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Résumé
Cette thèse introduit l’usage d’approches reposant sur les « conditional random fields » à

diverses applications médicales et données omiques. Ces méthodes permettent de tirer parti
au mieux d’informations structurelles lourdes à interpréter et analyser dont, en particulier, des
propriétés notables provenant de la théorie des graphes. L’emploi de la théorie des graphes d’ordre
supérieur revêt un intérêt tout particulier pour l’expression des relations biologiques complexes.
Nous démontrons leur pertinence dans les domaines du « clustering » et de la sélection de
variables pour la classification. Nous nous sommes appuyés sur plusieurs applications médicales
et données omiques pour mettre ces résultats en lumière.

Dans un premier temps, nous avons proposé un système générique et résilient de sélection
de variables et de classification reposant sur des méthodes d’ensemble pour une augmentation
significative des performances. Notre cas d’étude principal pour cette partie est la caractérisation
de la sévérité de la maladie et l’issue clinique de patients atteints par la COVID-19. Dans ce but,
nous avons recouru à des images scanners et plus précisément sur des informations extraites de
segmentations automatiques des organes et zones lésées des poumons que nous avons combinées
avec des informations cliniques obtenues en pratique de routine. Après une étape fondamentale de
réduction de dimension, nous avons identifié un nombre restreint de facteurs déterminés comme
primordiaux pour la classification. Nous reportons des performances prometteuses dépassant
celles de radiologues experts sur toutes les tâches considérées. Nous avons étendu plus avant et
adapté cette méthodologie pour traiter d’autres données omiques, maladies et attendus médicaux.
Nous nous sommes particulièrement intéressés à la prédiction de la réponse à un traitement
d’immunothérapie pour des patients atteints de cancer du sein. Cette étude multi-omique utilise
des données génétiques, cliniques et des données histopathologiques valorisées par un algorithme
de segmentation automatique des lymphocytes.

Par la suite, nous étudions un procédé de clustering pour la définition d’une signature de gènes
présentant un intérêt clinique vis-à-vis de la caractérisation pan-cancer de lésions. L’oncologie
représente un domaine d’application parfait pour ce type d’approche du fait de l’hétérogénéité
tumorale et de l’importance particulière de l’étude de cette affliction dramatique à l’ampleur
mondiale. Bien des études se sont essayées à la description du cancer grâce à la génomique.
Cependant, la complexité de la tâche réside dans la grande dimensionnalité des données et le
coût tant matériel, humain et temporel de la réalisation d’expériences visant à déterminer les
fonctions de gènes encore inconnus. Nous prouvons la pertinence de la signature génétique très
compacte générée par notre méthode en exploitant des approches supervisées et non-supervisées
pour la caractérisation des types et sous-types de tumeurs. Nous avons également employé des
mesures statistiques de significativité pour faire état de l’intérêt biologique des gènes que nous
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avons isolés. Dans cette étude, nous portons un intérêt substantiel à l’évaluation des techniques de
clustering et proposons une méthode de comparaison spécifique à la génomique. Notre approche
combine la prise en compte de critères mathématiques et biologiques afin d’établir des clusters
présentant une bonne séparation des gènes guidée par les données employées et en accord avec
les connaissances actuelles d’interactions entre protéines.

Finalement, nous avons défini une nouvelle approche d’apprentissage de distance d’ordre
supérieur à viser de sélection et de pondération de variables. Cette formulation et la méthode de
résolution que nous proposons se fonde sur les « conditional random fields » et permet de gérer
efficacement la complexité structurelle d’informations d’ordre-supérieur. Fort de la grande ex-
pressivité de ce paradigme, nous avons exploré diverses propriétés de théorie des graphes d’ordre
supérieur telles que les cliques, l’excentricité, la connectivité et la longueur des chemins. Nous
établissons que ces attributs, dans le cadre d’une tâche de classification, possèdent une grande
expressivité et permettent d’obtenir des résultats supérieurs à ceux des méthodes standards.



Abstract
This thesis presented conditional-random-field-based approaches for medical applications on

diverse omics data. This methodology allowed leveraging more complex, structural informa-
tion and notable assets from graph theory, particularly interesting to express intricate biological
properties. We demonstrated their usefulness for clustering and feature selection towards classi-
fication. Their relevance was exemplified over several medical applications and omics data.

First, we proposed a generic and resilient feature selection and classification pipeline we de-
veloped for COVID-19 patients staging and outcome prediction using only CT scans and clinical
information. Relying on an automated segmentation technique, we extracted imaging informa-
tion. After a required step of dimensionality reduction, we singled out a few relevant factors for
classification. We obtained promising performance outperforming radiologist experts on all the
tasks. We further extended and adapted our methodology to cope with other different omics
data, diseases, and medical expectations.

Second, we focused on a clustering process towards the determination of a clinically relevant
gene signature for pan-cancer lesions characterization. Oncology is a perfectly suited area for this
kind of approach as tumors present a high heterogeneity while being a major affliction worldwide.
Many studies are involved in its description through genomics. However, the task’s complexity
dwells in the data’s large dimensionality and the experimental cost for identifying unknown gene
functions. We highlighted our compact signature’s relevance by resorting to unsupervised and
supervised tumor types and subtypes distinction combined with statistically significant biological
considerations.

Finally, we formulated a new higher-order distance learning framework for feature selection
and weighting, relying on conditional random fields and clustering. We proposed a mathematical
optimization method for its resolution able to handle the high-order information complexity
efficiently. Strong from this paradigm’s expressiveness, we investigated the use of high-order
graph theory properties as cliques, eccentricity, connectivity, or path lengths. We established
those attributes’ informativeness in classification settings and reported superior results than with
standard approaches.
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Chapter 1

Introduction
Recently, the medical field has greatly benefited from many technical advances enabling the

collection of constantly more medical data of diverse modalities. One tremendous improvement
was in DNA and RNA sequencing techniques [Kurian, 2014] which has permitted a more stan-
dard use of genomics information for specific diseases while promoting proteomics data. The
rising awareness of the macroscopic clinical variables’ informativeness and the spreading of new
analysis techniques enabled to amass a substantial quantity of medical records. Besides, imaging
machines’ routine use has generated quantities of images such as CT scans, MRI, ultrasound,
or even histological images. Their variety and complementarity offer high promises towards the
definition of a holistic model while at the same time representing an incredibly complex task to
tackle. Indeed, biological processes understanding and modeling require leveraging intricately
intertwined high-dimensional data.

To tackle the data high-dimensionality, previous medical studies relied on standard correla-
tions to select the most relevant genes [Lippitz, 2016], drugs [Konecny, 2000] or environmental
causes [Correa, 1981] for diverse diseases and contexts. Notwithstanding, mere correlation, even
if allowing to identify interesting variables that might offer a good insight on a disease, is gen-
erally not enough to enlighten on prominent aspects as patients’ outcome, treatment, or disease
characterization. Towards these objectives, a predictive-oriented approach considering the data
relationships in their entirety is required.

In parallel, the field of machine learning has flourished these last years and highly expanded
its areas of application. When dealing with such an amount of data and variables, machine
learning approaches are especially appropriate for their versatility and efficiency. Thus, it mo-
tivated developing a flurry of machine learning algorithms to provide continuous or categorical
predictions from any type of data and at destination of any application field. In particular,
thanks to its main paradigms with supervised, semi-supervised, unsupervised, and reinforcement
approaches, machine learning became of prime importance for the medical community. The
supervised and unsupervised approaches have been intensely investigated in medicine. Indeed,
unsupervised techniques enable uncovering unknown relations without any a priori knowledge
or any need for annotation. In particular, clustering [Xu, 2008] is a widespread technique used
to discover new groups of variables as genes or new relations between samples, for instance,
tumor samples genomic similarity [Alon, 1999]. Clustering’s strength dwells in the ability to
discover previously unknown relations and patterns in the data. It represents an excellent tool
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for exploring biological properties without the need to resort to expensive and time-consuming
wet-lab experiments. Supplementally, supervised techniques seek to optimize their predictions
given a set of targeted annotations, referred to as ground truth. Their versatility empowers the
determination of highly clinically relevant tasks such as the classification of samples [Sharma,
2016], prediction of treatment response [Dettling, 2003], and outcome [Horvat, 2018]. Therefore,
machine learning’s potential benefits in medicine are tremendous and could enhance biological
process understanding, drug discovery, patient care, and treatment.

With this aim, a whole research field has arisen to design powerful machine models able to han-
dle still untractable information amounts. Besides, while machine learning enabled a crucial shift
from previous studies, merely aiming at finding correlations between variables and outcomes, to
new approaches adopting a predictive goal [Obermeyer, 2016]. Nevertheless, the daunting chal-
lenge of the data’s critical dimension and their highly entangled relations in determining medical
outcomes remains a significant hurdle. In the medical field, the variables’ dimensionality usu-
ally dramatically exceeds the number of samples. This hindrance leads to the well-documented
and dreaded curse of dimensionality, which implies a great difficulty to generalize and poor re-
sults [Friedman, 1997]. To cope with this difficulty, feature selection techniques [Jain, 1997] are
generally employed. They resort to various strategies to find the most predictive variables while
eliminating redundancy and avoiding information loss. Prominent feature selection techniques
are Lasso [Tibshirani, 1996], Elastic Net [Zou, 2005] or statistics-based approaches as for instance
chi2 [Liu, 1995]. Besides, medical applications critically require excellent performances for actual
applicability. Thus, improving performance soundness is crucial. Towards this end, ensemble
processes [Ruta, 2005] intend to combine algorithms strengths and to be leveraged for both
feature selection and classification tasks. In addition to this model robustness shortfall on med-
ical applications, most machine learning techniques’ lack of interpretability impedes their daily
clinical use despite their great potential [Vellido, 2019]. Indeed, despite their state-of-the-art
performance in most application fields, the ever more spread deep learning approaches face some
reluctance regarding their clinical use. It is due mainly to the necessity of robust, explainable
results. For patients’ care-related questions, the process to come out with a prediction regard-
ing, for instance, outcome or treatment has to be motivated by medical arguments a physician
can comprehend and analyze. Notwithstanding, this particular point is the main flaw of many
machine learning approaches hampering their use for clinically relevant tasks.

At the same time, graph modeling development represents a significant opportunity to leverage
complex, intricate high-dimensional data. Originally, in our ever more interconnected society, the
field of graph theory has flourished in studying social network properties [Barabâsi, 2002; Wang,
2011]. While bringing potent analysis tools, they aim to model convoluted relations between
groups of subjects. The graph structure models the subjects as nodes and the relations as edges.
Complex relations are generally analyzed through the concept of cliques (a subset of vertices of a
graph such that every two distinct vertices in the clique are adjacent). The notion of path length
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in a graph is also of prime importance to characterize two subjects’ similarity. Besides, a node’s
centrality and connectivity are crucial to assess its importance in the graph. Graph theory has
tremendous applications. We can evoke works on subjects’ distance in graphs demonstrating
interesting social sciences theories as the degree of separation, first exemplified by Milgram and
theorize in [Kleinfeld, 2002]. This so-called small world theory is the basis of many studies and
has been extended to many real-life complex networks, from co-authorship graphs [Koseoglu,
2016] to protein-protein interactions graphs [Telesford, 2011]. It also enables identifying critical
subjects ensuring connection in a network or groups of great cohesiveness defining communities.
From spotting weak points in physical [Demšar, 2008] or internet [Krioukov, 2004] networks to
modeling opinion diffusion processes [Battistella, 2018], graphs resilience and adaptability are
remarkable. Therefore, graph theory adoption in the biological and medical communities has
been swift. However, often employed in elementary settings, graphs latent potentials are yet to
be exploited in those fields. Notably, their ability to consider high-order interactions has been
heavily underrated because of the difficulty to elaborate tractable models efficiently accounting
for those properties. In machine learning, several fields are investigating this new paradigm. For
instance, we can report the recent efforts towards new techniques for leveraging complex graph
structures as the generation of ever more efficient embeddings [Çelikkanat, 2018], hyper-graph
partitioning [Gottesbüren, 2019] or decomposition [Dudek, 2019]. Besides, at the junction of
computer science and biology, the need for expressive and complex dependency structures is
dire. For instance, some innovative holistic approaches are considering more complex techniques
to fuse data of different kinds [Wang, 2018] or in drug discovery to better exploit proteins 3D-
structures [Becker, 2003]. In general, high-order properties are leveraged only at a local level [Yin,
2017] or by considering nodes co-occurrences in some small patterns [Benson, 2016] as cliques of
order 3. These approaches are only surrogates shadowing the humongous amount of information
leveraged in higher-order structures [Grover, 2016].
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1.1 Medical Incentives

1.1.1 Genomics and Cancerology

Medicine is a primordial research axis because of the stakes regarding the improvement of
healthcare and the better understanding of human biology. Notwithstanding, the challenges
are high as the colossal number of patients is ever increasing, the heterogeneity of the diseases
is significant, and the complexity of the interactions in a living system is extreme. Therefore,
mathematics and computer science fields have a lot to offer to the medical community by bring-
ing a systemic and automatic approach to tackle the vast amount of information and account
for the complexity of the structures to model. Such algorithms are all the more attractive in
genomics settings, the field of study of organisms’ whole genomes, by opposition to genetics,
the field of study of the role of genes in inheritance (definitions of the National Human Genome
Research Institute). Interest in Genomics is exemplified by the Centers for Disease Control and
Prevention, which states that whole genome studies constitute a crucial factor in 9 of the 10
leading causes of death in the United States. However, knowledge about gene interactions and
correlations to diseases is costly to obtain through time-consuming wet-lab experiments. Hence,
genes’ omnipresence in biology and medicine induces a vast array of possible applications for
machine learning techniques. Thus, data-driven approaches that allow tackling the intricacy of
gene relations efficiently and fast are required.

In particular, cancer is the leading cause of death worldwide, with the appalling numbers of
19.3 million new cases diagnosed and 10 million deaths in 2020 [Bray, 2018]. It is a multifaceted
disease [Bertucci, 2008], still hard to comprehend, and presenting a variety of types and sub-
types in which severity, outcome, and treatment have frequently been highly correlated to a
combination of environmental components and genes expressed [Hanahan, 2011]. Recent break-
throughs in immunotherapy have profoundly impacted the landscape of cancer treatment, such
as lymphomas [Ansell, 2015], lung [Reck, 2016] and kidney cancers [Motzer, 2015]. It offered
a new efficient alternative for patients with advanced cancers with a tumor response from 10
to 40% on the long term [Chen, 2017a; Hellmann, 2017]. However, finding relevant biomarkers
enabling the definition of immune checkpoint inhibitors is a challenging task of prime impor-
tance to develop immunotherapy benefits and patients coverage. Cancerology thus constitutes
a perfect application for genomics studies aiming to bring a systematic and automatic analysis
of relevant genes [Garraway, 2013]. An abundance of studies has tackled the problem in various
ways and, genomics [Balmain, 2003] has dramatically evolved and benefited from machine learn-
ing advances to address various aspects of cancer complexity as the convoluted task of subtypes
characterization. However, both fields often rely on a priori expert knowledge guiding the defi-
nition and selection of variables to consider and lack agnostic approaches. Also, the great tumor
heterogenity [Marusyk, 2010] represents a major hurdle to cancer analysis and understanding.
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1.1.2 Covid-19 Pneumonia

COVID-19 or SARS-Cov-2 is a new infectious disease that has been identified in 2019 in
China. Since then, it has spread worldwide and has been characterized as a pandemic by the
World Health Organization in March 2020 [Bedford, 2020]. This disease cause is a novel Beta
coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) [Anonym,
2020]. SARS-Cov-2 infects the airway epithelial cells with consequences ranging from no or
few symptoms to acute respiratory distress, the leading cause of death. Symptoms include a
decrease in the number of lymphocytes and white blood cells, new pulmonary infiltrates on chest
radiography, and no noticeable improvement after treatment with antibiotics for three days [Zhou,
2020b]. The SARS-Cov-2 pandemic had caused more than 1.6 million deaths worldwide by the
end of 2020 and has overwhelmed healthcare resources in most countries. Disease assessment,
staging, and prognosis are a bottleneck for patients, health care professionals, and health care
facilities. Reverse-transcription polymerase chain reaction (RT-PCR) is the referential method
to confirm the infection by identifying viral RNA. However, its positivity can be delayed, and
false negative RT-PCR results can be encountered, especially with some of the new variants of
the disease. Chest Computed Tomography (CT) scans allow the early detection of Covid-19
caused pneumonia, particularly when performed more than 3 days after symptoms onset. Chest
CT is faster and can rule out differential diagnoses such as bronchopneumonia of bacterial origin,
requiring antibiotics [Ai, 2020]. This has led to chest CT resort as a primary tool for patient
triage in several centers during the pandemic.

The Covid-19 pandemic [Zhu, 2020] has dramatically shaken the whole world and generated
considerable pressure on hospitals. This coronavirus has tried their adaptability and resources
management ability. In a time of shortage, institutions had to optimize beds, intubation ma-
chines, and personnel allocation while doctors were facing a new disease; they were still unex-
perimented to fight [Zhou, 2020a]. Many machine learning studies have attempted to provide an
automatic data-driven solution leveraging the already substantial number of patients to learn on
in this context.

In recent years, literature was overflown by computer vision adaptations to medical imaging
tasks [Chassagnon, 2020b; Beutel, 2000] to better leverage the imaging information extracted
from the data. In particular, the flourishing field of radiomics considering different first and
second-order, shape and texture features obtained highly promising results [Kumar, 2012; Sun,
2018; Yip, 2016]. All the experience gathered through these studies brings valuable insight
into coping with Covid-19 challenges. More specifically, the tremendous amount of work that
has already been carried out on other Pneumonia diseases will be of great benefits in this con-
text [Chassagnon, 2019].
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1.2 Technical Incentives

The technical obstacles when dealing with medical applications of machine learning are signifi-
cant. We can evoke the aforementioned dimensionality curse, the need for excellent, robust, and
interpretable results. To cope with those difficulties, we investigated two prominent paradigms
combination.

1.2.1 Clustering Honing

Clustering is a prominent unsupervised technique aiming to unearth latent patterns in the data
and establish uncharted relations between samples. Nonetheless, the task’s intrinsic difficulty in
assessing the obtained clusters’ pertinency remains a formidable hurdle for both clustering selec-
tion and comparison. This particular limitation is all the more critical that plenty of algorithms
relying on distinct properties exist. To cope with this issue, several mathematical and field-
specific metrics have been proposed [Kaufmann, 1987; Wagner, 2015]. However, in genomics, the
lack of a standard evaluation method encompassing both mathematical well-definition properties
and a concrete consideration of characteristics required for field experts impairs many studies’
reliability.

1.2.2 Higher-Order Conditional Random Field Harnessing

Conditional Random Field (CRF) is a family of potent statistical graphical model which has been
well-exploited over the years in the fields of computer vision, medical images, or general machine
learning. It consists of an energy optimization task where we seek to assign labels minimizing
an objective function composed of unary, pairwise, or higher-order potentials [Komodakis, 2010].
CRF is an auspicious approach as it enables predictions consistent with structural dependencies
at the difference of standard classifiers considering each sample independently. Those relations
are represented by the graph edges in the pairwise case. More generally, higher-order relations are
composed of interdependencies represented by sets of nodes. Then, the computational cost for
leveraging such complex systems is soaring. Several approaches have been tackling the challenging
optimization of higher-order CRF with some limitations as the exponential increase of variables
or the generalizability [Ishikawa, 2010; Fix, 2011].

1.3 Objectives of the Thesis

This thesis work aims to offer machine learning and graphical-model-based solutions to diverse
medical problems. Graph-theory represents the articulation between the different parts and its
integration to standard machine learning pipelines is the ultimate goal. In particular:

• Chapter 3 provides a robust approach for feature selection and classification problems. Its
main application focuses on healthcare resources management to alleviate the pressure due
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to the Covid-19 pandemic over hospitals. This work’s objective is to determine Covid-19
severity relying only on standard CT scans and clinical information. We further prove
the versatility of our approach through a task of treatment response prediction for breast
cancer patients and a task of disease severity determination for atopic dermatitis.

• Chapter 4 aims to provide an automatic and unbiased methodology for identifying clinically
relevant genes for tumor tissue characterization. This study singles out a low dimensional
gene signature discriminative of the tumor sample types and subtypes. Thus, it offers
an alternative to the expensive and time-consuming wet-lab experiments to establish gene
characteristics.

• Chapter 5 intents to present an innovative theoretical approach to leverage the higher-order
relations existing naturally in medical data by learning a dedicated distance metric over
the data manifold.

1.4 Main Contributions

Each chapter of this thesis work provides distinct original contributions tackling feature selec-
tion, outcome prediction and clusters discovery for diverse data types.

Chapter 2 introduces the mathematical foundations of the different methods we leverage in
the remaining of the thesis to provide a self-contained work. Moreover, it presents and sum-
marizes the different supervised and unsupervised techniques we exerted for feature selection,
classification, clustering and the conditional random field approach along with their respective
advantages and limitations.

Chapter 3 proposes an end-to-end machine learning procedure for feature selection and classi-
fication for medical applications. Its main focus is predicting from Covid-19 patients CT-scans
the severity of the disease, but it also presents a task of treatment response prediction for cancer
patients and another one of atopic dermatitis severity determination. In Covid-19 context, we
single out the crucial factors of comorbidities from both images and clinical information. Using
those selected features, we managed to outperform trained radiologists in the patients’ outcome’s
determination. This work has been published in [Chassagnon, 2020a; Battistella, 2021c].

In Chapter 4, we deal with genomics and cancerology through unsupervised clustering. We
aim to provide a methodology for establishing groups of genes having a similar influence on
cancer, and to design a low-dimensional cancer-relevant gene signature. This work first emphases
the need of a joint use of mathematical and biological metrics to estimate the well-definition
of genes clusters. We demonstrate our approach’s strength on 10 different cancer types for
which the generated signature outperforms all baseline signatures in terms of expressiveness,
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biological property, and clinical relevance. This work has been published in [Battistella, 2019]
and submitted to IEEE transactions on bioinformatics and computational biology [Battistella,
2021d].

Chapter 5 proposes a theoretical and algorithmical work to learn a metric dedicated to a cho-
sen dataset and classification task. Thereby, we prove the suitability of graph-based information
and, in particular, higher-order structures on an excellent sample characterization. The method’s
versatility and robustness are demonstrated on the previously discussed COVID patients con-
texts.
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In this chapter, we introduce the different theoretical notions we investigate in the following
chapters. The advantages and limitations of the different approaches are presented and related
to the requirements in the medical field and, more specifically, in the medical applications that
are developed afterwards.

9



10 Chapter 2. Formal Standard Approaches Definitions

2.1 Notations

Let us consider n points S = [1, n] in a space of dimension m where the coordinates of each
sample i are described by xi = (x1

i , ..., x
m
i ) while its label are denoted by yi ∈ L with L a set of

labels, and d =| L |. The label predicted by a model for a sample i is y(xi). Besides, we denote
by µ(M) the mean of a set M and σ(X) its variance. We consider 1(.) the indicator function.
During performance evaluation, we abbreviate the true positive as TP, true negative as TN, the
false positive as FP and the false negative as FN.

In clustering settings, a sample p binary assignment variable to a center q is denoted x(p, q)
which takes value 1 if the assignment is effective and 0 otherwise. If we denote k the number of
clusters in a clustering C, then the clustering is a set of clusters C = {C1, ..., Ck} defined such
that ∀1 ≤ i, j ≤ k, Ci ∩ Cj = ∅ and

⋃
1≤i≤k Ci = S. The number of points in cluster Ci is

denoted by ni. We call centroid µi of cluster Ci the mean of the points of the cluster.

Finally, we get a discrete random variable Xp = {X1
p , ..., X

b
p} from a point p ∈ S by binning

into b bins. We denote P (Xp) the probability mass function of Xp. Then, the Shannon Entropy
H of variable Xp is defined by H(Xp) = −

∑
1≤i≤b P (Xi

p) lnP (Xi
p). When considering two

random variables Xp and Xq, we denote the joint probability mass function as PXp,Xq
and the

marginal probabilities as respectively PXp
and PXq

.

2.2 Supervised Paradigm

The supervised paradigm is one of the most potent approach when datasets with reliable ground
truth annotations are available. In particular, in the medical field, classification algorithms
usually aim to efficiently identify a patient’s disease, infer his outcome or determine the most-
suited treatment. Notwithstanding, these approaches suffer specific flaws. They are more data-
greedy than their unsupervised counterparts, as, during their training phase, they have to capture
the most generalizable and accurate model of the training set. Also, the curse of dimensionality
is much more pregnant with those methods and is likely to entail overfitting, i.e. a lack of
generalizability. Feature selection techniques are a standard alternative to handle this difficulty.
They aim to single out the variables presenting the highest interest regarding a given target
prediction. Not only do feature selection approaches enable better prediction performance, but
they also provide a relevant characterization of discriminative variables.

2.2.1 Algorithms

In this section, we define the most standard classification algorithms we use in the following.
An overview of their pros and cons is provided in Table 2.1.
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k-Nearest Neighbor (K-NN) [Cover, 1967] is based on a local approximation scheme. K-
NN has various formulations including a classification one. In this case, the learning step consists
in assigning to the sample to predict the label of the most common class among the k closest
samples of the training set. This approach offers the good property of a fast learning as we
only have to retain the training set samples. Besides, it provides reliable predictions for data
in an amount large and representative enough. Notwithstanding, its consistency highly depends
on the choice of the parameter k, which has to be optimized carefully. In addition, the basic
formulation of this algorithm is inefficient on too large datasets, to improve the query time one
can resort to alternatives relying for instance on tree data structures as ball trees or KD trees.

Support Vector Machine (SVM) [Hearst, 1998] is a robust and adaptable classification
method. Its interpretability and potency justify its success in the medical community. In its
original formulation, it aims at finding the hyperplane of equation wTx − b = 0 separating
linearly data into two classes with a maximum-margin. The margins determine the classification
prediction results such as yi = 1 if wTx − b ≥ 1 and yi = −1 if wTx − b ≤ −1. In the more
adaptable soft-margin settings, we rely on the hinge loss function to tackle the case where the
data is not linearly separable. In this case, during the training step we are looking for w and b
optimizing the objective function:

min
w,b

1
n

n∑
i=1

max(0, 1− yi(wTxi − b)) + λ ‖w‖2

The parameter λ enables a trade-off between increasing the size of the margins and a correct
prediction of yi. On the inference step, the label is given by sign(wTx − b). To deal with non-
linear classification, SVM can be generalized thanks to the kernel trick [Vapnik, 1995]. It consists
in replacing in the above objective function and margins equations the dot products with non-
linear functions allowing a warping of the space to account for more general data distributions.
In particular, in the following, as alternatives to the linear SVM, one can consider the Sigmoid
SVM with kernel tanh(κxixj + c) with κ > 0 and c < 0, the Radial Basis Function (RBF) SVM
with exp(−γ ‖xi − xj‖2) and the Polynomial SVM with (xixj)d.

Decision Tree (DT) [Safavian, 1991] relies on a graphical modeling approach allowing great
interpretability of the predictions. The decision tree concept depend on the data iterative parti-
tioning according to categorical split attributes defined from the input variables. Split attributes
are either a variable’s categories for categorical variables or defined from inequations for contin-
uous ones, e.g. for the variable age, the split attribute could be age > 40. At each step, a split
attribute selection is performed based on a statistical measure optimization criterion. One of the
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most common criterion is the Gini impurity index.

Gini(t) = 1−
d∑
j=1

p(j|t)2

with p(j|t) the relative frequency of class j at node t of the tree. Thus, the decision tree presents
the advantage of considering any variable type without any need for normalization. Nevertheless,
the decision tree is sensitive to overfitting for which pruning methods constitute a usual remedy
to enhance DTs generalizability.

Random Forest (RF) [Ho, 1995] is an ensemble technique leveraging multiple simple decision
trees to improve their generalization ability. The predictions of each tree composing the forest are
merged through a majority voting approach to build the final prediction. Besides, the specificity
of random forest compared to mere ensemble techniques is bootstrap aggregating (bagging)
during the learning process. Bagging aims to increase predictors’ performance by decreasing the
variance (the variation the estimate function will incur under small fluctuations of the training
data) while maintaining the bias. More specifically, bagging consists in training the predictors on
different subsets of the training set selected with replacement. Random forest adopts a variant of
this approach, called features bagging, which for each bootstrap split also applies a selection of a
subset of the split attributes. Therefore, it creates a set of decorrelated decision trees leveraging
different variables.

AdaBoost [Freund, 1999] is an ensemble technique combining T weak learners’ predictions.
Let us consider without loss of generality a decision tree of low depth as a weak learner. AdaBoost
recursively fits a decision tree to the training set with importance weights assigned to the samples.
Initially, all samples have the same weights. Then, at each step, the weights of complex cases are
increased to bring more importance to misclassified samples. This approach rely on the weighted
error rate for classifier t ≤ T , γt, and its subproduct the quality coefficient of predictor t, αt,
defined as follows:

γt =
∑n
i=1 wi,tI(yt(xi) 6= yi))∑n

i=1 wi,t

αt = sigmoid(γt) = ln(1− γt
γt

)

γt penalizes more the misclassified samples with important weights. From the definition, αt is
increasing for decreasing values of γt. In particular, αt is 0 when γt = 0.5 and infinite for a
perfect classifier i.e. when γt = 0. The update process for sample i and classifier t is:

wi,t+1 ←− wi,t exp(αt1(yt(xi) 6= yi))
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Intuitively, we increase the weight given to sample i by exp(αt) if it is misclassified at time t. The
final prediction is then obtained using a voting scheme weighted by the quality of the classifier:

YT (x) = sign(
T∑
t=1

αtyt(x))

where YT (x) represents the prediction for a sample of coordinates x of the additive ensembling
model considering T weak learners.

Gradient Tree Boosting (GTB) [Friedman, 2002] is a boosting generalization to handle
arbitrary differentiable loss functions. As in the case of AdaBoost, we rely on an additive model
for prediction and we use the same notations. The regression scheme can be summarized by:

∀t > 1, Yt(x) =
t∑

m=1
ym(x)

with ym(x) the prediction of the decision tree m. In the classification case, the same process is
applied except that we are obtaining the probability that sample i belongs to the positive class
thanks to the sigmoid function by considering p(yi = 1|xi) = sigmoid(Yt(xi)). Then, given a
differentiable loss l to minimize, we want to determine yt given Yt−1.

yt = arg min
y

n∑
i=1

l(yi, Yt−1(xi) + y(xi))

The final yt is defined as the one minimizing the loss of the additive model. By default, the
initial constant model Y0 is taken to minimize the expected loss. The optimization is performed
thanks to a first-order Taylor approximation over the loss l on its second parameter, we get

l(yi, Yt−1(xi) + y(xi)) ≈ l(yi, Yt−1(xi)) + y(xi)gi(xi)

with gi = [∂l(yi, Y (xi)
∂Y (xi)

]Y=Yt−1 . Removing the constant terms we get

yt = arg min
y

n∑
i=1

y(xi)gi

The resolution is analogous to a functional gradient descent which explains the approach’s name.
Despite its computational complexity, GBT is a prominent method allowing to achieve high
performance.

Naive Bayes [Georgen, 1995] is based on the Bayes’ rule under the simplification hypothesis
of conditional independence between every pair of features. In this "naive" approach, the formula



14 Chapter 2. Formal Standard Approaches Definitions

is expressed by:

P (y|x1, ..., xm) = P (y)
∏m
i=1 P (xi|y)

P (x1, ..., xm) ≈ P (y)
m∏
i=1

P (xi|y)

using the classification paradigm of Maximum A Posteriori (MAP) estimation can be used to
perform the prediction

y(xi) = arg max
y

P (y)
m∏
i=1

P (xi|y)

Several different variants of naives bayes classifiers exist and differ by their modelling of the data
distribution P (xi|y). Here, we first investigate the gaussian naive bayes where

P (xi|y) = 1√
2πσ2

y

exp(− (xi − µy)2

2σ2
y

)

where parameters σy and µy are estimated through maximum likelihood. And, then, the bernoulli
naive bayes relying on the decision rule

P (xi|y) = P (xi|y)xi + (1− P (xi|y))(1− xi)

and which binarize all the input variables. The advantage of naive Bayes approaches is their
robustness despite a small number of training samples. Besides, by assuming the feature vectors’
conditional independence, it earns a great resilience for high dimensional data.

Quadratic Discriminant Analysis (QDA) [Fisher, 1936] is derived from a simple proba-
bilistic model. Similarly to naive bayes, it relies on the Bayes’ rule

P (y = k | x) = P (x | y = k)P (y = k)∑
l P (x | y = l)P (y = l)

However, in this approach, instead of an independence assumption over the features, we model
P (x | y) as a multivariate gaussian distribution:

P (x | y = k) = 1
(2π)m/2 | Σk |1/2

exp(−1
2(x− µk)tΣ−1

k (x− µk))

where Σk is the covariance matrix for class k and µk its mean. Then, the logarithm of the
posterior can be expressed as

logP (y = k | x) = logP (x | y = k) + logP (y = k) + cst

= −1
2 log | Σk | −

1
2(x− µk)tΣ−1

k (x− µk) + logP (y = k) + cst
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where cst is the constant disappearing in the following optimization. Finally, the predicted
class is the one maximizing the log-posterior. To solve this optimization problem, one can rely
on singular value decomposition (SVD) of the training data matrix Xk = USV t. Thus, the
covariance matrix can be decomposed as V S2V t. It results in a simplification of the covariance
matrix as the computation of U is not required.

Gaussian Process [Williams, 1998] relies on the simple modelling of the P (y = k | x) by the
sigmoid of a latent function f called nuisance function. By assuming that we have a noise-free
latent process, we aim to discard the unobserved function f through integration. For inference,
the process relies on a step of computation of the latent variable corresponding to the test case
x∗ considering the latent function on test f∗ using

P (f∗ | X, y, x∗) =
∫
P (f∗ | X,x∗, f)P (f | X, y(X))df

with X the data on training. Then, the probabilist prediction is produced with

p(y(x∗) = k | X, y(X), x∗) =
∫
σ(f∗)P (f∗ | X, y(X), x∗)df∗

To solve this analytical hurdle, several methods might be used. Here, we rely on a Laplace
approximation. It consists in modeling P (f | X, y(X)) by a gaussian distribution to determine
the posterior by successive derivatives. The gaussian process presents the advantage of being
probabilistic which allows to compute empirical confidence intervals. However, it loses efficiency
in high dimensional spaces and suffers from a high computational cost during inference.

Multi-Layer Perceptron (MLP) [Hinton, 1990] is a deep neural network architecture with
at least one hidden layer. A node i in a layer connects to all the nodes j of the next layer with
a weight wi,j . Each neuron of the hidden layers operates a linear summation and a non-linear
activation function. In a standard perspective, the optimization of the weights is performed
thanks to gradient descent and diffused in the network through back-propagation. MLP has
the excellent property to be able to learn non-linear models. However, it is sensitive to feature
scaling, and as the hidden layers bring non-convexity to the loss function, the local minimum
reached is initialization dependant.

Ensemble Techniques allows to leverage the complementarity of well-performing techniques.
In particular, we experimented two prominent techniques:

• Majority Voting Classifier is a straightforward framework consisting in adopting the label
of the most predicted class.

• Stacking Classifier aims to reduce the bias (errors the model will commit because of simpli-
fying assumptions) of the combined estimators by using an additional classifier performing
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the final prediction from the estimators’ outputs.

Algorithm Pros Cons

K-NN
Simple Sensitive to the curse of dimensionality
No assumption on dsitribution Sensitive to outliers

Need a relevant distance notion

SVM

Efficient in higher dimension Poor performance with non-separable classes
Efficient for separable classes Need of well tuned hyperparameters
Outliers robustness
Interpretability

DT
Interpretability Prone to overfitting
Adaptable to data type and scale High Variance
Feature selection

RF

Resilient to overfitting Not interpretable
Reduced Variance High computational cost
Robust to large imbalanced datasets
Robust to high dimensionality

AdaBoost Resilient to overfitting Sensitive to outliers
Low number of hyperparameters to tune Sensitive to noise

GTB
Resilient to overfitting Not interpretable
Robust to outliers Need of well tuned hyperparameters
State-of-the-art performance on several applications

Naive
Bayes

Efficient with high dimensional data Assumes features independence
Scalable Need representative training data
Insensitive to irrelevant features

QDA High performance on gaussian data Gaussian assumption

Gaussian
Process

Provides model’s confidence High computational cost
Versatile with kernel trick Difficulty to scale
Leverage Ockam’s razor

MLP

Able to consider non-linear models Need important amount of data to train
State-of-the-art performance on several applications High computational cost

Not interpretable
Need of well tuned hyperparameters

Table 2.1: Main advantages and drawbacks of the standard classification algorithms introduced
in this chapter

2.2.2 Feature Selection

Lasso [Tibshirani, 1996] (least absolute shrinkage and selection operator) is a regression anal-
ysis technique notorious for its regularization and feature selection abilities. Its major strength
is to enforce sparse coefficients thus efficiently reducing the number of features. Formally, it is
defined by a linear objective function with a l1-norm regularization:

min
w

1
n
‖Xw − y‖22 + α ‖w‖1

Ridge [Warton, 2008] regression or Tikhonov regularization is another variant of a linear ob-
jective function. In addition, it copes with highly collinear variables while it favors homogeneous
weights by exerting a shrinkage through its l2-norm regularization. It enables a reduced Variance
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and more stable solutions.

min
w

1
n
‖Xw − y‖22 + α ‖w‖2

Elastic Net [Zou, 2005] regularization is a combination of both lasso and ridge methods.
It presents at the same time the advantages of sparsity offered by the l1-norm while providing
better stability with the l2-norm. However, it incurs the risk of performing a double shrinkage,
entailing a highly increased Bias and lower performance.

min
w

1
n
‖Xw − y‖22 + α ‖w‖1 + β ‖w‖2

Statistics-Based Selection leverages different statistical metrics and seeks to eliminate de-
pendency between the variables. For classification, some of the metrics to estimate the depen-
dency of the features include for instance the chi-squared (chi2) metric [Pearson, 1900], the
analysis of Variance (anova) F-test [Lomax, 2007] or the mutual-information [Shannon, 1948].
Given a probability pi that an observation belongs to class i, the chi2 test is defined as

d∑
i=1

(ni − npi)2

npi

with ni the number of observations in the class i. The anova F-test statistic is simply defined
as a ratio of the between-group variability over the within-group variability. If we denote µi the
sample mean over the class i and µ the global sample mean, the former is defined as

1
d− 1

d∑
i=1

ni(µi − µ)2

while the latter is expressed by

1
n− d

d∑
i=1

ni∑
j=1

(xi,j − µi)2

where xi,j is the j − th sample of group i. The mutual-information of two random variables
is defined as

MI(Xi, Xj) =
∑

Xp
i
∈Xi

∑
Xq

j
∈Xj

P(Xi,Xj)(Xp
i , X

q
j ) log

P(Xi,Xj)(Xp
i , X

q
j )

PXi(X
p
i )PXj (Xq

j )

where P (Xp
i , X

q
j ) is the joint probability function and P (Xp

i ), P (Xq
j ) are marginal probability

functions.



18 Chapter 2. Formal Standard Approaches Definitions

2.2.3 Metrics

To asses the quality of the classification predictions, several notions are worth investigating.
Some of the most frequently used ones we considered in this thesis are summarised in this section.

Balanced Accuracy is a metric assessing the statistical Bias or systematic errors. This
balanced version of accuracy enables to cope with unbalanced datasets and multi-class tasks. It
consists in a normalization by each class’ number of samples in the usual accuracy metric:

1
n

n∑
i=1

1(y(xi) = yi)
nyi

Precision is a measure of statistical variability or random errors. It is expressed as

TP
TP + FP

Specificity measures the proportion of negatives that are correctly identified. It corresponds
to

TN
TN + FP

Sensitivity or recall measures the proportion of positives that are correctly identified. Its
expression is

TP
TP + FN

The use of weighted metrics instead of the non-weighted is required when considering a multi-
class classification task. The weighted scores (WS) are defined as

WS = 1
n

∑
l

nlSl

where Sl corresponds to the non-weighted score in one-vs-rest classification for the class l.

Confusion Matrices is a standard matrix representation summarizing the performance of
an algorithm. It offers insights into each class’s samples of the predictions’ distributions between
the different classes. It allows to determine the numbers and proportions of TP, FP, TN, FN.

Receiver Operating Characteristic (ROC) curve is a graphical representation illus-
trating a model’s performance. It is established by considering different thresholds over the
probabilities of prediction of a class in a one-versus-rest scheme. It shows the respective scores of
two considered metrics at the different discrimination thresholds. Standard metrics to consider
are the True Positive Rate (TPR) against the False Positive Rate (FPR) or equivalently the
sensitivity against 1−specificity. Thus, in binary classification, only one ROC curve is needed
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to characterize the model’s prediction ability. However, in general, in multi-class classification
settings, one ROC curve by class is required and is obtained through a one-versus-rest approach.
AUC is a quantitative metric defined as the area under the ROC curve. The higher the AUC the
better the model. Indeed, metrics are chosen such as a the best prediction model yields a point
in the upper left which will minimize the metric on abscissa and maximize the one on ordinate,
e.g. maximize the TPR while minimizing the FPR. A random method yields the line y = x.

2.3 Unsupervised Paradigm

Unsupervised learning is a very efficient technique to study large high-dimensional datasets
designed for discovering unknown indiscernible structures and correlations [Halkidi, 2001]. Clus-
tering algorithms aspire to single out a group separation of the data favoring low variation inside
the groups and high variation between groups. Notwithstanding, many clustering approaches
are relying on different properties, leading to significantly different solutions. One of the main
challenge of clustering is defining a metric/similarity function depicting the notion of closeness
between objects under consideration. This includes the intrinsic clustering properties the algo-
rithm seeks to optimize and the distance notion involved. The main advantage of unsupervised
clustering compared to supervised approaches - or methods guided by specific biological func-
tions or processes - is the ability to discover unknown patterns and associations without a priori.
Furthermore, unsupervised discovery offers better tractability when applied to the tremendous
amount of samples considered in medical tasks. This is one of the reasons that several studies
focus on statistical pattern recognition methods such as the center-based K-Means [MacQueen,
1967], the model-based CorEx [Ver Steeg, 2014] or the stability-based LP-Stability [Komodakis,
2009] towards the identification of meaningful and predictive groups of biomarkers [Bailey, 2018].
Indeed, unsupervised approaches provide unbiased clusterings to rely on for feature selection of
the data whereas resorting to experimental schemes and current knowledge lead to redundant
signatures and loss of information [Cantini, 2017]. Evidence-based methods with the ability
to determine beyond-human-grasp higher-order correlations could have tremendous diagnostic,
prognostic, and treatment selection impact. In this direction, CorEx [Pepke, 2017] has recently
been introduced to generate gene signatures evaluated and optimized over ovarian tumors. This
signature managed to well characterize patients outcome. The study was however limited by
being focused on only one specific tumor type and its clinical relevance was impaired by the high
dimensionality of the gene signature which was composed of several hundred genes. This high
dimensionality is a recurrent issue when identifying biomarkers. Some studies propose methods
to combine and prune existing signatures towards more compacity and informativity [Cantini,
2017; Thorsson, 2018].



20 Chapter 2. Formal Standard Approaches Definitions

2.3.1 Algorithms

K-Means algorithm [MacQueen, 1967] is a very popular and straightforward algorithm used
for data following Gaussian distributions. First, the algorithm draws an initial random set of
cluster centroids. Then, until convergence, it iteratively determines k clusters by assigning the
points to their closest centroid and computing their new centroids µi. The algorithm aims to
solve

min
C

k∑
i=1

∑
p∈Ci

d(p, µi) .

Considering the hyperparameters, only the number of clusters k has to be defined beforehand.
Generally, K-Means is used with Euclidean distance for convergence issues. The main drawback
of this technique is that the random initialization is a source of nondeterminism and may cause
instability in the cluster generation for different runs. To address this issue, multiple clusterings
are generated with a different initialization and the best one is selected.

CorEx algorithm [Ver Steeg, 2014] is a model-based algorithm that has been applied to
various fields and, especially on gene clustering [Pepke, 2017] with great success. This algorithm
aims to define a set S′ of k latent factors accounting for the most variance of the dataset S.
Formally, it relies on the Total Correlation of discrete random variables X1, ..., Xp defined by

TC(X1, ..., Xp) =
∑

1≤i≤p
H(Xi)−H(X1, ..., Xp)

and the Mutual Information of two random variables as defined in Section 2.2.2. To guaran-
tee a reliable definition of the latent variables, the algorithm minimizes the Total Correlation,
TC(S|S′), corresponding to the additional information brought by the points in S compared to
the latent factors of S′. Then, to obtain the clustering, each point p is allocated to the cluster
of the latent factor f maximizing the mutual information, MI(Xp, f). Similar to K-Means, the
only requirement of the CorEx algorithm is the number of clusters k.

LP-Stability algorithm [Komodakis, 2009] is based on linear programming. It relies on the
same definition of clusters as K-Means i.e. we want to minimize the distance between each point
of a cluster and the center of the cluster. However, the novelty and interest of this technique are
that instead of taking centroids as cluster centers, it defines stable cluster centers. Formally, we
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aim to optimize the following linear system

PRIMAL ≡ min
C

∑
p,q

d(p, q)x(p, q)

s.t.
∑
q

x(p, q) = 1

x(p, q) ≤ x(q, q)

x(p, q) ≥ 0

where x(p, q) represents the fact that p belongs to the cluster of center q. The formula corresponds
to the minimization of the distance between a point and its cluster center while ensuring that
each point must belong to one and only one cluster and that centers belong to their own cluster.
The determination of the stable centers relies on the following notion of stability:

S(q) = inf
s
{s, d(q, q) + s PRIMAL has no optimal solution with C(q, q) > 0}

The stability of a point is the maximum penalty the point can receive while remaining an optimal
cluster center in PRIMAL. Besides, to better exploit particular field constraints of the points or
better tune the number of clusters, penalty value Sq >= 0 can be added to point q. Then, we
consider the penalty vector S weighting the distance d such as ∀q, Sq ∈ S, d′(q, q) = d(q, q) + Sq.
Doing so, we impose a stronger minimal stability for the cluster centers entailing a lower number
of clusters.

Let us denote Q the set of stable cluster centers. The algorithm solves the clustering using
the DUAL problem

DUAL ≡ max
D

D(h) =
∑
p∈V

hp

s.t. hp = min
q∈V

h(p, q)∑
p∈V

h(p, q) =
∑
p∈V

d(p, q)

h(p, q) ≥ d(p, q)

where h(p, q) corresponds here to the minimal pseudo-distance between p and q and hp to the
one from p. This previous DUAL problem is then conditioned by considering only centers in the
set of stable points Q:

DUALQ = maxDUAL s.t. hpq = dpq, ∀{p, q} ∩ Q 6= ∅

This method presents several advantages. It is versatile and can integrate any metric function
while it does not make prior assumptions on the number of clusters or their distribution. It aims
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to define clustering in a global manner seeking an automatic selection of the cluster centers. For
that matter, it relies on the optimization of the set of stable centers, as well as the assignment
of each observation to the most appropriate cluster, meaning the one minimizing the distance to
the center. This algorithm only requires a penalty vector S, influencing the number of clusters.

2.3.2 Proximity Measures

As it is demonstrated later on, the choice of the best-suited metric for a given data type is
of paramount importance. Indeed, regardless of the algorithm’s efficiency, its performance higly
depends on the distance used to warp the input data. The metric has to fully capture the data
properties and distribution. To tackle the issue of the data’s high dimensionality combined with
a low ratio between samples and dimensions of each sample, we studied several different distance
notions relying on very distinct definitions of closeness. In this study, we considered several
standard metrics summarized below:

Euclidean Distance is one of the most commonly used metrics, measuring the dissimilarity
between vectors. It is the common distance on a map, for instance, or any Euclidean space.

euclidean(xp, xq) = ‖xp − xq‖2

Cosine Distance is also a distance that is very commonly used in the literature. It is inspired
by the actual expression of the angle’s cosine in geometry. It can be defined as follows:

cosine(xp, xq) = 1− xp · xq
‖xp‖2‖xq‖2

Pearson’s correlation is based on the covariance of the compared samples. It compares the
covariance of the two variables with the product of their respective variance. It assesses very
well the linear correlations between the variables.

pearson(xp, xq) = cov(xp, xq)
σ(xp)σ(xq)

Spearman’s rank correlation is a non-parametric measure of rank correlation, and it as-
sesses to what extent the relation between two variables can be represented by a monotonic
function. We denote by rg(x) the rank variable of the sample of coordinates x. It is calculated
by:

spearman(u, v) = cov(rg(xp), rg(xq))
σ(rg(xp))σ(rg(xq))

Kendall’s rank correlation is a measure of rank correlation considering the similitude of the
ranking order of the observations for the two compared objects. It assesses the best non-linear
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dependencies. It is calculated by:

kendall(p, q) = 2NC −ND
n(n− 1)

where NC is the number of concordant pairs and ND the number of discordant pairs. Pairs
of observations (pu, pv) and (qu, qv) are considered concordant if their ranks agree i.e. pu > pv ⇔
qu > qv they are said discordant if pu > pv ⇔ qu < qv.

Kullback-Leibler divergence measures how different two probability distributions are. It
represents the expectation that two distributions present similar behavior. It is computed by:

KL(p, q) = −
∑
u

P (pu) log P (qu)
P (pu)

We made this measure symmetric by considering KL(p, q) + KL(q, p).
The different correlations cover the range of [−1, 1]. The value is positive when the obser-

vations evolve in a similar way for the compared variables and negative when they evolve in
opposite ways. High absolute values indicate high correlations in the observations. On the other
hand, high values in terms of distance indicate observations that are not similar in the specific
feature space. To convert correlations c into distances, we used a approach similar to [Verhaak,
2010] formulated as

√
2(1− c). For simplicity, distances coming from correlations is referred to

as correlation-based distances for the rest of the manuscript.

2.3.3 Metrics

Qualitative and quantitative evaluation is a critical step towards clustering effective adoption.
It is based on independent and reliable measures for the proper comparison of the parameters
and methods. Numerous existing metrics assess the quality of the clusters from a statistical point
of view as the Silhouette Value [Kaufmann, 1987], Dunn’s Index [Kovács, 2005] or more recently,
the Diversity Method [Kingrani, 2017]. In addition, in the presence of annotations, the Rand
Index [Hubert, 1985] is often considered. Clustering evaluation is even more challenging when
considering an application field properties. For instance, we consider thoroughly the case of ge-
nomics where biologically informative clustering would be expected. Protein-Protein Interaction
(PPI) and the Gene Ontology (GO) have been recently introduced in this subdomain to assess
the biological soundness of the clusters through Enrichment Scores [Wagner, 2015; Pepke, 2017].
In this thesis, for the evaluation of clustering results, we relied on several standard metrics. For
an agnostic evaluation, we resorted to:

Enrichment Score (ES) is the most commonly adopted technique to assess biological rele-
vance in an automatic manner [Pepke, 2017]. For gene clusterings, the Enrichment in PPI is a
standard approach relying on the study of the proteins corresponding to the considered genes.
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Contrary to enrichment in a given biological process, PPI does not integrate specific information
about predefined pathways and biological processes. However, it fulfills our aim of an unbiased
and general metric. Enrichment for a cluster represents the probability of obtaining the same
number of interactions in a random set of genes of the same size as in the evaluated cluster.
It is represented by a p-value. In particular, the cluster is considered enriched if the p-value is
below a given threshold (abbreviated by th in the following). The ES corresponds to the pro-
portion of enriched clusters in the clustering. To calculate the ES, the Stringdb library based on
String PPI network [Szklarczyk, 2018] was used. In this case, enrichment was computed using a
hypergeometric test.

Dunn’s Index (DI) [Kovács, 2005] studies the ratio between inter-cluster and intra-cluster
variance. The former is meant to be large as the distributions in different clusters should be
different. The latter has to be small as we want points that are in a same cluster to follow a
common distribution. Formally,

Dunn(C) = min1≤i,j≤k dist(Ci, Cj)
max1≤i≤kDiam(Ci)

where dist(Ci, Cj) = minp∈Ci,p′∈Cj d(p, p′) is the distance between the two closest points of the
clusters Ci and Cj , Diam(Ci) = maxp,p′∈Ci d(p, p′) is the diameter of the cluster i.e. the distance
between the two farthest points of the cluster Ci. This assessment score is highly sensitive to
extreme, not well-formed clusters making it ideal for our problem.

Whereas, for knowledge-guided evaluations we relied on:

Adjusted Rand Index (ARI) is a similarity measure between a clustering C ′ and a ground
truth C. RI corresponds to the proportion of pairs of elements in different clusters in both C

and C ′ called a or in the same cluster in both C and C ′ called b.

RI = a+ b(
n

2

)
RI is then corrected for chance by taking into account its expected value E(RI):

ARI = RI−E(RI)
max(RI)− E(RI)

Normalized Mutual Information (NMI) is a metric between a clustering C ′ and the
ground truth class C defined from MI as:

NMI = MI(C,C ′)
mean(H(C), H(C ′))
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Homogeneity values clusters of a clustering C containing samples all belonging to a same
cluster in the reference clustering C ′.

homogeneity = 1− H(C|C ′)
H(C)

Completeness is a complement of homogeneity as it values clusterings C presenting clusters
with their samples belonging to the same cluster in the reference clustering C ′.

completeness = 1− H(C ′|C)
H(C ′)

Fowlkes-Mallow Score (FMS) corresponds to the geometric mean of the pairwise precision
and recall as they have been defined in section 2.2.3.

FMS = TP√
(TP + FP)(TP + FN)

2.4 Conditional Random Field (CRF)

CRF [Lafferty, 2001] is a statistical graphical approach allowing contextualized classification.
CRF presents the crucial advantage on standard classifier to take into account the dependencies
between samples. It has a prominent role in machine learning, pattern recognition and have earn
a renewed interest in bioinformatics for labeling and parsing tasks. CRF is a variant of Markov
Random Field (MRF) where the random variables X = {x1, ..., xn} are conditioned upon a
set of global observations which enables defining a discriminative classifier. Formally, the main
difference distinguishing CRF from MRF is the conditioning of X by a set of corresponding ob-
servations I = {I1, ..., In}. In practice, a discriminative framework from the paired observations
and labels is built, aiming to model P (X | I),.

2.4.1 CRF Formal Definition

Second-order CRF is the basic notion of CRF considering only unary and pairwise depen-
dencies, after an introduction to higher-order CRF, we focus this section on second-order for
simplicity sake’s. Second-order CRF relies on an undirected graph G = (V,E) such that V in-
dexes the label sequences X = (xv)v∈V . In this case, if we denote ∼ the neighborhood relation in
G, (X , I) constitutes a conditional random field iff P (xv | I, xw, w 6= v) = P (xv | I, xw, w ∼ v).
This definition means that the graph satisfies the Markov property with respect to the proba-
bility of X conditioned by I i.e. for a given node, the corresponding label only depends on the
observation and the neighboring nodes.
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The previous original definition might be extended to leverage hyper-graph structures to build
higher-order CRFs. A hyper-graph H = (V, C) is defined by considering sets of nodes, hyper-
edges, of arbitrary size instead of the standard edges. The Markov property is then represented
by the hyper-edges: a node’s label is only conditioned by the nodes co-occurring in the same
hyper-edge. Hyper-edges enable to take advantage of more complex dependency structures.
Their use adheres to the spreading interest into higher-order structures initiated in complex
networks in adequacy with the latest findings on the importance of considering structural prop-
erties [Benson, 2016]. The promises of these more informative CRFs have been illustrated in
computer vision, in particular with cutting-edge graph matching approaches [Torresani, 2012],
distance learning [Komodakis, 2014] or segmentation [Kadoury, 2013].

While the inference task for a CRF can be expressed as maximum a posteriori (MAP) formu-
lation, here we are focusing on an energy-based formulation. This more convenient approach,
establish the inference problem as a minimization of the hyper-graph energy. In general settings,
it is defined as a sum over clique potential functions φ = {φC}C∈C :

E(x, φ) =
∑
C∈C

θC(xC)

where xC = xi, i ∈ C. Notice that in pairwise settings, the cliques correspond to the edges and
C = E

2.4.2 CRF Energy Minimization

Regarding CRF energy minimization, two prominent resolution techniques [Komodakis, 2010]
exist. Each leveraging a hyper-graph specificities in a different way.

Graph-cuts

This category of approaches rely on a max-flow algorithm to find a min-cut in the graph
allowing to solve some instances of discrete energies [Boykov, 2004] optimally. The resolution
power of max-flow is limited to some particular cases, especially for higher-order formulations
of the problem. Thus, many methods propose move-making approaches to simplify the energy
formulation into a submodular, lower-order energy function. It resorts to terms substitutions and
variables additions to remove non-submodular and higher-order terms. This approach has been
successfully applied in [Ishikawa, 2010; Fix, 2011] to transform a general higher-order energy with
binary labels to a simpler first-order energy easily solvable through, for instance, the roof duality
technique QPBO [Boykov, 2004] relying on aforementioned min-cuts computation. Despite the
potency of this approach, it suffers from a high complexity increase as the move-making approach
tends to highly increase the number of terms and variables.
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Message-Passing

We detail in this subsection the tree-reweighted message passing (TRW) algorithm [Wain-
wright, 2005] which overtook the previously dominant belief propagation approach. In second-
order settings, they rely on an linear integer program formulation equivalent to the energy
minimization.

minxE(θ, x) = minx
∑
p∈V

θpxp +
∑
p,q∈E

θp,qxp,q

s.t. x ∈ F

where x = {{xp}, {xp,q}} defines unary and pairwise indicators of the labels assigned to the
nodes of the CRF nodes. Besides, ∀p ∈ V , xp(l) = 1 ⇐⇒ label l is assigned to p. Similarly,
xp,q(l,m) = 1 ⇐⇒ label l, m are assigned to p and q respectively. These definitions are taken
into account in the feasible set of the optimization problem F and can be summarized as:

F =

x
∣∣∣∣∣∣∣∣∣∣

∑
l∈L xp(l) = 1, ∀p ∈ V∑
m∈L xp,q(l,m) = xp(l), ∀(p, q) ∈ E, ∀l ∈ L

xp(.) ∈ {0, 1}, ∀p ∈ V
xp,q(., .) ∈ {0, 1}, ∀(p, q) ∈ E


The first constraint simply transcribes the indicator status of the variables; the variables uniquely
assign a label to a node of the CRF. The second variable ensures the consistency between unary
and pairwise variables by enforcing xp(l) = xq(m) = 1 ⇐⇒ xp,q(l,m) = 1. F is called the
marginal polytope.

Regarding TRW implementation, it consists in solving the relaxed linear programming system
where we have a laxer constraints xp, xp,q ≥ 0. Thus, it aims to provide an approximation
to the original system. TRW proceeds by resorting to the dual problem. The final solution’s
quality directly depends on the estimated dual lower bound, which has to be the larger possible.
However, there is no theoretical guarantee over the performance.

Dual Decomposition

Relying on the message-passing framework, the dual decomposition approach is a widespread
approach in optimization. Its efficient resolution by projected subgradients is introduced for MRF
and CRF in [Komodakis, 2010]. It presents the crucial property of optimally solving the dual
linear programming problem. Besides, its versatility allows the generalization to higher-order
CRF as performed in [Komodakis, 2014].

Dual decomposition principle in isolating several much easier subproblems tailored to be equiv-
alent to the original problem after summation. A possible and popular decomposition is to
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consider each node independently. Each subproblem might be solved by very efficient inference
techniques as graph-cuts approaches without venturing into a scaling issue. The global resolu-
tion leads to a projected subgradient scheme, provably offering an optimal solution. Formally,
dual decomposition expression relies on simple subproblems also called slave problems and on a
master problem enacting as a coordinator. Starting from a general problem over a convex set C:

min
x

∑
i

fi(x)

s.t. x ∈ C

where we assume that the independent minimization of the functions fi is easy while the global
minimization of

∑
i fi is hard. The first step towards the dual decomposition is first to introduce

a coupling parameter in the system.

min
{xi},x

∑
i

fi(xi)

s.t. xi ∈ C, xi = x

Our system is obviously still equivalent to the original one. The coupling system enforces the
different subproblems to come up with a consistent solution. Then, we can introduce the La-
grangian dual function we leverage and which encompasses both the objective function and the
constraints.

g({λi}) = min
{xi∈C},x

∑
i

fi(xi) +
∑
i

λi(xi − x) = min
{xi∈C},x

∑
i

(fi(xi) + λixi) +
∑
i

λix

Then, to eliminate the dependency over the global solution x, we ultimately want to define, we
introduce the constraint set Λ = {{λi},

∑
i λi = 0}. Therefore,

∀{λi} ∈ Λ, g({λi}) = min
{xi∈C}

∑
i

(fi(xi) + λixi)

Finally, the goal function to optimize is the Lagrangian dual problem defined as:

max
{λi}∈Λ

g({λi}) = max
{λi}∈Λ

∑
i

gi(λi)

This problem constitute our master slave which is decoupled in the slave problems:

∀i, gi(λi) = min
xi

fi(xi) + λixi

s.t. xi ∈ C
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This formulation has several good properties. First, the master problem definition is always
convex and is approximated by a projected subgradient approach (as g might not be differen-
tiable). Resulting in the update λi ←− projΛ(λi+αt∇gi(λi)) where projΛ is the projection over
set Λ, αt > 0 is an attenuation parameter at iteration t and ∇gi(λi) is the subgradient of gi over
λi which expression directly depends on the optimal solution of the slave problem i. The dual
decomposition resolution process is summarized in Algorithm 1.

Algorithm 1: Dual Decomposition Optimization Strategy
1 λi ← 0, ∀k
2 do
3 Slave problem i optimize xi under current λi, ∀i
4 Master updates λi ← projΛ(λi + αt∇gi(λi)), ∀i
5 while Not Convergence;





Chapter 3

Ensemble Techniques for Patients
Stratification: Focus on COVID-
19 Pneumonia and Cancer
Contents

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.1 ILD Quantification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.2 ILD Staging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.1 Ensemble Feature Selection Approach . . . . . . . . . . . . . . . . . . 36
3.3.2 Signature Refinement Technique . . . . . . . . . . . . . . . . . . . . . 37

3.4 AI-Driven Quantification, Staging and Outcome Prediction of COVID-
19 Pneumonia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4.1 Features Extraction Methodology . . . . . . . . . . . . . . . . . . . . . 38
3.4.2 Holistic Multi-Omics Profiling & Staging . . . . . . . . . . . . . . . . 42
3.4.3 Covid-19 Multi-Omics Profiling Signature . . . . . . . . . . . . . . . . 43
3.4.4 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4.5 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4.6 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 Holistic artificial intelligence-driven predictor in HER2-positive
(HER2+) early breast cancer (BC) . . . . . . . . . . . . . . . . . . 59

3.5.1 Dataset and Features Extraction . . . . . . . . . . . . . . . . . . . . . 59
3.5.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.6 Atopic Dermatitis Severity Prediction . . . . . . . . . . . . . . . . . 61
3.6.1 Predictive Gene Selection . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.6.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.6.3 Classification Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.6.4 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.6.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.7 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

31



32
Chapter 3. Ensemble Techniques for Patients Stratification: Focus on COVID-19

Pneumonia and Cancer

The potential benefits of supervised machine learning techniques to the medical field are
tremendous. Those techniques, including feature selection and classification, can address the
problematic yet crucial questions of patients diagnosis and stratification. In this thesis, we study
the efficiency of ensemble techniques at providing more robust results with reduced Bias. We
propose a new methodology to combine different feature selection approaches and prove its rel-
evance over different omics data and medical applications. First, this work presents a detailed
application to Coronavirus disease 2019 (COVID-19), and then, we highlight a generalization to
breast cancer and atopic dermatitis.
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3.1 Introduction

COVID-19 emerged in December 2019 in Wuhan, China [Zhu, 2020] caused by the SARS-Cov-
2 virus, and it could lead to respiratory failure due to severe viral pneumonia [Zhou, 2020a].
The disease spread worldwide, leading the World Health Organization to declare it a pandemic
in March 2020. One of the crucial actions to handle the pandemic is the fast and robust use of
imaging and clinical and biological comorbidities for the quantification and staging of patients
upon their hospital admission. Identifying patients who need intubation upon admission is
critical for managing a hospital’s resources and the most optimal patient care. Moreover, a
robust staging of the patients could also facilitate the proper selection of patients for different
treatments, reducing the unnecessary use of the hospital’s intensive care units. Currently, the
staging of the patients is mainly based on clinical and biological biomarkers such as age, sex, and
other comorbidities [Zhou, 2020a; Li, 2020a; Yuan, 2020; Tang, 2020; Onder, 2020; Guo, 2020;
Terpos, 2020], while the role of imaging is mainly focusing on an estimation of the disease extent
from CT scans. This estimation is generally carried out manually by medical experts and hence
suffers from inter- and intra-observer variability.

Medical analysis tools can assist medical experts in their everyday clinical practice. Artificial
Intelligence (AI) is playing a pivotal role in developing such tools, and it aims either to reproduce
human behavior regarding a specific task (a given set of observations and the corresponding
experts’ assessments) or to find and better understand correlations between input signals and
outcomes (invisible to the human eye). In healthcare, AI has gained tremendous attention in the
last years, addressing very challenging medical problems related to diagnosis and personalized
medicine [Segler, 2018; Goecks, 2020; Ardila, 2019] including quantification and characterization
tasks such as cancer screening or quantification of Interstitial Lung Diseases (ILD) [Chassagnon,
2019; Litjens, 2017]. During this pandemic, different AI tools were proposed from the community,
presenting models able to distinguish Covid-19 patients from community-acquired pneumonia
on CT [Li, 2020b] or even diagnose Covid-19 directly from CT scans [Mei, 2020]. This trend
indicates that the medical community could significantly contribute to providing robust tools and
algorithms that assist clinicians during the pandemic exploiting the full potentials of imaging.
Classification is one of the machine learning paradigms the most relevant for medical application.
In particular, diagnosis [Gandhi, 2013], treatment response prediction [Suárez-Fariñas, 2010],
risk prevention [Wiens, 2012] and staging [Kratz, 2019] are some of the exciting problems that
could greatly benefit from the highly active research to better leverage medical data with those
approaches [Le, 2020].

In this study, we developed an automatic and robust method for patient’s stratification. The
contributions of this chapter are three-fold: (i) an ensemble multimodal feature selection strat-
egy indicating the most informative features for the studied problem, (ii) an ensemble machine



34
Chapter 3. Ensemble Techniques for Patients Stratification: Focus on COVID-19

Pneumonia and Cancer

learning pipeline for robust and efficient stratification of patients, and (iii) promising results on
different applications to demonstrate the effectiveness of our method. In particular, we empha-
sis Covid-19 disease quantification and staging relying on the extraction and selection of image
characteristics directly from the CTs and their fusion with known clinical and biological markers.
Also, towards a better disease understanding, we aim at providing insights about the correlation
with the outcome of the various features involved. The value of this approach is further high-
lighted through a study on breast cancer patients’ treatment to response prediction from genes
and histopathological data. We also exemplify the staging power of the pipeline with a study of
atopic dermatitis severity determination from RNA-sequencing data.

The chapter is organized as follows: we first review related work mainly focusing on interstitial
lung diseases (ILDs). Then, we present a description of all the components and implementation
details of our method. After a presentation of the multi-center dataset, we address the evaluation
settings and our experiments’ results. Furthermore, we discuss our method’s similarities and
differences with other recently proposed approaches for quantification and staging of Covid-
19. Then, we propose other study cases on cancer and dermatitis. Lastly, we propose possible
directions for future research.

3.2 Related Work

This section provides a short review of previous works on the quantification of ILDs since
Covid-19 and ILDs share many similarities due to their diffuse pathological manifestations, such
as ground-glass opacities, band consolidations, and reticulations. Besides, we elaborate on studies
that tackle the severity or treatment response for such types of disease.

3.2.1 ILD Quantification

In the last years, automatic quantification of ILD diseases using CT scans has been a substan-
tial research topic. It aims to develop models that can identify one or several types of pathological
lung tissues in ILD cases (such as ground-glass, consolidation, honey-combing, etc.) and suc-
cessfully separate them from healthy tissues. Initial efforts were mainly based on classification
schemes. In particular, small patches including only a single tissue type were extracted and
described using some handcrafted features focusing mainly on textural properties and employed
to train different machine learning classifiers [Gangeh, 2010; Huber, 2012]. Following recent
advances in deep learning and especially the success of convolutional neural networks (CNNs),
researchers have recently leveraged such tools in thoracic imaging tasks [Chassagnon, 2019], and,
notably, in ILD quantification. The main advantage of CNNs is their ability to automatically
generate features from the input and create meaningful specific representations of the problems
at stake. In particular, a patch-based framework using a convolutional architecture is presented
in [Anthimopoulos, 2016] for the automatic quantification of 5 different ILD patterns. Similarly,
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in [Gao, 2018] a patch-based approach is adapted for classification in 6 different ILD patterns.
Despite the competitive performance reported by this approach compared to other ones based
on handcrafted features, the use of patches, besides being time-consuming and inefficient, does
not exploit the texture of the entire lung.

Many existing CNNs architectures have been further adapted to perform semantic segmenta-
tion in an end-to-end fashion. Semantic segmentation refers to inferring a class for each of the
pixels of an image instead of a single class for an image. Such models are present in literature
both in 2D [Badrinarayanan, 2017; Ronneberger, 2015] and 3D [Çiçek, 2016] and have also been
used for ILD quantification. The authors of [Vakalopoulou, 2018] present the coupling of 2D fully
convolutional networks with deformable registration for the automatic quantification of systemic
sclerosis disease. Moreover, in [Anthimopoulos, 2018], the authors propose using dilated filters
to segment different ILD tissue types. For instance, in [Bermejo-Peláez, 2020] an ensemble of
2D, 2.5D, and 3D networks is proposed for the segmentation of 8 different radiographic ILD
patterns. It is noteworthy to mention since Covid-19 shares similar patterns with ILDs, these
recent advances on ILD quantification are of great benefit for their adaptation to the Covid-19
case.

3.2.2 ILD Staging

Staging patients with ILDs is crucial as it could significantly help clinicians with their daily
practice while choosing treatment options [Kolb, 2014]. Many studies have recently tried to
identify and extract biomarkers from CT scans and associate them with ILD patients’ severity
and treatment. These biomarkers are usually enhanced with clinical and physiological infor-
mation to provide a scoring system as a survival predictor. Among the variety of biomarkers,
disease extent is one of the most powerful ones providing strong associations with severity and
mortality [Cottin, 2019; Tomassetti, 2015]. Visual scoring of the disease extent on CT can be
time-consuming [Robbie, 2017] highlighting the need for automatic disease quantification tools.
Moreover, except for the disease extent, the disease’s location is also essential for the staging.
In [Depeursinge, 2015; Christe, 2019] the quantification of the disease is performed on different
lung regions providing descriptive information about the severity of the ILD patients.

A variety of works report that radiomics, quantitative features extracted from the images,
provide valuable information about the severity and response to treatment for different diseases,
including cancer [Sun, 2018]. These features could also provide excellent tools for monitoring
disease progression and therapeutic response [Wu, 2019]. In particular, in [Bocchino, 2019]
intensity-based characteristics such as skewness and kurtosis were used together with disease ex-
tent to distinguish between systemic sclerosis patients with and without ILD diseases. Moreover,
in [Lafata, 2019] a variety of image radiomics and their relationship with the pulmonary function
were investigated. Their results indicate that high-throughput radiomics data extracted from
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the lungs may be associated with pulmonary function measured by standard PFT metrics.

3.3 Methodology

In this section, we provide a method for the automatic selection and combination of multi-
modal variables towards a holistic signature. Based on this signature, we develop advanced ma-
chine learning techniques integrating multi-modal data for classification purposes. Our method
endows robustness, good generalization properties and explainability. We detail our framework
in Figure 3.1.

Figure 3.1: Overview of our approach for feature selection and classification.

High dimensional features coming from different sources such as clinical, biological and imag-
ing data are used as input to our framework. A min-max normalization of the attributes was
performed by calculating the minimum and maximum values for the training and validation
cohorts. The same values were also applied to the test set.

3.3.1 Ensemble Feature Selection Approach

To prevent overfitting and discover the most informative and robust attributes for the patients’
staging and prognosis, we propose a robust biomarker selection process. Feature selection is
essential for classification tasks and has been widely studied in the literature, especially for
radiomics [Sun, 2018]. First, the training data set was subdivided into training and validation on
the principle of 80%-20% maintaining the distribution of classes between the two subsets identical
to the observed one. To perform feature selection, we have created 100 subdivisions on this basis
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and evaluated various classical machine learning classifiers - using the entire feature space - such
as Decision Tree Classifier, Linear Support Vector Machine, XGBoosting, AdaBoost, and Lasso.
Those methods are detailed in the Section 2.2.1. These classifiers were trained and validated
to distinguish between the different classes considered. In addition to these 5 classifier-based
feature selection approaches, we also considered statistics-based approaches based on Mutual
Information, Chi-squared statistics, and Univariate linear regression tests. Those metrics are
introduced in Section 2.2.2. Each of these methods gk was used to assess the importance of the
features regarding staging. Features fi were ranked according to their prevalence prevgk,fi

, the
total number of splits they were selected for each of the methods. Our experiments indicated that
depending on the feature selection method different features and characteristics were indicated as
necessary. We adopted a consensus approach to leverage the different feature selection properties
by choosing the features presenting a sum of prevalences over all the methods above a given
threshold t i.e., satisfying

∑
k prevgk,fi

> t.

Ensemble Stratification

The classification component was addressed using an ensemble learning approach. Similarly to
the feature selection approach, the training data set was subdivided into training and validation
sets on the principle of 80%-20%. This subdivision was performed such that the distribution
of classes between the two subsets was identical to the observed one. We have implemented
a 10-fold cross-validation on this basis and evaluated the average performance of the following
supervised classification methods: Nearest Neighbor, {Linear, Sigmoid, Radial Basis Function
(RBF), Polynomial Kernel} Support Vector Machines (SVM), Gaussian Process, Decision Trees,
Random Forests, AdaBoost, Gradient Boosting, Gaussian Naive Bayes, Bernoulli Naive Bayes,
Multi-Layer Perceptron & Quadratic Discriminant Analysis. Those methods are defined in de-
tails in Section 2.2.1. These classifiers have been trained using the identified selected features. A
consensus model was designed, selecting the top 5 classifiers with acceptable performance, > 60%
in terms of balanced accuracy, and consistent performance between training and validation, per-
formance decrease < 20% in balanced accuracy. The selected models were trained and combined
through a weighted winner takes all approach to determine the optimal outcome. Those weights
were determined using balanced accuracy on validation. Then, the selected classifiers were re-
trained using the entire training set, and their performance was reported on the external test
cohort.

3.3.2 Signature Refinement Technique

A limitation of using a consensus feature selection approach lies in the possibility to select fea-
tures presenting redundant information singled out independently by different selection methods
used. We propose an additional refinement by ablation to be applied on a signature to cope with
this difficulty.
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In the same cross-validation settings as before, we iteratively trained the ensemble classifier,
presented in the previous section, on the training set using all the signature features except one.
Then, we removed the gene, which ablation incurred the best-averaged results on validation.
This process was repeated until no gene remained. According to the elbow method, the final
retained signature was designed by considering all the genes after the inflection point. Then,
the selected classifiers were retrained using the entire training set and the refined signature, and
their performance was reported on the test set.

This ablation step is a complement to the previous selection and might not be needed. The
signature identified through our initial consensus feature selection approach on the Covid-19
dataset (Section 3.4) was already optimal. The further refinement did not bring any improvement
and so was not reported. However, this process proved to be primordial in the atopic dermatitis
generalization example presented in Section 3.6.

3.4 AI-Driven Quantification, Staging and Outcome Pre-
diction of COVID-19 Pneumonia

COVID-19 emerged in 2019 and spread around the world swiftly. Computed tomography (CT)
imaging has been proven to be an essential tool for screening, disease quantification, and staging.
The latter is of extreme importance for organizational anticipation (availability of intensive care
unit beds, patient management planning) and accelerating drug development through rapid,
reproducible, and quantified assessment of treatment response. Even if there are currently no
specific guidelines for the patients’ staging, CT might be used along with some clinical and
biological biomarkers. In this study, we collected a multi-center cohort, and we investigated the
use of medical imaging and artificial intelligence for disease quantification, staging, and outcome
prediction. Our approach relies on automatic deep learning-based disease quantification. It uses
an ensemble of architectures and a data-driven consensus for the staging and outcome prediction
of the patients fusing imaging biomarkers with clinical and biological attributes. Auspicious
results on multiple external/independent evaluation cohorts, as well as comparisons with expert
human readers, demonstrate the potentials of our approach.

3.4.1 Features Extraction Methodology

This section describes our AI-driven scheme for the quantification of CT scans for patients
suffering from Covid-19 pneumonia and the extraction of imaging information from different
segmented areas. In the following parts of this section, we provide details for all the system’s
different components.
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Figure 3.2: Overview of the method for automatic quantification, staging and prognosis of Covid-
19. Our study includes 8 independent cohorts, resulting in 693 Covid-19 patients in total. A
variety of clinical and biological attributes were collected and combined with imaging biomarkers
for short and long term prognosis of Covid-19 patients. Our study is composed by three differ-
ent steps: (i) Proposing a state-of-the-art deep learning based consensus of 2D & 3D networks
for automatic quantification of Covid-19 disease, reaching expert-level annotations, (ii) A ra-
diomics study integrating interpretable features extracted from disease, lung and heart regions.
A consensus-driven Covid-19 low dimensional bio(imaging)-holistic profiling and staging signa-
ture has been proposed using robust machine learning algorithms, fusing imaging, clinical and
biological attributes. & (iii) An ensemble of robust linear & non-linear classification methods for
the proper identification of patients needing intubation.

Lung, Breast and Heart Segmentation

Segmentations of the heart and breast were extracted using the software ART-Plan (Thera-
Panacea, Paris, France). ART-Plan is a CE-marked solution for automatic annotation of organs,
harnessing a combination of anatomically preserving and deep learning concepts. The lungs’
segmentation was also performed using ART-Plan software, but the models used were re-trained
using Covid-19 patients to address proper segmentation of diseased lungs. In particular, the
existing lung models, providing segmentation of left and right lungs, were re-trained using 50
Covid-19 lung annotations provided by medical experts. The models were evaluated on 130
Covid-19 patients partially annotated by two different experts, reporting mean dice coefficient
higher than 0.96 for both left and right lungs and mean standard deviation lower than 0.015.
The approach’s relevance is confirmed by the high dice coefficient of 0.96 obtained, very similar
to the one of 0.97 reported by the medical experts.
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Ensemble of Deep Architectures for Disease Quantification

Our proposed Covid-19 dedicated tool for lung lesions segmentation was built using an en-
semble method combining 2D & 3D deep learning architectures. All the Covid-19 related CT
abnormalities, similar to other ILD diseases ( ground-glass opacities, band consolidations, and
reticulations), were segmented as a single class. The proposed method (CovidENet) borrows ele-
ments from already established fully convolutional neural network designs from literature [Çiçek,
2016; Badrinarayanan, 2017] while it incorporates powerful design aspects such as deformable
registration methods for natural data augmentation. Combining the different CovidENet compo-
nents has been performed using their scoring output (before hard decision), fusing the different
networks’ output based on majority voting. This approach is a standard technique when ensem-
bling predictions between multiple neural networks. Our motivation to adopt a 2D architecture
was driven by the interest in exploring the spatial resolution on the axial space after mapping
to a shared space. Simultaneously, the integration of 3D networks was dictated by the will of
integrating consistency on the coronal/sagittal plane.

CovidE2D Component: Deep learning architectures based on 2D networks are commonly
used to segment ILD diseases [Anthimopoulos, 2018; Vakalopoulou, 2018] due to the time-
consuming annotation task and the 2D nature of the available datasets. We based the first com-
ponent (CovidE2D) of our CovidENet architecture on AtlasNet 2D architecture [Vakalopoulou,
2018]. AltasNet has already been used for ILD segmentation in systemic sclerosis patients, achiev-
ing outstanding performance on limited annotated ILD datasets. AtlasNet couples deformable
registration with deep learning, naturally performing data augmentation while preserving the
human anatomy. The main idea lies in training different deep learning classifiers (Ci) in a sim-
plified space after registering each sample (Si) on predefined templates/atlases (Ai). During
inference (Algorithm 2), the final segmentation is obtained by using the inverse transformation
(T−1
i ) to back-project to the original anatomy. A majority voting scheme is used to produce the

final projection, combining the different networks’ results.

Algorithm 2: AtlasNet Inference
1 S← sample;
2 Ci ← the i-th trained network;
3 for i ∈ i..N do
4 step 1 : Ti ← argminE(T̂ ;S,Ai);
5 Swarpedi ← Ti(S);
6 step 2 : Swarped,segi ← Ci(Swarpedi );
7 step 3 : Ssegi ← T−1

i (Swarped,segi );
8 end
9 step 4 : Sseg ← Combine(Ssegi );
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For the registration of the CT scans to the templates, an elastic registration framework based
on Markov Random Fields was used, providing the optimal displacements for each template [Fer-
rante, 2017]. In particular, the registration is performed by a non-linear transformer T , corre-
sponding to the operator that optimizes in the continuous domain Ω the following energy,

E(T ;S,Ai) =
∫∫

Ω

k∑
j=1

wjρj(S ◦ T,Ai)dΩ + α

∫∫
Ω
ψ(T )dΩ (3.1)

where ρj corresponds to the different similarity metrics (sum of absolute difference, normalized
cross-correlation, etc.) used to compare the source 3D volume to the target anatomy, wj are
linear constraints factorizing the importance of the different metric functions and ψ(·) is a penalty
function acting on the transformation’s spatial derivatives. More specifically, in our experiments
each Ci consists of a SegNet [Badrinarayanan, 2017] based architecture. For the CovidE2D
models, the CT scans were separated on the axial view. Each network included 5 convolutional
blocks, each one containing 2 Conv-BN-ReLU layer successions. Max-pooling layers were also
distributed at the end of each convolutional block for the encoding part. Upsampling operators
were used on the decoding part to restore the slices’ spatial resolution together with the same
successions of layers.

CovidE3D Component: To fully exploit the 3D nature of our dataset, the second compo-
nent of our proposed CovidENet is based on a 3D fully convolutional network similar to 3D-
UNet [Çiçek, 2016]. To train this model, 3D sub-volumes of the CT scan, including either the
left or the right lung without any downsampling, were extracted. The corresponding sub-volumes
labels were extracted from the ground-truth annotation masks. To this end, we trained the model
with the CT scan sub-volume as input and the annotation as the target. To extract the left and
the right lung regions, we used the lung segmentation model presented at [Hofmanninger, 2020].
Regarding the architecture, the model consisted of 5 blocks with a down-sampling operation
applied every 2 consecutive Conv3D-BN-ReLU layers. Additionally, five decoding blocks were
utilized for the decoding path, were at each block, a transpose convolution was performed to
up-sample the input. Skip connections were also employed between the encoding and decoding
paths. The dimensions of the input corresponded to the CT scan’s spatial dimensions, and, con-
sequently, the spatial dimensions of the features maps were not bound to some fixed dimension
to feed the entire left/ right lung volumes. As such, 3D volumes of arbitrary spatial dimensions
could be fed to the network, and thus the batch size was fixed to 1.

Features Extraction

Radiomics features were extracted from the CT scans using the previously described disease,
lung, and heart segmentations. All images were resampled by cubic interpolation as a prepro-
cessing step to obtain isometric voxels with sizes of 1 mm. Subsequently, disease, lung, and heart
masks were used to extract 107 radiomic features for each of them (left and right lungs were
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considered separately for the disease extent and whole lung). These features included first-order
statistics (maximum attenuation, skewness, 90th percentile etc), shape features (surface, maxi-
mum 2D diameter per slice, volume etc) and texture features (GLSZM, GLDM, GLRLM). For
the extraction, the open-source Pyradiomics library was used [Van Griethuysen, 2017].

Figure 3.3: Correlation between body mass index (BMI) and fat ratio.

Two other image indexes were also calculated, namely disease extent and fat ratio. The
disease extent was calculated as the percentage of lung affected by the disease over the entire
lung volume. The disease components were extracted by calculating the number of individual
connected components for the entire disease regions. The fat ratio, calculated as an indicator of
obesity, was used as a surrogate of the body mass index and calculated by dividing the volume of
thoracic fat by the thorax volume. The index was defined in an unsupervised manner. To obtain
fat segmentation, CT scans were smoothed using a Gaussian kernel with a standard deviation
of 2. A threshold of the densities in the range of [−29, 130] was applied on the smoothed
CTs to isolate the fat regions. Fat masks were calculated starting from the highest to the
lowest part of the lungs. To avoid gender bias, we used breast segmentation to exclude breast
fat. Then the volume of the fat segmentation was divided by the body volume. To validate
this morphometric measurement, we assessed its correlation with BMI in the 362 patients for
which BMI was available, and we found a strong correlation using Pearson correlation (r= 0.64;
p< 0.001; Figure 3.3).

3.4.2 Holistic Multi-Omics Profiling & Staging

We investigated various imaging features extracted using disease, cardiac, and lung segmen-
tations toward the combination of the disease extent with disease characteristics and patients
commodities. These imaging characteristics (radiomics) were then combined with meaningful
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clinical and biological indicators that have been reported to be associated with Covid-19 progno-
sis. Patient charts were reviewed to assess short-term (4 days after the chest CT) and long-term
prognosis (31 days after the chest CT). Patients were divided into 2 groups for the staging task:
deceased or under mechanical ventilation patients labeled severe cases (S) when the other patients
were labeled non-severe cases (NS). For the prognosis task, three distinct subpopulations were
defined: those who had a short term negative outcome (SD = short-term deceased within 4 days
after admission), those who didn’t recover within 31 days after the chest CT (LD= long-term
deceased, either died after day 4 or still intubated at day 31) and those who recovered (LR=
long-term recovered). The last two groups formed the short intubated (SI) group of patients.

3.4.3 Covid-19 Multi-Omics Profiling Signature

We have adapted the aforementioned selection method to maintain structural properties, we
selected the features in the top 5 prevalence in each region. We ensured symmetry by selecting
the opposite side counterpart of the most prevalent features in the lungs and disease lesions.
This way, we have extracted 15 different radiomics features. These features are distributed in:
imaging features from the disease regions (5 features), lung regions (5 features), and heart (5
features). On these radiomics features, biological and clinical data were added (6 features: age,
sex, high blood pressure (HBP), diabetes, lymphocyte count, and CRP level) and image indexes
(2 features: disease extent and fat ratio). In the end, our biomarker consisted of 23 features in
total.

Regarding imaging features, we identified the following features as the most important for
Covid-19 patients staging. These features include both first- and second-order statistics along
with some shape features.

• Disease areas: Non-Uniformity of the GLDM, Dependence Non-Uniformity of the GLDM,
Mesh Volume, Voxel Volume, Non-Uniformity of the GLRLM.

• Lung areas: Kurtosis, Mean Absolute Deviation, Zone Emphasis of the GLSZM, Non-
Uniformity of the GLSZM, Variance of the GLSZM.

• Heart areas: Maximum 2D diameter Slice, Non-Uniformity of the GLSZM, Sphericity,
Flatness, Minimum Length on the Axis.

The selected disease area features capture both disease extent and disease textural heterogene-
ity. Disease textural heterogeneity is associated with lesions, which generates imaging patterns
more complex than pure ground-glass opacities usually found in mild disease. The selected
lung features capture the dispersion and heterogeneity of lung densities, both of which may
reflect the presence of an underlying airway disease such as emphysema but also the presence
of sub-radiological disease. Lastly, the selected heart features can be seen as a surrogate for
cardiomegaly and coronary calcifications.
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3.4.4 Implementation Details

Deep Learning Segmentation

Each CT scan was normalized for the models training by cropping the Hounsfield units in
the range [−1024, 300]. Various hyperparameters, including loss functions, learning rates, and
optimizers, have been compared. In this section, we report the best-performing ones for each
component. Regarding implementation details, 6 templates/ atlases (Ai) were used for the At-
lasNet framework and normalized cross-correlation and mutual information as similarity metrics
for the registration to each template. All 6 models of the CovidE2D networks were trained
using weighted cross-entropy loss. And, the CovidE3D network was trained using a dice loss.
CovidENet aims to fuse different training strategies (2D, 3D) and different loss functions to ex-
plore the capabilities of deep learning architectures fully. Several studies [Anthimopoulos, 2018;
Vakalopoulou, 2018], demonstrate 2D networks’ high robustness for ILD segmentation when
using cross-entropy.

The Dice loss (DL) and weighted cross-entropy (WCE) are defined as follows:

DL = 1− 2pg + 1
p+ g + 1; (3.2)

WCE = −(βg log(p) + (1− g)log(1− p)) (3.3)

where p is the prediction determined from the network value and g the target/ground-truth
value. β is the weight given for the least representative class. For network optimization, the
class was used for the diseased regions only.

For the CovidE2D experiments, we used classic stochastic gradient descent for the optimization
with initial learning rate = 0.01, decrease of learning rate = 2.5·10−3 every 10 epochs, momentum
=0.9 and weight decay =5 · 10−4. For CovidE3D experiments, we used the AMSGrad and a
learning rate of 0.001. TensorFlow library [Abadi, 2016] was used for the implementation of the
CovidENet components.

The training of a single network for both CovidE2D and CovidE3D was completed in approxi-
mately 12 hours using a GeForce GTX 1080 GPU, while the prediction for a single CT scan was
performed in a few seconds. Training and validation curves for one template of CovidE2D and
the CovidE3D networks are shown in Figure 3.4. Early stopping has been used for ending the
training process, and the most appropriate model for each CovidENet component was selected
regarding performance on the validation set until this point.
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Figure 3.4: Training and validation curves for one template/ atlas (Ai) of CovidE2D and the
CovidE3D.

Prognosis Mechanism

To perform the short-term deceased (SD), long-term Deceased (LD), long term recovered (LR)
classification task, an SD/SI (SI: intubated at 4 days) classifier, and an LD/LR classifier was
applied hierarchically, performing first the short-term staging and then the long-term prognosis
for patients classified as in need of mechanical ventilation support. More specifically, a majority
voting method was applied to classify patients into SD and SI cases. Then, another hierarchical
structure was applied on the cases predicted as SI only to classify them into those who didn’t
recover within 31+ days of mechanical ventilation (LD) and those who recovered with 30 days
on mechanical ventilation (LR).

Covid-19 Multi-Omics Profiling & Staging

For the feature selection, features having the best combined prevalence (sum of prevalences over
the 8 selection techniques) were kept. For this feature selection task, Decision Tree Classifier
was taken of maximum depth 3, Linear SVM was taken with a linear kernel, a polynomial
kernel function of degree 3 and a penalty parameter of 0.25, Gradient Boosting was used with
a regression tree boosted over 30 stages, AdaBoost was used with a Decision Tree Classifier
of maximum depth 2 boosted 3 times and Lasso method was used with 200 alphas along a
regularization path of length 0.01 and limited to 1000 iterations.

Concerning the implementation details, to overcome the unbalanced dataset for the different
classes, each class received a weight inversely proportional to its size. For the NS versus S
majority voting classifier, the top 5 classifiers consist of RBF SVM, Linear SVM, AdaBoost,
Random Forest, Decision Tree. The SVM methods were granted a polynomial kernel function of
degree 3, and the Linear kernel had a penalty parameter of 0.3 while the RBF SVM had a penalty
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parameter of 0.15. Besides, the RBF SVM was granted a kernel coefficient of 1. The Decision
Tree classifier was limited to a depth of 2 to avoid overfitting. The Random Forest classifier
was composed of 25 of such Decision Trees. The AdaBoost classifier was based on a decision
tree of maximal depth of 1 boosted 4 times. For the SI versus SD majority voting classifier,
the top 5 classifiers consists of polynomial SVM, Linear SVM, Decision Tree, Random Forest,
and AdaBoost. The Linear and Polynomial SVM were granted a polynomial kernel function of
degree 2 and a penalty parameter of 0.35. The Decision Tree classifier was limited to a depth
of 1, and Random Forest was composed of 50 of such trees. The AdaBoost classifier was based
on a decision tree of maximal depth of 1 boosted 2 times. Finally, the LR versus LD majority
voting classifier was only using the 4 classifiers with balanced accuracy > 0.6, namely Linear and
Sigmoid SVM, Decision Tree, and AdaBoost Classifiers. The SVM methods were defined with a
kernel function of degree 3 and a penalty parameter of 1. Decision Tree was defined to a depth of
1, AdaBoost being defined with such a Decision Tree boosted 3 times. For the implementation
of all the models, the Scikit-learn library was used [Pedregosa, 2011].

3.4.5 Dataset

Our Institutional Review Board (AAA-2020-08007) approved this retrospective multi-center
study, which waived the need for patients’ consent. Patients diagnosed with Covid-19 from
March 4th to April 5th from eight large University Hospitals were eligible if they had positive
reverse transcription-polymerase chain reaction (PCR-RT) and signs of Covid-19 pneumonia on
unenhanced chest CT. Only the CT examination that was performed at the initial evaluation was
included in our dataset. Exclusion criteria were (i) contrast medium injection and (ii) important
motion artifacts. No patient was intubated at the time of the CT acquisition. A total of 693
patients, after application of all the exclusion criteria, are forming the full dataset (321, 360 CT
slices).

Chest CT exams were acquired on 4 different CT models from 3 manufacturers (Aquilion Prime
from Canon Medical Systems, Otawara, Japan; Revolution HD from GE Healthcare, Milwaukee,
WI; Somatom Edge and Somatom AS+ from Siemens Healthineer, Erlangen, Germany). The
different acquisition and reconstruction parameters are summarized in Table 3.1. CT exams
were mostly acquired at 120 (n=481/693; 69%) and 100 kVp (n=186/693; 27%). Images were
reconstructed using iterative reconstruction with a 512 × 512 matrix and a slice thickness of
0.625 or 1 mm depending on the CT equipment. Only the lung images reconstructed with high-
frequency kernels were used for analysis. For each CT examination, dose length product (DLP)
and volume Computed Tomography Dose Index (CTDIvol) were collected.

For the Covid-19 radiological pattern segmentation part, 50 patients from 3 centers (A: 20
patients; B: 15 patients, C: 15 patients) were included to compose a training and validation
dataset, 130 patients from the remaining 3 centers (D: 50 patients; E: 50 patients, F: 30 patients)
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Table 3.1: Acquisition and reconstruction parameters of the dataset used in this study. Note:
For quantitative variables, data are presented as mean ± standard deviation, and numbers in
brackets indicate their range. CT = Computed Tomography ; CTDIvol = Volume Computed
Tomography Dose Index ; DLP = Dose Length Product.

Center A Center B Center C Center D Center E Center F Center G Center H
CT equi- Somatom Resolution Aquilion Somatom Revolution Aquilion Revolution Somatom
pment AS+ HD Prime Edge HD AS+
Kilovoltage 100-120 120 100-120 100-120 120-140 100-120 120 100-120

DLP
(mGy.cm)

109± 42
[44-256]

306± 104
[123-648]

102± 30
[43-189]

131± 44
[55-499]

177± 48
[43-276]

115± 26
[75 - 186]

285± 108
[70 - 679]

332± 156
[179 - 755]

CTDIvol
(mGy)

3.2± 1.5
[1.2-11.9]

8.7± 2.8
[3.9-18.5]

2.7± 0.9
[1.0-5.3]

3.2± 0.9
[1.4-9.5]

5.5± 1.8
[1.2-12.3]

2.5± 0.6
[1.7-4.3]

7.9± 2.9
[1.7-18.0]

8.5± 4.0
[4.4-19.8]

Slice thick-
ness

1 mm 0.625 mm 1 mm 0.625mm 1 mm 1 mm 0.625 mm 1 mm

Convolution
Kernel

i70 Lung FC51-FC52 i50 Lung FC51-FC52 Lung i70

Iterative
reconstruc-
tions

SAFIRE 3 ASIR-v 80% IDR 3D0.67 SAFIRE 4 ASIR-v 60% IDR 3D ASIR-v 60% SAFIRE 3

were included to compose the test dataset (Table 3.2). The patients from the training cohort were
annotated slice-by-slice. In contrast, the patients from the testing cohort were partially annotated
on the basis of 20 slices per exam covering the lung regions equidistantly. The proportion
between the CT manufacturers in the datasets was pre-determined to maximize the model’s
generalizability while considering the data distribution.

Table 3.2: Patient characteristics for the automatic quantification of Covid-19 disease. Note: For
quantitative variables, data are presented as mean ± standard deviation, and numbers in brackets
indicate their range. CT = Computed Tomography; CTDIvol = Volume Computed Tomography
Dose Index; DLP = Dose Length Product.

Training/Validation
Dataset (Centers A+B+C;
N=50)

Test Dataset
(Centers D+E+F;
n=130)

p-value

Age (y) 57± 17 [26-97] 59± 16 [17-95] 0.363
No. of Men 31(62) 87(67) 0.534
Disease ex-
tent*
Manual 18.1± 14.9 [0.3-68.5] 19.5± 16.5 [1.1-75.7] 0.574
Automated - 19.9%± 17.7 [0.5-73.2] -
DLP
(mGy.cm)

180± 124 [43-527] 139± 49.0 [43-276] 0.026

CTDIvol
(mGy)

4.9± 3.4 [1.0-13.0] 4.0± 1.9 [1.2-12.3] 0.064

For the staging (NS/S) and prognosis (short- and long-term) study, 513 additional patients
from centers A (121 patients), B (157 patients), D (138 patients), G (77 patients) and H (20
patients) were included. Data of 536 patients from 5 centers (A, B, C, D, and H) were used for
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training, and those of 157 patients from 3 other centers (E, F, and G) composed an independent
test set (Table 3.3). In addition to the CT examination - when available - patient sex, age, and
body mass index (BMI), blood pressure, diabetes, lymphocyte count, CRP level, and D-dimer
level were also collected (Table 3.3).

For short-term outcome assessment, patients were divided into 2 groups: short-term Non-
Severe (NS) and short-term Severe (S). For long-term outcomes, medical records were reviewed
from May 7th to May 10th, 2020 to determine if patients died or had been intubated during the
month following the CT examination. The data associated with each patient (holistic profiling)
and the corresponding outcomes in terms of severity assessment and the outcome and readers
assessment have been made publicly available.

Fifteen radiologists (GC, TNHT, SD, EG, NH, SEH, FB, SN, CH, IS, HK, SB, AC, GF,
and MB) with 1 to 7 years of experience in chest imaging participated in the data annotation
which was conducted over a 2-week period. The Covid-19 radiological pattern segmentation was
manually annotated slice by slice on the whole CT scans for the training and validation sets. On
each of the 50 cases (23, 423 axial slices) composing this dataset, all the Covid-19 related CT
abnormalities ( ground-glass opacities, band consolidations, and reticulations) were segmented
as a single class. Additionally, the whole lungs were segmented to create another class (lung). To
facilitate the collection of the ground-truth for the lung anatomy, a preliminary lung segmentation
was performed with Myrian XP-Lung software (version 1.19.1, Intrasense, Montpellier, France)
which was then manually corrected. For the test cohort, 20 CT slices equally spaced from the
superior border of the aortic arch to the lowest diaphragmatic dome were selected in a total of 130
patients composing a 2, 600 images dataset. Each of these images was systematically annotated
by 2 out of the 15 participating radiologists. Annotation consisted of manual delineation of the
disease and manual segmentation of the lung without any preliminary segmentation.

Furthermore, 3 radiologists, an internationally recognized expert with 20+ years of experience
in thoracic imaging (ReaderA), a thoracic radiologist with 7+ years of experience (ReaderB)
and a resident with a 6-month experience in thoracic imaging (ReaderC ) were asked to perform
a triage (severe versus non-severe cases) and for the severe cases (short-term deceased versus
short-term intubated) prognosis process to predict the short-term outcome.

3.4.6 Results and Discussion

Statistical Analysis

The dice similarity score (DSC) was calculated to assess the similarity between the 2 man-
ual segmentations of each CT exam in the test dataset and between manual and automated
segmentations. The Hausdorff distance (HD) was also calculated to evaluate the automated
segmentations’ quality similarly. Disease extent was calculated by dividing the volume of the
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Table 3.3: Patient characteristics for the automatic staging and prognosis tools. Note: For
quantitative variables, data are presented as mean ± standard deviation, and numbers in brack-
ets indicate their range. For qualitative variables, data are numbers of patients, and numbers
in parentheses are percentages. CT = Computed Tomography, CTDIvol = volume Computed
Tomography Dose Index; DLP = Dose Length Product. *Available clinical data: n = 692 for
diabetes and high blood pressure(leading to 0.19% of missing data on the training set), n = 674
for lymphocyte count (leading to 2.05% and 5.10% of missing data on the training and test sets
respectively), n = 654 for CRP (leading to 4.66% and 8.92% of missing data on the training and
test sets respectively), n = 362 for Body Mass Index, and n = 339 for D-dimers. **Percentage
of lung volume on the whole CT. ***Data available for 688 patients.

Training/Validation Dataset Test Dataset
p-value(Centers A+B+C+ D+H; (Centers E+F

n=536) +G;n=157)
Age (y) 63± 16 [22-98] 62± 17 [17-98] 0.495
No. of Men 374(70) 103(78) 0.321
High blood pression* 235 (44) 71 (45) 0.773
Diabetes* 97 (18) 37 (24) 0.888
Body mass index 27.7± 5.1 [17.0-44.1] 27.1± 5.1 [14.5-42.7] 0.390(kg/m2)*
Lymphocyte count 1.3± 2.7 [0.1-48.5] 1.3± 3.3 [0.23-41.0] 0.915(×109/L)*
CRP (mg/L)* 104.3± 82.9 [1.0-430.7] 94.2± 74.8 [2.0-342] 0.166
D-dimers (microg/L)* 2458± 6533 [181-86248] 815± 924 [168-6138] < 0.001
Disease extent** 22.2± 18.4 [0.0-89.8] 24.0± 18.7 [1.1-89.8]
Fat ratio on CT 18.6± 5.9 [1.7-42.3] 18.3± 5.5 [2.7-30.6] 0.589
Short-term outcome 0.994
Deceased 28(5) 8(5)
Intubated 80(15) 23(15)
Alive and Not Intubated 428(80) 126(80)
Follow-up duration
Worsening during 0.554follow-up***
Deceased 69(13) 17(11)
Intubated 68(13) 22(14)
DLP (mGy.cm) 181± 115 [43-755] 218± 106 [ 43-679 ] < 0.001
CTDIvol (mGy) 4.9± 3.2 [1.0-19.8] 6.1± 3.0 [1.2-18.0] < 0.001

lesions in the lung by the lung volume and expressed in the total lung volume percentage. Disease
extent measurement between automated and manual segmentations was compared using paired
Student’s t-tests. Similarly, correlations between disease extent measurements from Covid2D,
Covid3D, CovidENet, and manual segmentations were compared using Spearman’s rank corre-
lation coefficient.

For stratifying the dataset into the different categories, traditional machine learning metrics,
namely balanced accuracy, weighted precision, and weighted specificity and sensitivity, were
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Table 3.4: Quantitative evaluation of the CovidENet and its components CovidE2D & Co-
vidE3D architectures regarding Dice Coefficient and Hausdorff Distance. The mean, median,
and standard deviation for each of the developed tools are presented together compared to the
2 independent experts. With bold, we indicate the highest values per metric.

Methods
Dice Hausdorff Distance

Mean Median STD Mean Median STD
Obs1 Obs2 Obs1 Obs2 Obs1 Obs2 Obs1 Obs2 Obs1 Obs2 Obs1 Obs2

CovidE2D 0.69 0.67 0.70 0.68 ±0.13 ±0.13 9.40 9.23 9.33 9.30 ±1.83 ±1.80
CovidE3D 0.62 0.65 0.67 0.70 ±0.17 ±0.16 9.43 8.70 9.43 8.60 ±1.87 ±1.81
CovidENet 0.69 0.70 0.71 0.73 ±0.13 ±0.13 9.18 8.75 9.16 8.72 ±1.86 ±1.78
Obs1-Obs2 0.70 0.72 ±0.12 9.16 9.16 ±1.83
CovidENet 0.70 0.72 ±0.12 8.96 8.94 ±1.82

utilized.

Figure 3.5: Box-Plot in terms of DSC and HD between CovidENet and its individual components,
Obs1 & Obs2. One can observe that CovidENet (blue) performs better and closer to Obs1-Obs2
(red) regarding DSC and HD metrics than its individual components CovidE2D & CovidE3D.

Disease Quantification

The evaluation of CovidENet, of its components, and the comparison with the 2 independent
experts are summarised in Table 3.4. CovidE2D component performed better than the CovidE3D
for the segmentation of Covid-19 disease. It is highlighted by the higher DSC and HD values
achieved by the CovidE2D component (Figure 3.5). However, their fusion led to a significant
improvement, comparable to human readers. Moreover, CovidENet performed equally well com-
pared to trained radiologists in terms of DSC and better in terms of HD (Figure 3.5, 3.7 and
Table 3.4). The mean/median DSCs between the two expert annotations on the test dataset
were 0.70/0.72 for disease segmentation, while DSCs between CovidENet and the manual seg-
mentations were 0.69/0.71 and 0.70/0.73. In terms of HDs, the average expert distance was
9.16 mm while it was 8.96 mm between CovidENet and the experts.
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Figure 3.6: Plots indicating the correlation between automatically measured disease extent and
the average disease extent from CovidE2D, CovidE3D, and CovidENet respectively, and the
manual segmentation. Disease extent is expressed as the percentage of lung affected by the
disease. The red line shows a perfect correlation (Spearman R = 1). Spearman rank correlation
coefficients are displayed for each comparison.

Furthermore, the superiority of CovidENet is indicated by the disease extent estimation perfor-
mance on the test dataset. Indeed, no significant difference was observed between disease extent
evaluated by the CovidENet and the manual segmentations’ average (19.9% ± 17.7[0.5 − 73.2]
vs 19.5% ± 16.5[1.1 − 75.7]; p= 0.352). As shown in Figure 3.6 correlation to disease extent
from manual segmentations was better when using CovidENet (r = 0.94, p < 0.001), compared
to Covid3D (r = 0.71, p < 0.001) or Covid2D (r = 0.92, p < 0.001) which oversegmented the
disease.

Examples of disease segmentations are presented in Figure 3.7. One can observe that the
segmentations provided by CovidENet are very close to the ones generated by the experts. In
particular, the algorithm detected the diseased regions even in relatively small areas, capturing
all the different opacities of Covid-19, such as ground-glass and consolidation.

Covid-19 Holistic Multi-Omics Profiling & Staging

The holistic Covid-19 pneumonia signature is presented in (Table 3.5) along with the cor-
relations with the outcome. The average signature for the severe and non-severe cases in the
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Figure 3.7: Qualitative analysis for the comparison between manual and the proposed CovidENet
disease quantification. Delineation of the diseased areas on chest CT in different slices of Covid-
19 patients. From left to right: Input, CovidENet-segmentation, Obs1-segmentation, Obs2-
segmentation.

test set are presented in Figure 3.8. Consensus ensemble learning through majority voting was
used to determine the subset of AI methods with have robust, reproducible performance with
good generalization properties. Human “reader+++” was used as a reference through consen-
sus among three chest radiologists (resident, 7+ years of experience, 20+ years of experience in
thoracic imaging). Our method aiming to separate patients with S/NS outcomes had a balanced
accuracy of 70% (vs 67% for human readers consensus), a weighted precision of 81% (vs 78%),
a weighted sensitivity of 64% (vs 70%) and specificity of 77% (vs 64%) and outperformed the
consensus of human readers (Figure 3.8, Table 3.6). Our method successfully predicted 81% of
the severe/critical cases as opposed to only 61% for the consensus reader. The superiorty of our
approach is also indicated by the higher AUC reported (0.76) compared to the one achieved by
the different readers (0.69). Severe cases, as depicted in Figure 3.8 referred to diabetic men, with
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Figure 3.8: Covid-19 Holistic Multi-Omics Signature & Staging: Spider chart representing av-
erage profiles (average values of the variables after normalization between 0 and 1) concerning
severe versus non-severe separation are shown along with the prevalence of biomarkers (diameter
of the circle). The prevalence of the biomarker corresponds to its number of selections during
the feature selection process. Classification performance, confusion matrices, and area under
the curve concerning the proposed method and the consensus of expert readers (reader+) are
reported on the right side. Selective associations of features with the outcome (NS/S) are shown
at the figure’s top right (box plots).

a higher level of volume/heterogeneity of the disease and C-reactive protein levels. Moreover, as
indicated in Figure 3.8 the non-uniformity on GLRLM for both lung and disease together with
the disease extent seems to contribute considerably to the classification of the patients to NS
versus S cases.

Prognosis & Staging

The Covid-19 pneumonia pandemic spiked hospitalizations while exerting extreme pressure
on intensive care units. In the absence of a cure, staging and prognosis are crucial for clinical
decision-making for resource management and experimental outcome assessment in a pandemic
context. Our objective was to predict patient outcomes before mechanical ventilation support.
The proposed ensemble classifier aiming to predict the SD/(LD or LR) had a balanced accuracy
of 88% (vs 81% for human readers consensus), a weighted precision of 94% (vs 87%), a weighted
sensitivity of 94% (vs 88%) and specificity of 81% (vs 75%) and outperformed consensus of human
readers (Table 3.6). Our method for prognosis of SD/ LD/ LR had a balanced accuracy of 71%,
a weighted precision of 77%, a weighted sensitivity of 74%, and specificity of 82% to provide
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Figure 3.9: Short & Long Term Prognosis. Spider chart representing average profiles (average
values of the variables after normalization between 0 and 1) for the short deceased (SD), long
deceased (LD), and long recovered (LR) classes are shown along with their correlations with the
outcome (diameter of the circle). The presented correlation corresponds to Pearson Correlation
for LR/LD outcome (Table 5). Classification performance, confusion matrices, and area under
the curve of the proposed method and - when feasible - the consensus of expert readers (reader+)
are reported on the right side. ROC curves correspond to the one-vs-all classification of the
SD/LR/LD patients. Selective associations of features with the outcome (LD/LR) are shown at
the bottom of the figure (box plots).

full prognosis (Figure 3.9). Concerning the performance of our method for the classification of
LD and LR patients (Table 3.7), our ensemble classifier reports a balanced accuracy of 69%, a
weighted precision of 76% a weighted sensitivity of 74% and a weighted specificity of 65%. As
indicated in Figure 3.9 the performance of our method reaches an AUC of 0.86 for the SD, 0.86
for the LR, and 0.76 for the LD classes. Moreover, the age, HBP, and lung non-uniformity on
the GLSZM seem to associate better for this task.

Moreover, to assess each feature category’s impact on the implemented models, we performed
an ablation study by successively removing one category of features from the 6 categories defined
for each classification task. Results are presented in Table 3.8. The feature categories were
identified as follows: a) D0: disease extent, b) D1: disease variables that are shape/geometry
related, c) D2: disease variables that are tissue/texture, d) O1: heart/lungs variables that
are shape/geometry related, e) O2: heart/lungs variables that are tissue/texture, f) B1: age,
gender, biological/obesity/diabetes/fat/high blood pressure. One can observe that the Clinical
Only category contributes a lot to the separation of SD/LD/LR. Simultaneously, for the NS/S
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Table 3.5: Correlation between outcome and the 23 features of the holistic Covid19 signature.
Note: , GLRLM, GLDM, LD = long-term-deceased, LR = long-term deceased, NS = non-severe,
S = severe, SI = short-term intubation , SD = short-term deceased.

Features Correlation
S/NS SI/SD LR/LD

Age 0.067 0.674 0.334
Sex 0.132 -0.049 -0.059
CRP 0.002 0.015 0.018
HBP 0.033 0.293 0.332
Diabetes 0.065 -0.130 -0.061
Lymphocytes 0.033 0.020 0.012
Fat Index 0.055 -0.192 0.122
Disease Extent 0.328 -0.069 0.214

Heart

Non-uniformity
on the GLSZM 0.067 -0.137 -0.112

Sphericity -0.161 -0.246 -0.101
Flatness -0.126 -0.039 -0.110
Minimum Length
on the Axis 0.044 0.067 -0.083

Left Right Left Right Left Right

Lung

Kurtosis -0.284 -0.289 0.077 0.009 0.005 0.006
Mean Absolute
Deviation 0.305 0.322 -0.003 -0.001 0.017 -0.026

Zone Emphasis
on the GLSZM 0.299 0.318 -0.023 0.045 0.213 0.199

Non-Uniformity
on the GLSZM -0.305 -0.305 -0.018 -0.031 -0.174 -0.138

Variance
on the GLSZM 0.305 0.348 0.018 0.031 0.174 0.138

Disease

Mesh Volume 0.297 0.363 -0.087 0.024 0.209 0.125
Volume Volume 0.297 0.363 -0.087 0.024 0.209 0.125
Dependence
Non-Uniformity
on the GLDM

0.266 0.338 -0.067 10−4 0.202 0.168

Non-Uniformity
on the GLDM 0.287 0.363 -0.079 0.017 0.203 0.142

Non-uniformity

on the GLRLM
0.284 0.340 -0.076 0.037 0.194 0.123

cases, their contribution is marginal, contrary to the other imaging characteristics.

Discussion

AI-enhanced imaging, clinical and biological information proved his ability for identifying
patients with severe short/long-term outcomes, bolstering healthcare resources under the extreme
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Table 3.6: Prognosis of medical experts and their consensus for the non-severe (NS) versus Severe
(S), Intubated (SI) versus Deceased (SD) and NS/SI/SD patients Note: Classification Perfor-
mance ReaderA (Senior), ReaderB (Established), ReaderC (Resident), Reader+++ (Consensus
among Human Readers), Reader−−− (Average performance of Human Readers).

Balanced
Accuracy

Weighted
Precision

Weighted
Sensitivity

Weighted
Specificity

NS/SI/SD
ReaderA 0.62 0.77 0.68 0.69
ReaderB 0.59 0.75 0.67 0.65
ReaderC 0.61 0.76 0.68 0.62
Reader+++ 0.63 0.77 0.70 0.67
Reader−−− 0.61 ±0.01 0.76 ±0.01 0.68 ±0.01 0.66 ±0.03
Proposed 0.67 0.81 0.63 0.80
NS/S
ReaderA 0.69 0.79 0.70 0.67
ReaderB 0.66 0.77 0.70 0.62
ReaderC 0.65 0.76 0.70 0.60
Reader+++ 0.67 0.78 0.70 0.64
Reader−−− 0.67 ±0.01 0.77 ±0.01 0.70 ±0.01 0.63 ±0.03
Proposed 0.70 0.81 0.64 0.77
SI/SD
ReaderA 0.81 0.87 0.88 0.75
ReaderB 0.79 0.84 0.84 0.74
ReaderC 0.81 0.87 0.88 0.75
Reader+++ 0.81 0.87 0.88 0.75
Reader−−− 0.81 ±0.01 0.87 ±0.01 0.87 ±0.01 0.75 ±0.03
Proposed 0.88 0.94 0.94 0.81

Table 3.7: Performance for the Deceased (LD) and Recovered (LR) in the long-term outcome
for each of the selected classifiers and their ensemble. Note: P-SVM = Support Vector Machine
with a polynomial kernel; S-SVM = Support Vector Machine with a sigmoid kernel.

Classifier
Balanced
Accuracy

Weighted
Pecision

Weighted
Sensitivity

Weighted
Specificity

Train Test Train Test Train Test Train Test
L-SVM 0.77 0.62 0.81 0.7 0.74 0.63 0.81 0.61
S-SVM 0.63 0.69 0.71 0.76 0.56 0.63 0.7 0.74
AdaBoost 0.82 0.69 0.84 0.76 0.8 0.74 0.83 0.65
Decision
Tree 0.7 0.72 0.8 0.78 0.6 0.68 0.81 0.76

Ensemble
Classifier 0.82 0.69 0.84 0.76 0.8 0.74 0.83 0.65

pressure of the current Covid-19 pandemic. The information obtained from our AI staging and
prognosis could be used as an additional element at admission to assist decision-making.
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Table 3.8: An ablation study of the different selected features. A leave-one-out method has been
applied by removing one feature sequentially to test the features’ importance and the performance
robustness. Note: a) D0: disease extent, b) D1: disease variables that are shape/geometry
related, c) D2: disease variables that are tissue/texture, d) O1: heart/lungs variables that are
shape/geometry related, e) O2: heart/lungs variables that are tissue/texture, f) B1: age, gender,
biological/obesity/diabetes/fat/high blood pressure. LD = long-term-deceased; LR = long-term
deceased; NS = non-severe; S = severe; SI = short-term intubation; SD = short-term deceased.

Study
Case Task Balanced Accuracy Weighted Precision Weighted Sensitivity Weighted Specificity

Training Test Training Test Training Test Training Test

All Features

NS/S 0.73 0.70 0.82 0.81 0.67 0.64 0.80 0.77
SI/SD 0.90 0.88 0.92 0.94 0.92 0.94 0.88 0.81
LD/LR 0.82 0.69 0.84 0.76 0.8 0.74 0.83 0.65
SD/LD/LR 0.77 0.71 0.8 0.77 0.78 0.74 0.9 0.82

Without D0

NS/S 0.73 0.7 0.82 0.8 0.68 0.65 0.79 0.74
SI/SD 0.89 0.88 0.92 0.94 0.92 0.94 0.88 0.81
LD/LR 0.56 0.5 0.74 0.54 0.74 0.74 0.39 0.26
SD/LD/LR 0.65 0.58 0.73 0.64 0.76 0.74 0.79 0.72

Without D1

NS/S 0.74 0.69 0.82 0.8 0.67 0.64 0.8 0.74
SI/SD 0.89 0.88 0.91 0.93 0.91 0.93 0.88 0.81
LD/LR 0.56 0.5 0.74 0.54 0.74 0.74 0.39 0.26
SD/LD/LR 0.65 0.58 0.73 0.64 0.76 0.74 0.79 0.72

Without D2

NS/S 0.73 0.69 0.82 0.8 0.67 0.64 0.8 0.74
SI/SD 0.89 0.88 0.91 0.93 0.91 0.93 0.88 0.81
LD/LR 0.58 0.5 0.74 0.54 0.76 0.74 0.48 0.26
SD/LD/LR 0.67 0.58 0.73 0.64 0.76 0.74 0.82 0.72

Without O1

NS/S 0.73 0.7 0.82 0.79 0.72 0.73 0.75 0.67
SI/SD 0.89 0.88 0.91 0.93 0.91 0.93 0.88 0.81
LD/LR 0.58 0.5 0.73 0.54 0.74 0.74 0.42 0.26
SD/LD/LR 0.66 0.58 0.72 0.64 0.76 0.74 0.81 0.72

Without O2

NS/S 0.75 0.69 0.83 0.8 0.67 0.62 0.82 0.76
SI/SD 0.89 0.88 0.91 0.93 0.91 0.93 0.88 0.81
LD/LR 0.78 0.59 0.82 0.68 0.83 0.68 0.72 0.5
SD/LD/LR 0.74 0.65 0.78 0.73 0.79 0.7 0.87 0.78

Without B1

NS/S 0.73 0.71 0.82 0.81 0.67 0.66 0.79 0.77
SI/SD 0.67 0.58 0.74 0.65 0.74 0.67 0.6 0.48
LD/LR 0.74 0.53 0.79 0.64 0.79 0.68 0.7 0.37
SD/LD/LR 0.58 0.41 0.59 0.48 0.59 0.48 0.73 0.66

Clinical Only

NS/S 0.71 0.58 0.8 0.73 0.68 0.58 0.73 0.58
SI/SD 0.89 0.88 0.91 0.93 0.91 0.93 0.88 0.81
LD/LR 0.73 0.53 0.79 0.64 0.8 0.68 0.65 0.37
SD/LD/LR 0.72 0.6 0.77 0.7 0.78 0.7 0.85 0.74

Various studies resorted to deep learning for the diagnosis and quantification of Covid-19 with
CT scans. In particular, studies have already reported on deep learning diagnosing Covid-19
pneumonia on chest CTs. In [Li, 2020b], the authors proposed using a deep learning architecture
based on ResNet50 for the diagnosis of Covid-19, reporting high performances while investigating
the attention maps produced from their network. A similar method is presented in [Mei, 2020]
reporting the use of deep learning on Covid-19 diagnosis. Furthermore, in [Huang, 2020], the
authors propose using a UNet architecture to quantify the disease using 14482 slices for training
and 5303 slices for the test, reporting a median DSC of 0.8481. However, since their dataset
is not publicly available, it is impossible to perform a direct comparison. A 3D deep learning
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architecture (DenseUNet) is proposed in [Chaganti, 2020] for the quantification of Covid-19
disease. The segmentation is then used to regress many scores proposed in that study, such as lung
high opacity, lung severity, high opacity, and opacity percentages. Again, a direct comparison
could not be reported, as the evaluation of the method was not assessed using DSC or HD but
on their ability to regress the proposed scores. Finally, recently [Tilborghs, 2020] presents a
comparable study of deep learning-based methods for the automatic quantification of Covid-19.

Assessing the severity of Covid-19 patients is a swiftly evolving topic in the medical commu-
nity, with some methods being currently under review. Extracting valuable information from the
imaging using recent advances is very important and could potentially facilitate clinical prac-
tice. Indeed, Disease extent is known to be associated with severity [Li, 2020a; Yuan, 2020].
Simultaneously, the disease textural heterogeneity better reflects heterogeneous lesions than the
pure ground-glass opacities observable in mild cases. In [Li, 2020c], the authors proposed using
Siamese networks for the severity assessment of Covid-19 directly from CT scans. In [Bai, 2020],
the authors proposed a deep learning pipeline based on LSTMs using 2D CT slices and a fusion of
imaging and clinical information to assess the severity and progression of Covid-19 patients. The
proposed method reports an accuracy of 89.1% on a test cohort of 80 patients, outperforming
classical machine learning techniques. Besides, having a smaller test cohort, our method explores
interpretable features, thus helping to understand the disease better and provide additional in-
formation for the staging of the patients. Recently [Lassau, 2020] proposed the assessment of
severity using a deep learning tool achieving an AUC of 0.79 on an independent cohort but with
low sensitivity. Again, even if we could not perform a direct comparison, our method reports
similar performance in a completely independent cohort. Besides, it is based on interpretable fea-
tures extracted from different regions. Finally, in [He, 2020] a 2D deep learning-based approach
using multi-task learning is presented to separate Covid-19 patients into severe and non-severe
cases.

Clinical Impact

Our study is one of the first to have developed a robust, holistic Covid-19 multi-omics signa-
ture for disease staging and prognosis. It demonstrated an equivalent/superior-to-human-reader
performance on a multi-centric data set. Our approach complied with appropriate data collec-
tion and methodological testing requirements beyond the existing literature [Mei, 2020]. The
proposed holistic signature harnessed imaging descriptors of disease, underlying lung, heart and
fat, and biological and clinical data. Among them, disease extent is known to be associated
with severity [Li, 2020a; Yuan, 2020], disease textural heterogeneity reflects more the presence of
heterogeneous lesions than pure ground-glass opacities observable in mild cases. Heart features
encode cardiomegaly and cardiac calcifications. Lung features show patients with a severe form of
the disease having a wider dispersion and heterogeneity of lung densities, reflecting the presence
of an underlying airway disease such as emphysema and the presence of sub-radiological disease.



3.5. Holistic artificial intelligence-driven predictor in HER2-positive (HER2+)
early breast cancer (BC) 59

Among clinical variables, a higher CRP level, lymphopenia, a higher prevalence of hypertension
and diabetes were associated with a poorer outcome, consistent with previous reports [Zhou,
2020a; Guo, 2020; Terpos, 2020]. Interestingly, age was less predictive of disease severity than
of poor outcome in severe patients. It is linked to the fewer therapeutic possibilities for these
generally more fragile patients. Lastly, the average body mass index (BMI) in both non-severe
and severe groups corresponded to overweight. Despite being correlated with BMI, the fat ratio
measured on the CT scanner was only weakly associated with outcome. Several studies have
reported obesity to be associated with severe outcomes [Huang, 2020; Chaganti, 2020] and an
editorial described the measurement of anthropometric characteristics as crucial to better es-
timate the risk of complications [Stefan, 2020]. Notwithstanding, a meta-analysis showed that
whereas being associated with an increased risk of Covid-19 pneumonia, obesity was paradoxi-
cally associated with reduced pneumonia mortality [Wynants, 2020]. Overall, the combination
of clinical, biological, and imaging features demonstrates their complementary value for staging
and prognosis.

3.5 Holistic artificial intelligence-driven predictor in HER2-
positive (HER2+) early breast cancer (BC)

In patients with primary HER2+ early BC, dual HER2 blockade in the absence of chemother-
apy has shown high activity in a subgroup of patients. Although chemotherapy-free treatment
strategies are being pursued, there is a need to identify these patients before treatment initiation.
Here, we tackle the difficult task of evaluating the ability of clinical, gene expression and path-
omics data to predict response following dual HER2 blockade without chemotherapy. We aim to
automatically decipher the data‘s complementarity towards a low dimensional holistic signature
that determines outcomes, and using it as a clinical biomarker for patient stratification through
a robust learning artificial intelligence approach. An overview of the task is presented in 3.10.

3.5.1 Dataset and Features Extraction

PAMELA (Lancet Oncology 2017) is a prospective study in HER2+ BC designed to evaluate
the ability of the PAM50 HER2-enriched intrinsic subtype to predict pCR following 18-weeks
of neoadjuvant lapatinib and trastuzumab (and hormonal therapy if hormone receptor-positive
[HR+]). A total of 15 clinical-pathological variables were evaluated, including tumor cellularity,
tumor-infiltrating lymphocytes (TILs), the expression of 567 BC-related genes/signatures, and
pathomics data from pre-treatment samples from all patients recruited in PAMELA. For the
imaging information obtained from H/E slides, we first generate nuclei segmentation maps using
a deep learning architecture of Self-Supervised Nuclei Segmentation relying on an attention
network[Sahasrabudhe, 2020]. The semantic segmentation produced by this network was used
to derive at the patch level image and shape characteristics of the digital pathology samples,
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Figure 3.10: Overview of the features extraction, selection, and prediction process for pamela
cohort (Section 3.5).

resulting in a pathomics-derived feature vector of 300 variables. An integrative approach that
harnesses clinical, genomics, and pathomics data into a unified prediction framework were used.
Patients were divided into a training set 80% and a testing set 20% with proportions of pCR and
non-pCR corresponding to the ones observed. A 100-fold Cross-validation (CV) was performed
on the training. CV was used to tune the classifiers’ parameters and select the 5 classifiers
performing best on validation regarding balanced accuracy and having an average specificity
above 80%. To ensure the results’ robustness and generalizability, we present results averaged
over 100 splits into training and test.

3.5.2 Results and Discussion

From the high dimensional feature space of size 882, we propose a low dimensional holistic
signature composed of 8 predictive features that the consensus selection has singled out. The
signature includes 4 genomics variables (i.e. expression levels of ERBB2, ESR1, Luminal A
signature and Risk of Relapse score), 2 clinical-pathological variables (i.e. histologic grade and
ER-status), and 2 imaging variables (i.e. mean Short Run Low Gray Level Emphasis of the gray
level run length matrix and the mean absolute deviation). An ablation study was also performed
to determine the relevance of the different categories of variables. Genomics variables appeared
to be the most informative category as its ablation leads to the highest decrease of the metrics
(11% on average). The results with a 75% balanced accuracy, 69% precision, 65% sensitivity,
86% specificity, and 0.84 AUC demonstrate the relevance of the approach. Also, we highlight this
technique’s clinical relevance, which, thanks to its discriminative power, represents an utterly
precise exclusion principle for trials. We report successful classification of 86% of non-pCR cases
and 65% of pCR cases. Our overall results for the different types of characteristics used, are
summarised in Table 3.9 while the confusion matrix of our proposed 8 features signature for
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the prediction of pCR response is presented in Table 3.10. One could observe that the proposed
approach results to promising overall performance. The proposed method has excellent potentials
for an effective and clinically meaningful implementation of patients’ pre-selection on treatment
response criteria after neoadjuvant dual HER2 blockade. Besides, the generality of the method
used here makes it transposable to any cancer type or therapy.

Table 3.9: Training and test results obtained on Pamela cohort. Ablation results per features
types are also reported.

Features Balanced Accuracy Precision Sensitivity Specificity AUC
Training Test Training Test Training Test Training Test Test

All 8 features 0.89 0.75 0.87 0.69 0.84 0.65 0.94 0.86 0.84
Only Genomics 0.83 0.73 0.73 0.62 0.79 0.65 0.87 0.81 0.81
Only Clinical 0.73 0.69 0.68 0.68 0.6 0.51 0.86 0.86 0.80
Only Imaging 0.66 0.48 0.7 0.26 0.4 0.15 0.92 0.82 0.52

Table 3.10: Test confusion matrix on Pamela cohort.

Ground Truth \Predicted Non-pCR pCR
Non-pCR 85.85% 14.15%

pCR 35.42% 64.58%

3.6 Atopic Dermatitis Severity Prediction

Pruritus is a major symptom of atopic dermatitis (AD) and causes an important burden for
patients and society. Its mechanisms are complex and partly understood, making therapeutic
perspectives promising. To address this question, we used the largest (n = 82) available AD
transcriptome lesional skin dataset (MAARS dataset). All patients auto-evaluated pruritus in-
tensity using a visual scale going from 1 to 10. The median score was 7. We first explore our
data using correlation, differential analysis, and sparse PLS to conclude that more innovative
approaches should be favored. We applied an automatic deep learning and statistical-based
model using an ensemble of architectures, and a data-driven consensus for the gene selection and
the pruritus prediction. Final minimalist signatures were obtained using an ablation selection
technique. Its application on our data revealed interesting genes for pruritus prediction: Heme
Oxygenase 1 (HMOX1), Calcium/Calmodulin Dependent Serine Protein Kinase (CASK), Vesti-
gial Like Family Member 2 (VGLL2), Mannosidase Alpha Class 2A Member 1 (MAN2A1), one
long non-coding RNA (GPRC5D-AS1) and two novel transcripts (AC113382.1 and AL031123.1).
It predicted pruritus classes with 0.77 balanced accuracy, 0.86 precision, 0.67 sensitivity, and 0.88
specificity. We validated our strategy on two external cohorts, with n = 70 samples in total.
A new signature was designed with similar prediction performance. However, interestingly it
appeared the two gene signatures had no gene in common. Functional interpretation including
both signatures showed interesting shared function and potential therapeutic targets. Our study
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is so far the first to apply ML to pruritus understanding, and encourage the use of innovative
approaches for complex data comprehension.

3.6.1 Predictive Gene Selection

Using all the coding genes considered, we built a high-dimension space of size 22596. A min-
max normalization of the attributes was performed by calculating the minimum and maximum
values for the training and validation cohorts. The same values were also applied on the test set.
We adapted the feature selection pipeline proposed in this chapter to tackle the dimensionality
curse problem and discover significant and robust predictive genes for the pruritus score deter-
mination. Indeed, applying a space dimension reduction step ahead of a classification task is of
prime importance especially in genomics studies as it has been shown and discussed in Chapter 4.

More specifically, we separated the cohort into two classes: high pruritus and low pruritus
samples. The separation threshold chosen between the two classes was the observed median, i.e.
7. The cohort was subdivided into training and test on the principle of 80%-20% maintaining
the observed distribution of classes between the two subsets. Then, on this basis, the training set
was further divided into 5 subdivisions to perform feature selection. We considered a selective
threshold of 40% of the total possible prevalence (40 selections). This threshold was determined
to be optimal through experiments.

3.6.2 Dataset

Internal Cohort

The data were obtained from the MAARS Consortium18, whose dataset is publicly available on
the Array Express interface (E-MTAB-8149). AD patients have been recruited in three European
Dermatology departments, after provided written informed consent under institutional review
board-approved protocols. Sampling and data generation occurred between 2012 and 2013. A
vast amount of clinical features was collected, including visual auto-evaluation of the pruritus
scale. A 6 mm punch biopsy was performed in the lesional skin of AD patients. Bulk tran-
scriptomic analysis was performed after mRNA extraction with Affymetrix GeneChip® Whole
Transcript Expression Arrays.

External Cohort

To assess the reproducibility and robustness of our approach, we applied our prediction on two
independent datasets. To reduce technological and technical biases, we sourced independent
cohorts using a comparable transcriptomic technology and with available annotation on pruri-
tus severity. Among the total number of pre-selected transcriptomic cohorts (n=48), only two
studies met our inclusion criteria with n = 30 and n = 40 AD lesional skin samples. They were
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generated by the same team, using homogeneous protocols. Pruritus intensity was evaluated
by the patient using NRS (Numeric rating scale) Bulk transcriptomic data were generated using
Affymetrix Human U133Plus 2.0® gene arrays. Expression matrices GSE133385 and GSE133477
were downloaded through the Gene expression omnibus (GEO) interface using GEOquery pack-
age (ver. 2.51.1).

3.6.3 Classification Task

The classification was addressed using an ensemble learning approach. The same training/test
sets as the ones for feature selection were used. We have performed 5-fold cross-validation and
evaluated the average performance of the following supervised classification methods: Nearest
Neighbor, {Linear, Sigmoid, Radial Basis Function (RBF), Polynomial Kernel} Support Vec-
tor Machines (SVM), Gaussian Process, Decision Trees, Random Forests, AdaBoost, Gradient
Boosting, Gaussian Naive Bayes, Bernoulli Naive Bayes, Multi-Layer Perceptron (MLP) and
Quadratic Discriminant Analysis. These classifiers have been trained using the identified signa-
ture. For each binary classification task, a consensus model was designed, selecting the top 5
classifiers. The selected models were trained and combined through a winner takes all approach
to determine the optimal outcome. We further developed the method proposed in this chapter by
adding a signature refinement step performed through ablation as described in the Section 3.3.1.

3.6.4 Implementation Details

Features with the best combined prevalence (sum of prevalences over the 8 selection tech-
niques) were kept using the feature selection method. For this feature selection task, Decision
Tree Classifier was taken of maximum depth 3, Linear SVM was taken with a linear kernel, a
polynomial kernel function of degree 3 and a penalty parameter of 0.25, Gradient Boosting was
used with a regression tree boosted over 30 stages, AdaBoost was used with a Decision Tree
Classifier of maximum depth 2 boosted 3 times, and Lasso method was used with 200 alphas
along a regularization path of length 0.01 and limited to 1000 iterations.

Concerning the classification, to overcome the unbalanced dataset for the different classes,
each class received a weight inversely proportional to its size. For the majority voting classifier,
the top 5 classifiers consist of RBF SVM, Linear SVM, Polynomial SVM, QDA, and MLP. The
RBF SVM had a penalty parameter of 0.7 and a kernel coefficient gamma of 1. The Linear
kernel had a penalty parameter of 3. The Polynomial SVM was granted a kernel degree of 2.
The QDA classifier was considered without any prior or regularization parameter and with an
absolute threshold of 10. The MLP classifier was trained with an lbfgs solver, an alpha of 0.1,
a relu activation, a maximal number of iteration of 1000, a batch size of 500, and an invscaling
learning rate. To prevent overfitting we used early stopping.
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3.6.5 Results and Discussion

Relying on the aforementioned selection method, we extracted 23 genes and obtained after ab-
lation a minimalist signature composed of the 7 following genes: Heme Oxygenase 1 (HMOX1),
Calcium/Calmodulin Dependent Serine Protein Kinase (CASK), Vestigial Like Family Member
2 (VGLL2), Mannosidase Alpha Class 2A Member 1 (MAN2A1), one long non-coding RNA
(GPRC5D-AS1) and two novel transcripts (AC113382.1 and AL031123.1). Our proposed ensem-
ble approach reported high performance over all considered evaluation metrics in intra-cohort
validation. With only a 7 genes signature, we reached on test 0.77 balanced accuracy, 0.86 pre-
cision, 0.67 sensitivity, 0.88 specificity. In addition, we managed to correctly classify 87.5% of
the low pruritus class’ samples and 66.67% for the high pruritus class.

The genes included in the external cohorts massively varying from the ones of the MAARS
dataset, the previously identified gene signature could not be tested in those new settings. Thus,
the exact same pipeline was repeated on our external cohort to demonstrate the generalizability
of our approach despite the microarray technology disparity. A very different signature was
obtained, again including 7 genes: Nuclear Transcription Factor/X-Box Binding Like 1(NFXL1),
TOX High Mobility Group Box Family Member 2 (TOX2), Transcription Factor Like 5 (TCFL5),
Synaptosome Associated Protein 23 (SNAP23), one long non-coding RNA (ENSG00000279064),
and one novel transcript (AC011815.3). Notwithstanding, the differences between the cohorts,
we reached excellent results on the test. With only a 7 genes signature, we reached on test 0.90
balanced accuracy, 0.90 precision, 1.00 sensitivity, 0.80 specificity. Also, we managed to correctly
classify 80.00% of the low pruritus class’ samples and 100.00% for the high pruritus class.

Although independent validation cohorts were selected because of their similarities with our
learning cohort, unfortunately, our results were not validated on an external cohort. In general,
this can be due to disparities in patient recruitment (age, gender, race disparities), sampling
procedure (anatomical localization, skin preparation), microarray technologies, and platform
protocols. In our case, differences between learning and validation cohorts are subtle and could be
due to various sample anatomical localizations and the diverse Affymetrix microarray generations.
A recent study using the same data as ours showed that gene expressions differed according to
the anatomical localization in the AD context [Ottman, 2021]. It highlights the importance of
standardized sampling procedures within skin transcriptomic studies. The technical bias might
be even more substantial in our case. As genome coverage is not homogeneous among Affymetrix
technologies [Robinson, 2007], focusing on common genes led to biological information loss.

3.7 Future Work

In conclusion, we highlighted the value of ensemble techniques towards both feature selection
and classification in this study. We reported robust and promising over three critical medical
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tasks, patient staging, treatment response prediction, and disease severity determination. We
handled several omics data, including CT-scans imaging, histopathological WSI, genes, and clini-
cal information. Our feature selection approach was able to cope with the curse of dimensionality
when considering several thousands of features. Besides, we proposed and demonstrated the effi-
ciency of an ablation refinement method to further reduce the size of the selected signature and
eliminate information redundancy. To further extend the proposed framework and better iden-
tify complementary features, we envision considering a decomposition approach [Danisch, 2017]
over a co-occurrence graph. In this setting, features selected simultaneously over several runs of
the feature selection algorithms are considered similar. Then, identifying a highly interconnected
set of genes in the graph would determine features with low redundancy as they are required
together for classification.

With our Covid-19 application, we have shown that the combination of chest CT and artificial
intelligence can provide tools for fast, accurate, and precise disease extent quantification and the
identification of patients with severe short-term outcomes. It could be of great help in the cur-
rent pandemic context with healthcare resources under extreme pressure. Beyond the diagnostic
value of CT for Covid-19, our study suggests that AI should be part of the triage process. Our
methodology designed a deep learning-based pipeline that provides disease quantification com-
parable to the human experts. At the same time, it explores interpretable image characteristics,
fusing them with clinical and biological data to perform staging of the patients to non-severe,
needing intubation and deceased. We have highlighted the versatility of our approach through
various additional experiments leveraging different omics data from other medical fields. Our
prognosis and staging method achieved state-of-the-art results by deploying a highly robust en-
semble classification strategy using the image and patients’ characteristics within the image’s
metadata. In terms of future work, we are planning to investigate and generate tools for the
multiclass disease segmentation and investigate in depth the characteristics of each class and
their association with severity. Our findings could have a substantial impact in terms of (i)
patient stratification regarding the different therapeutic strategies, (ii) accelerated drug devel-
opment through rapid, reproducible, and quantified assessment of treatment response through
the different mid/end-points of the trial, and (iii) continuous monitoring of patient’s response
to treatment.

The use of deep features towards unsupervised discovery is also an interesting direction. De-
spite the absence of reported results in the chapter, it should be noted that advanced deep learn-
ing techniques were considered both for classification/severity assessment (deep neural networks
with attention, deep features from mid-level lung/disease 3D disease quantification networks)
as well as for outcome prediction with explicit integration of clinical/biological variables. The
interest of these methods was tested for biomarker discovery - subsequently fed to the ensem-
ble learning method presented in the chapter – and in an end-to-end setting towards automatic
quantification, staging, and outcome prediction. Despite engaging performance on training, both
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approaches failed to produce explainable, consistent with training results. They were notably
inferior in overall performance, explicability, robustness, and generalizability compared to the
reported solution. The relatively low number of samples in training could explain it, as it is a
known bottleneck for deep representations. Access to a significantly larger cohort with at least
one order of magnitude higher-order number of samples is under examination within the Assis-
tance Publique – Hôpitaux de Paris hospitals network. The use of such a cohort could be of great
interest for confirming the outcomes of the presented study. It would help to revive the interest
in deep features and holistic end-to-end integration of deep features with biological/clinical and
imaging data for staging and short/long term outcome prediction.

Our study of patient treatment response for breast cancer patient is one of the first to leverage
radiomics information on WSI. We highlighted the complementarity of the gene, clinical and
histopathological data for prediction and reported auspicious results. In the future, we are
considering using our general and adaptable framework for other kinds of treatments and cancers.
Besides, we also want to prove the generalizability of our holistic signature over an external
cohort. Regarding our experiments on atopic dermatitis, we are the first to prove the interest in
machine learning approaches to predict a patient’s pruritus score from genetic information. We
reported excellent performance over two different cohorts with very low dimensional signatures
of 7 genes extracted from the whole coding genome. A further step in this study would be to
consider an external cohort presenting a similar experimental protocol or sequencing technology
to attest to our approach’s generalizability.
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In chapter 2, we introduce a novel, automatic and unsupervised framework to discover low-
dimensional gene biomarkers. Our method is based on the LP-Stability algorithm, a high dimen-
sional center-based unsupervised clustering algorithm, that offers modularity as concerns metric
functions and scalability, while being able to automatically determine the best number of clusters.
Our evaluation includes both mathematical and biological criteria. The recovered signature is
applied to a variety of biological tasks, including screening of biological pathways and functions,
and characterization relevance on tumor types and subtypes. Quantitative comparisons among
different distance metrics, commonly used clustering methods and a referential gene signature
used in the literature, confirm state of the art performance of our approach. In particular, our
signature, that is based on 27 genes, reports at least 30 times better mathematical significance
(average Dunn’s Index) and 25% better biological significance (average Enrichment in Protein-
Protein Interaction) than those produced by other referential clustering methods. Finally, our
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signature reports promising results on distinguishing immune inflammatory and immune desert
tumors, while reporting a high balanced accuracy of 92% on tumor types classification and aver-
aged balanced accuracy of 68% on tumor subtypes classification, which represents, respectively
7% and 9% higher performance compared to the referential signature. This study extends our
work published in [Battistella, 2019; Battistella, 2021d].
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4.1 Introduction

Omics data analysis - including genomics, transcriptomics and metabolomics - has greatly
benefited from the tremendous sequencing technique advances [Kurian, 2014] allowing to highly
increase the quality and the quantity of data. These omics techniques are pivotal aspects of the
development of personalized medicine by enabling a better understanding of fine-grained molec-
ular mechanisms [Hanahan, 2011]. In oncology, these techniques provide a more comprehensive
insight of the biological processes intricacy in cancers giving momentum to molecular-type char-
acterization through omics or even multi-omics approaches [Ramaswamy, 2001b; Chen, 2017b].
Such a precise and robust characterization is a highly valuable asset for tumor characterization
and provides significant acumen on their treatment.

Genomics, probably the most prominent omics technique, refer to the study of entire genomes
contrary to genetics that interrogate individual variants or single genes [Hasin, 2017]. In this
direction, novel methods study specific variants of genes aimed at producing robust biomarkers,
which contribute to both the response of patients to treatment [Wan, 2010; Sun, 2018] and the
association with complex and Mendelian diseases [Dunne, 2017]. However, the relatively low
number of samples per tumor subtype, along with the curse of dimensionality and the lack of
ground truth affect many of these studies [Drucker, 2013], which may prevent any statistically
meaningful causal relation discovery.

The use of cluster analysis on RNA-seq transcriptomes is a wide-spread technique [Cowen,
2017] whose main goal is to define groups of genes that have similar expression profiles, proposing
compact signatures [Dunne, 2017]. These robust signatures are necessary to identify associations
with different biological processes, as tumor types or cancer molecular subtypes, and to highlight
gene coding for proteins interacting together or participating in the same biological process [Dam,
2017].

Although dimension reduction through clustering is not new [Pepke, 2017], there is an impor-
tant shortfall in literature of a thorough, mathematically and biologically meaningful comparison
of clusterings methods on a same database. In many studies, a single evaluation metric is used
and there is no relevant comparison with other algorithms. By “relevant”, we mean here that
the optimization of the different baseline algorithm hyperparameters is ensured and compared
through a fair evaluation metric. Mathematical metrics for instance, are highly dependent on
the property the algorithm is optimizing and the distance notion considered. The evaluation of
this bias through, as an example, random clusters using different distance notions to offer a fair
comparison between the different algorithms. Finally, a few surveys [Oyelade, 2016] propose a
thorough comparison, using several evaluation criteria, albeit reporting results shown in several
other studies without actually comparing the methods on a same database with all the criteria
at once.
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In this chapter, we introduce a novel unsupervised approach that is modular, scalable and
metric free towards the definition of a predictive gene signature while proposing a complete
methodology for comparison, analysis and evaluation of genomic signatures. The backbone of
our methodology refers to a powerful graph-based unsupervised clustering method, the LP-
Stability algorithm [Komodakis, 2009], which has been successfully adapted in various fields.
Our approach offers:

i. Standardization and automatization concerning gene clustering evaluation for the selection
of the best distance notions, metrics, algorithms and hyperparameters;

ii. Creation of generic, low dimensional signatures using the gene expressions of all coding
genes, including comparisons to random signatures to highlight statistical superiority;

iii. Systematic assessment of the biological power of gene signatures by evaluating the dif-
ferent tumor type and subtype associations via supervised (proving tissue-specificity and
predictive power), and unsupervised (proving automatic discovery and expression power)
techniques. By this, we demonstrated the power of the proposed gene signature (based on
27 genes) compared to other methods in the literature;

iv. Thorough biological analysis of the processes involved in sample clusters via gene screening
techniques, affirming the robustness of the obtained results.

4.2 Methodology

4.2.1 Overview of the Proposed Approach

The overview of the method presented in this chapter is summarized in Fig. 4.1. To evaluate
and select the best gene signature, we introduce two distinct metrics checking both mathematical
and biological properties. In particular, we used the mathematical assessment metric of Dunn’s
Index (DI) [Kovács, 2005] and the biological one of Enrichment Score in PPI [Pepke, 2017] which
are both referential for the assessment of clustering although they have never been combined.
Then, a low dimensional aggregated gene signature is defined by combining representative genes
in each cluster. To prove the power of the discovered biomarker, a systematic and thorough
evaluation regarding its biological and clinical relevance was performed. In particular, the sig-
nature was evaluated and compared through sample clustering and sample classification. As
targeted by the sample clustering, we chose the different tumor types and assessed the success
of the clustering through sample distribution analysis and clustering evaluation metrics such as
Rand Index and Mutual Information. In addition, we used the method from [Tusher, 2001] to
obtain important genes for the samples of each cluster which were associated to their pathways
using [Szklarczyk, 2018]. Finally, the last evaluation criteria was the performance in categorizing
the cancer types and subtypes through supervised machine learning techniques. Our proposed
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signature has been compared against both signatures designed from commonly used algorithms
for gene clustering [MacQueen, 1967; Pepke, 2017] and a recently proposed prominent gene sig-
nature [Thorsson, 2018]. In particular, we used K-Means algorithm in order to investigate the
importance of stable centers in clustering as it is one of the main differences between LP-Stability
and K-Means. To assess the statistical significance of the produced clusters we compare them
against random clusters.

Figure 4.1: Proposed Framework. A general overview of the different steps of our process. Our
proposed framework is composed of two steps. First, a clustering algorithm, here LP-Stability,
is used to generate clusters of genes having similar expression profiles. Then, the clustering
that performs best on both mathematical and biological scores is selected as a gene signature.
In the second step, the generated signature is used to perform sample clustering and sample
classification. The performance on this step is evaluated by analysing the distribution of the
samples into the different clusters or the performance on the classification tasks, here the target
was the tumor types and subtypes characterization.

4.2.2 Discovering Correlations in Gene Expressions

4.2.3 Unsupervised Gene Clustering Evaluation

To evaluate the performance of gene clustering methods, we used both mathematical and bio-
logical criteria. The quality of the results was assessed using the biological relevance information
brought by the Enrichment Score in PPI, while the prominent Dunn’s Index statistical method
was considered regarding the clustering mathematical appropriateness. See Section 2.3.3 for a
formal definition of those measures.
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4.2.4 Definition of a Low Dimensional Cancer Signature

In this section, we focus on gene signature definition and biomarker power evaluation.

Signature Selection

The ultimate goal of our approach is to produce low dimensional signatures as a byproduct
of unsupervised clustering outcome. To this end, the signatures were produced by selecting the
most representative gene per cluster for the clusterings with the highest ES and DI performance.
For LP-Stability algorithm, the selected genes were the stable centers that the algorithm relies
on, in the the rest of the algorithms, we chose as representatives the clusters medoid (the sample
the closest to the cluster center). This choice is motivated by the fact that the stable centers of
the clustering obtained through LP-Stability are also medoids.

In complement, once a signature is selected, a redundancy analysis was performed using
STRING tool [Szklarczyk, 2018] to decipher any biological process that was particularly over-
represented so suggesting redundancy of the information. In addition, Genotype-Tissue Ex-
pression (GTEx) portal (www.gtexportal.org) was used to assess the tissue specificity for the
proposed signature. A good signature should present genes with different expression profiles
over the different tissues. This tool offers a visual representation for each gene of their expres-
sion and regulation in different tissues. It relies on the analysis of multiple human tissues from
donors to identify correlations between genotype and tissue-specific gene expression levels.

Sample Clustering: Discovery Power

In order to perform sample clustering, we compared several algorithms and distances. The most
meaningful results were obtained with the K-medoids method, a variant of K-Means, combined
with the Spearman’s rank correlation-based distance. The relevance of the obtained results was
assessed by analyzing the partition of the different tumor types in the clusters. In particular,
driven from known biological evidence, we considered as meaningful the associations of lung
tumors (LUSC, LUAD), squamous tumors (LUSC, HNSC, CESC), gynecologic tumors (BRCA,
OV, CESC), smoking related tumors (LUSC, LUAD, BLCA, CESC, HNSC). We disregarded
samples types in a cluster representing less than 5% of the total cluster size. We considered a
poorly defined cluster to be a cluster presenting less than 50 samples or distribution of the samples
types in the same proportions as in the whole dataset as it would show random associations.

Gene screening analysis was also used to identify the genes that are expressed differently over
the sample clusters and thus indicating the biological processes involved. For that, we used the
SAM method [Tusher, 2001], that aims to identify the genes that are differentially expressed over
two groups of samples. SAM assesses the significance of the variations of the gene expression
using a statistical t-test, providing a significance score and a False Discovery Rate (FDR). To
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better assess the relevance of separating samples of the same tumor type, we studied the genes
that are expressed differently for each tumor type in a cluster compared to all the other samples
of the same tumor type. We thus pinpointed significant genes for each cluster and each tumor
type by cluster. Once more, the method in [Szklarczyk, 2018] has been used for assessing the
biological relevance of the clusters and their association to different tumor types, by studying
the biological processes involved. A well-defined sample clustering is characterized by different
clusters presenting different enriched biological processes and pathways while different tumor
types in a same cluster should be enriched in the same ones.

Sample Clustering: Expression Power

To assess how well the different tumor types have been separated, we used several different
metrics presented in Section 2.3.3. Namely, we considered the Adjusted Rand Index (ARI), the
Normalized Mutual Information (NMI), the Homogeneity, the Completeness and the Fowlkes-
Mallow Score.

Supervised Tumor Types/SubTypes Categorization

The evaluation of the provided signatures were further assessed by a supervised setting in
order to highlight their tissue specificity properties. The supervised framework for tumor types
and subtypes categorization was adapted from the method presented in Chapter 3. Please refer
to this Chapter for more details of the method used. Our gene clustering pipeline offers here
an alternative feature selection method to the one proposed in Chapter 3 the advantages it is
less task dependent while offering a guarantee of redundancy freedom and better scalability.
The advantages of the task specific, supervised feature selection technique developed in this
manuscript will be discussed in Chapter 3. The classification pipeline relies on an ensemble
of machine learning classifiers, exploring the ones with strong generalisation power. The best
performing in terms of balanced accuracy and generalisation are combined through a probabilistic
consensus schema to provide the appropriate label.

Towards the evaluation of the reported performance, we relied on classic machine learning
metrics defined in Section 2.2.3. Namely, we considered the balanced accuracy, the weighted
precision, the weighted specificity and the weighted sensitivity.

4.2.5 Implementation Details

The parameters of each algorithm for the gene clustering were obtained using grid search. In
order to benchmark the behavior of each algorithm on different number of clusters, we evaluated
their performance for the following number of clusters: from 2 to 10 with an increment of 1, 15, 20,
25 and between 30 and 100 with an increasing step of 10 for the Random Clustering and K-Means
algorithms and 25 for CorEx algorithm because of its computational complexity. LP-Stability
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automatically determines the number of clusters. In order to create meaningful comparisons,
we adjusted the penalty vector S in order to obtain approximately the same number of clusters
as with the rest of the algorithms. For comparison purposes, we used the same penalty for
all the genes, however, for the LP-Stability algorithm the penalty value could be adjusted and
customized depending on the importance of specific genes.

For the ES we reported the behavior of the algorithms with different threshold values i.e. 0.005,
0.025, 0.05 and 0.1. Furthermore, in reporting the DI value, each method has been evaluated
with the same proximity measure it relies on. For K-Means that is sensitive to initialization, we
performed 100 iterations for each parameter and selected the best clustering based on DI only to
cope with the computational cost of the ES. This iterative process augments the computational
time of the algorithm, but reports clusters with better statistical significance and more stable
scores. Similarly, we performed 100 repetitions of random clustering and observed rather similar
results, we selected the clustering that reports the best DI score and reported its results.

For the sample clustering, we considered 10 clusters corresponding to the actual 10 tumor
types. For the gene screening, we selected the most significant genes that reported a significance
score of 7 which corresponds to a q-value of FDR close to zero in most cases, while for the
biological processes we considered only the 10 most enriched processes by screening.

Regarding the supervised categorization of tumor types and subtypes classes, the evaluated
algorithms were: Nearest Neighbor, {Linear, Sigmoid, Radial Basis Function (RBF), Polynomial
Kernel} Support Vector Machines (SVM), Gaussian Process, Decision Trees, Random Forests,
AdaBoost, XGBoosting, Gaussian Naive Bayes, Bernoulli Naive Bayes, Multi-Layer Perceptron
(MLP) & Quadratic Discriminant Analysis. We selected the top classifiers regarding balanced
accuracy ensuring both good performance and good generalisation. In particular, for tumor types
classification the selection criteria include (i) high balanced accuracy (equal or above 80%) on
the validation set and (ii) small difference (smaller than 20%) on the balanced accuracy metric
between training and validation. While for tumor subtypes classification, we selected the top
5 classifiers regarding balanced accuracy presenting a small difference (smaller than 20%) on
the balanced accuracy metric between training and validation. For our experiments on tumor
types classification with our proposed signature, the classifiers that fulfill these criteria were the:
{Linear, Polynomial, RBF Kernels} SVM, Gaussian Process, Random forest, MLP, XGBoosting.
For the sake of conciseness, we do not detail the selected classifiers for other experiments and
other signatures. Those top classifiers’ good performance were leveraged through a majority
voting scheme.

To deal with the problem of the unbalanced dataset, each class received a weight inversely pro-
portional to its size. Concerning the different hyperparameters of the best performing classifiers,
SVM was granted a regularization parameter of 10 and polynomial kernel function of degree 4



4.2. Methodology 75

Table 4.1: Description of the dataset used in this study. The different tumors and tumor
types together with the corresponding number of samples are summarised. Urothelial Bladder
Carcinoma (BLCA), Breast Invasive Carcinoma (BRCA), Cervical Squamous Cell Carcinoma
and Endocervical Adenocarcinoma (CESC), Glioblastoma Multiforme (GBM), Head and Neck
Squamous Cell Carcinoma (HNSC), Liver Hepatocellular Carcinoma (LIHC), Rectum Adenocar-
cinoma (READ), Lung adenocarcinoma (LUAD), Lung Squamous Cell Carcinoma (LUSC) and
Ovarian Cancer (OV).

Tumor Type Clustering Classification
#Samples #Samples Types #Samples Subtypes:

BLCA 427 129 ——

BRCA 1212 1223

Normal: 144
LumA: 582
LumB: 220
Her2: 83
Basal: 194

CESC 309 —— ——
GBM 171 827 ——

HNSC 566 279

Mesenchymal: 75
Basal: 87

Atypical: 68
Classical: 49

LIHC 423 183
iCluster1: 65
iCluster2: 55
iCluster3: 63

LUAD 576 230 ——
LUSC 552 178 ——

OV 307 489

Proliferative: 138
Mesenchymal: 109
Differentiated: 135

Immunoreactive: 107

READ 72 111 CIN: 102
GS: 9

for the Polynomial method. In addition, the RBF SVM was granted a kernel coefficient of 3.
The Gaussian Process was granted a RBF kernel and the multi class predictions were achieved
through one versus rest scheme. The Random Forest classifier was composed of 100 Decision
Trees of maximum depth 4. The MLP classifier was used with a LBFGS optimizer, a ReLU ac-
tivation, 3000 maximum iterations, a batch size of 200, learning rate was updated thanks to an
inverse scaling exponent of power t with t denoting the current step and early stopping method
was used as the termination criteria. XGBoosting was used with nclasses regression trees at each
boosting stage, a deviance loss, a learning rate of 0.5 and 40 boosting stages, when looking for
the best split, √nfeatures features were considered.
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4.3 Dataset

In this study, we based our experiments on The Cancer Genome Atlas (TCGA) dataset [Gross-
man, 2016]. TCGA contains a comprehensive dataset including several data types such as DNA
copy number, DNA methylation, mRNA expression, miRNA expression, protein expression, and
somatic point mutation. It allowed the development of several different clustering techniques
to cluster samples according to cancer types by using one or several omics data [Hoadley, 2018;
Ramaswamy, 2001a]. We focused our study on tumor types relevant for radiotherapy and/or
immunotherapy. For the gene clustering part, our dataset consists of 4615 samples (Table 4.1
second column). In particular, we investigated the following types of tumors, namely: Urothelial
Bladder Carcinoma (BLCA), Breast Invasive Carcinoma (BRCA), Cervical Squamous Cell Car-
cinoma and Endocervical Adenocarcinoma (CESC), Glioblastoma Multiforme (GBM), Head and
Neck Squamous Cell Carcinoma (HNSC), Liver Hepatocellular Carcinoma (LIHC), Rectum Ade-
nocarcinoma (READ), Lung adenocarcinoma (LUAD), Lung Squamous Cell Carcinoma (LUSC)
and Ovarian Cancer (OV). For each sample, we had the RNA-seq reads of 20 365 genes processed
using normalized RNA-seq by Expectation-Maximization (RSEM) [Li, 2011].

Several articles as [Salem, 2017] consider the challenging and important task of generating
biomarkers for distinguishing tumor and subtumor types. In this study, we also focus on this
task basing our experiments on the cohort presented in [Thorsson, 2018] by selecting samples
from the 10 locations used for the gene signature. This cohort consists of 3653 samples (Table 4.1
third and fourth columns). For the tumor subtypes characterisation, we focused on subtypes that
had more than 50×n_subtype samples. At the end, 5 different tumor types namely the BRCA,
HNSC, LIHC, READ and OV have been used for subtypes classification.

4.4 Results and Discussion

This study has been designed upon three pivotal complementary aspects. The first one re-
lates to the genes clustering performance to assess the definition of the signature regarding both
a mathematical (DI) and a biological (ES) metric (section 4.4.1). The second evaluates the
ability of the signature to relevantly separate the different tumor samples in an unbiased man-
ner in particular through sample clustering (section 4.4.3). The third aspect characterizes the
tissue specificity of the signature thanks to classification tasks on tumor types and subtypes
(section 4.4.4). To better estimate the results obtained, comparisons with referential cluster-
ing methods and gene signatures are performed throughout the different evaluations. A global
comparison with all references over all metrics is provided in section 4.4.5.
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4.4.1 Results on Clustering Gene Data

The obtained clusters were evaluated using both mathematical and biological evaluation cri-
teria. Starting with the biological criteria, Fig. 4.2 presents a comparison of the different ES
per algorithm for different threshold (th) values. We observed that for the different cluster-
ing methods the threshold does not significantly change the behavior of the ES, indicating a
strong statistical significance for the clusters. But, it is not the case for the random signature on
which for a number of clusters higher than 30 one can observe an important disparity between
the different th of the ES. For the rest of the study, we will use the most stringent threshold,
th = 0.005.
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Figure 4.2: Evaluation of the clustering performance for different Enrichment Thresh-
old values. LP-Stability (upper left), CorEx (upper right), K-Means (lower left), Random (lower
right). The figure presents the percentage of the enriched clusters for the threshold values of
0.005, 0.025, 0.05, 0.075, 0.1 and using Kendall’s correlation-based distance. The higher differ-
ences in the enrichment thresholds are reported from the Random Clustering when the number of
clusters is relatively high. For the rest of the algorithms and especially LP-Stability, the different
thresholds only slightly impact the reported results.

To select the best distance per method we used the DI metric. In Fig. 4.3 one can observe
the influence of the distance with respect to the number of clusters for the random and LP-
stability methods. Compared with random clustering one can observe the bias that each distance
introduces for the DI score. In particular, with correlation-based distances the reported DI scores
are on average 10 times higher. Thus, to tackle this problem of bias, for our comparisons, we will
refer to a clustering difference in DI scores with the corresponding random clustering for the same
number of clusters and distance. Based on our experiments we also noticed that the different
distances greatly affects the performance of the clustering algorithm, with the correlation-based
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distances (especially the Kendall’s correlation) reporting in general higher performances. To
ensure the biological meaning of the clusters, we also report the performance of the different
distances for ES. Once again the superiority of correlation-based distances both in terms of
performance and stability is indicated. Besides, only the Euclidean distance does not reach
the maximal value of 100%. This is due to the unbalanced clusters that Euclidean distance
favors, leading to very small clusters that are less likely to be enriched. For the rest of the
paper we selected Kendall’s correlation-based distance when reporting LP-Stability and Random
Clustering performances.
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Figure 4.3: Evaluation of the clustering performance for different distances. The
performance of the different distances are presented for both Random (left) in terms of Dunn’s
Index and LP-Stability clustering (middle and right) in terms of Dunn’s Index and Enrichment
Score. Only DI results are presented for Random as ES computation on a same clustering is not
influenced by the distance used. Both ES and DI are presented in percentages in terms of the
number of clusters. The figure highlights the superiority of the correlation-based distances and
in particular the one reported by Kendall’s for both mathematical and biological aspects.

In Table 4.2, we summarize the performance of LP-Stability in comparison to other algorithms
based on both ES and DI scores together with the reported number of clusters. Additional
information about the average Enrichment and the average computational time per algorithm is
also provided in the table. The best performance of DI is achieved with the LP-Stability and the
Kendall’s Correlation-based distance. Moreover, even if almost all the methods, except K-Means,
reached an Enrichment Score of 100%, LP-Stability still reports the highest average Enrichment,
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Table 4.2: Comparison of the different evaluated algorithms in terms of PPI Enrichment Score
(ES) with a threshold of 0.005, Dunn’s Index (DI), Average ES and computational time. LP-
Stability algorithm outperforms the rest of the algorithms reporting highest DI and Average ES
score and the lowest computational time.

Method Best ES Best DI Average ES (%) Average DI (%) TimeES (%) DI (%) Clusters ES (%) DI (%) Clusters
Random 100 36 2 100 36 2 54 19.8 -

K-Means (Euclidean) 85.7 2.5 7 50 15.6 5 37 1.2 3h
CorEx (Total Correlation) 100 2.4 5 100 2.4 5 71 0.6 >5 days
LP-Stability (Kendall’s) 100 40.6 27 100 40.6 27 96 38.5 1.5h

with 96% while CorEx reaches only 71%. Another interesting point from this analysis is the
indication of the optimal number of clusters per algorithm. Only LP-Stability reports its best
value with more than 25 clusters while the rest of the algorithms have their best performance
with less than 7 clusters and even 2 clusters only if we consider DI alone. This might seem to be
an argument in favor of the other algorithms as they are able to define a more compact signature.
However, such a low number of clusters highlights failure on characterizing a clustering structure
as they favor a disposition where genes are grouped altogether. This is also indicated by the low
average ES and DI scores.

A thorough comparison of the different algorithms for a different number of clusters is presented
in Fig. 4.4. For both DI and ES the superiority of the proposed LP-Stability in comparison to
the other algorithms can be observed both in terms of stability for a varying number of clusters
and performance. The reported results indicate that the proposed method can generate clusters
that are both mathematically and biologically meaningful. Moreover, one can observe that for
Random Clustering, the reported enrichment is very high, however dropping dramatically for
more than 30 clusters, while the DI is really low for all the cases. This highlights the need to
study both the mathematical performance and the stability of the biological score as ES alone
would not give significant results.

4.4.2 Computational Complexity & Running Times For Gene Cluster-
ing

The computation time is an important parameter playing a significant role for the selection of a
clustering algorithm. For each algorithm, the approximate average time needed for the clustering
is presented in Table 4.2. The different computational times have been computed using Intel(R)
Xeon(R) CPU E5-4650 v2 @ 2.40GHz cores. In general, the computational time increases with
the cluster number for all the clustering methods. However, for the reported clusters of Table 4.2,
LP-Stability remains one of the fastest with a computational time approximately equal to 1.5h.
K-Means needs approximately twice this time due to the several iterations (in our case 100)
performed in order to account for different initialization conditions. CorEx is by far the most
computationally expensive, requiring more than 5 days for the clustering, making this algorithm
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Figure 4.4: Evaluation of the different clustering algorithms. For the different evaluated
algorithms the ES and the DI are presented in terms of number of clusters and using Kendall’s
correlation-based distance. For both metrics, LP-Stability reports the highest and more stable
values. Moreover, the rest of the algorithms tends to report their higher scores for a very small
number of clusters (often 2), indicating their failure to discover clustering structures.

Figure 4.5: Gene Signature Assessment for the CorEx algorithm. The graph depicts the
distribution of the different tumor types in 10 different clusters using the best signature produced
by CorEx algorithm (5 genes). From the graph one can observe that the different tumor types
are quite intermixed across the different clusters without any association between them.

not efficient for data with this high dimensionality.

4.4.3 Unsupervised Signature Assessment

Signature Selection

The signature was selected using the method detailed in section 4.2.4 on the clustering present-
ing the highest DI among clusterings having best ES. However, due to the relatively low number
of genes for signatures based on K-Means, CorEx or Random Clustering, the sample clusterings
with those signatures gave quite irrelevant intermixed tumor types (Fig. 4.5). To deal with this
and for comparison reasons, we used for all these algorithms the gene signatures produced with
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25 and 30 genes and in the following, when referring to CorEx and K-Means signatures we will
refer to those signatures.

Regarding the evaluation of the enriched biological processes for the different signatures, we
found that LP-Stability signature (27 genes with Kendall’s correlation-based distance) does not
present any redundancy in the biological processes, in contrast to the K-Means (30 genes with
Euclidean distance) which presents several hundred of enriched biological processes. Moreover,
CorEx signature (30 genes with Total Correlation) presents a low biological redundancy with
only phototransduction process being enriched.

Our proposed gene signature using LP-Stability is composed by 27 genes. Their detailed
description with main functions and a brief summary of the analysis obtained using GTEx
Portal on July 2020 (www.gtexportal.org) is given in Annexes.

Globally these genes are related to cell development and cell cycle (CD53, NCAPH, GNA15,
GADD45GIP1, CD302, NCAPH, YEATS2), DNA transcription (HSFX1, CCDC30, MATR3,
ASH1L, ANKRD30A, GSX1), gene expression (ZNF767, C1orf159, RPS8, ZEB2), DNA repair
(RIF1), antigen recognition (ZNF767), apoptosis (C3P1, CLIP3), mRNA splicing (SNRPG). We
also have many genes specific to cancer or having a major impact on cancer (CD53, ANKRD30A,
ZEB2, ADNP, SFTA3, ACBD4). All these processes are highly important and significant for
cancer. We also report for each gene the main tissues they are overexpressed using GTEx portal,
even if we have many genes related to specific tissue types such as brain, blood lymphocytes,
liver or gynecologic tissues, the overall profiles of each gene are unique.

Sample Clustering: Discovery Power

The predictive powers of the best signature per algorithm together with the random signatures,
and the signature presented in [Thorsson, 2018], were further assessed by measuring their ability
to separate 10 different tumor types (Table 4.1) in a completely unsupervised manner, through
sample clustering. In Fig. 4.7, the results for the LP-Stability (with 27 clusters, ES 100% and
DI 40.6% using Kendall’s correlation-based distance) signature, K-Means (with 30 genes, ES
of 30% and a DI of 0.52% using Euclidean distance), CorEx (with 25 genes, ES 72% and DI
0.06% using Total Correlation), Random Clustering signature (with 27 genes, ES 86.6% and DI
of 13.8% using Kendall’s correlation-based distance) and the signature from [Thorsson, 2018] are
presented. One can observe that CorEx and Random signatures fail to properly separate the
tumor types and for this reason for the rest of the section we present a detailed comparison of
the K-Means and LP-Stability signatures only.

In Table 4.3, we present a more detailed comparison of the distribution of the tumor types for
these LP-Stability and K-Means signatures. Both signatures generate clusters that successfully
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Figure 4.6: Gene Assessment performed with LP-Stability clustering and Kendall’s
correlation-based distance. The plot presents the distribution of tumors using the signature
produced by LP-Stability and Kendall’s correlation-based distance (right) in comparison to the
Spearman’s one (left). This assessment is performed in order to compare the influence of the
distance in the clustering. We can observe that there are some similar clusters between the two
distances such as the well defined clusters of GBM and LIHC together with LUAD/LUSC cluster
(Cluster 5), a squamous cluster (Cluster 7) and some well defined BRCA clusters (Clusters 1 and
8). Thus, regarding sample clustering, it appears that the good characterization of monotonic
relations offered by Spearman’s Rank correlation-based distance is better suited than the more
general characterization of the Kendall’s one.

associate lung tumors such as LUSC and LUAD (clusters 3 & 4 respectively), squamous tumors
mainly composed of BLCA, CESC, LUSC and HNSC types (clusters 0 & 8 and 1 & 8 respectively)
and smoking related tumors mainly containing CESC, HNSC, READ, LUSC and LUAD (clusters
7 & 8 respectively). Concerning BRCA, K-Means clusters it into two different groups, one that
consists mainly with BRCA samples, while the second one consists of a minority of BRCA
samples grouped together with the GBM which types are not really related. Moreover, both
algorithms provided a good, almost perfect separation of the LIHC and GBM samples into well
defined clusters. This separation indicates that these specific tumor types are very different from
the rest or even that at least one gene included in the produced signatures is differently expressed
compared to the rest of the samples. On the other hand, LP-Stability clusters BRCA in several
small unblended clusters that express the various molecular types of BRCA, and groups the
remaining BRCA with the OV type which is directly related (cluster 3).

These results are very promising as they are in accordance with other recent omic studies. In
particular in [Hart2019] the authors used a large set of different omics data to define a clustering
reporting pan-squamous clusters (LUSC, HNSC, CESC, BLCA), but also pan-gynecology clusters
(BRCA, OV) and pan-lung clusters (LUAD, LUSC). The authors highlighted the separation
of BRCA into several clusters linked to basal, luminal, Chr 8q amp or HER2-amp subtypes.
However, they obtained only one third of mostly homogeneous clusters, and even reported clusters
mixing up to 75% of the total number of tumors types they considered.
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Table 4.3: Discovery Power: A complete comparison for the distribution of the tumor types
(above 10%) from the best performing algorithms. LP-Stability with 27 genes using Kendall’s
correlation-based distance and K-Means with 30 genes using Euclidean distance. The last col-
umn indicates the algorithm that provided the best distribution for the specific tumor type. It
highlights the superiority of the LP-Stability signature.

Tumor Types LP-Stability (27 genes) K-Means (30 genes) Best

BLCA
57% BLCA ⇒ 33% cluster 8
26% BLCA ⇒ 10% cluster 0

< 10% BLCA ⇒ clusters 1, 3, 7

54% BLCA ⇒ 59% cluster 7
18% BLCA ⇒ 22% cluster 1
14% BLCA ⇒ 7% cluster 8

< 10% BLCA ⇒ cluster 2, 4, 9

∼

BRCA

26% BRCA ⇒ 75% cluster 1
20% BRCA ⇒ 100% cluster 2
19% BRCA ⇒ 100% cluster 6
18% BRCA ⇒ 100% cluster 9
10% BRCA ⇒ 20% cluster 3

Homogeneous Clusters or with related types

55% BRCA ⇒ 98% cluster 0
27% BRCA ⇒ 20% cluster 4

< 10% BRCA ⇒ clusters 1, 2, 7
Clusters unrelated to GBM type

LP-Stability

CESC
58% CESC ⇒ 15% cluster 0
38% CESC ⇒ 16% cluster 8
Squamous related clusters

54% CESC ⇒ 15% cluster 8
25% CESC ⇒ 16% cluster 1
16% CESC ⇒ 16% cluster 7

Squamous mixed with non squamous

LP-Stability

GBM 100% GBM ⇒ 79% cluster 7 98% GBM ⇒ 57% cluster 2
Mixed with unrelated BRCA types LP-Stability

HNSC
89% HNSC ⇒ 43% cluster 0
10% HNSC ⇒ 7% cluster 8
Squamous related clusters

86% HNSC ⇒ 62% cluster 8
11% HNSC ⇒ 18% cluster 1
Squamous related clusters

∼

LIHC 90% LIHC ⇒ 100% cluster 5 98% LIHC ⇒ 98% cluster 5 ∼

READ 82% READ ⇒ 9% cluster 8
Smoking related

55% READ ⇒ 10% cluster 7
32% READ ⇒ 5% cluster 4

Smoking related
∼

LUAD 80% LUAD ⇒ 85% cluster 4
Lung cluster

93% LUAD ⇒ 83% cluster 3
Lung cluster ∼

LUSC

54% LUSC ⇒ 25% cluster 0
23% LUSC ⇒ 18% cluster 8
15% LUSC ⇒ 15% cluster 4

Squamous and lung clusters

53% LUSC ⇒ 97% cluster 6
20% LUSC ⇒ 17% cluster 3
11% LUSC ⇒ 21% cluster 1

Squamous and lung clusters

K-Means

OV
92% OV ⇒ 60% cluster 3
< 5% OV ⇒ clusters 1, 8

Cluster with related BRCA

71% OV ⇒ 86% cluster 9
15% OV ⇒ 10% cluster 4
10% OV ⇒ 7% cluster 7
< 10% OV ⇒ clusters 0,2

Mixed clusters

LP-Stability

Another interesting point is that the distance used greatly affects the distribution of the
different tumor types for the clustering. This proves the importance of the distance selection in
combination with the selected algorithm. Based on our experiments, we noticed that Spearman’s
and Kendall’s correlations provide the best sample clustering for all the algorithms. In particular,
Spearman’s correlation tends to better separate the different tumors into different clusters, while
the Kendall’s seems to generate clusters that groups tumor-related samples. In Fig. 4.8, we
present the influence of the two different distance metrics.

To compare our results with other methods in the literature, we assessed our gene signature
against a knowledge-based signature of 78 genes that has been proven to be appropriate for
determining immune related sample clusters [Thorsson, 2018]. The obtained tumor distribution
is presented in Fig. 4.7, reporting quite intermixed associations. Again, LIHC and BRCA are
separated properly while the rest of the tumors are clustered in unrelated groups. This com-
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Figure 4.7: Gene Signature Assessment via tumor distribution analysis across 10
sample clusters generated in the different signatures feature space. The graph presents
the distribution of the different tumors for Random Clustering signature (27 genes) , CorEx ,
K-Means , a referential gene signature [Thorsson, 2018] and LP-Stability. The distribution of
tumors for Random and CorEx algorithms is quite intermixed without a lot of associations
between the tumor types while K-Means, referential and LP-Stability signatures seem to favor
some good tumor associations.

parison indicates the need for compact signatures, highlighting at the same time the difficulty
of capturing the full genome information as well as the need for an automatically computed
signature to avoid redundancy and information loss.

Gene Screening Analysis

Screening analysis aims to identify the significant genes for each cluster which are then used
to determine the enriched biological processes per cluster. To determine those significant genes,
we used the SAM method to look for genes that are expressed differently for the samples of one
tumor type in a cluster compared to the other samples of the same tumor type (see section 4.2.4
for more details). We will refer to those genes as differentially expressed genes in the remainder
of the article. Besides, the SAM method scores allows to determine significant genes, in the
following, we will refer in particular to the most significant genes for a cluster or a tumor type
in a cluster for the genes reaching the highest SAM scores. This method, allows to check if the
tumor types of a given cluster share genes related to similar biological processes, highlighting the
biological relevance of the cluster. Meanwhile, this method enables us to verify the relevance of
the distribution of the same tumor types into different clusters by checking the absence of similar
biological processes. In particular, a summary of the analysis for our proposed signature’s sample
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Figure 4.8: Gene Assessment performed with LP-Stability clustering and Kendall’s
correlation-based distance. The plot presents the distribution of tumors using the signature
produced by LP-Stability and Kendall’s correlation-based distance (right) in comparison to the
Spearman’s one (left). This assessment is performed in order to compare the influence of the
distance in the clustering. We can observe that there are some similar clusters between the two
distances such as the well defined clusters of GBM and LIHC together with LUAD/LUSC cluster
(Cluster 5), a squamous cluster (Cluster 7) and some well defined BRCA clusters (Clusters 1 and
8). Thus, regarding sample clustering, it appears that the good characterization of monotonic
relations offered by Spearman’s Rank correlation-based distance is better suited than the more
general characterization of the Kendall’s one.

clustering is presented in Table 4.4. In this section, we provide a detailed analysis per tumor
type for each cluster for both K-Means and LP-Stability selected signatures.

Starting with the gene screening of LP-Stability, cluster 0 is one of the most intermixed clusters.
This cluster contains significant genes for different tumor types that are associated with immune,
defense response and other inflammatory processes with strong enrichment. Among the most
significant genes we can report IL4R for HNSC, this Interleukin is a treatment target for multiple
cancers, GNA15 for LUSC which has been highlighted in lung cancer treatment or for CESC.
KRT5, has been identified as a potential biomarker to distinguish adenocarcinomas to squamous
cell carcinomas [Xiao, 2017]. Continuing our analysis with cluster 1 which includes mainly BRCA
samples, its most significant gene is FPR3. This gene seems to be related to immune inflammation
and multiple cancers including breast [Li, 2017]. For cluster 2 which is mainly composed of BRCA
samples, we identified that it is a basal BRCA cluster. Indeed, its most significant gene TTC28
is related to breast cancer and especially basal BRCA [Hamdi, 2016]. Besides, the cluster is
enriched for basal plasma membrane. Cluster 3 is also a mixed cluster mostly composed of
BRCA and OV cancers. It seems to be related to mitochondrial complexes and organization.
Its most significant gene is the NDUFB10 which is related to breast cancer patients [Zhang,
2015], OV cancer [Permuth-Wey, 2011] and also correlated to a decreased viability in esophageal
squamous lineage as LIHC. Cluster 4 is a lung related cluster, composed of LUAD/LUSC samples.
LUAD samples are related to immune response and LUSC samples to surfactant homeostasis
which is linked to many lung diseases. The most significant gene for LUAD is SFTA3, a lung
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Table 4.4: Analysis of the biological pathways and most significant genes per cluster for the
sample clustering performed using our proposed signature of 27 genes via LP-Stability algorithm
and Kendall’s correlation-based distance. The table highlights the separation between inflamed
and non-inflamed tumors and the identification of well-known cancer subtypes such as BRCA.

Clusters Significant Tumor Validated Role of the Gene Biological Pathways Key Feature
Genes Type in Tumor Type of the cluster

Cluster 0

IL4R HNSC Treatment target Immune and defense response An inflamed solidGNA15 LUSC Lung cancers treatment Regulation of cell proliferation

KRT5 CESC
Biomarker distinguishing adeno- Interferon-gamma tumors clustercarcinomas from squamous mediated

cell carcinomas [Xiao, 2017] process

Cluster 1 FPR3 BRCA Immune inflammation Immune response An inflamed BRCA
related [Li, 2017] related pathways tumors cluster

Cluster 2 TTC28 BRCA Related to basal breast cancer Basal plasma membrane A basal BRCA
risk [Hamdi, 2016] tumors cluster

Cluster 3
NDUFB10 BRCA

Related to breast [Zhang, 2015] Mitochondrial complexes A gynecologic tumorsand ovarian [Permuth-Wey, 2011]
cancers, poor prognosis for and cells organization

esophageal lineage and LIHC related processes cluster linked to LIHC

SLC39A6 OV Poor prognosis for
esophageal lineage and LIHC

Cluster 4 SFTA3 LUAD Related to LUAD and LUSC Pathways of immune
An inflamed lung tumors cluster[Schicht, 2014; Xiao, 2017] response

NAPSA LUSC Related to LUAD Surfactant homeostasis

Cluster 5 LIHC A pure complete LIHC
tumor cluster

Cluster 6 FOXA1 BRCA Related to Breast Metabolic processes A luminal BRCA
Luminal cancer [Cappelletti, 2017] tumors cluster

Cluster 7

GBM Complete GBM cluster Response to stimulus,
ANGPTL5 BRCA Angiopoietin-like protein family cardiovascularity, A GBM tumors cluster

FERMT2 BLCA Related to various cancer with other tumors, all enriched
including breast ones blood vessels related in cardiovascularity pathways

Cluster 8 UQCRH BRCA Mitochondrial Hinge protein Metabolic processes Mis-splicing relatedrelated [Modena, 2003]
AP1M2 BLCA Tyrosine-based signals general compound processes tumors

Cluster 9 CIRBP BRCA Driver of many cancers Related to alternative splicing Alternative splicing
processes and organelles related to BRCA

protein [Schicht, 2014] and a biomarker distinguishing LUAD and LUSC [Xiao, 2017], whereas
the most significant gene for LUSC samples is NAPSA that has been proven to be of relevance
for LUAD tumors. Cluster 5 mostly consists of LIHC samples, grouping all the LIHC samples
in this cluster. Similarly cluster 7 consists of all GBM tumors. Thus, the screening process is
not applicable for them as it compares samples from the same tumor type over different clusters.
Cluster 6 is a luminal breast cancer cluster, related to metabolic processes which have already
been studied in a breast cancer context [Schramm, 2010]. The most significant gene seems to
be the FOXA1, a gene related to Estrogen-Receptor Positive Breast Cancer and Luminal Breast
Carcinoma [Cappelletti, 2017]. Cluster 7 is GBM tumors cluster. It is interesting to notice that
next two dominant tumor types in the cluster, BRCA and BLCA, are related to cardiovascularity
and blood vessels, their respective most significant genes are ANGPTL5 and FERMT2. The
latter having been highlighted in GBM proliferation [Alshabi, 2019]. Cluster 8 has no biological
process linked to immune response, but presents a strong association to metabolic and structural
processes. This group of processes has been found significant for BRCA [Read, 2018]. The most
significant genes for this cluster are the AP1M2 for BLCA samples which interacts in tyrosine-
based signals and has been considered in epithelial cells studies, the UQCRH for BRCA a gene
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encoding mitochondrial Hinge protein that is important in soft tissue sarcomas and in particular
in two cell lines of breast cancer and one of ovarian cancer [Modena, 2003]. Finally, cluster 9
is a cluster with BRCA tumors, it has CIRP as its most significant gene, which is considered
to be an oncogene in several cancers and in particular for BRCA. Cluster 9 presents alternative
splicing and coiled coil processes.

This analysis highlights that each cluster is enriched in similar biological processes while the
processes from different clusters are different. Moreover, it reveals that even if clusters 0 and 8
contain different tumor types, they present a homogeneity in their biological processes. Cluster
0 is especially interesting as it contains inflamed tumor samples and cluster 8 non-inflamed
samples. These two clusters contain all the CESC samples, proving once more the relevance
of the LP-Stability signature as they automatically and without any prior knowledge separate
inflammatory and non-inflammatory CESC samples. This specific problem is an active field of
research [Heeren, 2016]. Clusters 0 and 8 provide an even more valuable insight when studying
the genes IFNG, STAT1, CCR5, CXCL9, CXCL10, CXCL11, IDO1, PRF1, GZMA, MHCII and
HLA-DRA highlighted in [Ayers, 2017] for their major role in immunotherapy. Indeed, for each
tumor type in cluster 0 all or most of these genes are differentially expressed which is not the case
for cluster 8, so proving the specificity and clinical relevance of the separation of these clusters.

On a second level, we analyzed the distribution of the BRCA cancer samples on different
clusters, examining its clinical relevance. We chose to highlight BRCA in this comparison, as it
is the most represented tumor type and it presents a variety of subtypes. BRCA samples are
distributed into clusters 1, 2, 3, 6, 8 and 9 using the LP-Stability signature, featuring the main
molecular subtypes of BRCA. In particular, cluster 1 contains immune inflammatory samples,
cluster 2 basal samples and cluster 6 the luminal Estrogen-Receptor Positive samples. Addition-
ally cluster 3 is a gynecologic cluster with BRCA samples presenting relations to OV samples.
Cluster 8 features mis-plicing related tumors which are strongly related to BRCA samples [Koe-
doot, 2019]. Cluster 9 is marked by alternative splicing whose implications in cancers are well
known and studied [Singh, 2017]. It is also interesting to report that hallmarks genes BRCA1
and BRCA2 are positively and differentially expressed in luminal BRCA cluster 6 which attests
of an over-expression of these genes for cluster 6. This observation is consistent with [Mahmoud,
2017], where BRCA1 and BRCA2 were more expressed in luminal BRCA samples as they are
markers for good prognosis. Besides, these genes present an under-expression in cluster 3 which
is coherent as this mixed cluster groups BRCA and OV samples that are known to present a bad
prognosis.

For comparison, we performed the same analysis with the sample clustering produced by the
K-Means algorithm with the 30 genes. In this case, cluster 0 which is a well defined cluster
containing mainly BRCA samples, presents enrichment in diverse biological processes as reg-
ulation of transcription by RNA polymerase II, regulation of nucleobase-containing compound
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metabolic process or regulation of gene expression. The most significant gene C10orf32 has not
been identified as a gene related to cancer. However, it is more related to the lysosomes move-
ment process. Cluster 1 seems to be very intermixed with different biological processes being
enriched. For the BRCA samples different skin related pathways especially keratin are enriched,
which are important for several types of cancers. The most significant gene for BRCA samples
PKP1 is related to molecular recruitment. However, different processes for other tumor types
are also enriched. In particular, for the LUSC samples do not present any significant gene with
high enough score. The one with the highest score is ANKRD13B which is related to mem-
brane binding processes. HNSC samples are enriched in general RNA metabolic processes and
DNA-binding. Their most significant gene, CADPS2, is involved in calcium binding especially
important in autism. BLCA samples have no genes with scores above the considered threshold.
The most significant gene is FOXC1 which is involved in DNA-binding and has been shown of
utmost interest in several type of cancers. CESC type do not have any significant gene with
TRIM8 being the one with the highest score. This gene seems to be related to Interferon gamma
signaling and Innate Immune System. Its regulation has been shown to be altered in some
cancers. After this analysis, it appears that this cluster contains rather heterogeneous samples
without common biological processes even if several are linked to cancer. Besides, the biological
relevance of the cluster is not very clear as we can observe very few significant genes per tumor
type. Cluster 2 groups GBM and BRCA samples. It presents for the BRCA ones an enrichment
in voltage-gated calcium channel activity only. This biological pathway has been identified as a
new target for BRCA in [Koltai, 2014]. The most enriched gene is CACNB2 which is an antigene
involved in voltage-gated calcium channel. A study for the GBM samples cannot be performed as
all the GBM samples are in this cluster. Regarding cluster 3, LUSC samples present enrichment
in cilium activity and surfactant homeostasis. Their most significant gene ARRB1 programs a
desensitization to stimuli. It seems to be of interest for the chemosensitivity of lung cancer. For
the LUAD samples in this cluster, the only significant gene NKX2-1 is a thyroid-specific gene
also involved in morphogenesis. It has been found to be a prognostic marker in early stage non-
small lung cancers. Cluster 4 consists mainly of BRCA samples which are enriched in processes
of immune response. However, the most significant gene ACTR3 code for a complex essential
for cell shape and motility which is not related to immune response. Cluster 4 seems quite
heterogeneous concerning the processes and the significant genes. In particular, the HNSC sam-
ples are related to extra-cellular organization. Their most significant gene KLF17 is related to
DNA-binding transcription that is involved in epithelial-mesenchymal transition and metastasis
in breast cancer. READ samples do not have significant genes, the one with the highest score is
the GRM2 which is particularly involved in neurotransmission and central nervous diseases. For
the OV samples the only significant gene is the SPHK1 which regulates cell proliferation and
cell survival. It has been linked to ovarian cancer in [Hart, 2019]. LUAD samples present few
significant genes which do not enrich any biological process. The most significant gene, UCA1,
plays a role in cell proliferation and has been proven to be of interest in bladder cancer. Clus-
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ter 5 groups the entire LIHC tumor type. Thus, a gene screening analysis is so not possible.
For the cluster 6, LUSC samples have very few significant genes. The enriched processes that
are associated with are related to tissue development, Estrogen signaling and mammary gland
morphogenesis. Its most significant gene is FRRS1 which is related to ferric-chelate reductase
activity. Thus, this homogeneous cluster does not seem to contain a biological meaningful subset
of LUSC samples. Cluster 7 groups BLCA, BRCA, CESC, LUSC and READ samples. OV
samples present very few significant genes without enriched biological processes. BLCA sam-
ples present significant genes related to transcription and the most significant gene, C17orf28,
is related to several cancers. BRCA samples have very few significant genes and are weakly
enriched in mitosis processes as there are only two enriched processes. The most significant gene
FSD1 is related to coiled-coil region. CESC samples are enriched in cilium organization, cell
projection assembly and the most significant gene is EPCAM which is related to gastrointestinal
carcinoma and is a target of immunotherapy. So, it does not present links with CESC or other
carcinomas of the cluster. It seems that these CESC samples would have been more suitable
for cluster 3 since LUSC samples of this cluster are strongly enriched in the same pathways.
Finally, READ samples do not present significant enough genes. However, the most significant
one is EFNB2 which is involved in several development processes and in particular in the nervous
system and in erythropoiesis. This gene has also been found of interest in tumor growth. For
cluster 8, LUSC samples have numerous significant genes enriched in epidermis related processes
and skin development pathways and in particular the most significant gene KRT14 is related to
these processes. This might be related to a subset of non-small cell lung cancers characterized
by Epidermal growth factor receptor (EGFR) mutations. Similarly, HNSC samples of cluster 8
are also linked to keratin, epidermis and skin development processes which also characterize a
subtype of HNSC. The most significant gene lad1 is related to structural molecule activity and
codes for a protein involved in the basement membrane zone. We found the same pathways for
CESC samples whose most significant gene is KRT5 and BLCA samples with KRT6A. Cluster 9
mainly contains OV samples which do not present gene significant enough. However, their most
significant gene CLU has been identified as a potential cancer target in [Phan, 2017].

After the analysis, we observed that the K-Means signature seems to be very specific for the
BRCA tumors while reporting weaker relevance in the separation of other samples. Indeed, we
can observe that the separation of BRCA samples is rather meaningful as in each cluster BRCA
samples present rather relevant differentially expressed genes and enriched biological processes.
However, the clusters are lacking homogeneity as the different tumor types of the clusters present
unrelated differentially expressed genes and enriched biological processes. Besides, K-Means
signature fails to properly characterize other tumor types. This issue might be explained by the
over-representation of BRCA samples in our data set.

Additionally, in order to indicate the significance of the distance used we considered different
distances to perform the sample clustering. Our experiments confirmed that the distance that
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Table 4.5: Expression Power of the sample clustering using as features respectively our pro-
posed signature, a referential signature from literature [Thorsson, 2018] and average performance
using 10 sets of randomly-selected genes of same size as the proposed signature. We observe that
the two best performing signatures are the ones produced with our pipeline. The first using
K-Means clustering the second, our proposed signature, using LP-Stability.

Signature ARI (%) NMI (%) Homogeneity (%) Completeness (%) FMS (%) Expression
Power (%)

Random 29+/-5 37+/-4 37+/-4 37+/-4 39+/-4 36
CorEx 12 20 21 20 23 19

K-Means 52 63 65 62 58 60
Referential 34 41 42 40 42 40[Thorsson, 2018]
Proposed 33 52 52 53 43 46

gave the best biologically relevant clusters was Spearman’s correlation-based distance. Moreover,
after the screening analysis we observed that the differentially expressed genes are not necessarily
the genes selected in the signatures. This observation indicates that the strength of our approach
is to combine genes that might not be the most informative taken individually but whose com-
bination allows a good compact representation of the information brought by the whole genome
for cancer tumors. It is also worth mentioning that LP-Stability signature correctly separates
immune inflammatory samples from the others for all tumor types.

Expression Power

The expression power of our signature was further evaluated using the ARI, NMI, homogeneity,
completeness and FMS metrics and compared with the rest of the signatures. We called the
average of those scores the Expression Power of the signature and report it in Fig.4.9. Detailed
results for each score are provided in Table 4.5. For Random Clustering, we calculated the
metrics on the average results of sample clustering designed from 10 random signatures. Overall
the performances of K-Means and LP-Stability are the best with the first outperforming the
second. Good performance of K-Means could be due to the good separation of BRCA clusters,
the dominant tumor type in our dataset.

4.4.4 Tumor Types/Subtypes Classification Tasks

The predictive power of our proposed signature has been assessed in a supervised setting by
classifying the samples according to their tumor and sub-tumor types. This experiment aims
to evaluate the tissue-specific information captured by each signature. In Table 4.6, we report
the performance on training and test for each signature using the same classification strategy.
Our experiments highlight that even random signatures with the relatively small number of 27
genes reports good performance with a balanced accuracy of 84%. This proves that even a low
number of genes are informative enough to perform a good separation of tumor types. However,
our proposed signature reports the highest balanced accuracy reaching 92% outperforming the
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Table 4.6: Tumor Types Classification performance using the average performance of 10
sets of randomly-selected genes of same size as the proposed signature, CorEx, K-Means, the
referential [Thorsson, 2018] and our proposed signatures.

Signature Balanced Accuracy (%) Weighted Precision (%) Weighted Sensitivity (%) Weighted Specificity (%)
Training Test Training Test Training Test Training Test

Random 96+/-5 84+/-2 95+/-5 87+/-3 94+/-7 86+/-4 99+/-1 97+/-1
CorEx 100 85 100 90 100 91 100 98

K-Means 100 90 100 94 100 94 100 98
Referential 100 85 100 89 100 89 100 98[Thorsson, 2018]
Proposed 99 92 99 94 98 93 100 99

Table 4.7: Tumor Subtypes Classification performance using the average performance using
10 sets of randomly-selected genes of same size as the proposed signature, CorEx, K-Means, the
referential [Thorsson, 2018] and our proposed signature. Only the 5 types of tumors with more
than 50× n_subtypes samples were studied

Signature Balanced Accuracy (%) Weighted Precision (%) Weighted Sensitivity (%) Weighted Specificity (%)
Training Test Training Test Training Test Training Test

Random 81+/-11 57+/-9 85+/-8 66+/-10 82+/-9 62+/-7 87+/-12 74+/-23
CorEx 82+/-19 59+/-14 83+/-18 70+/-11 81+/-20 65+/-8 94+/-6 71+/-36

K-Means 85+/-12 53+/-24 89+/-10 67+/-15 79+/-20 56+/-19 96+/-3 69+/-38
Referential 90+/-11 59+/-7 91+/-9 68+/-10 90+/-9 67+/-12 97+/-4 70+/-35[Thorsson, 2018]
Proposed 85+/-11 68+/-9 90+/-6 73+/-13 82+/-16 63+/-9 93+/-6 89+/-6

referential signature [Thorsson, 2018] which reached a balanced accuracy of 85%.

Regarding tumor subtypes classification, results averaged over all considered tumor types are
provided in Table 4.7. Our proposed method presents the highest performance with a balanced
accuracy of 68%, outperforming the other algorithms by at least 9%. This task is quite chal-
lenging as we are using the same compact signature to characterize all the different tumor types
at a fine molecular level. Considering the complexity of the task and the important number
of different classes, results obtained with the proposed signature are very promising. Indeed,
it is surpassing the random signatures average balanced accuracy by 11% and the referential
signature, devised on this specific dataset, by 9%.

4.4.5 Global Comparison

In order to better summarize the different results and provide a fair comparison with random,
the state of the art and the referential signatures a spider chart is presented in Fig. 4.9. The
comparison focuses in 3 different criteria: (i) criteria based on the gene clustering performance in
blue, (ii) criteria based on the informativeness of the signature for unsupervised clustering tasks
in green and (iii) criteria based on the relevance of the signature for supervised classification
tasks in gold. Discovery Power is the proportion of tumor types that are relevantly grouped in
sample clustering according to related tumor types, the criteria of evaluation are presented in
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Figure 4.9: Comparison of the different signatures. Blue: criteria based on the gene cluster-
ing performance, Green: criteria based on the informativeness of the signature for unsupervised
clustering tasks and Gold: criteria based on the relevance of the signature for supervised classi-
fication tasks.

section 4.2.4. Expression Power corresponds to the average of the following clustering scores:
ARI, NMI, homogeneity, completeness and FMS the results are provided in Table 4.5. Predictive
Power: Types is the balanced accuracy on test of the tumor types classification task results are
provided in Table 4.6. Predictive Power: Subtypes is the average over all tumor types of the
balanced accuracy on test for tumor subtypes classification the results are provided in Table 4.7.
Biological Relevance is the average ES of the gene clustering method results provided in Table 4.2.
Mathematical Relevance is the average DI score of the gene clustering method results provided
in Table 4.2. Decreasing Time Complexity is the average time taken for the gene clustering, the
bigger the area in the chart the faster, results are provided in Table 4.2. Our proposed signature
is shown to be largely superior by at least 10% to random and referential signatures in all criteria
except compactness. It is also superior to the other signatures designed using our pipeline with
other prominent clustering methods. One interesting exception is the Tumor-Specific Expression
Power of K-Means-derived signature. The signature defined with K-Means differentiates the
types of tumor well as also proved by the Predictive Power: Types but does not perform well on
identifying the subtypes (Predictive Power: Subtypes). This is also due to the lower Discovery
Power of K-Means compared to our proposed signature.
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4.5 Conclusions

In this chapter, we present a framework for gene clustering definition and comparison, for gene
signature selection and evaluation in terms of redundancy, compactness and expression power. In
particular, we present a mathematical and biological evaluation of gene clustering, an extensive
sample clustering evaluation using quantitative and field specific clinical, biological metrics, and
a supervised approach for its association with tumor types and subtypes characterization. In
this framework we have shown the interest of using LP-Stability algorithm, a powerful center-
based clustering algorithm, for gene clustering. The algorithm surpasses other commonly used
methods in terms of computational time, quantitative and qualitative metrics. Notwithstading,
the modularity of this framework enables to modify the clustering algorithms, distance metrics
and assessment scores considered according to the valued properties and problem at hand.

Our experiments prove the importance of stability to define meaningful clusters and the supe-
riority of correlation-based distances. Moreover, the obtained clusters formulate a gene signature
which has been evaluated for ten different tumor locations, proving causality and strong associ-
ations with tumor phenotypes. These results compete with those reported in the literature by
using a large set of different omics data. In addition, our compact signature has been compared
and proved to be more expressive than a prominent knowledge-based gene signature [Thorsson,
2018]. An extensive biological analysis evidenced that the designed signature, leads to sample
clusters with high relevance and correlation to cancer-related processes and immune response
reporting promising results in tumor types and subtypes classification with 92% balanced accu-
racy in the former and 68% balanced accuracy in the latter. In the future, we aim to extend the
proposed method towards discovering stronger gene dependencies through higher-order relations
between gene expression data, as well as further evaluation of this biomarker for therapeutic
treatment selection in the context of cancer.
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Exploring and identifying a good feature representation to describe large-scale datasets is
one of the main problems of machine learning algorithms. However, plenty of feature selection
techniques and distance metrics with very different properties exist, which entails an intricacy of
identifying the proper method. This paper provides a general algorithm to design a high-order
distance metric over a sparse selection of features dedicated to semi-supervised clustering and
classification. We extend usual learning methods to design a metric accounting for properties
over sets of objects. Our approach is based on Conditional Random Field energy minimization
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and Dual Decomposition, which allow efficiency and great flexibility in the features to consider.
In particular, it enables to leverage the higher-order graph structures information efficiently. The
optimization technique employed ensures the tractability of very high dimensionality problems
using hundreds of features and samples. On several essentially different datasets from various
fields, we compare the classification results between state-of-the-art baselines and our proposed
classifier, relying on the distance learned to prove this metric formulation’s relevance.
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5.1 Introduction

In machine learning, the choice of a suitable feature space is of prime importance. Not only,
dimensionality curse might affect the data, but some variables might be noisy or non-relevant.
Many techniques have been investigated to select the most relevant features using some statistical
metrics as correlation [Yu, 2003] or the importance weights an algorithm as elastic-net grants to
the variables [Sun, 2018]. Despite the tremendous amount of work carried on this topic, another
aspect has been poorly considered. Many approaches as clustering algorithms require a relevant
metric to define a similarity notion between the samples. However, depending on the algorithm’s
mathematical properties and the metric, very different results are obtained [Battistella, 2021d].
To tackle the difficult task of designing a dedicated similarity function, some studies investigated
semi-supervised clustering or distance learning [Xing, 2002; Xiang, 2008; Komodakis, 2011].
Such approaches bring the significant advantage to perform both a selection of the most relevant
dimensions and a warping of the feature space favoring the spatial proximity of samples presenting
the same labels.

Graph structures are a standard model for data representation and allow great expressiveness.
However, the information they carry is complex to leverage from both a time and a memory
point of view. Most of the studies exploiting these structures are limited to second-order prop-
erties [Schaeffer, 2007] i.e., the edges in the graph. Some studies propose various ways to better
estimate higher-order properties. However, they mainly focus on local properties [Yin, 2017] or
small pattern-based analysis [Benson, 2016]. Additionally, some studies attempt to design meth-
ods to avoid resorting to higher-order structure surrogates involving simplification information
loss [Grover, 2016]. Nevertheless, in exploratory studies as [Lambiotte, 2019], many different and
complex higher-order graph properties are leveraged as the connectivity or the centrality of the
nodes or their clique order.

Graph attractiveness is explained by the valuable information they carry in many application
fields. They have already significantly spread for biological and medical data and allows to
combine interactions [Vermeulen, 2020]. Some of the prominent investigation areas are genomics
and proteomics [Szklarczyk, 2016]. Their use for imaging data has been demonstrated in, for
instance, graph matching problems [Lê-Huu, 2017; Torresani, 2008]. Nowadays, they are gaining
increasing importance with Graph Convolutional Networks [Xu, 2018].

This study proposes a new approach to bridge the gap between feature selection, distance
learning, and leveraging higher-order structures. The rest of the chapter is structured as follows.
In section 5.2 we position our work compared to existing studies. In section 5.3 we present in
detail the method we based our general framework on, our problem formulation and resolution
algorithm, how we leverage higher-order graph information and perform classification using the
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dedicated distance we learn. In section 5.5, we present the different datasets we considered and
the results obtained compared to classical classification baselines.

5.2 Related Work

Our study is based on the work of [Komodakis, 2011] which has the tremendous advantage
of allowing a very general definition of distance, allowing both feature and metric selection,
and weighting. Besides, it is designed for a center-based clustering algorithm, which presents
the advantage of defining a relevant cluster representative which exciting properties have been
demonstrated for feature selection in the previous chapter. This clustering paradigm is the critical
point in our approach for exploiting higher-order graph structures in a reasonable computational
time and space.

The idea of investigating clustering guided by field experts properties has been poorly studied
in the literature. Notwithstanding, we can observe two main trends. First, the semi-supervised
approach considers partial annotations in the clustering process. Following this paradigm, the
method from [Yu, 2017] or [Wagstaff, 2000] account for information of samples which must or
cannot be clustered together to influence the clustering using domain-related knowledge. This
approach might be further generalized to constraints on conjunctions and disjunctions of in-
stances [Davidson, 2005]. Second, the most prominent approach, metric learning, aims to learn
a measure to discover specific information thanks to a supervised framework. It offers the abil-
ity to identify structures similar to a given ground-truth. This paradigm involves a completely
annotated dataset at the difference of the semi-supervised approach. However, once the metric
learned, its strength dwells in its ability to be applied without the need of any additional label.
Besides, many studies demonstrated the essential role of the distance measure considered for
clustering [Xiang, 2008], even more prominent than the choice of a correct clustering algorithm.
The distance notion has to capture the required information to enable any algorithm to achieve
a correct clustering of the data. Following this precept, several studies considered the arduous
task of metric learning from different perspectives. In [Law, 2017], the authors leverage a deep
learning architecture to define a space representation allowing to define a better similarity no-
tion between instances while authors from [Finley, 2005] resort to a Support Vector Machine
algorithm. In [Xing, 2002] constraints are defined to formulate the metric-learning task as a
convex optimization problem. Here, we will consider more in detail the formulation proposed
in [Komodakis, 2011] which relies on the Conditional Random Field (CRF) energy minimization
principle to specify a metric in a center-based clustering context. This model is all the more
interesting than the relevance of center-based techniques as been demonstrated in the previous
chapter for feature selection and classification purposes.



5.3. Methodology 99

Despite the excellent expressiveness of CRF and their ability to capture higher-order relations,
the toll for fully leveraging this higher-order information might be heavy on memory and time
consumption aspects. To cope with this issue, authors from [Fix, 2011; Ishikawa, 2010] proposed
to exploit the binary nature of the CRF labels to optimize the resolution. Finally, in [Komodakis,
2014], dual decomposition is exploited to divide the initial energy to minimize in several easier-
to-solve sub-problems.

To naturally leverage higher-order information for clustering, some first attempts investigated
the presence of simple patterns in a graph [Yin, 2017]. Still, it is generally performed with
minimal patterns as a clique of order 3 or only for a local higher-order clustering [Benson, 2016].
However, it is only surrogates incurring an information loss in the complex higher-order relations
available [Grover, 2016].

In this study, we adapt and extend the formulation of metric learning presented in [Komodakis,
2011]. The main contribution is to bring the center-based clustering and the notion of pairwise
metrics to higher-order settings through the inclusion of graph properties. In addition, we modify
the error function that was considered to better account for unbalanced classes. Finally, we
leverage graph structural information from our data.

5.3 Methodology

Without loss of generality, let us define a metric assessing the similarity of a set of h objects
as a hth-order metric. For instance, a usual distance is referred to as a 2nd-order metric or
pairwise metric. For the simple case of pairwise metrics, we based our study on [Komodakis,
2011] which provides a general, flexible and efficient approach to solve the learning problem
in a clustering context. This approach relies on CRF energy minimization. In this study, we
extend our formulation introducing 3rd-order to hth-order metrics for any h > 2. The case of
3rd-order metrics will be more detailed for simplicity’s sake. However, the same approach is
applied to obtain the results for any order. This section first details the notations and potential
formulations used to define the problem’s energy. Then, we introduce the optimization problem,
discussing dual decomposition and its application to the task. Finally, we present the process
used to extract the higher-order information we leverage.

5.3.1 Center-Based Clustering

Our approach is based on center-based clustering. Considering a set of objects to cluster V,
we define a set of binary variables {xp,q}p,q∈V indicating whether p is assigned to the cluster of
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center q, xp,q = 1, or not, xp,q = 0. We consider a distance dp,q between objects p and q.

min
x

∑
p,q∈V

dp,qxp,q s.t.
∑
q∈V

xp,q = 1, ∀p

xp,q ≤ xq,q, xp,q ∈ {0, 1}, ∀p, q.
(5.1)

The above system minimizes the distance between a point and the center of the cluster it is
assigned to with respect to three constraints. First, each point has to belong to one and only
one cluster. Second, if a point is assigned to a cluster center, this center must be assigned to
itself. Third, assignment variables are binary. We can cast the previous optimization problem
as an equivalent energy minimization task:

E(x, d) =
∑
p,q

up,q(xp,q, d) +
∑
p,q

φp,q(xp,q, xq,q) +
∑
p

φp(xp) (5.2)

up,q being the second-order potentials of the CRF standing for the distance to the cluster center
and φp, φp,q the constraints. More precisely:

up,q(xp,q, d) = dp,qxp,q

φp,q(xp,q, xq,q) = δ(xp,q ≤ xq,q)

φp(xp) = δ(
∑
q

xp,q = 1)
(5.3)

with xp = {xp,q | q ∈ V } and δ(e) = 0 if e True and ∞ otherwise.

In this study, we propose a generalization of this energy formulation for clustering. Here an
example in a third-order setting. In addition to the previous notations, we consider a third-order
distance dp,p′,q for triplet p, p′ and q.

E(x, d) =
∑
p,q

up,q(xp,q, d) +
∑
p,p′,q

up,p′,q(xp,qxp′,q, d) +
∑
p,q

φp,q(xp,q, dq,q) +
∑
p

φp(xp) (5.4)

where the new function up,p′,q being the third-order potentials of the CRF everything else re-
maining unchanged. More precisely:

up,p′,q(xp,qxp′,q, d) = dp,p′,qxp,qxp′,q (5.5)

5.3.2 Metric Learning Formulation

Our framework learns a distance between objects using a set of K training subjects {V k, Ck, yk}
for each set k ∈ K, V k is the set of objects to be clustered according to ground truth Ck and
knowing input data yk. We are also assuming that we can get from the input data a positive
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feature function for each pair of objects p, q as fp,q(yk) and for each triplet of objects p, p′, q
as fp,p′,q(yk). The codomain of the feature’s functions will be called meta-feature space as it
is obtained from the actual features of the task and is the input space of the framework. We
consider a meta-feature space of size d. One should notice that even though there is a ground
truth cluster for each set, the cluster centers are still unknown. A feasible solution xk of Ck

denoted as xk ∈ X (Ck), will consist in a set of assignment such as for each ground truth cluster
C ∈ Ck all the objects p ∈ C are assigned to the same center q ∈ C. Besides, we are looking for
a distance over a set S of cardinal 2 ≤| S |≤ 3 expressed as:

dkS =
{

dkp,q if S = {p, q}
dkp,p′,q otherwise

(5.6)

where

dkp,q = wT fp,q(yk), dkp,p′,q = wT fp,p′,q(yk)

For conciseness sake’s, we will denote Ek(x, d) = E(x, dk) and uk(x, d) = u(x, dk).

w being the weight vector we want to estimate. At the difference of the formulation
proposed in [Komodakis, 2011], we impose wi ≥ 0, ∀i ≤ d. This specificity aims to enforce
the positivity of the distance obtained. Also, as it has been presented in [Komodakis, 2011], a
projection of the weights onto R+ ensures better performance in the second-order settings. We
impose this constraint to improve the tractability of the higher-order distance learning resolution,
as is highlighted in the proofs (Appendix A.3).

Notice that our framework is very robust and flexible as we use the same weight vector w for
both the second-order and the third-order distances, which means that a component i of vectors
fp,q(yk) and fp,p′,q(yk) have to relate to the same property. The ith component of fp,p′,q(yk)
can be a generalization of fp,q(yk) one, but it can also stand alone, and in this case, fp,q(yk) will
be null. Similarly, a component fp,q(yk) might not possess any relevant generalization, and in
this case, fp,p′,q(yk) will be null. For instance, a suitable third-order function fp,p′,q could have
for component the perimeter or surface of the triangle {p, p′, q}. With this particular example,
in addition to the initial second-order warping of the space, such as we have a small distance
between each object of the cluster and the center, we will also have a small distance between pairs
of objects. However, much more intricate properties can be introduced. For instance, we can
consider statistical distances as the Mahalanobis distance between the set of observations {p, p′}
and q, which is designed to estimate if the object q is a natural center for the set {p, p′} regarding
mean and variance considerations. We will present in section 5.3.9, possible higher-order feature
functions definition on graph structures.
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A Max-Margin approach is considered to approximate w. We are looking for xk ∈ X (Ck)
whose energy Ek(xk, d) is smaller than the energy of any other solution x by an error function
∆(x, d) to be defined, i.e.

∃xk ∈ X (Ck), Ek(xk, d) ≤ Ek(x, d)−∆(x, d) + ξk (5.7)

where slack variable ξk is considered in case of infeasible training sets. Adding this constraint to
the previous energy minimization problem gives the regularized loss:

min
{xk∈X (Ck)}

τJ(w) +
∑
k

LEk (5.8)

where J(w) is a regularization term penalizing w complexity, while the hinge loss LEk includes
ξk and is expressed as:

LEk (xk, w) = Ek(xk, w)−min
x

(Ek(x,w)−∆(x, Ck)) (5.9)

It favors feasible solutions with energy close to the minimal energy for any possible assignment
penalized by the error function according to the violated constraints.

5.3.3 Max-Margin Energy

The good choice of ∆(x, Ck) is essential to obtain a relevant w. In particular, we need this
error function to be 0 if x ∈ X (Ck) and to have a value representing on what extent x violates
the constraints imposed by the ground truth X (Ck). We adapt the error function proposed in
[Komodakis, 2011] to better account for unbalanced classes. We consider the training set k with
cluster ground truth Ck the function:

∆(x,Ck) = α
∑
C∈Ck

W (1−
∑
q∈C

xq,q) + β
∑
C∈Ck

1
| C |

∑
p∈C

(1−
∑
q∈C

xp,q) (5.10)

with W (z) = |z|([z < 0].(| V k | − | C |) + [z > 0]. | C |), [.] being the indicator function. The
first term penalizes solutions xk presenting no or several exemplars for a ground truth cluster
C ∈ Ck. We put an additional penalty on the sizable clusters presenting no exemplar or the
small clusters presenting several exemplars. The second term penalizes the solutions that do
not assign for an object of a ground truth cluster C ∈ Ck an exemplar from C. We added a
weight inversely proportional to the cluster’s size to balance the importance of small clusters in
the learning process. The learning constants α and β are characterizing the relative importance
of the two terms. The regularized loss defined in equation 5.8 can be expressed as a new CRF
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energy Ēk = Ek −∆:

Ēk(x,w) =
∑
p,q

ūkp,q(xp,q) +
∑
p,p′,q

ūkp,p′,q(xp,qxp′,q) +
∑
p,q

φ̄p,q(xp,q) +
∑
p

φ̄p(xp) +
∑
C∈Ck

φ̄C(xC)

− β|Ck|
(5.11)

with:

ūkp,q(xp,q) = ukp,q(xp,q, d) + β[∃C ∈ Ck, p, q ∈ C]
xkp,q
| C |

ūkp,p′,q(xp,qxp′,q) = ukp,p′,q(xp,qxp′,q, d)

φ̄p,q(xp,q) = φp,q(xp,q, xq,q)

φ̄p(xp) = φp(xp)

φ̄C(xC) = −αW (1−
∑
q∈C

xq,q)

(5.12)

It is interesting to notice that thanks to the property of ∆, ∀xk ∈ X (Ck), Ēk(xk, w) = Ek(xk, w).

5.3.4 Optimizing over {xk}

For a fixed w, minimizing Ēk(xk, w) requires the constraints to be satisfied, φ̄p(xkp) = 0 and
φ̄p,q(xkp,q) = 0, which entails xk ∈ X (Ck). And, in this case, ∆(x,Ck) = 0. Thus,

xk = arg min
x∈X (Ck)

(
∑
p,p′,q

dp,p′,qxp,qxp′,q +
∑
p,q

dp,qxp,q) (5.13)

To minimize this problem, we only need to find the set Qk of exemplars q minimizing the
above function per cluster in Ck and then assign each point of the cluster to its exemplar. In this
case, the constraints will be satisfied as we ensure each cluster to have one and only one center
and assign all cluster samples to this center.

5.3.5 Dual Decomposition

Dual decomposition is a widespread approach used to reduce an intractable problem to smaller,
easier ones, the sum of which is equivalent to the initial task to solve (please refer to Section 2.4.2
for a formal definition). Here, for each k < K, we define a slave problem per datapoint p ∈ V k,
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Ēkp , and one per cluster C ∈ Ck, ĒkC .

Ēkp (x,w) =
∑
q 6=p

ūkp,q(xp,q) +
∑
p′,q 6=p

ūkp,p′,q(xp,qxp′,q) +
∑
q

φ̄p,q(xp,q) + φ̄p(xp)−
β

| V k |
+

∑
q

( 1
| V k | +1(ūkp,q(xkq,q) +

∑
p′

ūkq,p′,q(xkq,qxkp′,q)) + λp,qxq,q)

ĒkC(x,w) =φ̄C(xC) +
∑
q

( 1
| V k | +1(ūkp,q(xkq,q) +

∑
p′

ūkq,p′,q(xkq,qxkp′,q)) + λCq
xq,q)

(5.14)

where the Lagrangian variables λ = {{λp,q}, {λCq}} are used to ensure the consistency of the
solution. We impose the satisfaction of: λ ∈ Λk = {λ :

∑
p∈Sk λp,q + λCq = 0, ∀C ∈ Ck, q ∈ C}.

Therefore, by design, Ēk(xk, w) =
∑
p Ē

k
p (x,w) +

∑
C Ē

k
C(x,w). Thus, finally, the loss function

to be minimized is:

min
{xk∈X (Ck)},w,{λk∈Λk}

τJ(w) +
∑
k

∑
p∈V k

LĒk
p

+
∑
k

∑
C∈Ck

LĒk
C

(5.15)

5.3.6 Slave Problems Optimization

To optimize w, we first need to solve the slave problems by leveraging their specific structures.
An essential characteristic to notice is that, for fixed {xk}, the slaves energy can be related to
CRF energies. Details of all the proofs and computation steps are provided in Appendix A.3.

Optimizing over {x̂k,p}

Regarding the point-wise subproblems, we proceed as follows. The solution in pairwise settings
has been demonstrated in [Komodakis, 2011]. In the following lemma, we generalize the solution
that was proposed to a third-order context as:

Lemma 1 For fixed p ∈ V k, let θkq =
ūkq,q(1) + ūkq,q,q(1)

|V |k + 1 + λp,q and θ̄kq = [θkq ]+ + ūkp,q(1) +

ūkp,q,q(1) + ūkp,p,q(1) where [z]+ = max(0, z). minimizer x̂p of Ēkp (x,w, λk) is given by

x̂pq,q =[θkq < 0]

x̂pp,q =[q = q̄] where q̄ = arg min
q

(θ̄kq ) (5.16)

Optimizing over {x̂k,C}

Regarding the cluster-wise subproblems, we proceed as follows. The solution in pairwise
settings has been demonstrated in [Komodakis, 2011]. We can notice that our formulation of the
cluster-wise subproblem presents a high similarity with the original formulation, and the only
difference for the optimization is in θkq expression:
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Lemma 2 For fixed C ∈ Ck, let θkq =
ūkq,q(1) + ūkq,q,q(1)
| V k | +1 + λCq , ∀q ∈ C. A minimizer x̂C of

ĒkC(x,w, λk) is given by

∀q ∈ C, x̂Cq,q =
{

[θkq < α(| V k | −|Ck|)], if
∑
q′∈C [θkq − α(| V k | −|Ck|)]− + α | V k |< 0

0 otherwise
(5.17)

with [z]− = min(0, z).

Optimizing over λ and w

To optimize over λ and w, we perform an iterative projected subgradient approach:

w ←− w − stδw, λk ←− projΛk (λk − stδλk
) (5.18)

with {δw} and {δλk
} subgradient functions and projΛk the projection onto Λk. Then, the fol-

lowing lemma gives the updates to be applied iteratively to efficiently obtain the approximation
of w and {λkp,q, λkCq

}. The updates are obtained by summing the respective updates of each
subproblem according to the formula provided in equation 5.15.

Lemma 3 Let st be the weight granted to the optimization at step t. We define X̂k
q = x̂k,Cq,q +∑

p x̂
k,p
q,q and X̂k

p,q = x̂k,pq,q x̂
k,p
p,q + x̂k,Cq,q [p = q, q ∈ C]. Then, update reduces to:

w −=st(τ∇J(w) +
∑
k

δkw)

λkp,q −=st(
X̂k
q

| V k | +1 − x̂
k,p
q,q )

λkp,q −=st(
X̂k
q

| V k | +1 − x̂
k,C
q,q )

(5.19)

where

δkw =
∑

p,p′,q∈V k

xkp,qx
k
p′qf

k
p,p′,q +

∑
p,q∈V k

xkp,qf
k
p,q − (

∑
p,q 6=p∈V k

(x̂k,pp,q x̂k,pq,q fkp,q,q + x̂k,pp,qf
k
p,p,q)+

∑
p,q 6=p∈V k

x̂k,pp,qf
k
p,q +

∑
q∈V k

1
| V k | +1(X̂k

q f
k
q,q +

∑
p∈V k

X̂k
p,qf

k
q,p,q))

(5.20)

Note that ∇J(w) has to refer to a subgradient if J is non-differentiable. Besides, a constraint
can be imposed over w by applying a projection during w update.

w ←− projW (w − stδw) (5.21)

where W can be any convex set of constraints included in R+. For instance, to mimic a true
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distance and satisfy the positivity constraint over w with projW (z) = max(z, 0). It will also
enforce an additional sparsity on the weight vector. Notice that at least a positivity constraint
has to be imposed. We summarize the complete learning process in Algorithm 3.

Algorithm 3: Learning Process
Data: training cohorts {V k, Ck, yk}, features functions {f2

p,q(yk), f3
p,p′,q(yk)}

1 λk ← 0, ∀k
2 do
3 Optimize xk: ∀C ∈ Ck, qc = argminq∈C(

∑
p,p′∈C dp,p′,qxp,qxp′q +

∑
p∈C dp,qxp,q);

4 xkp,q = 1, p ∈ C ⇐⇒ q = qC ;
5 Iterate T subgradient updates:
6 repeat
7 Solve slaves Ēkp , ĒkC via lemmas 4, 2;
8 Update w, λk via lemma 3
9 until T times;

10 Project w over W ⊂ R+
11 while Not Convergence;

To improve the tractability of the approach we leveraged a stochastic gradient descent (sgd)
framework. It consists in randomly selecting a subset of the training samples at each iteration
and performing the updates by relying only on those samples.

5.3.7 Generalization to Higher-Order Distances

Our approach’s strength is its ability to be efficiently generalized to any order. Let h ≥ 2
be the order of the distance we are looking for. h corresponds to the maximal set size we will
consider in our metric definition. Our target metric considers any set S of size | S |≤ h and is
defined as:

dS = wT f{p}p∈S
(y) (5.22)

where f{p}p∈S
is a positive feature function providing a closeness score on set S. This metric

aims to establish a characterization of the meaningfulness to group samples in S altogether. In
this case, we consider the energy defined as:

E(x, d)k =
∑

l∈[0,h−2]

∑
p,p1,...,pl,q

ukp,p1,...,pl,q
(xp,q

∏
i∈[1,l]

xpi,q, d) +
∑
p,q

φp,q(xp,q, xq,q)

+
∑
p

φp(xp) +
∑
C

φC(xC)− β|Ck|
(5.23)
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We now consider the higher order potential of order l < h−2, up,p1,...,pl,q(
∏
i∈[1,l] xpi,q, d) focusing

on establishing the cost of assigning p, p1, ..., pl to q. The potentials definitions are:

ukp,p1,...,pl,q
(xp,q

∏
i∈[1,l]

xpi,q, d) = dkp,p1,...,pl,q
xp,q

∏
i∈[1,l]

xpi,q

dk
p,
∏

i∈[1,l]
pi
xp,q

∏
i∈[1,l]

xpi,q = wT fp,p1,...,pl,q(yk)

φp,q(xp,q, xq,q) = δ(xp,q ≤ xq,q)

φp(xp) = δ(
∑
q

xp,q = 1)

(5.24)

First, regarding the optimization over {xk} for a fixed vector w. As previously, the satisfaction
of the constraints induces:

xk = arg min
x∈X (Ck)

(
∑

l∈[0,h−2]

∑
p,p1,...,pl,q

dkp,p1,...,pl,q
xp,q

∏
i∈[1,l]

xpi,q) (5.25)

And, again, this problem’s minimization only requires the set Qk of exemplars q minimizing the
above function per cluster in Ck. Then, we assign each point of the cluster to its exemplar. In
this case, the constraints will be satisfied as we ensure each cluster to have one and only one
center and assign all cluster samples to this center.

As before, for each k < K, we define a slave problem per datapoint p ∈ V k, Ēkp , and one per
cluster C ∈ Ck, ĒkC .

Ēkp (x,w) =
∑

l∈[0,h−2]

∑
p1,...,pl,q 6=p

ukp,p1,...,pl,q
(xp,q

∏
i∈[1,l]

xpi,q, d) +
∑
q

φ̄p,q(xp,q) + φ̄p(xp)−
β

| V k |
+

∑
q

( 1
| V k | +1(

∑
l∈[0,h−2]

∑
p1,...,pl

ukq,p1,...,pl,q
(xq,q

∏
i∈[1,l]

xpi,q, d)) + λp,qxq,q)

ĒkC(x,w) =φ̄C(xC) +
∑
q

( 1
| V k | +1(

∑
l∈[0,h−2]

∑
p1,...,pl

ukq,p1,...,pl,q
(xq,q

∏
i∈[1,l]

xpi,q, d) + λCqxq,q)

(5.26)

where the Lagrangian variables λ = {{λp,q}, {λCq}} are used to ensure the consistency of the
solution. We impose the satisfaction of: λ ∈ Λk = {λ :

∑
p∈Sk λp,q + λCq = 0, ∀C ∈ Ck, q ∈ C}.

Therefore, by design, Ēk(xk, w) =
∑
p Ē

k
p (x,w) +

∑
C Ē

k
C(x,w). Thus, finally, the lost function

to be minimized is:

min
{xk∈X (Ck)},w,{λk∈Λk}

τJ(w) +
∑
k

∑
p∈V k

LĒk
p

+
∑
k

∑
C∈Ck

LĒk
C

(5.27)
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Optimizing over {x̂k,p}

Regarding the point-wise subproblems, we proceed as follows. In the following lemma, we
generalize the solution that was proposed to a general order setting as:

Lemma 4 For fixed p ∈ V k, let θkq =
∑
l∈[0,h−2] u

k
q,...,q(1)

|V |k + 1 + λkp,q and

θ̄kq = [θkq ]+ +
∑
l∈[0,h−2]

∑
p1,...,pl∈{p,q} u

k
p,p1,...,pl,q

where [z]+ = max(0, z). minimizer x̂p of
Ēkp (x,w, λk) is given by

x̂k,pq,q =[θkq < 0]

x̂k,pp,q =[q = q̄] where q̄ = arg min
q

(θ̄kq ) (5.28)

Optimizing over {x̂k,C}

Regarding the cluster-wise subproblems, The optimization is provided by the following lemma:

Lemma 5 For fixed C ∈ Ck, let θkq =
∑
l∈[0,h−2] u

k
q,...,q(1)

| V k | +1 + λkCq
, ∀q ∈ C. A minimizer x̂k,C of

ĒkC(x,w, λk) is given by

∀q ∈ C, x̂k,Cq,q =
{

[θkq < α(| V k | −|Ck|)], if
∑
q′∈C [θkq − α(| V k | −|Ck|)]− + α | V k |< 0

0 otherwise
(5.29)

with [z]− = min(0, z).

Optimizing over λ and w

Lemma 6 Let st be the weight granted to the optimization at step t. We define X̂k
q = x̂k,Cq,q +∑

p x̂
k,p
q,q and X̂k

p,
∏

i∈[1,l]
pi,q

= x̂k,pq,q
∏
i∈[1,l] x̂

k,p
piq + x̂

k,Cq
q,q [pi = q, ∀i ∈ [1, l]]. Then, the updates

reduce to:

w −=st(τ∇J(w) +
∑
k

δkw)

λkp,q −=st(
X̂k
q

| V k | +1 − x̂
k,p
q,q )

λkCq
−=st(

X̂k
q

| V k | +1 − x̂
k,C
q,q )

(5.30)
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where

δkw =
∑

l∈[0,h−2]

∑
p,p1,...,pl,q∈V k

fp,p1,...,pl,q(xkp,q
∏
i∈[1,l]

xkpi,q, d)−

∑
q∈V k

(X̂k
q f

k
q,q +

∑
l∈[0,h−2]

(
∑

p6=q∈V k

∑
p1,...,pl,pi∈{p,q}∀i∈[1,l]

x̂k,pp,q x̂
k,p
q,q f

k
p,p1,...,pl,q

+

1
| V k | +1

∑
p∈V k

∑
p1,...,pl∈{p,q}∀i∈[1,l]

X̂k
p,
∏

i∈[1,l]
pi,q

fk
q,
∏

i∈[1,l]
pi,q

))

(5.31)

5.3.8 Extension to Cluster Metrics

A final interesting addition we can bring to our higher-order distance learning framework is
to consider a metric between a sample and a ground truth cluster. The difference between this
particular setting and the previous higher-order metrics is that here we will consider a metric able
to tackle sets of objects of different sizes (the size of the clusters) and thus will not have a defined
order. The interest for such a distance is to benefit from a structural metric characterizing the
closeness between a sample and a given cluster. It will be especially valuable during inference to
identify the fittest cluster for a sample.

We formulate this new problem by adding to the higher-order distance defined in the previous
section a term wT fp,C(yk) for any p ∈ V k and any C ∈ Ck. Then, from the previously defined
energy E(x, d)k we will define our new energy

Ek∗(x, d) = Ek(x, d) +
∑
p∈V k

∑
C∈Ck

wT fp,C(yk)
∑
q∈C

xp,q

where we penalize the assignment of a sample p to a center q by the distance between the sample
and the center’s cluster according to given cluster-wise feature functions. First, regarding the
optimization over {xk} for a fixed vector w. As previously, the satisfaction of the constraints
induces to find the cluster centers q minimizing for its cluster C:

q = arg min
q∈C

(
∑

l∈[0,h−2]

∑
p,p1,...,pl,p∈C,pi∈C∀i∈[1,l]

dkp,p1,...,pl,q
xp,q

∏
i∈[1,l]

xpi,q +
∑
p∈C

wT fp,C(yk)xp,q)

(5.32)
xk is inferred by assigning each sample of a cluster to the cluster center. Then, we modify the
cluster-wise slave problems of the dual decomposition as follows:

Ēk∗C (x,w) =ĒkC(x,w) +
∑
p∈V k

wT fp,C(yk)
∑
q∈C

xp,q + 1
2(| V k | +1)w

T fq,C(yk)
∑
q∈C

xq,q (5.33)

with ĒkC(x,w) the energy defined as in equation 5.26. Therefore, the cluster-wise slave resolution
is now:
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Lemma 7 For fixed C ∈ Ck. Let θk∗q =
∑
l∈[0,h−2] u

k
q,...,q(1) + fq,C(yk)

| V k | +1 + λk∗Cq

, ∀q ∈ V k. A minimizer

x̂k,C∗ of Ēkk,C∗(x,w, λk∗) is given by:

∀q ∈ C, x̂k,C∗q,q =
{

[θk∗q < α(| V k | −|Ck|)], if
∑
q′∈C [θk∗q − α(| V k | −|Ck|)]− + α | V k |< 0

0 otherwise
(5.34)

Then, the updates are defined as:

Lemma 8 Let st be the weight granted to the optimization at step t. We consider X̂k
q and

X̂k
p,
∏

i∈[1,l]
pi,q

as defined in lemma 6.

w∗ −=st(τ∇J(w) +
∑
k

δk∗w )

λk∗p,q −=st(
X̂k
q

| V k | +1 − x̂
k,p
q,q )

λk∗Cq
−=st(

X̂k
q

| V k | +1 − x̂
k,C∗
q,q )

(5.35)

where

δk∗w =δkw +
∑
p∈V k

∑
C∈Ck

fp,C(yk)
∑
q∈C

xk∗p,q−∑
p∈V k

∑
C∈Ck

fp,C(yk)
∑
q∈C

(xk,C∗p,q + xk,pp,q )+

(
X̂k
q

| V k | +1
∑

q 6=p∈C
(xk,C∗p,q + xk,pp,q ))

(5.36)

5.3.9 Extracting and Leveraging Structural Information from Data

Several approaches exist in order to design a graph structure on data set with no natural graph
representation. Here, we relied on a distance matrix between objects computed as the sum over
all the different feature functions used in the distance learning. Then, a k-nearest neighbors
approach was computed, meaning that there is an edge between two objects p and q iff p (resp.
or q) is in the k objects the closest of q (resp. or p).

Once a graph structure obtained, we studied different ways of leveraging their properties. Our
first, most simple, approach is considering the shortest path Sp,q between objects p and q in
the graph. The distance between those objects will then be the weighted length Lp,q of such a
path. The generalization of this method for a set of objects {p1, ..., pl} and a potential center q
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is defined as follows:

SPl(p1, ..., pl) =
∑

i∈{1,...,l}

∑
j∈{i+1,...,l}

Lpi,q + Lpj ,q

Lpi,pj

The interpretation of this graph metric is that the center of a cluster q has to be a hub for the
objects of its cluster i.e. the ratio between the shortest path and the shortest path passing by q
has to be small for any pair of objects in the cluster.

Similarly, we considered the eccentricity of a set of objects {p1, ..., pl} as a l-order graph metric.
We deem a set of objects has to have a small maximal weighted graph diameter to belong to the
same cluster.

Then, we considered two connectivity related metrics. The first one is based on the clique
order of a set of objects CO(p1, ..., pl) and is defined as max_degree(G) − CO(p1, ..., pl) with
max_degree(G) the maximal degree of a node in the whole graph. By doing so we consider that
the bigger the clique order in the set of objects the more relevant their association in a cluster.

The second metric is based on the connectivity resilience CR(p1, ..., pl) which is the minimal
number of nodes to remove to disconnect the set of objects. The metric is defined as l −
CR(p1, ..., pl).

5.3.10 Leveraging a Task Dedicated Distance for Classification

In order to perform the classification, we relied on a K-Nearest Neighbors framework. Once the
distance learnt, we predicted the label of a new sample by computing its distance to each ground
truth cluster and taking the closest one. We experimented and compared different strategies to
determine the closest cluster:

• Average distance to the points of the cluster.

• Minimum distance to the points of the cluster.

• Maximum distance to the points of the cluster.

• Distance to the center of the cluster.

• Majoritarian cluster of the k-nearest neighbors.

The distance between the new sample p and objects of the cluster C is computed using the
learnt dedicated distance. For l > 2-order distances, we compute the distance on the set
{p, p1, ..., pl−2, q} where we iterate over all possible sets {p1, ..., pl−2} ∈ Cl−2 and q is the cluster
center discovered during the learning step.
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5.4 Implementation Details

We implemented the algorithm proposed in [Komodakis, 2011] and we used it as a baseline.
It is available at https://github.com/ebattistella/Second-order-Distance-learning.
Besides, the adaptation to general higher-order distances we propose in this study has been
implemented and is available at https://github.com/ebattistella/Higher-order-Distanc

e-Learning-GHOST-.

To prove the relevance of our higher-order formulation, we leveraged two datasets of a very
different nature. First, we synthesized a dataset with samples in dimension 100 with 60 noisy
dimensions. Clusters are designed by considering 100 samples generated from Gaussian distribu-
tions with different variances and means between the two clusters on the non-noisy dimensions.
The noise is simulated by taking a much larger variance. Ideal graphs were generated on this
dataset as one clique per cluster with no connection between cliques. Then, we added noise
to the graphs using a rewiring method [Jarman, 2017]. For each pair of nodes, we added or
removed an edge with a probability of p. We considered values of p ∈ [0, 0.5] with an increment
of 0.1. We generated a training, a validation, and a test sets considering different variances and
means. For each set, we considered base variances randomly chosen for each feature between
0 and 200 shifted by respectively 10, 30 and 30 for the non-noisy dimensions and 1000, 2000
and 10000 for the noisy ones. Regarding the means, we considered base means randomly chosen
for each feature between −50 and 50 shifted by respectively 0, 10, and 50. The aim was here
to visualize the generalizability of the learned weights and their resilience to increasing noise.
We then leveraged a Covid-19 dataset introduced in Chapter 3. We used the same training and
testing sets previously and compared the classification performance over the Severe/Non-severe
staging task. A graph on the data was obtained through the method proposed in Section 5.3.9
by considering the 5 closest neighbors.

The second-order feature functions we based all our experiments on are feature-wise euclidean
distances. In addition, we considered Euclidean, Minkowski, City-block, Cosine, Correlation,
Hamming, Jaccard, Chebyshev, Matching, Yule, Braycurtis, Dice, Kulsinski, Russellrao, Pearson-
correlation based, Spearman-correlation based, Kendall-correlation based distances on the full
feature space.

For those datasets, we performed a thorough set of experiments to highlight the relevance of
our higher-order distance formulation and the consideration of graph structures. We first used
the simple pairwise distance defined using the basic formulation from [Komodakis, 2011]. Then,
we complemented this with our balanced error function to better account for the cluster size. We
finally added a shortest-paths-based metric SP2 to assess the value of graph information even
in second-order settings and compare it with the higher-order. We performed the higher-order
distance learning using the combination of the second-order meta-features with the different

https://github.com/ebattistella/Second-order-Distance-learning
https://github.com/ebattistella/Higher-order-Distance-Learning-GHOST-
https://github.com/ebattistella/Higher-order-Distance-Learning-GHOST-
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higher-order metrics defined in Section 5.3.9. We considered the third-order, the cluster metric,
and the combination of both.

5.5 Results and Discussion

5.5.1 Synthesized Dataset

In this subsection, we considered the two synthesized clusters. This experiment aimed to assess
the capacity of our higher-order framework to leverage information from a graph according to
its level of noise and combine it with usual second-order metrics to perform classification. We
used as a baseline the second-order framework performances with and without considering path
length information in a graph. First, we reported the results in the second-order without graph
information nor balanced error function in Table 5.1. Here, we reported the performance of
the different strategies to infer the label of a new sample defined in Section 5.3.10. We observed
superior results of the distance to cluster center approach on all metrics. This trend was consistent
in the different experiments we performed. Thus, for concision sake’s in the following, we only
reported results from this strategy.

No balanced error Balanced Accuracy Weighted Precision Weighted Sensitivity Weighted Specificity
function, No path Training Validation Test Training Validation Test Training Validation Test Training Validation Test

Average 1 0.6 0.42 1 0.76 0.35 1 0.62 0.4 1 0.58 0.43
Minimum 1 0.52 0.4 1 0.75 0.27 1 0.54 0.38 1 0.49 0.42
Maximum 1 0.59 0.38 1 0.68 0.32 1 0.63 0.37 1 0.6 0.39
Min center 1 0.62 0.34 1 0.75 0.26 1 0.6 0.32 1 0.57 0.35

KNN 1 0.62 0.41 1 0.69 0.29 1 0.64 0.4 1 0.61 0.43
Balanced error Balanced Accuracy Weighted Precision Weighted Sensitivity Weighted Specificity
function, No path Training Validation Test Training Validation Test Training Validation Test Training Validation Test

Average 1 0.71 0.61 1 0.72 0.62 1 0.72 0.6 1 0.71 0.62
Min 1 0.66 0.62 1 0.68 0.62 1 0.67 0.62 1 0.65 0.63

Min Max 1 0.65 0.58 1 0.65 0.59 1 0.65 0.56 1 0.65 0.59
Min center 1 0.74 0.62 1 0.75 0.64 1 0.75 0.61 1 0.74 0.63

KNN 1 0.72 0.6 1 0.73 0.62 1 0.72 0.58 1 0.73 0.61
Balanced error Balanced Accuracy Weighted Precision Weighted Sensitivity Weighted Specificity
function, Path Training Validation Test Training Validation Test Training Validation Test Training Validation Test

Average 1 1 0.77 1 1 0.84 1 1 0.73 1 1 0.82
Min 1 1 0.76 1 1 0.83 1 1 0.71 1 1 0.81

Min Max 1 1 0.79 1 1 0.85 1 1 0.75 1 1 0.83
Min center 1 1 0.78 1 1 0.8 1 1 0.73 1 1 0.8

KNN 1 1 0.69 1 1 0.81 1 1 0.63 1 1 0.75

Table 5.1: Results with the synthetic dataset of the different experiments in the second-order
settings for the various inference strategies.

Table 5.2 presents the comparison of the performance using the different frameworks defined
in the Chapter. The second-order results with path length information have been obtained with
the ideal graph without noise. The foremost point to notice is the greater performance and
lesser overfitting of the methods leveraging graph information when resorting to graph with a
rewiring probability below 0.4. Although, it is worth mentioning that the second-order meta-
features do not compensate for the noise brought by the graph-based meta-features for the
frameworks relying on graph information with p above 0.4. Then, notice that whereas the
cluster and the third-order frameworks alone performed similarly, their combination reported
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higher results. Besides, additional experiments have been performed with rewiring probabilities
p above 0.6. The performance is globally significantly decreased. However, the graph contains as
much information as a probability below 1− p, but the clique structure has been broken. Thus,
it shows that complementary graph measures should be investigated to account for different
graphical properties.

Third-order Balanced Accuracy Weighted Precision Weighted Sensitivity Weighted Specificityonly
p Training Validation Test Training Validation Test Training Validation Test Training Validation Test
0 1 1 1 1 1 1 1 1 1 1 1 1
0.1 0.97 0.91 0.96 0.97 0.92 0.96 0.97 0.92 0.96 0.97 0.91 0.96
0.2 0.9 0.92 0.91 0.9 0.93 0.92 0.89 0.92 0.9 0.9 0.93 0.92
0.3 0.59 0.58 0.64 0.78 0.77 0.79 0.61 0.6 0.61 0.63 0.62 0.67
0.4 0.62 0.62 0.68 0.78 0.78 0.8 0.59 0.58 0.65 0.66 0.65 0.71
0.5 0.54 0.52 0.48 0.57 0.54 0.48 0.51 0.5 0.46 0.57 0.55 0.5

Cluster metric Balanced Accuracy Weighted Precision Weighted Sensitivity Weighted Specificityonly
p Training Validation Test Training Validation Test Training Validation Test Training Validation Test
0 1 1 1 1 1 1 1 1 1 1 1 1
0.1 0.97 0.91 0.96 0.97 0.92 0.96 0.97 0.92 0.96 0.97 0.91 0.96
0.2 0.9 0.92 0.91 0.9 0.93 0.92 0.89 0.92 0.9 0.9 0.93 0.92
0.3 0.7 0.66 0.64 0.78 0.77 0.79 0.7 0.63 0.61 0.63 0.62 0.67
0.4 0.61 0.6 0.63 0.76 0.75 0.8 0.6 0.59 0.6 0.67 0.66 0.7
0.5 0.53 0.48 0.5 0.55 0.47 0.5 0.5 0.47 0.46 0.5 0.49 0.5

Combination Balanced Accuracy Weighted Precision Weighted Sensitivity Weighted Specificity
p Training Validation Test Training Validation Test Training Validation Test Training Validation Test
0 1 1 1 1 1 1 1 1 1 1 1 1
0.1 0.98 0.91 0.97 0.97 0.92 0.96 0.98 0.92 0.95 0.98 0.91 0.97
0.2 0.91 0.93 0.91 0.9 0.93 0.92 0.89 0.92 0.9 0.9 0.93 0.92
0.3 0.71 0.65 0.65 0.79 0.76 0.8 0.71 0.63 0.62 0.62 0.61 0.68
0.4 0.62 0.62 0.68 0.78 0.78 0.8 0.6 0.59 0.6 0.67 0.66 0.7
0.5 0.54 0.52 0.48 0.57 0.54 0.48 0.51 0.5 0.46 0.57 0.55 0.5

Table 5.2: Results on the synthetic dataset of the different higher-order experiments with the
distance to center inference strategy.

5.5.2 Covid-19 Dataset

Table 5.3 presents the results of the different frameworks over the Covid-19 dataset and com-
pares them to the results obtained in Chapter 3 denoted by Ensemble. This experiment highlights
the interest of considering graph information as it improves the results over the basic framework.
Also, it enables to reach performances similar to the ones of an ensembling method over several
standard classifiers. Although, the graph extracted from the Covid-19 dataset seems not to favor
higher-order graph notions.

5.6 Conclusion

This chapter proposed a novel distance learning framework to leverage higher-order informa-
tion, including cluster-based metrics, towards a dedicated to the task metric definition. Moreover,
we demonstrated the value of leveraging graph-based information for classification. In particu-
lar, we have highlighted the interest in designing a graphical representation of data to extract
structural information. In addition, we studied the relevance of higher-order metrics and exper-
imented several directions to better account for structure in the data. In the future, we aim at
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Framework Balanced Accuracy Weighted Precision Weighted Sensitivity Weighted Specificity
Training Test Training Test Training Test Training Test

No balanced error 0.65 0.59 0.75 0.7 0.61 0.6 0.66 0.57function, No path
Balanced error 0.67 0.61 0.77 0.74 0.68 0.66 0.65 0.55function, No path

Balanced error 0.67 0.71 0.78 0.8 0.69 0.73 0.65 0.69function, Path
Combination 0.65 0.67 0.75 0.77 0.68 0.69 0.65 0.67
Ensemble 0.73 0.7 0.82 0.81 0.67 0.64 0.8 0.77

Table 5.3: Performance of the different learning frameworks over the Covid-19 dataset. The
3 first rows stand for second-order frameworks with or without the use of a balanced error
function and path length information. The fourth row is the higher-order framework combining
the second-order, the cluster and the third-order metrics. The last row is the performance of the
ensemble of standard classifiers as defined in Chapter 3.

studying other kinds of data with known graphical representations as PPI networks. We also
want to study more intricate metrics to better exploit higher-order information, for instance,
Mahalanobis distance.
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6.1 Main Contributions

In this thesis, we provided various machine learning approaches using standard algorithms
for medical applications. We aimed at developing robust algorithms tailored to tackle several
medical field challenges. Moreover, we proved the relevance of graph theory for better leveraging
data information and unknown higher-order relations using advanced mathematical tools.

Chapter 3 introduced a thorough end-to-end process to take advantage of medical imaging
and clinical information for disease severity characterization, with a main application case to
Covid-19. Advanced machine learning ensemble techniques have been proposed for both feature
selection and classification tasks. In particular, a robust identification of a low-dimensional
feature representation was obtained via the coupling of linear and non-linear feature selection
methods with a hierarchical ablation study. We aimed at modelling the relationship between
the holistic bio-markers signature and the observed outcomes per application. Besides, towards
the creation of a potent ensemble prediction model, we selected for each task generalizable and
well-performing state-of-the-art machine learning algorithms. Their combination was achieved
through a consensus approach based on a majority voting principle. Our proposed formulation
was experimented in three completely different tasks proving its relevance for medical variety of
medical data and applications.

In Chapter 4, we proposed a new methodological approach for combining both biological and
mathematical metrics for the automatic selection and evaluation of gene clustering. Moreover, we
assessed the impact of different clustering algorithms and their optimal combination with different
distances, identifying the best strategy for gene signature selection. We applied this approach
to design a clinically relevant gene signature for 10 cancer types and subtypes characterization.
We demonstrated excellent results for our center-based unsupervised approach outperforming
several baselines comparing different algorithms and a knowledge-based signature. We proved
the efficiency of our proposed compact signature through a statistical and biological evaluation,
tumor samples clustering and classification into types and subtypes.

Chapter 5 elaborated a new higher-order metric algorithm relying on Conditional Random
Field energy minimization. Our proposed formulation allowed to handle structural information
expressed through higher-order graph properties. We demonstrated higher-order considerations
relevance and the strengths of our problem formulation by reporting results surpassing stan-
dard classification algorithms reported in Chapter 3. The efficiency and versatility of our novel
approach enables to explore and leverage variety of metrics and structural properties.
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6.2 Perspectives and Future Applications

This thesis presented general machine learning approaches that formulates sound, rigorous
and robust methods for feature selection, clustering, classification, and evaluation. We have
demonstrated the generalizability potential of our approaches over different application on diverse
medical tasks. Our work could be extended in other challenging and exciting research directions.

6.2.1 Gene Signature Relevance Exemplification

Towards a better demonstration of the pipeline proposed in Chapter 4, we envision several
thrilling leads. An important step is to prove the generalizability of our signature on an external
dataset to highlight its expressiveness. Thus, it will extend the comparison we performed with
a knowledge-based signature. Besides, as the feature selection process we implemented is un-
supervised, another targeted outcome would relevantly complete our signature informativeness
assessment.

Another highly clinically relevant topic is to determine metastasis primary sites. metastasis
origin is of crucial importance for physicians regarding treatment planning and patients stratifi-
cation. Therefore, our signature and prediction pipeline would allow characterizing a metastasis
cancer type and even subtype while requiring the sequencing of only the 27 genes selected. Thus,
we will overcome the two prominent hindrances to wielding gene sequencing routinely by ensur-
ing a far less time-consuming and much cheaper gene expression retrieval. In the same direction,
we have established our signature’s high correlation to immune response even in an unsupervised
setting. Besides, the determination of tissue infiltration and the correlation to T-cells activity is
of prime concern for patients’ response to treatment, especially in immunotherapy.

Finally, a dynamic research field is aiming at providing a holistic approach relying on multi-
omics data. A strength of our approach is its modularity and adaptability. Thus, it could be
effectively exerted for identifying a common global multi-omics signature by leveraging a general
distance between omics information of different kinds, which could, for instance, be learned
through the algorithm we define in Chapter 5. In addition, through Protein-Protein Interaction
network, we possess an expressive and relevant graph structure to leverage with our higher-order
distance learning property. Also, distance-learning interest is to guide clustering with expert
knowledge. Thus, we could leverage enrichment in specific biological processes when performing
gene clustering or perform a sample clustering reinforced by patient’s outcome information.

6.2.2 Treatment Response Prediction

The application scope of our prediction pipeline presented in Chapter 3 and supplemented by
the higher-order metric learning formulation of Chapter 5 is vast. The two first applications on
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breast cancer patients treatment response to a specific drug and on atopic dermatitis severity
characterization are presented in Section 3.5-3.6 achieved promising performance. Therefore,
more diverse medical fields with different types of information could be investigated using those
methods. In particular, we are currently exploring several new leads. For instance, we can report
our work on classifying the different sclerosis types from CT scans, on cancer response prediction
from microbiota data, or on predicting air trapping for transplant rejection determination using
imaging information at 3 different time points. We can finally describe more in detail our work
on predicting the response to immunotherapy for cancer patients under radiotherapy. Similar
to what we performed on the covid patients dataset in Chapter 3, we isolated 3 different areas
on the CT scans (heart, lungs, tumor) to better leverage the whole image volume information.
Some preliminary results prove our approach’s robustness despite the difficulty of the task and
without using any clinical information. We report balanced accuracy of 62%, precision of 53%,
sensitivity of 53%, and specificity of 71% on the test set for pCR response.

An exciting area of research we would like to investigate more in-depth is deep radiomics. We
are currently involved in leveraging an encoder’s latent space used on the covid patients database
for segmenting the disease lesions in the lungs. Then, we identified informative deep features and
managed promising results on staging patients according to their disease severity by applying our
feature selection technique. More specifically, we achieved performance comparable with the ones
obtained with classical features reporting 68% balanced accuracy, 79% weighted precision, 72%
weighted sensitivity, and 64% weighted specificity. We finally performed the outcome prediction
between intubated and deceased patients and the global prediction of non-severe, intubated,
and deceased patients and obtained high performance. On intubated/deceased predictions, we
managed 88% balanced accuracy, 94% weighted precision, 94% weighted sensitivity, and 81%
weighted specificity. On non-severe/intubated/deceased predictions we reached 65% balanced
accuracy, 78% weighted precision, 71% weighted sensitivity and 66% weighted specificity.

6.2.3 Higher-Order Conditional Random Fields for Proteins 3D Mod-
els Similarity Characterization

A significant challenge in designing immunotherapy is to account for the large variability of
possible proteomics profiles of both the particular cancer to treat and the patient’s healthy cells.
Indeed, there are many protein candidates for such a therapy. Determining the most efficient and
with the least harmful side-effects is a very challenging task. A variety of approaches have been
proposed [Iakhiaev, 2010] to select the best candidates thanks to cross-reactivity determination
and decrease the number of fruitless, expensive, and time-consuming white lab experiments and
clinical trials. However, most of the methods tackling this task rely on the protein sequences,
which fail to consider the protein’s spatial structure and experimental information. To address
this problem, we investigated machine learning and computer vision methods to determine simi-
larities between pairs of molecules according to both biological information and proteins’ spatial
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conformation while not relying on any costly experimental information.

We first considered 29 different HLA proteins that have been studied in [Antunes, 2011] and
for which we have a ground truth dendrogram characterizing the experimentally established
similarity between proteins. The similarity between the proteins of this dataset was assessed
both experimentally by assessing the cross-reactivity to a reference dataset and then using a novel
method studying, in particular, the properties of the surface of the molecules’ 3D representations.
This first dataset was used as a training dataset to select the most relevant features, distance
metrics, and algorithm hyperparameters. Graph matching techniques aim to use both graph
structure information and some features on a graph’s nodes to establish a mapping between the
nodes of two different graphs. Here, we consider as graphs meshes on the proteins structures,
the nodes being the atoms of the molecule, and the edges characterizing the atoms’ spatial
proximity. We leveraged different chemical information to characterize the similarity between
atoms like chirality, charge, atom symbol, residue it belongs to, number of chemical neighbors,
hybridization, or aromaticity. Besides, we consider the relative distance between two pairs of
atoms to characterize the higher-order similarity between edges. The algorithm’s objective is then
to maximize the similarity between matched atoms and between the edges of the matched atoms.
This objective function is then used to characterize the similarity between the two molecules and
can be expressed with the following formula: With A the set of possible assignments from one
molecule to the other (pairs of nodes that can be matched), N the set of neighbors (a = (p, p′) ∈ A
and b = (q, q′) ∈ A are neighbors iff p and q on one hand and p′ and q′ on the other hand are
spatially close enough in their respective molecules), θa and θab are respectively unary and
second-order similarities:

θa = log(1 +
√

1− PearsonCorrelation(vp, v′p))

θab = log(1 +Norm(Euclidean(p, q)− Euclidean(p′, q′)))

With Norm being a Min-Max normalization to obtain values in [0, 1] comparable to the Pearson’s
correlation used in θa. In particular, we used an optimization framework from [Torresani, 2012],
relying on an energy minimization scheme similar to the one used in Conditional Random Field
(CRF) frameworks. The problem is then solved by relaxation and problem decomposition. It
would be an interesting perspective to adapt this approach to the one we have design towards
metric learning and relying on similar notions. The matching scores obtained through this
method could be used as a distance matrix to perform hierarchical clustering aiming at proteins
similarity characterization through a dendrogram or a similarity ranking to a reference.

Promising results for the training set of 29 different HLA proteins have been obtained. We
achieved a balanced accuracy of 0.83 for the separation of high, low, and without cross-reactivity
molecules, indicating our method’s great potential. This task offers a valuable application possi-
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bility for higher-order distance learning. Indeed, an intrinsic graphical structure is available, and
we have shown with the previously described experiment the relevance of considering higher-order
information for proteins.

6.3 Medical Graph Generation

A determining limitation by design of the approach we highlighted in Chapter 5 is the quality
of the graph we design when relying on data without a natural graphical representation. The
presence of noisy information or the lack of a higher-order structure might hamper the prediction
performance of our framework. However, many models exist to generate graphs [Agnarsson,
2006]. Several specific graphs have been studied in social science, as the internet, citations,
or co-authorship graphs. These studies enabled identifying essential properties of those graphs
and techniques to model graphs with such characteristics. For instance, to represent social
networks, several utterly referential techniques exist as Barabási–Albert model [Albert, 2002],
Erdős–Rényi model [Erdős, 1960] or Watts-Strogatz networks [Watts, 1998]. Even though already
highly active, the field of medical graphs is still at its beginnings and crucial discriminative
characteristics have still to be investigated.
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A.1 Appendix: Chapter 3

Another highly promising approach to better leverage medical data for classification is the
TPOT [Olson, 2016] approach which aims to automatically determine the most efficient pipeline
to process data from the preprocesssing and the feature selection to the actual prediction. This
task is very similar to what we proposed in this chapter for Cvoid-19 staging. Thus, Table A.1
offers a comparison to the results obtained when applying the TPOT framework on the N/NS
classification with the same training/test splits. We performed this experiment at full scale
allowing 20 generations, a population size of 200 a 10-fold cross-validation and we scored the
results through balanced accuracy, our reference metric for optimization. We report better
results with our proposed ensemble method than with the automatically generated pipeline.
In particular, we observe an overfitting on the training set performance. This overfitting was
reduced with less iterations however, testing results where strongly impaired.

Table A.1: Performance for the Severe (S) and Non-Severe (NS) short-term outcome for each of
the top-5 selected classifiers and their ensemble presented in Section 5. Note: L-SVM = Support
Vector Machine with a linear kernel; RBF-SVM = Support Vector Machine with a Radial Basis
Function kernel.

Classifier
Balanced
Accuracy

Weighted
Pecision

Weighted
Sensitivity

Weighted
Specificity

Train Test Train Test Train Test Train Test
L-SVM 0.7 0.67 0.79 0.78 0.71 0.71 0.69 0.64
RBF-SVM 0.75 0.68 0.82 0.79 0.7 0.67 0.79 0.7
Decision
Tree 0.71 0.67 0.82 0.82 0.61 0.53 0.81 0.81

Random
Forest 0.72 0.68 0.81 0.79 0.69 0.69 0.75 0.68

AdaBoost 0.72 0.67 0.83 0.82 0.63 0.54 0.82 0.81
Ensemble
Classifier 0.73 0.7 0.82 0.81 0.67 0.64 0.8 0.77

TPOT
Framework 0.84 0.64 0.87 0.76 0.82 0.71 0.84 0.66

I
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Table A.2: Performance for the Intubated (SI) and Deceased (SD) patients in the short-term
outcome outcome for each of the top-5 selected classifiers and their ensemble. Note: P-SVM =
Support Vector Machine with a polynomial kernel.

Classifier
Balanced
Accuracy

Weighted
Pecision

Weighted
Sensitivity

Weighted
Specificity

Train Test Train Test Train Test Train Test
P-SVM 0.88 0.7 0.89 0.76 0.84 0.74 0.92 0.67
Decision
Tree 0.9 0.88 0.92 0.94 0.92 0.94 0.88 0.81

Random
Forest 0.9 0.81 0.92 0.91 0.92 0.9 0.88 0.81

AdaBoost 0.9 0.88 0.92 0.94 0.92 0.94 0.88 0.81
Gaussian
Process 0.95 0.77 0.96 0.83 0.96 0.84 0.94 0.7

Ensemble
Classifier 0.9 0.88 0.92 0.94 0.92 0.94 0.88 0.81

A.2 Appendix: Chapter 4

We detail below 27 genes of our proposed signature and their main functions. We also provide a
brief summary of the analysis obtained using GTEx Portal on July 2020 (www.gtexportal.org):

• HSFX1: DNA binding transcription, GTEx: Overexpressed in brain cerebellum and cere-
bellar hemisphere and ovary tissues

• C3P1: endopeptidase inhibitor activity, GTEx: Highly overexpressed in liver tissues

• CCDC30: Coiled-Coil Domain, GTEx: Slightly overexpressed in all brain tissues

• CNRIP1: cannabinoid receptor, GTEx: Particularly expressed in many tissues and in
particular all brain tissues

• CD53: regulation of cell development GTEx: Highly expressed in blood and lymphocytes

• SPRR4: UV-induced cornification, GTEx: more expressed in sun exposed tissues particu-
larly skin

• RIF1: DNA repair, GTEx: expressed in many tissues including heart, blood lymphocytes
and brain

• COL1A2: collagen making, GTEx: highly overexpressed in cultured fibroblasts
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• ZNF767: gene expression, GTEx: highly expressed in several tissues including uterus,
vagina, ovary, brain cerebellum and cerebellar hemisphere

• CD3E: antigen recognition (linked to immunodeficiency), GTEx: more expressed in whole
blood tissues

• MATR3: nucleic acid binding and nucleotide binding, GTEx: highly expressed in several
tissues including uterus, vagina, ovary and brain

• NCAPH: Cell Cycle, Mitotic and Mitotic Prometaphase, GTEx: highly expressed in EBV-
transformed lymphocytes and on a smaller extend in cultured fibroblasts

• ASH1L: transcriptional activators, GTEx: expressed in many tissues including heart, blood
lymphocytes, uterus, vagina, ovary and brain

• ANKRD30A: DNA-binding transcription factor activity (related to breast cancer), GTEx:
more expressed in breast mammary tissues

• GNA15: among its related pathways are CREB Pathway and Integration of energy metabolism,
GTEx: especially overexpressed in oesophagus mucosa

• GADD45GIP1: Among its related pathways are Mitochondrial translation and Organelle
biogenesis and maintenance, GTEx: expressed in many tissues slightly overexpressed in
cultured fibroblasts

• CD302: cell adhesion and migration, GTEx: especially overexpressed in lung and liver
tissues

• SFTA3: Among its related pathways are Surfactant metabolism and Diseases of metabolism,
GTEx: Overexpressed in Lung and thyroid

• C1orf159: Protein Coding gene, GTEx: especially overexpressed in testis

• RPS8: Among its related pathways are Viral mRNA Translation and Activation of the
mRNA upon binding of the cap-binding complex and eIFs, and subsequent binding to 43S,
GTEx: especially overexpressed in ovary tissues

• ZEB2: Among its related pathways are MicroRNAs in cancer and TGF-beta Receptor
Signaling, GTEx: especially overexpressed in spinal cord (c-1) and tibial nerve

• GSX1: sequence-specific DNA binding and proximal promoter DNA-binding transcription
activator activity, RNA polymerase II-specific, GTEx: especially expressed in hypothala-
mus
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• ADNP: Vasoactive intestinal peptide is a neuroprotective factor that has a stimulatory
effect on the growth of some tumor cells and an inhibitory effect on other, GTEx: overex-
pressed in quantity of tissues, especially so in EBV-transformed lymphocytes, testis, ovary
and uterus

• CLIP3: plays a role in T cell apoptosis by facilitating the association of tubulin and the
lipid raft ganglioside GD3, GTEx: expressed in many tissues slightly overexpressed in
EBV-transformed lymphocytes

• YEATS2: Among its related pathways are Chromatin organization, GTEx: expressed in
many tissues overexpressed in EBV-transformed lymphocytes

• ACBD4: Among its related pathways are Metabolism and Peroxisomal lipid metabolism,
GTEx: expressed in many tissues overexpressed in liver, thyroid, uterus and vagina

• SNRPG: Among its related pathways are mRNA Splicing - Minor Pathway and Trans-
port of the SLBP independent Mature mRNA, GTEx: expressed in many tissues strongly
overexpressed in EBV-transformed lymphocytes and cultured fibroblasts

In Table A.3 we present the training/ validation results of the different classifiers using the
LP-Stability and our proposed signature. Moreover, in Table A.4, we present the results for
the training/ test tumor classification results for our proposed signature. The table reports the
performance of the selected algorithms together with the voting (ensemble) classifier.

Table A.3: Predictive Power: Tumor Types, Proposed Signature Training-Validation
tumor types classification performance using the proposed signature (27 genes). Voting Classifier
is composed of classifiers having reached a balanced accuracy above 80% on validation.

Classifier Balanced Accuracy (%) Weighted Precision (%) Weighted Sensitivity (%) Weighted Specificity (%)
Training Validation Training Validation Training Validation Training Validation

Nearest Neighbors 88 79 92 86 92 85 97 95
Linear SVM 91 88 91 90 89 89 99 99
poly SVM 98 91 97 92 96 92 100 99
sigmoid SVM 55 50 70 67 50 49 94 94
RBF SVM 98 89 96 91 96 90 100 98
Gaussian Process 96 90 97 94 97 93 99 98
Decision Tree 68 66 85 38 47 45 94 94
Random Forest 93 89 94 92 92 90 99 99
MLP 100 87 100 92 100 92 100 98
AdaBoost 72 64 81 75 74 70 98 95
Gaussian Naive Bayes 32 32 69 61 58 58 69 69
Bernouilli Naive Bayes 59 59 75 71 74 75 90 91
QDA 71 67 87 82 78 76 98 98
XGBoosting 100 88 100 93 100 92 100 98
Voting Classifier 99 92 98 94 98 94 100 99

Tables A.5 and A.6 we summarise the performances for the signature presented in [Thorsson,
2018]. Using the referential algorithm [28] only three classifiers were selected and used for the
tumor classification, reporting also lower performance.



A.2. Appendix: Chapter 4 V

Table A.4: Predictive Power: Tumor Types, Proposed Signature Training-Test tumor
types classification performance using the proposed signature (27 genes) after retraining on entire
Training-Validation set

Classifier Balanced Accuracy (%) Weighted Precision (%) Weighted Sensitivity (%) Weighted Specificity (%)
Training Test Training Test Training Test Training Test

Linear SVM 91 89 91 90 89 88 99 98
poly SVM 98 87 97 89 97 88 100 98
RBF SVM 98 88 97 90 97 88 100 99
Gaussian Process 95 88 97 92 97 92 99 98
Random Forest 92 90 93 92 91 90 99 99
MLP 100 87 100 90 100 89 100 98
XGBoosting 100 91 100 94 100 94 100 98
Voting Classifier 99 92 99 94 98 93 100 99

Table A.5: Predictive Power: Tumor Types, Referential Signature [Thorsson, 2018]
Training-Validation tumor types classification performance using the referential signature (78
genes). Voting Classifier is composed of classifiers having reached a balanced accuracy above 80%
on validation and presenting a difference of balanced accuracy between training and validation
below 20%.

Classifier Balanced Accuracy (%) Weighted Precision (%) Weighted Sensitivity (%) Weighted Specificity (%)
Training Validation Training Validation Training Validation Training Validation

Nearest Neighbors 85 70 87 72 86 72 97 95
Linear SVM 88 83 87 84 86 84 98 98
poly SVM 94 78 94 79 93 78 99 97
sigmoid SVM 53 55 59 58 46 48 94 94
RBF SVM 99 80 99 82 99 82 100 97
Gaussian Process 95 86 96 88 96 88 99 98
Decision Tree 50 45 54 46 54 52 90 90
Random Forest 78 75 77 75 75 73 97 96
Neural Net 100 80 100 80 100 80 100 97
AdaBoost 54 52 54 56 53 55 93 93
Gaussian Naive Bayes 30 31 56 48 41 41 83 84
Bernouill Naive Bayes 29 27 37 31 37 35 84 85
QDA 78 65 84 73 83 73 97 96
Gradient Boosting 99 76 100 82 100 82 100 97
Voting Classifier 99 87 99 88 99 88 100 98

Table A.6: Predictive Power: Tumor Types, Referential Signature [28] Training-Test
tumor types classification performance using the referential signature (78 genes) after retraining
on entire Training-Validation set

Classifier Balanced Accuracy (%) Weighted Precision (%) Weighted Sensitivity (%) Weighted Specificity (%)
Training Test Training Test Training Test Training Test

Linear SVM 88 82 87 81 86 81 98 98
RBF SVM 99 80 99 81 99 81 100 97
Gaussian Process 95 83 95 83 95 83 99 97
Voting Classifier 100 85 100 89 100 89 100 98

Tables A.7 and A.8 present the performances for the random signature. Using the random
signature only two classifiers were selected, fulfilling the used criteria. This signature reports the
lowest performance compared to the other two signatures.
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Table A.7: Predictive Power: Tumor Types, Random Signatures Training-Validation
tumor types classification average performance over 10 random signatures (27 genes each). Voting
Classifier is composed of classifiers having reached a balanced accuracy above 80% on validation.

Classifier Balanced Accuracy (%) Weighted Precision (%) Weighted Sensitivity (%) Weighted Specificity (%)
Training Validation Training Validation Training Validation Training Validation

Nearest Neighbors 83+/-2 71+/-3 84+/-1 72+/-2 83+/-2 72+/-3 97+/-1 95+/-1
Linear SVM 8+/-1 78+/-2 78+/-1 77+/-2 77+/-2 75+/-2 97+/-0 97+/-0
poly SVM 94+/-1 79+/-2 93+/-2 78+/-2 92+/-2 78+/-2 99+/-0 97+/-0
sigmoid SVM 39+/-6 37+/-7 55+/-4 56+/-5 34+/-6 34+/-6 94+/-1 94+/-1
RBF SVM 9+/-1 8+/-2 88+/-2 8+/-2 88+/-2 8+/-2 98+/-0 97+/-0
Gaussian Process 89+/-1 81+/-2 89+/-1 81+/-2 89+/-1 81+/-2 98+/-0 97+/-0
Decision Tree 49+/-4 48+/-5 55+/-14 41+/-11 41+/-9 4+/-9 92+/-2 92+/-2
Random Forest 76+/-2 75+/-3 75+/-2 73+/-3 73+/-2 71+/-3 97+/-0 96+/- 0
Neural Net 99+/-1 76+/-2 99+/-1 76+/-2 99+/-1 76+/-2 100+/-0 96+/-0
AdaBoost 56+/-5 53+/-5 57+/-4 55+/-5 53+/-6 51+/-7 93+/-1 93+/-1
Gaussian Naive Bayes 26+/-6 28+/-7 57+/-6 55+/-8 41+/-5 42+/-6 81+/-3 81+/-4
Bernouilli Naive Bayes 28+/-7 28+/-7 42+/-4 34+/-8 38+/-5 38+/-5 86+/-3 86+/-3
QDA 60+/-11 57+/-10 69+/-6 65+/-6 50+/-15 48+/-14 95+/-1 95+/-1
Gradient Boosting 100+/-0 78+/-3 100+/-0 80+/-2 100+/-0 80+/-2 100+/-0 97+/-0
Voting Classifier 94+/-1 83+/-2 93+/-1 82+/-2 93+/-1 82+/-2 99+/-0 98+/-1

Table A.8: Predictive Power: Tumor Types, Random Signatures Training-Test tumor
types classification average performance over 10 random signatures (27 genes each) after retrain-
ing entire Training-Validation set

Classifier Balanced Accuracy (%) Weighted Precision (%) Weighted Sensitivity (%) Weighted Specificity (%)
Training Test Training Test Training Test Training Test

RBF SVM 90+/-1 79+/-2 88+/-2 79+/-1 88+/-2 78+/-2 98+/-0 97+/-0
Gaussian Process 89+/-1 80+/-1 89+/-1 80+/-1 89+/-1 81+/-1 98+/-0 97+/-0
Voting Classifier 96+/-5 84+/-2 95+/-5 87+/-3 94+/-7 86+/-4 99+/-1 97+/-1

A.3 Appendix: Chapter 5

A.3.1 Optimizing over {x̂k,p}

For a fixed p.

Ēkp (x,w) =
∑
p,q 6=p

ūkp,q(xp,q) +
∑

p,p′,q 6=p
ūkp,p′,q(xp,qxp′,q) +

∑
q

φ̄p,q(xp,q) + φ̄p(xp)

− β

|V k|
+
∑
q

( 1
|V k|+ 1(ūkq,q(xkq,q) +

∑
p′

ūkq,p′,q(xkq,qxkp′,q)) + λp,qxq,q)

=
∑
p,q 6=p

ūkp,q(1)xp,q +
∑

p,p′,q 6=p
ūkp,p′,q(1)xp,qxp′,q +

∑
q

φ̄p,q(xp,q) + φ̄p(xp)

− β

|V k|
+
∑
q

( 1
|V k|+ 1(ūkq,q(1)xkq,q +

∑
p′

ūkq,p′,q(1)xkq,qxkp′,q) + λp,qxq,q)

=
∑
p,q 6=p

(ūkp,q(1) +
∑

p,p′,q 6=p
ūkp,p′,q(1)xp′,q)xp,q +

∑
q

φ̄p,q(xp,q) + φ̄p(xp)−
β

|V k|

+
∑
q

( 1
|V k|+ 1(ūkq,q(1) +

∑
p′

ūkq,p′,q(1)xkp′,q) + λp,q)xq,q

(A.1)
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We still have here a complex CRF energy to minimize. To solve this problem in general settings
we could use a replacement strategy leveraging the binary nature of the variables as proposed
in [Fix, 2011]. However, it would lead to a costly optimization which would hinder the tractability
of the whole framework. Thus, we exploit the particularity of our distance learning task and
impose a positivity constraint over the distance. Thus, ∀p, p′, q, ūkp,p′,q(1) > 0 and we have no
constraint on xp′,q, then, fixing ∀p′ 6= p, q, xp′,q = 0 will decrease the objective function. So, it
come down to:

min
x
Ēkp (x,w) = min

x
(
∑
p

∑
q 6=p

(ūkp,q(1) + ūkp,q,q(1)xq,q + ūkp,p,q(1))xp,q +
∑
q

φ̄p,q(xp,q) + φ̄p(xp)

− β

| V k |
+
∑
q

( 1
| V k | +1(ūkq,q(1) + ūkq,q,q(1)) + λp,q)xq,q)

(A.2)

Minimizing Ēkp (x,w) requires the constraints φ̄p(xp) = 0 and φ̄p,q(xp,q) = 0 as the alternative
is an infinite cost. It imposes there exists one and only one q such that xp,q = 1 and for that

q, xq,q = 1. Thus, ∀q, if we denote θkq =
ūkq,q(1) + ūkq,q,q(1)
| V k | +1 + λp,q and θ̄kq = [θkq ]+ + ūkp,q(1) +

ūkp,q,q(1) + ūkp,p,q(1) with [z]+ = max(0, z), the terms containing xq,q are (up,q,qxp,q + θkq )xq,q.
Then, to decrease our objective function, we have to set xq,q = 1 if θkq < 0 and the cost up,q,q
will only be paid if p is assigned to q. Regarding this assignment, the cost of xp,q = 1 will
be minimal iff q = arg min θ̄kq where the term [θkq ]+ accounts for the extra cost of satisfying
xp,q = 1 =⇒ xq,q = 1 will entail if xq,q did not verify θkq < 0 and so would have been set to 0.

Lemma 9

x̂pq,q =[θkq < 0]

x̂pp,q =[q = q̄] where q̄ = argminq(θ̄kq )
(A.3)

with θkq =
ūkq,q(1) + ūkq,q,q(1)
| V k | +1 + λp,q and θ̄kq = [θkq ]+ + ūkp,q(1) + ūkp,q,q(1) + ūkp,p,q(1)

A.3.2 Optimizing over {x̂k,C}

For a fixed C.

ĒkC(x,w) =φ̄C(xC) +
∑
q∈C

( 1
| V k | +1(ūkq,q(xkq,q) +

∑
p′

ūkq,p′,q(xkq,qxp′,q)) + λCxC) (A.4)

As previously, for a better tractability we will enforce the positivity constraint on our distance,
so ∀p′ 6= q, xp′,q = 0 as ūkq,p′,q > 0 and we have no constraint over xp′,q when p′ 6= q.

Regarding xq,q, we consider two cases:
(i) ∀q ∈ C, x̂k,Cq,q = 0. Then, the optimal energy is OPT1 = −α | Ck |.
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(ii) ∃q, x̂k,Cq,q = 1. Then:

ĒkC(x,w) =φ̄C(xC) +
∑
q∈C

( 1
| V k | +1(ūkq,q(xkq,q) + ūkq,q,q(xkq,q)) + λCxC)

=
∑
q∈C

( 1
| V k | +1((ūkq,q(1) + ūkq,q,q(1))xkq,q) + λCq

xC)− α(| V k | − | Ck |)(
∑
q∈C

xkq,q − 1)

=
∑
q∈C

( 1
| V k | +1(ūkq,q(1) + ūkq,q,q(1)) + λCq

− α(| V k | − | Ck |))xkq,q + α(| V k | − | Ck |)

In this case, ∀q ∈ C,

x̂q,q = 1 ⇐⇒ 1
| V k | +1(ūkq,q(1) + ūkq,q,q(1) + λCq

− α(| V k | − | Ck |) < 0

i.e.
x̂q,q = [ 1

| V k | +1(ūkq,q(1) + ūkq,q,q(1)) + λCq
< α(| V k | − | Ck |)]

And, in this case, the optimal energy is

OPT2 =
∑
q∈C

[ 1
| V k | +1(ūkq,q(1) + ūkq,q,q(1)) + λCq

− α(| V k | − | Ck |)]− + α(| V k | − | Ck |)

with [z]− = min(0, z).
Finally, the second case holds true iff

OPT2 < OPT1

⇐⇒
∑
q∈C

[ 1
| V k | +1(ūkq,q(1) + ūkq,q,q(1)) + λCq

− α(| V k | − | Ck |)]− + α(| V k | − | Ck |) < −α | Ck |

⇐⇒
∑
q∈C

[ 1
| V k | +1(ūkq,q(1) + ūkq,q,q(1)) + λCq

− α(| V k | − | Ck |)]− + α | V k |< 0

Lemma 10 For fixed C ∈ Ck, let θkq = 1
| V k | +1 ū

k
q,q(1) + ūkq,q,q(1) + λCq

, ∀q ∈ C. A minimizer

x̂C of ĒkC(x,w, λk) is given by

∀q ∈ C, x̂Cq,q =
{

[θkq < α(| V k | − | Ck |)], if
∑
q′∈C [θkq − α(| V k | − | Ck |)]− + α | V k |< 0

0 otherwise

with [z]− = min(0, z)

A.3.3 Optimizing over λ and w

These updates are defined from subgradients of the objective function. We compute the partial
derivatives of each subproblem’s hinge loss. We denote by x̂k,p and x̂k,C binary minimizers of
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energies Ēkp (x,w) and ĒkC(x,w).

δwk,p =
∑
p′,q 6=p

xkp,qx
k
p′,qf

k
p,p′,q +

∑
q 6=p

xkp,qf
k
p,q +

∑
q

1
| V k | +1(xkq,qfkq,q +

∑
p′

xkq,qx
k
p′,qf

k
qp′,q)−

(
∑
q 6=p

x̂k,pp,q x̂
k,p
p′,qf

k
p,p′,q +

∑
q 6=p

x̂k,pp,qf
k
p,q +

∑
q

1
| V k | +1(x̂k,pq,q fkq,q +

∑
p′

x̂k,pq,q x̂
k,p
p′,qf

k
qp′,q))

δwk,C =
∑
q

1
| V k | +1(xkq,qfkq,q +

∑
p′

xkq,qx
k
p′,qf

k
qp′,q)−

∑
q

1
| V k | +1(x̂k,Cq,q fkq,q +

∑
p′

x̂k,Cq,q x̂
k,C
p′,qf

k
qp′,q)

δλk,p =xkq,q − x̂k,pq,q
δλk,C =xkq,q − x̂k,Cq,q

(A.5)

Thus, we have the update:

δw =τ∇J(w) +
∑
k

(
∑
p

δwk,p +
∑
C

δwk,C)

=τ∇J(w) +
∑
k

δkw
(A.6)

with:

δkw =
∑
p,p′,q

xkp,qx
k
p′,qf

k
p,p′,q +

∑
q

xkp,qf
k
p,q − (

∑
q 6=p

x̂k,pp,q x̂
k,p
p′,qf

k
p,p′,q +

∑
q 6=p

x̂k,pp,qf
k
p,q+

∑
q

1
| V k | +1(X̂k

q f
k
q,q +

∑
p′

X̂k
p′,qf

k
qp′,q))

(A.7)

with X̂k
q = x̂k,Cq,q +

∑
p x̂

k,p
q,q and X̂k

p′,q =
∑
p x̂

k,p
q,q x̂

k,p
p′,q + x̂k,Cq,q x̂

k,C
p′,q

Finally, to obtain an acceptable solution λ we need to project on set Λ. To that purpose, we

simply have to substract by
λk,C +

∑
p λ

k,p

| V k | +1 = xkq,q −
X̂k
q

| V k | +1 . Thus, we have to update w and
λ with the following formulas:

Lemma 11 Let st be the weight accorded to the optimization at step t. We define X̂k
q = x̂k,Cq,q +∑

p x̂
k,p
q,q and X̂k

p′,q = x̂k,pq,q x̂
k,p
p′,q + x̂k,Cq,q x̂

k,C
p′,q. Then, update reduces to:

w −=st(τ∇J(w) +
∑
k

δkw)

λkp,q −=st(
X̂k
q

| V k | +1 − x̂
k,p
q,q )

λkp,q −=st(
X̂k
q

| V k | +1 − x̂
k,C
q,q )

(A.8)
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where

δkw =
∑
p,p′,q

xkp,qx
k
p′,qf

k
p,p′,q +

∑
p,q

xkp,qf
k
p,q − (

∑
p′,q 6=p

x̂k,pp,q x̂
k,p
p′,qf

k
p,p′,q +

∑
q 6=p

x̂k,pp,qf
k
p,q+

∑
q

1
| V k | +1(X̂k

q f
k
q,q +

∑
p′

X̂k
p′,qf

k
qp′,q))

(A.9)
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Glossary
Bias errors the model will commit because of simplifying assumptions. 15, 17, 18, 32

BLCA BLadder CAncer. xii, 72, 75, 76, 82, 83, 86, 88, 89

BRCA BReast CAncer. ix, x, xii, 72, 75, 76, 82, 83, 85–90

CESC CErvical Squamous Cell carcinoma. xii, 72, 75, 76, 82, 83, 85–89

Clique a subset of vertices of a graph such that every two distinct vertices in the clique are
adjacent. 2

CRF Conditional Random Field. 6

GBM GBlioblastoma Multiforme. ix, x, xii, 75, 76, 82, 83, 85, 86, 88

GLDM Gray-Level Dependence Matrix. xi, 42, 43, 55

GLRLM Gray-Level Run Length Matrix. xi, 42, 43, 53, 55

GLSZM Gray-Level Size Zone. 42, 43, 54

HNSC Head-Neck Squamous Cell carcinoma. xii, 72, 75, 76, 82, 83, 85, 86, 88, 89

LIHC LIver Hepatocellular Carcinoma. ix, x, xii, 75, 76, 82, 83, 85, 86, 89

LUAD LUng ADenocarcinoma. ix, x, xii, 72, 75, 76, 82, 83, 85, 86, 88

LUSC LUng Squamous Cell carcinoma. ix, x, xii, 72, 75, 76, 82, 83, 85, 86, 88, 89

Medoid the sample the closest to the cluster center. 72

OV OVarian cancer. xii, 72, 75, 76, 82, 83, 85–89

READ REctum ADenocarcinoma. xii, 75, 76, 82, 83, 88, 89

Variance the variation the estimate function will incur under small fluctuations of the training
data. 12, 16, 17

XI
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Approches de théorie des graphes d’ordre supérieur pour diverses données omiques

Mots clés: Conditional Random Field, Feature Selection, Clustering/Classi�cation, Omiques

Cette thèse introduit l'usage d'approches reposant sur les �

conditional random �elds � à diverses applications médicales

et données omiques. Ces méthodes permettent de tirer parti

au mieux d'informations structurelles lourdes à interpréter

et analyser. En particulier, l'emploi de la théorie des graphes

d'ordre supérieur revêt un intérêt majeur pour l'expression de

relations biologiques complexes. Nous démontrons leur perti-

nence dans les domaines du � clustering � et de la sélection

de variables pour la classi�cation. Nous nous sommes appuyé

sur plusieurs applications médicales et données omiques pour

mettre ces résultats en lumière.

Dans un premier temps, nous avons proposé un système

générique et résilient de sélection de variables et de classi�ca-

tion que nous avons développé pour déterminer la sévérité de

la maladie de patients atteints de la Covid-19. Dans ce but,

nous nous sommes appuyés sur des informations extraites de

segmentations automatiques des organes et zones lésées que

nous avons combinés avec des informations cliniques. Nous

avons identi�é un nombre restraint de facteurs déterminants

la classi�cation. Nous avons obtenu des performances promet-

teuses dépassant celles de radiologues experts sur les tâches

considérées. Nous avons étendu plus avant et adapté cette

méthodologie pour traiter d'autres données omiques, maladies

et attendus médicaux.

Par la suite, nous avons étudié un procédé de clustering

pour la dé�nition d'une signature de gènes présentant un in-

térêt clinique vis-à-vis de la caractérisation pan-cancer de lé-

sions. Bien des études ce sont essayées à la description du can-

cer grâce à la génomique. Cependant, la grande dimensional-

ité des données représente un formidable obstacle. Nous avons

prouvé la pertinence de la signature génétique très compacte

générée par notre méthode en recourrant à des approches su-

pervisées et non-supervisées pour la caractérisation des types

et sous-types de tumeurs.

Finalement, nous avons dé�ni une nouvelle approche

d'apprentissage de distance d'ordre supérieur à viser de sélec-

tion et de pondération de variables. Fort de la grande ex-

pressivité de ce paradigme, nous avons exploré diverses pro-

priétés de théorie des graphes d'ordre supérieur et avons établi

que, dans le cadre d'une tâche de classi�cation, ils possèdent

une grande expressivité et permettent d'obtenir des résultats

supérieurs à ceux des méthodes standards.

High dimensional graph theory approaches for various omics data

Keywords: Conditional Random Field, Feature Selection, Clustering/Classi�cation, Omics

This thesis presented conditional-random-�eld-based ap-

proaches for medical applications on diverse omics data. This

methodology allowed leveraging more complex, structural in-

formation and notable assets from graph theory, particu-

larly interesting to express intricate biological properties. We

demonstrated their usefulness for clustering and feature selec-

tion towards classi�cation. Their relevance was exempli�ed

over several medical applications and omics data.

First, we focused on a clustering process towards the deter-

mination of a clinically relevant gene signature for pan-cancer

tumors characterization. We highlighted our compact signa-

ture's relevance by resorting to unsupervised and supervised

tumor types and subtypes distinction.

Second, we proposed a generic and resilient feature selec-

tion and classi�cation pipeline we developed for Covid-19 pa-

tients staging and outcome prediction using only CT scans

and clinical information. Relying on an automated segmen-

tation technique, we extracted imaging information. We sin-

gled out few relevant factors for classi�cation. We obtained

promising performance outperforming radiologist experts on

all the tasks. We further extended and adapted our method-

ology to cope with other di�erent omics data, diseases, and

medical expectations.

Finally, we formulated a new higher-order distance learning

framework for feature selection and weighting. We proposed

a mathematical optimization method for its resolution able

to handle the high-order information complexity e�ciently.

We established those attributes informativeness in classi�ca-

tion settings and reported superior results than with standard

approaches.
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