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RÉSUMÉ

La représentation des textures dynamiques (TD), considérée comme une séquence de textures en

mouvement, est un défi en analyse des vidéos dans des applications diverses de la vision par ordinateur.

Cela est en partie causé par la désorientation des mouvements, les impacts négatifs des problèmes bien

connus dans la capture des caractéristiques turbulentes: bruit, changements d’environnement, illumina-

tion, transformations de similarité, mise en échelles, etc. Rendre les TDs plus “compréhensibles” peut

être une des missions importantes dans la mise en œuvre des différents systèmes de vision: surveillance

automatique des scènes de trafic, des foules de personnes, des interactions humaines, détection d’objets

et d’événements, suivi des mouvements, modélisation d’arrière-plan, etc. Dans le cadre de cette thèse,

nous introduisons des solutions significatives afin de traiter les problèmes ci-dessus. Par conséquent, trois

approches principales suivantes sont proposées pour le codage efficace des TDs : i) à partir de trajec-

toires denses extraites d’une vidéo donnée; ii) basé sur des réponses robustes extraites par des modèles

de moment; iii) basé sur des résultats filtrés qui sont calculés par des variantes de noyaux de filtrage

gaussien. En parallèle, nous proposons également plusieurs opérateurs discriminants pour capturer les

caractéristiques spatio-temporelles des codages de TD ci-dessus.

Pour une représentation TD basée sur des trajectoires denses, nous extrayons d’abord des trajectoires

denses à partir d’une vidéo donnée. Les points de mouvement le long des trajectoires sont ensuite

codés par notre opérateur xLVP, une extension des modèles vectoriels locaux (LVP) dans un contexte de

codage complémentaire, afin de capturer des caractéristiques directionnelles basées sur une trajectoire

dense pour la représentation efficace de TD.

Pour la description TD basée sur des modèles de moment, motivée par un modèle d’images de mo-

ment, nous proposons un nouveau modèle de volumes de moment basé sur des informations statistiques

des régions de support sphériques centrées sur un voxel. Deux de ces modèles sont ensuite pris en

compte dans l’analyse vidéo pour mettre en évidence des images/volumes de moment. Afin d’encoder

les images basées sur le moment, nous nous adressons à l’opérateur CLSP, une variante des modèles

binaires locaux terminés (CLBP). De plus, notre opérateur xLDP, une extension des modèles de dérivés

locaux (LDP) dans un contexte de codage complémentaire, est introduit pour capturer les caractéristiques

spatio-temporelles basés sur les volumes des moments.
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Pour la représentation DT basée sur les filtrages Gaussiens, nous étudierons de nombreux types de

filtrages dans l’étape de prétraitement d’une vidéo pour mettre en évidence des caractéristiques robustes.

Après cette étape, les sorties sont codées par des variantes de LBP pour construire les descripteurs de

TD. Plus concrètement, nous exploitons les noyaux gaussiens et des variantes de gradients gaussiens

d’ordre élevé pour le filtrage. En particulier, nous introduisons un nouveau noyau de filtrage (DoDG)

en tenant compte de la différence des gradients gaussiens, qui permet de mettre en évidence des com-

posants robustes filtrés par DoDG pour construire des descripteurs efficaces en maintenant une petite

dimensionalité. Parallèlement aux filtrages gaussiens, certains novels opérateurs sont introduits pour

répondre à différents contextes du codage TD local: CAIP, une adaptation de CLBP pour résoudre le

problème proche de zéro causé par des caractéristiques bipolaires; LRP, basé sur un concept de cube

carré de voisins locaux; CHILOP, une formulation généralisée de CLBP.

Les résultats de reconnaissance TD ont validé que nos propositions fonctionnent de manière sig-

nificative par rapport à l’état de l’art. Certaines d’entre elles ont des performances très proches des

approches d’apprentissage profond. De plus, nos descripteurs qui ont une dimensionalité très petite par

rapport à celle des méthodes d’apprentissage profond sont appréciées pour les applications mobiles. Par

conséquent, les résultats de nos recherches ont été soumis/publiés dans 05 articles de conférences inter-

nationales (publiés), 10 articles de revues (dont 05 ont été publiés, et le reste a été soit en soumission soit

en révision mineure/majeure).



ABSTRACT

Representation of dynamic textures (DTs), well-known as a sequence of moving textures, is a chal-

lenge in video analysis for various computer vision applications. It is partly due to disorientation of

motions, the negative impacts of the well-known issues on capturing turbulent features: noise, changes

of environment, illumination, similarity transformations, etc. Making DTs more “understandable” can

be one of important missions for vision implementations: visual surveillance of traffic scenes, crowded

people, human interaction, detecting objects and events, tracking motion, background subtraction, etc.

To this end, we introduce significant solutions in order to deal with above problems. Accordingly, three

streams of those are proposed for encoding DTs: i) based on dense trajectories extracted from a given

video; ii) based on robust responses extracted by moment models; iii) based on filtered outcomes which

are computed by variants of Gaussian-filtering kernels. In parallel, we also propose several discriminative

descriptors to capture spatio-temporal features for above DT encodings.

For DT representation based on dense trajectories, we firstly extract dense trajectories from a given

video. Motion points along the paths of dense trajectories are then encoded by our xLVP operator, an

important extension of Local Vector Patterns (LVP) in a completed encoding context, in order to capture

directional dense-trajectory-based features for DT representation.

For DT description based on moment models, motivated by the moment-image model, we propose a

novel model of moment volumes based on statistical information of spherical supporting regions centered

at a voxel. Two these models are then taken into account video analysis to point out moment-based

images/volumes. In order to encode the moment-based images, we address CLSP operator, a variant of

completed local binary patterns (CLBP). In the meanwhile, our xLDP, an important extension of Local

Derivative Patterns (LDP) in a completed encoding context, is introduced to capture spatio-temporal

features of the moment-volume-based outcomes.

For DT representation based on the Gaussian-based filterings, we will investigate many kinds of

filterings as pre-processing analysis of a video to point out its filtered outcomes. After that, these outputs

are encoded by discriminative operators to structure DT descriptors correspondingly. More concretely,

we exploit the Gaussian-based kernel and variants of high-order Gaussian gradients for the filtering

analysis. Particularly, we introduce a novel filtering kernel (DoDG) in consideration of the difference of
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Gaussian gradients, which allows to point out robust DoDG-filtered components to construct prominent

DoDG-based descriptors in small dimension. In parallel to the Gaussian-based filterings, some novel

operators will be introduced to meet different contexts of the local DT encoding: CAIP, an adaptation of

CLBP to fix the close-to-zero problem caused by separately bipolar features; LRP, based on a concept of

a square cube of local neighbors sampled at a center voxel; CHILOP, a generalized formulation of CLBP

to adequately investigate local relationships of hierarchical supporting regions.

Experiments for DT recognition have validated that our proposals significantly perform in compari-

son with state of the art. Some of which have performance being very close to deep-learning approaches,

expected as one of appreciated solutions for mobile applications due to their simplicity in computation

and their DT descriptors in a small number of bins. Consequently, the results of our researches have been

contributed in 05 international conference papers (published), 10 journal articles (05 of which have been

published, and the rest have been in either under review or minor revision).
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CHAPTER 1

INTRODUCTION

Contents
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1.6 Outline of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Dynamic textures: definition, challenges, and applications
Dynamic textures (DTs) are textures repeated in a temporal domain, such as fountain, candle, plant,

sea-wave, waterfall, fire, etc. [5] (see Figure 1.1 for several samples of DT videos). Efforts of analysis to
make DTs more “understandable” are crucial for important tasks of recognition, segmentation, synthesis,
and indexing for retrieval. Those can be primary keys in a large range of real applications in computer
vision, such as visual surveillance of traffic scenes [6–8], crowded people [9–12], human interaction
[13–16], detecting objects and events [17–21], tracking motion objects [22, 23], background subtraction
[24–28], etc. To this end, it could be addressed solutions to solve two main well-known challenges as

• The principal challenges in DT analysis are caused by the wide range of appearances along with
non-directional and turbulent motions of DTs. Figure 1.2(b) shows a sample of turbulent motions
of DTs in non-direction.
• The negative impacts of the well-known problems: noise, changes of environmental factors and il-

lumination, scales, etc., have also been noticeable causes of precipitating the discrimination power
in DT representation. Figure 1.2(d,e,f) shows instances of changes of illumination and contrast.

Figure 1.1: Several samples of DT sequences.

Being aware of the importance of DT representation in computer vision, many works have been
proposed to deal with two above challenges by exploiting the advantages of spatio-temporal features as
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1.2. AN OVERVIEW OF REPRESENTING DTS BASED ON DENSE TRAJECTORIES

A real DT video Turbulent motions Gray-scale DT video Changed illumination Changed contrast Added noise
(a) (b) (c) (d) (e) (f)

Figure 1.2: Several instances of non-directional, turbulent motions of DTs in a video as well as samples
of the video in changes of illumination, contrast, and noise.

well as other properties of DTs. Roughly, these works can be categorized into six major groups:

• Optical-flow-based: Using properties of apparent velocities of movements for DT description (see
Section 2.2).
• Model-based: Using linear dynamical systems to model DT features (see Section 2.3).
• Geometry-based: Using fractal methods to analyze DT videos (see Section 2.4).
• Learning-based: Using techniques of dictionary learning and convolutional neural networks to

learn DT features (see Section 2.5).
• Filter-based: Using several filterings to reduce noise before video encoding (see Section 2.6).
• Local-feature-based: Using local operators to capture spatio-temporal features (see Section 2.7).

In general, experiments of state of the art in DT recognition have shown that the deep-learning-based
ones have often obtained significant performance, but most of them have to take complicated algorithms
into account learning a huge number of parameters in deep architectures of neural networks. This is one
of crucial barriers in order to bring the deep-learning-based into real applications for mobile devices as
well as embedded sensor systems, those which have strictly required tiny resources for their functions.
In the meanwhile, the rest approaches have usually addressed in more simplicity but just obtaining at
modest levels of performance.

In this thesis, our proposed frameworks could mitigate above shortcomings, i.e., those are in high
performance but in low computational complexity, which are expected to be potential for mobile im-
plementations. Indeed, our proposals just utilize simple operators (refer to Chapter 3) to extract spatio-
temporal features from two main aspects: based on dense trajectories (refer to Chapter 4) and based on
filtered outcomes (refer to Chapters 5 and 6). Hereafter, we will take a general overview of our proposals
for a DT video that are based on its dense trajectories and robust filtered outcomes in order to mitigate
negative influences of the well-known problems on the DT encoding. After that, we will impress our
significant contributions in representing DTs. Also, an outline of the thesis is presented for taking a
universal view of the whole organization.

1.2 An overview of representing DTs based on dense trajectories
Figure 1.3 graphically illustrates our proposed framework for encoding a video based on its dense

trajectories. It could be cleared that our dense-trajectory-based proposal generally includes three main
stages to encode a given video V as

1. Allocating a set TL(V) of dense trajectories with length of L which are extracted from V .
2. For each dense trajectory ti ∈ T , a histogram h(ti) is computed by using a local operator ψ(.) to

capture features of motion points {pi,j}Lj=1 belonging to the path of ti.
3. Structuring a final descriptor for DT representation based on the obtained histograms {h(ti)}.

It could be seen that we have efficiently exploited the profitable characteristics of both optical-flow-
based and local-feature-based methods to boost the discrimination power. Besides, we have also pro-
posed a robust local operator, ψ = xLVP(.) (see Section 3.4), in order to encode spatio-temporal features
of dense trajectories in more effect. The detail presentation of above stages could be referred to Chapter
4. Experiments in DT recognition have validated the interest of our proposals.
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Dense trajectories 
in length of L

Features of a dense trajectory 
subject to its motion points

extracting encoding

Structuring a final descriptor

Figure 1.3: A general framework of encoding a video based on its dense trajectories.

1.3 An overview of representing DTs based on moment-based features
Motivated by the moment-image model for textural image analysis, introduced by Nguyen et al. [2],

we take it into account DT representation. Furthermore, we propose a new model of moment volumes
which are more adaptive to analyze a video V . In general, it can be pointed out that representing DTs
based on moment-based models includes three main steps of video analysis as follows.

1. Momental computing models are exploited as a pre-processing in order to compute statistical mo-
ments subject to two correspondences of discrete supporting regions, e.g., local circle-based for
the moment-image model and local spherical-based for the moment-volume one.

2. To capture local features from the moment-based outcomes {mr} and {µr} for DT representation,
we address CLSP [29] operator (see Section 2.7.3) for encoding the obtained moment-filtered
images, while a crucial extension of Local Derivative Patterns [30], named xLDP (see Section
3.3.1), is introduced for encoding the moment-filtered volumes.

3. Structuring a final descriptor based on the obtained histograms {hm(.), hµ(.)}.

The detail presentation of above periods could be referred to Chapter 5. Experiments in DT recogni-
tion have validated the better adaptation of our moment-volume model for video analysis in comparison
with the moment-image one. Furthermore, our proposed xLDP operator for encoding moment-based
volumes has been proved more robustness than its original.

Sets of  mean and 
variance outcomes

Features of moment-
based outcomes

Concatenated to form a 
final descriptor

Figure 1.4: A proposed framework of encoding a video based on moment-based models.
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1.4. AN OVERVIEW OF REPRESENTING DTS BASED ON GAUSSIAN-FILTERED FEATURES

 

Figure 1.5: A general framework of encoding a video based on filtering.

1.4 An overview of representing DTs based on Gaussian-filtered features
Filter-bank approaches, which have been early applied to texture analysis [31], have had promising

performance in DT recognition thanks to mitigating the negative influences of noise and other factors on
the video encoding. It can be figured out a general diagram for the filtering-based analysis of a given
video as shown in Figure 1.5, which includes three main following stages for video representation.

1. Addressing robust filters for filtering a given video V to reduce the negative impacts of the prob-
lems of DT encoding. This process is applied to the video analysis as a pre-processing in order to
point out V’s filtered outcomes {υi}ni=1.

2. For each filtered outcome υi, a histogram h(υi) for representing υi is formed by using a local
operator to capture spatio-temporal features.

3. Structuring a final descriptor for DT representation by simply concatenating the complementary
features of all obtained histograms {h(υi)}.

It can be verified that improvement of the performance majorly depends upon the processes of both
filtering and local encoding in the entire framework. Being aware of this substance, we have proposed in
this thesis robust filters as well as discriminative local operators as follows.

• For the filtering, we have addressed the Gaussian kernel, its high-order gradients, and other
Gaussian-based variants in order to thoroughly investigate various benefits of robust Gaussian-
based filtered features for DT representation (refer to Chapter 6).
• For the local operators to capture features from filtered outcomes pointed out by the above fil-

terings, we have inherited and developed some significant ones as follows (refer to Chapter 3 for
further expression).

– CAIP, a crucial adaptation of completed local binary patterns, for efficiently dealing with an
issue of close-to-zero pixels caused by the bipolar features of Gaussian-filtered outcomes.

– LRP, based on local neighbors, which are sampled on a rubik cube centering at a voxel, in
order to enrich informative structures for improvement of the discrimination power.

– CHILOP, exploiting a pairwise of adjacent supporting areas in completed context of analysis
to capture hierarchical local patterns for DT representation.

It could be seen that our proposals have taken advantage of both filter-based and local-feature-based
properties. Therein, the proposed filters are directly applied to the video filtering. Contrary to sev-
eral existing methods, ours are non-learned filters which allow to take less the computational cost for the
pre-processing, while the obtained responses are robust against the well-known problems in DT represen-
tation. On the other hand, our particular operators have assisted to enhance the performance compared
to the conventional ones. Indeed, experiments in DT recognition have shown that our proposals have
very good performance compared to all non-deep-learning models, while being close to deep-learning
approaches. Furthermore, most of them can be potential solutions for mobile applications in practice.
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1.5 Our main contributions
According to our general concepts for DT representation which are mentioned in Sections 1.2 and

1.4, it could be shortly listed our crucial contributions as follows.

• Contribution #1: The novel local operators are proposed to be adopted with different contexts of
video encoding: xLVP, xLDP, CAIP, LRP, and CHILOP (refer to Chapter 3). Some of them are
applied to representing DTs of raw videos as published in the conference papers [C1, C3]. Some
others are used to encode motion points of dense trajectories extracted from a given video (refer to
Chapter 4), and filtered responses computed by the filterings (refer to Chapters 5 and 6).

• Contribution #2: The thesis introduces a new approach for DT representation by capturing spatio-
temporal features of motion points subject to the paths of dense trajectories which are extracted
from a given video (refer to Chapter 4). Our contributions have been published in the conference
paper [C4] and the journal article [J2].

• Contribution #3: Motivated the moment-image model for textural image description, we propose
a novel model, named moment volumes, which its responses are computed by local spherical
supporting regions instead of the circle-based ones. It have been proved to be more adaptive
for video analysis than the moment-image model. In addition, the moment-image model is also
investigated on three orthogonal planes of a video to point out mean and variance filtered images
for DT representation (refer to Chapter 5). Our contributions have been published in the journal
articles [J1, J5].

• Contribution #4: Addressing the Gaussian kernel for the video filtering to point out robust
Gaussian-filtered outcomes for DT representation. Firstly, we investigate the benefits of single-sale
standard deviations, published in the conference papers [C2,C5]. The complementary components
of multi-sale Gaussian filterings are then proposed to forcefully capture more rich information. The
obtained responses are encoded by our proposed descriptors, LRP (see Section 6.5), CHILOP (see
Section 6.4), which the LRP-based results have been published in the journal article [J4] while the
CHILOP-based ones have been in minor revision in the journal article [S2]. In another aspect, the
difference of Gaussians (DoG) is also conducted in this thesis for DT encoding. Due to the close-
to-zero problem caused by decomposing the DoG responses into bipolar components, our CAIP
operator is then addressed to deal with that. In addition, the bipolar DoG-filtered features are inte-
grated along with the Gaussian-filtered ones in multi-scale analysis to figure out a discriminative
descriptor (see Section 6.6). This result has been under review in the journal article [S4].

• Contribution #5: The thesis also takes advantages of partial derivatives of the Gaussian kernel
into account the video filterings. We conduct the effect of these filtering kernels in high-order
and multi-scale analysis to enrich more robust patterns for DT representation (see Section 6.8).
The influential improvement has been published in the journal article [J3]. Especially, we pro-
pose a novel filtering kernel based on the difference of high-order Gaussian gradients (DoDG),
which allows to point out responses in more robustness (see Section 6.9). Addressing the DoDG
responses for local DT encoding allows to structure prominent descriptors in small dimension,
which are expected as one of crucial solutions for mobile applications and embedded sensor sys-
tems in practice (see Section 6.3). The substantial contribution of DoDG has been under review
in the journal article [S1]. In another aspect, the Gaussian gradients are thoroughly discussed in
their separately bipolar-based features (under review in the journal article [S5]) and their oriented
magnitudes which have been under minor revision in the journal article [S3] (see Section 6.7).

1.6 Outline of thesis
The rest of the thesis is organized as follows.

Chapter 2 Literature review - In this chapter, we provide a comprehensive overview of state of the
art in DT representation, which is categorized into groups of optical-flow-based (see Section 2.2), model-
based (see Section 2.3), geometry-based (see Section 2.4), learning-based (see Section 2.5), filter-based

5



1.6. OUTLINE OF THESIS

(see Section 2.6), and local-feature-based (see Section 2.7). We also discuss the existing shortcomings
of those which should be addressed in further contexts of video analysis for enhancement of describing
DTs. Also, benchmark datasets (i.e., UCLA, DynTex, DynTex++, and DTDB) for evaluating the ability
of DT descriptors are presented in detail of their properties and protocols as well (see Section 2.8).

Chapter 3 Proposed variants of LBP-based operators - In this chapter, we propose the novel adap-
tive descriptors in accordance with the particular contexts of local DT encoding. Therein, CAIP is a
crucial adaptation of completed local binary patterns (CLBP) for efficiently dealing with issues of close-
to-zero pixels caused by the bipolar features of Gaussian-filtered outcomes (see Section 3.2). xLDP is
an important extension of Local Derivative Patterns (LDP) for encoding moment-filtered volumes (see
Section 3.3). xLVP is an influential improvement of Local Vector Patterns (LVP) for encoding spatio-
temporal features of motion points along the paths of dense trajectories (see Section 3.4). LRP is based
on local neighbors sampled on a rubik cube centering at a voxel in order to enrich informative patterns for
improvement of the discrimination power (see Section 3.5). CHILOP exploits a pairwise of adjacent sup-
porting areas in completed context of analysis to capture hierarchical local patterns for DT representation
(see Section 3.6).

Chapter 4 Representation based on dense trajectories - In this chapter, we first take a look of the
principles of dense trajectories in Section 4.2. We then propose an efficient framework to exploit direc-
tional features of beam trajectories and spatio-temporal features of motion points in order to structure a
dense-trajectory-based descriptor for a given video (see Sections 4.3, 4.4). Experiments in DT recogni-
tion are comprehensively discussed in comparison with state of the art (see Section 4.5).

Chapter 5 Representation based on moment models - In this chapter, motivated by the moment-
image model, we propose a new model of moment volumes, a more appropriate filter for the video
filtering (see Section 5.2). After that, we proposed two kinds of DT descriptors: MDP-based utilizes our
novel moment volumes and our xLDP operator (see Section 3.3) to encode the obtained filtered volumes
in Section 5.3; CSAP-TOP is based on the moment-image model and uses the CLSP-TOP operator (see
Section 2.7.3) to encode the obtained filtered images (see Section 5.4). Experiments in DT recognition
show that CSAP-TOP has good performance, but not better than the MDP-based descriptors. Because of
that, we address the MDP-based descriptors as a crucial solution to thoroughly discuss our proposals in
comparison with state of the art (see Section 5.5).

Chapter 6 Representation based on variants of Gaussian filterings - Motivated by the ascendant
of the filtering in denosing for DT representation, we propose in this chapter to exploit several kinds
of non-learned filters based on the Gaussian kernel and variants of its partial derivatives. A brief of
the Gaussian-based filtering kernels is presented in Section 6.2. A novel filter (named DoDG) is then
proposed in consideration of the difference of Gaussian gradients in Section 6.3. After that, robust de-
scriptors and their corresponding performance on recognizing DTs are constructed and experimented
as: i) representation based on completed hierarchical Gaussian features in Section 6.4, ii) representa-
tion based on RUbik Blurred-Invariant Gaussian features in Section 6.5, iii) representation based on
Gaussian-filtered CAIP features in Section 6.6, iv) representation based on oriented magnitudes of Gaus-
sian gradients in Section 6.7, v) representation based on high-order Gaussian-gradient features in Section
6.8, vi) representation based on DoDG-filtered features in Section 6.9. Due to the prominent performance
of the DoDG-based descriptors, we address them as one of representative solutions to comprehensively
discuss with performance of current approaches in Section 6.10. Finally, a section of global discus-
sion 6.11 will go in some experiments in further contexts as well as will discuss the appreciation of our
proposals for mobile applications in practice.

Chapter 7 Conclusions and perspectives - To come to the end of this thesis, we will restate our
proposals, contributions, as well as their advantages and disadvantages. Besides, we also point out
several future directions which can be addressed in DT representation for further improvements.
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2.1. INTRODUCTION

2.1 Introduction
Due to chaotic and turbulent motions of DTs, efforts of analysis to make them more “understandable”

are crucial for important tasks of recognition, segmentation, synthesis, and indexing for retrieval. Those
are primary keys in a large range of applications in computer vision, such as visual surveillance of traffic
scenes, crowded people [9], human interaction [13–16], detecting objects and events [17, 18], tracking
motion objects [22], etc. The major challenges in DT analysis are due to the wide range of appearances
and non-directional motions of DTs. Many works for DT representation have been raised to deal with
the problems by exploiting the advantages of spatio-temporal features and other properties of DTs. In
this chapter, we introduce state of the art of approaches for DT representation. In general, a taxonomy
of DT recognition methods can be presented in six main categories: optical-flow-based, model-based,
learning-based, filter-based, geometry-based, and local-feature-based. Moreover, benchmark datasets
along with several popular classifiers, which are used for evaluating the performance of the state-of-the-
art proposals, are also taken a look. Hereafter, we take them one by one in more detail of expression.

2.2 Optical-flow-based methods
2.2.1 A brief of optical-flow concept

Optical flow is the distribution of apparent velocities of movement of brightness patterns in an image
[32, 33]. Let p(x, y) ∈ I be an image pixel at time t. In a constraint of the brightness constancy, it can
generally write the optical flow as

OI(p, t).−→v + It(p, t) = 0 (2.1)

where It(p, t) denotes the temporal derivative of I(p, t); OI(p, t) is the derivatives of the image at
I(p, t) in the corresponding directions Ix and Iy, i.e., OI(p, t) =

(
Ix(p, t), Iy(p, t)

)>; −→v = (u, v)>

denotes the 2D velocity; OI(p, t).−→v is the usual dot product. As a result, it could be conducted the
aperture problem caused by two unknown components of −→v in Equation (2.1). To deal with this prob-
lem, the optical-flow-based methods have attempted to introduce further constraints for estimating the
corresponding flow subject to specific fields.

2.2.2 Analyzing DTs based on optical flow

Taking advantage of the efficient computation and video encoding in natural way, optical-flow-based
methods for DT representation have obtained remarkable performance [34–36]. To shape and trace the
path of a motion in a sequence, Peh et al. [34] aggregated spatio-temporal textures formed by magnitudes
and directions of the normal flow which are essential to identify motion types. Péteri et al. [35] presented
a qualitative approach based on the normal vector field and criteria of videos to describe DT features. In
another work, these authors combined the normal flow with filtering regularity to capture the revealing
properties of DTs [36]. In the meanwhile, Lu et al. [37] utilized the velocity and acceleration properties
estimated by a structure tensor to form spatio-temporal multi-resolution histogram. As discussed by
Rivera et al. [38], due to assumption of brightness constancy and local smoothness, the optical-flow-
based methods are usually considered as not to be suitable for stochastic DTs in reality. Moreover, just
motion features of DTs are encoded while their textures and appearances have not been regarded.

Addressing those problems, we have proposed to take advantage of profitable characteristics of both
optical-flow-based and local-feature-based features by i) exploiting Features of Directional Trajectory
(FDT) in accordance with Motion Angle Patterns (MAP) for addressing local characteristics and angle
information of motion points which are along the paths of dense trajectories of a DT sequence [C4]; ii)
using our discriminative operator, xLVP (see Section 3.4), proposed for capturing local features from
motion points along with their dense trajectories extracted from a given video [J2] (see Chapter 4 for
further presentation).
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2.3 Model-based methods
2.3.1 Linear Dynamical Systems (LDS)

Doretto et al. [39] laid the foundation for model-based methods with a typical model of Linear
Dynamical System (LDS). For a given DT video V with a set of (T+1) frames asFV =

{
y0,y1, ...,yT

}
,

yt ∈ Rm. In general, the evolution of a LDS is usually presented as{
xt+1 = Axt + vt

yt = Cxt + wt

(2.2)

where yt ∈ Rm and xt ∈ Rn denote the observation and its hidden “state” with initial condition x0 ∈
Rn; vt ∈ Rn and wt ∈ Rm are independent and identically distributed sequences drawn from known
distributions; A ∈ Rn×n and C ∈ Rm×n are the system parameters of matrices for estimations.

2.3.2 Modeling DTs based on LDS

Inspired by the idea of the typical LDS model, many works have taken it into account DT represen-
tation for recognition tasks as well as for other problems in computer vision. Saisan et al. [5] agreed
the “state” noise vt and the observation noise wt with the distributions of zero-mean Gaussian noise
levels for representing DTs. Chan et al. [40] utilized kernel-PCA (Principal Component Analysis) to
model the LDS’s observation matrix C as a non-linear function to apprehend characteristics of dynamic
features in complex motions, such as chaotic motions (e.g., turbulent water) and camera motions (e.g.,
panning, zooming, and rotations). Later, to capture the motions of objects in sequences, they presented a
model of DT mixtures (DTMs) based on the LDS’s concept. The outputs are then fed into an algorithm
of hierarchical expectation-maximization (HEM-DTM) in order to categorize DTMs into k clusters for
DT description [41]. Also based on the LDS model, Wang et al. [42] made it in accordance with a
bag-of-words (BoW) method to extract chaotic features in videos while Ravichandran et al. [43] based
on bag-of-systems (BoS) to form the corresponding spatio-temporal patterns. To enhance the speed of
performing BoS’s codebooks, Mumtaz et al. [44] proposed BoS Tree, in which a bottom-up hierarchy
is constructed for indexing the codewords. Recently, Wei et al. [45] combined the LDS model with the
sparse coding technique to develop a joint dictionary learning framework for modeling DT sequences.
In terms of efficiency, the model-based methods have usually achieved modest results on DT recognition
because their major drawback is that their encoding mostly concentrates on the spatial-appearance-based
characteristics of DTs rather than the dynamic-based ones [5]. Furthermore, efforts taking them into
account dynamic features can make the models more complex [43].

2.4 Geometry-based methods
2.4.1 A brief of fractal analysis

Fractal analysis is built on the concept of fractal dimension which is firstly proposed by Mandelbrot
[46] as the measurement of power law existing in many natural phenomena. For a non-empty bounded
subset E ⊂ Rn, let Nr(E) be the smallest number of sets of diameter r that can cover E. The fractal
dimension of E is defined as the following [47]:

dim(E) = lim
r→0

logNr(E)

− log r
(2.3)

In practical implementations, it can consider the space as a mesh of boxes of size r, called the r-mesh
boxes, and count these boxes occupied by the point set [48]. Due to this computation, the above fractal
formation is located as the box-counting dimension. Further transformations as well as specific instances
could be referred to [46–48] for more detail.
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Figure 2.1: An illustration of the architecture of AlexNet [1].

2.4.2 DT representation based on fractal analysis

Given a gray-scale DT sequence, Xu et al. [49, 50] introduced Dynamic Fractal Spectrum (DFS)
based on a fractal analysis of the following integrated measures: pixel intensity, temporal brightness
gradient, normal flow, Laplacian, and principal curvature, which are computed subject to a 3D cube
centering at a voxel with different values of spatial and temporal radii. An extension of DFS was also
proposed in Multi-Fractal Spectrum (MFS) [51] by a combination of capturing stochastic self-similarities
and analyzing fractal patterns of DT sequences. However, only spectral information is considered in
those works, while spatial domain has been less regarded with. Ji et al. [52] addressed this drawback
by embedding spatial appearance analysis into MFS in accordance with wavelet coefficients to form
Wavelet-based MFS (WMFS) for representing DTs in more effect. In another viewpoint, Quan et al. [53]
based on the concept of lacunarity, a specialized aspect in fractal geometry for measuring how patterns
fill space, in order to propose Spatio-Temporal Lacunarity Spectrum (STLS) descriptor where lacunarity-
based features are captured by applying lacunarity analysis to local binary patterns in DT slices. In terms
of effectiveness in DT recognition, experiments have shown that the geometry-based methods principally
have good performances on simple datasets, e.g., UCLA [5], but not on the more challenging ones, e.g.,
DynTex [54] and DynTex++ [55]. It may be due to lack of temporal information involved in their
encodings.

2.5 Learning-based methods
Learning-based methods have been growing into potential approaches as their noteworthy perfor-

mance in DT recognition. In general, they are usually arranged into two trends: The first one is based
on deep learning techniques; the rest is based on dictionary learning. Hereafter, we take a look of these
applied to learn features for DT representation.

2.5.1 Deep-learning-based techniques

In 1990’s, LeCun et al. [56, 57] firstly proposed a Convolutional Neural Network (CNN) for hand-
written digit recognition. However, until 2012, CNN has been popularized in computer vision when
Krizhevsky et al. [1] introduced AlexNet which its learning model is very similar to the architecture of
LeNet but in deeper, bigger, and featured convolutional layers (see Figure 2.1 for a graphical architecture
of AlexNet in general). This popularization is partly thanks to the development of computer hardware ar-
chitecture with high computational performance. After that, many deep learning models based on CNN’s
architecture have been proposed to solve different applications in computer vision. The most common
ones can be listed such as ZF Net [58], GoogLeNet [59], VGGNet [60], ResNet [61], etc.

For learning DTs, Qi et al. [62] adopted AlexNet [1] as a feature extractor to extract mid-level patterns
from each frame of a given sequence, and then formed a corresponding DT descriptor by concatenating
the first and the second order statistics over the mid-level features, named Transferred ConvNet Features
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(TCoF). Andrearczyk et al. [63] took AlexNet [1] and GoogLeNet [59] into account video analysis to ex-
tract DT features (DT-CNN) from three orthogonal planes of a given video. In the meanwhile, Arashloo
et al. [64] adopted PCANet [65], a CNN-based model using PCA learned filters for the convolving pro-
cess, in order to construct a multi-layer convolutional architecture involved with three orthogonal planes
of a DT video (PCANet-TOP). Lately, a deep dual descriptor [66] is based on characteristics of “key
frames” and “key segments” to learn static and dynamic features. Besides, Hadji et al. [4] composed
a new challenging large scale dataset, named DTDB (see Section 2.8.4 for its detail expression). They
then attempted to implement some deep learning methods for learning DTs on DTDB: Convolutional
3D (C3D) [67], RGB/Flow Stream [68], Marginalized Spatio-temporal Oriented Energy (MSOE) in two
learning streams (MSOE-two-Stream) [4].

Although the deep-learning-based approaches have often obtained significant performance for DT
recognition, most of them have to take complicated algorithms into account learning a huge number of
parameters in deep architectures of neural networks. For instance, as implemented by Hadji et al. [4]
for DT classification issue on the recent large scale DTDB [4] dataset, ∼80M learned parameters are
taken by C3D [67], while ∼88M by Two-Stream [68] and MSOE-two-Stream [4] networks. Besides,
DT-CNN [63] is addressed in different sets of parameters to be fed into AlexNet and GoogLeNet frame-
works which have∼61M and∼6.8M learned parameters respectively for learning DT features on differ-
ent DT datasets. This is one of crucial barriers in order to bring the deep-learning-based ones into real
applications for mobile devices as well as embedded sensor systems, those which have strictly required
tiny resources for their functions. In this work, our proposed frameworks could mitigate those shortcom-
ings in low computational complexity, which could be potential for mobile implementations in practice.
Indeed, our proposals just utilize simple operators (refer to Chapter 3) to extract spatio-temporal local
features for DT representation from two main aspects: based on dense trajectories (refer to Chapter 4)
and based on filtered outcomes (refer to Chapters 5 and 6). Experiments have proved that our corre-
spondingly proposed descriptors have small dimension (e.g., HoGF [J3], DoDGF [S1], etc.) while their
performance has been close to that of the deep-learning-based approaches.

2.5.2 Dictionary-learning-based techniques

Another trend for DT representation is based on dictionary-learning-based techniques using sparse
representation to learn DT features. In general, a sparse coding can be briefly presented as follows. Let
D ∈ Rn×K be an over-complete dictionary matrix containing K atoms {d1,d2, ...,dK}. It is assumed
that a vector y ∈ Rn can be represented as a sparse linear combination of these atoms: either exactly as
y = Dx or approximately as y ≈ Dx so that ‖ y−Dx ‖p≤ ε, where typical norms used for measuring
the deviation are the lp-norms. Therein, x ∈ RK is a coefficient vector of y. Motivated by the sparse
representation, Quan et al. [69] adopted K-SVD [70], an algorithm for training of dictionaries, to model
a DT sequence by a set of space-time elements with certain distribution, where local DT features are
structured from a dictionary learned via sparse representation from a set of local DT patches of the DT
video, known as atoms. However, it is difficult to perform in multi-scale analysis as done in some of
the geometry-based approaches [51, 52]. Learning multiple dictionaries with different size of atoms can
be possible but it is hard to be efficient in the computing models. On the other side, Quan et al. [71]
introduced equiangular kernel to learn a dictionary with optimal mutual coherence in computational
feasibility. In terms of effectiveness of those in DT representation, experiments have shown that the
dictionary-learning-based approaches have performed well in recognizing DTs on simple datasets (e.g.,
UCLA [5]), but not on the more complex ones (e.g., DynTex [54], DynTex++ [55]). In the meantime, our
proposals in simple frameworks can significantly improve the discrimination power of DT descriptors as
well as obtain much better rates in DT recognition.

2.6 Filter-based methods
As mentioned in Section 1.4, the filtering is one of crucial solutions to reduce noise and other factors

which negatively impact on DT representation (see Figure 1.5 for a general view of DT encoding based
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on the filtering). In general, the filter-based methods have evinced their efficiency in performance of DT
recognition. Experiments have illustrated that the former filter-based approaches have performed well on
DT datasets with simple motions (e.g., UCLA [5]), while they either remain several limitations or have
not been verified on challenging datasets (e.g., DynTex [54], DynTex++ [55]). Addressing the issue, our
proposals in this thesis could thoroughly deal with this negative influence to form local-based descriptors
with significant improvement of discrimination power. For taking a look of the filter-based methods, we
can shortly arrange the filter-based methods into two categories as follows.

2.6.1 DT description based on learned filters

The main perception of this stream is to encode the filtered elements of a given video which are
extracted by various learned filters. Arashloo et al. [72] exploited the binarized statistical image features
(BSIF) [73] to produce learned BSIF filters. To this end, they used a generative model of Independent
Component Analysis (ICA) to present a given image patch I through a vector r of unknown random
variables and a feature matrixW as follows: I = Wr. The obtained BSIF filters were then applied to
the orthogonal plane-images of a given video in order to form spatio-temporal BSIF-TOP descriptor for
single-scale analysis of BSIF filters and MBSIF-TOP for the multi-scale one. In another approach, Zhao
et al. [74] applied the CLBP’s concept [3] to encode the filtered responses produced by L learned filters.
Accordingly, let W = [ω1, ω2, ..., ωL] be L vectorized 3D filters. These 3D filters were learned by
following different techniques: Principal component analysis (PCA) in [64, 75], ICA-based in [72, 73],
Sparse filtering in [76], K-means clustering in [77]. For a zero-mean vector vk computed by a k× k× k
square cube of a video, it could be obtained L filter responses subject to applying W to vk as follows:
rk = W>vk. After that, CLBP-based components could be located for encoding these filtered outputs
rk in order to structure B3DF descriptors for DT representation.

2.6.2 DT description based on non-learned filters

Contrast to the methods based on the learned filters, the main perception of this stream is to encode
the filtered elements which are extracted by filterings of non-learning-based filters. It can be effortlessly
realized that it can save computational cost due to no learning process related to the filterings. To the best
of our knowledge, although there are many efforts using non-learned filters for textural image description
(e.g., MRELBP [78], SBP [2], RAMBP [79], etc.), it has been very rarely for representation of DTs until
our recent proposals. Specifically, Rivera et al. [38] proposed to use a Kirsch compass mask [80] for
calculating the spatial directional response of a pre-defined neighborhood in eight different directions.
Accordingly, for a given video V , each instance of 2D/3D Kirsch mask Mk is convolved on sub-regions
of V’s plane-images for the 2D filtering and V for the 3D one in order to obtain Kirsch-based responses
as follows: Vk = V ∗M2D/3D

k . These outputs are then adapted to a graph model in order for capturing
spatio-temporal features of directional number transitional graph (DNG) for DT description. In this
thesis, we will propose to exploit different kinds of potential filterings applied to V in order to achieve
robust filtered outcomes against the well-known problems for local DT encodings: filtering models of
moment images [J1] and volumes [J5] (refer to Chapter 5 for further presentation), filterings based on
Gaussian-based kernels [C2, C5, J4, S2, S4] and their derivations [J3, S1, S3, S5] (refer to Chapter 6 for
further expression). Experiments in DT recognition issue have validated that our proposed descriptors
have very good performance compared to state of the art. Some of them in very simple computation and
small dimension have rates being close to those of deep-learning approaches. More significantly, ours
could be expected as one of appreciated solutions for mobile applications in practice.
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Figure 2.2: A simple model of
local neighbors {pi} for qc. Figure 2.3: Computations of LBP-based patterns for an input image with

settings of (P,R) = (8, 1) and mappings u2 and riu2.
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Figure 2.4: An simple instance of computing a LBP pattern with (P,R) = (8, 1).

2.7 Local-feature-based methods
2.7.1 A brief of LBP

An efficient and simple operator LBP is introduced by Ojala et al. [81] for encoding a 2D gray-scale
image I, in which each pixel qc ∈ I is featured as a string of binary digits by drawing a comparison of
the different gray levels between qc and its local neighbors {pi} as follows.

LBPP,R(qc) =
P−1∑
i=0

ξ
(
I(pi)− I(qc)

)
× 2i (2.4)

where P denotes a number of considered neighbors which can be interpolated on a circle of radius R
and center qc as graphically illustrated in Figure 2.2; I(.) returns the gray-level of a pixel; and binary
thresholding function ξ(.) is defined as

ξ(x) =

{
1, x ≥ 0

0, otherwise.
(2.5)

Figure 2.4 shows an imitation of the particular LBP model in Figure 2.2 for structuring a LBP pattern
based on a supporting region (P,R) = (8, 1), while Figure 2.3 at line (a) indicates a computation of
LBP8,1 patterns for an input image in reality.

As a result, a LBP code takes 2P distinct bins to construct a histogram for textural image description.
It is impractical for implementation in applications of computer vision due to the curse of large dimen-
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sion. Therefore, in real applications, the most popular mappings are usually taken into account to turn it
down into a reasonable size as follows.

• In order to reduce the dimension 2P to P (P − 1) + 3 bins, a u2 mapping for uniform patterns
(LBPu2) [81] (see Figure 2.3 at line (a)) are derived from the typical LBP codes conditioned by a
number of bit-transitions of their binary chains at most 2 as

LBPu2
P,R(qc) =

{
LBPP,R(qc)

}
so that U

(
LBPP,R(qc)

)
≤ 2 (2.6)

where U is a uniformity measure of bit-transitions (1-0 or 0-1) for a LBP pattern and is defined as

U(LBPP,R(qc)) = |ξ(I(pP−1)− I(qc))− ξ(I(p0)− I(qc))|+
P−1∑
i=1

|ξ(I(pi)− I(qc))− ξ(I(pi−1)− I(qc))|

(2.7)
• An other important mapping to deal with rotation invariant (LBPri) [81] is stated as

LBPriP,R(qc) = min
0≤i<P

{
ROR(LBPP,R(qc), i)

}
(2.8)

where ROR(LBPP,R(qc), i) calculates the distribution of LBPri by shifting i times of the P -bit
LBPP,R(qc) pattern.
• In reality, ri and u2 mappings are often combined to form patterns of riu2 mapping (LBPriu2)

as identified in Equation (2.9). This leads to reduction of dimensional representation from 2P of
the basic LBP to P + 2 distinct values. Figure 2.3 at line (a) shows an instance of riu2 pattern
computation.

LBPriu2
P,R (qc) =

{
LBPriP,R(qc) if U

(
LBPriP,R(qc)

)
≤ 2

P + 1
(2.9)

In addition, inspirited by the effectiveness of above mappings, other crucial mappings are suggested
to refine these mappings for encoding more textural information. Zhao et al. [82] advanced Local Bi-
nary Count (LBC), an alternative of riu2 patterns, by considering differences of the higher gray levels
between P neighbors and center pixels correspondingly. On the other hand, Fathi et al. [83] extended
the basic uniform mapping based on advantages of some non-uniform patterns. Nguyen et al. [84] then
embedded the underlying mappings and LBC into a general mapping, TAPA, for obtaining topological
information.

2.7.2 A completed model of LBP (CLBP)

For forcefully structuring LBP-based patterns, Guo et al. [3] introduced the completed model of LBP
(CLBP) including three complementary components for textural image representation as follows:

• First, CLBP S is identical to the typical LBP, i.e., CLBP SP,R(qc) = LBPP,R(qc).
• Second, CLBP M captures magnitude information and is defined as

CLBP MP,R(qc) =
P−1∑
i=0

g
(
|I(pi)− I(qc)|, m̃I

)
× 2i (2.10)

where m̃I denotes the mean of differences of |I(pi) − I(qc)| for the whole image I, binary
function g(.) is defined as

g(x, y) =

{
1, x ≥ y
0, otherwise.

(2.11)

• Third, CLBP C measures the difference between the gray value of a center pixel qc and the mean
of all in image I.

CLBP CP,R(qc) = g
(
I(qc), c̃I

)
(2.12)

where function g(.) is defined in Equation (2.11), c̃I expresses the average of gray-levels for the
whole image I.
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Figure 2.3 at line (b) shows typical computations of CLBP S, CLBP M, and CLBP C for a given
image. In order to enhance the discrimination power, the above complementary components can be
integrated together by different ways. Among of them, the description, which is formed by the joint
of these with riu2 mapping (i.e., CLBPriu2

S/M/C), usually has significant performance compared to the
others. It could be referred to comprehensive discussions in [3] for more detail. In our proposed works
(e.g., [C5], [C2], [J3], [S3], [S1], and [S5]), CLBP operator is used as a basic solution in order to encode
Gaussian-based filtered outcomes for DT representation. For instance, structuring robust descriptors is
presented in sections of Chapter 6 such as 6.6, 6.4, 6.7, 6.8, and 6.9. In addition, motivated by CLBP’s
concept, we have also proposed several significant operators which are defined in Chapter 3.

2.7.3 Completed local structure patterns (CLSP), a variant of CLBP

An adaptive local threshold: The typical LBP effectively captures the local spatial relations in con-
sideration of differences of gray-levels between a center pixel qc and its neighbors in a given image
I. However, it also leads to its two well-known restrictions: the sensitivity to noise and near uniform
regions because a small change of the center pixel can largely alter the obtained binary pattern. To over-
come these issues, Shrivastava et al. [29] introduced an adaptive local threshold based on two mean-gray
values as follows:

• The first one, named Local Average Difference (LAD), is defined as the mean of local variations
of magnitudes around center pixel qc and its P neighbors {pi} as

LAD(qc) =
1

P

P−1∑
i=0

|I(pi)− I(qc)| (2.13)

where I(.) is the gray-scale value of a pixel, pi is the ith neighbor of qc, P is the number of
considered neighbors.
• The second one, called Global Mean Difference (GMD), is calculated by the mean of the absolute

differences over the entire image I as

GMD(I) =
1

P ×N
∑
qj∈I

P−1∑
i=0

|I(pi)− I(qj)| (2.14)

in which pi is the ith neighbor of qj , N is the total number of pixels in image I.

Accordingly, the adaptive local threshold is formed for the center pixel qc as follows.

T(qc) = I(qc) +
a× LAD(qc) + b×GMD(I)

a+ b
(2.15)

where two variables a and b are valued at 0 or 1 (i.e., a, b ∈ {0, 1}) to determine which mode of
information is exploited. It could be seen that when a = b = 0, this case is simply identical to LBP.

A completed model of local structure patterns (CLSP): Similar to the construction of CLBP for rep-
resenting textural image I, three main complementary components (CLSP S, CLSP M, and CLSP C)
are calculated by Shrivastava et al. [29] as follows.

• CLSP S captures local relationships like CLBP S.
• CLSP M exploits local variation of magnitudes, which is similar to CLBP M but the traditional

thresholding is replaced by adaptive thresholding T as

CLSP MP,R(qc) =
P−1∑
i=1

ξ
(
I(pi)− T (qc)

)
× 2i (2.16)

where pi is the ith neighbor of center pixel qc, P is the number of considered neighbors sampled
by radius R, I(.) return the gray-scale value of a pixel, ξ(.) is defined in Equation (2.5), T (.) is an
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adaptative thresholding calculated by assigning specific values to variables a, b in Equation (2.15)
in order to determine which kind of the relationships are allocated.
• The rest component, CLSP C, takes into account information of center pixel qc as

CLSP C(qc) = ξ
(
LAV GP,R(qc)−GAV G(I)

)
(2.17)

where LAVG is the average gray level of P neighbors around pixel qc, GAVG is the global average
gray value of the whole image. Shrivastava et al. [29] respectively defined them as follows.

LAVGP,R(qc) =
1

P + 1

(
I(qc) +

P−1∑
i=0

I(pi)
)

and GAVG(I) =
1

N

N∑
j=1

I(qj) (2.18)

where qj is the jth pixel in N total pixels of image I.

Motivated by the incorporation of CLBP’s components, the 3D-joint one of these complementary
CLSP’s components (i.e., CLSPS/M/C) is used in our works to structure descriptor CLSP-TOP [C1]
based on encoding the raw plane-images of a given video, and CSAP-TOP [J1] based on the plane-
images filtered by a model of moment images (see Sections 5.2.1 and 5.3 for further information).

2.7.4 LBP-based variants for textural image description

Motivated by LBP and its completed model, many works have been proposed to address issues of
textural image representation. A global overview of state-of-the-art methods is particularly presented
in [85], where LBP-based variants have been stated as one of important solutions for computer vision
applications in practice. This is thanks to the effectiveness of those in structuring textural images with
simple computing approaches. Indeed, Liu et al. [86] presented a taxonomy of local-feature-based de-
scriptors for texture recognition issue, in which many original LBP-based methods and related extensions
are thoroughly implemented. Then evaluations of their ability in noise-resistance and texture classifica-
tion are comprehensively discussed in their work. Accordingly, the Median Robust Extended Local
Binary Pattern (MRELBP) descriptor [78], structured by combining Radial difference (RD), Neighbor
(NI), and Center pixel (CI) components, has the best overall performance. In the meanwhile, other
LBP-based methods are also considerable for textural image representation: BRINT [87], CINIRD [88],
SSLBP [89]. Also, all of those may be potential solutions for video representation in real applications.

2.7.5 LBP-based variants for DT representation

Thanks to beneficial properties of LBP-based variants in effectively computing local structures, sev-
eral works have taken them into account DT representation. Zhao et al. [14] introduced volume of
LBP-based patterns (VLBP) for analyzing a video in which a voxel is encoded in consideration of its
3P neighbors that are sampled by itself and its two symmetrical voxels in the previous and posterior
frames. As the result, it takes up to 23P+2 bins for describing a VLBP pattern, a noticeable restriction
for real applications in computer vision. In order to overcome the curse of enormous dimensionality,
Zhao et al. [14] suggested that a voxel is structured by using its P neighbors on each orthogonal plane
of a video to form LBP-TOP patterns, instead of regarding consecutive frames in the VLBP encoding.
The obtained histograms are concatenated and normalized to form the final descriptor with 3× 2P bins.
Afterwards, many efforts have principally relied on these encoding concepts to improve the discrimina-
tive performance: CVLBC [90] - a combination of CLBC [82] and VLBP; CVLBP [91] - an integration
of CLBP [3] and VLBP; CLSP-TOP [C1], CSAP-TOP [J1], and HLBP [92] - dealing with problems of
sensitivity to noise and near uniform regions.

2.8 Datasets and protocols for evaluations of DT recognition
For DT recognition, the following benchmark datasets are often used to evaluate the ability of our

proposed descriptors as well as that of others in state of the art. In this section, we express their properties
and protocols one by one. Afterwards, a brief of those is shown in Table 2.1 for a quick reference.
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Figure 2.5: Several samples of UCLA at line (a) and DynTex at line (b).

2.8.1 UCLA dataset

UCLA [5] consists of 200 videos which are recorded in 110×160×75 dimension to capture textural
motions such as fountain, waterfall, flower, plant, etc. (see Figure 2.5 at line (a) for several instances of
DT videos). The following protocols are usually addressed for DT recognition.

• 50-class breakdown: Two experimental settings are usually focused on this scheme:
Leave-one-out (LOO): Following the protocol in [5,72,93], just one sample in the scheme is taken
out for testing and the rest for training. This trial is performed in repetition for all samples and the
final estimation is resulted by the mean of all obtained rates.
Four cross-fold validation (4fold): As the setting in [49, 72, 92], one-fourth of each class is ad-
dressed for testing and the remain for learning. The experiment is repeated four times with distinct
test samples for each runtime. The final rate is reported by the average of all repetitions.
• 9-class breakdown: This scheme is reorganized from the 50-class model by categorizing its DT se-

quences into 9 classes named as boiling water(8), fire(8), flowers(12), fountains(20), plants(108),
sea(12), smoke(4), water(12), and waterfall(16), where the numbers in parentheses denote quanti-
ties for the groups. The experimental setting is followed as that in [43, 49, 55], in which one half
of DT sequences in each category is randomly selected for training and the remain for testing. The
average of 20 runtimes is reported as the output rate.
• 8-class breakdown: As the dominant cardinality of the plants(108) group in 9-class, it is elimi-

nated to form a 8-class scheme with more challenges for DT evaluation. Following [43, 49], the
configuration for experiments is set like that 50% of DT sequences, randomly taken out from each
class, is utilized for training and the rest for testing. Similar to 9-class, the trial on this scheme is
also run 20 times and the mean of those is reported as the final rate.

2.8.2 DynTex dataset

DynTex [54], a challenging dataset for classifying DTs, is broadly used for evaluating abilities of
state-of-the-art approaches in DT representation. Basically, it contains 679 videos in AVI format which
are recorded in various conditions of environmental changes and fixed at dimension of 352× 288× 250
(see Figure 2.5 at line (b) for some samples of DT videos). DynTex is usually arranged into the following
sub-datasets for classification task using the LOO protocol [64, 94, C5]:

• DynTex35: It consists of 35 categories which are correspondingly composed from 35 DynTex
videos as follows. As the experimental settings in [14, 72, 92, C2, J1], each sequence is split into
8 non-overlapping sub-DTs at random clipping points subject to X, Y, T axes, but not half in
those. For example, the clipping points are indicated as in [14], i.e., x = 170, y = 130, t = 100.
Furthermore, two more sub-videos are also captured by randomly splitting along T axis of the
original sequence. As a result, 10 sub-videos for each of 35 videos are addressed in various spatial
and temporal dimensions.
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• Alpha: The subset consists of 60 videos which are labeled in three categories: “grass”, “sea”,
and “trees”. Each category contains 20 sequences.
• Beta: The subset includes 162 videos grouped into 10 classes: “sea(20)”, “vegetation(20)”,

“trees(20)”, flags(20)”, “calm water(20)”, “fountains(20)”, “traffic(9)”, “smoke(16)”, “escala-
tor(7)”, and “rotation(10)”, where the numbers in the parentheses correspondingly denote quan-
tities of videos in the classes.
• Gamma: 264 DynTex videos are arranged into 10 groups: “flowers(29)”, “sea(38)”, “naked

trees(25)”, “foliage(35)”, “escalator(7)”, “calm water(30)”, “flags(31)”, “grass(23)”, “traf-
fic(9)”, and “fountains(37)”, where the numbers in the parentheses correspondingly mean quanti-
ties of sequences in the groups.

2.8.3 DynTex++ dataset

The sequences in DynTex dataset are restructured to form a richer benchmark for DT recognition,
named DynTex++ [55]. Accordingly, 345 DynTex’s raw videos are split into sub-sequences with the
fixed size of 50 × 50 × 50 so that they just include the main streams of DTs. The clipped DTs are then
filtered by some techniques to expose 3600 sequences, those which are grouped into 36 categories with
100 DTs for each. We follow the same experimental setting in [55, 72, 95] for evaluation. It means that
one half of samples from each class is randomly selected for training, and the remain for testing. The
experiment is repeated 10 times to report the average performance as the final result.

2.8.4 DTDB dataset

DTDB [4] recently is a large scale dataset of DT videos for principally evaluating effectiveness of
CNN-based proposals. It consists of over 10000 DT videos with a total of ∼3.5M frames captured from
different sources: websites, handled cameras, etc. (see Figure 2.6 for some samples). Two challenging
schemes are addressed for DT recognition as follows.

• Appearance scheme consists of 45 categories, where its DT videos were selected from DTDB so
that they mostly focus on features of spatial appearance, i.e., independent of dynamics (see Figure
2.6 at line (a) for some instances).
• Dynamics scheme consists of 18 categories. Contrary to Appearance, its DT videos, selected from

DTDB, just include features of dynamics, i.e., independent of spatial appearance (see Figure 2.6
at line (b) for some instances).

Following the settings set by [4], 70% of samples in each category is randomly selected for training and
the rest (30%) for testing. This trial is repeated 10 runtimes and the final result is reported by the average
of the achieved rates.

Figure 2.6: Several samples of DTDB, line (a): Appearance, line (b): Dynamics.
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Table 2.1: A brief of main properties of DT datasets.
Dataset Sub-dataset #Videos Resolution #Classes Protocol

UCLA
50-class 200 110× 160× 75 50 LOO and 4-fold
9-class 200 110× 160× 75 9 50%/50%
8-class 92 110× 160× 75 8 50%/50%

DynTex

DynTex35 350 different dimensions 10 LOO
Alpha 60 352× 288× 250 3 LOO
Beta 162 352× 288× 250 10 LOO
Gamma 264 352× 288× 250 10 LOO

DynTex++ 3600 50× 50× 50 36 50%/50%

DTDB
Dynamics > 10000 different dimensions 18 70%/30%
Appearance > 9000 different dimensions 45 70%/30%

2.9 Classifiers for evaluating DT representation
In order to evaluate the performance of proposed descriptors, most of the approaches for DT repre-

sentation often address two popular classifiers as follows.

• K-nearest neighbors (K-NN): The K-nearest neighbor (K-NN) technique, first introduced by Fix
et al. [96] is one of the most popular classifier. For evaluating DT description, the most simple
variant of K-NN, formed when K = 1 (i.e., 1-NN), is often allocated together the χ2 measure
to estimate the dissimilarity D between two histograms. Accordingly, a test sample t is correctly
classified with model m if it has one of the training samples from a similar class as its nearest
neighbor.

D(t,m) =

B∑
b=1

(tb −mb)
2

tb +mb
(2.19)

where B is the total of bins, tb and mb are the values of the sample and the model image at the bth

bin respectively.

• Support vector machines (SVMs): Given a set of instance-label pairs {xi, yi}ki=1, xi ∈ Rn, yi ∈
{−1,+1}, SVM, proposed in [97, 98], solves the following unconstrained optimization problem
with different loss functions ψ(w;xi, yi) in general as

min
w

1

2
wTw + C

k∑
i=1

ψ(w;xi, yi) (2.20)

where C > 0 is the regularization parameter; two common loss functions are ψ(w;xi, yi) =
max(1−yiwTxi, 0) and ψ(w;xi, yi) = max(1−yiwTxi, 0)2. For evaluating DT description, we
address a linear instance of multi-class SVM classifier which is implemented in the LIBLINEAR1

library [99]. The default parameters for training and testing stages are located in our experiments.

In general, our experiments using SVM for classifying DTs have obtained better rates than using
1-NN. It could be seen in some of our works [C1, C4, J1, J2]. Therefore, in this thesis, we just mention
the results computed by the SVM classifier.

1https://www.csie.ntu.edu.tw/∼cjlin/liblinear
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CHAPTER 3

PROPOSED VARIANTS OF LBP-BASED
OPERATORS
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3.1 Introduction
As mentioned in Section 2.7, with simple computation, the local-feature-based methods have ob-

tained potential performances in analyzing shapes and motions of DTs in videos. In spite of that, their
executions have been restricted due to the negative impacts of the well-known problems: noise, near
uniform region, etc. Motivated by the effectiveness and simplicity of LBP and its variants, in this chap-
ter, we propose several powerful operators that are able to more efficiently capture local relationships
with more robustness against those problems. Contributions of our proposed operators can be listed as
follows.
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Table 3.1: A brief of our proposed operators for local DT encoding.
# Operator Description Applied to Referred to

1 CAIP [S4] Completed AdaptIve Patterns
Encoding bipolar Gaussian-based
filtered features (see Section 6.6)

Section 3.2

2 xLDP [J5]
Important extensions of local

derivative patterns [30]
Encoding moment-filtered volumes

(see Section 5.4)
Section 3.3

3 xLVP [J2]
Important extensions of local vector

patterns [100]
Encoding features of dense trajectories

(see Section 4.3)
Section 3.4

4 LRP [J4] Local Rubik-based Patterns
Encoding features of Gaussian-based

filtered volumes (see Section 6.5)
Section 3.5

5 CHILOP [S2]
Completed HIerarchical LOcal

Patterns
Encoding features of Gaussian-based

filtered elements (see Section 6.4)
Section 3.6

• Proposed CAIP is an adaptive solution of CLBP [3] in order to deal with problems of close-to-zero
pixels caused by decomposition of bipolar Gaussian-based outcomes for DT representation [S4].
• Proposed xLDP is a completed model of Local Derivative Patterns (LDP) [30], which its comple-

mentary components are based on novel adaptative directional thresholds. xLDP is then addressed
to capture local features of moment-filtered volumes [J5].
• Proposed xLVP is a completed model of Local Vector Patterns (LVP) [100], which its complemen-

tary components are based on novel adaptive directional vector thresholds. xLVP is then exploited
to capture local features of dense trajectories [J2].
• Proposed LRP is inspired by a rubik-based concept in consideration of 6 local sides and 3 or-

thogonal plane-images which are located around a center voxel. LRP is then used to encode
characteristics of voxels in Gaussian-filtered volumes [J4].
• Proposed CHILOP is constructed by addressing different gray levels of two hierarchical neighbors

allocated by a center pixel. CHILOP is then used for capturing spatio-temporal features from
filtered plane-images computed by a Gaussian filtering kernel [S2].

For convenience, Table 3.1 illustrates a brief of our proposed operators which are exploited to encode
local DT features from different aspects of video analysis. Hereunder, we present the mechanism of their
construction in detail.

3.2 Completed AdaptIve Patterns (CAIP)
Utilizing LBP-based variants for exploiting the beneficial properties of bipolar-based images can

be in trouble due to the zero-pixel problem. Indeed, all zero-pixels are structured by a P -bit-1 string
when using the conventional LBP operator, which have been addressing the center as a threshold. Figure
3.1 graphically demonstrates a specific example using component CLBPS (i.e., the typical LBP) of
CLBP [3]). In order to overcome this problem, we propose in this section a crucial adaptation for CLBP
operator so that its adapted version is able to efficiently capture invariant characteristics in the bipolar-
based images. The reason that CLBP is addressed for the adaptation is its simplicity and effectiveness
as well as one of the most popular LBP-based variants in encoding local features. It is worth noting that
this modification can be similarly applied to other LBP-based variants for improving their performances
in encoding such bipolar-based images, e.g., CLBC [82], LDP-based [30, J5], LVP-based [100, J2], LRP
[J4], etc. Hereunder, we present in detail the procedure to make CLBP more robust against the negative
impacts of the zero-bipolar cells.

In order to maintain the advantages of blurred and bipolar-invariant characteristics in Ω
2D/3D
σ,σ′ for DT

encoding, a center pixel q with its zero-gray-level should be replaced by the mean of its local neighbors
{pi} taken into account as follows.

m̃q =
1

P

P−1∑
i=0

I(pi) (3.1)

where P is the number of neighbors, I(.) returns the gray-scale of a pixel. It should be noted that this is a
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Figure 3.1: An issue example of encoding bipolar-based images in which the fact that CLBPS figures
out a same pattern for three different local textures is resolved by our CAIPS .

little difference compared to the encoding introduced by Jin et al. [101], where all center pixels of a still
image are involved with this replacement. According to that, the original complementary components
CLBPS , CLBPM , and CLBPC for a center pixel q are adapted to correspondingly capture Completed
AdaptIve Patterns (CAIP) with more robustness against the zero-pixel problem. More specifically, the
first component, CAIPS , is turned as follows.

CAIPS(q) =


CLBPS(q), if I(q) 6= 0
P−1∑
i=0

h(I(pi)− m̃q)× 2i, if I(q) = 0
(3.2)

where function h(.) is defined as

h(x) =

{
1, x > 0

0, otherwise.
(3.3)

It can be verified from Figure 3.1 that our proposed adaptation is crucial for encoding bipolar-invariant
features. Indeed, zero-center pixels (i.e., I(q1) = I(q2) = I(q3) = 0) with different types of their
local neighbors are structured to more discriminative patterns using CAIPS operator. In the meanwhile,
all of them are featured by only one pattern when using the typical CLBPS (see Figure 3.1). It should be
noted that the thresholding function h(.) is defined in a little difference from that of LBP-based variants
(i.e., Equation (2.5)) in order to eliminate meaningless encoding of zero-center textural pixels with their
local zero-area neighbors, as in case of structuring a pattern for q3 shown in Figure 3.1.

Similarly, the second (i.e., CAIPM ) and the last (i.e., CAIPC) components are respectively adapted with
m̃q as

CAIPM (q) =


CLBPM (q), if I(q) 6= 0
P−1∑
i=0

g(|I(pi)− m̃q|, m̃I)× 2i, if I(q) = 0
(3.4)

and

CAIPC(q) =

{
CLBPC(q), if I(q) 6= 0

g(m̃q, c̃I), if I(q) = 0
(3.5)

where binary function g(.) is defined in Equation (2.11).

Since those components (i.e., CAIPS ,CAIPM , CAIPC) are complementary, they should be inte-
grated in different ways to form histograms with more robustness. Among of them, the 3D joint setting of
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Image I CLBPS(I) CLBPM (I) CLBPC (I) CAIPS(I) CAIPM (I) CAIPC (I)

Figure 3.2: A comparison of patterns structured by CLBP and CAIP operators with settings of
{(P,R)} = {(8, 1)} and riu2 mapping to encode a Gaussian-based positive-bipolar image I = Ipos

DoGσ,σ′

computed using σ = 0.7 and σ′ = 2
√

5σ.

those components is addressed in our work due to its outperformance. From now on, CAIP is implicated
for this joint in the default circumstance.

In short, based on the adaptive modification, our CAIP has two following beneficial properties to
improve the discrimination power compared to CLBP [3] and other LBP-based variants:

• In addition to inheriting the benefits of CLBP, CAIP is enhanced its performance thanks to effi-
ciently dealing with the problem of encoding the zero-centered bipolar cells in Gaussian-based
filtered outcomes of Ω

2D/3D
σ,σ′ . Figure 3.2 shows the effectiveness of our CAIP.

• In order to preserve blurred and bipolar-invariant features being useful for DT representation, only
zero-pixels q in the bipolar images are replaced by their m̃q instead of doing that for all pixels
as done by Jin et al. [101]. This allows to reduce noise and to carry out near uniform regional
problems (see Figure 3.1).

3.3 Some extensions of Local Derivative Patterns (xLDP)
The typical LDP operator has been initially proposed for face recognition [30] by exploiting local

derivative direction variations and then successfully applied to other applications, such as action recog-
nition [13]. We adopt in this section for the first time this operator to capture shape and motion cues
for DT description. Moreover, we also propose two following important extensions of LDP operator to
improve its discriminative power: adaptative directional thresholds and completed model of LDP.

 

 
 

 

Figure 3.3: Model of the first-order LDP patterns of qc
(
I ′α(qc)

)
and pi

(
I ′α(pi)

)
pixels in directions

α ∈ D in which qc (in red) is the considered point, pi is the ith neighbor of qc, and pj is the jth neighbor
of pi.

3.3.1 Local Derivative Patterns

Zhang et al. [30] introduced Local Derivative Patterns (LDPs), a directional extension of LBP, by
taking into account local high-order derivative variations based on considering a pixel and its neighbors
in different directions to capture more robust features.

The first-order LDP at a pixel for a set of considered directions D is defined as follows.

I ′α(qc) = I(qc)− I(pi,α) (3.6)
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Figure 3.4: An example of two different local struc-
tures (marked in red color) are encoded by the same
LDP pattern in concerned direction α = 0◦.
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Figure 3.5: Two different local structures (a) and (b)
in Figure 3.4 are encoded by different LDP-D pat-
terns in direction α = 0◦.

where pi,α is the ith neighbor of a center point qc in a concerning direction α, I(.) is gray-scale image
level of a pixel. Figure 3.3 graphically illustrates the regular computation of the first-order LDP patterns
corresponding to directions α ∈ D. In general, the nth-order LDP is defined as follows, for the center
pixel qc and its P neighbors circled with radius R.

LDPnP,R,α(qc) =
{
f
(
In−1
α (qc), I

n−1
α (pi)

)}
1≤i≤P (3.7)

where In−1
α (.) means the (n− 1)th-order derivative in direction α at a pixel, pi is the ith neighbor of the

center point qc, and function f(.) is defined as

f(x, y) =

{
1, if x× y ≤ 0

0, otherwise.
(3.8)

The detail of other LDP’s formulations as well as samples of its calculation is discussed in [30]. In
practice, four directions are often considered, i.e., α ∈ {0◦, 45◦, 90◦, 135◦}, to capture directional mutual
relations of pixels [13, 30]. In case of inspecting the first-order derivative variations in all of directions,
LDP is simply identical to the basic LBP.

3.3.2 Adaptative directional thresholds

Similar to a well-known restriction of the typical LBP, LDP is not occasionally able to judge different
structure patterns because its encoding is still thresholded by the center with around neighbors. It can be
observed in Figure 3.4 that two different local structures (a) and (b) are figured out by the same pattern. In
order to handle this issue, we propose to define three following adaptative thresholds1 for LDP operator.
The key idea for that is the consideration of the first-order LDP. These thresholds will be then exploited
in Section 3.3.3 to construct the completed model of LDP.

Firstly, Global Directional Difference (GDD) of an image texture is calculated as the mean of abso-
lute directional differences on the entire of concerned directions.

GDD(I) =
1

|D| × N

( ∑
qj∈I
|I ′α(qj)|

)∣∣∣
α∈D

(3.9)

whereN = (W− 2)× (H− 2),W andH are width and height dimensions of 2D image I respectively,
|D| is the total of considered directions, I ′α(.) is the first-order local derivative pattern of a pixel in
regarding direction α.

1Contrary to the two last thresholds, the first one is empirically proposed without depending on α because this leads to more
robust and stable results.
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Secondly, to capture the information of Directional Magnitudes (DMα) for each direction α, we
compute the mean of absolute multiplication of directional differences on the whole image as follows.

DMα(I) =
1

N × P

( P−1∑
i=0

|I ′α(qj)× I ′α(pi)|
)∣∣∣

qj∈I
(3.10)

in which pi is the ith neighbor of current pixel qj of image I, P is the number of considered neighbors.

Thirdly, the Directional Center (DCα) threshold is defined as the average of directional centered
differences on the whole image.

DCα(I) =
1

N
∑
qj∈I

∣∣I ′α(qj)
∣∣ (3.11)

3.3.3 Completed model of LDP

Guo et al. [3] showed that considering local variations of magnitudes together with the typical LBP
makes the descriptor more robust and discriminant because they are complementary. Inspired by this
idea, we introduce in this portion, a completed model of the second order LDP using adaptative thresh-
olds, which are presented in Section 3.3.2. Similar to [3], it also consists of three following complemen-
tary components.

First, we propose LDP-D operator as the first component in order to capture the second-order local
derivative patterns adjusted by an adaptive thresholding GDD (see Equation (3.9)) as follows.

LDP-DP,R,α(qc) =

P−1∑
i=0

ψ
(
I ′α(qc), I ′α(pi),GDD(I)

)
× 2i (3.12)

where pi is the ith neighbor of the center pixel qc in accordance with direction α, P is number of
considered neighbors circled by radius R, and function ψ(.) is estimated as

ψ(x, y, z) =

{
1, if (x+ z)× (y + z) ≤ 0

0, otherwise.
(3.13)

In assumption of just considering one direction of α = 0◦ (i.e., |D| = 1), in contrast to the basic LDP,
the proposed operator LDP-D is able to differentiate the local structures (a) and (b) as detailed in Figure
3.5.

Second, LDP-M component exploits the information of magnitudes in a direction α by using adaptative
threshold DMα (see Equation (3.10)) and is formed as

LDP-MP,R,α(qc) =

P−1∑
i=0

h
(
I ′α(qc), I ′α(pi),DMα(I)

)
× 2i (3.14)

where h(.) is defined as

h(x, y, z) =

{
1, if |x× y| ≥ z
0, otherwise.

(3.15)

Third, LDP-C regards to the directional contrast of a center against the mean of directional differences
on the whole image.

LDP-Cα(qc) = s
(
I ′α(qc)−DCα(I)

)
(3.16)

in which s(.) is defined by Equation (2.5).
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Three above complements (abbreviated to LDPD, LDPM , and LDPC) should be combined in dif-
ferent ways to produce extended LDP operator, named xLDP, for investigation to find out an enhanced
operator LDP for encoding DT features. An instance of those is xLDP = LDPD M/C , in which the sig-
nals of “ ” and “/” in the style D M/C mean that histograms obtained by the corresponding components
are concatenated and jointed respectively. It should be noted that our operator can be also generated in
high-order derivative patterns (xLDPn) by exploiting the nth-order directional LDPs (n > 2) [30] for
calculation of the proposed components above.

Our xLDP is different from the typical LDP [30] in several properties to enhance the performance:

• The xLDP operator considers local structures in diversity of directional relations based on 3 com-
plemented components, in contrast to LDP with only in consideration of local derivative patterns.
• Our operator is more insensitive to noise when exploiting adaptative directional thresholds (see an

instance of encoding patterns in Figures 3.4 and 3.5).
• To encode a local structure in each direction, LDPs are separately computed by using the corre-

sponding components. In the meanwhile, the basic LDP encodes a pixel in a long binary chain for
all concerned directions, e.g., a string of 32 bits for four 8-bit LDPs.
• Thanks to structuring patterns in separative strings of binary codes, two popular mappings of riu2

and u2 for the processing of description can be utilized to advance the performance of descriptor
with practical dimension. In contrast, LDPs are calculated on subregions of an image texture with
various parameters of histogram bins.

3.3.4 Assessing our proposed extensions of LDP

In order to evaluate the proposed complementary components for LDP operator, we also implement
the basic LDP [30] for DT description based on the filtered videos captured by the proposed model of
r-order moment volumes. For a center pixel qc and its P considered neighbors sampled by a circle with
radius R, the second-order typical local derivative pattern (LDP) of qc in direction α, named LDPP,R,α,
is defined as

LDPP,R,α(qc) =
P−1∑
i=0

f
(
I ′α(qc), I ′α(pi)

)
× 2i (3.17)

where the function f(.) is defined by Equation (3.8). Actually, this operator is the same LDP-D without
exploiting the adaptative threshold of GDD.

3.4 Some extensions of local vector patterns (xLVP)
The basic LVP operator [100] has been originally introduced to exploit the directional information

of texture image patterns in high-order derivative spaces for face recognition. It is then interested in
utilizing for other applications in computer vision, such as action recognition [102], image retrieval [103].
For DT description, we get involved with this operator for the first time in order to encode directional
vector structures of motion points along their dense trajectories which are extracted from a DT sequence.
Due to being a derivation of the LBP concept in textural image representation, the basic LVP operator
has existed the internal limitations of LBP, such as sensitivity to noise, illumination, and near uniform
images. To mitigate those problems, we hereafter propose two following important extensions of LVP in
order to enhance its discrimination for DT recognition task: adaptive directional vector thresholds and a
completed model of LVP.

3.4.1 Local Vector Patterns

Fan et al. [100] proposed Local Vector Pattern (LVP) operator for image description by regarding a
pairwise of directional vectors in order to remedy the remaining shortcomings of local pattern represen-
tation. Let I denote a 2D image. The first-order derivative of a center pixel qc conducted by a direction
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α is computed as
I ′α,d(qc) = I(qα,d)− I(qc) (3.18)

in which qα,d is an adjacent neighbor sampled by direction α and a distance d from the considered pixel
qc, I(.) returns the gray-scale image value of a pixel. The first-order LVP of qc is defined as a P -bit
binary chain by concerning it with P local directional relations in a couple of directions (α, α + 45◦)
and formed as follows.

LVPP,R,α,d(qc) =
P−1∑
i=0

f
(
I ′α,d(qc), I ′α+45◦,d(qc), I ′α,d(pi), I ′α+45◦,d(pi)

)
× 2i (3.19)

where {pi} denotes P neighbors of qc, d ∈ {1, 2, 3} presents the distance of the considered pixel with
its contiguous points, and f(.), a function of Comparative Space Transform (CST), is defined as

f(x, y, z, t) =

1, if t− y × z
x
≥ 0

0, otherwise.
(3.20)

Other formulations of LVP along with samples of encoding LVP-based patterns for texture images are
clearly discussed in [100]. In practice, four possible directions are often employed in real applications,
i.e., α = {0◦, 45◦, 90◦, 135◦}, to enrich discriminative information of descriptors [100, 102, 103].

3.4.2 Adaptive directional vector thresholds

Motivated by the first-order concept of LVP, we define hereunder two adaptive vector thresholds to
apply for two corresponding components that are defined in below section to capture magnitude infor-
mation and directional centered contrast patterns. First, to exploit the information of Directional Vector
Magnitudes (DVM) for each direction α, we calculate the mean of absolute CST on the whole image as

DVMα,d(I) =
1

N × P
∑
q∈I

P−1∑
i=0

∣∣I ′β,d(pi)− I ′β,d(q)

I ′α,d(q)
× I ′α,d(pi)

∣∣ (3.21)

in which I ′α,d(.) is the first-order derivative of a pixel in concerned direction α and distance d; β =

α+ 45◦; pi denotes the ith neighbor of the current pixel q in an image I; P is the number of considered
neighbors; N = (W − 2)× (H− 2) whereW andH are the width and height dimensions of 2D image
I respectively.

Second, a Directional Vector Center (DVC) threshold is defined as absolute multiplication of direc-
tional differences which are averaged on the whole image as follows.

DVCα,d(I) =
1

N
∑
q∈I

∣∣I ′α,d(q)× I ′β,d(q)
∣∣ (3.22)

where each pixel q ∈ I is addressed in a pair of concerned directions (α, β) to form first-order derivatives
correspondingly.

3.4.3 A completed model of LVP

Guo et al. [3] indicated that the integration of complementary components: local variations of magni-
tudes, centered contrast levels, and along with the typical LBP, leads to structuring effectively a descriptor
with more robust and discriminative power. Inspired by this concept, we propose in this section, a com-
pleted model of the first-order LVP using the adaptive thresholds which are defined in Section 3.4.2. In
essence, it is an integration of three following parts:

28



CHAPTER 3. PROPOSED VARIANTS OF LBP-BASED OPERATORS

 

7 4 2 4 1 

1 8 2 9 5 

9 7 3 6 9 

4 1 5 6 3 

2 4 8 7 6 

  

7 4 2 4 1 

1 8 2 9 5 

9 7 3 6 9 

4 1 5 6 3 

2 4 8 7 6 

  

7 4 2 4 1 

1 8 2 9 5 

9 7 3 6 9 

4 1 5 6 3 

2 4 8 7 6 

7 4 2 4 1 

1 8 2 9 5 

9 7 3 6 9 

4 1 5 6 3 

2 4 8 7 6 

 

7 4 2 4 1 

1 8 2 9 5 

9 7 3 6 9 

4 1 5 6 3 

2 4 8 7 6 

 

 

Figure 3.6: Computing the first-order LVP-D binary pattern for a dynamic point I(qc) = 3 (in red) with
α = 0◦, d = 1, and (P,R) = (8, 1).

The first component is proposed to compute local vector patterns in each direction of α ∈ Φ for a
motion point qc as follows.

LVP-DP,R,α,d(qc) =
P−1∑
i=0

h
(
I ′α,d(qc), I ′β,d(qc), I ′α,d(pi), I ′β,d(pi)

)
× 2i (3.23)

in which P is the number of considered neighbors sampled on a circle of radius R centered at qc,
β = α+ 45◦, and function h(.) is defined as

h(x, y, u, v) =

{
1, if v ≥ u× y

x
0, otherwise.

(3.24)

The fact that each LVP-D pattern is similar to the basic LVP [100], except that it is separately encoded
in a binary string for each concerned direction instead of the combination of all into one long pattern for
the whole directions as the typical LVP (see Figure 3.6 for an example of this computation). Indeed, it is
possible to utilize popular mappings (e.g., u2, riu2) for dimensional reduction.

The second, called LVP-M, captures magnitude variations of a motion point qc according to direc-
tions of Φ as follows:

LVP-MP,R,α,d(qc) =

P−1∑
i=0

ψ
(
I ′α,d(qc), I ′β,d(qc), I ′α,d(pi), I ′β,d(pi),DVMα,d(I)

)
× 2i (3.25)

where function ψ(.) is defined as

ψ(x, y, u, v, t) =

{
1, if |v − u× y

x
| ≥ t

0, otherwise.
(3.26)
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Third, LVP-C regards to the contrast level of qc in a direction α against the mean of directional
differences on the whole image.

LVP-Cα,d(qc) = s
(
I ′α,d(qc)−DVCα,d(I)

)
(3.27)

in which s(.) is defined by Equation (2.5).

These components (respectively abbreviated to LVPD, LVPM , and LVPC) are supplementary to en-
rich more discriminative information. Therefore, they should be integrated together into different ways
to enhance the discrimination power. Each integration makes a corresponding extended LVP opera-
tor, named xLVP in general. For example, xLVP = LVPD M/C means that probability distributions
structured by LVPD, LVPM , and LVPC are respectively concatenated and jointed corresponding to the
signals of “ ” and “/” in style “D M/C”. It should be noted that our xLVP operator can be also in-
ferred to nth-order derivative (n > 1) to capture high-order directional patterns (xLVPn), as similarly as
generated in [100].

Our xLVP operator takes into account several following properties to improve the performance in
comparison with the basic LVP [100]:

• Based on complementary components, the xLVP operator is able to forcefully capture directional
relationships in various contexts of local regions. In the meanwhile, LVP just considers one scale
for computing local features.
• For each concerned direction, a directional pattern of the components is encoded in a separative bi-

nary string of 8 bits. In contrast to the basic LVP, its binary outputs are concatenated to form a long
chain for all considered directions, e.g., a 32-bit string for the first-order LVP in four directions.
• Due to encoding directional features in separative chains of binary codes, it is possible to take

advantage of two popular mappings of riu2 and u2 in order to enhance the discriminative power
of descriptor with a reasonable dimension. In contrast, the conventional LVPs are calculated on
sub-regions of a texture image and the obtained spatial histograms are adopted into equal interval
by using a method of uniform quantization [100].

3.5 Local Rubik-based Patterns (LRP)
3.5.1 Complemented components

Motivated by the conception of complemented components in [3, 90, 91], three prominent compo-
nents are proposed to address forceful discrimination of local textural features by adapting the concept
to the supporting region constructed from 6 sides of a rubik cube and by introducing new concepts of
encoding and thresholding dedicated to this neighborhood configuration for three completed components
(see Equations (3.29), (3.31), (3.32), and (3.34)). Accordingly, let q be a voxel in a video V; qf be its
projection on a plane-image f ∈ V (see Figure 3.7(a) for a graphical illustration). Figure 3.7(b) presents
our neighborhood supporting region which is constructed from 6 sides of a rubik cube centered at the
voxel together with 3 orthogonal planes passing through this voxel. The first component captures the
differences between the mean gray-level center points (i.e., q, qf ) and each of {pi,f} local neighbors of
qf as follows.

DP,R,f (q,qf ) =

P−1∑
i=0

s
(
I(pi,f ), I(qf ), I(q)

)
× 2i (3.28)

where P denotes the number of considered neighbors interpolated on a circle of radius R, I(.) returns
the gray-scale of an image pixel, the binary function s(.) is defined as

s(x, y, z) =

{
1, x ≥ y+z

2

0, otherwise.
(3.29)
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The second conducts informative magnitudes by comparing the gray-level differences in the first com-
ponent with the average of them mf computed for the whole textural region as follows.

MP,R,f (q,qf ) =

P−1∑
i=0

h
(
I(pi,f ), I(qf ), I(q),mf

)
× 2i (3.30)

in which mf and function h(.) are defined in (3.31) and (3.32) respectively, N means the quantity of
pixels {qj} in current image f .

mf =
1

P ×N

N∑
j=0

P−1∑
i=0

(
I(pi,f )−

I(qj,f ) + I(q)

2

)
(3.31)

h(x, y, z, t) =

{
1, x− y+z

2 ≥ t
0, otherwise.

(3.32)

The third component features central differences of the mean gray-level of the center points (i.e., q and
qf ) versus the average of them cf calculated for the entire plane image f as follows.

CP,R,f (q,qf ) = g
(
I(qf ) + I(q)− cf

)
(3.33)

where g(.) is identical to Equation (2.5) and cf is computed as

cf =
1

N

N∑
j=0

(
I(qj,f ) + I(q)

)
(3.34)

Those components are complementary [3]. Therefore, their integration is recommended in order to
improve the discriminant power. Let DMCP,R,Ω(.) be an integration Ω of the complemented compo-
nents (i.e., DP,R,f (.), MP,R,f (.), CP,R,f (.)) subject to each voxel. For instance, DMCP,R,Ω(q,qfi−1

)
computes DP,R,fi−1

(q,qfi−1
), MP,R,fi−1

(q,qfi−1
), and CP,R,fi−1

(q,qfi−1
) based on q’s central sym-

metry voxel qfi−1
at image fi−1 in plane XY (see Figure 3.7(c) for a sample of this computa-

tion). Those are then integrated into different ways Ω to form space-completed patterns. Therein,
Ω = {D M/C , D/M/C , etc.} where signs “ ” and “/” mean operations of concatenating and jointing
probability distributions of the components respectively, e.g., “D M/C” indicates that a joint histogram
of M(.) and C(.) is concatenated to that of D(.).

3.5.2 Construction of LRP patterns

Based on the concept of complemented model in the previous section, we introduce hereafter the
novel LRP operator. For a video V , let a center voxel q ∈ V be an intersection point of orthogonal plane
images fi ∈ XY , fj ∈ XT , and fk ∈ Y T where {XY,XT, Y T} are planes of V . A rubik cube Γ of q is
addressed in consideration of the previous and posterior plane-images of fi, fj , and fk respectively (i.e.,
fi−1, fi+1 for XY , fj−1, fj+1 for XT , fk−1, fk+1 for Y T , see Figure 3.7(b) for a graphical instance).
A local rubik-based pattern for q is structured by integrating complementary components computed on
6 sides and 3 orthogonal plane-images of rubik cube Γ as follows.

LRPΓ,Ω(q) =
⊎
f∈F

[
DMCP,R,Ω(q,qf )

]
(3.35)

in which F = {fi−1, fi, fi+1, fj−1, fj , fj+1, fk−1, fk, fk+1} is a set of 6 sides and 3 orthogonal plane-
images of rubik cube Γ, qf is the central symmetry voxel of q that is orthogonally projected on plane-
image f (see Figure 3.7(a) for an instance of a projection of q);

⊎
denotes a concatenating function of

histograms.

Our LRP is different from LBP-based variants in several properties to improve the performance:
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Figure 3.7: Computing parts of our framework. (a): A model of encoding feature for a voxel q (in red)
based on its central symmetry voxel qf (in blue) on plane image f . (b): A graphical illustration of LRP
construction at voxel q. (c): A calculation of an integrated histogram DMC(.) for voxels {q ∈ fi} along
with their symmetry points in images fi−1 and fi+1 of plane XY in a video.

• LRP structures a voxel in consideration of rich spatio-temporal relationships extracted from 6
sides of the rubik cube (see Figure 3.7(b)) while other LBP-based variants mostly based on three
orthogonal planes for DT representation [92, J1].
• Discriminative information of a center voxel is embedded into encoding side patterns against near-

uniform regions.
• Based on a block shape, LRP is more suitable for encoding DT videos than LBP-based variants

which are separately applied to still images of the planes in videos.
• By addressing previous and posterior plane-images, LRP can capture changes of a voxel in global

spatio-temporal appearances. In the meanwhile, VLBP for structuring temporal appearances in
plane XY , and LBP-TOP for addressing local orthogonal patterns [14].

3.6 Completed HIerarchical LOcal Patterns (CHILOP)
In this section, we propose a novel, efficient operator, named CHILOP, to adequately capture local

relationships in multi-layer hierarchical supporting regions against problems of sensitivity to noise and
near uniform regions (see Section 3.6.1). It should be noted that our CHILOP is a generalized concept
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Figure 3.8: An instance of structuring two LH patterns of pi=3,pi=4 ∈ Ωk based on {qj}
Pk+1

j=1 of Ωk+1,
in which Ωk = (8, 1), and Ωk+1 = (8, 2) are two adjacent LBP-based regions, i.e., Pk = Pk+1 = 8
neighbors sampled by Rk = 1, and Rk+1 = 2.

of CLBP [3], one of the most popular LBP-based variants for textural image description. Furthermore,
it is possible to take advantage of the CHILOP approach for other directional and non-directional LBP-
based methods in order to improve their performances, such as CLBC [82], LDP-based [30, J5], LVP-
based [100, J2], LRP [J4], etc. Due to being a local encoding operator, our CHILOP may be limited
by influences of environmental changes and illumination. To deal with those, we introduce an effective
framework in which CHILOP is exploited on Gaussian-filtered images in order to make the output pat-
terns more discriminative against those negative impacts (see Section 6.4.1). Hereafter, we express above
processes in detail.

3.6.1 Construction of CHILOP

As mentioned in Section 2.7, with simple computation, local-feature-based methods have obtained
promising performances in analyzing shapes and motions of DTs in videos. In spite of that, their execu-
tions have been restricted due to the negative impacts of changes of environmental elements, illumination
and noise, near uniform regional problems. In this section, we propose a novel operator that is able to ef-
ficiently capture local relationships with more robustness against those problems. To this end, in our prior
work [C3], a pairwise of adjacent supporting areas is exploited to capture HIerarchical LOcal Patterns
(HILOP) for DT representation. However, it has achieved moderate results due to lack of forceful infor-
mative appearances. Addressing those crucial omissions, we make an important extension of HILOP in
consideration of a completely analyzing context in order to structure Completed HILOP Patterns (i.e.,
CHILOP) with more discrimination against problems of sensitivity to noise, near uniform regions. Sim-
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Figure 3.9: An example of CHILOP encoding. Therein, LH ,LM , and LC patterns for ∀pi ∈ Ωk (in dark
blue) are corresponding to lines of (a), (b), and (c), which are structured by exploiting two hierarchical
LBP-based supporting regions D = {Ωk = (8, 1), Ωk+1 = (8, 2) (in orange)}. The corresponding L∇
histograms, i.e., line (d), are formed by using an integration of∇ = {H M/C}.

ilar to CLBP [3], our proposed operator CHILOP also consists of three complementary components, but
in a generally novel concept of investigating local relationships in which CLBP-based patterns can be
deduced from CHILOP in a specific condition of degeneration (see Section 3.6.2). In other words, our
CHILOP is more general than CLBP in local encoding. Hereunder, we express the proposed foundation
of our CHILOP in detail.

Let Ωk = {pi}Pki=1 and Ωk+1 = {qj}
Pk+1

j=1 , (k, Pk, Pk+1 ∈ Z+), be two adjacent hierarchies of
supporting regions of a pixel qc in an image I, so that Ωk

⋂
Ωk+1 = Ø and Pk ≤ Pk+1, in which Pk,

Pk+1 denote numbers of qc’s neighbors determined in hierarchical regions Ωk, Ωk+1 respectively. For
each neighbor pi ∈ Ωk, three kinds of hierarchical local relationships are addressed as follows.

First, pi’s hierarchic pattern LH is encoded as a binary string of Pk+1 bits by considering the differ-
ence of pi’s gray-value with that of all qj ∈ Ωk+1 as follows.

LH(pi ∈ Ωk,Ωk+1) =

Pk+1∑
j=1

ξ
(
I(qj)− I(pi)

)
× 2j−1 (3.36)

in which I(.) returns the gray-value of a pixel, ξ(.) is defined in Equation (2.5). It can be seen that
when Ωk = {qc}, and Pk+1 > 1, LH is equivalent to the basic LBP [81]. Figure 3.8 particularly
shows an instance of this computation for pi=3,pi=4 ∈ Ωk using two adjacent LBP-based supporting
regions Ωk = (8, 1) and Ωk+1 = (8, 2). In the meanwhile, Figure 3.9(a) illustrates visual samples of
LH patterns that are encoded for ∀pi ∈ Ωk in an input image. In a former work [C3], we used the
LH patterns for video description and obtained good performance of DT recognition. This leads to a
motivation for a completed model of hierarchical features by defining two complementary components
LM and LC as presented below.
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Second, in consideration of the intensity of hierarchic properties on the entire image I, the hierarchi-
cal magnitude information LM of a pixel pi ∈ Ωk is formulated as

LM (pi ∈ Ωk,Ωk+1) =

Pk+1∑
j=1

ξ
(
|I(qj)− I(pi)| − m̃i

)
× 2j−1 (3.37)

where m̃i is the average of gray-value differences of pi versus all qj ∈ Ωk+1 computed on the whole
image I as

m̃i =
1

N × Pk+1

∑
pi∈I

Pk+1∑
j=1

(
|I(qj)− I(pi)|

)
(3.38)

in whichN denotes the total of pi pixels determined by the center qc for the whole image I (see Figure
3.9(b) for a visual look of encoding LM features).

Third, the remain is to measure the gray-scale central difference LC in which a consolidation of the
gray-level average γ̃Ωk,Ωk+1

of two hierarchical regions along with the center pixel qc is addressed as
a threshold in order to compare with c̃I , the average of all pixels in image I. Figure 3.9(c) shows an
instance of the LC encoding in which its achieved patterns are used for computing jointed histograms
subject to the computation of {pi} in image I.

LC(qc,Ωk,Ωk+1) = ξ
( γ̃Ωk,Ωk+1

+ I(qc)

2
− c̃I

)
(3.39)

in which γ̃Ωk,Ωk+1
is defined as

γ̃Ωk,Ωk+1
=

1

Pk + Pk+1

( ∑
pi∈Ωk

I(pi) +
∑

qj∈Ωk+1

I(qj)
)

(3.40)

Similar to CLBP [3], the proposed patterns LH , LM , and LC can be also considered as comple-
mentary components. Therefore, they can be integrated in several ways∇ to enhance the discrimination
power, such as ∇ = {H/M/C ,H M/C , etc.}, where the signal of “H/M/C” denotes a 3D jointing his-
togram of LH , LM , and LC , while the signal of “H M/C” means that a histogram of LH is concatenated
with a 2D jointing ofLM andLC (see Figure 3.9(d) for an example of calculating a “H M/C” histogram).
From now on, L∇ is denoted as an integration of these complementary components in general.

By taking all neighbors pi of Ωk into account the L∇ encoding, two-hierarchical feature of qc is
formed in completed consideration of a pairwise of hierarchical supporting areas Ωk and Ωk+1 as follows.

Γ∇,Ωk,Ωk+1
(qc) =

[
L∇(pi ∈ Ωk,Ωk+1)

]Pk
i=1

(3.41)

It should be noted that structuring LH patterns of Γ(.) is absolutely different from capturing difference-
based patterns introduced in [88], i.e., RD-LBP and AD-LBP. More specifically, in our proposal, all of
qj ∈ Ωk+1 are thresholded with each of pi ∈ Ωk to be able to figure out Pk patterns. In contrast to
that, RD-LBP [88] is formed by comparing a pairwise of (qj , pj) in parallel to achieve only one pattern,
while AD-LBP [88] is computed by addressing the differences of pixels in the same regions.

In order to forcefully enrich discriminative information, we address the function Γ(.) for multi-
regional analysis to capture more useful properties in the further regions. According to that, let D =
{Ω1,Ω2, ...,Ωl} be a set of adjacent hierarchical areas extracted from a given pixel qc ∈ I so that
each pairwise of which is separative, i.e., Ωk

⋂
Ωk+1 = Ø, ∀k. Completed HIerarchical LOcal Pattern

(CHILOP)2 of qc is structured as follows.

CHILOP∇,D(qc) =
[
Γ∇,Ωk,Ωk+1

(qc)
]l
k=1

(3.42)
2A simple MATLAB code for structuring CHILOP patterns is available at http://tpnguyen.univ-tln.fr/

download/MATCodeCHILOP
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3.6.2 A particular degeneration of CHILOP into CLBP

It can be realized that our CHILOP operator in a single scale, proposed in Section 3.6.1, is more
general in a completed context of local encoding than CLBP [3]. Indeed, when Ωk = {qc}, and Pk+1 >
1, it can be simply proved from Equations (3.36) and (2.4) that the component LH is identical to the
basic LBP [81], i.e., the CLBPS component of CLBP. Similarly, the function LM is degenerated into
CLBPM due to a replacement of Ωk = {qc} in Equation (3.37) to deduce (2.10). In the meanwhile, the
component LC is embedded more the gray-scale information of local points in hierarchical supporting
regions, but in general, it can be considered as a equivalent function of CLBPC (see Equations (3.39)
and (2.12)). As the result of those, beside inheriting the advantages of CLBP, our CHILOP features
are enriched more hierarchical structures to improve the discrimination against problems of sensitivity
to noise and near uniform patterns (see Table 6.3 and Figure 6.6 for a practical comparison of their
performances).

3.6.3 Beneficial properties of CHILOP operator

Based on the generally novel concept presented in Section 3.6.1, our CHILOP has the following
beneficial properties to enhance the discrimination power in comparison with our prior operator HILOP
[C3], as well as with CLBP [3], and other LBP-based variants:

• Instead of considering the difference of a center pixel and its local neighbors as conducted in
LBP-based variants, CHILOP addresses a pairwise of adjacent supporting regions in order to cap-
ture hierarchical characteristics with more robustness against problems of noise and near uniform
patterns.
• Beside structuring hierarchical features by considering relationships of two adjacent regional hi-

erarchies, CHILOP operator is able to forcefully capture more informative discrimination thanks
to two more complementary components LM and LC . In the meanwhile, just one kind of hier-
archical features is exploited in HILOP [C3] (see Figure 6.7 for a particular comparison of their
performances).
• The concept of hierarchical structures in CHILOP can be extended to other directional/non-

directional LBP-based variants in order to enhance their executions, e.g., CLBC [82], LDP-
based [30, J5], LVP-based [100, J2], LRP [J4], etc.
• In general, the complexity of our proposed operator has the same order as that of CLBP. Indeed,

let Θ be the complexity of CLBP, CHILOP’s is about Θ× Pk, in which Pk denotes the number of
local neighbors of the inner hierarchical area involved with, i.e., Ωk.

3.7 Summary
In this chapter, we have proposed five types of local-based descriptors for DT encoding: CAIP [S4],

xLDP [J5], xLVP [J2], LRP [J4], and CHILOP [S2], which are robust against the conventional problems
of sensitivity to noise and near uniform patterns. Moreover, their computation is simple due to being
inherited from the advantage of LBP-based variants. Those operators are then exploited to encode local
DT features from different aspects of video analysis as presented in the following Chapters 5, 4, 6, in
which experimental results for DT recognition task have substantiated that our proposals are the same
order of computational cost compared to their originals and the popular one CLBP [3], but much better
performance in DT representation, e.g, our xLDP versus its original LDP [30], xLVP versus LVP [100],
CAIP versus CLBP [3], etc.
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4.1 Introduction
In this chapter, we propose an efficient framework for DT representation to exploit spatio-temporal

features of their dense trajectories extracted from a given video. In general, the proposed framework
consists of three stages as follows. Firstly, motion points and their paths in a video extracted by using an
extracting tool [104]. Secondly, our proposed xLVP operator, a crucial completed model of LVP [100]
operator as presented in Section 3.4, is taken into account to encode the obtained trajectories. Thirdly,
two important beneficial properties of dense trajectories are exploited: Directional features of beam tra-
jectories, and spatio-temporal features of motion points along with their paths in which their directional
relationships are captured by using the robust operator xLVP. Finally, the output histograms are con-
catenated and normalized to effectively construct DT descriptors, named Directional Dense Trajectory
Patterns (DDTP), with more robustness. Consequently, it could be realized that the advantages of both
optical-flow-based and local-feature-based methods are consolidated into our approach to improve DT
representation. In short, the major contributions of this work can be listed as follows.

• Dense trajectories, extracted from a video, are involved with DT representation for the first time
instead of the whole video [C4, J2].
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• Exploiting LVP to capture directional features of beam trajectories [C4].
• Addressing xLVP for both beam trajectories and spatio-temporal features of motion points [J2]. It

means that the profitable characteristics of optical-flow-based and local-feature-based methods are
combined for DT representation in more effect.

4.2 Dense trajectories
Wang et al. [104] introduced an efficient technique for extracting dense trajectories in videos based

on a dense optical flow field to locate and track the paths of motion points. In particular, let qf = (xf , yf )
denote a motion point at the f th frame with corresponding coordinates of xf and yf . Its displacement
at the (f + 1)th frame is interpolated by addressing the polynomial expansion algorithm for two-frame
motion estimation [105] along with an optical flow ωf = (uf , vf ), which is known as a median filter.
Therein, uf and vf mean the horizontal and vertical optical flow components. The inferred position of
qf in the posterior frame, i.e., qf+1 = (xf+1, yf+1), is tracked as

qf+1 = qf + (M × ωf )|(xf ,yf ) (4.1)

in which (xf , yf ) refers to the rounded position value of qf , M is a median filter kernel of 3× 3 pixels.
According to that, a dense trajectory with length of L can be structured by a concatenation of the motion
point qf and its displacements inferred through L consecutive frames, i.e., {qf ,qf+1, ...,qf+L−1}. In
our framework, we use the version 1.2 of dense trajectories1 as a tool to extract motion paths of dynamic
features for DT description.

4.3 Beneficial properties of dense trajectories
Dense trajectories, introduced by Wang et al. [104], are traces of dense motion points which are

tracked through in a certain number of frames based on the information of their displacements in a video.
Exploiting robust properties of these complex motions, dense-trajectory-based methods are interested in
analyzing videos for action recognition [104,106], object segmentation [107], etc. In our framework, we
take this approach for the first time into account DT representation by concerning motion of dynamic tex-
tures in consideration of different local directions to address two important properties: directional beams
of dense trajectories and spatio-temporal characteristics of motion points along their paths. Hereunder,
we present in detail a novel concept for embedding dense trajectories in accordance with the completed
model xLVP to figure out directional trajectory-based patterns with more discrimination. In the other
hand, the advantages of both optical-flow-based and local-feature-based techniques are wedged into our
proposed framework for DT representation.

4.3.1 Directional features of a beam trajectory

Let t = {q1,q2, ...,qL,qL+1} be a dense trajectory with length of L which is structured by mo-
tion point q1 and its inferred derivations (i.e., {q2, ...,qL,qL+1}) through L + 1 consecutive frames
{f1, f2, ..., fL, fL+1}. We address directional movements of each motion point qi ∈ t and its local
neighbors sampled by a vicinity of B (see Figure 4.1 for a graphical illustration) to estimate dynamic
features for chaotic motions as well as their spatial characteristics along trajectory t using the completed
operator xLVP in directions of Φ. The obtained histograms are then concatenated to form directional
beam trajectory (DBT) patterns of t, efficiently describing the directional moving cues of beams of dy-
namic points.

DBTL,Φ,d(t) =

[
L+1∑
i=1

Hqi

(
xLVPP,R,Φ,d(qi,fi)

)
,
⊎

pj∈B

[ L+1∑
i=1

Hpj

(
xLVPP,R,Φ,d(pj,fi)

)]]
(4.2)

in which xLVP(.) means completed local vector pattern of a pixel at a frame in consideration of its local
neighbors P sampled by a circle of radius R with a given distance d and concerned directions Φ; pj

1http://lear.inrialpes.fr/people/wang/dense trajectories
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Figure 4.1: A general model for encoding DBT patterns in which dense trajectory t with length of L
is structured by L + 1 blue motion points located in consecutive frames along with their neighbors in
different colors situated in a vicinity B = {8, 1}.

Trajectory t with length of L

 

Figure 4.2: A typical TMP model in which directional temporal information of motion points (in blue)
are encoded along their trajectory twith length of L by exploiting directional relations of those with their
local neighbors P = 8 (in red) sampled by a circle of radius R = 1 on XT and YT planes.

refers to the jth neighbor of motion point qi in supporting region B at frame fi; Hqi(.) and Hpj (.) are
probability distributions of qi and its neighbors respectively;

⊎
denotes a concatenating function for the

obtained histograms Hpj (.).

4.3.2 Spatio-temporal features of motion points

The spatio-temporal information of a voxel in a DT video is crucial in analysis to make it more
“understandable” as exploited in [14,92,C1], in which the authors determined the shape and motion cues
based on three orthogonal planes. In this section, we take this concept into account motion points of dense
trajectory t to boost the performance of DT descriptor. Because of the fact that the spatial information of
those along t has been involved in the DBT model, we just address the temporal features in consideration
of those on XT and YT planes using the completed operator xLVP. To be in accordance with encoding of
DBT features of twith length of L, the obtained probability distributions should be concatenated through
their trajectory t, as graphically demonstrated in Figure 4.2, in order to form directional structures of
temporal motion points (TMP) as

TMPL,Φ,d(t) =
[
HXT

(
xLVPP,R,Φ,d(qi)

)
, HY T

(
xLVPP,R,Φ,d(qi)

)]L+1

i=1
(4.3)
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where xLVP(.) denotes completed local vector pattern of a pixel computed by considering its local
neighbors P interpolated by a circle of radius R with a given distance d in concerned directions Φ;
HXT (.) and HY T (.) are histograms of motion point qi calculated for the corresponding planes.

4.4 Directional dense trajectory patterns for DT representation
In this section, we introduce an efficient framework for DT representation, called Directional Dense

Trajectory Patterns (DDTP), in which DT features of a video are effectively encoded just using dense
trajectories instead of the whole video. On the other hand, our perception is to take advantage of two im-
portant properties of directional dense trajectories for constructing robust descriptors for DT recognition,
as graphically illustrated in Figure 4.3. According to that, dense trajectories are extracted at first using the
tool introduced in [104]. We then apply our extended operator xLVP on those to capture their directional
motion cues through encoding patterns of directional beam trajectories, as proposed in Section 4.3.1.
This completed operator is also implemented for capturing spatio-temporal structures of motion points
along their trajectories based on analysis of the planes, as presented in Section 4.3.2. Lastly, the ob-
tained probability distributions of two above components calculated for the whole dense trajectories are
concatenated and normalized to enhance the performance. Also in this section, the computational com-
plexity of DDTP is discussed thoroughly for potential applications in practice. Those above processes
are detailed hereafter.

4.4.1 Proposed DDTP descriptor

Let T = {t1, t2, ..., tn} denote a set of dense trajectories with the same length of L which are
extracted from a video V . DBT patterns of each ti ∈ T are then encoded in consideration of its motion
points along the path in directions Φ using the completed model xLVP. Parallel to this encoding, TMP
patterns are also structured by addressing xLVP with the directions for the corresponding motion points
of trajectory ti based on analysis of those on the temporal planes of V (i.e., XT, YT). To form a robust

 

 

 
 

 
 

 

 

 
 

   

 

 

 

 

 
 

 

 

Figure 4.3: An effective framework for DT representation based on dense trajectories extracted from a
video V .
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and discriminative descriptor for DT recognition, we concatenate and normalize DBT and TMP features
that are computed for all of trajectories in T as

DDTPL,Φ,d(V) =
1

|T |
∑
ti∈T

[
DBTL,Φ,d(ti),TMPL,Φ,d(ti)

]
(4.4)

in which |T | denotes the total of dense trajectories. From now on, we imply a specific DDTP descriptor
in agreement with an integration way of completed operator xLVP. For instance, DDTPD M/C indicates
that it is structured by xLVP = LVPD M/C (see Section 3.4.3 for a detail of this integration).

In order to verify the prominent contribution of our completed operator xLVP, a basic descriptor
DDTP-B which is based on the first-order LVP (i.e., LVPD), is concerned by addressing the same im-
plementation above.

DDTP-BL,Φ,d(V) =
1

|T |
∑
ti∈T

[
DBT-BL,Φ,d(ti),TMP-BL,Φ,d(ti)

]
(4.5)

where DBT-B and TMP-B are respectively computed as similarly as in Equations (4.2) and (4.3) but
only LVPD is used instead of xLVP.

To evaluate the expected effectiveness of exploiting beneficial properties of dense trajectories for DT
description in contrast to using the whole video, xLVP is taken into account structuring dynamic features
on three orthogonal planes {XY,XT, Y T} to form another DT descriptor, named xLVP-TOP as follows.

xLVP-TOPΦ,d(V) =
[
xLVPP,R,Φ,d(VXY ), xLVPP,R,Φ,d(VXT ), xLVPP,R,Φ,d(VY T )

]
(4.6)

On the other hand, for assessing our crucial extended model of LVP, we have also experimented
on DT recognition using LVP-TOP descriptor formed by the basic LVP operator [100] on planes of
{XY,XT, Y T} as

LVP-TOPΦ,d(V) =
[
LVPP,R,Φ,d(VXY ),LVPP,R,Φ,d(VXT ),LVPP,R,Φ,d(VY T )

]
(4.7)

where LVPP,R,Φ,d(.) is a probability distribution. It is actually dealt with as similarly as LVP-D’s (see
Section 3.4.3) to take advantage of the popular mappings in dimensional reduction.

In order to reduce the size of DDTP descriptors, two popular mappings are utilized: riu2 giving
lriu2 = (P + 2) and u2 giving lu2 =

(
P (P − 1) + 3

)
distinct bins for each pattern of a pixel, where P

is a number of local neighbors taken into account. Particularly, dimension of DDTP descriptors directly
relies on the integration of complementary components in specific ways to form xLVP for computing
DBT and TMP features. For example, DDTPD M/C has the total bins of two following components:
DBTD M/C and TMPD M/C with 3k(|B| + 1) and 6k(L + 1) dimensions respectively, in which |B|
means the cardinality of local neighbors sampled around a motion point for encoding directional beams
of trajectories with the same length of L, k = lriu2/u2 × |Φ| is the dimension of a pattern encoded by
the completed operator xLVP = LVPD M/C with riu2/u2 mappings in consideration of a number of
concerning directions |Φ|. As the result of those, the final size of DDTPD M/C is 3k(|B| + 2L + 3)
bins. Similarly, dimension of xLVP-TOPD M/C descriptor is 9k bins; of the original LVP-TOP is 3k;
and of DDTP-B is the one-third of DDTPD M/C’s in this case since only LVPD is involved with.

In order to effectively form DDTP descriptor, Algorithm 1 presents our idea for its construction based
on a mechanism of shared features, in which xLVP features of each frame are calculated for only one
time and are used effectively for constructing DDTP description of all trajectories passing through this
frame. It is proposed by addressing three main following steps:

1. Labeling all motion points of trajectories with mapping volume vMP.
2. Constructing xLVP features of the considered video.
3. Calculating DDTP of each trajectory from the labels of its motion points (vMP) and xLVP fea-

tures.
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Moreover, we also take advantage of multi-scale analysis [108] to improve the discriminative power
of DDTB descriptors, in which our xLVP is exploited for many of different {(P,R)} situations in order
to forcefully capture directional relationships in further local regions. The obtained histograms are then
concatenated and normalized to structure multi-scale DT representation.

Our proposed DDTP descriptor has more robust and discriminative power based on the following
prominent properties:

• Incorporation between DBT and TMP features makes DDTP descriptors more discriminative for
DT recognition (see Table 4.5 for contributions of each of them).
• The advantages of both optical-flow-based and local-feature-based methods are embedded into

DDTP descriptors thanks to utilizing xLVP for encoding dense trajectories.
• Using dense trajectories extracted from a video allows to efficiently analyze chaotic motions of

moving DTs in the sequence, an interested alternative for DT representation.

4.4.2 Computational complexity of DDTP descriptor

In order to estimate the computational complexity of our DDTP descriptor, we present a simple
algorithm to encode DDTP patterns, as generally shown in Algorithm 1. Accordingly, it takes five steps
to handle a video V ofH×W × F dimension as follows.

• Step 1: Dense trajectories T with length of L are extracted by exploiting a tool introduced in [104].
The computational cost of this extraction QT can be referred to [104] for more detail.
• Step 2: A mapping volume vMP is used to signed which motion points belong to which trajectory
t ∈ T . The complexity is estimated as QvMP = O(L× |T |).
• Step 3: xLVP features are calculated from collection of slices of V in three orthogonal planes
XY , XT , and Y T . Let us consider plane XY concerning component xLVPXY (the two other
components have the same complexity by using similar arguments). We consider now the com-
plexity to calculate xLVP features for each input plane-image If of H ×W dimension, it can be
deduced from Equations (3.21) and (3.22) in Section 3.4.2 that our proposed directional thresholds
DVM and DVC have computational costs of QDVM = O(P ×H×W) and QDVC = O(H×W)
respectively, where P is the number of considered neighbors for encoding xLVP. As mentioned in
Section 3.4.3, our xLVP consists of three complementary components: LVPD, LVPM , and LVPC .
Based on Equations (3.23), (3.25), and (3.27), their computation costs are respectively estimated as
QLVPD = O(P×H×W),QLVPM = O(P×H×W)+QDVM, andQLVPC = O(H×W)+QDVC.
Since these components are computed independently, the complexity of xLVP(I) can be approxi-
mately estimated as the maximum ofQLVPD ,QLVPM , andQLVPC , i.e.,O(P×H×W). Therefore,
the complexity for extraction of xLVPXY component onXY plane isO(P×H×W×F ) because
there are F considered slices. By applying similar arguments on two other components calculated
on planes Y T andXT , we deduce that the complexity of this step isQxLVP = O(P×H×W×F ).
• Step 4: Based on the mapping volume vMP, DBT and TMP features are structured by using xLVP

patterns for motion points in the same trajectory. The complexities of these processes are estimated
as QDBT = O(P × L × |Φ| × H × W × F ) for encoding DBT features and QTMP = O(L ×
|Φ| × H ×W × F ) for TMP, in which |Φ| denotes the cardinality of directions Φ.
• Step 5: Finally, DDTP descriptor is formed by concatenating DBT and TMP features. The com-

plexity of this concatenation is O(1).
Therefore, the complexity of our proposed descriptor can be generally estimated as follows.

QDDTP = QT +QvMP +QxLVP +QDBT +QTMP (4.8)

In order to concentrate on the computational cost of our proposed DDTP descriptor based on a
given collection of dense trajectories, we disregard QT . In addition, since parameters L and |Φ|
(e.g., L ∈ {2, 3} and |Φ| = 4 as valued in Section 4.5.1) are much smaller than the others,
they can be also ignored. Consequently, QDDTP could be approximated by Equation (4.9), which
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shows that the construction of DDTP descriptor from dense trajectories has linear complexity
with respect to the number of voxels of an input video since P can be considered as a constant,
i.e., P = 8 or P = 16.

QDDTP ≈ max(QvMP, QxLVP, QDBT, QTMP) ≈ O(P ×H×W × F ) (4.9)

Algorithm 1: Encoding DDTP patterns

1 Input: A video V ofH×W × F dimension, length of trajectory L, number of neighbors P ,
directions Φ.

2 Output: DDTP descriptor.
3 %%%% Step 1: Extraction of trajectories. %%%%
4 Extracting dense trajectories T from video V subject to L.
5 %%%% Step 2: Labeling of motion points. %%%%
6 Initialize vMP of sizeH×W × F , vMP(q) = 0 ∀q.
7 for t=1:|T | do
8 for i=1:L+1 do
9 qi = ith motion point of trajectory T (t);

10 vMP(qi) = t;
11 end for
12 end for
13 %%%% Step 3: Extraction of xLVP features. %%%%
14 for f=1:F do
15 If : slice of V at frame f in plane XY ;
16 xLVPXY (f) = {LVP-D(If ), LVP-M(If ), LVP-C(If )};
17 end for
18 for y=1:H do
19 Iy: slice of V at ordinate y in plane XT ;
20 xLVPXT (y) = {LVP-D(Iy), LVP-M(Iy), LVP-C(Iy)};
21 end for
22 for x=1:W do
23 Ix: slice of V at abscissa x in plane Y T ;
24 xLVPY T (x) = {LVP-D(Ix), LVP-M(Ix), LVP-C(Ix)};
25 end for
26 %%%% Step 4: Construction of DBT and TMP %%%%
27 for each q ∈ vMP do
28 %%%% Check q is motion point.%%%%
29 if vMP(q) > 0 then
30 Structuring DBT and TMP features based on xLVPXY , xLVPXT , xLVPY T for motion

points q in the trajectory t = vMP(q).
31 end if
32 end for
33 %%%% Step 5: Construction of DDTP. %%%%
34 Concatenate to form DDTP = [DBT, TMP];

In terms of processing time, the consumption mainly depends on the turbulent level of DTs in a video,
i.e., the more turbulence the video has, the larger motion points are signed in mapping volume vMP (see
lines 4-12 of Algorithm 1), and then the heavier computation of DBT and TMP is (see lines 27-31 of
Algorithm 1). However, it can be verified from Equation (4.9) that our proposal principally depends
on the dimension of a given video, not on the number of its trajectories. Indeed, in consideration of
videos with the same dimension but levels of turbulence in high difference, we address two particular
videos of UCLA in both original and cropped versions for an instance of runtime estimation. Table 6.32
illustrates the consumption of encoding DDTPD M/C descriptors with settings of L = 3, P = 8, and
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|Φ| = 4. It can be seen from Table 6.32 that the higher turbulent video needs more processing time.
In addition, using the cropped version can save the runtime, but it negatively impacts the performances
for DT recognition (see Table 4.7 for instances). It is worth noting that a raw MATLAB code of our
algorithm is run on a 64-bit Linux desktop of CPU Core i7 3.4GHz, 16G RAM.

Table 4.1: Comparing processing time of encoding two videos in UCLA.
Sample video Resolution L Level of turbulence Number of trajectories Runtime (s)

110× 160× 75 (original) 3 A single candle flame 3674 ≈8.7
48× 48× 75 (cropped) 3 A single candle flame 1507 ≈2.6

110× 160× 75 (original) 3 All leaf vibrations 25562 ≈35.3
48× 48× 75 (cropped) 3 All leaf vibrations 2134 ≈3.1

4.5 Experiments and evaluations
In this section, comprehensive evaluations of the proposed framework on the benchmark DT datasets

(i.e., UCLA [5], DynTex [54], and DynTex++ [55]) are specifically expressed by following experimental
protocols and parameter settings for implementation. The obtained recognition rates are then evaluated
in comparison with those of the state-of-the-art methods.

4.5.1 Experimental settings

Settings for extracting dense trajectories: Due to the short “living” time of most of turbulent dynamic
points in DT videos, lengths of dense trajectories L ∈ {2, 3} should be addressed in our experiments. We
utilize a tool, introduced in [104], for extracting these trajectories from a DT sequence. Since the default
settings of this tool are set for mainly achieving motions of human actions, to be in accordance with the
particular DT characteristics, we make a change of rejecting trajectory parameter min var = 5× 10−5

in order to acquire “weak” trajectories of chaotic motion points. Figure 4.4 graphically illustrates several
samples of dense trajectories extracted from the corresponding sequences using the customized settings.
Empirically, for datasets (like Dyntex++) which are built by splitting from other original videos, some
of cropped sequences point out a number of trajectories that are not sufficient for DT representation (see
Figure 4.4(c)). In this case, a few tracking parameters should be addressed in lower levels to boost the
quantity of trajectories in our framework as quality = 10−8 and min distance = 1.

Figure 4.4: Samples (a), (b), (c) of dense trajectories extracted from the corresponding videos in UCLA,
DynTex, and DynTex++ datasets respectively in which green lines show paths of motion points through
the consecutive frames.

Parameter settings for structuring descriptors: The first-order xLVP operator (i.e., d = 1) is used
to structure local vector patterns of dynamic features in four directions of Φ = {0◦, 45◦, 90◦, 135◦}, i.e.,
|Φ| = 4. To be compliant with the LBP-based concept, it is possible to conduct different supporting re-
gions Ω = {Bi} for encoding directional beams of dense trajectories DBT, where eachBi = {PBi , RBi}
denotes PBi neighbors circled by radiusRBi . In our experiments, we address Ω = {{8, 1}, {16, 2}} (see
Figure 4.1 for an instance ofBi = {8, 1}, i.e., |Bi| = 8, which is taken into account.) To be in accordance
with the DBT calculation, locating local neighbors {(P,R)} for computing TMP on the temporal planes
should be agreed with the way of addressing Ω. For different types of DDTP descriptor, structured subject
to integrating complemented components in xLVP operator, we address three descriptors for experiments
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Table 4.2: A comparison of various dimensions of LBP-based descriptors.
Method Dimensions P = 8 P = 16 P = 24

LBP-TOPu2 [14] 3(P (P − 1) + 3) 177 729 1665
VLBP [14] 23P+2 - - -
CVLBP [91] 3× 23P+2 - - -
HLBP [92] 6× 2P 1536 - -
CLSP-TOPriu2 [C1] 6(P + 2)2 600 1944 4,056
WLBPC [109] 6× 2P 1536 - -
MEWLSP [95] 6× 2P 1536 - -
CVLBC [90] 2(3P + 3)2 1458 5202 11125
CSAP-TOPriu2 [J1] 12(P + 2)2 1200 3888 8112
FDTu2 [C4] 216P ((P − 1) + 3) 12744 - -
FD-MAPu2

L=2 [C4] 216P ((P − 1) + 3) + 16 12760 - -
DDTPriu2

D M 8(P + 7)(P + 2) 1200 3312 6448
DDTPriu2

D M C 8(P + 7)(P + 3) 1320 3496 6696
DDTPriu2

D M/C 12(P + 7)(P + 2) 1800 4968 9672
DDTP-Briu2 4(P + 7)(P + 2) 600 1656 3224
xLVP-TOPriu2

D M 24(P + 2) 240 432 624
xLVP-TOPriu2

D M C 24(P + 3) 264 456 648
xLVP-TOPriu2

D M/C 36(P + 2) 360 648 936
LVP-TOPriu2 12(P + 2) 120 216 312

Note: P is the concerned neighbors. DDTP, and DDTP-B encode dense
trajectories with the length of L = 2. All our descriptors are computed
by completed operator xLVP in 4 directions with riu2 mapping (also the
settings for comparison their performance with the existing methods).

Table 4.3: Results (%) on UCLA exploiting DDTP and DDTP-B descriptors.
Scheme 50-LOO 50-4fold 9-class 8-class

{(P,R)}riu2
L D M D M C D M/C ∼B D M D M C D M/C ∼B D M D M C D M/C ∼B D M D M C D M/C ∼B

{(8, 1)}riu2
L=2 97.00 97.50 99.00 98.50 94.00 96.00 99.00 98.00 98.60 98.10 98.10 97.90 96.20 96.85 97.28 94.24

{(16, 2)}riu2
L=2 99.50 100 99.50 95.00 100 100 99.50 94.50 97.40 96.60 97.90 95.80 96.09 95.76 96.43 95.33

{(8, 1), (16, 2)}riu2
L=2 100 100 99.00 99.50 100 100 100 99.00 98.35 98.25 98.50 97.85 97.28 96.96 97.50 97.61

{(8, 1)}riu2
L=3 94.00 94.00 99.00 98.50 95.50 95.50 99.00 98.50 98.10 98.55 98.30 97.45 96.52 97.17 95.33 95.22

{(16, 2)}riu2
L=3 100 100 99.50 96.50 100 100 99.50 98.50 97.50 97.60 96.65 95.90 97.07 98.15 96.74 93.15

{(8, 1), (16, 2)}riu2
L=3 100 100 99.00 99.50 100 100 99.50 98.50 98.60 97.95 98.75 96.15 97.72 98.04 98.04 96.30

Note: 50-LOO and 50-4fold mean recognition rates on 50-class scenario using leave-one-out and four cross-fold validation respectively. D M ,
D M C , and D M/C are different instances of DDTP descriptors formed by integrating the corresponding components of completed operator xLVP.
∼B means the DDTP-B descriptor.

on DT classification, i.e., DDTPD M , DDTPD M/C , and DDTPD M C (hereafter generally named
DDTP descriptors). Their dimensions are respectively 8ηlriu2/u2, 12ηlriu2/u2, and 8η(lriu2/u2 + 1) with
riu2/u2 mappings, where η = |Bi| + 2L + 3. Similarly, we have various xLVP-TOP descriptors as
follows: xLVP-TOPD M of 24lriu2/u2 bins, xLVP-TOPD M/C of 36lriu2/u2, and xLVP-TOPD M C

of 24(lriu2/u2 + 1). In terms of DDTP-B, and LVP-TOP descriptors, they are structured by 4ηlriu2/u2

and 12lriu2/u2 distinct values in this case. Table 6.2 details some specific dimensions of these descrip-
tors of riu2 mapping. It is verified from this table that multi-scale analysis is able to be regarded for our
completed operator xLVP to capture more robust directional relationships in larger supporting regions
while the dimension is still moderate compared to other LBP-based methods.
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Table 4.4: Rates (%) on DynTex using DDTP and DDTP-B descriptors.
Scheme DynTex35 Alpha Beta Gamma

{(P,R)}riu2
L D M D M C D M/C ∼B D M D M C D M/C ∼B D M D M C D M/C ∼B D M D M C D M/C ∼B

{(8, 1)}riu2
L=2 98.57 98.29 98.00 98.00 98.33 98.33 98.33 98.33 90.12 91.36 93.21 87.04 88.64 87.88 90.53 88.64

{(16, 2)}riu2
L=2 99.43 99.43 99.43 100 96.67 96.67 96.67 93.33 91.36 90.74 91.98 87.65 90.53 91.67 89.77 87.88

{(8, 1), (16, 2)}riu2
L=2 99.43 98.86 99.14 99.14 96.67 96.67 96.67 98.33 91.36 91.98 92.59 88.27 92.80 91.67 91.29 87.88

{(8, 1)}riu2
L=3 98.00 98.00 98.57 98.29 98.33 98.33 98.33 98.33 89.51 91.36 94.44 88.89 88.26 89.02 90.15 89.77

{(16, 2)}riu2
L=3 99.43 99.43 99.71 100 96.67 96.67 96.67 93.33 91.36 91.98 93.21 88.89 90.53 90.53 89.77 85.98

{(8, 1), (16, 2)}riu2
L=3 99.43 99.43 99.71 98.86 96.67 96.67 96.67 98.33 91.98 91.98 93.83 88.27 92.42 90.91 91.29 88.60

Note: D M , D M C , and D M/C are different ways of integrating components of xLVP operator to compute the corresponding DDTP descriptors.
∼B means the DDTP-B descriptor.

Table 4.5: Contributions (%) of DBT and TMP of DDTPD M C descriptor.
Dataset UCLA (50-LOO) DynTex35
{(P,R)}riu2

L=2 DBT TMP DDTP DBT TMP DDTP
{(8, 1)}riu2

L=2 99.00 90.50 97.50 98.57 96.57 98.00{
(16, 2)}riu2

L=2 99.00 97.50 100 98.86 99.14 99.43
{(8, 1), (16, 2)}riu2

L=2 99.50 97.50 100 98.57 98.29 99.43

4.5.2 Experimental results

Evaluations of our framework for DT recognition on various benchmark datasets (UCLA, DynTex,
and DynTex++) are specifically expressed in Tables 4.3, 4.4, and 4.9 respectively, in which descriptors
DDTP and DDTP-B are formed by corresponding operators xLVP and LVPD using riu2 mapping for
dense trajectories with length L = {2, 3}. It can be verified from those tables that addressing dense
trajectories for DT description is a significant alternative beside considering DT appearances in tem-
poral aspects of a video as in the existing methods. Based on the experimental results, several critical
assessments could be derived from as follows.

• As expected in Section 4.4.1, the incorporation between spatio-temporal of motion points (TMP)
and directional features of beam trajectories (DBT) has boosted the performance in comparison
with FDT [C4], in which motion points of dense trajectories along with their local neighbors
are encoded to form directional beams of features (see Tables 4.6 and 4.8). Table 4.5 expresses
contributions of these components making DDTP descriptors more discriminative. Furthermore,
our descriptors have dimension at least a half slighter than FDT’s (see Table 6.2).
• As mentioned in Section 3.4.3, the integration of complemented components additionally produces

more informative discrimination for encoding dense trajectories. In fact, most of DDTP descriptors
outperform significantly in comparison with DDTP-B, just utilizing one complemented factor (see
Tables 4.3, 4.8, and 4.9). It has verified the contributions of our important extensions to form the
completed xLVP operator compared to the basic LVP [100].
• Taking directional vector center contrast, i.e., LVP-C, into account structuring DDTP descriptors

is frequently more robust than others. Therein, the jointing with this component seems to point out
descriptors with more “stable” performance (see Tables 4.3, 4.4, and 4.9).
• It is in accordance with our analysis in Section 4.4.1 that capturing directional features of dense

trajectories in multi-scale local regions of their motion points is more effective than single-scale.
Therein, the 2-scale D M C descriptor of riu2 mapping with length of trajectories L = 3 , i.e.,
{(8, 1), (16, 2)}riu2

L=3, obtains more “stable” on most of the benchmark datasets (see Tables 4.3, 4.4,
and 4.9). Therefore, it should be suggested for applications in practice, and also be the setting
selected for comparing with performances of state of the art.
• In most of circumstances, the performance of DDTP-B based on the typical LVP [100] (see Section

4.4.1) is not better than DDTP’s computed by the extended operator xLVP. Moreover, xLVP-TOP
also outperforms compared to LVP-TOP in consideration of each voxel on three orthogonal plans
of a video instead of its dense trajectories (see Table 4.10). These facts prove the interest of our
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proposed components: completed operator xLVP with two adaptative directional vector thresholds
(i.e., DVM, DVC) and dense-trajectory-based features for DT representation.

In terms of comparison with the state-of-the-art methods, our proposed framework for encoding
dense trajectories using completed model xLVP produces discriminative descriptors for DT recognition
task compared to LBP-based variants and others in several circumstances. Furthermore, their perfor-
mances are nearly the same those of deep-learning-based approaches on UCLA dataset (see Table 4.6).
Hereinafter, comprehensive estimations of our proposal on various benchmark datasets are presented in
detail, in which if DDTP descriptors are not explicit in their implemented settings, the default configura-
tion is indicated for them, i.e., {(8, 1), (16, 2)}riu2.

4.5.2.1 Recognition on UCLA dataset

It can be observed from Tables 4.3 and 4.6 that our proposed descriptors have significant perfor-
mances of DT recognition on UCLA compared to those of state-of-the-art methods, including deep
learning techniques in several circumstances, which are expressed in detail as follows.

In scenario of DT classification on 50-class, by addressing trajectories of L = {2, 3}, DDTP
L={2,3}
D M

and DDTP
L={2,3}
D M C have reported rates of 100% on both 50-LOO and 50-4fold schemes, the best per-

formances compared to all existing methods, including deep-learning approaches. In the meanwhile,
with the setting for comparison, DDTPL=3

D M/C descriptor gains 99% and 99.5% respectively, the highest
compared to all LBP-based variants (see Table 4.6). Those performances are the same FDT’s [C4], but in
a half smaller dimension, i.e., 6768 versus over 13000 bins (see Table 6.2). On the other hand, DDTP-B
using the setting of {(8, 1), (16, 2)}riu2

L=3 also obtains competitive results with rates of 99.5% and 98.5%
in comparison with those of the local-feature-based methods. Above facts have validated that utilizing
dense trajectories along with the completed model of LVP for encoding directional features of motion
points figures out discriminative descriptors in DT recognition task.

In terms of evaluations on 9-class and 8-class, our descriptor DDTPL=3
D M/C has critical performances

with 98.75% and 98.04% respectively, the highest in comparison with the LBP-based variants (see Table
4.6), except CVLBC [90] with rates of 99.20% and 99.02%. However, it is not better than ours on
DynTex35 and DynTex++ datasets as well as not been verified on the challenging subsets of DynTex,
i.e., Alpha, Beta, and Gamma (see Table 4.8). In our previous work, FDT [C4] encoding motions of
DTs along their trajectory is just better than DDTPL=3

D M/C on 8-class with rate of 99.57%, but in about
twice larger dimension. Furthermore, it should be noted that DT-CNN [63] only outperforms ours on
8-class with rates of 98.48% for framework AlexNet and 99.02% for GoogleNet. For improvement in
further contexts, we concentrate on which videos have been confused with others. On scheme 9-class,
it can be observed from Figure 4.5, DDTPL=3

D M/C has mainly confused the motions of DTs in “Fire”
sequences with those in “Smoke”; and the properties of trajectories in “Flowers” with those in “Plants”.
The confusion on scheme 8-class principally falls in the turbulent properties of “Fire” videos with those
of “Fountains” and “Waterfall” (see Figure 4.6).

In addition, it should be noted that several existing methods [92, 95, 112, J1] have experimented
DT classification on the short version of UCLA with videos of 48 × 48 × 75 dimension. Addressing
those for our proposal, we achieved some results for DDTPL=3

D M/C descriptor, as indicated in Table
4.7. Accordingly, its performance is noticeably reduced in comparison with those done on 110× 160×
75 videos (see Tables 4.3 and 4.7). It could be lack of spatio-temporal information due to less dense
trajectories that are extracted from the cropped version. However, the speed of encoding is much faster
thanks to a sharp reduction of turbulence in the cropped version (see Table 6.32 for a comparison of time
consumption). Therefore, a trade-off between the high rates and the processing time should be discreetly
considered for real implementations.
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Table 4.6: Comparison of recognition rates (%) on UCLA.
Group Encoding method 50-LOO 50-4fold 9-class 8-class

A

FDT [C4] 98.50 99.00 97.70 99.35
FD-MAP [C4] 99.50 99.00 99.35 99.57
DDTPD M{(8, 1), (16, 2)}riu2

L=3 100 100 98.60 97.72
DDTPD M C{(8, 1), (16, 2)}riu2

L=3 100 100 97.95 98.04
DDTPD M/C{(8, 1), (16, 2)}riu2

L=3 99.00 99.50 98.75 98.04
DDTP-B{(8, 1), (16, 2)}riu2

L=3 99.50 98.50 96.15 96.30

B
AR-LDS [5] 89.90N - - -
Chaotic vector [42] - - 85.10N 85.00N

Diffusion-based model [110] - 98.50N 97.80N 96.22N

C
3D-OTF [51] - 87.10 97.23 99.50
DFS [50] - 100 97.50 99.20
STLS [53] - 99.50 97.40 99.50

D
MBSIF-TOP [72] 99.50N - - -
DNGP [38] - - 99.60 99.40

E

VLBP [14] - 89.50N 96.30N 91.96N

LBP-TOP [14] - 94.50N 96.00N 93.67N

CVLBP [91] - 93.00N 96.90N 95.65N

HLBP [92] 95.00N 95.00N 98.35N 97.50N

CLSP-TOP [C1] 99.00N 99.00N 98.60N 97.72N

MEWLSP [95] 96.50N 96.50N 98.55N 98.04N

WLBPC [109] - 96.50N 97.17N 97.61N

CVLBC [90] 98.50N 99.00N 99.20N 99.02N

CSAP-TOP [J1] 99.50 99.50 96.80 95.98

F

DL-PEGASOS [55] - 97.50 95.60 -
PI-LBP+super hist [111] - 100N 98.20N -
Orthogonal Tensor DL [69] - 99.80 98.20 99.50
Randomized neural network [112] - 97.05N 98.54N 97.74N

PCANet-TOP [64] 99.50* - - -
DT-CNN-AlexNet [63] - 99.50* 98.05* 98.48*

DT-CNN-GoogleNet [63] - 99.50* 98.35* 99.02*

Note: “-” means “not available”. “*” indicates result using deep learning algorithms.
“N” is rate with 1-NN classifier. 50-Loo and 50-4fold denote results on 50-class
breakdown using leave-one-out and four cross-fold validation respectively. Group A
denotes optical-flow-based methods, B: model-based, C: geometry-based, D: filter-
based, E: local-feature-based, F: learning-based.

Table 4.7: Results (%) on the cropped version of UCLA.
DDTPL=3

D M/C 50-LOO 50-4fold 9-class 8-class

{(P,R)}riu2
L D M D M C D M/C D M D M C D M/C D M D M C D M/C D M D M C D M/C

{(8, 1)}riu2
L=3 95.50 96.00 96.00 97.00 97.00 97.00 95.00 95.40 96.45 93.37 95.87 94.89

{(16, 2)}riu2
L=3 93.50 96.00 94.00 97.00 97.50 96.00 92.50 92.80 94.95 92.72 91.41 92.72

{(8, 1), (16, 2)}riu2
L=3 96.50 96.50 96.00 96.50 97.00 96.50 94.15 95.05 95.75 94.46 94.13 93.80

Note: 50-LOO and 50-4fold mean recognition rates on 50-class scenario using leave-one-out and four cross-fold
validation respectively. D M , D M C , and D M/C are different instances of DDTPL=3

D M/C formed by integrating the
corresponding components of xLVP.
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Figure 4.5: Confusion of DDTPL=3
D M/C on 9-class.
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Figure 4.6: Confusion of DDTPL=3
D M/C on 8-class.

4.5.2.2 Recognition on DynTex dataset

It can be verified from Tables 4.4 and 4.8 that the proposed framework outperforms significantly
compared to most of the state-of-the-art methods. In general, DDTP descriptors with at least a half
smaller dimension are more robust than our previous work FDT [C4]. It is thanks to exploiting spatio-
temporal features of motion points along their trajectories which are encoded by the completed LVP
model rather the typical LVP [100]. Hereafter, we detail evaluations on each subset.

For DT recognition on DynTex35, DDTPL=3
D M/C descriptor with 6768 bins achieves 99.71%, a little

lower than CSAP-TOP’s [J1] (100%) with 13200 bins. It is due to the very similar motions of DTs in
videos as shown in Figure 4.8(a) and Figure 4.8(b). Figure 4.7 expresses specific rates of each category.
In the meanwhile, FD-MAP and FDT descriptors in our previous work [C4] just obtain rate of 98.86%.
It is because only appearances of trajectories are involved with. The LBP-based method MEWLSP [95]
also has the same our ability. However, it has not been verified on other challenging subsets, i.e., Alpha,
Beta, and Gamma (see Table 4.8).

In respect of DT classification on other challenging subsets, DDTPL={2,3} descriptors obtain
98.33% on Alpha using {(P,R)} = {(8, 1)} of riu2 mapping for both length of trajectories L = {2, 3}
(see Table 4.4), but not outperform on Beta and Gamma in comparison with other parameters. For the
setting of comparison, DDTPL=3

D M/C achieves a little lower rate of 96.67% on Alpha due to the mutual
confusion between turbulent motions of DTs in “Trees” and those in “Grass” sequences (see Figure 4.9).
In the meantime, its performances on Beta and Gamma are 93.83% and 91.29%. Its modest results are
caused by cases of confusion shown in Figures 4.10 and 4.11 respectively, where motions in “Escala-
tor” and “Rotation” are confused with others in DT recognition on Beta while those in “Calm water”
and “Fountains” on Gamma. In general, our performance is nearly the best results on these challenges
compared to most of the existing approaches, except deep learning methods. Moreover, the execution of
DDTPL=3

D M/C is the same those of CSAP-TOP [J1], FD-MAP [C4], and FDT [C4] (see Table 4.8), but
in much smaller dimension, i.e., 6768 versus over 13000 bins of them (see Table 6.2). In the scenarios,
DDTP-B with the setting of {(8, 1), (16, 2)}riu2

L=3 also gains significant rate of 98.33% on Alpha, but
faulting on the remains since just directional features of the typical LVP are exploited. The deep learn-
ing methods, i.e., st-TCoF [62], D3 [66], DT-CNN [63], obtain the best performances (see Table 4.8).
However, they take a huge cost of computation as well as different parameters for learning DT features
on each benchmark dataset.
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Table 4.8: Comparison of rates (%) on DynTex and DynTex++.
Group Encoding method DynTex35 Alpha Beta Gamma DynTex++

A

FDT [C4] 98.86 98.33 93.21 91.67 95.31
FD-MAP [C4] 98.86 98.33 92.59 91.67 95.69
DDTPD M{(8, 1), (16, 2)}riu2

L=3 99.43 96.67 91.98 92.42 94.62
DDTPD M C{(8, 1), (16, 2)}riu2

L=3 99.43 96.67 91.98 90.91 94.69
DDTPD M/C{(8, 1), (16, 2)}riu2

L=3 99.71 96.67 93.83 91.29 95.09
DDTP-B{(8, 1), (16, 2)}riu2

L=3 98.86 98.33 88.27 88.60 90.98
B Diffusion-based model [110] - - - - 93.80N

C

3D-OTF [51] 96.70 83.61 73.22 72.53 89.17
DFS [50] 97.16 85.24 76.93 74.82 91.70
2D+T [94] - 85.00 67.00 63.00 -
STLS [53] 98.20 89.40 80.80 79.80 94.50

D
MBSIF-TOP [72] 98.61N 90.00N 90.70N 91.30N 97.12N

DNGP [38] - - - - 93.80

E

VLBP [14] 81.14N - - - 94.98N

LBP-TOP [14] 92.45N 98.33 88.89 84.85N 94.05N

DDLBP with MJMI [113] - - - - 95.80
CVLBP [91] 85.14N - - - -
HLBP [92] 98.57N - - - 96.28N

CLSP-TOP [C1] 98.29N 95.00N 91.98N 91.29N 95.50N

MEWLSP [95] 99.71N - - - 98.48N

WLBPC [109] - - - - 95.01N

CVLBC [90] 98.86N - - - 91.31N

CSAP-TOP [J1] 100 96.67 92.59 90.53 -

F

DL-PEGASOS [55] - - - - 63.70
PCA-cLBP/PI/PD-LBP [111] - - - - 92.40
Orthogonal Tensor DL [69] - 87.80 76.70 74.80 94.70
Equiangular Kernel DL [71] - 88.80 77.40 75.60 93.40
Randomized neural network [112] - - - - 96.51N

st-TCoF [62] - 100* 100* 98.11* -
PCANet-TOP [64] - 96.67* 90.74* 89.39* -
D3 [66] - 100* 100* 98.11* -
DT-CNN-AlexNet [63] - 100* 99.38* 99.62* 98.18*

DT-CNN-GoogleNet [63] - 100* 100* 99.62* 98.58*

Note: “-” means “not available”. Superscript “*” indicates result using deep learning algorithms.
“N” is rate with 1-NN classifier. Group A denotes optical-flow-based methods, B: model-based, C:
geometry-based, D: filter-based, E: local-feature-based, F: learning-based.

Figure 4.7: Specific rates of DDTPL=3
D M/C on each class of DynTex35.

4.5.2.3 Recognition on DynTex++ dataset

Recognition results of our proposed framework with different settings are presented in Table 4.9. It
can be observed from the table that DDTP-BL={2,3} descriptors with the setting of {(8, 1), (16, 2)}riu2
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Figure 4.8: Video (a) is confused with (b) in recog-
nition on DynTex35.
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Figure 4.9: Confusion of DDTPL=3
D M/C on Alpha.
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Figure 4.10: Confusion of DDTPL=3
D M/C on Beta.
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Figure 4.11: DDTPL=3
D M/C’s confusion on Gamma.

just obtain 91% for length of dense trajectories L = 2 and 90.98% for L = 3, about 4% lower than those
of DDTP descriptors with the same parameters. This has proved the importance of the completed model
xLVP for encoding directional characteristics of dense trajectories compared to the basic LVP [100].
In terms of the settings chosen for comparison, the proposed descriptor DDTPL=3

D M/C achieves rate of
95.09%, the competitive performance compared to most of the existing methods (see Table 4.8). More
specifically, only LBP-based approach MEWLSP [95] gains 98.48%, but as mentioned above, it is not
better than ours on UCLA (see Table 4.6) as well as has not been validated on the challenging subsets
of DynTex, i.e., Alpha, Beta, and Gamma. In the meanwhile, FDT [C4] and FD-MAP [C4], which
are based on directional beams of dense trajectories for DT representation, obtain rates of 95.31% and
95.69% respectively, just a little higher than ours. Nevertheless, their dimensions are about twofold
(see Table 6.2). DT-CNN [63] obtains 98.18% for the AlexNet framework, 98.58% for the GoogleNet
framework (see Table 4.8). However, it takes a long time to learn features for deep layers along with a
huge complicated computation, which may be especially limited in implementations for mobile devices.

4.5.3 Global discussion

Beside particular evaluations on different benchmark DT datasets in Section 4.5.2, several general
findings can be derived as follows.

• For DT representation, it can be validated from experimental results in Tables 4.3, 4.4, and 4.10
that encoding DTs based on dense trajectories of a video has structured descriptors with more
robustness compared to that based on three orthogonal planes of the sequence. That means our
xLVP operator could be suitable for capturing directional features of dense trajectories instead
of for investigating the whole video. It should be noted that in case of focusing on the entire
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Table 4.9: Rates (%) of DDTP and DDTP-B descriptors on DynTex++.
{(P,R)}riu2

L D M D M C D M/C DDTP-B
{(8, 1)}riu2

L=2 93.85 94.01 94.14 87.10
{(16, 2)}riu2

L=2 93.53 94.92 94.16 86.65
{(8, 1), (16, 2)}riu2

L=2 94.75 94.92 95.04 91.00
{(8, 1)}riu2

L=3 93.28 93.92 94.27 87.69
{(16, 2)}riu2

L=3 93.32 94.69 93.76 87.28
{(8, 1), (16, 2)}riu2

L=3 94.62 94.69 95.09 90.98

Note: D M , D M C , and D M/C are different instances
of DDTP descriptors formed by integrating the corre-
sponding components of xLVP operator.

Table 4.10: Performances (%) on the entire video instead of its dense trajectories.
Dataset UCLA (50-LOO) DynTex35
{(P,R)}riu2

D M D M C D M/C LVP-TOP D M D M C D M/C LVP-TOP

{(8, 1)}riu2 98.00 99.00 99.50 94.00 97.71 97.14 94.29 97.71
{(16, 2)}riu2 97.00 98.50 99.50 95.00 98.86 98.57 97.71 98.86
{(8, 1), (16, 2)}riu2 96.50 94.00 98.00 97.00 97.71 98.29 97.14 99.14

Note: D M , D M C , and D M/C are different instances of xLVP-TOP descriptors subject to
the way of integrating complementary components of xLVP operator.

properties of a sequence, xLVP-TOP also significantly outperforms the basic LVP [100] applied
on three orthogonal planes (see Table 4.10).
• xLVP-TOP can be also considered as an alternative solution for encoding DT videos in practice

since its performance is reasonable with tiny dimension as well as more outstanding in comparison
with the basic LVP-TOP (see Tables 6.2 and 4.10).
• Expanding supporting regions for encoding dense trajectories is not a strong recommendation

due to lack of concerned spatio-temporal information of directional beams. Indeed, with Ω =
{24, 3} and single-scale settings of {(24, 3)}riu2

L={2,3}, the performances of corresponding DDTP
descriptors dramatically drop on UCLA (50-LOO) and DynTex35 datasets compared to those of
others (see Tables 4.3, 4.4, and 4.11). In the meantime, DDTP descriptors with 3-scale setting
of {(8, 1), (16, 2), (24, 3)}riu2

L={2,3} are just nearly the same performance as those of 2-scale, i.e.,
{(8, 1), (16, 2)}riu2

L={2,3}, but in much larger dimension (see Table 6.2).
• Addressing u2 mapping (e.g., {(8, 1)}u2

L={2,3}) for structuring DDTP features points out much
larger dimension (see Section 4.5.1) while its performance is not improved as expected (see Table
4.11).
• In addition, taking into account motion points in longer dense trajectories enlarges the dimension

of proposed descriptors while their performances are not enhanced (see Table 4.12 for that). This
may be due to the short “living” time of turbulent motions in a video.

4.6 Summary
In this chapter, we have proposed an efficient framework for DT description by incorporating advan-

tages of optical-flow-based and local-feature-based techniques in order to figure out robust descriptors
for DT recognition task. Specifically, beams of dense trajectories, extracted from a DT video, are com-
pletely investigated in both spatial and temporal changes of motion points. Directional features of them
are encoded by xLVP, the crucial extensions of LVP, allowing to capture more forceful local vector re-
lationships. The experimental results have validated two following important contributions as follows.
Firstly, taking dense trajectories into account DT representation is an interested alternative beside in-
vestigating the entire properties of a DT video. Secondly, based on motion points along their dense
trajectories, the completed model xLVP could point out directional patterns with more discriminative
power rather than the basic LVP [100] do. In addition, evaluations have also verified that xLVP operator
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Table 4.11: Rates (%) of using larger supporting regions and u2 mapping.
Dataset UCLA (50-LOO) DynTex35
{(P,R)}riu2/u2

L D M D M C D M/C ∼B D M D M C D M/C ∼B
{(24, 3)}riu2

L=2 95.50 97.50 97.00 79.00 98.86 99.14 99.71 96.86
{(24, 3)}riu2

L=3 93.00 97.00 98.50 83.00 99.14 99.43 99.71 96.86
{(8, 1), (16, 2), (24, 3)}riu2

L=2 100 99.50 99.50 97.50 99.14 99.43 99.43 100
{(8, 1), (16, 2), (24, 3)}riu2

L=3 99.50 100 99.50 99.50 99.14 99.14 99.71 99.43
{(8, 1)}u2

L=2 99.50 99.50 99.50 99.00 98.00 97.71 98.00 95.43
{(8, 1)}u2

L=3 99.50 99.50 99.50 99.00 98.29 98.57 98.00 97.14

Note: D M , D M C , and D M/C are different instances of DDTP descriptors subject to the
way of integrating complementary components of xLVP operator. ∼B means the DDTP-B
descriptor.

Table 4.12: Performances (%) on longer dense trajectories on UCLA (50-LOO).
Dataset L = 5 L = 7

{(P,R)}riu2
D M D M C D M/C ∼B D M D M C D M/C ∼B

{(8, 1)}riu2 96.50 95.50 99.00 97.50 95.00 93.50 98.00 96.50
{(16, 2)}riu2 100 100 99.50 95.00 99.50 100 99.00 96.00
{(8, 1), (16, 2)}riu2 99.50 99.50 99.50 98.50 99.50 99.50 98.50 98.50

Note: D M , D M C , and D M/C are different instances of DDTP descriptors subject
to the way of integrating complementary components of xLVP operator. ∼B means
the DDTP-B descriptor.

is preferred to encode dense trajectories rather than to consider each voxel on three orthogonal planes
of a sequence. For the further future works, the high-order xLVP can be utilized to contemplate the
potential properties of larger local vector structures on movement of these motion points. In order to
deal with the curse of large dimension, xLVP can be considered in full directions to seize the entire local
directional relations. In addition, exploiting filtering techniques, e.g., moment models [2, J5], Gaussian-
based kernels [C2,C5,J3], can mitigate the negative impacts of illumination and noise on encoding dense
trajectories.
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5.1 Introduction
In this chapter, we propose to represent DTs based on features of filtered elements computed by two

filtering models: moment images and moment volumes. In general, the proposed framework mainly
includes three following stages. Firstly, two moment models are taken into account video analysis to
point out moment-filtered images/volumes correspondingly. Secondly, operator CLSP [29] is used to
capture local features of the moment-filtered images while our proposed xLDP operator, an extended
operator of Local Derivative Patterns [30] (see Section 3.3), is for capturing local derivative features
of the moment-filtered volumes. Finally, the obtained histograms are concatenated and normalized to
form robust descriptors of CSAP-TOP (see Section 5.3) and MDP-based features (see Section 5.4). To
verify our works, we have experimented on benchmark DT datasets (UCLA [5], DynTex [54], DynTex++
[55]) for the recognition task. Experimental results which are thoroughly discussed in Section 5.5 have
indicated that our framework outperforms significantly compared to the existing approaches, especially,
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the performance of the MDP-based descriptors. Consequently, the major contributions of this work can
be listed as follows.

• Representing DTs by extracting CLSP-based features from the moment-filtered images [J1].
• Representing DTs based on the novel moment-filtered volumes and the proposed xLDP [J5].

5.2 Moment models
Taking into account the advantages of filter-bank approaches as well as motivated by a filtering

model of moment images [2], we propose in this section a new concept of moment volumes as a filtering
technique in which different order moments of a sequence are calculated from a pre-defined element
of spherical supporting volumes. In our framework for DT representation, this operation is regarded as
a pre-processing with a low cost of computation to enrich robustness and discrimination for local DT
features. Hereunder, we firstly take a look of the filtering model of moment images in Section 5.2.1. We
then introduce in Section 5.2.2 the novel model of moment volumes which is stated more adaptive for
video analysis due to its principle of enriching statistical features for a voxel instead for a pixel as done
in the moment images.

5.2.1 Moment images

Nguyen et al. [2] presented a model of moment images, also known as a pre-processing step of image
texture classification, in which still images are filtered by exploiting a LBP-based filter with a pre-defined
supporting regional element. Encoding based on the filtered images points out local relationships with
more stable textural structures against changes of environment. Two types of local statistical moments
are produced as follows. First, the r-order moment image calculates the statistic distribution around a
pixel qc as

mr
(I,B)(qc) =

1

|B|
∑
pi∈B

(
I(qc + pi)

)r
(5.1)

in which I means a 2D gray-scale image texture, qc is a center pixel (i.e. qc ∈ I), B is a supporting
regional element consisting of points sampled by one or more concentric circles of the center qc with
different radii R, i.e., {(P,R)} (see Figure 5.1), |B| is the cardinality of B.

Second, the r-order centered moment image (r > 1) defines the statistic distribution around a pixel qc
as follows.

µr(I,B)(qc) =
1

|B|
∑
pi∈B

(
I(qc + pi)−m1

(I,B)(qc)
)r

(5.2)

where m1
(I,B)(qc) denotes the mean value (1-order moment) formed around pixel qc. Empirically,

Nguyen et al. [2] have also shown that working on a series of moment images of different orders brings
more textural information because the regional gray distribution is better captured using different statis-
tical moments.

5.2.2 A novel moment volumes

The model of moment images has just considered spatial relations of a center pixel with its neighbors
for image texture classification. To be in accordance with video representation, we hereafter propose
a new local statistical model, called moment volumes as an extension of moment images, based on
statistical moments calculated from a pre-defined spherical support. Similar to [2], our idea is motivated
from filter-bank approaches to exploit more rich and robust information of shape and motion cues of DT
videos by addressing different statistic distributions.

Let V denote a 3D gray-scale level of a video and qc an arbitrary voxel of V . Let Ω ={
S1, S2, ..., Sn

}
be a local supporting volume as union of discrete spheres, centered at the same spatial

coordinate, for calculating the statistic distributions at each voxel of V . Each single spheric structuring
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Figure 5.1: A sample of structuring element with
{(P,R)}={(4,1),(8,2)} [2].

X

Y

T

Figure 5.2: A pattern of volume support Ω =
{(6, 1)} which has Pk = 6 blue neighbors sampled
on a sphere with the center of red point and radius
Rk = 1.

support Sk = (Pk, Rk) expresses that Pk neighbors are located on a sphere with radius Rk. In order
to compute local statistic distribution at dynamic voxel qc, it is simply to settle the center of Ω at qc
and then to determine its neighbors defined by Ω. To simplify the presentation, we adopt hereafter an
assumption that coordinate of qc is (0, 0, 0), it is possible to situate Pk neighbors on the sphere Sk in two
following configurations:

• First, six points are placed on the endings of its orthogonal diameters, i.e.,
{

(0, 0, Rk), (0, 0,−Rk),
(−Rk, 0, 0), (Rk, 0, 0), (0,−Rk, 0), (0, Rk, 0)

}
,

• Second, in addition to the above set, this also consists of eight radial points. Each of which is
located on the center of each one-eighth of the sphere Sk, i.e., its coordinate can be referred as one
of different instances of

(
± Rk/

√
3,±Rk/

√
3,±Rk/

√
3
)
. As the result, there are 14 neighbors

in this configuration which can be considered for each supporting volume.

A sample of Sk = (6, 1) for the center qc can be formed by Pk = 6 local neighbors on a sphere of
Rk = 1 as graphically illustrated in Figure 5.2. On the other hand, a local supporting volume may
be unions of different discrete spheres. For example, Ω = {(6, 1), (14, 2)} consists of two spheric
structuring supports.

Given a pre-defined supporting volume Ω, we propose to consider two following statistic distribu-
tions. Firstly, the r-order moment volume of association between video V and the local supporting
volume Ω is defined as follows.

mr
V,Ω(qc) =

1

|Ω|

|Ω|∑
i=1

(
g(qc + pi)

)r
(5.3)

in which qc ∈ V is the current voxel with its surrounding neighbors pi ∈ Ω, the volume element Ω can
be structured by one or more spheres with the same center dynamic voxel and different radii, |Ω| is the
total of considered neighbors. Function g(.) returns the gray level value of a voxel. Secondly, the r-order
centered moment volume (r > 1) can also be defined as

µrV,Ω(qc) =
1

|Ω|

|Ω|∑
i=1

(
g(qc + pi)−m1

V,Ω(qc)
)r

(5.4)

where m1
V,Ω(qc) is the 1-order moment volume at the dynamic voxel qc. In practice, our model par-

ticularly considers two following types of moment volumes: the mean m1 and the variance µ2 that are
complementary and exploit well shape and motion cues of DT videos.

5.2.3 Advantages of moment volume model

By addressing different statistic distributions calculated from a pre-defined structuring volume, the
proposed model of moment volumes has several following beneficial properties.
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• Insensitivity to noise: Considering local statistic distributions (mean and variance) calculated from
neighbors allows moment volumes to be more robust against noise than the raw video because
the proposed model works like a low-pass filter which is able to eliminate dynamic voxels with
intensely high frequency corresponding to noise.
• Invariance to rotation: Our model is independent on angle changes of frames in DT sequences

because the pre-defined supporting region for calculating volume of moments is a union of discrete
spheres, which is isotropic and so on discards all orientation information. Therefore, the moment
volumes are invariant against rotation.
• Information richness: The concept of moment volume, which exploits textural information about

local structures, allows to capture more global information. In addition, taking into account the
advantages of filter-bank methods, our model permits to obtain more numerous types of local
structures by using various moment distributions with different elements of the structuring volume.
In practice, two order moments “mean” and “variance” are complementary, so these convey richer
information than the original video.
• Low computational cost: Concerning the computational complexity, as filtered sequences are cal-

culated on a pre-defined structuring volume, their calculation is simple and efficient along with
the same computing cost like the typical LBP operator. Our algorithm in raw MATLAB code runs
impressively fast on a Linux laptop of CPU Intel Core i7 1.9 Ghz with 4G RAM. It just takes less
than 0.11s to handle a video with dimension of 48× 48× 75 for a 3D spherical supporting volume
of Ω = {(6, 1)} (see Figure 5.2).

5.3 DT representation based on moment images
Inspirited by the concepts of CLSP [29] (see Section 2.7.3) and moment-image model, SBP [2], (see

Section 5.2.1), we propose in this section an effective model of Completed Statistical Adaptive Patterns
(CSAP) for DT description. Accordingly, as presented in Section 5.2.1, the model of moment images
points out mean and variance of an input image. To be compliant with analysis of a given video V , firstly,
it is split into sets of plane-images {fXY , fXT , fY T } subject to its orthogonal planes {XY,XT, Y T}.
For a set of plane-image fXY , CLSP patterns are then computed for its plane-images as

CSAPP,R,m1,µ2(fXY ) =
1

|fXY |
∑
I∈fXY

[
CLSPP,R(Im1),CLSPP,R(Iµ2)

]
(5.5)

where |fXY | denote the quantity of plane-images in fXY , Im1 and Iµ2 are mean and variance of I. This
computation is similarly exploited for the rest sets fXT and fY T to obtain corresponding histograms
CSAPP,R,m1,µ2(fXT ) and CSAPP,R,m1,µ2(fY T ). Consequently, A spatio-temporal CSAP-based de-
scriptor based on three orthogonal planes of V is constructed by simply concatenating and normalizing
the obtained histograms as follows. Figure 5.3 perceptibly illustrates how to construct CSAP-TOP
descriptor for DT representation.

CSAP-TOP = [CSAPP,R,m1,µ2(fXY ),CSAPP,R,m1,µ2(fXT ),CSAPP,R,m1,µ2(fY T )] (5.6)

We now discuss how to utilize CSAP for an efficient description of DTs. As we have pointed out
in Section 2.7, LBP-based approaches have been successfully applied to numerous works. Generally
speaking, there are two main encoding mechanisms to transpose LBP-based variants from still images
to dynamic texture: VLBP [14] that considers three neighboring circles from three consecutive frames,
LBP-TOP [14] that addresses three circles extracted from three orthogonal planes. It should be noted
that VLBP generates very higher dimensional feature vector and in the meanwhile it is less performance
compared to LBP-TOP. Therefore, we investigate in the following CSAP on three orthogonal planes to
form CSAP-TOP representation of sequences.

58



CHAPTER 5. REPRESENTATION BASED ON MOMENT MODELS
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Figure 5.3: Illustration of completed statistical adaptive patterns on three orthogonal planes.

5.4 DT representation based on moment volumes
5.4.1 Proposed momental directional descriptor

In this section, we propose a new approach, named Momental Directional Patterns (MDP), to ef-
ficiently capture directional DT patterns from filtered videos obtained by the r-order moment volume
model. Our idea is to take into account the advantages of filter bank approaches and a complementary
LBP-based variant allowing to obtain more textural information in DT videos. We then consider our
extended xLDP operator, presented in Section 3.3, on a series of volume moments which are introduced
in Section 5.2 to result in Momental Directional Patterns for DT representation. Let us recall that the
extended operator xLDP is introduced to work in still images. For that reason, in order to take it into
account describing shape and motion cues of a DT video, we adopt the idea of [14] to address xLDP on
three orthogonal planes of moment volumes.

Let V denote a video and D be a set of considered directions. The r-order moment volumes with
supporting region Ω are utilized to point out filtered sequences, i.e., mean (mr) and variance (µr) videos.
DT characteristics in each of these are then encoded by exploiting the proposed operator xLDP with
directions α ∈ D on three orthogonal planes XY, XT, YT of these moment volumes to compute the cor-
responding probability distributions, as graphically demonstrated in Figure 5.4. The obtained histograms
are concatenated and normalized to form the final descriptor of video V as follows.

MDPΩ,D(V) =
[
xLDPP,R,D(mr

XY ), xLDPP,R,D(mr
Y T ), xLDPP,R,D(mr

XT ),

xLDPP,R,D(µrXY ), xLDPP,R,D(µrXT ), xLDPP,R,D(µrY T )
] (5.7)

From now on, we use the combination way of the extended xLDP operator to denote the corresponding
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Variance VideosMean Videos

Moment Volumes

Concatenated to form

Figure 5.4: Illustration of structuring proposed DT descriptor.

descriptor MDP. For example, MDPD M/C means that it is based on the extended operator xLDP =
LDPD LDPM/LDPC , which is the concatenation between LDPD and the joint of two components
LDPM and LDPC .

In order to evaluate the contribution of the proposed extensions of LDP operator, a basic descriptor
MDP-B, which is based on the second-order LDPs, is also considered by using the similar construction.

MDP-BΩ,D(V) =
[
LDPP,R,D(mr

XY ),LDPP,R,D(mr
Y T ),LDPP,R,D(mr

XT ),

LDPP,R,D(µrXY ),LDPP,R,D(µrXT ),LDPP,R,D(µrY T )
] (5.8)

On the other hand, to verify the eminent contribution of our model of moment volumes, we also structure
LDP-TOP patterns to depict the original DT sequence V with non-supporting volume elements. These
patterns are encoded by the typical second-order LDP operator on three orthogonal planes.

LDP-TOPD(V) =
[
LDPP,R,D(VXY ),LDPP,R,D(VXT ),LDPP,R,D(VY T )

]
(5.9)

Two possible mappings can be taken into account for encoding DT features in order to reduce the
dimension of representation: riu2 and u2 giving Lriu2 = (P + 2) and Lu2 =

(
P (P − 1) + 3

)
distinct

values for each pixel pattern respectively, in which P is the considered neighbors. Particularly, the size
of MDP descriptor depends on the combination ways of complemented components to form xLDP. For
instance, descriptor MDPD M/C , computed by a style of xLDP = LDPD LDPM/LDPC with 3×|D|×
Lriu2/u2 bins, has dimension of 9×|D|×Lriu2/u2

(
|mr|+ |µr|

)
for riu2 and u2 mappings. Therein, |D|

denotes the number of concerned directions. |mr| and |µr| explain the quantity of “mean” and “variance”
videos filtered by the r-order moment volume model. Towards the MDP-B and LDP-TOP descriptors,
their dimensions are respectively fixed as 3× |D| × Lriu2/u2

(
|mr|+ |µr|

)
and 3× |D| × Lriu2/u2 bins

corresponding to the mappings.

Furthermore, we also take advantage of the multi-scale performance [108] to enhance the discrim-
inative power of DT descriptors. According to that, the proposed operators are utilized to calculate
concerning probability distributions with different samples of neighbors {(P,R)}. The output his-
tograms are then concatenated and normalized to produce multi-scale descriptors MMDP, MMDP-B,
and MLDP-TOP.
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Figure 5.5: Illustration of constructing EMDP descriptor.

5.4.2 Enhancing the performance with max-pooling features

Inspirited by CNNs [1, 56], we exploit the stage of max-pooling to obtain more intensity of global
characteristics and “deep” patterns for DT representation (hereunder referred as max-pooling features).
Accordingly, for a filtering window with size of ω × ω, the max-pooling process is taken into account to
analyze a video V by striding the filter at 1 for calculating V1 of “deep” features and at ω for capturing
V2 of global characteristics. Then MDPs of the obtained sequences are computed and concatenated with
those of V to form an enhanced MDP (EMDP) descriptor as

EMDPΩ,D(V) =
[
MDPΩ,D(V),MDPΩ,D(V1),MDPΩ,D(V2)

]
(5.10)

Figure 5.5 graphically demonstrates an example of this computation. Similarity to MDP operator, EMDP
is also considered in multi-scale regions to capture the further local features for structuring a more robust
descriptor MEMDP.

5.5 Experiments and evaluations
5.5.1 Experimental settings

Settings for moment images: To be compliant with the LBP representation, we have chosen struc-
turing elements as unions of discrete circles: B =

{
{(Ri, Pi)}

}
where Pi is a number of neighbors

sampled with radius Ri of the ith structuring element. Specifically, we have evaluated different in-
stances as follows:

{
{(1, 4), (2, 8)}, {(1, 5), (2, 8)}, {(1, 5), (2, 10)}, {(1, 6), (2, 10)}, {(1, 6), (2,

12)}, {(1, 8), (2, 16)}
}

. Figure 5.6 shows an example of computing moment images with supporting
regionB = {(1, 4), (2, 8)}. In the next sections, we only mention experiments using structuring element
{(1, 6), (2, 12)} due to its outperformance on the various dynamic texture and scene datasets.

input B = {(1, 4), (2, 8)} Mean (m1) Variance (µ2)

Figure 5.6: A sample of computing moment images with supporting region B = {(1, 4), (2, 8)}.

Settings for moment volumes: Since encoding DTs on the high-order moment volumes re-
sults out DT descriptor with a large dimension, it should be considered in this work two first or-
ders of moment volume model to calculate mean (m1) and variance (µ2) sequences, i.e., |m1| =
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|µ2| = 1. Structuring volume elements adopted to this filtering process are a set of supporting
3D spheres as S =

{
Ω1,Ω2, ...,Ωm

}
. Particularly, we have experimented on various elements of{

{(6, 1)}, {(14, 1)}, {(6, 1), (6, 2)}, {(6, 1), (14, 2), {(14, 1)}, (14, 2)}
}

. In the coming sections, we
only present experiments using supporting volume of Ω = {(6, 1)} owing to its better performance
on the different DT datasets. An instance of filtering process exploiting this structuring element in two
first-order moment volumes (i.e., m1 and µ2) is graphically illustrated in Figure 5.7.

Figure 5.7: An example of filtering process using two first-order moment volumes (i.e., m1 and µ2)
with a supporting element of 3D sphere Ω = {(6, 1)}. Based on frames fi−1 and fi+1 of a video, frame
fi is filtered to form two corresponding frames fi,m1 and fi,µ2 .

Settings of moment-image-based descriptors: For CSAP-TOP descriptor, two possible mappings
can be used in our framework: riu2 giving a descriptor of 12(P +2)2 dimensions, u2 giving a descriptor
of 12

(
P (P − 1) + 3

)2 dimensions, where P is the number of considered neighbors. Table 5.1 illustrates
the size of CSAP-TOP descriptor with riu2 mapping compared to other LBP-based methods. It can
be seen from this table that it is possible to take into account the advantage of multi-scale analysis
[108] in order to improve the recognition accuracy, in which a computation of multiple operators with
various parameters (P,R) figures our corresponding histograms. These outputs are then normalized
and concatenated to form multi-scale representation MCSAP-TOP. Our experiments indicate that the
proposed framework points out better results with riu2 mapping than u2. In particular, using single
scale configuration gives good results but multi-scale is recommended since its performance on most
of the DT datasets is still improved (see Tables 5.2, 5.3). In this case, the CLSP’s parameters give the
best results with a = 0; b = 1. Regarding the neighborhood configuration, the best parameter setting
is chosen as follows to compare with existing methods: riu2 mapping with multi-scale

{
(P,R)

}
={

(8, 1), (16, 2), (24, 3)
}

.

Settings of moment-volume-based descriptors: Based on the two first-order filtered sequences
to structure DT descriptors in justifiable dimension, we compute MDP, MDP-B, and LDP-TOP de-
scriptors in 4 directions of D = {0◦, 45◦, 90◦, 135◦}. For MDP descriptor, formed by the ex-
tended xLDP operator, three kinds of integrating complementary components can be experimented as{

MDPD M ,MDPD M/C ,MDPD M C

}
(hereunder called MDP descriptors for all) corresponding to

dimensions of
{

48Lriu2/u2, 72Lriu2/u2, 48(Lriu2/u2 + 2)
}

with riu2 and u2 mappings respectively. In
respect of MDP-B and LDP-TOP descriptors, their lengths in this case are 24Lriu2/u2 and 12Lriu2/u2.
Several particular dimensions of these descriptors of riu2 mapping can be seen in Table 5.1, in which
it is possible for our operators to compute multi-scale descriptors for capturing more robust structural
relations while retaining their sizes in reasonable dimensions compared to other LBP-based methods.
Similarity to the settings for encoding MDP, descriptor EMDP is extra enhanced with the enhanced fea-
tures computed from max-pooling videos which are formed with the vl nnpool() function1 using the
default parameters except Square filter = 2 × 2, Stride = 1 for “deep” features, and Stride = 2 for
global characteristics.

5.5.2 Assessment of effectiveness of moment models

Addressing the settings settled in Section 5.5.1, we have experimented two descriptors based on the
models of moment images (CSAP) and moment volumes (MDP) for DT recognition issue on benchmark

1http://www.vlfeat.org/matconvnet/mfiles/vl nnpool
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Table 5.1: Several comparative dimensions of LBP-based descriptors for DT recognition.
Method Dimensions P = 4 P = 8 P = 16 P = 24

LBP-TOPu2 [14] 3× (P (P − 1) + 3) 45 177 729 1665
VLBP [14] 23P+2 16384 - - -
CVLBP [91] 3× 23P+2 49152 - - -
HLBP [92] 6× 2P 96 1536 - -
CLSP-TOPriu2 [C1] 6(P + 2)2 216 600 1944 4056
WLBPC [109] 6× 2P 96 1536 - -
MEWLSP [95] 6× 2P 96 1536 - -
CVLBC [90] 2(3P + 3)2 392 1458 5202 11125
CSAP-TOPriu2 12(P + 2)2 - 1200 3888 8112
MDPriu2

D M 48(P + 2) - 480 864 -
MDPriu2

D M C 48(P + 4) - 576 960 -
MDPriu2

D M/C 72(P + 2) - 720 1296 -
MDP-Briu2 24(P + 2) - 240 432 -
LDP-TOPriu2 12(P + 2) - 120 216 -

Note: P is the considered neighbors. “-” means that the corresponding setting
is either not reported or not implemented in practice due to its huge dimen-
sion. riu2 and u2 are two popular mappings for LBP-based variants. MDP-B
and MDP descriptors are structured in 4 directions on two first-order filtered
videos (also the settings for comparison their performance with the state-of-
the-art in DT recognition.

Table 5.2: Classification rates (%) on DT and scene datasets using single-scale CSAP-TOPriu2 and its
multi-scale analysis.

Datasets UCLA DynTex
P, R, a, b 50-LOO 50-4fold 9-class 8-class DynTex35 Alpha Beta Gamma
8, 1, 1, 0 96.50 97.00 97.05 96.52 98.29 96.67 93.21 92.80
8, 1, 0, 1 99.50 97.50 96.40 96.20 98.86 95.00 92.59 90.15
8, 1, 1, 1 98.50 98.50 97.10 95.98 98.29 93.33 90.74 91.29
16, 2, 1, 0 97.50 98.50 95.60 96.41 98.86 96.67 93.21 94.70
16, 2, 0, 1 99.50 99.00 96.65 95.22 99.43 96.67 93.21 91.29
16, 2, 1, 1 99.00 98.00 6.95 94.89 98.86 96.67 91.36 91.29
24, 3, 1, 0 99.50 99.50 95.25 94.35 99.71 96.67 92.59 92.80
24, 3, 0, 1 99.00 99.50 94.95 94.35 99.14 96.67 91.98 91.66
24, 3, 1, 1 99.50 99.50 96.00 95.65 100 96.67 90.12 91.29{

(4, 1), (8, 2), (12, 3)
}

, 1, 0 99.00 98.00 96.50 94.13 99.43 96.67 93.83 94.70{
(4, 1), (8, 2), (12, 3)

}
, 0, 1 99.50 99.50 96.80 94.13 99.71 96.67 92.59 92.05{

(4, 1), (8, 2), (12, 3)
}

, 1, 1 99.00 99.50 97.50 95.33 99.71 96.67 91.36 92.42{
(8, 1), (16, 2), (24, 3)

}
, 1, 0 99.50 99.50 96.15 95.11 99.71 96.67 93.83 93.18{

(8, 1), (16, 2), (24, 3)
}

, 0, 1 99.50 99.50 96.80 95.98 100 96.67 92.59 90.53{
(8, 1), (16, 2), (24, 3)

}
, 1, 1 99.50 99.50 96.75 97.83 100 95.00 89.51 91.29

Note: 50-LOO and 50-4fold denote results on 50-class breakdown using leave-one-out and four cross-
fold validation respectively.

datasets UCLA [5] and DynTex [54]. Accordingly, experimental results of CSAP-TOPriu2/u2 descrip-
tors are shown on Tables 5.2 and 5.3 in their single-scale and multi-scale analyses using mostly complete
kinds of encoding settings and their combinations, while performances of the MDP-based descriptors are
mainly presented in Tables 5.6 and 5.7 in both single-scale and multi-scale analysis of local supporting
regions.

In general, it can be verified from these tables that the MDP-based descriptors have significantly
better performances compared to the CSAP-based ones. This certainly is thanks to addressing the xLDP
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Table 5.3: Classification rates (%) on DT and scene datasets using single-scale CSAP-TOPu2 and its
multi-scale analysis.

Datasets UCLA DynTex
P, R, a, b 50-LOO 50-4fold 9-class 8-class DynTex35 Alpha Beta Gamma
4, 2, 1, 0 99.50 99.50 96.35 96.74 99.71 95.00 92.59 92.42
4, 2, 0, 1 99.50 99.50 95.80 94.24 98.86 96.67 90.74 92.42
4, 2, 1, 1 100 100 96.45 95.33 98.86 95.00 88.89 91.29
7, 2, 1, 0 99.00 99.50 96.75 94.02 99.14 95.00 92.59 93.18
7, 2, 0, 1 99.50 99.50 98.25 95.65 99.71 93.33 91.36 94.32
7, 2, 1, 1 99.00 99.50 97.55 96.30 100 95.00 92.59 95.08{

(4, 2), (5, 3)
}

, 1, 0 99.00 99.00 96.50 92.72 99.43 96.67 92.59 93.56{
(4, 2), (5, 3)

}
, 0, 1 99.00 99.00 97.35 94.35 99.43 93.33 93.21 93.18{

(4, 2), (5, 3)
}

, 1, 1 99.00 99.00 96.80 94.90 99.43 95.00 90.74 91.67{
(7, 2), (7, 3)

}
, 1, 0 98.50 99.00 96.65 94.89 99.71 95.00 92.59 93.94{

(7, 2), (7, 3)
}

, 0, 1 99.00 99.00 96.45 94.78 99.43 93.33 93.83 94.32{
(7, 2), (7, 3)

}
, 1, 1 99.00 99.00 97.05 96.86 100 95.00 93.21 94.70

Note: 50-LOO and 50-4fold denote results on 50-class breakdown using leave-one-out and
four cross-fold validation respectively.

operator to forcefully extract the MDP-based features from the moment-filtered volumes for DT repre-
sentation. This have substantiated the prominent contribution our proposals. Hence, in the rest of this
Chapter, we just discuss the performance of the MDP-based descriptors in comprehensive comparison
with other existing methods.

5.5.3 Experimental results of MDP-based descriptors

Performances on different benchmark DT datasets (UCLA [5], DynTex [54], DynTex++ [55]) of our
framework, in which the proposed operators along with riu2 and u2 mappings are utilized to encode
filtered videos in single-scale and multi-scale analyses for DT description, are detailed in corresponding
Tables 5.6, 5.7, and 5.8 respectively. Based on the experimental results, we could make some crucial
statements as follows.

First, as mentioned in Sections 5.2.2 and 5.2.3, exploiting moment volumes makes DT representa-
tion more insensitive to noise and illumination. Our experiments have verified that the DT descriptors
MDP and MDP-B, computed on the filtered videos, have outstanding performance in comparison to
the LDP-TOP’s, encoded on the raw DT sequence with non-supporting volumes (see Tables 5.6, 5.7,
5.8 for MDP, MDP-B, and Table 5.9 for LDP-TOP descriptor). In this regard, two first-order filtered
(“mean” and “variance”) videos have notably contributed to the performance of the proposed descriptors
(see Table 5.4). Second, it is in accordance with our evaluation in Section 3.3.4 that the combination
of complemented components comprises additional discriminant information. As expected, all MDP
descriptors outperforms significantly compared to MDP-B with a single complementary element (see
Tables 5.6, 5.7, 5.8). Third, MDP descriptors exploiting the factor of directional center contrast (the
component LDPC of an extended operator xLDP) are often more informative than others. Therein,
jointing with this factor makes those more robust to noise (see Tables 5.6, 5.8). Fourth, MDP descrip-
tors with riu2 mapping not only have tiny dimension but also deal with more efficiently than u2. Fifth,
it is consistent with our analysis in Section 5.4.1 that multi-scale encoding allows to capture more lo-
cal directional structures in larger regions. More specifically, multi-scale descriptors of riu2 mapping
({(P,R)}riu2) are more efficient than single-scale. Therein, 2-scale (e.g., {(8, 1), (16, 2)}) achieves
good results but the performance of 3-scale, i.e., {(8, 1), (16, 2), (24, 3)} seems more “stable” on most
of the benchmark DT datasets thanks to considering spatial features on the broad locality. Consequently,
it should be recommended for implementation in practice, and also be the setting chosen for comparing
with the state-of-the-art performances.
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Table 5.4: Recognition (%) on “mean” (m1) and “variance” (µ2) videos.
Dataset 50-LOO (UCLA) Beta (DynTex) DynTex++
Descriptor m1 µ2

{
m1, µ2

}
m1 µ2

{
m1, µ2

}
m1 µ2

{
m1, µ2

}
MDPD M 99.50 99.50 100 96.30 95.06 97.53 94.87 94.89 95.58
MDPD M C 99.50 99.50 100 96.30 95.68 97.53 94.88 94.68 95.70
MDPD M/C 99.50 100 100 95.68 95.68 96.91 94.41 94.89 95.86
MDP-B 98.00 98.00 99.50 88.89 89.51 88.27 93.98 94.02 95.82

Note: D M , D M C, and D M/C are different integrations of complemented compo-
nents of the extended operator xLDP to form the corresponding MDP descriptors. 50-LOO
means results on 50-class breakdown using leave-one-out validation.

Furthermore, the MDP-B, which is based on the basic LDP (see Sections 3.3.4 and 5.5.3.4), has not
performed as efficiently as MDP descriptors structured by the extended LDP operator. MDP also outper-
forms in comparison with LDP-TOP using the same configuration. These facts prove the effectiveness
of our proposed components: the extensions of LDP operator and the model of moment volumes. How-
ever, it should be noted that MDP-B also obtains promising results compared to existing LBP-based
methods thanks to the contribution of the r-order moment volume model.

In aspect of comparison with the existing approaches, our proposed method with a simple encod-
ing technique conducts outstandingly in DT recognition issue compared to LBP-based variants for DT
representation. In addition, its ability is the same as that of deep-learning-based frameworks in several
circumstances (see Table 5.6). Hereafter, comprehensive evaluations of our proposal on different DT
datasets are expressed clearly, in which if MDP descriptors are not specified their implemented configu-
rations in detail, the default setting is mentioned for them, i.e., {(8, 1), (16, 2), (24, 3)}riu2.

5.5.3.1 Recognition on UCLA dataset

It can be verified in Tables 5.6 and 6.33 that the proposed method obtains the best recognition rates
of 100% for both 50-LOO and 50-4fold schemes compared to the state-of-the-art results. For 9-class and
8-class scenarios, our proposal also acquires competitive performances. Hereafter, estimations on each
of UCLA’s sub-datasets are detailed specifically.

50-class: It can be realized in Table 6.33 that MMDPD M C and MMDPD M achieve good results
with 100% and 99.5% on 50-LOO and 50-4fold scenarios respectively. In aspect of the chosen comparing
setting (see Section 5.5.3), MMDPD M/C with only 3,888 bins outperforms with rate of 100% on both
scenarios. It is the best performance in comparison to all existing methods including deep-learning-
based approaches PCANet-TOP [64] and DT-CNN [63]. The filter-based method, MBSIF-TOP [72],
achieves rate of 99.5% using a 7-scale descriptor of larger dimension (5,376 bins). Utilizing multi-
fractal analysis to measure spatio-temporal features, DFS [50] obtains the same ours (100%) on 50-
4fold scheme but it has not dealt with well on other challenging DT datasets (e.g., DynTex). Similarly,
PI/PD-LBP variants [111] structure DT descriptors with grand dimensions using complicated learning
procedures, and they have not been tested on DynTex.

9-class: In this scheme, MMDPD M with rate of 98.90% is the best performance compared to other
MDP descriptors. In the meanwhile, accuracies of MMDPD M C and MMDPD M/C are 98.35% and
98.70%, slightly lower rates of 99.20%, 99.35%, and 99.60% which are reported by CVLBC [90], FD-
MAP [C4], and DNGP [38] respectively. However, CVLBC and FD-MAP is not better than ours on
other scenarios (except 8-class) of UCLA dataset while DNGP has a complex representation. It should
be noted that our method outperforms lightly compared to DT-CNN’s [63], 98.05% for AlexNet and
98.35% for GoogleNet deep learning framework. Specific recognition rate on each category in Figure
5.8 illustrates that MMDPD M/C has mainly confused sequences of “Fire” with “Plants”, “Water” with
“Waterfall”, and “Smoke” with “Water”. The reason for that may be the similar properties of those.
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Table 5.5: Comparison of recognition rates (%) on benchmark DT datasets

Category
Dataset UCLA DynTex
Encoding method 50-LOO 50-4fold 9-class 8-class Dyn35 Alpha Beta Gamma Dyn++

A
FDT [C4] 98.50 99.00 97.70 99.35 98.86 98.33 93.21 91.67 95.31
FD-MAP [C4] 99.50 99.00 99.35 99.57 98.86 98.33 92.59 91.67 95.69

B

AR-LDS [5] 89.90N - - - - - - - -
KDT-MD [40] - 97.50 - - - - - - -
NLDR [43] - - - 80.00 - - - - -
Chaotic vector [42] - - 85.10N 85.00N - - - - -

C

3D-OTF [51] - 87.10 97.23 99.50 96.70 83.61 73.22 72.53 89.17
WMFS [52] - - 97.11 96.96 - - - - -
NLSSA [114] - - - - - - - - 92.40
DFS [50] - 100 97.50 99.20 97.16 85.24 76.93 74.82 91.70
2D+T [94] - - - - - 85.00 67.00 63.00 -
STLS [53] - 99.50 97.40 99.50 98.20 89.40 80.80 79.80 94.50

D
MBSIF-TOP [72] 99.50N - - - 98.61N 90.00N 90.70N 91.30N 97.12N

DNGP [38] - - 99.60 99.40 - - - - 93.80

E

VLBP [14] - 89.50N 96.30N 91.96N 81.14N - - - 94.98N

LBP-TOP [14] - 94.50N 96.00N 93.67N 92.45N 98.33 88.89 84.85N 94.05N

DDLBP with MJMI [113] - - - - - - - - 95.80
CVLBP [91] - 93.00N 96.90N 95.65N 85.14N - - - -
HLBP [92] 95.00N 95.00N 98.35N 97.50N 98.57N - - - 96.28N

CLSP-TOP [C1] 99.00N 99.00N 98.60N 97.72N 98.29N 95.00N 91.98N 91.29N 95.50N

MEWLSP [95] 96.50N 96.50N 98.55N 98.04N 99.71N - - - 98.48N

WLBPC [109] - 96.50N 97.17N 97.61N - - - - 95.01N

CVLBC [90] 98.50N 99.00N 99.20N 99.02N 98.86N - - - 91.31N

CSAP-TOP [J1] 99.50 99.50 96.80 95.98 100 96.67 92.59 90.53 -
MMDPD M [J5] 100 99.50 98.90 98.15 99.43 98.33 97.53 92.42 95.58
MMDPD M C [J5] 100 99.50 98.35 98.59 99.43 98.33 97.53 92.42 95.70
MMDPD M/C [J5] 100 100 98.70 98.70 99.43 98.33 96.91 92.05 95.86
MEMDPD M/C [J5] 100 100 98.90 98.70 99.71 96.67 96.91 93.94 96.03
MMDP-B [J5] 99.50 98.50 98.05 97.61 98.86 96.67 88.27 93.18 95.82
MLDP-TOP [J5] 97.00 97.00 96.50 96.09 98.86 96.67 88.89 92.80 94.02

F

DL-PEGASOS [55] - 97.50 95.60 - - - - - 63.70
PI-LBP+super hist [111] - 100N 98.20N - - - - - -
PD-LBP+super hist [111] - 100N 98.10N - - - - - -
PCA-cLBP/PI-LBP/PD-LBP [111] - - - - - - - - 92.40
Orthogonal Tensor DL [69] - 99.80 98.20 99.50 - 87.80 76.70 74.80 94.70
Equiangular Kernel DL [71] - - - - - 88.80 77.40 75.60 93.40
st-TCoF [62] - - - - - 100* 100* 98.11* -
PCANet-TOP [64] 99.50* - - - - 96.67* 90.74* 89.39* -
D3 [66] - - - - - 100* 100* 98.11* -
DT-CNN-AlexNet [63] - 99.50* 98.05* 98.48* - 100* 99.38* 99.62* 98.18*

DT-CNN-GoogleNet [63] - 99.50* 98.35* 99.02* - 100* 100* 99.62* 98.58*

Note: “-” means “not available”. Superscript “*” indicates results using deep learning algorithms. “N” indicates rates with 1-NN
classifier. 50-LOO and 50-4fold denote results on 50-class breakdown using leave-one-out and four cross-fold validation respectively.
Dyn35 and Dyn++ are abbreviated for DynTex35 and DynTex++ respectively. Group A is optical-flow-based methods, B: model-
based, C: geometry-based, D: filter-based, E: local-feature-based, F: learning-based.

8-class: Obtaining rate of 98.7% with MMDPD M/C in the more challenging scheme (see Table
5.6), it is interesting to note that the ability of our method is nearly the same as DT-CNN’s [63] utilizing
deep-learning-based frameworks: AlexNet (98.48%) and GoogleNet (99.02%). It can be also observed
in Table 6.33 that our method has the best performance among LBP-based methods, excluding CVLBC
[90]. As mentioned above, it does not handle well on other schemes and has not been verified on the
more challenging subsets of DynTex (i.e., Alpha, Beta, Gamma). Other non-LBP-based approaches,
like Orthogonal Tensor DL (99.50%) [69], STLS (99.5%) [53], DNGP (99.4%) [38], DFS (99.2%) [50],
3D-OTF (99.5%) [51], FDT (99.35%) [C4], FD-MAP (99.57%) [C4], deal with more effectively than
ours but their drawbacks are either sophisticated computation (e.g., Orthogonal Tensor DL, DNGP) or
inefficient operation on other DT datasets (e.g., Orthogonal Tensor DL, DFS, 3D-OTF, STLS, FDT, FD-
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Table 5.6: Classification rates (%) on UCLA using MDP, MDP-B descriptors and their multi-scale set-
tings with mappings of riu2/u2.
Scheme 50-LOO 50-4fold 9-class 8-class{

(P,R)
}riu2/u2 D M D M C D M/C MDP-B D M D M C D M/C MDP-B D M D M C D M/C MDP-B D M D M C D M/C MDP-B{

(8, 1)
}riu2 98.00 98.00 98.50 96.00 97.50 97.50 98.50 96.00 97.60 98.60 98.40 94.50 95.33 96.85 96.41 94.89{

(16, 2)
}riu2 99.50 99.00 99.50 98.50 99.00 99.00 100 98.50 97.70 97.85 97.90 96.10 96.63 95.33 96.74 96.20{

(24, 3)
}riu2 99.50 99.50 97.00 98.50 100 100 97.50 98.00 96.85 98.25 97.45 95.50 96.96 97.17 97.39 95.54{

(8, 1), (16, 2)
}riu2 99.50 99.50 100 98.00 99.00 99.00 100 98.00 98.45 99.00 98.20 96.45 97.71 97.71 97.07 95.22{

(8, 1), (24, 3)
}riu2 100 99.50 100 98.00 99.50 99.50 100 97.50 98.20 98.65 98.40 96.55 97.83 97.50 98.15 97.28{

(16, 2), (24, 3)
}riu2 100 100 100 99.00 100 100 100 98.50 98.10 98.05 98.55 96.40 97.61 97.50 98.40 96.41{

(8, 1), (16, 2), (24, 3)
}riu2 100 100 100 99.50 99.50 99.50 100 98.50 98.90 98.35 98.70 98.05 98.15 98.59 98.70 97.61{

(8, 1)
}u2 99.00 99.00 99.00 98.00 99.00 99.00 99.00 97.50 98.60 98.25 97.35 97.65 98.80 98.37 97.93 95.00{

(16, 2)
}u2 99.50 99.50 99.50 99.00 99.50 99.50 99.50 98.00 96.95 98.00 97.30 95.65 96.96 97.50 96.52 98.80{

(24, 3)
}u2 99.50 99.50 - 99.50 99.50 99.50 - 99.00 96.40 96.60 - 94.65 97.07 96.10 - 95.54

Note: D M, D M C, and D M/C are different integrations of complemented components of the extended operator xLDP to form the corresponding MDP descriptors.
50-LOO and 50-4fold denote results on 50-class breakdown using leave-one-out and four cross-fold validation respectively. “-” means that the corresponding MDP is
not implemented due to the problem of large dimension.

95 5

95 3.75 1.25

97.5 2.5

99 1

100

100

92.5 7.5

95 5

2.5 97.5

Boiling water

Fire

Flowers

Fountains

Plants

Sea

Smoke

Water

Waterfall

Boilin
g w

at
er

Fire Flo
wer

s

Founta
in

s

Plan
ts

Sea Sm
oke

W
at

er

W
at

er
fa

ll

Figure 5.8: Confusion matrix (%) of MMDPD M/C
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Figure 5.9: Confusion matrix (%) of MMDPD M/C

on 8-class.

MAP). The confusion matrix of each class in Figure 5.9 indicates that MMDPD M/C has principally
confused the properties of “Smoke” sequences with “Water” due to their alike features.

5.5.3.2 Recognition on DynTex dataset

Tables 5.7 and 6.33 indicate that our method obtains the best results compared to existing LBP-
based methods and other non-deep-leaning techniques on this scheme. Specific evaluations on each of
DynTex’s variants are expressed in detail as follows.

DynTex35: It can be observed in Table 5.7 that the highest rate of recognition on this sce-
nario is 100% reported by MDPu2

D M (24, 3) and MDPu2
D M C(24, 3). In the meanwhile, MMDPD M ,

MMDPD M C , and MMDPD M/C result out lightly lower rate of 99.43%. This is because of the simi-
larity of features in two classes c and d, as shown in Figure 5.11, that they are not able to differentiate.
The detail of classification rate of MMDPD M/C is exposed in Figure 5.10. CVLBC [90] obtains accu-
racy of 99.71% on this scheme (see Table 6.33), sightly higher than our MMDP descriptors’ but it has
not verified on other challenging variants of DynTex (i.e., Alpha, Beta, Gamma).

Alpha: In this scheme, MMDPD M and MMDPD M C with rate of 98.33% (see Table 5.7) out-
perform compared to that of MMDPD M/C with 96.67% due to the confusion of two DT sequences
(see Figure 5.12). Those results are also the best in comparison with all existing methods excluding
deep-leaning-based approaches st-TCoF [62], DT-CNN [63], and D3 [66].
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Table 5.7: Rates (%) on DynTex using MDP, MDP-B descriptors and their multi-scale settings with
mappings of riu2/u2.
Scheme DynTex35 Alpha Beta Gamma{

(P,R)
}riu2/u2 D M D M C D M/C MDP-B D M D M C D M/C MDP-B D M D M C D M/C MDP-B D M D M C D M/C MDP-B{

(8, 1)
}riu2 96.86 96.57 97.43 97.43 95.00 93.33 95.00 96.67 94.44 95.06 95.68 90.12 92.42 92.05 92.80 91.29{

(16, 2)
}riu2 98.00 97.71 98.86 98.57 98.83 98.83 98.83 96.67 95.68 95.68 96.30 90.74 93.18 92.05 91.67 93.94{

(24, 3)
}riu2 99.43 99.43 99.43 99.14 98.83 98.83 96.67 96.67 96.91 96.91 96.91 88.89 93.18 92.80 93.18 90.15{

(8, 1), (16, 2)
}riu2 97.71 98.00 98.86 98.86 98.33 98.33 98.33 96.67 95.06 95.06 96.30 90.74 92.80 92.42 92.05 92.05{

(8, 1), (24, 3)
}riu2 99.43 99.43 99.43 98.86 98.33 98.33 96.67 96.67 96.91 97.53 96.91 89.51 93.18 92.80 91.67 90.91{

(16, 2), (24, 3)
}riu2 99.43 99.43 99.43 98.57 98.33 98.33 96.67 96.67 96.91 98.15 96.30 88.89 92.42 92.42 92.80 93.94{

(8, 1), (16, 2), (24, 3)
}riu2 99.43 99.43 99.43 98.86 98.33 98.33 96.67 96.67 97.53 97.53 96.91 88.27 92.42 92.42 92.05 93.18{

(8, 1)
}u2 97.14 97.14 98.00 98.57 95.00 95.00 95.00 96.67 92.59 93.83 93.21 90.12 92.80 92.42 92.80 89.77{

(16, 2)
}u2 98.86 99.14 99.43 99.14 96.67 96.67 96.67 96.67 93.83 94.44 95.06 91.36 93.18 92.80 94.68 91.67{

(24, 3)
}u2 100 100 - 99.43 96.67 96.67 - 95.00 93.83 93.83 - 92.59 93.18 93.18 - 90.91

Note: D M, D M C, and D M/C are different integrations of complemented components to form the corresponding MDP descriptors. “-” denotes that the corresponding
MDP is not implemented due to the problem of large dimension.

Figure 5.10: Specific recognition of MMDPD M/C on each class of DynTex35.

Beta: It can be realized in Tables 5.7 and 6.33 that our MDP descriptors have the best performance
compared to all non-deep-leaning-based methods. More specifically, MMDPD M C of (16, 2)(24, 3)riu2

gains the highest rate of 98.15%, slightly better than MMDPD M and MMDPD M/C with (96.91%) and
(97.53%) respectively. Those performances are much better than PCANet-TOP’s [64] and about 1% to
3% lower than st-TCoF’s [62], DT-CNN’s [63], and D3 [66], in which exploiting complicated learning
algorithms along with tremendous dimension of DT representation while those are crucial to ensure
feasible implementations in practice. The confusion matrix of MMDPD M/C in Figure 5.13 indicates
that it has mostly confused “Rotation” sequences with “Vegetation” and “Trees”.

Gamma: In this scenario, rate of 94.68% is the best recognition pointed out by MDPu2
D M/C(16, 2)

while multi-scale MMDP also obtains good results from 92% to 93%. Towards the setting chosen for
comparison, MMDPD M/C achieves rate of 92.05%, better than all existing methods excepting LBP-
TOP’s implemented in [62] and that of deep-leaning-based approaches. In oder to address which cate-
gories have enforced the misunderstanding of MMDPD M/C for the improvement work, the confusion
matrix is figured out as in Figure 5.14. According to that, mutual confusion between sequences of
“Fountains” and “Calm water” should be concentrated on for perspectives.

5.5.3.3 Recognition on Dyntex++ dataset

It can be observed from Table 6.33 and 5.8 that MDP descriptors have performed well in comparison
to the existing approaches. Specifically, the best recognition rate on this scheme is 96.51% (see Table
5.8) reported by MDPu2

D M C(8, 1). The descriptors of MMDPD M , MMDPD M C , and MMDPD M/C

obtain 95.58%, 95.7%, and 95.86% respectively, those which are the highest rates compared to the exist-
ing methods using SVM algorithm for classification. In aspect of the comparing setting, the performance
of MMDPD M/C is nearly the same MBSIF-TOP’s (97.12%) [72] with 8-scale descriptor formed by
8 learned filters, and about 3% lower than DT-CNN’s (98.18%) [63] using deep learning techniques of
AlexNet for learning DT features. The LBP-based method, MEWLSP [95], acquires the highest recog-
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c d

Figure 5.11: Two mutual confused categories in
recognition on DynTex35.

Figure 5.12: Confusion matrix for MMDPD M/C on Alpha.

Data counts, RR = 157/162 = 96.9136%
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Figure 5.14: Confusion matrix for MMDPD M/C

on Gamma.

nition rate of 98.48% on this scheme, even better than DT-CNN’s (98.18%) [63]. However, it does
not outperform on UCLA dataset compared to ours as well as has not been justified on other challeng-
ing DynTex variants (i.e., Alpha, Beta, Gamma). Another sophisticated method utilizing deep learning
framework of GoogleNet [63] has prominent classification rate but it takes a long time to handle DT
features with a huge complicated computation while these costs are crucial in real-time applications of
computer vision. Accuracies of MMDPD M/C on each categories are detailed in Figure 5.15. Accord-
ingly, our descriptor outperforms on most of categories, only five of them (highlighted in red rates) are
really challenges for the future work.

5.5.3.4 Assessing the proposed components: Recognition with MDP-B and LDP-TOP

We address in this section some experiments for verifying our proposed components. Two following
descriptors (see also Section 5.4.1 for more details) are considered: i) LDP-TOP that applies directly the
second-order LDP operator on three orthogonal planes of raw videos; ii) MDP-B has the same architec-
ture as that of MDP descriptors but on the contrary it is based only on LDP operator. It is evident that the
comparisons between LDP-TOP and MDP-B, between MDP-B and MDP, allow to highlight respectively
the contribution of moment volumes, and that of the extended operator xLDP.

It could be seen from Tables 5.6, 5.7, 6.33, 5.8, 5.9 that MDP descriptors are more efficient and
“stable” than MDP-B and LDP-TOP ones. Table 6.33 shows that our proposals permit to prominently
improve MDP’s performance compared to the straightforward LDP-TOP version on most of DT datasets
(e.g., up to 8.64% on Beta dataset). It also outperforms in comparison with MDP-B on various datasets
(e.g., up to 9.26% on Beta).

Moreover, the execution of LDP-TOP is impaired in comparison to MDP-B’s on most of the DT
datasets (see also Table 6.33) due to non-supporting volume taken into account. This fact proves that
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Table 5.8: Recognition (%) on DynTex++ using MDP, MDP-B descriptors and their multi-scale settings
with mappings of riu2/u2.

Dataset DynTex++{
(P,R)

}riu2/u2 D M D M C D M/C MDP-B{
(8, 1)

}riu2 93.93 94.28 94.52 92.71{
(16, 2)

}riu2 95.27 94.70 95.18 94.25{
(24, 3)

}riu2 93.92 94.09 93.71 92.16{
(8, 1), (16, 2)

}riu2 95.47 95.59 95.56 95.38{
(8, 1), (24, 3)

}riu2 94.92 95.10 94.88 94.92{
(16, 2), (24, 3)

}riu2 95.37 94.85 95.11 95.07{
(8, 1), (16, 2), (24, 3)

}riu2 95.58 95.70 95.86 95.82{
(8, 1)

}u2 95.97 96.51 96.18 96.51{
(16, 2)

}u2 96.37 96.28 95.92 96.39{
(24, 3)

}u2 95.72 95.68 - 94.79

Note: D M, D M C, and D M/C are different integrations of
complemented components of the extended operator xLDP to
form the corresponding MDP descriptors. “-” denotes that the
corresponding MDP is not implemented due to the problem of
large dimension.

considering moment volumes inspite of raw videos allows to capture more robust and discriminative
features to enhance the performance of DT descriptors.

In the meanwhile, with the same configuration, MDP-B fails behind MDP descriptors on most of
DT datasets because the typical second-order LDP is used instead of our extended operator xLDP (see
Section 3.3.4). This shows the important contribution of two proposed extensions for LDP operator
to make DT descriptors more robust and discriminative. However, it should be noted that MDP-B’s
performance produces competitive results that are still comparable with the existing methods in several
circumstances thanks to the collaboration of the filtered videos figured out by the proposed model of
r-order moment volumes.

Because of those, the below evaluations mainly focus on the performance of MDP-B compared to
the existing approaches.

UCLA: The performance of MMDP-B with multi-scale setting of {(8, 1), (16, 2), (24, 3)}riu2 ac-
quires recognition rates of 99.5%, 98.5%, 98.05%, and 97.61% for 50-LOO, 50-4fold, 9-class, and
8-class scenarios respectively, those which are comparable to the LBP-based methods (see Table 6.33).
In 50-LOO and 50-4fold schemes, the results of LDP-TOPu2(16, 2) are also promising with rates of
99% and 99.5% (see Table 5.9).

DynTex: In this scheme, MMDP-B and MLDP-TOP with comparing configuration just break down
on Beta with classification rate of 88.27% and 88.89% respectively while they and their other settings
perform well on other variants of DynTex dataset (see Table 5.7). More specifically, the best recognition
rates on DynTex35 is 99.43% resulted by MDP-Bu2(24, 3), LDP-TOPu2(24, 3), and 99.14% reported
by MDP-Briu2(24, 3) with only 624 dimensions. Towards the comparing setting, MMDP-B and MLDP-
TOP achieve rate of 98.86% on DynTex35, the best classification among the LBP-based variants except
MEWLSP’s [95] (99.71%) (see Table 6.33). Although not better than the ability of MDP on Beta, MDP-
B obtains comparable rates against those of all existing techniques excepting deep learning methods,
i.e., st-TCoF [62], D3 [66], DT-CNN [63]. Furthermore, it is interesting to note that the operation of
MMDP-B is slightly better than MMDP’s in verifying on Gamma scheme with 93.18% in contrast to
92.05% of MMDP.
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Figure 5.15: Recognition of MMDPD M/C on specific categories of DynTex++, which the challenging
ones are highlighted in red rates.

DynTex++: Utilizing complicated learning algorithms, DT-CNN [63] outperforms dominantly on
this scenario (98.58%). The MMDP-B descriptor of {(8, 1), (16, 2), (24, 3)}riu2 with only size of
1,350 bins gains the promising results with rate of 95.82%, lightly better than that of MMDPD M

and MMDPD M C . Thanks to exploiting spatio-temporal information of the moment volumes,
MDP-Bu2(8, 1) resulted out the highest rate of 96.51%, just about 2% lower than DT-CNN’s [63].

Table 5.9: Classification rates (%) of LDP-TOP descriptor and its multi-scale settings with mappings of
riu2/u2 on DT datasets without applying the proposed moment volume model.

Dataset UCLA DynTex{
(P,R)

}riu2/u2 50-LOO 50-4fold 9-class 8-class Dyn35 Alpha Beta Gamma Dyn++{
(8, 1)

}riu2 93.00 96.00 96.30 96.09 96.00 98.33 87.04 87.12 89.82{
(16, 2)

}riu2 96.50 98.00 96.55 96.74 97.14 96.67 90.74 89.39 91.02{
(24, 3)

}riu2 86.00 92.50 93.40 93.48 97.43 96.67 86.42 88.26 87.01{
(8, 1), (16, 2)

}riu2 97.50 97.00 96.75 95.98 97.71 96.67 89.51 92.05 93.61{
(8, 1), (24, 3)

}riu2 95.50 96.00 96.85 92.72 97.71 96.67 88.27 90.53 92.84{
(16, 2), (24, 3)

}riu2 95.00 96.50 96.25 95.33 98.57 96.67 87.65 92.05 92.52{
(8, 1), (16, 2), (24, 3)

}riu2 97.00 97.00 96.50 96.09 98.86 96.67 88.89 92.80 94.02{
(8, 1)

}u2 97.00 97.50 96.40 95.54 97.71 95.00 90.74 91.29 95.31{
(16, 2)

}u2 99.00 99.50 96.90 96.41 98.86 96.67 88.27 90.91 95.86{
(24, 3)

}u2 92.00 95.50 92.65 95.00 99.43 93.33 90.12 90.53 93.26

Note: 50-LOO and 50-4fold mean rates on 50-class breakdown using leave-one-out and four cross-
fold validation respectively. Dyn35 and Dyn++ are shortened for DynTex35 and DynTex++ datasets.

5.5.3.5 Assessing impact of max-pooling features: Recognition with EMDP descriptor

We conduct in this section several experiments for investigating the impact of max-pooling features
on encoding MDP patterns. As validated in Section 5.5.3 that the configurations of riu2 mapping and
D M/C integration reported the best performance, we just address these settings to compute EMDP
descriptor.

It could be verified from Tables 5.6, 5.7, 5.8, 5.10 that EMDP descriptor is more discriminative than
MDP thanks to the contribution of max-pooling features. Specifically, the performance of its single-
scale variants has significantly improved in the recognition issue of 50-class schemes in the UCLA
dataset. For instance, with

{
(P,R)

}
=
{

(8, 1)
}

of riu2 mapping, EMDP obtains 1.5% better than
that of MDP (see Tables 5.6, 5.10). In the setting chosen for comparison with the state of the art

(
i.e.,{

(8, 1), (16, 2), (24, 3)
}riu2), EMDP outperforms about 0.3% compared to MDP (99.43%) on Dyn-
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Table 5.10: Recognition rates (%) of EMDPD M/C descriptor and its multi-scale settings with mapping
of riu2 on DT datasets.

Dataset UCLA DynTex{
(P,R)

}
50-LOO 50-4fold 9-class 8-class Dyn35 Alpha Beta Gamma Dyn++{

(8, 1)
}

99.50 98.50 98.40 97.07 97.71 95.00 95.68 92.80 95.17{
(16, 2)

}
100 100 97.15 97.07 99.14 98.33 96.91 93.18 95.27{

(24, 3)
}

99.50 99.50 98.25 98.04 99.71 95.00 96.91 93.56 94.67{
(8, 1), (16, 2)

}
100 100 97.90 97.61 99.43 96.67 96.91 93.18 95.90{

(8, 1), (24, 3)
}

100 100 98.55 98.26 99.43 96.67 96.91 93.56 95.66{
(16, 2), (24, 3)

}
100 99.50 97.05 97.17 99.71 96.67 97.53 93.18 95.68{

(8, 1), (16, 2), (24, 3)
}

100 100 98.90 98.70 99.71 96.67 96.91 93.94 96.03

Note: 50-LOO and 50-4fold denote rates on 50-class breakdown using leave-one-out and four
cross-fold validation respectively. Dyn35 and Dyn++ are shortened for DynTex35 and DynTex++.

Tex35. Particularly, it gains 93.94% rate of recognition on the complicated dataset, Gamma, about 2%
higher than MDP’s. In terms of classification on DynTex++, the operation of EMDP looks more “stable”
and achieves a little better rate with 96.03% in comparison to those of MDP with 95.86% (see Tables
5.8, 5.10).

In general, it is validated that the impact of the max-pooling features is positive in enhancing the per-
formance of the proposed descriptors. Table 5.11 indicates the important contribution of these enhanced
features in shallow analysis. It can be realized from this Table that it is possible to take advantage of these
in the deeper max-pooling layers as well as to combine this computation with other advance components
of CNNs in the further context.

Table 5.11: Contribution of max-pooling features for the performance (%) of descriptors using settings
of D M/C , and {(P,R)} = {(8, 1), (16, 2), (24, 3)} with riu2 mapping.

Descriptors DynTex35 Gamma DynTex++
MMDP 99.43 92.05 95.86
MMDP + “deep” features 99.71 91.30 95.85
MMDP + global features 99.14 93.94 95.34
MMDP + “deep” and global features (e.g., MEMDP) 99.71 93.94 96.03

5.5.4 Global discussion

Based on the above experimental results on different benchmark DT datasets, it can be derived several
general findings as follows.

• The proposed moment volume model can be judged as a filter bank approach for pre-processing
techniques since its principle is a local filter in which its operator is inherited from the basic LBP
concept with low computing costs (see Section 5.2.2 and 5.2.3) to exploit robust and discriminant
features of DT videos. Outputs of this process, i.e., “mean” and “variance” videos, are regarded as
complementary parts to boost the discriminative power of DT representation (see Table 5.4).
• Considering larger supporting volumes to construct moment volumes can be lead to outputs of

blurred videos. This induces that encoding on these videos of our proposed operators reduces their
performance due to the increase of noise patterns structured from the near uniform voxels. It can
be seen from Tables 5.7, 5.8, 5.12 that the performance of DT descriptors are affected significantly
by blurred videos dealt with by the model of two first-order moment volumes with large supporting
regions Ω = {(14, 1), (14, 2)}. Moreover, bigger elements of supporting volumes also increase
the time cost of filtering voxel features without enhancing the operation of recognition as expected.
In practice, the setting of regional volume Ω = {(6, 1)} should be empirically recommended for
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Table 5.12: Recognition rates (%) of MDP descriptors encoded on filtered videos with supporting ele-
ments of Ω = {(14, 1), (14, 2)}.

Dataset Beta (DynTex) DynTex++{
(P,R)

}riu2/u2 D M D M C D M/C D M D M C D M/C{
(8, 1)

}riu2 93.21 93.21 93.83 92.74 93.44 93.76{
(16, 2)

}riu2 92.59 92.59 95.06 93.88 94.24 93.92{
(24, 3)

}riu2 95.06 94.44 93.21 94.04 93.96 93.07{
(8, 1), (16, 2)

}riu2 93.21 93.21 94.44 94.61 94.60 94.82{
(8, 1), (24, 3)

}riu2 93.83 93.83 94.44 94.27 94.54 94.58{
(16, 2), (24, 3)

}riu2 94.44 95.06 94.44 94.49 94.36 94.62{
(8, 1), (16, 2), (24, 3)

}riu2 94.44 93.83 94.44 95.27 94.85 94.70

Note: D M, D M C, and D M/C are different integrations of complemented
components to form the corresponding MDP descriptors.

the proposed model of r-order moment volumes.
• Two proposed extensions for LDP operator resulting in the extended operator xLDP make our

descriptor MDP even more robust and discriminative than the straightforward version MDP-B,
which is based on LDP, in spite of the fact that this simple descriptor is also very competitive
compared to the state-of-the-art results.
• MDP descriptors, based on the configuration of {(8, 1), (16, 2), (24, 3)}riu2, have more substan-

tial performance compared to others thanks to more relationships of local directional structures
involved in.
• Directional complement of center contrast level LDPC has a trivial impact on improving the per-

formance of DT descriptor in our framework (see Tables 5.6, 5.7, 5.8). Concatenating it to form the
corresponding descriptor would just grow up 2 bins for each concerned direction, i.e., Lriu2/u2+2,
while that would be double size in case of jointing, i.e., 2Lriu2/u2. Therefore, it is possible to make
a trade-off between accuracy of recognition and the computing consumption in particular applica-
tions.

5.6 Summary
In this chapter, we have presented effective descriptors for DT representation, which are based on the

filtering models of moment images/volumes. Therein, the filtered elements, computed by the moment-
volume-based model, have been proved empirically more robustness to noise that allows to capture the
proposed xLDP patterns to form the MDP-based descriptors with higher performance in comparison with
addressing operator CLSP [29] for those based on the model of moment images. Due to turbulent motions
of DTs, full directions should be addressed for the future works to entirely investigate the relations of
local informative directions for an image texture. Furthermore, in consideration of treating the large
dimension problem, encoding DT features with n-order MDPn (n ≥ 3) operator on filtered sequences
figured out by high-order moment volumes can obtain more robust spatio-temporal relationships to boost
the discriminative power of DT description.
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6.1 Introduction
6.1.1 Motivation

Since early years of 90s, filter-bank approach has been addressed for texture analysis [31]. Recently,
its denoising benefits has been consolidated in the LBP-based encoding for an effective description of
texture images [2, 78]. Also mentioned in Section 2.6, many recent works [72, 74, 93, 115] have been
proposed to take advantage of the filter-bank in order to reduce noise for DT representation. Inspirited
by the general framework that is based on filterings to mitigate the negative impacts of the well-known
issues on DT encoding, in the previous Chapter 5, we have developed the discriminative MDP-based de-
scriptors using the novel model of moment volumes as a filter to extract the robust responses. Moreover,
also discussed in Section 2.7, the LBP-based methods have been potential solutions in encoding local
patterns for DT representation thanks to their simplicity and effectiveness of computations. Motivated
by those benefits, we propose efficient frameworks in which several robust filtering kernels are taken into
account the video analysis as a pre-processing stage to point out filtered outcomes for local DT encod-
ing. Accordingly, two main stages of the general framework in Figure 1.5 are addressed in this chapter
as follows.

• For the filterings, different variants of Gaussian-based kernels have been investigated and thor-
oughly evaluated their ability in noise reduction: the typical Gaussian kernel, Difference of Gaus-
sians (DoG), Gaussian gradient kernels, and especially a novel filtering kernel based on Difference
of Derivative Gaussians (DoDG) (see Section 6.3.1 for its definition). Also, the influences of
Gaussian-based filterings on DT representation are discussed thoroughly in multi-scale of stan-
dard deviations as well as multi-order of the Gaussian gradients. Furthermore, the Gaussian-based
magnitude features and their oriented properties are also exploited in diverse aspects to provide
more rich informative patterns for DT representation.
• For the local DT encoding, we utilize our proposed operators, e.g., CAIP (see Section 3.2), LRP

(see Section 3.5), and CHILOP (see Section 3.6), in order to extract spatio-temporal features from
the obtained filtering responses. In addition, to concentrate on evaluating how well the filtering
executions of our proposals are working, we just use the basic operator CLBP [3] to encode the
obtained outcomes for DT representation.

As a result, local discriminative descriptors are correspondingly constructed for DT recognition is-
sues. Experiments have validated their significant results compared to state of the art. Among of them,
with high performance in small dimension, the Gaussian-gradient-based descriptors (e.g., HoGF [J3]
and DoDGF [S1]) are expected as one of appreciated solutions for mobile applications and embedded
sensor systems which have demanded the restricted resources to execute their functions. In short, the
Gaussian-based kernels along with the local operators, which are addressed in below sections to deal
with the well-known issues of DT representation, can be outlined in Table 6.1 as follows.
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Table 6.1: A brief of proposed descriptors based on Gaussian-based filterings.
# Proposed descriptor Filtering kernel Local operator Referred to

1 CHILOP [S2] Typical Gaussian kernel Proposed CHILOP (see Section 3.6) Section 6.4
2 RUBIG [J4] Typical Gaussian kernel, DoG Proposed LRP (see Section 3.5) Section 6.5
3 LOGIC [S4] Typical Gaussian kernel, DoG Proposed CAIP (see Section 3.2) Section 6.6

4 SIOMF/SVOMF [S3] Kernels of Gaussian gradients CLBP [3], the popular operator Section 6.7
5 HoGF [J3] Kernels of Gaussian gradients CLBP [3], the popular operator Section 6.8
6 DoDGF [S1] Novel DoDG (see Section 6.3.1) CLBP [3], the popular operator Section 6.9

6.1.2 A brief of our contributions

Efficiently, we have taken the Gaussian kernel, different variants of its partial derivatives along with
our proposed local operators into account the video analysis for DT representation. Our significant
contributions can be listed in short as follows.

• Representing DTs based on spatio-temporal features extracted from typical 2D/3D Gaussian-
filtered outcomes using the basic CLBP [3] operator [C2, C5].
• Local Gaussian-based invariant characteristics for DT representation [S4]
• Completed hierarchical Gaussian-filtered patterns for DT classification [S2]
• Prominent local representation for DTs based on high-order Gaussian-gradients [J3]
• Representing DTs based on oriented magnitudes and separately bipolar-filtered features of Gaus-

sian gradients [S3, S5]
• A novel difference of derivative Gaussians kernel for understanding DTs [S1]

6.2 Gaussian-based filtering kernels
6.2.1 A conventional Gaussian filtering

A conventional Gaussian filtering is a process of convolving a Gaussian kernel on a spatial domain.
It should be in accordance with the regulation of a Gaussian distribution. Accordingly, let γn = {xi}ni=1

denote n spacial axes. A n-dimensional Gaussian filtering kernel is defined in general as

Gn
σ(γn) =

1

(σ
√

2π)n
exp
(
− x2

1 + x2
2 + ...+ x2

n

2σ2

)
(6.1)

where σ ∈ R+ denotes a predefined standard deviation. Figure 6.1 at (a) and (b) shows an instance of
the 2D Gaussian filtering of a given textural image with standard deviations σ ∈ {0.7, 1.0}. This typical
Gaussian filtering is addressed as a preprocessing stage of the constructions of our proposed descriptors:
LOGIC [S4] (see Section 6.6), CHILOP [S2] (see Section 6.4), and RUBIG [J4] (see Section 6.5).

According to the above definition of Gaussian filtering, the difference of two Gaussian filterings with
σ and σ′, (σ < σ′), is formulated as

DoGn
σ,σ′(γn) = Gn

σ(γn)−Gn
σ′(γn) (6.2)

Figure 6.1 (c) shows an example of a 2D DoG filtering of two responses of 2D Gaussian filterings with
σ = 0.7 and σ′ = 1.0}. Moreover, in order to obtain more filtered outcomes for DT encoding, Vu et
al. [116] proposed to decompose a 2D DoG-filtered image Ibf into two following bipolar-based images
I+ and I− as

I+
bf (q) =

{
Ibf (q), if Ibf (q) ≥ ε
0, otherwise.

and I−bf (q) =

{
|Ibf (q)|, if Ibf (q) ≤ −ε
0, otherwise.

(6.3)

where ε is a micro-valued threshold to eliminate meaningless textural pixels caused by the closed-to-zero
pixels of the corresponding DoG response. Figure 6.1 at (d) and (e) shows an example of decomposing
a DoG-filtered image into two bipolar-based images with ε = 0.25.
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Image I IG0.7
IG1

|IDoG0.7,1
| I+

DoG0.7,1
|I−

DoG0.7,1
|

(a) (b) (c) (d) (e)

Figure 6.1: Responses of the 2D Gaussian-based filterings with deviations σ = 0.7, σ = 1.0, and
threshold ε = 0.25 for decomposition of IDoG0.7,1 .

Figure 6.2: An instance of the 1st-order 2D/3D Gaussian-gradient filterings with σ = 0.7. Therein, (a)
is for filtering a still image I using a 2D gradient kernel, while (b) is for filtering a video V using a 3D
gradient kernel.

6.2.2 Gradients of a Gaussian filtering kernel

According to Equation 6.1, it could be conduced that a k-order partial derivative of Gn
σ(γn) with

respect to a direction xi ∈ γn is formed as

Gn
σ,∂xki

(γn) =
∂kGn

σ(γn)

∂xki
(6.4)

in which “∂” denotes a gradient operation. Due to Equations 6.4 and 6.1, it can be seen that the Gaussian-
gradient filtering points out n filtered outcomes subject to the partial derivative of each direction, while
only one is done by the non-Gaussian-gradient filtering. In addition, the filtering in high-orders of Gaus-
sian gradients could respond more robust filtered elements for DT representation. Figure 6.2 shows an
instance of the 1st-order 2D/3D Gaussian-gradient filterings with σ = 0.7. This 2D/3D filtering is taken
into account video analysis as a preprocessing stage of the constructions of our proposed descriptors:
SIOMF/SVOMF [S3] (see Section 6.7) and HoGF [J3] (see Section 6.8).

6.3 A novel kernel based on difference of Gaussian gradients
The well-known DoG filtering kernel was exploited as a pre-processing stage in FoSIG [C2], V-BIG

[C5] to reduce the negative impacts of the noise issues on DT representation. However, its performance
is not as good as expected due to a lack of complementary filtered components involved in the DT
encoding, i.e., only one DoG-filtered outcome (see Figure 6.4 line (a)) obtained by a DoG filtering
operation with a pre-defined pair of standard deviations. To deal with this shortcoming, we hereafter
introduce a novel DoDG filtering kernel with simple computation based on the difference of high-order
Gaussian gradients in order to efficiently maintain invariant spatial features as well as forcefully capture
discriminative information on various robust filtered outcomes for DT understanding.
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Figure 6.3: Profile of 1D DoG kernel (a) using a pre-defined pair of standard deviations (σ, σ′) = (0.7, 1)
compared to those of 1D DoDG kernels at the first (b) and second (c) orders.

6.3.1 Definition of a novel DoDG kernel

Let (σ, σ′) denote a pre-defined pair of standard deviations, so that 0 < σ < σ′. Based on high-order
gradients of a Gaussian kernel formulated as in Equation (6.4), a k-order filtering kernel of DoDG for
a direction xi ∈ γn, named DoDGn

σ,σ′,∂xki
(γn), is defined as the difference of two k-order Gaussian

gradients corresponding to σ and σ′ as follows.

DoDGn
σ,σ′,∂xki

(γn) = Gn
σ,∂xki

(γn)−Gn
σ′,∂xki

(γn) (6.5)

Figure 6.3 at (b) and (c) respectively shows plots of the densities of DoDG1D kernel in the first (k = 1)
and second (k = 2) orders of (σ, σ′) = (0.7, 1). Appreciably, it can be deduced in general that the
DoDG kernels for the spatial domain γn = {xi}ni=1 as



DoDGn
σ,σ′,∂xk1

(γn) = Gn
σ,∂xk1

(γn)−Gn
σ′,∂xk1

(γn)

DoDGn
σ,σ′,∂xk2

(γn) = Gn
σ,∂xk2

(γn)−Gn
σ′,∂xk2

(γn)

...
...

...
DoDGn

σ,σ′,∂xkn
(γn) = Gn

σ,∂xkn
(γn)−Gn

σ′,∂xkn
(γn)

(6.6)

As a result, for each k-order, it is possible to obtain n DoDG-filtered outcomes corresponding to n
directions that are taken into account a filtering operation.
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Figure 6.4: Instances of 2D Gaussian-based filterings for an given image I using a pre-defined pair of
standard deviations (σ, σ′) = (0.7, 1). Therein, (a): a DoG-filtered image of the conventional DoG2D

filtering, (b) and (c): DoDG-based images of odd and even DoDG2D filterings respectively.

6.3.2 Beneficial properties of DoDG compared to DoG

Hereafter, we point out some beneficial properties of DoDG kernels for DT representation. For the
simplicity of presentation, let us consider k-order DoDG kernels in 1D space, which their profiles are
shown in Figure 6.3.

• When k is odd (see Figure 6.3(b)), the response of a DoDG kernel is semi-symmetric since
DoDGσ,σ′(x) = −DoDGσ,σ′(−x).
• When k is even, the response of a DoDG kernel is symmetric (see Figure 6.3(c)) since

DoDGσ,σ′(x) = DoDGσ,σ′(−x). Its response is somewhat similar to that of the DoG kernel
(also see Figure 6.3(a)).
• Similar to the DoG-filtered outcome, our DoDG-filtered ones are also robust against changes of

scales, illumination, and contrast by addressing the difference of two filtering scales.
• Being a Gaussian-based kernel, the DoDG kernel is naturally robust against noise.

Accordingly, DoDG kernels can be structured into 2 groups: odd and even order kernels. It is evident
that those two groups are complementary since they exploit local features in a totally different way.
A combination of those, which allows to take into account both symmetric and asymmetric features,
enhances informative richness and discriminative power.

On the other hand, since the Gn
σ,∂xki

filtering kernel has separable and linear properties, the com-
putational complexity of our DoDGn

σ,σ′,∂xki
is also inherited from those advantages. Those allow us to

compute DoDG1 in different partial derivatives to forcefully consider DoDG-filtered features in multi-
scale analysis of higher orders. Figure 6.4 in lines (b) and (c) shows DoDG-filtered images obtained
by using the DoDG2D filtering kernel with (σ, σ′) = (0.7, 1) in four levels of partial derivatives, i.e.,
k ∈ {1, 2, 3, 4, }.

In addition, it is worth noting that the conventional DoG kernel can be also conducted as a degen-
eration of our novel DoDG kernel at the zero-order (i.e., k = 0). It means that Equation (6.5) can be
rewritten for the band-pass filter DoG as

DoDGn
σ,σ′,∂xki

(γn) = Gn
σ,∂xki

(γn)−Gn
σ′,∂xki

(γn) (6.7)

Consequently, it could be pointed out several crucial statements making a better execution of DoDG
in noise reduction for understanding DTs compared to that of DoG as follows.

1A simple MATLAB code for high-order 2D/3D DoDG filtering kernels is available at http://tpnguyen.univ-tln.
fr/download/MATCodeDoDG
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• For filtering processes, each spatial domain in γn is often truncated by a scale range of [−3σ, 3σ]
for the convolving operation to optimally capturing the energy of Gaussian distribution. Figure
6.3 illustrates a graphical view of exploiting both DoG and DoDG kernels to filter an image with a
specific pair of standard deviations (σ, σ′) = (0.7, 1). Accordingly, it can be visually realized that
our DoDG has figured out less zero-bipolar features than DoG, those which make the encoding
more sensitive to noise caused by the closed-to-zero pixels of the filtered outcomes.
• Our DoDG has pointed out more diversity of bipolar filtered-image partitions than DoG (see Figure

6.3), allowing to capturing forceful features for DT representation.
• Also, conducted from Figure 6.3(b) and (c), our DoDG could maintains invariant spatial infor-

mation in better stable frequencies thanks to an adaptive conservation of DoDG’s distribution in
accordance with that of the concerning Gaussian gradients. In the meanwhile, it is not for DoG
since the subtraction of non-Gaussian-gradient filterings is agreed with an approximation of the
Laplacian of Gaussian (LoG) (see Figure 6.3(a)).
• Furthermore, it can be verified from Equations (6.2) and (6.6) that for a pre-defined pair of (σ, σ′)

taken into account a filtering process, our novel DoDG kernel could figure out more complemen-
tary filtered outcomes than the only one done by the DoG kernel (see Figure 6.4 for an instance of
these filterings). This allows to forcefully investigate DoDG-filtered features for further enhance-
ment.

In order to validate above advantageous points, both DoG and DoDG are addressed for video anal-
ysis as a pre-processing step to handle the well-known issues of DT description (see Section 6.9). After
that, the obtained results in DT recognition are thoroughly discussed in Sections 6.9.2.2 and 6.9.2.3.

6.4 Representation based on completed hierarchical Gaussian features
6.4.1 Construction of Gaussian-filtered CHILOP descriptor

In this section, a simple framework for video representation is introduced by taking our CHILOP
operator into account efficiently shape and motion cues of DTs, as graphically illustrated in Figure 6.5.
Accordingly, the proposed framework takes the following steps for adeptly analyzing an input video
V: First, video V is splitted into sets of plane images {fXY }, {fXT }, and {fY T } subject to its three
orthogonal planes {XY,XT, Y T}. Secondly, CHILOP is used for resolving plane images in order to
completely capture hierarchical spatio-temporal characteristics based on a set of multi-layer supporting
regions D. Similar to other LBP-based variants, the performance of CHILOP may be reduced due to
the negative impacts of changes of environmental elements, illumination and noise. To deal with them,
inspired by our prior work of Gaussian filtering in [C2], we take a n-dimensional Gaussian kernel into
account filtering plane images as a pre-processing step. According to that, let F = {σ1, σ2, ..., σm} be a
set of pre-defined standard deviations. For each plane image IXY ∈ fXY , IXT ∈ fXT , and IY T ∈ fY T ,
the corresponding Gaussian-filtered images are figured out as

I
Gnσi
XY = Gn

σi(ϕn) ∗ IXY
I

Gnσi
XT = Gn

σi(ϕn) ∗ IXT
I

Gnσi
Y T = Gn

σi(ϕn) ∗ IY T

(6.8)

where σi ∈ F , “*” denotes a convolutional operator. Therefore, instead of analyzing the raw plane
images of {fXY }, {fXT }, and {fY T }, our CHILOP is exploited for their Gaussian-filtered images in
order to structure Completed Hierarchical LOcal Gaussian-filtered Patterns (CHILOP

GnF
∇,D) with more

discriminative power. Finally, the obtained histograms are concatenated and normalized to produce a
robust descriptor for DT representation as

CHILOP
GnF
∇,D(V) =

[
Ψ∇,D(f

Gnσi
XY ),Ψ∇,D(f

Gnσi
XT ),Ψ∇,D(f

Gnσi
Y T )

]|F|
i=1

(6.9)

where Ψ stands for our CHILOP operator, |F| is the cardinality of standard deviations in F involved

with the Gaussian filterings. In the meanwhile, {f
Gnσi
XY }, {f

Gnσi
XT }, and {f

Gnσi
Y T } are sets of Gaussian-filtered
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images corresponding to results of utilizing Equation (6.8) on the raw plane images of {fXY }, {fXT },
and {fY T } respectively.

Thanks to above construction, our proposed descriptor CHILOP
GnF
∇,D has the following beneficial

properties in order to enhance the performance:

• CHILOP
GnF
∇,D descriptor is structured by the proposed CHILOP operator allowing to adequately

describe shape and motion cues of DTs in consideration of a complete context of hierarchical
local regions. In the meanwhile, just hierarchical features are involved with our prior descriptor
HILOP [C3] (see Figure 6.7 for a specific comparison of their performances).
• Taking multi-layer supporting regions D into account the CHILOP encoding, the further hierar-

chical features of CHILOP
GnF
∇,D are boosted for improvement of their discriminative information

(see Table 6.4).
• CHILOP features captured from the filtered plane images of {fGnσi} are more insensitive to noise

compared to those encoded from the raw images (see Tables 6.3, 6.5, and 6.6). It should be
noted that the Gaussian filtering kernel in this work is directly convoluted on the whole images,
contrariwise to [108] in which the filtering is calculated on neighborhoods of a pixel in different
local areas for description of textural images.
• Constructing CHILOP

GnF
∇,D descriptor based on multi-scale of Gaussian-filtered plane images al-

lows to forcefully structure spatio-temporal patterns with more robustness against the well-known
problems: changes of environmental elements, illumination and noise, etc. In the meanwhile,
FoSIG [C2] exploits CLBP [3] for encoding Gaussian-filtered plane images, but in single-scale
analysis of Gaussian filtering kernel as well as lack of hierarchical local properties.

... ... ... 

 

 

 

 

... ... ... 

Figure 6.5: Our proposed framework of encoding CHILOP
GnF
∇,D descriptor.

82



CHAPTER 6. REPRESENTATION BASED ON VARIANTS OF GAUSSIAN FILTERINGS

6.4.2 Experiments and evaluations

6.4.2.1 Parameters for experimental implementation

Settings for the Gaussian filtering: In order to figure out filtered images, we conduct a 2D Gaus-
sian filtering kernel, i.e., G2D

σ (x, y) in which x, y ∈ [−3σ, 3σ]. Empirically, we address a set of pre-
defined standard derivations, F = {0.5, 0.7, 1.0, 1.3, 1.5}, for an investigation of the Gaussian filtering
in multi-scale analysis in order to productively reduce the negative impacts of environmental changes,
illumination and noise on the CHILOP encoding.

Settings for CHILOP
G2D
F
∇,D descriptor: In conformity with the LBP-based encoding, each supporting

region Ωk ∈ D is located by Pk local neighbors that are interpolated on a circle of radius Rk centered
at qc, i.e., Ωk = (Pk, Rk). Specifically, we address D = {(8, 1), (8, 2), (8, 3), (8, 4)} (i.e., Pk = 8, ∀k)

for a further investigation of hierarchical areas. For a single plane image, to structure CHILOP
G2D
F
∇,D

descriptor in reasonable dimension for DT classification issue, the riu2 mapping is addressed for two
complementary components of CHILOP operator, i.e., LH(.) and LM (.) patterns. The obtained features
are then jointed in two ways of∇ = {H M/C ,H/M/C } with tH M/C = 3Pk(Pk + 2) bins and tH/M/C =
2Pk(Pk +2)2 correspondingly. In order to construct a video descriptor, we address CHILOP operator on
its three orthogonal planes, the obtained histograms are then concatenated to form a final representation.

As the result of above those, the conclusive dimension of CHILOP
G2D
F
∇,D for a video description is subject

to a number of Gaussian filtering scales (i.e., |F|) and hierarchical regions (i.e., |D|) that are currently
involved in a CHILOP encoding on plane images of the video. That means 3 × |F| × (|D| − 1) × t∇
bins for a concerned integration in ∇. Therein, t∇ ∈ {tH M/C , tH/M/C}. For instance, in order to
encode a video based on a two-adjacent-hierarchical supporting region D = {(8, 1), (8, 2)} along with a
single-scale Gaussian filtering (i.e., |F| = 1 and |D| = 2), it takes 720 and 4800 dimensions for H M/C

and H/M/C descriptors respectively (see Table 6.2 for comparison with other LBP-based descriptors).
Furthermore, for a strict assessment of our CHILOP’s outperformance in comparison with that of the
basic CLBP [3], it is better to take both of them into account extracting DT features from the raw plane
images of a video V (i.e., {fXY }, {fXT }, and {fY T }) in order to structure two corresponding descriptors
CHILOP∇,D(V) and CLBPP,R(V) with the same riu2 mapping for both, while integrating techniques
of {S M/C ,S/M/C } for the CLBP patterns (refer to specific settings in Table 6.3).

6.4.2.2 Assessments of CHILOP’s performances

We thoroughly discuss the effectiveness of CHILOP operator in encoding hierarchical spatio-
temporal patterns for DT representation based on both raw features and Gaussian-filtered properties
of plane images in a video. According to that, two corresponding descriptors CHILOP∇,D and

CHILOP
G2D
F
∇,D are constructed using the parameters designated in Section 6.4.2.1. Experiments for DT

classification on benchmark datasets have verified that both of them significantly outperform compared
to the basic CLBP [3]. It is thanks to a completed consideration of CHILOP in multi-hierarchical sup-
porting areas. Furthermore, taking advantage of Gaussian-filtered characteristics, the performance of

CHILOP
G2D
F
∇,D is better and more “stable” than that of CHILOP∇,D. Hereafter, the effectiveness of

CHILOP is assessed in detail as follows.

• As expected in Sections 3.6.1 and 3.6.3, encoding shape and motion cues of DTs in consideration
of local relationships on hierarchical supporting regions has figured out robust descriptors with
promising discrimination. Indeed, Figure 6.6 indicates that the performance lines of CHILOP∇,D
for a raw DT description are over those of CLBP (see Table 6.3 for their specific rates on sev-
eral schemes). That means the general operator CHILOP has more discriminative power than its
degeneration, i.e., CLBP (see Section 3.6.2).
• Taking multi-layer analysis into account structuring in higher-hierarchical supporting areas is able

to capture more forceful patterns for enhancing the performance. Absolutely, experimental results
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Table 6.2: A comparison of various dimensions of LBP-based descriptors.
Method #bins P = 4 P = 8 P = 16 P = 24

LBP-TOPu2 [14] 3(P (P − 1) + 3) - 177 729 1665
VLBP [14] 23P+2 16384 - - -
CVLBP [91] 3× 23P+2 32768 - - -
HLBP [92] 6× 2P - 1536 - -
WLBPC [109] 6× 2P - 1536 - -
MEWLSP [95] 6× 2P - 1536 - -
CVLBC [90] 2(3P + 3)2 - 1458 5202 11125
CLSP-TOPriu2 [C1] 6(P + 2)2 - 600 1944 4056
CSAP-TOPriu2 [J1] 12(P + 2)2 - 1200 3888 8112
FDTu2 [C4] 216P ((P − 1) + 3) - 12744 - -
FD-MAPu2

L=2 [C4] 216P ((P − 1) + 3)) + 16 - 12760 - -
HILOP [C3] 3P (P (P − 1) + 3) - 1416 - -
FoSIG [C2] 12(P + 2)2 - 1200 - -
V-BIG [C5] 12(P + 2)2 - 1200 - -
CHILOPH/M/C [S2] 2P (P + 2)2 - 4800 - -
DDTPriu2

D M/C [J2] 12(P + 7)(P + 2) - 1800 4968 9672
RUBIG [J4] 36(P + 2)2 - 3600 - -
VOM-based [S3] 72(P + 2) - 720 - -
IOM-based [S3] 216(P + 2) - 2160 - -
MDPriu2

D M/C [J5] 72(P + 2) - 720 1296 1872
HoGF2D [J3] 36(P + 2)2 - 3600 - -
HoGF3D [J3] 48(P + 2)2 - 4800 - -
DoDGF2D [S1] 24(P + 2)2 - 2400 - -
DoDGF3D [S1] 36(P + 2)2 - 3600 - -

Note: P denotes the concerned neighbors. “-” means either “not available” or not
been implemented experimentally. Dimension of all above descriptors is referred to
their basic parameters used for encoding a given video. For DDTPriu2

D M/C [J2], a
directional beam of |B| = P = 8 neighbors in consideration of dense trajectories
with length L = 2.

Table 6.3: Comparison of performances (%) between CHILOP and CLBP [3] in encoding DT features
based on the raw plane images of a video using riu2 mapping with two popular kinds of incorporation
on local supporting regions D = {(8, 1), (8, 2)}.

Descriptor 9-class 8-class DynTex35 Beta DynTex++
CLBPS M/C [3] 94.60 95.43 97.14 88.27 89.32
Our CHILOPH M/C 97.85 98.48 98.86 93.83 94.39
CLBPS/M/C [3] 97.80 96.09 99.43 90.74 95.59
Our CHILOPH/M/C 98.50 99.02 99.71 95.68 96.54

Note: “S M/C” and “S/M/C” respectively denote 2D and 3D jointing his-
tograms of CLBP’s components, i.e., CLBPS , CLBPM , and CLBPC .

in Table 6.4 have verified that CHILOP obtains the best execution when being exploited on three
adjacent regional hierarchies of a pixel, i.e., D = {(8, 1), (8, 2), (8, 3)}. In the meanwhile, on the
larger hierarchical local regions, it can face with the negative influence of turbulent motions of
DTs due to a decline of their spatio-temporal textural features in further areas.
• Thanks to considering hierarchical supporting areas in a completed context of local encoding

(see Section 3.6.1), our CHILOP operator significantly outperforms compared to HILOP [C3]
in which only one kind of hierarchical patterns is involved in (see Figure 6.7).
• It can be verified from Tables 6.5 and 6.6 that the CHILOP’s components (LH , LM , and LC) in the

3D-joint way (i.e., using incorporation of∇ = {H/M/C}) significantly improve the discrimination
power of the corresponding obtained descriptor. This is in accordance with other local completed
operators based on complementary components in their construction such as CLBP [3], LRP [J4],
CLBC [82], etc.
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Figure 6.6: Prominent performances of our CHILOP for a raw DT description compared to CLBP’s [3].

Table 6.4: Rates (%) of CHILOP
G2D
F
∇,D in multi-layer of hierarchical regions using settings of Gaussian

filtering F = {0.5, 1} and jointing type∇ = {H/M/C}.
UCLA DynTex

Dyn++
D = {(P, {R})} 50-LOO 50-4fold 9-class 8-class Dyn35 Alpha Beta Gamma
{(8, {1, 2})} 100 100 98.65 98.70 99.43 96.67 93.83 94.32 97.67
{(8, {1, 2, 3})} 100 100 99.45 99.02 99.71 96.67 95.68 94.70 98.06
{(8, {1, 2, 3, 4})} 100 100 98.50 98.26 99.71 95.00 96.91 93.94 97.83

Note: 50-LOO and 50-4fold denote results on 50-class breakdown using leave-one-out and four cross-fold
validation. Dyn35 and Dyn++ are shortened for DynTex35 sub-set and DynTex++ respectively.

• As expected in Section 6.4.1, it can be verified that addressing the Gaussian filtering in the pro-
posed framework makes the obtained descriptors more robust against the negative influences of
environmental changes, illumination and noise. Indeed, following the best number of hierarchical
regions, i.e., D = {(8, 1), (8, 2), (8, 3)} (see Table 6.4), we conduct an analysis of Gaussian fil-

tering in constructing CHILOP
G2D
F
∇,D descriptors. Experimental results in Tables 6.5 and 6.6 have

validated that CHILOP
G2D
F
∇,D has better and more “stable” performance in comparison with that of

CHILOP∇,D in which CHILOP operator is exploited for capturing DT features on the raw plane
images. It should be noted that the Gaussian filtering is also addressed in [C2] to form FoSIG
descriptor, but its ability is just at a modest level due to lack of hierarchical information of DTs
(see Figure 6.7).
• It can be seen from Tables 6.5 and 6.6 that the multi-scale Gaussian filtered encoding allows to

capture more scale-information in order to enhance the performance. Therein, incorporation of two
Gaussian filtering scales of F = {0.5, 1} has figured out DT features with more discrimination
than the others.
• Furthermore, the experiments have also indicated that CHILOP can decently resist changes of

environmental elements, illumination and noise when encoding spatio-temporal features on the
raw plane images for DT representation (see Tables 6.5, 6.6, and Figure 6.7).

Based on above assessments, we found out the best configurations for our proposed framework

in encoding spatio-temporal patterns for CHILOP
G2D
F
∇,D and CHILOP∇,D descriptors as follows: ∇ =

{H/M/C}, F = {0.5, 1}, and D = {(8, 1), (8, 2), (8, 3)}. In general, the performance of our proposed
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Table 6.5: Classification rates (%) on UCLA of CHILOP
G2D
F
∇,D and CHILOP∇,D descriptors.

50-LOO 50-4fold 9-class 8-class
F = {σi} H M/C H/M/C H M/C H/M/C H M/C H/M/C H M/C H/M/C

{Ø} 100 100 100 100 98.40 98.10 96.30 98.26
{0.5} 100 100 100 100 98.65 98.05 97.72 96.52
{0.7} 100 100 99.50 100 97.90 98.80 98.15 97.93
{1.0} 99.50 100 99.50 100 99.45 98.80 98.59 98.70
{1.3} 99.50 100 99.50 100 98.45 98.20 99.13 96.74
{1.5} 99.50 100 99.50 100 99.25 97.85 98.59 97.93
{0.5, 0.7} 100 100 100 100 98.75 99.20 98.26 98.26
{0.5, 1.0} 99.50 100 99.50 100 98.35 99.45 98.37 99.02
{0.5, 1.3} 99.50 100 99.50 100 99.10 99.35 99.02 98.70
{0.5, 1.5} 99.50 100 99.50 100 98.40 99.30 98.70 98.26

Note: 50-LOO and 50-4fold denote results on 50-class breakdown using leave-
one-out and four cross-fold validation. {Ø} indicates rates of CHILOP∇,D with-
out Gaussian filtering involved in the DT encoding.

Table 6.6: Rates (%) on DynTex and DynTex++ of CHILOP
G2D
F
∇,D and CHILOP∇,D descriptors.

DynTex35 Alpha Beta Gamma DynTex++
F = {σi} H M/C H/M/C H M/C H/M/C H M/C H/M/C H M/C H/M/C H M/C H/M/C

{Ø} 97.43 99.71 96.67 96.67 95.06 95.68 91.67 93.56 95.51 96.62
{0.5} 97.71 99.43 95.00 96.67 91.36 95.68 92.05 93.56 97.13 96.34
{0.7} 98.29 99.14 95.00 96.67 91.36 95.06 90.91 94.32 94.65 96.29
{1.0} 98.86 99.43 95.00 96.67 90.74 93.83 89.39 95.08 96.28 93.10
{1.3} 98.57 99.43 95.00 95.00 90.74 94.44 89.39 93.94 93.79 95.54
{1.5} 98.29 99.43 95.00 95.00 90.74 93.83 90.15 93.56 93.16 94.83
{0.5, 0.7} 98.00 99.43 96.67 96.67 91.98 95.06 91.29 93.94 97.39 96.89
{0.5, 1.0} 98.86 99.71 95.00 96.67 91.98 95.68 90.91 94.70 98.53 98.06
{0.5, 1.3} 98.57 99.71 95.00 96.67 92.59 96.30 92.05 94.70 97.67 96.58
{0.5, 1.5} 98.29 99.71 95.00 96.67 92.59 95.68 92.42 94.70 97.53 96.49

Note: {Ø} indicates rates of CHILOP∇,D without Gaussian filtering involved in the DT encoding.

descriptors is mostly more efficient than that of all non-deep-learning methods (see Table 6.33). In terms
of comparison with deep-learning approaches, our proposal is better than those in DT recognition on
UCLA and nearly the same ability on DynTex++, but not on DynTex. Hereunder, we evaluate in detail

the effectiveness of CHILOP
G2D
F
∇,D and CHILOP∇,D for DT classification on specific datasets, in which if

particular settings for CHILOP
G2D
F
∇,D and CHILOP∇,D are not explicitly indicated, the best configurations

are addressed for comprehensive evaluations in comparison with state of the art.

6.5 Representation based on RUbik Blurred-Invariant Gaussian features
6.5.1 Benefits of Gaussian-based filterings

Filter-bank approach, which has been early applied for texture analysis since years of 90s [31] , was
also considered for DT representation in recent works [72, 93, 115, C2, C5]. Moreover, filter-bank and
LBP-based approaches have been also addressed together in [2] for an effective texture representation.
Inspired from this approach, we address Gaussian-based filters to overcome well-known issues in DT
description: the influence of noise, changes of environments, scales and illumination, etc. Indeed, two
complementary families of filtering are taken into account for this purpose. First, Gaussian filters Gn

σ

are used to produce blurred volumes VG which are more robust against noise. Second, DoG filters are
addressed to figure out invariant volumes VDoG which is robust against changes of illuminations and
scales. It should be noted that Gaussian distribution has been also used in a totally different way in [117]
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Figure 6.7: Outstanding performances of our CHILOP descriptors in comparison with that of HILOP
[C3], FoSIG [C2], and CLBP [3].

to simulate image texture by stationary Gaussian random fields. We point out hereafter the following
beneficial properties of our approach inheriting from these Gaussian-based filters.

• Robustness to changes of illumination, scales, and environment: Gaussian-based filtered volumes
VDoGσi,σ′i

are invariant sequences against illumination thanks to exploiting various scales of Gaussian

filtering kernels. In addition, the receptive VDoGσi,σ′i
volumes, formed by two different Gaussian

kernels, allow to capture features with more robustness to the major remaining problems of DT
description: illumination, scale, and environmental changes.
• Robustness to noise: Instead of extracting features from a raw video V , its Gaussian-based filtered

volumes VG allow to capture local features with more intensity to noise. On the other hand, DoG
features are also exploited in our proposal to make descriptor more robust against changes of
environment and illumination.
• Forceful incisive elements: Well-known as an approximation of Laplacian of Gaussian (LoG),
VDoGσi,σ′i

sequences provide beneficial receptive clues for feature encoding. Meantime, VGσi volumes
produce robust blurred features for the description. Consequently, the performance of DT recog-
nition is enhanced thanks to these supplementary filtered volumes (see Table 6.7 for their contri-
butions).

6.5.2 Construction of RUBIG descriptor

As a derivation of the LBP-based computation, encoding rubik-based patterns can be faced with sen-
sitivity to noise and illumination problems. To treat those, Gaussian-based filtering kernels in Equations
(6.1) and (6.2) are addressed as a pre-processing step to reduce the negative impacts of environmental
changes on DT representation. It should be noted that Gaussian filter has been addressed together with
LBP operator in [108]. However, it employed a 2D Gaussian kernel to analyze neighborhoods at dif-
ferent area scales of a pixel for texture description, while Nguyen et al. [C2] utilized it for capturing
spatio-temporal features from filtered images of planes in a video. Accordingly, for a video V along with
pre-defined couples of standard deviations Λ = {(σi, σ′i)}mi=1, a series of volumes of blurred Gaussian
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features VGσi and the difference of Gaussians VDoGσi,σ′i
are computed as follows. Figure 6.8 shows several

samples of this filtering.

VGσi = Gn
σi(ϕn) ∗ V , VDoGσi,σ′i

= |DoGn
σi,σ′i

(ϕn)| ∗ V (6.10)

where “∗” is a convolving operator, and σi < σ′i. We then utilize the proposed LRP operator for each
filtered volume to capture RUbik Blurred-Invariant Gaussian (RUBIG) features for DT description (see
Figure 6.9 for a graphical illustration of this construction). The obtained histograms are then normalized
and concatenated to form a discriminative descriptor.

RUBIGΓ,Ω,Λ(V) =
[
LRPΓ,Ω(VGσi),LRPΓ,Ω(VDoGσi,σ′i

)
]m
i=1

(6.11)

Our RUBIG is based on two important properties to boost its performance compared to that of
V-BIG [C5] (see Table 6.7 for a specific performing comparison): i) RUBIG is enriched by rich spatio-
temporal features thanks to our novel, discriminative operator LRP. ii) RUBIG can be better resistant
to the illumination and noise since its blurred-invariant features are encoded from multi-scale Gaussian-
based volumes. Besides the beneficial properties inheriting from Gaussian-based filtering (see Section
6.5.1), our RUBIG has also following properties.

• Multi-scale and rich spatio-temporal features: RUBIG is concerned with analysis of rich spatio-
temporal features to form an effective descriptor that is more discriminative than CLBP features of
V-BIG. Moreover, it is enriched by robust clues based on various scales of Gaussian kernels taken
into account the filtering, while V-BIG is lack of multi-scale analysis due to just a single-scale
involved in.
• Informative voxel discrimination: Shape and motion cues are jointly structured thanks to voxels in

a DT video enriched by discriminative information with 3D Gaussian kernels. In the meanwhile,
FoSIG [C2] just captures spatio-temporal features of voxels on 2D Gaussian filtered images of the
planes in the video.

6.5.3 Experiments and evaluations

6.5.3.1 Parameters for experimental implementation

The 3-dimensional Gaussian-based kernels are exploited to capture volumes of blurred-invariant fea-
tures, where the kernel width of each axis is traditionally truncated to [−3σ, 3σ] (σ is the standard de-
viation of Gaussian distribution) for optimally capturing the energy of Gaussian distribution. We then
consider a set of couples of standard deviations Λ = {(σi, σ′i)}mi=1 = {(0.5, 6), (0.75, 5), (1, 4)} (i.e.,
m = 3) in order to compute DoG together with Gaussian-filtered outcomes. In brief, for each couple
(σi, σ

′
i), two following outcomes VGσi , and VDoGσi,σ′i

are produced and then are encoded by our LRP operator
in the next step. It should be noted that the large scale ratios between two scales of each couple of stan-
dard deviations are taken into account. Our idea is to highlight the invariant features of DoG outcome

Figure 6.8: An instance of 3D Gaussian-based filters. (a) is an input gray-scale frame of a DT video. (b)
and (c) are 3D smoothed frames of (a) using σ1 = 0.5 and σ2 = 4 respectively. (d) denotes the 3D DoG
of (b) and (c).
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Figure 6.9: Illustration of proposed framework for encoding RUBIG descriptor.

extracted from two different scales of Gaussian filtering. Empirically, the more two standard deviations
are different, the more DoG outcome contains rich, discriminative, and robust features for LRP opera-
tor. Therefore, this concept justifies the large scale ratios of standard deviations between two scales in
our model. For DT representation, LRP features are extracted from the filtered volumes by utilizing
parameters of riu2 mapping, {(P,R)} = {(8, 1)} for single-scale relationships, and {(8, 1), (8, 2)} for
multi-scale in further local regions. The achieved components are integrated in two investigations of
Ω = {D M/C , D/M/C} to form corresponding RUBIG descriptors with dimensions of 540 and 3600
bins respectively (see Table 6.2 for comparison with other LBP-based descriptors).

6.5.3.2 Assessments of RUBIG’s performances

Specific experimental results of our descriptor RUBIG on benchmark datasets are shown in Table 6.8
with the highest rates in bold. It should be noted that only results of the setting of D/M/C are reported due
to its high performance. As expected, it can be verified from Tables 6.7, 6.8 that RUBIG outperforms
compared to those of FoSIG and V-BIG thanks to the crucial contributions of the proposed operator
LRP utilized for capturing rich spatio-temporal patterns in the Gaussian-based filtered volumes. The
experiments have also validated that RUBIG’s performance becomes more “stable” in consideration of
various scales of Gaussian-based kernels (see Table 6.8). In general, our framework performs very well
in comparison with the state-of-the-art approaches, including deep-learning-based methods in several
circumstances (see Table 6.33). Due to these recognition rates on most of DT datasets, the settings of
D/M/C and {(0.5,6),(0.75,5),(1,4)} for the multi-scale LRP encoding are addressed for comparison (see
Table 6.8).

6.6 Representation based on Gaussian-filtered CAIP features
Hereunder, we present in general our proposed framework, as illustrated in Figure 6.10. Briefly, we

investigate two crucial types of DT representation which are correspondingly based on 2D/3D Gaussian-
based filtering kernels in order to take advantage of LOGIC2D/3D properties against the negative in-
fluences on DT encoding. To this end, first, the 2D/3D Gaussian-based kernels are involved in pre-
processing an input video V (see Section 6.6.1) to figure out completed sets of 2D/3D Gaussian-based
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Table 6.7: Comparison contributions in rates (%) on DynTex++ between components of descriptors
FoSIG [C2], V-BIG [C5] and our RUBIG.

(σ, σ′) = (0.5, 6) FoSIGriu2
8,1 V-BIGriu2

8,1 our RUBIGriu2
8,1

G
2D/3D
σ 95.73 96.01 96.23

DoG
2D/3D
σ,σ′ 93.78 94.43 95.06

G
2D/3D
σ +DoG

2D/3D
σ,σ′ 95.99 96.59 96.68

Table 6.8: Classification rates (%) on benchmark datasets.
Dataset UCLA DynTex

Dyn++{(σi, σ′i)}, {(8, 1)} 50-LOO 50-4fold 9-class 8-class Dyn35 Alpha Beta Gamma
{(0.5, 6)} 100 100 98.25 98.04 98.57 100 92.59 93.18 96.68
{(0.75, 5)} 100 100 99.15 98.48 98.00 100 92.59 92.42 96.22
{(1, 4)} 100 100 98.60 98.80 98.29 100 93.83 92.80 95.94
{(0.5, 6), (0.75, 5)} 100 100 98.65 98.26 97.71 100 93.83 93.18 96.48
{(0.75, 5), (1, 4)} 100 100 98.15 99.13 98.86 100 93.21 93.18 96.66
{(0.5, 6), (0.75, 5), (1, 4)} 100 100 98.50 97.07 97.43 100 94.44 93.18 96.79
{(σi, σ′i)}, {(8, 1), (8, 2)}
{(0.5, 6)} 100 100 98.90 99.13 99.14 100 93.83 93.56 96.76
{(0.75, 5)} 100 100 99.05 98.80 99.43 100 94.44 93.18 96.64
{(1, 4)} 100 100 98.95 98.37 98.57 100 94.44 93.56 96.12
{(0.5, 6), (0.75, 5)} 100 100 98.95 99.24 99.43 100 94.44 93.18 96.92
{(0.75, 5), (1, 4)} 100 100 98.20 99.13 98.57 100 94.44 93.56 96.54
{(0.5, 6), (0.75, 5), (1, 4)} 100 100 99.20 99.13 98.86 100 95.68 93.56 97.08

Note: 50-LOO and 50-4fold denote results on 50-class breakdown using leave-one-out and four cross-fold val-
idation. Dyn35 and Dyn++ are shortened for DynTex35 and DynTex++ sub-datasets respectively.

filtered outcomes Ω
2D/3D
σ,σ′ with more insensitivity to noise and bipolar-invariant characteristics. Sec-

ond, in order to preserve advantages of these bipolar-invariant features for DT encoding, we proposed in
Section 3.2 an important modification of CLBP operator to be agreed with the particular characteristics
of Ω

2D/3D
σ,σ′ outcomes where the typical CLBP inefficiently reacts to noise and near uniform regional

problems caused by their zero-gray-scale bipolar cells. As the result of that, Completed AdaptIve Pat-
terns (CAIP) with more discrimination power are pointed out to be able to handle those problems for
improving the performance. Indeed, our experiments for DT classification have validated the significant
contribution of this encoding adaptation compared to that of CLBP and other LBP-based approaches for
DT description (see Section 6.6.4). Finally, forceful and discriminative descriptors LOGIC2D/3D are
formed by correspondingly utilizing CAIP operator to encode blurred and bipolar-invariant features of
Ω

2D/3D
σ,σ′ filtered outcomes that are addressed in different scales of Gaussian-based filtering kernels (see

Section 6.6.3). Hereafter, we express above processes in detail.

6.6.1 Completed sets of Gaussian-based filtered outcomes

Motivated by filter-bank approaches [2, 72, 74], the 2D/3D Gaussian-based filtering kernels are ad-
dressed in our framework to overcome the well-known problems in DT representation. In two our prior
works, descriptor FoSIG [C2] is involved with smooth-invariant features of G2D

σ and DoG2D
σ,σ′ filtered

images figured out by using the 2D Gaussian-based filtering kernels, while V-BIG [C5] takes the 3D
Gaussian-based filters into account filtering a video to obtain smooth-invariant volumes. However, their
DoG2D/3D filtered supplements have remained some noise caused by the features closed to zero-gray-
values that negatively impact on LBP-based encoding. Furthermore, the crucial properties of Gaussian
bipolar derived from these DoGs have not been exploited to enrich more spatio-temporal characteris-
tics for DT description. Addressing the missing leverages, we present in this section completed sets of
filtered outcomes using the 2D/3D kernels in Equations (6.1) and (6.2) as follows.

90



CHAPTER 6. REPRESENTATION BASED ON VARIANTS OF GAUSSIAN FILTERINGS

 

 

Figure 6.10: Our proposed framework for structuring an input video V based on its Gaussian-based fil-
tered outcomes. Therein, the black arrows denote preprocessings using 2D/3D Gaussian-based filtering
kernels while the blue ones imply processes of DT encoding.

Given a gray-scale image I (correspondingly a video V) and a pair of pre-defined standard deviations
(σ, σ′), two Gaussian-based kernels G

2D/3D
σ and DoG

2D/3D
σ,σ′ are taken into account for a preprocessing

analysis to produce the following blurred (IGσ ) and invariant (IDoGσ,σ′ ) filtered images as

IGσ = G2D
σ (x, y) ∗ I and IDoGσ,σ′ = DoG2D

σ,σ′(x, y) ∗ I (6.12)

in which x and y denote the spatial coordinates, σ < σ′, “∗” means a convolution operator. Correspond-
ingly, VG3D

σ
and VDoG3D

σ,σ′
filtered volumes are also formed as follows.

VGσ = G3D
σ (x, y, t) ∗ V and VDoGσ,σ′ = DoG3D

σ,σ′(x, y, t) ∗ V (6.13)

where t indicates the temporal coordinate.

Motivated by the concept of biologically-inspired filtering, introduced by Vu et al. [116], positive-
bipolar Ipos

DoGσ,σ′
, negative-bipolar Ineg

DoGσ,σ′
and invariant-absolute Iabs

DoGσ,σ′
filtered images are generated

by addressing bipolar cells which are derived from IDoGσ,σ′ as follows.

Ipos
DoGσ,σ′

(q) =

{
IDoGσ,σ′ (q), if IDoGσ,σ′ (q) ≥ ε
0, otherwise.

Ineg
DoGσ,σ′

(q) =

{
|IDoGσ,σ′ (q)|, if IDoGσ,σ′ (q) ≤ −ε
0, otherwise.

Iabs
DoGσ,σ′

(q) = Ipos
DoGσ,σ′

(q) + Ineg
DoGσ,σ′

(q)

(6.14)

where ε is a pre-defined threshold in order to prevent from taking closed-to-zero areas into account
feature encoding because of the uniform regional problem; function IDoGσ,σ′ (q) returns a gray-filtered
value of a pixel q in DoG-filtered image IDoGσ,σ′ (see Figure 6.11(a) for an example of this 2D filtering).

Similarly, we take this partition into account for VDoGσ,σ′ analysis in order to produce bipolar and
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Figure 6.11: An instance of two Gaussian-based filterings with σ = 0.7 and σ′ = 2
√

5σ: (a) for filtering
a still image I using 2D kernels, (b) for filtering a video V using 3D kernels.

invariant-absolute filtered volumes as follows.

Vpos
DoGσ,σ′

(p) =

{
VDoGσ,σ′ (p), if VDoGσ,σ′ (p) ≥ ε
0, otherwise.

Vneg
DoGσ,σ′

(p) =

{
|VDoGσ,σ′ (p)|, if VDoGσ,σ′ (p) ≤ −ε
0, otherwise.

Vabs
DoGσ,σ′

(p) = Vpos
DoGσ,σ′

(p) + Vneg
DoGσ,σ′

(p)

(6.15)

in which VDoGσ,σ′ (p) returns a gray-filtered value of a voxel p in DoG-filtered volume VDoGσ,σ′ (see
Figure 6.11(b) for an instance of this 3D Gaussian-based filtering).

As the result of above those, for the input image I (correspondingly the video V), a completed set
of supplementary 2D (3D) Gaussian-based filtered images (volumes) with a pair of standard deviations
(σ, σ′) is formed in order to forcefully structure discriminative features for DT representation as

Ω2D
σ,σ′(I) = {IGσ , I

pos
DoGσ,σ′

, Ineg
DoGσ,σ′

, Iabs
DoGσ,σ′

}

Ω3D
σ,σ′(V) = {VGσ ,V

pos
DoGσ,σ′

,Vneg
DoGσ,σ′

,Vabs
DoGσ,σ′

}
(6.16)

It should be noted that IGσ and Iabs
DoGσ,σ′

filtered images have not been exploited in the prior work
[116] while their contributions are significant in describing blurred-invariant features of DT motions.
Indeed, our experiments for DT classification task have validated their positive influences (see Table 6.11
for specific instances). Furthermore, also based on the concept of bipolar cells, we investigate the impacts
of elements in Ω3D

σ,σ′ on DT representation, in which Ω3D
σ,σ′ is formed by using the 3D Gaussian-based

kernels for video filtering. For convenience in presentation, Ω
2D/3D
σ,σ′ is henceforward an abbreviation of

filtered images Ω2D
σ,σ′ and filtered volumes Ω3D

σ,σ′ in general.

6.6.2 Beneficial properties of filtered outcomes Ω2D/3D
σ,σ′

Addressing the 2D/3D Gaussian-based filtering kernels with the meaningful threshold ε for denois-
ing has figured out the completed sets of filtered outcomes Ω

2D/3D
σ,σ′ for DT representation (see Section

6.6.1). It should be noted that those sets contain complementary components. Hereafter, we discuss
advantages of our proposed framework inheriting from these filterings:

• Robustness to illumination and changes of environmental factors: All filtered outcomes in
Ω

2D/3D
σ,σ′ are invariant against changes of environment and illumination thanks to utilizing different
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scales of Gaussian filtering kernels. Furthermore, the DoG-filtered outcomes, i.e., Iabs
DoGσ,σ′

and

Vabs
DoGσ,σ′

, allow to exploit more receptive features in order to enrich discriminative information of
shape and motion cues for DT representation (see Table 6.11).
• Insensitivity to noise: Instead of encoding features from a raw video V , taking advantage of its

Ω
2D/3D
σ,σ′ outcomes grants our framework to capture local patterns with more robustness to noise.

It should be noted that the 2D Gaussian kernel is used by Mäenpää et al. [108] to consider neigh-
borhood areas of a pixel in different scales for textural image analysis, while our prior works
FoSIG [C2] and V-BIG [C5] have also exploited the 2D/3D Gaussian kernels for capturing
spatio-temporal characteristics from filtered images and volumes. Different from them, in ad-
dition to taking smooth-invariant Gaussian features into account DT representation (as done in
FoSIG and V-BIG), an augmentation of bipolar outcomes is related to in this work, i.e., Ipos

DoGσ,σ′
,

Ineg
DoGσ,σ′

, Vpos
DoGσ,σ′

, and Vneg
DoGσ,σ′

. This makes the obtained patterns more robustness against the
major remaining problems of DT description (see Table 6.11 and Figure 6.13). Furthermore,
DoG2D/3D outcomes are denoised by using the threshold ε to form Iabs

DoGσ,σ′
and Vabs

DoGσ,σ′
. This

allows to efficiently boost the performance compared to taking the raw properties of them into
account DT analysis, also as asserted for textural image description [116].
• Forceful discriminating properties: Addressing the completed sets of Ω

2D/3D
σ,σ′ for encoding DTs

figures out robust descriptors of multi-filtered-features dealing with the major remaining problems
of DT description. Indeed, the well-known DoG is considered as an approximation of Lapla-
cian of Gaussian (LoG). Therefore, its variants Ipos

DoGσ,σ′
, Iabs

DoGσ,σ′
and Ineg

DoGσ,σ′
(resp. Vpos

DoGσ,σ′
,

Vneg
DoGσ,σ′

, and Vabs
DoGσ,σ′

) provide critical reception of shape and motion clues for feature encoding.
In addition, the positive-bipolar and negative-bipolar characteristics have proved their important
contributions in order to boost the performance of DT classification (see Table 6.11 for a specific
contribution of each in Ω

2D/3D
σ,σ′ ).

6.6.3 DT description based on complementary filtered outcomes Ω2D/3D
σ,σ′

As mentioned in Sections 6.6.1 and 6.6.2, the completed sets of filtered outcomes Ω
2D/3D
σ,σ′ are robust

against factors which negatively impact on DT representation. Moreover, they consist of complementary
components. In this section, we take advantage of these Ω

2D/3D
σ,σ′ properties along with the completed

adaptive operator CAIP in order to efficiently capture blurred and bipolar-invariant characteristics for
boosting the discrimination power. Accordingly, given a video V and a pre-defined set of pair of stan-
dard deviations F = {(σi, σ′i)}mi=1, in which m ∈ Z+ is the cardinality of F , we hereunder investigate
two appreciable types of DT descriptions relying upon two corresponding completed sets of multi-scale
2D/3D Gaussian-based filtered supporting outcomes (i.e., Ω2D

F and Ω3D
F ) in order to construct the fol-

lowing robust descriptors with significant performances in DT classification task.

Proposed LOGIC2D descriptor: In order to address the completed set of multi-scale 2D Gaussian-
based filtered images Ω2D

F , video V is firstly split into separative collections of plane images fXY , fXT ,
and fY T subject to its three orthogonal planes {XY,XT, Y T} (see Figure 6.10 for a graphical illustra-
tion). For each of plane-image collections, its 2D Gaussian-based filtered outcomes are computed by
using Equations (6.12) and (6.14) to form corresponding completed sets, i.e., Ω2D

F (fXY ), Ω2D
F (fXT ),

and Ω2D
F (fY T ). The proposed CAIP operator is then utilized for these sets to efficiently capture blurred

and bipolar-invariant characteristics Γ of spatio-temporal appearances. For instance, with each plane-
image f ∈ fXY , properties of Γ are structured as follows.

Γ(f,Ω2D
F (f)) =

m⊎
i=1

[
CAIP(fGσi

),CAIP(fpos
DoGσi,σ′i

),CAIP(fneg
DoGσi,σ′i

),CAIP(fabs
DoGσi,σ′i

)
]

(6.17)

where
⊎

stands for an operation to concatenate the obtained histograms CAIP(.) of the corresponding
Gaussian-filtered images Ω2D

F (f) in order to form a terminal histogram Γ(f,Ω2D
F (f) for the input plane-
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... ... ... 

 

 

Figure 6.12: An illustration for encoding a Gaussian-based filtered volume VG using CAIP operator.

image f . Accordingly, it could deduce a description Υ(fXY ) for all plane-images of fXY as

Υ(fXY ) =
1

NXY

∑
f∈fXY

Γ(f,Ω2D
F (f)) (6.18)

where NXY denotes a total of plane-images in fXY . This computation is applied to the rest collections
of plane-images, fXT and fY T , for Υ(fXT ) and Υ(fY T ) respectively. Finally, the obtained probability
distributions are concatenated and normalized to construct a robust descriptor of LOcal 2D Gaussian-
based Invariant Characteristics (LOGIC2D) as

LOGIC2D(V) =
[
Υ(fXY ),Υ(fXT ),Υ(fY T )

]
(6.19)

Proposed LOGIC3D descriptor: Similarly, the Gaussian-based filtered volumes Ω3D
F (V) are ad-

dressed by allocating Equations (6.13) and (6.15) for analyzing the input video V (see Figure 6.10 for
a graphical illustration). Our CAIP operator is then nominated for each plane of a filtered volume
VG ∈ Ω3D

F (V) in order to effectively extract spatio-temporal DT features from blurred and bipolar-
invariant properties of VG as follows.

Ψ(VG) =
[ 1

|f ′XY |
∑

f∈f ′XY

CAIP(f),
1

|f ′XT |
∑

f∈f ′XT

CAIP(f),
1

|f ′Y T |
∑
f∈f ′Y T

CAIP(f)
]

(6.20)

where |f ′XY | , |f ′XT |, and |f ′Y T | are respectively the cardinality of plane-image collections f ′XY , f
′
XT ,

and f ′Y T that are separated subject to three orthogonal planes of VG (see Figure 6.12 for a graphical
instance of this encoding). Finally, the obtained histograms are concatenated and normalized in order
to structure a forceful descriptor of LOcal 3D Gaussian-based Invariant Characteristics (LOGIC3D) as
follows.

LOGIC3D(V,Ω3D
F (V)) =

m⊎
i=1

[
Ψ(VGσi

),Ψ(Vpos
DoGσi,σ′i

),Ψ(Vneg
DoGσi,σ′i

),Ψ(Vabs
DoGσi,σ′i

)
]

(6.21)

where
⊎

stands for an operation to concatenate the obtained histograms Ψ(.) of the corresponding
Gaussian-filtered volumes in Ω3D

F (V).

For a convenience in presentation, LOGIC2D and LOGIC3D can be henceforward abbreviated as
LOGIC2D/3D in general. In terms of comparison to our prior works (i.e., FoSIG [C2], V-BIG [C5]), the
proposed descriptors LOGIC2D/3D are based on the following advantages to enhance the performance:

• A meaningful threshold ε > 0 is used to reduce noise caused by the closed-to-zero areas in DoG-
filtered outcomes. This makes their invariant features more robust against illumination and en-
vironmental changes compared to using the raw DoG characteristics in FoSIG and V-BIG (see
Table 6.9 for a comprehensive evaluations).
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Table 6.9: Performances of each filtered element in Ω
2D/3D
(σi,σ′i)∈F

compared to those of FoSIG2D [C2] and

V-BIG3D [C5] on DynTex++ using the same local supporting regions {(P,R)} = {(8, 1), (8, 2)}.
Descriptor LOGIC2D LOGIC3D FoSIG2D [C2] V-BIG3D [C5]
F = {(σi, σi × k}, k = 2

√
5 IG Iabs

DoG Ipos
DoG Ineg

DoG Ipos
DoG+Ineg

DoG VG Vabs
DoG Vpos

DoG Vneg
DoG Vpos

DoG+Vneg
DoG I∗G I∗DoG V∗G V∗DoG

{(0.7, 0.7k)} 95.73 94.42 94.24 93.87 95.32 95.01 94.06 92.63 94.74 94.96 95.73 93.22 95.01 94.26
{(1, k)} 94.48 94.67 86.61 94.63 95.19 94.06 93.24 94.58 93.59 96.08 94.48 91.78 94.06 93.33
{(1.3, 1.3k)} 93.64 93.07 91.98 92.17 93.51 92.19 94.53 93.66 91.99 95.12 93.64 90.11 92.19 92.48

{(0.7, 0.7k), (1, 1k)} 98.30 98.28 97.90 98.19 98.61 95.98 95.77 95.83 95.61 95.85 - - - -
{(1, k), (1.3, 1.3k)} 97.96 98.15 97.36 97.94 98.36 94.79 95.57 95.75 94.76 96.12 - - - -
{(0.7, 0.7k), (1, k), (1.3, 1.3k)} 98.46 98.58 98.09 98.71 98.66 95.41 95.47 95.49 95.34 96.41 - - - -

Note: “-” means “not available”. I∗G, I∗DoG,V∗G, and V∗DoG respectively denote filtered elements of FoSIG [C2] and V-BIG [C5] addressed to be accordance
with standard deviations F and local supporting regions {(P,R)}.

• Multi-scale 2D/3D Gaussian-based kernels are exploited to forcefully capture blurred-invariant
features for DT representation. In the meanwhile, FoSIG and V-BIG are lack of informative
scales due to only a single Gaussian-based filtering kernel involved in (see Tables 6.9 and 6.11).
• Besides taking advantage of the smooth-invariant properties in G

2D/3D
σ and DoG

2D/3D
σ,σ′ , our pro-

posed descriptors LOGIC2D/3D are also enriched more spatio-temporal features of the positive-
bipolar and negative-bipolar cells which have been derived from DoG2D/3D (see Table 6.11).

6.6.4 Experiments and evaluations

6.6.4.1 Parameters for experimental implementation

Settings for the Gaussian-based filterings: We address multi-scale Gaussian-based filtering kernels
F = {(σi, σ′i)}mi=1 of spatio-temporal coordinates x, y, t ∈ [−3σ, 3σ]. Therein, σi and σ′i are standard
deviations conditioned by σ′i = k × σi so that σi < σ′i. k ∈ R+ is a pre-defined fitting coefficient
which should be valued so that k > 1 and k × σi ≤ 6 since the informative appearance of DTs is
sharply diminished when σ′i is closed to σi or σ′i > 6. As a result, we empirically investigate σi = 0.7,
σi+1 = σi + 0.3, and k = 2

√
5 in three consecutive scales so that the obtained descriptors are still in

a reasonable dimension. That means F = {(0.7, 0.7 × k), (1, k), (1.3, 1.3 × k)}. In order to eliminate
useless regions for local encoding, the meaningful threshold ε should be set to 0.15, as empirically
reported by Vu et al. [116].

Settings for structuring LOGIC2D/3D descriptors: The proposed operator CAIP is exploited using
the joint parameters of riu2 mapping with 2(P +2)2 bins, where P is a number of considered neighbors.
A multi-scale analysis using two scales of local neighbors {(P,R)} = {(8, 1), (8, 2)} is addressed for
the DT encoding in order to capture more forceful information in larger regions. Because three planes
XY, XT, and YT are addressed for each scale of local supports, it takes 3 × 2 × 2 × (8 + 2)2 = 1200

bins to structure a Gaussian-based filtered outcome in Ω
2D/3D
(σi,σ′i)∈F

. That means 1200×m× t bins for the

final dimension, in which m = |F| = 3 denotes the number of Gaussian-based scales, t ∈ Z+ denotes
the quantity of outcomes in Ω

2D/3D
(σi,σ′i)∈F

involved with, i.e., t ∈ {1, 2, 3, 4} (see Equation (6.16)). Table
6.2 shows a comprehensive comparison with other LBP-based descriptors.

6.6.4.2 Assessments of DoG-based features compared to those of FoSIG and V-BIG

For an objective comparison of performances on DynTex++ in particular, the settings for structuring
FoSIG [C2] and V-BIG [C5] descriptors should be addressed to be accordance with standard deviations
F = {(0.7, 0.7 × k), (1, k), (1.3, 1.3 × k)} and local supporting regions {(P,R)} = {(8, 1), (8, 2)}.
We arm at presenting the performances of separated elements in Ω

2D/3D
σ,σ′ to facilitate comparison with

FoSIG and V-BIG, as well as to evaluate the crucial contributions of those in enhancing the discrimina-
tion of LOGIC2D/3D descriptors. It can be verified in Table 6.9 that the descriptors, based on blurred
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Table 6.10: Rates (%) of LOGIC2D/3D using CLBPriu2
{(8,1),(8,2)} [3] instead of CAIPriu2

{(8,1),(8,2)}.
Dataset UCLA DynTex

Dyn++
Descriptor 50-LOO 50-4fold 9-class 8-class Dyn35 Alpha Beta Gamma
LOGIC2D

CLBP 100 100 98.45 97.39 99.71 98.33 91.98 93.18 96.29
LOGIC3D

CLBP 100 100 97.90 97.83 99.43 100 93.83 93.56 96.77

Note: 50-LOO and 50-4fold are results on 50-class using leave-one-out and four cross-fold valida-
tion. Dyn35 and Dyn++ are shortened for DynTex35 and DynTex++ sub-datasets respectively.

and bipolar-invariant characteristics, have significant improvement compared to the initial DoG features
employed in FoSIG and V-BIG. Indeed, these advancements can be thoroughly discussed in detail as
follows.

Regarding the single-scale of F , the performance of Iabs
DoG element is more stable and improved

about 1.5∼3% compared to I∗DoG of FoSIG. In the meanwhile, Vabs
DoG is just more stable than that of

V-BIG. This obtained enhancement is thanks to that our CAIP is agreed with encoding bipolar-invariant
features in Ω

2D/3D
σ,σ′ . It should be noted that Iabs

DoG and Vabs
DoG in Ω

2D/3D
σ,σ′ respectively are DoGs of FoSIG

and V-BIG which are thresholded by the meaningful level ε. In addition, integrating the positive and
negative features of DoG also increases the discrimination power in general (see columns of Ipos

DoG+Ineg
DoG

and Vpos
DoG+Vneg

DoG in Table 6.9).

Using multi-scale analysis of F , the DoG-based components obtain outstanding performances: in-
creasing by about 3% (up to over 98%) for the 2D filtered outcomes, and by about 1% for the 3D
ones (see the last 3 rows in Table 6.9). Therein, those of the 3-scale 2D setting give the best rates,
i.e., Iabs

DoG (98.58%), Ipos
DoG (98.09%), and Ineg

DoG (98.71%). In the meanwhile, those of 2-scale of
{(0.7, 0.7× k), (1, 1× k)} also have considerable performances for both 2D and 3D filtered outcomes.
Therefore, they can be implemented for mobile applications in practice thanks to their tiny dimension,
i.e., 3600 bins for the 3-scale and 2400 bins for the 2-scale. Besides, the multi-scale settings of blurred
features significantly improve the performance compared to the single-scale ones of FoSIG and V-BIG
which have been lacking of the scale-information involved with the DT encoding (see results in a pair of
columns IG and I∗G, VG and V∗G in Table 6.9).

Furthermore, the experimental results in Table 6.9 have indicated that the larger value of standard
deviation σ is taken into account the filterings, the less appearance information can be captured for DT
representation. This is in accordance with all filtered elements in Ω2D/3D as well as those of FoSIG
and V-BIG. Consequently, in practice, these Gaussian-based filterings should be addressed by (σ, σ′) in
reasonable constraints.

6.6.4.3 Assessments of LOGIC2D/3D’s performances

Results of our proposed LOGIC2D/3D descriptors for DT classification on benchmark datasets are
detailed in Table 6.11, in which the highest rates are in bold. Based on the experimental results, it could
be pointed out the following crucial statements.

First, it can be verified that taking the blurred and bipolar-invariant Gaussian-based features into
account capturing shape and motion clues for DT representation has been authenticated the prominent
effectiveness, as mentioned in Sections 6.6.1, 6.6.2, and 6.6.3. Indeed, Table 6.11 illustrates that DT
encoding based on Gaussian-based filtered complements Ω

2D/3D
F has correspondingly figured out ro-

bust descriptors LOGIC2D/3D with outperfomances compared to all non-deep-learning methods. In
comparison with those of deep-learning techniques, our LOGIC2D descriptor outperforms on most of
circumstances, except recognizing DT on Beta and Gamma schemes (see Tables 6.11 and 6.33). In the
meanwhile, LOGIC3D has also resulted out the promising classification rates.

Second, it can be observed from Table 6.11 that the performance of LOGIC2D descriptor is better
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Figure 6.13: The performances of our descriptors LOGIC2D/3D, which utilize both the adapted CAIP
operator and the typical CLBP [3] for DT encoding, are compared to our prior works FoSIG2D [C2] and
V-BIG3D [C5].

Table 6.11: Classification rates (%) on DT benchmark datasets of LOGIC2D/3D descriptors.
Dataset UCLA DynTex

Dyn++
Descriptor Gaussian-based Filtered Complement(s) 50-LOO 50-4fold 9-class 8-class Dyn35 Alpha Beta Gamma

LOGIC2D

fGF 100 100 97.85 98.59 98.29 100 94.44 93.56 98.46
fpos

DoGF
100 100 98.50 98.15 98.57 100 94.44 91.29 98.09

fneg
DoGF

100 100 99.25 99.13 98.57 98.33 95.68 91.67 98.71
fabs

DoGF
100 100 99.20 97.39 99.14 98.33 93.21 91.29 98.58

fpos
DoGF

+ fneg
DoGF

100 100 98.50 98.80 99.14 98.33 95.06 93.94 98.66
fGF + fabs

DoGF
100 100 98.55 98.70 98.86 98.33 95.06 92.80 98.91

fGF + fpos
DoGF

+ fneg
DoGF

100 100 98.85 97.39 99.14 98.33 94.44 95.45 99.02
fpos

DoGF
+ fneg

DoGF
+ fabs

DoGF
100 100 98.95 97.83 99.43 98.33 95.06 93.56 99.02

Ω2D
F = fGF + fpos

DoGF
+ fneg

DoGF
+ fabs

DoGF
100 100 99.35 99.13 99.71 98.33 95.06 95.08 99.14

LOGIC3D

VGF 100 100 98.60 96.74 98.57 100 92.59 93.56 95.41
Vpos

DoGF
100 100 97.35 97.28 99.43 100 91.98 92.80 95.49

Vneg
DoGF

100 100 99.15 98.37 98.57 100 94.44 92.05 95.34
Vabs

DoGF
99.00 100 98.75 96.52 98.57 95.00 91.36 91.29 95.47

Vpos
DoGF

+ Vneg
DoGF

100 100 99.15 98.48 99.71 100 93.21 92.05 96.41
VGF + Vabs

DoGF
100 100 97.75 97.61 98.86 98.33 93.21 92.80 96.37

VGF + Vpos
DoGF

+ Vneg
DoGF

100 100 98.65 98.70 99.71 100 93.83 93.56 96.71
Vpos

DoGF
+ Vneg

DoGF
+ Vabs

DoGF
100 100 99.10 97.07 99.43 100 92.59 91.67 96.39

Ω3D
F = VGF + Vpos

DoGF
+ Vneg

DoGF
+ Vabs

DoGF
100 100 99.00 99.35 99.43 100 94.44 93.56 96.88

Note: 50-LOO and 50-4fold denote results on 50-class breakdown using leave-one-out and four cross-fold validation. Dyn35 and Dyn++
are shortened for DynTex35 and DynTex++ sub-datasets respectively.

than that of LOGIC3D in general. It means that the Gaussian-based filtering kernels exploited on spatial-
temporal plane-images (i.e., separative images subject to {XY,XT, Y T} planes of a video) allow to
efficiently deal with the negative impacts of illumination and noise on DT encoding rather than using
these kernels in volume filtering structures.

Third, as mentioned in Section 3.2, the problems of near uniform regions and sensitivity to noise
caused by the zero-center bipolar cells have been efficaciously carried out by our adapted CAIP oper-
ator to boost the performance. Actually, it can be verified from Figure 6.13 and Table 6.10 that the
LOGIC2D/3D descriptors, using CAIP to capture shape and motion cues of DTs in filtered complements
Ω

2D/3D
F , are significantly enhanced in comparison with using the typical CLBP [3] on Ω

2D/3D
F .
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Filtering the video using high-order 
Gaussian-gradient kernels to point out 
Gaussian-filtered outcomes

Decomposing oriented 
magnitudes subject to a set 
of given direction ranges

Encoding oriented magnitudes 
using a simple local operator to 
form proposed descriptors

Computing magnitudes 
based on these filtered 
outcomes

An input video

Figure 6.14: A proposed framework for encoding a video in general. Therein, the blue arrows denote
progresses of pre-processing, the black one is a progress of encoding features of oriented magnitudes.

Fourth, it can be seen from Figure 6.13 that the LOGIC2D/3D descriptors outperform in general
compared to FoSIG2D [C2] and V-BIG3D [C5]. It is thanks to taking advantage of the adapted CAIP
operator and the 2D/3D Gaussian-based kernels in multi-scale analysis. In addition, with the similar
complemented supplements, i.e., fGF + fabs

DoGF
, LOGIC2D also has better performance than that of

FoSIG2D and V-BIG3D in most cases of DT classification (see Tables 6.11, 6.33, and Figure 6.13). It
again validates the important contribution of our CAIP modification for DT encoding.

Finally, each of filtered outcomes in Ω
2D/3D
F , as well as integrating them into different ways has fig-

ured out corresponding descriptors with competitive discrimination powers (see Table 6.11 for a specific
comparison of their performances). Among of them, the integrating instances of all, i.e., LOGIC2D/3D

using all complements in Ω
2D/3D
F for DT representation, have more “stable” executions and higher ac-

curacies. This is thanks to exploiting benefits of the blurred and bipolar-invariant features which are
extracted from the Gaussian-based filtered outcomes in the completed context.

In terms of comparison with the state-of-the-art methods, we nominate descriptor LOGIC2D since
its performance is better than that of LOGIC3D. From now on, if LOGIC2D/3D descriptors are not
specified in detail of which kinds of complements in Ω

2D/3D
F are implemented, the default integration

is all their filtered complements involved with. Hereafter, comprehensive evaluations of the proposed
framework on different DT datasets are discussed in a global comparison with the existing approaches.

6.7 Representation based on oriented magnitudes of Gaussian gradients
In our prior works [C2, C5, J4], we have indicated that taking Gaussian-based filtering kernels into

account DT representation could improve the discrimination power of local DT encoding. This is thanks
to mitigating the negative impacts the typical problems on DT encoding. However, the achieved im-
provements are still at a moderate level since those problems may be not dealt with thoroughly. Instead
of exploiting Gaussian-based filtered features as in [C2,C5], motivated from HoG descriptor [118] where
oriented information has been successfully exploited for representation of local features, we propose in
this work an efficient framework for DT representation based on high-order oriented magnitudes that are
decomposed from Gaussian-gradient outcomes as graphically illustrated in Figure 6.14. Accordingly,
high-order Gaussian-gradient kernels are used to filter a given video for noise reduction. Magnitude
features are then extracted from the gradient-filtered outcomes. Different decomposing models of hard
and soft-based assignments are then addressed to separate these obtained magnitude features into ori-
ented magnitudes subject to a given orientation range (see Section 6.7.1). Finally, robust descriptors are
structured by using a simple local operator to encode the oriented magnitudes (see Section 6.7.2). Exper-
iments for DT classification have validated the good performance of oriented magnitudes compared to
Gaussian-based filtered features in [C2, C5] (see Section 6.7.3.3). Hereafter, we express above proposed
processes in detail.
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6.7.1 Oriented magnitudes of Gaussian gradients

In order to compute Gaussian-oriented magnitudes, we conduct the kernel Gµ

σ,∂xki
in 2D and 3D

filtering dimensions, i.e., G
2D/3D

σ,∂xki
. Appropriately, for a given image I, a pixel q ∈ I is filtered by the

2D filtering kernel with respect to spatial coordinates (x, y) as{
I∂xkσ (q) = G2D

σ,∂xk
(x, y) ∗ I(q)

I∂y
k

σ (q) = G2D
σ,∂yk

(x, y) ∗ I(q)
(6.22)

in which “*” denotes a convolving operator, I∂xkσ and I∂y
k

σ are k-order Gaussian-filtered images. Sim-
ilarly, for a given video V , a voxel u ∈ V is filtered by the 3D filtering kernel with respect to spatial
coordinates (x, y) and temporal direction z as

V∂xkσ (u) = G3D
σ,∂xk

(x, y, z) ∗ V(u)

V∂y
k

σ (u) = G3D
σ,∂yk

(x, y, z) ∗ V(u)

V∂zkσ (u) = G3D
σ,∂zk

(x, y, z) ∗ V(u)

(6.23)

where V∂xkσ , V∂y
k

σ , and V∂zkσ are k-order filtered volumes.

Based on above k-order Gaussian-filtered images/volumes, we correspondingly propose 2D/3D ori-
ented magnitudes decomposed subject to a direction range that are referred from the 2D/3D Gaussian
gradients. In order to thoroughly investigate the influences of the decomposing process, the following
quantification strategies are addressed as

Quantification strategies: In consideration of an uniform quantification of an oriented feature f ,
which is defined at an arbitrary pixel q as f(q), into n bins, it can be decomposed into two components:
orientation f(q) ∈ [0, 2π) and magnitude ‖f(q)‖. Let us suppose that (i − 1)λ ≤ f(q) < iλ, where
i ∈ {1, 2, .., n} and λ = 2π

n . Traditional methods address two possible strategies for decomposition of f
into n bins: {mi}ni=1.

• Hard assignment: f(q) is totally assigned to bin mi with value ‖f(q)‖.

• Soft assignment: f(q) is partially assigned to bin mi with value iλ−f(q)
λ ‖f(q)‖ and to bin mi+1

with value f(q)−(i−1)λ
λ ‖f(q)‖, where mn+1 ≡ m1.

We introduce in this work an another version of soft assignment, called Modified soft assignment, which
allows to quantize f(q) into 2n bins {m+

i ,m
−
i }ni=1 as follows.

• Modified soft assignment: f(q) is partially assigned to bin m+
i with value iλ−f(q)

λ ‖f(q)‖ and to

bin m−i+1 with value f(q)−(i−1)λ
λ ‖f(q)‖, where m−n+1 ≡ m

−
1 .

The main difference between the soft assignment and our modified model is that for n ranges of orienta-
tions, the first one produces n bins while the second one generates 2n bins. In other word, each binmi in
the typical approach is now separated into 2 components: m+

i and m−i to express the quantized feature
with more discriminative power in the new approach2.

Decomposition of gradient-filtered images I∂xkσ and I∂y
k

σ : The high-order oriented magnitude of
a pixel q ∈ I is determined so that its gradient direction is agreed with a given range of direction
d = [α, β) = [(i − 1)λ, iλ), where λ = 2π

n , α = (i − 1)λ, and β = iλ, i ∈ {1, 2, .., n}. Let us

2A simple MATLAB code of our modified soft assignment to decompose high-order 2D/3D Gaussian gradients subject to a
pre-defined orientation range is available at http://tpnguyen.univ-tln.fr/download/MATCodeIVOM

99

http://tpnguyen.univ-tln.fr/download/MATCodeIVOM


6.7. REPRESENTATION BASED ON ORIENTED MAGNITUDES OF GAUSSIAN GRADIENTS

suppose that θ∂x
k,∂yk

σ (q) ∈ d. Accordingly, a feature of Image of Oriented Magnitudes (IOM) could be
quantified by the hard-assignment principle as

HIOM∂xk,∂yk

σ,i (q) = ||∇I∂xk,∂ykσ (q)||, so that θ∂x
k,∂yk

σ (q) ∈ d (6.24)

by the soft-assignment asSIOM∂xk,∂yk

σ,i (q) = ||∇I∂x
k,∂yk

σ (q)|| × β−θ∂x
k,∂yk

σ (q)
β−α

SIOM∂xk,∂yk

σ,i+1 (q) = ||∇I∂x
k,∂yk

σ (q)|| × θ∂x
k,∂yk

σ (q)−α
β−α

(6.25)

and by the modified soft-assignment aspMSIOM∂xk,∂yk

σ,i (q) = ||∇I∂x
k,∂yk

σ (q)|| × β−θ∂x
k,∂yk

σ (q)
β−α

nMSIOM∂xk,∂yk

σ,i+1 (q) = ||∇I∂x
k,∂yk

σ (q)|| × θ∂x
k,∂yk

σ (q)−α
β−α

(6.26)

where SIOM∂xk,∂yk

σ,n+1 (q) ≡ SIOM∂xk,∂yk

σ,1 (q), nMSIOM∂xk,∂yk

σ,n+1 (q) ≡ nMSIOM∂xk,∂yk

σ,1 (q), and

||∇I∂x
k,∂yk

σ (q)|| denotes the k-order magnitude information of q and is calculated as follows.

||∇I∂xk,∂ykσ (q)|| =
√(
Ixkσ (q)

)2
+
(
Iy

k

σ (q)
)2 (6.27)

In the meanwhile, θ∂x
k,∂yk

σ (q) denotes the gradient direction of pixel q and is inferred as

θ∂x
k,∂yk

σ (q) = arctan
(
I∂ykσ (q)/I∂xkσ (q)

)
(6.28)

Figure 6.15 graphically illustrates an instance of decomposing the magnitudes of two Gaussian-gradient
images I∂x10.5 and I∂y

1

0.5 in order to obtain 4 HIOM images subject to a set of 4 equal ranges of direction
D4 = {[0, π/2), [π/2, π), [π, 3π/2), [3π/2, 2π)}.

Decomposition of gradient-filtered volumes V∂xkσ , V∂y
k

σ , and V∂zkσ : The high-order oriented magni-
tudes of a voxel u ∈ V are addressed subject to its pairs of gradient directions being in accordance with
the pre-defined direction range d = [α, β), where λ = 2π

n , α = (i− 1)λ and β = iλ are two extremities

of d, i ∈ {1, 2, .., n}. Without loss of generality, let us suppose that φ∂x
k,∂yk

σ (u) ∈ d (similarly for
two other cases: φ∂y

k,∂zk
σ (u) ∈ d, or φ∂z

k,∂xk
σ (u) ∈ d). As a result, a feature of Volumes of Oriented

Magnitudes (VOM) could be quantified to a bin by the hard assignment principle as
HVOM∂xk,∂yk

σ,i (u) = ||∇V∂x
k,∂yk

σ (u)||, so that φ∂x
k,∂yk

σ (u) ∈ d
HVOM∂yk,∂zk

σ,i (u) = ||∇V∂y
k,∂zk

σ (u)||, so that φ∂y
k,∂zk

σ (u) ∈ d
HVOM∂zk,∂xk

σ,i (u) = ||∇V∂z
k,∂xk

σ (u)||, so that φ∂z
k,∂xk

σ (u) ∈ d
(6.29)

by the soft-assignment as

SVOM∂xk,∂yk

σ,i (u) = ||∇V∂x
k,∂yk

σ (u)|| × β−φ∂x
k,∂yk

σ (u)
β−α

SVOM∂xk,∂yk

σ,i+1 (u) = ||∇V∂x
k,∂yk

σ (u)|| × φ∂x
k,∂yk

σ (u)−α
β−α

SVOM∂yk,∂zk

σ,i (u) = ||∇V∂y
k,∂zk

σ (u)|| × β−φ∂y
k,∂zk

σ (u)
β−α

SVOM∂yk,∂zk

σ,i+1 (u) = ||∇V∂y
k,∂zk

σ (u)|| × φ∂y
k,∂zk

σ (u)−α
β−α

SVOM∂zk,∂xk

σ,i (u) = ||∇V∂z
k,∂xk

σ (u)|| × β−φ∂z
k,∂xk

σ (u)
β−α

SVOM∂zk,∂xk

σ,i+1 (u) = ||∇V∂z
k,∂xk

σ (u)|| × φ∂z
k,∂xk

σ (u)−α
β−α

(6.30)
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Figure 6.15: A hard-assignment model for decomposing the magnitudes of two Gaussian-gradient
images I∂x10.5 and I∂y

1

0.5 into 4 HIOM images subject to a set of 4 equal ranges of direction D4 =
{[0, π/2), [π/2, π), [π, 3π/2), [3π/2, 2π)}.

where SVOM∂zk,∂xk

σ,n+1 (u) ≡ SVOM∂zk,∂xk

σ,1 (u), SVOM∂yk,∂zk

σ,n+1 (u) ≡ SVOM∂yk,∂zk

σ,1 (u), and

SVOM∂xk,∂yk

σ,n+1 (u) ≡ SVOM∂xk,∂yk

σ,1 (u).
In the meanwhile, a feature of VOM can be quantified to two bins by the modified soft-assignment as

pMSVOM∂xk,∂yk

σ,i (u) = ||∇V∂x
k,∂yk

σ (u)|| × β−φ∂x
k,∂yk

σ (u)
β−α

nMSVOM∂xk,∂yk

σ,i+1 (u) = ||∇V∂x
k,∂yk

σ (u)|| × φ∂x
k,∂yk

σ (u)−α
β−α

pMSVOM∂yk,∂zk

σ,i (u) = ||∇V∂y
k,∂zk

σ (u)|| × β−φ∂y
k,∂zk

σ (u)
β−α

nMSVOM∂yk,∂zk

σ,i+1 (u) = ||∇V∂y
k,∂zk

σ (u)|| × φ∂y
k,∂zk

σ (u)−α
β−α

pMSVOM∂zk,∂xk

σ,i (u) = ||∇V∂z
k,∂xk

σ (u)|| × β−φ∂z
k,∂xk

σ (u)
β−α

nMSVOM∂zk,∂xk

σ,i+1 (u) = ||∇V∂z
k,∂xk

σ (u)|| × φ∂z
k,∂xk

σ (u)−α
β−α

(6.31)

in which nMSVOM∂zk,∂xk

σ,n+1 (u) ≡ nMSVOM∂zk,∂xk

σ,1 (u), nMSVOM∂yk,∂zk

σ,n+1 (u) ≡
nMSVOM∂yk,∂zk

σ,1 (u), and nMSVOM∂xk,∂yk

σ,n+1 (u) ≡ nMSVOM∂xk,∂yk

σ,1 (u).

Here, the k-order magnitudes ||∇V∂x
k,∂yk

σ (u)||, ||∇V∂y
k,∂zk

σ (u)||, and ||∇V∂z
k,∂xk

σ (u)|| are computed
as 

||∇V∂x
k,∂yk

σ (u)|| =
√(
Vxkσ (u)

)2
+
(
Vy

k

σ (u)
)2

||∇V∂y
k,∂zk

σ (u)|| =
√(
Vy

k

σ (u)
)2

+
(
Vzkσ (u)

)2
||∇V∂z

k,∂xk
σ (u)|| =

√(
Vzkσ (u)

)2
+
(
Vxkσ (u)

)2 (6.32)

Figure 6.16 shows an example of computing magnitude volumes of Gaussian gradients. Gradient direc-
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Figure 6.16: An instance of 3D Gaussian-gradient filtering and computing the obtained volumes of
magnitude features.

tions φ∂x
k,∂yk

σ (u), φ∂y
k,∂zk

σ (u), and φ∂z
k,∂xk

σ (u) are inferred as
φ∂x

k,∂yk
σ (u) = arctan

(
V∂y

k

σ (u)/V∂xkσ (u)
)

φ∂y
k,∂zk

σ (u) = arctan
(
V∂zkσ (u)/V∂y

k

σ (u)
)

φ∂z
k,∂xk

σ (u) = arctan
(
V∂xkσ (u)/V∂zkσ (u)

) (6.33)

Figure 6.18 graphically illustrates a general model of decomposing a volume of magnitude features.

It can be seen that for a given direction range, the modified soft decomposition has produced a
double number of oriented magnitude outcomes compared to the hard-assignment and the classic soft-
assignment. For convenience in further presentation, we could generally refer the above decomposing re-
sults: HIOM/SIOM/MSIOM as IOM-based images, HVOM/SVOM/MSVOM as VOM-based volumes.

6.7.2 DT representation based on oriented magnitudes

In order to generally investigate oriented magnitudes for DT representation, we address the IOM
and VOM computations in n (n ∈ Z+) equal ranges of direction as Dn =

{
[(i − 1)λ, iλ)

}n
i=1

,
where λ = 2π

n denotes an angle coefficient for decomposing the k-order image/volume magni-
tudes. For example, with respect to λ = π/2, we have n = 4 direction ranges in equality (i.e.,
D4 = {[0, π/2), [π/2, π), [π, 3π/2), [3π/2, 2π)}) that are respectively used to decompose a magnitude
image ||∇I∂x

k,∂yk
σ ||, as shown in Figure 6.15 for an operation of the hard-assignment decomposition.
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Figure 6.17: A flowchart of HIOM model subject to direction ranges di = [(i− 1)λ, iλ) in Dn. Therein,
the black arrows are noted for pre-processing while the blue ones are for encoding.

Hereunder, we propose robust descriptors structured corresponding to the IOM-based and VOM-based
outcomes.

Proposed IOM-based descriptors: To be compliant with the k-order 2D Gaussian-gradient filtering,
a given video V is separated subject to its three orthogonal planes {XY,XT, Y T} to obtain correspond-
ing collections of plane-images fXY , fXT , and fY T . For the plane-image collection fXY , its spatial
HIOM, SIOM, MSIOM features of DTs are respectively encoded as

Γk,D
n

σ (fXY ) =
1

N
∑
I∈fXY

[
ξ
(
HIOM∂xk,∂yk

σ,1 (I)
)
, ..., ξ

(
HIOM∂xk,∂yk

σ,n (I)
)]

(6.34)

and

Υk,Dn
σ (fXY ) =

1

N
∑
I∈fXY

[
ξ
(
SIOM∂xk,∂yk

σ,1 (I)
)
, ξ
(
SIOM∂xk,∂yk

σ,2 (I)
)
, ..., ξ

(
SIOM∂xk,∂yk

σ,n (I)
)]
(6.35)

and

Ωk,Dn
σ (fXY ) =

1

N
∑
I∈fXY

[
ξ
(
pMSIOM∂xk,∂yk

σ,1 (I)
)
, ξ
(
nMSIOM∂xk,∂yk

σ,1 (I)
)
, ...,

ξ
(
pMSIOM∂xk,∂yk

σ,n (I)
)
, ξ
(
nMSIOM∂xk,∂yk

σ,n (I)
)] (6.36)

in which N means a number of plane-images in fXY , ξ(.) denotes a simple function using a local
operator (e.g., LBP [81], CLBP [3], etc.) in order to figure out the corresponding histograms. Figure
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6.17 illustrates a graphical view of filtering an input image, hard-decomposing its filtered magnitudes,
and encoding the obtained HIOM outcomes correspondingly. In similarity, these encodings could be
used for the remaining plane-image collections fXT and fY T to capture temporal IOM-based features
for DT representation. As the result, robust local descriptors are structured in simplicity by concatenating
the probability distributions of Γk,D

n

σ (.), Υk,Dn
σ (.), and Ωk,Dn

σ (.) as

HIOMFk,D
n

σ (V) =
[
Γk,D

n

σ (fXY ),Γk,D
n

σ (fXT ),Γk,D
n

σ (fY T )
]

(6.37)

and
SIOMFk,D

n

σ (V) =
[
Υk,Dn
σ (fXY ),Υk,Dn

σ (fXT ),Υk,Dn
σ (fY T )

]
(6.38)

and
MSIOMFk,D

n

σ (V) =
[
Ωk,Dn
σ (fXY ),Ωk,Dn

σ (fXT ),Ωk,Dn
σ (fY T )

]
(6.39)

Proposed VOM-based descriptors: As mentioned in Section 6.7.1 for the hard decomposition (refer to
Equation 6.29), three filtered volumes of oriented magnitudes are pointed out corresponding to three pairs
of spacial domains convolved on a given video V . Those volumes are taken into account local analysis to
construct a robust descriptor as follows. For an obtained volume HVOM∂xk,∂yk

σ,i , (i ∈ {1, 2, .., n}), it is
firstly split into collections of filtered plane-images (f ′XY , f ′XT , and f ′Y T ) subject to its three orthogonal
planes {XY,XT, Y T}. The simple operator ξ(.) is then utilized to capture local spatio-temporal features
of DTs as

Ψ(HVOM∂xk,∂yk

σ,i ) =

[ ∑
I∈f ′XY

ξ(I)

NXY
,

∑
I∈f ′XT

ξ(I)

NXT
,

∑
I∈f ′Y T

ξ(I)

NY T

]
(6.40)

in which NXY , NXT , and NY T are numbers of plane-images f ′XY , f ′XT , and f ′Y T of HVOM∂xk,∂yk

σ,i

respectively. Figure 6.18 illustrates a graphical view of encoding a HVOM volume. This encoding
is similarly deployed for the remaining volumes HVOM∂yk,∂zk

σ,i and HVOM∂zk,∂xk

σ,i . As the result, a
discriminative descriptor based on the k-order HVOM features is constructed by concatenating these
obtained histograms as

HVOMFk,D
n

σ (V) =
⊎[

Ψ(HVOM∂xk,∂yk

σ,i ),Ψ(HVOM∂yk,∂zk

σ,i ),Ψ(HVOM∂zk,∂xk

σ,i )
]n
i=1

(6.41)

in which
⊎

denotes a concatenating function of histograms.

Similarly, this HVOMF encoding could be applied to 3 SVOM (resp. 6 MSVOM) outcomes extracted
by the soft decomposition (refer to Equation 6.30) subject to the direction range Dn. Accordingly, other
robust descriptors based on the k-order SVOM (resp. MSVOM) features are formed by concatenating
the corresponding histograms as

SVOMFk,D
n

σ (V) =
⊎[

Ψ(SVOM∂xk,∂yk

σ,i ),Ψ(SVOM∂yk,∂zk

σ,i ),Ψ(SVOM∂zk,∂xk

σ,i )
]n
i=1

(6.42)

and

MSVOMFk,D
n

σ (V) =
⊎[

Ψ(pMSVOM∂xk,∂yk

σ,i ),Ψ(nMSVOM∂xk,∂yk

σ,i ),Ψ(pMSVOM∂yk,∂zk

σ,i ),

Ψ(nMSVOM∂yk,∂zk

σ,i ),Ψ(pMSVOM∂zk,∂xk

σ,i ),Ψ(nMSVOM∂zk,∂xk

σ,i )
]n
i=1

(6.43)

Our proposed IOM/VOM-based descriptors take the following benefits to improve the performance
compared to other local Gaussian-based descriptors (also see Sections 6.7.3.2, 6.7.3.3 for a comprehen-
sive evaluation):
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Figure 6.18: A flowchart of HVOM model subject to direction ranges di = [(i−1)λ, iλ) inDn. Therein,
the black arrows are pre-processing steps while the blue ones are for encoding.

• Different from exploiting Gaussian-based filtered features to construct local descriptors FoSIG
[C2] and V-BIG [C5], in this work, the high-order oriented magnitudes are taken into account DT
representation. Thanks to the decomposing models presented in Section 6.7.1, the magnitudes of
Gaussian-gradient-filtered outcomes are addressed in diversity of invariant features to enhance the
robustness against the well-known issues in more effect. In the mean while, exploiting oriented
features makes those outcomes still more discriminative for texture description.
• The Gaussian-gradient filterings allow to produce more filtered outcomes for the DT encoding. In

the meanwhile, just one DoG-based element is used in FoSIG [C2] and V-BIG [C5] due to taking
the Different of Gaussians (DoG) kernel into account the filterings.
• To enhance the discrimination power, it is possible to address the IOM/VOM-based descriptors for

a multi-analysis of high-orders along with different Gaussian filtering scales, while keeping their
representation in reasonable dimensions thanks to the tiny size of single-scale ones (see Table 6.2).
In the meantime, just single-scale of Gaussian filtering is addressed in FoSIG [C2] and V-BIG [C5].
• It should be noted that the 2D-magnitude information (i.e., non-decomposition applied to) is also

exploited in [119] for structuring textual images. However, taking it into account DT representation
is not more adaptive than taking its oriented properties (see Table 6.13 for a fact of this statement).
It has proved the interest of our proposed framework.

6.7.3 Experiments and evaluations

6.7.3.1 Parameters for experimental implementation

For computing high-order oriented magnitudes: We investigate 2D/3D Gaussian filtering kernels
in high-order gradients of k ∈ {1, 2, 3, 4}. Therein, standard deviation σ ∈ {0.5, 0.7, 1, 1.3, 1.5, 2}
and spatio-temporal coordinates of convolution x, y, z ∈ [−3σ, 3σ] could be empirically conducted for
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Figure 6.19: Performances (%) on Beta of descriptors based on the 4th-order 3D Gaussian-gradient
magnitudes using both decomposing and non-decomposing models.

each Gaussian-gradient kernel in order to compute corresponding filtered outcomes. With respect to
addressing direction ranges for decomposing these obtained results to achieve IOM-based images and
VOM-based volumes, it can take into account various numbers of equal direction ranges, e.g., n ∈
{4, 6, 8} corresponding to λ ∈ {π/2, π/3, π/4} respectively. Furthermore, as mentioned in Section
6.7.1 (refer to Equations. (6.24), (6.25), (6.26), (6.29), (6.30), (6.31)), the modified soft-assignment
decomposition has produced a double number of oriented magnitude outcomes than the others. To take
an objective evaluation in effectiveness of these decomposing models, we address n = 8 (i.e., D8) for
the traditional models (i.e., hard and soft) and n = 4 (i.e., D4) for the modified one in order to obtain
the same numbers of outcomes. This could be appropriate since for a direction range [0, π/2), the
soft model and its modified version respectively decompose a magnitude image into 2 SIOMs (refer to
Equation (6.25)) and 4 MSIOMs (refer to Equation (6.26)) by adopting the pixels which their gradient
directions are close to π/4. It is nearly the same that the hard model is addressed in two ranges [0, π/4)
and [π/4, π/2) to obtain 2 HIOMs (refer to Equation (6.24)) correspondingly.

For structuring IOM-based and VOM-based descriptors: In order to encode the obtained outcomes
of oriented magnitudes, we use a simple operator CLBP [3], one of the most popular local operator, with
riu2 mapping and local supporting region {(P,R)} = {(8, 1)}, i.e., ξ = CLBPriu2

8,1 . To structure our
proposed descriptors in reasonable dimension, the integration of “S M/C” should be utilized for jointing
CLBP’s components. That means it generally needs Ω = 3(P + 2) × 3 × |∇| bins for representing
the oriented magnitudes decomposed by a direction range, in which |∇| denotes a number of Gaussian-
gradient magnitudes fed into a decomposing model. As a result, the final dimension to describe a DT
video is subject to which the decomposing model is taken into account. For instance, using D8 for
the traditional decomposition (i.e., n = 8), dimension of single-scale HIOMFk,D

8

σ (i.e., |∇| = 1) is
Ω× 8 = 720 bins, while that of single-scale HVOMFk,D

8

σ (i.e., |∇| = 3) is Ω× 8 = 2160 bins. Those
are the same bins for SIOMFk,D

8

σ and SVOMFk,D
8

σ respectively. Due to addressing D4 for the modified
soft-assignment, the dimensions in single-scale analysis of MSIOMFk,D

4

σ and MSVOMFk,D
4

σ is also the
same as those above, i.e., Ω × 2 × 4 = 720 and Ω × 2 × 4 = 2160 bins respectively. Table 6.2 shows
the dimensions of our descriptors in comparison with those of current local methods. Due to these tiny
bins, it is possible to take advantage of the IOM/VOM-based outcomes in multi-oriented magnitudes by
addressing multi-scale of standard deviations and multi-order of Gaussian-gradient kernels in order to
enrich more discriminative information for improvement of their performances.

6.7.3.2 Assessments of effectiveness of decomposing models

As mentioned in Sections 6.7.1 and 6.7.2, corresponding to the decomposing models, we address the
proposed IOM/VOM-based descriptors for DT classification task on the challenging schemes, i.e., Beta,
Gamma, and DynTex++. In addition, for an objective comparison, we also take non-oriented Gaussian-
gradient magnitudes into account DT representation with the same encoding parameters presented in
Section 6.7.3.1 (i.e., ξ = CLBPriu2

8,1 ) in order to construct corresponding descriptors of image/volume
non-oriented magnitude features (IMFkσ and VMFkσ). Experimental results in Tables 6.12 and 6.13 have
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Table 6.12: Performances (%) of MSVOMFk,D
4

σ based on the modified soft-assignment in comparison
with SVOMFk,D

8

σ based on the basic soft model.
Scheme Beta Gamma DynTex++

Order {σi} SVOM MSVOM SVOM MSVOM SVOM MSVOM

1st

{0.7} 90.74 93.21 91.29 94.32 96.66 97.01
{1.0} 90.12 92.59 92.80 93.18 95.57 96.76
{1.3} 89.51 92.59 92.42 92.42 95.47 96.05
{1.5} 90.74 91.98 93.18 92.05 95.08 95.85

2nd

{0.7} 91.36 94.44 93.56 93.18 96.77 96.82
{1.0} 90.74 95.06 94.32 93.56 96.09 96.23
{1.3} 91.98 93.83 89.77 93.94 94.88 96.28
{1.5} 91.36 93.21 93.18 93.18 95.40 95.93

3rd

{0.7} 92.59 92.59 93.94 93.18 96.23 96.81
{1.0} 91.36 92.59 92.80 91.29 95.04 96.18
{1.3} 91.36 93.83 92.05 93.18 94.63 96.16
{1.5} 88.89 93.83 90.53 91.67 93.79 95.66

4th

{0.7} 92.59 93.83 93.94 93.94 95.99 96.07
{1.0} 89.51 95.06 90.91 94.32 95.46 96.57
{1.3} 90.12 94.44 92.42 93.56 94.37 95.82
{1.5} 90.74 94.44 93.18 94.32 94.44 95.62

Note: SVOM and MSVOM stand for SVOMFk,D
8

σ and MSVOMFk,D
4

σ .

Table 6.13: Classification rates (%) on the challenging schemes of descriptors based on non-oriented-
magnitude and IOM/VOM-based features.

Scheme Beta DynTex++
Order {σi} 2D-H 2D-S 3D-H 3D-S IMF VMF 2D-H 2D-S 3D-H 3D-S IMF VMF

1st

{0.7} 91.36 90.74 90.74 93.21 91.36 93.83 95.77 96.08 97.13 97.01 87.99 93.68
{1.0} 91.36 91.36 91.98 92.59 91.98 93.21 94.72 95.73 96.18 96.76 88.92 93.19
{1.3} 91.98 91.36 91.98 92.59 89.51 93.83 94.61 95.05 96.05 96.05 85.51 91.09
{1.5} 89.51 91.36 91.36 91.98 91.36 92.59 93.90 94.98 95.51 95.85 86.96 91.10

2nd

{0.7} 91.36 93.83 91.36 94.44 91.36 94.44 95.66 95.76 96.51 96.82 85.73 93.09
{1.0} 93.21 93.21 92.59 95.06 92.59 91.98 94.88 95.39 96.44 96.23 86.03 92.10
{1.3} 91.36 91.36 91.36 93.83 88.27 90.74 94.10 94.51 95.31 96.28 84.76 92.17
{1.5} 90.74 92.59 93.21 93.21 90.74 92.59 94.19 94.07 95.14 95.93 83.51 91.35

3rd

{0.7} 89.51 89.51 91.98 92.59 89.51 93.83 95.54 95.67 96.51 96.81 85.49 92.57
{1.0} 91.36 92.59 93.21 92.59 88.89 93.83 93.52 95.34 95.82 96.18 85.71 91.88
{1.3} 95.06 93.21 95.06 93.83 88.27 93.21 93.88 94.34 95.27 96.16 83.84 92.31
{1.5} 90.74 91.98 93.21 93.83 90.12 90.74 94.20 94.38 94.83 95.66 85.00 91.26

4th

{0.7} 92.59 93.83 93.83 93.83 90.12 93.21 94.81 95.02 96.39 96.07 85.62 93.07
{1.0} 90.74 91.36 92.59 95.06 88.89 93.83 94.27 95.22 95.55 96.57 85.46 92.47
{1.3} 90.12 90.74 90.74 94.44 89.51 92.59 93.58 94.77 95.56 95.82 86.73 93.68
{1.5} 89.51 91.98 91.36 94.44 89.51 93.83 92.72 93.90 94.89 95.62 84.19 91.09

Note: Respectively, 2D-H and 3D-H denote for oriented magnitude descriptors HIOMFk,D
8

σ and HVOMFk,D
8

σ us-
ing the hard-decomposing model, while 2D-S and 3D-S are for MSIOMFk,D

4

σ and MSVOMFk,D
4

σ with the modified
soft decomposition. IMF and VMF stand for non-oriented magnitude ones IMFkσ and VMFkσ, i.e., none of the de-
composing models is involved in the DT encoding.

shown rates of these descriptors in various scale analyses. Based on those, it could be pointed out two
crucial statements as follows.

• In general, it can be seen from Tables 6.12 and 6.13 that the ability of the basic soft-assignment
does not perform well in decomposing Gaussian-gradient magnitudes for DT encoding compared
to the hard one, even being inferior to the non-decomposing model (i.e., exploiting IMF and VMF
features of non-oriented magnitudes) in some cases, e.g., DT recognition on Beta as shown in
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Figure 6.19. It may be due to the intensified textural appearances caused by quantizing oriented
magnitudes in adjacent orientation ranges instead of softly separating as in our modified model.
• As expected, our modified soft-assignment has much improved the performance compared to its

original model (see Table 6.12). Furthermore, its discriminative power is significantly better than
that of the non-decomposing and hard ones (see Table 6.13). This is thanks to the adjusted voting
strategy as proposed in Section 6.7.1, which appropriately adopt the magnitude features subject to
a given direction range to obtain filtered outcomes in more robustness for DT encoding (refer to
Equations (6.26) and (6.31) for detail).

Due to the good discrimination in the extraction of oriented magnitudes, the modified soft decomposition
should be recommended for processing Gaussian-gradient magnitudes in practice. Accordingly, in the
rest of this work, we mainly discuss the performances of the MSIOMF and MSVOMF descriptors in
comprehensive comparison with those of recent approaches.

Table 6.14: Classification rates (%) on DT benchmark datasets of MSIOMFk,D
4

σ descriptor.
Dataset UCLA DynTex DynTex++
Sub-set 50-LOO 50-4fold 9-class 8-class DynTex35 Alpha Beta Gamma

1st

{0.5} 99.50 99.00 98.90 96.74 98.29 96.67 90.74 92.42 95.90
{0.7} 99.00 99.00 99.70 96.63 98.29 95.00 90.74 93.94 96.08
{1.0} 99.50 100 99.30 97.50 98.86 96.67 91.36 92.80 95.73
{1.3} 98.50 98.50 99.05 95.11 98.57 96.67 91.36 92.80 95.05
{1.5} 99.00 99.50 96.85 96.85 99.14 96.67 91.36 92.05 94.98
{2.0} 100 100 98.75 96.74 98.57 98.33 91.98 91.67 93.77

2nd

{0.5} 100 100 97.15 95.87 97.71 96.67 91.36 89.77 94.49
{0.7} 100 100 98.90 97.28 98.00 96.67 93.83 93.56 95.76
{1.0} 99.50 99.00 98.60 98.49 98.57 96.67 93.21 93.18 95.39
{1.3} 99.50 99.50 99.25 98.15 97.71 96.67 91.36 93.56 94.51
{1.5} 99.00 99.00 98.10 99.02 98.86 96.67 92.59 92.80 94.07
{2.0} 99.00 99.00 98.60 97.07 97.71 96.67 91.36 93.18 93.12

3rd

{0.5} 99.50 100 99.10 97.61 98.29 96.67 95.06 92.80 95.22
{0.7} 99.00 99.50 98.40 97.72 98.86 96.67 89.51 93.94 95.67
{1.0} 100 100 98.30 99.13 99.71 96.67 92.59 93.18 95.34
{1.3} 100 100 98.45 94.67 98.57 96.67 93.21 91.29 94.34
{1.5} 99.00 99.00 98.55 96.30 98.86 96.67 91.98 91.29 94.38
{2.0} 99.50 99.50 98.70 98.49 98.00 96.67 93.21 92.05 92.89

4th

{0.5} 100 100 96.35 96.96 96.29 96.67 91.36 90.53 94.35
{0.7} 99.00 99.50 97.95 98.04 98.29 96.67 93.83 93.18 95.02
{1.0} 99.50 100 98.65 98.80 92.86 96.67 91.36 90.53 95.22
{1.3} 99.00 99.00 98.55 97.83 96.29 96.67 90.74 91.29 94.77
{1.5} 99.50 99.50 98.45 99.35 98.00 96.67 91.98 92.42 93.90
{2.0} 99.50 99.50 98.50 98.59 93.71 96.67 91.36 92.42 92.53

Note: 50-LOO and 50-4fold are results on 50-class using leave-one-out and four cross-fold validation.

6.7.3.3 Assessments of MSIOMFk,D
4

σ and MSVOMFk,D
4

σ

We thoroughly discuss the significant effectiveness of taking high-order oriented magnitudes into
account DT representation in comparison with other Gaussian-based filtered features. Based on the
experimental results in Tables 6.14,6.15, 6.16, 6.17, 6.18, and 6.19, it could be stated the following
crucial assessments:

• Firstly, to prove the validation of our proposal, we have also implemented other local DT de-
scriptors, named IMFkσ and VMFkσ, that are correspondingly based on the 2D/3D non-oriented
magnitudes of Gaussian gradients (i.e., non-decomposing models involved in). It can be seen from
Table 6.13 that IMFkσ and VMFkσ are not generally efficient compared to taking advantage of their
oriented ones.
• Decomposing the Gaussian-gradient filtered outcomes in the same ranges of direction, the obtained

MSVOM features are more discriminative than the MSIOM ones (see Figure 6.21 for a graphical
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Table 6.15: Classification rates (%) on DT benchmark datasets of MSVOMFk,D
4

σ descriptor.
Dataset UCLA DynTex DynTex++
Sub-set 50-LOO 50-4fold 9-class 8-class DynTex35 Alpha Beta Gamma

1st

{0.5} 100 99.50 98.55 98.80 95.43 96.67 95.68 93.94 97.12
{0.7} 99.50 99.50 99.60 97.50 96.57 96.67 93.21 94.32 97.01
{1.0} 99.50 99.50 98.75 97.17 98.29 96.67 92.59 93.18 96.76
{1.3} 99.00 99.50 97.65 97.39 98.86 96.67 92.59 92.42 96.05
{1.5} 99.00 99.50 98.70 98.04 98.86 96.67 91.98 92.05 95.85
{2.0} 99.50 99.50 99.35 98.04 98.86 96.67 91.98 93.18 94.01

2nd

{0.5} 99.00 99.50 98.75 97.83 98.00 98.33 90.12 88.64 95.76
{0.7} 100 100 99.40 98.04 97.14 96.67 94.44 93.18 96.82
{1.0} 100 100 99.00 97.39 97.71 96.67 95.06 93.56 96.23
{1.3} 100 100 98.70 97.07 98.57 96.67 93.83 93.94 96.28
{1.5} 99.00 99.00 99.35 98.04 97.43 96.67 93.21 93.18 95.93
{2.0} 100 100 98.50 97.93 97.71 96.67 92.59 95.08 93.89

3rd

{0.5} 99.50 99.00 99.15 98.04 98.29 98.33 92.59 91.29 97.13
{0.7} 99.50 99.50 98.90 97.39 98.86 96.67 92.59 93.18 96.81
{1.0} 100 99.50 98.45 97.50 99.43 96.67 92.59 91.29 96.18
{1.3} 100 100 99.05 96.74 98.57 96.67 93.83 93.18 96.16
{1.5} 99.00 99.50 98.40 97.17 99.43 96.67 93.83 91.67 95.66
{2.0} 98.50 99.50 98.45 96.20 98.86 96.67 93.21 93.18 93.79

4th

{0.5} 99.50 99.50 97.80 97.07 96.29 96.67 90.12 89.39 94.34
{0.7} 100 100 98.65 98.70 98.86 96.67 93.83 93.94 96.07
{1.0} 100 100 98.85 98.04 97.14 96.67 95.06 94.32 96.57
{1.3} 100 100 97.85 99.02 97.43 96.67 94.44 93.56 95.82
{1.5} 99.50 99.50 99.80 98.49 96.57 96.67 94.44 94.32 95.62
{2.0} 100 100 99.20 99.24 97.43 96.67 95.06 95.45 94.39

Note: 50-LOO and 50-4fold are results on 50-class using leave-one-out and four cross-fold validation.

Table 6.16: Classification rates (%) on DT benchmark datasets of MSIOMFk,D
4

{σ} descriptor.
Dataset UCLA DynTex DynTex++
Sub-set 50-LOO 50-4fold 9-class 8-class DynTex35 Alpha Beta Gamma

1st
{0.5, 0.7} 99.00 99.50 97.95 95.22 98.57 95.00 93.83 93.18 93.77
{0.5, 1.0} 99.50 99.50 99.20 99.02 99.14 96.67 93.83 92.42 96.67
{0.7, 1.0} 99.00 99.50 99.25 97.72 99.14 95.00 92.59 92.80 96.72

2nd
{0.5, 0.7} 100 100 98.85 96.52 98.57 96.67 93.83 93.56 96.66
{0.5, 1.0} 100 100 98.45 97.28 97.14 96.67 91.98 93.94 96.63
{0.7, 1.0} 100 100 99.15 97.17 98.86 96.67 93.83 92.80 96.45

3rd
{0.5, 0.7} 99.50 99.50 98.90 97.39 98.57 96.67 92.59 93.56 96.69
{0.5, 1.0} 100 100 99.25 97.61 99.43 96.67 94.44 93.56 96.72
{0.7, 1.0} 99.50 99.50 98.65 97.83 99.14 96.67 91.98 92.80 96.36

4th
{0.5, 0.7} 100 100 97.20 97.50 97.14 96.67 91.98 94.32 96.29
{0.5, 1.0} 100 100 98.90 98.48 96.86 96.67 93.21 93.18 94.47
{0.7, 1.0} 99.50 99.50 98.20 97.39 98.29 96.67 93.83 92.42 96.19

Note: 50-LOO and 50-4fold are results on 50-class breakdown using leave-one-out and four cross-fold validation.

view of those in settings of D4 and σ = 1.3, see Tables 6.15 and 6.15 for other circumstances in
general). This is because there are complements from the intensification of pairs of gradients in
the MSVOM decomposition.
• The higher level of standard deviation σ is used for the Gaussian-gradient filterings, the less ro-

bustness of our MSIOMFk,D
4

σ and MSVOMFk,D
4

σ descriptors is mostly achieved. Absolutely,
it can be verified in Figure 6.20 that with an increase of σ from 0.5 to 2, their performances on
DynTex++ dataset are decreased about from 1% to 3% in general. This is due to lack of appear-
ance features caused by the Gaussian-gradient filterings with large levels of σ. Hence, we mainly
present results based on σ ∈ {0.5, 0.7, 1} in the rest of this section.
• Instead of exploiting Gaussian-based filtered characteristics as done in FoSIG [C2] and V-BIG

[C5], taking the high-order oriented magnitudes into account DT representation has significantly
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Table 6.17: Classification rates (%) on DT benchmark datasets of MSVOMFk,D
4

{σ} descriptor.
Dataset UCLA DynTex DynTex++
Sub-set 50-LOO 50-4fold 9-class 8-class DynTex35 Alpha Beta Gamma

1st
{0.5, 0.7} 99.50 100 98.85 96.41 98.00 96.67 95.06 93.18 97.36
{0.5, 1.0} 99.50 99.50 98.80 97.50 99.43 96.67 94.44 93.56 97.28
{0.7, 1.0} 99.50 99.50 98.10 98.48 98.86 96.67 93.83 93.18 96.78

2nd
{0.5, 0.7} 100 100 97.75 97.50 98.86 96.67 93.83 93.94 97.37
{0.5, 1.0} 100 100 98.50 97.39 98.00 96.67 93.21 93.56 97.08
{0.7, 1.0} 100 100 98.65 97.39 97.43 96.67 93.83 93.56 97.08

3rd
{0.5, 0.7} 99.50 99.50 98.70 98.37 99.14 96.67 92.59 93.18 97.32
{0.5, 1.0} 100 99.50 98.15 97.72 99.71 96.67 93.21 91.67 97.06
{0.7, 1.0} 99.50 99.50 98.70 97.28 99.43 96.67 92.59 92.04 97.25

4th
{0.5, 0.7} 100 100 98.30 97.50 97.43 96.67 91.36 92.80 96.80
{0.5, 1.0} 100 100 98.40 97.72 98.29 96.67 93.21 93.56 96.88
{0.7, 1.0} 100 100 99.05 99.57 97.71 96.67 94.44 94.70 96.93

Note: 50-LOO and 50-4fold are results on 50-class breakdown using leave-one-out and four cross-fold validation.

C
la

ss
ifi

ca
tio

n 
ra

te
s 

(%
)

=0.5 =0.7 =1.0 =1.3 =1.5 =2.0

Figure 6.20: Performances on DynTex++ of high-order MSIOMFk,D
4

σ and MSVOMFk,D
4

σ descriptors
(represented by 2D-Sk and 3D-Sk respectively) are sharply decreased when the higher level of standard
deviation σ is used for the gradient filterings.

improved the discrimination power (see Table 6.33).
• It can be found out that for the challenging datasets (i.e., DynTex35, Beta, Gamma), the proposed

descriptors with the odd derivatives often give better effectiveness of DT classification (see Tables
6.14,6.15, 6.16, and 6.17). Therefore, they should be nominated for applications in practice.
• As expected in Section 6.7.2, the multi-analysis has significantly improved the discrimination

power. Indeed, it can be seen from Tables 6.14, 6.15, 6.16, and 6.17, that using 2-scale of Gaussian
filterings with different standard deviations, the abilities of MSIOMFk,D

4

{σ} and MSVOMFk,D
4

{σ} are
enhanced and more “stable” than those of the single-scale. Also, the 2-order descriptors are better
than the single-order ones (see Tables 6.14, 6.15, 6.18, and 6.19). Furthermore, an incorporation
of 2-scale and 2-order features points out the best (see Tables 6.18 and 6.19).

Consequently, based on the effectiveness of MSIOMF
{k},D4

{σ} and MSVOMF
{k},D4

{σ} in classifying

DTs, the settings of those: MSIOMF
{1st,2nd},D4

{0.5,1.0} and MSVOMF
{1st,4th},D4

{0.7,1.0} should be recommended
for real applications as well as for comprehensive comparison with recent methods due to their best
performances.

6.8 Representation based on Gaussian-gradient features
We hereunder express our prominent framework for DT description, as graphically illustrated in Fig-

ure 6.22. The main idea is to extract robust features of high-order 2D/3D Gaussian-gradient filtering
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outcomes which are robust against noise, changes of environment, and illumination. To this end, we first
compute high-order partial derivatives of the 2D/3D Gaussian filtering kernels subject to spatio-temporal
directions (see Section 6.8.1). For a given video V , Gaussian-gradient-based components are computed
to overcome the negative impacts on DT representation (see Section 6.10.1 for their comprehensive
evaluations). As the result, completed sets Ω

2D/3D
H,σ are formed by adding Gaussian-gradient filtered ele-

ments along with their calculated magnitudes (see Section 6.8.1). In parallel, we also exploit multi-scale
analysis of 2D/3D Gaussian-gradient kernels with a set of various standard deviations F to forcefully
investigate scale-gradient characteristics (see Section 6.8.2). Finally, robust HoGF2D/3D descriptors are
introduced by addressing the typical operator CLBP on the set of complementary components Ω

2D/3D
H,F

(see Section 6.8.2). Hereafter, we present above processes in detail.

Table 6.18: Classification rates (%) on DT benchmark datasets of MSIOMF
{k},D4

{σ} descriptors.
Dataset UCLA DynTex Dyn++
Sub-set 50-LOO 50-4fold 9-class 8-class DynTex35 Alpha Beta Gamma

{1st, 2nd}
{0.5} 100 100 97.65 97.61 97.71 96.67 92.59 93.56 96.61
{0.7} 100 100 97.95 96.74 98.57 96.67 93.21 94.70 97.04
{1.0} 99.50 99.50 99.20 97.72 98.86 96.67 93.21 94.70 97.07

{1st, 3rd}
{0.5} 100 100 99.15 98.15 98.86 96.67 93.83 92.42 96.68
{0.7} 99.50 99.50 99.10 97.61 98.86 95.00 90.74 92.80 96.34
{1.0} 99.50 99.50 98.35 97.07 99.43 96.67 92.59 92.80 96.48

{1st, 4th}
{0.5} 100 100 97.95 96.63 96.57 96.67 93.21 93.56 96.66
{0.7} 100 100 98.30 99.02 98.29 96.67 94.44 94.70 96.89
{1.0} 100 100 98.30 99.02 98.29 98.33 92.59 94.32 97.08

{2nd, 3rd}
{0.5} 100 99.50 97.95 98.26 98.86 96.67 93.83 92.05 96.58
{0.7} 100 100 98.30 97.17 98.57 96.67 91.98 93.94 97.21
{1.0} 100 100 98.95 97.50 99.14 96.67 93.21 94.70 96.93

{2nd, 4th}
{0.5} 100 100 96.40 96.30 97.43 98.33 92.59 91.29 95.45
{0.7} 100 100 97.70 98.70 98.57 96.67 95.06 93.94 96.44
{1.0} 100 100 99.00 98.26 97.43 96.67 93.21 93.18 96.32

{3rd, 4th}
{0.5} 100 100 98.25 98.04 97.71 96.67 92.59 91.29 96.21
{0.7} 100 100 98.80 98.04 98.86 96.67 93.83 93.56 96.72
{1.0} 100 100 99.10 98.91 99.14 96.67 93.21 94.32 96.77

{1st, 2nd}
{0.5, 0.7} 100 100 98.55 96.20 98.00 96.67 93.83 93.94 97.46
{0.5, 1.0} 100 100 99.00 98.59 99.14 96.67 95.68 94.70 97.29
{0.7, 1.0} 100 100 98.30 99.02 98.86 96.67 93.21 95.45 97.29

{1st, 3rd}
{0.5, 0.7} 99.00 99.50 98.95 97.50 99.14 95.00 91.98 93.56 97.44
{0.5, 1.0} 100 99.50 99.45 96.74 99.43 96.67 95.06 92.05 97.19
{0.7, 1.0} 99.50 99.50 98.20 98.59 99.71 96.67 91.36 91.67 97.10

{1st, 4th}
{0.5, 0.7} 100 100 98.70 97.61 97.14 96.67 93.21 95.83 97.19
{0.5, 1.0} 100 100 98.45 97.83 98.00 98.33 94.44 95.08 97.26
{0.7, 1.0} 100 100 99.20 98.80 98.00 96.67 94.44 95.45 97.57

{2nd, 3rd}
{0.5, 0.7} 100 100 96.85 97.72 98.86 96.67 93.21 93.94 97.23
{0.5, 1.0} 100 100 98.70 96.30 99.43 96.67 94.44 93.18 97.35
{0.7, 1.0} 100 100 98.95 98.37 98.86 96.67 92.59 94.70 97.37

{2nd, 4th}
{0.5, 0.7} 100 100 98.20 97.28 98.00 96.67 91.36 94.70 96.78
{0.5, 1.0} 100 100 97.50 97.61 98.00 96.67 92.59 94.32 96.95
{0.7, 1.0} 100 100 98.95 97.50 98.57 96.67 94.44 94.32 96.67

{3rd, 4th}
{0.5, 0.7} 100 100 98.50 97.17 98.57 96.67 92.59 95.08 97.29
{0.5, 1.0} 100 100 97.35 98.48 98.86 96.67 94.44 94.70 97.26
{0.7, 1.0} 100 100 98.95 97.61 99.14 96.67 93.83 94.70 97.12

Note: 50-LOO and 50-4fold are results on 50-class breakdown using leave-one-out and four cross-fold validation.
Dyn++ stands for DynTex++.
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Table 6.19: Classification rates (%) on DT benchmark datasets of MSVOMF
{k},D4

{σ} descriptors.
Dataset UCLA DynTex DynTex++
Sub-set 50-LOO 50-4fold 9-class 8-class DynTex35 Alpha Beta Gamma

{1st, 2nd}
{0.5} 100 100 98.35 96.63 98.57 96.67 95.68 93.18 97.07
{0.7} 100 100 99.70 99.57 98.86 96.67 95.06 95.08 97.18
{1.0} 99.50 99.50 98.25 98.15 98.57 96.67 94.44 95.08 97.28

{1st, 3rd}
{0.5} 99.50 100 98.45 98.59 99.71 96.67 95.06 92.05 97.25
{0.7} 99.50 99.50 99.40 98.70 98.86 96.67 92.59 93.94 97.48
{1.0} 100 99.00 98.55 98.04 98.29 96.67 92.59 92.42 97.17

{1st, 4th}
{0.5} 100 100 98.95 97.28 97.71 96.67 93.21 93.18 97.08
{0.7} 100 100 98.40 97.50 99.71 96.67 94.44 94.32 97.28
{1.0} 100 100 98.25 99.46 99.71 96.67 95.06 94.70 97.32

{2nd, 3rd}
{0.5} 99.50 99.50 99.30 96.63 98.00 96.67 93.83 93.18 97.08
{0.7} 100 99.50 98.35 98.26 98.86 96.67 93.83 95.08 97.59
{1.0} 100 100 97.95 99.13 98.57 96.67 93.21 95.45 97.27

{2nd, 4th}
{0.5} 99.50 99.50 97.90 97.17 97.14 96.67 90.12 89.77 96.13
{0.7} 100 100 98.85 98.37 98.00 96.67 94.44 95.08 97.29
{1.0} 100 100 99.70 99.13 96.86 96.67 96.30 95.08 96.92

{3rd, 4th}
{0.5} 99.50 99.50 98.90 97.93 98.86 96.67 93.83 93.18 97.00
{0.7} 100 100 98.50 99.57 99.14 96.67 95.06 94.32 97.36
{1.0} 100 100 99.50 98.48 99.14 96.67 93.83 94.70 97.07

{1st, 2nd}
{0.5, 0.7} 100 100 97.70 97.07 99.43 96.67 95.06 94.32 97.57
{0.5, 1.0} 100 100 98.15 98.70 99.14 96.67 94.44 93.56 97.73
{0.7, 1.0} 99.50 100 99.40 99.02 98.86 96.67 95.06 95.45 97.42

{1st, 3rd}
{0.5, 0.7} 99.50 99.50 98.65 96.96 99.14 96.67 95.06 92.42 97.40
{0.5, 1.0} 99.50 99.50 97.95 97.83 99.14 96.67 94.44 92.42 97.43
{0.7, 1.0} 99.50 99.50 98.95 99.13 98.86 96.67 93.83 92.80 97.27

{1st, 4th}
{0.5, 0.7} 100 100 98.35 96.74 98.29 96.67 95.06 93.56 97.36
{0.5, 1.0} 100 100 98.80 97.93 99.43 96.67 95.68 93.94 97.76
{0.7, 1.0} 100 100 99.35 99.35 99.71 96.67 96.30 95.08 97.87

{2nd, 3rd}
{0.5, 0.7} 99.50 99.50 98.25 96.52 99.43 96.67 95.06 93.94 97.73
{0.5, 1.0} 99.50 99.50 98.75 98.59 99.71 96.67 93.83 93.56 97.64
{0.7, 1.0} 100 99.50 98.45 97.39 99.14 96.67 94.44 94.32 97.52

{2nd, 4th}
{0.5, 0.7} 100 100 97.50 97.83 98.57 96.67 92.59 94.70 97.17
{0.5, 1.0} 100 100 97.70 96.41 97.71 96.67 92.59 93.94 97.16
{0.7, 1.0} 100 100 98.65 99.02 97.71 96.67 95.06 94.70 97.36

{3rd, 4th}
{0.5, 0.7} 99.50 99.50 98.95 97.28 99.14 96.67 95.06 93.94 97.47
{0.5, 1.0} 100 100 98.70 98.15 99.71 96.67 95.68 93.94 97.43
{0.7, 1.0} 100 100 98.85 98.91 99.43 96.67 95.68 94.32 97.78

Note: 50-LOO and 50-4fold denote results on 50-class breakdown using leave-one-out and four cross-fold validation.
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Figure 6.21: A comprehensive comparison in pairs of high-order MSIOMFk,D
4

σ=1.3 and MSVOMFk,D
4

σ=1.3

descriptors.

6.8.1 High-order Gaussian-gradient Filtered Components

Motivated by the meaningful contributions of filter-bank methods [2,C2,C5], in this work, we exploit
the robust and discriminative outcomes of high-order partial derivatives of 2D/3D Gaussian filtering

112



CHAPTER 6. REPRESENTATION BASED ON VARIANTS OF GAUSSIAN FILTERINGS

 

Figure 6.22: Our proposed framework for structuring an input video V based on Gaussian-gradient fil-
tered components. Therein, the black arrows denote preprocessing steps using Gaussian-gradient kernels,
while the blue ones imply processes of DT encoding.

kernels on struggling against the well-known issues in DT representation. It is noticed that the filtering
is also applicable for the higher n-dimensional Gaussian kernels (n > 3). In the prior works, FoSIG
[C2] and V-BIG [C5] descriptors were introduced by taking advantage of Gaussian-based features to
improve the discrimination of DT encoding. Despite achieving considerable results, those issues have
been dealt with incompletely. By exploiting high-order 2D/3D Gaussian-gradient filtered components
Ω

2D/3D
H,σ instead of the non-derivative ones as done in [C2, C5], we propose HoGF2D/3D descriptors

with the performances improved clearly (see Section 6.8.2). Hereafter, we evidently present how to form
completed sets Ω

2D/3D
H,σ for DT representation.

According to Equation (6.4), the kth-order gradients (k ∈ Z and k > 0) of a 2D/3D Gaussian filtering
kernel subject to spatial coordinates (i.e., {x, y} for the 2D kernel and {x, y, z} for the 3D) are computed
as follows.

{
G2D
σ,xk

(x, y) = ∂kG2D
σ (x,y)
∂xk

G2D
σ,yk

(x, y) = ∂kG2D
σ (x,y)
∂yk

(6.44)


G3D
σ,xk

(x, y, z) = ∂kG3D
σ (x,y,z)
∂xk

G3D
σ,yk

(x, y, z) = ∂kG3D
σ (x,y,z)
∂yk

G3D
σ,zk

(x, y, z) = ∂kG3D
σ (x,y,z)
∂zk

(6.45)

where x, y, z denote the spatial and temporal axes.

Given a gray-scale image I (correspondingly a video V) and a pre-defined standard deviation σ,
two 2D Gaussian-gradient filtering kernels G2D

σ,xk
and G2D

σ,yk
are taken into account as a pre-processing

analysis to produce the following kth-order gradient-filtered images as Equation (6.46)

{
Iσ
xk

= |G2D
σ,xk

(x, y) ∗ I|
Iσ
yk

= |G2D
σ,yk

(x, y) ∗ I|
(6.46)


Vσ
xk

= |G3D
σ,xk

(x, y, z) ∗ V|
Vσ
yk

= |G3D
σ,yk

(x, y, z) ∗ V|
Vσ
zk

= |G3D
σ,zk

(x, y, z) ∗ V|
(6.47)

where “∗” is a convoluting operator. Figure 6.2(a) shows an instance of this 2D filtering. Correspond-
ingly, the kth-order gradient-filtered volumes are also figured out by convoluting 3D kernels G3D

σ,xk
,

G3D
σ,yk

, and G3D
σ,zk

on video V as Equation (6.46). Figure 6.2(b) shows an example of this computational
3D filtering.

Furthermore, in order to forcefully capture more intensive features for DT encoding, the magnitude
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property ∇I (correspondingly ∇V) of these 2D (3D) Gaussian-gradient filtered images (volumes) is
taken into account the video analysis. They are calculated as follows. It can be observed in Figure 6.2
for a specific instance of this filtering computation.

∇Iσxk,yk =
√

(Iσ
xk

)2 + (Iσ
yk

)2 , ∇Vσxk,yk,zk =
√

(Vσ
xk

)2 + (Vσ
yk

)2 + (Vσ
zk

)2 (6.48)

As the result of those, for an input image I (correspondingly an input video V), a completed set Ω2D
H,σ

(Ω3D
H,σ) of high-order 2D (3D) Gaussian-gradient complemented components is constructed as follows in

order to completely investigate the robust and discriminative features for DT representation against the
well-known encoding problems: changes of environmental elements, illumination, and noise.

Ω2D
H,σ =

{
Iσxk , I

σ
yk ,∇I

σ
xk,yk

}m
k=1

, Ω3D
H,σ =

{
Vσxk ,V

σ
yk ,V

σ
zk ,∇V

σ
xk,yk,zk

}m
k=1

(6.49)

where m = |H| is a positive integer that denotes a number of computing derivations involved with a
particular DT encoding. For example, m = 2 means that two different orders of derivative operations
are taken into account the current computation.

It should be noted that the 2D Gaussian-gradient filtered components subject to separative directions
(i.e., Iσ

xk
and Iσ

yk
) are not exploited in [119], where only the intensive magnitude information is addressed

for encoding textual images. In the meanwhile, the Iσ
xk

and Iσ
yk

properties are significant in improving the
performance. Indeed, our experiments for DT classification have verified their productive contributions
in enriching more gradient-filtered patterns for DT description (see Table 6.24 for a certain confirmation).
In order to be convenient for further presentation, Ω

2D/3D
H,σ is henceforward an abbreviation of high-order

Gaussian-gradient filtered images Ω2D
H,σ and volumes Ω3D

H,σ in general.

6.8.2 DT Representation Based on Ω
2D/3D
H,σ Components

As revealed in Section 6.8.1, the filtered elements in Ω
2D/3D
H,σ are robust against the well-known

shortcomings of DT representation. They also are complementary to each other in enriching shape
and motion clues. In this section, we take advantage of these beneficial properties along with multi-scale
Gaussian-based filtering analysis in order to effectively capture high-order Gaussian-gradient features for
enhancing the discriminative ability. Appropriately, let V denote an input video; F = {σi}li=1 be a set of
pre-defined standard deviations, where l ∈ Z+ indicates a number of Gaussian filtering scales involved
with. To be compliant with types of Ω

2D/3D
H,F components, we hereafter conduct two corresponding DT

descriptions subject to the completed supporting components of multi-scale high-order 2D/3D Gaussian-
gradients (i.e., Ω2D

H,F and Ω3D
H,F ). According to that, two significant descriptors with high performances

are constructed as follows.

Proposed HoGF2D descriptor: To be in accordance with structuring the completed set of high-
order 2D Gaussian-gradient components Ω2D

H,F , we firstly partition the video V into separated collections
of plane-images {fXY , fXT , fY T } subject to its three orthogonal planes {XY,XT, Y T} (see Figure
6.22 for a visual demonstration). After that, Equations (6.46) and (6.48) are used in order to compute
high-order 2D Gaussian-gradient filtered components based on these plane-image collections, i.e., corre-
spondingly Ω2D

H,F (fXY ), Ω2D
H,F (fXY ), and Ω2D

H,F (fY T ). A simple operator Ψ(.) is then utilized to locally
analyze the obtained components in order to efficiently capture high-order 2D Gaussian-gradient features
Γ(.) of multi-scale spatio-temporal appearances. For example, with respect to a plane-image I ∈ fXY ,
properties of Γ(.) are structured as

Γ(I,Ω2D
H,F (I)) =

m⊎
k=1

[
Ψ(Iσi

xk
),Ψ(Iσi

yk
),Ψ(∇Iσi

xk,yk
)
]l
i=1

(6.50)

where
⊎

indicates an operation of concatenating 2D Gaussian-gradient filtered features addressed by
m = |H| different orders of partial derivatives with respect to the spatial domain {x, y}, Ψ(.) denotes
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... ... ... 

 

 

Figure 6.23: Illustration of using a simple operator Ψ = CLBPriu2
{8,1} to structure the first-order Gaussian-

gradient filtered volume Vσ
zk

, which is extracted by convolving a gradient-kernel G3D
σ,zk

(x, y, z) on the
temporal direction z of a given video V with σ = 0.7 and k = 1.

a local operator involved in the encoding, e.g., LBP [81], CLBP [3], etc. Finally, the achieved proba-
bility distributions are concatenated and normalized to construct a forceful descriptor of High-order 2D
Gaussian-gradient-based Features (HoGF2D) as follows.

HoGF2D(V) =
[
Γ(fXY ,Ω

2D
H,F (fXY )),Γ(fXT ,Ω

2D
H,F (fXT )),Γ(fY T ,Ω

2D
H,F (fY T ))

]
(6.51)

Proposed HoGF3D descriptor: Similar to computing on Ω2D
H,F , we firstly address Equations (6.47)

and (6.48) for preprocessing video V to calculate Gaussian-gradient volumes Ω3D
H,F . For each volume

VG ∈ Ω3D
H,F , let f ′XY , f ′XT , and f ′Y T be collections of plane-images separated subject to three orthogonal

planes of VG. The complementary filtered component is then encoded by applying the simple operator
Ψ(.) to efficiently extract shape and motion cues of DTs as

Λ(VG) =

[ ∑
I∈f ′XY

Ψ(I)

|f ′XY |
,

∑
I∈f ′XT

Ψ(I)

|f ′XT |
,

∑
I∈f ′Y T

Ψ(I)

|f ′Y T |

]
(6.52)

where |f ′XY |, |f ′XT |, and |f ′Y T | denote the number of plane-image collections f ′XY , f ′XT , and f ′Y T re-
spectively. Figure 6.23 shows an instance of a visual computation for the first-order Gaussian-gradient
filtered volume V0.7

z1 using Ψ = CLBPriu2
{8,1}. Finally, the obtained histograms are concatenated and nor-

malized to construct a robust descriptor of High-order 3D Gaussian-gradient-based Features (HoGF3D)
as

HoGF3D(V,Ω3D
H,F (V)) =

m⊎
k=1

[
Λ(Vσi

xk
),Λ(Vσi

yk
),Λ(Vσi

zk
),Λ(∇Vσi

xk,yk,zk
)
]l
i=1

(6.53)

where
⊎

indicates a concatenation of different 3D Gaussian-gradient filtered features addressed by m =
|H| different orders of partial derivatives in respect of the spatial and temporal directions {x, y, z}. For
a convenience in further presentation, HoGF2D/3D could be denoted as an abbreviation of the proposed
DT descriptors in general.

Furthermore, in order to evaluate the performance of our proposed framework, we also investigate
2D/3D Gaussian filtering kernels without derivatives for a comprehensive comparison in DT represen-
tation. According to structuring the HoGF2D descriptor, the Zero-order 2D Gaussian-gradient Features
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(ZoGF2D) are captured as

ZoGF2D(V) =
[
Ψ(fσiXY ),Ψ(fσiXT ),Ψ(fσiY T )

]l
i=1

(6.54)

in which fσiXY , fσiXT , and fσiY T are sets of filtered plane-images of V that are computed by using a 2D non-
Gaussian-gradient filtering kernel with σi. Similarly, ZoGF3D for 3D non-Gaussian-gradient Features is
formed as follows.

ZoGF3D(V) =
[
Λ(VσiG )

]l
i=1

(6.55)

where VσiG is a filtered volume extracted by convolving on V a 3D non-Gaussian-gradient filtering kernel
with σi. In fact, these zero-order descriptors ZoGF2D/3D are respectively crucial extensions in multi-
scale filtering analysis for FoSIG [C2] and V-BIG [C5]. It should be noted that the DoG (difference
of Gaussians) characteristics in FoSIG and V-BIG are not regarded in ZoGF2D/3D due to an objective
comparison with HoGF2D/3D in DT classification performances.

In terms of comparison with the abilities of non-Gaussian-gradient descriptors (i.e., ZoGF2D/3D,
FoSIG [C2], and V-BIG [C5]), our descriptors HoGF2D/3D have the following advantageous properties
to enhance the discrimination power.

• The concept of Gaussian-gradient kernels allows HoGF to address more complementary compo-
nents than the non-Gaussian-gradient descriptors have done. Specifically, while HoGF takes into
account three components for HoGF2D or four for HoGF3D due to Equation (6.49), the non-
Gaussian-gradient methods consider at most two complementary components because they have
dealt with only Gaussian-based blurred/invariant features.
• Beside informative magnitudes (i.e.,∇IF

xk,yk
and∇VF

xk,yk,zk
) exploited for DT encoding, the pro-

posed HoGF2D/3D descriptors can exploit both symmetric and asymmetric features by addressing
even and odd orders in the 2D/3D Gaussian-gradient filterings which extract local features in a
totally different way (see Fig. 6.26 for particular performances of these features). Then combining
those of the even and odd orders allows to point out more complementary filtered features.
• The discrimination power is enhanced thanks to a feature-concatenated operation of coherent

Gaussian-gradient patterns which are extracted from complementary filtered elements in Ω
2D/3D
H,F

(see Figure 6.27 for evaluations).
• Different deviations of 2D/3D Gaussian-gradient filtering kernels are utilized to diversely capture

Gaussian-gradient-based features in a multi-scale analysis for DT representation. In the meantime,
FoSIG [C2] and V-BIG [C5] are lack of scale-pattern information due to only a single Gaussian-
based kernel involved with.

6.8.3 Experiments and evaluations

6.8.3.1 Parameters for experimental implementation

Settings for Gaussian-gradient filterings: In order to calculate high-order Gaussian-gradient filtered
images/volumes (i.e., Ω

2D/3D
H,F ), we empirically investigate a relevant set of standard deviations F =

{0.5, 0.7, 1, 1.5, 2} with spatial and temporal directions x, y, z ∈ [−3σi, 3σi], such that σi ∈ F . In
terms of computing partial derivatives subject to the x, y, z coordinates, we conduct Gaussian-gradients
from the 1st to 4th-order, i.e., H = {1st, 2nd, 3rd, 4th}. Accordingly, different coefficients of a 2D/3D
Gaussian-gradient kernel are respectively formed for the separable filtering convolutions on along a
direction t ∈ {x, y, z} as follows.{

− t

σ2
i

,
t2 − σ2

i

σ4
i

,− t
3 − 3tσ2

i

σ6
i

,
t4 − 6t2σ2

i + 3σ4
i

σ8
i

}
(6.56)

where σi ∈ F . Figure 6.24 shows an instance of filtered results using different orders of a 3D Gaussian-
gradient with σ = 0.7.
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Figure 6.24: An instance of filtering a video V using 4 orders (i.e., k = {1, 2, 3, 4}) of a 3D Gaussian-
gradient kernel with σ = 0.7. Therein, columns (a), (b), and (c) denote Gaussian-gradient filtered
outcomes of an input frame fXY . (d) denotes informative magnitudes of the obtained Gaussian-gradients
of fXY .

Settings for structuring HoGF2D/3D descriptors: In order to figure out HoGF2D/3D patterns based
on the filtered components Ω

2D/3D
H,F , we exploit the simple and popular operator CLBP using 3D joint

settings of riu2 mapping with 2(P + 2)2 bins, i.e., Ψ = CLBPriu2
P,R . Therein, local supporting regions

can be addressed as {(P,R)} = {(8, 1), (8, 2)} for capturing more forceful information in larger regions,
where P ∈ Z+ is a number of considered neighbors involved with. As mentioned in Section 6.8.2, due
to three planes {XY,XT, Y T} used for each scale of CLBP computation, it takes 3×2×2×(8+2)2 =

1200 bins in order to structure a Gaussian-gradient filtered component in Ω
2D/3D
H,F . Accordingly, the

dimensions of our HoGF2D/3D descriptors are then subject to a number of high-order derivatives along
with a quantity of Gaussian filtering scales taken into account the DT encoding. That means 1200 ×
m × |F| × |Ω2D/3D

H,F | bins in general, where l = |F| and |Ω2D/3D
H,F | respectively denote the cardinality

of standard deviations and of complementary components involved with the filtering. For instance, in
respect of one filtered component in Ω

2D/3D
H,F that is computed by using the first-order Gaussian-gradient

(i.e., m = 1) with a single-scale of Gaussian filtering (i.e., |F| = 1), the final dimensions are 1200×3 =
3600 bins for HoGF2D descriptor, and 1200×4 = 4800 bins for HoGF3D (see Table 6.2 for comparison
with other LBP-based descriptors).

Settings for structuring ZoGF2D/3D descriptors: To be objective in comparison with our
HoGF2D/3D, parameters for implementing the zero-order ZoGF2D/3D descriptors should be in ac-
cordance with those of HoGF2D/3D for DT representation, i.e., Ψ = CLBPriu2

P,R with local support-
ing regions {(P,R)} = {(8, 1), (8, 2)}, and F = {0.5, 0.7, 1, 1.5, 2} for the convolved directions
x, y, z ∈ [−3σi, 3σi]. Accordingly, it takes 1200 bins for single-scale ZoGF2D/3D to describe dynamic
patterns.

6.8.3.2 Assessments of High-order Gaussian-gradient Descriptors

We thoroughly discuss the significant effectiveness of the high-order Gaussian-gradient features in
comparison with the non-Gaussian-gradient characteristics. Accordingly, the descriptors HoGF2D/3D
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Table 6.20: Classification rates (%) on DT benchmark datasets of HoGF2D descriptor.
Dataset UCLA DynTex DynTex++

Order {σi} 50-LOO 50-4fold 9-class 8-class DynTex35 Alpha Beta Gamma

1st

{0.5} 100 100 99.25 98.91 97.71 96.67 95.68 95.08 96.89
{0.7} 100 100 98.95 97.61 99.14 98.33 95.06 94.70 96.99
{1.0} 100 100 99.50 98.70 98.86 98.33 94.44 95.08 96.43
{0.5, 0.7} 100 100 98.55 98.70 98.86 96.67 95.68 95.45 97.64
{0.7, 1.0} 100 100 98.10 98.15 98.86 98.33 94.44 95.45 97.01
{0.5, 1.0} 100 100 99.15 99.13 98.86 96.67 95.68 96.21 97.44

2nd

{0.5} 100 100 99.05 97.39 98.86 100 93.21 92.80 96.37
{0.7} 99.50 99.50 98.25 97.93 98.57 98.33 95.68 93.56 96.98
{1.0} 100 100 98.55 97.83 98.86 100 95.06 93.94 96.67
{0.5, 0.7} 100 100 98.35 97.83 99.14 98.33 95.68 93.56 97.20
{0.7, 1.0} 100 100 98.75 98.70 99.43 100 95.06 94.70 97.10
{0.5, 1.0} 100 100 98.55 98.70 100 100 95.06 94.32 97.12

3rd

{0.5} 100 100 99.05 98.80 99.14 100 95.68 96.97 96.71
{0.7} 100 100 98.40 98.26 98.57 98.33 95.06 95.08 96.57
{1.0} 100 100 97.65 98.26 99.14 98.33 95.06 93.94 96.56
{0.5, 0.7} 100 100 98.85 97.72 98.86 98.83 94.44 96.97 97.04
{0.7, 1.0} 100 100 99.60 97.50 99.14 98.33 95.68 95.08 96.86
{0.5, 1.0} 100 100 98.90 97.83 99.14 98.33 96.30 95.45 97.06

4th

{0.5} 100 100 98.10 98.04 99.14 100 91.36 93.18 96.71
{0.7} 99.50 99.50 97.90 98.26 99.14 96.67 93.83 93.18 95.95
{1.0} 99.50 99.50 97.85 95.87 99.14 96.67 95.68 92.80 95.53
{0.5, 0.7} 100 100 98.85 97.50 99.43 100 94.44 93.18 97.09
{0.7, 1.0} 99.50 99.50 98.85 96.85 99.43 96.67 93.83 93.18 96.29
{0.5, 1.0} 99.50 99.50 97.85 96.41 99.14 100 95.06 93.94 97.18

Note: 50-LOO and 50-4fold denote results on 50-class breakdown using leave-one-out and four cross-fold validation.

and ZoGF2D/3D are constructed using the parameters nominated in Section 6.8.3.1. In general, experi-
mental results for DT classification on benchmark datasets have verified that spatio-temporal patterns of
HoGF2D/3D have much better discrimination power compared to those of ZoGF2D/3D, especially, per-
formances on the challenging datasets, i.e., Beta, Gamma, and DynTex++. It has proved the advantages
of Gaussian-gradients in outstandingly resisting the well-known problems of DT encoding: changes of
environmental factors, illumination, and noise. As deliberated in Section 6.8.2, it could be asserted the
following crucial statements based on the experimental results:

First, the higher value of standard deviation σ is taken into account a Gaussian-gradient filtering, the
less discrimination power of our HoGF2D/3D descriptors is obtained. Indeed, it can be verified in Figure
6.25 that with an increase of σ from 0.5 to 2, their performance on DynTex++ dataset is decreased
about from 1% to 3% in general. This is due to the reductive appearance information caused by the
gradient filterings with the large values of σ. Furthermore, Figure 6.25 also indicates the significant
and “stable” operation of our HoGF2D/3D at levels of σ ∈ [0.5, 1]. Besides, the reduction is similarly
adapted for ZoGF2D/3D descriptors (see the 0th-order label in Figure 6.25). Therefore, from now on,
we mostly report evaluations in consideration of the filterings with standard deviations in that range, i.e.,
F = {0.5, 0.7, 1} (see Tables 6.20, 6.21, 6.22, and 6.23).

Second, as pointed out in Section 6.8.2, taking advantage of Gaussian-gradient features in Ω
2D/3D
H,F for

DT representation, our proposed HoGF2D/3D descriptors obtain significant rates in classifying DTs (see
Tables 6.20, 6.21, 6.22, and 6.23). This is thanks to the crucial contribution of each component in Ω

2D/3D
H,F

(see Table 6.24). Furthermore, the filterings using 3D Gaussian-gradient kernels allow to enrich more
spacial information for voxels of a video V , i.e., complementary filtered volumes in Ω3D

H,F . Therefore,
capturing spatio-temporal patterns based on these volumes have structured HoGF3D descriptor with
more stable performances in general, contrary to encoding HoGF2D from filtered elements in Ω2D

H,F
computed by convolving 2D filtering kernels on V’s plane-images (see Tables 6.20, 6.21, 6.22, and
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Table 6.21: Classification rates (%) on DT benchmark datasets of HoGF3D descriptors.
Dataset UCLA DynTex DynTex++

Order {σi} 50-LOO 50-4fold 9-class 8-class DynTex35 Alpha Beta Gamma

1st

{0.5} 100 100 98.30 98.59 98.57 98.33 96.91 96.21 97.38
{0.7} 100 100 98.70 99.13 99.14 98.33 96.91 96.21 97.64
{1.0} 100 100 98.65 98.91 98.86 98.33 96.91 96.97 97.23
{0.5, 0.7} 100 100 98.90 97.39 98.86 98.33 96.91 96.59 97.63
{0.7, 1.0} 100 100 98.95 98.04 98.86 98.33 97.53 95.83 97.26
{0.5, 1.0} 100 100 99.65 97.93 99.43 98.33 96.91 96.59 97.84

2nd

{0.5} 100 100 98.65 98.80 99.43 100 92.59 93.56 96.44
{0.7} 100 100 99.30 99.46 98.29 100 96.30 94.70 97.32
{1.0} 100 100 99.00 99.02 98.86 100 95.06 95.08 97.13
{0.5, 0.7} 100 100 99.45 99.24 99.71 100 96.91 93.94 97.79
{0.7, 1.0} 100 100 98.45 98.80 99.14 100 96.30 94.70 97.26
{0.5, 1.0} 100 100 98.75 98.48 100 100 96.30 95.08 97.64

3rd

{0.5} 100 100 99.40 98.70 99.14 98.83 96.30 96.21 97.18
{0.7} 100 100 98.55 97.83 98.57 98.83 96.30 95.08 97.02
{1.0} 100 100 98.85 98.59 99.14 98.83 97.53 95.45 96.96
{0.5, 0.7} 100 100 98.70 97.61 98.86 98.83 96.91 96.21 97.30
{0.7, 1.0} 100 100 98.05 98.04 99.14 98.83 97.53 95.83 97.34
{0.5, 1.0} 100 100 99.60 97.83 99.14 98.83 96.30 96.21 97.34

4th

{0.5} 100 100 98.55 97.61 99.14 100 92.59 93.94 96.84
{0.7} 99.50 100 98.95 97.93 98.86 96.67 95.06 93.18 96.23
{1.0} 99.50 99.50 98.20 97.50 99.14 98.33 96.30 93.56 96.07
{0.5, 0.7} 100 100 99.65 96.74 99.43 100 95.68 93.94 97.62
{0.7, 1.0} 99.50 100 98.90 97.07 99.43 96.67 96.30 94.70 96.89
{0.5, 1.0} 100 100 99.60 96.20 99.43 100 95.69 93.94 97.34

Note: 50-LOO and 50-4fold denote results on 50-class breakdown using leave-one-out and four cross-fold validation.

Table 6.22: Classification rates (%) on DT benchmark datasets of multi-order HoGF2D descriptor.
Dataset UCLA DynTex DynTex++

Order {σi} 50-LOO 50-4fold 9-class 8-class DynTex35 Alpha Beta Gamma

{1st, 2nd}
{0.5} 100 100 98.30 96.41 98.86 96.67 96.91 93.94 97.47
{0.7} 100 99.50 98.00 95.76 99.43 100 95.06 95.83 97.43
{1.0} 100 100 99.30 99.02 99.71 100 96.91 95.08 97.39

{1st, 3rd}
{0.5} 100 100 99.15 97.39 99.14 98.33 96.30 96.21 97.38
{0.7} 100 100 99.00 96.96 99.14 98.33 95.06 94.32 97.37
{1.0} 100 100 99.45 96.09 99.14 100 95.06 95.08 97.22

{1st, 4th}
{0.5} 100 100 98.35 97.39 98.57 100 95.68 93.94 97.58
{0.7} 100 100 98.75 98.04 98.86 96.67 94.44 95.08 97.39
{1.0} 99.50 99.50 98.40 96.41 98.86 98.33 97.53 95.83 97.01

{2nd, 3rd}
{0.5} 100 100 98.90 96.96 100 100 96.30 94.70 97.37
{0.7} 100 100 98.45 96.85 99.14 100 95.68 95.45 97.31
{1.0} 100 100 99.20 98.91 99.71 100 97.53 96.59 97.19

{2nd, 4th}
{0.5} 100 100 97.15 97.83 99.43 100 92.59 92.80 96.99
{0.7} 100 100 98.75 99.13 98.86 98.33 93.83 93.18 96.77
{1.0} 99.50 99.50 98.70 95.89 99.71 98.33 95.06 93.94 96.71

{3rd, 4th}
{0.5} 100 100 99.15 96.52 99.71 100 96.30 95.08 97.24
{0.7} 100 100 98.65 96.96 99.43 96.67 95.68 95.08 97.34
{1.0} 99.50 99.50 98.10 96.96 99.43 98.33 97.53 97.35 97.07

Note: 50-LOO and 50-4fold denote results on 50-class breakdown using leave-one-out and four cross-fold validation.

6.23). This is also in accordance with the statements asserted in the prior work [C5], in which V-BIG
[C5], exploiting 3D Gaussian-based kernels, outperforms FoSIG [C2] with the 2D kernels involved in
classifying DTs on the challenging dataset, i.e., DynTex and DynTex++ (see Section 6.8.3.3 for further
evaluations).
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Table 6.23: Classification rates (%) on DT benchmark datasets of multi-order HoGF3D descriptor.
Dataset UCLA DynTex DynTex++

Order {σi} 50-LOO 50-4fold 9-class 8-class DynTex35 Alpha Beta Gamma

{1st, 2nd}
{0.5} 100 100 99.15 99.13 99.14 98.33 96.91 95.08 97.74
{0.7} 100 100 97.20 98.70 99.14 100 96.91 96.21 97.71
{1.0} 100 100 99.60 97.50 99.71 100 96.91 96.59 97.34

{1st, 3rd}
{0.5} 100 100 97.80 98.70 99.14 98.33 96.30 96.59 97.67
{0.7} 100 100 98.60 99.35 98.57 98.33 96.91 96.21 97.57
{1.0} 100 100 99.40 99.13 99.14 98.33 96.30 97.53 96.98

{1st, 4th}
{0.5} 100 100 98.70 98.26 98.86 100 96.91 95.45 97.39
{0.7} 100 100 98.70 97.50 99.43 98.33 96.30 94.70 97.74
{1.0} 100 100 99.35 97.83 98.86 98.33 98.15 97.73 97.28

{2nd, 3rd}
{0.5} 100 100 98.30 97.07 99.71 98.33 95.06 93.94 97.40
{0.7} 100 100 99.05 99.02 98.86 98.33 96.91 96.21 97.73
{1.0} 100 100 99.55 99.02 99.71 100 97.53 96.59 97.39

{2nd, 4th}
{0.5} 100 100 99.00 96.52 99.71 100 92.59 93.18 96.88
{0.7} 100 100 99.05 98.37 99.43 98.33 95.06 93.18 97.08
{1.0} 100 100 98.80 96.85 99.71 98.33 96.91 95.83 97.28

{3rd, 4th}
{0.5} 100 100 98.25 97.83 99.71 100 95.68 94.32 97.31
{0.7} 100 100 99.50 97.83 99.71 98.33 96.91 95.08 97.65
{1.0} 100 100 99.25 99.57 99.43 98.33 98.15 97.53 97.63

Note: 50-LOO and 50-4fold denote results on 50-class breakdown using leave-one-out and four cross-fold validation.
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Figure 6.25: A sharply decrease of performances of high-order HoGF2D/3D and zero-order ZoGF2D/3D

on DynTex++ when increasing σ from 0.5 to 2 for the Gaussian-gradient filterings.

Third, DT asymmetric gradient features extracted from the odd derivative functions mostly have more
forceful robustness in enhancing the performance compared to symmetric patterns derived from the even
derivations. It could be thanks to the homogeneous distributions of filtered results. Indeed, experimental
results have verified that in general, HoGF2D/3D using the 1st and 3rd partial derivatives obtain better
and “stable” performances compared to those exploiting the 2nd and 4th ones, particularly, the perfor-
mances on the challenging schemes, i.e., Beta and Gamma (see Tables 6.20 and 6.21). This assessment
is also agreed with the abilities of the zero-order descriptor ZoGF2D/3D since they are also based on an
even derivative. Also, it should be noted that the 2nd one points out significant rates on UCLA as well as
on DynTex35 and Alpha schemes but not “stably” on Beta, Gamma, and DynTex++. Moreover, Figure
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Table 6.24: Contributions of the first-order components in Ω
2D/3D
{1st},{0.7}.

UCLA DynTex
Dyn++

Ω
2D/3D
{1st},{0.7} 50-LOO 50-4fold 9-class 8-class Dyn35 Alpha Beta Gamma
Iσ=0.7
x1 100 100 99.20 96.20 98.00 98.33 93.21 91.29 95.64
Iσ=0.7
y1 100 100 98.10 97.83 97.14 100 93.21 94.32 95.74
∇Iσ=0.7

x1,y1 100 100 97.75 97.50 96.29 95.00 91.98 92.42 95.22
Ω2D
{1st},{0.7} 100 100 98.95 97.61 99.14 98.33 95.06 94.70 96.99

Vσ=0.7
x1 100 100 98.25 97.83 96.29 96.67 93.83 93.94 94.55
Vσ=0.7
y1 99.50 99.50 98.50 98.80 98.86 96.67 92.59 92.42 94.02
Vσ=0.7
z1 97.50 97.00 98.85 98.70 97.71 98.33 95.06 91.29 95.29
∇Vσ=0.7

x1,y1,z1 100 100 98.95 97.61 96.57 95.00 93.83 92.05 95.13
Ω3D
{1st},{0.7} 100 100 98.70 99.13 99.14 98.33 96.91 96.21 97.64

Note: 50-LOO and 50-4fold denote results on 50-class breakdown using leave-one-out and four cross-
fold validation. Dyn35 and Dyn++ are shortened for DynTex35 sub-set and DynTex++ respectively.

Figure 6.26: Outperformances of HoGF2D/3D descriptors using asymmetric gradient features compared
to those using symmetric features.

6.26 shows the outstanding performances of the odd HoGF2D/3D descriptors compared to the even ones,
especially, from 2% to 4% rates of improvement on challenging datasets, i.e., Beta and Gamma.

Fourth, it can be visually seen from Figure 6.24 that the higher orders of derivatives are taken into
account, the larger informative appearances have been lost. It is due to the increase of amplitude frequen-
cies in the higher orders of differentiation. This negatively affects the understanding of spatial features
in DT encoding. Indeed, our experimental results have agreed with that (see Table 6.21). For instance,
using σ = 1 for the filtering, classification rate of the 1st-order HoGF3D descriptor has been reduced
from 96.97% to 95.45% on Gamma, while from 95.08% to 93.56% for the 2nd-order one.

Fifth, based on the experimental results, it can be generally validated that the multi-scale analysis of
different standard deviations F = {σi} allows to adequately capture scale-informative features in order
to enhance the discrimination power for DT representation (see Tables 6.20 and 6.21). In spite of that,
the enhancements are just at modest levels and not stable as well, while the dimension of HoGF2D/3D

increases by 2 times. For instance, the first-order descriptor HoGF2D
1st obtains 95.08% and 94.70% using

single-scale σ = 0.5 and σ = 0.7 on Gamma respectively. In the meanwhile, a little better rate of 95.45%
is achieved by integrating these scales, i.e., {0.5, 0.7}.

Finally, the spatio-temporal characteristics in HoGF2D/3D could be enhanced in more robustness and
operative stability thanks to multi-order of derivatives taken into account the DT encoding, as asserted in
Section 6.8.1. In fact, Tables 6.22 and 6.23 shows the better performances of our HoGF2D/3D descriptors
when exploiting multi-order Gaussian-gradient features. Among of them, the discriminative power of
HoGF2D is improved significantly (see Tables 6.20, 6.21, 6.22, and 6.23).

In short, based on above thorough assessments, we point out in Table 6.25 several advantageous
settings of our proposed HoGF2D/3D descriptors that are also recommended for comparing to state of
the art, as well as implementing applications in practice. Accordingly, it can be considered for either
using the single-order HoGF2D/3D descriptors to meet demands of lower dimension, or the 2-order
ones for strict requirements of high precision on challenging datasets. Hereunder, we assess in detail
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Table 6.25: Settings for comparison and real implementations.
Setting {σi} Single-order Multi-order #Dimension Reference
HoGF2D {0.5} 3rd-order - 3600 bins Table 6.20
HoGF2D {1.0} - {1st, 2nd} 7200 bins Table 6.22
HoGF2D {1.0} - {2nd, 3rd} 7200 bins Table 6.22
HoGF3D {0.5} 3rd-order - 4800 bins Table 6.21
HoGF3D {1.0} - {3rd, 4th} 9600 bins Table 6.23
HoGF3D {1.0} - {2nd, 3rd} 9600 bins Table 6.23

Note: “-” means “not available”.
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Figure 6.27: Performances of our high-order HoGF2D/3D descriptors in comparison with those of non-
Gaussian-gradient descriptors, i.e., ZoGF2D/3D, FoSIG [C2], and V-BIG [C5].

the outstanding performances of HoGF2D/3D compared to ZoGF2D/3D, descriptors without Gaussian-
gradient features involved in. After that, particular evaluations classifying DTs on each dataset are
discussed in a global comparison with the existing methods.

6.8.3.3 Comprehensive Comparison to Non-Gaussian-gradients

As mentioned in Section 6.8.2, our HoGF2D/3D descriptors have prominent abilities in classifying
DT videos compared to the zero-order ZoGF2D/3D and other Gaussian-based DT descriptors, i.e., V-BIG
[C5] and FoSIG [C2] (see Figure 6.27). It is thanks to capturing spatio-temporal features in the high-order
Gaussian-gradient components Ω

2D/3D
H,F instead of those without derivatives taken into account. Indeed, it

can be observed from Tables 6.20, 6.21, 6.26, and 6.27 that using the same settings of standard deviations
F and supporting regions {(P,R)} (see Section 6.8.3.1), the single-order HoGF2D/3D descriptors obtain
significantly higher rates compared to ZoGF2D/3D in both single-scale and multi-scale configurations
on challenging datasets, i.e., Beta, Gamma, and DynTex++ (see Figure 6.26).

6.9 Representation based on DoDG-filtered features
6.9.1 Construction of DoDG-filtered descriptors

Our proposal is graphically illustrated as Figure 6.28. In general, it takes two major steps to structure
a given video V: i) a novel filtering for an efficient reduction of the negative impacts of the problems on
DT representation; ii) a local DT encoding of the obtained filtered-outcomes in simplicity of computa-
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Table 6.26: Rates (%) on DT benchmark datasets of ZoGF2D descriptor.
Dataset UCLA DynTex

DynTex++{σi} 50-LOO 50-4fold 9-class 8-class DynTex35 Alpha Beta Gamma
{0.5} 100 100 98.85 98.15 98.57 100 90.74 92.05 95.73
{0.7} 100 100 98.05 97.17 98.57 100 91.98 93.18 95.76
{1.0} 100 100 98.05 97.61 98.86 100 91.98 93.56 94.12
{0.5, 0.7} 100 100 98.20 98.80 98.86 100 91.36 92.05 96.16
{0.7, 1.0} 100 100 98.65 96.41 98.57 100 91.98 92.05 95.72
{0.5, 1.0} 100 100 97.65 97.17 99.14 100 90.74 91.67 95.90

Note: 50-LOO and 50-4fold denote results on 50-class using leave-one-out and four cross-fold validation.

Table 6.27: Rates (%) on DT benchmark datasets of ZoGF3D descriptor.
Dataset UCLA DynTex

DynTex++{σi} 50-LOO 50-4fold 9-class 8-class DynTex35 Alpha Beta Gamma
{0.5} 100 100 99.10 97.93 98.29 100 92.59 92.80 96.01
{0.7} 100 100 98.75 97.61 98.29 100 92.59 93.56 95.59
{1.0} 100 100 99.20 97.83 98.57 100 92.59 94.32 93.80
{0.5, 0.7} 100 100 99.15 98.70 98.86 100 92.59 92.80 96.08
{0.7, 1.0} 100 100 98.50 97.39 98.29 100 93.21 93.56 94.45
{0.5, 1.0} 100 100 97.03 99.23 98.29 100 91.98 93.18 95.83

Note: 50-LOO and 50-4fold denote results on 50-class using leave-one-out and four cross-fold validation.

tion. For the filtering, we have introduced a novel DoDG kernel based on the difference of high-order
Gaussian-gradients (see Section 6.3.1). This allows to point out DoDG-filtered outcomes that effectively
deal with the well-known above issues thanks to robustness of invariant Gaussian-gradient-filtered fea-
tures compared to the non-Gaussian-gradient-filtered ones of the conventional DoG, which is exploited in
FoSIG [C2] and V-BIG [C5] but its ability has been just at a moderate level due to a lack of complemen-
tary filtered components involved in the DT encoding, i.e., only one DoG-filtered outcome (see Figure
6.4 line (a)) obtained by a DoG filtering operation with each pre-defined pair of standard deviations.
Section 6.10.1 gives more thorough discussion of this significant point. For the local DT encoding, we
investigate the effectiveness of the DoDG kernel in 2D and 3D dimensions for the pre-processing step.
CLBP [3], a simple operator, can be then addressed for capturing local DoDG features of the obtained
2D/3D DoDG-filtered outcomes. As a result, DoDGF2D/3D descriptors with very good performances
on DT recognition compared to recent methods are constructed.

In order to verify the ability of DoDG in dealing with the negative influences on DT representation,
we take its 2D and 3D variations into account the pre-processing step of encoding a given video V for
noise-resistance. The DoDG-filtered outputs are then encoded by CLBP [3], a simple operator, in order

 

Figure 6.28: Our proposed framework for encoding a video V based on its DoDG-filtered outcomes
computed by the novel DoDG filtering kernels. Therein, the black arrows denote pre-processing steps,
while the blue ones are for processes of DT encoding.
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to correspondingly form robust local DT descriptors. Hereafter, we express these processes in detail.

Proposed DoDGF2D
σ,σ′,F descriptor: To be compliant with the DoDG2D filtering, the video V is

decomposed subject to its orthogonal planes to obtain separate collections of plane-images fXY , fXT ,
and fY T . With respect to each image I ∈ fXY , a k-order DoDG2D kernel is convolved on it to point
out DoDG-filtered images as {

Iσ,σ
′

∂xk
= DoDG2D

σ,σ′,∂xk(x, y) ∗ I
Iσ,σ

′

∂yk
= DoDG2D

σ,σ′,∂yk(x, y) ∗ I
(6.57)

in which “*” stands for a convolving operator; x, y are spatial coordinates. Samples of this filtering can
be seen in Figure 6.4: line (b) for the odd gradients and line (c) for the even ones. Since Iσ,σ

′

∂xk
and

Iσ,σ
′

∂yk
are bipolar-filtered images, it could be possible to consider their absolute outcomes (i.e., |Iσ,σ

′

∂xk
|

and |Iσ,σ
′

∂yk
|) to explore more textural appearances for further improving discrimination (see Table 6.30

for their contributions). As a result, all plane-images I ∈ fXY are encoded as

ΓXYσ,σ′,k =
1

N
∑
I∈fXY

[
Ψ(Iσ,σ

′

∂xk
),Ψ(|Iσ,σ

′

∂xk
|),Ψ(Iσ,σ

′

∂yk
),Ψ(|Iσ,σ

′

∂yk
|)
]

(6.58)

in which N denotes a number of plane-images in fXY , Ψ(.) is a simple function using a local operator
(e.g., LBP, CLBP, etc.) in order to compute the corresponding histogram. Similarly, this encoding is
considered for plane-images fXT and fY T to capture temporal characteristics of DTs. Consequently, a
robust descriptor based on the high-order 2D DoDG-filtered Features (DoDGF2D

σ,σ′,F ) is constructed in
simplicity by concatenating these Γσ,σ′,k histograms.

DoDGF2D
σ,σ′,F (V) =

⊎
k∈F

[
ΓXYσ,σ′,k,Γ

XT
σ,σ′,k,Γ

Y T
σ,σ′,k

]
(6.59)

where F denotes a set of high-orders taken into account the DT encoding;
⊎

stands for incorporation of
histograms computed subject to the specific k-orders of F . For instance, F = {1st, 2nd} means that the
first and second partial derivatives of DoDG2D kernel are addressed for analysis of multi-orders.

Proposed DoDGF3D
σ,σ′,F descriptor: The DoDG3D filtering is used for pre-processing video V as

Vσ,σ
′

∂xk
= DoDG3D

σ,σ′,∂xk(x, y, z) ∗ V
Vσ,σ

′

∂yk
= DoDG3D

σ,σ′,∂yk(x, y, z) ∗ V
Vσ,σ

′

∂zk
= DoDG3D

σ,σ′,∂zk(x, y, z) ∗ V
(6.60)

in which z denotes the temporal direction of V . In order to encode the obtained DoDG-filtered volume
Vσ,σ

′

∂xk
, first, it is split into collections of filtered plane-images, {f ′XY , f ′XT , f ′Y T }, subject to its three

orthogonal planes. Then the simple operator Ψ(.) is taken into account the encoding of these collections
to efficiently capture spatio-temporal features as

Υ(Vσ,σ
′

∂xk
) =

[
Ψ(I ∈ f ′XY ),Ψ(I ∈ f ′XT ),Ψ(I ∈ f ′Y T )

]
(6.61)

Similarly, this encoding is applied to DoDG-filtered volumes Vσ,σ
′

∂yk
and Vσ,σ

′

∂zk
in order to correspondingly

construct histograms of Υ(Vσ,σ
′

∂yk
) and Υ(Vσ,σ

′

∂zk
). Because these DoDG-filtered outcomes are also bipolar-

filtered volumes, it could be possible to consider their absolute volumes (i.e., |Vσ,σ
′

∂xk
|, |Vσ,σ

′

∂yk
|, and |Vσ,σ

′

∂zk
|)

to investigate more spatio-temporal features for further enhancement of discrimination power. Finally,
the obtained histograms are normalized and concatenated to form a local robust descriptor of the high-
order 3D DoDG-filtered Features (DoDGF3D

σ,σ′,F ) as follows.

DoDGF3D
σ,σ′,F (V) =

⊎
k∈F

[
Υ(Vσ,σ

′

∂xk
),Υ(Vσ,σ

′

∂yk
),Υ(Vσ,σ

′

∂zk
),Υ(|Vσ,σ

′

∂xk
|),Υ(|Vσ,σ

′

∂yk
|),Υ(|Vσ,σ

′

∂zk
|)
]

(6.62)
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where F denotes a set of high-orders taken into account the DT encoding;
⊎

stands for incorporation of
histograms computed subject to the specific k-orders of F . For instance, F = {1st, 2nd} means that the
first and second partial derivatives of DoDG3D kernel are addressed for analysis of multi-orders.

DoG-based descriptors for assessment: In order to verify the interest of our novel DoDG kernels in
local DT understanding compared to the well-known DoG kernel, we also implement local DoG-based
descriptors based on the corresponding DoG filterings for comprehensive evaluations in Sections 6.9.2.3
and 6.10.1. Accordingly, the 2D and 3D DoG kernels are addressed for the filtering of video V as follows.

Iσ,σ
′

DoG = DoG2D
σ,σ′(x, y) ∗ I , Vσ,σ

′

DoG = DoG3D
σ,σ′(x, y, z) ∗ V (6.63)

Following the construction of the DoDGF2D descriptor, the 2D DoG-filtered features (DoGF2D
σ,σ′) are

structured as
DoGF2D

σ,σ′(V) =
[
ΛXYσ,σ′ ,Λ

XT
σ,σ′ ,Λ

Y T
σ,σ′

]
(6.64)

in which ΛXYσ,σ′ , ΛXTσ,σ′ , ΛY Tσ,σ′ are similarly defined as Equation (6.58), but for structuring DoG-filtered
plane-images instead of addressing the DoDG-filtered ones. For instance of encoding the collection fXY
of raw plane-images, ΛXYσ,σ′ is formed as

ΛXYσ,σ′ =
1

N
∑
I∈fXY

[
Ψ(Iσ,σ

′

DoG),Ψ(|Iσ,σ
′

DoG|)
]

(6.65)

Also based on the construction of DoDGF3D, the 3D DoG-filtered features (DoGF3D
σ,σ′) are formed as

DoGF3D
σ,σ′(V) =

[
Υ(Vσ,σ

′

DoG),Υ(|Vσ,σ
′

DoG|)
]

(6.66)

It should be noted that the 2D/3D DoG filterings were exploited in the prior works (i.e., FoSIG [C2],
V-BIG [C5], RUBIG [J4]), but for capturing the absolute-filtered features. In the meanwhile, the
DoGF

2D/3D
σ,σ′ descriptors are here proposed to capture more the bipolar-filtered ones of those filterings

due to an objective comparison to DoDGF
2D/3D
σ,σ′,F in abilities of DT classification.

Consequently, according to all of above those together with a comprehensive evaluation presented at
Section 6.9.2.3, it can be stated that our DoDG-based descriptors have several following advantages to
enhance the performance in comparison with other local Gaussian-based ones:

• Our DoDGF
2D/3D
σ,σ′,F descriptors are enriched more spatio-temporal features extracted from both

bipolar and absolute DoDG-filtered outcomes instead of only from the absolute DoG-filtered ones
in FoSIG [C2], V-BIG [C5], and RUBIG [J4] (see Table 6.30 for evaluations of their contributions).
• It could take advantage of more complementary features by addressing DoDG in high-order gra-

dients. This allows DoDGF
2D/3D
σ,σ′,F to capture more scale-filtered information to enhance the per-

formance (see Tables 6.28 and 6.29).
• Addressing the DoDG2D/3D kernels could produce more DoDG-filtered outcomes which are com-

plementary for the local DT encoding due to Equations (6.57) and (6.60). In the meanwhile, only
one done by the DoG2D/3D filterings is exploited in FoSIG [C2], V-BIG [C5], RUBIG [J4], and
DoGF

2D/3D
σ,σ′ due to Equation (6.63).

6.9.2 Experiments and evaluations

6.9.2.1 Parameters for experimental implementation

For DoDG filtering processes: In experiments of this work, we conduct the proposed DoDG
2D/3D

σ,σ′,∂xki

kernels in their four orders (i.e., {1st, 2nd, 3rd, 4th}) of partial derivatives with direction axes for the
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Table 6.28: Rates (%) of DoDGF2D
σ,σ′,F and DoGF2D

σ,σ′ descriptors on benchmark datasets.
DoGF/DoDGF UCLA DynTex DynTex++

Order(s) (σ, σ′) 50-LOO 50-4fold 9-class 8-class DynTex35 Alpha Beta Gamma

0th

(0.5, 0.7) 100 100 98.10 96.41 97.17 95.00 93.83 93.18 94.94
(0.5, 1) 100 100 98.25 96.74 97.71 98.33 92.59 91.29 94.62
(0.7, 1) 100 100 97.70 96.20 98.00 100 91.98 92.42 94.86
(1, 1.3) 100 100 97.15 97.83 97.71 98.33 91.98 93.18 94.08
(1, 1.5) 100 100 97.50 97.83 98.29 98.33 92.59 90.53 94.18

1st

(0.5, 0.7) 99.50 99.50 98.05 98.70 97.71 98.33 95.06 94.32 97.03
(0.5, 1) 100 100 98.90 96.52 99.14 98.33 95.68 94.70 97.08
(0.7, 1) 100 100 99.05 98.04 99.43 100 95.68 95.08 96.40
(1, 1.3) 100 100 98.50 96.09 99.43 100 95.68 94.32 96.51
(1, 1.5) 100 100 98.70 96.96 99.43 98.33 95.68 94.32 96.21

2nd

(0.5, 0.7) 99.00 99.00 98.90 98.15 98.00 100 95.68 93.56 95.86
(0.5, 1) 99.50 99.50 99.15 96.96 97.71 100 95.06 93.56 96.11
(0.7, 1) 100 100 99.00 97.61 98.57 100 95.06 93.94 95.54
(1, 1.3) 100 100 99.30 98.70 98.00 100 94.44 92.80 96.09
(1, 1.5) 100 100 98.75 98.37 98.86 100 93.83 93.18 95.72

3rd

(0.5, 0.7) 100 100 98.70 98.37 99.14 98.33 94.44 94.70 96.91
(0.5, 1) 100 100 99.05 98.70 99.43 98.33 96.30 94.70 96.82
(0.7, 1) 100 100 99.10 96.63 99.43 98.33 95.68 92.80 95.95
(1, 1.3) 100 100 98.60 95.22 99.43 98.33 94.44 92.80 96.15
(1, 1.5) 100 100 98.45 98.04 99.14 98.33 95.06 94.32 96.06

4th

(0.5, 0.7) 99.00 98.50 98.10 96.30 98.29 98.33 96.30 92.80 95.56
(0.5, 1) 100 100 99.35 97.39 98.29 98.33 93.21 91.67 95.69
(0.7, 1) 100 100 98.80 97.93 99.14 98.33 96.91 92.42 96.30
(1, 1.3) 99.00 99.00 98.35 97.61 96.86 98.33 94.44 92.80 95.27
(1, 1.5) 100 100 99.30 97.93 97.71 100 93.21 93.18 95.49

{1st, 2nd}

(0.5, 0.7) 99.50 99.00 98.50 99.02 96.57 100 95.68 94.70 96.93
(0.5, 1) 100 100 99.10 97.39 99.43 100 96.30 94.70 97.20
(0.7, 1) 100 100 99.55 99.13 99.71 100 97.53 96.21 97.14
(1, 1.3) 100 100 98.20 98.80 99.71 100 95.06 94.70 97.02
(1, 1.5) 100 100 99.05 98.26 99.71 100 95.68 94.70 96.96

{1st, 3rd}

(0.5, 0.7) 100 100 99.40 97.39 98.86 98.33 95.68 94.32 97.54
(0.5, 1) 100 100 99.40 98.91 99.43 98.33 96.30 94.70 97.23
(0.7, 1) 100 100 98.70 98.70 99.43 98.33 95.68 93.56 96.73
(1, 1.3) 100 100 98.50 95.76 99.43 98.33 95.68 93.18 96.82
(1, 1.5) 100 100 99.15 95.00 99.14 98.33 96.91 95.45 96.86

{1st, 4th}

(0.5, 0.7) 99.00 99.00 98.65 96.85 97.71 98.33 96.91 96.21 96.91
(0.5, 1) 100 100 99.25 99.13 99.14 100 97.53 93.18 97.47
(0.7, 1) 100 100 99.35 98.70 99.71 100 96.91 94.32 97.21
(1, 1.3) 99.00 99.00 98.55 96.20 99.71 100 96.91 94.32 97.07
(1, 1.5) 100 100 99.10 97.83 99.14 100 95.68 94.32 96.79

{2nd, 3rd}

(0.5, 0.7) 100 99.50 98.75 99.24 99.43 100 96.30 94.70 97.09
(0.5, 1) 100 100 98.95 97.72 99.43 100 97.53 94.70 96.95
(0.7, 1) 100 100 98.40 98.70 99.43 100 96.91 96.21 96.93
(1, 1.3) 100 100 97.80 96.52 99.43 100 96.30 95.45 97.04
(1, 1.5) 100 100 98.95 97.83 99.14 100 96.30 94.70 97.03

{2nd, 4th}

(0.5, 0.7) 98.00 98.00 98.00 95.76 98.86 100 96.91 94.32 96.13
(0.5, 1) 100 100 99.40 98.70 98.57 100 95.06 92.80 96.49
(0.7, 1) 100 100 99.10 98.70 99.43 100 95.68 93.56 96.19
(1, 1.3) 99.00 99.00 98.20 96.63 97.71 100 95.68 92.80 96.53
(1, 1.5) 100 100 99.15 98.04 98.86 100 93.83 92.80 95.92

{3rd, 4th}

(0.5, 0.7) 99.00 99.00 99.00 95.76 97.71 100 96.91 95.45 97.31
(0.5, 1) 100 100 99.30 97.83 99.43 100 97.53 94.32 97.04
(0.7, 1) 100 100 99.45 99.13 99.43 100 97.53 96.21 97.09
(1, 1.3) 99.00 99.00 97.95 95.65 99.43 100 97.53 95.08 96.91
(1, 1.5) 100 100 98.25 96.96 98.86 100 96.91 96.21 96.88

Note: 50-LOO and 50-4fold denote results on 50-class breakdown using leave-one-out and four cross-fold valida-
tion. The 0th-order denotes results of DoGF2D

σ,σ′ , while the other orders denote rates of DoDGF2D
σ,σ′,F .
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Table 6.29: Rates (%) of DoDGF3D
σ,σ′,F and DoGF3D

σ,σ′ descriptors on benchmark datasets.
DoGF/DoDGF UCLA DynTex DynTex++

Order(s) (σ, σ′) 50-LOO 50-4fold 9-class 8-class DynTex35 Alpha Beta Gamma

0th

(0.5, 0.7) 99.50 99.50 98.85 97.83 97.14 96.67 93.83 92.42 95.04
(0.5, 1) 100 100 98.45 97.83 97.43 98.33 92.59 92.42 95.09
(0.7, 1) 100 100 98.75 97.93 96.57 100 91.98 94.70 94.98
(1, 1.3) 100 100 98.70 97.93 97.14 96.67 90.74 93.56 93.63
(1, 1.5) 100 100 98.90 97.39 98.86 98.33 92.59 93.56 93.36

1st

(0.5, 0.7) 99.50 99.50 98.40 98.59 98.29 98.33 96.91 95.45 97.19
(0.5, 1) 100 100 98.20 98.15 99.43 98.33 96.30 95.45 96.88
(0.7, 1) 100 100 99.10 99.24 100 98.33 97.53 96.21 97.15
(1, 1.3) 100 100 98.90 98.04 100 98.33 96.91 96.59 96.99
(1, 1.5) 100 100 99.40 98.26 98.86 98.33 97.53 95.83 96.52

2nd

(0.5, 0.7) 99.00 99.00 98.65 97.39 98.29 100 96.30 96.21 97.09
(0.5, 1) 99.50 99.50 98.90 98.48 98.00 100 94.44 96.21 96.84
(0.7, 1) 100 100 98.60 99.57 99.14 100 96.30 95.08 96.47
(1, 1.3) 100 100 99.10 98.26 98.29 100 94.44 96.21 96.89
(1, 1.5) 100 100 99.25 99.13 98.29 98.33 94.44 95.45 96.27

3rd

(0.5, 0.7) 99.50 99.50 98.80 98.70 99.14 98.33 96.91 95.45 97.15
(0.5, 1) 99.50 99.50 98.75 98.15 99.14 98.33 96.30 95.08 96.51
(0.7, 1) 100 100 99.35 99.46 98.57 98.33 96.30 95.83 96.39
(1, 1.3) 100 100 99.10 98.70 98.57 98.33 96.30 95.83 96.24
(1, 1.5) 100 100 99.75 97.83 98.86 96.67 96.30 96.59 96.72

4th

(0.5, 0.7) 99.00 99.00 98.00 95.76 97.71 96.67 95.06 93.18 96.72
(0.5, 1) 100 100 98.70 98.48 96.86 100 93.21 95.45 96.57
(0.7, 1) 100 100 98.15 98.70 98.00 96.67 95.06 93.56 95.69
(1, 1.3) 98.00 98.00 98.50 95.33 98.00 100 94.44 95.45 96.11
(1, 1.5) 100 99.50 99.10 98.59 98.57 98.33 92.59 95.45 95.62

{1st, 2nd}

(0.5, 0.7) 99.50 99.50 98.55 98.70 96.29 100 96.92 96.21 97.62
(0.5, 1) 99.50 99.50 98.50 97.61 99.43 100 95.68 96.97 97.55
(0.7, 1) 100 100 99.25 99.57 99.71 100 98.15 96.97 97.52
(1, 1.3) 100 100 99.40 96.96 99.71 100 96.30 96.97 97.40
(1, 1.5) 100 100 98.75 97.72 99.71 98.33 95.68 96.59 96.97

{1st, 3rd}

(0.5, 0.7) 100 100 98.65 97.93 98.86 98.33 96.91 95.83 97.46
(0.5, 1) 100 100 98.60 99.13 99.71 98.33 96.91 96.59 97.48
(0.7, 1) 100 100 98.75 99.13 99.71 98.33 96.30 96.97 97.18
(1, 1.3) 100 100 99.60 97.83 99.71 98.33 96.30 97.35 96.83
(1, 1.5) 100 100 99.05 98.26 98.57 96.67 96.30 96.59 97.07

{1st, 4th}

(0.5, 0.7) 99.50 99.50 98.45 96.52 96.00 98.33 97.53 96.21 97.46
(0.5, 1) 100 100 98.35 96.96 99.71 100 95.68 96.21 97.49
(0.7, 1) 100 100 99.35 96.63 100 100 97.53 96.97 97.95
(1, 1.3) 98.00 98.00 98.70 95.11 99.43 100 95.68 95.83 97.47
(1, 1.5) 100 100 98.70 97.50 99.14 100 95.06 96.21 97.34

{2nd, 3rd}

(0.5, 0.7) 99.50 99.50 98.35 98.37 99.43 100 96.91 96.59 97.37
(0.5, 1) 99.50 99.50 99.15 98.26 99.14 100 97.53 96.21 97.08
(0.7, 1) 100 100 99.30 98.70 99.43 100 98.15 96.59 97.03
(1, 1.3) 100 100 98.90 98.04 99.43 100 96.91 96.97 96.62
(1, 1.5) 100 100 99.35 97.50 98.86 96.67 95.70 96.97 97.01

{2nd, 4th}

(0.5, 0.7) 99.50 99.50 98.15 97.93 97.14 100 95.06 95.83 97.01
(0.5, 1) 99.50 99.50 99.30 97.39 98.86 100 94.44 97.35 97.11
(0.7, 1) 100 100 99.20 97.39 98.00 100 96.91 94.70 96.88
(1, 1.3) 98.00 98.00 98.80 97.83 97.71 100 95.06 95.83 96.87
(1, 1.5) 100 100 99.25 99.13 98.86 100 94.44 96.21 96.62

{3rd, 4th}

(0.5, 0.7) 99.50 99.50 98.80 97.28 98.86 98.33 98.15 96.21 97.16
(0.5, 1) 100 100 99.50 98.59 99.43 100 97.53 95.83 96.64
(0.7, 1) 100 100 99.55 97.39 99.43 98.33 97.53 96.59 97.55
(1, 1.3) 98.00 98.00 98.85 97.18 99.43 100 96.91 96.59 96.53
(1, 1.5) 100 100 99.35 97.39 99.14 98.33 95.06 96.59 96.45

Note: 50-LOO and 50-4fold denote results on 50-class breakdown using leave-one-out and four cross-fold valida-
tion. The 0th-order denotes results of DoGF3D

σ,σ′ , while the other orders denote rates of DoDGF3D
σ,σ′,F .
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6.9. REPRESENTATION BASED ON DODG-FILTERED FEATURES

convolving operation x, y, z ∈ [−3σ, 3σ]. Pairs of standard deviations are empirically investigated as
{(σ, σ′)} = {(0.5, 0.7), (0.5, 1), (0.7, 1), (1, 1.3), (1, 1.5)}.

For structuring DoDGF
2D/3D
σ,σ′,F descriptors: To construct the proposed DoDG-based descriptors, we

simply utilize CLBP3, one of the most popular local operators, with 3D-joint setting of riu2 mapping
and a supporting region (P,R) = (8, 1). It means Ψ = CLBPriu2

8,1 corresponding to HΨ = 2(P + 2)2

bins for a pattern description, where P denotes a number of neighbors involved in the DT encoding.
Consequently, it takes a small dimension for single-scale analysis of high-order DoDG filterings (i.e.,
|F| = 1) to describe a given video, just 4 × 3 × |F| × HΨ = 2400 bins for DoDGF2D

σ,σ′,F and 6 ×
3 × |F| × HΨ = 3600 bins for DoDGF3D

σ,σ′,F , where |F| = card(F) denotes the number of k-orders
in F taken into account a multi-order analysis. Table 6.2 shows a comprehensive comparison between
dimension of DoDGF2D/3D descriptors and that of other LBP-based ones.

For structuring DoGF
2D/3D
σ,σ′ descriptors: In order to make an objective comparison, the same set-

tings should be addressed for the construction of the DoG-based descriptors. It means that the pre-defined
pairs of {(σ, σ′)} is used for the DoG filterings, while Ψ = CLBPriu2

8,1 is exploited for the local encoding

of the DoG-filtered outcomes. As a result, it takes 2× 3×HΨ = 1200 bins for both of DoGF
2D/3D
σ,σ′ .

6.9.2.2 Assessments of DoDG-based descriptors

Based on the experimental results in Tables 6.28 and 6.29, it can be stated that our novel DoDG
filtering kernel is the major factor in order to boost the discrimination of the DoDGF2D/3D descriptors.
Hereafter, we discuss their performance thoroughly.

• The DoDG-based descriptors’ performance is diminished subject to the increasing high-orders of
DoDG involved in the filterings. It is due to the weakness of appearances in the larger-orders.
Therein, the odd DoDG kernels often handle denoising in more effect (see Tables 6.28 and 6.29).
• Multi-order analysis of DoDG in both even and odd gradients points out better power, while just

consisting of either entire even or odd ones is not (see Tables 6.28 and 6.29) due to a better com-
plementariness between the former ones.
• Local patterns extracted from each of the DoDG-filtered outcomes are complementary to enhance

the robustness. Indeed, Table 6.30 shows that DoDGF2D has higher rates when integrating all
those, as mentioned in Section 6.9.1.
• It can be seen from Tables 6.28 and 6.29 that the DoDGF2D/3D descriptors have the nearly

same rates on simple datasets (e.g., UCLA). However, for the challenging schemes (i.e., Beta
and Gamma), the DoDGF3D one has much better results. This has proved that exploiting the 3D
DoDG kernel could enrich more robust spacial-filtered information for DT representation com-
pared to using the 2D one. Figure 6.29 intuitively shows this prominent point addressed in different
orders of those.
• Taking a coherence of both odd and even DoDG filterings into account multi-order analysis gives

better rates compared to doing that with the whole either odd or even ones (see Tables 6.28 and
6.29 for results in 2-scale of orders). It is due to the fact that the kernels of odd and even orders
are complementary since the first ones are semi-symmetric shapes while the second ones are sym-
metric shapes (see Section 6.3.2 for these properties and Figure 6.3 for illustration with 1D DoDG
kernels).

In general, the single-order DoDGF
2D/3D
σ,σ′,F descriptors with the setting of (σ, σ′) = (0.7, 1) often

points out the best results on UCLA and Alpha datasets (see Tables 6.28 and 6.29). Moreover, the
odd-even DoDGF

2D/3D
(0.7,1),F descriptors in multi-order analysis (i.e., {1st, 2nd}, {1st, 4th}, {2nd, 3rd},

3CLBP [3] operator is addressed in this work for a purpose of simplicity in implementing and evaluating the effectiveness
of our novel DoDG filtering for DT representation compared to the well-known DoG. It could be absolutely replaced by
other robust ones for further improvement in practice, e.g., CLBC [82], LDP-based [30, J5], LVP-based [100, J2], LRP [J4],
MRELBP [78], etc.
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Figure 6.29: Comparing performances of DoGF
2D/3D
σ,σ′ with those of the 1st-order DoGF

2D/3D
σ,σ′,1st .

Table 6.30: Comparing contributions of DoG and the 1st-order of DoDG.
DoG/DoDG filtered complement(s) #bins Dyn35 Beta Gamma Dyn++

I0.7,1
∂x1

600 98.86 92.59 91.29 92.93
I0.7,1
∂y1

600 99.43 92.59 93.18 93.89

|I0.7,1
∂x1
| 600 97.43 91.36 90.91 93.94

|I0.7,1
∂y1
| 600 96.57 93.21 90.53 93.83

|I0.7,1
∂x1
|+ |I0.7,1

∂y1
| 1200 98.00 95.06 93.18 95.62

I0.7,1
∂x1

+ I0.7,1
∂y1

1200 98.86 95.06 93.94 95.19

I0.7,1
∂x1

+ I0.7,1
∂y1

+ |I0.7,1
∂x1
|+ |I0.7,1

∂y1
| 2400 99.43 95.68 95.08 96.40

I0.7,1
DoG + |I0.7,1

DoG | 1200 98.00 91.98 92.42 94.86

Note: Dyn35 and Dyn++ are shortened for DynTex35 and DynTex++ respectively.

{3rd, 4th}) have produced better performances than the others on all datasets (they also obtain the best
results on UCLA and Alpha datasets). It means that on the more challenging datasets (Beta, Gamma, and
DynTex++), exploiting complementary information by DoDG kernels of odd and even orders allows to
enhance the discrimination power. Among of above those, the 1st-order DoDGF

2D/3D
(0.7,1),{1st} descriptors

should be addressed for mobile applications due to their small dimension, i.e., just 2400 bins for the 2D
one and 3600 bins for the 3D. For more strict requirement of accuracy, the setting of multi-gradients
F = {1st, 2nd} should be addressed for DoDGF

2D/3D
(0.7,1),F due to the best results. Hereafter, if no settings

are specified, the default ones are in the following comprehensive evaluations.

6.9.2.3 Comprehensive comparison to DoG-based descriptors

It can be verified from Tables 6.28 and 6.29 that our proposed DoDG-based descriptors using the
novel DoDG filterings are much powerful execution compared to those using the well-known DoG
kernel, i.e., which of the 0th-order in Tables 6.28 and 6.29. In consideration of the contributions of
complementary filtered outcomes as shown in Table 6.30, it could assert the prominent performance
of Gaussian-gradient parts in DoDG compared to that of non-Gaussian-gradient ones in DoG. This has
proved that our novel filtering kernel is more influential for local DT understanding.

Furthermore, the DoDG-filtered features are also more discriminative than those of DoGs in FoSIG
[C2] and V-BIG [C5], where both blurred and invariant Gaussian-based characteristics are taken into
account the DT encoding. It can be seen from Figure 6.30 for a comprehensive comparison of their
performances, where all the descriptors are constructed by the same CLBPriu2

8,1 for capturing spatio-
temporal features in DoG/DoDG-based outcomes.

6.10 Comprehensive evaluations in comparison with existing methods
As presented above, firstly, we have proposed the novel DoDG filtering kernel (see Section 6.3).

After that, we have constructed several discriminative descriptors for DT representation using our en-
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Figure 6.30: Comparison of performances of several local-feature-based descriptors using the same
CLBPriu2

8,1 for encoding DoG/DoDG-based outcomes. Therein, it should be noted that rates of V-
BIG [C5] and FoSIG [C2] are referred to their original works, where Gaussian-blurred outcomes are
also addressed for the DT encoding as complemented features in addition to DoGs.

hanced operators in Chapter 3 in order to efficiently capture spatio-temporal features from robust fil-
tered outcomes which are extracted by different variants of Gaussian-based filterings. Those descriptors
are LOGIC [S4] in Section 6.6, CHILOP [S2] in 6.4, RUBIG [J4] in 6.5, SIOMF/SVOMF [S3] in 6.7,
HoGF [J3] in 6.8, and DoDGF [S1] in 6.9. The experimental results have also presented for each of them,
which have verified that our proposals have very good performances, especially, those of HoGF [J3] and
DoDGF [S1]. Among of them, DoDGF [S1] has the best rates in small dimension, expected as one of
appreciated solutions for slight applications in mobile devices and embedded sensor systems, which are
required to execute their functions in restricted resources. Therefore, as a representative, we mainly ad-
dress the performances of our DoDGF [S1] descriptor in below evaluations. Accordingly, in this section,
we thoroughly discuss advantages of our proposals allowing to boost the discrimination power in DT
recognition, compared to state of the art. Hereafter, we express those influential evaluations in detail.

6.10.1 Benefits of Gaussian-based filterings

6.10.1.1 Robustness to the well-known issues of DT description

In general, it could be verified that addressing the Gaussian-based filterings for DT representation
has pointed out the filtered responses in more robustness. This allows that local spatio-temporal features
extracted from these outcomes are more insensitive for DT encoding compared to those extracted from
a raw video. Indeed, in order to evaluate this advantageous property, we will investigate our proposed
descriptors, based on different variants of the Gaussian-based filterings, on noisy datasets to evaluate
their ability of noise-resistance.

Accordingly, we address the Gaussian zero-mean noise model with different signal-to-noise ratio
(SNR) levels, i.e., SNRdB ∈ {1, 2, 3, 4, 5}, in order to add noise into UCLA [5] - the simple dataset,
and DynTex [54] - the more challenging one (see Table 2.1 for their attributes in detail). For each of
them, we have achieved 5 noise-datasets corresponding to 5 SNRdB levels used for the noise-adding
process. Figure 6.31 shows noise-instances obtained by using different levels of SNRdB on a plane-
image in a video of UCLA dataset. We comprehensively evaluate our proposed descriptors in the ability
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Table 6.31: Performances on different Gaussian noise subsets: 50-4fold and Gamma.
SNRdB for 50-4fold SNRdB for Gamma

Descriptor Filter Order {(σ, σ′)} {(P, {R})} No-dB dB=1 dB=2 dB=3 dB=4 dB=5 No-dB dB=1 dB=2 dB=3 dB=4 dB=5
VLBP [14] None - - {(4, 1)} 96.00 91.00 93.00 92.00 94.00 94.00 92.80 87.12 88.64 89.02 90.91 90.53
LBP-TOP [14] None - - {(8, 1)} 97.50 97.50 99.00 99.50 99.00 98.50 93.56 77.65 81.82 84.47 86.36 87.12
CLSP-TOP [C1] None - - {(8, 1)} 99.00 98.00 100 99.50 99.50 99.00 93.18 82.95 84.85 84.47 86.36 87.50
HILOP [C3] None - - {(8, {1, 2})} 99.50 99.50 99.50 99.50 99.50 99.50 92.42 88.64 89.77 90.91 90.91 91.29
CLBPS M/C [3] None - - {(8, 1)} 83.50 90.00 89.50 90.00 88.50 89.50 88.64 74.24 78.41 80.68 83.33 84.47
CLBPS/M/C [3] None - - {(8, 1)} 99.50 99.50 99.50 99.50 99.00 99.50 92.80 85.98 87.12 87.88 88.64 89.39
CLBPS M/C [3] Gaussian 0th {0.5, 1.0} {(8, 1)} 97.50 98.00 99.00 99.00 99.00 99.00 89.77 87.50 87.88 88.64 88.64 88.64
CLBPS/M/C [3] Gaussian 0th {0.5, 1.0} {(8, 1)} 100 99.50 99.50 99.50 99.50 99.50 93.18 87.88 89.39 90.53 90.15 90.91
ZoGF2D Gaussian 0th {1} {(8, 1)} 100 100 100 99.50 99.00 99.00 92.42 88.64 90.15 89.39 89.39 88.64
ZoGF3D Gaussian 0th {1} {(8, 1)} 100 100 100 100 100 100 93.56 90.53 90.53 90.91 90.15 90.91
DoGF2D DoG 0th {(0.7, 1)} {(8, 1)} 100 100 100 100 100 100 92.42 81.06 86.74 88.64 89.02 88.26
DoGF3D DoG 0th {(0.7, 1)} {(8, 1)} 100 99.50 100 99.50 100 100 94.70 87.88 89.77 90.15 91.29 89.77
CHILOPH M/C [S2] None - - {(8, {1, 2})} 100 99.50 100 99.50 99.50 99.50 91.29 85.98 88.29 87.88 87.88 87.88
CHILOPH/M/C [S2] None - - {(8, {1, 2})} 100 99.50 100 100 99.50 99.50 92.05 87.50 89.02 90.15 90.53 90.91
CHILOPH M/C [S2] Gaussian 0th {0.5, 1.0} {(8, {1, 2})} 100 100 100 99.50 99.50 99.50 89.39 88.64 88.67 87.50 87.12 88.26
CHILOPH/M/C [S2] Gaussian 0th {0.5, 1.0} {(8, {1, 2})} 100 100 99.50 99.00 99.00 99.00 94.32 90.15 91.67 92.42 92.05 91.67
HoGF2D [J3] Gaussian 1st {1} {(8, 1)} 100 100 100 100 100 100 93.56 90.53 90.53 90.15 90.91 90.53
HoGF3D [J3] Gaussian 1st {1} {(8, 1)} 100 100 100 100 100 100 96.21 90.91 92.05 93.18 92.05 92.05
DoDGF2D [S1] DoDG 1st {(0.7, 1)} {(8, 1)} 100 100 100 100 100 100 95.08 89.77 90.53 89.77 90.53 91.29
DoDGF3D [S1] DoDG 1st {(0.7, 1)} {(8, 1)} 100 100 100 100 99.50 100 96.21 90.91 91.67 91.67 91.67 92.80

Note: “-” means “not available”. “S M/C” and “S/M/C” respectively denote 2D and 3D jointing histograms of CLBP’s components, as mentioned in Section
2.7.2. No-dB denotes results without the Gaussian noise involved in. CLSP-TOP [C1] is structured using thresholding settings a = 0 and b = 1. All above
descriptors are reduced their dimension by using “riu2” mapping, excluding HILOP [C3] and LBP-TOP [14] using “u2” while no mapping is applied to VLBP
[14].

Input image SNRdB = 5 SNRdB = 4 SNRdB = 3 SNRdB = 2 SNRdB = 1

Figure 6.31: Noise-instances obtained by using different levels of SNRdB on a plane-image in a video
of UCLA dataset.

of noise-resistance on these datasets, compared to other LBP-based ones:

• DoDG-based descriptors [S1] defined in Section 6.9.1.
• DoG-based descriptors, i.e., DoGF defined in Section 6.9.1.
• HoGF-based descriptors [J3] using high-order Gaussian gradients as defined in Section 6.8.
• ZoGF-based descriptors implemented in Section 6.8.2 using the original Gaussian filterings.
• CHILOP-based descriptors [S2] using the original 2D Gaussian filtering (see Section 6.4.1).
• Other LBP-based descriptors without taking any filters into account their DT encoding, e.g., VLBP

[14], LBP-TOP [14], CLSP-TOP [C1], HILOP [C3].

The specific parameters for those along with the achieved results of DT recognition are presented in
Table 6.31. It can be seen that taking the Gaussian-based kernels into account the DT encoding makes
our proposed descriptors more robust against noise for local DT encodings compared to the ones with
non-Gaussians applied to. Therein, those based on the Gaussian-gradient-based kernels, i.e., HoGF and
DoDGF, obtain the best performance. Specifically, our DoDGF2D/3D and HoGF2D/3D descriptors
almost absolutely resist to the Gaussian noise for the simple scheme, i.e., 50-4fold. In the meanwhile,
except that the VLBP’s performance has decreased sharply by 3%, the noise-resistant ability of the rest is
approximately the same execution in general (see Table 6.31). On the challenging scheme, i.e., Gamma,
the performance of both DoDGF2D/3D has dropped by about 2%, by about 1% for HoGF3D, while
that of HoGF2D is in more stability. In terms of the ability of other LBP-based variants without filters
applied to, all of them have a sharp decrease compared to ours (see Figure 6.32 for a graphical view).
Consequently, this has proved the impressive property of the proposed Gaussian-based kernels and their
gradients making our descriptors more robust in noisy conditions.
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Figure 6.32: The impacts of Gaussian noise on performances of several proposed descriptors compared
to others.

6.10.1.2 Rich and discriminative features of Gausian-gradient-based filterings

The Gausian-gradient-based filterings can point out more filtered outcomes than the well-known
Gaussian kernel and its DoG (see Figure 6.24 for Gaussian gradients and 6.4 for DoDG filtering ker-
nels). This allows to exploit spatio-temporal features in more forceful contexts to enhance the discrimi-
nation power. Table 6.30 shows contributions of DoDG-filtered parts, while Table 6.24 is contributions
of Gaussian-gradient-filtered elements for structuring the HoGF-based features. Also, these filterings
could be computed in higher orders of partial derivatives to conduct high-gradient features: the even
orders for capturing the symmetric features, and the odd ones for the asymmetric characteristics and then
combinations of them could boost improvement of the performance. It could be verified this beneficial
points through their filtered samples in Figures 6.24 and 6.4, as well as their performances in Tables 6.22
and 6.23 for HoGF-based descriptors; Tables 6.28 and 6.29 for DoDG-based descriptors. In addition, the
magnitude properties, elicited from different filtered components with the same level of derivatives, (i.e.,
∇Iσ

xk,yk
and ∇Vσ

xk,yk,zk
, see Section 6.8.1) allow to address more amplitude characteristics to enrich

informative discrimination of appearance and motion for DT understanding (see Table 6.24 for specific
contributions of these components).

6.10.2 Complexity of our proposed descriptors

In general, it can be verified that the computational cost of our proposed descriptors is the same
order as that of other LBP-based ones. For a representative, we specifically present the complex-
ity of computing the DoDGF

2D/3D
σ,σ′,F descriptors. Thanks to the separable and linear properties of

DoDG’s convolving operation which is inherited from the well-known Gaussian filtering kernel, struc-
turing of DoDGF is in simple computation. Indeed, for a video V with H × W × T dimension, let
QLBP-TOP = O(P × H × W × T ) be the complexity of LBP-TOP [14] for encoding V , where
P ∈ Z+ denotes a number of concerning neighbors. Since CLBP [3] with its three complementary
components is taken into account encoding V (see Section 6.9.2.1), it could be inferred that the com-
putational cost of CLBP for encoding V is QCLBP ≈ 3 × QLBP-TOP. Accordingly, the complexity of
DoDGF

2D/3D
σ,σ′,F descriptors is estimated asQDoDGF2D = 4×|F|×QCLBP+QDoDG2D for DoDGF2D

σ,σ′,F ,
and QDoDGF3D = 6 × |F| × QCLBP +QDoDG3D for DoDGF3D

σ,σ′,F , where QDoDG2D/3D is the cost of
corresponding DoDG2D/3D filterings involved in the DT representation (refer to Section 6.9.1 for their
constructions). Due to the separable and linear properties of the DoDG filterings as well as the much
smallness of |F| (e.g., |F| = 2 for two orders in Tables 6.28 and 6.29), QDoDG2D/3D and |F| could be
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Table 6.32: Comparison of processing time of encoding a 50× 50× 50 video in DynTex++.
Descriptor {(σ, σ′)} {(P,R)} Mapping Runtime (s)
VLBP [14] - {(4, 1)} - ≈ 0.22
LBP-TOP [14] - {(8, 1)} u2 ≈ 0.15
CLSP-TOP [C1] - {(8, 1)} riu2 ≈ 0.27
CSAP-TOP [J1] - {(8, 1)} riu2 ≈ 0.50
HILOP [C3] - {(8, {1, 2})} u2 ≈ 0.42
FoSIG [C2] {(0.5, 6)} {(8, 1)} riu2 ≈ 0.37
V-BIG [C5] {(0.5, 6)} {(8, 1)} riu2 ≈ 0.35
RUBIG [J4] {(0.5, 6)} {(8, 1)} riu2 ≈ 0.56
HoGF2D [J3] {σ = 1} {(8, 1)} riu2 ≈ 0.54
HoGF3D [J3] {σ = 1} {(8, 1)} riu2 ≈ 0.70
LOGIC2D [S4] {(0.5, 6)} {(8, 1)} riu2 ≈ 0.77
LOGIC3D [S4] {(0.5, 6)} {(8, 1)} riu2 ≈ 0.75
DoDGF2D [S1] {(0.7, 1)} {(8, 1)} riu2 ≈ 0.58
DoDGF3D [S1] {(0.7, 1)} {(8, 1)} riu2 ≈ 0.79

Note: “-” means “not available”. The 1st-order Gaussian gradients
are applied to HoGF and DoDGF in this case. Runtimes of all de-
scriptors are estimated using their basic settings.

ignored. Consequently, QDoDGF2D/3D ≈ O(P × H × W × T ). Also, addressing CLBP for encod-

ing V (see Sections 6.9.1 and 6.9.2.1), the computational cost of DoGF
2D/3D
σ,σ′ could be conducted as

QDoGF2D/3D ≈ O(P ×H×W×T ). Therefore, it could be authenticated that ourQDoDGF2D/3D is also
the same order as FoSIG [C2], V-BIG [C5], RUBIG [J4], CSAP-TOP [J1], CVLBP [91], CVLBC [90],
VLBP [14], CHILOP [S2], HoGF [J3], etc. (refer to those works for more detail of computation). In
regards to processing time, our proposed descriptors are implemented on the alike computing system:
a 64-bit Linux desktop of single-thread CPU Core i7 3.4GHz 16G RAM. other LBP-based ones are
also addressed this system for an impartial evaluation. Table 6.32 shows that runtime of encoding our
descriptors of a 50× 50× 50 video is nearly the same as that of other LBP-based ones.

6.10.3 Comprehensive discussions of DT classification on different datasets

Mostly obtaining best performance in small dimension compared to our others, in this section, we
mainly allocate the DoDGF’s ability of DT recognition for a comprehensive comparison with the state
of the art. It should be noted that below discussions of our proposed descriptors are related to the best
settings (correspondingly see the above sections for more detail) recommended for real applications as
well as for thorough evaluations. Accordingly, it can be seen from Table 6.33 that our DoDG-based
descriptors have obtained the best rates compared to all non-deep-learning methods. Their performances
are also better than those of deep-learning-based approaches on UCLA as well as very closed to those on
DynTex and DynTex++. This is certainly thanks to the leverage contribution of the novel DoDG kernels.
Hereunder, we detail particular discussions of those on each benchmark dataset.

6.10.3.1 Classification on UCLA

It can be verified from Table 6.33 that thanks to the efficiently denoising processes of the novel
DoDG filterings, our simple DoDGF2D/3D descriptors perform very well compared to state of the art,
including the deep-learning methods, i.e., DT-CNN [63]. More specifically, DoDGFs obtain the best
rates of 100% on both schemes of 50-class and 50-4fold. In terms of classifying DTs on 9-class and 8-
class, our proposal is just a little inferior to DNGP [38] (99.6%) on 9-class, while achieving the highest
rate of 99.57% on 8-class by DoDGF3D

(0.7,1),{1st,2nd}, the same as FD-MAP’s [C4]. It should be noted that
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Table 6.33: Comparison of DT recognition rates (%) on benchmark DT datasets
Dataset UCLA DynTex Dyn++
Encoding method 50-LOO 50-4fold 9-class 8-class Dyn35 Alpha Beta Gamma

A
FDT [C4] 98.50 99.00 97.70 99.35 98.86 98.33 93.21 91.67 95.31
FD-MAP [C4] 99.50 99.00 99.35 99.57 98.86 98.33 92.59 91.67 95.69
DDTP [J2] 99.00 99.50 98.75 98.04 99.71 96.67 93.83 91.29 95.09

B

AR-LDS [5] 89.90N - - - - - - - -
KDT-MD [40] - 97.50 - - - - - - -
NLDR [43] - - - 80.00 - - - - -
Chaotic vector [42] - - 85.10N 85.00N - - - - -

C

3D-OTF [51] - 87.10 97.23 99.50 96.70 83.61 73.22 72.53 89.17
WMFS [52] - - 97.11 96.96 - - - - -
NLSSA [114] - - - - - - - - 92.40
DFS [50] - 100 97.50 99.20 97.16 85.24 76.93 74.82 91.70
2D+T [94] - - - - - 85.00 67.00 63.00 -
STLS [53] - 99.50 97.40 99.50 98.20 89.40 80.80 79.80 94.50

D
MBSIF-TOP [72] 99.50N - - - 98.61N 90.00N 90.70N 91.30N 97.12N

B3DF SMC [74] 99.50N 99.50N 98.85N 98.15N 99.71N 95.00N 90.12N 90.91N 95.58N

DNGP [38] - - 99.60 99.40 - - - - 93.80

E

VLBP [14] - 89.50N 96.30N 91.96N 81.14N - - - 94.98N

LBP-TOP [14] - 94.50N 96.00N 93.67N 92.45N 98.33 88.89 84.85N 94.05N

DDLBP with MJMI [113] - - - - - - - - 95.80
CVLBP [91] - 93.00N 96.90N 95.65N 85.14N - - - -
HLBP [92] 95.00N 95.00N 98.35N 97.50N 98.57N - - - 96.28N

MEWLSP [95] 96.50N 96.50N 98.55N 98.04N 99.71N - - - 98.48N

WLBPC [109] - 96.50N 97.17N 97.61N - - - - 95.01N

CVLBC [90] 98.50N 99.00N 99.20N 99.02N 98.86N - - - 91.31N

CLSP-TOP [C1] 99.00N 99.00N 98.60N 97.72N 98.29N 95.00N 91.98N 91.29N 95.50N

CSAP-TOP [J1] 99.50 99.50 96.80 95.98 100 96.67 92.59 90.53 -
FoSIG [C2] 99.50 100 98.95 98.59 99.14 96.67 92.59 92.42 95.99
V-BIG [C5] 99.50 99.50 97.95 97.50 99.43 100 95.06 94.32 96.65
HILOP [C3] 99.50 99.50 97.80 96.30 99.71 96.67 91.36 92.05 96.21
MMDP [J5] 100 100 98.70 98.70 99.43 98.33 96.91 92.05 95.86
MEMDP [J5] 100 100 98.90 98.70 99.71 96.67 96.91 93.94 96.03
RUBIG [J4] 100 100 99.20 99.13 98.86 100 95.68 93.56 97.08
CHILOP [S2] 100 100 99.45 99.02 99.71 96.67 95.68 94.70 98.06
LOGIC2D [S4] 100 100 99.35 99.13 99.71 98.33 95.06 95.08 99.14
MSVOMF [S3] 100 100 99.35 99.35 99.71 96.67 96.30 95.08 97.87
HoGF2D [J3] 100 100 99.20 98.91 99.71 100 97.53 96.59 97.19
HoGF3D [J3] 100 100 99.25 99.57 99.43 98.33 98.15 97.53 97.63
DoDGF2D [S1] 100 100 99.25 99.13 99.71 100 97.53 96.21 97.14
DoDGF3D [S1] 100 100 99.55 99.57 99.71 100 98.15 96.97 97.52

F

DL-PEGASOS [55] - 97.50 95.60 - - - - - 63.70
PI-LBP+super hist [111] - 100N 98.20N - - - - - -
PD-LBP+super hist [111] - 100N 98.10N - - - - - -
Orthogonal Tensor DL [69] - 99.80 98.20 99.50 - 87.80 76.70 74.80 94.70
Equiangular Kernel DL [71] - - - - - 88.80 77.40 75.60 93.40
SOE-Net [120] - - - - - 96.70 95.70 92.20 94.40
st-TCoF [62] - - - - - 100* 100* 98.11* -
PCANet-TOP [64] 99.50* - - - - 96.67* 90.74* 89.39* -
D3 [66] - - - - - 100* 100* 98.11* -
DT-CNN-AlexNet [63] - 99.50* 98.05* 98.48* - 100* 99.38* 99.62* 98.18*

DT-CNN-GoogleNet [63] - 99.50* 98.35* 99.02* - 100* 100* 99.62* 98.58*

Note: “-” means “not available”. Superscript “*” indicates results using deep learning algorithms. “N” indicates rates
with 1-NN classifier. 50-LOO and 50-4fold denote results on 50-class breakdown using leave-one-out and four cross-
fold validation respectively. Dyn35 and Dyn++ are abbreviated for DynTex35 and DynTex++ datasets respectively.
Group A is optical-flow-based methods, B: model-based, C: geometry-based, D: filter-based, E: local-feature-based, F:
learning-based.
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Figure 6.33: Confusion matrix (%) of
DoDGF3D

(0.7,1),{1st,2nd} on 9-class.

100

100

100

98 2

100

100

100

100

Boiling water

Fire

Flower

Fountains

Sea

Smoke

Water

Waterfall

Boilin
g w

at
er

Fire Flo
wer

Founta
in

s
Sea Sm

oke

W
at

er

W
at

er
fa

ll

Figure 6.34: Confusion matrix (%) of
DoDGF3D

(0.7,1),{1st,2nd} on 8-class.

DNGP’s and FD-MAP’s are not better than ours on other schemes (see Table 6.33). In the meanwhile,
CVLBC [90] also obtains the nearly same performance as ours but it is not on DynTex35 and DynTex++.
Also, it has not been verified on the challenging scenarios: Alpha, Beta, and Gamma (also see Table
6.33). In addition, it is noteworthy that our proposed others also have very good rates on UCLA such as
MSVOMF [S3], CHILOP [S2], LOGIC [S4], HoGF [J3], and RUBIG [J4]. For further consideration of
enhancement, we present specific confusions of DoDGF3D

(0.7,1),{1st,2nd} descriptor in DT recognition on
these schemes. Accordingly, there are two categories mainly confused: “Sea” and “Water” on 9-class
(see Figure 6.33), while “Fountains” and “Waterfall” on 8-class (see Figure 6.34), due to the very similar
motions of DTs in those sequences.

6.10.3.2 Classification on DynTex

It can be observed from Table 6.33 that our DoDGF2D/3D descriptors mostly obtain the best rates
compared to all non-deep-learning approaches, from over 1% to 3% higher improvement on the chal-
lenging schemes (i.e., Beta and Gamma) than those of MDP-based [J5], MSVOMF [S3], CHILOP [S2],
LOGIC [S4], and RUBIG [J4] descriptors, very recent robust methods based on local features for DT rep-
resentation. HoGF3D [J3] (9600 bins) has the same order as DoDGF3D (7200 bins) on Beta (98.15%)
and a little higher rate on Gamma (97.53%), but mostly not on the other schemes (see Table 6.33). In
respect of comparing with deep-learning methods, with the highest rates of 100%, 100%, 98.15%, and
96.97% on DynTex35, Alpha, Beta, and Gamma respectively, these results are very closed to those of
the deep-learning techniques, i.e., DT-CNN [63], st-TCoF [62], and D3 [66]. It is worth noting that we
just use the shallow framework for DT representation versus complicated algorithms addressed by those
deep-learning models of which the deployment is restricted on mobile devices. For further consideration
of improvement, we present specific confusions of DoDGF3D

(0.7,1),{1st,2nd} in DT recognition on chal-
lenging DynTex’s schemes. Accordingly, DTs in “Rotation” have been mainly confused with those in
“See” and “Trees” categories (see Figure 6.35), while those in “Clam water” have been mainly confused
with those in “Foliage” and “Fountains” (see Figure 6.36).

6.10.3.3 Classification on DynTex++

Our DoDG-based descriptors have significant performance on this scheme with over 97% in 2-scale
analyses of orders (see Table 6.33). For instance, DoDGF3D

(0.7,1),{1st,2nd} just obtains 97.52% due to the
challenging categories highlighted in red rates in Figure 6.37. These results are the best compared to
most of methods, excluding our others: LOGIC2D [S4] (99.14%), CHILOP [S2] (98.06%) as well as the
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Figure 6.35: Confusion matrix (%) of
DoDGF3D

(0.7,1),{1st,2nd} on Beta.
Data counts, RR = 256/264 = 96.9697%
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Figure 6.36: Confusion matrix (%) of
DoDGF3D

(0.7,1),{1st,2nd} on Gamma.

Figure 6.37: The specific results of DT recognition of DoDGF3D
(0.7,1),{1st,2nd} on each category of Dyn-

Tex++. The challenging categories are highlighted in red rates.

existing approaches: MEWLSP (98.48%) [95], and DT-CNN [63] (98.18% for AlexNet and 98.58% for
GoogleNet frameworks). It is noteworthy that MEWLSP’s performance is inferior to ours on UCLA (see
Table 6.33), while not being verified on more challenging schemes, i.e., Alpha, Beta, Gamma. LOGIC2D

[S4] and CHILOP [S2] are not better than our DoDGFs on DynTex in general. In the meantime, DT-
CNN [63] taking a large number of learned parameters for those frameworks just obtains about 0.5∼1%
higher than ours.

6.10.3.4 Classification on DTDB dataset

Due to the large scale of DTDB, we utilize the best settings discussed in Section 6.9.2.2 as: high-
orders of DoDG filterings F = {1st, 2nd} and a pre-defined pair of standard deviations (σ, σ′) =

{(0.7, 1)} in order to structure DoDGF
2D/3D
σ,σ′,F descriptors. For thoroughly evaluating the effectiveness

of the bipolar-filtered features compared to the Gaussian-gradient-filtered ones. The HoGF-based de-
scriptors [J3] are also implemented using their best settings: 2-scale analysis of local neighborhoods
{(P,R)} = {(8, 1), (8, 2)}, the standard deviation σ = 1, the 2-scale orders {2nd, 3rd} for HoGF2D

and {3rd, 4th} for HoGF3D (refer to 6.8.3 for more detail). HILOP [C3] and its completed model,
CHILOP [S2] which is based on the conventional Gaussian filtering, are also addressed using their
best settings for this purpose (refer to 6.4.2 for more detail). In addition, two basic local operators,
LBP-TOP [14] and CLBP [3] are also implemented in the corresponding set of multi-scale neighbors
{(P,R)} = {(8, 1), (8, 2), (8, 3)} for arriving at objective evaluations in recognizing DTs on DTDB.
Table 6.34 presents results of our proposed DoDGF

2D/3D
σ,σ′,F descriptors on two challenging subsets of
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Table 6.34: Comparison of rates (%) on two challenging subsets of the large scale DTDB [4] dataset.
Group Encoding method {(P,R)} Dynamics Appearance

E

LBP-TOPu2 [14] {(8, 1)} 48.30 47.50
LBP-TOPu2 [14] {(8, 1), (8, 2), (8, 3)} 58.05 59.07
CLBPriu2

S/M/C [3] {(8, 1)} 60.35 60.72
CLBPriu2

S/M/C [3] {(8, 1), (8, 2), (8, 3)} 66.56 67.06
DoGF2D

(0.7,1) {(8, 1)} 63.27 64.14
DoGF3D

(0.7,1) {(8, 1)} 65.07 65.11
HILOPu2 [C3] {(8, 1), (8, 2), (8, 3)} 65.54 66.58
CHILOP [S2] {(8, 1), (8, 2), (8, 3)} 68.67 69.22
HoGF3D [J3] {(8, 1), (8, 2)} 71.08 71.03
DoDGF3D [S1] {(8, 1)} 72.06 72.10

F

MSOE Stream [93] - 80.10 72.20
SOE-Net [120] - 86.80 79.00
C3D [67] - 74.90* 75.50*

RGB Stream [68] - 76.40* 76.10*

Flow Stream [68] - 72.60* 64.80*

MSOE-two-Stream [4] - 84.00* 80.00*

Note: “-” means “not available”. Superscript “*” expresses results using deep learn-
ing algorithms. “S/M/C” denotes a 3D-jointed histogram of CLBP’s components.
Group E denotes local-feature-based methods, while F: learning-based. Results of
above learning-based methods are referred to [4].

DTDB, Dynamics and Appearance. Also, those of the other LBP-based ones and learning-based meth-
ods are expressed in this table for a purpose of comprehensive comparison. It should be noted that the
performances of the learning-based methods are referred to implementations in [4].

It can be seen from Table 6.34 that our DoDG-based descriptors have performed very well in DT
recognition on both Dynamics and Appearance. Those results are about 7∼9% better than those of the
DoG-based ones. For instance, on Dynamics, DoGF3D

(0.7,1) just obtains rate of 65.07%, inferior to ∼7%
compared to ours, i.e., DoDGF3D with rate of 72.06%. This has consolidated the prominent ability of
DoDG filterings in noise reduction compared to the traditional DoGs. Furthermore, DoDGF (7200 bins)
is also about 1% higher than HoGF (9600 bins). It means that the DoDG-based filtering is more robust
in denosing than the Gaussian-gradient filtering. Exploiting the CHILOP [S2] operator to capture spatio-
temporal features of the original Gaussian-filtered elements achieves the better rates compared to using
the typical CLBP [3], but about 4% lower than DoDGF. It could be deduced that addressing CHILOP
for the DoDG-filtered outcomes can improve the performance potentially. In terms of comparison to
CLBP and LBP-TOP without addressing any filters in their encoding, our proposed descriptors based
on the novel DoDGs obtain about ∼12% and ∼24% higher than CLBP’s and LBP-TOP’s respectively
(see Table 6.34). In the meanwhile, the DoGF2D/3D descriptors based on the well-known DoGs are also
∼5% and ∼17% better than theirs respectively. This has proved the importance of filterings in noise
reduction for DT representation, especially, the prominent contribution of our novel DoDGs.

Regarding comparison to the learning-based methods, in general, our DoDG-based descriptors have
performance being very close to most of those methods, particularly, better than some of them. Indeed,
with 72.10% on Appearance, our DoDGF3D is about 8% better than deep-learning-based Flow Stream
(64.80%) [68] while being as good as learning-based MSOE Stream [93]. For DT recognition on Dy-
namics, ours (72.06%) is the same execution as that of Flow Stream [68] while being very close to that of
C3D (74.90%) [67] and RGB Stream (76.40%) [68] (see Table 6.34). Furthermore, it should be pointed
out that SOE-Net [120] obtains the nearly highest rates on both schemes of DTDB, but not mean that
it also has the same performance on other datasets. Certainly, all SOE-Net’s performances on DynTex
and DynTex++ are much lower than our DoDG-based descriptors. For instance, it could be seen from
Table 6.33 that SOE-Net just obtains 96.70%, 95.70%, 92.20%, and 94.40% on Alpha, Beta, Gamma,
and DynTex++ respectively. In the meanwhile, our DoDGF3D is 100%, 98.15%, 96.97%, and 97.52%
respectively. This has restated the interest of our proposal.
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Table 6.35: Performances (%) of DoDGF
2D/3D
{(σ,σ′)},F in further scale analysis.

DoDG-based Descriptor #bins Beta Gamma DynTex++

(a)

DoDGF2D
{(0.7,1),(0.5,1)},{1st} 4800 95.06 95.45 97.02

DoDGF2D
{(0.7,1),(1,1.3)},{1st} 4800 95.68 94.32 96.51

DoDGF2D
{(0.5,1),(0.7,1),(1,1.3)},{1st} 7200 95.06 94.70 97.19

DoDGF3D
{(0.7,1),(0.5,1)},{1st} 7200 97.53 96.21 97.19

DoDGF3D
{(0.7,1),(1,1.3)},{1st} 7200 97.53 96.59 96.87

DoDGF3D
{(0.5,1),(0.7,1),(1,1.3)},{1st} 10800 97.53 97.35 97.52

(b)

DoDGF2D
(0.7,1),{1st,2nd,3rd} 7200 96.91 95.08 97.09

DoDGF2D
(0.7,1),{1st,2nd,3rd,4th} 9600 96.91 95.45 97.44

DoDGF3D
(0.7,1),{1st,2nd,3rd} 10800 98.15 96.59 97.51

DoDGF3D
(0.7,1),{1st,2nd,3rd,4th} 14400 97.53 96.97 97.53

(c)

DoDGF2D
{(0.7,1),(0.5,1)},{1st,2nd} 10800 96.30 95.45 97.27

DoDGF2D
{(0.5,1),(0.7,1),(1,1.3)},{1st,2nd} 14400 95.68 95.08 97.56

DoDGF3D
{(0.7,1),(0.5,1)},{1st,2nd} 14400 97.53 97.35 97.43

DoDGF3D
{(0.5,1),(0.7,1),(1,1.3)},{1st,2nd} 21600 97.53 97.73 97.81

6.11 Global discussions
6.11.1 Further evaluations for Gaussian-gradient-based descriptors

As mentioned above, our Gaussian-gradient-based descriptors, DoDGF [S1] and HoGF [J3], could
be two best descriptors with high performance in DT recognition, expected as appreciated solutions for
embedded applications which have been required to execute their functions in restricted resources. In
addition to thorough evaluations discussed in Section 6.10, it can be asserted their properties in further
contexts based on more experimental results as follows.

• The experimental results, presented in Sections 6.8.3 and 6.9.2, have verified that the 3D Gaussian-
gradient filterings are better than the 2D ones in most cases. It may be deduced that addressing
the higher directions of these kernels can improve the performance. On the other word, address-
ing jointly shape and motion cues based on the 3D filterings is more effective than a separate
consideration in the 2D ones.
• Taking multi-scale of {(σ, σ′)} into account the DT encoding does not make the

DoDG-based descriptors more robust, except 97.35%, a little higher rate on Gamma of
DoDGF3D

{(0.5,1),(0.7,1),(1,1.3)},{1st} (see Table 6.35(a)). This is agreed with the HoGF-based de-
scriptors while their dimension increases up to 14000 bins (see Table 6.36(a)).
• Also, addressing multi-scale of both high-order kernels of DoDG and Gaussian-gradient filterings

is not for further enhancement of the correspondingly obtained descriptors while its dimension
grows up sharply (see Tables 6.35(b) for DoDGF and 6.36(b) for HoGF).
• Combining an odd order and an even one often obtains better performances than other configura-

tions since this addresses two complementary kinds of Gaussian-gradients.
• In addition, combining two kinds of above multi-scale analyses obtains a better rate of 97.73%

on Gamma for the DoDGF3D
{(σ,σ′)},F , while facing with the cruse of larger dimensions, up to

21600 bins, (see Table 6.35(c)). For the HoGF descriptors, taking the Gaussian-gradient filterings
into account multi-analysis of different orders and deviations leads to larger dimensions, e.g.,
HoGF

2D/3D

{2nd,3rd},{0.5,1}, but not boost the performance in DT classification. In case of full-scale of

all those, i.e., HoGF
2D/3D

{1st,2nd,3rd,4th},{0.5,0.7,1}, the performance is mostly not improved, except a
little higher rate (≈ 98%) on DynTex++, while facing with the curse of dimension: 43200 bins
for HoGF2D and 57600 bins for HoGF3D (see Table 6.36(c)). Due to above problems, those
combinations should not be recommended for real applications.
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Table 6.36: Performances (%) of HoGF2D/3D in further scale analysis.
Descriptor #bins Dyn35 Beta Gamma Dyn++

(a)

HoGF2D
{1st},{0.5,0.7,1} 10800 99.14 95.68 96.21 97.48

HoGF2D
{2nd},{0.5,0.7,1} 10800 100 95.06 94.70 97.34

HoGF2D
{3rd},{0.5,0.7,1} 10800 99.14 96.30 96.21 97.24

HoGF2D
{4th},{0.5,0.7,1} 10800 99.43 95.06 93.18 97.14

HoGF3D
{1st},{0.5,0.7,1} 14400 99.43 96.30 96.59 97.71

HoGF3D
{2nd},{0.5,0.7,1} 14400 100 96.30 95.08 97.93

HoGF3D
{3rd},{0.5,0.7,1} 14400 99.14 96.91 95.83 97.47

HoGF3D
{4th},{0.5,0.7,1} 14400 99.43 95.69 93.94 97.14

(b)

HoGF2D
{1st,2nd,3rd},{1} 10800 99.14 96.91 96.21 97.24

HoGF2D
{1st,2nd,3rd,4th},{1} 14400 100 97.53 96.59 97.41

HoGF3D
{1st,2nd,3rd},{1} 14400 99.43 97.53 97.35 97.82

HoGF3D
{1st,2nd,3rd,4th},{1} 19200 100 98.15 97.35 97.61

(c)

HoGF2D
{2nd,3rd},{0.5,1} 14400 99.71 96.91 95.45 97.67

HoGF2D
{3rd,4th},{0.5,1} 14400 99.71 96.91 95.08 97.62

HoGF2D
{1st,2nd,3rd,4th},{0.5,0.7,1} 43200 99.71 96.30 95.45 98.03

HoGF3D
{2nd,3rd},{0.5,1} 19200 99.71 98.15 95.45 97.87

HoGF3D
{3rd,4th},{0.5,1} 19200 100 98.15 95.83 97.80

HoGF3D
{1st,2nd,3rd,4th},{0.5,0.7,1} 57600 100 98.15 95.45 98.06

Note: Dyn35 and Dyn++ stand for DynTex35 and DynTex++ respectively.

6.11.2 Evaluating appropriation of our proposals for real applications

Currently, deep-learning-based methods are going on the major stream for computer vision commu-
nity. They often obtain significant results in DT recognition (see Tables 6.33 and 6.34). However, it takes
much time for them to learn millions of parameters using complex learning algorithms in multi-deep-
layer networks. For instance, it takes ∼80M for C3D [67], ∼88M for MSOE-two-Stream [4], while
∼61M for AlexNet and ∼6.8M for GoogleNet for DT-CNN [63]. This is one of crucial barriers in order
to bring those into real applications for mobile devices as well as embedded sensor systems, those which
have strictly required tiny resources for their functions.

In this chapter, our proposed framework can mitigate those shortcomings in low computational com-
plexity, expected to be potential for mobile implementations. It just utilizes a simple operator to capture
spatio-temporal features from the DoDG-filtered outcomes that are pointed out by the novel DoDG filter-
ing, proved to be much better than the well-known DoG one and others in denoising. In slight dimension,
the obtained DoDG-based descriptors DoDGF

2D/3D
σ,σ′,F have the highest performances compared to all non-

deep-learning methods, while being close to those of deep-learning ones. Indeed, Tables 6.33 and 6.34
show the very good performances of our 2-order descriptor DoDGF3D

(0.7,1),{1st,2nd} with 7200 bins as

well as those of the single order DoDGF2D
(0.7,1),{1st} with only 2400 bins. Those can be easily applied on

edge devices while maintaining a comparable performance related to deep learning models. In addition,
instead of using CLBP [3], it is able to take other LBP-based operators into account our proposed frame-
work for a purpose of further enhancement, e.g., CLBC [82], LDP-based [30, J5], LVP-based [100, J2],
LRP [J4], MRELBP [78], etc.

6.12 Summary
In this chapter, taking advantage of our local robust operators proposed in Chapter 3, we have pro-

posed several efficient frameworks for DT representation, which are based on local feature extraction
from filtered outcomes computed by the conventional Gaussian filtering and its variants: DoG, gradients,
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the novel DoDG kernel. Just using a shallow analysis to represent DTs, we have effectively constructed
discriminative descriptors with very good performance in comparison with state of the art. Among of
our proposed descriptors, the experiments have indicated that those based on the Gaussian-gradient and
DoDG filterings, i.e., HoGF [J3] and DoDGF [S1], mostly obtain the best performance compared to the
others. Those are also recommended for mobile systems due to their simple computations and small di-
mension. In case of dealing with the curse of large dimension, DoDGF’s analysis in multi-scale solutions
of supporting regions (e.g., {(P,R)} = {(8, 1), (8, 2), (8, 3)}) can be considered in future works to cap-
ture more extensively local relationships for further improvement. In addition, motivated by the approach
of LOGIC [S4], the bipolar properties of Gaussian-gradient filtered outcomes have been exploited in the
our latest work [S5] to address a potential alternative solution for HoGF [J3].
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CHAPTER 7

CONCLUSIONS AND PERSPECTIVES
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7.1 Conclusions
The thesis has concentrated on how to efficiently represent DTs for recognition issue. To this end, we

have proposed two main streams of techniques to deal with the well-known problems (e.g., noise, changes
of environment, illumination, scales, etc.) which negatively impact on capturing turbulent characteristics
for DT representation. According to the proposals and their experiments for DT recognition task, which
have been done in the above chapters, it could be stated several conclusions as follows.

• In the thesis, we have introduced several discriminative operators for the local encoding which are
adopted to different contexts of DT representation. More concretely, the directional-based local
patterns, xLVP and xLDP, are more discrimination power compared to the originals, LVP [100]
and LDP [30] respectively. CAIP could be a suitable alternative for the popular local operator,
CLBP [3], in order to fix the close-to-zero problem caused by the separately bipolar features.
In the meanwhile, the experiments have also proved the important contributions of the LRP and
CHILOP operators in extracting spatio-temporal patterns from the Gaussian-filtered outcomes,
compared to those which have been done by CLBP [3].

• We have proposed an efficient framework to exploit local features for DT description based on
dense trajectories extracted from a given video, instead of taking into account the entire video.
The descriptor construction is an analysis of directional features of beam trajectories which are
combined with those of motion points captured along the path of the corresponding trajectories.
The experiments have validated the good performance in recognizing DTs, compared to state of
the art. Subject to types of vision implementations in practice, addressing the length of dense
trajectory L can momentously affects the execution of structuring the corresponding descriptor
as well as its performance. For instance, due to the short “living” of DTs in videos, the higher
value of L is addressed, the smaller number of dense trajectories is extracted. This leads to less
spatio-temporal features taken into account the encoding. In addition, the proposed framework
also depends on which turbulent levels of DTs are recorded in videos, as an example shown in
Table 6.32.

• We have introduced a novel filtering model of moment volumes, which is motivated by the moment
images [2]. After that, we have proposed two corresponding frameworks in order to take both of
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them into account video analysis to obtain robust filtered outcomes for DT representation. The
experiments have proved the eminent performance of our proposals in comparison with the existing
methods. Therein, the moment-volume model is more robustness than the moment-image one and
should be applied to further implementations in practice.

• Also, we have proposed various flowcharts to take the Gaussian-based kernel and variants of
high-order Gaussian gradients into account the video filtering. Many robust descriptors have
constructed by using local operators to encode the obtained filtering responses. Specifically, in
regard to the Gaussian-based kernel, we have LOGIC descriptor using CAIP operator, RUBIG
using LRP, CHILOPGF descriptor using CHILOP. Meantime, based on the variants of high-order
Gaussian gradients, we have HoGF and IOM/VOM-based using CLBP [3] to encode the obtained
Gaussian-gradient-based outcomes. Prominently, we have introduced a novel DoDG filtering ker-
nel in consideration of the difference of Gaussian gradients, which allows to point out the out-
standing DoDG-filtered outcomes. The eminent DoDG-based descriptors are structured by using a
simple local encoding of CLBP [3]. The experiments in DT recognition have shown the significant
performance of these proposed descriptors in comparison with the current approaches. Therein,
the DoDGF and HoGF descriptors have the best performance compared to all non-deep-learning
models, while being close to that of the deep-learning approaches. Particularly, in small dimension,
the DoDG-based descriptors could be expected as appreciate solutions for mobile applications as
well as embedded sensor systems, those which require restricted resources for their functions.

7.2 Perspectives
In the thesis, various techniques have been introduced for efficiently describing DTs. In future works,

it can be in consideration of the following improvements:

• It can be seen that our proposed operators, xLVP, xLDP, CAIP, and CHILOP, can be applied to
other local encodings in applications of computer vision which are related to both video repre-
sentation and still image description. In the meantime, LRP prefers to video analysis because its
principle relies on local neighbors interpolated by a cube shape centering at a voxel. Also, it should
be noted that problems of the curse dimension can be seriously raised in real implementations if
LRP and CHILOP are located in higher multi-scale analysis of supporting regions. In addition, it
can address xLVP and xLDP in full directions, higher orders, or both of them to investigate more
directional relationships for enhancing the discrimination of the obtained patterns. Like CAIP
(an adaptation of CLBP [3]), the operators, xLVP, xLDP, CHILOP, and LRP, can be extended to
deal with the close-to-zero problem and applied to encoding the bipolar filtered features. They
have been considered as very potential solutions since the experiments have validated their better
performance in comparison with that of the original CLBP [3].

• Exploiting the short length of dense trajectories for DT representation can enrich more informative
patterns. However, due to the curse of a grand number of extracted trajectories, the speed of the
computation should be considered in real applications. Instead of using xLVP, addressing others
(e.g., xLDP, LRP, etc.) to encode the features of dense trajectories may enhance the performance.

• In consideration of treating the large dimension problem, addressing the moment volumes in higher
orders may obtain more robust filtered outcomes for capturing spatio-temporal relationships to
boost the discrimination power. Furthermore, xLVP, CHILOP, and LRP can be potential alterna-
tives to encode the moment-filtered volumes for further enhancement.

• As mentioned in Chapter 6, most of the proposed descriptors have been constructed by using
CLBP [3] to capture spatio-temporal features from filtered outcomes which are extracted by the
Gaussian kernel and variants of Gaussian gradients. Our proposed descriptors (e.g., xLVP, xLDP,
CHILOP, etc.) could be applied to those local encodings for further improvement.
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[35] R. Péteri, D. Chetverikov, Qualitative characterization of dynamic textures for video retrieval, in:
International Conference on Computer Vision and Graphics (ICCVG), 2004, pp. 33–38.
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