrupted spectral sampled are considered as not available. Time and frequency domains of
the filtered received signal are presented in Fig. 4.11 (bottom).

After filtering, the estimation of the parameters is achieved using a third-order DPFT,
illustrated in Fig. 4.12. The parameters β2 and β3 are varied within the range −0.7 to 0.7.
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Figure 4.10: S-method of the decomposed modes and sum of the normalized representations
of all modes in the simulated acoustic case without disturbances

The estimated DPFT parameters β2, β3 can be found in Table 4.3.

The S-method of whole signal and individual modes given in Fig. 4.13. The comparison
between the received signal, when no noise is present, and the final reconstructed signal are
presented in Fig. 4.14.

It can be concluded that it is possible to decompose and recover original values of the
acoustic samples using the CS techniques for reconstruction of reduced set of samples in the
frequency domain. It is seen that the obtained results are similar to the results obtained in
Example 2, i.e., when the signal without intereferences is examined.
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Table 4.3: Parameters corresponding to the maximal DPFT values for each mode in the
acoustic simulated case with disturbances.

Parameters/Mode 1 2 3 4

β2 0.2576 0.3556 0.5712 0.1288
β3 -0.1764 -0.1232 -0.3584 -0.0812
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Figure 4.11: Simulated acoustic signal with disturbances: Signals in the time domain (left);
Signals in the frequency domain (right): Received signal without disturbances (top), received
signal with disturbances (middle), filtered received signal (bottom).
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Figure 4.12: Decomposition of the components using DPFT in the acoustic simulated case
with disturbances.

4.5 Model-based decomposition

In the previous section, the decomposition of the signal is performed by varying DPFT param-
eters. In this section, we will use the idea to vary the parameters of the modal functions as the
decomposition functions instead of the polynomial phase model of the signal. Since the com-
ponents take the form of modal functions in the considered acoustic signal propagation case,
we take the channel depth Dm and the range r as the parameters that are being estimated,
instead of the polynomial coefficients β2,3. The goal is to vary the parameters of the transfer
function model in the way we would vary the frequency parameters in the DPFT. Taking into
account the FT of the discrete received signal X(f) and the wavenumbers kr(m, f) as in Eq.
(4.41), instead of the DPFT, given by

X(k) =

M∑
m=1

Ame
−j(b1mk+b2mk2+b3mk3), (4.73)

the received signal will be then decomposed using its normal mode form

X(k) =
K∑
m=1

A(m)ejkr(m,k)r, (4.74)

where

kr(m, k) =
( 2πk

n∆tc

)2
−
(
(m− 0.5)π/Dm

)2
). (4.75)
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Figure 4.13: S-method decomposition of the components in the acoustic simulated case with
disturbances.

The speed and the frequency range in which the underwater acoustic system operates are
defined a priori. The values β2 and β3 are varied within the expected range in the transform

xm,β2,β3(n) =
∑
k

X(k)e
−j
((

2πk
n∆tc

)2
−
(

(m−0.5)π/β3

)2
)
β2

e−j2πnk/N (4.76)

If the parameters β2, β3 are correctly estimated, β2 = r and β3 = Dm then this new
representation xβ2,β3(n) will achieve maximum concentration. Therefore, the representation
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Figure 4.14: Comparison of the signals in the acoustic simulated case with disturbances: The
original signal (left) and the reconstructed signal (right).

with the highest concentration produces estimate of the parameters r and Dm

(r̂, D̂m) = arg max
(β2,β3)

|xm,β2,β3(n)| (4.77)

when these values are close to the true ones, i.e. D̂m ≈ Dm and r̂ ≈ r. As is in the case
of the DPFT, when the strongest component is detected, it is removed and the next mode
parameters are detected. This procedure is continued until the remaining components are
negligible.

4.5.1 Results

To illustrate the decomposition and reconstruction, let consider the ideal case as from Section
4.2., with the frequency range between fmin = 320 Hz and fmax = 570 Hz. The distance
between the transmitter and receiver r and the true channel depth D will remain the same.
These two parameters are considered as unknown and further estimated.

The transmitted signal is considered to be a pulse with a short interval, close to a delta
function, whose spectrum is then equal to 1, i.e. U(f) = 1. The received signal is of form Eq.
(4.48), which will result in X(f) = H(f).

Variables D and r are arbitrarily varied. The value for depth D is varied in the range
between 0 to 100. The distance value r is varied in the range between 1000 to 3000.

It has been calculated that the maximal values are found at the position D = 20.0357 m
and r = 2350 m. The decomposition of each component is shown in Fig. 4.15. The sum of
the received coefficients and the sum of reconstructed components are shown in Fig. 4.16.

The decomposition results will be analyzed in the frequency domain using the dual S-
method from Eq. (4.70). A Hanning of size Nw = 63 is used as the window. The dual
S-method representation of a sum of the four received modes is shown Fig. 4.17 (top left).
Sum of the decomposed components and the amplitudes of individual components are given
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Figure 4.15: Decomposed modes in the time domain using the model-based technique
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Figure 4.16: Sum of the components: received (left); reconstructed (right)

in Fig. 4.17 (bottom right), with the decomposition of each mode individually in the other
four subplots of Fig. 4.17.
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Figure 4.17: S-method decomposition of the components when model-based decomposition is
used.

4.6 Comparison

The mean squared error (MSE) in the decomposition is calculated as

e = 10 log

∑
k,n |SMDR(k, n)−

∑
m SMDm(k, n)|2∑

k,n |SMDR(k, n)|2
(4.78)

where SMDR(k, n) and SMDm(k, n) are the sum of received dual S-method components and
the sum of S-method components of modes of the received signal after the decomposition.
The errors in dB are shown in Table 4.4.
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Table 4.4: Error in the form of MSE in dB for the examples considered

Case MSE [dB]

Ideal-case DPFT -12.6198
Simulated acoustic signal DPFT -10.1590

Simulated acoustic signal with disturbance DPFT -7.9361
Model-based technique -30.5013

The MSE value of the model-based technique gives the best results in terms of error,
which is expected due to its specific (i.e., not generalized) nature to find the exact values
of parameters. The method is not sensitive to noise until the threshold for the detection is
reached, i.e. when the input SNR is approximately −5 dB. When the threshold is reached,
the error sharply increases, since some modes are not detected.
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This chapter presents further work on compressive sensing, which can be considered as
an extension of results presented in the previous chapters. Here, we focus on the reconstruc-
tion and error calculation of general images, analyzed in the two-dimensional discrete cosine
transform (2D-DCT) domain.

In the first part of the chapter, a method for recovery of sparse images is presented.
The algorithm is based on a gradient-descent procedure. The proposed algorithm performs
blindly to detect and reconstruct corrupted pixels. The assumption is that the image is sparse
in the 2D-DCT domain and that the noise degrades this property. The advantage of the
proposed reconstruction algorithm is that the uncorrupted pixels remain unchanged in the
reconstruction process. The proposed method can be used without explicitly imposing the
image sparsity. The algorithm is compared with some state-of-the-art algorithms, proving its
reconstruction robustness.

In most cases, images are approximately sparse or nonsparse in the 2D-DCT domain.
The sparsification step of images can produce the error in their final reconstruction. In the
second part of the chapter, the exact error is derived for nonsparse images reconstructed
under the sparsity assumption. The mean squared error calculation theory is compared to the
corresponding statistical values.

95
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5.1 Problem formulation

Let consider an 8-bit N×M image, x(n,m), meaning that its pixel values are integers between
0 and 255. For compressive sensing methods, it should be assumed that the image is sparse
in the 2D-DCT domain.

Definition 5.1
The 2D-DCT (and its inverse) of an image x(n,m) is defined by [8,116]

X(k, l) =
N−1∑
n=0

M−1∑
m=0

x(n,m)ϕ(k, l, n,m)

x(n,m) =
N−1∑
k=0

M−1∑
l=0

X(k, l)ψ(n,m, k, l),

(5.1)

where ϕ(k, l, n,m) is the 2D-DCT basis function and ψ(n,m, k, l) is the 2D-DCT inverse basis
function, defined as

ϕ(k, l, n,m) = ψ(n,m, k, l) = ckcl cos

(
π(2n+ 1)k

2N

)
cos

(
π(2m+ 1)l

2M

)
. (5.2)

The constants ck and cl are scaling constants defined as

ck =

{
1/
√
N, for k = 0√

2/N, for k 6= 0
cl =

{
1/
√
M, for l = 0√

2/M, for l 6= 0
. (5.3)

In matrix form, the image and its 2D-DCT can be written as x = ΨX and X = Φx, re-
spectively, where Ψ and Φ are the rearranged matrices defined in (5.2). For the compressive
sensing framework, we assume that the considered image is K-sparse in the 2D-DCT do-
main and that only NA � NM of its pixels are available at the positions (n,m) ∈ NA =

{(n1,m1), (n2,m2), ..., (nNA ,mNA)}. Consequently, assuming that the positions of the cor-
rupted pixels are known, we can set their values to zero (as it is done in the initial estimate).
The initial image form is then presented as

xa(n,m) =

{
x(n,m) for (n,m) ∈ NA

0 elsewhere.
(5.4)

Note that the nonzero entries of (5.4) are the measurements within the CS framework

y = [x(n1,m1), x(n2,m2), ..., x(nNA ,mNA)]T . (5.5)

The image is sparsified according to the quantization matrix of the JPEG standard [116].
The quality factor (QF) defines the level of sparsification of the image. For different QFs,
which influence the level of sparsity in the block, the quantization matrix is defined as

QQF = round(Q50 · q), (5.6)
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where Q50 is the standard quantization matrix and the value q is the level presented as

q =

{
2− 0.02QF , for QF ≥ 50
50
QF , for QF < 50

. (5.7)

The reconstruction procedure is performed using blocks of the image of size 8× 8. Then,
each block is analyzed and recovered separately. After each block is recovered, the full image is
restored by combining the blocks back. Also, different quality factors are assumed to compare
the performance of the algorithm with various sparsity levels.

5.2 Gradient-based reconstruction algorithm

Here, we will consider an image with NQ = NM−NA pixels affected by noise. The amplitude
of noise can be within the range of the available NA pixel values. The aim is to reconstruct
the corrupted pixels without knowing the number of affected pixels nor their positions, while
not changing the values of available noise-free pixels.

5.2.1 Algorithm

The algorithm is based on the minimization of the sparsity measure through iterations [34,
117, 118]. Each particular image pixel is considered as possibly corrupted. Its value is varied
by adding an estimation parameter, ±∆. For each pixel, the gradient sparsity measure ‖X‖1
is estimated based on its finite difference value. The pixel producing the largest gradient
estimate is marked as corrupted and omitted. Then the iterative process is repeated until
the sparsity measure does not change significantly. All detected corrupted pixels are set as
unavailable. When the set of corrupted pixels is defined, the reconstruction is performed. The
reconstruction procedure is described in Algorithm 6 of Appendix [34]. The corrupted pixels
are varied through the reconstruction procedure to produce the most sparse solution. During
the reconstruction process, the uncorrupted pixels remain unchanged.

The algorithm can also be used when the noise is much stronger than the signal itself,
meaning that the corrupted pixels are distinguishable from the uncorrupted pixels (salt-and-
pepper noise), so that their positions are easily found. When we have strong noise in the image,
we will omit the corrupted pixels from the calculations and continue with the reconstruction
as described in Algorithm 6 of the Appendix.

5.2.2 Corrupted pixel selection procedure

For the selection of potentially corrupted pixels, let assume that one pixel is corrupted at a
position (n0,m0). The image with the corrupted pixel will be defined by xa(n,m), where the
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corrupted pixel is xa(n0,m0) = x(n0,m0) + z, with z being the noise value. Following the
Algorithm 6, the corrupted pixel is varied according to ±∆ to form

x+
a (n,m) = x(n,m) + (z + ∆) δ(n− n0,m−m0)

x−a (n,m) = x(n,m) + (z −∆) δ(n− n0,m−m0). (5.8)

The gradient of the sparsity measure is estimated as

g(n0,m0) =
∥∥X+

a

∥∥
1
−
∥∥X−a ∥∥1

(5.9)

where X+
a and X−a are the 2D-DCT of the images (5.8) with coefficients X+

a (k, l) and X−a (k, l),
respectively.

Assume that the 2D-DCT of the corrupted pixel is (z ±∆)ϕ(k, l, n0,m0). The sparsity
measures can be approximated as a sum of the original image measure and the measure of the
corrupted pixel (with the ∆ shifts)

∥∥X+
a

∥∥
1

=
N−1∑
k,l=0

∣∣X+
a (k, l)

∣∣ ∼= ‖X‖1 + |z + ∆|C

∥∥X−a ∥∥1
=

N−1∑
k,l=0

∣∣X−a (k, l)
∣∣ ∼= ‖X‖1 + |z −∆|C

(5.10)

where C which depends on the corrupted pixel position (m0, n0) and the size of the image.
The gradient is then

g(n0,m0) =
∥∥X+

a

∥∥
1
−
∥∥X−a ∥∥1

∼= |z + ∆|C − |z −∆|C. (5.11)

For variations from the true image value smaller than the step |z| < ∆ we get

g(n0,m0) ∼= 2Cz ∼ z. (5.12)

From (5.12), it can be concluded that the gradient is proportional to the intensity of noise at
the corrupted pixel.

5.2.3 Pixel selection and reconstruction

The aim is to find the positions of corrupted pixels and select which pixels are uncorrupted.
According to the previous subsection, this will be achieved by repeating steps 9-15 of the
gradient-based reconstruction procedure in Algorithm 6 in the Appendix. Note that this
procedure should be repeated for all pixels, in order to estimate which pixels are corrupted.
The full method of pixel selection and recovery is presented in Algorithm 7 of the Appendix.
During the reconstruction, we include all previously detected positions of corrupted pixels in
each iteration. The procedure is repeated until a required precision is achieved. The algorithm
is repeated for each block, and the image is combined back when all blocks are reconstructed.
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In the reconstruction, we have concluded that the edge effects of some blocks can influence
reconstruction success. Small pieces of the neighboring blocks may appear at the edging pixels
in the current block. Since the algorithm finds the solution by minimizing the sparsity, it will
recognize those small pieces as disturbances in the considered block. It will try to select them
as corrupted pixels, meaning that they are removed. To overcome this problem, the pixel
selection analysis is done using partially overlapping blocks. Only the central parts of the
blocks (the ones which are not overlapped) are included for the final reconstruction.

5.2.4 Results

The image “Peppers”, of size N×M = 512×512, is used to demonstrate the presented method.
The image is affected by a combination of two noise types. These disturbing noise types are
the salt-and-pepper noise (having intensity either 0 or 255) and the uniform noise (noise in
the range between 0 and 255). In color images, the noise is randomly positioned in each of the
three channels (R, G, and B) separately. Assume that 50% of the pixels are affected by noise,
with 10% of them being the uniform noise. The results of the presented denoising algorithm
are compared with a 5× 5 median filter and two state-of-the-art methods. The first method
is from [119], based on adaptive filtering. The second considered method is the total-variation
imaging algorithm from [120,121].

The results are shown in Fig. 5.1. The original image is presented in Fig. 5.1 (top left).
The image with the corrupted pixels is shown in Fig. 5.1 (top right). The reconstruction using
the proposed method and the reconstruction of the image using the 5 × 5 marginal median
filter are presented in Fig. 5.1 (middle). In Fig. 5.1 (bottom), the reconstruction with the two
state-of-the-art algorithms is shown. The methods for comparing the reconstruction results,
along with the specific values of the comparison parameters, will be given next.

Comparison

The performance of the algorithm will be examined using the SSIM index as well as MAE
and PSNR, with respect to the original image. The SSIM index is introducted [122] and
defined as a function of luminance, contrast and structure comparison between two images,
i.e.

SSIM(xo,xr) =
(2µxoµxr + c1)(2σxoxr + c2)

(µ2
xo + µ2

xr + c1)(σ2
xo + σ2

xr + c2)
(5.13)

where xo and xr are the original and the reconstructed image, respectively. The values µxo ,
µxr correspond to the mean values of the two images, σxoxr is the covariance between xo and
xr, σ2

xo , σ
2
xr are the variances of the considered images. The constants c1 and c2 are used for

stabilization. The SSIM value is a constant between the values 0 and 1, where 1 is obtained
when the similarity between images is complete and 0 is obtained when no similarity is present.

The MAE is calculated as

MAE(xo,xr) = mean(mean(|xo − xr|)). (5.14)
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Figure 5.1: Reconstruction of color image “Peppers” corrupted with 50% combined noise:
Image with corrupted pixels (top left); Reconstruction using the proposed method (middle
left); Reconstruction using the 5 × 5 median filter (middle right); Reconstruction using the
two state-of-the-art algorithms (bottom).

Table 5.1 shows the SSIM index and MAE for different quality factors different percenage
of corrupted pixels in the grayscale image “Lena”, presented in Fig. 5.2 (top left). Note that
the quality factor (which determines the sparsity level of the block) nor the number of the
corrupted pixels are not known by the gradient algorithm.
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Table 5.1: SSIM index and MAE between original and reconstructed image “Lena” for various
quality factor QF and percentage of corrupted pixels.

SSIM MAE

QF 12.5% 25% 37.5% 50% 12.5% 25% 37.5% 50%

5 0.99 0.99 0.91 0.64 0.41 1.08 3.28 10.80
10 0.99 0.98 0.92 0.64 0.38 1.05 3.18 11.63
25 0.99 0.98 0.92 0.63 0.37 1.08 3.27 12.28
50 0.99 0.98 0.92 0.62 0.42 1.17 3.45 12.79
75 0.99 0.98 0.91 0.61 0.47 1.31 3.60 13.10
90 0.99 0.97 0.91 0.60 0.61 1.54 3.85 13.75

Table 5.2: PSNR and SSIM for the reconstruction of the eight test images in Fig. 5.2. The
results are obtained by the proposed, two-stage (2-stage) adaptive algorithm [119] and total
variation L1 (TV-L1) [120,121] method.

PSNR SSIM

Test image Proposed 2-stage TV-L1 Proposed 2-stage TV-L1

Pout 45.87 39.59 39.46 0.98 0.63 0.92
Lifting body 43.92 35.90 40.15 0.99 0.73 0.94
Peppers 42.74 39.84 38.58 0.99 0.62 0.95
Lena 41.22 35.87 35.94 0.98 0.75 0.91
Boat 39.33 34.15 34.41 0.97 0.73 0.85

Butterfly 39.22 36.20 35.04 0.98 0.81 0.88
Camera 36.54 36.36 33.01 0.94 0.81 0.79
Tissue 32.44 30.92 29.35 0.91 0.86 0.73

The peak-to-noise ratio (PSNR) and the SSIM index will be used for the comparison of the
algorithm with the state-of-the-art algorithms based on a set of eight images from MATLAB
software. The PSNR for an 8-bit image is

PSNR(xo,xr) = 10 log10

(
2552

mean(mean(|xo − xr|)2)

)
. (5.15)

The eight test images are shown in Fig. 5.2, including the image peppers, analyzed earlier.
The comparison among the reconstruction algorithms for eight test images corrupted by 50%

of combined noise, is given in Table 5.2. This table shows the robustness of the proposed
algorithm in comparison with the other two methods for image reconstruction.
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Figure 5.2: The eight test images used for the comparison between the proposed algorithm
and two state-of-the-art algorithms.

5.3 Error calculation in nonsparse images

In the previous subsection, the images are considered as being sparsified according to the
quality factor and the corresponding quantization matrix, since a significant amount of the
energy is concentrated within a small number of 2D-DCT components. However, the remaining
nonzero coefficients make that the original images are only approximately sparse or nonsparse.
Since, in CS theory, sparsity should be assumed, the reconstruction algorithms will not be
able to recover small valued coefficients of nonsparse signals. The exact formulation of the
expected squared reconstruction error in the case of nonsparse images is given in the form of
a theorem [123].

Theorem: Assume an image, which is nonsparse in the 2D-DCT domain, with the largest
amplitudes in this domain Ar, r = 1, 2, ...,K. Assume that only NA out of total NM samples
are available, where 1 � NA < NM . Also assume that the image is reconstructed under
the assumption that it is K-sparse. The energy of error in the K reconstructed coefficients
‖XK−XR‖22 is related to the energy of unreconstructed components ‖XK0−X‖22 coefficients as
follows:

‖XK−XR‖22 =
K(NM −NA)

NA(NM − 1)
‖XK0−X‖22 , (5.16)
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where

‖XK−XR‖22 =
K(NM −NA)

NA(NM − 1)

NM∑
r=K+1

A2
r , (5.17)

and

‖XK0−X‖22 =

NM∑
r=K+1

A2
r . (5.18)

The proof is based on the initial estimate of the image

X0(k, l) =
∑

(n,m)∈NA

x(n,m)ϕN (n, k)ϕM (m, l) (5.19)

where k = 0, 1, ..., n− 1, l = 0, 1, ...,M − 1. In a matrix form we can write

X0 = ATy. (5.20)

The coefficients in (5.19) act as random variables, with different statistical properties at
positions of the image components, (k, l) = (kr, lr), and positions not corresponding to image
components, (k, l) 6= (kr, lr).

5.3.1 Noise-only coefficients

Let assume first the case when K = 1 at (k1, l1). Assuming the amplitude to be A1 = 1, the
initial estimate can be written as

X0(k, l) =
∑

(n,m)∈NA

ϕN (n, k1)ϕM (m, l1)ϕN (n, k)ϕM (m, l). (5.21)

The variable

xk1l1(n,m, k, l) = ϕN (n, k1)ϕM (m, l1)ϕN (n, k)ϕM (m, l) (5.22)

is random for random set of values of (n,m) where the image is available. Its initial estimate
is

X0(k, l) =
∑

(n,m)∈NA

xk1l1(n,m, k, l). (5.23)

When (k, l) 6= (k1, l1), the 2D-DCT coefficients correspond to position where the image
component is not present. In this case, the initial estimate behaves as a random Gaussian
variable [53]. Following the orthogonality of the basis function and the fact that values of
xk1l1(n,m, k, l) are equally distributed, the mean value of the initial estimate is

µX0(k,l) = E {X0(k, l)} = 0, (k, l) 6= (k1, l1). (5.24)



104 Chapter 5. Compressive sensing in image denoising

In the case of a coefficient corresponding to the image component, using the same orthog-
onality property and the assumption of equal distribution of values xk1l1(n,m, k, l), it follows
that

µX0(k,l) = E {X0(k, l)} =
NA

NM
, (k, l) = (k1, l1). (5.25)

For the zero-mean random variable, the variance is

σ2
X0(k,l) = E

{ ∑
(n,m)∈NA

x2
k1l1(n,m, k, l)+

∑
(n,m)∈NA

∑
(i,j)∈NA

(i,j)6=(n,m)

xk1l1(n,m, k, l)xk1l1(i, j, k, l)
}
. (5.26)

As in the case when (k, l) 6= (k1, l1) is observed, it can be concluded that

N−1∑
n=0

M−1∑
m=0

xk1l1(n,m, k, l) = 0. (5.27)

Multiplying the left and the right side of (5.27) by xk1l1(i, j, k, l), and taking the expecta-
tion of both sides we get

E
{N−1∑
n=0

M−1∑
m=0

xk1l1(n,m, k, l)xk1l1(i, j, k, l)
}

= 0, (5.28)

with (i, j) ∈ N. Values xk1l1(n,m, k, l) are equally distributed. Therefore, the terms
E{xk1l1(n,m, k, l)xk1l1(i, j, k, l)} for (n,m) 6= (i, j) are the same and equal to a constant
D. The total number of these terms is NM − 1. Furthermore, based on (5.28) we get

(NM − 1)D + E
{
x2
k1l1(n,m, k, l)

}
= 0. (5.29)

The initial variance definition can be written as

σ2
X0(k,l) = NAE{x2

k1l1(n,m, k, l)}+ (N2
A −NA)D, (5.30)

as there are exactlyNA expectations with quadratic terms in the first summation andNA(NA−
1) terms in the second variance summation equal to D. In order to determine the unknown
term E

{
x2
k1l1

(n,m, k, l)
}
, several special cases should be taken into account.

Consider the general case when k 6= k1, k 6= N − k1, l 6= l1, l 6= M − l1. Then

E{x2
k1l1(n,m, k, l)} = E{ϕ2

N (n, k1)ϕ2
M (m, l1)} × E{ϕ2

N (n, k)ϕ2
M (m, l)} =

1

N2M2
(5.31)

holds. Incorporating this result into (5.29) we get that

D = − 1

N2M2

1

NM − 1
. (5.32)
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Next, based on (5.30), the variance can be written as

σ2
X0(k,l) =

NA(NM −NA)

N2M2(NM − 1)
. (5.33)

This result also holds when (k1, l1) = (0, 0). The special cases of the 2D-DCT indices are
considered in [123]. Note that, when A1 6= 1, the result is multiplied by A2

1. As NM � 1,
an accurate approximation, when all special cases are included, for the average variance of
noise-only coefficients follows

σ2
X0
≈ A2

1

NA(NM −NA)

N2M2(NM − 1)
. (5.34)

In the realistic case of several components in the 2D-DCT domain, the observed random
variable becomes

X0(k, l) =
∑

(n,m)∈NA

K∑
r=1

ArϕN (n, kr)ϕM (m, lr)× ϕN (n, k)ϕM (m, l). (5.35)

In this case, the coefficients at noise-only positions (k, l) 6= (kr, lr) are random variables
formed as the summation of independent zero-mean Gaussian variables over r. The unavailable
pixels in each component add to the noise. The noise from each component is proportional to
the squared amplitude of that component, following (5.34) with Ar, r = 1, ...,K. Therefore,
the mean value of the K 2D-DCT coefficients is

µX0(k,l) =
NA

NM

K∑
r=1

Arδ(k − kr, l − lr). (5.36)

The average variance of noise-only coefficients in this case easily follows as

σ2
X0

=
K∑
r=1

A2
r

NA(NM −NA)

N2M2(NM − 1)
. (5.37)

5.3.2 Nonsparse images reconstruction error

The image is reconstructed under the K-sparsity constraint. The conditions for a unique
reconstruction are assumed to be met. According to (5.37), one nonreconstructed element
behaves as a noise with variance

σ2
X0

= A2
r

NA(NM −NA)

N2M2(NM − 1)
. (5.38)

which leads that the variance of all components which are not reconstructed will be

σ2
T =

NM∑
r=K+1

A2
r

NA(NM −NA)

N2M2(NM − 1)
. (5.39)
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The total noise energy from the nonreconstructed coefficients in the K reconstructed compo-
nents is

‖XK−XR‖22 = K
N2M2

N2
A

σ2
T =

K(NM −NA)

NA(NM − 1)

NM∑
r=K+1

A2
r . (5.40)

Note that the noise of the nonreconstructed coefficients can be related to their energy,

‖XK−X‖22 =

NM∑
r=K+1

A2
r . (5.41)

From the previous analysis it follows that

‖XK−XR‖22 =
K(NM −NA)

NA(NM − 1)
‖XK−X‖22 . (5.42)

This completes the proof of the theorem.

5.3.3 Numerical results

An image set with standard MATLAB images is used for the numerical examination of the
theorem. The set is presented in Fig. 5.3. Each image is split into B × B = 16 × 16 blocks.
The reconstruction is performed under the sparsity assumption K = 16 per block, with 60%

of pixels available. The reconstruction is performed using the OMP algorithm. The errors are
calculated for each block separately and then the results are averaged over all blocks in the
image. The statistical PSNR, for an 8-bit image, is

PSNRstatistics = 10 log

(
2552

||XK −XR||22

)
, (5.43)

and the theoretical PSNR, according to the thereom, is

PSNRtheory = 10 log

(
2552

K B2−NA
NA(B2−1)

||XK −X||22

)
. (5.44)

The results are presented in Table 5.3, confirming a high agreement between the results.

Table 5.3: Statistical and theoretical calculations of the PSNR for 8 test images in Fig. 5.3.

Test image Lifting body Boat Pout Autumn Pirate Pears Peppers Football

Statistics 82.97 81.97 80.35 90.81 70.97 78.77 79.16 68.69
Theory 83.11 82.13 80.42 90.92 71.10 78.86 79.23 68.63
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Figure 5.3: The eight test images used for the error analysis.





Conclusions

The compressive sensing theory can be used to develop a successful sampling technique in
different fields and various signals. The idea of using a small number of measurements for
the signal acquisition improves the efficiency of storage, memory requirements, and transmis-
sion of signals. Accurate recovery of signals sampled in such a way is the primary goal of
compressive sensing and sparse signal processing. Since many signals in nature can be rep-
resented as sparse in some transformation domain, the technique showed huge potential in
real-world problems. However, the idea is not yet fully developed and applied in the underwa-
ter acoustics field. The non-stationary nature of such signals makes it suitable for the analysis
using time-frequency tools under the signal processing approach. In the compressive sensing
sense, non-stationary signals are only approximately sparse or nonsparse in the corresponding
transformation domain.

In this thesis, three major points are considered, with the aim to find a successful solution
for applying compressive sensing methods to the underwater acoustics. It is important to
notice the nonsparse characteristic of the signals received in dispersive channels. The non-
sparsity, in general, will produce errors in the reconstruction of signals considered as sparse
in their nature. The exact error generated in the reconstruction of time-varying signals was
derived in this thesis. The uniform and random sampling were considered, together with a
generalization of the error depending on the sampling method. For a more realistic case, the
effect of quantization, as a crucial step for the hardware implementation, is analyzed. In the
end, the noise folding effect is considered as well.

In addition to the dispersive underwater channel analysis, wideband sonar images are
considered as an important topic in the underwater acoustics. In the literature, only basic
forms of signals were used for the transmission. The usage of various sequences showed
interesting results in the reconstruction of sonar signals. The implementation of compressive
sensing techniques on those signals was considered. We showed that the reconstruction of sonar
signals could be significantly improved in detecting and localizing sparse targets. Dispersive
channels introduce multi-component non-stationary signals as an additional challenge to this
field. Combining the previously studied reconstruction, together with the principles of the
polynomial Fourier transform and mode decomposition, the time-varying components of the
sonar signals are successfully detected, decomposed, and analyzed.

The dispersive media was perceived in two different approaches: the decomposition of
signals received at a misaligned sensor, and a signal received from a dispersive isovelocity
shallow water environment. Three different methods were considered: high-resolution local
polynomial case, the dual extension of the polynomial Fourier domain, and a model-function
based technique. It is concluded that the model-based method gives the best results in terms
of error, which is expected due to its specific nature to find the appropriately adjusted forms
and the values of corresponding parameters. The method is not sensitive to the noise until the
threshold for the detections is reached. Also, a more general approach, based on the polynomial
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Fourier transform, is introduced. Although the mode forms do not fully coincide with the
polynomial forms, it was seen that a reasonable error rate is achieved, with a quite general
model. The method is further improved by using a sparse decomposition and reconstruction
of components using the iterative algorithm.

The presented theory and methods can be extended in various directions. In the de-
composition of the dispersive media, the high-resolution techniques showed promising results
combined with the polynomial Fourier transform. Another interesting course is in the error
calculation, which was developed for the time-varying part of the signals received in the dis-
persive media. The derivation can be further extended in the direction of the dual polynomial
Fourier transformation domain, as the sparsity domain. The last approach is based on the
combination of the appropriate sequence form selection in the transmission part of the setup.
The combination of the suitable sequences, combined with the dual extension as the sparsity
domain and the appropriate error calculation, could result in a robust solution for further
analysis of signals transmitted underwater.

Finally, some of the results and developed methods are applied to the general image de-
noising problem, showing that the presented results and methods are not strictly limited to
the underwater acoustic signal analysis.
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Appendix A

Reconstruction algorithms

This Appendix presents some of the most commonly used algorithms in the compressive
sensing theory. This, however, does not exclude the vast number of techniques developed
during the years. It simply illustrates some procedures which were successfully implemented
in many areas. Additionally, Algorithm 7 presents the algorithm proposed in Chapter 5 of
this thesis.

Orthogonal matching pursuit algorithm

Algorithm 1 One-step OMP reconstruction
Input:

• Measurement vector y

• Measurement matrix A

• Number of selected coefficients in each iteration r, by default r = 1

• Required precision ε

1: K← ∅
2: e← y

3: while ‖e‖2 > ε do

4: (k1, k2, . . . , kr)←
positions of r highest
values in AHe

5: K← K ∪ {k1, k2, . . . , kr}
6: AK ← columns of matrix A selected by set K
7: XK ← pinv(AK)y

8: yK ← AKXK

9: e← y − yK
10: end while

11: X←

{
0 for positions not in K
XK for positions in K

Output:
• Reconstructed signal coefficients X
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Algorithm 2 Iterative OMP reconstruction
Input: Vector y, matrix A, assumed sparsity K

1: K← ∅, e← y

2: for i = 1 do K
3: k ← position of the highest value in AHe

4: K← K ∪ k
5: AK ← columns of matrix A selected by set K
6: XK ← pinv(AK)y

7: yK ← AKXK

8: e← y − yK
9: end for

Output: Reconstructed XR = XK and positions K.

Iterative hard thresholding algorithm

Algorithm 3 Iterative Hard Thresholding (IHT) Reconstruction Algorithm
Input: Vector y, Matrix A, Assumed sparsity K,

Number of iterations It, and parameter τ .

1: X0 ← 0

2: for i = 1 do It
3: Y ← X0 + τAH(y −AX0)

4: K← sort(|Y|), indices of K largest |Y|
5: X0 ← 0, X0 ← Y for k ∈ K, Hard Thresholding
6: end for

Output: Reconstructed XR = X0, the set of positions K.
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LASSO – ISTA reconstruction algorithm

Algorithm 4 LASSO – ISTA reconstruction
Input:

• Measurement vector y

• Measurement matrix A

• Regularization parameter α

• Sparsity promotion parameter λ

1: X← 0N×1

2: repeat

3: s← 1

α
AT (y −AX) + X

4: for k ← 1 to N do

5: X(k)←


s(k) + λ for s(k) < −λ
0 for |s(k)| ≤ λ
s(k)− λ for s(k) > λ

6: end for
7: until stopping criterion is satisfied

Output:
• Reconstructed signal coefficients X
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Bayesian-based reconstruction algrotihm

Algorithm 5 Bayesian-based reconstruction
Input: Vector y, Matrix A

1: αi ← 1 . For i = 1, 2, . . . , N

2: σ2 ← 1 . Initial estimate
3: Th = 102 . Threshold
4: p = [1, 2, . . . , N ]T

5: repeat
6: D← diagonal matrix with di values
7: Σ← (ATA/σ2 + D)−1

8: V← ΣATy/σ2

9: γi ← 1− diΣii . For each i
10: di ← γi/Vi . For each i

11: σ2 ← ‖y −AV‖2

M −
∑

i γi
12: R← {i : |di| > Th}
13: Remove columns from matrix A selected by R
14: Remove elements from array di selected by R
15: Remove elements from vector p selected by R
16: until stopping criterion is satisfied
17: Reconstructed vector X nonzero coefficients are in vector V with corresponding positions

in vector p, Xpi = Vi

Output:
• Reconstructed signal vector XR = V, the set of positions K = p.



129

Gradient-based reconstruction algorithm

Algorithm 6 Gradient-based image reconstruction
Input:

• Set of the uncorrupted pixel positions NA
• Corrupted image x

Output:
• Reconstructed image xR

1: function GradRec(x,NA)

2: x
(0)
a (m,n)←

{
x(m,n) for (m,n) ∈ NA
0 for (m,n) /∈ NA

3: ∆← maxm,n|x(0)
a (m,n)|

4: p← 0

5: repeat
6: repeat
7: x

(p+1)
a ← x

(p)
a

8: for all (mi, ni) /∈ NA do
9: x+

a ← x
(p)
a

10: x+
a (mi, ni)← x+

a (mi, ni) + ∆, X+
a ← DCT2{x+

a }
11: x−a ← x

(p)
a

12: x−a (mi, ni)← x−a (mi, ni)−∆, X−a ← DCT2{x−a }
13: g(mi, ni)← ‖X+

a ‖1 − ‖X−a ‖1
14: x

(p+1)
a (mi, ni)← x

(p)
a (mi, ni)− µg(mi, ni)

15: end for
16: p← p+ 1

17: until stopping criterion is satisfied
18: ∆← ∆/3

19: until required precision is achieved
20: xR ← x

(p)
a

21: return xR
22: end function
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Proposed method in Chapter 5

Algorithm 7 Proposed method in Chapter 5
Input:

• Image x of size N ×M with possibly corrupted pixels

• Number of pixels to be selected in each iteration r
Output:

• Reconstructed image x

• Set of the uncorrupted pixels NA

1: ∆← maxm,n |x(m,n)|
2: NA ← {(m,n) : m = 1, 2, . . . ,M, n = 1, 2, . . . , N}
3: Nx ← ∅
4: repeat
5: for all (n,m) ∈ NA do
6: x+ ← x

7: x+(m,n)← x+(m,n) + ∆

8: X+ ← DCT2{x+}
9: x− ← x

10: x−(m,n)← x−(m,n)−∆

11: X− ← DCT2{x−}
12: g(m,n)← ‖X+‖1 − ‖X−‖1
13: end for
14: Select r pixels (m,n) ∈ NA with highest |g(m,n)|
15: Add selected pixels to set Nx
16: Remove selected pixels from set NA
17: x← GradRec(x,NA) . Algorithm 6
18: until the sparsity is not significantly changed
19: Optionally, perform sparsification of the reconstructed image
20: return x, NA



Abstract — In signal processing, the theory behind compressive sensing presented a successful sampling
technique in different fields. The idea of using a small number of measurements for the acquisition improves
the efficiency of storage, memory and transmission of signals. Since many signals in the nature can be
represented as sparse in some representation domain, the technique showed huge potential in medicine,
telecommunications, radar systems, etc. Although very successful, the idea of compressive sensing is not yet
developed in the underwater acoustics. Acoustic signals transmitted under water introduce many complex
characteristics difficult for their analysis. Problems occur in the process of transmitting and receiving
signals due to its dispersive media, especially in shallow water environments as a representative example of
a dispersive channel. Additionally, dispersivity produces multiple nonlinear components. The non-stationary
nature of such signals makes it suitable for the analysis using time-frequency tools under the signal processing
approach. In the compressive sensing sense, non-stationary signals are only approximately sparse or nonsparse
in the corresponding transformation domain.

Keywords: Signal processing, Compressive sensing, Sparse signal processing, Non-stationary signals,
Reconstruction, Decomposition, Dispersive channels.

Résumé — Dans le traitement du signal, la théorie derrière la détection compressive a présenté une
technique d’échantillonnage réussie dans différents domaines. L’idée d’utiliser un petit nombre de mesures
pour l’acquisition améliore l’efficacité du stockage, de la mémoire et de la transmission des signaux. Étant
donné que de nombreux signaux dans la nature peuvent être représentés comme clairsemés dans certains
domaines de représentation, la technique a montré un énorme potentiel en médecine, en télécommunications,
en systèmes radar, etc. Bien que très réussie, l’idée de la détection compressive n’est pas encore développée
dans l’acoustique sous-marine. Les signaux acoustiques transmis sous l’eau présentent de nombreuses
caractéristiques complexes difficiles à analyser. Des problèmes surviennent dans le processus de transmission
et de réception des signaux en raison de ses milieux dispersifs, en particulier dans les environnements en eau
peu profonde comme exemple représentatif d’un canal dispersif. De plus, la dispersivité produit plusieurs
composants non linéaires. La nature non stationnaire de ces signaux le rend approprié pour l’analyse à l’aide
d’outils temps-fréquence dans le cadre de l’approche de traitement du signal. Au sens de la compression, les
signaux non stationnaires ne sont approximativement que clairsemés ou non dans le domaine de transformation
correspondant.

Mots clés : Traitement du signal, Détection compressive, Traitement des signaux clairsemés, Sig-
naux non stationnaires, Reconstruction, Décomposition, Canaux dispersifs.

Rezime — U obradi signala, teorija iza kompresivnog odabiranja predstavlja uspjesnu tehniku uzorkovanja
u razlicitim oblastima. Ideja koriscenja malog broja mjerenja uzoraka poboljsava efikasnost skladistenja,
memorije i prenosa signala. Buduci da se mnogi signali u prirodi mogu predstaviti kao rijetki u odredenom
domenu reprezentacije, ova tehnika pokazala je ogroman potencijal u medicini, telekomunikacijama, radarskim
sistemima, itd. Iako je veoma uspjesna, ideja kompresivnog odabiranja jos nije razvijena u podvodnoj akustici.
Akusticni signali koji se prenose pod vodom uvode mnoge slozene karakteristike kompleksne za njihovu
analizu. Problemi se javljaju u procesu prenosenja i primanja signala zbog disperzivnih medija, posebno u
plitkom vodenom okruzenju kao reprezentativan primer disperzivnog kanala. Pored toga, disperzitet proizvodi
vise nelinearnih komponenti. Nestacionarna priroda takvih signala ga cini pogodnim za analizu koristeci
vremenske-frekvencije alate u obradi signala. U teoriji kompresivnog odabiranja senzora, nestacionarni signali
su samo priblizno rijetki ili nesparzni u odgovarajucoj domeni transformacije.

Kljucne rijeci: Obrada signala, Kompresivno odabiranje, Obrada rijetkih signala, Nestacionarni sig-
nali, Rekonstrukcija, Dekompozicija, Disperzivni kanali.
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