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Résumé

Cette thèse introduit l'usage d'approches reposant sur les « conditional random fields » à diverses applications médicales et données omiques. Ces méthodes permettent de tirer parti au mieux d'informations structurelles lourdes à interpréter et analyser dont, en particulier, des propriétés notables provenant de la théorie des graphes. L'emploi de la théorie des graphes d'ordre supérieur revêt un intérêt tout particulier pour l'expression des relations biologiques complexes. Nous démontrons leur pertinence dans les domaines du « clustering » et de la sélection de variables pour la classification. Nous nous sommes appuyés sur plusieurs applications médicales et données omiques pour mettre ces résultats en lumière.

Dans un premier temps, nous avons proposé un système générique et résilient de sélection de variables et de classification reposant sur des méthodes d'ensemble pour une augmentation significative des performances. Notre cas d'étude principal pour cette partie est la caractérisation de la sévérité de la maladie et l'issue clinique de patients atteints par la COVID-19. Dans ce but, nous avons recouru à des images scanners et plus précisément sur des informations extraites de segmentations automatiques des organes et zones lésées des poumons que nous avons combinées avec des informations cliniques obtenues en pratique de routine. Après une étape fondamentale de réduction de dimension, nous avons identifié un nombre restreint de facteurs déterminés comme primordiaux pour la classification. Nous reportons des performances prometteuses dépassant celles de radiologues experts sur toutes les tâches considérées. Nous avons étendu plus avant et adapté cette méthodologie pour traiter d'autres données omiques, maladies et attendus médicaux. Nous nous sommes particulièrement intéressés à la prédiction de la réponse à un traitement d'immunothérapie pour des patients atteints de cancer du sein. Cette étude multi-omique utilise des données génétiques, cliniques et des données histopathologiques valorisées par un algorithme de segmentation automatique des lymphocytes.

Par la suite, nous étudions un procédé de clustering pour la définition d'une signature de gènes présentant un intérêt clinique vis-à-vis de la caractérisation pan-cancer de lésions. L'oncologie représente un domaine d'application parfait pour ce type d'approche du fait de l'hétérogénéité tumorale et de l'importance particulière de l'étude de cette affliction dramatique à l'ampleur mondiale. Bien des études se sont essayées à la description du cancer grâce à la génomique. Cependant, la complexité de la tâche réside dans la grande dimensionnalité des données et le coût tant matériel, humain et temporel de la réalisation d'expériences visant à déterminer les fonctions de gènes encore inconnus. Nous prouvons la pertinence de la signature génétique très compacte générée par notre méthode en exploitant des approches supervisées et non-supervisées pour la caractérisation des types et sous-types de tumeurs. Nous avons également employé des mesures statistiques de significativité pour faire état de l'intérêt biologique des gènes que nous iii iv avons isolés. Dans cette étude, nous portons un intérêt substantiel à l'évaluation des techniques de clustering et proposons une méthode de comparaison spécifique à la génomique. Notre approche combine la prise en compte de critères mathématiques et biologiques afin d'établir des clusters présentant une bonne séparation des gènes guidée par les données employées et en accord avec les connaissances actuelles d'interactions entre protéines.

Finalement, nous avons défini une nouvelle approche d'apprentissage de distance d'ordre supérieur à viser de sélection et de pondération de variables. Cette formulation et la méthode de résolution que nous proposons se fonde sur les « conditional random fields » et permet de gérer efficacement la complexité structurelle d'informations d'ordre-supérieur. Fort de la grande expressivité de ce paradigme, nous avons exploré diverses propriétés de théorie des graphes d'ordre supérieur telles que les cliques, l'excentricité, la connectivité et la longueur des chemins. Nous établissons que ces attributs, dans le cadre d'une tâche de classification, possèdent une grande expressivité et permettent d'obtenir des résultats supérieurs à ceux des méthodes standards. 3.9 Short & Long Term Prognosis. Spider chart representing average profiles (average values of the variables after normalization between 0 and 1) for the short deceased (SD), long deceased (LD), and long recovered (LR) classes are shown along with their correlations with the outcome (diameter of the circle). The presented correlation corresponds to Pearson Correlation for LR/LD outcome (Table 5). Classification performance, confusion matrices, and area under the curve of the proposed method and -when feasible -the consensus of expert readers (reader+) are reported on the right side. ROC curves correspond to the one-vs-all classification of the SD/LR/LD patients. Our proposed framework is composed of two steps. First, a clustering algorithm, here LP-Stability, is used to generate clusters of genes having similar expression profiles. Then, the clustering that performs best on both mathematical and biological scores is selected as a gene signature. In the second step, the generated signature is used to perform sample clustering and sample classification. The performance on this step is evaluated by analysing the distribution of the samples into the different clusters or the performance on the classification tasks, here the target was the tumor types and subtypes characterization. 5 Expression Power of the sample clustering using as features respectively our proposed signature, a referential signature from literature [Thorsson, 2018] and average performance using 10 sets of randomly-selected genes of same size as the proposed signature. We observe that the two best performing signatures are the ones produced with our pipeline. The first using K-Means clustering the second, our proposed signature, using LP-Stability. . . . . . . . . . . . . . . . . . . . . . 90 4.6 Tumor Types Classification performance using the average performance of 10 sets of randomly-selected genes of same size as the proposed signature, CorEx, K-Means, the referential [Thorsson, 2018] and our proposed signatures. . . . . . . 91 4.7 Tumor Subtypes Classification performance using the average performance using 10 sets of randomly-selected genes of same size as the proposed signature, CorEx, K-Means, the referential [Thorsson, 2018] and our proposed signature.
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Chapter 1

Recently, the medical field has greatly benefited from many technical advances enabling the collection of constantly more medical data of diverse modalities. One tremendous improvement was in DNA and RNA sequencing techniques [Kurian, 2014] which has permitted a more standard use of genomics information for specific diseases while promoting proteomics data. The rising awareness of the macroscopic clinical variables' informativeness and the spreading of new analysis techniques enabled to amass a substantial quantity of medical records. Besides, imaging machines' routine use has generated quantities of images such as CT scans, MRI, ultrasound, or even histological images. Their variety and complementarity offer high promises towards the definition of a holistic model while at the same time representing an incredibly complex task to tackle. Indeed, biological processes understanding and modeling require leveraging intricately intertwined high-dimensional data.

To tackle the data high-dimensionality, previous medical studies relied on standard correlations to select the most relevant genes [Lippitz, 2016], drugs [Konecny, 2000] or environmental causes [Correa, 1981] for diverse diseases and contexts. Notwithstanding, mere correlation, even if allowing to identify interesting variables that might offer a good insight on a disease, is generally not enough to enlighten on prominent aspects as patients' outcome, treatment, or disease characterization. Towards these objectives, a predictive-oriented approach considering the data relationships in their entirety is required.

In parallel, the field of machine learning has flourished these last years and highly expanded its areas of application. When dealing with such an amount of data and variables, machine learning approaches are especially appropriate for their versatility and efficiency. Thus, it motivated developing a flurry of machine learning algorithms to provide continuous or categorical predictions from any type of data and at destination of any application field. In particular, thanks to its main paradigms with supervised, semi-supervised, unsupervised, and reinforcement approaches, machine learning became of prime importance for the medical community. The supervised and unsupervised approaches have been intensely investigated in medicine. Indeed, unsupervised techniques enable uncovering unknown relations without any a priori knowledge or any need for annotation. In particular, clustering [START_REF] Xu | [END_REF] is a widespread technique used to discover new groups of variables as genes or new relations between samples, for instance, tumor samples genomic similarity [Alon, 1999]. Clustering's strength dwells in the ability to discover previously unknown relations and patterns in the data. It represents an excellent tool 2 Chapter 1. Introduction for exploring biological properties without the need to resort to expensive and time-consuming wet-lab experiments. Supplementally, supervised techniques seek to optimize their predictions given a set of targeted annotations, referred to as ground truth. Their versatility empowers the determination of highly clinically relevant tasks such as the classification of samples [Sharma, 2016], prediction of treatment response [Dettling, 2003], and outcome [START_REF] Horvat | [END_REF]. Therefore, machine learning's potential benefits in medicine are tremendous and could enhance biological process understanding, drug discovery, patient care, and treatment.

With this aim, a whole research field has arisen to design powerful machine models able to handle still untractable information amounts. Besides, while machine learning enabled a crucial shift from previous studies, merely aiming at finding correlations between variables and outcomes, to new approaches adopting a predictive goal [Obermeyer, 2016]. Nevertheless, the daunting challenge of the data's critical dimension and their highly entangled relations in determining medical outcomes remains a significant hurdle. In the medical field, the variables' dimensionality usually dramatically exceeds the number of samples. This hindrance leads to the well-documented and dreaded curse of dimensionality, which implies a great difficulty to generalize and poor results [Friedman, 1997]. To cope with this difficulty, feature selection techniques [Jain, 1997] are generally employed. They resort to various strategies to find the most predictive variables while eliminating redundancy and avoiding information loss. Prominent feature selection techniques are Lasso [Tibshirani, 1996], Elastic Net [Zou, 2005] or statistics-based approaches as for instance chi2 [Liu, 1995]. Besides, medical applications critically require excellent performances for actual applicability. Thus, improving performance soundness is crucial. Towards this end, ensemble processes [START_REF] Ruta | [END_REF] intend to combine algorithms strengths and to be leveraged for both feature selection and classification tasks. In addition to this model robustness shortfall on medical applications, most machine learning techniques' lack of interpretability impedes their daily clinical use despite their great potential [START_REF] Vellido | The importance of interpretability and visualization in machine learning for applications in medicine and health care[END_REF]. Indeed, despite their state-of-the-art performance in most application fields, the ever more spread deep learning approaches face some reluctance regarding their clinical use. It is due mainly to the necessity of robust, explainable results. For patients' care-related questions, the process to come out with a prediction regarding, for instance, outcome or treatment has to be motivated by medical arguments a physician can comprehend and analyze. Notwithstanding, this particular point is the main flaw of many machine learning approaches hampering their use for clinically relevant tasks.

At the same time, graph modeling development represents a significant opportunity to leverage complex, intricate high-dimensional data. Originally, in our ever more interconnected society, the field of graph theory has flourished in studying social network properties [START_REF] Barabâsi | Evolution of the social network of scientific collaborations[END_REF][START_REF] Wang | [END_REF]. While bringing potent analysis tools, they aim to model convoluted relations between groups of subjects. The graph structure models the subjects as nodes and the relations as edges. Complex relations are generally analyzed through the concept of cliques (a subset of vertices of a graph such that every two distinct vertices in the clique are adjacent). The notion of path length in a graph is also of prime importance to characterize two subjects' similarity. Besides, a node's centrality and connectivity are crucial to assess its importance in the graph. Graph theory has tremendous applications. We can evoke works on subjects' distance in graphs demonstrating interesting social sciences theories as the degree of separation, first exemplified by Milgram and theorize in [Kleinfeld, 2002]. This so-called small world theory is the basis of many studies and has been extended to many real-life complex networks, from co-authorship graphs [Koseoglu, 2016] to protein-protein interactions graphs [START_REF] Qawi K Telesford | The ubiquity of small-world networks[END_REF]. It also enables identifying critical subjects ensuring connection in a network or groups of great cohesiveness defining communities. From spotting weak points in physical [START_REF] Demšar | Identifying critical locations in a spatial network with graph theory[END_REF] or internet [Krioukov, 2004] networks to modeling opinion diffusion processes [Battistella, 2018], graphs resilience and adaptability are remarkable. Therefore, graph theory adoption in the biological and medical communities has been swift. However, often employed in elementary settings, graphs latent potentials are yet to be exploited in those fields. Notably, their ability to consider high-order interactions has been heavily underrated because of the difficulty to elaborate tractable models efficiently accounting for those properties. In machine learning, several fields are investigating this new paradigm. For instance, we can report the recent efforts towards new techniques for leveraging complex graph structures as the generation of ever more efficient embeddings [Çelikkanat, 2018], hyper-graph partitioning [START_REF] Gottesbüren | Evaluation of a Flow-Based Hypergraph Bipartitioning Algorithm[END_REF] or decomposition [Dudek, 2019]. Besides, at the junction of computer science and biology, the need for expressive and complex dependency structures is dire. For instance, some innovative holistic approaches are considering more complex techniques to fuse data of different kinds [Wang, 2018] or in drug discovery to better exploit proteins 3Dstructures [START_REF] Becker | [END_REF]. In general, high-order properties are leveraged only at a local level [Yin, 2017] or by considering nodes co-occurrences in some small patterns [Benson, 2016] as cliques of order 3. These approaches are only surrogates shadowing the humongous amount of information leveraged in higher-order structures [Grover, 2016]. 

Medical Incentives

Genomics and Cancerology

Medicine is a primordial research axis because of the stakes regarding the improvement of healthcare and the better understanding of human biology. Notwithstanding, the challenges are high as the colossal number of patients is ever increasing, the heterogeneity of the diseases is significant, and the complexity of the interactions in a living system is extreme. Therefore, mathematics and computer science fields have a lot to offer to the medical community by bringing a systemic and automatic approach to tackle the vast amount of information and account for the complexity of the structures to model. Such algorithms are all the more attractive in genomics settings, the field of study of organisms' whole genomes, by opposition to genetics, the field of study of the role of genes in inheritance (definitions of the National Human Genome Research Institute). Interest in Genomics is exemplified by the Centers for Disease Control and Prevention, which states that whole genome studies constitute a crucial factor in 9 of the 10 leading causes of death in the United States. However, knowledge about gene interactions and correlations to diseases is costly to obtain through time-consuming wet-lab experiments. Hence, genes' omnipresence in biology and medicine induces a vast array of possible applications for machine learning techniques. Thus, data-driven approaches that allow tackling the intricacy of gene relations efficiently and fast are required.

In particular, cancer is the leading cause of death worldwide, with the appalling numbers of 19.3 million new cases diagnosed and 10 million deaths in 2020 [Bray, 2018]. It is a multifaceted disease [START_REF] Bertucci | Reasons for breast cancer heterogeneity[END_REF], still hard to comprehend, and presenting a variety of types and subtypes in which severity, outcome, and treatment have frequently been highly correlated to a combination of environmental components and genes expressed [Hanahan, 2011]. Recent breakthroughs in immunotherapy have profoundly impacted the landscape of cancer treatment, such as lymphomas [Ansell, 2015], lung [Reck, 2016] and kidney cancers [Motzer, 2015]. It offered a new efficient alternative for patients with advanced cancers with a tumor response from 10 to 40% on the long term [Chen, 2017a;Hellmann, 2017]. However, finding relevant biomarkers enabling the definition of immune checkpoint inhibitors is a challenging task of prime importance to develop immunotherapy benefits and patients coverage. Cancerology thus constitutes a perfect application for genomics studies aiming to bring a systematic and automatic analysis of relevant genes [Garraway, 2013]. An abundance of studies has tackled the problem in various ways and, genomics [START_REF] Balmain | [END_REF] has dramatically evolved and benefited from machine learning advances to address various aspects of cancer complexity as the convoluted task of subtypes characterization. However, both fields often rely on a priori expert knowledge guiding the definition and selection of variables to consider and lack agnostic approaches. Also, the great tumor heterogenity [START_REF] Marusyk | Tumor heterogeneity: causes and consequences[END_REF] represents a major hurdle to cancer analysis and understanding.

Medical Incentives

Covid-19 Pneumonia

COVID-19 or SARS-Cov-2 is a new infectious disease that has been identified in 2019 in China. Since then, it has spread worldwide and has been characterized as a pandemic by the World Health Organization in March 2020 [START_REF] Bedford | COVID-19: towards controlling of a pandemic[END_REF]. This disease cause is a novel Beta coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) [Anonym, 2020]. SARS-Cov-2 infects the airway epithelial cells with consequences ranging from no or few symptoms to acute respiratory distress, the leading cause of death. Symptoms include a decrease in the number of lymphocytes and white blood cells, new pulmonary infiltrates on chest radiography, and no noticeable improvement after treatment with antibiotics for three days [Zhou, 2020b]. The SARS-Cov-2 pandemic had caused more than 1.6 million deaths worldwide by the end of 2020 and has overwhelmed healthcare resources in most countries. Disease assessment, staging, and prognosis are a bottleneck for patients, health care professionals, and health care facilities. Reverse-transcription polymerase chain reaction (RT-PCR) is the referential method to confirm the infection by identifying viral RNA. However, its positivity can be delayed, and false negative RT-PCR results can be encountered, especially with some of the new variants of the disease. Chest Computed Tomography (CT) scans allow the early detection of Covid-19 caused pneumonia, particularly when performed more than 3 days after symptoms onset. Chest CT is faster and can rule out differential diagnoses such as bronchopneumonia of bacterial origin, requiring antibiotics [START_REF][END_REF]. This has led to chest CT resort as a primary tool for patient triage in several centers during the pandemic.

The Covid-19 pandemic [Zhu, 2020] has dramatically shaken the whole world and generated considerable pressure on hospitals. This coronavirus has tried their adaptability and resources management ability. In a time of shortage, institutions had to optimize beds, intubation machines, and personnel allocation while doctors were facing a new disease; they were still unexperimented to fight [Zhou, 2020a]. Many machine learning studies have attempted to provide an automatic data-driven solution leveraging the already substantial number of patients to learn on in this context.

In recent years, literature was overflown by computer vision adaptations to medical imaging tasks [Chassagnon, 2020b;Beutel, 2000] to better leverage the imaging information extracted from the data. In particular, the flourishing field of radiomics considering different first and second-order, shape and texture features obtained highly promising results [Kumar, 2012;Sun, 2018;[START_REF] Yip | [END_REF]. All the experience gathered through these studies brings valuable insight into coping with Covid-19 challenges. More specifically, the tremendous amount of work that has already been carried out on other Pneumonia diseases will be of great benefits in this context [START_REF] Chassagnon | Deep learning: definition and perspectives for thoracic imaging[END_REF].

Technical Incentives

The technical obstacles when dealing with medical applications of machine learning are significant. We can evoke the aforementioned dimensionality curse, the need for excellent, robust, and interpretable results. To cope with those difficulties, we investigated two prominent paradigms combination.

Clustering Honing

Clustering is a prominent unsupervised technique aiming to unearth latent patterns in the data and establish uncharted relations between samples. Nonetheless, the task's intrinsic difficulty in assessing the obtained clusters' pertinency remains a formidable hurdle for both clustering selection and comparison. This particular limitation is all the more critical that plenty of algorithms relying on distinct properties exist. To cope with this issue, several mathematical and fieldspecific metrics have been proposed [START_REF] Kaufmann | Clustering by Means of Medoids[END_REF]Wagner, 2015]. However, in genomics, the lack of a standard evaluation method encompassing both mathematical well-definition properties and a concrete consideration of characteristics required for field experts impairs many studies' reliability.

Higher-Order Conditional Random Field Harnessing

Conditional Random Field (CRF) is a family of potent statistical graphical model which has been well-exploited over the years in the fields of computer vision, medical images, or general machine learning. It consists of an energy optimization task where we seek to assign labels minimizing an objective function composed of unary, pairwise, or higher-order potentials [Komodakis, 2010]. CRF is an auspicious approach as it enables predictions consistent with structural dependencies at the difference of standard classifiers considering each sample independently. Those relations are represented by the graph edges in the pairwise case. More generally, higher-order relations are composed of interdependencies represented by sets of nodes. Then, the computational cost for leveraging such complex systems is soaring. Several approaches have been tackling the challenging optimization of higher-order CRF with some limitations as the exponential increase of variables or the generalizability [Ishikawa, 2010;Fix, 2011].

Objectives of the Thesis

This thesis work aims to offer machine learning and graphical-model-based solutions to diverse medical problems. Graph-theory represents the articulation between the different parts and its integration to standard machine learning pipelines is the ultimate goal. In particular:

• Chapter 3 provides a robust approach for feature selection and classification problems. Its main application focuses on healthcare resources management to alleviate the pressure due

Main Contributions

to the Covid-19 pandemic over hospitals. This work's objective is to determine Covid-19 severity relying only on standard CT scans and clinical information. We further prove the versatility of our approach through a task of treatment response prediction for breast cancer patients and a task of disease severity determination for atopic dermatitis.

• Chapter 4 aims to provide an automatic and unbiased methodology for identifying clinically relevant genes for tumor tissue characterization. This study singles out a low dimensional gene signature discriminative of the tumor sample types and subtypes. Thus, it offers an alternative to the expensive and time-consuming wet-lab experiments to establish gene characteristics.

• Chapter 5 intents to present an innovative theoretical approach to leverage the higher-order relations existing naturally in medical data by learning a dedicated distance metric over the data manifold.

Main Contributions

Each chapter of this thesis work provides distinct original contributions tackling feature selection, outcome prediction and clusters discovery for diverse data types.

Chapter 2 introduces the mathematical foundations of the different methods we leverage in the remaining of the thesis to provide a self-contained work. Moreover, it presents and summarizes the different supervised and unsupervised techniques we exerted for feature selection, classification, clustering and the conditional random field approach along with their respective advantages and limitations.

Chapter 3 proposes an end-to-end machine learning procedure for feature selection and classification for medical applications. Its main focus is predicting from Covid-19 patients CT-scans the severity of the disease, but it also presents a task of treatment response prediction for cancer patients and another one of atopic dermatitis severity determination. In Covid-19 context, we single out the crucial factors of comorbidities from both images and clinical information. Using those selected features, we managed to outperform trained radiologists in the patients' outcome's determination. This work has been published in [Chassagnon, 2020a;Battistella, 2021c].

In Chapter 4, we deal with genomics and cancerology through unsupervised clustering. We aim to provide a methodology for establishing groups of genes having a similar influence on cancer, and to design a low-dimensional cancer-relevant gene signature. This work first emphases the need of a joint use of mathematical and biological metrics to estimate the well-definition of genes clusters. We demonstrate our approach's strength on 10 different cancer types for which the generated signature outperforms all baseline signatures in terms of expressiveness, Chapter 1. Introduction biological property, and clinical relevance. This work has been published in [START_REF] Battistella | [END_REF] and submitted to IEEE transactions on bioinformatics and computational biology [START_REF] Battistella | [END_REF].

Chapter 5 proposes a theoretical and algorithmical work to learn a metric dedicated to a chosen dataset and classification task. Thereby, we prove the suitability of graph-based information and, in particular, higher-order structures on an excellent sample characterization. The method's versatility and robustness are demonstrated on the previously discussed COVID patients contexts. In this chapter, we introduce the different theoretical notions we investigate in the following chapters. The advantages and limitations of the different approaches are presented and related to the requirements in the medical field and, more specifically, in the medical applications that are developed afterwards.

Publications

Journal articles

Chapter 2. Formal Standard Approaches Definitions

Notations

Let us consider n points S = [1, n] in a space of dimension m where the coordinates of each sample i are described by x i = (x 1 i , ..., x m i ) while its label are denoted by y i ∈ L with L a set of labels, and d =| L |. The label predicted by a model for a sample i is y(x i ). Besides, we denote by µ(M ) the mean of a set M and σ(X) its variance. We consider 1(.) the indicator function. During performance evaluation, we abbreviate the true positive as TP, true negative as TN, the false positive as FP and the false negative as FN.

In clustering settings, a sample p binary assignment variable to a center q is denoted x(p, q) which takes value 1 if the assignment is effective and 0 otherwise. If we denote k the number of clusters in a clustering C, then the clustering is a set of clusters

C = {C 1 , ..., C k } defined such that ∀1 ≤ i, j ≤ k, C i ∩ C j = ∅ and 1≤i≤k C i = S.
The number of points in cluster C i is denoted by n i . We call centroid µ i of cluster C i the mean of the points of the cluster.

Finally, we get a discrete random variable X p = {X 1 p , ..., X b p } from a point p ∈ S by binning into b bins. We denote P (X p ) the probability mass function of X p . Then, the Shannon Entropy H of variable X p is defined by H(X p ) = -1≤i≤b P (X i p ) ln P (X i p ). When considering two random variables X p and X q , we denote the joint probability mass function as P Xp,Xq and the marginal probabilities as respectively P Xp and P Xq .

Supervised Paradigm

The supervised paradigm is one of the most potent approach when datasets with reliable ground truth annotations are available. In particular, in the medical field, classification algorithms usually aim to efficiently identify a patient's disease, infer his outcome or determine the mostsuited treatment. Notwithstanding, these approaches suffer specific flaws. They are more datagreedy than their unsupervised counterparts, as, during their training phase, they have to capture the most generalizable and accurate model of the training set. Also, the curse of dimensionality is much more pregnant with those methods and is likely to entail overfitting, i.e. a lack of generalizability. Feature selection techniques are a standard alternative to handle this difficulty. They aim to single out the variables presenting the highest interest regarding a given target prediction. Not only do feature selection approaches enable better prediction performance, but they also provide a relevant characterization of discriminative variables. k-Nearest Neighbor (K-NN) [START_REF] Cover | Nearest neighbor pattern classification[END_REF] is based on a local approximation scheme. K-NN has various formulations including a classification one. In this case, the learning step consists in assigning to the sample to predict the label of the most common class among the k closest samples of the training set. This approach offers the good property of a fast learning as we only have to retain the training set samples. Besides, it provides reliable predictions for data in an amount large and representative enough. Notwithstanding, its consistency highly depends on the choice of the parameter k, which has to be optimized carefully. In addition, the basic formulation of this algorithm is inefficient on too large datasets, to improve the query time one can resort to alternatives relying for instance on tree data structures as ball trees or KD trees.

Support Vector Machine (SVM) [START_REF] Hearst | Support vector machines[END_REF]] is a robust and adaptable classification method. Its interpretability and potency justify its success in the medical community. In its original formulation, it aims at finding the hyperplane of equation w T x -b = 0 separating linearly data into two classes with a maximum-margin. The margins determine the classification prediction results such as

y i = 1 if w T x -b ≥ 1 and y i = -1 if w T x -b ≤ -1.
In the more adaptable soft-margin settings, we rely on the hinge loss function to tackle the case where the data is not linearly separable. In this case, during the training step we are looking for w and b optimizing the objective function:

min w,b 1 n n i=1 max(0, 1 -y i (w T x i -b)) + λ w 2
The parameter λ enables a trade-off between increasing the size of the margins and a correct prediction of y i . On the inference step, the label is given by sign(w T x -b). To deal with nonlinear classification, SVM can be generalized thanks to the kernel trick [Vapnik, 1995]. It consists in replacing in the above objective function and margins equations the dot products with nonlinear functions allowing a warping of the space to account for more general data distributions. In particular, in the following, as alternatives to the linear SVM, one can consider the Sigmoid SVM with kernel tanh(κx i x j + c) with κ > 0 and c < 0, the Radial Basis Function (RBF) SVM with exp(-γ x i -x j 2 ) and the Polynomial SVM with (x i x j ) d .

Decision Tree (DT) [Safavian, 1991] relies on a graphical modeling approach allowing great interpretability of the predictions. The decision tree concept depend on the data iterative partitioning according to categorical split attributes defined from the input variables. Split attributes are either a variable's categories for categorical variables or defined from inequations for continuous ones, e.g. for the variable age, the split attribute could be age > 40. At each step, a split attribute selection is performed based on a statistical measure optimization criterion. One of the Chapter 2. Formal Standard Approaches Definitions most common criterion is the Gini impurity index.

Gini(t) = 1 - d j=1 p(j|t) 2
with p(j|t) the relative frequency of class j at node t of the tree. Thus, the decision tree presents the advantage of considering any variable type without any need for normalization. Nevertheless, the decision tree is sensitive to overfitting for which pruning methods constitute a usual remedy to enhance DTs generalizability.

Random Forest (RF) [START_REF] Ho | [END_REF] is an ensemble technique leveraging multiple simple decision trees to improve their generalization ability. The predictions of each tree composing the forest are merged through a majority voting approach to build the final prediction. Besides, the specificity of random forest compared to mere ensemble techniques is bootstrap aggregating (bagging) during the learning process. Bagging aims to increase predictors' performance by decreasing the variance (the variation the estimate function will incur under small fluctuations of the training data) while maintaining the bias. More specifically, bagging consists in training the predictors on different subsets of the training set selected with replacement. Random forest adopts a variant of this approach, called features bagging, which for each bootstrap split also applies a selection of a subset of the split attributes. Therefore, it creates a set of decorrelated decision trees leveraging different variables.

AdaBoost [START_REF] Freund | [END_REF] is an ensemble technique combining T weak learners' predictions. Let us consider without loss of generality a decision tree of low depth as a weak learner. AdaBoost recursively fits a decision tree to the training set with importance weights assigned to the samples. Initially, all samples have the same weights. Then, at each step, the weights of complex cases are increased to bring more importance to misclassified samples. This approach rely on the weighted error rate for classifier t ≤ T , γ t , and its subproduct the quality coefficient of predictor t, α t , defined as follows:

γ t = n i=1 w i,t I(y t (x i ) = y i )) n i=1 w i,t α t = sigmoid(γ t ) = ln( 1 -γ t γ t )
γ t penalizes more the misclassified samples with important weights. From the definition, α t is increasing for decreasing values of γ t . In particular, α t is 0 when γ t = 0.5 and infinite for a perfect classifier i.e. when γ t = 0. The update process for sample i and classifier t is:

w i,t+1 ←-w i,t exp(α t 1(y t (x i ) = y i ))

Supervised Paradigm

Intuitively, we increase the weight given to sample i by exp(α t ) if it is misclassified at time t. The final prediction is then obtained using a voting scheme weighted by the quality of the classifier:

Y T (x) = sign( T t=1 α t y t (x))
where Y T (x) represents the prediction for a sample of coordinates x of the additive ensembling model considering T weak learners.

Gradient Tree Boosting (GTB) [Friedman, 2002] is a boosting generalization to handle arbitrary differentiable loss functions. As in the case of AdaBoost, we rely on an additive model for prediction and we use the same notations. The regression scheme can be summarized by:

∀t > 1, Y t (x) = t m=1 y m (x)
with y m (x) the prediction of the decision tree m. In the classification case, the same process is applied except that we are obtaining the probability that sample i belongs to the positive class thanks to the sigmoid function by considering p(y i = 1|x i ) = sigmoid(Y t (x i )). Then, given a differentiable loss l to minimize, we want to determine y t given Y t-1 .

y t = arg min y n i=1 l(y i , Y t-1 (x i ) + y(x i ))
The final y t is defined as the one minimizing the loss of the additive model. By default, the initial constant model Y 0 is taken to minimize the expected loss. The optimization is performed thanks to a first-order Taylor approximation over the loss l on its second parameter, we get

l(y i , Y t-1 (x i ) + y(x i )) ≈ l(y i , Y t-1 (x i )) + y(x i )g i (x i ) with g i = [ ∂l(y i , Y (x i ) ∂Y (x i ) ] Y =Yt-1 .
Removing the constant terms we get

y t = arg min y n i=1 y(x i )g i
The resolution is analogous to a functional gradient descent which explains the approach's name. Despite its computational complexity, GBT is a prominent method allowing to achieve high performance.

Naive Bayes [Georgen, 1995] is based on the Bayes' rule under the simplification hypothesis of conditional independence between every pair of features. In this "naive" approach, the formula Several different variants of naives bayes classifiers exist and differ by their modelling of the data distribution P (x i |y). Here, we first investigate the gaussian naive bayes where

P (x i |y) = 1 2πσ 2 y exp(- (x i -µ y ) 2 2σ 2 y )
where parameters σ y and µ y are estimated through maximum likelihood. And, then, the bernoulli naive bayes relying on the decision rule

P (x i |y) = P (x i |y)x i + (1 -P (x i |y))(1 -x i )
and which binarize all the input variables. The advantage of naive Bayes approaches is their robustness despite a small number of training samples. Besides, by assuming the feature vectors' conditional independence, it earns a great resilience for high dimensional data.

Quadratic Discriminant Analysis (QDA) [Fisher, 1936] is derived from a simple probabilistic model. Similarly to naive bayes, it relies on the Bayes' rule

P (y = k | x) = P (x | y = k)P (y = k) l P (x | y = l)P (y = l)
However, in this approach, instead of an independence assumption over the features, we model P (x | y) as a multivariate gaussian distribution:

P (x | y = k) = 1 (2π) m/2 | Σ k | 1/2 exp(- 1 2 (x -µ k ) t Σ -1 k (x -µ k ))
where Σ k is the covariance matrix for class k and µ k its mean. Then, the logarithm of the posterior can be expressed as

log P (y = k | x) = log P (x | y = k) + log P (y = k) + cst = - 1 2 log | Σ k | - 1 2 (x -µ k ) t Σ -1 k (x -µ k ) + log P (y = k) + cst
where cst is the constant disappearing in the following optimization. Finally, the predicted class is the one maximizing the log-posterior. To solve this optimization problem, one can rely on singular value decomposition (SVD) of the training data matrix X k = U SV t . Thus, the covariance matrix can be decomposed as V S 2 V t . It results in a simplification of the covariance matrix as the computation of U is not required.

Gaussian Process [START_REF] Williams | [END_REF] relies on the simple modelling of the P (y = k | x) by the sigmoid of a latent function f called nuisance function. By assuming that we have a noise-free latent process, we aim to discard the unobserved function f through integration. For inference, the process relies on a step of computation of the latent variable corresponding to the test case

x * considering the latent function on test f * using

P (f * | X, y, x * ) = P (f * | X, x * , f )P (f | X, y(X))df
with X the data on training. Then, the probabilist prediction is produced with

p(y(x * ) = k | X, y(X), x * ) = σ(f * )P (f * | X, y(X), x * )df *
To solve this analytical hurdle, several methods might be used. Here, we rely on a Laplace approximation. It consists in modeling P (f | X, y(X)) by a gaussian distribution to determine the posterior by successive derivatives. The gaussian process presents the advantage of being probabilistic which allows to compute empirical confidence intervals. However, it loses efficiency in high dimensional spaces and suffers from a high computational cost during inference. [Hinton, 1990] is a deep neural network architecture with at least one hidden layer. A node i in a layer connects to all the nodes j of the next layer with a weight w i,j . Each neuron of the hidden layers operates a linear summation and a non-linear activation function. In a standard perspective, the optimization of the weights is performed thanks to gradient descent and diffused in the network through back-propagation. MLP has the excellent property to be able to learn non-linear models. However, it is sensitive to feature scaling, and as the hidden layers bring non-convexity to the loss function, the local minimum reached is initialization dependant.

Multi-Layer Perceptron (MLP)

Ensemble Techniques allows to leverage the complementarity of well-performing techniques. In particular, we experimented two prominent techniques:

• Majority Voting Classifier is a straightforward framework consisting in adopting the label of the most predicted class. 

Feature Selection

Lasso [Tibshirani, 1996] (least absolute shrinkage and selection operator) is a regression analysis technique notorious for its regularization and feature selection abilities. Its major strength is to enforce sparse coefficients thus efficiently reducing the number of features. Formally, it is defined by a linear objective function with a l 1 -norm regularization:

min w 1 n Xw -y 2 2 + α w 1
Ridge [Warton, 2008] regression or Tikhonov regularization is another variant of a linear objective function. In addition, it copes with highly collinear variables while it favors homogeneous weights by exerting a shrinkage through its l 2 -norm regularization. It enables a reduced Variance and more stable solutions.

min w 1 n Xw -y 2 2 + α w 2
Elastic Net [Zou, 2005] regularization is a combination of both lasso and ridge methods. It presents at the same time the advantages of sparsity offered by the l 1 -norm while providing better stability with the l 2 -norm. However, it incurs the risk of performing a double shrinkage, entailing a highly increased Bias and lower performance.

min w 1 n Xw -y 2 2 + α w 1 + β w 2
Statistics-Based Selection leverages different statistical metrics and seeks to eliminate dependency between the variables. For classification, some of the metrics to estimate the dependency of the features include for instance the chi-squared (chi2) metric [START_REF] Pearson | On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling[END_REF], the analysis of Variance (anova) F-test [START_REF] Lomax | [END_REF] or the mutual-information [Shannon, 1948]. Given a probability p i that an observation belongs to class i, the chi2 test is defined as

d i=1 (n i -np i ) 2 np i
with n i the number of observations in the class i. The anova F-test statistic is simply defined as a ratio of the between-group variability over the within-group variability. If we denote µ i the sample mean over the class i and µ the global sample mean, the former is defined as

1 d -1 d i=1 n i (µ i -µ) 2
while the latter is expressed by

1 n -d d i=1 ni j=1 (x i,j -µ i ) 2
where x i,j is the j -th sample of group i. The mutual-information of two random variables is defined as

M I(X i , X j ) = X p i ∈Xi X q j ∈Xj P (Xi,Xj ) (X p i , X q j ) log P (Xi,Xj ) (X p i , X q j ) P Xi (X p i )P Xj (X q j )
where P (X p i , X q j ) is the joint probability function and P (X p i ), P (X q j ) are marginal probability functions.

Metrics

To asses the quality of the classification predictions, several notions are worth investigating. Some of the most frequently used ones we considered in this thesis are summarised in this section.

Balanced Accuracy is a metric assessing the statistical Bias or systematic errors. This balanced version of accuracy enables to cope with unbalanced datasets and multi-class tasks. It consists in a normalization by each class' number of samples in the usual accuracy metric:

1 n n i=1 1(y(x i ) = y i ) n yi
Precision is a measure of statistical variability or random errors. It is expressed as The use of weighted metrics instead of the non-weighted is required when considering a multiclass classification task. The weighted scores (WS) are defined as

W S = 1 n l n l S l
where S l corresponds to the non-weighted score in one-vs-rest classification for the class l.

Confusion Matrices is a standard matrix representation summarizing the performance of an algorithm. It offers insights into each class's samples of the predictions' distributions between the different classes. It allows to determine the numbers and proportions of TP, FP, TN, FN.

Receiver Operating Characteristic (ROC) curve is a graphical representation illustrating a model's performance. It is established by considering different thresholds over the probabilities of prediction of a class in a one-versus-rest scheme. It shows the respective scores of two considered metrics at the different discrimination thresholds. Standard metrics to consider are the True Positive Rate (TPR) against the False Positive Rate (FPR) or equivalently the sensitivity against 1-specificity. Thus, in binary classification, only one ROC curve is needed to characterize the model's prediction ability. However, in general, in multi-class classification settings, one ROC curve by class is required and is obtained through a one-versus-rest approach.

AUC is a quantitative metric defined as the area under the ROC curve. The higher the AUC the better the model. Indeed, metrics are chosen such as a the best prediction model yields a point in the upper left which will minimize the metric on abscissa and maximize the one on ordinate, e.g. maximize the TPR while minimizing the FPR. A random method yields the line y = x.

Unsupervised Paradigm

Unsupervised learning is a very efficient technique to study large high-dimensional datasets designed for discovering unknown indiscernible structures and correlations [START_REF] Halkidi | On Clustering Validation Techniques[END_REF]. Clustering algorithms aspire to single out a group separation of the data favoring low variation inside the groups and high variation between groups. Notwithstanding, many clustering approaches are relying on different properties, leading to significantly different solutions. One of the main challenge of clustering is defining a metric/similarity function depicting the notion of closeness between objects under consideration. This includes the intrinsic clustering properties the algorithm seeks to optimize and the distance notion involved. The main advantage of unsupervised clustering compared to supervised approaches -or methods guided by specific biological functions or processes -is the ability to discover unknown patterns and associations without a priori. Furthermore, unsupervised discovery offers better tractability when applied to the tremendous amount of samples considered in medical tasks. This is one of the reasons that several studies focus on statistical pattern recognition methods such as the center-based K-Means [MacQueen, 1967], the model-based CorEx [START_REF] Steeg | [END_REF] or the stability-based LP-Stability [START_REF] Komodakis | [END_REF] towards the identification of meaningful and predictive groups of biomarkers [START_REF] Bailey | [END_REF]. Indeed, unsupervised approaches provide unbiased clusterings to rely on for feature selection of the data whereas resorting to experimental schemes and current knowledge lead to redundant signatures and loss of information [START_REF] Cantini | [END_REF]. Evidence-based methods with the ability to determine beyond-human-grasp higher-order correlations could have tremendous diagnostic, prognostic, and treatment selection impact. In this direction, CorEx [START_REF] Pepke | Comprehensive discovery of subsample gene expression components by information explanation: therapeutic implications in cancer[END_REF] has recently been introduced to generate gene signatures evaluated and optimized over ovarian tumors. This signature managed to well characterize patients outcome. The study was however limited by being focused on only one specific tumor type and its clinical relevance was impaired by the high dimensionality of the gene signature which was composed of several hundred genes. This high dimensionality is a recurrent issue when identifying biomarkers. Some studies propose methods to combine and prune existing signatures towards more compacity and informativity [START_REF] Cantini | [END_REF]Thorsson, 2018].

Algorithms

K-Means algorithm [MacQueen, 1967] is a very popular and straightforward algorithm used for data following Gaussian distributions. First, the algorithm draws an initial random set of cluster centroids. Then, until convergence, it iteratively determines k clusters by assigning the points to their closest centroid and computing their new centroids µ i . The algorithm aims to solve

min C k i=1 p∈Ci d(p, µ i ) .
Considering the hyperparameters, only the number of clusters k has to be defined beforehand. Generally, K-Means is used with Euclidean distance for convergence issues. The main drawback of this technique is that the random initialization is a source of nondeterminism and may cause instability in the cluster generation for different runs. To address this issue, multiple clusterings are generated with a different initialization and the best one is selected.

CorEx algorithm [START_REF] Steeg | [END_REF]] is a model-based algorithm that has been applied to various fields and, especially on gene clustering [START_REF] Pepke | Comprehensive discovery of subsample gene expression components by information explanation: therapeutic implications in cancer[END_REF] with great success. This algorithm aims to define a set S of k latent factors accounting for the most variance of the dataset S. Formally, it relies on the Total Correlation of discrete random variables X 1 , ..., X p defined by

T C(X 1 , ..., X p ) = 1≤i≤p H(X i ) -H(X 1 , ..., X p )
and the Mutual Information of two random variables as defined in Section 2.2.2. To guarantee a reliable definition of the latent variables, the algorithm minimizes the Total Correlation, T C(S|S ), corresponding to the additional information brought by the points in S compared to the latent factors of S . Then, to obtain the clustering, each point p is allocated to the cluster of the latent factor f maximizing the mutual information, M I(X p , f ). Similar to K-Means, the only requirement of the CorEx algorithm is the number of clusters k. [START_REF] Komodakis | [END_REF] is based on linear programming. It relies on the same definition of clusters as K-Means i.e. we want to minimize the distance between each point of a cluster and the center of the cluster. However, the novelty and interest of this technique are that instead of taking centroids as cluster centers, it defines stable cluster centers. Formally, we aim to optimize the following linear system

LP-Stability algorithm

P RIM AL ≡ min C p,q d(p, q)x(p, q) s.t. q
x(p, q) = 1

x(p, q) ≤ x(q, q)

x(p, q) ≥ 0 where x(p, q) represents the fact that p belongs to the cluster of center q. The formula corresponds to the minimization of the distance between a point and its cluster center while ensuring that each point must belong to one and only one cluster and that centers belong to their own cluster.

The determination of the stable centers relies on the following notion of stability:

S(q) = inf s {s, d(q, q) + s PRIMAL has no optimal solution with C(q, q) > 0}

The stability of a point is the maximum penalty the point can receive while remaining an optimal cluster center in PRIMAL. Besides, to better exploit particular field constraints of the points or better tune the number of clusters, penalty value S q >= 0 can be added to point q. Then, we consider the penalty vector S weighting the distance d such as ∀q, S q ∈ S, d (q, q) = d(q, q) + S q . Doing so, we impose a stronger minimal stability for the cluster centers entailing a lower number of clusters.

Let us denote Q the set of stable cluster centers. The algorithm solves the clustering using the DUAL problem

DU AL ≡ max D D(h) = p∈V h p s.t. h p = min q∈V h(p, q) p∈V h(p, q) = p∈V d(p, q) h(p, q) ≥ d(p, q)
where h(p, q) corresponds here to the minimal pseudo-distance between p and q and h p to the one from p. This previous DUAL problem is then conditioned by considering only centers in the set of stable points Q:

DU AL Q = max DU AL s.t. h pq = d pq , ∀{p, q} ∩ Q = ∅
This method presents several advantages. It is versatile and can integrate any metric function while it does not make prior assumptions on the number of clusters or their distribution. It aims to define clustering in a global manner seeking an automatic selection of the cluster centers. For that matter, it relies on the optimization of the set of stable centers, as well as the assignment of each observation to the most appropriate cluster, meaning the one minimizing the distance to the center. This algorithm only requires a penalty vector S, influencing the number of clusters.

Proximity Measures

As it is demonstrated later on, the choice of the best-suited metric for a given data type is of paramount importance. Indeed, regardless of the algorithm's efficiency, its performance higly depends on the distance used to warp the input data. The metric has to fully capture the data properties and distribution. To tackle the issue of the data's high dimensionality combined with a low ratio between samples and dimensions of each sample, we studied several different distance notions relying on very distinct definitions of closeness. In this study, we considered several standard metrics summarized below:

Euclidean Distance is one of the most commonly used metrics, measuring the dissimilarity between vectors. It is the common distance on a map, for instance, or any Euclidean space.

euclidean(x p , x q ) = x p -x q 2
Cosine Distance is also a distance that is very commonly used in the literature. It is inspired by the actual expression of the angle's cosine in geometry. It can be defined as follows:

cosine(x p , x q ) = 1 - x p • x q x p 2 x q 2
Pearson's correlation is based on the covariance of the compared samples. It compares the covariance of the two variables with the product of their respective variance. It assesses very well the linear correlations between the variables. pearson(x p , x q ) = cov(x p , x q ) σ(x p )σ(x q )

Spearman's rank correlation is a non-parametric measure of rank correlation, and it assesses to what extent the relation between two variables can be represented by a monotonic function. We denote by rg(x) the rank variable of the sample of coordinates x. It is calculated by:

spearman(u, v) = cov(rg(x p ), rg(x q )) σ(rg(x p ))σ(rg(x q ))
Kendall's rank correlation is a measure of rank correlation considering the similitude of the ranking order of the observations for the two compared objects. It assesses the best non-linear dependencies. It is calculated by:

kendall(p, q) = 2 N C -N D n(n -1)
where N C is the number of concordant pairs and N D the number of discordant pairs. Pairs of observations (p u , p v ) and (q u , q v ) are considered concordant if their ranks agree i.e. p u > p v ⇔ q u > q v they are said discordant if p u > p v ⇔ q u < q v . Kullback-Leibler divergence measures how different two probability distributions are. It represents the expectation that two distributions present similar behavior. It is computed by:

KL(p, q) = - u P (p u ) log P (q u ) P (p u )
We made this measure symmetric by considering KL(p, q) + KL(q, p).

The different correlations cover the range of [-1, 1]. The value is positive when the observations evolve in a similar way for the compared variables and negative when they evolve in opposite ways. High absolute values indicate high correlations in the observations. On the other hand, high values in terms of distance indicate observations that are not similar in the specific feature space. To convert correlations c into distances, we used a approach similar to [START_REF] Verhaak | [END_REF] formulated as 2(1 -c). For simplicity, distances coming from correlations is referred to as correlation-based distances for the rest of the manuscript.

Metrics

Qualitative and quantitative evaluation is a critical step towards clustering effective adoption. It is based on independent and reliable measures for the proper comparison of the parameters and methods. Numerous existing metrics assess the quality of the clusters from a statistical point of view as the Silhouette Value [START_REF] Kaufmann | Clustering by Means of Medoids[END_REF], Dunn's Index [Kovács, 2005] or more recently, the Diversity Method [START_REF] Suneel Kumar Kingrani | Estimating the number of clusters using diversity[END_REF]. In addition, in the presence of annotations, the Rand Index [Hubert, 1985] is often considered. Clustering evaluation is even more challenging when considering an application field properties. For instance, we consider thoroughly the case of genomics where biologically informative clustering would be expected. Protein-Protein Interaction (PPI) and the Gene Ontology (GO) have been recently introduced in this subdomain to assess the biological soundness of the clusters through Enrichment Scores [Wagner, 2015;[START_REF] Pepke | Comprehensive discovery of subsample gene expression components by information explanation: therapeutic implications in cancer[END_REF]. In this thesis, for the evaluation of clustering results, we relied on several standard metrics. For an agnostic evaluation, we resorted to: Enrichment Score (ES) is the most commonly adopted technique to assess biological relevance in an automatic manner [START_REF] Pepke | Comprehensive discovery of subsample gene expression components by information explanation: therapeutic implications in cancer[END_REF]. For gene clusterings, the Enrichment in PPI is a standard approach relying on the study of the proteins corresponding to the considered genes.

Chapter 2. Formal Standard Approaches Definitions

Contrary to enrichment in a given biological process, PPI does not integrate specific information about predefined pathways and biological processes. However, it fulfills our aim of an unbiased and general metric. Enrichment for a cluster represents the probability of obtaining the same number of interactions in a random set of genes of the same size as in the evaluated cluster. It is represented by a p-value. In particular, the cluster is considered enriched if the p-value is below a given threshold (abbreviated by th in the following). The ES corresponds to the proportion of enriched clusters in the clustering. To calculate the ES, the Stringdb library based on String PPI network [Szklarczyk, 2018] was used. In this case, enrichment was computed using a hypergeometric test.

Dunn's Index (DI) [Kovács, 2005] studies the ratio between inter-cluster and intra-cluster variance. The former is meant to be large as the distributions in different clusters should be different. The latter has to be small as we want points that are in a same cluster to follow a common distribution. Formally,

Dunn(C) = min 1≤i,j≤k dist(C i , C j ) max 1≤i≤k Diam(C i )
where dist(C i , C j ) = min p∈Ci,p ∈Cj d(p, p ) is the distance between the two closest points of the clusters C i and C j , Diam(C i ) = max p,p ∈Ci d(p, p ) is the diameter of the cluster i.e. the distance between the two farthest points of the cluster C i . This assessment score is highly sensitive to extreme, not well-formed clusters making it ideal for our problem.

Whereas, for knowledge-guided evaluations we relied on:

Adjusted Rand Index (ARI) is a similarity measure between a clustering C and a ground truth C. RI corresponds to the proportion of pairs of elements in different clusters in both C and C called a or in the same cluster in both C and C called b.

RI = a + b n 2
RI is then corrected for chance by taking into account its expected value E(RI):

ARI = RI -E(RI) max(RI) -E(RI)
Normalized Mutual Information (NMI) is a metric between a clustering C and the ground truth class C defined from M I as:

NMI = M I(C, C ) mean(H(C), H(C ))
Homogeneity values clusters of a clustering C containing samples all belonging to a same cluster in the reference clustering C .

homogeneity = 1 - H(C|C ) H(C)
Completeness is a complement of homogeneity as it values clusterings C presenting clusters with their samples belonging to the same cluster in the reference clustering C .

completeness = 1 - H(C |C) H(C )
Fowlkes-Mallow Score (FMS) corresponds to the geometric mean of the pairwise precision and recall as they have been defined in section 2.2.3.

FMS = TP

(TP + FP)(TP + FN)

Conditional Random Field (CRF)

CRF [Lafferty, 2001] is a statistical graphical approach allowing contextualized classification. CRF presents the crucial advantage on standard classifier to take into account the dependencies between samples. It has a prominent role in machine learning, pattern recognition and have earn a renewed interest in bioinformatics for labeling and parsing tasks. CRF is a variant of Markov Random Field (MRF) where the random variables X = {x 1 , ..., x n } are conditioned upon a set of global observations which enables defining a discriminative classifier. Formally, the main difference distinguishing CRF from MRF is the conditioning of X by a set of corresponding observations I = {I 1 , ..., I n }. In practice, a discriminative framework from the paired observations and labels is built, aiming to model P (X | I),.

CRF Formal Definition

Second-order CRF is the basic notion of CRF considering only unary and pairwise dependencies, after an introduction to higher-order CRF, we focus this section on second-order for simplicity sake's. Second-order CRF relies on an undirected graph G = (V, E) such that V indexes the label sequences X = (x v ) v∈V . In this case, if we denote ∼ the neighborhood relation in

G, (X , I) constitutes a conditional random field iff P (x v | I, x w , w = v) = P (x v | I, x w , w ∼ v).
This definition means that the graph satisfies the Markov property with respect to the probability of X conditioned by I i.e. for a given node, the corresponding label only depends on the observation and the neighboring nodes.

The previous original definition might be extended to leverage hyper-graph structures to build higher-order CRFs. A hyper-graph H = (V, C) is defined by considering sets of nodes, hyperedges, of arbitrary size instead of the standard edges. The Markov property is then represented by the hyper-edges: a node's label is only conditioned by the nodes co-occurring in the same hyper-edge. Hyper-edges enable to take advantage of more complex dependency structures. Their use adheres to the spreading interest into higher-order structures initiated in complex networks in adequacy with the latest findings on the importance of considering structural properties [Benson, 2016]. The promises of these more informative CRFs have been illustrated in computer vision, in particular with cutting-edge graph matching approaches [START_REF] Torresani | [END_REF], distance learning [Komodakis, 2014] or segmentation [START_REF] Kadoury | Spine segmentation in medical images using manifold embeddings and higher-order MRFs[END_REF].

While the inference task for a CRF can be expressed as maximum a posteriori (MAP) formulation, here we are focusing on an energy-based formulation. This more convenient approach, establish the inference problem as a minimization of the hyper-graph energy. In general settings, it is defined as a sum over clique potential functions φ = {φ C } C∈C :

E(x, φ) = C∈C θ C (x C ) where x C = x i , i ∈ C.
Notice that in pairwise settings, the cliques correspond to the edges and

C = E

CRF Energy Minimization

Regarding CRF energy minimization, two prominent resolution techniques [Komodakis, 2010] exist. Each leveraging a hyper-graph specificities in a different way.

Graph-cuts

This category of approaches rely on a max-flow algorithm to find a min-cut in the graph allowing to solve some instances of discrete energies [Boykov, 2004] optimally. The resolution power of max-flow is limited to some particular cases, especially for higher-order formulations of the problem. Thus, many methods propose move-making approaches to simplify the energy formulation into a submodular, lower-order energy function. It resorts to terms substitutions and variables additions to remove non-submodular and higher-order terms. This approach has been successfully applied in [Ishikawa, 2010;Fix, 2011] to transform a general higher-order energy with binary labels to a simpler first-order energy easily solvable through, for instance, the roof duality technique QPBO [Boykov, 2004] relying on aforementioned min-cuts computation. Despite the potency of this approach, it suffers from a high complexity increase as the move-making approach tends to highly increase the number of terms and variables.

Message-Passing

We detail in this subsection the tree-reweighted message passing (TRW) algorithm [START_REF] Wainwright | [END_REF] which overtook the previously dominant belief propagation approach. In secondorder settings, they rely on an linear integer program formulation equivalent to the energy minimization.

min x E(θ, x) = min x p∈V θ p x p + p,q∈E θ p,q x p,q s.t. x ∈ F
where x = {{x p }, {x p,q }} defines unary and pairwise indicators of the labels assigned to the nodes of the CRF nodes. Besides, ∀p ∈ V , x p (l) = 1 ⇐⇒ label l is assigned to p. Similarly, x p,q (l, m) = 1 ⇐⇒ label l, m are assigned to p and q respectively. These definitions are taken into account in the feasible set of the optimization problem F and can be summarized as:

F =            x l∈L x p (l) = 1, ∀p ∈ V m∈L x p,q (l, m) = x p (l), ∀(p, q) ∈ E, ∀l ∈ L x p (.) ∈ {0, 1}, ∀p ∈ V x p,q (., .) ∈ {0, 1}, ∀(p, q) ∈ E           
The first constraint simply transcribes the indicator status of the variables; the variables uniquely assign a label to a node of the CRF. The second variable ensures the consistency between unary and pairwise variables by enforcing x p (l) = x q (m) = 1 ⇐⇒ x p,q (l, m) = 1. F is called the marginal polytope.

Regarding TRW implementation, it consists in solving the relaxed linear programming system where we have a laxer constraints x p , x p,q ≥ 0. Thus, it aims to provide an approximation to the original system. TRW proceeds by resorting to the dual problem. The final solution's quality directly depends on the estimated dual lower bound, which has to be the larger possible. However, there is no theoretical guarantee over the performance.

Dual Decomposition

Relying on the message-passing framework, the dual decomposition approach is a widespread approach in optimization. Its efficient resolution by projected subgradients is introduced for MRF and CRF in [Komodakis, 2010]. It presents the crucial property of optimally solving the dual linear programming problem. Besides, its versatility allows the generalization to higher-order CRF as performed in [Komodakis, 2014].

Dual decomposition principle in isolating several much easier subproblems tailored to be equivalent to the original problem after summation. A possible and popular decomposition is to Chapter 2. Formal Standard Approaches Definitions consider each node independently. Each subproblem might be solved by very efficient inference techniques as graph-cuts approaches without venturing into a scaling issue. The global resolution leads to a projected subgradient scheme, provably offering an optimal solution. Formally, dual decomposition expression relies on simple subproblems also called slave problems and on a master problem enacting as a coordinator. Starting from a general problem over a convex set C:

min x i f i (x) s.t. x ∈ C
where we assume that the independent minimization of the functions f i is easy while the global minimization of i f i is hard. The first step towards the dual decomposition is first to introduce a coupling parameter in the system.

min {xi},x i f i (x i ) s.t. x i ∈ C, x i = x
Our system is obviously still equivalent to the original one. The coupling system enforces the different subproblems to come up with a consistent solution. Then, we can introduce the Lagrangian dual function we leverage and which encompasses both the objective function and the constraints.

g({λ i }) = min {xi∈C},x i f i (x i ) + i λ i (x i -x) = min {xi∈C},x i (f i (x i ) + λ i x i ) + i λ i x
Then, to eliminate the dependency over the global solution x, we ultimately want to define, we introduce the constraint set Λ = {{λ i }, i λ i = 0}. Therefore,

∀{λ i } ∈ Λ, g({λ i }) = min {xi∈C} i (f i (x i ) + λ i x i )
Finally, the goal function to optimize is the Lagrangian dual problem defined as:

max {λi}∈Λ g({λ i }) = max {λi}∈Λ i g i (λ i )
This problem constitute our master slave which is decoupled in the slave problems:

∀i, g i (λ i ) = min xi f i (x i ) + λ i x i s.t. x i ∈ C
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This formulation has several good properties. First, the master problem definition is always convex and is approximated by a projected subgradient approach (as g might not be differentiable). Resulting in the update λ i ←-proj Λ (λ i + α t ∇g i (λ i )) where proj Λ is the projection over set Λ, α t > 0 is an attenuation parameter at iteration t and ∇g i (λ i ) is the subgradient of g i over λ i which expression directly depends on the optimal solution of the slave problem i. The dual decomposition resolution process is summarized in Algorithm 1. The potential benefits of supervised machine learning techniques to the medical field are tremendous. Those techniques, including feature selection and classification, can address the problematic yet crucial questions of patients diagnosis and stratification. In this thesis, we study the efficiency of ensemble techniques at providing more robust results with reduced Bias. We propose a new methodology to combine different feature selection approaches and prove its relevance over different omics data and medical applications. First, this work presents a detailed application to Coronavirus disease 2019 (COVID-19), and then, we highlight a generalization to breast cancer and atopic dermatitis.

Algorithm 1: Dual Decomposition Optimization Strategy

1 λ i ← 0, ∀k 2 do 3 Slave problem i optimize x i under current λ i , ∀i 4 Master updates λ i ← proj Λ (λ i + α t ∇g i (λ i )), ∀i

Introduction

COVID-19 emerged in December 2019 in Wuhan, China [Zhu, 2020] caused by the SARS-Cov-2 virus, and it could lead to respiratory failure due to severe viral pneumonia [Zhou, 2020a]. The disease spread worldwide, leading the World Health Organization to declare it a pandemic in March 2020. One of the crucial actions to handle the pandemic is the fast and robust use of imaging and clinical and biological comorbidities for the quantification and staging of patients upon their hospital admission. Identifying patients who need intubation upon admission is critical for managing a hospital's resources and the most optimal patient care. Moreover, a robust staging of the patients could also facilitate the proper selection of patients for different treatments, reducing the unnecessary use of the hospital's intensive care units. Currently, the staging of the patients is mainly based on clinical and biological biomarkers such as age, sex, and other comorbidities [Zhou, 2020a;Li, 2020a;Yuan, 2020;Tang, 2020;[START_REF] Onder | [END_REF][START_REF] Guo | [END_REF][START_REF] Terpos | Hematological findings and complications of COVID-19[END_REF], while the role of imaging is mainly focusing on an estimation of the disease extent from CT scans. This estimation is generally carried out manually by medical experts and hence suffers from inter-and intra-observer variability.

Medical analysis tools can assist medical experts in their everyday clinical practice. Artificial Intelligence (AI) is playing a pivotal role in developing such tools, and it aims either to reproduce human behavior regarding a specific task (a given set of observations and the corresponding experts' assessments) or to find and better understand correlations between input signals and outcomes (invisible to the human eye). In healthcare, AI has gained tremendous attention in the last years, addressing very challenging medical problems related to diagnosis and personalized medicine [Segler, 2018;[START_REF] Goecks | [END_REF]Ardila, 2019] including quantification and characterization tasks such as cancer screening or quantification of Interstitial Lung Diseases (ILD) [START_REF] Chassagnon | Deep learning: definition and perspectives for thoracic imaging[END_REF]Litjens, 2017]. During this pandemic, different AI tools were proposed from the community, presenting models able to distinguish Covid-19 patients from community-acquired pneumonia on CT [Li, 2020b] or even diagnose Covid-19 directly from CT scans [START_REF] Mei | Artificial intelligenceenabled rapid diagnosis of patients with COVID-19[END_REF]. This trend indicates that the medical community could significantly contribute to providing robust tools and algorithms that assist clinicians during the pandemic exploiting the full potentials of imaging. Classification is one of the machine learning paradigms the most relevant for medical application. In particular, diagnosis [Gandhi, 2013], treatment response prediction [Suárez-Fariñas, 2010], risk prevention [Wiens, 2012] and staging [START_REF] Kratz | [END_REF] are some of the exciting problems that could greatly benefit from the highly active research to better leverage medical data with those approaches [START_REF][END_REF].

In this study, we developed an automatic and robust method for patient's stratification. The contributions of this chapter are three-fold: (i) an ensemble multimodal feature selection strategy indicating the most informative features for the studied problem, (ii) an ensemble machine Pneumonia and Cancer learning pipeline for robust and efficient stratification of patients, and (iii) promising results on different applications to demonstrate the effectiveness of our method. In particular, we emphasis Covid-19 disease quantification and staging relying on the extraction and selection of image characteristics directly from the CTs and their fusion with known clinical and biological markers. Also, towards a better disease understanding, we aim at providing insights about the correlation with the outcome of the various features involved. The value of this approach is further highlighted through a study on breast cancer patients' treatment to response prediction from genes and histopathological data. We also exemplify the staging power of the pipeline with a study of atopic dermatitis severity determination from RNA-sequencing data.

The chapter is organized as follows: we first review related work mainly focusing on interstitial lung diseases (ILDs). Then, we present a description of all the components and implementation details of our method. After a presentation of the multi-center dataset, we address the evaluation settings and our experiments' results. Furthermore, we discuss our method's similarities and differences with other recently proposed approaches for quantification and staging of Covid-19. Then, we propose other study cases on cancer and dermatitis. Lastly, we propose possible directions for future research.

Related Work

This section provides a short review of previous works on the quantification of ILDs since Covid-19 and ILDs share many similarities due to their diffuse pathological manifestations, such as ground-glass opacities, band consolidations, and reticulations. Besides, we elaborate on studies that tackle the severity or treatment response for such types of disease.

ILD Quantification

In the last years, automatic quantification of ILD diseases using CT scans has been a substantial research topic. It aims to develop models that can identify one or several types of pathological lung tissues in ILD cases (such as ground-glass, consolidation, honey-combing, etc.) and successfully separate them from healthy tissues. Initial efforts were mainly based on classification schemes. In particular, small patches including only a single tissue type were extracted and described using some handcrafted features focusing mainly on textural properties and employed to train different machine learning classifiers [START_REF] Mehrdad | A Texton-Based Approach for the Classification of Lung Parenchyma in CT Images[END_REF]Huber, 2012]. Following recent advances in deep learning and especially the success of convolutional neural networks (CNNs), researchers have recently leveraged such tools in thoracic imaging tasks [START_REF] Chassagnon | Deep learning: definition and perspectives for thoracic imaging[END_REF], and, notably, in ILD quantification. The main advantage of CNNs is their ability to automatically generate features from the input and create meaningful specific representations of the problems at stake. In particular, a patch-based framework using a convolutional architecture is presented in [START_REF] Anthimopoulos | Lung pattern classification for interstitial lung diseases using a deep convolutional neural network[END_REF] for the automatic quantification of 5 different ILD patterns. Similarly,
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in [START_REF] Gao | [END_REF] a patch-based approach is adapted for classification in 6 different ILD patterns. Despite the competitive performance reported by this approach compared to other ones based on handcrafted features, the use of patches, besides being time-consuming and inefficient, does not exploit the texture of the entire lung.

Many existing CNNs architectures have been further adapted to perform semantic segmentation in an end-to-end fashion. Semantic segmentation refers to inferring a class for each of the pixels of an image instead of a single class for an image. Such models are present in literature both in 2D [START_REF] Badrinarayanan | Segnet: A deep convolutional encoder-decoder architecture for image segmentation[END_REF][START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF] and 3D [Çiçek, 2016] and have also been used for ILD quantification. The authors of [Vakalopoulou, 2018] present the coupling of 2D fully convolutional networks with deformable registration for the automatic quantification of systemic sclerosis disease. Moreover, in [START_REF] Anthimopoulos | Semantic segmentation of pathological lung tissue with dilated fully convolutional networks[END_REF], the authors propose using dilated filters to segment different ILD tissue types. For instance, in [Bermejo-Peláez, 2020] an ensemble of 2D, 2.5D, and 3D networks is proposed for the segmentation of 8 different radiographic ILD patterns. It is noteworthy to mention since Covid-19 shares similar patterns with ILDs, these recent advances on ILD quantification are of great benefit for their adaptation to the Covid-19 case.

ILD Staging

Staging patients with ILDs is crucial as it could significantly help clinicians with their daily practice while choosing treatment options [Kolb, 2014]. Many studies have recently tried to identify and extract biomarkers from CT scans and associate them with ILD patients' severity and treatment. These biomarkers are usually enhanced with clinical and physiological information to provide a scoring system as a survival predictor. Among the variety of biomarkers, disease extent is one of the most powerful ones providing strong associations with severity and mortality [Cottin, 2019;[START_REF] Tomassetti | [END_REF]. Visual scoring of the disease extent on CT can be time-consuming [Robbie, 2017] highlighting the need for automatic disease quantification tools. Moreover, except for the disease extent, the disease's location is also essential for the staging. In [START_REF] Depeursinge | Automated classification of usual interstitial pneumonia using regional volumetric texture analysis in high-resolution CT[END_REF]Christe, 2019] the quantification of the disease is performed on different lung regions providing descriptive information about the severity of the ILD patients.

A variety of works report that radiomics, quantitative features extracted from the images, provide valuable information about the severity and response to treatment for different diseases, including cancer [Sun, 2018]. These features could also provide excellent tools for monitoring disease progression and therapeutic response [Wu, 2019]. In particular, in [START_REF] Bocchino | [END_REF] intensity-based characteristics such as skewness and kurtosis were used together with disease extent to distinguish between systemic sclerosis patients with and without ILD diseases. Moreover, in [Lafata, 2019] a variety of image radiomics and their relationship with the pulmonary function were investigated. Their results indicate that high-throughput radiomics data extracted from Pneumonia and Cancer the lungs may be associated with pulmonary function measured by standard PFT metrics.

Methodology

In this section, we provide a method for the automatic selection and combination of multimodal variables towards a holistic signature. Based on this signature, we develop advanced machine learning techniques integrating multi-modal data for classification purposes. Our method endows robustness, good generalization properties and explainability. We detail our framework in Figure 3.1. High dimensional features coming from different sources such as clinical, biological and imaging data are used as input to our framework. A min-max normalization of the attributes was performed by calculating the minimum and maximum values for the training and validation cohorts. The same values were also applied to the test set.

Ensemble Feature Selection Approach

To prevent overfitting and discover the most informative and robust attributes for the patients' staging and prognosis, we propose a robust biomarker selection process. Feature selection is essential for classification tasks and has been widely studied in the literature, especially for radiomics [Sun, 2018]. First, the training data set was subdivided into training and validation on the principle of 80%-20% maintaining the distribution of classes between the two subsets identical to the observed one. To perform feature selection, we have created 100 subdivisions on this basis and evaluated various classical machine learning classifiers -using the entire feature space -such as Decision Tree Classifier, Linear Support Vector Machine, XGBoosting, AdaBoost, and Lasso. Those methods are detailed in the Section 2.2.1. These classifiers were trained and validated to distinguish between the different classes considered. In addition to these 5 classifier-based feature selection approaches, we also considered statistics-based approaches based on Mutual Information, Chi-squared statistics, and Univariate linear regression tests. Those metrics are introduced in Section 2.2.2. Each of these methods g k was used to assess the importance of the features regarding staging. Features f i were ranked according to their prevalence prev g k ,fi , the total number of splits they were selected for each of the methods. Our experiments indicated that depending on the feature selection method different features and characteristics were indicated as necessary. We adopted a consensus approach to leverage the different feature selection properties by choosing the features presenting a sum of prevalences over all the methods above a given threshold t i.e., satisfying k prev g k ,fi > t.

Ensemble Stratification

The classification component was addressed using an ensemble learning approach. Similarly to the feature selection approach, the training data set was subdivided into training and validation sets on the principle of 80%-20%. This subdivision was performed such that the distribution of classes between the two subsets was identical to the observed one. We have implemented a 10-fold cross-validation on this basis and evaluated the average performance of the following supervised classification methods: Nearest Neighbor, {Linear, Sigmoid, Radial Basis Function (RBF), Polynomial Kernel} Support Vector Machines (SVM), Gaussian Process, Decision Trees, Random Forests, AdaBoost, Gradient Boosting, Gaussian Naive Bayes, Bernoulli Naive Bayes, Multi-Layer Perceptron & Quadratic Discriminant Analysis. Those methods are defined in details in Section 2.2.1. These classifiers have been trained using the identified selected features. A consensus model was designed, selecting the top 5 classifiers with acceptable performance, > 60% in terms of balanced accuracy, and consistent performance between training and validation, performance decrease < 20% in balanced accuracy. The selected models were trained and combined through a weighted winner takes all approach to determine the optimal outcome. Those weights were determined using balanced accuracy on validation. Then, the selected classifiers were retrained using the entire training set, and their performance was reported on the external test cohort.

Signature Refinement Technique

A limitation of using a consensus feature selection approach lies in the possibility to select features presenting redundant information singled out independently by different selection methods used. We propose an additional refinement by ablation to be applied on a signature to cope with this difficulty. Pneumonia and Cancer

In the same cross-validation settings as before, we iteratively trained the ensemble classifier, presented in the previous section, on the training set using all the signature features except one. Then, we removed the gene, which ablation incurred the best-averaged results on validation. This process was repeated until no gene remained. According to the elbow method, the final retained signature was designed by considering all the genes after the inflection point. Then, the selected classifiers were retrained using the entire training set and the refined signature, and their performance was reported on the test set. This ablation step is a complement to the previous selection and might not be needed. The signature identified through our initial consensus feature selection approach on the Covid-19 dataset (Section 3.4) was already optimal. The further refinement did not bring any improvement and so was not reported. However, this process proved to be primordial in the atopic dermatitis generalization example presented in Section 3.6.

AI-Driven Quantification, Staging and Outcome Prediction of COVID-19 Pneumonia

COVID-19 emerged in 2019 and spread around the world swiftly. Computed tomography (CT) imaging has been proven to be an essential tool for screening, disease quantification, and staging. The latter is of extreme importance for organizational anticipation (availability of intensive care unit beds, patient management planning) and accelerating drug development through rapid, reproducible, and quantified assessment of treatment response. Even if there are currently no specific guidelines for the patients' staging, CT might be used along with some clinical and biological biomarkers. In this study, we collected a multi-center cohort, and we investigated the use of medical imaging and artificial intelligence for disease quantification, staging, and outcome prediction. Our approach relies on automatic deep learning-based disease quantification. It uses an ensemble of architectures and a data-driven consensus for the staging and outcome prediction of the patients fusing imaging biomarkers with clinical and biological attributes. Auspicious results on multiple external/independent evaluation cohorts, as well as comparisons with expert human readers, demonstrate the potentials of our approach.

Features Extraction Methodology

This section describes our AI-driven scheme for the quantification of CT scans for patients suffering from Covid-19 pneumonia and the extraction of imaging information from different segmented areas. In the following parts of this section, we provide details for all the system's different components. 

AI-Driven

Lung, Breast and Heart Segmentation

Segmentations of the heart and breast were extracted using the software ART-Plan (Thera-Panacea, Paris, France). ART-Plan is a CE-marked solution for automatic annotation of organs, harnessing a combination of anatomically preserving and deep learning concepts. The lungs' segmentation was also performed using ART-Plan software, but the models used were re-trained using Covid-19 patients to address proper segmentation of diseased lungs. In particular, the existing lung models, providing segmentation of left and right lungs, were re-trained using 50 Covid-19 lung annotations provided by medical experts. The models were evaluated on 130 Covid-19 patients partially annotated by two different experts, reporting mean dice coefficient higher than 0.96 for both left and right lungs and mean standard deviation lower than 0.015. The approach's relevance is confirmed by the high dice coefficient of 0.96 obtained, very similar to the one of 0.97 reported by the medical experts. Pneumonia and Cancer

Ensemble of Deep Architectures for Disease Quantification

Our proposed Covid-19 dedicated tool for lung lesions segmentation was built using an ensemble method combining 2D & 3D deep learning architectures. All the Covid-19 related CT abnormalities, similar to other ILD diseases ( ground-glass opacities, band consolidations, and reticulations), were segmented as a single class. The proposed method (CovidENet) borrows elements from already established fully convolutional neural network designs from literature [START_REF] Çiçek | 3D U-Net: learning dense volumetric segmentation from sparse annotation[END_REF][START_REF] Badrinarayanan | Segnet: A deep convolutional encoder-decoder architecture for image segmentation[END_REF] while it incorporates powerful design aspects such as deformable registration methods for natural data augmentation. Combining the different CovidENet components has been performed using their scoring output (before hard decision), fusing the different networks' output based on majority voting. This approach is a standard technique when ensembling predictions between multiple neural networks. Our motivation to adopt a 2D architecture was driven by the interest in exploring the spatial resolution on the axial space after mapping to a shared space. Simultaneously, the integration of 3D networks was dictated by the will of integrating consistency on the coronal/sagittal plane.

CovidE2D Component: Deep learning architectures based on 2D networks are commonly used to segment ILD diseases [START_REF] Anthimopoulos | Semantic segmentation of pathological lung tissue with dilated fully convolutional networks[END_REF]Vakalopoulou, 2018] due to the timeconsuming annotation task and the 2D nature of the available datasets. We based the first component (CovidE2D) of our CovidENet architecture on AtlasNet 2D architecture [Vakalopoulou, 2018]. AltasNet has already been used for ILD segmentation in systemic sclerosis patients, achieving outstanding performance on limited annotated ILD datasets. AtlasNet couples deformable registration with deep learning, naturally performing data augmentation while preserving the human anatomy. The main idea lies in training different deep learning classifiers (C i ) in a simplified space after registering each sample (S i ) on predefined templates/atlases (A i ). During inference (Algorithm 2), the final segmentation is obtained by using the inverse transformation (T -1 i ) to back-project to the original anatomy. A majority voting scheme is used to produce the final projection, combining the different networks' results.

Algorithm 2: AtlasNet Inference 1 S ← sample; 2 C i ← the i-th trained network; 3 for i ∈ i..N do 4 step 1 : T i ← argminE( T ; S, A i ); 5 S warped i ← T i (S); 6 step 2 : S warped,seg i ← C i (S warped i ); 7 step 3 : S seg i ← T -1 i (S warped,seg i );
8 end 9 step 4 : S seg ← Combine(S seg i );
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For the registration of the CT scans to the templates, an elastic registration framework based on Markov Random Fields was used, providing the optimal displacements for each template [Ferrante, 2017]. In particular, the registration is performed by a non-linear transformer T , corresponding to the operator that optimizes in the continuous domain Ω the following energy,

E(T ; S, A i ) = Ω k j=1 w j ρ j (S • T, A i )dΩ + α Ω ψ(T )dΩ (3.1)
where ρ j corresponds to the different similarity metrics (sum of absolute difference, normalized cross-correlation, etc.) used to compare the source 3D volume to the target anatomy, w j are linear constraints factorizing the importance of the different metric functions and ψ(•) is a penalty function acting on the transformation's spatial derivatives. More specifically, in our experiments each C i consists of a SegNet [START_REF] Badrinarayanan | Segnet: A deep convolutional encoder-decoder architecture for image segmentation[END_REF] based architecture. For the CovidE2D models, the CT scans were separated on the axial view. Each network included 5 convolutional blocks, each one containing 2 Conv-BN-ReLU layer successions. Max-pooling layers were also distributed at the end of each convolutional block for the encoding part. Upsampling operators were used on the decoding part to restore the slices' spatial resolution together with the same successions of layers.

CovidE3D Component: To fully exploit the 3D nature of our dataset, the second component of our proposed CovidENet is based on a 3D fully convolutional network similar to 3D-UNet [Çiçek, 2016]. To train this model, 3D sub-volumes of the CT scan, including either the left or the right lung without any downsampling, were extracted. The corresponding sub-volumes labels were extracted from the ground-truth annotation masks. To this end, we trained the model with the CT scan sub-volume as input and the annotation as the target. To extract the left and the right lung regions, we used the lung segmentation model presented at [START_REF] Hofmanninger | Automatic lung segmentation in routine imaging is a data diversity problem, not a methodology problem[END_REF]. Regarding the architecture, the model consisted of 5 blocks with a down-sampling operation applied every 2 consecutive Conv3D-BN-ReLU layers. Additionally, five decoding blocks were utilized for the decoding path, were at each block, a transpose convolution was performed to up-sample the input. Skip connections were also employed between the encoding and decoding paths. The dimensions of the input corresponded to the CT scan's spatial dimensions, and, consequently, the spatial dimensions of the features maps were not bound to some fixed dimension to feed the entire left/ right lung volumes. As such, 3D volumes of arbitrary spatial dimensions could be fed to the network, and thus the batch size was fixed to 1.

Features Extraction

Radiomics features were extracted from the CT scans using the previously described disease, lung, and heart segmentations. All images were resampled by cubic interpolation as a preprocessing step to obtain isometric voxels with sizes of 1 mm. Subsequently, disease, lung, and heart masks were used to extract 107 radiomic features for each of them (left and right lungs were Pneumonia and Cancer considered separately for the disease extent and whole lung). These features included first-order statistics (maximum attenuation, skewness, 90th percentile etc), shape features (surface, maximum 2D diameter per slice, volume etc) and texture features (GLSZM, GLDM, GLRLM). For the extraction, the open-source Pyradiomics library was used [START_REF] Van Griethuysen | [END_REF]. Two other image indexes were also calculated, namely disease extent and fat ratio. The disease extent was calculated as the percentage of lung affected by the disease over the entire lung volume. The disease components were extracted by calculating the number of individual connected components for the entire disease regions. The fat ratio, calculated as an indicator of obesity, was used as a surrogate of the body mass index and calculated by dividing the volume of thoracic fat by the thorax volume. The index was defined in an unsupervised manner. To obtain fat segmentation, CT scans were smoothed using a Gaussian kernel with a standard deviation of 2. A threshold of the densities in the range of [-29, 130] was applied on the smoothed CTs to isolate the fat regions. Fat masks were calculated starting from the highest to the lowest part of the lungs. To avoid gender bias, we used breast segmentation to exclude breast fat. Then the volume of the fat segmentation was divided by the body volume. To validate this morphometric measurement, we assessed its correlation with BMI in the 362 patients for which BMI was available, and we found a strong correlation using Pearson correlation (r= 0.64; p< 0.001; Figure 3.3).

Holistic Multi-Omics Profiling & Staging

We investigated various imaging features extracted using disease, cardiac, and lung segmentations toward the combination of the disease extent with disease characteristics and patients commodities. These imaging characteristics (radiomics) were then combined with meaningful
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clinical and biological indicators that have been reported to be associated with Covid-19 prognosis. Patient charts were reviewed to assess short-term (4 days after the chest CT) and long-term prognosis (31 days after the chest CT). Patients were divided into 2 groups for the staging task: deceased or under mechanical ventilation patients labeled severe cases (S) when the other patients were labeled non-severe cases (NS). For the prognosis task, three distinct subpopulations were defined: those who had a short term negative outcome (SD = short-term deceased within 4 days after admission), those who didn't recover within 31 days after the chest CT (LD= long-term deceased, either died after day 4 or still intubated at day 31) and those who recovered (LR= long-term recovered). The last two groups formed the short intubated (SI) group of patients.

Covid-19 Multi-Omics Profiling Signature

We have adapted the aforementioned selection method to maintain structural properties, we selected the features in the top 5 prevalence in each region. We ensured symmetry by selecting the opposite side counterpart of the most prevalent features in the lungs and disease lesions. This way, we have extracted 15 different radiomics features. These features are distributed in: imaging features from the disease regions (5 features), lung regions (5 features), and heart (5 features). On these radiomics features, biological and clinical data were added (6 features: age, sex, high blood pressure (HBP), diabetes, lymphocyte count, and CRP level) and image indexes (2 features: disease extent and fat ratio). In the end, our biomarker consisted of 23 features in total.

Regarding imaging features, we identified the following features as the most important for Covid-19 patients staging. These features include both first-and second-order statistics along with some shape features.

• Disease areas: Non-Uniformity of the GLDM, Dependence Non-Uniformity of the GLDM, Mesh Volume, Voxel Volume, Non-Uniformity of the GLRLM.

• Lung areas: Kurtosis, Mean Absolute Deviation, Zone Emphasis of the GLSZM, Non-Uniformity of the GLSZM, Variance of the GLSZM.

• Heart areas: Maximum 2D diameter Slice, Non-Uniformity of the GLSZM, Sphericity, Flatness, Minimum Length on the Axis.

The selected disease area features capture both disease extent and disease textural heterogeneity. Disease textural heterogeneity is associated with lesions, which generates imaging patterns more complex than pure ground-glass opacities usually found in mild disease. The selected lung features capture the dispersion and heterogeneity of lung densities, both of which may reflect the presence of an underlying airway disease such as emphysema but also the presence of sub-radiological disease. Lastly, the selected heart features can be seen as a surrogate for cardiomegaly and coronary calcifications.

Chapter 3. Ensemble Techniques for Patients Stratification: Focus on COVID-19

Pneumonia and Cancer

Implementation Details

Deep Learning Segmentation

Each CT scan was normalized for the models training by cropping the Hounsfield units in the range [-1024, 300]. Various hyperparameters, including loss functions, learning rates, and optimizers, have been compared. In this section, we report the best-performing ones for each component. Regarding implementation details, 6 templates/ atlases (A i ) were used for the At-lasNet framework and normalized cross-correlation and mutual information as similarity metrics for the registration to each template. All 6 models of the CovidE2D networks were trained using weighted cross-entropy loss. And, the CovidE3D network was trained using a dice loss. CovidENet aims to fuse different training strategies (2D, 3D) and different loss functions to explore the capabilities of deep learning architectures fully. Several studies [START_REF] Anthimopoulos | Semantic segmentation of pathological lung tissue with dilated fully convolutional networks[END_REF]Vakalopoulou, 2018], demonstrate 2D networks' high robustness for ILD segmentation when using cross-entropy.

The Dice loss (DL) and weighted cross-entropy (WCE) are defined as follows:

DL = 1 - 2pg + 1 p + g + 1 ; (3.2) W CE = -(βg log(p) + (1 -g)log(1 -p)) (3.3)
where p is the prediction determined from the network value and g the target/ground-truth value. β is the weight given for the least representative class. For network optimization, the class was used for the diseased regions only.

For the CovidE2D experiments, we used classic stochastic gradient descent for the optimization with initial learning rate = 0.01, decrease of learning rate = 2.5•10 -3 every 10 epochs, momentum =0.9 and weight decay =5 • 10 -4 . For CovidE3D experiments, we used the AMSGrad and a learning rate of 0.001. TensorFlow library [Abadi, 2016] was used for the implementation of the CovidENet components.

The training of a single network for both CovidE2D and CovidE3D was completed in approximately 12 hours using a GeForce GTX 1080 GPU, while the prediction for a single CT scan was performed in a few seconds. Training and validation curves for one template of CovidE2D and the CovidE3D networks are shown in Figure 3.4. Early stopping has been used for ending the training process, and the most appropriate model for each CovidENet component was selected regarding performance on the validation set until this point. 

AI-Driven

Prognosis Mechanism

To perform the short-term deceased (SD), long-term Deceased (LD), long term recovered (LR) classification task, an SD/SI (SI: intubated at 4 days) classifier, and an LD/LR classifier was applied hierarchically, performing first the short-term staging and then the long-term prognosis for patients classified as in need of mechanical ventilation support. More specifically, a majority voting method was applied to classify patients into SD and SI cases. Then, another hierarchical structure was applied on the cases predicted as SI only to classify them into those who didn't recover within 31+ days of mechanical ventilation (LD) and those who recovered with 30 days on mechanical ventilation (LR).

Covid-19 Multi-Omics Profiling & Staging

For the feature selection, features having the best combined prevalence (sum of prevalences over the 8 selection techniques) were kept. For this feature selection task, Decision Tree Classifier was taken of maximum depth 3, Linear SVM was taken with a linear kernel, a polynomial kernel function of degree 3 and a penalty parameter of 0.25, Gradient Boosting was used with a regression tree boosted over 30 stages, AdaBoost was used with a Decision Tree Classifier of maximum depth 2 boosted 3 times and Lasso method was used with 200 alphas along a regularization path of length 0.01 and limited to 1000 iterations.

Concerning the implementation details, to overcome the unbalanced dataset for the different classes, each class received a weight inversely proportional to its size. For the NS versus S majority voting classifier, the top 5 classifiers consist of RBF SVM, Linear SVM, AdaBoost, Random Forest, Decision Tree. The SVM methods were granted a polynomial kernel function of degree 3, and the Linear kernel had a penalty parameter of 0.3 while the RBF SVM had a penalty Pneumonia and Cancer parameter of 0.15. Besides, the RBF SVM was granted a kernel coefficient of 1. The Decision Tree classifier was limited to a depth of 2 to avoid overfitting. The Random Forest classifier was composed of 25 of such Decision Trees. The AdaBoost classifier was based on a decision tree of maximal depth of 1 boosted 4 times. For the SI versus SD majority voting classifier, the top 5 classifiers consists of polynomial SVM, Linear SVM, Decision Tree, Random Forest, and AdaBoost. The Linear and Polynomial SVM were granted a polynomial kernel function of degree 2 and a penalty parameter of 0.35. The Decision Tree classifier was limited to a depth of 1, and Random Forest was composed of 50 of such trees. The AdaBoost classifier was based on a decision tree of maximal depth of 1 boosted 2 times. Finally, the LR versus LD majority voting classifier was only using the 4 classifiers with balanced accuracy > 0.6, namely Linear and Sigmoid SVM, Decision Tree, and AdaBoost Classifiers. The SVM methods were defined with a kernel function of degree 3 and a penalty parameter of 1. Decision Tree was defined to a depth of 1, AdaBoost being defined with such a Decision Tree boosted 3 times. For the implementation of all the models, the Scikit-learn library was used [Pedregosa, 2011].

Dataset

Our Institutional Review Board (AAA-2020-08007) approved this retrospective multi-center study, which waived the need for patients' consent. Patients diagnosed with Covid-19 from March 4th to April 5th from eight large University Hospitals were eligible if they had positive reverse transcription-polymerase chain reaction (PCR-RT) and signs of Covid-19 pneumonia on unenhanced chest CT. Only the CT examination that was performed at the initial evaluation was included in our dataset. Exclusion criteria were (i) contrast medium injection and (ii) important motion artifacts. No patient was intubated at the time of the CT acquisition. A total of 693 patients, after application of all the exclusion criteria, are forming the full dataset (321, 360 CT slices).

Chest CT exams were acquired on 4 different CT models from 3 manufacturers (Aquilion Prime from Canon Medical Systems, Otawara, Japan; Revolution HD from GE Healthcare, Milwaukee, WI; Somatom Edge and Somatom AS+ from Siemens Healthineer, Erlangen, Germany). The different acquisition and reconstruction parameters are summarized in Table 3.1. CT exams were mostly acquired at 120 (n=481/693; 69%) and 100 kVp (n=186/693; 27%). Images were reconstructed using iterative reconstruction with a 512 × 512 matrix and a slice thickness of 0.625 or 1 mm depending on the CT equipment. Only the lung images reconstructed with highfrequency kernels were used for analysis. For each CT examination, dose length product (DLP) and volume Computed Tomography Dose Index (CTDIvol) were collected. were included to compose the test dataset (Table 3.2). The patients from the training cohort were annotated slice-by-slice. In contrast, the patients from the testing cohort were partially annotated on the basis of 20 slices per exam covering the lung regions equidistantly. The proportion between the CT manufacturers in the datasets was pre-determined to maximize the model's generalizability while considering the data distribution. 

4.9 ± 3.4 [1.0-13.0] 4.0 ± 1.9 [1.2-12.3] 0.064
For the staging (NS/S) and prognosis (short-and long-term) study, 513 additional patients from centers A (121 patients), B (157 patients), D (138 patients), G (77 patients) and H (20 patients) were included. Data of 536 patients from 5 centers (A, B, C, D, and H) were used for Pneumonia and Cancer training, and those of 157 patients from 3 other centers (E, F, and G) composed an independent test set (Table 3.3). In addition to the CT examination -when available -patient sex, age, and body mass index (BMI), blood pressure, diabetes, lymphocyte count, CRP level, and D-dimer level were also collected (Table 3.3).

For short-term outcome assessment, patients were divided into 2 groups: short-term Non-Severe (NS) and short-term Severe (S). For long-term outcomes, medical records were reviewed from May 7th to May 10th, 2020 to determine if patients died or had been intubated during the month following the CT examination. The data associated with each patient (holistic profiling) and the corresponding outcomes in terms of severity assessment and the outcome and readers assessment have been made publicly available.

Fifteen radiologists (GC, TNHT, SD, EG, NH, SEH, FB, SN, CH, IS, HK, SB, AC, GF, and MB) with 1 to 7 years of experience in chest imaging participated in the data annotation which was conducted over a 2-week period. The Covid-19 radiological pattern segmentation was manually annotated slice by slice on the whole CT scans for the training and validation sets. On each of the 50 cases (23, 423 axial slices) composing this dataset, all the Covid-19 related CT abnormalities ( ground-glass opacities, band consolidations, and reticulations) were segmented as a single class. Additionally, the whole lungs were segmented to create another class (lung). To facilitate the collection of the ground-truth for the lung anatomy, a preliminary lung segmentation was performed with Myrian XP-Lung software (version 1.19.1, Intrasense, Montpellier, France) which was then manually corrected. For the test cohort, 20 CT slices equally spaced from the superior border of the aortic arch to the lowest diaphragmatic dome were selected in a total of 130 patients composing a 2, 600 images dataset. Each of these images was systematically annotated by 2 out of the 15 participating radiologists. Annotation consisted of manual delineation of the disease and manual segmentation of the lung without any preliminary segmentation. Furthermore, 3 radiologists, an internationally recognized expert with 20+ years of experience in thoracic imaging (Reader A ), a thoracic radiologist with 7+ years of experience (Reader B ) and a resident with a 6-month experience in thoracic imaging (Reader C ) were asked to perform a triage (severe versus non-severe cases) and for the severe cases (short-term deceased versus short-term intubated) prognosis process to predict the short-term outcome.

Results and Discussion

Statistical Analysis

The dice similarity score (DSC) was calculated to assess the similarity between the 2 manual segmentations of each CT exam in the test dataset and between manual and automated segmentations. The Hausdorff distance (HD) was also calculated to evaluate the automated segmentations' quality similarly. Disease extent was calculated by dividing the volume of the
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Pneumonia 49 4.9 ± 3.2 [1.0-19.8] 6.1 ± 3.0 [1.2-18.0] < 0.001 lesions in the lung by the lung volume and expressed in the total lung volume percentage. Disease extent measurement between automated and manual segmentations was compared using paired Student's t-tests. Similarly, correlations between disease extent measurements from Covid2D, Covid3D, CovidENet, and manual segmentations were compared using Spearman's rank correlation coefficient.

For stratifying the dataset into the different categories, traditional machine learning metrics, namely balanced accuracy, weighted precision, and weighted specificity and sensitivity, were Pneumonia and Cancer 

Disease Quantification

The evaluation of CovidENet, of its components, and the comparison with the 2 independent experts are summarised in Table 3.4. CovidE2D component performed better than the CovidE3D for the segmentation of Covid-19 disease. It is highlighted by the higher DSC and HD values achieved by the CovidE2D component (Figure 3.5). However, their fusion led to a significant improvement, comparable to human readers. Moreover, CovidENet performed equally well compared to trained radiologists in terms of DSC and better in terms of HD (Figure 3.5, 3.7 and Table 3.4). The mean/median DSCs between the two expert annotations on the test dataset were 0.70/0.72 for disease segmentation, while DSCs between CovidENet and the manual segmentations were 0.69/0.71 and 0.70/0.73. In terms of HDs, the average expert distance was 9.16 mm while it was 8.96 mm between CovidENet and the experts. Examples of disease segmentations are presented in Figure 3.7. One can observe that the segmentations provided by CovidENet are very close to the ones generated by the experts. In particular, the algorithm detected the diseased regions even in relatively small areas, capturing all the different opacities of Covid-19, such as ground-glass and consolidation.

Covid-19 Holistic Multi-Omics Profiling & Staging

The holistic Covid-19 pneumonia signature is presented in (Table 3.5) along with the correlations with the outcome. The average signature for the severe and non-severe cases in the Pneumonia and Cancer test set are presented in Figure 3.8. Consensus ensemble learning through majority voting was used to determine the subset of AI methods with have robust, reproducible performance with good generalization properties. Human "reader+++" was used as a reference through consensus among three chest radiologists (resident, 7+ years of experience, 20+ years of experience in thoracic imaging). Our method aiming to separate patients with S/NS outcomes had a balanced accuracy of 70% (vs 67% for human readers consensus), a weighted precision of 81% (vs 78%), a weighted sensitivity of 64% (vs 70%) and specificity of 77% (vs 64%) and outperformed the consensus of human readers (Figure 3.8, Table 3.6). Our method successfully predicted 81% of the severe/critical cases as opposed to only 61% for the consensus reader. The superiorty of our approach is also indicated by the higher AUC reported (0.76) compared to the one achieved by the different readers (0.69). Severe cases, as depicted in a higher level of volume/heterogeneity of the disease and C-reactive protein levels. Moreover, as indicated in Figure 3.8 the non-uniformity on GLRLM for both lung and disease together with the disease extent seems to contribute considerably to the classification of the patients to NS versus S cases.

Prognosis & Staging

The Covid-19 pneumonia pandemic spiked hospitalizations while exerting extreme pressure on intensive care units. In the absence of a cure, staging and prognosis are crucial for clinical decision-making for resource management and experimental outcome assessment in a pandemic context. Our objective was to predict patient outcomes before mechanical ventilation support. The proposed ensemble classifier aiming to predict the SD/(LD or LR) had a balanced accuracy of 88% (vs 81% for human readers consensus), a weighted precision of 94% (vs 87%), a weighted sensitivity of 94% (vs 88%) and specificity of 81% (vs 75%) and outperformed consensus of human readers (Table 3.6). Our method for prognosis of SD/ LD/ LR had a balanced accuracy of 71%, a weighted precision of 77%, a weighted sensitivity of 74%, and specificity of 82% to provide Pneumonia and Cancer full prognosis (Figure 3.9). Concerning the performance of our method for the classification of LD and LR patients (Table 3.7), our ensemble classifier reports a balanced accuracy of 69%, a weighted precision of 76% a weighted sensitivity of 74% and a weighted specificity of 65%. As indicated in Figure 3.9 the performance of our method reaches an AUC of 0.86 for the SD, 0.86 for the LR, and 0.76 for the LD classes. Moreover, the age, HBP, and lung non-uniformity on the GLSZM seem to associate better for this task.

Moreover, to assess each feature category's impact on the implemented models, we performed an ablation study by successively removing one category of features from the 6 categories defined for each classification task. Results are presented in Table 3.8. The feature categories were identified as follows: a) D0: disease extent, b) D1: disease variables that are shape/geometry related, c) D2: disease variables that are tissue/texture, d) O1: heart/lungs variables that are shape/geometry related, e) O2: heart/lungs variables that are tissue/texture, f) B1: age, gender, biological/obesity/diabetes/fat/high blood pressure. One can observe that the Clinical Only category contributes a lot to the separation of SD/LD/LR. Simultaneously, for the NS/S
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Pneumonia 55 Various studies resorted to deep learning for the diagnosis and quantification of Covid-19 with CT scans. In particular, studies have already reported on deep learning diagnosing Covid-19 pneumonia on chest CTs. In [Li, 2020b], the authors proposed using a deep learning architecture based on ResNet50 for the diagnosis of Covid-19, reporting high performances while investigating the attention maps produced from their network. A similar method is presented in [START_REF] Mei | Artificial intelligenceenabled rapid diagnosis of patients with COVID-19[END_REF] reporting the use of deep learning on Covid-19 diagnosis. Furthermore, in [Huang, 2020], the authors propose using a UNet architecture to quantify the disease using 14482 slices for training and 5303 slices for the test, reporting a median DSC of 0.8481. However, since their dataset is not publicly available, it is impossible to perform a direct comparison. A 3D deep learning Pneumonia and Cancer architecture (DenseUNet) is proposed in [START_REF] Chaganti | [END_REF] for the quantification of Covid-19 disease. The segmentation is then used to regress many scores proposed in that study, such as lung high opacity, lung severity, high opacity, and opacity percentages. Again, a direct comparison could not be reported, as the evaluation of the method was not assessed using DSC or HD but on their ability to regress the proposed scores. Finally, recently [START_REF] Tilborghs | Comparative study of deep learning methods for the automatic segmentation of lung, lesion and lesion type in CT scans of COVID-19 patients[END_REF] presents a comparable study of deep learning-based methods for the automatic quantification of Covid-19.

Assessing the severity of Covid-19 patients is a swiftly evolving topic in the medical community, with some methods being currently under review. Extracting valuable information from the imaging using recent advances is very important and could potentially facilitate clinical practice. Indeed, Disease extent is known to be associated with severity [Li, 2020a;Yuan, 2020]. Simultaneously, the disease textural heterogeneity better reflects heterogeneous lesions than the pure ground-glass opacities observable in mild cases. In [Li, 2020c], the authors proposed using Siamese networks for the severity assessment of Covid-19 directly from CT scans. In [Bai, 2020], the authors proposed a deep learning pipeline based on LSTMs using 2D CT slices and a fusion of imaging and clinical information to assess the severity and progression of Covid-19 patients. The proposed method reports an accuracy of 89.1% on a test cohort of 80 patients, outperforming classical machine learning techniques. Besides, having a smaller test cohort, our method explores interpretable features, thus helping to understand the disease better and provide additional information for the staging of the patients. Recently [START_REF] Lassau | AI-based multi-modal integration of clinical characteristics, lab tests and chest CTs improves COVID-19 outcome prediction of hospitalized patients[END_REF] proposed the assessment of severity using a deep learning tool achieving an AUC of 0.79 on an independent cohort but with low sensitivity. Again, even if we could not perform a direct comparison, our method reports similar performance in a completely independent cohort. Besides, it is based on interpretable features extracted from different regions. Finally, in [START_REF] He | Synergistic Learning of Lung Lobe Segmentation and Hierarchical Multi-Instance Classification for Automated Severity Assessment of COVID-19 in CT Images[END_REF] a 2D deep learning-based approach using multi-task learning is presented to separate Covid-19 patients into severe and non-severe cases.

Clinical Impact

Our study is one of the first to have developed a robust, holistic Covid-19 multi-omics signature for disease staging and prognosis. It demonstrated an equivalent/superior-to-human-reader performance on a multi-centric data set. Our approach complied with appropriate data collection and methodological testing requirements beyond the existing literature [START_REF] Mei | Artificial intelligenceenabled rapid diagnosis of patients with COVID-19[END_REF]. The proposed holistic signature harnessed imaging descriptors of disease, underlying lung, heart and fat, and biological and clinical data. Among them, disease extent is known to be associated with severity [Li, 2020a;Yuan, 2020], disease textural heterogeneity reflects more the presence of heterogeneous lesions than pure ground-glass opacities observable in mild cases. Heart features encode cardiomegaly and cardiac calcifications. Lung features show patients with a severe form of the disease having a wider dispersion and heterogeneity of lung densities, reflecting the presence of an underlying airway disease such as emphysema and the presence of sub-radiological disease.

Holistic artificial intelligence-driven predictor in HER2-positive (HER2+) early breast cancer (BC) 59

Among clinical variables, a higher CRP level, lymphopenia, a higher prevalence of hypertension and diabetes were associated with a poorer outcome, consistent with previous reports [Zhou, 2020a;[START_REF] Guo | [END_REF][START_REF] Terpos | Hematological findings and complications of COVID-19[END_REF]. Interestingly, age was less predictive of disease severity than of poor outcome in severe patients. It is linked to the fewer therapeutic possibilities for these generally more fragile patients. Lastly, the average body mass index (BMI) in both non-severe and severe groups corresponded to overweight. Despite being correlated with BMI, the fat ratio measured on the CT scanner was only weakly associated with outcome. Several studies have reported obesity to be associated with severe outcomes [Huang, 2020;[START_REF] Chaganti | [END_REF] and an editorial described the measurement of anthropometric characteristics as crucial to better estimate the risk of complications [Stefan, 2020]. Notwithstanding, a meta-analysis showed that whereas being associated with an increased risk of Covid-19 pneumonia, obesity was paradoxically associated with reduced pneumonia mortality [Wynants, 2020]. Overall, the combination of clinical, biological, and imaging features demonstrates their complementary value for staging and prognosis.

Holistic artificial intelligence-driven predictor in HER2positive (HER2+) early breast cancer (BC)

In patients with primary HER2+ early BC, dual HER2 blockade in the absence of chemotherapy has shown high activity in a subgroup of patients. Although chemotherapy-free treatment strategies are being pursued, there is a need to identify these patients before treatment initiation. Here, we tackle the difficult task of evaluating the ability of clinical, gene expression and pathomics data to predict response following dual HER2 blockade without chemotherapy. We aim to automatically decipher the data's complementarity towards a low dimensional holistic signature that determines outcomes, and using it as a clinical biomarker for patient stratification through a robust learning artificial intelligence approach. An overview of the task is presented in 3.10.

Dataset and Features Extraction

PAMELA (Lancet Oncology 2017) is a prospective study in HER2+ BC designed to evaluate the ability of the PAM50 HER2-enriched intrinsic subtype to predict pCR following 18-weeks of neoadjuvant lapatinib and trastuzumab (and hormonal therapy if hormone receptor-positive [HR+]). A total of 15 clinical-pathological variables were evaluated, including tumor cellularity, tumor-infiltrating lymphocytes (TILs), the expression of 567 BC-related genes/signatures, and pathomics data from pre-treatment samples from all patients recruited in PAMELA. For the imaging information obtained from H/E slides, we first generate nuclei segmentation maps using a deep learning architecture of Self-Supervised Nuclei Segmentation relying on an attention network [Sahasrabudhe, 2020]. The semantic segmentation produced by this network was used to derive at the patch level image and shape characteristics of the digital pathology samples, Pneumonia and Cancer resulting in a pathomics-derived feature vector of 300 variables. An integrative approach that harnesses clinical, genomics, and pathomics data into a unified prediction framework were used. Patients were divided into a training set 80% and a testing set 20% with proportions of pCR and non-pCR corresponding to the ones observed. A 100-fold Cross-validation (CV) was performed on the training. CV was used to tune the classifiers' parameters and select the 5 classifiers performing best on validation regarding balanced accuracy and having an average specificity above 80%. To ensure the results' robustness and generalizability, we present results averaged over 100 splits into training and test.

Results and Discussion

From the high dimensional feature space of size 882, we propose a low dimensional holistic signature composed of 8 predictive features that the consensus selection has singled out. The signature includes 4 genomics variables (i.e. expression levels of ERBB2, ESR1, Luminal A signature and Risk of Relapse score), 2 clinical-pathological variables (i.e. histologic grade and ER-status), and 2 imaging variables (i.e. mean Short Run Low Gray Level Emphasis of the gray level run length matrix and the mean absolute deviation). An ablation study was also performed to determine the relevance of the different categories of variables. Genomics variables appeared to be the most informative category as its ablation leads to the highest decrease of the metrics (11% on average). The results with a 75% balanced accuracy, 69% precision, 65% sensitivity, 86% specificity, and 0.84 AUC demonstrate the relevance of the approach. Also, we highlight this technique's clinical relevance, which, thanks to its discriminative power, represents an utterly precise exclusion principle for trials. We report successful classification of 86% of non-pCR cases and 65% of pCR cases. Our overall results for the different types of characteristics used, are summarised in Table 3.9 while the confusion matrix of our proposed 8 features signature for the prediction of pCR response is presented in Table 3.10. One could observe that the proposed approach results to promising overall performance. The proposed method has excellent potentials for an effective and clinically meaningful implementation of patients' pre-selection on treatment response criteria after neoadjuvant dual HER2 blockade. Besides, the generality of the method used here makes it transposable to any cancer type or therapy. 

Atopic Dermatitis Severity Prediction

Pruritus is a major symptom of atopic dermatitis (AD) and causes an important burden for patients and society. Its mechanisms are complex and partly understood, making therapeutic perspectives promising. To address this question, we used the largest (n = 82) available AD transcriptome lesional skin dataset (MAARS dataset). All patients auto-evaluated pruritus intensity using a visual scale going from 1 to 10. The median score was 7. We first explore our data using correlation, differential analysis, and sparse PLS to conclude that more innovative approaches should be favored. We applied an automatic deep learning and statistical-based model using an ensemble of architectures, and a data-driven consensus for the gene selection and the pruritus prediction. Final minimalist signatures were obtained using an ablation selection technique. Its application on our data revealed interesting genes for pruritus prediction: Heme Oxygenase 1 (HMOX1), Calcium/Calmodulin Dependent Serine Protein Kinase (CASK), Vestigial Like Family Member 2 (VGLL2), Mannosidase Alpha Class 2A Member 1 (MAN2A1), one long non-coding RNA (GPRC5D-AS1) and two novel transcripts (AC113382.1 and AL031123.1). It predicted pruritus classes with 0.77 balanced accuracy, 0.86 precision, 0.67 sensitivity, and 0.88 specificity. We validated our strategy on two external cohorts, with n = 70 samples in total. A new signature was designed with similar prediction performance. However, interestingly it appeared the two gene signatures had no gene in common. Functional interpretation including both signatures showed interesting shared function and potential therapeutic targets. Our study Pneumonia and Cancer is so far the first to apply ML to pruritus understanding, and encourage the use of innovative approaches for complex data comprehension.

Predictive Gene Selection

Using all the coding genes considered, we built a high-dimension space of size 22596. A minmax normalization of the attributes was performed by calculating the minimum and maximum values for the training and validation cohorts. The same values were also applied on the test set. We adapted the feature selection pipeline proposed in this chapter to tackle the dimensionality curse problem and discover significant and robust predictive genes for the pruritus score determination. Indeed, applying a space dimension reduction step ahead of a classification task is of prime importance especially in genomics studies as it has been shown and discussed in Chapter 4.

More specifically, we separated the cohort into two classes: high pruritus and low pruritus samples. The separation threshold chosen between the two classes was the observed median, i.e. 7. The cohort was subdivided into training and test on the principle of 80%-20% maintaining the observed distribution of classes between the two subsets. Then, on this basis, the training set was further divided into 5 subdivisions to perform feature selection. We considered a selective threshold of 40% of the total possible prevalence (40 selections). This threshold was determined to be optimal through experiments.

Dataset

Internal Cohort

The data were obtained from the MAARS Consortium18, whose dataset is publicly available on the Array Express interface (E-MTAB-8149). AD patients have been recruited in three European Dermatology departments, after provided written informed consent under institutional review board-approved protocols. Sampling and data generation occurred between 2012 and 2013. A vast amount of clinical features was collected, including visual auto-evaluation of the pruritus scale. A 6 mm punch biopsy was performed in the lesional skin of AD patients. Bulk transcriptomic analysis was performed after mRNA extraction with Affymetrix GeneChip® Whole Transcript Expression Arrays.

External Cohort

To assess the reproducibility and robustness of our approach, we applied our prediction on two independent datasets. To reduce technological and technical biases, we sourced independent cohorts using a comparable transcriptomic technology and with available annotation on pruritus severity. Among the total number of pre-selected transcriptomic cohorts (n=48), only two studies met our inclusion criteria with n = 30 and n = 40 AD lesional skin samples. They were generated by the same team, using homogeneous protocols. Pruritus intensity was evaluated by the patient using NRS (Numeric rating scale) Bulk transcriptomic data were generated using Affymetrix Human U133Plus 2.0® gene arrays. Expression matrices GSE133385 and GSE133477 were downloaded through the Gene expression omnibus (GEO) interface using GEOquery package (ver. 2.51.1).

Classification Task

The classification was addressed using an ensemble learning approach. The same training/test sets as the ones for feature selection were used. We have performed 5-fold cross-validation and evaluated the average performance of the following supervised classification methods: Nearest Neighbor, {Linear, Sigmoid, Radial Basis Function (RBF), Polynomial Kernel} Support Vector Machines (SVM), Gaussian Process, Decision Trees, Random Forests, AdaBoost, Gradient Boosting, Gaussian Naive Bayes, Bernoulli Naive Bayes, Multi-Layer Perceptron (MLP) and Quadratic Discriminant Analysis. These classifiers have been trained using the identified signature. For each binary classification task, a consensus model was designed, selecting the top 5 classifiers. The selected models were trained and combined through a winner takes all approach to determine the optimal outcome. We further developed the method proposed in this chapter by adding a signature refinement step performed through ablation as described in the Section 3.3.1.

Implementation Details

Features with the best combined prevalence (sum of prevalences over the 8 selection techniques) were kept using the feature selection method. For this feature selection task, Decision Tree Classifier was taken of maximum depth 3, Linear SVM was taken with a linear kernel, a polynomial kernel function of degree 3 and a penalty parameter of 0.25, Gradient Boosting was used with a regression tree boosted over 30 stages, AdaBoost was used with a Decision Tree Classifier of maximum depth 2 boosted 3 times, and Lasso method was used with 200 alphas along a regularization path of length 0.01 and limited to 1000 iterations.

Concerning the classification, to overcome the unbalanced dataset for the different classes, each class received a weight inversely proportional to its size. For the majority voting classifier, the top 5 classifiers consist of RBF SVM, Linear SVM, Polynomial SVM, QDA, and MLP. The RBF SVM had a penalty parameter of 0.7 and a kernel coefficient gamma of 1. The Linear kernel had a penalty parameter of 3. The Polynomial SVM was granted a kernel degree of 2. The QDA classifier was considered without any prior or regularization parameter and with an absolute threshold of 10. The MLP classifier was trained with an lbfgs solver, an alpha of 0.1, a relu activation, a maximal number of iteration of 1000, a batch size of 500, and an invscaling learning rate. To prevent overfitting we used early stopping.

Results and Discussion

Relying on the aforementioned selection method, we extracted 23 genes and obtained after ablation a minimalist signature composed of the 7 following genes: Heme Oxygenase 1 (HMOX1), Calcium/Calmodulin Dependent Serine Protein Kinase (CASK), Vestigial Like Family Member 2 (VGLL2), Mannosidase Alpha Class 2A Member 1 (MAN2A1), one long non-coding RNA (GPRC5D-AS1) and two novel transcripts (AC113382.1 and AL031123.1). Our proposed ensemble approach reported high performance over all considered evaluation metrics in intra-cohort validation. With only a 7 genes signature, we reached on test 0.77 balanced accuracy, 0.86 precision, 0.67 sensitivity, 0.88 specificity. In addition, we managed to correctly classify 87.5% of the low pruritus class' samples and 66.67% for the high pruritus class.

The genes included in the external cohorts massively varying from the ones of the MAARS dataset, the previously identified gene signature could not be tested in those new settings. Thus, the exact same pipeline was repeated on our external cohort to demonstrate the generalizability of our approach despite the microarray technology disparity. A very different signature was obtained, again including 7 genes: Nuclear Transcription Factor/X-Box Binding Like 1(NFXL1), TOX High Mobility Group Box Family Member 2 (TOX2), Transcription Factor Like 5 (TCFL5), Synaptosome Associated Protein 23 (SNAP23), one long non-coding RNA (ENSG00000279064), and one novel transcript (AC011815.3). Notwithstanding, the differences between the cohorts, we reached excellent results on the test. With only a 7 genes signature, we reached on test 0.90 balanced accuracy, 0.90 precision, 1.00 sensitivity, 0.80 specificity. Also, we managed to correctly classify 80.00% of the low pruritus class' samples and 100.00% for the high pruritus class.

Although independent validation cohorts were selected because of their similarities with our learning cohort, unfortunately, our results were not validated on an external cohort. In general, this can be due to disparities in patient recruitment (age, gender, race disparities), sampling procedure (anatomical localization, skin preparation), microarray technologies, and platform protocols. In our case, differences between learning and validation cohorts are subtle and could be due to various sample anatomical localizations and the diverse Affymetrix microarray generations. A recent study using the same data as ours showed that gene expressions differed according to the anatomical localization in the AD context [START_REF] Ottman | Microbial and transcriptional differences elucidate atopic dermatitis heterogeneity across skin sites[END_REF]. It highlights the importance of standardized sampling procedures within skin transcriptomic studies. The technical bias might be even more substantial in our case. As genome coverage is not homogeneous among Affymetrix technologies [Robinson, 2007], focusing on common genes led to biological information loss.

Future Work

In conclusion, we highlighted the value of ensemble techniques towards both feature selection and classification in this study. We reported robust and promising over three critical medical 3.7. Future Work 65 tasks, patient staging, treatment response prediction, and disease severity determination. We handled several omics data, including CT-scans imaging, histopathological WSI, genes, and clinical information. Our feature selection approach was able to cope with the curse of dimensionality when considering several thousands of features. Besides, we proposed and demonstrated the efficiency of an ablation refinement method to further reduce the size of the selected signature and eliminate information redundancy. To further extend the proposed framework and better identify complementary features, we envision considering a decomposition approach [Danisch, 2017] over a co-occurrence graph. In this setting, features selected simultaneously over several runs of the feature selection algorithms are considered similar. Then, identifying a highly interconnected set of genes in the graph would determine features with low redundancy as they are required together for classification.

With our Covid-19 application, we have shown that the combination of chest CT and artificial intelligence can provide tools for fast, accurate, and precise disease extent quantification and the identification of patients with severe short-term outcomes. It could be of great help in the current pandemic context with healthcare resources under extreme pressure. Beyond the diagnostic value of CT for Covid-19, our study suggests that AI should be part of the triage process. Our methodology designed a deep learning-based pipeline that provides disease quantification comparable to the human experts. At the same time, it explores interpretable image characteristics, fusing them with clinical and biological data to perform staging of the patients to non-severe, needing intubation and deceased. We have highlighted the versatility of our approach through various additional experiments leveraging different omics data from other medical fields. Our prognosis and staging method achieved state-of-the-art results by deploying a highly robust ensemble classification strategy using the image and patients' characteristics within the image's metadata. In terms of future work, we are planning to investigate and generate tools for the multiclass disease segmentation and investigate in depth the characteristics of each class and their association with severity. Our findings could have a substantial impact in terms of (i) patient stratification regarding the different therapeutic strategies, (ii) accelerated drug development through rapid, reproducible, and quantified assessment of treatment response through the different mid/end-points of the trial, and (iii) continuous monitoring of patient's response to treatment.

The use of deep features towards unsupervised discovery is also an interesting direction. Despite the absence of reported results in the chapter, it should be noted that advanced deep learning techniques were considered both for classification/severity assessment (deep neural networks with attention, deep features from mid-level lung/disease 3D disease quantification networks) as well as for outcome prediction with explicit integration of clinical/biological variables. The interest of these methods was tested for biomarker discovery -subsequently fed to the ensemble learning method presented in the chapter -and in an end-to-end setting towards automatic quantification, staging, and outcome prediction. Despite engaging performance on training, both Pneumonia and Cancer approaches failed to produce explainable, consistent with training results. They were notably inferior in overall performance, explicability, robustness, and generalizability compared to the reported solution. The relatively low number of samples in training could explain it, as it is a known bottleneck for deep representations. Access to a significantly larger cohort with at least one order of magnitude higher-order number of samples is under examination within the Assistance Publique -Hôpitaux de Paris hospitals network. The use of such a cohort could be of great interest for confirming the outcomes of the presented study. It would help to revive the interest in deep features and holistic end-to-end integration of deep features with biological/clinical and imaging data for staging and short/long term outcome prediction.

Our study of patient treatment response for breast cancer patient is one of the first to leverage radiomics information on WSI. We highlighted the complementarity of the gene, clinical and histopathological data for prediction and reported auspicious results. In the future, we are considering using our general and adaptable framework for other kinds of treatments and cancers. Besides, we also want to prove the generalizability of our holistic signature over an external cohort. Regarding our experiments on atopic dermatitis, we are the first to prove the interest in machine learning approaches to predict a patient's pruritus score from genetic information. We reported excellent performance over two different cohorts with very low dimensional signatures of 7 genes extracted from the whole coding genome. A further step in this study would be to consider an external cohort presenting a similar experimental protocol or sequencing technology to attest to our approach's generalizability. In chapter 2, we introduce a novel, automatic and unsupervised framework to discover lowdimensional gene biomarkers. Our method is based on the LP-Stability algorithm, a high dimensional center-based unsupervised clustering algorithm, that offers modularity as concerns metric functions and scalability, while being able to automatically determine the best number of clusters. Our evaluation includes both mathematical and biological criteria. The recovered signature is applied to a variety of biological tasks, including screening of biological pathways and functions, and characterization relevance on tumor types and subtypes. Quantitative comparisons among different distance metrics, commonly used clustering methods and a referential gene signature used in the literature, confirm state of the art performance of our approach. In particular, our signature, that is based on 27 genes, reports at least 30 times better mathematical significance (average Dunn's Index) and 25% better biological significance (average Enrichment in Protein-Protein Interaction) than those produced by other referential clustering methods. Finally, our signature reports promising results on distinguishing immune inflammatory and immune desert tumors, while reporting a high balanced accuracy of 92% on tumor types classification and averaged balanced accuracy of 68% on tumor subtypes classification, which represents, respectively 7% and 9% higher performance compared to the referential signature. This study extends our work published in [START_REF] Battistella | [END_REF][START_REF] Battistella | [END_REF].

Introduction

Omics data analysis -including genomics, transcriptomics and metabolomics -has greatly benefited from the tremendous sequencing technique advances [Kurian, 2014] allowing to highly increase the quality and the quantity of data. These omics techniques are pivotal aspects of the development of personalized medicine by enabling a better understanding of fine-grained molecular mechanisms [Hanahan, 2011]. In oncology, these techniques provide a more comprehensive insight of the biological processes intricacy in cancers giving momentum to molecular-type characterization through omics or even multi-omics approaches [Ramaswamy, 2001b;Chen, 2017b]. Such a precise and robust characterization is a highly valuable asset for tumor characterization and provides significant acumen on their treatment.

Genomics, probably the most prominent omics technique, refer to the study of entire genomes contrary to genetics that interrogate individual variants or single genes [Hasin, 2017]. In this direction, novel methods study specific variants of genes aimed at producing robust biomarkers, which contribute to both the response of patients to treatment [Wan, 2010;Sun, 2018] and the association with complex and Mendelian diseases [START_REF] Dunne | [END_REF]. However, the relatively low number of samples per tumor subtype, along with the curse of dimensionality and the lack of ground truth affect many of these studies [START_REF] Drucker | Pitfalls and limitations in translation from biomarker discovery to clinical utility in predictive and personalised medicine[END_REF], which may prevent any statistically meaningful causal relation discovery.

The use of cluster analysis on RNA-seq transcriptomes is a wide-spread technique [Cowen, 2017] whose main goal is to define groups of genes that have similar expression profiles, proposing compact signatures [START_REF] Dunne | [END_REF]. These robust signatures are necessary to identify associations with different biological processes, as tumor types or cancer molecular subtypes, and to highlight gene coding for proteins interacting together or participating in the same biological process [START_REF] Sipko Van Dam | Gene co-expression analysis for functional classification and gene-disease predictions[END_REF].

Although dimension reduction through clustering is not new [START_REF] Pepke | Comprehensive discovery of subsample gene expression components by information explanation: therapeutic implications in cancer[END_REF], there is an important shortfall in literature of a thorough, mathematically and biologically meaningful comparison of clusterings methods on a same database. In many studies, a single evaluation metric is used and there is no relevant comparison with other algorithms. By "relevant", we mean here that the optimization of the different baseline algorithm hyperparameters is ensured and compared through a fair evaluation metric. Mathematical metrics for instance, are highly dependent on the property the algorithm is optimizing and the distance notion considered. The evaluation of this bias through, as an example, random clusters using different distance notions to offer a fair comparison between the different algorithms. Finally, a few surveys [START_REF] Oyelade | Clustering Algorithms: Their Application to Gene Expression Data[END_REF] propose a thorough comparison, using several evaluation criteria, albeit reporting results shown in several other studies without actually comparing the methods on a same database with all the criteria at once.

In this chapter, we introduce a novel unsupervised approach that is modular, scalable and metric free towards the definition of a predictive gene signature while proposing a complete methodology for comparison, analysis and evaluation of genomic signatures. The backbone of our methodology refers to a powerful graph-based unsupervised clustering method, the LP-Stability algorithm [START_REF] Komodakis | [END_REF], which has been successfully adapted in various fields. Our approach offers: i. Standardization and automatization concerning gene clustering evaluation for the selection of the best distance notions, metrics, algorithms and hyperparameters;

ii. Creation of generic, low dimensional signatures using the gene expressions of all coding genes, including comparisons to random signatures to highlight statistical superiority;

iii. Systematic assessment of the biological power of gene signatures by evaluating the different tumor type and subtype associations via supervised (proving tissue-specificity and predictive power), and unsupervised (proving automatic discovery and expression power) techniques. By this, we demonstrated the power of the proposed gene signature (based on 27 genes) compared to other methods in the literature; iv. Thorough biological analysis of the processes involved in sample clusters via gene screening techniques, affirming the robustness of the obtained results.

Methodology

Overview of the Proposed Approach

The overview of the method presented in this chapter is summarized in Fig. 4.1. To evaluate and select the best gene signature, we introduce two distinct metrics checking both mathematical and biological properties. In particular, we used the mathematical assessment metric of Dunn's Index (DI) [Kovács, 2005] and the biological one of Enrichment Score in PPI [START_REF] Pepke | Comprehensive discovery of subsample gene expression components by information explanation: therapeutic implications in cancer[END_REF] which are both referential for the assessment of clustering although they have never been combined. Then, a low dimensional aggregated gene signature is defined by combining representative genes in each cluster. To prove the power of the discovered biomarker, a systematic and thorough evaluation regarding its biological and clinical relevance was performed. In particular, the signature was evaluated and compared through sample clustering and sample classification. As targeted by the sample clustering, we chose the different tumor types and assessed the success of the clustering through sample distribution analysis and clustering evaluation metrics such as Rand Index and Mutual Information. In addition, we used the method from [Tusher, 2001] to obtain important genes for the samples of each cluster which were associated to their pathways using [Szklarczyk, 2018]. Finally, the last evaluation criteria was the performance in categorizing the cancer types and subtypes through supervised machine learning techniques. Our proposed signature has been compared against both signatures designed from commonly used algorithms for gene clustering [MacQueen, 1967;[START_REF] Pepke | Comprehensive discovery of subsample gene expression components by information explanation: therapeutic implications in cancer[END_REF] and a recently proposed prominent gene signature [Thorsson, 2018]. In particular, we used K-Means algorithm in order to investigate the importance of stable centers in clustering as it is one of the main differences between LP-Stability and K-Means. To assess the statistical significance of the produced clusters we compare them against random clusters. Figure 4.1: Proposed Framework. A general overview of the different steps of our process. Our proposed framework is composed of two steps. First, a clustering algorithm, here LP-Stability, is used to generate clusters of genes having similar expression profiles. Then, the clustering that performs best on both mathematical and biological scores is selected as a gene signature. In the second step, the generated signature is used to perform sample clustering and sample classification. The performance on this step is evaluated by analysing the distribution of the samples into the different clusters or the performance on the classification tasks, here the target was the tumor types and subtypes characterization.

Discovering Correlations in Gene Expressions

Unsupervised Gene Clustering Evaluation

To evaluate the performance of gene clustering methods, we used both mathematical and biological criteria. The quality of the results was assessed using the biological relevance information brought by the Enrichment Score in PPI, while the prominent Dunn's Index statistical method was considered regarding the clustering mathematical appropriateness. See Section 2.3.3 for a formal definition of those measures.

Definition of a Low Dimensional Cancer Signature

In this section, we focus on gene signature definition and biomarker power evaluation.

Signature Selection

The ultimate goal of our approach is to produce low dimensional signatures as a byproduct of unsupervised clustering outcome. To this end, the signatures were produced by selecting the most representative gene per cluster for the clusterings with the highest ES and DI performance. For LP-Stability algorithm, the selected genes were the stable centers that the algorithm relies on, in the the rest of the algorithms, we chose as representatives the clusters medoid (the sample the closest to the cluster center). This choice is motivated by the fact that the stable centers of the clustering obtained through LP-Stability are also medoids.

In complement, once a signature is selected, a redundancy analysis was performed using STRING tool [Szklarczyk, 2018] to decipher any biological process that was particularly overrepresented so suggesting redundancy of the information. In addition, Genotype-Tissue Expression (GTEx) portal (www.gtexportal.org) was used to assess the tissue specificity for the proposed signature. A good signature should present genes with different expression profiles over the different tissues. This tool offers a visual representation for each gene of their expression and regulation in different tissues. It relies on the analysis of multiple human tissues from donors to identify correlations between genotype and tissue-specific gene expression levels.

Sample Clustering: Discovery Power

In order to perform sample clustering, we compared several algorithms and distances. The most meaningful results were obtained with the K-medoids method, a variant of K-Means, combined with the Spearman's rank correlation-based distance. The relevance of the obtained results was assessed by analyzing the partition of the different tumor types in the clusters. In particular, driven from known biological evidence, we considered as meaningful the associations of lung tumors (LUSC, LUAD), squamous tumors (LUSC, HNSC, CESC), gynecologic tumors (BRCA, OV, CESC), smoking related tumors (LUSC, LUAD, BLCA, CESC, HNSC). We disregarded samples types in a cluster representing less than 5% of the total cluster size. We considered a poorly defined cluster to be a cluster presenting less than 50 samples or distribution of the samples types in the same proportions as in the whole dataset as it would show random associations.

Gene screening analysis was also used to identify the genes that are expressed differently over the sample clusters and thus indicating the biological processes involved. For that, we used the SAM method [Tusher, 2001], that aims to identify the genes that are differentially expressed over two groups of samples. SAM assesses the significance of the variations of the gene expression using a statistical t-test, providing a significance score and a False Discovery Rate (FDR). To better assess the relevance of separating samples of the same tumor type, we studied the genes that are expressed differently for each tumor type in a cluster compared to all the other samples of the same tumor type. We thus pinpointed significant genes for each cluster and each tumor type by cluster. Once more, the method in [Szklarczyk, 2018] has been used for assessing the biological relevance of the clusters and their association to different tumor types, by studying the biological processes involved. A well-defined sample clustering is characterized by different clusters presenting different enriched biological processes and pathways while different tumor types in a same cluster should be enriched in the same ones.

Sample Clustering: Expression Power

To assess how well the different tumor types have been separated, we used several different metrics presented in Section 2.3.3. Namely, we considered the Adjusted Rand Index (ARI), the Normalized Mutual Information (NMI), the Homogeneity, the Completeness and the Fowlkes-Mallow Score.

Supervised Tumor Types/SubTypes Categorization

The evaluation of the provided signatures were further assessed by a supervised setting in order to highlight their tissue specificity properties. The supervised framework for tumor types and subtypes categorization was adapted from the method presented in Chapter 3. Please refer to this Chapter for more details of the method used. Our gene clustering pipeline offers here an alternative feature selection method to the one proposed in Chapter 3 the advantages it is less task dependent while offering a guarantee of redundancy freedom and better scalability. The advantages of the task specific, supervised feature selection technique developed in this manuscript will be discussed in Chapter 3. The classification pipeline relies on an ensemble of machine learning classifiers, exploring the ones with strong generalisation power. The best performing in terms of balanced accuracy and generalisation are combined through a probabilistic consensus schema to provide the appropriate label.

Towards the evaluation of the reported performance, we relied on classic machine learning metrics defined in Section 2.2.3. Namely, we considered the balanced accuracy, the weighted precision, the weighted specificity and the weighted sensitivity.

Implementation Details

The parameters of each algorithm for the gene clustering were obtained using grid search. In order to benchmark the behavior of each algorithm on different number of clusters, we evaluated their performance for the following number of clusters: from 2 to 10 with an increment of 1, 15, 20, 25 and between 30 and 100 with an increasing step of 10 for the Random Clustering and K-Means algorithms and 25 for CorEx algorithm because of its computational complexity. LP-Stability automatically determines the number of clusters. In order to create meaningful comparisons, we adjusted the penalty vector S in order to obtain approximately the same number of clusters as with the rest of the algorithms. For comparison purposes, we used the same penalty for all the genes, however, for the LP-Stability algorithm the penalty value could be adjusted and customized depending on the importance of specific genes.

For the ES we reported the behavior of the algorithms with different threshold values i.e. 0.005, 0.025, 0.05 and 0.1. Furthermore, in reporting the DI value, each method has been evaluated with the same proximity measure it relies on. For K-Means that is sensitive to initialization, we performed 100 iterations for each parameter and selected the best clustering based on DI only to cope with the computational cost of the ES. This iterative process augments the computational time of the algorithm, but reports clusters with better statistical significance and more stable scores. Similarly, we performed 100 repetitions of random clustering and observed rather similar results, we selected the clustering that reports the best DI score and reported its results.

For the sample clustering, we considered 10 clusters corresponding to the actual 10 tumor types. For the gene screening, we selected the most significant genes that reported a significance score of 7 which corresponds to a q-value of FDR close to zero in most cases, while for the biological processes we considered only the 10 most enriched processes by screening.

Regarding the supervised categorization of tumor types and subtypes classes, the evaluated algorithms were: Nearest Neighbor, {Linear, Sigmoid, Radial Basis Function (RBF), Polynomial Kernel} Support Vector Machines (SVM), Gaussian Process, Decision Trees, Random Forests, AdaBoost, XGBoosting, Gaussian Naive Bayes, Bernoulli Naive Bayes, Multi-Layer Perceptron (MLP) & Quadratic Discriminant Analysis. We selected the top classifiers regarding balanced accuracy ensuring both good performance and good generalisation. In particular, for tumor types classification the selection criteria include (i) high balanced accuracy (equal or above 80%) on the validation set and (ii) small difference (smaller than 20%) on the balanced accuracy metric between training and validation. While for tumor subtypes classification, we selected the top 5 classifiers regarding balanced accuracy presenting a small difference (smaller than 20%) on the balanced accuracy metric between training and validation. For our experiments on tumor types classification with our proposed signature, the classifiers that fulfill these criteria were the: {Linear, Polynomial, RBF Kernels} SVM, Gaussian Process, Random forest, MLP, XGBoosting. For the sake of conciseness, we do not detail the selected classifiers for other experiments and other signatures. Those top classifiers' good performance were leveraged through a majority voting scheme.

To deal with the problem of the unbalanced dataset, each class received a weight inversely proportional to its size. Concerning the different hyperparameters of the best performing classifiers, SVM was granted a regularization parameter of 10 and polynomial kernel function of degree 4 for the Polynomial method. In addition, the RBF SVM was granted a kernel coefficient of 3.

The Gaussian Process was granted a RBF kernel and the multi class predictions were achieved through one versus rest scheme. The Random Forest classifier was composed of 100 Decision Trees of maximum depth 4. The MLP classifier was used with a LBFGS optimizer, a ReLU activation, 3000 maximum iterations, a batch size of 200, learning rate was updated thanks to an inverse scaling exponent of power t with t denoting the current step and early stopping method was used as the termination criteria. XGBoosting was used with n classes regression trees at each boosting stage, a deviance loss, a learning rate of 0.5 and 40 boosting stages, when looking for the best split, √ n f eatures features were considered.

Dataset

In this study, we based our experiments on The Cancer Genome Atlas (TCGA) dataset [START_REF] Grossman | [END_REF]. TCGA contains a comprehensive dataset including several data types such as DNA copy number, DNA methylation, mRNA expression, miRNA expression, protein expression, and somatic point mutation. It allowed the development of several different clustering techniques to cluster samples according to cancer types by using one or several omics data [Hoadley, 2018;Ramaswamy, 2001a]. We focused our study on tumor types relevant for radiotherapy and/or immunotherapy. For the gene clustering part, our dataset consists of 4615 samples (Table 4.1 second column). In particular, we investigated the following types of tumors, namely: Urothelial Bladder Carcinoma (BLCA), Breast Invasive Carcinoma (BRCA), Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma (CESC), Glioblastoma Multiforme (GBM), Head and Neck Squamous Cell Carcinoma (HNSC), Liver Hepatocellular Carcinoma (LIHC), Rectum Adenocarcinoma (READ), Lung adenocarcinoma (LUAD), Lung Squamous Cell Carcinoma (LUSC) and Ovarian Cancer (OV). For each sample, we had the RNA-seq reads of 20 365 genes processed using normalized RNA-seq by Expectation-Maximization (RSEM) [START_REF] Li | [END_REF].

Several articles as [START_REF] Salem | [END_REF] consider the challenging and important task of generating biomarkers for distinguishing tumor and subtumor types. In this study, we also focus on this task basing our experiments on the cohort presented in [Thorsson, 2018] by selecting samples from the 10 locations used for the gene signature. This cohort consists of 3653 samples (Table 4.1 third and fourth columns). For the tumor subtypes characterisation, we focused on subtypes that had more than 50 × n_subtype samples. At the end, 5 different tumor types namely the BRCA, HNSC, LIHC, READ and OV have been used for subtypes classification.

Results and Discussion

This study has been designed upon three pivotal complementary aspects. The first one relates to the genes clustering performance to assess the definition of the signature regarding both a mathematical (DI) and a biological (ES) metric (section 4.4.1). The second evaluates the ability of the signature to relevantly separate the different tumor samples in an unbiased manner in particular through sample clustering (section 4.4.3). The third aspect characterizes the tissue specificity of the signature thanks to classification tasks on tumor types and subtypes (section 4.4.4). To better estimate the results obtained, comparisons with referential clustering methods and gene signatures are performed throughout the different evaluations. A global comparison with all references over all metrics is provided in section 4.4.5.

Results on Clustering Gene Data

The obtained clusters were evaluated using both mathematical and biological evaluation criteria. Starting with the biological criteria, Fig. 4.2 presents a comparison of the different ES per algorithm for different threshold (th) values. We observed that for the different clustering methods the threshold does not significantly change the behavior of the ES, indicating a strong statistical significance for the clusters. But, it is not the case for the random signature on which for a number of clusters higher than 30 one can observe an important disparity between the different th of the ES. For the rest of the study, we will use the most stringent threshold, th = 0.005. The figure presents the percentage of the enriched clusters for the threshold values of 0.005, 0.025, 0.05, 0.075, 0.1 and using Kendall's correlation-based distance. The higher differences in the enrichment thresholds are reported from the Random Clustering when the number of clusters is relatively high. For the rest of the algorithms and especially LP-Stability, the different thresholds only slightly impact the reported results.

To select the best distance per method we used the DI metric. In Fig. 4.3 one can observe the influence of the distance with respect to the number of clusters for the random and LPstability methods. Compared with random clustering one can observe the bias that each distance introduces for the DI score. In particular, with correlation-based distances the reported DI scores are on average 10 times higher. Thus, to tackle this problem of bias, for our comparisons, we will refer to a clustering difference in DI scores with the corresponding random clustering for the same number of clusters and distance. Based on our experiments we also noticed that the different distances greatly affects the performance of the clustering algorithm, with the correlation-based distances (especially the Kendall's correlation) reporting in general higher performances. To ensure the biological meaning of the clusters, we also report the performance of the different distances for ES. Once again the superiority of correlation-based distances both in terms of performance and stability is indicated. Besides, only the Euclidean distance does not reach the maximal value of 100%. This is due to the unbalanced clusters that Euclidean distance favors, leading to very small clusters that are less likely to be enriched. For the rest of the paper we selected Kendall's correlation-based distance when reporting LP-Stability and Random Clustering performances. In Table 4.2, we summarize the performance of LP-Stability in comparison to other algorithms based on both ES and DI scores together with the reported number of clusters. Additional information about the average Enrichment and the average computational time per algorithm is also provided in the table. The best performance of DI is achieved with the LP-Stability and the Kendall's Correlation-based distance. Moreover, even if almost all the methods, except K-Means, reached an Enrichment Score of 100%, LP-Stability still reports the highest average Enrichment, with 96% while CorEx reaches only 71%. Another interesting point from this analysis is the indication of the optimal number of clusters per algorithm. Only LP-Stability reports its best value with more than 25 clusters while the rest of the algorithms have their best performance with less than 7 clusters and even 2 clusters only if we consider DI alone. This might seem to be an argument in favor of the other algorithms as they are able to define a more compact signature. However, such a low number of clusters highlights failure on characterizing a clustering structure as they favor a disposition where genes are grouped altogether. This is also indicated by the low average ES and DI scores.

A thorough comparison of the different algorithms for a different number of clusters is presented in Fig. 4.4. For both DI and ES the superiority of the proposed LP-Stability in comparison to the other algorithms can be observed both in terms of stability for a varying number of clusters and performance. The reported results indicate that the proposed method can generate clusters that are both mathematically and biologically meaningful. Moreover, one can observe that for Random Clustering, the reported enrichment is very high, however dropping dramatically for more than 30 clusters, while the DI is really low for all the cases. This highlights the need to study both the mathematical performance and the stability of the biological score as ES alone would not give significant results.

Computational Complexity & Running Times For Gene Clustering

The computation time is an important parameter playing a significant role for the selection of a clustering algorithm. For each algorithm, the approximate average time needed for the clustering is presented in Table 4.2. The different computational times have been computed using Intel(R) Xeon(R) CPU E5-4650 v2 @ 2.40GHz cores. In general, the computational time increases with the cluster number for all the clustering methods. However, for the reported clusters of Table 4.2, LP-Stability remains one of the fastest with a computational time approximately equal to 1.5h. K-Means needs approximately twice this time due to the several iterations (in our case 100) performed in order to account for different initialization conditions. CorEx is by far the most computationally expensive, requiring more than 5 days for the clustering, making this algorithm not efficient for data with this high dimensionality.

Unsupervised Signature Assessment

Signature Selection

The signature was selected using the method detailed in section 4.2.4 on the clustering presenting the highest DI among clusterings having best ES. However, due to the relatively low number of genes for signatures based on K-Means, CorEx or Random Clustering, the sample clusterings with those signatures gave quite irrelevant intermixed tumor types (Fig. 4.5). To deal with this and for comparison reasons, we used for all these algorithms the gene signatures produced with 4.4. Results and Discussion 81 25 and 30 genes and in the following, when referring to CorEx and K-Means signatures we will refer to those signatures.

Regarding the evaluation of the enriched biological processes for the different signatures, we found that LP-Stability signature (27 genes with Kendall's correlation-based distance) does not present any redundancy in the biological processes, in contrast to the K-Means (30 genes with Euclidean distance) which presents several hundred of enriched biological processes. Moreover, CorEx signature (30 genes with Total Correlation) presents a low biological redundancy with only phototransduction process being enriched.

Our proposed gene signature using LP-Stability is composed by 27 genes. Their detailed description with main functions and a brief summary of the analysis obtained using GTEx Portal on July 2020 (www.gtexportal.org) is given in Annexes.

Globally these genes are related to cell development and cell cycle (CD53, NCAPH, GNA15, GADD45GIP1, CD302, NCAPH, YEATS2), DNA transcription (HSFX1, CCDC30, MATR3, ASH1L, ANKRD30A, GSX1), gene expression (ZNF767, C1orf159, RPS8, ZEB2), DNA repair (RIF1), antigen recognition (ZNF767), apoptosis (C3P1, CLIP3), mRNA splicing (SNRPG). We also have many genes specific to cancer or having a major impact on cancer (CD53, ANKRD30A, ZEB2, ADNP, SFTA3, ACBD4). All these processes are highly important and significant for cancer. We also report for each gene the main tissues they are overexpressed using GTEx portal, even if we have many genes related to specific tissue types such as brain, blood lymphocytes, liver or gynecologic tissues, the overall profiles of each gene are unique.

Sample Clustering: Discovery Power

The predictive powers of the best signature per algorithm together with the random signatures, and the signature presented in [Thorsson, 2018], were further assessed by measuring their ability to separate 10 different tumor types (Table 4.1) in a completely unsupervised manner, through sample clustering. In Fig. 4.7, the results for the LP-Stability (with 27 clusters, ES 100% and DI 40.6% using Kendall's correlation-based distance) signature, K-Means (with 30 genes, ES of 30% and a DI of 0.52% using Euclidean distance), CorEx (with 25 genes, ES 72% and DI 0.06% using Total Correlation), Random Clustering signature (with 27 genes, ES 86.6% and DI of 13.8% using Kendall's correlation-based distance) and the signature from [Thorsson, 2018] are presented. One can observe that CorEx and Random signatures fail to properly separate the tumor types and for this reason for the rest of the section we present a detailed comparison of the K-Means and LP-Stability signatures only.

In Table 4.3, we present a more detailed comparison of the distribution of the tumor types for these LP-Stability and K-Means signatures. Both signatures generate clusters that successfully . This assessment is performed in order to compare the influence of the distance in the clustering. We can observe that there are some similar clusters between the two distances such as the well defined clusters of GBM and LIHC together with LUAD/LUSC cluster (Cluster 5), a squamous cluster (Cluster 7) and some well defined BRCA clusters (Clusters 1 and 8). Thus, regarding sample clustering, it appears that the good characterization of monotonic relations offered by Spearman's Rank correlation-based distance is better suited than the more general characterization of the Kendall's one.

associate lung tumors such as LUSC and LUAD (clusters 3 & 4 respectively), squamous tumors mainly composed of BLCA, CESC, LUSC and HNSC types (clusters 0 & 8 and 1 & 8 respectively) and smoking related tumors mainly containing CESC, HNSC, READ, LUSC and LUAD (clusters 7 & 8 respectively). Concerning BRCA, K-Means clusters it into two different groups, one that consists mainly with BRCA samples, while the second one consists of a minority of BRCA samples grouped together with the GBM which types are not really related. Moreover, both algorithms provided a good, almost perfect separation of the LIHC and GBM samples into well defined clusters. This separation indicates that these specific tumor types are very different from the rest or even that at least one gene included in the produced signatures is differently expressed compared to the rest of the samples. On the other hand, LP-Stability clusters BRCA in several small unblended clusters that express the various molecular types of BRCA, and groups the remaining BRCA with the OV type which is directly related (cluster 3).

These results are very promising as they are in accordance with other recent omic studies. In particular in [Hart2019] the authors used a large set of different omics data to define a clustering reporting pan-squamous clusters (LUSC, HNSC, CESC, BLCA), but also pan-gynecology clusters (BRCA, OV) and pan-lung clusters (LUAD, LUSC). The authors highlighted the separation of BRCA into several clusters linked to basal, luminal, Chr 8q amp or HER2-amp subtypes. However, they obtained only one third of mostly homogeneous clusters, and even reported clusters mixing up to 75% of the total number of tumors types they considered. Table 4.3: Discovery Power: A complete comparison for the distribution of the tumor types (above 10%) from the best performing algorithms. LP-Stability with 27 genes using Kendall's correlation-based distance and K-Means with 30 genes using Euclidean distance. The last column indicates the algorithm that provided the best distribution for the specific tumor type. It highlights the superiority of the LP-Stability signature. 

LP-Stability

Another interesting point is that the distance used greatly affects the distribution of the different tumor types for the clustering. This proves the importance of the distance selection in combination with the selected algorithm. Based on our experiments, we noticed that Spearman's and Kendall's correlations provide the best sample clustering for all the algorithms. In particular, Spearman's correlation tends to better separate the different tumors into different clusters, while the Kendall's seems to generate clusters that groups tumor-related samples. In Fig. 4.8, we present the influence of the two different distance metrics.

To compare our results with other methods in the literature, we assessed our gene signature against a knowledge-based signature of 78 genes that has been proven to be appropriate for determining immune related sample clusters [Thorsson, 2018]. The obtained tumor distribution is presented in Fig. 4.7, reporting quite intermixed associations. Again, LIHC and BRCA are separated properly while the rest of the tumors are clustered in unrelated groups. This com- [Thorsson, 2018] and LP-Stability. The distribution of tumors for Random and CorEx algorithms is quite intermixed without a lot of associations between the tumor types while K-Means, referential and LP-Stability signatures seem to favor some good tumor associations.

parison indicates the need for compact signatures, highlighting at the same time the difficulty of capturing the full genome information as well as the need for an automatically computed signature to avoid redundancy and information loss.

Gene Screening Analysis

Screening analysis aims to identify the significant genes for each cluster which are then used to determine the enriched biological processes per cluster. To determine those significant genes, we used the SAM method to look for genes that are expressed differently for the samples of one tumor type in a cluster compared to the other samples of the same tumor type (see section 4.2.4 for more details). We will refer to those genes as differentially expressed genes in the remainder of the article. Besides, the SAM method scores allows to determine significant genes, in the following, we will refer in particular to the most significant genes for a cluster or a tumor type in a cluster for the genes reaching the highest SAM scores. This method, allows to check if the tumor types of a given cluster share genes related to similar biological processes, highlighting the biological relevance of the cluster. Meanwhile, this method enables us to verify the relevance of the distribution of the same tumor types into different clusters by checking the absence of similar biological processes. In particular, a summary of the analysis for our proposed signature's sample . This assessment is performed in order to compare the influence of the distance in the clustering. We can observe that there are some similar clusters between the two distances such as the well defined clusters of GBM and LIHC together with LUAD/LUSC cluster (Cluster 5), a squamous cluster (Cluster 7) and some well defined BRCA clusters (Clusters 1 and 8). Thus, regarding sample clustering, it appears that the good characterization of monotonic relations offered by Spearman's Rank correlation-based distance is better suited than the more general characterization of the Kendall's one.

clustering is presented in Table 4.4. In this section, we provide a detailed analysis per tumor type for each cluster for both K-Means and LP-Stability selected signatures.

Starting with the gene screening of LP-Stability, cluster 0 is one of the most intermixed clusters. This cluster contains significant genes for different tumor types that are associated with immune, defense response and other inflammatory processes with strong enrichment. Among the most significant genes we can report IL4R for HNSC, this Interleukin is a treatment target for multiple cancers, GNA15 for LUSC which has been highlighted in lung cancer treatment or for CESC. KRT5, has been identified as a potential biomarker to distinguish adenocarcinomas to squamous cell carcinomas [Xiao, 2017]. Continuing our analysis with cluster 1 which includes mainly BRCA samples, its most significant gene is FPR3. This gene seems to be related to immune inflammation and multiple cancers including breast [Li, 2017]. For cluster 2 which is mainly composed of BRCA samples, we identified that it is a basal BRCA cluster. Indeed, its most significant gene TTC28 is related to breast cancer and especially basal BRCA [Hamdi, 2016]. Besides, the cluster is enriched for basal plasma membrane. Cluster 3 is also a mixed cluster mostly composed of BRCA and OV cancers. It seems to be related to mitochondrial complexes and organization. Its most significant gene is the NDUFB10 which is related to breast cancer patients [Zhang, 2015], OV cancer [Permuth-Wey, 2011] and also correlated to a decreased viability in esophageal squamous lineage as LIHC. Cluster 4 is a lung related cluster, composed of LUAD/LUSC samples. LUAD samples are related to immune response and LUSC samples to surfactant homeostasis which is linked to many lung diseases. The most significant gene for LUAD is SFTA3, a lung Table 4.4: Analysis of the biological pathways and most significant genes per cluster for the sample clustering performed using our proposed signature of 27 genes via LP-Stability algorithm and Kendall's correlation-based distance. The table highlights the separation between inflamed and non-inflamed tumors and the identification of well-known cancer subtypes such as BRCA. Biomarker distinguishing adeno-Interferon-gamma tumors cluster carcinomas from squamous mediated cell carcinomas [Xiao, 2017] process

Clusters

Cluster 1 FPR3 BRCA Immune inflammation Immune response An inflamed BRCA related [Li, 2017] related pathways tumors cluster

Cluster 2 TTC28 BRCA Related to basal breast cancer Basal plasma membrane A basal BRCA risk [Hamdi, 2016] tumors protein [START_REF] Schicht | SFTA3, a novel protein of the lung: three-dimensional structure, characterisation and immune activation[END_REF] and a biomarker distinguishing LUAD and LUSC [Xiao, 2017], whereas the most significant gene for LUSC samples is NAPSA that has been proven to be of relevance for LUAD tumors. Cluster 5 mostly consists of LIHC samples, grouping all the LIHC samples in this cluster. Similarly cluster 7 consists of all GBM tumors. Thus, the screening process is not applicable for them as it compares samples from the same tumor type over different clusters.

Cluster 6 is a luminal breast cancer cluster, related to metabolic processes which have already been studied in a breast cancer context [Schramm, 2010]. The most significant gene seems to be the FOXA1, a gene related to Estrogen-Receptor Positive Breast Cancer and Luminal Breast Carcinoma [Cappelletti, 2017]. Cluster 7 is GBM tumors cluster. It is interesting to notice that next two dominant tumor types in the cluster, BRCA and BLCA, are related to cardiovascularity and blood vessels, their respective most significant genes are ANGPTL5 and FERMT2. The latter having been highlighted in GBM proliferation [START_REF] Ali | Identification of Crucial Candidate Genes and Pathways in Glioblastoma Multiform by Bioinformatics Analysis[END_REF]. Cluster 8 has no biological process linked to immune response, but presents a strong association to metabolic and structural processes. This group of processes has been found significant for BRCA [START_REF] Read | Splicing dysregulation as a driver of breast cancer[END_REF]. The most significant genes for this cluster are the AP1M2 for BLCA samples which interacts in tyrosinebased signals and has been considered in epithelial cells studies, the UQCRH for BRCA a gene encoding mitochondrial Hinge protein that is important in soft tissue sarcomas and in particular in two cell lines of breast cancer and one of ovarian cancer [START_REF] Modena | UQCRH gene encoding mitochondrial Hinge protein is interrupted by a translocation in a soft-tissue sarcoma XXIV Bibliography and epigenetically inactivated in some cancer cell lines[END_REF]. Finally, cluster 9 is a cluster with BRCA tumors, it has CIRP as its most significant gene, which is considered to be an oncogene in several cancers and in particular for BRCA. Cluster 9 presents alternative splicing and coiled coil processes.

This analysis highlights that each cluster is enriched in similar biological processes while the processes from different clusters are different. Moreover, it reveals that even if clusters 0 and 8 contain different tumor types, they present a homogeneity in their biological processes. Cluster 0 is especially interesting as it contains inflamed tumor samples and cluster 8 non-inflamed samples. These two clusters contain all the CESC samples, proving once more the relevance of the LP-Stability signature as they automatically and without any prior knowledge separate inflammatory and non-inflammatory CESC samples. This specific problem is an active field of research [Heeren, 2016]. Clusters 0 and 8 provide an even more valuable insight when studying the genes IFNG, STAT1, CCR5, CXCL9, CXCL10, CXCL11, IDO1, PRF1, GZMA, MHCII and HLA-DRA highlighted in [START_REF] Ayers | IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade[END_REF] for their major role in immunotherapy. Indeed, for each tumor type in cluster 0 all or most of these genes are differentially expressed which is not the case for cluster 8, so proving the specificity and clinical relevance of the separation of these clusters.

On a second level, we analyzed the distribution of the BRCA cancer samples on different clusters, examining its clinical relevance. We chose to highlight BRCA in this comparison, as it is the most represented tumor type and it presents a variety of subtypes. BRCA samples are distributed into clusters 1, 2, 3, 6, 8 and 9 using the LP-Stability signature, featuring the main molecular subtypes of BRCA. In particular, cluster 1 contains immune inflammatory samples, cluster 2 basal samples and cluster 6 the luminal Estrogen-Receptor Positive samples. Additionally cluster 3 is a gynecologic cluster with BRCA samples presenting relations to OV samples. Cluster 8 features mis-plicing related tumors which are strongly related to BRCA samples [START_REF] Koedoot | Splicing regulatory factors in breast cancer hallmarks and disease progression[END_REF]. Cluster 9 is marked by alternative splicing whose implications in cancers are well known and studied [START_REF] Singh | [END_REF]. It is also interesting to report that hallmarks genes BRCA1 and BRCA2 are positively and differentially expressed in luminal BRCA cluster 6 which attests of an over-expression of these genes for cluster 6. This observation is consistent with [START_REF][END_REF], where BRCA1 and BRCA2 were more expressed in luminal BRCA samples as they are markers for good prognosis. Besides, these genes present an under-expression in cluster 3 which is coherent as this mixed cluster groups BRCA and OV samples that are known to present a bad prognosis.

For comparison, we performed the same analysis with the sample clustering produced by the K-Means algorithm with the 30 genes. In this case, cluster 0 which is a well defined cluster containing mainly BRCA samples, presents enrichment in diverse biological processes as regulation of transcription by RNA polymerase II, regulation of nucleobase-containing compound metabolic process or regulation of gene expression. The most significant gene C10orf32 has not been identified as a gene related to cancer. However, it is more related to the lysosomes movement process. Cluster 1 seems to be very intermixed with different biological processes being enriched. For the BRCA samples different skin related pathways especially keratin are enriched, which are important for several types of cancers. The most significant gene for BRCA samples PKP1 is related to molecular recruitment. However, different processes for other tumor types are also enriched. In particular, for the LUSC samples do not present any significant gene with high enough score. The one with the highest score is ANKRD13B which is related to membrane binding processes. HNSC samples are enriched in general RNA metabolic processes and DNA-binding. Their most significant gene, CADPS2, is involved in calcium binding especially important in autism. BLCA samples have no genes with scores above the considered threshold. The most significant gene is FOXC1 which is involved in DNA-binding and has been shown of utmost interest in several type of cancers. CESC type do not have any significant gene with TRIM8 being the one with the highest score. This gene seems to be related to Interferon gamma signaling and Innate Immune System. Its regulation has been shown to be altered in some cancers. After this analysis, it appears that this cluster contains rather heterogeneous samples without common biological processes even if several are linked to cancer. Besides, the biological relevance of the cluster is not very clear as we can observe very few significant genes per tumor type. Cluster 2 groups GBM and BRCA samples. It presents for the BRCA ones an enrichment in voltage-gated calcium channel activity only. This biological pathway has been identified as a new target for BRCA in [START_REF] Koltai | Clusterin: a key player in cancer chemoresistance and its inhibition[END_REF]. The most enriched gene is CACNB2 which is an antigene involved in voltage-gated calcium channel. A study for the GBM samples cannot be performed as all the GBM samples are in this cluster. Regarding cluster 3, LUSC samples present enrichment in cilium activity and surfactant homeostasis. Their most significant gene ARRB1 programs a desensitization to stimuli. It seems to be of interest for the chemosensitivity of lung cancer. For the LUAD samples in this cluster, the only significant gene NKX2-1 is a thyroid-specific gene also involved in morphogenesis. It has been found to be a prognostic marker in early stage nonsmall lung cancers. Cluster 4 consists mainly of BRCA samples which are enriched in processes of immune response. However, the most significant gene ACTR3 code for a complex essential for cell shape and motility which is not related to immune response. Cluster 4 seems quite heterogeneous concerning the processes and the significant genes. In particular, the HNSC samples are related to extra-cellular organization. Their most significant gene KLF17 is related to DNA-binding transcription that is involved in epithelial-mesenchymal transition and metastasis in breast cancer. READ samples do not have significant genes, the one with the highest score is the GRM2 which is particularly involved in neurotransmission and central nervous diseases. For the OV samples the only significant gene is the SPHK1 which regulates cell proliferation and cell survival. It has been linked to ovarian cancer in [Hart, 2019]. LUAD samples present few significant genes which do not enrich any biological process. The most significant gene, UCA1, plays a role in cell proliferation and has been proven to be of interest in bladder cancer. Clus-ter 5 groups the entire LIHC tumor type. Thus, a gene screening analysis is so not possible. For the cluster 6, LUSC samples have very few significant genes. The enriched processes that are associated with are related to tissue development, Estrogen signaling and mammary gland morphogenesis. Its most significant gene is FRRS1 which is related to ferric-chelate reductase activity. Thus, this homogeneous cluster does not seem to contain a biological meaningful subset of LUSC samples. Cluster 7 groups BLCA, BRCA, CESC, LUSC and READ samples. OV samples present very few significant genes without enriched biological processes. BLCA samples present significant genes related to transcription and the most significant gene, C17orf28, is related to several cancers. BRCA samples have very few significant genes and are weakly enriched in mitosis processes as there are only two enriched processes. The most significant gene FSD1 is related to coiled-coil region. CESC samples are enriched in cilium organization, cell projection assembly and the most significant gene is EPCAM which is related to gastrointestinal carcinoma and is a target of immunotherapy. So, it does not present links with CESC or other carcinomas of the cluster. It seems that these CESC samples would have been more suitable for cluster 3 since LUSC samples of this cluster are strongly enriched in the same pathways. Finally, READ samples do not present significant enough genes. However, the most significant one is EFNB2 which is involved in several development processes and in particular in the nervous system and in erythropoiesis. This gene has also been found of interest in tumor growth. For cluster 8, LUSC samples have numerous significant genes enriched in epidermis related processes and skin development pathways and in particular the most significant gene KRT14 is related to these processes. This might be related to a subset of non-small cell lung cancers characterized by Epidermal growth factor receptor (EGFR) mutations. Similarly, HNSC samples of cluster 8 are also linked to keratin, epidermis and skin development processes which also characterize a subtype of HNSC. The most significant gene lad1 is related to structural molecule activity and codes for a protein involved in the basement membrane zone. We found the same pathways for CESC samples whose most significant gene is KRT5 and BLCA samples with KRT6A. Cluster 9 mainly contains OV samples which do not present gene significant enough. However, their most significant gene CLU has been identified as a potential cancer target in [START_REF] Nhut Phan | Voltage-gated calcium channels: Novel targets for cancer therapy[END_REF].

After the analysis, we observed that the K-Means signature seems to be very specific for the BRCA tumors while reporting weaker relevance in the separation of other samples. Indeed, we can observe that the separation of BRCA samples is rather meaningful as in each cluster BRCA samples present rather relevant differentially expressed genes and enriched biological processes. However, the clusters are lacking homogeneity as the different tumor types of the clusters present unrelated differentially expressed genes and enriched biological processes. Besides, K-Means signature fails to properly characterize other tumor types. This issue might be explained by the over-representation of BRCA samples in our data set.

Additionally, in order to indicate the significance of the distance used we considered different distances to perform the sample clustering. Our experiments confirmed that the distance that Table 4.5: Expression Power of the sample clustering using as features respectively our proposed signature, a referential signature from literature [Thorsson, 2018] and average performance using 10 sets of randomly-selected genes of same size as the proposed signature. We observe that the two best performing signatures are the ones produced with our pipeline. The first using K-Means clustering the second, our proposed signature, using LP-Stability. gave the best biologically relevant clusters was Spearman's correlation-based distance. Moreover, after the screening analysis we observed that the differentially expressed genes are not necessarily the genes selected in the signatures. This observation indicates that the strength of our approach is to combine genes that might not be the most informative taken individually but whose combination allows a good compact representation of the information brought by the whole genome for cancer tumors. It is also worth mentioning that LP-Stability signature correctly separates immune inflammatory samples from the others for all tumor types.

Expression Power

The expression power of our signature was further evaluated using the ARI, NMI, homogeneity, completeness and FMS metrics and compared with the rest of the signatures. We called the average of those scores the Expression Power of the signature and report it in Fig. 4.9. Detailed results for each score are provided in Table 4.5. For Random Clustering, we calculated the metrics on the average results of sample clustering designed from 10 random signatures. Overall the performances of K-Means and LP-Stability are the best with the first outperforming the second. Good performance of K-Means could be due to the good separation of BRCA clusters, the dominant tumor type in our dataset.

Tumor Types/Subtypes Classification Tasks

The predictive power of our proposed signature has been assessed in a supervised setting by classifying the samples according to their tumor and sub-tumor types. This experiment aims to evaluate the tissue-specific information captured by each signature. In Table 4.6, we report the performance on training and test for each signature using the same classification strategy. Our experiments highlight that even random signatures with the relatively small number of 27 genes reports good performance with a balanced accuracy of 84%. This proves that even a low number of genes are informative enough to perform a good separation of tumor types. However, our proposed signature reports the highest balanced accuracy reaching 92% outperforming the
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Table 4.6: Tumor Types Classification performance using the average performance of 10 sets of randomly-selected genes of same size as the proposed signature, CorEx, K-Means, the referential [Thorsson, 2018] Table 4.7: Tumor Subtypes Classification performance using the average performance using 10 sets of randomly-selected genes of same size as the proposed signature, CorEx, K-Means, the referential [Thorsson, 2018] referential signature [Thorsson, 2018] which reached a balanced accuracy of 85%.

Regarding tumor subtypes classification, results averaged over all considered tumor types are provided in Table 4.7. Our proposed method presents the highest performance with a balanced accuracy of 68%, outperforming the other algorithms by at least 9%. This task is quite challenging as we are using the same compact signature to characterize all the different tumor types at a fine molecular level. Considering the complexity of the task and the important number of different classes, results obtained with the proposed signature are very promising. Indeed, it is surpassing the random signatures average balanced accuracy by 11% and the referential signature, devised on this specific dataset, by 9%.

Global Comparison

In order to better summarize the different results and provide a fair comparison with random, the state of the art and the referential signatures a spider chart is presented in Fig. 4.9. The comparison focuses in 3 different criteria: (i) criteria based on the gene clustering performance in blue, (ii) criteria based on the informativeness of the signature for unsupervised clustering tasks in green and (iii) criteria based on the relevance of the signature for supervised classification tasks in gold. Discovery Power is the proportion of tumor types that are relevantly grouped in sample clustering according to related tumor types, the criteria of evaluation are presented in 4.2. Decreasing Time Complexity is the average time taken for the gene clustering, the bigger the area in the chart the faster, results are provided in Table 4.2. Our proposed signature is shown to be largely superior by at least 10% to random and referential signatures in all criteria except compactness. It is also superior to the other signatures designed using our pipeline with other prominent clustering methods. One interesting exception is the Tumor-Specific Expression Power of K-Means-derived signature. The signature defined with K-Means differentiates the types of tumor well as also proved by the Predictive Power: Types but does not perform well on identifying the subtypes (Predictive Power: Subtypes). This is also due to the lower Discovery Power of K-Means compared to our proposed signature.

Conclusions

In this chapter, we present a framework for gene clustering definition and comparison, for gene signature selection and evaluation in terms of redundancy, compactness and expression power. In particular, we present a mathematical and biological evaluation of gene clustering, an extensive sample clustering evaluation using quantitative and field specific clinical, biological metrics, and a supervised approach for its association with tumor types and subtypes characterization. In this framework we have shown the interest of using LP-Stability algorithm, a powerful centerbased clustering algorithm, for gene clustering. The algorithm surpasses other commonly used methods in terms of computational time, quantitative and qualitative metrics. Notwithstading, the modularity of this framework enables to modify the clustering algorithms, distance metrics and assessment scores considered according to the valued properties and problem at hand.

Our experiments prove the importance of stability to define meaningful clusters and the superiority of correlation-based distances. Moreover, the obtained clusters formulate a gene signature which has been evaluated for ten different tumor locations, proving causality and strong associations with tumor phenotypes. These results compete with those reported in the literature by using a large set of different omics data. In addition, our compact signature has been compared and proved to be more expressive than a prominent knowledge-based gene signature [Thorsson, 2018]. An extensive biological analysis evidenced that the designed signature, leads to sample clusters with high relevance and correlation to cancer-related processes and immune response reporting promising results in tumor types and subtypes classification with 92% balanced accuracy in the former and 68% balanced accuracy in the latter. In the future, we aim to extend the proposed method towards discovering stronger gene dependencies through higher-order relations between gene expression data, as well as further evaluation of this biomarker for therapeutic treatment selection in the context of cancer.

Exploring and identifying a good feature representation to describe large-scale datasets is one of the main problems of machine learning algorithms. However, plenty of feature selection techniques and distance metrics with very different properties exist, which entails an intricacy of identifying the proper method. This paper provides a general algorithm to design a high-order distance metric over a sparse selection of features dedicated to semi-supervised clustering and classification. We extend usual learning methods to design a metric accounting for properties over sets of objects. Our approach is based on Conditional Random Field energy minimization

Introduction

In machine learning, the choice of a suitable feature space is of prime importance. Not only, dimensionality curse might affect the data, but some variables might be noisy or non-relevant. Many techniques have been investigated to select the most relevant features using some statistical metrics as correlation [Yu, 2003] or the importance weights an algorithm as elastic-net grants to the variables [Sun, 2018]. Despite the tremendous amount of work carried on this topic, another aspect has been poorly considered. Many approaches as clustering algorithms require a relevant metric to define a similarity notion between the samples. However, depending on the algorithm's mathematical properties and the metric, very different results are obtained [START_REF] Battistella | [END_REF]. To tackle the difficult task of designing a dedicated similarity function, some studies investigated semi-supervised clustering or distance learning [Xing, 2002;[START_REF] Xiang | [END_REF][START_REF] Komodakis | Learning to cluster using high order graphical models with latent variables[END_REF]. Such approaches bring the significant advantage to perform both a selection of the most relevant dimensions and a warping of the feature space favoring the spatial proximity of samples presenting the same labels.

Graph structures are a standard model for data representation and allow great expressiveness. However, the information they carry is complex to leverage from both a time and a memory point of view. Most of the studies exploiting these structures are limited to second-order properties [Schaeffer, 2007] i.e., the edges in the graph. Some studies propose various ways to better estimate higher-order properties. However, they mainly focus on local properties [Yin, 2017] or small pattern-based analysis [Benson, 2016]. Additionally, some studies attempt to design methods to avoid resorting to higher-order structure surrogates involving simplification information loss [Grover, 2016]. Nevertheless, in exploratory studies as [START_REF] Lambiotte | [END_REF], many different and complex higher-order graph properties are leveraged as the connectivity or the centrality of the nodes or their clique order.

Graph attractiveness is explained by the valuable information they carry in many application fields. They have already significantly spread for biological and medical data and allows to combine interactions [Vermeulen, 2020]. Some of the prominent investigation areas are genomics and proteomics [Szklarczyk, 2016]. Their use for imaging data has been demonstrated in, for instance, graph matching problems [Lê-Huu, 2017;Torresani, 2008]. Nowadays, they are gaining increasing importance with Graph Convolutional Networks [START_REF] Xu | [END_REF].

This study proposes a new approach to bridge the gap between feature selection, distance learning, and leveraging higher-order structures. The rest of the chapter is structured as follows. In section 5.2 we position our work compared to existing studies. In section 5.3 we present in detail the method we based our general framework on, our problem formulation and resolution algorithm, how we leverage higher-order graph information and perform classification using the Classification dedicated distance we learn. In section 5.5, we present the different datasets we considered and the results obtained compared to classical classification baselines.

Related Work

Our study is based on the work of [START_REF] Komodakis | Learning to cluster using high order graphical models with latent variables[END_REF] which has the tremendous advantage of allowing a very general definition of distance, allowing both feature and metric selection, and weighting. Besides, it is designed for a center-based clustering algorithm, which presents the advantage of defining a relevant cluster representative which exciting properties have been demonstrated for feature selection in the previous chapter. This clustering paradigm is the critical point in our approach for exploiting higher-order graph structures in a reasonable computational time and space.

The idea of investigating clustering guided by field experts properties has been poorly studied in the literature. Notwithstanding, we can observe two main trends. First, the semi-supervised approach considers partial annotations in the clustering process. Following this paradigm, the method from [START_REF] Yu | [END_REF] or [Wagstaff, 2000] account for information of samples which must or cannot be clustered together to influence the clustering using domain-related knowledge. This approach might be further generalized to constraints on conjunctions and disjunctions of instances [START_REF][END_REF]. Second, the most prominent approach, metric learning, aims to learn a measure to discover specific information thanks to a supervised framework. It offers the ability to identify structures similar to a given ground-truth. This paradigm involves a completely annotated dataset at the difference of the semi-supervised approach. However, once the metric learned, its strength dwells in its ability to be applied without the need of any additional label. Besides, many studies demonstrated the essential role of the distance measure considered for clustering [START_REF] Xiang | [END_REF], even more prominent than the choice of a correct clustering algorithm. The distance notion has to capture the required information to enable any algorithm to achieve a correct clustering of the data. Following this precept, several studies considered the arduous task of metric learning from different perspectives. In [START_REF] Marc T Law | Deep spectral clustering learning[END_REF], the authors leverage a deep learning architecture to define a space representation allowing to define a better similarity notion between instances while authors from [START_REF] Finley | [END_REF] resort to a Support Vector Machine algorithm. In [Xing, 2002] constraints are defined to formulate the metric-learning task as a convex optimization problem. Here, we will consider more in detail the formulation proposed in [START_REF] Komodakis | Learning to cluster using high order graphical models with latent variables[END_REF] which relies on the Conditional Random Field (CRF) energy minimization principle to specify a metric in a center-based clustering context. This model is all the more interesting than the relevance of center-based techniques as been demonstrated in the previous chapter for feature selection and classification purposes.

Despite the excellent expressiveness of CRF and their ability to capture higher-order relations, the toll for fully leveraging this higher-order information might be heavy on memory and time consumption aspects. To cope with this issue, authors from [Fix, 2011;Ishikawa, 2010] proposed to exploit the binary nature of the CRF labels to optimize the resolution. Finally, in [Komodakis, 2014], dual decomposition is exploited to divide the initial energy to minimize in several easierto-solve sub-problems.

To naturally leverage higher-order information for clustering, some first attempts investigated the presence of simple patterns in a graph [Yin, 2017]. Still, it is generally performed with minimal patterns as a clique of order 3 or only for a local higher-order clustering [Benson, 2016]. However, it is only surrogates incurring an information loss in the complex higher-order relations available [Grover, 2016].

In this study, we adapt and extend the formulation of metric learning presented in [START_REF] Komodakis | Learning to cluster using high order graphical models with latent variables[END_REF]. The main contribution is to bring the center-based clustering and the notion of pairwise metrics to higher-order settings through the inclusion of graph properties. In addition, we modify the error function that was considered to better account for unbalanced classes. Finally, we leverage graph structural information from our data.

Methodology

Without loss of generality, let us define a metric assessing the similarity of a set of h objects as a h th -order metric. For instance, a usual distance is referred to as a 2 nd -order metric or pairwise metric. For the simple case of pairwise metrics, we based our study on [START_REF] Komodakis | Learning to cluster using high order graphical models with latent variables[END_REF] which provides a general, flexible and efficient approach to solve the learning problem in a clustering context. This approach relies on CRF energy minimization. In this study, we extend our formulation introducing 3 rd -order to h th -order metrics for any h > 2. The case of 3 rd -order metrics will be more detailed for simplicity's sake. However, the same approach is applied to obtain the results for any order. This section first details the notations and potential formulations used to define the problem's energy. Then, we introduce the optimization problem, discussing dual decomposition and its application to the task. Finally, we present the process used to extract the higher-order information we leverage.

Center-Based Clustering

Our approach is based on center-based clustering. Considering a set of objects to cluster V, we define a set of binary variables {x p,q } p,q∈V indicating whether p is assigned to the cluster of Classification center q, x p,q = 1, or not, x p,q = 0. We consider a distance d p,q between objects p and q. min x p,q∈V d p,q x p,q s.t.

q∈V

x p,q = 1, ∀p

x p,q ≤ x q,q , x p,q ∈ {0, 1}, ∀p, q.

(5.1)

The above system minimizes the distance between a point and the center of the cluster it is assigned to with respect to three constraints. First, each point has to belong to one and only one cluster. Second, if a point is assigned to a cluster center, this center must be assigned to itself. Third, assignment variables are binary. We can cast the previous optimization problem as an equivalent energy minimization task:

E(x, d) = p,q
u p,q (x p,q , d) + p,q φ p,q (x p,q , x q,q ) + p φ p (x p ) (5.2) u p,q being the second-order potentials of the CRF standing for the distance to the cluster center and φ p , φ p,q the constraints. More precisely:

u p,q (x p,q , d) = d p,q x p,q φ p,q (x p,q , x q,q ) = δ(x p,q ≤ x q,q ) φ p (x p ) = δ( q x p,q = 1)

(5.3) with x p = {x p,q | q ∈ V } and δ(e) = 0 if e True and ∞ otherwise.

In this study, we propose a generalization of this energy formulation for clustering. Here an example in a third-order setting. In addition to the previous notations, we consider a third-order distance d p,p ,q for triplet p, p and q. E(x, d) = p,q u p,q (x p,q , d) + p,p ,q u p,p ,q (x p,q x p ,q , d) + p,q φ p,q (x p,q , d q,q ) + p φ p (x p ) (5.4) where the new function u p,p ,q being the third-order potentials of the CRF everything else remaining unchanged. More precisely: u p,p ,q (x p,q x p ,q , d) = d p,p ,q x p,q x p ,q

(5.5)

Metric Learning Formulation

Our framework learns a distance between objects using a set of K training subjects {V k , C k , y k } for each set k ∈ K, V k is the set of objects to be clustered according to ground truth C k and knowing input data y k . We are also assuming that we can get from the input data a positive feature function for each pair of objects p, q as f p,q (y k ) and for each triplet of objects p, p , q as f p,p ,q (y k ). The codomain of the feature's functions will be called meta-feature space as it is obtained from the actual features of the task and is the input space of the framework. We consider a meta-feature space of size d. One should notice that even though there is a ground truth cluster for each set, the cluster centers are still unknown. A feasible solution x k of C k denoted as x k ∈ X (C k ), will consist in a set of assignment such as for each ground truth cluster C ∈ C k all the objects p ∈ C are assigned to the same center q ∈ C. Besides, we are looking for a distance over a set S of cardinal 2 ≤| S |≤ 3 expressed as:

d k S = d k p,q if S = {p, q} d k p,p ,q otherwise (5.6)
where

d k p,q = w T f p,q (y k ), d k p,p ,q = w T f p,p ,q (y k )
For conciseness sake's, we will denote

E k (x, d) = E(x, d k ) and u k (x, d) = u(x, d k ).
w being the weight vector we want to estimate. At the difference of the formulation proposed in [START_REF] Komodakis | Learning to cluster using high order graphical models with latent variables[END_REF], we impose w i ≥ 0, ∀i ≤ d. This specificity aims to enforce the positivity of the distance obtained. Also, as it has been presented in [START_REF] Komodakis | Learning to cluster using high order graphical models with latent variables[END_REF], a projection of the weights onto R + ensures better performance in the second-order settings. We impose this constraint to improve the tractability of the higher-order distance learning resolution, as is highlighted in the proofs (Appendix A.3).

Notice that our framework is very robust and flexible as we use the same weight vector w for both the second-order and the third-order distances, which means that a component i of vectors f p,q (y k ) and f p,p ,q (y k ) have to relate to the same property. The ith component of f p,p ,q (y k ) can be a generalization of f p,q (y k ) one, but it can also stand alone, and in this case, f p,q (y k ) will be null. Similarly, a component f p,q (y k ) might not possess any relevant generalization, and in this case, f p,p ,q (y k ) will be null. For instance, a suitable third-order function f p,p ,q could have for component the perimeter or surface of the triangle {p, p , q}. With this particular example, in addition to the initial second-order warping of the space, such as we have a small distance between each object of the cluster and the center, we will also have a small distance between pairs of objects. However, much more intricate properties can be introduced. For instance, we can consider statistical distances as the Mahalanobis distance between the set of observations {p, p } and q, which is designed to estimate if the object q is a natural center for the set {p, p } regarding mean and variance considerations. We will present in section 5.3.9, possible higher-order feature functions definition on graph structures. Classification A Max-Margin approach is considered to approximate w. We are looking for x k ∈ X (C k ) whose energy E k (x k , d) is smaller than the energy of any other solution x by an error function ∆(x, d) to be defined, i.e.

∃x k ∈ X (C k ), E k (x k , d) ≤ E k (x, d) -∆(x, d) + ξ k (5.7)
where slack variable ξ k is considered in case of infeasible training sets. Adding this constraint to the previous energy minimization problem gives the regularized loss:

min {x k ∈X (C k )} τ J(w) + k L E k (5.8)
where J(w) is a regularization term penalizing w complexity, while the hinge loss L E k includes ξ k and is expressed as:

L E k (x k , w) = E k (x k , w) -min x (E k (x, w) -∆(x, C k )) (5.9)
It favors feasible solutions with energy close to the minimal energy for any possible assignment penalized by the error function according to the violated constraints.

Max-Margin Energy

The good choice of ∆(x, C k ) is essential to obtain a relevant w. In particular, we need this error function to be 0 if x ∈ X (C k ) and to have a value representing on what extent x violates the constraints imposed by the ground truth X (C k ). We adapt the error function proposed in [START_REF] Komodakis | Learning to cluster using high order graphical models with latent variables[END_REF] to better account for unbalanced classes. We consider the training set k with cluster ground truth C k the function:

∆(x, C k ) = α C∈C k W (1 - q∈C x q,q ) + β C∈C k 1 | C | p∈C (1 - q∈C x p,q ) (5.10) with W (z) = |z|([z < 0].(| V k | -| C |) + [z > 0]. | C |), [.]
being the indicator function. The first term penalizes solutions x k presenting no or several exemplars for a ground truth cluster C ∈ C k . We put an additional penalty on the sizable clusters presenting no exemplar or the small clusters presenting several exemplars. The second term penalizes the solutions that do not assign for an object of a ground truth cluster C ∈ C k an exemplar from C. We added a weight inversely proportional to the cluster's size to balance the importance of small clusters in the learning process. The learning constants α and β are characterizing the relative importance of the two terms. The regularized loss defined in equation 5.8 can be expressed as a new CRF energy Ēk = E k -∆:

Ēk (x, w) = p,q ūk p,q (x p,q ) + p,p ,q ūk p,p ,q (x p,q x p ,q ) + p,q φp,q (x p,q ) + p φp (x p ) + 5.11) with:

C∈C k φC (x C ) -β|C k | ( 
ūk p,q (x p,q ) = u k p,q (x p,q , d) + β[∃C ∈ C k , p, q ∈ C] x k p,q
| C | ūk p,p ,q (x p,q x p ,q ) = u k p,p ,q (x p,q x p ,q , d) φp,q (x p,q ) = φ p,q (x p,q , x q,q ) φp (

x p ) = φ p (x p ) φC (x C ) = -αW (1 - q∈C x q,q ) (5.12) It is interesting to notice that thanks to the property of ∆, ∀x k ∈ X (C k ), Ēk (x k , w) = E k (x k , w).

Optimizing over {x k }

For a fixed w, minimizing Ēk (x k , w) requires the constraints to be satisfied, φp (x k p ) = 0 and φp,q (x k p,q ) = 0, which entails x k ∈ X (C k ). And, in this case, ∆(x, C k ) = 0. Thus,

x k = arg min x∈X (C k ) ( p,p ,q
d p,p ,q x p,q x p ,q + p,q d p,q x p,q ) (5.13)

To minimize this problem, we only need to find the set Q k of exemplars q minimizing the above function per cluster in C k and then assign each point of the cluster to its exemplar. In this case, the constraints will be satisfied as we ensure each cluster to have one and only one center and assign all cluster samples to this center.

Dual Decomposition

Dual decomposition is a widespread approach used to reduce an intractable problem to smaller, easier ones, the sum of which is equivalent to the initial task to solve (please refer to Section 2.4.2 for a formal definition). Here, for each k < K, we define a slave problem per datapoint p ∈ V k , Classification Ēk p , and one per cluster C ∈ C k , Ēk C .

Ēk p (x, w) = q =p ūk p,q (x p,q ) + p ,q =p ūk p,p ,q (x p,q x p ,q ) + q φp,q (x p,q ) + φp (

x p ) - β | V k | + q ( 1 | V k | +1 (ū k p,q (x k q,q ) + p ūk q,p ,q (x k q,q x k p ,q )) + λ p,q x q,q ) Ēk C (x, w) = φC (x C ) + q ( 1 | V k | +1
(ū k p,q (x k q,q ) + p ūk q,p ,q (x k q,q x k p ,q )) + λ Cq x q,q )

(5.14)

where the Lagrangian variables λ = {{λ p,q }, {λ Cq }} are used to ensure the consistency of the solution. We impose the satisfaction of: w). Thus, finally, the loss function to be minimized is:

λ ∈ Λ k = {λ : p∈S k λ p,q + λ Cq = 0, ∀C ∈ C k , q ∈ C}. Therefore, by design, Ēk (x k , w) = p Ēk p (x, w) + C Ēk C (x,
min {x k ∈X (C k )},w,{λ k ∈Λ k } τ J(w) + k p∈V k L Ēk p + k C∈C k L Ēk C
(5.15)

Slave Problems Optimization

To optimize w, we first need to solve the slave problems by leveraging their specific structures. An essential characteristic to notice is that, for fixed {x k }, the slaves energy can be related to CRF energies. Details of all the proofs and computation steps are provided in Appendix A.3.

Optimizing over {x k,p }

Regarding the point-wise subproblems, we proceed as follows. The solution in pairwise settings has been demonstrated in [START_REF] Komodakis | Learning to cluster using high order graphical models with latent variables[END_REF]. In the following lemma, we generalize the solution that was proposed to a third-order context as: Lemma 1 For fixed p ∈ V k , let θ k q = ūk q,q (1) + ūk q,q,q (1) |V | k + 1 + λ p,q and θk q = [θ k q ] + + ūk p,q (1) + ūk p,q,q (1) + ūk p,p,q (1) where [z] + = max(0, z). minimizer xp of Ēk p (x, w, λ k ) is given by xp q,q =[θ k q < 0] xp p,q =[q = q] where q = arg min q ( θk q )

(5.16)

Optimizing over {x k,C } Regarding the cluster-wise subproblems, we proceed as follows. The solution in pairwise settings has been demonstrated in [START_REF] Komodakis | Learning to cluster using high order graphical models with latent variables[END_REF]. We can notice that our formulation of the cluster-wise subproblem presents a high similarity with the original formulation, and the only difference for the optimization is in θ k q expression: Lemma 2 For fixed C ∈ C k , let θ k q = ūk q,q (1) + ūk q,q,q (1)

| V k | +1 + λ Cq , ∀q ∈ C. A minimizer xC of Ēk C (x, w, λ k ) is given by ∀q ∈ C, xC q,q = [θ k q < α(| V k | -|C k |)], if q ∈C [θ k q -α(| V k | -|C k |)] -+ α | V k |< 0 0 otherwise (5.17) with [z] -= min(0, z).

Optimizing over λ and w

To optimize over λ and w, we perform an iterative projected subgradient approach:

w ←-w -s t δ w , λ k ←-proj Λ k (λ k -s t δ λ k ) (5.18)
with {δ w } and {δ λ k } subgradient functions and proj Λ k the projection onto Λ k . Then, the following lemma gives the updates to be applied iteratively to efficiently obtain the approximation of w and {λ k p,q , λ k Cq }. The updates are obtained by summing the respective updates of each subproblem according to the formula provided in equation 5.15. Lemma 3 Let s t be the weight granted to the optimization at step t. We define Xk q = xk,C q,q + p xk,p q,q and Xk p,q = xk,p q,q xk,p p,q + xk,C q,q [p = q, q ∈ C]. Then, update reduces to:

w -=s t (τ ∇J(w) + k δ k w ) λ k p,q -=s t ( Xk q | V k | +1 -xk,p q,q ) λ k p,q -=s t ( Xk q | V k | +1 -xk,C q,q ) (5.19)
where

δ k w = p,p ,q∈V k x k p,q x k p q f k p,p ,q + p,q∈V k x k p,q f k p,q -( p,q =p∈V k (x k,p p,q xk,p q,q f k p,q,q + xk,p p,q f k p,p,q )+ p,q =p∈V k xk,p p,q f k p,q + q∈V k 1 | V k | +1 ( Xk q f k q,q + p∈V k Xk p,q f k q,p,q ))
(5.20)

Note that ∇J(w) has to refer to a subgradient if J is non-differentiable. Besides, a constraint can be imposed over w by applying a projection during w update.

w ←-proj W (w -s t δ w ) (5.21) where W can be any convex set of constraints included in R + . For instance, to mimic a true Classification distance and satisfy the positivity constraint over w with proj W (z) = max(z, 0). It will also enforce an additional sparsity on the weight vector. Notice that at least a positivity constraint has to be imposed. We summarize the complete learning process in Algorithm 3.

Algorithm 3: Learning Process To improve the tractability of the approach we leveraged a stochastic gradient descent (sgd) framework. It consists in randomly selecting a subset of the training samples at each iteration and performing the updates by relying only on those samples.

Data: training cohorts {V k , C k , y k }, features functions {f 2 p,q (y k ), f 3 p,p ,q (y k )} 1 λ k ← 0, ∀k 2 do 3 Optimize x k : ∀C ∈ C k , q c = arg min q∈C ( p,p ∈C d p,p ,q x p,q x p q + p∈C d p,q x p,q ); 4 x k p,q = 1, p ∈ C ⇐⇒ q = q C ;

Generalization to Higher-Order Distances

Our approach's strength is its ability to be efficiently generalized to any order. Let h ≥ 2 be the order of the distance we are looking for. h corresponds to the maximal set size we will consider in our metric definition. Our target metric considers any set S of size | S |≤ h and is defined as:

d S = w T f {p} p∈S (y) (5.22)
where f {p} p∈S is a positive feature function providing a closeness score on set S. This metric aims to establish a characterization of the meaningfulness to group samples in S altogether. In this case, we consider the energy defined as:

E(x, d) k = l∈[0,h-2] p,p1,...,p l ,q
u k p,p1,...,p l ,q (x p,q i∈ [1,l] x pi,q , d) + p,q φ p,q (x p,q , x q,q )

+ p φ p (x p ) + C φ C (x C ) -β|C k |
(5.23)
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We now consider the higher order potential of order l < h-2, u p,p1,...,p l ,q ( i∈ [1,l] x pi,q , d) focusing on establishing the cost of assigning p, p 1 , ..., p l to q. The potentials definitions are: u k p,p1,...,p l ,q (x p,q i∈ [1,l] x pi,q , d) = d k p,p1,...,p l ,q x p,q i∈ [1,l] x pi,q

d k p, i∈[1,l] pi x p,q i∈[1,l]
x pi,q = w T f p,p1,...,p l ,q (y k ) φ p,q (x p,q , x q,q ) = δ(x p,q ≤ x q,q ) φ p (x p ) = δ( q x p,q = 1)

(5.24)

First, regarding the optimization over {x k } for a fixed vector w. As previously, the satisfaction of the constraints induces:

x k = arg min x∈X (C k ) ( l∈[0,h-2] p,p1,...,p l ,q d k p,p1,...,p l ,q x p,q i∈[1,l]
x pi,q ) (5.25)

And, again, this problem's minimization only requires the set Q k of exemplars q minimizing the above function per cluster in C k . Then, we assign each point of the cluster to its exemplar. In this case, the constraints will be satisfied as we ensure each cluster to have one and only one center and assign all cluster samples to this center.

As before, for each k < K, we define a slave problem per datapoint p ∈ V k , Ēk p , and one per cluster

C ∈ C k , Ēk C . Ēk p (x, w) = l∈[0,h-2] p1,.
..,p l ,q =p u k p,p1,...,p l ,q (x p,q i∈ [1,l] x pi,q , d) + q φp,q (x p,q ) + φp (x p ) -

β | V k | + q ( 1 | V k | +1 ( l∈[0,h-2] p1,...,p l u k q,p1,...,p l ,q (x q,q i∈[1,l] x pi,q , d)) + λ p,q x q,q ) Ēk C (x, w) = φC (x C ) + q ( 1 | V k | +1 ( l∈[0,h-2] p1,...,p l u k q,p1,...,p l ,q (x q,q i∈[1,l]
x pi,q , d) + λ Cq x q,q )

(5.26)

where the Lagrangian variables λ = {{λ p,q }, {λ Cq }} are used to ensure the consistency of the solution. We impose the satisfaction of: w). Thus, finally, the lost function to be minimized is: Regarding the point-wise subproblems, we proceed as follows. In the following lemma, we generalize the solution that was proposed to a general order setting as:

λ ∈ Λ k = {λ : p∈S k λ p,q + λ Cq = 0, ∀C ∈ C k , q ∈ C}. Therefore, by design, Ēk (x k , w) = p Ēk p (x, w) + C Ēk C (x,
min {x k ∈X (C k )},w,{λ k ∈Λ k } τ J(w) + k p∈V k L Ēk p + k C∈C k L Ēk C ( 5 
Lemma 4 For fixed p ∈ V k , let θ k q = l∈[0,h-2] u k q,...,q (1) |V | k + 1 + λ k p,q and θk q = [θ k q ] + + l∈[0,h-2] p1,.
..,p l ∈{p,q} u k p,p1,...,p l ,q where [z] + = max(0, z). minimizer xp of Ēk p (x, w, λ k ) is given by xk,p q,q =[θ k q < 0] xk,p p,q =[q = q] where q = arg min q ( θk q )

(5.28)

Optimizing over {x k,C } Regarding the cluster-wise subproblems, The optimization is provided by the following lemma:

Lemma 5 For fixed C ∈ C k , let θ k q = l∈[0,h-2] u k q,...,q (1) | V k | +1 + λ k Cq , ∀q ∈ C. A minimizer xk,C of Ēk C (x, w, λ k ) is given by ∀q ∈ C, xk,C q,q = [θ k q < α(| V k | -|C k |)], if q ∈C [θ k q -α(| V k | -|C k |)] -+ α | V k |< 0 0 otherwise (5.29) with [z] -= min(0, z).
Optimizing over λ and w Lemma 6 Let s t be the weight granted to the optimization at step t. We define Xk q = xk,C q,q + p xk,p q,q and Xk p,

i∈[1,l] pi,q = xk,p q,q i∈[1,l] xk,p piq + xk,Cq q,q [p i = q, ∀i ∈ [1, l]].
Then, the updates reduce to:

w -=s t (τ ∇J(w) + k δ k w ) λ k p,q -=s t ( Xk q | V k | +1 -xk,p q,q ) λ k Cq -=s t ( Xk q | V k | +1 -xk,C q,q )
(5.30)
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where

δ k w = l∈[0,h-2] p,p1,...,p l ,q∈V k f p,p1,...,p l ,q (x k p,q i∈[1,l]
x k pi,q , d)-

q∈V k ( Xk q f k q,q + l∈[0,h-2] ( p =q∈V k p1,...,p l ,pi∈{p,q}∀i∈[1,l] xk,p p,q xk,p q,q f k p,p1,...,p l ,q + 1 | V k | +1 p∈V k p1,...,p l ∈{p,q}∀i∈[1,l] Xk p, i∈[1,l] pi,q f k q, i∈[1,l] pi,q ))
(5.31)

Extension to Cluster Metrics

A final interesting addition we can bring to our higher-order distance learning framework is to consider a metric between a sample and a ground truth cluster. The difference between this particular setting and the previous higher-order metrics is that here we will consider a metric able to tackle sets of objects of different sizes (the size of the clusters) and thus will not have a defined order. The interest for such a distance is to benefit from a structural metric characterizing the closeness between a sample and a given cluster. It will be especially valuable during inference to identify the fittest cluster for a sample.

We formulate this new problem by adding to the higher-order distance defined in the previous section a term w T f p,C (y k ) for any p ∈ V k and any C ∈ C k . Then, from the previously defined energy E(x, d) k we will define our new energy

E k * (x, d) = E k (x, d) + p∈V k C∈C k w T f p,C (y k ) q∈C x p,q
where we penalize the assignment of a sample p to a center q by the distance between the sample and the center's cluster according to given cluster-wise feature functions. First, regarding the optimization over {x k } for a fixed vector w. As previously, the satisfaction of the constraints induces to find the cluster centers q minimizing for its cluster C:

q = arg min q∈C ( l∈[0,h-2] p,p1,...,p l ,p∈C,pi∈C∀i∈[1,l] d k p,p1,...,p l ,q x p,q i∈[1,l]
x pi,q + p∈C w T f p,C (y k )x p,q )

(5.32)

x k is inferred by assigning each sample of a cluster to the cluster center. Then, we modify the cluster-wise slave problems of the dual decomposition as follows:

Ēk * C (x, w) = Ēk C (x, w) + p∈V k w T f p,C (y k ) q∈C x p,q + 1 2(| V k | +1) w T f q,C (y k ) q∈C x q,q (5.33)
with Ēk C (x, w) the energy defined as in equation 5.26. Therefore, the cluster-wise slave resolution is now: 

∈ C k . Let θ k * q = l∈[0,h-2] u k q,...,q (1) + f q,C (y k ) | V k | +1 + λ k * Cq , ∀q ∈ V k . A minimizer xk,C * of Ēk k,C * (x, w, λ k * ) is given by: ∀q ∈ C, xk,C * q,q = [θ k * q < α(| V k | -|C k |)], if q ∈C [θ k * q -α(| V k | -|C k |)] -+ α | V k |< 0 0 otherwise (5.34)
Then, the updates are defined as: Lemma 8 Let s t be the weight granted to the optimization at step t. We consider Xk q and Xk p, i∈ [1,l] pi,q as defined in lemma 6.

w * -=s t (τ ∇J(w) + k δ k * w ) λ k * p,q -=s t ( Xk q | V k | +1 -xk,p q,q ) λ k * Cq -=s t ( Xk q | V k | +1 -xk,C * q,q ) (5.35)
where

δ k * w =δ k w + p∈V k C∈C k f p,C (y k ) q∈C x k * p,q - p∈V k C∈C k f p,C (y k ) q∈C (x k,C * p,q + x k,p p,q )+ ( Xk q | V k | +1 q =p∈C (x k,C * p,q + x k,p p,q ))
(5.36)

Extracting and Leveraging Structural Information from Data

Several approaches exist in order to design a graph structure on data set with no natural graph representation. Here, we relied on a distance matrix between objects computed as the sum over all the different feature functions used in the distance learning. Then, a k-nearest neighbors approach was computed, meaning that there is an edge between two objects p and q iff p (resp. or q) is in the k objects the closest of q (resp. or p).

Once a graph structure obtained, we studied different ways of leveraging their properties. Our first, most simple, approach is considering the shortest path S p,q between objects p and q in the graph. The distance between those objects will then be the weighted length L p,q of such a path. The generalization of this method for a set of objects {p 1 , ..., p l } and a potential center q is defined as follows:

SP l (p 1 , ..., p l ) = i∈{1,...,l} j∈{i+1,...,l} L pi,q + L pj ,q L pi,pj
The interpretation of this graph metric is that the center of a cluster q has to be a hub for the objects of its cluster i.e. the ratio between the shortest path and the shortest path passing by q has to be small for any pair of objects in the cluster.

Similarly, we considered the eccentricity of a set of objects {p 1 , ..., p l } as a l-order graph metric. We deem a set of objects has to have a small maximal weighted graph diameter to belong to the same cluster.

Then, we considered two connectivity related metrics. The first one is based on the clique order of a set of objects CO(p 1 , ..., p l ) and is defined as max_degree(G) -CO(p 1 , ..., p l ) with max_degree(G) the maximal degree of a node in the whole graph. By doing so we consider that the bigger the clique order in the set of objects the more relevant their association in a cluster.

The second metric is based on the connectivity resilience CR(p 1 , ..., p l ) which is the minimal number of nodes to remove to disconnect the set of objects. The metric is defined as l -CR(p 1 , ..., p l ).

Leveraging a Task Dedicated Distance for Classification

In order to perform the classification, we relied on a K-Nearest Neighbors framework. Once the distance learnt, we predicted the label of a new sample by computing its distance to each ground truth cluster and taking the closest one. We experimented and compared different strategies to determine the closest cluster:

• Average distance to the points of the cluster.

• Minimum distance to the points of the cluster.

• Maximum distance to the points of the cluster.

• Distance to the center of the cluster.

• Majoritarian cluster of the k-nearest neighbors.

The distance between the new sample p and objects of the cluster C is computed using the learnt dedicated distance. For l > 2-order distances, we compute the distance on the set {p, p 1 , ..., p l-2 , q} where we iterate over all possible sets {p 1 , ..., p l-2 } ∈ C l-2 and q is the cluster center discovered during the learning step.

Implementation Details

We implemented the algorithm proposed in [START_REF] Komodakis | Learning to cluster using high order graphical models with latent variables[END_REF] and we used it as a baseline. It is available at https://github.com/ebattistella/Second-order-Distance-learning. Besides, the adaptation to general higher-order distances we propose in this study has been implemented and is available at https://github.com/ebattistella/Higher-order-Distanc e-Learning-GHOST-.

To prove the relevance of our higher-order formulation, we leveraged two datasets of a very different nature. First, we synthesized a dataset with samples in dimension 100 with 60 noisy dimensions. Clusters are designed by considering 100 samples generated from Gaussian distributions with different variances and means between the two clusters on the non-noisy dimensions. The noise is simulated by taking a much larger variance. Ideal graphs were generated on this dataset as one clique per cluster with no connection between cliques. Then, we added noise to the graphs using a rewiring method [Jarman, 2017]. For each pair of nodes, we added or removed an edge with a probability of p. We considered values of p ∈ [0, 0.5] with an increment of 0.1. We generated a training, a validation, and a test sets considering different variances and means. For each set, we considered base variances randomly chosen for each feature between 0 and 200 shifted by respectively 10, 30 and 30 for the non-noisy dimensions and 1000, 2000 and 10000 for the noisy ones. Regarding the means, we considered base means randomly chosen for each feature between -50 and 50 shifted by respectively 0, 10, and 50. The aim was here to visualize the generalizability of the learned weights and their resilience to increasing noise. We then leveraged a Covid-19 dataset introduced in Chapter 3. We used the same training and testing sets previously and compared the classification performance over the Severe/Non-severe staging task. A graph on the data was obtained through the method proposed in Section 5.3.9 by considering the 5 closest neighbors.

The second-order feature functions we based all our experiments on are feature-wise euclidean distances. In addition, we considered Euclidean, Minkowski, City-block, Cosine, Correlation, Hamming, Jaccard, Chebyshev, Matching, Yule, Braycurtis, Dice, Kulsinski, Russellrao, Pearsoncorrelation based, Spearman-correlation based, Kendall-correlation based distances on the full feature space.

For those datasets, we performed a thorough set of experiments to highlight the relevance of our higher-order distance formulation and the consideration of graph structures. We first used the simple pairwise distance defined using the basic formulation from [START_REF] Komodakis | Learning to cluster using high order graphical models with latent variables[END_REF]. Then, we complemented this with our balanced error function to better account for the cluster size. We finally added a shortest-paths-based metric SP 2 to assess the value of graph information even in second-order settings and compare it with the higher-order. We performed the higher-order distance learning using the combination of the second-order meta-features with the different Classification higher results. Besides, additional experiments have been performed with rewiring probabilities p above 0.6. The performance is globally significantly decreased. However, the graph contains as much information as a probability below 1 -p, but the clique structure has been broken. Thus, it shows that complementary graph measures should be investigated to account for different graphical properties. Table 5.2: Results on the synthetic dataset of the different higher-order experiments with the distance to center inference strategy.

Covid-19 Dataset

Table 5.3 presents the results of the different frameworks over the Covid-19 dataset and compares them to the results obtained in Chapter 3 denoted by Ensemble. This experiment highlights the interest of considering graph information as it improves the results over the basic framework. Also, it enables to reach performances similar to the ones of an ensembling method over several standard classifiers. Although, the graph extracted from the Covid-19 dataset seems not to favor higher-order graph notions.

Conclusion

This chapter proposed a novel distance learning framework to leverage higher-order information, including cluster-based metrics, towards a dedicated to the task metric definition. Moreover, we demonstrated the value of leveraging graph-based information for classification. In particular, we have highlighted the interest in designing a graphical representation of data to extract structural information. In addition, we studied the relevance of higher-order metrics and experimented several directions to better account for structure in the data. In the future, we aim at The 3 first rows stand for second-order frameworks with or without the use of a balanced error function and path length information. The fourth row is the higher-order framework combining the second-order, the cluster and the third-order metrics. The last row is the performance of the ensemble of standard classifiers as defined in Chapter 3.

studying other kinds of data with known graphical representations as PPI networks. We also want to study more intricate metrics to better exploit higher-order information, for instance, Mahalanobis distance. 

Main Contributions

In this thesis, we provided various machine learning approaches using standard algorithms for medical applications. We aimed at developing robust algorithms tailored to tackle several medical field challenges. Moreover, we proved the relevance of graph theory for better leveraging data information and unknown higher-order relations using advanced mathematical tools.

Chapter 3 introduced a thorough end-to-end process to take advantage of medical imaging and clinical information for disease severity characterization, with a main application case to Covid-19. Advanced machine learning ensemble techniques have been proposed for both feature selection and classification tasks. In particular, a robust identification of a low-dimensional feature representation was obtained via the coupling of linear and non-linear feature selection methods with a hierarchical ablation study. We aimed at modelling the relationship between the holistic bio-markers signature and the observed outcomes per application. Besides, towards the creation of a potent ensemble prediction model, we selected for each task generalizable and well-performing state-of-the-art machine learning algorithms. Their combination was achieved through a consensus approach based on a majority voting principle. Our proposed formulation was experimented in three completely different tasks proving its relevance for medical variety of medical data and applications.

In Chapter 4, we proposed a new methodological approach for combining both biological and mathematical metrics for the automatic selection and evaluation of gene clustering. Moreover, we assessed the impact of different clustering algorithms and their optimal combination with different distances, identifying the best strategy for gene signature selection. We applied this approach to design a clinically relevant gene signature for 10 cancer types and subtypes characterization. We demonstrated excellent results for our center-based unsupervised approach outperforming several baselines comparing different algorithms and a knowledge-based signature. We proved the efficiency of our proposed compact signature through a statistical and biological evaluation, tumor samples clustering and classification into types and subtypes. Chapter 5 elaborated a new higher-order metric algorithm relying on Conditional Random Field energy minimization. Our proposed formulation allowed to handle structural information expressed through higher-order graph properties. We demonstrated higher-order considerations relevance and the strengths of our problem formulation by reporting results surpassing standard classification algorithms reported in Chapter 3. The efficiency and versatility of our novel approach enables to explore and leverage variety of metrics and structural properties.

Perspectives and Future Applications

This thesis presented general machine learning approaches that formulates sound, rigorous and robust methods for feature selection, clustering, classification, and evaluation. We have demonstrated the generalizability potential of our approaches over different application on diverse medical tasks. Our work could be extended in other challenging and exciting research directions.

Gene Signature Relevance Exemplification

Towards a better demonstration of the pipeline proposed in Chapter 4, we envision several thrilling leads. An important step is to prove the generalizability of our signature on an external dataset to highlight its expressiveness. Thus, it will extend the comparison we performed with a knowledge-based signature. Besides, as the feature selection process we implemented is unsupervised, another targeted outcome would relevantly complete our signature informativeness assessment.

Another highly clinically relevant topic is to determine metastasis primary sites. metastasis origin is of crucial importance for physicians regarding treatment planning and patients stratification. Therefore, our signature and prediction pipeline would allow characterizing a metastasis cancer type and even subtype while requiring the sequencing of only the 27 genes selected. Thus, we will overcome the two prominent hindrances to wielding gene sequencing routinely by ensuring a far less time-consuming and much cheaper gene expression retrieval. In the same direction, we have established our signature's high correlation to immune response even in an unsupervised setting. Besides, the determination of tissue infiltration and the correlation to T-cells activity is of prime concern for patients' response to treatment, especially in immunotherapy.

Finally, a dynamic research field is aiming at providing a holistic approach relying on multiomics data. A strength of our approach is its modularity and adaptability. Thus, it could be effectively exerted for identifying a common global multi-omics signature by leveraging a general distance between omics information of different kinds, which could, for instance, be learned through the algorithm we define in Chapter 5. In addition, through Protein-Protein Interaction network, we possess an expressive and relevant graph structure to leverage with our higher-order distance learning property. Also, distance-learning interest is to guide clustering with expert knowledge. Thus, we could leverage enrichment in specific biological processes when performing gene clustering or perform a sample clustering reinforced by patient's outcome information.

Treatment Response Prediction

The application scope of our prediction pipeline presented in Chapter 3 and supplemented by the higher-order metric learning formulation of Chapter 5 is vast. The two first applications on breast cancer patients treatment response to a specific drug and on atopic dermatitis severity characterization are presented in Section 3.5-3.6 achieved promising performance. Therefore, more diverse medical fields with different types of information could be investigated using those methods. In particular, we are currently exploring several new leads. For instance, we can report our work on classifying the different sclerosis types from CT scans, on cancer response prediction from microbiota data, or on predicting air trapping for transplant rejection determination using imaging information at 3 different time points. We can finally describe more in detail our work on predicting the response to immunotherapy for cancer patients under radiotherapy. Similar to what we performed on the covid patients dataset in Chapter 3, we isolated 3 different areas on the CT scans (heart, lungs, tumor) to better leverage the whole image volume information. Some preliminary results prove our approach's robustness despite the difficulty of the task and without using any clinical information. We report balanced accuracy of 62%, precision of 53%, sensitivity of 53%, and specificity of 71% on the test set for pCR response.

An exciting area of research we would like to investigate more in-depth is deep radiomics. We are currently involved in leveraging an encoder's latent space used on the covid patients database for segmenting the disease lesions in the lungs. Then, we identified informative deep features and managed promising results on staging patients according to their disease severity by applying our feature selection technique. More specifically, we achieved performance comparable with the ones obtained with classical features reporting 68% balanced accuracy, 79% weighted precision, 72% weighted sensitivity, and 64% weighted specificity. We finally performed the outcome prediction between intubated and deceased patients and the global prediction of non-severe, intubated, and deceased patients and obtained high performance. On intubated/deceased predictions, we managed 88% balanced accuracy, 94% weighted precision, 94% weighted sensitivity, and 81% weighted specificity. On non-severe/intubated/deceased predictions we reached 65% balanced accuracy, 78% weighted precision, 71% weighted sensitivity and 66% weighted specificity.

Higher-Order Conditional Random Fields for Proteins 3D Models Similarity Characterization

A significant challenge in designing immunotherapy is to account for the large variability of possible proteomics profiles of both the particular cancer to treat and the patient's healthy cells. Indeed, there are many protein candidates for such a therapy. Determining the most efficient and with the least harmful side-effects is a very challenging task. A variety of approaches have been proposed [Iakhiaev, 2010] to select the best candidates thanks to cross-reactivity determination and decrease the number of fruitless, expensive, and time-consuming white lab experiments and clinical trials. However, most of the methods tackling this task rely on the protein sequences, which fail to consider the protein's spatial structure and experimental information. To address this problem, we investigated machine learning and computer vision methods to determine similarities between pairs of molecules according to both biological information and proteins' spatial conformation while not relying on any costly experimental information.

We first considered 29 different HLA proteins that have been studied in [Antunes, 2011] and for which we have a ground truth dendrogram characterizing the experimentally established similarity between proteins. The similarity between the proteins of this dataset was assessed both experimentally by assessing the cross-reactivity to a reference dataset and then using a novel method studying, in particular, the properties of the surface of the molecules' 3D representations. This first dataset was used as a training dataset to select the most relevant features, distance metrics, and algorithm hyperparameters. Graph matching techniques aim to use both graph structure information and some features on a graph's nodes to establish a mapping between the nodes of two different graphs. Here, we consider as graphs meshes on the proteins structures, the nodes being the atoms of the molecule, and the edges characterizing the atoms' spatial proximity. We leveraged different chemical information to characterize the similarity between atoms like chirality, charge, atom symbol, residue it belongs to, number of chemical neighbors, hybridization, or aromaticity. Besides, we consider the relative distance between two pairs of atoms to characterize the higher-order similarity between edges. The algorithm's objective is then to maximize the similarity between matched atoms and between the edges of the matched atoms. This objective function is then used to characterize the similarity between the two molecules and can be expressed with the following formula: With A the set of possible assignments from one molecule to the other (pairs of nodes that can be matched), N the set of neighbors (a = (p, p ) ∈ A and b = (q, q ) ∈ A are neighbors iff p and q on one hand and p and q on the other hand are spatially close enough in their respective molecules), θ a and θ ab are respectively unary and second-order similarities: θ a = log(1 + 1 -P earsonCorrelation(v p , v p )) θ ab = log(1 + N orm(Euclidean(p, q) -Euclidean(p , q )))

With Norm being a Min-Max normalization to obtain values in [0, 1] comparable to the Pearson's correlation used in θ a . In particular, we used an optimization framework from [START_REF] Torresani | [END_REF], relying on an energy minimization scheme similar to the one used in Conditional Random Field (CRF) frameworks. The problem is then solved by relaxation and problem decomposition. It would be an interesting perspective to adapt this approach to the one we have design towards metric learning and relying on similar notions. The matching scores obtained through this method could be used as a distance matrix to perform hierarchical clustering aiming at proteins similarity characterization through a dendrogram or a similarity ranking to a reference.

Promising results for the training set of 29 different HLA proteins have been obtained. We achieved a balanced accuracy of 0.83 for the separation of high, low, and without cross-reactivity molecules, indicating our method's great potential. This task offers a valuable application possi-bility for higher-order distance learning. Indeed, an intrinsic graphical structure is available, and we have shown with the previously described experiment the relevance of considering higher-order information for proteins.

Medical Graph Generation

A determining limitation by design of the approach we highlighted in Chapter 5 is the quality of the graph we design when relying on data without a natural graphical representation. The presence of noisy information or the lack of a higher-order structure might hamper the prediction performance of our framework. However, many models exist to generate graphs [START_REF] Agnarsson | [END_REF]. Several specific graphs have been studied in social science, as the internet, citations, or co-authorship graphs. These studies enabled identifying essential properties of those graphs and techniques to model graphs with such characteristics. For instance, to represent social networks, several utterly referential techniques exist as Barabási-Albert model [Albert, 2002], Erdős-Rényi model [START_REF] Erdős | On the evolution of random graphs[END_REF] or Watts-Strogatz networks [Watts, 1998]. Even though already highly active, the field of medical graphs is still at its beginnings and crucial discriminative characteristics have still to be investigated.

Tables A. 5 and A.6 we summarise the performances for the signature presented in [Thorsson, 2018]. Using the referential algorithm [28] only three classifiers were selected and used for the tumor classification, reporting also lower performance. Tables A.7 and A.8 present the performances for the random signature. Using the random signature only two classifiers were selected, fulfilling the used criteria. This signature reports the lowest performance compared to the other two signatures. p,q =p ūk p,q (x p,q ) + p,p ,q =p ūk p,p ,q (x p,q x p ,q ) + q φp,q (x p,q ) + φp (x p )
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Finally, to obtain an acceptable solution λ we need to project on set Λ. To that purpose, we simply have to substract by
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. Thus, we have to update w and λ with the following formulas:

Lemma 11 Let s t be the weight accorded to the optimization at step t. We define Xk q = xk,C q,q + p xk,p q,q and Xk p ,q = xk,p q,q xk,p p ,q + xk,C q,q xk,C p ,q . Then, update reduces to:
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x k p,q f k p,q -( p ,q =p xk,p p,q xk,p p ,q f k p,p ,q + q =p xk,p p,q f k p,q + q 1 | V k | +1 ( Xk q f k q,q + p Xk p ,q f k qp ,q )) (A.9) Dans un premier temps, nous avons proposé un système générique et résilient de sélection de variables et de classication que nous avons développé pour déterminer la sévérité de la maladie de patients atteints de la Covid-19. Dans ce but, nous nous sommes appuyés sur des informations extraites de segmentations automatiques des organes et zones lésées que nous avons combinés avec des informations cliniques. Nous avons identié un nombre restraint de facteurs déterminants la classication. Nous avons obtenu des performances prometteuses dépassant celles de radiologues experts sur les tâches considérées. Nous avons étendu plus avant et adapté cette méthodologie pour traiter d'autres données omiques, maladies et attendus médicaux.

Approches
Par la suite, nous avons étudié un procédé de clustering pour la dénition d'une signature de gènes présentant un intérêt clinique vis-à-vis de la caractérisation pan-cancer de lésions. Bien des études ce sont essayées à la description du cancer grâce à la génomique. Cependant, la grande dimensionalité des données représente un formidable obstacle. Nous avons prouvé la pertinence de la signature génétique très compacte générée par notre méthode en recourrant à des approches supervisées et non-supervisées pour la caractérisation des types et sous-types de tumeurs.

Finalement, nous avons déni une nouvelle approche d'apprentissage de distance d'ordre supérieur à viser de sélection et de pondération de variables. Fort de la grande expressivité de ce paradigme, nous avons exploré diverses propriétés de théorie des graphes d'ordre supérieur et avons établi que, dans le cadre d'une tâche de classication, ils possèdent une grande expressivité et permettent d'obtenir des résultats supérieurs à ceux des méthodes standards.

High dimensional graph theory approaches for various omics data

Keywords: Conditional Random Field, Feature Selection, Clustering/Classication, Omics This thesis presented conditional-random-eld-based approaches for medical applications on diverse omics data. This methodology allowed leveraging more complex, structural information and notable assets from graph theory, particularly interesting to express intricate biological properties. We demonstrated their usefulness for clustering and feature selection towards classication. Their relevance was exemplied over several medical applications and omics data.

First, we focused on a clustering process towards the determination of a clinically relevant gene signature for pan-cancer tumors characterization. We highlighted our compact signature's relevance by resorting to unsupervised and supervised tumor types and subtypes distinction.

Second, we proposed a generic and resilient feature selection and classication pipeline we developed for Covid-19 pa-tients staging and outcome prediction using only CT scans and clinical information. Relying on an automated segmentation technique, we extracted imaging information. We singled out few relevant factors for classication. We obtained promising performance outperforming radiologist experts on all the tasks. We further extended and adapted our methodology to cope with other dierent omics data, diseases, and medical expectations.

Finally, we formulated a new higher-order distance learning framework for feature selection and weighting. We proposed a mathematical optimization method for its resolution able to handle the high-order information complexity eciently. We established those attributes informativeness in classication settings and reported superior results than with standard approaches.
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Figure 3 . 1 :

 31 Figure 3.1: Overview of our approach for feature selection and classification.

  Figure 3.2: Overview of the method for automatic quantification, staging and prognosis of Covid-19. Our study includes 8 independent cohorts, resulting in 693 Covid-19 patients in total. A variety of clinical and biological attributes were collected and combined with imaging biomarkers for short and long term prognosis of Covid-19 patients. Our study is composed by three different steps: (i) Proposing a state-of-the-art deep learning based consensus of 2D & 3D networks for automatic quantification of Covid-19 disease, reaching expert-level annotations, (ii) A radiomics study integrating interpretable features extracted from disease, lung and heart regions. A consensus-driven Covid-19 low dimensional bio(imaging)-holistic profiling and staging signature has been proposed using robust machine learning algorithms, fusing imaging, clinical and biological attributes. & (iii) An ensemble of robust linear & non-linear classification methods for the proper identification of patients needing intubation.

Figure 3

 3 Figure 3.3: Correlation between body mass index (BMI) and fat ratio.

  For the Covid-19 radiological pattern segmentation part, 50 patients from 3 centers (A: 20 patients; B: 15 patients, C: 15 patients) were included to compose a training and validation dataset, 130 patients from the remaining 3 centers (D: 50 patients; E: 50 patients, F: 30 patients) 3.4. AI-Driven Quantification, Staging and Outcome Prediction of COVID-19 Pneumonia 47

Figure 3 . 5 :

 35 Figure 3.5: Box-Plot in terms of DSC and HD between CovidENet and its individual components, Obs1 & Obs2. One can observe that CovidENet (blue) performs better and closer to Obs1-Obs2 (red) regarding DSC and HD metrics than its individual components CovidE2D & CovidE3D.

Figure 3

 3 Figure 3.6: Plots indicating the correlation between automatically measured disease extent and the average disease extent from CovidE2D, CovidE3D, and CovidENet respectively, and the manual segmentation. Disease extent is expressed as the percentage of lung affected by the disease. The red line shows a perfect correlation (Spearman R = 1). Spearman rank correlation coefficients are displayed for each comparison.
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 37 Figure 3.7: Qualitative analysis for the comparison between manual and the proposed CovidENet disease quantification. Delineation of the diseased areas on chest CT in different slices of Covid-19 patients. From left to right: Input, CovidENet-segmentation, Obs1-segmentation, Obs2segmentation.

  Figure 3.8: Covid-19 Holistic Multi-Omics Signature & Staging: Spider chart representing average profiles (average values of the variables after normalization between 0 and 1) concerning severe versus non-severe separation are shown along with the prevalence of biomarkers (diameter of the circle). The prevalence of the biomarker corresponds to its number of selections during the feature selection process. Classification performance, confusion matrices, and area under the curve concerning the proposed method and the consensus of expert readers (reader+) are reported on the right side. Selective associations of features with the outcome (NS/S) are shown at the figure's top right (box plots).

Figure 3

 3 Figure 3.9: Short & Long Term Prognosis. Spider chart representing average profiles (average values of the variables after normalization between 0 and 1) for the short deceased (SD), long deceased (LD), and long recovered (LR) classes are shown along with their correlations with the outcome (diameter of the circle). The presented correlation corresponds to Pearson Correlation for LR/LD outcome (Table5). Classification performance, confusion matrices, and area under the curve of the proposed method and -when feasible -the consensus of expert readers (reader+) are reported on the right side. ROC curves correspond to the one-vs-all classification of the SD/LR/LD patients. Selective associations of features with the outcome (LD/LR) are shown at the bottom of the figure (box plots).
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 3 Figure 3.10: Overview of the features extraction, selection, and prediction process for pamela cohort (Section 3.5).
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Figure 4 . 2 :

 42 Figure 4.2: Evaluation of the clustering performance for different Enrichment Threshold values. LP-Stability (upper left), CorEx (upper right), K-Means (lower left), Random (lower right).The figure presents the percentage of the enriched clusters for the threshold values of 0.005, 0.025, 0.05, 0.075, 0.1 and using Kendall's correlation-based distance. The higher differences in the enrichment thresholds are reported from the Random Clustering when the number of clusters is relatively high. For the rest of the algorithms and especially LP-Stability, the different thresholds only slightly impact the reported results.

Figure 4 . 3 :

 43 Figure 4.3: Evaluation of the clustering performance for different distances. The performance of the different distances are presented for both Random (left) in terms of Dunn's Index and LP-Stability clustering (middle and right) in terms of Dunn's Index and Enrichment Score. Only DI results are presented for Random as ES computation on a same clustering is not influenced by the distance used. Both ES and DI are presented in percentages in terms of the number of clusters. The figure highlights the superiority of the correlation-based distances and in particular the one reported by Kendall's for both mathematical and biological aspects.

Figure 4 . 4 :

 44 Figure 4.4: Evaluation of the different clustering algorithms. For the different evaluated algorithms the ES and the DI are presented in terms of number of clusters and using Kendall's correlation-based distance. For both metrics, LP-Stability reports the highest and more stable values. Moreover, the rest of the algorithms tends to report their higher scores for a very small number of clusters (often 2), indicating their failure to discover clustering structures.
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 45 Figure 4.5: Gene Signature Assessment for the CorEx algorithm. The graph depicts the distribution of the different tumor types in 10 different clusters using the best signature produced by CorEx algorithm (5 genes). From the graph one can observe that the different tumor types are quite intermixed across the different clusters without any association between them.
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 46 Figure 4.6: Gene Assessment performed with LP-Stability clustering and Kendall's correlation-based distance. The plot presents the distribution of tumors using the signature produced by LP-Stability and Kendall's correlation-based distance (right) in comparison to the Spearman's one (left). This assessment is performed in order to compare the influence of the distance in the clustering. We can observe that there are some similar clusters between the two distances such as the well defined clusters of GBM and LIHC together with LUAD/LUSC cluster (Cluster 5), a squamous cluster (Cluster 7) and some well defined BRCA clusters (Clusters 1 and 8). Thus, regarding sample clustering, it appears that the good characterization of monotonic relations offered by Spearman's Rank correlation-based distance is better suited than the more general characterization of the Kendall's one.
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 47 Figure 4.7: Gene Signature Assessment via tumor distribution analysis across 10 sample clusters generated in the different signatures feature space. The graph presents the distribution of the different tumors for Random Clustering signature (27 genes) , CorEx , K-Means , a referential gene signature [Thorsson, 2018] and LP-Stability. The distribution of tumors for Random and CorEx algorithms is quite intermixed without a lot of associations between the tumor types while K-Means, referential and LP-Stability signatures seem to favor some good tumor associations.
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 48 Figure 4.8: Gene Assessment performed with LP-Stability clustering and Kendall's correlation-based distance. The plot presents the distribution of tumors using the signature produced by LP-Stability and Kendall's correlation-based distance (right) in comparison to the Spearman's one (left). This assessment is performed in order to compare the influence of the distance in the clustering. We can observe that there are some similar clusters between the two distances such as the well defined clusters of GBM and LIHC together with LUAD/LUSC cluster (Cluster 5), a squamous cluster (Cluster 7) and some well defined BRCA clusters (Clusters 1 and 8). Thus, regarding sample clustering, it appears that the good characterization of monotonic relations offered by Spearman's Rank correlation-based distance is better suited than the more general characterization of the Kendall's one.
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 49 Figure 4.9: Comparison of the different signatures. Blue: criteria based on the gene clustering performance, Green: criteria based on the informativeness of the signature for unsupervised clustering tasks and Gold: criteria based on the relevance of the signature for supervised classification tasks.

  For fixed C

  over λ and w These updates are defined from subgradients of the objective function. We compute the partial derivatives of each subproblem's hinge loss. We denote by xk,p and xk,C binary minimizers of

  de théorie des graphes d'ordre supérieur pour diverses données omiques Mots clés: Conditional Random Field, Feature Selection, Clustering/Classication, Omiques Cette thèse introduit l'usage d'approches reposant sur les conditional random elds à diverses applications médicales et données omiques. Ces méthodes permettent de tirer parti au mieux d'informations structurelles lourdes à interpréter et analyser. En particulier, l'emploi de la théorie des graphes d'ordre supérieur revêt un intérêt majeur pour l'expression de relations biologiques complexes. Nous démontrons leur pertinence dans les domaines du clustering et de la sélection de variables pour la classication. Nous nous sommes appuyé sur plusieurs applications médicales et données omiques pour mettre ces résultats en lumière.

  

  

  term deceased. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.9 Training and test results obtained on Pamela cohort. Ablation results per features types are also reported. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Stability with 27 genes using Kendall's correlation-based distance and K-Means with 30 genes using Euclidean distance. The last column indicates the algorithm that provided the best distribution for the specific tumor type. It highlights the superiority of the LP-Stability signature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.4 Analysis of the biological pathways and most significant genes per cluster for the sample clustering performed using our proposed signature of 27 genes via LP-Stability algorithm and Kendall's correlation-based distance. The table highlights the separation between inflamed and non-inflamed tumors and the identification of well-known cancer subtypes such as BRCA. . . . . . . . . . . . . . . . . . . . . 86

	c) D2: disease variables that are tissue/texture, d) O1: heart/lungs variables that are shape/geometry related, e) O2: heart/lungs variables that are tissue/texture, f) B1: age, gender, biolog-ical/obesity/diabetes/fat/high blood pressure. LD = long-term-deceased; LR = long-term deceased; NS = non-severe; S = severe; SI = short-term intubation; SD xv = short-List of Tables 4.

3.10 Test confusion matrix on Pamela cohort. . . . . . . . . . . . . . . . . . . . . . . . 61 4.1 Description of the dataset used in this study. The different tumors and tumor types together with the corresponding number of samples are summarised. Urothelial Bladder Carcinoma (BLCA), Breast Invasive Carcinoma (BRCA), Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma (CESC), Glioblastoma Multiforme (GBM), Head and Neck Squamous Cell Carcinoma (HNSC), Liver Hepatocellular Carcinoma (LIHC), Rectum Adenocarcinoma (READ), Lung adenocarcinoma (LUAD), Lung Squamous Cell Carcinoma (LUSC) and Ovarian Cancer (OV). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.2 Comparison of the different evaluated algorithms in terms of PPI Enrichment Score (ES) with a threshold of 0.005, Dunn's Index (DI), Average ES and computational time. LP-Stability algorithm outperforms the rest of the algorithms reporting highest DI and Average ES score and the lowest computational time. . . . . . . . 79 4.3 Discovery Power: A complete comparison for the distribution of the tumor types (above 10%) from the best performing algorithms. LP-

•

  Enzo Battistella et al. "Cancer Gene Profiling through Unsupervised Discovery". In: arXiv preprint arXiv:2102.07713 (2021), Submission in IEEE transactions on bioinformatics and computational biology (Under review)

	Chapter 2
	Formal Standard Approaches Def-
	initions
	Contents
	International MICCAI Brainlesion Workshop. Springer. 2018, pp. 299-310

• Enzo Battistella et al. "AI-driven quantification, staging and outcome prediction of COVID-19 pneumonia". In: Medical Image Analysis 67 (2021), p. 101860 Conference Papers • Enzo Battistella et al. "Holistic artificial intelligence-driven predictor in HER2-positive (HER2+) early breast cancer (BC) treated with neoadjuvant lapatinib and trastuzumab without chemotherapy: A correlative analysis from SOLTI-1114 PAMELA". in: CANCER RESEARCH. vol. 81. 4. American Association for Cancer Research. 2021 • Bastien Caba et al. Machine Learning-Based Classification of Acute versus Chronic Multiple Sclerosis Lesions using Radiomic Features from Unenhanced Cross-Sectional Brain MRI (4121). 2021 • Enzo Battistella et al. "Gene Expression High-Dimensional Clustering towards a Novel, Robust, Clinically Relevant and Highly Compact Cancer Signature". In: IWBBIO 2019. Granada, Spain, May 2019 • Spyridon Bakas et al. "Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge". In: arXiv preprint arXiv:1811.02629 (2018) • Siddhartha Chandra et al. "Context aware 3D CNNs for brain tumor segmentation". In: 2.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Supervised Paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.1 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.2 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.3 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3 Unsupervised Paradigm . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3.1 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3.2 Proximity Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.3 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.4 Conditional Random Field (CRF) . . . . . . . . . . . . . . . . . . . 25 2.4.1 CRF Formal Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.4.2 CRF Energy Minimization . . . . . . . . . . . . . . . . . . . . . . . . 26

Chapter 2. Formal Standard Approaches Definitions the

  final prediction from the estimators' outputs.

	Algorithm	Pros	Cons
		Simple	Sensitive to the curse of dimensionality
	K-NN	No assumption on dsitribution	Sensitive to outliers
			Need a relevant distance notion
		Efficient in higher dimension	Poor performance with non-separable classes
	SVM	Efficient for separable classes Outliers robustness	Need of well tuned hyperparameters
		Interpretability	
		Interpretability	Prone to overfitting
	DT	Adaptable to data type and scale	High Variance
		Feature selection	
		Resilient to overfitting	Not interpretable
	RF	Reduced Variance Robust to large imbalanced datasets	High computational cost
		Robust to high dimensionality	
	AdaBoost	Resilient to overfitting Low number of hyperparameters to tune	Sensitive to outliers Sensitive to noise
		Resilient to overfitting	Not interpretable
	GTB	Robust to outliers	Need of well tuned hyperparameters
		State-of-the-art performance on several applications	
	Naive Bayes	Efficient with high dimensional data Scalable Insensitive to irrelevant features	Assumes features independence Need representative training data
	QDA	High performance on gaussian data	Gaussian assumption
	Gaussian Process	Provides model's confidence Versatile with kernel trick Leverage Ockam's razor	High computational cost Difficulty to scale
		Able to consider non-linear models	Need important amount of data to train
	MLP	State-of-the-art performance on several applications High computational cost Not interpretable
			Need of well tuned hyperparameters
	• Stacking Classifier aims to reduce the bias (errors the model will commit because of simpli-
	fying assumptions) of the combined estimators by using an additional classifier performing

Table 2

 2 

	.1: Main advantages and drawbacks of the standard classification algorithms introduced
	in this chapter
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			CovidE2D			CovidE3D
				train			train
		0.20		validation	0.3		validation
	Loss (WCE)	0.15		Loss (DL)	0.2		
		0.10			0.1		
		0.05			0.0		
		100,000	200,000	300,000	0	2,000	4,000	6,000
		Number of Batches			Number of Batches
	Figure 3.4: Training and validation curves for one template/ atlas (A i ) of CovidE2D and the
	CovidE3D.						

Table 3 .

 3 1: Acquisition and reconstruction parameters of the dataset used in this study. Note: For quantitative variables, data are presented as mean ± standard deviation, and numbers in brackets indicate their range. CT = Computed Tomography ; CTDIvol = Volume Computed Tomography Dose Index ; DLP = Dose Length Product.

		Center A	Center B	Center C	Center D	Center E	Center F	Center G	Center H
	CT equi-	Somatom	Resolution	Aquilion	Somatom	Revolution	Aquilion	Revolution	Somatom
	pment	AS+	HD	Prime	Edge	HD	AS+		
	Kilovoltage 100-120	120	100-120	100-120	120-140	100-120	120	100-120
	DLP (mGy.cm)	109 ± 42 [44-256]	306 ± 104 [123-648]	102 ± 30 [43-189]	131 ± 44 [55-499]	177 ± 48 [43-276]	115 ± 26 [75 -186]	285 ± 108 [70 -679]	332 ± 156 [179 -755]
	CTDIvol (mGy)	3.2 ± 1.5 [1.2-11.9]	8.7 ± 2.8 [3.9-18.5]	2.7 ± 0.9 [1.0-5.3]	3.2 ± 0.9 [1.4-9.5]	5.5 ± 1.8 [1.2-12.3]	2.5 ± 0.6 [1.7-4.3]	7.9 ± 2.9 [1.7-18.0]	8.5 ± 4.0 [4.4-19.8]
	Slice thick-	1 mm	0.625 mm	1 mm	0.625mm	1 mm	1 mm	0.625 mm	1 mm
	ness								
	Convolution	i70	Lung	FC51-FC52 i50	Lung	FC51-FC52 Lung	i70
	Kernel								
	Iterative	SAFIRE 3 ASIR-v 80% IDR 3D0.67 SAFIRE 4 ASIR-v 60% IDR 3D	ASIR-v 60% SAFIRE 3
	reconstruc-								
	tions								
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 3 

		Training/Validation	Test Dataset	
		Dataset (Centers A+B+C;	(Centers D+E+F;	p-value
		N=50)	n=130)	
	Age (y)	57 ± 17 [26-97]	59 ± 16 [17-95]	0.363
	No. of Men	31(62)	87(67)	0.534
	Disease ex-			
	tent*			
	Manual	18.1± 14.9 [0.3-68.5]	19.5 ± 16.5 [1.1-75.7]	0.574
	Automated	-	19.9% ± 17.7 [0.5-73.2] -
	DLP	180 ± 124 [43-527]	139 ± 49.0 [43-276]	0.026
	(mGy.cm)			
	CTDIvol			
	(mGy)			

.2: Patient characteristics for the automatic quantification of Covid-19 disease. Note: For quantitative variables, data are presented as mean ± standard deviation, and numbers in brackets indicate their range. CT = Computed Tomography; CTDIvol = Volume Computed Tomography Dose Index; DLP = Dose Length Product.

Table 3 .

 3 3: Patient characteristics for the automatic staging and prognosis tools. Note: For quantitative variables, data are presented as mean ± standard deviation, and numbers in brackets indicate their range. For qualitative variables, data are numbers of patients, and numbers in parentheses are percentages. CT = Computed Tomography, CTDIvol = volume Computed Tomography Dose Index; DLP = Dose Length Product. *Available clinical data: n = 692 for diabetes and high blood pressure(leading to 0.19% of missing data on the training set), n = 674 for lymphocyte count (leading to 2.05% and 5.10% of missing data on the training and test sets respectively), n = 654 for CRP (leading to 4.66% and 8.92% of missing data on the training and test sets respectively), n = 362 for Body Mass Index, and n = 339 for D-dimers. **Percentage of lung volume on the whole CT. ***Data available for 688 patients.

		Training/Validation Dataset Test Dataset	
		(Centers A+B+C+ D+H;	(Centers E+F	p-value
		n=536)	+G;n=157)	
	Age (y)	63 ± 16 [22-98]	62 ± 17 [17-98]	0.495
	No. of Men	374(70)	103(78)	0.321
	High blood pression*	235 (44)	71 (45)	0.773
	Diabetes*	97 (18)	37 (24)	0.888
	Body mass index (kg/m 2 )*	27.7 ± 5.1 [17.0-44.1]	27.1 ± 5.1 [14.5-42.7] 0.390
	Lymphocyte count (×10 9 /L)*	1.3 ± 2.7 [0.1-48.5]	1.3 ± 3.3 [0.23-41.0]	0.915
	CRP (mg/L)*	104.3 ± 82.9 [1.0-430.7]	94.2 ± 74.8 [2.0-342]	0.166
	D-dimers (microg/L)*	2458 ± 6533 [181-86248]	815 ± 924 [168-6138] < 0.001
	Disease extent**	22.2 ± 18.4 [0.0-89.8]	24.0 ± 18.7 [1.1-89.8]	
	Fat ratio on CT	18.6 ± 5.9 [1.7-42.3]	18.3 ± 5.5 [2.7-30.6]	0.589
	Short-term outcome			0.994
	Deceased	28(5)	8(5)	
	Intubated	80(15)	23(15)	
	Alive and Not Intubated 428(80)	126(80)	
	Follow-up duration			
	Worsening during follow-up***			0.554
	Deceased	69(13)	17(11)	
	Intubated	68(13)	22(14)	
	DLP (mGy.cm)	181 ± 115 [43-755]	218 ± 106 [ 43-679 ]	< 0.001
	CTDIvol (mGy)			

Table 3 .

 3 4: Quantitative evaluation of the CovidENet and its components CovidE2D & Co-vidE3D architectures regarding Dice Coefficient and Hausdorff Distance. The mean, median, and standard deviation for each of the developed tools are presented together compared to the 2 independent experts. With bold, we indicate the highest values per metric.

					Dice				Hausdorff Distance
	Methods	Mean	Median	STD	Mean	Median	STD
		Obs1 Obs2 Obs1 Obs2 Obs1	Obs2 Obs1 Obs2 Obs1 Obs2 Obs1	Obs2
	CovidE2D	0.69	0.67	0.70	0.68 ±0.13 ±0.13 9.40	9.23	9.33	9.30 ±1.83 ±1.80
	CovidE3D	0.62	0.65	0.67	0.70 ±0.17 ±0.16 9.43	8.70	9.43	8.60 ±1.87 ±1.81
	CovidENet 0.69	0.70	0.71	0.73 ±0.13 ±0.13 9.18	8.75	9.16	8.72 ±1.86 ±1.78
	Obs1-Obs2	0.70	0.72	±0.12	9.16	9.16	±1.83
	CovidENet	0.70	0.72	±0.12	8.96	8.94	±1.82
	utilized.							

Table 3 .

 3 5: Correlation between outcome and the 23 features of the holistic Covid19 signature. Note: , GLRLM, GLDM, LD = long-term-deceased, LR = long-term deceased, NS = non-severe, S = severe, SI = short-term intubation , SD = short-term deceased.

	Features		Correlation S/NS	SI/SD		LR/LD
	Age		0.067		0.674		0.334
	Sex		0.132		-0.049		-0.059
	CRP		0.002		0.015		0.018
	HBP		0.033		0.293		0.332
	Diabetes		0.065		-0.130		-0.061
	Lymphocytes	0.033		0.020		0.012
	Fat Index		0.055		-0.192		0.122
	Disease Extent	0.328		-0.069		0.214
		Non-uniformity on the GLSZM	0.067		-0.137		-0.112
	Heart	Sphericity	-0.161		-0.246		-0.101
		Flatness	-0.126		-0.039		-0.110
		Minimum Length on the Axis	0.044		0.067		-0.083
			Left	Right Left	Right Left	Right
		Kurtosis	-0.284 -0.289 0.077	0.009	0.005	0.006
	Lung	Mean Absolute Deviation	0.305	0.322	-0.003 -0.001 0.017	-0.026
		Zone Emphasis on the GLSZM	0.299	0.318	-0.023 0.045	0.213	0.199
		Non-Uniformity on the GLSZM	-0.305 -0.305 -0.018 -0.031 -0.174 -0.138
		Variance on the GLSZM	0.305	0.348	0.018	0.031	0.174	0.138
		Mesh Volume	0.297	0.363	-0.087 0.024	0.209	0.125
		Volume Volume	0.297	0.363	-0.087 0.024	0.209	0.125
	Disease	Dependence					
		Non-Uniformity	0.266	0.338	-0.067 10 -4	0.202	0.168
		on the GLDM					
		Non-Uniformity on the GLDM	0.287	0.363	-0.079 0.017	0.203	0.142
		Non-uniformity					
			0.284	0.340	-0.076 0.037	0.194	0.123
		on the GLRLM					
	cases, their contribution is marginal, contrary to the other imaging characteristics.
	Discussion					
	AI-enhanced imaging, clinical and biological information proved his ability for identifying
	patients with severe short/long-term outcomes, bolstering healthcare resources under the extreme

Ensemble Techniques for Patients Stratification: Focus on COVID-19 Pneumonia and Cancer Table

  3.6: Prognosis of medical experts and their consensus for the non-severe (NS) versus Severe (S), Intubated (SI) versus Deceased (SD) and NS/SI/SD patients Note: Classification Performance Reader A (Senior), Reader B (Established), Reader C (Resident), Reader +++ (Consensus among Human Readers), Reader ---(Average performance of Human Readers).

		Balanced	Weighted	Weighted	Weighted
		Accuracy	Precision	Sensitivity	Specificity
	NS/SI/SD				
	Reader A	0.62	0.77	0.68	0.69
	Reader B	0.59	0.75	0.67	0.65
	Reader C	0.61	0.76	0.68	0.62
	Reader +++ 0.63	0.77	0.70	0.67
	Reader ---0.61 ±0.01 0.76 ±0.01 0.68 ±0.01 0.66 ±0.03
	Proposed	0.67	0.81	0.63	0.80
	NS/S				
	Reader A	0.69	0.79	0.70	0.67
	Reader B	0.66	0.77	0.70	0.62
	Reader C	0.65	0.76	0.70	0.60
	Reader +++ 0.67	0.78	0.70	0.64
	Reader ---0.67 ±0.01 0.77 ±0.01 0.70 ±0.01 0.63 ±0.03
	Proposed	0.70	0.81	0.64	0.77
	SI/SD				
	Reader A	0.81	0.87	0.88	0.75
	Reader B	0.79	0.84	0.84	0.74
	Reader C	0.81	0.87	0.88	0.75
	Reader +++ 0.81	0.87	0.88	0.75
	Reader ---0.81 ±0.01 0.87 ±0.01 0.87 ±0.01 0.75 ±0.03
	Proposed	0.88	0.94	0.94	0.81

Table 3

 3 

		Balanced	Weighted	Weighted	Weighted
	Classifier	Accuracy	Pecision		Sensitivity	Specificity
		Train Test Train Test Train Test Train Test
	L-SVM	0.77	0.62 0.81	0.7	0.74	0.63 0.81	0.61
	S-SVM	0.63	0.69 0.71	0.76 0.56	0.63 0.7	0.74
	AdaBoost 0.82	0.69 0.84	0.76 0.8	0.74 0.83	0.65
	Decision Tree	0.7	0.72 0.8	0.78 0.6	0.68 0.81	0.76
	Ensemble Classifier	0.82	0.69 0.84	0.76 0.8	0.74 0.83	0.65
	pressure of the current Covid-19 pandemic. The information obtained from our AI staging and
	prognosis could be used as an additional element at admission to assist decision-making.

.7: Performance for the Deceased (LD) and Recovered (LR) in the long-term outcome for each of the selected classifiers and their ensemble. Note: P-SVM = Support Vector Machine with a polynomial kernel; S-SVM = Support Vector Machine with a sigmoid kernel.
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  Table3.8: An ablation study of the different selected features. A leave-one-out method has been applied by removing one feature sequentially to test the features' importance and the performance robustness. Note: a) D0: disease extent, b) D1: disease variables that are shape/geometry related, c) D2: disease variables that are tissue/texture, d) O1: heart/lungs variables that are

	shape/geometry related, e) O2: heart/lungs variables that are tissue/texture, f) B1: age, gender,
	biological/obesity/diabetes/fat/high blood pressure. LD = long-term-deceased; LR = long-term
	deceased; NS = non-severe; S = severe; SI = short-term intubation; SD = short-term deceased.
	Study Case	Task	Balanced Accuracy Weighted Precision Weighted Sensitivity Weighted Specificity Training Test Training Test Training Test Training Test
		NS/S	0.73	0.70	0.82	0.81	0.67	0.64	0.80	0.77
	All Features	SI/SD LD/LR	0.90 0.82	0.88 0.69	0.92 0.84	0.94 0.76	0.92 0.8	0.94 0.74	0.88 0.83	0.81 0.65
		SD/LD/LR 0.77	0.71	0.8	0.77	0.78	0.74	0.9	0.82
		NS/S	0.73	0.7	0.82	0.8	0.68	0.65	0.79	0.74
	Without D0	SI/SD LD/LR	0.89 0.56	0.88 0.5	0.92 0.74	0.94 0.54	0.92 0.74	0.94 0.74	0.88 0.39	0.81 0.26
		SD/LD/LR 0.65	0.58	0.73	0.64	0.76	0.74	0.79	0.72
		NS/S	0.74	0.69	0.82	0.8	0.67	0.64	0.8	0.74
	Without D1	SI/SD LD/LR	0.89 0.56	0.88 0.5	0.91 0.74	0.93 0.54	0.91 0.74	0.93 0.74	0.88 0.39	0.81 0.26
		SD/LD/LR 0.65	0.58	0.73	0.64	0.76	0.74	0.79	0.72
		NS/S	0.73	0.69	0.82	0.8	0.67	0.64	0.8	0.74
	Without D2	SI/SD LD/LR	0.89 0.58	0.88 0.5	0.91 0.74	0.93 0.54	0.91 0.76	0.93 0.74	0.88 0.48	0.81 0.26
		SD/LD/LR 0.67	0.58	0.73	0.64	0.76	0.74	0.82	0.72
		NS/S	0.73	0.7	0.82	0.79	0.72	0.73	0.75	0.67
	Without O1	SI/SD LD/LR	0.89 0.58	0.88 0.5	0.91 0.73	0.93 0.54	0.91 0.74	0.93 0.74	0.88 0.42	0.81 0.26
		SD/LD/LR 0.66	0.58	0.72	0.64	0.76	0.74	0.81	0.72
		NS/S	0.75	0.69	0.83	0.8	0.67	0.62	0.82	0.76
	Without O2	SI/SD LD/LR	0.89 0.78	0.88 0.59	0.91 0.82	0.93 0.68	0.91 0.83	0.93 0.68	0.88 0.72	0.81 0.5
		SD/LD/LR 0.74	0.65	0.78	0.73	0.79	0.7	0.87	0.78
		NS/S	0.73	0.71	0.82	0.81	0.67	0.66	0.79	0.77
	Without B1	SI/SD LD/LR	0.67 0.74	0.58 0.53	0.74 0.79	0.65 0.64	0.74 0.79	0.67 0.68	0.6 0.7	0.48 0.37
		SD/LD/LR 0.58	0.41	0.59	0.48	0.59	0.48	0.73	0.66
		NS/S	0.71	0.58	0.8	0.73	0.68	0.58	0.73	0.58
	Clinical Only	SI/SD LD/LR	0.89 0.73	0.88 0.53	0.91 0.79	0.93 0.64	0.91 0.8	0.93 0.68	0.88 0.65	0.81 0.37
		SD/LD/LR 0.72	0.6	0.77	0.7	0.78	0.7	0.85	0.74

Table 3 .

 3 9: Training and test results obtained on Pamela cohort. Ablation results per features types are also reported.

	Features	Balanced Accuracy Training Test	Precision Training Test Training Test Training Test Test Sensitivity Specificity AUC
	All 8 features	0.89	0.75	0.87	0.69	0.84	0.65	0.94	0.86 0.84
	Only Genomics	0.83	0.73	0.73	0.62	0.79	0.65	0.87	0.81	0.81
	Only Clinical	0.73	0.69	0.68	0.68	0.6	0.51	0.86	0.86	0.80
	Only Imaging	0.66	0.48	0.7	0.26	0.4	0.15	0.92	0.82	0.52

Table 3 .

 3 10: Test confusion matrix on Pamela cohort.

	Ground Truth \Predicted Non-pCR	pCR
	Non-pCR	85.85%	14.15%
	pCR	35.42%	64.58%

Table 4 .1: Description of the dataset used in this study.

 4 The different tumors and tumor types together with the corresponding number of samples are summarised. Urothelial Bladder Carcinoma (BLCA), Breast Invasive Carcinoma (BRCA), Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma (CESC), Glioblastoma Multiforme (GBM), Head and Neck Squamous Cell Carcinoma (HNSC), Liver Hepatocellular Carcinoma (LIHC), Rectum Adenocarcinoma (READ), Lung adenocarcinoma (LUAD), Lung Squamous Cell Carcinoma (LUSC) and Ovarian Cancer (OV).

	Tumor Type	Clustering #Samples #Samples Types Classification #Samples Subtypes:
	BLCA	427	129	--	
				Normal:	144
				LumA:	582
	BRCA	1212	1223	LumB:	220
				Her2:	83
				Basal:	194
	CESC	309	--	--	
	GBM	171	827	--	
				Mesenchymal:	75
	HNSC	566	279	Basal: Atypical:	87 68
				Classical:	49
				iCluster1:	65
	LIHC	423	183	iCluster2:	55
				iCluster3:	63
	LUAD	576	230	--	
	LUSC	552	178	--	
				Proliferative:	138
	OV	307	489	Mesenchymal: Differentiated:	109 135
				Immunoreactive: 107
	READ	72	111	CIN: GS:	102 9

Table 4 .

 4 2: Comparison of the different evaluated algorithms in terms of PPI Enrichment Score (ES) with a threshold of 0.005, Dunn's Index (DI), Average ES and computational time. LP-Stability algorithm outperforms the rest of the algorithms reporting highest DI and Average ES score and the lowest computational time.

	Method	Best ES ES (%) DI (%) Clusters ES (%) DI (%) Clusters Best DI	Average ES (%) Average DI (%)	Time
	Random	100	36	2	100	36	2	54	19.8	-
	K-Means (Euclidean)	85.7	2.5	7	50	15.6	5	37	1.2	3h
	CorEx (Total Correlation)	100	2.4	5	100	2.4	5	71	0.6	>5 days
	LP-Stability (Kendall's)	100	40.6	27	100	40.6	27	96	38.5	1.5h

  and our proposed signatures.

	Signature	Balanced Accuracy (%) Weighted Precision (%) Weighted Sensitivity (%) Weighted Specificity (%) Training Test Training Test Training Test Training Test
	Random	96+/-5	84+/-2	95+/-5	87+/-3	94+/-7	86+/-4	99+/-1	97+/-1
	CorEx	100	85	100	90	100	91	100	98
	K-Means	100	90	100	94	100	94	100	98
	Referential [Thorsson, 2018]	100	85	100	89	100	89	100	98
	Proposed	99	92	99	94	98	93	100	99

  and our proposed signature. Only the 5 types of tumors with more than 50 × n_subtypes samples were studied

	Signature	Balanced Accuracy (%) Weighted Precision (%) Weighted Sensitivity (%) Weighted Specificity (%) Training Test Training Test Training Test Training Test
	Random	81+/-11	57+/-9	85+/-8	66+/-10	82+/-9	62+/-7	87+/-12	74+/-23
	CorEx	82+/-19	59+/-14	83+/-18	70+/-11	81+/-20	65+/-8	94+/-6	71+/-36
	K-Means	85+/-12	53+/-24	89+/-10	67+/-15	79+/-20	56+/-19	96+/-3	69+/-38
	Referential [Thorsson, 2018]	90+/-11	59+/-7	91+/-9	68+/-10	90+/-9	67+/-12	97+/-4	70+/-35
	Proposed	85+/-11	68+/-9	90+/-6	73+/-13	82+/-16	63+/-9	93+/-6	89+/-6

  Table 4.5. Predictive Power: Types is the balanced accuracy on test of the tumor types classification task results are provided in Table 4.6. Predictive Power: Subtypes is the average over all tumor types of the balanced accuracy on test for tumor subtypes classification the results are provided in Table 4.7. Biological Relevance is the average ES of the gene clustering method results provided in Table 4.2. Mathematical Relevance is the average DI score of the gene clustering method results provided in Table

Table 5 .

 5 3: Performance of the different learning frameworks over the Covid-19 dataset.

	Framework	Balanced Accuracy Weighted Precision Weighted Sensitivity Weighted Specificity Training Test Training Test Training Test Training Test
	No balanced error function, No path	0.65	0.59	0.75	0.7	0.61	0.6	0.66	0.57
	Balanced error function, No path	0.67	0.61	0.77	0.74	0.68	0.66	0.65	0.55
	Balanced error function, Path	0.67	0.71	0.78	0.8	0.69	0.73	0.65	0.69
	Combination	0.65	0.67	0.75	0.77	0.68	0.69	0.65	0.67
	Ensemble	0.73	0.7	0.82	0.81	0.67	0.64	0.8	0.77
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Table A .

 A 4: Predictive Power: Tumor Types, Proposed Signature Training-Test tumor types classification performance using the proposed signature (27 genes) after retraining on entire Training-Validation set Table A.5: Predictive Power: Tumor Types, Referential Signature [Thorsson, 2018] Training-Validation tumor types classification performance using the referential signature (78 genes). Voting Classifier is composed of classifiers having reached a balanced accuracy above 80% on validation and presenting a difference of balanced accuracy between training and validation below 20%.

	Classifier	Balanced Accuracy (%) Weighted Precision (%) Weighted Sensitivity (%) Weighted Specificity (%) Training Test Training Test Training Test Training Test
	Linear SVM		89	91	90	89	88	99	98
	poly SVM		87	97	89	97	88	100	98
	RBF SVM		88	97	90	97	88	100	99
	Gaussian Process		88	97	92	97	92	99	98
	Random Forest		90	93	92	91	90	99	99
	MLP	100	87	100	90	100	89	100	98
	XGBoosting	100	91	100	94	100	94	100	98
	Voting Classifier		92	99	94	98	93	100	99
	Classifier	Balanced Accuracy (%) Weighted Precision (%) Weighted Sensitivity (%) Weighted Specificity (%) Training Validation Training Validation Training Validation Training Validation
	Nearest Neighbors		70	87	72	86	72	97	95
	Linear SVM		83	87	84	86	84	98	98
	poly SVM		78	94	79	93	78	99	97
	sigmoid SVM		55	59	58	46	48	94	94
	RBF SVM		80	99	82	99	82	100	97
	Gaussian Process		86	96	88	96	88	99	98
	Decision Tree		45	54	46	54	52	90	90
	Random Forest		75	77	75	75	73	97	96
	Neural Net	100	80	100	80	100	80	100	97
	AdaBoost		52	54	56	53	55	93	93
	Gaussian Naive Bayes		31	56	48	41	41	83	84
	Bernouill Naive Bayes		27	37	31	37	35	84	85
	QDA		65	84	73	83	73	97	96
	Gradient Boosting		76	100	82	100	82	100	97
	Voting Classifier		87	99	88	99	88	100	98

Table A .6: Predictive Power: Tumor Types, Referential Signature [28] Training

 A -Test tumor types classification performance using the referential signature (78 genes) after retraining on entire Training-Validation set

	Classifier	Balanced Accuracy (%) Weighted Precision (%) Weighted Sensitivity (%) Weighted Specificity (%) Training Test Training Test Training Test Training Test
	Linear SVM		82	87	81	86	81	98	98
	RBF SVM		80	99	81	99	81	100	97
	Gaussian Process		83	95	83	95	83	99	97
	Voting Classifier	100	85	100	89	100	89	100	98

Table A .8: Predictive Power: Tumor Types, Random Signatures

 A Training-Test tumor types classification average performance over 10 random signatures (27 genes each) after retraining entire Training-Validation set

	Classifier	Balanced Accuracy (%) Weighted Precision (%) Weighted Sensitivity (%) Weighted Specificity (%) Training Test Training Test Training Test Training Test
	RBF SVM	90+/-1	79+/-2	88+/-2	79+/-1	88+/-2	78+/-2	98+/-0	97+/-0
	Gaussian Process	89+/-1	80+/-1	89+/-1	80+/-1	89+/-1	81+/-1	98+/-0	97+/-0
	Voting Classifier 96+/-5	84+/-2	95+/-5	87+/-3	94+/-7	86+/-4	99+/-1	97+/-1
	A.3 Appendix: Chapter 5					

A.3.1 Optimizing over {x k,p }

For a fixed p.

Ēk

p (x, w) =

Remerciements

Chapter 5. GHOST: Graph Higher-Order Similarity Topologies Learning for Classification

and Dual Decomposition, which allow efficiency and great flexibility in the features to consider.

In particular, it enables to leverage the higher-order graph structures information efficiently. The optimization technique employed ensures the tractability of very high dimensionality problems using hundreds of features and samples. On several essentially different datasets from various fields, we compare the classification results between state-of-the-art baselines and our proposed classifier, relying on the distance learned to prove this metric formulation's relevance.

higher-order metrics defined in Section 5.3.9. We considered the third-order, the cluster metric, and the combination of both.

Results and Discussion

Synthesized Dataset

In this subsection, we considered the two synthesized clusters. This experiment aimed to assess the capacity of our higher-order framework to leverage information from a graph according to its level of noise and combine it with usual second-order metrics to perform classification. We used as a baseline the second-order framework performances with and without considering path length information in a graph. First, we reported the results in the second-order without graph information nor balanced error function in Table 5.1. Here, we reported the performance of the different strategies to infer the label of a new sample defined in Section 5.3.10. We observed superior results of the distance to cluster center approach on all metrics. This trend was consistent in the different experiments we performed. Thus, for concision sake's in the following, we only reported results from this strategy. Table 5.1: Results with the synthetic dataset of the different experiments in the second-order settings for the various inference strategies.

Table 5.2 presents the comparison of the performance using the different frameworks defined in the Chapter. The second-order results with path length information have been obtained with the ideal graph without noise. The foremost point to notice is the greater performance and lesser overfitting of the methods leveraging graph information when resorting to graph with a rewiring probability below 0.4. Although, it is worth mentioning that the second-order metafeatures do not compensate for the noise brought by the graph-based meta-features for the frameworks relying on graph information with p above 0.4. Then, notice that whereas the cluster and the third-order frameworks alone performed similarly, their combination reported

Appendix

A.1 Appendix: Chapter 3 Another highly promising approach to better leverage medical data for classification is the TPOT [Olson, 2016] approach which aims to automatically determine the most efficient pipeline to process data from the preprocesssing and the feature selection to the actual prediction. This task is very similar to what we proposed in this chapter for Cvoid-19 staging. Thus, Table A.1 offers a comparison to the results obtained when applying the TPOT framework on the N/NS classification with the same training/test splits. We performed this experiment at full scale allowing 20 generations, a population size of 200 a 10-fold cross-validation and we scored the results through balanced accuracy, our reference metric for optimization. We report better results with our proposed ensemble method than with the automatically generated pipeline. In particular, we observe an overfitting on the training set performance. This overfitting was reduced with less iterations however, testing results where strongly impaired.

Table A.1: Performance for the Severe (S) and Non-Severe (NS) short-term outcome for each of the top-5 selected classifiers and their ensemble presented in Section 5. Note: L-SVM = Support Vector Machine with a linear kernel; RBF-SVM = Support Vector Machine with a Radial Basis Function kernel. 

Classifier

A.2 Appendix: Chapter 4

We detail below 27 genes of our proposed signature and their main functions. We also provide a brief summary of the analysis obtained using GTEx Portal on July 2020 (www.gtexportal.org):

• HSFX1: DNA binding transcription, GTEx: Overexpressed in brain cerebellum and cerebellar hemisphere and ovary tissues

• C3P1: endopeptidase inhibitor activity, GTEx: Highly overexpressed in liver tissues

• CCDC30: Coiled-Coil Domain, GTEx: Slightly overexpressed in all brain tissues

• CNRIP1: cannabinoid receptor, GTEx: Particularly expressed in many tissues and in particular all brain tissues

• CD53: regulation of cell development GTEx: Highly expressed in blood and lymphocytes

• SPRR4: UV-induced cornification, GTEx: more expressed in sun exposed tissues particularly skin

• RIF1: DNA repair, GTEx: expressed in many tissues including heart, blood lymphocytes and brain

• COL1A2: collagen making, GTEx: highly overexpressed in cultured fibroblasts

A.2. Appendix: Chapter 4 III

• ZNF767: gene expression, GTEx: highly expressed in several tissues including uterus, vagina, ovary, brain cerebellum and cerebellar hemisphere

• CD3E: antigen recognition (linked to immunodeficiency), GTEx: more expressed in whole blood tissues

• MATR3: nucleic acid binding and nucleotide binding, GTEx: highly expressed in several tissues including uterus, vagina, ovary and brain

• NCAPH: Cell Cycle, Mitotic and Mitotic Prometaphase, GTEx: highly expressed in EBVtransformed lymphocytes and on a smaller extend in cultured fibroblasts

• ASH1L: transcriptional activators, GTEx: expressed in many tissues including heart, blood lymphocytes, uterus, vagina, ovary and brain

• ANKRD30A: DNA-binding transcription factor activity (related to breast cancer), GTEx: more expressed in breast mammary tissues

• GNA15: among its related pathways are CREB Pathway and Integration of energy metabolism, GTEx: especially overexpressed in oesophagus mucosa

• GADD45GIP1: Among its related pathways are Mitochondrial translation and Organelle biogenesis and maintenance, GTEx: expressed in many tissues slightly overexpressed in cultured fibroblasts

• CD302: cell adhesion and migration, GTEx: especially overexpressed in lung and liver tissues

• SFTA3: Among its related pathways are Surfactant metabolism and Diseases of metabolism, GTEx: Overexpressed in Lung and thyroid

• C1orf159: Protein Coding gene, GTEx: especially overexpressed in testis

• RPS8: Among its related pathways are Viral mRNA Translation and Activation of the mRNA upon binding of the cap-binding complex and eIFs, and subsequent binding to 43S, GTEx: especially overexpressed in ovary tissues

• ZEB2: Among its related pathways are MicroRNAs in cancer and TGF-beta Receptor Signaling, GTEx: especially overexpressed in spinal cord (c-1) and tibial nerve

• GSX1: sequence-specific DNA binding and proximal promoter DNA-binding transcription activator activity, RNA polymerase II-specific, GTEx: especially expressed in hypothalamus
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• ADNP: Vasoactive intestinal peptide is a neuroprotective factor that has a stimulatory effect on the growth of some tumor cells and an inhibitory effect on other, GTEx: overexpressed in quantity of tissues, especially so in EBV-transformed lymphocytes, testis, ovary and uterus

• CLIP3: plays a role in T cell apoptosis by facilitating the association of tubulin and the lipid raft ganglioside GD3, GTEx: expressed in many tissues slightly overexpressed in EBV-transformed lymphocytes

• YEATS2: Among its related pathways are Chromatin organization, GTEx: expressed in many tissues overexpressed in EBV-transformed lymphocytes

• ACBD4: Among its related pathways are Metabolism and Peroxisomal lipid metabolism, GTEx: expressed in many tissues overexpressed in liver, thyroid, uterus and vagina

• SNRPG: Among its related pathways are mRNA Splicing -Minor Pathway and Transport of the SLBP independent Mature mRNA, GTEx: expressed in many tissues strongly overexpressed in EBV-transformed lymphocytes and cultured fibroblasts

In Table A.3 we present the training/ validation results of the different classifiers using the LP-Stability and our proposed signature. Moreover, in Table A.4, we present the results for the training/ test tumor classification results for our proposed signature. The table reports the performance of the selected algorithms together with the voting (ensemble) classifier. 

VII

We still have here a complex CRF energy to minimize. To solve this problem in general settings we could use a replacement strategy leveraging the binary nature of the variables as proposed in [Fix, 2011]. However, it would lead to a costly optimization which would hinder the tractability of the whole framework. Thus, we exploit the particularity of our distance learning task and impose a positivity constraint over the distance. Thus, ∀p, p , q, ūk p,p ,q (1) > 0 and we have no constraint on x p ,q , then, fixing ∀p = p, q, x p ,q = 0 will decrease the objective function. So, it come down to:

(ū k p,q (1) + ūk p,q,q (1)x q,q + ūk p,p,q (1))x p,q + q φp,q (x p,q ) + φp (x p )

(ū k q,q (1) + ūk q,q,q (1)) + λ p,q )x q,q ) (A.2)

Minimizing Ēk p (x, w) requires the constraints φp (x p ) = 0 and φp,q (x p,q ) = 0 as the alternative is an infinite cost. It imposes there exists one and only one q such that x p,q = 1 and for that q, x q,q = 1. Thus, ∀q, if we denote θ k q = ūk q,q (1) + ūk q,q,q (1)

+ λ p,q and θk q = [θ k q ] + + ūk p,q (1) + ūk p,q,q (1) + ūk p,p,q (1) with [z] + = max(0, z), the terms containing x q,q are (u p,q,q x p,q + θ k q )x q,q . Then, to decrease our objective function, we have to set x q,q = 1 if θ k q < 0 and the cost u p,q,q will only be paid if p is assigned to q. Regarding this assignment, the cost of x p,q = 1 will be minimal iff q = arg min θk q where the term [θ k q ] + accounts for the extra cost of satisfying x p,q = 1 =⇒ x q,q = 1 will entail if x q,q did not verify θ k q < 0 and so would have been set to 0.

Lemma 9

xp q,q =[θ k q < 0] xp p,q =[q = q] where q = argmin q ( θk q )

(A.3) with θ k q = ūk q,q (1) + ūk q,q,q (1) | V k | +1 + λ p,q and θk q = [θ k q ] + + ūk p,q (1) + ūk p,q,q (1) + ūk p,p,q (1)

A.3.2 Optimizing over {x

As previously, for a better tractability we will enforce the positivity constraint on our distance, so ∀p = q, x p ,q = 0 as ūk q,p ,q > 0 and we have no constraint over x p ,q when p = q. Regarding x q,q , we consider two cases:

(i) ∀q ∈ C, xk,C q,q = 0. Then, the optimal energy is OP T
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(ii) ∃q, xk,C q,q = 1. Then:

In this case, ∀q ∈ C,

(ū k q,q (1) + ūk q,q,q (1)

Glossary

Bias errors the model will commit because of simplifying assumptions. 15,17,18,32 BLCA BLadder CAncer. xii,72,75,76,82,83,86,88,89 BRCA BReast CAncer. ix,x,xii,72,75,76,82,83,[85][86][87][88][89][90]72,75,76,82,83,[85][86][87][88][89] Clique a subset of vertices of a graph such that every two distinct vertices in the clique are adjacent. 2 CRF Conditional Random Field. 6 GBlioblastoma Multiforme. ix,x,xii,75,76,82,83,85,86,42,43,55 GLRLM 42,43,53,55 GLSZM 43,72,75,76,82,83,85,86,88,89 LIHC LIver Hepatocellular Carcinoma. ix,x,xii,75,76,82,83,85,86,89 LUAD LUng ADenocarcinoma. ix,x,xii,72,75,76,82,83,85,86,88 LUSC LUng Squamous Cell carcinoma. ix,x,xii,72,75,76,82,83,85,86,88,89 Medoid the sample the closest to the cluster center. 72 OVarian cancer. xii,72,75,76,82,83,[85][86][87][88][89]75,76,82,83,88,89 Variance the variation the estimate function will incur under small fluctuations of the training data. 12, 16, 17 XI
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