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Abstract

The nonlocal p-Laplacian operator, the associated evolution equation and boundary value problem,
governed by a given kernel, have applications in various areas of science and engineering. In particular,
they have become modern tools for massive data processing (including signals, images, geometry), and
machine learning tasks such as semi-supervised learning.

In practice, these models are executed in discrete form (in space and time, or in space for the
boundary value problem) as a numerical approximation to a continuous problem, where the kernel is
replaced by an adjacency matrix of a graph. In this work, we first focus on the study of numerical
approximations of these models. Combining tools from graph theory, convex analysis, I'-convergence,
nonlinear semigroup theory and evolution equations, we give a rigorous interpretation to the nonlocal
continuous limit of the discrete nonlocal p-Laplacian evolution and boundary value problems on sparse
graphs. Along the way, we provide consistency/error bounds. These results lead us to derive rate of
convergence of solutions for the discrete models on K-random sparse graphs to the solution of the
corresponding nonlocal problems on the continuum, as the number of vertices grows to infinity, and we
highlight the influence of p, the sparsity of the graphon, and the regularity of initial/boundary data
on the convergence rate.

In the context of image processing, we introduce a class of the analogue p-bilaplacian operators on
graphs. We then turn to study regularized variational and boundary value problems associated to these
operators on graphs. In the same vein, we introduce a general class of nonlocal discrete perimeters
as well as mean curvature flow. These lead us to translate and establish an adaptation of the mean
curvature level set equations on a general discrete domain.

Keywords: Nonlocal diffusion, evolution problem, boundary value problem, p-Laplacian, p-bilaplacian,
nonlocal perimeter, mean curvature, graphs, sparse graph, Li-graphon, graph limits, numerical approx-
imation, error bound, convergence rate, convex analysis.

Résumé

L’opérateur du p-Laplacien nonlocal régi par un noyau donné, I’équation d’évolution et le probléme aux
limites associés régies par un noyau donné ont des applications dans divers domaines de la science et de
I'ingénierie. En particulier, ils sont devenus des outils modernes pour le traitement des données massives
(y compris les signaux, les images, la géométrie) et dans les taches d’apprentissage automatique telles
que 'apprentissage semi-supervisé.

En pratique, ces modeéles sont implémentés sous forme discréte (en espace et en temps, ou en espace
pour le probléme aux limites) comme approximation numérique d’un probléme continu, o le noyau
est remplacé par la matrice d’adjacence d’un graphe. Dans ce travail, on se concentre dans un premier
temps sur I’étude des approximations numériques de ces modéles. En combinant des outils de la théorie
des graphes, de 'analyse convexe, I'-convergence, de la théorie des semi-groupes nonlinéaires et des
équations d’évolution, nous interprétons rigoureusement la limite continue du probléme d’évolution
et du probléme aux limites du p-Laplacien discrets sur graphes parcimonieux. Ce faisant, on fournit
des bornes d’erreur/consistance. Cela permit d’établir les taux de convergence nonasymptotiques en
probabilité et en présentant le role de p, de la parcimonie du graphe, de la régularité des données
initiales sur la vitesse de convergence.

Dans le cadre du traitement d’image, nous introduisons une classe d’opérateurs analogiques &
l'opérateur p-bilaplacien sur graphes. Nous nous tournons ensuite vers I’étude du probléme de régu-
larisation variationnels et le probléme aux limites associés & ces opérateurs sur graphes. Dans le méme
cadre, nous introduisons une classe générale de périmétres discrets non locaux ainsi que la courbure
moyenne. Ceux-ci, nous aménent & transcrire et établir une adaptation des équations d’ensembles de
niveaux de courbure moyenne sur un domaine discret général.

— v —



Mots-clés: Diffusion nonlocale, probléme d’évolution, probléme aux limites, p-Laplacien, p-bilaplacien,
périmétre nonlocal, courbure moyenne, graphes, graphes parcimonieux, L9-graphons, limites de graphes,
approximation numérique, borne d’erreur, vitesse de convergence, analyse convexe.
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Chapter 1 1.1. Context and motivations

1.1 Context and motivations

1.1.1 Context and main problems

Partial differential equations (PDEs) play an important role in mathematical modelling throughout
applied and natural sciences. Indeed, several problems end up modelling and solving an evolution or
a boundary value problem involving different kinds of operators depending on the tasks to carry out.
The methods based on PDEs have also proven to provide very effective tools in various fields through-
out science and engineering such as signal /image processing, machine learning, computer vision and
biology [14, 52, 118, 15, 82, 11]|. Such methods have the advantages of better mathematical modelling,
connections with physics and better geometrical approximations. Differential operators involved in
these methods are classically based on local derivatives that reflect local interactions in the support do-
main. The nonlocal counterparts have been introduced, in different settings e.g. [133, 106, 77, 22, 121],
which are based on the integral form, particularly with respect to spatial variables, that reflect nonlocal
interactions between the points in support domain. Recently, nonlocal models have been proposed in
the context of image processing to design gradient-based regularization functionals and PDEs associ-
ated with their minimization [85] for many image processing tasks, such as denoising, deconvolution,
segmentation, inpainting, optical-flow to name a few. A main advantage for image processing is the
ability to process both structures (geometrical parts) and textures within the same framework. For
instance, several work have been studied behaviour of nonlocal models under various classical per-
turbation limits, since they have similar properties as the local ones, it consists generally to replace
the local operators in PDEs with newly defined nonlocal analogue operators converging to the local
one in the continuum limit, see for example [133, 10, 150, 123]. Unlike classical PDE models, in the
nonlocal setting the boundary conditions must be defined on a region with non-zero volume outside
the surface [56, 65, 137, 2|, in contrast to more traditional scenarios where boundary conditions are
typically imposed on a sharp co-dimension one surface. The construction of such operators have been
built on ideas developed in graph theory and nonlocal calculus of variations, e.g. nonlocal gradient,
nonlocal divergence, nonlocal curl, and nonlocal Laplacian, see e.g.[85, 66, 3, 122|, and references
therein. Following these ideas, it has been shown that many PDE-based processes, minimizations and
computation methods can be generalized to the nonlocal setting.

Among the operators introduced in this setting the nonlocal p-Laplacian operator, that has become
more popular both in the setting of Euclidean domains and on discrete graphs, as the p-Laplacian prob-
lem possesses many important features shared by many practical problems in mathematics, physics,
engineering, biology, and economy, such as continuum mechanics, phase transition phenomena, pop-
ulation dynamics|[9, 19, 20, 47, 81, 148, 80] and references therein. Some closely related applications
can be found in image processing, computer vision and machine learning [40, 71, 74, 100].

In the continuum case, this operator is defined on LP(Q2) for a bounded set Q, p € [1, 00|, being a
set-valued mapping for p = 1 and p = oo, as follows

AKu(z) = /Q K (@, ) |u(y) — u(@)”(uly) — u())dy,

where  is a bounded set in R? and K(-,-) is a symmetric, non-negative measurable function on Q2.
It can be seen as the nonlocal analogue of the p-Laplacian operator defined on W1P(Q) for p € [1, +o0],
being also a set-valued mapping for p = 1 and p = oo, as

Apu(x) = div (’Vu(a:)‘piQVu(:c)) ,

which occurs also in many mathematical models and physical processes such as nonlinear diffu-
sion/filtration and non-Newtonian flows [27]. The nonlocal p-Laplacian operator is the negative gradi-
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Chapter 1 1.1. Context and motivations

ent of the p-Dirichlet energy,

zmquégﬁa%www—mmﬂm@, (11.1)

which is the nonlocal analogue to the energy functional }D fQ ‘Vu‘p associated to the local p-Laplacian.

Nonlocal boundary value problem. The nonlinear nonlocal “elliptic” boundary value problem,
known as the nonlocal p-Laplacian Dirichlet problem [93] associated to Aff is
~AKu(@) = f(@), @eU, ,
def (Pnloc)
u(@) = g(a), zel o\,
where U is a bounded subset of 2 and I is a "collar" surrounding U which has nonzero volume with
Q) = U UT. The nonlocal boundary value problem shares many properties with the corresponding
classical elliptic boundary value problem

{ Apu(x) = f(x), =€,

D
u(z) = g(x), x € 090. (Pioc)

It has been shown in[88] that for p = 2 the problem (P[] ) provides a nonlocal equivalent of the
problem (P[). It has been shown also in[150] that the nonlocal Neumann-type boundary value
problem governed by the nonlocal p-Laplacian recovers the classical Neumann problem as the nonlocal

horizon parameter vanishes.

It has been proved in [93], using the Dirichlet principle, that the minimizers of the energy functional

ef 1
F(u) def o - K(w,y)‘u(y) — u(m)‘pdmdy + /Q f(x)u(x)dx + LLP(Q,U) (u) (1.1.2)
satisfy (P[] .) and conversely, any solution of (P[] ) is a minimizer for F,where L}(Q,U) is the space

of functions in LP(€2) which coincide with g on T

Nonlocal Cauchy problem. Another problem governed by this nonlocal operator is the nonlin-
ear diffusion problem (Cauchy problem), known as the nonlocal p-Laplacian evolution problem with
homogeneous Neumann boundary conditions [11]

{ %u(az,t) = —Afu(z) + f(z,t), ©eQ,t>0,

u(a"7 0) = g(:c), x € ). (Pnloc)

This nonlocal diffusion problem, in turn, shares many properties with the corresponding local one.
If f =0 and the kernel K is radially symmetric and properly rescaled with a parameter ¢, it has been
shown in [10] that the solutions to the nonlocal problems (Py,.) converge strongly in L ((0,7°); LP(€2)),
as € goes to zero, to the solution of the well-known local p-Laplacian evolution problem

{M%w—§M%w—Aﬁm@m,weQ¢>a

u(z,0) = g(x), zeQ, (Phoc)

which corresponds for p = 2 to the heat equation u;(x,t) = Au(x,t), while the extreme case, p =
1, corresponds to the total variation flow with homogeneous Neumann boundary conditions. The
problem (Py,.) occurs also in many applications such as physics, biology or economy [104, 62].

A particular case where K (x,y) = J(x —1y), with the kernel .J : R? — R is a nonnegative continuous
radial function with compact support verifying J(0) > 0 and [pq J(x)dx = 1, nonlocal evolution
equations of the form

Ut(mvt) = J*u(mvt) - u(w’t) = /Rd J(w - y)(u(yvt) - u(w,t))dy, ( rTloc)

-3 -



Chapter 1 1.1. Context and motivations

where #* stands for the convolution, have many applications in modeling diffusion processes|9, 19, 20,
47, 81, 148, 80]. As stated in [81], in modeling the dispersal of organisms in space when u(x,t) is their
density at the point @ at time ¢, J(x — y) is considered as the probability distribution of jumping from
position y to position x, then, the expression J*u — u represents transport due to long-range dispersal
mechanisms, that is the rate at which organisms are arriving to location x from any other place.

The nonlocal p-bilaplacian. In the context of the peridynamics, by iterating the nonlocal Lapla-
cian, it has been introduced in [123] a nonlocal version of the bilaplacian operator, which can be
generalized to p €]1, 400[. This operator that we coin p-bilaplacian, is defined on LP(2) for a bounded
domain Q, p €]1, +o0[ as follows

A%(’pu(a:) AL (‘Agu}p_QA%dQ (x), (1.1.3)

where AL is the nonlocal Laplacian operator governed by the nonnegative symmetric measurable
kernel K. It can be seen as the analogue of the local p-bilaplacian operator defined on W2P(Q) as

AZy(z) & A (}AUV"?AQU) (), (1.1.4)

which is a fourth-order operator, see e.g. [99]. The nonlocal p-bilaplacian operator can be interpreted
as the gradient of the following energy functional

nLoC 1
Friloe(y) = %/gz{Aé(u(:c)‘pdm,

which is the nonlocal analogue of the energy functional, associated to the usual p-bilaplacian operator,
1
- / {Au(az)‘pda:.

Q

J,—;loc w) =

(u) ,

The nonlocal perimeter. Another notion was introduced, in the context of the nonlocal theory
using the nonlocal 1-Dirichlet energy, called the nonlocal J-perimeter, see [33, 59]. The nonlocal

J-perimeter of a set F € R? is defined by the following formula
e 1
Per;(E) & / / J(x,y)dzdy = - / / J(z,y)|xE(y) — xp(z)|dzdy, (1.1.5)
E JR\E 2 Jra Jra

where J is a nonnegative symmetric radial function in L'(R?) and yg the characteristic function of
E. This definition of perimeter is nonlocal in the sense that it is determined by the behaviour of E in
a neighborhood of the boundary F. It can be seen as the nonlocal analogue of the usual perimeter,

Per(FE) = /Rd |Dxe(z)|d, (1.1.6)

where Dxg is the distributional derivatives of xyg. The main idea of the nonlocal perimeter is that
any point inside an Fuclidean set "interact" with any point outside the set, given a functional whose
minimization is taken account. This notion of the nonlocal J-perimeter, in turn, was used to introduce
the concept of the J-mean curvature, which is defined at a point = for OF, with E a subset of R?, as
follows

Hyp(w) < — /Rd J@ —y) (x(y) - xanp(y) ) dy. (1.1.7)

1.1.2 Motivations

In many real-world problems, such as in mathematical data processing and machine learning, the data
is discrete, and graphs constitute a natural structure suited to their representation. Each vertex of the
graph corresponds to a datum, and the edges encode the pairwise relationships or similarities among
the data. For the particular case of images, pixels (represented by nodes) have a specific organization

4 -



Chapter 1 1.1. Context and motivations

expressed by their spatial connectivity. Therefore, a typical graph used to represent images is a grid
graph. For the case of unorganized data such as point clouds, a graph can also be built by modelling
neighbourhood relationships between the data elements.

Figure 1.1: Examples of images that can be represented by weighted graphs as their natural represen-
tation.

Figure 1.2: Examples of meshes that can be represented by weighted graphs as their natural represen-
tation.

Figure 1.3: Examples of networks that can be represented by weighted graphs as their natural repre-
sentation.

Figure 1.4: Example of point clouds/unorganized data that can be represented by weighted graphs.

For these reasons, there has been recently a wave of interest in adapting and solving nonlocal

boundary value problems such as (Pgoc

arbitrary graphs and networks. This requires translating their corresponding operators to the discrete

) and PDEs such as (Ppoc) on data which is represented by

setting. This principle also applies to other problems governed by many operators such as the nonlo-
cal operator (1.1.3), the nonlocal perimeter (1.1.5). This in turn allows to attack nonlocal analogues
of many problems such boundary value and variational problems, computing minimal surfaces, as
well as Cheeger/Calibrable sets. Among the methods proposed to tackle such nonlocal problems in
a discrete setting, we will focus here on that of partial difference equations (PdEs) on graphs. Using

-5



Chapter 1 1.1. Context and motivations

this framework, problems are directly expressed in a discrete setting where an appropriate discrete
differential calculus have been proposed; see e.g. [73, 75] and references therein. Conceptually, the
idea of introducing PdEs is to mimic continuum PDEs on graph structures by consistently adapting
important mathematical concepts, e.g., integration and differentiation. This mimetic approach con-
sists of replacing continuous differential operators, e.g., gradient or divergence, by reasonable discrete
analogues, which makes it possible to transfer many important tools and results from the continuous
setting. This way to proceed encompasses local and nonlocal methods in the same framework by using
appropriate graphs topologies and edge weights depending on the data structure and the task to be
performed. The demand for such methods is motivated by existing and potential future applications
[75, 72, 143, 70, 84].

These practical considerations lead naturally to a discrete time and space approximation of (Pyioc)

and a space approximation of (Pgoc

) encoded by the structure of the graph. This can be extended
also to cover regularization variational /boundary value problems governed by the p-bilapalcian (1.1.4),
local /nonlocal mean curvature curvature flows and many other problems. So that these discrete prob-
lems can be applied in the same way to images, meshes or data of any size by simply adapting the
topology of the graph and the weight function. The proposed framework works on any discrete data
represented by weighted graphs which allows to take into account the nonlocal interactions in the data
by explicitly introducing discrete nonlocal derivatives and functionals on graphs of arbitrary topologies,
to transcribe the continuous setting.

Main goals of our work. The main goals of our work is twofold.

Our first is to design fully discretized problems (evolution, boundary value and variational problems)
in space (graphs) and time, and show that they are provably consistent with respect to their continuum
analogues. Indeed, the discrete nonlocal problems on graph are just approximations of the underlying
nonlocal continuum problems. Thus, our objective is to rigorously the following legitimate questions
for each problem:

(Q1) Isthere any (nonlocal) continuum limit as the number of vertices grows and time step vanishes
7 If yes, in what sense 7

(Q2) What is the rate of convergence to this limit and what is its relation to the solution of the
continuum problem 7

(Q3) What are the parameters involved in this convergence and what is their influence in the
corresponding rate 7

(Q4) Can this continuum limit help us get better insight into discrete models and their fundamental
guarantees 7

In the literature, numerous works, that will review later, have been carried out in the recent years
attempting to answer some of these questions. It is however important to stress that our focus will be
nonlocal (in contrast to local ones) continuum limits. This is more in line with a numerical analysis
standpoint. We will also be mostly interested in graph structures that show a sparsity behaviour
and have applications such as in social networks. This will pose several challenges that we will solve

properly.

The second objective of this work is to introduce a novel class of p-bilaplacian operators on weighted
graphs, which can be seen as proper discretizations on graphs of the classical p-bilaplacian operators
(1.1.4). Building upon this definition, we study the corresponding regularized variational problem as
well as a boundary value problem. Finally we revisit the notions of the discrete perimeter and mean
curvature. then, we propose a general adaptation and transcription of the level set mean curvature

-6 —



Chapter 1 1.2. Contributions and relation to prior work

equation and variational curvature on the general discrete domain, weighted graphs.

1.2 Contributions and relation to prior work

1.2.1 The continuum limits of the evolution problem on sparse graphs

Our first main result, which is exposed in Chapter 3, is to revisit the nonlocal diffusion problem
(Prioc) and extend the results of the work [90] to a much more general class of kernels and initial data.
In particular, we are able to consider unbounded initial data, the case p = 1, and most importantly
singular kernels, which in turn will allow to handle sparse graph sequences whose limit are the so-called
L%-graphons [31, 29]. On such graphs sequences, we will quantitatively analyse evolution problems and
their continuum limit. We will also consider the case p = 1 which was not handled in [90].

More precisely, our study shows:
(i) Well-posedness of the Cauchy problem.

(ii) Error estimates to compare two trajectories, uniformly for ¢t € [0,7], T > 0, corresponding to
the p-Laplacian governed by two kernels, two second members and initial data.

(iii) Consistency and error estimates of the numerical solutions to the fully-discretized problem for
both forward and backward discretization.
(iv) Error bound on fully discretized problems on sparse random graphs.

Let us summarize the main results of this Chapter.

Theorem 1.2.1. Suppose that p €]1,+oo[. Let u be a solution of (Pnioc) with kernel K and data (f,g).
Let uy, be a sequence of solutions to (Phioc) with kernels K, and data (fyn, gn). Assume that K and K,
nonnegative symmetric kernels in L°%(Q2), and that either one of the following holds:

(a) p €]1,2[, 9,90 € L*(), and f, fn € L'([0,T]; L*(Q));
(b)) p=2, 9,90 € L*P"V(Q) and f, fu € L'([0,T]; L*P~D(Q));
(¢) g.9n € L=(Q) and f, fn € L'([0,T]; L®(R)).

Then, we have the following error estimate

[ UHC([O,T];LQ(Q)) < lgn = gHLZ(Q) + | = fHLl([O,T};H(Q))
| Kn —KHLOO,Q(QZ), under (a) or (b)

+CT
HKn—KHLQ(QQ), under (c)

(1.2.1)

where C' is positive constant that may depend only on p, g and f.

C(0,T; LP(2)) denotes the space of uniformly time continuous functions with values in LP(Q) en-
def

i Ml 2oy

Under the same assumptions on the kernels, we obtain a similar error result as (1.2.1) for p = 1,

dowed with the norm H . ‘

with C' = 1, here the data f and g satisfy the assumptions in (a). We also obtain convergence in
C(0,T; L?(S2)) for the totally discretized problems with both forward and backward Euler scheme in
time for p € [1,2] and p €]1, +o00[, respectively.

For networks on sparse graph sequences, where we assume that Q = [0,1] and let 0 < ¢; < t2 <
<+ < ty_1 <ty =T be a partition (not necessarily equispaced) of [0,7T]. Let 731 ¢ — | and

denote 7 = max 7.
kE[N]
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We prove non-asymptotic convergence and give the rate of convergence of the discrete solution to
its continuous limit as the number of vertices n — oco. Some supplementary assumptions are added
regarding the kernel K and the data g and f.

Theorem 1.2.2. Suppose that p €]1,+00[. Let u be a solution of (Puioc) with kernel K and data
(f,g). Assume that K is nonnegative symmetric kernel in L°>%(Q2) N Lip(s, L2(Q?)), g € L=(Q) N
Lip(s, L2(2)), and f € LY([0,T); L*(R2)) N Lip(s, L2(Q x [0,T))). Then, for any & €]0, 1], with proba-
bility at least 1 — (pyn)~ (=5,

sup HInuk - u('v t)HL2(Q) < C’exp(T/Q) ((1 + Tl/Q)n_S + Tl/QH(K - p;1)+‘}L2(Qz)
kE[N]t€tr—1,tk]
min(s,1/(3—p))
T2 (o) P2 2 T 7 whenp€L2N Y o)
T8 when p > 2

for T sufficiently small, where {uk}ke[N] is the discrete solution, C' is positive constant that depends
only onp, g, f, K and s, and H(K — p;l)JrHLQ(QZ) = o(1), see Section 2.1.5 for the definition of I,.

Relation to prior work The kernels and initial data considered here are beyond reach of the
approach developed in [90], and have not been considered in the literature to the best of our knowledge.
Moreover, our error bounds are directly stated in L?(Q2) and not in LP(f2) as done in this previous
work. QOur proof is also simpler, more elegant and the argument is made more transparent. This
argument will allow us to handle the case p = 1. More importantly, some limiting assumptions on the
kernel and the initial data made in [90] are removed and replaced by much less stringent ones. This
allows in particular to cover a far larger class of kernels (including singular ones), and also sparse graph
sequences that were not handled in that previous work.

Another related work is that in[98, 112]. In these papers, the authors focused on a nonlinear heat
equation on sparse graphs, where Lipschitz-continuity of the operator is of paramount importance.
This assumption was essential to prove well-posedness (existence and uniqueness follow immediately
from the contraction principle), as well as to study the consistency in L?(2) of the spatial semi-discrete
approximation. The nonlocal p-Laplacian evolution problem considered here is much more general and
cannot be covered by the approach of those previous papers because the lack of Lipschitzianity raises
several challenges (including for well-posedness and error estimates). Unlike those previous works, we
also consider both the semi-discrete and fully-discrete versions with both forward and backward Fuler
approximations, that we fully characterize, and develop novel proof techniques.

1.2.2 The continuum limits of the Dirichlet problem on sparse graphs

The main contribution at the heart of Chapter 4, is to establish general consistency estimates of the

boundary value problem (Pﬁoc

discretization, we give a priori estimates for the solution of this problem. We use these results to

). Under mild conditions on the boundary data and an appropriate

establish nonasymptotic convergence of solutions for the discrete model on K-random graphs to its
continuum limit.

For these purposes, we consider a sequence of variational problems

min {Fn(V%ﬁu) + /Q fu(x)u(z)de = uwe L (9, Un)} , (VP,)
where F), is an integral functional to be made precise later, f,, € L1(Q),
L2 (Q,U,) < {u €LP(Q) : u=gnon Ty 0\ Un} ,

-8 =
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and VY is the nonlocal gradient operator which is defined on L(f2) as:
VWou(z,y) = K(@.y)(u(y) —u(@),  ue LX(Q), (@.y) € 22 (1.2:3)

We start by showing well-posedness (existence and uniquess of the minimizers) of variational problems
of the form

mm{ ‘/f 2)da : ueLgQJU} (VP)

As the functional in (VP,,) takes the form of the sum of two proper lower semicontinuous convex
functionals, its ['-limit is in general not the sum of the ['-limits. This is the reason we turn to the
concept of Mosco convergence, where stability of Mosco-convergence to the sum holds true under mild
assumptions [17]. We thus study the Mosco-limit of a sequence of nonlocal integral functionals, as well
as the Mosco-limit of a sequence of geometric constraints such as those in (VP,,). In turn, under some
mild conditions on F,, K,, g, and U,, we show that the sequence of minimizers of the variational
problems (VP,,) converges to the minimizer of (VP), with respect to the weakly topology of LP(Q).
As an immediate consequence of these results, and thanks to the Dirichlet variational principle, one
obtains that the sequence of solutions of

{ —~AEru(z) = fu(x), @ U,
u(x) = gn(z), xel, € Q\U,,

converges weakly in LP(2) to the solution of (P

nloc )

(Poc)
By similar arguments, we extend these result
to the case of discrete p-Laplacian boundary value problems, under some mild conditions on the
sequence of kernels, data and the sequence of geometric constraints. We finally apply these results to
establish nonasymptotic rate of convergence of solutions for the discrete model on K-random graphs
to its continuum limit with high probability. We also provide a primal-dual algorithm to solve the
p-Laplacian boundary value problem on graphs and report some numerical results.

The type of theorems one can find in Chapter 4 take the following forms

Theorem 1.2.3. Let K,,, K € L>'(Q?) be nonnegative symmetric and measurable functions, g,, g €
LP(Q), fn, [ € LYRQ) and U,,U CC Q sub-domains, n € N. Assume that

(1) the sequence {gn}nen converges strongly to g in LP(Q).
(2) the sequence { fn}nen converges strongly to f in LI(Q).

1
(3) the sequence {Kr, K} : n € N} satisfies some mild assumptions.
(4) the sequence {U,,U, n € N}, of subdomains of 2, satisfies that U, + B(0,7) C Q, n € N, and
}U AU‘ — 0, as n tends to +oo, where A is the symmetric difference between sets.
Then (PL..) and (PD’") have a unique solutions, respectively, u and u,. Moreover, the sequence of

I nloc
solutions {un fnen converges weakly to u in LP ().

Theorem 1.2.4. Let K € L*'(Q?) be nonnegative symmetric and measurable functions, g = 0 and
feliQ). Let K= P,K, g =0 and f = P,f. Let u be a solution of the discrete Dirichlet problem
of (PL.) with kernel K data (f,g) and the boundary set AS, and u the solution of the continuous

problem (P ) with kernel K, data (f,g) and the boundary set T'. Then,

nloc

/max( 2) ma
u = Tl <C<HK I PaK ([0 + K = TaPuK | s | Pt =

1.2.4
HInPnu uHLplﬂ p€[2,—|—oo[,> ( )

|1 Pru — uHLpr p €]1,2].
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where C > 0 independent of n. Moreover, if the kernel is such that K(x,y) = J(x —y) and J €
LY(Q2—Q), then

lim [ — u”HLT’(Q) =0.
See Section 2.1.5 for the definition of P.

Relation to prior work In [67], the authors obtained iterated pointwise convergence of rescaled
graph p-Laplacian energies to the continuum (local) p-Laplacian as the fraction of labelled to unlabelled
points is vanishingly small. The authors in [141] studied the consistency of rescaled total variation
minimization on random point clouds in R? for a clustering application. They considered the total
variation on graphs with a radially symmetric and rescaled kernel K (z,y) = e VJ(|z — y|/e), € > 0.
This corresponds to an instance of the functional energy in (P?) (see Section 4.4) for d =1 and p = 1.
Under some assumptions on J, and for an appropriate scaling of € with respect to n, which makes
the method become localised in the large data limit, they proved that the discrete total variation on
graphs I'-converges in an appropriate topology, as n — oo, to weighted local total variation, where
the weight function is the density of the point cloud distribution. Motivated by the work of |67],
the authors of [134] studied consistency of the graph p-Laplacian for semi-supervised learning in R<,
They considered both constrained and penalized minimization of the functional energy of (P?) with a
radially symmetric and rescaled kernel as explained before. They uncovered regimes of p and ranges
on the scaling of € with respect to n for the asymptotic consistency (in the sense of I'-convergence)
to hold. Continuing along the lines of [67], the work of [46] studies the consistency of Lipschitz semi-
supervised learning (i.e., p — 00) on graphs in the same asymptotic limit. In all these works, however,
the boundary condition is fixed. Moreover, our limit is of nonlocal type, while it is of local type in the
existing literature. In this sense, our work is more in line with consistency/error bounds for discrete
schemes in numerial analysis.

In the numerical analysis literature, consistent numerical approximations have also been studied
for nonlocal models, focusing overwhelmingly on the nonlocal peridynamic model or nonlocal linear
diffusion (i.e., (P..) for p = 2); see [63] for a recent overview. For instance, so-called asymptotically
compatible schemes were proposed in [138, 139] as an abstract framework for the study of robust
numerical methods for nonlocal models and their local limits. They studied in particular consistency
of Galerkin finite element discretizations of (Pﬁoc

K(z,y) = e NJ(|lz — y|/e), e > 0, and established its continuum limit as both the mesh size and ¢

) with p = 2 (i.e., nonlocal linear diffusion) and

vanish. These results do not allow to cover the case of the p-Laplacian. For the latter, the authors in
[90] established the continuum limit of the sequence of Cauchy problems governed by the p-Laplacian
on graphs, and provided the corresponding rate of convergence, which will be extended to a large class
of kernels and initial data in Chapter 3. The same authors in [91] studied the nonlocal continnum limit
and the corresponding error bounds for a sequence of variational problems on graphs, which consisted
of minimizing the sum of a quadratic data fidelity on L?(Q) and a regularization term corresponding
to the LP-norm of the nonlocal gradient. Their proof strongly relies on the Hilbertian structure and
strong convexity, while none of these assumptions hold for problems of the form (VP,) we consider
here.

As for numerical schemes to solve discrete problems of the form (VP,,) (or equivalently (Plﬁo'é)), [75]
propose a Jacobi iteration or gradient descent. It was suggested in [67] to use Newton’s method. While
an earlier draft of our work was finalized, we became aware of the recent but independent work of [127]
who also considered a primal-dual splitting scheme to solve discrete problems of the form (VP,,) on
graphs. Capitalizing on [50], we propose here a flexible primal-dual scheme, in Chapter 7, that solves

even more general problems beyond the p-Laplacian and provide their convergence guarantees.
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Chapter 1 1.3. Outline

1.2.3 Discrete p-bilaplacian operators on graphs

In Chapter 5, we introduce a novel class of p-bilaplacian operators on weighted graphs, which can be
seen as proper discretization on graphs of the classical p-bilaplacian operators. Building upon this
definition, we first study a corresponding regularized variational problem as well as a boundary value
problem. For the last one, we establish a discrete version of the Poincaré inequality on connected
graphs, which plays a key role in our study. The latter naturally gives rise to p-biharmonic functions
on graphs and equivalent definitions of p-biharmonicity [95]. For these two problems, we start by
establishing their well-posedness (existence and uniqueness). We then turn, in Chapter 7, to devel-
oping proximal splitting algorithms to solve them, appealing to sophisticated tools from non-smooth
optimization. Numerical results are reported to support the viability of our approach.

1.2.4 Nonlocal perimeters and curvature flows on graphs

In this work, we revisit the notion of perimeters on graphs, introduced in [70], and we extend it to so-
called inner and outer perimeters. Thanks to the co-area formula, we show that discrete total variations
as well as several graph cut variants can be expressed through these perimeters. Then, we propose a
novel class of curvature operators on graphs that unifies both local and nonlocal mean curvature on
Euclidean domains. These lead us to translate and adapt the notion of the mean curvature flows on
graphs as well as the level set mean curvature which can be seen as approximate schemes. Finally,
we propose to use these methods for image processing, 3D-point clouds and high dimensional data
classification.

1.3 Outline

The remainder of the thesis is organized as follows:
Chapter 2: This chapter collects the necessary mathematical material used throughout the manuscript.

Chapter 3: In this chapter, we present a consistency analysis for the nonlocal p-Laplacian evolution
problem. Our results consist of four principle parts: well-posedness, consistency of the continuous-
continuous problem, error bounds for the discrete problem and application of these results to the fully
discretized problems on random graph models.

Chapter 4: In this chapter, we expose our consistency analysis of the nonlocal p-Laplacian Dirichlet
problem: a general consistency for the discretized problem and an a priori estimate when the geo-
metrical constraints is constant. We then use this error estimate to derive a rate of convergence for
the discrete random model. We report some numerical results that are based on provably convergent
primal-dual numerical scheme to solve discrete p-Laplacian boundary value problems.

Chapter 5: In this chapter, we introduce a new family of p-bilaplacian operators on graphs. We then
turn to study the well-posedness of regularized variational and boundary value problems associated
to these operators. We finish this chapter by showing some experiments related to data processing to
illustrate the use of this operator.

Chapter 6: In this chapter, we introduce a large class of perimeters on graphs. We consider the
curvatures related to these perimeters. We revisit some isoperimetry inequality from functional analysis
point view. We illustrate these methods for applications on images/point clouds processing and high
dimensional clustering.

— 11 -
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Chapter 7: In this chapter, we develop a primal-dual proximal splitting algorithms to solve the discrete
p-Laplacian boundary value problems considered in Chapter 4 as well as the regularized variational
and boundary value problems governed by the p-bilaplacian operator of Chapter 5.

Chapter 8: This last chapter summarizes our contributions and draws important conclusions. It also
discusses several interesting perspectives and open problems.

- 12 —
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Mathematical Background
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In this chapter, we collect the necessary mathematical material used in the manuscript.

Let R denote the set of real numbers, R the set of nonnegative reals, R = RU {+00} the extended
real line and R? the d-dimensional real Euclidean space. Vectors in R™, m > 2, will be denoted in
bold small letters. We denote by N the set of non-negative integers, by N*, the set of positive integers.
We use the notation [n] = {1,--- ,n}. For a set C, ‘C‘ denotes its cardinality, x¢ is its characteristic

function (taking 1 on C and 0 otherwise).

2.1 Tools from analysis

2.1.1 Convex analysis

We here collect some important results from convex analysis which will be used in the up coming

chapters. Throughout this section, (X, 7) is a locally convex topological vector space (LCTVS).

Definition 2.1.1 (Convex set). A set S C X is convex, if
Vz, 2’ € SVt €]0,1], tx+(1—-t)2' €S.
Let S C X be a nonempty set, function f: S — R and A € R. Consider:

def

dom(f)={zr e X: f(x) < +oo},



Chapter 2 2.1. Tools from analysis
epi(f) = {(z,t) € X xR f(x) <t},

def

[f <A ={zeX: f(z) <A},

def

[f <A ={reX: flx)<)}.

The set dom and epi are called the domain and epigraph of the function f, respectively, while the
set [f < Al and [f < A] are the level set and strict level set of f at height A\. One says that the
function f is proper if —oo ¢ f(S) and dom(f) # 0.

Definition 2.1.2 (Convex function). A function f: X — R is convex if
Vz, 2" € X,Vt € [0,1], f(tzx + (1 — t)a") < tf(z) + (1 —t)f(2)),
With the conventions: (4+00) + (—o00) = +00, 0+ (+00) = 400, 0 (—00) = 0.
Theorem 2.1.3. Let f : X — R. The following statements are equivalent:
(i) f is convex;
(i1) dom(f) is conver and
Va,2' € dom(f), Vt €]0,1[: f(tz + (1 —t)z") <tf(z)+ (1 —t)f(2');
(iii) epi(f) is a convex subset of X x R.

Definition 2.1.4 (Lower semi-continuous function). Let f : X — R and 2 € X. The function f
is (7-)lower semi-continuous at z if for every € > 0 there exists a 7-neighbourhood U, of x such that

f(I)—ESf(y), vyeuxa

One says that f is lower semi-continuous on X if it is lower semi-continuous at every point z € X.
The class of proper, convex and Isc functions on X is denoted by T'o(X).

Theorem 2.1.5. Let f: X — R. The following statements are equivalent:

(i) [ is lower semi-continuous;

(i) for all x € X and every sequence {,}neN T-converging to x,
liminf f(z,) > f(x).
n

(iii) epi(f) is a closed subset of X x R respect to the product topology of T and the natural topology of
R.

Theorem 2.1.6. Let f : X — R. The following statements are equivalent:

(i) f is convex and lower semi-continuous;
(i) f is conver and weakly-lower semi-continuous;
(iii) epi(f) is convex and closed subset of X x R;
(iv) epi(f) is a conver and weakly-closed subset of X x R.

Definition 2.1.7 (Indicator function). Let S C X be a non-empty set, the indicator function of
S, s, is defined by
0, ifrxes,
Ls = (2.1.1)
400, otherwise.

Observe that dom(ts) = S hence 15 is lower semi-continuous (resp. convex) if and only if S is closed
(resp. convex).

- 14 -



Chapter 2 2.1. Tools from analysis

Definition 2.1.8. Assume that X is a normed space. A function f :S — R is said to be M-Lipschitz
on S, if
Vi, 2’ € 8; |f(x) — f(2!)] < M|z — ||

Proposition 2.1.9. Assume that X be a normed space, zo € X, r > 0, € € (0,7), m,M € R. Let
f:B(xo,r) = R be a convex function.

(1) If f(x) <m on B(zo,r), then |f(z)| < |m|+ 2|f(z0)| on B(zo, 7).
(i) If |f(x)| < M on B(zo,r), then f is (2L)-Lipschitz on B(zo, 7 — ¢).
Here B(xg, 1) is the ball of the centre xo and radius r > 0.

PROOF :
(i) See Proof of Theorem 3.9 in [55].

(ii) See [58, Proposition 5.11].

2.1.2 [I'-convergence

I'-convergence was introduced by De Giorgi in 1970’s to study limits of variational problems. We refer
to [34, 58], for an in-depth introduction to I'-convergence. In this subsection, we denote by (X, 7) a
first countable topological space. For a sequential of equivalent definitions of I'-convergence, we refer
to [12, Proposition 1.14] and [58, Proposition 8.1].

Definition 2.1.10 (I'-convergence). We say that a sequence of functions f, : X — R, n € N,
[-converges in X to fo : X — R if for all z € X we have

(i) (liminf inequality) for every sequence {x, }nen T-converging to x
foo(z) < liminf f,(2y,). (2.1.2)
n
(ii) (limsup inequality) there exists a sequence {x, }nen T-converging to z such that
foo(z) > limsup fp,(zy). (2.1.3)
n

The function fo is called the I-limit of {f,}nen, and we write foo = ['-lim,, f;,.

It is clear that the limsup inequality (2.1.3) in Definition2.1.10 can be replaced by the equality
foo(x) = limy, fr(zp).

Definition 2.1.11 (Equi-coercivity). A function f : X — R is (sequentially) coercive if for all t € R
the 7-closure of the sublevel set {x € X : f(z) <t} is sequentially compact. A sequence { fy, }nen is
equi-coercive on X if for every ¢t € R there exists a sequentially compact subset A; of X such that
{r e X: fu(x) <t} C A for all n € N.

If X is a reflexive Banach space and f — 400 as H:EH — 400, then f is coercive in the weak topology
of X.

Proposition 2.1.12 ([58, Proposition 7.7]). A sequence { f,}nen is equi-coercive if and only if there
exists a lower semicontinuous coercive function v : X — R such that f, > 1 on X, for every n.

The following theorem (fundamental theorem of T'-convergence) concerns the convergence of the
minimum values and minimizers of an equi-coercive sequence of functions.
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Theorem 2.1.13. Let {f,}nen be a sequence of equi-coercive functions on X that I'-converges to fuo.
Then,

(i) fs is coercive.
(i) lim, d,, = d, where d,, = infcx frn(z) and d = mingcx foo(x), i-e. the minimal values converge.

(iii) If for every n € N, x, is a minimizer of f, on X, then every cluster point of {xp}nen s a
minimizer of foo on X.

Proor : (i) and (ii) follow from |58, Theorem 7.8]. To get (iii), combine Proposition2.1.12, [58,
Corollary 7.20| and claim (ii). O

2.1.3 Mosco-convergence

The concept of epi-convergence (Mosco-convergence) was first utilized by R. A. Wijsman [149]. U.
Mosco [113] was responsible for bringing to the fore important relationships between Mosc-convergence
and the convergence of solutions to variational inequalities (hence the name of the convergence), see
[12] and references therein for more details. In this section, we assume that X is a reflexive Banach
space. The corresponding ball centered at = and of radius r is denoted as B(z,r) and B, when x = 0.

2.1.3.1 Functions

Definition 2.1.14. Let {F,, F : X — R; n € N} be a sequence of functions. The sequence {F}, },en
is said to be Mosco-convergent to F', if for all z € X :
(i) M-liminf, F,,(x) > F(z); ie., for any sequence {z,}nen converging weakly to z,
liminf, F,(z,) > F(z).

(ii) M-limsup,, F,,(z) < F(x); i.e., there exists a sequence {x,}nen converging strongly to = such
that limsup,, F,(z,) < F(x).

The function F is called the Mosco-limit of {F}, },en and we then write F), XF.

Observe that by definition, Mosco-convergence implies I'-convergence in the weak topology when X
is a reflexive Banach space endowed with its weak topology.

Let us now recall this result which will be useful to prove the Mosco-convergence of the sequence of
integral functionals in Chapter 4.

Theorem 2.1.15 ([130, Theorem 2]). Let F, F,, : X — R, n € N, be a sequence of closed convex

functions such that {F, },en converges pointwise to F' on X. Then F, Mg if and only if the collection
{F,,F: X — R; n € N} is equi-lower semi-continuous.

In the context of the nonlocal p-Laplacian boundary value problem our consistency results will be
derived, upon using Dirichlet’s variational principle, from epi-convergence of the sequence of functionals
(VP,.). In this setting, these functionals take the form of the sum of two proper lsc convex functionals.
Whether the I'-limit (resp. Mosco-limit) of a sum is the sum of I'-limits (resp. Mosco-limits) is a
difficult issue in general. The claim is not true in general for the I'-limit unless stringent assumptions
are imposed (see e.g., [58, Proposition 6.20]). For Mosco convergence, the claim holds true for the sum
of two lsc convex functions when X a reflexive Banach space, see [17]. The latter result generalizes
that in [111] which is valid only in finite dimension under a simple domain qualification condition. The
result of [17] will be instrumental in our consistency analysis and we recall it here.
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Theorem 2.1.16 ([17, Theorem 4.1]). Let {F,,}nen, F, {Gn}nen, G be lsc proper convex functions
defined on X, such that F, M F and G M G. Assume that
there exists v > 0 such that, for every ¢ € B(0,r), there exist two

sequences {Tp tnen and {yntnen of elements of X wverifying :

{zn}nen and {yntnen are bounded with ( = x, — yn, (2.1.4)
limsup Fy,(x,) < 0o and limsup G, (yn) < oo.
n n
Then, there exists ng € N such that
F, + G, is proper ,Nn > ng, F,+ G, Mpy G, and F + G is proper. (2.1.5)

The following result gives a sufficient condition for (2.1.4) to hold.

Corollary 2.1.17 ([17, Remark 1]). Let {F), }nen, F, {Gn}nen, G and X as in Theorem 2.1.16 such

that F, % F and G, A—/I> G. Assume that there exist xo € dom G Ndom F' and p > 0 such that either
F,, or Gy is uniformly bounded above on B(zo,p). Then (2.1.5) holds.

2.1.3.2 Sets

Definition 2.1.18. Let {4,, A; n € N} be a sequence of subsets of X. The sequence {A,, },en is said
to be Mosco-convergent to A if and only if the sequence (14, ) Mosco-converges to t4 on X.

From Definition 2.1.14, we immediately get the following equivalent characterization of Mosco con-
vergence for sets.

Proposition 2.1.19. Let {A,, A; n € N} be a sequence of subsets of X. Then, the sequence {A,}nen
1s said to be Mosco-convergent to A if and only if

(i) for any sequence {xy,}nen, with x, € A,, converging weakly to x, implies x € A.

(ii) for every x € A, there exists a sequence {xy}nen, with x, € Ay, converging strongly to x.

2.1.4 Accretive operators and nonlinear semigroups

All the definitions and results with proofs can be found for instance in [11].

In this section we assume that (X, H : H) is a Banach space. Let A : X — 2% be a set-valued
operator. For notational convenience, the operator will be sometimes identified with its graph by
def

denoting (z,y) € A for y € A(x). Dom(A) = {x € X : Ax # 0} is called the domain of A and
R(A) & {4z : x € Dom(A)} its range.

Definition 2.1.20 (Accretive operator). An operator A in X is accretive if
Hx - .%H < Hx -+ My — g))H whenever A >0 and (z,y),(z,9) € A.

Definition 2.1.21 (Non-expansive operator). An operator A : X — X is called non-ezxpansive if
it is 1-Lipschitz continuous, 4.e.

|A(z) — A@)|| < ||z — 2|, Ve, € X.
Definition 2.1.22 (Resolvent). Let A : X — 2% and v > 0. The resolvent of A is defined by
Tya € I +~4)7h

We have the following equivalent characterization of accretivity, whose proof can be found in e.g.,
[126].
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Lemma 2.1.23. The operator A is accretive if and only if its resolvent is a single-valued non-expansive
map on Dom(Jy4) for A > 0.

Definition 2.1.24 (m-accretive operator). An operator A : X — 2% is m-accretive if it is accretive
and Dom(Jy4) = X for some (hence all) A > 0.

In the Hilbertian case, the notion of m-accretivity coincides with maximal monotonicity which is
the celebrated Minty theorem.

The accretive operators theory plays an important role for proving solution existence and uniqueness
of the abstract Cauchy problem

{¢+A$9f’ (2.1.6)

x(ty) = xo.
A particular case where f = 0, Crandall and Liggett proved in [57] that the following limit (semigroup):
S(t)o = lim (Jy/na)"

is the unique strong solution to the abstract Cauchy problem (2.1.6) under some closedness assumptions
on the operator A. In the case where f # 0, Ph. Bénilan proved in [25] the existence and the uniqueness
of a strong solution of the Cauchy problem in the price the exponential formula and some closedness
assumptions on the function f and the initial data zg. In the context of the nonlocal p-Laplacian
evolution equation that will be at the heart of Chapter 3, this theory will be instrumental to prove not
only for well-posedness, but also to establish Lipschitz continuity of the solution as a function of the
initial data and the second member. A key step to prove this is to show that the nonlocal p-Laplacian
operator belongs to a rich family of operators known as m-completely accretive operators. This family
was introduced by Ph. Bénilan and M. G Crandall in [26].

Let S be an open set of R? and let M(S) be the space of measurable functions from S into R. For
u,v € M(S), we write

u < v if and only if /j(u)da: < /j(v)d:r:
S S
forall j € Jp & {j:R —[0,400],j convex, lsc, j(0) = 0}.

Definition 2.1.25 (Completely accretive operator). Let A be an operator in M(S). We say that
A is completely accretive if

u—t<u—u+Av—10) forall A>0and all (u,v),(a,0) € A.

The definition of completely accretive operators does not refer explicitly to topologies or norms.
However, if A is completely accretive in M(S) and A C LP(S) x LP(S), p € [1, 0] then A is accretive
in LP(S).

Definition 2.1.26 (m-completely accretive operator). An operator A on X is completely accretive
if it is completely accretive and Dom(J4) = X, A is said m-completely accretive.

2.1.5 Projector and injector operators

Let us recall some definition and properties of Lebesgue spaces. Let S to by a bounded subset of R¢.
For ¢ € [1,+00], L(S) is the standard Banach space of Lebesgue g-integrable functions on S. For a
function F : S x S — R, we define the L®4(S5?)-norm as

Il sy 2 500 P s
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If F is symmetric, then
HFHL"O#I(SQ) = :'S;ég HF(ay)HLq(S)

L>(S?) is the space of functions on S? of bounded L°*9(5?)-norm, which is of course a Banach space.
Throughout this manuscript, we will often use Fubini’s theorem without explicitly referring to it.

Let n € N* and denote the multi-index 4 = (41,42, ...,4q) € [n]?. Here we assume that Q = [0, 1]¢,
partition €2 into cells (hypercubes)

. def n . .
of size h; = \Qi )|, and maximal mesh size

5(n) & o — T, 1))
(n) f&iﬁf&?ﬁ“m% i, 1)

When the cells are equispaced, then h; =1/ nd.
We consider the operator P, : L'(€) — R™

of 1
(Pau)e & - /Q |, u(@)d. (2.1.7)
1 N

This operator can be also seen as a piecewise constant projector of u on the space of discrete functions.

For simplicity, and with a slight abuse of notation, we keep the same notation for the projector
d

P, : L}(0?) — R ",
Our aim is to study the relationship between solutions of discrete approximations and the solution of
the continuum model. Tt is then convenient to introduce an intermediate model which is the continuum

extension of the discrete solution. Towards this goal, we consider the piecewise constant injector I, of
a vector v € R™ into L2(£2) defined as

Lyv(@) < ) Vz'XQEvo(w), (2.1.8)
i€[n]?
where we recall that yc¢ is the characteristic function of the set C, i.e., takes 0 on C and 1 otherwise.
It is immediate to see that the operator I,P, is the orthogonal projector on the subspace
Span {XQ@) NS [n}d} of LY(Q). In turn, I,,P,u is the the piecewise constant approximation of
u.

Lemma 2.1.27. For a function u € L1(Q), q € [1,+00], we have
HI"PnuHLq(Q) = HuHLq(Q)' (2.1.9)
For a function K € L>49(Q?), q € [1,400], we have

[ P K[| a2y < | (2.1.10)

K] gy
ProoOF :  We prove (2.1.10) as (2.1.9) is a consequence of it. Let K = P, K. We have, Vx € Q,

LInPnIK(m,y)!qdyz/gzg K 57X om0 (@) X o) (y) dy
. . K3 J
17]

SOl DO RS PANES
i i 7% ‘

q
K(2' y)dz'dy’| | xqm ()

:Z,-: Zj:hj

; /
hihj Jo{m <o
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Z /Q(n) o K (2!, ) da’dy’ Xqm ()
X

Il
-

1
h'/Q(n) E /Q(") |K(m’,y/)|f1dy’ dx’ XQ(n)(m)
i \ - ; ;
v J 3

(i o fanad) )

= HKHLooq 02) ZXQ(") HKHqLoqu(m)'

I
S.M

Taking the supremum on the left-hand side yields the bound. O

Remark 2.1.28. Our exposition of the nonlocal p-Laplacian Dirichlet problem will be on a general
bounded domain Q of R

2.2 Tools from approximation theory

For N € N*, let S be a compact subset of RY. We introduce the Lipschitz spaces Lip(s, L4(S5)),
g € [1,+00], which contain functions with, roughly speaking, s "derivatives" in L9(S)[61, Ch.2,
Section 9]. These spaces will be a key tool for us to study the full discretization as we will be able to
get non-asymptotic error estimates for random graph model when adding the assumption of belonging
to these spaces to the kernel K(-,-), the second member f(-,¢) and the initial condition g(-) in (Puioc)-

Definition 2.2.1. For F' € L1(S), q € [1, +0o0], we define the (first-order) L?(S) modulus of smoothness
by

w(F,h), ¥  sup (/ s |F(x + 2z) — F(a:)|qdac> l/q. (2.2.1)

z€R4 |z|<h
The Lipschitz spaces Lip(s, L(S)) consist of all functions F' for which
ef
| F | Lip(s,a(5)) = e suph *w(F,h)y < +00.

We restrict ourselves to values s €]0, 1] since for s > 1, only constant functions are in Lip(s, L4(5)).
It is easy to see that [F|p;; 1q(g)) 18 @ semi-norm. Lip(s, L?(S)) is endowed with the norm

HFHLip(s,Lq(S)) - )y T ‘F’Lip(s,Lq(S)) :
The space Lip(s, L9(S)) is the Besov space Bj . [61, Ch.2, Section 10] which are very popular in
approximation theory. In particular, Lip(s, L'/*(S)) contains the space BV(S) of functions of bounded
variation on S; see[61, Ch.2, Lemma9.2|. Thus Lipschitz spaces are rich enough to contain functions
with both discontinuities and fractal structure.

We now state the following approximation error bounds whose proofs use standard arguments from

approximation theory; see[90, Section 6.2.1] for details.

Lemma 2.2.2. There exists a positive constant Cs, depending only on s, such that for oll F €
Lip(s, LI(S5)), s €]0,1], q € [1, +oc],

[F = InPoF || Lo gy < Cs0(0)° [F |y pags)) (2.2.2)
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Chapter 2 2.3. Tools from graph limit theory

We denote by BV([0,T]; L1(S)) the Banach space of functions f : Q x [0,7] — R such that
N

Var(f) = sup Z £ ti) = f('vtzel)HLq(s) < 09,

0<to<t1<--<tn<T i—1

£ o) + Varg(£).

endowed with the norm HfHBV([o,T];Lq(S)) of

2.3 Tools from graph limit theory

2.3.1 Preliminaries

A weighted graph G = (V(G), E(G), 5) consists of a finite set V(G) of vertices (nodes, or points), a
finite set E(G) C V(G) x V(G) of edges (or lines) and a weight function 38 : V(G) x V(G) — R*.
Each node i € V(G) is an abstract representation of an element of the data structure represented by
the graph. An edge (i,7) € E(G) is composed of a couple of vertices, which represents the connection
between them and we write i ~ j. We say that G is connected graph if for all i, j € V(G), there exists
a sequence i, i1, - , i, € V(G) such that i =ig ~ i3 ~ -+ ~ iy, = j. In this manuscript, we consider
undirected connected graphs without parallel edges in which case the edges are symmetric. We can
therefore also define the set E(G) such that:

EG) ¥ {(i,/)) e V(G) x V(G) : i~j and i #j}.

Considering the symmetry of the edges, we can also note that if (i,j) € E(G), then (i,j) € E(G).
The weight function represents a similarity measure between two vertices of the graph. Since we are
dealing with undirected graphs, this function is symmetric: V(i,j) € V(G)?, B(i,7) = B(i,7). The
neighbourhood of a vertex i (i.e., the set of vertices adjacent to 7) is denoted by N (i) and the degree
of a vertex i is defined as degg (i) = >_,.; B(4,j). For two vertices i, j € V(G) with i 2 j we set
B(i,7) = B(j,1) = 0 and thus the set of edges F(G) can be characterized by the support of the weight
function S, i.e. E(G) = {(i,7) € V(G) x V(G) : S(i,7) > 0}. A particular case where g € {0,1},
these kind of graphs are called simple graphs. In order to simplify the writing, we will often use in the
rest of this manuscript the condensed notation 8;; = (4, j).

The usual way to represent a graph is to draw a circle (or dot) for each vertex and join two of these
circles with a line if the two corresponding vertices form an edge. It doesn’t matter how these circles
and lines are drawn: the importance is the information about the pairs of vertices that form an edge
and those that do not. For a weighted graph, we add the weight next to the lines.

O—p
vz
\@ =0

Figure 2.1: Example of an undirected simple graph G with V(G) = {0, --- , 4} nodes with edge set
E(G) ={(0,4), (4,3), (3,0), (0,1), (1,2), (2,3)}.

The adjacency matrix of a graph G is a square ‘V(G)‘ X ‘V(G)‘ matrix Ag such that its elements
indicate whether pairs of vertices are adjacent or not in the graph. In the case of a simple graph, this
is a (0,1)-matrix. For a weighted graph, (A¢),; represents the weight of the edge (4,7). If the graph
is undirected, the adjacency matrix is symmetric. A non-standard way of visualizing graphs using
another version of the adjacency matrix is the so-called pixel picture. On the left of Figure 2.3 we see
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S0
@\/ e
o

Figure 2.2: Example of a weighted graph G with V(G) = {0, --- , 4} nodes with edge set E(G) =
{(0,4), (4,3), (3,1), (1,0), (1,2), (2,3)} and {8,3,4,3,1,2} are weights assigned to edges.

a graph (the Petersen graph). In the middle, we see its adjacency matrix. On the right, we see another
version of its adjacency matrix, where the (’s are replaced by white pixels and the 1’s are replaced by
black pixels. The whole picture is on the unit square.

0100110000
1010001000 [ ] NN
0101000100 -.
0010100010 ||
1001000001 ;\—. |-.
1000000110 pm .
0100000011 | | u
0010010001
0001011000 n
0000101100 | ]

Figure 2.3: The Petersen graph, its adjacency matrix, and its pixel picture.

2.3.2 L7 graphons and graph limits

We now review some definitions and results of the L7 theory of sparse graphs developed in [31, 29].
This theory generalizes both existing theory of bounded graphons that are adapted to dense graph
limits [105], and its extension in [28] to sparse graphs under a no dense spots assumption. Here, we
follow considerably [31, 29], in which much more details can be found. We will be more interested in
the random case, which plays a central role in our study.

Definition 2.3.1. Let ¢ € [1, +o0c], an L7 graphon is a measurable, symmetric function K € L9([0,1]?).
Here the symmetry means K(z,y) = K(y,z) for all z,y € [0,1]. If we do not specify ¢, we assume
that K isin L' and call it simply a graphon, rather than an L' graphon.

Every finite weighted graph G, such that V(G,) = [n], with edge weights {fi;} jjenj2, can be
represented by a measurable function K¢, : [0,1]> — R*. The construction is as follow: Let Q,, be a
partition of [0,1] to n equal intervals Q,, = {I,gn) s ke [n}}, and for every = € Ii(n) and y € I](n) we
set

(2.3.1)

K def Blj7 if (27]) € E(Gn)7
Gn —
0, otherwise.

This construction is not unique, however given a graph, the set of kernels arising from (2.3.1) can be
considered equivalent via the weakly isomorphic relation (2.3.4). Informally a graphon can be thought
of as a generalization of the adjacency matrix of a (weighted) graph which has a continuum number
of vertices.
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Example 2.3.2 (Half graphs). Let G,, ,, denote the bipartite graph on 2n nodes {1,--- ,n,1’,--- ,n'},
where 7 is connected to j if and only if 7 < j. It is easy to see that this sequence is convergent and its
limit is the function

1, if |z—y|>1/2

(2.3.2)
0, otherwise.

K(iU,y) = {

Figure 2.4 shows an example of the half-graph for n = 16, its pixel picture and the corresponding

graphon.

(a)
Figure 2.4: (a) A half-graph of 16 vertices. (b) The plot of its pixel picture. (c) The corresponding
graphon.

Example 2.3.3 (Simple threshold graphs). These graphs are defined on the set [n] by connecting
i and j if and only if i +j < n. These graphs converge to the graphon defined by K(z,y) = L(,4y<1),
which we call the simple threshold graphon.

Figure 2.5 displays an example of the threshold graph for n = 16 vertices, its pixel picture and the
corresponding graphon.

) H x

Figure 2.5: (a) A simple-threshold graph with 16 vertices. (b) The plot of its pixel picture. (c¢) The

corresponding graphon.

Now, we introduce the most important metric on the space of graphons which is the cut metric.
(Strictly speaking, it is merely a pseudometric, since two graphons with cut distance zero between
them need not be equal.) It is defined in terms of the cut norm introduced in [83].

Definition 2.3.4 (Cut metric). For a graphon K : [0,1]2 — R, define the cut norm by

K|, = sup K(z,y)dzdy| (2.3.3)

S, TC[0,1]

SxS
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where S and T range over measurable subsets of [0,1]. Given two graphons K, K’ : [0,1]?> — R, define

do(K, K') &

‘K_K/HD

and the cut metric (or cut distance) oo by
oo(K, K'Y < inf do(K°, K')
g

where o range over all measure-preserving bijections o : [0,1] — [0,1] and K°(z,y) & K(o(z),o(y)).

For a survey covering many properties of the cut metric, see [105, 29, 97| and reference therein. The
notions d and ¢ extended to any norm on the spaces of graphons. In particular, for 1 < ¢ < oo, by
definition

dp(K,K') &

def . o
\K—K’HM([MP) and  0p(K,K') = inf d, (K JK)

with o ranging overall measure-preserving bijections o : [0,1] — [0, 1] as before.

We now introduce the weakly isomorphic relation, denoted =, which identifies sets of graphons which
all have a cut distance of zero apart [105, Corollary 10.34]. Let K, K’ be two graphons, we define the
weakly isomorphic relation as follow

K~ K' & 6n(K,K') =0. (2.3.4)

Theorem 2.3.5 (|29, Theorem 2.13], Compactness of the L? ball with respect to the cut
metric). Let 1 < ¢ < oo and C' > 0, the ball Bra(o,12)(C) o {Lq graphons K : HKHLQ([O 12 < C’}

is compact with respect to the cut metric 0g (after identifying points of distance zero).

2.3.3 Random graphs

The theory of random graphs was founded in the 50’s-60’s by Erdés and Rényi|76], who started
the systematic study of the space of graphs with n labeled vertices and M = M (n) edges, with all
graphs equiprobable. The aim is to turn the set of all graphs with n vertices into a probability space.
Intuitively we should be able to generate a sequence of graphs {G, }nen randomly as follows: for each
edge (4, 4) € [n]?, we decide by some random experiment whether or not (i, j) shall be an edge of Gy,
these experiments are performed independently.

Example 2.3.6 (The Erdés-Renyi graphs.). Let p €]0,1[ and consider the sequence of ran-
dom graphs G(n,p) = (V(G(n,p)), E(G(n,p))) such that V(G(n,p)) = [n] and the probability
P{(i,j) € E(G(n,p))} = p for any (i,5) € [n]?>. Then for any simple graph F, t(F,G(n,p)) con-

| 2] as n — oo [30] and {G(n,p)} converges almost surely to the p-constant

verges almost surely to p
graphon.
Figure 2.6 shows a realization of the Erdos-Renyi graph model for n = 16, its pixel picture and the

corresponding graphon.
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()

Figure 2.6: (a) A realization of the Erdds-Renyi random graph model with p = 0.5. (b) Its pixel
picture. (c¢) The corresponding graphon.

2.3.4 Sparse K-random graph models

We consider weighted graphs, which include as a special case simple unweighted graphs. Let G =
(V(G), E(G)), be a weighted graphs with vertex set V(G) and edge set E(G) C V(G)?, respectively.
In G, every edge (i,j) € E(G) (allowing loops with i = j) is given a weight 3;; € R™'. We set 8;; =0
whenever (i,7) € E(G).

The idea underlying the sparse K-random graph model proposed by [29] is that each L9 graphon K
gives rise to a natural random graph model, which produces a sequence of sparse graphs converging to
K in an appropriate metric. Inspired by their work, we propose the following construction.

Definition 2.3.7. Fix n € N*, let K be an L! graphon and p, > 0. Take the equispaced partition of
[0,1] in intervals |z;_1, x;], i € [n], where z; = i/n. Let K € R*" be a weight matrix such that:

(Hy1) [ LK - K[ — 0as n — +o0.

[0,1]%)
(Hy.2) ||LK(z,-) — K(, ')HLl([o,l}) — 0 uniformly in z € [0, 1].
Generate the random graph

def

Gn = (V(Gn>> E(Gn)) = G(n’ K, pn)

as follows: join each pair (i, j) € [n]? of vertices independently, with probability

A A
P((i,j) € E(Gy)|X) = p,Kij, where K;; = min (Kij,p,'). (2.3.5)

Remark 2.3.8. In the original sparse K-random graph model defined in [29], the z;’s are random iid
samples drawn from the uniform distribution on [0,1]. Moreover, K;; = K(z;,z;). In this case, it
follows from |29, Theorem 2.14(a)| (which relies on |94, Theorem|) that assumptions (H,,.1) holds with
probability 1.

Another interesting case is where K = P, K. Thanks to Lemma 2.1.27, HInPnKHLl(QQ) < HKHLI(QQ)
with probability 1. Thus, the Lebesgue differentiation theorem and the dominated convergence theorem
allow to assert that I,, P,K converges to K in L'(9?). In turn, assumption (H,.1) holds.

For appropriate choices of p,, the graph model constructed according to Definition 2.3.7 allows to
sample both dense and sparse graphs from the graphon K. In particular, the sparsity assumption p, —
0 reflects the fact that p, needs to be arbitrarily close to zero in order to see the unbounded/singular

'In [29], the weights are even allowed to be negative, but we will not consider this situation which is meaningless in
our context.
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part of K. The assumption that np, — 400 means the average degree tends to infinity. To check this,
the average number of edges in this graph model is

E(E(G(n, K, pn) = pun® (072 3 Ky

(i,4)€[n]?
= pan? <HI"KHL1([O,1]2) - H (1K - P51)+ HLl([O,lP)) :
By assumption (H,,.1), we have HI"KHLl([o ) = HKHLl([O 2y T+ o(1). Moreover, since p, — 0, we

have from (2.3.6) that H (I.K — p,t) )= o(1). In turn,

n HLl([o,uz

E(BE(G(n, K, pn))) = pun® (|[K]| s oy + (1)) -

As expected, this gives rise to a sparse graph whose edge density is p, — 0. For the average degree of
this graph model, arguing similarly to above, and using (H,,.2), we have

A
E (dean (z)) = ppn | n71 Z K
j€(n]

= Pt (HI"K(J”’" Moy = I K@i, ) = o) HU([O,U))

— pun </01 K (s, y)dy + 0(1)> .

As anticipated, the average degree is indeed unbounded since p,n — +oo .

The above sequence of graphs generated also enjoys the following convergence result.

Proposition 2.3.9. Let K be an L' graphon and K be a weight matriz such that(H,.1) holds. If
pn > 0 with p, — 0 and np, — +0o0 as n — +oo, then p,'G(n, K, p,) converges almost surely to K
in the cut distance metric.

PRrROOF :  We essentially adapt the arguments of in the proof of [29, Theorem 2.14(b)|. More precisely,
since (H,,.1) holds, one has to show[29, (7.1)]. For this, we invoke |29, Lemma 7.3] by checking the
condition (7.3) therein. We have by sublinearity of ()4 that

1 - —
n2 Z (Kij — Pn1)+ = /[0 . (I K(z,y) — pn1)+dxdy
(i,4)€[n]? ’

<[ @K@y - Kaw) dody+ [ () - ;) dody
[0,1]2 [0,1]2

-1
<[ 1K = K| o) + /W (K(z,y) = py '), ddy.
(2.3.6)

The right-hand side in the above display goes to 0 as n — +oo by (H,.1) and since p, — 0. Indeed,
for every L > 0, the limit superior of the last term is bounded by H(K — L)+HL1([0 1]2), and this can
be made arbitrarily small by choosing L large. O

Example 2.3.1. For an example that cannot be handled using L® graphons, and thus does not enter
in the framework of [90, 89|, consider a K-random graph model G(n, K, p,,) constructed according to
Definition 2.3.7 with K = P, K, where K(z,y) = J(z —y), J : z € [-1,1] = 2751 — B)(2 — B)|2| 77,
B €]0,1[. First, observe that the radially symmetric kernel J is singular but fulfills all assumptions,
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i.e. J is symmetric nonnegative function in L'(Q — ).In addition, by virtue of Remark 2.3.8, (H,,.1)-
(H,,.2) also hold with

1
HKHLl([0,1]2) =1 and /o K(z,y)dy =27"(2 - B) (90175 + (1 - CC)l*B) e27'(2-B)[1,2°).

We also have the following convergence result in the L°! norm that will be instrumental in Sec-
tion 3.5. According to the construction in Definition 2.3.7, we let A;j, (i,5) € [n]%,i # j, be random

A
variables such that p,A;; follows a Bernoulli distribution with parameter p,K;;. For each row i € [n],
(Aij)je[n] are independent.

Lemma 2.3.10. Let K be a nonnegative L°' graphon. Take the weight matrizs K = P, K. Assume
that pp, — 0 and np, = w ((logn)”) for some v > 1. Then with probability 1,

A
HIHAHLooJ([o,l]Q) - HI"KHLOOJ([OJP) =0
If, moreover, (H,,.2) holds, then

HInAHLooJ([o,u?) - HKHLOOJ([O,IP)'
with probability 1.

Proor : For any € > 0, we have by the union bound

A
P (110 ooy = WK s | > €)
=P |maXZAij — maxZﬁij’ > en
j t

A
=P | m?XZPnAij — m?prnKij‘ > Eppn
J J

A
<P ( max]| an(Aij —Kij)| > epan
J

AN
< E P E pn(Aij — Kij)| > epnn
i j

A
Since (pnAij)j are independent Bernoulli variables with means (aniJ) , it follows from the variant
J

of the Chernoff bound in |29, Lemma 7.1|, that for every ¢ > 0,

N
P (120 oy = K | > )

1 EPnM
§QZeXp — 3 min pinA,l EppN
i pn > Kij
1
< 2nexp | —- min = c , 1] eppn
K[| o 0,172

1 €
<2nexp|—-min | ————,1 ] ew ((logn)”
- ( ; (HKHM,W) > o ”)

< anw((log n)”‘l)

— I
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since v > 1, and where we used (2.3.5) and Lemma 2.1.27 to show that

A
K] s g0,172) < 0K poosr g0 112) = [1Zn P || pocin

[0,1]2 [0,1]2) 0,1]2) = HKHLOOJ([O,IP)'

Invoking the (first) Borel-Cantelli lemma, we have the first claim. On the other hand,
A A
‘HI”KHLOOJ([O,IP) o HKHLOOJ([OJP)‘ S HI”K - KHLOOJ([O,IP)
A
<K = InPoK || pooss o 1j2) T [ In P = K| 0112,
= |(TnPa K — pgl)+Hva1([o,1]Q) + [ I P — KHLw»l([o,lP)
= H(K - p;1)+HLoo,1([o,1]2) + H(InPnK o K)‘f‘HLOO’l([O,l]Q) + HInPnK - KHLOCJ([O,l]Q)

< ||(K - P51)+|’va1([o,1]2) +2|| L P K — KHLOOJ([O,I]Q)'

Since p, — 0 and in view of (H,,.2), the right-hand side in the above display goes to 0 as n — 4o0.
Combined with the first claim we obtain the desired conclusion. (I

2.4 Partial differences operators on graphs

Using the basic notation given in the above section, we recall the fundamental elements of the weighted
partial difference operators on graphs on which we base our framework exposed in Chapters 5 and
Chapter 6. For more detailed information on these operators we refer to |73, 87, 136, 72]. In order to
use a consistent notation with the content of these references, we denote, in the present section and
the chapters mentioned, the weight function of the graph considered by w and the vertices by z, y, z.
Let G = (V, E,w) be a weighted graph. We denote by H(V') the space of real-valued functions on
the vertices of the graph, i.e., each function u : V' — R in H (V) assigns a real-value u(x) to each vertex
zeV.
For a function u € H(V') the ¢P(V)-norm of u is given by

1
4
ol = (z \u<x>|p) Ccpen
xeV

I ———]

The space (V') endowed with the following inner product: (u, v)y ) = > ey u(x)v(2), u, v € H(V),
is a Hilbert space. Similarly, let H(E) be the space of real-valued functions defined on the edges of the
graph, i.e., each function H : E — R in H(F) assigns a real-valued H(z,y) to each edge (z,y) € E.
The space H(E) endowed with the following inner product: (H,G)yr) = 2y 4ep H (2, y)G(2,y),
H, G € H(E), is a Hilbert space.

The weighted finite difference operator of a function u € H(V'), denoted by d,, : H(V) — H(E), is
defined on a pair of vertices (z,y) € E as :

dou(z,y) = vVw(z,y)(uly) — u(z)).
Note that this difference operator is linear and antisymmetric.
The adjoint of the difference operator d,,, denoted by d¥ : H(E) — H(V), is a linear operator which
can be characterized by (dyu, H)y gy = (u,d}H)yy for all uw € H(V) and all H € H(E). Using
the definitions of the finite weighted difference operator and the inner products of H(V) and H(E),
the adjoint operator d of a function H € H(FE) can be expressed at a vertex x € V' by the following
expression:

diH () =Y Vewlz,y)(H(y, =) — H(z,y)).

y~z
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Chapter 2 2.4. Partial differences operators on graphs

The divergence operator defined by
div, = —d},,

measures the net outflow of a function of H(E) at each vertex of the graph. Each function H € H(FE)
has a null divergence over the entire set of vertices. Indeed, from the previous definitions, it can be
easily shown that > ., >° , dou(z,y) = 0, for all w € H(V), and >_, . div,H(z) = 0, for all
H e H(E).

The weighted directional finite difference of u at a vertex x along the edge (z,y) is defined as:

Oyu(z) = vw(z,y)(u(y) — u(z)).

Similarly we define the upwind and downwind weighted directional finite differences of u at a vertex z
along the edge (z,y) is defined as:

Oy u(r) = V/w(z,y) (u(y) — u(@))*,
where a™ = max(a,0) and a~ = max(—a,0), a € R. Based on this definition, one can straightforwardly

introduce the weighted gradient operator on graphs V,, : H(V) — H(V'), which is defined on a vertex
x € V as the vector of all weighted finite differences with respect to the set of vertices V i.e:

(Vou)(z) = (Gyu(z))yev-

From the properties of the weighted partial difference above, it gets clear that the weighted gradient
is linear and antisymmetric. Similarly we define the upwind downwind weighted gradient operators on
graphs VI : H(V) — H(V)

(VEu)(z) = (8;:u(x))yev, for all x € V.

A family of gradient norm H : Hp oV,
function v € H(V) as:

. Hp oVE:HWV) - RNV with 1 < p < o is given for a

[(Vou)(@)]|, = (Z(w(ac,y))’z’!u(y)—u(mwp)p, 1<p<oo

Yy~

[(Vou)(@)||,, = max(v/w(@,y)uly) — u(@)

y~z

),

=

|(VEw(@)|, = (Zw(x,y))’%(<u<y>—u<x>>i)f”> S 1<p<o

Yy~
[V @, = max(valmy) (uly) - u@)®)
The integral of a function v in H (V) (wrt to the empirical measure on V') is defined by:
BE(u)=> u(=).
zcV
The anisotropic graph p-Laplacian of a function u € H(V'), denoted by A, : H(V) — H(V) is defined
as
Aupu(z) = div, (‘dwu‘p_2dwu> (x)
P -2
= 2 (w(@9)2[uly) - u@)[" (uly) - (@),
Yy~

where 1 <p<ooandz e V.
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Chapter 3

Continuum limits of the p-Laplacian
evolution problem on sparse graphs

Main contributions of this chapter

» Well-posedness of the Cauchy problem.

» Error estimates to compare two trajectories corresponding to the p-Laplacian governed
by two kernels, second member and initial data:
— for p €]1, +oo[ (Theorem 3.3.1).

— for p =1 (Theorem 3.3.5).

» Consistency and error estimates of the numerical solutions to the fully-discretized prob-
lem:
— forward discretization (Theorem 3.4.7 for p €]1, 2], Theorem 3.4.12 for p = 1).

— backward discretization (Theorem 3.4.16 for p €]1, +00|).

» Error bound on fully discretized problems on sparse random graphs. (Theorem 3.5.3)

The content of this chapter can be found in[69].
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In this chapter, we present a consistency analysis for the nonlocal p-Laplacian evolution problem.
Our results consist of four main parts: well-posedness, consistency of the continuous-continuous prob-
lem, error bounds for the discrete problem and application of these results to the fully discretized
problems on random graph models. For the time-discrete problem, both the semi-discrete and fully-
discrete versions with both forward and backward Euler approximations are exposed. We prove the
convergence of these schemes before comparing their corresponding problems to the continuum one.
The obtained error bounds will be used in the fourth part to analyse error bound on fully discretized
problems on sparse random graphs.

3.1 Introduction

3.1.1 Problem formulation

Our main goal in this chapter is to study discretization of the following nonlocal p-Laplacian evolution
problem with homogeneous Neumann boundary conditions:

{gtu(w,t) = [ K (@, 9)|uly, t) — u(@, t) |’ *(u(y, t) — u(@, t)dy + f(z,t), ®€Qt>0,
(2,0) = g(

x), xeQ, (P)

where p € [1,+oo[, @ C R? is a bounded domain, d > 1, without loss of generality Q = [0,1]%, and
K : R% x R? — R is the kernel function. In particular, in the setting of graphs, d = 1 and it will be
seen that K is the limit object for some convergent graph sequence {G,},,n € N, whose meaning and
form will be specified in the sequel. Throughout, we assume that

(H.1) K is a nonnegative measurable function.

(H

:2)
(H.3) supgeq [ K(z,y)dy < +oo .
By (H.2), it is straightforward to see that

K is symmetric, i.e., K(x,y) = K(y, x).

sup/K T,y dy—sup/K(:c,y)d:c,
e yeN JQ

and thus, (H.3) is equivalent to

sup/ K(z,y)dx < +00.
yeQ JQ
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Chapter 3 3.2. Well-posedness

When the kernel is such that K(z,y) = J(x — y), where J : R? — R, then (H.1), (H.2) and (H.3)
read:

(H’.1) J is nonnegative and measurable.
(H’.2) J is symmetric, i.e., J(—x) = J(x).
(H.3) [o_qJ(x)dr < +o0 .
Recall that Q — Q is the Minkowski sum of Q and —Q. In the case Q = [0,1]¢, we obviously have
Q-Q=[-1,1<%
The main goal of this chapter is to revisit and extend the work of [90] by removing important limiting
assumptions made there on the kernel K and the initial condition ¢g. In turn, this will allow us to

establish consistency estimates of the fully discretized p-Laplacian problem for singular kernels or on
sparse graphs whose limits are known not to be bounded graphons.

3.1.2 Organization of the chapter

In Section 3.2, we study the well-posedness of the problem (7). Section 3.3 is devoted to study stability
of the problem (P) with respect to sequences of kernels K, initial data g and second member f.
Error bounds for the semi-discete (i.e., space discretization of (K, g, f)) problem are established in
Section 3.4.1, and those for the fully discrete (time and space discretization) problem with forward and
backward Euler time-discretization are provided in Section 3.4.2. Section 3.5 is devoted to applying
these results to fully discretized problems on sparse random graph models.

3.2 Well-posedness

3.2.1 The case p €]1,+o0|

To lighten notation, for 1 < p < 400, we define the function

UV:zeR— ‘x‘p_Q:E = sign(x)’a:‘p_l,

where we take sign(0) = 0. The next lemma summarizes key monotonicity and continuity properties
of ¥ which will be instrumental to us.

Lemma 3.2.1. (i) Monotonicity: assume that the constant [ satisfies § € [max(p,2),+oo[. Then
for all x,y € R,

(U(y) — W(x)) (y —x) > Cily — 2| (Jy] + |2))* 7, (3.2.1)
where the constant Cy is sharp and given by
Cy =2 Pmin(1,p — 1). (3.2.2)

In particular,

|y —=|” p € [2,+0,

=" (] + )" p €2,

(ii) Continuity: assume that the constant o satisfies o € [0, min(1,p — 1)]. Then for all z,y € R,
|W(y) — W(z)| < Coly — 2| (ly| + |=))P 7, (3.2.4)

(U(y) —¥(2)(y—z) > Cq { (3.2.3)

where the constant Co is sharp and given by
Cy = max(2277 (p —1)2277,1). (3.2.5)

In particular,

ly — x| (jyl + |2)' ™ p e [2,+00],

3.2.6
}y_x“’”—l p €]1,2], ( )

‘\I/(y) - \I/(x)‘ <O {
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PRroOF :

(i) For (3.2.1), see [43, Theorem 2.2]. For (3.2.3), set § = p for p > 2 and = 2 otherwise in (3.2.1);
see also the seminal results of [86, Lemma5.1 and Lemma5.2|.

(ii) For (3.2.4), see [43, Theorem 2.1]. For(3.2.6), set a = 1 for p > 2 and o = p — 1 otherwise in
(3.2.4); see also the seminal results of [86, Lemma 5.3 and Lemma5.4].

O

We now collect some preliminary properties of the nonlocal p-Laplacian, an operator on L(§) that
we denote for short as

2(
Af (z,t) = /K:cy‘u y,t) —u(z, t)|” “(uly,t) — u(z,t))dy.
Proposition 3.2.2. Assume that K satisfies (H.1), (H.2) and (H.3).
(i) Aff is positively homogeneous of degree p — 1.
(ii) If p > 2, LP71() C dom(Af) .
(i) If1<p<2, dom(Af) = LY(Q) and Af is closed in L' () x L'(Q).
)

(iv) Let h: R — R be a non-decreasing function. Then for every u,v € LP(2),

0< /Q (Afu(m) - Afv(m)) h(u(x) —v(x))dx
1

=3/, K(z,y) (T(u(y) —u(x)) — T(v(y) —v(x))) (h(uly) — v(y)) — h(u(z) — v(zx))) dyde.
(3.2.7)
If h is bounded, then this holds for any u,v € dom(AIIf),
(v) For every u,v € LP(2),
[ (afute) - o)) - vie)) do >
max(1,2/p)
([ Kl - u@) - () ~ v(e) ' dyde)
where
{ & p € [2,400],
p—2
92p— 5C’1HKHILOO2{pQ2) (HUHLP(Q) + HUHLP(Q)) p €L, 2[.
and C1 is the constant in (3.2.2). If u,v € L*°(Q), then
[ (8Fute) — A vl ula) - v(e)) do >
max(1,p/2)
([ kvl - ) - o) - @) ais)

where
o p € (2,400,
= p_2
ykgcl(H“HLwan'+H“Hqun> p €)1, 2[.
(vi) For p €]1,2] and every u,v € L*(2),
/Q (AKu(@) — AKv(@))(u(@) - v(@))) dz > C||AKu — AKy Hp/ P1)
where

1

2
C =211 (C ( 1/2HKHL°°1 QZ)> P (1—=1/p), and Cy is the constant in (3.2.5).

—34 -



Chapter 3 3.2. Well-posedness

(vii) For p €]1,+o0], Aff 1s completely accretive and satisfies the range condition

LP(Q) C ran(I + Af,(). (3.2.8)

Consequently, the resolvent J/\A{f e

pansive in LY(Q) for all g € [1,+0o0].

(I+ )\Aff)_l, A > 0, is single-valued on LP(SY) and nonex-

ProOF : (i), (ii) and (iii) follow from [10, Remark 2.2] which still holds for our larger class of kernels
K.

For (iv), see[90, Lemma A.2|. Monotonicity is immediate since h is non-decreasing.
The proof of (vii) is the same as that of [10, Theorem 2.4], where we invoke the monotonicity claim (i).

We now show (v)!. The case p € [2, +oo[ is immediate by inserting Lemma 3.2.1(i) into (3.2.7) with
h(z) = x. For p €]1,2], to lighten notation, denote the nonlocal gradient VNlu(x,y) = u(y) — u(x).
We then have by Lemma3.2.1(i) that

CL VN (1 — v) (@, ) <
(B u(e,y) - TV o(@,y) (VVou(e,y) - V(e y)) (Ve )] + V().

(3.2.9)
Taking the power p/2, multiplying by K and integrating, we get
et [ K@) 9w v)(a.y)Pdudy <
Q2
2
| @) (97 utw ) = W () (Tl y) = Vo)
1/p NL NL (2_p)p/2
(K@ y) " (V" u(@,y) + V(@ y))) dedy.

It is easily seen that

(K - (U(VNeu) — (V) (VN — WNE) P2 e 12/7(02)

) (2—p)p/

2
(K7 (9] 4+ [9NE)) e L/CP(@?).

It then follows from Holder inequality and (3.2.7) that

et [ K@) 9w v)(a.y) dudy <
02
p/2
2 </Q (Afu(x) - Afv(w)) (u(x) — v(:c))dac) .

(2—-p)/2
([ K7 ey + 9w )rdedy)

We have by Jensen’s inequality

[ K@) (9l + [V oo )Py
<o [ K@w)(u@P + @)l + @) + lo(y)dady

= 22P_IHKHLO<»1(Q2) (H“Hip(m + HUHZ»(Q)) ,

whence we obtain

& ([ K@ w)v - o) (ey)Pdady e

'This can be seen as a nonlocal analogue of [86, Proposition 5.1 and Proposition 5.2].
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5=2p Kulx) — AKy(x)) (u(z) — v(z))dx
P ([ (A ut@) - A (@) (u(@) - o(a))ia

(2-p)/p
HKHLOO 1(02) (H“Hm(n) + HUHLP(Q))
Rearranging proves the bound. For u,v € L*°(Q) and p € [2,+00] we use that LP(Q2) C L*(Q). For
p €]1,2], we embark from (3.2.9) and use that for all (z,y) € Q2

V()] + V()] <2 ([l g + 10 ey ) -

Multiplying (3.2.9) by K, integrating and using (3.2.7), we conclude.

2—p

To prove (vi), we start by showing that A{f is Holder continuous with exponent p — 1 on L?(Q2). We
have by Jensen inequality (twice) and (3.2.6),

A5 u— Af ][0 = /K z,y) (U(Vu(z, y)) — (V0 (2, y))) dyzd:n

<8 o [, (o) (U7l )~ 0T ol 9))’ dndy

< O sy |, () (P )@ 9) " iy

< 20| K| peor g2 /Q K(@.y) (ulx) - v(z))?P7Y dedy

< 2?02”1(”;0,1(92) </Q (u(z) — v(z))? dm)p_l

= 2 Co|| K ||7 o 2 lu — vuigp(;;% (3.2.10)

We are now in position to invoke [21, Corollary 18.14(i)=(v)] to show that the claimed inequality holds.
O

Solutions of (P) will be understood in the following sense:

Definition 3.2.3. Let p €]1,4o00[. A solution of (P) in [0, 7] is a function
w e C([0, T L)) n W (0, T(; LY (),
that satisfies u(x,0) = g(x) a.e. € Q and

au(az,t) = —Afu(a:,t) + f(x,t) a.e. in 2x]0,T7.

Such a solution is also a strong solution (see[11, Definition A.3]).

The main result of existence and uniqueness of a global solution, that is, a solution on [0,7] for
T > 0 is stated in the following theorem.

Theorem 3.2.4. Suppose that p €]1,4o00[ and assumptions (H.1), (H.2) and (H.8) hold. Let g €
LP(Q) and f € LY([0,T); LP(Q)).
(P)-
(ii) Moreover, for q € [1,+00], if gi € LY(Q) and f; € L*([0,T);L4(R2)), i = 1,2, and u; is the
solution of (P) with data (fi,g:), then

[ur(cst) = ua ()| gy < 91 = 92ll pagy + 11 = Foll proryizoqeyy: VE€ 0,T). (3:2.11)

(i) For any T > 0, there exists a unique strong solution in [0,T] of

PRrROOF :  The proof follows the same lines as that of [10, Theorem 1.2| extended to the case where
f # 0 thanks to the results of 25|, where we invoke Proposition 3.2.2(ii), (iii) and (vii). O
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Remark 3.2.5. In[10] (see also[11, Chapte6]), the authors impose the following stringent assump-
tions: K(x,y) = J(x — y), where J is nonnegative, continuous, radially symmetric, compactly sup-
ported, J(0) > 0 and [pq J(z)de < +oo. Actually, these assumptions are not needed for existence and
uniqueness. The particular form J(x —1y) of the kernel is not needed. Continuity with radial symmetry
and support compactness play a pivotal role to study convergence to the local p-Laplacian problem
in [10, Theorem 1.5]. In addition, J(0) > 0 was mandatory to prove a Poincaré-type inequality in |10,
Proposition4.1|. Even for the form J(x — y), our assumptions (H’.1), (H’.2) and (H’.3) are weaker
than those of [10]. This discussion remains true also for the case p = 1.

3.2.2 The case p=1

We will need to define subdifferential of the absolute value function on R, which is the well-known
set-valued mapping 9| - | : R — 2%,

1 z>0
o -|(x) =14 [-1,1] =0
-1 z < 0.

It will be convenient to denote the 1-Laplacian A, This is a set-valued operator in L'(Q2) x L'()
such that n € Ay if and only if

n(x) = —/QK(:B,y)w(:c,y)dy a.e. in €,

for a subgradient function w satisfying HwHLOO(QQ) <1, w(z,y) = —w(y,x), and
w(x,y) € d] - [(u(y) — u(x)).

Solutions of (P) will be understood in the following sense.

Definition 3.2.6. A solution of (P) for p=1in [0,7] is a function
w e C([0, T L)) n W (0, T(; LY(9)),
that satisfies u(x,0) = g(x) for a.e. x € Q and
%u(m,t) = —n(x,t) + f(x,t) a.e. in Qx]0,T7,

where 7(-,t) € AKu(-,1).

Observe that for p = 1, the evolution problem (P) reads

{ Du(a,t) = [, K(x,y)sign(u(y,t) — u(z,t))dy + f(x,t), @eQt>0,
u(x,0) =g(x), xe€Q,

where

sign(z) = {f ifo

Thus, it satisfies
0

In the same vein as Proposition 3.2.2, the 1-Laplacian enjoys the following properties.

Proposition 3.2.7. Assume that K satisfies (H.1), (H.2) and (H.3).
(i) dom(AK) = LY(Q) and (the graph of) AKX is closed in L*(Q) x L'(£).
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(ii) Let h € C*(R) be a nondecreasing function. Then for every u; € L*(Q) and any n; € Afu;,

1=1,2,
0< / (m(x) — n2()) (h(ui(x) — uz(x))) dee
1” (3.2.12)
=3 /s K(z,y) (wi(z, y) — wa(x,y)) (h(ur(y) — u2(y)) — h(ui(z) — uz(e))) dedy.
where w; are the corresponding subgradient functions defined above. In particular,
1
[ K@y @iy = [ K@yl - ue)dsdy.
(iii) AK is completely accretive and satisfies the range condition
L®(Q) C ran(I + AF). (3.2.13)

PrOOF :  For (i), see |10, Remark 2.8] which still holds for our class of kernels K.

The proof of (iii) is again the same as that of [10, Theorem 2.9], where we invoke the monotonicity
claim (ii) to which we turn now.

For any v € L}(f), we have the integration by parts formula

- K(z,y)wi(z,y)(v(y) — v(z))dzdy (3.2.14)

= — K(y, z)w;(y,x)v(y)dyde — / K(z,y)w;(x,y)v(x))dzdy (3.2.15)
02 02

= -2 - K(z,y)w;(x, y)v(x)dzdy. (3.2.16)

Taking v(x) = h(u1(x) — ua(x)) in (3.2.16) with w; and ws, and then taking the difference, we arrive
at

2 /Q ( /Q K(@,y)(wi(@,y) — e, y))dy) h(un () — us () das
- /Q (1) — ma()) (h(ur (@) — ua(e))) dae

= |, K@) (i@, y) —wa(@,y)) (u(y) = va(y)) = h(w (@) = ua(z))) dady.

By the mean-value theorem applied to h, we get
= 2/Q (m(z) —m2(x)) (h(ur(z) — uz(x))) de

= ) K@) (i@, y) —wa(@,y)) W (¢(x,y)) (ur(y) — uz(y)) — (ua(@) — up(a))) davdy

= Jo K(z, y)b'(C(2,y)) (wi(z, y) — wa(z,y)) (u1(y) — u1(@)) — (u2(y) — ua2())) dady,
where ((x,y) is an intermediate value between u;(y) —uz(y) and uy(x) —ug(x). Since h is increasing,
that w;(x,y) € 9]-|(ui(y) —u;(x)), and 9] -| is a monotone operator, we get the claimed monotonicity.
To get the particular identity, we specialize (3.2.16) by taking v = u;, which entails
- [ K@i, n)(wl) - we)dedy =2 | K@y yye)dody
We finally use the equivalent characterization of 8| :

, which originates from the Fenchel’s identity

since | . | is positively homogeneous,
8"‘(:1:):{56}1%: ’5‘ <1 and &x = ‘:1:‘}
Applying this identity with = u;(y) — u;(x) and & = w;(x,y) gives the claim. O
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Theorem 3.2.8. Suppose that p = 1, and assumptions (H.1), (H.2) and (H.3) hold. Let g € L*()
and f € LY([0,T]); L (). For any T > 0, there exists a unique solution in [0,T] of (P) in the sense
of Definition 3.2.6.

PROOF :  The proof is an adaptation of [10, Theorem 1.4] to the case where f # 0 thanks to the
results of [25], where we invoke Proposition 3.2.7(i) and (iii). O

3.3 Continuous-continuous estimates

In this section, we provide an estimate that compares solutions of two p-Laplacian evolution problems
of the form (P) with two different kernels and initial data. This estimate will be instrumental to derive
error bounds in the totally discrete case.

3.3.1 The case p €]1,+o0|
We have the following error bounds and convergence result.

Theorem 3.3.1. Suppose that p €]1,+o0[. Let u be a solution of (P) with kernel K and data (f,g).
Let uy, be a sequence of solutions to (P) with kernels K, and data (fn,gn). Assume that K and K,
satisfy (H.1), (H.2) and K, K,, € L>%(Q?), and that either one of the following holds:

(a) p€]1,2[, g,gn € L*(Q), and f, f, € L'([0,T]; L*(Q));
(b) p =2, g,gn € L*P7V(Q) and [, f,, € L'([0, T]; L*P~D(Q));
(¢) 9,9 € L®(Q) and f, f € L'([0,T); L®(9)).
Then, the following hold.
(i) w and u, are the unique solutions of (P) with respectively data (f,g) and (fn, gn)-

(i) We have the error estimate

[[un — UHC([O,T];L2(Q)) < |lgn — gHL2(Q) + | fn - fHLl([O,T];L2(Q))
| K — KHLOO’Z(QQ), under (a) or (b)

+CT
HKTL—KHL2(Q2), under(c)

(3.3.1)

where C' is positive constant that may depend only on p, g and f.

(iii) Moreover, if (¢) holds, sup,cy |gn()| < +00 a.e. on Q and g, — g pointwise a.e. on
SUP,eN }fn(m,t))‘ < 400 a.e. on Q x[0,T] and f, — [ pointwise a.e. on Q x [0,T], and the
sequence {|Ky|?}nen is uniformly integrable over Q% and K, — K pointwise a.e. on Q>. Then

il = wlle o 2y = 0

Remark 3.3.2. Observe that since L>®(Q) € L*(Q) and L*®~)(Q) c L?(Q) for p > 2, then the first
two terms involved in (3.3.1) provide a non-trivial bound. Similarly, since L>2(?) C L?(Q?), the last
term in the bound for case (c) is also non-trivial. In fact, both bounds in (3.3.1) can be summarized in
one bound; the first one. However, the second bound for case (¢) is obviously sharper.

ProOF :  In the proof, C is any positive constant that may depend solely on p, g and f.

(i) Since L°>%(02) C L°>1(02), assumption (H.3) holds for both K and K,. We also have the
embeddings
e L2(Q) C LP(Q) under (a),
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o L2=1(Q) ¢ LP(Q) under (b), and
o L>°(Q) C LP(2) under (c) .
Thus g,g, € LP(Q) and f, f, € L'([0,T]; LP(2)). Existence and uniqueness of the solutions u
and u, in the sense of Definition 3.2.3 is a consequence of Theorem 3.2.4.

(ii) Denote the error function &,(x,t) = u,(x,t) — u(x,t), then from (P), we have a.e.

Pu@:0) _ (Al (0,) - A (u(0,) + Fulo) — T (021

= — (A (up (@, 1)) — AL (u(z, 1)) — (ALK (u(z, 1) — Al (u(z, 1)) (3.3.2)
+ fn(m, t) — f(il}, t).
Multiplying both sides of (3.3.2) by &,(x,t) and integrating, we get

5 (,%an , )HQLQ(Q) = —/Q (Aff”un(:c,t) — Af"u(ac,t)) (up(x,t) — u(x,t))de
+ [ (Kuw.y) = K@) Wuly.0) — vl )6, 0dady (333

+ /Q (@) — f(@. 1)) n(e, D)z,

Since g, gn € LP(Q) and f, f, € LY([0,T]; LP()), un (-, 1), u(-,t) € LP(Q2) for any ¢ € [0, T] thanks
to (3.2.11). We can then apply Proposition 3.2.2(iv) with h(z) = x to assert that the first term
on the right-hand side of (3.3.3) is nonpositive. Let us now bound the second term.

e Case(c): in this case HUHC([O’T];LOO(Q)) = HgHLOO(Q) + HfHLl([O,T];Loo(Q)) thanks to (3.2.11),
and we get from Cauchy-Schwartz inequality that

| o Tin (@ y) = K(z,y))¥(u(y,t) — u(z, t))sn (@, t)dxdy|

<2 ule )k [, B w) = K (o)l )y 339

_ p—1
<2 (HgHLOO(Q) + HfHLl([o,T];Loo(Q))> [ = K| 1202 [|€n (5 D) 120

- CHKn - KHL2(Q2)an('vt)HLZ(Q)'

e Case (a) or (b): applying again Cauchy-Schwartz inequality we obtain

‘ 02 (Kn(:ll, y) - K(.’B, y))\I/(u(y, t) - u(w, t))fn(.’l}‘, t)d:l?d’y‘

1/2

< ([ lutw) - uteo* dwdy)l/ ([ 150(e.9) - K@ wPlés ) awy

= ([ st i) ([ (] o) st e i)

1/2
=<QQ \u(y,t)—u(w,t>\2(p‘”d:cdy) 1 = | ez oy 160 )| 2

On the one hand, under (a), Jensen’s inequality applied to the concave function x € R —
2P~ entails

1/2
( |u(y,t) — u(a:,t)|2(p_1)d:cdy>
QZ
, A\ D
< ([ lutw.0) - w0 Py
QZ

_ — _ p—1
< 227 u(-, 1)) 22(19) <2 <H9HL2(Q) + HfHLl([O,T];L2(Q))) ;
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(iii)

where we used (3.2.11) in the last inequality. On the other hand, under (b), we have

— 2(p_1)d d V2 < 9p—1 . p—1
0z ’u(y,t) u(:l),t)‘ ray — 2 Hu( 7t)} L2(p—1)(Q)

— "
<207 (HQHL2<p-1><Q)+Hf”Ll([o,leLQ("‘”(Q))) '

In turn, under either (a) or (b), we have the bound

| [ (Fulw) — K (.0 (ay.0) — uta. )6, (@ dady]

(3.3.5)
< cuKn - K\\Lm,g(m)usnc,w

120

Inserting (3.3.4) and (3.3.5) into (3.3.3), ignoring the first term which is non-positive as argued
above, and using Cauchy-Schwartz inequality on the last term, we obtain

CHK KHLOO 2(02); under (a) or (b)

= 116n (51 2 < |[fn(5t) = F(5 1 2 +
E)tHS( Nz < fnlt) = £ 2 C|| Ky = K| a2y, under (c).

Integrating this inequality on [0, ¢] and taking the supremum over ¢ € [0, 7], we get (3.3.1).
By assumptions on {K,},en, we are in position to apply the Vitali convergence theorem [129,
p. 133] in L2(9?) to get that HK KHL2 ) = 0 as n — +oo. We have by assumption that the

sequence {gn }nen is dominated by a constant function. The latter is obviously in L?(f2) since
|| < +o0. Tt then follows from the dominated convergence theorem that H gn —
n — +oo. We now turn to the sequence f,,. We have

£ = f”Ll([O,T];L?(Q)) = T1/2an - fHLQ([O,T};LQ(Q)) = T1/2an - me(Qx[o,T])'

Arguing as for g,, using our assumptions, entails again that an — fHLl([o ThL2@) 0 as
n — +oo. Passing to the limit in the second inequality of (3.3.1), the claim follows.

gHL2(Q) — 0 as

O

In the case where the kernel takes the form K(x,y) = J(x —y), we have the following consequence
of Theorem 3.3.1.

Corollary 3.3.3. Suppose that p €]1,+o00[. Let u be a solution of (P) with kernel K(x,y) = J(x—1y)
and data (f,g). Let u, be a sequence of solutions to (P) with kernels Ky (x,y) = Jpo(x —y) and data
(fnsgn). Assume that J and J, satisfy (H’.1), (H’.2) and J,J, € L?>(Q — Q), and that either one
of (a), (b) or(c) in Theorem 3.3.1 holds. Then, the following hold.

(i)
(i)

(iii)

u and uy, are the unique solutions of the corresponding evolution problems.

We have the error estimate

[[n = UHC’([O,T];LQ(Q)) < [lgn = 9HL2(Q) + | fn = fHLl([O,T];LQ(Q)) +CT||Jn — JHL2(Q—Q)’ (33.6)
where C' is positive constant that may depend only on p, g and f.

Moreover, if the sequence {|J,|?}nen s uniformly integrable over Q — Q, J,, — J pointwise a.e.

on Q —Q, g, — g pointwise a.e. on Q, f, — f pointwise a.e. on Q x [0,T], and either one of
the following holds:

(a’) p €]1,2[, {|gnl®}Inen (resp. {|fnl|*}nen) is uniformly integrable over 0 (resp. Q x [0,T]);

(6°) p > 2, {|gnl?P D}nen (resp. {|fal?P D} nen) is uniformly integrable over Q (resp. Q x
[0,71);

(¢’) sup,en |gn(®)| < +00 a.e. on Q and sup, ey | fn(x, )| < +00 a.e. on Q x [0,T].
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Then

ngrfoo Hun - UHC([O,T};LQ(Q)) =0
PrOOF :

(i) We argue in the same way as in the proof Theorem 3.3.1 since L?(2 — Q) C LY(Q — Q) implies
that assumption (H’.3) holds for both J and J,.

(ii) The error bound (3.3.6) is a specialization of (3.3.1) since

2
| Kalew) = K@aPiy = [ 15,2) = Iz < 9~ T},
Thus
1Ko = K| 202y < [1En = Kl e g2y < 190 = I 1200y
(iii) Case (a’) follows from the Vitali convergence theorem applied to J,, g, and f,. The latter
argument also applies to case (b’) since L2P~1D(Q — Q) ¢ L*(Q — Q), L2P~D(Q) ¢ L*(R) and
L2P=D(Q x [0,T]) € L*([0,T]; L*(2)). Case(c’) uses the Vitali convergence theorem on .J, and
the dominated convergence theorem on g, and f, as argued in the proof of Theorem 3.3.1(iii).

]

Remark 3.3.4. At this stage, we only relied on the monotonicity property of Af in Proposition 3.2.2(iv)
to get our bounds. One may then wonder if the stronger notions of monotonicity established in Propo-

sition 3.2.2(v) can yield bounds better than (3.3.6). We answer this question positively by (slightly)

improving the dependence on T for p €]1,2] but at the price of more stringent assumptions on .J. For

this, we embark from (3.3.3), bound all terms as in the proof of Theorem 3.3.1, use Proposition 3.2.2(v)

and that L?(Q) C LP(Q) in this case to get

Hgn(’t)Hiz(Q) + Cl /Q? J(ZIZ - y)‘vNLgn(wvy)dedw <

(Ol = Tl gy + 18 = £ B oy ) 16nC D2y

for two positive constants C, C; (in the following C; is a positive constant). Assume in addition that J
is compactly supported and J(0) > 0. One can then invoke the Poincaré inequality [10, Proposition 4.1]
to show that

Thus )
1
Dl < enle) = [ eulatiialug + ([ &itiaa)
Altogether, we arrive at

C1Cs

an(vt)H;(Q) + TH&(WOH;(Q) =

2
(Cln = Ty + 150 = 16Dl ) 6Oy + E1Ca [ (et )

By integrating (P), it is easy to see by applying Proposition 3.2.2(v) and (iv) with h(z) = 1 that the
solution of (P) preserves the total mass in €, whence we deduce

[ entetrto = [ @) —gt@n + [ [ () - 56w )os

If (f,g9) and (fn, gn) have the same mass, we get
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10 c,C

(CHJn - ‘]HLQ(Q—Q) + an(Wt) - f('vt)HL'Z(Q)) Hén("t)HLQ(Q)’

and therefore

0 Cc.C
i llenC Dl 20 + 5 lIn Ol sy < (Cllon = Il sy + 1) = £ ) -

Applying Gronwall’s lemma yields the estimate

[un () = ul O] 20y < Fn = Fll 10 172202y T XP(=C1C2/2)||gn = 9| 120
2C

t oo,

(1 = exp(—C1Cat/2))|| Jn — JHLZ(QfQ)'

This bound is clearly better than (3.3.6). In turn,

2C
[ UHC([O,T];L2(Q)) < |lfn - fHLl([QT];LZ(Q)) + max (Hgn - gHL2(Q)’ mHJn - JHL2(Q—Q)> :

The same reasoning as above can be carried out to sharpen the error bounds for the discrete problems
in Section 3.4. Nevertheless, this will not be detailed further in this work.

3.3.2 Thecasep=1

We now turn to the case p = 1.

Theorem 3.3.5. Let u be a solution of(P) for p = 1 with kernel K and data (f,g). Let u, be a
sequence of solutions to(P) for p = 1 with kernels K,, and data (fn,gn). Assume that K and K,
satisfy (H.1) and (H.2), that K, K,, € L*2%(Q?), 9,9, € L*(Q) and f, fn € L*([0,T); L3(Q)). Then,
the following hold.

(i) w and u, are the unique solutions in the sense of Definition 5.2.6 of the corresponding evolution
problems.

(1) We have the error estimate
[[un = UHC([O,T];L2(Q)) < [lgn = 9HL2(Q) + | fn = fHLl([O,T];LQ(Q)) + || K — KHL2(92)' (3:3.7)

(iii) Moreover, if K, — K pointwise a.e. on Q2, g, — g pointwise a.e. on Q, f, — f pointwise a.e.
on Qx [0,T), and {|K,|?}nen is uniformly integrable over Q2, {|gn|*}nen is uniformly integrable
on Q, and {|ful?}nen is uniformly integrable on Q x [0,T]. Then

REIEOO | tn — UHC([O,T};LQ(Q)) =0

PROOF :
(i) Existence and uniqueness of u and wu, follow from Theorem 3.2.8 where we argue as in Theo-
rem 3.3.1(i) since g, g, € L*(Q) C L}(Q) and K, K,, € L>?(Q2) C L>(Q?).

(ii) Denote the error function &,(x,t) = u,(x,t) — u(x,t), then from Definition 3.2.6, we have a.e.

W = /Q (Kn(z, y)wn(z,y,t) — K(z, y)w(z,y,t)) dy + fu(x,t) — f(x,t)

= / Kn(m>y) (wn(mvyat) - w(m,y,t)) dy + / (Kn(mvy) - K(m7y))w(m7y>t)dy
Q Q

+ fn(mvt) - f(m,t),
(3.3.8)
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where w (resp. wy,) is the subgradient function associated to u (resp. wu,) as in Definition 3.2.6.
Multiplying both sides of (3.3.8) by &,(x,t) and integrating, we get

10
36Ol = [ (@) (wnl.9.0) = wle.y.0) (o) dady

+ / (o, y) — K (@, 9))w(@, y, ), t)dedy (3.3.9)
QQ

+ /Q (@) — (@, 1)) n(e, D)z,

In view of the monotonicity claim in Proposition 3.2.7(ii), we have

/Q2 Ky (z,y) (wp(x,y,t) — w(x,y,t)) &, t)dedy < 0.

Let us turn to bounding the second term. We have by the Cauchy-Schwartz inequality and that

HwHLw(mx}o,T[) <1,

‘/S)Q(Kn(:c,y) - K(:B,y))w(ac,y,t)fn(ac,t)dacdy|

S/ | K (2, y) — K(z,y)||én (2, t) |dedy (3.3.10)
02

< HKn - KHL?(Q?)Hén('vt)HB(Q)'

Inserting (3.3.10) into (3.3.9), ignoring the first term which is non-positive as argued above, and
using Cauchy-Schwartz inequality on the last term, we obtain

3}
augn(ﬁ)”p(g) S an('”f) o f('7t)HL2(Q) + HKn - KHL2(Q2)'
Integrating this inequality on [0,¢] and taking the supremum over ¢t € [0, 7], we get (3.3.7).
(iii) We argue again using the Vitali convergence theorem since K, K, € L°2(Q?) c L?*(Q?) and
LY([0,T); L*(9)) € L*(2 x [0,T]).
(Il

The following corollary is immediate in the same vein as Corollary 3.3.3.

Corollary 3.3.6. Let u be a solution of (P) for p = 1 with kernel K(x,y) = J(x — y) and data
(f,9). Let uy be a sequence of solutions to(P) for p =1 with kernels K,(x,y) = Jo(x —y) and data
(fnsgn). Assume that J and J,, satisfy (H’.1), (H’.2) and J,J, € L?>(Q —Q), that g, g, € L*(Q) and
fy fn € LY([0,T]; L?(Q)). Then, the following hold.
(i) w and u, are the unique solutions in the sense of Definition 5.2.6 of the corresponding evolution
problems.

(i) We have the error estimate
[un — uHC([O,T];LQ(Q)) < [lgn = 9HL2(Q) + |2 = fHLl([o,T];L2(Q)) + || Jn — JHL?(Q—Q)' (3.3.11)
(iii) Moreover, if J, — J pointwise a.e. on Q — Q, g, — g pointwise a.e. on Q, f, — [ pointwise

a.e. on Qx [0,T], and {|Jn|* nen is uniformly integrable over Q — Q, {|gn|?}nen is uniformly
integrable on Q, and {|fa|?}nen is uniformly integrable on  x [0,T]. Then

Hm [[un — “Ho<[07T};L2<Q>> =0

3.4 Error bounds for the discrete problem

Let K € R’ and g € R™ be discrete approximations of, respectively, the kernel K and initial
data g in (P), on a regular mesh of size d(n). Typically, one can take K = P,K and g = P,g. For
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1 < p < 00, the discrete p-Laplacian operator with kernel K is

~K d —2
Ap tu€eR” — — Z thij‘uj — ui‘p (uj — ui) = — Z thij\I/(uj — ui).

Jem Jem

~K
In the same way, we define the discrete 1-Laplacian operator as the set-valued operator A; : R —
nd ~K . .
28" such that n € A u if and only if

mi=— Y hiKijwij,
jen]?

where HWHOO <1, w;; = —wj;, and
wij € 0] - |(u; —uy).
By construction, we have the following simple lemma whose proof is immediate.

Lemma 3.4.1. For any K € R gnd u € R”d, the following holds:

(i) If 1 < p < 400,
K K
LA, (u) = A, (Iu).

(ii) Ifp =1,

I,n(x) = —/QIHK(:c,y)InW(:c,y)dy, where L,w(x,y) € 0| - |(Inu(y) — Iyu(x)).

Moreover, InWHLOO(QQ) <1and I,w(xz,y)=—-I,w(y,x).

3.4.1 The semi-discrete problem

Case p €]1,+oo[: We start with the case 1 < p < 400 and consider the space semi-discretization

of (P),
(=80 0. e (P

u(0) =g.

where u: t € Rt u(t) € R and similarly for f.

Our aim is to compare the solutions of problems (P) and (PED). The solution of (73]§D) being discrete
in space, we consider its continuum space extensions of u and f on Q for any ¢t > 0 as

un(x,t) = (Inu(t))(x) and fo(x,t) = (LL(t))(x). (3.4.1)

Theorem 3.4.2. Suppose that p €]1,400[. Let u be a solution of (P) with kernel K and data (f,g),
and u that of(PgD) with K = P,K, g = P,g and f(t) = P,f(-,t) for t € [0,T]. Let uy, and f, as
defined in(3.4.1). Assume that K satisfies (H.1), (H.2) and K € L°>%(Q?), and that g and [ satisfy
either one of the conditions (a), (b) or (c¢) in Theorem 3.5.1. Then, the following hold.

(i) w and uy, are the unique solutions of (P) with data respectively (f,g) and (fn, InPng).

(i) We have the error estimate

[ uHC([O,T];LQ(Q)) < [ Png - 9HL2(Q) + [0 = fHLl([o,T];m(Q))
[0 Bn B = K| e o
[0 Pu K = K| 2

Q2 under (a)-(b) (3.4.2)
under (c)

+CT
92)7

where C' is positive constant that depends only on p, g and f.
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(iii) If, moreover, g € L>°()NLip(s, L3(Q)), K € Lip(s, L*(22)) and f(-,t) € L*>()NLip(s, L3(Q))
for every t € [0,T], then

| un — “cho,ﬂ;mm» < C(+T)d(n)s, (3.4.3)

where C' is positive constant that depends only on p, g, f, K, s.

PROOF :
(i) Existence and uniqueness of u were proved in Theorem3.3.1(i). We also see that I, K veri-
fies (H.1) and (H.2). Using Lemma?2.1.27, we have I,g € LP(Q), f, € L'([0;T], LP()) and
LK € L>?(Q%) ¢ L*>1(Q?), and thus I,,K fulfills (H.3). In view of Lemma3.4.1(i), it follows
from (P;7) that the function u, satisfies (P) with kernel I, K and data (fn,I,g). Existence and
uniqueness of u, then follow from Theorem 3.2.4.

(ii) The claim is a specialization of (3.3.1) in Theorem 3.3.1(ii).

(iii) As K € L>2(Q?) C L*(9?), we insert the estimate (2.2.2) (see Lemma2.2.2) in the second
bound of (3.4.2).

O
Case p =1: We now turn to the case p = 1, and consider the evolution problem
Su(t) = —n(t)+£t), t>0, .
(P7)
u(0) =g,

where

n;(t) = — Z hiK;jsign(uj; —u;), and thus n(t) € A u(t).
j€n]?
Theorem 3.4.3. Let u be a solution of (P) for p = 1 with kernel K and data (f,g), and u is that
of (PPP) with K = P,K, g = Po,g and f(t) = P,f(-,t) for t € [0,T]. Let u, and f, as defined
in(3.4.1). Assume that K satisfies (H.1), (H.2) and K € L°*2%(Q?), and that g € L*(Q) and f €
LY([0,T); L*(Q)). Then, the following hold.
(i) uw and u, are the unique solutions in the sense of Definition 5.2.6 of the corresponding evolution

problems.

(i) We have the error estimate
Hu”__uH(XﬁLTLL2G)D = HIHE%Q"QHIP(Q)*‘an"fHLlQQI&L?@n)+4THIRI%J(“}(H12(92y (3.4.4)
(ii) If, moreover, g € Lip(s, L?(Q)), K € Lip(s, L*(Q2)) and f(-,t) € Lip(s, L*(Q)) for every t €
[0,T7], then
|un — uHC([OyT];LQ(Q)) < C(+T)d(n)®, (3.4.5)

where C' is positive constant that depends only on p, g, f, K and s.

Proor :

(i) Existence and uniqueness of u were proved in Theorem 3.3.5(i). In addition, I,,K verifies (H.1)
and (H.2). Using Lemma2.1.27, I,g € L?(Q2) C LY(Q), f, € L([0,T]; L*(Q)) C L([0,T]; LY(Q))
and I, K € L>2(Q?) c L°>1(Q?), and thus I,,K fulfills (H.3). By virtue of Lemma 3.4.1(ii), u,,
the space continuum extension of u, will satisfy (P) with kernel I,,K and data (f,, [,,g). Existence
and uniqueness of u,, in the sense of Definition 3.2.6 follow from Theorem 3.2.8.

(ii) This claim is a specialization of (3.3.7) in Theorem 3.3.5(ii).
(iii) Insert the estimate (2.2.2) in (3.4.4).
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O

3.4.2 The totally discrete problem

We establish in this section error bounds for fully discrete (in time and space) approximations of (P).
For that, let 0 < t; < to < --- <tny_1 <ty =T be a partition (not necessarily equispaced) of [0, T].

def

Let Tk—1 =

tr — tk,1| and denote 7 = max 7.
kE[N]

3.4.2.1 Forward/Explicit Euler discretization

Case p €]1,2]: We start with p €]1,2] and consider a totally discrete problem with forward/explicit
Euler scheme in time,

k k—1
u" —u ~K
- — A U4+ £, ke[N]
Th—1 p [ ] (pEDF)
u’ =g,

where u*. f € R™. We have implicitly assumed that f does not depend on time, which is a standard
assumption in the context of explicit discretization.
Since our aim is to compare the solutions of problems (P) and (P, "), we introduce the following

continuum extensions in space and/or time of {u as

k
}ke[N}
ub = I,uf ke [N], and f, = I.f,

(@, ) = E T h gy ¢ BTk () € Oty tal, b € [N,

n

Tk—1 Tk—1
N

n(,t) = Y _up  (@)Xpp (1), (1) € Qx]0, T).
k=1

Then, in the same vein as Lemma3.4.1, it is easy to see that (PPT DFY is equivalent to the following
evolution problem

{ Sty (@, 1) = —ALKa, (2,) + fu(@), (2,1) € 2x]0,T], (3.4.6)

tn(x,0) = Ig(x), =€
Before turning to the consistency result, we collect some useful estimates.

Lemma 3.4.4. Consider problem (PPTDF) with kernel K, data (f,g) and variable step-size 7, <

2-p
QCHA;{”KUZ‘; - f"HII'j;(IQ)’ where C' is the constant in Proposition 5.2.2(vi). Assume that I,g € L?*()

and I,K satisfies (H.1), (H.2) and (H.3). Suppose also that for each n € N, f is such that (P, ")
has a stationary solution u* and that sup,,cy Hlng — Inu*HLZ(Q) < 400. Then

Uy (- t) € L2(Q),Vt € [0,T), and sup Hﬂn(,t) — Inu*HLQ(Q) < +00.
te[0,T),neN

Remark 3.4.5.

(1) Condition on the time-step 7, can be seen as an abstract nonlinear CFL condition. It is better
than the one in [90] since we here exploit the Holder continuity of Al»¥ on L*(Q) for p €]1,2],
see Proposition 3.2.2(vi). For p = 2, where Aé"K is linear Lipschitz continuous operator on
L?(Q2), the condition reads 7, < 2C. Such condition for explicit time-discretization of evolution
problems with accretive and Lipschitz-continuous operators is known, see e.g.,[116]. It is also
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consistent with known convergence results for finding zeros of co-called co-coercive operators on
Hilbert spaces [21].

(2) The assumption on f and K imply that f, € L*(Q). Indeed, (3.2.10) entails

17l 2 = 1855 (n0) | gy < 2ol gy | Fnr” 22

(3) The assumption made on f is trivially true when f = 0 since 0 is a stationary solution in this
case. In turn, using Lemma2.1.27, one can see that the uniform boundedness conditions on g
and K are fulfilled if g = P,g and K = P, K, where g € L?(2) and K satisfies (H.1)-(H.3).

PrROOF :  We show the claim by an induction argument. Since Aé”K(Inu*) = fn, we have

1 * (12
[t = Inu HL2(Q)
— g = Ly~ 2 [ (AP () @) ~ (@) (g(a) ~ L) da

+TOHA[" _f”Hi2(Q
= || I.g - Inu*Hi2 - 27‘0/Q (AI”K( I,g)(x) — AIIU"K(Inu*)(:B)) (Ing(x) — I,u*) dx
+ 76 A5 (Ing) = full2(q

By assumption on g, u* and 74, we can invoke Proposition 3.2.2(vi) to get

g, = |72

S R e 2CToHN”K 1ng) = fultaey” + [ A5 (1) = fallz2(a)
< [|1ng = Tnw*[[ 120 — 1l A7 K (ng) = full 120 (chNn an;(gW” )

2
< |[Ing = Tnu*|| 2 g
Suppose now that, for any k& > 1,
k 2 2
len = 20w ([ 20y < (|18 = Low"|[ 2
and thus u* € L?(©2). We can then use Proposition 3.2.2(vi) as above to see that

= L[|

<|[Ing - I”u*H2L2(Q) — 7| | A () f”H2L2(Q) (QCHAsz"K anLz () S Tk)
<|[Ing - I”u*H2L?(Q)

Thus the sequence {Hu’ﬁHL2(Q)}k‘E[N] is bounded, and so is Hﬂn , for t € [0,T] by its definition.

Bl 12 ()
We also have

sup Hﬂn(,t) — Inu*||L2(Q) = sup Huf; — Inu*||L2( < sup HIng I,u HL2 < +o0.
t€[0,T),neN (n,N)eEN2 ke[N]

0

Lemma 3.4.6. In addition to the assumptions of Lemma 5.4.4, suppose that sup,,cy HInKHLOO’I(QQ) <
+o00. Then

sup H’an(-,t) — Up (-, HL2 <Cr,
t€[0,T],neN

where C is a positive constant that does not depend on (n, N,T).
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PRrROOF : It is easy to see that for t €]tx_1,tx], k € N,

_ B qu - uffl
Un('at) - un('vt)HLQ(Q) = (t - tlf—l)HTHLQ(Q)
= (t —tp1)|| AL Fuft - f"HL2(Q)

(
(t — toor) || AL Fuft - Af»"KIn“*HL'Z(Q)

IN

THAzIanKufz_l - AZI?nKI”u*HLQ(Q) = THAsz"Kan(" t) — AP{nKI"u*HLQ(Q)'

As Aé”K is Holder continuous on L?(£2) with exponent p — 1, see (3.2.10), we get

Un (-5 1) = ﬂn(‘vt)HLZ(Q) < sz/QC;/ZHKHLooJ(m)Hﬂn('vt) a Inu*| Z;(IQ)'

We then take the supremum over ¢ and n, and use Lemma 3.4.4 to conclude. (Il
We are now in position to state the error bound for the totally discrete problem (PpT by,

Theorem 3.4.7. Suppose that p €]1,2]. Let u be a solution of (P) with kernel K and data (f,g)
where [ is time-independent, and {uk}ke[N] 1s the sequence generated by(PpTDF) with K = P, K,
g = P,g, f = P,f and 1, as prescribed in Lemma 3.4.4. Assume that K satisfies (H.1), (H.2) and
K € L*2%(Q?), and that f,g belong either to L>(Q2) or L>(Q). Then, the following hold.

(i) u is the unique solution of (P), {uk}ke[N] s uniquely defined and {HInukHLQ(Q)}qu] 1s bounded
(uniformly in n when £ =0).

(1i) We have the error estimate

Sup HInuk_l —u(, t)”[;(g) <exp(T/2) <HITLPTLg - gHL2(Q)
kE[N],tE]tk_l,tk]

I,P,K — K|, . L?(
+OTV? [ 7Y6-P) 1| £, - f||L2(Q) + | I 22 9€ OO( ) > (3.4.7)
[1nPuK = K[ 22y, 9 € L¥(Q)

for T sufficiently small, where C' is positive constant that depends only on p, g, f and K.
(iii) If, moreover, f, g € L>°(Q) N Lip(s, L?(Q)) and K € Lip(s, L?(Q?)), then

sup Ly = u(, 1) o ) < Cexp(T/2) ((1 +TY2)8(n)" + T1/271/<3—p>) , (3.4.8)
kE[NLtG}tk_l,tk]

for T sufficiently small, where C' is positive constant that depends only on p, g, f, K and s.

Proor :  In the proof, C is any positive constant that may depend only on p, g, f, K and/or s, and
that may be different at each line.

(i) Existence and uniqueness of u were proved in Theorem 3.3.1(i). The claimed well-posedness of
the sequence {uk}ke[m is a consequence of Lemma3.4.4 and Remark 3.4.5(3).

(ii) Denote gn(ma t) = ﬂn(xat) - u(a:,t), gn(xat) = ﬂn(xat) - u(x>t)7 gn = InPpg and K, = I, P, K.
We thus have a.e.

agéf’t) = — (A (Un(w, 1) — A (u(=, 1)) + (fulz) — f (=)

— — (A (@@, 1) - AK (ula, 1)) — (MK (u(e, 1)) — AX (u(@,1))) + (fule) - f(2)).
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Multiplying both sides by fn(ac, t), integrating and rearranging the terms, we get
10 2 _ _

—/ (A]I){”u(a:,t) - A{fu(:n,t)) Enlx, t)de

Q
Ky 5 Ky . _

- / (DK, (w,8) — A (@, 1)) (i, 1) — (@, 1)) deo
Q

+ [ (o) = f@)) (a1

Since f,g € LP(£2) in both cases, so is u(-,t) thanks to (3.2.11). We also have @, (-, t) € L*(Q) C
LP(Q) by Lemma3.4.4. We are then in position to use Proposition 3.2.2(iv) with h(z) = z to

(3.4.9)

assert that the first term on the right-hand side of (3.4.9) is nonpositive. Let us now bound the
second term.

Similarly to the estimates(3.3.5) and (3.3.4) in the proof of Theorem3.3.1, and using Young
inequality, we have

‘/ AK" u(zx, t) A u(w, t)) & (e, t)do|

g€ L*(9Q)
g € L>(Q),

CHK _KHL°°2(92 5 HL?(Q)’
(-t

Hmy
CHKn - KHioo,z(sz g€ L2(Q)
C||Kn = K[72ge) 9 € L¥(Q).

&n(

IN
| = /—/A

<

=t)H2L2(Q) +

For the third term in (3.4.9), we invoke Lemma 3.4.6 to get
| /Q (ALK 1y (w,8) — A, 1)) (i@, 1) — (@, 1)) da
< AR () = Apru(, 1) 1
< O||AK an (-, t) — Al t)

Un (-, t) — n (-, HL2(Q)

HL2(Q)T'

We then use the fact that A}I)"K is Holder continuous on L?(£2) with exponent p — 1, see (3.2.10),

to obtain

HAII)(n'an(7t> - A]Ifnu(at)HLZ(Q) < CHEn(vt ‘ LQ(Q) <C <

| I;(lg) + Tp_l) ;

where we used Lemma 3.4.6 to go from &, to &,, and that p €]1,2]. It then follows by Cauchy-
Schwartz inequality that

‘/ (Aff"ﬂn(a:,t) — Aff"u(a:,t)) (i () — Up(, 1)) de|
Q

< € (Jénl- 0l aiqy + )

< M + 0D 70,

Using Young inequality to bound the last term in (3.4.9), and combining the bounds on the three
other terms, we have shown that

9 i

ot

Dl + 004704 5= Tl

. 1K — K[ ey 9 € LA(Q) )

HKH_KHiz(m)’ g €L>(Q)
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Using the Gronwall’s lemma and taking the square-root, we get

HQN““HCQQTmL%Q»fEeXP(TVQ)<H]nf%9“9HL%Q)

2
O T P e B )

[1nPuK = K[| 22y 9 € L®(Q)
(3.4.10)

Since 1/2 < 1/(3 — p) < p/2 for p €]1,2] the dependence on 7 scales as O(7Y/3=P) for 7
sufficiently small (or N large enough). Inserting (3.4.10) into

k—1 _ y
sup wy = (e t) = ||t, —u , < ||ty —u ) +Cr,
o sy = = llopazian < lin = wllogoamssny
(3.4.11)
completes the proof of the error bound.
(iii) Plug(2.2.2) into (3.4.7).
O

Remark 3.4.8. Error bounds in LP(€2) were derived in[90] for forward Euler discretization. Their
rate is better than ours and is provided for the range p €]1, +oo[. Unfortunately, we believe that their
proof contains invalid arguments that can be fixed but only for p €]1,2].

Case p =1: We now turn to the case p = 1, and consider the discrete system
k k—1

u —u" k-1
_— = +f, ke|N],
Tk—1 n [ ] (fP;[’DF)
w =g.
where
~K
nt = — Z h; K sign(u? - u’;)v and thus n* € Ay u”.
j€[n]

We consider the continuum extensions in space and /or time of { uk} ke[n] 28 before, namely u*, i, and

Uy, fn = I,f, and the space-time continuum extension of {nk}ke[m

N

(@, t) = > (L") (@)X)t 00 (1) = — /Q LK (x,y) sign(in (y, ) —in(z, t))dy, (z,t) € Qx]0,T].
k=1
In view of Lemma 3.4.1, these extensions satisfy the evolution problem
o0 ~ _ _
Sitn(z,t) = —in(x,t) + fu(x), (x,t) € 2x]0,T7, (3.4.12)
ﬂn(m,O) = ng(m)v T e Q,

and
Tin(x, 1) € AEq, (x,t).

We have the following counterpart estimates of Lemma 3.4.4.

Lemma 3.4.9. Consider problem (P{PY) with kernel K, data (f,g) and variable step-size
Qg

= , where Zai < +o0.
max (HInnk_anLQ(Q)71) keN
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Assume that I,g € L*(Q) and I, K satisfies (H.1)-(H.2) and (H.3). Suppose also that for each n € N,
f is such that (P;DF) has a stationary solution u* and that sup,,cy Hlng — Inu*HLZ(Q) < 400. Then

tn (- t) € L2(Q),Vt € [0,T), and sup Han(,t) — Inu*HLQ(Q) < +00.
t€[0,T],neN

Remark 3.4.10. The condition on the time-step 7 is reminiscent of subgradient descent and has
been used in [90]. The assumptions on (f, g, K) are again verified when f =0, g = P,g and K = P, K,

where g € L?*(Q) and K satisfies (H.1)-(H.3).
PRrROOF :  Define the series s & Zf:o a?. As in Lemma 3.4.4, we proceed by induction using the
monotonicity of the 1-Laplacian (Proposition 3.2.7(ii)). Indeed, since f, € Af,"K(Inu*), we have

[ I”u*H2L?(Q) = |[Ing - [”u*HiQ(Q)
— 27’0/Q (AII)"K(Ing)(a:) — Aé”K(Inu*)(x)) (I,g(x) — I,u*) dz + a%.
By assumption on g, u*, we can invoke Proposition 3.2.7(ii) to get
g, = T2 < ([T = Tnw” |72 + 501
Suppose now that, for any k& > 1,
[Jury — In“*Hi'Z(Q) < ||Ing - I"U*HQLQ(Q) + Sk-1,
and thus uf € L?(2). We can then invoke again Proposition 3.2.7(ii) to see that

H“fLH - I”U*HiQ(Q)

)
= [Jup, — Inu HL2(Q) - QTk/ﬂ

(AFR @) (@) — ALK (L) (@) (uh(@) - Lou”) de + af
< ||Ing - I”u*HiQ(Q) + Sk
This shows that for all k € N,
H“Z - I”u*HiQ(Q) < |[Ing - In“*HiZ(Q) + Sco,

and thus {HInUkHLQ(Q)}ke[N] is bounded. In turn, so is Han(-,t)HLZ(Q) for t € [0,T] by its definition.

Moreover,

- _ P
te[O?;]I,)neNHun(’t) Inu HL2(Q) (n,N)SEE,k:e[N}Hun Inu HL2(Q)

< sup HIng — Inu*HL2(Q) + sééz < 400.
neN

We also have the following analogue of Lemma 3.4.6.

Lemma 3.4.11. In addition to the assumptions of Lemma 5./.9, suppose that sup,,cy HI”KHLOOJ(W) <
+o00. Then

vn'vti_n'yt SC;
te[O?;l}?neNHu () = n )HLQ(Q) !

where C is a positive constant that does not depend on (n, N,T).

PROOF :  Arguing as the beginning of Lemma3.4.6, we get for any t €]tx_1,tx], k € N,

}ﬂn(-,t) - ﬂn("t)HLZ(Q) < THﬁn(mat) - anLQ(Q)'
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By Hoélder inequality, we have
2

Hﬁn(ac,t)HiQ(Q) :/Q‘/QIRK(m,y) sign(tn (y,t) — tp(x,t))dy| dx

2
2
< ([ rkimwiy) do < 1K

The same bound also holds on H fn We then take the supremum over ¢ and n to conclude. [

20y

Theorem 3.4.12. Let u be a solution of (P) with kernel K and data (f,g) where f is time-independent,
and {uk}ke[N] is the sequence generated by (P!PY) with K = P,K, g = P,g, f = P,f and 1
as prescribed in Lemma5./.9. Assume that K satisfies (H.1), (H.2) and K € L>*%*(Q?), and that
f,g € L*(Q). Then, the following hold.

(i) w is the unique solution of (P {u }ke[N] 1s uniquely defined and {HI u HL2 }kE[N] 1s bounded
(uniformly in n when f =0).

(i) We have the error estimate

Lt — (-t < T/2) | | I,Png —
ke[N]jg]I;k_l,tk]H " u )HLQ(Q) exp ( /)<H g 9HL2(Q)

+CoTV? (71/2 + 1 fn = Fll ooy + | TaPaks - KHLQ(SP)) ) (3.4.13)

where C' is positive constant that depends only on K.
(i1i) If, moreover, f,g € Lip(s,LQ(Q)) and K € Lip(s, L*(Q?)), then
sup | Lou®t — (-, 1)]] o) < Cexn(T/2) ((1 +TY2)8(n)" + T1/271/2) . (3.4.14)
kE[N],te]tk_l,tk]

where C' is positive constant that depends only on g, f, K and s.

Proor : (' is any positive constant that may depend only on g, f, K and s, and that may be
different at each line. We use the same notation as in the proof of Theorem 3.4.7.

(i) Existence and uniqueness of u were proved in Theorem 3.3.1(i). Well-posedness of {u®
follows from Lemma 3.4.9 and Remark 3.4.5(3).

(ii) We have

ag”ém : / Kn(2,y) (wn(2, y, 1) — w(z, y, 1)) dy

}ke[N]

+ / (Eon(,y) — K (0, 9))w(@, y, O)dy + (ful@) — f(@)),
Q

where w is the subgradient function associated to u (see Definition 3.2.6), and w,(x,y,t) =
sign(iin (y,t) — tn(x,t)). Multiplying both sides by &,(x,t), integrating and rearranging the
terms, we get

35 1Ol = /Q Jn(,y) (@n(w,9,1) = w(z,y, ) (W, ) = (@, 1)) dedy

/QQ(K (x,y) — K(x,y))w(x,y, ) (x, t)dedy

(3.4.15)
+/QKn (wn(x,y,t) —w(x,y,t)) (U (x, t) — Uy (x, t)) dedy
+/Q )fn(m,t)dm.
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As u(-,t) € L and 1, (-,t) € L?(Q) C LY(Q) by Lemma 3.4.9, the monotonicity claim in Propo-
sition 3.2.7(ii) yields that the first term in (3.4.15) is nonpositive. The second and third terms
can be easily bounded as

2) gn( t

IN

HKn _KHL2(Q

} | (En(@y) — K@, y)uw(, Yy, )én(, t)dady| 2@

1

4

&nl(

IN

2 2
t)HL2(Q) + HKn o KHL2(QZ
and the third term using Lemma 3.4.11

| /Q Ko(®,y) (@n(2,y,1) — w(@, y,1)) (i (@, ) — (@, 1)) dedy| < 2||K |} oo™
Bounding the last term by Young inequality, we obtain
0+ .
o716 GOy < NIEnC DN 22y + 2l = 2y + 21En = K2z + O

Using the Gronwall’s lemma and (3.4.11), we get the claimed bound.
(iii) Insert(2.2.2) into (3.4.13).

3.4.2.2 Backward/Implicit Euler discretization

Forward Euler discretization was able to deal only with p € [1,2]. For backward Euler discretization,
we will tackle p €]1, 400].

We consider the fully discrete problem with backward Euler time scheme

k k-1
u” —u ~K
- = A u+fF ke N,
Th_1 p [V] (ppTDB)
uO =8,

where u”, f¥ R". This can also be written equivalently as

k k—1 k
u =J ~x(u + 11 17).
T,HAP( k1)

This is known as the proximal iteration, and is at the heart of so-called mild solutions as well as
existence and uniqueness of solutions to (P) through the nonlinear semigroups theory [57, 25, 101, 26].
Denoting as before uf = I,u* and f* = I,,f* the space continuum extensions of u* and f*, we also
have

k k—1 k
U, = JkalA;{"K(un + Tk—lfn)'

We also let the time-space continuum extensions

(@, 1) = E L)+ EE I k) (@ t) € Qxtet, ta], k € [N],

n

T k—l Tk—1
N
Zu X]tk 1 tk}( ) and f’ﬂ Z, t = Z X]tk 1,tk]< ) (w7t) € QX]()?T]
k=1
Observe that the difference with the explicit Euler case lies in the definition of @,. From (73]7T DBY one

clearly sees that 1, and i, then satisfy again (3.4.6) with f,(z,t) replacing f,(x).
The following estimates holds.

Lemma 3.4.13. Consider problem (PPTDB) with kernel K and data (f,g) and step-sizes 1, > 0 for all k.
Assume that I, K satisfies (H.1)-(H.2) and (H.3), that I,g € L™>P9(Q), for some q € [1,+00], and
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SUD,eN HIngHLq < 400, and that f, € L*([0,T]; L™*>P9)(Q)) and sup,,cy Hf"HLl([O,T];Lq
Then

Q) < +00.

(-, t) € L™™PD(Q) vt € [0,T], and sup Han(-,t)HLq(Q) < +o00.
t€[0,T],neN

Proor :  Recall from Proposition 3.2.2(vii) that J, 1
D

nonexpansive on L(Q) for all ¢ € [1,+oc]. Therefore, by induction, we have that for any k € [IV],

k, A > 0, is single-valued on LP(2) and

k N
HquHLP(Q) = HIngHLP(Q) +Z7-in’VZZHLP(Q) = HI”gHLP(Q) +ZTin7ZIHLP(Q)
= i=0

= HIngHLP(Q) + anHLl([O,T};LP(Q))'

Thus u* € LP(Q), for all k € [N]. In turn, J_ ALK x (ul) is single-valued for all k, and arguing as above,
its nonexpansiveness yields

k _
H“nHLq(Q) < HIngHLq(Q) + Hf”HLl([O,T};Lq(Q))‘

Taking the supremum over k and n and using the definition of @, and the assumptions on g and f, we

conclude. O

Lemma 3.4.14. Suppose that the assumptions of Lemma 3.4.13 are satisfied with ¢ = 2 when p €]1,2],
q =2(p—1) whenp > 2. Assume in addition that sup,cy HI"KHLOOJ(Q?) < 400 and sup,,cn an <

+o00. Then

HBV([O,T];LQ(Q))

sup Hﬁn(,t) — Up (-, HLQ <Cr,
t€[0,T],neN

where C is a positive constant that does not depend on (n,N,T).

PROOF :  For t €]t_1,tx], k € N, we have

k=1 k

Up (v, t) — Un( t)HLQ(Q) = (tx — t)HuHLQ Q)
= (tp—t HAI"K g kaLQ(Q)
< 7| Ay = £l 20

:THAIIJnK n(sti) = fulos i HL?(Q)

T (HA}I;nKUn('vtk)HLQ +2an ) z fn ti—1 HLQ + an('?O)HLz(Q)>

(HAIn U (-t HL2 + Vara(f,) +an ) )HLQ(Q))

- <HAIn tin ()| 12y + anHBV([O,T];LQ(Q))) ' (3.4.16)
For p €]1,2], we have from (3.2.10) that

1A K )] 2y < 2705 || ey 1 D[

HL?(Q) L2(Q)"

For p > 2, it is easy to to show with simple arguments as before that

HAI” Un, (- tx) HLz <2 3/2HKHL001 2)‘}11”("75)’1;(1—1)(9)'

Inserting the last two estimates in (3.4.16), taking the supremum over ¢ and n over both sides, and
applying Lemma 3.4.13, we conclude. [l

— 55 —



Chapter 3 3.4. Error bounds for the discrete problem

Remark 3.4.15. As observed in the case of explicit time-discretization the uniform (over n) bounded-

ness assumption made in the last two lemmas hold true if g = P,g, K = P, K and f*¥ = T tt:,l P,f(-,t)dt

where g, f and K verify simple assumptions. Indeed, in this case, we have thanks to Lemma2.1.27
that for any ¢ € [1, +o0],

igg”lng“m(m = HgHLq(Q)> zlelgHInKHLoovq(m) = HKHLoo,q(m)’

i ¢ Hf”HLl([o,T};Lq(Q)) < HfHLl([o,T];Lq(Q)) and i Hf”HBV([o,T];Lq(Q)) < HfHBV([o,T];Lq(Q))'
In fact, the condition f € BV([0,T7]; L9(2)) is sufficient to ensure that
S 1l 1 o iy < o0 and sup il o pyzaceyy < oo

Indeed, arguing as in[37, Lemma A.1|, this conditions implies f € L*°([0,7]; L9(£2)). In turn, using
Lemma2.1.27, we get

Hf"HLl([O,T};Lq(Q)) = HfHLl([O,T];L‘I(Q)) = HfHLoo([o,T];Lq(Q))

< Hf("O)HLLI(Q) + Vary(f) = HfHBV([O,T};L‘I(Q))'

We are now in position to state the error bound for the fully discrete problem with backward /implicit
Euler time discretization.

Theorem 3.4.16. Suppose that p €]1,400[. Let u be a solution of (P) with kernel K and data (f,g),

and {uk}kze[N] is the sequence generated by (PE\DB) withK = P,K, g = Pyg, f* = =T - ;:“_1 P,f(-,t)dt

Assume that K satisfies (H.1), (H.2) and K € L>?(Q2), and that f, g satisfy either one of the condi-
tions (a), (b) or (c) in Theorem 3.5.1, and that f € BV([0,T); L%(2)). Then, the following hold.

(i) w is the unique solution of (P {u }kG[N] s uniquely defined and {HI u HL2 }ke[N] 1s bounded
uniformly in n.

(i) We have the error estimate

k _
ke[N]fg]It)kihtk]HInu HL2 <exp(1/2) <HInPng_gHL2(Q)+ an—fHLl([o,T];m(Q))

7Y/G=P) 4 ||I,P, K —KHLooz(m) under (a)

2p—1
Y P/ (2p=1) 4 HInPnK — KHLN’Q(QQ) under (b) (3417
r1/G-p) 4 HInPnK - KHL2(QQ) under (¢) when p €]1, 2]
T+ HInPnK—KHLQ(QQ) under (¢) when p > 2.

for T sufficiently small, where C' is positive constant that depends only on p, g, f and K.

(iii) If, moreover, g € L*>(Q) N Lip(s, L?(Q)), K € Lip(s, L?(Q?)), and f € LY([0,T]; L>=(Q)) N
Lip(s, L*(Q x [0,T1)) then

ap it sl < Cospttr 470y
kE[N]t€]ty—1,tx)]
min(s,1/(3—p)) h €l1,2
LT when p €]1,2] 1) (3.4.18)
- when p > 2

for T sufficiently small, where C' is positive constant that depends only on p, g, f, K and s. The
term 7° in the dependence on T disappears when f is time-independent.
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ProoOF : In the proof, C is any positive constant that may depend solely on p, g, f, K and/or s,
and that may be different at each line.

(i) Existence and uniqueness of u were proved in Theorem 3.3.1(i). Well-posedness of the sequence
{uk}ke[N] is a consequence of Lemma 3.4.13 and Remark 3.4.15.

(ii) For p €]1,2], the proof of the error bound is exactly the same as that of (3.4.7) in Theorem 3.4.7
using the modified definition of @, and that now f is time-dependent, and thus we replace f,
there by fn We also denote g, = I,P,g and K,, = I, P, K.

For the p > 2, the argument is also similar, and the main change consists in bounding appropri-
ately the third term in (3.4.9). We then invoke Lemma 3.4.14 to show that

T,

‘/ (A an(z,t) — Afru(@, b)) (n(@, 1) — @n(@, 1) dz| < Cl|AF @ (1) = Al )| 12 g

where C' is indeed a finite constant owing to the assumption on f and Remark 3.4.15. We now

use Lemma 3.2.1(ii) to get the bound
Kn 5 Ky 2
AT (- 8) = Ay u( t)Hm(Q)

— [1 [ Kalw.w) (0(an(y.6) — w(e,1) ~ V(o) - ula, ) dy|*da
Q Q

2
< [ ([ Bl w)l&.) ~ &) (o) = 0]+ lutw.0) ~ e )7 dy) e
(3.4.19)
For case (¢), we infer from Lemma3.4.13 (with ¢ = +00) and Lemma2.1.27 that

HAzIfW“(’ t) - AK”“ HL2(Q

2
< (4 (oo + 1N sgoiamion)) . < R —sn<w,t>>|dy) da
2(p—
= (4 <HgHLoo(Q)HfHLl([o,T];Loo(Q))>) H HLoo2 02) / En(2,y)[&n(y, 1) — &n(a, 1)) ’ dzdy
2( _
=4 (4 (HgHLOO(Q)HfHLl([O,T];LOO(Q))>> . HKHLOO,Z‘(W) /92 Kn(f”vy)’fn(m’t)‘ dxdy

2(p—2) _
<4 (4 (19l oo 1 orpzeiany)) IE I on €Ol 0 (3.4.20)

It then follows by Cauchy-Schwartz inequality that

‘/ AK"un(m t) — AK" (,t)) (tin (2, t) — tn(z,t)) de|

< Cllén(t HL?(Q)T

<C (Hsnc,wup o7+ )
1

< 6 HL2 () + o,

Inserting this in (3.4.9), using again Young inequality for the last term, we have shown that when
p > 2 and (c) holds,

a”gﬂ(’t)uiﬁ(ﬂ) < t)HiQ(Q) +C <7—2 + an(vt) - f(vt)Hiz(Q) + HKn - KH%Q(QZ)) .

Using the Gronwall’s lemma, taking the square-root and using (3.4.11), we get the error bound
in this case.

It remains to consider the case (b), when p > 2. For this, we embark from (3.4.19), and use the
continuity of ¥ in Lemma3.2.1 (i) (see (3.2.4)) with & = 1/p. Combining this with Jensen and
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Hoélder inequalities, we get
125" 00 (-, 8) = Afmul, )70
<N ey [, (ol létw) = €t )7
(|t (y, t) — in (2, )] + |uy, t) — u(e, )])*P~V 727 dedy
_ _ 1/p
<N sy [, (Fnlr léntwt) = €t

((Kn(%y))(zz DI (1t (y, 1) — G, 1) + uly, t) — u(a:,t)|)2<p—1)—2/p> dzdy
1/p
< 1 e 02y ( /Q Ku(,y)[E(y. 1) —én@c,t))fdmdy)

(»-1)/p
( | K@) (1T(y,8) = @ D] + u(y, 6) - u(@, )]~/ dasdy)

_ 1/p
< HKHL‘X’J(Q2) (4/92 Kn(az,y)lfn(m,t))fdazdy>

2p—2/(p—1 2p—2/(p—1) w1/
(272070 [ Ktasw) (e )] + atan)) 7wty
02

2 _ 9 1/p
< 4HKHLOO,1(QQ) </Q2 ‘gn(’lf,t))} dacdy)

(r—1)/p
(/ (|n (e, )] + !u(ac,t)‘)zP*Q/(pfl) dacdy) :
02

Observe that L#»~2/(=1(Q) ¢ L>P=1(Q), hence by Hélder inequality and Lemma 3.4.13 with
g =2(p—1) and Lemma2.1.27, the last term in the above display can be bounded as

(r—1)/p
(/ (|tn (. t)| + ‘u($,t)‘)2p72/(p71) dwdy)

2(p—1)—2/p

< (e, 0)] + [ut. ][22 &)

2(p—1)—-2/p
< (H9HL2<P—1>(Q) + HfHLl([O,T};L2<P—1>(Q))) :

We then arrive at

|AS (-, t) — AR

5Dl ay < I ooy 1740y

Hence
’/ "un x,t) Af”u(a:,t)) (Up (2, t) — Up(x,t)) dw‘
< Cllén D gy
<C(H€n 7 Hi/ng)”f /)

+ C(72/@p=1) 4 20+ ey,

DIz

Inserting this into (3.4.9), using again Young inequality for the last term,

|&n (-

fo . B _
aHgn(7t)Hi2(Q) < HL2 + C( 2p/(2p=1) + T(p+1)/p + an('at) - f(?t)Hig(Q)
2
I8 = Kl )
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Hence, using the Gronwall’s lemma, taking the square-root and using (3.4.11), we get the er-
ror bound in this case, after observing that the dependence on 7 scales as O(7?/(?»=1) for 7
sufficiently small (or N large enough) since 1/2 <p/(2p—1) < (p+1)/(2p) for p > 2.

(iii) Plug(2.2.2) into (3.4.17) after observing that

[fn = fHLl([O,T];LQ(Q)) < Tl/szn - f”L?([o,T];L?(Q)) = Tl/Qan - fHL2(Qx[o,T]) < CT"? max(r*,8(n)*).

For the scaling in 7, we use that s €]0, 1].
]

Another way to derive error bounds for (PI,T DBY is as follows. To lighten notation, denote g, = I,, P, g,
fu(t) = L, Py f(-,t) for t € [0,T], and K,, = I, P,K. Let u, be a solution to (P) with data (fn, gn)
and kernel K,,. Under the assumptions of Theorem 3.4.16 on (f, g, K), u, is unique. Then one has
< lan -

H“n - UHC([O,T];L2(Q)) U”HC’([O,T];LQ(Q)) + H“n - UHC([O,T];L2(Q))'

Theorem 3.3.1 provides a bound on the last term of the right-hand side in the above display, which
captures the space-discretization error. Bounds for the first term, which corresponds to the time-
discretization error, were derived in C([0, T]; LP(2)) by Crandall and Liggett in their seminal paper [57]
for constant time step-size and f = 0, and then extended to non-uniform time partitions in[101], see
also [116]. More precisely, using [116, Theorem 1] and the fact that @, (-,0) = uy(-,0) = gy, the following
bound holds

[ U”HC([O,T};LP(Q)) < |/ - anLl([O,T];LP(Q)) + 27/ (Hf% - A]Ifng”HLP(Q) +Varp<fn)> T2,

The first term can be bounded as follows (for constant step-size to simplify)

anf"HLl([O,T];LP(Q)):Z/t (ks /lfn("s)dsfn('vt)HLp(Q)dt
ti
*lz A ORI

7—1/_T </ £ t+s) — -,t)HLp(Q)dt> ds

<l / " sV, (f)ds = 7Vary(f).

—T

| /\

IN

where we used Lemma2.1.27 in the first inequality and [37, LemmaA.1] in the last one. Overall,
unHC([o T):LP(Q)) scales as O ((TT)1/2) for 7 suf-

ficiently small. The rate O(7!/?) is known to be optimal for general accretive operators in Banach

this shows that the time discretization error Hﬂn —

spaces (see[116]). In turn, by standard comparisons of L%(2) norms (assuming that (c) holds so that
boundedness of @, and wu, is in force), this strategy gives us a bound which scales as

v o)
Hu" — UnH(J([O,T];L”(Q)) - 19) (Tp/4) P 6]

This is strictly worse than the rates in 7 obtained from (3.4.17). There is however no contradiction in
this and the reason is that the strategy outlined above is too general and does not exploit all properties
of the operator A{f among which its continuity that was a key to derive better rates in 7. In this sense,
our present results are optimal. We also remark that our rates are consistent with those in[90] for
p > 2.
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3.5 Application to random graph sequences

In this section, we study continuum limits of fully discrete problems on the random graph model of
Definition 2.3.7 with backward/implicit Euler time discretization. Explicit discretization can also be
treated following our results in Section 3.4.2.1, but we will not elaborate further on it for the sake of
brevity.

Recall the notations in Section2.3.4, in which case we now set Q@ = [0,1]. Recall also the the
construction of the random graph model in Definition 2.3.7 where each edge (7, j) is independently set
to 1 with probability (2.3.5). This entails that the random matrix A is symmetric. However, it is worth
emphasizing that the entries of A are not independent, but only the entries in each row are mutually
independent®. This observation will be instrumental in deducing our error bound.

We consider the fully discrete on K-random graphs G(n, K, p,) with backward Euler time scheme

uf — uk! 1
- = > U(uj —w;) + 5, ke[N], S
k=1 " ji6.5) EB(G(n, K pn)) (Pp )
u’ =g,

where u¥, f¥ € R”. It is important to keep in mind that, since G(n, K, p,,) is a random variable taking

TDB,G
7) )

values in the set of simple graphs, the evolution problem (7P, ) must be understood in this sense.

Observe that the normalization in (PPTDB’G)

for details).

Problem (’P},“)B‘G) can be equivalently written as

by pnn corresponds to the average degree (see Section 2.3.4

k_ k=1
- ~A
u-u :—Apuk—i—fk, k € [N],
Th—1
w =g.

We define the time-space continuum extensions 4, and u, and as in Section 3.4.2.2. One then sees
that they satisfy

{ Gtn(@,t) = =AMy (2, 6) + falz,t), (2,t) € 2x]0,T], (3.5.1)

Un(x,0) = Ing(z), x€Q.
Toward our goal of establishing error bounds, we define v as the solution of the fully discrete prob-

A
lem (PI,T DBY with data (f,g) and discrete kernel K. Its time-space continuum extensions, @, and oy,
defined similarly as above, fulfill

%T)n(a:,t) = —A#Kﬁn(a@,t) + folz,t), (z,t) € Qx]0,T],
5u(2,0) = Lg(a). €9,

(3.5.2)

We have

[7in — uHC([QT];L?(Q)) < Jlin - @HHC([O,T];B(Q)) +jon - UHC([O,T];L2(Q))' (3.5.3)

This bound is composed of two terms: the first one captures the error of random sampling, and the
second that of (space and time) discretization. We start by bounding the first term by comparing (3.5.1)
and (3.5.2).

Lemma 3.5.1. Assume that (f*,g, K, f, g, K) verify the assumptions of Theorem 3.4.16. Assume also
that p, — 0 and np, = w ((logn)”) for some v > 1. Then, for any B €]0,1],

T/G=p) e]mh)

3.54
T p > 2. ( )

H'&n _'Dn

‘C([O,T];[ﬂ(g)) < Cexp(T/2) T1/2 ((pnn)_ﬁ/Q i {

2This feature was already used in the proof of Lemma 2.3.10
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with probability at least 1 — (p,n)~ =5 In particular,

1/(3—p)
- - 1/2 —~8/2 T p €]1,2],
| tr — U”HC([O,T];L2(Q)) < Cexp(T/2)T" (0 ((logn) 8/ ) + { . 02 . (3.5.5)

with probability at least 1 — o ((log n)f'y(l’ﬁ)),

. _ A A
PROOF :  Denote &,(x,t) = Up(x,t) — Gn(x,t), &z, t) = Op (2, t) — Up(z,t), gn = [nPrg, K, = [,LK
and A, = I,A. We thus have from (3.5.1) and (3.5.2) that a.e.
Oy () N -
= = = (A (W, 1) = AP (i, 1))

= (A @) - AP la.0)) - (A () - A (1)

Multiplying both sides by én(x, t), integrating and rearranging the terms, we get

;aat 5n(7t)HiQ(Q) = _/Q (Aﬁ”ﬁn(%t) - A;}"ﬂn(x, t)) (T}n(xvt) - ﬁn(x,t))dl‘
- / <Af<nvn(x,t) - Agnvn(a;,t)> Enlz, t)dx (3.5.6)
Q

- /Q (AL D (2, t) — Aprtin(2,1)) (On(2,1) — Un(2,1) — (in(2, 1) — Un(2,1))) da.

Under our condition on np,, Lemma2.3.10 tells us that with probability 1,

N
[An] oot 2y = 1K n | oot g2y T 0(1) < [ InPuK | 12y +0(1) < | K| oot g2y + (1),

so in particular HAnH L1 (2) is uniformly bounded with probability 1. A, is also positive and sym-
metric. Since g € LI(Q) and f € LY([0,7]; L4(2)) N BV([0,T]; L*(2)), ¢ € {2,2(p — 1), +o0}, the
conclusions of Lemma 3.4.13 and Lemma 3.4.14 remain true which shows that with probability 1,

sup Han(-,t)HLq(Q) < +oo and sup Han(-,t) - ﬁn('vt)HB(Q) <Cr.
te[0,T],neN te[0,T],neN

A A
The same claim holds for v,, and v,, since HK”HLOOJ(QQ) < HKHLOO’I(QQ) < 400 and K, is positive and
A
symmetric, i.e. K, obeys(H.1)-(H.3). Thus Proposition 3.2.2(iv) entails that the first term on the
right-hand side of (3.5.6) is nonpositive with probability 1. Let us now bound the second term. Denote
A
the random variables Z; & 1 Zje[n] (Aij — Kz-j)\lf(vj — v;). By Cauchy-Schwartz inequality, we have

n

| /Q (Agnun(x,w_agnun(x,t)) &0l )do] < Y2 iy | 12

For the last term in (3.5.6), we argue as in the proof of Theorem 3.4.16 to show that, with probability

17

\/Q(Agnun(x,t) — ADr o, (2,1)) ((Un(@,t) — Un(2,t) — (Dn(@,t) — Un(2,1))) d]
I€n (D) |2y + 7 p €12,
Hg"("t)HLQ(Q)T +72 p>2.

Collecting all these bounds, after using Young inequality, we have shown that (again with probability
1),

0+ 2 . 2 2 TGP 4 2 pell, 2],
SOy < 16Oy € (12l ¢ vl
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Using the Gronwall’s lemma and taking the square-root, we get for 7 sufficiently small

TGP p e, 2],>

S 1/2
[n = n| oo rpir2gy < Cexp (T/2)T <HIHZHL2(Q) + { i >, (3.5.7)

It remains to bound the random variable HInZH L2(Q)" For this purpose, we have by Markov inequality
that for e > 0

P (|12 o0y 2 ) =P (n—l >z 52> < SR (Z).

By independence of (Ajj) for each i € [n], we get

J€ln]
A
E (Z7) = (pnn) > Z V (pnij) (P (vj —v4))" = (pun)~ Z pn (1= puKij) (T(vj —vi))?
j€ln] jeln]
/\ J—
< (pan®)™1 Y Kijlvy —vi 7Y,
J€ln]

In turn,

1
P(HInZHm(Q) 25) < (*pun) lnz Z K’]‘V] vi| 2=t

i,j€[n]
— A _ _ 2(p—1
= )™ [ Kol o) — 0, (a) 0y

If the condition (a) holds, then by the symmetry of the kernel, Jensen inequality and Holder inequality,
one gets

/Q2 IA(n(a:,y)]@n(y) _ @n(w)|2(p_1)dydw < 4/02 I/%n(w’y)}@n(w)}z(p_l)d’ydaj
A _
Al ey [ 150l

< A Rl s 1705y

Under the condition (b), by the symmetry of the kernel and Jensen inequality again, we have
A

| uta o) o) Vdyde < 2070 | K@y (@) iyde
= [ S AN N
Similarly, under condition (c), we have

A
/QQ B, 9)]n(y) = o) 7y < 207D o0 12 21K 1 0

A —
S 22(}7*1) HKnHLm’l(QQ) H@nHi(i(é))

Since HIA(nHLOOJ(QQ) < || K| oot g2y (se€(2:1.10) in Lemma2.1.27), we have
P (HI”ZHL2(Q) Z 5) = C(EQP“n)_lHKHLwl(Q?)’
where
4sup,, anHLQ(Q)), under (a),
C = 2201 SuanvnHLQ(p 3)(9), under (b),
22(p—1) sup,, HU"HLOO(Q))’ under (c),
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1/2
R |3 s
and C' < 400 thanks to Lemma3.4.13. Taking ¢ = | ——5— , we get

(pnn)?
P (152 ey 2 €) < =5
B e (Y
Plugging the latter into (3.5.7) completes the proof. O

Remark 3.5.2. Lemma4.5.1 gives a deviation bound which holds with a controlled probability. On
may ask if a claim with probability 1 could be afforded. A naive and straightforward approach would
be to invoke the Borel-Cantelli lemma as done in |89, Remark 3.4(iv)| for the case of graphons. But
this argument does not apply to the more complex setting of Li-graphons given that the probability of
success in the statement Lemma4.5.1 does not converge sufficiently fast. This is not even possible to
make faster as p, has to converge to 0. Thus, it is not clear at this stage whether this is even possible
to achieve or not. We leave this to a future research.

We finally obtain the following error bound on fully discretized problems on sparse random graphs.

Theorem 3.5.3. Suppose that p €]1,4+00[. Letu be a solution of (P) with kernel K and data (f,g), and
{uk}ke[N] is the sequence generated by (P])TDB"G) with K = P,K, g = P,g, f*¥ = Tk_l tt:_l P, f(-, t)dt.

Assume that (f, g, K) satisfy the assumptions of Theorem 3.4.16, and that those of Lemma 4.5.1 also
hold.

1. For any B €]0, 1, with probability at least 1 — (p,n)~ 15,

sup HInuk_u('vt)Hm(Q) <exp(T/2) (HInP”g_gHL2(Q)+Hf_”_fHLl([O,T};L2(Q))+CT1/2(pnn)_ﬁ/z
ke[N]telty—1,tk]
71/6) 4 ||(K — P£1)+HLOO,2(Q2) + || I P K — KHLOO’Z(QQ) under (a)
iy 7-117/(2131) +[|(K - p7111)+HL°°’2(Q2) + || I P K — KHLw?(m) under () )
TGP 4 ||(K - p, )JFHLQ(W) + | InPuK — KHL2(Q2) under (¢) when p €]1,2]
T+ H(K - Pﬁl)+HL2(Q2) + HInPnK - KHLQ(W) under (c) when p > 2.

(3.5.8)
for T sufficiently small, where C' is positive constant that depends only on p, g, f and K.

2. If, moreover, g € L*(Q) N Lip(s, L?(Q)), K € Lip(s, L?(Q?)), and f € L*([0,T]; L>(R)) N
Lip(s, L*(Q x [0,T))) then, for any 6 €]0, 1, with probability at least 1 — (p,n)~ 15,

sup HI”uk o U(', t)HLQ(Q) < CGXP(T/Q) <(1 + T1/2)n*5 + Tl/QH(K - p;1)+“L2(Qz)
KE[N] tE€tp—1,tk]
min(s,1/(3—
+ TV2(pn) =82 4 T2 rmned/E7E) - when p €]1, ) . (3.5.9)
T8 when p > 2

for T sufficiently small, where C is positive constant that depends only on p, g, f, K and s,
and H(K - p51)+HL2(92) = o(1). The term 7° in the dependence on T disappears when f is
time-independent.

Proor : In view of (3.5.3), we shall use Theorem 3.4.16 to bound the second term, and a bound
A
on the first term is provided by Lemma4.5.1. Since I, K(z,y) < L,K(z,y) = I,P,K(z,y), the
A
assumptions on K transfer to K, and the second term of (3.5.3) can then be bounded using (3.4.17),
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A
replacing I, P, K there by I, K. Observing that

AN
1K = K| 1202y = | min(lnPK, pp ") = K| 202,
< || min(Ip Pk, p ") = In P || o g2y + [ InPaES = K| 122y
= [ In Pk = pr )+ ]| 202y + [Tn P = K| 22y
< H(K - P;1)+HL2(QQ) + QHInPnK - KHLQ(QQ)’

and similarly for the L2 norm. The fact that ||(K — pﬁl)+HL2(Qz) = o(1) is because p, — 0 by the
same argument as the end of the proof of Proposition 2.3.9. This completes the proof. ]
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Chapter 4

Continuum limit of the p-Laplacian
Dirichlet problem on sparse graphs

Main contributions of this chapter
» Convergence of minima of integral functionals
» The continuum limits of a sequence of p-Laplacian Dirichlet problems.
» Consistency and error estimates of the Dirichlet problem.

» Applications to random graph sequences.

A paper with the content of this chapter is under preparation for submission to a journal.
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In this chapter, we present a consistency analysis for the nonlocal p-Laplacian Dirichlet problem.
We start by studying the Mosco-convergence and I'-convergence of sequences of integral functions
and geometric constraints. We prove the convergence of the minimizers of the nonlocal Dirichlet
energies under affine geometric constraints. Thanks to the Dirichlet principle, these results are used
to study sequence of nonlocal p-Laplacian boundary value problems. We study also consistency and
error estimates of this problem. Relying on these error estimates, we establish nonasymptotic rate of
convergence of solutions for the discrete model on sparse random graphs to the solution of the nonlocal
Dirichlet problem on the continuum.

4.1 Introduction

4.1.1 Problem statement

Let © be a bounded domain of RY, d > 1 and p €]1,+0o[. For n € N, we consider the following
boundary value problem
Kn — 1

7Ap U= fnp, inU,, Pn)

U = Gn, Onrn:Q\Una
where U, is a subdomain of 2, K, is a non-negative symmetric measurable function on 92, g,, € LP(Q)
and f,, € L4(Q2), whith ¢ is the Holder conjugate of p. Recall that, for a kernel K, A][f is the nonlocal
p-Laplacian operator governed by K,

Alu(a) &~ / K(2,y)[uly) — u(@)|]""(uly) - u(z))dy. (4.1.1)
Q

Recall that, our chief goal in this chapter is to study the asymptotic behaviour and the corresponding
continuum limit of the sequence problems (P}).

Studying the limit of solutions to (P},) will allow us to establish consistency of numerical approxi-
mations of the nonlocal p-Laplacian Dirichlet problem

{ —A{fu =f inU,

U =g, on I

(Pp)
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K, U and T represent some limit objects whose meaning and form will be specified in the sequel,
separately for every class of problems that we consider below. As a major illustrative example, we will
study the case where (P},) are defined on a sequence of convergent K-random graphs; see Section 4.5.

We impose the following assumptions on the kernel we consider, which will be useful in order to
make the statements of our result brief and clear, (for some results only a subset will be necessary):

.1) K is a nonnegative measurable function.

K is symmetric, i.e., K(z,y) = K(y, ).

There exist m, rg > 0 such that ‘K(m,y)‘ > mx[07ro[(}}m — yH) for all &, y € Q.
K belongs to L>(Q?).

SUPzeq Jo ‘K(m,y)‘dy < 400 .
When the kernel is such that K (x,y) = J(x — y), where J : RV — R, then (A.1)-(A.5) read:

(A
(A.2)
(A.3)
(A.4)
(A.5)

A’.1) J is a nonnegative measurable function.

(
(A’.2) J is symmetric, i.e., J(x) = J(—x).

(A’.3) There exist m, ro > 0 such that ‘J(m)‘ > mx[o’m[(HmH) for all x € Q.
(A”.4)

(

D>

A’.4) J belongs to L*(2 — Q).
A5) [o qlJ(@)|de < +oo .
Recall that Q — Q is the Minkowski sum of 2 and —.

Let K, K be a sequence of measurable functions in L°?(Q?). We say that the sequence {K,,, K :
n € N} satisfies hypothesis (A, ) if the following hold.

(Aker) The functions K, n € N and K are symmetric (i.e. satisfy (A.2)), and {K,},en converges
pointwise to K almost everywhere on Q2 and {K, },cn converges strongly to K in LoP(Q?).

We say that the sequence {K,, K : n € N} satisfies hypothesis (Bj.,) if the following hold.
(Bger) The sequence {K,, K : n € N} is uniformly bounded in L°°(92), and {K,},en converges
pointwise to K almost everywhere on 2.
If the kernels K, K,, n € N are such that K(x,y) = J(x —y), K,(z,y) = J,(x — y), where
J, Jo : RN = R, n € N, the assumptions (Aj.,.) and (Bj.,) read respectively
(Al..) The functions J,, n € N and J are symmetric (i.e. satisfy (A’.2)), and {J,}nen converges
pointwise to J almost everywhere on Q — Q and {J, }nen converges strongly to J in LP(Q2 — Q).

(B.,s) The sequence {J,, J : n € N} is uniformly bounded in L>(2 — Q), and {J,}n,en converges
pointwise to J almost everywhere on {2 — (2.

Recall that, for a kernel K, the nonlocal gradient operator V[N{L is given by (1.2.3). A key interme-
diate step to achieve our goal is to use the Dirichlet principle and transform (P},) into an equivalent
sequence of variational problems

in  Fp(Vi. +/n de, VP,
T (Vi,u) Qf(ﬁv)u(w) © (VPnr)

where F), is an integral functional to be made precise later, f € L?(€) and

def

2 (Q,U,) d:ef{ueLP(Q); u= g, onT, &0\ U, }

To make this asymptotic analysis precise, we use the notation and methods of I'-convergence and
Mosco-convergence of De Giorgi and Mosco respectively (see Chapter 2, [58, 34, 24, 17, 32|). We will
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Chapter 4 4.2. Convergence of minima of integral functionals

in particular show that (VP,,) has a I'-limit which takes the form

uegééng(V?{Lu)—|—/Qf(zc)u(a:)da: (VP)

where g € LP(Q), f € L9(f2) and F is an appropriate integral functional.

4.1.2 Organization of the chapter

The remainder of the chapter is organised as follows. In Section 4.2, we study the Mosco-convergence
of sequences of integral functions and convex sets. In this section, we prove our first main results on
the convergence of the minimizers to (VP,,) under affine geometric constraints. These result is then
used to study sequences of nonlocal p-Laplacian Dirichlet problems (P}}) in Section4.3. In Section
4.4, we study the relation between the solution of problem (Pp) and the solution of its discretization.
We dedicate Section 4.5 to study the continuum limit of the discrete random model. The primal-
dual splitting algorithm to solve the discretized problems in graphs is described in Section 4.6 (see also
Chapter 7 for a general treatment) and some numerical results are reported to illustrate our theoretical
findings.

4.2 Convergence of minima of integral functionals

This section is devoted to study the well-posedness of the problem (VP), we study also the Mosco-
convergence and ['-convergence of the sequence of the energy functionals and the sequence of geometry
constraints given in (VP,,).

4.2.1 Mosco-convergence of convex functionals

Let U be a bounded domain of RN, N > 1 and p €]1, +0o[. We consider the integral functional

F: LPU) —> R
(4.2.1)
v [ flav(a)de,
u
where f: U x R — R is a function satisfying the following requirements:
(H.1) for every s € R, the function f(-,s) is Lebesgue measurable on U.
(H.2) for a.e. € U, the function f(x,-) is convex on R.
(H.3) there exist Co > C7 > 0 and a positive function a € L' (U) such that
—a(x) + C1|s|” < fw,s) < a(m) + Ca(|s|” + 1), (4.2.2)

for a.e &z € U and for all s € R.

We denote by F(a,Cy,Cso,p) the set of all functional F' of the form (4.2.1) where the corresponding
integrands satisfy assumptions (H.1), (H.2) and (H.3) for the same function a € L'(i) and same
constant Cy > C1 > 0.

We denote by F'(a,Ci,Cs,p) the set of all functionals F' € F(a,C1,Co,p) such that assumption
(H.2) of the corresponding integrand is replaced by

(H.2") for a.e. & € U, the function f(x,-) is strictly convex on R.

Let F, F,, n € N be integral functionals taking the form of (4.2.1) with f, f,, n € N the
corresponding integrands. We say that the sequence {F, F,, : n € N} satisfies hypothesis (s, if the
following holds.

(Hseq) There exist a positive function a € LY (U) and Cy > Cy > Osuch that F, F,,, € F(a,C1,C2,p), n €
N, and for every s € R, {fn(-,s)) }nen converges to f(-,s) pointwise a.e. on U.
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By standard convex analysis arguments, we obtain the following properties of functions of these
classes of functional.

Proposition 4.2.1. Let F € F(a,C1,Co,p) (reps. F € F'(a,C1,Ca,p)) where Co > C1 > 0 and a
positive function a € L' (U). Then F satisfies the following properties:

(i) F is convex (resp. strictly convezr) and continuous on LP(U);
(i) F is weakly lower semicontinuous on LP(U);

(i1i) F is coercive on LP(U) induced by the weak topology.

Let us announce a first result Mosco-convergence for sequences in these classes.

Theorem 4.2.2. Let {F, F,, : n € N} be a sequence of integral functionals given by (4.2.1) which
satisfies (Hseq). Then
(i) {Fn} Mosco-converges to F on LP(U);
(1)
min ' = lim min F,,.
Lr(U) n LeU)
Moreover, if {un}nen is a sequence such that limy, Fy,(uy) = limy, inf g Fy, then {up}nen s
weakly precompact in LP(U) and every weak cluster point of {un }nen is a minimum point for F.

PROOF : It is enough to show the point (i). The point (ii) is a consequence of (i), Theorem 2.1.13,
Proposition 4.2.1 and the equi-coercivity of the sequence {F}, },en which is a trivial result of Proposi-
tion 2.1.12 and the growth condition (H.3) of the integrands.

By the dominated convergence theorem the sequence {F,(u)}nen converges to F'(u) for every u €
LP(U). The conclusion is achieved if we prove (ii) of Definition 2.1.14.

On the other hand, we have F, F},, n € N are closed convex functions, then by Theorem 2.1.15,
the proof of the Mosco-convergence amounts to prove that the sequence {F, },en is equi-lsc. By the
assumption (#..,) we have that

),

for all w € B C LP(U) and all n € N. Then the sequence {F),},en is locally uniformly Lipschitz,
thanks to Proposition 2.1.9, in particular it is equi-lsc.

[Fa(w)] < [lall i gy + Co(B + |4

O
4.2.2 Mosco-convergence of convex sets
Throughout the chapter. We denote by
LEQ,U)={uel’(Q): u=gon'=Q\U}, (4.2.3)

where g € LP(Q) and U CC 2 be a sub-domain such that U + B(0,r) C Q for some r > 0.

Proposition 4.2.3. Let {gn}nen be a sequence of functions in LP(Q) and {U,}nen be a sequence of
sub-domains of . Assume that

(i) the sequence {gn}nen converges strongly to g in LP(Q).
(ii) the sequence {|UnAU‘}n€N tends to 0 as n — 4oo; where U, AU is the symmetric difference of
U, and U.
Then LY (Q,U,) Mosco-converges to LE(Q,U) in LP(Q).
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ProoF : Let f, € LY (Q,U,), n € N, such that f, — f in LP(Q) for some f € LP(Q2). It is easy to
see that

/Q‘anFn — gxrldz < /Q [lgn — 9| + |g9|xrar, ] dz.

By assumption the terms in the right-hand side of the above inequality tend to 0 and so fpxr, — gxT
in L}(Q), hence f =gon T, ie. f€ LH(Q,U).
Now, let f € LE(Q,U). For all n € N we set

1 on Uy,
fn = {gn, on I'y,.
By construction, we have f,, € LY (,U,,), n € N. On the other hand, we have
[fo =l = [(fa—=F) xra)
< |[(gn—9) xrn + (9= f) - xroar]|-
And so
£ = Fll oy < llgn = ll oy + 1109 = 1) - xraar| o)

The terms in the right-hand side of the above inequality tend to zero, and thus {f,}nen converges
strongly to f in LP(Q). O

Now, we will approximate L (€, U) by a sequence of finite affine subspaces.
Throughout this chapter, we denote, for n € N*,
1
Va(Q) = {w € ~2*: o cay, (4.2.4)
where Q" = @ + 1[0, 1[%, and

AVLQ) ={ueL'(Q): u= > AzXg@: dz € R}.

eV, ()
We fix n € N*. Set
U= |J 90 and T, =Q\ U,
QM cU: zeV, (Q)
Ul = U QW and T, = Q\ U
QU NUAD: €V, (Q)
For g, € A(V,(Q2)), we denote
Ay, (V(Q),T0) € {uecA(Vn(Q): u=g,onT,}, (4.2.5)
def
A;n(Vn(Q),F;) = {ueAWV,(Q): u=g,onT,}. (4.2.6)

We have the following approximation of LE(Q, U).

Proposition 4.2.4. Let g,, T, T7,, Ay, (Vo (Q),Tn), A (Va(Q),17,), as above. Assume that the se-
quence {gn }nen converges strongly to some function g in LP(S2). Then the sequences {Ag, (Vi (2), ') bnen
and {A} (Va(),T7,)}nen Mosco-converge to Ly(Q,U) in LP(Q).

PrOOF :  We show that {Ay, (V,(Q),I)}nen Mosco-converges to LE(Q,U) in LP(Q), by similar
argument we show the Mosco convergence of {A] (V,,(€2),T7,)}nen-

It is easy to see that ‘UnAU} — 0. Thus, as in the proof of Proposition 4.2.3 any weakly convergent
sequence { f, tnen in LP(Q), with f, € Ay, (Vi (),Ty,), is such that its limit belongs to LE(Q,U).
Now, let f € LE(Q,U). For n € N*, we consider

fn = InPnf
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1
= Yy — FY)dy - X,

weWﬂn|Q$M g

and define

fn(y), otherwise.

By Lebesgue differentiation Theorem we have { fn}neN converges pointwise to f a.e. on €2, since
anHLp HfHLp for all n € N we conclude by Riesz-Scheffé Lemma [102, Lemma 2| that {fn}neN
converges strongly to fin LP(€2). By construction, we have f, € Ay, (V,(R2),I',), for all n € N, and
(fn) converges strongly to f in LP(Q2). Indeed, we have
‘f_fn‘ ‘f_fn|+‘fn_fn}

‘f fn| + ‘ fn - * X
\f——fﬁl+—\fn—- ) xr |+ [(f = 9) - xr.| + (9 = gn) - X,
2|f — ful + 19— gn| + |(f — 9) - xr0a1,

VAN VAN VANRR VAN VAN

and so

15 = Full ey < 205 = Full iy + 19 = gnll oy + 17 = 90 xraar g

Hence we get the result since the terms in the right-hand side of the above inequality tend to zero. [J

4.2.3 Convergence of minimum problems

In the rest of the chapter, we assume that N = 2d and U = Q x Q. Let L§(Q, U) the affine space given
by (4.2.3), where g € LP(Q2) and U CC Q a sub-domain such that U + B(0,r) C Q for some r > 0.

Lemma 4.2.5. Let K € LY(Q?) satisfies (A.1)-(A.3) and let g € LP().

(i) We have the following nonlocal Poincaré’s inequality. There exists A = AN(K,Q,T',r9) > 0 such
that

)\/ ‘u(w)|pdw g/ K(z,y)|u(y) — u(w)‘pdwdy—i—/ |g(:1:)‘pda:, (4.2.7)
Q 02 r
for all w € LE(Q,U).

(i) Moreover, if K € L (Q2?), then there exists a positive constant C > 0 such that

/max(
o= ullZo

< C/ AKU - AK ) () (v —u) (x)de, (4.2.8)
Jor all u, v € LE(Q,U),
ProOOF :
(i) See [93, Lemma3.5].

(ii) Combining Proposition 3.2.2 (v) and the nonlocal Poincaré’s inequality, we get the desired result.
O

Proposition 4.2.6. Let F € F(a,C1,Cs,p), g € LP(Q) and let K be a function in L>®P(Q?). We
assume that K satisfies (A.2) or (A.4).

Consider the following function G : LP(Q2) — R defined by
G=FoVi.
Then
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(i) G is convex and continuous on LP(QY). In particular, G is weakly lower semicontinuous on LP ().
Moreover, if K satisfies (A.3). Then

(ii) G is coercive on LE(Q,U) induced by the weakly topology.

(iii) G attains its minimizer on LL(Q,U).

(iv) iof F € F'(a,C1,Co,p), then G is strictly conver on LE(Q,U). In particular, G has a unique

manimizer on LY(Q,U).

PROOF :  The convexity of the point (i) is evident, therefore, by Proposition 2.1.9, it is enough to
show that G is locally bounded below on LP({2), since it is proper. Let R > 0, for all u € LP(Q2) such
that HuHLP(Q) < R, we have

QHKHLOW(QQ)R, if K satisfies (A.2),

IV | |
QHKHLOO(QQ)R, if K satisfies (A.4).

“HLP(QZ) =

On the other hand, by assumption (H.3) and the definition of G, we get that
HaHLl(m) +Co (92] + QPHKHZOO,;)(QQ)RP> ) if K satisfies (A.2),
lall ey + Co (193] + 221 Q K[ e R) . if K satisfies (A.4).

For (ii), it is enough to show that for all ¢ > 0 the set A, = {G < ¢} N LE(Q, U) is bounded in LP(Q),
since G is weakly lsc, thanks the point (i). Let u € Ay, there exists n € N such that v € LE(Q,U),
hence

G(u) = F(VII\I{LU,) <

t > G(u)
> [ K@) @) — o) dedy — | ate.y)dedy
> COm? /Q2 X[o,m[(Hm —y|)|ul@®) - u(y) | dedy - HaHLl(QQ)

By Poincaré inequality (see Lemma 4.2.5) there exists \(r,rg, Q) > 0 such that

)\/Q lo(z) | de < /92 Xjo.ro[(||Z — Y| Jo(z) — v(y)| dedy + /Q l9(x)|"dee (4.2.9)

for all v € LE(Q,U). Then, we have

A _
/Q‘u(y)‘pdyg Clmp(t—i-HaHLl(Qg))+/\ 1/F‘g(x)’pda:.

Now, we show (iii). Let tzp(q 17y be the indicator function of LY(Q,U) C LP(Q). By the point (ii)
we get that G(-) + LLg(Q,U)(-) is is coercive. Since this function is weakly lower semicontinuous by
closedness of LY(Q,U) and weakly lower semi-continuous of G, hence G has a minimizer in LL(Q,U).
For (iv), it is enough to show that G is strictly convex. Assume that G is not. Let u, v € LE(Q,U)
with u # v such that

Gtu+ (1 —t)v) =tG(u) + (1 —t)G(v), fort €]0,1]

since F is strictly convex we have Viru = ViLo, and so u — v € Ker(VRF) N LA (Q,U) = {0}. Con-
tradiction. 0

Theorem 4.2.7. Let F, F,,, n € N be a sequence of integral functionals given by (4.2.1) which satisfy
(Hseq). Let Ky, K be a sequence functions in LP(Q?) such that {K,, K : n € N} satisfy (Aker) or
(Bier). Let G, Gy, : LP(Q2) — R be a sequence of functions defined by

G=FoVi' and G,=F,0VR, neN
Then, the sequence (G,) Mosco-converges to G on LP(£).
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Let us first state the following result that will be useful for proving the above theorem. This result
is an immediate consequence of Proposition 2.1.9 and Arzeld—Ascoli theorem.

Lemma 4.2.8. Let {F, F,, : n € N} as in Theorem /.2.7, and let {f, f. : n € N} the corresponding
integrands. Then, for almost all (x,y) € Q?, the sequence {f.((x,y),)}nen converges uniformly to
f((z,y),) on every compact subset of R. In particular, the sequence { fn(-, sp) }nen converges to f(-, s)
for every sequence (s,) converging to s and almost everywhere on Q2.

PROOF : |of Theorem4.2.7| First, we prove the pointwise convergence of G, to G on LP(2), under
the both conditions on the sequence of kernels. Let u € LP(£2), we have V%{;u converge pointwise to
VX almost everywhere on 02, since K,, are (under the two conditions). By Lemma4.2.8, we have
that {fn((,y), VRZ (2, 9)) }nen converges to fu((z,y), ViF(z,y)) for almost all (x,y) in Q2. On the
other hand, we have

[ful(2, ), Vigyu(@,y)| < a(z,y) + Cs (supHK 7o () [V P u(, y \p+1>

under the condition (B, ), hence {f,(:, V?&w)}neN is equi-integrable, and by Vitali theorem we get
the convergence of G, (u) to G(u). Let us turn to the second case i.e. when the kernels satisfy condition
(Ager). We have {Viu},en converges strongly to Vi u in LP(Q?). Indeed, by

[V = VXl <27 [ [Kuww) = K@) P u(w) + u(a) ) dady

TR -

= QPHUHZEP(Q)HK KHL°°P Q2

we get the convergence by assumption on the kernels. Hence the sequence {’V%{“Lu‘p tnen is equi-
integrable on LP(Q?), and so is {a + Co (\V%ﬁu\” + 1) }nen. Therefore, {fn(-, Viu)bnen is equi-
integrable. By Vitali convergence again, we get the convergence of (G,(u)) to G(u) under condition
(-Aker)'

Now, assume that {K,, K : n € N} satisfies (Bj,), by arguments similar to those in the proof of
Theorem 4.2.2. We have that G, G,,, n € N, are closed convex function in LP(€) and that

Gn(w) = Fa(Vigou) < [lal] 1 g2y + C2 (W\ + 2|2 sup HKanoom2>Rp> :

for all w € LP(Q) such that HUHLP(Q) < R, R > 0. Hence the sequence {G,}nen is locally uniformly
Lipschitz, and thanks again to Proposition 2.1.9, in particular it is equi-lower semi-continuous. Invoking
Theorem 2.1.15, we get the Mosco-convergence.

Assume that {K,, K : n € N} satisfies (Ag.,.). Since G, converge pointwise to G, by definition
of Mosco-convergence, it is enough to show the first point (i) of Definition 2.1.14. Let {uy,}nen be a
sequence of functions in LP(§2) weakly converging to w in LP(Q2). Since {F}, }nen Mosco-converges to
F in L?(9?), thanks to Theorem 2.1.15, it amounts to showing that {VIN(I;un}nGN converges weakly to
V™ in LP(Q?). For v € LI(0Q?), by Holder inequality and symmetry of the kernels, we obtain

o (Fu) = o (V3 \ / <v<w,y>+v<y,w>><Kn<w,y>un<y>—K(w,wu(y))dxdy\
02 02

IN

IN

/Q(/Q(v(m,y)+v(y,m))K(a:,y)da:> (un(y)—u(y))dy’

_l’_

[, 0@w) + 002 1) (o) = K (2. 9) dy

hence UQQ v (Vll\%un) —v (V%Lu)‘ — 0 as n tends to co. Indeed, It is easy to see that the function
Yy — Jo (w(z,y) +v(y,z)) K(x,y)dx belongs in LI(Q), by weakly convergence of (uy), the first term
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in the last line of the above inequalities tends to 0, for the second term, we have that

0 (v(z,y) +v(y, @) un(y) (Kn(z,y) — K(z,y)) dzdy

q 1/q

dy

< ey | | [ () + 00000 (s (0.9) - Kl o

<l ([ | ot + 00

< Ol Ko = K| poen(2:

4.2.10
q/p 1/q ( )
dy)

where C = 2H HLq (@2) SUPn HU”HLP < 00, since (uy,) is weakly convergent. By assumption, we obtain
| [z (0(z,y) + v(y, @) un(y) (Kn (:B y) K(z,y))dzdy| — 0 as n tends to oc. O

/ }Kn(x7y) - K(m? y)‘pdm
Q

Theorem 4.2.9. Let F, F,,, n € N be a sequence of integral functionals given by (4.2.1) which satisfy
(Hseq). Let Ky, K € L%P(02), gn, g € LP(Q), n € N, and {Up}nen be a sequence of open subsets of
Q. We define F, Fn: LP(Q) — R by

Falu) = Fu(Vibw) + i o, ()

F(u) F(VR ) + eppam (w)

Assume that
(1) the sequence {K, Ky : n € N} satisfies (Aper) or (Bier), and (K,,) satisfies (A.3) uniformly for
some m > 0 and ry > 0.
(i) the sequence {gn}nen converges strongly to g in LP ().
(iii) the sequence {Uy,U, n € N} satisfy U, + B, C Q and |UnAU‘ — 0, as n tends to +oo .
Then,
(i) the sequence {Fy}nen Mosco-converges to F.

(ii) the sequence {Fptnen s equi-coervive on LP(Q) endowed with by the weak topology.
(iii) the functional F attains its minimum. Moreover

min F = lim inf F,.
Lr(Q) n Lr(Q)

(iv) every sequence {un}nen in LP(S) such that limy, F(un) = limy, inf o) Fn, has a subsequence
converging weakly in LP(Q2) and its limit is a minimum point for F.

PROOF :  The point (i) is a consequence of Corollary 2.1.17, Theorem 4.2.7 and Proposition 4.2.3.
The points (iii) and (iv) are an immediate result of (i), (ii) and Theorem 2.1.13. For (ii), it amounts
to showing that for all ¢ > 0 the set A; = U, {F,, < t} is bounded in LP(Q). Let u € Ay, there exists
n € N such that u € LY (Q,U,), hence

t > Fnp(u)

> O /Q2 |Kn(z,y)|"[u(z) — uly)| dedy — /Q2 a(x,y)dedy

v

it [ vl = u])oke) ~ )ty — o]

> CmP ()\/ }u(w)\pdw—/gbn(w)‘pdw) - H“HLI(Q?)

where A = A\(r, rg, Q) > 0, hence

[

“tsup |gn [0
n
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O

Theorem 4.2.10. Let gn, Ty, T3, Ay (Va(Q),Ty), A} (Va(Q),T%,) as in Lemma 4.2.4, and let
F, F,, n € N be a sequence of integral functionals given by (4.2.1) which satisfy (Hseq). Let
K, K € L®P(02%). We define F, F,, : LP(Q) — R by
Falu) = Fo(VREW) + s, vi(@).r) W)
F(u) = F(Viiu)+ tre,u) ()
Assume that
(1) the sequence {K, K, : n € N} satisfies (Aper) or (Brer ), and (Ky,) satisfies (A.3) uniformly for
some m >0 and rg > 0.
(i) the sequence {gn}nen converges strongly to g in LP ().
Then
(1) the sequence {Fy}tnen Mosco-converges to F.
(i) the sequence {F, }nen is equi-coervive on LP () endowed with the weak topology.

(iii) the functional F attains its minimizer. Moreover

min F = lim inf F,.
Lr(Q) n Lr(Q)

(iv) every sequence {un}nen in LP(Q) such that lim,, Fy,(u,) = limy, infrp o) Fn, has a subsequence

converging weakly in LP(Q) and its limit is a minimum point for F.

PrROOF :  We obtain the result by the same arguments as in the proof of Theorem 4.2.9, where we
invoke Proposition 4.2.4 instead Proposition 4.2.3. O

Remark 4.2.11. All the results of this subsection remain true, when the kernels are such that
K(x,y) = J(x—y) and K, (x,y) = J,(x—y), if we replace the hypotheses on the kernels K, K,,, n € N
by the equivalent ones on the kernels J, J,, n € N.

4.3 Application to a sequence of Dirichlet problems

Now, we are in position to attack our main problem of this chapter, which consists in studying the
asymptotic behaviour of the sequence of the problems (P};). Before this, we start by establishing the
well-posedness of the nonlocal boundary value problem (Pp). We keep the same assumptions as in
Section 4.2.3, and in particular on U, €, i.e. U is a sub-domain of Q such that U + B(0,r) C Q for
some 7 > 0.

4.3.1 Existence and uniqueness of the solution
Define the energy functional F(u) : LP(Q2) — R by

F(u) := le - K(z,y)|u(y) — u(w)|pdyda: + /Q f(x)u(x)dx. (4.3.1)

We have the following "integration by parts" identity.

Lemma 4.3.1 ([93, Lemma 2.2|). Let K € L*(Q?) satisfies (A.2). For every u, v € LP(Q) we have

[ @fuets =5 [ K@yluw) - u@] () - u@) o) - o@)iyde.  (@32)
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Due to the nonlocal property of the operator Af , classical boundary conditions (imposed on bound-
aries of zero volume) will not yield well posed systems. The authors in [65] solved this issue and showed
well-posedness of (Pp) for p = 2 in the scalar case by using a variational approach based on the Lax-
Milgram lemma (see also [64]). Since the Lax-Milgram lemma is not applicable for the nonlinear
problem (Pp), [93] proved Dirichlet’s principle for the nonlocal setting of (Pp). Adapted to our
setting, this can be stated as follows.

Proposition 4.3.2 (Dirichlet’s principle). Let K € L'(Q?) be a function satisfying (A.1) and
(A.2).Consider the functional F : LP(2) — R given in (4.3.1). Then, the following holds.

(i) Assume u solves the Dirichlet problem (Pp). Then
F(u) < F(v) (4.3.3)
Jor every v € LE(Q,U).
(ii) Conversely, if u satisfies (4.3.3) for every v € LL(Q,U), then u solves the Dirichlet problem
(Pp)-

Theorem 4.3.3. Let g € LP(Q), f € L9Y(Q), with 1 < p,q < 400 and ]l) +% =1 and K € LY(Q?)
satisfies (A.1)-(A.3).Then the functional F has a unique minimizer in LL(Q,U), i.e. the problem
(Pp) has a unique solution.

PRrROOF :  See [93, Theorem 3.11]. O

4.3.2 The continuum limit

Let n € N. Define the energy functional F,(u) : LP(©2) — R by

Falw =g [ Kulww)luty) — u(e)Pdyda + | fu(@)u@)da, (43.4)

where K, € L'(0?) satisfies (A.1)-(A.2) and f, € L), ¢ is the Hélder conjugate of p. We have
that, thanks to Dirichlet’s principle, solving the problem (P},) is equivalent to minimizing the above
functional F,, on LY (Q,U,), with the function g, € LP(£).

Theorem 4.3.4. Let K,,, K € L°>Y(Q?) satisfy (A.1) and (A.2), gn, g € LP(), fn, f € L) and
U,, U CC Q sub-domains, n € N. Assume that

(1) the sequence {gn}nen converges strongly to g in LP(Q).
(2) the sequence { fn}nen converges strongly to f in LI(Q).
1
(3) the sequence {K%, K} : n € N} satisfies (Aper) or (Brer), and there exist m > 0 and rg > 0
such that
mxjo.o((||T —y|]) < Kn(z,y), forae xyeQ, alneN.

(4) the sequence {U,,U, n € N}, of subdomains of Q, satisfies that U, +B(0,r) C Q, n € N, and
}UnAU‘ — 0, as n tends to 400, where r is given at the head of this section.

Then (Pp) and (P},) have unique solutions, respectively, u and u,. Moreover, the sequence of solutions
{tun tnen converges weakly to u in LP(Q).

PROOF : The existence and the uniqueness of the solutions u and u, are a consequence of Theorem
4.3.3. On the other hand, since {f,}nen converges strongly to f on LP(2), we get that the sequence
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{u— [ faulnen is Mosco-convergent to u — [o, fpu in LP(2). Then by Theorem 4.2.9 and Corollary
2.1.17, we have {&, }neny Mosco-convergences to € in LP(2), where

1
fw = o | K@yluw) - u@)dyde+ | Fude+ 00w
P Ja2 Q
1
&) = 5 [ Kalwy)luly) - u@)dyde + [ fuudz -+ gy o000
D Jqz2 Q

Hence by Theorem 2.1.13, if we show the equi-coercivity of the sequence {&,}nen, We get the weak
convergence of {up}nen to u. As in the proof of Theorem 4.2.9, we are going to show that A4; =
Un{&n < t} is bounded in LP(Q2) for all t € R. Let ¢t € R and u € A, then there exists n such that
u e Lb (Q,U,), hence

t > En(u)
— o [ Kal@w)luy) - @) dyde + | fuude
P Jq2 Q
— € K(az,y)‘u(y)—u(w)‘pdydw—i—/fnud:c
2p Jo2 Q
> 5 [ xoni(lle = wlDlutw) — u(e)dyde ~ [ |falda
m € 2
> 5 (Ml @y = llgnll5o@y) - apllire = 2l fallzo)
furthermore
1 m 2
ap A = llullie) =t g llamllzoi) + 2l
m 2
<t g5 [lgnllZo o) + Zsup a1

where \(r,79,€2) > 0. We choose e small enough such that mA—e > 0, we obtain the equi-coercivity. [J

Theorem 4.3.5. Let K,,, K € LY (Q?) satisfy (A.1) and (A.2), gn, fn € A(V,(Q)), g € LP(Q) and
f e L), and let U, = UQ(n>CU Qgcn) and 'y, = Q\ U, as in Proposition /.2./, n € N. Assume that
(1) the sequence {gn}nen converges strongly to g in LP(Q).

1
(2) the sequence {K%, Kj . n € N} satisfies (Ager) or (Bier), and there exist m > 0 and rg > 0
such that

mxo.o(||T —y|]) < Kn(z,y), forae xyeQ, alneN.

(8) the sequence {fn}nen converges strongly to f in L9(92).

Then, for all n € N the problem (P},) has a unique solution w, € Ay, (V,(Q),I'y). Moreover, the
sequence of solutions {uy }nen converges weakly to the solution of the problem (Pp) in LP().

PrOOF : We obtain the result by the same arguments as in the proof of Theorem 4.3.4, where we
use the result of Theorem 4.2.10 instead of that of Theorem 4.2.9. ]

Remark 4.3.6. All the results of this section remain true, when the kernels are such that K(x,y) =
J(x—y) and K,,(x,y) = J,(x —y), if we replace the hypotheses on the kernels K, K,,, n € N by the
equivalent ones of the kernels J, J,, n € N.

In this section, all kernels considered are positive, which is not the case in Section 4.2.3. In this case a
1

L 1
sufficient condition for the strong convergence of the sequence { K} },en converges to K» in L>P(Q?),
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under the assumption (A, ), to hold, is that {K, }nen to K in Lo1(Q?). Indeed, for all s,¢ > 0 and
a €]0,1], we have
}so‘ — to“ < ‘8 — t|a,

thanks to the concavity of the function : ¢t — ‘t‘a. Applying this inequality, we get

1
p

\Ké(m,y) - K%(w’y)! < | Ku(z,y) — K(z,y)

, forae x yecQ,

hence . )
1 1 1
K7 = K7 || ey < 1Hn = K| J o 02)-

4.4 Consistency and error estimates of Dirichlet problem

4.4.1 General consistency estimates

Fix n € N. We denote by H(V,,(Q2)) the set of real functions defined on V,,(2) where V,,(Q) is given
by (4.2.4), and similarly for H(V;,(€2) x V,,(©2)). Let K a nonnegative symmetric function in L°1(Q?),
g € LP(9) and f € L9(Q), with L+ 1 =1.

We consider the discrete Dirichlet problem

-2

ﬁ Zern(Q) Kwy}uy - uw’p (uy —ug) =15, T € Ay (P4

Uz = 8z, S Afp "
where g = Pog, f = Pof, K= P,K, A, = {z € V,(Q) : QW c U} and A% = V,,(Q) \ A,.

The problem (P%) is equivalent to solving the following minimization problem
min{Gy(u), on Hg(V,(€), An)}, (VP3)
where 1
def p
gn(u) = % Z Kmy‘uy - um’ + Z umfa:
x,yeVn(Q) zeVL(Q)

and

Hg(V5(2), Ap) = {u e H(V,,(2)) : u=gon Aj}.

Our aim is to compare the solutions of problems (Pp) and (PZ). The solution of (P¢) being discrete,
we consider its continuum extensions of f, g u on  and K on 92 as

fo=01f, gn=1y8 u,=I,u and K, =I1,K.

it is immediate to see that a function is a solution of the problem (P%) if, and only if its continuous

n
extension is a solution of the following problem

7AZI)("’U/TL = fn, inU,
Up = Gn, on ')y = Q\ U,,

where U,, = |J weA, stn), which in turn is equivalent to minimizing the functional

1 P
v 3 Jos Kn(z,y)|v(y) — v(z)| dyde + /Q’U(w)fn(m)da:

on Ay, (Vo(Q),T,), see (4.2.5) for the definition of this set.

Corollary 4.4.1. Let g € LP(Q), f € LY(Q) and K € L*>®(Q?) . Assume that K satisfies (A.1)-
(A.3). Then, for all n € N the problem (PZ) has a unique solution u € H(V,(Q)). Moreover, if u is
the solution of the problem (Pp) then {I,u}l,en converges weakly to u in LP ().
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PROOF :  In view of the definition of the functions f,, g, Ky, by the Lebesgue differentiation theorem
(see [119, Theorem 3.4.4]), we have that g,, f, and K,, converge pointwise to respectively f, g, and K
a.e. on  and Q2 respectively. Combining this with Fatou’s lemma and (2.1.9), we get

li,?ngnHLp(Q) = HgHLP(Q) and h,ananHLq(Q) = HfHLq(Q)'
Hence, by the Riesz-Scheffé lemma, we have that I,, P,g — g strongly in LP(Q2) and I,,P,,f — f strongly
in L9(2). On the other hand, by the assumption (A.3), we have mx[g7r0[(Hx - yH) < LK(z,y) <
HKHLOO(Q2) for a.e. on Q2 whence {K,,, K : n € N} satisfies the condition (Aj.,.). By Theorem 4.3.5
we get the result. |

Corollary 4.4.2. Let g € LP(Y), f € LY(Q) and let K(x,y) = J(x —y) where J € L*(Q—Q) satisfies
(A°.1)-(A’.3). Then, for all n € N the problem (PY) has a unigue solution u € H(V,,(Q)). Moreover,
if w is the solution of the problem (Pp) then {I,u}nen converges weakly to w in LP(Q2).

PRrROOF : By the same arguments as the proof of the above corollary, we get that
gn = g and fr = f,
strongly on LP(Q2) and L?(2), respectively, and
In — J,

strongly on L'(Q — Q) and also pointwise almost everywhere on Q — Q, where .J,, = I,,P,,.J. Moreover,
by the assumption (A’.3), we have mx[o,m[(Hm — yH) < LK(z,y) = Jo(x — y) a.e. on Q2, whence
{J\/, J%/p, n € N} satisfies the condition (A/_,), thanks to Remark 4.3.6. By Theorem 4.3.5 again,

we get the desired result. O

Remark 4.4.3. the results of Corollary 4.4.1 and Corollary 4.4.2 remain true if we replace A, and
AC by Al = {x € V,(Q) : Q0 N U # 0} and (A])°, respectively, in (P2).

4.4.2 A priori estimates

In this subsection we give an a priori estimate for the Dirichlet problem. The reason we separate
this section from the previous one is that here, we restrict ourselves to the case where the datum g
is constant, without loss of generality we take ¢ = 0. The second reason is due to the choice of the
boundary set T';, C I as the set AS defined in (P¢). These conditions feasibility of the constraint that
Ay, (Vo(9),T) C LY, (V,(22),Ty,), which plays a key role to get our estimation.

Theorem 4.4.4. Let K € L°Y(Q?) satisfies (A.1)-(A.3), g = 0 and f € LY(Q). Let K = P, K,
g =0 and f = P,f. Let u be a solution of the discrete problem (P?) with kernel K data (f,g) and the
boundary set AS, and u the solution of the continuous problem (Pp) with kernel K, data (f,g) and
the boundary set I'. Then,

p/ max(1,2 max(2 %)

2) ,
w0 SO(HK—KnHW T K — Kol g Pt —

o (4.4.1)
(| 10 Pru — uHZ;(lQ) p € [2,+0o0], >
2 .

| 10 Pru — quTfQ) p €]1,2].

where C' > 0 independent of n and Ky, gn, fn ond u, are the continuous extensions of the functions
K, g, f and u respectively.
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PROOF : We denote by (-,-) the usual inner product in L?(Q) and VN'u(z,y) = v(y) — v(=x),
v € LY(Q). We have

(Apu,un —u) = (—f,un—u), (4.4.2)
<A{f"un,v —Up) = (—fo,v—u,) forallvely (V,(Q),T,).

By summing, we deduce from (4.4.2) and (4.4.3) :
<A]I){”un — A]Ifu, Up —U) = (A{f"un,v —u) — (—fup —u) — (= fn,v — up)
= (Af"un,fu —u) — (—=f,v—u)
for all v € Ay, (Vi (2),I'y). The last equality comes from the fact that (f,v —un) = (fn,v —uy). Since
Agffu: —fon U and v = u, on I'),, we get
<Aff”un — Afu,un —u) = <A§"un - Afu,v — u),
in turn,
<Affun - A[Ifu, Up —U) = <Aff"un - Af){un,v —u) + <Afun - Afu,v —u)
—(AS g — Ay, up — ). (4.4.4)

For the term in the left-hand side, we have by Lemma 4.2.5 (ii), there exists C' > 0 independent of
n such that

2
max(l,;)

[|lu— unHip(Q) < C(A]Ifun - Afu, Uy, — W). (4.4.5)

On the other hand, we start with the last term in the right-hand side of the equation (4.4.4). By by
Holder inequality, we have

(Aff"un — A]Ifun, Up —u) < HA{f"un — A{f (4.4.6)

“nHLq(Q)H“ - U"HLP(Q)'
Applying Jensen inequality on the first term in the right-hand side of of the above inequality, we get

HAfnun - Afu”HLQ(Q)

- </Q (/Q K — K| (=, y)‘VNLun(m,y)\p_ldy>q dm>1/q

e (/Q </Q K — Kn}(wjy)dy>q_1/g\K - Kn\(fv,y)\VNLun(fB,y)\pdydw> " (4.4.7)

g=1 1/q
<28 ooy (1K~ i ) P
< CIHK - K”HLOOJ((P)’

where C = QP‘Q‘%I sup,, HunHi;(lm < 0o. Plugging (4.4.7) in (4.4.6), we get

<A£(”un — Afun,un —u) < C’lHK — KnHLoo’l(QQ)Hu — unHLp(Q), (4.4.8)
Similarly for the second term in the right-hand side of the equation (4.4.4), we have
|<Aff”un - Afun,v —u)| < C||K - KnHLooﬁl(QQ)Hv - uHLp(Q). (4.4.9)
Let’s turn to the first term in the right-hand side of the equation (4.4.4), we have
|<Afun - Af,(u, v — u>’ < HAfun - AquLq(Q)HU — uHLp(Q). (4.4.10)

For the case when p €]1, 2], using inequality (3.2.6) and Jensen inequality, we get

1A wn = Aful| g < (/Q (/QK(:E,y)\(uun)(m)(uun)(y)yp‘ldy)qdm>

— 80 —

1
q



Chapter 4 4.4. Consistency and error estimates of Dirichlet problem

< CHKHLOOJ(W)Hu u”HLpr (4.4.11)

p—1
where C' = 2p_1‘9‘ » . In the case when p > 2, we apply inequality (3.2.6) and Holder inequality
twice, we obtain

HAfun - AI[)(UHLG(Q)

1

< ( / < [ K@) (9wl )] + 9 ) 9 unxm,y)}dy)qdw)"

< (/Q </QK(m,y)(\VNLun(w,y)l+\VNLU(m7y)\)pdy>§j-
1/q

(/Q K(may)‘vNL(u—un)(w,y)‘pdy) (/ K(x,y)d >q/p d:c) (4.4.12)

HKH};/Cgl Q2) </§22K(xay) (‘VNLun(a:,y)‘—i-‘VNL zc,y)D dydw) :

</m (@, 9)|VVE (- un) (e, y)‘pdydwy

< Ol & o g e = ]l 1o

where C' = 47(sup,, ||u,| ;2;(29) + HuHLP(Q)) < +4o00. Plugging the inequalities (4.4.11) and (4.4.12) in
(4.4.10), one gets

[ _UHLP(Q)HU ull oy P € 2,400,
[un — UHLP(Q)HU “HLP(Q p €]1,2].

Assembling the above iqualities and inqualities (4.4.4), (4.4.5) (4.4.8), (4.4.9), and (4.4.13), we obtain

‘(A}Ifun—A]Ifu,v—u)‘ <C{ (4.4.13)

/ max(1,2)
e = wall oy <C<HK K| oot g2 l[tn = vl oy + 1K = K| oot gy lv = 2| 1oy

(4.4.14)
ol tlppl -l el
lun = ull eyl = wll oy 2 €112
Now, we use the Young inequality and take v = I,, P,u, we obtain the desired result

o= w7 <

_pP_
i { 5 = Ky + 1 = ol Pt = )+ 1 Pr = ol € (240l
16— B2 sy + 1~ il s Pt =l ([P — w7y 9 €121

(4.4.15)
O

Corollary 4.4.5. Let K be a kernel such that K(x,y) = J(x — y) where J € LY(Q — Q) satisfies

(A’.1)-(A°.3) and let K, g, g, f, £, u, u as in Theorem j.4. . Then, there exists a positive constant
C such that

UHLP(Q)

_p
N HInPnu—qu;(lﬂ) pe [2,+oo[,>
2 .
HInPnu—uHZ;E’Q) p €]1,2].
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where J, = I,P,J and gp, fn and u, are the continuous extensions of the functions g, f and u
respectively. In particuler,
lim [ — wn] 1, ) = 0. (4.4.17)

PROOF :  The inequality (4.4.16) is immediate result of Theorem4.4.4. For (4.4.17), we apply the
same arguments of the proof of Corollary 4.4.1, we get that

lim | — JnHLl(Qfm =0 and lim | P — u”mm = 0.

Let n tends to 400 in (4.4.16), we get the desired result. O

4.5 Application to random graph sequences

In this section, we study continuum limits of the discrete problem on the random graph model of
Definition 2.3.7.

Throughout this section, we suppose that p €]1,2]. Let Q = [0, 1], recall the notation of Section 2.3.3,
we define the boundary set I' = Q \ U where U =|r,1 — r[, r €]0,1/2[. Recall also the the construc-
tion of the random graph model in Definition 2.3.7 where each edge (i, ) is independently set to 1
with probability (2.3.5). This entails that the random matrix A is symmetric. However, it is worth
emphasizing that the entries of A are not independent, but only the entries in each row are mutually
independent.

We consider the discrete problem on K-random graphs G(n, K, p,,)

e > VU(u; —w;) =1, z;€A
" 3 1 i i ns
" ji(1.5)e B(G(n,K pn)) (PEG)
u; =0, otherwise.
where u,f = P,f € R" and A,, = {x; : [z, x;41[C U} with a; 4 %, 1 =0,1,---,n. It is important

to keep in mind that, since G(n, K, p,) is a random variable taking values in the set of simple graphs,

the boundary value problem (P;{G) must be understood in this sense. Observe that the normalization

in (PSS by pnn corresponds to the average degree (see Section 2.3.4 for details).

Problem (P'%) can be equivalently written as

p

—EAu =f, onA,,
u =0, on Aj,.

We define the continuum extension u, as in the above section. We then see that they satisfy

{ —AlnAy, (2) = Li(x), @ €U,

(4.5.1)

where U,, = [rp,1 — 1] and Ty, = [0, 1] \ Uy, with 7, = min{z; : r <x;, 1 =0,1,--- ,n}.

Toward our goal of establishing error bounds, we define v as the solution of the discrete problem

A
(P4) with data (f,0), boundary set A¢ and discrete kernel K. Tts continuum extension v, defined

similarly as above, fullfill
N
—AII?”Kvn(a:) = I,f(x), x€U,,
vp(z) =0, zely,.

(4.5.2)

We have
H“n - “Hm(n) < H“n - ”nHLp(Q) + an - “Hm(n)' (4.5.3)
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This bound is composed of two terms: the first one captures the error of random sampling, and the
second that of discretization. Assume that (f, K, f, K) verify the assumptions of Theorem 4.4.4. Since

A A
L K(z,y) < ILK(z,y) = I,P,K(x,y), the assumptions on K transfer to K, and the second term can

A
be bounded using (4.4.1), replacing I,, P, K by I, K. It remains to bound the first term by comparing
(4.5.1) and (4.5.2).

Lemma 4.5.1. Assume that (J,g,K,.f, 9, K, f) verify the assumptions of Corollary/./.5. Assume
also that p, — 0 and pyn = w ((logn)?) for some v > 1. Then, for any B €0, 1],

E(|un — U”HLP(Q)) < C(pun)'?, (4.5.4)

in turn,
[tn = vnll 1oy < Clonn) ™2 (4.5.5)

with probability at least 1 — (pon)~=A/2. In particular,
= vl oy < 0 ((ogn) 772 (4.5.6)
with probability at least 1 — o ((log n)fV(l*ﬁ)/Z),

To prove this lemma, we need the following deviation inequality that we include for the reader
convenience.

Lemma 4.5.2 (Rosenthal’s inequality, [96]). Let m be a positive integer, v > 2 and 1, -+ , &m, be
m zero mean independent random variables such that sup,; E (‘fz‘v) < 00. Then there exists a positive
constant C' such that

o

A A
PrRoOOF :  Denote by f, = I,f, K, = I, K and A,, = I,A. We thus have from (4.5.1) and (4.5.2)
that a.e.

v/2

26| ) <o (2250 (322 (1)

N
A A A K
<Ap"un — AL U,y U, — Up) = —<Ap"vn — AU, Up — Un),

An

A
57 Uy, — A{f"vn,un — vp,) = 0. Since p €]1,2] and mx[oﬂuo[(Hm - yH) < Ay (x,y) almost surely,

since (A
we have
2

Hun — vnHLP(Q) < C(A;\nun — A;\nvn,un — Un),

almost surely, thanks to Lemma4.2.5 (ii).

A
On the other hand, let Z; = %Z; (Kij — Ayj)¥(vj — v;), by Holder inequality, we have

A
(Ap v = Apmvn, un = vp) < HInZHLq(Q)H“n - UnHLp(Q)' (4.5.7)
where ¢ is the Holder conjugate of p. In turn

< CHInzHLq( (4.5.8)

[ _U”HLP(Q) Q)

S0, it remains to bound the random variable HInZH La(e)” For this purpose, we have by Jensen inequality
that

1/q
E(HInZHLq(Q)) < (n_IZE(]Zi\q)) . (4.5.9)
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By independence of (Aij)j and the fact that E(Z;) = 0, for each i, we are then in the position to apply

Rosenthal’s inequality, whence there exists a positive constant C7 > 0 such that

1Y /\
E (‘Zi}q) < Cmax(Z <pn> E(|pnAij — anZ‘j‘q)‘Vj — Vi}pv
j n
q/2

2 _
Zj: (1> V(pnij)|v; —vi| P )

Pnt

Since p;lE(}pnAij — pnﬁij‘s) < ﬁij, for all s > 2, then we get
1\ 1A
E (HInZHLq(Q)> < Cl( ! Zmax ( (p n) n zj:Kij|Vj - Vz”p,

q/2

a/2 1/q
)" (smmvr) )

Let’s start with the first term in the right-hand side of the above inequality, we have

1 Ly
<pnn> = ZZK”‘VJ P <9 <p n> / K,(xz,y ‘Un — vp(x \dedm
1 \¢! A P
< <> /Q Ku(@,y)|va(y) - va(@)|"dyde
B 1\ 1 A
< or—t <n> HKTLHLOOJ(QQ)anHip(Q)

<2 () K] 0l
- P ree(@2) 11l Le(q)

we get the last inequality by applying Lemma2.1.27. For the second term, we have

1 \?7? /\ 2p—1 ”
<> nilz nilzKij‘Vj —V,“ (P=1)
( J

PnT

1 q/2 A - q/2
<() /(/KMawm@wwmm“”@) iz
PnM Q Q
2p-1)  \Y?

) (Rt Pl )

Jo Kn(z, y)dy

() haen) ([t )

1 Q/2
<L) wﬁ¢p//K-mw% — (@) iz

_ 1
< (L) R el

Pnh

) 1\ 92
<2 1(pnn> (L e[

the last inequality follows from Lemma2.1.27.
Plugging (4.5.11) and (4.5.12) into (4.5.10), and assembling the last with (4.5.9), we get

1\ 1/2
E (|t~ 0l 1ey) < C2 (5 )

— 84 —

(4.5.10)

(4.5.11)

(4.5.12)

(4.5.13)



Chapter 4 4.6. Numerical results

where
_ p—1 1/2 p—1)/p
Gy =C12° Sup [on] Lr(q) 1ax (HKHLOO 1(Q2) HKHLOO 1 Q?))
and Cy < 400, thanks to Corollary 4.4.5. Now let € > 0, using Markov inequality, we have

P (HIn“n - U”HLP(Q) = 5) <e'E (anun - U”HU’(Q))

(4.5.14)
< e 1Cy(pnn) V2.

(pgﬁ, we get the desired result. -

Taking € =
Theorem 4.5.3. Suppose that p €]1,2]. Let u be a solution of (Pp) with kernel J, data (f,g) and the
boundary set T', and let {u},en is the sequence generated by (PﬁG) with K = P,K, f = P,f, g=0
and the boundary set A,. Assume that (J,g, K, .f, g, K, f) verify the assumptions of Corollary/.4.5.
Then, for any B €]0,1[, we have

1 1
E (lu— ] ooy SC(HJ = Jallpiia-) + 117 = Jall oo [TnPrw =l o)

(4.5.15)
1
1Pt = ]|}y + (pam)” 1/2>7
in turn, with probability at least 1 — (pyn)~(1=P)/2
= | oy < (HJ Tall gy * 117 = Tl oy 1 EnPate =l
) (4.5.16)
Pt — w57 + (pnn)—ﬁ/2> |

where J, = I,P,J and gy, fn and u, are the continuous extensions of the functions g, f and u

respectively.

ProoF :  Embarking from (4.5.3), for the first term in the right-hand side, we apply the result of
Lemma4.5.1 and for the second we use the result of Corollary4.4.5 on which we apply Jensen’s in-
equality, we get the desired result. U

4.6 Numerical results

We apply a primal-dual proximal splitting scheme to solve (VP?) (see Chapter 7 for details), in a
semi-supervised classification problem which amounts to finding the missing labels of a label function
g defined on a 2D /3D point cloud. The nodes of the graph are the points in the cloud and u, is the
value of point/vertex ®. We chose the nearest neighbour graph with the standard weighting kernel

expflzfy’ when }x —y| < 6 and 0 otherwise, where x and y are the 2D /3D spatial coordinates of the
points for the point cloud'.In our numerical experiments, we will illustrate our results on five examples
of cloud points, three in 2D and two in 3D. For each point cloud, the boundary vertices (i.e. AS) are
chosen uniformly at random from the whole NV points/vertices with two cardinalities: |AS| = N/5 and
|A¢| = N/10. Obviously, the label function u to be recovered agrees with g on AS according to (VP4).
In our experiments, for each point cloud and each A¢, we solve (VP?) with f =0 and p € {1, 2, 10}.
Although the case p = 1 was not covered by our study, we report the corresponding results as (VP%)

!For the 2D case, (z, y) are not to be confused with the spatial coordinates (z,y) of the graph kernel on the continuum,
though there is a bijection from one to another.
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can be easily solved by our proximal splitting framework for p = 1 and even p = +o0 (see Chapter 7).
One can clearly see that the best performance is obtained (at least visually) for p = 1, which comes at
no surprise since the underlying label function is "piecewise constant". The classification is also more

accurate as the number of labeled points increases.

Figure 4.1: (a)The original data with N = 2500 points.

(c) Subsampled data
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(d) Subsampled data

(b) Graph considered. (c) Subsampled

(boundary) data with N/5 = 500 points. (d) Subsampled (boundary) data with N/10 = 250 points.
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~
']

) p=10

(e) p=10

Figure 4.2: In the left-hand side, results obtained from the boundary data (c¢) Figure 4.1.

right-hand side, results obtained from the boundary data (d) Figure 4.1.
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earest neighbour grap
b) N ighbour graph
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Figure 4.3: (a) The original data with N = 3000 points. (b) Graph considered. (c) Subsampled
(boundary) data with N/5 = 600 points. (d) Subsampled (boundary) data with N/10 = 300 points.
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(e) p=10 (£) p=10

Figure 4.4: In the left-hand side, results obtained from the boundary data (c) Figure 4.3, and in the
right-hand side, results obtained from the boundary data (d) Figure 4.3.
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(a) Original data

(b) Nearest neighbour graph
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(c) Subsampled data

Figure 4.5: (a) The original data with N = 4000 points. (b) Graph considered.

(d) Subsampled data

(¢) Subsampled

(boundary) data with N/5 = 800 points. (d) Subsampled (boundary) data with N/10 = 400 points.
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- > :
\MA‘ X L L | 1 DAR g0 20 g

(e) p=10 (£) p=10

Figure 4.6: In the left-hand side, results obtained from the boundary data (c) Figure 4.5, and in the
right-hand side, results obtained from the boundary data (d) Figure 4.5.
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(c) Subsampled (boundary) data (d) Subsampled (surface)
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(e) Subsampled (boundary) data (f) Subsampled data (surface)

Figure 4.7: In the first line, the original data with N = 2048 points. In the second line, a subsampled
(boundary) data with N/5 = 409 points. In the last line, a subsampled (boundary) data with N/10 =
204 points.
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10 (surface)

Figure 4.8: Results obtained from the boundary data in the second line of Figure 4.7.
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10 (surface)

Figure 4.9: Results obtained from the boundary data in the last line of Figure 4.7.
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-

(b) Original data (surface)

@\

(d) Subsampled data (surface)

@

(e) Subsampled (boundary) data (f) Subsampled data (surface)

Figure 4.10: In the first line, original data with N = 2048 points. In the second line, a subsampled
(boundary) data with N/5 = 409 points. In the last line, a subsampled (boundary) data with N/10 =
204 points.
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(a)p=1 (b) p =1 (surface)

(c)p=2 (d) p = 2 (surface)
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(e) p=10 (f) p = 10 (surface)

Figure 4.11: Results obtained from the boundary data in the second line of Figure 4.10.
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Figure 4.12: Results obtained from the boundary data in the last line of Figure 4.10.
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Chapter 5

On the discrete p-bilaplacian operator on
graphs

Main contributions of this chapter

» We introduce a new family of operators on weighted graphs called p-bilaplacian opera-
tors.

» We study regularized variational problem associated to these operators.

» We study also boundary value problems associated to these operators.

The content of this chapter appeared in [68].
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In this chapter, we introduce a new family of operators on weighted graphs called p-bilaplacian
operators, which are the analogue on graphs of the continuous p-bilaplacian operators. We then turn
to study regularized variational and boundary value problems associated to these operators. We study
their well-posedness, we prove the existence and the uniqueness of the solutions. We finally report
some numerical experiments to support our findings.

5.1 p-biharmonic functions on graphs

In this section, we introduce p-bilaplacian operator on weighted graphs, inspired by the way p-harmonic
functions were introduced in [95] for networks. Throughout this chapter, we adopt the notation of
Section 2.4. As in the continuous case [99], let’s consider the energy functional

et 1 1
Fa(uip) < 2| Apoul? = = > |Augu(@)|”. (5.1.1)
p ? p zeV
Definition 5.1.1. We define the p-bilaplacian operator for a function u € H (V') as

Ai,pu(x) E Awo (}Aw’gu‘p_zAwg@ (x), xzeV.

Definition 5.1.2. Let A C V. We say that a function u is p-biharmonic in A if it is a minimiser of
the functional Fy(+; p) among functions in V' with the same values in A° =V \ A, that is, if
Fa(u; p) < Fa(vip)

for every function v € H(V), with u = v in A°.

As a first result, we prove the following characterization of the p-biharmonic functions

Theorem 5.1.3. Let A C V. A function u is p-biharmonic in A if and only if
Z ‘Aw,gu(x)‘piQA%gu(x)Aw,gw(a:) =0, x €A, (5.1.2)
zeV

for every function w € H(V'), with w =0 in A°.

PRrROOF :  Suppose that u is p-biharmonic function in A and let uy = u + tw, where t € R and w
is a test function, that is, w € H(V) with w = 0 in A°. Since the function v minimizes the energy
functional, then

0= %(‘Fd(ut;p))lt:() = Z }Awgu(f)}p_2Aw72U($)Aw72w(gj)_
xeV

Assume that u satisfies (5.1.2) for all test functions. Let v € H(V) with u = v in A°. The equation
(5.1.2) applied to w = v — u and Young’s inequality yield

Z‘Aw,gu(x)‘p = Z!Aw,gu(x)’p72Aw72u(x)Aw72v(:r)

zeV zeV
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< 3 [Auau@)]" Auzv()

zeV
—1 1
< Z [p’A%Qu(m)’p—l- *‘AW,QU($)‘Z) .
zeV p p
Hence Fy(u;p) < Fy(v;p), and so that u is p-biharmonic. O

Observe that A, o the standard Laplacian on graphs is a self-adjoint operator, i.e., for allu,v € H(V)
Z u(z)Ay2v(z) = Z v(x) Ay 2u(z).
zeV eV

Now, let w be an arbitrary test function in H(V'). We can write w =, i, wy, where wy(z) = 0 for
all z € V\{y}. Then

Z ‘AW,zu(x)‘piQAw,zu(:r)Aw,Qw(:C) = Z w(z)Ay 2 (‘Aw,2u|p72Aw72u> (x) (5.1.3)
zeV eV

= Z wz(7)Ay 2 (‘AW?U‘IJ_QA‘”’QU) ().

zeV
From this, we get the following theorem.

Theorem 5.1.4. Let A C V. A function u is p-biharmonic in A if and only if
A (\Aw,zu\HAw,Qu) () =0, foallze A

PROOF :  Suppose that u is p-biharmonic function in A. Fixed z € A and let w(z) =1 and w =0
elsewhere. Then (5.1.2) is true for w and we have

-2
A2 u(z) = Y | Aupu()]" A pu(y) A pw(y) = 0
yev

by (5.1.3). Conversly, it follows from (5.1.3) that (5.1.2) holds for all test function w if A2 ju(x) =0
for all z € A. O

5.2 p-bilaplacian variational problem on graphs

In this section, we consider the following minimization problem, which is valid for any p € [1, +oc]!,
ef 1 2
min { E(u; © 2 = Al + 2AF, u;p)t, 5.2.1
ue%(v){ (uip) = 5If |5 + AFa(u;p) } (5.2.1)

where A : H(V) — H(V) is a linear operator, f € H(V), A > 0 is the regularization parameter,
and Fg(-;p) is given by (5.1.1). Problems of the form (5.2.1) can be of great interest for graph-based
regularization in machine learning and inverse problems in imaging; see [91] and references therein.
Problem 5.2.1 is well-posed under standard assumptions.

Theorem 5.2.1. The set of minimizers of E(-;p) is non-empty and compact if and only if Ker(A) N
Ker(A, 2) = {0}. If, moreover, either A is injective or p €]1, 400, then E(-;p) has a unique minimizer.

PROOF :  For any proper lsc convex function f, recall its recession function from [16, Chapter 2|,
denoted fo. We have from the calculus rules in [16, Chapter 2| that

Bacldip) = A (31-18) _ (Bupd) + 5 (IF — () _ (4d).

'Obviously lim, o0 1| - ||”

=1 .
lefl <2
o
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Since %H |5 and || f — H; are non-negative and coercive, we have from [16, Proposition 3.1.2] that
their recession functions are positive for any non-zero argument. Equivalently,

E(d;p) >0, Vd ¢ Ker(A) NKer(Ay2).

Thus Ex(d;p) > 0 for all d # 0 if and only if Ker(A) N Ker(Ay,2) = {0}. Equivalence with the
existence and compactness assertion follows from [16, Proposition 3.1.3].

Let’s turn to uniqueness. When A is injective, the claim follows from strict (in fact strong con-
vexity) of the data fidelity term. Suppose now that p €|1,+oo[. By strict convexity of %H -||% and

H f— H;, a standard contradiction argument shows that for any pair of minimizers u* and v*, we have
u* — v* € Ker(A) NKer(A, 2). This yields the uniqueness claim under the stated assumption. O

5.3 p-bilaplacian Dirichlet problem on graphs

Let us consider the following boundary value problem

—A2 u=f, A
wopt = o on (5.3.1)
u =g, on A°,

where f,g € H(V), p €]1,+0], Az%p is the p-bilaplacian operator and A C V. Observe that since the
graph G is connected, there always exists a path connecting any pair vertices in A x A°. Denoted

Ho(V;A) = {ueH(V): u=0on A}
Hy(V;A) = {ueH(V): u=gon A%}
= g+ Ho(V;A).

The main objective of this section is to study the boundary value problem (5.3.1). For this purpose,
let us consider the following functional defined in H (V') as

Flu) = ; S Busu@P + Y u@) @), uweHV).

zeV zeV
We have the Dirichlet’s principle formulation associated to the p-bilaplacian Dirichlet problem :
Theorem 5.3.1. 1. Assume u € Hy(V; A) solves the problem (5.3.1). Then
F(u) < F(v), (5.3.2)
for allv e Hy(V; A).
2. Conversely, if u € Hg(V; A) satisfies (5.5.2) for every v € Hy(V; A), then u solves the problem
(5.9.1).

PROOF :  Assume u € Hy(V; A) solves the problem (5.3.1). Let v € Hy(V;A) and set w = v — u.
We have

0 = Z Aijpuw + Z f(z)w(z)

zeV eV
= Z Aw,g(‘Aw,gu]pﬂAw,gu)w + Z f(z)w(x)
eV zeV
= N |Avoul T Aupulpw + Y fa)w(z).
eV zeV
Thus
Z |Ay 2ulP + Z f@)u(z) = Z ‘Aw?gu}p72Aw72qu72’U + Z f(x)v(x)
zeV eV eV eV
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< Z ‘Aw,2U|p71|Aw,2U‘ + Z f(@)v(z)

zeV zeV
Y _
O%ng Z (M‘vagu‘p—i— 1}Aw72v‘p) + Z f(z)v(x).
p p
zeV zeV

Hence F(u) < F(v).

Conversely, assume u € H,(V; A) satisfies (5.3.2) for every v € Hy(V; A). Fixed w € Ho(V;A) and

set i(t) ©= F(u+tw), t € R. Then i(-) attains its minimun at ¢ = 0. By usual calculus, we obtain
0 = i(0)
= Z }Aw72u‘p72Aw,2qu’2w + Z f(@)w(x)
zeV zeV
= Z vag(]Aw’gu‘pﬂAw,gu)w + Z f(z)w(zx).
zeV zeV
Since w is an arbitrary function in Ho(V;.A), u is a solution of the problem (5.3.1). O

The coming result presents a Poincaré-type inequality, which plays a key role to prove the coercivity
of the energy functional F(-). It can be seen as a discrete version of that one exposed in Chapter 4. It
can also allow us to revisit and extend the result concerning the discrete p-Lapalcian Dirichlet problem
on general connected weighted graphs.

Lemma 5.3.2 (Poincaré inequality on graph). There is A = A(w, V, A, p) > 0 such that

A lu@)P < 30 (@l y) 2 uly) —u@) + Y |g@)f, (5.3.3)

z€A zeV y~zx r€A°
for all uw e Hy(V; A).

Proor : Let

So = A5
S1 = {IEV\SOZHyGSQ;yNSU},
Sit1 = {2 €V \(U_oSk): e Sjy~a}, j=1,2,--

Since the graph G is connected, there is [ € N such that {5 }é‘:o forms a partition of V. Now, we have
P P
Do w2 luly) —u@)P =Y Y (wle,y)? |uly) - ul@)]”,
€V y~x x€S; ye€S; 1

j=1,--- 1, and

Yo > wlay)tuly) —u(x)]”

xESj yGSj_l
1
>0 0 > W)@’ =3 D7 (wlw)® fu)]”
r€S; yeS ;1 x€S; yeS; 1
1
> gpa0 ) @] =8 D7 u)|”
TES; yeS; 1

r r
2 2

where g = min{(w(z,y))2 : (z,y) € E} and 8 =3,y (w(z,y))2. Hence

S Wl y) i u) —u@)]’ = a Y |Ju@)]" -8 > |u),
zeV y~x ZEESJ' yESj,1
where
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Therefore, since u = g in Sy = A° and {S; }220 forms a partition of V, it is easy to see that there exists
A= 5\(w, V, A, p) > 0 such that

D@ <AY Y (W)t uly) —u@)]” + A g@)]"

€A zeV y~x Tz€eA°

We arrive at the coercivity result by taking A = AL U

Lemma 5.3.3. The functional F(-) is coercive and strictly convex on Hq(V; A).

ProoF :  For the coercivity, we distinguish three cases when p > 2, p=2and 1 < p < 2. Let q be
the Holder conjugate of p.
By Lemma 5.3.2, there exists A > 0 such that

A Z lu(z)]? < Z Zw(:c,y)‘u(y) — u(z:)}2 +Cyy,  forallu e Hg(V; A, (5.3.4)
zeV eV y~x

where Cy > 0 depend only on g.
By Young’s inequality, for € € (0,1) we have

Yo f@u(x) = =) |u@)f(@)ule)] (5.3.5)

zeV zeV

Youn €
P - 5 )P

zEV zeV

e Case p > 2, (i.e ¢ €]1,2]) : We have

SN w@y)u) —u@)|? = =D ul@)(Auu)(@) (5.3.6)

eV y~x zeV
Young
g ‘Awgu E ‘u
mGV mGV

By the inequalities (5.3.4), (5.3.5) and (5.3.6), we have

Flu) = *Z\szu D)+ fla)u()

:EEV z€V
> 2 Y wlea)lul) —u@f - 2 3 [ula)
2V Yoz IEV
e S @ - 53 Ju()
zeV zeV
> 0= DT @ - 1Y @l - - S 1)l -
eV :J:EV eV

Since ¢ < 2 and for € small enough (A — § > 0), we obtain

H 1‘1‘m F(u) = +oo.

ueHq(V;A)

e Casep=2, (i.eq=2):

Z:z:w(m,y)!u(y)—u(a:)\2 - —Z Ay ou)(z) (5.3.7)

eV y~x eV
Young €1
E ‘ w 2“ ‘ + E ’u R
261
eV er
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For all ¢; € (0,1).
Applying (5.3.7) in (5.3.4) we obtain

1 2
1(A——= Z ‘u —e1Cy, < B Z ‘vagu(x)‘ . (5.3.8)
zeV zeV
We sum the inequalities (5.3.8) and (5.3.5), we obtain
€1 € 2 1 2
(A =5)=3) > @) - aCy, - P S F@)] < Flu). (5.3.9)
zeV zeV

For ¢, €1 € (0,1) fixed such that e;(A — &) — § > 0, we have
lim  F(u) = 4o0.

ueHgy(V;A)
e Case 1 < p <2, (i.e g > 2): By the inequality (5.3.4), we have

AN u@))? < 303w y)uly) - u@)|P+ ¢,

zeV zeV y~x

= _Z w2u +Cg

zeV

<Z }u(ﬂf)F) <Z‘Aw,2u(m)‘2> + G,
zeV zeV

Since the norms are equavalent in finite dimension vector space, there exists C'(n) > 0, recall
that n = card(V),

N =

N

A [u@)]* <) (Leev [u@))” (Coey [Auau(@))? +Cy.
zeV
Thus
2 p
1 A sev |u@)|” = Cy . Z | A ou(@)|? (5.3.10)
A1+ em) (Soer [u@)?)) - Peev

On the other hand, by the Cauchy—Schwarz inequality, we have

_<Z \u(x)F) (ny(x)f) < f@)ul@). (5.3.11)

zeV zeV eV

We sum the inequalities (5.3.10) and (5.3.11), we obtain
P L 1

1 A pev [u@)] - Gy - (Z }u(x)]2>2 (Z !f(x)|2>2 < F(u)

P\1+ C(n) (erv ‘u(:z:)’2> zeV zeV

D=

Hence
lim  F(u) = 4o0.

u€Hgy(V;A)

Now, we show the strict convexity of the functional F on the set H,(V;.A). Assume that Fy(-) is
not strictly convex on Hy(V'; A). Then there exist u,v € Hqy(V;.A) with u # v such that 7Fg(u)+ (1 —
7)Fa(v) = Fa(tu+ (1 — 7)v) for all 7 €]0,1[. But since the function ¢ — ¢ is strictly convex on RT
for p €]1, 400/, this equality entails that A, su = A, 2v on V, hence on A. Clearly w = u — v satisfies

Ayow=0, onA
w =0, on A°.
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But we know the only solution of the above problem is the null function w = 0 on V, see [95, Corol-
lary 3.16.]. Hence u = v on V, leading to a contradiction. U

Now, we have the tools to announce our main result in this section

Theorem 5.3.4. The problem (5.3.1) has a unique solution in Hq(V; A).

PROOF : By Theorem 5.3.1, the problem (5.3.1) is equivalent to solve the minimization problem
min{Fg(u) : ue Hy(V;A)}. (5.3.12)

Let 13, (v;4) be the indicator function of Hy(V;.A). By Lemma 5.3.3, we get that Fu(-) + 3, (v,4)
is coercive and strictly convex. Since this objective is lower semicontinuous (lsc) by closedness of
Hy(V; A) and continuity of F4(+), (5.3.12) has a unique minimizer. In particular, our problem (5.3.1)
has a unique solution. (Il

5.4 Numerical results

5.4.1 p-bilaplacian denoising on graphs

We apply the accelerated forward-backward proximal splitting scheme, see Chapter 7, to solve the dual
problem of (5.2.1) for a denoising problem, i.e.; A is the identity (5.2.1). Denoising of two types of
datasets is considered: the first is a 2D point cloud, and the second is a 1D equispaced signal. In the
first setting, the nodes of the graph are the points in the cloud and u, the value of point/vertex index
x. For signal denoising, each graph node correspond to a signal sample ¢, and u, is the signal value
at node/sample index i. We choose the nearest neighbour graph with the standard weighting kernel
exp(—‘az — y‘) when}:n — y‘ < 4 and 0 otherwise, where x and y are the 2D spatial coordinates of the
points for the point cloud, and sample index for the signal case.

Application to point cloud denoising The original point cloud used in our numerical experiments
is shown in Figure 5.1(a). It consists of N = 1000 points that are not on a regular grid. The function
on this point cloud, denoted ug, was synthesized to be piecewise linear on the 2D point cloud. For the
1D signal case, the function is piecewise polynomial. A noisy observation f (see Figure 5.1(b)) is then
generated by adding a white Gaussian noise noise of standard deviation 0.5 to ug. Figure 5.2 displays
the results by solving (5.2.1) using different values p € {1, 2, 20}.

Application to signal denoising In this experiment, we choose a piecewise-polynomial signal wug
shown in Figure 5.3(a) for N = 1000 together with its noisy version f with additive white Gaussian
noise of standard deviation 0.05. Figure 5.3(b) depicts the denoised signal u* by solving (7.4.1) with
p =1 and hand-tuned A. Figure 5.3(c) also confirms the o(1/k) rate predicted above on Huk — u*HQ.

5.4.2 p-bilaplacian semi-supervised classification

We apply the primal-dual proximal splitting scheme, see Chapter 7, to solve (5.3.1) in the setting of
a semi-supervised classification problem. The latter amounts to finding the missing labels of a label
function g defined on a 2D point cloud observing g only on some vertices A¢. The nodes of the graph
are the points in the cloud and w, is the value of point/vertex = which agrees with the original label
function g on A¢. We chose the nearest neighbour graph with the standard weighting kernel exp_}w_y}
when ‘ac — y‘ < ¢ and 0 otherwise, where x and y are the 2D spatial coordinates of the points for the

point cloud. In the same vein as in Section 4.6, in our numerical experiments, the boundary vertices
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Figure 5.1: (a) Original data with N = 1000 points. (b) Noisy data. (¢) Graph considered.

(i.e. A¢) are chosen uniformly at random from the whole N points/vertices with two cardinalities:
|A°| = N/5 and |A°| = N/10. For each A°, we solve (VP?) with f = 0 and p € {1, 2, 10}. Although
the case p = 1 was not covered by our study, we report the corresponding results as the splitting
algorithm readily handles p = 1 and even p = 400 just as well (see Chapter 7 for details).
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Figure 5.3: Results for signal denoising with p = 1. (a) Noisy and original signal. (b) Denoised and
original signal. (c) Primal convergence criterion Huk — u*HQ as a function of the iteration counter k.
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Figure 5.4: (a) The original data with N = 1000 points. (b) Graph considered.
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(boundary) data with N/5 = 200 points. (d) Subsampled (boundary) data with N/10 = 100 points.
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Chapter 6

Nonlocal perimeters and curvatures flows
on graphs

Main contributions of this chapter

» General class of perimeters on graphs.
» Mean curvature co-area formula and total variation

» Level set formulation of nonlocal mean curvature flows on graphs and applications.

A paper with the content of this chapter is under preparation for submission to a journal.
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The objectives of this chapter are as follows. We revisit the notion of perimeters on graphs, intro-
duced in [70], we extend it to so-called inner and outer perimeters. Thanks to the co-area formula,
we show that discrete total variations as well as several graph cuts can be expressed through these
perimeters. Then, we propose a novel class of curvature operators on graphs that unifies both local
and nonlocal mean curvature on Euclidean domains. These lead us to translate and adapt the notion
of the mean curvature flows on graphs as well as the level set mean curvature which can be seen as
approximate schemes. Finaly, we propose to use these methods for image processing, 3D-point cloud
and high dimensional data classification.

6.1 Introduction

Context and motivations

Partial Differential Equations (PDEs) and variational methods involving the notion of perimeters and
curvatures have and still generate a lot of interest in both continuous and discrete domains. These
operators under their different local or nonlocal forms, arise not only from subfields within mathematics
such as differential geometry and analysis, but also in numerous PDEs and objective functionals related
to many applications fields in sciences and engineering.

For instance, in mathematical image processing and computer vision, the notion of perimeter is a key
idea for the regularization of many inverse ill-posed problems such as denoising, restoration, inpainting,
segmentation, etc. Regularizing such problems is often used to find suitable clusters among data, to
obtain image partitions for segmentation purposes, to denoise or to inpaint images while preserving
sharp boundaries. It is worth noting that perimeters appear in the two most popular variational
models for image processing and segmentation, namely the total variation and the Mumford-Shah
models [51, 128, 114]

Motion by mean curvature and flows involving mean curvature in general play an important role
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in geometry and analysis. Many continuous models, involving a front propagation with a velocity
depending on the mean curvature and their simulations by level set methods, are used in different
application fields such as data processing, computer vision, fluid mechanics . For an overview and
applications see the books [131, 117, 42| and references therein.

In recent literature, an intense mathematical study has been performed on nonlocal counterpart of
the classical perimeters and curvature flows. A notion of fractional perimeters and nonlocal curva-
ture was first introduced bay Caffarelli, Roquejoffre and Savin in [44] . The main idea of fractional
perimeters is that any point inside an Euclidean set "interact" with any point outside the set, given
a functional whose minimization is taken account. Then many works have been proposed to study
functional involving nonlocal perimeters or nonlocal curvature flows, e.g [1, 49]. See also the recent
monograph Mazon et al. [108]. We can notice that recently Mazon et al. have introduced a large
class of perimeters and curvature flows on random metric graphs which embedded local and nonlocal
perimeters on Euclidean domains and graphs [110, 109].

On the other hand, graphs and networks have been successfully used in a variety of fields such as
machine learning, data mining, image analysis and social sciences that are confronted with the analysis
and modelling high dimensional datasets. In machine learning, image analysis many tasks, such as
classification, clustering or segmentation , can be often given in term of minimizing the graph perimeter
(graph cut) or a related functional (normalized cut, ratio cut, balanced cut, etc). The cut size is, in this
case, generally defined as the sum of the weight of edges between the considered set and its complement,
which is closely related to the notion of the perimeter of a set. Such graph problems are traditionally
solved by methods from combinatorial, graph theory or spectral analysis [92, 132, 135, 147, 40]. In
recent years, there has been increasing interest in applying the models and techniques from variational
methods and PDEs to solve problems in data science, see [143, 39, 73, 75] and references herein. The
demand and the interest for such methods is motivated by existing and potential future applications
in data science. PDEs analysis tools originally developed for Euclidean spaces and regular lattices
are now being extended to general settings of graphs in order to analyse geometric and topological
structures, as well as data measured on them.

In order to translate and to solve PDEs on graphs, Elmoataz et al. have adopted nonlocal calculus
on weighted graphs [73, 72, 75|, which consists in replacing continuous partial differential operators
(e.g. gradient, divergence), with a reasonable discrete analogue. It allows to transfer many important
tools and results from the continuous setting to the discrete one. It also allows graph theory to have
new connections to analysis. Based on this framework, we revisit and extend the discrete notions of
perimeters, mean curvatures, Cheeger cut and total variation, which lead us to adapt and transcribe
level set equations on weighted graphs.

Outline of this chapter

In Section 6.2, we recall the notion of the boundary set on graph, as well as the discrete perimeters
on graphs and we show its link with the local and nonlocal continuous perimeters. In Section 6.3, we
prove an analogue version of the co-area formula on weighted graphs which allows us to derive relation
with total variation as well as Cheeger inequality on graphs with discrete perimeters. In Section 6.4,
we introduced a family of the mean curvature flows. We propose an adaptation and a transcription of
the mean curvature level set equations on the general discrete domain, a weighted graph, in Section
6.5. Finally, we show some applications in image and data processing to illustrate the potential and
the behaviour of this mean curvature formulation.
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6.2 Generalized perimeters on graphs

In this section, we first define the notion of boundaries on graph and explicit the relations with the
discrete gradients defined in Section 2.4. Based on these framework, we recall the family of the
perimeters introduced in [70]. Next, we recall the definitions of the continuous local and nonlocal
perimeters, we rigorously show their relations with the discrete ones.

Throughout the chapter G = (V, E,w) is a connected weighted graph. Denoted by A a subset of V,
A€ is its complement, and we recall that x 4 is the characteristic function of A.

Definition 6.2.1. The outer and inner vertex boundaries, and the vertex boundary, of a subset A C V,
are respectively defined by:

TTAE fue A°: Jve A, v~u}, (6.2.1)
ALY {fuecA: Jve A% v~ul, (6.2.2)
DAZ T AU A. (6.2.3)

Note that 97 A = 9~ A, 04 = 0A° and 0T AN O~ A = 0.

The following proposition gives the relationships between the discrete gradients and the above bound-
ary sets, which will be useful to define the discrete perimeters on graphs. The proof takes of by a simple
computation of the p-norm of the characteristic function.

Proposition 6.2.2. Let ACV,
(i) For 1 < p < oo, we have the following relations:

I(Vaxa) W)l = (Z (wuu)§> p Xo+a(u), (6.2.4)

veA

[(Voxa) @], = (Z <wm,>€> " xo-a(w), (6.2.5)

veEAC

|(Vax) @], = [[(VExD@], + [[(Vox @], (6.2.6)

(i) For p = oo, we have the following relations:

1OVE ) () oo = <max<m>) o 4(u),

veA

[Tzl = (ma(v@m ) - xo )

veEAC
[(Voxa) @), = [(VExa) @)+ [[(Voxa) W], -
(i7i) For p € [1,+00], we have the following relations:
(@], = ()@,
H(VwXA)(“>Hp = H(VWX.AC)(U)HP'

Remark 6.2.3. For unweighted graphs i.e. wy, € {0,1}, we have that:

e [|(VIxa)(u)|1 corresponds to the number of edges connecting the vertex u € A€ with the vertices

in A. Therefore ) H(VIXA)(U)Hl is just the size of the usual edge boundary of A.
ueV

o [[(VExa)(u)loo is the indicator of 9t A, and so Y ||(VExa)(u)||, is the size of the outer vertex
ucV
boundary of A, while > H(V;XA)(U)HOO is the size of the inner vertex boundary.
ucV

For weighted graphs i.e. wy, € [0, 1], we observe that:
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o [(Vixa)(u)|, and H(V;XA)(U)HP are the weighted sizes of edge boundaries of A, 9T A x 9~ A
and 9~ A x 07 A respectively.
o« > H (VExa)(u) HOO is the weighted size of the outer vertex boundary of A while ) H (Voxa)(u) HOO
ueV ueV

is the weighted size of the inner vertex boundary of A.

Remark 6.2.4. The outer and inner vertex boundaries, and the verter boundary can be expressed
through the characteristic function of A as:

A = {u eV [[(Vixa @), > o},
0 A= {u ev: H(V;XA)(U)HP > O},
0A={ueV: |(Voxawl|,>0}.

6.2.1 Discrete perimeters on graphs

Based on the interpretation of Proposition 6.2.2, we recall the definition of the family of weighted
perimeters on graphs introduced in [70].

Definition 6.2.5. For 1 < p < oo and A C V, the family of weighted perimeters of A is defined as
follows:

3=

Perf (A) = o E(|V XAH Z (Z wév) ;

ueA¢ \veA

Per,, ,(A) 4 E(HV;XAHP) = Z <Z wgv) ' )

uc A \veAe
1 1
def 2 \7 2 \7?
Peerp(.A) = E(HVUJXAHP) - Z Z(f‘-ﬁv + Z Z Wity
ueAc \veA uc A \veAe
For p = oo, the family of weighted perimeters of A is defined as follows:
def
Per;ioo(.A) HV+X_AH ugc (rz?eajl( wm;) )
Per;, .o (A) = E(|VoxallL) =Y (11)%2}55 wuv) :
ueA

Pery,o(A) £ E(||Voxal ) = Z <Igl$f wuv> - Z (})ré% wm> .

uceA°

By definition we have, for 1 < p < oo, the following relations:

Perw,p(A) = Per,f ,(A) + Per, , (4),
1} ,(A) = Perj (A°),

Perwp(A) = Perw,p( A9),

Per, 1(A) = Perw 1(A).

Proposition 6.2.6. Let P, , belongs to {Per 10 Perwoo,,Perwl, Per, o}, for p = oo the weight
Junction w is a {0,1}-value. Then we have the followmg properties:

(i) Pwm(@) = 0;
(ii) P,p(V) =0;
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(iii) P, is submodular, i.e. for all A, B CV we have
P,p(AUB) + P, p(ANB) < P, ,(A) + P, »(B).

PrOOF :  Claims (i) and (ii) are straightforward. We thus focus on claim (iii). For p = 1, it is enough
to prove the inequality for Per:j,l since Per, 1 = 2 Perj’1 =2 Peril. We have

PGI‘IJ (.A U B) = Z Z Wy

u€AUB ve(AUB)®
:Zzwuv"‘zzwuv_ Z Z AUB WU’U
ueAveA ueBveBe ueANB v
D IDDEEVTED D D
ueAveB\(AUB)° ueBve A\ (AUB)¢
and
Peril (.A N B) = Z Z Wy
u€ANB ve(ANB)°
Y Y Y Y et Y Y e
u€ANB ve(AUB)® u€ANB ve A\ (AUB)C u€ANBveB\ (AUB)°

For Perw ~» Claim (iii) is a consequence of the following inequality, which is easy to verify,
max (x4us(0) = XAus(1))* +max (xans(v) — xans(u))*
< max (x4(v) = xa(w)® +max (xs(0) = x5(w)*,

for all u € V. For Per,, o, the result holds from the following equality Per,, o = PerJr + Per,, . U

As a consequence, we have the following result for p = 1.

Corollary 6.2.7. Let A, BCV with ANB =10, then
Per? | (AU B) = Pert, (A) + Pert, (B) =23 3" vV,
A B

Per,, 1(AUB) = Per,, 1(A) + Per,, 1(B) — 4 Z Z -
A B

If moreover, there are no edges between A and B, i.e., 0JANB =0 or equivalently OB N A = (), then
Perf’l(A UB) = Peril(A) + Peril(B),
Per,, 1 (AU B) = Per,, 1(A) + Per,, 1(B).

PROOF : By definition, we have

Per, 1 (AUB) =Y ) \/wuw (xaus(v) — xaus(u)’

ueV veV
=) ) Vouw (xa() + x8(v) — xa(u) — x5(w))?
ueV veV
= S V (eal®) — xal)? + 3 Vo (us() — xs(w)?
ueV veV ueV veV
+2- 33 Vo (xal®) = xa(®)) - (xs(v) — x5(w)

ueV veV

= Per,, 1(A) + Per,, 1(B) — 4 - Z Z N
A B

We obtain the result for Peri1 immediately from the following relation Peri1 = %Perw,l. ]
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6.2.2 Relations to continuous perimeters

The concept of nonlocal perimeter was introduced in [33, 59| and was thoroughly studied in 38, 108].
’ ‘n%, 0 < s < 1, the nonlocal perimeter reappeared in [44, 145, 146],

where some functionals of this type were analyzed in connection with fractal dimensions. The nonlocal

For singular kernels of the form

s-perimeter of a subset A C R™ is defined (formally) as

rei= [ [, -

The main idea of the nonlocal s-perimeter is that any pomt inside A interacts with any outside. The

n — s dyde.

usuel notion of perimeter is recovered by the limit

llfi(l — 5) Perg(A) = Per(A) = /]RN

see |7, 38, 45, 59].
Now, we will show that the definition of the (s-)perimeter can be recovered by our definition. Indeed,

let J:R"™\ {0} — R" defined as
1
x

Let {Ji}x be a sequence of symmetric positive functions in L!(R") satisfying:

(i) for all k, Jy of compact support and J = 21: Qz Xk, Where ag € Rt and QX = = + ﬁ[(), 1",
TELLY

(ii) {Jx}r converges to J strongly in L'(R"™).
Fix k € N*. Consider G}, = (Vj, Ej, w"*) where Vj, = %Z” and

wk(way) = (kzn‘]k(m - y))27 \V/IB, UAS Vk‘

For all A C R"”, we set A% = {a:er: Q’;ﬂA#(I)} and Az = |J QL. Then
mE.Ad

Perx 4 .Ak Z Z \Jwk(x,y) / / y)dxdy.

yeAd xze(Ad)c

By construction, we can easy check that

lim/ / Ji(x — y)dzdy = / Ji(x — y)dzdy.
ko Jag Jae AJae

liin Perwk,l(Ag) = / / J(x — y)dxdy
A c
= Pers(A).

Hence

(6.2.8)

The pre-Minkowski content. Let r > 0, the pre-Minkowski content of a set OF is given by

defl‘UB

re0FE

It is well-known that, under mild regularity assumption on E (see for instance [8]) we have
lim M,.(F) = Per(F /’DXE‘dac
r—0

An issue with definition of M, is that it depends on the choice of the representative within the
Lebesgue equivalence class of the set E. For this reason, the authors of [49] have introduced the
following variant:
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1
I(B) = 5 [ oscn, o) (i)

where osc4(¢) denotes the essential oscillation of the measurable function ¢ over a measurable set A,
defined by

0sc4(¢) = esssup(¢) — essinf(o).
A A

See [49] and references therein for more details. We have that J,(E) coincides with the pre-Minkowski
content of the essential boundary of E. As a consequence, we have the following result

lim J,.(E) = Per(E) :/\DXE}da:.

r—0

Let » > 0 and fix k € N*. We consider the following weighted graph G = (Vi, Eg,w") where
Vi = %Z" and the weight function is given as

S y) = {1, if y € (B (@)
@)

0, otherwise,

For all A C R™, we consider A% and Ay as above. Then, we have

Pere () = 3 5 (max (v (@) + max (agla) - x) )

ro\y~z y~z
me%Z”
k—’l’l/
=D o <r§13;<x,4g(y)—gggx,4g(y)>
welzn
k—n
= D 5 Ot tag):
wE%Z"
where OSC(BT(m))z(XAg) = max X, — min x4 We conjecture that

(Br(@)ii ~F (Br(x))

1
: d
h]gn Per i o (Ag) = o /OSCBr(w) (xa)dex.
We leave this as an open problem for the future.
One can see that it is easy to transpose local and nonlocal continuum perimeters into the graph-
based framework. Notice that these formulations are indeed special cases (p = 1) of a more general

family of weighted perimeters that defined above.

6.3 Total variations and Cheeger inequality on graphs

In this section, we extend the notion of total variations, for p = 1, on graphs to upwind and downwind
total variations and also for p €|1,00]. We show that the result of the co-area formula provided in
[70, 143]| still true for p = co on unweighted graphs. We jump to expose an extension of the Cheeger
inequality.

6.3.1 Total variation on graphs
Let us extend the definition of the total variation introduced in |[70] to p € [1,+oc], see [143] also a
similar definition for the anisotropic total variation.

Definition 6.3.1. For 1 < p < 0o, the total variation on graphs is defined as follows:

1

ey =B (|Vuf],) = 3 (2 wi| f(0) - f<u>|p> p

ueV \veV
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Vi =E([VEs,) =2 (Zwé’v () - f(u))i)p> y

ueV \wveV

Similarly we define the total variations for p = oc:

Vool = (|9f].0) = 3 (e VGl 70 - 1))

ueVv

Vool = E (Vi flle) = 2 (mvx Wun(f(v) = f<u>>i) :

ve
ueV

It is known that in the continuous case the perimeter is linked to the total variation via co-area for-
mula. A similar results has been exposed in [70, 143] for the discrete case. For the reader’s convenience,
we recall this result and their extension to the upwind and downwind total variations.

Proposition 6.3.2. For any function f:V — R, we have:

+oo

TV, (f) =/ TV, (X(s>1)dt, (6.3.1)
+oo

TVua(f) :/ vavl(X{f>t})dt- (6.3.2)

In particular, for all A CV we have
TVf}l(XA) = Perf}l(.A) and TV, 1(xa) = Per, 1(A).

PROOF :  See [143] for a detailed proof of (6.3.2). The proof of (6.3.1) holds from (6.3.2) and the
following relationship:

1
TVil(f) = §TVW71(f), for every function f € H(V).
O
For p = oo, the co-area formula holds for unweighted graphs, as the following proposition shows. To
remove confusion on the notation, we denote w = 1 to signify that the considered graph is unweighted.

Proposition 6.3.3. For any function f: V — R, we have:

+oo
TVf:LOO(f) = / TVf:l,oo(X{f»})dt;

— 00

+oo
Tszl,oo(f) - / Tszl,oo(X{f>t})dt'

— 00

PrROOF :  Let u € V and let v, € N(u) such that HVfizlf(u)Hoo = (f(vy) — f(u))*, we can easy to
see that HVfle{f>t}(u)Hoo = (X{r>ty(vu) — Xgy>e3(w))™ for all £ € R. Then

IVE_1f@)lle = (f(va) = flu))*

“+o0o +
—/ (Xgr>ty (V) = Xqpoep () dt

—+o00
- / IV X oty (1) ool
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Hence,
+ + e + e +
TVi100() = E(|Vizi fll.0) = / E ([Viaixirsnllo) dt = / TVimt o0 (X (51 ).
Using the fact that TV —1 oo (f) = TV;“:LOO(f) + TV, _1 o (f), to get the last equality. O

Remark 6.3.4. The co-area doesn’t hold for a general weighted graphs, for p = co. Indeed, let G be
a weighted graph with the vertex set V = {1, 2, 3} and the weight function is given by

1, if (i,7) = (1,2),
wi =< 1/4, if (i,5) = (1,3),
1/3, if (4,7) = (2,3).
Consider the following function defined on V' by f(1) =0, f(2) =1, f(3) = 4. By a simple computa-

tions one gets that

11 +oeo
Vi) =2< = [ TVEL(upmg )i
—+o00
TVof) =3 <5 = / TVa oo (X oy -

We close this subsection with an application of co-area formulas to an equivalent result on functional
inequalities.

Let G be a non-empty set of pairs (g1, g2) functions on V' an let £ be a functional generated by G
as follow:

L(f)= sup E(fTgi+ [ go) (6.3.3)
(91,92)€G

We say that the functional £ admits a quasi-linear representations. As noted in [140], many functionals
have this representation, for example:

L) = (BN, for 1 <p< oo,
L(f)=(E(|f =BT, for 1 <p< o,
L(f) = érelﬂf% (E (‘f — a’p))l/p for 1 < p < oc.

The co-area formula implies the following equivalence.

Proposition 6.3.5. Let A > 0, and either p =1 or p = oo withw € {0,1}, the following are equivalent:
(i) L(f) <AE(|VES|,)  forall f:V —R.

(ii) L(xa) S AE(|VExall,) and L(=xa) < AE(|VE(=xA)]],), for all AC V.
PrROOF :  The implication (i) = (ii) is straightforward, it is enough to apply (i) to f = x4 and

f = —xu- Conversely, let g1, g2 € G, it is easy to see E(HVfXAHp) = E(vag (—xAc) ’p) forall A C V.
Therefore

+o00 0
B(9irl,) = [ BAVExsal i+ [ B(TEgn], )

+o00
:/0 E(vax{bt}ﬂp)dtjt/

0
E(||V5 (=xgr<n)|,)dt

(e’ 0
> A‘lfo E[gl-X{f>t}}dt+A_l~/ E (X{r<i192) dt

—00
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=AE(guf )+ A E(fg2)

We get the desired inequality by taking the supremum over all function g1, g2 € G.

6.3.2 Extension of Cheeger inequality on graphs

Partitioning the set of vertices of a graph into two or more disjoints subsets, is a fundamental problem
in graph theory. It is also a very powerful tool in data clustering with applications in image analysis
and machine learning [35, 41, 142] . A popular criterion to partition the graph is to minimize the
perimeter cut(A, A¢) defined as
cut(A, A E YN .
uc AveAe
Direct minimization of the cut leads typically to unbalanced partitions. To solve this issue one can
introduce a balance term. There exist several kinds of balanced cuts, among which a popular one is
the Cheeger cut [54] defined as

min _SWH(AA%)
Acv min(|A], |A¢])’

The Cheeger constants can be rewritten as

with | A| the size of A.

o<l Y g iR (E(xa), E(xar)) o<\itC\Z% (x4)

we can then extend the isoperimetric and related constant associated to the discrete gradient defined
above, for any 1 < p < 0o, as follows:

. — B(VEval,) B (|IVeall,)
hy = mn ————%> hy= mn —————%>.
0<lAl< Y Al 0<|A|< YL Al
By definition of the perimeters we have:
e . Pery1(A)
2hT =2h] = = 0<‘rj\1‘1§% 7\./4\ .
Definition 6.3.6. Let p € [1, o0], we set:
. g (|[visl,)
ky = in )
f#const ) (}f — m(f) )
B (|v.fl,)
kp

= inf
f#const | (}f — m(f)’) ’

where m(f) is the median of f.

Proposition 6.3.7. For either p =1 or p = oo with w € {0,1}. We have the following relations:
hi=ky  and  hy=ky (6.3.4)

PrOOF :  Let A C V such that 0 < |A] <|V]/2, then we have m(x.4) = 0 and

i LAl = K B (Jxa = m(xa)]) < E (|[VExall,)

Similarly, one gets
kAl =kp B (Jxa —m(xa)|) < E (HVWXAHP> :
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kf<hy  and  ky < hy.

Let us prove the other inequality. Observe that

- E(X{f-m(f)>ty), ift>0,
min (E(X{f-m(n)>t}): EX(f-m(n)<ty)) = { . (6.3.5)
(B s=m(n)>t1) EQr—min=<ey)) s mre)s <0
By the co-area formula and (6.3.5) , we obtain
+ o +
B(I9:71,) = [ 2 UVExsal,)
+o0o
= /Oo E ([ VEx(s-mn>nll,) dt
+oo
> hyy - / _ i (B Ogpomn=n) B (xip-mp<n)) dt
n 0 n +oo
=hy - /_ B xg-minzn) dt+ 1 /O E (X{f-m(f)>ty) dt
=hy B ((f =m(f))7) +hy - E((f —m(f))")
=hy - E(|f —m(f)]).
Similarly, we obtain
E(IIVarl,) = b E(|f = m(f)])-
Hence, we get the inverse inequality. [l

6.4 Discrete mean curvature flows on graphs

In this section, we expose a large class of mean curvature on graphs based on the definition of the
nonlocal perimeters on graphs defined above. As in the nonlocal continuum case [49]. We define the
mean curvature as the first variation of the perimeter. We denote by d(u) the degree of a vertex u € V
which is given by 6(u) = >, ., V@uv-

Definition 6.4.1. Let A C V, and ug € V. We define the upwind and downwind mean curvature as

follow:
Per] (AU — Per | (A
Fv‘zj,l(uovA) < erWJ( {(;L(Z}O)) eI‘WJ( )a
_ def Per;,l('A) - Per;l(A\ {uo})
Hw,l(“’o? A) = 5(uo) .

Finally, we define then the mean curvature for up € V as:
{ KZI,I(U(),A), if up € A°,

HwJ(’U,O, A) d:ef
Koy 1 (U0, A),s if ug € A.

Observe that by a simple development of the definition of the perimeters, we show that
oS — [Duon,  if ug € A°,
Per: 1(./4 U {uO}) o Per:; 1(./4) — Z’UGA Wugv ZUGA Wugv 11 ug
’ ’ 0, ifugeA,

and

c uov ugvy f ,
Per_ (A) — Per (A {ug}) = 4 2veds VO = Luea vBun - iu €A
7 7 07 if Uy € A°.
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Therefore, one gets an explicit formula of the discrete mean curvature.

Proposition 6.4.2. For all ACV and all ug € V, we have:

e/ Wugv = 2 Wygv
Kw,1(uo, A) = 2vea O(S(UO)Z €A 0
ZvGV Wuov(X.A - XAC)
d(uo) '

Remark 6.4.3. (i) We can interpreted the formula (6.4.1) as a discrete version of the nonlocal

(6.4.1)

J-mean curvature introduced in [108, Definition 3.2|, which is given by

- /n J(x—y)(xe(y) — xe(x)dy, =eR",

def

e

Hé]E(UU)

where E C R™ measurable set and J is a nonnegative radial measurable function in L!(R™).

(ii) Based on the equation (6.4.1), we can extend the notion of the mean curvature to any function f
on graphs by considering its level sets. Indeed, let f: V — R and ug € V. The mean curvature
Kw,1 (we keep the same notion) of f at up on a graph is defined as

K1 (u0s ) = K1 (o, {f > fluo)})
2 ve{f>(u0)} VPuor — Dve (< (uo)} VPuov

6(uo)
D vev VWugu sign(f(v) — f(uo))
B d(uo) ’
where
) 1, if r>0,
ienlr) = { -1,  ifr<o.

(iii) In the continuum (local) setting, the mean curvature, for a given smooth hypersurface I' ¢ R,
at a point x of I' is given by the following formula

k(x) = —div(ng), (6.4.2)

where ng, « € I', is the unit normal vector field.

As in the continuous case, we are going to expose a discrete version of (6.4.2) on graphs, intro-
duced in [143]. Let G = (V, E,w) be a weighted graph. For a nonempty set A C V, the analogue
of (6.4.2) on graph is given as follow:

Y vede VWuvs ifue A,
= vea V@, ifue A

where n 4 is the discrete normal vector which is defined as

Hi?cl (u, A) = divy(ng)(u) = { (6.4.3)

1 if u ~wvand (u,v) € A x A
na(u,v) =< —1 if u~wvand (u,v) € A° x A,

0 else.

The formula given in [143] of the mean curvature is a little different to this one, this difference
returns to the definition of divergences considered. Observe that, the sign of the mean curvature,
given by (6.4.3), depends only on the side that contains the vertex u and not on the weights
function, while it is not in the cage of the mean curvature considered in Definition 6.4.1, which
makes a difference in the study of the data processing especially the nonlocal ones. In the rest
of this work, we adopt Definition 6.4.1 for the discrete mean curvature.
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6.4.1 Variational curvature on graphs

Almgren, Taylor and Wang [5] proposed an implicit time discretization to study some geometric vari-
ational evolutions, in particular curvature-based motions. Following the formal consideration that
curvature can be seen as the variation of the perimeter, they minimized iteratively the following incre-
mental minimum problem

min{ 7 (E) Per(E)—s—% /E Ay (@)da}, (6.4.4)

where E range over all measurable sets in R™, Per is the usual perimeter, h is the time step, d4 () =
dist(-, A) — dist(-, A°) with dist(-, A) is the Euclidean distance from the set A. An equivalent definition
of the energy-functional of the problem (6.4.4) is given by

1
Fn(E) = Per(E) + / dist(x, 0Ek_1)dzx.
h JeaE,_,

The equivalence comes from the following equality

[E dp (@) da — /F dp(@)dz — /E _dist(z,0F)da.

Thanks to the co-area formula, it can be shown that instead of minimization over sets, we can relax
the problem by iteratively minimizing the following functional

1

TV(p) + 5

o(x)dg,_,(x)dz, (6.4.5)
R7

where ¢ range over all increasing functions in L (R"; [0, 1]) .

Following the approach in [49], we have any level set of a minimiser of (6.4.5) is a solution of the
problem (6.4.4).

Many algorithms have been proposed to solve this problem, using different methods, e.g. dual
projection [120], graph cut [125], etc.

Now, we are going to translate this problem to the discrete setting. For a graph G = (V, E,w),
let (Per,, TV,) be one of the following pair of perimeter and their corresponding total variation
(Peryp, TVyp) or (Perd TVjp), where either p = 1 or p = oo with w € {0,1}. We consider

w,p?
corresponding following minimum problem on G.

min{Per,(4) + % S sd§)} (6.4.6)
UEA

where A C V non-empty set, h > 0 corresponds to the time step and sdﬁ() is the signed graph
distance defined as follows

sd§(u) & dG(u) — dSe(u),  ueV,
with dg is the solution of the Eikonal equation (6.5.10) with respect to the boundary set B.
We extend (6.4.6) to the binary function as

. 1
s {TVL(9) + ¢ ; $(v)sdG (v)}- (6.4.7)

Using the co-area formula, (6.4.6) is equivalent to

min{TV,,(6) + % 3 6(0)sd§ )} (6.4.8)
veV

- 126 -



Chapter 6  6.5. Level set formulation of nonlocal mean curvature flows on graphs and applications

where ¢ range over all increasing functions ¢ : V' — [0,1]. Since TV, is convex, it is easy to check
that (6.4.8) has a solution. Observe that, given a solution ¢ of (6.4.8), we have

+2Z¢(“)Sd§o(v)=/o Per({¢ > £})d¢ + — / S sd§, (v)de.

veV ve{p>¢}

Therefore for almost everywhere £ € [0, 1], {¢ > £} is a solution to (6.4.6).

Using the transcription above, we define the mean curvature flow, A,,n € N, with discrete time
step h > 0 for an initial set Ag C V, recursively as

A, € arg Elcir‘}{Perw h gsdAn ) (6.4.9)
v

6.5 Level set formulation of nonlocal mean curvature flows on graphs
and applications

Based in a discretization of the gradients and curvatures on a general domain, graph, we can adapt a
large PDEs models on graphs involving mean curvature or variants of mean curvature. In this section
we consider two general models used extensively to solve several tasks in image processing and computer
vision. The level power mean curvature flows for image denoising, enhancement or simplification and
the PDEs level set active contours for image segmentation and object detection. We will show that
the transposition of these models on graphs leads to partial differences equations with coefficients that
are data dependant and their applications are naturally extend to the processing of any data and for
data classification.

6.5.1 Level set power mean curvature flow on Euclidean domain

We recall the level set approach for front propagation on Fuclidean domains. The level set method
for front propagation has been used with great success in both pure and applications and in different
applications in image processing, computer vision and computer graphics. Given an initial front on
surface 'y a boundary of repere 'y C R"(0Q¢ = Ty), see [131, 117, 42]. The level set is used to
analyse its subsequent motion under a normal velocity c(x,t). The idea is to represent the evolving
front as a level set of a function ¢(x,t) for € R™ and ¢ is the time. The initial front is given by

0 ={x: ¢(x,0) =0 = ¢o}, where ¢ is a smooth function defined on R”, and the evolving front is
described for all later time as I'y = {@x : ¢(x,t) = 0}. The evolving front is governed by the equation :

{%‘f(w 1) =c@ )| Vel 1), (1) R x(0,T) (6.5.1)

o(x,0) =¢o(x), xecR™

In particular, when c(z,t) = |k(, t)‘aillﬁ($,t) where £ presents the usual mean curvature, we have
the level set power mean curvature equation, and (6.5.1) reads

9 (4 ~ div a—1 __Vé(mit) x,
o (T, 1) ’d <HV¢ H > ‘ div <Hv¢mt H > vab 2 HZ’ (6.5.2)
P(x,0) = ¢o(x).

For o = 1 this equation corresponds to the mean curvature flow filter which finds important applications
in image processing [131]. A variant for positive/negative curvature flows are used in [107] for image
enhancement in addition to noise removal.
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When o — 0, we obtain so called erosion/dilatation used in mathematical morphology. In this case
the equation (6.5.2) is given by:

06, (( Vo) N
(o0 = (0 [0 ) ot

In the case, where ¢ is an implicit representation of a front (surface), we get the active contour/snake
model which is one of the most successful variational models in image segmentation. It consists
of evolving a contour in images toward the boundaries of objects. Its success is based on strong
mathematical properties and efficient numerical schemes via the level sets method. We consider the
following curve evolution equation

% (@,t) = <adiv <vaf<(>)H> +BF(, ¢><az,t>>> V(. 1),
¢(x,0) = do(x),

where I : 2 — R is the initial image and F' is a halting function of the active contour model.

(6.5.3)

Chan-Vese model for active contours [53, 144] is a powerful and flexible method which detects objects
whose boundaries are not necessarily detected by the gradient. This model is based on an energy
minimization problem, which can be reformulated in the level set formulation, leading to an easier way
to solve the problem. Chan-Vese model has achieved good performance in image segmentation task
due to its ability of obtaining a larger convergence range and handling topological changes naturally.

%(@,t) = <a div (MHng(w,t)HQ) S —e)? (I - cz)2> [Vé(@, 1),

¢(x,0) = ¢o(x).

where o, A1, Ay > 0 are the fitting parameters, I corresponds to the initial image, ¢y is a smooth

(6.5.4)

function, ¢; the average of I on ¢(x,t) > 0, and ¢y the average of I on ¢(x,t) < 0.

6.5.2 Transcription of power mean curvature flow on graphs

We are interested in translating on graphs two PDEs models involving mean curvature. Let G =
(V, E,w) be a weighted graph, based on the definition of discrete gradient and the boundary set which
are given above, our formulation for (6.5.2) on graphs can be expressed as follows:

%2(u,t) = (a6l )| rafo(w,0)) " IVE 60,1,
= (Iralo(u, ) k@, 1) [ Valu, )]
¢(u,0) = do(u),
where ¢o(-,t) € H(V), a € [0,1], p € [1,400] and

Fo(P(u, ) = Ko (u{y | ¢(v,t) = du,t)}) .

(6.5.5)

p7

We use the forward/explicit Euler scheme in the time to approximate the above problem, for that
let 0 < t1 <tg <---<ty=T be an equispaced partition of [0,T], T > 0. i.e. t; = %T, i €[l

¢ ¢ (u) — ¢ (u)
ot N At ’
~ 128 -
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where ¢'(u) = ¢(u,iAt) with At = L and the equation (6.5.5) can be rewritten as the following
iterative equation:

¢ (u) = ¢/ (w) ((m G| rul@ () [TES W],

~ (Iruléiw) r*ltx¢%u»)_uvw¢%uﬂu)‘

In particular, for &« = 1 the equation (6.5.5) can rewritten as the following iterative equation:

) = ¢t (u) + At (ko (o' (u Vet (u Ko (0 (u Vv, 64 ,

#9100 =600+ 20 (@) 200, - (@) 500}
¢u) = golu).

When p = oo, we across the scheme considered in |70, Section 3.3]. Now, let us consider the case that

when a — 0 and p = oco. Similarly by using the explicit Euler method as above, one gets the following

iterative equation :

&' (u) :¢i(u)+At<S1gn (mw ¢ (u )HVJFQS’ )H + sign (mw ¢ (u )HV o' ( )HOO>,

(6.5.7)
(Z)O(u) = ¢o(u).
In the case where At = 1, this previous equation can be interpreted as
‘ i Ve L if k(¢ (u) >
i) — Voo ()., if ku(e'(u) <O0.

6.5.3 Transcription of the active contour on graphs

In this section, we present a transcription of geometric PDEs on weighted graphs of arbitrary topology.
A front evolving on G is defined as a subset Ay C V, and is implicitly represented by a level set
function ¢o = x4, — xAg- In other word ¢¢ equal 1 in Ag and —1 on its complementary. From the
general equation (6.5.3) transposed on graph, the front propagation can be expressed in general by
{%f(ut) = c(u,t) vaqﬁutH t) eV x10,7T) (6.5.9)
¢(u,0) = ¢o(u),
with ¢(-,t) € H(V). Based on the previous definition of discrete dilation and erosion on graphs, the
front propagation can be expressed as a morphological process with the following sum of dilation and
erosion.

{%wo — (c(u, )" - [ VE o, 0)], — (elu, ) - [Voo(u,t)],
¢(u,0) = go(u).

To solve this dilation and erosion process, on the contrary to the PDEs case, no spatial discretization is
needed thanks to derivatives directly expressed in a discrete form. Then, the general iterative scheme
to compute ¢ at time ¢t + 1 for all u € V is given by:

¢i+1(U)=¢i(U)+At<(6(u,t))+H(VI¢’ )| = (elu,t)7[[(V5¢) U)H)

At each time i + 1, the new value at a vertex u only depends on its value at time ¢ and the existing
values in its neighborhood. This equation can be split in two independent equations, in function of
the sign of ¢(-,-):

51 () = ¢'(u) + At(c(u, ) [|(VES) ()|, if e(u,t) > 0,
¢'(u) + At(c(u,1)[|(VES) ()], if c(u,t) <0,
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Such decomposition of the process in two independent equations for erosion and dilation processes
enhances the computation of the solution because one only has to compute one morphological gradient
at each iteration, for a given vertex. Moreover, one can remark that at initialization both two gradients
are zero everywhere, except for vertices which lies in the inner and outer boundaries of Ag. Then, the
set of vertices to be updated at each iteration can be restricted to two inner and outer narrow bands,
initialized respectively with 8~ Ay and 7.4y and updated over time with neighbours of vertices already
in. The narrow bands growth follows the fronts evolution and to avoid them to become too large, the
narrow bands are reinitialized periodically. Thus, each 7 iterations,which correspond to a step k,
the front is given by the set Ay = {u eV ¢ (u) > O} and the associated level set function is also
reinitialized as ¢ (u) = Uy = x4, (u) —xa¢ (u). Then, the inner and outer narrow bands are respectively
reinitialized as 0~ A, and 01 A,.

Remark 6.5.1. Using previous definitions of morphological evolution equations, one can formulate
the same relation and obtain a PdEs-based version of the Eikonal equation, defined on weighted graphs
of arbitrary topology. Indeed, let ¢ = 1 and ¢(-,t) =t — ¢(-) on the whole domain V', with ¢ € H(V).
We obtain a discrete adaptation of the Eikonal equation on graph, which describes a morphological
erosion process, and defined as

{ (Vo) ([ =1, uweW, (6.5.10)

o(u) =0, ueV\W,

where Vy C V. Numerical schemes and algorithms to solve such equation have provided in [60]. These
shemes allow to compute weighted geodesic distances, see [60, Section 5.2].

6.6 Numerical experiments

In this section, we present our numerical experiments to illustrate the potentialities of our formulations
of the level set power mean curvature equation, through two models: power mean curvature flows and
Chan-Vese model for active contour. These allow us to process both images and 3D-point clouds.
Different graph structures and weight functions are also used to show the flexibility of our approach.

6.6.1 Weighted graph construction

There exist several popular methods to transform discrete data {ui,- -, u,} into a weighted graph
structure. Considering a set of vertices V' such that the data are embedded by functions of H(V'), the
construction of such a graph consists in modeling the neighborhood relationships between the data
through the definition of a set of edges E and using a pairwise distance measure p: V x V — RT,
In the particular case of images, graph construction methods based on geometric neighborhoods are
particularly well-adapted to represent the geometry of the space, as well as the geometry of the function
defined on that space. We distinguish the following types of graphs:

e Grid graphs, which are the most natural structures to describe an image with a graph. Each pixel
is connected by an edge to its adjacent pixels. Classical grid graphs are 4-adjacency grid graphs
and 8-adjacency grid graphs. Larger adjacency can be used to obtain nonlocal grid graphs.

e Region adjacency graphs (RAGs), which provide very useful ways of describing the structure of
a picture: vertices represent regions and edges represent region adjacency relationship.

e k-nearest neighborhood graphs (k-NNGs), where each vertex u is connected with its k-nearest
neighbors according to the distance measure pu. Such construction implies building a directed
graph as the neighborhood relationship is not symmetric. Nevertheless, an undirected graph can
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be obtained by adding an edge between two vertices v and v if u is among the k-nearest neighbors
of v or if v is among the k-nearest neighbors of u.

o k-extended RAGs (k-ERAGs), which are RAGs extended by a k-NNG. Each vertex is connected
to adjacent regions vertices and to its k most similar vertices of V.
The similarity between two vertices is computed with respect to an appropriate measure s : £ — R,
which satisfies
s(u,v), if (u,v) € E,
Wyy = .
0, otherwise.

Examples for common similarity functions are as follows:

so(u,v) = 1,
si(u,v) = exp(—u(f°(u), f°(v))/o?), with o >0,

for which ¢ depends on the variation of the function p and controls the similarity scale.

Several choices can be considered as feature vectors computed from the given data, depending on the
nature of the features to be used for graph processing. In the context of image processing one can use
the simple grayscale or color feature vector F,, or a patch feature vector F, = Uvewf(u) F, (i.e., the
set of values F,,, where v is in a square window W7 (u) of size (27 + 1) x (27 + 1) centered at a vertex
pixel u) incorporating nonlocal features such as texture.

6.6.2 Power mean curvature flow

This paragraph illustrates the potentialities of the power mean curvature through an example of
image filtering and an other one of 3D point cloud. Figure 6.1 presents filtering results of an im-
age using the formulation of power mean curvature flows (6.5.5) for a = 0, 1, with p = 2, on lo-
cal weighted graph structures. In this example, we construct 4-adjacency grid graphs with wy, =
exp(—d(¢o(u), ¢o(v))/o?). Figure 6.2 presents filtering results obtaining of 3D point cloud using the
same formulation for a = 0, 1, with p = 2. In this example, we apply our formulation using two
graphs. Both built from the same 3D-points clouds using k-NNGs, with k£ = 8 and w = 1 for the first
one, which their correspond results are given by (b) and (c¢). For the second graph, we take k = 20
and wy, = exp(—d(¢o(u), ¢o(v))/102), which their correspond results are given by (e) and (f). Both
examples the function ¢ represents the initial data ( image of the first example and 3D point cloud for
the second one) and d represents the Euclidean distance between ¢g(u) and ¢o(v) RGB color vectors.
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(a) Original image
.

(c)a=1

Figure 6.1: Colored image filtering with power mean curvature flows. (a) Original image. (b) and (c)
present results with 4-adjacency grid graph and w =colour, which depends on the colour similarity
between different pixels.

6.6.3 Active contour model on graphs

In this paragraph, we illustrate the behaviour of the Chan-Vese model (6.5.4). An advantage of our
graph-based formulation is that the proposed formula can be applied to any graph, and therefore any
graph representing images. To illustrate such an adaptive behaviour, we propose to use other image
structures, such as regions maps, instead of pixels grids to build the graph for image segmentation.
In the following, we propose three examples, where we use two graphs. The first one is a classic 4-
adjacency grid graph where each pixel is connected to adjacent pixels and represented by its RGB color
vector. The second on is a Region Adjacency Graph (RAG) built from an initial partition of the image,
where each region (represented by a vertex) is connected to adjacent regions and represented by the
mean RGB colour vector inside the region. The partition is computed using the multi-label approach

presented in [60], that preserve image’s strong boundaries. In both cases, the weight function is defined

exp—(d(u.))?
0.2

Figure 6.3 and Figure 6.4 present several steps of the motion and the final position of the front using

as: Wyy = , where d(u,v) is the Euclidean distance between u and v RGB colour vectors.

the first graph (4-grid) with two and three phases, respectively. Figure 6.5 presents different steps of
the contour evolution using a RAG.
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Figure 6.2: Colored point cloud filtering with power mean curvature flows. In the middle line presents
results obtained using local k-NNGs (k = 8 and w = 1). The last line presents results under the same
configuration but with different similarity function (w =colour, which depends on the colour similarity
between different 3D-points). obtained using 20-NNGs with .
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Figure 6.3: Illustration of active contour on a 4-grid graph. The weighted and velocity functions are

computed from each pixel RGB color. In blue, the front and the area inside the front. In red and the
green, the inner and outer candidate bands respectively.

Figure 6.4: Tllustration of Chan-Vese segmentation with three phases.Results of different steps on 4-
grid graph representation.
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(b) Contour reported on image

(d) After one iterations

(e) After 82 iterations (f) After 82 iterations

Figure 6.5: Illustration of active contour on a region adjacency graph (RAG). The RAG is built from
a superpixel decomposition of the initial image, where each region is connected to its adjacent regions.
The weight and velocity functions are computed from the mean color inside regions. Left column shows
the RAG, with the front in blue and candidate bands in red (inner) an green (outer). Right column
shows the initial image with the front transposed from the RAG (using the superpixels boundaries).

6.6.4 Classification

Performance for Data classification Finally, we have tested the performance of our proposed
framework when applied to semi-supervised classification on three standard databases from the liter-
ature: MNIST [103], OPTDIGITS [6], and PENDIGITS [4]. We compare two kinds of velocities. The
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first one is the level set mean curvature flow on the graph-based curvature. We denote it as LSM. The
second one is propagation using the evolution eikonal equation but constant in time and based on the
characteristic of graph vertices. We denote it as FM. For these databases we merged both the training
and the test sets (as performed in [36]), resulting in datasets of 70000 instances, 5620 instances, and
10992 instances, for MNIST, OPTDIGITS, and PENDIGITS, respectively. In our tests, we propose
also, to refine the classification results of FM with LSM algorithm (i.e., FM is used as seeds for LSM),
and we denote it as FM + LSM.

Comparison with state-of-the-art method: We compare the proposed method with p-Laplacian on
weighted graphs (pLPL) (case p = 2) [75]. To do so, we vary the amount of initial seeds from 1% to
10%, and compute the average classification rate over 10 runs of each algorithm. The result comparison
is shown in Table 6.1. As it can be seen for MNIST and PENDIGITS datasets there is always one
of our methods that outperforms the state-of-the-art, while for OPTDIGITS our methods perform
equally well.

seeds datasets pLPL FM LSM | FM+LSM
MNIST 97.84% | 97.45% | 98.20% | 98.24%
1% OPTDIGITS | 95% | 95.22% | 96.82% | 97.10%
PENDIGITS | 94.97% | 95.75% | 95.71% | 96.25%
MNIST 97.88% | 97.64% | 98.24% | 98.29%
2% OPTDIGITS | 97.53% | 97.41% | 97.88% | 97.92%
PENDIGITS | 96.81% | 97.38% | 97.06% | 98.56%
MNIST 97.99% | 97.95% | 98.33% | 98.37%
5% OPTDIGITS | 98.12% | 98.09% | 98.38% | 98.35%
PENDIGITS | 97.95% | 98.25% | 98.30% | 98.56%
MNIST 98.02% | 98.19% | 98.39% | 98.45%
10% | OPTDIGITS | 98.05% | 98.41% | 98.64% | 98.51%
PENDIGITS | 98.61% | 98.94% | 98.92% | 99.10%

Table 6.1: Classification rates on the three datasets we used. FM+LSM works better in general.
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In this chapter, we adopt a primal-dual proximal splitting (PDS) to solve the regularization problem
(5.2.1) and the boundary value problems (P%) and (5.3.1). We start by recall the primal dual hybrid

n

gradient scheme developed in [50]. Second, we recall the fast iterative Shrinkage-Thresholding algorithm
developed in [23]. Finally, we expose our adaptation and we present a calculus of the proximal mapping
proposed in our framework.

7.1 Algorithm for the Dirichlet problem on graphs

In this section, we adopt primal-dual hybrid gradient developed in[50] to solve the discrete boundary
value problems (P¢) and (5.3.1). In order to avoid redundancy, we expose a general problem for the
both problems, which we will adapt to each of these two problems .

7.1.1 Primal-dual splitting

Let X, Y two finite-dimensional real vector spaces equipped with an inner product (-,-) and norm
1
H : H = (-,-)2. The general primal problem is given as

min F(Tx) + G(x), (7.1.1)

where T': X — Y is a continuous linear operator, G : X —| — 0o, +oo] and F : Y —] — oo, +0o0] are
proper, convex lower-semicontinuous functions. The Fenchel-Rockafellar dual problem of (7.1.1) reads

miy (G*(~(T"9) + F* () (7.1.2)

where F* and G* and the Legendre-Fenchel conjugates of F and G, and T™ is the adjoint operator of
T.
Notice that the primal-dual gap, given by

def

G(z,y) = F(Tz) + G(x) + G*(=(T"y)) + F*(y), (7.1.3)

is a measure of optimality. If it vanishes at (z*,y*) € X x Y (i.e., strong duality holds), then (x*,y*)
is a saddle point of the Lagrangian

L(z,y) € (Tx,y) + G(x) — F*(y) (7.1.4)
as one has
L(z*,y) < L(z*,y*) < L(z,y"), (7.1.5)
forallz € X andy €Y.
The KKT equations, translating the primal-dual optimality conditions, then read
—T*y* € 0G(z7),
Tx* € OF*(y"),
which may be written
0G(x) 0 T+\ [z

0e +
OF*(y) -T 0 Yy

(7.1.6)
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meaning the solution is found by finding the zeros of the sum of two monotone operators.
The latter can be solved with the following PDHG iterative scheme

2"t = prox,q(zF — TTrYF) (7.1.7)
Y = proxgps (yF + 0T (225 —ab)),

where 7,0 > 0 and the proximal operators are given by

1
def . / 1|2
prox,.q(z) = arg min TG(w)—i—iHa:—x 7, (7.1.8)
e . 1 2
prox, p« (y) < arg min o F*(y') + Ny =" (7.1.9)
y'ey 2

The convergence guarantees of (7.1.7) are summarized in the following proposition.

Proposition 7.1.1 (|50]). Let L = HTH choose 0 < 1o L? < 1 and ((z*,y*))x the sequence generated
by (7.1.7). Then ((z*,y*))1 converges to a saddle point (z*,y*).

7.1.2 Application to the p-Laplacian Dirichlet problem

We adapt the primal-dual algorithm (7.1.7) with appropriate functions and linear operators to solve

problem (P%). We keep the notation of Section 4.4.1. Without loss of generality, we assume that

Vo(Q) ={0,1,--- , n} and A, C V(). Set V,, = V,,(2), RV» = H(V,,) and R"*V» = H(V}, x V,,).
The problem (P?) is equivalent to (VP?), where the latter takes the form

in Fgn n(u), 1.1
H(r\zl(ISl))) d, (VKu)—FGd, (u) (7 0)

where Fy,, : RV"*V» — RT and G, : RY" — R, which are defined by

p,RVn XVn o

1
Fy,(U) = ];HUHP and  Ggpn(u) = (u, f)gv, + tc, (u), (7.1.11)

with p € [1,+00]!, Cg = {u € R : u = gon A%}, and Vi is the (nonlocal) weighted gradient
operator

Vi R — RV Vn

1
u— Viku, (Vku)zy =Kiy(uy —uy).
This is a linear operator, its norm defined by

Vx|

d:Ef Sllp HVKuHRanVna

1

u IRVn =

and whose adjoint, the (nonlocal) weighted divergence operator denoted divk and given as
divg R""*V" — R
1
U — divgU, (divkU)z = » K&y (Uys — Uqy).
yev,

As mentioned above, we adapt the PDHG iterative scheme (7.1.7) to solve the problem (7.1.10), which
reads in this case as

uttl = Prox,q, . (u* — 7divg U¥) (7.1.12)
Ul = proxo_Fd*n(Ul’C + o Vk(2uF T — ub)),

where 7,0 > 0. The convergence guarantees of (7.1.12) are summarized in the following corollary
which is an immediate consequence of Prposition 7.1.1.

1 _ : 1 p _
The case p = +o0o has to be understood as lim;,_, 4 oo ;H . Hp,RanVn = LHUH o
’ o0, RVn X Vn =
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Corollary 7.1.2. If0 < TUHVKH2 < 1, then (u*); generated by (7.1.12) converges to a solution of
(7.1.10).

7.1.3 Application to the p-bilaplacian Dirichlet problem

Let G = (V, E,w) be a weighted graph. We keep the same notation used in Section5.3. Recall that
the boundary value problem, governed by the (nonlocal) p-bilaplacian operator (5.3.1), is equivalent
to solve the following minimization problem

in F(A, G(u), 7.1.13
Jmin F(Auow) + Gl (7.1.13)

where A, 2 is the (nonlocal) weighted Laplacian operator and F, G : H(V) — R are defined by
1
Flu) = ffully
p

Gu) = (£, u)nw) + v (),

with p € [1,400]| (with the appropriate meaning for p = 400 recalled above), and u € H(V) and
A C V. Recall that, the operator A, > is self-adjoint and its norm is given by

180.z|

d:ef Sup HA"‘)72H2'
ufl,=1

We adapt the minimization problem (7.1.7) to solve the problem (7.1.13). In this case the scheme
reads as

utl = prox,,(uf — 1A, 2vF) (7.1.14)

virl = prox, g (vF + O'Aw72(2uk+1 —ub)),

where 7,0 > 0. The convergence guarantees of (7.1.14) are summarized in the following corollary
which is a consequence of Prposition 7.1.1.

Corollary 7.1.3. If 0 < TO'HAM’QHz < 1, then (u¥)y generated by (7.1.14) converges to a solution of
(7.1.13).

7.2 Algorithm for the p-bilaplacian variational problem on graphs

In this section, we are going to describe an algorithm to solve the regularization problem (5.2.1). For
this purpose, we keep the notation used in Section 5.2. This algorithm is valid for any p € [1, +o0],
and for simplicity, we restrict ourselves here to the case where A is the identity operator (i.e. with a
denoising-type application in mind). We rewrite the problem (5.2.1) as follow

min{ EP(u; f, \) & A
p

Problem (7.2.1) can be easily solved using standard duality-based first-order algorithms. For this we

| Awoull2 4 5l —£2: we H(V)). (7.2.1)

follow [79]. By standard conjugacy calculus, the Fenchel-Rockafellar dual problem of (7.2.1) reads
A 1
min{ [/l + 518wy - f]l5: veH(V)}, (7.2.2)

where p € [1,400] (with the appropriate meaning for p = 400, see above), and ¢ is the Holder
conjugate of p, i.e. % + % =1.
Applying Theorem 5.2.1 to the dual problem (7.2.2) has a convex compact set of minimizers for any
p €]1, +00[. Moreover, the unique solution u* to the primal problem (7.2.1) can be recovered from any
dual solution v* as

11* =f - Aw,gv*.
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It remains now to solve (7.2.2). The latter can be solved with the (accelerated) FISTA iterative scheme
[115, 23, 48] which reads in this case

-1
Wk :Vk+ Z+b(vk —Vk_l),

k+1 _ k . k 723
v = pI'OXV%H'/AH: (W + ’yA%g(f A%QW )) R ( )

U AP

where v €]0, (HAMQHQ)_I [, and b > 2. Combining Theorem 5.2.1, [79, Theorem 2|, [13, Theorem 1.1],
the scheme (7.2.3) has the following convergence guarantees.

Proposition 7.2.1. The primal iterates u*

converge to u*, the unique minimizer of (7.2.1), at the
rate

Huk — u*H2 = o(1/k).

7.3 Computing the proximal operators

Let us turn to the computation of the proximal mapping prox q for more detail see [91]. Since

q

oill-»
H : HZ is separable, one has that
mea%H./AHZ(V) = <pr0xa;\./x\q("1))

is an even function on R, prox 1‘ ‘q is an odd mapping on R, that is,
o1l
q

zeV
Moreover, as ‘ . ‘q

proxUlHq(vx) = proxal}_}q(}vw‘) sign(vy).

Hence, one has to compute prox , ‘ ’q(z‘/)2 for t € R*. We distinguish different situations depending on

o1l
q

the value of ¢:

e ¢ =+oo (i.e,, p=1): this case amounts to computing the orthogonal projector on [—A, A\] which
reads
te RT — P[,)\’)\] (t) = min(t, A)

e ¢=1 (i.e., p=+00): this case corresponds to the well-known soft-thresholding operator, which
is given by
teRT — proxa|.|(t) = max(t — o,0).

e ¢ =2 (i.e.,p=2): it is immediate to see that
t

)= ——
proxo_%Hz() T+ o
e ¢ €]1,+o0[: in this case, as } : !q is differentiable, the proximal point proxUlHq(t) is the unique

q

solution a* on R of the nonlinear equation:

a—t+oadt =0.

*Recall that limg—eo ¢ |- |* = ¢1-1,1(")-
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Chapter 8

Conclusion and Perspectives

8.1 Summary and take-away messages

In this manuscript, we have provided new results on consistency of nonlocal p-Laplacian evolution
and boundary value problems on sparse graphs. In particular, we have established general error
bounds comparing the continuum problems and their discrete approximations on graphs and global
convergence rates, for the evolution problem. Regarding the boundary value problem, we have studied
the asymptotic behaviour of a sequence of this problem. Moreover, we have shown a general consistency
as well as as a priori estimate for the homogeneous problem on graphs. Based on these error estimates
of both problem, we have established nonasymptotic rate of convergence of solutions for the discrete
models on sparse random graphs.

In addition, we have introduced two new concepts on graphs, based on nonlocal calculus on weighted
graphs. The first one concerns the discrete p-bilaplacian operator on graphs, which allowed us to study
its corresponding variational and boundary value problems on weighted graphs. The second one is a
general class of perimeters on graphs, which allowed us to redefine and extend other notions on graphs.
These led us to transcribe and adapt the notion of the mean curvature flows on graphs as well as the
level set mean curvature.

We summarize the main conclusions to be drawn from our work:

(i) We extended the results of [90] to a far more general class of kernels and L9-graphons sequences.
More precisely, we established a bound on the distance between two continuous-in-time trajec-
tories defined by two different evolution systems, without any boundedness assumptions on the
kernels, second member and initial data. Similarly, we provided a bound in the case that one of
the trajectories is discrete-in-time and the other is continuous. In turn, these results led us to
establish error estimates of the full discretization of the p-Laplacian problem on sparse random
graphs. In particular, we provided rate of convergence of solutions for the discrete models to the
solution of the nonlocal problem on the continuum as the number of vertices grows.

(ii) For the boundary value problem (P2

nloc
(e.g., on sparse graphs) nonlocal p-Laplacian boundary value problems. Using the Dirichlet

), we established continuum limits of a sequence of discrete

principle, we showed the problem amounts to studying limits of nonlocal variational problems
consisting in minimizing a sequence of convex lower-semicontinuous functional in LP(2). We
first established well-posedness of these problems. Then, using the notions of Mosco and I'-
convergence, and under mild conditions, we established convergence of this sequence of variational
problems and provided the form of the limit variational problem. In turn, this allowed us to
provide consistent estimates of the discretisation of the nonlocal p-Laplacian Dirichlet problem
on graphs. In particular, under some mild conditions we provided a priori estimates for solutions
of this problem. These results led us to derive rate of convergence for the discrete model defined
on K-random sparse graphs.
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(iii) We introduced a new class of operators, called p-bilaplacian operators. We studied the well-
posedness (existence and uniqueness) of the variational problem as well as the boundary value
problem associated to these operators on weighted graphs. We adapted also primal-dual algo-
rithms to solve these problems. Some numerical results were reported to illustrate our findings.

(iv) For the nonlocal discrete perimeter, we revisited [70|, where we proposed a general class of
perimeters on weighted graphs. We introduced the curvatures related to these perimeters. we
proposed also an adaptation and a transcription of the power mean curvature level set equation
on a general discrete domain, represented via weighted graphs. Employing these models, we
reported some numerical results, on image processing and 3D-point clouds and high dimensional
data classification, to exemplify the potential impact of our framework.

8.2 Future work

Our work uncovers several interesting problems which will be very interesting to investigate in the
future.

8.2.1 The nonlocal p-Laplacian operator.

The limiting cases p = 1 and p = +o0o Starting with the study of the well-posedness and going
through the study of the consistency of (P~

nloc
for the boundary value problem and p = oo for the evolution problem, were crucial to get our results.

) and (Pyuioc), excluding the value p = 1 and p = oo

The existence of a solution can be concluded by a simple argument of convex analysis, for the nonlocal
1-Laplacian Dirichlet problem thanks to the Dirichlet principle, but there is no uniqueness in general
since the functional of the variational problem lacks strict convexity. On the other hand, to get our
estimate for the problem Dirichlet problem, Theorem 4.2.7 was fundamental. It would by interesting
to find a way to overcome these difficulties and establish the consistency for p = 1. For p = oo,
the definition of the operator A]If becomes completely different, many challenges arise in addition to
well-posedness for both problems.

8.2.2 Other nonlocal evolution problems: beyond (P,.)

It would be also very interesting to extend our results to analyze the consistency of other nonlocal
evolution problems such as the nonlocal Hamilton-Jacobi equation; see e.g., [18, 78]. Extension to other
nonlocal operators that are of importance in practice would be also an interesting research avenue. One
may think of the case of the normalized p-Laplacian, the case when p is spatially varying, or the case
where the kernel is unknown.

8.2.3 The discrete p-bilapalcian operator

The limiting cases p = 1 and p = +o0 We studied the well-posedness of the boundary value
problem on graphs, excluding the values p = 1 and p = oo was crucial to get our results. For p =1
and p = oo, the definition of the p-bilaplacian operator becomes completely different, many challenges
arise to prove well-posedness.

Continuum limit for the p-bilaplacian on graphs In Chapter 5, we have focused on the discrete
setting. A natural continuum counterpart of the discrete p-bilaplacian operator we have introduced
would be

A u AR (|AK " AKu)
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Chapter 8 8.2. Future work

where u € LP(Q), p €]1,+00[. This operator coincides, for p = 2, with the nonlocal bilaplacian
operator introduced in [124]. It would be very interesting to study the well-posedness of different
problems governed by this family of operators e.g. evolution, variational and boundary value problems.
In this manuscript, the natural question of continuum limits of the problems governed by this family
of operators is left completely open. It would then be interesting to study such limits and establish
consistency /error bounds of the corresponding discretizations on (sparse) graphs. The idea will be to
extend and adapt our arguments and results to this family of operators.

8.2.4 Continuum limits of the the mean curvature flow on graphs

Studying continuum limits in the context of Chapter 6, with the discrete definitions provided there, is
a challenging question worth investigating in the future.

8.2.5 Other continuum limits

We have focused in this work on nonlocal-type limits of discrete problems on graphs. This allowed to
get deeper understanding of the behaviour and guarantees of such models as the number of vertices
grows. This is not the only possible framework for deriving continuum limits. For instance, one can
view some of these discrete models as individual-based models based on “particlelike assumptions,
which can be connected to hydrodynamics/macroscopic descriptions via kinetic theory. The kinetic
viewpoint can be very enlightening both in the modelling, and in the derivation of continuum models.
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List of Notations

General definitions

R:
R*:
R:
N: set of non-negative integers
N*:

R4, R™:

Spaces related

H:

the set of real numbers
positive real numbers
] — 00, +oo[U{+0o0}, the extended real value

set of positive integers
finite dimensional real Euclidean spaces

real Hilbert space

X: Banach space

Co(H):
LP(Q):
c0,T;Xx):

Sets related

span(S):

the set of proper convex and lower semicontinuous functions on H
the Banach space of p-integrable functions on 2, p € [1, +o0]
the space of functions on &' x [0, 7] which are continuous in the time variable

: indicator function of a set S

: charactetistic function of a set S
: normal cone of a set S

: projection operator onto S

: interior of S

boundary of &
closure of &
smallest linear subspace that contains S

Functions related

dom(F):
VF:
VNLE:
Prox, pt
oF:
supp(£):

Operators

Dom(A):
R(A):
Ja:

I

domain of a function F'

gradient of F

nonlocal gradient of F

proximity operator of F with v > 0
subdifferential of function F
support of a function F'

domain of the operator A

range of the operator A

resolvent of the operator A

identity operator on a space to be understood from the context
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Norms

H . HLP(Q): the norm of functions on LP(£2)
H . Hp: the p-norm of a vector in R", p € [1, +0o0]

H . Hpn: the normalized p-norm of a vector in R™, p € [1, 4+00]
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