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ABSTRACT

This thesis aims at proposing new neural network approaches to retrieve
the habitual behaviors of fragile people in order to provide them with
a monitoring at home while respecting their privacy and avoiding
stigmatization. In this perspective, we concentrate on the exploitation of
wearable motion sensor data (accelerometer, gyrometer, magnetometer,
barometer etc.) which are nowadays easily embedded into smartphones
and smartwatches. In a first contribution, we propose to employ few-
shot learning with an architecture called matching network [217] to
learn a personalized and flexible activity recognition model. This model
learn to recognize a new class from just one or few new samples since
it matches rather than classify. Therefore this model allows to better
handle the large variety of activities one can do in one day while
alleviating the burden of data labeling. In a second part, we advocate
for a change of perspectives by proposing to retrieve recurrent unlabeled
activity patterns called routines instead of precise activities. We propose
a formalization of the concept of routine with the notion of almost-
periodic functions [26] which prompts us to employ sequence metric
learning. We propose a neural network architecture based on robust
sequence representation learning with a Sequence-to-Sequence model
[197] and metric learning with a siamese network [30]. No activity
labels are used to train the model by setting up an equivalence constraint
with the data timestamps. We propose to identify the routines with a
spectral clustering and to evaluate the whole routine retrieval process
with information-theoretic clustering scores [215]. The last contribution
of this thesis is a new neural network model for sequence metric learning
called Coupled Gated Recurrent Unit. This model has been conceived
by taking inspiration from the dynamical system theory and notably the
concept of synchronization. We propose to improve the siamese gating
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Abstract

recurrent unit architecture by implementing a coupling which should
allow it to better process the hard samples. We finally experiment this
architecture to recognize activities and retrieve routines.
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RÉSUMÉ

Cette thèse a pour objet d’étude la conception de modèle d’apprentissage
automatiques pour la reconnaissance d’activités et plus particulièrement
la reconnaissance de comportements habituels des usagers (routines),
ceci à des fins de suivi médical à leur domicile des personnes fragiles
(actimétrie) en respectant leur vie privée et en évitant la stigmatisation.
Pour cela, nous nous concentrons sur l’exploitation des données pro-
duites par des capteurs de mouvement portés (accéléromètre, gyroscope
magnétomètre, etc.) présents dans les téléphones mais aussi dans les
montres connectées, des objets de la vie quotidienne. Nous proposons
dans cette thèse des modèles de réseaux de neurones pour la reconnais-
sance personnalisée d’activités ou de routines qui ont pour point com-
mun d’utiliser l’apprentissage de métrique. L’apprentissage de métrique
peut la plupart du temps être réalisé sans étiquette de classe mais plutôt
grâce à des contraintes d’équivalence qui définissent les échantillons
similaires et dissimilaires. Cela permet d’envisager des modèles flexibles
voire semi-supervisés capables de s’adapter facilement à la vie quotidi-
enne de l’utilisateur.

Dans un premier chapitre, nous nous intéressons à la reconnaissance
d’activité personnalisée car celle-ci, si elle promet des performances plus
élevées déterminantes pour les applications médicales, souffre égale-
ment de reporter tout le poids de la production des données et de leur
étiquetage sur un seul utilisateur. Pour palier à ce problème, nous pro-
posons d’utiliser un modèle de few-shot learning appelé matching network
[217], pour apprendre un modèle personnalisé et flexible de reconnais-
sance d’activités à partir de peu de séquences inertielles. Ce modèle
s’adapte à partir de quelques exemples à une nouvelle classe et per-
met donc de mieux gérer les activités très variées qu’une personne peut
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Résumé

réaliser dans une journée tout en étant rapidement déployable. Grâce à
quelques modifications du modèle initial pour l’adapter aux séquences
notamment par le biais d’un modèle Sequence to Sequence [197], nous
testons cette architecture en reconnaissance d’activités sur deux datasets
contenant respectivement 6 et 12 activités. Ces tests sont réalisés sur
des données provenant de classes sur lesquelles le modèle n’a pas été
entraîné. Sur le deuxième dataset, si les résultats se montrent plus faibles
que l’état de l’art, ils ont été obtenus avec une quantité extrêmement
limitée de données pour chaque utilisateur (une ou deux séquences sur
chaque classe) ce qui montre la pertinence de notre approche pour mettre
en place rapidement un service d’actimétrie.

Dans une seconde partie, nous portons notre attention sur le con-
cept de routines, c’est à dire sur les activités habituelles de l’utilisateur
que nous pensons pouvoir être détectées sans étiquette, uniquement
grâce à leur récurrence. Nous proposons une formalisation mathéma-
tique du concept de routine à partir des fonctions presque-périodiques
[26] et nous en déduisons une méthode de reconnaissance de celles-ci
grâce à l’apprentissage de métrique. Nous réalisons ensuite un état de
l’art de l’apprentissage de métrique dans lequel nous nous attardons
notamment sur les approches pour les séquences et sur les fonctions de
coût qui peuvent être utilisées pour entraîner des réseaux de neurones à
cette tâche. Nous proposons un modèle qui combine apprentissage de
représentation avec un modèle Sequence to Sequence [197] et apprentissage
de métrique sous la forme d’un réseau de neurones siamois [30], le tout
entraînable de bout en bout. Plusieurs fonctions de coût peuvent être util-
isées pour apprendre la métrique et notamment celle nommée KISSME
[69]. Le modèle est appris sans étiquette d’activité uniquement grâce
à l’horodatage des données qui constitue la contrainte d’équivalence:
les échantillons acquis aux mêmes heures mais des jours différents sont
considérés comme similaires. Nous proposons ensuite d’identifier les
routines grâce à un clustering spectral. Nous testons cette approche sur
un dataset contenant trois jours de données continues d’un utilisateur
dans son environnement habituel. La validation du modèle se fait grâce
à des scores de clustering issus de la théorie de l’information [215] et une
analyse visuelle qui semblent montrer la pertinence de la modélisation
et de la procédure de reconnaissance de routines proposée ainsi que de
l’architecture, même si la version non-entraînée de bout en bout atteint
de meilleures performances.

Dans un troisième chapitre, nous proposons un nouveau modèle
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de réseau de neurones siamois récurrents dit couplé appelé GRU cou-
plé. Ce modèle a été conçu en s’inspirant de la théorie des systèmes
dynamiques et notamment du concept de synchronisation. En effet, les
deux réseaux d’un modèle siamois récurent s’apparentent à deux sys-
tèmes dynamiques identiques. La théorie des systèmes dynamiques
nous enseigne alors qu’ils peuvent toujours être synchronisés, c’est à
dire forcés à évoluer de façon similaire [70] si un couplage, un échange
d’information, est appliqué entre les deux. Cet état s’apparente dans
le cas de l’apprentissage de métrique à une faible distance entre les
deux séquences de sortie d’un réseau siamois récurent. Nous étudions
l’intégration d’un couplage dans le but d’améliorer l’architecture siamese
GRU, notamment en ce qui concerne les exemples difficiles (hard posi-
tive/negative samples). Cette intégration se fait par l’intermédiaire d’une
nouvelle porte dite de couplage dans l’architecture siamese GRU [46] qui
vise à contrôler l’échange d’information entre les deux parties du réseau.
Nous montrons ensuite que cette architecture est dérivable et qu’elle
peut donc être entraînée par descente de gradient. Nous expérimentons
ce modèle en reconnaissance d’activités sur deux datasets où elle atteint
des performances plus élevées que sa contrepartie sans couplage. Nous
la testons également pour ce qui est de la reconnaissance de routines
avec des résultats plus mitigés.

Dans le dernier chapitre, nous concluons cette thèse par une syn-
thèse des contributions avant de relever quelques limitations du travail
présenté. Nous proposons des pistes d’amélioration notamment pour
l’architecture GRU couplé basées sur l’apprentissage de métrique virtuel
[161] et les métriques de synchronisation généralisée (generalized synchro-
nization [170]). Ces métriques sont non-dérivables car faisant intervenir
explicitement les timestamps et nous proposons d’utiliser le mécanisme
d’attention pour y remédier [212].
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MATHEMATICAL NOTATIONS

Notation Definition
netW a neural network parameterized by W
S sequence or time series of length T

S(t) point at time t
Ŝ output sequence
σ sigmoid function
ht hidden state of RNN
x input vector
y target output vector or representation
ŷ predicted output
l class label or similar/dissimilar label
◦ Hadamard product
B batch inputs
P ensemble of positive/similar pairs of

samples
Pc ensemble of positive/similar pairs of

samples of the same class c
N ensemble of negative/dissimilar pairs

of samples
L a loss function
m margin
[.]+ Hinge loss

a,p+,p− anchor, sample similar to anchor and
sample dissimilar to the anchor.

d a distance, whatever the type if not
precised
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Mathematical Notations

M a positive semi-definite matrix defining
a Mahalanobis metric, by definition

M = LT L
Sn+ set of Positive Semi-Definite (PSD)

matrices of order n
ϕ dynamical system evolution rule

φ(t0) trajectory from initial condition t0
Z a dynamical system composed of two

subsystems: X and Y
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CHAPTER 1

INTRODUCTION

The optimistic predictions made by Marvin Minsky on the future ad-
vances of Artificial Intelligence (AI) have sometimes been treated with
sarcasms among the scientific community. Therefore beginning a thesis
on one of his quotations may be considered hazardous, at least daring.
Nevertheless, in a 1991 paper for AI Magazine [141], he wrote the follow-
ing statement:

Why can we build robots that compete with highly trained
workers to assemble intricate machinery in factories but not
robots that can help with ordinary housework? It is because
the conditions in factories are constrained, and the objects
and activities of everyday life are too endlessly varied to be
described by precise, logical definitions and deductions.

Minsky refers in the last sentence to the symbolic approach of AI,
also named by Haugeland Good Old-Fashioned Artificial Intelligence [87].
Examples of such AI are expert systems which reason using if...then rules
applied to knowledge bases [221]. Recent AI are supposedly the opposite
of symbolic: they are connectionist, or to say it straight in 2021, based on
neural networks which learn correlations and representations from data.
However, we argue that they still suffer the same limitations as symbolic
approaches, at least in supervised settings and that what Minsky wrote
30 years ago on that matter still holds. How indeed handle the endless
variations of the daily life of an individual with neural networks trained
on clean laboratory data to classify a dozen of activities ? The purpose
of this thesis is to present new neural network approaches able to
bridge this gap, designed to work in daily open environments. As a
consequence, we advocate for a switch of perspectives from recognizing
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precise labeled activities to retrieve routines: unlabeled recurrent data
patterns associated with physical movements. The proposed algorithms
are to be applied to medical issues, especially long-term monitoring of
fragile people.

1.1 Home Medical Services for Fragile People
with Actigraphy

The AI models presented in this thesis are to be used for eHealth
services. EHealth can be defined as an “emerging field in the intersection
of medical informatics, public health and business, referring to health
services and information delivered or enhanced through the Internet
and related technologies” [68]. Its applications, which are often seen
as beneficial for both patients and medical staff [154], encompass: basic
prevention with mobile apps, computerized medical files, doctor’s office
management software, hospital information systems, computer assisted
surgery, machine learning assisted diagnostic but also home support and
particularly with actigraphy.

1.1.1 The Growing Need for Medical Assistance at
Home

As life expectancy increases, more and more elderly people show difficul-
ties in their every day life, and allowing them to stay at home is a social
and public health issue1. By the year 2050, 2 billion people will be aged
60 and older, a number doubled compared to 2020. Many elderly even
struggle performing basic need activities. They are also particularly ex-
posed to chronic diseases: diabetes, cancer, psychological and cognitive
disorders, heart diseases, Parkinson and Alzheimer, etc. [27]. They are fi-
nally vulnerable in simple daily life activities where they could fall, make
a wrong move or loose attention2. Furthermore, over 1 billion people in
the world live with a form of handicap, between around 4% suffering
severe disabilities3. In addition to these difficulties, these people, partic-
ularly elderly people, can also suffer from loneliness and abandonment.
Finally, home convalescence is an interesting option in numerous cases to

1https://www.who.int/health-topics/ageing
2https://www.who.int/news-room/fact-sheets/detail/falls
3https://www.who.int/news-room/fact-sheets/detail/disability-and-health
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1.1. Home Medical Services for Fragile People with Actigraphy

improve the recovery of the patient which requires, nevertheless, some
precautions [237].

One eHealth service that could benefit all these populations is daily
activity monitoring [162]. The process of recording the every day life ac-
tivities of a subject using sensors (inertial sensors, for instance) is called
actigraphy. Instead of organizing regular visits at the hospital, the patient
can be monitored in his/her house with several upsides: it improves the
quality of life of the patient and shortens hospital stays while facilitating
the diagnosis as important medical data can be collected in the usual en-
vironment of the patient. Clinical visits are obviously indispensable but
can only take a snapshot of the patient’s condition and may occur too late
during the disease development [9]. Among applications of actigraphy
we can list: monitoring and diagnosis (prevention of emergencies, assis-
tance for people with cognitive disorders, people with chronic condition,
etc.), as already mentioned but also rehabilitation, correlation between
movement and emotion, child and elderly care. Moreover, several symp-
toms that appear on elderly persons can be observed with an actigraphy
system, for instance: bone fragility, difficulty to stand or to make efforts,
sensibility to infection and medicine, etc. [55].

In this work, we are particularly interested in providing long-term
monitoring of autonomy for semi-dependent people. To measure the
activity of a person, energy expenditure is widely recognized as the best
way [119] but it is in practice difficult to set up. It can be approximated
by a physical activity measurement which gives a good idea of the
autonomy. This type of monitoring could be performed with actigraphy.
Another way to evaluate autonomy is by looking at several criteria
related to the Activities of Daily Living (ADL) [108] (e.g. having lunch,
watching television etc.) or the Instrumental ADL [122] (e.g. using
of the telephone, food preparation, household, etc.). This evaluation
appears as a pertinent factor for the clinical surveillance of fragile people
but requires, more than just actigraphy, activity recognition which has
become incredibly easier to perform during the last decade.

1.1.2 New Possibilities

Two major digital revolutions greatly facilitate the setup of actigraphy
services. Firstly, the advent of 5G telecommunication networks will
complete the third web revolution and allow it to become the “web
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4.0”, the Web or Internet of Things (IoT)4. It can be seen as a new
paradigm which can also take different names: ubiquitous computing,
pervasive computing or ambient intelligence. The “things”, or objects
which should become omnipresent, are more and more diverse: we
naturally find sensors for temperature, light, pollution, sound level,
presence, etc. but also smart assistants disguised as music speaker
and daily life objects enhanced with numeric capacities (e.g. fridge
automatically buying some products when there are no more). Among
fields particularly impacted by internet of things, we can list: eHealth,
automation, sport, etc. and more globally, one can talk about Industry
4.0, smart home, smart city, smart transport, etc. [228]. Not only the
value of an individual object can be greatly increased by miniaturized
and reliable microprocessors, memory units or power supplies but also
several objects can communicate and share data to produce innovative
services.

Among those things, we especially bear interest for embedded
motion sensors (accelerometer, gyrometer, magnetometer, barometer,
among some others less common) whose precision has greatly increased
during these last two decades. Nowadays, smartphone sensors are per-
fectly adapted for medical use [142]. Smartwatches constitute an inter-
esting alternative to collect biometric data, including cardiac frequency,
and motion data: this is testified by the ubiquity of sport watches [242]
which are conceived to monitor the person the whole day and during the
night. These daily life connected objects are judged less intrusive at home
and can be carried without getting the person stigmatized [36]. They of-
fer the upside compared to smart home technologies also permitted by
IoT of targeting precisely the wearer of the sensors, even outside her/his
house.

With abundance of data coming from more and more diverse sources
also come the second revolution: (better) AI. The acquired data can be
processed with machine learning algorithms, especially deep learning
[123] algorithms, to perform ADL or posture classification and prediction.
This way, actigraphy monitoring of ADL and thus autonomy evaluation
could be performed automatically. To be able to eventually equip people
with such systems, high classification accuracy is required, particularly
for critical events such as falls. This has been rendered possible by the
progresses made to train deep neural networks with very large amount
of data notably by running them on Graphical Processor Unit (GPU)

4The web 1.0 is the static web connecting information. The web 2.0 is the social web,
connecting people. The web 3.0 is the semantic web or web of data.
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[115]. Obviously, with these two game-changing technologies come new
concerns which should also be addressed.

1.1.3 New Issues to Overcome

It is from now on impossible to ignore the immense ethical and moral
challenges posed by the massive data collecting permitted by IoT and
the exploitation of these data with AI algorithms. Those challenges in-
clude privacy preservation, biased algorithms toward certain popula-
tions (e.g. crime prediction algorithms biased toward Afroamerican pop-
ulations[139]), security risks inherent to distributed infrastructures but
also political concerns due to government being technically able to con-
trol its whole population at any time [129]. Thus, pervasive computing
systems must be associated to strong security and privacy preserving
measures. This is of course even more true for eHealth innovations as
personal healthcare information are particularly sensitive [132]. More-
over, compliance with legal regulations, such as the General Data Protec-
tion Regulation (GDPR)5 in Europe, is a necessity.

Apart from these ethical considerations, the place of the human in the
caring process is primordial, especially because some fragile people may
already suffer from extreme loneliness. The acceptability by the user of
these new technologies should thus be discussed. A study conducted
by Tuisku et al. [206] to evaluate the level of acceptability of a robot by
fragile people reveals that a majority of them has negative views of it
notably because of the fear to see their nurse replaced by a robot. On
the other hand, from the caregiver perspective, it seems that they are
perceived as useful tools notably because the number of semi-dependent
people increases rapidly. These observations are further confirmed in
another study by Melkas et al. [140] who studied the impact of the
implementation of a care robot. Overall, they concluded that people
seemed attracted and stimulated by the novelty of the robot. Regarding
wearable sensor based systems, Talukder et al. [200] studied the factors
favoring their adoption by elderly and concluded that the two most
important were the expectancy of the technology to be beneficial and
the influence of the social environment. Against intuition, they observed
that ease of use did not have a significant effect. We conclude from these
studies that it is overall important to design eHealth services which work
together with the medical staff to improve the service provided to the
user while preserving what is often his/her only social environment.

5https://eugdpr.org/the-regulation/
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We would like finally to write some words about the environmental
impacts of those technologies which have the potential to become disas-
trous. IoT in itself is a massive environmental threat as it promises to con-
nect billions of objects, thus consuming enormous amounts of resources
to manufacture them [180]. However, the resources on the earth being
limited, the absolute necessity of those objects to improve the quality of
life is to be questioned. The same reasoning goes for new complex AI
models which sometimes require very large amount of energy just to be
trained [19, 189] but provide a very dispensable service. Today, many (if
not most) AI models are trained to choose which advertising to show to a
specific user: this situation probably requires efforts from the AI research
community to focus on more useful topics such as healthcare or climate
change and environment preservation [168].

1.2 The Contributions of this Thesis within
the Framework of Human Activity
Recognition

1.2.1 Human Activity Recognition: a Broad Science
Field

Human Activity Recognition is a very broad computer science field
which aims at recognizing what a person is doing by analyzing data
related to this person recorded from various sensors or instruments. It
has numerous applications: from crime detection on video surveillance
images to gesture recognition when performing a physical activity. It
can be performed in several contexts and Lara et al. [120] listed seven
of them: ambulation, transportation, phone usage, exercise/fitness,
military, upper body gestures, for instance involved in human-computer
interactions. For each of these contexts, different types of data can be
considered. Video and sound data are useful for solving crimes and
video surveillance but poses several ethical problems notably regarding
privacy and democracy. Another application is related to the fitness
watches which use inertial motion data to monitor the user during a
physical effort but also during its daily life to help him/her improve
her/his way of living and therefore her/his performances. This setup
can also be used to monitor the ADL or self-care activities. In the context
of eHealth, automatically recognizing ADL can thus help improving
the quality of life of elderly persons by ensuring they still can perform
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Activity Recognition

them and automatically assess their autonomy. As a consequence, many
Human Activity Recognition (HAR) researches focus on recognizing
ADL.

The term “activity” can thus be associated with a broad range of
motion data produced by physical movements, from the simplest ones:
gestures, postures, falls, ADL, etc. to more complex tasks: sports,
daily household tasks, transportation and locomotion, routines etc. In
this thesis, the word “activity” will therefore be employed generically
along with more precise terms when appropriated. Similarly, we will
used the words “recognition” or “classification” to speak of supervised
classification (of activities, most of the time). To better distinguish the
two tasks, the word “retrieval” will be associated with the identification
of routines.

Different categories of algorithms have been considered to tackle
HAR. Early approaches consisted in (manually) defining expert rules
and thresholds for the sensor values leading to posture recognition
and then activities [136, 138, 145]. However those rules can only be
defined relatively to one user and these approaches cannot therefore
be generalized easily. Other types of approaches include time series
analysis, notably with statistical and parametric models such as Hidden
Markov Models (HMM) or Bayesian networks [109, 146, 203, 207].
Nowadays, machine learning models can automatically learn to classify
these data. Moreover, neural network models are able to automatically
extract the relevant features to process and are able to adapt easily to new
activities and new users [201].

1.2.2 The Steps to Perform Activity Recognition

Whatever the conditions, the data and the approaches, the process of
activity recognition can globally be summarized in five steps [9]:

1. The preprocessing step: motion sensor data can be noisy and impre-
cise and they therefore require cleaning, notably to remove gravity
influence (i.e. Fourier transform, filters, resampling, standardiza-
tion etc).

2. The segmentation step: sensors data are continuous data and
this requires, before associating an activity to a part of the data
to segment the time series into parts using (overlapping) sliding
windows for example.
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3. The feature extraction step: most of the approaches cannot deal
with data under the form of time series and demand vector as input.
Feature extraction approaches aims at producing such vector input
from the data of a segment.

4. The dimensionality reduction step: to avoid the curse of dimen-
sionality and speed up computation, it is sometimes necessary to
project the feature vectors into a lower dimensional space.

5. The classification step: finally, the labeled feature vectors are used
to train the model. Then, this model can be used to recognize new
postures, actions or activities from unlabeled data.

The main contributions of this thesis subvert this classical workflow
in different ways. More precisely, the feature extraction and dimensional-
ity reduction steps can be performed simultaneously by a neural network
from the raw data. We are interested in modifying the classification step
to be able to retrieve routines without activity label supervision instead
of classifying labeled activities. This follows our initial discussion about
the limitations of supervised activity recognition for real daily life appli-
cations and we will now precise the scope of this thesis.

1.2.3 Scope of this Thesis and Contributions

Conscious of the privacy concerns arisen by machine learning technolo-
gies, we choose to restrain the data from which we train our models to in-
ertial wearable sensor data. These data are easy to gather with a watch or
a smartphone. They are associated with only one individual and can be
recorded outside the home (unlike smart home sensors). Finally, they are
generally hard to interpret by a human being (unlike video data) which
further guarantee privacy preservation.

In order to be able to work in a less supervised framework, we
will also tackle activity recognition by considering rhythms. These
can be circadian rhythms [5], basically when people sleep or not or
more generally routines: successions of recurrent activities. From a
psychological point of view, routines are a type of behavior that can
be defined this way: “behavioral patterns, based on learned context-
behavior associations, that are elicited automatically upon encountering
associated contexts” [76]. A routine is a more abstract concept as it is
not necessary related to a particular label and can just be associated to
a pattern in the data. The major contribution of this manuscript is to
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Activity Recognition

propose new neural network approaches to retrieve the routines from
the motion data of a single individual.

The work of this manuscript also integrates itself inside a research
effort by Orange on the subjects of eHealth and especially home moni-
toring of fragile people through actigraphy with inertial sensors and AI.
This subject has several components: posture recognition [136], indoor
localization [3], routine retrieval with the present work but also emotion
recognition, etc.. All these directions have a single objective: produce
relevant autonomy indicators to monitor the user on the long-term.

The contributions of this manuscript are therefore threefold and
presented in three separated chapters:

In the chapter 2, we start by dealing with personalized supervised activ-
ity recognition. We make the observation that classical supervised
machine learning approaches are not adapted to handle the high
variability of activities performed by the user in its daily life. More-
over, if personalized models should achieve higher accuracy scores,
they also impose to the user to provide much more data compared
to the case when data from several users are available. To over-
come these issues, we propose a few-shot sequence classification
model based on matching networks [217]. This model is able to
learn to recognize new activities at test time from just one new la-
beled example which makes it very versatile and flexible for daily
life environment.

In the chapter 3, we tackle the issue of routine retrieval. We start
by exploring the literature to better frame the idea of routine,
we then propose a mathematical definition of this concept which
relies on metric learning. After reviewing the main approaches for
(sequence) metric learning, we propose an architecture to jointly
learning a metric and a representation of sequential data. We also
propose a method to retrieve routines using information theoretic
clustering scores, the clustering being performed thanks to the
learned metric.

In the chapter 4, we propose a new architecture for sequence metric
learning, inspired from dynamical system theory and more pre-
cisely, synchronization. Two identical chaotic dynamical systems
can always be synchronized if a sufficiently strong coupling is ap-
plied between them. By drawing a parallel between synchroniza-
tion and metric on one hand, and identical dynamical system and
siamese recurrent neural network on the other hand, we propose a
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new model for sequence metric learning which implements a mech-
anism of coupling between the two networks. We hope with this ar-
chitecture to improve the performances over the classical siamese
model, notably for routine retrieval.

The chapter 5 is dedicated to concluding this manuscript and draw-
ing some perspectives from the presented work. Envisaged future
works include designing a new information theoretic temporal de-
pendent loss [186] to be used for routine clustering but also improv-
ing the architecture described in the chapter 4. Improvement tracks
on this matter encompass studying more complex synchronization
metrics [175] to learn or improving the learning time with virtual
metric learning [161].
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CHAPTER 2

PERSONALIZED ACTIVITY
RECOGNITION

If deep learning algorithms have become a primary tool to build activity
recognition models, they still require in most situations large amounts
of training data. Indeed, the generalization capacities of the model to
several users and environments directly depend on the available data.
One of the implied risk is of course overfitting: when the model is
adapted too much to the training data and is unable to generalize to
new ones. This usually happens when the training set is too small
and therefore, not representative. On the contrary, everybody has its
own specific way to perform postures or ADL, and personalized models,
trained and applied to a single user’s data should thus achieve a better
accuracy. Data gathering is rendered much easier when several sources
(users) are available, however obtaining enough data from only one
user to properly train a neural network is constraining due to the large
time investment required from the user which also delays setting up the
service. On the other hand, many users can also implies privacy concerns,
especially for healthcare services.

We propose in this chapter to employ few-shot learning to address
this problem and present a neural network architecture able to one-shot
learn to recognize activities from sequential inertial data. Our approach
combines a Sequence-to-Sequence (Seq2Seq) model [197] for robust
representation learning of the sequences and the matching network
architecture [217] which produces, at test time, a one (or few) shot
classifier. This chapter is organized as follows. We summarize in Section
2.1 previous work on HAR tackled with machine learning and then focus
on personalized activity recognition. We then introduce classical neural
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network models for sequence processing from the literature. We then
describe our approach for few-shot personalized activity recognition
based on matching network in Section 2.2. In the Section 2.3, we report
the results of several experiments on the MobiAct V2 Dataset [41] and the
UCI HAR dataset [7]: we assess the utility of the different components of
the model and its capacity to predict classes that have not been used for
training. Finally, conclusions and perspectives are drawn in Section 2.4.

2.1 Related Work

2.1.1 Supervised learning models for HAR

Supervised learning algorithms comprise data-driven approaches where
a classification or regression model is learned from labeled data. In this
way, instead of having to set up expert rules and thresholds, the model
learns directly from the data the rules for associating a data sample to
an activity performed by a user. Overall, machine learning approaches
have the advantage of being able to adapt easily to new situations and
new users thanks to their generalization capacity if they are trained
on a representative set of data. Numerous research works on HAR
using supervised machine learning have been proposed in the literature,
notably featuring the following approaches:

Logistic Regression [100] is, despite the name, the counterpart of
linear regression for classification. The linear regression models
the relationship between the outcome and the features linearly,
logistic regression uses the property of the sigmoid function, which
squeezes the values between 0 and 1, to transform this linear
relationship into a class probability. The parameters are generally
obtained by maximum likelihood estimation.

Decision Trees are models that learn to realize several successive splits
in the data based on the features (e.g. acceleration on x-axis is
higher than some value) until the splits contain only samples from
the same class (samples from the same class can be dispatched in
several splits). Random Forests [93] are an ensemble method which
combines multiple weak decision trees to reduce overfitting.

k-Nearest-Neighbors (k-NN) classification is a non-parametric method
which determines the class of a new sample by considering it the
same as the class of its first or more neighbors. If the neighbors
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2.1. Related Work

are from different classes, the majority rule is applied sometimes
weighted by the distance. Various metrics can be used to improve
the results depending on the type of data [222] and k-NN, are there-
fore particularly exploited by metric learning, which we develop in
the next chapter.

Support Vector Machine (SVM) [54] is a theoretically grounded algo-
rithm which aims at finding the best separating hyperplane be-
tween training samples of different classes, the one from which the
points are the farthest: this distance directly impacts the generaliza-
tion capacity of the model. SVM are able to deal with non-linear
decision boundaries by the means of various kernels. SVM were
widely adopted by the HAR community notably through works
on feature extraction/selection and on hardware embedding [6, 45,
89].

Numerous papers have used and compared these methods as testi-
fied by the following reviews [8, 9, 120, 184]. For example, Ravi et al.
[165] compared several variants of naïve Bayes classifiers, SVM, k-NN,
and decision trees to classify 8 common activities (walking, climbing
stairs, brushing teeth etc) from the data of a triaxial accelerometer. They
extracted the following features from 5.12 seconds windows with 50%
overlapping: mean, standard deviation, energy, correlation between the
axis. They also experimented meta classifiers, classifiers which combine
the results of several classifiers to improve the performances and found
that they obtained the best results using the plurality voting rule. The
choice of the features is indeed a determinant factor to achieve the best
performance. Casale et al. [39] conducted a study to find which 319
features they extracted were the most useful leveraging the properties of
a Random Forests model. They observed that some axis were more rele-
vant than others and that the root mean squared value of the integrated
acceleration in a window was very discriminant on each axis. However,
this process of computing numerous different features before selecting
the most relevant can be spared by employing a machine learning ap-
proach of another kind.

Among the existing machine learning algorithms, Artificial Neural
Network (ANN) have become ubiquitous. The advances made during
the last 10 years to improve the training of deep neural networks, no-
tably for image recognition [115], popularized the use of deep learning
approaches for various applications, among them HAR. The GPU com-
putation considerably accelerated the training time of deep networks on
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large datasets. In the past, those approaches were also deemed to be
difficult to implement due to the necessity to differentiate the equations
and therefore their implementations. Nowadays, the advances made in
algorithmic differentiation [16] allow to easily set up deep learning algo-
rithms since the differentiation is rendered automatic. Neural networks
are able to automatically extract features from the data: while learning
how to solve the task they are trained upon, they learn to extract the
most relevant features to do so. As an example for such approach, Zeng
et al. [239] used a Convolutional Neural Networks (CNN) to extract fea-
tures from sequential mobile sensor data and perform activity classifica-
tion using a k-NN. A CNN is a type of network adapted to deal with
matricial data such as images which uses a succession of convolutional
filters to extract local features and pooling layers to condense the informa-
tion. They showed that the CNN could outperform other approaches for
feature extraction such as Principal Component Analysis (PCA) and Re-
stricted Boltzmann Machine (RBM). However they did not confront their
approach with non-linear dimensionality reduction approaches such as
autoencoder and Laplacian Eigenmaps [17]. In fact, Wang et al. [219], in
a recent review dealing with deep learning approaches for HAR, mostly
discussed CNN-based approaches. However, sensor data are sequential
which makes Recurrent Neural Network (RNN) a piori more suited for
this task. For example, Lefebvre et al. [125] used a bidirectional Long-
Short Term Memory neural network (LSTM) [177] to classify 14 gestures
performed by 22 different individuals. In this work, no CNN is used and
the LSTM is directly trained to extract the features from the data coming
from inertial sensors and to classify the gestures. They achieved up to
95.57% of accuracy and showed that the combination of accelerometer
and gyroscope data allows to produce better results. Murad et al. [144]
proposed to compare several architectures of LSTM, unidirectional, bidi-
rectional and cascading [230] (a combination of the first two) to SVM,
k-NN and CNN for HAR. On several datasets, variants of the RNN out-
performed the other approaches: according to the authors, this is due to
the ability of the RNN to extract relevant temporal features. Finally, Guan
et al. [85] improved once more the RNN model by designing an ensem-
ble architecture combining several LSTM and merging their decisions.
The multiple LSTM are trained a bit differently to allow the model to
overcome the real-world HAR challenges of noisy sensor data and class
imbalance. To do so, the LSTM are trained with different sampling start-
ing points, different batch sizes and different sequence lengths. After
decision fusion, the authors observed an increase of performance over a
single LSTM. With the same purpose of increasing the accuracy in real
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environments, we now focus on personalized models which should bet-
ter take into account the specificity of each user but also bring challenges
regarding the quantity of data.

2.1.2 Personalized HAR models

The question of personalized models is essential to achieve the best
performances: indeed, most of the time, people perform activities in a
very personal way. In 2004, Bao et al. [14] already observed that user-
specific models could lead to better results while classifying vectors of
handcraft features with a decision tree. Since then, several other papers
came to the same conclusion that personalized models are indeed more
accurate, and we present in the following three approaches to learn
personalized models: multitask learning, active learning and few-shot
learning.

2.1.2.1 Multitask learning

Multitask Learning aims at improving the generalization of the model
by learning several tasks more or less similar in parallel while sharing a
intermediate representation, a shared hidden layer in the case of neural
networks [38]. Then the losses computed for all tasks are combined and
used to update the whole network. This approach has been used by Sun
et al. [193, 194] to tackle online personalized activity recognition. In their
model, to each person corresponds a task, a Conditional Random Field
(CRF) to learn. CRF are a category of statistical modeling methods which
uses a graphical model to take into account the relationship between
the predictions. The parameters w of the model can be learned using
gradient descent. Here, for each task, the loss of all the tasks are summed
using a specific weighting which is computed by measuring a distance
between the tasks thanks to a kernel on the parameters w of each task.
In another publication, Peng et al. [160], while not proposing a specific
approach for personalized activity recognition, achieved the best result
on the Ubicomp 08 Dataset [101] which contain a unique user data,
compared to other classical neural network approaches. Their approach,
human Activity RecognitiOn using deep Multi-tAsk learning (AROMA),
consists in separating the activities to classify into two categories: simple
(postures, etc.) and complex (eating, working, other routines etc.), the
first being the components of the second. Simple activities are recognized
using a CNN, complex one with a LSTM: complex activities should be
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a sequence of simple ones. The model are both multitask learned by
backpropagating a sum of the two losses into the networks.

2.1.2.2 Active learning

Active learning assumes that getting the labels for a lot of data points
is very expensive (requires a lot of time or expert knowledge etc.).
Therefore the goal of an active learning algorithm is to select the most
efficiently as possible a subset of the unlabeled data points to learn from,
the most informative for the training, then an oracle is queried to get the
labels [178]. Several selection strategies exist. Stikic et al. [187] obtained
better results with a low confidence strategy for an activity recognition
task on sensor data. When using the low confidence strategy, a label
request is triggered when the classifier outputs for a sample nearly the
same classification probability for each class. Abdallah et al. [1] proposed
an approach to recognize activities from streaming mobile data. They
used active learning to limit the number of samples to annotate, the
selection strategy employed here is to request a label to the user when
the learning classifier has a low confidence in its classification. This way,
the classifier gets a lot of data to be trained with limited interaction with
the user. The learning is done in two steps: first a clustering model is
made with the labeled samples, it is then improved with the unlabeled
ones. In another publication, Longstaff et al. [133] proposes to improve
the training of already deployed models with specific-user data to obtain
a more adapted model. They succeeded in improving the performance
of a decision tree by at least 10% with various methods notably, active
learning with the low confidence strategy. However, they remarked
that the better the base model was the lower the observed difference,
notably for a base model exhibiting accuracy over 90%. Though being
used in various publication, the low confidence strategy can be criticized.
Settles et al. [179] remarked that samples getting a low confidence are
not necessary representative of the class because too close to the decision
boundary. They recommend on the contrary to weight how informative
a sample is by its similarity to other samples: the more similar it is, the
more susceptible it is to get a label request.

2.1.2.3 Few-shot learning

Personalized HAR, while theoretically promising better performances, is
in practice confronted to at least one technical issue: the burden of data
gathering lies on each individual user. However, deep neural networks
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typically require large amounts of data to be trained which, therefore
requires lots of time investment from the user and delays the availability
of the service: this can be critical for medical application. To conclude,
personalized models should be trainable from few data. We are helped
for this purpose by the fact that not that much data may be necessary due
to the fact that less generalization is required from the model (one user
in most of the time in one environment, e.g. his/her home). This issue
of data shortage is not really tackled by both previous approaches. In
this context, machine learning models especially conceived to be trained
from few data, so-called few-shot learning models, could provide a way
around. For example, Nguyen et al. [149] built a model able to learn
to detect never seen activities from very few wearable-sensor data. The
model consists in a feature-based part associated by decision fusion
with rules connecting the new activity to the others already learned by
the model. This way, the model is able to prevent the degradation of
performances resulting from adding a class but also not to overfit too
much by learning from only 2 or 3 sequences. In another work, Wu et
al. [229] presented an approach for one-shot classification of gestures
from videos data. They used classical video features and tried to match
test samples with one unique training example using the maximum
correlation coefficient. Matching networks [217] (see Section 2.2.1 for
details) are also based of this idea of matching samples with references
but use metric learning instead [18]. Following this idea, Sani et al. [174]
proposed to use matching nets to produce personalized models from
accelerometer data. Their method achieved 79% of F1-score on 9 classes,
outperforming most standard approaches trained on every user data.

2.1.3 Synthesis and discussion
We discussed the application of data-driven models to HAR, particu-
larly to personalized HAR. On one side, classical machine learning ap-
proaches such as SVM or random forests necessitate to extract hand-
crafted features from the raw data, whereas neural networks are able
to learn several layers of representations, extracting more and more ab-
stract and specific features each time while pursuing the tasks of classi-
fication or regression. Postures, ADL or falls exhibit a dynamic charac-
teristic signature (walking, running, going upstairs etc.) or are, on the
contrary, more static (lying, sitting, standing etc.). Some complex activ-
ities are composed of multiple simpler ones and postures. A classical
approach when working with sequences is to extract several signal fea-
ture vectors from subsequences of the signal in order to build a classifier.
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This approach is efficient in numerous cases but, as the window size is
limited, it cannot exploit long term dependencies. Therefore we propose
to employ RNN, more precisely Gated Recurrent Unit (GRU) to be able
to learn long-term dependencies trained to automatically extract features
from long sequences, when this is possible, depending on the dataset.
We also describe 3 approaches employed in the literature to tackle per-
sonalized HAR. From them, few-shot learning is especially adapted to
data shortage situation, which we considered could occur when learn-
ing one model for one user. The paper by Sani et al. [174] presented
earlier proposes a few-shot learning approach, based on neural network
and seems like a good starting point but can be pushed further. First,
they seem not to have used the full-context embedding (see 2.2.1) which
could provide slight improvements. Then, they trained and tested the
model on every class at the same time whereas matching networks are
conceived to work independently of the classes they are trained on. Fi-
nally, they used discrete cosine transform coefficients as features whereas
we wish to extract features automatically with a neural network. We also
propose to use few-shot learning to tackle the issue of personalized ac-
tivity recognition from sequential sensor data, and propose a pure neu-
ral network approach to do so, namely Sequence-to-Sequence Matching
Network (SSMN). However, before introducing it, we need to describe
with further details how neural networks work, especially RNN which
are conceived for sequential data.

2.1.4 Sequence Processing with Recurrent Neural
Networks

We describe in this subsection how feedforward neural networks and
recurrent neural networks work. We then introduce more complex
models able to deal with sequential data.

2.1.4.1 Feedforward Neural Networks

Neural networks designate a category of algorithms inspired by the
brain function. Neural networks map an input to an output by previ-
ously learning a model. They are basically composed of units (neurons)
organized as layers which compute the weighted sum of the inputs be-
fore passing it to every unit of the next layer. The first layer is called
the input layer, the last the output layer and layers in the middle are
called hidden layers (see Fig 2.1). This architecture is called a MultiLayer
Perceptron (MLP) and the network is said to be feedforward because
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Figure 2.1 – Schema of a neural network, a MLP conceived for binary
classification. In green, neurons of the input layer. In blue, neurons of the
single hidden layer. In yellow, neurons of the output layer: the output
vector ŷ is equal to {p(c1),p(c2)}.

the information only goes forward inside. Generally, neural networks
use supervised learning algorithms for training, and more particularly
backpropagation [90]: the output computed by the neural network is
compared to the desired output with the help of differentiable similarity
function, which can be, in the simplest cases, the cross entropy loss ( 2.3)
for classification or the Mean Squared Error (MSE) ( 2.9) for regression.
Finally, the gradient of error is backpropagated through the network
to modify the weights. The goal of training is so to find a global error
minimum on the training set, or on the validation set to assert good gen-
eralization capacities to the model.

We will now present the equations governing a feed forward neural
network. Firstly the signal is propagated forward, each neuron computes
its activation.

43

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI033/these.pdf 
© [P. Compagnon], [2021], INSA Lyon, tous droits réservés



2. Personalized Activity Recognition

Definition 2.1. The activation ali of the ith-neuron of lth-layer is the value
computed as follows:

zli = wl
i ∗ a

l−1 + bli , (2.1)

ali = f (zli), (2.2)

where b is called a bias and al−1 ∈ Rd is the activation vector coming from
layer l − 1 comprising d neurons and f an activation function.

The activation function is used to introduce a non linearity in the
neuron activation. In the case of feedforward neural networks, the
Rectified Linear Unit (ReLU) function max(x,0) [72] has been shown
great interest during last decade becoming the most used activation
function.

At the end of the network, an output ŷ associated to the input x is
computed and compared to the desired output y using, for example, the
cross-entropy loss:

L(ŷ) = −
c∑

i=0

yilog(ŷi). (2.3)

This loss is used for multiclass classification tasks ensuring that the
y are one-hot encoded class labels, that the output layer of the network
has a size equal to the number of classes and that the coordinates of the
ŷ represent probabilities, by using a softmax for example. This error can
be computed for one input (online) or several and then averaged (batch).
The use of online or batch training mainly depends on the application
domain and on the quantity of data as for batch training, one needs to
have all the data available at once. Then the gradient descent algorithm
is used to backpropagate the error to correct the weights and biases and
make the network "learn" by being driven to produce outputs leading to
a global minimum of error. Using the gradient descent algorithm we can
find how to update the weights wi and biases bi of each neuron of each
layer using the derivative chain rule.

2.1.4.2 Recurrent Neural Networks

ANN have been conceived to work with fixed-size vectors however, they
can be slightly modified to deal with sequences. Indeed, RNN possess
recurrent connections which give the ability to map an input sequence to
an output sequence while at each step taking the information of previous
steps into account. This enables the network to not only extract inter-
signal but also intra-signal correlations and thus to detect more complex
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Figure 2.2 – Schema of a Recurrent Neural Network (RNN) with input
and output sequences.

patterns. Let S be the sequence of inputs of the network and S(t) be the
input at time t. A RNN computes Ŝ, the sequence of outputs (see Figure
2.2) following this equation:

Ŝt = f (WxStbx +Whht−1 + bh), (2.4)

where Wx and Wh are respectively the input and hidden synaptic weight
matrices, bx and bh the biases, ht−1 the hidden state of the previous step
and f is an activation function, generally hyperbolic tangent. The back
propagation of the error is performed by going back in time and taking
successively into account every previous time steps: this is the Back
Propagation Through Time (BPTT) [224]. In fact, when a RNN is unrolled,
it behaves nearly as a feedforward network. When one runs BPTT, this
requires to store every activations since the beginning of the sequence
and therefore it can become computationally expensive. In practice, we
can define a truncated depth which indicates the number of previous
steps for which we compute BPTT each time we run it.

Two major difficulties have been identified when training a RNN:
the vanishing and exploding gradient problems [21]. When the gradient
vanishes, the network basically stops learning, when it explodes, it can
cause weights to oscillate between different values [94]. These two
phenomenons have a similar origin. When applying back propagation
on deep networks, one must concatenate more and more multiplications
of activations as it goes back in the network. These activations are
bounded, in the case of the sigmoid function, between [0,1] and this
cause the gradient signal to vanish. This problem appears in every deep
network although simple solutions have been found for feed forward
networks such the use of the ReLU [82] instead of the sigmoid function
and the introduction of skip connections in so-called Residual Networks
(ResNet) [88]. Conversely, if the activations are greater than 1, they

45

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI033/these.pdf 
© [P. Compagnon], [2021], INSA Lyon, tous droits réservés



2. Personalized Activity Recognition

can grow and cause the gradient to explode. Training a RNN on long
sequences to learn long-term dependencies necessitates a deep unrolled
recurrent network which inevitably suffer from the vanishing/exploding
gradient problems, preventing it to learn correctly. An experiment made
by Bengio et al. [21] gives a better appreciation of the magnitude of
this phenomenon. They tried to make a single recurrent neuron learn
1 bit of information: the dependence between the first input of the
sequence and the last (basically positive or negative in both cases). They
discovered that the longer the sequence the more difficulties the neuron
had to predict the last input, even if only the first and last input were
significant. RNN really struggles with long-term dependencies and this
had to be somehow overcome to make RNN relevant for a large number
of applications.

2.1.4.3 Gated Recurrent Units

Hochreiter and Schmidhuber [95] proposed a way around the vanish-
ing/exploding gradient problems to allow RNN to learn long-term de-
pendencies by introducing a gating mechanism: the LSTM. It possesses
a cell state, a sort of internal memory in which new content is added and
old content is forgotten at each time step by the mean of gates. Later, GRU
[46] were introduced as a simplified version of the LSTM approach, while
showing similar performance on most sequential data analysis tasks [48]
(e.g. speech and music modeling). We detail in the following the equa-
tions controlling the information flow in a GRU network. First, it com-
putes the vector ht as follows:

ht = (1− zt) ◦ h̃t + zt ◦ ht−1. (2.5)

The hidden state ht is updated by forgetting the old content and
directly adding some new. The update gate zt is computed according
to the following equation:

zt = σ (Wizxt + biz +Whzht−1 + bhz). (2.6)

We also have the following relation for the new hidden state h̃t:

h̃t = tanh(Wih̃xt + bih̃ + rt ◦ (Whh̃ht−1 + bhh̃)), (2.7)

where finally rt is the reset gate computed similarly as zt:

rt = σ (Wirxt + bir +Whrht−1 + bhr). (2.8)
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2.1. Related Work

With this mechanism, a GRU network can retain information and
learn intra-sequence correlations on the long term.

Figure 2.3 – Schema of a GRU with the three gates inside the rectangle
controlling the information flow coming from the input and from the
hidden state.

2.1.4.4 Sequence-to-Sequence model

Finally, one interesting way of using RNN and GRU is to learn vector
representations in a similar fashion as auto-encoders [113] by connect-
ing two RNN: an encoder and a decoder. The so-called Sequence-to-
Sequence models [197] (see Figure 2.4) learn how to reconstruct the input
sequence from the last output of the encoder. To measure the reconstruc-
tion error and train the network, the MSE is generally used:

MSE(S, Ŝ) =
1
l

l∑
t=1

(S(t)− Ŝ(t))2, (2.9)

where Ŝ designates here the output sequence of the decoder. That
way, a robust representation of the sequence can be learned. Adding
noise (often putting 30 or 50% of the values of the sequence to zero) to
the input sequence is a good way to improve the generalization capacities
of the model [214]. The decoder is therefore trained to reconstruct the
non-noisy original sequence, forcing the encoder to produce more robust
features. The learned representations can then be used by other neural
networks as input.
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Figure 2.4 – Sequence-to-Sequence Model [197].

2.2 Few-shot Personalized ADL
Classification

Neural networks are able to automatically extract the relevant features
they need to diminish the error on they make the task they are learning.
To do so they use a hierarchy of features and the deeper the network
the more abstract representations the network is able to build [20].
However, this requires many layers, and consequently many more
parameters which can not only lead to the exploding or the vanishing
gradient issue (see Section 2.1.4.2) but also to the overfitting problem
if not enough data is available to train those numerous parameters
[185]. These theoretical issues converge with the HAR problematic
of learning models for a specific user with potentially a low amount
of user-specific data. A way around would be to train the model
on data from several users and then to perform a fine tuning of the
last layer(s) with user-specific data. This typically works well for
image classification [199] and allows to reuse classical CNN architectures
trained on large datasets (e.g. Imagenet1 [62]) on more specific tasks.
These types of models typically manipulate deep representations, the
first ones extracting low-level features common to many images, the
last more high-level and specific patterns. However, this process works
well with images but is more difficult to adapt for sequences of sensor
data. Another approach is to train models specifically conceived to
deal with few data: few-shot learning models, for example Matching
Networks [217]. An additional advantage of these models is their
flexibility in terms of classes they can recognize. We will first introduce

1http://www.image-net.org/
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2.2. Few-shot Personalized ADL Classification

the Matching Network architecture before describing adaptations made
to it for personalized activity recognition from sequential sensor data.
This model makes use of some form of transfer learning to pretrain a
Seq2Seq model 2.2.2. This work has been published in [50].

2.2.1 Few-shot Learning with Matching Networks
Vinyals et al. [217] developed a model called matching networks based
on metric learning and attention to efficiently learn to perform few-shit
classification. This model is not actually trained to classify but rather
to match samples with other examples that are part of a support set
we call S: it learns to produce a nearest-neighbor classifier. It allows
the model to work at test time with some classes never seen during
training and therefore to perform few-shot and even one-shot learning.
S contains N labeled support examples, one or several for each of the
C classes. The model is described in Figure 2.5 and is composed of 4
parts. The first is an encoder, a neural network trained to produce a
vector representation y of the example sequence S to be matched and
of each sequence in the support set called Semb in the following. The
second and third parts are called the context embedding and are used to
adapt the representations y and Semb relatively to each other. Thus, the
second part, the bidirectional GRU, will produce S′emb , representations
of each element in Semb relatively to each other support example. This
component processes Semb taken here as a sequence in both directions
and aggregates the results according to the following equation:

S′emb =
−→
h +
←−
h +Semb , (2.10)

where
−→
h and

←−
h are the sequences of hidden states produced by the

bidirectional GRU in each direction, respectively which therefore contain
the same number of vectors than Semb. The vectors are aggregated with
a component-wise addition. Another level of sophistication is the third
part which consists in transforming the embedding y according to S′emb ,
that is, make it closer in the latent space to the embedding of the support
elements it could match. This is done thanks to an Attention GRU model,
detailed in Algorithm 1, in order to avoid the new representation y′

depending on the order of the vectors in S′emb [216]. The parameter p,
the number of processing steps, is the number of times y′ will be passed
through the GRU with r as hidden state. This model is an attention
model [212]: it selects elements in S′emb according to their similarity
with y at the first processing step and y′ at the subsequent steps. The

49

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI033/these.pdf 
© [P. Compagnon], [2021], INSA Lyon, tous droits réservés



2. Personalized Activity Recognition

similarity is here measured with a dot product (see line 9 in Algorithm
1). Finally, an answer is computed by doing the weighted sum of the
support examples (line 11). Once the representations are produced, the
last part computes the distances between y′ and each vector in S′emb with,
for instance, the Euclidean distance or the cosine similarity. A softmax
function allows then to get probabilities of matching for each sample of
S which correspond to the probability for x to belong to the same class
as the sample. Finally, the highest probability determines the class of the
input sample. We will now describe an adaptation of this architecture for
personalized activity recognition.

Figure 2.5 – Overview of the SSMN architecture adapted to few-shot
sequence classification

2.2.2 Few-shot Learning for Personalized ADL
Classification

Matching networks, which are able to generalize new classes from just
one example, present several attracting properties to build personalized
activity recognition models notably in a real context where people do
a large variety of activities every day and sometimes completely new
ones which would thus be recognizable without retraining the whole
model. The general architecture described in the previous section can
be used with any type of data by choosing the right encoder for those
data. In their original paper, Vinyals et al. [217] used classical con-
volutional models pretrained on large datasets as encoders (such as
VGG [181] or Inceptions [198] for image processing tasks) then they per-
form or not a finetuning of this encoder at training time on the specific
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2.2. Few-shot Personalized ADL Classification

Algorithm 1 GRU with read attention [216]

1: procedure ATTENTIONGRU(y′,S′emb,p)
2: h← 01,n
3: h← GRU(y′, h)
4: i ← 0
5: for i = (2..p) do
6: h← h+ y′

7: a← 01,N
8: for j = (0..N − 1) do
9: a1,j ← hS′emb,j

10: a← Softmax(a)
11: r←

∑N−1
n=0 a1,nS′emb,n

12: h← GRU(h, r)
13: i← i +1

return h← h+ y′

small datasets. We propose to train a GRU encoder for sequences as a
sequence-to-sequence model [195] from which we kept only the encoder
part (Sequence-to-Sequence model frame on Figure 2.5). We therefore
call our approach SSMN. We leverage the properties of matching nets
previously exposed by proposing to use another dataset to train the
sequence-to-sequence model. This dataset must contain very similar
data (i.e. inertial data) to the dataset we are trying learn from but can
be taken from the literature and can have completely different classes.
This could be assimilated to some form of transfer learning [155] but the
data actually stay very similar, and we set aside the question of using
completely different sequential data (music, text, etc.) to perform this
pretraining. This can however raise sampling and data standardization
issues because the sensors employed to record the data were not the
same. Another way to exploit this property is to also use this similar
dataset as a validation set to avoid overfitting during the training of the
matching nets which is done with very few data (2 or 5 sequences for
each activity plus one in the support set). Thus more data can be kept to
train and test the model. We call this other dataset, a support dataset: it
is not strictly necessary but could greatly increase the performances of
SSMN.

In the next section, we experimentally verify the benefit of using a
support dataset together with the property of matching networks to be
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independent of the classes they are trained on by presenting only test
results on classes not used for training and recognized from just one
support example (i.e. performing one-shot learning).

2.3 Experiments

2.3.1 Datasets

The previous works mentioned in Section 2.1 tested their approaches on
different datasets and the lack of reference datasets is a known issue
among the activity recognition community. It is due to the variety of
contexts in which it can be performed and also the variety of data that
can be used. In the remaining of this chapter, we chose to concentrate
on three recent datasets on which results have already been published
in order to be able to perform comparisons. The main features of each
dataset are summed up in Table 2.2.

2.3.1.1 Postures

The first dataset is called Postures and was created by Quach [164]. The
data have been acquired using a 9-axes Inertial Measurement Unit (IMU)
(accelerometer, gyroscopes and magnetometer, IMU) on 9 subjects ex-
ecuting the same activity scenario several times: 5 times for each user
apart from user 2 who did 10. The scenario is composed of five postures,
repeated several times: walking, sitting, lying, standing and transfer
and have been conceived to reflect a daily routine of 24h on a 12 min-
utes activity sequence. “Transfer” represents the transition between two
postures. Overall, there are about 358k labeled 9D vectors and 1938 seg-
ments of scenario related to one activity with variable length (see Table
2.1 for details). The sampling frequency is around 10 Hz. The IMU was
a Shake SK6 [226] with the following range and precision for each sensor.
The range of the triple axes accelerometer is at most ±6g with a precision
of 1mg. The range of the triple axes gyroscope is of ±500 ◦/s with a preci-
sion of 0.1 deg/second. The triple axes magnetometer has a range of ±2
Gauss and a precision of 1 mGauss.

This dataset was used in a previous publication by Makni et al. [136]
where two attitude estimation algorithms were compared: Kalman filter
and Complementary filter to estimate the individual postures.

52

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI033/these.pdf 
© [P. Compagnon], [2021], INSA Lyon, tous droits réservés
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walking sitting lying standing transfer Total
# segments 454 280 138 280 751 1938
# vectors 63863 118802 149602 19555 28425 380247

Table 2.1 – Summary of Postures dataset activity sequences

2.3.1.2 MobiAct V2 Dataset

The second dataset is accessible online. The MobiAct V2 [41] is an inertial
dataset created to support research in ADL recognition. It includes 15
different activity labels: 4 falls and 11 ADL. The activities were recorded
following a realistic scenario: a typical day of work by 67 subjects. In
total, the dataset is constituted of about 3200 trial sequences. Data were
acquired using a smartphone which the user could place anywhere. The
IMU is a LSM330DLC itself composed of a tri-axes gyroscope and a tri-
axes accelerometer. The measurement range of the accelerometer can
be selected between ±2g, ±4g, ±8g or ±16g. The measurement range
of the gyroscope can be selected between ±250◦/s, ±500◦/s or ±2000◦/s.
The orientation features combine data from the accelerometer and the
magnetometer of the phone. We considered only the 19 users2 for our
experiments who have performed the 15 activities with at least two trials
for 12 activities out of the 15 and one trial for “walking”, “sitting” and
“standing”. Each user has around 53/54 trial sequences in total. No
preprocessing was applied to the trial sequences apart from a resampling
to a length of 50. Some trial sequences contain only one activity, others
have several (for example, standing and lying before and after a fall). We
treated each trial as one activity, the one mentioned in the name of the
file containing the trial, and we labeled the resampled sequence. We did
the same on the Postures dataset, after segmenting the dataset to train the
encoder. In a real environment, this segmentation could be replaced by
resampled sliding windows of the signal.

We now detail some published results on this dataset and the method-
ologies employed. To begin with, the authors of the dataset used it for
activity and fall recognition with the goal to develop the most effective
pipeline in terms of accuracy. To do so, the authors conducted an ex-
haustive study to find the best features (for example, they found that the
spectral centroid was quite essential). They achieved an accuracy score
of 97% with an instance-based k-nearest neighbor classifier. On the con-
trary, Di Pietro et al. [65] proposed a new neural network model called

2The selected users are the following : 1, 2, 3, 5, 6, 12, 20, 45, 53, 58, 59, 60, 61, 62, 63,
64, 65, 66, 67.
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MIxed hiSTory (MIST) RNN which they tested on MobiAct V2, among
others. They did not select features and learn directly from the raw data.
They separated users into fixed train, validation and test groups and
repeated the same experiment 50 times and kept the 5 best results. Their
approach requires less computation and produces better results than a
LSTM Neural Network by achieving 71% of accuracy. Finally, Tsinganos
[205] proposed a threshold-based approach combined with a nearest-
neighbor algorithm and a mechanism of adaptation to the user of the
feature vectors to classify falls. Their approach achieved above 90% of
accuracy score on MobiAct V2. Contrary to those approaches, we aim
at building personalized models on the MobiAct V2 but each user has at
most around 50 sequences, which is not enough to train a classical neu-
ral network model able to automatically extract and process the relevant
features. We thus propose to use matching networks instead to build our
architecture.

2.3.1.3 UCI HAR dataset

The last dataset is called UCI HAR [7]. It provides the data of 30 users
who performed 6 activities: “walking”, “walking upstairs”, “walking
downstairs”, “sitting”, “standing” and “lying”. It contains 10299 se-
quences of length 128 which are fixed-width sliding windows of 2.56 sec
with a 50% overlap. The sensors are a tri-axes accelerometer and a tri-
axes gyroscope recording at 50 Hz. The acceleration has been processed
to separated the total acceleration and the body acceleration for a total of
9 features. We applied no additional preprocessing.

Numerous results have since been published regarding this dataset.
The authors themselves notably achieved 96% accuracy with a multiclass
SVM. Zhao et al. [240] proposed to use a residual bidirectionnal
LSTM recurrent neural network to classify the sequences of the dataset
and obtained an accuracy of 91.1%. Jiang et al. [106] proposed an
approach based on CNN. They designed an architecture able to achieve
high accuracy with a low computational cost and got around 95% test
accuracy. CNN notably require a large quantity of data to be properly
trained which is more difficult to obtain in a personalized setting. San-
Segundo et al. [173] proposed to use HMM but with user adaptation
which resulted in an error rate of 2% and a recall of 95.3%. Their
model is first trained on the data of every users before being tuned for
one specific user with Bayesian adaptation. Though being personalized
and using finetuning, the approach presented in this chapter presents
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Dataset Postures Mobiact V2 UCI HAR
Features accelerometer,

gyrometer,
magnetometer

accelerometer,
gyrometer,
orientation

total and body
acceleration,
gyrometer

# Classes 6 15 6
original sam-
pling

10Hz maximum 50Hz

sequence
length

50 or 128 50 128

Table 2.2 – Main information regarding the three datasets used in this
chapter.

several differences with theirs. First, their approach actually needs to be
first trained with the whole dataset before being finetuned for one user
whereas our Matching Networks-based approach can be finetuned with
any inertial dataset from the literature. Then, their model is composed of
6 HMM, one for each class which makes the addition of a new class more
difficult to set up whereas, once trained, Matching Networks can start
recognizing a new class with just one new sequence. Overall, we observe
that several models are able to achieve an accuracy score of around 95%
on this dataset.

2.3.2 Preliminary Experiments

2.3.2.1 Personalized Postures Classification with a GRU

We first propose a preliminary experiment on the dataset called Postures
(see Section 2.3.1.1) where personalized models are learned on inertial
data with a standard GRU only. This dataset will be used afterwards as
support dataset as explained in section 2.2.2.

The personalized posture GRU-based models were trained on four
sequences (nine for user #2) during 150 epochs and were tested on one
randomly chosen sequence. Based on preliminary experiments on the
full dataset, we use personalized GRU models with two hidden layers
of size 8 and found that this small architecture was sufficient to achieve
good performances. The process was reproduced excluding a different
sequence each time (5 times for each user except for user 2, 10 times). We
thus performed a k-folds leave-one-out test of our architecture where k is
the number of sequences associated to one user. Moreover, regularization
is introduced in the training by using dropout [185] and weight decay
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Table 2.3 – Results for posture classification on Postures with GRU. (SD:
Standard Deviation)

Method f1-score SD Accuracy SD
Makni et al [136] - - 0.807 0.024

GRU [8,8] (all users) 0.553 0.068 0.742 0.056
GRU [8,8] (user 2) 0.705 0.059 0.874 0.049

[116]. Finally, each training starts with a learning rate of 0.01 which
decreases by a factor 10 if the loss does not diminish during 10 epochs.

A comparison with the results of Makni et al. [136] is presented in
Table 2.3. On average, the GRU accuracy of 0.742 is lower than the 0.807
achieved in [136]. Nevertheless, the model achieved with the data of user
#2 a better accuracy score of 0.874. This is mainly due to the fact that the
user provides twice as much data as other users. Consequently, asking
people to collect only 10 sequences for building a shallow GRU model
shows promising results with an acceptable user effort, in practice.

This preliminary experiment shows the benefit to learn personalized
models with GRU even from only 5 continuous sequences of activities.
We will now push this approach further on a larger dataset with more
users and activities but less data per activities. Based on the results
of this preliminary experiment, we will test our approach SSMN by
performing a pretraining of the encoder as a Sequence-to-Sequence
model on Postures.

2.3.2.2 Pretraining of Sequence-to-Sequence model on Postures

We propose in this second preliminary experiment to observe how the
training of the Seq2Seq model on Postures generalizes to the validation
set (the first user) of each dataset. First, we detail the similarities and
differences of each dataset with Postures in order to better understand
the obstacles to use an encoder trained on Postures on another dataset.
The Postures and MobiAct V2 datasets have three postures in common:
walking, standing and sitting. The lying posture is not independent
and always concatenated with a fall. The posture “transfer” in the Pos-
tures dataset can be assimilated to “stand to sit” ADL in the MobiAct V2
dataset. However, “transfer” is very diverse and less characterized and
we did not consider those two as strictly similar. Moreover, the activities
“walking”, “sitting” and “standing” in MobiAct V2 only have one trial
sequence available per user which is not enough to test our algorithm:
we need at least one sequence to be the support example and another to
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match with it. Thus, we removed “walking”, “sitting” and “standing”
from the MobiAct V2 dataset, to have both datasets having strictly dis-
joint sets of activities3. Features in both datasets are globally the same
apart from the magnetometers which is rather an orientation computed
from the other features in MobiAct V2. The learned encoder is therefore
not exactly adapted to the features of MobiAct V2. We hereafter name
this modified version of MobiAct V2 dataset MiniMobiAct.

Regarding UCI HAR, four classes out of 6 are common to both
datasets. The main difficulty resides in the organization of the dataset
under the form of sliding windows. To stay coherent with what has been
done with MiniMobiAct, we chose to simply resampled the sequences
of Postures to a length of 128. Finally, regarding the features, UCI HAR
presents no magnetometer data, which could seriously deteriorate the
quality of the representation when used later with SSMN.

We finally give some considerations on the standardization of the
datasets. Normally, the standardization is done on the training set and
the same parameters are then applied to standardize the validation and
testing sets. However, we have seen that the datasets do not share exactly
the same features, they have also not been recorded using the same
sensors. Thus, we chose to standardize each dataset regarding to itself.

To observe how the encoder behaves on another dataset, we propose
to observe the evolution of the performances depending on the encoding
size. We expect the MSE to decrease for the validation set of Postures
used here (user 9) with the increasing of the encoding size (up to some
point). The MSE on the other dataset (user 1 in each case) should follow
a similar evolution. The results are presented on Figure 2.6. Due to the
different scaling of each features of each dataset, absolute comparison of
MSE between datasets are irrelevant.

We observe that the three curves evolve similarly with a rapid
decrease in MSE with encoding sizes inferior to 50. The minimum
on Postures is achieved for a size of 100, after, the MSE stagnates
near the minimum. For MiniMobiAct, the minimum is also achieved
around the same size. For UCI HAR, the results are more difficult to
interpret as the decrease is less marked, probably due to the differences
mentioned earlier. This experiment helped us apprehend the relevance of

3Actually, there remain some “standing” or “lying” parts in some sequences, for
example in fall sequences. However, they are not labeled as such and thus will not
be learned as such by the model. Potentially, this could be a factor of confusion for
the model, but, in view of the experimental results, our approach still focuses on the
relevant parts of the sequence.

57

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI033/these.pdf 
© [P. Compagnon], [2021], INSA Lyon, tous droits réservés



2. Personalized Activity Recognition

Figure 2.6 – Comparisons of the MSE achieved on Postures validation set
(user 9) and the validation set of each other dataset for different encoding
dimensions.

pretraining an encoder with another dataset. We will reuse this approach
when testing SSMN in the next section.

2.3.3 Personalized Activity Recognition

After these two preliminary experiments, we are ready to test the SSMN
architecture on MiniMobiAct and UCI HAR.

2.3.3.1 Training Strategies and Protocol Details

The protocol to train matching networks differs significantly from a
classical machine learning protocol. It is not trained to classify but
to produce a one-shot learning classifier at test time by matching the
test samples with one or several support examples per class. The
training of such algorithm needs therefore to be independent from the
classes and from the support examples: thus, classes and not instances
are sampled. For example, for MiniMobiAct, nine classes and their
corresponding sequences are randomly chosen to be part of the training
set, the remaining three are part of the test set (see Table 2.4 for a
summary of the main parameters for both datasets). During the training,
the batches are composed of disjoint classes and not of a specific number
of sequences. We chose a batch size of three to match the number of
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classes to predict at test time (respectively, 2 for UCI HAR). In a batch,
one instance of each class is randomly selected to be a support example.
After each batch, the parameters of the model are updated by computing
the log likelihood loss on the remaining sequences of the batch classified
with the support examples. At test time, one support example from
each test class is chosen to be a support example, the other instances are
classified. Therefore, at test time, Ş is a one-shot classifier (one labeled
support example per class) which does not require any more training
and every validation or test results subsequently presented are one-shot
learning results on classes never seen at training.

To train this model, on both datasets, we used a learning rate of
0.001 which was divided by 2 every 10 epochs without decreasing of the
training loss. The value of the gradient was also clipped to 6 to avoid
exploding gradient in accordance with [156]. The GRU were initialized
with orthogonal weight matrices scaled to have a spectral radius of 1.1
in accordance with [196]. We used the Postures dataset as a support
dataset to improve the performance of one-shot activity classification. A
sequence-to-sequence model is trained on it and only the encoding part
is kept. For this model, we used a learning rate of 0.01 and a batch size of
10. To improve generalization capacity, we trained the decoding part as a
denoiser by randomly setting to 0 the values in the input sequence with
probability of 0.3 [214] which produces more robust features. A similar
initialization as mentioned above is also done. In the validation phase,
three classes of Postures are randomly selected to match the batch size.

We report in the following the accuracy and f1-score4 by concatenat-
ing the results of several train-then-test phases and computing a global
score after 40 iterations (thus, on about 400 classifications, depending on
the sampling for MiniMobiAct). The evaluation scores are computed in
two different ways. In the partial setting, the models are evaluated only
on never seen classes: the model is given one new support example (one-
shot learning) of the never-seen classes and tries to classify test instances
into these new classes only (following the batch size, this is therefore a
3-way accuracy for MiniMobiAct and a 2-way accuracy for UCI HAR). In
the full setting, the model is given support examples for the new classes
and also the classes used at training (randomly selected, once again) and
tries to classify the same test instances but can choose between all the
classes, not only the new ones (this is therefore a 12-way accuracy for
MiniMobiAct and a 6-way accuracy for UCI HAR). Nevertheless, the pre-

4Accuracy corresponds to f1-score micro-averaged for multiclass classification so
we report f1-score macro-averaged, which does not take into account class imbalance.
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2. Personalized Activity Recognition

Dataset Mobiact V2 UCI HAR
Total #classes 12 6
#Training classes 9 4
Batch size (classes) 3 2
Initial learning rate 0.001 0.001
#Test users 18 29

Table 2.4 – Summary of the main model parameters for SSMN.

sented scores are always for all the classes due to the 40 test iterations
being concatenated and the selected test classes being different each time.

2.3.3.2 Validation of SSMN Components for MiniMobiAct

We subsequently validate each component or the SSMN architecture
on the first user of MiniMobiAct. We first decide if fine-tuning is effec-
tive and the number of processing steps of the Attention GRU to be
performed. We begin with only one processing step and keep the best
configuration after each stage. Then, we validate the interest of using the
Postures dataset as a support dataset.

Finetuning

First, we evaluate the interest of finetuning a linear layer after the
output of the pretrained encoder of our SSMN architecture. The encoder
provides representations of size 100: this size was chosen according
to the reconstruction error achieved on the Postures dataset during the
pretraining. When using this encoder, the representation can either be
used as is or passed through a linear layer which will be finetuned with
the training data coming from the user we are learning a model for. We
tested two output layer sizes, 20 (a small version) and 100 (the same
output size). The results are presented in Table 2.5a. We observe that
the architectures labeled a1 for cosine distance with 0.856% of 3-way
accuracy and a2 for euclidean distance with 0.825% of 3-way accuracy,
got the best results and we therefore select them for the following
experiments. We observe that in both cases, the small size got the worst
results with significant degradation indicating that this representation
size does not seem to preserve enough information.

Number of attention GRU processing steps
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Distance Finetuned layer size 3-way accuracy 3-way f1-score
cosine no finetuning 0.812 0.79
cosine 20 0.819 0.763

cosine (a1) 100 0.856 0.823
euclidean (a2) no finetuning 0.825 0.81

euclidean 20 0.750 0714
euclidean 100 0.793 0.726

(a) With pretraining on the Postures dataset and different finetuned layer sizes.
Distance Network architecture 3-way accuracy 3-way f1-score

cosine [100] 0.745 0.696
cosine [100, 20] 0.694 0.676
cosine [100, 100] 0.733 0.709

euclidean [100] 0.8 0.758
euclidean [100, 20] 0.763 0.736
euclidean [100, 100] 0.784 0.754

(b) Without pretraining on the Postures dataset and different architectures.

Table 2.5 – Classification accuracy on MiniMobiAct, user1, with different
matching network architectures.

Next, we investigate the parameter p, i.e. the number of processing
steps of the attention GRU. We tested four values of processing steps
between 1 and 10, the largest value experimented in [216]. The results are
presented in Table 2.6. We observe that for the cosine distance 0.858% of
3-way accuracy could be achieved (b1) with 10 processing steps and that
for the euclidean distance, a maximum of 0.839% could be achieved (b2).
We globally notice that better values are achieved with more processing
steps as in [216]. Also as in [217], this is a very slight improvement.
The batch size used here is only three, and a more important impact
should be expected when trying to work with more classes. We kept
these parameters for the remaining experiments.

Impact of pretraining

Now that components of the architectures and their parameters have
been validated, we aim at measuring the exact impact of using the Pos-
tures dataset to pretrain our model. We thus propose two experiments.
First, the same GRU encoder is trained by only using the MiniMobiAct
training data (so not as a sequence-to-sequence model). The results are
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Distance Processing steps 3-way accuracy 3-way f1-score
cosine (a1) 1 0.856 0.823

cosine 3 0.793 0.802
cosine 5 0.779 0.783

cosine (b1) 10 0.858 0.826
euclidean (a2) 1 0.825 0.81

euclidean 3 0.777 0.759
euclidean (b2) 5 0.839 0.805

euclidean 10 0.814 0.809

Table 2.6 – Classification accuracy of SSMN variants on MiniMobiAct,
user 1, with different numbers of processing steps.

shown in Table 2.5b. The proposed architectures correspond to the ones
experimented for the finetuning where a layer of size 100 had already
been learned and frozen. We observe that none of those architectures
could outperform the results obtained by the best ones for each metric
(b1 and b2). The difference is more flagrant for the cosine metric where
a more than 10% improvement could be achieved with pretraining on
the Postures dataset. These results show the benefit of pretraining an en-
coder as a sequence-to-sequence model, on a different dataset containing
similar inertial data even if both have no activities in common.

Impact of early stopping

The other interesting property of matching networks is that they can
recognize new classes using just one new sequence. In situations of
very few available training data, there may not even be enough data to
perform a proper validation or “early stopping” to prevent overfitting. In
those conditions, with SSMN, another dataset can be used as validation
set, here the Postures dataset. We trained several models (using the same
parameters as b1 and b2) with fixed number of epochs to compare the
results with those previously obtained with early stopping based on the
performance on the Postures dataset. The results are presented in Table
2.7.

While the advantage for the cosine metric seems not significant, even
non-existent, we remark that the models using the Euclidean distance
clearly overfit and results are worse than those obtained with early
stopping (on Table 2.6 and decreasing over 50 epochs. The use of the
Postures dataset as a validation set improves the training in this case since
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Distance Max epochs 3-way accuracy 3-way f1-score
SSMN b1 20 0.845 0.795
SSMN b1 50 0.791 0.762
SSMN b1 100 0.855 0.833
SSMN b2 20 0.705 0.668
SSMN b2 50 0.753 0.709
SSMN b2 100 0.645 0.606

Table 2.7 – SSMN early stopping comparison on MiniMobiAct, user 1.

Algorithms 3-way accuracy 12-way accuracy
SSMN b1 0.755±0.084 0.533±0.103
SSMN b2 0.742±0.085 0.505±0.099

3-way f1-score 12-way f1-score
SSMN b1 0.741±0.087 0.522±0.099
SSMN b2 0.734±0.081 0.494±0.094

Table 2.8 – Test scores on MiniMobiAct, average of 18 users.

stopping the training at the exact right moment improves the validation
results.

2.3.3.3 Test Results of all users on MiniMobiAct

We now apply b1 and b2 using a pretrained encoder on Postures dataset
and early stopping of the training also on Postures dataset to every other
users of MiniMobiAct V2 having more than 50 sequences (18). To recall
some results from the state of the art, Chatzaki et al. [41] achieved 97%
accuracy with an instance-based k-nearest neighbor classifier and heavily
relying on signal processing techniques and manual feature selection.
DiPietro et al. [65] achieved 71% accuracy with their MIST approach.
It is not possible to directly compare these results to those obtained with
matching nets since the protocols are completely different: at test time,
matching net learns in one shot to predict three new classes whereas the
other models were trained on every class. Thus, these numbers are only
a rough indications. The test results on 18 users are presented in Table
2.8.

The best results are achieved by the cosine metric with 75.5% 3-way
accuracy even if the gap with the Euclidean distance can be considered as
non-significant regarding the standard deviations. To make comparisons
with the 71% achieved by DiPietro et al. [65], a normally trained neural

63

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI033/these.pdf 
© [P. Compagnon], [2021], INSA Lyon, tous droits réservés
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network model, our model achieved a maximum 12-way accuracy of
0.533 with the cosine. Apart from the amount of data, this difference
may also be explained by the large difference of the support set size
between the training and the testing (three to twelve) for which the
context embedding may not be really adapted.

We see on Figure 2.7a that about 25% of the users having more than
80% accuracy and about 50% more than 75%. On the 12-way classifi-
cation, our model achieved more mixed results as could be expected.
However, we see on Figure 2.7b that two users achieved at least 70%
12-way accuracy with the cosine metric. These results demonstrate the
capacity of SSMN to efficiently classify new classes from only examples.
The worst performing user for the Euclidean distance is actually always
the same across the figures. These performances seem inherent to the
quality of data gathered for this user which indicates that, although
SSMN can work with few data, it still requires good quality data. Con-
cerning the difference between cosine metric and Euclidean distance,
the results seem in contradiction with what was observed by Snell et
al. [182] 5 which they explained by Euclidean distance being a Bregman
divergence [12] contrary to the cosine metric. However, this is coherent
with what we observed with other metric learning architectures making
use of GRU [52] where cosine metric systematically outperformed the
Euclidean distance.

On Figure 2.8, we show the confusion matrices obtained by the best
users for each metric. We observe difficulties for similar classes6 namely
STN, JOG or CSI but the errors are not the same. For example, STN is
confused with JOG or JUM. In the case of the cosine metric, 9 classes out
of 12 achieved more than 90% 3-way prediction accuracy.

Finally, we propose to analyze the results as a binary classification
of falls vs. non falls similarly as in [51] where 0.808 of f1-score and
0.878 of Accuracy could be achieved on personalized fall detection. The
results are presented in Table 2.9. We observe gains for both models on
both metrics, the most important being the cosine metric with a gain
of 3% accuracy but also 11% of f1-score (macro) which means a great

5Snell et al. also proposed a model for few-shot learning called prototypical
networks. Actually, their approach coincides with matching networks in the one-shot
scenario which we performed here.

6Class legend, JOG: Jogging ; JUM: Jumping ; STU: Stairs up ; STN: Stairs down
; SCH: Stand to sit ; CHU: Sit to stand ; CSI: Car-step in ; CSO: Car-step out ; FOL:
Forward-lying ; FKL: Front-knees-lying ; BSC: Back-sitting-chair ; SDL: Sideward-lying
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Figure 2.7 – Results per user dispersion for all activities for 3-way
accuracy (a) and 12-way accuracy (b).

(a) SSMN b1, User 5 with 89.7% 3-way
accuracy

(b) SSMN b2, User 6 with 89.4% 3-way
accuracy

Figure 2.8 – Confusion matrix of best users for both metrics.
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Algorithms 3-way fall accuracy 12-way fall accuracy
SSMN b1 0.928±0.053 0.922±0.057
SSMN b2 0.927±0.049 0.896±0.0876

3-way fall f1-score 12-way fall f1-score
SSMN b1 0.891±0.071 0.879±0.076
SSMN b2 0.885±0.071 0.848±0.109

Table 2.9 – Test scores for fall detection on MiniMobiAct, average of 18
users.

Distances Finetuning # Training epochs
Cosine (c1) 20 100

Euclidean (c2) 20 50

Table 2.10 – Parameters validated on User 1 of UCI HAR dataset.

improvement of the recognition of falls, even in a one-shot learning
setting. We can also compare those results to the work from Tsinganos
et al. [205] who achieved a recall of 97.53% and a specificity of 94.89%.
Our one-shot learning approach reached only slightly inferior results
compared to this general approach.

2.3.3.4 Test Results of all Users on UCI HAR Dataset

We finally present test results on 29 users from the UCI HAR dataset.
This dataset has less classes than MiniMobiAct, they also largely inter-
sect the classes of Postures. To be concise, we validated the parameters
reported in Table 2.10 on the data of user 1 for both distances. These ar-
chitectures are hereafter named c1 and c2. AttentionGRU (cf. Algorithm
1) was not used for this dataset since it lead to weaker results. This may
be due to the low number of vectors in the support set with a batch size
of 2 which provokes overfitting since we observed slightly better results
when trying to classify one element in the 6 classes (i.e. using a support
set of size 6). Similarly, early stopping based on the Postures dataset
leads to slightly inferior results for user 1 and was therefore replaced
by a fixed number of training epochs. We report, in Table 2.11, the test
results averaged over the 29 other users.

We observe that the Euclidean distance got slightly better results
than the cosine metric, SSMN achieved an average 2-way accuracy of
0.8 with 16 users out of the 29 over 0.8 and one user over 0.9. For the
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Algorithms 2-way accuracy 6-way accuracy
SSMN c1 0.755±0.096 0.669±0.07
SSMN c2 0.80±0.081 0.706±0.65

2-way f1-score 6-way f1-score
SSMN c1 0.725±0.093 0.63±0.08
SSMN c2 0.789±0.072 0.665±0.077

Table 2.11 – Test scores on UCI HAR, average of 29 users.

6-way scores, they culminate at 0.706. Best state-of-the-art approaches
achieve around 95% accuracy on the complete dataset. San-Segundo et
al. [173] achieved this with a user adaptation approach. We think that
this dataset may actually bring three obstacles for our approach. Firstly,
the sequences are short (128 points, less than 3 seconds) which decreases
the quantity of discriminant information in each sequence and therefore
makes matching more difficult. Secondly, some classes can be very
difficult for SSMN to learn to differentiate from just one or few sequences
as the data may look very similar: e.g. “walking upstairs” and “walking
downstairs”, “sitting” and “lying”. This is particularly visible on the 6-
way score values. Thirdly, the dataset has no magnetometer data, which
is not a problem in itself but could create compatibility problems with
Postures.

2.4 Conclusions and Perspectives
We presented in this chapter an approach for personalized ADL classifica-
tion called SSMN based on matching networks combined with sequence-
to-sequence pretraining. This approach presents two major advantages
which make it very relevant to be implemented for real applications.
First, it addresses the problem of limited training data that is encoun-
tered when learning personalized models by being able to learn from
just a few examples. Second, it is very versatile regarding each new activ-
ity a user could perform by being able to learn it just from one example.
When properly trained, SSMN is indeed independent from the classes it
was trained on and only relies on the provided support set. As a conse-
quence, its performances can be boosted with any dataset from the litera-
ture which possesses similar characteristics even if the features are not ex-
actly the same and the activities different. This poses several difficulties
regarding the sampling rate and the sequence length (or the sliding win-
dow length) but also the standardization of the features and the features
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themselves which were not exactly the same (in this regard, UCI HAR
posed the most compatibility problem as it has no magnetometer data).
Nevertheless, this proves efficient to improve the results in some extend.
With this model, we achieved over 75% of 3-way accuracy, a performance
comparable to those obtained by classical neural network models trained
on the whole MiniMobiAct dataset. Although the 12-way accuracy was
actually much lower, it still proves the interest of this approach to quickly
deploy actigraphy systems based on activity recognition. Those results
were particularly good for “fall” classes with over 90% 3-way accuracy
and 12-way accuracy, meaning SSMN is a relevant approach to detect any
kind of falls. With a second experiment, we showed that this approach
could be extended to another dataset but also that it presents some limits
despite its great flexibility.

We tried in this chapter to propose a model adaptable enough to be
quickly tested and deployed in real environments with few labelisation
efforts. The next step would therefore be to test it in a realistic context and
see if it keeps its promises. However, this quest for flexibility, versatility
and adaptability to users and environment can be pushed further: is it
possible to give up completely on the labels and to transition from a
system monitoring what the person is doing to a system monitoring if
the person does what he/she usually does? We tackle this problematic
in the next chapter by the mean of metric learning.
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CHAPTER 3

ROUTINE RETRIEVAL WITH
SEQUENCE METRIC LEARNING

HAR is a key part of several intelligent systems interacting with humans:
smart home services [56], actigraphy and telemedecine [151], sport
applications [9], etc. It is particularly useful to develop eHealth services
and to monitor a person in its everyday life. It has been so far
mainly performed in supervised contexts with data annotated by experts
or with the help of video recordings (e.g. [41]). Not only is this
approach time consuming, but it also restricts the number of activities
that can be recognized. It is associated with scripted datasets where
subjects are asked to perform actions or activities. This scenario is thus
unrealistic and difficult to set up for real environments where people
do a vast variety of specific activities everyday and can diverge from
a pre-established behavior in many different ways (e.g. falls, accidents,
contingencies of life, etc.). In the previous chapter, we proposed to
employ few-shot learning to overcome these issues by building highly
adaptable models. We will now try to make another step toward less
supervision with metric learning - which was, in some way, already
a component of the Matching network architecture - and information
theory.

In this chapter, we advocate for the modeling and detection of
routines instead of classical supervised activity classification, and we
propose a machine learning model able to identify routines in the
daily recorded motion data of a person. Routines do not need to
be semantically characterized, and the model does not have to use
any activity labels but rather timestamp metadata. To address this
problematic, we first observe routines may present characteristics of
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3. Routine Retrieval with Sequence Metric Learning

almost-periodic functions, periodic similarity, regarding a certain metric
which we propose to learn. To do so, we built on the siamese neural
network architecture proposed by Bromley et al. [30] and propose to
jointly learn a representation and a metric for time series using a siamese
Seq2Seq model. We propose experiments to evaluate the quality of the
learned metric on the problem of routine retrieval based on clustering
and information theoretic scores.

The remainder of the chapter is organized as follows. Section
3.1 is dedicated to the formalization of the routine retrieval problem
from both literature and theoretical perspectives. Section 3.2 gives an
overview of metric learning with a focus on sequences and compatible
neural network loss functions. The proposed neural network model to
recognize routines is presented in Section 3.3 and Section 3.4 presents
experimental protocols and results. Finally, conclusions and perspectives
are drawn in the last section.

3.1 Tackling Routines instead of Activities
What are routines ? Which data can be used to build a machine learning
model tackling them ? And which machine learning tools are adapted to
recognize them ? We will first try to answer these questions by studying
the literature and we then propose a mathematical formalization of this
concept.

3.1.1 Routines in the Literature

Everybody presents some kind of recurrent behaviors in their daily life,
called routines or at a more general level, habits: the time they go to sleep,
morning rituals before going to work, meal times, etc. This was notably
studied by Wood et al. [227] who observed that between a third and a half
of the behaviors they studied were reported as habits. Results coming
from behavioral psychology show that habits are hard and long to form
but also hard to break when well installed [118]. For psychologists,
habits do not designate the behavior itself but rather the link in the
memory between a context and a response: habitual behaviors are
triggered by certain time and places [75]. Habits are therefore automatic
responses that can be triggered on the long-term and should produce
distinguishable patterns in the data collected by wearable sensors.

From a data-driven perspective, Gonzalez et al. [83] observed the
high regularity of human trajectories thanks to localization data and
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concluded that “humans follow simple reproducible patterns”. Further-
more, the literature suggests the use of different types of data to deal
with habits. Banovic et al. [13] used location data labeled thanks to
interviews with the users and proposed a decision-theoretic approach
to model the causality between routines and detect variations. Xiong
et al. [234] used location data to retrieve the routines by measuring the
similarity in terms of correlation between sequences of locations. Qin et
al. [163] also proposed to mine routines from location data obtained from
a smartphone. They decomposed the human daily behavior into three
levels: routine1 patterns (the “theme of the day”: day of work, weekend),
one-day patterns (variations of the same routine) and trajectories that
are effectively recorded. Each day is sliced into time slots containing tra-
jectories which then constitute the one-day pattern. This model is then
transform into three probability distributions which are learned with
maximum likelihood. Huỳnh et al. [101] used the data recorded by two
accelerometers during 16 days in order to search for activity patterns in
the data. The data were annotated at two levels: routines and detailed
activities, and the authors used topic modeling2 to retrieve the routines
here considered as topics after detecting the activities with a supervised
classifier.

In terms of modeling of routines, we remark that several approaches
adopted a hierarchical view which fit the idea that routine behaviors
can appear at several temporality levels (e.g. every week, every day,
at each time a specific activity is performed, etc.). According to us,
this way of doing lacks proper mathematical foundations which could
indicate a natural way to retrieve routines. It can also seem arbitrary
since various level organizations can be imagined. Finally, it nearly
forces to separate preobserved behaviors which can vary depending
on the user and appears not very flexible. Regarding the data, using
the localization seems rather intrusive and limited, particularly when
people are at home which moreover requires specific approaches to
be accurate ([238], [3]). On the other hand, wearable inertial sensors
data have proven useful to recognize activities, especially when they
are embedded into smartphones [218]. On the labelization, carrying
on interviews with the people on their whole daily life or watching

1Their use of the word routine is actually much more general than ours since we
designates as routines daily behaviors and not the whole type of day.

2Topic Modeling is a Natural Language Processing (NLP) approach used to identify
the subjects of several documents from the words it contains [97] with latent Dirichlet
allocation for example [23].
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videos appears also disrespectful of privacy and time consuming to
set up while the time regularity alone of the patterns could allow to
retrieve them without the need for semantic information. This opens
the gate for semi/unsupervised machine learning algorithms instead of
supervised classification. Routines produce a relevant signature of the
daily life of a person which can then be used to monitor him/her without
knowing what he or she is exactly doing. The detection of routines
with semi/unsupervised machine learning seems therefore a relevant
approach to conceive privacy preserving eHealth services.

3.1.2 Formalization of the Concept of Routine

To tackle routines with machine learning, we propose a starting principle
similar to the one used in NLP: similar words appear in similar contexts [35].
The context surrounding a word designates the previous and following
words of the sentence, for example. The context of a routine corresponds
here to the moment of the day or the week, etc. it generally happens.

Principle 3.1. Similar routines occur at similar moments, almost periodically.

From this principle, we seek now to propose a mathematical formula-
tion of routines which would include the notions of periodicity and sim-
ilarity. The almost periodic functions defined by Bohr [26] show similar
properties:

Definition 3.1. Let f : R→ C be a continuous function. f is an almost-
periodic function with respect to the uniform norm if ∀ϵ > 0, ∃t > 0 called
an ϵ-almost period of f so that:

sup |f (x+ t)− f (x)|⩽ ϵ. (3.1)

Obviously, the practical scenario of routine retrieval presents several
divergences from this canonical definition: data are discrete time series
and the periodicity of activities cannot be evaluated point-wise. Never-
theless, it is possible to adapt it to our problem. Let S : N → Rn be an
ordered discrete sequence of vectors of dimension n. If the frequency of
S is sufficiently high, it is possible to get a continuous approximation of
it, by interpolation for example. We now consider a function fS of the
following form with a fixed interval length v:

fS : R+→ Rn×l

x 7→ [S(x) : S(x+ v)[,
(3.2)
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where [S(x) : S(x + v)[ is the set of vectors between S(x) and S(x + v)
sampled at a certain frequency from the continuous approximation. The
interval v is typically one or several hours: a sufficiently long period of
time to absorb the little changes from one day to another (e.g. waking up
a little earlier or later, etc.). The objective is to define almost-periodicity
with respect to a distance d between sequences, such that ∀ϵ > 0, ∃t > 0:

d(fS(x), fS(x+ t))⩽ ϵ

⇐⇒ d([S(x) : S(x+ v)[, [S(x+ t) : S(x+ v + t)[⩽ ϵ.
(3.3)

The parameter t can be a day, a week or a sufficiently long period of
time to observe repetitions of behavior. The chosen metric d must be
able to handle the high variability of activities which can be similar but
somewhat different in their execution while exhibiting similar patterns
(e.g. cooking every day). We therefore postulate that d may be learned
for a specific user from its data and we will now show that fS respects
the condition established in Equation (3.3) with respect to d. To learn d
if pairs of similar and dissimilar sequences are known, a RNN encoder
parameterized by W , called netW , can encode the sequences into vector
representations and the contrastive loss [86] can be used to learn the
metric from pairs of sequence encodings:

Lcontrastive(S1,S2) = (1− l)1
2
d(netW (S1),netW (S2))

2

+ l
1
2

max(0,m− − d(netW (S1),netW (S2))
2, (3.4)

where l is equal to zero or one depending if the sequences are
respectively similar or not and m− > 0 a margin that defines the minimal
distance between dissimilar samples. Several justifications arise for the
use of a margin in metric learning. It is necessary to prevent flat energy
surface, according to energy-based learning theory [124], a situation
where the energy is low for every input/output associations, not only
those in the training set (see Section 3.2.1.1). It also insures that metric
learning models are robust to noise and a large margin is correlated with
better generalization capacity of the model [222]. As the learning process
aims to minimize the distances between similar sequences which are, by
definition, shifted by a period t, we get, for a fixed t > 0 and ∀x ∈ R+:

d(netW (fS(x)),netW (fS(x+ t)))⩽m+. (3.5)

The margin m+ is not always involved directly into the loss (see the
Section 3.2 about metric learning) but can be theoretically chosen as
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close to zero as possible by increasing m− and thus Equation (3.5)
identifies itself with Equation (3.3). In practice, this optimization is only
possible up to some point: if the model possesses a sufficient number of
parameters, the training set will be perfectly learned but a generalization
error is to be expected on the validation and testing sets [209]. This
argumentation suggests the interest of modeling routines with metric
learning as, in this case, the main property of almost-periodic functions is
fulfilled. We will now dig into the literature of metric learning, especially
dealing with sequence metric learning in order to develop an architecture
implementing this formalization.

3.2 Metric Learning State of the Art with a
Focus on Sequences

3.2.1 What is Metric Learning

3.2.1.1 Generalities

Metric learning is a field of machine learning which aims to produce
algorithms able to learn distances between data samples, here taken
in a broad sense (vectors, images, sequences, etc.). The metric can
then be used to classify or cluster new data samples. This can be
achieve with a large number of approaches using representation learning
[20], convex optimization [222], eigenvalues based methods [15], neural
networks [30], etc.. In fact, these domains are highly connected. One
could argue that neural networks only perform representation learning
tasks [123]. Dimensionality reduction algorithms (Principal Component
Analysis, Autoencoder, Laplacian Eigenmaps [17], etc.) which aim to
produce low vector representations of larger ones, can also be considered
representation learning algorithms. In that way, learning a metric is
both choosing or learning the best distance formula but also choosing
or learn the best representation for the samples. Most of the time,
this representation is a n-dimensional vector even if certain distances
like edit distances for strings [166] or graphs [74] can be used directly
on the original form of the data. While encompassing a variety of
data structures and approaches, distance is a well-defined concept of
mathematics:

Definition 3.2. Let E be a set of data samples, let d : E × E → R+ and
let (x1,x2,x3) ∈ E3. The function d is a distance function (or metric) if it
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satisfies the three following properties:

Identity: d(x1,x2) = 0⇐⇒ x1 = x2 (3.6)
Symmetry: d(x1,x2) = d(x2,x1) (3.7)

Triangular inequality: d(x1,x2) + d(x2,x3)⩾ d(x1,x3). (3.8)

This definition is canonical but some “metrics” we will come across
do not satisfy all the properties: e.g. Dynamic Time Warping (DTW)
[171] used for sequences does not respect triangular inequality. These
properties offer guaranties and can be used to perform optimizations
such as the ball-tree algorithm used to accelerate k-NN [71] which re-
quires triangular inequality. We nevertheless call them metrics for the
sake of simplicity. Three traditional metrics forms respecting the previ-
ous definition can be used on vector representations: Euclidean, cosine
and Mahalanobis.

Through two decades of research, multiple views of the metric
learning problem have been developed, not mutually exclusive but each
introducing new concepts and ideas. If metric learning could be seen
at the beginning as a variant of a classification problem where elements
of the same classes were made close, some advances would transform
it into what can be seen as a semi supervised approach: if supervision
is still necessary at some point, it is relaxed in many ways compared to
a true multiclass classification. This was notably experimented by Xing
et al. [232] who proposed to label the data with equivalence constraints
instead of classes, that is to say that groups of samples are qualified as
similar, others (not mutually exclusive) are said to be dissimilar which
allows to build dataset with rather blurry notions of similarity like
metadatas, information theory or other more simple metrics, etc.. This
labeling can therefore be more easily obtained without human expertise.
Pushing further into this direction, Perrot et al. [161] proposed an
alternative to equivalence constraints which they called virtual metric
learning. Instead of making close pairs of similar samples, they propose
to push toward a single virtual point every similar samples. This
optimization problem has the advantages to be solvable with a closed-
form and it also diminishes the number of constraints to be applied to the
samples. Several virtual point construction procedures can be envisaged:
with optimal transport, good representative sample of the class, one-hot
vectors, etc..

Finally, another interesting framework called energy-based learning
[124] highlights the interest of a central concept in metric learning:
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margin. In this framework, an energy function associates an energy level
to each configuration of the inputs and outputs of the model which
we denote in the following by E(x,y). This energy function is not
to be confounded with the loss function even if the most simple loss
function that can be derived from the energy function is itself (energy
loss). Correct associations are associated with low levels of energy and
conversely. Thus, when trying to process new inputs, we should simply
pick the ŷ value associated with lowest energy to x. However, to be
effective, not only must the loss associate low levels of energy to correct
associations but also creates an energy gap between the good and bad
combinations. This way, bad combinations are associated with relatively
higher energy levels than the good ones. This gap can be created by
including a margin into the loss and we will now illustrate its utility by
applying energy-based learning to metric learning. One loss designed
with energy-based learning principles will prove highly influential for
metric learning: the contrastive loss designed by Hadsell et al. [86]
(see Equation 3.4). This loss incorporates a contrastive term to separate
dissimilar examples under the form of a Hinge loss:

LHinge(B) =
∑

(xi ,yi )∈B
[m+E(xi , yi)−E(xi , ŷi)]+ (3.9)

=
∑

(xi ,yi )∈B
max(0,m+E(xi , yi)−E(xi , ŷi)), (3.10)

where ŷi is produced by the model from x. By using a distance d as
energy function, and dissimilar input pairs, we can rewrite the Hinge
loss for metric learning as a contrastive term:

LHinge(N ) =
∑

(xi ,xj )∈N

[m− d(xi ,xj)]+. (3.11)

Without the contrastive term, the loss would just impose that similar
pairs get low energies (distances). But, when learning from pairs of
inputs, nothing would prevent the model from just ignoring the inputs
and learning to output always the same value, resulting in a low
distance whatever the inputs. This justifies to also constraint the energies
(distances) between dissimilar inputs to be higher than the margin.

Following this introduction, we will now describe two ways to learn
metric making use of equivalence constraints and margins: constraint
optimization and siamese neural networks.
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3.2.1.2 Constrained Optimization

Constrained optimization3 is a field of Mathematics which aims at
optimizing parameters under some condition(s). One way to pose the
metric learning problem to introduce parameters inside the distance
formula is to consider a metric of this form, called the Mahalanobis
distance [135]:

dΣ(x,y) =
√
(x − y)TΣ−1(x − y), (3.12)

where Σ is the covariance matrix of the point distribution but by the
mean of optimization, can be any PSD matrix M (to get a positive value
under the square root). It is therefore possible to employ, most of the time,
semidefinite programming algorithms [210] to solve this problem under
some appropriate conditions. Xing et al. [232] proposed this formulation
based on their previously introduced equivalence constraint framework
for the data:

min
M

∑
(xi ,xj )∈P

dM(xi ,xj)
2 (3.13)

∑
(xi ,xj )∈N

dM(xi ,xj)⩾ 1 (3.14)

M ⩾ 0. (3.15)

The second condition (Equation 3.14) defines a margin and ensures with
the third (Equation 3.15) that that M does not collapse into the null
matrix. Depending on the form of M (diagonal or full), the problem
can be easy or hard to solve using semidefinite programming [210].
Weinberger et al. [222] proposed a convex formulation to learn M so to
maximize the margin between the samples from different classes: Large
Margin Nearest Neighbors (LMNN). A condition on the k-NN accuracy
is imposed on the loss since batches are formed locally and only local
dissimilar are repulsed from each other. The large margin ensures that
the model is robust and generalizes well. The objective function to

3These constraints, used here to optimize an objective function are not to be
confounded with the equivalence constraints which constraint the dataset itself. We
will use the term conditions in the following to designate optimization constraints to
distinguish them from equivalence constraints.
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minimize is therefore the following:

LLMNN(B) = min
M

(
(1−λ)

∑
(i,j)∈P

dM(xi ,xj)

+λ
∑

(i,j)∈P

∑
(i,k)∈N

[m+ dM(xi ,xj)− dM(xi ,xl)]+
)
. (3.16)

This loss function is very similar to Equation 3.4 but cannot be optimized
as such with semi-definite programming. It requires to transform the
Hinge loss into an inequality by introducing a variable which indicates
by how much the margin between similar and dissimilar distances is
violated.

Globerson et al. [81] proposed to learn a Mahalanobis distance
by trying to project similar points into a single points and dissimilar
infinitely far away. Using a softmax, it is possible to construct for each
pair of points, the following conditional distribution of probabilities:

pM(xj |xi) =
exp(−dM(xi ,xj))∑

k 6=i∈B exp(−dM(xi ,xk)
. (3.17)

Ideally, if the distribution corresponds to the geometrical interpretation
described above, this probability should be one if xi and xj have the
same label, 0 otherwise. The authors therefore propose to minimize
the Kullback-Leibler divergence between this ideal distribution and the
distribution generated by the Mahalanobis matrix M to learn. This
problem is convex relatively to M and can thus be solved using various
methods [29].

Davis et al. [59] formulated the Mahalanobis distance optimization
problem with information-theoretic tools. They used the bijection ex-
isting between a Mahalanobis distance and a Gaussian distribution to
write the distance between two Mahalanobis distances with the Kullback-
Leibler divergence. As a consequence, it allows to optimize M to be close
to a predefined Mahalanobis distance M0 while respecting the metric
learning conditions:

min
M

(KL(p(x;M0)||p(x;M))) (3.18)

dM(xi ,xj)⩽m+, (i, j) ∈ P (3.19)

dM(xi ,xj)⩽m−, (i, j) ∈ N . (3.20)
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The regularizing matrix M0 can be for example a covariance matrix [112].
More conditions can be added to this formulation and it allows also to
employ Logdet optimization to improve the performances compared to
semidefinite programming as no eigenvalue decomposition is necessary
[117].

3.2.1.3 Siamese Networks

Siamese networks were introduced by Bromley et al. [30] and are the
basis for many deep metric learning approaches. They consist in two (or
more) neural networks sharing the same weights and trained for metric
learning tasks (see figure 3.1). The inputs, labeled pairs, are processed
using the same function and so the measured distance is symmetric. The
weights of each network are updated the same way using metric learning
loss functions which are typically of the form of the contrastive loss
(Equation 3.4). Therefore, this setup quite differs from the classification
setup presented in Section 2.1.4.1 with Equation 2.3. More complex losses
are developed in the next sections.

Siamese networks can be trained with back propagation by differen-
tiating the selected metric loss. More formally, the problem modeled by
Siamese networks is to find a network parameterized by W such that the
energy (the distance) is small if the inputs have the same label, large oth-
erwise [47]. The choice of the distance is an important parameter to allow
the model to learn efficiently. Chopra et al. [47] showed that a L1 metric
was better than a L2 one as the latter could produce plateaus which could
slow the training.

Regarding the inputs, they can be vectors of handcrafted features.
However, as already stated in Chapter 2 (Section 2.1.4.1), neural net-
works are able to automatically extract the most relevant features from
the raw data and siamese networks are no exception. In fact, metric learn-
ing provides powerful objective functions to learn representations [153].
Indeed, this architecture has been applied with great successes combined
with CNN to image processing tasks such as person re-identification
[236] or object tracking [22]. As an example of enhancement of such ap-
proach, Varior et al. [211] proposed a siamese convolutional architecture
for person re-identification from video data with a differentiable gated
mechanism inspired from LSTM to link parallel layers. The network is
this way able to accentuate the common patterns between both represen-
tations. This leads to representations that are more suited to distinguish
some pairs of similar or dissimilar images.
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Figure 3.1 – Schema of a Siamese Network [30].

3.2.2 Sequence Metric Learning

We described the essential basic components of metric learning algo-
rithms. However they were either very general or conceived to deal with
vectors. The problem formalization presented in Section 3.1.2 involve
a distance between sequences. The most straightforward way to com-
pute one is to aggregate Euclidean distances between vectors with the
same timestamps. As a consequence, it can only be applied as such on
sequences with the same length Therefore, we will now introduce sev-
eral metric learning algorithms adapted to deal with sequences or time
series.

3.2.2.1 DTW and Related Approaches

The traditional approach to compute distances between sequences (or
time series, or trajectories) is to perform a DTW [171], an algorithm
introduced in 1978. DTW computes the lowest distance between two
univariate or multivariate time series while trying to match them (or
align them). Each point of each sequence must be matched with one
or several closest points of the other sequence monotonically, that is to
say by always going forward or matching at the same position. The
matching is usually searched in an area (or radius) of a definite length:
the Figure 3.2 shows the variations observed in the alignment depending
on the size of the radius. The choice of this radius and possibly other

80

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI033/these.pdf 
© [P. Compagnon], [2021], INSA Lyon, tous droits réservés



3.2. Metric Learning State of the Art with a Focus on Sequences

Figure 3.2 – Examples of alignments of two cosine signals shifted by a
phase of 2 produced by DTW using 3 different Sakoe-Chiba radius. The
distance between the two signals varies depending on the radius but a
low distance does not necessarily indicates a meaningful alignment (i.e.
respecting the semantic interpretation of the data) and therefore a correct
radius value to achieve high classification performances.

various constraints insures the accuracy of the classification and speed
up computation. The optimal radius for the dataset is generally cross-
validated and then k-NN can be performed using appropriate references
[231] to classify test samples. Actually, DTW is considered one of the
best metric to use for sequence classification combined with k-NN [231].
Clustering can also be performed notably by computing the affinity
matrix of the test set.

DTW is what is called a shape-based distance, as opposed to feature-
based and model based approaches, because it computes a distance
directly based on the forms of the sequences without any further abstrac-
tion. Since then, several improvements of the original algorithm have
been published, notably a quasi linear complexity version by Salvador et
al. [172]. DTW can also be improved by learning as stated by Nicolae et
al. [150] who proposed to learn a parameterized alignment cost function.
They were also able to provide theoretical guarantees of generalization
for their metric. However, the integration of DTW inside deep archi-
tectures has been rendered difficult by its non-differentiability and its
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theoretical quadratic time complexity which badly suits the equivalence
constraint framework and some associated more complex losses [153,
183, 235] (See Section 3.2.3.2). Recent works mitigate these drawbacks
notably with virtual metric learning [161, 191] and soft versions of DTW
[37, 58]. Abid et al. [2] defined a family of smooth warping distances,
which includes of course DTW but also Euclidean and edit distances,
parameterized by only three parameters. They then propose to learn the
parameters which allow to reproduce the Euclidean distances between
the training sequence latent representations obtained with a Seq2Seq
model [197]. They designed an objective function using a clustering
score called betaCV which normally is used to compare different cluster
assignments with a constant distance: it is the ratio between the average
distance between the samples belonging to the same clusters and the
average distance between all the samples. Here, the cluster assignment
is obtained by setting thresholds on the distances in the latent space
and betaCV should be minimum for the distance family parameters
corresponding to the same cluster assignment in the sequence space. Fi-
nally, the optimization is carried out with gradient descent. This work
is a great example of interaction between alignment approach, efficient
to measure distances on sequences but originally non-smooth, and a
fully-differentiable neural network architecture learning abstract latent
representations.

3.2.2.2 Optimization Approaches

Much like for vector data, constrained optimization methods can be
used to learn metric for sequences, often Mahalanobis metrics. Sun
et al. [192] proposed to learn a Mahalanobis metric on vectors of
signal processing features extracted from physiological sequential data.
They optimized the ratio between the distances of the k closest similar
samples and k closest dissimilar ones, for each sample with a variant
of the NewtonRaphson method [105]. Garreau et al. [77] proposed to
learn a Mahalanobis metric to be used inside a DTW in place of the
Euclidean distance. However, the learning of this matrix is done from
groundtruth alignments, which is most of the time, not available. In
contrast, Su et al. [190] proposed to employ an alternative to DTW,
Order-Preserving Wasserstein (OPW) distance by viewing the problem of
metric learning between sequences as an optimal transport problem: the
Wasserstein distance (or Earth Movers distance) is the cost of displacing
the distribution of the set of points of the first sequence toward the
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distribution of the elements of the second sequence. However, doing
so, the temporal relationship, the order, is lost. Therefore, the authors
propose a regularization to preserve this temporal relationship between
the samples. The overall problem is solved with the matrix scaling
algorithm. Then, in another publication [191], they reformulated the
DTW and OPW distances as parameterized meta-metrics of a single
ground metric. The ground metric is the only parameter of an optimal
transport problem, it is defined by a matrix which indicates the distances
between the features to be transported [57]. Such as the Mahalanobis
distance, this matrix needs to be PSD so to make optimal transport
a distance, and in fact the authors propose here to learn this ground
metric as a Mahalanobis distance. Since the optimal transport between
each sequence pair depends on the ground metric, the learning process
needs to update the metric and the latent alignment separately. To
reduce the number of constraints of a problem which would be otherwise
intractable, the authors proposed to employ virtual metric learning [161].
Not only this approach speeds up training but it also outperforms several
other metric learning approaches, notably approaches conceived for
vectors generalized to sequences.

3.2.2.3 Deep Learning and RNN-Based Approaches

Sequences are 2-dimensional structures for which feed forward networks
are not adapted: this justifies the extraction of high-level features to
produce a vector representation of the structure and the semantic of the
data [131]. These vectors can be build with features extracted by various
methods such as discrete Fourier or Wavelet transforms and signal
processing, etc.. However, this approach loses temporal dependency
information inside the sequence and alignment information between the
sequences which is very relevant to measure distances as demonstrated
by the efficiency of DTW. Sequence metric learning can therefore largely
benefits from the automatic feature extraction ability of RNN. Chen et al.
[44] proposed an approach based on Echo State Network (ESN) to learn a
Mahalanobis metric to classify labeled sequences. ESN [103] are a special
kind of RNN composed of a reservoir, a large sparse generally randomly
generated matrix which recurrently processes the input sequence and
acts as a dynamical temporal filter [204], and a linear readout that can
be trained with ridged regression to sequence modeling tasks. Here
the authors used a cyclic reservoir with jumps [167] whose parameters
are learned via gradient descent. For the metric learning part, they
adopted the same view as Globerson et al. [81]: the readouts of the same
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classes must collapse in a single same point. The readout parameters can
be learned using ridge regression as for a normal ESN while gradient
descent allows to learn alternatively the parameters of the reservoir and
the Mahalanobis matrix.

Che et al. [42] proposed a deep learning approach called Deep
ExpeCted Alignment DistancE (DECADE) able to learn end-to-end a
valid metric between sequences with alignments which is normally
not the case due to DTW infringing the triangular inequality. Their
approach is composed of a feed forward neural network to learn a local
representation between the points of the sequences to be used inside the
alignment. However, the distance is not computed by using the single
best alignment only such as in DTW but rather the expected alignment,
that is to say the average of all possible alignment distances between
the two sequences which the authors demonstrate is a valid metric
regarding the properties stated in Definition 3.2. Thought the number of
possible alignments grows exponentially with the length of the sequence,
the authors designed sampling strategies to efficiently approximate this
average in a polynomial number of steps.

Müller et al. [143] presented a siamese recurrent neural network
approach to learn sentence similarities as a l1-norm. In their method, the
LSTM network combines the embeddings of the words of the sentence
to learn a distance between representations of sentences. This strategy
does not require to compute alignments and following this perspective
we introduce in the next section several metric learning losses to be used
on learned representations of sequences.

3.2.3 Metric Learning Losses
To train a neural network, a loss function quantifying the error made
by the network on the batch is needed. Starting close to the classification
problematic, metric learning literature introduced several new own ideas
such as complex strategies for batch sampling. These loss functions
can be linked with the property of the learned metric and we therefore
organized this section following three genealogies of losses for three
different metrics: cosine, Euclidean and Mahalanobis.

3.2.3.1 Cosine-Based Loss

Cosine similarity is at first look just a variation of the Euclidean distance.
However, the normalization formally transforms a measure of distance
into a measure of angle. This particularity was especially leveraged in the
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field of NLP to compare vectors of word counting in documents. This
counting obviously depend on the length of the documents and cosine
similarity allows in this case to make comparisons independently from
the length, solely on the content.

Definition 3.3. Let −→x1 , −→x2 ∈ Rn ×Rn and let θ ∈ R be the associate angle,
the cosine similarity between −→x1 and −→x2 is defined by:

cos(θ) =
−→x1 · −→x2
||−→x1 ||||−→x2 ||

. (3.21)

Cosine similarity has been used since the introduction of siamese net-
works [30] but is still used nowadays notably for face verification and
person re-identification. It provides the advantages over the Euclidean
distance to be bounded which could lead to more stable learning. Lever-
aging this property, Nguyen et al. [148] proposed a simple loss to learn
an embedding and a cosine similarity for images:

LCSML(B) =
∑

(i,j)∈P
cos(Wxi ,Wxj) +m

∑
(i,j)∈N

cos(Wxi ,Wxj), (3.22)

where W defines a projection and the factor m insures a margin between
the positive and negative samples. The authors proposed to solve this
problem by optimizing W with the conjugate gradient method [91]. Yi et
al. [236] also followed this path but combined the cosine similarity with
a CNN architecture to learn the image representations, the whole could
therefore be optimized by gradient descent. They expressed their loss
using a log-likelihood expression:

Ldeviance({(B)) =
1
|P |

∑
(i,j)∈P

log(1 + exp(−m1[cos(ŷi , ŷj)−m2]))

+
1
|N |

∑
(i,j)∈N

log(1 + exp(m1[cos(ŷi , ŷj)−m2])), (3.23)

where m1 and m2 are margin parameters. This loss was chosen
by the author because, according to them, it concentrates the learning
on the samples close to the decision boundary therefore improving
generalization. In another publication, Zheng et al. [241] started from
another geometrical interpretation of the cosine similarity by defining
the quantity cij = ŷi + lij ŷj , which is the diagonal of the parallelogram
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formed by the projections ŷi and ŷj to be learned from the inputs xi and
xj . We thus get, using the triangular inequality:

||ŷi ||+||ŷj ||−||cij ||> 0. (3.24)

If lij equals 1 or -1 following if the inputs are similar or dissimilar.
Minimizing this quantity makes ŷi and ŷj colinear if they are similar,
orthogonal otherwise which corresponds to the extreme values of the
cosine similarity. As the norms can degenerate to zero, the authors
propose to minimize the following objective which makes the norm
approach 1 instead:

Ltriangular({(B)) =
1
|B|

∑
(i,j)∈B

(
1
2
||ŷi ||2+

1
2
||ŷj ||2−||cij ||+1). (3.25)

Although not performed by the authors, this loss is smooth and can
perfectly be used to train a neural network to extract the representations
of the inputs.

3.2.3.2 From Contrastive to Structural Loss

Lots of improvements have been brought to the original contrastive loss
designed to learn a Euclidean distance from similar and dissimilar pairs
[47]. A straightforward upgrade consists in working with triplets instead
of pairs. While this idea was more or less already present in earlier works
(e.g. [222]), it was first proposed by Chechik et al. to solve ranking
problems [43], then introduced again for facial similarity by Lefebvre et
al. [128] and finally fully adapted to neural networks by Hoffer et al. [96].
Triplet loss uses three samples: an anchor a, a sample similar to the anchor
p+ and another one dissimilar p−. This way, the problem is not to make
a distance between two samples smaller or larger than a margin but to
have the distance with the positive sample inferior to the distance with
the negative sample, by at least a margin:

Ltriplet(a,p
+,p−) = [m+ d(a,p+)− d(a,p−)]+. (3.26)

We now introduce the notion of hard samples: from a theoretical
point of view, this designates the samples that are close to the decision
boundary. When learning a metric, the “difficulty” of the pair can be as-
sessed with the distance: relatively large distances for positive pairs or
small ones for negative pairs. Easy pairs and triplets slow the conver-
gence and should therefore be avoided [176]. It is therefore primordial to
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3.2. Metric Learning State of the Art with a Focus on Sequences

emphasize the learning of the model on hard samples to improve the con-
vergence, the performance and and ultimately the generalization. Build-
ing on the triplet loss, Balntas et al. [10] proposed to swap the anchor and
the other positive sample in order to eventually get a more difficult neg-
ative sample. However, the exploration of hard sample mining allowed
the introduction of more complex batch sampling strategies. Notably, Oh
Song et al. [153] proposed a lifted structured loss which constraints all
the distances between all the samples of the batch:

Llifted structured(f (B)) =
1

2|P |

∑
(i,j)∈P

[
log

( ∑
(i,n)∈N

exp(m− d(ŷi , ŷn))

+
∑

(j,n)∈N

exp(m− d(ŷj , ŷn))
)
+ d(ŷi , ŷj)

]2
+
. (3.27)

The constitution of the batches was also biased toward including hard
negative samples relative to the positive ones present in the batch. Sohn
[183] proposed a slightly different version with the hope to improve
smoothness by replacing the Hinge loss with a log probability, where
each sample is once the anchor and is compared to every negative
samples:

LN-pair(f (B)) =
1
|B|

∑
(ŷi ,ŷj )∈B

[
log

(
1 +

∑
n∈B | ln 6=li ,lj

exp(d(ŷi , ŷn) − d(ŷi , ŷj))
)]
.

(3.28)

This loss implies that each batch contains N classes all negative to one
another. Therefore, to speed-up the batch sampling, the authors propose
to constitute batches of hard negative classes instead of samples by
analyzing just a few samples of each class. Finally, prolonging those
ideas, Yang et al. [235] proposed a hardness-aware structural loss,
composed of two terms a local one and a global one. The first one
reassemble very much the N-pair loss (see Equation 3.28) but combines
to it a system of pair weighting to emphasize the learning on hard-
positive samples (see Equation 3.31 and 3.32): all positive distances
above a certain class threshold τc will contribute more to the learning
than the others (Equations 3.31 and 3.32). The second term, the global
one is used to prevent the similar samples to be disseminated in different
places inside the feature space and ultimately improve regularization
and generalization (Equations 3.33, 3.34, 3.35 and 3.36). To do so, this
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3. Routine Retrieval with Sequence Metric Learning

term acts on the second order statistics of the distances to diminish the
variance.

Lstructural(f (B)) =
1
B

∑
(i,j)∈P

βij log
(
1+

|N |∑
n=1

exp(d(ŷi , ŷj)− d(ŷi , ŷn) +m)/η
)

+
λ
2
([σ2

p −m+]+ + [σ2
n −m−]+) (3.29)

B =
∑

(i,j)∈P
βij (3.30)

βij = exp(d(ŷi , ŷj))− τc (3.31)

τc =
2
|Pc|

∑
(i,j)∈Pc

d(ŷi , ŷj)− min
(i,j)∈Pc

(d(ŷi , ŷj)) (3.32)

σ2
p =

1
|P |

∑
(i,j)∈P

(d(ŷi , ŷj)−µ
Bt
P )

2 (3.33)

σ2
n =

1
|N |

∑
(i,n)∈N

(d(ŷi , ŷn)−µ
Bt
N )2 (3.34)

µBtP = γµBt−1P + (1−γ)µBtP (3.35)

µBtN = γµBt−1N + (1−γ)µBtN . (3.36)

In these equation, m, m+ and m− are margin parameters. The values
µtP and µtN are the average distances between respectively the positive
and negative samples, γ controls the smoothness of the evolution of
theses values between the previous batch Bt−1 and the present one Bt.
Finally, η is a scaling parameters and λ controls the magnitude of the
global loss term in order to avoid it outweighing the local one. We will
make use of this last loss to train the model presented in Chapter 4.

3.2.3.3 Mahalanobis Metric Learning and KISSME Loss

Following the works presented in Section 3.2.1.2, several approaches
bridged the gap between constraint formulation of Mahalanobis metric
learning and neural network implementation. This can be done notably
by implementing the projection as the last layer of an encoding neural
network. It was notably achieved for the Keep It Simple and Straightfor-
ward MEtric learning (KISSME) approach [112] by Faraki et al. [69]. The
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3.2. Metric Learning State of the Art with a Focus on Sequences

starting point for the original idea proposed by Koestinger et al. [112] is
to make the hypothesis that a certain pair (xi ,xj) of inputs is dissimilar
(H0) or similar (H1). One way to model the validation of H0 is therefore
to write the following quantity which should be high if H0 is validated:

δ(xi − xj) = log
(p(xi − xj |H0)

p(xi − xj |H1)

)
. (3.37)

By modeling these probabilities with Gaussian distributions, we are
allowed to rewrite the problem under this form:

δ(xi − xj) = log
( 1√

2π|ΣN |
exp(−1/2(xi − xj)TΣ−1N (xi − xj)

1√
2π|ΣP |

exp(−1/2(xi − xj)TΣ−1P (xi − xj)

)
. (3.38)

The symmetry of the pairwise difference implies that both distributions
have zero mean for both distributions, with covariances Σ of the follow-
ing form:

ΣP =
∑

(i,j)∈P
(xi − xj)(xi − xj)T , (3.39)

and symmetrically for the dissimilar samples with a sum on N . We
therefore obtain after reduction and removing the constants:

δ(xi ,xj) = (xi ,xj)
T (Σ−1P −Σ

−1
N )(xi ,xj). (3.40)

By seeing δ as our distance and by identification and projection onto
the positive semi-definite cone Sn+, we get M = ProjSn+(Σ

−1
P − Σ

−1
N ). This

projection can be done by eigen-decomposing the matrix to project and,
for all its eigen values λi , by taking max(0,λi) [92].

KISSME was intended to learn metric from large datasets: it does
not perform optimization procedures and is therefore very time efficient.
However, as such, it does not perform any kind of subspace or represen-
tation learning and relies on other approaches to do so such as PCA. It
is moreover very sensitive to this subspace dimension [233]. To improve
the performances, Faraki et al. [69] proposed to learn the subspace along
with the metric (Joint Dimensionality Reduction-KISSME). We first de-
fine a mapping h : Rn→ Rm, to be applied to all samples:

h(x) =W T
p x, (3.41)
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3. Routine Retrieval with Sequence Metric Learning

with Wp ∈ Rn×m. This makes Equation 3.40 becomes:

δ(xi ,xj) = (xi ,xj)
T (Wp(Σ−1P −Σ

−1
N )W T

p )(xi ,xj). (3.42)

The mapping matrix Wp can be embedded inside a neural network as a
last linear layer and the network be trained with the KISSME loss:

LKISSME(B) =
∑

(i,j)∈B
li,j log(δ(h(xi),h(xj))), (3.43)

with li,j = 1 if (i, j) ∈ P , li,j = −1 otherwise, and:

log(δ(h(xi),h(xj))) =
1
2
(logdet(W T

p ΣPWp)− logdet(W T
p ΣNWp)

+ (xi − xj)TWpMW T
p (xi − xj)).

(3.44)

Logdet is a perfectly smooth operation and it is therefore possible to
train a model with this loss using backpropagation. The learning
phase is decomposed into two steps to be repeated alternatively until
convergence: learn Wp and the encoder while keeping M fixed. Then
update M after some epochs with the following closed-form integrating
the projection:

M = ProjSm+ ((W
T
p ΣSWp)

−1 − (W T
p ΣDWp)

−1). (3.45)

3.2.4 Synthesis and Discussion
We presented in this section an overview of metric learning and we
then focused on sequence metric learning and deep metric learning
losses. Indeed, the problem formalization of routine retrieval (see Section
3.1.2) makes use of a learned distance between two sequences. In this
category, DTW can be considered one of the best metric for sequence
classification [63] but is difficult to integrate inside learning algorithms.
Moreover, it is very sensible to noise [67] which is inherent to sensor
data. Finally, DTW works locally while routines can be shifted or not
always realized in the exact same order in a sufficiently large time frame.
The optimization approaches we also discussed make use of alignment
strategy which either suppose the knowledge of groundtruth alignment
[77] or are very long to compute [191]. We therefore think that feature-
based approaches are better suited for this task notably if the appropriate
representation of the data is automatically extracted accordingly to the
problem, by a RNN for example. On that matter, we have seen that
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metric learning losses were quite suited to learn good representations
for images with CNN. The Seq2Seq model used by Abid et al. [2] to
learn robust representation is attractive. However, like in several other
publications ([44] in Section 3.2.2.3, [191] in Section 3.2.2.2, etc.), the two
steps learning process seems sub-optimal and it would be interesting to
learn the whole thing end-to-end such as in [42]. This last approach
however requires to compute several alignments between the pairs of
sequences which can become computationally very expensive, moreover
with complex sampling strategies. Finally, deep learning approaches also
present the upside of being compatible with the three forms of metrics
we highlighted in this section. It allows to combine one architecture with
different losses while avoiding to compute costly alignments.

In the following section, we propose a novel Siamese Sequence-to-
Sequence (SS2S) neural network architecture to learn to model routines
without label supervision. The model effectively combines automatic
feature extraction and a similarity metric by jointly learning a robust
projection of time series in a metric space. This approach is able to deal
with long sequences by using LSTM networks and does not necessitate
to choose a model to fit or features to extract. It can be combined with
the various metric losses presented earlier.

3.3 Routine Retrieval with Siamese
Sequence-to-Sequence Model

The routine retrieval problem formulated as in Section 3.1.2 prompts us
to learn a metric on sequential data with a margin loss. We therefore pro-
pose in this section a neural network architecture, Siamese Sequence-to-
Sequence (SS2S), to jointly learn a robust representation of the sequences
and metric between those sequences. We then employ information-
theoretic clustering scores to assess the routine retrieval capacities of the
model. The contributions of this chapter have been first published in
[52].

3.3.1 Architecture Overview and Training

The SS2S architecture (see Figure 3.3) is composed of two components
which we deal into details in the next sections: a Seq2Seq model and a
metric learning model combined into one architecture that can be learned
end-to-end.

91

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI033/these.pdf 
© [P. Compagnon], [2021], INSA Lyon, tous droits réservés



3. Routine Retrieval with Sequence Metric Learning

Figure 3.3 – Proposed SS2S architecture.

Two training processes can be considered to learn the parameters of
this architecture. Train the Seq2Seq model parameters and then “freeze”
the network to learn the metric if it is parametric (i.e. Mahalanobis
metric). Or, add the metric loss to the reconstruction loss and learn jointly
both tasks. This form of training can be assimilated to some form of
multitask learning (see 2.1.2.1) where y1 and y2 constitute intermediate
representations shared by two tasks: learning the metric and learning
to reconstruct the input sequence. In this case, several difficulties
could appear. Both losses must have similar magnitudes to have a
similar influence on the training process and thus the use of a balancing
parameter λ < 1 is necessary in the loss equation:

LSS2S(B) = λLreconstruction(B) + (1−λ)Lmetric(B). (3.46)

The interaction between the two must also be considered which we
also deepen in the next section. Despite the possible issues, we hope
that learning both tasks jointly should lead to the learning of more
appropriate representations and thus to better results. We formulate the
following hypothesis which we will test in the experimental section:

Hypothesis 3.1. Jointly learning a metric and a representation with a sequence
to sequence model gives better results than learning both separately.

3.3.2 Metric Learning Specifications
Our architecture is a siamese network [30], that is to say it is constituted
of two subnetworks sharing the same parameters W (see Figure 3.3). It
takes pairs of similar or dissimilar sequences as input constituted with
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an equivalence constraint which we explicit later. Since three metric
forms can generally be considered (Euclidean and cosine which are
non parametric and Mahalanobis which implies learning the associated
matrix), one different metric loss is proposed to learn each metric form.
The first is the contrastive loss [86] (see Equation (3.4)) to learn an
euclidean distance. The second is a cosine loss to learn a cosine distance
(see Equation 3.22). To learn a Mahalanobis metric, we propose to use the
KISSME approach (see Section 3.2.3.3) integrated into a neural network.
One argument to employ this loss is that its two steps learning process
(called “pairwise+KISSME” by Faraki et al. [69]) seems to fit well with
our architecture, especially when the learning is disjoint since the author
observed that separating the learning of the projection and the learning
of the metric leads to better performance and stability. This setting also
challenges the previously made hypothesis. The projection matrix Wp
is integrated into the network as a linear layer (just after the recurrent
encoding layers in SS2S). We also propose a modified version of the
KISSME loss from [69] which we found was easier to train based on the
contrastive loss (Equation 3.4):

Lcontrastive KISSME(B) =
1
|B|

( ∑
(i,j)∈P

(y1 − y2)M(y1 − y2)T

+
∑

(i,j)∈N

[m− (y1 − y2)M(y1 − y2)T ]+
)
. (3.47)

This loss also integrates a margin which allows to fit the problem
formulation. The matrix M is updated at regular intervals, every few
epochs following Eqation 3.45. In the experiment section, we use pairs
of inputs to learn the network however this architecture is perfectly
adaptable to triplet inputs or more complex batch sampling strategies.

3.3.3 Feature Extraction Specifications
The time series data obtained from inertial sensors may be very noisy and
certainly vary for the same general activity (e.g. cooking). Robust feature
representations of time series should therefore be learned to be used with
the metric, justifying the inclusion of a denoising Seq2Seq model (see
Section 2.1.4.4). The sequence is given as input to the first LSTM network
(the encoder) to produce an output sequence, the last output vector is
considered as the learned representation. This representation is then
fed as an input sequence to the second LSTM (the decoder) which tries
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to reconstruct the input sequence. Typically, an autoencoder is trained
to reconstruct the original sequence with the MSE (reworked here for
sequences [197]):

LMSE(B) =
1
|B|

∑
Si∈B

1
T

T−1∑
t=0

(Si(t)− Ŝi(t))2, (3.48)

where Ŝ is produced by the decoder. Symmetrically, since both tasks
could have eventually divergent or not completely compatible objectives,
we propose a new reconstruction loss based on cosine similarity, the
Cosine Reconstruction Loss (CRL):

LCRL(B) =
1
|B|

∑
Si∈B

(
T −

T−1∑
t=0

cos(Si(t), Ŝi(t))
)
. (3.49)

CRL is close to 0 if the cosine similarity between each pair of vectors is
close to one which happens when the vectors are collinear. We propose
this loss with the a priori that it should better interact with the learning
of a cosine metric than MSE due to the two having similar forms. This
leads to our second hypothesis:

Hypothesis 3.2. Learning a cosine distance along a representation with CRL
gives better results than with MSE.

3.3.4 Routine Retrieval

To train the previous architecture, we need to define an equivalence con-
straint to form similar and dissimilar pairs. Based on the problem formu-
lation, routines should appear at relatively similar moments. To stay in a
weakly supervised setting, we chose to treat as similar samples recorded
during the same hour across different days. All other combinations are
considered dissimilar. This labeling is fully automatic and based on meta-
data, it does not use any semantic activity labels. However, while prac-
tice for training this approach reveals complex to evaluate: how to re-
trieve routines and not just timestamps we already have, even for test
data? With minimal supervision, we are required to exploit the learned
metric inside a clustering algorithm. We propose to use spectral cluster-
ing [147] which can be performed on the affinity matrix of the test set and
is therefore independent of the form of the distance. It requires however
to transform distance values into kernel values. For the cosine distance,
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we simply add one. For the Euclidean and Mahalanobis distances, we
use the following equation of a Gaussian kernel:

KGaussian(ŷ1, ŷ2) = exp
(
−
d(ŷ1, ŷ2)2

n

)
, (3.50)

where n is the dimension of ŷ1 and ŷ2. Obviously, there should be
much less main routines than hours in the day: for example the sleeping
routine spans generally over 6 to 9 hours [163]. It prompts us to select
a low number of clusters to be formed by the clustering algorithm (we
used 5 in the experimental section). These clusters, if they correspond
to routines, should present some kind of temporal coherence which can be
assessed by using the hour labeling as “ground truth”. At a first level,
the clusters should gather samples recorded at the same times, which
is exactly what is evaluated by a metric called Completeness [169]4. At
a second level, their should exist some kind of information dependency
between the time slots and the clustering assignment: the observation of
the first should inform us on the second and conversely. That is to say,
routines (clusters) should not be independent from the time division (the
labeling), which is coherent with the problem formulation. This can be
measured thanks to information theory, it corresponds to a metric called
NMI (see Figure 3.4) widely use for clustering scoring. It is computed as
follows for two label assignments U and V :

MI(U,V ) =
|U |∑
i=1

|V |∑
j=1

P (i, j) log
( P (i, j)
P (i)P (j)

)
(3.51)

H(U ) = −
|U |∑
i=1

P (i) log(P (i)) (3.52)

NMI(U,V ) =
MI(U,V )

(H(U ) +H(V ))/2
. (3.53)

However, the NMI has a flaw despite the normalization: its value is
not independent from the number of clusters. To “repair” it, a so-called
adjustment against chance is necessary [215]. It is realized by introducing
the expected value of the mutual information: E(MI(U,V )). The new

4This is one of the two components of the classical metric called V-measure.
However, the other, homogeneity, measures the exact inverse of what we seek to assess:
that each cluster contains samples of only one hour slot. This justifies why we do not
report it. V-measure is reported as it is the same as Normalized Mutual Information
(NMI).
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Figure 3.4 – Relationships between the main information theoretic met-
rics. U and V are two label assignments (random variables): mutual
information at the center corresponds to the information shared by the
two variables.

score, Adjusted Mutual Information (AMI), is computed as follows:

AMI(U,V ) =
MI(U,V )−E(MI(U,V ))

(H(U ) +H(V ))/2−E(MI(U,V ))
. (3.54)

We report both NMI and AMI in the experimental section. Finally, the
Silhouette score is used to describe the overall quality of the clustering,
if the clusters are dense and well-separated then the value is close to 1.
To conclude the exposition of our architecture, we propose a final third
hypothesis:

Hypothesis 3.3. Completeness, NMI, AMI and silhouette scores allow to asses
the capacity of the propose architecture to model and retrieve routines.

3.4 Experiments

3.4.1 Dataset Presentation and Experimental Setup
3.4.1.1 Long-Term Movement Monitoring Dataset

Long-term unscripted data from wearable sensors are difficult to gather.
The dataset presented here, Long-Term Movement Monitoring (LTMM)5,

5https://www.physionet.org/physiobank/database/ltmm
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has been recorded by Weiss et al. [223] to investigate the correlation
between gait quality and fall risks. This dataset contains recordings of
71 elderly people which have worn an accelerometer and a gyroscope
during three days with no instructions. This dataset contains no labels.
Figure 3.5a presents two days of data coming from one axis of the
accelerometer: similar profiles can be observed at similar moment.
Figure 3.5b presents the autocorrelation of the accelerometer signal: the
maximum of 0.4 is reached for a phase of 24h. These figures show the
interest of this dataset as the data show periodic nature while presenting
major visual differences. That said, the definition of periodicity that
our algorithm is made to achieve is stronger as it is based on a metric
between automatically extracted feature vectors, not just correlations of
signal measurements.
To constitute our dataset, we selected in the original dataset a user
who did not remove the sensor during the 3 days to avoid missing
values. We set up a data augmentation process to artificially increase the
quantity of data while preserving its characteristic structure. The dataset
is sampled at 100 Hz and thus, to multiply the number of days by 10,
each vector measurement at the same index modulo 10 will be affected
to a new day (the order is respected). This new dataset has a sampling
rate of 10 Hz which means that one hour of data is a sequence of size
36000. We consider only non overlapping sequences. Thus, to make the
computation more tractable, each sequence of one hour is resampled to a
size of 100.

3.4.1.2 Model Parameters and Training Details.

We describe here the hyperparameters used to train the models. After
preliminary studies, the autoencoders are constituted of one layer of 100
LSTM neurons for the encoder and the decoder. For the KISSME version,
the encodings are then projected into a 50-dimensional space, and the
distance matrix, which thus has also dimension 50, was updated with
the closed-form every 30 epochs. The balancing parameter λ was fixed
to 0.5. These parameters were determined after preliminary tests where
deeper architectures and higher dimensional spaces were tested. Models
are trained with 20 similar pairs for each time slot and the same total
number of dissimilar pairs for a total of 960 training pairs coming from
12 different days of data. The training was stopped based on the loss
computed on the validation set which contains three days of data (i.e. 72
sequences). The testing set is composed of 15 days or 360 sequences. The
features in the training set were standardized to have a mean of 0 and a

97

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI033/these.pdf 
© [P. Compagnon], [2021], INSA Lyon, tous droits réservés



3. Routine Retrieval with Sequence Metric Learning

standard deviation of 1, the same parameters were applied on the testing
set. A learning rate of 0.001 was used and divided by 10 if the loss did
not decrease anymore during 10 epochs. A batch size of 50, a margin
of 1 for the contrastive loss and of 0.5 for the cosine loss were chosen.
We also observed that changing to zero 30% of the values of the training
sequences slightly improved the results as suggested in [213].

3.4.2 Experimental Results and Discussion

Since the model is not trained with semantic labels but timestamp meta-
data and to keep minimal supervision, the evaluation scores rely on clus-
tering (see Section 3.3.4). We report average values on 20 tests for the
4 clustering evaluation metrics mentioned earlier: completeness, silhou-
ette, NMI and AMI. A spectral clustering into 5 clusters is performed
with the goal not to find the precise number of clusters maximizing the
scores but to choose a number which could make appear coherent and in-
terpretable routines of the day, namely sleep moments, meals and other
daily activities performed every day. We first evaluate CRL alone before
presenting the complete test results.

3.4.2.1 Evaluation of Cosine Reconstruction Loss.

The performance of the CRL on LTMM is first evaluated by jointly train-
ing models for Euclidean or cosine distances with CRL or MSE.

The results are reported in Table 3.1. An asterisk means that the
average results are significantly higher according to a Welch’s test with
a threshold of 5%. The results demonstrate a significant improvement of
the proposed CRL over MSE when trained with the cosine similarity for
Completeness, NMI and AMI. For the Silhouette score, better results are
obtained with the MSE. However, the standard deviations are large, and
this improvement is thus not significant. With the Euclidean distance, the
same improvement is not realized with a slight advantage of MSE over
CRL. These results confirm our hypothesis 3.2 that it is more efficient
to jointly learn a cosine distance with CRL. They also suggest a positive
interaction between the two as the same effect could not be observed
with the Euclidean distance. This result is also interesting in the context
of multitask learning: the learned common representation seems more
adequate for both tasks. We then use CRL in the remaining of the chapter.
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metric
reconstruction loss CRL MSE

Cosine 0.714* ± 0.048 0.666 ± 0.066
Euclidean 0.609 ± 0.042 0.635 ± 0.064

(a) Completeness

metric
reconstruction loss CRL MSE

Cosine 0.618 ± 0.105 0.667 ± 0.144
Euclidean 0.402 ± 0.05 0.408 ± 0.042

(b) Silhouette

metric
reconstruction loss CRL MSE

Cosine 0.449* ± 0.032 0.397 ± 0.040
Euclidean 0.419 ± 0.033 0.434 ± 0.047

(c) NMI

metric
reconstruction loss CRL MSE

Cosine 0.253* ± 0.03 0.205 ± 0.033
Euclidean 0.255 ± 0.027 0.264 ± 0.038

(d) AMI

Table 3.1 – Comparison of CRL and MSE on LTMM dataset.

3.4.2.2 Evaluation of the SS2S Architecture

Next, we investigated the benefit of the SS2S architecture over DTW and
Siamese Long-Short Term Memory (SLSTM) [143] as well as the interest
of jointly learning the encoder-decoder and the metric on the LTMM
dataset. The results are presented in Table 3.2. To test the DTW, the
better radius was selected on the validation set and the spectral cluster-
ing was performed using the DTW distance under a kernel form (see
Equation 3.50). Although Completeness, NMI and AMI are higher than
every SS2S architectures except one, we observe a very low silhouette
score. Concerning the encoding architecture, SS2S gives overall better re-
sults than SLSTM and the best results are achieved by using the disjoint
version of KISSME with a completeness of 0.983 and an NMI of 0.619.
These results are not surprising as KISSME uses a parametric distance
which can therefore be more adapted to the data. For the silhouette score,
cosine distances performed best, that is to say they learned more com-
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3. Routine Retrieval with Sequence Metric Learning

pact and well-defined clusters. We also note that disjoint versions of the
architectures performed better than the joint versions, thus invalidating
our hypothesis 3.1.

Metric Model Joint Completeness Silhouette NMI AMI
DTW [172] x x 0.804 0.2136 0.528 0.32
Euclidean SLSTM x 0.616 ± 0.032 0.427 ± 0.053 0.414 ± 0.022 0.246 ± 0.019

Cosine SLSTM x 0.617 ± 0.06 0.572 ± 0.143 0.372 ± 0.052 0.192 ± 0.046
Euclidean SS2S no 0.674 ± 0.04 0.528 ± 0.07 0.458 ± 0.03 0.28 ± 0.027
Euclidean SS2S yes 0.635 ± 0.064 0.408 ± 0.042 0.434 ± 0.047 0.264 ± 0.038

Cosine SS2S no 0.71 ± 0.05 0.756* ± 0.089 0.467 ± 0.028 0.275 ± 0.024
Cosine SS2S yes 0.714 ± 0.048 0.618 ± 0.105 0.449 ± 0.032 0.253 ± 0.03

KISSME SS2S no 0.983* ± 0.016 0.439 ± 0.077 0.619* ± 0.035 0.363* ± 0.046
KISSME SS2S yes 0.667 ± 0.021 0.316 ± 0.039 0.446 ± 0.012 0.266 ± 0.012

Table 3.2 – Evaluations on LTMM dataset of the SS2S architecture (x
means non applicable).

3.4.2.3 Reconstruction Error on the Validation Set

We want investigate the reasons why the joint training performed lesser
than the disjoint version and we make the hypothesis that this could
due to the autoencoder not being trained properly. Table 3.3 reports the
average best reconstruction errors achieved on the validation set. The
lowest errors are systematically achieved when the encoder is learned
alone before the metric therefore supporting the hypothesis that learning
the metric prevents the autoencoder from being trained at its full poten-
tial. It may explain why the joint learning does not perform best. For the
CRL, results are closer than for MSE suggesting why this reconstruction
loss is easier to learn jointly. Regarding KISSME, this was also suggested
by the original two step learning process proposed by the authors

3.4.2.4 Average Distance to Nearest Neighbors

To better investigate the various proposed distances, we display such as
in [2] the average distance to a variable number of nearest neighbors for
the cosine and KISSME metrics and both learning variants on Figure 3.6.
For the cosine similarity, the joint variant display a curve growing very
slowly ; for the disjoint one, the average distance increases faster and

6The silhouette value for DTW presented in [52] was wrong and resulted from an
implementation error. We display here the correct value.
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3.4. Experiments

Metric Average reconstruction error
Euclidean 0.707 ± 0.112
KISSME 0.736 ± 0.099
Disjoint 0.55* ± 0.083

(a) MSE
Metric Average reconstruction error
Cosine 0.339 ± 0.036
Disjoint 0.298* ± 0.03

(b) CRL

Table 3.3 – Average reconstruction errors on the validation set of LTMM.

faster with the number of neighbors particularly beyond 150. For the
KISSME metric, both curves follow a similar pattern by growing quickly
at the beginning before reaching a plateau. These curves are actually in
line with the silhouette scores presented in Table 3.2: lower scores for the
KISSME loss can be explained by a rapidly growing distance producing
sparse clusters. Conversely, we observe that both cosine approaches
produce distances growing much slower at the very beginning, thus the
more compact clusters.

3.4.2.5 Clustering Visualization

Finally, Figure 3.7 shows clustering representations for two approaches
DTW and disjoint KISSME. The clustering assignments reflect the se-
quences of one hour that were found similar across the days on the test-
ing set. If these sequences are at the same hour or cover the same time
slots, we can argue it is a recurrent activity (or succession of activities)
and therefore a routine. The disjoint KISSME version exhibits more co-
herent discrimination of routines, which, according to the 4 evaluation
metrics reported was predictable. More what seems to be missclassi-
fied situations appear for the DTW however, without labeling we can-
not know for sure. High regularities can be observed, and it is actually
possible to make interpretations: yellow probably corresponds to sleep-
ing moments or nights and purple to diverse activities during the day.
This visual interpretation seems to go in the same direction as Hypoth-
esis 3.3 although further tests on the long term are of course necessary.
Other clusters seem to correspond to activities at the evening or during
meal time. Consequently, in this example, the SS2S architecture was able
to learn a metric which cluster and produce a modeling of the daily rou-
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tines of the person without labels. In this example, the clusters are coarse,
the granularity of this analysis may be improved simply by working with
sequences of half an hour or even shorter and produce more clusters.
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(a) Two days of accelerometer data from Long-Term Movement Monitoring
(LTMM).

(b) Input signal autocorrelation for accelerometer data.

Figure 3.5 – LTMM dataset used to evaluate routine retrieval procedure.
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3. Routine Retrieval with Sequence Metric Learning

Figure 3.6 – Average normalized distance to nearest neighbors for the
cosine and KISSME metrics for the joint and disjoint learning variants.
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(a) DTW [172].

(b) SS2S and KISSME, disjoint learning.

Figure 3.7 – Examples of clustering assignments obtained on LTMM.
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3.5 Conclusions and Perspectives
In this chapter, we tackled the issue of routine retrieval as an alterna-
tive to classical supervised activity recognition. We first proposed a
mathematical formalization of the concept of routine based on almost-
periodic functions. This formalization lead us to explore the literature
of sequence metric learning before proposing a Siamese Sequence-to-
Sequence model to jointly learn a good robust representation of the
sequences and a metric. The relevance of the joint learning was to be
evaluated by experiments. Our proposed architecture relies on no activ-
ity labels and is learned only from time slots. The objective of routine
retrieval was performed by using the learned metric to cluster new
sequences and by computing information theoretic scores. Our SS2S
architecture with KISSME and disjoint learning process achieved great
results with 0.983 of completeness and 0.619 of NMI. A visual evaluation
allows to interpret the what seems to be recurrent behaviors discovered
by the architecture (Hypothesis 3.3). However, the results showed that
combining metric learning and sequence-to-sequence learning did not
allow to achieve better performances (Hypothesis 3.1). We therefore
proposed an explanation based on the reconstruction error achieved on
the validation set at the end of training which was higher in the case of
joint learning, likely indicating a lower quality of representation. A new
reconstruction loss was also proposed to be learned jointly with a cosine
metric and it showed better results than MSE in this case which constitute
an interesting result in the context of multitask learning (Hypothesis 3.2).

There is however, plenty of room for improvement in this routine
retrieval pipeline, especially concerning the learning model. One of
them is the intermediate representation: to process sequences with this
architecture, we need to pass through a representation of the sequences.
This was further confirmed by the fact that Seq2Seq models produce
better distances than simple RNN (even if the last output used to
compute the metric can be considered a representation). However
we have seen that this architecture is better train in two steps rather
than end-to-end. Moreover, approaches relying on alignment work
without producing an intermediate representation, on the sequence
directly. We therefore seek to propose an intermediate approach, a neural
network specifically conceived to output distance between sequences.
We propose to tackle this issue with dynamical system synchronization
theory in the next chapter.
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CHAPTER 4

SEQUENCE METRIC LEARNING
AS SYNCHRONIZATION OF

RECURRENT NEURAL
NETWORKS

As we have seen in the previous chapter, sequence metric learning is
most the time tackled with sequence alignment approaches or represen-
tation learning. Among those approaches, less work has been devoted to
conceive a specific sequence metric learning architecture with recurrent
neural networks despite the simplicity of the siamese architecture [30].
One way to tackle this problematic can be to take a more theoretical look
at it. RNN exhibit a temporal dynamic behavior allowing them to deal
with temporal correlations. This feature also allows to study RNN with
dynamical system theory. This has been notably done in the literature
to get a better understanding of the issues encountered when trying to
train a RNN [21, 66, 94] (between others).

In this fourth chapter, we propose to use dynamical system theory
in order to design a neural network architecture specifically adapted to
sequence metric learning. We draw the analogy between synchronized
trajectories produced by dynamical systems and the distance between
similar sequences processed by a siamese recurrent neural network. In-
deed, a siamese recurrent network comprises two identical sub-networks,
two identical dynamical systems which can theoretically always achieve
complete synchronization if a coupling is introduced between them. We
therefore propose a new neural network model that implements this
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coupling with a new gate integrated into the original siamese GRU ar-
chitecture. This model is thus able to simultaneously learn a similarity
metric and the synchronization of unaligned multi-variate sequences in
a weakly supervised way. Our experiments show that introducing such
coupling improves the performance of the siamese GRU architecture
on an activity recognition dataset and on a transportation recognition
dataset. We also used this architecture to perform routine retrieval with
more mixed success.

This chapter is organized as follows: Section 4.1 presents generalities
and basics of dynamical system theory, Section 4.2 outlines the state-of-
the-art approaches in sequence metric learning, Section 4.3 describes our
framework and our new siamese architecture, Section 4.4 shows our ex-
perimental results to assess the performances of our approach compared
on an activity recognition dataset, on a transportation recognition dataset
and on the routine retrieval task. Finally, Section 4.5 presents our conclu-
sions and perspectives.

4.1 Basics of dynamical system theory and
synchronization

In this section, we introduce general notions and definitions from dynam-
ical system theory and synchronization. For further details on dynamical
system theory, the reader can refer to the book by Strogatz [188].

4.1.1 Generalities
Dynamical system theory describes physical systems which evolve from
a starting point of the space (the phase space) depending solely on the
time. This definition can be more formally written this way:

Definition 4.1. A dynamical system is a triplet (T ,M,ϕ) where ϕ : M ×
T →M is called the evolution rule, M is the phase space, a vectorial space
of dimension n and T = [t0,+∞[ is a set of times.

To start studying dynamical systems, one first major difference can
be made, some are discrete others are continuous. They are respectively
defined by the two following evolution rules, called a map in the discrete
case and a flow in the continuous case:

map : x(t) = ϕt(x(0)), t ∈ N (4.1)
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4.1. Basics of dynamical system theory and synchronization

flow :
dx(t)
dt

= ϕ(x(t), t), t ∈ R+. (4.2)

The point x(0) is the initial condition at t = 0 from which the system will
evolve. The set of points from M reached during the evolution is called
the trajectory. A dynamical system may have one or several attractors,
a point in the phase space toward each trajectory starting in a certain
region called the basin of attraction, converges and will stay close even
if it is slightly perturbed. When changing the parameters of the evolu-
tion rule smoothly, it is expected that the topology of the phase space
(typically, the number and emplacements of the attractors) remains qual-
itatively the same. The phenomenon called bifurcation occurs at certain
values of the parameters and describes sudden changes in the topology
of the phase space, for example, the apparition of a new attractor.

4.1.2 Chaos and Lyapunov exponents
Apart from discrete and continuous, another major category regroups
so-called chaotic systems. Chaotic systems produce resulting trajectories
which exponentially diverge from infinitesimally close initial conditions.
This practically means that the behavior of such systems can become
rapidly unpredictable solely due to the approximations made in the
measures of the current state (or due to numerical approximations). The
Lyapunov exponents [134] quantify the sensibility of a system to the
initial conditions and therefore the divergence rate of trajectories starting
from infinitesimally close starting points. Formally, Lyapunov exponents
of a map are defined with the following equation:

λ(x(0)) = lim
t→+∞

1
t

t−1∑
i=0

ln(|ϕ′(x(i))|). (4.3)

This definition depends on the initial conditions but in practice, a
Lyapunov exponent is unique to a given attractor. If the system has at
least one positive Lyapunov exponent, the predictability of its behavior
becomes impossible beyond a certain time limit (horizon) and it is thus
qualified as chaotic [188]. For discrete systems, analytically obtaining
the exact values of the Lyapunov exponents of an arbitrary dynamical
system can be hard in practice but they can be estimated by various
numerical methods and also with machine learning [158]. Lyapunov
exponents can be used to measure the stability of a system with high
Lyapunov exponents indicating higher sensibility to small perturbations.
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This has notably found applications in the assessment of gait stability
and falling risks [33, 64].

4.1.3 Coupling
Dynamical systems can be coupled, that it to say constituted of two
subsystems which exchange information by the mean of a coupling:

Z =

X : dx(t)
dt

= ϕ1(x(t); t) +C(y(t)− x(t))T

Y : dy(t)
dt

= ϕ2(y(t); t) +C(x(t)− y(t))T .
(4.4)

In this system, x(t) and y(t) are in Rn and X and Y are bidirectionally
coupled by the mean of C, the coupling matrix in Rn×n. This type of
coupling is called diffusive because it will dissipate the dynamics of each
sub-system [24]. The coupling can also be unidirectional: such systems
are qualified as drive-response system since one subsystem drives the
behavior of the other following the strength of the coupling.

4.1.4 Synchronization of dynamical systems
The concept of synchronization is generally well-understood for time-
periodic dynamical systems: this phenomenon is called phase synchroniza-
tion. However, it is less-known that it is a special case of a more general
view on synchronization where it can also occur for chaotic dynamical
systems [159]. To formalize the concept of synchronization for chaotic
systems, Brown et al. [31] proposed the following general definition of
it:

Definition 4.2. Let Z be a dynamical system composed of two subsys-
tems X and Y such that:

Z =

X : dx(t)
dt

= ϕ1(x(t), y(t); t)

Y : dy(t)
dt

= ϕ2(y(t),x(t); t),
(4.5)

where x(t) ∈ Rd1 and y(t) ∈ Rd2 ,∀t ∈ R+ and d1,d2 ∈ N∗. Let φ(z0) be a
trajectory of Z with initial conditions z0 = [x(0), y(0)] ∈ Rd1 ×Rd2 . Finally
let g : Rd1 (resp. Rd2) ×R+ → Rk with k ∈ N, be a measurable property
of the subsystems. They are synchronized on the trajectory φ(z0) with
respect to the property g if there is a time independent function h :
Rk ×Rk→ Rk such that:

||h(g(x), g(y))||= 0, (4.6)
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where ||·|| is a norm.

4.1.5 Complete Synchronization
A special case of Definition 4.2 is when ϕ1 and ϕ2 are the same function,
the dynamical systems share the same parameters, and they are said to
be identical. Therefore, consider now the following two identical systems:

Z =

X : dx(t)
dt

= ϕ(x(t); t) +C(y(t)− x(t))T

Y : dy(t)
dt

= ϕ(y(t); t) +C(x(t)− y(t))T ,
(4.7)

Fujisaka et al. [70] showed that the system described by Equation 4.7 can
achieve complete synchronization if C is a multiple of the Identity matrix
and a constant c which verifies the following condition:

c >
1
2
λL, (4.8)

where λL is the largest Lyapunov exponent of the system.
From the definition 4.2, it is possible to derive several ways to mea-

sure synchronization between two trajectories, namely a synchronization
error. Brown et al. [31] report several slightly different formulas for the
synchronization error with the following being the most used, according
to them, for identical systems:

h(g(x), g(y)) = lim
t→+∞

(g(x(t))− g(y(t))), (4.9)

where h and g are the same as in Definition 4.2.

4.2 Related Work
Before introducing our new architecture, we review some works study-
ing the behavior of RNN with dynamical system theory. We will also dis-
cuss a category of sequence metrics we set aside in the previous chapter,
model-based distance and their generalization to metric on dynamical
systems.

4.2.1 Study of Recurrent Neural Networks with
Dynamical System Theory.

To begin with, much similarly to the universal approximation theorem
for feedforward networks [99], RNN also have approximation capabili-
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ties. Indeed, Funahashi et al. [73] proved that RNN can approximate any
finite-time trajectory of a dynamical system.

Training RNN as always been an intense subject of research due
to their depth when unrolled (see 2.1.4.2) but also to dynamical phe-
nomenons. When changing the parameters of the system (the network)
little by little, for example by learning with gradient descent, the proper-
ties of the vector field, notably the positions of the attractor points are ex-
pected to move smoothly, unless if a bifurcation happens (see 4.1.1). The
implications of this phenomenon on the training of RNN were studied
by Doya [66]. He indeed argued that bifurcations can cause the learning
equation to become unstable which prevents the gradient to work well.
Bengio et al. [21] used dynamical system theory to theoretically tackle the
problem of learning long-term dependencies (see 2.1.4.2). They observed
that to store one bit of information on the long-term, the trajectory of
network viewed as a dynamical system should stay in the same basin of
attraction of a given attractor point. However, this is precisely where the
conditions for the gradient to vanish are reunited. Pascanu et al. [156], ex-
tending Doya’s work [66], showed that two types of events particularly
cause drastic gradient perturbations: crossing a boundary between two
basins of attraction and crossing a bifurcation boundary. Following their
analysis, they devised solutions to prevent the gradient from exploding,
notably gradient clipping, which is used during the experiments of the
present thesis.

Another recent approach by Chang et al. [40] studied the trainabil-
ity of RNN models and established a connection with discretized Ordi-
nary Differential Equations (ODE) stability (Equation 4.2 is an example
of ODE). They identified a criterion (the real part of the eigenvalues of
Jacobian matrix of ϕ are approximately 0) to guarantee that the system
can preserve long-term dependencies. They remarked that antisymmet-
ric matrices (matrices which have their transpose equal their opposite)
only have imaginary eigenvalues. They proposed a new version of the
RNN equation which guarantees that the hidden weights are antisym-
metric, thus making the RNN respecting the criterion. Laurent et al. [121]
studied the dynamics of LSTM Neural Networks and GRU and observed
that it is chaotic in the absence of input data. They designed a chaos-free
RNN architecture having a more predictable behavior by bringing a sim-
ple modification to the gating architecture:

Hidden state: ht = ft ◦ tanh(ht−1) +nt ◦ tanh(Wxt) (4.10)
Forget: ft = σ (Wif xt +Whf ht−1 + bf ) (4.11)
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Input: nt = σ (Winxt +Whnht−1 + bn). (4.12)

Laurent et al. describe the behavior of this architecture as predictable
since without input data the network state goes toward zero, therefore,
with input data, its state is fully determined by those data. Their ap-
proach shows similar performances compared to their chaotic counter-
parts and Laurent et al. logically conclude that chaos cannot explain the
performances of GRU and LSTM.

4.2.2 Model-based distances and metrics on
dynamical systems

In this chapter, we aim at proposing a sequence metric learning neural
network architecture inspired from dynamical system theory. However,
sequence metrics and dynamical systems are also related through a cate-
gory of distances which was voluntary left aside in the previous chapter:
model-based distances. This type of metrics makes the assumption that
an underlying statistical or dynamical model has generated the sequence
[4, 130]. So the first step consists in selecting a type of model or a mix-
ture of models that could fit the data. Among the most popular, we can
mention: HMM, linear dynamical systems [78], AutoRegressive-Moving-
Average (ARMA) and its extensions (ARMAX, ARIMA, VARIMA, etc.
[98]), etc.. Then for each sequence, it is necessary to find the parameters
of the model that generate the sequence. Here again, different estima-
tion methods can be considered such as the Box-Jenkins method [28] for
ARMA-like models which uses maximum likelihood estimation. These
methods have been shown great interest by the activity recognition com-
munity since several aspects of motion can be modeled with dynamical
models, for example gait [225] and other body movements [207]. Once it
is done, various methods allow to compute distances on the specific pa-
rameters to compare two time-series generated by a model. For example,
different approaches [61, 107, 137] to compute a metrics for ARMA-like
processes use cepstral analysis [25]1 and principal angles between sub-
spaces. Finally, a recent work by, Ishikawa et al. [102] proposed a general
metric on nonlinear-dynamical systems based on the transfer operator.
Their metric generalizes most of the previous approaches.

1the cepstrum is obtained by computing the inverse Fourier Transform of the
spectrum of the signal
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4.2.3 Synthesis and discussion

The papers mentioned above demonstrate that dynamical system theory
is a fertile soil to study and conceive new RNN models. It gives, for
examples, insights on how RNN learn and what makes them difficult
to train. Therefore, reformulating problems containing RNN within
dynamical theory coordinates may provide innovative solutions. These
solutions can span up to profound architecture modifications as it was
exploited by Chang et al. [40] to limit the vanishing gradient problem.
Laurent et al. [121] also successfully modified the gating architecture of
the GRU to remove chaos. Another example of successful tuning with
gates for Siamese architectures is the approach by Varior et al. [211] (see
Section 3.2.1.3) which added a gate providing an information exchange
mechanism.

Regarding model-based metric approaches for time series, they re-
assemble our approach since they are defined as distances on dynamical
systems parameters. They are useful in the context of activity recognition
notably to model the dynamical components of motion, however their ef-
ficiency is limited for complex daily activities [207]. Moreover, they suffer
from scaling issues as it is necessary to find the specific set of parameters
for each sequence [130]. Nevertheless, it is possible to compute metrics
on the model parameters fitted for one sequence to perform classifica-
tion or clustering. However, our approach is not exactly the same, as
we propose to use dynamical system synchronization theory to improve
metric learning on any type of sequential data, whereas these methods
have been conceived to work more specifically with structural data.

In the next section, we propose to enhance the classical siamese RNN
by studying this model from a dynamical system theory point of view, as
it has been already done for standard RNN.

4.3 Synchronizing GRU Siamese Networks

In this section, we first draw a parallel between the concept of synchro-
nization for dynamical systems and the task of sequence metric learn-
ing with siamese RNN. We then theoretically justify the introduction of
coupling inside the siamese architecture. We finally introduce the major
contribution of this chapter, a modified Siamese Gated Recurrent Unit
(SGRU) model implementing this coupling and it is trainable by gradi-
ent descent.
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4.3.1 Synchronization and Sequence Metric Learning
In the Siamese network architecture, both subnetworks share the same
parameters [30] and produce two output trajectories from the pair of
inputs. We will in the following study the conditions for those two
trajectories to be synchronized and what it means in this case.

First, it is necessary to determine what type of system we have to deal
with. The RNN have the same parameters and are therefore identical,
the system as a whole can therefore always achieve complete synchro-
nization if a coupling is applied [70]. To simplify, we will first study
the case where the dynamics of the RNN are solely driven by its initial
condition (the initial hidden state) and where no input sequence is given.
We obtain what is called the dynamical system induced by the RNN. In this
case, only the initial conditions differ and the sub-networks are identical
dynamical systems. According to experiments conducted by Laurent
et al. [121], dynamical systems induced by RNN exhibit a chaotic be-
havior: complete synchronization is only possible if a sufficiently strong
coupling is applied between the systems (see Section 4.1.5). But the tra-
jectories of RNN are most of the time also influenced by external inputs:
the input sequence. In this case, the dynamics of the RNN are mostly
driven by these external inputs [121] and RNN starting from different
initial conditions but given identical input sequence will see their tra-
jectories synchronize, i.e. the hidden states become the same after a few
steps. Coupling is in this case not absolutely necessary to achieve syn-
chronization: regarding metric learning, siamese LSTM actually works
without coupling [143], the model achieves low distances for similar in-
puts and therefore synchronization. However, coupling could allow to
enforce lower distances with sequences that have similar dynamics but
are composed of quite different data, i.e. so-called hard positive samples,
and even to force the synchronization regardless of the input pair.

If the trajectories are synchronized, it means that their synchroniza-
tion error is equal to zero. We will now derive from Equation 4.9 a metric
formula adapted to our context. We start by adapting it to discrete sys-
tems with finite trajectories by replacing the limit by a comparison of the
last element of each trajectory (output sequences) Ŝ1 and Ŝ2 of length T :

h(g(Ŝ1), g(Ŝ2)) = Ŝ1(T )− Ŝ2(T ) , (4.13)

with g being here a function returning the coordinates of the points. We
then define d as a distance on discrete dynamical system trajectories de-
rived from the synchronization error by replacing the simple difference
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with the Euclidean norm (according to definition 4.2, any norm can be
used) to get only positive values:

d(Ŝ1, Ŝ2) = ||Ŝ1(T )− Ŝ2(T )||2. (4.14)

According to this derivation, trying to synchronize the output sequences
of the two sub-networks of the siamese network is thus equivalent to
having a low Euclidean distance between the last outputs, a configura-
tion we are aiming to learn for similar input sequence pairs.

While being intuitive and suitable for metric learning, the metric of
Equation 4.14 measures synchronization only at one point in time, which
forces the system to achieve synchronization at this precise point. This
is called dead-beat synchronization, synchronization in a finite number
of steps [60]. Even if at first glance, this seems not really different from
computing distance on input sequence representations, synchronization
could actually be assessed at several samples of the sequence and even
continuously. Moreover, complete synchronization is a special case of
more general synchronization notions such as the so-called generalized
synchronization [170] for which other errors and metrics are associated
(for example, mutual interdependence [175]). The same derivation
could thus be made for these synchronization errors, leading to different
metrics. We will in the experimental section use Equation 4.14 as our
metric to learn, but this is here the simplest case of a framework from
which more complex sequence metrics to be learned with Siamese RNN
models, can be obtained.

By trying to understand under what conditions output sequences
of RNN synchronized and interpreting this phenomenon within metric
learning, we motivated the implementation of a coupling mechanism
inside the siamese RNN architecture. Indeed, the induced dynamics
of GRU and LSTM are chaotic and, in this case, coupling is mandatory.
When given input sequences, the dynamics of GRU and LSTM are mostly
driven by these external inputs. In this other case, while not being
critical to achieve synchronization (and therefore low distances between
similar elements), coupling could facilitate bringing similar inputs closer,
particularly for hard positive pairs.

4.3.2 Coupled GRU

We now present a new neural network model that directly implements
coupling within a siamese RNN architecture. From a machine learning
perspective, this coupling needs to be trainable such that the network
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4.3. Synchronizing GRU Siamese Networks

Figure 4.1 – Schema of the CGRU architecture. Blue arrows represent
information coming from the input at time t, orange ones are for the
hidden states and green ones for transmissions between the gates. Red
arrows correspond to equations 4.17 and 4.18.

learns to achieve synchronization for similar inputs and stay desynchro-
nized for different ones. We propose to apply the coupling by the means
of two new gates inside the GRU architecture which we call in the follow-
ing Coupled Gated Recurrent Unit (CGRU).

We chose to use GRU and not LSTM [95] because the operation
of the GRU is defined by fewer equations while showing comparable
performance in general [48]. The following equations describe the
modifications brought to the architecture. Update, Reset and New gates
are not modified. Let us notate h′t−1 and h̃′t the states coming from the
second sub-network (see Figure 4.1):

Hidden state: ht = (1− zt) ◦ h̄t + zt ◦ ht−1 (4.15)
Update: zt = σ (Wizxt + biz +Whzht−1 + bhz) (4.16)

Coupled New State: h̄t = (1− ct) ◦ h̃t + ct ◦ h̃′t (4.17)
Coupling: ct = σ (Whc(ht−1 + h′t−1) + bhc) (4.18)

New State: h̃t = tanh(Wih̃xt + bih̃ + rt ◦ (Whh̃ht−1 + bhh̃)) (4.19)
Reset: rt = σ (Wirxt + bir +Whrht−1 + bhr). (4.20)

The Coupling gate ct (see Equation 4.18) serves the same purpose
as zt and rt, controlling the information flow and is thus computed in a
similar manner, but only from the hidden states. This forces the model to
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apply the coupling on the new content to be added at time t solely based
on the previous inputs. Then, in Equation 4.17, h̃t and h̃′t are combined
similarly as h̃t and ht−1 are combined in the original GRU architecture.
This prevents h̄t and subsequently ht from exploding and saturating the
gates. Finally, in Equation 4.15, h̄t replaces h̃t: the New state has been
replaced by a coupled version of both New states of the siamese GRU.
Several possibilities exist to implement this coupling. The idea behind
this proposal is to alter as little as possible the GRU architecture (see
Section 2.1.4.3) and to stay close to the original purpose of each equation.
Indeed, RNN can be delicate to train and the addition of the coupling
already greatly modifies the information flow inside the GRU and the
gradient flow during training. Therefore, by staying relatively close to
the original model, a rigorous comparison is more effective, and the im-
pact of the actual coupling can be studied more reliably. In fact, if ct is a
matrix of norm equal to zero, each sub-network is exactly a GRU. This
suggests to initialize the coupling weights with very small values and
to accentuate the decay. In this way, an increase of the norm of Whc dur-
ing training would signify that coupling is useful. Another interesting
configuration of the coupling weights is when they are all equal to 0.5:
in this configuration, the Coupled New States are the same, and the dis-
tance between the outputs will become null. That means, theoretically,
this approach can make close any pair of input sequences, especially
hard-positive samples.

We make the following hypothesis regarding the behavior of CGRU
which we validate through experimentation (see Section 4.4). The first
one follows the choice of implementation made for the coupling as a
new gate able to block coupling if the norm of its parameters is zero. If
coupling is useful, this norm should increase:

Hypothesis 4.1. The coupling weight norm increases during training thus
driving away the behavior of CGRU from SGRU.

The second one proceeds from the analysis of coupling in siamese
RNN (see Section 4.3.1):

Hypothesis 4.2. CGRU is able to produce lower distances between hard
positive samples.

Lastly we propose an hypothesis regarding a general gain of coupling:

Hypothesis 4.3. CGRU achieves higher performances as SGRU.
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4.3.3 Differentiation
We will now demonstrate that this architecture can be trained by BPTT
with gradient descent by doing the complete differentiation of it using
the chain rule. We admit we know ∂E

∂ht
, the partial derivative of the loss

with respect to the hidden state, and we call dx derivatives of the form
∂E
∂x with the pair of inputs concatenated (named hereafter left and right
inputs). It is sometimes necessary to use separately the left and right
sides of the derivative, in which case respectively indicated by ← and
→ over the indices. Finally, [x,y, ...] designates a concatenation along
the suitable axis. Post-synaptic potentials (before activation function) are
represented by the letter a with indices i for input and h for hidden and
the associated gate letter. We seek to compute:

• dxt,

• dht−1,

• dWi where Wi = [Wiz,Wir ,Win],

• dWh where Wh = [Whz,Whr ,Whn,Whc],

• dbi where bi = [biz,bir ,bin],

• dbh where bh = [bhz,bhr ,bhn,bhc].

dht−1,o = dht ◦ zt (4.21)
dzt = dht ◦ (ht−1 − h̄t) (4.22)
dh̄t = dht ◦ (1− zt) (4.23)
dct = dh̄←−t ◦ (h̃−→t − h̃←−t ) + dh̄−→t ◦ (h̃←−t − h̃−→t ) (4.24)

dh̃t = dh̄t + [ct, ct] ◦ ([dh̄−→t ,dh̄←−t ]− dh̄t) (4.25)
daz = dzt ◦ ((1− σ (az)) ◦ σ (az)) (4.26)
dan = dh̃t ◦ (1− tanh(an,i + rt ◦ an,h)2) (4.27)

dan,h = dan ◦ rt (4.28)
drt = dan ◦ an,h (4.29)
dar = drt ◦ ((1− σ (ar)) ◦ σ (ar)) (4.30)
dac = dct ◦ ((1− σ (a←−c + a−→c )) ◦ σ (a←−c + a−→c )) (4.31)
da←−

i
= [da←−z ,da←−r ,da←−n ] (4.32)

da−→
i

= [da−→z ,da−→r ,da−→n ] (4.33)
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da←−
h

= [da←−z ,da←−r ,da←−−n,h ,dac] (4.34)

da−→
h

= [da−→z ,da−→r ,da−−→n,h ,dac] (4.35)

dWiz = da←−z x←−t + da−→z x−→t (4.36)
dWir = da←−r x←−t + da−→r x−→t (4.37)
dWin = da←−n x←−t + da−→n x−→t (4.38)
dWi = [dWiz,dWir ,dWin] □ (4.39)
dWhz = da←−z h←−t + da−→z h−→t (4.40)
dWhr = da←−r h←−t + da−→r h−→t (4.41)
dWhn = da←−−

n,h
h←−t + da−−→

n,h
h−→t (4.42)

dWhc = dac(h←−t + h−→t ) (4.43)
dWh = [dWhz,dWhr ,dWhn,dWhc] □ (4.44)

dbi = da←−
i


1
1
...
1

+ da−→
i


1
1
...
1

 □ (4.45)

dbh = da←−
h


1
1
...
1

+ da−→
h


1
1
...
1

 □ (4.46)

dxt = [da←−
i
Wi ,da−→i Wi] □ (4.47)

dht−1 = dht−1,o + [da←−
h
Wh,da−→h Wh] □ (4.48)

4.4 Experiments

4.4.1 Datasets and Experimental Setup

4.4.1.1 SHL Dataset

This dataset was the object of a challenge in 2018 [220], the Sussex-
Huawei Locomotion and Transportation (SHL) Dataset [79]. The data
were recorded by a single individual during a 4 month period for a total
of 82 days: 62 for training, 20 for testing. Up to 8 hours of data are
recorded each day. This dataset proposes 8 locomotion transportation
modes: car, bus, train, subway, walk, run, bike and standing still. It
contains 20 features : accelerometer, gyroscope, magnetometer, gravity
and linear acceleration on three axes, orientation on 4 axes and pressure.
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Figure 4.2 – Preprocessing steps applied to SHL dataset, we globally
followed the process proposed by Janko et al. [104].

The raw dataset is sampled at a frequency of 100 Hz, that is to say, one
hour sequences have a length of 360000. To use it for our experiments,
we roughly followed the same preprocessing procedure as in [104], with
some more steps (see Figure 4.2): all signals (except pressure) were re-
oriented to the North-East-Down axes convention and magnitudes were
computed for the accelerometer, the gyroscope and the magnetometer.
Orientations were converted to Euler angles. This process extends the
number of features in the dataset from 20 to 36. Then, the dataset was
standardized according to the training set to have, for a every feature, a
mean of zero and a standard deviation of 1. Finally, to speed up computa-
tions, the 1 minute sequences we used of a length of 6000 were resampled
to a length of 300. The challenge summary paper [220] reports that the
best test accuracy result of 93.9% was achieved by Gjoreski et al. [80]
with a deep learning approach.

4.4.1.2 Other Datasets used in this Chapter

Two other datasets are used in this chapter. The first is the UCI HAR
dataset (see Section 2.3.1.3) to perform activity recognition. Regarding
the UCI HAR dataset, several activities in this dataset should look very
similar (e.g. three variants of walking or standing and sitting), and it
should make the dataset harder to process for metric learning algorithms.
Finally, walking or running exhibits dynamic components which could be
differently processed by CGRU and SGRU. No further preprocessing has
been applied. We kept the train-test split proposed by the authors of the
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dataset: there are 21 users in the training set and we therefore performed
a 7-fold validation, leaving each time 3 different users out. Finally, the
training set contains 7352 sequences and the testing set 2947.

The second dataset is the LTMM dataset (see Section 3.4.1.1) to
perform routine retrieval following the same process presented in Section
3.3.4.

4.4.1.3 Experimental Setup for classification

We compared SGRU and CGRU on learning the metric describes in Equa-
tion 4.14 using the same hyperparameters for both models, those param-
eters for each datasets are displayed on Table 4.1. The training is stopped
based on the accuracy on the validation set (early stopping). We chose to
use the structural loss [235] (see Section 3.2.3.2) to train the model since
it is a loss working on distances and not embeddings. It combines a local
term similarly to the n-pair loss [183] (see Section 3.2.3.2) but emphasizes
the weights on the hard positive samples, and a global term to improve
the generalization. We used the same hyperparameters2 for the loss as
in the original paper and adapted the batch sizes accordingly to each
dataset. The gradient was clipped according to [156] to a norm of 6. We
applied a general weight decay with a factor of 10−4. A stronger weight
decay was applied on the coupling by adding 1% of the coupling weight
norm to the loss, which seems to slightly improve the performances. The
coupling weights were also initialized with a normal distribution having
a mean of 0 and standard deviation of 0.1. The purpose of this initial-
ization is to make the model start its training close to the behavior of an
SGRU, with a very weak coupling and to let it increase during training.
We explore this feature in the preliminary experiments which follow. Our
implementation was made in Python and CUDA with Pytorch [157].

4.4.2 Preliminary experiments on UCI HAR

We present some preliminary experiments on the UCI HAR dataset to
study the properties of the CGRU architecture.

2Namely (see section 3.2.3.2 for the exact role of each hyperparameter): m0.2,
m+ = 0.01, m− = 0.1, γ0.95, η = 0.05, λ = 0.5.
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Hyperparameters UCI HAR SHL
Training set size 7352 15660
Testing set size 2947 5472

Architecture [20] [100, 100]
Batch size 36 40

Initial learning rate 0.001 0.001

Table 4.1 – Main hyperparameters used to train our models on both
datasets. These parameters are exactly the same for SGRU and CGRU.

4.4.2.1 Study of the coupling weight norm

We first analyze the evolution of the coupling weight norm during
training. The coupling is initialized very low which theoretically makes
it behave nearly as a SGRU at the beginning of training. We can observe
on Figure 4.3a that the norm increases quickly during the first 20 epochs
and more than doubles despite the stronger weight decay. Thus, the
model is driven away from the behavior of a SGRU. Red points indicate
the iterations where validation accuracy increased. This correlation thus
indicates that the overall generalization is improving with the increase of
coupling strength. On Figure 4.3b, we present the evolution of the loss on
the training set in terms of the coupling weights on which we compute
a linear regression of the first part. We can observe an almost linear
relationship between the increase of the norm and the decrease of the loss
suggesting again that the coupling is helpful to the model and validating
hypothesis 4.1. Those figures also confirm that the convergence during
training is rather smooth.

4.4.2.2 Performances on hard positive samples

We now seek to validate hypothesis 4.2 that CGRU could perform better
on hard positive samples due to coupling theoretically being able to
bring close any input pair of sequences: with enough coupling, both
networks can output the same sequence whatever of the input pair. We
propose to verify this by observing the evolution of the average distance
between the positive samples and between the negative samples when
white noise is gradually added to the feature sequences of the testing
set. The standard deviation of the applied noise goes from 0 to 2. We
also note that both models were trained up to comparable validation
accuracy. The results are presented on the Figure 4.4. We observe
that the curves for both models evolve similarly with positive distances
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(a) Evolution of the norm of the coupling gate weights during training on UCI
HAR dataset, a red point indicates an increased accuracy for the validation set.

(b) Epoch loss in terms of coupling norm during training on UCI HAR dataset.
The first part (rapid decrease) has been approximated with a linear regression.
The correlation coefficient is -0.984.

Figure 4.3 – Experiments with the coupling norm.

gradually increasing with the noise. The negative and positive curves
join the moment too much noise is added and the sequences become
indistinguishable. CGRU produces slightly higher distance averages
than SGRU but is able to maintain higher margins more longer: up to
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1.75 units of standard deviation compared to about 1.25 for SGRU. This
seems to show that, as theoretically possible with the coupling, CGRU
better discriminate the hard samples (hypothesis 4.2).

Figure 4.4 – Evolution of the average distance between the positive/neg-
ative samples for SGRU and CGRU on more and more noisy test sets.

4.4.2.3 Average normalized distance to nearest neighbors

We present in Figure 4.5 the evolution of the average distance to the
nearest neighbors depending on the number of nearest neighbors. Each
distance has been scaled between 0 and 1 prior to the average. For SGRU,
we observe that the average distance grows slowly at first until some
point between 150 and 200 (around the average number of samples per
class in this validation set, which is about 165) and from there starts
to grow faster. This seems to indicate that the training of SGRU has
allowed the model to create an important margin between similar and
dissimilar samples. The curve for CGRU is very different with a very
smooth progression and no apparent margin. This can be explained by
the coupling which always combines the New States in some extend even
if the input are dissimilar and therefore produces closer outputs. Despite
the absence of apparent margin, we shall see now if CGRU achieves
lower classification performances than SGRU.
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Figure 4.5 – Average normalized distance to nearest neighbors for SGRU
and CGRU computed on the validation set (users 1, 3 and 5).

4.4.3 Classification performances
To assess the classification performances, we propose to use three scores:
accuracy, F1 score Macro averaged and Mean Average Precision (MAP),
similarly to [191]. The first two are computed by classifying the test
samples using 1-nearest neighbor from training samples. The MAP is
computed by querying the training set with a test sequence to retrieve
all training samples of the same class. The value is averaged for all test
sequences. This metric shows the ability of the algorithm to bring close
every sequence of each class and not just few references to be used as
nearest neighbors.

4.4.3.1 Activity recognition on UCI HAR

We now present the classification results on UCI HAR. The validation
results are presented in Table 4.3a. We observe an improvement of CGRU
over SGRU of about 8% for accuracy and F1-score, and an improvement
of 19% points for the MAP. On the test set, we compared our approach
with Regressive Virtual Sequence Metric Learning (RVSML) [191] (see
Section 3.2.2.2), with OPW and DTW distances. The test results are
presented in Table 4.3b. Here again we observe that CGRU outperformed
SGRU with a notable improvement of 10% points of the accuracy and F1-
score. Both neural network approaches clearly outperformed RVSML,
especially the OPW variant. This can be, among other factors, attributed
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Algorithms Accuracy F1 score Macro MAP
Siamese GRU 0.835±0.068 0.827±0.074 0.711±0.016
Coupled GRU 0.913±0.055* 0.916±0.054* 0.900±0.043*

(a) Validation results (21 fold average). An asterisk means a significant result
with a threshold of 1%.

Algorithms Accuracy F1 score Macro MAP
RVSML (OPW) ([191]) 0.597 0.568 0.438
RVSML (DTW) ([191]) 0.698 0.687 0.437

Siamese GRU 0.782±0.041 0.781±0.044 0.633±0.152
Coupled GRU 0.885±0.014* 0.887±0.014* 0.899±0.01*

(b) Test results, average of 5 run for the neural networks approaches.

Table 4.2 – Results on UCI HAR

to a weak capacity to distinguish similar activities such as standing and
sitting. On the other hand, standing was recognized perfectly by both
RVSML variants. We also remark that they reach MAP values of the same
order as in the original paper (around 0.4 ∼ 0.45) despite the fact that the
data are of a completely different nature (signal instead of images). This
could suggest that these approaches reached some kind of saturation
whereas CGRU and SGRU are able to achieve much higher values. The
best approaches on UCI HAR (see Section 2.3.1.3) achieved above 95% of
test accuracy: CGRU achieved results around 7% lower.

4.4.3.2 Transportation Recognition on SHL Dataset

The second experiment is made on a larger dataset with twice as much
data and a longer sequence size. The validation results are presented
in the Table 4.2a. Both architectures achieved results above 90% for
each metric but we observe a slight improvement of CGRU over SGRU
for the considered architecture. These results are further confirmed on
the test set (see Table 4.2b) with even larger improvements: 2,5% for
accuracy, 2.2% for F1-score and 1.5% for MAP, in favor of CGRU. These
results confirm the interest of our proposed approach CGRU compared
to SGRU. However, compared to the overall results of the challenges
[220], both approaches achieved similar validation results but clearly do
not demonstrate the same generalization capacities on this dataset as the
best ad-hoc approaches.
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Algorithms Accuracy F1 score Macro MAP
Siamese GRU 0.947±0.006 0.951±0.006 0.955±0.007
Coupled GRU 0.965±0.05 0.967±0.006 0.97±0.004

(a) Validation results (10 fold average).
Algorithms Accuracy F1 score Macro MAP

Siamese GRU 0.731±0.023 0 .75±0.018 0.786±0.02
Coupled GRU 0.747±0.019 0.765±0.016* 0.798±0.018

(b) Test results (10 fold average). An asterisk means a significant result with a
threshold of 5%.

Table 4.3 – Results on SHL dataset.

Algorithms UCI HAR SHL
SGRU 44 45
CGRU 32 350

(a) Time to perform one epoch of training.
Algorithms UCI HAR SHL

SGRU 24 83
CGRU 409 16392

(b) Test computation time.

Table 4.4 – Computation times (in seconds) of SGRU and CGRU for one
epoch and processing the test set on UCI HAR and SHL.

4.4.3.3 Computation times comparison

To give an appreciation of the difference regarding the complexity
between SGRU and CGRU, we report in Table 4.4 the computation times
for one epoch and to process the test set on both datasets. These times
were obtained by processing the networks on an NVidia P6000 GPU with
24GB of video memory. We observe a large difference between the two
variants, CGRU being more computationally expensive, notably for tests:
for SHL dataset, the difference is of several orders of magnitude. One
notable exception is to compute on epoch for UCI HAR dataset with a
slight advantage of CGRU over SGRU.

Two factors can explain this difference. Firstly, coupling implies that
the output sequences for each pair are dependent which forces to pass
each sequence with each other. This corresponds to |B|2/2 passages in the
network, where b is the batch size, and to the same number of distance
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computations. For SGRU, where the outputs are independent, only |B|
passages in the network are necessary. The second factor lies directly
into the GPU implementation of CGRU: it seems to require 2 kernel calls
to be executed. A kernel is a function to be mapped on each thread of the
GPU, each time with different indices which often correspond to values
in matrices. This allows to perform element-wise matrix operations in
parallel but comes with a time overhead. CGRU seems to require two
calls because certain values with different indices needs to be known to
compute the coupling. One way to be sure of that is to finish one kernel
and then launch another. SGRU should require only one kernel call in
comparison. Finding an implementation of CGRU which makes only
one kernel call would greatly improve the performances.

4.4.4 Routine Retrieval on LTMM
We finally test the CGRU architecture on the routine retrieval problem we
presented in chapter 3. We used here neural networks with one layer of
100 neurons otherwise the other hyperparameters are the same as for UCI
HAR (see 4.4.1.3). The results presented in Table 4.5 below are directly
comparable with the results of Table 3.2. Compared to the previous
results, we observe that both approaches are outperformed considering
Completeness, Silhouette and NMI but clearly outperform the other
ones for AMI. As a reminder, AMI corrects the NMI by rendering it
independent from the number of clusters (see Section 3.3.4). We observe
that the gap between those two scores is narrower for SGRU and CGRU
than for SS2S variants which makes their NMI scores more reliable
although inferior. Concentrating now only on the results from Table
4.5, we see that SGRU, slightly but significantly, outperforms CGRU
on LTMM dataset for all metrics except Silhouette. We attribute the
slight gain on silhouette to the coupling being able to bring closer hard-
positive samples, producing more compact clusters as a result. This is
another hint confirming Hypothesis 4.2. Regarding Hypothesis 4.3, if it
is validated for the classification experiments, SGRU seems to conserve
the superiority on routine retrieval.

To conclude the experiments on CGRU, we propose on Figure 4.6 the
visualization of a clustering obtained with CGRU. The results look less
clean than for SS2S and DTW (see Figure 3.7) even if the same regularities
are visible. We also observe a very clear shifting pattern repeated itself
across the day (one hour early) around the virtual days nine and ten
which could suggest a change of schedule for the last recorded day of
the three.
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4. Sequence Metric Learning as Synchronization of Recurrent Neural
Networks

Model Completeness Silhouette NMI AMI
SGRU 0.882±0.052* 0.263±0.024 0.568±0.035* 0.54±0.037*
CGRU 0.843± 0.043 0.286± 0.025* 0.545±0.029 0.515± 0.031

Table 4.5 – Comparison on LTMM dataset of CGRU and SGRU, averages
on 20 tests. An asterisk means a significant result with a threshold of 5%.

Figure 4.6 – Example of a clustering obtained with CGRU on LTMM.

4.5 Conclusion and Perspectives

We presented a new framework for sequence metric learning based on
dynamical system synchronization theory. We drew a parallel between
synchronized trajectories and output sequences of siamese recurrent
neural networks produced from similar input pairs. We showed the
contribution of introducing coupling inside the siamese architecture
to balance the chaotic behavior of GRU and LSTM and to increase
the capacity of the network to bring closer the embedding of some
similar input pairs, especially hard positive samples. This coupling was
implemented through a new gate inside the SGRU architecture which
allows the network to mix the new content of both sides of the siamese
network. Our experiments showed that the SGRU architecture benefits
from the coupling, can be smoothly trained with it and fits well with
recent complex metric learning losses such as structural loss. CGRU
proved to be outperforming SGRU with the same architecture on two
datasets for activity and transportation recognition. It was also able to
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4.5. Conclusion and Perspectives

maintain a higher margin between hard samples in conformity with what
we supposed when justifying the introduction of the coupling. We also
tested this architecture to retrieve routines with more mitigated results
although CGRU achieved a higher silhouette score than SGRU further
confirming the hypothesis that it is able to enforce lower distances.

The study of sequence metric learning with synchronization opens
several perspectives especially to design new forms of metrics by taking
inspiration from the literature of synchronization criteria [114, 175].
However, the issue to overcome in numerous cases is non-smoothness,
notably when those metrics use mutual neighbors which are computed
using explicitly the time steps. The attention mechanism [212] can
constitute here an interesting research perspective. The coupling itself
could be tuned with theoretical contributions [32]. One drawback of
the proposed architecture is that each pair has to be passed through
the network instead of just computing once each representation and
then the distance for each pair. This could be balanced by the use of
virtual metric learning during training. Finally the coupling allows to
bring any pair of inputs close to one another if sufficiently strong and
could be use as an indicator in weakly supervised settings to invert
the equivalence constraint of some pairs dynamically if the network is
forcing the synchronization too much. We further develop these ideas in
the perspective section of the manuscript.
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CHAPTER 5

CONCLUSIONS, LIMITATIONS,
PERSPECTIVES

This last chapter will be dedicated to conclude the manuscript by making
a synthesis of the contributions. We will then highlight some limitations
of the proposed approaches before suggesting perspectives to overcome
these issues.

5.1 Conclusion
The objective of this thesis was to propose new neural network architec-
tures conceived to overcome the challenges of real life activity recogni-
tion and monitoring notably for eHealth services. This task requires not
only high performances but also flexibility and privacy due to the sensi-
bility of the processed data.

5.1.1 Flexible Activity Recognition with Few-Shot
Learning

A first step was to work with personalized models, more respectful of
privacy and supposedly able to achieve higher performances. However,
this has the downside of putting the burden of providing labels on
one single user, retarding the moment when the actigraphy system
would properly work. To alleviate this burden, we propose to employ
few-shot learning. Few-shot learning models are able to recognize
new classes from just one or few new training samples. We put to
contribution this learning paradigm by suggesting modifications of the

133

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI033/these.pdf 
© [P. Compagnon], [2021], INSA Lyon, tous droits réservés
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architecture by Vinyals et al. called Matching Networks [217] to adapt it
for sequence classification and to leverage its generalization capabilities.
The SSMN architecture, rather than directly classifying samples, learns to
match them with already known support examples of different classes.
When the model is trained, it can start recognizing new classes by just
giving it one new support example. We tested this architecture on two
activity recognition datasets to perform personalized activity recognition
with interesting results notably to detect falls and on UCI HAR. On
the MiniMobiact dataset, a dataset with more classes, the results were
more mitigated for the 12-way classification but the training data were
extremely limited which suggests that nevertheless, a real actigraphy
system could work day one with acceptable performances.

5.1.2 Weakly-Supervised Routine Retrieval with Metric
Learning

Pursuing our quest for flexibility and ease of use for the user, we
then proposed to completely dropped class labels in favor of retrieving
recurrent activity patterns we called routines. We started by proposing
a mathematical formulation of this concept based on pseudo-periodic
functions [26] and we derived from here an equivalence with sequence
metric learning. To fulfill this framework, we proposed an architecture
combining efficient representation learning with a Sequence-to-Sequence
model [197] and metric learning with a siamese architecture [30]. This
architecture implements some form of multitask learning for which the
intermediate representation is the one learned by the Seq2Seq model.
Different metric losses can be plugged in to perform the learning of
the metric. We also proposed a routine retrieval learning and testing
process based on clustering and information theoretic scores by using
data recording time as labels. We put into application this process on a
continuous 3-day dataset of the activity of a fragile person in its living
environment which we artificially extended to 30 days. We observed
that the SS2S model achieved good results on the routine retrieval task
compared to DTW and siamese LSTM, especially with the KISSME loss.
A visual observation of the results seems to confirm that routines could
be retrieved in this case.
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5.1.3 Coupled GRU, a New Sequence Metric Learning
Architecture

In the last chapter, we presented a new neural network architecture for
sequence metric learning called CGRU. This architecture takes inspira-
tion from the dynamical system theory concept called synchronization.
We incorporate deep metric learning on sequences inside the framework
of synchronization by viewing siamese recurrent neural network as two
identical dynamical systems. As a consequence, the output sequences
with a low distance between them can be viewed as synchronized. Dy-
namical system theory guarantees that identical dynamical systems can
always achieve synchronization if a sufficiently strong coupling is ap-
plied between them. This theoretical argument gives incentives to imple-
ment a coupling inside the siamese architecture, notably to bring closer
hard positive samples. Precisely, this coupling was implemented by the
mean of a new gate inside the GRU neuron to be used in a siamese archi-
tecture. By doing so, we tried to stay close to the original behavior of the
GRU so as to get a functional network, which we proved was perfectly
differentiable. We compared this architecture to SGRU on two classifi-
cation tasks: activity recognition on UCI HAR dataset and transporta-
tion recognition on the University of Sussex-Huawei Locomotion (SHL)
dataset. We observed that in both cases, CGRU outperformed SGRU. We
then compared the two on the routine retrieval tasks: both achieved inter-
esting NMI and AMI values compared to SS2S with a slight advantaged
for SGRU. However, the better silhouette value of CGRU gives an addi-
tional hint that it better processes the hard positive samples than SGRU.

5.2 Limitations

5.2.1 Limitations with the SSMN architecture

The proposed SSMN architecture present several limitations. First, its
performances in the full setting (when the model is given the choice
between all the classes) were quite lower than the state of the art. This
could probably be improved by using larger batch sizes during training
thus making the model used to select between a lot of classes. On this
matter also, the pretraining of the encoding part seemed to help the
model very marginally while we thought otherwise. One thing that
we can doubt is that the encoding part (see Figure 2.5) really acts as
a good feature extractor: it could act like a discriminator or a kind
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of filter instead. This guess is reinforced by the fact that Matching
Networks [217] do not properly classify features and would just need the
representations to be well separated rather than properly characteristic.
Moreover, training the encoder with a very different dataset, with a
different sampling rate, etc. should suffice to produce such filter while
it seems unlikely it could produce a good representation. This intuition
could lead us to rethink this part of the architecture and to improve it by
using a (randomly generated) reservoir as a better temporal filter [204]
such as for the ESN [103].

5.2.2 Limits in the Validation of the Routine Retrieval
Process

Although the proposed approaches aimed at being implemented for real
environments, they were not tested in real conditions. This is particularly
illustrated with the LTMM dataset (see Section 3.4.1.1) which although
being perfect regarding quality and realism stays very short (three days).
We needed to artificially expand this dataset to experiment on it which
rises questions on the performances the algorithm should achieve with
more real days. Alternatives are not easy to find. The extrasensory
dataset [208] constitutes an interesting option although no more than
about ten incomplete days are available for a single user, at most. The
most efficient approach would probably to equip oneself with a watch to
record the data.
The principle itself behind the concept of routine we employed (see
Section 3.1.2) and the labelling process made from the timestamp are
subject to caution. A first critic could be that this principle does not
take into account context although if we restrict ourselves to wearable
motion sensor data, context information are rather limited. Similarly for
the labelling, its ability to capture the routines in a weakly supervised
way seems convenient and elegant but is to be experimentally confirmed
on larger datasets.

5.2.3 Limitations of CGRU
The proposed CGRU architecture is not exempt of drawbacks despite
being theoretically grounded and showing interesting results compared
to its counterpart without coupling. We already experimentally tackled
in Section 4.4.3.3 the computation time comparison with SGRU which
is largely in disfavor of the coupled version. It can be explained by the
dependent relationship between the output sequences and what seems
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to be implementation necessities. This has to be combined with the scal-
ability problems inherent to metric learning due to pairwise (or triplet
wise, or even more complex with structural loss [235], etc.) comparisons.
Another limitation comes under the form of the learned distance with
CGRU which is basically an Euclidean one. The framework of dynamical
system synchronization seems able to offer us more powerful distances,
potentially acting on a larger part of the sequences and not just the last
outputs, but they seem difficult to setup due to being non-smooth.

5.3 Perspectives
To finally close this manuscript, we will now develop three perspectives
on the presented work which address some of the limitations we just
mentioned.

5.3.1 Temporal Dependent Information Theoretic
Score for Clustering

Information theoretic metrics are classical approaches to evaluate cluster-
ing algorithms [215]. We explored in chapter 3 the use of NMI and AMI
to evaluate metric learning algorithms on the routine retrieval task. A a
recall, the Mutual Information can be expressed the following way with
Kullback-Leibler divergence (see Equation 3.51 for “sum” formula):

MI(U,V ) = KL(P (U,V )||P (U )P (V )), (5.1)

where U and V are two discrete random variables. However, these
scores make the assumption that the samples are independent of each
other whereas in the case of routines, a temporal dependency should
exist between the samples. Actually, two kinds of dependencies should
appear. The first one, which we call cyclic dependency is directly linked
to the way we formulated routines initially (see Section 3.1.2): across the
days, similar activities should be performed roughly at the same time
making the probability to put the samples in the same cluster higher. This
dependency is already measured in some extend by the completeness.
The second dependency that should appear is between consecutive
routines: e.g. people eat their breakfast after sleeping. This makes
both routine occurrences correlated. In this regard, we are particularly
interested by the Symbolic Transfer Entropy (STE) proposed by Staniek
et al. [186] which takes itself inspiration from the permutation entropy
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[11]:
STEY→X = KL(P (Un+1|Un,Vn)||P (Un+1|Vn)). (5.2)

Taking inspiration from this expression, we define a Periodic Mutual
Information (PMI):

PMI = KL(P (Un+p|Un,Vn+p|Vn)||P (Un+p|Un)P (Vn+p|Vn)), (5.3)

with a period p which can be 24 hours, for examples. With a lower
period, we can measure dependency between consecutive routines. If V
is here the hour assignment, PMI should measure the difference between
a perfectly timely correlated assignment and the routine assignment
U . This score could then be integrated in a metric learning loss in a
similar manner as in [152]. It can also undergo similar normalization
and adjustment as NMI and AMI [215].

5.3.2 Virtual Coupled GRU
One major drawback of the CGRU approach is its scalability. To mitigate
this downside, we propose to employ virtual metric learning [161] (see
Section 3.2.1.1). Instead of having to make all the similar elements close
to each other during training, the model will be trained to make them
close to one virtual element. Following the work of Su et al. [191] (see
Section 3.2.2.2), in the case of sequences virtual metric learning, virtual
elements can be sequences of unitary vectors with a size equal to the
number of classes, which are one-hot encoded. To match the number
of input features, the virtual sequences can simply be projected with a
(learnable) linear layer.
If we combine this approach with the structural loss of Yang et al. [235]
(see Section 3.2.3.2), it requires that every positive elements of each class
be compared with each other and every positive elements with each of
the other negative elements of the batch. More formally, let n be the
number of elements per class of the batch with batch size |B| and c classes.
This leads for the first part to (n2−n)/2 comparisons, assuming the metric
is symmetric. For the second part, to n(|B|−n)/2 comparisons. This
process must be repeated c times. An adapted version of the structural
loss with virtual metric learning would only require to compare each
element of the batch with each virtual sequence, that is to say, only c|B|
comparisons are required, to be arranged properly for structural loss.
However, this approach also poses a couple of issues when combined
with coupling. Firstly, it creates an asymmetry during the learning if
the sample and the virtual sequence are always presented respectively to
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the same side of the network. The risk here is to completely deteriorate
the performances since at test time, samples will be presented instead
of virtual sequences. One way to potentially prevent this phenomenon
would be to randomly exchange the sample and the virtual sequence.
Secondly, the sample sequence lacks a proper counterpart to be coupled
with due to the virtual sequences being one-hot encoded and therefore
not reassembling signal data. This is also an issue at test time here again
because it is supposed that true samples are compared. A way out of this
impasse would be to use “realistic” virtual sequences, produced by a
generative model such as a variational autoencoder [110] or a generative
adversarial model [84]. In the case of the variational autoencoder, the
virtual sequences could be decoded class centroids.

5.3.3 Make CGRU Achieve Generalized
Synchronization by Learning with Smooth
Mutual Interdependence

The literature presents several other synchronization metrics notably to
detect another type of synchronization called generalized synchronization
which identical synchronization is a special case of [111]. In the case
of mutually coupled systems, generalized synchronization ensures the
existence of an invertible function χ such that:

y(t) = χ(x(t)), (5.4)

and conversely [170]. This definition implies the design of more intricate
synchronization error metrics such as the Mutual False Nearest Neighbor
(MFNN) Parameter [170] or the Mutual Interdependence [175]. Both
metrics are based on the concept of mutual neighbors. Mutual neighbors
are points with the same time indices which are close for both trajectories
to a reference point (see Figure 5.1).

The MFNN Parameter is defined with the following equation:

MFNN(S1(t),S2(t)) =
|S2(t)− S2(tnnS1(t))|
|S1(t)− S1(tnnS1(t))|

·
|S1(t)− S1(tnnS2(t))|
|S2(t)− S2(tnnS2(t))|

, (5.5)

where nnS1(t) designates the nearest neighbor of S1(t) and conversely.
The value of this parameter is between 0 and +∞, synchronization is
achieved if the value is closed to 1. However, two issues arise from
this metric: it is non smooth due to the intervention of time indices
and its minimum around one is difficult to reach since the value cannot
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Figure 5.1 – We seek to compare the trajectories x(t) and y(t) around the
points a and b at the same timestamp. We search for both trajectories the
nearest neighbor of each point: x(tnna) for a and y(tnnb) for b. The mutual
neighbors are the points with the same timestamp in the other trajectory.

go toward negative infinity. Therefore building a loss function around
it to train a network with gradient descent appears difficult. Another
metric using mutual neighbors proposed by Schiff et al. [175] seems more
promising: mutual interdependence. It is based on the idea that generally
synchronized sequences should be mutually predictable from the mutual
neighbors after a translation. Its value is between 0, no synchronization
and 1, totally synchronized. The reconstruction error is then divided
by the reconstruction error achieved when averaging all the elements of
sequence:

τ(S1(t)) =
|S1(t +H)− 1

k

∑k
i=1S1(innS2(t) +H)|

|S1(t +H)− 1
T

∑T
i=1S1(i)|

, (5.6)

with H a translation horizon, k a number of mutual neighbors and T
a sequence size. The mutual predictability τ(S1(t)) is of course non-
smooth under this form since it requires to explicitly use the timestamps
of the mutual neighbors. We thus propose the following smoothed
version to be used on output sequences which uses a mutual translated
neighborhood weighted by the softmax of the distances instead of the
mutual nearest neighbors:

S̃1(t +H) =
+k∑

i=−k

exp(d(Ŝ2(t), Ŝ2(t + i)))∑+k
i=−k exp(d(Ŝ2(t), Ŝ2(t + i)))

Ŝ1(t + i +H), (5.7)

140

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2021LYSEI033/these.pdf 
© [P. Compagnon], [2021], INSA Lyon, tous droits réservés



5.3. Perspectives

which gives within the full equation:

τ(Ŝ1(t)) =
|Ŝ1(t +H)− S̃1(t +H)|
|Ŝ1(t +H)− 1

T

∑T
i=1 Ŝ1(i)|

. (5.8)

The minimum of this metric being at 0, more conventional losses
can be used to train it by adding τ(Ŝ1(t)) and τ(Ŝ2(t)). Regarding the
classical properties of distances (see Section 3.2), this metric seems to re-
spect triangular inequality under this form according to numerical tests
we performed but not identity. Respecting identity can be achieved by
subtracting the mutual independence of the sequences to themselves
but triangular inequality is violated in this case. Finally, soft-ranking
functions [34, 202] can constitute an alternative to attention to smoothly
compute mutual neighbors.

These perspectives end the work presented in this thesis. We hope
with the CGRU architecture to have open a framework from which a
better understanding of sequence metric learning will be acquired and
new neural network models based on synchronization will be designed.
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