proved that by pro jecting Γ onto its first coordinate, we virtually get 9
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Introduction

Historical context

Bieberbach proved (1910)(1911)(1912) that any group Γ of affine isometries of the n-dimensional Euclidean space R n that acts properly discontinuously on R n contains a finite-index subgroup isomorphic to Z m , m  n.M o r e o v e r ,t h eq u o t i e n tR n /Γ is compact if and only if m = n. In 1964, Auslander proposed the following conjecture:

Conjecture 1 (Auslander). If Γ ⇢ GL(n, R) nR n is a finitely generated group that acts on R n properly discontinuously and cocompactly, then Γ is virtually solvable.

The conjecture has been proven to be true up to n =6 . In 1977, Milnor asked the following question [START_REF] Milnor | On fundamental groups of complete affinely flat manifolds[END_REF]:

Q: Is the conjecture true if the cocompactness condition is dropped? Meanwhile, in 1972, Tits proved that Theorem (Tits alternative). Let Γ ⇢ GL(n, F) be a finitely generated group, where F is a field. Then Γ is either virtually solvable or it contains a free group of rank >1.

Hence the Tits alternative implies that the answer to Milnor's question is negative if and only if there exists a properly discontinuous affine action of a free group (of rank >1).

Margulis spacetimes. In 1983, Margulis came up with examples for n =3 . These were complete non-compact Lorentzian manifolds, called Margulis spacetimes,o b t a i n e da saq u o t i e n to f the (2,1)-Minkowski space R 2,1 by a free group Γ,a c t i n gp r o p e r l yd i s c o n t i n u o u s l yb yo r i e n t a t i o npreserving affine isometries. The group of orientation-preserving affine isometries of R 2,1 is given by SO(2, 1) nR 3 . The special linear group SO(2, 1) is the isometry group of the two-dimensional hyperbolic space H 2 , which lies in the Minkowski space. Its Lie algebra so 2,1 , equipped with its Killing form, is isomorphic to R 2,1 . The linear action of SO(2, 1) on R 2,1 coincides with its adjoint action on so 2,1 . Consequently, the tangent bundle T(SO(2, 1)) is isomorphic to SO(2, 1) nR 3 .W e shall denote by G the isomorphic groups SO(2, 1), PGL(2, R) and by g,t h e i rL i ea l g e b r a .
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the holonomy representation ⇢ : ⇡ 1 (S) ! G of a finite-type complete hyperbolic surface S. The projection onto the second coordinate u :Γ! g is a ⇢-cocycle: for every , 0 2 Γ, u satisfies u( 0 )=u( )+⇢( ) • u( 0 ). It gives an infinitesimal deformation of ⇢. The group Γ can thus be written as Γ (⇢,u) := {(⇢( ),u( )) | 2 ⇡ 1 (S)}, which gives an affine deformation of ⇢. In the paper [START_REF] William | Proper affine actions and geodesic flows of hyperbolic surfaces[END_REF], the authors Goldman, Labourie and Margulis have studied affine deformations of free, discrete subgroups of G.A n i n fi n i t e s i m a l d e f o r m a t i o n u of ⇢ is said to be proper if Γ (⇢,u) acts properly discontinuously on R 2,1 . It has been proved in the paper [START_REF] William | Proper affine actions and geodesic flows of hyperbolic surfaces[END_REF] that for ⇢ convex cocompact, the corresponding u is proper if and only if u or u uniformly lengthens all closed geodesics:

inf 2Γr{Id} dl (⇢)(u) l (⇢) > 0 ( 1 
)
where l is the length function. In both cases, the set of all such infinitesimal deformations forms an open, convex cone; the cone corresponding to the first case is called the admissible cone.

Strip deformations of compact surfaces. In the paper [START_REF] Danciger | Margulis spacetimes via the arc complex[END_REF], the authors Danciger-Guéritaud-Kassel study admissible deformations of finite-type hyperbolic surfaces with non-empty boundary and without punctures, using strip deformations, first introduced by Thurston in [START_REF] Thurston | Minimal stretch maps between hyperbolic surfaces[END_REF]. A strip is the region in H 2 bounded by two geodesics whose closures are disjoint. An arc on such a surface S is an embedding of [0, 1] into S with its endpoints on its boundary @S such that it is not isotopic to a part of the boundary. Using the isotopy classes of these arcs, one can construct a simplicial complex called the arc complex which depends only on the topology of the surface. A k-simplex of this complex is generated by the isotopy classes of a family of k +1 pairwise disjoint and distinct arcs. The pruned arc complex is a subspace formed by taking the union of the interiors of all those simplices such that the arcs corresponding to the 0-skeleton of decompose the surface into topological disks. A strip deformation is the process of cutting the surface along an embedded arc and gluing in a strip, without shearing. The authors uniquely realised (Theorem 4.4.1) an admissible deformation of the surface by performing strip deformations along positively weighted arcs, corresponding to a point in the pruned arc complex. Drumm [START_REF] To | Fundamental p olyhedra for margulis space-times[END_REF] constructed fundamental domains of some Margulis spacetimes with a convex cocompact linear part using specially crafted piecewise linear surfaces called crooked planes. The Crooked Plane Conjecture says that every Margulis spacetime is amenable to such a treatment. Charette, Drumm and Goldman proved this conjecture for rank two free groups in [START_REF] Charette | Proper affine deformation spaces of two-generator fuchsian groups[END_REF]. The general case (with convex cocompact linear part) follows from [START_REF] Danciger | Margulis spacetimes via the arc complex[END_REF] which provides a dictionary between strip deformations and crooked planes.

Main results of the thesis

Surfaces with undecorated spikes. The main aim of this thesis is to generalise the parametrisation to include (possibly non-oriented) hyperbolic surfaces with spikes on their boundary. These complete non-compact surfaces are limits of a compact surface with convex polygonal boundary where the vertices become ideal. The admissible cone in this case is simply defined to be the set of all infinitesimal deformations that induce an admissible deformation of the convex core S ~of the spiked surface. This cone is an affine R Q -bundle over the admissible cone of S ~, where Q is the total number of spikes.

The arc complex of a surface with spikes is spanned by the isotopy classes of arcs; this time we allow the arcs that separate off a disk from the surface, as long as the disk contains at least two spikes. In other words, we rule out the arcs that are isotopic to a horoball neighbourhood of as p i k e . A g a i n ,w ed e fi n et h ep r u n e da r cc o m p l e xt ob eas u b s p a c eo ft h ea r cc o m p l e xf o r m e db y taking the union of all those simplices such that the arcs corresponding to the 0-skeleton of decompose the surface into topological disks.

We parametrise (Theorem 6.1.1) the admissible cone using the pruned arc complex by performing strip deformations along a family of weighted embedded arcs that decompose the surface in topological disks, like in the compact case.

Theorem. Let S sp be a hyperbolic surface with spikes equipped with a metric m 2 D(S sp ).L e t b A(S sp ) be its pruned arc complex. Choose m-geodesic representatives from the isotopy classes of arcs. Then, the projectivised infinitesimal strip map Pf : b A(S sp ) ! P + (T m D(S sp )) is a homeomorphism on its image P + (Λ(m)), where Λ(m) denotes the admissible cone over m.

Surfaces with decorated spikes. Next, we decorate all the spikes of such a surface with pairwise disjoint horoballs. A horoball connection is a geodesic arc on the surface that joins two decorated spikes. Its length is given by the geodesic segment intercepted by the two horoballs decorating its endpoints.

We define the admissible cone of a decorated surface to be the set of all infinitesimal deformations that uniformly lengthen every horoball connection. More precisely, every element (m, v) in the tangent space over a decorated metric m satisfies:

inf 2H dl (m)(v) l (v) > 0,
where H is the set of all horoball connections. Note that an admissible deformation also uniformly lengthens every closed loop of the surface, i.e., it satisfies (1), because we can always find a horoball connection that remains inside a very small neighbourhood of such a loop for arbitrarily long time and has bounded length outside. Thus the admissible cone in this case can be seen as a R 2Q -bundle over the admissible cone of the convex core S ~, whose fibres are open convex subsets, where Q is the total number of spikes.

On the decorated surface, we consider more arcs than in the undecorated case. In addition to the arcs already mentioned, we allow two new types: finite arcs that are isotopic to a horoball neighbourhood of a spike, and infinite arcs that are embeddings of [0, 1) such that the finite end is on the boundary and the infinite end converges to a spike. This time the pruned arc complex is defined to be the subspace of the arc complex formed by taking the union of all those simplices such that the arcs corresponding to the 0-skeleton of decompose the surface into topological disks with at most one spike.

The strip added along an infinite arc is the region in H 2 bounded by two geodesics with the spike as the common endpoint. A strip deformation along a finite arc is defined as in the previous case. Again, we give a parametrisation (Theorem 6.1.2) of the admissible cone of a surface with decorated spikes, using its pruned arc complex.

Theorem. Let S h sp be a hyperbolic surface with decorated spikes equipped with a decorated metric m 2 D(S h sp ).L e t b A(S h sp ) be its pruned arc complex. Choose m-geodesic representatives from the isotopy classes of arcs. Then, the projectivised infinitesimal strip map Pf : b A(S h sp ) ! P + (T m D(S h sp )) is a homeomorphism onto its image P + (Λ(m)), where Λ(m) denotes the admissible cone over m. Decorated Margulis Spacetimes. In the final chapter, we interpret admissible deformations of surfaces with decorated spikes as Margulis spacetimes with a certain type of decoration by lightlike lines (photons), one photon per spike. In this context, the above theorem provides fundamental domains of the Margulis spacetimes, adapted to the photons.

Full parametrisation. Ideal polygons and once-punctured polygons are two types of non-compact hyperbolic surfaces in which every simple closed curve is either homotopic to a point or to a puncture. Their arc complexes are known to be spheres of dimension one less than the dimension of their respective deformation spaces. We show (Theorems 5.0.1 and 5.0.2) that the arc complex parametrises the entire positively projectivised deformation space in these cases.

Theorem. Let Π be the topological surface of an ideal polygon Π D n (n 4) or a once punctured polygon Π n (n 2). Let m 2 D(Π) be a metric. Choose m-geodesic representatives from the isotopy classes of arcs. Then, the projectivised infinitesimal strip map Pf : A (Π) ! P + (T m D(Π)) is a homeomorphism. Decorated Polygons Ac o n v e xdecorated polygon in H 2 is a generalisation of a compact hyperbolic polygon whose vertices are allowed to be hyperbolic (truncations of hyper-ideal points) and parabolic (ideal points decorated with horoballs). We show the deformation space of such a polygon to be homeomorphic to an open ball. Finally, we prove (Theorem 5.0.3) that the subset of the space of all infinitesimal deformations, consisting of those which lengthen every diagonal and edge, is parametrised by the pruned arc complex of the surface.

Theorem. Let Π 7 n (n 3) be a decorated polygon equipped with a hyperbolic metric m 2 D(Π 7 n ). Choose m-geodesic representatives from the isotopy classes of arcs. Then the infinitesimal strip map Pf , when restricted to the pruned arc complex b A(Π 7 n ), is a homeomorphism onto its image P + (Λ(m)), where Λ(m) denotes the admissible cone over m.

As a consequence of this, we get that the pruned arc complex of such a polygon is homeomorphic to an open ball.

Theorem. The pruned arc complex b

A(Π 7 n ) of a decorated n-gon Π 7 n (n 3) is homeomorphic to an open ball of dimension 2n 4.

Plan of the thesis

The thesis is divided into seven chapters. Chapter 1 recapitulates the necessary vocabulary from hyperbolic, Lorentzian and projective geometry. Chapter 2 introduces every type of surface mentioned above along with their deformation spaces and admissible cones. In Chapter 3, we discuss the arcs and the arc complexes of the different types of surfaces and study their topology. Chapter 4 gives the definitions of the various strip deformations along with examples. It also contains some estimations that will be required in the proofs. Chapter 5 contains the proofs of the parametrisation theorems for ideal, punctured, decorated polygons. In Chapter 6, we prove the parametrisation theorems for general surfaces with decorated and undecorated spikes. Finally, Chapter 7 talks about decorated Margulis spacetimes and how it is determined by an admissible deformation. 

Scalar products

Let R n be the usual n-dimensional real vector space and let h•, •i p,q be the following non-degenerate symmetric bilinear form of signature (p, q) 2 N 2 with p + q = n: for x =(x 1 ,...,x n ), y =(y 1 ,...,y n ) 2 R n , hx, yi p,q = p X i=1

x i y i p+q X j=p+1

x j y j .

The associated quadratic form is denoted by k•k p,q 2 . The space R n together with this quadratic form is denoted by R p,q .W h e nq =1,t h eb i l i n e a rf o r mi sc a l l e dLorentzian scalar product and the space R p,1 is known as the Minkowski space of dimension p +1.W ea r ep r i m a r i l yi n t e r e s t e di nt h e space R 2,1 which we shall discuss further in the next section.

The isometry group of R p,q is given by O(p, q)={A 2 GL(n, R) | AI p,q A t = I p,q , } where

I p,q =  I p 0 0 I q .
A totally positive (resp. negative)s u b s p a c eo fR p,q is a vector subspace of R p+q on which the restriction of the quadratic form is positive (resp. negative) definite.

A maximal totally positive or negative subspace has the largest possible dimension, along all such subspaces. A maximal positive (resp. negative) subspace of R p,q has dimension p (resp. q). The set of all maximal totally positive (resp. negative) subspaces is denoted by P (resp. N ).

In R p,q , it is possible to consistently orient all maximal totally positive subspaces. This is true for all maximal totally negative subspaces as well.

The group of orientation preserving isometries Isom + (R p,q ) is given by the subgroup SO(p, q):=O(p, q) \ SL(n, R).

An element of this group either preserves or reverses the two consistent orientations on the two sets P, N . This group has two connected components -the one that preserves the orientations of these two sets individually is denoted as SO + (p, q). 13

Manifolds of constant sectional curvature

A pseudo-Riemannian manifold M is a differentiable manifold equipped with a smooth metric tensor g such that g : T x M ⇥ T x M ! R,i san o n -d e g e n e r a t es c a l a rp r o d u c t ,f o re v e r yx 2 M . The signature of this scalar product is the same for all tangent spaces and is called the metric signature. Clearly, all Riemannian manifolds are pseudo-Riemannian. A Lorentzian manifold is a pseudo-Riemannian manifold in which the metric tensor is a Lorentzian scalar product on every tangent space. Like in the case of Riemannian manifolds, a pseudo-Riemannian manifold comes with a Levi-Civita connection that lets us define the curvature tensor and geodesics.

Example 1.1.1.

• The space R p,q is a complete flat pseudo-Riemannian manifold. In particular, the Minkowski space R p,1 is a Lorentzian manifold.

• Consider the space R p,q+1 .D e fi n et h egeneralised hyperbolic space as the subspace H p,q := {x 2 R p,q+1 |kxk 2 p,q+1 = 1}.

The metric induced by k•k p,q on this space is has signature (p, q). We have the following special cases:

p =0: This is the unit sphere of dimension q,denotedb yS q ;t h eq u a d r a t i cf o r mi n du c e d by k•k 0,q+1 is minus one times the usual metric on the sphere.

q =0 : This is a two-sheeted hyperboloid. The future-pointing sheet is the classical hyperbolic space, H p .

p =1: This is a one-sheeted hyperboloid, which we projectivise, like in the previous case, to get the de Sitter space, dS q+1 with minus its usual Lorentz metric.

q =1 : This is a connected quadric, which we projectivise, like in the previous case, to get the Anti-de Sitter space, AdS p+1 .

• The de Sitter space dS q (resp. the Anti-de Sitter space AdS q )i sac o m p l e t eL o r e n t z i a n manifold with constant positive (resp. negative) sectional curvature.

The space R p,q can be regarded as an affine space with its group of affine transformations Aff(R p,q ):=O(p, q) nR p+q .

An affine pseudo-Riemannian manifold is a differentiable manifold obtained by quotienting R p,q with a discrete subgroup of Aff(R p,q ) that acts properly discontinuously on R p,q .

More on Minkowski space

In this section, we shall further study Minkowski space but shall restrict ourselves to the case where p =2 . In the rest of the thesis, we shall refer to its norm and scalar product as k•k and h•, •i, respectively.

Vectors. There is the following classification of points in the Minkowski space: a non-zero vector v 2 R 2,1 is said to be

• space-like if and only if kvk 2 > 0,

• light-like if and only if kvk 2 =0,

• time-like if and only if kvk 2 < 0.

Av e c t o rv is said to be causal if it is time-like or light-like. A causal vector v =(x, y, z) is called positive (resp. negative)i fz>0 (resp. z<0). Note that by definition of the norm, every causal vector is either positive or negative. The set of all light-like points forms the light-cone,d e n o t e db y

L := {v =(x, y, z) 2 R 2,1 | x 2 + y 2 z 2 =0}.
The positive (resp. negative)c o n ei sd e fi n e da st h es e to fa l lp o s i t i v e( r e s p .negative)l i g h t -l i k e vectors.

Subspaces. Av e c t o rs u b s p a c eW of R 2,1 is said to be

• space-like if W \ C = {(0, 0, 0)}, • light-like if W \ C = span {v} where v is light-like,
• time-like if W contains at least one time-like vector.

As u b s p a c eo fd i m e n s i o no n ei sg o i n gt ob ec a l l e dal i n ea n das u b s p a c eo fd i m e n s i o nt w oap l a n e . The adjective "affine" will be added before the words "line" and "plane" when we are referring to some affine subspace of the corresponding dimension.

Duals. Given a vector v 2 R 2,1 , its dual with respect to the bilinear form of R 2,1 is denoted v ? . For a light-like vector v,t h ed u a li sg i v e nb yt h el i g h t -l i k eh y pe r p l a n et a n g e n tt oC along span {v}.

For a space-like vector v,t h ed u a li sg i v e nb yt h et i m e -l i k ep l a n et h a ti n t e r s e c t sC along two lightlike lines, respectively generated by two light-like vectors v 1 and v 2 such that span {v} = v ? 1 \ v ? 2 . Finally, the dual of a time-like vector v is given by a space-like plane. One way to construct it is to take two time-like planes W 1 ,W 2 passing through v. Then the space v ? is the vectorial plane containing the space-like lines W ?

1 and W ? 2 .

The Hyperbolic Plane

In this section we will discuss the hyperbolic plane and notions related to it that will be used extensively in the following chapters.

The different models

There are different models for the hyperbolic plane. Each one has its own advantages and disadvantages. We shall be using the hyperboloid model inside the Minkowski space, two disk models and the upper half-plane model.

Hyperboloid model. The classical hyperbolic space of dimension two H 2 can be identified with the upper sheet of the two-sheeted hyperboloid {v =( x, y, z) 2 R 2,1 |k vk 2 = 1}, along with the restriction of the bilinear form. It is the unique (up to isometry) complete simply-connected Riemannian 2-manifold of constant curvature equal to -1. Its isometry group is isomorphic to SO(2, 1) and the identity component SO 0 (2, 1) of this group forms the group of its orientation-preserving isometries; they preserve each of the two sheets of the hyperboloid individually. If the hyperbolic distance between two points u, v 2 H 2 is denoted by

d H 2 (u, v),t h e ncosh d H 2 (u, v)= hu, vi.
The geodesics of this model are given by the intersections of time-like hyperplanes with H 2 .

Klein's disk model. This model is the projectivisation of the hyperboloid model. Let P : R 2,1 r {0} !RP 2 be the projectivisation of the Minkowski space. The projective plane RP 2 can be considered as the set A [ RP 1 , where A := {(x, y, 1) | x, y 2 R} is an affine chart and the one-dimensional projective space represents the line at infinity, denoted by ! l 1 . The P-image of ap o i n tv 2 R 2,1 is denoted by [v].Al i n ei nA,d e n o t e db y ! l ,i sd e fi n e da sA \ V where V is a two-dimensional vector subspace of R 2,1 ,n o tp a r a l l e lt oA.

In the affine chart A,thelightconeismappedtotheunitcircleandthehyperboloidisembedded onto its interior. This is the Klein model of the hyperbolic plane, denoted by D and whose boundary at infinity, denoted by @ 1 D is the unit circle. This model is non-conformal. The geodesics are given by open finite Euclidean straight line segments, denoted by l,l y i n gi n s i d eD,s u c ht h a tt h e endpoints of the closed segment l lie on @ 1 D. The distance metric is given by the Hilbert metric

d D (w 1 ,w 2 )= 1 2 log[p, w 1 ; w 2 ,q]
, where p and q are the endpoints of l, l being the unique hyperbolic geodesic passing through

w 1 ,w 2 2 D,a n dt h ec r o s s -r a t i o[a, b; c, d] is defined as (c a)(d b) (b a)(d c) . The group of orientation-preserving isometries is identified with PSU(1, 1).A p o i n t p is called real (ideal, hyperideal )i fp 2 D (resp. p 2 @ 1 D, p 2 ! l [ A\D).

The dual of

! l 1 is the point (0, 0, 1) in A. The dual of any other projective line ! l = A \ V is given by the point A \ V ? . The dual p ? of a point p 2 RP 2 is the projective line A \ span {p} ? .

If l is a hyperbolic geodesic, then l ? is defined to be ! l ? ;i ti sg i v e nb yt h ei n t e r s e c t i o np o i n ti n RP 2 of the two tangents to @ 1 D at the endpoints of l.

Notation: We shall use the symb ol • ? for referring to the duals of both linear subspaces as well as their projectivisations.

Poincaré's unit disk model. Again, we start with the unit disk, but this time we endow it with the metric tensor g = dx 2 +dy 2

(1 x 2 y 2 ) 2 . This is a conformal model. Like in the previous case, the boundary at infinity @ 1 D is given by the unit circle.The geodesics are the diameters of the unit circle and arcs of circles that intersect the unit circle perpendicularly.

Upper Half-plane Model. The subset {z = x + iy 2 C | y>0} of the complex plane is the upper half-space model of the hyperbolic space of dimension 2, denoted by U. The geodesics are given by semi-circles whose centres lie on R or straight lines that are perpendicular to R.W es h a l l call the former as horizontal and the latter as vertical geodesics. The boundary at infinity @ 1 U is given by R [ {1}. The orientation-preserving isometry group is given by PSL(2, R) that acts by Möbius transformations on U.

Notation: We shall denote by G the isomorphic groups Isom(H 2 ), SO(2, 1), PGL(2, R) and by g the Lie algebra of G. In the projective disk model, it is a Euclidean ellipse inside D,t a n g e n tt o@ 1 D at p. In the upper half-plane model, horocycles are either Euclidean circles tangent to a point on the real line or horizontal lines which are horocycles based at 1. In the Poincaré disk model, a horocycle is an Euclidean circle tangent to @ 1 D at [p]. A geodesic, one of whose endpoints is the centre of a horocycle, intersects the horocycles perpendicularly. Note that any horoball is completely determined by a future-pointing light-like vector in R 2,1 and vice-versa. From now onwards, we shall use either of the notations introduced above to denote a horoball. Finally, the set of all horoballs of H 2 forms an open cone (the positive light cone).

Given an ideal point p 2 @ 1 D,adecoration of p is the specification of an open horoball centred at p. A geodesic, whose endpoints are decorated, is called a horoball connection. The following definition is due to Penner [START_REF] Penner | Decorated Teichmüller Theory. The QGM master class series[END_REF].

The length of a horoball connection joining two horoballs v 1 , v 2 is given by

l := 1 2 ln( hv 1 , v 2 i 2 ).
It is the signed length of the geodesic segment intercepted by the corresponding horocycles. In particular, is the horoballs are not disjoint, then the length of the horoball connection is negative.

Killing Vector Fields of H 2

The Minkowski space R 2,1 is isomorphic to (g,) where g is the Lie algebra of G := PGL(2, R) and  is its Killing form, via the following map:

v =(x, y, z) 7 ! V = ✓ yx + z x z y ◆ .
The Lie algebra g is also isomorphic to the set X of all Killing vector fields of H 2 :

V 7 !  X v : U ! TU p 7 ! d dt (e tV • p)| t=0
Next, one can identify R 2,1 with X via the map:

v 7 !  X v : H 2 ! TH 2 p 7 ! v ^p
where ^is the Minkowski cross product:

(x 1 ,y 1 ,z 1 ) ^(x 2 ,y 2 ,z 2 ):=( y 1 z 2 + z 1 y 2 , z 1 x 2 + x 1 z 2 ,x 1 y 2 y 1 x 2 ).
Finally, in the upper half space model U,o n ec a ni d e n t i f yX with the real vector space R 2 [z] of polynomials of degree at most 2:

P (•) 7 !  z 7 ! P (z) @ @z
The discriminant of a polynomial in R 2 [z] corresponds to the quadratic form k•k in R 2,1 .S ot h e nature of the roots of a polynomial determines the type of the Killing vector field. In particular, when Properties 1.5.1. Using these isomorphisms, we have that

• P (z)=1,
• As p a c e l i k ev e c t o rv corresponds, in X , to an infinitesimal hyperbolic translation whose axis is given by v ? \ H 2 . If v + and v are respectively its attracting and repelling fixed points in C + ,t h e n(v , v, v + ) are positively oriented in R 2,1 .

• Al i g h t l i k ev e c t o rv corresponds, in X ,t oa ni n fi n i t e s i m a lp a r a b o l i ce l e m e n tt h a tfi x e st h e light-like line span {v}.

• At i m e l i k ev e c t o rv corresponds, in X ,t oa ni n fi n i t e s i m a lr o t a t i o no fH 2 that fixes the point

v p kvk in H 2 .
Properties 1.5.2.

1. Given a light-like vector v 2 R 2,1 ,t h es e to fa l lK i l l i n gv e c t o rfi e l d st h a tfi xspan {v} is given by its dual v ? . In RP 2 ,t h es e to fp r o j e c t i v i s e dK i l l i n gv e c t o rfi e l d st h a tfi x[v] 2 @ 1 D is given by the tangent line at

[v].
2. The set of all Killing vector fields that fix a given ideal point p 2 @ 1 D and a horocycle in D with centre at p is given by span {v}, where v 2

P 1 (p) in R 2,1 .
3. The set of all Killing vector fields that fix a given hyperbolic geodesic l in D is given by P 1 (l ? ).

1.6 Some Useful Results

Projective Geometry

Definition 1.6.1. Let l be a projective line segment contained in D with endpoints, denoted by A, B. Then the two projective triangles formed by A ? ,B ? and ! l , with their disjoint interiors intersecting D,a r es a i dt ob ebased at l. Properties 1.6.2. Let l be a projective line segment contained in D. Then, any projective line l 0 that intersects D,i sd i s j o i n tf r o ml if and only if its dual l 0 ? is a space-like point contained in the interior of the bigon equal to the union of the two triangles based at l.

Proof. Let the endpoints of l be denoted by A, B. There are three possibilities for l -e i t h e ra geodesic segment (both A, B 2 D)o rl is a geodesic (A, B 2 @ 1 D ), or a geodesic ray (A or B on @ 1 D,t h eo t h e ri n s i d eD). It is enough prove the lemma for first case, the two others being limit cases of the first.

Let ! l 0 be another projective line that intersects D.L e t X, Y be the respective dual points l ? , l 0 ? .S i n c eb o t ht h el i n es e g m e n t si n t e r s e c tD,n e i t h e rX nor Y can line inside D. Then, l and l 0 intersect each other at a point U 2 D if and only if U = XY ? .

Using a hyperbolic isometry, we can assume that both the points A, B lie on the horizontal axis, on either side of the origin. Then the line segment l is given by the closed interval [a, b] ⇥ 0, where A =(a, 0),B =(b, 0), with a<0 <b. Owing to this choice of A, B,t h ed u a l sA ? ,B ? are vertical lines passing through ( 1 a , 0), ( 1 b , 0), respectively, with their point of intersection X lying on the line at infinity ! l 1 . The union ∆ of the two projective triangles based at l is given by the open vertical strip bounded by these two verticals, that contains D.N o wt h el i n es e g m e n tXY is a vertical line passing through (y, 0), where y is the horizontal coordinate of Y .T h ec o o r d i n a t e so ft h ed u a lp o i n t

XY

? is given by ( 1 y , 0). Then l and l 0 intersect each other if and only if

a  1 y  b , 1 a  y or y 1 b .
Then from Lemma (1.6.3), we get that

x 1 = a + b 2 ,y 1 = ef cd e + f c d , (1.7) 
x 2 = c + d 2 ,y 2 = ef ab e + f a b , (1.8) 
x 3 = e + f 2 ,y 3 = cd ab c + d a b , (1.9) 
Using these coordinates, we calculate the right hand side of (1.5): Hence,

y 1 y 2 = ef cd e + f
y 1 y 2 y 2 y 3 = (c + d a b) (e + f a b) = x 1 x 2 x 2 x 3 . (1.10) 
Lemma 1.6.5. Let y 1 ,y 2 ,y 3 be as in the hypothesis of the previous lemma. Then we have y 3 <y 2 <y 1 .

In order to prove this, we need the following lemma:

Lemma 1.6.6. Let 1 := (a, b) and 2 := (b, c) be two asymptotic geodesics in U.L e t 3 := (e, f ) be another geodesic ultraparallel to 1 , 2 such that a<b<c<e<f.

(1.11)

Let 1 , 2 be the common perpendiculars to the pairs 2 , 3 and 1 , 3 .L e ty i be the centre of the semi-circle i , for i =1, 2. Then we have y 1 >y 2 .

Proof. From Lemma (1.6.3), we know that,

y 1 = ef bc e + f b c ,y 2 = ef ab e + f a b .
Calculating their difference, we get that, By eq(1.11), we have that the numerator is positive. Hence, y 1 >y 2 .

Proof of Lemma 1.6.5. Firstly, x 1 <x 2 <x 3 .T h e nf r o m( 1 . 5 )w eg e tt h a t ,y 1 y 2 and y 2 y 3 have the same sign. So we shall calculate the sign of only one of them. Let be the common perpendicular to 3 and := (b, c).L e ty 0 be the centre of the semi-circle . Then using Lemma (1.6.6) for the geodesics , 2 , 3 ,w eg e tt h a ty 0 <y 1 .A g a i n ,b yu s i n gt h es a m eL e m m af o rt h e geodesics 1 , , 3 ,w eg e tt h a ty 2 <y 0 .H e n c e ,y 1 >y 2 .

Simplicial Complex and PL-manifolds

The link of a simplex in a simplicial complex X,denotedb yLink( , X),istheuniquesubcomplex of X such that the union of all simplices in X containing is given by 1 Link( , X). The codimension of a simplex of a simplicial complex X is defined as codim ( ):=dimX dim . Definition 1.7.1. Asimplicialcomplexisad-manifold with boundary if the link of every 0-simplex is either S d 1 or B d 1 and there exists a 0-simplex whose link is B d 1 .

Definition 1.7.2. APL-manifoldX is said to PL-collapse on to another PL-manifold Y if there exists a PL n-ball B n and another PL n

1 ball B n 1 ⇢ @B n such that X = Y [B n and B n 1 = Y \B n .
Definition 1.7.3. (Simplicial) Collapsibility of a simplicial complex is defined recursively in the following way:

1. The void complex ; and any 0-simplex {;,v} is collapsible.

2. If a simplicial complex contains a non-empty face such that its link and face-deletion are collapsible, then X is collapsible.

Definition 1.7.4. The face-deletion of simplex in a simplicial complex X,denotedb yfdel( , X), is the subcomplex of X that contains all simplices that do not contain .

Lemma 1.7.5. Let X be a simplicial complex. Let a be a 0-simplex such that Link(a, X) is closed ball. Then the X PL-collapses to the face-deletion of a.

Proof. Take Y =fdel(a, X). The two balls required are Star(a, X) and Link(a, X).

Properties 1.7.6. The following are true:

(a) Every simplex is simplicially collapsible.

(b) Every contractible simplicial complex of dimension one is collapsible.

(c) For every d 0,ac l o s e dP Ld-ball is PL-collapsible.

(d) [Welker]If at least one of two simplicial complexes X, Y is collapsible, then their join X 1 Y is collapsible.

Definition 1.7.7. As u b c o m p l e xL of a simplicial complex K is called an induced subcomplex of K if whenever the 0-skeleton of a simplex of K is contained in the 0-skeleton of L,t h ee n t i r e simplex is also contained in L.

Theorem 1.7.8. Let K be a combinatorial manifold with boundary. Suppose @K is an induced subcomplex of K.L e tL be the simplicial complement of @K. Then, K collapses on to L.

Theorem 1.7.9. Any PL-collapsible d-manifold with boundary is a closed PL d-ball.

Chapter 2

The Surfaces

In this chapter, we will introduce the different types of finite hyperbolic surfaces along with their deformation spaces. The first section gives a recap on compact orientable and non-orientable surfaces with non-empty boundary. In the second section, we shall construct hyperbolic surfaces with spikes. Finally, in the third section we will talk about hyperbolic polygons whose vertices are allowed to be real, ideal and hyperideal.

Compact surfaces with boundary

Orientable Surfaces

Any orientable compact surface is of the form S g,n := S 2 #((T 2 ) #g )#((D 2 ) #n ) where

• S 2 is a sphere of dimension 2,

• T 2 is the topological surface of R 2 /Z 2 ,
• D is a closed 2-disk,

• the variable g 2 N is called the genus of the surface and is additive under the connected sum, i.e, S g #S g 0 = S g+g 0 .

• the variable n 2 N denotes that number of boundary components. Next, we shall look at some examples and their common names.

Example 2.1.1. When n =0,t h es u r f a c ei sc a l l e dclosed.

Example 2.1.2. Suppose that g =0.

1. When n =1,w eg e tb a c kt h ed i s kD.

2. When n =2,w eg e ta nannulus.

3. When n =3,t h es u r f a c ei sc a l l e dapair of pants.

Example 2.1.3. When g =1,n =1,w es h a l lc a l lt h es u r f a c eaone-holed torus.

The Euler characteristic of such a surface is given by (S g,n )=2 2g n. 
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Non-orientable surfaces

Any closed non-orientable surface is of the form

T h,n =(RP 2 ) #h #((D 2 ) #n ) where • RP 2 is the projective plane,
• the variable h 2 N here is again additive under the connected sum; the surface corresponding to h =0is the 2-sphere, which is orientable; so when we write T h,n ,w ei m p l i c i t l ya s s u m e that h>0.A l s o ,w eh a v et h ee q u a l i t yT h #S g = T h+2g ,f o ra n yh>0.

Example 2.1.4. When h =1,n =1,w eg e tt h eMöbius strip.

Example 2.1.5. When h =2,n =0,w eg e tt h eKlein's bottle.

Compact hyperbolic surfaces

We are primarily interested in those compact surfaces S which are hyperbolic and have non-empty boundary. From the Uniformisation Theorem, we know that the Euler characteristic of such a surface, denoted by (S), is negative. The following is the list of all the connected orientable and non-orientable surfaces that aren't hyperbolic, and hence excluded from the discussion: S 0,0 : as p h e r eS It follows from these conditions that the group Γ: =⇢(⇡ 1 (S)) is a discrete finitely generated free group of PGL(2, R) containing only hyperbolic elements. The dev-image is a simply-connected region in H 2 bounded by infinite geodesics corresponding to the lifts of its boundary components @ i S,f o re v e r yi =1 ,...,n. These geodesics are pairwise disjoint in H 2 . The deformation space D(S) of the surface is the set of conjugacy classes of all possible holonomy representations. It is a connected component of the set

{[⇢]:⇢ is discrete, faithful; 8i, ⇢(b i ) is hyperbolic}⇢Hom(⇡ 1 (S), PGL(2, R))/PGL(2, R),
where the action of PGL(2, R) is by conjugation.

Let S be a compact hyperbolic surface endowed with a metric m =[ ⇢] 2 D(S).G i v e n a n element [ ] 2 ⇡ 1 (S) r {Id},thereexistsauniqueclosedm-geodesic in this homotopy class, denoted by g . Definition 2.1.6. The length function is defined in the following way:

l : D(S) ! R >0 [⇢] 7 ! 2 arccosh ⇣ tr(⇢( g )) 2
⌘ .

The following is a well-known result (for e.g. see [START_REF] Fathi | Thurston's Work on Surfaces (MN-48)[END_REF]) which is usually proved using Fenchel-Nielson coordinates: Theorem 2.1.7. Let S c be a compact hyperbolic surface with geodesic boundary.

1. If S c = S g,n , then its deformation space D(S g,n ) is homeomorphic to an open ball of dimension 6g 6+3n.

2. If S c = T h,n , then its deformation space D(T h,n ) is homeomorphic to an open ball of dimension 3h 6+3n.

Surfaces with non-decorated spikes

These surfaces have been studied before in various contexts -Penner [START_REF] Penner | Decorated Teichmüller Theory. The QGM master class series[END_REF] gave a cell decomposition of their deformation spaces, Harer [START_REF] Harer | The virtual cohomological dimension of the mapping class group of an orientable surface[END_REF] has determined the topology of their arc complex (see Chapter 3 for more details), McShane [START_REF] Mcshane | Geometric identities[END_REF] has determined the orthospectrum of a one-holed polygon, Parlier and Pournin [START_REF] Parlier | Modular flip-graphs of one-holed surfaces[END_REF] have studied the diameters of their flip graphs.

In the following we will start with the description of the simplest surface of this type and then gradually increase the topological complexity to obtain more generic examples.

The smaller surfaces

Ideal Polygons. An ideal n( 1)-gon, denoted by Π D n ,i st h et o p o l o g i c a ls u r f a c eo fad i s kB 2 with n points removed from its boundary. When n( 3),w ec a np u tah y p e r b o l i cm e t r i co ni tb y taking the convex hull in D of n distinct points on @ 1 D. The n ideal points are called vertices and they are marked as x 1 ,...,x n . The edges are the infinite geodesics of D joining two consecutive vertices. The restriction of the hyperbolic metric to an ideal polygon gives it a complete finite-area (equal to ⇡(n 2)) hyperbolic metric with geodesic boundary. Its fundamental group is trivial. It is our first example of a hyperbolic surface with spikes. Fig. 2.4 shows an ideal pentagon in the projective model D.

Ideal once-punctured polygons. For n 2,a nideal once-punctured n-gon,d e n o t e db yΠ n ,i s another non-compact complete hyperbolic surface with geodesic boundary, obtained from an ideal (n + 2)-gon, by identifying two consecutive edges using a parabolic element T 2 PSL(2, R) that fixes the common vertex. The resulting surface has a missing point which we shall call a puncture. The fundamental group ⇡ 1 (Π n ) of the surface is generated by the homotopy class of a simple closed loop that bounds a disk containing this puncture inside the surface.

If ⇢ : ⇡ 1 (Π n ) ! PSL(2, R) is the holonomy representation, then ⇢(⇡ 1 (Π n )) ' Z, with ⇢( )=T .
The edges in this case are the connected components of the boundary of the surface. The vertices are the ideal points. Fig. 2.5 shows the construction of a punctured triangle Π 3 from an ideal pentagon Π D 5 ,b yi d e n t i f y i n gt h e two blue edges. The rightmost panel depicts the surface in a "polygonal" way. l 1 and l 2 such that the angles of intersections are complementary. Let h := rg 2 PGL(2, R). The quotient Π D n / ⇠, where for every z 2 l 1 , z ⇠ h • z, is a complete finite-area hyperbolic metric with geodesic boundary and is homeomorphic to a spiked Möbius strip with n marked spikes. Definition 2.2.5. The smallest closed convex subset of a surface with spikes S which contains all closed geodesics of S is called the convex core of the surface and denoted by S ~.

If S is a surface with spikes obtained from a compact surface S c , with m boundary components, and k ideal polygons, then its convex core is usually a compact surface of the same genus with (k + m) boundary components, each of which is homeomorphic to S 1 . The list of exceptions is given below.

Example 2.2.6. The following is a list of all hyperbolic surfaces whose convex cores are not hyperbolic surfaces:

• Ideal polygons Π D n and ideal punctured polygons Π n have empty convex cores.

• The convex cores of a spiked Möbius strip, one-holed polygons and a spiked annulus are both homeomorphic to a circle.

Label the boundary components of the convex core as @ 1 ,...,@ m+k . These are called the peripheral loops of the surface S.E a c hp e r i p h e r a ll o o pi se i t h e ri s o t o p i ct oab o u n d a r yc o m p onent of the compact surface S c or it separates a one-holed m-gon (called a crown)f r o mS, where m 2{n 1 ...,n k }. There are k such crowns, which are labelled as C 1 ,...,C k . Notation 2.2.1. For every i =1 ,...,n,d e fi n eq i =0if the i-th peripheral loop is isotopic to a boundary component of S c and q i = n j ,i ft h ei-th peripheral loop separates a one-holed n j -gon, for some j 2{ 1,...,k}.D e fi n e t h e s p i k e v e c t o r q := (q 1 ,...,q n ).F i n a l l y ,a n o r i e n t a b l e ( r e s p . non-orientable) surface with genus g (resp. h), n peripheral loops and spike vector q is denoted by S q g,n (resp. T qh,n ). Notation 2.2.2. Now we define the above notation for the exceptional cases that do not have hyperbolic convex cores. For ideal q-gons, (q 4), we shall use the notation S (q) 0,1 .F o r( q 1 ,q 2 )spiked annulus, we shall use S (q1,q2) 0,2

. Finally, for a Mobïus strip with q( 1) spikes, we shall use

T (q) 1,1 .
Next, we shall construct a hyperbolic metric on a general hyperbolic surface with spikes. We shall assume that the convex core of the surface is hyperbolic since we have already treated the cases where it is not hyperbolic. The surface with spikes and its convex core have the same homotopy type. In particular, ⇡ 1 (S ~)=⇡ 1 (S sp ).L e t ([⇢],dev) be a hyperbolic structure on S ~. The holonomy representation ⇢ of S c gives a holonomy representation of S sp . Next, we will construct the embedding R 0 of the universal cover of S sp in D. Start with the simply connected region R := dev( f S ~) in D bounded by pairwise disjoint lifts of @ i , i =1 ,...,n.W ec h o o s eQ distinct points on @ 1 D in the following way-whenever q i > 0,t a k eq i ideal points x i =( x i 1 ,...,x i qi ) on the same side of a lift of the peripheral loop @ i .D e n o t eb yx =(x 1 ,...,x n ) 2 (@ 1 D) Q the n-tuple of vectors. Join consecutive pairs x j ,x j+1 , j =1 ,...,q i 1, by infinite geodesics. Then, R 00 is the region bounded by the infinite geodesics corresponding to boundary components. It contains dev( f S ~).S e eF i g .2 . 1 0 .

A metric on a surface with spikes S sp can be seen as an ordered pair (⇢, x).T w o p a i r s (⇢, x), (⇢ 0 , x 0 ) are said to be equivalent if there exists an element g 2 PGL(2, R) such that for 1. If S h sp = S q , h g,n , then its deformation space D(S q , h g,n ) is homeomorphic to an open ball of dimension 6g 6+3n +2Q.

If S h

sp = T q , h h,n , then its deformation space D(T q , h h,n ) is homeomorphic to an open ball of dimension 3h 6+3n +2Q.

Trivial Bundles

Let S sp be a hyperbolic surface with undecorated spikes with convex core S ~.L e tS h sp be the surface S sp along with horoball decorations around every spike. Then we have that

D(S ~) p1 D(S sp ) p2 D(S h sp ),
where p 1 is trivial R Q bundle map and the fibers of p 2 are convex subsets.

Hyperbolic polygons

In this section, we study the following objects:

• General compact polygons: These are hyperbolic polygons with real or truncated hyperideal vertices.

• Decorated polygons: These can have real, truncated hyperideal and ideal vertices that are decorated with horoballs.

All of these polygons are constructed, in the following section, from polygons in RP 2 satisfying certain properties.

Convex Polygons in RP 2

Start with a convex n-gon P n in RP 2 such that each edge intersects D. In the following we define the truncation of a vertex of P n and a truncated vertex :

• Let p be a hyperideal vertex of the polygon P n with the dual time-like line p ? intersecting only the two edges l, l 0 adjacent to p in P n . The hyperbolic line segment ⌫ supported on the line p ? and intercepted between the two edges l and l 0 is called a truncated hyperideal vertex, and the removal of the triangle, formed by l, l 0 and ⌫,f r o mt h eo r i g i n a lp o l y g o nP n ,i sc a l l e d the truncation of the hyperideal vertex p.

• Suppose that p is an ideal vertex of P n and consider a horoball h based at p. Then the truncation of p with respect to the horoball h is the removal of the interior of h along with p.

An ideal vertex v is said to be decorated if a horoball, based at v is added. Among these polygons we shall consider only those which satisfy the following property:

Property: The lengths of every truncated hyperideal vertex is positive.

(2.1) (a) Suppose that ⌫ 1 and ⌫ 2 are both of hyperbolic type (Fig. 2.13(a)). Then they are the truncations of two hyperideal points p 1 and p 2 respectively. They are supported on the hyperbolic geodesics l 1 := p 1 ? \ D and l 2 := p 1 ? \ D, respectively. The endpoints of l 1 are labeled as u 1 ,u 2 and those of l 2 as v 1 ,v 2 such that these four ideal points are ordered in the anti-clockwise manner, as u 1 ,u 2 ,v 2 ,v 1 .U s i n g t h e t r i p l e t r a n s i t i v i t y o f t h e a c t i o n o f G on @ 1 D,w ec a nfi xa n yt h r e eo ft h e s ep o i n t sa n dc h o o s et h ef o u r t ho n ef r o ma no p e ni n t e r v a l , contained in @ 1 D. The line ! e 3 ,s u p po r t i n gt h ee d g ee 3 passes through the hyperideal points p 1 ,p 2 .U s i n g R e m a r k 2 . (b) Suppose that ⌫ 1 and ⌫ 2 are both of parabolic type. Then these are two ideal points p 1 and p 2 decorated with horoballs h 1 and h 2 ,respectiv ely . SeeFig. (2.14). Usingthetriple-transitivit y of the action of G on @ 1 D,wecansupposethatp 1 =( 1, 0),p 2 =(1, 0).A g a i n ,e 3 denotes the common edge to the two vertices, whose length l(e 3 ) is given by the lambda length between the horoballs h 1 and h 2 chosen to decorate the initial vertices. This accounts for one real parameter.

Let ! t 1 and ! t 2 be the tangents to the circle at p 1 and p 2 respectively. Again, the third vertex ⌫ 3 is contained inside exactly one of the two disjoint triangles bounded by ! t 1 , ! t 2 , ! e 3 . Otherwise, a point outside these two triangles, intersects the geodesic carrying e 3 ,byProperty (1.6.2). The triangle in accordance to the chosen ordering of the vertices, is denoted again by ∆ and shaded green in the figure. Now, from Property 1.6.2, the dual to any hyperideal point in ∆ is disjoint from e 3 .S ow e get that ⌫ 3 is hyperbolic if and only if it is the truncation of a point inK := ∆ r D. In the figure, the triangle has been constructed using one such hyperbolic vertex, truncated from the hyperideal vertex p 3 . In this case, all the edges e 1 ,e 2 ,e 3 have positive length which is given by the hyperbolic length of the green segments. If it is of parabolic type, then we first choose any point p 3 from the arc p 1 p 2 := ∆ \ @ 1 D on the circle and then choose any horoball based at p.S ot h es e tK in this case is a trivial R-bundle over the contractible one-dimensional space p 1 p 2 .F i n a l l y ,t h et h i r dv e r t e x⌫ 3 is elliptic if and only if it is a point in K := ∆ \ D. In the figure, such a point v has been used to complete the triangle. Once again, all the lengths are positive.

(c) Next, suppose that ⌫ 1 and ⌫ 2 are both of elliptic type. See Fig. (2.15) , ! l, ! e 3 such that its closure contains u. If ⌫ 3 is of hyperbolic then K is given by the hyperideal points of Q. If ⌫ 3 is of parabolic type, then K is given by the trivial bundle over the arc

K := Q \ @ 1 D.F i n a l l y⌫ 3 is elliptic if and only if it is a point of K := Q \ D.
This concludes the base step.

Suppose that the statement is true for n =3 ,...,k. In the induction step, there are three possibilities for the new vertex-elliptic, parabolic or hyperbolic. Without loss of generality, we assume that the elliptic vertices are added on at the end. So if the (k + 1)-th vertex is non-elliptic then so are all of the previous ones.

Let Π 7 k+1 be the polygon obtained from Π 7 k by adding a vertex ⌫ between two vertices ⌫ i and ⌫ i+1 ;l e te be the edge joining them. Let e be the infinite geodesic carrying e. It divides D into two half spaces: the one containing Π 7 k is denoted by H 1 ,a n dt h eo t h e rh a l fs p a c e ,d e n o t e db yH 2 , must contain the new vertex ⌫.L e te 0 ,e 00 be the edges joining ⌫ i+2 ,⌫ i+1 and ⌫ i ,⌫ i 1 respectively. Let ∆ be the triangle bounded by the projective lines ! e, ! e 0 , ! e 00 that intersects H 2 . Then Property 2.3.1 applied to the new polygon Π 7 k+1 gives that the truncated vertex ⌫ is entirely contained in the interior of H 2 \ ∆.S u p p o s et h a t⌫ i and ⌫ i+1 are both elliptic. See Fig. (2.18). Then, these are also the intersection points e \ e 00 and e \ e 0 , respectively. Also, owing to the order chosen, the new vertex ⌫ is of elliptic type. In the figure, the region H 2 is shaded yellow and the triangle ∆ is shaded blue.Then the polygon Π 7 k+1 is convex if and only if ⌫ is a point in H 2 \ ∆,w h i c hi s homeomorphic to an open ball (shaded green in the figure). So using the induction hypothesis, we have that D(Π 7 k+1 ) ' D(Π 7 k ) ⇥ D 2 ' B 2k 1 . Next, we suppose that ⌫ i is parabolic and ⌫ i+1 is hyperbolic. Then ⌫ i is an ideal point p decorated with a horoball h and ⌫ i+1 is the truncation of a hyperideal point q,s u p p o r t e do nt h e infinite geodesic l, whose endpoints are ideal points u, v 2 @ 1 D.T h e e d g e e joining these two vertices is a geodesic ray with the finite endpoint on l and the infinite end converging to p. It is carried by the straight line containing p, q.L e tt u ,t v are tangents to the boundary of the unit circle at u, v.U s i n gt h ec o n v e x i t yc o n d i t i o n( 2 . 3 . 1 )o n⌫ i+1 ,w eh a v et h a tt h ep o l y g o nΠ 7 k as well as the k +1-th vertex ⌫ are both contained in that associated triangle ∆quv based at l that contains the point p. The projective line ! e 0 ,c a r r y i n gt h ee d g ee 0 that joins the two vertices ⌫ i+2 ,⌫ i+1 ,p a s s e s through q.S i m i l a r l y ,t h ep r o j e c t i v el i n e ! e 00 carrying the edge e 00 that joins the two vertices ⌫ i ,⌫ 

inside R := H 2 \ ∆ \ ∆quv. Now, @ 1 D \ H 2 = @ 1 D \ ∆ is the semicircular arc containing
⌫ i is elliptic, ⌫ i+1 is hyperbolic Then for 1 , 2 2 ⇡ 1 (S c ), u( 1 2 )= d dt t=0 ⇢ t ( 1 )⇢ t ( 2 )⇢( 2 ) 1 ⇢( 1 ) 1 =  d dt t=0 ⇢ t ( 1 )⇢( 2 )+⇢( 1 ) d dt t=0 ⇢ t ( 2 ) ⇢( 2 ) 1 ⇢( 1 ) 1 = d dt t=0 ⇢ t ( 1 )⇢( 1 ) 1 + ⇢( 1 ) ✓ d dt t=0 ⇢ t ( 2 )⇢( 2 ) 1 ◆ ⇢( 1 ) 1 = u( 1 ) + Ad(⇢( 1 )) • u( 2 ).
Am a pu : ⇡ 1 (S ~) ! so 2,1 ,s a t i s f y i n g( 2 .

2 )i sc a l l e da⇢-cocycle.

Definition 2.4.3. A ⇢-coboundary is a ⇢-cocycle u such that for some v 0 2 g u( ) = Ad(⇢( ))v 0 v 0 , for every 2 ⇡ 1 (S c ).

(2.4)

Two ⇢-cocycles are equivalent if they differ by a coboundary. The set of equivalence classes of all ⇢-cocycles forms the first cohomology group H 1 ⇢ (⇡ 1 (S c ), g).A ne l e m e n t[u] of this group is an infinitesimal deformation of the metric [⇢],i . e . ,[u] 2 T m D(S c ).

Next, we will define a specific type of infinitesimal deformation of a compact surface, known as an admissible deformation. Definition 2.4.4. Let S c be a compact (possibly non-orientable) hyperbolic surface with nonempty boundary. Let m 2 D(S c ) and v 2 T m D(S c ). Then v is said to be an admissible deformation of m if it satisfies:

inf 2Γr{Id} dl (m)(v) l (m) > 0, (2.5) 
where l is the length function as introduced in Definition (2.1.6).

In other words, an infinitesimal deformation is admissible if and only if the length of every nontrivial closed loop of S c is uniformly lengthened. The following theorem was proved by Goldman-Labourie-Margulis in [START_REF] William | Proper affine actions and geodesic flows of hyperbolic surfaces[END_REF] Theorem 2.4.5. The set of all admissible deformations of a compact hyperbolic surface S c with non-empty totally geodesic boundary forms an open convex cone of T m D(S c ).

Surfaces with non-decorated and decorated spikes

Let S sp be a hyperbolic surface with non-decorated spikes endowed with a metric m 2 D(S sp ). The set of infinitesimal deformations of the metric is given by T m D(S sp ).L e t[⇢] be the metric on the convex core and V 0 ⇢ T m D(S sp ) be the set of infinitesimal deformations that do not deform S c . Then the infinitesimal deformation space

T [⇢] D(S c ) ' T m D(S sp )/V 0 .D e n o t et h eq u o t i e n tm a p ⇡ : T m D(S sp ) ! T m D(S sp )/V 0 .
Like in the case of compact surfaces, we will now discuss about admissible deformations. Let S sp be a hyperbolic surface with non-decorated spikes equipped with a metric m 2 D(S sp ).L e t[⇢] be the metric on its convex core S c . Then the admissible cone Λ(m) is defined as

Λ(m):=⇡ 1 (Λ([⇢]))
It is the set of all infinitesimal deformations of m that lengthens every non-trivial closed loop. This is a vector bundle over the admissible cone of the convex core S c of the surface. Every fiber is isomorphic to V 0 ⇠ = R Q containing the information of the movement of all the spikes. Remark 2.4.1. In Chapter 5, we shall be parametrising the elements of T M (D 0 ) using the spinning arc complex, where M 2 D 0 . These are infinitesimal deformations of a one-holed polygon endowed with a metric M that fix the boundary loop pointwise.

Next we define admissible deformations for hyperbolic surfaces with decorated spikes.

Definition 2.4.6. Let S h sp be a hyperbolic surface with decorated spikes. The admissible cone for ag i v e nm e t r i cm 2 D(S h sp ),d e n o t e db yΛ(m),i st h es e to fa l li n fi n i t e s i m a ld e f o r m a t i o n so fm that uniformly lengthens every horoball connection.

If the decoration on S h

sp is such that the closures of the decorating horoballs are all pairwise disjoint, then an element v 2 T m D(S h sp ) is admissible if and only if it satisfies the following condition:

inf 2H dl (m)(v) l (m) > 0, (2.6) 
where l is the length function as in Definition (2.2.10) and H is the set of all horoball connections.

Remark 2.4.2. Let S sp be the underlying hyperbolic surface with undecorated spikes of S h sp .L e tv be an admissible deformation of (S h sp ,m). Then v is an admissible deformation for any decoration of S sp such that closures of the decorating horoballs are pairwise disjoint.

If some of the decorating horoballs of the spikes of S h sp overlap then an admissible v satisfies

inf 2H dl (m)(v) > 0,
where H is the set of horoball connections with non-positive length, and (2.6) for horoball connections with positive length. n ). Proof. Two generalised vertices are moved away from each other if and only if the length of the edge joining them increases. Let l 1 ,...,l N be the set of all edges and diagonals of the polygon. Then we can define the following smooth positive function for every i =1,...,N:

Generalised Polygons

l i : D(P ) ! R >0 m 7 ! length of l i w.r.t m.
An infinitesimal deformation v increases the length of l i if and only if dl i (v) > 0.S ot h ea d m i s s i b l e cone can be written as

Λ(m)= N \ i=1 {dl i > 0},
which is open and convex in T m D(Π 7 n ).

Chapter 3

Arcs and arc complexes

Arcs

An arc on a hyperbolic surface S with non-empty boundary, possibly with spikes, is an embedding ↵ of a closed interval I ⇢ R into S. There are three possibilities depending on the nature of the interval:

1. I =[ a, b]:
In this case, the arc ↵ is finite. We consider those finite arcs that verifiy:

↵(a),↵(b) 2 @S and ↵(I) \ S = {↵(a),↵(b)}.
2. I =[ a, 1): These are embeddings of hyperbolic geodesic rays in the interior of the surface such that ↵(a) 2 @S. There are two types:

• The infinite end converges to a spike, i.e., ↵(t)

t!1 ! x, where x is a spike.

• The infinite end spirals around a totally geodesic boundary component of the surface. They are called spiraling arcs.

I = R:

The infinite ends can either converge to a spike or spiral along a simple closed curve.

Definition 3.1.1. An arc ↵ of a hyperbolic surface S with non-empty boundary is called non-trivial if each connected component of S r {↵} has at least one spike or generalised vertex.

Let A be the set of all non-trivial arcs of the three types above. Two arcs ↵, ↵ 0 : I ! S in A are said to be isotopic if there exists a homeomorphism f : S ! S that preserves the boundary and fixes all generalised vertices or (possibly decorated) spikes and a continuous function

H : S ⇥ [0, 1] ! S such that 1. H(•, 0) = Id and H(•, 1) = f , 2. for every t 2 [0, 1],t h em a pH(•,t):S ! S is a homeomorphism, 3. for every t 2 I, f (↵(t)) = ↵ 0 (t).
We shall now give a formal definition of the arc complex. 49 Definition 3.1.2. The arc complex of a surface S,g e n e r a t e db yas u b s e tK⇢A ,i sas i m p l i c i a l complex A (S) whose base set A (S) (0) consists of the isotopy classes of arcs in K,a n dt h e r ei sa n k-simplex for every (k + 1)-tuple of pairwise disjoint and distinct isotopy classes.

The elements of K are called permitted arcs and the elements of A r K are called rejected arcs. The permitted arcs are the building blocks of the different arc complexes. They are used to perform strip deformations of the surface. The way the surface is deformed depends on the nature of the arc used for the strip deformation. This shall be discussed in detail in Chapter 5.

Next we specify the elements of K for the different types of surfaces:

• In the case of a hyperbolic surface with non-decorated spikes, the set K of permitted arcs comprises of non-trivial finite arcs that separate at least two spikes from the surface.

• In the case of a hyperbolic surface with decorated spikes, the set K of permitted arcs comprises of non-trivial finite arcs and infinite arcs of type 2 whose infinite ends converge to spikes and whose finite ends lie on the boundary of the surface.

• In the case of generalised polygons, an arc is permitted if either both of its endpoints lie on two distinct edges of Π 7 n (edge-to-edge arc) or exactly one endpoint lies on a generalised vertex (edge-to-vertex arc).

• Finally, for a one holed-polygon Π } n with n 1,w es h a l lc o n s i d e rt h espinning arc complex, denoted by A ! (Π } n ), which is generated by non-trivial finite arcs that separate at least two spikes from the surface and the infinite arcs of the second type that spiral along its totally geodesic boundary. 1. Two isotopy classes of arcs of S are said to be disjoint if it is possible to find a representative arc from each of the classes such that they are disjoint in S.S u c ha configuration can be realised by geodesic segments in the context of hyperbolic surfaces. In our discussion, we shall always choose such arcs as representatives of the isotopy classes.

2. In the cases of ideal and punctured polygons, we shall choose those geodesic arcs whose lifts are supported on projective lines that intersect outside RP 2 r D.

3. The surfaces with non-decorated spikes that have finite arc complexes are ideal, punctured, one holed polygons and Möbius strip with spikes. A finite arc of a surface with non-decorated spikes is called minimal if it separates a quadrilateral with two ideal points from the surface.

Pruned arc complexes

Definition 3.1.6. We define a big simplex of the arc complex of the different types of surfaces:

• For a surface with non-decorated spikes, a simplex is said to be big if the arcs corresponding to (0) decompose the surface into topological disks.

• For a surface with decorated spikes, a simplex is said to be big if the arcs corresponding to (0) decompose the surface into topological disks with at most one spike.

• For a generalised p olygon, a simplex is said to be big if the arcs corresponding to (0) decompose the surface into topological disks with at most one generalised vertex.

From the definition it follows that any simplex containing a big simplex is also big.

Definition 3.1.7. The pruned arc complex of a surface S is the union of the interiors of the big simplices of the arc complex A (S).

If S is a surface with arc complex A (S),thenitsprunedarccomplexisdenotedb y b A(S).E v e r y point x 2 b A(S) is contained in the interior of a unique simplex, denoted by x ,i.e.,thereisaunique family of arcs {↵ 1 ,...,↵ p },n a m e l yt h e0 -s k e l e t o no f x ,s u c ht h a t

x = p X i=1 t i ↵ i , p X i=1 t i =1, and 8i, t i > 0. Define the support of a point x 2 b A(S) as supp (x):= (0)
x .

Arc complexes of hyperbolic polygons

In this section, we shall discuss the topology of the arc complexes of hyperbolic polygons.

Ideal and Punctured Polygons

To every ideal p olygon Π D n , one can associate a Euclidean regular polygon with n vertices, denoted by P n , in the following way:

• The vertices of P n correspond to the infinite geodesics of the boundary of Π D n ,

• Two vertices in P n are consecutive if and only if the corresponding infinite geodesics have a common ideal endpoint.

Then we have the following bijection:

n Isotopy classes of permitted arcs of Π D n o ${Diagonals of P n }
Two distinct isotopy classes are pairwise disjoint if and only if the corresponding diagonals in P n don't intersect inside P n .H o w e v e r ,t h ed i a g o n a l sa r ea l l o w e dt oi n t e r s e c ta tv e r t i c e s-t h i st a k e s place whenever the arcs have exactly one endpoint on a common edge of the ideal polygon. One can construct the arc complex of P n in the same way as before and one has

A (P n )=A ⇣ Π D n ⌘ .
Then a classical result from combinatorics states that Theorem 3.2.1. The arc complex A (P n ) (n 4) is a sphere of dimension n 4. Its dual is an associahedron.

See [START_REF] Penner | Decorated Teichmüller Theory. The QGM master class series[END_REF] for proof.

The following theorem about the arc complex of once-punctured polygons was proved by Penner in [START_REF] Penner | Decorated Teichmüller Theory. The QGM master class series[END_REF]. Theorem 3.2.2. The arc complex A (Π n ) of a punctured n-gon,(n 2), is homeomorphic to a sphere of dimension n 2.

Decorated Hyperbolic Polygons

In this subsection, we shall prove that the pruned arc complex of a decorated hyperbolic polygon is an open manifold. Since the permitted arcs in this case are allowed to have one endpoint on a generalised vertex, we consider the following abstract set up to cover all the cases at the same time.

We start with the p olygon P 2n (defined in the previous section) )with n 2 and partition its vertex set into two disjoint subsets G and R such that |G| = |R| = n and for every pair of consecutive vertices, exactly one belongs to G and the other one belongs to R.S u c hap o l y g o ni s said to have an alternate partitioning and shall be denoted by (P 2n ,C alt ), where C alt := (G, R).

To every decorated p olygon Π 7 n ,o n ec a na s s oc i a t et h epo l y g o n(P 2n ,C alt ) in the following way:

• ag e n e r a l i s e dv e r t e xo fΠ 7 n corresponds to a vertex of P 2n in R,

• an edge of Π 7 n corresponds to a vertex of P 2n in G, such that one R-vertex and one G-vertex are consecutive in P 2n if and only if the corresponding edge and generalised vertex of Π 7 n are consecutive. Again, we have the bijection: Isotopy classes of edge-to-edge arcs of

Π 7 n ${G G diagonals} Isotopy classes of edge-to-vertex arcs of Π 7 n ${G R diagonals} So the arc complex A (Π 7
n )of a decorated n-gon is isomorphic to that of P 2n generated by the G G and G R diagonals. A 0-skeleton of a big simplex of A (P 2n ) decomposes the surfaces into smaller polygons none of which has more than one R-vertex. Lemma 3.2.3. A simplex of the arc complex A (P 2n ) is completely contained in @X if it is not a big simplex. 

Proof. Let x 2 b

A(P 2n ) be point which lies in the interior of unique simplex x of dimension k. We need to show that there is a neighb ourho o d of x in b A(P 2n ) which is homeomorphic to an open ball of dimension 2n 4. It suffices to prove that the link of x in the arc complex is a sphere of dimension 2n 5 k.The k +1 arcs of the 0-skeleton of x divide the polygon P 2n into k +2 smaller polygons P n1 ,...,P n k+1 , with 3  n i  n 0 1 for every i =1,...,k+2. Lemma 3.2.5. Let s := P k+2 r=1 n r . Then we have, s = 2(k + 1) + 2n 0 .

Proof. In the sum s := P k+2 r=1 n r that counts the total number of edges of all the k +2 polygons, each edge e p of P nr is counted a(e p )+1 times, where a(e p ) is the total number of arcs of x that have an endpoint on e p . Since x is a big simplex, we have that none of the smaller polygons contain a R R diagonal. So each of their arc complexes is a sphere, from Theorem (3.2.1). The link is then given by

Link( x , A (P 2n )) = A (P n1 ) 1 ...A P n k+2 = S n1 4 1 ...S n k+2 4
(from Theorem (3.2.1))

= S s 4(k+2)+k+1

= S 2n0 5 k (from Lemma (3.2.5))

Spinning arc complex

The main goal of this section is to show that the spinning arc complex generated by finite arcs and spiraling arcs is a sphere. In order to prove that, we shall compute two other arc complexes of an ideal one-holed polygon.

Recall that the finite arcs permitted for a surface with undecorated spikes separate at least two spikes from the surface.

The arc complex generated by the isotopy classes of finite arcs is denoted by

A f (Π } n ).

Its subcomplex generated by the finite arcs whose endpoints lie on the boundary geodesic forms a simplex, denoted by ⌘.A l s ot h e0 -s i m p l e xc o r r e s p o n d i n gt os u c ha na r ci sb i gs i m p l e x( D e fi n i t i o n

(3.1.6)) of A f (Π } n )
. This is because it decomposes the surface Π } n into a topological disk -an ideal polygon with n +2 vertices, whose arc complex is a sphere of dimension n 2.

Theorem 3.2.6. The arc complex A f (Π } n ), n 1, is a closed ball of dimension n 1.
Proof. The proof is done by induction on the number of vertices n.F o rn =1 ,t h e r ei so n l yo n e arc. It has one endpoint on . The arc complex A f (Π } 1 ) is then a 0-simplex, which is a closed ball of dimension 0. So the base case is verified.

Suppose that the statement holds for n =1,...,n 0 1. Consider the polygon Π } n0 . The link of a 0-simplex corresponding to an arc one of whose endpoints lie on is a sphere of dimension n 0 , from the above discussion. Next, let c be a finite arc with no endpoints on . It divides Π } n0 into an ideal k-gon and an ideal one-holed (n 0 k + 2)-gon with boundary Π } n0 k+2 . Then by induction hypothesis, we have that

Link(c, A f (Π } n0 )) = S k 4 1 B n0 k+1 = B n0 2 . So the complex A f (Π } n ) is a (n 0 1
)-dimensional PL-manifold with boundary. The boundary of the complex consists of simplices spanned by arcs that do not intersect . This is the arc complex of a punctured n 0 -gon. From Theorem 3.2.2, we have that @A f (Π } n0 ) ' S n0 2 .A l s oa n ys i m p l e x spanned by boundary 0-simplices lies in the boundary as well. This is because the corresponding arcs do not intersect the curve . It follows that the boundary is induced (see Definition 1.7.7). So by Theorem 1.7.8, the arc complex collapses onto the simplex generated by the finite arcs that intersect .H e n c e ,A ⇠ Π } n0 is collapsible. Finally from Theorem (1.7.9), it follows that the arc complex is an (n 0 1)-dimensional ball.

The arc complex of Π } n generated by the isotopy classes of the infinite arcs and those finite arcs whose endpoints do not lie on the boundary loop ,i sc a l l e dt h espinning arc complex, and is denoted by A ! (Π } n ). This is a finite simplicial complex whose dimension is n 1.W eh a v et h e following theorem:

Theorem 3.2.7. The spinning arc complex A ! (Π } n ), n 1 
, is homeomorphic to a sphere of dimension n 1.

Proof. The subcomplex X 1 (resp. X 2 )g e n e r a t e db yt h efi n i t ea r c sa n dt h es p i n n i n ga r c s ,a l lo f which spin in clock-wise (resp. anti-clockwise) direction, is isomorphic to A f (Π } n ), which is a ball of dimension n 1, from Theorem (3.2.6). Also, the boundaries @X 1 ,@X 2 of these two balls are identical because they are generated by all the finite arcs. So we have that,

A ! Π } n = B n 1 t B n 1 /S n 2 ' S n 1 .

Arc complex of general surfaces

In this section we shall be studying the topology of the pruned arc complexes of hyperbolic surfaces with undecorated spikes, followed by hyperbolic surfaces with decorated spikes.

Surfaces with undecorated spikes

Firstly, we shall discuss a theorem by Harer which proves that the pruned arc complex of an orientable surface is an open ball. In his paper, the terminology used is different from what we have seen up until now so we shall give a quick introduction to the objects involved in his result. Then by interpreting his result in the appropriate manner, we shall prove that the pruned arc complex in the case of orientable surfaces with spikes is an open ball. Finally, we shall derive the same result for non-orientable surfaces.

Harer's Terminology: Let S g,r,s be an orientable surface of genus g with r boundary components and s punctures: S g,r,s := S g,r r {y 1 ,...,y s }, where y 1 ,...,y s are points in the interior of S g,r ,thatplaytheroleofspikelessboundarycomponents in our case. Mark Q distinct points x 1 ,...,x Q on the boundary @S g,r,s such that each boundary component, denoted by @ i S g,r,s for i =1,...,r, contains at least one such point. These points shall play the role of spikes. Let Ω={x 1 ,...,x Q ,y 1 ,...y s }.

The deformation space D(S g,r,s ) is an open ball of dimension N 0 := 6g 6+3r +2s.D e fi n e T (Ω) := {(m, )}, where m 2 D(S g,r,s ) and is a positive projective weight on the points of Ω. Then,

T (Ω) = D(S g,r,s ) ⇥ B s+Q 1 ' B 6g 7+3r+3s+Q .
Consider K to be the set of embedded arcs in S g,r whose endpoints belong to Ω. The arc complex spanned by the arcs in K is denoted by A (S g,r,s ).As i m p l e x of the arc complex is said to be "big" if the arcs corresponding to its 0-skeleton divide the surface S g,r,s into topological disks. The pruned arc complex b A(S g,r,s ) is defined to be the union of the interior of the big simplices.

Finally, let MCG(S g,r,s ) be the mapping class group of the surface whose elements fix the points in Ω. Then, Harer proves the following theorem: Theorem 3.3.1. [START_REF] Harer | The virtual cohomological dimension of the mapping class group of an orientable surface[END_REF] There is a natural homeomorphism Φ:T (Ω) ! b A(S g,r,s ) that commutes with the action of the mapping class group MCG(S g,r,s ).

Interpretation: Let S q g,n be an orientable hyperbolic surface with undecorated spikes with k boundary components homeomorphic to a circle. Recall that in the case of hyperbolic surfaces with undecorated spikes, the permitted arcs are finite and have both their endpoints on two (not necessarily distinct) connected components of the boundary of the surface. By comparing these arcs with the permitted arcs used by Harer, we get that punctures and spikeless boundaries play the same role in the two surfaces; similarly, the points y 1 ,...,y Q can be interpreted as spikes in our case. Then, k = s and n = r + s.S o ,t h ea r cc o m p l e xA S q g,n is isomorphic to the arc complex A (S g,r,s ). A(S q g,n ) of a connected orientable surface S q g,n with non-decorated spikes is homeomorphic to an open ball of dimension 6g 7+3n + Q.

Next, we prove a similar result for non-orientable surfaces with spikes using Harer's theorem. The orientation covering of a surface S is defined as the pair (S, ⇡), where,

S := {(p, o(p) | p 2 S, o(p) is an orientation of T p S)} and ⇡ : T qh,n ! T qh,n (p, o(p)) 7 ! p .
Since the tangent space T p S has exactly two orientations, ⇡ is a two-sheeted covering map. Since T qh,n is non-orientable, one has that T qh,n is a orientable surface with

(T qh,n )=2 (T qh,n ) < 0.
So we get that T qh,n is hyperbolic and that it is of the form S q tq h 1,2n , where q tq := (q 1 ,...,q n ,q 1 ,...,q n ). Let Υ:S q tq h 1,2n ! S q tq h 1,2n be the covering automorphism that exchanges the two points in every fibre of ⇡.

We shall revert back to Harer's notation -supp ose that T qh,n has k spikeless boundary components. Then, S 2q h 1,2n has s := 2k spikeless boundary components. Let r := 2(n k).W es h a l lb e working with S h 1,r,s which is an orientable surface of genus h 1 with r boundary components and s punctures. From Theorem (3.3.1), we know that b

A(S h 1,r,s
) is an open ball of dimension 6(h 1) 7 + 3(r + s)+2Q =6h 13 + 6n +2Q.

Let I(A (S h 1,r,s )) be the subset of A (S h 1,r,s ) that is invariant under the action of Υ.S i n c e the homeomorphism Φ:T (Ω) ! b A(S h 1,r,s ) commutes with the action of Υ,w eg e tt h a t Φ(I(A (S h 1,r,s ))) is the set of points (m, ) 2T(Ω) such that m and are invariant under Υ. Every permitted arc ↵ of T qh,n lifts to two disjoint arcs ↵ 1 ,↵ 2 in S h 1,r,s because Υ is a double cover and an arc is simply-connected. These two arcs are interchanged by the action of Υ.S o , the isotopy classes [↵ 1 ], [↵ 2 ] as well as the 1-simplex generated by them belong to I(A (S h 1,r,s )). Consequently, we get the following map between the arc complexes:

h : A ⇣ T qh,n ⌘ ! I (A (S h 1,r,s )) (0 skeleton)[ ↵] 7 ! [↵ 1 ]+[↵ 2 ] 2 , (k skeleton) P k+1 i=1 t i [↵ i ] 7 ! P k+1 i=1 t i [↵ 1 i ]+[↵ 2 i ] 2 ,
where k  N 0 , t i 0 for i =1,...,k+1 ,with

P k+1 i=1 t i =1. Lemma 3.3.3. The map h : b A(T qh,n ) ! I ( b A(S h 1,r,s )) is an isomorphism.
Proof. Firstly, we show that this map is well-defined. A point x 2 b A(S) belongs to the interior of au n i q u eb i gs i m p l e x x of A (S):

x = N0 X i=1 t i [↵ i ], with t i 2 (0, 1), [↵ i ] 2 (0)
x , for every i =1,...,N 0 and

X i t i =1.

The union S

i e i of arcs decomposes the surface S into topological disks with at most two spikes.

Being simply connected, they lift to twice as many disks partitioning the double cover. So the simplex formed by

{[↵ 1 i ], [↵ 2 i ]} i is big. Hence we get that h(x) 2 b A(S h 1,r,s ).S i n c eΥ exchanges the two arcs [↵ 1 i ], [↵ 2 i ] for every i =1,...,N 0 ,w eg e tt h a th(x) 2I( b A(S h 1,r,s )). Now we construct the inverse of h. Start with y 2I( b A(S h 1,r,s )).S i n c e ,y 2 b A(S h 1,r,s
),t h e r e exists a unique big simplex y such that y 2 int ( y ),i . e . , y = q X j=1 s j ↵ j , with s j 2 (0, 1),↵ j 2 (0) y , for every j =1,...,q and X j s j =1.

Since y 2I ,i ti si n v a r i a n tu n d e rt h ea c t i o no fΥ. The family of arcs in (0) y project to equal or disjoint arcs in the quotient surface. Similarly, since y is big the connected components of the complement of this family of arcs are disks and they project to equal or disjoint regions. If ↵, ↵ 0 are two arcs in 

A(T qh,n )=h 1 (I(A (S h 1,r,s ))) = h 1 Φ 1 (B 3h 7+3n+Q ).

Surfaces with decorated spikes

In this section, we shall prove that the pruned arc complex of a surface with decorated spikes is an open ball.

As mentioned previously, the arcs that are considered for spanning the arc complex for such a surface are either finite, separating at least one spike, or infinite with one endpoint exiting the surface through a spike. The former is referred to as an edge-to-edge arc, while the latter is called a spike-to-edge arc. Recall that every point x 2 b A(S 0 ) is contained in the interior of a unique big simplex denoted by x , the arcs corresponding to whose 0-skeleton decomposes the surface into topological disks with at most one decorated spike.

Firstly, we will prove the following theorem for orientable surfaces S q , h g,n :

Theorem 3.3.5. The pruned arc complex b A(S q , h g,n ) of an orientable surface S q , h g,n with decorated spikes is an open ball of dimension 6g 7+3n +2Q.

We shall denote S 0 by the topological surface with genus g, n boundary components and q i 0 marked points on @ i S 0 , i =1 ,...,n such that (S 0 ) < 0.A g a i n ,l e tQ be the total number of spikes. Let ⇠ =( ⇠ 1 ,...,⇠ Q ) be the set of marked points on @S 0 .L e tQ(i)= P i j=1 q i . Then we see that S 0 r S {⇠ l } l is an orientable hyperbolic surface with spikes. The marked points are called vertices and the connected components of @ i S r {⇠ Q(i 1)+1 ,...,⇠ Q(i) } are called edges.

Firstly, we do a topological operation on S 0 called the doubling to obtain a "bigger" hyperbolic surface with boundary and without any marked points. This is done in two steps:

Step 1: We truncate small neighb ourho o ds of every marked p oint along emb edded arcs, denoted by V := {r l } Q l=1 , that join the edges adjacent to the spikes. The elements of V are called V -edges. Let S be the resulting surface. For i =1,...,n, when q i > 0,t h ei-th boundary of S, @ i S,i s the union of 2q i segments alternately partitioned into V -edges and the truncated boundary edges of S 0 .W h e n ,q i =0, @ i S = @ i S 0 . The truncated boundary edges along with any closed loop in @S 0 are called E-edges.

Step 2: Then we take a copy S 0 of S and glue it to S along the V -edges. The final surface, denoted as Σ:=S t S 0 / ⇠,hasgen us2g, with 2n + Q boundary components. If @ i S 0 had q i > 0 E-edges, then after gluing we get q i boundary components made out of two copies of every E-edge. A(S 0 ) of S 0 in the following way: At first we define it on the 0-skeleton of the arc complex and then we extend it linearly to a generic point on the pruned arc complex.

We get the

• Let e be an arc joining a spike ⇠ and an edge l of @S 0 . Then the Step 1 above truncates e; in S it becomes an arc, again denoted by e,j o i n i n gt h ec o r r e s p o n d i n gR-edge and the initial G-edge l.L e te 0 2 S 0 be the twin arc of e.F i n a l l y ,a f t e rt h eS t e p2 ,e := e t e 0 / ⇠ becomes the arc that joins the two copies of l that form the totally geodesic boundary in Σ,andtransv erse to the R-edge. It is preserved as a set by the involution. Define h(e):=e 00 . Proof. Firstly, we show that this map is well-defined. As discussed before, a point x 2 b A(S) belongs to the interior of a unique simplex x of A (S). In other words,

x = p X i=1 t i e i , with t i 2 (0, 1),e i 2 (0)
x , for every i =1,...,p and

X i t i =1.

The union S

i e i of arcs decomposes the surface S into topological disks with at most one vertex.

Let y := h(x)= P q j=1 s j ↵ j . Then from the definition of h, it follows that s j 2 (0, 1),a n d ↵ j 2A K (Σ) (0) , for every j =1 ,...,q. The family of arcs {↵ j } j decomposes the surface Σ into topological disks. Otherwise there is a connected component K in the complement in Σ such that ⇡ 1 (K) 6 = {1}.S oi ti sp o s s i b l et ofi n dan o n -t r i v i a ls i m p l ec l o s e dc u r v e in K. Then either there was a curve in the complement of {e i } in S such that is one of its copies or the curve was created from a vertex-to-vertex arc by the doubling operation. None of these two cases is possible because x 2 b A(S 0 ) and by definition of the pruned arc complex of a surface with decorated spikes, the family of arcs {e i } i decomposes the initial surface S 0 into disks with at most one vertex. So we have that y is a point of b A(Σ).F i n a l l y ,w ev e r i f yt h a tt h ep o i n th(x) is ◆-invariant.

◆(h(e)) = ⇢ ◆(e)+◆(e 0 ) 2
, if e is edge-to-edge ◆(e 00 ) if e is edge-to-vertex, = ⇢ e 0 +e 2 , e 00 , = h(e).

The inverse: Start with y 2 Fix ◆ ( b A(Σ)). Then there exists a unique simplex y such that y 2 int ( y ),i . e . , y = q X j=1 s j ↵ j , with s j 2 (0, 1),↵ j 2 (0) y , for every j =1,...,q and X j s j =1.

Since ◆(y)=y,forev eryj 2{1,...,q},either◆(a j )=a j or ◆(a j )=↵ k for some k 2{1,...,q}r{i}.

In the former case, there exist an edge-to-vertex arc e j in S and its twin e 0 j in S 0 such that a j = e j te 0 j / ⇠.S ow ed e fi n eh 1 (s j a j ):=s j e j . In the latter case, we must also have s j = s k =: s jk . Suppose that a j 2 S and a j 2 S 0 . Then define h 1 (s jk (a j + a k )) := 2s jk a j . Now we shall prove Theorem 3.3.5.

Proof of Theorem 3.3.5. From Theorem 3.3.2, we get that there is a MCG(Σ)-invariant homeomorphism:

Fix ◆ ( b A(Σ)) ⇠ = Fix ◆ (T (Ω)). (3.1) 
The subspace Using the same method as in the previous section, we can show that Theorem 3.3.7. The pruned arc complex b A(T q , h h,n ) of a non-orientable surface T q , h h,n with decorated spikes is an open ball of dimension 3h 7+3n +2Q.

Tiles

Let S be a hyperbolic surface endowed with a hyperbolic metric m 2 D(S).L e tK be the set of permitted arcs for an arc complex A (S) of the surface. Given a simplex ⇢A(S),t h eedge set is defined to be the set

E := n ↵ g (m) 2 ↵|↵ 2 (0) o ,
where ↵ g (m) is a geodesic representative from its isotopy class. The set of all lifts of the arcs in the edge set in the universal cover e S ⇢ D is denoted by f E . The set of connected components of the surface S in the complement of the arcs of the edge set is denoted by T . The lifts of the elements in T in D are called tiles;t h e i rc o l l e c t i o ni sd e n o t e db y f T .

Remark 3.4.1. In the case of ideal polygons and decorated polygons, these components are homeomorphic to two-dimensional disks. In the case of punctured polygons, one of the components is a punctured disk.

The sides of a tile are either contained in the boundary of the original surface or they are the arcs of E . The former case is called a boundary side and the latter case is called an internal side. Two tiles d, d 0 are called neighbours if they have a common internal side. The tiles having finitely many edges are called finite.

If has maximal dimension in A (S),t h e nt h efi n i t et i l e sc a nb eo ft h r e et y p e s :

Type 1: The tile has only one internal side, i.e., it has only one neighbour.

Type 2: The tile has two internal sides, i.e., two neighbours.

Type 3: The tile has three internal sides, i.e., three neighbours.

Remark 3.4.2. Any tile, obtained from a triangulation using a simplex ,m u s th a v ea tl e a s to n e and at most three internal sides. Indeed, the only time a tile has no internal side is when the surface is an ideal triangle. Also, if a tile has four internal sides, then it must also have at least four distinct boundary sides to accommodate at least four endpoints of the arcs. The finite arc that joins one pair of non-consecutive boundary sides lies inside K. This arc was not inside the original simplex, which implies that is not maximal. Hence a tile can have at most 3 internal sides.

Surfaces with non-decorated spikes: There are three types of tiles possible after triangulating (cf. first column of Fig 3 .2):

• ah y p e r b o l i cq u a d r i l a t e r a lw i t ht w oi d e a lv e r t i c e sa n do n ep e r m i t t e da r c ,

• a hyperbolic pentagon with one ideal vertex and two permitted arcs as alternating edges,

• a hyperbolic hexagon with three permitted arcs as alternating edges.

Decorated Polygons, Surfaces with decorated spikes: The different types of tiles possible in the case of a generalised polygon are shown in the last three columns of the table in Fig. 3.2.

• When there is only one internal side of the tile, that side is an edge-to-edge arc of the original surface. The tile contains exactly one generalised vertex ⌫ and two boundary sides. The three cases corresponding to the three possible types of the vertex are given in the first row of the table in Fig. (3.2).

• When there are two internal sides (second row in Fig. (3.2)), one of them is an edge-to-vertex and the other one is of edge-to-edge type. So the tile contains a generalised vertex.

• There are two possibilities in this case: either all the three internal sides are of edge-to-edge type (fourth row in Refinement. Let be a top-dimensional simplex of an arc complex A (S) of a hyperbolic surface S.L e t be an arc such that [ ] 2A(S) (0) r (0) .S o , intersects every arc in the isotopy class of at least one arc in . The set [ [ ] is called a refinement of the triangulation .L e tT ,r be the set of connected components of S r ( S ↵2Eσ ↵) and e T ,r be the set of lifts of its elements. The elements of e T ,r r f T are called small tiles.

Chapter 4

Strip Deformations

In this chapter we shall introduce strip deformations, strip template, tiles and tile maps. We shall also recapitulate the main theorem proved by [START_REF] Danciger | Margulis spacetimes via the arc complex[END_REF], and state the theorems that we shall prove in our context of more general surfaces. Informally, a strip deformation of a hyperbolic surface is done by cutting it along a geodesic arc ↵ g in ↵ and gluing a strip of the hyperbolic plane H 2 , without any shearing. The type of strip used depends on the type of arc and the surface being considered.

The different strips

Firstly, we define the different types of strips. Let l 1 and l 2 be any two geodesics in D. Then there are three types of strips depending on the nature of their intersection:

• Suppose that l 1 and l 2 are disjoint in D. Then the region bounded by them in D is called a hyperbolic strip. The width of the strip is the length of the segment of the unique common perpendicular l to l 1 and l 2 , contained in the strip. The waist of the strip is defined to be the set of points of intersection l \ l 1 and l \ l 2 .

• Suppose that l 1 and l 2 intersect in @ 1 D at a point p.L e th be a horocycle based at p. Then the region bounded by them inside D is called a parabolic strip. The waist in this case is defined to be the ideal point p and the width (w.r.t h )is defined to be the length of the horocyclic arc of h subtended by l 1 and l 2 .

• Suppose that l 1 and l 2 intersect inside D at a point v.T h e na n yo n eo ft h er e g i o n sb o u n d e d by v, l 1 ,l 2 inside D is called an elliptic strip. Again, the waist is defined to be the point v and the width is the Euclidean angle subtended at v by l 1 and l 2 .

Strip template

Let S be a hyperbolic surface endowed with a metric m 2 D(S) on it. Let K be the set of permitted arcs (Definition (3.1.2)). A strip template is the following data:
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• an m-geodesic representative ↵ g from every isotopy class ↵ of arcs in K, along which the strip deformation is performed,

• ap o i n tp ↵ 2 ↵ g where the waist of the strip being glued must lie. A choice of strip template is the specification of this data. However, we shall see in the following section that even though we are allowed to choose the geodesic arcs in every case, the waists are sometimes fixed from beforehand by the nature of the arc being considered.

Finite arcs

Recall that finite arcs are embeddings of a closed and bounded interval into the surface with both the endpoints lying on the boundary of the surface. These arcs are present in the construction of every arc complex that we discuss. The strip glued along these arcs is of hyperbolic type except when the arc joins an elliptic vertex v 2 D with an edge, in a decorated polygon. In this case, the strip glued is of elliptic type, with its waist at v. The representative ↵ g from the isotopy class of such an arc can be any geodesic segment from v to that edge.

In the case of a finite arc joining a truncated hyperideal vertex to an edge, the representative is chosen to be perpendicular to the vertex, and the waist is at the point of intersection of the arc with the truncated vertex.

In every other case, including edge-to-edge arcs in decorated polygons, we are free to chose the geodesic representative and the waist of the hyperbolic strip.

Infinite arcs

Let [↵] be the isotopy class of a permitted infinite arc ↵ of a hyperbolic surface S. Then ↵ has one finite end lying on @S and one infinite end that either escapes the surface through a spike (decorated surfaces) or spirals about a simple closed geodesic curve (one holed-polygons). We can choose any geodesic arc ↵ g from [↵] that does the same without any self intersection.

Consider the universal cover of the surface inside the disk model D. The lift of such an arc is ag e o d e s i cr a yi nD whose infinite end is on an ideal point which is a lift of the spike (decorated surface) or one endpoint of the geodesic corresponding to the curve (spiraling arc). In both the cases, the strip added is of parabolic type, with its waist at this ideal point.

Strip deformations

Definitions

In this section we give a formal definition of a strip deformation and its infinitesimal version. where the image m(•) is a path in D(S) such that m(0) = m and m(t) is obtained from m by strip deforming along ↵ with a fixed waist p ↵ and the width as tw ↵ .

Let m =( [ ⇢, x]) 2 D(S) be a point in the deformation space of the surface, where ⇢ is the holonomy representation and denote Γ=⇢(⇡ 1 (S)).F i xas t r i pt e m p l a t e{(↵ g ,p ↵ ,w ↵ )} with respect to m.L e t be a simplex of A (S).G i v e na na r c↵ in the edgeset E ,t h e r ee x i s tt i l e s , 0 2T such that every lift e ↵ of ↵ in e S is the common internal side of two lifts e , e 0 of the tiles. Also, p •e ↵ = • p e ↵ ,f o re v e r y 2 Γ. Then the infinitesimal deformation f ↵ (m) tends to pull the two tiles and 0 away from each other due to the addition of the infinitesimal strip. Let u be a infinitesimal strip deformation of ⇢ caused by f ↵ (m). Then we have a (⇢, u)-equivariant tile map : f T ! g such that for every 2 Γ,

(⇢( ) • e ) (⇢( ) • e 0 )=⇢( ) • v e ↵ , (4.1) 
where v e ↵ is the Killing field in g ' X corresponding to the strip deformation f e ↵ (m) along a geodesic arc e ↵ g ,i s o t o p i ct oe ↵,a d a p t e dt ot h es t r i pt e m p l a t ec h o s e n ,a n dp o i n t i n gt o w a r d s e :

• If f ↵ (m) is a hyperbolic strip deformation with strip template (↵ g ,p ↵ ,w ↵ ),t h e nv e ↵ is defined to be the hyperbolic Killing vector field whose axis is perpendicular to e ↵ g at the point f p ↵ , whose velocity is w ↵ .

• If ↵ is an infinite arc joining a spike and a boundary component, then f ↵ (m) is a parabolic strip deformation with strip template (↵ g ,p ↵ ,w ↵ ),a n dv e ↵ is defined to be the parabolic Killing vector field whose fixed point is the ideal point where the infinite end of e ↵ converges and whose velocity is .

• If ↵ joins an elliptic vertex with an edge, then f ↵ (m) is an elliptic strip deformation with strip template (↵ g ,p ↵ ,w ↵ ),a n dv e ↵ is defined to be the elliptic Killing vector field whose fixed point is at the vertex and whose velocity is given by w ↵ .

Remark 4.3.1. Such a strip deformation f ↵ : D(S) ! T m D(S) does not deform the holonomy of a general surface with spikes (decorated or otherwise) if ↵ is completely contained outside the convex core of the surface. However, it does provide infinitesimal motion to the spikes.

More generally, a linear combination of strip deformations P ↵ c ↵ f ↵ (m) along pairwise disjoint arcs {↵ i }⇢E imparts motion to the tiles of the triangulation depending on the coefficient of each term in the linear combination. A tile map corresponding to it is a (⇢, u)-equivariant map : f T ! g such that for every pair , 0 2T which share an edge ↵ 2E ,t h ee q u a t i o n4 . 1i ss a t i s fi e db y . 

( 1 ) ( 0 )= ( 3 ) ( 2 )=v ↵ , (4.2) 
( 1 ) ( 3 )= ( 0 ) ( 2 )=v , (4.3) 
where v ↵ and v are the Killing vector fields adapted to the strip templates and the nature of ↵ and . The set of all equivalence classes modulo g of consistent tile maps is denoted by Φ c . Then there is a natural inclusion Φ ⇢ Φ c .

Also, we have the bijection between formal expressions of the form P 

Some Examples

We will now illustrate this deformation using some simple examples. In each case, we take a strip map and compute one tile map that represents it as well as the infinitesimal deformation of the holonomy of the surface, caused by it. Let ↵ be a finite arc and ↵ g be a geodesic from its isotopy class. The geodesic carrying ↵ g divides the polygon into two regions, that are topological disks. Let d 1 be the region containing the vertices x 1 ,...,x k ;t h eo t h e ri sd e n o t e db yd 2 .L e tp ↵ be a point on ↵ g and w ↵ > 0.L e t 2 PSL(2, R) be the hyperbolic element whose axis is perpendicular to ↵ g at p ↵ and whose translation length is w ↵ . Then, the hyperbolic strip deformation of m along ↵ g gives a new metric m 0 on S given by:

m 0 =[x 1 ,...,x k , • x k+1 ,..., • x n ] 2 D(Π D n ).
The edges joining the consecutive ideal points corresponding to the new vertices are redrawn. This is shown in the figure.

m = x 3
x 4

x 5

x 6

x 1

x 2 ↵ g p ↵ 7 ! x 3 x 1 x 2 • x 4 • x 5 • x 6 = m 0
The infinitesimal version of this strip deformation is given by: Then, infinitesimal strip deformation f ↵ (m) gives a vector field X on S, which is piecewise Killing:

f ↵ : D(S) ! T D(S) [x 1 ,...,x n ] 7 ! ⇥ {[x 1 ,...,x k , t • x k+1 ,..., t • x n ]} t>0 ⇤ 2 T m D(S),
X :Π D n ! T H 2 p 7 ! ⇢ 0, if p 2 d 1 , v ↵ ^p, if p 2 d 2 [ ↵ g , where v ↵ 2 R 2,1 is the point corresponding to V ↵ 2 g.
We construct the following tile map:

: f T ! g d 1 7 ! 0, d 2 7 ! v ↵ ,
where is the 0-simplex given by the isotopy class of ↵ and f

T = {d 1 ,d 2 }. The difference (d 2 ) (d 1 )=v ↵ ,s o satisfies the equation (4.1). If {g t }⇢PGL(2, R) is a smooth one-parameter family generated by V 0 2 g,t h e n ⇥ {[g t • x 1 ,...,g t • x k , t t • x k+1 ,...,g t t • x n ]} t>0 ⇤ = ⇥ {[x 1 ,...,x k , t • x k+1 ,..., t • x n ]} t>0 ⇤ .
The corresponding tile map is then given by + V 0 .H e n c ef o re v e r ys t r i pd e f o r m a t i o n ,w eg e ta family of tile maps + g all equivalent modulo the additive action of g. Now let be another arc of the surface disjoint from ↵ g and let g be a geodesic representative from its isotopy class. Again, choose the waist p 2 g and the width w > 0.L e tt h eK i l l i n gfi e l d corresponding to the hyperbolic strip deformation along g be given by an element V 2 g, with exp (tV )={ 0 t } t2R ⇢ PSL(2, R). Then we can do infinitesimal strip deformations simultaneously along ↵ and in the following way:

The 

f ↵, : D(S) ! T D(S) [x 1 ,...,x n ] 7 ! ⇥ {[x 1 ,...,x k1 , t • x k1+1 ,..., t • x k1+k2 , t 0 t • x n k1 k2 ,..., t 0 t • x n ]} t>0 ⇤ .
A piecewise Killing vector field X in this case is given by:

X :Π D n ! T H 2 p 7 ! 8 < : v ^p, if p 2 d 1 , (v ↵ + v) ^p, if p 2 d 2 , (v ↵ + v + v) ^p, if p 2 d 3 ,
where v 2 g is a fixed Killing field, v ↵ ,v are Killing fields representing strip deformations along the arcs ↵, ,r e s p e c t i v e l y .

The following is a tile map corresponding to the strip deformation f ↵,

: f T ! g d 1 7 ! v, d 2 7 ! v ↵ + v, d 3 7 ! v ↵ + v + v, where f T = {d 1 ,d 2 ,d 3 }. Remark 4.3.2.
The strip deformation of a generalised polygon along an arc that joins a vertex ⌫ to an edge is defined in a similar way. If ⌫ is elliptic (resp. parabolic, hyperbolic), then the element 2 PSL(2, R) used above becomes elliptic (resp. parabolic, hyperbolic). Again, we construct a piecewise Killing, (⇢, u)-equivariant vector field X on the universal cover that represents f (x).

X : f Π 3 ! T H 2 p 7 ! 8 > < > : v ^p, if p 2 e d 1 , T i • (v + v) ^p, if p 2 T i • e d 2 , T i • (v ↵ + v + v) ^p, if p 2 T i • e d 3 ,
where v 2 g is fixed and i 2 Z. The corresponding tile map is given by Using the equivariance of X,f o re v e r y 2 ⇡ 1 (S),w eh a v et h a t

: f T ! g T i • d 1 7 ! v, T i • d 2 7 ! T i • (v + v), T i • d 3 7 ! T i • (v ↵ + v + v),
(⇢( ) • (v ^p)+u( )((⇢( )p)= v ^(⇢( )p) ) u( )((⇢( )p)= v ^(⇢( )p) ⇢( ) • v ^(⇢( )p) ) u( )= ( v ⇢( ) • v).
So u is a coboundary. , where ⇢ is the holonomy representation and x =( x 1 ,x 2 ,x 3 ) 2 @ 1 D 2 . The group ⇢(⇡ 1 (S)) is generated by a hyperbolic element ⇢(@S)=g in PSL(2, R).F i xas t r i pt e m p l a t e .L e t↵ be a minimal geodesic arc and be a finite geodesic arc disjoint from ↵ with one endpoint on the boundary. Define the simplex Then the associated piecewise Killing (⇢, u)-equivariant vector field of e S is given by

:= ([↵], [ ]).L e tx = t[↵]+(1 t)[ ] 2 . Then f (x)=[ {m(s)}], where m(s)=( [ ⇢ s ,x(s)]]),
X :Π } 3 ! T H 2 p 7 ! 8 > < > : v ^p, if p 2 e d 1 , ((1 t) P n i=1 ⇢(g i ) • v e + v) ^p, if p 2 ⇢(g n+1 ) • e d 1 and for n 0 (⇢(g n+1 ) • tv e ↵ +(1 t) P n i=1 ⇢(g i ) • v e + v) ^p, if p 2 ⇢(g n+1 ) • e d 2
and for n 0.

Finally, we determine the ⇢-cocycle u using the equivariance of X.L e tp 2 e d 1 . Then for any n 2 N,

u(g n )(⇢(g n )p):=X(⇢(g n )p) ⇢(g n ) • (v ^p) =((1 t) n X i=1 ⇢(g i ) • v e + v) ^(⇢(g n )p) ⇢(g n ) • v ^(⇢(g n )p) =(v ⇢(g n ) • v +(1 t) n X i=1 ⇢(g i ) • v e ) ^(⇢(g n )p).
Similarly, for p 2 e d 2 and any n 2 N,w eg e tt h a t

u(g n )(⇢(g n )p)=X(⇢(g n )p) ⇢(g n ) • ((v + g • tv e ↵ ) ^p) =(⇢(g n+1 ) • tv e ↵ +(1 t) n X i=1 ⇢(g i ) • v e + v) ^(⇢(g n )p) ⇢(g n ) • (v + g • tv e ↵ ) ^(⇢(g n )p) =(v ⇢(g n ) • v +(1 t) n X i=1 ⇢(g i ) • v e ) ^(⇢(g n )p).
Hence, we have that for every

= g n 2 ⇡ 1 (S), u( )=v ⇢( ) • v + ⇢( ) • (1 t)v e .

Some useful estimates

Let S be a hyperbolic surface with (possibly decorated) spikes with a metric m. Consider a strip deformation f ↵ (m) along a finite arc ↵, with strip template (↵ g ,p ↵ ,w ↵ ). Then the strip added along ↵ is hyperbolic. Let w ↵ (p) be the width of the strip at the point p 2 ↵ g .L e tf ↵ g , f p ↵ , e p be the lifts of ↵ g ,p ↵ ,p such that e p, f p ↵ 2 f ↵ g .S u p p o s et h a tv e ↵ is the Killing field acting across f ↵ g due to the strip deformation. Then, kv e ↵ k = w ↵ . In the hyperboloid model H 2 ,s u p p o s et h a tv e ↵ =( w ↵ , 0, 0) and let the plane containing f ↵ g be {(x, y, z) 2 R 3 | y =0 }.S o ,f p ↵ =( 0 , 0, 1).Ap o i n tp on the geodesic carrying e ↵ is of the form (x, 0, p x 2 + 1), with x 2 R. Then we have

w ↵ (p)=q(v e ↵ ^p)=w ↵ p x 2 +1= w ↵ hp, f p ↵ i = w ↵ cosh d H 2 (p, f p ↵ ). (4.5) 
Now suppose that the arc ↵ is joining a decorated spike and a boundary component of a surface S h sp with decorated spikes. Then the infinitesimal strip added by f ↵ (m) is parabolic. Then, take v e ↵ =(w ↵ , 0,w ↵ ). Then,

w ↵ (p)=q(v e ↵ ^p)=w ↵ ( p x 2 +1 x).
Let L be the linear coordinate along the arc ↵ such that L<0 if p lies between v e ↵ and p ↵ and L>0 if p ↵ lies between v e ↵ and p.T a k i n gx =sinhL we get, w ↵ (p)=e L . The point p ↵ is called the point of minimum impact because w ↵ (p ↵ )=w ↵ . Definition 4.3.8. Let S be a hyperbolic surface with (possibly decorated) spikes with a metric m and corresponding strip template {(↵ g ,p ↵ ,w ↵ )}.L e tx = P N0 i=1 c i ↵ i be a point in the pruned arc complex b A(S). Then the strip width function is defined as:

w x :s u p p ( x) ! R >0 p 7 ! c i w ↵i (p),
Normalisation: Let S be a surface with (possibly decorated) spikes and K be the set of permitted arcs. Then for every ↵ 2K ,w ec h o o s ew ↵ > 0 such that the following equality holds for every x 2 b A(S):

X p2@S\supp(x) w x (p)=1. (4.6) 
Lemma 4.3.9. Let S h sp be a hyperbolic surface with decorated spikes endowed with a decorated metric m and a corresponding strip template (↵ g ,p ↵ ,w ↵ ).L e tx 2 b A(S h sp ) and be a non-trivial closed geodesic in S h sp . Then,

dl (f (x)) = X p2 \supp(x)
w x (p)sin∠ p ( g , supp (x)) 0. , for some l>0.

Let p := ↵\ be the intersection point. Then p =(a, p 1 a 2 ). Suppose that the Killing field representing the infinitesimal parabolic strip deformation along ↵ generates the following one parameter family with fixed point at 1:

g t =  1 t 01 ,t2 R >0 .
Now,

g t ⇢( )=  cosh l 2 + t sinh l 2 t cosh l 2 +sinh l 2 sinh l 2 cosh l 2
So the translational length is given by:

l t = 2 arccosh ✓ tr(g t ⇢( )) 2 ◆ = 2 arccosh cosh l 2 + t sinh l 2 2 ! =2ln 0 @ cosh l 2 + t sinh l 2 2 + s (cosh l 2 + t sinh l 2 2 ) 2 1 A =2ln ✓✓ cosh l 2 +sinh l 2 ◆ + t 2 ✓ cosh l 2 + o(t) ◆◆ = l + t + o(t).
So we have that dl (f (x)) = 1. Finally, taking the sum over all the unit segments of ,w eg e tt h a t

X p2 \↵ w ↵ (p)  Ml (m),
where M := M0 1 e r 0 .

Lemma 4.3.12. Let S c be a compact hyperbolic surface equipped with a metric m 2 D(S c ). Then for every ✏>0 there exists M>0 such that whenever a geodesic arc ↵ has m-length l ↵ (m) >M, there exists a closed geodesic on the surface such that it intersects ↵ as well as every geodesic arc, that is disjoint from ↵, at angle less than ✏.

Proof. Given ✏>0,thereexistsN 2 N such that N diam(S c )✏>3 area(S c ).T a k eM = N diam(S c ).

Consider an arc ↵ of length M and its ✏-neighbourhood V ✏ (↵). The area of V ✏ (↵) is at least 2M✏. So V ✏ (↵) cannot be embedded inside the surface -it self-overlaps threefold. It follows that there exists a segment ⌘ of the arc ↵ such that its length is N 0 diam(S c ) for 1 <N 0 <N and its endpoints lie at a distance 2✏ from each other, with the velocities at those points being parallel. Join the two endpoints by a geodesic segment to get a closed loop. Then choose the unique closed geodesic in its homotopy class. We claim that satisfies the condition of the lemma. Firstly, we show that

max p2 \↵ ∠ p ( , ↵) <✏. (4.11)
Let e be a infinite geodesic lift of .L e te ⌘ be a lift of the arc segment ⌘ and consider its ⇢( )-orbit.

For every i 2 Z,t h et w oe n d p o i n t so f⇢(

) i • e ⌘ are ✏-close to one endpoint of ⇢( ) i 1 • e ⌘ and one endpoint of ⇢( ) i+1 • e ⌘.L e tp i := e \ ⇢( i ) • e ⌘.
The entire geodesic e is contained in the union

V := S i2Z V ✏ (⇢( i ) • e ⌘)
of the ✏-neighbourhoods of the lifts of ⌘.S ot h ea n g l eo fi n t e r s e c t i o na tp i satisfies ∠ pi (e , ⇢( i ) • e ⌘) <✏.

Now let ↵ 0 be an arc disjoint from ↵ that intersects . Then the point of intersection, denoted by p,liesinsideV ✏ (↵). Then from eq. ( 4.11) we have that ↵ 0 intersects at an angle less than ✏.

The following lemma is an analogue of Proposition 2.3 in [START_REF] Danciger | Margulis spacetimes via the arc complex[END_REF].

Lemma 4.3.13. Let S h sp be a hyperbolic surface with decorated spikes endowed with metric m 2 D(S h sp ). For any choice of minimally intersecting geodesic representatives {↵} whose finite endpoints lie outside the horoball decoration of the spikes, there exists ✓ 0 2 (0, ⇡ 2 ] such that all the arcs intersect the boundary of the surface at an angle greater or equal to ✓ 0 .

Strip deformations of compact surfaces

In this section, we will recall the statement of the parametrisation theorem proved by Danciger-Guéritaud-Kassel in [START_REF] Danciger | Margulis spacetimes via the arc complex[END_REF] for compact hyperbolic surfaces with totally geodesic boundary. We shall also give an idea of their proof, whose methods are going to be adapted to our case of surfaces with spikes.

Let S c be a compact hyperbolic surface with totally geodesic boundary. Recall that when S c is orientable (resp. non-orientable), it is of the form S g,n (resp. T h,n ), where g (resp. h)i st h eg e n u s and n is the total number of boundary components. Its deformation space D(S c ) is homeomorphic to an open ball of dimension N 0 =6 g 6+3 n when S c is orientable and N 0 =3 h 6+3 n when S c is non-orientable. A point m of the deformation space is expressed as m =[ ⇢], where ⇢ : ⇡ 1 (S c ) ! PGL(2, R) is a holonomy representation of the surface. Given such an element m 2 D(S c ),i t sa d m i s s i b l ec o n eΛ(m) is the set of all infinitesimal deformations that uniformly lengthen every non-trivial closed geodesic. It is an open convex cone of the vector space T m D(S c ).

The arcs that are used to span the arc complex A (S c ) of such a surface, are finite, non selfintersecting and their endpoints lie on boundary @S c . The set of all such arcs is denoted by K.A simplex of the arc complex is big if the arcs corresponding to its 0-skeleton decompose the surface into topological disks. The pruned arc complex b A(S c ) of the surface S c ,g

i v e nb yt h eu n i o no ft h e interiors of all big simplices, is an open ball of dimension N 0 1.A n yp o i n tx in b

A(S c ) belongs to the interior of a unique big simplex x .

The strip deformations performed along the arcs are of hyperbolic type; their waists and widths are fixed by the choice of a strip template {(↵ g ,p ↵ ,w ↵ )} ↵2K . The infinitesimal strip map is given by f :

A (S c ) ! T m D(S c ) x = N0 P i=1 c i ↵ i 7 ! N0 P i=1 c i f ↵i (m),
where c i 2 [0, 1] for every i =1,...,N 0 ,a n d Structure of the proof. Firstly, they show that the image of the map Pf is given by the positively projectivised admissible cone. Since both the pruned arc complex and P + (Λ(m)) are homeomorphic to open balls of the same dimension, it is enough to show that Pf is a covering map. A classical result from topology states that a continuous map between two manifolds is a covering map if the map is proper and also a local homeomorphism. So the authors prove that the projectivised strip map Pf satisfies these two properties. Firstly they show that For points belonging to the interior of simplices with codimension 0, it is enough to show that the f -images of the vertices of any top-dimensional simplex form a basis in the deformation space of the surface. 

Next let x 2 b

A(S sp ) such that x 2 int ( x ) where x is a big simplex with codim ( x )=1.S i n c e b A(S sp ) is an open ball, there exist two simplices 1 , 2 such that

• codim ( 1 )=codim( 2 )=0, • x = 1 \ 2 .
The following theorem gives a sufficient condition for proving local homeomorphism of the projectivised strip map around points like in this case. Theorem 4.4.5. Let S c be a compact hyperbolic surface with totally geodesic boundary, equipped with a metric m 2 D(S c ).L e t 1 , 2 2A(S c ) be two top-dimensional simplices such that

codim ( 1 \ 2 )=1and int ( 1 \ 2 ) ⇢ b A(S c ).
Then we have that, int (Pf ( 1 )) \ int (Pf ( 2 )) = ?. (4.12)

The case i =2in Theorem 4.4.3 is a corollary of the following lemma: Lemma 4.4.6. Let S c be a compact hyperbolic surface with totally geodesic boundary, equipped with a metric m 2 D(S c ).L e tx 2A(S c ) such that codim ( x )=2 . Then, Pf | Link( p ,A(Sc)) is a homeomorphism.

This lemma is a consequence of the next theorem.

Theorem 4.4.7. Let S c be a compact hyperbolic surface with totally geodesic boundary, equipped with a metric m 2 D(S c ).L e t 1 , 2 be two simplices of its arc complex A (S c ) satisfying the conditions of Theorem 4.4.5. Then there exists a choice of strip template such that Pf

( 1 ) [ Pf ( 2 ) is convex in P + (T m D(S c )).
Idea of the proof of Lemma 4.4.6: Since codim ( x )=2 ,t h e r ei ss p a c et op u tt w om o r ea r c st h a t are disjoint from all the arcs of x . There are two possibilities:

• there exist exactly two disjoint regions (hyperideal quadrilaterals) in the complement of supp (x);e v e r yo t h e rc o n n e c t e dc o m p o n e n ti sah y p e r i d e a lt r i a n g l e . E a c ho ft h e s er e g i o n s can be decomposed into hyperideal triangles in two ways by a diagonal exchange such that the exchanges are independent of each other. So the sub-complex Link( x , A (S c )) of A (S c ) is a quadrilateral in this case.

• there exists exactly one region in the complement of supp (x), which is not a hyperideal triangle. This region can be decomposed into three hyperideal triangles by two additional arcs that are pairwise disjoint from the rest. These two arcs can be chosen in 5 ways, using the "pentagonal moves". As a result, the sub-complex Link( x , A (S c )) is a pentagon in this case.

So in both the cases, the restriction of the projectivised infinitesimal strip map to the link gives a P-L map Pf | Link( p ,A(Sc)) : S 1 ! S 1 .

Using Theorem 4.4.7, the authors prove that this map has degree one, which proves it to be a homemorphism.

Finally, the local homeomorphism of Pf is obtained as a corollary:

Theorem 4.4.8. Let x 2 b A(S c
) such that codim ( x ) 2.L e tV ⇢ T m D(S c ) be the vector subspace generated by the infinitesimal strip deformations {f ↵ (m)} ↵2 (0)

x . Then, the restriction map

Pf : Link( x , A (S c )) ! P + (T m D(S c )/V ) is a homeomorphism.
We recall the proof of the above theorem as done in [START_REF] Danciger | Margulis spacetimes via the arc complex[END_REF]. We will use the same reasoning for our surfaces with spikes.

Proof. Firstly, we note that the V is a subspace of dimension N 0 2 because from Theorem 4.4.4 we get that {f ↵ (m)} ↵2 (0)

x is linearly independent. So the space P + (T m D(S c )/V ) is homeomorphic to S codim( x ) 1 . The statement is verified for codim ( x )=2.

S u p p o s et h a tt h es t a t e m e n th o l d sf o r 2,...,d 1.W en e e dt os h o wt h a t

Pf | Link( x ,A(Sc)) : S d 1 ! S d 1 is a local homeomorphism. Let x 2 Link( x , A (S c )). Then x is contained in the interior of a simplex

x whose codimension in Link( x , A (S c )) is d 1 dim x , which is less than d.S ob yi n d u c t i o n hypothesis, the map Pf | Link( x ,A(Sc)) restricted to Link( x , Pf | Link( x ,A(Sc)) ) is a homeomorphism. This proves that Pf | Link( x ,A(Sc)) is a local homeomorphism. Since S d 1 is compact and simplyconnected for d 3, it follows that Pf | Link( x ,A(Sc)) is a homeomorphism.

Chapter 5

Strip deformations of Hyperbolic Polygons

The goal of this chapter is to prove the parametrisation theorems for four types of polygonsideal polygons, ideal once-punctured polygons, decorated polygons and one-holed polygons. Let Π be the surface of any of these polygons and let N 0 := dim D(Π).R e c a l lf r o mD e fi n i t i o n4 . 3 . 3t h a t the projectivised infinitesimal strip map for a fixed m 2 D(Π) is defined as:

Pf : A (Π) ! P + (T m D(Π)) N0 P i=1 c i ↵ i 7 !  N0 P i=1 c i f ↵i (m)
where for every i =1,...,N 0 , c i 2 [0, 1] and

N0 P i=1 c i =1.
Theorem 5.0.1. Let Π D n (n 4) be an ideal n-gon with a metric m 2 D(Π D n ). Fix a choice of strip template. Then, the infinitesimal strip map

Pf : A ⇣ Π D n ⌘ ! P + (T m D(Π D n ))
is a homeomorphism.

Theorem 5.0.2. Let Π n (n 2) be an ideal once-punctured n-gon with a metric m 2 D(Π n ).F i x a choice of strip template. Then, the infinitesimal strip map

Pf : A Π n ! P + (T m D(Π n ))
is a homeomorphism.

Theorem 5.0.3. Let Π 7 n (n 3) be a decorated n-gon with a metric m 2 D(Π 7 n ). Fix a choice of strip template. Then the infinitesimal strip map Pf , when restricted to the pruned arc complex b A(Π), is a homeomorphism onto its image P + (Λ(m)), where Λ(m) is the set of infinitesimal deformations that lengthens all edges and diagonals of the polygon. Theorem 5.0.4. Let Π } n (n 1) be a one-holed n-gon with a metric m 2 D 0 (Π } n ).L e tA ! (n) be its spinning arc complex. Then the infinitesimal strip map

Pf : A ! (n) ! P + (T m D 0 (Π } n ))
is a homeomorphism.

The table in Fig. 5.1 recapitulates the topology of the deformation spaces and the arc complexes of the four types of polygons. We get that the projectivised strip maps in Theorems 5.0.1, 5.0.2 and 5.0.4, are defined from a sphere to another of the same dimension; in the case of decorated polygons, the projectivised strip map in Theorem 5.0.3 is defined from an open ball (pruned arc complex) to another of the same dimension (positively projectivised deformation space). See Fig. (??). Let Π be the topological surface of any hyperbolic polygon. Every point p 2A(Π) belongs to au n i q u eo pe ns i m p l e x ,d e n o t e db y p .L i k ei n [START_REF] Danciger | Margulis spacetimes via the arc complex[END_REF] ,w ep r o v et h a tPf is a local homeomorphism for points p such that codim ( p )=0, 1, 2 and for p with codim ( p ) 3,t h ep r o o fi sb yi n d u c t i o no n the codimension of the stratum.

Π Π D n ,n 4 Π n ,n 2 Π 7 n ,n 3 Π } n n 1 D(Π) D n 3 D n 1 D 2n 3 D n A (Π) S n 4 S n 2 ¯Sn 1 b A(Π) idem ¯D2n 

Local homeomorphism: codimension 0 faces

In this section, for each of the four types of polygons, we shall prove the local homeomorphism of the projectivised strip maps around points that belong to the interior of codimension 0 simplices in their respective arc complexes. Proof. Since dim T m D(Π) = #E = n 3,itisenoughtoshowthatthesetB is linearly independent. We pro ceed by contradiction: supp ose that there exists reals c e ,n o ta l le q u a lt o0 ,s u c ht h a t X Proof. Consider the dual graph of the triangulation of the surface by the top-dimensional simplex . It is a tree the valence of whose vertices is at most 3. Let ⌧ be the sub-tree spanned by the tiles that are on the same side of e as d.D e fi n eM (d) as the length of the longest path in ⌧ joining d 0 and a leaf (quadrilateral). The lemma will be proved by induction on M .W h e nM (d)=0,t h et i l e d is a quadrilateral. The neutral tile map 0 fixes the two ideal vertices of d. Applying Corollary 1.5.2 to these vertices, we get that [ 0 (d)] is the point of intersection of the tangents to @ 1 D at these ideal vertices. Lastly, the convexity of @ 1 D implies that [ 0 (d)] lies in the interior of ∆.

Ideal polygons

Next, we suppose the statement to be true for M (d)=0,...,k.L e td 2 f T be a tile such that M (d)=k +1. Then the tile d can be either a hexagon or a pentagon because a quadrilateral has only one neighbouring tile and it must lie outside the triangle ∆.W e s h a l l t r e a t t h e t w o c a s e s separately below:

• If d is a hexagon, then apart from e,i th a st w oo t h e ri n t e r n a le d g e se 0 ,e 00 2E along which d neighbour two tiles d 0 ,d 00 ,r e s p e c t i v e l y . W en o t et h a tb o t hd 0 ,d 00 lie inside ∆. -Finally, we suppose that 0 (d 0 )=0= 0 (d 00 ).A g a i n , 0 (d) 6 =0implies that c e 0 ,c e 00 6 =0.

Then the point [ 0 ( )] is given by the intersection of the two straight lines ! e 0 , ! e 00 .S i n c e e 0 ,e 00 are disjoint, the intersection point is hyperideal and lies inside ∆\e.

• If d is a pentagon, then Corollary 1.5.2 implies that 0 (d) must lie on the tangent ! t to the ideal vertex of d.A l s o ,t h i st i l eh a se x a c t l yo n en e i g h b o u rd 0 that is contained in ∆.L e t e 0 2E be the common internal edge of d, d 0 .

- If 0 (d 0 )=0,t h e n 0 (d) 2 ! e \D, which is disjoint from the interior of ∆.S ow ea g a i nr e a c ha contradiction. Hence we must have c e =0for every e =0. This concludes the proof.

If 0 (d 0 )=0 ,t h e n[ 0 (d)] 2 ! e 0 .S

One-holed polygons

Now we shall prove Theorem 4.4.4 for one-holed polygons. We restate the theorem here. Proof. Let ⇢(⇡ 1 (Π } n )) = hgi, where g is a hyperbolic isometry in PSL(2, R).L e t f E and f T be the sets of lifted arcs and tiles, respectively. Again, we have that dim T m D(Π } n )=#E = n.S o ,i ti se n o u g h to show that the set B is linearly independent. We start with an equation P e2Eσ c e f e (m)=0with ac o r r e s p o n d i n ghgi-invariant neutral map 0 : f T ! g. Recall from Chapter 3 that the permitted arcs generating the spinning arc complex are of two types -finite arcs with their endpoints on the boundary and infinite arcs with one finite endpoint on some edge and another spiraling along the boundary loop. These arcs decompose the surface into two kinds of tiles: tiles with only finite internal edges (as in the case of ideal polygons) and tiles that spiral around the boundary loop. The latter case can be further subdivided into types: a quadrilateral tile with exactly one spike, two infinite internal edges spiraling in the same direction (clockwise or anti-clockwise) and a pentagonal tile with no spike, two spiraling internal edges and exactly one finite internal edge. Denote by p the endpoint of the axis of the isometry g such that every lift of every spiraling tile has one ideal vertex at p.

Let d be any spiraling tile and e d be any lift. Since the linear combination represents zero, the boundary loop of the polygon is fixed point-wise. Hence there are two possibilities-either the Killing field 0 (g n • e d)=0for every n 2 Z,o r 0 (g n • e d) is a parabolic element with fixed point as p,f o re v e r yn 2 Z. In the latter case, for every n 2 Z,t h ep o i n t[ 0 (g n • e d 0 )] = p. Now if d contains a spike, then the Killing field 0 ( e d) fixes the ideal vertex corresponding to the lift of the spike in e d. This is possible only if 0 ( e d)=0 . Now, if every arc of E is a spiraling arc, then every tile is a spiraling quadrilateral tile and so 0 (d)=0for every d 2 f

T . So the Theorem is proved in this case.

Next we assume that there exists at least one finite arc in the edgeset. As a result, there is at least one spiraling pentagonal tile. The following lemma is an analogous version of Lemma 5.1.2 adapted to this case. 

Proof. Let d 2 f

T be a tile with finite internal edge e 2 f E .N o wc o n s i d e rt h ed u a lg r a p ho ft h e triangulation of the universal cover of the surface by . It is an infinite tree invariant by the action of hgi. It can be seen as the countable union of finite trees rooted at the tiles of the form g n • d 0 , and the edges that join two adjacent lifts of two (not necessarily distinct) spiraling tiles. It is drawn in grey in the right panel of Fig. 5.6. There exists a unique lift d 0 of a pentagonal spinning tile with unique finite edge e 0 that lies nearest to d, with respect to the distance on the dual tree of . Let ⌧ be the finite rooted sub-tree crossing the arc e 0 with root at the tile e d 0 .D e fi n eM (d) as the length of the longest path on ⌧ joining d and a quadrilateral tile or the root tile e d 0 such that the path does not cross the internal edge e of d. Then the lemma is proved by induction on M .

If M (d)=0 ,t h e nt h et i l ed is either a quadrilateral or the root tile e d 0 .I nt h ef o r m e rc a s e , we know that 0 (d) is a hyperbolic Killing field with fixed points as the two ideal vertices of the quadrilateral; the point [ 0 (d)] is given by the intersection of the two tangents to the boundary circle @ 1 D at the ideal vertices. So the lemma is verified in this case. In the latter case, we know that [ 0 ( e d 0 )] = p. This point lies inside the desired triangle (see bottom left panel of Fig. 5.6). So the statement of the lemma is verified in this case. Now suppose that the statement is true for M =0 ,...,k. Consider a tile d inside ⌧ such that M (d)=k +1. Then d is either a pentagon with one ideal vertex and two internal edges (both finite) or a hexagon with three internal edges and no spikes. Also, there exists a finite path of length k +1 in the tree ⌧ starting from d and ending at a vertex which is either a quadrilateral or the root tile. By proceeding in the exact same way as in the induction step of Lemma 5.1.2 for ideal polygons, we get that the induction step is verified in this case as well.

Next we prove that the whenever e 2 f E is a finite arc, the coefficient c e of f e (m) in the linear combination above is equal to 0. We will prove this by contradiction: suppose c e 6 =0for such afi n i t ea r ce.L e t d, d 0 be the two tiles with common edge e. Then, 0 (d) 6 = 0 (d 0 ),a n dt h e point [ 0 (d) 0 (d 0 )] belongs to ! e \D.L e t∆, ∆ 0 be the projective triangles based at the geodesic carrying the arc e such that d ⇢ ∆ and d 0 ⇢ ∆ 0 .

If both 0 (d), 0 (d 0 ) are non-zero, then the above lemma applied to the pairs d, e and d 0 ,e gives us that [ 0 (d)] 2 int (∆) and [ 0 (d 0 )] 2 int (∆ 0 ).U s i n g1 . 6 . 2 ,w eg e tt h a tt h el i n ej o i n i n g[ 0 (d)] and [ 0 (d 0 )] intersects the projective line ! e carrying the arc e inside @ 1 D, which is a contradiction.

If 0 (d 0 )=0,t h e n 0 (d) 2 ! e \D, which is disjoint from the interior of ∆.S ow ea g a i nr e a c ha contradiction.

Hence, we have c e =0for every finite arc e 2 f E .N o wc o n s i d e rt h ep a t ho nt h ed u a lg r a p h joining a lift g n • e d 0 of d 0 with a quadrilateral tile d Q such that the path crosses only finite arcs. Such a path exists -for example on the sub-tree ⌧ in the proof of the above lemma. For every adjacent pairs d, d 0 of tiles on this path, we have that 0 (d)= 0 (d 0 ). Consequently, we get that

0 (g n • e d 0 )= 0 (d Q )
, which implies that both these Killing fields must be trivial. Hence, we get that 0 (d)=0for every d 2 f T . 

Punctured polygons

T • 0 (d)= 0 (T • d), for every d 2 f T . (5.2)
Recall from Chapter 3 that the permitted arcs generating the arc complex are finite arcs with their endpoints on the boundary. There is exactly one maximal arc e M (separates the puncture from the spikes) in every triangulation. The surface is decomposed into four types of tiles. The first three types (quadrilateral, pentagon, hexagon) are finite hyperbolic polygons and the fourth one is a tile containing the puncture. It lifts to a tile,denoted by d 1 , with infinitely many edges, each given by aliftoftheuniquemaximalarce M 2E of the triangulation, and exactly one ideal vertex, denoted by p that corresponds to the puncture. Now, we show that the Killing field 0 (d 1 ) associate to the unique infinite tile d 1 2 f T ,i s either zero or a parabolic element with fixed point p 2 @ 1 D that corresponds to the puncture. We know that d is invariant under the action of the isometry T :

0 (d 1 )= 0 (T n • d 1 ) for every n 2 Z.
(5.3)

Using the isomorphism between the Lie algebra g and R 2,1 ,w eh a v et h a t 0 (d) is represented by the matrix

✓ yx + z x z y ◆
. The generator T acts on p by conjugation: When M (d)=0 , d is either a quadrilateral or the tile d 1 . In the former case, we know that 0 (d) is a hyperbolic Killing field with fixed points as the two ideal vertices of the quadrilateral; the point [ 0 (d)] is given by the intersection of the two tangents to the boundary circle @ 1 D at the ideal vertices. So the lemma is verified in this case. Next we suppose that d = d 1 . Then from the discussion before the lemma, we have that [ 0 (d 1 )] = p which lies inside the desired triangle. So the statement of the lemma is satisfied in this base case. Now suppose that the statement is true for M =1 ,...,k. Consider a tile d inside ⌧ such that M (d)=k +1. Then d is either a pentagon with one ideal vertex and two internal edges (both finite) or a hexagon with three internal edges and no spikes. Also, there exists a finite path of length k +1 in the tree ⌧ starting from d and ending at a vertex which is either a quadrilateral or the root tile. By proceeding in the exact same way as in the induction step of Lemma 5.1.2 for ideal polygons, we get that the induction step is verified in this case well. This finishes the proof of the lemma. Now suppose that the coefficient c e of f e (m) is non-zero for some e 2 f E .L e td, d 0 be the two tiles with common edge e. Then, 0 (d)

T • 0 (d 1 )= ✓ 1 1 01 ◆✓ yx + z x z y ◆✓ 11 
6 = 0 (d 0 ),a n dt h ep o i n t[ 0 (d) 0 (d 0 )] belongs to ! e \D.
Let ∆, ∆ 0 be the projective triangles based at the geodesic carrying the arc e such that d ⇢ ∆ and d 0 ⇢ ∆ 0 . If both 0 (d), 0 (d 0 ) are non-zero, then the above lemma applied to the pairs d, e and d 0 ,e gives us that [ 0 (d)] 2 int (∆) and [ 0 (d 0 )] 2 int (∆ 0 ).U s i n g1 . 6 . 2 ,w eg e tt h a tt h el i n ej o i n i n g[ 0 (d)] and [ 0 (d 0 )] intersects the projective line ! e carrying the arc e inside @ 1 D, which is a contradiction.

If 0 (d 0 )=0,t h e n 0 (d) 2 ! e \D, which is disjoint from the interior of ∆.S ow ea g a i nr e a c ha contradiction.

Hence, we have c e =0for every arc e 2 f E , which proves the theorem 5.1.5.

Decorated Polygons

Now we shall prove the linear independence in the case of decorated polygons. .L e t 0 : f T ! g be a neutral tile map corresponding to the linear combination (5.1).L e te be an internal edge-to-edge arc of a tile d 2T such that 0 (d) 6 =0 . Then, [ 0 (d)] is contained in the interior of the projective triangle in RP 2 , based at the geodesic e carrying e, that contains d.

Proof. For every triangulation ,thereisatleastonetileoft ypeoneandev erytilehasatleastone internal edge-to-edge arc. Consider the dual graph of the triangulation of the decorated polygon by . It is a finite tree. Let ⌧ be the finite rooted sub-tree crossing the arc e with root at the tile d. We will now prove that every tile on this sub-tree satisfies the lemma. Let d 2T be any tile and e be an internal edge-to-edge arc. We define M (d) to be the longest path in ⌧ joining d and a tile containing one generalised vertex. The proof is done by induction on M .

When M (d)=0, d is a tile of type one (one generalised vertex and one internal edge. From the discussion before the lemma, we get [ 0 (d)] lies in the desired triangle. Now, let the statement be true for M (d)=0,...,k.A g a i n ,i fd is a tile with a generalised vertex then we know already that the statement is verified. So we assume that d is a hexagon without any generalised vertex, such that 0 (d) 6 =0 . Then it has two neighbouring tiles d 0 ,d 00 contained in ∆, with common arcs e 0 ,e 00 respectively. Both e 0 ,e 00 are edge-to-edge arcs. The proof is then identical to that of Lemma 5.1.2. This proves the induction step. 

Local homeomorphism: codimension 1 faces

In this section we show that the projectivised strip map Pf : b A(Π) ! P + (T m D(Π)) is a local homeomorphism around points belonging to the interiors of simplices of codimension 1.

Theorem 5.2.1. Let Π be any one of the four types of polygons -ideal n-gons Π D n , oncepunctured n-gons Π n , one-holed n-gons Π } n , decorated n-gons Π 7 n .L e tm 2 D(Π) be a metric. Let 1 , 2 2A(P ) be two top-dimensional simplices such that

codim ( 1 \ 2 )=1and int ( 1 \ 2 ) ⇢ b A(Π).
Then, int (Pf ( 1)) \ int (Pf ( 2)) = ?.

(5.4)

Moreover, there exists a choice of strip template such that Pf

( 1 )[Pf ( 2 ) is convex in P + (T m D(Π)).
Firstly, we will give a general idea of the proof for any type of polygon and then we will give the proof in each case in the subsequent sections 5.2.1-5.2.5.

Idea of the proof: Let E 1 and E 2 be the edge sets of 1 and 2 respectively. Since the simplex 1 \ 2 has codimension one, we have that E 1 \E 2 (resp. E 2 \E 1 )h a se x a c t l yo n ea r c ,d e n o t e db y ↵ 1 (resp. ↵ 2 ). There are different possibilities for the pair {↵ 1 ,↵ 2 } in the case of every polygonal surface. Let e E ,r be the refined edgeset of e E 1 obtained by considering the refinement := 1 [{↵ 2 }. Let e T ,r be the refined tile set of f T . In every case, we shall give a choice of strip template and then construct a tile map that represents the following linear combination for a chosen strip template and is coherent around every point of intersection:

c ↵1 f ↵1 (m)+c ↵2 f ↵2 (m)+ X 2Eσ 1 \Eσ 2 c f (m)=0, (5.5) 
where c  0 for every 2E 1 \E 2 and c ↵1 ,c ↵2 > 0. Drawing all arcs of 1 [ 2 subdivides the surface into a system of tiles that refines both the triangulations. We will choose strip templates and assign Killing fields equivariantly to these tiles in a way that expresses this linear combination. The construction is done in the upper half plane model U.W es h a l lu s et h ei d e n t i fi c a t i o ng ' R 2 [z] from section 1.5.

Ideal Polygons

In this case Γ={Id}.S o e

E 1 = E 1 , e E 2 = E 2 , e T ,r = T ,r
.W e c h o o s e a n e m b e d d i n g o f t h e ideal polygon into the upper half plane so that the point 1 is distinct from all the vertices of the polygon, for n 5. We shall consider the following strip template:

• For every isotopy class, cho ose the geo desic representative ↵ g which intersects the boundary of the polygon perpendicularly;

• For every isotopy class ↵,t h ew a i s tp ↵ is given by the projection of 1 on ↵ g .

Properties 5.2.2. An e u t r a lt i l em a p 0 : T ,r ! R 2 [z] represents the linear combination (5.6) if and only if it verifies the following properties:

1. The polynomial 0 ( ) vanishes at every ideal vertex of 2T ,r whenever it has one.

2. The tile map is coherent around the intersection point o:

0 (d 4 ) 0 (d 1 )= 0 (d 3 ) 0 (d 2 ).
3. Let , 0 2T ,r be two tiles with common internal edge contained in ↵ i for i =1 , 2 such that lies above and 0 lies below the semi-circle carrying the common internal edge. Then 0 ( ) 0 ( 0 ) is a hyperbolic Killing field with attracting fixed point at 1 and repelling fixed point at x i . In particular, its axis intersects ↵ i at p ↵i . In terms of polynomials, we must have 0 ( ) 0 ( 0 )=(z 7 ! A(z x i )), for some A>0.

4. Suppose , 0 2T ,r are two tiles with common internal edge j for j 2J,s u c ht h a t lies above j . Then 0 ( ) 0 ( 0 ) is a hyperbolic Killing field with attracting fixed point at y j and repelling fixed point at 1. In particular, its axis intersects j at p j . In terms of polynomials, we must have 0 ( ) 0 ( 0 )=(z 7 ! B(z y j )), for some B<0.

Suppose that the endpoints of ↵ 1 lie on the boundary geodesics (a, b) and (e, f ) and those of ↵ 2 lie on (c, d) and (g, h) such that the following inequalities hold for n 5: a<b c<d e<f  g<h .

(5.7)

We shall treat the case n =4separately. Using Lemma 1.6.3, we get that

x 1 = ef ab e + f a b ,x 2 = gh cd g + h c d , (5.8 
)

y 1 = cd ab c + d a b ,y 2 = ef cd e + f c d , (5.9 
)

y 3 = gh ef g + h e f
,y 4 = gh ab g + h a b .

(5.10)

For j =1,...,4,d e fi n e

0 : T ! R 2 [z] 7 ! ⇢ (z 7 ! a j (z y j )), if = d j 0, otherwise,
where

a 1 = x1 y4 x1 y1 ,a 2 = (x1 y4)(x2 y4) (y4 y1)(y4 y3) (x1 y1)(x2 y3) a 3 = x2 y4 x2 y3 a 4 =1.
The a 0 i s as defined above are a nontrivial solution to the following system of linear equations in four unknowns: 1. Suppose that is a tile with an ideal vertex. If 2 supp ( 0 ),t h e n = d j for some j 2{1,...,4},s ot h a ti d e a lv e r t e xi sg i v e nb yy j .F r o mt h ed e fi n i t i o no ft h et i l em a pw eh a v e that 0 ( )=P j which vanishes at y j . If / 2 supp ( 0 ),t h e n 0 ( )=0 , which automatically fixes its ideal vertex.

a 1 a 2 + a 3 a 4 =0, ( 5 
2. From eqs. (5.11) and (5.12) it follows that, 

( 0 (d 4 ) 0 (d 1 ))(z)= ( a 4 a 1 )z a 4 y 4 + a 1 y 1 =(a 3 a 2 )z a 3 y 3 + a 2 y 2 =( 0 (d 3 ) 0 (d 2 ))(z).
( 0 (d 4 ) 0 (d 1 ))(z)=( a 4 a 1 )z + a 1 y 1 a 4 y 4 , ( 0 (d 4 ) 0 (d 3 ))(z)=( a 0 a 3 )z + a 3 y 3 a 4 y 4 .
Since a 4 > 0 and a 1 ,a 3 < 0,t h el e a d i n gc o e ffi c i e n t sa 4 a 1 and a 4 a 3 are both positive. The polynomials 0 (d 4 ) 0 (d 1 ) and 0 (d 4 ) 0 (d 3 ) vanish at x 1 and x 2 respectively, by eq.(5.13) and eq.(5.14) .

4. Suppose that the two tiles , 0 have a common edge of the form j for j 2J, with lying above j . Then either 0 = d 4 and / 2 supp ( 0 ) or = d j for 1  j  3 and 0 / 2 supp ( 0 ).

In the first case, ( 0 ( ) 0 (d 4 ))(z)= a 4 (z y 0 ). Since a 0 < 0, the property is verified. In the second case, for 1  j  3, ( 0 (d j ) 0 ( 0 ))(z)=a j (z y j ). Since a j < 0 for every j =1, 2, 3,t h el e a d i n gc o e ffi c i e n ti sn e g a t i v e . This finishes the proof for ideal polygons. lifts of ↵ 1 and ↵ 2 respectively. There are four finite tiles formed around e o,d e n o t e db yd j , for j =0 ,...,3.F o re a c hj 2{ 0,...,3},t h et i l ed j is either a quadrilateral with an ideal vertex and exactly two arc edges carried by f ↵ 1 and f ↵ 2 , or it is a pentagon with exactly three arc edges carried by f ↵ 1 , f ↵ 2 and a third arc e j , which is a lift of an arc j 2E 2 \E 1 .L e t J⇢{ 1,...,4} be such that the tile d j is pentagonal if and only if j 2J.F o ri =1, 2,l e tx i be the centre of the semi-circle containing e ↵ i .F o rj =0,...,3,l e ty j denote the ideal vertex of d j or the centre of the semi-circle containing e j . In this case, a tile map representing the linear combination (5.6) is a map 0 : e T ,r ! R 2 [z] that satisfies the following properties:

Properties 5.2.3. (a) 0 is Γ-equivariant: for every m 2 Z, 0 (T m • )(z)= 0 ( )(z m).
(b) The polynomial 0 ( ) vanishes at every ideal vertex of 2T ,r whenever it has one.

(c) The tile map is coherent around every point of intersection of the lifts of ↵ 1 and ↵ 2 .

(d) Let , 0 2 e T ,r be two tiles neighbouring along an edge contained in a lift

T m • e ↵ i of ↵ i ,f o rs o m ei 2{ 1, 2},s u c ht h a t lies above e ↵ i .
Then the difference 0 ( ) 0 ( 0 ) is a hyperbolic Killing vector field with attracting and repelling fixed points at 1 and x i + m, respectively. The axis intersects e ↵ i at p f ↵i . In other words, 0 ( ) 0 ( 0 )(z)=A(z x i m), for some A>0.

(e) Let , 0 2T ,r be two tiles neighbouring along an edge e 2 e E 1 \ e E 2 such that lies above the edge. If e = T m • e j for some j =1 ,...,4 then the difference 0 ( ) 0 ( 0 ) is a hyperbolic Killing vector field with attracting and repelling fixed points at x j + m and 1, respectively. The axis intersects e j at p f j . In other words, 0 ( ) 0 ( 0 )(z)=B(z y j m), for some B<0.

Otherwise, 0 ( )= 0 ( 0 ).

Let (a, b) and (e, f ) be the two boundary geodesics that are joined by f ↵ 1 .S i m i l a r l y ,l e t(c, d) and (g, h) be the two boundary geodesics joined by f ↵ 2 such that a<b c<d e<f  g<h a +1.

(

We consider the non-trivial solution (a 0 ,a 1 ,a 2 ,a 3 ) of the system of equations (5.11)-(5.14) defined in the ideal polygon proof. For j =0,...,3 and m 2 Z,d e fi n e

0 : e T ,r ! g 7 ! ⇢ (z 7 ! a j (z y j m)), if = T m • d j 0, otherwise.
Verification of Properties 5.2.3:

(a) For every m 2 Z, (T m ) 0 (z)=1 . If = d j for some j 2{ 1,...,4},t h e nf r o mt h e definition of 0 we have that for every m 2 Z,

0 (T m • )(z)=a j (z y j m)= 0 ( )(z m).
So, the equivariance condition is satisfied in this case. For / 2 supp ( 0 ),t h ec o n d i t i o n holds trivially.

Since the map has been proved to be Γ-equivariant, it suffices to verify the properties (1b)-(1e) around the point e o. This is identical to the proof in the case of ideal polygons.

This finishes the proof in the non-maximal case.

2. Let ↵ i be maximal for i =1, 2.S e eF i g .5 . 1 3 .L e te o 1 , e o 2 be two lifts of o 1 ,o 2 respectively, such that e Again, from Lemma 1.6.3, we have that

o 1 = f ↵ 1 \ f ↵ 2 and e o 2 =(T • f ↵ 1 ) \ f ↵ 2 for two lifts f ↵ 1 , f ↵ 2 of ↵ 1 ,↵ 2 ,
x 1 = c + d 1 2 ,x 2 = a + b +1 2 
(5.17)

y 3 = cd ab c + d a b ,y 4 = cd (a + 1)(b + 1) c + d a b 2 (5.18)
Then 0 is defined as:

0 : e T ,r ! R 2 [z] 7 ! 8 > > < > > : (z 7 ! a i (z x i m)), if = T m • d i ,i =1, 2, (z 7 ! (a 1 + a 2 )(z m) a 1 x 1 a 2 x 2 ), if = T m • d 3 (z 7 ! (a 1 + a 2 )(z m) a 1 x 1 a 2 x 2 a 1 ), if = T m • d 4 0, otherwise,
where

a 1 = 1,a 2 = y3 x1 y3 x2 .
In particular, 0 (d 0 )=0.W en o t et h a ta 1 ,a 2 satisfy the following two equations a 1 (y 3 x 1 )+a 2 (y 3 x 2 )=0

(5.19)

a 1 (y 4 x 1 1) + a 2 (y 4 x 2 )=0.
(5.20)

Applying Lemma (1.6.5) to the two triples of geodesics (c 1,d 1), (a, b), (c, d) and (a, b), (c, d), (a+1,b+1), we get that x 1 <y 2 <x 2 <y 3 .A sar e s u l t ,a 2 < 0.

(d) Let , 0 2 e T ,r be two tiles with a common internal edge of the form T m • e ↵ i ,f o rs o m e m 2 Z and i =1, 2,suchthat lies above the edge. Using the equivariance and coherence of the map, it suffices to verify the property when m =0, = d 0 , 0 = d i , i =1, 2.F r o m the calculations of the proof of the coherence property, we have that

( 0 (d 0 ) 0 (d 1 ))(z)= a 1 (z x 1 ) ( 0 (d 0 ) 0 (d 2 ))(z)= a 2 (z x 2 ).
Since a 1 ,a 2 < 0,t h ed i ff e r e n c ei so ft h ed e s i r e df o r mf o re v e r yi =1, 2.

(e) If the two tiles , 0 have a common internal edge of the form e j for m 2 Z and j =3, 4 such that lies above the edge, then = e j and 0 / 2 supp ( 0 ).

For j =3, ( 0 (d 3 ) 0 ( 0 ))(z)=(a 1 + a 2 )z a 1 x 1 a 2 x 2 . For j =4, ( 0 (d 4 ) 0 ( 0 ))(z)=(a 1 + a 2 )z a 1 x 1 a 2 x 2 a 1 .
Since a 1 ,a 2 < 0,bo t ho ft h e s epo l y n o m i a l sh a v en e g a t i v el e a d i n gc oe ffi c i e n ta 1 + a 2 .B y eqs. (5.19), (5.20), the polynomial 0 (d j ) 0 ( 0 ) vanishes at y j ,form 2 Z and j =3, 4.

If two tiles d 1 ,d 2 2 e
T ,r have a common internal edge 2 e E 1 \ e E 2 , which is not of the above form, then

d 1 ,d 2 / 2 supp ( 0 ).S o , 0 (d 1 ) 0 (d 2 )=0.
So is a Γ-equivariant refined tile map that realises the required linear combination.

Decorated ideal polygons

In this section, we will prove Theorem 5.2.1 for polygons all of whose vertices are decorated ideal points.

The surface is contractible. So, e E ,r = E ,r , e T ,r = T ,r .F i r s t l y ,w er e m a r kt h a ta tm o s to n eo f the two intersecting arcs ↵ 1 ,↵ 2 can be of the edge-to-vertex type. Indeed, if for every i =1 , 2 the arc ↵ i joins the vertex v i with the edge e i then these four vertices must be cyclically ordered as e 1 ,v 2 ,v 1 ,e 2 and no two are consecutive. In particular, v 1 ,v 2 are not consecutive. So either there exists an arc in E 1 that has one endpoint on e 1 and another on a vertex or an edge that lies between v 2 and v 1 or there exists an arc 0 2E 1 \E 2 joining v 1 ,v 2 . In the first case, the arc ↵ 2 must intersect ,h e n c ecodim ( 1 \ 2 ) > 1 which contradicts our hypothesis. The second case is not possible because there are no vertex-to-vertex arcs in this arc complex.

So we have the following two cases:

• The proof, in the case where both ↵ 1 and ↵ 2 are edge-to-edge arcs, is identical to that for ideal polygons.

• Let ↵ 1 be an edge-to-edge arc joining two edges e 1 ,e 3 and let ↵ 2 be an edge-to-vertex arc joining the edge e 2 and the decorated ideal vertex ⌫. Then there are three configurations as shown in the Fig. 5.14. Since neither e 1 ,e 2 nor e 2 ,e 3 can be consecutive, there always exist two edge-to-edge arcs 1 and 2 in E 1 \E 2 that respectively join these two pairs. Again, if e 1 ,⌫ or e 3 ,⌫ are not consecutive, there must exist two edge-to-vertex arcs 4 and 3 in point at 1 and repelling fixed point at x 1 . In particular, its axis intersects ↵ 1 at p ↵1 . In terms of polynomials, we must have 0 ( ) 0 ( 0 )=(z 7 ! A(z x 1 )), for some A>0, al i n e a rp o l y n o m i a lw i t hp o s i t i v el e a d i n gc o e ffi c i e n t . 4. Let , 0 2T ,r be two tiles with common internal edge contained in ↵ 2 for i =1, 2 such that lies to the left of the edge. Then 0 ( ) 0 ( 0 ) is a parabolic Killing vector field with fixed point at 1,p o i n t i n gt o w a r d s . In terms of polynomials, we must have 0 ( ) 0 ( 0 )=(z 7 ! B), for some B<0, ac o n s t a n tp o l y n o m i a l . 5. Suppose , 0 2T ,r are two tiles with common internal edge j for j =1 , 2,s u c ht h a t lies above j . Then 0 ( ) 0 ( 0 ) is a hyperbolic Killing vector field with attracting fixed point at y j and repelling fixed point at 1. In particular, its axis intersects j at p j . In terms of polynomials, we must have 0 ( ) 0 ( 0 )=(z 7 ! C(z y j )),C<0.

6. Suppose , 0 2T ,r are two tiles with common internal edge j for j =3, 4,s u c ht h a t lies to the left j . Then 0 ( ) 0 ( 0 ) is a parabolic Killing vector field with fixed point at 1,p o i n t i n ga w a yf r o m . In terms of polynomials, we must have

0 ( ) 0 ( 0 )=(z 7 ! D),D>0.
We define the tile map

0 : e T ,r ! R 2 [z] 7 ! 8 > > < > > : (z 7 ! a j (z y j )), if = d j ,i =1, 2, (z 7 ! a 3 ), if = d 3 (z 7 ! a 4 ), if = d 4 0, otherwise,
where

a 1 = a 2 = 1,a 3 = y 2 x 0 > 0,a 4 = y 1 x 0 < 0.
Lemma 5.2.6. The tile map defined above satisfies Properties (5.2.5).

Proof. 1. Suppose that is a tile with a decorated ideal vertex. If 2 supp ( 0 ),t h e n = d j for some j 2{ 3, 4} and that ideal vertex is given by 1.F r o mt h ed e fi n i t i o no f 0 ,w eg e tt h a t 0 (d j ) is a constant polynomial. Hence, it fixes infinity and any horoball centered at 1. If / 2 supp ( 0 ),t h e n 0 ( )=0 , which automatically fixes its ideal vertex.

Consistency around e

o:

0 (d 1 ) 0 (d 2 )(z)=y 1 y 2 = y 1 x 0 + x 0 y 2 = 0 (d 4 ) 0 (d 3 )(z).
3. Let , 0 2T ,r be two tiles with a common internal edge of the form ↵ 1 such that lies above the edge. Using the coherence of 0 , it suffices to verify the property when = d 4 , 0 = d 1 .S u b s t i t u t i n gt h ev a l u e so fa 1 ,a 4 and using the definition of 0 ,w eg e t that

0 (d 4 ) 0 (d 1 )(z)=z x 0 ,
which is of the desired form. 4. Let , 0 2T ,r be two tiles with a common internal edge of the form ↵ 2 such that lies to the left of the edge. Using the coherence of 0 , it suffices to verify the property when = d 4 , 0 = d 3 .F r o me q .( 5 . 2 1 ) ,

0 (d 4 ) 0 (d 3 )(z)=y 1 y 2 < 0.
So the property is verified. 5. Let , 0 2T ,r be two tiles with a common internal edge of the form j for j =1, 2 such that lies above the edge. Then = d j for j =1, 2 and 0 / 2 supp ( 0 ).F o rj =1, 2,w e have that

0 (d j ) 0 ( 0 )(z)= z + y j ,
which is of the desired form. 6. Let , 0 2T ,r be two tiles with a common internal edge of the form j for j =3, 4 such that lies to the left of the edge. Then either / 2 supp ( 0 ) , 0 = d 4 or = d 3 , 0 / 2 supp ( 0 ). In the first case, we have that

0 ( ) 0 (d 4 )(z)=x 0 y 1 > 0.
In the second case, we have that

0 (d 3 ) 0 ( 0 )(z)=y 2 x 0 > 0.
So we have a neutral tile map representing the linear combination (6.7) for the chosen strip template.

This concludes the proof of Theorem 5.2.1 for decorated ideal polygons.

Hyperideal polygons

In this section we will prove Theorem 5.2.1 for polygons with truncated hyperideal vertices.

Proof. Like in the previous case, denote by ↵ 1 , the edge-to-edge arc joining two edges e 1 ,e 3 and by ↵ 2 ,t h ee d g e -t o -v e r t e xa r cj o i n i n gt h ee d g ee 2 and the truncated hyperideal vertex ⌫.T h eg e o d e s i c carrying the hyperideal vertex is taken to be the vertical line passing through the origin. There are three possible configurations. Fig. (5.15) shows the most general one. Again, let 1 and 2 in E 1 \E 2 be the arcs joining the pairs e 1 ,e 2 and e 2 ,e 3 respectively. Finally, whenever e 1 ,⌫ or e 3 ,⌫ are not consecutive, let 4 and 3 in E 1 \E 2 be the two edge-to-vertex arcs joining the pairs, respectively. Let d 1 ,...,d 4 be the smaller tiles of the refinement 1 [{↵ 2 },s u c ht h a t i is an internal edge of d i whenever i exists.

We make the following choice of strip template :

2. The tile map is coherent around the intersection point o.

3. Let , 0 2T ,r be two tiles with common internal edge contained in ↵ 1 such that lies above edge. Then 0 ( ) 0 ( 0 ) is a hyperbolic Killing vector field with attracting fixed point at 1 and repelling fixed point at x 0 . In particular, for our choice of strip templates, its axis intersects ↵ 1 at p ↵1 . In terms of polynomials, we must have 0 ( ) 0 ( 0 )=(z 7 ! A(z x 0 )),A>0.

4. Let , 0 2T ,r be two tiles with common internal edge contained in ↵ 2 for i =1, 2 such that lies above the edge. Then 0 ( ) 0 ( 0 ) is a hyperbolic Killing vector field with attracting fixed point at 1 and repelling fixed point at 0. In terms of polynomials, we must have 0 ( ) 0 ( 0 )=(z 7 ! Bz),B>0.

5. Suppose , 0 2T ,r are two tiles with common internal edge j for j =1 , 2,s u c ht h a t lies above j . Then 0 ( ) 0 ( 0 ) is a hyperbolic Killing vector field with attracting fixed point at y j and repelling fixed point at 1. In particular, its axis intersects ↵ i at p ↵i . In terms of polynomials, we must have 0 ( ) 0 ( 0 )=(z 7 ! C(z y j )),C<0.

6. Suppose , 0 2T ,r are two tiles with common internal edge j for j =3 , 4,s u c ht h a t lies to the left of j . Then 0 ( ) 0 ( 0 ) is a Killing vector field with attracting fixed point at 0 and repelling fixed point at 1. In terms of polynomials, we must have

0 ( ) 0 ( 0 )=(z 7 ! Dz),D<0.
We define the tile map

0 : e T ,r ! R 2 [z] d 7 ! 8 > > < > > : (z 7 ! a i (z y i )), if = d i ,i =1, 2, (z 7 ! a 3 z), if = d 3 (z 7 ! a 4 z), if = d 4 0, otherwise,
where

a 1 = x 0 y 1 (x 0 y 2 ) < 0,a 2 = x 0 (x 0 y 2 ) < 0, a 3 =1,a 4 = y 2 (x 0 y 1 ) y 1 (x 0 y 2 ) < 0.
These four numbers satisfy the following system of homogeneous equations:

a 1 a 2 + a 3 a 4 =0, (5.23) 
a 1 y 1 a 2 y 2 =0, (5.24) 
a 2 (y 2 x 0 )+a 3 x 0 =0.

(5.25) Lemma 5.2.8. The tile map defined above satisfies Properties (5.2.7).

Proof.

1. Suppose that is a tile with a truncated hyperideal vertex. If 2 supp ( 0 ),t h e n = d j for some j 2{ 3, 4} and that ideal vertex is a segment on the vertical line given by (0, 1).F r o mt h ed e fi n i t i o no f 0 ,w eg e tt h a t 0 (d j )(z) is a degree one polynomial vanishing at 0. If / 2 supp ( 0 ),t h e n 0 ( )=0, which automatically fixes its ideal vertex.

2. Around e o:f r o me q s .( 5 . 2 3 ) ,( 5 . 2 4 )

( 0 (d 1 ) 0 (d 2 ))(z)=(a 1 a 2 )z + a 2 y 2 a 1 y 1 =(a 4 a 3 )z =( 0 (d 4 ) 0 (d 3 ))(z).
3. Let , 0 2T ,r be two tiles with a common internal edge of the form ↵ 1 such that lies above the edge. Using the coherence of 0 , it suffices to verify the property when = d 4 , 0 = d 1 .

From eqs. (5.23),(5.24) we get that,

( 0 (d 4 ) 0 (d 1 ))(z)=(a 4 a 1 )z + a 1 y 1 , =(a 3 a 2 )z + a 2 y 2 .
From eq. ( 5.25) we get that the Killing field 0 (d 4 ) 0 (d 1 ) vanishes at x 0 .A l s o ,t h el e a d i n g coefficient is positive because a 3 > 0 >a 2 .H e n c et h ep r o p e r t yi sv e r i fi e d . [START_REF] Charette | Affine Schottky Groups and Crooked Tilings[END_REF]. Let , 0 2T ,r be two tiles with a common internal edge of the form ↵ 2 such that lies above the edge. Using the coherence of 0 , it suffices to verify the property when = d 3 , 0 = d 4 .

(

0 (d 3 ) 0 (d 4 ))(z)=(a 3 a 4 )z.
Since a 3 > 0 >a 4 ,t h el e a d i n gc o e ffi c i e n ti sp o s i t i v e . H e n c e ,t h ep r o p e r t yi sv e r i fi e d .

5. Let , 0 2T ,r be two tiles with a common internal edge of the form j for j =1, 2 such that lies above the edge. Then = d j for j =1, 2 and 0 / 2 supp ( 0 ).F o rj =1, 2,w eh a v et h a t

0 (d j ) 0 ( 0 )(z)=a j (z y j ).
Since a 1 ,a 2 < 0,t h ed i ff e r e n c eh a st h ed e s i r e df o r m .

6. Let , 0 2T ,r be two tiles with a common internal edge of the form j for j =3, 4 such that lies above the edge. Then either d/ 2 supp ( 0 ) 0 = d 3 or = d 4 , 0 / 2 supp ( 0 ). In the first case, we have that

0 (d) 0 (d 3 )(z)= 1.
In the second case, we have that

( 0 (d 4 ) 0 ( 0 ))(z)=a 4 < 0.
Hence, Lemma 5.2.8 is proved.

So we have a neutral tile map representing the linear combination (6.7) for the chosen strip template. This concludes the proof of Theorem 5.2.1 in the case of hyperideal polygons.

One-holed polygons and spun triangulations

In this section we will prove Theorem 5.2.1 for one-holed polygons, Π } n (n 1).

Let Γ:=⇢(⇡ 1 (Π } n )) ⇢ PSL(2, R)
, where ⇢ is the holonomy representation of the surface. Then, Γ is an infinite cyclic group generated by some hyperbolic element of PSL(2, R).U s i n g t h e transitivity of PSL(2, R) on R [ {1},w ea s s u m et h a tt h ea t t r a c t i n ga n dr e pe l l i n gfi x e dpo i n t so f are 1, 0,r e s p e c t i v e l y . S ot h ee l e m e n t is of the form

= " p 0 0 1 p # 2 PSL(2, R), >1.
Case 1: Suppose that both the arcs ↵ 1 ,↵ 2 are finite. Then, they must be non-minimal. The proof in this case is identical to that of ideal polygons.

Case 2: The arc ↵ 1 is finite whereas the arc ↵ 2 is spiraling such that the finite endpoints of both the arcs lie on different edges. This case appears for n>1.A g a i n ,w ea s s u m eΓ: =⇢(⇡ 1 (Π } n )) is generated by and we consider its universal cover inside U.F r o me a c hi s o t o p yc l a s sw e choose a geodesic arc which meets the boundary perpendicularly. Then the lifts of ↵ 2 are represented by vertical lines and those of ↵ 1 are arcs of semi-circles, lying to the right of the axis of .L a b e lt h e i ru n i q u ep o i n to fi n t e r s e c t i o na so.L e te o be one of its lifts. Then it is the intersection of two lifts f ↵ 1 , f ↵ 2 of ↵ 1 ,↵ 2 .S u p p o s et h a tt h ee n d p o i n t so ff ↵ 1 lie on the geodesics (a, b) and (e, f ) and that of f ↵ 2 on (c, d). Then,

a<b c<d e<f. (5.26) 
If ↵ 1 is a maximal arc, then e = a, f = b.

The four small tiles formed around e o are labeled as d 1 ,...,d 4 in the anti-clockwise manner so that the tiles d 1 ,d 2 lie below f ↵ 1 .A l s o ,f o rj =1 , 2, d j either contains a spike or an internal edge e j which is a lift of the arc j 2E 1 \E 2 . In the former case, the spike and in the latter case the centre of the semi-circle carrying j are denoted by y j ,f o rj =1 , 2. The centre of the semi-circle carrying f ↵ 1 is denoted by x 0 .E a c ho ft h et w ot i l e sd 3 ,d 4 has an internal edge that are lifts of two spiraling arcs 3 , 4 ;t h e ya r el a b e l e da s f 3 and f 4 ,r e s p e c t i v e l y . W h e n f ↵ 1 is a maximal arc, 3 = 4 and hence f 4 = • f 3 . The arc e 1 is the common perpendicular to the geodesics (a, b) and (c, d) and the arc e 2 is the common perpendicular to (c, d) and (e, f ). From Theorem 1.6.3, the coordinates for x 0 ,y 1 ,y 2 are given by

x 0 = ef ab e + f (a + b) ,y 1 = cd ab c + d a b
,y 2 = ef cd e + f c d .

See Fig. 5.16. From Theorem 1.6.5, we get y 1 <x 0 <y 2 .W es h a l lc o n s t r u c tan e u t r a lt i l e map that represents the linear combination:

c ↵1 f ↵1 (m)+c ↵2 f ↵2 (m)+ n0 X j=1 c j f j (m)=0, (5.27) 
where c ↵1 ,c ↵2 > 0, c j < 0 for j =1,...,4 and (c) The map is consistent around every lift of every intersection point.

n 0 = ⇢ 3, if 3 = 4 , 4 
(d) If , 0 are two tiles that share an edge carried by a lift f ↵ 1 of ↵ 1 ,t h e n 0 ( ) 0 ( 0 ) is a polynomial of the form Az + B. If lies above (resp. below) the lift, then A>0 (resp. A<0). (e) If , 0 are two tiles that share an edge carried by a lift f ↵ 2 of ↵ 2 ,t h e n 0 ( ) 0 ( 0 ) is a constant polynomial. If lies to the left of the lift, then this constant is negative.

(f) If , 0 are two tiles that share an edge carried by a lift of j for some j =1,...,4,t h e n 0 ( ) 0 ( 0 ) is a degree one polynomial az + b vanishing at the centre of the semi-circle carrying e . If lies above the lift, then the leading coefficient a is negative.

(g) Let (z n ) n be a sequence of points in tiles n 2 f

T that converges to a point z on the axis of the isometry ,t h e n 0 ( n ) converges to 0.

Define 0 : e T ,r ! R 2 [z]:for q 2 Z, 7 ! 8 > > > > < > > > > : (z 7 ! z + q y 1 ), if = q • d 1 , (z 7 ! z + q y 2 ), if = q • d 2 , (z 7 ! q (y 2 x 0 )), if = q • d 3 , (z 7 ! q (y 1 x 0 )), if = q • d 4 , 0,
otherwise.

Lemma 5.2.10. The neutral map 0 defined above satisfies the properties 5.2.9 (a)-(g).

Proof. (a) For n =2 ,t h eo n l yt i l e st h a tc o n t a i nar e a ls p i k ea r eo ft h ef o r m q • j ,f o r j =1 , 2 and q 2 Z. The spikes are at q • y j .F r o mt h ed e fi n i t i o no f 0 ,i ti m m e d i a t e l y follows that 0 (d j )( q • y j )=0,f o rj =1, 2.H e n c et h ec o n d i t i o n( b )i ss a t i s fi e d .

For n 3,t h et i l e sc o n t a i n i n gar e a ls p i k ea r en o ts m a l l . S ot h e i ri m a g e sb y 0 are all equal to the zero polynomial.

The tiles that contain a spike at 1 are in the orbit of d 3 or d 4 .F r o mt h ed e fi n i t i o n 0 , the images of such tiles are constant polynomials. Hence the property is satisfied in this case as well.

(b) Suppose that = q • d j ,f o rs o m ej =1, 2. Then,

0 ( • d)= 0 ( q+1 • d j )(z) = z + q+1 y j = ⇣ z + q y j ⌘ = • 0 ( ).
When j =3,

0 ( • d)= 0 ( q+1 • d j )(z) = q+1 (y 2 x 0 ) = ( q (y 2 x 0 ))) = • 0 ( ).
The calculations are identical for j =4.H e n c et h em a pi sΓ-equivariant.

(c) Any point of intersection is of the form q

• e o = q • f ↵ 1 \ q • f ↵ 2 ,f o rs o m eq 2 Z.
It suffices to verify the property for q =0. The tiles around this point are d 1 ,...,d 4 ,inthe anti-clock-wise manner so that the two tiles d 1 ,d 2 are below the finite arc f ↵ 1 . Then,

( 0 (d 4 ) 0 (d 1 ))(z)=y 1 x 0 + z y 1 =(z x 0 ) = y 2 x 0 + z y 2 =( 0 (d 3 ) 0 (d 2 ))(z).
So the property 5.2.9(c) is verified. which is a degree one polynomial with positive leading coefficient, as required by the property 5.2.9(d).

(e) Suppose , 0 are two tiles that share an edge carried by f ↵ 2 . Then either = d 4 , 0 = d 3 or = d 1 , 0 = d 2 .B yp r o p e r t y5 . 2 . 9 ( c ) ,i ti se n o u g ht od ot h ec a l c u l a t i o n sf o rj u s to n e pair. The tile d 4 lies to the left of f ↵ 2 .W eh a v e

( 0 (d 4 ) 0 (d 3 ))(z)=y 1 x 0 (y 2 x 0 ) = y 1 y 2 > 0.
So the difference is a negative constant polynomial. Hence 5.2.9(e) is satisfied.

(f) Suppose that , 0 are two tiles that share an edge carried by the lift e j of j for some j =1,...,4.W ea s s u m et h a t e j is horizontal and that lies above 0 . Then, = d 1 or d 2 and 0 is not a small tile. So

( 0 (d j ) 0 ( 0 ))(z)= z + y j .
So we have a degree one polynomial whose leading coefficient is negative and which vanishes at y j , j =1, 2.

If e j is vertical and lies to its left, then

= d 3 . If ↵ 1 is maximal, then 0 = • d 4 .
Then,

( 0 (d 3 ) 0 ( • d 4 ))(z)=(y 2 x 0 ) (y 1 x 0 ) =(y 2 x 0 y 1 + x 0 ) > (y 1 x 0 y 1 + x 0 ) =(1 )(y 1 x 0 ) > 0.
So the difference between the two polynomials is a positive constant polynomial. If ↵ 1 is not maximal, then 0 is not a small tile. Then,

( 0 (d 3 ) 0 ( 0 ))(z)=y 2 x 0 > 0.
So we get a positive constant polynomial in this case as well.

Finally, suppose that e j is vertical and lies to its right. Either ↵ 1 is maximal, in which case = 4 and 0 = 1 3 or ↵ 1 is non-maximal with = 4 and 0 not a small tile. The former case is identical to the previous case, using the equivariance of 0 . In the latter case, ( 0 (d 4 ) 0 ( 0 ))(z)=y 1 x 0 < 0.

(g) Let (z n ) n be a sequence of points in the universal cover that converges to a point z on the axis of the isometry . Then the tiles n 2 f T containing them must be spiraling tiles of the form d n := qn d j for j 2{ 1, 2} and a divergent monotonically increasing sequence (q n ) n ⇢ N.F r o mt h ed e fi n i t i o no f 0 ,w eg e tt h a t 0 (d n )(z n )= qn (y j x 0 ), which converges to 0 as n !1.

Thus all the properties have been verified by the tile map. This concludes the proof for the second case. (e) If , 0 are two tiles that share an edge carried by the lift f ↵ 2 of ↵ 2 such that lies above the semi-circle carrying f ↵ 2 ,t h e n 0 ( ) 0 ( 0 ) is a parabolic Killing field with fixed point at 0,p o i n t i n gt o w a r d s . In terms of polynomials, we must have 0 ( ) 0 ( 0 )=(z 7 ! Bz 2 ), for some B>0.

(f) If , 0 are two tiles that share an edge carried by the lift e of such that lies above the lift, then 0 ( ) 0 ( 0 ) is a hyperbolic Killing field with axis perpendicular to e , directed away from . 

:= q • ( p • f ↵ 1 \ f ↵ 2 ), with p 2 N,q2 Z.
Consider the intersection points {o(p, 0) (5.30)

} p2N = { p • f ↵ 1 \ f ↵ 2 }.F o rp 2 N,
Finally, any small tile is in the Γ-orbit of exactly one of the tiles {d p } p2N .F o rn 2,l e t e be the lift of that joins (a, b) and ( a, b). We choose the following strip template:

• From the isotopy classes of ↵ 1 and ↵ 2 , we choose the geodesic representative whose finite end(s) intersect(s) the boundary perpendicularly.

• From the isotopy class of the lift q e of joining the boundary geodesics ( q 1 a, q 1 b) and ( q a, q b),w ec h o o s et h eg e o d e s i ca r ct h a ti st h ec o m m o np e r p e n d i c u l a rt ot h e s e two geodesics. We scale a, b such that the endpoints of q e are ( q x, 0) and ( q x , 0), where a  x  b and a < 1

x < b.

• The waist of the finite arc e is chosen to be its point of intersection with the geodesic ( 1, 1) and the waists of n e are chosen Γ-equivariantly.

Define 0 : e T ,r ! R 2 [z]:for q 2 Z and p 2 N,

7 ! ⇢ (z 7 ! 1 q z 2 + q p ), if = q • d 2p+1 , 0,
otherwise.

Using eq.( 5.30), we get that for every q 2 Z,

0 ( q • d 2p )=(z 7 ! 1 q+1 z 2 + q p+1 ).
Fig. 5.17 shows the 0 -images of some tiles as degree two polynomials (coloured in blue).

Lemma 5.2.12. The neutral map 0 defined above satisfies the properties 5.2.11 (b)-(g).

Proof. (a) Let 2 e T ,r be a small tile. Then = q • d 2p+1 for some q 2 Z. Then from the definition we have that,

0 ( • d)(z)= 0 ( q+1 • d 2p+1 )(z) = 1 q+1 z 2 + q+1 p = ✓ 1 q ( z ) 2 + q p ◆ = 0 ( q • d 2p+1 )( z ) =( • 0 ( ))(z).
When 2 e T ,r is not a small tile, the equivariance property holds trivially. Hence 0 is Γ-equivariant. So the rest of the properties shall be verified only for q =0. (b) For n 2,t h eo n l yt i l e st h a tc o n t a i nas p i k ea r en o ts m a l l . S ot h ei m a g eb y 0 of such at i l ei st h e0p o l y n o m i a l . H e n c e( b )i ss a t i s fi e d .

For n =1 ,o n l yt h et i l e si nt h eo r b i to fd 1 can contain a spike. The spike of the tile q • d 1 is at ( q ,0). So p =0and the definition of 0 gives that 0 (d 1 )(1) = 1+1=0. Since, the property is satisfied in this case as well.

(c) Any intersection point of two lifts of f ↵ 1 and f ↵ 2 is given by e o(p, q)= p+q • f ↵ 1 \ q • f ↵ 2 for some p 2 N and q 2 Z.W ec a na s s u m et h a tq 

= (p+1)+1 p+1 = 0 (d 2(p+1) )(z) 0 (d 2p )(z) = p (1
).

So the tile map is consistent around every intersection point. 

Local homeomorphsim: Codimension 2

Let p 2A(S) such that codim ( p ) 2. In the cases of ideal polygons, punctured polygons and one-holed polygons with spiraling arcs, the arc complex is a sphere, we have that

Link( p , b A(Π D n )) ' S codim( p ) 1.
In order to prove that f is a local homeomorphism, it suffices to show that its restriction to the link of p is a homeomorphism. Proof. We shall prove the theorem separately for the different typ es p olygons. i=1 ✓ i =2 ⇡, which implies that the degree of f is 1. Hence, f is a homeomorphism for this choice of strip template. Since, the space of all strip templates is connected and since there is no continuous way of changing the sum of angles from 2⇡ to 4⇡,w eh a v et h a tf is a homeomorphism for every choice of strip template. This also proves the homeomorphism of the projectivised strip map in the case of the ideal pentagon Π D 5 . The proof works similarly when the link is a quadrilateral. 

↵ has one non-triangulated region. If this region contains the puncture or a hole, then it can be triangulated in six different ways using two disjoint arcs, exactly one of which is always a maximal arc. So we have that Link( , A (Π)) is a hexagon. Like in the case of ideal polygons, for i =1 ,...,6,l e t✓ i be the angle subtended at the origin by the vectors f (↵ i+1 ) and f (↵ i ),i nD(Π).L e t↵ 1 ,↵ 3 ,↵ 5 be the vertices corresponding to the maximal arcs. By Theorem 5.2.1, there exists a strip template such that

✓ i + ✓ i+1 <⇡,i=1,...,5.
So the degree of the map is 1. Since the arc complexes of a punctured triangle Π 3 and a one-holed bigon Π } 2 are also PL-homeomorphic to a hexagon, the homeomorphism of Pf in these cases, is a consequence of the above proof.

The two cases -exactly one non-triangulated region containing no puncture or hole, and two non-triangulated regions -are treated identically as in the case of ideal polygons.

Ideal Square, Punctured bigon, one-holed monogon: When Π=Π D 4 or Π 2 or Π } 1 ,t h e arc complex A (Π) is a sphere of dimension 0. Let [↵] and [ ] be the two isotopy classes of arcs. If we parametrise the deformation space using the length of ↵,w es e et h a tf (↵) corresponds to the origin where as f ( ) is increases its length. So, we have Pf (↵) 6 = Pf ( ), which proves the homeomorphism. 

Strip deformations of general surfaces

In this chapter, we shall parametrise the admissible cones of hyperbolic surfaces with decorated and undecorated spikes, using their pruned arc complexes.

Hyperbolic surfaces with spikes

Let S sp be a hyperbolic surface with undecorated spikes. Recall that when S sp is orientable (resp. non-orientable), it is of the form S q g,n (resp. T qh,n ). Its deformation space is homeomorphic to an open ball of dimension N 0 =6 g 6+3n + Q, when S sp is orientable and N 0 =3 h 6+3n + Q, when S sp is non-orientable, where Q is the total number of spikes. A point m of the deformation space is expressed as m =[ ⇢, x], where ⇢ : ⇡ 1 (S c ) ! PGL(2, R) is a holonomy representation of the surface, x is a Q-tuple of distinct points in @ 1 D representing any one set of lifts of the spikes. Given a metric m 2 D(S sp ),i t sa d m i s s i b l ec o n eΛ(m) is the set of all infinitesimal deformations that uniformly lengthen every non-trivial closed geodesic. It is an open convex cone of the vector space T m D(S sp ). It is a bundle of affine spaces over the admissible cone of the convex core. The fibers correspond to the motion of the spikes. These motions don't affect the uniform lengthening property for geodesic curves.

Recall that the permitted arcs that span the arc complex A (S sp ) of the surface are finite and their endpoints lie on its boundary @S sp . The set of all permitted arcs is denoted by K.As i m p l e x of the arc complex is big if the arcs corresponding to its 0-skeleton decompose the surface into topological disks. In Chapter 3, the theorems 3.3.2,3.3.4 prove that the pruned arc complex b A(S sp ) of the surface, given by the union of the interiors of all big simplices, is an open ball of dimension N 0 1.A n yp o i n tx in b A(S sp ) belongs to the interior of a unique big simplex x . Finally, the strip deformations performed along the arcs are of hyperbolic type; their waists and widths are fixed by the choice of a strip template. Theorem 6.1.1. Let S sp = S q g,n or T qh,n be a hyperbolic surface with undecorated spikes. Let m 2 D(S sp ) be a metric. Fix a choice of strip template {(↵ g ,p ↵ ,w ↵ )} ↵2K with respect to m. Then, the infinitesimal strip map Pf : b A(S sp ) ! P + (T m D(S sp )) is a homeomorphism on its image P + (Λ(m)).

Next, we will summarise the necessary facts, that we know from the previous chapters, about a hyperbolic surface with spikes.

Let S h sp be a hyperbolic surface with decorated spikes. It is obtained from a hyperbolic surface with spikes S sp by decorating every spike with a horoball. Its deformation space is homeomorphic to an open ball of dimension N 0 =6g 6+3n +2Q,whenS sp is orientable and N 0 =3h 6+3n +2Q, when S sp is non-orientable, where Q is the total number of spikes. Given a metric m 2 D(S h sp ), its admissible cone Λ(m) is the set of all infinitesimal deformations that uniformly lengthen every horoball connection (and hence every closed geodesic). It is an open convex cone of the vector space T m D(S h sp ). Recall that the permitted arcs that span the arc complex A S h sp of the surface are finite with their endpoints on the boundary @S h sp as well as infinite with one endpoint on the boundary and another end converging to a spike. Again, the set of all permitted arcs is denoted by K.As i m p l e x of the arc complex is big if the arcs corresponding to its 0-skeleton decompose the surface into topological disks with at most one spike. In Chapter 3, the theorems 3.3.5,3.3.7 prove that the pruned arc complex b A(S h sp ) of the surface, given by the union of the interiors of all big simplices, is an open ball of dimension N 0 1.A n yp o i n tx in b A(S c ) belongs to the interior of a unique big simplex x . Finally, the strip deformation performed along the finite arcs is of hyperbolic type; its waist and width are fixed by the choice of a strip template. The strip deformations performed along infinite arcs are of parabolic type with fixed point at the spike. We will prove the following parametrisation theorem: Theorem 6.1.2. Let S h sp = S q , h g,n or T q , h h,n be a hyperbolic surface with decorated spikes. Let m 2 D(S h sp ) be a decorated metric. Fix a choice of strip template {(↵ g ,p ↵ ,w ↵ )} ↵2K with respect to m. Then, the infinitesimal strip map Pf :

b A(S h sp ) ! P + (T m D(S h sp )) is a homeomorphism on its image P + (Λ(m)).
The rest of the chapter is dedicated to proving Theorem 6.1.1 and Theorem 6.1.2.

Local homeomorphism of strip maps

Codimension zero

Let a, b 2 R 2,1 be two linearly independent future-pointing light-like vectors whose projective images are denoted by A, B. Then A, B are ideal points; let AB be the unique hyperbolic geodesic joining these two points. Definition 6.2.1. Given a Killing vector field X 2 g,t h elongitudinal motion X l imparted by X to the geodesic AB is defined as

X l := hv X , a ^b k(a ^b)k i, (6.1) 
where v X is the vector in R 2,1 corresponding to X.

The motion is called "longitudinal" because the vector X l is equal to the component of X(p) along the direction of the line AB, for every point p 2 H 2 lying on AB. where ✓ 2 [0, ⇡ 2 ]. The existence of theta can be assumed up to applying a hyperbolic isometry to the quadruple (A, B, C, D) because any cross-ratio is realized by some rectangle. Then the points A, B, C, D form a rectangle in the projective plane. Also, we have that

E =[(a ^d) ^(c ^b)] ,F =[(a ^b) ^(c ^d)] , (6.2) 
G =[(a ^c) ^(b ^d)] . (6.3) 
It follows directly from the definition of cross product that any Killing vector field that is a preimage of F imparts no longitudinal motion either to AB or to CD. By inserting the coordinates of a, b, c, d in the formulae (6.2),(6.3), we get that

a ^c = 2( sin ✓, cos ✓, 0), b ^d = 2( sin ✓, cos ✓, 0), G =[(0, 0, 4sin(2✓))].
Furthermore, we have that

a ^b =(0, 2 cos ✓, sin(2✓)), c ^d =(0, 2 cos ✓, sin(2✓)), ka ^bk 2 = kc ^dk 2 = (1 + cos(2✓)) 2 .
If we take any Killing vector field

X G = k((a ^c) ^(b ^d)) in the preimage of G, k 2 R ⇤ ,w eg e t that hX G , a ^b ka ^bk i = hX G , c ^d kc ^dk i = 4sin 2 (2✓) (1 + cos(2✓)) = 8sin 2 ✓.
Finally, we calculate the coordinates of E: where L e is the plane P 1 ( ! e ) and L ? e is the h•, •i-dual of L e . Then 0 (d)=v t + v l and 0 (d 0 )=v 0 t + v 0 l with v t , v 0 t 2 L e and v l , v 0 l 2 L e ? .N o w f r o m t h e d e fi n i t i o n o f t i l e m a p s w e have that the vector (d) (d 0 ) is a space-like point of L e .H e n c e ,v l = v 0 l . Next we show that given a neutral tile map, the longitudinal motion along each arc in f E is zero. We prove this by contradiction. Lemma 6.2.4. Suppose that e is an arc with maximal absolute value of longitudinal motion. Let d 2 f

a ^d = r 2 ( 2sin✓, 0, sin(2✓)), c ^b = r 2 (2 sin ✓, 0, sin(2✓)) E =[4r 4 (0, sin ✓ sin(2✓), 0)]. If X E = k 0 (a ^d) ^(c ^b) for some k 0 2 R,
T be a tile with e as an internal edge. Then, the point [ 0 (d)] is contained in the interior of the projective triangle based at e, containing d.

Proof. The tile d can be of type 1, 2 or 3 (see Section 3.4). We treat the cases separately:

1. Suppose that d is a tile of type 1, i.e., a quadrilateral with two ideal vertices. Since 0 is a neutral map, from Corollary 1.5.2 we know that the point [ 0 (d)] is given by the intersection point of the two tangents to the boundary circle at the two ideal vertices, which lies inside the desired triangle due to the convexity of @ 1 D.S oi nt h i sc a s et h es t a t e m e n th o l d s . Using a projective transformation, we map the line ! AB to ! l 1 such that the points A, B are mapped to the points at infinity on the x and y axes, respectively. Then the boundary circle @ 1 D is sent to the hyperbola {(x, y) 2 R 2 | xy =1} and the points C, D, O lie on the branch of the hyperbola that is contained in the first quadrant. The lines ! AC and ! BC are mapped to straight lines passing through C,p a r a l l e lt ot h ex-axis and y-axis, respectively. Similarly, the images of the lines ! AD and ! BD are straight lines passing through D,p a r a l l e lt ot h ex-axis and y-axis, respectively. So it is sufficient to show that the points O 1 and O 2 both lie in the first quadrant.

Let the coordinates of the points C, D, E, G, O be given by:

C =(m 1 , 1 m1 ) D =(m 2 , 1 m2 ) E =(m 1 , 1 m2 ) G =(m 2 , 1 m1 ) O =(m, 1 m ).
Then, 

0 <m<m 1 <m 2 < 1. ( 6 
! EF : y = x m1m2 + 2 m2 ; ! GF : y = x m1m2 + 2 m1 ; ! t : y = x m 2 + 2 m .
Then we get that the intersection points O 1 ,O 2 have the following coordinates:

O 1 =( 2(m1 m)m2m m1m2 m 2 , 2(m2 m) (m1m2 m 2 ) ), O 2 =( 2(m2 m)m1m m1m2 m 2 , 2(m1 m) (m1m2 m 2 ) ).
It follows from (6.4) that O 1 and O 2 lie in the first quadrant, which proves the lemma in this case.

3. This case is identical to the proof of Claim 3.2(0) in [START_REF] Danciger | Margulis spacetimes via the arc complex[END_REF].

This proves the lemma.

Now let e be an internal edge of two neighbouring tiles d, d 0 2 f T ,s u c ht h a te has maximal longitudinal motion. Then, by Lemma 6. Finally, we prove that 0 (d)=0for every d 2 f T .F o re v e r yt y p eo ft i l e ,w efi n dt h r e el i n e a r l y independent vectors {v i }

3 i=1 ⇢ R 2,1 such that h 0 (d), v i i =0. (6.5) 
Consequently, 0 (d) will be equal to zero.

• If d is a hexagon, then it has three internal edges, denoted by e 1 ,e 2 ,e 3 . Choose space-like vectors v i 2 P 1 e i ? for i =1, 2, 3. Then from above we know that the longitudinal motions along these edges are zero. So eq. (6.5) is satisfied for every i. These vectors are linearly independent because the projective lines carrying these three internal edges do not intersect in RP 2 .

• Let d be a pentagon with two internal edges e 1 ,e 2 and one ideal vertex p 2 @ 1 D. Then, we choose space-like vectors v i 2 P 1 e i ? for i =1 , 2 and a future-pointing light-like vector v 3 2 P 1 {p}. Then using the longitudinal motion argument we get that the eq. (6.5) is satisfied for i =1, 2.S i n c e , 0 (d) fixes the ideal vertex p,e q . ( 6 . 5 )i ss a t i s fi e db yv 3 .

• Let d be a quadrilateral with internal edge e and ideal vertices p 1 ,p 2 2 @ 1 D. Then choose v 1 2 P 1 e 1 ? ,a n dv i 2 P 1 p i ? for i =2, 3. Then, the eq. (6.5) is satisfied for every i.

Thus we get that c e =0for every e 2 f E , which finishes the proof of the theorem. Now we prove the same result for surfaces with decorated spikes.

Surfaces with decorated spikes

Theorem 6.2.5. Given a triangulation of a hyperbolic surface with decorated spikes S h sp = S q , h g,n or T q , h h,n with corresponding edge set E , the set of infinitesimal strip deformations B = {f e (m)|e 2E } forms a basis of T m D(S h sp ).

Proof. We will follow the same strategy as in the case of hyperbolic surfaces with undecorated spikes: we start with a neutral tile map 0 : f T ! g for the triangulation ,r e p r e s e n t i n gt h e linear combination X e2Eσ c e f e (m)=0, and we show that the maximal longitudinal motion along any arc of the triangulation is zero. Let e be a common internal edge of two tiles d, d 0 2 f T .F r o mt h ed e fi n i t i o no ft i l em a p sw e know that when e is spike-to-edge, the difference 0 (d) 0 (d 0 ) is a light-like point in the plane L e , and when e is an edge-to edge arc, the difference is a space-like point in L e .U s i n gt h es a m e argument as in the proof of Theorem 6.2.3, we get that the longitudinal motions imparted to e by 0 (d) and 0 (d 0 ) are equal. Moreover, when e is spike-to-edge, the Killing fields 0 (d), 0 (d 0 )

Now let e be an internal edge of two neighbouring tiles d, d 0 2 f T ,suc hthate has maximal (nonzero) longitudinal motion. So e is an edge-to-edge arc. By Lemma 6.2.4, the points [ 0 (d)] and [ 0 (d 0 )] belong to two projective triangles whose interiors are disjoint. If c e 6 =0,then[ 0 (d) 0 (d 0 )] must be a point in ! e \D.B u ta n yl i n ej o i n i n g[ 0 (d)] and [ 0 (d 0 )] intersects ! e inside D.S ow e arrive at a contradiction. Hence, the longitudinal motion along every edge-to-edge arc is zero. Now we prove that 0 (d)=0for every d 2 f T .E v e r y t i l e d of the triangulation has an internal edge-to-edge arc. Suppose that d has a decorated ideal vertex p. Then, either 0 (d)=0 or 0 (d) 2 P 1 {p}.L e t e be an internal edge-to-edge arc, with endpoints A, B 2 @ 1 D.L e t a 2 P 1 {A} and b 2 P 1 {B} be future pointing light-like vectors. Since the longitudinal motion along e is zero we have that

h 0 (d), a ^b ka ^bk i =0,
which is possible only if 0 (d)=0.F i n a l l ys u p p o s et h a td is a hexagon. Then it has three internal edges, denoted by e 1 ,e 2 ,e 3 . Choose space-like vectors v i 2 P 1 e i ? for i =1 , 2, 3. Then from above we know that the longitudinal motions along its three internal (pairwise disjoint in D)e d g e s are zero. So 0 (d)=0.

Codimension one and two

In this section we show that the projectivised strip map Pf : b A(S sp ) ! P + (T m D(S sp )) is a local homeomorphism around points belonging to strata of codimension 1 and 2. Recall from Section 4.4 of Chapter 4 that we need to prove Theorems 4.4.5,4.4.7 which we restate here. Theorem 6.2.7. Let S sp be a hyperbolic surface with spikes and m 2 D(S sp ) be a metric. Let

1 , 2 2A(S sp ) be two top-dimensional simplices such that codim ( 1 \ 2 )=1and int ( 1 \ 2 ) ⇢ b A(S sp ).
Then, int (Pf ( T . Firstly, we show that the arcs ↵ 1 and ↵ 2 intersect exactly once. From Chapter 3, we know that the arcs of 1 as well as 2 decompose the surface into topological disks. As a result the elements of the tile set corresponding to the refinement are also contractible. Now if the geodesic arcs ↵ 1 and ↵ 2 intersected non-trivially at least twice, there will be a tile in T ,r which is not homeomorphic to ad i s k . S ot h et w oa r c sc a ni n t e r s e c to n l yo n c e .

We cho ose an emb edding of the universal cover of S sp in the upper half plane so that the point 1 is distinct from the endpoints of all the arcs in the lifted edgesets e E 1 , e E 2 . Then every geodesic arc used in the triangulation is carried by a semi-circle.

Let o be the point of intersection of ↵ .L e tJ⇢{ 1,...,4} be such that the tile d j is a pentagon if and only if j 2J .F o ri =1 , 2,l e tx i be the centre of the semi-circle containing e ↵ i .F o rj =1,...,4,l e ty j denote the ideal vertex of d j or the centre of the semi-circle containing e j .F o re a c hj,t h et i l ed j is either a quadrilateral with exactly one ideal vertex and two internal edges contained in ↵ 1 and ↵ 2 , or it is a pentagon with exactly three internal edges: ↵ 1 ,↵ 2 and a third arc j 2E 2 \E 1 . We shall construct a tile map corresponding to the following linear combination:

c ↵1 f ↵1 (m)+c ↵2 f ↵2 (m)+ X j2J c j f (m)=0, (6.7) 
with c ↵1 ,c ↵2 > 0 and c j < 0 for every j 2J. In other words, we define a neutral tile map 

0 : e T ,r ! R 2 [z] that is Γ-
: e T ,r ! R 2 [z] d 7 ! 8 < 
:

P j := (z 7 ! a j (z y j )), if d = d j ( • z 7 ! d (z) dz P j (z))), if d = • d j , 2 Γ r {Id} 0, otherwise,
where

a 1 = x1 y4 x1 y1 ,a 2 = (x1 y4)(x2 y4) (y4 y1)(y4 y3) (x1 y1)(x2 y3) a 3 = x2 y4 x2 y3 a 4 =1.
So, a 1 ,a 2 ,a 3 < 0.

The tile map 0 is Γ-equivariant by definition. From the previous chapter we get that it verifies all the properties except possibly for a sub-case of (4) when there exist j, j 0 2J and 2 Γ r {Id} such that e 0 j = • e j .W i t h o u tl o s so fg e n e r a l i t y ,w es u p p o s et h a tj<j 0 .W es h a l ln o wp r o v et h a t 0 verifies this property for this case as well.

The geodesic arc • j is the common internal edge of d j 0 and • d j .S u p p o s et h a td j 0 lies above • d j .S i n c ej<j 0 ,w eh a v et h a tj, j 0 2{ 1, 2, 3}.F r o mt h ed e fi n i t i o no f 0 ,w eg e tt h a t 0 (d j ), 0 (d j 0 ) are hyperbolic Killing fields whose axes are perpendicular respectively to j , j 0 , with attracting fixed points at y j ,y j 0 .S i n c eb o t hd j and d j 0 lie above j and j 0 ,t h i sm e a n st h a t the two Killing fields are directed towards these edges. Now maps j to j 0 and • d j lies below it. Since 0 is Γ-equivariant, 0 ( • d j ) is a hyperbolic Killing field directed towards • j and hence it points upwards. So the difference vector 0 (d j 0 ) 0 ( • d j ) is hyperbolic, normal to j 0 , directed downwards and towards • d j ,a sr e q u i r e d . F i n a l l y ,w es u p p o s et h a td j 0 lies below • d j . So j 0 =4and j 2{ 1, 2, 3}.S e eF i g u r e6 . 4 .A g a i nf r o mt h ed e fi n i t i o no f 0 we get that 0 (d 4 ) is a hyperbolic Killing field with axis perpendicular to 4 and attracting fixed point at 1.S oi ti s directed upwards. In this case, the tile • d j lies above 4 ,t h eK i l l i n gfi e l d 0 ( • d j ) is directed downwards. Hence the difference vector field 0 (d j 0 ) 0 ( • d j ) is hyperbolic, directed upwards and towards • d j , as required. This finishes the proof of the theorem. 2. Both the geodesic arcs ↵ 1 and ↵ 2 are finite. See Figure 6.8. There are six possibilities. We define the tile map as in the proof of Theorem ??. It is possible to identify e j with f j 0 by an element 2 Γ r {Id} if the endpoints of e j lie on two geodesics that do not intersect in D (first column and bottom of the second column in Fig. 6.8.

Codimension 2

The proofs for the local homeomorphism of Pf around points belonging to the interiors of simplices in the pruned arc complex, in the cases of surfaces with decorated and undecorated spikes is identical to that in the cases of decorated and undecorated polygons in Chapter ??.

Properness

Surfaces with decorated spikes

In this section we prove that the projectivised strip map Pf is proper in the case of surfaces with undecorated spikes. Hence we get that the closed geodesics { (n)} n do not get uniformly lengthened by the strip map. Hence, f (z n ) converges to a point in @Λ(m).

Now we show that f (z n ) 6 ! 0.L e t := lim n!1 supp (z n ) be the limit in Hausdorff topology. The normalisation condition states that for every n 2 N,w eh a v e X p2@S h sp \supp(xn)

w zn (p)=1.

for i 2{1,...,N} r I,t i (n) ! t 1 i =0. From the definition of pruned arc complex of a surface with undecorated spikes, it follows that in the complement of supp (y) there is a non-trivial closed curve, denoted by .B y construction, intersects only the arcs {↵ i } i/ 2I .B yc o n t i n u i t yo ft h ei n fi n i t e s i m a ls t r i pm a p f on ,t h es e q u e n c e(f (y n )) n converges to f (y) 2 @Λ(m) and dl (f (y)) = X i/ 2I t 1 i dl (f ↵i (m)) = 0.

Hence f (y) fails to lengthen .

Using the same reasoning as in Case 1 of Theorem 6.2.9, we get that f (y) 6 =0. Hence we get that the closed geodesics { (n)} n do not get uniformly lengthened by the strip map. Hence, f (z n ) converges to a point in @Λ(m).

Finally, we prove, by contradiction, that f (z n ) does not converge to the trivial deformation. Suppose that f (z n ) ! 0.L e t := lim n!1 supp (z n ) be the limit in Hausdorff topology. Since the vector 0 does not deform the convex core and that the lengths of the arcs of supp (z n ) are not bounded above, the set is the union of finite arcs and arcs that spiral along geodesic laminations. Up to extraction, we may assume that the weight on every given crown either goes to 0 or stays bounded below. There is at least one 1-crown, due to normalization. Let C be a 1-crown of the surface such that every arc in \ C spins along the peripheral loop @C of C only finitely many (possibly zero) times. Then dl @C (f (z n )) is bounded from below in the limit because it intersects the arcs at an angle bounded from below, so we can conclude. Finally we suppose that whenever \C 0 6 = ; for a crown C 0 ,ev eryarcinthein tersectionspins around @C 0 infinitely many times. By identifying C 0 to a one-holed polygon Π } qi ,w eg e tt h a t \ C 0 is the support of some simplex of the spinning arc complex A ! Π } q , where q(> 0) is the total number of spikes of C 0 .L e tT be the set of tiles and e T be its lift in the universal cover. Since 0 does not move the spikes, there exists a sequence of tiles maps n : e T zn ! g converging to a neutral tile map 0 : e T!g. But from Theorem 6.2.3, we know that such a neutral tile map cannot exist. Hence, the sequence f (z n ) n does not converge to 0.

Chapter 7

Decorated Margulis Spacetimes

In this chapter, we give an application of the parametrisation of the admissible cone of a hyperbolic surface with decorated spikes as done in Chapter 6. It consists of parametrising Margulis spacetimes decorated with affine light-like lines that are pairwise disjoint and every pair has the same handedness and also finding crooked planes adapted to the photons. This is done by following Drumm's construction in [START_REF] To | Fundamental p olyhedra for margulis space-times[END_REF] of fundamental domains of Margulis spacetimes using crooked planes and the parametrisation of (undecorated) Margulis spacetimes as done by Danciger-Guéritaud-Kassel in [START_REF] Danciger | Margulis spacetimes via the arc complex[END_REF].

In the first section we shall recall the necessary vocabulary and give summaries of the proofs as done in the two references above.

Margulis Spacetimes

Recall from Chapter 1 that the three-dimensional Minkowski space, denoted by Min,i st h ev e c t o r space R 3 equipped with the quadratic form k•k 2 of signature (2,1), and corresponding bilinear form h•, •i. It is a geodesically complete flat Lorentzian manifold with affine isometry group Isom(R 2,1 ) isomorphic to the semi-direct product O(2, 1) nR 3 . Its subgroup Isom + (R 2,1 ),c o n s i s ting of orientation-preserving affine isometries, is of the form SO(2, 1) nR 3 .W es h a l ld e n o t eb yG the isomorphic groups SO(2, 1), PGL(2, R) and by g,t h e i ri s o m o r p h i cL i ea l g e b r a s . Definition 7.1.1. Let ⇢ 0 :Γ,! Gng be the representation of a discrete not virtually solvable group Γ acting properly discontinuously and freely on R 2,1 . Then the quotient manifold M := R 2,1 /⇢ 0 (Γ) is called a Margulis spacetime.

As mentioned in the introduction, Fried and Goldman [START_REF] Fried | Affine manifolds and solvable groups[END_REF] proved that by projecting Γ onto its first coordinate, we get the holonomy representation ⇢ : ⇡ 1 (S) ! G of a finite-type complete hyperbolic surface S. The projection onto the second coordinate u :Γ! g is a ⇢-cocycle, which is also an infinitesimal deformation of ⇢. The group Γ can thus be written as Γ (⇢,u) := {(⇢( ),u( )) | 2 ⇡ 1 (S)}, which gives an affine deformation of ⇢. It has been proved in the paper [START_REF] William | Proper affine actions and geodesic flows of hyperbolic surfaces[END_REF] that for ⇢ convex cocompact, then the group Γ (⇢,u) acts properly if the ⇢-cycle u or u uniformly lengthens all closed geodesics of the hyperbolic surface, i.e., the equivalence class [u] of u,m od u l oc o bo u n d a r i e s ,l i e si n the admissible cone Λ([⇢]) of the hyperbolic surface H 2 /⇢(⇡ 1 (S)).
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Crooked Halfspaces: The connected component of R 2,1 \P(v 0 , v) containing the Killing fields whose non-repelling fixed points (space-like, time-like, light-like) lie in the half-plane H + (v) ⇢ H 2 (resp. H (v))i sc a l l e dt h epositive crooked half-space (resp. negative crooked half-space),d e n o t e d by H + (v) (resp. H (v)).

Next we recall the definition of stem quadrant of a transversely oriented hyperbolic geodesic, as defined in [START_REF] Burelle | Crooked halfspaces[END_REF].

Let v 2 R 2,1 be a space-like vector, v + , v be future-pointing light-like vectors in v ? and In [START_REF] To | Fundamental p olyhedra for margulis space-times[END_REF], Drumm gave a sufficient condition for two crooked planes to be disjoint. Theorem 7.2.3 (Drumm). Let v, v 0 be two space-like points in R 2,1 such that their corresponding lv , l v 0 geodesics are disjoint in D and are transversely oriented away from each other. Then for every w 2 SQ( ! l v ) and w 0 2 SQ( ! l v 0 ), we have H + ( lv )+w ⇢H ( l v 0 )+w 0 . In particular, the crooked planes P(w, v) and P(w 0 , v 0 ) are disjoint.

Parametrisation of Margulis spacetimes

In this section we will recall the parametrisation of Margulis spacetimes using the pruned arc complex and the construction of the fundamental domain of a Margulis spacetime from an admissible deformation of a compact hyperbolic surface with boundary, as done in [START_REF] Danciger | Margulis spacetimes via the arc complex[END_REF].

Drumm's construction of proper cocycles. Let ⇢ :Γ ! G be a convex cocompact representation. A fundamental domain for the action of ⇢(Γ) on the hyperbolic plane D is bounded by finitely many pairwise disjoint geodesics. These geodesics are used to construct the stems of pairwise disjoint crooked planes in R 2,1 . Then these planes are made disjoint from each other by adding points from their respective stem quadrants. The polyhedron bounded by these new crooked planes is a fundamental domain for the action of the group Γ and the resulting manifold X/Γ is complete. Finally, Drumm determined u.

From proper cocycles to Margulis spacetimes, [START_REF] Danciger | Margulis spacetimes via the arc complex[END_REF]. Let S c be a compact hyperbolic surface with totally geodesic boundary. Let ⇢ : ⇡ 1 (S c ) ! PGL(2, R) be a holonomy representation and u : ⇡ 1 (S c ) ! g be a ⇢-cocycle such that [u] 2 Λ([⇢]). From Theorem 4.4.1 in [START_REF] Danciger | Margulis spacetimes via the arc complex[END_REF], we know that the projectivised strip map when restricted to the pruned arc complex of the surface S c is a homeomorphism onto its image Λ([⇢]).S ot h e r ee x i s t sap o i n tx 2 b A(S h sp ) and a unique simplex such that Pf (x)=[ u] 2 P + Λ([⇢]) and x 2 int ( ).S o x = P i t i [↵ i ] with Its non-zero points correspond to parabolic Killing fields that fix the ideal point [v 0 ] in the hyperbolic plane and preserve the horoballs based at this ideal point as sets: for k 2 Rr{0}, kv 0 ^v0 =0.S ot h ev e c t o rv 0 and hence the set H(v) is preserved by the flow of the Killing field associated to kv 0 .

P i t i =1and f (x)= P i t i f ↵i
• When v is contained in the light-like plane v 0 ? ,t h ep h o t o na l s ol i e si n s i d ev 0 ? .S u c h a photon is coloured blue in Fig. 7.1. Any vector u on such a photon, that is not contained in Rv 0 , is a hyperbolic Killing field with one of its fixed points at [v 0 ].W e h a v e t h a t

v 0 2L(w 2 , v 2 ) \ A 1 . Then v = w 1 + k 1 v 1 , v 0 = w 2 + k 2 v 2 ,
where k 1 = hw1,v2i hv1,v2i and k 2 = hw2,v1i hv1,v2i . Then we have

v v 0 = w 1 w 2 hw 1 , v 2 i hv 1 , v 2 i v 1 + hw 2 , v 1 i hv 1 , v 2 i v 2 = hw 1 w 2 , v 1 ^v2 i kv 1 ^v2 k 2 (v 1 ^v2 ).
The sign of the real number hw 1 w 2 , v 1 ^v2 i gives the handedness of the pair {L(w 1 , v 1 ), L(w 2 , v 2 )}.

From decorated surfaces to decorated Margulis spacetimes

In this section, we will adapt the parametrisation of Margulis spacetimes to our case of hyperbolic surfaces with decorated spikes. We start by defining decorated Margulis spacetimes. Let S h sp be a hyperbolic surface with Q decorated spikes, endowed with a decorated metric m =[ ⇢, x, h] 2 D(S h sp ). Then the metric on the convex core S ~is given by [⇢]. The admissible cone Λ(m) is an affine bundle over the admissible cone Λ([⇢]) of the convex core; denote by ⇡,t h e bundle projection ⇡ :Λ ( m) ! Λ([⇢]). The fibres are open subsets of R 2Q that are stable under the scaling of horoballs.

Let [u] 2 Λ(m) be an admissible deformation of the surface S h sp .L e t [u 0 ]: =⇡([u]). Then u 0 is a proper ⇢-cocycle and the group of isometries Γ (⇢,u0) acts properly discontinuously on R 2,1 . The quotient M := R 2,1 /Γ (⇢,u0) is a Margulis spacetime, which we decorate with photons in the following way: the infinitesimal deformation [u] imparts motion to every lift of each decorated spike of the surface. From the previous section, we know that set of Killing fields realising this particular variation to an ideal point decorated with a horoball, happens to be a photon. This collection of photons, denoted by L ,i sΓ (⇢,u0) -equivariant and is the decoration of the underlying Margulis spacetime. The pair (M, L ) is called a decorated Margulis spacetime.

Next we will give another way of looking at this decoration using tile maps. We know that the projectivised strip map when restricted to the pruned arc complex is a homeomorphism onto its image Λ(m).S o t h e r e e x i s t s a p o i n t x = b A(S h sp ) and a unique big simplex such that Pf (x)=[ u] 2 P + Λ(m) and x 2 int ( ).S o x = P i t i [↵ i ] with P i t i =1 , t i > 0 for every i and f (x)= P i t i f ↵i (m). Corresponding to this linear combination of strip maps we get a class of tile maps : f T ! g.N o ws u p p o s et h a tt h es u r f a c eh a sQ spikes and write the spike vector x as (x 1 ,...,x Q ).S i n c et h ea r c so f decompose the surface into tiles with at most one spike, there exist exactly Q tiles d 1 ,...,d Q such that x i 2 d i for every i =1 ,...,Q.U s i n gt h et i l em a p ,w e get a collection of Q Killing fields (d 1 ),..., (d Q ) where (d i ) acts on the ideal point x i .N o w suppose that h =( h 1 ,...,h Q ) is the horoball decoration given by the metric m. Then for each i =1,...,Q,thereexistsafuturepoin tingligh t-lik ev ectorv i and the set H(v i ) such that x i =[v i ] and h i =[H(v i )]. Then consider the collection of photons of the form (d i )+Rv i for i =1,...,Q and take their Γ (⇢,u0) -orbit.

Remark 7.3.1. Note that these photons are pairwise disjoint. If two photons intersect, their intersection point is a Killing field that realizes the motions of the two corresponding horoballs, hence the horoball connection has zero infinitesimal length variation. Hence the infinitesimal deformation [u] fails to be admissible. Remark 7.3.2. Every pair of photons has the same handedness, because every horoball connection is lengthened.

From decorated Margulis space-times to admissible deformations.

Let Γ be a finitely generated free discrete group acting properly discontinuously on R 2,1 and its representation ⇢ :Γ ! G n g.L e t(M := R 2,1 /⇢(Γ), L ) be a decorated Margulis spacetime with convex cocompact linear part ⇢ 0 :Γ ! G.U s i n gD r u m m ' sc o n s t r u c t i o no fp r o p e rc o c y c l e s ,w e have that Γ=Γ (⇢0,u0) , where u 0 is a proper ⇢ 0 -cocycle. The surface S c := D/⇢ 0 (S c ) is compact with totally geodesic boundary. Denote its boundary components by b 1 ,...,b n .

The set L is Γ (⇢0,u0) -equivariant; there exists finitely many pairs (w 1 , v 1 ),...,(w Q , v Q ) of points in R 2,1 such that for every i,thevectorv i is future-pointing and light-like and L is generated by the photons L i := L(w i , v i ), i =1 ,...,Q. This gives us Q ideal points x i =[ v i ] 2 @ 1 D.T a k e the ⇢ 0 (Γ)-orbit of this collection and join every consecutive pair, that lie on the same side of a lift of the boundary loop b i ,b yag e o d e s i c . L e tR be the simply-connected region in D bounded these geodesics. Then we get a hyperbolic surface with decorated spikes S h sp := R/⇢ 0 (Γ) with the metric m =[⇢ 0 , x, h], where x =(x 1 ,...,x Q ) and h =(h 1 ,...,h Q ), h i = P(H(v i )). The surface S c is the convex core of S h sp . The admissible deformation of S h sp is determined in the following way: for every i =1 ,...,Q, the photon L i imparts infinitesimal motion to the spike x i as well as the horoball h i in the sense that L i is exactly the set of Killing fields all of whom cause h i to vary in a certain infinitesimal way. Since no two photons intersect, every horoball connection is deformed and since every pair of photons has the same handedness, every horoball connection gets lengthened. Thus we get an admissible deformation [u] 2 Λ(m) with ⇡([u]) = [u 0 ].

From admissible deformations to decorated Margulis space-times.

Let S h sp be a hyperbolic surface with Q decorated spikes, endowed with a decorated metric m, which is of the form m =[ ⇢, x, h] 2 D(S h sp ).L e t[u] 2 Λ(m) be an admissible deformation of the surface S h sp .L e t [u 0 ]: =⇡([u]). Then u 0 is a proper ⇢-cocycle and the group of isometries Γ (⇢,u0) acts properly discontinuously on R 2,1 . By Theorem 6.1.2 there exists a unique point x = b A(S h sp ) and au n i q u eb i gs i m p l e x such that Pf (x)=[ u] 2 P + Λ(m) and x 2 int ( ).S ox = P i t i [↵ i ] with P i t i =1, t i > 0 for every i and f (x)= P i t i f ↵i (m). Corresponding to this linear combination of strip maps, we get a class of tile maps : f T ! g that are (⇢(⇡ 1 (S c )),u)-equivariant. Let ↵ 2E be any arc of and e ↵ be any lift. There exists tiles d 1 ,d 2 2 f T that have e ↵ as their common internal edge. The arc is either finite or joins a decorated spike with a bounary component. Let .L e tR be a fundamental domain of the surface S h sp bounded by some arcs e 1 ,f 1 ,...,e k ,f k in f E such that there exists 1 , ••• , k 2 ⇡ 1 (S h sp ) such that for i =1 , ••• ,k, f i = ⇢( i ) • e i .S i n c et h e r ea r en op a r a b o l i ce l e m e n t si n⇢(⇡ 1 (S h sp )),n o ra n y spiralling arcs, for every pair (e i ,f i ) of spike-to-edge arcs, the spikes are distinct. So there exists an edge-to-edge arc ↵ 2E whose lift e ↵ separates e i from f i .S i n c et h ea r ce ↵ is disjoint to both e i and f i in D,i t sa s s oc i a t e dc r oo k e dp l a n eP(w e ↵ , v e ↵ ) separates the crooked planes P ei , P fi .H e n c ew eh a v e that for every i =1 ,...,k,t h ec r o o k e dp l a n e sP ei , P fi are disjoint and (⇢( i ),u 0 ( i ))P ei = P fi . The region D bounded by these crooked planes is a fundamental domain for the action of Γ (⇢,u0) on R 2,1 .
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 1112 Figure 1.1: Concentric horoballs

  t h ec o r r e s p o n d i n gK i l l i n gv e c t o rfi e l di sp a r a b o l i c ,fi x i n g1; • P (z)=z,t h ec o r r e s p o n d i n gK i l l i n gv e c t o rfi e l di sh y p e r b o l i c ,fi x i n g0, 1; • P (z)=z 2 ,t h ec o r r e s p o n d i n gK i l l i n gv e c t o rfi e l di sp a r a b o l i c ,fi x i n g0.

  c d ef ab e + f a b = ab(e + f c d)+cd(a + b e f )+ef (c + d a b) (e + f c d)(e + f a b) , y 2 y 3 = ef ab e + f a b cd ab c + d a b = ab(e + f c d)+cd(a + b e f )+ef (c + d a b) (e + f a b)(c + d a b) .

y 1 y 2

 2 = ef bc e + f b c ef ab e + f a b = ef (c a)+bc(a + b e f )+ab(e + f b c) (e + f b c)(e + f a b) . Using the hypothesis (1.11), we know that the denominator of y 1 y 2 is positive. So it suffices to check the sign of the numerator. ef (c a)+bc(a + b e f )+ab(e + f b c)=ef (c a)+b{c(a + b e f )+a(e + f b c)} = ef (c a)+b{c(b e f ) a(b e f )} =(c a)(ef + b(b e f )) =(c a)(e b)(f b).
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 21 Figure 2.1: A one-holed torus and a torus
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 2223 Figure 2.2: Möbius strip and a one-holed Möbius strip
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 2 Figure 2.20: Induction step: ⌫ i is elliptic, ⌫ i+1 is hyperbolic
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 247248 Let v 2 Λ(m) be an admissible deformation of a surface S sp endowed with a metric m 2 D(S sp ). Then v satisfies (2.5). The subspace Λ(m) is an open convex cone of T m D(S).
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 2492410 Given a polygonal surface Π,av e c t o ri nt h et a n g e n ts p a c eT m D(Π) is called an infinitesimal deformation of Π. The admissible cone of a decorated polygonal surface Π7 n is defined to be the set of all infinitesimal deformations of a metric m 2 D(Π 7 n ),s u c ht h a ta l lt h eg e n e r a l i s e dv e r t i c e s are moved away from each other. It is denoted by Λ(m).

Lemma 2 . 4 . 11 .

 2411 The admissible cone of a decorated polygon Π 7 n , endowed with a metric m, is an open convex subset of T m D(Π 7
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 313314 The 0-skeleton (0) of a top-dimensional simplex of the arc complex A (S) is called a triangulation of the surface S. Afi n i t ea r co fao n e -h o l e di d e a lp o l y g o no rao n c e -p u n c t u r e di d e a lp o l y g o ni s called maximal if both its endpoints lie on the same connected component or edge. Definition 3.1.5.
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 324 The pruned arc complex b A(P 2n ), n 3 of is an open manifold of dimension 2n 4.

  A l s o ,t h ed e fi n i t i o no fab i gs i m p l e xi st h es a m ei nt h et w oa p p r o a c h e s .H e n c e ,f r o m Theorem (3.3.1) we have that Corollary 3.3.2. The pruned arc complex b

  that have equal weight t,t h e nt h e yp r o j e c tt ot h es a m ea r c ;s o h 1 (t([↵]+[↵ 0 ]) := t . This concludes the proof of the lemma. Corollary 3.3.4. The pruned arc complex b A(T qh,n ) of a non-orientable surface T qh,n with nondecorated spikes is homeomorphic to an open ball of dimension 3h 7+3n + Q. Proof. The subset Φ(I(A (S h 1,r,s ))) is an open ball of dimension 3h 7+3n + Q -i tc a nb e parametrised by the lengths of geodesic arcs of an Υ-invariant triangulation of S h 1,r,s and Υinvariant projective weights on the set Ω.U s i n gt h ei s o m o r p h i s mh,w eg e tt h a t b

  Euler characteristic of the surface Σ, (Σ) = 2 4g 2n<0.S o ,i ti sh y p e r b o l i c . Since there are no spikes, we can consider all complete hyperbolic metrics with totally geodesic boundary. Its deformation space D(Σ) is an open ball of dimension 12g 6+6n. The surface Σ has a degree two symmetry ◆ 2 MCG(Σ) that exchanges the two surfaces S and S 0 . Keeping this in mind, we construct an isomorphism, denoted by h,b e t w e e nt h es u b c o m p l e x Fix ◆ ( b A(Σ)) of the pruned arc complex of Σ,i n v a r i a n tu n d e rt h ei n v o l u t i o n◆,a n dt h ep r u n e da r c complex b
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 31 Figure 3.1: Doubling operation

  Fix ◆ (T (Ω)) is an open ball -it can be parametrised by the lengths of the geodesic arcs of an ◆-invariant triangulation of Σ.F i n a l l y ,u s i n gt h ei s o m o r p h i s mh from above we get that b A(S 0 ) is an open ball of dimension 6g 7+3n +2Q.

  Fig. (3.2)) or two of them are edge-to-vertex arcs and one edge-to-edge arc (third row in Fig. (3.2)). In the former case, the tile does not contain any vertex whereas in the latter case it contains one.

Figure 3 . 2 :Figure 3 . 3 :

 3233 Figure 3.2: Tiles for different surfaces
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 431432 Given an isotopy class ↵ of arcs and a choice of strip template (↵ g ,p ↵ ,w ↵ ), define the strip deformation along ↵ to be a mapF ↵ : D(S) ! D(S)where the image F ↵ (m) of a point m 2 D(S) is a new metric on the surface obtained by cutting it along the m-geodesic arc ↵ g in ↵ chosen by the strip template and gluing a strip whose waist coincides with p ↵ . The type of strip used depends on the type of arc and the surface being considered. Given an isotopy class of arcs ↵ of a hyperbolic surface S and a strip template {(↵ g ,p ↵ ,w ↵ )} ↵2K adapted to the nature of ↵ for every m 2 D(S),d e fi n et h einfinitesimal strip deformation f ↵ : D(S) ! T D(S) m 7 ! [m(t)]

Definition 4 . 3 . 3 .

 433 The infinitesimal strip map is defined as: is the pruned arc complex of the surface (Definition (3.1.7)). Two tile maps , 0 are said to be equivalent if for all d 2T , (d) 0 (d)=v 0 2 g.The set of all equivalence classes of tile maps corresponding to a simplex ⇢A(S) is denoted by Φ.

Figure 4 . 1 :

 41 Figure 4.1: Refined tiles

  ↵2Eσ[{ } c ↵ f ↵ (m) and Φ c . Definition 4.3.4. A neutral tile map, denoted by 0 ,isatilemapthatfixesthegeneralisedv ertex or a spike of a tile whenever it has one and satisfies the equation 0 ( • )) = • 0 ( ), for every 2 Γ. (4.4) Such a map belongs to the equivalence class corresponding to 0 2 T m D(S).

Example 4 . 3 . 5 .

 435 Firstly, we start with an undecorated ideal polygon Π D n , with n 4.R e c a l lt h a t ap o i n tm 2 D(Π D n ) is determined by the equivalence class of the coordinates of its ideal vertices: m =[x 1 ,...,x n ].

where t 2 2 #,f o r t 2

 222 PSL(2, R) is the hyperbolic element whose axis is perpendicular to ↵ g at p ↵ and whose translational length is tw ↵ .Consider the universal cover (which is the surface itself) inside the upper half plane U.S u p p o s e that the arc ↵ g is carried by the geodesic ( 1, 1) and p ↵ = i,s ot h a t t = R.L e texp : G ! g be the usual exponential function. Then exp (tV ↵ )={ t } t2R , where V ↵ =

  union of the two arcs ↵ g [ g decomposes the surface into the regions d 1 ,d 2 ,d 3 . In our example, we suppose that d 1 contains the first k 1 vertices, d 2 contains the next k 2 vertices and finally d 3 contains the remaining n (k 1 + k 2 ) vertices. Let g be the common boundary of d 2 ,d 3 . Then the deformation done by fixing d 1 ,applying t to the vertices of d 1 ,d 2 and finally by applying 0 t on the vertices of d 3 is expressed in the following way:

Remark 4 . 3 . 3 .

 433 If d, d 0 are two tiles with a common internal arc ↵ such that both the tiles contain the same elliptic (or parabolic, hyperbolic) vertex p,t h e n (d) ^p = (d 0 ) ^p = v ↵ ^p. The last term is zero because p 2 span {v ↵ }. So the piecewise Killing vector field X is well-defined at the common vertex.Next we move on to the polygons with non-trivial fundamental group -namely, punctured polygons Π n and one-holed polygons Π } n . Example 4.3.6. Let S =Π 3 .L e tm =([⇢, x]) 2 D(S) be a deformation of the surface, where ⇢ is the holonomy representation and x =(x 1 ,x 2 ,x 3 ) 2 @ 1 D 2 . The group Γ:=⇢(⇡ 1 (S)) is generated by ap a r a bo l i ce l e m e n tT in PSL(2, R), with fixed point corresponding to the puncture of the surface.Fix a strip template. Letx = t[↵]+(1 t)[ ] 2A(S), where ↵ is a minimal arc (separates a tile containing two spikes) and is a maximal arc in S (endpoints on the same edge). Define the simplex := ([↵], [ ]).T h e nf (x)=[ {m(t)}],w h e r em(t)=( [ ⇢ t ,x(t)]]), with ⇢ 0 = ⇢ and u := ⇢ 0 t is the infinitesimal deformation of the holonomy. The surface is divided into three tiles, namely, d 1 ,d 2 ,d 3 .L e td 1 be a punctured disk and the tiles d 2 be a pentagon with one spike and d 3 be a quadrilateral with two spikes. The tile d 1 (resp. d 3 )h a so n l yo n en e i g h bo u rd 2 ,a c r o s st h ec o m m o n internal arc (resp. ↵). The lift of d 1 to the universal cover f Π 3 ⇢ D, is an infinite polygon with exactly one ideal vertex (at p), and is invariant under the action of T .

where f T = { e d 1 }[Γ • e d 2 [

 12 Γ • e d 3 .N e x t ,w ec a l c u l a t et h ei n fi n i t e s i m a ld e f o r m a t i o nu of ⇢ caused by f (x).F r o mt h ed e fi n i t i o no fX,w eg e tt h a tf o rp 2 e d 1 , X(⇢( )p)=v ^(⇢( )p).

Example 4 . 3 . 7 .

 437 Let S =Π } 3 be a one-holed triangle. Let m =( [ ⇢, x]) 2 D(S)

Figure 4 . 2 :

 42 Figure 4.2: Universal cover of Π } 3

(4. 7 )

 7 Proof. We assume that supp (x) contains only one vertex [↵].S u p p o s et h a t↵ is an infinite arc joining a spike and a boundary component of S h sp . Consider the universal cover of the surface inside the upper half plane model U.U s i n gt h et r a n s i t i v i t yo fPSL(2, R),w ec a ns u p p o s et h a tt h el i f t s of and ↵ are the geodesics ( 1, 1), (a, 1),f o rs o m ea 2[START_REF] Bh Bowditch | Markoff triples and quasifuchsian groups[END_REF][START_REF] Bh Bowditch | Markoff triples and quasifuchsian groups[END_REF].L e t⇢ be the holonomy of the convex core. Then, ⇢( ) is a hyperbolic element in PSL(2, R) of the form ⇢(

Figure 4 . 3 :e

 43 Figure 4.3: Intersection of the arc and the curve

N0 P i=1 c i

 i =1. Then the following result was proved in[START_REF] Danciger | Margulis spacetimes via the arc complex[END_REF]: Theorem 4.4.1 (Danciger-Guéritaud-Kassel). Let S c = S g,n or T h,n be a compact hyperbolic surface with totally geodesic boundary. Let m =( [ ⇢]) 2 D(S c ) be a metric. Fix a choice of strip template {(↵ g ,p ↵ ,w ↵ )} ↵2K with respect to m. Then the restriction of the projectivised infinitesimal strip map Pf : b A(S c ) ! P + (T m D(S c )) is a homeomorphism on its image P + (Λ(m)).

Theorem 4 . 4 . 2 .

 442 The projectivised strip map Pf : b A(S c ) ! P + (Λ(m)) is proper. Secondly, they show that the map Pf is a local homeomorphism around points x 2 bA(S c ) such that codim ( x )  2,a n dt h e na r o u n dp o i n t ss u c ht h a tcodim ( x ) 2 by induction.

Theorem 4 . 4 . 3 .

 443 Let S c be a compact hyperbolic surface with totally geodesic boundary, equipped with a metric m 2 D(S c ).L e t x 2 b A(S c ) be a point contained in the interior of the simplex x ⇢A(S c ). Then, for every i =0 , 1, 2 and for every x 2 b A(S c ) with codim ( x )=i, there exists an open neighbourhood U of x in b A(S c ) such that Pf | U is a homeomorphism onto its image.

Theorem 4 . 4 . 4 .

 444 Let S c be a compact hyperbolic surface with totally geodesic boundary, equipped with a metric m 2 D(S c ).L e t be a codimension zero simplex and let E be the corresponding edge set. Then the set of infinitesimal strip deformations B = {f e (m)|e 2E } forms a basis of T m D(S c ).

4 Figure 5 . 1 :Pf : S n 4 ! S n 4 7 n

 451447 Arc complexes and deformation spaces of polygons Ideal n-gon Π D n Punctured n-gon Π n Pf : S n 2 ! S n 2 One-holed n-gon Π } n Pf : S n 1 ! S n 1 Decorated n-gon Π Pf : D 2n 4 ! D 2n 4

Figure 5 . 2 :

 52 Figure 5.2: Projectivised strip map for the four types of polygons

Theorem 5 . 1 . 1 .,w i t hn 4 .

 5114 Let m 2 D(Π D n ) be a metric on an ideal n-gon Π D n Fix a choice of strip template. Let be a top-dimensional simplex of its arc complex A ⇣ Π D n ⌘ and let E be the corresponding edge set. Then the set of infinitesimal strip deformations B = {f e (m)|e 2 f E } forms a basis of the tangent space T m D(Π D n ).

e2Eσc

  e f e (m)=0. (5.1) Recall that f E is the set of lifts of the arcs selected by the strip template for the metric m 2 D(Π D n ) and the set f T consists of the lifts of the tiles formed by the arcs of .S i n c e ,a ni d e a lp o l y g o ni s simply-connected, we have that E = f E , T = f T . Then we get an equivalence class of tile maps, up to an additive constant in g, which do not deform the polygon. From this class, we can choose a neutral tile map 0 : f T ! g (see definition 4.3.4 in Chapter 4), which by definition, fixes all ideal vertices of the tiles in f T . The following lemma finds a permitted region for the [ 0 (d)] any type of tile d. Lemma 5.1.2. Let be a top-dimensional simplex of A ⇣ Π D n ⌘ .L e t 0 : f T ! g be a neutral tile map corresponding to the linear combination (5.1).L e te 2 f E be an internal edge of a tile d 2 f T such that 0 (d) 6 =0 . Then the point [ 0 (d)] 2 RP 2 lies in the interior of the projective triangle, based at the geodesic e carrying e, that contains the tile d.

  triangle ∆RY S,c o n t a i n i n gd 00 .U s i n gt h es a m ea r g u m e n ta n dn o t a t i o no ft h ep r e v i o u s case, we have that the region where the point [ 0 (d)] must lie so that the straight line joining [ 0 (d)] and [ 0 (d 00 )] intersects ! e 00 outside D,i sg i v e nb yK 1 .L a b e lt h ep o i n t s ! e 0 \ ! t 3 , ! e 0 \ ! t 4 as T,O,r e s p e c t i v e l y . S i n c e 0 (d) 6 =0 ,t h ec o e ffi c i e n te 0 is non-zero. So, [ 0 (d)] 2 ! e 0 \D.H e n c e ,t h ep o i n t[ 0 (d)] must lie in the intersection ( ! e 0 \D) \ K 1 which is a segment (coloured blue in the figure) completely contained inside ∆.

Figure 5 . 4 :

 54 Figure 5.4: 0 (d 0 )=0

Figure 5 . 5 :

 55 Figure 5.5: d is a pentagon, 0 (d 0 ) 6 =0

Theorem 5 . 1 . 3 .

 513 Let m =[ ( ⇢, x)] 2 D 0 be a metric on a one-holed n-gon Π } n ,w i t hn 1.L e t be a top-dimensional simplex of the spinning arc complex A ! (Π } n ) and let E be the corresponding edge set. Then the set of infinitesimal strip deformations B = {f e (m)|e 2E } forms a basis of T m D 0 (Π } n ).

Figure 5 . 6 :Figure 5 . 7 :

 5657 Figure 5.6: A triangulation of Π } 3 and the lift of the dual graph

Lemma 5 . 1 . 4 .

 514 Let be a top-dimensional simplex of A ! ⇣ Π D n ⌘ .L e t 0 : f T ! g be a neutral tile map corresponding to the linear combination (5.1).L e te 2 f E be a finite internal edge of a tile d 2 f T such that 0 (d) 6 =0 . Then the point [ 0 (d)] 2 RP 2 lies in the interior of the projective triangle, based at the geodesic e carrying e, that contains the tile d.

Theorem 5 . 1 . 5 .

 515 Let m 2 D(Π n ) be a metric on an ideal once-punctured n-gon Π n ,withn 2.F i x a choice of strip template. Let be a top-dimensional simplex of its arc complex A (Π n ) and let E be the corresponding edge set. Then the set of infinitesimal strip deformations B = {f e (m) | e 2E } forms a basis of the tangent space T m D(Π n ).Proof. Like in the case of ideal polygons, we have that dim T m D(Π n )=#E = n 1.S ow eo n l y need to prove the linear independence of B. Again we start with an equation as in (5.1) with a corresponding neutral map 0 : f T ! g. This map is hT i-invariant, where T = ✓ 11 01 ◆ is the generator of the fundamental group. So 0 satisfies the following equation:

◆

  From eqs. (5.2) and (5.3), we get that y =0 ,x = z.H e n c e , 0 (d 1 ) is either zero or a parabolic element, fixing the light-like line Rp and [ 0 (d 1 )] = p.We now prove an analogous version of Lemma 5.1.4 for a punctured p olygon.Lemma 5.1.6. Let be a top-dimensional simplex of A (Π n ).L e t 0 : f T ! g be a neutral tile map corresponding to the linear combination (5.1).L e te 2 f E be an internal edge of a tiled 2 f T such that 0 (d) 6 =0 . Then the point [ 0 (d)] 2 RP 2 liesin the interior of the projective triangle, based at the geodesic e carrying e, that contains the tile d. Proof. Let d 2 f T such that 0 (d) 6 =0and let e 2 f E be an internal edge of d. Consider the dual graph of the triangulation of the universal cover of the surface by . It is an infinite tree invariant by the action of hgi. It can be seen as the countable union of finite trees and rooted at the infinite tile d 1 . The latter has infinitely many edges, each given by a lift of the unique maximal arc e M 2E of the triangulation. There are two possibilities -either d = d 1 or there exists a unique lift f e M that separates d from d1.L e t⌧ be the finite rooted sub-tree spanned by the tile d 1 and all those tiles that are separated by f e M from d 1 .D e fi n eM (d) as the length of the longest path on ⌧ joining d and a quadrilateral tile or the root tile d 1 such that the path does not cross the edge e of d. Then the lemma is proved by induction on M .

Theorem 5 . 1 . 7 .Lemma 5 . 1 . 8 .

 517518 Let m 2 D(Π 7 n ) be a metric on a decorated n-gon Π7 n ,w i t hn 3. Fix a choice of strip template. Let be a top-dimensional simplex of its arc complex A (Π 7 n ) and let E be the corresponding edge set. Then the set of infinitesimal strip deformations B = {f e (m) | e 2E } forms a basis of the tangent space T m D(Π 7 n ).Proof. Again, we have that dimT m D(Π 7 n )=# E =2 n 3.S o ,i ti se n o u g ht os h o wt h a tt h e above set is linearly independent. Since every decorated polygon is simply connected, we have that E = f E and T = f T .S u p p o s et h a t P e2Eσ c e f e (m)=0 , with not all c e 's equal to 0. Let 0 : f T ! g be a neutral tile map; by definition, it fixes the generalised vertices of every tile. Suppose the tile d has a generalised vertex ⌫ (Fig.5.8, 5.9, 5.10). If ⌫ is parabolic, the vector field 0 (d) fixes the ideal point as well as the horoball decoration. If 0 (d) 6 =0 ,t h e nt h ep o i n t[ 0 (d)] contained in the interior of the desired triangle, due to the convexity of @ 1 D.S i m i l a r l y ,i f⌫ is the truncation of a hyperideal point p or is an elliptic point v,t h e n[ 0 (d)] = p and [ 0 (d)] = v respectively. Let be a top-dimensional simplex of A (Π 7 n )

Figure 5 . 8 :Figure 5 .

 585 Figure 5.8: 0 -images of tiles of type 1

3 .

 3 The tiles that share an edge carried by ↵ 1 are the pairs {d 1 ,d 4 } and {d 2 ,d 3 }. The tiles that share an edge carried by ↵ 2 are the pairs {d 1 ,d 2 } and {d 3 ,d 4 }.F r o mt h ec o h e r e n c ep r o p e r t y (2), it is enough to verify the property for {d 1 ,d 4 } and {d 3 ,d 4 }. The tile d 4 lies above both the semicircles carrying the arcs ↵ 1 ,↵ 2 ,r e s p e c t i v e l y . F r o mt h ed e fi n i t i o no f 0 we have that,

  r e s pe c t i v e l y . L e td 0 be the infinite tile around e o 1 ,a n dd 1 and d 2 be the tiles neighbouring d 0 along edges carried by f ↵ 1 and f ↵ 2 , respectively. The fourth tile formed at the vertex e o 1 is denoted by d 3 . The tiles around e o 2 are d 0 ,d 2 ,T • d 1 and a fourth tile denoted by d 4 .A g a i n ,f o rj =3 , 4,t h et i l ed i is either a quadrilateral with one ideal vertex, formed by two boundary edges of the punctured polygon or it is a pentagon with two arc edges respectively contained in f ↵ 1 , f ↵ 2 and a third arc edge e j which is a lift of an arc j 2 e E 1 \ e E 2 .F o ri =1, 2,l e tx i denote the centre of the semi-circle containing e ↵ i .L e ty 3 denote the ideal vertex of 3 or the centre of the semi-circle containing 3 .S i m i l a r l y ,l e ty 4 denote the ideal vertex of d 4 or the centre of the semi-circle containing f 4 .L e ta, b, c, d 2 R be such that f ↵ 1 joins the two geodesics (c 1,d 1) and (c, d),a n df ↵ 2 joins (a, b) and (a +1,b+ 1). Then a, b, c, d satisfies a<b c<d a +1.

  , otherwise.

Figure 5 . 16 :Properties 5 . 2 . 9 .

 516529 Figure 5.16: Codimension one: Case 2

(d) Suppose , 0

 0 are two tiles that share the edge carried by f ↵ 1 . Then either = d 4 , 0 = d 1 or = d 3 , 0 = d 2 .F r o mc a l c u l a t i o n sd o n ea b o v e ,w eg e tt h a t ( 0 (d 4 ) 0 (d 1 ))(z)=z x 0

Properties 5 . 2 . 11 .

 5211 representing the equation: c ↵1 f ↵1 (m)+c ↵1 f ↵2 (m)=0, (5.29) An e u t r a lt i l em a p 0 : e T ,r ! R 2 [z] represents the equation (5.28) or (5.29) if and only if it verifies the following properties:(a) 0 is Γ-equivariant: for all 2 e T ,r , 0 ( • d)(z)= 0 ( )( z ).(b) If a tile 2 e T ,r contains a spike at a point z 0 2 R,t h e n 0 (d) is a polynomial that vanishes at z 0 .(c) The map is consistent around every lift of every intersection point.(d) If , 0 are two tiles that share an edge carried by the lift f ↵ 1 of ↵ 1 ,s u c ht h a t lies to the left of the lift, then 0 ( ) 0 ( 0 ) is a parabolic Killing field with fixed point at 1, pointing towards . In terms of polynomials, we must have 0 ( ) 0 ( 0 )=(z 7 ! A), for some A<0.

  (g) Let (z n ) n be a sequence of points in tiles d n 2 f T that converges to a point z on the axis of the isometry ,t h e n 0 (d n ) converges to 0. Let f ↵ 1 , f ↵ 2 be the lifts of ↵ 1 ,↵ 2 such that their finite ends lie on ( a, b).L e t e o(p, q)

  w el a be lt h es m a l l tiles lying above and below f ↵ 2 as d 2p and d 2p+1 , respectively. The four tiles formed around this intersection point o(p, 0) are d 2p 1 ,d 2p ,d 2p+1 ,d 2(p+1) . The pairs {d 2p 1 ,d 2p+1 } and {d 2p ,d 2(p+1) } share a common edge carried by p f ↵ 1 ;thepairs{d 2p 1 ,d 2p } and {d 2p+1 ,d 2(p+1) } share a common edge carried by f ↵ 2 .A l s o ,f o re v e r yp 2 N,w eh a v e d 2p+1 = 1 d 2p .

( d ) 2 p+1 2 .

 d22 The tiles d 2p+1 ,d 2(p+1) lie to the left of the arc p f ↵ 1 .F r o mt h ea b o v ec a l c u l a t i o n sa n d using >1,w eh a v et h a t 0 (d 2p+1 ) 0 (d 2(p 1)+1 ) is the negative constant polynomial z 7 ! p (1).(e) The tiles d 2p ,d 2(p+1) lie above the arc p f ↵ 1 .A g a i n ,f r o mt h ed e fi n i t i o no f 0 ,0 (d 2p )(z) 0 (d 2p 1 )(z)= 1 z 2 + p+1 + z Since >1,th el e a d i n gc o e ffi c i e n ti sp o s i t i v e . H e n c e ,t h ep r o p e r t y( e )i sv e r i fi e d . (f) This case is possible only when n 2 and = d 1 . The Killing field ( 0 (d 1 ))(z)= z 2 +1 is a hyperbolic with attracting fixed point at 1 and repelling fixed point at -1. Since, the endpoints of e are (x, 0) and ( 1 x , 0),t h ea x i si sp e r p e n d i c u l a rt o e .H e n c et h ep r o p e r t y (f) is satisfied. (g) Let z n be a sequence of points converging to a point z on the axis of . Then there are monotonically increasing divergent sequences (p n ) n , (q n ) n ⇢ N such that for all n 2 N,t h et i l e qn d 2(pn)+1 contains at least one point of the sequence, q n  p n and [ n z n ⇢[ n qn d 2(pn)+1 .F r o m t h e d e fi n i t i o n o f t h e t i l e m a p 0 we get that 0 ( qn d 2(pn)+1 ) tends to 0 as n !1.

Theorem 5 . 3 . 1 .

 531 Let Π be a hyperbolic surface with boundary. Let p 2A(Π) such that codim ( p )=2. Then, Pf | Link( p , b A(Π)) is a homeomorphism.

Theorem 5 . 3 . 2 .

 532 Let p 2 b A(Π) such that codim ( p ) 2. Then, Pf | Link( p ,A(Π)) is a homeomorphism. Proof. The statement is verified for codim ( p )=2.S u p p o s et h a tt h es t a t e m e n th o l d sf o r2,...,d 1. We need to show that Pf | Link( p ,A(Π)) : S d 1 ! S d 1 is a local homeomorphism. Let x 2 Link( p , A (Π)). Then x is contained in the interior of a simplex x whose codimension in the link is d 1 dim x , which is less than d.S o b y t h e i n d u c t i o n hypothesis, the map Pf | Link( p ,A(Π)) restricted to Link( x , Pf | Link( p ,A(Π)) ) is a homeomorphism. This proves that Pf | Link( p ,A(Π)) is a local homeomorphism. Since S d 1 is compact and simplyconnected for d 3, it follows that Pf | Link( p ,A(Π)) is a homeomorphism. Thus, for the surfaces Π=Π D n (n 6), Π n (n 3), Π } n (n 3),thePf : b A(Π) ! P + (T m D(Π)) is a local homeomorphism and by compactness and the simply-connectedness of the sphere S n ,w e get that the map is a homeomorphism. Chapter 6

Lemma 6 . 2 . 2 .

 622 Let A, B, C, D be four ideal points ordered in anti-clockwise manner. Let AB and CD be two disjoint geodesics in D.L e tE, F, G be the intersection points ! respectively. Then the set of all Killing fields that impart at least the same amount

Figure 6 . 1 :

 61 Figure 6.1: The shaded region is the bigon of Lemma 6.2.2 (absolute value) of longitudinal motion to AB as to CD, is given by the bigon bounded by ! GF and ! EF, that contains the segment CD. Proof. Firstly, we prove that the Killing vector fields who projective images are one of E, F, G, impart equal longitudinal motion to both AB and CD.L e ta, b, c, d be future-pointing light-like vectors in the preimages of A, B, C, D such that a =( cos ✓, sin ✓), 1), b = (cos ✓, sin ✓, 1) c = (cos ✓, sin ✓, 1), d =( cos ✓, sin ✓, 1),

Theorem 6 . 2 . 3 .

 623 Given a triangulation of a hyperbolic surface with undecorated spikes S sp = S q g,n or T qh,n with corresponding edge set E , the set of infinitesimal strip deformations B = {f e (m)|e 2E } forms a basis of T m D(S sp ). Proof. Let 0 : f T ! g be a neutral tile map for the triangulation (Definition 4.3.4), representing the linear combination X e2Eσ c e f e (m)=0. Let e be a common internal edge of two tiles d, d 0 2 f T .F i r s t l yw es h o wt h a tt h el o n g i t u d i n a l motions imparted to e by 0 (d) and 0 (d 0 ) are equal. We can decompose the Minkowski space as R 2,1 = L e L e ? ,

2 . 4 ,

 24 [ 0 (d)] and [ 0 (d 0 )] belong to two projective triangles whose interiors are disjoint. If c e 6 =0 ,t h e n[ 0 (d) 0 (d 0 )] must be a point in ! e \D.B u ta n y line joining [ 0 (d)] and [ 0 (d 0 )] intersects ! e inside D.S ow ea r r i v ea tac o n t r a d i c t i o n .H e n c et h e longitudinal motion along every arc is zero.

Figure 6 . 6 : e 2 = • f 1 Figure 6 . 7 at y 1

 6621671 Figure 6.6: e 2 = • f 1

Case 2 :

 2 Consider a subsequence (z n ) n such that for every n 2 N there exists an arc ↵ n ⇢ supp (z n ) with l ↵n (m) >M+ C.S o l ↵\K(S ~) >M .F r o m L e m m a 4 . 3 . 1 2 ,t h e r e e x i s t s a g e o d e s i c , denoted by (n), which satisfies✓ 0 := max p2 (n)\supp(zn) ∠ p (supp (z n ) , (n)) < ✏ M 0 . (6.12)Thus we havedl (n) (f (z n )) = X p2 (n)\supp(zn) w zn (p)sin∠ p ( (n), supp (z n ))  ✓ 0 X p2 (n)\supp(zn)w zn (p) l (n) (m)✏.

2 .

 2 Consider a subsequence (z n ) n such that for every n 2 N there exists an arc ↵ n ⇢ supp (z n ) with l ↵n (m) >M+ C.S o l ↵\K(S ~) >M .F r o m L e m m a 4 . 3 . 1 2 ,t h e r e e x i s t s a g e o d e s i c , denoted by (n), which satisfies✓ 0 := max p2 (n)\supp(zn) ∠ p (supp (z n ) , (n)) < ✏ M 0 . (6.13)Thus we havedl (n) (f (z n )) = X p2 (n)\supp(zn) w zn (p)sin∠ p ( (n), supp (z n ))  ✓ 0 X p2 (n)\supp(zn)w zn (p) l (n) (m)✏.

!

  l v be the hyperbolic geodesic in D with endpoints at [v + ], [v ] and oriented towards [v + ]. Definition 7.2.2. The set SQ( ! l v ):=R >0 v + R >0 v is called the stem quadrant of the transversely oriented geodesic l v ,a s s o c i a t e dt ot h ep o s i t i v e l yo r i e n t e dt r i p l e t(v + , v, v ).

Figure 7 . 1 :

 71 Figure 7.1: The different types of photons.

7. 3

 3 Decorating a Margulis spacetime 7.3.1 Photons and Killing fields Consider the projective disk model D and a point p 2 @ 1 D.R e c a l lt h a ta no p e nh o r o b a l lh based at p is the projective image of the subset H(v)={w 2 H 2 |h w, vi > 1} of the hyperboloid H 2 , where v is a future-pointing light-like point in P 1 {p}. If k>k 0 > 0,t h e nt h eh o r o b a l l h := PH(kv 0 ) is smaller than the horoball h 0 := PH(k 0 v 0 ). Definition 7.3.1. Let v 0 2 R 2,1 be a future-pointing light-like vector and let v 2 R 2,1 be any point. Then the affine line L(v, v 0 ):=v + Rv 0 is called a photon. Av e c t o ru 2L (v, v 0 ) corresponds to a Killing field that moves the vector v 0 in the direction u ^v0 .Av e c t o rw 2 H is moved in the direction u ^w. • When v 2 Rv 0 ,t h ep h o t o nL(v, v 0 ) is the vectorial line Rv 0 ,c o l o u r e dg r e e ni nF i g . 7 . 1 .

(d 2 ) (d 1 )

 21 be the Killing field that represents the term t ↵ f ↵ (m) in f (x).W h e n ↵ is finite, the difference is a hyperbolic Killing field belonging to the stem quadrant SQ( ! l v ).O t h e r w i s e ,i t is a parabolic Killing field fixing the ideal endpoint of e ↵.D e fi n et h ea s s o c i a t e dc r o o k e dp l a n ea s before: P e ↵ := P(w e ↵ , v e ↵ ), with w e ↵ := (d1)+ (d2) 2

  

  

  

  be the tangents at u 1 and v 1 from p 1 and p 2 respectively, to @ 1 D. is hyperbolic if and only if it is the truncation of a hyperideal point lying in the region P .H e n c et h er e g i o nK is given by P r D. If ⌫ 3 is of parabolic type, then K is given by the open contractible arc u 1 v 1 := P \ @ 1 D.T h eh o r o b a l ld e c o r a t i o ng i v e sat r i v i a ll i n e bundle over u 1 v 1 .F i n a l l y ,a n yp o i n ti nK := P \ D can be a valid elliptic vertex and these are the only possibilities. So in all the three cases, the set K is homeomorphic to an open 2-ball.

	3 . 1 f o r t h e g e o d e s i c s l 1 ,l 2 we get that the third vertex ⌫ 3 must e 3 , ! l 1 , ! l 2 , be contained in one of the two disjoint open projective triangles bounded by ! intersecting D;w ed e n o t eb y∆ the one which is in accordance with the chosen ordering ⌫ 1 ⌫ 2 ⌫ 3 .L e t ! t 1 , ! t 2 Then from Lemma 1.6.2, their point of intersection p lies inside ∆.L e tP be the pentagon bounded by the lines ! l 1 , ! l 2 , ! e 3 , ! t 1 , ! t 2 lying in ∆.
	Now, by applying Lemma (1.6.2) to the geodesic with endpoints u 1 ,v 1 ,w eg e tt h a tt h et h i r d
	vertex ⌫ 3

  If 0 (d 0 ) 6 =0,thenb ytheinductionh ypothesis,[ 0 (d 0 )] lies inside the projective triangle ∆ 0 based at e 0 that doesn't contain d 0 .S e eF i g .is contained in the segment O 1 O 2 , which lies in the interior of ∆. This proves the induction step and hence the lemma for ideal polygons.

	ow eh a v e[ 0 (d)] = -5 . 5A g a i nb yP r o p e r t y1.6.2,t h ep o i n t ! ! t ,w h i c hl i e si n s i d e∆,b y e 0 \ convexity of @ 1 D. [ 0 (d)] is contained in the region K := RP 2 \∆ 0 .L e t ! t 1 , ! t 2 be the tangents to @ 1 D at the endpoints of e 0 .L a b e lt h ep o i n t s ! t 1 \ ! t, ! t 2 \ ! t by O 1 ,O 2 respectively. Then

0 (d)

  .11) a 1 y 1 a 2 y 2 + a 3 y 3 a 4 y 4 =0, <x 1 <y j <x 2 <y 3 , (5.15) So, a 1 ,a 2 ,a 3 < 0. Remark 5.2.1. Note that for every 2T ,r , 0 ( ) 2 R 1 [z].T h i si sac o n s e q u e n c eo fo u rc h o i c eo f normalisation and strip template. In fact, except for the case of one-holed polygons, we will use only Killing fields in R 1 [z] in this chapter. Verification of the properties:

		(5.12)
	a 1 (x 1 y 1 ) a 4 (x 1 y 4 )=0	(5.13)
	a 3 (x 2 y 3 ) a 4 (x 2 y 4 )=0.	(5.14)
	Applying Lemma (1.6.6) to the geodesics (a, b), (c, d), (e, f ) and then to (c, d), (e, f ), (g, h) we get
	that for j =2, 4,	
	y 1	

  =0 . The tiles around e o(p, 0) are d 2p 1 ,d 2p ,d 2p+1 ,d 2(p+1) . The pairs {d 2p 1 ,d 2p+1 } and {d 2p ,d 2(p+1) } share a common edge carried by p • f ↵ 1 ,andthepairs{d 2p 1 ,d 2p } and {d 2p+1 ,d 2(p+1) } share a common edge carried by f ↵ 2 .F r o mt h ed e fi n i t i o no f 0 we get that

	0 (d 2p+1 )(z)	0 (d 2(p 1)+1 )(z)= p	(p 1)

•

  Ideal n-gons Π=Π D n ,f o rn 6: The complex Link( p , b A(Π D n )) is either a quadrilateral or a pentagon. So it is enough to show that the continuous map Z 5 be the angle formed at the origin by the vectors f (↵ i+1 ) and f (↵ i ),i nD(Π D 5 ).T h e n , for every i =1 ,...,5,w eh a v e✓ i 2 (0,⇡).B yt h e o r e m5 . 2 . 1 ,w ek n o wt h a tt h e r ei sac h o i c e of strip template such that ✓ 1 + ✓ 2 <⇡.A l s o ,t h es u m P 5 i=3 ✓ i < 3⇡.S i n c e ,f is a continuous map from the circle to itself, the quantity P 5 i=1 ✓ i is always a multiple of 2⇡.H e n c e ,w eh a v e P 5

	Pf |	Link( p , b A(Π D n ))	: S 1 ! S 1		
	has degree one. Suppose that the link is a pentagon. Let {↵ i } 5 i=1 be the five vertices of A	⇣	Π D 5	⌘	.L e t✓ i ,
	i 2				

•

  Punctured n-gons Π=Π n ,f o rn 5 or one-holed n-gons Π } n ,f o rn 3 :S u p p o s et h a tt h e complement Π\ S

	↵2

  By linearity, we get that the Killing vector fields whose projections lie on the straight line ! EF and ! GF impart equal or opposite longitudinal motions to AB and CD. Now, any Killing field, whose projective image lies on the straight line c ^d,i m p a r t sz e r om o t i o nt oCD and non-zero motion to AB.S i n c et h el o n g i t u d i n a lm o t i o no nag i v e nl i n ei sal i n e a rf u n c t i o no ft h eK i l l i n gfi e l d , the bigon containing the segment CD is the desired one.

			t h e nw eh a v e
	hX E ,	a ka ^bk ^b	i = hX E ,	c kc ^dk ^d	i = 4 cos 2 ✓.

  2. Next we suppose that d is of type 2. Then d is a pentagon with one ideal vertex and exactly two internal edges -one of them is e and the other one is denoted by e 0 .L a b e lt h ee n d p o i n t s of e and e 0 as A, B, C, D in the trigonometric sense. We shall use the notations as in the hypothesis of Lemma 6.2.2. Then we get that [ 0 (d)] must lie in the bigon bounded by [ 0 (d)] is a point on the segment O 1 O 2 that intersects D.W e n e e d t o s h o w t h a t t h e s e g m e n t O 1 O 2 ,t h a ti n t e r s e c t sD,l i e sc o m p l e t e l y inside the projective triangle based at e,c o n t a i n i n gt h et i l ed.

	! EF and that [ 0 (d)] lies on the tangent, denoted by ! GF containing e 0 .A l s o ,s i n c e 0 is a neutral map, from Corollary 1.5.2 we know ! t ,t o@ 1 D at the ideal vertex O of d.L e t O 1 := ! t \ ! EF and O 2 := ! t \ ! GF . Then,

  1 ,↵ 2 .L e te o be a lift of the point o. Then e o = f ↵ 1 \ f ↵ 2 for two lifts of ↵ 1 and ↵ 2 respectively. There are four tiles formed around e o,d e n o t e db yd j ,f o r j =1 ,...,4.F o re a c hj 2{ 1,...,4},t h et i l ed j is either a quadrilateral with an ideal vertex and exactly two arc edges carried by f ↵ 1 and f ↵ 2 , or it is a pentagon with exactly three arc edges carried by f ↵ 1 , f ↵ 2 and a third arc e j , which is a lift of an arc j 2E 1 \E 2

  equivariant and satisfies Properties (1)-(4), as defined in Chapter 5. Suppose that the endpoints of f ↵ 1 lie on the boundary geodesics (a, b) and (e, f ) and those of f ↵ 2 lie on (c, d) and (g, h) such that the following inequalities hold:

	a<b c<d e<f  g<h .	(6.8)
	For j =1,...,4,d e fi n e	
	0	

  Si2I ↵ i ,t h e r ei se i t h e ra loop or a horoball connection, denoted by .B y c o n s t r u c t i o n , intersects only the arcs {↵ i } i/ 2I .B yc o n t i n u i t yo ft h ei n fi n i t e s i m a ls t r i pm a pf on ,thesequence(f (y n )) n converges to f (y) 2 @Λ(m) and Hence f (y) fails to lengthen .Next we show that f (y) 6 =0 .L e t be the boundary component containing one endpoint of an arc ↵ i for i 2I. Then we have

	where there exists I ( {1,...,N} such that
	for i 2I,t i (n) 7 ! t 1 i 2 (0, 1], and	i2I X	t 1 i =1,
	for i 2{1,...,N} r I,t i (n) ! t 1 i =0.
	Since y 2A S h sp r b A(S h sp ),i nt h ec o m p l e m e n to fsupp (y)=
	dl (f (y)) =	X	t 1 i dl (f ↵i (m)) = 0.
			i/ 2I
	dl (f (y)) =	X
		p2 \supp(y)
				.8

w y (p)sin∠ p ( , supp (y))

t 1 i w ↵i (p)sin∠ p ( , supp (y)) > 0.

Acknowledgements

Let w(t) be the width of the strip added at the point p after a strip deformation t . Then, cosh w(t)=1+ t 2 2(1 a 2 ) ,

) w(t)= t p 1 a 2 + o(t),

Finally, by construction we have that sin ∠ p ( g , supp (x)) = p 1 a 2 . This concludes the proof for one intersection point. By linearity, we get the result for the general case with multiple intersection points.

Lemma 4.3.10. Let x be a point of a hyperbolic surface S.L e tB be a geodesic ball centered at x with radius r, where r is the injectivity radius of the surface. Then for every pair of distinct lifts B 1 ,B 2 of B in the universal cover of S, we have that B 1 \ B 2 = ;.

Proof. Let x, B, B 1 ,B 2 be as in the hypothesis. Then, B =exp x (B(0,r)).F o ri =1, 2,l e tx i 2 H 2 be the center of B i . Then x 2 = • x 1 for some 2 ⇡ 1 (S).

If possible, let e z 2 B 1 \ B 2 .S i n c et h ea c t i o no f⇡ 1 (S) is free, the point z 0 := • e z lies inside B 2 . Join x 2 with z and z 0 by geodesic segments l 1 ,l 2 ,r e s pe c t i v e l y . O nt h es u r f a c eS,t h ep a t hl 1 [ l 2 is mapped to a loop based at z.S i n c eB is the embedding of a ball by the exponential map, this loop is trivial. So l 1 [ l 2 is a loop in e S based at a lift e z, which is a contradiction.

Lemma 4.3.11. Let S be a hyperbolic surface with a deformation m 2 D(S). Then there exists M>0 such that for every non-trivial closed geodesic and for every non-trivial geodesic arc ↵, the following inequality holds:

Proof. We prove the theorem for surfaces with decorated spikes. Let and ↵ be as in the hypothesis. We further supp ose that ↵ is an infinite arc joining a decorated spike and a boundary component of S.W ep r o v et h a tt h e r ee x i s t sap o s i t i v ec o n s t a n tM 0 such that for every unit segment ⌘ and for every arc ↵, the following inequality holds.

Given such a unit segment ⌘,l e t⌘ \ ↵ = {p 1 ,...,p k }.W eo r d e rt h e ms ot h a tp i lies closer to the horoball than p j if and only if i>j .T a k eal i f te ↵ of ↵ in the universal cover inside D.S i n c e↵ is embedded, for every i =1 ,...,k,t h e r ei se x a c t l yo n el i f t e p i of p i that lies on e ↵.L e tr 0 be the injectivity radius of the surface. Cover the entire arc e ↵ with balls {B j } j2J of radius r := r0 2 ,s u c h that two consecutive balls are tangent to each other.

We claim that each ball contains at most M 0 number of intersection points, where M 0 := [ 1 r0 ]+1. Consider one lift of ⌘ and a ball B r in the above covering. Then a reformulation of the claim is are parabolic preserving the spike as well as the horoball decoration. So the longitudinal motion along e is zero in this case. It remains to show that the maximal longitudinal motion along any edge-to-edge arc is zero. Like in the case of surfaces with undecorated spikes, we shall now prove the following analogue of Lemma 6.2.4. Lemma 6.2.6. Suppose that e is an edge-to-edge arc with maximal longitudinal motion. Let d 2 f T be a tile with e as an internal edge. Then, the point [ 0 (d)] is contained in the interior of the projective triangle based at e, containing d.

Proof. Once again there are three types of tiles. Figure 6.3 shows the different tiles formed after the triangulation of the surface.

• Suppose that d is of type one, i.e., it is a triangle with one decorated ideal vertex and one internal edge which is edge-to-edge. (Topmost tile in Fig. 6.3). The point [ 0 (d)] is given by the ideal vertex, which lies inside the desired triangle.

• Suppose that d is of type two, i.e., it is a quadrilateral with one decorated ideal vertex and two internal edges, one of which is edge-to-edge (Third tile from the top in Fig. 6.3). Once again, the point [ 0 (d)] is given by the ideal vertex, which lies inside the desired triangle.

• Suppose that d is of type three. Firstly, we suppose that it is a pentagon with one decorated ideal vertex and three internal edges, one of which is edge-to-edge (Fourth tile in Fig. 6.3). Once again, the point [ 0 (d)] is given by the ideal vertex, which lies inside the desired triangle. Secondly, if d is a hexagon with three edge-to-edge arcs (second tile from the top in Fig. 6.3), then the argument is exactly the same as in the proof for surfaces with undecorated spikes.

This finishes the proof of Lemma 6.2.6.

CHAPTER 6. STRIP DEFORMATIONS OF GENERAL SURFACES

Theorem 6.2.9. Let S h sp be a hyperbolic surface with decorated spikes. Let m 2 D(S h sp ). Then the projectivised strip map Pf : b

A(S h sp ),t h e r ee x i s t sa ni n t e g e rn 0 2 N such that for all n n 0 , x n / 2 K. We want to show that Pf (x n ) !1in the projectivised admissible cone P + Λ(m).R e c a l l t h a t the admissible cone Λ(m) is an open convex subset of T m D(S). Its boundary @Λ(m) consists of 0 2 T m D(S) and is supported by hyperplanes (and their limits) given by the kernels of linear functionals dl : T m D(S) ! R, where is a horoball connection or a non-trivial closed geodesic of the surface. It suffices to show that f (x n ) tends to infinity (in the sense of leaving every compact subset) inside Λ(m) but stays bounded away from 0 so that Pf (x n ) tends to infinity in P + Λ(m).

From Lemma 4.3.11, we get that there exists a constant M 0 > 0 depending on the normalisation such that for every closed geodesic and every point x 2A S h sp the following inequality holds X p2 \supp(x)

where w x :supp(x) ! R >0 is the strip width function. Let K(S ~) be a compact neighbourhood of the convex core S ~of the surface. Then every arc has bounded length outside K(S ~):t h e r ee x i s t s C>0 such that for every geodesic arc ↵, l ↵rK(S ~) <C.G i v e n✏>0,w eg e tac o n s t a n tM>0 from Lemma 4.3.12 applied to ✏ M 0 .D e fi n e

Since there exist only finitely many geodesic arcs in S h sp (and hence finitely many permitted arcs) up to any given length, we have that K M is finite. Consequently, the set Σ M of simplices in A S h sp spanned by the arcs in K M is also finite. We will show that there exists n 1 2 N such that for every n n 1 ,t h e r ee x i s t sac l o s e dg e o d e s i c (n) that satisfies:

It is enough to prove the above inequality for two types of subsequences of (x n ) n -as u b s e q u e n c e whose terms live in one of the finitely many simplices in Σ M and a subsequence whose every term lies in simplices outside Σ M .F i n a l l y ,i nb o t ht h ec a s e sw es h o wt h a tf (x n ) does not converge to 0.

Case 1: Consider a subsequence (y n ) n of (x n ) n such that y n 2 spanned by the arcs {↵ 1 ,...,↵ N }⇢Σ M , where N  dim D(S h sp ).S i n c e y n !1 ,i th a sas u b s e q u e n c et h a tc o n v e r g e st oap o i n t y 2A S h sp r b A(S h sp ).S oy n is of the form:

and the limit point y is then given by:

So for every p 2 @S h sp \ supp (x n ),w eh a v ew zn (p)

.L e tb be a boundary component of the surface such that for every n 2 N it contains an endpoint p(n) of an arc ↵ n in z n . Then

Thus we have that f (z n ) is bounded away from 0.

Surfaces with undecorated spikes

Next we prove that the projectivised strip map is proper in the case of surfaces with undecorated spikes.

Theorem 6.2.10. Let S sp be a hyperbolic surface with undecorated spikes. Let m 2 D(S sp ). Then the projectivised strip map Pf : b A(S sp ) ! P + (Λ(m)) is proper.

Proof. The proof is similar to that of Theorem 6.2.9. Let (x n ) n be a sequence in the pruned arc complex b A(S sp ) such that x n !1 .W ew a n tt os h o wt h a tPf (x n ) !1in the projectivised admissible cone P + Λ(m).F r o mL e m m a4 . 3 . 1 1 ,w eg e tt h a tt h e r ee x i s t sac o n s t a n tM 0 > 0 depending on the normalisation such that for every closed geodesic and every point x 2A(S sp ) the eq. 6.10 holds. Again let K(S ~) be a compact neighbourhood of the convex core S ~of the surface. Then there exists C>0 such that the length of every geodesic arc ↵ satisfies l ↵rK(S ~) <C.G i v e n✏>0, we get a constant M>0 from Lemma 4.3.12 applied to ✏ M 0 .D e fi n e

Note that K M is finite. Consequently, the set Σ M of simplices in A (S sp ) spanned by the arcs in K M is also finite. We show that there exists n 1 2 N such that for every n n 1 ,t h e r ee x i s t s ac l o s e dg e o d e s i c (n) that satisfies eq. (6.11). Again we prove this inequality for two types of subsequences of (x n ) n -a subsequence whose terms live in one of the finitely many simplices in Σ M and a subsequence whose every term lies in simplices outside Σ M .F i n a l l y ,w ep r o v et h a tf (x n ) does not converge to 0.

1. Consider a subsequence (y n ) n of (x n ) n such that y n 2 spanned by the arcs {↵ 1 ,...,↵ N }⇢Σ M , where N  dim D(S sp ).S oy n is of the form:

Then, y n ! y 2A(S sp ) r b A(S sp ) given by:

where there exists I ( {1,...,N} such that for i 2I,t i (n) 7 ! t 1 i 2 (0, 1], and

Margulis Invariant

Let ⇢ be a convex cocompact representation as before and u be a ⇢-cocycle. Margulis defined an invariant that is used to detect the properness of such a cocycle. For every non-trivial 2 ⇡ 1 (S), its image ⇢( ) is a hyperbolic element of SO(2, 1) with eigenvalues of the form , 1, 1 .L e tv 1 ,v 2 be two future-pointing light-like eigenvectors corresponding to the eigenvalues , 1 ,a n dl e tv 0 ( ) be the eigenvector of unit norm with eigenvalue 1 such that (v 1 ,v 0 ,v 2 ) is positively oriented. Then the Margulis invariant is defined as the map:

The map ↵ u depends only on the cohomology class of u. Margulis showed the following lemma about the properness of a cocycle and the sign of the invariant:

Lemma 7.1.2 (Opposite sign lemma, Margulis [START_REF] Aleksandrovich | Free completely discontinuous groups of affine transformations[END_REF]). Suppose that Γ (⇢,u) ⇢ Isom + (R 2,1 ) acts properly on R 2,1 . Then either for every 2 ⇡ 1 (S), ↵ u ( ) > 0 or for every 2 ⇡ 1 (S), ↵ u ( ) < 0.

Fundamental domains using Crooked Planes

In this section, we shall recall Drumm's construction [START_REF] To | Fundamental p olyhedra for margulis space-times[END_REF] of fundamental domains for Margulis spacetimes using crooked planes.

Definition

Take any space-like vector v 2 R 2,1 . Then the associated Killing field is hyperbolic and has an attracting and a repelling fixed point at p + ,p 2 @ 1 D, respectively. Their preimages are light-like lines: P 1 p + = Rv + , P The geodesic l v is transversely oriented in the following way: a directed geodesic l in D transverse to l v is said to be pointing in the positive direction if the point [p + ] 2 D lies to its left. When we refer to the geodesic l v along with its transverse orientation, we shall denote it by lv .

Definition 7.2.1. A left crooked plane P(v) centered at 0, directed by a space-like vector v is a subset of R 2,1 that is the union of the following sets:

• A stem,d e fi n e da sSt(P): ={w 2 R 2,1 |k wk 2  0}\v ? . It meets the light-cone along the two light-like lines Rv + , Rv .

• Two wings: The connected component of v + ? rRv + (resp. of v ? \Rv ), that contains all the hyperbolic Killing fields whose attracting fixed point is given by p + (resp. p ), is called a positive wing (resp. a negative wing). They are denoted by W + (v) and W (v),r e s pe c t i v e l y .

For any vector v 0 2 R 2,1 ,t h es u b s e tP(v 0 , v): =v 0 + P(v) is an affine left crooked plane centered at v 0 and directed by a space-like vector v. Then, P(0, v)=P(v). The space of photons can be identified with the tangent bundle over the space of horoballs, modulo simultaneous scaling of all horoballs. This identification is equivariant for the actions of G n g = T (G).

Handedness

Let v 1 , v 2 2 R 2,1 be two future-pointing light-like vectors. For i =1 , 2,l e tw i 2W + (v i ), where W + (v i ) is the positive wing of v i . Then the photon L(w i , v i ) consists of hyperbolic Killing fields that have [v i ] as attracting fixed point. So for every i =1 , 2,t h ev e c t o rv i gets infinitesimally deformed towards kv i for k>1 and the horoball h Thus we have proved the following theorem:

Theorem 7.3.2. Let S h sp be a hyperbolic surface with decorated spikes and let ⇢ : ⇡ 1 (S h sp ) ! PGL(2, R) be a holonomy representation. Let M 7 be the space of all Margulis spacetimes with convex cocompact linear part as ⇢. Then there is a bijection Ψ: b A(S h sp ) ! M 7 .