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Abstract

The nonlocal p-Laplacian operator, the associated evolution equation and boundary value problem,

governed by a given kernel, have applications in various areas of science and engineering. In particular,

they have become modern tools for massive data processing (including signals, images, geometry), and

machine learning tasks such as semi-supervised learning.

In practice, these models are executed in discrete form (in space and time, or in space for the

boundary value problem) as a numerical approximation to a continuous problem, where the kernel is

replaced by an adjacency matrix of a graph. In this work, we �rst focus on the study of numerical

approximations of these models. Combining tools from graph theory, convex analysis, Γ-convergence,

nonlinear semigroup theory and evolution equations, we give a rigorous interpretation to the nonlocal

continuous limit of the discrete nonlocal p-Laplacian evolution and boundary value problems on sparse

graphs. Along the way, we provide consistency/error bounds. These results lead us to derive rate of

convergence of solutions for the discrete models on K-random sparse graphs to the solution of the

corresponding nonlocal problems on the continuum, as the number of vertices grows to in�nity, and we

highlight the in�uence of p, the sparsity of the graphon, and the regularity of initial/boundary data

on the convergence rate.

In the context of image processing, we introduce a class of the analogue p-bilaplacian operators on

graphs. We then turn to study regularized variational and boundary value problems associated to these

operators on graphs. In the same vein, we introduce a general class of nonlocal discrete perimeters

as well as mean curvature �ow. These lead us to translate and establish an adaptation of the mean

curvature level set equations on a general discrete domain.

Keywords: Nonlocal di�usion, evolution problem, boundary value problem, p-Laplacian, p-bilaplacian,

nonlocal perimeter, mean curvature, graphs, sparse graph, Lq-graphon, graph limits, numerical approx-

imation, error bound, convergence rate, convex analysis.

Résumé

L'opérateur du p-Laplacien nonlocal régi par un noyau donné, l'équation d'évolution et le problème aux

limites associés régies par un noyau donné ont des applications dans divers domaines de la science et de

l'ingénierie. En particulier, ils sont devenus des outils modernes pour le traitement des données massives

(y compris les signaux, les images, la géométrie) et dans les tâches d'apprentissage automatique telles

que l'apprentissage semi-supervisé.

En pratique, ces modèles sont implémentés sous forme discrète (en espace et en temps, ou en espace

pour le problème aux limites) comme approximation numérique d'un problème continu, où le noyau

est remplacé par la matrice d'adjacence d'un graphe. Dans ce travail, on se concentre dans un premier

temps sur l'étude des approximations numériques de ces modèles. En combinant des outils de la théorie

des graphes, de l'analyse convexe, Γ-convergence, de la théorie des semi-groupes nonlinéaires et des

équations d'évolution, nous interprétons rigoureusement la limite continue du problème d'évolution

et du problème aux limites du p-Laplacien discrets sur graphes parcimonieux. Ce faisant, on fournit

des bornes d'erreur/consistance. Cela permit d'établir les taux de convergence nonasymptotiques en

probabilité et en présentant le rôle de p, de la parcimonie du graphe, de la régularité des données

initiales sur la vitesse de convergence.

Dans le cadre du traitement d'image, nous introduisons une classe d'opérateurs analogiques à

l'opérateur p-bilaplacien sur graphes. Nous nous tournons ensuite vers l'étude du problème de régu-

larisation variationnels et le problème aux limites associés à ces opérateurs sur graphes. Dans le même

cadre, nous introduisons une classe générale de périmètres discrets non locaux ainsi que la courbure

moyenne. Ceux-ci, nous amènent à transcrire et établir une adaptation des équations d'ensembles de

niveaux de courbure moyenne sur un domaine discret général.
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Mots-clés: Di�usion nonlocale, problème d'évolution, problème aux limites, p-Laplacien, p-bilaplacien,

périmètre nonlocal, courbure moyenne, graphes, graphes parcimonieux, Lq-graphons, limites de graphes,

approximation numérique, borne d'erreur, vitesse de convergence, analyse convexe.
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Chapter 1 1.1. Context and motivations

1.1 Context and motivations

1.1.1 Context and main problems

Partial di�erential equations (PDEs) play an important role in mathematical modelling throughout

applied and natural sciences. Indeed, several problems end up modelling and solving an evolution or

a boundary value problem involving di�erent kinds of operators depending on the tasks to carry out.

The methods based on PDEs have also proven to provide very e�ective tools in various �elds through-

out science and engineering such as signal/image processing, machine learning, computer vision and

biology [14, 52, 118, 15, 82, 11]. Such methods have the advantages of better mathematical modelling,

connections with physics and better geometrical approximations. Di�erential operators involved in

these methods are classically based on local derivatives that re�ect local interactions in the support do-

main. The nonlocal counterparts have been introduced, in di�erent settings e.g. [133, 106, 77, 22, 121],

which are based on the integral form, particularly with respect to spatial variables, that re�ect nonlocal

interactions between the points in support domain. Recently, nonlocal models have been proposed in

the context of image processing to design gradient-based regularization functionals and PDEs associ-

ated with their minimization [85] for many image processing tasks, such as denoising, deconvolution,

segmentation, inpainting, optical-�ow to name a few. A main advantage for image processing is the

ability to process both structures (geometrical parts) and textures within the same framework. For

instance, several work have been studied behaviour of nonlocal models under various classical per-

turbation limits, since they have similar properties as the local ones, it consists generally to replace

the local operators in PDEs with newly de�ned nonlocal analogue operators converging to the local

one in the continuum limit, see for example [133, 10, 150, 123]. Unlike classical PDE models, in the

nonlocal setting the boundary conditions must be de�ned on a region with non-zero volume outside

the surface [56, 65, 137, 2], in contrast to more traditional scenarios where boundary conditions are

typically imposed on a sharp co-dimension one surface. The construction of such operators have been

built on ideas developed in graph theory and nonlocal calculus of variations, e.g. nonlocal gradient,

nonlocal divergence, nonlocal curl, and nonlocal Laplacian, see e.g. [85, 66, 3, 122], and references

therein. Following these ideas, it has been shown that many PDE-based processes, minimizations and

computation methods can be generalized to the nonlocal setting.

Among the operators introduced in this setting the nonlocal p-Laplacian operator, that has become

more popular both in the setting of Euclidean domains and on discrete graphs, as the p-Laplacian prob-

lem possesses many important features shared by many practical problems in mathematics, physics,

engineering, biology, and economy, such as continuum mechanics, phase transition phenomena, pop-

ulation dynamics [9, 19, 20, 47, 81, 148, 80] and references therein. Some closely related applications

can be found in image processing, computer vision and machine learning [40, 71, 74, 100].

In the continuum case, this operator is de�ned on Lp(Ω) for a bounded set Ω, p ∈ [1,+∞[, being a

set-valued mapping for p = 1 and p =∞, as follows

∆K
p u(x) = −

∫
Ω
K(x,y)

∣∣u(y)− u(x)
∣∣p−2

(u(y)− u(x))dy,

where Ω is a bounded set in Rd and K(·, ·) is a symmetric, non-negative measurable function on Ω2.

It can be seen as the nonlocal analogue of the p-Laplacian operator de�ned onW 1,p(Ω) for p ∈ [1,+∞[,

being also a set-valued mapping for p = 1 and p =∞, as

∆pu(x) = div
(∣∣∇u(x)

∣∣p−2∇u(x)
)
,

which occurs also in many mathematical models and physical processes such as nonlinear di�u-

sion/�ltration and non-Newtonian �ows [27]. The nonlocal p-Laplacian operator is the negative gradi-
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Chapter 1 1.1. Context and motivations

ent of the p-Dirichlet energy,

R(u,K)
def

=
1

p

∫
Ω2

K(x,y)
∣∣u(y)− u(x)

∣∣pdxdy, (1.1.1)

which is the nonlocal analogue to the energy functional 1
p

∫
Ω

∣∣∇u∣∣p associated to the local p-Laplacian.

Nonlocal boundary value problem. The nonlinear nonlocal �elliptic� boundary value problem,

known as the nonlocal p-Laplacian Dirichlet problem [93] associated to ∆K
p is{

−∆K
p u(x) = f(x), x ∈ U,

u(x) = g(x), x ∈ Γ
def

= Ω \ U,
(PDnloc)

where U is a bounded subset of Ω and Γ is a "collar" surrounding U which has nonzero volume with

Ω = U ∪ Γ. The nonlocal boundary value problem shares many properties with the corresponding

classical elliptic boundary value problem{
∆pu(x) = f(x), x ∈ Ω,

u(x) = g(x), x ∈ ∂Ω.
(PDloc)

It has been shown in [88] that for p = 2 the problem (PDnloc) provides a nonlocal equivalent of the

problem (PDloc). It has been shown also in [150] that the nonlocal Neumann-type boundary value

problem governed by the nonlocal p-Laplacian recovers the classical Neumann problem as the nonlocal

horizon parameter vanishes.

It has been proved in [93], using the Dirichlet principle, that the minimizers of the energy functional

F(u)
def

=
1

2p

∫
Ω2

K(x,y)
∣∣u(y)− u(x)

∣∣pdxdy +

∫
Ω
f(x)u(x)dx+ ιLpg(Ω,U)(u) (1.1.2)

satisfy (PDnloc) and conversely, any solution of (PDnloc) is a minimizer for F ,where Lpg(Ω, U) is the space

of functions in Lp(Ω) which coincide with g on Γ.

Nonlocal Cauchy problem. Another problem governed by this nonlocal operator is the nonlin-

ear di�usion problem (Cauchy problem), known as the nonlocal p-Laplacian evolution problem with

homogeneous Neumann boundary conditions [11]{
∂
∂tu(x, t) = −∆K

p u(x) + f(x, t), x ∈ Ω, t > 0,

u(x, 0) = g(x), x ∈ Ω.
(Pnloc)

This nonlocal di�usion problem, in turn, shares many properties with the corresponding local one.

If f = 0 and the kernel K is radially symmetric and properly rescaled with a parameter ε, it has been

shown in [10] that the solutions to the nonlocal problems (Pnloc) converge strongly in L∞ ((0, T );Lp(Ω)),

as ε goes to zero, to the solution of the well-known local p-Laplacian evolution problem{
ut(x, t) = ∂

∂tu(x, t) = ∆p(u(x, t)), x ∈ Ω, t > 0,

u(x, 0) = g(x), x ∈ Ω,
(Ploc)

which corresponds for p = 2 to the heat equation ut(x, t) = ∆u(x, t), while the extreme case, p =

1, corresponds to the total variation �ow with homogeneous Neumann boundary conditions. The

problem (Ploc) occurs also in many applications such as physics, biology or economy [104, 62].

A particular case where K(x,y) = J(x−y), with the kernel J : Rd → R is a nonnegative continuous

radial function with compact support verifying J(0) > 0 and
∫
Rd J(x)dx = 1, nonlocal evolution

equations of the form

ut(x, t) = J ∗ u(x, t)− u(x, t) =

∫
Rd
J(x− y)(u(y, t)− u(x, t))dy, (P∗nloc)

� 3 �



Chapter 1 1.1. Context and motivations

where ∗ stands for the convolution, have many applications in modeling di�usion processes [9, 19, 20,

47, 81, 148, 80]. As stated in [81], in modeling the dispersal of organisms in space when u(x, t) is their

density at the point x at time t, J(x−y) is considered as the probability distribution of jumping from

position y to position x, then, the expression J ∗u−u represents transport due to long-range dispersal

mechanisms, that is the rate at which organisms are arriving to location x from any other place.

The nonlocal p-bilaplacian. In the context of the peridynamics, by iterating the nonlocal Lapla-

cian, it has been introduced in [123] a nonlocal version of the bilaplacian operator, which can be

generalized to p ∈]1,+∞[. This operator that we coin p-bilaplacian, is de�ned on Lp(Ω) for a bounded

domain Ω, p ∈]1,+∞[ as follows

∆2
K,pu(x)

def

= ∆K
2

(∣∣∆K
2 u
∣∣p−2

∆2
Ku
)

(x), (1.1.3)

where ∆K
2 is the nonlocal Laplacian operator governed by the nonnegative symmetric measurable

kernel K. It can be seen as the analogue of the local p-bilaplacian operator de�ned on W 2,p(Ω) as

∆2
pu(x)

def

= ∆
(∣∣∆u∣∣p−2

∆2u
)

(x), (1.1.4)

which is a fourth-order operator, see e.g. [99]. The nonlocal p-bilaplacian operator can be interpreted

as the gradient of the following energy functional

Fnloc(u) =
1

2p

∫
Ω

∣∣∆K
2 u(x)

∣∣pdx,
which is the nonlocal analogue of the energy functional, associated to the usual p-bilaplacian operator,

F loc(u) =
1

p

∫
Ω

∣∣∆u(x)
∣∣pdx.

The nonlocal perimeter. Another notion was introduced, in the context of the nonlocal theory

using the nonlocal 1-Dirichlet energy, called the nonlocal J-perimeter, see [33, 59]. The nonlocal

J-perimeter of a set E ∈ Rd is de�ned by the following formula

PerJ(E)
def

=

∫
E

∫
Rd\E

J(x,y)dxdy =
1

2

∫
Rd

∫
Rd
J(x,y)

∣∣χE(y)− χE(x)
∣∣dxdy, (1.1.5)

where J is a nonnegative symmetric radial function in L1(Rd) and χE the characteristic function of

E. This de�nition of perimeter is nonlocal in the sense that it is determined by the behaviour of E in

a neighborhood of the boundary ∂E. It can be seen as the nonlocal analogue of the usual perimeter,

Per(E) =

∫
Rd

∣∣DχE(x)
∣∣dx, (1.1.6)

where DχE is the distributional derivatives of χE . The main idea of the nonlocal perimeter is that

any point inside an Euclidean set "interact" with any point outside the set, given a functional whose

minimization is taken account. This notion of the nonlocal J-perimeter, in turn, was used to introduce

the concept of the J-mean curvature, which is de�ned at a point x for ∂E, with E a subset of Rd, as
follows

HJ
∂E(x)

def

= −
∫
Rd
J(x− y)

(
χE(y)− χRd\E(y)

)
dy. (1.1.7)

1.1.2 Motivations

In many real-world problems, such as in mathematical data processing and machine learning, the data

is discrete, and graphs constitute a natural structure suited to their representation. Each vertex of the

graph corresponds to a datum, and the edges encode the pairwise relationships or similarities among

the data. For the particular case of images, pixels (represented by nodes) have a speci�c organization

� 4 �



Chapter 1 1.1. Context and motivations

expressed by their spatial connectivity. Therefore, a typical graph used to represent images is a grid

graph. For the case of unorganized data such as point clouds, a graph can also be built by modelling

neighbourhood relationships between the data elements.

Figure 1.1: Examples of images that can be represented by weighted graphs as their natural represen-

tation.

Figure 1.2: Examples of meshes that can be represented by weighted graphs as their natural represen-

tation.

Figure 1.3: Examples of networks that can be represented by weighted graphs as their natural repre-

sentation.

Figure 1.4: Example of point clouds/unorganized data that can be represented by weighted graphs.

For these reasons, there has been recently a wave of interest in adapting and solving nonlocal

boundary value problems such as (PDnloc) and PDEs such as (Pnloc) on data which is represented by

arbitrary graphs and networks. This requires translating their corresponding operators to the discrete

setting. This principle also applies to other problems governed by many operators such as the nonlo-

cal operator (1.1.3), the nonlocal perimeter (1.1.5). This in turn allows to attack nonlocal analogues

of many problems such boundary value and variational problems, computing minimal surfaces, as

well as Cheeger/Calibrable sets. Among the methods proposed to tackle such nonlocal problems in

a discrete setting, we will focus here on that of partial di�erence equations (PdEs) on graphs. Using

� 5 �



Chapter 1 1.1. Context and motivations

this framework, problems are directly expressed in a discrete setting where an appropriate discrete

di�erential calculus have been proposed; see e.g. [73, 75] and references therein. Conceptually, the

idea of introducing PdEs is to mimic continuum PDEs on graph structures by consistently adapting

important mathematical concepts, e.g., integration and di�erentiation. This mimetic approach con-

sists of replacing continuous di�erential operators, e.g., gradient or divergence, by reasonable discrete

analogues, which makes it possible to transfer many important tools and results from the continuous

setting. This way to proceed encompasses local and nonlocal methods in the same framework by using

appropriate graphs topologies and edge weights depending on the data structure and the task to be

performed. The demand for such methods is motivated by existing and potential future applications

[75, 72, 143, 70, 84].

These practical considerations lead naturally to a discrete time and space approximation of (Pnloc)
and a space approximation of (PDnloc) encoded by the structure of the graph. This can be extended

also to cover regularization variational/boundary value problems governed by the p-bilapalcian (1.1.4),

local/nonlocal mean curvature curvature �ows and many other problems. So that these discrete prob-

lems can be applied in the same way to images, meshes or data of any size by simply adapting the

topology of the graph and the weight function. The proposed framework works on any discrete data

represented by weighted graphs which allows to take into account the nonlocal interactions in the data

by explicitly introducing discrete nonlocal derivatives and functionals on graphs of arbitrary topologies,

to transcribe the continuous setting.

Main goals of our work. The main goals of our work is twofold.

Our �rst is to design fully discretized problems (evolution, boundary value and variational problems)

in space (graphs) and time, and show that they are provably consistent with respect to their continuum

analogues. Indeed, the discrete nonlocal problems on graph are just approximations of the underlying

nonlocal continuum problems. Thus, our objective is to rigorously the following legitimate questions

for each problem:

(Q1) Is there any (nonlocal) continuum limit as the number of vertices grows and time step vanishes

? If yes, in what sense ?

(Q2) What is the rate of convergence to this limit and what is its relation to the solution of the

continuum problem ?

(Q3) What are the parameters involved in this convergence and what is their in�uence in the

corresponding rate ?

(Q4) Can this continuum limit help us get better insight into discrete models and their fundamental

guarantees ?

In the literature, numerous works, that will review later, have been carried out in the recent years

attempting to answer some of these questions. It is however important to stress that our focus will be

nonlocal (in contrast to local ones) continuum limits. This is more in line with a numerical analysis

standpoint. We will also be mostly interested in graph structures that show a sparsity behaviour

and have applications such as in social networks. This will pose several challenges that we will solve

properly.

The second objective of this work is to introduce a novel class of p-bilaplacian operators on weighted

graphs, which can be seen as proper discretizations on graphs of the classical p-bilaplacian operators

(1.1.4). Building upon this de�nition, we study the corresponding regularized variational problem as

well as a boundary value problem. Finally we revisit the notions of the discrete perimeter and mean

curvature. then, we propose a general adaptation and transcription of the level set mean curvature
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equation and variational curvature on the general discrete domain, weighted graphs.

1.2 Contributions and relation to prior work

1.2.1 The continuum limits of the evolution problem on sparse graphs

Our �rst main result, which is exposed in Chapter 3, is to revisit the nonlocal di�usion problem

(Pnloc) and extend the results of the work [90] to a much more general class of kernels and initial data.

In particular, we are able to consider unbounded initial data, the case p = 1, and most importantly

singular kernels, which in turn will allow to handle sparse graph sequences whose limit are the so-called

Lq-graphons [31, 29]. On such graphs sequences, we will quantitatively analyse evolution problems and

their continuum limit. We will also consider the case p = 1 which was not handled in [90].

More precisely, our study shows:

(i) Well-posedness of the Cauchy problem.

(ii) Error estimates to compare two trajectories, uniformly for t ∈ [0, T ], T > 0, corresponding to

the p-Laplacian governed by two kernels, two second members and initial data.

(iii) Consistency and error estimates of the numerical solutions to the fully-discretized problem for

both forward and backward discretization.

(iv) Error bound on fully discretized problems on sparse random graphs.

Let us summarize the main results of this Chapter.

Theorem 1.2.1. Suppose that p ∈]1,+∞[. Let u be a solution of (Pnloc) with kernel K and data (f, g).

Let un be a sequence of solutions to (Pnloc) with kernels Kn and data (fn, gn). Assume that K and Kn

nonnegative symmetric kernels in L∞,2(Ω2), and that either one of the following holds:

(a) p ∈]1, 2[, g, gn ∈ L2(Ω), and f, fn ∈ L1([0, T ];L2(Ω));

(b) p ≥ 2, g, gn ∈ L2(p−1)(Ω) and f, fn ∈ L1([0, T ];L2(p−1)(Ω));

(c) g, gn ∈ L∞(Ω) and f, fn ∈ L1([0, T ];L∞(Ω)).

Then, we have the following error estimate∥∥un − u∥∥C([0,T ];L2(Ω))
≤
∥∥gn − g∥∥L2(Ω)

+
∥∥fn − f∥∥L1([0,T ];L2(Ω))

+ CT


∥∥Kn −K

∥∥
L∞,2(Ω2)

, under (a) or (b)∥∥Kn −K
∥∥
L2(Ω2)

, under (c)
(1.2.1)

where C is positive constant that may depend only on p, g and f .

C(0, T ;Lp(Ω)) denotes the space of uniformly time continuous functions with values in Lp(Ω) en-

dowed with the norm
∥∥ · ∥∥ def

= sup
t∈[0,T ]

∥∥ · ∥∥
Lp(Ω)

.

Under the same assumptions on the kernels, we obtain a similar error result as (1.2.1) for p = 1,

with C = 1, here the data f and g satisfy the assumptions in (a). We also obtain convergence in

C(0, T ;L2(Ω)) for the totally discretized problems with both forward and backward Euler scheme in

time for p ∈ [1, 2] and p ∈]1,+∞[, respectively.

For networks on sparse graph sequences, where we assume that Ω = [0, 1] and let 0 < t1 < t2 <

· · · < tN−1 < tN = T be a partition (not necessarily equispaced) of [0, T ]. Let τk−1
def

=
∣∣tk − tk−1

∣∣ and
denote τ = max

k∈[N ]
τk.

� 7 �



Chapter 1 1.2. Contributions and relation to prior work

We prove non-asymptotic convergence and give the rate of convergence of the discrete solution to

its continuous limit as the number of vertices n → ∞. Some supplementary assumptions are added

regarding the kernel K and the data g and f .

Theorem 1.2.2. Suppose that p ∈]1,+∞[. Let u be a solution of (Pnloc) with kernel K and data

(f, g). Assume that K is nonnegative symmetric kernel in L∞,2(Ω2) ∩ Lip(s, L2(Ω2)), g ∈ L∞(Ω) ∩
Lip(s, L2(Ω)), and f ∈ L1([0, T ];L∞(Ω)) ∩ Lip(s, L2(Ω× [0, T ])). Then, for any δ ∈]0, 1[, with proba-

bility at least 1− (ρnn)−(1−β),

sup
k∈[N ],t∈]tk−1,tk]

∥∥Inuk − u(·, t)
∥∥
L2(Ω)

≤ C exp(T/2)

(
(1 + T 1/2)n−s + T 1/2

∥∥(K − ρ−1
n )+

∥∥
L2(Ω2)

+ T 1/2(ρnn)−β/2 + T 1/2

({
τmin(s,1/(3−p)) when p ∈]1, 2]

τ s when p ≥ 2

))
. (1.2.2)

for τ su�ciently small, where
{
uk
}
k∈[N ]

is the discrete solution, C is positive constant that depends

only on p, g, f , K and s, and
∥∥(K − ρ−1

n )+

∥∥
L2(Ω2)

= o(1), see Section 2.1.5 for the de�nition of In.

Relation to prior work The kernels and initial data considered here are beyond reach of the

approach developed in [90], and have not been considered in the literature to the best of our knowledge.

Moreover, our error bounds are directly stated in L2(Ω) and not in Lp(Ω) as done in this previous

work. Our proof is also simpler, more elegant and the argument is made more transparent. This

argument will allow us to handle the case p = 1. More importantly, some limiting assumptions on the

kernel and the initial data made in [90] are removed and replaced by much less stringent ones. This

allows in particular to cover a far larger class of kernels (including singular ones), and also sparse graph

sequences that were not handled in that previous work.

Another related work is that in [98, 112]. In these papers, the authors focused on a nonlinear heat

equation on sparse graphs, where Lipschitz-continuity of the operator is of paramount importance.

This assumption was essential to prove well-posedness (existence and uniqueness follow immediately

from the contraction principle), as well as to study the consistency in L2(Ω) of the spatial semi-discrete

approximation. The nonlocal p-Laplacian evolution problem considered here is much more general and

cannot be covered by the approach of those previous papers because the lack of Lipschitzianity raises

several challenges (including for well-posedness and error estimates). Unlike those previous works, we

also consider both the semi-discrete and fully-discrete versions with both forward and backward Euler

approximations, that we fully characterize, and develop novel proof techniques.

1.2.2 The continuum limits of the Dirichlet problem on sparse graphs

The main contribution at the heart of Chapter 4, is to establish general consistency estimates of the

boundary value problem (PDnloc). Under mild conditions on the boundary data and an appropriate

discretization, we give a priori estimates for the solution of this problem. We use these results to

establish nonasymptotic convergence of solutions for the discrete model on K-random graphs to its

continuum limit.

For these purposes, we consider a sequence of variational problems

min

{
Fn(∇NL

Knu) +

∫
Ω
fn(x)u(x)dx : u ∈ Lpgn(Ω, Un)

}
, (VPn)

where Fn is an integral functional to be made precise later, fn ∈ Lq(Ω),

Lpgn(Ω, Un)
def

=
{
u ∈ Lp(Ω) : u = gn on Γn

def

= Ω \ Un
}
,

� 8 �
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and ∇NL
K is the nonlocal gradient operator which is de�ned on L1(Ω) as:

∇NL
K u(x,y) = K(x,y)(u(y)− u(x)), u ∈ Lp(Ω), (x,y) ∈ Ω2. (1.2.3)

We start by showing well-posedness (existence and uniquess of the minimizers) of variational problems

of the form

min

{
F (∇NL

K u) +

∫
Ω
f(x)u(x)dx : u ∈ Lpg(Ω, U)

}
(VP)

As the functional in (VPn) takes the form of the sum of two proper lower semicontinuous convex

functionals, its Γ-limit is in general not the sum of the Γ-limits. This is the reason we turn to the

concept of Mosco convergence, where stability of Mosco-convergence to the sum holds true under mild

assumptions [17]. We thus study the Mosco-limit of a sequence of nonlocal integral functionals, as well

as the Mosco-limit of a sequence of geometric constraints such as those in (VPn). In turn, under some

mild conditions on Fn, Kn, gn and Un, we show that the sequence of minimizers of the variational

problems (VPn) converges to the minimizer of (VP), with respect to the weakly topology of Lp(Ω).

As an immediate consequence of these results, and thanks to the Dirichlet variational principle, one

obtains that the sequence of solutions of{
−∆Kn

p u(x) = fn(x), x ∈ Un,
u(x) = gn(x), x ∈ Γn

def

= Ω \ Un,
(PD,nnloc)

converges weakly in Lp(Ω) to the solution of (PDnloc). By similar arguments, we extend these result

to the case of discrete p-Laplacian boundary value problems, under some mild conditions on the

sequence of kernels, data and the sequence of geometric constraints. We �nally apply these results to

establish nonasymptotic rate of convergence of solutions for the discrete model on K-random graphs

to its continuum limit with high probability. We also provide a primal-dual algorithm to solve the

p-Laplacian boundary value problem on graphs and report some numerical results.

The type of theorems one can �nd in Chapter 4 take the following forms

Theorem 1.2.3. Let Kn, K ∈ L∞,1(Ω2) be nonnegative symmetric and measurable functions, gn, g ∈
Lp(Ω), fn, f ∈ Lq(Ω) and Un, U ⊂⊂ Ω sub-domains, n ∈ N. Assume that
(1) the sequence {gn}n∈N converges strongly to g in Lp(Ω).

(2) the sequence {fn}n∈N converges strongly to f in Lq(Ω).

(3) the sequence {K
1
p , K

1
p
n : n ∈ N} satis�es some mild assumptions.

(4) the sequence {Un, U, n ∈ N}, of subdomains of Ω, satis�es that Un + B(0, r) ⊂ Ω, n ∈ N, and∣∣Un∆U
∣∣→ 0, as n tends to +∞, where ∆ is the symmetric di�erence between sets.

Then (PDnloc) and (PD,nnloc) have a unique solutions, respectively, u and un. Moreover, the sequence of

solutions {un}n∈N converges weakly to u in Lp(Ω).

Theorem 1.2.4. Let K ∈ L∞,1(Ω2) be nonnegative symmetric and measurable functions, g = 0 and

f ∈ Lq(Ω) . Let K = PnK, g = 0 and f = Pnf . Let u be a solution of the discrete Dirichlet problem

of (PDnloc) with kernel K data (f ,g) and the boundary set Acn, and u the solution of the continuous

problem (PDnloc) with kernel K, data (f, g) and the boundary set Γ. Then,

∥∥u− Inu∥∥p/max(1, 2
p

)

Lp(Ω) ≤C

(∥∥K − InPnK∥∥max(2, p
p−1

)

L∞,1(Ω2)
+
∥∥K − InPnK∥∥L∞,1(Ω2)

∥∥InPnu− u∥∥Lp(Ω)

+


∥∥InPnu− u∥∥ p

p−1

Lp(Ω) p ∈ [2,+∞[,∥∥InPnu− u∥∥ 2
3−p
Lp(Ω) p ∈]1, 2].

)
.

(1.2.4)
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where C > 0 independent of n. Moreover, if the kernel is such that K(x,y) = J(x − y) and J ∈
L1(Ω− Ω), then

lim
n

∥∥u− un∥∥Lp(Ω)
= 0.

See Section 2.1.5 for the de�nition of Pn.

Relation to prior work In [67], the authors obtained iterated pointwise convergence of rescaled

graph p-Laplacian energies to the continuum (local) p-Laplacian as the fraction of labelled to unlabelled

points is vanishingly small. The authors in [141] studied the consistency of rescaled total variation

minimization on random point clouds in Rd for a clustering application. They considered the total

variation on graphs with a radially symmetric and rescaled kernel K(x,y) = ε−NJ(
∣∣x− y∣∣/ε), ε > 0.

This corresponds to an instance of the functional energy in (Pdn) (see Section 4.4) for d = 1 and p = 1.

Under some assumptions on J , and for an appropriate scaling of ε with respect to n, which makes

the method become localised in the large data limit, they proved that the discrete total variation on

graphs Γ-converges in an appropriate topology, as n → ∞, to weighted local total variation, where

the weight function is the density of the point cloud distribution. Motivated by the work of [67],

the authors of [134] studied consistency of the graph p-Laplacian for semi-supervised learning in Rd.
They considered both constrained and penalized minimization of the functional energy of (Pdn) with a

radially symmetric and rescaled kernel as explained before. They uncovered regimes of p and ranges

on the scaling of ε with respect to n for the asymptotic consistency (in the sense of Γ-convergence)

to hold. Continuing along the lines of [67], the work of [46] studies the consistency of Lipschitz semi-

supervised learning (i.e., p→∞) on graphs in the same asymptotic limit. In all these works, however,

the boundary condition is �xed. Moreover, our limit is of nonlocal type, while it is of local type in the

existing literature. In this sense, our work is more in line with consistency/error bounds for discrete

schemes in numerial analysis.

In the numerical analysis literature, consistent numerical approximations have also been studied

for nonlocal models, focusing overwhelmingly on the nonlocal peridynamic model or nonlocal linear

di�usion (i.e., (PDnloc) for p = 2); see [63] for a recent overview. For instance, so-called asymptotically

compatible schemes were proposed in [138, 139] as an abstract framework for the study of robust

numerical methods for nonlocal models and their local limits. They studied in particular consistency

of Galerkin �nite element discretizations of (PDnloc) with p = 2 (i.e., nonlocal linear di�usion) and

K(x,y) = ε−NJ(
∣∣x − y∣∣/ε), ε > 0, and established its continuum limit as both the mesh size and ε

vanish. These results do not allow to cover the case of the p-Laplacian. For the latter, the authors in

[90] established the continuum limit of the sequence of Cauchy problems governed by the p-Laplacian

on graphs, and provided the corresponding rate of convergence, which will be extended to a large class

of kernels and initial data in Chapter 3. The same authors in [91] studied the nonlocal continnum limit

and the corresponding error bounds for a sequence of variational problems on graphs, which consisted

of minimizing the sum of a quadratic data �delity on L2(Ω) and a regularization term corresponding

to the Lp-norm of the nonlocal gradient. Their proof strongly relies on the Hilbertian structure and

strong convexity, while none of these assumptions hold for problems of the form (VPn) we consider

here.

As for numerical schemes to solve discrete problems of the form (VPn) (or equivalently (PD,nnloc)), [75]

propose a Jacobi iteration or gradient descent. It was suggested in [67] to use Newton's method. While

an earlier draft of our work was �nalized, we became aware of the recent but independent work of [127]

who also considered a primal-dual splitting scheme to solve discrete problems of the form (VPn) on
graphs. Capitalizing on [50], we propose here a �exible primal-dual scheme, in Chapter 7, that solves

even more general problems beyond the p-Laplacian and provide their convergence guarantees.

� 10 �
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1.2.3 Discrete p-bilaplacian operators on graphs

In Chapter 5, we introduce a novel class of p-bilaplacian operators on weighted graphs, which can be

seen as proper discretization on graphs of the classical p-bilaplacian operators. Building upon this

de�nition, we �rst study a corresponding regularized variational problem as well as a boundary value

problem. For the last one, we establish a discrete version of the Poincaré inequality on connected

graphs, which plays a key role in our study. The latter naturally gives rise to p-biharmonic functions

on graphs and equivalent de�nitions of p-biharmonicity [95]. For these two problems, we start by

establishing their well-posedness (existence and uniqueness). We then turn, in Chapter 7, to devel-

oping proximal splitting algorithms to solve them, appealing to sophisticated tools from non-smooth

optimization. Numerical results are reported to support the viability of our approach.

1.2.4 Nonlocal perimeters and curvature �ows on graphs

In this work, we revisit the notion of perimeters on graphs, introduced in [70], and we extend it to so-

called inner and outer perimeters. Thanks to the co-area formula, we show that discrete total variations

as well as several graph cut variants can be expressed through these perimeters. Then, we propose a

novel class of curvature operators on graphs that uni�es both local and nonlocal mean curvature on

Euclidean domains. These lead us to translate and adapt the notion of the mean curvature �ows on

graphs as well as the level set mean curvature which can be seen as approximate schemes. Finally,

we propose to use these methods for image processing, 3D-point clouds and high dimensional data

classi�cation.

1.3 Outline

The remainder of the thesis is organized as follows:

Chapter 2: This chapter collects the necessary mathematical material used throughout the manuscript.

Chapter 3: In this chapter, we present a consistency analysis for the nonlocal p-Laplacian evolution

problem. Our results consist of four principle parts: well-posedness, consistency of the continuous-

continuous problem, error bounds for the discrete problem and application of these results to the fully

discretized problems on random graph models.

Chapter 4: In this chapter, we expose our consistency analysis of the nonlocal p-Laplacian Dirichlet

problem: a general consistency for the discretized problem and an a priori estimate when the geo-

metrical constraints is constant. We then use this error estimate to derive a rate of convergence for

the discrete random model. We report some numerical results that are based on provably convergent

primal-dual numerical scheme to solve discrete p-Laplacian boundary value problems.

Chapter 5: In this chapter, we introduce a new family of p-bilaplacian operators on graphs. We then

turn to study the well-posedness of regularized variational and boundary value problems associated

to these operators. We �nish this chapter by showing some experiments related to data processing to

illustrate the use of this operator.

Chapter 6: In this chapter, we introduce a large class of perimeters on graphs. We consider the

curvatures related to these perimeters. We revisit some isoperimetry inequality from functional analysis

point view. We illustrate these methods for applications on images/point clouds processing and high

dimensional clustering.
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Chapter 7: In this chapter, we develop a primal-dual proximal splitting algorithms to solve the discrete

p-Laplacian boundary value problems considered in Chapter 4 as well as the regularized variational

and boundary value problems governed by the p-bilaplacian operator of Chapter 5.

Chapter 8: This last chapter summarizes our contributions and draws important conclusions. It also

discusses several interesting perspectives and open problems.
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Mathematical Background
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In this chapter, we collect the necessary mathematical material used in the manuscript.

Let R denote the set of real numbers, R+ the set of nonnegative reals, R = R∪ {+∞} the extended
real line and Rd the d-dimensional real Euclidean space. Vectors in Rm, m ≥ 2, will be denoted in

bold small letters. We denote by N the set of non-negative integers, by N∗, the set of positive integers.
We use the notation [n] = {1, · · · , n}. For a set C,

∣∣C∣∣ denotes its cardinality, χC is its characteristic
function (taking 1 on C and 0 otherwise).

2.1 Tools from analysis

2.1.1 Convex analysis

We here collect some important results from convex analysis which will be used in the up coming

chapters. Throughout this section, (X, τ) is a locally convex topological vector space (LCTVS).

De�nition 2.1.1 (Convex set). A set S ⊂ X is convex, if

∀x, x′ ∈ S, ∀t ∈]0, 1[, tx+ (1− t)x′ ∈ S.

Let S ⊂ X be a nonempty set, function f : S → R and λ ∈ R. Consider:

dom(f)
def

= {x ∈ X : f(x) < +∞} ,
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epi(f)
def

= {(x, t) ∈ X × R : f(x) ≤ t} ,

[f ≤ λ]
def

= {x ∈ X : f(x) ≤ λ} ,

[f < λ]
def

= {x ∈ X : f(x) < λ} .

The set dom and epi are called the domain and epigraph of the function f , respectively, while the

set [f ≤ λ] and [f < λ] are the level set and strict level set of f at height λ. One says that the

function f is proper if −∞ /∈ f(S) and dom(f) 6= ∅.

De�nition 2.1.2 (Convex function). A function f : X → R is convex if

∀x, x′ ∈ X,∀t ∈ [0, 1], f(tx+ (1− t)x′) ≤ tf(x) + (1− t)f(x′),

With the conventions: (+∞) + (−∞) = +∞, 0 · (+∞) = +∞, 0 · (−∞) = 0.

Theorem 2.1.3. Let f : X → R. The following statements are equivalent:
(i) f is convex;

(ii) dom(f) is convex and

∀x, x′ ∈ dom(f), ∀t ∈]0, 1[: f(tx+ (1− t)x′) ≤ tf(x) + (1− t)f(x′);

(iii) epi(f) is a convex subset of X × R.

De�nition 2.1.4 (Lower semi-continuous function). Let f : X → R and x ∈ X. The function f

is (τ -)lower semi-continuous at x if for every ε > 0 there exists a τ -neighbourhood Ux of x such that

f(x)− ε ≤ f(y), ∀y ∈ Ux,

One says that f is lower semi-continuous on X if it is lower semi-continuous at every point x ∈ X.

The class of proper, convex and lsc functions on X is denoted by Γ0(X).

Theorem 2.1.5. Let f : X → R. The following statements are equivalent:
(i) f is lower semi-continuous;

(ii) for all x ∈ X and every sequence {xn}n∈N τ -converging to x,

lim inf
n

f(xn) ≥ f(x).

(iii) epi(f) is a closed subset of X ×R respect to the product topology of τ and the natural topology of

R.

Theorem 2.1.6. Let f : X → R. The following statements are equivalent:
(i) f is convex and lower semi-continuous;

(ii) f is convex and weakly-lower semi-continuous;

(iii) epi(f) is convex and closed subset of X × R;

(iv) epi(f) is a convex and weakly-closed subset of X × R.

De�nition 2.1.7 (Indicator function). Let S ⊆ X be a non-empty set, the indicator function of

S, ιS , is de�ned by

ιS =

{
0, if x ∈ S,
+∞, otherwise.

(2.1.1)

Observe that dom(ιS) = S hence ιS is lower semi-continuous (resp. convex) if and only if S is closed

(resp. convex).
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De�nition 2.1.8. Assume that X is a normed space. A function f : S → R is said to be M -Lipschitz

on S, if
∀x, x′ ∈ S;

∣∣f(x)− f(x′)
∣∣ ≤M∥∥x− x′∥∥

X
.

Proposition 2.1.9. Assume that X be a normed space, x0 ∈ X, r > 0, ε ∈ (0, r), m,M ∈ R. Let

f : B(x0, r)→ R be a convex function.

(i) If f(x) ≤ m on B(x0, r), then |f(x)| ≤ |m|+ 2|f(x0)| on B(x0, r).

(ii) If |f(x)| ≤M on B(x0, r), then f is
(

2M
ε

)
-Lipschitz on B(x0, r − ε).

Here B(x0, r) is the ball of the centre x0 and radius r > 0.

Proof :

(i) See Proof of Theorem 3.9 in [55].

(ii) See [58, Proposition 5.11].

�

2.1.2 Γ-convergence

Γ-convergence was introduced by De Giorgi in 1970's to study limits of variational problems. We refer

to [34, 58], for an in-depth introduction to Γ-convergence. In this subsection, we denote by (X, τ) a

�rst countable topological space. For a sequential of equivalent de�nitions of Γ-convergence, we refer

to [12, Proposition 1.14] and [58, Proposition 8.1].

De�nition 2.1.10 (Γ-convergence). We say that a sequence of functions fn : X → R, n ∈ N,
Γ-converges in X to f∞ : X → R if for all x ∈ X we have

(i) (lim inf inequality) for every sequence {xn}n∈N τ -converging to x

f∞(x) ≤ lim inf
n

fn(xn). (2.1.2)

(ii) (lim sup inequality) there exists a sequence {xn}n∈N τ -converging to x such that

f∞(x) ≥ lim sup
n

fn(xn). (2.1.3)

The function f∞ is called the Γ-limit of {fn}n∈N, and we write f∞ = Γ- limn fn.

It is clear that the lim sup inequality (2.1.3) in De�nition 2.1.10 can be replaced by the equality

f∞(x) = limn fn(xn).

De�nition 2.1.11 (Equi-coercivity). A function f : X → R is (sequentially) coercive if for all t ∈ R
the τ -closure of the sublevel set {x ∈ X : f(x) ≤ t} is sequentially compact. A sequence {fn}n∈N is

equi-coercive on X if for every t ∈ R there exists a sequentially compact subset At of X such that

{x ∈ X : fn(x) ≤ t} ⊂ At for all n ∈ N.

If X is a re�exive Banach space and f → +∞ as
∥∥x∥∥→ +∞, then f is coercive in the weak topology

of X.

Proposition 2.1.12 ([58, Proposition 7.7]). A sequence {fn}n∈N is equi-coercive if and only if there

exists a lower semicontinuous coercive function ψ : X → R such that fn ≥ ψ on X, for every n.

The following theorem (fundamental theorem of Γ-convergence) concerns the convergence of the

minimum values and minimizers of an equi-coercive sequence of functions.
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Chapter 2 2.1. Tools from analysis

Theorem 2.1.13. Let {fn}n∈N be a sequence of equi-coercive functions on X that Γ-converges to f∞.

Then,

(i) f∞ is coercive.

(ii) limn dn = d, where dn = infx∈X fn(x) and d = minx∈X f∞(x), i.e. the minimal values converge.

(iii) If for every n ∈ N, xn is a minimizer of fn on X, then every cluster point of {xn}n∈N is a

minimizer of f∞ on X.

Proof : (i) and (ii) follow from [58, Theorem7.8]. To get (iii), combine Proposition 2.1.12, [58,

Corollary 7.20] and claim (ii). �

2.1.3 Mosco-convergence

The concept of epi-convergence (Mosco-convergence) was �rst utilized by R. A. Wijsman [149]. U.

Mosco [113] was responsible for bringing to the fore important relationships between Mosc-convergence

and the convergence of solutions to variational inequalities (hence the name of the convergence), see

[12] and references therein for more details. In this section, we assume that X is a re�exive Banach

space. The corresponding ball centered at x and of radius r is denoted as B(x, r) and Br when x = 0.

2.1.3.1 Functions

De�nition 2.1.14. Let {Fn, F : X → R; n ∈ N} be a sequence of functions. The sequence {Fn}n∈N
is said to be Mosco-convergent to F , if for all x ∈ X :

(i) M - lim infn Fn(x) ≥ F (x); i.e., for any sequence {xn}n∈N converging weakly to x,

lim infn Fn(xn) ≥ F (x).

(ii) M - lim supn Fn(x) ≤ F (x); i.e., there exists a sequence {xn}n∈N converging strongly to x such

that lim supn Fn(xn) ≤ F (x).

The function F is called the Mosco-limit of {Fn}n∈N and we then write Fn
M→ F .

Observe that by de�nition, Mosco-convergence implies Γ-convergence in the weak topology when X

is a re�exive Banach space endowed with its weak topology.

Let us now recall this result which will be useful to prove the Mosco-convergence of the sequence of

integral functionals in Chapter 4.

Theorem 2.1.15 ([130, Theorem2]). Let F, Fn : X → R, n ∈ N, be a sequence of closed convex

functions such that {Fn}n∈N converges pointwise to F on X. Then Fn
M→ F if and only if the collection

{Fn, F : X → R; n ∈ N} is equi-lower semi-continuous.

In the context of the nonlocal p-Laplacian boundary value problem our consistency results will be

derived, upon using Dirichlet's variational principle, from epi-convergence of the sequence of functionals

(VPn). In this setting, these functionals take the form of the sum of two proper lsc convex functionals.

Whether the Γ-limit (resp. Mosco-limit) of a sum is the sum of Γ-limits (resp. Mosco-limits) is a

di�cult issue in general. The claim is not true in general for the Γ-limit unless stringent assumptions

are imposed (see e.g., [58, Proposition 6.20]). For Mosco convergence, the claim holds true for the sum

of two lsc convex functions when X a re�exive Banach space, see [17]. The latter result generalizes

that in [111] which is valid only in �nite dimension under a simple domain quali�cation condition. The

result of [17] will be instrumental in our consistency analysis and we recall it here.
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Chapter 2 2.1. Tools from analysis

Theorem 2.1.16 ([17, Theorem4.1]). Let {Fn}n∈N, F , {Gn}n∈N, G be lsc proper convex functions

de�ned on X, such that Fn
M→ F and Gn

M→ G. Assume that

there exists r > 0 such that, for every ζ ∈ B(0, r), there exist two

sequences {xn}n∈N and {yn}n∈N of elements of X verifying :

{xn}n∈N and {yn}n∈N are bounded with ζ = xn − yn,
lim sup

n
Fn(xn) <∞ and lim sup

n
Gn(yn) <∞.

(2.1.4)

Then, there exists n0 ∈ N such that

Fn +Gn is proper ,∀n ≥ n0, Fn +Gn
M→ F +G, and F +G is proper. (2.1.5)

The following result gives a su�cient condition for (2.1.4) to hold.

Corollary 2.1.17 ([17, Remark 1]). Let {Fn}n∈N, F , {Gn}n∈N, G and X as in Theorem2.1.16 such

that Fn
M→ F and Gn

M→ G. Assume that there exist x0 ∈ dom G ∩ dom F and ρ > 0 such that either

Fn or Gn is uniformly bounded above on B(x0, ρ). Then (2.1.5) holds.

2.1.3.2 Sets

De�nition 2.1.18. Let {An, A; n ∈ N} be a sequence of subsets of X. The sequence {An}n∈N is said

to be Mosco-convergent to A if and only if the sequence (ιAn) Mosco-converges to ιA on X.

From De�nition 2.1.14, we immediately get the following equivalent characterization of Mosco con-

vergence for sets.

Proposition 2.1.19. Let {An, A; n ∈ N} be a sequence of subsets of X. Then, the sequence {An}n∈N
is said to be Mosco-convergent to A if and only if

(i) for any sequence {xn}n∈N, with xn ∈ An, converging weakly to x, implies x ∈ A.
(ii) for every x ∈ A, there exists a sequence {xn}n∈N, with xn ∈ An, converging strongly to x.

2.1.4 Accretive operators and nonlinear semigroups

All the de�nitions and results with proofs can be found for instance in [11].

In this section we assume that (X,
∥∥ · ∥∥) is a Banach space. Let A : X → 2X be a set-valued

operator. For notational convenience, the operator will be sometimes identi�ed with its graph by

denoting (x, y) ∈ A for y ∈ A(x). Dom(A)
def

= {x ∈ X : Ax 6= ∅} is called the domain of A and

R(A)
def

= {Ax : x ∈ Dom(A)} its range.

De�nition 2.1.20 (Accretive operator). An operator A in X is accretive if∥∥x− x̂∥∥ ≤ ∥∥x− x̂+ λ(y − ŷ)
∥∥ whenever λ > 0 and (x, y), (x̂, ŷ) ∈ A.

De�nition 2.1.21 (Non-expansive operator). An operator A : X → X is called non-expansive if

it is 1-Lipschitz continuous, i.e.∥∥A(x)−A(x̂)
∥∥ ≤ ∥∥x− x̂∥∥, ∀x, x̂ ∈ X.

De�nition 2.1.22 (Resolvent). Let A : X → 2X and γ > 0. The resolvent of A is de�ned by

JγA
def
= (I + γA)−1.

We have the following equivalent characterization of accretivity, whose proof can be found in e.g.,

[126].
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Lemma 2.1.23. The operator A is accretive if and only if its resolvent is a single-valued non-expansive

map on Dom(JλA) for λ > 0.

De�nition 2.1.24 (m-accretive operator). An operator A : X → 2X is m-accretive if it is accretive

and Dom(JλA) = X for some (hence all) λ > 0.

In the Hilbertian case, the notion of m-accretivity coincides with maximal monotonicity which is

the celebrated Minty theorem.

The accretive operators theory plays an important role for proving solution existence and uniqueness

of the abstract Cauchy problem {
ẋ+Ax 3 f,
x(t0) = x0.

(2.1.6)

A particular case where f = 0, Crandall and Liggett proved in [57] that the following limit (semigroup):

S(t)x0 = lim
n→∞

(Jt/nA)n

is the unique strong solution to the abstract Cauchy problem (2.1.6) under some closedness assumptions

on the operator A. In the case where f 6= 0, Ph. Bénilan proved in [25] the existence and the uniqueness

of a strong solution of the Cauchy problem in the price the exponential formula and some closedness

assumptions on the function f and the initial data x0. In the context of the nonlocal p-Laplacian

evolution equation that will be at the heart of Chapter 3, this theory will be instrumental to prove not

only for well-posedness, but also to establish Lipschitz continuity of the solution as a function of the

initial data and the second member. A key step to prove this is to show that the nonlocal p-Laplacian

operator belongs to a rich family of operators known as m-completely accretive operators. This family

was introduced by Ph. Bénilan and M. G Crandall in [26].

Let S be an open set of Rd and letM(S) be the space of measurable functions from S into R. For
u, v ∈M(S), we write

u� v if and only if

∫
S
j(u)dx ≤

∫
S
j(v)dx

for all j ∈ J0
def

= {j : R→ [0,+∞], j convex, lsc, j(0) = 0}.

De�nition 2.1.25 (Completely accretive operator). Let A be an operator inM(S). We say that

A is completely accretive if

u− û� u− û+ λ(v − v̂) for all λ > 0 and all (u, v), (û, v̂) ∈ A.

The de�nition of completely accretive operators does not refer explicitly to topologies or norms.

However, if A is completely accretive inM(S) and A ⊂ Lp(S)× Lp(S), p ∈ [1,∞] then A is accretive

in Lp(S).

De�nition 2.1.26 (m-completely accretive operator). An operatorA onX is completely accretive

if it is completely accretive and Dom(JA) = X, A is said m-completely accretive.

2.1.5 Projector and injector operators

Let us recall some de�nition and properties of Lebesgue spaces. Let S to by a bounded subset of Rd.
For q ∈ [1,+∞], Lq(S) is the standard Banach space of Lebesgue q-integrable functions on S. For a

function F : S × S → R, we de�ne the L∞,q(S2)-norm as∥∥F∥∥
L∞,q(S2)

def

= sup
x∈S

∥∥F (x, ·)
∥∥
Lq(S)

.
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If F is symmetric, then ∥∥F∥∥
L∞,q(S2)

= sup
y∈S

∥∥F (·,y)
∥∥
Lq(S)

.

L∞,q(S2) is the space of functions on S2 of bounded L∞,q(S2)-norm, which is of course a Banach space.

Throughout this manuscript, we will often use Fubini's theorem without explicitly referring to it.

Let n ∈ N∗ and denote the multi-index i = (i1, i2, . . . , id) ∈ [n]d. Here we assume that Ω = [0, 1]d,

partition Ω into cells (hypercubes)

Q def

=

{
Ω

(n)
i

def

=
d∏

k=1

]xik−1,xik ] : i ∈ [n]d

}

of size hi
def

= |Ω(n)
i |, and maximal mesh size

δ(n)
def

= max
i∈[n]d

max
k∈[d]

(|xik − xik−1|).

When the cells are equispaced, then hi = 1/nd.

We consider the operator Pn : L1(Ω)→ Rnd

(Pnu)i
def

=
1

hi

∫
Ω

(n)
i

u(x)dx. (2.1.7)

This operator can be also seen as a piecewise constant projector of u on the space of discrete functions.

For simplicity, and with a slight abuse of notation, we keep the same notation for the projector

Pn : L1(Ω2)→ Rnd×nd .
Our aim is to study the relationship between solutions of discrete approximations and the solution of

the continuum model. It is then convenient to introduce an intermediate model which is the continuum

extension of the discrete solution. Towards this goal, we consider the piecewise constant injector In of

a vector v ∈ Rnd into L2(Ω) de�ned as

Inv(x)
def

=
∑
i∈[n]d

viχΩ
(n)
i

(x), (2.1.8)

where we recall that χC is the characteristic function of the set C, i.e., takes 0 on C and 1 otherwise.

It is immediate to see that the operator InPn is the orthogonal projector on the subspace

Span
{
χ

Ω
(n)
i

: i ∈ [n]d
}

of L1(Ω). In turn, InPnu is the the piecewise constant approximation of

u.

Lemma 2.1.27. For a function u ∈ Lq(Ω), q ∈ [1,+∞], we have∥∥InPnu∥∥Lq(Ω)
≤
∥∥u∥∥

Lq(Ω)
. (2.1.9)

For a function K ∈ L∞,q(Ω2), q ∈ [1,+∞], we have∥∥InPnK∥∥L∞,q(Ω2)
≤
∥∥K∥∥

L∞,q(Ω)
. (2.1.10)

Proof : We prove (2.1.10) as (2.1.9) is a consequence of it. Let K = PnK. We have, ∀x ∈ Ω,∫
Ω
InPn|K(x,y)|qdy =

∫
Ω

∑
i,j

|Ki,j |qχΩ
(n)
i

(x)χ
Ω

(n)
j

(y)dy

=
∑
i

∑
j

∫
Ω

(n)
j

|Ki,j |qdy

χ
Ω

(n)
i

(x)

=
∑
i

∑
j

hj

∣∣∣∣∣ 1

hihj

∫
Ω

(n)
i ×Ω

(n)
j

K(x′,y′)dx′dy′

∣∣∣∣∣
q
χ

Ω
(n)
i

(x)
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≤
∑
i

∑
j

1

hi

∫
Ω

(n)
i ×Ω

(n)
j

|K(x′,y′)|qdx′dy′
χ

Ω
(n)
i

(x)

=
∑
i

 1

hi

∫
Ω

(n)
i

∑
j

∫
Ω

(n)
j

|K(x′,y′)|qdy′
 dx′

χ
Ω

(n)
i

(x)

=
∑
i

(
1

hi

∫
Ω

(n)
i

(∫
Ω
|K(x′,y′)|qdy′

)
dx′

)
χ

Ω
(n)
i

(x)

≤
∥∥K∥∥q

L∞,q(Ω2)

∑
i

χ
Ω

(n)
i

(x) =
∥∥K∥∥q

L∞,q(Ω2)
.

Taking the supremum on the left-hand side yields the bound. �

Remark 2.1.28. Our exposition of the nonlocal p-Laplacian Dirichlet problem will be on a general

bounded domain Ω of Rd.

2.2 Tools from approximation theory

For N ∈ N∗, let S be a compact subset of RN . We introduce the Lipschitz spaces Lip(s, Lq(S)),

q ∈ [1,+∞], which contain functions with, roughly speaking, s "derivatives" in Lq(S) [61, Ch. 2,

Section 9]. These spaces will be a key tool for us to study the full discretization as we will be able to

get non-asymptotic error estimates for random graph model when adding the assumption of belonging

to these spaces to the kernel K(·, ·), the second member f(·, t) and the initial condition g(·) in (Pnloc).

De�nition 2.2.1. For F ∈ Lq(S), q ∈ [1,+∞], we de�ne the (�rst-order) Lq(S) modulus of smoothness

by

ω(F, h)q
def

= sup
z∈Rd,|z|<h

(∫
x,x+z∈S

|F (x+ z)− F (x)|q dx
)1/q

. (2.2.1)

The Lipschitz spaces Lip(s, Lq(S)) consist of all functions F for which

|F |Lip(s,Lq(S))
def

= sup
h>0

h−sω(F, h)q < +∞.

We restrict ourselves to values s ∈]0, 1] since for s > 1, only constant functions are in Lip(s, Lq(S)).

It is easy to see that |F |Lip(s,Lq(S)) is a semi-norm. Lip(s, Lq(S)) is endowed with the norm∥∥F∥∥
Lip(s,Lq(S))

def

=
∥∥F∥∥

Lq(S)
+ |F |Lip(s,Lq(S)) .

The space Lip(s, Lq(S)) is the Besov space Bs
q,∞ [61, Ch. 2, Section 10] which are very popular in

approximation theory. In particular, Lip(s, L1/s(S)) contains the space BV(S) of functions of bounded

variation on S; see [61, Ch. 2, Lemma9.2]. Thus Lipschitz spaces are rich enough to contain functions

with both discontinuities and fractal structure.

We now state the following approximation error bounds whose proofs use standard arguments from

approximation theory; see [90, Section 6.2.1] for details.

Lemma 2.2.2. There exists a positive constant Cs, depending only on s, such that for all F ∈
Lip(s, Lq(S)), s ∈]0, 1], q ∈ [1,+∞],∥∥F − InPnF∥∥Lq(S)

≤ Csδ(n)s |F |Lip(s,Lq(S)) . (2.2.2)
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We denote by BV([0, T ];Lq(S)) the Banach space of functions f : Ω× [0, T ]→ R such that

Varq(f)
def

= sup
0≤t0<t1<···<tN≤T

N∑
i=1

∥∥f(·, ti)− f(·, ti−1)
∥∥
Lq(S)

< +∞,

endowed with the norm
∥∥f∥∥

BV([0,T ];Lq(S))

def

=
∥∥f(0)

∥∥
Lq(S)

+ Varq(f).

2.3 Tools from graph limit theory

2.3.1 Preliminaries

A weighted graph G = (V (G), E(G), β) consists of a �nite set V (G) of vertices (nodes, or points), a

�nite set E(G) ⊂ V (G) × V (G) of edges (or lines) and a weight function β : V (G) × V (G) → R+.

Each node i ∈ V (G) is an abstract representation of an element of the data structure represented by

the graph. An edge (i, j) ∈ E(G) is composed of a couple of vertices, which represents the connection

between them and we write i ∼ j. We say that G is connected graph if for all i, j ∈ V (G), there exists

a sequence i0, i1, · · · , im ∈ V (G) such that i = i0 ∼ i1 ∼ · · · ∼ im = j. In this manuscript, we consider

undirected connected graphs without parallel edges in which case the edges are symmetric. We can

therefore also de�ne the set E(G) such that:

E(G)
def

= {(i, j) ∈ V (G)× V (G) : i ∼ j and i 6= j} .

Considering the symmetry of the edges, we can also note that if (i, j) ∈ E(G), then (i, j) ∈ E(G).

The weight function represents a similarity measure between two vertices of the graph. Since we are

dealing with undirected graphs, this function is symmetric: ∀(i, j) ∈ V (G)2, β(i, j) = β(i, j). The

neighbourhood of a vertex i (i.e., the set of vertices adjacent to i) is denoted by N (i) and the degree

of a vertex i is de�ned as degG(i) =
∑

j∼i β(i, j). For two vertices i, j ∈ V (G) with i 6∼ j we set

β(i, j) = β(j, i) = 0 and thus the set of edges E(G) can be characterized by the support of the weight

function β, i.e. E(G) = {(i, j) ∈ V (G)× V (G) : β(i, j) > 0}. A particular case where β ∈ {0, 1},
these kind of graphs are called simple graphs. In order to simplify the writing, we will often use in the

rest of this manuscript the condensed notation βij = β(i, j).

The usual way to represent a graph is to draw a circle (or dot) for each vertex and join two of these

circles with a line if the two corresponding vertices form an edge. It doesn't matter how these circles

and lines are drawn: the importance is the information about the pairs of vertices that form an edge

and those that do not. For a weighted graph, we add the weight next to the lines.

Figure 2.1: Example of an undirected simple graph G with V (G) = {0, · · · , 4} nodes with edge set

E(G) = {(0, 4), (4, 3), (3, 0), (0, 1), (1, 2), (2, 3)}.

The adjacency matrix of a graph G is a square
∣∣V (G)

∣∣× ∣∣V (G)
∣∣ matrix AG such that its elements

indicate whether pairs of vertices are adjacent or not in the graph. In the case of a simple graph, this

is a (0, 1)-matrix. For a weighted graph, (AG)ij represents the weight of the edge (i, j). If the graph

is undirected, the adjacency matrix is symmetric. A non-standard way of visualizing graphs using

another version of the adjacency matrix is the so-called pixel picture. On the left of Figure 2.3 we see
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Figure 2.2: Example of a weighted graph G with V (G) = {0, · · · , 4} nodes with edge set E(G) =

{(0, 4), (4, 3), (3, 1), (1, 0), (1, 2), (2, 3)} and {8, 3, 4, 3, 1, 2} are weights assigned to edges.

a graph (the Petersen graph). In the middle, we see its adjacency matrix. On the right, we see another

version of its adjacency matrix, where the 0's are replaced by white pixels and the 1's are replaced by

black pixels.The whole picture is on the unit square.

Figure 2.3: The Petersen graph, its adjacency matrix, and its pixel picture.

2.3.2 Lq graphons and graph limits

We now review some de�nitions and results of the Lq theory of sparse graphs developed in [31, 29].

This theory generalizes both existing theory of bounded graphons that are adapted to dense graph

limits [105], and its extension in [28] to sparse graphs under a no dense spots assumption. Here, we

follow considerably [31, 29], in which much more details can be found. We will be more interested in

the random case, which plays a central role in our study.

De�nition 2.3.1. Let q ∈ [1,+∞], an Lq graphon is a measurable, symmetric functionK ∈ Lq([0, 1]2).

Here the symmetry means K(x, y) = K(y, x) for all x, y ∈ [0, 1]. If we do not specify q, we assume

that K is in L1 and call it simply a graphon, rather than an L1 graphon.

Every �nite weighted graph Gn such that V (Gn) = [n], with edge weights {βij}(i,j)∈[n]2 , can be

represented by a measurable function KGn : [0, 1]2 → R+. The construction is as follow: Let Qn be a

partition of [0, 1] to n equal intervals Qn =
{
I(n)
k : k ∈ [n]

}
, and for every x ∈ I(n)

i and y ∈ I(n)
j we

set

KGn
def

=

{
βij , if (i, j) ∈ E(Gn),

0, otherwise.
(2.3.1)

This construction is not unique, however given a graph, the set of kernels arising from (2.3.1) can be

considered equivalent via the weakly isomorphic relation (2.3.4). Informally a graphon can be thought

of as a generalization of the adjacency matrix of a (weighted) graph which has a continuum number

of vertices.
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Example 2.3.2 (Half graphs). LetGn,n denote the bipartite graph on 2n nodes {1, · · · , n, 1′, · · · , n′},
where i is connected to j′ if and only if i ≤ j. It is easy to see that this sequence is convergent and its

limit is the function

K(x, y) =

{
1, if

∣∣x− y∣∣ ≥ 1/2,

0, otherwise.
(2.3.2)

Figure 2.4 shows an example of the half-graph for n = 16, its pixel picture and the corresponding

graphon.

Figure 2.4: (a) A half-graph of 16 vertices. (b) The plot of its pixel picture. (c) The corresponding

graphon.

Example 2.3.3 (Simple threshold graphs). These graphs are de�ned on the set [n] by connecting

i and j if and only if i+ j ≤ n. These graphs converge to the graphon de�ned by K(x, y) = 1l(x+y≤1),

which we call the simple threshold graphon.

Figure 2.5 displays an example of the threshold graph for n = 16 vertices, its pixel picture and the

corresponding graphon.

Figure 2.5: (a) A simple-threshold graph with 16 vertices. (b) The plot of its pixel picture. (c) The

corresponding graphon.

Now, we introduce the most important metric on the space of graphons which is the cut metric.

(Strictly speaking, it is merely a pseudometric, since two graphons with cut distance zero between

them need not be equal.) It is de�ned in terms of the cut norm introduced in [83].

De�nition 2.3.4 (Cut metric). For a graphon K : [0, 1]2 → R, de�ne the cut norm by∥∥K∥∥� def

= sup
S,T⊂[0,1]

∣∣∣∣∫
S×S

K(x, y)dxdy

∣∣∣∣ , (2.3.3)
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where S and T range over measurable subsets of [0, 1]. Given two graphons K, K ′ : [0, 1]2 → R, de�ne

d�(K,K ′)
def

=
∥∥K −K ′∥∥�

and the cut metric (or cut distance) δ� by

δ�(K,K ′)
def

= inf
σ
d�(Kσ,K ′)

where σ range over all measure-preserving bijections σ : [0, 1]→ [0, 1] and Kσ(x, y)
def

= K(σ(x), σ(y)).

For a survey covering many properties of the cut metric, see [105, 29, 97] and reference therein. The

notions d and δ extended to any norm on the spaces of graphons. In particular, for 1 ≤ q ≤ ∞, by

de�nition

dp(K,K
′)

def

=
∥∥K −K ′∥∥

Lq([0,1]2)
and δp(K,K

′)
def

= inf
σ
dp(K

σ,K ′)

with σ ranging overall measure-preserving bijections σ : [0, 1]→ [0, 1] as before.

We now introduce the weakly isomorphic relation, denoted ≈, which identi�es sets of graphons which

all have a cut distance of zero apart [105, Corollary 10.34]. Let K, K ′ be two graphons, we de�ne the

weakly isomorphic relation as follow

K ≈ K ′ ⇔ δ�(K,K ′) = 0. (2.3.4)

Theorem 2.3.5 ([29, Theorem2.13], Compactness of the Lq ball with respect to the cut

metric). Let 1 < q ≤ ∞ and C > 0, the ball BLq([0,1]2)(C)
def

=
{
Lq graphons K :

∥∥K∥∥
Lq([0,1]2)

≤ C
}

is compact with respect to the cut metric δ� (after identifying points of distance zero).

2.3.3 Random graphs

The theory of random graphs was founded in the 50's-60's by Erdös and Rényi [76], who started

the systematic study of the space of graphs with n labeled vertices and M = M(n) edges, with all

graphs equiprobable. The aim is to turn the set of all graphs with n vertices into a probability space.

Intuitively we should be able to generate a sequence of graphs {Gn}n∈N randomly as follows: for each

edge (i, j) ∈ [n]2, we decide by some random experiment whether or not (i, j) shall be an edge of Gn,

these experiments are performed independently.

Example 2.3.6 (The Erdös-Renyi graphs.). Let p ∈]0, 1[ and consider the sequence of ran-

dom graphs G(n, p) = (V (G(n, p)), E(G(n, p))) such that V (G(n, p)) = [n] and the probability

P{(i, j) ∈ E(G(n, p))} = p for any (i, j) ∈ [n]2. Then for any simple graph F , t(F,G(n, p)) con-

verges almost surely to p

∣∣E(F )
∣∣
as n→∞ [30] and {G(n, p)} converges almost surely to the p-constant

graphon.

Figure 2.6 shows a realization of the Erdös-Renyi graph model for n = 16, its pixel picture and the

corresponding graphon.
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Figure 2.6: (a) A realization of the Erdös-Renyi random graph model with p = 0.5. (b) Its pixel

picture. (c) The corresponding graphon.

2.3.4 Sparse K-random graph models

We consider weighted graphs, which include as a special case simple unweighted graphs. Let G =

(V (G), E(G)), be a weighted graphs with vertex set V (G) and edge set E(G) ⊆ V (G)2, respectively.

In G, every edge (i, j) ∈ E(G) (allowing loops with i = j) is given a weight βij ∈ R+1. We set βij = 0

whenever (i, j) 6∈ E(G).

The idea underlying the sparse K-random graph model proposed by [29] is that each Lq graphon K

gives rise to a natural random graph model, which produces a sequence of sparse graphs converging to

K in an appropriate metric. Inspired by their work, we propose the following construction.

De�nition 2.3.7. Fix n ∈ N∗, let K be an L1 graphon and ρn > 0. Take the equispaced partition of

[0, 1] in intervals ]xi−1, xi], i ∈ [n], where xi = i/n. Let K ∈ Rn×n+ be a weight matrix such that:

(Hw.1)
∥∥InK−K∥∥L1([0,1]2)

→ 0 as n→ +∞.

(Hw.2)
∥∥InK(x, ·)−K(x, ·)

∥∥
L1([0,1])

→ 0 uniformly in x ∈ [0, 1].

Generate the random graph

Gn = (V (Gn), E(Gn))
def

= G(n,K, ρn)

as follows: join each pair (i, j) ∈ [n]2 of vertices independently, with probability

P ((i, j) ∈ E(Gn)|X) = ρn
∧
Kij , where

∧
Kij

def

= min
(
Kij , ρ

−1
n

)
. (2.3.5)

Remark 2.3.8. In the original sparse K-random graph model de�ned in [29], the xi's are random iid

samples drawn from the uniform distribution on [0, 1]. Moreover, Kij = K(xi, xj). In this case, it

follows from [29, Theorem2.14(a)] (which relies on [94, Theorem]) that assumptions (Hw.1) holds with

probability 1.

Another interesting case is where K = PnK. Thanks to Lemma2.1.27,
∥∥InPnK∥∥L1(Ω2)

≤
∥∥K∥∥

L1(Ω2)

with probability 1. Thus, the Lebesgue di�erentiation theorem and the dominated convergence theorem

allow to assert that InPnK converges to K in L1(Ω2). In turn, assumption (Hw.1) holds.

For appropriate choices of ρn, the graph model constructed according to De�nition 2.3.7 allows to

sample both dense and sparse graphs from the graphon K. In particular, the sparsity assumption ρn →
0 re�ects the fact that ρn needs to be arbitrarily close to zero in order to see the unbounded/singular

1In [29], the weights are even allowed to be negative, but we will not consider this situation which is meaningless in

our context.
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part of K. The assumption that nρn → +∞ means the average degree tends to in�nity. To check this,

the average number of edges in this graph model is

E (E(G(n,K, ρn))) = ρnn
2

n−2
∑

(i,j)∈[n]2

∧
Kij


= ρnn

2
(∥∥InK∥∥L1([0,1]2)

−
∥∥ (InK− ρ−1

n

)
+

∥∥
L1([0,1]2)

)
.

By assumption (Hw.1), we have
∥∥InK∥∥L1([0,1]2)

=
∥∥K∥∥

L1([0,1]2)
+ o(1). Moreover, since ρn → 0, we

have from (2.3.6) that
∥∥ (InK− ρ−1

n

)
+

∥∥
L1([0,1]2)

= o(1). In turn,

E (E(G(n,K, ρn))) = ρnn
2
(∥∥K∥∥

L1([0,1]2)
+ o(1)

)
.

As expected, this gives rise to a sparse graph whose edge density is ρn → 0. For the average degree of

this graph model, arguing similarly to above, and using (Hw.2), we have

E
(
degGn(i)

)
= ρnn

n−1
∑
j∈[n]

∧
Kij


= ρnn

(∥∥InK(xi, ·)
∥∥
L1([0,1])

−
∥∥ (InK(xi, ·)− ρ−1

n

)
+

∥∥
L1([0,1])

)
= ρnn

(∫ 1

0
K(xi, y)dy + o(1)

)
.

As anticipated, the average degree is indeed unbounded since ρnn→ +∞ .

The above sequence of graphs generated also enjoys the following convergence result.

Proposition 2.3.9. Let K be an L1 graphon and K be a weight matrix such that (Hw.1) holds. If

ρn > 0 with ρn → 0 and nρn → +∞ as n → +∞, then ρ−1
n G(n,K, ρn) converges almost surely to K

in the cut distance metric.

Proof : We essentially adapt the arguments of in the proof of [29, Theorem2.14(b)]. More precisely,

since (Hw.1) holds, one has to show [29, (7.1)]. For this, we invoke [29, Lemma7.3] by checking the

condition (7.3) therein. We have by sublinearity of (·)+ that

1

n2

∑
(i,j)∈[n]2

(
Kij − ρ−1

n

)
+

=

∫
[0,1]2

(
InK(x, y)− ρ−1

n

)
+
dxdy

≤
∫

[0,1]2
(InK(x, y)−K(x, y))+ dxdy +

∫
[0,1]2

(
K(x, y)− ρ−1

n

)
+
dxdy

≤
∥∥InK−K∥∥L1([0,1]2)

+

∫
[0,1]2

(
K(x, y)− ρ−1

n

)
+
dxdy.

(2.3.6)

The right-hand side in the above display goes to 0 as n→ +∞ by (Hw.1) and since ρn → 0. Indeed,

for every L > 0, the limit superior of the last term is bounded by
∥∥(K − L)+

∥∥
L1([0,1]2

), and this can

be made arbitrarily small by choosing L large. �

Example 2.3.1. For an example that cannot be handled using L∞ graphons, and thus does not enter

in the framework of [90, 89], consider a K-random graph model G(n,K, ρn) constructed according to

De�nition 2.3.7 with K = PnK, where K(x, y) = J(x − y), J : z ∈ [−1, 1] 7→ 2−1(1 − β)(2 − β)|z|−β ,
β ∈]0, 1[. First, observe that the radially symmetric kernel J is singular but ful�lls all assumptions,
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i.e. J is symmetric nonnegative function in L1(Ω−Ω).In addition, by virtue of Remark 2.3.8, (Hw.1)-

(Hw.2) also hold with∥∥K∥∥
L1([0,1]2)

= 1 and

∫ 1

0
K(x, y)dy = 2−1(2− β)

(
x1−β + (1− x)1−β

)
∈ 2−1(2− β)[1, 2β].

We also have the following convergence result in the L∞,1 norm that will be instrumental in Sec-

tion 3.5. According to the construction in De�nition 2.3.7, we let Λij , (i, j) ∈ [n]2, i 6= j, be random

variables such that ρnΛij follows a Bernoulli distribution with parameter ρn
∧
Kij . For each row i ∈ [n],

(Λij)j∈[n] are independent.

Lemma 2.3.10. Let K be a nonnegative L∞,1 graphon.Take the weight matrix K = PnK. Assume

that ρn → 0 and nρn = ω ((log n)γ) for some γ > 1. Then with probability 1,∥∥InΛ∥∥L∞,1([0,1]2)
−
∥∥In ∧K∥∥L∞,1([0,1]2)

→ 0.

If, moreover, (Hw.2) holds, then ∥∥InΛ∥∥L∞,1([0,1]2)
→
∥∥K∥∥

L∞,1([0,1]2)
.

with probability 1.

Proof : For any ε > 0, we have by the union bound

P
(∣∣∥∥InΛ∥∥L∞,1([0,1]2)

−
∥∥In ∧K∥∥L∞,1([0,1]2)

∣∣ ≥ ε)

= P

∣∣max
i

∑
j

Λij −max
i

∑
j

∧
Kij

∣∣ ≥ εn


= P

∣∣max
i

∑
j

ρnΛij −max
i

∑
j

ρn
∧
Kij

∣∣ ≥ ερnn


≤ P

max
i

∣∣∑
j

ρn(Λij −
∧
Kij)

∣∣ ≥ ερnn


≤
∑
i

P

∣∣∑
j

ρn(Λij −
∧
Kij)

∣∣ ≥ ερnn
 .

Since (ρnΛij)j are independent Bernoulli variables with means

(
ρn
∧
Kij

)
j

, it follows from the variant

of the Cherno� bound in [29, Lemma7.1], that for every ε > 0,

P
(∣∣∥∥InΛ∥∥L∞,1([0,1]2)

−
∥∥In ∧K∥∥L∞,1([0,1]2)

∣∣ ≥ ε)

≤ 2
∑
i

exp

−1

3
min

 ερnn

ρn
∑

j

∧
Kij

, 1

 ερnn


≤ 2n exp

−1

3
min

 ε∥∥In ∧K∥∥L∞,1([0,1]2)

, 1

 ερnn


≤ 2n exp

(
−1

3
min

(
ε∥∥K∥∥

L∞,1([0,1]2)

, 1

)
εω ((log n)γ)

)
≤ 2n−ω((logn)γ−1),
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since γ > 1, and where we used (2.3.5) and Lemma2.1.27 to show that∥∥In ∧K∥∥L∞,1([0,1]2)
≤
∥∥InK∥∥L∞,1([0,1]2)

=
∥∥InPnK∥∥L∞,1([0,1]2)

≤
∥∥K∥∥

L∞,1([0,1]2)
.

Invoking the (�rst) Borel-Cantelli lemma, we have the �rst claim. On the other hand,∣∣∥∥In ∧K∥∥L∞,1([0,1]2)
−
∥∥K∥∥

L∞,1([0,1]2)

∣∣ ≤ ∥∥In ∧K−K∥∥L∞,1([0,1]2)

≤
∥∥In ∧K− InPnK∥∥L∞,1([0,1]2)

+
∥∥InPnK −K∥∥L∞,1([0,1]2)

=
∥∥(InPnK − ρ−1

n )+

∥∥
L∞,1([0,1]2)

+
∥∥InPnK −K∥∥L∞,1([0,1]2)

≤
∥∥(K − ρ−1

n )+

∥∥
L∞,1([0,1]2)

+
∥∥(InPnK −K)+

∥∥
L∞,1([0,1]2)

+
∥∥InPnK −K∥∥L∞,1([0,1]2)

≤
∥∥(K − ρ−1

n )+

∥∥
L∞,1([0,1]2)

+ 2
∥∥InPnK −K∥∥L∞,1([0,1]2)

.

Since ρn → 0 and in view of (Hw.2), the right-hand side in the above display goes to 0 as n → +∞.

Combined with the �rst claim we obtain the desired conclusion. �

2.4 Partial di�erences operators on graphs

Using the basic notation given in the above section, we recall the fundamental elements of the weighted

partial di�erence operators on graphs on which we base our framework exposed in Chapters 5 and

Chapter 6. For more detailed information on these operators we refer to [73, 87, 136, 72]. In order to

use a consistent notation with the content of these references, we denote, in the present section and

the chapters mentioned, the weight function of the graph considered by ω and the vertices by x, y, z.

Let G = (V,E, ω) be a weighted graph. We denote by H(V ) the space of real-valued functions on

the vertices of the graph, i.e., each function u : V → R in H(V ) assigns a real-value u(x) to each vertex

x ∈ V .
For a function u ∈ H(V ) the `p(V )-norm of u is given by

∥∥u∥∥
p

=

(∑
x∈V

∣∣u(x)
∣∣p) 1

p

, 1 6 p <∞,∥∥u∥∥∞ = max
x∈V

∣∣u(x)
∣∣

The space H(V ) endowed with the following inner product: 〈u, v〉H(V ) =
∑

x∈V u(x)v(x), u, v ∈ H(V ),

is a Hilbert space. Similarly, let H(E) be the space of real-valued functions de�ned on the edges of the

graph, i.e., each function H : E → R in H(E) assigns a real-valued H(x, y) to each edge (x, y) ∈ E.
The space H(E) endowed with the following inner product: 〈H,G〉H(E) =

∑
(x,y)∈E H(x, y)G(x, y),

H, G ∈ H(E), is a Hilbert space.

The weighted �nite di�erence operator of a function u ∈ H(V ), denoted by dω : H(V ) → H(E), is

de�ned on a pair of vertices (x, y) ∈ E as :

dωu(x, y) =
√
ω(x, y)(u(y)− u(x)).

Note that this di�erence operator is linear and antisymmetric.

The adjoint of the di�erence operator dω, denoted by d∗ω : H(E) → H(V ), is a linear operator which

can be characterized by 〈dωu,H〉H(E) = 〈u,d∗ωH〉H(V ) for all u ∈ H(V ) and all H ∈ H(E). Using

the de�nitions of the �nite weighted di�erence operator and the inner products of H(V ) and H(E),

the adjoint operator d∗ω of a function H ∈ H(E) can be expressed at a vertex x ∈ V by the following

expression:

d∗ωH(x) =
∑
y∼x

√
ω(x, y)(H(y, x)−H(x, y)).
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The divergence operator de�ned by

divω = −d∗ω,

measures the net out�ow of a function of H(E) at each vertex of the graph. Each function H ∈ H(E)

has a null divergence over the entire set of vertices. Indeed, from the previous de�nitions, it can be

easily shown that
∑

x∈V
∑

y∼x dωu(x, y) = 0, for all u ∈ H(V ), and
∑

x∈V divωH(x) = 0, for all

H ∈ H(E).

The weighted directional �nite di�erence of u at a vertex x along the edge (x, y) is de�ned as:

∂yu(x) =
√
ω(x, y)(u(y)− u(x)).

Similarly we de�ne the upwind and downwind weighted directional �nite di�erences of u at a vertex x

along the edge (x, y) is de�ned as:

∂±y u(x) =
√
ω(x, y) (u(y)− u(x))± ,

where a+ = max(a, 0) and a− = max(−a, 0), a ∈ R. Based on this de�nition, one can straightforwardly

introduce the weighted gradient operator on graphs ∇ω : H(V )→ H(V ), which is de�ned on a vertex

x ∈ V as the vector of all weighted �nite di�erences with respect to the set of vertices V ,i.e:

(∇ωu)(x) = (∂yu(x))y∈V .

From the properties of the weighted partial di�erence above, it gets clear that the weighted gradient

is linear and antisymmetric. Similarly we de�ne the upwind downwind weighted gradient operators on

graphs ∇±ω : H(V )→ H(V )

(∇±ωu)(x) = (∂±y u(x))y∈V , for all x ∈ V.

A family of gradient norm
∥∥ · ∥∥

p
◦ ∇ω,

∥∥ · ∥∥
p
◦ ∇±ω : H(V ) → (R+)|V | with 1 6 p 6 ∞ is given for a

function u ∈ H(V ) as:

∥∥(∇ωu)(x)
∥∥
p

=

(∑
y∼x

(ω(x, y))
p
2

∣∣u(y)− u(x)
∣∣p) 1

p

, 1 6 p <∞

∥∥(∇ωu)(x)
∥∥
∞ = max

y∼x
(
√
ω(x, y)

∣∣u(y)− u(x)
∣∣),

∥∥(∇±ωu)(x)
∥∥
p

=

(∑
y∼x

(ω(x, y))
p
2
(
(u(y)− u(x))±

)p) 1
p

, 1 6 p <∞

∥∥(∇±ωu)(x)
∥∥
∞ = max

y∼x
(
√
ω(x, y) (u(y)− u(x))±).

The integral of a function u in H(V ) (wrt to the empirical measure on V ) is de�ned by:

E(u) =
∑
x∈V

u(x).

The anisotropic graph p-Laplacian of a function u ∈ H(V ), denoted by ∆ω,p : H(V )→ H(V ) is de�ned

as

∆ω,pu(x)
def

= divω

(∣∣dωu∣∣p−2
dωu

)
(x)

= 2
∑
y∼x

(ω(x, y))
p
2

∣∣u(y)− u(x)
∣∣p−2

(u(y)− u(x)),

where 1 < p <∞ and x ∈ V .
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Chapter 3

Continuum limits of the p-Laplacian

evolution problem on sparse graphs

Main contributions of this chapter

I Well-posedness of the Cauchy problem.

I Error estimates to compare two trajectories corresponding to the p-Laplacian governed

by two kernels, second member and initial data:

� for p ∈]1,+∞[ (Theorem3.3.1).

� for p = 1 (Theorem3.3.5).

I Consistency and error estimates of the numerical solutions to the fully-discretized prob-

lem:

� forward discretization (Theorem3.4.7 for p ∈]1, 2], Theorem3.4.12 for p = 1).

� backward discretization (Theorem3.4.16 for p ∈]1,+∞[).

I Error bound on fully discretized problems on sparse random graphs. (Theorem 3.5.3)

The content of this chapter can be found in [69].
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In this chapter, we present a consistency analysis for the nonlocal p-Laplacian evolution problem.

Our results consist of four main parts: well-posedness, consistency of the continuous-continuous prob-

lem, error bounds for the discrete problem and application of these results to the fully discretized

problems on random graph models. For the time-discrete problem, both the semi-discrete and fully-

discrete versions with both forward and backward Euler approximations are exposed. We prove the

convergence of these schemes before comparing their corresponding problems to the continuum one.

The obtained error bounds will be used in the fourth part to analyse error bound on fully discretized

problems on sparse random graphs.

3.1 Introduction

3.1.1 Problem formulation

Our main goal in this chapter is to study discretization of the following nonlocal p-Laplacian evolution

problem with homogeneous Neumann boundary conditions:{
∂
∂tu(x, t) =

∫
ΩK(x,y)

∣∣u(y, t)− u(x, t)
∣∣p−2

(u(y, t)− u(x, t))dy + f(x, t), x ∈ Ω, t > 0,

u(x, 0) = g(x), x ∈ Ω,
(P)

where p ∈ [1,+∞[, Ω ⊂ Rd is a bounded domain, d ≥ 1, without loss of generality Ω = [0, 1]d, and

K : Rd × Rd → R is the kernel function. In particular, in the setting of graphs, d = 1 and it will be

seen that K is the limit object for some convergent graph sequence {Gn}n, n ∈ N, whose meaning and

form will be speci�ed in the sequel. Throughout, we assume that

(H.1) K is a nonnegative measurable function.

(H.2) K is symmetric, i.e., K(x,y) = K(y,x).

(H.3) supx∈Ω

∫
ΩK(x,y)dy < +∞ .

By (H.2), it is straightforward to see that

sup
x∈Ω

∫
Ω
K(x,y)dy = sup

y∈Ω

∫
Ω
K(x,y)dx,

and thus, (H.3) is equivalent to

sup
y∈Ω

∫
Ω
K(x,y)dx < +∞.

� 32 �



Chapter 3 3.2. Well-posedness

When the kernel is such that K(x,y) = J(x − y), where J : Rd → R, then (H.1), (H.2) and (H.3)

read:

(H'.1) J is nonnegative and measurable.

(H'.2) J is symmetric, i.e., J(−x) = J(x).

(H'.3)
∫

Ω−Ω J(x)dx < +∞ .

Recall that Ω − Ω is the Minkowski sum of Ω and −Ω. In the case Ω = [0, 1]d, we obviously have

Ω− Ω = [−1, 1]d.

The main goal of this chapter is to revisit and extend the work of [90] by removing important limiting

assumptions made there on the kernel K and the initial condition g. In turn, this will allow us to

establish consistency estimates of the fully discretized p-Laplacian problem for singular kernels or on

sparse graphs whose limits are known not to be bounded graphons.

3.1.2 Organization of the chapter

In Section 3.2, we study the well-posedness of the problem (P). Section 3.3 is devoted to study stability

of the problem (P) with respect to sequences of kernels K, initial data g and second member f .

Error bounds for the semi-discete (i.e., space discretization of (K, g, f)) problem are established in

Section 3.4.1, and those for the fully discrete (time and space discretization) problem with forward and

backward Euler time-discretization are provided in Section 3.4.2. Section 3.5 is devoted to applying

these results to fully discretized problems on sparse random graph models.

3.2 Well-posedness

3.2.1 The case p ∈]1,+∞[

To lighten notation, for 1 < p < +∞, we de�ne the function

Ψ : x ∈ R 7→
∣∣x∣∣p−2

x = sign(x)
∣∣x∣∣p−1

,

where we take sign(0) = 0. The next lemma summarizes key monotonicity and continuity properties

of Ψ which will be instrumental to us.

Lemma 3.2.1. (i) Monotonicity: assume that the constant β satis�es β ∈ [max(p, 2),+∞[. Then

for all x, y ∈ R,
(Ψ(y)−Ψ(x)) (y − x) ≥ C1

∣∣y − x∣∣β (|y|+ |x|)p−β , (3.2.1)

where the constant C1 is sharp and given by

C1 = 22−p min(1, p− 1). (3.2.2)

In particular,

(Ψ(y)−Ψ(x)) (y − x) ≥ C1

{ ∣∣y − x∣∣p p ∈ [2,+∞[,∣∣y − x∣∣2 (|y|+ |x|)p−2 p ∈]1, 2].
(3.2.3)

(ii) Continuity: assume that the constant α satis�es α ∈ [0,min(1, p− 1)]. Then for all x, y ∈ R,∣∣Ψ(y)−Ψ(x)
∣∣ ≤ C2

∣∣y − x∣∣α (|y|+ |x|)p−1−α , (3.2.4)

where the constant C2 is sharp and given by

C2 = max(22−p, (p− 1)22−p, 1). (3.2.5)

In particular, ∣∣Ψ(y)−Ψ(x)
∣∣ ≤ C2

{ ∣∣y − x∣∣ (|y|+ |x|)p−2 p ∈ [2,+∞[,∣∣y − x∣∣p−1
p ∈]1, 2],

(3.2.6)

� 33 �



Chapter 3 3.2. Well-posedness

Proof :

(i) For (3.2.1), see [43, Theorem2.2]. For (3.2.3), set β = p for p ≥ 2 and β = 2 otherwise in (3.2.1);

see also the seminal results of [86, Lemma5.1 and Lemma5.2].

(ii) For (3.2.4), see [43, Theorem2.1]. For (3.2.6), set α = 1 for p ≥ 2 and α = p − 1 otherwise in

(3.2.4); see also the seminal results of [86, Lemma5.3 and Lemma5.4].

�

We now collect some preliminary properties of the nonlocal p-Laplacian, an operator on L1(Ω) that

we denote for short as

∆K
p u(x, t) = −

∫
Ω
K(x,y)

∣∣u(y, t)− u(x, t)
∣∣p−2

(u(y, t)− u(x, t))dy.

Proposition 3.2.2. Assume that K satis�es (H.1), (H.2) and (H.3).

(i) ∆K
p is positively homogeneous of degree p− 1.

(ii) If p > 2, Lp−1(Ω) ⊂ dom(∆K
p ) .

(iii) If 1 < p ≤ 2, dom(∆K
p ) = L1(Ω) and ∆K

p is closed in L1(Ω)× L1(Ω).

(iv) Let h : R→ R be a non-decreasing function. Then for every u, v ∈ Lp(Ω),

0 ≤
∫

Ω

(
∆K
p u(x)−∆K

p v(x)
)
h(u(x)− v(x))dx

=
1

2

∫
Ω2

K(x,y) (Ψ(u(y)− u(x))−Ψ(v(y)− v(x))) (h(u(y)− v(y))− h(u(x)− v(x))) dydx.

(3.2.7)

If h is bounded, then this holds for any u, v ∈ dom(∆K
p ).

(v) For every u, v ∈ Lp(Ω),∫
Ω

(
∆K
p u(x)−∆K

p v(x))(u(x)− v(x))
)
dx ≥

C

2

(∫
Ω2

K(x,y)
∣∣(u(y)− u(x))− (v(y)− v(x))

∣∣pdydx)max(1,2/p)

where

C =

C1 p ∈ [2,+∞[,

22p−5C1

∥∥K∥∥1−2/p

L∞,1(Ω2)

(∥∥u∥∥
Lp(Ω)

+
∥∥v∥∥

Lp(Ω)

)p−2
p ∈]1, 2[.

and C1 is the constant in (3.2.2). If u, v ∈ L∞(Ω), then∫
Ω

(
∆K
p u(x)−∆K

p v(x))(u(x)− v(x))
)
dx ≥

C

2

(∫
Ω2

K(x,y)
∣∣(u(y)− u(x))− (v(y)− v(x))

∣∣2dydx)max(1,p/2)

,

where

C =

C1 p ∈ [2,+∞[,

2p−2C1

(∥∥u∥∥
L∞(Ω)

+
∥∥v∥∥

L∞(Ω)

)p−2
p ∈]1, 2[.

(vi) For p ∈]1, 2] and every u, v ∈ L2(Ω),∫
Ω

(
∆K
p u(x)−∆K

p v(x))(u(x)− v(x))
)
dx ≥ C

∥∥∆K
p u−∆K

p v
∥∥p/(p−1)

L2(Ω)

where

C = 2
p−2

2(p−1)

(
C

1/2
2

∥∥K∥∥
L∞,1(Ω2)

) 1
1−p

(1− 1/p), and C2 is the constant in (3.2.5).
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(vii) For p ∈]1,+∞[, ∆K
p is completely accretive and satis�es the range condition

Lp(Ω) ⊂ ran(I + ∆K
p ). (3.2.8)

Consequently, the resolvent Jλ∆K
p

def

=
(
I + λ∆K

p

)−1
, λ > 0, is single-valued on Lp(Ω) and nonex-

pansive in Lq(Ω) for all q ∈ [1,+∞].

Proof : (i), (ii) and (iii) follow from [10, Remark 2.2] which still holds for our larger class of kernels

K.

For (iv), see [90, LemmaA.2]. Monotonicity is immediate since h is non-decreasing.

The proof of (vii) is the same as that of [10, Theorem2.4], where we invoke the monotonicity claim (i).

We now show (v)1. The case p ∈ [2,+∞[ is immediate by inserting Lemma3.2.1(i) into (3.2.7) with

h(x) = x. For p ∈]1, 2], to lighten notation, denote the nonlocal gradient ∇NLu(x,y) = u(y) − u(x).

We then have by Lemma3.2.1(i) that

C1|∇NL(u− v)(x,y)|2 ≤(
Ψ(∇NLu(x,y))−Ψ(∇NLv(x,y))

)
(∇NLu(x,y)−∇NLv(x,y))

(
|∇NLu(x,y)|+ |∇NLv(x,y)|

)2−p
.

(3.2.9)

Taking the power p/2, multiplying by K and integrating, we get

C
p/2
1

∫
Ω2

K(x,y)|∇NL(u− v)(x,y)|pdxdy ≤∫
Ω2

(
K(x,y)

(
Ψ(∇NLu(x,y))−Ψ(∇NLv(x,y))

)
(∇NLu(x,y)−∇NLv(x,y))

)p/2
(
K(x,y)1/p(|∇NLu(x,y)|+ |∇NLv(x,y)|)

)(2−p)p/2
dxdy.

It is easily seen that(
K ·

(
Ψ(∇NLu)−Ψ(∇NLv)

)
(∇NLu−∇NLv)

)p/2 ∈ L2/p(Ω2)(
K1/p · (|∇NLu|+ |∇NLv|)

)(2−p)p/2
∈ L2/(2−p)(Ω2).

It then follows from Hölder inequality and (3.2.7) that

C
p/2
1

∫
Ω2

K(x,y)|∇NL(u− v)(x,y)|pdxdy ≤

2

(∫
Ω

(
∆K
p u(x)−∆K

p v(x)
)

(u(x)− v(x))dx

)p/2
·(∫

Ω2

K(x,y)(|∇NLu(x,y)|+ |∇NLv(x,y)|)pdxdy
)(2−p)/2

.

We have by Jensen's inequality∫
Ω2

K(x,y)(|∇NLu(x,y)|+ |∇NLv(x,y)|)pdxdy

≤ 4p−1

∫
Ω2

K(x,y)(|u(x)|p + |u(y)|p + |v(x)|p + |v(y)|p)dxdy

≤ 22p−1
∥∥K∥∥

L∞,1(Ω2)

(∥∥u∥∥p
Lp(Ω)

+
∥∥v∥∥p

Lp(Ω)

)
,

whence we obtain

C1

(∫
Ω2

K(x,y)|∇NL(u− v)(x,y)|pdxdy
)2/p

≤

1This can be seen as a nonlocal analogue of [86, Proposition 5.1 and Proposition 5.2].
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25−2p

(∫
Ω

(
∆K
p u(x)−∆K

p v(x)
)

(u(x)− v(x))dx

)
∥∥K∥∥(2−p)/p

L∞,1(Ω2)

(∥∥u∥∥
Lp(Ω)

+
∥∥v∥∥

Lp(Ω)

)2−p
.

Rearranging proves the bound. For u, v ∈ L∞(Ω) and p ∈ [2,+∞] we use that Lp(Ω) ⊂ L2(Ω). For

p ∈]1, 2], we embark from (3.2.9) and use that for all (x,y) ∈ Ω2,

|∇NLu(x,y)|+ |∇NLv(x,y)| ≤ 2
(∥∥u∥∥

L∞(Ω)
+
∥∥v∥∥

L∞(Ω)

)
.

Multiplying (3.2.9) by K, integrating and using (3.2.7), we conclude.

To prove (vi), we start by showing that ∆K
p is Hölder continuous with exponent p− 1 on L2(Ω). We

have by Jensen inequality (twice) and (3.2.6),∥∥∆K
p u−∆K

p v
∥∥2

L2(Ω)
=

∫
Ω

∣∣∣∣∫
Ω
K(x,y)

(
Ψ(∇NLu(x,y))−Ψ(∇NLv(x,y))

)
dy

∣∣∣∣2 dx
≤
∥∥K∥∥

L∞,1(Ω2)

∫
Ω2

K(x,y)
(
Ψ(∇NLu(x,y))−Ψ(∇NLv(x,y))

)2
dxdy

≤ C2

∥∥K∥∥
L∞,1(Ω2)

∫
Ω2

K(x,y)
(
∇NL(u− v)(x,y))

)2(p−1)
dxdy

≤ 2pC2

∥∥K∥∥
L∞,1(Ω2)

∫
Ω2

K(x,y) (u(x)− v(x))2(p−1) dxdy

≤ 2pC2

∥∥K∥∥2

L∞,1(Ω2)

(∫
Ω

(u(x)− v(x))2 dx

)p−1

= 2pC2

∥∥K∥∥2

L∞,1(Ω2)

∥∥u− v∥∥2(p−1)

L2(Ω)
. (3.2.10)

We are now in position to invoke [21, Corollary 18.14(i)⇒(v)] to show that the claimed inequality holds.

�

Solutions of (P) will be understood in the following sense:

De�nition 3.2.3. Let p ∈]1,+∞[. A solution of (P) in [0, T ] is a function

u ∈ C([0, T ];L1(Ω)) ∩W 1,1(]0, T [;L1(Ω)),

that satis�es u(x, 0) = g(x) a.e. x ∈ Ω and

∂

∂t
u(x, t) = −∆K

p u(x, t) + f(x, t) a.e. in Ω×]0, T [.

Such a solution is also a strong solution (see [11, De�nitionA.3]).

The main result of existence and uniqueness of a global solution, that is, a solution on [0, T ] for

T > 0 is stated in the following theorem.

Theorem 3.2.4. Suppose that p ∈]1,+∞[ and assumptions (H.1), (H.2) and (H.3) hold. Let g ∈
Lp(Ω) and f ∈ L1([0, T ];Lp(Ω)).

(i) For any T > 0, there exists a unique strong solution in [0, T ] of (P).
(ii) Moreover, for q ∈ [1,+∞], if gi ∈ Lq(Ω) and fi ∈ L1([0, T ];Lq(Ω)), i = 1, 2, and ui is the

solution of (P) with data (fi, gi), then∥∥u1(·, t)− u2(·, t)
∥∥
Lq(Ω)

≤
∥∥g1 − g2

∥∥
Lq(Ω)

+
∥∥f1 − f2

∥∥
L1([0,T ];Lq(Ω))

, ∀t ∈ [0, T ]. (3.2.11)

Proof : The proof follows the same lines as that of [10, Theorem1.2] extended to the case where

f 6≡ 0 thanks to the results of [25], where we invoke Proposition 3.2.2(ii), (iii) and (vii). �
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Remark 3.2.5. In [10] (see also [11, Chapte 6]), the authors impose the following stringent assump-

tions: K(x,y) = J(x − y), where J is nonnegative, continuous, radially symmetric, compactly sup-

ported, J(0) > 0 and
∫
Rd J(x)dx < +∞. Actually, these assumptions are not needed for existence and

uniqueness. The particular form J(x−y) of the kernel is not needed. Continuity with radial symmetry

and support compactness play a pivotal role to study convergence to the local p-Laplacian problem

in [10, Theorem1.5]. In addition, J(0) > 0 was mandatory to prove a Poincaré-type inequality in [10,

Proposition 4.1]. Even for the form J(x − y), our assumptions (H'.1), (H'.2) and (H'.3) are weaker

than those of [10]. This discussion remains true also for the case p = 1.

3.2.2 The case p = 1

We will need to de�ne subdi�erential of the absolute value function on R, which is the well-known

set-valued mapping ∂| · | : R→ 2R,

∂| · |(x) =


1 x > 0

[−1, 1] x = 0

−1 x < 0.

It will be convenient to denote the 1-Laplacian ∆K
1 . This is a set-valued operator in L1(Ω) × L1(Ω)

such that η ∈ ∆K
1 u if and only if

η(x) = −
∫

Ω
K(x,y)w(x,y)dy a.e. in Ω,

for a subgradient function w satisfying
∥∥w∥∥

L∞(Ω2)
≤ 1, w(x,y) = −w(y,x), and

w(x,y) ∈ ∂| · |(u(y)− u(x)).

Solutions of (P) will be understood in the following sense.

De�nition 3.2.6. A solution of (P) for p = 1 in [0, T ] is a function

u ∈ C([0, T ];L1(Ω)) ∩W 1,1(]0, T [;L1(Ω)),

that satis�es u(x, 0) = g(x) for a.e. x ∈ Ω and

∂

∂t
u(x, t) = −η(x, t) + f(x, t) a.e. in Ω×]0, T [,

where η(·, t) ∈ ∆K
1 u(·, t).

Observe that for p = 1, the evolution problem (P) reads{
∂
∂tu(x, t) =

∫
ΩK(x,y) sign(u(y, t)− u(x, t))dy + f(x, t), x ∈ Ω, t > 0,

u(x, 0) = g(x), x ∈ Ω,

where

sign(x) =

{
x
|x| x 6= 0

0 x = 0.

Thus, it satis�es
∂

∂t
u(·, t) ∈ −∆K

1 u(·, t).

In the same vein as Proposition 3.2.2, the 1-Laplacian enjoys the following properties.

Proposition 3.2.7. Assume that K satis�es (H.1), (H.2) and (H.3).

(i) dom(∆K
1 ) = L1(Ω) and (the graph of) ∆K

1 is closed in L1(Ω)× L1(Ω).

� 37 �



Chapter 3 3.2. Well-posedness

(ii) Let h ∈ C1(R) be a nondecreasing function. Then for every ui ∈ L1(Ω) and any ηi ∈ ∆K
1 ui,

i = 1, 2,

0 ≤
∫

Ω
(η1(x)− η2(x)) (h(u1(x)− u2(x))) dx

=
1

2

∫
Ω2

K(x,y) (w1(x,y)− w2(x,y)) (h(u1(y)− u2(y))− h(u1(x)− u2(x))) dxdy.

(3.2.12)

where wi are the corresponding subgradient functions de�ned above. In particular,∫
Ω2

K(x,y)wi(x,y)ui(x)dxdy = −1

2

∫
Ω2

K(x,y)
∣∣ui(y)− ui(x)

∣∣dxdy.
(iii) ∆K

1 is completely accretive and satis�es the range condition

L∞(Ω) ⊂ ran(I + ∆K
1 ). (3.2.13)

Proof : For (i), see [10, Remark 2.8] which still holds for our class of kernels K.

The proof of (iii) is again the same as that of [10, Theorem2.9], where we invoke the monotonicity

claim (ii) to which we turn now.

For any v ∈ L1(Ω), we have the integration by parts formula∫
Ω2

K(x,y)wi(x,y)(v(y)− v(x))dxdy (3.2.14)

= −
∫

Ω2

K(y,x)wi(y,x)v(y)dydx−
∫

Ω2

K(x,y)wi(x,y)v(x))dxdy (3.2.15)

= −2

∫
Ω2

K(x,y)wi(x,y)v(x)dxdy. (3.2.16)

Taking v(x) = h(u1(x)− u2(x)) in (3.2.16) with w1 and w2, and then taking the di�erence, we arrive

at

− 2

∫
Ω

(∫
Ω
K(x,y)(w1(x,y)− w2(x,y))dy

)
h(u1(x)− u2(x))dx

= 2

∫
Ω

(η1(x)− η2(x)) (h(u1(x)− u2(x))) dx

=

∫
Ω2

K(x,y) (w1(x,y)− w2(x,y)) (h(u1(y)− u2(y))− h(u1(x)− u2(x))) dxdy.

By the mean-value theorem applied to h, we get

= 2

∫
Ω

(η1(x)− η2(x)) (h(u1(x)− u2(x))) dx

=

∫
Ω2

K(x,y) (w1(x,y)− w2(x,y))h′(ζ(x,y)) ((u1(y)− u2(y))− (u1(x)− u2(x))) dxdy

=

∫
Ω2

K(x,y)h′(ζ(x,y)) (w1(x,y)− w2(x,y)) ((u1(y)− u1(x))− (u2(y)− u2(x))) dxdy,

where ζ(x,y) is an intermediate value between u1(y)−u2(y) and u1(x)−u2(x). Since h is increasing,

that wi(x,y) ∈ ∂| · |(ui(y)−ui(x)), and ∂| · | is a monotone operator, we get the claimed monotonicity.

To get the particular identity, we specialize (3.2.16) by taking v = ui, which entails

−
∫

Ω2

K(x,y)wi(x,y)(ui(y)− ui(x))dxdy = 2

∫
Ω2

K(x,y)wi(x,y)ui(x)dxdy.

We �nally use the equivalent characterization of ∂
∣∣ · ∣∣, which originates from the Fenchel's identity

since
∣∣ · ∣∣ is positively homogeneous,

∂
∣∣ · ∣∣(x) =

{
ξ ∈ R :

∣∣ξ∣∣ ≤ 1 and ξx =
∣∣x∣∣} .

Applying this identity with x = ui(y)− ui(x) and ξ = wi(x,y) gives the claim. �
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Theorem 3.2.8. Suppose that p = 1, and assumptions (H.1), (H.2) and (H.3) hold. Let g ∈ L1(Ω)

and f ∈ L1([0, T ];L1(Ω)). For any T > 0, there exists a unique solution in [0, T ] of (P) in the sense

of De�nition 3.2.6.

Proof : The proof is an adaptation of [10, Theorem1.4] to the case where f 6≡ 0 thanks to the

results of [25], where we invoke Proposition 3.2.7(i) and (iii). �

3.3 Continuous-continuous estimates

In this section, we provide an estimate that compares solutions of two p-Laplacian evolution problems

of the form (P) with two di�erent kernels and initial data. This estimate will be instrumental to derive

error bounds in the totally discrete case.

3.3.1 The case p ∈]1,+∞[

We have the following error bounds and convergence result.

Theorem 3.3.1. Suppose that p ∈]1,+∞[. Let u be a solution of (P) with kernel K and data (f, g).

Let un be a sequence of solutions to (P) with kernels Kn and data (fn, gn). Assume that K and Kn

satisfy (H.1), (H.2) and K,Kn ∈ L∞,2(Ω2), and that either one of the following holds:

(a) p ∈]1, 2[, g, gn ∈ L2(Ω), and f, fn ∈ L1([0, T ];L2(Ω));

(b) p ≥ 2, g, gn ∈ L2(p−1)(Ω) and f, fn ∈ L1([0, T ];L2(p−1)(Ω));

(c) g, gn ∈ L∞(Ω) and f, fn ∈ L1([0, T ];L∞(Ω)).

Then, the following hold.

(i) u and un are the unique solutions of (P) with respectively data (f, g) and (fn, gn).

(ii) We have the error estimate∥∥un − u∥∥C([0,T ];L2(Ω))
≤
∥∥gn − g∥∥L2(Ω)

+
∥∥fn − f∥∥L1([0,T ];L2(Ω))

+ CT


∥∥Kn −K

∥∥
L∞,2(Ω2)

, under (a) or (b)∥∥Kn −K
∥∥
L2(Ω2)

, under (c)
(3.3.1)

where C is positive constant that may depend only on p, g and f .

(iii) Moreover, if (c) holds, supn∈N
∣∣gn(x)

∣∣ < +∞ a.e. on Ω and gn → g pointwise a.e. on Ω,

supn∈N
∣∣fn(x, t))

∣∣ < +∞ a.e. on Ω × [0, T ] and fn → f pointwise a.e. on Ω × [0, T ], and the

sequence {|Kn|2}n∈N is uniformly integrable over Ω2 and Kn → K pointwise a.e. on Ω2. Then

lim
n→+∞

∥∥un − u∥∥C([0,T ];L2(Ω))
= 0.

Remark 3.3.2. Observe that since L∞(Ω) ⊂ L2(Ω) and L2(p−1)(Ω) ⊂ L2(Ω) for p ≥ 2, then the �rst

two terms involved in (3.3.1) provide a non-trivial bound. Similarly, since L∞,2(Ω2) ⊂ L2(Ω2), the last

term in the bound for case (c) is also non-trivial. In fact, both bounds in (3.3.1) can be summarized in

one bound; the �rst one. However, the second bound for case (c) is obviously sharper.

Proof : In the proof, C is any positive constant that may depend solely on p, g and f .

(i) Since L∞,2(Ω2) ⊂ L∞,1(Ω2), assumption (H.3) holds for both K and Kn. We also have the

embeddings

� L2(Ω) ⊂ Lp(Ω) under (a),
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� L2(p−1)(Ω) ⊂ Lp(Ω) under (b), and

� L∞(Ω) ⊂ Lp(Ω) under (c) .

Thus g, gn ∈ Lp(Ω) and f, fn ∈ L1([0, T ];Lp(Ω)). Existence and uniqueness of the solutions u

and un in the sense of De�nition 3.2.3 is a consequence of Theorem3.2.4.

(ii) Denote the error function ξn(x, t) = un(x, t)− u(x, t), then from (P), we have a.e.
∂ξn(x, t)

∂t
= −

(
∆Kn
p (un(x, t))−∆K

p (u(x, t))
)

+ fn(x, t)− f(x, t)

= −
(
∆Kn
p (un(x, t))−∆Kn

p (u(x, t))
)
−
(
∆Kn
p (u(x, t))−∆K

p (u(x, t))
)

+ fn(x, t)− f(x, t).

(3.3.2)

Multiplying both sides of (3.3.2) by ξn(x, t) and integrating, we get

1

2

∂

∂t

∥∥ξn(·, t)
∥∥2

L2(Ω)
= −

∫
Ω

(
∆Kn
p un(x, t)−∆Kn

p u(x, t)
)

(un(x, t)− u(x, t))dx

+

∫
Ω2

(Kn(x,y)−K(x,y))Ψ(u(y, t)− u(x, t))ξn(x, t)dxdy

+

∫
Ω

(fn(x, t)− f(x, t)) ξn(x, t)dx.

(3.3.3)

Since g, gn ∈ Lp(Ω) and f, fn ∈ L1([0, T ];Lp(Ω)), un(·, t), u(·, t) ∈ Lp(Ω) for any t ∈ [0, T ] thanks

to (3.2.11). We can then apply Proposition 3.2.2(iv) with h(x) = x to assert that the �rst term

on the right-hand side of (3.3.3) is nonpositive. Let us now bound the second term.

� Case (c): in this case
∥∥u∥∥

C([0,T ];L∞(Ω))
≤
∥∥g∥∥

L∞(Ω)
+
∥∥f∥∥

L1([0,T ];L∞(Ω))
thanks to (3.2.11),

and we get from Cauchy-Schwartz inequality that∣∣ ∫
Ω2

(Kn(x,y)−K(x,y))Ψ(u(y, t)− u(x, t))ξn(x, t)dxdy
∣∣

≤ 2p−1
∥∥u(·, t)

∥∥p−1

L∞(Ω)

∫
Ω2

∣∣Kn(x,y)−K(x,y)
∣∣∣∣ξn(x, t)

∣∣dxdy
≤ 2p−1

(∥∥g∥∥
L∞(Ω)

+
∥∥f∥∥

L1([0,T ];L∞(Ω))

)p−1 ∥∥Kn −K
∥∥
L2(Ω2)

∥∥ξn(·, t)
∥∥
L2(Ω)

= C
∥∥Kn −K

∥∥
L2(Ω2)

∥∥ξn(·, t)
∥∥
L2(Ω)

.

(3.3.4)

� Case (a) or (b): applying again Cauchy-Schwartz inequality we obtain∣∣ ∫
Ω2

(Kn(x,y)−K(x,y))Ψ(u(y, t)− u(x, t))ξn(x, t)dxdy
∣∣

≤
(∫

Ω2

∣∣u(y, t)− u(x, t)
∣∣2(p−1)

dxdy

)1/2(∫
Ω2

|Kn(x,y)−K(x,y)|2|ξn(x, t)|2dxdy
)1/2

=

(∫
Ω2

∣∣u(y, t)− u(x, t)
∣∣2(p−1)

dxdy

)1/2(∫
Ω

(∫
Ω
|Kn(x,y)−K(x,y)|2dy

)
|ξn(x, t)|2dx

)1/2

=

(∫
Ω2

∣∣u(y, t)− u(x, t)
∣∣2(p−1)

dxdy

)1/2 ∥∥Kn −K
∥∥
L∞,2(Ω2)

∥∥ξn(·, t)
∥∥
L2(Ω)

.

On the one hand, under (a), Jensen's inequality applied to the concave function x ∈ R+ 7→
xp−1 entails (∫

Ω2

∣∣u(y, t)− u(x, t)
∣∣2(p−1)

dxdy

)1/2

≤
(∫

Ω2

∣∣u(y, t)− u(x, t)
∣∣2dxdy)(p−1)/2

≤ 2p−1
∥∥u(·, t)

∥∥p−1

L2(Ω)
≤ 2p−1

(∥∥g∥∥
L2(Ω)

+
∥∥f∥∥

L1([0,T ];L2(Ω))

)p−1
,
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where we used (3.2.11) in the last inequality. On the other hand, under (b), we have(∫
Ω2

∣∣u(y, t)− u(x, t)
∣∣2(p−1)

dxdy

)1/2

≤ 2p−1
∥∥u(·, t)

∥∥p−1

L2(p−1)(Ω)

≤ 2p−1
(∥∥g∥∥

L2(p−1)(Ω)
+
∥∥f∥∥

L1([0,T ];L2(p−1)(Ω))

)p−1
.

In turn, under either (a) or (b), we have the bound∣∣ ∫
Ω2

(Kn(x,y)−K(x,y))Ψ(u(y, t)− u(x, t))ξn(x, t)dxdy
∣∣

≤ C
∥∥Kn −K

∥∥
L∞,2(Ω2)

∥∥ξn(·, t)
∥∥
L2(Ω)

.
(3.3.5)

Inserting (3.3.4) and (3.3.5) into (3.3.3), ignoring the �rst term which is non-positive as argued

above, and using Cauchy-Schwartz inequality on the last term, we obtain

∂

∂t

∥∥ξn(·, t)
∥∥
L2(Ω)

≤
∥∥fn(·, t)− f(·, t)

∥∥
L2(Ω)

+

C
∥∥Kn −K

∥∥
L∞,2(Ω2)

, under (a) or (b)

C
∥∥Kn −K

∥∥
L2(Ω2)

, under (c).

Integrating this inequality on [0, t] and taking the supremum over t ∈ [0, T ], we get (3.3.1).

(iii) By assumptions on {Kn}n∈N, we are in position to apply the Vitali convergence theorem [129,

p. 133] in L2(Ω2) to get that
∥∥Kn−K

∥∥
L2(Ω2)

→ 0 as n→ +∞. We have by assumption that the

sequence {gn}n∈N is dominated by a constant function. The latter is obviously in L2(Ω) since

|Ω| < +∞. It then follows from the dominated convergence theorem that
∥∥gn − g∥∥L2(Ω)

→ 0 as

n→ +∞. We now turn to the sequence fn. We have∥∥fn − f∥∥L1([0,T ];L2(Ω))
≤ T 1/2

∥∥fn − f∥∥L2([0,T ];L2(Ω))
= T 1/2

∥∥fn − f∥∥L2(Ω×[0,T ])
.

Arguing as for gn, using our assumptions, entails again that
∥∥fn − f

∥∥
L1([0,T ];L2(Ω))

→ 0 as

n→ +∞. Passing to the limit in the second inequality of (3.3.1), the claim follows.

�

In the case where the kernel takes the form K(x,y) = J(x− y), we have the following consequence

of Theorem3.3.1.

Corollary 3.3.3. Suppose that p ∈]1,+∞[. Let u be a solution of (P) with kernel K(x,y) = J(x−y)

and data (f, g). Let un be a sequence of solutions to (P) with kernels Kn(x,y) = Jn(x− y) and data

(fn, gn). Assume that J and Jn satisfy (H'.1), (H'.2) and J, Jn ∈ L2(Ω − Ω), and that either one

of (a), (b) or (c) in Theorem3.3.1 holds. Then, the following hold.

(i) u and un are the unique solutions of the corresponding evolution problems.

(ii) We have the error estimate∥∥un − u∥∥C([0,T ];L2(Ω))
≤
∥∥gn − g∥∥L2(Ω)

+
∥∥fn − f∥∥L1([0,T ];L2(Ω))

+ CT
∥∥Jn − J∥∥L2(Ω−Ω)

, (3.3.6)

where C is positive constant that may depend only on p, g and f .

(iii) Moreover, if the sequence {|Jn|2}n∈N is uniformly integrable over Ω − Ω, Jn → J pointwise a.e.

on Ω − Ω, gn → g pointwise a.e. on Ω, fn → f pointwise a.e. on Ω × [0, T ], and either one of

the following holds:

(a') p ∈]1, 2[, {|gn|2}n∈N (resp. {|fn|2}n∈N) is uniformly integrable over Ω (resp. Ω× [0, T ]);

(b') p ≥ 2, {|gn|2(p−1)}n∈N (resp. {|fn|2(p−1)}n∈N) is uniformly integrable over Ω (resp. Ω ×
[0, T ]);

(c') supn∈N
∣∣gn(x)

∣∣ < +∞ a.e. on Ω and supn∈N
∣∣fn(x, t)

∣∣ < +∞ a.e. on Ω× [0, T ].
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Then

lim
n→+∞

∥∥un − u∥∥C([0,T ];L2(Ω))
= 0.

Proof :

(i) We argue in the same way as in the proof Theorem3.3.1 since L2(Ω − Ω) ⊂ L1(Ω − Ω) implies

that assumption (H'.3) holds for both J and Jn.

(ii) The error bound (3.3.6) is a specialization of (3.3.1) since∫
Ω
|Kn(x,y)−K(x,y)|2dy =

∫
Ω−x
|Jn(z)− J(z)|2dz ≤

∥∥Jn − J∥∥2

L2(Ω−Ω)
.

Thus ∥∥Kn −K
∥∥
L2(Ω2)

≤
∥∥Kn −K

∥∥
L∞,2(Ω2)

≤
∥∥Jn − J∥∥L2(Ω−Ω)

.

(iii) Case (a') follows from the Vitali convergence theorem applied to Jn, gn and fn. The latter

argument also applies to case (b') since L2(p−1)(Ω − Ω) ⊂ L2(Ω − Ω), L2(p−1)(Ω) ⊂ L2(Ω) and

L2(p−1)(Ω× [0, T ]) ⊂ L1([0, T ];L2(Ω)). Case (c') uses the Vitali convergence theorem on Jn and

the dominated convergence theorem on gn and fn as argued in the proof of Theorem3.3.1(iii).

�

Remark 3.3.4. At this stage, we only relied on the monotonicity property of ∆K
p in Proposition 3.2.2(iv)

to get our bounds. One may then wonder if the stronger notions of monotonicity established in Propo-

sition 3.2.2(v) can yield bounds better than (3.3.6). We answer this question positively by (slightly)

improving the dependence on T for p ∈]1, 2] but at the price of more stringent assumptions on J . For

this, we embark from (3.3.3), bound all terms as in the proof of Theorem3.3.1, use Proposition 3.2.2(v)

and that L2(Ω) ⊂ Lp(Ω) in this case to get

1

2

∂

∂t

∥∥ξn(·, t)
∥∥2

L2(Ω)
+ C1

∫
Ω2

J(x− y)
∣∣∇NLξn(x,y)

∣∣2dydx ≤(
C
∥∥Jn − J∥∥L2(Ω−Ω)

+
∥∥fn(·, t)− f(·, t)

∥∥
L2(Ω)

)∥∥ξn(·, t)
∥∥
L2(Ω)

,

for two positive constants C,C1 (in the following Ci is a positive constant). Assume in addition that J

is compactly supported and J(0) > 0. One can then invoke the Poincaré inequality [10, Proposition 4.1]

to show that

C2

∥∥ξn(·, t)−
∫

Ω
ξn(x, t)dx

∥∥2

L2(Ω)
≤
∫

Ω2

J(x− y)
∣∣∇NLξn(x,y)

∣∣2dydx.
Thus

1

2

∥∥ξn(·, t)
∥∥2

L2(Ω)
≤
∥∥ξn(·, t)−

∫
Ω
ξn(x, t)dx

∥∥2

L2(Ω)
+

(∫
Ω
ξn(x, t)dx

)2

.

Altogether, we arrive at

1

2

∂

∂t

∥∥ξn(·, t)
∥∥2

L2(Ω)
+
C1C2

2

∥∥ξn(·, t)
∥∥2

L2(Ω)
≤(

C
∥∥Jn − J∥∥L2(Ω−Ω)

+
∥∥fn(·, t)− f(·, t)

∥∥
L2(Ω)

)∥∥ξn(·, t)
∥∥
L2(Ω)

+ C1C2

(∫
Ω
ξn(x, t)dx

)2

.

By integrating (P), it is easy to see by applying Proposition 3.2.2(v) and (iv) with h(x) = 1 that the

solution of (P) preserves the total mass in Ω, whence we deduce∫
Ω
ξn(x, t)dx =

∫
Ω

(gn(x)− g(x)) +

∫ t

0

∫
Ω

(fn(x, s)− f(x, s))dxds.

If (f, g) and (fn, gn) have the same mass, we get
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1

2

∂

∂t

∥∥ξn(·, t)
∥∥2

L2(Ω)
+
C1C2

2

∥∥ξn(·, t)
∥∥2

L2(Ω)
≤(

C
∥∥Jn − J∥∥L2(Ω−Ω)

+
∥∥fn(·, t)− f(·, t)

∥∥
L2(Ω)

)∥∥ξn(·, t)
∥∥
L2(Ω)

,

and therefore

∂

∂t

∥∥ξn(·, t)
∥∥
L2(Ω)

+
C1C2

2

∥∥ξn(·, t)
∥∥
L2(Ω)

≤
(
C
∥∥Jn − J∥∥L2(Ω−Ω)

+
∥∥fn(·, t)− f(·, t)

∥∥
L2(Ω)

)
.

Applying Gronwall's lemma yields the estimate∥∥un(·, t)− u(·, t)
∥∥
L2(Ω)

≤
∥∥fn − f∥∥L1([0,T ];L2(Ω))

+ exp(−C1C2t/2)
∥∥gn − g∥∥L2(Ω)

+
2C

C1C2
(1− exp(−C1C2t/2))

∥∥Jn − J∥∥L2(Ω−Ω)
.

This bound is clearly better than (3.3.6). In turn,∥∥un − u
∥∥
C([0,T ];L2(Ω))

≤
∥∥fn − f

∥∥
L1([0,T ];L2(Ω))

+ max

(∥∥gn − g∥∥L2(Ω)
,

2C

C1C2

∥∥Jn − J∥∥L2(Ω−Ω)

)
.

The same reasoning as above can be carried out to sharpen the error bounds for the discrete problems

in Section 3.4. Nevertheless, this will not be detailed further in this work.

3.3.2 The case p = 1

We now turn to the case p = 1.

Theorem 3.3.5. Let u be a solution of (P) for p = 1 with kernel K and data (f, g). Let un be a

sequence of solutions to (P) for p = 1 with kernels Kn and data (fn, gn). Assume that K and Kn

satisfy (H.1) and (H.2), that K,Kn ∈ L∞,2(Ω2), g, gn ∈ L2(Ω) and f, fn ∈ L1([0, T ];L2(Ω)). Then,

the following hold.

(i) u and un are the unique solutions in the sense of De�nition 3.2.6 of the corresponding evolution

problems.

(ii) We have the error estimate∥∥un − u∥∥C([0,T ];L2(Ω))
≤
∥∥gn − g∥∥L2(Ω)

+
∥∥fn − f∥∥L1([0,T ];L2(Ω))

+ T
∥∥Kn −K

∥∥
L2(Ω2)

. (3.3.7)

(iii) Moreover, if Kn → K pointwise a.e. on Ω2, gn → g pointwise a.e. on Ω, fn → f pointwise a.e.

on Ω× [0, T ], and {|Kn|2}n∈N is uniformly integrable over Ω2, {|gn|2}n∈N is uniformly integrable

on Ω, and {|fn|2}n∈N is uniformly integrable on Ω× [0, T ]. Then

lim
n→+∞

∥∥un − u∥∥C([0,T ];L2(Ω))
= 0.

Proof :

(i) Existence and uniqueness of u and un follow from Theorem3.2.8 where we argue as in Theo-

rem3.3.1(i) since g, gn ∈ L2(Ω) ⊂ L1(Ω) and K,Kn ∈ L∞,2(Ω2) ⊂ L∞,1(Ω2).

(ii) Denote the error function ξn(x, t) = un(x, t)− u(x, t), then from De�nition 3.2.6, we have a.e.

∂ξn(x, t)

∂t
=

∫
Ω

(Kn(x,y)wn(x,y, t)−K(x,y)w(x,y, t)) dy + fn(x, t)− f(x, t)

=

∫
Ω
Kn(x,y) (wn(x,y, t)− w(x,y, t)) dy +

∫
Ω

(Kn(x,y)−K(x,y))w(x,y, t)dy

+ fn(x, t)− f(x, t),

(3.3.8)
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where w (resp. wn) is the subgradient function associated to u (resp. un) as in De�nition 3.2.6.

Multiplying both sides of (3.3.8) by ξn(x, t) and integrating, we get

1

2

∂

∂t

∥∥ξn(·, t)
∥∥2

L2(Ω)
=

∫
Ω2

Kn(x,y) (wn(x,y, t)− w(x,y, t)) ξn(x, t)dxdy

+

∫
Ω2

(Kn(x,y)−K(x,y))w(x,y, t)ξn(x, t)dxdy

+

∫
Ω

(fn(x, t)− f(x, t)) ξn(x, t)dx.

(3.3.9)

In view of the monotonicity claim in Proposition 3.2.7(ii), we have∫
Ω2

Kn(x,y) (wn(x,y, t)− w(x,y, t)) ξn(x, t)dxdy ≤ 0.

Let us turn to bounding the second term. We have by the Cauchy-Schwartz inequality and that∥∥w∥∥
L∞(Ω2×]0,T [)

≤ 1, ∣∣ ∫
Ω2

(Kn(x,y)−K(x,y))w(x,y, t)ξn(x, t)dxdy
∣∣

≤
∫

Ω2

∣∣Kn(x,y)−K(x,y)
∣∣∣∣ξn(x, t)

∣∣dxdy
≤
∥∥Kn −K

∥∥
L2(Ω2)

∥∥ξn(·, t)
∥∥
L2(Ω)

.

(3.3.10)

Inserting (3.3.10) into (3.3.9), ignoring the �rst term which is non-positive as argued above, and

using Cauchy-Schwartz inequality on the last term, we obtain

∂

∂t

∥∥ξn(·, t)
∥∥
L2(Ω)

≤
∥∥fn(·, t)− f(·, t)

∥∥
L2(Ω)

+
∥∥Kn −K

∥∥
L2(Ω2)

.

Integrating this inequality on [0, t] and taking the supremum over t ∈ [0, T ], we get (3.3.7).

(iii) We argue again using the Vitali convergence theorem since K,Kn ∈ L∞,2(Ω2) ⊂ L2(Ω2) and

L1([0, T ];L2(Ω)) ⊂ L2(Ω× [0, T ]).

�

The following corollary is immediate in the same vein as Corollary 3.3.3.

Corollary 3.3.6. Let u be a solution of (P) for p = 1 with kernel K(x,y) = J(x − y) and data

(f, g). Let un be a sequence of solutions to (P) for p = 1 with kernels Kn(x,y) = Jn(x− y) and data

(fn, gn). Assume that J and Jn satisfy (H'.1), (H'.2) and J, Jn ∈ L2(Ω− Ω), that g, gn ∈ L2(Ω) and

f, fn ∈ L1([0, T ];L2(Ω)). Then, the following hold.

(i) u and un are the unique solutions in the sense of De�nition 3.2.6 of the corresponding evolution

problems.

(ii) We have the error estimate∥∥un − u∥∥C([0,T ];L2(Ω))
≤
∥∥gn − g∥∥L2(Ω)

+
∥∥fn − f∥∥L1([0,T ];L2(Ω))

+ T
∥∥Jn − J∥∥L2(Ω−Ω)

. (3.3.11)

(iii) Moreover, if Jn → J pointwise a.e. on Ω − Ω, gn → g pointwise a.e. on Ω, fn → f pointwise

a.e. on Ω × [0, T ], and {|Jn|2}n∈N is uniformly integrable over Ω − Ω, {|gn|2}n∈N is uniformly

integrable on Ω, and {|fn|2}n∈N is uniformly integrable on Ω× [0, T ]. Then

lim
n→+∞

∥∥un − u∥∥C([0,T ];L2(Ω))
= 0.

3.4 Error bounds for the discrete problem

Let K ∈ Rnd×nd and g ∈ Rnd be discrete approximations of, respectively, the kernel K and initial

data g in (P), on a regular mesh of size δ(n). Typically, one can take K = PnK and g = Png. For

� 44 �



Chapter 3 3.4. Error bounds for the discrete problem

1 < p <∞, the discrete p-Laplacian operator with kernel K is

∆̂
K

p : u ∈ Rn
d 7→ −

∑
j∈[n]d

hjKij

∣∣uj − ui

∣∣p−2
(uj − ui) = −

∑
j∈[n]d

hjKijΨ(uj − ui).

In the same way, we de�ne the discrete 1-Laplacian operator as the set-valued operator ∆̂
K

1 : Rnd →
2R

nd

such that η ∈ ∆̂
K

1 u if and only if

ηi = −
∑

j∈[n]d

hjKijwij ,

where
∥∥w∥∥∞ ≤ 1, wij = −wji, and

wij ∈ ∂| · |(uj − ui).

By construction, we have the following simple lemma whose proof is immediate.

Lemma 3.4.1. For any K ∈ Rnd×nd and u ∈ Rnd , the following holds:
(i) If 1 < p < +∞,

In∆̂
K

p (u) = ∆InK
p (Inu).

(ii) If p = 1,

Inη(x) = −
∫

Ω
InK(x,y)Inw(x,y)dy, where Inw(x,y) ∈ ∂| · |(Inu(y)− Inu(x)).

Moreover,
∥∥Inw∥∥L∞(Ω2)

≤ 1 and Inw(x,y) = −Inw(y,x).

3.4.1 The semi-discrete problem

Case p ∈]1,+∞[: We start with the case 1 < p < +∞ and consider the space semi-discretization

of (P), {
∂
∂tu(t) = −∆̂

K

p u(t) + f(t), t > 0,

u(0) = g.
(PSD

p )

where u : t ∈ R+ 7→ u(t) ∈ Rnd and similarly for f .

Our aim is to compare the solutions of problems (P) and (PSD
p ). The solution of (PSD

p ) being discrete

in space, we consider its continuum space extensions of u and f on Ω for any t > 0 as

un(x, t) = (Inu(t))(x) and fn(x, t) = (Inf(t))(x). (3.4.1)

Theorem 3.4.2. Suppose that p ∈]1,+∞[. Let u be a solution of (P) with kernel K and data (f, g),

and u that of (PSD
p ) with K = PnK, g = Png and f(t) = Pnf(·, t) for t ∈ [0, T ]. Let un and fn as

de�ned in (3.4.1). Assume that K satis�es (H.1), (H.2) and K ∈ L∞,2(Ω2), and that g and f satisfy

either one of the conditions (a), (b) or (c) in Theorem3.3.1. Then, the following hold.

(i) u and un are the unique solutions of (P) with data respectively (f, g) and (fn, InPng).

(ii) We have the error estimate∥∥un − u∥∥C([0,T ];L2(Ω))
≤
∥∥InPng − g∥∥L2(Ω)

+
∥∥fn − f∥∥L1([0,T ];L2(Ω))

+ CT


∥∥InPnK −K∥∥L∞,2(Ω2)

, under (a)-(b)∥∥InPnK −K∥∥L2(Ω2)
, under (c)

(3.4.2)

where C is positive constant that depends only on p, g and f .
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(iii) If, moreover, g ∈ L∞(Ω)∩Lip(s, L2(Ω)), K ∈ Lip(s, L2(Ω2)) and f(·, t) ∈ L∞(Ω)∩Lip(s, L2(Ω))

for every t ∈ [0, T ], then ∥∥un − u∥∥C([0,T ];L2(Ω))
≤ C(1 + T )δ(n)s, (3.4.3)

where C is positive constant that depends only on p, g, f , K, s.

Proof :

(i) Existence and uniqueness of u were proved in Theorem3.3.1(i). We also see that InK veri-

�es (H.1) and (H.2). Using Lemma2.1.27, we have Ing ∈ Lp(Ω), fn ∈ L1([0;T ], Lp(Ω)) and

InK ∈ L∞,2(Ω2) ⊂ L∞,1(Ω2), and thus InK ful�lls (H.3). In view of Lemma3.4.1(i), it follows

from (PSD
p ) that the function un satis�es (P) with kernel InK and data (fn, Ing). Existence and

uniqueness of un then follow from Theorem3.2.4.

(ii) The claim is a specialization of (3.3.1) in Theorem3.3.1(ii).

(iii) As K ∈ L∞,2(Ω2) ⊂ L2(Ω2), we insert the estimate (2.2.2) (see Lemma2.2.2) in the second

bound of (3.4.2).

�

Case p = 1: We now turn to the case p = 1, and consider the evolution problem{
∂
∂tu(t) = −η(t) + f(t), t > 0,

u(0) = g,
(PSD

1 )

where

ηi(t) = −
∑

j∈[n]d

hjKij sign(uj − ui), and thus η(t) ∈ ∆̂
K

1 u(t).

Theorem 3.4.3. Let u be a solution of (P) for p = 1 with kernel K and data (f, g), and u is that

of (PSD
1 ) with K = PnK, g = Png and f(t) = Pnf(·, t) for t ∈ [0, T ]. Let un and fn as de�ned

in (3.4.1). Assume that K satis�es (H.1), (H.2) and K ∈ L∞,2(Ω2), and that g ∈ L2(Ω) and f ∈
L1([0, T ];L2(Ω)). Then, the following hold.

(i) u and un are the unique solutions in the sense of De�nition 3.2.6 of the corresponding evolution

problems.

(ii) We have the error estimate∥∥un−u∥∥C([0,T ];L2(Ω))
≤
∥∥InPng−g∥∥L2(Ω)

+
∥∥fn−f∥∥L1([0,T ];L2(Ω))

+T
∥∥InPnK−K∥∥L2(Ω2)

. (3.4.4)

(iii) If, moreover, g ∈ Lip(s, L2(Ω)), K ∈ Lip(s, L2(Ω2)) and f(·, t) ∈ Lip(s, L2(Ω)) for every t ∈
[0, T ], then ∥∥un − u∥∥C([0,T ];L2(Ω))

≤ C(1 + T )δ(n)s, (3.4.5)

where C is positive constant that depends only on p, g, f , K and s.

Proof :

(i) Existence and uniqueness of u were proved in Theorem3.3.5(i). In addition, InK veri�es (H.1)

and (H.2). Using Lemma2.1.27, Ing ∈ L2(Ω) ⊂ L1(Ω), fn ∈ L1([0, T ];L2(Ω)) ⊂ L1([0, T ];L1(Ω))

and InK ∈ L∞,2(Ω2) ⊂ L∞,1(Ω2), and thus InK ful�lls (H.3). By virtue of Lemma3.4.1(ii), un,

the space continuum extension of u, will satisfy (P) with kernel InK and data (fn, Ing). Existence

and uniqueness of un in the sense of De�nition 3.2.6 follow from Theorem3.2.8.

(ii) This claim is a specialization of (3.3.7) in Theorem3.3.5(ii).

(iii) Insert the estimate (2.2.2) in (3.4.4).
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�

3.4.2 The totally discrete problem

We establish in this section error bounds for fully discrete (in time and space) approximations of (P).
For that, let 0 < t1 < t2 < · · · < tN−1 < tN = T be a partition (not necessarily equispaced) of [0, T ].

Let τk−1
def

=
∣∣tk − tk−1

∣∣ and denote τ = max
k∈[N ]

τk.

3.4.2.1 Forward/Explicit Euler discretization

Case p ∈]1, 2]: We start with p ∈]1, 2] and consider a totally discrete problem with forward/explicit

Euler scheme in time, 
uk − uk−1

τk−1
= −∆̂

K

p uk−1 + f , k ∈ [N ],

u0 = g,

(PTDF
p )

where uk, f ∈ Rnd . We have implicitly assumed that f does not depend on time, which is a standard

assumption in the context of explicit discretization.

Since our aim is to compare the solutions of problems (P) and (PTDF
p ), we introduce the following

continuum extensions in space and/or time of
{
uk
}
k∈[N ]

as

ukn = Inu
k, k ∈ [N ], and fn = Inf ,

ǔn(x, t) =
tk − t
τk−1

uk−1
n (x) +

t− tk−1

τk−1
ukn(x), (x, t) ∈ Ω×]tk−1, tk], k ∈ [N ],

ūn(x, t) =

N∑
k=1

uk−1
n (x)χ]tk−1,tk](t), (x, t) ∈ Ω×]0, T ].

Then, in the same vein as Lemma3.4.1, it is easy to see that (PTDF
p ) is equivalent to the following

evolution problem {
∂
∂t ǔn(x, t) = −∆InK

p ūn(x, t) + fn(x), (x, t) ∈ Ω×]0, T ],

ǔn(x, 0) = Ing(x), x ∈ Ω.
(3.4.6)

Before turning to the consistency result, we collect some useful estimates.

Lemma 3.4.4. Consider problem (PTDF
p ) with kernel K, data (f ,g) and variable step-size τk ≤

2C
∥∥∆InK

p ukn − fn
∥∥ 2−p
p−1

L2(Ω)
, where C is the constant in Proposition 3.2.2(vi). Assume that Ing ∈ L2(Ω)

and InK satis�es (H.1), (H.2) and (H.3). Suppose also that for each n ∈ N, f is such that (PTDF
p )

has a stationary solution u? and that supn∈N
∥∥Ing − Inu?∥∥L2(Ω)

< +∞. Then

ūn(·, t) ∈ L2(Ω), ∀t ∈ [0, T ], and sup
t∈[0,T ],n∈N

∥∥ūn(·, t)− Inu?
∥∥
L2(Ω)

< +∞.

Remark 3.4.5.

(1) Condition on the time-step τk can be seen as an abstract nonlinear CFL condition. It is better

than the one in [90] since we here exploit the Hölder continuity of ∆InK
p on L2(Ω) for p ∈]1, 2],

see Proposition 3.2.2(vi). For p = 2, where ∆InK
2 is linear Lipschitz continuous operator on

L2(Ω), the condition reads τk ≤ 2C. Such condition for explicit time-discretization of evolution

problems with accretive and Lipschitz-continuous operators is known, see e.g., [116]. It is also
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consistent with known convergence results for �nding zeros of co-called co-coercive operators on

Hilbert spaces [21].

(2) The assumption on f and K imply that fn ∈ L2(Ω). Indeed, (3.2.10) entails∥∥fn∥∥L2(Ω)
=
∥∥∆InK

p (Inu
?)
∥∥
L2(Ω)

≤ 2pC2

∥∥K∥∥2

L∞,1(Ω2)

∥∥Inu?∥∥p−1

L2(Ω)
.

(3) The assumption made on f is trivially true when f = 0 since 0 is a stationary solution in this

case. In turn, using Lemma2.1.27, one can see that the uniform boundedness conditions on g

and K are ful�lled if g = Png and K = PnK, where g ∈ L2(Ω) and K satis�es (H.1)-(H.3).

Proof : We show the claim by an induction argument. Since ∆InK
p (Inu

?) = fn, we have∥∥u1
n − Inu?

∥∥2

L2(Ω)

=
∥∥Ing − Inu?∥∥2

L2(Ω)
− 2τ0

∫
Ω

(
∆InK
p (Ing)(x)− fn(x)

)
(Ing(x)− Inu?) dx

+ τ2
0

∥∥∆InK
p (Ing)− fn

∥∥2

L2(Ω)

=
∥∥Ing − Inu?∥∥2

L2(Ω)
− 2τ0

∫
Ω

(
∆InK
p (Ing)(x)−∆InK

p (Inu
?)(x)

)
(Ing(x)− Inu?) dx

+ τ2
0

∥∥∆InK
p (Ing)− fn

∥∥2

L2(Ω)
.

By assumption on g, u? and τk, we can invoke Proposition 3.2.2(vi) to get∥∥u1
n − Inu?

∥∥2

L2(Ω)

≤
∥∥Ing − Inu?∥∥2

L2(Ω)
− 2Cτ0

∥∥∆InK
p (Ing)− fn

∥∥p/(p−1)

L2(Ω)
+ τ2

0

∥∥∆InK
p (Ing)− fn

∥∥2

L2(Ω)

≤
∥∥Ing − Inu?∥∥2

L2(Ω)
− τ0

∥∥∆InK
p (Ing)− fn

∥∥2

L2(Ω)

(
2C
∥∥∆InK

p (Ing)− fn
∥∥(2−p)/(p−1)

L2(Ω)
− τ0

)
≤
∥∥Ing − Inu?∥∥2

L2(Ω)
.

Suppose now that, for any k > 1,∥∥ukn − Inu?∥∥2

L2(Ω)
≤
∥∥Ing − Inu?∥∥2

L2(Ω)
,

and thus ukn ∈ L2(Ω). We can then use Proposition 3.2.2(vi) as above to see that∥∥uk+1
n − Inu?

∥∥2

L2(Ω)

≤
∥∥Ing − Inu?∥∥2

L2(Ω)
− τk

∥∥∆InK
p (ukn)− fn

∥∥2

L2(Ω)

(
2C
∥∥∆InK

p (ukn)− fn
∥∥(2−p)/(p−1)

L2(Ω)
− τk

)
≤
∥∥Ing − Inu?∥∥2

L2(Ω)
.

Thus the sequence
{∥∥ukn∥∥L2(Ω)

}
k∈[N ]

is bounded, and so is
∥∥ūn(·, t)

∥∥
L2(Ω)

for t ∈ [0, T ] by its de�nition.

We also have

sup
t∈[0,T ],n∈N

∥∥ūn(·, t)− Inu?
∥∥
L2(Ω)

= sup
(n,N)∈N2,k∈[N ]

∥∥ukn − Inu?∥∥L2(Ω)
≤ sup

n∈N

∥∥Ing − Inu?∥∥L2(Ω)
< +∞.

�

Lemma 3.4.6. In addition to the assumptions of Lemma 3.4.4, suppose that supn∈N
∥∥InK∥∥L∞,1(Ω2)

<

+∞. Then

sup
t∈[0,T ],n∈N

∥∥ǔn(·, t)− ūn(·, t)
∥∥
L2(Ω)

≤ Cτ,

where C is a positive constant that does not depend on (n,N, T ).
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Proof : It is easy to see that for t ∈]tk−1, tk], k ∈ N,

∥∥ǔn(·, t)− ūn(·, t)
∥∥
L2(Ω)

= (t− tk−1)
∥∥ukn − uk−1

n

τk−1

∥∥
L2(Ω)

= (t− tk−1)
∥∥∆InK

p uk−1
n − fn

∥∥
L2(Ω)

= (t− tk−1)
∥∥∆InK

p uk−1
n −∆InK

p Inu
?
∥∥
L2(Ω)

≤ τ
∥∥∆InK

p uk−1
n −∆InK

p Inu
?
∥∥
L2(Ω)

= τ
∥∥∆InK

p ūn(·, t)−∆InK
p Inu

?
∥∥
L2(Ω)

.

As ∆InK
p is Hölder continuous on L2(Ω) with exponent p− 1, see (3.2.10), we get∥∥ǔn(·, t)− ūn(·, t)

∥∥
L2(Ω)

≤ τ2p/2C
1/2
2

∥∥K∥∥
L∞,1(Ω2)

∥∥ūn(·, t)− Inu?
∥∥p−1

L2(Ω)
.

We then take the supremum over t and n, and use Lemma3.4.4 to conclude. �

We are now in position to state the error bound for the totally discrete problem (PTDF
p ).

Theorem 3.4.7. Suppose that p ∈]1, 2]. Let u be a solution of (P) with kernel K and data (f, g)

where f is time-independent, and
{
uk
}
k∈[N ]

is the sequence generated by (PTDF
p ) with K = PnK,

g = Png, f = Pnf and τk as prescribed in Lemma3.4.4. Assume that K satis�es (H.1), (H.2) and

K ∈ L∞,2(Ω2), and that f, g belong either to L2(Ω) or L∞(Ω). Then, the following hold.

(i) u is the unique solution of (P),
{
uk
}
k∈[N ]

is uniquely de�ned and
{∥∥Inuk∥∥L2(Ω)

}
k∈[N ]

is bounded

(uniformly in n when f = 0).

(ii) We have the error estimate

sup
k∈[N ],t∈]tk−1,tk]

∥∥Inuk−1 − u(·, t)
∥∥
L2(Ω)

≤ exp (T/2)

(∥∥InPng − g∥∥L2(Ω)

+ CT 1/2

τ1/(3−p) +
∥∥fn − f∥∥L2(Ω)

+


∥∥InPnK −K∥∥L∞,2(Ω2)

g ∈ L2(Ω)∥∥InPnK −K∥∥L2(Ω2)
, g ∈ L∞(Ω)

). (3.4.7)

for τ su�ciently small, where C is positive constant that depends only on p, g, f and K.

(iii) If, moreover, f, g ∈ L∞(Ω) ∩ Lip(s, L2(Ω)) and K ∈ Lip(s, L2(Ω2)), then

sup
k∈[N ],t∈]tk−1,tk]

∥∥Inuk−1 − u(·, t)
∥∥
L2(Ω)

≤ C exp(T/2)
(

(1 + T 1/2)δ(n)s + T 1/2τ1/(3−p)
)
, (3.4.8)

for τ su�ciently small, where C is positive constant that depends only on p, g, f , K and s.

Proof : In the proof, C is any positive constant that may depend only on p, g, f , K and/or s, and

that may be di�erent at each line.

(i) Existence and uniqueness of u were proved in Theorem3.3.1(i). The claimed well-posedness of

the sequence
{
uk
}
k∈[N ]

is a consequence of Lemma3.4.4 and Remark 3.4.5(3).

(ii) Denote ξ̌n(x, t) = ǔn(x, t)− u(x, t), ξ̄n(x, t) = ūn(x, t)− u(x, t), gn = InPng and Kn = InPnK.

We thus have a.e.

∂ξ̌n(x, t)

∂t
= −

(
∆Kn
p (ūn(x, t))−∆K

p (u(x, t))
)

+ (fn(x)− f(x))

= −
(
∆Kn
p (ūn(x, t))−∆Kn

p (u(x, t))
)
−
(
∆Kn
p (u(x, t))−∆K

p (u(x, t))
)

+ (fn(x)− f(x)).
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Multiplying both sides by ξ̌n(x, t), integrating and rearranging the terms, we get

1

2

∂

∂t

∥∥ξ̌n(·, t)
∥∥2

L2(Ω)
= −

∫
Ω

(
∆Kn
p ūn(x, t)−∆Kn

p u(x, t)
)

(ūn(x, t)− u(x, t))dx

−
∫

Ω

(
∆Kn
p u(x, t)−∆K

p u(x, t)
)
ξ̌n(x, t)dx

−
∫

Ω

(
∆Kn
p ūn(x, t)−∆Kn

p u(x, t)
)

(ǔn(x, t)− ūn(x, t)) dx

+

∫
Ω

(fn(x)− f(x)) ξ̌n(x, t)dx.

(3.4.9)

Since f, g ∈ Lp(Ω) in both cases, so is u(·, t) thanks to (3.2.11). We also have ūn(·, t) ∈ L2(Ω) ⊂
Lp(Ω) by Lemma3.4.4. We are then in position to use Proposition 3.2.2(iv) with h(x) = x to

assert that the �rst term on the right-hand side of (3.4.9) is nonpositive. Let us now bound the

second term.

Similarly to the estimates (3.3.5) and (3.3.4) in the proof of Theorem3.3.1, and using Young

inequality, we have∣∣ ∫
Ω

(
∆Kn
p u(x, t)−∆K

p u(x, t)
)
ξ̌n(x, t)dx

∣∣
≤

C
∥∥Kn −K

∥∥
L∞,2(Ω2)

∥∥ξ̌n(·, t)
∥∥
L2(Ω)

, g ∈ L2(Ω)

C
∥∥Kn −K

∥∥
L2(Ω2)

∥∥ξ̌n(·, t)
∥∥
L2(Ω)

, g ∈ L∞(Ω),

≤ 1

6

∥∥ξ̌n(·, t)
∥∥2

L2(Ω)
+

C
∥∥Kn −K

∥∥2

L∞,2(Ω2)
, g ∈ L2(Ω)

C
∥∥Kn −K

∥∥2

L2(Ω2)
, g ∈ L∞(Ω).

For the third term in (3.4.9), we invoke Lemma3.4.6 to get∣∣ ∫
Ω

(
∆Kn
p ūn(x, t)−∆Kn

p u(x, t)
)

(ǔn(x, t)− ūn(x, t)) dx
∣∣

≤
∥∥∆Kn

p ūn(·, t)−∆Kn
p u(·, t)

∥∥
L2(Ω)

∥∥ǔn(·, t)− ūn(·, t)
∥∥
L2(Ω)

≤ C
∥∥∆Kn

p ūn(·, t)−∆Kn
p u(·, t)

∥∥
L2(Ω)

τ.

We then use the fact that ∆InK
p is Hölder continuous on L2(Ω) with exponent p− 1, see (3.2.10),

to obtain∥∥∆Kn
p ūn(·, t)−∆Kn

p u(·, t)
∥∥
L2(Ω)

≤ C
∥∥ξ̄n(·, t)

∥∥p−1

L2(Ω)
≤ C

(∥∥ξ̌n(·, t)
∥∥p−1

L2(Ω)
+ τp−1

)
,

where we used Lemma3.4.6 to go from ξ̄n to ξ̌n, and that p ∈]1, 2]. It then follows by Cauchy-

Schwartz inequality that∣∣ ∫
Ω

(
∆Kn
p ūn(x, t)−∆Kn

p u(x, t)
)

(ǔn(x, t)− ūn(x, t)) dx
∣∣

≤ C
(∥∥ξ̌n(·, t)

∥∥p−1

L2(Ω)
τ + τp

)
≤ 1

6

∥∥ξ̌n(·, t)
∥∥2

L2(Ω)
+ C(τ2/(3−p) + τp).

Using Young inequality to bound the last term in (3.4.9), and combining the bounds on the three

other terms, we have shown that

∂

∂t

∥∥ξ̌n(·, t)
∥∥2

L2(Ω)
≤
∥∥ξ̌n(·, t)

∥∥2

L2(Ω)
+ C

(
τ2/(3−p) + τp +

∥∥fn − f∥∥2

L2(Ω)

+


∥∥Kn −K

∥∥2

L∞,2(Ω2)
, g ∈ L2(Ω)∥∥Kn −K

∥∥2

L2(Ω2)
, g ∈ L∞(Ω)

)
.
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Using the Gronwall's lemma and taking the square-root, we get

∥∥ǔn − u∥∥C([0,T ];L2(Ω))
≤ exp (T/2)

(∥∥InPng − g∥∥L2(Ω)

+ CT 1/2

τ1/(3−p) + τp/2 +
∥∥fn − f∥∥L2(Ω)

+


∥∥InPnK −K∥∥L∞,2(Ω2)

g ∈ L2(Ω)∥∥InPnK −K∥∥L2(Ω2)
, g ∈ L∞(Ω)

).
(3.4.10)

Since 1/2 < 1/(3 − p) ≤ p/2 for p ∈]1, 2] the dependence on τ scales as O(τ1/(3−p)) for τ

su�ciently small (or N large enough). Inserting (3.4.10) into

sup
k∈[N ],t∈]tk−1,tk]

∥∥uk−1
n − u(·, t)

∥∥
L2(Ω)

=
∥∥ūn − u∥∥C([0,T ];L2(Ω))

≤
∥∥ǔn − u∥∥C([0,T ];L2(Ω))

+ Cτ,

(3.4.11)

completes the proof of the error bound.

(iii) Plug (2.2.2) into (3.4.7).

�

Remark 3.4.8. Error bounds in Lp(Ω) were derived in [90] for forward Euler discretization. Their

rate is better than ours and is provided for the range p ∈]1,+∞[. Unfortunately, we believe that their

proof contains invalid arguments that can be �xed but only for p ∈]1, 2].

Case p = 1: We now turn to the case p = 1, and consider the discrete system
uk − uk−1

τk−1
= −ηk−1 + f , k ∈ [N ],

u0 = g.

(PTDF
1 )

where

ηk = −
∑

j∈[n]d

hjKij sign(ukj − uki ), and thus ηk ∈ ∆̂
K

1 uk.

We consider the continuum extensions in space and/or time of
{
uk
}
k∈[N ]

as before, namely ukn, ǔn and

ūn, fn = Inf , and the space-time continuum extension of
{
ηk
}
k∈[N ]

η̄n(x, t) =
N∑
k=1

(Inη
k−1)(x)χ]tk−1,tk](t) = −

∫
Ω
InK(x,y) sign(ūn(y, t)−ūn(x, t))dy, (x, t) ∈ Ω×]0, T ].

In view of Lemma3.4.1, these extensions satisfy the evolution problem{
∂
∂t ǔn(x, t) = −η̄n(x, t) + fn(x), (x, t) ∈ Ω×]0, T ],

ǔn(x, 0) = Ing(x), x ∈ Ω,
(3.4.12)

and

η̄n(x, t) ∈ ∆InK
1 ūn(x, t).

We have the following counterpart estimates of Lemma3.4.4.

Lemma 3.4.9. Consider problem (PTDF
1 ) with kernel K, data (f ,g) and variable step-size

τk =
αk

max
(∥∥Inηk − fn∥∥L2(Ω)

, 1
) , where

∑
k∈N

α2
k < +∞.
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Assume that Ing ∈ L2(Ω) and InK satis�es (H.1)-(H.2) and (H.3). Suppose also that for each n ∈ N,
f is such that (PTDF

p ) has a stationary solution u? and that supn∈N
∥∥Ing − Inu?∥∥L2(Ω)

< +∞. Then

ūn(·, t) ∈ L2(Ω), ∀t ∈ [0, T ], and sup
t∈[0,T ],n∈N

∥∥ūn(·, t)− Inu?
∥∥
L2(Ω)

< +∞.

Remark 3.4.10. The condition on the time-step τk is reminiscent of subgradient descent and has

been used in [90]. The assumptions on (f ,g,K) are again veri�ed when f = 0, g = Png and K = PnK,

where g ∈ L2(Ω) and K satis�es (H.1)-(H.3).

Proof : De�ne the series sk
def

=
∑k

i=0 α
2
i . As in Lemma3.4.4, we proceed by induction using the

monotonicity of the 1-Laplacian (Proposition 3.2.7(ii)). Indeed, since fn ∈ ∆InK
p (Inu

?), we have∥∥u1
n − Inu?

∥∥2

L2(Ω)
=
∥∥Ing − Inu?∥∥2

L2(Ω)

− 2τ0

∫
Ω

(
∆InK
p (Ing)(x)−∆InK

p (Inu
?)(x)

)
(Ing(x)− Inu?) dx+ α2

0.

By assumption on g, u?, we can invoke Proposition 3.2.7(ii) to get∥∥u1
n − Inu?

∥∥2

L2(Ω)
≤
∥∥Ing − Inu?∥∥2

L2(Ω)
+ s0.

Suppose now that, for any k > 1,∥∥ukn − Inu?∥∥2

L2(Ω)
≤
∥∥Ing − Inu?∥∥2

L2(Ω)
+ sk−1,

and thus ukn ∈ L2(Ω). We can then invoke again Proposition 3.2.7(ii) to see that∥∥uk+1
n − Inu?

∥∥2

L2(Ω)

=
∥∥ukn − Inu?∥∥2

L2(Ω)
− 2τk

∫
Ω

(
∆InK
p (ukn)(x)−∆InK

p (Inu
?)(x)

)(
ukn(x)− Inu?

)
dx+ α2

k

≤
∥∥Ing − Inu?∥∥2

L2(Ω)
+ sk.

This shows that for all k ∈ N,∥∥ukn − Inu?∥∥2

L2(Ω)
≤
∥∥Ing − Inu?∥∥2

L2(Ω)
+ s∞,

and thus
{∥∥Inuk∥∥L2(Ω)

}
k∈[N ]

is bounded. In turn, so is
∥∥ūn(·, t)

∥∥
L2(Ω)

for t ∈ [0, T ] by its de�nition.

Moreover,

sup
t∈[0,T ],n∈N

∥∥ūn(·, t)− Inu?
∥∥
L2(Ω)

= sup
(n,N)∈N2,k∈[N ]

∥∥ukn − Inu?∥∥L2(Ω)

≤ sup
n∈N

∥∥Ing − Inu?∥∥L2(Ω)
+ s1/2
∞ < +∞.

�

We also have the following analogue of Lemma3.4.6.

Lemma 3.4.11. In addition to the assumptions of Lemma 3.4.9, suppose that supn∈N
∥∥InK∥∥L∞,1(Ω2)

<

+∞. Then

sup
t∈[0,T ],n∈N

∥∥ǔn(·, t)− ūn(·, t)
∥∥
L2(Ω)

≤ Cτ,

where C is a positive constant that does not depend on (n,N, T ).

Proof : Arguing as the beginning of Lemma3.4.6, we get for any t ∈]tk−1, tk], k ∈ N,∥∥ǔn(·, t)− ūn(·, t)
∥∥
L2(Ω)

≤ τ
∥∥η̄n(x, t)− fn

∥∥
L2(Ω)

.
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By Hölder inequality, we have∥∥η̄n(x, t)
∥∥2

L2(Ω)
=

∫
Ω

∣∣∣∣∫
Ω
InK(x,y) sign(ūn(y, t)− ūn(x, t))dy

∣∣∣∣2 dx
≤
∫

Ω

(∫
Ω
InK(x,y)dy

)2

dx ≤
∥∥InK∥∥2

L∞,1(Ω2)
.

The same bound also holds on
∥∥fn∥∥L2(Ω)

. We then take the supremum over t and n to conclude. �

Theorem 3.4.12. Let u be a solution of (P) with kernel K and data (f, g) where f is time-independent,

and
{
uk
}
k∈[N ]

is the sequence generated by (PTDF
1 ) with K = PnK, g = Png, f = Pnf and τk

as prescribed in Lemma3.4.9. Assume that K satis�es (H.1), (H.2) and K ∈ L∞,2(Ω2), and that

f, g ∈ L2(Ω). Then, the following hold.

(i) u is the unique solution of (P),
{
uk
}
k∈[N ]

is uniquely de�ned and
{∥∥Inuk∥∥L2(Ω)

}
k∈[N ]

is bounded

(uniformly in n when f = 0).

(ii) We have the error estimate

sup
k∈[N ],t∈]tk−1,tk]

∥∥Inuk−1 − u(·, t)
∥∥
L2(Ω)

≤ exp (T/2)

(∥∥InPng − g∥∥L2(Ω)

+ CT 1/2
(
τ1/2 +

∥∥fn − f∥∥L2(Ω)
+
∥∥InPnK −K∥∥L2(Ω2)

))
(3.4.13)

where C is positive constant that depends only on K.

(iii) If, moreover, f, g ∈ Lip(s, L2(Ω)) and K ∈ Lip(s, L2(Ω2)), then

sup
k∈[N ],t∈]tk−1,tk]

∥∥Inuk−1 − u(·, t)
∥∥
L2(Ω)

≤ C exp(T/2)
(

(1 + T 1/2)δ(n)s + T 1/2τ1/2
)
, (3.4.14)

where C is positive constant that depends only on g, f , K and s.

Proof : C is any positive constant that may depend only on g, f , K and s, and that may be

di�erent at each line. We use the same notation as in the proof of Theorem3.4.7.

(i) Existence and uniqueness of u were proved in Theorem3.3.1(i). Well-posedness of
{
uk
}
k∈[N ]

follows from Lemma3.4.9 and Remark 3.4.5(3).

(ii) We have

∂ξ̌n(x, t)

∂t
=

∫
Ω
Kn(x,y) (w̄n(x,y, t)− w(x,y, t)) dy

+

∫
Ω

(Kn(x,y)−K(x,y))w(x,y, t)dy + (fn(x)− f(x)),

where w is the subgradient function associated to u (see De�nition 3.2.6), and w̄n(x,y, t) =

sign(ūn(y, t) − ūn(x, t)). Multiplying both sides by ξ̌n(x, t), integrating and rearranging the

terms, we get

1

2

∂

∂t

∥∥ξ̌n(·, t)
∥∥2

L2(Ω)
=

∫
Ω2

Kn(x,y) (w̄n(x,y, t)− w(x,y, t)) (ūn(x, t)− u(x, t))dxdy

+

∫
Ω2

(Kn(x,y)−K(x,y))w(x,y, t)ξ̌n(x, t)dxdy

+

∫
Ω
Kn(x,y) (w̄n(x,y, t)− w(x,y, t)) (ǔn(x, t)− ūn(x, t)) dxdy

+

∫
Ω

(fn(x)− f(x)) ξ̌n(x, t)dx.

(3.4.15)
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As u(·, t) ∈ L1 and ūn(·, t) ∈ L2(Ω) ⊂ L1(Ω) by Lemma3.4.9, the monotonicity claim in Propo-

sition 3.2.7(ii) yields that the �rst term in (3.4.15) is nonpositive. The second and third terms

can be easily bounded as∣∣ ∫
Ω2

(Kn(x,y)−K(x,y))w(x,y, t)ξ̌n(x, t)dxdy
∣∣ ≤ ∥∥Kn −K

∥∥
L2(Ω2)

∥∥ξ̌n(·, t)
∥∥
L2(Ω)

≤ 1

4

∥∥ξ̌n(·, t)
∥∥2

L2(Ω)
+
∥∥Kn −K

∥∥2

L2(Ω2)
.

and the third term using Lemma3.4.11∣∣ ∫
Ω
Kn(x,y) (w̄n(x,y, t)− w(x,y, t)) (ǔn(x, t)− ūn(x, t)) dxdy

∣∣ ≤ 2
∥∥K∥∥2

L∞,2(Ω2)
τ.

Bounding the last term by Young inequality, we obtain

∂

∂t

∥∥ξ̌n(·, t)
∥∥2

L2(Ω)
≤
∥∥ξ̌n(·, t)

∥∥2

L2(Ω)
+ 2
∥∥fn − f∥∥2

L2(Ω)
+ 2
∥∥Kn −K

∥∥2

L2(Ω2)
+ Cτ.

Using the Gronwall's lemma and (3.4.11), we get the claimed bound.

(iii) Insert (2.2.2) into (3.4.13).

�

3.4.2.2 Backward/Implicit Euler discretization

Forward Euler discretization was able to deal only with p ∈ [1, 2]. For backward Euler discretization,

we will tackle p ∈]1,+∞[.

We consider the fully discrete problem with backward Euler time scheme
uk − uk−1

τk−1
= −∆̂

K

p uk + fk, k ∈ [N ],

u0 = g,

(PTDB
p )

where uk, fk ∈ Rnd . This can also be written equivalently as

uk = J
τk−1∆̂

K
p

(uk−1 + τk−1f
k).

This is known as the proximal iteration, and is at the heart of so-called mild solutions as well as

existence and uniqueness of solutions to (P) through the nonlinear semigroups theory [57, 25, 101, 26].

Denoting as before ukn = Inu
k and fkn = Inf

k the space continuum extensions of uk and fk, we also

have

ukn = J
τk−1∆InK

p
(uk−1
n + τk−1f

k
n).

We also let the time-space continuum extensions

ǔn(x, t) =
tk − t
τk−1

uk−1
n (x) +

t− tk−1

τk−1
ukn(x), (x, t) ∈ Ω×]tk−1, tk], k ∈ [N ],

ūn(x, t) =

N∑
k=1

ukn(x)χ]tk−1,tk](t) and f̄n(x, t) =

N∑
k=1

fkn(x)χ]tk−1,tk](t), (x, t) ∈ Ω×]0, T ].

Observe that the di�erence with the explicit Euler case lies in the de�nition of ūn. From (PTDB
p ) one

clearly sees that ǔn and ūn then satisfy again (3.4.6) with f̄n(x, t) replacing fn(x).

The following estimates holds.

Lemma 3.4.13. Consider problem (PTDB
p ) with kernel K and data (f ,g) and step-sizes τk > 0 for all k.

Assume that InK satis�es (H.1)-(H.2) and (H.3), that Ing ∈ Lmax(p,q)(Ω), for some q ∈ [1,+∞], and
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supn∈N
∥∥Ing∥∥Lq(Ω)

< +∞, and that f̄n ∈ L1([0, T ];Lmax(p,q)(Ω)) and supn∈N
∥∥f̄n∥∥L1([0,T ];Lq(Ω))

< +∞.

Then

ūn(·, t) ∈ Lmax(p,q)(Ω),∀t ∈ [0, T ], and sup
t∈[0,T ],n∈N

∥∥ūn(·, t)
∥∥
Lq(Ω)

< +∞.

Proof : Recall from Proposition 3.2.2(vii) that J
λ∆InK

p
, λ > 0, is single-valued on Lp(Ω) and

nonexpansive on Lq(Ω) for all q ∈ [1,+∞]. Therefore, by induction, we have that for any k ∈ [N ],

∥∥ukn∥∥Lp(Ω)
≤
∥∥Ing∥∥Lp(Ω)

+
k∑
i=0

τi
∥∥f in∥∥Lp(Ω)

≤
∥∥Ing∥∥Lp(Ω)

+
N∑
i=0

τi
∥∥f in∥∥Lp(Ω)

=
∥∥Ing∥∥Lp(Ω)

+
∥∥f̄n∥∥L1([0,T ];Lp(Ω))

.

Thus ukn ∈ Lp(Ω), for all k ∈ [N ]. In turn, J
τk∆InK

p
(ukn) is single-valued for all k, and arguing as above,

its nonexpansiveness yields ∥∥ukn∥∥Lq(Ω)
≤
∥∥Ing∥∥Lq(Ω)

+
∥∥f̄n∥∥L1([0,T ];Lq(Ω))

.

Taking the supremum over k and n and using the de�nition of ūn and the assumptions on g and f , we

conclude. �

Lemma 3.4.14. Suppose that the assumptions of Lemma 3.4.13 are satis�ed with q = 2 when p ∈]1, 2],

q = 2(p−1) when p ≥ 2. Assume in addition that supn∈N
∥∥InK∥∥L∞,1(Ω2)

< +∞ and supn∈N
∥∥f̄n∥∥BV([0,T ];L2(Ω))

<

+∞. Then

sup
t∈[0,T ],n∈N

∥∥ǔn(·, t)− ūn(·, t)
∥∥
L2(Ω)

≤ Cτ,

where C is a positive constant that does not depend on (n,N, T ).

Proof : For t ∈]tk−1, tk], k ∈ N, we have∥∥ǔn(·, t)− ūn(·, t)
∥∥
L2(Ω)

= (tk − t)
∥∥uk−1

n − ukn
τk−1

∥∥
L2(Ω)

= (tk − t)
∥∥∆InK

p ukn − fkn
∥∥
L2(Ω)

≤ τ
∥∥∆InK

p ukn − fkn
∥∥
L2(Ω)

= τ
∥∥∆InK

p ūn(·, tk)− f̄n(·, tk)
∥∥
L2(Ω)

≤ τ

(∥∥∆InK
p ūn(·, tk)

∥∥
L2(Ω)

+

k∑
i=1

∥∥f̄n(·, ti)− f̄n(·, ti−1)
∥∥
L2(Ω)

+
∥∥f̄n(·, 0)

∥∥
L2(Ω)

)
≤ τ

(∥∥∆InK
p ūn(·, tk)

∥∥
L2(Ω)

+ Var2(f̄n) +
∥∥f̄n(·, 0)

∥∥
L2(Ω)

)
= τ

(∥∥∆InK
p ūn(·, tk)

∥∥
L2(Ω)

+
∥∥f̄n∥∥BV([0,T ];L2(Ω))

)
. (3.4.16)

For p ∈]1, 2], we have from (3.2.10) that∥∥∆InK
p ūn(·, tk)

∥∥
L2(Ω)

≤ 2p/2C
1/2
2

∥∥K∥∥
L∞,1(Ω2)

∥∥ūn(·, t)
∥∥p−1

L2(Ω)
.

For p ≥ 2, it is easy to to show with simple arguments as before that∥∥∆InK
p ūn(·, tk)

∥∥
L2(Ω)

≤ 2p−3/2
∥∥K∥∥

L∞,1(Ω2)

∥∥ūn(·, t)
∥∥p−1

L2(p−1)(Ω)
.

Inserting the last two estimates in (3.4.16), taking the supremum over t and n over both sides, and

applying Lemma3.4.13, we conclude. �
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Remark 3.4.15. As observed in the case of explicit time-discretization the uniform (over n) bounded-

ness assumption made in the last two lemmas hold true if g = Png, K = PnK and fk = τ−1
k

∫ tk
tk−1

Pnf(·, t)dt,
where g, f and K verify simple assumptions. Indeed, in this case, we have thanks to Lemma2.1.27

that for any q ∈ [1,+∞],

sup
n∈N

∥∥Ing∥∥Lq(Ω)
≤
∥∥g∥∥

Lq(Ω)
, sup

n∈N

∥∥InK∥∥L∞,q(Ω2)
≤
∥∥K∥∥

L∞,q(Ω2)
,

sup
n∈N

∥∥f̄n∥∥L1([0,T ];Lq(Ω))
≤
∥∥f∥∥

L1([0,T ];Lq(Ω))
and sup

n∈N

∥∥f̄n∥∥BV([0,T ];Lq(Ω))
≤
∥∥f∥∥

BV([0,T ];Lq(Ω))
.

In fact, the condition f ∈ BV([0, T ];Lq(Ω)) is su�cient to ensure that

sup
n∈N

∥∥f̄n∥∥L1([0,T ];Lq(Ω))
< +∞ and sup

n∈N

∥∥f̄n∥∥BV([0,T ];Lq(Ω))
< +∞.

Indeed, arguing as in [37, LemmaA.1], this conditions implies f ∈ L∞([0, T ];Lq(Ω)). In turn, using

Lemma2.1.27, we get∥∥f̄n∥∥L1([0,T ];Lq(Ω))
≤
∥∥f∥∥

L1([0,T ];Lq(Ω))
≤
∥∥f∥∥

L∞([0,T ];Lq(Ω))

≤
∥∥f(·, 0)

∥∥
Lq(Ω)

+ Varq(f) =
∥∥f∥∥

BV([0,T ];Lq(Ω))
.

We are now in position to state the error bound for the fully discrete problem with backward/implicit

Euler time discretization.

Theorem 3.4.16. Suppose that p ∈]1,+∞[. Let u be a solution of (P) with kernel K and data (f, g),

and
{
uk
}
k∈[N ]

is the sequence generated by (PTDB
p ) with K = PnK, g = Png, fk = τ−1

k

∫ tk
tk−1

Pnf(·, t)dt.
Assume that K satis�es (H.1), (H.2) and K ∈ L∞,2(Ω2), and that f, g satisfy either one of the condi-

tions (a), (b) or (c) in Theorem3.3.1, and that f ∈ BV([0, T ];L2(Ω)). Then, the following hold.

(i) u is the unique solution of (P),
{
uk
}
k∈[N ]

is uniquely de�ned and
{∥∥Inuk∥∥L2(Ω)

}
k∈[N ]

is bounded

uniformly in n.

(ii) We have the error estimate

sup
k∈[N ],t∈]tk−1,tk]

∥∥Inuk − u(·, t)
∥∥
L2(Ω)

≤ exp (T/2)

(∥∥InPng − g∥∥L2(Ω)
+
∥∥f̄n − f∥∥L1([0,T ];L2(Ω))

+ CT 1/2



τ1/(3−p) +
∥∥InPnK −K∥∥L∞,2(Ω2)

under (a)

τp/(2p−1) +
∥∥InPnK −K∥∥L∞,2(Ω2)

under (b)

τ1/(3−p) +
∥∥InPnK −K∥∥L2(Ω2)

under (c) when p ∈]1, 2]

τ +
∥∥InPnK −K∥∥L2(Ω2)

under (c) when p ≥ 2.

)
, (3.4.17)

for τ su�ciently small, where C is positive constant that depends only on p, g, f and K.

(iii) If, moreover, g ∈ L∞(Ω) ∩ Lip(s, L2(Ω)), K ∈ Lip(s, L2(Ω2)), and f ∈ L1([0, T ];L∞(Ω)) ∩
Lip(s, L2(Ω× [0, T ])) then

sup
k∈[N ],t∈]tk−1,tk]

∥∥Inuk − u(·, t)
∥∥
L2(Ω)

≤ C exp(T/2)

(
(1 + T 1/2)δ(n)s

+ T 1/2

({
τmin(s,1/(3−p)) when p ∈]1, 2]

τ s when p ≥ 2

))
. (3.4.18)

for τ su�ciently small, where C is positive constant that depends only on p, g, f , K and s. The

term τ s in the dependence on τ disappears when f is time-independent.
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Proof : In the proof, C is any positive constant that may depend solely on p, g, f , K and/or s,

and that may be di�erent at each line.

(i) Existence and uniqueness of u were proved in Theorem3.3.1(i). Well-posedness of the sequence{
uk
}
k∈[N ]

is a consequence of Lemma3.4.13 and Remark 3.4.15.

(ii) For p ∈]1, 2], the proof of the error bound is exactly the same as that of (3.4.7) in Theorem3.4.7

using the modi�ed de�nition of ūn and that now f is time-dependent, and thus we replace fn
there by f̄n. We also denote gn = InPng and Kn = InPnK.

For the p ≥ 2, the argument is also similar, and the main change consists in bounding appropri-

ately the third term in (3.4.9). We then invoke Lemma3.4.14 to show that∣∣ ∫
Ω

(
∆Kn
p ūn(x, t)−∆Kn

p u(x, t)
)

(ǔn(x, t)− ūn(x, t)) dx
∣∣ ≤ C∥∥∆Kn

p ūn(·, t)−∆Kn
p u(·, t)

∥∥
L2(Ω)

τ,

where C is indeed a �nite constant owing to the assumption on f and Remark 3.4.15. We now

use Lemma3.2.1(ii) to get the bound∥∥∆Kn
p ūn(·, t)−∆Kn

p u(·, t)
∥∥2

L2(Ω)

=

∫
Ω

∣∣ ∫
Ω
Kn(x,y) (Ψ(ūn(y, t)− ūn(x, t))−Ψ(u(y, t)− u(x, t))) dy

∣∣2dx
≤
∫

Ω

(∫
Ω
Kn(x,y)

∣∣ξ̄n(y, t)− ξ̄n(x, t))
∣∣ (|ūn(y, t)− ūn(x, t)|+ |u(y, t)− u(x, t)|)p−2 dy

)2

dx.

(3.4.19)

For case (c), we infer from Lemma3.4.13 (with q = +∞) and Lemma2.1.27 that∥∥∆Kn
p ūn(·, t)−∆Kn

p u(·, t)
∥∥2

L2(Ω)

≤
(

4
(∥∥g∥∥

L∞(Ω)
+
∥∥f∥∥

L1([0,T ];L∞(Ω))

))2(p−2)
∫

Ω

(∫
Ω
Kn(x,y)

∣∣ξ̄n(y, t)− ξ̄n(x, t))
∣∣dy)2

dx

≤
(

4
(∥∥g∥∥

L∞(Ω)

∥∥f∥∥
L1([0,T ];L∞(Ω))

))2(p−2) ∥∥K∥∥
L∞,2(Ω2)

∫
Ω2

Kn(x,y)
∣∣ξ̄n(y, t)− ξ̄n(x, t))

∣∣2dxdy
= 4

(
4
(∥∥g∥∥

L∞(Ω)

∥∥f∥∥
L1([0,T ];L∞(Ω))

))2(p−2) ∥∥K∥∥
L∞,2(Ω2)

∫
Ω2

Kn(x,y)
∣∣ξ̄n(x, t)

∣∣2dxdy
≤ 4

(
4
(∥∥g∥∥

L∞(Ω)

∥∥f∥∥
L1([0,T ];L∞(Ω))

))2(p−2) ∥∥K∥∥2

L∞,2(Ω2)

∥∥ξ̄n(·, t)
∥∥2

L2(Ω)
. (3.4.20)

It then follows by Cauchy-Schwartz inequality that∣∣ ∫
Ω

(
∆Kn
p ūn(x, t)−∆Kn

p u(x, t)
)

(ǔn(x, t)− ūn(x, t)) dx
∣∣

≤ C
∥∥ξ̄n(·, t)

∥∥
L2(Ω)

τ

≤ C
(∥∥ξ̌n(·, t)

∥∥
L2(Ω)

τ + τ2
)

≤ 1

6

∥∥ξ̌n(·, t)
∥∥2

L2(Ω)
+ Cτ2.

Inserting this in (3.4.9), using again Young inequality for the last term, we have shown that when

p ≥ 2 and (c) holds,

∂

∂t

∥∥ξ̌n(·, t)
∥∥2

L2(Ω)
≤
∥∥ξ̌n(·, t)

∥∥2

L2(Ω)
+ C

(
τ2 +

∥∥f̄n(·, t)− f(·, t)
∥∥2

L2(Ω)
+
∥∥Kn −K

∥∥2

L2(Ω2)

)
.

Using the Gronwall's lemma, taking the square-root and using (3.4.11), we get the error bound

in this case.

It remains to consider the case (b), when p ≥ 2. For this, we embark from (3.4.19), and use the

continuity of Ψ in Lemma3.2.1 (i) (see (3.2.4)) with α = 1/p. Combining this with Jensen and
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Hölder inequalities, we get∥∥∆Kn
p ūn(·, t)−∆Kn

p u(·, t)
∥∥2

L2(Ω)

≤
∥∥K∥∥

L∞,1(Ω2)

∫
Ω2

(
Kn(x,y)

∣∣ξ̄n(y, t)− ξ̄n(x, t))
∣∣2/p)

(|ūn(y, t)− ūn(x, t)|+ |u(y, t)− u(x, t)|)2(p−1)−2/p dxdy

≤
∥∥K∥∥

L∞,1(Ω2)

∫
Ω2

(
Kn(x,y)

∣∣ξ̄n(y, t)− ξ̄n(x, t))
∣∣2)1/p

(
(Kn(x,y))(p−1)/p (|ūn(y, t)− ūn(x, t)|+ |u(y, t)− u(x, t)|)2(p−1)−2/p

)
dxdy

≤
∥∥K∥∥

L∞,1(Ω2)

(∫
Ω2

Kn(x,y)
∣∣ξ̄n(y, t)− ξ̄n(x, t))

∣∣2dxdy)1/p

(∫
Ω2

Kn(x,y) (|ūn(y, t)− ūn(x, t)|+ |u(y, t)− u(x, t)|)2p−2/(p−1) dxdy

)(p−1)/p

≤
∥∥K∥∥

L∞,1(Ω2)

(
4

∫
Ω2

Kn(x,y)
∣∣ξ̄n(x, t))

∣∣2dxdy)1/p

(
22p−2/(p−1)

∫
Ω2

Kn(x,y)
(∣∣ūn(x, t)

∣∣+
∣∣u(x, t)

∣∣)2p−2/(p−1)
dxdy

)(p−1)/p

.

≤ 4
∥∥K∥∥2

L∞,1(Ω2)

(∫
Ω2

∣∣ξ̄n(x, t))
∣∣2dxdy)1/p

(∫
Ω2

(∣∣ūn(x, t)
∣∣+
∣∣u(x, t)

∣∣)2p−2/(p−1)
dxdy

)(p−1)/p

.

Observe that L2p−2/(p−1)(Ω) ⊂ L2(p−1)(Ω), hence by Hölder inequality and Lemma3.4.13 with

q = 2(p− 1) and Lemma2.1.27, the last term in the above display can be bounded as(∫
Ω2

(∣∣ūn(x, t)
∣∣+
∣∣u(x, t)

∣∣)2p−2/(p−1)
dxdy

)(p−1)/p

≤
∥∥∣∣ūn(x, t)

∣∣+
∣∣u(x, t)

∣∣∥∥2(p−1)−2/p

L2(p−1)(Ω)

≤
(∥∥g∥∥

L2(p−1)(Ω)
+
∥∥f∥∥

L1([0,T ];L2(p−1)(Ω))

)2(p−1)−2/p
.

We then arrive at ∥∥∆Kn
p ūn(·, t)−∆Kn

p u(·, t)
∥∥2

L2(Ω)
≤ C

∥∥K∥∥2

L∞,1(Ω2)

∥∥ξ̄n∥∥2/p

L2(Ω)
.

Hence ∣∣ ∫
Ω

(
∆Kn
p ūn(x, t)−∆Kn

p u(x, t)
)

(ǔn(x, t)− ūn(x, t)) dx
∣∣

≤ C
∥∥ξ̄n(·, t)

∥∥1/p

L2(Ω)
τ

≤ C
(∥∥ξ̌n(·, t)

∥∥1/p

L2(Ω)
τ + τ (p+1)/p

)
≤ 1

6

∥∥ξ̌n(·, t)
∥∥2

L2(Ω)
+ C(τ2p/(2p−1) + τ (p+1)/p).

Inserting this into (3.4.9), using again Young inequality for the last term,

∂

∂t

∥∥ξ̌n(·, t)
∥∥2

L2(Ω)
≤
∥∥ξ̌n(·, t)

∥∥2

L2(Ω)
+ C

(
τ2p/(2p−1) + τ (p+1)/p +

∥∥f̄n(·, t)− f(·, t)
∥∥2

L2(Ω)

+
∥∥Kn −K

∥∥2

L2(Ω2)

)
.
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Hence, using the Gronwall's lemma, taking the square-root and using (3.4.11), we get the er-

ror bound in this case, after observing that the dependence on τ scales as O(τp/(2p−1)) for τ

su�ciently small (or N large enough) since 1/2 < p/(2p− 1) ≤ (p+ 1)/(2p) for p ≥ 2.

(iii) Plug (2.2.2) into (3.4.17) after observing that∥∥f̄n − f∥∥L1([0,T ];L2(Ω))
≤ T 1/2

∥∥f̄n − f∥∥L2([0,T ];L2(Ω))
= T 1/2

∥∥f̄n − f∥∥L2(Ω×[0,T ])
≤ CT 1/2 max(τ s, δ(n)s).

For the scaling in τ , we use that s ∈]0, 1].

�

Another way to derive error bounds for (PTDB
p ) is as follows. To lighten notation, denote gn = InPng,

fn(·, t) = InPnf(·, t) for t ∈ [0, T ], and Kn = InPnK. Let un be a solution to (P) with data (fn, gn)

and kernel Kn. Under the assumptions of Theorem3.4.16 on (f, g,K), un is unique. Then one has∥∥ǔn − u∥∥C([0,T ];L2(Ω))
≤
∥∥ǔn − un∥∥C([0,T ];L2(Ω))

+
∥∥un − u∥∥C([0,T ];L2(Ω))

.

Theorem3.3.1 provides a bound on the last term of the right-hand side in the above display, which

captures the space-discretization error. Bounds for the �rst term, which corresponds to the time-

discretization error, were derived in C([0, T ];Lp(Ω)) by Crandall and Liggett in their seminal paper [57]

for constant time step-size and f = 0, and then extended to non-uniform time partitions in [101], see

also [116]. More precisely, using [116, Theorem1] and the fact that ǔn(·, 0) = un(·, 0) = gn, the following

bound holds∥∥ǔn − un
∥∥
C([0,T ];Lp(Ω))

≤
∥∥f̄n − fn

∥∥
L1([0,T ];Lp(Ω))

+ 2T 1/2
(∥∥f1

n −∆Kn
p gn

∥∥
Lp(Ω)

+ Varp(f̄n)
)
τ1/2.

The �rst term can be bounded as follows (for constant step-size to simplify)

∥∥f̄n − fn∥∥L1([0,T ];Lp(Ω))
=

N∑
k=1

∫ tk

tk−1

∥∥τ−1
k

∫ tk

tk−1

fn(·, s)ds− fn(·, t)
∥∥
Lp(Ω)

dt

≤ τ−1
N∑
k=1

∫ tk

tk−1

∫ tk

tk−1

∥∥f(·, s)− f(·, t)
∥∥
Lp(Ω)

dsdt

≤ τ−1

∫ τ

−τ

(∫ T

0

∥∥f(·, t+ s)− f(·, t)
∥∥
Lp(Ω)

dt

)
ds

≤ τ−1

∫ τ

−τ
sVarp(f)ds = τVarp(f),

where we used Lemma2.1.27 in the �rst inequality and [37, LemmaA.1] in the last one. Overall,

this shows that the time discretization error
∥∥ǔn − un∥∥C([0,T ];Lp(Ω))

scales as O
(

(Tτ)1/2
)
for τ suf-

�ciently small. The rate O(τ1/2) is known to be optimal for general accretive operators in Banach

spaces (see [116]). In turn, by standard comparisons of Lq(Ω) norms (assuming that (c) holds so that

boundedness of ǔn and un is in force), this strategy gives us a bound which scales as

∥∥ǔn − un∥∥C([0,T ];Lp(Ω))
=

{
O
(
τ1/2

)
p ≥ 2,

O
(
τp/4

)
p ∈]1, 2].

This is strictly worse than the rates in τ obtained from (3.4.17). There is however no contradiction in

this and the reason is that the strategy outlined above is too general and does not exploit all properties

of the operator ∆K
p among which its continuity that was a key to derive better rates in τ . In this sense,

our present results are optimal. We also remark that our rates are consistent with those in [90] for

p ≥ 2.
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3.5 Application to random graph sequences

In this section, we study continuum limits of fully discrete problems on the random graph model of

De�nition 2.3.7 with backward/implicit Euler time discretization. Explicit discretization can also be

treated following our results in Section 3.4.2.1, but we will not elaborate further on it for the sake of

brevity.

Recall the notations in Section 2.3.4, in which case we now set Ω = [0, 1]. Recall also the the

construction of the random graph model in De�nition 2.3.7 where each edge (i, j) is independently set

to 1 with probability (2.3.5). This entails that the random matrix Λ is symmetric. However, it is worth

emphasizing that the entries of Λ are not independent, but only the entries in each row are mutually

independent2. This observation will be instrumental in deducing our error bound.

We consider the fully discrete on K-random graphs G(n,K, ρn) with backward Euler time scheme
uk − uk−1

τk−1
=

1

ρnn

∑
j:(i,j)∈E(G(n,K,ρn))

Ψ(uj − ui) + fk, k ∈ [N ],

u0 = g,

(PTDB,G
p )

where uk, fk ∈ Rn. It is important to keep in mind that, since G(n,K, ρn) is a random variable taking

values in the set of simple graphs, the evolution problem (PTDB,G
p ) must be understood in this sense.

Observe that the normalization in (PTDB,G
p ) by ρnn corresponds to the average degree (see Section 2.3.4

for details).

Problem (PTDB,G
p ) can be equivalently written as

uk − uk−1

τk−1
= −∆̂

Λ

p uk + fk, k ∈ [N ],

u0 = g.

We de�ne the time-space continuum extensions ǔn and ūn and as in Section 3.4.2.2. One then sees

that they satisfy {
∂
∂t ǔn(x, t) = −∆InΛ

p ūn(x, t) + f̄n(x, t), (x, t) ∈ Ω×]0, T ],

ǔn(x, 0) = Ing(x), x ∈ Ω.
(3.5.1)

Toward our goal of establishing error bounds, we de�ne v as the solution of the fully discrete prob-

lem (PTDB
p ) with data (f ,g) and discrete kernel

∧
K. Its time-space continuum extensions, v̌n and v̄n,

de�ned similarly as above, ful�ll ∂
∂t v̌n(x, t) = −∆In

∧
K

p v̄n(x, t) + f̄n(x, t), (x, t) ∈ Ω×]0, T ],

v̌n(x, 0) = Ing(x), x ∈ Ω.
(3.5.2)

We have ∥∥ǔn − u∥∥C([0,T ];L2(Ω))
≤
∥∥ǔn − v̌n∥∥C([0,T ];L2(Ω))

+
∥∥v̌n − u∥∥C([0,T ];L2(Ω))

. (3.5.3)

This bound is composed of two terms: the �rst one captures the error of random sampling, and the

second that of (space and time) discretization. We start by bounding the �rst term by comparing (3.5.1)

and (3.5.2).

Lemma 3.5.1. Assume that (fk,g,K, f, g,K) verify the assumptions of Theorem3.4.16. Assume also

that ρn → 0 and nρn = ω ((log n)γ) for some γ > 1. Then, for any β ∈]0, 1[,∥∥ǔn − v̌n∥∥C([0,T ];L2(Ω))
≤ C exp (T/2)T 1/2

(
(ρnn)−β/2 +

{
τ1/(3−p) p ∈]1, 2],

τ p ≥ 2.

)
. (3.5.4)

2This feature was already used in the proof of Lemma2.3.10
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with probability at least 1− (ρnn)−(1−β). In particular,∥∥ǔn − v̌n∥∥C([0,T ];L2(Ω))
≤ C exp (T/2)T 1/2

(
o
(

(log n)−γβ/2
)

+

{
τ1/(3−p) p ∈]1, 2],

τ p ≥ 2.

)
. (3.5.5)

with probability at least 1− o
(

(log n)−γ(1−β)
)
.

Proof : Denote ξ̌n(x, t) = v̌n(x, t)− ǔn(x, t), ξ̄n(x, t) = v̄n(x, t)− ūn(x, t), gn = InPng,
∧
Kn = In

∧
K

and Λn = InΛ. We thus have from (3.5.1) and (3.5.2) that a.e.

∂ξ̌n(x, t)

∂t
= −

(
∆
∧
Kn
p (v̄n(x, t))−∆Λn

p (ūn(x, t))

)
= −

(
∆
∧
Kn
p (v̄n(x, t))−∆Λn

p (v̄n(x, t))

)
−
(
∆Λn
p (v̄n(x, t))−∆Λn

p (ūn(x, t))
)
.

Multiplying both sides by ξ̌n(x, t), integrating and rearranging the terms, we get

1

2

∂

∂t

∥∥ξ̌n(·, t)
∥∥2

L2(Ω)
= −

∫
Ω

(
∆Λn
p v̄n(x, t)−∆Λn

p ūn(x, t)
)

(v̄n(x, t)− ūn(x, t))dx

−
∫

Ω

(
∆
∧
Kn
p v̄n(x, t)−∆Λn

p v̄n(x, t)

)
ξ̌n(x, t)dx

−
∫

Ω

(
∆Λn
p v̄n(x, t)−∆Λn

p ūn(x, t)
)

((v̌n(x, t)− v̄n(x, t))− (ǔn(x, t)− ūn(x, t))) dx.

(3.5.6)

Under our condition on nρn, Lemma2.3.10 tells us that with probability 1,∥∥Λn
∥∥
L∞,1(Ω2)

=
∥∥ ∧Kn

∥∥
L∞,1(Ω2)

+ o(1) ≤
∥∥InPnK∥∥L∞,1(Ω2)

+ o(1) ≤
∥∥K∥∥

L∞,1(Ω2)
+ o(1),

so in particular
∥∥Λn

∥∥
L∞,1(Ω2)

is uniformly bounded with probability 1. Λn is also positive and sym-

metric. Since g ∈ Lq(Ω) and f ∈ L1([0, T ];Lq(Ω)) ∩ BV([0, T ];L2(Ω)), q ∈ {2, 2(p − 1),+∞}, the
conclusions of Lemma3.4.13 and Lemma3.4.14 remain true which shows that with probability 1,

sup
t∈[0,T ],n∈N

∥∥ūn(·, t)
∥∥
Lq(Ω)

< +∞ and sup
t∈[0,T ],n∈N

∥∥ǔn(·, t)− ūn(·, t)
∥∥
L2(Ω)

≤ Cτ.

The same claim holds for v̌n and v̄n since
∥∥ ∧Kn

∥∥
L∞,1(Ω2)

≤
∥∥K∥∥

L∞,1(Ω2)
< +∞ and

∧
Kn is positive and

symmetric, i.e.
∧
Kn obeys (H.1)-(H.3). Thus Proposition 3.2.2(iv) entails that the �rst term on the

right-hand side of (3.5.6) is nonpositive with probability 1. Let us now bound the second term. Denote

the random variables Zi
def

= 1
n

∑
j∈[n]

(
Λij −

∧
Kij

)
Ψ(vj − vi). By Cauchy-Schwartz inequality, we have∣∣ ∫

Ω

(
∆Λn
p ūn(x, t)−∆

∧
Kn
p ūn(x, t)

)
ξ̌n(x, t)dx

∣∣ ≤ C∥∥InZ∥∥L2(Ω)

∥∥ξ̌n(·, t)
∥∥
L2(Ω)

.

For the last term in (3.5.6), we argue as in the proof of Theorem3.4.16 to show that, with probability

1, ∣∣ ∫
Ω

(
∆Λn
p ūn(x, t)−∆Λn

p v̄n(x, t)
)

((ǔn(x, t)− ūn(x, t))− (v̌n(x, t)− v̄n(x, t))) dx
∣∣

≤ C


∥∥ξ̌n(·, t)

∥∥p−1

L2(Ω)
τ + τp p ∈]1, 2],∥∥ξ̌n(·, t)

∥∥
L2(Ω)

τ + τ2 p ≥ 2.

Collecting all these bounds, after using Young inequality, we have shown that (again with probability

1),

∂

∂t

∥∥ξ̌n(·, t)
∥∥2

L2(Ω)
≤
∥∥ξ̌n(·, t)

∥∥2

L2(Ω)
+ C

(∥∥InZ∥∥2

L2(Ω)
+

{
τ2/(3−p) + τp p ∈]1, 2],

τ2 p ≥ 2.

)
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Using the Gronwall's lemma and taking the square-root, we get for τ su�ciently small∥∥ǔn − v̌n∥∥C([0,T ];L2(Ω))
≤ C exp (T/2)T 1/2

(∥∥InZ∥∥L2(Ω)
+

{
τ1/(3−p) p ∈]1, 2],

τ p ≥ 2.

)
. (3.5.7)

It remains to bound the random variable
∥∥InZ∥∥L2(Ω)

. For this purpose, we have by Markov inequality

that for ε > 0

P
(∥∥InZ∥∥L2(Ω)

≥ ε
)

= P

(
n−1

∑
i

Z2
i ≥ ε2

)
≤ ε−2n−1

∑
i

E
(
Z2
i

)
.

By independence of (Λij)j∈[n], for each i ∈ [n], we get

E
(
Z2
i

)
= (ρnn)−2

∑
j∈[n]

V (ρnΛij) (Ψ(vj − vi))
2 = (ρnn)−2

∑
j∈[n]

ρn
∧
Kij(1− ρn

∧
Kij) (Ψ(vj − vi))

2

≤ (ρnn
2)−1

∑
j∈[n]

∧
Kij

∣∣vj − vi
∣∣2(p−1)

.

In turn,

P
(∥∥InZ∥∥L2(Ω)

≥ ε
)
≤ (ε2ρnn)−1 1

n2

∑
i,j∈[n]

∧
Kij

∣∣vj − vi
∣∣2(p−1)

= (ε2ρnn)−1

∫
Ω2

∧
Kn(x,y)

∣∣v̄n(y)− v̄n(x)
∣∣2(p−1)

dydx.

If the condition (a) holds, then by the symmetry of the kernel, Jensen inequality and Hölder inequality,

one gets ∫
Ω2

∧
Kn(x,y)

∣∣v̄n(y)− v̄n(x)
∣∣2(p−1)

dydx ≤ 4

∫
Ω2

∧
Kn(x,y)

∣∣v̄n(x)
∣∣2(p−1)

dydx

≤ 4
∥∥ ∧Kn

∥∥
L∞,1(Ω2)

∫
Ω

∣∣v̄n(x)
∣∣2(p−1)

dx

≤ 4
∥∥ ∧Kn

∥∥
L∞,1(Ω2)

∥∥v̄n∥∥2(p−1)

L2(Ω)
.

Under the condition (b), by the symmetry of the kernel and Jensen inequality again, we have∫
Ω2

∧
Kn(x,y)

∣∣v̄n(y)− v̄n(x)
∣∣2(p−1)

dydx ≤ 22(p−1)

∫
Ω2

∧
Kn(x,y)

∣∣v̄n(x)
∣∣2(p−1)

dydx

≤ 22(p−1)
∥∥ ∧Kn

∥∥
L∞,1(Ω2)

∥∥v̄n∥∥2(p−1)

L2(p−1)(Ω)
.

Similarly, under condition (c), we have∫
Ω2

∧
Kn(x,y)

∣∣v̄n(y)− v̄n(x)
∣∣2(p−1)

dydx ≤ 22(p−1)
∥∥v̄n∥∥2(p−1)

L∞(Ω)

∥∥ ∧Kn

∥∥
L1(Ω2)

≤ 22(p−1)
∥∥ ∧Kn

∥∥
L∞,1(Ω2)

∥∥v̄n∥∥2(p−1)

L∞(Ω)
.

Since
∥∥ ∧Kn

∥∥
L∞,1(Ω2)

≤
∥∥K∥∥

L∞,1(Ω2)
(see (2.1.10) in Lemma2.1.27), we have

P
(∥∥InZ∥∥L2(Ω)

≥ ε
)
≤ C(ε2ρnn)−1

∥∥K∥∥
L∞,1(Ω2)

,

where

C =


4 supn

∥∥v̄n∥∥2(p−1)

L2(Ω)
, under (a),

22(p−1) supn
∥∥v̄n∥∥2(p−1)

L2(p−1)(Ω)
, under (b),

22(p−1) supn
∥∥v̄n∥∥2(p−1)

L∞(Ω)
, under (c),
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and C < +∞ thanks to Lemma3.4.13. Taking ε =

(
C
∥∥K∥∥

L∞,1(Ω2)

(ρnn)β

)1/2

, we get

P
(∥∥InZ∥∥L2(Ω)

≥ ε
)
≤ 1

(ρnn)1−β .

Plugging the latter into (3.5.7) completes the proof. �

Remark 3.5.2. Lemma4.5.1 gives a deviation bound which holds with a controlled probability. On

may ask if a claim with probability 1 could be a�orded. A naive and straightforward approach would

be to invoke the Borel-Cantelli lemma as done in [89, Remark 3.4(iv)] for the case of graphons. But

this argument does not apply to the more complex setting of Lq-graphons given that the probability of

success in the statement Lemma4.5.1 does not converge su�ciently fast. This is not even possible to

make faster as ρn has to converge to 0. Thus, it is not clear at this stage whether this is even possible

to achieve or not. We leave this to a future research.

We �nally obtain the following error bound on fully discretized problems on sparse random graphs.

Theorem 3.5.3. Suppose that p ∈]1,+∞[. Let u be a solution of (P) with kernel K and data (f, g), and{
uk
}
k∈[N ]

is the sequence generated by (PTDB,G
p ) with K = PnK, g = Png, fk = τ−1

k

∫ tk
tk−1

Pnf(·, t)dt.
Assume that (f, g,K) satisfy the assumptions of Theorem3.4.16, and that those of Lemma 4.5.1 also

hold.

1. For any β ∈]0, 1[, with probability at least 1− (ρnn)−(1−β),

sup
k∈[N ],t∈]tk−1,tk]

∥∥Inuk−u(·, t)
∥∥
L2(Ω)

≤ exp (T/2)

(∥∥InPng−g∥∥L2(Ω)
+
∥∥f̄n−f∥∥L1([0,T ];L2(Ω))

+CT 1/2(ρnn)−β/2

+CT 1/2



τ1/(3−p) +
∥∥(K − ρ−1

n )+

∥∥
L∞,2(Ω2)

+
∥∥InPnK −K∥∥L∞,2(Ω2)

under (a)

τp/(2p−1) +
∥∥(K − ρ−1

n )+

∥∥
L∞,2(Ω2)

+
∥∥InPnK −K∥∥L∞,2(Ω2)

under (b)

τ1/(3−p) +
∥∥(K − ρ−1

n )+

∥∥
L2(Ω2)

+
∥∥InPnK −K∥∥L2(Ω2)

under (c) when p ∈]1, 2]

τ +
∥∥(K − ρ−1

n )+

∥∥
L2(Ω2)

+
∥∥InPnK −K∥∥L2(Ω2)

under (c) when p ≥ 2.

)
.

(3.5.8)

for τ su�ciently small, where C is positive constant that depends only on p, g, f and K.

2. If, moreover, g ∈ L∞(Ω) ∩ Lip(s, L2(Ω)), K ∈ Lip(s, L2(Ω2)), and f ∈ L1([0, T ];L∞(Ω)) ∩
Lip(s, L2(Ω× [0, T ])) then, for any δ ∈]0, 1[, with probability at least 1− (ρnn)−(1−β),

sup
k∈[N ],t∈]tk−1,tk]

∥∥Inuk − u(·, t)
∥∥
L2(Ω)

≤ C exp(T/2)

(
(1 + T 1/2)n−s + T 1/2

∥∥(K − ρ−1
n )+

∥∥
L2(Ω2)

+ T 1/2(ρnn)−β/2 + T 1/2

({
τmin(s,1/(3−p)) when p ∈]1, 2]

τ s when p ≥ 2

))
. (3.5.9)

for τ su�ciently small, where C is positive constant that depends only on p, g, f , K and s,

and
∥∥(K − ρ−1

n )+

∥∥
L2(Ω2)

= o(1). The term τ s in the dependence on τ disappears when f is

time-independent.

Proof : In view of (3.5.3), we shall use Theorem3.4.16 to bound the second term, and a bound

on the �rst term is provided by Lemma4.5.1. Since In
∧
K(x, y) ≤ InK(x, y) = InPnK(x, y), the

assumptions on K transfer to
∧
K, and the second term of (3.5.3) can then be bounded using (3.4.17),
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replacing InPnK there by In
∧
K. Observing that∥∥In ∧K−K∥∥L2(Ω2)
=
∥∥min(InPnK, ρ

−1
n )−K

∥∥
L2(Ω2)

≤
∥∥min(InPnK, ρ

−1
n )− InPnK

∥∥
L2(Ω2)

+
∥∥InPnK −K∥∥L2(Ω2)

=
∥∥(InPnK − ρ−1

n )+

∥∥
L2(Ω2)

+
∥∥InPnK −K∥∥L2(Ω2)

≤
∥∥(K − ρ−1

n )+

∥∥
L2(Ω2)

+ 2
∥∥InPnK −K∥∥L2(Ω2)

,

and similarly for the L∞,2 norm. The fact that
∥∥(K − ρ−1

n )+

∥∥
L2(Ω2)

= o(1) is because ρn → 0 by the

same argument as the end of the proof of Proposition 2.3.9. This completes the proof. �
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Continuum limit of the p-Laplacian

Dirichlet problem on sparse graphs

Main contributions of this chapter

I Convergence of minima of integral functionals

I The continuum limits of a sequence of p-Laplacian Dirichlet problems.

I Consistency and error estimates of the Dirichlet problem.

I Applications to random graph sequences.

A paper with the content of this chapter is under preparation for submission to a journal.
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In this chapter, we present a consistency analysis for the nonlocal p-Laplacian Dirichlet problem.

We start by studying the Mosco-convergence and Γ-convergence of sequences of integral functions

and geometric constraints. We prove the convergence of the minimizers of the nonlocal Dirichlet

energies under a�ne geometric constraints. Thanks to the Dirichlet principle, these results are used

to study sequence of nonlocal p-Laplacian boundary value problems. We study also consistency and

error estimates of this problem. Relying on these error estimates, we establish nonasymptotic rate of

convergence of solutions for the discrete model on sparse random graphs to the solution of the nonlocal

Dirichlet problem on the continuum.

4.1 Introduction

4.1.1 Problem statement

Let Ω be a bounded domain of Rd, d ≥ 1 and p ∈]1,+∞[. For n ∈ N, we consider the following

boundary value problem {
−∆Kn

p u = fn, in Un,

u = gn, on Γn = Ω \ Un,
(PnD)

where Un is a subdomain of Ω, Kn is a non-negative symmetric measurable function on Ω2, gn ∈ Lp(Ω)

and fn ∈ Lq(Ω), whith q is the Hölder conjugate of p. Recall that, for a kernel K, ∆K
p is the nonlocal

p-Laplacian operator governed by K,

∆K
p u(x)

def

= −
∫

Ω
K(x,y)

∣∣u(y)− u(x)
∣∣p−2

(u(y)− u(x))dy. (4.1.1)

Recall that, our chief goal in this chapter is to study the asymptotic behaviour and the corresponding

continuum limit of the sequence problems (PnD).
Studying the limit of solutions to (PnD) will allow us to establish consistency of numerical approxi-

mations of the nonlocal p-Laplacian Dirichlet problem{
−∆K

p u = f, in U,

u = g, on Γ.
(PD)
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K, U and Γ represent some limit objects whose meaning and form will be speci�ed in the sequel,

separately for every class of problems that we consider below. As a major illustrative example, we will

study the case where (PnD) are de�ned on a sequence of convergent K-random graphs; see Section 4.5.

We impose the following assumptions on the kernel we consider, which will be useful in order to

make the statements of our result brief and clear, (for some results only a subset will be necessary):

(A.1) K is a nonnegative measurable function.

(A.2) K is symmetric, i.e., K(x,y) = K(y,x).

(A.3) There exist m, r0 > 0 such that
∣∣K(x,y)

∣∣ ≥ mχ[0,r0[(
∥∥x− y∥∥) for all x, y ∈ Ω.

(A.4) K belongs to L∞(Ω2).

(A.5) supx∈Ω

∫
Ω

∣∣K(x,y)
∣∣dy < +∞ .

When the kernel is such that K(x,y) = J(x− y), where J : RN → R, then (A.1)-(A.5) read:

(A'.1) J is a nonnegative measurable function.

(A'.2) J is symmetric, i.e., J(x) = J(−x).

(A'.3) There exist m, r0 > 0 such that
∣∣J(x)

∣∣ ≥ mχ[0,r0[(
∥∥x∥∥) for all x ∈ Ω.

(A'.4) J belongs to L∞(Ω− Ω).

(A'.5)
∫

Ω−Ω

∣∣J(x)
∣∣dx < +∞ .

Recall that Ω− Ω is the Minkowski sum of Ω and −Ω.

Let Kn, K be a sequence of measurable functions in L∞,p(Ω2). We say that the sequence {Kn, K :

n ∈ N} satis�es hypothesis (Aker) if the following hold.

(Aker) The functions Kn, n ∈ N and K are symmetric (i.e. satisfy (A.2)), and {Kn}n∈N converges

pointwise to K almost everywhere on Ω2 and {Kn}n∈N converges strongly to K in L∞,p(Ω2).

We say that the sequence {Kn, K : n ∈ N} satis�es hypothesis (Bker) if the following hold.

(Bker) The sequence {Kn, K : n ∈ N} is uniformly bounded in L∞(Ω2), and {Kn}n∈N converges

pointwise to K almost everywhere on Ω2.

If the kernels K, Kn, n ∈ N are such that K(x,y) = J(x − y), Kn(x,y) = Jn(x − y), where

J, Jn : RN → R, n ∈ N, the assumptions (Aker) and (Bker) read respectively

(A′rad) The functions Jn, n ∈ N and J are symmetric (i.e. satisfy (A'.2)), and {Jn}n∈N converges

pointwise to J almost everywhere on Ω−Ω and {Jn}n∈N converges strongly to J in Lp(Ω−Ω).

(B′rad) The sequence {Jn, J : n ∈ N} is uniformly bounded in L∞(Ω − Ω), and {Jn}n∈N converges

pointwise to J almost everywhere on Ω− Ω.

Recall that, for a kernel K, the nonlocal gradient operator ∇NL
K is given by (1.2.3). A key interme-

diate step to achieve our goal is to use the Dirichlet principle and transform (PnD) into an equivalent

sequence of variational problems

min
u∈Lpgn (Ω,Un)

Fn(∇NL
Knu) +

∫
Ω
fn(x)u(x)dx, (VPn)

where Fn is an integral functional to be made precise later, f ∈ Lq(Ω) and

Lpgn(Ω, Un)
def

=
{
u ∈ Lp(Ω) : u = gn on Γn

def

= Ω \ Un
}
.

To make this asymptotic analysis precise, we use the notation and methods of Γ-convergence and

Mosco-convergence of De Giorgi and Mosco respectively (see Chapter 2, [58, 34, 24, 17, 32]). We will
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in particular show that (VPn) has a Γ-limit which takes the form

min
u∈Lpg(Ω,U)

F (∇NL
K u) +

∫
Ω
f(x)u(x)dx (VP)

where g ∈ Lp(Ω), f ∈ Lq(Ω) and F is an appropriate integral functional.

4.1.2 Organization of the chapter

The remainder of the chapter is organised as follows. In Section 4.2, we study the Mosco-convergence

of sequences of integral functions and convex sets. In this section, we prove our �rst main results on

the convergence of the minimizers to (VPn) under a�ne geometric constraints. These result is then

used to study sequences of nonlocal p-Laplacian Dirichlet problems (PnD) in Section 4.3. In Section

4.4, we study the relation between the solution of problem (PD) and the solution of its discretization.

We dedicate Section 4.5 to study the continuum limit of the discrete random model. The primal-

dual splitting algorithm to solve the discretized problems in graphs is described in Section 4.6 (see also

Chapter 7 for a general treatment) and some numerical results are reported to illustrate our theoretical

�ndings.

4.2 Convergence of minima of integral functionals

This section is devoted to study the well-posedness of the problem (VP), we study also the Mosco-

convergence and Γ-convergence of the sequence of the energy functionals and the sequence of geometry

constraints given in (VPn).

4.2.1 Mosco-convergence of convex functionals

Let U be a bounded domain of RN , N ≥ 1 and p ∈]1,+∞[. We consider the integral functional

F : Lp(U)→ R

v 7→
∫
U
f(x, v(x))dx,

(4.2.1)

where f : U × R→ R is a function satisfying the following requirements:

(H.1) for every s ∈ R, the function f(·, s) is Lebesgue measurable on U .
(H.2) for a.e. x ∈ U , the function f(x, ·) is convex on R.

(H.3) there exist C2 ≥ C1 > 0 and a positive function a ∈ L1(U) such that

− a(x) + C1

∣∣s∣∣p ≤ f(x, s) ≤ a(x) + C2(
∣∣s∣∣p + 1), (4.2.2)

for a.e x ∈ U and for all s ∈ R.
We denote by F(a,C1, C2, p) the set of all functional F of the form (4.2.1) where the corresponding

integrands satisfy assumptions (H.1), (H.2) and (H.3) for the same function a ∈ L1(U) and same

constant C2 ≥ C1 > 0.

We denote by F ′(a,C1, C2, p) the set of all functionals F ∈ F(a,C1, C2, p) such that assumption

(H.2) of the corresponding integrand is replaced by

(H.2') for a.e. x ∈ U , the function f(x, ·) is strictly convex on R.
Let F, Fn, n ∈ N be integral functionals taking the form of (4.2.1) with f, fn, n ∈ N the

corresponding integrands. We say that the sequence {F, Fn : n ∈ N} satis�es hypothesis (Hseq) if the
following holds.

(Hseq) There exist a positive function a ∈ L1(U) and C2 ≥ C1 > 0 such that F, Fn, ∈ F(a,C1, C2, p), n ∈
N, and for every s ∈ R, {fn(·, s))}n∈N converges to f(·, s) pointwise a.e. on U .
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By standard convex analysis arguments, we obtain the following properties of functions of these

classes of functional.

Proposition 4.2.1. Let F ∈ F(a,C1, C2, p) (reps. F ∈ F ′(a,C1, C2, p)) where C2 ≥ C1 > 0 and a

positive function a ∈ L1(U). Then F satis�es the following properties:

(i) F is convex (resp. strictly convex) and continuous on Lp(U);

(ii) F is weakly lower semicontinuous on Lp(U);

(iii) F is coercive on Lp(U) induced by the weak topology.

Let us announce a �rst result Mosco-convergence for sequences in these classes.

Theorem 4.2.2. Let {F, Fn : n ∈ N} be a sequence of integral functionals given by (4.2.1) which

satis�es (Hseq). Then
(i) {Fn} Mosco-converges to F on Lp(U);

(ii)

min
Lp(U)

F = lim
n

min
Lp(U)

Fn.

Moreover, if {un}n∈N is a sequence such that limn Fn(un) = limn infLp(U) Fn, then {un}n∈N is

weakly precompact in Lp(U) and every weak cluster point of {un}n∈N is a minimum point for F .

Proof : It is enough to show the point (i). The point (ii) is a consequence of (i), Theorem 2.1.13,

Proposition 4.2.1 and the equi-coercivity of the sequence {Fn}n∈N which is a trivial result of Proposi-

tion 2.1.12 and the growth condition (H.3) of the integrands.

By the dominated convergence theorem the sequence {Fn(u)}n∈N converges to F (u) for every u ∈
Lp(U). The conclusion is achieved if we prove (ii) of De�nition 2.1.14.

On the other hand, we have F, Fn, n ∈ N are closed convex functions, then by Theorem2.1.15,

the proof of the Mosco-convergence amounts to prove that the sequence {Fn}n∈N is equi-lsc. By the

assumption (Hseq) we have that ∣∣Fn(u)
∣∣ ≤ ∥∥a∥∥

L1(U)
+ C2(Rp +

∣∣U∣∣),
for all u ∈ BR ⊂ Lp(U) and all n ∈ N. Then the sequence {Fn}n∈N is locally uniformly Lipschitz,

thanks to Proposition 2.1.9, in particular it is equi-lsc.

�

4.2.2 Mosco-convergence of convex sets

Throughout the chapter. We denote by

Lpg(Ω, U) = {u ∈ Lp(Ω) : u = g on Γ = Ω \ U}, (4.2.3)

where g ∈ Lp(Ω) and U ⊂⊂ Ω be a sub-domain such that U + B(0, r) ⊂ Ω for some r > 0.

Proposition 4.2.3. Let {gn}n∈N be a sequence of functions in Lp(Ω) and {Un}n∈N be a sequence of

sub-domains of Ω. Assume that

(i) the sequence {gn}n∈N converges strongly to g in Lp(Ω).

(ii) the sequence {
∣∣Un∆U

∣∣}n∈N tends to 0 as n → +∞; where Un∆U is the symmetric di�erence of

Un and U .

Then Lpgn(Ω, Un) Mosco-converges to Lpg(Ω, U) in Lp(Ω).
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Proof : Let fn ∈ Lpgn(Ω, Un), n ∈ N, such that fn ⇀ f in Lp(Ω) for some f ∈ Lp(Ω). It is easy to

see that ∫
Ω

∣∣fnχΓn − gχΓ

∣∣dx ≤ ∫
Ω

[∣∣gn − g∣∣+
∣∣g∣∣χΓ∆Γn

]
dx.

By assumption the terms in the right-hand side of the above inequality tend to 0 and so fnχΓn → gχΓ

in L1(Ω), hence f = g on Γ, i.e. f ∈ Lpg(Ω, U).

Now, let f ∈ Lpg(Ω, U). For all n ∈ N we set

fn =

{
f, on Un,

gn, on Γn.

By construction, we have fn ∈ Lpgn(Ω, Un), n ∈ N. On the other hand, we have∣∣fn − f ∣∣ =
∣∣(fn − f) · χΓn

∣∣
≤

∣∣(gn − g) · χΓn + (g − f) · χΓn∆Γ

∣∣.
And so ∥∥fn − f∥∥Lp(Ω)

≤
∥∥gn − g∥∥Lp(Ω)

+
∥∥(g − f) · χΓn∆Γ

∥∥
Lp(Ω)

.

The terms in the right-hand side of the above inequality tend to zero, and thus {fn}n∈N converges

strongly to f in Lp(Ω). �

Now, we will approximate Lpg(Ω, U) by a sequence of �nite a�ne subspaces.

Throughout this chapter, we denote, for n ∈ N?,

Vn(Ω) = {x ∈ 1

n
Zd : Ω

(n)
x ⊂ Ω}, (4.2.4)

where Ω
(n)
x = x+ 1

n [0, 1[d, and

A(Vn(Ω)) = {u ∈ L1(Ω) : u =
∑

x∈Vn(Ω)

αxχΩ
(n)
x
, αx ∈ R}.

We �x n ∈ N?. Set
Un =

⋃
Ω

(n)
x ⊂U :x∈Vn(Ω)

Ω
(n)
x and Γn = Ω \ Un,

U ′n =
⋃

Ω
(n)
x ∩U 6=∅:x∈Vn(Ω)

Ω
(n)
x and Γ′n = Ω \ U ′n.

For gn ∈ A(Vn(Ω)), we denote

Agn(Vn(Ω),Γn)
def

= {u ∈ A(Vn(Ω)) : u = gn on Γn}, (4.2.5)

A′gn(Vn(Ω),Γ′n)
def

= {u ∈ A(Vn(Ω)) : u = gn on Γ′n}. (4.2.6)

We have the following approximation of Lpg(Ω, U).

Proposition 4.2.4. Let gn, Γn, Γ′n, Agn(Vn(Ω),Γn), A′gn(Vn(Ω),Γ′n), as above. Assume that the se-

quence {gn}n∈N converges strongly to some function g in Lp(Ω). Then the sequences {Agn(Vn(Ω),Γn)}n∈N
and {A′gn(Vn(Ω),Γ′n)}n∈N Mosco-converge to Lpg(Ω, U) in Lp(Ω).

Proof : We show that {Agn(Vn(Ω),Γn)}n∈N Mosco-converges to Lpg(Ω, U) in Lp(Ω), by similar

argument we show the Mosco convergence of {A′gn(Vn(Ω),Γ′n)}n∈N.
It is easy to see that

∣∣Un∆U
∣∣→ 0. Thus, as in the proof of Proposition 4.2.3 any weakly convergent

sequence {fn}n∈N in Lp(Ω), with fn ∈ Agn(Vn(Ω),Γn), is such that its limit belongs to Lpg(Ω, U).

Now, let f ∈ Lpg(Ω, U). For n ∈ N?, we consider

f̂n = InPnf

� 70 �



Chapter 4 4.2. Convergence of minima of integral functionals

=
∑

x∈Vn(Ω)

1

|Ω(n)
x |

∫
Ω

(n)
x

f(y)dy · χ
Ω

(n)
x
,

and de�ne

fn(y) =

{
gn(y), if y ∈ Γn

f̂n(y), otherwise.

By Lebesgue di�erentiation Theorem we have {f̂n}n∈N converges pointwise to f a.e. on Ω, since∥∥f̂n∥∥Lp(Ω)
≤
∥∥f∥∥

Lp(Ω)
for all n ∈ N we conclude by Riesz-Sche�é Lemma [102, Lemma2] that {f̂n}n∈N

converges strongly to f in Lp(Ω). By construction, we have fn ∈ Agn(Vn(Ω),Γn), for all n ∈ N, and
(fn) converges strongly to f in Lp(Ω). Indeed, we have∣∣f − fn∣∣ ≤ ∣∣f − f̂n∣∣+

∣∣f̂n − fn∣∣
≤

∣∣f − f̂n∣∣+
∣∣(f̂n − fn) · χΓn

∣∣
≤

∣∣f − f̂n∣∣+
∣∣(f̂n − gn) · χΓn

∣∣
≤

∣∣f − f̂n∣∣+
∣∣(f̂n − f) · χΓn

∣∣+
∣∣(f − g) · χΓn

∣∣+
∣∣(g − gn) · χΓn

∣∣
≤ 2

∣∣f − f̂n∣∣+
∣∣g − gn∣∣+

∣∣(f − g) · χΓn∆Γ

∣∣,
and so ∥∥f − fn∥∥Lp(Ω)

≤ 2
∥∥f − f̂n∥∥Lp(Ω)

+
∥∥g − gn∥∥Lp(Ω)

+
∥∥(f − g) · χΓn∆Γ

∥∥
Lp(Ω)

.

Hence we get the result since the terms in the right-hand side of the above inequality tend to zero. �

4.2.3 Convergence of minimum problems

In the rest of the chapter, we assume that N = 2d and U = Ω×Ω. Let Lpg(Ω, U) the a�ne space given

by (4.2.3), where g ∈ Lp(Ω) and U ⊂⊂ Ω a sub-domain such that U + B(0, r) ⊂ Ω for some r > 0.

Lemma 4.2.5. Let K ∈ L1(Ω2) satis�es (A.1)-(A.3) and let g ∈ Lp(Ω).

(i) We have the following nonlocal Poincaré's inequality. There exists λ = λ(K,Ω,Γ, r0) > 0 such

that

λ

∫
Ω

∣∣u(x)
∣∣pdx ≤ ∫

Ω2

K(x,y)
∣∣u(y)− u(x)

∣∣pdxdy +

∫
Γ

∣∣g(x)
∣∣pdx, (4.2.7)

for all u ∈ Lpg(Ω, U).

(ii) Moreover, if K ∈ L∞,1(Ω2), then there exists a positive constant C > 0 such that∥∥v − u∥∥p/max(1, 2
p

)

Lp(Ω) ≤ C
∫

Ω

(
∆K
p v −∆K

p u
)

(x) (v − u) (x)dx, (4.2.8)

for all u, v ∈ Lpg(Ω, U),

Proof :

(i) See [93, Lemma3.5].

(ii) Combining Proposition 3.2.2 (v) and the nonlocal Poincaré's inequality, we get the desired result.

�

Proposition 4.2.6. Let F ∈ F(a,C1, C2, p), g ∈ Lp(Ω) and let K be a function in L∞,p(Ω2). We

assume that K satis�es (A.2) or (A.4).

Consider the following function G : Lp(Ω)→ R de�ned by

G = F ◦ ∇NL
K .

Then
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(i) G is convex and continuous on Lp(Ω). In particular, G is weakly lower semicontinuous on Lp(Ω).

Moreover, if K satis�es (A.3). Then

(ii) G is coercive on Lpg(Ω, U) induced by the weakly topology.

(iii) G attains its minimizer on Lpg(Ω, U).

(iv) if F ∈ F ′(a,C1, C2, p), then G is strictly convex on Lpg(Ω, U). In particular, G has a unique

minimizer on Lpg(Ω, U).

Proof : The convexity of the point (i) is evident, therefore, by Proposition 2.1.9, it is enough to

show that G is locally bounded below on Lp(Ω), since it is proper. Let R > 0, for all u ∈ Lp(Ω) such

that
∥∥u∥∥

Lp(Ω)
≤ R, we have

∥∥∇NL
K u

∥∥
Lp(Ω2)

≤

 2
∥∥K∥∥

L∞,p(Ω2)
R, if K satis�es (A.2),

2
∥∥K∥∥

L∞(Ω2)
R, if K satis�es (A.4).

On the other hand, by assumption (H.3) and the de�nition of G, we get that

G(u) = F (∇NL
K u) ≤


∥∥a∥∥

L1(Ω2)
+ C2

(∣∣Ω2
∣∣+ 2p

∥∥K∥∥p
L∞,p(Ω2)

Rp
)
, if K satis�es (A.2),∥∥a∥∥

L1(Ω2)
+ C2

(∣∣Ω2
∣∣+ 2p

∣∣Ω∣∣∥∥K∥∥p
L∞(Ω2)

Rp
)
, if K satis�es (A.4).

For (ii), it is enough to show that for all t > 0 the set At = {G ≤ t} ∩ Lpg(Ω, U) is bounded in Lp(Ω),

since G is weakly lsc, thanks the point (i). Let u ∈ At, there exists n ∈ N such that u ∈ Lpg(Ω, U),

hence

t ≥ G(u)

≥ C1

∫
Ω2

∣∣K(x,y)
∣∣p∣∣u(x)− u(y)

∣∣pdxdy − ∫
Ω2

a(x,y)dxdy

≥ C1m
p

∫
Ω2

χ[0,r0[(
∥∥x− y∥∥)

∣∣u(x)− u(y)
∣∣pdxdy − ∥∥a∥∥

L1(Ω2)

By Poincaré inequality (see Lemma 4.2.5) there exists λ(r, r0,Ω) > 0 such that

λ

∫
Ω

∣∣v(x)
∣∣pdx ≤ ∫

Ω2

χ[0,r0[(
∥∥x− y∥∥)

∣∣v(x)− v(y)
∣∣pdxdy +

∫
Ω

∣∣g(x)
∣∣pdx (4.2.9)

for all v ∈ Lpg(Ω, U). Then, we have∫
Ω

∣∣u(y)
∣∣pdy ≤ λ−1

C1mp
(t+

∥∥a∥∥
L1(Ω2)

) + λ−1

∫
Γ

∣∣g(x)
∣∣pdx.

Now, we show (iii). Let ιLpg(Ω,U) be the indicator function of Lpg(Ω, U) ⊂ Lp(Ω). By the point (ii)

we get that G(·) + ιLpg(Ω,U)(·) is is coercive. Since this function is weakly lower semicontinuous by

closedness of Lpg(Ω, U) and weakly lower semi-continuous of G, hence G has a minimizer in Lpg(Ω, U).

For (iv), it is enough to show that G is strictly convex. Assume that G is not. Let u, v ∈ Lpg(Ω, U)

with u 6= v such that

G(tu+ (1− t)v) = tG(u) + (1− t)G(v), for t ∈]0, 1[

since F is strictly convex we have ∇NL
K u = ∇NL

K v, and so u − v ∈ Ker(∇NL
K ) ∩ Lp0(Ω, U) = {0}. Con-

tradiction. �

Theorem 4.2.7. Let F, Fn, n ∈ N be a sequence of integral functionals given by (4.2.1) which satisfy

(Hseq). Let Kn, K be a sequence functions in L∞,p(Ω2) such that {Kn, K : n ∈ N} satisfy (Aker) or
(Bker). Let G, Gn : Lp(Ω)→ R be a sequence of functions de�ned by

G = F ◦ ∇NL
K and Gn = Fn ◦ ∇NL

Kn , n ∈ N.

Then, the sequence (Gn) Mosco-converges to G on Lp(Ω).
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Let us �rst state the following result that will be useful for proving the above theorem. This result

is an immediate consequence of Proposition 2.1.9 and Arzelà�Ascoli theorem.

Lemma 4.2.8. Let {F, Fn : n ∈ N} as in Theorem4.2.7, and let {f, fn : n ∈ N} the corresponding

integrands. Then, for almost all (x,y) ∈ Ω2, the sequence {fn((x,y), ·)}n∈N converges uniformly to

f((x,y), ·) on every compact subset of R. In particular, the sequence {fn(·, sn)}n∈N converges to f(·, s)
for every sequence (sn) converging to s and almost everywhere on Ω2.

Proof : [of Theorem4.2.7] First, we prove the pointwise convergence of Gn to G on Lp(Ω), under

the both conditions on the sequence of kernels. Let u ∈ Lp(Ω), we have ∇NL
Kn
u converge pointwise to

∇NL
K u almost everywhere on Ω2, since Kn are (under the two conditions). By Lemma4.2.8, we have

that {fn((x,y),∇NL
Kn

(x,y))}n∈N converges to fn((x,y),∇NL
K (x,y)) for almost all (x,y) in Ω2. On the

other hand, we have∣∣fn((x,y),∇NL
Knu(x,y))

∣∣ ≤ a(x,y) + C2

(
sup
n

∥∥Kn

∥∥p
L∞(Ω2)

∣∣∇NLu(x,y)
∣∣p + 1

)
,

under the condition (Bker), hence {fn(·,∇NL
Kn
u·)}n∈N is equi-integrable, and by Vitali theorem we get

the convergence of Gn(u) to G(u). Let us turn to the second case i.e. when the kernels satisfy condition

(Aker). We have {∇NL
Kn
u}n∈N converges strongly to ∇NL

Kn
u in Lp(Ω2). Indeed, by∥∥∇NL

Knu−∇
NL
K u

∥∥p
Lp(Ω2)

≤ 2p−1

∫
Ω2

∣∣Kn(x,y)−K(x,y)
∣∣p(∣∣u(y)

∣∣p +
∣∣u(x)

∣∣p)dxdy
symmetry

≤ 2p
∫

Ω

∣∣u(x)
∣∣p(∫

Ω

∣∣Kn(x,y)−K(x,y)
∣∣pdy) dx

≤ 2p
∥∥u∥∥p

Lp(Ω)

∥∥Kn −K
∥∥p
L∞,p(Ω2)

,

we get the convergence by assumption on the kernels. Hence the sequence {
∣∣∇NL

Kn
u
∣∣p}n∈N is equi-

integrable on Lp(Ω2), and so is {a + C2

(∣∣∇NL
Kn
u
∣∣p + 1

)
}n∈N. Therefore, {fn(·,∇NL

Kn
u·)}n∈N is equi-

integrable. By Vitali convergence again, we get the convergence of (Gn(u)) to G(u) under condition

(Aker).
Now, assume that {Kn, K : n ∈ N} satis�es (Bker), by arguments similar to those in the proof of

Theorem 4.2.2. We have that G, Gn, n ∈ N, are closed convex function in Lp(Ω) and that

Gn(u) = Fn(∇NL
Knu) ≤

∥∥a∥∥
L1(Ω2)

+ C2

(∣∣Ω2
∣∣+ 2p

∣∣Ω∣∣ sup
n

∥∥Kn

∥∥p
L∞(Ω2)

Rp
)
,

for all u ∈ Lp(Ω) such that
∥∥u∥∥

Lp(Ω)
≤ R, R > 0. Hence the sequence {Gn}n∈N is locally uniformly

Lipschitz, and thanks again to Proposition 2.1.9, in particular it is equi-lower semi-continuous. Invoking

Theorem2.1.15, we get the Mosco-convergence.

Assume that {Kn, K : n ∈ N} satis�es (Aker). Since Gn converge pointwise to G, by de�nition

of Mosco-convergence, it is enough to show the �rst point (i) of De�nition 2.1.14. Let {un}n∈N be a

sequence of functions in Lp(Ω) weakly converging to u in Lp(Ω). Since {Fn}n∈N Mosco-converges to

F in Lp(Ω2), thanks to Theorem2.1.15, it amounts to showing that {∇NL
Kn
un}n∈N converges weakly to

∇NL
K u in Lp(Ω2). For v ∈ Lq(Ω2), by Hölder inequality and symmetry of the kernels, we obtain∣∣∣∣∫

Ω2

v
(
∇NL
Knun

)
− v

(
∇NL
K u

)∣∣∣∣ ≤
∣∣∣∣∫

Ω2

(v(x,y) + v(y,x)) (Kn(x,y)un(y)−K(x,y)u(y)) dxdy

∣∣∣∣
≤

∣∣∣∣∫
Ω

(∫
Ω

(v(x,y) + v(y,x))K(x,y)dx

)
(un(y)− u(y)) dy

∣∣∣∣
+

∣∣∣∣∫
Ω2

(v(x,y) + v(y,x))un(y) (Kn(x,y)−K(x,y)) dxdy

∣∣∣∣ .
hence

∣∣∫
Ω2 v

(
∇NL
Kn
un
)
− v

(
∇NL
K u

)∣∣ → 0 as n tends to ∞. Indeed, It is easy to see that the function

y →
∫

Ω (v(x,y) + v(y,x))K(x,y)dx belongs in Lq(Ω), by weakly convergence of (un), the �rst term
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in the last line of the above inequalities tends to 0, for the second term, we have that∣∣∣∣∫
Ω2

(v(x,y) + v(y,x))un(y) (Kn(x,y)−K(x,y)) dxdy

∣∣∣∣
≤
∥∥un∥∥Lp(Ω)

∣∣∣∣∫
Ω

∣∣∣∣∫
Ω

(v(x,y) + v(y,x)) (Kn(x,y)−K(x,y)) dx

∣∣∣∣q dy∣∣∣∣1/q
≤
∥∥un∥∥Lp(Ω)

(∫
Ω

∣∣∣∣∫
Ω

∣∣v(x,y) + v(y,x)
∣∣qdx∣∣∣∣ ∣∣∣∣∫

Ω

∣∣Kn(x,y)−K(x,y)
∣∣pdx∣∣∣∣q/p dy

)1/q

≤ C
∥∥Kn −K

∥∥
L∞,p(Ω2)

.

(4.2.10)

where C = 2
∥∥v∥∥

Lq(Ω2)
supn

∥∥un∥∥Lp(Ω)
<∞, since (un) is weakly convergent. By assumption, we obtain∣∣∫

Ω2 (v(x,y) + v(y,x))un(y) (Kn(x,y)−K(x,y)) dxdy
∣∣→ 0 as n tends to ∞. �

Theorem 4.2.9. Let F, Fn, n ∈ N be a sequence of integral functionals given by (4.2.1) which satisfy

(Hseq). Let Kn, K ∈ L∞,p(Ω2), gn, g ∈ Lp(Ω), n ∈ N, and {Un}n∈N be a sequence of open subsets of

Ω. We de�ne F , Fn : Lp(Ω)→ R by

Fn(u) = Fn(∇NL
Knu) + ιLpgn (Ω,Un)(u)

F(u) = F (∇NL
K u) + ιLpg(Ω,U)(u)

Assume that

(i) the sequence {K, Kn : n ∈ N} satis�es (Aker) or (Bker), and (Kn) satis�es (A.3) uniformly for

some m > 0 and r0 > 0.

(ii) the sequence {gn}n∈N converges strongly to g in Lp(Ω).

(iii) the sequence {Un, U, n ∈ N} satisfy Un + Br ⊂ Ω and
∣∣Un∆U

∣∣→ 0, as n tends to +∞ .

Then,

(i) the sequence {Fn}n∈N Mosco-converges to F .
(ii) the sequence {Fn}n∈N is equi-coervive on Lp(Ω) endowed with by the weak topology.

(iii) the functional F attains its minimum. Moreover

min
Lp(Ω)

F = lim
n

inf
Lp(Ω)

Fn.

(iv) every sequence {un}n∈N in Lp(Ω) such that limnFn(un) = limn infLp(Ω)Fn, has a subsequence

converging weakly in Lp(Ω) and its limit is a minimum point for F .

Proof : The point (i) is a consequence of Corollary 2.1.17, Theorem 4.2.7 and Proposition 4.2.3.

The points (iii) and (iv) are an immediate result of (i), (ii) and Theorem 2.1.13. For (ii), it amounts

to showing that for all t > 0 the set At = ∪n{Fn ≤ t} is bounded in Lp(Ω). Let u ∈ At, there exists
n ∈ N such that u ∈ Lpgn(Ω, Un), hence

t ≥ Fn(u)

≥ C1

∫
Ω2

∣∣Kn(x,y)
∣∣p∣∣u(x)− u(y)

∣∣pdxdy − ∫
Ω2

a(x,y)dxdy

≥ C1m
p

∫
Ω2

χ[0,r0[(
∥∥x− y∥∥)

∣∣u(x)− u(y)
∣∣pdxdy − ∥∥a∥∥

L1(Ω2)

≥ C1m
p

(
λ

∫
Ω

∣∣u(x)
∣∣pdx− ∫

Ω

∣∣gn(x)
∣∣pdx)− ∥∥a∥∥

L1(Ω2)

where λ = λ(r, r0,Ω) > 0, hence∫
Ω

∣∣u(y)
∣∣pdy ≤ λ−1

C1mp
(t+

∥∥a∥∥
L1(Ω2)

) + λ−1 sup
n

∥∥gn∥∥pLp(Ω)
.
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�

Theorem 4.2.10. Let gn, Γn, Γ′n, Agn(Vn(Ω),Γn), A′gn(Vn(Ω),Γ′n) as in Lemma 4.2.4, and let

F, Fn, n ∈ N be a sequence of integral functionals given by (4.2.1) which satisfy (Hseq). Let

Kn, K ∈ L∞,p(Ω2). We de�ne F , Fn : Lp(Ω)→ R by

Fn(u) = Fn(∇NL
Knu) + ιAgn (Vn(Ω),Γn)(u)

F(u) = F (∇NL
K u) + ιLpg(Ω,U)(u)

Assume that

(i) the sequence {K, Kn : n ∈ N} satis�es (Aker) or (Bker), and (Kn) satis�es (A.3) uniformly for

some m > 0 and r0 > 0.

(ii) the sequence {gn}n∈N converges strongly to g in Lp(Ω).

Then

(i) the sequence {Fn}n∈N Mosco-converges to F .
(ii) the sequence {Fn}n∈N is equi-coervive on Lp(Ω) endowed with the weak topology.

(iii) the functional F attains its minimizer. Moreover

min
Lp(Ω)

F = lim
n

inf
Lp(Ω)

Fn.

(iv) every sequence {un}n∈N in Lp(Ω) such that limnFn(un) = limn infLp(Ω)Fn, has a subsequence

converging weakly in Lp(Ω) and its limit is a minimum point for F .

Proof : We obtain the result by the same arguments as in the proof of Theorem 4.2.9, where we

invoke Proposition 4.2.4 instead Proposition 4.2.3. �

Remark 4.2.11. All the results of this subsection remain true, when the kernels are such that

K(x,y) = J(x−y) andKn(x,y) = Jn(x−y), if we replace the hypotheses on the kernelsK, Kn, n ∈ N
by the equivalent ones on the kernels J, Jn, n ∈ N.

4.3 Application to a sequence of Dirichlet problems

Now, we are in position to attack our main problem of this chapter, which consists in studying the

asymptotic behaviour of the sequence of the problems (PnD). Before this, we start by establishing the

well-posedness of the nonlocal boundary value problem (PD). We keep the same assumptions as in

Section 4.2.3, and in particular on U, Ω, i.e. U is a sub-domain of Ω such that U + B(0, r) ⊂ Ω for

some r > 0.

4.3.1 Existence and uniqueness of the solution

De�ne the energy functional F(u) : Lp(Ω)→ R by

F(u) :=
1

2p

∫
Ω2

K(x,y)
∣∣u(y)− u(x)

∣∣pdydx+

∫
Ω
f(x)u(x)dx. (4.3.1)

We have the following "integration by parts" identity.

Lemma 4.3.1 ([93, Lemma2.2]). Let K ∈ L1(Ω2) satis�es (A.2). For every u, v ∈ Lp(Ω) we have∫
Ω

(∆K
p u)vdx =

1

2

∫
Ω2

K(x,y)
∣∣u(y)− u(x)

∣∣p−2
(u(y)− u(x))(v(y)− v(x))dydx. (4.3.2)
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Due to the nonlocal property of the operator ∆K
p , classical boundary conditions (imposed on bound-

aries of zero volume) will not yield well posed systems. The authors in [65] solved this issue and showed

well-posedness of (PD) for p = 2 in the scalar case by using a variational approach based on the Lax-

Milgram lemma (see also [64]). Since the Lax-Milgram lemma is not applicable for the nonlinear

problem (PD), [93] proved Dirichlet's principle for the nonlocal setting of (PD). Adapted to our

setting, this can be stated as follows.

Proposition 4.3.2 (Dirichlet's principle). Let K ∈ L1(Ω2) be a function satisfying (A.1) and

(A.2).Consider the functional F : Lp(Ω)→ R given in (4.3.1). Then, the following holds.

(i) Assume u solves the Dirichlet problem (PD). Then

F(u) ≤ F(v) (4.3.3)

for every v ∈ Lpg(Ω, U).

(ii) Conversely, if u satis�es (4.3.3) for every v ∈ Lpg(Ω, U), then u solves the Dirichlet problem

(PD).

Theorem 4.3.3. Let g ∈ Lp(Ω), f ∈ Lq(Ω), with 1 < p, q < +∞ and 1
p + 1

q = 1 and K ∈ L1(Ω2)

satis�es (A.1)-(A.3).Then the functional F has a unique minimizer in Lpg(Ω, U), i.e. the problem

(PD) has a unique solution.

Proof : See [93, Theorem3.11]. �

4.3.2 The continuum limit

Let n ∈ N. De�ne the energy functional Fn(u) : Lp(Ω)→ R by

Fn(u) :=
1

2p

∫
Ω2

Kn(x,y)
∣∣u(y)− u(x)

∣∣pdydx+

∫
Ω
fn(x)u(x)dx, (4.3.4)

where Kn ∈ L1(Ω2) satis�es (A.1)-(A.2) and fn ∈ Lq(Ω), q is the Hölder conjugate of p. We have

that, thanks to Dirichlet's principle, solving the problem (PnD) is equivalent to minimizing the above

functional Fn on Lpgn(Ω, Un), with the function gn ∈ Lp(Ω).

Theorem 4.3.4. Let Kn, K ∈ L∞,1(Ω2) satisfy (A.1) and (A.2), gn, g ∈ Lp(Ω), fn, f ∈ Lq(Ω) and

Un, U ⊂⊂ Ω sub-domains, n ∈ N. Assume that
(1) the sequence {gn}n∈N converges strongly to g in Lp(Ω).

(2) the sequence {fn}n∈N converges strongly to f in Lq(Ω).

(3) the sequence {K
1
p , K

1
p
n : n ∈ N} satis�es (Aker) or (Bker), and there exist m > 0 and r0 > 0

such that

mχ[0,r0[(
∥∥x− y∥∥) ≤ Kn(x,y), for a.e. x,y ∈ Ω, all n ∈ N.

(4) the sequence {Un, U, n ∈ N}, of subdomains of Ω, satis�es that Un + B(0, r) ⊂ Ω, n ∈ N, and∣∣Un∆U
∣∣→ 0, as n tends to +∞, where r is given at the head of this section.

Then (PD) and (PnD) have unique solutions, respectively, u and un. Moreover, the sequence of solutions

{un}n∈N converges weakly to u in Lp(Ω).

Proof : The existence and the uniqueness of the solutions u and un are a consequence of Theorem

4.3.3. On the other hand, since {fn}n∈N converges strongly to f on Lp(Ω), we get that the sequence
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{u 7→
∫

Ω fnu}n∈N is Mosco-convergent to u 7→
∫

Ω fnu in Lp(Ω). Then by Theorem 4.2.9 and Corollary

2.1.17, we have {En}n∈N Mosco-convergences to E in Lp(Ω), where

E(u) =
1

2p

∫
Ω2

K(x,y)
∣∣u(y)− u(x)

∣∣pdydx+

∫
Ω
fudx+ ιLpg(Ω,U)(u);

En(u) =
1

2p

∫
Ω2

Kn(x,y)
∣∣u(y)− u(x)

∣∣pdydx+

∫
Ω
fnudx+ ιLpgn (Ω,Un)(u).

Hence by Theorem 2.1.13, if we show the equi-coercivity of the sequence {En}n∈N, we get the weak

convergence of {un}n∈N to u. As in the proof of Theorem 4.2.9, we are going to show that At =

∪n{En ≤ t} is bounded in Lp(Ω) for all t ∈ R. Let t ∈ R and u ∈ At, then there exists n such that

u ∈ Lpgn(Ω, Un), hence

t ≥ En(u)

=
1

2p

∫
Ω2

Kn(x,y)
∣∣u(y)− u(x)

∣∣pdydx+

∫
Ω
fnudx

=
1

2p

∫
Ω2

K(x,y)
∣∣u(y)− u(x)

∣∣pdydx+

∫
Ω
fnudx

≥ m

2p

∫
Ω2

χ[0,r0[(
∥∥x− y∥∥)

∣∣u(y)− u(x)
∣∣pdydx− ∫

Ω

∣∣fnu∣∣dx
≥ m

2p

(
λ
∥∥u∥∥p

Lp(Ω)
−
∥∥gn∥∥pLp(Ω)

)
− ε

2p

∥∥u∥∥p
Lp(Ω)

− 2

qε

∥∥fn∥∥qLq(Ω)

furthermore

1

2p
(mλ− ε)

∥∥u∥∥p
Lp(Ω)

≤ t+
m

2p

∥∥gn∥∥pLp(Ω)
+

2

qε

∥∥fn∥∥qLq(Ω)

≤ t+
m

2p
sup
n

∥∥gn∥∥pLp(Ω)
+

2

qε
sup
n

∥∥fn∥∥qLq(Ω)

where λ(r, r0,Ω) > 0. We choose ε small enough such thatmλ−ε > 0, we obtain the equi-coercivity. �

Theorem 4.3.5. Let Kn, K ∈ L∞,1(Ω2) satisfy (A.1) and (A.2), gn, fn ∈ A(Vn(Ω)), g ∈ Lp(Ω) and

f ∈ Lq(Ω), and let Un =
⋃

Ω
(n)
x ⊂U

Ω
(n)
x and Γn = Ω \ Un as in Proposition 4.2.4, n ∈ N. Assume that

(1) the sequence {gn}n∈N converges strongly to g in Lp(Ω).

(2) the sequence {K
1
p , K

1
p
n : n ∈ N} satis�es (Aker) or (Bker), and there exist m > 0 and r0 > 0

such that

mχ[0,r0[(
∥∥x− y∥∥) ≤ Kn(x,y), for a.e. x,y ∈ Ω, all n ∈ N.

(3) the sequence {fn}n∈N converges strongly to f in Lq(Ω).

Then, for all n ∈ N the problem (PnD) has a unique solution un ∈ Agn(Vn(Ω),Γn). Moreover, the

sequence of solutions {un}n∈N converges weakly to the solution of the problem (PD) in Lp(Ω).

Proof : We obtain the result by the same arguments as in the proof of Theorem 4.3.4, where we

use the result of Theorem 4.2.10 instead of that of Theorem 4.2.9. �

Remark 4.3.6. All the results of this section remain true, when the kernels are such that K(x,y) =

J(x− y) and Kn(x,y) = Jn(x− y), if we replace the hypotheses on the kernels K, Kn, n ∈ N by the

equivalent ones of the kernels J, Jn, n ∈ N.
In this section, all kernels considered are positive, which is not the case in Section 4.2.3. In this case a

su�cient condition for the strong convergence of the sequence {K
1
p
n }n∈N converges to K

1
p in L∞,p(Ω2),
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under the assumption (Aker), to hold, is that {Kn}n∈N to K in L∞,1(Ω2). Indeed, for all s, t ≥ 0 and

α ∈]0, 1], we have ∣∣sα − tα∣∣ ≤ ∣∣s− t∣∣α,
thanks to the concavity of the function : t→

∣∣t∣∣α. Applying this inequality, we get∣∣K 1
p
n (x,y)−K

1
p (x,y)

∣∣ ≤ ∣∣Kn(x,y)−K(x,y)
∣∣ 1
p , for a.e. x, y ∈ Ω,

hence ∥∥K 1
p
n −K

1
p
∥∥
L∞,p(Ω2)

≤
∥∥Kn −K

∥∥ 1
p

L∞,1(Ω2)
.

4.4 Consistency and error estimates of Dirichlet problem

4.4.1 General consistency estimates

Fix n ∈ N. We denote by H(Vn(Ω)) the set of real functions de�ned on Vn(Ω) where Vn(Ω) is given

by (4.2.4), and similarly for H(Vn(Ω)×Vn(Ω)). Let K a nonnegative symmetric function in L∞,1(Ω2),

g ∈ Lp(Ω) and f ∈ Lq(Ω), with 1
p + 1

q = 1.

We consider the discrete Dirichlet problem{
1
nd

∑
y∈Vn(Ω) Kxy

∣∣uy − ux

∣∣p−2
(uy − ux) = fx, x ∈ An

ux = gx, x ∈ Acn,
(Pdn)

where g = Png, f = Pnf, K = PnK, An = {x ∈ Vn(Ω) : Ω
(n)
x ⊂ U} and Acn = Vn(Ω) \An.

The problem (Pdn) is equivalent to solving the following minimization problem

min{Gn(u), on Hg(Vn(Ω), An)}, (VPdn)

where

Gn(u)
def

=
1

2p

∑
x,y∈Vn(Ω)

Kxy

∣∣uy − ux

∣∣p +
∑

x∈Vn(Ω)

uxfx

and

Hg(Vn(Ω), An) = {u ∈ H(Vn(Ω)) : u = g on Acn}.

Our aim is to compare the solutions of problems (PD) and (Pdn). The solution of (Pdn) being discrete,

we consider its continuum extensions of f , g u on Ω and K on Ω2 as

fn = Inf , gn = Ing, un = Inu and Kn = InK.

it is immediate to see that a function is a solution of the problem (Pdn) if, and only if its continuous

extension is a solution of the following problem{
−∆Kn

p un = fn, in Un

un = gn, on Γn = Ω \ Un,
(Pcn)

where Un =
⋃

x∈An Ω
(n)
x , which in turn is equivalent to minimizing the functional

v 7→ 1

2p

∫
Ω2

Kn(x,y)
∣∣v(y)− v(x)

∣∣pdydx+

∫
Ω
v(x)fn(x)dx

on Agn(Vn(Ω),Γn), see (4.2.5) for the de�nition of this set.

Corollary 4.4.1. Let g ∈ Lp(Ω), f ∈ Lq(Ω) and K ∈ L∞(Ω2) . Assume that K satis�es (A.1)-

(A.3). Then, for all n ∈ N the problem (Pdn) has a unique solution u ∈ H(Vn(Ω)). Moreover, if u is

the solution of the problem (PD) then {Inu}n∈N converges weakly to u in Lp(Ω).
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Proof : In view of the de�nition of the functions fn, gn, Kn, by the Lebesgue di�erentiation theorem

(see [119, Theorem3.4.4]), we have that gn, fn and Kn converge pointwise to respectively f, g, and K

a.e. on Ω and Ω2 respectively. Combining this with Fatou's lemma and (2.1.9), we get

lim
n

∥∥gn∥∥Lp(Ω)
=
∥∥g∥∥

Lp(Ω)
and lim

n

∥∥fn∥∥Lq(Ω)
=
∥∥f∥∥

Lq(Ω)
.

Hence, by the Riesz-Sche�é lemma, we have that InPng → g strongly in Lp(Ω) and InPnf → f strongly

in Lq(Ω). On the other hand, by the assumption (A.3), we have mχ[0,r0[(
∥∥x − y∥∥) ≤ InK(x,y) ≤∥∥K∥∥

L∞(Ω2)
for a.e. on Ω2, whence {Kn, K : n ∈ N} satis�es the condition (Aker). By Theorem 4.3.5

we get the result. �

Corollary 4.4.2. Let g ∈ Lp(Ω), f ∈ Lq(Ω) and let K(x,y) = J(x−y) where J ∈ L1(Ω−Ω) satis�es

(A'.1)-(A'.3). Then, for all n ∈ N the problem (Pdn) has a unique solution u ∈ H(Vn(Ω)). Moreover,

if u is the solution of the problem (PD) then {Inu}n∈N converges weakly to u in Lp(Ω).

Proof : By the same arguments as the proof of the above corollary, we get that

gn → g and fn → f,

strongly on Lp(Ω) and Lq(Ω), respectively, and

Jn → J,

strongly on L1(Ω−Ω) and also pointwise almost everywhere on Ω−Ω, where Jn = InPnJ . Moreover,

by the assumption (A'.3), we have mχ[0,r0[(
∥∥x − y∥∥) ≤ InK(x,y) = Jn(x − y) a.e. on Ω2, whence

{J1/p, J
1/p
n , n ∈ N} satis�es the condition (A′rad), thanks to Remark 4.3.6. By Theorem 4.3.5 again,

we get the desired result. �

Remark 4.4.3. the results of Corollary 4.4.1 and Corollary 4.4.2 remain true if we replace An and

Acn by A′n = {x ∈ Vn(Ω) : Ω
(n)
x ∩ U 6= ∅} and (A′n)c, respectively, in (Pdn).

4.4.2 A priori estimates

In this subsection we give an a priori estimate for the Dirichlet problem. The reason we separate

this section from the previous one is that here, we restrict ourselves to the case where the datum g

is constant, without loss of generality we take g = 0. The second reason is due to the choice of the

boundary set Γn ⊂ Γ as the set Acn de�ned in (Pdn). These conditions feasibility of the constraint that

Agn(Vn(Ω),Γn) ⊂ Lpgn(Vn(Ω),Γn), which plays a key role to get our estimation.

Theorem 4.4.4. Let K ∈ L∞,1(Ω2) satis�es (A.1)-(A.3), g = 0 and f ∈ Lq(Ω). Let K = PnK,

g = 0 and f = Pnf . Let u be a solution of the discrete problem (Pdn) with kernel K data (f ,g) and the

boundary set Acn, and u the solution of the continuous problem (PD) with kernel K, data (f, g) and

the boundary set Γ. Then,∥∥u− un∥∥p/max(1, 2
p

)

Lp(Ω) ≤C

(∥∥K −Kn

∥∥max(2, p
p−1

)

L∞,1(Ω2)
+
∥∥K −Kn

∥∥
L∞,1(Ω2)

∥∥InPnu− u∥∥Lp(Ω)

+


∥∥InPnu− u∥∥ p

p−1

Lp(Ω) p ∈ [2,+∞[,∥∥InPnu− u∥∥ 2
3−p
Lp(Ω) p ∈]1, 2].

)
.

(4.4.1)

where C > 0 independent of n and Kn, gn, fn and un are the continuous extensions of the functions

K, g, f and u respectively.
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Proof : We denote by 〈·, ·〉 the usual inner product in L2(Ω) and ∇NLv(x,y) = v(y) − v(x),

v ∈ L1(Ω). We have

〈∆K
p u, un − u〉 = 〈−f, un − u〉, (4.4.2)

〈∆Kn
p un, v − un〉 = 〈−fn, v − un〉 for all v ∈ Agn(Vn(Ω),Γn). (4.4.3)

By summing, we deduce from (4.4.2) and (4.4.3) :

〈∆Kn
p un −∆K

p u, un − u〉 = 〈∆Kn
p un, v − u〉 − 〈−f, un − u〉 − 〈−fn, v − un〉

= 〈∆Kn
p un, v − u〉 − 〈−f, v − u〉

for all v ∈ Agn(Vn(Ω),Γn). The last equality comes from the fact that 〈f, v−un〉 = 〈fn, v−un〉. Since
∆K
p u = −f on U and v = un on Γn, we get

〈∆Kn
p un −∆K

p u, un − u〉 = 〈∆Kn
p un −∆K

p u, v − u〉,

in turn,

〈∆K
p un −∆K

p u, un − u〉 = 〈∆Kn
p un −∆K

p un, v − u〉+ 〈∆K
p un −∆K

p u, v − u〉
−〈∆Kn

p un −∆K
p un, un − u〉. (4.4.4)

For the term in the left-hand side, we have by Lemma 4.2.5 (ii), there exists C > 0 independent of

n such that ∥∥u− un∥∥p/max(1, 2
p

)

Lp(Ω) ≤ C〈∆K
p un −∆K

p u, un − u〉. (4.4.5)

On the other hand, we start with the last term in the right-hand side of the equation (4.4.4). By by

Hölder inequality, we have

〈∆Kn
p un −∆K

p un, un − u〉 ≤
∥∥∆Kn

p un −∆K
p un

∥∥
Lq(Ω)

∥∥u− un∥∥Lp(Ω)
. (4.4.6)

Applying Jensen inequality on the �rst term in the right-hand side of of the above inequality, we get∥∥∆Kn
p un −∆K

p un
∥∥
Lq(Ω)

≤
(∫

Ω

(∫
Ω

∣∣K −Kn

∣∣(x,y)
∣∣∇NLun(x,y)

∣∣p−1
dy

)q
dx

)1/q

Jensen
≤

(∫
Ω

(∫
Ω

∣∣K −Kn

∣∣(x,y)dy

)q−1 ∫
Ω

∣∣K −Kn

∣∣(x,y)
∣∣∇NLun(x,y)

∣∣pdydx)1/q

≤ 2p
∥∥K −Kn

∥∥ q−1
q

L∞,1(Ω2)

(∫
Ω2

∣∣K −Kn

∣∣(x,y)
∣∣un(y)

∣∣pdydx)1/q

≤ C1

∥∥K −Kn

∥∥
L∞,1(Ω2)

,

(4.4.7)

where C1 = 2p
∣∣Ω∣∣ p−1

p supn
∥∥un∥∥p−1

Lp(Ω)
<∞. Plugging (4.4.7) in (4.4.6), we get

〈∆Kn
p un −∆K

p un, un − u〉 ≤ C1

∥∥K −Kn

∥∥
L∞,1(Ω2)

∥∥u− un∥∥Lp(Ω)
, (4.4.8)

Similarly for the second term in the right-hand side of the equation (4.4.4), we have∣∣〈∆Kn
p un −∆K

p un, v − u〉
∣∣ ≤ C1

∥∥K −Kn

∥∥
L∞,1(Ω2)

∥∥v − u∥∥
Lp(Ω)

. (4.4.9)

Let's turn to the �rst term in the right-hand side of the equation (4.4.4), we have∣∣〈∆K
p un −∆K

p u, v − u〉
∣∣ ≤ ∥∥∆K

p un −∆K
p u
∥∥
Lq(Ω)

∥∥v − u∥∥
Lp(Ω)

. (4.4.10)

For the case when p ∈]1, 2], using inequality (3.2.6) and Jensen inequality, we get

∥∥∆K
p un −∆K

p u
∥∥
Lq(Ω)

≤
(∫

Ω

(∫
Ω
K(x,y)

∣∣(u− un)(x)− (u− un)(y)
∣∣p−1

dy

)q
dx

) 1
q
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≤ C
∥∥K∥∥

L∞,1(Ω2)

∥∥u− un∥∥p−1

Lp(Ω)
, (4.4.11)

where C = 2p−1
∣∣Ω∣∣ p−1

p . In the case when p > 2, we apply inequality (3.2.6) and Hölder inequality

twice, we obtain∥∥∆K
p un −∆K

p u
∥∥
Lq(Ω)

≤
(∫

Ω

(∫
Ω
K(x,y)

(∣∣∇NLun(x,y)
∣∣+
∣∣∇NLu(x,y)

∣∣)p−2 ∣∣∇NL(u− un)(x,y)
∣∣dy)q dx) 1

q

≤

(∫
Ω

(∫
Ω
K(x,y)

(∣∣∇NLun(x,y)
∣∣+
∣∣∇NLu(x,y)

∣∣)p dy) p−2
p−1

·

(∫
Ω
K(x,y)

∣∣∇NL(u− un)(x,y)
∣∣pdy) 1

p−1
(∫

Ω
K(x,y)dy

)q/p
dx

)1/q

≤
∥∥K∥∥1/p

L∞,1(Ω2)

(∫
Ω2

K(x,y)
(∣∣∇NLun(x,y)

∣∣+
∣∣∇NLu(x,y)

∣∣)p dydx) p−2
p

(∫
Ω2

K(x,y)
∣∣∇NL(u− un)(x,y)

∣∣pdydx) 1
p

≤ C
∥∥K∥∥

L∞,1(Ω2)

∥∥u− un∥∥Lp(Ω)

(4.4.12)

where C = 4p(supn
∥∥un∥∥p−2

Lp(Ω)
+
∥∥u∥∥

Lp(Ω)
) < +∞. Plugging the inequalities (4.4.11) and (4.4.12) in

(4.4.10), one gets

∣∣〈∆K
p un −∆K

p u, v − u〉
∣∣ ≤ C


∥∥un − u∥∥Lp(Ω)

∥∥v − u∥∥
Lp(Ω)

p ∈ [2,+∞[,∥∥un − u∥∥p−1

Lp(Ω)

∥∥v − u∥∥
Lp(Ω)

p ∈]1, 2].
(4.4.13)

Assembling the above iqualities and inqualities (4.4.4), (4.4.5) (4.4.8), (4.4.9), and (4.4.13), we obtain∥∥u− un∥∥p/max(1, 2
p

)

Lp(Ω) ≤C

(∥∥K −Kn

∥∥
L∞,1(Ω2)

∥∥un − u∥∥Lp(Ω)
+
∥∥K −Kn

∥∥
L∞,1(Ω2)

∥∥v − u∥∥
Lp(Ω)

+


∥∥un − u∥∥Lp(Ω)

∥∥v − u∥∥
Lp(Ω)

p ∈ [2,+∞[,∥∥un − u∥∥p−1

Lp(Ω)

∥∥v − u∥∥
Lp(Ω)

p ∈]1, 2].

)
.

(4.4.14)

Now, we use the Young inequality and take v = InPnu, we obtain the desired result∥∥u− un∥∥p/max(1, 2
p

)

Lp(Ω) ≤

C


∥∥K −Kn

∥∥ p
p−1

L∞,1(Ω2)
+
∥∥K −Kn

∥∥
L∞,1(Ω2)

∥∥InPnu− u∥∥Lp(Ω)
+
∥∥InPnu− u∥∥ p

p−1

Lp(Ω) p ∈ [2,+∞[,∥∥K −Kn

∥∥2

L∞,1(Ω2)
+
∥∥K −Kn

∥∥
L∞,1(Ω2)

∥∥InPnu− u∥∥Lp(Ω)
+
∥∥InPnu− u∥∥ 2

3−p
Lp(Ω) p ∈]1, 2].

(4.4.15)

�

Corollary 4.4.5. Let K be a kernel such that K(x,y) = J(x − y) where J ∈ L1(Ω − Ω) satis�es

(A'.1)-(A'.3) and let K, g, g, f, f , u, u as in Theorem4.4.4. Then, there exists a positive constant

C such that∥∥u− un∥∥p/max(1, 2
p

)

Lp(Ω) ≤C

(∥∥J − Jn∥∥max(2, p
p−1

)

L1(Ω−Ω)
+
∥∥J − Jn∥∥L1(Ω−Ω)

∥∥InPnu− u∥∥Lp(Ω)

+


∥∥InPnu− u∥∥ p

p−1

Lp(Ω) p ∈ [2,+∞[,∥∥InPnu− u∥∥ 2
3−p
Lp(Ω) p ∈]1, 2].

)
.

(4.4.16)
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where Jn = InPnJ and gn, fn and un are the continuous extensions of the functions g, f and u

respectively. In particuler,

lim
n

∥∥u− un∥∥Lp(Ω)
= 0. (4.4.17)

Proof : The inequality (4.4.16) is immediate result of Theorem4.4.4. For (4.4.17), we apply the

same arguments of the proof of Corollary 4.4.1, we get that

lim
n

∥∥J − Jn∥∥L1(Ω−Ω)
= 0 and lim

n

∥∥InPnu− u∥∥Lp(Ω)
= 0.

Let n tends to +∞ in (4.4.16), we get the desired result. �

4.5 Application to random graph sequences

In this section, we study continuum limits of the discrete problem on the random graph model of

De�nition 2.3.7.

Throughout this section, we suppose that p ∈]1, 2]. Let Ω = [0, 1], recall the notation of Section 2.3.3,

we de�ne the boundary set Γ = Ω \ U where U =]r, 1 − r[, r ∈]0, 1/2[. Recall also the the construc-

tion of the random graph model in De�nition 2.3.7 where each edge (i, j) is independently set to 1

with probability (2.3.5). This entails that the random matrix Λ is symmetric. However, it is worth

emphasizing that the entries of Λ are not independent, but only the entries in each row are mutually

independent.

We consider the discrete problem on K-random graphs G(n,K, ρn)
1
ρnn

∑
j:(i,j)∈E(G(n,K,ρn))

Ψ(uj − ui) = fi, xi ∈ An,

ui = 0, otherwise.

(Pd,Gn )

where u, f = Pnf ∈ Rn and An = {xi : [xi, xi+1[⊂ U} with xi
def

= i
n , i = 0, 1, · · · , n. It is important

to keep in mind that, since G(n,K, ρn) is a random variable taking values in the set of simple graphs,

the boundary value problem (Pd,Gn ) must be understood in this sense. Observe that the normalization

in (Pd,Gn ) by ρnn corresponds to the average degree (see Section 2.3.4 for details).

Problem (Pd,Gn ) can be equivalently written as{
−∆̂

Λ

p u = f , on An,

u = 0, on Acn.

We de�ne the continuum extension un as in the above section. We then see that they satisfy{
−∆InΛ

p un(x) = Inf(x), x ∈ Un,
un(x) = 0, x ∈ Γn.

(4.5.1)

where Un = [rn, 1− rn] and Γn = [0, 1] \ Un, with rn = min{xi : r ≤ xi, i = 0, 1, · · · , n}.
Toward our goal of establishing error bounds, we de�ne v as the solution of the discrete problem

(Pdn) with data (f , 0), boundary set Acn and discrete kernel
∧
K. Its continuum extension vn de�ned

similarly as above, full�ll −∆In
∧
K

p vn(x) = Inf(x), x ∈ Un,
vn(x) = 0, x ∈ Γn.

(4.5.2)

We have ∥∥un − u∥∥Lp(Ω)
≤
∥∥un − vn∥∥Lp(Ω)

+
∥∥vn − u∥∥Lp(Ω)

. (4.5.3)
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This bound is composed of two terms: the �rst one captures the error of random sampling, and the

second that of discretization. Assume that (f ,K, f,K) verify the assumptions of Theorem4.4.4. Since

In
∧
K(x, y) ≤ InK(x, y) = InPnK(x, y), the assumptions on K transfer to

∧
K, and the second term can

be bounded using (4.4.1), replacing InPnK by In
∧
K. It remains to bound the �rst term by comparing

(4.5.1) and (4.5.2).

Lemma 4.5.1. Assume that (J,g,K, , f , g,K, f) verify the assumptions of Corollary 4.4.5. Assume

also that ρn → 0 and ρnn = ω ((log n)γ) for some γ > 1. Then, for any β ∈]0, 1[,

E(
∥∥un − vn∥∥Lp(Ω)

) ≤ C (ρnn)1/2 , (4.5.4)

in turn, ∥∥un − vn∥∥Lp(Ω)
≤ C(ρnn)−β/2 (4.5.5)

with probability at least 1− (ρnn)−(1−β)/2. In particular,∥∥un − vn∥∥Lp(Ω)
≤ o

(
(log n)−γβ/2

)
(4.5.6)

with probability at least 1− o
(

(log n)−γ(1−β)/2
)
.

To prove this lemma, we need the following deviation inequality that we include for the reader

convenience.

Lemma 4.5.2 (Rosenthal's inequality, [96]). Let m be a positive integer, γ ≥ 2 and ξ1, · · · , ξm, be
m zero mean independent random variables such that supi E

(∣∣ξi∣∣γ) <∞. Then there exists a positive

constant C such that

E

(∣∣∣∣∣∑
i

ξi

∣∣∣∣∣
γ)
≤ C max

∑
i

E
(∣∣ξi∣∣γ) ,(∑

i

E
(∣∣ξi∣∣2))γ/2

 .

Proof : Denote by fn = Inf ,
∧
Kn = In

∧
K and Λn = InΛ. We thus have from (4.5.1) and (4.5.2)

that a.e.

〈∆Λn
p un −∆Λn

p vn, un − vn〉 = −〈∆Λn
p vn −∆

∧
Kn
p vn, un − vn〉,

since 〈∆Λn
p un −∆

∧
Kn
p vn, un − vn〉 = 0. Since p ∈]1, 2] and mχ[0,r0[(

∥∥x− y∥∥) ≤ Λn(x,y) almost surely,

we have ∥∥un − vn∥∥2

Lp(Ω)
≤ C〈∆Λn

p un −∆Λn
p vn, un − vn〉,

almost surely, thanks to Lemma4.2.5 (ii).

On the other hand, let Zi = 1
n

∑
j(
∧
Kij −Λij)Ψ(vj − vi), by Hölder inequality, we have

〈∆
∧
Kn
p vn −∆Λn

p vn, un − vn〉 ≤
∥∥InZ∥∥Lq(Ω)

∥∥un − vn∥∥Lp(Ω)
. (4.5.7)

where q is the Hölder conjugate of p. In turn∥∥un − vn∥∥Lp(Ω)
≤ C

∥∥InZ∥∥Lq(Ω)
, (4.5.8)

so, it remains to bound the random variable
∥∥InZ∥∥Lq(Ω)

. For this purpose, we have by Jensen inequality

that

E
(∥∥InZ∥∥Lq(Ω)

)
≤

(
n−1

∑
i

E
(∣∣Zi∣∣q))1/q

. (4.5.9)
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By independence of (Λij)j and the fact that E(Zi) = 0, for each i, we are then in the position to apply

Rosenthal's inequality, whence there exists a positive constant C1 > 0 such that

E
(∣∣Zi∣∣q) ≤ C max

(∑
j

(
1

ρnn

)q
E(
∣∣ρnΛij − ρn

∧
Kij

∣∣q)∣∣vj − vi
∣∣p,

∑
j

(
1

ρnn

)2

V(ρnΛij)
∣∣vj − vi

∣∣2(p−1)

q/2)
.

Since ρ−1
n E(

∣∣ρnΛij − ρn
∧
Kij

∣∣s) ≤ ∧
Kij , for all s ≥ 2, then we get

E
(∥∥InZ∥∥Lq(Ω)

)
≤ C1

(
n−1

∑
i

max

((
1

ρnn

)q−1 1

n

∑
j

∧
Kij

∣∣vj − vi
∣∣p,

(
1

ρnn

)q/2 1

n

∑
j

∧
Kij

∣∣vj − vi
∣∣2(p−1)

q/2))1/q

.

(4.5.10)

Let's start with the �rst term in the right-hand side of the above inequality, we have(
1

ρnn

)q−1 1

n2

∑
i

∑
j

∧
Kij

∣∣vj − vi
∣∣p ≤ 2

(
1

ρnn

)q−1 ∫
Ω2

∧
Kn(x,y)

∣∣vn(y)− vn(x)
∣∣pdydx

≤
(

1

ρnn

)q−1 ∫
Ω2

∧
Kn(x,y)

∣∣vn(y)− vn(x)
∣∣pdydx

≤ 2p−1

(
1

ρnn

)q−1 ∥∥ ∧Kn

∥∥
L∞,1(Ω2)

∥∥vn∥∥pLp(Ω)

≤ 2p−1

(
1

ρnn

)q−1 ∥∥K∥∥
L∞,1(Ω2)

∥∥vn∥∥pLp(Ω)
,

(4.5.11)

we get the last inequality by applying Lemma2.1.27. For the second term, we have(
1

ρnn

)q/2
n−1

∑
i

n−1
∑
j

∧
Kij

∣∣vj − vi
∣∣2(p−1)

q/2

≤
(

1

ρnn

)q/2 ∫
Ω

(∫
Ω

∧
Kn(x,y)

∣∣vn(y)− vn(x)
∣∣2(p−1)

dy

)q/2
dx

≤
(

1

ρnn

)q/2 ∫
Ω

(∫
Ω

∧
Kn(x,y)dy

)q/2∫
Ω

∧
Kn(x,y)

∣∣vn(y)− vn(x)
∣∣2(p−1)∫

Ω

∧
Kn(x,y)dy

dy

q/2

dx

Jensen
≤

(
1

ρnn

)q/2 ∫
Ω

(∫
Ω

∧
Kn(x,y)dy

)q/2−1(∫
Ω

∧
Kn(x,y)

∣∣vn(y)− vn(x)
∣∣pdy) dx

≤
(

1

ρnn

)q/2 ∥∥ ∧Kn

∥∥q/2−1

L∞,1(Ω2)

∫
Ω

∫
Ω

∧
Kn(x,y)

∣∣vn(y)− vn(x)
∣∣pdydx

≤ 2p−1

(
1

ρnn

)q/2 ∥∥ ∧Kn

∥∥q/2
L∞,1(Ω2)

∥∥vn∥∥pLp(Ω)

≤ 2p−1

(
1

ρnn

)q/2 ∥∥K∥∥q/2
L∞,1(Ω2)

∥∥vn∥∥pLp(Ω)
,

(4.5.12)

the last inequality follows from Lemma2.1.27.

Plugging (4.5.11) and (4.5.12) into (4.5.10), and assembling the last with (4.5.9), we get

E
(∥∥Inun − vn∥∥Lp(Ω)

)
≤ C2

(
1

ρnn

)1/2

, (4.5.13)
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where

C2 = C12p sup
n

∥∥vn∥∥p−1

Lp(Ω)
max

(∥∥K∥∥1/2

L∞,1(Ω2)
,
∥∥K∥∥(p−1)/p

L∞,1(Ω2)

)
,

and C2 < +∞, thanks to Corollary 4.4.5. Now let ε > 0, using Markov inequality, we have

P
(∥∥Inun − vn∥∥Lp(Ω)

≥ ε
)
≤ ε−1E

(∥∥Inun − vn∥∥Lp(Ω)

)
≤ ε−1C2(ρnn)−1/2.

(4.5.14)

Taking ε = C2

(ρnn)β/2
, we get the desired result. �

Theorem 4.5.3. Suppose that p ∈]1, 2]. Let u be a solution of (PD) with kernel J , data (f, g) and the

boundary set Γ, and let {u}n∈N is the sequence generated by (Pd,Gn ) with K = PnK, f = Pnf, g = 0

and the boundary set An. Assume that (J,g,K, , f , g,K, f) verify the assumptions of Corollary 4.4.5.

Then, for any β ∈]0, 1[, we have

E
(∥∥u− un∥∥Lp(Ω)

)
≤C

(∥∥J − Jn∥∥L1(Ω−Ω)
+
∥∥J − Jn∥∥ 1

2

L1(Ω−Ω)

∥∥InPnu− u∥∥ 1
2

Lp(Ω)

+
∥∥InPnu− u∥∥ 1

3−p
Lp(Ω) + (ρnn)−1/2

)
,

(4.5.15)

in turn, with probability at least 1− (ρnn)−(1−β)/2

∥∥u− un∥∥Lp(Ω)
≤C

(∥∥J − Jn∥∥L1(Ω−Ω)
+
∥∥J − Jn∥∥ 1

2

L1(Ω−Ω)

∥∥InPnu− u∥∥ 1
2

Lp(Ω)

+
∥∥InPnu− u∥∥ 1

3−p
Lp(Ω) + (ρnn)−β/2

)
,

(4.5.16)

where Jn = InPnJ and gn, fn and un are the continuous extensions of the functions g, f and u

respectively.

Proof : Embarking from (4.5.3), for the �rst term in the right-hand side, we apply the result of

Lemma4.5.1 and for the second we use the result of Corollary 4.4.5 on which we apply Jensen's in-

equality, we get the desired result. �

4.6 Numerical results

We apply a primal-dual proximal splitting scheme to solve (VPdn) (see Chapter 7 for details), in a

semi-supervised classi�cation problem which amounts to �nding the missing labels of a label function

g de�ned on a 2D/3D point cloud. The nodes of the graph are the points in the cloud and ux is the

value of point/vertex x. We chose the nearest neighbour graph with the standard weighting kernel

exp−
∣∣x−y∣∣ when ∣∣x− y∣∣ ≤ δ and 0 otherwise, where x and y are the 2D/3D spatial coordinates of the

points for the point cloud1.In our numerical experiments, we will illustrate our results on �ve examples

of cloud points, three in 2D and two in 3D. For each point cloud, the boundary vertices (i.e. Acn) are

chosen uniformly at random from the whole N points/vertices with two cardinalities: |Acn| = N/5 and

|Acn| = N/10. Obviously, the label function u to be recovered agrees with g on Acn according to (VPdn).
In our experiments, for each point cloud and each Acn, we solve (VPdn) with f = 0 and p ∈ {1, 2, 10}.
Although the case p = 1 was not covered by our study, we report the corresponding results as (VPdn)

1For the 2D case, (x, y) are not to be confused with the spatial coordinates (x,y) of the graph kernel on the continuum,

though there is a bijection from one to another.
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can be easily solved by our proximal splitting framework for p = 1 and even p = +∞ (see Chapter 7).

One can clearly see that the best performance is obtained (at least visually) for p = 1, which comes at

no surprise since the underlying label function is "piecewise constant". The classi�cation is also more

accurate as the number of labeled points increases.

(a) Original data (b) Nearest neighbour graph

(c) Subsampled data (d) Subsampled data

Figure 4.1: (a)The original data with N = 2500 points. (b) Graph considered. (c) Subsampled

(boundary) data with N/5 = 500 points. (d) Subsampled (boundary) data with N/10 = 250 points.
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(a) p = 1 (b) p = 1

(c) p = 2 (d) p = 2

(e) p = 10 (f) p = 10

Figure 4.2: In the left-hand side, results obtained from the boundary data (c) Figure 4.1. In the

right-hand side, results obtained from the boundary data (d) Figure 4.1.
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(a) Original data (b) Nearest neighbour graph

(c) Subsampled data (d) Subsampled data

Figure 4.3: (a) The original data with N = 3000 points. (b) Graph considered. (c) Subsampled

(boundary) data with N/5 = 600 points. (d) Subsampled (boundary) data with N/10 = 300 points.
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(a) p = 1 (b) p = 1

(c) p = 2 (d) p = 2

(e) p = 10 (f) p = 10

Figure 4.4: In the left-hand side, results obtained from the boundary data (c) Figure 4.3, and in the

right-hand side, results obtained from the boundary data (d) Figure 4.3.
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(a) Original data (b) Nearest neighbour graph

(c) Subsampled data (d) Subsampled data

Figure 4.5: (a) The original data with N = 4000 points. (b) Graph considered. (c) Subsampled

(boundary) data with N/5 = 800 points. (d) Subsampled (boundary) data with N/10 = 400 points.
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(a) p = 1 (b) p = 1

(c) p = 2 (d) p = 2

(e) p = 10 (f) p = 10

Figure 4.6: In the left-hand side, results obtained from the boundary data (c) Figure 4.5, and in the

right-hand side, results obtained from the boundary data (d) Figure 4.5.
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(a) Original data (b) Original data (surface)

(c) Subsampled (boundary) data (d) Subsampled (surface)

(e) Subsampled (boundary) data (f) Subsampled data (surface)

Figure 4.7: In the �rst line, the original data with N = 2048 points. In the second line, a subsampled

(boundary) data with N/5 = 409 points. In the last line, a subsampled (boundary) data with N/10 =

204 points.
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(a) p = 1 (b) p = 1 (surface)

(c) p = 2 (d) p = 2 (surface)

(e) p = 10 (f) p = 10 (surface)

Figure 4.8: Results obtained from the boundary data in the second line of Figure 4.7.
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(a) p = 1 (b) p = 1 (surface)

(c) p = 2 (d) p = 2 (surface)

(e) p = 10 (f) p = 10 (surface)

Figure 4.9: Results obtained from the boundary data in the last line of Figure 4.7.
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(a) Original data (b) Original data (surface)

(c) Subsampled (boundary) data (d) Subsampled data (surface)

(e) Subsampled (boundary) data (f) Subsampled data (surface)

Figure 4.10: In the �rst line, original data with N = 2048 points. In the second line, a subsampled

(boundary) data with N/5 = 409 points. In the last line, a subsampled (boundary) data with N/10 =

204 points.
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(a) p = 1 (b) p = 1 (surface)

(c) p = 2 (d) p = 2 (surface)

(e) p = 10 (f) p = 10 (surface)

Figure 4.11: Results obtained from the boundary data in the second line of Figure 4.10.
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(a) p=1 (b) p=1 (surface)

(c) p=2 (d) p=2 (surface)

(e) p=10 (f) p=10 (surface)

Figure 4.12: Results obtained from the boundary data in the last line of Figure 4.10.
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Chapter 5

On the discrete p-bilaplacian operator on

graphs

Main contributions of this chapter

I We introduce a new family of operators on weighted graphs called p-bilaplacian opera-

tors.

I We study regularized variational problem associated to these operators.

I We study also boundary value problems associated to these operators.

The content of this chapter appeared in [68].
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In this chapter, we introduce a new family of operators on weighted graphs called p-bilaplacian

operators, which are the analogue on graphs of the continuous p-bilaplacian operators. We then turn

to study regularized variational and boundary value problems associated to these operators. We study

their well-posedness, we prove the existence and the uniqueness of the solutions. We �nally report

some numerical experiments to support our �ndings.

5.1 p-biharmonic functions on graphs

In this section, we introduce p-bilaplacian operator on weighted graphs, inspired by the way p-harmonic

functions were introduced in [95] for networks. Throughout this chapter, we adopt the notation of

Section 2.4. As in the continuous case [99], let's consider the energy functional

Fd(u; p)
def

=
1

p

∥∥∆ω,2u
∥∥p
p

=
1

p

∑
x∈V

∣∣∆ω,2u(x)
∣∣p. (5.1.1)

De�nition 5.1.1. We de�ne the p-bilaplacian operator for a function u ∈ H(V ) as

∆2
ω,pu(x)

def

= ∆ω,2

(∣∣∆ω,2u
∣∣p−2

∆ω,2u
)

(x), x ∈ V.

De�nition 5.1.2. Let A ⊂ V . We say that a function u is p-biharmonic in A if it is a minimiser of

the functional Fd(·; p) among functions in V with the same values in Ac = V \ A, that is, if

Fd(u; p) 6 Fd(v; p)

for every function v ∈ H(V ), with u = v in Ac.

As a �rst result, we prove the following characterization of the p-biharmonic functions

Theorem 5.1.3. Let A ⊂ V . A function u is p-biharmonic in A if and only if∑
x∈V

∣∣∆ω,2u(x)
∣∣p−2

∆ω,2u(x)∆ω,2w(x) = 0, x ∈ A, (5.1.2)

for every function w ∈ H(V ), with w = 0 in Ac.

Proof : Suppose that u is p-biharmonic function in A and let ut = u + tw, where t ∈ R and w

is a test function, that is, w ∈ H(V ) with w = 0 in Ac. Since the function u minimizes the energy

functional, then

0 =
d

dt
(Fd(ut; p))|t=0 =

∑
x∈V

∣∣∆ω,2u(x)
∣∣p−2

∆ω,2u(x)∆ω,2w(x).

Assume that u satis�es (5.1.2) for all test functions. Let v ∈ H(V ) with u = v in Ac. The equation

(5.1.2) applied to w = v − u and Young's inequality yield∑
x∈V

∣∣∆ω,2u(x)
∣∣p =

∑
x∈V

∣∣∆ω,2u(x)
∣∣p−2

∆ω,2u(x)∆ω,2v(x)

� 100 �
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6
∑
x∈V

∣∣∆ω,2u(x)
∣∣p−1∣∣∆ω,2v(x)

∣∣
6

∑
x∈V

[
p− 1

p

∣∣∆ω,2u(x)
∣∣p +

1

p

∣∣∆ω,2v(x)
∣∣p] .

Hence Fd(u; p) 6 Fd(v; p), and so that u is p-biharmonic. �

Observe that ∆ω,2 the standard Laplacian on graphs is a self-adjoint operator, i.e., for all u, v ∈ H(V )∑
x∈V

u(x)∆ω,2v(x) =
∑
x∈V

v(x)∆ω,2u(x).

Now, let w be an arbitrary test function in H(V ). We can write w =
∑

y∈V wy, where wy(x) = 0 for

all x ∈ V \ {y}. Then∑
x∈V

∣∣∆ω,2u(x)
∣∣p−2

∆ω,2u(x)∆ω,2w(x) =
∑
x∈V

w(x)∆ω,2

(∣∣∆ω,2u
∣∣p−2

∆ω,2u
)

(x) (5.1.3)

=
∑
x∈V

wx(x)∆ω,2

(∣∣∆ω,2u
∣∣p−2

∆ω,2u
)

(x).

From this, we get the following theorem.

Theorem 5.1.4. Let A ⊂ V . A function u is p-biharmonic in A if and only if

∆ω,2

(∣∣∆ω,2u
∣∣p−2

∆ω,2u
)

(x) = 0, fo all x ∈ A.

Proof : Suppose that u is p-biharmonic function in A. Fixed x ∈ A and let w(x) = 1 and w = 0

elsewhere. Then (5.1.2) is true for w and we have

∆2
ω,pu(x) =

∑
y∈V

∣∣∆ω,2u(y)
∣∣p−2

∆ω,2u(y)∆ω,2w(y) = 0

by (5.1.3). Conversly, it follows from (5.1.3) that (5.1.2) holds for all test function w if ∆2
ω,pu(x) = 0

for all x ∈ A. �

5.2 p-bilaplacian variational problem on graphs

In this section, we consider the following minimization problem, which is valid for any p ∈ [1,+∞]1,

min
u∈H(V )

{
E(u; p)

def

=
1

2

∥∥f −Au∥∥2

2
+ λFd(u; p)

}
, (5.2.1)

where A : H(V ) → H(V ) is a linear operator, f ∈ H(V ), λ > 0 is the regularization parameter,

and Fd(·; p) is given by (5.1.1). Problems of the form (5.2.1) can be of great interest for graph-based

regularization in machine learning and inverse problems in imaging; see [91] and references therein.

Problem 5.2.1 is well-posed under standard assumptions.

Theorem 5.2.1. The set of minimizers of E(·; p) is non-empty and compact if and only if Ker(A) ∩
Ker(∆ω,2) = {0}. If, moreover, either A is injective or p ∈]1,+∞[, then E(·; p) has a unique minimizer.

Proof : For any proper lsc convex function f , recall its recession function from [16, Chapter 2],

denoted f∞. We have from the calculus rules in [16, Chapter 2] that

E∞(d; p) = λ
(

1
p‖ · ‖

p
p

)
∞

(∆ω,2d) +
1

2

(∥∥f − ·∥∥2

2

)
∞

(Ad).

1Obviously limp→+∞
1
p

∥∥ · ∥∥p
p
= ι∥∥u∥∥

∞
≤1

.
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Since 1
p‖ · ‖

p
p and

∥∥f − ·∥∥2

2
are non-negative and coercive, we have from [16, Proposition 3.1.2] that

their recession functions are positive for any non-zero argument. Equivalently,

E∞(d; p) > 0, ∀d /∈ Ker(A) ∩Ker(∆ω,2).

Thus E∞(d; p) > 0 for all d 6= 0 if and only if Ker(A) ∩ Ker(∆ω,2) = {0}. Equivalence with the

existence and compactness assertion follows from [16, Proposition 3.1.3].

Let's turn to uniqueness. When A is injective, the claim follows from strict (in fact strong con-

vexity) of the data �delity term. Suppose now that p ∈]1,+∞[. By strict convexity of 1
p‖ · ‖

p
p and∥∥f − ·∥∥2

2
, a standard contradiction argument shows that for any pair of minimizers u? and v?, we have

u? − v? ∈ Ker(A) ∩Ker(∆ω,2). This yields the uniqueness claim under the stated assumption. �

5.3 p-bilaplacian Dirichlet problem on graphs

Let us consider the following boundary value problem{
−∆2

ω,pu = f, on A
u = g, on Ac,

(5.3.1)

where f, g ∈ H(V ), p ∈]1,+∞[, ∆2
ω,p is the p-bilaplacian operator and A ⊂ V . Observe that since the

graph G is connected, there always exists a path connecting any pair vertices in A×Ac. Denoted

H0(V ;A) = {u ∈ H(V ) : u = 0 on Ac}
Hg(V ;A) = {u ∈ H(V ) : u = g on Ac}

= g +H0(V ;A).

The main objective of this section is to study the boundary value problem (5.3.1). For this purpose,

let us consider the following functional de�ned in H(V ) as

F(u) =
1

p

∑
x∈V

∣∣∆ω,2u(x)
∣∣p +

∑
x∈V

u(x)f(x), u ∈ H(V ).

We have the Dirichlet's principle formulation associated to the p-bilaplacian Dirichlet problem :

Theorem 5.3.1. 1. Assume u ∈ Hg(V ;A) solves the problem (5.3.1). Then

F(u) 6 F(v), (5.3.2)

for all v ∈ Hg(V ;A).

2. Conversely, if u ∈ Hg(V ;A) satis�es (5.3.2) for every v ∈ Hg(V ;A), then u solves the problem

(5.3.1).

Proof : Assume u ∈ Hg(V ;A) solves the problem (5.3.1). Let v ∈ Hg(V ;A) and set w = v − u.
We have

0 =
∑
x∈V

∆2
ω,puw +

∑
x∈V

f(x)w(x)

=
∑
x∈V

∆ω,2(
∣∣∆ω,2u

∣∣p−2
∆ω,2u)w +

∑
x∈V

f(x)w(x)

=
∑
x∈V

∣∣∆ω,2u
∣∣p−2

∆ω,2u∆ω,2w +
∑
x∈V

f(x)w(x).

Thus ∑
x∈V
|∆ω,2u|p +

∑
x∈V

f(x)u(x) =
∑
x∈V

∣∣∆ω,2u
∣∣p−2

∆ω,2u∆ω,2v +
∑
x∈V

f(x)v(x)
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6
∑
x∈V

∣∣∆ω,2u
∣∣p−1∣∣∆ω,2v

∣∣+
∑
x∈V

f(x)v(x)

Young
6

∑
x∈V

(
p− 1

p

∣∣∆ω,2u
∣∣p +

1

p

∣∣∆ω,2v
∣∣p)+

∑
x∈V

f(x)v(x).

Hence F(u) 6 F(v).

Conversely, assume u ∈ Hg(V ;A) satis�es (5.3.2) for every v ∈ Hg(V ;A). Fixed w ∈ H0(V ;A) and

set i(t)
def

== F(u+ tw), t ∈ R. Then i(·) attains its minimun at t = 0. By usual calculus, we obtain

0 = i′(0)

=
∑
x∈V

∣∣∆ω,2u
∣∣p−2

∆ω,2u∆ω,2w +
∑
x∈V

f(x)w(x)

=
∑
x∈V

∆ω,2(
∣∣∆ω,2u

∣∣p−2
∆ω,2u)w +

∑
x∈V

f(x)w(x).

Since w is an arbitrary function in H0(V ;A), u is a solution of the problem (5.3.1). �

The coming result presents a Poincaré-type inequality, which plays a key role to prove the coercivity

of the energy functional F(·). It can be seen as a discrete version of that one exposed in Chapter 4. It

can also allow us to revisit and extend the result concerning the discrete p-Lapalcian Dirichlet problem

on general connected weighted graphs.

Lemma 5.3.2 (Poincaré inequality on graph). There is λ = λ(ω, V,A, p) > 0 such that

λ
∑
x∈A
|u(x)|p 6

∑
x∈V

∑
y∼x

(ω(x, y))
p
2

∣∣u(y)− u(x)
∣∣p +

∑
x∈Ac

∣∣g(x)
∣∣p, (5.3.3)

for all u ∈ Hg(V ;A).

Proof : Let

S0 = Ac;
S1 = {x ∈ V \ S0 : ∃y ∈ S0; y ∼ x},

Sj+1 = {x ∈ V \ (∪jk=0Sk) : ∃y ∈ Sj ; y ∼ x}, j = 1, 2, · · ·

Since the graph G is connected, there is l ∈ N such that {Sj}lj=0 forms a partition of V . Now, we have∑
x∈V

∑
y∼x

(ω(x, y))
p
2 |u(y)− u(x)|p >

∑
x∈Sj

∑
y∈Sj−1

(ω(x, y))
p
2

∣∣u(y)− u(x)
∣∣p,

j = 1, · · · , l, and ∑
x∈Sj

∑
y∈Sj−1

(ω(x, y))
p
2

∣∣u(y)− u(x)
∣∣p

>
1

2p

∑
x∈Sj

∑
y∈Sj−1

(ω(x, y))
p
2

∣∣u(x)
∣∣p −∑

x∈Sj

∑
y∈Sj−1

(ω(x, y))
p
2

∣∣u(y)
∣∣p

>
1

2p
α0

∑
x∈Sj

∣∣u(x)
∣∣p − β ∑

y∈Sj−1

∣∣u(y)
∣∣p,

where α0 = min{(ω(x, y))
p
2 : (x, y) ∈ E} and β =

∑
x,y∈V (ω(x, y))

p
2 . Hence∑

x∈V

∑
y∼x

(ω(x, y))
p
2

∣∣u(y)− u(x)
∣∣p > α∑

x∈Sj

∣∣u(x)
∣∣p − β ∑

y∈Sj−1

∣∣u(y)
∣∣p,

where

α =
1

2p
α0 > 0.
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Therefore, since u = g in S0 = Ac and {Sj}lj=0 forms a partition of V , it is easy to see that there exists

λ̂ = λ̂(ω, V,A, p) > 0 such that∑
x∈A
|u(x)|p 6 λ̂

∑
x∈V

∑
y∼x

(ω(x, y))
p
2

∣∣u(y)− u(x)
∣∣p + λ̂

∑
x∈Ac

∣∣g(x)
∣∣p.

We arrive at the coercivity result by taking λ = λ̂−1. �

Lemma 5.3.3. The functional F(·) is coercive and strictly convex on Hg(V ;A).

Proof : For the coercivity, we distinguish three cases when p > 2, p = 2 and 1 < p < 2. Let q be

the Hölder conjugate of p.

By Lemma 5.3.2, there exists λ > 0 such that

λ
∑
x∈V
|u(x)|2 6

∑
x∈V

∑
y∼x

ω(x, y)
∣∣u(y)− u(x)

∣∣2 + Cf0 , for all u ∈ Hg(V ;A), (5.3.4)

where Cg > 0 depend only on g.

By Young's inequality, for ε ∈ (0, 1) we have∑
x∈V

f(x)u(x) > −
∑
x∈V

∣∣u(x)f(x)u(x)
∣∣ (5.3.5)

Young
> − 1

2ε

∑
x∈V

∣∣f(x)
∣∣2 − ε

2

∑
x∈V

∣∣u(x)
∣∣2.

� Case p > 2, (i.e q ∈]1, 2[) : We have∑
x∈V

∑
y∼x

ω(x, y)
∣∣u(y)− u(x)

∣∣2 = −
∑
x∈V

u(x)(∆ω,2u)(x) (5.3.6)

Young
6

1

p

∑
x∈V

∣∣∆ω,2u(x)
∣∣p +

1

q

∑
x∈V

∣∣u(x)
∣∣q.

By the inequalities (5.3.4), (5.3.5) and (5.3.6), we have

F(u) =
1

p

∑
x∈V

∣∣∆ω,2u(x)
∣∣p +

∑
x∈V

f(x)u(x)

>
∑
x∈V

∑
y∼x

ω(x, y)
∣∣u(y)− u(x)

∣∣2 − 1

q

∑
x∈V

∣∣u(x)
∣∣q

− 1

2ε

∑
x∈V

∣∣f(x)
∣∣2 − ε

2

∑
x∈V

∣∣u(x)
∣∣2

> (λ− ε

2
)
∑
x∈V

∣∣u(x)
∣∣2 − 1

q

∑
x∈V

∣∣u(x)
∣∣q − 1

2ε

∑
x∈V

∣∣f(x)
∣∣2 − Cg.

Since q < 2 and for ε small enough (λ− ε
2 > 0), we obtain

lim∥∥u∥∥→∞
u∈Hg(V ;A)

F(u) = +∞.

� Case p = 2, (i.e q = 2) :∑
x∈V

∑
y∼x

ω(x, y)
∣∣u(y)− u(x)

∣∣2 = −
∑
x∈V

u(x)(∆ω,2u)(x) (5.3.7)

Young
6

1

2ε1

∑
x∈V

∣∣∆ω,2u(x)
∣∣2 +

ε1
2

∑
x∈V

∣∣u(x)
∣∣2,
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For all ε1 ∈ (0, 1).

Applying (5.3.7) in (5.3.4), we obtain

ε1(λ− ε1
2

)
∑
x∈V

∣∣u(x)
∣∣2 − ε1Cf0 6

1

2

∑
x∈V

∣∣∆ω,2u(x)
∣∣2. (5.3.8)

We sum the inequalities (5.3.8) and (5.3.5), we obtain

(ε1(λ− ε1
2

)− ε

2
)
∑
x∈V

∣∣u(x)
∣∣2 − ε1Cf0 −

1

2ε

∑
x∈V

∣∣f(x)
∣∣2 6 F(u). (5.3.9)

For ε, ε1 ∈ (0, 1) �xed such that ε1(λ− ε1
2 )− ε

2 > 0, we have

lim∥∥u∥∥→∞
u∈Hg(V ;A)

F(u) = +∞.

� Case 1 < p < 2, (i.e q > 2) : By the inequality (5.3.4), we have

λ
∑
x∈V

∣∣u(x)
∣∣2 6

∑
x∈V

∑
y∼x

ω(x, y)
∣∣u(y)− u(x)

∣∣2 + Cg

= −
∑
x∈V

u(x)∆ω,2u(x) + Cg

6

(∑
x∈V

∣∣u(x)
∣∣2) 1

2
(∑
x∈V

∣∣∆ω,2u(x)
∣∣2) 1

2

+ Cg

Since the norms are equavalent in �nite dimension vector space, there exists C(n) > 0, recall

that n = card(V ),

λ
∑
x∈V

∣∣u(x)
∣∣2 6 C(n)

(∑
x∈V

∣∣u(x)
∣∣2) 1

2 (∑
x∈V

∣∣∆ω,2u(x)
∣∣p) 1

p + Cg.

Thus

1

p

 λ
∑

x∈V
∣∣u(x)

∣∣2 − Cg
1 + C(n)

(∑
x∈V

∣∣u(x)
∣∣2) 1

2


p

6
1

p

∑
x∈V

∣∣∆ω,2u(x)
∣∣p (5.3.10)

On the other hand, by the Cauchy�Schwarz inequality, we have

−

(∑
x∈V

∣∣u(x)
∣∣2) 1

2
(∑
x∈V

∣∣f(x)
∣∣2) 1

2

6
∑
x∈V

f(x)u(x). (5.3.11)

We sum the inequalities (5.3.10) and (5.3.11), we obtain

1

p

 λ
∑

x∈V
∣∣u(x)

∣∣2 − Cg
1 + C(n)

(∑
x∈V

∣∣u(x)
∣∣2) 1

2


p

−

(∑
x∈V

∣∣u(x)
∣∣2) 1

2
(∑
x∈V

∣∣f(x)
∣∣2) 1

2

6 F(u)

Hence

lim∥∥u∥∥→∞
u∈Hg(V ;A)

F(u) = +∞.

Now, we show the strict convexity of the functional F on the set Hg(V ;A). Assume that Fd(·) is

not strictly convex on Hg(V ;A). Then there exist u, v ∈ Hg(V ;A) with u 6= v such that τFd(u) + (1−
τ)Fd(v) = Fd(τu + (1 − τ)v) for all τ ∈]0, 1[. But since the function t 7→ tp is strictly convex on R+

for p ∈]1,+∞[, this equality entails that ∆ω,2u = ∆ω,2v on V , hence on A. Clearly w = u− v satis�es{
∆ω,2w = 0, on A
w = 0, on Ac.
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But we know the only solution of the above problem is the null function w = 0 on V , see [95, Corol-

lary 3.16.]. Hence u = v on V , leading to a contradiction. �

Now, we have the tools to announce our main result in this section

Theorem 5.3.4. The problem (5.3.1) has a unique solution in Hg(V ;A).

Proof : By Theorem 5.3.1, the problem (5.3.1) is equivalent to solve the minimization problem

min{Fd(u) : u ∈ Hg(V ;A)}. (5.3.12)

Let ιHg(V ;A) be the indicator function of Hg(V ;A). By Lemma 5.3.3, we get that Fd(·) + ιHg(V ;A)

is coercive and strictly convex. Since this objective is lower semicontinuous (lsc) by closedness of

Hg(V ;A) and continuity of Fd(·), (5.3.12) has a unique minimizer. In particular, our problem (5.3.1)

has a unique solution. �

5.4 Numerical results

5.4.1 p-bilaplacian denoising on graphs

We apply the accelerated forward-backward proximal splitting scheme, see Chapter 7, to solve the dual

problem of (5.2.1) for a denoising problem, i.e., A is the identity (5.2.1). Denoising of two types of

datasets is considered: the �rst is a 2D point cloud, and the second is a 1D equispaced signal. In the

�rst setting, the nodes of the graph are the points in the cloud and ux the value of point/vertex index

x. For signal denoising, each graph node correspond to a signal sample i, and ux is the signal value

at node/sample index i. We choose the nearest neighbour graph with the standard weighting kernel

exp(−
∣∣x− y∣∣) when∣∣x− y∣∣ ≤ δ and 0 otherwise, where x and y are the 2D spatial coordinates of the

points for the point cloud, and sample index for the signal case.

Application to point cloud denoising The original point cloud used in our numerical experiments

is shown in Figure 5.1(a). It consists of N = 1000 points that are not on a regular grid. The function

on this point cloud, denoted u0, was synthesized to be piecewise linear on the 2D point cloud. For the

1D signal case, the function is piecewise polynomial. A noisy observation f (see Figure 5.1(b)) is then

generated by adding a white Gaussian noise noise of standard deviation 0.5 to u0. Figure 5.2 displays

the results by solving (5.2.1) using di�erent values p ∈ {1, 2, 20}.

Application to signal denoising In this experiment, we choose a piecewise-polynomial signal u0

shown in Figure 5.3(a) for N = 1000 together with its noisy version f with additive white Gaussian

noise of standard deviation 0.05. Figure 5.3(b) depicts the denoised signal u? by solving (7.4.1) with

p = 1 and hand-tuned λ. Figure 5.3(c) also con�rms the o(1/k) rate predicted above on
∥∥uk − u?∥∥2

.

5.4.2 p-bilaplacian semi-supervised classi�cation

We apply the primal-dual proximal splitting scheme, see Chapter 7, to solve (5.3.1) in the setting of

a semi-supervised classi�cation problem. The latter amounts to �nding the missing labels of a label

function g de�ned on a 2D point cloud observing g only on some vertices Ac. The nodes of the graph
are the points in the cloud and ux is the value of point/vertex x which agrees with the original label

function g on Ac. We chose the nearest neighbour graph with the standard weighting kernel exp−
∣∣x−y∣∣

when
∣∣x− y∣∣ ≤ δ and 0 otherwise, where x and y are the 2D spatial coordinates of the points for the

point cloud. In the same vein as in Section 4.6, in our numerical experiments, the boundary vertices
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(a)

(b) (c)

Figure 5.1: (a) Original data with N = 1000 points. (b) Noisy data. (c) Graph considered.

(i.e. Acn) are chosen uniformly at random from the whole N points/vertices with two cardinalities:

|Ac| = N/5 and |Ac| = N/10. For each Ac, we solve (VPdn) with f = 0 and p ∈ {1, 2, 10}. Although
the case p = 1 was not covered by our study, we report the corresponding results as the splitting

algorithm readily handles p = 1 and even p = +∞ just as well (see Chapter 7 for details).
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(a) p = 1
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(d) p = 2

(e) p = 20
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(f) p = 20

Figure 5.2: In the left-hand side column, the results obtained. In the right-hand side column, primal

convergence criterion
∥∥uk − u?∥∥2

as a function of the iteration counter k.
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(c)

Figure 5.3: Results for signal denoising with p = 1. (a) Noisy and original signal. (b) Denoised and

original signal. (c) Primal convergence criterion
∥∥uk − u?∥∥2

as a function of the iteration counter k.
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(a) Original data (b) Graph

(c) Subsampled data (d) Subsampled data

Figure 5.4: (a) The original data with N = 1000 points. (b) Graph considered. (c) Subsampled

(boundary) data with N/5 = 200 points. (d) Subsampled (boundary) data with N/10 = 100 points.
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(a) p = 1 (b) p = 1

(c) p = 2 (d) p = 2

(e) p = 10 (f) p = 10

Figure 5.5: In the left-hand side, results obtained from the boundary data (c) Figure 5.4, and in the

right-hand side, results obtained from the boundary data (d) Figure 5.4.
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Chapter 6

Nonlocal perimeters and curvatures �ows

on graphs

Main contributions of this chapter

I General class of perimeters on graphs.

I Mean curvature co-area formula and total variation

I Level set formulation of nonlocal mean curvature �ows on graphs and applications.

A paper with the content of this chapter is under preparation for submission to a journal.
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The objectives of this chapter are as follows. We revisit the notion of perimeters on graphs, intro-

duced in [70], we extend it to so-called inner and outer perimeters. Thanks to the co-area formula,

we show that discrete total variations as well as several graph cuts can be expressed through these

perimeters. Then, we propose a novel class of curvature operators on graphs that uni�es both local

and nonlocal mean curvature on Euclidean domains. These lead us to translate and adapt the notion

of the mean curvature �ows on graphs as well as the level set mean curvature which can be seen as

approximate schemes. Finaly, we propose to use these methods for image processing, 3D-point cloud

and high dimensional data classi�cation.

6.1 Introduction

Context and motivations

Partial Di�erential Equations (PDEs) and variational methods involving the notion of perimeters and

curvatures have and still generate a lot of interest in both continuous and discrete domains. These

operators under their di�erent local or nonlocal forms, arise not only from sub�elds within mathematics

such as di�erential geometry and analysis, but also in numerous PDEs and objective functionals related

to many applications �elds in sciences and engineering.

For instance, in mathematical image processing and computer vision, the notion of perimeter is a key

idea for the regularization of many inverse ill-posed problems such as denoising, restoration, inpainting,

segmentation, etc. Regularizing such problems is often used to �nd suitable clusters among data, to

obtain image partitions for segmentation purposes, to denoise or to inpaint images while preserving

sharp boundaries. It is worth noting that perimeters appear in the two most popular variational

models for image processing and segmentation, namely the total variation and the Mumford-Shah

models [51, 128, 114]

Motion by mean curvature and �ows involving mean curvature in general play an important role
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in geometry and analysis. Many continuous models, involving a front propagation with a velocity

depending on the mean curvature and their simulations by level set methods, are used in di�erent

application �elds such as data processing, computer vision, �uid mechanics . For an overview and

applications see the books [131, 117, 42] and references therein.

In recent literature, an intense mathematical study has been performed on nonlocal counterpart of

the classical perimeters and curvature �ows. A notion of fractional perimeters and nonlocal curva-

ture was �rst introduced bay Ca�arelli, Roquejo�re and Savin in [44] . The main idea of fractional

perimeters is that any point inside an Euclidean set "interact" with any point outside the set, given

a functional whose minimization is taken account. Then many works have been proposed to study

functional involving nonlocal perimeters or nonlocal curvature �ows, e.g [1, 49]. See also the recent

monograph Mazon et al. [108]. We can notice that recently Mazon et al. have introduced a large

class of perimeters and curvature �ows on random metric graphs which embedded local and nonlocal

perimeters on Euclidean domains and graphs [110, 109].

On the other hand, graphs and networks have been successfully used in a variety of �elds such as

machine learning, data mining, image analysis and social sciences that are confronted with the analysis

and modelling high dimensional datasets. In machine learning, image analysis many tasks, such as

classi�cation, clustering or segmentation , can be often given in term of minimizing the graph perimeter

(graph cut) or a related functional (normalized cut, ratio cut, balanced cut, etc). The cut size is, in this

case, generally de�ned as the sum of the weight of edges between the considered set and its complement,

which is closely related to the notion of the perimeter of a set. Such graph problems are traditionally

solved by methods from combinatorial, graph theory or spectral analysis [92, 132, 135, 147, 40]. In

recent years, there has been increasing interest in applying the models and techniques from variational

methods and PDEs to solve problems in data science, see [143, 39, 73, 75] and references herein. The

demand and the interest for such methods is motivated by existing and potential future applications

in data science. PDEs analysis tools originally developed for Euclidean spaces and regular lattices

are now being extended to general settings of graphs in order to analyse geometric and topological

structures, as well as data measured on them.

In order to translate and to solve PDEs on graphs, Elmoataz et al. have adopted nonlocal calculus

on weighted graphs [73, 72, 75], which consists in replacing continuous partial di�erential operators

(e.g. gradient, divergence), with a reasonable discrete analogue. It allows to transfer many important

tools and results from the continuous setting to the discrete one. It also allows graph theory to have

new connections to analysis. Based on this framework, we revisit and extend the discrete notions of

perimeters, mean curvatures, Cheeger cut and total variation, which lead us to adapt and transcribe

level set equations on weighted graphs.

Outline of this chapter

In Section 6.2, we recall the notion of the boundary set on graph, as well as the discrete perimeters

on graphs and we show its link with the local and nonlocal continuous perimeters. In Section 6.3, we

prove an analogue version of the co-area formula on weighted graphs which allows us to derive relation

with total variation as well as Cheeger inequality on graphs with discrete perimeters. In Section 6.4,

we introduced a family of the mean curvature �ows. We propose an adaptation and a transcription of

the mean curvature level set equations on the general discrete domain, a weighted graph, in Section

6.5. Finally, we show some applications in image and data processing to illustrate the potential and

the behaviour of this mean curvature formulation.
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6.2 Generalized perimeters on graphs

In this section, we �rst de�ne the notion of boundaries on graph and explicit the relations with the

discrete gradients de�ned in Section 2.4. Based on these framework, we recall the family of the

perimeters introduced in [70]. Next, we recall the de�nitions of the continuous local and nonlocal

perimeters, we rigorously show their relations with the discrete ones.

Throughout the chapter G = (V,E, ω) is a connected weighted graph. Denoted by A a subset of V ,

Ac is its complement, and we recall that χA is the characteristic function of A.

De�nition 6.2.1. The outer and inner vertex boundaries, and the vertex boundary, of a subset A ⊂ V ,
are respectively de�ned by:

∂+A def

= {u ∈ Ac : ∃v ∈ A, v ∼ u} , (6.2.1)

∂−A def

= {u ∈ A : ∃v ∈ Ac, v ∼ u} , (6.2.2)

∂A def

= ∂+A ∪ ∂−A. (6.2.3)

Note that ∂+Ac = ∂−A, ∂A = ∂Ac and ∂+A ∩ ∂−A = ∅.
The following proposition gives the relationships between the discrete gradients and the above bound-

ary sets, which will be useful to de�ne the discrete perimeters on graphs. The proof takes of by a simple

computation of the p-norm of the characteristic function.

Proposition 6.2.2. Let A ⊂ V ,
(i) For 1 ≤ p <∞, we have the following relations:

‖(∇+
ωχA)(u)‖p =

(∑
v∈A

(ωuv)
p
2

) 1
p

χ∂+A(u), (6.2.4)

∥∥(∇−ωχA)(u)
∥∥
p

=

(∑
v∈Ac

(ωuv)
p
2

) 1
p

χ∂−A(u), (6.2.5)∥∥(∇ωχA)(u)
∥∥
p

=
∥∥(∇+

ωχA)(u)
∥∥
p

+
∥∥(∇−ωχA)(u)

∥∥
p
. (6.2.6)

(ii) For p =∞, we have the following relations:

‖(∇+
ωχA)(u)‖∞ =

(
max
v∈A

(
√
ωuv)

)
· χ∂+A(u),

∥∥(∇−ωχA)(u)
∥∥
∞ =

(
max
v∈Ac

(
√
ωuv)

)
· χ∂−A(u),∥∥(∇ωχA)(u)

∥∥
∞ =

∥∥(∇+
ωχA)(u)

∥∥
∞ +

∥∥(∇−ωχA)(u)
∥∥
∞.

(iii) For p ∈ [1,+∞], we have the following relations:∥∥(∇+
ωχA)(u)

∥∥
p

=
∥∥(∇−ωχAc)(u)

∥∥
p∥∥(∇ωχA)(u)

∥∥
p

=
∥∥(∇ωχAc)(u)

∥∥
p
.

Remark 6.2.3. For unweighted graphs i.e. ωuv ∈ {0, 1}, we have that:
� ‖(∇+

ωχA)(u)‖1 corresponds to the number of edges connecting the vertex u ∈ Ac with the vertices

in A. Therefore
∑
u∈V

∥∥(∇+
ωχA)(u)

∥∥
1
is just the size of the usual edge boundary of A.

� ‖(∇+
ωχA)(u)‖∞ is the indicator of ∂+A, and so

∑
u∈V

∥∥(∇+
ωχA)(u)

∥∥
∞ is the size of the outer vertex

boundary of A, while
∑
u∈V

∥∥(∇−ωχA)(u)
∥∥
∞ is the size of the inner vertex boundary.

For weighted graphs i.e. ωuv ∈ [0, 1], we observe that:
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� ‖(∇+
ωχA)(u)‖p and

∥∥(∇−ωχA)(u)
∥∥
p
are the weighted sizes of edge boundaries of A, ∂+A× ∂−A

and ∂−A× ∂+A respectively.

�

∑
u∈V

∥∥(∇+
ωχA)(u)

∥∥
∞ is the weighted size of the outer vertex boundary ofA while

∑
u∈V

∥∥(∇−ωχA)(u)
∥∥
∞

is the weighted size of the inner vertex boundary of A.

Remark 6.2.4. The outer and inner vertex boundaries, and the vertex boundary can be expressed

through the characteristic function of A as:

∂+A =
{
u ∈ V :

∥∥(∇+
ωχA)(u)

∥∥
p
> 0
}
,

∂−A =
{
u ∈ V :

∥∥(∇−ωχA)(u)
∥∥
p
> 0
}
,

∂A =
{
u ∈ V :

∥∥(∇ωχA)(u)
∥∥
p
> 0
}
.

6.2.1 Discrete perimeters on graphs

Based on the interpretation of Proposition 6.2.2, we recall the de�nition of the family of weighted

perimeters on graphs introduced in [70].

De�nition 6.2.5. For 1 ≤ p < ∞ and A ⊂ V , the family of weighted perimeters of A is de�ned as

follows:

Per+
ω,p(A)

def

= E(
∥∥∇+

wχA
∥∥
p
) =

∑
u∈Ac

(∑
v∈A

ω
p
2
uv

) 1
p

,

Per−ω,p(A)
def

= E(
∥∥∇−ωχA∥∥p) =

∑
u∈A

(∑
v∈Ac

ω
p
2
uv

) 1
p

,

Perω,p(A)
def

= E(
∥∥∇ωχA∥∥p) =

∑
u∈Ac

(∑
v∈A

ω
p
2
uv

) 1
p

+
∑
u∈A

(∑
v∈Ac

ω
p
2
uv

) 1
p

.

For p =∞, the family of weighted perimeters of A is de�ned as follows:

Per+
ω,∞(A)

def

= E(
∥∥∇+

ωχA
∥∥
∞) =

∑
u∈Ac

(
max
v∈A

√
ωuv

)
,

Per−ω,∞(A)
def

= E(
∥∥∇−ωχA∥∥∞) =

∑
u∈A

(
max
v∈Ac

√
ωuv

)
,

Perω,∞(A)
def

= E(
∥∥∇ωχA∥∥∞) =

∑
u∈Ac

(
max
v∈A

√
ωuv

)
+
∑
u∈A

(
max
v∈Ac

√
ωuv

)
.

By de�nition we have, for 1 ≤ p ≤ ∞, the following relations:

Perω,p(A) = Per+
ω,p(A) + Per−ω,p(A),

Per+
ω,p(A) = Per−ω,p(Ac),

Perω,p(A) = Perω,p(Ac),
Perω,1(A) = 2 Per+

ω,1(A).

Proposition 6.2.6. Let Pω,p belongs to {Per±ω,1, Per±ω,∞, ; Perω,1, Perω,∞}, for p = ∞ the weight

function ω is a {0, 1}-value. Then we have the following properties:

(i) Pω,p(∅) = 0;

(ii) Pω,p(V ) = 0;
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(iii) Pω,p is submodular, i.e. for all A, B ⊂ V we have

Pω,p(A ∪ B) + Pω,p(A ∩ B) ≤ Pω,p(A) + Pω,p(B).

Proof : Claims (i) and (ii) are straightforward. We thus focus on claim (iii). For p = 1, it is enough

to prove the inequality for Per+
ω,1 since Perω,1 = 2 Per+

ω,1 = 2 Per+
ω,1. We have

Per+
ω,1 (A ∪ B) =

∑
u∈A∪B

∑
v∈(A∪B)c

ωuv

=
∑
u∈A

∑
v∈Ac

ωuv +
∑
u∈B

∑
v∈Bc

ωuv −
∑

u∈A∩B

∑
v

∈ (A ∪ B)cωuv

−
∑
u∈A

∑
v∈B\(A∪B)c

ωuv −
∑
u∈B

∑
v∈A\(A∪B)c

ωuv

and

Per+
ω,1 (A ∩ B) =

∑
u∈A∩B

∑
v∈(A∩B)c

ωuv

=
∑

u∈A∩B

∑
v∈(A∪B)c

ωuv +
∑

u∈A∩B

∑
v∈A\(A∪B)c

ωuv +
∑

u∈A∩B

∑
v∈B\(A∪B)c

ωuv.

For Per±ω,∞, claim (iii) is a consequence of the following inequality, which is easy to verify,

max
v∼u

(χA∪B(v)− χA∪B(u))± + max
v∼u

(χA∩B(v)− χA∩B(u))±

≤ max
v∼u

(χA(v)− χA(u))± + max
v∼u

(χB(v)− χB(u))± ,

for all u ∈ V . For Perω,∞, the result holds from the following equality Perω,∞ = Per+
ω,∞+ Per−ω,∞. �

As a consequence, we have the following result for p = 1.

Corollary 6.2.7. Let A, B ⊂ V with A ∩ B = ∅, then

Per±ω,1(A ∪ B) = Per±ω,1(A) + Per±ω,1(B)− 2
∑
A

∑
B

√
ωuv,

Perω,1(A ∪ B) = Perω,1(A) + Perω,1(B)− 4
∑
A

∑
B

√
ωuv.

If moreover, there are no edges between A and B, i.e., ∂A ∩ B = ∅ or equivalently ∂B ∩ A = ∅, then

Per±ω,1(A ∪ B) = Per±ω,1(A) + Per±ω,1(B),

Perω,1(A ∪ B) = Perω,1(A) + Perω,1(B).

Proof : By de�nition, we have

Perω,1(A ∪ B) =
∑
u∈V

∑
v∈V

√
ωuv (χA∪B(v)− χA∪B(u))2

=
∑
u∈V

∑
v∈V

√
ωuv (χA(v) + χB(v)− χA(u)− χB(u))2

=
∑
u∈V

∑
v∈V

√
ωuv (χA(v)− χA(u))2 +

∑
u∈V

∑
v∈V

√
ωuv (χB(v)− χB(u))2

+ 2 ·
∑
u∈V

∑
v∈V

√
ωuv (χA(v)− χA(u)) · (χB(v)− χB(u))

= Perω,1(A) + Perω,1(B)− 4 ·
∑
A

∑
B

√
ωuv.

We obtain the result for Per±ω,1 immediately from the following relation Per±ω,1 = 1
2 Perω,1. �

� 118 �



Chapter 6 6.2. Generalized perimeters on graphs

6.2.2 Relations to continuous perimeters

The concept of nonlocal perimeter was introduced in [33, 59] and was thoroughly studied in [38, 108].

For singular kernels of the form 1∣∣x∣∣n+s , 0 < s < 1, the nonlocal perimeter reappeared in [44, 145, 146],

where some functionals of this type were analyzed in connection with fractal dimensions. The nonlocal

s-perimeter of a subset A ⊂ Rn is de�ned (formally) as

Pers(A) =

∫
A

∫
Ac

1∣∣x− y∣∣n+sdydx.

The main idea of the nonlocal s-perimeter is that any point inside A interacts with any outside. The

usuel notion of perimeter is recovered by the limit

lim
s→1

(1− s) Pers(A) = Per(A) =

∫
RN

∣∣DχA∣∣,
see [7, 38, 45, 59].

Now, we will show that the de�nition of the (s-)perimeter can be recovered by our de�nition. Indeed,

let J : Rn \ {0} 7→ R+ de�ned as

J(x) =
1∣∣x∣∣n+s , ∀x 6= 0. (6.2.7)

Let {Jk}k be a sequence of symmetric positive functions in L1(Rn) satisfying:

(i) for all k, Jk of compact support and Jk =
∑

x∈ 1
k
Zn
αxχQkx , where αx ∈ R+ and Qkx = x+ 1

kn [0, 1[n.

(ii) {Jk}k converges to J strongly in L1(Rn).

Fix k ∈ N?. Consider Gk = (Vk, Ek, ω
k) where Vk = 1

kZ
n and

ωk(x,y) = (k2nJk(x− y))2, ∀x, y ∈ Vk.

For all A ⊂ Rn, we set Adk =
{
x ∈ Vk : Qkx ∩ A 6= ∅

}
and Ak =

⋃
x∈Adk

Qkx. Then

Perωk,1(Adk) =
∑
y∈Adk

∑
x∈(Adk)c

√
ωk(x,y) =

∫
Ak

∫
(Ak)c

Jk(x− y)dxdy.

By construction, we can easy check that

lim
k

∫
Ak

∫
(Ak)c

Jk(x− y)dxdy =

∫
A

∫
Ac
Jk(x− y)dxdy.

Hence

lim
k

Perωk,1(Adk) =

∫
A

∫
Ac
J(x− y)dxdy

= Pers(A).

(6.2.8)

The pre-Minkowski content. Let r > 0, the pre-Minkowski content of a set ∂E is given by

Mr(E)
def

=
1

2r

∣∣ ⋃
x∈∂E

Br(x)
∣∣

It is well-known that, under mild regularity assumption on E (see for instance [8]) we have

lim
r→0
Mr(E) = Per(E) =

∫ ∣∣DχE∣∣dx,
An issue with de�nition of Mr is that it depends on the choice of the representative within the

Lebesgue equivalence class of the set E. For this reason, the authors of [49] have introduced the

following variant:
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Jr(E) =
1

2r

∫
oscBr(x)(χE)dx,

where oscA(φ) denotes the essential oscillation of the measurable function φ over a measurable set A,
de�ned by

oscA(φ) = ess sup
A

(φ)− ess inf
A

(φ).

See [49] and references therein for more details. We have that Jr(E) coincides with the pre-Minkowski

content of the essential boundary of E. As a consequence, we have the following result

lim
r→0

Jr(E) = Per(E) =

∫ ∣∣DχE∣∣dx.
Let r > 0 and �x k ∈ N?. We consider the following weighted graph Gk = (Vk, Ek, ω

k) where

Vk = 1
kZ

n and the weight function is given as

ωk(x,y) =
k−2n

(2r)2

{
1, if y ∈ (Br(x))dk ,

0, otherwise,

For all A ⊂ Rn, we consider Adk and Ak as above. Then, we have

Perωk,∞(Adk) =
∑

x∈ 1
k
Zn

k−n

2r

(
max
y∼x

(
χAdk

(y)− χAdk(x)
)

+ max
y∼x

(
χAdk

(x)− χAdk(y)
))

=
∑

x∈ 1
k
Zn

k−n

2r

(
max
y∼x

χAdk
(y)−min

y∼x
χAdk

(y)

)

=
∑

x∈ 1
k
Zn

k−n

2r
osc(Br(x))dk

(χAdk
),

where osc(Br(x))dk
(χAdk

) = max
(Br(x))dk

χAdk
− min

(Br(x))dk

χAdk
. We conjecture that

lim
k

Perωk,∞(Adk) =
1

2r

∫
oscBr(x)(χA)dx.

We leave this as an open problem for the future.

One can see that it is easy to transpose local and nonlocal continuum perimeters into the graph-

based framework. Notice that these formulations are indeed special cases (p = 1) of a more general

family of weighted perimeters that de�ned above.

6.3 Total variations and Cheeger inequality on graphs

In this section, we extend the notion of total variations, for p = 1, on graphs to upwind and downwind

total variations and also for p ∈]1,∞]. We show that the result of the co-area formula provided in

[70, 143] still true for p = ∞ on unweighted graphs. We jump to expose an extension of the Cheeger

inequality.

6.3.1 Total variation on graphs

Let us extend the de�nition of the total variation introduced in [70] to p ∈ [1,+∞], see [143] also a

similar de�nition for the anisotropic total variation.

De�nition 6.3.1. For 1 ≤ p <∞, the total variation on graphs is de�ned as follows:

TVω,p(f) = E
(∥∥∇ωf∥∥p) =

∑
u∈V

(∑
v∈V

ω
p
2
uv

∣∣f(v)− f(u)
∣∣p) 1

p
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TV±ω,p(f) = E
(∥∥∇±ω f∥∥p) =

∑
u∈V

(∑
v∈V

ω
p
2
uv

(
(f(v)− f(u))±

)p) 1
p

.

Similarly we de�ne the total variations for p =∞:

TVω,∞(f) = E
(∥∥∇ωf∥∥∞) =

∑
u∈V

(
max
v∈V

√
ωuv
∣∣f(v)− f(u)

∣∣)
TV±ω,∞(f) = E

(∥∥∇±ω f∥∥∞) =
∑
u∈V

(
max
v∈V

√
ωuv(f(v)− f(u))±

)
.

It is known that in the continuous case the perimeter is linked to the total variation via co-area for-

mula. A similar results has been exposed in [70, 143] for the discrete case. For the reader's convenience,

we recall this result and their extension to the upwind and downwind total variations.

Proposition 6.3.2. For any function f : V → R, we have:

TV±ω,1(f) =

∫ +∞

−∞
TV±ω,1(χ{f>t})dt, (6.3.1)

TVω,1(f) =

∫ +∞

−∞
TVω,1(χ{f>t})dt. (6.3.2)

In particular, for all A ⊂ V we have

TV±ω,1(χA) = Per±ω,1(A) and TVω,1(χA) = Perω,1(A).

Proof : See [143] for a detailed proof of (6.3.2). The proof of (6.3.1) holds from (6.3.2) and the

following relationship:

TV±ω,1(f) =
1

2
TVω,1(f), for every function f ∈ H(V ).

�

For p =∞, the co-area formula holds for unweighted graphs, as the following proposition shows. To

remove confusion on the notation, we denote ω = 1 to signify that the considered graph is unweighted.

Proposition 6.3.3. For any function f : V → R, we have:

TV±ω=1,∞(f) =

∫ +∞

−∞
TV±ω=1,∞(χ{f>t})dt,

TVω=1,∞(f) =

∫ +∞

−∞
TVω=1,∞(χ{f>t})dt.

Proof : Let u ∈ V and let vu ∈ N (u) such that
∥∥∇±ω=1f(u)

∥∥
∞ = (f(vu)− f(u))±, we can easy to

see that
∥∥∇±ω=1χ{f>t}(u)

∥∥
∞ =

(
χ{f>t}(vu)− χ{f>t}(u)

)±
for all t ∈ R. Then

‖∇±ω=1f(u)‖∞ = (f(vu)− f(u))±

=

∫ +∞

−∞

(
χ{f>t}(vu)− χ{f>t}(u)

)±
dt

=

∫ +∞

−∞
‖∇±ω=1χ{f>t}(u)‖∞dt
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Hence,

TV±ω=1,∞(f) = E(
∥∥∇±ω=1f

∥∥
∞) =

∫ +∞

−∞
E
(∥∥∇±ω=1χ{f>t}

∥∥
∞
)
dt =

∫ +∞

−∞
TV±ω=1,∞(χ{f>t})dt.

Using the fact that TVω=1,∞(f) = TV+
ω=1,∞(f) + TV−ω=1,∞(f), to get the last equality. �

Remark 6.3.4. The co-area doesn't hold for a general weighted graphs, for p =∞. Indeed, let G be

a weighted graph with the vertex set V = {1, 2, 3} and the weight function is given by

ω2
ij =


1, if (i, j) = (1, 2),

1/4, if (i, j) = (1, 3),

1/3, if (i, j) = (2, 3).

Consider the following function de�ned on V by f(1) = 0, f(2) = 1, f(3) = 4. By a simple computa-

tions one gets that

TV±ω,∞(f) = 2 <
11

4
=

∫ +∞

−∞
TV±ω,∞(χ{f>t})dt,

TVω,∞(f) = 3 < 5 =

∫ +∞

−∞
TVω,∞(χ{f>t})dt.

We close this subsection with an application of co-area formulas to an equivalent result on functional

inequalities.

Let G be a non-empty set of pairs (g1, g2) functions on V an let L be a functional generated by G
as follow:

L(f) = sup
(g1,g2)∈G

E(f+g1 + f−g2). (6.3.3)

We say that the functional L admits a quasi-linear representations. As noted in [140], many functionals

have this representation, for example:

L(f) =
(
E
(∣∣f ∣∣p))1/p , for 1 ≤ p ≤ ∞,

L(f) =
(
E
(∣∣f − E(f)

∣∣p))1/p , for 1 ≤ p ≤ ∞,

L(f) = inf
a∈R

(
E
(∣∣f − a∣∣p))1/p for 1 ≤ p ≤ ∞.

The co-area formula implies the following equivalence.

Proposition 6.3.5. Let λ > 0, and either p = 1 or p =∞ with ω ∈ {0, 1}, the following are equivalent:
(i) L(f) ≤ λE(

∥∥∇±ω f∥∥p) for all f : V → R.

(ii) L(χA) ≤ λE(
∥∥∇±ωχA∥∥p) and L(−χA) ≤ λE(

∥∥∇±ω (−χA)
∥∥
p
), for all A ⊂ V .

Proof : The implication (i) =⇒ (ii) is straightforward, it is enough to apply (i) to f = χA and

f = −χA. Conversely, let g1, g2 ∈ G, it is easy to see E(
∥∥∇±ωχA∥∥p) = E(

∥∥∇±ω (−χAc)
∥∥
p
) for all A ⊂ V .

Therefore

E(
∥∥∇±ω f∥∥p) =

∫ +∞

0
E(
∥∥∇±ωχ{f>t}∥∥p)dt+

∫ 0

−∞
E(
∥∥∇±ωχ{f>t}∥∥p)dt

=

∫ +∞

0
E(
∥∥∇±ωχ{f>t}∥∥p)dt+

∫ 0

−∞
E(
∥∥∇±ω (−χ{f≤t})

∥∥
p
)dt

≥ λ−1

∫ ∞
0

E[g1 · χ{f>t}]dt+ λ−1 ·
∫ 0

−∞
E
(
χ{f≤t}g2

)
dt
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= λ−1E(g1f
+) + λ−1 · E(f−g2).

We get the desired inequality by taking the supremum over all function g1, g2 ∈ G.
�

6.3.2 Extension of Cheeger inequality on graphs

Partitioning the set of vertices of a graph into two or more disjoints subsets, is a fundamental problem

in graph theory. It is also a very powerful tool in data clustering with applications in image analysis

and machine learning [35, 41, 142] . A popular criterion to partition the graph is to minimize the

perimeter cut(A,Ac) de�ned as

cut(A,Ac) def

=
∑
u∈A

∑
v∈Ac

√
ωuv.

Direct minimization of the cut leads typically to unbalanced partitions. To solve this issue one can

introduce a balance term. There exist several kinds of balanced cuts, among which a popular one is

the Cheeger cut [54] de�ned as

min
A(V

cut(A,Ac)
min(|A|, |Ac|)

, with |A| the size of A.

The Cheeger constants can be rewritten as

h+ = min
A⊂V

0<|A|<|V |

E
(∥∥∇+

ωχA
∥∥

1

)
min (E(χA), E(χAc))

= min
A⊂V

0<|A|< |V |
2

E
(∥∥∇+

ωχA
∥∥

1

)
E(χA)

,

we can then extend the isoperimetric and related constant associated to the discrete gradient de�ned

above, for any 1 ≤ p ≤ ∞, as follows:

h±p = min
0<|A|≤ |V |

2

E
(∥∥∇±ωχA∥∥p)
|A|

, hp = min
0<|A|≤ |V |

2

E
(∥∥∇ωχA∥∥p)
|A|

.

By de�nition of the perimeters we have:

2h+
1 = 2h−1 = h1 = min

0<|A|≤ |V |
2

Perω,1(A)

|A|
.

De�nition 6.3.6. Let p ∈ [1,∞], we set:

k±p = inf
f 6=const

E
(∥∥∇±ω f∥∥p)

E
(∣∣f −m(f)

∣∣) ,
kp = inf

f 6=const

E
(∥∥∇ωf∥∥p)

E
(∣∣f −m(f)

∣∣) ,
where m(f) is the median of f .

Proposition 6.3.7. For either p = 1 or p =∞ with ω ∈ {0, 1}. We have the following relations:

h±p = k±p and hp = kp. (6.3.4)

Proof : Let A ⊂ V such that 0 < |A| ≤ |V |/2, then we have m(χA) = 0 and

k±p · |A| = k±p · E
(∣∣χA −m(χA)

∣∣) ≤ E (∥∥∇±ωχA∥∥p) .
Similarly, one gets

kp · |A| = kp · E
(∣∣χA −m(χA)

∣∣) ≤ E (∥∥∇ωχA∥∥p) .
� 123 �



Chapter 6 6.4. Discrete mean curvature �ows on graphs

k±p ≤ h±p and kp ≤ hp.

Let us prove the other inequality. Observe that

min
(
E(χ{f−m(f)>t}), E(χ{f−m(f)≤t})

)
=

{
E(χ{f−m(f)>t}), if t > 0,

E(χ{f−m(f)≤t}), if t ≤ 0,
(6.3.5)

By the co-area formula and (6.3.5) , we obtain

E
(∥∥∇±ω f∥∥p) =

∫ +∞

−∞
E
(∥∥∇±ωχ{f>t}∥∥1

)
dt

=

∫ +∞

−∞
E
(∥∥∇±ωχ{f−m(f)>t}

∥∥
1

)
dt

≥ h±p ·
∫ +∞

−∞
min

(
E
(
χ{f−m(f)>t}

)
, E
(
χ{f−m(f)≤t}

))
dt

= h±p ·
∫ 0

−∞
E
(
χ{f−m(f)≤t}

)
dt+ h±p ·

∫ +∞

0
E
(
χ{f−m(f)>t}

)
dt

= h±p · E
(
(f −m(f))−

)
+ h±p · E

(
(f −m(f))+

)
= h±p · E

(∣∣f −m(f)
∣∣) .

Similarly, we obtain

E
(∥∥∇ωf∥∥p) ≥ hp · E (∣∣f −m(f)

∣∣) .
Hence, we get the inverse inequality. �

6.4 Discrete mean curvature �ows on graphs

In this section, we expose a large class of mean curvature on graphs based on the de�nition of the

nonlocal perimeters on graphs de�ned above. As in the nonlocal continuum case [49]. We de�ne the

mean curvature as the �rst variation of the perimeter. We denote by δ(u) the degree of a vertex u ∈ V
which is given by δ(u) =

∑
v∼u
√
ωuv.

De�nition 6.4.1. Let A ⊂ V , and u0 ∈ V . We de�ne the upwind and downwind mean curvature as

follow:

κ+
ω,1(u0,A)

def

=
Per+

ω,1(A ∪ {u0})− Per+
ω,1(A)

δ(u0)
,

κ−ω,1(u0,A)
def

=
Per−ω,1(A)− Per−ω,1(A \ {u0})

δ(u0)
.

Finally, we de�ne then the mean curvature for u0 ∈ V as:

κω,1(u0,A)
def

=

{
κ+
ω,1(u0,A), if u0 ∈ Ac,
κ−ω,1(u0,A), if u0 ∈ A.

Observe that by a simple development of the de�nition of the perimeters, we show that

Per+
ω,1(A ∪ {u0})− Per+

ω,1(A) =

{∑
v∈Ac

√
ωu0v −

∑
v∈A
√
ωu0v, if u0 ∈ Ac,

0, if u0 ∈ A,
and

Per−ω,1(A)− Per−ω,1(A \ {u0}) =

{∑
v∈Ac

√
ωu0v −

∑
v∈A
√
ωu0v, if u0 ∈ A,

0, if u0 ∈ Ac.

� 124 �



Chapter 6 6.4. Discrete mean curvature �ows on graphs

Therefore, one gets an explicit formula of the discrete mean curvature.

Proposition 6.4.2. For all A ⊂ V and all u0 ∈ V , we have:

κω,1(u0,A) =

∑
v∈Ac

√
ωu0v −

∑
v∈A
√
ωu0v

δ(u0)

= −
∑

v∈V
√
ωu0v(χA − χAc)
δ(u0)

.

(6.4.1)

Remark 6.4.3. (i) We can interpreted the formula (6.4.1) as a discrete version of the nonlocal

J-mean curvature introduced in [108, De�nition 3.2], which is given by

HJ
∂E(x)

def

= −
∫
Rn
J(x− y)(χE(y)− χE(x))dy, x ∈ Rn,

where E ⊂ Rn measurable set and J is a nonnegative radial measurable function in L1(Rn).

(ii) Based on the equation (6.4.1), we can extend the notion of the mean curvature to any function f

on graphs by considering its level sets. Indeed, let f : V → R and u0 ∈ V . The mean curvature

κω,1 (we keep the same notion) of f at u0 on a graph is de�ned as

κω,1(u0, f)
def

= κω,1(u0, {f ≥ f(u0)})

=

∑
v∈{f≥f(u0)}

√
ωu0v −

∑
v∈{f<f(u0)}

√
ωu0v

δ(u0)

=

∑
v∈V
√
ωu0v sign(f(v)− f(u0))

δ(u0)
,

where

sign(r) =

{
1, if r ≥ 0,

−1, if r < 0.

(iii) In the continuum (local) setting, the mean curvature, for a given smooth hypersurface Γ ⊂ RN ,
at a point x of Γ is given by the following formula

κ(x) = −div(nx), (6.4.2)

where nx, x ∈ Γ, is the unit normal vector �eld.

As in the continuous case, we are going to expose a discrete version of (6.4.2) on graphs, intro-

duced in [143]. Let G = (V,E, ω) be a weighted graph. For a nonempty set A ⊂ V , the analogue
of (6.4.2) on graph is given as follow:

κlocω,1(u,A) = divw(nA)(u) =

{∑
v∈Ac

√
ωuv, if u ∈ A,

−
∑

v∈A
√
ωuv, if u ∈ Ac,

(6.4.3)

where nA is the discrete normal vector which is de�ned as

nA(u, v) =


1 if u ∼ v and (u, v) ∈ A×Ac,
−1 if u ∼ v and (u, v) ∈ Ac ×A,
0 else.

The formula given in [143] of the mean curvature is a little di�erent to this one, this di�erence

returns to the de�nition of divergences considered. Observe that, the sign of the mean curvature,

given by (6.4.3), depends only on the side that contains the vertex u and not on the weights

function, while it is not in the case of the mean curvature considered in De�nition 6.4.1, which

makes a di�erence in the study of the data processing especially the nonlocal ones. In the rest

of this work, we adopt De�nition 6.4.1 for the discrete mean curvature.
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6.4.1 Variational curvature on graphs

Almgren, Taylor and Wang [5] proposed an implicit time discretization to study some geometric vari-

ational evolutions, in particular curvature-based motions. Following the formal consideration that

curvature can be seen as the variation of the perimeter, they minimized iteratively the following incre-

mental minimum problem

min
E
{Fh(E)

def

= Per(E) +
1

h

∫
E
dEhk−1

(x)dx}, (6.4.4)

where E range over all measurable sets in Rn, Per is the usual perimeter, h is the time step, dA(·) =

dist(·, A)−dist(·, Ac) with dist(·, A) is the Euclidean distance from the set A. An equivalent de�nition

of the energy-functional of the problem (6.4.4) is given by

Fh(E) = Per(E) +
1

h

∫
E∆Ek−1

dist(x, ∂Ek−1)dx.

The equivalence comes from the following equality∫
E
dE(x)dx−

∫
F
dF (x)dx =

∫
E∆F

dist(x, ∂F )dx.

Thanks to the co-area formula, it can be shown that instead of minimization over sets, we can relax

the problem by iteratively minimizing the following functional

TV(φ) +
1

h

∫
Rn
φ(x)dEk−1

(x)dx, (6.4.5)

where φ range over all increasing functions in L∞(Rn; [0, 1]) .

Following the approach in [49], we have any level set of a minimiser of (6.4.5) is a solution of the

problem (6.4.4).

Many algorithms have been proposed to solve this problem, using di�erent methods, e.g. dual

projection [120], graph cut [125], etc.

Now, we are going to translate this problem to the discrete setting. For a graph G = (V,E, ω),

let (Perω,TVω) be one of the following pair of perimeter and their corresponding total variation

(Perω,p,TVω,p) or
(
Per±ω,p,TV±ω,p

)
, where either p = 1 or p = ∞ with ω ∈ {0, 1}. We consider

corresponding following minimum problem on G.

min
Â
{Perω(Â) +

1

h

∑
v∈Â

sdGA(v)}, (6.4.6)

where A ⊂ V non-empty set, h > 0 corresponds to the time step and sdGA(·) is the signed graph

distance de�ned as follows

sdGA(u)
def

= dGA(u)− dGAc(u), u ∈ V,

with dGB is the solution of the Eikonal equation (6.5.10) with respect to the boundary set B.
We extend (6.4.6) to the binary function as

min
φ:V→{0,1}

{TVω(φ) +
1

h

∑
v∈V

φ(v)sdGA(v)}. (6.4.7)

Using the co-area formula, (6.4.6) is equivalent to

min
φ
{TVω(φ) +

1

h

∑
v∈V

φ(v)sdGA(v)}. (6.4.8)
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where φ range over all increasing functions φ : V → [0, 1]. Since TVω is convex, it is easy to check

that (6.4.8) has a solution. Observe that, given a solution φ of (6.4.8), we have

TVω(φ) +
1

h

∑
v∈V

φ(v)sdGA0
(v) =

∫ 1

0
Per({φ > ξ})dξ +

1

h

∫ 1

0

∑
v∈{φ>ξ}

sdGA0
(v)dξ.

Therefore for almost everywhere ξ ∈ [0, 1], {φ > ξ} is a solution to (6.4.6).

Using the transcription above, we de�ne the mean curvature �ow, An, n ∈ N, with discrete time

step h > 0 for an initial set A0 ⊂ V , recursively as

An ∈ arg min
A⊂V
{Perω(A) +

1

h

∑
v∈A

sdGAn−1
(v)}. (6.4.9)

6.5 Level set formulation of nonlocal mean curvature �ows on graphs

and applications

Based in a discretization of the gradients and curvatures on a general domain, graph, we can adapt a

large PDEs models on graphs involving mean curvature or variants of mean curvature. In this section

we consider two general models used extensively to solve several tasks in image processing and computer

vision. The level power mean curvature �ows for image denoising, enhancement or simpli�cation and

the PDEs level set active contours for image segmentation and object detection. We will show that

the transposition of these models on graphs leads to partial di�erences equations with coe�cients that

are data dependant and their applications are naturally extend to the processing of any data and for

data classi�cation.

6.5.1 Level set power mean curvature �ow on Euclidean domain

We recall the level set approach for front propagation on Euclidean domains. The level set method

for front propagation has been used with great success in both pure and applications and in di�erent

applications in image processing, computer vision and computer graphics. Given an initial front on

surface Γ0 a boundary of repere Γ0 ⊂ Rn(∂Ω0 = Γ0), see [131, 117, 42]. The level set is used to

analyse its subsequent motion under a normal velocity c(x, t). The idea is to represent the evolving

front as a level set of a function φ(x, t) for x ∈ Rn and t is the time. The initial front is given by

Γ0 = {x : φ(x, 0) = 0 = φ0}, where φ0 is a smooth function de�ned on Rn, and the evolving front is

described for all later time as Γt = {x : φ(x, t) = 0}. The evolving front is governed by the equation :{
∂φ
∂t (x, t) = c(x, t)

∥∥∇φ(x, t)
∥∥

2
(x, t) ∈ Rn × (0, T )

φ(x, 0) = φ0(x), x ∈ Rn.
(6.5.1)

In particular, when c(x, t) =
∣∣κ(x, t)

∣∣α−1
κ(x, t) where κ presents the usual mean curvature, we have

the level set power mean curvature equation, and (6.5.1) reads
∂φ
∂t (x, t) =

∣∣div

(
∇φ(x,t)∥∥∇φ(x,t)

∥∥
2

) ∣∣α−1
div

(
∇φ(x,t)∥∥∇φ(x,t)

∥∥
2

)∥∥∇φ(x, t)
∥∥

2
,

φ(x, 0) = φ0(x).

(6.5.2)

For α = 1 this equation corresponds to the mean curvature �ow �lter which �nds important applications

in image processing [131]. A variant for positive/negative curvature �ows are used in [107] for image

enhancement in addition to noise removal.
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When α→ 0, we obtain so called erosion/dilatation used in mathematical morphology. In this case

the equation (6.5.2) is given by:

∂φ

∂t
(x, t) = sign

(
div

(
∇φ(x, t)∥∥∇φ(x, t)

∥∥
2

))∥∥∇φ(x, t)
∥∥

2
.

In the case, where φ0 is an implicit representation of a front (surface), we get the active contour/snake

model which is one of the most successful variational models in image segmentation. It consists

of evolving a contour in images toward the boundaries of objects. Its success is based on strong

mathematical properties and e�cient numerical schemes via the level sets method. We consider the

following curve evolution equation
∂φ
∂t (x, t) =

(
α div

(
∇φ(x,t)∥∥∇φ(x,t)

∥∥
2

)
+ β F (I, φ(x, t))

)∥∥∇φ(x, t)
∥∥

2
,

φ(x, 0) = φ0(x),

(6.5.3)

where I : Ω→ R is the initial image and F is a halting function of the active contour model.

Chan-Vese model for active contours [53, 144] is a powerful and �exible method which detects objects

whose boundaries are not necessarily detected by the gradient. This model is based on an energy

minimization problem, which can be reformulated in the level set formulation, leading to an easier way

to solve the problem. Chan-Vese model has achieved good performance in image segmentation task

due to its ability of obtaining a larger convergence range and handling topological changes naturally.


∂φ
∂t (x, t) =

(
α div

(
∇φ(x,t)∥∥∇φ(x, t)

∥∥
2

)
− λ1(I − c1)2 + λ2(I − c2)2

)∥∥∇φ(x, t)
∥∥

2
,

φ(x, 0) = φ0(x).

(6.5.4)

where α, λ1, λ2 > 0 are the �tting parameters, I corresponds to the initial image, φ0 is a smooth

function, c1 the average of I on φ(x, t) ≥ 0, and c1 the average of I on φ(x, t) ≤ 0.

6.5.2 Transcription of power mean curvature �ow on graphs

We are interested in translating on graphs two PDEs models involving mean curvature. Let G =

(V,E, ω) be a weighted graph, based on the de�nition of discrete gradient and the boundary set which

are given above, our formulation for (6.5.2) on graphs can be expressed as follows:
∂φ
∂t (u, t) =

(∣∣κω(φ(u, t))
∣∣α−1

κω(φ(u, t))
)+ ∥∥∇+

ωφ(u, t)
∥∥
p

−
(∣∣κω(φ(u, t))

∣∣α−1
κω(φ(u, t))

)− ∥∥∇−ωφ(u, t)
∥∥
p
,

φ(u, 0) = φ0(u),

(6.5.5)

where φ0(·, t) ∈ H(V ), α ∈ [0, 1], p ∈ [1,+∞] and

κω(φ(u, t)) = κω,1 (u, {y | φ(v, t) ≥ φ(u, t)}) .

We use the forward/explicit Euler scheme in the time to approximate the above problem, for that

let 0 < t1 < t2 < · · · < t` = T be an equispaced partition of [0, T ], T > 0. i.e. ti = i
`T, i ∈ [`].

∂φ

∂t
(u, t) =

φi+1(u)− φi(u)

∆t
,
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where φi(u) = φ(u, i∆t) with ∆t = T
` and the equation (6.5.5) can be rewritten as the following

iterative equation:

φi+1(u)− φi(u) = ∆t

((∣∣κω(φi(u))
∣∣α−1

κω(φi(u))
)+ ∥∥∇+

ωφ
i(u)

∥∥
p

−
(∣∣κω(φi(u))

∣∣α−1
κω(φi(u))

)− ∥∥∇−ωφi(u)
∥∥
p

)
.

In particular, for α = 1 the equation (6.5.5) can rewritten as the following iterative equation: φi+1(u) = φi(u) + ∆t

((
κω(φi(u))

)+ ∥∥∇+
ωφ

i(u)
∥∥
p
−
(
κω(φi(u))

)− ∥∥∇−ωφi(u)
∥∥
p

)
,

φ0(u) = φ0(u).

(6.5.6)

When p =∞, we across the scheme considered in [70, Section 3.3]. Now, let us consider the case that

when α→ 0 and p =∞. Similarly by using the explicit Euler method as above, one gets the following

iterative equation : φi+1(u) = φi(u) + ∆t

(
sign

(
κω(φi(u))

) ∥∥∇+
ωφ

i(u)
∥∥
∞ + sign

(
κω(φi(u))

) ∥∥∇−ωφi(u)
∥∥
∞

)
,

φ0(u) = φ0(u).

(6.5.7)

In the case where ∆t = 1, this previous equation can be interpreted as

φi+1(u) =

{
φi(u) +

∥∥∇+
ωφ

i(u)
∥∥
∞, if κω(φi(u)) ≥ 0,

φi(u)−
∥∥∇−ωφi(u)

∥∥
∞, if κω(φi(u)) < 0.

(6.5.8)

6.5.3 Transcription of the active contour on graphs

In this section, we present a transcription of geometric PDEs on weighted graphs of arbitrary topology.

A front evolving on G is de�ned as a subset A0 ⊂ V , and is implicitly represented by a level set

function φ0 = χA0 − χAc0 . In other word φ0 equal 1 in A0 and −1 on its complementary. From the

general equation (6.5.3) transposed on graph, the front propagation can be expressed in general by{
∂φ
∂t (u, t) = c(u, t) ·

∥∥∇ωφ(u, t)
∥∥
p

(u, t) ∈ V × [0, T )

φ(u, 0) = φ0(u),
(6.5.9)

with c(·, t) ∈ H(V ). Based on the previous de�nition of discrete dilation and erosion on graphs, the

front propagation can be expressed as a morphological process with the following sum of dilation and

erosion. {
∂φ
∂t (u, t) = (c(u, t))+ ·

∥∥∇+
ωφ(u, t)

∥∥
p
− (c(u, t))− ·

∥∥∇−ωφ(u, t)
∥∥
p

φ(u, 0) = φ0(u).

To solve this dilation and erosion process, on the contrary to the PDEs case, no spatial discretization is

needed thanks to derivatives directly expressed in a discrete form. Then, the general iterative scheme

to compute φ at time t+ 1 for all u ∈ V is given by:

φi+1(u) = φi(u) + ∆t

(
(c(u, t))+

∥∥(∇+
ωφ

i)(u)
∥∥− (c(u, t))−

∥∥(∇−ωφi)(u)
∥∥).

At each time i+ 1, the new value at a vertex u only depends on its value at time i and the existing

values in its neighborhood. This equation can be split in two independent equations, in function of

the sign of c(·, ·):

φi+1(u) =

{
φi(u) + ∆t(c(u, t))

∥∥(∇+
ωφ

i)(u)
∥∥, if c(u, t) > 0,

φi(u) + ∆t(c(u, t))
∥∥(∇+

ωφ
i)(u)

∥∥, if c(u, t) < 0,
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Such decomposition of the process in two independent equations for erosion and dilation processes

enhances the computation of the solution because one only has to compute one morphological gradient

at each iteration, for a given vertex. Moreover, one can remark that at initialization both two gradients

are zero everywhere, except for vertices which lies in the inner and outer boundaries of A0. Then, the

set of vertices to be updated at each iteration can be restricted to two inner and outer narrow bands,

initialized respectively with ∂−A0 and ∂
+A0 and updated over time with neighbours of vertices already

in. The narrow bands growth follows the fronts evolution and to avoid them to become too large, the

narrow bands are reinitialized periodically. Thus, each τ iterations,which correspond to a step k,

the front is given by the set Ak =
{
u ∈ V : φkτ (u) > 0

}
and the associated level set function is also

reinitialized as φk(u) = Uk = χAk(u)−χAck(u). Then, the inner and outer narrow bands are respectively

reinitialized as ∂−Ak and ∂+Ak.

Remark 6.5.1. Using previous de�nitions of morphological evolution equations, one can formulate

the same relation and obtain a PdEs-based version of the Eikonal equation, de�ned on weighted graphs

of arbitrary topology. Indeed, let c = 1 and φ(·, t) = t− ϕ(·) on the whole domain V , with ϕ ∈ H(V ).

We obtain a discrete adaptation of the Eikonal equation on graph, which describes a morphological

erosion process, and de�ned as {∥∥ (∇−ωϕ) (u)
∥∥ = 1, u ∈ V0,

ϕ(u) = 0, u ∈ V \ V0,
(6.5.10)

where V0 ⊂ V . Numerical schemes and algorithms to solve such equation have provided in [60]. These

shemes allow to compute weighted geodesic distances, see [60, Section 5.2].

6.6 Numerical experiments

In this section, we present our numerical experiments to illustrate the potentialities of our formulations

of the level set power mean curvature equation, through two models: power mean curvature �ows and

Chan-Vese model for active contour. These allow us to process both images and 3D-point clouds.

Di�erent graph structures and weight functions are also used to show the �exibility of our approach.

6.6.1 Weighted graph construction

There exist several popular methods to transform discrete data {u1, · · · , un} into a weighted graph

structure. Considering a set of vertices V such that the data are embedded by functions of H(V ), the

construction of such a graph consists in modeling the neighborhood relationships between the data

through the de�nition of a set of edges E and using a pairwise distance measure µ : V × V → R+.

In the particular case of images, graph construction methods based on geometric neighborhoods are

particularly well-adapted to represent the geometry of the space, as well as the geometry of the function

de�ned on that space. We distinguish the following types of graphs:

� Grid graphs, which are the most natural structures to describe an image with a graph. Each pixel

is connected by an edge to its adjacent pixels. Classical grid graphs are 4-adjacency grid graphs

and 8-adjacency grid graphs. Larger adjacency can be used to obtain nonlocal grid graphs.

� Region adjacency graphs (RAGs), which provide very useful ways of describing the structure of

a picture: vertices represent regions and edges represent region adjacency relationship.

� k-nearest neighborhood graphs (k-NNGs), where each vertex u is connected with its k-nearest

neighbors according to the distance measure µ. Such construction implies building a directed

graph as the neighborhood relationship is not symmetric. Nevertheless, an undirected graph can
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be obtained by adding an edge between two vertices u and v if u is among the k-nearest neighbors

of v or if v is among the k-nearest neighbors of u.

� k-extended RAGs (k-ERAGs), which are RAGs extended by a k-NNG. Each vertex is connected

to adjacent regions vertices and to its k most similar vertices of V .

The similarity between two vertices is computed with respect to an appropriate measure s : E → R+,

which satis�es

ωuv =

{
s(u, v), if (u, v) ∈ E,
0, otherwise.

Examples for common similarity functions are as follows:

s0(u, v) = 1,

s1(u, v) = exp(−µ(f0(u), f0(v))/σ2), with σ > 0,

for which σ depends on the variation of the function µ and controls the similarity scale.

Several choices can be considered as feature vectors computed from the given data, depending on the

nature of the features to be used for graph processing. In the context of image processing one can use

the simple grayscale or color feature vector Fu, or a patch feature vector F τu =
⋃
v∈Wτ (u) Fv (i.e., the

set of values Fv, where v is in a square window Wτ (u) of size (2τ + 1)× (2τ + 1) centered at a vertex

pixel u) incorporating nonlocal features such as texture.

6.6.2 Power mean curvature �ow

This paragraph illustrates the potentialities of the power mean curvature through an example of

image �ltering and an other one of 3D point cloud. Figure 6.1 presents �ltering results of an im-

age using the formulation of power mean curvature �ows (6.5.5) for α = 0, 1, with p = 2, on lo-

cal weighted graph structures. In this example, we construct 4-adjacency grid graphs with ωuv =

exp(−d(φ0(u), φ0(v))/σ2). Figure 6.2 presents �ltering results obtaining of 3D point cloud using the

same formulation for α = 0, 1, with p = 2. In this example, we apply our formulation using two

graphs. Both built from the same 3D-points clouds using k-NNGs, with k = 8 and ω = 1 for the �rst

one, which their correspond results are given by (b) and (c). For the second graph, we take k = 20

and ωuv = exp(−d(φ0(u), φ0(v))/102), which their correspond results are given by (e) and (f). Both

examples the function φ0 represents the initial data ( image of the �rst example and 3D point cloud for

the second one) and d represents the Euclidean distance between φ0(u) and φ0(v) RGB color vectors.
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(a) Original image

(b) α = 0, (c) α = 1

Figure 6.1: Colored image �ltering with power mean curvature �ows. (a) Original image. (b) and (c)

present results with 4-adjacency grid graph and ω =colour, which depends on the colour similarity

between di�erent pixels.

6.6.3 Active contour model on graphs

In this paragraph, we illustrate the behaviour of the Chan-Vese model (6.5.4). An advantage of our

graph-based formulation is that the proposed formula can be applied to any graph, and therefore any

graph representing images. To illustrate such an adaptive behaviour, we propose to use other image

structures, such as regions maps, instead of pixels grids to build the graph for image segmentation.

In the following, we propose three examples, where we use two graphs. The �rst one is a classic 4-

adjacency grid graph where each pixel is connected to adjacent pixels and represented by its RGB color

vector. The second on is a Region Adjacency Graph (RAG) built from an initial partition of the image,

where each region (represented by a vertex) is connected to adjacent regions and represented by the

mean RGB colour vector inside the region. The partition is computed using the multi-label approach

presented in [60], that preserve image's strong boundaries. In both cases, the weight function is de�ned

as: ωuv = exp−(d(u,v))2

σ2 , where d(u, v) is the Euclidean distance between u and v RGB colour vectors.

Figure 6.3 and Figure 6.4 present several steps of the motion and the �nal position of the front using

the �rst graph (4-grid) with two and three phases, respectively. Figure 6.5 presents di�erent steps of

the contour evolution using a RAG.
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(a) Original image

(b) α = 0 (c) α = 1

(d) α = 0 (e) α = 1

Figure 6.2: Colored point cloud �ltering with power mean curvature �ows. In the middle line presents

results obtained using local k-NNGs (k = 8 and ω = 1). The last line presents results under the same

con�guration but with di�erent similarity function (ω =colour, which depends on the colour similarity

between di�erent 3D-points). obtained using 20-NNGs with .
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Figure 6.3: Illustration of active contour on a 4-grid graph. The weighted and velocity functions are

computed from each pixel RGB color. In blue, the front and the area inside the front. In red and the

green, the inner and outer candidate bands respectively.

Figure 6.4: Illustration of Chan-Vese segmentation with three phases.Results of di�erent steps on 4-

grid graph representation.
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(a) RAG, front and bands (b) Contour reported on image

(c) After one iteration (d) After one iterations

(e) After 82 iterations (f) After 82 iterations

Figure 6.5: Illustration of active contour on a region adjacency graph (RAG). The RAG is built from

a superpixel decomposition of the initial image, where each region is connected to its adjacent regions.

The weight and velocity functions are computed from the mean color inside regions. Left column shows

the RAG, with the front in blue and candidate bands in red (inner) an green (outer). Right column

shows the initial image with the front transposed from the RAG (using the superpixels boundaries).

6.6.4 Classi�cation

Performance for Data classi�cation Finally, we have tested the performance of our proposed

framework when applied to semi-supervised classi�cation on three standard databases from the liter-

ature: MNIST [103], OPTDIGITS [6], and PENDIGITS [4]. We compare two kinds of velocities. The
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�rst one is the level set mean curvature �ow on the graph-based curvature. We denote it as LSM. The

second one is propagation using the evolution eikonal equation but constant in time and based on the

characteristic of graph vertices. We denote it as FM. For these databases we merged both the training

and the test sets (as performed in [36]), resulting in datasets of 70000 instances, 5620 instances, and

10992 instances, for MNIST, OPTDIGITS, and PENDIGITS, respectively. In our tests, we propose

also, to re�ne the classi�cation results of FM with LSM algorithm (i.e., FM is used as seeds for LSM),

and we denote it as FM + LSM.

Comparison with state-of-the-art method: We compare the proposed method with p-Laplacian on

weighted graphs (pLPL) (case p = 2) [75]. To do so, we vary the amount of initial seeds from 1% to

10%, and compute the average classi�cation rate over 10 runs of each algorithm. The result comparison

is shown in Table 6.1. As it can be seen for MNIST and PENDIGITS datasets there is always one

of our methods that outperforms the state-of-the-art, while for OPTDIGITS our methods perform

equally well.

seeds datasets pLPL FM LSM FM+LSM

1%

MNIST

OPTDIGITS

PENDIGITS

97.84%

95%

94.97%

97.45%

95.22%

95.75%

98.20%

96.82%

95.71%

98.24%

97.10%

96.25%

2%

MNIST

OPTDIGITS

PENDIGITS

97.88%

97.53%

96.81%

97.64%

97.41%

97.38%

98.24%

97.88%

97.06%

98.29%

97.92%

98.56%

5%

MNIST

OPTDIGITS

PENDIGITS

97.99%

98.12%

97.95%

97.95%

98.09%

98.25%

98.33%

98.38%

98.30%

98.37%

98.35%

98.56%

10%

MNIST

OPTDIGITS

PENDIGITS

98.02%

98.05%

98.61%

98.19%

98.41%

98.94%

98.39%

98.64%

98.92%

98.45%

98.51%

99.10%

Table 6.1: Classi�cation rates on the three datasets we used. FM+LSM works better in general.
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In this chapter, we adopt a primal-dual proximal splitting (PDS) to solve the regularization problem

(5.2.1) and the boundary value problems (Pdn) and (5.3.1). We start by recall the primal dual hybrid

gradient scheme developed in [50]. Second, we recall the fast iterative Shrinkage-Thresholding algorithm

developed in [23]. Finally, we expose our adaptation and we present a calculus of the proximal mapping

proposed in our framework.

7.1 Algorithm for the Dirichlet problem on graphs

In this section, we adopt primal-dual hybrid gradient developed in [50] to solve the discrete boundary

value problems (Pdn) and (5.3.1). In order to avoid redundancy, we expose a general problem for the

both problems, which we will adapt to each of these two problems .

7.1.1 Primal-dual splitting

Let X, Y two �nite-dimensional real vector spaces equipped with an inner product 〈·, ·〉 and norm∥∥ · ∥∥ = 〈·, ·〉
1
2 . The general primal problem is given as

min
x∈X

F (Tx) +G(x), (7.1.1)

where T : X → Y is a continuous linear operator, G : X →] −∞,+∞] and F : Y →] −∞,+∞] are

proper, convex lower-semicontinuous functions. The Fenchel-Rockafellar dual problem of (7.1.1) reads

min
y∈Y

(G?(−(T ?y))) + F ?(y), (7.1.2)

where F ? and G? and the Legendre-Fenchel conjugates of F and G, and T ? is the adjoint operator of

T .

Notice that the primal-dual gap, given by

G(x, y)
def

= F (Tx) +G(x) +G?(−(T ?y)) + F ?(y), (7.1.3)

is a measure of optimality. If it vanishes at (x?, y?) ∈ X × Y (i.e., strong duality holds), then (x?, y?)

is a saddle point of the Lagrangian

L(x, y)
def

= 〈Tx, y〉+G(x)− F ?(y) (7.1.4)

as one has

L(x?, y) ≤ L(x?, y?) ≤ L(x, y?), (7.1.5)

for all x ∈ X and y ∈ Y .
The KKT equations, translating the primal-dual optimality conditions, then read

−T ?y? ∈ ∂G(x?),

Tx? ∈ ∂F ?(y?),

which may be written

0 ∈

 ∂G(x)

∂F ?(y)

+

 0 T ?

−T 0

x
y

 (7.1.6)
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meaning the solution is found by �nding the zeros of the sum of two monotone operators.

The latter can be solved with the following PDHG iterative scheme

xk+1 = proxτG(xk − τT ?yk) (7.1.7)

yk+1 = proxσF ?(y
k + σT (2xk+1 − xk)),

where τ, σ > 0 and the proximal operators are given by

proxτG(x)
def

= arg min
x′∈X

τG(x′) +
1

2

∥∥x− x′∥∥2
, (7.1.8)

proxσF ?(y)
def

= arg min
y′∈Y

σF ?(y′) +
1

2

∥∥y − y′∥∥2
. (7.1.9)

The convergence guarantees of (7.1.7) are summarized in the following proposition.

Proposition 7.1.1 ([50]). Let L =
∥∥T∥∥. choose 0 < τσL2 < 1 and ((xk, yk))k the sequence generated

by (7.1.7). Then ((xk, yk))k converges to a saddle point (x?, y?).

7.1.2 Application to the p-Laplacian Dirichlet problem

We adapt the primal-dual algorithm (7.1.7) with appropriate functions and linear operators to solve

problem (Pdn). We keep the notation of Section 4.4.1. Without loss of generality, we assume that

Vn(Ω) = {0, 1, · · · , n} and An ⊂ Vn(Ω). Set Vn = Vn(Ω), RVn = H(Vn) and RVn×Vn = H(Vn × Vn).

The problem (Pdn) is equivalent to (VPdn), where the latter takes the form

min
H(Vn(Ω))

Fd,n(∇Ku) +Gd,n(u), (7.1.10)

where Fd,n : RVn×Vn → R+ and Gd,n : RVn → R, which are de�ned by

Fd,n(U) =
1

p

∥∥U∥∥p
p,RVn×Vn , and Gd,n(u) = 〈u, f〉RVn + ιCg(u), (7.1.11)

with p ∈ [1,+∞]1, Cg = {u ∈ RVn : u = g on Acn}, and ∇K is the (nonlocal) weighted gradient

operator

∇K :RVn → RVn×Vn

u→∇Ku, (∇Ku)xy = K
1
p
xy(uy − ux).

This is a linear operator, its norm de�ned by∥∥∇K

∥∥ def

= sup∥∥u
∥∥

RVn
=1

∥∥∇Ku
∥∥
RVn×Vn ,

and whose adjoint, the (nonlocal) weighted divergence operator denoted divK and given as

divK :RVn×Vn → RVn

U→ divKU, (divKU)x =
∑
y∈Vn

K
1
p
xy(Uyx −Uxy).

As mentioned above, we adapt the PDHG iterative scheme (7.1.7) to solve the problem (7.1.10), which

reads in this case as

uk+1 = proxτGd,n(uk − τdivKUk) (7.1.12)

Uk+1 = proxσF ?d,n
(Uk + σ∇K(2uk+1 − uk)),

where τ, σ > 0. The convergence guarantees of (7.1.12) are summarized in the following corollary

which is an immediate consequence of Prposition 7.1.1.

1The case p = +∞ has to be understood as limp→+∞
1
p

∥∥ · ∥∥p
p,RVn×Vn

= ι∥∥U

∥∥
∞,RVn×Vn

≤1
.
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Corollary 7.1.2. If 0 < τσ
∥∥∇K

∥∥2
< 1, then (uk)k generated by (7.1.12) converges to a solution of

(7.1.10).

7.1.3 Application to the p-bilaplacian Dirichlet problem

Let G = (V,E, ω) be a weighted graph. We keep the same notation used in Section 5.3. Recall that

the boundary value problem, governed by the (nonlocal) p-bilaplacian operator (5.3.1), is equivalent

to solve the following minimization problem

min
u∈H(V )

F (∆ω,2u) +G(u), (7.1.13)

where ∆ω,2 is the (nonlocal) weighted Laplacian operator and F, G : H(V )→ R are de�ned by

F (u) =
1

p

∥∥u∥∥p
p

G(u) = 〈f ,u〉H(V ) + ιHg(V ;A)(u),

with p ∈ [1,+∞] (with the appropriate meaning for p = +∞ recalled above), and u ∈ H(V ) and

A ⊂ V . Recall that, the operator ∆ω,2 is self-adjoint and its norm is given by∥∥∆ω,2

∥∥ def

= sup∥∥u
∥∥

2
=1

∥∥∆ω,2

∥∥
2
.

We adapt the minimization problem (7.1.7) to solve the problem (7.1.13). In this case the scheme

reads as

uk+1 = proxτG(uk − τ∆ω,2v
k) (7.1.14)

vk+1 = proxσF ?(v
k + σ∆ω,2(2uk+1 − uk)),

where τ, σ > 0. The convergence guarantees of (7.1.14) are summarized in the following corollary

which is a consequence of Prposition 7.1.1.

Corollary 7.1.3. If 0 < τσ
∥∥∆ω,2

∥∥2
< 1, then (uk)k generated by (7.1.14) converges to a solution of

(7.1.13).

7.2 Algorithm for the p-bilaplacian variational problem on graphs

In this section, we are going to describe an algorithm to solve the regularization problem (5.2.1). For

this purpose, we keep the notation used in Section 5.2. This algorithm is valid for any p ∈ [1,+∞],

and for simplicity, we restrict ourselves here to the case where A is the identity operator (i.e. with a

denoising-type application in mind). We rewrite the problem (5.2.1) as follow

min{Epω(u; f , λ)
def

=
λ

p

∥∥∆ω,2u
∥∥p
p

+
1

2

∥∥u− f
∥∥2

2
: u ∈ H(V )}. (7.2.1)

Problem (7.2.1) can be easily solved using standard duality-based �rst-order algorithms. For this we

follow [79]. By standard conjugacy calculus, the Fenchel-Rockafellar dual problem of (7.2.1) reads

min{λ
q

∥∥v/λ∥∥p
p

+
1

2

∥∥∆ω,2v − f
∥∥2

2
: v ∈ H(V )}, (7.2.2)

where p ∈ [1,+∞] (with the appropriate meaning for p = +∞, see above), and q is the Hölder

conjugate of p, i.e. 1
p + 1

q = 1.

Applying Theorem 5.2.1 to the dual problem (7.2.2) has a convex compact set of minimizers for any

p ∈]1,+∞[. Moreover, the unique solution u? to the primal problem (7.2.1) can be recovered from any

dual solution v? as

u? = f −∆ω,2v
?.
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It remains now to solve (7.2.2). The latter can be solved with the (accelerated) FISTA iterative scheme

[115, 23, 48] which reads in this case

Wk = vk +
k − 1

k + b
(vk − vk−1),

vk+1 = prox
γ λ
q

∥∥·/λ∥∥q
q

(
Wk + γ∆ω,2(f −∆ω,2W

k)
)
,

uk+1 = f −∆ω,2v
k+1,

(7.2.3)

where γ ∈]0,
(∥∥∆ω,2

∥∥
2

)−1
[, and b > 2. Combining Theorem5.2.1, [79, Theorem2], [13, Theorem1.1],

the scheme (7.2.3) has the following convergence guarantees.

Proposition 7.2.1. The primal iterates uk converge to u?, the unique minimizer of (7.2.1), at the

rate ∥∥uk − u?
∥∥

2
= o(1/k).

7.3 Computing the proximal operators

Let us turn to the computation of the proximal mapping prox
σ 1
q

∥∥·/λ∥∥q
q

for more detail see [91]. Since∥∥ · ∥∥q
q
is separable, one has that

prox
σ 1
q

∥∥·/λ∥∥q
q

(v) =

(
prox

σ 1
q

∣∣·/λ∣∣q(vx)

)
x∈V

.

Moreover, as
∣∣ · ∣∣q is an even function on R, prox

σ 1
q

∣∣·∣∣q is an odd mapping on R, that is,

prox
σ 1
q

∣∣·∣∣q(vx) = prox
σ 1
q

∣∣·∣∣q(∣∣vx∣∣) sign(vx).

Hence, one has to compute prox
σ 1
q

∣∣·∣∣q(t)2 for t ∈ R+. We distinguish di�erent situations depending on

the value of q:

� q = +∞ (i.e., p = 1): this case amounts to computing the orthogonal projector on [−λ, λ] which

reads

t ∈ R+ → P[−λ,λ](t) = min(t, λ).

� q = 1 (i.e., p = +∞): this case corresponds to the well-known soft-thresholding operator, which

is given by

t ∈ R+ → prox
σ
∣∣·∣∣(t) = max(t− σ, 0).

� q = 2 (i.e.,p = 2): it is immediate to see that

prox
σ 1

2

∣∣·∣∣2(t) =
t

1 + σ

� q ∈]1,+∞[: in this case, as
∣∣ · ∣∣q is di�erentiable, the proximal point prox

σ 1
q

∣∣·∣∣q(t) is the unique

solution α? on R+ of the nonlinear equation:

α− t+ σαq−1 = 0.

2Recall that limq→∞
1
q

∣∣ · ∣∣q = ι[−1,1](·).
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Conclusion and Perspectives

8.1 Summary and take-away messages

In this manuscript, we have provided new results on consistency of nonlocal p-Laplacian evolution

and boundary value problems on sparse graphs. In particular, we have established general error

bounds comparing the continuum problems and their discrete approximations on graphs and global

convergence rates, for the evolution problem. Regarding the boundary value problem, we have studied

the asymptotic behaviour of a sequence of this problem. Moreover, we have shown a general consistency

as well as as a priori estimate for the homogeneous problem on graphs. Based on these error estimates

of both problem, we have established nonasymptotic rate of convergence of solutions for the discrete

models on sparse random graphs.

In addition, we have introduced two new concepts on graphs, based on nonlocal calculus on weighted

graphs. The �rst one concerns the discrete p-bilaplacian operator on graphs, which allowed us to study

its corresponding variational and boundary value problems on weighted graphs. The second one is a

general class of perimeters on graphs, which allowed us to rede�ne and extend other notions on graphs.

These led us to transcribe and adapt the notion of the mean curvature �ows on graphs as well as the

level set mean curvature.

We summarize the main conclusions to be drawn from our work:
(i) We extended the results of [90] to a far more general class of kernels and Lq-graphons sequences.

More precisely, we established a bound on the distance between two continuous-in-time trajec-

tories de�ned by two di�erent evolution systems, without any boundedness assumptions on the

kernels, second member and initial data. Similarly, we provided a bound in the case that one of

the trajectories is discrete-in-time and the other is continuous. In turn, these results led us to

establish error estimates of the full discretization of the p-Laplacian problem on sparse random

graphs. In particular, we provided rate of convergence of solutions for the discrete models to the

solution of the nonlocal problem on the continuum as the number of vertices grows.

(ii) For the boundary value problem (PDnloc), we established continuum limits of a sequence of discrete

(e.g., on sparse graphs) nonlocal p-Laplacian boundary value problems. Using the Dirichlet

principle, we showed the problem amounts to studying limits of nonlocal variational problems

consisting in minimizing a sequence of convex lower-semicontinuous functional in Lp(Ω). We

�rst established well-posedness of these problems. Then, using the notions of Mosco and Γ-

convergence, and under mild conditions, we established convergence of this sequence of variational

problems and provided the form of the limit variational problem. In turn, this allowed us to

provide consistent estimates of the discretisation of the nonlocal p-Laplacian Dirichlet problem

on graphs. In particular, under some mild conditions we provided a priori estimates for solutions

of this problem. These results led us to derive rate of convergence for the discrete model de�ned

on K-random sparse graphs.
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(iii) We introduced a new class of operators, called p-bilaplacian operators. We studied the well-

posedness (existence and uniqueness) of the variational problem as well as the boundary value

problem associated to these operators on weighted graphs. We adapted also primal-dual algo-

rithms to solve these problems. Some numerical results were reported to illustrate our �ndings.

(iv) For the nonlocal discrete perimeter, we revisited [70], where we proposed a general class of

perimeters on weighted graphs. We introduced the curvatures related to these perimeters. we

proposed also an adaptation and a transcription of the power mean curvature level set equation

on a general discrete domain, represented via weighted graphs. Employing these models, we

reported some numerical results, on image processing and 3D-point clouds and high dimensional

data classi�cation, to exemplify the potential impact of our framework.

8.2 Future work

Our work uncovers several interesting problems which will be very interesting to investigate in the

future.

8.2.1 The nonlocal p-Laplacian operator.

The limiting cases p = 1 and p = +∞ Starting with the study of the well-posedness and going

through the study of the consistency of (PDnloc) and (Pnloc), excluding the value p = 1 and p = ∞
for the boundary value problem and p =∞ for the evolution problem, were crucial to get our results.

The existence of a solution can be concluded by a simple argument of convex analysis, for the nonlocal

1-Laplacian Dirichlet problem thanks to the Dirichlet principle, but there is no uniqueness in general

since the functional of the variational problem lacks strict convexity. On the other hand, to get our

estimate for the problem Dirichlet problem, Theorem 4.2.7 was fundamental. It would by interesting

to �nd a way to overcome these di�culties and establish the consistency for p = 1. For p = ∞,

the de�nition of the operator ∆K
p becomes completely di�erent, many challenges arise in addition to

well-posedness for both problems.

8.2.2 Other nonlocal evolution problems: beyond (Pnloc)

It would be also very interesting to extend our results to analyze the consistency of other nonlocal

evolution problems such as the nonlocal Hamilton-Jacobi equation; see e.g., [18, 78]. Extension to other

nonlocal operators that are of importance in practice would be also an interesting research avenue. One

may think of the case of the normalized p-Laplacian, the case when p is spatially varying, or the case

where the kernel is unknown.

8.2.3 The discrete p-bilapalcian operator

The limiting cases p = 1 and p = +∞ We studied the well-posedness of the boundary value

problem on graphs, excluding the values p = 1 and p = ∞ was crucial to get our results. For p = 1

and p =∞, the de�nition of the p-bilaplacian operator becomes completely di�erent, many challenges

arise to prove well-posedness.

Continuum limit for the p-bilaplacian on graphs In Chapter 5, we have focused on the discrete

setting. A natural continuum counterpart of the discrete p-bilaplacian operator we have introduced

would be

∆2
K,pu

def

= ∆K
p

(∣∣∆K
p u
∣∣p−2

∆K
p u
)
,
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where u ∈ Lp(Ω), p ∈]1,+∞[. This operator coincides, for p = 2, with the nonlocal bilaplacian

operator introduced in [124]. It would be very interesting to study the well-posedness of di�erent

problems governed by this family of operators e.g. evolution, variational and boundary value problems.

In this manuscript, the natural question of continuum limits of the problems governed by this family

of operators is left completely open. It would then be interesting to study such limits and establish

consistency/error bounds of the corresponding discretizations on (sparse) graphs. The idea will be to

extend and adapt our arguments and results to this family of operators.

8.2.4 Continuum limits of the the mean curvature �ow on graphs

Studying continuum limits in the context of Chapter 6, with the discrete de�nitions provided there, is

a challenging question worth investigating in the future.

8.2.5 Other continuum limits

We have focused in this work on nonlocal-type limits of discrete problems on graphs. This allowed to

get deeper understanding of the behaviour and guarantees of such models as the number of vertices

grows. This is not the only possible framework for deriving continuum limits. For instance, one can

view some of these discrete models as individual-based models based on �particle�-like assumptions,

which can be connected to hydrodynamics/macroscopic descriptions via kinetic theory. The kinetic

viewpoint can be very enlightening both in the modelling, and in the derivation of continuum models.
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